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Research Article

Halpern-type relaxed algorithms with alternated and
multi-step inertia for split feasibility problems with
applications in classification problems

ABDULWAHAB AHMAD, POOM KUMAM*, YEOL JE CHO, AND KANOKWAN
SITTHITHAKERNGKIET

ABSTRACT. In this article, we construct two Halpern-type relaxed algorithms with alternated and multi-step in-
ertial extrapolation steps for split feasibility problems in infinite-dimensional Hilbert spaces. The first is the most
general inertial method that employs three inertial steps in a single algorithm, one of which is an alternated inertial
step, while the others are multi-step inertial steps, representing the recent improvements over the classical inertial step.
Besides the inertial steps, the second algorithm uses a three-term conjugate gradient-like direction, which accelerates
the sequence of iterates toward a solution of the problem. In proving the convergence of the second algorithm, we
dispense with some of the restrictive assumptions in some conjugate gradient-like methods. Both algorithms employ
a self-adaptive and monotonic step-length criterion, which does not require a knowledge of the norm of the under-
lying operator or the use of any line search procedure. Moreover, we formulate and prove some strong convergence
theorems for each of the algorithms based on the convergence theorem of an alternated inertial Halpern-type relaxed
algorithm with perturbations in real Hilbert spaces. Further, we analyse their applications to classification problems
for some real-world datasets based on the extreme learning machine (ELM) with the ℓ1-regularization approach (that
is, the Lasso model) and the ℓ1 − ℓ2 hybrid regularization approach. Furthermore, we investigate their performance in
solving a constrained minimization problem in infinite-dimensional Hilbert spaces. Finally, the numerical results of all
experiments show that our proposed methods are robust, computationally efficient and achieve better generalization
performance and stability than some existing algorithms in the literature.

Keywords: Relaxed CQ method; Alternated inertial method; Multi-step inertial method; Conjugate gradient method,
Split feasibility problem; Classification problem.

2020 Mathematics Subject Classification: 47H05, 47J20, 47J25, 47J30, 65K15, 90C25.

1. INTRODUCTION

Throughout this work, let H1 and H2 be real Hilbert spaces, C and Q denote nonempty
closed and convex sets in H1 and H2 respectively, and B : H1 → H2 be a bounded linear oper-
ator. The split feasibility problem, first introduced by Censor and Elfving [10], is the problem
of finding a point x∗ ∈ C such that

(1.1) Bx∗ ∈ Q.

Most of the motivations for studying problem (1.1) stem from its usefulness is solving var-
ious inverse problems arising from many real-world applications, such as X-ray tomography
[41], machine learning [50, 13], image and signal reconstruction and jointly constrained Nash
equilibrium [20, 52], to mention but just a few. The primary task in studying problem (1.1) is
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to develop a robust and efficient numerical algorithm for its solution. Based on the following
fixed point problem:

(1.2) x = PC
(
I − τB∗(I − PQ)B

)
x

and the particular case of a Fréchet differentiable real-valued function g : H1 → R defined by

(1.3) g(x) =
1

2
||(I − PQ)Bx||2,

the iterative algorithm called the CQ algorithm for solving problem (1.1) was firstly developed
by Byrne [7], which is recursively generated for any initial point x0 ∈ H1 by

(1.4) xn+1 = PC
(
xn − τB∗(I − PQ)Bxn

)
, ∀n ≥ 0,

where PC : H1 → C and PQ : H2 → Q are the metric (orthogonal) projection operators, I
is the identity operator in H1, B∗ is the adjoint of B and τ ∈

(
0, 2

||B||2

)
is the step-length.

However, in many practical application, there are two major drawbacks in the implementations
of Algorithm (1.4): the first is that, it requires in each iteration to computes two projections PC
and PQ, which depends heavily on the geometry of the sets C and Q, these are extremely
expensive operations and sometimes not even possible for a wide range of practical problems
and the second is that, the step length depends on the information of the norm of B, which is
generally very hard to obtain in many practice.

By defining C and Q as the following sub level sets:

(1.5) C = {x ∈ H1 : c(x) ≤ 0}, Q = {t ∈ H2 : q(t) ≤ 0},
where c : H1 → R and q : H2 → R are weakly lower semi-continuous and convex functions
and the two half-spaces at points xn by

(1.6) Cn = {x ∈ H1 : c(xn) ≤ ⟨ϕn, xn − x⟩}, Qn = {t ∈ H2 : q(Bxn) ≤ ⟨φn,Bxn − t⟩},
with ϕn ∈ ∂c(xn), φn ∈ ∂q(Bxn), C ⊆ Cn and Q ⊆ Qn for each n ≥ 0, Yang [59] proposed the
relaxed version of the method (1.4), which suggests to replace the two arbitrary sets C and Q
with the half-spaces Cn and Qn, respectively, so that the projections PCn

and PQn
can easily be

computed using their known closed-form expressions (see [5], Example 29.20).
On the other hand, some researchers have suggested some methods, which do not require

the calculation of ||B||. One of such methods is that of Qu and Xiu [44], in which they adopted
an Armijo-like step length and presented a modified version of the algorithm in [59]. In this
light, the authors of the works in [18, 23, 49] subsequently proposed some algorithms with
Armijo-like step lengths to solve problem (1.1). It has been noted that finding the step length
that is appropriate in each iteration using Armijo-like step length involves multiple search
procedures, which may leads to an inefficiency in the performance and computations of the
algorithms. To mitigate this drawback, Dong et al. [21] proposed an adaptive relaxed algo-
rithm for the problem (1.1), in which the authors adopted the simple ways of computing a
monotonic step length in each iteration based on the information of the previous iterates. Sim-
ilarly, very recently, Tan et al. [53] introduced another adaptive relaxed algorithm based on the
non-monotonic step length technique.

However, various researchers attempt to construct some methods with fast convergence
properties, since they are mostly required in various applications [12, 32]. In recent years,
some authors developed various algorithms [50, 46, 4, 39, 45, 51, 42, 27, 58, 2] based on Polyak’s
inertial method [43], to improve their convergence rates. However, it has been noted in several
instances that the speed of some methods with Polyak’s one-step inertial term

xn + λ(xn − xn−1), ∀λ > 0,
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appear to be slower than their corresponding non-inertial ones (see [6, 38] and the references
therein). Thus some authors [37, 14, 19] suggested to employ the idea of the multi-step inertial
technique, which could help to maintained the expected improvements in the speed of these
schemes. Additionally, to improve the speed of the inertial algorithms, the idea of the general
inertial technique with two inertial steps was introduced by Dong et al. [17], which includes
the classical Polyak’s inertial method as a special case. Some researchers incorporated the idea
of the general inertial method to improve the performance of their methods with several real-
world applications (see e.g., [35, 57]). Similarly, motivated by the idea of the multi-step inertial
technique and that of the general inertial technique, Dong et al. [19] introduced the general
multi-step inertial Krasnosel’skíí -Mann algorithm, which is formulated as follows:

(1.7)


wn = xn +

∑
k∈Kn

γn,k(xn−k − xn−k−1),
vn = xn +

∑
k∈Kn

δn,k(xn−k − xn−k−1),
xn+1 = (1− αn)wn + αnTvn, ∀n ≥ 1,

where Kn ⊆ {0, 1, 2, · · · , n − 1}, γn,k, δn,k ∈ (−1, 2]. They proved its weak convergence to
a fixed point of a nonexpansive operator T based on the convergence of the Krasnosel’skíí-
Mann algorithm with perturbations in a real Hilbert space. They numerically show that the
scheme (1.7) is faster than some inertial methods in solving the problems considered in [19].
Additionally, for any two given points xn−1 and xn for each n ≥ 1, Mu and Peng [40] suggested
the following alternated inertial term:

(1.8) yn =

{
xn, if n is even,
xn + λn(xn − xn−1), if n is odd,

which is a modification of the Polyak’s inertial method. The advantage of the modified version
in (1.8) is its ability to recover Fejér monotonicity property of its even subsequence in relation
to the set of the solutions of a problem. This important property is usually lost in the case
of the non-modified version. Very recently, some methods based on (1.8) for solving problem
(1.1) were developed [21, 53, 48, 1]. Although the algorithms in [21, 53, 48] based on (1.8) were
shown to achieve better computational efficiencies when their numerical results are compared
with some existing methods on signal and image processing problems, but their weak conver-
gence property was only obtained.

Additionally, in view of (1.3) and the fact that ∇g(x) = B∗(I−PQ)Bx, it is not difficult to see
that all the aforementioned methods for solving problem (1.1), such as those in [50, 7, 59, 44,
18, 23, 49, 21, 53, 46, 39, 45, 48, 1] are hybrid steepest-types with the directions dn = −∇gn(xn)
at a point xn. However, as noted from [33], the accelerated versions of these methods may be
constructed when considered with the following conjugate gradient-like direction (1.9) or the
three-term conjugate gradient-like direction (1.10) (see [31, 30]):

(1.9) dn = −∇gn(xn) + ς(1)n dn−1

and

(1.10) dn = −∇gn(xn) + ς(1)n dn−1 − ς(2)n sn,∀n ≥ 1,

respectively, where, for each i = 1, 2, ς(i)n ∈ [0,∞) and sn ∈ H1 is an arbitrary point. As
numerically shown in [33, 31, 30], provided that, for each i = 1, 2, lim

n→∞
ς
(i)
n = 0 and {sn} is

bounded, the hybrid gradient method with the direction (1.10) is faster than its variant with
the direction (1.9). In the light of this, some authors improved their iterative methods by com-
bining them with either of the directions (1.9) or (1.10) for different problems (see [26, 16, 3, 36]
and the references therein). Recently, motivated by the self-adaptive relaxed algorithm [60],
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Polyak’s one-step inertial method [43] and the conjugate gradient-like direction (1.9), Che et
al. [11] proposed the accelerated relaxed algorithm for the problem (1.1) in finite-dimensional
real Hilbert spaces. Although the proposed algorithm in [11] with the conjugate gradient-like
direction (1.9) has achieved some good performance on signal and image restoration problems,
but it is noted that its convergence results heavely rely on the conditions that, for any sequence
{xn} generated by the their algorithm, the sequences {(I − PCn

)xn} and {(I − PQn
)Bxn} are

bounded. These are very restrictive assumptions and it would be of great interest to dispense
them.

Motivated and inspired by the results in [21, 53, 37, 17, 40, 33], we first develop an alternated
inertial Halpern-type relaxed CQ algorithm with perturbations (AiHRAP), which employs the
monotonic self-adaptive step length criterion that does not require any information about the
norm of the operator or the use of a line search procedure. Moreover, we establish its strong
convergence to a minimum-norm solution of problem (1.1) in infinite-dimensional real Hilbert
spaces. Further, we introduce two extensions of AiHRAP: the first is an alternated and multi-
step inertial Halpern-type relaxed CQ algorithm (AMiHRA), which to the best of our knowl-
edge is the most general inertial method in the literature that involves three steps of the recent
improvements of the classical inertial method, one of which is the alternated inertial step [40],
while the others are the multi-step inertial steps [37], and the second is an accelerated alternated
and multi-step inertial Halpern-type relaxed algorithm (AAMiHRA) that combines the three
term conjugate gradient-like direction [33] and two steps of the aforementioned improved ver-
sions of the inertial term with the monotonic self-adaptive step length criterion. Moreover, we
analyse their applications on classification problems for some real-world datasets based on the
extreme learning machine (ELM) with the ℓ1-regularization approach (that is, the Lasso model)
and the ℓ1− ℓ2 hybrid regularization approach. Furthermore, we investigate their performance
in solving constrained minimization problems in infinite-dimensional Hilbert spaces.

2. PRELIMINARIES

In this work, we use xn → x∗ (resp., xn ⇀ x∗) to represent the strong (resp., weak ) conver-
gence of a sequence {xn} to a point x∗. For any x, y ∈ H and λ ∈ [0, 1], we require the following
identities:

(2.11) ||x+ y||2 = ||x||2 + ||y||2 + 2 ⟨x, y⟩
and

(2.12) ||λx+ (1− λ)y||2 = λ||x||2 + (1− λ)||y||2 − λ(1− λ)||x− y||2.

Definition 2.1 ([5]). Let T : H → H be a mapping. Then T is called
(1) K-Lipschitz continuous with K > 0 if

(2.13) ||T x− T y|| ≤ K||x− y||, ∀x, y ∈ H;

(2) nonexpansive if (2.13) holds with K = 1;
(3) firmly nonexpansive if

(2.14) ||T x− T y|| ≤ ⟨x− y, T x− T y⟩ , ∀x, y ∈ H.

For any x ∈ H and y ∈ C, we have the following properties (see [25]):

(2.15) ⟨x− PCx, PCx− y⟩ ≥ 0,

equivalently,

(2.16) ||x− PCx||2 + ||y − PCx||2 ≤ ||x− y||2.
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Remark 2.1. It is commonly known that I − PC satisfies the inequality (2.14) (see [56]).

Definition 2.2 ([5]). Let f : H → (−∞,+∞] be a convex and proper function. Then:

(1) f is said to be (weakly) lower semi-continuous (w-lsc) if for any sequence xn ∈ H such that
(xn ⇀ x∗) xn → x∗ as n → ∞, we have

(2.17) lim inf
n→∞

f(xn) ≥ f(x∗).

(2) ∂f(x) is known as the subdifferential of f at a point x, which is defined by

∂f(x) := {v ∈ H : ⟨v, y − x⟩+ f(x) ≤ f(y),∀y ∈ H}.

An element v ∈ ∂f(x) is called a subgradient of f at x.

Lemma 2.1 ([56, 9]). Let τ > 0 and x∗ ∈ H1. The point x∗ solves problem (1.1) if and only if it solves
the fixed point problem:

x∗ = PC(I − τB∗(I − PQ)B)x∗.

Lemma 2.2 ([28]). Let {xn} be a sequence of nonnegative real numbers such that ∀n ≥ 1,

xn+1 ≤ (1− βn)xn + βnΓn,

xn+1 ≤ xn − χn +Φn,∀n ≥ 1,

where βn ∈ (0, 1), χn ∈ [0,+∞) and Γn, Φn ∈ (−∞,+∞) such that

(B1) lim
n→∞

βn = 0 and
∑∞

n=1 βn = ∞;
(B2) lim

n→∞
Φn = 0;

(B3) lim
j→∞

χnj
= 0 implies that lim sup

r→∞
Γnj

≤ 0 for any subsequence {nj} of {n},

Then lim
n→∞

xn = 0.

3. MAIN RESULTS

3.1. Alternated Inertial Halpern-type Relaxed Algorithm with Perturbations. In this part,
we introduce the alternated inertial Halpern-type relaxed algorithm with perturbations and
analyse its strong convergence to the minimum-norm solution of the problem (1.1) in real
Hilbert spaces. For its construction, we define gn, C, Q, Cn and Qn as in the equations (1.3),
(1.5) and (1.6), respectively. Moreover, to establish its convergence, we require the conditions
in the following assumption:

Assumption 1:

(A1) The solutions’ set of problem (1.1) is denoted by Ω ̸= ∅.
(A2) c : H1 → R and q : H2 → R are respectively convex, subdifferentiable and weakly

lower semicontinuous functions on H1 and H2.
(A3) For any x ∈ H1 and y ∈ H2, at least one subgradient ϕ ∈ ∂c(x) and φ ∈ ∂q(y) are

obtainable and the subdifferential operators ∂c and ∂q are bounded on bounded sets.
(A4) Let τ1 > 0, ε > 0, ρ ∈ (0, 1

ε ), δn ∈ (0, 1) such that lim
n→∞

δn = 0 and
∑∞

n=0 δn = +∞.
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Algorithm 1 Alternated inertial Halpern-type Relaxed CQ Algorithm with Perturbations
(AiHRAP)

Initialization: Take τ1, ε, ρ and {δn} such that the conditions (A4) of Assumption 1 holds. Select
λn ∈ [0,+∞), u ∈ C, x0, x1 ∈ H1 and set n = 1.

Step 1. Compute

(3.18) yn =


xn, if n is even,

xn + λn(xn − xn−1), if n is odd.

Step 2. Compute
hn = PCn(yn − ρτn∇gn(yn) + e1(yn)).

If hn = yn, then, stop the iteration and hn ∈ Ω, else, go to Step 3.
Step 3. Compute

mn = PCn(yn − ρτn∇gn(hn) + e2(yn)).

Step 4. Compute
xn+1 = δnu+ (1− δn)mn

and update the step-length τn+1 by

(3.19) τn+1 =


min

{
ε||yn−hn||

||∇gn(yn)−∇gn(hn)|| , τn
}
, if ∇gn(yn) ̸= ∇gn(hn),

τn, otherwise.

Set n := n+ 1 and go back to Step 1.

Remark 3.2. In Algorithm 1, for all n ≥ 1, we select the inertial parameter λn as follows;

(3.20) λn =


min

{
ξn

||xn−xn−1||2 , η1

}
, if xn ̸= xn−1,

η1, otherwise,

where ξn ∈ [0,+∞) such that lim
n→∞

ξn
δn

= 0 and η1 > 0. Moreover, for the analysis of the convergence
of Algorithm 1, we provide the following additional assumption:

Assumption 2: Assume that, for each i = 1, 2, the sequence of perturbations {ei(yn)} satis-
fies

(3.21) lim
n→∞

||ei(yn)||
δn

= 0.

Remark 3.3. It appears from Algorithm 1 that

(3.22) mn = PCn
(yn − ρτn∇gn(hn)) + ē2(yn),∀n ≥ 1

so that

||ē2(yn)|| = ||PCn
(yn − ρτn∇gn(hn) + e2(yn))− PCn

(yn − ρτn∇gn(hn))||
≤ ||e2(yn)||.(3.23)

Combining (3.21) and (3.23), we have

(3.24) lim
n→∞

||ē2(yn)||
δn

= 0.
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In the first, we validate the stopping criterion of Algorithm 1 in the following remark.

Remark 3.4. If we let hn = yn in Algorithm 1, then we see that

hn = PCn(hn − ρτn∇gn(hn) + e1(hn)),∀n ≥ 1,

which implies that hn ∈ Cn. Thus, by the means of Lemma 2.1, we have Bhn ∈ Qn. Together with (1.5)
and (1.6), we obtain that hn ∈ C and Bhn ∈ Q. Therefore, hn ∈ Ω.

Lemma 3.3. Suppose that {τn} is a sequence of step lengths generated by (3.19). Then it is well defined
and τn ≥ ε

||B||2 for all n ≥ 1.

Proof. By the lipschitz contuinity of ∇gn with constant ||B||2, we obtain

ε||yn − hn||
||∇gn(yn)−∇gn(hn)||

≥ ε||yn − hn||
||B||2||yn − hn||

=
ε

||B||2
.

In view of this and (3.19), one sees that τn+1 ≥ min{τn, ε
||B||2 }. By induction, we obtain that

τn ≥ min{τ1, ε
||B||2 }. It is also seen from (3.19) that τn+1 ≤ τn for all n ∈ N. In view of the

monotonicity and the existence of the lower bound of the sequence {τn}, we obtain that lim
n→∞

τn

exists. Since min{τ1, ε
||B||2 } is a lower bound of the sequence {τn}, we can find τ > 0 such that

lim
n→∞

τn = τ . This completes the proof. □

Next, we establish that an even subsequence {x2n} of {xn} by Algorithm 1 is bounded.

Lemma 3.4. Let {xn} be a sequence produced by Algorithm 1. Then, for any point z ∈ Ω, an even
subsequence {||x2n − z||} of {||xn − z||} is bounded.

Proof. Let z ∈ Ω. Then Bz ∈ Qn and, consequently, ∇gn(z) = B∗(I − PQn
)Bz = 0. Therefore,

together with the fact that I − PQn
satisfies (2.14), we have

⟨∇gn(hn), hn − z⟩ = ⟨B∗(I − PQn)Bhn −B∗(I − PQn)Bz, hn − z⟩
= ⟨(I − PQn

)Bhn − (I − PQn
)Bz,Bhn −Bz⟩

≥ ||(I − PQn
)Bhn||2

= 2gn(hn),∀n ≥ 1.(3.25)

Letting pn = PCn
(yn − ρτn∇gn(hn)), it follows from the inequalities (2.16) and (3.25) that

||pn − z||2 ≤ ||PCn(yn − ρτn∇gn(hn))− z||2

≤ ||yn − ρτn∇gn(hn)− z||2 − ||yn − ρτn∇gn(hn)− pn||2

= ||yn − z||2 − ||yn − pn||2 − 2ρτn ⟨∇gn(hn), yn − z⟩
+ 2ρτn ⟨∇gn(hn), yn − pn⟩
≤ ||yn − z||2 − ||yn − pn||2 − 4ρτngn(hn)

− 2ρτn ⟨∇gn(hn), pn − hn⟩ .(3.26)

Now, we estimate the rightmost term of (3.26) as follows:
We noticed from (2.11) that

(3.27) ||yn − hn||2 + ||hn − pn||2 − ||yn − pn||2 = 2 ⟨yn − hn, pn − hn⟩ .
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By the fact that pn ∈ Cn, we obtain from (3.19), the property (2.15) and the mean value inequal-
ity that

2 ⟨yn − hn, pn − hn⟩ = 2 ⟨yn − ρτn∇gn(yn) + e1(yn)− hn, pn − hn⟩
+ 2ρτn ⟨∇gn(yn)−∇gn(hn), pn − hn⟩
+ 2ρτn ⟨∇gn(hn), pn − hn⟩
− 2 ⟨e1(yn), pn − hn⟩
≤ 2ρτn||∇gn(yn)−∇gn(hn)||||pn − hn||
+ 2ρτn ⟨∇gn(hn), pn − hn⟩
+ 2||e1(yn)||||pn − hn||

≤
(ερτn
τn+1

+ ||e1(yn)||
)(

||yn − hn||2 + ||pn − hn||2
)

+ ||e1(yn)||+ 2ρτn ⟨∇gn(hn), pn − hn⟩ .(3.28)

Combining (3.27) and (3.28), we deduce that

2ρτn ⟨∇gn(hn), pn − hn⟩ ≥
(
1−

(ερτn
τn+1

+ ||e1(yn)||
))(

||yn − hn||2 + ||pn − hn||2
)

− ||e1(yn)|| − ||yn − pn||2.(3.29)

In view of the inequalities (3.26), (3.29) and Lemma 3.3, one sees that

||pn − z||2 ≤ ||yn − z||2 − 4ρε

||B||2
gn(hn) + ||e1(yn)||

− ρn
(
||yn − hn||2 + ||pn − hn||2

)
,(3.30)

where

(3.31) ρn =
(
1−

(ερτn
τn+1

+ ||e1(yn)||
))

.

Note that, for any ε > 0 and ρ ∈ (0, 1
ε ), we immediately see, from Lemma 3.3, Assumption 2

and equation (3.31), that there exists ρ∗ > 0 such that lim
n→∞

ρn = ρ∗, where

(3.32) ρ∗ = (1− ερ).

Thus we can find a positive number R such that ρn > 0 for all n ≥ R. Together with (3.30) and
the definition of mn in Algorithm 1, we see that

||mn − z||2 = ||pn + ē2(yn)− z||2

≤ (1 + ||ē2(yn)||)||pn − z||2 + ||ē2(yn)||+ ||ē2(yn)||2

≤
(
1 + ||ē2(yn)||

)
||yn − z||2 + ϑn −Θn

≤
(
1 + ||ē2(yn)||

)
||yn − z||2 + ϑn,∀n ≥ R,(3.33)

where

Θn =
(
1 + ||ē2(yn)||

)( 4ρε

||B||2
gn(hn) + ρn

(
||yn − hn||2 + ||pn − hn||2

))
and

ϑn =
(
1 + ||ē2(yn)||

)
||e1(yn)||+ ||ē2(yn)||+ ||ē2(yn)||2.
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Using the convexity of || · ||2, it follows from (3.33) that

||xn+1 − z||2 ≤ δn||u− z||2 + (1− δn)
(
1 + ||ē2(yn)||

)
||yn − z||2

+ (1− δn)(ϑn −Θn).(3.34)

In view of (3.18) and taking n+ 1 = 2n+ 1 in (3.34), we see that

||x2n+1 − z||2 ≤ δ2n||u− z||2 + (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2

+ (1− δ2n)(ϑ2n −Θ2n)(3.35)

and

||y2n+1 − z||2 ≤ (1 + λ2n+1)||x2n+1 − z||2 − λ2n+1||x2n − z||2

+ λ2n+1(1 + λ2n+1)||x2n+1 − x2n||2.(3.36)

Combining (3.35) and (3.36) for n+ 1 = 2n+ 2 in (3.34), we deduce that

||x2n+2 − z||2 ≤ δ2n+1||u− z||2 + (1− δ2n+1)
(
1 + ||ē2(y2n+1)||

)
||y2n+1 − z||2

+ (1− δ2n+1)(ϑ2n+1 −Θ2n+1)

≤ δ2n+1||u− z||2 +
(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

(
δ2n||u− z||2

+ (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2 + (1− δ2n)(ϑ2n −Θ2n)

)
− λ2n+1

(
1 + ||ē2(y2n+1)||

)
||x2n − z||2 + (1− δ2n+1)(ϑ2n+1 −Θ2n+1)

+ λ2n+1

(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)||x2n+1 − x2n||2

≤ (1− δ2n)
(
1 + ||ē2(y2n)||

)(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)||x2n − z||2

+
(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

(
2δ2n||u− z||2 + (1− δ2n)(ϑ2n −Θ2n)

+ (1− δ2n+1)(ϑ2n+1 −Θ2n+1) + λ2n+1||x2n+1 − x2n||2
)
.(3.37)

Using (3.31), (3.32) and the fact that for any ε > 0, ρ ∈ (0, 1
ε ), we find from (3.37) that

||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + 1(
1 + ||ē2(y2n)||

)(2δ2n||u− z||2 + (1− δ2n)ϑ2n

+ (1− δ2n+1)ϑ2n+1 + λ2n+1||x2n+1 − x2n||2
)
, ∀ n ≥ R.(3.38)

Taking

M = sup
n≥1

1(
1 + ||ē2(y2n)||

)(2||u− z||2 + (1− δ2n)

δ2n
ϑ2n +

λ2n+1

δ2n
||x2n+1 − x2n||2

+
(1− δ2n+1)

δ2n
ϑ2n+1

)
,

then, by (3.38) and the condition (A4), we obtain that

||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + δ2nM

≤ max
{
||x2n − z||2,M

}
...

≤ max
{
||x0 − z||2,M

}
,∀n ≥ R.(3.39)

By Remark 3.2, Assumption 2, the condition (A4) and the inequality (3.39), we obtain that,
for any z ∈ Ω, the even subsequence {||x2n − z||} of {||xn − z||} produced by Algorithm 1
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is bounded. Consequently, the even subsequence {x2n} of {xn} generated by Algorithm 1 is
bounded. This completes the proof. □

Next is to state and prove the following strong convergence theorem for Algorithm 1:

Theorem 3.1. Let the conditions of Assumptions 1, 2 and Remark 3.2 hold, and {xn} be a sequence
generated by Algorithm 1. Then, {xn} converges strongly to a point z∗ ∈ Ω, where z∗ = PΩ0.

Proof. Let z ∈ Ω. Then, by (2.11) and (3.33), we get

||xn+1 − z||2 = δ2n||u− z||2 + (1− δn)
2||mn − z||2 + 2δn(1− δn) ⟨mn − z, u− z⟩

≤ (1− δn)
(
1 + ||ē2(yn)||

)
||yn − z||2 + (1− δn)ϑn + δ2n||u− z||2

+ 2δn(1− δn) ⟨mn − z, u− z⟩ .(3.40)

Similar arguments used in deriving (3.35) lead to obtain from (3.40) that

||x2n+1 − z||2 ≤ (1− δ2n)
(
1 + ||ē2(y2n)||

)
||x2n − z||2 + (1− δ2n)ϑ2n

+ δ22n||u− z||2 + 2δ2n(1− δ2n) ⟨m2n − z, u− z⟩ .(3.41)

Connecting (3.36) and (3.41) for n + 1 = 2n + 2 in (3.40) and following same lines of the proof
of (3.38), one finds that

||x2n+2 − z||2 ≤
(
1 + ||ē2(y2n+1)||

)
||y2n+1 − z||2 + (1− δ2n+1)ϑ2n+1

+ δ22n+1||u− z||2 + 2δ2n+1(1− δ2n+1) ⟨m2n+1 − z, u− z⟩

≤ (1− δ2n)||xn − z||2 + 1(
1 + ||ē2(yn)||

)(2δ22n||u− z||2 + (1− δ2n)ϑ2n

+ λ2n+1||x2n+1 − x2n||2 + 2δ2n(1− δ2n) ⟨m2n − z, u− z⟩
)

+
2δ2n+1(1− δ2n+1)(

1 + ||ē2(y2n)||
)(
1 + ||ē2(y2n+1)||

)
(1 + λ2n+1)

⟨m2n+1 − z, u− z⟩

+ (1− δ2n+1)ϑ2n+1.(3.42)

Without loss of generality, using the condition (A4) and Assumption 2, we assume that r, s > 0
exist such that, for all n ≥ 1,

4(1− δn)ρε(
1 + ||ē2(yn−1)||

)
(1 + λn)||B||2

≥ r,
(1− δn)ρn(

1 + ||ē2(yn−1)||
)
(1 + λn)

≥ s.

In view of (3.37) and (3.42), one observes that

||x2n+2 − z||2 ≤ ||x2n − z||2 − χ2n +Φ2n

and

(3.43) ||x2n+2 − z||2 ≤ (1− δ2n)||x2n − z||2 + δ2nΓ2n,

where

χ2n = p
(
g2n(h2n) + g2n+1(h2n+1)

)
+ q

(
||y2n − h2n||2 + ||p2n − h2n||2

+ ||y2n+1 − h2n+1||2 + ||p2n+1 − h2n+1||2
)
,

Φ2n =
1(

1 + ||ē2(y2n)||
)(2δ2n||u− z||2 + (1− δ2n)ϑ2n + (1− δ2n+1)ϑ2n+1

+ λ2n+1||x2n+1 − x2n||2
)
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and

Γ2n =
1(

1 + ||ē2(yn)||
)(2δ2n||u− z||2 + (1− δ2n)

δ2n
ϑ2n +

λ2n+1

δ2n
||x2n+1 − x2n||2

+ 2(1− δ2n) ⟨m2n − z, u− z⟩
)

+
2δ2n+1(1− δ2n+1)

δ2n
(
1 + ||ē2(y2n)||

)(
1 + ||ē2(y2n+1)||

)(
1 + λ2n+1

) ⟨m2n+1 − z, u− z⟩

+
(1− δ2n+1)

δ2n
ϑ2n+1.

Using condition (A4), Assumptions 2 and Remark 3.2, we find that lim
n→∞

Φ2n = 0. Thus, to apply

Lemma 2.2, it remains only to show that, for any subsequence {χ2nj
} of {χ2n}, the following is

true:
lim
j→∞

χ2nj
= 0 =⇒ lim sup

j→∞
Γ2nj

≤ 0.

Now, suppose that {χ2nj} is a subsequence of {χ2n} such that lim
j→∞

χ2nj = 0. Then, in view of

(3.31), the condition (A4), Assumption 2 and the fact that lim
n→∞

ρn = ρ∗ > 0, we obtain that

lim
j→∞

||x2nj
− h2nj

|| = 0, lim
j→∞

||p2nj
− h2nj

|| = 0,

lim
j→∞

||y2nj+1 − h2nj+1|| = 0, lim
j→∞

||p2nj+1 − h2nj+1|| = 0,

lim
j→∞

g2nj
(h2nj

) = 0 ⇐⇒ lim
j→∞

||(I − PQ2nj
)Bh2nj

||2 = 0

and

(3.44) lim
j→∞

g2nj+1(h2nj+1) = 0 ⇐⇒ lim
j→∞

||(I − PQ2nj+1
)Bh2nj+1||2 = 0.

Since an even subsequence {x2n} of {xn} is bounded, it follows that there exists a subsequence
{x2nj

} of {x2n} converging weakly to a point say x∗. Then the condition (A3) of Assumption 1
guarantees the existence of a constant ϱ > 0 such that ||φ2nj

|| ≤ ϱ. Together with the definition
of Q2nj

, PQ2nj
Bh2nj

∈ Q2nj
and the results in (3.44), we have

q(Bh2nj
) ≤

〈
φ2nj

,Bh2nj
− PQ2nj

Bh2nj

〉
≤ ||φ2nj

||||Bh2nj
− PQ2nj

Bh2nj
||

≤ ϱ||(I − PQ2nj
)Bh2nj

||2 → 0 as j → ∞.(3.45)

So, It is not difficult to see from the weakly lower semicontuinity of q and (3.45) that

(3.46) q(Bx∗) ≤ lim inf
j→∞

q(Bh2nj ) ≤ 0,

which implies that Bx∗ ∈ Q.
Similarly, the boundedness of ∂c on bounded sets also implies the existence of σ > 0, such

that ||ϕ2nj
|| ≤ σ. From the definition of C2nj

, p2nj
∈ C2nj

and (3.44), we see that

c(h2nj
) ≤

〈
ϕ2nj

, h2nj
− p2nj

〉
≤ ||ϕ2nj ||||h2nj − p2nj ||
≤ σ||h2nj − p2nj || → 0 as j → ∞.(3.47)

Using similar arguments used in deriving (3.46), one obtains that c(x∗) ≤ 0, showing that
x∗ ∈ C. Then the conclusion that x∗ ∈ Ω is reached, which implies generally that ωw(xn) ⊂ Ω
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since the choice of x∗ was arbitrarily. From the definition of m2nj
in Algorithm 1, (3.24) and

(3.44), we, respectively, see that

(3.48) lim
j→∞

||m2nj − p2nj || = 0

and

(3.49) ||x2nj − p2nj || ≤ ||x2nj − h2nj ||+ ||h2nj − p2nj || → 0 as j → ∞.

Combining (3.48) and (3.49), one finds that

(3.50) lim
j→∞

||m2nj
− x2nj

|| = 0.

In view of the definition of x2nj+1 in Algorithm 1, (3.50) and the condition (A4), we deduce
that

(3.51) ||x2nj+1 − x2nj
|| ≤ δ2nj

||u− x2nj
||+ (1− δ2nj

)||m2nj
− x2nj

|| → 0 as j → ∞.

Similarly, by Remark 3.2, we get

(3.52) ||y2nj+1 − x2nj+1|| ≤ λ2nj+1||x2nj+1 − x2nj
|| → 0 as j → ∞.

It is also, respectively, seen from (3.44), (3.22) and (3.24) that

(3.53) ||y2nj+1 − p2nj+1|| ≤ ||y2nj+1 − h2nj+1||+ ||h2nj+1 − p2nj+1|| → 0 as j → ∞

and

(3.54) lim
j→∞

||m2nj+1 − p2nj+1|| = 0.

Therefore, by (3.50) - (3.54) and the metric projection property in (2.15), we find that

lim sup
j→∞

〈
m2nj − z, u− z

〉
= max

x∗∈ωw(x2n)
⟨x∗ − z, u− z⟩ ≤ 0

and

(3.55) lim sup
j→∞

〈
m2nj+1 − z, u− z

〉
= max

x∗∈ωw(x2n)
⟨x∗ − z, u− z⟩ ≤ 0.

Thus, by the condition (A4), Assumption 2, Remark 3.2 and (3.55), we see that lim sup
j→∞

Γ2nj ≤ 0.

Therefore, it follows from Lemma 2.2 that lim
n→∞

||x2n − z∗|| = 0 and hence x2n → z∗ = PΩ0 as
n → ∞.

Finally, combining the fact that lim
n→∞

||x2n − z∗|| = 0 and (3.51), we see that lim
n→∞

||x2n+1 −
z∗|| = 0. Thus we conclude that the odd subsequence {x2n+1} of {xn} produced by Algorithm
1 converges strongly to z∗ ∈ Ω. Hence the whole sequence {xn} produced by Algorithm 1
strongly converges to z∗ ∈ Ω. This completes the proof. □

To obtain some extensions of Algorithm 1, we make the following assumption.
Assumption 3: Let k ∈ Kn ⊆ {0, 1, 2, · · · , n− 1}, yn−k and yn−k−1 be arbitrary points in H1

for all n ≥ 1. Choose ςn,k, σn,k ∈ [0,+∞) such that lim
n→∞

∑
k∈Kn

ςn,k

δn
= 0 and lim

n→∞

∑
k∈Kn

σn,k

δn
=

0. Select βn,k ∈ [0, β̄n,k], δn,k ∈ [0, δ̄n,k] for all n ≥ 1, k ∈ Kn and any η2, η3 > 0 such that

(3.56) βn,k :=


min

{
ςn,k

||yn−k−yn−k−1|| , η2

}
, if yn−k ̸= yn−k−1,

η2, otherwise
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and

(3.57) δn,k :=


min

{
σn,k

||yn−k−yn−k−1|| , η3

}
, if yn−k ̸= yn−k−1,

η3, otherwise.

Remark 3.5. We can easily see from Assumption 3 that, for every n ≥ 1 and k ∈ Kn,

βn,k||yn−k − yn−k−1|| ≤ ςn,k, δn,k||yn−k − yn−k−1|| ≤ σn,k.

Then, in view of the fact that, for every k ∈ Kn,

lim
n→∞

∑
k∈Kn

ςn,k

δn
= 0, lim

n→∞

∑
k∈Kn

σn,k

δn
= 0,

we, respectively, obtain that

(3.58) lim
n→∞

∑
k∈Kn

βn,k||yn−k − yn−k−1||
δn

= 0, lim
n→∞

∑
k∈Kn

δn,k||yn−k − yn−k−1||
δn

= 0.

So, it is not difficult to observe that, for each n ≥ 1, taking

(3.59) e1(yn) =
∑
k∈Kn

βn,k(yn−k − yn−k−1)

and

(3.60) e2(yn) =
∑
k∈Kn

δn,k(yn−k − yn−k−1),

then Algorithm 1 becomes the following alternated and multi-step inertial Halpern-type relaxed algo-
rithm for the problem (1.1).

Algorithm 2 Alternated and Multi-step Inertial Halpern-type Relaxed Algorithm (AMiHRA)

Initialization: Take τ1, ε, ρ and {δn} such that the condition (A4) of Assumption 1 holds. Select
Kn, βn,k and δn,k for all k ∈ Kn as described in Assumption 3, λn as in Remark 3.2, u ∈ C, y0, x0, x1 ∈
H1 and set n = 1.

Step 1. Compute yn by (3.18).
Step 2. Compute

wn = yn +
∑

k∈Kn

βn,k(yn−k − yn−k−1)

and
hn = PCn(wn − ρτn∇gn(yn)).

If hn = wn = yn, then stop the iteration and hn ∈ Ω. Else, go to Step 3.
Step 3. Compute

un = yn +
∑

k∈Kn

δn,k(yn−k − yn−k−1)

and
xn+1 = δnu+ (1− δn)PCn(un − ρτn∇gn(hn)),

update the step-length τn+1 by (3.19), set n := n+ 1 and go back to Step 1.

Theorem 3.2. Let {xn} be a sequence produced by Algorithm 2 such that the conditions of Assumption
1, 3 and Remark 3.2 hold. Then the sequence {xn} strongly converges to a point z∗ ∈ Ω, where
z∗ = PΩ0.
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Proof. In view of the choice of ςn,k, σn,k, βn,k, δn,k for all n ≥ 1 and k ∈ Kn in Assumption 3
and the equations (3.56), (3.57), (3.59) and (3.60), it is clear that the conditions of Assumption 2
are satisfied when Assumption 3 holds. Therefore, the complete proof of Theorem 3.2 follows
from that of Theorem 3.1. This completes the proof. □

Remark 3.6. in the following remarks, we consider some new and existing algorithms for solving the
problem (1.1) related to Algorithm 2:

(1) If Kn = {0}, ςn,k = ςn, σn,k = σn, βn,k = βn and δn,k = δn for all n ≥ 1 in Assumption
3, then the AMiHRA becomes a relaxed CQ algorithm that combines an alternated inertial step
and two classical Polyak’s inertial steps.

(2) If Kn = {0} and βn,k = δn,k = 0 for all n ≥ 1, then the AMiHRA reduces to Halpern-type of
Algorithm 3.1 in [53] with monotonic step-length criterion.

(3) If λn = 0 for all n ≥ 1, then the AMiHRA becomes a general multi-step inertial Halpern-type
relaxed CQ algorithm that combines two multi-step inertial terms for the problem (1.1).

We also consider the following as another extension of Algorithm 1:

Algorithm 3 Accelerated Alternated and Multi-step Inertial Halpern-type Relaxed Algorithm
(AAMiHRA)

Initialization: Take τ1, ε, ρ and {δn} such that the condition (A4) holds. Select σ > 0, ωn, ς
(2)
n ∈

[0,+∞) such that lim
n→∞

ωn
δn

= 0, lim
n→∞

ς
(2)
n
δn

= 0, Kn, δn,k for all k ∈ Kn as described in Assumption 3, λn

as in Remark 3.2 and a bounded sequence {sn} ⊂ H1. Choose u ∈ C, y0, x0, x1 ∈ H1 and set n = 1.
Step 1. Compute yn by (3.18).
Step 2. Compute

(3.61) ς(1)n =
ωn

max{||dn||, σ}
,

(3.62) dn+1 =


−∇gn(yn), if n = 0,

− 1
ϑ
ρτn∇gn(yn) + ς

(1)
n dn − ς

(2)
n sn, otherwise

and
hn = PCn(yn + ϑdn+1).

If hn = yn, then stop the iteration and hn ∈ Ω. Else, go to Step 3.
Step 3. Compute

un = yn +
∑

k∈Kn

δn,k(yn−k − yn−k−1),

and
xn+1 = δnu+ (1− δn)PCn(un − ρτn∇gn(hn)),

update the step-length τn+1 by (3.19), set n := n+ 1 and go back to Step 1.

Remark 3.7. Observe that taking e2(yn) as in (3.60) and defining e1(yn) as follows:

(3.63) e1(yn) = ϑ
(
ς(1)n dn − ς(2)n sn

)
,

with ς
(1)
n for all n ≥ 1 to be obtained by (3.61), then, from the conditions on ωn, ς

(2)
n and the bounded-

ness of the sequence {sn}, Algorithm 1 becomes Algorithm 3. Thus we formulate and prove the following
theorem:
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Theorem 3.3. Suppose that the conditions of Assumption 1 and 3 hold, {e1(yn)} and {e2(yn)} are the
sequences generated by (3.63) and (3.60), respectively, {sn} ⊂ H1 is bounded and {xn} is a sequence
produced by Algorithm 3. Then {xn} strongly converges to a point z∗ ∈ Ω, where z∗ = PΩ0.

Proof. In view of the choice of ωn, ς(2)n in Algorithm 3, σn,k and δn,k for all n ≥ 1 and k ∈
Kn in Assumption 3, the boundedness of {sn} and the equations (3.57), (3.60) and (3.63), it is
obvious that the conditions of Assumption 2 are satisfied when Assumption 3 and Remark 3.7
hold. Therefore, the complete proof of the Theorem 3.3 follows from that of Theorem 3.1. This
completes the proof. □

Remark 3.8. We provide some new brand of self-adaptive relaxed CQ Algorithms for solving the prob-
lem (1.1) based on Algorithm 3.

(1) If Kn = {0} and δn,k = δn for all n ≥ 0 in Assumption 3, then the AAMiHRA becomes
a general accelerated inertial Halpern-type relaxed algorithm, which combines an alternated
inertial step, the classical Polyak’s inertial step and a three-term conjugate-like direction in a
single algorithm with monotonically decreasing step-length criterion.

(2) If Kn = {0} and δn,k = δn = 0 for all n ≥ 1, then the AAMiHRA reduces a Halpern-type
of the alternated inertial algorithm 3.1 in [53] with three-term conjugate gradient-like direction
and monotonic step-length criterion.

(3) If ς(i)n = 0 for all i = 1, 2 and n ≥ 1, then the AAMiHRA reduces an alternated and multi-step
inertial Halpern-type relaxed algorithm with monotonic step-length criterion.

(4) If Kn = {0}, δn,k = δn = 0 and ς
(i)
n = 0 for all i = 1, 2 and n ≥ 1, then the AAMiHRA

reduces a Halpern-type of the alternated inertial algorithm 3.1 in [53] with monotonic step-
length criterion.

4. NUMERICAL EXPERIMENTS

In this section, we investigate the performance and efficiency of the proposed algorithms
(i.e., AMiHRA and AAMiHRA) in solving classification problems and constrained minimiza-
tion problems. We conducted the experiments using R2023a Matlab in a PC with 12th Gen
Intel(R) Core(TM)i5-124P 1.70 GHz processor and 16.0GB RAM.

4.1. The Constrained Minimization Problem. In this part, we consider the following con-
strained minimization problem:

(4.64) min
x∈C

1

2
||Bx− PQBx||2,

where C = {x ∈ L2[0, 1] :
〈
x(t), 3t2

〉
= 0} and Q = {x ∈ L2[0, 1] :

〈
x(t), t

3

〉
≥ −1} are in L2[0, 1].

Setting g(x) = 1
2 ||Bx− PQBx||2, it is not difficult to see that ∇g(x) = B∗(I − PQ)Bx is ||B||2-

Lipschitch continuous. Thus, problem (4.64) can be transformed into problem (1.1) with H1 =

H2 = L2[0, 1], where ||x|| =
( ∫ 1

0
|x(t)|2dt

)1/2 and ⟨x, y⟩ =
∫ 1

0
x(t)y(t)dt are, respectively, the

norm and the inner product in L2[0, 1]. For all the experiments, we consider B = I , where I is
the identity mapping, i.e., Bx = x. Since Q and C are half-space and hyper-plane, respectively,
to apply our proposed algorithms (i.e., AMiHRA and AAMiHRA) to solve problem (4.64), we
take Qn = Q for all n ≥ 1, define c(x) =

〈
x(t), 3t2

〉
for all x ∈ L2[0, 1], so that C satisfies

(1.5) and we consider gn and Cn as described in (1.3) and (1.6), respectively, and set ∇gn =
B∗(I−PQn

)B . We use the defined explicit projection formula in [24] to compute the projection
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PQn
and the projection PCn

by the following:

(4.65) PCn
(xn(t)) =

xn(t), if
〈
3t2, t− xn(t)

〉
≥ c(xn(t)),

xn(t)−
c(xn(t))+⟨3t2,xn(t)−t⟩

||3t2||2L2

3t2, otherwise.

We compare the performance of our algorithms, the AMiHRA and the AAMiHRA with the
algorithms of Tan et al. [53] and Dong et al. [21], which we abbreviated in this work as TQW
Alg 3.1 and DLY Alg 4-II, respectively. For the experiments, we select the following parameters:

(1) We set τ1 = 0.058, η1 = η3 = 5, ε = 0.1, ρ = 1
ε − 1

3000ε , δn = 1
105n+1 , ξn = 1

(n+10)2 ,
and σn,k = 1

n5k5 for the AMiHRA and the AAMiHRA. In particular, we select η2 =

5 and ςn,k = 1
n3k3 for the AMiHRA and σ = 0.1, ϑ = 3, ωn = 1

(n+10)5 and ς
(2)
n =

1
(10n+1)3 for the AAMiHRA.

(2) In TQW Alg 3.1, we choose λ1 = 0.058, µ = 0.1, β = 1.3, α = 1, θn = 0.2, ρn =
10−1

(n+1)2 and ξn = 1 + 10−1

(n+1)2 .
(3) In DLY Alg 4-II, we set τ1 = 0.058, ε = 0.1, ρ = 0.2 and λn = 1

50n+1 − 1.

For the implementations of the algorithms, we consider four different cases of the initial
values of x0, x1, y0, u and sn:

Case I: x0(t) = sin(t), x1(t) = t2, y0(t) = 0.5t2, u(t) = t and sn(t) = 1.7t;
Case II: x0(t) = et, x1(t) = t3, y0(t) = 3 sin(t), u(t) = t and sn(t) = 10

√
t;

Case III: x0(t) = cos(t), x1(t) = tanh t, y0(t) = 0.5t2, u(t) = t
100 and sn(t) = 5t3;

Case IV: x0(t) = e3t
2

, x1(t) = t5, y0(t) = sin t2, u(t) =
3√t
10 and sn(t) =

4
√
t.

We used the stopping rule

En =
1

2

(
||xn(t)− PCn

xn(t)||2L2
+ ||xn(t)− PQn

xn(t)||2L2

)
< 10−10

and the maximum number of iterations of 200 to terminate the iterations for all the algorithms.
The performance results of all the algorithms, which include the execution times in second
represented by "Time", the number of iterations denoted by "Iter." and the error En are reported
in Table 1 and we plot the corresponding error results for the four cases in Figures 1, 2, 3 and 4.
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TABLE 1. Compare the performance of the algorithms for the four cases

Cases Algorithms Iter. Time(s) En

Case I

AMiHRA 30 0.0531 4.98E-14
AAMiHRA 30 0.0507 1.17E-13
TQW Alg 3.1 98 0.0827 7.94E-11
DLY Alg 4-II 115 0.0926 8.94E-11

Case II

AMiHRA 30 0.0482 2.64E-13
AAMiHRA 30 0.0415 2.70E-12
TQW Alg 3.1 98 0.0731 7.70E-11
DLY Alg 4-II 115 0.0925 8.67E-11

Case III

AMiHRA 30 0.0439 2.45E-13
AAMiHRA 30 0.0439 6.13E-14
TQW Alg 3.1 98 0.0789 8.10E-11
DLY Alg 4-II 115 0.0828 9.11E-11

Case IV

AMiHRA 30 0.0443 1.43E-13
AAMiHRA 30 0.0389 2.10E-13
TQW Alg 3.1 98 0.0733 7.43E-11
DLY Alg 4-II 115 0.0903 8.36E-11
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FIGURE 1. Error plotting of En of all the algorithms for Case I.



Halpern-type relaxed algorithms with alternated and multi-step inertia for split feasibility problems 67

0 20 40 60 80 100 120

Iter.

10
-15

10
-10

10
-5

10
0

E
n

AMiHRA

AAMiHRA

TQW Alg 3.1

DLY-Alg 4-II

FIGURE 2. Error plotting of En of all the algorithms for Case II.
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FIGURE 3. Error plotting of En of all the algorithms for Case III.
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FIGURE 4. Error plotting of En of all the algorithms for Case IV.

Remark 4.9. We observed from Table 1 and Figures 1, 2, 3 and 4 that the proposed algorithms outper-
form the compared algorithms in all the experiments. In particular, the AMiHRA achieves the fewest
errors in most of the experiments, while AAMiHRA has the shortest execution times in all the experi-
ments.

4.2. Classification Problems. In this part, we conduct a series of experiments on some real-
world benchmark datasets to investigate the performance of the suggested algorithms (i.e.,
AMiHRA and AAMiHRA). In all the experiments, we consider an efficient learning algorithm
called extreme learning machine ELM for single-hidden layer feedforward neural networks
SLFNs [29] and take K = {(xj , tj) ∈ Rk × Rm, j = 1, 2, · · · ,N} as an N distinct training data
points set, where for each input point xj =

[
xj1, xj2, · · · , xjk

]T , tj =
[
tj1, tj2, · · · , tjm

]T is its
corresponding target. The SLFNs output function with L number of nodes in the hidden layer
has the following formulation.

(4.66) gj =

L∑
i=1

βifi(xj), ∀j = 1, 2, · · · ,N ,

where fi(xj) = F
(
⟨ωi, xj⟩ + bi

)
, F is an activation function, ωi = (ωi1, ωi2 · · · , ωik)

T is an

input weight vector linking the ith hidden node and the input nodes, βi = (βi1, βi2, · · · , βim)T

is an output weight vector linking the ith hidden node and the output nodes and bi is a bias.
To train a SLFNs is to solve the linear system:

(4.67) Gβ = T,

where the hidden layer output matrix G of order N ×L is given by

G =
[
f1(x), f2(x), · · · , fL(x)

]
,

β = (β1, β2, · · · , βL)
T and T = (t1, t2, · · · , tN )T are the output weights and the target data ma-

trices, respectively and the ith column of G is the ith hidden node output based on x1, x2 · · · , xN ,
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which is defined by fi(x) =
[
fi(x1), fi(x2), · · · , fi(xN )

]T
. To solve (4.67) by ELM is simply to

find an optimal output weight β̂ = G†T, where G† represents the Moore-Penrose generalized
inverse of the matrix G [47].

From the perspective of the sparsity of the output weight parameter β for some high-dimensional
data, Cao et al. [8] proposed an ℓ1-regularization approach to solve problem (4.67) based on
the following Lasso model [54]:

(4.68) min
β∈RL×m

{1

2
||T − Gβ||22 : ||β||1 ≤ c

}
,

where c > 0 is the regularization parameter. However, for better prediction accuracy, sparsity
and stability, Ye et al. [61] unified both the ℓ1 and the ℓ2 penalties into a single model called the
ℓ1 − ℓ2 hybrid regularization approach. Their model is described as follows.

(4.69) min
β∈RL×m

{1

2
||T − Gβ||22 : λ||s||1 + γ||s||22 ≤ c

}
,

where λ, γ ≥ 0 and c > 0 are the regularization parameters. Suantai et al. [50] transformed the
problem (4.68) into problem (1.1) by taking C = {β ∈ RL×m : ||β||1 ≤ c}, Q = {T} ⊆ RK×m,
c(β) = ||β||1 − c, q(x) = 1

2 ||x− T||2 and defined gn, Cn and Qn as in (1.3) and (1.6), respectively.
They also used their proposed inertial relaxed CQ algorithm to solve the problem (4.67) based
on the model (4.68).

Inspired by the sparsity, the stability and the generalization performance of (4.69), we ob-
serve that transforming problem (4.69) into problem (1.1) is of paramount important, which is
possible by taking

C = {β ∈ RL×m : λ||β||1 + γ||β||22 ≤ c},

Q = {T} ⊆ RK×m, q(x) =
1

2
||x− T||2.

Moreover, it is easily seen that the function c(β) = λ||β||1+γ||β||22−c is strongly convex, so it
is convex. We consider gn, Cn and Qn as defined in (1.3) and (1.6), respectively. Therefore, our
proposed algorithms (i.e., AMiHRA and AAMiHRA) can be used to solve the problem (4.67)
based on the both models (4.68) and (4.69).

To investigate the performance of the proposed algorithms, we employed them to solve
problem (4.67) based on the models (4.68) and (4.69), for which we used the abbreviations
AMiHRA - ℓ1, AMiHRA - ℓ1 − ℓ2, AAMiHRA - ℓ1 and AAMiHRA - ℓ1 − ℓ2 to denote them
respectively. We compare their results with the algorithms of Tan et al. [53], Dong et al. [21] and
Abubakar et al. [1] based on the model (4.68), which we respectively abbreviated in this work
as TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1 − ℓ1. We carried out the experiments
on three real-world classification datasets, including Breast Cancer Wisconsin (Breast Cancer
W.) dataset [55], Heart disease dataset [34] and Glass identification dataset [22]. The detailed
information on each of the datasets is provided in Table 2.

TABLE 2. Details of each dataset

Datasets Instances Classes Features Tasks

Breast Cancer W. 569 2 30 Classification
Heart disease 303 2 13 Classification
Glass Identification 214 6 9 Classification
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In all the experiments, we fixedly choose 70% of each of the datasets for training and 30%
for testing. We also set the following for the parameters:

(1) We set τ1 = 3.03 × 10−5, η1 = η2 = η3 = 3, ε = 0.012, ρ = 0.13, δn = 1
105n+1 , ξn =

1
(n+10)3.4 , ςn,k = 1

n3k3 and σn,k = 1
n5k5 for AMiHRA - ℓ1, AMiHRA - ℓ1 − ℓ2, AAMiHRA

- ℓ1 and AAMiHRA - ℓ1 − ℓ2. In particular, we select σ = 0.1, ϑ = 3, ωn = 1
(n+10)5 and

ς
(2)
n = 1

(10n+1)3 for AAMiHRA - ℓ1 and AAMiHRA - ℓ1 − ℓ2.
(2) In TQW Alg 3.1−ℓ1, we choose λ1 = 3.03×10−5, µ = 0.012, β = 0.13, α = 0.997, θn =

0.002, ρn = 10−1

(n+1)2 and ξn = 1 + 10−1

(n+1)2 .
(3) In DLY Alg 4-II - ℓ1, we set τ1 = 3.03× 10−5, ε = 0.012, ρ = 0.13 and λn = 1

50n+1 − 1.
(4) In AKTIS Alg 1− ℓ1, we select ϱ = 0.5, εn = 1

n2 , ζn = 1
7500(n+5) and ϑn = 0.8− ζn.

We respectively calculate the accuracies and precisions by the following relations.

(4.70) Accuracy =
TP + TN

TP + FP + TN + FN
× 100%,

(4.71) Precision =
TP

FP + FN
× 100%,

where TP := True positive, TN := True negative, FP = False positive and FN = False negative,
and estimate their averages as well as their standard deviations (SDs). We use these metrics
and the number of iterations denoted by "Iter." to investigate the effectiveness and the stability
of the suggested algorithms.

In the first part of the experiments, we set eC := ones(L,m), x0 = −1eC, x1 = eC, u =
y0 = 2eC, sn = 1.7eC, F(x) = tanh(x) as the activation function, c = 0.061, λ = 0.9999, γ =
0.00505 and used ||xn+1−xn|| < 10−3 and 500 as the Maximum iteration count to terminate the
iterations for all the algorithms. We then analyzed the sensitivity of all the algorithms on the
Breast Cancer W. dataset over different number of hidden nodes. The performance of all the
algorithms are shown in Table 3 and we plot the corresponding results on training and testing
accuracies, and training and testing precisions in Figures 5, 6, 7 and 8, respectively.
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FIGURE 5. Compare the training accuracies of all the algorithms over different
number of hidden nodes on the Breast Cancer W. dataset using the activation
function F(x) = tanh(x).
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Remark 4.10. Comparing the performance results of all the algorithms shown in Table 3 and Figures
5, 6, 7 and 8, we make the following remarks.

(1) It is easily seen that our proposed algorithms, the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 com-
paratively achieve higher training and testing accuracies and precisions than TQW Alg 3.1−ℓ1,
DLY Alg 4-II - ℓ1 and AKTIS Alg 1− ℓ1. Meanwhile, the SDs of both the training and testing
accuracies and precisions of the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 are extremely smaller
than those of TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1 − ℓ1. These illustrate
that the AMiHRA - ℓ1 and the AAMiHRA - ℓ1 achieve better stability and generalization per-
formance in the experiments.

(2) It is also noted that due to the presence of the ℓ2 penalty, the AMiHRA - ℓ1 − ℓ2 and the
AAMiHRA - ℓ1 − ℓ2 have higher training and testing accuracies and precisions in most of the
results than their corresponding AMiHRA - ℓ1 and AAMiHRA - ℓ1, which demonstrate their
ability to achieve better generalization performance. Additionally, the SDs of both the training
and testing accuracies and precisions of the AMiHRA - ℓ1 − ℓ2 and the AAMiHRA - ℓ1 − ℓ2
are extremely smaller than those of the AMiHRA - ℓ1 and the AAMiHRA - ℓ1, which show that
they are more stable.

Though the effectiveness and stability of our proposed algorithms have been demonstrated
in the aforementioned experiments, to further investigate their comparative performance in
this practical applications, we still need to conduct more statistical analysis. In this regard, we
used the three UCI datasets mentioned in our earlier discussion and four different activation
functions to measure and compare the statistical performance of all the algorithms. In the sec-
ond series of experiments, we set eC := ones(L,m), eQ := randn(L,m), x0 = −1eQ, x1 =
eQ, y0 = 2eQ, u = 10−5eC, sn = 1.7eC. We choose L = 100, and used ||xn+1 − xn|| < 10−5

and 100 as the Maximum number of iterations to terminate the the process for all the algo-
rithms. As depicted in Table 4, we set the parameters c, λ and γ according to the dataset and
the activation function. The training and testing accuracies as well as the number of iterations
of all the algorithms are reported in Table 4. We further display the performance comparison
results among the algorithms based on the number of wins, ties and looses in Tables 5.
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Activation functions Sigmoid Radbas

Accuracy (%) Accuracy (%)

Datasets Algorithms c, λ, γ Iter. Training Testing c, λ, γ Iter. Training Testing

Breast Cancer W.

AMiHRA - ℓ1 0.95 9 97.7011 98.4615 1.1 8 93.1034 90.7692
AMiHRA - ℓ1 − ℓ2 0.95, 0.9999, 0.00505 9 98.2759 98.4615 1.1, 0.9999, 0.00505 9 94.8276 95.3846
AAMiHRA - ℓ1 0.95 9 97.7011 98.4615 1.1 8 93.1034 90.7692
AAMiHRA - ℓ1 − ℓ2 0.95, 0.9999, 0.00505 9 98.2759 98.4615 1.1, 0.9999, 0.00505 9 94.8276 95.3846
TQW Alg 3.1 - ℓ1 0.95 9 94.2529 95.3846 1.1 8 88.5057 80.00
DLY Alg 4-II - ℓ1 0.95 11 51.7241 58.4615 1.1 11 78.7356 78.4615
AKTIS Alg 1 - ℓ1 0.95 17 54.5977 63.0769 1.1 16 29.8851 26.1538

Heart Disease

AMiHRA - ℓ1 2.7 7 96.4912 93.4783 2.7 7 95.614 86.9565
AMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 95.614 93.4783 2.7, 0.999, 0.001 7 95.614 86.9565
AAMiHRA - ℓ1 2.7 7 96.4912 93.4783 2.7 7 95.614 86.9565
AAMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 96.4912 93.4783 2.7, 0.999, 0.001 7 95.614 86.9565
TQW Alg 3.1 - ℓ1 2.7 7 33.3333 21.7391 2.7 7 42.9825 45.6522
DLY Alg 4-II - ℓ1 2.7 7 92.1053 91.3043 2.7 7 91.2281 86.9565
AKTIS Alg 1 - ℓ1 2.7 16 33.3333 30.4348 2.7 16 25.4386 26.087

Glass Identification

AMiHRA - ℓ1 0.91 9 90.00 90.00 0.701 10 96.00 100.00
AMiHRA - ℓ1 − ℓ2 0.91, 0.999, 0.002 9 98.00 95.00 0.701, 0.99, 0.0107 9 98.00 100.00
AAMiHRA - ℓ1 0.91 9 90.00 90.00 0.701 10 96.00 100.00
AAMiHRA - ℓ1 − ℓ2 0.91, 0.999, 0.002 9 98.00 95.00 0.701, 0.99, 0.0107 9 98.00 100.00
TQW Alg 3.1 - ℓ1 0.91 9 42.00 35.00 0.701 10 68.00 90.00
DLY Alg 4-II - ℓ1 0.91 9 24.00 20.00 0.701 7 0.00 0.00
AKTIS Alg 1 - ℓ1 0.91 13 30.00 45.00 0.701 13 30.00 15.00

Activation functions Tribas Hardlim

Accuracy (%) Accuracy (%)

Datasets Algorithms c, λ, γ Iter. Training Testing c, λ, γ Iter. Training Testing

Breast Cancer W.

AMiHRA - ℓ1 0.94 9 96.5517 95.3846 1.05 9 96.5517 96.9231
AMiHRA - ℓ1 − ℓ2 0.94, 0.9999, 0.00505 9 98.2759 96.9231 1.05, 0.999, 0.0009 9 95.977 98.4615
AAMiHRA - ℓ1 0.94 9 96.5517 95.3846 1.05 9 96.5517 96.9231
AAMiHRA - ℓ1 − ℓ2 0.94, 0.9999, 0.00505 9 98.2759 96.9231 1.05, 0.999, 0.0009 9 95.977 100.00
TQW Alg 3.1 - ℓ1 0.94 9 63.2184 61.5385 1.05 9 92.5287 84.6154
DLY Alg 4-II - ℓ1 0.94 11 60.9195 53.8462 1.05 11 95.4023 98.4615
AKTIS Alg 1 - ℓ1 0.94 40 47.7011 40 1.05 16 58.046 61.5385

Heart Disease

AMiHRA - ℓ1 2.7 7 85.9649 80.4348 2.7 7 85.9649 80.4348
AMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 85.9649 80.4348 2.7, 0.999, 0.001 7 85.9649 80.4348
AAMiHRA - ℓ1 2.7 7 85.9649 80.4348 2.7 7 85.9649 80.4348
AAMiHRA - ℓ1 − ℓ2 2.7, 0.999, 0.001 7 85.9649 80.4348 2.7, 0.999, 0.001 7 85.9649 80.4348
TQW Alg 3.1 - ℓ1 2.7 7 45.614 45.6522 2.7 7 30.7018 15.2174
DLY Alg 4-II - ℓ1 2.7 7 84.2105 76.087 2.7 7 77.193 67.3913
AKTIS Alg 1 - ℓ1 2.7 16 29.8246 28.2609 2.7 16 25.4386 21.7391

Glass Identification

AMiHRA - ℓ1 0.65 12 80.00 95.00 0.885 10 94.00 90.00
AMiHRA - ℓ1 − ℓ2 0.65, 0.91, 0.25 12 98.00 95.00 0.885, 0.999, 0.0017 10 94.00 95.00
AAMiHRA - ℓ1 0.65 12 80.00 95.00 0.885 10 94.00 90.00
AAMiHRA - ℓ1 − ℓ2 0.65, 0.91, 0.25 12 98.00 95.00 0.885, 0.999, 0.0017 10 94.00 95.00
TQW Alg 3.1 - ℓ1 0.65 10 68.00 85.00 0.885 9 36.00 40.00
DLY Alg 4-II - ℓ1 0.65 9 0.00 0.00 0.885 9 32.00 25.00
AKTIS Alg 1 - ℓ1 0.65 13 16.00 5.00 0.885 13 18.00 15.00

TABLE 4. Performance results of all the algorithms on all the dataset and four
activation functions. The best and suboptimal results are highlighted in bold
and underlined, respectively
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wins / ties / looses

AMiHRA - ℓ1 vs. TQW Alg 3.1− ℓ1 AMiHRA - ℓ1 vs. DLY Alg 4-II - ℓ1 AMiHRA - ℓ1 vs. AKTIS Alg 1 - ℓ1

Training 12/0/0 12/0/0 12/0/0
Testing 12/0/0 10/1/1 12/0/0

AAMiHRA - ℓ1 vs. TQW Alg 3.1− ℓ1 AAMiHRA - ℓ1 vs. DLY Alg 4-II - ℓ1 AAMiHRA - ℓ1 vs. AKTIS Alg 1− ℓ1

Training 12/0/0 12/0/0 12/0/0
Testing 12/0/0 10/1/1 12/0/0

AMiHRA - ℓ1 − ℓ2 vs. AMiHRA - ℓ1 AAMiHRA - ℓ1 − ℓ2 vs. AAMiHRA - ℓ1

Training 6/4/2 6/5/1
Testing 5/7/0 5/7/0

TABLE 5. Number of wins, ties and looses of all the algorithms.

Remark 4.11. (1) We adopted the Wilconxon signed-ranks and Sign test [15] as the statistical
methods to compare the reported results of all the algorithms in Table 4. In accordance with the
statistical analysis on these results with Wilconxon signed-ranks, it is noted from Table 5 that
our proposed algorithms (i.e., AMiHRA - ℓ1 and AAMiHRA - ℓ1) considerably achieve better
training and testing accuracies than TQW Alg 3.1 − ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg
1 − ℓ1. It is also found from the same table that the presence of the ℓ2 penalty in AMiHRA -
ℓ1−ℓ2 and AAMiHRA - ℓ1−ℓ2 improves their ability to achieve better and robust generalization
performance than their correspondings AMiHRA - ℓ1 and AAMiHRA - ℓ1 in these experiments.

(2) On the hand, based on the null-hypothesis in the sign test [15], it is discovered that the normal
distribution h

(
h
2 ,

√
h
2

)
is obeyed by the number of wins for an algorithm and h = (b datasets ×

d activation functions). For this test, we assert that an algorithm is significantly better than
the other, when its number of wins, compared to other is at least h

2 + Zm/2 ×
√
h
2 , where m is

the assigned significant level. In all the experiments, we assigned h = 12 and m = 0.1, then
8 < 12

2 +1.645×
√
12
2 < 9. This implies that an algorithm will be said to significantly achieves

better performance, if its number of wins reaches at least 9. So, based on these facts, it is noticed
from Table 5 that AMiHRA-ℓ1 and AAMiHRA - ℓ1 significantly achieve better performance
than TQW Alg 3.1− ℓ1, DLY Alg 4-II - ℓ1 and AKTIS Alg 1− ℓ1.

(3) Meanwhile, the number of wins of AMiHRA - ℓ1−ℓ2 and AAMiHRA - ℓ1−ℓ2 with ℓ2 penalty
when compared with their corresponding AMiHRA - ℓ1 and AAMiHRA - ℓ1 as shown in Table
5 are less than the least number, however, we noticed that they considerably achieve the highest
number of wins in the experiments.

5. CONCLUSION

This paper introduces two efficient Halpern-type inertial methods. The first is the alter-
nated and multi-step inertial Halpern-type relaxed algorithm (AMiHRA) that involves three
improved versions of the inertial steps, one of which is the alternated inertial step (1.8), while
the others are the multi-step inertial steps (1.7), and the second is the accelerated alternated and
multi-step inertial Halpern-type relaxed algorithm (AAMiHRA) that combines the three term
conjugate gradient-like direction (1.10), the alternated inertial step (1.8) and the multi-step iner-
tial step (1.7). In each of the two proposed algorithms, the monotonic self-adaptive step length
criteria is used, which do not require any information about the norm of the underlying oper-
ator or the use of any line search procedure. The strong convergence theorem for each of the
algorithms to a solution of problem (1.1) is formulated and proved based on the convergence
theorem of the alternated inertial Halpern-type relaxed algorithm with perturbations in real
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Hilbert spaces. The applications of the proposed methods in solving constrained minimization
problems and classification problems based on the extreme learning machine ELM are anal-
ysed and their numerical results have been compared with the algorithms in [21, 53, 1]. In all
the experiments based on ℓ1-regularization approach, that is model (4.68), the numerical results
show that the proposed algorithms (i.e., AMiHRA and AAMiHRA) are robust, computation-
ally efficients and achieve better generalisation performance and stability than the algorithms
in [21, 53, 1]. It is also noted from the results of the experiments that the proposed algorithms
achieve better accuracy and stability based on the ℓ1 − ℓ2 hybrid regularization model, (i.e., the
model (4.69)) than with ℓ1-regularization model, (i.e., the model (4.69)).
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Duffin–Schaeffer inequality revisited

GENO NIKOLOV*

ABSTRACT. The classical Markov inequality asserts that the n-th Chebyshev polynomial Tn(x) = cosn arccosx,
x ∈ [−1, 1], has the largest C[−1, 1]-norm of its derivatives within the set of algebraic polynomials of degree at most
n whose absolute value in [−1, 1] does not exceed one. In 1941 R.J. Duffin and A.C. Schaeffer found a remarkable
refinement of Markov inequality, showing that this extremal property of Tn persists in the wider class of polynomials
whose modulus is bounded by one at the extreme points of Tn in [−1, 1]. Their result gives rise to the definition of
DS-type inequalities, which are comparison-type theorems of the following nature: inequalities between the absolute
values of two polynomials of degree not exceeding n on a given set of n + 1 points in [−1, 1] induce inequalities
between the C[−1, 1]-norms of their derivatives. Here we apply the approach from a 1992 paper of A. Shadrin to
prove some DS-type inequalities where Jacobi polynomials are extremal. In particular, we obtain an extension of the
result of Duffin and Schaeffer.

Keywords: Markov inequality, Duffin–Schaeffer inequality, Chebyshev polynomials, Jacobi polynomials, interlacing
of zeros.

2020 Mathematics Subject Classification: 41A17.

1. INTRODUCTION

Throughout this paper, πn stands for the set of real-valued algebraic polynomials of degree
not exceeding n, and ∥ · ∥ is the uniform norm in [−1, 1],

∥g∥ := max
x∈[−1,1]

|g(x)|.

The classical inequality of the brothers Markov reads as follows:

Theorem 1.1. If f ∈ πn satisfies

(1.1) ∥f∥ ≤ 1,

then

(1.2) ∥f (k)∥ ≤ ∥T (k)
n ∥, k = 1, . . . , n,

and the equality in (1.2) occurs if and only if f = ±Tn.

Here and henceforth, Tn is the n-th Chebyshev polynomial of the first kind, defined by

Tn(x) = cos(n arccosx), x ∈ [−1, 1] .

The case k = 1 is due to Andrei Markov [7], and his brother Vladimir Markov [8] proved the
general case, 1 ≤ k ≤ n. For the intriguing history of Markov inequality and some of its proofs
the reader is referred to the survey paper [21] .
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In 1941 Duffin and Schaeffer [5] found the following remarkable extension of Theorem 1.1
(for a proof, see also [18, Theorem 2.24] or [19, Section 5.6]):

Theorem 1.2 ([5]). Inequality (1.2) remains true if assumption (1.1) is replaced with

(1.3)
∣∣∣f (cos νπ

n

)∣∣∣ ≤ 1, ν = 0, . . . , n.

Theorem 1.2 may be viewed as a comparison type result: the inequality |f | ≤ |Tn| at the n+1
points in [−1, 1] where |Tn| = 1 implies inequalities between the uniform norms of the deriva-
tives of f and Tn. This observation motivated the author to formulate in [9] the following:

Definition 1.1. Let Q be a polynomial of degree n, and ∆ = {tν}nν=0, where 1 ≥ t0 > · · · > tn ≥ −1.
The pair {Q,∆} is said to admit Duffin–Schaeffer–type inequality (in short, DS–inequality), if for any
f ∈ πn, the assumption

|f | ≤ |Q| at the points from ∆

implies
∥f (k)∥ ≤ ∥Q(k)∥, k = 1, . . . , n.

In this definition Q (called henceforth as majorant) is mutually assumed to be an oscillating
polynomial in [−1, 1] (i.e., having n distinct zeros in (−1, 1)), however, ∆ is not necessarily the
set of its critical points.

The shortest ever given proof of Markov’s inequality, which moreover captures the refine-
ment of Duffin and Schaeffer, is due to Alexei Shadrin [20]. Its main ingredient is the following:

Theorem 1.3 ([20]). Let Q ∈ πn have n distinct zeros, all located in (−1, 1). If f ∈ πn satisfies

|f | ≤ |Q| at the zeros of (x2 − 1)Q′(x),

then for each k ∈ {1, . . . , n} and for every x ∈ [−1, 1] there holds

|f (k)(x)| ≤ max
{
|Q(k)(x)|,

∣∣∣∣x2 − 1

k
Q(k+1)(x) + xQ(k)(x)

∣∣∣∣ }.
Theorem 1.3 was applied in [3] for the proof of DS-inequalities where Q is an ultraspherical

polynomial P (λ)
n , λ ≥ 0 and ∆ is the set of its extreme points in [−1, 1]. As a matter of fact,

Theorem 1.3 implies DS-inequality whenever Q is oscillating polynomial with positive expan-
sion in Chebyshev polynomials of the first kind and ∆ is the set of its extreme points. Using
Shadrin’s idea to the proof of Theorem 1.3, we established various DS-type inequalities in [9],
where, typically, Q is an ultraspherical polynomial and ∆ is formed by the zeros of another
ultraspherical polynomial.

In the present paper, we apply the approach from [20] to obtain DS-inequalities, where some
Jacobi polynomials are the extremisers. As a particular case, we prove the following extension
of the inequality of Duffin and Schaeffer, given by Theorem 1.2:

Theorem 1.4. Let f ∈ πn satisfy |f(1)| ≤ 1 + 2nc for some c ∈ [0, 1] and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n .

Then

(1.4) ∥f (k)∥ ≤ ∥Q(k)
n ∥ , k = 1, . . . , n,

where Qn(x) = (1 − c)Tn(x) + cWn(x), with Tn and Wn being the n-th Chebyshev polynomials of
the first and the fourth kind,

Tn(x) = cos(nθ), Wn(x) =
sin

(
n+ 1

2

)
θ

sin
(
1
2θ

) , x = cos θ .
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The equality in (1.4) is attained only for f = ±Qn.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 2.5, which
provides pointwise estimates for the derivatives of a polynomial f ∈ πn whose modulus is
bounded at a set of n + 1 distinct points in [−1, 1]. In Section 3 we apply Theorem 2.5 to ob-
tain some DS-inequalities where the majorants are Jacobi polynomials, Theorem 1.4 being a
particular case of them. In Section 4 we discuss applications of DS-inequalities and the in-
terlink between DS-inequalities and Markov-type inequalities for polynomials with a curved
majorant.

2. POINTWISE ESTIMATES FOR DERIVATIVES OF A POLYNOMIAL

If p and q are algebraic polynomials with only real and simple zeros, we say that the zeros of
p and q interlace, if one can trace all the zeros of both polynomials, switching alternatively from
a zero of p to zero of q and vice versa and moving only in one direction. If, in addition, no zero
of p coincides with a zero of q, then the zeros of p and q are said to interlace strictly.

Clearly, interlacing is only possible if p and q are polynomials of the same degree or of
degrees which differ by one. In the latter case, if p is of degree n + 1, q is of degree n and the
zeros of p and q interlace strictly, we say shortly that the zeros of q separate the zeros of p. The
following lemma, due to V. Markov [8], asserts that the interlacing property is inherited by the
zeros of the derivatives:

Lemma 2.1. If the zeros of polynomials p and q interlace, then the zeros of p′ and q′ interlace strictly.

Proofs of Lemma 2.1 can be found, e.g., in [11, Lemma 4], [18, Lemma 2.7.1] and [20]. For
the sake of brevity, we write in this section

p ≺ q

to say that p and q are polynomials of the same degree with interlacing zeros, with relation “≤”
between the corresponding zeros of p and q. The notation

p ≺ q ≺ p

means that the zeros of p and q interlace and p is of higher degree than q.
The following theorem provides pointwise bounds for derivatives of polynomials f ∈ πn

satisfying |f | ≤ |Qn| on a set of n+ 1 points related in a specific way to the majorant Qn.

Theorem 2.5. Let Qn be a polynomial of degree n with only real and distinct zeros, all located in
(−1, 1), and let ω be a polynomial of degree n− 1 whose zeros separate the zeros of Qn. Assume that for
some k ∈ {1, . . . , n} and constants a ≥ 1 and b ≤ −1,

(2.5) Q(k)
n (x) =

[
(a− b− 2)x+ a+ b

]
ω(k)(x) + k(a− b)ω(k−1)(x) .

If f ∈ πn satisfies

(2.6) |f | ≤ |Qn| at the zeros of (x2 − 1)ω(x),

then
|f (k)(x)| ≤ max

{ ∣∣∣Q(k)
n (x)

∣∣∣ , |Zn,k(x)|
}

for all x ∈ R,

where

(2.7) Zn,k(x) =
[
2x2 − (a+ b)x+ b− a

]
ω(k)(x) + k(2x− a− b)ω(k−1)(x) .
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Proof. We consider first the case 1 ≤ k ≤ n − 1. With the notation introduced above, the
assumption for the zeros of Qn and ω can be written shortly as

(2.8) Qn ≺ ω ≺ Qn .

If
ω0(x) = (x+ 1)ω(x) , ωn(x) = (x− 1)ω(x),

then obviously
ω0 ≺ Qn ≺ ωn

and, by Lemma 2.1,

(2.9) ω
(k)
0 ≺ Q(k)

n ≺ ω(k)
n .

Denote by {αk
i }n−k

i=1 and {βk
i }n−k

i=1 the zeros of ω(k)
0 and ω

(k)
n , respectively, labeled in increasing

order, then it follows from (2.9) that each interval (αk
i , β

k
i ), i = 1, . . . , n−k, contains exactly one

zero of Q(k)
n , hence the zeros of Q(k)

n belong to the set

Jn,k = Jn,k(ω) =

n−k⋃
i=1

(αk
i , β

k
i )

and each interval (αk
i , β

k
i ) contains one zero of Q(k)

n . Consequently,

(2.10) Q(k)
n (βk

i )Q
(k)
n (αk

i+1) > 0, i = 1, . . . , n− k − 1

(this statement is void if k = n− 1). Denote by In,k = In,k(ω) the complementary set R \ Jn,k,

In,k = In,k(ω) = (−∞, αk
1 ] ∪

n−k−1⋃
i=1

[βk
i , α

k
i+1] ∪ [βk

n−k,∞) .

The sets In,k and Jn,k are referred to as Chebyshev set and Zolotarev set, respectively.
Let t1 < · · · < tn−1 be the zeros of ω, and t0 = −1, tn = 1. If f ∈ πn satisfies |f(ti)| ≤ |Qn(ti)|

for i = 0, . . . , n, then

(2.11)
∣∣∣f (k)(x)∣∣∣ ≤ ∣∣∣Q(k)

n (x)
∣∣∣ , x ∈ In,k .

Indeed, if {ℓi}ni=0 are the fundamental polynomials for interpolation at {ti}ni=0, then

ℓn ≺ ℓn−1 ≺ · · · ≺ ℓ0

and, by Lemma 2.1,
ℓ(k)n ≺ ℓ

(k)
n−1 ≺ · · · ≺ ℓ

(k)
0 .

This observation, combined with the fact that the sign of the leading coefficient of ℓi(x) is
(−1)i, i = 0, 1, . . . , n, implies that if x is an interior point of In,k, then the signs of {ℓ(k)i (x)}ni=0

alternate. In view of (2.8), so do the signs of {Qn(ti)}ni=0, and using (2.6) we conclude that∣∣∣f (k)(x)∣∣∣ = ∣∣∣∣∣
n∑

i=0

ℓ
(k)
i (x)f(ti)

∣∣∣∣∣ ≤
n∑

i=0

∣∣∣ℓ(k)i (x)f(ti)
∣∣∣

≤
n∑

i=0

∣∣∣ℓ(k)i (x)Qn(ti)
∣∣∣ = ∣∣∣∣∣

n∑
i=0

ℓ
(k)
i (x)Qn(ti)

∣∣∣∣∣ = ∣∣∣Q(k)
n (x)

∣∣∣ .(2.12)

Obviously, (2.12) remains true also when x is a boundary point of In,k, and hence (2.11) is
proved. It is readily seen from (2.12) that in the case when x is an interior point of In,k, the
inequality (2.11) is strict unless f = ±Qn.
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Next, we show that on the Zolotarev set Jn,k,
∣∣f (k)∣∣ is bounded by |Zn,k|, i.e.,

(2.13)
∣∣∣f (k)(x)∣∣∣ ≤ |Zn,k(x)| , x ∈ Jn,k.

Using the representation of Q(k)
n and Zn,k, given in (2.5) and (2.7), we find that

Zn,k(x)−Q(k)
n (x) = 2(x− a)ω

(k)
0 (x),

Zn,k(x) +Q(k)
n (x) = 2(x− b)ω(k)

n (x).

Hence,

(2.14) Zn,k(x) =


Q

(k)
n (x), x ∈ {αk

i }
n−k
i=1 ∪ {a},

−Q(k)
n (x), x ∈ {b} ∪ {βk

i }
n−k
i=1 .

In view of (2.11), for an arbitrary constant c ∈ (−1, 1), we have

(2.15)
∣∣∣c f (k)(x)∣∣∣ < ∣∣∣Q(k)

n (x)
∣∣∣ = |Zn,k(x)| , x ∈ {b} ∪ {αk

i }n−k
i=1 ∪ {βk

i }n−k
i=1 ∪ {a}.

It follows from (2.10), (2.11), (2.14) and (2.15) that Zn,k − c f (k) has a zero in each interval
(βk

i , α
k
i+1), 1 ≤ i ≤ n− k− 1 (again, this statement is void if k = n− 1). Moreover, Zn,k − c f (k)

has a zero in each of intervals (b, αk
1) and (βk

n−k, a). To see this, we observe from (2.5) and (2.7)
that the leading coefficients of Q(k)

n (x) and Zn,k(x) have the same sign. Since Q(k)
n has no zeros

outside the interval (αk
1 , β

k
n−k), we find from (2.14) and (2.15) that

sign{Zn,k(x)− c f (k)(x)}|x=αk
1
= sign{Q(k)

n (αk
1)} = − sign{Zn,k(x)− c f (k)(x)}|x=b,

sign{Zn,k(x)− c f (k)(x)}|x=βk
n−k

= − sign{Q(k)
n (βk

n−k)} = − sign{Zn,k(x)− c f (k)(x)}|x=a ,

thus concluding that Zn,k − c f (k) has a zero in each of the intervals (b, αk
1) and (βk

n−k, a).
Hence, all n−k+1 zeros of Zn,k−c f (k) belong to the Chebyshev set In,k, and consequently

Zn,k − c f (k) ̸= 0 on Jn,k. Since c ∈ (−1, 1) is arbitrary, it follows that
∣∣c f (k)(x)∣∣ ̸= |Zn,k(x)|,

x ∈ Jn,k. On the boundary points of Jn,k = R \ In,k we have
∣∣c f (k)(x)∣∣ < |Zn,k(x)|, hence the

same inequality holds true on Jn,k. Therefore,
∣∣f (k)(x)∣∣ ≤ |Zn,k(x)| on the Zolotarev set, i.e.,

(2.13) holds true. The proof of Theorem 2.5 in the case 1 ≤ k ≤ n − 1 follows from (2.11) and
(2.13). The remaining case k = n is readily verified: since {ℓ(n)i (x)}ni=0 is a sequence of sign
alternating constants, (2.12) holds true in this case, too. □

Remark 2.1. When 1 ≤ k ≤ n−1 and x is an interior point of In,k, (2.12) implies the strict inequality∣∣f (n)(x)∣∣ < ∣∣∣Q(n)
n (x)

∣∣∣ unless f = ±Qn. The same conclusion follows from (2.12) in the case k = n,

i.e.,
∣∣f (n)∣∣ < ∣∣∣Q(n)

n

∣∣∣ unless f = ±Qn.

Remark 2.2. Theorem 1.3 can be obtained as a special case of Theorem 2.5 with a = 1, b = −1 and
ω = 1

2k Q
′
n.

3. DS-INEQUALITIES WITH JACOBI POLYNOMIALS AS MAJORANTS

Theorem 2.5 is applicable when the majorant Qn is a Jacobi polynomial. Recall that Jacobi
polynomials

{
P

(α,β)
m

}
m∈N0

are the orthogonal polynomials in [−1, 1] with respect to the weight
function wα,β(x) = (1− x)α(1 + x)β , α, β > −1, see e.g, [22, Chapt. 4].
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Jacobi polynomials P (α,β)
n , P (α,β+1)

n and P (α+1,β+1)
n−1 are connected with the identity

(3.16) P (α,β+1)
n (x) = P (α,β)

n (x) +
1

2
(x− 1)P

(α+1,β+1)
n−1 (x),

which is a consequence of Gauss’ contiguous relations (see, e.g. [1, Section 2.5]) and the repre-
sentation of Jacobi polynomials as hypergeometric functions. It follows from (3.16) and

(3.17)
d

dx

{
P (α,β)
n (x)

}
=

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x)

(see [22, eqn. (4.21.7)]) that the zeros of P (α,β+1)
n (x) and

d

dx

{
P (α,β)
n (x)

}
interlace.

Setting Qn := P
(α,β+1)
n and q := P

(α,β)
n , by k-fold differentiation of (3.16) we get

(3.18) Q(k)
n (x) =

1

n+ α+ β + 1

[
(x− 1)q(k+1)(x) + (n+ α+ β + k + 1) q(k)(x)

]
.

This representation of Q(k)
n provides relation (2.5) between Qn and ω in Theorem 2.5 with

ω(x) =
1

2k
q′(x), a = 1, b = −1− 2k

n+ α+ β + 1
.

Replacing these quantities in (2.7), we find that in this particular case Theorem 2.5 reads as:

Theorem 3.6. Let Qn = P
(α,β+1)
n and q = P

(α,β)
n . If f ∈ πn satisfies

|f | ≤ |Qn| at the zeros of (x2 − 1)q′(x),

then for k = 1, . . . , n and for every x ∈ R,∣∣∣f (k)(x)∣∣∣ ≤ max
{ ∣∣∣Q(k)

n (x)
∣∣∣ , |Zn,k(x)|

}
,

where

(3.19) Zn,k(x) =
x2 − 1

k
q(k+1)(x) + xq(k)(x) +

((x− 1)q′(x))
(k)

n+ α+ β + 1
.

Theorem 3.6 enables us to prove the following DS-inequality:

Theorem 3.7. Let Qn = P
(α,β+1)
n and q = P

(α,β)
n , where −1/2 < α ≤ β. If f ∈ πn satisfies

|f | ≤ |Qn| at the zeros of (x2 − 1)q′(x),

then

(3.20)
∥∥f (k)∥∥ ≤

∥∥Q(k)
n

∥∥ , k = 1, . . . , n .

The equality occurs in (3.20) if and only if f = ±Qn.

Proof of Theorem 3.7. We shall show that for Zn,k defined in (3.19) there holds

(3.21) ∥Zn,k∥ < ∥Q(k)
n ∥, k = 1, . . . , n.

We need the following property of Jacobi polynomials (cf. [22, Theorem 5.32.1] or [1, p. 350,
Problem 40]):

Lemma 3.2. Let max{α, β} ≥ −1/2. Then for every m ∈ N,∥∥P (α,β)
m

∥∥ =

{
P

(α,β)
m (1) =

(
m+α
m

)
, if α ≥ β,∣∣∣P (α,β)

m (−1)
∣∣∣ =

(
m+β
m

)
, if β ≥ α.

Unless α = β = −1/2, the norm of P (α,β)
m is attained only at end point of the interval [−1, 1].
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In view of (3.17), apart from constant factors, the polynomials Q(k)
n , q(k) and q(k+1) are equal

respectively to P (α+k,β+k+1)
n−k , P (α+k,β+k)

n−k and P
(α+k+1,β+k+1)
n−k−1 . Since β ≥ α ≥ −1/2, we have

β + k + 1 ≥ α+ k + 1 > α+ k ≥ 1/2, then (3.18) and Lemma 3.2 imply

(3.22) ∥Q(k)
n ∥ = |Q(k)

n (−1)| = 2

n+ α+ β + 1

∣∣∣q(k+1)(−1)
∣∣∣+ (

1 +
k

n+ α+ β + 1

) ∣∣∣q(k)(−1)
∣∣∣ .

We represent the polynomial Zn,k defined in (3.19) in the form

(3.23) Zn,k(x) = φ(x) +
1

n+ α+ β + 1
ψ(x),

where

φ(x) =
x2 − 1

k
q(k+1)(x) + xq(k)(x),

ψ(x) = (x− 1) q(k+1)(x) + kq(k)(x).

Lemma 3.3. Let q = P
(α,β)
n , where β ≥ α ≥ −1/2. Then

∥ψ∥ =
∥∥∥(x− 1)q(k+1)(x) + kq(k)(x)

)∥∥∥ = 2
∣∣∣q(k+1)(−1)

∣∣∣+ k
∣∣∣q(k)(−1)

∣∣∣ = |ψ(−1)|

and, in addition, ∥ψ∥ is attained only at x = −1.

Proof of Lemma 3.3. By triangle inequality and Lemma 3.2,

∥ψ∥ ≤
∥∥(x− 1)q(k+1)(x)

∥∥+ k
∥∥q(k)(x)∥∥ ≤ 2

∥∥q(k+1)
∥∥+ k

∥∥q(k)∥∥
= 2

∣∣∣q(k+1)(−1)
∣∣∣+ k

∣∣∣q(k)(−1)
∣∣∣ = ∣∣∣−2 q(k+1)(−1) + k q(k)(−1)

∣∣∣
= |ψ(−1)|.

On account of the last claim of Lemma 3.2, one can readily see that x = −1 is the unique point
[−1, 1] where the norm of ψ is attained. □

Next, we estimate the norm of φ.

Lemma 3.4. Let q = P
(α,β)
n , where β ≥ α ≥ −1/2. Then

∥φ∥ =
∥∥∥x2 − 1

k
q(k+1)(x) + xq(k)(x)

∥∥∥ =
∣∣∣q(k)(−1)

∣∣∣ = |φ(−1)|, k = 1, . . . , n.

Proof of Lemma 3.4. We consider separately three cases.
Case 1: α = β = −1/2. This case, corresponding to q = Tn, has been proven by Shadrin in

[20, Lemma 3], it reads as∥∥∥x2 − 1

k
T (k+1)
n (x) + xT (k)

n (x)
∥∥∥ =

∣∣∣T (k)
n (−1)

∣∣∣ = T (k)
n (1).

Case 2: α = β > −1/2. We make use of the fact that q = P
(α,α)
n admits non-negative

expansion in the Chebyshev polynomials of the first kind (cf. [2, eq. (7.34)]):

q(x) =

n∑
ν=0

cν Tν(x), cν ≥ 0.
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Using the result from Case 1, we find∥∥∥x2 − 1

k
q(k+1)(x) + x q(k)(x)

∥∥∥ =
∥∥∥ n∑

ν=0

cν

(
x2 − 1

k
T (k+1)
ν (x) + xT (k)

ν (x)

)∥∥∥
≤

n∑
ν=0

cν

∥∥∥x2 − 1

k
T (k+1)
ν (x) + xT (k)

ν (x)
∥∥∥

=

n∑
ν=0

cνT
(k)
ν (1) = q(k)(1) =

∣∣∣q(k)(−1)
∣∣∣ .

Case 3: β > α ≥ −1/2. Set r = P
(β,α)
n , then r(x) admits representation in the basis of{

P
(α,α)
ν (x)

}n

ν=0
=:

{
Pν(x)

}n

ν=0
with non-negative coefficients (cf. [2, eq. (7.33)]):

r(x) =

n∑
ν=0

cν Pν(x), cν = cν(n, α, β) ≥ 0.

This representation and the result from Case 2 imply∥∥∥x2 − 1

k
r(k+1)(x) + x r(k)(x)

∥∥∥ =
∥∥∥ n∑

ν=0

cν

(
x2 − 1

k
P (k+1)
ν (x) + xP (k)

ν (x)

)∥∥∥
≤

n∑
ν=0

cν

∥∥∥x2 − 1

k
P (k+1)
ν (x) + xP (k)

ν (x)
∥∥∥

=

n∑
ν=0

cνP
(k)
ν (1) = r(k)(1).

Now using the symmetry property P (β,α)
n (−x) = (−1)nP

(α,β)
n (x) (cf. [4, p. 144, eq. (2.8)], for

q(x) = P
(α,β)
n (x) = (−1)nr(−x) we obtain∥∥∥x2 − 1

k
q(k+1)(x) + x q(k)(x)

∥∥∥ =
∥∥∥x2 − 1

k
r(k+1)(x) + x r(k)(x)

∥∥∥ = r(k)(1) =
∣∣∣q(k)(−1)

∣∣∣ .
Lemma 3.4 is proved. □

Lemma 3.3 and Lemma 3.4 imply

∥Zn,k∥ =
∥∥∥φ+

1

n+ α+ β + 1
ψ
∥∥∥

≤ ∥φ∥+ 1

n+ α+ β + 1
∥ψ∥

= |φ(−1)|+ 1

n+ α+ β + 1
|ψ(−1)|(3.24)

=
∣∣∣q(k)(−1)

∣∣∣+ 1

n+ α+ β + 1

(
2
∣∣∣q(k+1)(−1)

∣∣∣+ k
∣∣∣q(k)(−1)

∣∣∣)
=

2

n+ α+ β + 1

∣∣∣q(k+1)(−1)
∣∣∣+ (

1 +
k

n+ α+ β + 1

) ∣∣∣q(k)(−1)
∣∣∣ .

According to (3.22), the last expression is equal to
∥∥Q(k)

n

∥∥, so we have proved the inequality∥∥Zn,k

∥∥ ≤
∥∥Q(k)

n

∥∥, and now inequality (3.20) in Theorem 3.7 follows from Theorem 3.6.
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For the last statement of Theorem 3.7, we need to prove the strict inequality (3.21). We
observe that φ(−1) and ψ(−1) have opposite signs, namely,

signφ(−1) = − sign q(k)(−1) = (−1)n−1−k, signψ(−1) = sign q(k)(−1) = (−1)n−k.

Therefore, the inequality in the second line of (3.24) is strict, and hence (3.21) holds true. We are
ready now to prove the last claim of Theorem 3.7. The case k = n is a direct consequence from
Remark 2.1. The case 1 ≤ k ≤ n−1 is also justified with Remark 2.1 as follows. We recall that if
f ∈ πn satisfies the assumptions of Theorem 3.6, then |Zn,k(x)| (resp.

∣∣∣Q(k)
n (x)

∣∣∣) furnishes upper

bound for
∣∣f (k)(x)∣∣ when x belongs to the Zolotarev set Jn,k (resp. Chebyshev set In,k). In view

of (3.21), the equality
∥∥f (k)∥∥ =

∥∥Q(k)
n

∥∥ can happen only when the norm of f (k) is attained at

a point x from the set In,k
⋂
[−1, 1]. Since

∣∣f (k)(x)∣∣ ≤
∣∣∣Q(k)

n (x)
∣∣∣ for x ∈ In,k

⋂
[−1, 1] and, by

Lemma 3.2,
∥∥Q(k)

n

∥∥ =
∣∣∣Q(k)

n (−1)
∣∣∣ with x = −1 being the unique point where the norm of Q(k)

n

is attained, it follows that
∥∥f (k)∥∥ =

∥∥Q(k)
n

∥∥ is possible only when
∣∣f (k)(−1)

∣∣ =
∣∣∣Q(k)

n (−1)
∣∣∣.

Since x = −1 is an interior point for In,k, the last equality holds only if f = ±Qn, by virtue of
Remark 2.1. □

Let us consider the special case α = β = −1/2. According to (3.17),

q′(x) =
1

2
nP

(1/2,1/2)
n−1 (x)

and, apart from a constant factor, q′ is equal to the (n−1)th Chebyshev polynomial of the second
kind Un−1, which is defined for x ∈ [−1, 1] by

Un−1(x) =
sinnθ

sin θ
, x = cos θ,

and whose zeros are
tν = cos

νπ

n
, ν = 1, . . . , n− 1.

On the other hand, apart from a constant multiplier,Qn = P
(−1/2,1/2)
n is equal to the Chebyshev

polynomial of the third kind Vn(x), which is defined for x ∈ [−1, 1] by

(3.25) Vn(x) =
cos

(
n+ 1

2

)
θ

cos
(
1
2θ

) , x = cos θ .

Clearly,

Vn

(
cos

νπ

n

)
=(−1)ν , ν = 0, 1, . . . , n− 1,

Vn(−1) =(−1)n(2n+ 1) .

Thus, in the case α = β = −1/2, Theorem 3.7 comes down to the following:

Corollary 3.1. Let f ∈ πn satisfy |f(−1)| ≤ 2n+ 1 and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 0, . . . , n− 1 .

Then

(3.26)
∥∥f (k)∥∥ ≤

∥∥V (k)
n

∥∥ , k = 1, . . . , n,

where Vn is the n-th Chebyshev polynomial of the third kind (3.25). The equality in (3.26) occurs only
if f = ±Vn.
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The n-th Chebyshev polynomial of the fourth kind Wn(x) = (−1)nVn(−x) is defined for
x ∈ [−1, 1] by

(3.27) Wn(x) =
sin

(
n+ 1

2

)
θ

sin
(
1
2θ

) , x = cos θ .

Reflection of the variable in Corollary 3.1 (i.e., replacement of x with −x) yields another corol-
lary of Theorem 3.7:

Corollary 3.2. Let f ∈ πn satisfy |f(1)| ≤ 2n+ 1 and∣∣∣f (cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n ,

then

(3.28)
∥∥f (k)∥∥ ≤

∥∥W (k)
n

∥∥ , k = 1, . . . , n,

where Wn is the n-th Chebyshev polynomial of the fourth kind (3.27). The equality in (3.28) occurs only
if f = ±Wn.

Proof of Theorem 1.4. Theorem 1.4 is deduced as a convex combination of the result of Duffin
and Schaeffer (Theorem 1.2) and Corollary 3.2. Assume that for some c ∈ [0, 1], the polynomial
f ∈ πn satisfies ∣∣∣f (cos νπ

n

)∣∣∣ ≤ 1, ν = 1, . . . , n,

|f(1)| ≤ 1 + 2cn.

Clearly, f can be represented as f(x) = (1−c) g(x)+c h(x), where f, h ∈ πn obey the restrictions∣∣∣g (cos νπ
n

)∣∣∣ ≤ 1, ν = 0, . . . , n,∣∣∣h(cos νπ
n

)∣∣∣ ≤ 1, ν = 1, . . . , n,

|h(1)| ≤ 2n+ 1.

Theorem 1.2 implies ∥∥g(k)∥∥ ≤
∥∥T (k)

n

∥∥ = T (k)
n (1)

while Corollary 3.2 yields ∥∥h(k)∥∥ ≤
∥∥W (k)

n

∥∥ =W (k)
n (1).

Consequently, ∥∥f (k)∥∥ ≤ (1− c)
∥∥g(k)∥∥+ c

∥∥h(k)∥∥ ≤ (1− c)
∥∥T (k)

n

∥∥+ c
∥∥W (k)

n

∥∥
= (1− c)T (k)

n (1) + cW (k)
n (1) =

∥∥(1− c)T (k)
n + cW (k)

n

∥∥
=

∥∥Q(k)
n

∥∥ ,
where Qn(x) = (1 − c)Tn(x) + cWn(x). Since the norm of Q(k)

n is attained at x = 1, we apply
Remark 2.1 to conclude that the equality

∥∥f (k)∥∥ =
∥∥Q(k)

n

∥∥ occurs only when f = ±Qn. □
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4. CONCLUDING REMARKS

DS-inequalities can find application to the estimation of the round-off error of interpolatory
formulae for numerical differentiation (see [9, p. 174, Remark 2]). Also, DS-inequalities may
serve as a useful tool for establishing Markov-type inequalities for polynomials with curved
majorants. For the readers convenience, we provide below a brief information on this topic.

We call majorant a continuous positive (or non-negative) function µ(x) in [−1, 1]. If there ex-
ists a polynomial P ∈ πn, P ̸= 0, such that −µ(x) ≤ P (x) ≤ µ(x), x ∈ [−1, 1], then there exists a
unique (up to orientation) polynomial ωµ ∈ πn (snake polynomial) which oscillates most between
±µ. The n-th snake polynomial ωµ, associated with the majorant µ, is uniquely determined by
the following properties:

a) |ωµ(x)| ≤ µ(x) x ∈ [−1, 1] ;
b) There exists a set δ∗ = (τ∗i )

n
i=0, 1 ≥ τ∗0 > · · · > τ∗n ≥ −1, such that

ωµ(τ
∗
i ) = (−1)iµ(τ∗i ), i = 0, . . . , n.

The set δ∗ is referred to as the set of alternation points of ωµ.
Associated with a given a majorant µ(x), we have the following extremal problems (cf. [14]):

Problem 1: Markov inequality with a majorant. Given n, k ∈ N, 1 ≤ k ≤ n, and a majorant
µ ≥ 0, find

Mk,n(µ) := sup{∥p(k)∥ : p ∈ πn, |p(x)| ≤ µ(x), x ∈ [−1, 1]} .
Problem 2: Duffin-Schaeffer inequality with a majorant. Given n, k ∈ N, 1 ≤ k ≤ n, and a
majorant µ ≥ 0, find

Dk,n(µ) := sup{∥p(k)∥ : p ∈ πn, |p(x)| ≤ µ(x), x ∈ δ∗} .

Clearly, Mk,n(µ) ≤ Dk,n(µ), and the results of V. A. Markov and of R. J. Duffin and A. C.
Schaeffer (Theorem 1.2) read as:

µ(x) ≡ 1 ⇒Mk,n(µ) = Dk,n(µ) = ∥T (k)
n ∥ , 1 ≤ k ≤ n .

A natural question is: for which other majorants µ the snake-polynomial ωµ is extremal to
both Problems 1 and 2, i.e., when do we have the equalities

Mk,n(µ)
?
= Dk,n(µ)

?
= ∥ω(k)

µ ∥ ?

A conjecture (belonging to mathematical folklore) states that the extremal polynomial to Prob-
lem 1 is the snake polynomial ωµ. So far, no counterexample to this conjecture is found. On the
contrary, ωµ is not always the extremal polynomial to Problem 2, the following counterexam-
ples are known:

1) µ(x) =
√

1− x2, k = 1 (cf. [16]);
2) µ(x) = 1− x2, k = 1, 2 (cf. [17]).

The difficulty with the proof of the above conjecture comes from the fact that only in some
exceptional cases the snake polynomials are known explicitly (and the same applies to the as-
sociated sets of alternation points). Assuming the snake polynomial ωµ is known, a possible ap-
proach to showing that ωµ is the extreme polynomial to Problem 2 is to show that DS-inequality
holds for any pair (ωµ,∆) such that the points from ∆ are separated by the zeros of ωµ. For
µ ≡ 1 (and ωµ = Tn) this plan was realized by the author in [10] (for k = 1) and [12] (the general
case 1 ≤ k ≤ n), thus showing that whenever Tn is a snake polynomial associated with some
majorant µ, then Tn is the extreme polynomial to Problem 2. Even more is true: in [14, 15] we
proved that whenever the snake polynomial associated with a majorant µ possessses positive
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or sign-alternating expansion in the Chebyshev polynomials of the first kind, it is the extreme
polynomial to Problem 2.

The DS-inequalities in this paper were announced without proof in [13]. Although they can
be derived from the results in [14, 15], we decided to propose here a direct self-contained proof,
emphasizing to the important particular case presented by Theorem 1.4.
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ABSTRACT. One of the pillars of mathematical analysis is the Hardy-Hilbert integral inequality. In this article, we
advance the theory by introducing several new modifications to this inequality. They have the property of incorporat-
ing an adjustable parameter and different power functions, allowing for greater flexibility and broader applicability.
Notably, one modification has a logarithmic structure, offering a distinctive extension to the classical framework. For
the main results, the optimality of the corresponding constant factors is shown. Additional integral inequalities of
various forms and scopes are also established. Thus, this work contributes to the ongoing development of Hardy-
Hilbert-type inequalities by presenting new generalizations and providing rigorous mathematical justifications for
each result.
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1. INTRODUCTION

The classical Hardy-Hilbert integral inequality is a fundamental result in real and harmonic
analysis. It plays an important role in establishing bounds in various double integral estimates.
A formal statement of this inequality is given below. Let p > 1, q = p/(p − 1) and f, g :
[0,+∞) 7→ [0,+∞) (be two non-negative functions) such that∫ +∞

0

fp(x)dx < +∞,

∫ +∞

0

gq(y)dy < +∞.

Then there exists a sharp constant ∆ > 0 such that∫ +∞

0

∫ +∞

0

1

x+ y
f(x)g(y)dxdy ≤ ∆

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(y)dy

]1/q
.(1.1)

This inequality was studied in detail by Hardy, Littlewood and Polya in the early 20th century.
See [7]. The optimal constant Λ in Equation (1.1) is given by

∆ =
π

sin(π/p)
.

In other words, ∆ is the smallest possible constant such that the inequality in Equation (1.1)
holds for all admissible functions f and g.
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Thanks to its flexibility with respect to f and g, the Hardy-Hilbert integral inequality has
significant applications in analysis, partial differential equations, and related fields. Numer-
ous generalizations and refinements have been proposed, often involving modifications to the
integrand (kernel) structure, the integration domain, or the dependence on parameters. For a
complete overview, see [23, 19, 20, 18, 21, 9, 22, 24, 17, 2, 1, 4, 5, 8, 12, 3, 13, 16, 15].

For the purposes of this article, we highlight three well-known results below. The technical
details can be found in the two reference books of B.C. Yang: [23, 22].

First result: An integral norm variant of the Hardy-Hilbert integral inequality is pre-
sented below. Let p > 1, q = p/(p− 1) and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:

∫ +∞

0

∫ +∞

0

1

x+ y
f(x)g(y)dxdy ≤ π

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

(1.2)

Compared to the Hardy-Hilbert integral inequality, weighted integral norms of f and
g are considered in the upper bound, with the weight functions ω(x) = xp/2−1 and
ρ(y) = yq/2−1, respectively. The purpose of these weight functions is to emphasize the
different growth rates of f and g. In this setting, the constant π is found to be optimal.

Second result: The second interesting result is in the same vein but deals with power
functions depending on an adjustable parameter. Let p > 1, q = p/(p− 1), α > −1 and
f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

1

xα+1 + yα+1
f(x)g(y)dxdy

≤ π

α+ 1

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.(1.3)

The case α = 0 corresponds to the result in Equation (1.2). It is therefore a one-
parameter generalization. In this case, the constant π/(α+ 1) is also optimal.

Third result: The third and last key result is different from the previous two. It has the
feature of dealing with a logarithmic function in the integrand, which strongly modifies
the functional structure of the original Hardy-Hilbert integral inequality. Let p > 1,
q = p/(p− 1) and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

1

x− y
log

(
x

y

)
f(x)g(y)dxdy

≤π2

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,
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noting that the function [1/(x−y)] log(x/y) is always non-negative. This inequality can
be seen as a natural extension of [7, Formula 342]. In this case, the constant π2 is also
optimal.

Building on these results, the contributions of this article are divided into three complemen-
tary parts. In the first part, we present integral formulas, which are new to our knowledge.
In particular, they are not presented in [6], which remains the largest collection of reference
integrals.

These formulas serve as the basis for the second part, where we use them to develop new
forms of Hardy-Hilbert-type integral inequalities. The first form involves multiple power func-
tions depending on an adjustable parameter. Specifically, we determine the optimal constant
Λ > 0 such that ∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤Λ

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,

where α > −1/2 is the adjustable parameter. The case α = 0 corresponds to the result given
in Equation (1.2). In this sense, the established inequality is a valuable generalization. We
then use this innovative Hardy-Hilbert-type integral inequality to derive several new variants.
These include modified power integrands and also variants involving the primitives of f and
g, drawing connections to the Hardy inequality. We again refer to [7] for more details on this
classical inequality.

In the third part, we introduce a logarithmic structure to the analysis. Specifically, using a
new logarithmic formula, we determine the optimal constant Ω > 0 such that∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤Ω

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
,

with the same restriction on α, i.e., α > −1/2, and noting that the function (x − y) log(x/y)
is always non-negative. To our knowledge, this inequality is new even in the special case
α = 0. We also use this result to derive additional modifications, including one that involves
the primitives of f and g.

All proofs are given in full, without omitting intermediate steps.
The rest of the article is organized as follows: Section 2 presents the new integral formulas.

Sections 3 and 4 develop the first and second forms of Hardy-Hilbert-type inequalities, respec-
tively. Section 5 gives the complete proofs of the results. Finally, Section 6 contains concluding
remarks and perspectives.

2. INTEGRAL FORMULAS

Key integral formulas are detailed in this section.

2.1. First formula. Our first formula is an explicit evaluation of a one-parameter integral that
involves multiple power functions. It will play a central role in the development of our first
Hardy-Hilbert integral inequalities.
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Proposition 2.1. For any α > −1/2, the following equality holds:∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx =
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.

The proof is based on a careful application of a classical integral result involving the beta
function, i.e., [6, entry 3.241.2]. To our knowledge, the formula in Proposition 2.1 is new. It may
serve as a valuable tool in various contexts involving singular integrals, weighted inequalities,
or the analysis of fractional operators, beyond the purposes of this article.

In particular, the special cases below are of interest because of the simplicity of the result.
• For α = 0, we have ∫ +∞

0

1√
x(1 + x)

dx = π.

This is a very classical result, associated with the primitive 2 arctan[
√
x].

• For α = 1/2, we get ∫ +∞

0

1 +
√
x√

x(1 + x3/2)
dx =

8π

3
√
3
.

• For α = 1, we have ∫ +∞

0

1 + x√
x(1 + x2)

dx =
√
2π.

• For α = 2, we obtain ∫ +∞

0

1 + x2

√
x(1 + x3)

dx =
4π

3
.

Some negative values of α are also allowed. In particular, if we take α = −1/4, Proposition 2.1
gives ∫ +∞

0

1 + x−1/4

√
x(1 + x3/4)

dx =
16π

3
√
3
.

In fact, for the values considered of α, we are able to find primitives associated with the inte-
grand. However, for decimals of large value of α, the complexity increases significantly and
our formula becomes essential.

2.2. Second formula. Our second formula is derived directly from Proposition 2.1. Its main
originality lies in the presence of the positive function (x − 1) log(x) in the integrand and still
power functions depending on an adjustable parameter. Like the previous result, it will play a
key role in establishing optimal constants in a main Hardy-Hilbert-type integral inequality.

Proposition 2.2. For any α > −1/2, the following equality holds:∫ +∞

0

xα−1/2 (x− 1) log(x)

(1 + xα+1)2
dx

=
π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
.

More precisely, the proof is based on the differentiation of the identity in Proposition 2.1
with respect to the parameter α. Again, to the best of our knowledge, this formula is new. In
particular, it is not referred to in [6]. As a short numerical study, the results below illustrate the
formula by considering specific values of α.



Study of some new one-parameter modifications of the Hardy-Hilbert integral inequality 97

• For α = −1/4, we have∫ +∞

0

x−3/4 (x− 1) log(x)

(1 + x3/4)2
dx =

256

81

(
3
√
3

4
+

π

2

)
π ≈ 28.4945.

• For α = 1/2, we get∫ +∞

0

(x− 1) log(x)

(1 + x3/2)2
dx =

32

81

(
3
√
3

2
− π

2

)
π ≈ 1.27498.

• For α = 1, we obtain∫ +∞

0

x1/2 (x− 1) log(x)

(1 + x2)2
dx =

1

4
π

(
2
√
2− π√

2

)
≈ 0.476725.

Numerical checks confirm the correspondence of the left-hand and right-hand sides.

3. FIRST HARDY-HILBERT-TYPE INTEGRAL INEQUALITIES

We are now in a position to present our first Hardy-Hilbert-type integral inequalities.

3.1. Main result. The proposition below describes our first modification of the Hardy-Hilbert
integral inequality. We emphasize the original form of the integrand with multiple power
functions depending on an adjustable parameter and the expression of the constant factor with
the sine function.

Proposition 3.3. Let p > 1, q = p/(p− 1), α > −1/2, and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤Λα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,

where

Λα =
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.(3.4)

The proof is based mainly on an appropriate decomposition of the integrand, the generalized
Hölder integral inequality, changes of variables, and Proposition 2.1.

The cases presented below are of interest, especially for the simplicity of the integrands and
the expressions of the factor constants:

• For α = 0, we have∫ +∞

0

∫ +∞

0

1

x+ y
f(x)g(y)dxdy

≤π

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

We recognize the modification of the Hardy-Hilbert integral inequality as presented in
Equation (1.2). In this sense, Proposition 3.3 can be viewed as a generalization.
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• For α = 1/2, Proposition 3.3 gives∫ +∞

0

∫ +∞

0

√
x+

√
y

x3/2 + y3/2
f(x)g(y)dxdy

≤ 8π

3
√
3

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

• For α = 1, we have∫ +∞

0

∫ +∞

0

x+ y

x2 + y2
f(x)g(y)dxdy

≤
√
2π

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

• For α = 2, we get∫ +∞

0

∫ +∞

0

x2 + y2

x3 + y3
f(x)g(y)dxdy

≤4π

3

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

• As a example of negative value for α, if we take α = −1/4, we have∫ +∞

0

∫ +∞

0

x−1/4 + y−1/4

x3/4 + y3/4
f(x)g(y)dxdy

≤ 16π

3
√
3

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

To the best of our knowledge, these results and the intermediate cases are new to the literature
on integral inequalities. They open up new perspectives in functional analysis and in operator
theory in particular.

3.2. Additional results. As formalized below, it is important to note that the factor constant in
Proposition 3.3 is optimal.

Proposition 3.4. In the setting of Proposition 3.3, the constant Λα in Equation (3.4) is optimal.

The proof is by contradiction reasoning in combination with well-chosen extremal functions.
A hybrid version between the inequalities in Proposition 3.3 and Equation (1.3) is suggested

below.

Proposition 3.5. Let p > 1, q = p/(p− 1), α > −1/2, β ∈ [0, 1] and f, g : [0,+∞) 7→ [0,+∞) such
that ∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

(xα + yα)β

xα+1 + yα+1
f(x)g(y)dxdy

≤Υα,β

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,
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where

Υα,β =
π

α+ 1
2β
[
sin

(
π

2(α+ 1)

)]−β

.(3.5)

The proof is based on a thorough use of the Hölder integral inequality, combined with
Proposition 3.3 and Equation (1.3). Clearly, if we take β = 1, then Proposition 3.5 reduces
to Proposition 3.3, and if we take β = 0, it reduces to Equation (1.3), all the intermediary values
giving a new case.

A modification of Proposition 3.3 is developed below. The main change is the numerator
term of the form (x+ y)α, where α is the same parameter used in the denominator.

Proposition 3.6. Let p > 1, q = p/(p− 1), α > 0 and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

xp/2−1fp(x)dx < +∞,

∫ +∞

0

yq/2−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

(x+ y)α

xα+1 + yα+1
f(x)g(y)dxdy

≤Θα,β

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,

where

Θα,β = max(2α−1, 1)
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.(3.6)

The proof follows from a convexity inequality and Proposition 3.3.
A variant of Proposition 3.3 is proposed below. It includes the primitives of f and g, follow-

ing the spirit of the Hardy integral inequality.

Proposition 3.7. Let p > 1, q = p/(p− 1), α > −1/2, f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

fp(x)dx < +∞,

∫ +∞

0

gq(y)dy < +∞

and F,G : [0,+∞) 7→ [0,+∞) be their respective primitives given by

F (x) =

∫ x

0

f(t)dt, G(y) =

∫ y

0

g(t)dt,

assuming that there exist (converge).
Then the following inequality holds:∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
x1/p−3/2y1/q−3/2F (x)G(y)dxdy

≤Φα,p

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(y)dy

]1/q
,

where

Φα,p =
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1(
p

p− 1

)(
q

q − 1

)
.(3.7)

The proof relies on Proposition 3.3 and the Hardy integral inequality. Note that, unlike the
previous results, we are dealing with the unweighted integral norms of f and g.

The rest of the article is devoted to the second Hardy-Hilbert-type integral inequalities.
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4. SECOND HARDY-HILBERT-TYPE INTEGRAL INEQUALITIES

4.1. Main result. The proposition below is our second major contribution of the Hardy-Hilbert
integral inequality. We emphasize the original form of the integrand with a logarithmic func-
tion and multiple power functions. The expression of the constant factor with the sine function
is also singular. It will be shown later that it is optimal.

Proposition 4.8. Let p > 1, q = p/(p− 1), α > −1/2, and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

x−(α−1/2)p−1fp(x)dx < +∞,

∫ +∞

0

y−(α−1/2)q−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤Ωα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
,

where

Ωα =
π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
.(4.8)

The proof relies on an appropriate decomposition of the integrand, the generalized Hölder
integral inequality, changes of variables, and Proposition 2.2.

Some special cases are highlighted below.

• For α = −1/4, we have∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(x3/4 + y3/4)2
f(x)g(y)dxdy

≤256

81

(
3
√
3

4
+

π

2

)
π

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
.

• For α = 1/2, we obtain∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(x3/2 + y3/2)2
f(x)g(y)dxdy

≤32

81

(
3
√
3

2
− π

2

)
π

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
.

• For α = 1, we get∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(x2 + y2)2
f(x)g(y)dxdy

≤1

4
π

(
2
√
2− π√

2

)[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
.

All of them are new, to the best of our knowledge.
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4.2. Additional results. The constant in Proposition 4.8 is optimal, as formalized in the propo-
sition below.

Proposition 4.9. In the setting of Proposition 4.8, the constant Ωα in Equation (4.8) is optimal.

A special version of Proposition 4.8 is given below. It deals with only one function, and with
an integrand that can be negative or positive; there is a certain degree of complexity in this
aspect.

Proposition 4.10. Let p > 1, q = p/(p − 1), α > −1/2, and f : [0,+∞) 7→ [0,+∞) be a function
such that ∫ +∞

0

x−(α−1/2)p−1fp(x)dx < +∞,

∫ +∞

0

y−(α−1/2)q−1fq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

x log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy

≤χα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1fq(y)dy

]1/q
,

where

χα =
π

2(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
.(4.9)

The proof follows from a re-examination of the double integral in Proposition 4.8 in the
special case f = g.

A modification of Proposition 4.8 is given below. It deals with a sophisticated power func-
tion depending on y and x, i.e., (x/y)y−x.

Proposition 4.11. Let p > 1, q = p/(p− 1), α > −1/2, and f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

x−(α−1/2)p−1fp(x)dx < +∞,

∫ +∞

0

y−(α−1/2)q−1gq(y)dy < +∞.

Then the following inequality holds:∫ +∞

0

∫ +∞

0

[
1−

(
x

y

)y−x
]

1

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤Ωα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
,

where Ωα is given by Equation (4.8).

The proof is mainly based on a well-known logarithmic inequality and Proposition 4.8.
A primitive version of Proposition 4.8 is presented below.

Proposition 4.12. Let p > 1, q = p/(p− 1), α > −1/2, f, g : [0,+∞) 7→ [0,+∞) such that∫ +∞

0

fp(x)dx < +∞,

∫ +∞

0

gq(y)dy < +∞

and F,G : [0,+∞) 7→ [0,+∞) be their respective primitives given by

F (x) =

∫ x

0

f(t)dt, G(y) =

∫ y

0

g(t)dt,
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assuming that there exist (converge).
Then the following inequality holds:∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
xα+1/p−3/2yα+1/q−3/2F (x)G(y)dxdy

≤Ψα,p

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(y)dy

]1/q
,

where

Ψα,p =
π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
×
(

p

p− 1

)(
q

q − 1

)
.(4.10)

The proof relies on Proposition 4.8 and the Hardy integral inequality.

5. PROOFS

This section contains the proofs of all our results.

5.1. Proofs of the propositions in Section 2.

Proof of Proposition 2.1. We need the integral formula below, with reference to [6, Entry 3.2412].
For any ν > µ > 0, we have ∫ +∞

0

xµ−1

1 + xν
dx =

π

ν

[
sin
(µπ

ν

)]−1

.(5.11)

An integral decomposition gives∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx =

∫ +∞

0

1√
x(1 + xα+1)

dx+

∫ +∞

0

xα

√
x(1 + xα+1)

dx

=

∫ +∞

0

x1/2−1

1 + xα+1
dx+

∫ +∞

0

x(α+1/2)−1

1 + xα+1
dx.

Let us determine the expression of each of these integrals. First, applying Equation (5.11) to
ν = α+ 1 and µ = 1/2, we get∫ +∞

0

x1/2−1

1 + xα+1
dx =

π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.

Second, applying again Equation (5.11) to ν = α + 1, but to µ = α + 1/2, which obviously
satisfies µ = α+1/2 < α+1 = ν, and using the basic trigonometric formula sin(π−x) = sin(x),
we get∫ +∞

0

x(α+1/2)−1

1 + xα+1
dx =

π

α+ 1

[
sin

(
(α+ 1/2)π

α+ 1

)]−1

=
π

α+ 1

[
sin

(
(2α+ 1)π

2(α+ 1)

)]−1

=
π

α+ 1

[
sin

(
π − π

2(α+ 1)

)]−1

=
π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.
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We therefore have∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx =
π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

+
π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

=
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

.

This ends the proof of Proposition 2.1. □

Proof of Proposition 2.2. It follows from Proposition 2.1 that

∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx =
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

,

with α > −1/2. Taking the partial derivative with respect to α on both sides, and developing
the right-hand side term, we get

∂

∂α

∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx

=
∂

∂α

{
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1
}

=− π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
.(5.12)

Thanks to the Leibnitz integral rule, we can exchange the integral and partial derivative sign
for the left-hand side term, which gives

∂

∂α

∫ +∞

0

1 + xα

√
x(1 + xα+1)

dx =

∫ +∞

0

∂

∂α

[
1 + xα

√
x(1 + xα+1)

]
dx

=−
∫ +∞

0

xα−1/2 (x− 1) log(x)

(1 + xα+1)2
dx.(5.13)

It follows from Equations (5.12) and (5.13) that

∫ +∞

0

xα−1/2 (x− 1) log(x)

(1 + xα+1)2
dx

=
π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
.

This concludes the proof of Proposition 2.2. □

5.2. Proofs of the propositions in Section 3.
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Proof of Proposition 3.3. Decomposing appropriately the integrand, taking into account the iden-
tity 1/p+ 1/q = 1 and applying the Hölder integral inequality, we get

∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

=

∫ +∞

0

∫ +∞

0

x1/(2q)y−1/(2p)

[
xα + yα

xα+1 + yα+1

]1/p
f(x)

×x−1/(2q)y1/(2p)
[

xα + yα

xα+1 + yα+1

]1/q
g(y)dxdy

≤A1/pB1/q,(5.14)

where A and B are given by

A =

∫ +∞

0

∫ +∞

0

xp/(2q)y−1/2 xα + yα

xα+1 + yα+1
fp(x)dxdy

and

B =

∫ +∞

0

∫ +∞

0

x−1/2yq/(2p)
xα + yα

xα+1 + yα+1
gq(y)dxdy.

Let us investigate the expressions of these terms, starting with A.
Exchanging the order of integration by the Fubini-Tonelli integral theorem, using the change

of variables u = y/x, applying Proposition 2.1 from which emerges the constant Λα in Equation
(3.4) and noting that p/q = p− 1, we get

A =

∫ +∞

0

xp/(2q)fp(x)

[∫ +∞

0

y−1/2 xα + yα

xα+1 + yα+1
dy

]
dx

=

∫ +∞

0

xp/(2q)−1/2fp(x)

[∫ +∞

0

1 + (y/x)α√
y/x [1 + (y/x)α+1]

× 1

x
dy

]
dx

=

∫ +∞

0

xp/(2q)−1/2fp(x)

{∫ +∞

0

1 + uα

√
u(1 + uα+1)

du

}
dx

= Λα

∫ +∞

0

xp/(2q)−1/2fp(x)dx

= Λα

∫ +∞

0

xp/2−1fp(x)dx.(5.15)
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For the term B, we proceed in a similar way, but with the change of variables v = x/y. We thus
obtain

B =

∫ +∞

0

yq/(2p)gq(y)

[∫ +∞

0

x−1/2 xα + yα

xα+1 + yα+1
dx

]
dy

=

∫ +∞

0

yq/(2p)−1/2gq(y)

[∫ +∞

0

1 + (x/y)α√
x/y [1 + (x/y)α+1]

× 1

y
dx

]
dy

=

∫ +∞

0

yq/(2p)−1/2gq(y)

{∫ +∞

0

1 + vα√
v(1 + vα+1)

dv

}
dy

= Λα

∫ +∞

0

yq/(2p)−1/2gq(y)dy

= Λα

∫ +∞

0

yq/2−1gq(y)dy.(5.16)

It follows from Equations (5.14), (5.15) and (5.16), and the identity 1/+ 1/q = 1, that∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤
{
Λα

∫ +∞

0

xp/2−1fp(x)dx

}1/p{
Λα

∫ +∞

0

yq/2−1gq(y)dy

}1/q

=Λα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.

This ends the proof of Proposition 3.3. □

Proof of Proposition 3.4. Let us assume, for the sake of contradiction, that the constant Λα is not
optimal, i.e., that there exists a better constant κ, i.e., κ ∈ (0,Λα), satisfying, for any f, g :
[0,+∞) 7→ [0,+∞), ∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤κ

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.(5.17)

To derive a contradiction, we need to define specific (extremal) functions for f and g. For any
ϵ ∈ (0,+∞), let fϵ : [0,+∞) 7→ [0,+∞) be

fϵ(x) =

{
0 if x ∈ [0, 1),

x−1/2−ϵ/p if x ∈ [1,+∞),

and, similarly, let gϵ : [0,+∞) 7→ [0,+∞) be

gϵ(y) =

{
0 if y ∈ [0, 1),

y−1/2−ϵ/q if y ∈ [1,+∞).
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We then have

∫ +∞

0

xp/2−1fp
ϵ (x)dx =

∫ +∞

1

xp/2−1(x−1/2−ϵ/p)pdx =

∫ +∞

1

x−ϵ−1dx

=

[
−1

ϵ
x−ϵ

]x→+∞

x=1

=
1

ϵ

and, similarly,

∫ +∞

0

yq/2−1gqϵ (y)dy =

∫ +∞

1

yq/2−1(y−1/2−ϵ/q)qdy =

∫ +∞

1

y−ϵ−1dy

=

[
−1

ϵ
x−ϵ

]x→+∞

x=1

=
1

ϵ
.

This, with the identity 1/p+ 1/q = 1 and Equation (5.17), gives

κ = κϵ× 1

ϵ1/p
× 1

ϵ1/q
= ϵ

{
κ

[∫ +∞

0

xp/2−1fp
ϵ (x)dx

]1/p [∫ +∞

0

yq/2−1gqϵ (y)dy

]1/q}

≥ ϵ

∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
fϵ(x)gϵ(y)dxdy.(5.18)

Let us now work on this double integral. Making the change of variables x = uy, using the
Fubini-Tonelli integral theorem and considering the identity 1/p+ 1/q = 1, we get

∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
fϵ(x)gϵ(y)dxdy

=

∫ +∞

1

∫ +∞

1

xα + yα

xα+1 + yα+1
x−1/2−ϵ/py−1/2−ϵ/qdxdy

=

∫ +∞

1

[∫ +∞

1

xα + yα

xα+1 + yα+1
x−1/2−ϵ/pdx

]
y−1/2−ϵ/qdy

=

∫ +∞

1

[∫ +∞

1/y

(uy)α + yα

(uy)α+1 + yα+1
(uy)−1/2−ϵ/p(ydu)

]
y−1/2−ϵ/qdy

=

∫ +∞

1

[∫ +∞

1/y

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
y−(1+ϵ)dy.(5.19)
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Using the Chasles integral relation, the Fubini-Tonelli integral theorem and the identity 1/p +
1/q = 1, we obtain∫ +∞

1

[∫ +∞

1/y

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
y−(1+ϵ)dy

=

∫ +∞

1

[∫ 1

1/y

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
y−(1+ϵ)dy

+

∫ +∞

1

[∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
y−(1+ϵ)dy

=

∫ 1

0

[∫ +∞

1/u

y−(1+ϵ)dy

]
1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

+

[∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

] [∫ +∞

1

y−(1+ϵ)dy

]
=

∫ 1

0

(
1

ϵ
uϵ

)
1 + uα

√
u(1 + uα+1)

u−ϵ/pdu+
1

ϵ
×
[∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
=
1

ϵ
×
[∫ 1

0

1 + uα

√
u(1 + uα+1)

uϵ/qdu+

∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

]
.(5.20)

Combining Equations (5.18), (5.19) and (5.20) together, we obtain

κ ≥
∫ 1

0

1 + uα

√
u(1 + uα+1)

uϵ/qdu+

∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu.

Considering the inferior limit with respect to ϵ with ϵ → 0+, we can apply the Fatou integral
lemma. Using this, lim infϵ→0+ uϵ/q = 1 for u ∈ (0, 1), lim infϵ→0+ u−ϵ/p = 1 for u ∈ [1,+∞), the
Chasles integral relation and Proposition 2.1, we obtain

κ ≥ lim inf
ϵ→0+

∫ 1

0

1 + uα

√
u(1 + uα+1)

uϵ/qdu+ lim inf
ϵ→0+

∫ +∞

1

1 + uα

√
u(1 + uα+1)

u−ϵ/pdu

≥
∫ 1

0

1 + uα

√
u(1 + uα+1)

[
lim inf

ϵ→0+
uϵ/q

]
du+

∫ +∞

1

1 + uα

√
u(1 + uα+1)

[
lim inf

ϵ→0+
u−ϵ/p

]
du

=

∫ 1

0

1 + uα

√
u(1 + uα+1)

du+

∫ +∞

1

1 + uα

√
u(1 + uα+1)

du =

∫ +∞

0

1 + uα

√
u(1 + uα+1)

du = Λα.

As a result, we can not have κ ∈ (0,Λα) as initially assumed. This contradiction implies that
Λα is optimal. This ends the proof of Proposition 3.4. □

Proof of Proposition 3.5. After working on the exponent β, we can write∫ +∞

0

∫ +∞

0

(xα + yα)β

xα+1 + yα+1
f(x)g(y)dxdy

=

∫ +∞

0

∫ +∞

0

[
xα + yα

xα+1 + yα+1
f(x)g(y)

]β [
1

xα+1 + yα+1
f(x)g(y)

]1−β

dxdy.
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It follows from the Hölder integral inequality (applied to the parameter 1/β > 1) that∫ +∞

0

∫ +∞

0

[
xα + yα

xα+1 + yα+1
f(x)g(y)

]β [
1

xα+1 + yα+1
f(x)g(y)

]1−β

dxdy

≤
[∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

]β
×
[∫ +∞

0

∫ +∞

0

1

xα+1 + yα+1
f(x)g(y)dxdy

]1−β

.(5.21)

Proposition 3.3 ensures that∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤Λα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,(5.22)

where Λα is given in Equation (3.4).
On the other hand, a well-known result of the Hardy-Hilbert type ensures that∫ +∞

0

∫ +∞

0

1

xα+1 + yα+1
f(x)g(y)dxdy

≤ π

α+ 1

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
.(5.23)

See Equation (1.3). Combining Equations (5.21), (5.22) and (5.23), and using the identity 1/p+
1/q = 1, we have∫ +∞

0

∫ +∞

0

[
xα + yα

xα+1 + yα+1
f(x)g(y)

]β [
1

xα+1 + yα+1
f(x)g(y)

]1−β

dxdy

≤

{
Λα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q}β

×

{
π

α+ 1

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q}1−β

=Λβ
α

(
π

α+ 1

)1−β [∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
=Υα,β

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,

where

Υα,β = Λβ
α

(
π

α+ 1

)1−β

=
π

α+ 1
2β
[
sin

(
π

2(α+ 1)

)]−β

,

as indicated in Equation (3.5). This concludes the proof of Proposition 3.5. □

Proof of Proposition 3.6. An well-known inequality of convexity gives

(x+ y)α ≤ max(2α−1, 1)(xα + yα).
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See [11, Chapter 1]. This and Proposition 3.3 yield∫ +∞

0

∫ +∞

0

(x+ y)α

xα+1 + yα+1
f(x)g(y)dxdy

≤max(2α−1, 1)

∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f(x)g(y)dxdy

≤max(2α−1, 1)Λα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
≤Θα

[∫ +∞

0

xp/2−1fp(x)dx

]1/p [∫ +∞

0

yq/2−1gq(y)dy

]1/q
,

where

Θα = max(2α−1, 1)Λα = max(2α−1, 1)
2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1

,

and indicated in Equation (3.6). This achieves the proof of Proposition 3.6. □

Proof of Proposition 3.7. We can write∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
x1/p−3/2y1/q−3/2F (x)G(y)dxdy

=

∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f⋄(x)g⋄(y)dxdy,

where

f⋄(x) = x1/p−3/2F (x), g⋄(y) = y1/q−3/2G(y).

Applying Proposition 3.3 to these functions, we get∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
f⋄(x)g⋄(y)dxdy

≤Λα

[∫ +∞

0

xp/2−1fp
⋄ (x)dx

]1/p [∫ +∞

0

yq/2−1gq⋄(y)dy

]1/q
,(5.24)

where Λα is given in Equation (3.4). Developing the right-hand side term, we obtain[∫ +∞

0

xp/2−1fp
⋄ (x)dx

]1/p [∫ +∞

0

yq/2−1gq⋄(y)dy

]1/q
=

[∫ +∞

0

xp/2−1[x1/p−3/2F (x)]pdx

]1/p [∫ +∞

0

yq/2−1[y1/q−3/2G(y)]qdy

]1/q
=

[∫ +∞

0

1

xp
F p(x)dx

]1/p [∫ +∞

0

1

yq
Gq(y)dy

]1/q
.(5.25)

The standard Hardy integral inequality applied to f and g gives∫ +∞

0

1

xp
F p(x)dx ≤

(
p

p− 1

)p ∫ +∞

0

fp(x)dx(5.26)

and ∫ +∞

0

1

yq
Gq(y)dy ≤

(
q

q − 1

)q ∫ +∞

0

gq(y)dy.(5.27)
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See [7]. It follows from Equations (5.24), (5.25), (5.26) and (5.27) that∫ +∞

0

∫ +∞

0

xα + yα

xα+1 + yα+1
x1/p−3/2y1/q−3/2F (x)G(y)dxdy

≤Λα

[(
p

p− 1

)p ∫ +∞

0

fp(x)dx

]1/p [(
q

q − 1

)q ∫ +∞

0

gq(y)dy

]1/q
=Φα,p

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(y)dy

]1/q
,

where

Φα,p =Λα

(
p

p− 1

)(
q

q − 1

)
=

2π

α+ 1

[
sin

(
π

2(α+ 1)

)]−1(
p

p− 1

)(
q

q − 1

)
,

as indicated in Equation (3.7). This concludes the proof of Proposition 3.7. □

5.3. Proofs of the propositions in Section 4.

Proof of Proposition 4.8. Decomposing appropriately the integrand, taking into account the iden-
tity 1/p+ 1/q = 1 and applying the Hölder integral inequality, we get∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

=

∫ +∞

0

∫ +∞

0

x−(α−1/2)/qy(α−1/2)/p

[
(x− y) log(x/y)

(xα+1 + yα+1)2

]1/p
f(x)

×x(α−1/2)/qy−(α−1/2)/p

[
(x− y) log(x/y)

(xα+1 + yα+1)2

]1/q
g(y)dxdy

≤C1/pD1/q,(5.28)

where C and D are given by

C =

∫ +∞

0

∫ +∞

0

x−(α−1/2)p/qyα−1/2 (x− y) log(x/y)

(xα+1 + yα+1)2
fp(x)dxdy

and

D =

∫ +∞

0

∫ +∞

0

xα−1/2y−(α−1/2)q/p (x− y) log(x/y)

(xα+1 + yα+1)2
gq(y)dxdy.

Let us investigate the expressions of these terms, starting with C.
Exchanging the order of integration by the Fubini-Tonelli integral theorem, using the change

of variables u = y/x, applying Proposition 2.2 from which emerges the constant Ωα in Equation
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(4.8) and noting that p/q = p− 1, we get

C =

∫ +∞

0

x−(α−1/2)p/qfp(x)

[∫ +∞

0

yα−1/2 (x− y) log(x/y)

(xα+1 + yα+1)2
dy

]
dx

=

∫ +∞

0

x−(α−1/2)p/q−α−1/2fp(x)

[∫ +∞

0

(y
x

)α−1/2 (y/x− 1) log(y/x)

[1 + (y/x)α+1]2
× 1

x
dy

]
dx

=

∫ +∞

0

x−(α−1/2)p/q−α−1/2fp(x)

{∫ +∞

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
du

}
dx

=Ωα

∫ +∞

0

x−(α−1/2)p/q−α−1/2fp(x)dx

=Ωα

∫ +∞

0

x−(α−1/2)p−1fp(x)dx.(5.29)

For the term D, we proceed in a similar way, but with the change of variables v = x/y. We thus
obtain

D =

∫ +∞

0

y−(α−1/2)q/pgq(y)

[∫ +∞

0

xα−1/2 (x− y) log(x/y)

(xα+1 + yα+1)2
dx

]
dy

=

∫ +∞

0

y−(α−1/2)p/q−α−1/2gq(y)

[∫ +∞

0

(
x

y

)α−1/2
(x/y − 1) log(x/y)

[1 + (x/y)α+1]2
× 1

y
dx

]
dy

=

∫ +∞

0

y−(α−1/2)q/p−α−1/2gq(y)

{∫ +∞

0

vα−1/2 (v − 1) log(v)

(1 + vα+1)2
dv

}
dx

= Ωα

∫ +∞

0

y−(α−1/2)q/p−α−1/2gq(y)dy

= Ωα

∫ +∞

0

y−(α−1/2)q−1gq(y)dy.(5.30)

It follows from Equations (5.28), (5.29) and (5.30), and the identity 1/+ 1/q = 1, that∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤
[
Ωα

∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [
Ωα

∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
=Ωα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
.

This ends the proof of Proposition 4.8. □

Proof of Proposition 4.9. The proof follows the lines of that of Proposition 3.4, but adapted to
the situation. Some calculus details will be then omitted to avoid redundancy. Let us assume,
for the sake of contradiction, that the constant Ωα is not optimal, i.e., that there exists a better
constant τ , i.e., τ ∈ (0,Ωα), satisfying, for any f, g : [0,+∞) 7→ [0,+∞),∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤τ

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
.(5.31)
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To derive a contradiction, we need to consider special functions. For any ϵ ∈ (0,+∞), let
fϵ : [0,+∞) 7→ [0,+∞) be

fϵ(x) =

{
0 if x ∈ [0, 1),

xα−1/2−ϵ/p if x ∈ [1,+∞),

and, similarly, let gϵ : [0,+∞) 7→ [0,+∞) be

gϵ(y) =

{
0 if y ∈ [0, 1),

yα−1/2−ϵ/q if y ∈ [1,+∞).

We then have ∫ +∞

0

x−(α−1/2)p−1fp
ϵ (x)dx =

1

ϵ
,

∫ +∞

0

y−(α−1/2)q−1gqϵ (y)dy =
1

ϵ
.

This, with the identity 1/p+ 1/q = 1 and Equation (5.31), gives

τ = ϵ

{
τ

[∫ +∞

0

x−(α−1/2)p−1fp
ϵ (x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gqϵ (y)dy

]1/q}

≥ ϵ

∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
fϵ(x)gϵ(y)dxdy.(5.32)

Let us now work on this double integral. Making the change of variables x = uy, using the
Fubini-Tonelli integral theorem and considering the identity 1/p+ 1/q = 1, we get∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
fϵ(x)gϵ(y)dxdy

=

∫ +∞

1

[∫ +∞

1

(x− y) log(x/y)

(xα+1 + yα+1)2
xα−1/2−ϵ/pdx

]
yα−1/2−ϵ/qdy

=

∫ +∞

1

[∫ +∞

1/y

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

]
y−(1+ϵ)dy.(5.33)

Using the Chasles integral relation, the Fubini-Tonelli integral theorem and the identity 1/p +
1/q = 1, we obtain∫ +∞

1

[∫ +∞

1/y

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

]
y−(1+ϵ)dy

=

∫ +∞

1

[∫ 1

1/y

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

]
y−(1+ϵ)dy

+

∫ +∞

1

[∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

]
y−(1+ϵ)dy

=

∫ 1

0

[∫ +∞

1/u

y−(1+ϵ)dy

]
uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

+

[∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

] [∫ +∞

1

y−(1+ϵ)dy

]
=
1

ϵ
×
[∫ 1

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
uϵ/qdu+

∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

]
.(5.34)
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Combining Equations (5.32), (5.33) and (5.34) together, we obtain

τ ≥
∫ 1

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
uϵ/qdu+

∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu.

Considering the inferior limit with respect to ϵ with ϵ → 0+, we can apply the Fatou integral
lemma. Using this, lim infϵ→0+ uϵ/q = 1 for u ∈ (0, 1), lim infϵ→0+ u−ϵ/p = 1 for u ∈ [1,+∞), the
Chasles integral relation and Proposition 2.2, we obtain

τ ≥ lim inf
ϵ→0+

∫ 1

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
uϵ/qdu+ lim inf

ϵ→0+

∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
u−ϵ/pdu

≥
∫ 1

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2

[
lim inf

ϵ→0+
uϵ/q

]
du+

∫ +∞

1

uα−1/2 (u− 1) log(u)

(1 + uα+1)2

[
lim inf

ϵ→0+
u−ϵ/p

]
du

=

∫ 1

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
du+

∫ +∞

1

(u− 1) log(u)

(1 + uα+1)2
du

=

∫ +∞

0

uα−1/2 (u− 1) log(u)

(1 + uα+1)2
du = Ωα.

As a result, we can not have τ ∈ (0,Ωα) as initially assumed. This contradiction implies that
Ωα is optimal. This ends the proof of Proposition 4.9. □

Proof of Proposition 4.10. Applying Proposition 4.8 to f = g and using the identity 1/p+1/q = 1,
we get ∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy

≤Ωα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1fq(y)dy

]1/q
.(5.35)

Decomposing the double integral, using log(x/y) = − log(y/x), applying the Fubini-Tonelli
integral theorem and identifying a crucial symmetry in x and y, we get∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy

=

∫ +∞

0

∫ +∞

0

x log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy −

∫ +∞

0

∫ +∞

0

y log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy

=

∫ +∞

0

∫ +∞

0

x log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy +

∫ +∞

0

∫ +∞

0

y log(y/x)

(yα+1 + xα+1)2
f(y)f(x)dydx

=2

∫ +∞

0

∫ +∞

0

x log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy.

(5.36)

Combining Equations (5.35) and (5.36), we obtain∫ +∞

0

∫ +∞

0

x log(x/y)

(xα+1 + yα+1)2
f(x)f(y)dxdy

≤χα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1fq(y)dy

]1/q
,
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where

χα =
1

2
Ωα

=
π

2(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
,

as indicated in Equation (4.9). This concludes the proof of Proposition 4.10. □

Proof of Proposition 4.11. A well-known logarithmic inequality ensures that, for any u > 0,

1− 1

u
≤ log(u).

Applying this to u = (x/y)x−y , we get

1−
(
x

y

)y−x

≤ log

[(
x

y

)x−y
]
= (x− y) log

(
x

y

)
.

Using this and Proposition 4.8, we get∫ +∞

0

∫ +∞

0

[
1−

(
x

y

)y−x
]

1

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤
∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f(x)g(y)dxdy

≤Ωα

[∫ +∞

0

x−(α−1/2)p−1fp(x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq(y)dy

]1/q
,

where Ωα is given by Equation (4.8). This concludes the proof of Proposition 4.11. □

Proof of Proposition 4.12. We can write∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
xα+1/p−3/2yα+1/q−3/2F (x)G(y)dxdy

=

∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f⋄(x)g⋄(y)dxdy,

where

f⋄(x) = xα+1/p−3/2F (x), g⋄(y) = yα+1/q−3/2G(y).

Applying Proposition 3.3 to these functions, we get∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
f⋄(x)g⋄(y)dxdy

≤Ωα

[∫ +∞

0

x−(α−1/2)p−1fp
⋄ (x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq⋄(y)dy

]1/q
,(5.37)
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where Ωα is given in Equation (4.8). Developing the right-hand side term, we obtain[∫ +∞

0

x−(α−1/2)p−1fp
⋄ (x)dx

]1/p [∫ +∞

0

y−(α−1/2)q−1gq⋄(y)dy

]1/q
=

[∫ +∞

0

x−(α−1/2)p−1[xα+1/p−3/2F (x)]pdx

]1/p [∫ +∞

0

y−(α−1/2)q−1[yα+1/q−3/2G(y)]qdy

]1/q

=

[∫ +∞

0

1

xp
F p(x)dx

]1/p [∫ +∞

0

1

yq
Gq(y)dy

]1/q
.

(5.38)

The standard Hardy integral inequality applied to f and g gives∫ +∞

0

1

xp
F p(x)dx ≤

(
p

p− 1

)p ∫ +∞

0

fp(x)dx(5.39)

and ∫ +∞

0

1

yq
Gq(y)dy ≤

(
q

q − 1

)q ∫ +∞

0

gq(y)dy.(5.40)

It follows from Equations (5.37), (5.38), (5.39) and (5.40) that∫ +∞

0

∫ +∞

0

(x− y) log(x/y)

(xα+1 + yα+1)2
xα+1/p−3/2yα+1/q−3/2F (x)G(y)dxdy

≤Ωα

[(
p

p− 1

)p ∫ +∞

0

fp(x)dx

]1/p [(
q

q − 1

)q ∫ +∞

0

gq(y)dy

]1/q
=Ψα,p

[∫ +∞

0

fp(x)dx

]1/p [∫ +∞

0

gq(y)dy

]1/q
,

where

Ψα,p = Ωα

(
p

p− 1

)(
q

q − 1

)
=

π

(α+ 1)3

[
sin

(
π

2(α+ 1)

)]−2 [
2(1 + α) sin

(
π

2(α+ 1)

)
− π cos

(
π

2(α+ 1)

)]
×
(

p

p− 1

)(
q

q − 1

)
,

as indicated in Equation (4.10). This concludes the proof of Proposition 4.12. □

6. CONCLUSION

In conclusion, this article makes some advances to the theory of Hardy-Hilbert-type inte-
gral inequalities. From a theoretical point of view, the incorporation of adjustable parameters
and new functional forms, in particular the logarithmic modification, shows a significant ex-
tension of the classical inequality. This provides versatile tools for dealing with a wider class
of problems. From an applied point of view, the flexibility of these new forms may prove
useful in various branches of mathematical analysis where precision and adaptability are es-
sential. Furthermore, by establishing the optimality of the constant factors, the article ensures
the rigor and tightness necessary for future studies. These results thus open the door to fur-
ther refinements and interdisciplinary applications, confirming the continuing interest of the
Hardy-Hilbert-type integral inequalities in modern mathematical research.
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Solitons of mean curvature flow in certain warped products:
nonexistence, rigidity, and Moser-Bernstein type results
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ABSTRACT. We apply suitable maximum principles to obtain nonexistence and rigidity results for complete mean
curvature flow solitons in certain warped product spaces. We also provide applications to self-shrinkers in Euclidean
space, as well as to mean curvature flow solitons in real projective, pseudo-hyperbolic, Schwarzschild, and Reissner-
Nordström spaces. Furthermore, we establish new Moser-Bernstein type results for entire graphs constructed over the
fiber of the ambient space that are mean curvature flow solitons.

Keywords: Warped products, Euclidean space, real projective space, pseudo-hyperbolic spaces, Schwarzschild and
Reissner-Nordström spaces, mean curvature flow solitons, self-shrinkers.
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1. INTRODUCTION

Let ψ : Σn → Rn+1 be an n-dimensional hypersurface in the (n+ 1)-dimensional Euclidean
space Rn+1. If the position vector ψ evolves in the direction of the mean curvature vector H⃗ ,
then it gives rise to a solution to mean curvature flow:

Ψ : [0, T )× Σn → Rn+1

satisfying Ψ(0, ·) = ψ(·) and
∂Ψ

∂t
(t, p) = H⃗(t, p),

where H⃗(t, p) stands for the (non-normalized) mean curvature vector of the hypersurface Σn
t =

Ψ(t,Σn) at a point Ψ(t, p). This equation is called the mean curvature flow equation. The study of
the mean curvature flow from the perspective of partial differential equations was started with
Huisken [24] on the flow of convex hypersurfaces. One of the most important problems in the
mean curvature flow is to understand the possible singularities that the flow goes through. A
key starting point for singularity analysis is Huisken’s monotonicity formula [24] because the
monotonicity implies that the flow is asymptotically self-similar near a given type I singularity
and thus, is modeled by self-shrinking solutions of the flow.

An n-dimensional two-sided hypersurface ψ : Σn → Rn+1 is called a self-shrinker if it satisfies

H = −⟨ψ,N⟩,
where H and N denote the (non-normalized) mean curvature function and the unit normal
vector field of the hypersurface, respectively. It is known that self-shrinkers play an important
role in the study of the mean curvature flow because they describe all possible blow up at a
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given singularity of the mean curvature flow and, as it was pointed out by Colding and Mini-
cozzi in [14], self-shrinkers are critical hypersurfaces for the entropy functional. The subject
experienced an increasing activity after the seminal paper by Colding and Minicozzi [14] that
inspired an impressive amount of work on existence and classification problems, rigidity and
gap results, stability and spectral properties, see for instance [7, 8, 10, 11, 12, 13, 15, 18, 19, 23,
26, 27, 31] and the references therein.

More recently, Alías, de Lira and Rigoli [4] extended these investigations introducing the
general definition of self-similar mean curvature flow in a Riemannian manifold M

n+1
en-

dowed with a vector field K and establishing the corresponding notion of mean curvature
soliton. In particular, when M

n+1
is a warped product of the type I ×f M

n and K = f(t)∂t,
they applied weak maximum principles to guarantee that a complete n-dimensional mean cur-
vature flow soliton is a slice of M

n+1
. In [16], Colombo, Mari and Rigoli also studied some

properties of mean curvature flow solitons in general Riemannian manifolds and in warped
products, with emphasis on constant curvature and Schwarzschild type spaces. They focused
on splitting and rigidity results under various geometric conditions, ranging from the stability
of the soliton to the fact that the image of its Gauss map be contained in suitable regions of the
sphere. Moreover, they also investigated the case of entire mean curvature flow graphs.

Proceeding with this picture, our purpose in this paper is to apply suitable maximum prin-
ciples in order to obtain nonexistence and rigidity results concerning complete n-dimensional
mean curvature flow solitons with respect to the conformal vector fieldK = f(t)∂t of a warped
product space of the type I ×f M

n (see Sections 3 and 4). Applications to self-shrinkers in the
Euclidean space, as well as to mean curvature flow solitons in the real projective, pseudo-
hyperbolic, Schwarzschild and Reissner-Nordström spaces are also given. Furthermore, we
study entire graphs constructed over the fiber Mn and which are mean curvature flow solitons
with respect to K, obtaining new Moser-Bernstein type results (see Section 5).

2. PRELIMINARIES

2.1. Two-sided hypersurfaces in a warped product. Let (Mn, gM ) be an n-dimensional (n ≥
2) connected Riemannian manifold and let I ⊂ R be an open interval in R endowed with the
metric dt2. The product manifold M

n+1
= I ×Mn endowed with the Riemannian metric

g = π∗
I (dt

2) + f(πI)
2π∗

M (gM ),(2.1)

where f is a positive smooth function on I , the maps πI and πM denote the projections onto I
and Mn, respectively, is called a warped product with fiber Mn, base I and warping function
f . Along this work, we will simply write M

n+1
= I ×f M

n.
In this setting, we will consider the conformal closed vector field K = f(t)∂t globally de-

fined on M , where ∂t = ∂
∂t stands for the unit coordinate vector field tangent to I . From

the relationship between the Levi-Civita connections of M and those of the base and the fiber
(see [30, Proposition 7.35]) , it follows that

(2.2) ∇XK = f ′(t)X

for any X ∈ X(M), where ∇ is the Levi-Civita connection of g.
Along this work, we will deal with connected two-sided hypersurfaces ψ : Σn → M

n+1

immersed inM
n+1

= I×fM
n, which means that its normal bundle is trivial, that is, there is on

it a globally defined unit normal vector field N ∈ TΣ⊥. In this setting, we will denote by g the
induced metric of Σn and we will consider its shape operator (or Weingarten endomorphism),
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A : X(Σ) → X(Σ), which is given byA(X) = −∇XN . So, the (non-normalized) mean curvature
function of Σn is defined as been H = tr(A).

In the warped product M
n+1

= I ×f M
n there exists a remarkable family of two-sided

hypersurfaces: its slices Mt∗ = {t∗} × M , with t∗ ∈ I . The shape operator and the mean

curvature of Mt∗ with respect to N = ∂t are, respectively, At∗ = −f
′(t∗)

f(t∗)
I , where I denotes the

identity operator, and Ht∗ = −nf
′(t∗)

f(t∗)
.

We will deal with two particular functions naturally attached to a two-sided hypersurface
ψ : Σn → M

n+1
, namely, the (vertical) height function h = πI ◦ ψ and the angle function

Θ = g(N, ∂t). Let us denote by ∇ and ∇ the gradients with respect to the metrics g and g,
respectively. With a straightforward computation we show that the gradient of πI on Mn is
given by

∇πI = g(∇πI , ∂t)∂t = ∂t

so that the gradient of h on Σn is

∇h = (∇πI)⊤ = ∂⊤t ,(2.3)

where ∂⊤t = ∂t −ΘN is the tangential component of ∂t along Σn. From (2.3) we deduce that

|∇h|2 +Θ2 = 1,(2.4)

where ∇h is the gradient of h in the metric g and |X|2 = g(X,X) for any X ∈ X(Σ). Moreover,
from (2.2) and (2.3) we deduce that the Hessian of h in the metric g is given by

∇2h(X,X) = g(∇X∂
⊤
t , X)

= ḡ(∇X(∂t −ΘN), X)(2.5)

=
f ′(h)

f(h)
(|X|2 − g(∇h,X)2) + g(AX,X)Θ

for any X ∈ X(Σ). Hence, from (2.5) we obtain that the Laplacian of h in the metric g is

∆h =
f ′(h)

f(h)

(
n− |∇h|2

)
+HΘ.(2.6)

2.2. Mean curvature flow solitons. We recall that the mean curvature flow Ψ : [0, T ) × Σn →
M

n+1
of an immersion ψ : Σn → M

n+1
in a (n+ 1)-dimensional Riemannian manifold M

n+1
,

satisfying Ψ(0, ·) = ψ(·), looks for solutions of the equation

∂Ψ

∂t
= H⃗,

where H⃗(t, ·) is the (non-normalized) mean curvature vector of Σn
t = Ψ(t,Σn). In our context,

according to [4, Definition (1.1)], a two-sided hypersurface ψ : Σn → M
n+1

immersed in a
warped productM

n+1
= I×fM

n is said a mean curvature flow soliton with respect toK = f(t)∂t
with soliton constant c ∈ R if its (non-normalized) mean curvature function satisfies

(2.7) H = cf(h)Θ.

Adopting the terminology introduced in [4], we will also consider the soliton function

ζc(t) = nf ′(t) + cf(t)2.
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As it was observed in [4], a sliceMt∗ = {t∗}×Mn is a mean curvature flow soliton with respect
to K = f(t)∂t and with soliton constant c given by

(2.8) c = −n f
′(t∗)

f(t∗)2
.

Moreover, t∗ is implicitly given by the condition ζc(t∗) = 0.

2.3. Standard examples. In this subsection we quote important examples which will be ad-
dressed along the next two sections. In the first one, we consider a suitable warped product
model for the Euclidean space minus a point.

Example 2.1. Let o = (0, . . . , 0) be the origin of the (n + 1)-dimensional Euclidean space Rn+1. We
have that Rn+1 \ {o} is isometric to R+ ×t Sn (see [28, Section 4, Example 1]), whose slices {t} × Sn
are isometric to n-dimensional Euclidean spheres Sn(t) of radius t ∈ R+. In this setting, the mean
curvature flow solitons with respect to K = t∂t with soliton constant c = −1 are just the self-shrinkers.
So, from (2.8) we conclude that Sn(

√
n) ≡ {

√
n} × Sn is the only slice which is a self-shrinker.

In our next example, we consider a suitable warped product model for the real projective
space.

Example 2.2. We recall that the (n + 1)-dimensional real projective space is given by the quotient
RPn+1 = Sn+1/{±1}, where {±1} is the group of diffeomorphisms of (n + 1)-dimensional unit Eu-
clidean sphere Sn+1 consisting of the identity map q 7→ q and the antipodal map q 7→ −q. We consider
the Riemannian metric in RPn+1 in such a way that the natural projection π : Sn+1 → RPn+1 be-
comes a local isometry. If P stands for the north pole of Sn+1, then we denote by CutP the cut locus
of π(P ) ∈ RPn+1. We have that CutP is the image of the equator of Sn+1 orthogonal to P via the
natural projection, namely, CutP = π(Sn) = RPn . Moreover, as it was proved in [6, Section 9.111],
RPn+1 \ {π(P ) ∪ CutP} is isometric to the warped product

(
0, π2

)
×sin t Sn. From (2.8) we conclude

that the slice {cos−1(
√
4c2+n2−n

2|c| )} × Sn is the only one that is a mean curvature flow soliton with
respect to K = sin t∂t with soliton constant c < 0.

Proceeding, we consider the so-called pseudo-hyperbolic spaces.

Example 2.3. According to [32], warped products of the type I ×et M
n are called pseudo-hyperbolic

spaces. This terminology is due to the fact that the (n + 1)-dimensional hyperbolic space Hn+1 is
isometric to the warped product R×et Rn, where the slices constitute a family of horospheres sharing a
same fixed point in the asymptotic boundary ∂∞Hn+1 and giving a complete foliation of Hn+1 (for more
details about pseudo-hyperbolic spaces see, for instance, [2, 28, 32]). From (2.8) we conclude that the
slice {log(−n

c )} ×Mn is the only one that is a mean curvature flow soliton with respect to K = et∂t
with soliton constant c < 0.

In our last examples, we deal with the Schwarzschild and Reissner-Nordström spaces.

Example 2.4. Given a mass parameter m > 0, the Schwarzschild space is defined to be the product
M

n+1
= (r0(m),+∞) × Sn furnished with the metric ḡ = Vm(r)

−1dr2 + r2gSn , where gSn is the
standard metric of Sn, Vm(r) = 1− 2mr1−n stands for its potential function and r0(m) = (2m)1/(n−1)

is the unique positive root of Vm(r) = 0. Its importance lies in the fact that the manifold R ×M
n+1

equipped with the Lorentzian static metric −Vm(r)dt2 + ḡ is a solution of the Einstein field equation in
vacuum with zero cosmological constant (see, for instance, [30, Chapter 13] for more details concerning
Schwarzschild geometry).
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As it was observed in [16, Example 1.3], M
n+1

can be reduced in the form I×f Sn with metric (2.1)
via the following change of variables:

(2.9) t =

∫ r

r0(m)

dσ√
Vm(σ)

, f(t) = r(t), I = R+.

As it was noted in [16, Example 4.1], since Vm(r) is strictly increasing on (r0(m),+∞), it follows
from (2.9) that the warping function f satisfies:

(2.10) f ′(t) =
dr

dt
=
√
Vm(r(t)) > 0 and f ′′(t) =

1

2

dVm
dr

(r(t)) > 0.

Thus, from (2.8) and (2.10) we can verify that a slice {t∗} × Sn is a mean curvature flow soliton with
respect to f(t)∂t = r

√
Vm(r)∂r with soliton constant c < 0 when t∗ = t(r∗) with r∗ > r0(m) solving

the following equation

(2.11) Vm(r) =
c2

n2
r4.

We note that such a solution exists if and only if the function φm(t) =
c2

n2 t
4 + 2m

tn−1 − 1 has a zero on
(r0(m),+∞). Notice that φm is a convex function which goes to infinity if t goes to 0 or +∞ and so
φm has a unique minimal point in (0,∞). Such value r̂ is given implicitly by φ′

m(r̂) = 0, that is,

4c2

n2
r̂3 − 2m(n− 1)

r̂n
= 0.

Therefore, the equation (2.11) has a solution if and only if r̂ > r0(m) and φm(r̂) ≤ 0. The last condition
can be rewritten in the following way:

(2.12) r̂ =

(
m(n− 1)n2

2c2

)1/(n+3)

≥
(
m(n+ 3)

2

)1/(n−1)

.

In particular, there are two solutions r0(m) < r∗,− < r̂ < r∗,+ if the strict inequality holds in (2.12),
and a unique solution r∗ = r̂ if equality holds.

Example 2.5. Given a mass parameter m > 0 and an electric charge q ∈ R, with |q| ≤ m, the Reissner-
Nordström space is defined to be the product M

n+1
= (r0(m, q),+∞)× Sn endowed with the metric

ḡ = Vm,q(r)
−1dr2 + r2gSn , where gSn is the standard metric of Sn, Vm,q(r) = 1− 2mr1−n + q2r2−2n

stands for its potential function and r0(m, q) =

(
q2

m−
√

m2−q2

)1/(n−1)

is the largest positive zero of

Vm,q(r). The importance of this model lies in the fact that the manifold R ×M
n+1

equipped with the
Lorentzian static metric −Vm,q(r)dt

2 + ḡ is a charged black-hole solution of the Einstein field equation
in vacuum with zero cosmological constant.

As in the previous example, M
n+1

can be reduced in the form I ×f Sn with metric (2.1) via the
same change of variables as in (2.9). Furthermore, following the same previous steps, the warping
function f has positive first and second derivatives. Moreover, we can verify that a slice {t∗} × Sn is a
mean curvature flow soliton with respect to f(t)∂t = r

√
Vm,q(r)∂r with soliton constant c < 0 when

t∗ = t(r∗) with r∗ > r0(m, q) solving the following equation

(2.13) Vm,q(r) =
c2

n2
r4.

We observe that such a case is more complicated to make all values explicit, but qualitatively we can say
that such a solution of (2.13) exists if and only if the function φm,q(x) =

c2

n2x
4 + 2m

xn−1 − q2

x2n−2 − 1 has
a zero on (r0(m),+∞). Note that φm,q goes to positive infinity if x goes to positive infinity and φm,q
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goes to negative infinity if x goes to zero. So, φm,q has at least one root in (0,+∞) and if such roots are
greater than r0(m, q) we get the desired solutions r∗.

3. NONEXISTENCE OF COMPLETE MEAN CURVATURE FLOW SOLITONS

3.1. Auxiliary results. In order to investigate the nonexistence of complete mean curvature
flow solitons, initially we introduce the following definition:

Definition 3.1. The Laplacian operator ∆ on a Riemannian manifold (Σ, g) satisfies the Omori-Yau
maximum principle if for any u ∈ C2 bounded from above, there exists a sequence (pk)k≥1 in Σn such
that

lim
k
u(pk) = sup

Σ
u = u∗, lim

k
|∇u(pk)| = 0 and lim sup

k
∆u(pk) ≤ 0.

Now we recall the maximum principle due to Omori [29] and Yau [34]. Such concept gives
us conditions to the validity of a maximum principle for the hessian or the Laplacian on a
Riemannian manifold. Specifically, we quote the following result for the Laplacian:

Lemma 3.1 (Yau, [34]). Let Σn be an n-dimensional complete Riemannian manifold whose Ricci cur-
vature is bounded from below. Then the Laplacian ∆ satisfies the Omori-Yau maximum principle on
Σ.

Denoting by KM the sectional curvature of the fiber Mn, we will consider warped product
spaces I ×f M

n satisfying the convergence condition

(3.14) KM ≥ sup
I
(f ′2 − ff ′′).

Warped products satisfying (3.14) have been studying, for instance, in [4, 5, 17, 21]. The
case that this condition holds for the Ricci curvature instead of the sectional curvature is also
well known (see, for instance, [1, 3, 28]). Furthermore, it is not difficult to verify that there
exists a wide class of warped product satisfying (3.14), including, for instance, the Euclidean
space minus a point Rn+1 \ {o} = R+ ×t Sn, the real projective space (minus a suitable point
and its cut locus)

(
0, π2

)
×sin t Sn, the pseudo-hyperbolic spaces I ×et M

n with fiber having
nonnegative sectional curvature and the Schwarzschild and Reissner-Nordström spaces I×f Sn
(see Examples 2.1, 2.2, 2.3, 2.4 and 2.5).

Indeed, this verification for the Euclidean, the real projective, the pseudo-hyperbolic and
the Schwarzschild spaces is quite simple. In the case of the Reissner-Nordström space, with a
straightforward computation we get that

(3.15) f ′(t)2 − f(t)f ′′(t) = 1−mr(t)1−n − n
{
m− q2r(t)1−n

}
r(t)1−n.

But, since r(t) > r0(m, q) =

(
q2

m−
√

m2−q2

)1/(n−1)

, it is not difficult to verify that we must have

(3.16) q2r(t)1−n < m.

Consequently, from (3.15) and (3.16) we conclude that the convergence condition (3.14) is also
satisfied in the Reissner-Nordström space.

We recall that a hypersurface Σn lies in a slab of a warped product I ×f M
n when Σn is

contained in a region of the type

[t1, t2]×Mn = {(t, p) ∈ I ×f M
n : t1 ≤ t ≤ t2 and p ∈Mn}.

We also recall the first and second Newton transformations, which are given by P1 = HI−A
and P2 = S2I−AP1, and here S2 stands for the second mean curvature, that is, S2 =

∑
i<j kikj ,
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where ki are the principal curvatures of Σn. Finally, we say that an operator T on Σ is f -bounded
whether there are continuous functions G,H : R2 → R such that

G(f, f ′) ◦ h(p)|u|2 ≤ ⟨Tu, u⟩ ≤ H(f, f ′) ◦ h(p)|u|2

for all u ∈ TpΣ and p ∈ Σ.
Next, considering an immersed hypersurface Σn in a slab of a warped product space I×fM

n

satisfying (3.14), we will verify that the Omori-Yau maximum principle is satisfied.

Proposition 3.1. Let M
n+1

= I ×f M
n be a warped product which satisfying the convergence con-

dition (3.14), for n ≥ 3, and, let ψ : Σn → M
n+1

be a complete hypersurface with second Newton
transformation f -bounded and lying in a slab. Then, the Laplacian on Σn satisfies the Omori-Yau
maximum principle.

Proof. First, we recall that the curvature tensor R of Σn can be described in terms of its Wein-
garten operator A and the curvature tensor R of the ambient I ×f M

n by the so-called Gauss’
equation given by

(3.17) g(R(X,Y )Z,W ) = ḡ(R(X,Y )Z,W ) + g(A(X,Z), A(Y,W ))− g(A(X,W ), A(Y, Z))

for every tangent vector fields X,Y, Z,W ∈ X(Σ).
Let us consider X ∈ X(Σ) and take a local orthonormal frame {E1, . . . , En} of X(Σ). Then,

it follows from Gauss equation (3.17) that the Ricci curvature Ric of Σn with respect to the
induced metric g is given by

Ric(X,X) =
∑
i

ḡ(R(X,Ei)X,Ei) +H⟨AX,X⟩ − |AX|2

=
∑
i

ḡ(R(X,Ei)X,Ei)− ⟨(AP1)X,X⟩

=
∑
i

ḡ(R(X,Ei)X,Ei) + S2|X|2 − ⟨P2X,X⟩.(3.18)

Moreover, with a straightforward computation, we get

R(X,Ei)X = R(X∗, E∗
i )X

∗ + ḡ(X, ∂t)R(X
∗, E∗

i )∂t + ḡ(X, ∂t)ḡ(Ei, ∂t)R(X
∗, ∂t)∂t

+ ḡ(Ei, ∂t)R(X
∗, ∂t)X

∗ + ḡ(X, ∂t)R(∂t, E
∗
i )X

∗ + ḡ(X, ∂t)
2R(∂t, E

∗
i )∂t,(3.19)

where X∗ = X − ḡ(X, ∂t)∂t and E∗
i = Ei − ḡ(Ei, ∂t)∂t are the projections of the tangent vector

fields X and Ei onto the fiber Mn, respectively.
Thus, by repeated use of the formulas of [30, Proposition 7.42] and using equation (2.3), from

(3.19) we get∑
i

ḡ(R(X,Ei)X,Ei)

=
∑
i

ḡ(RM (X∗, E∗
i )X

∗, E∗
i )− (n− 1)

f ′(h)2

f(h)2
|X|2

+

(
f ′(h)2 − f(h)f ′′(h)

f(h)2

)
|∇h|2|X|2 + (n− 2)

(
f ′(h)2 − f(h)f ′′(h)

f(h)2

)
g(X,∇h)2,(3.20)

As in [30], the curvature tensor R of the hypersurface Σn is given by R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z, where
[ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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where RM denotes the curvature tensor of the fiber Mn. But, it is not difficult to verify that∑
i

ḡ(RM (X∗, E∗
i )X

∗, E∗
i ) =

1

f2

∑
i

KM (X∗, E∗
i )(|X|2 − g(∇h,Ei)

2|X|2

−g(X,∇h)2 − g(X,Ei)
2 + 2g(X,∇h)g(X,Ei)g(∇h,Ei)).

Thus, by using the convergence condition (3.14) and a direct computation, from (3.20) we ob-
tain

(3.21)
∑
i

ḡ(R(X,Ei)X,Ei) ≥ −(n− 1)
f ′′(h)

f(h)
|X|2.

Thus, inserting the estimate (3.21) into the equation (3.18), and using the f -boundedness of P2,
we deduce that

Ric(X,X) ≥
(
−(n− 1)

f ′′(h)

f(h)
+

n

n− 2
G(f, f ′)−H(f, f ′)

)
|X|2.(3.22)

Therefore, taking into account that Σn lies in a slab of the ambient space, from (3.22) we
conclude that the Ricci curvature is bounded from below and by Lemma 3.1 the Laplacian
satisfies the desired property. □

Corollary 3.1. Let M
n+1

= I ×f M
n be a warped product which satisfying the convergence condition

(3.14), and let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = f(t)∂t
and soliton constant c ̸= 0. If the second mean curvature is bounded from below and Σ lies in a slab,
then the Laplacian on Σn satisfies the Omori-Yau maximum principle.

Proof. Since the second mean curvature is bounded from below and ψ(Σ) lies in a slab, notice
that k2i ≤ H2 − 2S2 ≤ c2f(h)2 + d is bounded on Σ for all i. So, P2 is bounded and the result
follows from Proposition 3.1. For n = 2, this result is immediate. □

3.2. Nonexistence results via Omori-Yau maximum principle. Into the scope of a warped
product I ×f M

n we are in position to state and prove our first nonexistence result concerning
mean curvature flow solitons immersed in a slab of a warped product.

Theorem 3.1. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn satisfies hypothesis (3.14).

There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = f(t)∂t and
soliton constant c ̸= 0, with second mean curvature bounded from below, lying in a slab [t1, t2] ×Mn

and ζc(t) having a strict sign on [t1, t2].

Proof. Let us suppose by contradiction the existence of such a mean curvature flow soliton
ψ : Σn →M

n+1
. From (2.6) we have

∆h = n
f ′(h)

f(h)
− f ′(h)

f(h)
|∇h|2 + cf(h)Θ2(3.23)

= n
f ′(h)

f(h)
Θ2 + (n− 1)

f ′(h)

f(h)
|∇h|2 + cfΘ2

= (n− 1)
f ′(h)

f(h)
|∇h|2 + nf ′(h) + cf2(h)

f
Θ2

= (n− 1)
f ′(h)

f(h)
|∇h|2 + ζc(h)

f(h)
Θ2,
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where we used (2.4) in the second equality. Since the second mean curvature is bounded and
the hypersurface is contained in a slab, from Corollary 3.1 we are able to apply the Omori-Yau
maximum principle. Indeed, there are sequences {xk} and {pk} such that

lim
k
h(pk) = sup

Σ
h = h∗, lim

k
|∇h(pk)| = 0 and lim sup

k
∆h(pk) ≤ 0,

and
lim
k
h(xk) = inf

Σ
h = h∗, lim

k
|∇h(xk)| = 0 and lim inf

k
∆h(xk) ≥ 0,

and thus, using that Θ goes to 1 along the sequences {pk} and {xk}, we deduce from equation
(3.23) that

ζc(h
∗) ≤ 0 ≤ ζc(h∗),

which contradict our hypothesis on the function ζc.
□

Remark 3.1. It is worth to point out that complete mean curvature flow solitons immersed in a slab
of a warped product I ×f M

n and with second mean curvature bounded from below constitute natural
generalizations of the compact ones, and they have already been studied by Alías, de Lira and Rigoli
in [4].

Taking into account Example 2.1, it is not difficult to verify that we get from the proof of
Theorem 3.1 the following result concerning the nonexistence of complete self-shrinkers:

Corollary 3.2. There exists no complete n-dimensional self-shrinker of Rn+1 with second mean curva-
ture bounded from below and lying in the closure of an n-dimensional annulus with either inner radius
rir >

√
n or outer radius ror <

√
n .

Remark 3.2. We point out that the sphere of radius
√
n satisfies all the hypotheses if we allow the inner

radius rir (or outer radius ror) equal to
√
n. We also notice that the self-shrinkers Sk(

√
k) × Rn−k,

for 1 ≤ k ≤ n − 1, of Rn+1 have bounded second mean curvature but they do not belong to any
n-dimensional annuli.

Considering the discussion made in Example 2.2, from Theorem 3.1 we have:

Corollary 3.3. LetM
n+1

=
(
0, π2

)
×sin t Sn be the warped product model of RPn+1 \{π(P ) ∪ CutP}.

There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = sin t∂t
with soliton constant c < 0, having second mean curvature bounded from below and lying in a slab
[t1, t2]×Mn, with either cos−1(

√
4c2+n2−n

2|c| ) < t1 <
π
2 or 0 < t2 < cos−1(

√
4c2+n2−n

2|c| ).

When the ambient space is a pseudo-hyperbolic space (see Example 2.3), from Theorem 3.1
we also obtain the following consequence:

Corollary 3.4. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn has nonnegative

sectional curvature. There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to
K = et∂t with soliton constant c < 0, having second mean curvature bounded from below and lying in
a slab [t1, t2]×Mn, with either t1 > log

(
−n

c

)
or t2 < log

(
−n

c

)
.

Considering the context of Example 2.4, from Theorem 3.1 we get:

Corollary 3.5. Let M
n+1

= I ×f Sn be the Schwarzschild space. There is no complete mean curvature
flow soliton ψ : Σn → M

n+1
with respect to K = f(t)∂t with soliton constant c < 0, having second

mean curvature bounded from below and lying in a slab [t1, t2]× Sn, with f(t2) ≥
√
−n

c .
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Proof. Using (2.10) and definition of ζc we have

n
√
Vm(r(t1)) + cr(t1)

2 ≤ ζc(t) ≤ n
√
Vm(r(t2)) + cr(t2)

2.

Since Vm(r(t)) < 1 for all t ∈ I , r(t2) = f(t2) ≥
√
−n

c implies

ζc(t) = n
√
Vm(r(t)) + cr(t)2 < 0

for all t ≥ t1. Therefore, we can apply Theorem 3.1 to conclude our result. □

In the setting of Example 2.5, we can reason as in the proof of Corollary 3.5 to obtain the
following nonexistence result:

Corollary 3.6. Let M
n+1

= I ×f Sn be the Reissner-Nordström space. There is no complete mean
curvature flow soliton ψ : Σn →M

n+1
with respect toK = f(t)∂t with soliton constant c < 0, having

second mean curvature bounded from below and lying in a slab [t1, t2]×Sn, with Vm,q(r(t)) <
c2

n2 r(t)
4

for all t ∈ [t1, t2].

Remark 3.3. In Corollaries 3.3, 3.4, 3.5 and 3.6, if we assume c > 0 the condition ζc positive is
immediate and so the nonexistence results follows directly.

4. RIGIDITY OF MEAN CURVATURE FLOW SOLITONS

4.1. Rigidity results via an extension of Hopf’s maximum principle. We initiate this section
regarding an extension of Hopf’s theorem on a complete Riemannian manifold (Σn, g) due to
Yau in [35]. For this, let us consider L1

g(Σ) := {u : Σn → R :
∫
Σ
|u|dΣ < +∞}, where dΣ is the

measure related to the metric g.

Lemma 4.2. Let u be a smooth function defined on a complete Riemannian manifold (Σn, g), such that
∆u does not change sign on Σn. If |∇u| ∈ L1

g(Σ), then ∆u vanishes identically on Σn.

Using the previous lemma, we have the following result:

Theorem 4.2. Let M
n+1

= I ×f M
n be a warped product. Let ψ : Σn → M be a complete mean

curvature flow soliton with respect to K = f(t)∂t and soliton constant c ̸= 0, that lies in a slab
[t1, t2] ×Mn, and whose ζc(t) does not change the sign. If |∇h| ∈ L1

g(Σ), then Σn is a slice Mt∗ , for
t∗ ∈ [t1, t2] given implicitly by ζc(t∗) = 0.

Proof. Considering F (t) =
∫ t

t0
f(v)1−ndv and compute the Laplacian of F (h) as follows:

∆F (h) = F ′(h)∆h+ F ′′(h)|∇h|2

=
1

f(h)n−1
∆h+ (1− n)f(h)−nf ′(h)|∇h|2

=
ζc(h)

f(h)n
Θ2 + (n− 1)

f ′(h)

f(h)n
|∇h|2 + (1− n)f(h)−nf ′(h)|∇h|2

= f(h)−nζc(h)Θ
2,

where we used equation (2.6) in the third equality. Thus F (h) is either subharmonic or super-
harmonic. Since Σ is contained is a slab and |∇h| ∈ L1(Σ), we have that |∇F (h)| = f(h)1−n|∇h|
belongs to the 1-Lebesgue space too.

Applying Lemma 4.2, we deduce that ∆F (h) = 0 and thus ζc(h)Θ2 = 0 along Σ. Next, note
that

∆F (h)2 = 2F (h)∆F (h) + 2|∇F (h)|2 = 2f(h)2−2n|∇h|2 ≥ 0.
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Applying Lemma 4.2 again, we deduce that ∇h = 0 on Σ and from (2.4) we have Θ = 1. Thus,
ζc(h) vanishes on Σ, as we claimed.

□

From Theorem 4.2 we get the following rigidity result:

Corollary 4.7. The only complete n-dimensional self-shrinker of Rn+1 that lies in the closure of an
n-dimensional annulus with either inner radius rir ≥

√
n or outer radius ror ≤

√
n and such that

|∇h| ∈ L1
g(Σ) is Sn(

√
n).

Remark 4.4. Related to Corollary 4.7, it is worth to mention that Pigola and Rimoldi [31] studied
geometric properties of complete non-compact bounded self-shrinkers obtaining natural restrictions that
force these hypersurfaces to be compact. In particular, they proved that the only complete bounded
self-shrinker of R3 with |A| ≤ 1 is S2(

√
2). Afterwards, Cavalcante and Espinar [8] showed that the

only complete self-shrinker of Rn+1 properly immersed in a closed cylinder Bk+1(r) × Rn−k, for some
k ∈ {1, · · · , n} and radius r ≤

√
k, is the cylinder Sk(

√
k)× Rn−k.

Considering the setting of Example 2.2, from Theorem 3.1 we have:

Corollary 4.8. LetM
n+1

=
(
0, π2

)
×sin t Sn be the warped product model of RPn+1 \{π(P ) ∪ CutP}.

Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t and
soliton constant c < 0, that lies in a slab [t1, t2] × Sn, and either cos−1(

√
4c2+n2−n

2|c| ) ≤ t1 <
π
2 or

0 < t2 ≤ cos−1(
√
4c2+n2−n

2|c| ). If |∇h| ∈ L1
g(Σ), then Σn is the slice {cos−1(

√
4c2+n2−n

2|c| )} × Sn.

When the ambient space is a pseudo-hyperbolic space, Theorem 4.2 reads as follows:

Corollary 4.9. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn is complete. Let

ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = et∂t and soliton
constant c < 0, that lies in a slab [t1, t2] ×Mn, and t1 ≥ log

(
−n

c

)
. If |∇h| ∈ L1

g(Σ), then Σn is the
slice {log

(
−n

c

)
} ×Mn.

Taking into account again the context of Example 2.4 and Example 2.5, from Theorem 4.2 we
also obtain:

Corollary 4.10. Let M
n+1

= I ×f Sn be the Schwarzschild space and suppose that inequality (2.12)
is satisfied. Let ψ : Σn →M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, that lies in a slab [t1, t2] × Sn, and Vm(r(t)) ≤ c2

n2 r(t)
4 for all t ∈ [t1, t2].

If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m) solves

equation (2.11).

and

Corollary 4.11. Let M
n+1

= I ×f Sn be the Reissner-Nordström space and suppose that there is
r∗ > r0(m, q). Let ψ : Σn → M

n+1
be a complete mean curvature flow soliton with respect to

K = f(t)∂t and soliton constant c < 0, that lies in a slab [t1, t2]×Sn, and Vm,q(r(t)) ≤ c2

n2 r(t)
4 for all

t ∈ [t1, t2]. If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m, q)

solves equation (2.13).

4.2. Rigidity results via a parabolicity criterion. We recall that a Riemannian manifold is said
to be parabolic if the only subharmonic functions on it that are bounded from above are the
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constants. On the other hand, given two Riemannian manifolds (Σ, g) and (Σ
′
, g

′
), a diffeo-

morphism ϕ from Σ onto Σ
′

is called a quasi-isometry if there exists a constant κ ≥ 1 such that

κ−1|v|g ≤ |dϕ(v)|g′ ≤ κ|v|g

for all v ∈ TpΣ, p ∈ Σ. From [25, Theorem 1] (see also [22, Corollary 5.3]) we have the following:

Lemma 4.3. Let (Σ, g) and (Σ
′
, g

′
) be two complete Riemannian manifolds. If Σ and Σ

′
are quasi-

isometric, then Σ and Σ
′

are both parabolic or neither is parabolic.

We can use the previous lemma to get the following parabolicity criterion:

Lemma 4.4. Let ψ : Σn →M
n+1

be a complete hypersurface immersed in a warped product M
n+1

=
I ×f M

n, whose fiber (Mn, gM ) is complete with parabolic universal covering. If Θ is bounded away
from zero, then (Σn, ĝ), endowed with the conformal metric ĝ = 1

f(h)2 g, is parabolic.

Proof. Given p ∈ Σn and v ∈ TpΣ
n, from (2.1) and (2.4) we have

(4.24) g(v, v) = g(v,∇h)2 + f(h)2gM (dπ(v), dπ(v)).

Thus, from (4.24) we get

(4.25) ĝ(v, v) =
1

f(h)2
g(v, v) ≥ gM (dπ(v), dπ(v)).

On the other hand, using (2.4) and the Cauchy-Schwarz inequality in (4.24), we also have

(4.26) Θ2g(v, v) ≤ f(h)2gM (dπ(v), dπ(v)).

Since Θ is bounded away from zero, there exists a positive constant β such that Θ2 ≥ β2.
Consequently, from (4.26) we get

(4.27) β2g(v, v) ≤ Θ2g(v, v) ≤ f(h)2gM (dπ(v), dπ(v)).

Thus, from (4.27) we have

ĝ(v, v) ≤ 1

β2
gM (dπ(v), dπ(v)).(4.28)

Hence, using inequalities (4.25) and (4.28), we get

(4.29) gM (dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ 1

β2
gM (dπ(v), dπ(v)).

So, taking the constant κ = 1
β2 ≥ 1, from (4.29) we obtain

(4.30) κ−1gM (dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ κgM (dπ(v), dπ(v)),

which means that π is a quasi-isometry between Σ and M .
Let Σ

′
be the universal Riemannian covering of Σ with projection πΣ : Σ

′ → Σ. Then, the
map π0 = π ◦πΣ : Σ

′ →M is a covering map. If M
′

is the universal Riemannian covering of M
with projection π

′
:M

′ →M , then there exists a diffeomorphism ϕ : Σ
′ →M

′
such that π

′◦ ϕ =
π0. Moreover, from (4.30) it is not difficult to verify that ϕ is also a quasi-isometry. Therefore,
since the universal Riemannian covering of M is parabolic, it follows from Lemma 4.3 that the
universal Riemannian covering of Σ is parabolic and, hence, Σ must be also parabolic with
respect to the metric ĝ. □
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For the next result, let us establish one notation. Define the modified soliton function as being
the function

(4.31) ζ̄c(t) := f ′(t)ζc(t).

Using Lemma 4.4, we obtain the following result:

Theorem 4.3. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with parabolic

universal covering and such that its warping function f satisfies

(4.32) (log f)′′ ≤ γ[(log f)′]2

for some constant γ > −1, holding the equality only at isolated points of I . Let ψ : Σn → M
n+1

be
a complete mean curvature flow soliton with respect to K = f(t)∂t and soliton constant c ̸= 0, such
that Θ is bounded away from zero and infΣ f(h) > 0. If ζ̄c(h) ≤ 0, then Σn is a slice Mt∗ for some
t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

Proof. Let us consider on Σn the metric ĝ = 1
f(h)2 g, which is conformal to its induced metric g.

If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (2.4) and (2.6) we get

∆̂h = f(h)2∆h− (n− 2)f(h)f ′(h)|∇h|2

= nf(h)f ′(h)Θ2 + f(h)f ′(h)|∇h|2 +Hf(h)2Θ.(4.33)

With a straightforward computation, from (4.33) we obtain

∆̂f(h) = f ′′(h)ĝ(∇̂h, ∇̂h) + f ′(h)∆̂h

= f ′′(h)f(h)2|∇h|2 + f ′(h)
(
nf(h)f ′(h)Θ2 + f(h)f ′(h)|∇h|2 +Hf(h)Θ

)
(4.34)

= nf(h)f ′(h)2 +Hf ′(h)f(h)2Θ+ f(h)3
(
(log f)′′(h)− (n− 2)

f ′(h)2

f(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂f(h)−α = α(α+ 1)f(h)−α−2ĝ(∇̂f(h), ∇̂f(h))− αf(h)−α−1∆̂f(h).(4.35)

Using (4.34) in (4.35), we get

∆̂f(h)−α = −αnf(h)−αf ′(h)2 − αHf ′(h)f(h)−α+1Θ+ α(α+ 1)f(h)−αf ′(h)2|∇h|2

− αf(h)−α+2

(
(log f)′′(h)− (n− 2)

f ′(h)2

f(h)2

)
|∇h|2.(4.36)

But, from (2.4) we have

(4.37) −αnf(h)−αf ′(h)2 = −αnf(h)−αf ′(h)2|∇h|2 − αnf(h)−αf ′(h)2Θ2.

Thus, from (4.36), (4.37), (2.7) and (4.31) we obtain

∆̂f(h)−α = −αf(h)−αζ̄c(h)Θ
2

− αf(h)−α+2
{
(log f)′′(h)− (α− 1)[(log f)′(h)]2

}
|∇h|2.(4.38)

First, we note that Lemma 4.4 guarantees that (Σn, ĝ) is parabolic. Moreover, it follows from (4.38)
that f(h)−α (where α = 1 + γ) is subharmonic on Σn. Thus, since the hypothesis infΣ f(h) > 0
implies that f(h)−α is bounded from above, it follows from the parabolicity of (Σn, ĝ) that f(h)
is constant on Σn. Consequently, since we are assuming that the equality holds in (4.32) only
at isolated points of I , returning to (4.38) we conclude that |∇h| = 0 on Σn, which means that
Σn is a slice. □
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In the following we present several half-space results. More precisely, in the context of self-
shrinkers, Theorem 4.3 reads as follows:

Corollary 4.12. The only complete n-dimensional self-shrinker of Rn+1 that lies in the closure of the
unbounded domain determined by Sn(

√
n) ⊂ Rn+1 and such that Θ is bounded away from zero, is

Sn(
√
n).

Taking into account once more Example 2.2, from Theorem 4.3 we get:

Corollary 4.13. LetM
n+1

=
(
0, π2

)
×sin tSn be the warped product model of RPn+1\{π(P ) ∪ CutP}.

Let ψ : Σn →M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t and soliton
constant c < 0, such that Θ is bounded away from zero. If cos−1(

√
4c2+n2−n

2|c| ) ≤ h < π
2 , then Σn is the

slice {cos−1(
√
4c2+n2−n

2|c| )} × Sn.

From Theorem 4.3 we obtain the following result:

Corollary 4.14. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn is complete

with parabolic universal covering. Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton
with respect to K = et∂t and soliton constant c < 0, such that Θ is bounded away from zero. If
h ≥ log(−n

c ), then Σn is the slice {log
(
−n

c

)
} ×Mn.

In the setting of Example 2.4 and Example 2.5, we also have the following consequence of
Theorem 4.3:

Corollary 4.15. Let M
n+1

= I ×f Sn be the Schwarzschild space and suppose that inequality (2.12)
is satisfied. Let ψ : Σn →M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, such that Θ is bounded away from zero. If Vm(r(h)) ≤ c2

n2 r(h)
4 on Σn,

then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m) solves equation (2.11).

and

Corollary 4.16. Let M
n+1

= I ×f Sn be the Reissner-Nordström space and suppose that there is r∗ >
r0(m, q). Let ψ : Σn → M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, such that Θ is bounded away from zero. If Vm,q(r(h)) ≤ c2

n2 r(h)
4 on Σn,

then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m, q) solves equation (2.13).

5. ENTIRE MEAN CURVATURE FLOW GRAPHS

Ecker and Huisken [20] proved that if an entire graph with polynomial volume growth is a
self-shrinker, then it is necessarily a hyperplane. Later on, Wang [33] removed the condition
of polynomial volume growth in Ecker-Huisken’s Theorem. More recently, Colombo, Mari
and Rigoli [16] extended this study to the context of entire mean curvature flow graphs in
warped products. Motivated by these works, the last section of this paper is devoted to estab-
lish new Moser-Bernstein type results concerning entire graphs constructed over the fiber Mn

of a warped product M
n+1

= I ×f M
n, which are mean curvature flow solitons with respect

to K = f(t)∂t with soliton constant c ̸= 0.

5.1. A key nonlinear differential equation. Let Ω ⊆ Mn be a domain. A function u ∈ C∞(Ω)

such that u(Ω) ⊆ I defines a vertical graph in the warped product M
n+1

= I ×f M
n. In such a

case, Σ(u) will denote the graph over Ω determined by u, that is,

Σ(u) = {(u(p), p) : p ∈ Ω} ⊂M
n+1

.
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The graph is said to be entire if Ω =Mn. Observe that h(u(p), p) = u(p), p ∈ Ω. Hence, h and u
can be identified in a natural way. The metric induced on Ω from the Riemannian metric of the
ambient space via Σ(u) is

gu = du2 + f(u)2gM .

If Mn is complete and infM f(u) > 0, then Σ(u) furnished with the metric gu is also complete.
The unit vector field

(5.39) N(p) = − f(u(p))√
f(u(p))2 + |Du(p)|2M

(
∂t|(u(p),p) −

Du(p)

f(u(p))2

)
, p ∈ Ω,

where Du stands for the gradient of u in M and |Du|M = gM (Du,Du)1/2, gives an orientation
of Σ(u) with respect to which we have Θ = g(N, ∂t) < 0. The corresponding shape operator is
given by

(5.40)

AX =− 1

f(u)
√
f(u)2 + |Du|2M

DXDu+
f ′(u)√

f(u)2 + |Du|2M
X

−

(
−gM (DXDu,Du)

f(u) (f(u)2 + |Du|2M )
3/2

− f ′(u)gM (Du,X)

(f(u)2 + |Du|2M )
3/2

)
Du

for any vector field X tangent to Ω, where D is the Levi-Civita connection in Mn.
Consequently, being Σ(u) a vertical graph over a domain Ω ⊆Mn and denoting by divM the

divergence operator computed in the metric gM , it is not difficult to verify from (5.40) that the
mean curvature function H(u) of Σ(u) is given by:

(5.41) H(u) = −divM

(
Du

f(u)
√
f(u)2 + |Du|2M

)
+

f ′(u)√
f(u)2 + |Du|2M

(
n− |Du|2M

f(u)2

)
.

Hence, from (2.7) and (5.41) we have that Σ(u) is a mean curvature flow soliton with respect
to K = f(t)∂t with soliton constant c if, and only if, u is a solution of the following nonlinear
differential equation:

(5.42) divM

(
Du

f(u)
√
f(u)2 + |Du|2M

)
=

1√
f(u)2 + |Du|2M

{
cf(u)2 + f ′(u)

(
n− |Du|2M

f(u)2

)}
.

5.2. Moser-Bernstein type results. We say that u ∈ C∞(M) has finite C2 norm when

||u||C2(M) := sup
|γ|≤2

|Dγu|L∞(M) < +∞.

In this context, we establish our first Moser-Bernstein type result:

Theorem 5.4. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with sectional

curvature obeying the convergence condition (3.14). Suppose in addition that c ̸= 0 and ζc(t) ≥ 0 .
If u ∈ C∞(M) is an entire solution of equation (5.42), with finite C2 norm and such that |Du|M ≤
C infM |ζc(u)| for some positive constant C, then u ≡ t∗ for some t∗ ∈ I which is implicitly given by the
condition ζc(t∗) = 0.

Proof. Let u ∈ C∞(M) be such a solution of equation (5.42). It follows from (5.40) that the
shape operator A of Σ(u) is bounded, provided that u has finite C2 norm. We note also that
the finiteness of the C2 norm of u implies, in particular, that u is bounded, which, in turn,
guarantees that infM f(u) > 0. Hence, since we are assuming that Mn is complete, we get that
(Σ(u), gu) must be also complete.
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Therefore, we can reason as in the proof of Theorem 3.1 obtaining that infM |ζc(u)| = 0 and,
hence, the result follows from our constraint on |Du|M . □

From the proof of Theorem 5.4 we also get the following nonexistence result:

Corollary 5.17. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with sectional

curvature obeying the convergence condition (3.14). Suppose in addition that c ̸= 0 and infI ζc(t) > 0.
There exists no entire solution with finite C2 norm of the equation (5.42).

Proceeding, Theorem 4.2 allows us to obtain our next result.

Theorem 5.5. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete. Suppose in

addition that c ̸= 0 and ζc(t) does not change the sign. If u ∈ C∞(M) is a bounded entire solution of
equation (5.42) such that |Du|M ∈ L1

gM (M), then u ≡ t∗ for some t∗ ∈ I which is implicitly given by
the condition ζc(t∗) = 0.

Proof. Let u ∈ C∞(M) be such a bounded entire solution of equation (5.42). Denoting by dM
and dΣ the Riemannian volume elements of (Mn, gM ) and (Σ(u), gu), respectively, from [1,
Equation (3.7)] we have that

|∇h|dΣ = f(u)n−1|Du|MdM.(5.43)

Hence, since we are assuming that u is bounded with |Du|M ∈ L1
gM (M), from relation (5.43)

we conclude that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 4.2. □

From (5.39) we see that the assumption Θ bounded away from zero is equivalent to |Du|M ≤
Cf(u) for some positive constant C. So, Theorem 4.3 allows us to obtain our last Moser-
Bernstein type result:

Theorem 5.6. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with parabolic

universal covering and such that its warping function f satisfies (4.32), holding the equality only at
isolated points of I . Suppose in addition that c ̸= 0 and ζ̄c(t) ≤ 0. If u ∈ C∞(M) is a bounded entire
solution of equation (5.42) such that |Du|M ≤ Cf(u) for some positive constant C, then u ≡ t∗ for some
t∗ ∈ I which is implicitly given by the condition ζc(t∗) = 0.

Remark 5.5. Regarding all the nonexistence, rigidity and Moser-Bernstein type results which
were established along our manuscript, it remains an interesting open problem to infer what is
the geometric behavior of the mean curvature flow solitons in the unbounded case, that is, when
it is not contained in a slab of the ambient space. Furthermore, it is worth noting that a natural
future prospect related to our work is to extend it to the context of multiply warped product spaces
(for details on these spaces, see [9, Section 3.6]).
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