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Abstract 

Diabetes is defined as a chronic disease caused by an increase in blood glucose levels 
(hyperglycemia), in which the organism is unable to make adequate use of carbohydrates, fats, 
and proteins due to the pancreas' inability to produce enough insulin hormone or the hormone's 
inability to function properly. Diabetes is the most severe chronic condition, according to a World 
Health Organization report. Diabetic retinopathy (DR) is a complication of type 1 diabetes. 
Diabetes problems can cause damage to the blood vessels in the light-sensitive tissue (retina) at 
the rear of the eye, resulting in DR. Diabetes is one of the top three causes of blindness, according 
to the International Diabetes Federation's Diabetes Atlas 10th Edition (2021). Diabetes-related 
blindness is mostly caused by the loss of small vessels in the retina because of chronic 
hyperglycemia. Approximately 25% of individuals with diabetes globally have DR of any severity. 
Our country has around 2 million diabetes patients, with DR accounting for 25% of the total. There 
are five categories of DR. These are non-proliferative diabetic retinopathy (NPDR), mild non-
proliferative retinopathy, moderate non-proliferative retinopathy, severe non-proliferative 
retinopathy, and proliferative diabetic retinopathy (PDR), in order of severity. Using the 
APTOS2019 dataset, this study develops a computer-aided diagnosis system to assist doctors in 
making early diagnoses using convolutional deep learning (DL) models. Binary and multi-class 
classification was done utilizing cutting-edge models such as VGG16, InceptionResNetV2, 
ResNet152V2, EfficientNetB0, and MobileNetV2, which are extensively used in the literature for 
medical image classification. Since the amount of data in the multi-class classification in diabetic 
retinopathy disease images was not equal, the data were equalized utilizing data augmentation 
techniques in the training dataset with the Albumentations library. Among the cutting-edge models 
employed in binary classification, VGG16 performed best, with accuracy, precision, sensitivity, 
and F1-score metric values of 0.97. VGG16 was the best model employed in multi-class 
classification, with accuracy, precision, sensitivity, and f1-score metric values of 0.78 and 0.79, 
respectively. 
 
Keywords: diabetic retinopathy, deep learning, convolutional neural networks, transfer learning 

 

1. Introduction 

Diabetes is a rapidly increasing global health problem, with the number of people with 
diabetes predicted to rise to 643 million (11.3%) by 2030 and 783 million (12.2%) by 
2045. [2,3]. High blood glucose is a common effect of uncontrolled diabetes. Over time, 
it causes serious damage to numerous systems of the body, especially the eyes, heart, 
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kidneys, nerves, and blood vessels [2,4,5]. Diabetes is generally classified into 4 groups: 
Type I, Type II, gestational diabetes, and other specific types. The most common types 
of diabetes are Type I and Type II diabetes. The type of diabetes that occurs during 
pregnancy is defined as gestational diabetes, while other types are defined as high blood 
glucose levels that occur for many reasons and affect the pancreas [1]. 

Diabetic retinopathy can progress slowly or quickly, yet it can also improve on its own. 
However, if it worsens, it may result in partial or permanent vision loss. 

 
 

a) Healthy retina image b) Retina with diabetic retinopathy 

Figure 1. Sample images: a) healthy retina image, b) retina image with diabetic 
retinopathy. 

Figure 2 shows hemorrhages, soft and hard exudates, and microaneurysms on the 
retina. 

 

Figure 2. Fundoscopic illustration of the retina displaying microaneurysms, 
hemorrhages, and exudates [6] 

There are 5 stages of diabetic retinopathy:[7] 

Non-proliferative diabetic retinopathy [7]: It can be seen in Figure 3a. This is the time 
when the sickness first appears. During this period, fluid leakage occurs in the damaged 
vessels, causing retinal hemorrhages. In general, the patient's vision is not affected 
during this period [8]. 
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Mild non-proliferative retinopathy [7]: It can be seen in Figure 3b. It represents the first 
stage of diabetic retinopathy. Swellings (microaneurysms) occur in small blood vessels 
in the rear of the eye (retina) [9, 10]. 

Moderate non-proliferative retinopathy [7]: It can be seen in Figure 3c. Diabetic macular 
edema occurs as a result of the accumulation of blood and other fluids in the small central 
part of the retina (macula). Visual problems are also seen at this stage due to diabetic 
macular edema [9, 10]. 

Severe non-proliferative retinopathy [7]: It can be seen in Figure 3d. At this stage, new 
blood vessels and scar tissue are formed. Some or all of the blood vessels are occluded. 
Complete occlusion of blood vessels is called macular ischemia. As a result of this 
condition in the blood vessels, dark spots (flying objects) form in the visual field, and this 
causes blurred vision. At this stage, the possibility of visual loss is quite high [9, 10]. 

Proliferative diabetic retinopathy [7]: It can be seen in Figure 3e. This figure represents 
the most dangerous period of diabetic retinopathy. During this period, the blood vessels 
in the retinal layer are severely impaired, resulting in the formation of areas that cannot 
be nourished. These areas cause the development of new blood vessels. Since these 
vessels are very thin and fragile, they can cause sudden bleeding in the eye. The patient 
experiencing this process notices black spots appearing in front of the eye and moving 
in that direction, wherever the eye is turned. Patients with significant hemorrhage suffer 
visual loss and blindness [9, 10]. 

 
  

a) Non-proliferative diabetic 
retinopathy (NPDR) retinal 
image 

b) Retinal image of mild DR 
[11]. 

c) Retinal image of 
moderate DR [11]. 

  

 

d) Retinal image of severe 
DR. 
 

e) The retinal image of 
proliferative DR [11]. 

 

Figure 3. Sample images for the stages of diabetic retinopathy 
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In recent years, DL methods have been frequently used in object recognition, image 
classification, and segmentation in medical and ophthalmological images, and very 
successful results have been obtained. In particular, deep convolutional neural networks 
(DNNs) have been used for early detection and identification of retinal diseases such as 
DR, age-related macular degeneration, and glaucoma from retinal images [12,13,14,15]  

In this study, image classification for DR was performed using DL methods. VGG16, 
InceptionResNetV2, ResNet152V2, EfficientNetB0, and MobileNetV2 transfer learning 
(TL) architectures from state-of-the-art models were used. Binary and multi-class 
classification was performed for DR. Since the amount of data in the multi-class 
classification was not equal, the data was equalized utilizing data augmentation 
techniques using the albumentations library in the training dataset. 

This study contributes to the literature by demonstrating the effectiveness of deep 
learning and transfer learning methods in the early diagnosis of DR. The successful use 
of advanced models such as VGG16, InceptionResNetV2, ResNet152V2, 
EfficientNetB0, and MobileNetV2 in DR classification brings a significant innovation to 
the existing knowledge in this field. Additionally, addressing class imbalances through 
data augmentation techniques leads to more accurate and reliable classification results. 

The rest of this paper is organized as follows. Section 2 presents the literature review. In 
Section 3, the proposed methods and the dataset used in the study are described in 
detail. Section 4 presents the results obtained in the study. The discussion and 
conclusion section of the paper is presented in Section 5, where a comparison with the 
findings of similar studies in the literature is made. 

2. Literature Review 
 
Cao et al. suggested a DL model with three major components. First, a transducer 
structure was incorporated into a convolutional neural network (CNN) to effectively utilize 
both local and long-range information. Second, disease details were collected from 
multiple images before self-attention was applied to improve inter-image interactions and 
reduce overfitting. Finally, an attention-based image transformation approach was 
proposed to filter information from different stages of the feature maps and adaptively 
capture lesion-related details. Their experiments produced a multi-class accuracy of 
85.96% on the APTOS dataset and a binary class accuracy of 95.33% on the Messidor 
dataset, exceeding current approaches [16].  
 
The aim of the study by Chandra et al. in 2024 was to create a CNN-based model for 
detecting and categorizing diabetic retinopathy using the APTOS dataset. The APTOS 
dataset was a large, open-access collection of fundus images that ophthalmologists 
analyzed for the likelihood and severity of DR. The accuracy obtained through the CNN 
model and the AlexNet model was 97% and 93% in quintuple classification, respectively 
[17]. 
 
Ohri et al. employed vision transformer-based deep learning models to classify DR 
diseases. The vision transformer-based DL architecture can classify fundus images into 
one of the DR categories by pre-training unlabeled fundus images before undertaking 
supervised training on labeled data. This study used DINO[VIT], MAE[VIT], and 
MSN[VIT] transducer-based DL architectures. The best MAE[VIT] transducer-based 
design achieved kappa values of 0.8341 in the low data regime and 0.9027 in the full 
data regime on 50 EyePACS training data using the Masked Autocoder framework [18]. 
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Oulhadj et al. used four datasets, including EyePACS, DDR, Messidor-2, and APTOS 
datasets, for their study. As a preprocessing step on fundus images, they applied 
contrast-limiting adaptive histogram equalization and power law transformation 
approaches to classify DR illness using a modified capsule network-based and a fine-
tuned vision transducer hybrid DL method. On the EyePACS, DDR, Messidor-2, and 
APTOS datasets, their efforts produced flawless test accuracy scores of 78.64%, 
80.36%, 87.78%, and 88.18%, respectively [19]. 
 
In 2023, Mondal et al. combined the updated ResNet and DenseNet101 models, an 
enhanced version of the ResNet model for DR classification, to propose an automated 
ensemble DL model for better feature extraction. Two datasets, APTOS19 and 
DIARETDB1, were used in experiments for binary and multi-class classification. They 
preprocessed the images using the CLAHE approach for histogram equalization. For 
data augmentation, they used a GAN-based boosting strategy because of the dataset's 
severe class imbalance. The accuracy of the suggested approach is 86.08% for multi-
class classification and 96.98% for binary classification [20]. 
 
Vijayan et al. proposed an early detection approach for automatic detection of DR that 
uses regression rather than multiclass classification using the convolution-based 
EfficientNetB0 model, one of the most advanced TL models. Better generalization was 
the initial advantage of the regression problem approach, and finer-grained predictions 
were made possible by the model's ability to give a value that falls between 
conventionally distinct labels. The APTOS and DDR datasets were used to test the idea. 
The DDR dataset had an accuracy of 84.80, whereas the APTOS dataset had an 
accuracy of 86.20 [21]. 
 
By merging the pyramid hierarchy of the discrete wavelet transform of the retinal fundus 
image with a modified capsule network and a proposed modified starting block, Oulhadj 
et al. discovered a novel deep hybrid model for determining the severity level of DR. 
Their proposed method's performance was assessed using the APTOS dataset, yielding 
training accuracy ratings of 97.71% and test accuracy scores of 86.54% [22]. 
 
In another study, Oulhadj et al. proposed comparing ensemble voting and five cutting-
edge TL CNN models (ResNet50, DenseNet121, VGG16, InceptionV3, and Xception) 
for the automatic assessment of the severity of diabetic retinal disease. The results of 
five cutting-edge models were used by the community voting to make its choice. Using 
the APTOS dataset for training and testing, the suggested effort produced an accuracy 
of 83.63 [23]. 
 
A novel two-step convolutional DL-based approach for automatic DR detection was 
presented by Oulhadj et al. In the first step, known as preprocessing, the background 
influence was eliminated from the classification process by applying the deformable 
registration that covers the entire image to the retina. To identify the stage of DR, they 
trained four cutting-edge TL CNN models (ResNet50, InceptionV3, Xception, and 
DenseNet121) in the second step. The APTOS 2019 dataset was used to evaluate the 
proposed architecture's performance, and their model's accuracy was 85.28% [24]. 
 
Islam et al. used the APTOS 2019 dataset to automatically predict DR severity from 
fundus images. The state-of-the-art TL CNN model Xception was chosen as the encoder, 
and CLAHE was used to enhance image quality. For the binary classification of DR, the 
suggested model produced an AUC score of 98.50% and a test accuracy of 98.36%; for 
the multi-class classification using the APTOS 2019 dataset, the AUC score was 
93.819% and the test accuracy was 84.364% [25]. 
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3. Materials and Methods 

This section provides detailed information about the dataset, methods, and evaluation 
criteria used in the study. 

3.1. Dataset 

APTOS2019 [11] was used in this study. Tables 1 and 2 indicate the quantity of data 
used for binary and multi-class classification. There are 3662 data points in this dataset. 
In binary and multi-class classification, 72% of the total data was used for training, 20% 
for testing, and 8% for validation. As a result of employing Albumentations library data 
augmentation methods, there are 1300 data points in each class, for a total of 6500 data 
points. 

Table 1. Data Amounts for Binary Classification in Training, Testing, and Validation 

 
Train %72 Test %20 Validation %8 Total  

0-NPDR 1300 361 144 1805 

1-DR 1336 372 149 1857 

Total 2636 733 293 3662 

Table 2. Data Amounts for Multi-Class Classification in Training, Testing, and 
Validation 

3.2. Method 

In this study, VGG16, MobileNetV2, ResNet152V2, InceptionResNetV2, and 

EfficientNetB0 state-of-the-art DL models, which are frequently preferred for image 

classification in the field of healthcare, are used. 

The Visual Geometry Group proposed the VGG16 CNN architecture. Figure 4 shows the 

VGG16 network architecture, which consists of 13 convolutional layers, three fully 

connected layers, and five pooling layers [26]. The step size is two, while the kernel size 

in the pooling layers is 2 × 2. In Step 1, the convolution kernel size is set to 3×3 in the 

convolutional layers. The rectified linear unit (ReLU) is the activation function for 

convolutional layers. The VGG-16 network receives an image with dimensions of 224 by 

224 pixels and three channels. In the initial portion, two convolutional layers are followed 

 
Train 
(DataAugmented) 

 Train 
%72 

 Test 
%20 

Validation %8 Total 

0-NPDR 1300  1300   361 144 1805 

1-MildNPDR 1300  266   74  30 370 

2-ModerateNPDR 1300  719   200  80 999 

3-SevereNPDR 1300  139   39  15 193 

4-ProliferateDR 1300  212   59  24 295 

Total    -  2636   733  293 3662 

Total(DataAugmented)                            6500    -   -   -   - 
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by a pooling layer. Each of these convolutional layers has 64 cores and measures 224 x 

224 pixels. Each of these convolutional layers has 64 cores with 224 x 224 pixels. 

 

 
Figure 4. VGG16 Architecture Illustration [27] 

 

The MobileNetV2 architecture shown in Figure 5 is a CNN architecture designed to work 

effectively on mobile devices. It is based on the inverted residual structure and enhanced 

with bottleneck features. This architecture improves the performance of mobile models, 

enabling more efficient results with lower computational requirements [28]. 

 
Figure 5. MobilNetV2 Architecture Illustration [29] 
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The ResNet152V2 architecture shown in Figure 6 is a CNN architecture used in DL. It is 

known for providing high accuracy, especially in image recognition tasks. The 

architecture includes 152 levels, improves on prior ResNet architectures, and supports 

the training of deeper layers utilizing residual connections [30]. 

 
Figure 6. ResNet152V2 Architecture Illustration [31] 

 

Figure 7 shows the Inception-ResNet-v2 architecture, which is based on the Inception 

architectural family. It's a CNN that combines residual connections. Training with residual 

connections considerably accelerates the training of initial networks [32]. 

 

Figure 7. InceptionResNetV2 architecture [33] 
 
The EfficientNetB0 architecture, shown in Figure 8, has a balanced design. It improves 
computational performance by extracting significant information from the input. 
EfficientNet uses a composite scaling approach that scales its layers equally in depth, 
width, and resolution [34]. 
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Figure 8. EfficientNetB0 architecture [35] 

 
All models were trained by transfer learning (TL). As the initial weights of the model 
parameters, the weights resulting from the training on the ImageNet dataset were used. 
The stochastic gradient descent (SGD) method was used as the optimizer. Categorical 
cross-entropy was used as the loss function. The learning rate value was set as 0.00005. 
To reduce overfitting, the ‘patience’ parameter in EarlyStopping was set to 10, and 
training was stopped if there was no improvement in the verification loss for 10 epochs. 
Although the epochs were set to 1000 due to early stopping, the EfficientNetB0 model 
completed the binary and multi-class classification in 620 steps at most. 
 
For data augmentation, the images were rotated horizontally and symmetrically using 
methods from the albumentations library. Random brightness and contrast 
transformation was applied in the range [-1, 1]. Random gamma correction was 
performed on the images. Grid distortion was applied to the image. Optical distortion in 
the range [-2, 2] and shift in the range [- 0.5, 0.5] were applied to the image with 50% 
probability. Shifting, scaling, and rotation operations were combined in the image. The 
images were resized to 224×224 dimensions. 
 
3.3. Evaluation Criteria 
 
In this study, binary and multi-class classifications were made, and the performances of 
the models used were evaluated using different metrics such as accuracy, precision, 
recall, and F1 score. These metrics given in Equations 1-4 are calculated using values 
such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 
(FN) obtained in the confusion matrix. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑝 + 𝑇𝑛)

(𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛)           
 

(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

(𝑇𝑝 + 𝐹𝑝) 
 

(2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

(𝑇𝑝 + 𝑇𝑛)  
 

(3) 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

(4) 

4. Findings 
 
4.1 Binary Classification Findings 
 
The obtained results for the binary classification were listed in Table 3.  The confusion 
matrices displaying the binary classification results were given in Figure 9. 
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Table 3. Comparison of Test Metrics for State-of-the-Art Models in Binary Classification 

 
The best results in binary classification were obtained by the VGG16 model with an 
accuracy of 0.97. In the VGG16 model, according to the confusion matrix in Figure 9, 
709 images were correctly classified, and 24 images were wrongly classified in the binary 

  
                       VGG16 MobilNetV2 

  
                  ResNet152V2 InceptionResNetV2 

 

 

                  EfficientNetB0  

Figure 9. Confusion Matrices of Binary Classification  

Model Accuracy Precision   Recall F1-score   Support  

VGG16 
  

0.97 
  

0.97 
  

0.97 
  

0.97 
  

733 
  

MobileNetV2 
 

0.96 0.96 0.96 0.96 733 

ResNet152V2  0.96 0.96 0.96 0.96 733 

InceptionResNetV2  0.95 0.95 0.95 0.95 733 

EfficientNetB0  0.95 0.95 0.95 0.95 733 
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classification in the test data. In the No-DR class, 354 images were correctly classified 
and 7 incorrectly classified, while the DR class had 355 correctly classified images and 
17 incorrectly classified images. The VGG16 model was followed by the MobileNetV2 
and ResNet152V2 models, with an accuracy of 0.96, while the InceptionResNetV2 and 
EfficientNetB0 models came last with an accuracy of 0.95.   
 
4.2 Multi-class classification findings (without data augmentation) 
 
The multi-class classification results obtained for the InceptionResNetV2 model without 
data augmentation were presented in Table 4. The confusion matrix displaying the multi-
class classification results of the InceptionResNetV2 model was given in Figure 10. 

 
Table 4. Performance Metrics for Multi-Class Classification Using InceptionResNetV2 
Model Without Data Augmentation 

 

 
Figure 10. Confusion Matrix for Multi-Class Classification of InceptionResNetV2 

Without Data Augmentation 
 

Without data augmentation, the InceptionResNetV2 model yielded multi-class accuracy 
and sensitivity scores of 0.73, precision of 0.68, and an F1 score of 0.67. In the test data, 
538 photos were correctly classified and 195 were wrongly classified, as shown by the 
confusion matrix in Figure 10. The network was unable to learn sufficiently due to the 
lack of classification in the Severe and Proliferate DR classes; hence, Albumentations 
library methods were used to enrich the data. 
 
4.3 Multi-class classification findings (with data augmentation) 
 
The obtained results for the multi-class classification were listed in Table 5. The 
confusion matrices displaying the multi-class classification results were given in Figure 
11. 
 
 
 

Model Accuracy   Precision   Recall   F1-Score   Support 

InceptionResNetV2 
Without Data Augmentation 

0.73 0.68 0.73 0.67 733 
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Table 5. Comparison of Performance Metrics for State-of-the-Art Models in Multi-Class 
Classification 

Model Accuracy  Precision Recall F1-Score                  Support   

VGG16  0.78 0.79 0.78 0.78 733 

MobileNetV2  0.77 0.77 0.77 0.77 733 

ResNet152V2  0.73 0.73 0.73 0.73 733 

InceptionResNetV2  0.73 0.75 0.73 0.73 733 

EfficientNetB0  0.76 0.78 0.76 0.76 733  

 
 
 

 

  

VGG16 MobilNetV2 

 
 

 

ResNet152V2 InceptionResNetV2 

 

 

 

EfficientNetB0  
Figure 11. Confusion Matrices for Multi-Class Classification 
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In multi-class classification, the VGG16 model had the best accuracy value with 0.78. As 
can be seen from the confusion matrix in Figure 11, the VGG16 model correctly classified 
571 images and incorrectly classified 162 images on the test dataset in multi-class 
classification. There were 349 correct and 12 incorrect images classified in the No-DR 
class, 54 correct and 20 incorrect images in the Mild class, 123 correct and 77 incorrect 
images in the Moderate class, 15 correct and 24 incorrect images in the Severe class, 
and 30 correct and 29 incorrect images in the Proliferate-DR class. In terms of accuracy 
rankings, MobileNetV2 ranks second with a value of 0.77 on the data-augmented 
dataset, followed by EfficientNetB0 in third place with an accuracy value of 0.76, and the 
ResNet152V2 and InceptionResNetV2 models in last place with an accuracy value of 
0.73. 

 
5. Discussion and Conclusion 

Studies on diabetic retinopathy using the APTOS2019 dataset are displayed in Table 6. 
In the best model, VGG16, our suggested method for binary classification had a 97% 
success rate in the accuracy metric. Our method produced results that were comparable 
to the accuracy metric success rates of Mondal et al. (96.98%) and Kumar et al. 
(96.24%). Our proposed approach in multi-class classification achieved 78% success in 
the accuracy metric with the best model, VGG16, and remained below the success 
achieved in other studies. In the literature, binary and multi-class classification studies 
have not been conducted on ResNet152V2 and MobileNetV2 models, which are state-
of-the-art models. We contributed to the literature by performing binary and multi-class 
classification studies on ResNet152V2 and MobileNetV2 models. 

Table 6. Previous Studies on Diabetic Retinopathy Using the APTOS2019 Dataset 
 

Authors Classes Method/Data 
Set(Number of 
Data) 

Approach/Algorithm Metric(%) 

Proposed 
approach(2024)  

2 
5 

CNN/ 
APTOS(3662) 

VGG16, InceptionResNetV2, 
ResNet152V2, 
EfficientNetB0, MobileNetV2 

Accuracy,Precision,Recall,
F1-Score:97.00(VGG16 
Binary Classification)-
Accuracy,Recall,F1-
Score:78.00,Precision:79.0
0 (VGG16 Data 
Agumentation Multi Class 
Classificaiton) 

Cao X. Et 
al.(2024)[16] 

5 CNN,Vit / 
APTOS(3662) 

CNN,Vit Accuracy:85,96 

Mondal et al. (2023) 
[36] 

2 
5 

CNN/ 
APTOS(3662) 

Ensemble Deep-Learning 
Technique(DenseNet101 ve 
ResNeXt) 

Accuracy: 96.98-86.08 
Precision: 97.00-76.00 
Recall: 97.00-82.00 

Oulhadj et al. (2023) 
[37] 

5 APTOS(3662) ViT+ CapsNet+ 
PLT+CLAHE 

Accuracy : 88.18 
Precision: 80.00 
Recall : 76.00 
F1-score : 78.00 
Kappa score: 81.55 
 

Vijayan et al. (2023)  
[21] 

5 CNN/ 
APTOS(3662) 

Efficientnet-B0 Accuracy:86.20 

Oulhadj et al. (2023) 
[22]  

5 CNN/ 
APTOS(3662) 

CapsNet + Inception Block + 
DWT 

Accuracy : 86.54 
Kappa score : 78.77 
Precision: 76.00 
 Recall : 70.00 
F1-score: 73.00 

Oulhadj et al. (2023) 
[23]  

5 CNN/ 
APTOS(3662) 

Transferred Learning + 
Voting((Xception, 
InceptionV3, VGG16, 
DenseNet121, Resnet50)) 

Accuracy:83.63 
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M. Oulhadj et al 
(2022) [24] 

5 CNN/APTOS(36
62) 

Ensemble Voting(Densenet-
121, Xception, Inception-v3, 
Resnet-50) 

Accuracy:85.28 
Precision:80.00 
Recall:70.00 
F1-Score:73.00 

Islam et al. 
(2022)[25] 

2 
5 

CNN/ 
APTOS(3662) 

Supervised Contrastive 
Learning(Xception) 

Accuracy: 98.36-84.36 
Precision: 98.37-73.84 
Recall: 98.36-70.51 
F1-Score: 98.37-70.49 
AUC: 98.50-93.82 

Bodapati et al. 
(2022) [38] 

5 Attention 
based CNN/ 
APTOS(3662) 

Stacked Convolutional Auto-
Encoder(VGG16, Inception, 
ResNet Version2 (IRV2) , 
Xception) 

Accuracy:84.17 

Zhao et al. 
(2022)[39] 

5 CNN/ 
APTOS(3662) 

CoTXNet Accuracy:84.18 
Kappa score:90.00 

Shaik and Cherukuri 
(2022)[40] 

5 CNN/ 
APTOS(3662) 

Hinge Attention Networks Accuracy:85.54 
 

Hu et al. (2022) [41] 2 
5 

CNN/ 
APTOS(3662) 

Graph Adversarial Accuracy: 94.30-83.50 

Fan et al. (2021) 
[42] 

5 CNN/ 
APTOS(3662) 

Multi-Scale Features 
(MobileNetV3) 

Accuracy:85.32 
Kappa score: 77.26 
F1-Score:85.30 
AUC:97.00 

Sugeno et al. (2021) 
[43]  

5 CNN/APTOS(36
62) 

Transfer Learning + 
EfficientNet-B3 

Accuracy:84.20 

Al-Antary and Arafa  
(2021) [44] 

2 
5 

CNN/ 
APTOS(3662) 

Extraction of Features + 
Attention 

Accuracy: 98.10- 84.60 
Kappa score:      -89.60 
AUC: 98.20    -    

Kumar et al. (2021) 

[45] 

2 

5 

CNN/ 

APTOS(3662) 

VGG16+Capsule 

Network+Hybrid Deep 

Learning, DRISTI 

Accuracy: 96.24-82.06 

The binary classification scenario, in which the dataset's images were categorized as 
sick and the healthiest (npdr), yielded the best test results. Without data augmentation, 
the results of the multi-class classification trials, which also attempted to predict the 
disease's intensity, were poor. The models were biased toward classes with more 
examples in the learning phase since the dataset used to classify the disease by level 
was an unbalanced dataset. Test findings showed satisfactory success in the tests where 
training data sets were equalized using data augmentation approaches. In a multi-class 
classification, the data augmentation strategy has been demonstrated to be 
advantageous when treating diabetic retinal disease. 

Transformer-based architectures (Vision Transformer, VitDet, Swin Transformer, etc.) 
can be used in future research to do classification studies for the early diagnosis of 
diabetic retinopathy disease. Convolution and transformation-based DL models can be 
used to evaluate fundus images of diabetic retinopathy patients in the hospitals, and 
research can be conducted to assist the ophthalmologists in making early diagnoses. 
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Abstract 

Federated Learning (FL) has become an important research area in recent years, particularly 

when dealing with sensitive data such as healthcare information. Since healthcare data contains 

critical and personal information, FL provides a major advantage by enabling training on local 

devices without requiring data to be collected on a central server. In the analysis of healthcare 

data, such as electrocardiography (ECG), FL enables local processing of data while preserving 

privacy. However, despite its privacy benefits, FL can be vulnerable to attacks. Malicious inputs 

aim to degrade model accuracy, known as adversarial attacks (AA), can pose a major threat. 

Adversarial Training (AT) offers a defence mechanism by increasing model’s robustness against 

such attacks. Federated Adversarial Training (FAT) extends AT into the FL environment, 

combining privacy advantages with enhanced resistance to adversarial inputs. In this work, we 

propose the use of FAT to improve both privacy and security when classifying ECG signals, 

ensuring robustness against AAs. This approach involves applying AT at the client level by 

augmenting clean ECG data with adversarial examples generated using the Projected Gradient 

Descent (PGD) method. A Convolutional Neural Network (CNN) architecture was employed for 

local training. Experiments are conducted on the MIT-BIH Arrhythmia Database (MIT-DB). For 

comparison, we also trained an FL model without incorporating FAT. Both models were tested on 

the original test data as well as on adversarially attacked versions generated using PGD, Fast 

Gradient Sign Method (FGSM), Carlini & Wagner (CW), and Basic Iterative Method (BIM). The 

results show that the FL system with FAT significantly outperforms the system without FAT in 

resisting AAs, with a slight compromise in performance on the original test data, thus highlighting 

the effectiveness of FAT in enhancing model robustness against AAs for ECG classification tasks. 

Code is available at https://github.com/Skyress1/ECG-FAT-Code. 

Keywords: federated adversarial training, federated learning, adversarial attacks, ECG 

 

1. Introduction 

Machine learning enables the development of more accurate and intelligent systems by 
processing large datasets and provides revolutionary advances in various fields such as 
health [1], finance [2], and the Internet of Things [3]. However, in traditional machine 
learning methods, the need to collect data on a central server leads to privacy and 
security issues. Especially in cases where personal and sensitive data is used, these 
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issues can expose user privacy. In response to these challenges, FL [4] is a machine 
learning paradigm that allows data to be processed on local devices without creating a 
centralized dataset. FL allows each device to train models on its local data instead of 
collecting and processing data from different sources. Thus, it offers significant 
advantages in terms of data privacy and security, especially in areas where sensitive 
data is used. In recent years, FL has been widely used in studies on health data to reduce 
privacy concerns and improve the accuracy of machine learning models. 

Health data is highly sensitive, especially as data sets containing personal and biometric 
information. Among such data, electrocardiography (ECG) signals provide critical 
information about heart health by monitoring heart rhythms. While ECG data is a widely 
used tool for diagnosing heart conditions, the collection and processing of this data can 
also pose the risk of privacy violations. The high sensitivity of health data makes it 
imperative to ensure data privacy and security. 

Protecting privacy in health data is crucial to prevent unauthorized use and sharing of 
individuals' personal information. While traditional centralized data processing methods 
require data to be collected and stored in a single location, FL reduces this risk and 
allows data to be processed on local devices. Thus, the protection of privacy in health 
data can be secured with a FL approach. Especially when it comes to highly sensitive 
biometric data such as ECG, the data privacy advantage provided by FL plays a critical 
role. 

The impact of FL on health data is dramatic. FL not only ensures data privacy but also 
enables collaboration between different data sources. Thus, data from different hospitals 
or clinics can be used to train the same model without being aggregated in a centralized 
system. This enables improved diagnostic models for diverse patient populations. 

Attacks in FL are a vulnerability that needs to be addressed in addition to the advantages 
offered by this technology. Especially since FL systems have a structure where model 
updates are made locally by each participant, malicious participants can manipulate this 
process. These attacks, known as AA, can degrade the accuracy and performance of 
the model by introducing misleading data into the model. Such attacks pose a serious 
threat as they can have irreversible consequences in critical areas such as health data. 

One of the methods used to prevent AA is the AT approach. AT aims to make the model 
more resistant to attacks by using adversarial data during model training. AT provides a 
more robust learning process by not only improving the accuracy of the model but also 
its reliability. AT is used in traditional centralized learning systems. Its equivalent in FL 
systems is FAT. 

FAT is a technique that combines the approaches of FL and AT. The FAT technique was 
proposed by Zizzo et al [5]. This method aims to develop models that are more resilient 
to AAs while maintaining the privacy advantages of FL. In terms of protecting the privacy 
and security of health data, FAT is considered as an important step towards developing 
more secure and effective machine learning models in the future. 

There have been many studies on FL and ECG in the literature. Tang et al. [6] proposed 
a personalized FL method for ECG classification task. Manocha et al. [7] proposed a 
new algorithm using deep learning to classify ECG arrhythmias in a federated 
environment. In their proposed algorithm, they integrated a Support Vector Machine 
classifier with a Bi-directional Long Short-Term Memory based Auto-Encoder network. 
Alreshidi et al. [8] presented Fed-CL, an advanced method that combines Long Short-
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Term Memory networks and Convolutional Neural Networks to accurately predict AFib 
utilizing FL. Çelik and Güllü [9] conducted a comparison study on server-side 
aggregation algorithms on Independently and Identically Distributed (IID) and Non-IID 
data distributions for ECG classification task.  

There have also been many studies on FAT in the literature. Bondok et al. [10] used FL 
and AT to address privacy and security concerns in smart grids. Catak and Kuzlu [11] 
used FL to train a segmentation model for spectrum sensing in the presence of radar 
and wireless communication systems. They also used AT to combine model flexibility 
and local model updates into a robust global model. Luo et al. [12] proposed a new 
Ensemble Federated Adversarial Training (EFAT) method that enables AT to perform 
better in non-IID environments by extending the training data with different distortions. 

In this study, we propose the use of FAT for ECG classification task to be robust against 
AAs while maintaining privacy and security. For this purpose, in each of the clients, the 
PGD [13] discarded versions of the clean data were added to the training set and the 
clients were made to perform AT. The original test data, PGD attacked version of the test 
data, FGSM [14] attacked version, CW [15] attacked version and BIM [16] attacked 
version of the test data were tested respectively. The results obtained are compared. 

2. Materials and Methods 

2.1. MIT-BIH Arrhythmia Database 

The MIT-BIH Arrhythmia Database [17] (MIT-DB) was used in this study. The MIT-DB 
contains 48 ECG recordings of 30 minutes each. These 48 ECG recordings belong to 47 
patients. The sampling frequency of all recordings is 360 Hz. The labels in the MIT-DB 
were edited according to the Association for the Advancement of Medical 
Instrumentation (AAMI) standard. The label editing is shown in Table 1. There are 5 
classes in total from the AAMI standard. These are N (normal beats), S (supraventricular 
ectopic beats), V (ventricular ectopic beats), F (fusion beats), and Q (unclassifiable 
beats). 

Table 1. AAMI Standards and MIT-BIH Annotation 

AAMI MIT-BIH 

Normal Beat (N) N, L, R, j, e 
Supraventricular Ectopic Beat (S) a, S, A, J 

Ventricular Ectopic Beat (V) E, V 
Fusion Beat (F) F 

Unknown Beat (Q) /, Q, f 

2.2. Data Preparation and Normalization 

Each ECG signal in MIT-DB was divided into 180-length windows. 180-length windows 
were created by taking 90 indices before and 90 indices after the beats in the ECG 
signals. The values in each window were normalized using Min-Max scaler to be in the 
range [0, 1]. The min-max scaler is given in equation (1). 

𝑥′ =  
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 (1) 

 



Mitigating Adversarial Attacks on ECG Classification in Federated Learning via Adversarial Training                                         21 

  Artificial Intelligence Theory and Applications, Vol. 5, No. 1 

2.3. Deep Learning Architecture 

In this study, Convolutional Neural Network (CNN) is used as the deep learning 
architecture. CNN architecture has 4 Convolutional layers, 4 MaxPool layers, 1 Flatten 
layer and 3 Linear layers. Convolutional layers consist of 16, 32, 64 and 128 filters 
respectively. They all have a kernel_size of 3 and a padding of 1. There is also a ReLU 
activation function at the output of each convolutional layer. In the MaxPool layers, 
kernel_size is set to 2. Linear layers consist of 256, 64 and 5 units respectively. The 256- 
and 64-unit linear layers have a ReLU activation function at the output. The 5-unit linear 
layer is the output layer of the model. The number of parameters of the architecture used 
is 410021. The architecture used in the study is given in Figure 1. 

 

Figure 1.  CNN Architecture 
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2.4. Algorithm 

This section explains the proposed FAT system’s defence mechanism against AAs in 
the context of ECG signal classification. The methodology is outlined in Algorithm 1, 
which details the local training process for a client. Initially, the client receives the global 

parameters. A PGD attack is then applied to the input data 𝑥𝑗 and 𝑥𝑗
𝑎𝑑𝑣 is obtained. Input 

data 𝑥𝑗 and adversarial examples 𝑥𝑗
𝑎𝑑𝑣 are combined to obtain 𝑥𝑗. Original label 𝑦𝑗 and 

duplicate label 𝑦𝑗 are concatenated to obtain �̂�𝑗. New parameters are obtained using 𝑥𝑗 

containing both adversarial and clean samples and their labels �̂�𝑗 . Finally, the 

ClientUpdate procedure is terminated by sending the new parameters to the server. 

Algorithm 1. FAT for ECG signals  

Input: 

Client i, global parameters 𝜃,̂ local dataset 𝐷𝑖 , local epoch number E, batch size b, adversarial perturbation function 

𝑃𝐺𝐷, learning rate 𝜂 

1: procedure ClientUpdate 

2:     𝜃𝑖  ←  �̂�  

3:     for local epoch = 1, ⋯ , E do  

4:      for mini-batch {𝑥𝑗 , 𝑦𝑗}
𝑗=1

𝑏
 ~ 𝐷𝑖 do 

5:          𝑥𝑗
𝑎𝑑𝑣  ←  𝑃𝐺𝐷(𝑥𝑗 , 𝑦𝑗) 

6:          𝑥𝑗  ←  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥𝑗 , 𝑥𝑗
𝑎𝑑𝑣) 

7:          �̂�𝑗  ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒( 𝑦𝑗 , 𝑦𝑗) 

8:              𝜃𝑖  ←  𝜃𝑖 −  𝜂∇𝜃𝑖
ℓ𝐶𝐸(�̂�𝑗 , �̂�𝑗 ; 𝜃𝑖) 

9:         end for 

10:     end for 

11:     return 𝜃𝑖 

12: end procedure 

After the ClientUpdate procedure is completed on all clients selected for training, the 
parameters sent by the clients are collected on the server. Using these parameters, the 
new global parameters are determined using equation (2). 

�̂�  ← ∑
𝑛𝑖

𝑚𝑖 𝜖 𝑆
 𝜃𝑖 (2) 

Where 𝑆 is the list of clients selected in the current round, 𝑛𝑖 is the data count of the 𝑖th 

client, 𝑚 is the sum of the data counts of the clients selected in the round, 𝜃𝑖 is the local 

parameters sent by the 𝑖th client, 𝜃 is the global parameters. This equation belongs to 

the FederatedAveraging (FedAvg) [4], which is used as the server-side aggregation 
method in this study. 

3. Experimental Results 

In this study, the experiments were conducted using the MIT-BIH Arrhythmia Database 
(MIT-BIH DB). The 48 ECG signals in the MIT-BIH DB were first divided into windows 
with length of 180 samples and normalized with the Min-Max scaler. A total of 109468 
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windows were obtained. Of these, 80% were used as training data and 20% were 
reserved as testing. The training data was distributed across 10 clients. Therefore, the 
training data was divided into 10 parts for 10 clients. In each round, 5 randomly selected 
clients participated in the training. The training continued for 10 rounds in total. In each 
round, the selected clients were trained locally for 5 epochs. FedAvg was used as the 
server-side aggregation algorithm. The study utilized two training approaches. First, the 
Non-FAT Model was trained using only clean data on clients. Second, the FAT Model 
incorporated AT by augmenting the training data with adversarial examples generated 
using a PGD attack. Testing was conducted at the end of each training round, using the 
test data in five variations: original (Clean), PGD attacked, FGSM attacked, CW attacked, 
and BIM attacked. For the PGD attack, epsilon was set to 8/255, alpha to 1/255 and the 
number of steps to 20. For the FGSM attack, the epsilon value was set to 8/255. For the 
CW attack parameters were set to c = 1, kappa = 0, 50 steps, and a learning rate of 0.01. 
Finally, the BIM attack used an epsilon of 8/255, alpha of 2/255, and 10 steps. 

The CNN architecture was implemented using the Pytorch [18] library in Python. The FL 
environment was set up with the Flower [19] library, while the torchattacks [20] library  
was utilized for generating AAs (PGD, FGSM, CW, BIM). The training was performed on 
a system equipped with an AMD Ryzen 5 5600H processor, 16 GB of RAM and an 
NVDIA Geforce RTX 3050 graphics card. For the CNN architecture, the Adam optimizer 
was employed, and Cross Entropy Loss was used as the loss function. The results 
obtained are presented in tables and graphs. Table 2, 3, 4 and 5 show the Accuracy, 
Precision, Recall and F1 Score metrics for both FL system without FAT (Non-FAT Model) 
and FL system with FAT (FAT Model) across original test data (Clean) and adversarial 
datasets (PGD, FGSM, CW and BIM) in the 10th round of training. Figure 2, 3, 4, 5 and 
6 presents the variations in Accuracy, Precision, Recall and F1 Scores over 10 rounds 
on original test data and adversarial datasets. Note that round 0 represents the baseline 
results obtained using randomly initialized parameters. 

Table 2. Accuracy results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 98.44 35.14 73.87 7.47 35.36 
FAT Model 97.60 94.82 95.44 46.65 94.81 

Table 3. Precision results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 93.95 30.12 47.05 7.27 30.15 
FAT Model 90.55 81.72 83.76 26.80 81.55 

Table 4. Recall results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 92.80 21.27 47.29 2.42 21.05 
FAT Model 88.79 80.13 81.85 26.78 80.06 

Table 5. F1 Score results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 92.94 22.61 45.46 3.20 22.55 
FAT Model 89.06 79.75 81.70 24.02 79.63 

Table 2, Table 3, Table 4 and Table 5 show that the Non-FAT Model outperformed the 
FAT Model in Accuracy, Precision, Recall and F1 Score metrics in the original (clean) 
test data. However, the FAT Model also achieved very high performance. On PGD, 
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FGSM, CW and BIM attacked test data, the FAT Model outperformed the Non-FAT 
Model in Accuracy, Precision, Recall and F1 Score metrics. 

 

        

        

Figure 2.  Clean Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

        

        

Figure 3.  PGD Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 2 shows that the Non-FAT Model outperforms the FAT-Model across all rounds 
in all four metrics on the original test data. However, the performance gap between the 
two models is minimal. The FAT Model also achieves consistently high performance 
across all rounds and metrics, demonstrating its robustness even with slight 
compromises in comparison to the Non-FAT model. 



Mitigating Adversarial Attacks on ECG Classification in Federated Learning via Adversarial Training                                         25 

  Artificial Intelligence Theory and Applications, Vol. 5, No. 1 

Figure 3 shows that in round 1, the FAT and Non-FAT models exhibit comparable 
performance across all metrics on PGD-attacked test data, but the FAT model slightly 
outperforming the Non-FAT model. From round 2 onward, the FAT model performs even 
better, while the Non-FAT model performs very poorly against PGD-attacked data. The 
Non-FAT model was not able to achieve high performance on PGD-attacked data due 
to the lack of AT during local training and the absence of PGD-attacked instances in the 
dataset. 

        

        

Figure 4.  FGSM Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

        

        

Figure 5.  CW Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 4 illustrates that in round 1, the FAT and Non-FAT models exhibit similar 
performance across all four metrics on FGSM-attacked test data. However, from round 
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2 onward, the FAT model performs even better, while the Non-FAT model demonstrates 
poor performance against FGSM-attacked data. The Non-FAT model was not able to 
achieve high performance on FGSM-attacked data, since no AT was performed during 
the local training of its clients or the lack of FGSM-attacked instances in the dataset. 

Figure 5 shows that the FAT model outperformed the Non-FAT model across all rounds 
(excluding round 0, which reflects the initial weights and is not evaluated) in all four 
metrics on the CW-attacked test data. The Non-FAT model achieved considerably lower 
results. Both models showed their highest performance in Round 1 across all metrics. 
However, in the following rounds, they achieved lower performance than this round. 
Although the FAT model outperformed the Non-FAT model, it’s performance remained 
below the levels achieved against other types of AAs. 

        

        

Figure 6.  BIM Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 6 shows that in round 1, the FAT and Non-FAT Models exhibit similar performance 
across all four metrics on the BIM-attacked test data, with the FAT model performing 
slightly better. From round 2 onward, the FAT model consistently outperforms the Non-
FAT model, which demonstrates very poor performance on BIM-attacked data. This 
underperformance of the Non-FAT model is likely due to the absence of Adversarial 
Training (AT) during local client training and the lack of BIM-attacked instances in the 
dataset. 

Overall, the Non-FAT model demonstrated strong classification performance on the 
original data. However, it struggled with low classification performance when tested 
against PGD, FGSM, CW and BIM adversarial attacks. In contrast, the FAT model 
achieved high performance against all data except for the CW attacked data. It 
maintained its high performance across all datasets, except for the CW attacked data. 
Although its performance on CW attacks is superior to the non-FAT model, it fails to 
achieve the same success on CW attacks as it achieves on other adversarial data. 
Notably, the FAT model maintained robust performance on adversarial data with only 
minimal compromise in accuracy on the original data. Incorporating adversarially 
attacked versions of the training data during the training process, through AT, proves to 
be effective in enhancing the model’s resilience against adversarially attacked test data. 
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4. Conclusion 

In this study, we propose the use of FAT for ECG classification to enhance robustness 
against AAs while preserving privacy and security. For this purpose, in addition to clean 
data, adversarial examples generated using the PGD method are also used during local 
training on clients. The proposed framework is tested against the original test data, and 
adversarially attacked versions created using PGD, FGSM, CW, and BIM. Its 
performance was compared with that of an FL system without FAT. 

The results showed that the FL system without FAT achieved high performance in 
Accuracy, Precision, Recall and F1 Scores on the original test data. However, it’s 
performance dropped significantly across all four metrics for PGD, FGSM, CW and BIM 
attacked data. It achieved a very low performance especially against CW attacked data. 
In the proposed structure, i.e. the FL system using FAT, high performance is achieved 
in all four metrics for the original test data, PGD, FGSM and BIM attacked data. The 
performance on CW-attacked data, while improved compared to the Non-FAT system, 
was lower than for other types of adversarial attacks. When comparing the two systems, 
the FL system without FAT is more successful on the original test data. For the PGD, 
FGSM, CW and BIM attacked data, the FL system with FAT is more successful. 
However, the FL system with FAT is also successful on the original test data. The FL 
system with FAT achieves very high performance against adversarial attacked data with 
a little performance compromise from the original test data.   

Through the FAT, ECG signal classification can achieve both enhanced privacy and 
security using FL, while simultaneously providing a robust defence against potential AAs. 
This study lays a foundation for future research exploring similar techniques with diverse 
types of health data. 
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Abstract 

This study investigates the derivation of PID controller parameters, commonly used for 

pacemaker control, using both genetic algorithm (GA) and reinforcement learning (RL) methods. 

We compare the PID parameters obtained by RL with those obtained by GA, a well-known and 

often preferred method in literature. The aim of the study is to analyze the performance of the 

control parameters obtained by both methods and to determine which approach is more effective 

in pacemaker applications. In particular, comparisons on important control criteria such as settling 

time, rise time and overshoot of the system will reveal the advantages and disadvantages of these 

methods. 

Keywords: heart rhythm regulation, pacemaker control system, PID controller optimization, 

reinforcement learning 

 

1. Introduction 

Cardiovascular diseases, including heart attacks and arrhythmias, are among the 
leading causes of death worldwide [1-2]. Arrhythmias disrupt the normal electrical activity 
of the heart and often require medical intervention. One of the most effective solutions 
for regulating heart rhythm is the cardiac pacemaker, which delivers controlled electrical 
impulses to the heart [3]. Pacemakers continuously monitor cardiac activity and correct 
irregularities by providing appropriate electrical stimulation [4]. This regulation is crucial 
for preventing complications that can arise from untreated arrhythmias, such as stroke 
or heart failure. Additionally, advancements in technology have led to the development 
of more sophisticated pacemakers that can adapt to a patient's activity level, further 
improving overall cardiac health. 

To improve the efficiency of pacemakers, researchers have developed advanced control 
strategies to optimize their performance. A key aspect of this optimization is the use of 
Proportional-Integral-Derivative (PID) controllers, which provide precise regulation of the 
heart rhythm. The PID controller has three components. The proportional (P) component 
provides a correction proportional to the current error, allowing a fast and accurate 
response to instantaneous changes in heart rate. This accuracy ensures that the heart 
rate is maintained at the desired level. The integral (I) component accounts for the 
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accumulation of error over time and provides long-term corrections. This prevents the 
accumulation of continuous errors and helps the pacemaker maintain a more stable heart 
rhythm over time. Provides long-term performance improvements. The derivative (D) 
component analyzes the rate of change of the error and reacts quickly to instantaneous 
changes. This quickly compensates for sudden changes in heart rate and prevents the 
system from overreacting. It improves overall system performance by adapting to 
dynamic changes. Proper tuning of these parameters is critical to achive the desired 
control system behavior. However, determining optimal PID parameters remains a 
challenge, leading researchers to explore advanced optimization techniques such as 
Genetic Algorithms (GA) and Reinforcement Learning (RL) [5-6]. 

Several mathematical models have been proposed to describe cardiac dynamics, which 
are crucial for developing pacemaker control strategies. Biswas et al. (2006) modeled 
the cardiovascular system using a closed-loop negative unit feedback system based on 
transfer functions [7]. Additionally, mathematical models such as the Noble model for 
Purkinje fibers and the Beeler-Reuter model for ventricular myocardial cells have been 
widely used to simulate cardiac activity [8-9]. 

This study investigates the effectiveness of GA and RL in optimizing pacemaker PID 
controller parameters. By comparing these approaches, we aim to identify the most 
efficient method based on performance criteria such as settling time, rise time, and 
overshoot. The results provide insights into the advantages and limitations of AI-driven 
optimization strategies in biomedical control applications. 

Traditional PID tuning methods, such as Ziegler-Nichols and Cohen-Coon, are widely 
used but often struggle with adaptability in dynamic physiological conditions [10-11]. To 
overcome this limitation, evolutionary algorithms and machine learning-based 
optimization techniques have been explored. 

Various control techniques have been explored to improve the performance of 
pacemakers. Apart from classical methods, the following approaches have been utilized:  

•    Studies using optimization algorithms [2], [12-13] 

•    Embedded designs using microcontrollers and FPGAs [14-15] 

•    Machine learning based designs using various machine learning algorithms [16-17] 

•    Studies using analogue circuits [18-19] 

Several studies have demonstrated the effectiveness of Genetic Algorithms (GA) in 
optimizing PID controllers for pacemakers. Bajpai et al. (2017) showed that GA-based 
tuning minimizes overshoot and improves transient response [2]. Similarly, Momani et 
al. (2019) examined fractional-order PID controllers tuned via GA and found improved 
accuracy in heart rate regulation [4]. These findings highlight GA’s ability to efficiently 
explore solution spaces and optimize control parameters. 

However, GA has limitations [20]: 

•    It relies on heuristic search mechanisms that may converge to local optima. 

•    Its performance is highly dependent on mutation and crossover rates. 

•    It does not adapt well to real-time physiological variations. 

In contrast, Reinforcement Learning (RL) has gained attention for adaptive control 
systems [21-22]. In contrast to GA, RL continuously learns from the environment, thereby 
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improving decision-making over time [5]. Lima et al. (2023) applied RL to cardiac rhythm 
regulation, demonstrating its ability to dynamically adjust pacing parameters with high 
accuracy [16]. 

Despite its advantages, RL also has challenges [23-24]: 

•    It requires extensive training episodes to achieve convergence. 

•    Traditional RL methods struggle in high-dimensional continuous spaces. 

•    Computational complexity can be high, requiring deep RL techniques for scalability. 

Although GA and RL have been studied separately, a direct comparative analysis of 
these methods in pacemaker control is still lacking. This study aims to bridge this gap by 
evaluating GA and RL in optimizing PID parameters for pacemaker applications. The key 
contributions are: 

1.  A comparative analysis of GA and RL for PID tuning in pacemakers, assessing their 
effectiveness in optimizing heart rhythm control. 

2.  A structured performance evaluation based on key control metrics (settling time, rise 
time, overshoot, and peak response). 

3.  An RL-based adaptive tuning framework, demonstrating its potential advantages 
over GA in reducing overshoot and improving stability. 

4.  A scalable optimization methodology that can be extended to other AI techniques 
such as Particle Swarm Optimization (PSO) and Model Predictive Control (MPC). 

By integrating modern AI-driven techniques with traditional evolutionary algorithms, this 
study provides a novel perspective on cardiac pacemaker controller design. The findings 
of this study suggest that GA is more effective in achieving rapid responses, while RL 
offers superior long-term adaptability, making it a promising solution for real-world 
applications. 

2. Modelling of Pacemaker  

Mathematical models of the heart have been developed to facilitate understanding of 
cardiac function. Noble described the Purkinje fiber cell action potential in 1962 with the 
Noble model [8]. Beeler and Reuter introduced an electrical activity model of the 
ventricular myocardial cell in 1977 [9]. The mathematics of cardiac dynamics helped to 
design pacemaker control systems for artificial and implanted devices. Biswas et al. 
proposed a transfer function-based cardiovascular system mathematical model [7]. The 
cardiovascular system is depicted as closed loop negative unit feedback with filter and 
controller. Figure 1 depicts the cardiovascular closed-loop control system block diagram. 
Equations. (1) and (2) provide the pacemaker and heart transfer functions 𝐺𝑃𝑎𝑐𝑒𝑚𝑎𝑘𝑒𝑟(𝑠) 
and Gheart(s), for the configuration depicted in Figure 1. The closed loop system receives 
the real heart rate R(s) and produces the target heart rate Y(s). The function of 𝐺𝐾(𝑠) is 
to serve as the controller. 

𝑮𝑷𝒂𝒄𝒆𝒎𝒂𝒌𝒆𝒓(𝒔) =
𝝎𝒍𝒑𝒇

𝒔+𝝎𝒍𝒑𝒇
                         (1) 

𝑮𝑯𝒆𝒂𝒓𝒕(𝒔) =
𝟏

𝑴𝒔𝟐+𝑩𝒔+𝑲
                       (2) 
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The cut-off frequency of the low-pass filter representing the pacemaker is ωlpf, while the 
mass of the heart muscle is M, the viscous drag of the heart myocardial cell is 𝐵, and the 

torsional drag is 𝐾. 

 

Figure 1. The block diagram of the cardiovascular system. 

If the numerical values of the parameters given in Eqs. (1) and (2) are substituted in the 
studies in the literature, GP(s) is obtained as follows [7]. 

𝐺𝑃(𝑠) =
1352

𝑠(𝑠+8)(𝑠+20.8)
            (3)     

Given the closed loop system shown in Figure 1, its closed loop transfer function is as 
follows: 

(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
=

𝐺𝐾(𝑠)𝐺𝑃(𝑠)

1+𝐺𝐾(𝑠)𝐺𝑃(𝑠)
                       (4) 

3. PID Controllers 

PID controllers are used to improve pacemaker efficiency. The PID controller improves 
pacemaker performance and cardiac rhythm management. The PID controller can adjust 
the pacemaker's output to target heart rate for accurate cardiac rhythm regulation. To 
respond quickly and accurately to immediate heart rate changes, the proportional (P) 
component corrects the present mistake. This accuracy keeps the heart rate at the 
correct level. Long-term error fixes were provided via the integral (I) component. Avoiding 
ongoing mistakes helps the pacemaker maintain a steady cardiac rhythm over time. 
Improves long-term performance. The derivative (D) component evaluates error rate and 
reacts swiftly to sudden changes. This swiftly adjusts for unexpected heart rate variations 
and minimizes overreaction. It adapts to dynamic changes to boost system performance. 
PID controller settings can adjust to patient activity and physiological changes. This 
adjustment allows the pacemaker to automatically modify heart rate based on stress or 
physical activity, enhancing performance. 

The PID controller has three parameters: The error signal's current value determines Kp. 
Control action rises proportionately with mistake. The error signal's historical values 
determine the integral term (Ki). Long-term errors activate the integral term, boosting 
control action. The derivative term (Kd) predicts fault signal value. The derivative term 
increases control action if the mistake is rising fast. These three parameters are crucial 
to PID controller performance. To accomplish control system behavior, these parameters 
must be tuned properly depending on the application. 

Equations (5) and (6) respectively provide the time-based response of the output u(t) 
and transfer function of the PID-controller. 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑇𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡),                     (5) 

𝐺𝐾(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝑇𝑖

𝑠
+ 𝑇𝑑𝑠                      (6) 

where E(s) and U(s) denote the Laplace transforms of the error and control signals, 
respectively. 

4. Genetic Algorithm 

Evolutionary search and optimization methods like genetic algorithms address difficult 
optimization issues. These algorithms replicate natural selection, crossover, and 
mutation to efficiently explore the solution space. Genetic algorithms analyse and choose 
the best potential solutions from a population. Each cycle selects the best people and 
assesses them using a fitness function [6, 25]. Crossover and mutation procedures 
expand solution space while retaining population genetic diversity. Traditional 
approaches fail to solve difficult and large-scale optimization issues, but this method can. 
Genetic algorithms' success depends on parameter values and problem-specific design. 

C = {𝐶1, 𝐶2, … , 𝐶𝑛}                        (7) 

In Eq. (8), C represents a chromosome, and Ci represents the i-th gene of the 
chromosome. 

𝑓(𝐶) = Fitness Function (𝐶)                      (8) 

The fitness function in Eq. (8) determines chromosomal (solution) quality. This function 
represents the optimization goal. The objective is usually to maximize fitness. Selection 
ensures that the following generation inherits the finest population members.  

𝑃𝑖 =
𝑓(𝐶𝑖)

∑ 𝑓(𝐶𝑖)𝑁
𝑗=1

                                   (9) 

Pi is the probability of selection of the i-th individual, and f(Ci) is its fitness value. 
Crossover creates a new person from two parental chromosomes. Single-point 
crossover is the most frequent crossover mechanism. Single-point crossover is a typical 
way to make new people from two parental chromosomes. This approach switches 
genes on the two chromosomes from a point. Mutations affect the value of a randomly 
selected gene to preserve genetic variation 

5. Reinforcement Learning 

Machine learning refers to algorithms that acquire knowledge from data. The domains of 
machine learning encompass supervised, unsupervised, and reinforcement learning. RL 
is extensively utilized in supervised issues because of its reward-based learning 
framework. 

RL simply works to develop a function that produces an output based on feedback 
obtained from the environment utilizing data. Upon structural analysis, it is evident that it 
has three fundamental components: Agent, State, and Environment [26]. The learned 
function is referred to as policy. The policy permits the choice of the action (at) that will 
provide the maximum reward over time, based on the observed state [5]. The strategy 
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may be stochastic or deterministic, contingent upon the chosen RL approach. Figure 2 
depicts the overarching framework for training in RL. 

This research utilizes the Q-learning algorithm, a traditional approach in RL. Q-learning 
is a fundamental RL method designed for systems with a discrete solution space. The 
Q-learning approach is especially appropriate for systems characterized by discrete 
action and state spaces, and in this research, it is employed to optimize the PID 
parameters. 

 

Figure 2. The reinforcement learning training schematic. 

Q-learning is a model-free technique designed for RL tasks characterized by discrete 
state and action spaces. The agent determines the appropriate action to select in each 
environmental state. At each stage, the agent selects an action, obtains a reward for that 
action, and transitions to the subsequent state. The agent aims to select activities that 
optimize the cumulative reward over time. Q-learning creates a table that allocates a Q-
value to each state-action combination and subsequently modifies this table to enhance 
learning. Acts are selected using the Epsilon-Greedy technique, whereby the agent 
occasionally engages in random acts for exploration and at other times opts for the action 
deemed optimal based on the existing Q-values. The updates consider the prospective 
benefits of each action, as dictated by the Bellman Equation. Consequently, the agent 
discerns the action that yields the maximum reward in each scenario. 

6. Simulation Results and Discussion 

Genetic Algorithm Optimization was first used to select the parameters of the PID 
controller used to control the pacemaker. The transfer functions in Equation (4) are used 
for the heart and pacemaker. These transfer functions model the dynamic characteristics 
of the heart and pacemaker systems. 

The objective function of the GA is to measure the performance of the unit step response 
of the system, representing a heart rate of 72 bpm, by determining the parameters (Kp, 
Ki, Kd) of the PID controller. 72 bpm represents the healthy heart rate of an average 
person, and the system aims to approach this reference value with the fastest and least 
oscillation. By punishing changes in system response, rise time, settling time, overshoot, 
and peaks, the objective function tries to minimize the total error for all possible 
combinations of controller parameters. 

The GA optimization process involves defining lower and upper bounds for the 
parameters of the PID controller and configuring the algorithm's operating parameters. 
Table 1. shows the selected parameters. We also chose a Gaussian mutation function 
for mutation and enabled parallel processing to speed up the calculations. 
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Table 1. The parameter used in simulations for GA 

Parameter Genetic Algorithm (GA) 

Population Size 100 

Number of Generations 200 

Mutation Gaussian Mutation 

Crossover Rate 90% 

To properly tune controllers and evaluate their performance, one can consider several 
performance criteria. The performance criteria used in this study are Integral Square 
Error (ISE), Integral Time Absolute Error (ITAE), Integral Time Square Error (ITSE), 
Integral Absolute Error (IAE), and the Discrete Time Integral Sample Based Double 
Square Error (dTISDSE). The following equations illustrate how these performance 
criteria are calculated. 

𝐼𝑆𝐸(𝑒) = ∫ 𝑒2(𝑡)
∞

0
𝑑𝑡         (10a) 

𝐼𝑇𝐴𝐸(𝑒) = ∫ 𝑡|𝑒(𝑡)|
∞

0
𝑑𝑡                              (10b) 

𝐼𝑇𝑆𝐸(𝑒) = ∫ 𝑡𝑒2(𝑡)
∞

0
𝑑𝑡                    (10c) 

𝐼𝐴𝐸(𝑒) = ∫ |𝑒(𝑡)|
∞

0
𝑑𝑡                    (10d) 

𝑑𝑇𝐼𝑆𝐷𝑆𝐸(𝑒) = ∑ 𝑘(𝑒𝑘
2)2𝑛

𝑘=1                     (10e) 

Figure 3 displays the step response of the closed-loop system resulting from GA 
optimization for various performance criteria. Table 2 provides the PID parameter values 
obtained for all performance criteria. 

 

Figure 3. PID-controller responses for various performance criteria 
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Table 2. PID parameter values obtained using different error functions 

Error Functions Kp Ki Kd 

  ISE  4.779060 3.148517 1.487819 

  ITAE  6.437423 3.612167 3.090703 

  ITSE  7.601399 2.917295 4.871950 

  IAE  4.266956 2.623989 1.387273 

 dTISDSE  6.419923 3.476024 3.076429 

Figure 4 displays the step response for ISE, yielding the best result among the used 
performance criteria. Table 3 shows the performance metrics for the step response 
obtained for ISE. Figures 3 and 4 demonstrate that the controlled system, utilizing PID 
parameters from the genetic algorithm, achieved the target heart rate of 72 bpm more 
quickly and with fewer oscillations than the uncontrolled system. As can be seen from 
Table 3, significant improvements are observed, especially in performance criteria such 
as response time, settling time, overshoot, and peak values.  

Table 3. GA Optimization results for ISE performance criteria 

Performance Metrics Controlled System Uncontrolled Closed-loop System Step 

Response 

Rise Time (s) 0.035707 0.1908 

Settling Time (s) 0.342283 1.5414 

Overshoot (%) 28.820775 34.6568 

Peak 92.750958 96.9529 

 

 

Figure 4. The step responses of the controlled system for ISE 



Design of Cardiac Pacemaker Controller Based on Reinforcement Learning                                                                                37 

 Artificial Intelligence Theory and Applications, Vol. 5, No. 1 

Secondly, the PID controller parameters determined through Q-learning-based 
reinforcement learning (RL) are as follows: Kp = 1.3819, Ki = 0.12864, Kd = 0.26231. 
We use the transfer functions in Eq. (4) for heart and pacemaker dynamics. In this study, 
a Q-learning based PID tuning algorithm is used to find the PID parameters of the system 
through reinforcement learning as follows. 

Algorithm: Q-learning based PID parameter optimization: 
Step 1: Initialization: 

• Initialize PID Parameter Ranges: Define the ranges for Kp, Ki, and Kd and initialize the Q-table 
with small random values. 

• Set Learning Parameters: Define the learning rate (α), decay factor (γ), exploration rate (ϵ), and 
number of episodes. 

• Set Random Seed: Use the rng() function to set a fixed seed value for reproducibility of simulations. 
Step 2: Start the Loop (for each episode): 

• Initial State: Choose a random combination of Kp, Ki, Kd . 
For each step: 

1. Select Action:  
o Use the Epsilon-Greedy strategy to select an action: 

▪ If a random number is less than ϵ\epsilonϵ, choose a random action (exploration). 

▪ Otherwise, select the best action based on the current Q-values (exploitation). 
2. Action Implementation:  

o Apply the selected PID parameters (Kp, Ki, Kd ) to the system. 
3. Simulate the System: 

o Create the feedback loop according to the system's transfer function and obtain the 
system response (e.g., step response). 

4. Calculate Reward: 
o Calculate the reward based on the system's performance metrics such as error, 

overshoot, and settling time. The reward can include penalties for these metrics. 
𝑟𝑒𝑤𝑎𝑟𝑑 = −𝑒𝑟𝑟𝑜𝑟 − 0.1 ∗ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 − 0.01 ∗ 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 

5. Update Q-Table: 
o Update the Q-value using the Bellman equation: 

 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛼(𝑟𝑒𝑤𝑎𝑟𝑑 + 𝛾. max(𝑄(𝑛𝑒𝑥𝑡𝑠𝑡𝑎𝑡𝑒 , 𝑛𝑒𝑥𝑡𝑎𝑐𝑡𝑖𝑜𝑛)) − 𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)) 

6. Transition to New State: 
o Determine the new state based on the selected PID parameters and continue the loop for 

the next step. 
7. Epsilon Decay: 

o Decrease the exploration rate (ϵ) at the end of each episode according to the decay factor 
(𝛾): 𝜖 = max (0.1, 𝜖. 𝑑𝑒𝑐𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟) 

8. Complete the Loop: 
o End the episode if the error, overshoot, and settling time are within specified limits. 

𝑒𝑟𝑟𝑜𝑟 < 0.005 && 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 < 0.05 && 𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 < 3  
Step 3: Result: Select the optimal Kp, Ki, and Kd  parameters from the Q-value with the best reward. 
Step 4: End of Loop: 

• Terminate the algorithm when the desired performance criteria are met. 

The Q-learning parameters were set in shown in Table 4. The ranges for the PID 
parameters utilized in the simulations were established as follows: Kp spans from 1 to 
20, while both Ki and Kd range from 0.1 to 2. Each parameter was divided into 200 
linearly spaced values for optimization. Additionally, a fixed seed value was used to 
ensure reproducibility, which was implemented using MATLAB's RNG function. 

Table 4. The parameter used in simulations for RL 

Parameter Reinforcement Learning (RL) 

Learning Rate 0.1 

Decay factor 0.9 

Exploration Rate  0.1 

Number of Episodes 1000 
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The step response of the closed-loop system optimized with RL is illustrated in Figure 5. 
The optimum PID parameters obtained by reinforcement learning using the above 
parameters and 100 and 123 as fixed seeds are Kp = 1.3819, Ki = 0.12864, Kd = 0.26231 
and Kp = 1.0955, Ki = 0.10955, Kd = 0.45327, respectively. In this case, the step response 
of the system is given in Figure 5. In Figure 5, Simulation I is obtained when the fixed 
seed is 100 and Simulation II is obtained when the fixed seed is 123. 

 

Figure 5. The simulation results of the pacemaker control system using RL. 

To better understand the difference between Reinforcement Learning and Genetic 
Algorithm, the step response of the closed-loop system generated using the PID 
parameters obtained with both algorithms is shown in Figure 6. Table 5 presents a 
comparison of the performance metrics of GA, RL, and the uncontrolled system. As can 
be seen from Table 5, the step response of the pacemaker controlled with the PID 
controller obtained with RL. 

The simulation results of the pacemaker control system in Table 5 show that the step 
response obtained with the control parameters optimized by both RL and GA have lower 
overshoot values compared to the system without controller. The overshoot value and 
the maximum peak value of the step response of the system controlled with PID 
parameters obtained by RL (1.14% and 72.83) are significantly lower than those of the 
system controlled with PID parameters obtained by GA (28.82% and 92.75). However, 
the step response of the system controlled with PID parameters generated by genetic 
algorithms shows much better performance for both rise time and settling time. 

Tablo 5. Comparison of the performance metrics 

Performance 

Metrics 

PID Controlled System 

with RL 

PID Controlled System with 

GA 

Uncontrolled System  

Rise Time (s) 0.1101 0.035707 0.1908 

Settling Time (s) 0.4555 0.342283 1.5414 

Overshoot (%) 1.1413 28.820775 34.6568 

Peak (bpm) 72.8217 92.750958 96.9529 
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Figure 6. Comparison of the step responses 

 

 

7. Conclusion 

In this study, the effectiveness of Genetic Algorithm (GA) and Reinforcement Learning 
(RL) in optimizing PID controller parameters for pacemaker applications was 
investigated. The simulation results demonstrate that both methods improved the step 
response of the system compared to the uncontrolled closed-loop system. However, their 
advantages and limitations vary significantly. 

Table 5 presents the performance comparison of the optimized PID parameters using 
both methods. The results indicate that RL-based tuning yielded significantly lower 
overshoot (1.14%) and peak value (72.82 bpm) compared to GA-based tuning (28.82% 
overshoot and 92.75 bpm peak value). This suggests that RL provides a more stable 
and accurate response, minimizing unwanted oscillations in heart rate regulation. 

However, GA-based tuning outperformed RL in terms of rise time and settling time. The 
rise time for GA (0.0357 s) was significantly lower than RL (0.1101 s), and the settling 
time was also shorter (0.342 s for GA vs. 0.455 s for RL). This implies that GA is more 
effective for achieving a rapid response, which may be beneficial in scenarios requiring 
immediate stabilization of heart rate. 

To further validate the effectiveness of these approaches, future studies could compare 
GA and RL with additional optimization techniques such as Particle Swarm Optimization 
(PSO) or Model Predictive Control (MPC). Additionally, real-time implementation and 
hardware validation on an actual pacemaker system would provide deeper insights into 
the practical feasibility of these methods. 
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The parameter settings for both GA and RL were carefully selected to ensure optimal 
performance in PID controller tuning. The following table summarizes the key parameters 
used in the simulations: 
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Abstract 

Test automation is an essential part of the software testing process. This study aims to develop 

an AI-enhanced test automation tool for testing the user interfaces of desktop applications. The 

detection of each object in the graphical user interfaces of the software will be carried out using 

the object detection capabilities of YOLOv9 and Faster R-CNN models. The study emphasizes 

the importance of preprocessing steps for achieving successful outcomes in object detection 

processes. These preprocessing steps include image resizing, data augmentation techniques, 

and balancing the dataset. Additionally, the correct selection and optimization of hyperparameters 

(e.g., learning rate, number of epochs, network depth, and anchor box dimensions) in object 

detection models play a critical role in improving model performance. In this study, data analysis 

techniques using Python were utilized for hyperparameter optimization. Hyperparameters were 

evaluated and optimized based on metrics such as model accuracy, loss curves, and training 

time. As a result, high performance was achieved for both the test automation tool and the object 

detection process. This approach demonstrates the power of artificial intelligence and data 

analytics in test automation processes, serving as a significant example for both educational and 

practical applications. 

Keywords: object detection, data analysis, test automation, deep learning, image classification

 

1. Introduction 

As software systems become increasingly complex, the demand for more advanced and 
adaptable testing solutions continues to grow. Traditional test automation tools often face 
significant limitations in accurately detecting and interacting with GUI (Graphical User 
Interface) components. Specifically, identifying the class and location of GUI elements 
without access to their source code or pre-captured screenshots is considered a 
significant achievement in modern research [1]. 

This study focuses on improving object detection methods for desktop applications by 
leveraging cutting-edge deep learning models such as YOLOv9 and Faster R-CNN. To 
provide a foundational understanding of these models, an in-depth review of 
convolutional neural networks (CNNs) and single-stage detection architectures is 
conducted, shedding light on the principles underlying YOLOv9 and Faster R-CNN. 
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Furthermore, accurate detection of graphical user interface components requires a well-
prepared dataset, which involves steps such as data collection, cleaning, and 
preprocessing. Preprocessing techniques include image resizing, data augmentation, 
and dataset balancing to address class distribution issues and ensure optimal training 
conditions. 

Subsequently, the training phase of the YOLOv9 and Faster R-CNN models focuses on 
optimizing key hyperparameters, including learning rate, batch size, and anchor box 
dimensions, to enhance detection accuracy and computational efficiency. To evaluate 
the performance of these models, standard metrics such as precision, recall, F1-score, 
and mean Average Precision (mAP) are employed. A comprehensive comparative 
analysis highlights the strengths and weaknesses of each model, providing valuable 
insights into their applicability to desktop environments. 

Existing object detection methods for desktop applications often prove inadequate in 
handling complex and dynamic conditions. By integrating advanced deep learning 
techniques with rigorous data preprocessing and hyperparameter optimization, this study 
aims to deliver a more robust and efficient solution. The entire research process, 
including Literature Analysis and Synthesis, data preprocessing, model training, and 
performance evaluation is implemented using Python, ensuring reproducibility and 
efficiency. 

2. Literature Analysis and Synthesis 

In traditional object detection methods, techniques such as edge detection and corner 
detection played a fundamental role and were effective in applications with smaller data 
sets. However, these methods were insufficient to provide accuracy across different data 
sets and environments. For example, while Viola and Jones' real-time face detection 
method (Viola & Jones, 2001) attracted attention with its simplicity, the method was 
limited to static images and had scalability problems [4]. Similarly, the HOG (Histogram 
of Oriented Gradients) sensor was used to detect pedestrians, but could not provide 
consistent results in different environmental conditions [5]. Deformable Part-based 
Model (DPM), which was developed for the detection of more complex structures, 
enabled objects to be divided into parts and each part to be evaluated independently, 
but encountered problems such as high computational costs and low speed [6]. 

These limitations have accelerated the transition to deep learning-based methods. 
Convolutional neural networks (CNNs), in particular, have revolutionized object 
detection. CNN-based methods can be divided into two basic groups. 

In the first stage, areas that may contain objects are determined (region proposals). In 
the second stage, these regions are classified in more detail and the boundary boxes 
are optimized. Among the methods in this category, R-CNN and Faster R-CNN have 
shown high performance in terms of accuracy [7]. However, the training and inference 
processes of these models are computationally intensive and slow. 

Since object detection is performed in a single step, it is faster and suitable for real-time 
applications. YOLO (You Only Look Once) and SSD (Single Shot Multibox Detector) are 
the pioneers of this category [8]. In YOLOv4 and later, these methods have approached 
two-stage methods in terms of accuracy and speed [9]. 

In deep learning models, data preprocessing plays a crucial role in directly influencing 
model performance. Various methods are employed during this process to ensure the 
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dataset is prepared for effective training. One common approach involves image resizing 
and normalization. For instance, Girshick demonstrated that fixing input dimensions 
(e.g., 224x224 pixels) in the R-CNN model improved overall accuracy [10]. Similarly, 
YOLO models normalize all images by scaling pixel values to the [0,1] range, ensuring 
consistency across diverse datasets. Additionally, data augmentation techniques, 
including rotation, translation, brightness adjustments, and scaling, have been widely 
adopted, particularly for small datasets, to enhance model performance. Such methods 
have been successfully implemented in models like YOLO and Faster R-CNN, as 
evidenced in previous studies [11]. 

Another essential aspect of data preprocessing is data cleaning, which addresses 
missing or inconsistent data within the dataset. Techniques such as imputation, deletion, 
or replacement with mean values are employed to ensure the integrity of the dataset and 
maintain statistical reliability [12]. Once these preprocessing steps are completed, the 
focus shifts to optimizing hyperparameters during the model training phase to maximize 
performance. 

Hyperparameter optimization is a critical process that directly affects the accuracy and 
efficiency of deep learning models. For instance, systematic screening of 
hyperparameter ranges has shown significant improvements in models like YOLO. 
Studies have highlighted that parameters such as learning rate and momentum can 
significantly impact model accuracy, with lower learning rates yielding higher accuracy 
in YOLOv3 [13]. Bayesian optimization methods have also been successfully applied, as 
demonstrated by Johnson et al., who optimized hyperparameters in the Faster R-CNN 
model to achieve faster and more efficient results. Furthermore, selecting appropriate 
anchor box sizes tailored to the dataset has been emphasized as a key factor in 
enhancing performance for models such as RetinaNet and Faster R-CNN [7]. 

3. Data Preparation 

In this study, different methods were followed to collect the data required for training. 
Since the designed test automation tool is intended to be used in desktop applications, 
GUI components in Windows and Linux operating systems were primarily collected by 
taking screenshots using SikuliX. Later, GUI components in web applications were 
obtained by web scraping methods. Web scraping was performed in Python using 
BeautifulSoup and Selenium libraries. The 2000 data items were collected. 

Data preprocessing played an important role in preparing the data for training the model 
[14]. In this context, the following steps were taken: 

3.1. Data Cleaning 

We applied data cleaning to improve the quality and suitability of our dataset, creating a 
cleaner and more usable dataset for modeling. To perform the data cleaning process, 
Python libraries such as OpenCV, OS, Image and numpy were utilized. Through this 
process, corrupted/missing images, unlabeled images, duplicate images, and irrelevant 
images in the dataset were identified and removed, resulting in a refined dataset.  

As shown in the Figure-1 below, 1500 image remaining after the cleaning process. 
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Figure 1.  Dataset Before and After Cleaning  

3.2. Data Augmentation 

Data augmentation was utilized in the models we used to prevent overfitting and expand 
the dataset. Techniques such as rotation, flipping, cropping, brightness and contrast 
adjustment, zooming, and cutout were applied. These operations were implemented 
using the OpenCV and Albumentations libraries in Python. 

This approach successfully increased the diversity of the dataset, making the model 
more generalizable, preventing overfitting, and effectively addressing the challenge of 
having a relatively small dataset by augmenting it. 

After applying data augmentation techniques, the dataset was expanded to include a 
total of 4000 data. This process increased the diversity of the dataset and helped to 
improve the robustness and generalizability of the model. 

3.3. Normalization 

The pixel values of the dataset images we used are represented as integers in the range 
of 0-255. To normalize these pixel values to the range [0,1], the following formula is 
fundamentally used.  

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑣𝑎𝑙𝑢𝑒

255
 

This operation was performed using the OpenCV library in Python. To ensure 
compatibility with the YOLO model, the dimensions of the image needed to be resized 
to a standard input size (e.g., 416x416 pixels) therefore, resizing was also performed 
using the OpenCV library. 

The reasons for performing normalization are as follows: 

• It ensures a better scale alignment between the model weights and the input data. 

• It allows optimization algorithms to work faster and more effectively. 

• Large values can disrupt the learning process of the model. 
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3.4. Control of Labels 

A total of 4000 images were automatically labeled using the Roboflow platform. The data 
were classified into categories such as "Button," "Checkbox," "Dropdown," and other GUI 
element names. 

Finally, 4000 data created as a result of these processes were divided into 8 different 
classes and used for training YOLOv9-10 and Faster R-CNN models.  

These detailed preprocessing steps played a critical role in increasing the accuracy of 
the models and reducing inaccurate predictions. 

3.5. Division of the Data Set 

The data was divided into three groups training (80%), validation (10%), and testing 
(10%) as shown in the Figure-1 below. It is necessary to obtain a validation data set to 
ensure that the model does not fit too much on the training data. This can be achieved 
by comparing the training progress of the model with the training and validation data 
sets.  

    This decision was made because when the data set was divided into training (70%), 
validation (15%), and testing (15%), lower values were obtained for metrics such as 
precision and recall. The validation set was used to fine-tune the hyperparameters. The 
test set is reserved to evaluate the overall performance of the model on previously 
unseen data.  

 

Figure 2.  Train-Test-Validation Split of the Dataset 

4.  Model Selection and Training Process  

The process of model selection is a critical step in the development of any machine 
learning application. For object detection tasks, selecting the right model depends on 
several factors, including the application requirements, available computational 
resources, dataset characteristics, and performance trade-offs. In this study, we 
evaluated two state-of-the-art object detection models, YOLOv9 and Faster R-CNN, to 
determine their suitability for detecting GUI elements. 

4.1. YOLOv9 Training 

Pre-trained weights trained on the COCO dataset were used as the starting point. This 
approach leveraged the model’s ability to detect generic object features. 

The training process was conducted using the PyTorch and YOLOv9 frameworks. Cloud-
based resources, specifically Google Colab, were employed to handle the computational 
load. 
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Initial experiments set the number of epochs to 20. However, early testing revealed 
underfitting. Gradually, the epochs were increased to 50, balancing training duration and 
model performance. Other hyperparameters such as learning rate, batch size, and 
momentum were fine-tuned using grid search techniques. 

The model was fine-tuned with a learning rate scheduler and regularization techniques 
to prevent overfitting. 

4.2. Faster R-CNN Training 

The Faster R-CNN model used pre-trained weights from the ImageNet dataset, providing 
a strong baseline for feature extraction. Training was performed using the torchvision 
library in PyTorch, which provides a robust implementation of Faster R-CNN. 

Due to its complexity, training required high computational power. Experiments were 
conducted using local GPU resources and later scaled to cloud services when 
necessary. Epochs were set to 30 after evaluating overfitting and underfitting scenarios. 
Anchor box sizes and aspect ratios were adjusted to align with GUI element dimensions.  

4.3. Comparison of YOLOv9 and Faster R-CNN Models 

YOLOv9 provides significant advantages in terms of speed and real-time processing, 
making it suitable for applications requiring rapid inference [15]. However, its 
performance may degrade when detecting small or intricate objects. In contrast, Faster 
R-CNN excels at achieving higher accuracy in detecting complex objects but is 
computationally intensive, making it less ideal for real-time applications. 

Table 1. Comparison of Models 

Name of the Criteria YOLOv9 Faster R-CNN 

Model Type Single-stage Two-stage 
Training Framework PyTorch,YOLOv9  PyTorch 
Pre-trained Weights Source Collected Dataset Collected Dataset 
Optimal Number of Epochs 50 30 
Key Strength Faster inference time High accuracy on intricate details 
Computational Requirements Moderate (Google Colab) Moderate (Google Colab) 
Evaluation Metrics Precision and recall, Higher mAP and F1-score 
Best Use Case Real-time applications Detailed object detection 

According to the information presented in Table 1, both models utilized custom collected 
datasets for fine-tuning; however, their optimal number of epochs differed significantly, 
with YOLOv9 requiring 50 epochs and Faster R-CNN achieving optimal performance at 
30 epochs.  

5. Performance Evaluation 

YOLOv9 outperforms Faster R-CNN in terms of precision and F1-score, making it better 
suited for applications where precision is critical. However, Faster R-CNN offers slightly 
higher recall, which may be beneficial for tasks requiring comprehensive detection. 

YOLOv9 handles categorical distinctions better, while Faster R-CNN struggles with 
misclassifications, especially in complex or overlapping classes. YOLOv9's higher AUC 
value suggests superior generalization in binary classification tasks, whereas Faster R-
CNN may require further optimization to improve its ROC performance.  
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YOLOv9 converges faster and generalizes better, making it more suitable for time-
sensitive projects with limited computational resources. Faster R-CNN, while slower to 
train, may benefit from additional regularization techniques to improve generalization. 
 

 

Figure 3.  YOLOv9 Performance Report  

 

Figure 4. Faster R-CNN Performance Report  
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The final choice between these models should be guided by the specific application 
requirements. As shown in Figure-3, YOLOv9 demonstrates superior speed and 
moderate accuracy, making it the preferred option for tasks requiring real-time 
performance. On the other hand, as illustrated in Figure-4, Faster R-CNN achieves 
higher recall and excels in intricate detail detection, making it more suitable for 
applications where precision in complex scenarios is critical. 

6. Conclusion and Future Work  

This study underscores the growing importance of AI-powered UI element detection in 
the development of test automation tools. As modern software systems become 
increasingly complex, automating the detection and interaction with UI components has 
become a critical aspect of efficient and reliable software testing. Leveraging state-of-
the-art object detection models such as YOLOv9 and Faster R-CNN, we explored how 
these approaches can enhance the accuracy and speed of UI element detection tasks. 

The data collection and analysis process played a pivotal role in this study. A robust 
dataset of annotated GUI elements was created, involving meticulous preprocessing 
steps such as normalization, augmentation, and careful splitting into training, validation, 
and test sets. These steps ensured that the models were trained on high-quality data, 
which is fundamental for achieving reliable and generalizable performance. 

Performance evaluation revealed clear distinctions between YOLOv9 and Faster R-
CNN. YOLOv9 demonstrated its advantages in speed and computational efficiency, 
making it highly suitable for real-time UI element detection tasks. It offers moderate 
accuracy, which is sufficient for many automation scenarios, especially those requiring 
rapid feedback. Conversely, Faster R-CNN exhibited superior recall and detail detection, 
making it more suitable for scenarios that demand high precision and intricate UI 
interactions, albeit at the cost of computational efficiency. 

The choice of model ultimately depends on the specific requirements of the application. 
YOLOv9 is better suited for scenarios demanding high speed, such as real-time testing 
or rapid prototyping, where computational resources are limited. Faster R-CNN excels in 
tasks requiring high recall and detailed recognition, such as testing applications with 
complex UI layouts or overlapping elements. 

This comparative analysis highlights the trade-offs inherent in selecting the appropriate 
model for AI-driven test automation. The study emphasizes the importance of balancing 
performance metrics with application needs and resource constraints. 

Future work could focus on integrating these models into real-world test automation 
pipelines, exploring ensemble approaches to combine the strengths of both models, and 
optimizing them further for domain-specific tasks. Ultimately, advancements in AI-
powered UI detection have the potential to revolutionize software testing, making it 
faster, more accurate, and scalable for the challenges of modern software systems. 
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Abstract 

In this study, a deep learning-based decision support system was developed to classify diabetic 

retinopathy (DR), macular hole (MH), and healthy cases using fundus images. A total of 1,397 

fundus images, selected from the open-source Retinal Disease Classification dataset, were used 

in the training and testing phases. ResNet50, InceptionV3, and Xception models were trained 

with different hyperparameter configurations, and their performances were evaluated 

comparatively. Among the models, ResNet50 achieved the highest accuracy on the test set, 

reaching 93.79%. However, the Xception model exhibited superior robustness and stability across 

various hyperparameter settings, consistently delivering balanced and reliable classification 

performance. These findings indicate that deep learning-based approaches can be effectively 

utilized as clinical decision support systems for the diagnosis of retinal diseases. 

Keywords: deep learning, fundus images, diabetic retinopathy, macular hole, convolutional 

neural networks, Resnet50, Xception, InceptionV3 

 

1. Introduction 

The use of artificial intelligence (AI) methods in healthcare has rapidly expanded in recent 
years. In particular, AI applications powered by deep learning techniques are increasingly 
being adopted in the medical field [1]. In this context, the early diagnosis of eye diseases is 
crucial for preventing permanent vision loss. Conditions such as diabetic retinopathy (DR) 
and macular hole (MH) can lead to severe visual impairment, especially in their advanced 
stages [2]. Fundus images play a critical role in the diagnosis of these diseases by enabling 
a detailed examination of the retinal layer, thus supporting physicians in the decision-making 
process [2], [3]. However, manual interpretation of fundus images is time-consuming and 
susceptible to human error. At this point, digital image processing and deep learning methods 
offer valuable assistance by serving as decision support systems for the classification of 
fundus images [4]. 

In this study, deep learning-based image processing models were trained to classify DR [5], 
MH [6], and healthy samples using fundus images. The Retinal Disease Classification 
dataset [7], an open-source collection of fundus images representing different disease 
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categories, was used in the study. These images were processed and trained with various 
hyperparameter configurations using ResNet50 [8], InceptionV3 [9], and Xception [10] 
models, and the performance of each model was comparatively analyzed. The results 
indicated that ResNet50 and Xception achieved high classification accuracies of 93.70% and 
92.94%, respectively, by effectively capturing distinctive features in fundus images. 
InceptionV3 also performed well with an accuracy of 88.70%, though slightly lower than the 
other two models. 

This study highlights the effectiveness of deep learning-based artificial intelligence 
approaches in the diagnosis of retinal diseases and aims to contribute to future clinical 
applications. The findings support the integration of AI-powered decision support systems, 
particularly in the early detection of conditions such as DR and MH, where early diagnosis is 
critical. 

2. Retinal Diseases 

The retina is one of the fundamental structures responsible for the visual function of the 
eye. Retinal diseases can lead to serious and permanent vision loss if not diagnosed 
and treated in a timely manner [11]. In this section, we focus on DR and MH, two common 
retinal disorders that fall within the scope of this study and can cause significant visual 
impairment if not detected early. 

2.1 Diabetic Retinopathy 

Diabetic retinopathy (DR) is a serious retinal disease affecting one-third of the 
approximately 285 million people with diabetes worldwide. One third of these individuals 
also have vision-threatening symptoms of DR [12]. DR occurs in diabetic patients when 
the blood vessels in the retina are damaged due to high blood glucose levels [2]. Since 
the disease is usually asymptomatic in the initial stages, it is difficult to diagnose early 
and often manifests itself in later stages with symptoms such as blurred vision, dark spots 
in the visual field and vision loss. Therefore, early diagnosis of DR is critical to stop the 
progression of the disease and prevent vision loss. In the absence of early diagnosis and 
treatment, the disease can cause severe vision loss, up to blindness [5]. Figure 1 
presents sample images labeled as DR from the Retinal Disease Classification dataset 
[7]. 

   

Figure 1. Fundus images labeled as DR in the Retinal Disease Classification dataset. 

 

2.2 Macular Hole 

A macular hole (MH) is a small tear or opening that occurs in the macula, the central 
region of the retina. Since the macula is responsible for sharp and detailed central vision, 
a hole in this area can significantly impair visual acuity [6]. A MH is often associated with 
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the natural process of aging; it occurs as the structure of the vitreous fluid deteriorates 
and separates from the macula with age. The incidence is particularly high in individuals 
over 50 years of age. Early signs of the disease include distorted central vision, blurred 
vision and the inability to see fine details. When treatment is delayed, the damage to the 
macular area deepens and this can lead to permanent vision loss. Early detection of MH 
and appropriate intervention can preserve central vision [6], [13]. Figure 2 presents 
sample images labeled as MH from the Retinal Disease Classification dataset [7]. 

   

Figure 2. Fundus images labeled as MH in the Retinal Disease Classification dataset. 

3. Literature Review 

In recent years, deep learning-based models developed for the early diagnosis of retinal 
diseases—especially DR—have attracted significant interest in the research community. 
The potential of artificial intelligence-based systems to enhance the efficiency of clinical 
processes is particularly evident when faced with limited data and complex diagnostic 
challenges. In this section, we review some of the most influential studies on the 
classification and diagnosis of retinal diseases. 

Kori et al. (2018) employed a CNN-based ensemble approach for the automatic grading 
of DR and macular edema (ME). To address the challenge of limited labeled data, the 
researchers utilized transfer learning by fine-tuning models that were previously trained 
on ImageNet, adapting them to fundus images. The final model achieved an accuracy of 
83.9% for DR grading and 95.45% for ME grading. The study emphasized that the 
ensemble method outperformed a single CNN model and highlighted the effectiveness 
of transfer learning techniques [14]. 

Sahlsten et al. (2019) proposed a deep learning-based method for the automatic 
detection of DR and ME using high-resolution fundus images. Their study achieved high 
accuracy rates, emphasizing the potential for increased cost-effectiveness in existing 
screening programs [15]. 

Torre et al. (2020) developed a deep learning classifier aimed at improving interpretability 
in DR grading. Their method assigned importance scores to individual pixels or regions 
contributing to the final classification, enhancing transparency for clinical experts. This 
not only improved the diagnostic reliability but also underscored its potential for 
integration into clinical decision support systems [16]. 

Özçelik and Altan (2021) introduced a two-stage model for the early diagnosis of DR. In 
the first stage, two-dimensional signal processing techniques were utilized to prevent 
overfitting, while in the second stage, classification was performed using ESA-based 
transfer learning. The model was trained on 5,100 fundus images and achieved an 
accuracy of 97.8%. This study demonstrated the model’s speed and reliability as a 
diagnostic tool [5]. 
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Aykat and Senan (2023) proposed a deep learning-based method for diagnosing retinal 
diseases such as DR and cataract. In their study, fundus images were enhanced using 
histogram equalization as preprocessing and 99% accuracy was achieved with the 
MobileNet-based hybrid model. These results suggest that the hybrid model outperforms 
similar methods in existing literature [2]. 

Polater and Işık (2024) conducted a study on the classification of DR severity levels using 
the APTOS 2019 dataset. By employing the DenseNet121 model, they achieved 
approximately 97% accuracy. Their findings reaffirm the superior performance of the 
DenseNet121 architecture and the overall efficacy of deep learning methods in DR 
diagnosis [17]. 

These studies clearly demonstrate that deep learning methods offer high accuracy and 
reliability in the diagnosis of DR and other retinal diseases. Validating these models on 
diverse datasets and across various clinical scenarios may broaden their applicability in 
diagnostic and treatment workflows and contribute to the development of robust clinical 
decision support systems. 

4. Material and Method 

4.1 Dataset 

The Retinal Disease Classification dataset [7] used in this study is a comprehensive and 
open-source dataset designed for the classification of eye diseases based on retinal 
fundus images. It contains a total of 3,200 fundus images representing 46 distinct ocular 
diseases. The images were captured using three different fundus cameras—TOPCON 
3D OCT-2000, Kowa VX-10, and TOPCON TRC-NW300—and each image was 
meticulously labeled by two senior retina specialists. The use of multiple imaging devices 
and expert annotations enhances both the diversity and reliability of the dataset. 

The fact that the images were obtained from different devices increases the 
generalization capability of the deep learning models by reducing dependency on a 
specific device or lighting condition. Additionally, the dataset’s wide range of disease 
classes facilitates the development of models capable of detecting multiple retinal 
disorders simultaneously. For the purpose of this study, three classes were selected: 
DR, MH, and Healthy (No Disease). These classes are commonly encountered in clinical 
settings and exhibit a relatively balanced distribution within the dataset, allowing for more 
consistent and reliable results during model training and evaluation. 

From the 1,397 fundus images selected for this study, a total of 1,043 images were 
allocated to the training set, comprising 349 DR, 293 MH, and 401 healthy images. The 
remaining 354 images were used for testing, including 120 DR, 100 MH, and 134 healthy 
images. Accordingly, approximately 75% of the data was used for training and 25% for 
testing. Figure 3 illustrates representative fundus images from each of the three selected 
classes. 



Deep Learning Based Decision Support System for Retinal Disease Classification:                                                                     55 
Diabetic Retinopathy and Macular Hole 

  Artificial Intelligence Theory and Applications, Vol. 5, No. 1 

   

Figure 3.  Sample fundus images from Retinal Disease Classification dataset. From left 
to right: Macular Hole, Diabetic Retinopathy, No Disease 

4.1.1 Image Preprocessing 

Various image preprocessing steps were applied to ensure high accuracy and 
generalization capability of the trained deep learning models. Fundus images were 
resized to 299×299 pixels to be compatible with the input layers of the deep learning 
models. In addition, the pixel values of the images were normalized to the range [0, 1] to 
facilitate the training process of the models. 

In this study, data augmentation strategies were also included in the training processes. 
Figure 4 shows the data augmentation process used in the training scenarios where the 
data augmentation strategy was applied. Data augmentation aims to diversify the limited 
amount of training data and increase the robustness of the models against different 
variations. The operations in the data augmentation process were randomly applied to 
the images at each iteration. The applied methods include random rotation up to 30 
degrees (rotation_range=30), horizontal and vertical shift up to 20% 
(width_shift_range=0.2, height_shift_range=0.2), shear up to 20% (shear_range=0.2), 
zoom in up to 20% (zoom_range=0.2), random change of brightness values within a 20% 
range (brightness_range=[0.8, 1.2]) and random flip on the horizontal axis 
(horizontal_flip=True). 

 

 

 

 

 

 

Figure 4. Data augmentation process 

4.2 Deep Neural Networks 

Deep learning, as one of the cornerstones of modern artificial intelligence research, has 
achieved significant advances in image processing and classification. In particular, 
convolutional neural networks (CNNs) have demonstrated remarkable success in 
analyzing and classifying visual data, and these models have evolved to become more 
efficient and effective over time [10], [18]. In this study, three different CNN-based deep 
learning architectures were employed for retinal image classification: ResNet50, 
InceptionV3, and Xception. 
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ResNet50, developed by He et al. in 2015, is a CNN architecture designed to address 
the vanishing gradient problem encountered during the training of deep neural networks 
[8]. It introduces residual connections that allow the output of a layer to be added to 
the input of a deeper layer, enabling more effective training of very deep architectures. 
ResNet50 consists of a total of 50 layers and has demonstrated high performance in 
complex image classification tasks. 

InceptionV3 is a CNN model developed by Google that applies convolutional filters of 
varying sizes in parallel, allowing for the extraction of image features at multiple spatial 
scales [9]. This multi-scale filtering approach enables the model to capture visual 
patterns at different levels of detail while improving parameter efficiency and reducing 
computational cost. Thanks to this design, InceptionV3 achieves high classification 
accuracy and is widely adopted across various computer vision applications. 

Xception is a CNN architecture designed as an enhanced version of the Inception model 
[10]. It utilizes depthwise separable convolutions to reduce the number of parameters 
and improve computational efficiency compared to traditional CNN structures. Xception 
has outperformed InceptionV3 on large-scale datasets such as ImageNet (ILSVRC) and 
JFT. Furthermore, it has proven highly effective in transfer learning scenarios, achieving 
strong performance across diverse classification tasks. 

5. Training and Results 

In this study, three different CNN based models—ResNet50, InceptionV3, and 
Xception—were used, and a total of 15 training scenarios were evaluated, combining 
three different hyperparameters (end-to-end learning, data augmentation, and learning 
rate) for each architecture. All models were trained using the Adam optimization 
algorithm for 50 epochs, with learning rates set at 0.001 and 0.0001. The detailed training 
and test accuracy results, along with loss values for each scenario, are summarized in 
Table 1. Additionally, Figure 6 illustrates the epoch-based test accuracy progression for 
each model throughout the training phase, while Figure 7 presents corresponding 
accuracy curves for the training sets. Further insights into model convergence and 
stability can be observed in the loss curves presented in Figures 8 and 9, showing test 
and training loss, respectively. Moreover, Table 2 provides a more comprehensive 
evaluation, detailing precision, recall, and F1-score metrics for each class and scenario, 
enabling deeper analysis beyond overall accuracy. 

In each model architecture, the original output layers were removed, and a Global 
Average Pooling layer was added to the end of the base model to adapt it to the target 
dataset. This approach converts the output feature maps into a one-dimensional vector, 
helping reduce the number of parameters while preserving high-level feature 
representations. Following this, a Dense layer with 256 neurons and ReLU activation 
was added, along with 30% Dropout to prevent overfitting. Finally, a Softmax-activated 
output layer was used for classification into three classes: Diabetic Retinopathy, Macular 
Hole, and Healthy. The block diagram illustrating this modified CNN architecture is 
shown in Figure 5. 

 

Figure 5. Modified CNN Architecture 
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In Table 1, when the "End to End Learning" parameter is "-", the base model weights are 
frozen, and only the newly added layers are trained. When the parameter is "+", training 
is performed end-to-end. All models were initialized with pre-trained weights from the 
ImageNet dataset. In scenarios where data augmentation was applied, the strategy 
illustrated in Figure 4 was used to evaluate the robustness of the models against image 
variations. 

Table 1. Training and Test Results 

Model End to End 
Learning 

Augmentation Learning Rate Loss Acc Test-
Loss 

Test-
Acc 

ResNet_1 - - 0.0010 1.0291 0.4382 1.0527 0.4209 
ResNet_2 - + 0.0010 1.0568 0.4267 1.0506 0.4379 
ResNet_3 - - 0.0001 1.0240 0.4861 1.0628 0.4237 
ResNet_4 + - 0.0001 0.0033 0.9990 0.2751 0.9379 
ResNet_5 + + 0.0001 0.1276 0.9569 0.6505 0.8559 

Inception_1 - - 0.0010 0.0379 0.9895 0.4572 0.8814 
Inception_2 - + 0.0010 0.2624 0.8907 0.3732 0.8701 
Inception_3 - - 0.0001 0.0732 0.9818 0.3131 0.8870 
Inception_4 + - 0.0001 0.0122 0.9971 0.4580 0.8870 
Inception _5 + + 0.0001 0.0856 0.9732 0.3672 0.8729 

Xception_1 - - 0.0010 0.0179 0.9952 0.4203 0.9040 
Xception_2 - + 0.0010 0.1965 0.9271 0.2570 0.9153 
Xception_3 - - 0.0001 0.1036 0.9703 0.2301 0.9181 
Xception_4 + - 0.0001 0.0950 0.9962 0.4866 0.9294 
Xception_5 + + 0.0001 0.0203 0.9942 0.2378 0.9294 

 

Table 2. Test set evaluation metrics 

 DR MH No_Disesase 
Model Precision Recall F1 Precision Recall F1 Precision Recall F1 

ResNet_1 0.20 0.02 0.03 0.61 0.14 0.23 0.41 0.99 0.58 
ResNet_2 0.00 0.00 0.00 0.65 0.22 0.33 0.42 0.99 0.59 
ResNet_3 0.50 0.03 0.05 0.64 0.14 0.23 0.41 0.99 0.58 
ResNet_4 0.97 0.92 0.94 0.92 0.94 0.93 0.92 0.96 0.94 
ResNet_5 1.00 0.66 0.79 0.89 0.93 0.91 0.77 0.98 0.86 

Inception_1 0.96 0.78 0.86 0.85 0.86 0.86 0.85 0.99 0.91 
Inception_2 0.96 0.78 0.86 0.92 0.81 0.86 0.79 0.99 0.88 
Inception_3 0.93 0.83 0.88 0.91 0.83 0.87 0.85 0.98 0.91 
Inception_4 0.98 0.82 0.89 0.77 0.95 0.85 0.93 0.90 0.92 
Inception _5 0.99 0.81 0.89 0.89 0.84 0.87 0.79 0.96 0.86 

Xception_1 0.96 0.89 0.92 0.91 0.84 0.88 0.86 0.96 0.91 
Xception_2 0.93 0.90 0.92 0.92 0.87 0.89 0.90 0.96 0.93 
Xception_3 0.94 0.89 0.91 0.89 0.90 0.90 0.92 0.96 0.94 
Xception_4 0.95 0.95 0.95 0.98 0.84 0.90 0.89 0.98 0.93 
Xception_5 0.98 0.87 0.92 0.90 0.94 0.92 0.91 0.98 0.94 

 

 

Figure 6. Test set accuracies of the models over 50 epochs 
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Figure 7. Training set accuracies of the models over 50 epochs 

 

Figure 8. Test set loss of the models over 50 epochs 

 

 Figure 9. Training set loss of the models over 50 epochs 

The results obtained from the training scenarios presented in Table 1 reveal important 
insights into the performances of the three convolutional neural network (CNN) 
architectures (ResNet50, InceptionV3, and Xception) across different hyperparameter 
configurations. 

For the ResNet50 model, training scenarios utilizing a learning rate of 0.001 did not yield 
satisfactory results, especially when the base layers of the network were frozen. In these 
configurations, test accuracies remained notably low. However, reducing the learning 
rate to 0.0001 and performing end-to-end training of all layers dramatically improved the 
test accuracy, reaching 93.79%, which was the highest among all evaluated 
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configurations. This significant improvement indicates that ResNet50 requires careful 
adjustment of learning rate and complete fine-tuning to achieve optimal performance. 

The experiments conducted using the InceptionV3 architecture showed relatively 
consistent but limited variation in performance across different hyperparameter 
combinations, with accuracy typically around 88.70%. Interestingly, scenarios that 
involved end-to-end training and data augmentation—despite theoretical expectations of 
enhanced robustness—demonstrated fluctuating accuracy levels without substantial 
improvements. This observation implies that InceptionV3 has inherent stability in training 
dynamics but may have reached a saturation point in extracting discriminative features 
from the fundus image dataset, limiting further performance gains. 

On the other hand, the Xception architecture consistently demonstrated high and stable 
performance across all evaluated scenarios. It not only achieved higher average test 
accuracy compared to ResNet50 and InceptionV3 but also showed robust generalization 
and sensitivity to hyperparameter changes. Particularly, training the base layers with a 
lower learning rate notably enhanced its performance, underscoring the adaptability and 
robustness of the Xception architecture. 

Beyond accuracy, additional metrics provided in Table 2 (precision, recall, and F1-score) 
offer deeper insight into the classification performance across each disease category 
(Diabetic Retinopathy, Macular Hole, and Healthy). Analysis of these metrics further 
highlights the superiority of Xception. Across all classes, Xception consistently 
outperformed the other architectures, achieving precision, recall, and F1-scores 
frequently exceeding 0.90 in configurations involving end-to-end learning and data 
augmentation. These findings reinforce Xception’s suitability for accurate multi-class 
classification tasks in ophthalmological applications. 

 

Figure 10. Confusion matrices of the models with high classification performance 

Figure 10 presents the confusion matrices of the best-performing models trained with 
identical hyperparameter configurations. When evaluating class-wise performance 
based solely on the confusion matrices, the Xception model demonstrates the highest 
number of correct classifications for the DR class. Xception produced fewer 
misclassifications in this class compared to the other two models, indicating greater 
reliability in distinguishing DR cases. For the MH class, the most successful results were 
achieved by the InceptionV3 model, which attained the highest number of correct 
predictions, distinguishing itself from the other architectures. Although ResNet50 
performed comparably to InceptionV3 in the MH class, it was observed that Xception 
made noticeably more classification errors in this category. In the no_disease class, 
Xception once again stood out, delivering the highest number of correct classifications 
and exhibiting strong performance in identifying healthy individuals. In contrast, 
InceptionV3 produced more misclassifications in this class, frequently confusing it with 
MH. In summary, the confusion matrices indicate that while Xception achieved superior 
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results in the DR and no_disease classes, InceptionV3 was the most effective in 
classifying MH cases. ResNet50, on the other hand, displayed a balanced performance 
across all classes with relatively low misclassification rates. 

In contrast, ResNet50 exhibited significant performance variability between different 
scenarios. While scenarios involving frozen base layers and higher learning rates 
resulted in poor precision and recall scores, the architecture successfully recovered in 
configurations that involved end-to-end training with a reduced learning rate. This pattern 
suggests that ResNet50 requires a carefully controlled training environment to mitigate 
overfitting and achieve its full potential. 

InceptionV3, while maintaining moderate stability, demonstrated competitive yet 
generally lower overall performance compared to Xception. Particularly, its precision, 
recall, and F1-scores for the Macular Hole and Healthy classes were commendable, but 
it was less consistent across the Diabetic Retinopathy class, highlighting a limitation in 
effectively distinguishing between visually challenging classes. 

The training dynamics presented in Figures 6 and 7 further illustrate differences in 
learning behaviors among the architectures. Notably, Xception exhibited smoother and 
more consistent progression in both training and test accuracies throughout the epochs. 
Additionally, the loss trajectories shown in Figures 8 and 9 complement these 
observations, demonstrating more stable loss convergence for Xception, whereas 
ResNet50 and InceptionV3 experienced noticeable fluctuations, indicative of overfitting 
tendencies, particularly when training base layers were frozen or when higher learning 
rates were employed. 

Collectively, these detailed analyses underscore the robustness, stability, and superior 
generalization capabilities of the Xception model. Its consistently high performance 
across various metrics and configurations makes it particularly suitable as the basis for 
reliable and effective clinical decision support systems in the early diagnosis of retinal 
diseases. 

6. Conclusion and Future Work 

This study provides a comparative analysis of the classification performance of deep 
learning-based models for the diagnosis of retinal diseases such as diabetic retinopathy 
(DR) and macular hole (MH). Three different CNN architectures—ResNet50, 
InceptionV3, and Xception—were trained and evaluated under various hyperparameter 
configurations. According to the findings, ResNet50 achieved the highest test accuracy 
(93.79%) among the models used in the study. However, as illustrated in Figure 6, the 
Xception model demonstrated more stable performance across different training 
scenarios. InceptionV3, while exhibiting more consistent performance than ResNet50, 
achieved lower accuracy than Xception. The results also indicate that both InceptionV3 
and Xception models converged more rapidly during the early training stages compared 
to ResNet50, achieving high accuracy values in a shorter time frame, as depicted in 
Figure 6. 

These results highlight the strong potential of deep learning methods in ophthalmologic 
image analysis and diagnostic decision support systems. Such systems, developed as 
alternatives to time-consuming and expert-dependent manual evaluations, can expedite 
clinical decision-making, reduce the workload on healthcare professionals, and enable 
earlier intervention for patients at risk of vision loss. 
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For future work, we plan to evaluate the current models on larger and more imbalanced 
datasets involving multi-class disease classification. Additionally, we aim to integrate 
explainable AI (XAI) techniques such as Grad-CAM and LIME to improve the 
interpretability of the models' decision-making processes. Exploring lightweight and 
optimized architectures (e.g., MobileNet, EfficientNet) suitable for real-time applications 
will also be a crucial step toward integration into portable medical devices. Furthermore, 
training models using multi-center, multi-device fundus image datasets is expected to 
improve the generalizability and reliability of decision support systems. 

In conclusion, this study highlights the effectiveness of deep learning-based models in 
classifying retinal diseases using fundus images, providing a foundation for future 
research toward more reliable and interpretable clinical decision support systems in eye 
care. 
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Abstract 

Diabetes mellitus (DM) is a rapidly increasing global health issue that requires effective self-
management to prevent complications and improve quality of life. In recent years, advancements 
in generative artificial intelligence (GenAI) have created new opportunities to support DM self-
management by providing personalized care solutions. This study is designed as a systematic 
review. Numerous studies in the literature have examined the contributions of GenAI models to 
DM self-management, and reviewing these studies is essential to provide a general framework 
on this topic. The primary aim of this study is to systematically examine research that utilizes 
GenAI in DM management. This systematic review was conducted in accordance with PRISMA 
guidelines. A comprehensive literature search was carried out between February and October 
2024 across PubMed, Scopus, Web of Science, Google Scholar, Ulakbim, Türk Medline, and 
national databases. Using the keywords "diabetes," "generative artificial intelligence," and 
"diabetes self-management," studies published between 2018 and 2024 were identified. A total 
of 19 studies that met the inclusion criteria were analyzed in terms of the GenAI models used, 
application areas, and reported outcomes. Among the reviewed studies, GPT-based models were 
predominant, appearing in 53% of the research. In addition, models such as GAN, LSTM, 
WaveNet, GRU, Markov-Bayes, Google Bard, and Mobiguide were also utilized. Moreover, the 
findings of this study highlight that GenAI-based systems are widely adopted in DM self-
management and possess significant potential to facilitate this process. These systems not only 
provide information but also incorporate advanced support mechanisms that enhance patient 
monitoring and clinical decision-making processes. GenAI has made notable contributions to DM 
care, particularly by developing personalized care plans, offering tailored dietary and exercise 
recommendations, generating educational materials, predicting blood glucose (BG) levels, 
providing individualized guidance, and supporting clinical workflows. As GenAI continues to 
evolve and adapt to the specific contexts and demands of the medical field, its role in DM care is 
expected to become increasingly prominent. However, several challenges have been reported, 
including concerns over data security, privacy, misinformation generation, and suboptimal 
performance in detecting critical conditions such as hypoglycemia. Addressing these ethical, 
technical, and security-related limitations requires further research and technological 
advancements. Future studies should prioritize enhancing the reliability, usability, and diagnostic 
accuracy of GenAI applications to ensure their seamless integration into clinical practice. 

Keywords: generative artificial intelligence, diabetes self-management, diabetes 
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1. Introduction 

Diabetes Mellitus (DM), a major contributor to multiple health issues, has emerged as an 
escalating public health problem, significantly impacting a substantial portion of the 
global population [1, 2]. The prevalence of DM is estimated to rise to 643 million by 2030 
and 783 million by 2045 [2, 3]. The primary objectives of DM management are to prevent 
or mitigate complications and preserve an optimal quality of life. Thus, effective long-
term self-management is essential for individuals living with DM as a chronic condition 
[4]. Individuals with diabetes face an increased risk of developing various complications 
if they fail to maintain optimal blood glucose (BG) control [5]. The progression of chronic 
complications not only diminishes quality of life but also has detrimental physical, 
psychological, and social effects on individuals, while substantially escalating the 
economic burden of DM on healthcare systems [3,6]. Maintaining optimal glycemic 
control is a cornerstone of DM management to mitigate the risk of acute and chronic 
complications. Nevertheless, through comprehensive DM management and strict 
metabolic control, the onset of these serious complications can be delayed, or in some 
cases, entirely prevented [1, 3, 5, 7]. Many factors that affect successful DM self-
management are modifiable and practical. Key behaviors, including healthy eating, 
regular physical activity, BG monitoring, adherence to prescribed medication regimens, 
developing healthy coping strategies, and problem-solving skills, are fundamental 
components of effective DM self-management [8]. Attaining optimal glycemic control in 
DM necessitates active participation in self-management efforts, which not only 
enhances the effectiveness of DM care but also fosters patient empowerment [1]. 

Each person is unique, and individuals with diabetes may have different preferences, 
values, and goals for their self-management. Therefore, creating a personalized 
management plan is essential. Such plans should consider various factors, including the 
individual’s age, cognitive abilities, work or school schedule, health beliefs, support 
systems, dietary habits, physical activity level, social situation, financial concerns, 
cultural factors, and literacy [9]. Furthermore, a comprehensive management approach 
should integrate factors such as DM history (including duration, complications, and 
current medication regimen), comorbidities, health priorities, other medical conditions, 
patient care preferences, and life expectancy [9, 10]. To facilitate this process, a DM care 
team plays an essential role in supporting individuals with diabetes. However, due to 
constraints such as time limitations, financial barriers, or other challenges, individuals 
with diabetes may encounter difficulties in regularly consulting a DM educator [11]. In 
these cases, a variety of strategies and techniques should be utilized to support self-
management efforts. Technology can play a pivotal role in this context, facilitating daily 
DM self-management activities, including blood glucose (BG) monitoring, physical 
activity, healthy eating, medication adherence, complication monitoring, and problem-
solving. Although the use of technology to support DM self-management is not a new 
concept, the diversity of technological strategies has expanded as individuals have 
become more tech-savvy, devices have become more accessible, and new technologies 
have emerged [12]. 

Recent advancements in artificial intelligence (AI) and machine learning (ML) techniques 
have become indispensable in addressing the complexities of DM management, 
empowering both patients and healthcare professionals in their daily management of DM 
[13]. AI refers to a set of techniques that enable computers to simulate human 
intelligence, encompassing ML as a subset. Often referred to as machine intelligence, 
AI involves the capacity of computer systems to learn from data inputs or historical 
information. The term 'AI' is commonly used to describe scenarios where a machine 
mimics cognitive functions of the human brain, such as learning and problem-solving 
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[14]. Within the healthcare sector, ML models have been effectively applied and are 
widely recognized as potent tools that enable computers to learn from data [15].  

ML is a subset of AI that encompasses techniques enabling machines to enhance their 
performance in tasks through experience, and includes deep learning (DL). DL, in turn, 
is a subset of ML that utilizes neural networks, enabling a machine to autonomously train 
itself to perform tasks. The hierarchical evolution of these technologies can be 
summarized as follows: AI, ML, and DL [16]. ML models leverage extensively pre-trained 
data to generate accurate and relevant outputs. In ML, users must define and supply 
algorithms with sufficient information to generate accurate predictions. In contrast, DL 
algorithms utilize artificial neural network architectures to autonomously process data, 
allowing them to learn and generate accurate predictions based on high-level features 
extracted from the data [17]. 

ML technology, referred to as GenAI, can generate new data based on the training 
dataset. Generative models produce data that closely resemble the original dataset. A 
distinctive feature of GenAI is its capability to perform unsupervised learning, meaning it 
can identify patterns from data without the need for explicitly labeled examples. Some 
GenAI models learn how real-world data is distributed and subsequently generate new 
datasets that are statistically similar to the original dataset (Figure 1) [18, 19].  

 
Figure 1: The development of AI and GenAI [19]. 

GenAI encompasses various models, including Generative Pre-trained Transformers 
(GPTs), Generative Adversarial Networks (GANs), Bayesian Networks (BNs), Artificial 
Neural Networks (ANNs), and Large Language Models (LLMs) (Figure 2) [20, 21, 22, 
23]. 
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Figure 2: Key Techniques and Models in GenAI [20, 21, 22, 23]. 

GenAI models are emerging as promising tools within the context of healthcare. These 
models can analyze an individual's genetic profile, lifestyle, and medical history to 
provide tailored predictions about treatment options. By considering factors that may 
influence an individual's response to medication, GenAI can aid in optimizing therapeutic 
efficacy and improving individual outcomes [24, 13, 25, 26]. By generating personalized 
scenarios and responses tailored to individual needs, GenAI can effectively address the 
unique needs of individuals [26]. The predictions generated by GenAI guide the 
adjustment and optimization of treatments, thereby enabling the provision of more 
personalized care. Furthermore, by addressing individuals' health concerns and 
anxieties, GenAI offers supportive responses that help patients feel more reassured and 
less isolated throughout their healthcare journey [27]. 

GenAI also demonstrates significant potential in the field of patient education. It can 
generate personalized educational materials tailored to patients' specific conditions, 
symptoms, or inquiries. For instance, GenAI can provide individuals with diabetes 
information on BG management, nutrition, exercise, and medication adherence. Through 
interactive dialogues, patients can pose questions and receive answers that enhance 
their understanding of their conditions. This feature is particularly valuable for patients 
who may feel hesitant or embarrassed to directly ask specific questions of healthcare 
professionals. Furthermore, GenAI can simplify complex medical concepts by generating 
visual materials, such as diagrams or infographics. For example, it can illustrate how a 
specific medication works within the body to enhance patient comprehension [27]. 
Furthermore, patients with different levels of education and health literacy can improve 
their health literacy through GenAI-generated content tailored to various reading levels 
[28]. For instance, GenAI can deliver medication adherence reminders through email or 
text messages and provide explanations regarding the importance of adhering to 
prescribed treatment plans. Moreover, to enhance accessibility for individuals whose 
primary language is not English, GenAI can generate educational materials in multiple 
languages [29]. 

By analyzing patient-specific data, GenAI can predict health outcomes, identify potential 
risks, and recommend personalized treatment plans. Its capacity to extract insights from 
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data presents significant potential for enhancing patient care processes [27]. Acting as 
a tool for patient engagement, education, and personalized interventions, GenAI 
provides a promising opportunity to improve DM management and transform healthcare 
delivery. 

A review of the literature indicates that the majority of studies on GenAI have been 
published in the past three years, highlighting its rapidly growing use in DM management. 
For example, recent studies have shown that ChatGPT can simplify health information 
for individuals with diabetes [30], predict disease risks [31], and support patients in 
achieving positive outcomes by aiding them in managing lifestyle behaviors [32]. 
Furthermore, GenAI's ability to exhibit human-like empathy is highly regarded by users, 
as it delivers responses that are comparable to those provided by physicians, thereby 
fostering a sense of trust and rapport among patients [33]. 

GenAI demonstrates substantial potential in monitoring treatment adherence in 
individuals with diabetes and is increasingly recognized as a transformative tool for the 
future of DM management and care. 

2. Materials-Methods 

2.1. Purpose, Significance, and Scope of the Study 

Purpose and Type of the Study 

This research was designed as a descriptive systematic review. Numerous studies in the 
existing literature have examined the contributions of GenAI models to DM self-
management, and reviewing these studies is essential for providing a comprehensive 
framework on this topic. The primary aim of this study is to systematically examine 
research that utilizes GenAI in DM management. 

Research Question 

What methods, applications, and outcomes have been reported in the current literature 
regarding the use of GenAI in DM self-management? 

2.2. Method and Analysis of the Study 
 
Studies on the use of GenAI in DM self-management, published between 2018 and 2024, 
were reviewed through searches conducted between February and October 2024 in the 
Scopus, Web of Science, PubMed, Ulakbim, Türk Medline, and Google Scholar 
databases. The searches were conducted using the keywords 'diabetes,' 'generative 
artificial intelligence,' and 'diabetes self-management,' either individually or in various 
combinations. 

In the study selection process, relevant keywords were used to search the databases in 
line with the research question. After applying the inclusion and exclusion criteria, the 
remaining studies were retrieved, and their titles and abstracts were screened. Studies 
that did not correspond to the research question were excluded, while the full texts of the 
remaining studies were evaluated in detail. Ultimately, those meeting the eligibility criteria 
were included in the final set of studies for this systematic review. 

All stages of the study—including article identification, screening, and selection—were 
conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic 
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Reviews and Meta-Analyses) guidelines [34]. The PRISMA flow diagram, which outlines 
the study selection process, has been presented in Figure 3. 

 
 

Figure 3. Flow Diagram of the Study 
 
2.3 Inclusion and Exclusion Criteria 

Inclusion Criteria: 
 

• Studies addressing the use of GenAI in DM self-management. 

• Articles published in English or Turkish. 

• Research published between 2018 and 2024. 

• Original research articles (including observational studies, experimental studies, 
clinical studies, and reviews). 

• Studies with full-text availability. 

• Studies with sufficient methodological quality to be included in a systematic 
review in accordance with PRISMA guidelines. 

Exclusion Criteria: 

• Studies related to DM or GenAI that do not focus on DM management. 

• Abstracts, conference proceedings, commentaries, book chapters, editorial 
articles, and theses. 

• Articles requiring paid access. 

2.4. Data Collection 
 
In the initial stage of the review process, an evaluation form outlining the inclusion criteria 
was developed. Based on this form, database searches were systematically conducted. 
As a result of the screening process, a total of 19 studies published between 2018 and 
2024, focusing on the use of GenAI in DM management, were identified. All studies that 
met the inclusion criteria (n = 19) have been included in the review. 
 
In the second stage of the review, a structured checklist was developed, comprising the 
following components: study title, study type and design, sample group and size, year of 
publication, and study outcomes. In accordance with this checklist, the titles and 
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abstracts of all relevant articles identified through the database searches were 
independently reviewed by the author. No other individuals participated in the data 
collection phase of this study. 
 
3. RESULTS 

 
3.1. Characteristics of the Included Studies 

As a result of the review, a total of 19 studies conducted in Turkey between 2018 and 
2024 focusing on the use of GenAI in DM management were identified. Among these, 
14 (73%) were original research articles, 2 (11%) were review articles, 1 (5%) was a 
viewpoint article, and 2 (11%) were randomized controlled trials. 

3.2. Study Designs and Sample Characteristics 

The characteristics of the included studies are presented in detail across separate tables: 
research articles in Table 1, randomized controlled trials in Table 2, the viewpoint article 
in Table 3, and review articles in Table 4. 

Table 1. Descriptive Characteristics of the Research Articles on the Application of 
GenAI in DM Self-Management (n=14) 

Title of the 
Study 

Type of 
Study 

Theory/Model 
Used 

Sample Group Study 
Reference 

Study Findings 

Blood glucose 
prediction with 
deep neural 
networks using 
weighted decision 
level fusion. 

Research 
Article 

A fusion of Long Short-
Term Memory (LSTM), 
WaveNet, and Gated 
Recurrent Units (GRU) 
architectures. 
 

The study sample is 
derived from the 
expanded 
OhioT1DM dataset, 
which comprises the 
BG history of 12 
individuals with 
diabetes over an 
eight-week period 
and encompasses 
19 distinct data 
types, including 
administered insulin 
doses and 
physiological sensor 
readings. 

 

Dudukcu et 
al., 2021 
[35] 

The fusion performance 
of "LSTM + WaveNet + 
GRU" yielded more 
successful results in BG 
prediction. The predicted 
values are planned to be 
used for insulin dose 
calculations, with future 
development as a mobile 
application. 

Blood glucose 
prediction for type 
1 DM using 
generative 
adversarial 
networks 

Research 
Article 

A novel DL model using 
a modified GAN 
architecture for 
predicting BG levels in 
individuals with type 1 
diabetes (T1DM). 
 

BG data from 12 
individuals with 
T1DM over an eight-
week period. 
 

Zhu et al., 
2020 
[36] 
 

In this study, a novel DL 
model is proposed to 
predict future BG levels 
based on past 
continuous glucose 
monitoring 
measurements, meal 
intake, and insulin 
administration. When 
compared to the RNN 
(Recurrent Neural 
Network) prediction 
model, the GAN model 
demonstrated better 
validation performance 
and a smaller RMSE 
(Root Mean Square 
Error) for most of the 
contributors during the 
training process. 
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Using an 
optimized 
generative model 
to infer the 
progression of 
complications in 
type 2 diabetes 
patients 

Research 
Article 

Markov Jump Process 
and Bayesian network 

Longitudinal EHRs 
of 9,298 individuals 
with type 2 diabetes 
(T2DM) or 
prediabetes (2005–
2016, China). 

Wang et al., 
2022 
[37] 

The findings of this study 
demonstrated that the 
system could predict 
55.3% of individual 
complications and 31.8% 
of complication patterns 
of progressive T2DM at 
an early stage, allowing 
for appropriate 
management that could 
potentially delay or 
prevent these 
complications. 
 

The Future of 
Patient Education: 
AI-Driven Guide 
for Type 2 
Diabetes 

Research 
Article 

OpenAI's ChatGPT 70 T2DM-related 
questions, each 
asked three times. 

Hernandez 
et al., 2023 
[38] 

98.5% of responses 
aligned with care 
standards, outperforming 
traditional online search 
engines, with minimal 
inappropriate responses 
(1.5%), underscoring the 
need for continuous AI 
improvements. 
 

An AI Dietitian for 
Type 2 Diabetes 
Mellitus 
Management 
Based on Large 
Language and 
Image Recognition 
Models: Preclinical 
Concept 
Validation Study 

Research 
Article 

Creating an AI based 
nutritionist program 
using advanced 
language and image 
recognition models 
using ChatGPT and 
GPT 4.0 

206 individuals with 
T2DM and 26 
endocrinologists 

Sun et al., 
2023 

[39] 

Positive feedback from 
dietitians and accurate 
food recognition, 
enabling personalized 
meal analysis and dietary 
guidance. The model 
developed at the end of 
this study can identify 
ingredients from images 
of a patient's meal and 
provide nutritional 
guidance and diet 
recommendations. 
 

Building 
Trustworthy 
Generative 
Artificial 
Intelligence for 
Diabetes Care and 
Limb Preservation: 
A Medical 
Knowledge 
Extraction Case 

Research 
Article 

OpenAI's ChatGPT-4 
with a RAG 
architecture. 

NIH Diabetes Self-
Management 
Education Standards 
knowledge base, 
295 articles, 175 
questions. 

Mashatian 
et al., 2024 
[40] 
 

RAG model effectively 
delivers reliable medical 
information for self-
education and 
emphasizes the 
importance of content 
validation and prompt 
engineering. 

A Study on the 
Development of a 
Chatbot Using 
Generative AI to 
Provide Diets for 
Diabetic Patients 

Research 
Article 

OpenAI's ChatGPT Data from 10 dietary 
guidelines, adapted 
for personalized 
seasonal diet plans. 

Lee et al., 
2024 
[41] 

Facilitates personalized 
diets and supports 
elderly health 
management with 
enhanced services and 
datasets. 

Comparative 
evaluation of 
generative artificial 
intelligence 
systems for 
patient queries on 
age-related 
macular 
degeneration and 
diabetic macular 
edema 

Research 
Article 

ChatGPT-3.5, 
ChatGPT-4, Google 
Bard 

22 patient queries 
from 68 anti-VEGF-
treated individuals. 

Posa et al., 
2024 
[42] 

This study compared the 
effectiveness of three 
GenAI systems – Chat 
GPT-3.5, Chat GPT-4, and 
Google Bard – in providing 
clear and concise answers 
to patient questions about 
diabetic macular edema. 
GPT-4 was deemed most 
effective for patient 
communication due to its 
clear and simple language. 
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Artificial 
intelligence 
chatbots for the 
nutrition 
management of 
diabetes and the 
metabolic 
syndrome 
 

Research 
Article 

GPT-3.5-turbo0301 The total number 
of requests is 63, 
with 9 requests 
entered for each 
of the 7 conditions. 
 

Naja et al., 
2024 
[43] 

While ChatGPT provided 
human-like responses, 
significant gaps were 
identified, emphasizing that it 
cannot replace dietitian 
expertise. 

Appropriateness 
of Artificial 
Intelligence 
Chatbots in 
Diabetic Foot 
Ulcer 
Management 

Research 
Article 

ChatGPT (OpenAI) 
GPT-4 (OpenAI) 
GPT-4 Turbo (OpenAI), 
GoogleBard (Google 
LLC), 
BingAI Balanced-mode 
(Microsoft Corp.), 
Perplexity (Perplexity 
AI) and 
Claude-2'den 
(Anthropic) 
 

42 clinical questions 
on diabetic foot 
ulcers. 

Shiraishi et 
al., 2024 
[44] 

Chatbots showed 91.2% 
accuracy but inconsistent 
evidence levels. Claude-
2 had the highest 
reference accuracy; 
ChatGPT had the lowest. 
Variability and 
hallucinations highlight 
the need for cautious 
clinical use. 

Assessment of the 
information 
provided by 
ChatGPT 
regarding exercise 
for patients with 
type 2 diabetes: a 
pilot study 
 

Research 
Article 

ChatGPT (V.4.0) 14 common 
patient exercise 
questions 
reviewed by two 
DM care 
specialists. 
 

Chung and  
Chang, 
2024 
[45] 

ChatGPT can serve as 
supplementary 
educational material but 
may provide incomplete 
answers for certain 
exercise-related 
questions. 

Evaluation of 
ChatGPT-4 
Performance in 
Answering 
Patients' 
Questions About 
the Management 
of Type 2 
Diabetes 

Research 
Article 

ChatGPT-4 24 patient 
questions 

Gokbulut et 
al., 2024 
[46] 

It has been observed that, 
while answering a series of 
questions related to the 
pharmacological 
management of T2DM, no 
inaccurate information was 
identified, and responses 
were highly consistent and 
reliable. However, readability 
levels varied, with many 
responses being classified 
as difficult to read. 

Using Generative 
AI to Improve the 
Performance and 
Interpretability of 
Rule-Based 
Diagnosis of Type 
2 Diabetes 
Mellitus 

Research 
Article 

GPT Dataset of 768 
instances with 
eight predictors 
and one outcome 
class. 

Kopitar et 
al., 2024 
[47] 

This study, which explores 
the combination of 
association rule mining with 
GPT-based advanced 
natural language 
processing for classifying 
non-insulin-dependent DM, 
demonstrates that 
ChatGPT is effective in 
predicting diabetic and non-
diabetic conditions. 
However, further research 
is required to enhance 
diagnostic accuracy in DM 
classification. 
 

MobiGuide: 
guiding clinicians 
and chronic 
patients anytime, 
anywhere. 

Research 
Article 

MobiGuide 10 atrial fibrillation 
patients in Italy 
and 20 
gestational 
individuals with 
diabetes in Spain 

Peleg et al., 
2022 
[48] 

Higher adherence rates 
and improved health 
outcomes were observed, 
including better glycemic 
control, with enhanced 
clinician engagement and 
patient quality of life. 
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Table 2. Characteristics of Randomized Controlled Trials on the Use of Generative AI 
in Diabetes Management (n=2) 

Title of the Study Type of 
Study 

Theory/Model 

Used 

Sample 
Group 

Study 
Reference 

Study Findings 

Use of Voice-
Based 
Conversational 
Artificial 
Intelligence for 
Basal Insulin 
Prescription 
Management 
Among Patients 
With Type 2 
Diabetes 

Randomized 
Controlled 

Trial 

Alexa 32 adults 
with T2DM 
requiring 

initiation or 
adjustment 

of basal 
insulin 
therapy 

Nayak et 
al., 2023 

[49] 

In this randomized 
clinical trial of a voice-
based conversational 
AI application for 
autonomous basal 
insulin management in 
adults with T2DM, 
participants in the AI 
group demonstrated 
significantly greater 
improvements in the 
time required to 
achieve the optimal 
insulin dose, insulin 
adherence, glycemic 
control, and DM-related 
emotional distress 
compared to those in 
the standard care 
group. 
 

Decoding Type 2 
Diabetes Through 
Point-of-Care 
Testing, Cloud-
based Monitoring, 
and Generative 
Augmented 
Retrieval Model-
driven Virtual 
Diabetes 
Education: A 
Comprehensive 
Approach to 
Glycemic Control 

Randomized 
Controlled 

Trial 

AI-Powered 
Metabolic Coach 

Designed to 
Provide 

Personalized 
Recommendations 

The study 
sample 

consists of 
100 

individuals 
aged 

between 18 
and 65 who 
have been 
diagnosed 
with T2DM. 

Shaikh et 
al., 2024 

[50] 

Participants in the 
intervention group, who 
received guidance from 
an AI-powered 
metabolic coach 
designed to provide 
personalized 
recommendations, 
demonstrated superior 
outcomes in HbA1c 
improvement, plasma 
glucose control, and 
related parameters 
compared to the control 
group. 

 
Table 3. Characteristics of the Viewpoint Article on the Use of GenAI in DM 

Management (n=1) 

Title of the Study Type of 
Study 

Theory/Model 
Used 

Study 
Referen
ce 

Study Findings 

ChatGPT in diabetes 
care: An overview of 
the evolution and 
potential of generative 
artificial intelligence 
model like ChatGPT in 
augmenting clinical 
and patient outcomes 
in the management of 
diabetes. 

Viewpoint 
Article 

ChatGPT Dey, 
2023 
[51] 

It can provide personalized care, 
where individualized treatment plans, 
glucose monitoring, and medication 
reminders are generated based on 
personal patient data. However, 
ethical considerations and data 
security must be carefully addressed, 
and any obtained information should 
be verified by healthcare 
professionals. 

 
 
 
 
 
 



A New Era in Diabetes Management: Generative Artificial Intelligence                                                                                        73 

  Artificial Intelligence Theory and Applications, Vol. 5, No. 1 

Table 4. Characteristics of the Review Articles on the Use of GenAI in DM Management 
(n=2) 

Title of the Study Type of 
Study 

Theory/Model 
Used 

Study 
Reference 

Study Findings 

The Future of 
Diabetes Care: 
Navigating with 
Generative Language 
Models 

Review OpenAI's 
GPT-3 

Khan, 2023 
[52] 

This review concluded that generative 
language models can facilitate 
personalized care by creating customized 
treatment plans, glucose monitoring, and 
medication reminders based on individual 
patient data. However, ethical concerns 
and data security should be carefully 
considered, and any recommendations 
should be validated by healthcare 
professionals. 
 

Potential and Pitfalls 
of ChatGPT and 
Natural-Language 
Artificial Intelligence 
Models for Diabetes 
Education 

Review OpenAI's GPT Sng et al., 
2023 

[53] 

This review found that ChatGPT performs 
well in generating comprehensible and 
generally accurate responses to questions 
related to DM self-management and 
education. The application of large 
language models has the potential to 
alleviate some of the burden on individuals 
with diabetes, allowing those with 
adequate knowledge of their condition to 
focus on more complex self-management 
and educational tasks. However, it is 
important to acknowledge that ChatGPT is 
constrained by the datasets on which it 
was trained. These limitations may lead to 
errors, such as difficulties in distinguishing 
between different types of insulin or 
recognizing variations in BG measurement 
units. The review emphasizes that 
healthcare providers should exercise due 
diligence when assessing AI chatbots for 
clinical care enhancement and patient 
guidance, ensuring a thorough 
understanding of both the strengths and 
limitations of these models. 

 
Tables 1 through 4 reveal that the most commonly used GenAI models were GPT (53%), 
followed by Google Bard (6%), WaveNet (3.12%), Mobiguide (3.12%), BingAI Balanced-
mode (Microsoft Corp.) (3.12%), Perplexity AI (3.12%), Claude-2 (Anthropic) (3.12%), 
Alexa (3.12%), AI-Powered Metabolic Coach (3.12%), as well as GAN (3.12%), LSTM 
(3.12%), GRU (3.12%), Markov Jump Process (3.12%), RAG (3.12%), and Bayesian 
Network (3.12%). 

Thematic analysis of the included studies revealed the distribution of GenAI functions in 
DM self-management, which is presented in Table 5. When examining the areas in which 
GenAI models used in the studies included in the scope of this systematic review can be 
applied to DM self-management, it becomes evident that many models can serve 
common purposes. Additionally, this comparison highlights which model has previously 
been utilized for specific self-management actions. 
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Table 5. The Role of GenAI Applications in DM Self-Management Domains 

Self-Management Action Included Studies 

Personalized recommendations 
(e.g., nutrition, exercise, BG 
management) 1 

Shaikh et al., 2024 [50], Peleg et al., 2022 [48], Hernandez et al., 2023 [38], Sun et 
al., 2023 [39], Lee et al., 2024 [41], Naja et al., 2024 [43], Shiraishi et al., 2024 [44], 
Chung and  Chang, 2024 [45], Gokbulut et al., 2024 [46], Nayak et al., 2023 [49], 
Dey, 2023 [51], Khan, 2023 [52], Sng et al., 2023 [53]  

Provision of DM education and 
information 

Shaikh et al., 2024 [50], Hernandez et al., 2023 [38], Sun et al., 2023 [39], Mashatian 
et al., 2024 [40], Posa et al., 2024 [42], Shiraishi et al., 2024 [44], Chung and Chang, 
2024 [45], Gokbulut et al., 2024 [46], Nayak et al., 2023 [49], Dey, 2023 [51], Khan, 
2023 [52], Sng et al., 2023 [53]  

Early detection of complications 
and complication alerts 

Wang et al., 2022 [37], Mashatian et al., 2024 [40], Posa et al., 2024 [42], Shiraishi 
et al., 2024 [44], Chung and  Chang, 2024 [45], Gokbulut et al., 2024 [46], Dey, 2023 
[51], Sng et al., 2023 [53]  

Emotional support and stress 
management  

Mashatian et al., 2024 [40], Nayak et al., 2023 [49], Dey, 2023 [51] 

Insulin and medication 
management  

Shaikh et al., 2024 [50], Mashatian et al., 2024 [40], Gokbulut et al., 2024 [46], Nayak 
et al., 2023 [49], Dey, 2023 [51], Sng et al., 2023 [53] 

Continuous glucose monitoring, 
BG prediction2, and personalized 
analysis  

Dudukcu et al., 2021 [35], Zhu et al., 2020 [36], Mashatian et al., 2024 [40], Dey, 
2023 [51] 

Tracking DM progression and 
providing lifestyle 
recommendations  

Peleg et al., 2022 [48], Wang et al., 2022 [37], Dey, 2023 [51], Sng et al., 2023 [53] 

Communication with healthcare 
professionals/ decision support for 
healthcare providers  

Peleg et al., 2022 [48], Khan, 2023 [52] 

Prediction of future risks and early 
diagnosis 

Peleg et al., 2022 [48], Wang et al., 2022 [37], Posa et al., 2024 [42], Shiraishi et al., 
2024 [44], Chung and  Chang, 2024 [45], Gokbulut et al., 2024 [46], Kopitar et al., 
2024 [47], Dey, 2023 [51], Sng et al., 2023 [53]  

Improvements in HbA1C and BG 
levels 

Shaikh et al., 2024 [50], Lee et al., 2024 [41], Hernandez et al., 2023 [38], Sun et 
al., 2023 [39], Mashatian et al., 2024 [40], Gokbulut et al., 2024 [46], Nayak et al., 
2023 [49], Dey, 2023 [51]  

Alerts for necessary actions 
Peleg et al., 2022, [48], Hernandez et al., 2023 [38], Shaikh et al., 2024 [50], Posa 
et al., 2024 [42], Shiraishi et al., 2024 [44], Chung and  Chang, 2024 [45], Gokbulut 
et al., 2024 [46], Nayak et al., 2023 [49], Dey, 2023 [51], Sng et al., 2023 [53]  

1 Assessing dietary habits, physical activity, BG levels, and medication adherence based on individual characteristics, 
climate conditions, and variations in caloric intake. 
2 Predicting future BG levels based on historical continuous glucose monitoring (CGM) measurements, meal intake, and 
insulin administration. 

Table 5 presents a detailed summary of various DM self-management actions and the 
corresponding studies that contribute to these domains. Key areas frequently explored 
include personalized recommendations (e.g., nutrition, exercise, BG management) and 
DM education, underscoring the extensive application of GenAI-powered systems to 
improve daily self-management practices. Furthermore, key aspects that directly impact 
clinical management—such as early detection and alert systems for complications, 
insulin and medication management, continuous glucose monitoring, and BG 
prediction—have been extensively studied.  These findings suggest that GenAI-based 
systems provide more than simple information and guidance, offering an advanced 
support framework incorporating in-depth data analysis and patient monitoring. 
Moreover, the increasing focus on communication with healthcare professionals, 
decision support, risk prediction, and improvements in HbA1C and BG levels 
demonstrates the evolving role of AI-driven solutions in DM management. Such systems 
are anticipated to enhance both patient adherence to treatment and the optimization of 
clinical decision-making by healthcare professionals. In conclusion, the table highlights 
the diverse applications of GenAI in DM management, offering valuable insights into how 
these technologies can support both patients' self-management and healthcare 
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professionals' monitoring strategies. The expansion of GenAI’s role in DM self-
management, alongside its integration into clinical practice, represents a promising area 
for future research. 

According to the analysis of the studies included in this review, GenAI applications 
demonstrate considerable potential advantages in DM self-management. However, the 
studies also highlight several limitations of these applications, as presented in Table 6. 

Table 6: Potential Benefits and Limitations of GenAI in DM Self-Management 

Advantages Disadvantages 

Personalized guidance Collection and processing of patients' personal health 
data 
 

Real-time support Concerns regarding data security and privacy 
 

Integration of evidence-based best practices Resistance to the adoption of new Technologies 
 

High accuracy in predicting future BG levels Sometimes insufficient in detecting a small number of 
hypoglycemia events 
 

Providing reliable medical information for self-education 
and self-management of DM 
 

Lack of user trust in the system 

Proven improvements in DM self-management Requirement for comprehensive training and support to 
use the system effectively 
 

High accuracy of outputs as a result of being trained with 
accurate books and data sources 

Challenges due to insufficient technological 
infrastructure, especially in low-resource healthcare 
settings 
 

Ability to offer personalized solutions to complex problems Possibility of providing misinformation 

 
The studies highlight that GenAI plays a significant role in promoting active patient 
involvement in self-management processes. Key functionalities such as offering 
personalized guidance, delivering real-time support, and integrating evidence-based 
clinical guidelines are central to this enhanced participation. Furthermore, the ability of 
GenAI to predict future BG levels accurately and provide access to reliable medical 
information has made DM management more proactive and informed. The high accuracy 
of GenAI model outputs, ensured by training on high-quality and comprehensive 
datasets, further strengthens its effectiveness. Additionally, the robust capability of these 
systems to generate personalized solutions for complex challenges greatly enhances the 
overall effectiveness of DM self-management. Collectively, these factors contribute to 
scientifically validated improvements in DM self-care practices. 

Foremost among the concerns are data security and privacy, especially with regard to 
the collection and processing of patients' personal health information. Additionally, 
challenges such as resistance from healthcare professionals and patients to adopting 
new technologies, low user trust, and the need for extensive training and technical 
support complicate the implementation of GenAI solutions. Furthermore, certain models 
have been found inadequate in detecting critical conditions, such as hypoglycemia, while 
limited technological infrastructure in certain regions restricts the practical application of 
GenAI. The potential for GenAI to generate misinformation is also recognized as a 
significant risk factor. Consequently, while GenAI applications present substantial 
contributions to DM self-management, critical areas still require development to ensure 
these systems are more reliable, user-friendly, and ethically compliant (Table 6). 
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4. Discussion 

This review has examined examples of GenAI applications that have had the potential 
to facilitate and enhance DM management. The analyzed studies highlight the use of 
GenAI in DM care across various areas, including BG control strategies, detection of 
hypoglycemia and hyperglycemia, insulin bolus calculators, decision support systems, 
risk assessment, patient personalization, meal and exercise tracking, error detection, 
and lifestyle support [48, 49, 50, 52, 53]. DL and GenAI are advancing towards ushering 
in a new era in DM management. By providing personalized recommendations, 
simplifying monitoring and follow-up processes, and assisting in error prevention, GenAI 
significantly contributes to DM self-management [54, 55]. 

In a randomized controlled trial that has been conducted by Shaikh et al. [50], the 
effectiveness of an AI-powered metabolic coach designed to provide personalized 
recommendations has been evaluated over a 12-week period. The study has assessed 
the impact of the metabolic coach on various glycemic parameters, including HbA1c 
levels, plasma glucose, glycemic variability (which has been measured using the glucose 
management indicator score), and predicted postprandial glucose levels. The trial has 
included 100 individuals aged 18–65 years who have been diagnosed with T2DM and 
have been willing to utilize digital technology for health monitoring. In this study, in 
particular, the observed improvement in postprandial glucose regulation has 
demonstrated that the AI-driven metabolic coach has effectively guided individuals in 
managing postprandial glucose fluctuations and maintaining stable glycemic control 
throughout the day. Therefore, the study findings have indicated substantial 
improvements in both short-term and long-term glycemic control. As a result, participants 
with T2DM in the intervention group have demonstrated superior outcomes compared to 
the control group, including significant reductions in HbA1c levels, lower plasma glucose 
concentrations, and notable decreases in postprandial glucose levels. This AI-driven 
metabolic coach, which has employed a holistic approach, presents a comprehensive 
strategy for addressing multiple aspects of metabolic health in DM management. This 
study has underscored the potential of AI-driven interventions to provide an integrative 
approach to DM management. The utilization of AI has had the potential to drive 
significant advancements in personalized care by targeting multiple facets of metabolic 
health. Consequently, the positive outcomes that have been observed in this study 
highlight the transformative potential of AI in enhancing the metabolic health of 
individuals with diabetes through the delivery of personalized healthcare solutions. 
These findings have provided strong evidence supporting the integration of AI 
technologies into DM management strategies. 

Similarly, in a study conducted by Zhu et al. [36], a novel DL model has been developed 
utilizing a modified Generative Adversarial Network (GAN) architecture to predict future 
BG levels in individuals with T1DM, based on historical continuous glucose monitoring 
(CGM) measurements, meal intake, and insulin delivery. To train the model, BG-related 
data have been collected over eight weeks from 12 individuals with T1DM. The dataset 
included BG levels recorded every five minutes via CGM, insulin delivery data from 
insulin pumps, self-reported events (such as meals, work, sleep, psychological stress, 
and physical exercise) through a smartphone application, and physical activity data 
captured by a sensor band. The developed model has been found to provide appropriate 
treatment recommendations regardless of prediction error, demonstrating high clinical 
accuracy. For individuals with T1DM, maintaining BG within the target range is essential 
to prevent periods of hypoglycemia and hyperglycemia, which can lead to severe 
complications. Accurate BG prediction can reduce this risk and facilitate early 
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interventions to improve DM management. However, DM management remains 
challenging due to the complex nature of glucose metabolism and the wide range of 
lifestyle factors that can affect it. For this reason, the DL model developed by Zhu et al. 
[36], which incorporates personalized data to predict future BG levels, holds promise as 
an innovative tool for advancing DM management. 

In a study conducted by Dudukcu et al. [35], a fusion model has been developed using 
the extended OhioT1DM dataset, which includes historical BG data from 12 individuals 
with diabetes. The model has combined Long Short-Term Memory (LSTM), WaveNet, 
and Gated Recurrent Units (GRU) architectures, incorporating decision-level fusion of 
these models. The study has demonstrated that the fusion model incorporating 'LSTM + 
WaveNet + GRU' architecture has achieved superior performance in BG prediction. 
Dudukcu et al. [35] plan to utilize the prediction values generated by the fusion model in 
calculating the required insulin doses. If these efforts prove successful, the developed 
system is planned to be converted into a mobile application. This would provide 
individuals with diabetes access to more accurate BG prediction and insulin dosage 
guidance through a GenAI-powered DM management tool, offering the added 
convenience of mobile use. In another study by Peleg et al. [48], the Mobiguide 
application has been tested with 10 atrial fibrillation patients in Italy and 20 gestational 
individuals with diabetes in Spain. Additionally, Mashatian et al. [40] have developed an 
AI-based question-answering model using a Retrieval-Augmented Generation (RAG) 
architecture to address inquiries related to DM and diabetic foot care. In this study, 
Pinecone has been utilized as a vector database alongside GPT-4, developed by 
OpenAI. The NIH National Standards for Diabetes Self-Management Education have 
served as the foundation for training the model. A total of 58 keywords have been used 
to select 295 articles, and the model has been tested with 175 questions covering various 
topics. According to the results, the RAG model is considered a promising tool for 
delivering reliable medical information to the public for self-education and self-
management in the field of DM. 

In a study that has been conducted by Lee et al. [41], a chatbot using GenAI has been 
developed to provide dietary recommendations for individuals with diabetes. The chatbot 
has been trained using an additional dataset that has been produced expressly for the 
system, and it is based on OpenAI's ChatGPT model. This approach allows patients to 
access personalized diet plans that have been tailored to their physical needs, including 
options that have considered seasonal changes. When compared with existing 
applications, the system has demonstrated superior capabilities in managing the health 
status of elderly individuals by incorporating additional data sources and offering a wider 
range of services. As a result, through this system, a new chatbot has been made 
accessible, which has focused on dietary guidance, has assumed the role of an expert, 
and has performed precise caloric calculations to help individuals with diabetes manage 
their health effectively. 

In another study, Wang et al. [37] have developed a generative Markov-Bayes-based 
model, which has been based on previous GenAI models. In this study, longitudinal 
electronic health records from 9,298 individuals with T2DM or prediabetes, which have 
been collected from a large regional healthcare delivery network in China between 2005 
and 2016, have been utilized to generate 5,000 synthetic disease trajectories. The 
findings have shown that 55.3% of individual complications and 31.8% of complication 
patterns associated with progressive T2DM can be predicted early and appropriately 
managed, potentially delaying or preventing them through lifestyle modifications that 
reduce the risk of DM development or progression. 
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However, there are several limitations associated with the use of GenAI. These include 
the production of inaccurate or fabricated content, reliance on unreliable information 
sources, and the provision of incorrect answers to user queries. In addition, various 
practical challenges exist within clinical applications [56, 57]. These findings indicate that 
GenAI stands out for its role in facilitating DM self-management and delivering 
information on DM care, while highlighting the need for further improvement in critical 
areas such as emotional support and medication adherence. As GenAI continues to 
adapt and develop in response to the unique settings and requirements of the medical 
field, it is expected to play a more significant role in DM care [50]. Based on evidence-
based models that examine perceived usefulness and ease of use—key factors 
influencing the adoption of new technologies—these elements appear to be critical for 
the successful integration of GenAI into clinical practice [58]. 

 
5. Conclusion 

The findings of this systematic review demonstrate that GenAI technologies have gained 
increasing significance in DM self-management, offering powerful tools that support 
patients in managing their own care processes. The majority of the reviewed studies 
indicate that GenAI applications are being effectively utilized in various areas, such as 
providing personalized recommendations, delivering DM education, early detection of 
complications, and offering emotional support. GenAI-powered solutions have been 
shown to make significant contributions in critical aspects of DM management, including 
BG prediction, dietary management, exercise recommendations, insulin dose 
optimization, and the generation of patient education materials. However, the limitations 
highlighted in the literature are also noteworthy. Issues such as data security and privacy, 
ethical concerns, the risk of misinformation, challenges in predicting critical situations 
like hypoglycemia, and limited access to technology in low-resource healthcare settings 
have been identified as areas requiring further development for GenAI applications. 
Additionally, hesitations regarding technology adoption among healthcare professionals 
and patients, as well as the need for technical support and comprehensive training to 
ensure effective use of these systems, pose challenges to their implementation. 

Overall, the results of this review highlight the innovative solutions and potential benefits 
offered by GenAI in DM self-management, while also emphasizing the need for 
improvement to make these technologies more reliable, transparent, user-friendly, and 
ethically sound. In this context, there is a need for the development of larger datasets, 
increased interpretability of GenAI models, and more comprehensive evaluations of 
these systems. Future research is recommended to focus on developing strategies that 
enhance data security, accuracy, interpretability, and user satisfaction to strengthen the 
integration of GenAI applications into clinical practice. 
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