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Özay Gürtuğ, (Maltepe University, İstanbul, Türkiye), Mathematical Methods in Physics

Pratulananda Das, Jadavpur University, Kolkata, West Bengal, India, Topology
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Abstract. In this paper, we present two fixed point theorems on b-metric spaces. First,
we obtain a general result, which includes many fixed point theorems on b-metric space in
the literature as a special case, by using implicit relation technique, Then, we define the
concept of nearly Lipschitzian mapping in b-metric spaces, and we obtain a fixed point
theorem for such mappings.

1. Introduction and preliminaries

The notion of metric, which has an important place in mathematics, has been general-
ized in several ways by weakening some of the metric axioms [2, 3, 10]. For example,
by weakening the axiom that the necessary and sufficient condition for two points to be
equal is that the distance between them is zero, the concepts of pseudometric have been
introduced. Again by neglecting the symmetry axiom and triangular inequality axiom re-
spectively the notion of quasimetric and the notion of semimetric have been defined. On
the other hand, by weakening the triangle inequality, the concept of b-metric has been
introduced, which is a concept that has been frequently studied recently.

Czerwik in [6] introduced the concept of b-metric space (in short b-ms).

Definition 1.1 ([6]). Let B be a non-empty set and s ≥ 1 be a fixed real number. A function
b : B× B→ R+ = [0,∞) is called a b-metric (in short b-m) on B if, for all ω,ϖ, υ ∈ B, the
following conditions hold:

(b1) b(ω,ϖ) = 0 if and only if ω = ϖ,
(b2) b(ω,ϖ) = b(ϖ,ω),
(b3) b(ω, υ) ≤ s [b(ω,ϖ) + b(ϖ, υ)].
We call the triplet (B, b, s) a b-ms.

It is important to note that the collection of b-ms’s is strictly broader than that of metric
spaces, as a b-metric reduces to a metric when s = 1.

There are many examples of b-ms in the literature. Let us present one example here for
the sake of completeness.
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Example 1.1 ([1]). Let (B, ρ) be a metric space, p > 1 be a real number and let b(ω,ϖ) =
(ρ(ω,ϖ))p. Then the triplet (B, b, 2p−1) is a b-ms. Indeed (b1) and (b2) are obviously hold.
On the other hand, since the function f (ω) = ωp (ω ≥ 0) is convex, then(

λ + µ

2

)p

≤
1
2

(λp + µp) ,

and hence
(λ + µ)p ≤ 2p−1(λp + µp)

holds for λ, µ ≥ 0. Thus, for each ω,ϖ, υ ∈ B we obtain

b(ω,ϖ) = (ρ(ω,ϖ))p ≤ 2p−1[b(ω, υ) + b(υ,ϖ)].

So the condition (b3) of Definition 1.1 is hold and so b is a b -metric.

Definition 1.2 ([4]). Let (B, b, s) be a b-ms. A sequence {ωn} in B is defined as:
(a) convergent if there exists an element ω ∈ B such that b(ωn, ω) → 0 as n → ∞. In

this case, we write limn→∞ ωn = ω.
(b) Cauchy if b(ωn, ωm) → 0 as n,m → ∞, meaning that for every ε > 0, there is a

natural number n0 such that for all n,m ≥ n0, b(ωn, ωm) < ε.
The b-ms (B, b, s) is considered complete (in short cb-ms) if every Cauchy sequence in

B converges.

Proposition 1.1 ([4], Remark 2.1). Consider a b-ms (B, b, s). The following statements
are true:

(i) A convergent sequence has at most one limit,
(ii) Every convergent sequence is also Cauchy,

(iii) In general, a b-metric does not exhibit continuity.

Although the b-metric function is not continuous in general, it satisfies the following
property.

Lemma 1.2 ([1]). Let (B, b, s) be a b-ms, and assume that the sequences {ωn} and {ϖn}

converge to ω and ϖ, respectively. Then, the following inequality holds:

1
s2 b(ω,ϖ) ≤ lim inf

n→∞
b(ωn, ϖn) ≤ lim sup

n→∞
b(ωn, ϖn) ≤ s2b(ω,ϖ).

In particular, if ω = ϖ, we have limn→∞ b(ωn, ϖn) = 0.
Furthermore, for any u ∈ B, the following inequality holds:

1
s

b(ω, u) ≤ lim inf
n→∞

b(ωn, u) ≤ lim sup
n→∞

b(ωn, u) ≤ sb(ω, u).

The aim of this paper is to present some fixed point theorems in b-metric space inspired
by metric fixed point theory. As it is known, there are basically three stages in the proof
of metric fixed point theorems. The first is to construct an iteration sequence, which is
usually a Picard iteration sequence, the second stage is to show that this sequence is a
Cauchy sequence, which is the real difficulty in the proof. The third is to show that the
point to which the sequence converges, which is guaranteed by the completeness of the
space, is a fixed point. In showing that the sequence in question is a Cauchy sequence,
sometimes direct proof, sometimes proof by contradiction method is used according to the
hypotheses. For example, in a metric space (B, ρ) if there exists λ ∈ [0, 1) such that

ρ(ωn, ωn+1) ≤ λρ(ωn−1, ωn) (1.1)
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for all n ∈ N, then {ωn} is a Cauchy sequence. Indeed, by using (1.1) and the triangular
inequality of the metric ρ, we have

ρ(ωn, ωm) ≤ ρ(ωn, ωn+1) + ρ(ωn+1, ωn+2) + · · · + ρ(ωm−1, ωm)

≤
λn

1 − λ
ρ(ω0, ω1),

for m > n, which shows that {ωn} is Cauchy. Similarly, by using the triangular inequality
of the metric ρ, we have, for m > n

ρ(ωn, ωm) ≤ ρ(ωn, ωn+1) + ρ(ωn+1, ωn+2) + · · · + ρ(ωm−1, ωm)

≤

∞∑
k=n

ρ(ωk, ωk+1)

and so the convergence of the series
∞∑

n=1

ρ(ωn, ωn+1) (1.2)

is guaranteed that {ωn} is a Cauchy sequence. Therefore, before presenting a fixed point
theorem in a b-ms, it is important to investigate whether these situations are also valid in a
b-ms.

As a result of the research carried out in this context, Suzuki [12] presented an example
showing that the convergence of the series given in (1.2) in a b-ms is not sufficient for the
sequence {ωn} to be a Cauchy. However, the following lemmas helps us in this direction.

Lemma 1.3 ([7]). Let {ωn} be a sequence in a b-ms (B, b, s). The sequence {ωn} is Cauchy
if there exists a constant γ > log2 s such that the series

∞∑
n=1

nγb(ωn, ωn+1)

is convergent.

Lemma 1.4 ([7]). Let {ωn} be a sequence in a b-ms (B, b, s). The sequence {ωn} is Cauchy
if there exists α > 1 such that the series

∞∑
n=1

αnb(ωn, ωn+1)

is convergent.

On the other hand, it may be thought that the inequality (1.1) may not be sufficient for
the sequence {ωn} to be a Cauchy sequence in a b-metric space, and in fact it is clear that
λ < 1

s will guarantee this. However, the following lemma shows that this is valid even if
λ < 1.

Lemma 1.5 ([8, 12]). Consider (B, b, s), a b-ms, and a sequence {ωn} within B. Suppose
there exists α ∈ [0, 1) such that

b(ωn, ωn+1) ≤ αb(ωn−1, ωn),

for any n ∈ N. Under this condition, the sequence {ωn} is Cauchy.

Considering the above lemmas and similar ones, many fixed point theorems have been
obtained in b-ms. Let us mention a few here.

Throughout the remainder of this paper, the term ”fixed point” will be abbreviated as
”fp” for brevity.
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Theorem 1.6 ([9]). Let (B, b, s) be a cb-ms, and let Υ : B→ B be a mapping such that:

b(Υω,Υϖ) ≤ λb(ω,ϖ)

for all ω,ϖ ∈ B, where λ ∈ [0, 1). Then Υ admits a unique fp υ, and for any starting point
ω0 ∈ B, the sequence {Υnω0} converges to υ.

Theorem 1.7 ([9]). Let (B, b, s) be a cb-ms, and let Υ : B→ B be a mapping such that:

b(Υω,Υϖ) ≤ αb(ω,ϖ) + βb(ω,Υω) + γb(ϖ,Υϖ)

for all ω,ϖ ∈ B, where α, β, γ ∈ [0, 1) and α + β + γ < 1. Then Υ admits a unique fp υ,
and for any starting point ω0 ∈ B, the sequence {Υnω0} converges to υ, provided that one
of the following hold:

• Υ is continuous,
• sβ < 1
• sγ < 1.

Theorem 1.8 ([5]). Let (B, b, s) be a cb-ms, and let Υ : B→ B be a mapping such that:

b(Υω,Υϖ) ≤ q max
{

b(ω,ϖ), b(ω,Υω), b(ϖ,Υϖ),
1
2

[b(ω,Υϖ) + b(ϖ,Υω)]
}

for all ω,ϖ ∈ B, where q ∈ [0, 1
s ). Then Υ admits a unique fp υ, and for any starting point

ω0 ∈ B, the sequence {Υnω0} converges to υ, provided that Υ is continuous.

2. Result via implicit relation

In this section, we will first consider an implicit relation with some properties and give
a few examples. Then, we will present a fp theorem in the b-ms, taking this relation into
account.

Let F be the set of all functions F : R6
+ → R satisfying the following conditions:

(F1) F(ξ1, · · · , ξ6) is nonincreasing in variables ξ5 and ξ6.
(F2) there exists h ∈ [0, 1) such that for η > 0

F(η, µ, µ, η, η + µ, 0) ≤ 0

or
F(η, µ, η, µ, 0, η + µ) ≤ 0

implies η ≤ hµ.
(F3) F(η, η, 0, 0, η, η) > 0 for η > 0.
Also, for s ≥ 1, let Fs be the set of all continuous functions F ∈ F satisfying the

following conditions:
(Fs1) F(ξ1, · · · , ξ6) is nondecreasing in variable ξ1.
(Fs2) F( ηs , 0, 0, η, η, 0) > 0 or F( ηs , 0, η, 0, 0, η) > 0 for η > 0.
It is clear that Fs ⊆ F .

Example 2.1. Let F(ξ1, · · · , ξ6) = ξ1 − αξ2, where α ∈ [0, 1). Then F ∈ Fs for all s ≥ 1.

Example 2.2. Let F(ξ1, · · · , ξ6) = ξ1−αξ2−βξ3−γξ4, where α, β, γ ∈ [0, 1) and α+β+γ <
1. Then F ∈ F . Also if sβ < 1 or sγ < 1 then F ∈ Fs.

Example 2.3. Let F(ξ1, · · · , ξ6) = ξ1 − q max
{
ξ2, ξ3, ξ4,

ξ5+ξ6
2

}
, where q ∈ [0, 1). Then

F ∈ F . Also if qs < 1, then F ∈ Fs.
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Example 2.4. Let F(ξ1, · · · , ξ6) = ξ1 − c {ξ2 + |ξ3 − ξ4|}, where c ∈ [0, 1). Then F ∈ F .
Also if cs < 1, then F ∈ Fs.

Example 2.5. Let F(ξ1, · · · , ξ6) = ξ1 − αmax {ξ2, ξ3, ξ4} − β
ξ5+ξ6

2 , where α, β ∈ [0, 1) and
α + β < 1. Then F ∈ F . Also if (2α + β)s < 2, then F ∈ Fs.

Theorem 2.1. Let (B, b, s) be a cb-ms, Υ : B→ B be a mapping satisfying:

F
(
b(Υω,Υϖ), b(ω,ϖ), b(ω,Υω), b(ϖ,Υϖ),

b(ω,Υϖ)
s

,
b(ϖ,Υω)

s

)
≤ 0 (2.1)

for all ω,ϖ ∈ B, where F ∈ F . Then Υ has a unique fp υ, and for every ω0 ∈ B, the
sequence {Υnω0} converges to υ provided that Υ is continuous.

Proof. Let ω0 ∈ B be arbitrary. Define a sequence {ωn} by ωn+1 = Υωn for all n ≥ 0.
For the sake of brevity let bn = b(ωn, ωn+1) for n ≥ 0. If there exists n0 ∈ N such that
bn0 = 0, then ωn0 is a fp of Υ. In this case, the sequence {ωn} will be an eventually constant
sequence with the constant ωn0 and will converge to ωn0 . Now, let bn > 0 for all n ∈ N.
Then from (2.1) we have,

F
(

b(Υωn,Υωn+1), b(ωn, ωn+1), b(ωn,Υωn), b(ωn+1,Υωn+1),
1
s b(ωn,Υωn+1), 1

s b(ωn+1,Υωn)

)
≤ 0

for all n ∈ N. Thus, we have

F
(
b(ωn+1, ωn+2), b(ωn, ωn+1), b(ωn, ωn+1), b(ωn+1, ωn+2),

b(ωn, ωn+2)
s

, 0
)
≤ 0

for all n ∈ N. Now, from the last inequality and (F1) we have

F (bn+1, bn, bn, bn+1, bn + bn+1, 0) ≤ 0

and hence from (F2), there exists h ∈ [0, 1) such that

bn+1 ≤ hbn

or equivalently
b(ωn+1, ωn+2) ≤ hb(ωn, ωn+1)

for all n ∈ N. From Lemma 1.5, we have {ωn} is a Cauchy sequence in the cb-ms (B, b, s).
Hence there exists υ ∈ B such that limωn = υ, that is lim b(ωn, υ) = 0. Since Υ is
continuous we have lim b(ωn+1,Υυ) = lim b(Υωn,Υυ) = 0, and so by the uniqueness of
the limit of {ωn}, we get υ = Υυ. Now, let w be also a fp of Υ with b(υ,w) > 0, then from
(2.1) we have

F
(
b(Υυ,Υw), b(υ,w), b(υ,Υυ), b(w,Υw),

b(υ,Υw)
s

,
b(w,Υυ)

s

)
≤ 0

or equivalently we have

F
(
b(υ,w), b(υ,w), 0, 0,

b(υ,w)
s
,

b(w, υ)
s

)
≤ 0.

Hence from (F1) we have

F (b(υ,w), b(υ,w), 0, 0, b(υ,w), b(υ,w)) ≤ 0,

which is contradict to (F3). Hence, the fp of Υ is unique. □

In Theorem 2.1, by considering the class Fs, we can remove the continuity condition of
Υ.
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Theorem 2.2. Let (B, b, s) be a cb-ms, Υ : B → B be a mapping satisfying (2.1) for all
ω,ϖ ∈ B, where F ∈ Fs. Then Υ has a unique fp υ, and for every ω0 ∈ B, the sequence
{Υnω0} converges to υ.

Proof. As in the proof of Theorem 2.1, we can show that the iteration sequence {ωn} is
Cauchy and hence converges to some υ ∈ B. Now, let b(υ,Υυ) > 0. Then, from (2.1) we
have

F
(
b(Υωn,Υυ), b(ωn, υ), b(ωn,Υωn), b(υ,Υυ),

b(ωn,Υυ)
s

,
b(υ,Υωn)

s

)
≤ 0

or equivalently we have

F
(
b(ωn+1,Υυ), b(ωn, υ), b(ωn, ωn+1), b(υ,Υυ),

b(ωn,Υυ)
s

,
b(υ, ωn+1)

s

)
≤ 0.

Hence, by taking the continuity of F into account, from Lemma 1.2, (F1) and (Fs1) we
have

F
(

b(υ,Υυ)
s
, 0, 0, b(υ,Υυ), b(υ,Υυ), 0

)
≤ 0.

which is contradict to (Fs2). Hence we have b(υ,Υυ) = 0. The uniqueness follows from
(F3). □

If we consider special functions F in Theorem 2.1 or Theorem 2.2, we can obtain some
fp theorems obtained in the literature, including Theorem 1.6, Theorem 1.7 and Theorem
1.8. Here we present two results obtained with Example 2.4 and Example 2.5.

Corollary 2.3. Let (B, b, s) be a cb-ms, Υ : B→ B be a mapping satisfying:

b(Υω,Υϖ) ≤ c {b(ω,ϖ) + |b(ω,Υω) − b(ϖ,Υϖ)|}

for all ω,ϖ ∈ B, where c ∈ [0, 1). Then Υ has a unique fp υ, and for every ω0 ∈ B, the
sequence {Υnω0} converges to υ provided that one of the following hold:

• Υ is continuous,
• sc < 1.

Corollary 2.4. Let (B, b, s) be a cb-ms, Υ : B→ B be a mapping satisfying:

b(Υω,Υϖ) ≤ αmax {b(ω,ϖ), b(ω,Υω), b(ϖ,Υϖ)} + β
b(ω,Υϖ) + b(ϖ,Υω)

2s
for all ω,ϖ ∈ B, where α, β ∈ [0, 1) and α + β < 1. Then Υ has a unique fp υ, and for
every ω0 ∈ B, the sequence {Υnω0} converges to υ provided that one of the following hold:

• Υ is continuous,
• (2α + β)s < 2.

3. Results for nearly Lipschitzian mappings

In this section, we will present the b-ms version of the notion of a nearly Lipschitzian
mappings defined by Sahu [11] in the metric space and give a fp theorem for such map-
pings. Recall that a self mapping Υ of a b-ms (B, b, s) is said to be Lipschitz mapping if
there exists λ ≥ 0 such that

b(Υω,Υϖ) ≤ λb(ω,ϖ)

for all ω,ϖ ∈ B. It is clear that every Lipschitz mapping is continuous.
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Definition 3.1. Let (B, b, s) be a b-ms, Υ : B→ B be a mapping and {αn} be a sequence in
R+ such that αn → 0. Then, Υ is said to be nearly Lipschitzian with respect to {αn} if for
each n ∈ N, there exists a constant λn ≥ 0 such that

b(Υnω,Υnϖ) ≤ λn {b(ω,ϖ) + αn} (3.1)

for all ω,ϖ ∈ B. The infimum of constants λn for which (3.1) holds is denoted by ϕ(Υn)
and called the nearly Lipschitz constant.

Example 3.1. Let B = [0, 2] with the b-metric b(ω,ϖ) = (ω − ϖ)2 and Υ : B → B a
mapping defined by

Υω =


ω − 1

4 ω > 1

1
2 , ω ≤ 1

.

Since Υ is discontinuous, then it is non-Lipschitz mapping. However, by the routine calcu-
lation we can see

b(Υnω,Υnϖ) ≤
n
2n {b(ω,ϖ) + αn} ,

where

αn =


16 n ≤ 4

1
n , n > 4

.

Hence, Υ is nearly Lipschitzian mapping.

Theorem 3.1. Let (B, b, s) be a cb-ms and Υ : B→ B be a continuous nearly Lipschitzian
mapping with nearly Lipschitz constant ϕ(Υn). If

lim sup
n→∞

n
√
ϕ(Υn) < 1, (3.2)

then Υ has a unique fp υ, and for every ω0 ∈ B, the sequence {Υnω0} converges to υ.

Proof. Let ω0 ∈ B be arbitrary. Define a sequence {ωn} by ωn+1 = Υωn for all n ≥ 0.
For the sake of brevity let bn = b(ωn, ωn+1) for n ≥ 0. If there exists n0 ∈ N such that
bn0 = 0, then ωn0 is a fp of Υ. In this case, the sequence {ωn} will be an eventually constant
sequence with the constant ωn0 and will converge to ωn0 . Now, let bn > 0 for all n ∈ N.
Hence

0 < bn = b(Υnω0,Υ
n+1ω0) ≤ ϕ(Υn) {b(ω0, ω1) + αn} (3.3)

for all n ∈ N. Now, define lim supn→∞
n
√
ϕ(Υn) = δ, then from (3.2) and (3.3), we have

0 < δ < 1. Choose α ∈ (1, 1
δ
), then from (3.3) we have

αnbn ≤ α
nϕ(Υn) {b(ω0, ω1) + M} , (3.4)

where M = supαn, for all n ∈ N. Hence, from (3.4) we have
∞∑

n=1

αnbn ≤ {b(ω0, ω1) + M}
∞∑

n=1

αnϕ(Υn).

By the root test for the convergence of the series we have
∞∑

n=1

αnϕ(Υn) < ∞

since
lim sup

n→∞

n
√
αnϕ(Υn) = αδ < 1.
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Therefore, by the comparison test we have
∞∑

n=1

αnbn =

∞∑
n=1

αnb(ωn, ωn+1) < ∞,

and so from Lemma 1.4, {ωn} is a Cauchy sequence in the cb-ms (B, b, s). Hence there
exists υ ∈ B such that limωn = υ, that is lim b(ωn, υ) = 0. Since Υ is continuous we have
lim b(ωn+1,Υυ) = lim b(Υωn,Υυ) = 0, and so by the uniqueness of the limit of {ωn}, we
get υ = Υυ. Now, let w be also a fp of Υ with b(υ,w) > 0, then from we have

∞∑
n=1

b(υ,w) =

∞∑
n=1

b(Υnυ,Υnw)

≤

∞∑
n=1

ϕ(Υn) {b(υ,w) + αn}

≤ {b(υ,w) + M}
∞∑

n=1

ϕ(Υn)

< ∞,

which is a contradiction, since
∞∑

n=1
b(υ,w) = ∞. Hence, Υ has a unique fp. □

4. Conclusion

In conclusion, this paper presents significant advancements in the theory of fixed point
theorems in the context of b-metric spaces. The general result established in the first part
of the paper not only provides a broader framework for fixed point theorems in b-metric
spaces but also encompasses many existing results from the literature as special cases. By
employing the implicit relation technique, we have extended the applicability of previ-
ous fixed point theorems to a more general setting. Furthermore, the introduction of the
concept of nearly Lipschitzian mappings in b-metric spaces has led to the derivation of a
new fixed point theorem, broadening the scope of mappings for which fixed points can be
guaranteed. These contributions offer valuable insights and open up potential avenues for
further research in the field of metric and b-metric spaces, particularly in the study of fixed
point theory and its applications.
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Abstract. This study explores the solvability and solution of a Robin problem for a higher-
order differential equation in the upper half-plane. Using the framework of the higher-order
Cauchy-Riemann operator, we extend classical techniques to handle complex boundary in-
teractions.

Necessary conditions are established by analyzing the boundary operator’s structure.
To construct solutions, we apply an integral method that reduces the problem to a more
manageable form, employing higher-order Cauchy-type transforms and kernel functions
suited to the upper half-plane.

1. Introduction

Different boundary value issues are investigated in [1-5] for various domains with ex-
plicit solutions. Boundary value problems play a fundamental role in mathematical anal-
ysis and its applications, particularly in understanding physical phenomena modeled by
partial differential equations. Among these, Robin boundary value problems represent a
versatile class that interpolates between Dirichlet and Neumann conditions, offering a rich
framework for both theoretical exploration and practical applications. While significant
progress has been made in the study of classical boundary value problems in the complex
plane, the investigation of higher-order equations in the upper half-plane, especially under
Robin boundary conditions, remains an open and challenging area of research. The current
work focuses on a Robin boundary value problem associated with a higher-order partial
differential equation in the upper half-plane. These problems are of particular interest due
to their intricate coupling of boundary and interior conditions, as well as their connection
to advanced operators such as the higher-order Cauchy-Riemann operator. Such equations
naturally arise in a variety of contexts, including fluid dynamics, elasticity, and electromag-
netic theory, where higher-order derivatives and mixed boundary conditions are integral to
the models. Our primary objective is to establish the conditions under which the Robin
boundary value problem admits a solution and to provide an explicit integral representa-
tion of the solution. By employing tools from complex analysis, we develop a framework
that reduces the complexity of the higher-order equation and reveals the interplay between
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the boundary conditions and the solution’s analytic structure. The integral representation
not only provides a practical method for constructing solutions but also offers deeper in-
sights into the properties of the underlying operator. This study contributes to the broader
theory of boundary value problems in complex analysis and lays the groundwork for fur-
ther investigations into higher-order equations in more general domains. Additionally, the
techniques and results presented here may find applications in mathematical physics and
engineering, where the study of such equations is both theoretical and practical.

2. Preliminaries

Let H := {z ∈ C : Imz > 0} denotes the upper half plane and R its boundary (the x-axis).
Here Lp,2 (H;C) means the space of complex-valued functions f defined inH. T is Pompeiu
integral operator. The Cauchy–Riemann operator is a fundamental tool in complex analysis
and is defined as

∂

∂z̄
:=

1
2

(
∂

∂x
+ i
∂

∂y

)
,

where z = x + iy. A complex-valued function ω : H → C is said to be analytic if and
only if ωz̄ = 0, that is, if it lies in the kernel of the Cauchy–Riemann operator. The
inhomogeneous Cauchy–Riemann equation ωz̄ = f , where f is a given function, arises
naturally in the context of boundary value problems involving non-analytic functions and
serves as a starting point for constructing solutions using integral representations.

In this study, we extend the classical theory by considering higher-order versions of
the Cauchy–Riemann operator. These operators are crucial for analyzing more intricate
boundary conditions, such as those appearing in Robin-type problems for higher-order
partial differential equations.
In this study, we formulate the problem in the upper half-plane H due to its analytical
convenience and compatibility with classical integral operators such as the Cauchy and
Pompeiu transforms. The upper half-plane provides a natural setting where the boundary
R allows explicit use of well-known kernels and boundary value techniques. Although
the analysis is carried out in H, the approach can be extended to the lower half-plane
L := {z ∈ C : Im z < 0} by symmetry or by adapting the kernel functions accordingly.

Theorem 2.1. [3] The Robin problem ωz̄ = 0 in H, αω + ∂υω = γ on R, ω(i) = C0 for
α ∈ O (H) ∩ C

(
H;C

)
, γ ∈ L2 (R;C) ∩ C (R;C) and C0 ∈ C is uniquely solvable if and

only if

1
2πi

∫ ∞

−∞

γ(t)
t − z

dt = 0 (2.1)

for z ∈ H. The solution is given by

ω(z) = C0e−
∫ z

i iα(ς)dς −
i
π

∫ ∞

−∞

γ(t)
∫ z

i

Im(s)
|t − s|2

e
∫ z

s iα(ς)dς ds dt. (2.2)

Here O(H) denotes the set of analytic functions in H.

Proposition 2.2. [5] The Robin problem for the inhomogeneous Cauchy–Riemann equa-
tion

ωz̄ = f in H,

ω − ∂yω = γ on R,

ω(0) = c + T f (0)
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for given f ∈ Lp,2(H;C)∩C1(H;C), p > 2 and γ ∈ L2 (R;C)∩C (R;C) is uniquely solvable
if and only if for z ∈ H

1
2πi

∫ ∞

−∞

iγ(t) + f (t)
t − z

dt + iT f (z) + T∂ζ f (z) = 0. (2.3)

The solution is given by

ω(z) = ce−iz +
1

2πi

∫ ∞

−∞

(γ(t) − 2i f (t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt + T f (z) (2.4)

3. Robin Boundary Value Problem For Higher Order Equation

This section explores the Robin Boundary value problem associated with higher order
partial differential equations in the upper half complex plane. By generalizing the classical
techniques, we aim to establish conditions fort he existence and uniqueness of the solu-
tions. Additionally, explicit representations are derived, highlighting the interplay between
boundary conditions and solution’s analytical structure.

Theorem 3.1. Let γi ∈ L2(R;C) ∩ C(R;C), p > 2, w ∈ Lp,2(H;C) ∩ Cn(H;C) ∩ L2(R;C),
and ci ∈ C for i = 1, . . . , n. The Robin boundary value problem for the homogeneous
Cauchy-Riemann equation is:

∂n
z̄ w = 0 in H (3.1)

∂k
z̄w − ∂y∂

k
z̄w = γk+1 on R, (3.2)

∂n−1
z̄ w + ∂y∂

n−1
z̄ w = γn on R, (3.3)

∂k
z̄w(0) = ck+1 + T∂k+1

z̄ w(0), (3.4)
∂n−1

z̄ w(i) = cn, (3.5)
is uniquely solvable if and only if for z ∈ H,

1
2πi

∫ ∞

−∞

iγk+1(t) + uk+1(t)
t − z

dt + iTuk+1(z) + T∂ζuk+1(z) = 0 for 0 ≤ k ≤ n − 2, (3.6)

1
2πi

∫ ∞

−∞

γn(t)
t − z

dt = 0 for k = n − 1, (3.7)

and the solution is given by

w(z) = c1e−iz + Tu1(z) +
1

2πi

∫ ∞

−∞

(γ1(t) − 2iu1(t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt, (3.8)

where the auxiliary functions uk+1(t) and uk+1(z) are defined as:

uk+1(t) = ck+2e−it +

∫ t

0
(iγk+2(ς) + uk+2(ς)) ei(ς−t) dς, (3.9)

uk+1(z) = ck+2e−iz + Tuk+2(z) +
1

2πi

∫ ∞

−∞

(γk+2(t) − 2iuk+2(t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt (3.10)

for 0 ≤ k ≤ n − 3,
and

un−1(t) = cneit −

∫ t

0
iγn(ς)e−i(ς−t) dς, (3.11)

un−1(z) = cne1+iz −
i
π

∫ ∞

−∞

γ(t)
∫ z

i
ei(z−s) Im(s)

|t − s|2
ds dt (3.12)

for k = n − 1.
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Proof. For n = 1, we consider w(z) as

w(z) = u1(z) : (3.13)

w(z) = c1e1+iz −
i
π

∫ ∞

−∞

γ(t)
∫ z

i
ei(z−s) Im(s)

|t − s|2
ds dt. (3.14)

For n > 1, the problem reduces to the following sequence of equations:
(1) wz̄ = u1, w − ∂yw = γ1 on R,

w(0) = c1 + Tu1(0);

(2) uiz̄ = ui+1, ui − ∂yui = γi+1 on R,

ui(0) = ci+1 + Tui+1(0), 1 ≤ i ≤ n − 2;

(3) (un−1)z̄ = 0 in H, un−1 + ∂yun−1 = γn on R,

un−1(i) = cn.

The condition ui − ∂yui = γi+1 implies

u′i(t) + iui(t) = iγi+1(t) + ui+1(t) on R.

Solving this differential equation, we obtain

ui(t) = ci+1eit +

∫ t

0
(iγi+1(ς) + ui+1(ς)) ei(ς−t) dς.

Combining the solutions and solvability conditions completes the proof. □

Theorem 3.2. Let γi ∈ L2(R;C) ∩ C(R;C), p > 2, w ∈ Lp,2(H;C) ∩ Cn(H;C) ∩ L2(R;C),
and ci ∈ C for i = 1, . . . , n. The Robin boundary value problem for the higher-order
inhomogeneous Cauchy-Riemann equation is formulated as

∂n
z̄ w = f (z) in H, (3.15)

with the following boundary and point conditions:

∂k
z̄w − ∂y∂

k
z̄w = γk+1 on R, 0 ≤ k ≤ n − 1, (3.16)

∂k
z̄w(0) = ck+1 + Tuk+1(0), 0 ≤ k ≤ n − 2, (3.17)

and
∂n−1

z̄ w(0) = cn + T f (0). (3.18)
The problem is uniquely solvable if and only if the following solvability conditions hold

for z ∈ H
1

2πi

∫ ∞

−∞

iγk(t) + uk(t)
t − z

dt + iTuk(z) + T∂ζuk(z) = 0, for 1 ≤ k ≤ n − 1, (3.19)

1
2πi

∫ ∞

−∞

iγn(t) + f (t)
t − z

dt + iT f (z) + T∂ζ f (z) = 0, for k = n − 1. (3.20)

The solution w(z) is given by

w(z) = c1e−iz + Tu1(z) +
1

2πi

∫ ∞

−∞

(γ1(t) − 2iu1(t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt, (3.21)

where uk(z) and uk(t) are defined recursively:

uk(z) = ck+1e−iz + Tuk+1(z) +
1

2πi

∫ ∞

−∞

(γk+1(t) − 2iuk+1(t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt, (3.22)

uk(t) = ck+1e−it +

∫ t

0
(iγk+1(ς) + uk+1(ς)) ei(ς−t) dς (3.23)
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for 1 ≤ k ≤ n − 2.
For k = n − 1:

un−1(z) = cne−iz + T f (z) +
1

2πi

∫ ∞

−∞

(γ1(t) − 2i f (t)) ei(t−z)
∫ z−t

−t

eiζ

iζ
dζ dt, (3.24)

un−1(t) = cne−it +

∫ t

0
(iγn(ς) + f (ς)) ei(ς−t) dς. (3.25)

Proof. For n = 1, take u1 (t) = f (t) and u1 (z) = f (z). Substituting these into w(z) verifies
the result. Assume the theorem holds for n-1 and consider the case for n. The problem
decomposes into two systems

∂n−1
z̄ w(z) = u(z) in H, (3.26)

∂k
z̄w − ∂y∂

k
z̄w = γk+1 on R, 0 ≤ k ≤ n − 2, (3.27)

∂k
z̄w(0) = ck+1 + Tuk+1(0), 0 ≤ k ≤ n − 3, (3.28)

∂n−2
z̄ w(0) = cn−1 + T f (0); (3.29)

and
uz̄ = f (z) in H, u − ∂yu = γn on R, (3.30)

u(0) = cn + T f (0). (3.31)
Solving these systems recursively using the solvability conditions and integrating the solu-
tions yields the desired result.

□

4. Conclusion

In this study, we analyzed the Robin boundary value problem for higher-order equations
in the upper half complex plane. Through a systematic exploration of existence and unique-
ness conditions, we provided explicit integral representations for solutions. Our findings
demonstrate the feasibility of generalizing classical boundary value problem techniques
to higher-order equations, with particular emphasis on the complex interaction between
boundary conditions and the operator’s structure.The results have potential applications in
mathematical physics and engineering, especially in problems involving mixed boundary
conditions and higher-order derivatives. Future work may extend these methods to more
complex domains and investigate numerical approaches for practical implementations. The
theoretical results obtained from the Robin boundary value problem for higher-order equa-
tions, particularly in the context of the Cauchy-Riemann equations, can be applied in vari-
ous fields, including signal processing in communication systems.
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ON STAKHOV FUNCTIONS AND NEW HYPERBOLOID

SURFACES

Abstract. This paper presents an investigation into the generalization of

hyperbolic Fibonacci sine and cosine functions, as well as Fibonacci spirals.
Initially, we establish the main definitions and theoretically model them, listing

several special cases. We then uncover fundamental results, including the

De Moivre and Pythagorean formulas. Based on these new definitions, we
introduce new classes of three-dimensional hyperboloid surfaces and compute

their Gauss and mean curvatures. Notably, we demonstrate that these surfaces

are geodesic.

1. Introduction

The usual Fibonacci numbers are defined by the following recurrence relation:
for n ⩾ 0

Fn+2 = Fn+1 + Fn, (1.1)

where F0 = 0 and F1 = 1. These numbers can also be produced by using the
Binet’s formula in the form of

Fn =
αn − βn

√
5

, (1.2)

where α and β are the positive and negative roots of the equation x2 − x− 1 = 0,
respectively.

In the literature, many interesting properties and applications of the recurrence
sequences have been studied by many authors; see for example, [1], [2], [3]. In
1993, the Ukrainian mathematicians Stakhov and Tkachenko put forth a new idea
to describe hyperbolic geometry [4]. Inspired by the Binet’s formula in Eq. (1.2),
the authors introduced a new class of hyperbolic functions, which are called the
Hyperbolic Fibonacci and Lucas functions. In [5], Stakhov provided detailed in-
formation with applications to the available literature. In [6], Stakhov and Rozin
further developed the ideas of the hyperbolic Fibonacci and Lucas functions, and
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defined the symmetric hyperbolic Fibonacci and Lucas functions as follows:

sFs (x) =
αx − α−x

√
5

, cFs (x) =
αx + α−x

√
5

, sLs (x) = αx − α−x,

and cLs (x) = αx + α−x,

(1.3)

where x is any real numbers. To be clear, for k ∈ Z, sFs (2k) = F2k, cLs (2k) = L2k,
cFs (2k + 1) = F2k+1, and sLs (2k + 1) = L2k+1. In [7], Stakhov and Rozin defined
the quasi-sine Fibonacci functions and Fibonacci spirals to eliminate the discrete
case in Eq. (1.3) as follows:

FF (x) =
αx − cos (πx)α−x

√
5

andCFF (x) =
αx − cos (πx)α−x

√
5

+ i
sin (πx)α−x

√
5

,

(1.4)
where i is the complex unit. Note that in [8], Stakhov and Rozin presented a brief
description of these hyperbolic phenomenons in the world.

According to these developments, in [9], Falcón and Plaza defined a new class of
hyperbolic sine&cosine, quasi-sine, and spiral-like functions using the k-Fibonacci
sequence as follows:

sFkh (x) =
σx − σ−x

σ + σ−1
, cFkh (x) =

σx + σ−x

σ + σ−1
, FFkh (x) =

σx − cos (πx)σ−x

σ + σ−1
,

andCFFk (x) =
σx − cos (πx)σ−x

σ + σ−1
+ i

sin (πx)σ−x

σ + σ−1
, (1.5)

where σ is the positive root of σ2 = kσ + 1 and k is any positive real number.
Motivated by the definitions of Stakhov and Rozin [6,7], and Falcón and Plaza [9],
Daşdemir et al. gave a generalized version of the functions in Eqs. (1.3)-(1.4) as
follows [10]:

Hs (x) =
Aαx −Bα−x

∆
, Hc (x) =

Aαx +Bα−x

∆
, H (x) =

Aαx − cos (πx)Bα−x

∆
,

and CH (x) =
Aαx − cos (πx)Bα−x

∆
+ i

sin (πx)Bα−x

∆
,

(1.6)
which are called the Horadam hyperbolic sine function, the Horadam hyperbolic
cosine function, the quasi-sine Horadam function, and Horadam spiral, respectively.
Here, α is the positive root of λ2 = f (x)λ + 1, ∆ =

√
f2 (x) + 4, A = b (x) +

a (x)α−1, B = b (x) − a (x)α, and a (x) and b (x) are any continue real-valued
function.

As the above literature survey reveals, the functions in (1.3)-(1.5) only vary
on the real variable x, while other parameters are constant. In Eq. (1.6), the
parameters α and β depend on a continuous function of x. Consequently, it would
be interesting to consider the mentioned functions in a more general form such that
the roots of the algebraic equation depend on two real-valued functions. To be
clear, this consideration is due to the generalized second-order sequence designated
by Horadam [11]. This motivates us to revise the mentioned functions. For this
purpose, presented herein is to generalize the definitions introduced by Stakhov
and Tkachenko [4], Stakhov and Rozin [5], Falcón and Plaza [9], and Daşdemir et.
al [10]. This is the main focus of the present paper, and a particular concern will
be paid to some elementary results and geometrical considerations.
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2. Main Results

In this section, we will present the outcomes of the paper, including some defi-
nitions, fundamental considerations, and elementary properties.

2.1. Fundamental definitions. Let f (x) and g (x) be an arbitrary non-zero con-
tinuous functions of real number x. Consider the second-order equation

λ2 − f (x)λ− g (x) = 0. (2.1)

Hence, Eq. (2.1) has the following distinct two roots

λ1 = α (x) =
f (x) +

√
f2 (x) + 4g (x)

2
and λ2 = β (x) =

f (x)−
√

f2 (x) + 4g (x)

2
.

To ensure that the solution is real, we assume that condition f2 (x) + 4g (x) > 0 is
met. Here, we can write

α (x) + β (x) = f (x) , α (x)β (x) = −g (x) , α (x)− β (x) = ∆ (x) , (2.2)

where = ∆ (x) =
√

f2 (x) + 4g (x). In consequence, we obtained two distinct solu-
tions. Therefore, their linear combination, i.e., c1 {α (x)}x + c2 {β (x)}x, is also a
solution of Eq. (2.1). Solving the system of equations for x = 0 and x = 1, we find

c1 =
b (x)− a (x)β (x)

α (x)− β (x)
and c2 = −b (x)− a (x)α (x)

α (x)− β (x)
.

As a result, we can give the following definition.

Definition 2.1. Let a (x) and b (x) be an arbitrary continuous function. Then, the
Horadam functions are defined as

H (a, b, f, g, x) = H (x) =
Ã (x) [α (x)]

x − B̃ (x) [β (x)]
x

α (x)− β (x)
, (2.3)

where Ã (x) = b (x) + a (x) [α (x)]
−1

and B̃ (x) = b (x)− a (x)α (x).

This is a similar form to the generalized second-order sequence given by Ho-
radam [11]. We can, therefore, call Eq. (2.3) the Horadam functions due to Aus-
tralian mathematician Alwyn Francis Horadam’s great contributions to the avail-
able literature. Note that, for the sake of presentation simplicity, all the functions
will be represented in the non-parentheses form.

Substituting αβ = −g into Eq. (2.3), we can write

H (x) =
Ãαx − B̃

(
−gα−1

)x
∆

=
Ãαx − (−1)

x
B̃gxα−x

∆
,

Here, we run into the problem of what the real power of -1 will be. To address
this issue, from the famous Euler’s formula, we can write e∓iπ = cosπ∓i sinπ = −1,
where e is Euler’s constant and i is the imaginary unit. As a result, we can give
the following definition.

Definition 2.2. Let a and b be any continuous function. Then, the Stakhov spiral
is defined as

SR (a, b, f, g, x) = SR (x) =
Aαx − cos (πx)Bα−x

∆
+ i

sin (πx)Bα−x

∆
, (2.4)

where A = b+ aα−1 and B = gx (b− aα).
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Table 1. Special cases for the Stakhov spiral functions

Stakhov spiral functions
Symbols

a b f gSR (x)

Horadam spiral [10] H (x) 1
Fibonacci spiral [6] CFF(x) 0 1 1 1
Lucas spiral CLL(x) 2 1 1 1
k-Fibonacci spiral [9] CFFk (x) 0 1 k 1
Pell spiral CPP(x) 0 1 2 1
Modified Pell spiral CRR(x) 1 1 2 1
Pell-Lucas spiral CQQ(x) 2 2 2 1
Jacobsthal spiral CJJ(x) 0 1 1 2
Jacobsthal-Lucas spiral CJJL(x) 2 1 1 2
Fermat spiral CFFR(x) 1 3 3 2

This looks like a three-dimensional spiral-like curve and is the most general form
of Eq. (1.4) given by Stakhov and Rozin [7]. Table 1 indicates the special cases
that can be obtained depending on the particular choice of a, b, f , and g. For
integer values of x, the imaginary part of the function SR (x) vanishes. The reason
for the name “Stakhov spiral function” is that the great Ukrainian mathematician
Stakhov has attributed an indescribable contribution both to the subject of this
paper and to the literature on Fibonacci numbers.

For the concrete examples, we consider the following cases:

Case I : a (x) = sinx, b (x) = cosx, f (x) = ln
(
1 + x2

)
, and g (x) = cosh (x)

Case II : a (x) = 3
√
x, b (x) = x, f (x) = arcsinh

(
1 + x2

)
, and g (x) = e−x

Fig. 1 displays the three-dimensional graphs of the Stakhov spirals for Case I
(Fig. 1.a) and Case II (Fig. 1.b), respectively. As seen, the distributions are a spiral-
like curve.

Under the assumption that the Oy− and Oz−axes are real and imaginary direc-
tions, respectively, we can build up the following system of equations: y − Aαx

∆ = − cos(πx)Bα−x

∆

z = sin(πx)Bα−x

∆

Thus, after some operations, we get the following equation:(
y − Aαx

∆

)2

+ z2 =

(
Bα−x

∆

)2

(2.5)

or in the re-organized form

z2 =

(
Aαx +Bα−x

∆
− y

)(
y − Aαx −Bα−x

∆

)
. (2.6)

Note that Eq. (2.4) is a complex-valued function. However, we are usually not
concerned with what is going on in the imaginary axis, as we generally work in
real space. This idea coincides also with the approaches by the references [6], [9],
and [10]. Thus, considering the real part of the Stakhov spiral functions, we can
express the following definition.
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(a) Case I (b) Case II

Figure 1. Distributions of the Stakhov spirals for Cases I and II

Definition 2.3. For the functions a and b, the quasi-sine Stakhov function is
defined by

Sq (a, b, f, g, x) = QS (x) =
Aαx − cos (πx)Bα−x

∆
. (2.7)

Meanwhile, Eqs. (2.6) and (2.7) are whispering some new definitions. In Eq.
(2.6), each function in parentheses has a hyperbolic structure. Besides, combining
these functions utilizing the character of cos (πx) yields Eq. (2.7). Based on this
idea, we can then discretize the function Sq (x) as follows.

Definition 2.4. Let a and b be any continuous function. Then, the hyperbolic
Stakhov sine and cosine functions are defined by

Ss (a, b, f, g, x) = Ss (x) =
Aαx −Bα−x

∆
(2.8)

and

Sc (a, b, f, g, x) = Sc (x) =
Aαx +Bα−x

∆
, (2.9)

respectively.

From the last definitions, we can give the following additional definitions.

Definition 2.5. Let a and b be continuous. Then, the hyperbolic Stakhov tangent
and cotangent functions are defined by

St (a, b, f, g, x) =
Ss (x)

Sc (x)
=

Aαx −Bα−x

Aαx +Bα−x
= 1− 2B

B +Aα2x
, (2.10)

and

Sct (a, b, f, g, x) =
Sc (x)

Ss (x)
=

Aαx +Bα−x

Aαx −Bα−x
= 1− 2B

B −Aα2x
, (2.11)

respectively.

In working with the above-stated functions, it is useful to consider the following
special cases:

• Generalized Stakhov-Fibonacci spirals

SR (0, 1, f, g, x) = Su (x) =
αx − cos (πx) gxα−x

∆
+ i

sin (πx) gxα−x

∆
(2.12)
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• Generalized Stakhov-Lucas spirals

SR (2, f, f, g, x) = Sv (x) = αx + cos (πx) gxα−x − i sin (πx) gxα−x
(2.13)

• Generalized quasi-sine Fibonacci functions

Sq (0, 1, f, g, x) = Re (Su (x)) = Uq (x) =
αx − cos (πx) gxα−x

∆
(2.14)

• Generalized quasi-sine Lucas functions

Sq (2, f, f, g, x) = Re (Sv (x)) = Vq (x) = αx + cos (πx) gxα−x
(2.15)

• Generalized hyperbolic Fibonacci sine and cosine functions

Ss (0, 1, f, g, x) = Fs (x) =
αx − gxα−x

∆
, Sc (0, 1, f, g, x) = Fc (x) =

αx + gxα−x

∆
(2.16)

• Generalized hyperbolic Lucas cosine and sine functions

Ss (2, f, f, g, x) = Lc (x) = αx + gxα−x, Sc (2, f, f, g, x) = Ls (x) = αx − gxα−x

(2.17)

• Generalized hyperbolic Lucas tangent and cotangent functions

St (0, 1, f, g, x) = Ft (x) =
αx − gxα−x

αx + gxα−x
, Sct (0, 1, f, g, x) = Fct (x) =

αx + gxα−x

αx − gxα−x

(2.18)

2.2. Some features. In this section, some elementary formulas regarding the hy-
perbolic Stakhov functions will bw developed. We can thus start with the following
results.

Theorem 2.1. The following non-homogeneous recurrence relations hold for any
real number x:

Ss (x+ 2) = fSc (x+ 1) + gSs (x) (2.19)

and

Sc (x+ 2) = fSs (x+ 1) + gSc (x) . (2.20)

Proof. Substituting Eqs. (2.10) and (2.11) into Eq. (2.19) yields

fSs (x+ 1) + gSc (x) = f
Aα(x+1) −Bα−(x+1)

∆
+ g

Aαx +Bα−x

∆

=
Aαx (fα+ g) +Bα−x

(
1− f

α

)
∆

.

Considering Eqs. (2.1) and (2.2), we can write

α2 = fα+ g and 1− f

α
=

g

α2
,

which completes the proof. □

Remark. Theorem 2.1 indicates that symmetric exchange between the functions
Ss (x) and Sc (x) is possible in all linear relations of the hyperbolic Stakhov func-
tions.
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The recurrence relations in Eqs. (2.19) and (2.20) can be homogenized as follows.
Subtracting the resultant equations after multiplying the values of these functions
for the real numbers x and x+ 2 with appropriate factors, we obtain

Ss (x+ 2) =
(
f2 + 2g

)
Ss (x)− g2Ss (x− 2) (2.21)

and

Sc (x+ 2) =
(
f2 + 2g

)
Sc (x)− g2Sc (x− 2) . (2.22)

Note that the new recurrence relations have a forth-order homogeneous form.
The next theorem presents the inverse hyperbolic functions.

Theorem 2.2. The hyperbolic Stakhov sine and cosine functions have an inverse
in the form of

Ss
−1 (x) = logα (x̃) and Sc

−1 (x) = logα (x̃) , (2.23)

where x̃ = ∆x+
√
∆2x2+4AB
2A .

Proof. From the definition of the hyperbolic Stakhov functions, we can write

x =
Aαy −Bα−y

∆
⇒ ∆xαy = Aα2y −B ⇒ A(αy)

2 −∆xαy −B = 0,

which is second-order equation. Since αy > 0, there is a unique solution, namely

αy = ∆x+
√
∆2x2+4AB
2A . As a result, the first equation is obtained. The latter can

also be proved after a similar process. □

We give the Pythagorean formula for hyperbolic Stakhov functions.

Theorem 2.3 (Pythagorean formula). For any real number x, we have

[Sc (x)]
2 − [Ss (x)]

2
=

4AB

∆2
. (2.24)

Proof. Subtracting the resultant equations after substituting Eqs. (2.8) and (2.9)
into the left-hand side of Eq. (2.24) yields the claimed result. □

The next theorem presents a similar result to the famous De Moivre’s formula.

Theorem 2.4 (De Moivre-type formula). Let x be any real number. Then the
following identities hold for any positive integer n:

[Sc (x) + Ss (x)]
n
=

(
2A

∆

)n−1

[Sc (nx) + Ss (nx)] (2.25)

and

[Sc (x)− Ss (x)]
n
=

(
2B

∆

)n−1

[Sc (nx)− Ss (nx)] . (2.26)

Proof. We use the induction method to show the validity of theorem. It is clear
that Eq. (2.25) holds for n = 1. Based on the assumption such that this equation
is valid for any positive integer n, we can write

[Sc (x) + Ss (x)]
n+1

= [Sc (x) + Ss (x)]
n
[Sc (x) + Ss (x)]

=

(
2A

∆

)n−1

[Sc (nx) + Ss (nx)]

[
Aαx +Bα−x

∆
− Aαx −Bα−x

∆

]
=

(
2A

∆

)n [
Aαnx +Bα−nx

∆
+

Aαnx −Bα−nx

∆

]
αx
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=

(
2A

∆

)n [
2Aα(n+1)x +Bα−(n+1)x −Bα−(n+1)x

∆

]
=

(
2A

∆

)n

[Sc ((n+ 1)x) + Ss ((n+ 1)x)] ,

which completes the proof process. Repeating the same procedure, the other can
be demonstrated. □

Up to now, we only make our investigation for real values of x. So, what proper-
ties will the hyperbolic Stakhov functions have in the complex space? The answer
is presented in the following.

Theorem 2.5. For complex variable z = x+ iy, we have

Ss (z) =
1

2AB
[u cos (y lnα) + iv sin (y lnα)] (2.27)

and

Sc (z) =
1

2AB
[v cos (y lnα) + iu sin (y lnα)] , (2.28)

where u = (A+B)Ss (x)−(A−B)Sc (x) and v = (A+B)Sc (x)−(A−B)Ss (x).

Proof. Considering

Ss (z) =
Aαz −Bα−z

∆
and Sc (z) =

Aαz +Bα−z

∆
,

we can write

Aαz = Aαx+iy = Aαxαiy =
∆

2A
(Sc (x) + Ss (x))α

iy

=
∆

2A
(Ss (x) + Sc (x)) [cos (y lnα) + i sin (y lnα)]

and

Bα−z = Bα−x−iy = Bα−xα−iy =
∆

2B
(Sc (x)− Ss (x))α

−iy

=
∆

2B
(Sc (x)− Ss (x)) [cos (y lnα)− i sin (y lnα)] .

Here, we used the well-known Euler’s formula. As a result, combining the last two
equations, the proof is completed. □

As an example, we give the following special case.

Example 2.1. Consider z = iπ
lnα . Let us compute Ss (z) and Sc (z). In this case,

x = 0 and y = π
lnα . Inserting these values into Eqs. (2.32) and (2.35), we can

readily obtain Ss (z) = 0 and Sc (z) = − 2
∆ .

2.3. Geometrical considerations. In this section, some geometrical approaches
will be developed. For this purpose, we first introduce the following equations:

x = ∓Aαt −Bα−t

∆
and y =

Aαt +Bα−t

∆
, (2.29)

where the parameter t is the hyperbolic angle. From this, we can write

y2 − x2 =
4AB

∆2
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or
y2(

2
√
AB
∆

)2 − x2(
2
√
AB
∆

)2 = 1, (2.30)

which is a rectangular hyperbola equation, with center at the origin, and with a
horizontal real axis. We may call Eq. (2.30) the Stakhov hyperbola. Note that the
exchange of preferences in Eq. (2.29) yields to obtain the equation of the conjugate
hyperbola.

According to Eq. (2.30), the foci, vertices, and co-vertices of the hyperbola

lie in
(
∓ 2

√
2AB
∆ , 0

)
,
(
∓ 2

√
AB
∆ , 0

)
, and

(
0,∓ 2

√
AB
∆

)
, respectively. In addition, the

equations of asymptotes and directrices are y = ∓x and x = ∓
√
2AB
∆ . In particular,

the Modified Pell hyperbola is unit. This means that since the Pseudo Euclidean
plane is represented by a unit hyperbola that also describes Minkowski space-time,
the Modified Pell hyperbola can be used.

On the other hand, rotating the Stakhov hyperbola completely around the ver-
tical axis generates a hyperboloid of one sheet. In this case, we have the equation

x2(
2
√
AB
∆

)2 +
y2(

2
√
AB
∆

)2 − z2(
2
√
AB
∆

)2 = 1 (2.31)

and its parametric representation is
x = 2

√
AB
∆ Sc (t) cos θ

y = 2
√
AB
∆ Sc (t) sin θ

z = 2
√
AB
∆ Ss (t)

(2.32)

where θ is azimuth angle and t ∈ [0,∞). By the way, this may be called the
hyperbolic Stakhov hyperboloid. Further, for z ∈ [0,∞), the projection of the
hyperbolic Stakhov hyperboloid on xy-plane is a planar spiral that looks like an
Archimedean spiral.

If rotation is made along the horizantal axis, an hyperboloid of two sheets occurs.
So, we have the hyperboloid equation as follows:

x2(
2
√
AB
∆

)2 +
y2(

2
√
AB
∆

)2 − z2(
2
√
AB
∆

)2 = −1 (2.33)

and its parametric representation is
x = 2

√
AB
∆ Ss (t) cos θ

y = 2
√
AB
∆ Ss (t) sin θ

z = 2
√
AB
∆ Sc (t)

(2.34)

Similarly, the last surface may be called the elliptic Stakhov hyperboloid. Since
the denominators are equal, there is a hyperboloid of revolution in both cases. It
should be noted that there are no umbilics on a hyperboloid of one sheet, but two
on each sheet of the two-sheeted variety.

Fig. 2 displays special forms of the hyperbolic and elliptic Stakhov hyperboloids
for cases where the hyperbolic and elliptic Fibonacci (Fig. 2. a& b), the hyperbolic
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Some special surfaces: (a) Hyperbolic Fibonacci, (b) Elliptic
Fibonacci, (c) Hyperbolic Lucas, (d) Elliptic Lucas, (e) Hyperbolic Pell,
(f) Elliptic Pell, (g) Hyperbolic Modified Pell, and (h) Elliptic Modified
Pell

and elliptic Lucas (Fig. 2. c& d), the hyperbolic and elliptic Pell (Fig. 2. e& f), and
the hyperbolic and elliptic Modified Pell (Fig. 2. g&h) hyperboloids according to
Table 1. Fig. 2 reveals that oscillating characters of the Fibonacci and Pell surface
symmetrically exchange with the ones of Lucas and Modified Pell.

Theorem 2.6. The Gaussian and mean curvatures of the hyperbolic Stakhov hy-
perboloid are given by

Kh = − 1[
{Ss (t)}2 + {Sc (t)}2

]2 andHh =
∆[Ss (t)]

2

2
√
AB

[
{Ss (t)}2 + {Sc (t)}2

] 3
2

. (2.35)

Proof. It is clear that the hyperbolic Stakhov hyperboloid is a regular surface
with a differentiable field of unit normal vectors N . Let us compute the coeffi-
cients of the first and second fundamental forms of hyperboloid so that the Gauss-
ian and mean curvatures can be obtained in terms of whose coefficients. To do
this, we shall express dN as a matrix in terms of the natural basis Xu, Xv, where

X (t, θ) = 2
√
AB
∆ (Sc (t) cos θ, Sc (t) sin θ, Ss (t)). In this case, the coefficients of the
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first fundamental form are given by

E = ⟨Xt, Xt⟩ =
{

2
√
AB lnα
∆

}2 [
{Ss (t)}2 + {Sc (t)}2

]
,

F = ⟨Xt, Xθ⟩ = 0, and G = ⟨Xθ, Xθ⟩ =
{

2
√
AB
∆

}2

{Sc (t)}2.

Besides, we can write down

N =
Xt ×Xθ

∥Xt ×Xθ∥
=

−iSc (t) cos θ − jSc (t) sin θ + kSs (t){
{Sc (t)}2 + {Ss (t)}2

} 1
2

,

and from this, the coefficients of the second fundamental form can be computed as

e = ⟨N,Xtt⟩ = − 8AB
√
AB(lnα)2

∆3{{Sc(t)}2+{Ss(t)}2}
1
2
, f = ⟨N,Xtθ⟩ = 0,

and g = ⟨N,Xθθ⟩ = 2
√
AB{Sc(t)}2

∆{{Sc(t)}2+{Ss(t)}2}
1
2
.

Considering

K =
eg − f2

EG− F 2
and H =

1

2

eG− 2fF + gE

EG− F 2
,

the results follows after some mathematical operations. □

Since K < 0, the principal curvatures κ1 and κ2 are of opposite sign at any point
P . So the surface near P is a hyperboloid. We can call P a hyperbolic point of the
surface.

Theorem 2.7. The Gaussian and mean curvatures of the elliptic Stakhov hyper-
boloid are given by

Ke =
1[

{Ss (t)}2 + {Sc (t)}2
]2 and He =

∆[Sc (t)]
2

2
√
AB

[
{Ss (t)}2 + {Sc (t)}2

] 3
2

. (2.36)

Proof. Repeating the same procedure in the previous theorem, the proof can easily
be done. □

Since K > 0, the sings of the principal curvatures κ1 and κ2 are the same. The
normal curvature κ in any tangent direction t is equal to κ = κ1 cos θ + κ2 sin θ,
where θ is the angle between t and the principal vector corresponding to κ1. So the
sign of κ is the same as that of κ1 and κ2. The surface is bending away from its
tangent plane in all tangent directions at any point P . The quadratic approximation
of the surface near P is the paraboloid z2 = κ1x

2+κ2y
2. In addition, the Gaussian

curvatures K of two surfaces are invariant by local isometries.

Theorem 2.8. Both hyperbolic and elliptic Stakhov hyperboloids are geodesic. To
be clear, we have

κh = 0 and κe = 0. (2.37)

Proof. We only present proof for the hyperbolic Stakhov hyperboloid here. Other
can be proved similarly. Let χ be cut out of the hyperbolic Stakhov hyperboloid

by the form z = c. In this case, 2
√
AB
∆ Ss (t) is constant and so t is also constant.

Then a unit-speed parameterization of χ can be defined as

χ (s) =
2
√
AB

∆
(Sc (s̃) cos t0, Sc (s̃) sin t0, Ss (s̃)) , s̃ =

s
2
√
AB
∆ Ss (t0)

.
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Then we can compute the Frenet frame as follow:

t (s) =

(
Ss

(
s

2
√

AB
∆ Ss(t0)

)
cos t0, Ss

(
s

2
√

AB
∆ Ss(t0)

)
sin t0, Sc

(
s

2
√

AB
∆ Ss(t0)

))
√{

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

n (s) =

(
Sc

(
s

2
√

AB
∆ Ss(t0)

)
cos t0, Sc

(
s

2
√

AB
∆ Ss(t0)

)
sin t0, Ss

(
s

2
√

AB
∆ Ss(t0)

))
√{

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

b (s) =
4AB
∆2 (− sin t0, cos t0, 0){

Sc

(
s

2
√

AB
∆ Ss(t0)

)}2

+

{
Ss

(
s

2
√

AB
∆ Ss(t0)

)}2

From κh = ⟨χ′′ (s) ,b (s)⟩, the result follows. □
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[9] S. Falcón and Á. Plaza, The k-Fibonacci hyperbolic functions, Chaos Solitons Fractals, 38(2)

(2008) 409–420.
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Abstract. Nondifferentiable desirability functions are one of the most preferred multi-
response optimization methods in nonlinear robust parameter design. Their nondifferen-
tiability makes the optimization problem hard to solve and researchers and scientists look
for new softwares and new desirability function structures to overcome this problem. In
this study, we suggest a new implementation of derivative free mash adaptive direct search
algorithm (MADS) with MATLAB/NOMAD to nondifferentiable desirability functions.
For doing this, we need to model the optimization problem of desirability functions as a
mixed-integer nonlinear optimization program (MINLP) by introducing a new binary vari-
able to the model. This integer shows the side of the two-sided desirability function which
is active. Hence, the model of our problem becomes nondifferentiable nonconvex MINLP.
We show our implementation on three well-known optimization problem from the multi-
response optimization literature. We finally conclude with an outlook and future research
projects.

1. Introduction

Taguchi studied quality improvement through robust design which made the field of robust
design widespread among industrial quality engineers [32, 33]. Robust design aims at de-
signing a product or process to which the effect of noise factors is minimum. Robust design
is important in terms of minimizing variance of a product or process performance while
keeping the difference between mean and the target of the responses (output variable) as
small as possible which improves the quality during the design phase of a product or pro-
cess. If there are more than one responses, we must solve a multi-response optimization
problem to take into account all the characteristics of a product or process and to obtain an
optimal factor setting reflecting the optimal properties of a product or process, simultane-
ously.

In the literature, there are many methods developed for multi-response optimization prob-
lems. Since these methods stem from multi objective optimization, they are classified
according to articulation of preference information of a decision maker: no articulation,
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prior articulation, interactive articularion and posterior articularion [18, 19, 20, 21, 22, 23,
24, 25, 27, 30]. Prior articulation methods are the most popular methods where pitfalls
needs to be studied and overcome. These methods collect the decision makers preferences
and articulates before the optimization algorithm run.

The so called loss functions which is a prior articulation method in multi-response opti-
mization ignore mean and variance information of responses to handle the different scales
of responses in computations. Another important prior articulation method used for solving
multi-response optimization is desirability functions. This method uses mean and variance
information and has been improved a lot in the last decades. Desirability functions method
overcomes the different scales of responses by assigning a desirability function, which
takes value between 0 and 1, to each response and then combine them to an overall desir-
ability function to be optimized.

Desirability functions developed by Derringer and Suich has a drawback of containing non-
differentiable points [13, 14] occuring at the target points of two-sided desirability func-
tions [1]. They are obtained by the composition of nonsmooth piecewise functions with
signomial response functions (depend on factor variables (input vector)). Before, optimiza-
tion of desirability function was solved by either direct search techniques or by smoothing
nondifferentible desirability functions with polynomial approximations or by changing the
formula of desirability functions. Therefore new advances in numerical optimization made
us suggest using these new methods for the optimization of desirability functions. In [1],
we developed nonconvex model of desirability functions [7] and we obtained continuous
optimization relaxations and convex relaxations of this model. We extend this nonconvex
model to MIP relaxations [34] in an upcoming paper [5]. These relaxations are solved by
GAMS/CPLEX [12], GAMS/BARON [6] and GAMS/CONOPT [11] in [1] and [5].

In [2], we made a topological generalization of desirability functions used in practice to
provide the robust optimization [35] of the nondifferentiable desirability functions and
solved it with generalized semi-definite programming and disjunctive optimization by us-
ing GAMS/BARON. In [4], we analyzed the topological structure of generalized desirabil-
ity functions to explain the mechanism behind these functions that enables researchers and
scientists to develop new desirability functions with better structural properties.

In this paper, we solve a mixed-integer nonlinear optimization model for the desirability
functions first given in [1, 10]. We apply derivative-free optimization techniques (mesh
adaptive direct search) [10] to desirability functions that is mentioned in Table 1 of [1].
For the researchers and scientists, who do not use GAMS environment [15] and its solvers,
this method is available under MATLAB and NOMAD solver [26, 29]. This method is
easy to use and have proven superiority in the literature for nonconvex MINLP [7]. In this
paper, we show implementation of MATLAB/NOMAD solver on nonsmooth nonconvex
MINLP [28] formulation of desirability functions of Derringer and Suich for wire-bonding
process optimization problem [9] which includes quantitative variables [8], for tire-tread
compound problem [13] and for a chemical process problem [17].

In this study, after introducing notation of desirability functions in Section 2. We will give
numerical examples’ statements and results in Section 3. We will finish with a conclusion
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and outlook to the future which will be given in Section 4. We present response models in
Appendix A and MATLAB/NOMAD implementations in appendix B.

1.1. Derringer and Suich Type of DFs. An average or expected value of a response can
be written as Y ji = f j(x1, x2, ..., xn) + ϵ ji (i = 1, 2, ..., n), ( j = 1, 2, ...,m) where Y ji is
measured through design of experiment. These average value Y jis are related to factor
variables by the polynomial expressions f j with expected value of ϵ ji = 0 and covariance
matrix α2I. Polynomial expressions f j are approximated through polynomial functions.
Here, expected value of responses are estimated by Ŷ j using regression by second degree
polynomials for better fit. In this study, we will show estimators of expected value of re-
sponses by Y j where Y j(x) = z(X)β j with β j is the vector of regression coefficient estimates
and z(x) is the vector of regression variables, i.e,
(1, x1, x2, x3, x1x2, x1x3, x2x3, x2

1, x
2
2, x

2
3, x1x2x3, ...). Here, β j is the mean of the unique least

squares estimator β̂ = (X′X)−1X′Y since X′X is always a nonsingular matrix.

Since there are more than one-response in a multi-response optimization problem, desir-
ability functions converts these response values to desirability values and combine them by
geometic mean to obtain a single objective function. This objective function is optimized to
find the best trade-off between responses. There are two types of desirability functions: one
sided (for smaller-the-better responses type and larger-the-better type responses) and two-
sided (for nominal-is-the-best type responses) [1]. The desirability functions considered in
this study are of Derringer and Suich’s type [13]. They can be linear or nonlinear; usually
piecewise smooth including a finite number of nondifferentiable points at their target value,
where the maximum desirability occurs. The optimization of overall desirability functions
becomes a complicated task when there are two-sided individual desirability functions in
the problem. Below, we give the optimization problem of overall desirability function as a
nonsmooth MINLP problem:

maximize D(y, z)
subject to

xi ∈ [−1, 1] (i = 1, 2, . . . , n),
0 ≤ d j(y j, z j) ≤ 1,
0 ≤ d j(y j) ≤ 1,
z j ∈ {0, 1} ( j = 1, 2, . . . ,m)

(1.1)

where D(y, z) = (d1(y1, z1)(w1) ·d2(y2, z2)(w2) ·. . .·dm(ym, zm)(wm))( 1
w1+w2+...+wm

). Here, d j(y j, z j) =
z j((y j − l j)/(t j − l j))+ (1− z j)((y j − u j)/(t j − u j)) ( j = 1, 2, . . . ,m) for two-sided desirability
functions, d j(y j) = (y j − l j)/(t j − l j) for upper-the best one-sided desirability functions,
d j(y j) = (y j − u j)/(t j − u j) for lower-is-the- better one-sided desirability functions and
d j(y j) = (y j − l j)/(t j − l j) for upper-is-the-better one-sided desirability functions. Here,
l j,u j,t j corresponds to lower, upper and target of a response y j = Y j(x) ( j = 1, 2, . . . ,m).

2. Examples and Results

In this Section, we solve three optimization problems with Derringer and Suich nondif-
ferentiable desirability functions. We state the response models and necessary information
in Appendix A. The problem given in Example 1 is solved by a modified desirability func-
tions approach using Microsoft Excel GRG solver [9]. The problem given in Example 2
is solved by univariate direct search implemented under FORTRAN [13]. Lastly, Exam-
ple 3 is solved by a hybrid genetic algorithm in combination with pattern search [17]. In
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this study, we obtained responses’ models with better fits than those previously done by
Design-Expert [1, 2] and solved the optimization problem of overall desirability by mesh
adaptive direct search (MADS) implemented under MATLAB/NOMAD [26, 29].

2.1. Numerical example: Wire Bonding Process Optimization. The problem of wire
bonding process optimization in semiconductor manufacturing has originally been pre-
sented in [9]. We use the 3 response models case given in [1]. In this problem, the overall
desirability function DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3) is:

DY(x, z) = ((((z1(174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3 − 185)/(190 − 185))+
((1 − z1)(174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3 − 195)/(190 − 195)))·
(z2((154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2

1 + 11.2500x1x2 − 185)/(190 − 185))+
(1 − z2)((154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2

1 + 11.2500x1x2 − 195)/(190 − 195)))·
(z3((140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3 − 170)/(185 − 170))+
(1 − z3)((140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3 − 195)/(185 − 195))))(1/3))

(2.1)
where the decision variables are x = (x1, x2, x3) and z = (z1, z2, z3) since all the desirability
functions of the problem are two-sided. We added the nonlinear constraints of individual
desirability functions being 0 and 1 to the model on which MATLAB/NOMAD is imple-
mented.

Table 1. Optimal solutions of the Wire Bonding Process Optimization
problem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, x

0
3, z

0
1, z

0
2, z

0
3) (x∗1, x

∗
2, x
∗
3, z
∗
1, z
∗
2, z
∗
3)

1 (0, 0, 0, 0, 0, 0) (−0.4854, 0.9945, 1, 1, 1, 1)
2 (0.0920, 1.0000, 0.8170, 1, 1, 1) (0.9999, 0.8317, 0.5932, 1, 1, 1)
3 (1.0000, 0.8630, 0.5880, 1, 0, 1) (1.0000, 0.8630, 0.5880, 1, 0, 1)

(d1(y∗1), d2(y∗2), d3(y∗3)) D∗

1 (−0.4182,−0.8795, 0.3589) infeasible
2 (0.4301, 0.9999, 0.1585) 0.4085
3 (0.5223, 0.7492, 0.1880) 0.4190

2.1.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use three different initial points to find the global optimal. In Table 1, on the first
line, we give (0, 0, 0, 0, 0, 0)as the initial point and MATLAB/NOMAD finds an infeasible
solution. In the second line, we give (0.0920, 1.0000, 0.8170, 1, 1, 1) as the initial point
which is the local solution produced by GAMS/CONOPT in combination with MSG (see
[1]) and MATLAB/NOMAD converges with a deep local solution which is very close to
global optimal. When we give the global optimal (that we know from the literature [1]) as
the initial point (1.0000, 0.8630, 0.5880, 1, 0, 1), MATLAB/NOMAD finds the global op-
timal given in the third line. We present the MATLAB/NOMAD implementation of this
problem in Appendix B.

2.2. Numerical example: Tire Tread Compound Optimization. The problem of tire
tread compund optimization has originally been presented in [13]. We use the 4 response
models given in [1] (see Appendix A). In this problem, the overall desirability function
DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3, 4) is:
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DY(x, z) = ((((139.1192 + 16.4936 ∗ x1 + 17.8808 ∗ x2 + 10.9065 ∗ x3 − 4.0096 ∗ x1 ∗ x1 − 3.4471 ∗ x2 ∗ x2−

1.5721 ∗ x3 ∗ x3 + 5.1250 ∗ x1 ∗ x2 + 7.1250 ∗ x1 ∗ x3 + 7.8750 ∗ x2 ∗ x3 − 120)/(170 − 120))∗
((1261.1331 + 268.1511 ∗ x1 + 246.5032 ∗ x2 + 139.4845 ∗ x3 − 83.5659 ∗ x1 ∗ x1 − 124.8155 ∗ x2 ∗ x2+

199.1818 ∗ x3 ∗ x3 + 69.3750 ∗ x1 ∗ x2 + 94.1250 ∗ x1 ∗ x3 + 104.3750 ∗ x2 ∗ x3 − 1000)/(1300 − 1000))∗
(z1 ∗ ((400.3846 − 99.6664 ∗ x1 − 31.3964 ∗ x2 − 73.9190 ∗ x3 + 7.9327 ∗ x1 ∗ x1 + 17.3076 ∗ x2 ∗ x2+

+0.4328 ∗ x3 ∗ x3 + 8.7500 ∗ x1 ∗ x2 + 6.250 ∗ x1 ∗ x3 + 1.2500 ∗ x2 ∗ x3 − 400)/(500 − 400))+
(1 − z1) ∗ ((400.3846 − 99.6664 ∗ x1 − 31.3964 ∗ x2 − 73.9190 ∗ x3 + 7.9327 ∗ x1 ∗ x1 + 17.3076 ∗ x2 ∗ x2+

+0.4328 ∗ x3 ∗ x3 + 8.7500 ∗ x1 ∗ x2 + 6.250 ∗ x1 ∗ x3 + 1.2500 ∗ x2 ∗ x3 − 600)/(500 − 600)))∗
(z2 ∗ ((68.9096 − 1.4099 ∗ x1 + 4.3197 ∗ x2 + 1.6348 ∗ x3 + 1.5577 ∗ x1 ∗ x1 + 0.0577 ∗ x2 ∗ x2−

0.3173 ∗ x3 ∗ x3 − 1.6250 ∗ x1 ∗ x2 + 0.1250 ∗ x1 ∗ x3 − 0.2500 ∗ x2 ∗ x3 − 60)/(67.5 − 60))+
(1 − z2) ∗ ((68.9096 − 1.4099 ∗ x1 + 4.3197 ∗ x2 + 1.6348 ∗ x3 + 1.5577 ∗ x1 ∗ x1 + 0.0577 ∗ x2 ∗ x2−

0.3173 ∗ x3 ∗ x3 − 1.6250 ∗ x1 ∗ x2 + 0.1250 ∗ x1 ∗ x3 − 0.2500 ∗ x2 ∗ x3 − 75)/(67.5 − 75))))(1/4))
(2.2)

where the decision variables are x = (x1, x2, x3) and z = (z1, z2) since there are two two-
sided desirability function. We added the nonlinear constraints of individual desirability
functions being 0 and 1 to the model on which MATLAB/NOMAD is implemented.

Table 2. Optimal solutions of the Wire Bonding Process Optimization
problem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, x

0
3, z

0
1, z

0
2) (x∗1, x

∗
2, x
∗
3, z
∗
1, z
∗
2)

1 (0, 0, 0, 0, 0) (−0.0519, 0.1507,−0.8662, 1.0000, 0)
2 (0.0610, 0.0500,−0.8150, 1, 0) (−0.0525, 0.1480,−0.8684, 1, 0)
3 (−0.0520, 0.1480,−0.8690, 1, 0) (−0.0525, 0.1482,−0.8683, 1, 0)

(d1(y∗1), d2(y∗2), d3(y∗3), d4(y∗4)) D∗

1 (0.1899, 1, 0.6564, 0.9285) 0.5833
2 (0.1886, 1, 0.6595, 0.9307) 0.5833
3 (0.1887, 1, 0.6593, 0.9305) 0.5833

2.2.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use three different initial points to find the global optimal. In Table 2, on the first
line, we give (0, 0, 0, 0, 0, 0)as the initial point (an arbitrary point) and MATLAB/NOMAD
finds the global optimal. In the second line, we give (0.0610, 0.0500,−0.8150, 1, 0) as
the initial point which is the local solution produced by GAMS/CONOPT in combina-
tion with MSG (see [1]) and MATLAB/NOMAD converges to global optimal. When
we give the global optimal (that we know from the literature [1]) as the initial point
(−0.0520, 0.1480,−0.8690, 1, 0), MATLAB/NOMAD finds the global optimal given in the
third line. We present the MATLAB/NOMAD implementation of this problem in Ap-
pendix C. Hence, in all three cases, MATLAB/NOMAD finds the global optima for this
problem.

2.3. Numerical example : A Chemical Process Optimization. The problem of a chem-
ical process optimization has originally been presented in [17]. We use the 3 response
models case given in [1] (see appendix A). In this problem, the overall desirability func-
tion DY(x, z) = D(y, z) = D(Y(x), z) with y j = Y j(x) ( j = 1, 2, 3) is:
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DY(x, z) = 0.7 ∗ ((79.940 + 0.995 ∗ x1 + 0.515 ∗ x2 − 0.1376 ∗ x1 ∗ x1 − 1.001 ∗ x2 ∗ x2+

0.250 ∗ x1 ∗ x2 − 78.5)/(80 − 78.5))∗
(0.2 ∗ z ∗ ((69.552 − 0.948 ∗ x2 − 6.598 ∗ x2 ∗ x2 − 62)/(65 − 62))+
0.2 ∗ (1 − z) ∗ ((69.552 − 0.948 ∗ x2 − 6.598 ∗ x2 ∗ x2 − 68)/(65 − 68)))∗
0.1 ∗ ((3386.2 + 205.10 ∗ x1 + 177.4 ∗ x2 − 3450)/(3100 − 3450))

(2.3)
where the decision variables are x = (x1, x2) and z = (z) since there is only one two-
sided desirability function. We added the nonlinear constraints of individual desirability
functions being 0 and 1 to the model on which MATLAB/NOMAD is implemented.

2.3.1. Results. We run MATLAB/NOMAD [29] to solve this nonsmooth MINLP prob-
lem. We use two different initial points to find the global optimal. In Table 3, on the
first line, we give (0, 0, 0) as the initial point (an arbitrary point) and MATLAB/NOMAD
converges. When we give the global optimal (that we know from the literature [2]) as the
initial point (0.1723,−0.8516, 0), MATLAB/NOMAD converges. We present the MAT-
LAB/NOMAD implementation of this problem in Appendix D. Here, we note that al-
though MATLAB/NOMAD converges, it gives an inferior solution than found in [17].

Table 3. Optimal solutions of the Chemical Process Optimization prob-
lem with 3 responses with MATLAB/NOMAD [29].

Method (x0
1, x

0
2, z

0) (x∗1, x
∗
2, z
∗)

1 (0, 0, 0) (−0.3774,−0.8865, 0)
2 (0.1723,−0.8516, 0) (0.3774,−0.8865, 0)

(d1(y∗1), d2(y∗2), d3(y∗3)) D∗

1 (0.2189, 0.1862, 0.0410) 0.0017
2 (0.2189, 0.1862, 0.0410) 0.0017

3. Conclusion and Future Outlook

In this work, we investigate the derivative free optimization [10] to find out advantages
of them over the global optimization approaches on wire bonding process optimization
problem, tire tread compund problem and a chemical process problem. Although, MAT-
LAB/NOMAD is a nonconvex MINLP solver, it highly depends on initial point selection.
On wire bonding process optimization problem, we tried three different initial points to
find out if it gives the global optimal however, it did not produce the global optimal un-
less the global optimal is the initial point itself. On tire tread compound problem, MAT-
LAB/NOMAD succeed to find the global optimal whatever the initial point is. On chemical
process optimization problem, MATLAB/NOMAD converges, however the optimal value
is inferior than the results reported in the literature.

Another important issue which we faced with in our implementation is related with bound
selection of decision variables, which effects the convergence of MATLAB/NOMAD. Any-
way, MATLAB/NOMAD is a useful software when we know the global optima. This is
important for the researchers and scientists who do not have the global optimizers available.
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In this study, our work describes a new approach to model nondifferentiable functions via
integer variables using a new tool. The methodology is new in the sense that we try dif-
ferent initial points one of which is global optimal. The solution process can be improved
further by studying selections for bounds and initial values. We tested our computational
approaches on different examples from the literature including one-sided and two-sided
desirability functions.

In the future, it is possible to implement the desirability function which includes more
than one nondifferentiable points [9, 3] since we have already tested global optimization
[1], convex optimization [1], semi-infinite programming [2], mixed integer linear program-
ming [5] and derivative free optimization on desirability functions including one nondif-
ferentiable point. It is also possible to apply our derivative free approach to signomial [31]
cases of desirability functions. This study is also connected in a broder sense to optimal
control.
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Appendix A. Responses ofWire bonding process optimization problem

Y1(x) = 174.9333 + 23.3750x2 + 3.6250x3 − 19.0000x2x3,

Y2(x) = 154.8571 + 8.5000x1 + 30.6250x2 + 7.8750x3 − 12.8571x2
1 + 11.2500x1x2,

Y3(x) = 140.2333 + 5.3437x1 + 18.2500x2 + 19.5938x3. (A.1)

Corresponding lower, target and upper values is given in 4

Table 4. Desirability Parameters of the responses for the Wire Bonding
Problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 185 190 195 0 1 0
y2 185 190 195 0 1 0
y3 170 185 195 0 1 0

Responses of Tire tread compound problem

Y1(x) = 139.1192 + 16.4936x1 + 17.8808x2 + 10.9065x3 − 4.0096x1x1 − 3.4471x2x2

−1.5721x3x3 + 5.1250x1x2 + 7.1250x1x3 + 7.8750x2x3,

Y2(x) = 1261.1331 + 268.1511x1 + 246.5032x2 + 139.4845x3 − 83.5659x1x1 − 124.8155x2x2

+199.1818x3x3 + 69.3750x1x2 + 94.1250x1x3 + 104.3750x2x3,

Y3(x) = 400.3846 − 99.6664x1 − 31.3964x2 − 73.9190x3 + 7.9327x1x1 + 17.3076x2x2

+0.4328x3x3 + 8.7500x1x2 + 6.250x1x3 + 1.2500x2x3,

Y4(x) = 68.9096 − 1.4099x1 + 4.3197x2 + 1.6348x3 + 1.5577x1x1 + 0.0577x2x2

−0.3173x3x3 − 1.6250x1x2 + 0.1250x1x3 − 0.2500x2x3.

(A.2)
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Corresponding lower, target and upper values is given in 5

Table 5. Desirability Parameters of the responses for the Tire tread com-
pound problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 120 − 170 0 1 0
y2 1000 − 1300 0 1 0
y3 400 500 600 0 1 0
y4 60 67.5 75 0 1 0

Responses of a Chemical process

Y1(x), y = 79.940 + 0.995x1 + 0.515x2 − 1.376x1x1

−1.001x2x2 + 0.250x1x2,

Y2(x), y = 69.522 − 0.948x2 − 6.598x2x2,

Y3(x), y = 3386.2 + 205.10x1 + 177.4x2.

(A.3)

Corresponding lower, target and upper values is given in 6. The weights of the responses
are 0.7, 0.2 and 0.1, respectively.

Table 6. Desirability Parameters of the responses for the Tire tread com-
pound problem [9].

l j t j u j d j(l j) d j(t j) d j(u j)
y1 78.5 − 80 0 1 0
y2 62 65 68 0 1 0
y3 3100 − 3450 0 1 0

Appendix B. MATLAB/NOMAD Implementation ofWire bonding process optimization
problem

clc

fun=@(x)-((((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-185)/(190-185))+...

((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-195)/(190-195)))*...

(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-185)/(190-185))+...

(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-195)/(190-195)))*...

(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)...

+19.5938*x(3)-170)/(185-170))+...

(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)...

+19.5938*x(3)-195)/(185-195))))ˆ(1/3))

%x0 = [0.0920 1.0000 0.8170 1 1 1]’;

x0 = [1.0000 0.8630 0.5880 1 0 1]’;
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%x0 = [0 0 0 0 0 0]’;

lb = [-1;-1;-1;1;0;1];

ub = [1;1;1;1;0;1];

nlcon = @(x)[((x(4)*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-185)/(190-185))+...

((1-x(4))*(174.9333+23.3750*x(2)+3.6250*x(3)...

-19.0000*x(2)*x(3)-195)/(190-195)))

(x(5)*((154.8571+8.5000*x(1)+30.6250*x(2)+7.8750*x(3)...

-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-185)/(190-185))+...

(1-x(5))*((154.8571+8.5000*x(1)+30.6250*x(2)...

+7.8750*x(3)-12.8571*x(1)ˆ2+11.2500*x(1)*x(2)-195)/(190-195)))...

(x(6)*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-170)/(185-170))+...

(1-x(6))*((140.2333+ 5.3437*x(1)+18.2500*x(2)+19.5938*x(3)-195)/(185-195)))];

cl=[0 0 0]’;

cu=[1 1 1]’;

xtype=’CCCBBB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)

Appendix C. MATLAB/NOMAD Implementation of Tire tread compound optimization
problem

clc

fun=@(x) -((((139.1192+16.4936*x(1)+17.8808*x(2)+10.9065*x(3)...

-4.0096*x(1)*x(1)-3.4471*x(2)*x(2)-1.5721*x(3)*x(3)+5.1250*x(1)*x(2)...

+7.1250*x(1)*x(3)+7.8750*x(2)*x(3)-120)/(170-120))*...

((1261.1331+268.1511*x(1)+246.5032*x(2)+139.4845*x(3)...

-83.5659*x(1)*x(1)-124.8155*x(2)*x(2)+...

199.1818*x(3)*x(3)+69.3750*x(1)*x(2)+...

94.1250*x(1)*x(3)+104.3750*x(2)*x(3)-1000)/(1300-1000))*...

(x(4)*((400.3846-99.6664*x(1)-31.3964*x(2)-73.9190*x(3)...

+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-400)/(500-400))+...

(1-x(4))*((400.3846-99.6664*x(1)-31.3964*x(2)-...

73.9190*x(3)+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-600)/(500-600)))*...

(x(5)*((68.9096-1.4099*x(1)+4.3197*x(2)+1.6348*x(3)+...

1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...
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0.2500*x(2)*x(3)-60)/(67.5-60))+...

(1-x(5))*((68.9096-1.4099*x(1)+4.3197*x(2)+...

1.6348*x(3)+1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-75)/(67.5-75))))ˆ(1/4))

%x0 = [-0.0520 0.1480 -0.8690 1 0]’;

%x0 = [0.0610 0.0500 -0.8150 1 0 ]’;

x0 = [0 0 0 0 0 ]’;

lb = [-1;-1;-1;0;0];

ub = [1;1;1;1;1];

nlcon = @(x)[((139.1192+16.4936*x(1)+17.8808*x(2)...

+10.9065*x(3)-4.0096*x(1)*x(1)-3.4471*x(2)*x(2)-...

1.5721*x(3)*x(3)+5.1250*x(1)*x(2)+7.1250*x(1)*x(3)...

+7.8750*x(2)*x(3)-120)/(170-120))

((1261.1331+268.1511*x(1)+246.5032*x(2)...

+139.4845*x(3)-83.5659*x(1)*x(1)-124.8155*x(2)*x(2)+...

199.1818*x(3)*x(3)+69.3750*x(1)*x(2)...

+94.1250*x(1)*x(3)+104.3750*x(2)*x(3)-1000)/(1300-1000))

(x(4)*((400.3846-99.6664*x(1)-31.3964*x(2)...

-73.9190*x(3)+7.9327*x(1)*x(1)+17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)...

+6.250*x(1)*x(3)+1.2500*x(2)*x(3)-400)/(500-400))+...

(1-x(4))*((400.3846-99.6664*x(1)...

-31.3964*x(2)-73.9190*x(3)+7.9327*x(1)*x(1)+...

17.3076*x(2)*x(2)+...

+0.4328*x(3)*x(3)+8.7500*x(1)*x(2)+6.250*x(1)*x(3)+...

1.2500*x(2)*x(3)-600)/(500-600)))

(x(5)*((68.9096-1.4099*x(1)+4.3197*x(2)+...

1.6348*x(3)+1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-60)/(67.5-60))+...

(1-x(5))*((68.9096-1.4099*x(1)+4.3197*x(2)+1.6348*x(3)+...

1.5577*x(1)*x(1)+0.0577*x(2)*x(2)-...

0.3173*x(3)*x(3)-1.6250*x(1)*x(2)+0.1250*x(1)*x(3)-...

0.2500*x(2)*x(3)-75)/(67.5-75)))];

cl=[0 0 0 0]’;

cu=[1 1 1 1]’;

xtype=’CCCBB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)
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Appendix D. MATLAB/NOMAD Implementation of a Chemical process optimization
problem

clc

fun=@(x)(-( 0.7*((79.940+0.995*x(1)+0.515*x(2)-0.1376*x(1)*x(1)-1.001*x(2)*x(2)+...

0.250*x(1)*x(2)-78.5)/(80-78.5))*...

(0.2*x(3)*((69.552-0.948*x(2)-6.598*x(2)*x(2)-62)/(65-62))+...

0.2*(1-x(3))*((69.552-0.948*x(2)-6.598*x(2)*x(2)-68)/(65-68)))*...

0.1*((3386.2+205.10*x(1)+177.4*x(2)-3450)/(3100-3450))))

%x0 = [0.1723 -0.8516 0]’;

x0 = [0 0 0]’;

lb = [-1;-1;0];

ub = [1;1;0];

nlcon = @(x) [ 0.7*((79.940+0.995*x(1)+0.515*x(2)-0.1376*x(1)*x(1)-1.001*x(2)*x(2)+...

0.250*x(1)*x(2)-78.5)/(80-78.5))

(0.2*x(3)*((69.552-0.948*x(2)-6.598*x(2)*x(2)-62)/(65-62))+...

0.2*(1-x(3))*((69.552-0.948*x(2)-6.598*x(2)*x(2)-68)/(65-68)))

0.1*((3386.2+205.10*x(1)+177.4*x(2)-3450)/(3100-3450))];

cl = [0 0 0]’;

cu=[1 1 1]’;

xtype=’CCB’;

opts=optiset(’solver’,’nomad’,’display’,’iter’)

Opt=opti(’fun’,fun,’bounds’,lb,ub,’nl’,nlcon,cl,cu,’xtype’,xtype,’options’,opts)

[x,fval,exitflag,info] = solve(Opt,x0)
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Department ofMathematics, METU, Ankara, TÜRKİYE
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