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Uğur Duran 55-64

2 Generalized Bullen Type Inequalities and Their Applications
Mehmet Zeki Sarıkaya 65-71

3 More Efficient Solutions for Numerical Analysis of the Nonlinear Generalized Regularized
Long Wave (Grlw) Using the Operator Splitting Method
Melike Karta 72-87

4 Dynamical Behavior of Solutions to Higher-Order System of Fuzzy Difference Equations
Osman Topan, Yasin Yazlık,Sevda Atpınar 88-103

5 Properties of a Subclass of Harmonic Univalent Functions Using the Al-Oboudi q-Differential
Operator
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Abstract

In recent years, Hermite-based special polynomials, Bell-based special polynomials, and Laguerre-
based special polynomials have been explored, and numerous properties and applications have been
investigated by many mathematicians. Here, we consider the central Bell-based type 2 Bernoulli
polynomials of order β that extend the concepts of central Bell polynomials and type 2 Bernoulli
polynomials. Then, we derive diverse formulas, relations, and identities, such as some summation
formulas, an addition formula, two partial derivative properties, a recurrence relation, two explicit
formulas, and two summation formulas covering central Bell polynomials and central factorial
numbers of the second kind. Moreover, we investigate an implicit summation formula for central
Bell-based type 2 Bernoulli polynomials of order β utilizing some series manipulation methods.
Also, we developed three useful symmetric identities for the central Bell-based type 2 Bernoulli
polynomials of order β .

1. Introduction

Special numbers and polynomials are essential in many scientific fields, including mathematics, applied sciences, engineering,
physics, and related research areas. These areas include functional analysis, ordinary, and partial differential equations,
elementary and analytic number theory, mathematical physics, mathematical analysis, and quantum mechanics. For example,
Bernoulli and Bell polynomials and numbers (cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) have been extensively
examined in diverse fields of mathematics, such as, for instance, combinatorics, numerical analysis, probability theory,
quantum physics (quantum groups), homotopy theory (stable homotopy groups of spheres), p-adic analytic number theory,
and differential topology (differential structures on spheres). The Bell, Bernoulli, central Bell, type 2 Bernoulli, and central
factorial polynomials are among the most critical polynomials in the theory of special polynomials. Numerous physicists and
mathematicians have recently extensively examined and studied the polynomials above and their various generalizations, cf.
[1, 17, 18, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 13, 14, 15, 21, 22, 23, 24, 25, 16]

Recently, Duran et al. [4] considered the Bell-based Stirling polynomials of the second kind given by

∞

∑
r=0

φ S2 (r, p : ω,γ)
zr

r!
=

(ez−1)p

p!
eωz+γ(ez−1)

and investigated some helpful properties and relations, covering several summation formulas associated with the Stirling
numbers of the second kind and the Bell polynomials. Then, they also defined Bell-based Bernoulli polynomials of order β

given by

∞

∑
r=0

φ B(β )
r (ω;γ)

zr

r!
=

(
z

ez−1

)β

eωz+γ(ez−1)

and investigated diverse formulas and correlations, covering several derivative properties, summation formulas, implicit
summation formulas, and symmetric identities for Bell-based Bernoulli polynomials of order β . Moreover, they investigated
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some new formulas for these polynomials arising from umbral calculus. After considering the aforementioned study, many
versions of Bell-based special polynomials have been defined, and some of their properties and applications have been
investigated, cf. [3, 4, 5, 6, 9].

Inspired and motivated by the definitions of the Bell-based Stirling polynomials of the second kind and Bell-based Bernoulli
polynomials of higher order by Duran et al. [4], in this work, we consider the central Bell-based type 2 Bernoulli polynomials
of order β . Then, we investigate diverse relations, identities, and formulas, including five summation formulas in Theorems
2.6, 2.13, and 2.14; an addition formula in Theorem 2.7; two partial derivative properties in Theorem 2.8; a recurrence relation
in Theorem 2.9, and two explicit formulas in Theorems 2.11 and 2.12. Also, we acquire an implicit summation formula in
Theorem 2.15 and three symmetric identities for the central Bell-based type 2 Bernoulli polynomials of order β in Theorems
2.17, 2.18, and 2.19.

The Stirling numbers S2 (r,q) of the second kind are provided as follows (cf. [3, 4, 9, 23]):

∞

∑
r=0

S2 (r,q)
zr

r!
=

(ez−1)q

q!
, (1.1)

which means, for r ∈ N0 = N∪{0},

ω
r =

r

∑
q=0

S2 (r,q)(ω)q , (1.2)

where (ω)0 = 1 and (ω)r = ω(ω−1)(ω−2) · · ·(ω− (r−1)) for r ∈ N (cf. [1, 17, 2, 5, 7, 8, 11, 16]).

For q ∈ N0, the central factorial polynomials T (r,q : ω) and numbers T (r,q) of the second kind are defined as follows (cf.
[1, 17, 18, 2, 11, 12, 19, 20, 13, 14, 15, 21, 22, 24, 25, 16]):

∞

∑
r=0

T (r,q : ω)
zr

r!
=

(
e

z
2 − e−

z
2

)q

q!
eωz and

∞

∑
r=0

T (r,q)
zr

r!
=

(
e

z
2 − e−

z
2

)q

q!
. (1.3)

The numbers T (r,q) are computed by, for r ∈ N0:

ω
r =

r

∑
q=0

T (r,q)ω
[q], (1.4)

where the notation ω [q] termed as the central factorial equals to ω
(
ω + q

2 −1
)(

ω + q
2 −2

)
· · ·
(
ω− q

2 +1
)

with ω [0] = 1, cf.
[1, 17, 18, 2, 11, 12, 19, 20, 13, 14, 15, 21, 22, 24, 25, 16]

The classical Bell polynomials φr (ω) and central Bell polynomials φ
(c)
r (ω) are provided by:

∞

∑
r=0

φr (ω)
zr

r!
= eω(ez−1) (1.5)

and
∞

∑
r=0

φ
(c)
r (ω)

zr

r!
= eω

(
e

z
2−e−

z
2
)
. (1.6)

The classical Bell numbers φr (cf. [3, 4, 5, 6, 9]) and usual central Bell numbers φ
(c)
r (cf. [1, 2, 10, 11, 12, 14, 15, 16]) are

obtained by taking ω = 1 in (1.5) and (1.6), that is φr (1) := φr and φ
(c)
r (1) := φ

(c)
r , provided by

∞

∑
r=0

φr
zr

r!
= e(e

z−1) and
∞

∑
r=0

φ
(c)
r

zr

r!
= e

(
e

z
2−e−

z
2
)
. (1.7)

Also, the bivariate central Bell polynomials φ
(c)
r (ω;γ) are defined by

∞

∑
r=0

φ
(c)
r (ω;γ)

zr

r!
= eωz+γ

(
e

z
2−e−

z
2
)
. (1.8)

We observe from (1.1), (1.3), (1.5), and (1.6) that

φr (ω) =
r

∑
q=0

S (r,q)ω
q,
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(cf. [3, 4, 5, 6, 9]) and

φ
(c)
r (ω) =

r

∑
q=0

T (r,q)ω
q, (1.9)

(cf. [1, 2, 10, 11, 12, 14, 15, 16]).

The type 2 Bernoulli polynomials b(β )r (ω) of order β are defined by (cf. [7, 10, 19, 13]):

∞

∑
r=0

b(β )r (ω)
zr

r!
=

(
z

e
z
2 − e−

z
2

)β

eωz. (1.10)

Setting ω = 0 in (1.10), we get b(β )r (0) := b(β )r known as the type 2 Bernoulli numbers of order β . The numbers b(1)r := br

and the polynomials b(1)r (ω) := br (ω) are termed the classical type 2 Bernoulli numbers and polynomials, respectively.
For q ∈ N0, let Sq (r) = ∑

r
υ=0 υq that also generated by (cf. [4]):

e(r+1)z−1
ez−1

=
∞

∑
q=0

Sq (r)
zq

q!
. (1.11)

2. Central Bell-Based Type 2 Bernoulli Polynomials of Order β

In this part, we define the central Bell-based type 2 Bernoulli polynomials of higher order and analyze several relations and
formulas covering addition formulas, partial derivation rules, summation formulas, and correlations with the central Bell
polynomials and the central factorial numbers of the second kind.

We now define central Bell-based type 2 Bernoulli polynomials of order β as given below.

Definition 2.1. The central Bell-based type 2 Bernoulli polynomials of order β are defined as follows:

∞

∑
r=0

CBb(β )r (ω;γ)
zr

r!
=

(
z

e
z
2 − e−

z
2

)β

eωz+γ

(
e

z
2−e−

z
2
)
. (2.1)

Several particular circumstances of the central Bell-based type 2 Bernoulli polynomials of order β are examined as follows.

Remark 2.2. When ω = 0 in (2.1), we get type 2 central Bell-Bernoulli polynomials CBb(β )r (γ) of order β , which are also
novel extensions of the type 2 Bernoulli numbers of order β in (1.10), given below:

∞

∑
r=0

CBb(β )r (γ)
zr

r!
=

(
z

e
z
2 − e−

z
2

)β

eγ

(
e

z
2−e−

z
2
)
. (2.2)

Remark 2.3. Upon letting γ = 0 in (2.1), the central Bell-based type 2 Bernoulli polynomials CBb(β )r (ω;γ) of order β become
type 2 Bernoulli polynomials b(β )r (ω) of order β in (1.10).

Remark 2.4. When γ = 0 and β = 1, the polynomials CBb(β )r (ω;γ) become the type 2 Bernoulli polynomials br (ω) in (1.10).

Remark 2.5. For β = 1 in (2.1), we get CBb(1)r (ω;γ) := CBbr (ω;γ) that are termed the central Bell-based type 2 Bernoulli
polynomials.

The following theorems analyze multifarious properties of CBb(β )r (ω;γ).

Theorem 2.6. The following equalities

CBb(β )r (ω;γ) =
r

∑
p=0

(
r
p

)
b(β )p φ

(c)
r−p (ω;γ) , (2.3)

CBb(β )r (ω;γ) =
r

∑
p=0

(
r
p

)
b(β )p (ω)φ

(c)
r−p (γ) , (2.4)

CBb(β )r (ω;γ) =
r

∑
p=0

(
r
p

)
CBb(β )p (γ)ω

r−p, (2.5)

hold for r ∈ N0.
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Proof. We compute using (1.10), (1.8), (2.1) and (2.2) that

∞

∑
r=0

CBb(β )r (ω;γ)
zr

r!
=

(
z

e
z
2 − e−

z
2

)β

eωz+γ

(
e

z
2−e−

z
2
)

=
∞

∑
r=0

b(β )r
zr

r!

∞

∑
r=0

φ
(c)
r (ω;γ)

zr

r!

=
∞

∑
r=0

[
r

∑
p=0

(
r
p

)
b(β )p φ

(c)
r−p (ω;γ)

]
zr

r!
,

which implies the formula in (2.3). The proof of (2.4) and (2.5) can be done similarly.

Theorem 2.7. The following relationship

CBb(β1+β2)
r (ω1 +ω2;γ1 + γ2) =

r

∑
p=0

(
r
p

)
CBb(β1)

p (ω1;γ1) CBb(β2)
r−p (ω2;γ2) (2.6)

holds for r ∈ N0.

Proof. We compute from (2.1) that

∞

∑
r=0

CBb(β1+β2)
r (ω1 +ω2;γ1 + γ2)

zr

r!
=

(
z

e
z
2 − e−

z
2

)β1+β2

e(ω1+ω2)z+(γ1+γ2)
(

e
z
2−e−

z
2
)

=

(
z

e
z
2 − e−

z
2

)β1

eω1z+γ1

(
e

z
2−e−

z
2
)(

z
e

z
2 − e−

z
2

)β2

eω2z+γ2

(
e

z
2−e−

z
2
)

=
∞

∑
r=0

CBb(β1)
r (ω1;γ1)

zr

r!

∞

∑
r=0

CBb(β2)
r (ω2;γ2)

zr

r!

=
∞

∑
r=0

r

∑
p=0

(
r
p

)
CBb(β1)

p (ω1;γ1) CBb(β2)
r−p (ω2;γ2)

zr

r!
,

which means the claimed equality (2.6).

Some of the particular circumstances of Theorem 2.7 are provided as follows:

CBb(β )r (ω +1;γ) =
r

∑
p=0

(
r
p

)
CBb(β )p (ω;γ) ,

CBb(β )r (ω;γ +1) =
r

∑
p=0

(
r
p

)
CBb(β )r (ω;γ1)φ

(c)
r ,

CBb(β1+β2)
r (ω;γ) =

r

∑
p=0

(
r
p

)
CBb(β1)

p (ω;γ)b(β2)
r−p,

where the first formula is an extension of the formula for type 2 Bernoulli polynomials provided by (cf. [15]):

br (ω +1) =
r

∑
p=0

(
r
p

)
bp (ω) .

Theorem 2.8. The difference operator formulas for CBb(β )r (ω;γ):

∂

∂ω
CBb(β )r (ω;γ) = r CBb(β )r−1 (ω;γ) (2.7)

and

∂

∂γ
CBb(β )r (ω;γ) = CBb(β )r

(
ω +

1
2

;γ

)
− CBb(β )r

(
ω− 1

2
;γ

)
(2.8)

are valid for r ∈ N.

Proof. Based on the following properties

∂

∂ω
eωz+γ

(
e

z
2−e−

z
2
)
= zeωz+γ

(
e

z
2−e−

z
2
)

and
∂

∂ω
eωz+γ

(
e

z
2−e−

z
2
)
=
(

e
z
2 − e−

z
2

)
eωz+γ

(
e

z
2−e−

z
2
)
,

the proofs are easily done. We omit the details.
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A recurrence relation for CBb(β )r (ω;γ) is given as follows.

Theorem 2.9. The following equality

φ
(β )
r (ω;γ) =

CBbr+1
(
ω + 1

2 ;γ
)
− CBbr+1

(
ω− 1

2 ;γ
)

r+1
(2.9)

=
1

r+1

r+1

∑
p=0

(
r+1

p

)
CBbr+1−p (ω;γ)

(
1
2p −

1
(−2)p

)

is valid for r ∈ N0.

Proof. Based on the following relation

eωz+γ

(
e

z
2−e−

z
2
)
=

e
z
2 − e−

z
2

z

∞

∑
r=0

CBbr (ω;γ)
zr

r!
,

the proof is readily completed, using (2.1). We omit the details.

Remark 2.10. The result (2.9) is a generalization of the identity for br (ω) provided by

ω
r =

br+1
(
ω + 1

2

)
−br+1

(
ω− 1

2

)

r+1
.

A formula for CBbr (ω;γ) is given as follows.

Theorem 2.11. The following equality

CBbr (ω;γ) = r
∞

∑
p=0

p−1

∑
υ=0

γ p

p!

(
p−1

υ

)
(−1)p−υ−1

(
ω +υ +

1− p
2

)r−1

holds for r ∈ N0.

Proof. Utilizing Definition 2.1, we obtain
∞

∑
r=0

CBbr (ω;γ)
zr

r!
=

zeωz

e
z
2 − e−

z
2

eγ

(
e

z
2−e−

z
2
)

= zeωz
∞

∑
p=0

γ p

p!

(
e

z
2 − e−

z
2

)p−1

= z
∞

∑
p=0

γ p

p!

p−1

∑
υ=0

(
p−1

υ

)
(−1)p−υ−1 e(2υ−p+1+2ω) z

2

=
∞

∑
r=0

∞

∑
p=0

p−1

∑
υ=0

γ p

p!

(
p−1

υ

)
(−1)p−υ−1

(
ω +υ +

1− p
2

)r zr+1

r!
,

which means the claimed equality.

Theorem 2.12. The following equality

CBb(q)r (ω;γ) =
r−q

∑
p=q

(r)q

(p)q
γ

pT (r−q, p−q : ω)

holds for r,q ∈ N0.

Proof. By means of Definition 2.1, we derive
∞

∑
r=0

CBb(q)r (ω;γ)
zr

r!
=

(
z

e
z
2 − e−

z
2

)q

eγ

(
e

z
2−e−

z
2
)
eωz

= zq
∞

∑
p=0

γ p

(p)q

(
e

z
2 − e−

z
2

)p−q

(p−q)!
eωz

= zq
∞

∑
p=0

γ p

(p)q

∞

∑
r=0

T (r, p−q : ω)
zr

r!

=
∞

∑
r=0

r

∑
p=q

γ p

(p)q
T (r, p−q : ω)

zr+q

r!
,

which gives the claimed formula.
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The direct consequent of Theorem 2.12 is as follows:

CBbr (ω;γ) = r
r−1

∑
p=1

γ p

p
T (r−1, p−q : ω) .

Theorem 2.13. The following formula

φ
(c)
r (ω;γ) =

1(r+q
q

)
r+q

∑
υ=0

(
r+q

υ

)
T (r+q−υ ,q) CBb(q)υ (ω;γ) (2.10)

holds for r ∈ N0 and q ∈ Z.

Proof. Utilizing Definition 2.1 and (1.8), based on the following computations

eωz+γ

(
e

z
2−e−

z
2
)

= q!z−q

(
e

z
2 − e−

z
2

)q

q!

∞

∑
r=0

CBb(q)r (ω;γ)
zr

r!

= q!z−q
∞

∑
r=0

T (r,q)
zr

r!

∞

∑
r=0

CBb(q)r (ω;γ)
zr

r!

= q!
∞

∑
r=0

r

∑
υ=0

(
r
υ

)
T (r−υ ,q) CBb(q)υ (ω;γ)

zr−q

r!
,

the proof is completed.

Theorem 2.14. The following correlation

CBb(β )r (ω;γ) =
r

∑
υ=0

υ

∑
p=0

(
r
υ

)
(2ω)p T

(
υ , p :

p−2ω

2

)
CBb(β )r−υ (γ) (2.11)

holds for r ∈ N0.

Proof. Utilizing Definition 2.1 and using (1.1) and (2.2), we obtain

∞

∑
r=0

CBb(β )r (ω;γ)
zr

r!
=

(
z

e
z
2 − e−

z
2

)β

eγ

(
e

z
2−e−

z
2
)(

e
z
2 − e−

z
2 + e−

z
2

)2ω

=

(
z

e
z
2 − e−

z
2

)β

eγ

(
e

z
2−e−

z
2
)

∞

∑
p=0

(2ω)p

(
e

z
2 − e−

z
2

)p

p!
ez (p−2ω)

2

=
∞

∑
r=0

CBb(β )r (γ)
zr

r!

∞

∑
r=0

r

∑
p=0

(2ω)p T
(

r, p :
p−2ω

2

)
zr

r!

=
∞

∑
r=0

r

∑
υ=0

υ

∑
p=0

(
r
υ

)
(2ω)p T

(
υ , p :

p−2ω

2

)
CBb(β )r−υ (γ)

zr

r!
,

which implies the desired equality (2.11).

We give the following series equalities (cf. [4]):

∞

∑
r,q=0

f (r+q)
ωr

r!
γq

q!
=

∞

∑
N=0

f (N)
(ω + γ)N

N!
(2.12)

and

∞

∑
p=0

p

∑
υ=0

A(υ , p−υ) =
∞

∑
p,υ=0

A(υ , p) . (2.13)

Theorem 2.15. The following equality holds:

CBb(β )p+υ (ω;γ) =
p,υ

∑
r,q=0

(
p
r

)(
υ

q

)
(ω−κ)r+q

CBb(β )p+υ−r−q (ω;γ) . (2.14)
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Proof. We get by changing z by z + u in (2.1) and utilizing (2.12) that

e−κ(z+u)
∞

∑
p,υ=0

CBb(β )p+υ (κ;γ)
zp

p!
uυ

υ!
=

(
z+u

e
z+u

2 − e−
z+u

2

)β

e
γ

(
e

z+u
2 −e−

z+u
2

)

,

and

e−ω(z+u)
∞

∑
p,υ=0

CBb(β )p+υ (ω;γ)
zp

p!
uυ

υ!
=

(
z+u

e
z+u

2 − e−
z+u

2

)β

e
γ

(
e

z+u
2 −e−

z+u
2

)

,

which means the following equality

e(ω−κ)(z+u)
∞

∑
p,υ=0

CBb(β )p+υ (κ;γ)
zp

p!
uυ

υ!
=

∞

∑
p,υ=0

CBb(β )p+υ (ω;γ)
zp

p!
uυ

υ!
.

Therefore, utilizing (2.13), we have

∞

∑
p,υ=0

CBb(β )p+υ (ω;γ)
zp

p!
uυ

υ!
=

∞

∑
r,q=0

(ω−κ)r+q zr

r!
uq

q!

∞

∑
p,υ=0

CBb(β )p+υ (κ;γ)
zp

p!
uυ

υ!

=
∞

∑
p,υ=0

p,υ

∑
r,q=0

(ω−κ)r+q
CBb(β )p+υ−r−q (ω;γ)

r!q!(p−υ)!(υ−q)!
zpuυ ,

which means the claimed formula (2.14).

Corollary 2.16. Putting υ = 0 in (2.14), we have

CBb(β )p (ω;γ) =
p

∑
r=0

(
p
r

)
CBb(β )p−r (κ;γ)(ω−κ)r .

Theorem 2.17. The following identity holds for a,b ∈ R and r ≥ 0:

r

∑
p=0

(
r
p

)
CBb(β )r−p (bω;γ) CBb(β )p (aω;γ)ar−pbp =

r

∑
p=0

(
r
p

)
CBb(β )p (bω;γ) CBb(β )r−p (aω;γ)apbr−p. (2.15)

Proof. Choose

ϒ =

(
az

e
az
2 − e−

az
2

bz

e
bz
2 − e−

bz
2

)β

e
2abωz+γ

(
e

az
2 −e−

az
2
)
+γ

(
e

bz
2 −e−

bz
2

)

.

We compute two expansions of ϒ:

ϒ =
∞

∑
r=0

CBb(β )r (bω;γ)
(az)r

r!

∞

∑
r=0

CBb(β )r (aω;γ)
(bz)r

r!

=
∞

∑
r=0

r

∑
p=0

(
r
p

)
CBb(β )r−p (bω;γ) CBb(β )p (aω;γ)ar−pbp zr

r!

and similarly

ϒ =
∞

∑
r=0

r

∑
p=0

(
r
p

)
CBb(β )p (bω;γ) CBb(β )r−p (aω;γ)apbr−p zr

r!
,

which means the claimed identity (2.15).

Here is another symmetric identity for CBb(β )r (ω;γ) given below.

Theorem 2.18. The following identity holds for a,b ∈ R and r ≥ 0:

r

∑
p=0

b−1

∑
i=0

a−1

∑
j=0

(
r
p

)
CBb(β )p

(
bω1−b+ i+

1
2
+

b
a

(
j+

1
2

)
;γ

)
CBb(β )r−p (aω2;γ)apbr−p (2.16)

=
r

∑
p=0

b−1

∑
i=0

a−1

∑
j=0

(
r
p

)
CBb(β )r−p (bω1;γ)CB b(β )p

(
aω2−a+ j+

1
2
+

a
b

(
i+

1
2

)
;γ

)
ar−pbp.
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Proof. Let

Ψ =
(az)β (bz)β

(
e

az
2 − e−

az
2

)β+1(
e

bz
2 − e−

bz
2

)β+1

(
e
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)2
e
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e
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2
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e
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(
e
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)(
e
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2

e
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2
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.

Utilizing

e
abz
2 − e−

abz
2

e
az
2 − e−

az
2

=
b−1

∑
i=0

eaz(i+ 1−b
2 ) and

e
abz
2 − e−

abz
2

e
bz
2 − e−

bz
2

=
a−1

∑
j=0

ebz( j+ 1−a
2 ),

we observe that

Ψ =

(
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e
az
2 − e−
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2

)β

eabω1z+γ

(
e
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2
) b−1
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(
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e
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2
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e
abω2z+γ

(
e
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2

)
a−1
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ebz( j+ 1−a
2 )

=
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∑
i=0

a−1
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(
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e
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2 − e−
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2
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a ( j+1)+bω1−b+ 1

2 )az+γ
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e
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e
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2

)β

e
abω2z+γ

(
e
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2

)

=
∞

∑
r=0

r

∑
p=0

b−1

∑
i=0

a−1

∑
j=0

(
r
p

)
CBb(β )p

(
bω1−b+ i+

1
2
+

b
a

(
j+

1
2

)
;γ

)
CBb(β )r−p (aω2;γ)apbr−p zr

r!
,

and in the same way,

Ψ =
∞

∑
r=0

r

∑
p=0

b−1

∑
i=0

a−1

∑
j=0

(
r
p

)
CBb(β )r−p (bω1;γ)CB b(β )p

(
aω2−a+ j+

1
2
+

a
b

(
i+

1
2

)
;γ

)
ar−pbp zr

r!
,

which imply the desired identity (2.16).

Finally, we give our last symmetric identity.

Theorem 2.19. The following equality holds for a,b ∈ Z and r ≥ 0:

r

∑
υ=0

υ

∑
p=0

(
r
υ

)(
υ

p

)
Sr−υ (b−1) CBb(β )p

(
bω1 +

1−b
2

;γ

)
CBb(β+1)

υ−p (aω2;γ)ar+p+1−υ bυ−p

=
r

∑
υ=0

υ

∑
p=0

(
r
υ

)(
υ

p

)
Sr−υ (a−1) CBb(β+1)

υ−p (bω1;γ) CBb(β )υ−p

(
aω2 +

1−a
2

;γ

)
aυ−pbr+p+1−υ . (2.17)

Proof. Let
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(az)β+1 (bz)β+1
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e
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.

By (1.11) and (2.1), we observe that

Ω = az

(
e
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∞
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∞
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(bz)r

r!

=
∞

∑
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r

∑
υ=0

υ

∑
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(
r
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υ
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and also

Ω =
∞

∑
r=0

r

∑
υ=0

υ

∑
p=0

(
r
υ

)(
υ

p

)
Sr−υ (a−1) CBb(β+1)

υ−p (bω1;γ) CBb(β )υ−p

(
aω2 +

1−a
2

;γ

)
aυ−pbr+p+1−υ zr−1

r!
,

which mean the asserted identity (2.17).

3. Conclusions

In recent years, Duran, Araci, and Acikgoz [4] considered the Bell-based Bernoulli polynomials of order β given below

(
z

ez−1

)β

eωz+γ(ez−1) =
∞

∑
r=0

φ B(β )
r (ω;γ)

zr

r!

and derived many formulas and relations, covering several symmetric properties, derivative properties, summation formulas,
and addition formulas. Inspired and motivated by the aforesaid study, in this paper, we have defined the central Bell-based type
2 Bernoulli polynomials of order β provided below

(
z

e
z
2 − e−

z
2

)β

eωz+γ

(
e

z
2−e−

z
2
)
=

∞

∑
r=0

CBb(β )r (ω;γ)
zr

r!

and we have derived diverse formulas and properties covering several derivative properties and summation equalities. In
addition, we have obtained three symmetric identities and an implicit summation formula for the mentioned polynomials.
Additionally, we have examined several particular circumstances of the obtained results that are extensions of the many previous
results, some of which are included in [1, 17, 18, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 13, 14, 15, 21, 22, 23, 24, 25, 16]. We
will consider the possibility of analyzing the polynomials discussed in this paper in the context of umbral calculus and the
monomiality principle for future directions.
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Abstract

This paper presents a novel extension of Bullen-type inequalities for convex functions by leveraging
recently established generalized identities. Through rigorous proofs, we derive new inequalities
that exhibit strong connections to both the left- and right-hand sides of the Hermite-Hadamard
inequalities for Riemann-integrable functions. Additionally, we apply these results to various
special means of two positive numbers.

1. Introduction

Definition 1.1. A function f : [a,b]⊂ R→ R is said to be convex if the following inequality holds:

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

for all x,y ∈ [a,b] and λ ∈ [0,1]. The function f is called concave if (− f ) is convex.

The theory of convex functions is a fundamental area of mathematics with applications across a wide range of fields, including
optimization theory, control theory, operations research, geometry, functional analysis, and information theory. It is also highly
relevant in other scientific disciplines such as economics, finance, engineering, and management sciences.

One of the most well-known results in this area is the Hermite–Hadamard integral inequality (see [1]), which serves as a
fundamental tool for studying the behaviour of convex functions. This inequality has far-reaching implications and has been
the subject of extensive research in recent years, giving rise to new and powerful mathematical techniques for addressing a
broad spectrum of problems. The literature contains numerous extensions and refinements of this inequality (see [2]–[13]).

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx≤ f (a)+ f (b)

2
(1.1)

where f : I ⊂ R→ R is a convex function on an interval I and a,b ∈ I with a < b.
Suppose that f : [a,b]→ R is convex on [a,b]. Then the following chain of inequalities holds:

f
(

a+b
2

)
≤ 1

2

[
f
(

3a+b
4

)
+ f

(
a+3b

4

)]
(1.2)

≤ 1
b−a

∫ b

a
f (x)dx

≤ 1
2

[
f
(

a+b
2

)
+

f (a)+ f (b)
2

]
≤ f (a)+ f (b)

2
.

The third inequality in (1.2) is commonly known as Bullen’s inequality.

≫≫≫ Received: 27-09-2024 ≫≫≫ Revised: 23-06-2025 ≫≫≫ Accepted: 26-06-2025 ≫≫≫ Online: 27-06-2025 ≫≫≫ Published: 30-06-2025



66 Fundamental Journal of Mathematics and Applications

These inequalities were first introduced independently by Charles Hermite and Jacques Hadamard in the late 19th century,
and they have since found numerous applications in analysis, geometry, and probability theory. The Hermite–Hadamard
inequalities state that if a function is convex on a closed interval, then the average value of the function over that interval lies
between its value at the midpoint and the average of its values at the endpoints.

These inequalities serve as powerful tools for estimating integrals and are foundational results in the theory of convex functions.
They have been applied in a variety of contexts, including integral calculus, probability theory, statistics, optimization, and
number theory. Moreover, they are instrumental in solving physical and engineering problems where determining the average
value of a function is required.

Hadamard’s inequality, in particular, is widely applied and carries significant geometric interpretations. Bullen’s inequality, on
the other hand, can be interpreted as a convex combination of the midpoint and trapezoidal rules for numerical integration.
This inequality has also been extensively investigated in the literature, leading to various generalizations and a rich body of
related research (see [14]–[25]).

In this paper, we present a new extension of Bullen-type inequalities for convex functions by utilizing recently established
generalized identities. Through rigorous proofs, we establish inequalities that are strongly connected to both sides of the
Hermite-Hadamard inequalities for Riemann-integrable functions. Furthermore, we demonstrate the applicability of these
inequalities to various special means of two positive numbers.

2. Main Results

To prove our main results, we require the following lemma:

Lemma 2.1. Let f : I ⊂R→R be a differentiable function on I◦, the interior of the interval I, where a,b ∈ I◦ with a < b, and
suppose that f ′ ∈ L[a,b]. Then the following identity holds:

1
2

∫ b

a
K(x, t) f ′′(t)dt = f (x)+

f (a)+ f (b)
2

−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]
(2.1)

where

K(x, t) =





1
x−a (x− t)(t−a) for a≤ t < x,

1
b−x (t− x)(b− t) for x≤ t ≤ b.

Proof. By integration by parts, we have
∫ b

a
K(x, t) f ′′(t)dt =

1
x−a

∫ x

a
(x− t)(t−a) f ′′(t)dt +

1
b− x

∫ b

x
(t− x)(b− t) f ′′(t)dt

=
1

x−a

[
(x− t)(t−a) f ′(t)

]x
a−

1
x−a

∫ x

a
(a+ x−2t) f ′(t)dt

+
1

b− x

[
(t− x)(b− t) f ′(t)

]b
x−

1
b− x

∫ b

x
(b+ x−2t) f ′(t)dt

= − 1
x−a

[(a+ x−2t) f (t)]xa−
2

x−a

∫ x

a
f (t)dt

− 1
b− x

[(b+ x−2t) f (t)]bx−
2

b− x

∫ b

x
f (t)dt

= 2 f (x)+ f (a)+ f (b)− 2
x−a

∫ x

a
f (t)dt− 2

b− x

∫ b

x
f (t)dt.

Multiplying both sides by 1
2 yields the desired identity (2.1).

Remark 2.2. In Lemma 2.1, if we choose x = a+b
2 , then identity (2.1) becomes:

1
2(b−a)

∫ b

a
K(t) f ′′(t)dt =

1
2

[
f
(

a+b
2

)
+

f (a)+ f (b)
2

]
− 1

b−a

∫ b

a
f (t)dt

where

K(t) =





( a+b
2 − t

)
(t−a) for a≤ t < a+b

2 ,

(
t− a+b

2

)
(b− t) for a+b

2 ≤ t ≤ b.
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Theorem 2.3. Under the assumptions of Lemma 2.1, if | f ′′| is convex on [a,b], then the following inequality holds:
∣∣∣∣ f (x)+

f (a)+ f (b)
2

−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]∣∣∣∣ (2.2)

≤ (x−a)2 +(b− x)2

24

∣∣ f ′′(x)
∣∣+ (x−a)2 | f ′′(a)|+(b− x)2 | f ′′(b)|

24
,

for all x ∈ (a,b).

Proof. Since | f ′′| is convex on [a,b], we have
∣∣ f ′′(t)

∣∣≤ t−a
x−a

∣∣ f ′′(x)
∣∣+ x− t

x−a

∣∣ f ′′(a)
∣∣ , for t ∈ [a,x],

and
∣∣ f ′′(t)

∣∣≤ b− t
b− x

∣∣ f ′′(x)
∣∣+ t− x

b− x

∣∣ f ′′(b)
∣∣ , for t ∈ [x,b].

Taking the absolute value of both sides in equation (2.1), and applying the convexity estimates, we obtain:
∣∣∣∣ f (x)+

f (a)+ f (b)
2

−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]∣∣∣∣

≤ 1
2(x−a)

∫ x

a
(x− t)(t−a)

∣∣ f ′′(t)
∣∣dt +

1
2(b− x)

∫ b

x
(t− x)(b− t)

∣∣ f ′′(t)
∣∣dt

≤ | f ′′(x)|
2(x−a)2

∫ x

a
(x− t)(t−a)2dt +

| f ′′(a)|
2(x−a)2

∫ x

a
(x− t)2(t−a)dt

+
| f ′′(x)|

2(b− x)2

∫ b

x
(t− x)(b− t)2dt +

| f ′′(b)|
2(b− x)2

∫ b

x
(t− x)2(b− t)dt.

Evaluating the integrals and simplifying yields:
∣∣∣∣ f (x)+

f (a)+ f (b)
2

−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]∣∣∣∣≤
(x−a)2 +(b− x)2

24

∣∣ f ′′(x)
∣∣+ (x−a)2 | f ′′(a)|+(b− x)2 | f ′′(b)|

24
.

Remark 2.4. If we choose x = a+b
2 in Theorem 2.3, then inequality (2.2) becomes:

∣∣∣∣
1
2

[
f
(

a+b
2

)
+

f (a)+ f (b)
2

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣ ≤
(b−a)2

2

[
1

48

∣∣∣∣ f ′′
(

a+b
2

)∣∣∣∣+
| f ′′(a)|+ | f ′′(b)|

96

]

≤ (b−a)2

48

[ | f ′′(a)|+ | f ′′(b)|
2

]
,

which coincides with the result previously obtained by Sarikaya and Aktan in [23].

Theorem 2.5. Under the assumptions of Lemma 2.1, if | f ′′|q is convex on [a,b] for some q > 1, then the following inequality
holds: ∣∣∣∣ f (x)+

f (a)+ f (b)
2

−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]∣∣∣∣ (2.3)

≤ 1
2
[
(x−a)p+1 +(b− x)p+1] 1

p ·B
1
p (1+ p,1+ p) ·

( | f ′′(a)|q + | f ′′(b)|q
2

) 1
q

,

for all x ∈ (a,b).

Proof. Taking the absolute value of identity (2.1) and applying Hölder’s integral inequality, together with the convexity of
| f ′′|q, we obtain:

∣∣∣∣ f (x)+
f (a)+ f (b)

2
−
[

1
x−a

∫ x

a
f (t)dt +

1
b− x

∫ b

x
f (t)dt

]∣∣∣∣

≤ 1
2

(∫ b

a
|K(x, t)|p dt

) 1
p
(∫ b

a

∣∣ f ′′(t)
∣∣q dt

) 1
q

, where
1
p
+

1
q
= 1.

≤ 1
2

(
1

(x−a)p

∫ x

a
(x− t)p(t−a)p dt +

1
(b− x)p

∫ b

x
(t− x)p(b− t)p dt

) 1
p

×
(∫ b

a

[
t−a
b−a

∣∣ f ′′(b)
∣∣q + b− t

b−a

∣∣ f ′′(a)
∣∣q
]

dt
) 1

q

=
1
2
[
(x−a)p+1 +(b− x)p+1] 1

p B
1
p (1+ p,1+ p)

( | f ′′(a)|q + | f ′′(b)|q
2

) 1
q

.
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This completes the proof.

Corollary 2.6. Under the assumptions of Theorem 2.5, if we take x = a+b
2 in inequality (2.3), then we obtain:

∣∣∣∣
1
2

[
f
(

a+b
2

)
+

f (a)+ f (b)
2

]
− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤
(b−a)

1
p+1

8
B

1
p (1+ p,1+ p)

( | f ′′(a)|q + | f ′′(b)|q
2

) 1
q

. (2.4)

3. Applications

As in [1], we consider the means for arbitrary real numbers a,b ∈R+ with a 6= b. The following classical means are defined as:

• A(a,b) =
a+b

2
(Arithmetic Mean)

• H(a,b) =
2ab

a+b
(Harmonic Mean)

• K(a,b) =

√
a2 +b2

2
(Quadratic Mean)

• G(a,b) =
√

ab (Geometric Mean)

• L(a,b) =
b−a

lnb− lna
(Logarithmic Mean)

• I(a,b) =
1
e

(
bb

aa

)1/(b−a)

(Identric Mean)

• Ln(a,b) =
(

bn+1−an+1

(b−a)(n+1)

)1/n

, n ∈ R\{−1,0} (Generalized Logarithmic Mean)

The following inequality among classical means is well known in the literature:

H(a,b)≤ G(a,b)≤ L(a,b)≤ I(a,b)≤ A(a,b).

Proposition 3.1. Assume that n > 3 and b > a > 0. Then the following inequality holds:
∣∣∣∣
An(a,b)+A(an,bn)

2
−Ln

n(a,b)
∣∣∣∣≤ n(n−1)

(b−a)2

48
· A

n−2(a,b)+A(an−2,bn−2)

2
≤ n(n−1)

(b−a)2

48
A(an−2,bn−2).

Proof. The result follows from Theorem 2.3 by choosing x =
a+b

2
and f (t) = tn for t > 0. Then we have:

f ′′ (t) = n(n−1) tn−2.

Since
(∣∣ f ′′(t)

∣∣)′′ = n(n−1)(n−2)(n−3) tn−4,

it follows that | f ′′(t)|= n(n−1)tn−2 is convex on [a,b] for n > 3, and the inequality is obtained directly from Theorem 2.3.

Proposition 3.2. Let b > a > 0. Then the following inequality holds:
∣∣∣∣
lnA(a,b)+A(lna, lnb)

2
− ln I(a,b)

∣∣∣∣≤
(b−a)2

96
[
A−2(a,b)+H−1(a2,b2)

]
≤ (b−a)2

48
·H−1(a2,b2).

Proof. This result also follows from Theorem 2.3 with x =
a+b

2
and f (t) = ln t for t > 0. Then,

f ′′(t) =− 1
t2 , and hence

∣∣ f ′′(t)
∣∣= 1

t2 ,

which is convex on [a,b].
From Theorem 2.3, we obtain:

∣∣∣∣
1
2

[
ln
(

a+b
2

)
+

lna+ lnb
2

]
− 1

b−a
ln
(

bb

aa

)
+1
∣∣∣∣≤

(b−a)2

96

[(
2

a+b

)−2

+
a2 +b2

2a2b2

]
≤ (b−a)2

48
· a

2 +b2

2a2b2 .

The desired result follows immediately from simplification of the terms on the right-hand side.
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Proposition 3.3. Let b > a > 0. Then
∣∣∣∣
A−1(a,b)+H−1(a,b)

2
−L−1(a,b)

∣∣∣∣≤
(b−a)2

48
[
A−3(a,b)+H−1(a3,b3)

]
≤ (b−a)2

24
H−1(a3,b3).

Proof. The result is derived from Theorem 2.3 by choosing x = a+b
2 and setting f (t) = 1

t for t > 0. Then,

f ′′(t) =
2
t3 , so | f ′′(t)|= 2

t3 ,

which is convex on [a,b].
Thus,

∣∣∣∣
1
2

[
2

a+b
+

a+b
2ab

]
− lnb− lna

b−a

∣∣∣∣≤
(b−a)2

48

[(
a+b

2

)−3

+
a3 +b3

2a3b3

]
≤ (b−a)2

24
· a

3 +b3

2a3b3 .

This completes the proof.

Proposition 3.4. Assume n > 2, q > 1, and (n−2)q > 1 with b > a > 0. Then

∣∣∣∣
An(a,b)+A(an,bn)

2
−Ln

n(a,b)
∣∣∣∣≤ n(n−1) · (b−a)

1
p+1

8
·B

1
p (1+ p,1+ p) ·A

1
q (a(n−2)q,b(n−2)q).

Proof. This result follows from Corollary 2.6 by taking f (t) = tn for t > 0, so that

f ′′ (t) = n(n−1) tn−2.

Then
(∣∣ f ′′(t)

∣∣q)′′ = |n(n−1)|q · (n−2)q · ((n−2)q−1) t(n−2)q−2,

which shows that | f ′′(t)|q = |n(n−1)|q · t(n−2)q is convex on [a,b] under the assumption (n−2)q > 1. The result then follows
directly from Corollary 2.6.

Proposition 3.5. Let q > 1 and b > a > 0. Then

∣∣∣∣
lnA(a,b)+A(lna, lnb)

2
− ln I(a,b)

∣∣∣∣≤
(b−a)

1
q+1

8
·B

1
q (1+q,1+q) ·H−

1
q (aq,bq).

Proof. The result follows from Corollary 2.6 by choosing f (t) = ln t, so that

f ′′(t) =− 1
t2 , and | f ′′q = 1

t2q .

Since| f ′′(t)|q is convex on [a,b] for q > 1, the inequality

∣∣∣∣
1
2

[
ln
(

a+b
2

)
+

lna+ lnb
2

]
− 1

b−a
ln
(

bb

aa

)
+1
∣∣∣∣≤
(

a2q +b2q

2a2qb2q

)1/q

holds. The desired result is then obtained using the harmonic mean representation:

(
a2q +b2q

2a2qb2q

)1/q

= H−
1
q (aq,bq).

4. Conclusion

In conclusion, this paper presents novel extensions of Bullen-type inequalities and establishes their applicability to functions
whose absolute value of the first derivative is convex. Our contributions build upon existing research, offering refined insights
and analytical techniques that can be utilized across a broad range of mathematical and scientific problems. Future work may
focus on further exploring the implications and potential applications of these extensions, which hold promise for advancing
theoretical knowledge and fostering innovation in various disciplines. for future directions.
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Abstract

Through the use of two numerical techniques, the purpose of this study is to examine the approximate
outcomes of the (GRLW) equation. The utilized methods are the collocation method with quintic
B-spline, which is based on finite elements and yields good results for nonlinear evolution equations,
and the strang splitting technique, which is simple to apply, practical, and quick. In order to provide
approximate solutions for the main problem, the collocation method is combined with the Strang
splitting method for this study. Three examples—the formation of the Maxwellian initial condition,
the interaction of two solitary waves, and a single solitary wave—are taken into consideration in
order to assess the accuracy of these algorithms. To demonstrate how closely the exact solutions
close to numerical results and to contrast them with other solutions in the literature, error norms,
and conservation quantities are computed. Tables and graphs are used to illustrate the solutions that
have generated. Based on the results obtained and the practical, easy-to-use, and current features of
the methodologies, this article stands out from the rest.

1. Introduction

Analytical solutions of nonlinear evolution equations, especially those containing nonlinear terms, which play an important
role in various fields of science such as physics, applied mathematics and engineering problems, may not generally be obtained.
Therefore, due to the existence of limited boundary and initial conditions in obtaining analytical solutions, approximate
solutions of such equations have become quite suitable for the study of physical phenomena. The regularized long wave (RLW)
equation, which was first proposed by Peregrine [1] and forms the basis of the generalized regular long wave (GRLW) equation
discussed in this study, is one of the significant patterns in the physics environment due to the fact that it describes phenomena
with weak nonlinearity and dispersion waves. Later, the RLW equation was investigated by Benjamin et al [2], who disputed it
as an improved pattern of the KdV equation, which describes long waves by presuming a small wave amplitude and a large
wave length in nonlinear dispersion and great number of physical systems. GRLW equation is connected with the generalized
Korteweg-de Vries (GKdV) equation presented as

Ut + εU pUx +µUxxx = 0. (1.1)

These generally expressed equations are non-linear wave equations with (p+1)th non-linearity and they have solitary wave
solutions with pulse-like properties. The GRLW equation designed to obtain approximate solutions in this study is described
by the form

Ut +Ux + p(p+1)U pUx−µUxxt = 0 (1.2)

≫≫≫ Received: 29-03-2024 ≫≫≫ Revised: 02-10-2024 ≫≫≫ Accepted: 31-12-2024 ≫≫≫ Online: 27-06-2025 ≫≫≫ Published: 30-06-2025
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with the initial-boundary conditions presented as follows

U(x,0) = g(x), xL ≤ x≤ xR,

U(xL, t) =U(xR, t) = 0,
Ux(xL, t) =Ux(xR, t) = 0.

(1.3)

where physical boundary conditions of this equation are expressed as U → 0 when x→±∞ and here t and x are subscripts that
indicate variations in time and space and p is a non-negative integer and µ is a positive constant. f (x) refers to a localized
disturbance within the range [xL,xR], while U refers to the vertical displacement of the water surface or similar physical quantity.
Many scientists have tried to obtain solutions of the (GRLW) equation numerically and analytically. Zhang [3] considered a
finite difference method for the (GRLW) equation. Both Karakoç and Bhowmik [4] and Roshan [5] approximated the solutions
of the equation using the Petrov–Galerkin method. The Galerkin approximation with cubic B-splines was constructed to
acquire the approximate solution of the (GRLW) equation by Zeybek and Karakoç [6]. Zeybek and Karakoç [7] and Karakoç
and Zeybek [8] used collocation method with the help of quintic and septic B-splines, respectively, for solitary-wave solutions
of the equation. A new compact finite difference method (CFDM) was proposed by [9] for equation. Mokhtari and Mohammadi
[10] utilized Sinc-collocation method to the equation. Recently, Karakoç et al [11] applied to the equation an exact method
named Riccati–Bernoulli sub-ODE method and a numerical method named Subdomain finite element method. By taking
p = 1 in the (GRLW) equation, the (RLW) equation, which is a special case of this equation, is obtained. Solutions to this
equation have been obtained by many methods. One can easily refer to refs. [2], [12]–[26]. If p = 2 is taken into account in
the (GRLW) equation, the (MRLW) equation, which is a special case of this equation, is gotten. The reader can examine refs.
[27, 28] for the solutions of this equation, which have been obtained by many methods.

The aim of this study is to investigate approximate solutions of the equation (1.2). The GRLW equation has been previously
solved by the Collocation method. However, in this article, the solutions have been obtained by combining the collocation
method with the Strang splitting technique. This method is simple, practical and fast to implement, so it can be preferred
more in the literature.The Strang splitting technique, which is one of the Operator splitting techniques that is very practical
and produces accurate results, is used to obtain solutions. Two numerical schemes are created for the main equation via the
splitting technique. These schemes are applied the collocation method with the help of quintic B-spline. The results obtained
are illustrated with tables and graphs.

2. Operator Splitting Method

Operator splitting is an effective technique for solving coupled systems of partial differential equations. Because one obtains
a series of equations by dividing a complex equation into simpler and easier parts. Operator splitting means that the spatial
differential operator contained in the equations is divided into the sum of different sub-operators with simpler forms, so that
the corresponding equations be able to solve more easily. Then, as per the procedure of the splitting technique, a series of
sub-equations are solved instead of the main equation. There are operator splitting techniques that include different algorithms
such as Lie-Trotter, strang and higher order splitting techniques. In this study, the second order Strang splitting technique,
which is one of the easy and convenient splitting techniques used to obtain faster results, will be used. Let’s consider a complex
problem that has the following form.

dU(t)
dt

= (ω1 +ω2)U(t), U(0) =U0, t ∈ [0,T ]. (2.1)

The problem (2.1) can be split into the following subequations in one dimensional form

dU∗(t)
dt

= ω1U∗(t), U∗(tn) =Un
sp =U0 , t ∈ [tn, tn+1],

dU∗∗(t)
dt

= ω2U∗∗(t), U∗∗(tn) =U∗(tn+1) , t ∈ [tn, tn+1]

in which Un
sp =U0 is known and (Usp)tn+1 =U∗∗tn+1

is the approximate solution at tn = tn+1. Here, ω1 and ω2 differential operators.
[0,T ] is a time interval for arbitrary T ≥ 0, and this interval can be divided into M subintervals [tn, tn+1], (n = 0,1,2, ...,M−1)
that satisfy the condition 0 =≤ t0 ≤ t1 ≤ t2...≤ tM = T and each interval is of length ∆t = tn+1− tn.
Second order strang splitting technique can be presented with the following algorithm

dU∗(t)
dt

= ω1U∗(t), U∗(tn) =U∗∗∗(tn) , t ∈ [tn, tn+1/2],

dU∗∗(t)
dt

= ω2U∗∗(t), U∗∗(tn) =U∗(tn+1/2) , t ∈ [tn, tn+1] (2.2)

dU∗∗∗(t)
dt

= ω1U∗∗∗(t), U∗∗∗(tn+1/2) =U∗∗(tn+1) , t ∈ [tn+1/2, tn+1]
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in which (U∗)0 =U0 and U∗∗∗(tn+1) are the approximate solution at tn = tn+1 [29, 30]. As it is known, solutions of equation
(2.1) can be found over the entire time interval. However, instead of doing this, according to the procedure of this algorithm,
the first equation of (2.2) is solved with half the time step, then the second equation of (2.2) is solved with the whole time step,
and then the first equation of (2.2) is solved again with half the time step. Thus, the process is completed. For the solutions of
(2.1) in [31], Taylor series expansion up to the first order and the second order have been used. It has been obtained that the
approach has a first-order accuracy of (O(∆t)) for Lie-Trotter splitting technique and a second-order accuracy (O(∆t2)) for
Strang splitting technique.

3. The Construction of the Collocation Method

Let the solution range of the main problem [xL,xR] be divided into N finite elements of equal length h = x j+1−x j for the nodes
x j, j = 0(1) such that xL = x0 ≤ x1 ≤ . . .≤ xN = xR. Quintic B-splines ϕ−2(x),ϕ−1(x), . . .ϕN+2(x) for nodes x j can be defined
on the interval [xL,xR] as follows by [33]

ϕ j(x) =
1
h5





p0 = (x− x j−3)
5, x ∈ [x j−3,x j−2]

p1 = p0−6(x− x j−2)
5, x ∈ [x j−2,x j−1]

p2 = p1−6(x− x j−2)
5 +15(x− x j−1)

5, x ∈ [x j−1,x j]

p3 = p2−6(x− x j−2)
5−20(x− x j)

5, x ∈ [x j,x j+1]

p4 = p3−6(x− x j−2)
5 +15(x− x j+1)

5, x ∈ [x j+1,x j+2]

p5 = p4−6(x− x j−2)
5−6(x− x j+2)

5, x ∈ [x j+2,xm j3]

0, otherwise.

(3.1)

The numerical solution, UN(x, t), is defined in terms of quintic B-spline functions with form:

UN(x, t) =
N+2

∑
j=−2

ϕ j(x)δ j(t) (3.2)

in which δ j(t) is the unknown time-dependent quantity and it is found from the boundary and quintic B-spline collocation
conditions. When written instead of B-spline functions (3.1) in the approximate function (3.2), the nodal values U j,U

′
j,U

′′
j are

written as follows depending on δ j(t)

U j = δ j−2 +26δ j−1 +66δ j +26δ j+1 +δ j+2,

U
′
j =

5
h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2),

U
′′
j =

20
h2 (δ j−2 +2δ j−1−6δ j +2δ j+1 +δ j+2),

(3.3)

and the variation of U with the interval [x j,x j+1] can be obtained with form

U =
N+2

∑
j=−2

ϕ jδ j. (3.4)

Now, let’s split the GRLW equation as follows:

Ut −µUxxt = 0, (3.5)
(3.6)

Ut −µUxxt +Ux + p(p+1)U pUx = 0. (3.7)

When the nodal values and space derivatives of U j in (3.3) are used in the (3.5) and (3.7) equations, two ordinary differential
equations are obtained as follows

δ̇ j−2 +26δ̇ j−1 +66δ̇ j +26δ̇ j+1 + δ̇ j+2−
20µ

h2 (δ̇ j−2 +2δ̇ j−1−6δ̇ j +2δ̇ j+1 + δ̇ j+2)

+
5
h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2) = 0,

(3.8)

δ̇ j−2 +26δ̇ j−1 +66δ̇ j +26δ̇ j+1 + δ̇ j+2−
20µ

h2 (δ̇ j−2 +2δ̇ j−1−6δ̇ j +2δ̇ j+1 + δ̇ j+2)

+
5z j

h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2) = 0,

(3.9)
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in which symbol ′′.′′ is derivative according to time t and z j is linearization operation by

z j = p(p+1)(δ j−2 +26δ j−1 +66δ j +26δ j+1 +δ j+2)
p.

If it is written instead of
δ

n+1
j +δ n

j

2
for the quantity δ j and

δ
n+1
j −δ n

j

∆t
for the quantity δ̇ j in Eqs.(3.8) and (3.9), two numerical

system presented in the following are acquired ,

k1δ
n+1
j−2 + k2δ

n+1
j−1 + k3δ

n+1
j + k4δ

n+1
j+1 + k5δ

n+1
j+2 = k5δ

n
j−2 + k4δ

n
j−1 + k3δ

n
j + k2δ

n
j+1 + k1δ

n
j+2 (3.10)

l1δ
n+1
j−2 + l2δ

n+1
j−1 + l3δ

n+1
j + l4δ

n+1
j+1 + l5δ

n+1
j+2 = l5δ

n
j−2 + l4δ

n
j−1 + l3δ

n
j + l2δ

n
j+1 + l1δ

n
j+2 (3.11)

in which k j, l j( j = 1(1)5),and z j are z j = p(p+1)U p

k1 = 1− 20µ

h2 −
5∆t
2h

,k2 = 26− 40µ

h2 −
25∆t

h
,k3 = 66+

120µ

h2 ,

k4 = 26− 40µ

h2 +
25∆t

h
,k5 = 1− 20µ

h2 +
5∆t
h

l1 = 1− 20µ

h2 −
5z j∆t

2h
, l2 = 26− 40µ

h2 −
25z j∆t

h
, l3 = 66+

120µ

h2 ,

l4 = 26− 40µ

h2 +
25z j∆t

h
, l5 = 1− 20µ

h2 +
5z j∆t

2h
.

Systems (3.10) and (3.11) contain unknown quantities (N +5), while (N +1) consist of linear equations. However, only one
solution for these systems must be obtained. While doing this, since the virtual parameters are not in the solution region,
these parameters are eliminated by using U and U

′
in Equation(3.3) and the boundary conditions U(xL, t) =U(xR, t) = 0 and

Ux(xL, t) =Ux(xR, t) = 0 . In this way, the matrix system (N +1) x (N +1) for the (N +1) unknowns quantities is obtained
for the systems (3.10) and (3.11).

The closed form of the matrix systems (3.10) and (3.11) above can be expressed as

A1δ
n+1 = AT

1 δ
n

B1λ
n+1 = BT

1 λ
n

for the unknown time dependent quantities δ T = [δ0δ1...δN ] and λ T = [λ0λ1...λN ] to be calculated and A1 and B1 are coefficient
matrices with the form

A1 =




k̄3 k̄4 k̄5
k2 k3 k4 k5
k1 k2 k3 k4 k5

. . . . . . . . . . . .
k1 k2 k3 k4

k5 1
k̄4 k̄1
k̄3 k1 k̄2 k̄3

k1 k2 k3 k4
k1 k̄2 k̄3

k̄1 k̄2




B1 =




l̄3 l̄4 l̄5
l2 l̄3 l4 l5
l1 l2 l3 l4 l5

. . . . . . . . . . . .
l1 l2 l3 l4

l5 1
l̄4 l̄1
l̄3 l1 l̄2 l̄3

l1 l2 l3
l̄2 l̄3

l̄2



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k̄3 =
165
4

k1−
33
8

k2 + k3, k̄4 =
65
2

k1−
9
4

k2 + k4, k̄5 =
9
4

k1−
1
8

k2 + k5,

k̄2 =−
33
8

k1 + k2, k̄3 =−
9
4

k1 + k3, k̄4 =−
1
8

k1 + k4,

¯̄k2 =−
1
8

k5 + k2,
¯̄k3 =−

9
4

k5 + k3,
¯̄k4 =−

33
8

k5 + k4,

¯̄k1 =
9
4

k5−
1
8

k4 + k1,
¯̄k2 =

65
2

k5−
9
4

k4 + k2,
¯̄k3 =

165
4

k5−
33
8

k4 + k3,

l̄3 =
165
4

l1−
33
8

l2 + l3, l̄4 =
65
2

l1−
9
4

l2 + l4, l̄5 =
9
4

l1−
1
8

l2 + l5,

l̄2 =−
33
8

l1 + l2, l̄3 =−
9
4

l1 + l3, l̄4 =−
1
8

l1 + l4,

¯̄l2 =−
1
8

l5 + l2, ¯̄l3 =−
9
4

l5 + l3, ¯̄l4 =−
33
8

l5 + l4,

¯̄l1 =
9
4

l5−
1
8

l4 + l1, ¯̄l2 =
65
2

l5−
9
4

l4 + l2, ¯̄l3 =
165

4
l5−

33
8

l4 + l3.

In order to produce more attractive, effective and accurate results for each time step, the internal iteration formula presented as
follows is applied 3 or 5 times to z j in Eq.(3.11)

(δ ∗)n = δ
n +

1
2
(δ n−δ

n−1).

4. The Initial Vector δ 0
j

To start the iteration process for the systems (3.10) and (3.11), it is necessary to determine the initial vector δ 0
j . For this,

initial parameters are computeded utilizing initial condition U(x j,0) =UN(x j,0) = g0(x j), j = 0(1)N and 1st and 2nd order
derivatives on the boundaries presented with the main problem. In other words, these vectors to be calculated are computed
from the system of algebraic equations presented as follows

δ
0
m−2 +26δ

0
m−1 +66δ

0
m +26δ

0
m+1 +δ

0
m+2 = g0(xm),m = 0(1)N

−δ
0
−2−10δ

0
−1 +10δ

0
1 +δ

0
2 = g

′
0(xL),

δ
0
−2 +2δ

0
−1−6δ

0
0 +2δ

0
1 +δ

0
2 = g

′′
0(xL),

δ
0
N−2 +2δ

0
N−1−6δ

0
N +2δ

0
N+1 +δ

0
N+2 = g

′′
0(xR),

−δ
0
N−2−10δ

0
N−1 +10δ

0
N+1 +δ

0
N+2 = g

′
0(xR).

(4.1)

In conclusion, the matrix equation for the initial vector δ 0 is acquired by




54 60 6
25.25 67.5 26.25 1

1 26 66 26 1
. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54







δ 0
0

δ 0
1

δ 0
2
.
.
.

δ 0
N−2

δ 0
N−1

δ 0
N




=




U0
U1
U2
.
.
.

UN−2
UN−1
UN




.

With the current symbolic programming languages, calculating such matrices is fairly simple and useful. These features of the
schemes that are being presented are indicative of their dependability and resilience.
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5. Stability Analysis of Numerical Algorithm

Von Neumann theory is used to analyze the stability of the Strang splitting method applied to the GRLW equation. Let the
growth factors of a typical Fourier mode be described as follows for stability analysis based on Von Neumann theory of systems
(3.10) and (3.11)

δ
n
j = ρ

n
1 ei jγh, (5.1)

Ψ
n
j = ρ

n
2 ei jγh. (5.2)

Here, γ represents the mode number and h denotes the element size. The Fourier mode (5.1) is substituted for (3.10) and
the Fourier mode (5.2) is substituted for (3.11). The Fourier mode method cannot be applied to the system (3.11) because
it contains a nonlinear term p(p+1)U pUx. Instead, the system must first be linearized and then the Von Neumann method
is applied, assuming that the amount of p(p+ 1)U p in the nonlinear term is taken as a local constant like z j. One of the
most popular methods for analyzing the stability analysis of approximation systems for linear or linearized partial differential
equations is Von Neumann analysis. Using the Euler formula eiΦ = cosΦ+ isinΦ, the following growth factors are obtained:
ρ1 and ρ2

ρ1 =
A1− iB1

A1 + iB1
, ρ2 =

A1− iC1

A1 + iC1
, (5.3)

A1 =

(
2− 40µ

h2

)
cos(2γh)+

(
52− 80µ

h2

)
cos(γh)+

(
66+

120µ

h2

)
,

B =
5∆t
h

sin(2γh)+
50∆t

h
sin(γh),

and
C =

5zm∆t
h

sin(2γh)+
50zm∆t

h
sin(γh).

For k1,k2, ...,k9,k10 and l1, l2, ..., l9, l10 founded in section 3. It can be written |ρ1|.|ρ2| = 1. For the entire system with the
Strang Splitting algorithm because |ρ1| ≤ 1, and |ρ2| ≤ 1 according to the von Neumann theory, which are satisfied. This
makes it obvious that the systems (3.10) and (3.11) are unconditionally stable. Equation (5.3) yields |ρ1|= |ρ2|= 1, which
explains this.

6. Numerical Experiments and Discussion

The error norms L2 and L∞ to demonstrate the perfection of numerical schemes in terms of accuracy and at the same time,
invariants I1, I2 and I3 such as mass, momentum and energy are examined to report how well numerical schemes preserve
physical quantities. These are given in the following format

L2 = ||U−UN ||2 =

√√√√h
N

∑
j=0

(U−UN)2,

L∞ = ||U−UN ||∞ = max
j
|U−UN |,

I1 =
∫ xR

xL

Udx,

I2 =
∫ xR

xL

[U2 +µ(Ux)
2]dx,

I3 =
∫ xR

xL

[U4−µ(Ux)
2]dx.

The analytical solution of the GRLW equation is presented as follows in [7]

U(x, t) =
(

c(p+2)
2p

sech2
[

p
2

√
c

µ(c+1)
(x− (c+1)t− x0)

])1/p

in which
c(p+2)

2p
is the amplitude, c+1 is the wave speed in the direction diffusion and x0 is an arbitrary constant. In this

study, it would be good to mention that these calculations are obtained for the problems of single solitary wave and intersection
of two solitary waves and the growth of the Maxwellian initial condition.
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Table 1: The error norms at t = 20 for µ = 1 of the single solitary wave

p = 2 p = 3 p = 4

c→ 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3
amp.→ 0.17 0.31 0.54 0.29 0.43 0.62 0.38 0.52 0.68
h ∆t
L2x103

0.1 0.01 0.99567 0.01186 0.00785 1.33411 0.01308 0.02711 1.57429 0.01429 0.07221
0.2 0.01 0.87463 0.01082 0.00954 1.17194 0.01199 0.03564 1.38292 0.01357 0.10329
0.1 0.025 0.99567 0.01240 0.04850 1.33411 0.01588 0.16665 1.57430 0.02532 0.44136
0.2 0.025 0.87463 0.01143 0.05016 1.17194 0.01521 0.17511 1.38292 0.02592 0.47230
L∞x103

0.1 0.01 0.41622 0.00668 0.00353 0.55769 0.00732 0.01290 0.65810 0.00782 0.03584
0.2 0.01 0.41622 0.00668 0.00446 0.55769 0.00732 0.01750 0.65810 0.00782 0.05238
0.1 0.025 0.41622 0.00668 0.02178 0.55769 0.00732 0.07910 0.65810 0.00908 0.21863
0.2 0.025 0.41622 0.00668 0.02268 0.55769 0.00732 0.08369 0.65810 0.00980 0.23440

p = 6 p = 8 p = 10

c→ 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3
amp.→ 0.17 0.31 0.54 0.29 0.43 0.62 0.38 0.52 0.68
h ∆t
L2x103

0.1 0.01 1.88672 0.02196 0.33489 2.07926 0.06272 1.21542 2.20933 0.20864 4.16765
0.2 0.01 1.65737 0.03011 0.58326 1.82651 0.11858 2.68428 1.94078 0.46826 1.21572
0.1 0.025 1.88673 0.09767 2.02469 2.07930 0.36196 7.39167 2.20953 1.22335 27.2734
0.2 0.025 1.65738 0.10812 2.27201 1.82656 0.41870 8.84774 1.94105 1.48236 35.0904
L∞x103

0.1 0.01 0.78870 0.00848 0.17647 0.86919 0.02863 0.66880 0.92356 0.10223 2.38050
0.2 0.01 0.78870 0.01243 0.31129 0.86919 0.05636 1.48646 0.92356 0.23179 6.92021
0.1 0.025 0.78870 0.04350 1.06550 0.86919 0.170238 4.06219 0.92356 0.60052 15.5740
0.2 0.025 0.78870 0.04869 1.19985 0.86919 0.19792 4.87227 0.92356 0.72958 19.9888

6.1. First example: A single solitary wave

In the first example, to compare numerical solutions, the parameters in the studies [5, 8, 27, 28, 11, 4, 32, 3, 6, 7] are taken into
consideration. As in these studies, the solution region [0,100]],and x0 = 40, µ = 1 are selected. Calculations are performed for
different values h,∆t, p and c until time t = 20. First, for different values of ∆t,h and p , the situation with solitary waves with
amplitudes of 0.17,0.31 and 0.54 for speeds c = 0.03,0.1 and 0.3, respectively, is considered and the solutions are found at
time t = 20. The results of the error norms L2 and L∞ that provide the solutions are depicted in Table 1. This table shows that
the error norms L2 and L∞ produce results that are as small as intended. Secondly, conservation constants and error norms are
calculated at t = 10 with different values of ∆t,h and c for p = 2,3 and 4. The data of these calculations are depicted in Tables
2,3,5,7,9 and 11 and based on the results, it is concluded that the conservation quantities are well preserved and the error
norms are small enough. Thirdly, the datas of conservation quantities I1, I2 and I3 and error norms L2 and L∞ in Tables 3,5,7,9
and 11 are compared with those obtained by different methods in the literature. The results of the comparison are listed in
Tables 4,6,8,10 and 12. It can be seen from these tables that the solutions obtained thanks to the collocation method combined
with the Strang splitting algorithm proposed in this study are as perfect as they are promising. Figure 1 shows the motion of
single solitary wave at various times t and with different values of p. From this figure, it is possible to see that the solitary
wave, traveling at a constant speed, moves towards the right and still maintains its shape and and increases the energy of this
wave with increasing p values.

6.2. Second example: The interaction of two solitary waves

In the second example, the GRLW equation with initial condition presented in the following form, written as the linear sum
of two well-separated solitary waves traveling in the same direction and having different amplitudes, is targeted. Numerical
calculations are performed with conditions ∆t = 0.025,h = 0.2,c1 = 4,c2 = 1,x1 = 25,x2 = 55,µ = 1 for p = 2 on the region
[0,250] at t = 0(4)20, ∆t = 0.01,h = 0.1,c1 = 48/5,c2 = 6/5,x1 = 20,x2 = 50,µ = 1 for p = 3 on the region [0,120] at
t = 0(1)6, and ∆t = 0.01,h = 0.125,c1 = 64/3,c2 = 4/3,x1 = 20,x2 = 80,µ = 1 for p = 4 on the region [0,200] at t = 0(1)6.
For this purpose, conservation quantities are computed. The solutions of all calculations are reported in Tables 13-15,
comparing with those in [7]. As can be observed from these tables, the conservation quantities calculated with the collocation
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Table 2: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for p = 2

t I1 I2 I3 L2 L∞

0 3.58196673 1.34507649 0.15372303 0.000000000000 0.000000000000
2 3.58196673 1.34507640 0.15372312 0.000001861902 0.000001007019
4 3.58196673 1.34507629 0.15372323 0.000003499876 0.000001725688
6 3.58196673 1.34507621 0.15372331 0.000005003949 0.000002352101
8 3.58196673 1.34507616 0.15372336 0.000006443838 0.000002949496
10 3.58196673 1.34507612 0.15372340 0.000007851673 0.000003535734

Table 3: Invariants and errors for single solitary wave with ∆t = 0.025,h = 0.2, µ = 1, and c = 1 on the region [0,100] from 0 to 10 in
increments of 2 for p = 2

t I1 I2 I3 L2 L∞

0 4.44288294 3.29983161 1.41421360 0.0000000000 0.0000000000
2 4.44288294 3.29979589 1.41424932 0.0002939377 0.0001776334
4 4.44288294 3.29977191 1.41427330 0.0005531879 0.0003079917
6 4.44288294 3.29976284 1.41428237 0.0007998396 0.0004328585
8 4.44288294 3.29975926 1.41428595 0.00010430543 0.0005568057
10 4.44288294 3.29975778 1.41428743 0.0012853426 0.0006805326

Table 4: The error norms and invariants of the single solitary wave with ∆t = 0.025,h = 0.2, µ = 1, and c = 1 on the region [0,100] for
p = 2 at t = 10

method I1 I2 I3 L2 L∞

present 4.4428829 3.2997577 1.41428743 0.0012853426 0.0006805326
[11] 4.4428679 3.2998244 1.4142061 0.009619 0.004971
[5] 4.44288 3.29981 1.41416 0.00300533 0.00168749
[8]first approach 4.442866 3.299822 1.414204 0.002632463 0.001393064
[8]second approach 4.442866 3.299715 1.414312 0.002571481 0.001340210
[6] 4.4431 3.3003 1.4146 0.0024175 0.0010809
[27] B-spline coll-CN 4.442 3.299 1.413 0.01639 0.00924
[27] B-spline coll + PA-CN 4.440 3.296 1.411 0.0203 0.0112
[28] 4.44288 3.29983 1.41420 0.00930196 0.00543718
[7] 4.4428 3.2997 1.4143 0.0025893 0.0013518
[4] 4.443175 3.300302 1.414692 0.002415468 0.001079686
[32] 4.4431 3.3003 1.4146 0.0024155 0.0010797
[10] 4.4428 3.2998 1.4141 0.0030053 0.0016874

Table 5: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 3

t I1 I2 I3 L2 L∞

0 3.67755181 1.56574088 0.22683850 0.00000000 0.00000000
2 3.67755181 1.56574072 0.22683866 0.00000297 0.00000183
4 3.67755181 1.56574048 0.22683891 0.00000581 0.00000324
6 3.67755181 1.56574027 0.22683912 0.00000852 0.00000449
8 3.67755181 1.56574010 0.22683928 0.00001119 0.00000570
10 3.67755181 1.56573997 0.22683942 0.00001383 0.00000689
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Table 6: Comparation of invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for
p = 3

method I1 I2 I3 L2 L∞

method 3.67755181 1.56573997 0.22683942 0.0000138 0.00000689
[5] 3.67755000 1.56574000 0.22683700 0.0000719 0.0000377
[8]second approach 3.67760690 1.56576200 0.22684460 0.0000785 0.0000365
[6] 3.6776 1.5657 0.2268 0.0001913 0.0000779

Table 7: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 4

t I1 I2 I3 L2 L∞

0 3.7592300 1.7300029 0.2894090 0.0000000 0.0000000
2 3.7592300 1.7300024 0.2894095 0.0000069 0.0000044
4 3.7592300 1.7300017 0.2894101 0.0000138 0.0000078
6 3.75923000 1.7300012 0.2894107 0.0000206 0.0000111
8 3.75923000 1.7300008 0.2894111 0.0000276 0.0000144
10 3.75923000 1.7300004 0.2894114 0.0000347 0.0000178

Table 8: Comparation of invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for
p = 4

method I1 I2 I3 L2 L∞

method 3.7592300 1.7300004 0.2894114 0.0000347 0.0000178
[5] 3.7592300 1.7299900 0.2894060 0.0001225 0.0000662
[8]second approach 3.7592863 1.7300259 0.2894169 0.0000980 0.0000480
[6] 3.7592 1.7300 0.2894 0.0003089 0.0001444

Table 9: Invariants and errors for single solitary wave with ∆t = 0.025,h = 0.1, µ = 1, and c = 6/5 on the region [0,100] from 0 to 10 in
increments of 2 for p = 3

t I1 I2 I3 L2 L∞

0 3.79712709 2.88122489 0.97293454 0.000000000 0.000000000
2 3.79712709 2.88110865 0.97305079 0.000117031 0.000719921
4 3.79712709 2.88105895 0.97310049 0.000227035 0.000133748
6 3.79712709 2.88104403 0.97311540 0.000033573 0.000195366
8 3.79712709 2.88103884 0.973120604 0.000444397 0.000257147
10 3.79712709 2.88103667 0.97312277 0.000553257 0.000319084

Table 10: Comparation of invariants and errors for the single solitary wave with ∆t = 0.025,h = 0.1, µ = 1, and c = 6/5 on the region
[0,100] at t = 10 for p = 3

method I1 I2 I3 L2 L∞

present 3.797127 2.881036 0.973122 0.005532 0.003190
[11] 3.797185 2.881252 0.973157 0.011026 0.006355
[5] 3.79713 2.88123 0.972243 0.007767 0.004708
[8]first approach 3.797185 2.881252 0.973145 0.008972 0.005175
[8]second approach 3.797133 2.881089 0.973128 0.007778 0.004441
[6] 3.801670 2.888066 0.979294 0.013291 0.008478
[4] 3.797282 2.881293 0..973446 0.006128 0.003722
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Figure 1: A single solitary wave movement at [0,100] for c = 0,1 and x0 = 40
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Table 11: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 4/3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 4

t I1 I2 I3 L2 L∞

0 3.46865611 2.67167341 0.72917047 0.000000000 0.000000000
2 3.46865611 2.67163139 0.72921249 0.000481813 0.000307699
4 3.46865611 2.67161752 0.72922636 0.000949370 0.000588519
6 3.46865611 2.67161379 0.72923009 0.000141623 0.000872966
8 3.46865611 2.67161260 0.72923128 0.000188397 0.000115795
10 3.46865611 2.67161212 0.72923176 0.000235269 0.000144089

Table 12: Comparation of invariants and errors for the single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 4/3 on the region
[0,100] at t = 10 for p = 4

method I1 I2 I3 L2 L∞

present 3.46865611 2.67161212 0.72923176 0.002352 0.001440
[11] 3.468709 2.671696 0.729303 0.008696 0.005314
[5] 3.46866 2.67168 0.728881 0.002460 0.001566
[8]first approach 3.468709 2.671696 0.729258 0.003351 0.002049
[8]second approach 3.468671 2.671658 0.729237 0.002698 0.001656
[6] 3.470439 2.674445 0.731987 0.001511 0.000857
[4] 3.468799 2.671742 0.730001 0.001283 0.000821

method combined with the Strang splitting algorithm are compatible with those in ref.[7] presented with the quintic B-spline
collocation method. Figures 2 and 3 depict the action of interaction of two solitary waves for various times. It can be clearly
seen from these figures that at t = 0, the wave with lower energy is located to the right of the wave with larger energy. Later,
the wave with greater energy catches up with the smaller one and leaves it behind.

6.3. Last example: The Maxwellian initial condition

In the last example, the problem of how the Maxwell pulse presented as follows, which appears as the initial condition, turns
into a solitary waves is examined.

U(x,0) = exp(−(x−40)2).

Here, the value of µ determines how the solution behaves [4]. As a result, for p = 2,3,4, with values of µ = 0.025,0.05, and
µ = 0.1, numerical calculations are completed until time t = 0.05. Table 16 displays the calculated numerical invariants at
various t values and this table shows that the invariants are quite compatible among themselves. Figure 4 illustrates how the
Maxwellian initial condition developed into solitary waves.

Table 13: Comparison of invariants of two solitary waves with values ∆t = 0.025,h = 0.2, for x1 = 25,x2 = 55,c1 = 4,c2 = 1 on the region
[0,250] at t = 0(4)20 for p = 2 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 11.46769767 14.62924187 22.88046714 11.4676 14.6292 22.8803
4 11.46769767 14.62560599 22.88410302 11.4676 14.6277 22.8818
8 11.46769767 14.13410877 23.37560024 11.4676 14.1399 23.3695
12 11.46769767 14.67865616 22.83105285 11.4676 14.6803 22.8292
16 11.46769767 14.64185929 22.86784972 11.4676 14.6442 22.8653
20 11.46769767 14.62835609 22.88135292 11.4676 14.6309 22.8786
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Table 14: Comparison of invariants of two solitary waves with values ∆t = 0.01,h = 0.1, for x1 = 20,x2 = 50,c1 = 48/5,c2 = 6/5 on the
region [0,120] at t = 0(1)6 for p = 3 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 9.69074161 12.94438041 17.01872563 9.6907 12.9443 17.0186
1 9.69074161 12.93790956 17.02519648 9.6894 12.9433 17.0197
2 9.69074161 12.93262436 17.03048168 9.6881 12.9391 17.0239
3 9.69074161 12.31072166 17.65238437 9.6851 12.3044 17.6586
4 9.69074161 12.96109129 17.00201474 9.6860 12.9704 16.9926
5 9.69074161 13.04585327 16.91725276 9.6848 13.0539 16.9091
6 9.69074161 12.99335590 16.96975014 9.6835 13.0028 16.9601

Table 15: Comparison of invariants of two solitary waves with values ∆t = 0.01,h = 0.125, for x1 = 20,x2 = 50,c1 = 64/3,c2 = 4/3 on
the region [0,200] at t = 0(1)6 for p = 4 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 8.83427261 12.17088582 14.02942463 8.8342 12.1708 14.0294
1 8.83427261 11.47188138 14.72842908 8.6650 11.9332 14.2670
2 8.83427261 11.33376433 14.86654612 8.5662 11.7919 14.4083
3 8.83427261 11.25540256 14.94490789 8.4965 11.6913 14.5090
4 8.83427261 11.20082492 14.99948554 8.4529 11.4644 14.7358
5 8.83427261 11.08672895 14.97358150 8.4089 11.7254 14.4748
6 8.83427261 11.00520465 14.98510581 8.3702 11.5990 14.6012
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Figure 2: The interactions of two solitary waves at p = 3
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Figure 3: The interactions of two solitary waves at p = 4

Table 16: Maxwellian initial condition for various µ values

p = 2 p = 3 p = 4

µ t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.025 0.01 1.77245 1.28464 0.85485 1.77245 1.28464 0.85475 1.77245 1.28464 0.85454
0.03 1.77245 1.28464 0.85457 1.77245 1.28464 0.85361 1.77245 1.28464 0.85165
0.05 1.77245 1.28464 0.85399 1.77245 1.28464 0.85125 1.77245 1.28464 0.84541

0.05 0.01 1.77245 1.31597 0.82352 1.77245 1.31597 0.82341 1.77245 1.31597 0.82320
0.03 1.77245 1.31597 0.82322 1.77245 1.31597 0.82224 1.77245 1.31597 0.82034
0.05 1.77245 1.31597 0.82261 1.77245 1.31597 0.81988 1.77245 1.31597 0.81455

0.1 0.01 1.77245 1.37864 0.76087 1.77245 1.37864 0.76078 1.77245 1.37864 0.76062
0.03 1.77245 1.37864 0.76065 1.77245 1.37864 0.75989 1.77245 1.37864 0.75844
0.05 1.77245 1.37864 0.76021 1.77245 1.37864 0.75809 1.77245 1.37864 0.75410
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Figure 4: Graphics of Maxwell initial condition for different p values at t = 0.05

7. Conclusion

To obtain the solitary-wave solutions of the GRLW problem, this paper establishes two different linearization techniques,
the collocation method and the Strang splitting algorithm. In order to achieve this, the collocation method is combined with
the Strang splitting algorithm to perform numerical calculations, and the collocation method is applied to each scheme. In
particular, the error norms L2,L∞ and the invariants I1, I2, and I3 have been calculated for each of the three examples: A single
solitary wave, the interaction of two solitary waves and the Maxwellian initial condition. The results obtained are listed in
tables and figures. These tables show how the invariant values agree with other findings and the variations of the invariants
are quite small. The figures show that the method applied in the article is compatible with the figures in similar examples in
the literature. Compared to previous numerical methods, smaller error norms are obtained. The outcome of the error norms
obtained are superior to those from earlier numerical techniques. As a result, based on the results produced in this study, it can
be said with certainty that the numerical scheme that has been presented is more preferred and trustworthy for improving the
numerical solutions of the physically significant nonlinear partial differential equations.
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[6] H. Zeybek and S.B.G. Karakoç, A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline,

Springer Plus., 5(1) (2016), 1-17. [CrossRef] [Scopus] [Web of Science]
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Abstract

In this paper, we concentrate on the global behavior of the fuzzy difference equations system with
higher order

αn+1 = τ1 +
αn

∑
m
i=1 βn−i

,βn+1 = τ2 +
βn

∑
m
i=1 αn−i

, n ∈ N0,

where αn,βn are positive fuzzy number sequences, parameters τ1,τ2 and the initial values
α−i,β−i, i ∈ {0,1, . . . ,m}, are positive fuzzy numbers. Firstly, we show the existence and unique-
ness of the positive fuzzy solution to the mentioned system. Furthermore, we are searching for the
boundedness, persistence and convergence of the positive solution to the given system. Finally, we
give some numerical examples to show the efficiency of our results.

1. Introduction

Difference equations has many applications in the real world to many areas such as economics, biology, psychology, sociology,
computer sciences etc. That’s why, much more attention is given to this area. There are many data in our natural world.
Collecting and establishing discrete mathematical models to figure out their behaviors is crucial. A discrete dynamical models
of systems are generally established by using difference equations approach. These difference equation models can be seen
simple. But, it is really important to comprehend the behaviors of their solutions in the cases generating general solution
expressions is difficult.

DeVault et al., in [1], showed that every positive solution of the equation

xn+1 =
A
xn

+
1

xn−2
, n ∈ N0,

where the parameter A ∈ (0,∞), converges to a period of two solutions. Later, Abu-Saris et al., in [2], studied the global
asymptotic stability of the unique equilibrium point ỹ = 1+A of the following equation

yn+1 = A+
yn

yn−k
, n ∈ N0,

where the parameter A and the initial conditions y0,y−1, . . . ,y−k, are positive real numbers.

Papaschinopoulos and Schinas, in [3], studied the oscillatory behavior, the boundedness of the solutions and global asymptotic
stability of the positive equilibrium point of the difference equations system

xn+1 = A+
yn

xn−p
,yn+1 = A+

xn

yn−q
, n ∈ N0,

≫≫≫ Received: 09-10-2024 ≫≫≫ Revised: 08-11-2024 ≫≫≫ Accepted: 13-11-2024 ≫≫≫ Online: 27-06-2025 ≫≫≫ Published: 30-06-2025
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where p,q are positive integers, the parameter A and the initial conditions x−p, . . . ,x0,y−q, . . . ,y0, are positive real numbers.
Also, Zhang et al., in [4], investigated the boundedness, persistence, and global asymptotic behavior of positive solution for the
rational difference equations system

xn+1 = A+
xn

∑
k
i=1 yn−i

,yn+1 = B+
yn

∑
k
i=1 xn−i

, n ∈ N0, (1.1)

where the parameters A,B and the initial conditions x−i,y−i, i ∈ {0,1, . . . ,k}, are positive real numbers. For more information,
see [5, 6, 7]. Further studies about difference equations or difference equation systems can be found in [1, 2, 3, 8, 9, 10, 11, 12,
13] and references therein.

Fuzzy set theory is a mathematical paradigm that deals with sets with indefinite or uncertain bounds. It provides for partial
membership of an element in a set. This ambiguous or uncertain data idea is important in modern analytics. The data is
frequently incomplete, unclear, or subject to change. Fuzzy set theory allows analysts to model and manipulate such data
effectively. It leads to more educated decision-making and improved analytics outcomes.

Zadeh, in [14], introduced the concept of fuzzy sets as a technique of dealing with unclear or imprecise data in engineering and
computer science in 1965. Since then, the fuzzy set theory has grown significantly, and its applications have spread across a
variety of disciplines such as decision-making, pattern recognition, image processing, natural language processing, and control
systems. There are more information about fuzzy set theory at [7, 15, 16, 17].

Deeba et al., in [18], studied fuzzy analog of the first order difference equation

xn+1 = wxn +q, n ∈ N0,

where xn is a fuzzy number sequence and the initials w,q,x0 are fuzzy numbers. Deeba and Korvin [19] considered a model

Cn+1 =Cn− c1Cn−1 + c2, n ∈ N0,

where c1,c2, are the fuzzy parameters, C0,C1, are the fuzzy initial conditions which determines the level of CO2 in blood.
There are also many researches which study qualitative behaviors of positive solutions of fuzzy difference equations and FDEs.
For example, Papaschinopoulos and Papadopoulos, in [20], investigated the existence, boundedness, oscillatory and asymptotic
behaviors of the positive solutions of the fuzzy difference equation

xn+1 = A+
B
xn
, n ∈ N0,

with positive fuzzy parameters A,B and positive fuzzy initial condition x0. They also studied the fuzzy difference equation

xn+1 = A+
xn

xn−m
, n ∈ N0,

where xn is a positive fuzzy number sequence and A,x0,x−1, . . . ,x−m are positive fuzzy numbers. Yalcinkaya et al., in [21],
investigated qualitative behavior of the fuzzy difference equation

zn+1 =
Azn−s

B+C ∏
s
i=0 zp

n−i
, n ∈ N0,

with positive integer s, positive parameters A,B,C and positive initial conditions z−i, i ∈ {0,1, . . . ,s}. Zhang et al., in [22],
investigated dynamical behavior of the second-order exponential type fuzzy difference equation

xn+1 =
A+Be−xn

C+ xn−1
, n ∈ N0,

with positive fuzzy parameters A,B,C and positive fuzzy initial conditions x−1,x0. Moreover, Atpinar and Yazlik, in [23],
analyzed the existence, uniqueness and the qualitative behavior of the two-dimensional exponential FDEs

xn+1 =
α1 +β1e−xn−1

γ1 + yn
, yn+1 =

α2 +β2e−yn−1

γ2 + xn
, n ∈ N0,

where the parameters α1,α2,β1,β2,γ1,γ2 and the initial conditions x−1,x0,y−1,y0 are positive fuzzy numbers. There are
more studies about fuzzy difference equations [22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein. The fuzzy
difference equations and fuzzy difference equations system, briefly FDEs, have not been studied extensively, yet. Inspired by
the aforementioned studies, we concentrate on the FDEs

αn+1 = τ1 +
αn

∑
m
i=1 βn−i

,βn+1 = τ2 +
βn

∑
m
i=1 αn−i

, n ∈ N0, (1.2)

where αn,βn are positive fuzzy number sequences, the parameters τ1,τ2 and the initial values α−i,β−i, i ∈ {0,1, . . . ,m}, are
positive fuzzy numbers.
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2. Preliminaries

In this section, we briefly give some definitions, lemmas and theorems which are used throughout the paper. For more
information and details can be found in [7, 15, 16, 34].

Let R f represent the space of all fuzzy numbers and w ∈ R f . For all γ ∈ (0,1] [w]γ = {x ∈ R : w(x) ≥ γ} and [w]0 =⋃
γ∈(0,1][w]γ = {x ∈ R : w(x)> 0}. Here, we say that [w]0 is the support of the fuzzy number w and show it by supp(w). w

is called a positive fuzzy number if supp(w)⊂ (0,∞). R+
f denotes the space of all fuzzy numbers. Let x,y ∈ R f , λ ∈ R and

[x]γ = [Lγ
xn ,R

γ
xn ], [y]

γ = [Lγ
yn ,R

γ
yn ]. For γ ∈ (0,1] the operations scalar multiplication, addition, multiplication and division on

fuzzy numbers are defined as follows:

[λx]γ = λ [x]γ ,

[x+ y]γ = [x]γ +[y]γ ,

[xy]γ =
[
min{Lγ

xLγ
y ,L

γ
xRγ

y ,R
γ
xLγ

y ,R
γ
xRγ

y},max{Lγ
xLγ

y ,L
γ
xRγ

y ,R
γ
xLγ

y ,R
γ
xRγ

y}
]
,

[
x
y
]γ =

[
min{Lγ

x

Lγ
y
,

Lγ
x

Rγ
y
,

Rγ
x

Lγ
y
,

Rγ
x

Rγ
y
},max{Lγ

x

Lγ
y
,

Lγ
x

Rγ
y
,

Rγ
x

Lγ
y
,

Rγ
x

Rγ
y
}
]
,0 /∈ [y]γ ,

respectively.

Definition 2.1. Consider a fuzzy subset of the real line w : R→ (0,1] and suppose that the following properties hold:

(a) w is normal, i. e., there exists x0 ∈ R such that w(x0) = 1,
(b) w is convex, i. e., ∀λ ∈ (0,1] and x1,x2 ∈ R, w(λx1 +(1−λ )x2)≥min{w(x1),w(x2)}
(c) w is upper semi-continuous on R,
(d) w is compactly supported, i. e.,

⋃
γ∈(0,1][w]γ = {x ∈ R : w(x)> 0} is compact,

we say that w is a fuzzy number.

Lemma 2.2. Let x ∈ R+
f and [x]γ = [Lγ

x ,R
γ
x ] for γ ∈ (0,1]. Then, for [Lγ

x ,R
γ
x ] the following conditions hold:

1. Lγ
x is non-decreasing and left continuous,

2. Rγ
x is non-increasing and right continuous,

3. Lγ
x ≤ Rγ

x .

Lemma 2.3. Let f be a continuous function from R+×R+×R+×R+ into R+. For any x,y,z, t ∈ R+
f and γ ∈ (0,1],

[ f (x,y,z, t)]γ = f ([x]γ , [y]γ , [z]γ , [t]γ).

Definition 2.4. Let {xn} be a positive fuzzy number sequence. If there exist positive real numbers m,M such that supp(xn)⊂
[m,M], then we say that positive fuzzy sequence (xn) is bounded and persistent.

Theorem 2.5. Let [x]γ ∈ R+
f be a fuzzy number. Then,

1. [x]γ is a closed interval ∀γ ∈ (0,1],
2. For γ1,γ2 ∈ (0,1], if γ1 ≤ γ2, then xγ2 ⊆ xγ1 ,
3. For any sequence γn converging to γ ∈ (0,1] from below, ∩∞

n=1xγn = xγ ,
4. For any sequence γn converging to 0 from above, ∪∞

n=1[x]
γn = [x]0.

Definition 2.6. Let x,y be fuzzy numbers with [x]γ = [Lγ
x ,R

γ
x ] and [y]γ = [Lγ

y ,R
γ
y ] for γ ∈ (0,1]. Then, the metric on fuzzy

number space is defined as follows:

D(x,y) = sup
γ∈(0,1]

max{|Lγ
x−Lγ

y |, |Rγ
x−Rγ

y |}. (2.1)

Moreover, the norm on fuzzy number space is defined by

||X ||= sup
γ∈(0,1]

max{|Lγ
x |, |Rγ

x |}.

3. Main Results

In this section, we study FDEs (1.2) for positive initial fuzzy numbers. Firstly, we investigate the existence and uniqueness of
positive solutions of (1.2) in the following theorem.
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Theorem 3.1. Consider the system (1.2) for positive fuzzy numbers τ1,τ2. Then, for given any positive fuzzy numbers
α−i,β−i, i ∈ {0,1, . . . ,m}, the system has a unique positive solution.

Proof. Let the parameters τ1,τ2 and the initial conditions α−i,β−i, i ∈ {0,1, . . . ,m}, be positive fuzzy numbers. Suppose that
there exist fuzzy number sequences which satisfy (1.2). Consider their γ-cuts for γ ∈ (0,1];





[αn]
γ = [Lγ

αn ,R
γ

αn ], [βn]
γ = [Lγ

βn
,Rγ

βn
],

[αn−i]
γ = [Lγ

αn−i ,R
γ

αn−i ], [βn−i]
γ = [Lγ

βn−i
,Rγ

βn−i
],

[τ1]
γ = [τ

γ

1,l ,τ
γ

1,r], [τ2]
γ = [τ

γ

2,l ,τ
γ

2,r].

(3.1)

By using (1.2), (3.1) and Lemma (2.3),

[αn+1]
γ = [Lγ

αn+1 ,R
γ

αn+1 ],

=

[
τ1 +

αn

∑
m
i=1 βn−i

]γ

,

= [τ1]
γ +

[αn]
γ

∑
m
i=1[βn−i]γ

,

= [τ
γ

1,l ,τ
γ

1,r]+
[Lγ

αn ,R
γ

αn ]

∑
m
i=1[L

γ

βn−i
,Rγ

βn−i
]
,

=
[
τ

γ

1,l +
Lγ

αn

∑
m
i=1 Rγ

βn−i

,τ
γ

1,r +
Rγ

αn

∑
m
i=1 Lγ

βn−i

]
,

(3.2)

and similarly

[βn+1]
γ = [Lγ

βn+1
,Rγ

βn+1
],

=

[
τ2 +

βn

∑
m
i=1 αn−i

]γ

,

= [τ2]
γ +

[βn]
γ

∑
m
i=1[αn−i]γ

,

= [τ
γ

2,l ,τ
γ

2,r]+
[Lγ

βn
,Rγ

βn
]

∑
m
i=1[L

γ

αn−i ,R
γ

αn−i ]
,

=
[
τ

γ

2,l +
Lγ

βn

∑
m
i=1 Rγ

αn−i

,τ
γ

2,r +
Rγ

βn

∑
m
i=1 Lγ

αn−i

]
.

(3.3)

So, we obtained the following equations system:

Lγ

αn+1 = τ
γ

1,l +
Lγ

αn

∑
m
i=1 Rγ

βn−i

, Rγ

αn+1 = τ
γ

1,r +
Rγ

αn

∑
m
i=1 Lγ

βn−i

,

Lγ

βn+1
= τ

γ

2,l +
Lγ

βn

∑
m
i=1 Rγ

αn−i

, Rγ

βn+1
= τ

γ

2,r +
Rγ

βn

∑
m
i=1 Lγ

αn−i

.

(3.4)

Let 0≤ γ1 ≤ γ2 ≤ 1. From Lemma (2.2),

0 < τ
γ1
1,l ≤ τ

γ2
1,l ≤ τ

γ2
1,r ≤ τ

γ1
1,r,

0 < τ
γ1
2,l ≤ τ

γ2
2,l ≤ τ

γ2
2,r ≤ τ

γ1
2,r,

(3.5)

0 < Lγ1
αn−i ≤ Lγ2

αn−i ≤ Rγ2
αn−i ≤ Rγ1

αn−i ,

0 < Lγ1
βn−i
≤ Lγ2

βn−i
≤ Rγ2

βn−i
≤ Rγ1

βn−i
,

(3.6)

for i ∈ {0,1, . . . ,m} and

0 < Lγ1
αn ≤ Lγ2

αn ≤ Rγ2
αn ≤ Rγ1

αn ,

0 < Lγ1
βn
≤ Lγ2

βn
≤ Rγ2

βn
≤ Rγ1

βn
,

(3.7)
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where n ∈ N0. By using inequalities in (3.5), (3.6) and (3.7) and keeping in mind that γ1 ≤ γ2,

Lγ1
αn+1 = τ

γ1
1,l +

Lγ1
αn

∑
m
i=1 Rγ1

βn−i

≤ τ
γ2
1,l +

Lγ2
αn

∑
m
i=1 Rγ2

βn−i

≤ Lγ2
αn+1

≤ τ
γ2
1,r +

Rγ2
αn

∑
m
i=1 Lγ2

βn−i

≤ Rγ2
αn+1 ≤ τ

γ1
1,r +

Rγ1
αn

∑
m
i=1 Lγ1

βn−i

= Rγ1
αn+1

and

Lγ1
βn+1

= τ
γ1
2,l +

Lγ1
βn

∑
m
i=1 Rγ1

αn−i

≤ τ
γ2
2,l +

Lγ1
βn

∑
m
i=1 Rγ1

αn−i

≤ Lγ2
βn+1

≤ τ
γ2
2,r +

Rγ2
βn

∑
m
i=1 Lγ2

αn−i

≤ Rγ2
βn+1
≤ τ

γ1
2,r +

Rγ1
βn

∑
m
i=1 Lγ1

αn−i

= Rγ1
βn+1

.

Next, by using induction, we will show positive fuzzy solution of the FDEs (1.2) exists. For n = 0,

[Lγ

α1 ,R
γ

α1 ] =

[
τ

γ

1,l +
Lγ

α0

∑
m
i=1 Rγ

β−i

,τ
γ

1,r +
Rγ

α0

∑
m
i=1 Lγ

β−i

]
,

[Lγ

β1
,Rγ

β1
] =

[
τ

γ

2,l +
Lγ

β0

∑
m
i=1 Rγ

α−i

,τ
γ

2,r +
Rγ

β0

∑
m
i=1 Lγ

α−i

]
.

Since, τ1, τ2 and αi,βi for i ∈ {0,1, . . . ,m} are positive fuzzy numbers, for γ ∈ (0,1], [Lγ

α1 ,R
γ

α1 ] and [Lγ

β1
,Rγ

β1
] are γ-cuts of

α1 = τ
γ

1 +
α

γ

0
∑

m
i=1 β

γ

−i
and β1 = τ

γ

2 +
β

γ

0
∑

m
i=1 α

γ

−i
. Moreover, τ1,l ,τ1,r,τ2,l ,τ2,r and for i ∈ {0,1, . . . ,m} Lγ

α−i ,R
γ

α−i ,L
γ

β−i
,Rγ

β−i
are left

continuous, then so are Lγ

α1 ,R
γ

α1 ,L
γ

β1
,Rγ

β1
.

Now, assume that for j ∈ {1,2, . . . ,k}, [Lγ

α j ,R
γ

α j ] and [Lγ

β j
,Rγ

β j
] are the γ-cuts of α j = τ1 +

α j−1

∑
m
i=1 β

γ

j−i−1
and β j = τ1 +

β j−1

∑
m
i=1 α

γ

j−i−1
.

For n = k+1, we have

[αk+1]
γ =

[
τ

γ

1,l +
Lγ

αk

∑
m
i=1 Rγ

βk−i

,τ
γ

1,r +
Rγ

αk

∑
m
i=1 Lγ

βk−i

]
=

[
τ1 +

αk

∑
m
i=1 βk−i

]γ

,

[βk+1]
γ =

[
τ

γ

2,l +
Lγ

βk

∑
m
i=1 Rγ

αk−i

,τ
γ

2,r +
Rγ

βk

∑
m
i=1 Lγ

αk−i

]
=

[
τ2 +

βk

∑
m
i=1 αk−i

]γ

.

Therefore, [Lγ

αk+1 ,R
γ

αk+1 ] and [Lγ

βk+1
,Rγ

βk+1
] are the γ-cuts of the fuzzy numbers αk+1 = τ1+

αk
∑

m
i=1 βk−i

and βk+1 = τ2+
βk

∑
m
i=1 αk−i

.

Hence, for ∀n ∈ N and ∀γ ∈ (0,1], [Lγ

αn ,R
γ

αn ] and [Lγ

βn
,Rγ

βn
] are the γ-cuts of the fuzzy numbers αn and βn, by induction.

Now, we claim that supports of both αn and βn, suppαn =
⋃

γ∈(0,1][L
γ

αn ,R
γ

αn ] and suppβn =
⋃

γ∈(0,1][L
γ

βn
,Rγ

βn
] are compact by

induction. For n = 1, since τ1,τ2 and α−i,β−i, i ∈ {0,1, . . . ,m} are positive fuzzy numbers, there exist
Mτ1 ,Nτ1 ,Mτ2 ,Nτ2 ,Mα−i ,Nα−i ,Mβ−i ,Nβ−i ∈ {0,1, . . . ,m} such that for all γ ∈ (0,1],





[τ
γ

1,l ,τ
γ

1,r] ⊆⋃γ∈(0,1][τ
γ

1,l ,τ
γ

1,r]⊆ [Mτ1 ,Nτ1 ]

[τ
γ

2,l ,τ
γ

2,r] ⊆⋃γ∈(0,1][τ
γ

2,l ,τ
γ

2,r]⊆ [Mτ2 ,Nτ2 ]

[Lγ

α1 ,R
γ

α1 ] ⊆
⋃

γ∈(0,1][L
γ

α1 ,R
γ

α1 ]⊆ [Mα1 ,Nα1 ]

[Lγ

β1
,Rγ

β1
] ⊆⋃γ∈(0,1][L

γ

β1
,Rγ

β1
]⊆ [Mβ1 ,Nβ1 ].

By using induction, we obtain
⋃

γ∈(0,1][α
γ

n,l ,α
γ
n,r] and

⋃
γ∈(0,1][β

γ

n,l ,β
γ
n,r] are compact and

⋃
γ∈(0,1][α

γ

n,l ,α
γ
n,r] and

⋃
γ∈(0,1][β

γ

n,l ,β
γ
n,r]⊆

(0,+∞) for n ∈ N0. Hence, αn = [αn]
γ = [Lγ

αn ,R
γ

αn ] and βn = [βn]
γ = [Lγ

βn
,Rγ

βn
] are also positive fuzzy number sequences.

Finally, we will show uniqueness of positive solutions of FDEs (1.2) by using contradiction method. Assume that there exist
other solutions α ′n and β ′n to the given system (1.2) with the same initial initial values τ1,τ2 and α−i,β−i, i ∈ {0,1, . . . ,m}.
Then, for α ∈ (0,1];

[αn]
γ = [α

′
n]

γ , [βn]
γ = [β

′
n]

γ .

Hence, there exists a unique solution of (1.2) for given initial conditions τ1,τ2 and α−i,β−i, i ∈ {0,1, . . . ,m}, which is
desired.
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Now, we will investigate boundedness and persistence of positive solutions of (1.2).

Let un,vn,wn, tn represent Lγ

αn ,R
γ

αn ,L
γ

βn
,Rγ

βn
respectively. Then, from (3.4), we can write the following system as





Lαn+1 = un+1 = λ1 +
un

∑
m
i=1 tn−i

,

Rαn+1 = vn+1 = λ2 +
vn

∑
m
i=1 wn−i

,

Lβn+1 = wn+1 = λ3 +
wn

∑
m
i=1 vn−i

,

Rβn+1 = tn+1 = λ4 +
tn

∑
m
i=1 un−i

,

n ∈ N0, (3.8)

where the parameters λ1,λ2,λ3,λ4 are positive real numbers.

Theorem 3.2. Consider system (3.8) and suppose that

1
m

< min{λ1,λ2,λ3,λ4}. (3.9)

If (3.9) is satisfied, then for every positive solutions (un,vn,wn, tn) of (3.8) for n > m the following inequalities hold:

λ1 ≤ un ≤
1

(mλ4)n−m

(
um−

mλ1λ4

mλ4−1

)
+

mλ1λ4

mλ4−1
,

λ2 ≤ vn ≤
1

(mλ3)n−m

(
vm−

mλ2λ3

mλ3−1

)
+

mλ2λ3

mλ3−1
,

λ3 ≤ wn ≤
1

(mλ2)n−m

(
wm−

mλ2λ3

mλ2−1

)
+

mλ2λ3

mλ2−1
,

λ4 ≤ tn ≤
1

(mλ1)n−m

(
tm−

mλ1λ4

mλ1−1

)
+

mλ1λ4

mλ1−1
,

(3.10)

which shows the boundedness and persistence of (un,vn,wn, tn).

Proof. Let (un,vn,wn, tn) be positive solution of system (3.8). Since, un,vn,wn, tn, for all n≥ 1, are positive,

λ1 ≤ un, λ2 ≤ vn, λ3 ≤ wn, λ4 ≤ tn. (3.11)

Furthermore, by (3.8) and (3.11), we get




un = λ1 +
un

∑
m+1
i=2 tn−i

≤ λ1 +
1

mλ4
un−1,

vn = λ2 +
vn

∑
m+1
i=2 wn−i

≤ λ2 +
1

mλ3
vn−1,

wn = λ3 +
wn

∑
m+1
i=2 vn−i

≤ λ3 +
1

mλ2
wn−1,

tn = λ4 +
tn

∑
m+1
i=2 un−i

≤ λ4 +
1

mλ1
tn−1,

(3.12)

for n > m. On this part of the proof, we just show boundedness for un. Since, proofs for vn,wn, tn are similar, we omit them.
Define ũn = λ1 +

1
mλ4

ũn−1 for n > m and ũn = un for n = 1,2, . . . ,m. Our claim is

un ≤ ũn,n ∈ N. (3.13)

We show satisfying the inequality in (3.13) by induction. It is obvious that un ≤ ũn for n ∈ {1,2, . . . ,m}. Suppose that (3.13)
holds for any k = n≥ m+1. Then, from (3.12), we have

un+1 ≤ λ1 +
1

mλ4
un ≤ λ1 +

1
mλ4

ũn = ũn+1. (3.14)

Therefore, un ≤ ũn for n ∈ N, by induction. Then,

ũn = λ1 +
1

mλ4
ũn−1

ũn = λ1 +
1

mλ4

(
λ1 +

1
mλ4

ũn−2

)

...

ũn =
1

(mλ4)n−m

(
um−

mλ1λ4

mλ4−1

)
+

mλ1λ4

mλ4−1
.

Hence, un is bounded. So proof for un is finished. Similarly, it can be shown that vn,wn, tn are also bounded.
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Theorem 3.3. Consider system (3.8). If the condition (3.10) holds, then (3.8) has a unique equilibrium point (ū, v̄, w̄, t̄) given
by

ū =
m2λ1λ4−1
m(mλ4−1)

, v̄ =
m2λ2λ3−1
m(mλ3−1)

, w̄ =
m2λ2λ3−1
m(mλ2−1)

, t̄ =
m2λ1λ4−1
m(mλ1−1)

, (3.15)

and every positive solution tends to given equilibrium point as n→ ∞.

Proof. From equilibrium point definition, we can simply obtain the equilibrium point given as

Γ =

(
m2λ1λ4−1
m(mλ4−1)

,
m2λ2λ3−1
m(mλ3−1)

,
m2λ2λ3−1
m(mλ2−1)

,
m2λ1λ4−1
m(mλ1−1)

)
. (3.16)

Since every positive solution of system (3.8) is bounded and persistent from Theorem (3.2), it can be written that

lim
n→∞

infun = l1, lim
n→∞

supun = L1,

lim
n→∞

infvn = l2, lim
n→∞

supvn = L2,

lim
n→∞

infwn = l3, lim
n→∞

supwn = L3,

lim
n→∞

inf tn = l4, lim
n→∞

sup tn = L4,

(3.17)

where li,Li ∈ (0,∞), for i ∈ {1,2,3,4}. Then, by using Theorem (3.2) and (3.17),

λ1 +
l1

mL4
≤ l1, L1 ≤ λ1 +

L1

ml4
,

λ2 +
l2

mL3
≤ l2, L2 ≤ λ2 +

L2

ml3
,

λ3 +
l3

mL2
≤ l3, L3 ≤ λ3 +

L3

ml2
,

λ4 +
l4

mL1
≤ l4, L4 ≤ λ4 +

L4

ml1
.

Next, after arranging the inequalities, we obtain

mλ4L1 + l4
m

≤ L1l4 ≤
mλ1l4 +L1

m
,

mλ3L2 + l3
m

≤ L2l3 ≤
mλ2l3 +L2

m
,

mλ2L3 + l2
m

≤ L3l2 ≤
mλ3l2 +L3

m
,

mλ1L4 + l1
m

≤ L4l1 ≤
mλ4l1 +L4

m
,

(3.18)

from which it follows that

L1(mλ4−1)≤ l4(mλ1−1),
L2(mλ3−1)≤ l3(mλ2−1),
L3(mλ2−1)≤ l2(mλ3−1),
L4(mλ1−1)≤ l1(mλ4−1).

(3.19)

It is obvious from hypothesis of the Theorem (3.2) that 1 < mλi for i ∈ {1,2,3,4}. Multiplying the first and the fourth
inequalities in (3.19) and the second and the third inequalities in (3.19) gives

L1L4 ≤ l1l4, L2L3 ≤ l2l3. (3.20)

So,

L1L4 = l1l4, L1L4 = l1l4. (3.21)

Our claim is

L1 = l1, L2 = l2, L3 = l3, L4 = l4.
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Assume that l1 < L1, l2 < L2, l3 < L3, l4 < L4. Then by using (3.21), we get

L1L4 = l1l4 < l1L4,

L1L4 = l1l4 < L1l4,

L2L3 = l2l3 < l2L3,

L2L3 = l2l3 < L2l3,

gives us

L1 < l1,

L2 < l2,

L3 < l3,

L4 < l4,

which is a contradiction. Therefore,

l1 = L1, l2 = L2, l3 = L3, l4 = L4. (3.22)

Hence, by using (3.8) and (3.22), it follows that

lim
n→∞

un = ũ, lim
n→∞

vn = ṽ, lim
n→∞

wn = w̃, lim
n→∞

tn = t̃.

Thus, proof is completed.

Theorem 3.4. Consider system (3.8). If both (3.9) and the following inequalities

m2λ1λ4−1
mλ1−1

+
m2λ1λ4−1

mλ4−1
< 1,

m2λ2λ3−1
mλ2−1

+
m2λ2λ3−1

mλ3−1
< 1, (3.23)

are satisfied, then the unique positive equilibrium point given in (3.15) is locally asymptotically stable.

Proof. From Theorem (3.3), the system (3.8) has a unique equilibrium point (3.15). The linearized equation of system (3.8)
about the equilibrium point is

Ωn+1 = PΩn

where Ωn = (un,un−1, . . . ,un−m,vn,vn−1, . . . ,vn−m,wn,wn−1, , . . . ,wn−m, tn, tn−1, . . . , tn−m)
T and P= (ρi j),1≤ i, j ≤ 4m+4 is

a (4m+4)× (4m+4) matrix such that

P=




Pt̄ P0 P0 P1
P0 Pw̄ P2 P0
P0 P3 Pv̄ P0
P4 P0 P0 Pū



(4m+4)×(4m+4)

, (3.24)

where Pū,Pv̄,Pw̄,Pt̄ ,P0,P1,P2,P3,P4 are (m+1)× (m+1) matrices are defined as follows:

Pū =




1
mū 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 ,Pv̄ =




1
mv̄ 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 ,Pw̄ =




1
mw̄ 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 ,

Pt̄ =




1
mt̄ 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 ,P0 =




0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,P1 =




0 − ū
m2 t̄2 . . . − ū

m2 t̄2 − ū
m2 t̄2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P2 =




0 − v̄
m2w̄2 . . . − v̄

m2w̄2 − v̄
m2w̄2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,P3 =




0 − w̄
m2 v̄2 . . . − w̄

m2 v̄2 − w̄
m2 v̄2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P4 =




0 − t̄
m2ū2 . . . − t̄

m2ū2 − t̄
m2ū2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 .
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Let σ1,σ2, . . . ,σ4m+4 be the eigenvalues of the matrix P and D be the diagonal matrix (d1,d2, . . . ,d4m+4) such that d1 =
dm+2 = d2m+3 = d3m+4 = 1 and d j = dm+1+ j = d2m+2+ j = d3m+3+ j = 1− jε, for j ∈ {2,3, . . . ,m+1}, where

0 < ε <
1

m+1
min
{
(1− ū+ t̄

mū2 ),(1−
ū+ t̄
mt̄2 ),(1− v̄+ w̄

mv̄2 ),(1− v̄+ w̄
mw̄2 )

}
. (3.25)

It is obvious that D is invertible. Computing DPD−1 gives us the matrix

P(1) =




P
(1)
t̄ P

(1)
0 P

(1)
0 P

(1)
1

P
(1)
0 P

(1)
w̄ P

(1)
2 P

(1)
0

P
(1)
0 P

(1)
3 P

(1)
v̄ P

(1)
0

P
(1)
4 P

(1)
0 P

(1)
0 P

(1)
ū




(4m+4)×(4m+4)

, (3.26)

where

P
(1)
ū =




1
mū 0 · · · 0 0

d3m+5d−1
3m+4 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · d4m+4d−1

4m+3 0


 ,P

(1)
v̄ =




1
mv̄ 0 · · · 0 0

d2m+4d−1
2m+3 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · d3m+3d−1

3m+2 0


 ,

P
(1)
w̄ =




1
mw̄ 0 · · · 0 0

dm+3d−1
m+2 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · d2m+2d−1

2m+1 0


 ,P

(1)
t̄ =




1
mt̄ 0 · · · 0 0

d2d−1
1 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · dm+1d−1

m 0


 ,

P
(1)
0 =




0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P
(1)
1 =




0 −ū
m2 t̄2 d1d−1

3m+5 . . . −ū
m2 t̄2 d1d−1

4m+3
−ū

m2 t̄2 d1d−1
4m+4

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P
(1)
2 =




0 −v̄
m2w̄2 dm+2d−1

2m+4 . . . v̄
m2w̄2 dm+2d−1

3m+2
−v̄

m2w̄2 dm+2d−1
3m+3

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P
(1)
3 =




0 −w̄
m2 v̄2 d2m+3d−1

m+3 . . . −w̄
m2 v̄2 d2m+3d−1

2m+1
−w̄

m2 v̄2 d2m+3d−1
2m+2

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

P
(1)
4 =




0 −t̄
m2ū2 d3m+4d−1

2 . . . −t̄
m2ū2 d3m+4d−1

m
−t̄

m2ū2 d3m+4d−1
m+1

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


 ,

are (m+1)× (m+1) matrices. Also,

0 < dm+1 < dm < · · ·< d1,

0 < d2m+2 < d2m+1 < · · ·< dm+2,

0 < d3m+3 < d3m+2 < · · ·< d2m+3,

0 < d4m+4 < d4m+3 < · · ·< d3m+4,
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implies that

d2d−1
1 < 1,

d3d−1
2 < 1,

...

dm+1d−1
m < 1,

dm+3d−1
m+2 < 1,

...

d2m+2d−1
2m+1 < 1,

.

and

d2m+4d−1
2m+3 < 1,

...

d3m+3d−1
3m+2 < 1,

d3m+5d−1
3m+4 < 1,

...

d4m+4d−1
4m+3 < 1.

Moreover, by using (3.9), (3.23) and (3.25), we obtain

1
mt̄

+
ū

m2t̄2 d1d−1
3m+5 + · · ·+

ū
m2t̄2 d1d−1

4m+4 =
1

mt̄
+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) ū

m2t̄2

<
1

mt̄
+

1
1− (m+1)ε

ū
mt̄2

<
1

1− (m+1)ε
( 1

mt̄
+

ū
mt̄2

)

< 1,

1
mw̄

+
v̄

m2w̄2 dm+2d−1
2m+4 + · · ·+

v̄
m2w̄2 dm+2d−1

3m+3 =
1

mw̄
+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) v̄

m2w̄2

<
1

mw̄
+

1
1− (m+1)ε

v̄
mw̄2

<
1

1− (m+1)ε
( 1

mw̄
+

v̄
mw̄2

)

< 1,

1
mv̄

+
w̄

m2v̄2 d2m+3d−1
m+3 + · · ·+

w̄
m2v̄2 d2m+3d−1

2m+2 =
1

mv̄
+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) w̄

m2v̄2

<
1

mv̄
+

1
1− (m+1)ε

w̄
mv̄2

<
1

1− (m+1)ε
( 1

mv̄
+

w̄
mv̄2

)

< 1

and
1

mū
+

t̄
m2ū2 d3m+4d−1

2 + · · ·+ t̄
m2w̄2 d3m+4d−1

m+1 =
1

mū
+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) t̄

m2ū2

<
1

mū
+

1
1− (m+1)ε

t̄
mū2

<
1

1− (m+1)ε
( 1

mt̄
+

ū
mū2

)

< 1.
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Since P and DPD−1 has the same eigenvalues, for j ∈ {1,2, . . . ,4m+4}, we can write the following inequality as

max |P j| ≤ ||DPD−1||∞ = max





d2d−1
1 , ...,dm+1d−1

m ,dm+3d−1
m+2, . . . ,d2m+2d−1

2m+1,

d2m+4d−1
2m+3, . . . ,d3m+3d−1

3m+2,d3m+5d−1
3m+4, . . . ,d4m+4d−1

4m+3,

1
mt̄

+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) ū

m2t̄2 ,

1
mw̄

+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) v̄

m2w̄2 ,

1
mv̄

+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) w̄

m2v̄2 ,

1
mū

+
( 1

1−2ε
+ · · ·+ 1

1− (m+1)ε
) t̄

m2ū2





< 1.

Therefore, the equilibrium point given in (3.15) is locally asymptotically stable.

Theorem 3.5. If the conditions (3.9) and (3.23) are satisfied, then the unique equilibrium point given in (3.15) of the system
(3.8) is globally asymptotically stable.

Theorem 3.6. Consider the FDEs (1.2) for all γ ∈ (0,1]. If

1
m

< min{τ1,l ,τ1,r,τ2,l ,τ2,r}, (3.27)

then every positive solution (αn,βn) of the FDEs (1.2) is bounded and persistent.

Proof. Let (αn,βn) be a solution of (1.2) and satisfy (3.27). Then, we have
{
[αn]

γ = [Lγ

αn ,R
γ

αn ], [βn]
γ = [Lγ

βn
,Rγ

βn
],

[τ1]
γ = [τ

γ

1,l ,τ
γ

1,r], [τ2]
γ = [τ

γ

2,l ,τ
γ

2,r].
(3.28)

From (3.4) and Theorem (3.2), we have

τ1,l ≤ Lαn ≤
1

(mτ2,r)n−m

(
Lαm −

mτ1,lτ2,r

mτ2,r−1

)
+

mτ1,lτ2,r

mτ2,r−1
,

τ1,r ≤ Rαn ≤
1

(mτ2,l)n−m

(
Rαm −

mτ1,rτ2,l

mτ2,l−1

)
+

mτ1,rτ2,l

mτ2,l−1
,

τ2,l ≤ Lβn ≤
1

(mτ1,r)n−m

(
Lβm −

mτ1,rτ2,l

mτ1,r−1

)
+

mτ1,rτ2,l

mτ1,r−1
,

τ2,r ≤ Rβn ≤
1

(mτ1,l)n−m

(
Rβm −

mτ1,lτ2,r

mτ1,l−1

)
+

mτ1,lτ2,r

mτ1,l−1
.

(3.29)

Also, for all γ ∈ (0,1], the support sets of τ1,τ2 are

[τ
γ

1,l ,τ
γ

1,r]⊆ [Mτ1 ,Nτ1 ],

[τ
γ

2,l ,τ
γ

2,r]⊆ [Mτ2 ,Nτ2 ].
(3.30)

Moreover, left and right components of γ - cuts of Mτ1 ,Nτ1 ,Mτ2 ,Nτ2 are positive real numbers. So, by using (3.29) and (3.30),
for γ ∈ (0,1], we obtain

[Lγ

αn ,R
γ

αn ]⊆
[

Mτ1 ,
1

(mNτ2,r)
n−m

(
Mαm −

mMτ1,l Nτ2,r

mNτ2,r −1

)
+

mMτ1,l Nτ2,r

mNτ2,r −1

]
,

[Lγ

βn
,Rγ

βn
]⊆
[

Nτ2 ,
1

(mMτ1,l )
n−m

(
Nβm −

mMτ1,l Nτ2,r

mNτ2,r −1

)
+

mMτ1,l Nτ2,r

mMτ1,l −1

]
.

(3.31)

from which along with there exist m1,m2,M1,M2 such that m1 ≤Mτ1 ,m2 ≤ Nτ2 , 1
(mNτ2,r )

n−m

(
Mαm −

mMτ1,l Nτ2,r
mNτ2,r−1

)
+

mMτ1,l Nτ2,r
mNτ2,r−1 ≤

M1, and 1
(mMτ1,l )

n−m

(
Nβm −

mMτ1,l Nτ2,r
mNτ2,r−1

)
+

mMτ1,l Nτ2,r
mMτ1,l−1 ≤M2.



Fundamental Journal of Mathematics and Applications 99

Therefore,

[Lγ

αn,l ,R
γ

αn,r ]⊆
⋃

γ∈(0,1]
[Lγ

αn,l ,R
γ

αn,r ]⊆ [m1,M1],

[Lγ

βn,l
,Rγ

βn,r
]⊆

⋃

γ∈(0,1]
[Lγ

βn,l
,Rγ

βn,r
]⊆ [m2,M2].

Hence, every positive solution of FDEs system (1.2) is persistent and bounded. This completes proof.

Theorem 3.7. Let us consider the FDEs (1.2). If (3.27) holds, then the positive solution (αn,βn) of (1.2) converges to a
unique equilibrium point (ᾱ, β̄ ) as n→ ∞, where

ᾱ =

[
m2τ1,lτ2,r−1
m(mτ2,r−1)

,
m2τ1,rτ2,l−1
m(mτ2,l−1)

]
, β̄ =

[
m2τ1,rτ2,l−1
m(mτ1,r−1)

,
m2τ1,lτ2,r−1
m(mτ1,l−1)

]
. (3.32)

Proof. Since (3.2) and (3.3) hold and also from Theorem (3.3), we can write

lim
n→∞

Lγ

αn = lαn =
m2τ1,lτ2,r−1
m(mτ2,r−1)

, lim
n→∞

Rγ

αn = rαn =
m2τ1,rτ2,l−1
m(mτ2,l−1)

,

lim
n→∞

Lγ

βn
= lβn =

m2τ1,rτ2,l−1
m(mτ1,r−1)

, lim
n→∞

Rγ

βn
= rβn =

m2τ1,lτ2,r−1
m(mτ1,l−1)

.

Thus, we get

lim
n→∞

D
(
αn, ᾱ) = lim

n→∞
D(αn− [lαn ,rαn ]) = lim

n→∞
supmax{|Lγ

αn − lαn |, |Rγ

αn − rαn |}= 0,

lim
n→∞

D
(
βn, β̄ ) = lim

n→∞
D(βn− [lβn ,rβn ]) = lim

n→∞
supmax{|Lγ

βn
− lβn |, |R

γ

βn
− rβn |}= 0.

So, limn→∞ αn = ᾱ and limn→∞ βn = β̄ means that every positive solution of equation (1.2) converges to equilibrium point(
ᾱ, β̄

)
as n→ ∞.

4. Numerical Results

In this section we will give some numerical examples in order to verify the efficiency of the results.

Example 4.1. Consider following system when m = 4 for system (1.2):

αn+1 = τ1 +
αn

βn−1 +βn−2 +βn−3 +βn−4
,βn+1 = τ2 +

βn

αn−1 +αn−2 +αn−3 +αn−4
.

Also the parameters τ1,τ2 and the initial conditions α−i,β−i, for i = {0,1,2,3,4}, are triangular fuzzy numbers, respectively,

τ1(x) =

{
5x
2 −1, 0.4≤ x≤ 0.8
− 5x

2 +3, 0.8≤ x≤ 1.2
, τ2(x) =

{
10x
3 −1, 0.3≤ x≤ 0.6
−10x

3 +3, 0.6≤ x≤ 0.9
, (4.1)

α−i(x) =

{
5x− 13

2 , 1.3≤ x≤ 1.5
−5x+ 17

2 , 1.5≤ x≤ 1.7
, β−i(x) =

{
5x− 13

2 , 1.3≤ x≤ 1.5
−5x+ 17

2 , 1.5≤ x≤ 1.7
. (4.2)

By using (4.1) and (4.2), the bounded support sets for γ ∈ (0,1] are as follows

{
suppτ1 ⊆ [0.4,1.2], suppτ2 ⊆ [0.3,0.9],
suppα−i ⊆ [1.3,1.7], suppβ−i ⊆ [1.3,1.7].

(4.3)

This example shows persistence and boundedness of FDEs system (1.2) if condition 1
m < min{τ1,l ,τ1,r,τ2,l ,τ2,r} is satisfied.

Moreover, note that as n→ ∞, every positive solution of FDEs system (1.2) converges to a unique equilibrium point (α̃, β̃ ) in
given (3.32) as it can be seen in Figure (1). Figure (2) shows the attractors of system (1.2) for γ = 0.2, γ = 0.5, γ = 0.8 and
γ = 1.
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Figure 1: The solution of FDEs system (1.2) at γ = 0.2, γ = 0.5, γ = 0.8, γ = 1.

Figure 2: The attractors of FDEs system (1.2) at γ = 0.2, γ = 0.5, γ = 0.8, γ = 1.

Example 4.2. Consider following system when m = 3 for (1.2).

αn+1 = τ1 +
αn

βn−1 +βn−2 +βn−3
,βn+1 = τ2 +

βn

αn−1 +αn−2 +αn−3
. (4.4)
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Also the parameters τ1,τ2 and the initial conditions α−i,β−i, for i = {0,1,2,3}, are triangular fuzzy numbers, respectively,

τ1(x) =

{
5x−3, 0.6≤ x≤ 0.8
−5x+5, 0.8≤ x≤ 1

, τ2(x) =

{
5x−2, 0.4≤ x≤ 0.6
−5x+4, 0.6≤ x≤ 0.8

, (4.5)

α−i(x) =

{
5x− 3

2 , 0.3≤ x≤ 0.5
−5x+ 7

2 , 0.5≤ x≤ 0.7
, β−i(x) =

{
5x− 3

2 , 0.3≤ x≤ 0.5
−5x+ 7

2 , 0.5≤ x≤ 0.7
. (4.6)

By using (4.5) and (4.6), the bounded support sets for γ ∈ (0,1] are as follows

{
suppτ1 ⊆ [0.6,1], suppτ2 ⊆ [0.4,0.8],
suppα−i ⊆ [0.3,0.7], suppβ−i ⊆ [0.3,0.7].

(4.7)

This example shows persistence and boundedness of FDEs system (1.2) if condition 1
m < min{τ1,l ,τ1,r,τ2,l ,τ2,r} is satisfied.

Moreover, note that as n→ ∞, every positive solution of FDEs system (1.2) converges to a unique equilibrium point (α̃, β̃ ) in
given (3.32) as it can be seen in Figure (3). Figure (3) shows the attractors of system (1.2) for γ = 0.2, γ = 0.5, γ = 0.8 and
γ = 1.

Figure 3: The solution of FDEs system (1.2) at γ = 0.2, γ = 0.5, γ = 0.8, γ = 1.
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Figure 4: The attractors of FDEs system (1.2) at γ = 0.2, γ = 0.5, γ = 0.8, γ = 1.
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Sălăgean operator; q−Harmonic
univalent functions; Subordination.

AMS 2020 Classification: 30C45;
30C50; 30C55; 30C80

Abstract

In this paper, we introduce the Al-Oboudi q−differential operator, a generalized Sălăgean operator,
for harmonic functions and define a new subclass of harmonic univalent functions using this operator.
We investigate several fundamental properties of this subclass, including coefficient conditions,
extreme points, distortion bounds, convex combination, and radii of convexity.

1. Introduction

Let C denote the complex plane and consider the open unit disk E= {z ∈ C : |z|< 1}. For a harmonic function f= u+v to be
sense-preserving and locally univalent in the open unit disk E, it is necessary and sufficient that the inequality |v′(z)|< |u′(z)|
holds in E (see [1]).

The class of functions that are harmonic, sense-preserving, univalent, and normalized by f(0) = fz(0)−1 = 0 in the open unit
disk E is denoted by SH. Within this class, the subclass of functions f ∈ SH that additionally satisfy v′(0) = b1 = 0 is denoted
by SH0. The functions u and v are analytic in the open unit disk E and have series expansions:

u(z) = z+
∞

∑
s=2

aszs, v(z) =
∞

∑
s=2

bszs. (1.1)

A function f ∈ SH0 can be expressed as f= u+v. If we choose v(z) = 0, we obtain the class S, which consists of analytic,
univalent and normalized functions in E. The relationships S⊂ SH0 ⊂ SH hold for the function classes S, SH, and SH0.

The subclasses K and S∗ of S are characterized by their mappings of the unit disk E onto convex and starlike domains,
respectively. Similarly, the subclasses of SH0 that map the unit disk E onto corresponding domains are denoted by SH0,∗ and
KH0. For a more detailed discussion, see [1, 2].

Jackson’s q-derivative for a function ψ ∈ S, where 0 < q < 1, is defined as follows [3]:

Dqψ(z) =





ψ(z)−ψ(qz)
(1−q)z

, if z 6= 0,

ψ ′(0), if z = 0.

(1.2)

Note that if ψ is differentiable at z, then as q→ 1−, we have Dqψ(z)→ ψ ′(z).

≫≫≫ Received: 13-09-2024 ≫≫≫ Revised: 08-04-2025 ≫≫≫ Accepted: 25-06-2025 ≫≫≫ Online: 27-06-2025 ≫≫≫ Published: 30-06-2025
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Jackson also defined the q-integral as follows [4]:
∫ z

0
ψ(ζ )dqζ = z(1−q)

∞

∑
k=0

qk
ψ(zqk), (1.3)

provided that the series on the right-hand side converges.

Jahangiri et al. [5] introduced the modified Sălăgean q-differential operator for harmonic functions of the form f = u+v,
where m ∈ N0 = {0,1,2, . . .}. This operator is defined as

Dm
q f(z) = Dm

q u(z)+(−1)mDm
q v(z), (1.4)

where

Dm
q u(z) = z+

∞

∑
s=2

[s]mq aszs and Dm
q v(z) =

∞

∑
s=2

[s]mq bszs. (1.5)

For a harmonic function f= u+v, where m ∈N0 and δ ≥ 0, we define the modified Al-Oboudi q-differential operator Dm
δ ,qf(z)

as follows:

D0
δ ,qf(z) = D0

qf(z) = u(z)+v(z), (1.6)

D1
δ ,qf(z) = (1−δ )D0

qf(z)+δD1
qf(z), (1.7)

...
Dm

δ ,qf(z) = D1
δ ,q

(
Dm−1

δ ,q f(z)
)
. (1.8)

Using the expression of f given in (1.1), it follows from (1.7) and (1.8) that

Dm
δ ,qf(z) = z+

∞

∑
s=2

[δ ([s]q−1)+1]m aszs +(−1)m
∞

∑
s=2

[δ ([s]q +1)−1]m bszs. (1.9)

We note that the operator Dm
δ ,qf(z) reduces to several known differential operators for specific choices of the parameters δ , q.

More precisely:

• For δ = 1, the operator coincides with the q−analogue of the modified Sălăgean operator studied by Jahangiri et al. [5].

• As q→ 1−, the operator becomes the generalization of the modified Sălăgean operator investigated by Yaşar and
Yalçın [6].

• For δ = 1 and q→ 1−, we recover the modified Sălăgean differential operator defined by Jahangiri et al. [7].

• If v(z)≡ 0, the operator reduces to the generalized q−Sălăgean operator introduced by Aouf et al. [8].

• If v(z)≡ 0 and q→ 1−, the operator reduces to the Al-Oboudi differential operator [9].

• For v(z)≡ 0, q→ 1−, and δ = 1, we obtain the classical Sălăgean differential operator [10].

In 2019, Ahuja and Çetinkaya [11] introduced the class of q−harmonic, sense-preserving, and univalent functions f= u+v,
denoted by SHq. For a function f to be included in class SHq, it must meet the following requirements:

ω(z) =
∣∣∣∣
Dqv(z)
Dqu(z)

∣∣∣∣< 1.

Additionally, as q→ 1−, the class SH is recovered.

For 0≤ α < 1, the class of harmonic functions f = u+v ∈ SHq that satisfy the inequality

Re

{
zDqu(z)− zDqv(z)

u(z)+v(z)

}
> α

is denoted by SH∗q(α). Functions in this class are referred to as q−starlike harmonic functions of order α . Similarly, for
0≤ α < 1, the class of harmonic functions f = u+v ∈ SHq satisfying the inequality

Re

{
zDq(zDqu(z))− zDq(zDqv(z))

zDqu(z)− zDqv(z)

}
> α
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is denoted by KHq(α). The functions in this class are called q−convex harmonic functions of order α . For a more detailed
discussion, see [12, 13, 14].

Let

fk(z) = z+
∞

∑
s=2

ak,szs +
∞

∑
s=2

bk,szs (z ∈ E, k = 1,2) ,

then the functions f1 and f2 have the following Hadamard product (or convolution):

(f1 ∗ f2)(z) = z+
∞

∑
s=2

a1,sa2,szs +
∞

∑
s=2

b1,sb2,szs (z ∈ E) .

Furthermore, if f ∈ SHq, we obtain

Dm
δ ,qf(z) = f(z)∗

(
χ1(z)+χ2(z)

)
∗ · · · ∗

(
χ1(z)+χ2(z)

)

︸ ︷︷ ︸
m times

,

= u(z)∗χ1(z)∗ · · · ∗χ1(z)︸ ︷︷ ︸
m times

+v(z)∗χ2(z)∗ · · · ∗χ2(z)︸ ︷︷ ︸
m times

.

where

χ1(z) =
(δ −1)qz2 + z
(1− z)(1−qz)

, χ2(z) =
(δ −1)qz2 +(1−2δ )z2

(1− z)(1−qz)
.

A function f : E→ C is said to be subordinate to another function g : E→ C, denoted by f(z) ≺ g(z), if there exists a
complex-valued function ω mapping E into itself with ω(0) = 0, such that f(z) = g(ω(z)) (see [15]).

Denote SH0
q(δ ,m,η ,µ) as the subclass of SH0

q consisting of functions f of the form (1.1) that satisfy the condition:

Dm+1
δ ,q f(z)

Dm
δ ,qf(z)

≺ 1+ηz
1+µz

, −µ ≤ η < µ ≤ 1. (1.10)

As q→ 1−, this class converges to SH0(δ ,m,η ,µ) introduced by Çakmak et al. [16]. Additionally, for q→ 1− and with the
choices of specific parameters, the following classes are obtained, which have been previously studied:

(i) SH0(1,δ ,η ,µ) = Hδ (η ,µ), δ ∈ N0 = N∪{0} ([17]),

(ii) SH0(1,1,η ,µ) = S∗H(η ,µ)∩SH0 ([18]),

(iii) SH0(δ ,m,2α−1,1) = SH(δ ,m,α)∩SH0 ([6]),

(iv) SH0(1,m,2α−1,1) = H0(m,α) ([7]),

(v) SH0(1,0,2α−1,1) = S∗H0(α) ([19], [20], [21]),

(vi) SH0(1,1,2α−1,1) = Sc
H0(α) ([19]),

(vii) SH0(δ ,m,2α−1,1) = SH(δ ,1−δ ,m,α) ([22]).

Further details on these classes and their properties can be found in the works of Jahangiri et al. [23], Murugusundaramoorthy
et al. [24] and Canbulat et al. [25].

The aim of this paper is to advance the study of harmonic functions by introducing the Al-Oboudi q−differential operator,
an extension of the well-known Sălăgean operator. We define a new subclass of harmonic univalent functions using this
generalized operator, which allows us to explore several key properties of these functions. Building on techniques and
methodologies from Dziok ([18], [26]), and Dziok et al. ([17]), we analyze fundamental aspects of this subclass, including
coefficient conditions, extreme points, distortion bounds and radii of convexity. Through these investigations, our aim is
to enhance the understanding of harmonic function theory and provide new insights into the geometric behavior of these
functions.
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2. Main Theorems and Results

First, we establish a necessary and sufficient condition involving convolution for harmonic functions in SH0
q(δ ,m,η ,µ).

Theorem 2.1. Let z ∈ E\{0} and suppose that f belongs to SH0
q. The function f is an element of SH0

q(δ ,m,η ,µ) if and only
if the following condition is satisfied:

Dm
δ ,qf(z)∗χ(z;ζ ) 6= 0 for all (ζ ∈ C with |ζ |= 1) ,

where

χ(z;ζ ) =
[(η−µ)ζ +δ (1+µζ )]qz2 +(µ−η)ζ z

(1−qz)(1− z)
− (−1)m

[−δ (1+µζ )+(µ−η)ζ ]qz2 +[2δ (1+µζ )− (µ−η)ζ ]z
(1−qz)(1− z)

.

Proof. Let f∈ SH0
q. The condition f∈ SH0

q(δ ,m,η ,µ) is satisfied if and only if the condition (1.10) holds, which is equivalent
to

Dm+1
δ ,q f(z)

Dm
δ ,qf(z)

6= 1+ηζ

1+µζ
for (ζ ∈ C, |ζ |= 1) . (2.1)

Consider

Dm
δ ,qf(z) = Dm

δ ,qf(z)∗
(

z
1− z

+
z

1− z

)
,

and

Dm+1
δ ,q f(z) = Dm

δ ,qf(z)∗
(

χ1(z)+χ2(z)
)
,

then the inequality (2.1) leads to

(1+µζ )Dm+1
δ ,q f(z)− (1+ηζ )Dm

δ ,qf(z) = Dm
δ ,qf(z)∗

{
(1+µζ )

[
(δ −1)qz2 + z

]

(1−qz)(1− z)
+

(1+µζ )
[
(δ −1)qz2 +(1−2δ )z

]

(1−qz)(1− z)

}

−Dm
δ ,qf(z)∗

{
(1+ηζ )z

1− z
+

(1+ηζ )z
1− z

}

= Dm
δ ,qf(z)∗

{
[(η−µ)ζ +δ (1+µζ )]qz2 +(µ−η)ζ z

(1−qz)(1− z)

− [−δ (1+µζ )+(µ−η)ζ ]qz2 +[2δ (1+µζ )− (µ−η)ζ ]z
(1−qz)(1− z)

}

= Dm
δ ,qf(z)∗χ(z;ζ ) 6= 0.

Theorem 2.2. Let f = u+v ∈ SH0
q, where u and v are represented as in (1.1). Then, f ∈ SH0

q(δ ,m,η ,µ) if the following
inequality is satisfied:

∞

∑
k=2

(Pk |ak|+Qk |bk|)≤ µ−η , (2.2)

where the sequences Ps and Qs are given by:

Ps = [1+δ ([s]q−1)]m [δ ([s]q−1)(µ +1)+µ−η ] , (2.3)

and

Qs = [−1+δ ([s]q +1)]m [δ ([s]q +1)(µ +1)+η−µ] . (2.4)
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Proof. The theorem is evidently valid for f(z) = z. Now, consider the case where as 6= 0 or bs 6= 0 for s ≥ 2. Since
Ps ≥ [s]q(µ−η) and Qs ≥ [s]q(µ−η), from (2.2), we obtain:

∣∣Dqu(z)
∣∣−
∣∣Dqv(z)

∣∣ ≥ 1−
∞

∑
s=2

[s]q |as| |z|s−1−
∞

∑
s=2

[s]q |bs| |z|s−1

≥ 1−|z|
∞

∑
s=2

[s]q (|as|+ |bs|)

≥ 1− |z|
µ−η

∞

∑
s=2

(Ps |as|+Qs |bs|)

≥ 1−|z|> 0.

Thus, f belongs to SH0
q.

A function f belongs to the class SH0
q(δ ,m,η ,µ) if there exists a complex-valued function ω such that ω(0) = 0 and |ω(z)|< 1

for all z ∈U . This condition is met if and only if the following holds:

Dm+1
δ ,q f(z)

Dm
δ ,qf(z)

=
1+ηω(z)
1+µω(z)

,

which is equivalent to the inequality:
∣∣∣∣∣

Dm+1
δ ,q f(z)−Dm

δ ,qf(z)

µDm+1
δ ,q f(z)−ηDm

δ ,qf(z)

∣∣∣∣∣< 1, z ∈ E. (2.5)

The inequality in (2.5) holds because for |z|= r with 0 < r < 1, we have:
∣∣∣Dm+1

δ ,q f(z)−Dm
δ ,qf(z)

∣∣∣−
∣∣∣µDm+1

δ ,q f(z)−ηDm
δ ,qf(z)

∣∣∣

=

∣∣∣∣∣
∞

∑
s=2

[δ ([s]q−1)+1]m δ ([s]q−1)aszs− (−1)m
∞

∑
s=2

[δ ([s]q +1)−1]m δ ([s]q +1)bszs

∣∣∣∣∣

−
∣∣∣∣∣(µ−η)z+

∞

∑
s=2

[δ ([s]q−1)+1]m [δ µ([s]q−1)+µ−η ]aszs

−(−1)m
∞

∑
s=2

[δ ([s]q +1)−1]m [δ µ([s]q +1)−µ +η ]bszs

∣∣∣∣∣

≤
∞

∑
s=2

[δ ([s]q−1)+1]m δ ([s]q−1) |as|rs +
∞

∑
s=2

[δ ([s]q +1)−1]m δ ([s]q +1) |bs|rs

− (µ−η)r+
∞

∑
s=2

[δ ([s]q−1)+1]m [δ µ([s]q−1)+µ−η ] |as|rs

+
∞

∑
s=2

[δ ([s]q +1)−1]m [δ µ([s]q +1)−µ +η ] |bs|rs

< 1.

Therefore, f ∈ SH0
q(δ ,m,η ,µ), completing the proof.

Next, we demonstrate that the condition given in (2.2) is also a necessary criterion for a function f ∈ SH0
q to belong to the class

TSH0
q(δ ,m,η ,µ) = Tm∩SH0(δ ,m,η ,µ), where Tm represents the set of functions f= u+v ∈ SH0

q such that

f(z) = u(z)+v(z) = z−
∞

∑
s=2
|as|zs +(−1)m

∞

∑
s=2
|bs|zs, z ∈ E. (2.6)

Theorem 2.3. Consider the definition of f = u+ v in (2.6). Then, f ∈ TSH0
q(δ ,m,η ,µ) if and only if condition (2.2) is

satisfied.

Proof. The sufficiency of this condition follows directly from Theorem 2.2. To prove necessity, suppose f ∈ TSH0
q(δ ,m,η ,µ).

Using (2.5), we can write
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∣∣∣∣∣∣∣∣

∞

∑
s=2

([s]q−1)δ [([s]q−1)δ +1]m |as|zs +([s]q +1)δ [([s]q +1)δ −1]m |bs|zs

(µ−η)z−
∞

∑
s=2

[([s]q−1)δ µ +µ−η ] [([s]q−1)δ +1]m |as|zs +[([s]q +1)δ µ +η−µ] [([s]q +1)δ −1]m |bs|zs

∣∣∣∣∣∣∣∣
< 1.

For z = r < 1, this simplifies to

∞

∑
s=2

{
([s]q−1)δ [([s]q−1)δ +1]m |as|+([s]q +1)δ [([s]q +1)δ −1]m |bs|

}
rs−1

µ−η−
∞

∑
s=2

{
[([s]q−1)δ µ +µ−η ] [([s]q−1)δ +1]m |as|+[([s]q +1)δ µ +η−µ] [([s]q +1)δ −1]m |bs|

}
rs−1

< 1.

Therefore, for the terms Ps and Qs as defined in (2.3) and (2.4), we have the inequality

∞

∑
s=2

[Ps |as|+Qs |bs|]rs−1 < µ−η (0≤ r < 1). (2.7)

Let {σs} be the sequence defined by the partial sums of the series given by

∞

∑
s=2

[Ps |as|+Qs |bs|] .

Since {σs} is non-decreasing and bounded above by µ−η , it must converge, and hence

∞

∑
s=2

[Ps |as|+Qs |bs|] = lim
s→∞

σs ≤ µ−η .

This establishes condition (2.2).

In the following, we demonstrate that the function class given in equation (2.6) is both convex and compact.

Theorem 2.4. The class TSH0
q(δ ,m,η ,µ) is convex and compact within the space SH0

q.

Proof. Consider a sequence fk ∈ TSH0
q(δ ,m,η ,µ), where

fk(z) = z−
∞

∑
s=2

∣∣ak,s
∣∣zs +(−1)m

∞

∑
s=2

∣∣bk,s
∣∣zs, z ∈ E, k ∈ N. (2.8)

To prove convexity, let 0≤ λ ≤ 1, and suppose f1 and f2 belong to the class TSH0
q(δ ,m,η ,µ), with each defined as in (2.8).

Define a new function as

κ(z) = λ f1(z)+(1−λ )f2(z)

= z−
∞

∑
s=2

(λ |a1,s|+(1−λ ) |a2,s|)zs +(−1)m
∞

∑
s=2

(λ |b1,s|+(1−λ ) |b2,s|)zs.

Next, we verify that κ(z) also belongs to the class TSH0
q(δ ,m,η ,µ). To achieve this, we examine the following condition:

∞

∑
s=2
{Ps [λ |a1,s|+(1−λ ) |a2,s|]+Qs [λ |b1,s|+(1−λ ) |b2,s|]} = λ

∞

∑
s=2
{Ps |a1,s|+Qs |b1,s|}+(1−λ )

∞

∑
s=2
{Ps |a2,s|+Qs |b2,s|}

≤ λ (µ−η)+(1−λ )(µ−η) = µ−η .

Hence, κ(z) remains within the class TSH0
q(δ ,m,η ,µ), establishing the convexity of the class.

To demonstrate compactness, consider any function fk ∈ TSH0
q(δ ,m,η ,µ). We derive the following inequality for |z| ≤ r (0 <

r < 1):

|fk(z)| ≤ r+
∞

∑
s=2

{∣∣ak,s
∣∣+
∣∣bk,s

∣∣}rs

≤ r+
∞

∑
s=2

{
Ps
∣∣ak,s

∣∣+Qs
∣∣bk,s

∣∣}rs

≤ r+(µ−η)r2.
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This confirms that the class TSH0
q(δ ,m,η ,µ) is locally uniformly bounded.

Now, consider the sequence fk(z) given by z−
∞

∑
s=2

∣∣ak,s
∣∣zs +(−1)m

∞

∑
s=2

∣∣bk,s
∣∣zs. Let f= u+v, where u and v are as described

in equation (1.1). From Theorem 2.3, we have the inequality

∞

∑
s=2
{Ps |as|+Qs |bs|} ≤ µ−η . (2.9)

If fk→ f, it follows that
∣∣ak,s

∣∣→ |as| and
∣∣bk,s

∣∣→ |bs| as k→ ∞. The sequence {σs}, which represents the partial sums of the
series ∑

∞
s=2 {Ps |as|+Qs |bs|}, is both monotonic and upper-bounded by µ−η . Consequently, it is convergent. Therefore, we

have

∞

∑
s=2
{Ps |as|+Qs |bs|}= lim

s→∞
σs ≤ µ−η .

Thus, f belongs to the class TSH0
q(δ ,m,η ,µ), and it follows that this class is closed. Consequently, the class TSH0

q(δ ,m,η ,µ)

is compact within SH0
q.

We now present the following result, originally established by Jahangiri [5].

Lemma 2.5 ([5]). Consider the q−harmonic mapping f = u+ v, where u and v are defined as in (1.1). Suppose that the
following condition is satisfied:

∞

∑
s=2

{
[s]q−α

1−α
|as|+

[s]q +α

1−α
|bs|
}
≤ 1 (z ∈ E),

where 0≤ α < 1. Consequently, the function f belongs to the class SH0,∗
q (α).

For functions belonging to the class TSH0
q(δ ,m,η ,µ), the radii of starlikeness and convexity are given by the following

theorems.

Theorem 2.6. Let 0≤ α < 1, and let Ps and Qs be defined by equations (2.3) and (2.4), respectively. Then

r∗α(TSH
0
q(δ ,m,η ,µ)) = inf

k≥2

[
1−α

µ−η
min

{
Ps

[s]q−α
,

Qs

[s]q +α

}] 1
s−1

. (2.10)

Proof. Let f ∈ TSH0
q(δ ,m,η ,µ) be represented by the form in (2.6). For |z|= r < 1, the following holds:

∣∣∣∣
D1,qf(z)− (1+α)f(z)
D1,qf(z)+(1−α)f(z)

∣∣∣∣ =

∣∣∣∣
−αz−∑

∞
s=2 ([s]q−1−α) |as|zs− (−1)m ∑

∞
s=2 ([s]q +1+α) |bs|zs

(2−α)z−∑
∞
s=2 ([s]q +1−α) |as|zs− (−1)m ∑

∞
s=2 ([s]q−1+α) |bs|zs

∣∣∣∣

≤ α +∑
∞
s=2
{
([s]q−1−α)|as|+([s]q +1+α)|bs|

}
rs−1

2−α−∑
∞
s=2
{
([s]q +1−α)|as|+([s]q−1+α)|bs|

}
rs−1

.

According to Lemma 2.5, the function f is q−starlike of order α in Er if and only if
∣∣∣∣
D1,qf(z)− (1+α)f(z)
D1,qf(z)+(1−α)f(z)

∣∣∣∣< 1, z ∈ Er

which is equivalent to:

∞

∑
s=2

{
[s]q−α

1−α
|as|+

[s]q +α

1−α
|bs|
}

rs−1 ≤ 1. (2.11)

Furthermore, by Theorem 2.2, the following condition must be satisfied:

∞

∑
s=2

{
Ps

µ−η
|as|+

Qs

µ−η
|bs|
}

rs−1 ≤ 1.

The inequality in (2.11) holds if:

[s]q−α

1−α
rs−1 ≤ Ps

µ−η
rs−1,
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[s]q +α

1−α
rs−1 ≤ Qs

µ−η
rs−1 (s = 2,3, . . .),

or equivalently:

r ≤ 1−α

µ−η
min

{
Ps

[s]q−α
,

Qs

[s]q +α

} 1
s−1

(s = 2,3, . . .).

Therefore, the function f is q−starlike of order α in the disk Er∗α , where:

r∗α := inf
s≥2

[
1−α

µ−η
min

{
Ps

[s]q−α
,

Qs

[s]q +α

}] 1
s−1

.

Finally, the extremal function:

fs(z) = us(z)+vs(z) = z− µ−η

Ps
zs +(−1)m

µ−η

Qs
zs

shows that the radius r∗α cannot be increased. Thus, we obtain the result (2.10).

Using a similar approach, we derive the following result.

Theorem 2.7. Let 0≤ α < 1, and let Ps and Qs be defined as in (2.3) and (2.4). Then, we have

rc
α(TSH

0
q(δ ,m,η ,µ)) = inf

s≥2

[
1−α

µ−η
min

{
Ps

[s]q([s]q−α)
,

Qs

[s]q([s]q +α)

}] 1
s−1

.

Our next result concerns the extreme points of the class TSH0
q(δ ,m,η ,µ).

Theorem 2.8. The functions u= us and v= vs are defined as follows:

u1(z) = z,

us(z) = z− µ−η

Ps
zs,

vs(z) = (−1)m µ−η

Qs
zs (z ∈ E, s≥ 2).

(2.12)

The functions f = u+ v, which are represented by the series expansion given in 1.1, are the extreme points of class
TSH0

q(δ ,m,η ,µ).

Proof. Consider the function vs defined by

vs = λ f1 +(1−λ )f2,

where 0 < λ < 1 and f1 and f2 are functions in the class TSH0
q(δ ,m,η ,µ). Each function fk is given by

fk(z) = z−
∞

∑
s=2
|ak,s|zs +(−1)m

∞

∑
s=2
|bk,s|zs,

where z is in E and k is either 1 or 2.
By (2.12), it follows that

|b1,s|= |b2,s|=
µ−η

Qs
,

which implies a1,k = a2,k = 0 for k ∈ {2,3, . . .} and b1,k = b2,k = 0 for k ∈ {2,3, . . .}\{s}. Consequently, vs(z) = f1(z) = f2(z),
and vs lies in the class of extreme points of SH0

T (δ ,n,η ,µ). Similarly, the functions us(z) can be verified as the extreme
points of TSH0

q(δ ,m,η ,µ).
Now, assume that a function f of the form (1.1) is an extreme point of TSH0

q(δ ,m,η ,µ) and that f does not match the form
(2.12). Then, there exists n ∈ {2,3, . . .} such that

0 < |un|<
µ−η

[([n]q−1)δ +1]m [δ ([n]q−1)(µ +1)+µ−η ]
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or

0 < |vn|<
µ−η

[([n]q +1)δ −1]m [δ ([n]q +1)(µ +1)+η−µ]
.

If

0 < |un|<
µ−η

[([n]q−1)δ +1]m [δ ([n]q−1)(µ +1)+µ−η ]
,

then setting

λ =
|un| [([n]q−1)δ +1]m [δ ([n]q−1)(µ +1)+µ−η ]

µ−η

and

ψ =
f−λun

1−λ
,

we obtain 0 < λ < 1 and us 6= ψ . Hence, f is not an extreme point of TSH0
q(δ ,m,η ,µ).

Similarly, if

0 < |vn|<
µ−η

[([n]q +1)δ −1]m [δ ([n]q +1)(µ +1)+η−µ]
,

then setting

λ =
|vn| [([n]q +1)δ −1]m [δ ([n]q +1)(µ +1)+η−µ]

µ−η

and

ψ =
f−λvn

1−λ
,

results in 0 < λ < 1 and vn 6= ψ .
Therefore, f is not an element of the set of extreme points in TSH0

q(δ ,m,η ,µ), thereby completing the proof.

Consequently, according to Theorem 2.8, we obtain the following corollary.

Corollary 2.9. Let f be an element of TSH0
q(δ ,m,η ,µ), and let |z|= r < 1. Then

r− µ−η

(qδ +1)m [qδ (µ +1)+η−µ]
r2 ≤ |f(z)| ≤ r+

µ−η

(qδ +1)m [qδ (µ +1)+η−µ]
r2.

From Corollary 2.9, we can derive the following covering result.

Corollary 2.10. If f belongs to TSH0
q(δ ,n,η ,µ), then Er ⊂ f(E), where

r = 1− µ−η

(qδ +1)m [qδ (µ +1)+η−µ]
.

3. Conclusion

In this paper, we introduced a new subclass of harmonic univalent functions by utilizing the generalized Al-Oboudi
q−differential operator, which extends the classical Sălăgean operator within the framework of q−calculus. We derived several
important results concerning the analytic and geometric properties of this subclass, including coefficient bounds, subordination
conditions, extreme points, convolution characterizations, distortion theorems, and radii of starlikeness and convexity.

Furthermore, we demonstrate the compactness and convexity of the subclass T SH0
q (δ ,m,η ,µ), and established sharp bounds

using extremal functions. The operator-theoretic approach adopted in this study not only generalizes many existing results in
the literature but also provides a flexible framework for investigating broader families of harmonic mappings.

These findings contribute to the geometric function theory by enriching the structure of harmonic univalent function classes
via q−calculus and highlight the potential of differential operators in unifying various known subclasses. Future work may
focus on applying other classes of quantum differential operators or extending the current results to more general domains and
functional settings.
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