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Research Article

Abstract− This paper investigates several properties of the semiconformal curvature tensor
on a (κ, µ)-paracontact metric manifold. It first examines the results arising when such a
manifold is both semiconformal and semisymmetric. Based on these findings, this study
provides characterizations of the manifold. It then explores the derivative interactions between
various curvature tensors and the semiconformal curvature tensor. According to the results,
the present paper establishes the conditions under which a (κ, µ)-paracontact metric manifold
reduces to a (κ, µ)-paracontact metric manifold.

Keywords − Semiconformal curvature tensor, (κ, µ)-paracontact metric manifolds, semisymmetric
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1. Introduction

In 1985, the first studies on paracontact structures and paracontact geometry were presented by
Kaneyuki and Williams [1]. Later, paracontact geometry studies were continued by Zamkovoy [2]
with his systematic studies on paracontact manifolds and submanifolds. The more general case of
paracontact metric manifolds, (κ, µ)-paracontact metric manifolds and (κ, µ, ν)- paracontact metric
manifolds continue to be studied by many authors [3–7].

Let M be a (2n + 1)-dimensional smooth manifold, and let ϕ be a (1, 1)-tensor field, ξ a characteristic
vector field, and η a 1-form on M . The triple (ϕ, ξ, η) is called an almost paracontact structure on M

if it satisfies the following conditions:

i. ϕ(ξ) = 0, ηoϕ = 0, and η(ξ) = 1

ii. ϕ2ϱ1 = ϱ1 − η(ϱ1)ξ and ϱ1 ∈ χ(M)

iii. The tensor field ϕ induces an almost paracomplex structure on each fibre of D = ker(η), meaning
that the eigendistributions D+ϕ and D−ϕ of ϕ, corresponding to the eigenvalues 1 and −1, respectively,
have equal dimension n.

The (M, ϕ, ξ, η) quadruple together with the (ϕ, ξ, η) structure on M is called an almost paracontact
manifold [2]. There exists a semi-Riemannian metric g on the almost paracontact metric manifold M

such that

1umit.yildirim@amasya.edu.tr (Corresponding Author); 2mustafa05musti@gmail.com
1,2Department of Mathematics, Faculty of Arts and Sciences, Amasya University, Amasya, Türkiye
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g(ϕϱ1, ϕϱ2) = −g(ϱ1, ϱ2) + η(ϱ1)η(ϱ2), g(ϱ1, ξ) = η(ϱ1) (1.1)

and

g(ϕϱ1, ϱ2) + g(ϱ1, ϕϱ2) = 0

Let (M2n+1, ϕ, ξ, η) be an almost paracontact manifold. Then, the semi-Riemannian metric g is
called an almost paracontact metric on (M2n+1, ϕ, ξ, η), the structure (ϕ, ξ, η, g) is called an almost
paracontact metric structure, and the quintet (M2n+1, ϕ, ξ, η, g) is called an almost paracontact metric
manifold [2]. If

dη(ϱ1, ϱ2) = 1
2(ϱ1η(ϱ2) − ϱ2η(ϱ1) − η([ϱ1, ϱ2]))

is defined, then

Φ(ϱ1, ϱ2) = g(ϱ1, ϕϱ2) = dη(ϱ1, ϱ2)

The (ϕ, ξ, η, g) quadruplet is called a paracontact metric structure, and the quintet (M, ϕ, ξ, η, g) is
called a paracontact metric manifold [2]. If M is a (2n + 1)-dimensional almost paracontact metric
manifold and the vector field ξ in the structure (ϕ, ξ, η, g) is a Killing vector field concerning g. The
paracontact structure on M is called a K-paracontact structure, and M is called a K-paracontact
metric manifold [2]. On a paracontact metric manifold, h is a symmetric operator, and the following
properties hold:

hξ = 0, hϕ = −ϕh, and Tr h = Tr ϕh = 0 (1.2)

2hϱ1 = (Lξϕ)ϱ1 = Lξϕϱ1 − ϕLξϱ1 = [ξ, ϕϱ1] − ϕ[ξ, ϱ1]

∇ϱ1ξ = −ϕϱ1 + ϕhϱ1

Here, L is the Lie derivative [2].

Motivated by the above studies, this work investigates some symmetry conditions of a (κ, µ)-paracontact
metric manifold. This paper consists of four sections. The first section provides basic information about
almost paracontact metric manifolds. The second section introduces basic definitions and properties of
(κ, µ)-paracontact metric manifolds and semiconformal curvature tensors. The third section obtains
the results when a (κ, µ)-paracontact metric manifold is semiconformally semisymmetric. The fourth
section investigates the condition for a (κ, µ)-paracontact metric manifold to be semiconformally Ricci
semisymmetric and characterizes the manifold according to the obtained results. The last section
concludes the paper.

2. Preliminaries

This section presents some notions to be needed in the following sections.

Definition 2.1. [4] A paracontact metric manifold is said to be a (κ, µ)-paracontact manifold if the
curvature tensor R satisfies the following conditions

R(ϱ1, ϱ2)ξ = κ(η(ϱ2)ϱ1 − η(ϱ1)ϱ2) + µ(η(ϱ2)hϱ1 − η(ϱ1)hϱ2) (2.1)

for all ϱ1, ϱ2 ∈ χ(M) and κ and µ are real constants.

Here, if µ = 0, then the (κ, µ)-paracontact metric manifold is called N(κ)-paracontact metric manifold.
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In a (κ, µ)-paracontact metric manifold (M2n+1, ϕ, ξ, η, g) such that n > 1, the following relations hold:

h2 = (κ + 1)ϕ2

(∇ϱ1ϕ)ϱ2 = −g(ϱ1 − hϱ1, ϱ2)ξ + η(ϱ2)(ϱ1 − hϱ1)

for κ ̸= −1.

S(ϱ1, ϱ2) = (2(1 − n) + νµ)g(ϱ1, ϱ2) + (2(n − 1) + µ)g(hϱ1, ϱ2) + (2(n − 1) + n(2κ − µ))η(ϱ1)η(ϱ2)

S(ϱ1, ξ) = 2nκη(ϱ1) (2.2)

Qϱ1 = (2(1 − n) + nµ)ϱ1 + (2(n − 1) + µ)hϱ1 + (2(n − 1) + n(2κ − µ))η(ϱ1)ξ

ϕξ = 2nκξ

and
Qϕ − ϕQ = 2(2(n − 1) + µ)hϕ

In 2017, Kim [8] defined a curvature tensor of (1, 3)−type that remains invariant under conharmonic
transformation, called semiconformal curvature tensor, and obtained some results. The semiconformal
curvature tensor is a generalization of the conformal curvature tensor and the conharmonic curvature
tensor. Recently, many conditions of the semiconformal curvature tensor have been studied by many
researchers [8–20]. The semiconformal curvature tensor P of (1, 3)−type on a Riemann manifold
(M2n+1, g), n > 1, is as follows:

P (ϱ1, ϱ2)ϱ3 = −(n − 2)bC(ϱ1, ϱ2)ϱ3 + (a + (n − 2)b)H(ϱ1, ϱ2)ϱ3 (2.3)

where a and b are constants and not simultaneously zero, C(ϱ1, ϱ2)ϱ3 denotes the conformal curvature
tensor of (1, 3)−type, and H(ϱ1, ϱ2)ϱ3 denotes the conharmonic curvature tensor of (1, 3)−type. The
conformal curvature tensor of (1, 3)−type and the conharmonic curvature tensor of (1, 3)−type are
given as:

C(ϱ1, ϱ2)ϱ3 = R(ϱ1, ϱ2)ϱ3 − 1
n−2(S(ϱ2, ϱ3)ϱ1 − S(ϱ1, ϱ3)ϱ2 + g(ϱ2, ϱ3)Qϱ1 − g(ϱ1, ϱ3)Qϱ2)

+ r
(n−1)(n−2)(g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2)

(2.4)

and

H(ϱ1, ϱ2)ϱ3 = R(ϱ1, ϱ2)ϱ3 − 1
n − 2(S(ϱ2, ϱ3)ϱ1 − S(ϱ1, ϱ3)ϱ2 + g(ϱ2, ϱ3)Qϱ1 − g(ϱ1, ϱ3)Qϱ2) (2.5)

where r is scalar curvature, R is Riemann curvature tensor of (1, 3)−type of the manifold M2n+1, and
S is the Ricci tensor of the manifold, given by g(Qϱ1, ϱ2) = S(ϱ1, ϱ2), where Q is the Ricci operator.
Here, if (2.5) and (2.4) are used in (2.3), then (2.3) is reduced to the following form:

P (ϱ1, ϱ2)ϱ3 = aH(ϱ1, ϱ2)ϱ3 − br

n − 1(g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2) (2.6)

Putting Z = ξ and using (1.1), (2.1), and (2.2),

H(ϱ1, ϱ2)ξ =
(

−(κ+2)−n(µ−2)
2n−1

)
(η(ϱ2)ϱ1 − η(ϱ1)ϱ2) +

(
(2µ−2)(n−1)

2n−1

)
(η(ϱ2)hϱ1 − η(ϱ1)hϱ2) (2.7)

Put ϱ2 = ξ in (2.7),

H(ϱ1, ϱ2)ξ =
(−(κ + 2) − n(µ − 2)

2n − 1

)
(ϱ1 − η(ϱ1)ξ) +

((2µ − 2)(n − 1)
2n − 1

)
hϱ1 (2.8)
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Moreover, putting ϱ1 = ξ in (2.5),

H(ξ, ϱ2)ϱ3 =
(2n − nµ − 4

2n − 1

)
(g(ϱ2, ϱ3)ξ − η(ϱ3)ϱ2) −

(2(n − 1)(µ − 1)
2n − 1

)
(g(hϱ2, ϱ3)ξ − η(ϱ3)hϱ2)(2.9)

Putting ϱ1 = ξ in (2.6) and using (2.9),

P (ξ, ϱ2)ϱ3 =
(

a[2n−nµ−4]
2n−1 − br

2n

)
(g(ϱ2, ϱ3)ξ − η(ϱ3)ϱ2) −

(
2a(n−1)(µ−1)

2n−1

)
(g(hϱ2, ϱ3)ξ − η(ϱ3)hϱ2)(2.10)

Similarly, choosing ϱ3 = ξ in (2.6) and (2.8),

P (ϱ1, ϱ2)ξ =
(

−a(κ+2)−an(µ−2)
2n−1 − br

2n

)
(η(ϱ2)ϱ1 − η(ϱ1)ϱ2) +

(
2a(n−1)(µ−1)

2n−1

)
(η(ϱ2)hϱ1 − η(ϱ1)hϱ2)(2.11)

3. Semiconformally Semisymmetric (κ, µ)-paracontact Metric Manifold

This section introduces a semiconformally semisymmetric (κ, µ)-paracontact metric manifold.

Definition 3.1. A (κ, µ)-paracontact metric manifold M2n+1 is said to be semiconformally semisym-
metric if the semiconformal curvature tensor satisfies the condition

R(ϱ1, ϱ2)P = 0

for all vector fields ϱ1 and ϱ2 on M .

Theorem 3.2. Let M be a (2n + 1)−dimensional (κ, µ)-paracontact metric manifold. Then, M is
semiconformally semisymmetric if and only if at least one of the following statements is true:

i. M is a (κ, 1)-paracontact metric manifold.

ii. The semiconformal curvature tensor P of M reduces to the form

P (ϱ1, ϱ2)ϱ3 = −br

2n − 1(g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2)

for all ϱ1, ϱ2, ϱ3 ∈ χ(M).

iii. (κ + 1)(κ − µ(κ + 1))h2 + (µ − κ)h = 0.

Proof. Assume that the (2n+1)−dimensional (κ, µ)-paracontact metric manifold M is semiconformally
semisymmetric. Then, for all ϱ1, ϱ2, ϱ3, ϱ4, ϱ5 ∈ χ(M),

(R(ϱ1, ϱ2)P )(ϱ4, ϱ5, ϱ3) = R(ϱ1, ϱ2)P (ϱ4, ϱ5)ϱ3 − P (R(ϱ1, ϱ2)ϱ4, ϱ5)ϱ3 − P (ϱ4, R(ϱ1, ϱ2)ϱ5)ϱ3

−P (ϱ4, ϱ5)R(ϱ1, ϱ2)ϱ3

= 0

(3.1)

Choosing ϱ3 = ξ in (3.1),

R(ϱ1, ϱ2)P (ϱ4, ϱ5)ξ − P (R(ϱ1, ϱ2)ϱ4, ϱ5)ξ − P (ϱ4, R(ϱ1, ϱ2)ϱ5)ξ − P (ϱ4, ϱ5)R(ϱ1, ϱ2)ξ = 0 (3.2)

Using (2.1) and (2.11) in (3.2),

0 = Aη(ϱ5)R(ϱ1, ϱ2)ϱ4 − Aη(ϱ4)R(ϱ1, ϱ2)ϱ5 + Bη(ϱ5)R(ϱ1, ϱ2)hϱ4

−Bη(ϱ4)R(ϱ1, ϱ2)hϱ5 − Aη(ϱ5)R(ϱ1, ϱ2)ϱ4 + Aη(R(ϱ1, ϱ2)ϱ4)ϱ5

−Bη(ϱ5)hR(ϱ1, ϱ2)ϱ4 + Bη(R(ϱ1, ϱ2)ϱ4)hϱ5 − Aη(R(ϱ1, ϱ2)ϱ5)ϱ4

+Aη(ϱ4)R(ϱ1, ϱ2)ϱ5 − Bη(R(ϱ1, ϱ2)ϱ5)hϱ4 + Bη(ϱ4)hR(ϱ1, ϱ2)ϱ5

−κη(ϱ2)P (ϱ4, ϱ5)ϱ1 + κη(ϱ1)P (ϱ4, ϱ5)ϱ2 − µη(ϱ2)P (ϱ4, ϱ5)hϱ1

+µη(ϱ1)P (ϱ4, ϱ5)hϱ2
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where
A = −a(κ + 2) − an(µ − 2)

2n − 1 − br

2n
and B = 2a(n − 1)(µ − 1)

2n − 1
Thus,

0 = Bη(ϱ5)R(ϱ1, ϱ2)hϱ4 − Bη(ϱ4)R(ϱ1, ϱ2)hϱ5 + Aη(R(ϱ1, ϱ2)ϱ4)ϱ5

−Bη(ϱ5)hR(ϱ1, ϱ2)ϱ4 + Bη(R(ϱ1, ϱ2)ϱ4)hϱ5 − Aη(R(ϱ1, ϱ2)ϱ5)ϱ4

−Bη(R(ϱ1, ϱ2)ϱ5)hϱ4 + Bη(ϱ4)hR(ϱ1, ϱ2)ϱ5 − κη(ϱ2)P (ϱ4, ϱ5)ϱ1

+κη(ϱ1)P (ϱ4, ϱ5)ϱ2 − µη(ϱ2)P (ϱ4, ϱ5)hϱ11 + µη(ϱ1)P (ϱ4, ϱ5)hϱ2

(3.3)

Putting Y = U = ξ in (3.3) and using (1.1), (1.2), (2.1), (2.10), and (2.11),

0 = Bκg(ϱ1, ϱ5)ξ − Bκη(ϱ5)ϱ1 + Bg(hϱ1, ϱ5)ξ − Bµη(ϱ5)hϱ1 − Aη(ϱ1)ϱ5 + Bκη(ϱ1)hϱ5

−Bη(ϱ1)hϱ5 + Aκη(ϱ1)ϱ5 − Bκg(hϱ5, ϱ1)ξ + Bκη(ϱ1)hϱ5 + Bκη(ϱ1)hϱ5 − µBg(hϱ5, hϱ1)ξ
(3.4)

In (3.4), taking inner product with ξ ∈ χ(M),

B (κ (g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ (g(hϱ1, ϱ5) − g(hϱ5, hϱ1))) = 0 (3.5)

This equation is satisfied for the following three cases:

i. B = 2a(n−1)(µ−1)
2n−1 = 0 and κ (g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ (g(hϱ1, ϱ5) − g(hϱ5, hϱ1)) ̸= 0

ii. B = 2a(n−1)(µ−1)
2n−1 ̸= 0 and κ (g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ (g(hϱ1, ϱ5) − g(hϱ5, hϱ1)) = 0

iii. B = 2a(n−1)(µ−1)
2n−1 = 0 and κ (g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ (g(hϱ1, ϱ5) − g(hϱ5, hϱ1)) = 0

Here, if B = 2a(n−1)(µ−1)
2n−1 = 0, then µ = 1 and M is reduced to a (κ, 1) manifold. If a = 0, then from

(2.6)

P (Xϱ1, ϱ2)ϱ3 = − br

2n − 1(g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2)

Finally, from (3.5),

κ(g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ(g(hϱ1, ϱ5) − g(hϱ5, hϱ1)) = 0

Since h is symmetric, then

κ(g(ϱ1, ϱ5) − η(ϱ5)η(ϱ1) − g(hϱ5, ϱ1)) + µ(g(hϱ1, ϱ5) − g(h2ϱ5, ϱ1)) = 0 (3.6)

Using (1.1) in (3.6),

κ(g(ϕϱ1, ϕϱ5) − g(hϱ1, ϱ5)) + µ(g(hϱ1, ϱ5) − (κ + 1)g(ϕ2ϱ1, ϱ5)) = 0

and thus

κ
(
−g(ϕ2ϱ1, ϱ5) − g(hϱ1, ϱ5)

)
+ µ

(
g(hϱ1, ϱ5) − (κ + 1)g(ϕ2ϱ1, ϱ5)

)
= 0 (3.7)

From (3.7),
g(ϕ2ϱ1, ϱ5)[−κ − µ(κ + 1)] + g(hϱ1, ϱ5)(µ − κ) = 0

and thus
(κ + 1)(−κ − µ(κ + 1))g(hϱ1, hϱ5) + (µ − κ)g(hϱ1, ϱ5) = 0

Therefore,
(κ + 1)(−κ − µ(κ + 1))h2 + (µ − κ)h = 0
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Moreover, if the trace of (3.6) is considered,

2nκ − µtrh2 = 2nκ − (κ + 1)µϕ2 = 2nκ − 2n(κ + 1)µ = 0

It means that

κ − (κ + 1)µ = 0

If κ + 1 = 0 then κ = 0. However, this contradicts κ + 1 = 0. So κ + 1 can never vanish (zero). Hence,

µ = κ

κ + 1
Here, µ = 0 if and only if κ = 0. In this case, R(X, Y )ξ = 0. Using Zamkovoy classification, M is
H2n × R.

4. Semiconformally Ricci Semisymmetric (κ, µ)-Paracontact Metric Manifold

This section defines a semiconformally Ricci semisymmetric (κ, µ)-paracontact metric manifold.

Definition 4.1. A (κ, µ)-paracontact metric manifold M2n+1 is said to be semiconformally Ricci
semisymmetric if the semiconformal curvature tensor satisfies the condition

P (ϱ1, ϱ2)S = 0

for all vector fields ϱ1 and ϱ2 on M .

Definition 4.2. A (κ, µ)-paracontact metric manifold M2n+1 is said to be η−Einstein manifold if its
Ricci tensor S satisfies the condition

S(ϱ1, ϱ2) = αg(ϱ1, ϱ2) + βη(ϱ1)η(ϱ2)

for all vector fields ϱ1 and ϱ2 and some real constants α and β. For β = 0, it reduces to an Einstein
manifold.

Theorem 4.3. Let M be a (2n + 1)−dimensional (κ, µ)-paracontact metric manifold. Then, M is
semiconformally semisymmetric if and only if M is an Einstein manifold.

Proof. Suppose that M is a (2n + 1)−dimensional (κ, µ)-paracontact metric manifold that is semi-
conformally semisymmetric. Then, for all ϱ1, ϱ2, ϱ3, ϱ4 ∈ χ(M),

P (ϱ1, ϱ2)S(ϱ3, ϱ4) = 0 (4.1)

From (4.1),

S(P (ϱ1, ϱ2)ϱ3, ϱ4) + S(ϱ3, P (ϱ1, ϱ2)ϱ4) = 0 (4.2)

Choosing ϱ1 = ϱ3 = ξ in (4.2),

S(P (ξ, ϱ2)ξ, ϱ4) + 2nκη(P (ξ, ϱ2)ϱ4) = 0 (4.3)

Using (2.10) and (2.11) in (4.3),

0 =
(

a(2n−nµ−4)
2n−1 − br

2n

)
η(ϱ2)S(ξ, ϱ4) −

(
a(2n−nµ−4)

2n−1 − br
2n

)
S(ϱ2, ϱ4) +

(
2a(n−1)(µ−1)

2n−1

)
S(hϱ2, ϱ4)

+
(

a(2n−nµ−4)
2n−1 − br

2n

)
2nκg(ϱ2, ϱ4) −

(
a(2n−nµ−4)

2n−1
br
2n

)
2nκη(ϱ2)η(ϱ4) −

(
2a(n−1)(µ−1)

2n−1

)
2nκg(hϱ2, ϱ4)
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which implies

0 =
(

a(2n−nµ−4)
2n−1 − br

2n

)
S(ϱ2, ϱ4) −

(
a(2n−nµ−4)

2n−1 − br
2n

)
2nκg(ϱ2, ϱ4) +

(
2a(n−1)(µ−1)

2n−1

)
S(hϱ2, ϱ4)

−
(

2a(n−1)(µ−1)
2n−1

)
2nκg(hY ϱ2, ϱ4)

(4.4)

Choosing Y = hY in (4.4),

0 =
(

a(2n−nµ−4)
2n−1 − br

2n

)
S(hϱ2, ϱ4) −

(
a(2n−nµ−4)

2n−1 − br
2n

)
2nκ(hϱ2, ϱ4)

+
(

2a(n−1)(µ−1)
2n−1

)
(κ + 1)S(ϱ2, ϱ4) −

(
2a(n−1)(µ−1)

2n−1

)
(κ + 1)(κ + 1)2nκg(ϱ2, ϱ4)

(4.5)

From (4.4) and (4.5),

S(ϱ2, ϱ4) = 2nκg(ϱ2, ϱ4)

This shows that a (κ, µ)-paracontact metric manifold with (2n + 1)-dimensional semiconformally Ricci
semisymmetric is an Einstein manifold.

5. Conclusion

This paper obtained significant and manifold-characterizing results for the semiconformally semisymme-
try case of a (κ, µ)-paracontact metric manifold. First, it can be observed that the (κ, µ)-paracontact
metric manifold reduces to a more special case of the (κ, 1)− paracontact metric manifold. Another
result of the theorem is that the semiconformal curvature tensor on the manifold is reduced to the
following form:

P (ϱ1, ϱ2)ϱ3 = − br

2n
[g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2]

When this case is considered, if

P (ϱ1, ϱ2)ϱ3 = − br

2n
[g(ϱ2, ϱ3)ϱ1 − g(ϱ1, ϱ3)ϱ2]

then the manifold is said to be reduced to the real space form with constant section curvature. However,
there is no classification expressed in the literature regarding the condition obtained. It is an open
problem whether a classification, such as semiconformal real space form, can be made by examining
this situation. In addition, as another result of the theorem, the following relation is obtained:

(κ + 1)(−κ − µ(κ + 1))h2 + (µ − κ)h = 0

A second open problem is to determine to which special case of a (κ, µ)-paracontact metric manifold
this relation reduces.
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Abstract− This paper studies the relationship between polynomials and classical number
sequences, focusing on their structural properties and mathematical significance. It explores a
specific class of polynomials inspired by Vietoris’ number sequences, referred to as Vietoris-like
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1. Introduction

Polynomial forms of number sequences, beginning with Fibonacci polynomials, hold an important
place in various subfields of mathematics such as geometry and algebra [1–3]. Fibonacci and Lucas
polynomials constitute significant recursive sequences with remarkable algebraic and combinatorial
properties. These polynomials have been extensively studied for their theoretical importance and
applicability in interdisciplinary fields such as coding theory, quantum computing, and symbolic
computation. Their structural characteristics enable efficient formulations in both pure and applied
mathematics. In particular, Fibonacci-type polynomials have considerable applications in number
theory [4–7]. For any variable quantity x, the Fibonacci polynomial Fn(x) is defined as

Fn(x) = xFn−1(x) + Fn−2(x), for all n ≥ 2

with F0(x) = 0 and F1(x) = 1. With a similar idea, the Lucas polynomial Ln(x) is defined as

Ln(x) = xLn−1(x) + Ln−2(x), for all n ≥ 2

with L0(x) = 2 and L1(x) = x. For more details, see [8, 9].

In 1958, Vietoris used Appell polynomials in connection with positivity problems of trigonometric
sums [10]. Positivity as an interdisciplinary subject was an active research field, and several works
were conducted using Vietoris’ results [11]. Later on, in [12], the authors studied Vietoris’ number

1nbayrak@yildiz.edu.tr; 2dcaglar@gelisim.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Arts and Sciences, Yıldız Technical University, İstanbul, Türkiye
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Türkiye

https://dergipark.org.tr/tr/pub/jnt
https://doi.org/10.53570/jnt.1651994
https://orcid.org/0000-0001-8407-854X
https://orcid.org/0000-0003-2036-9684
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sequence {vs}s≥0 with s-th term formula

vs =
1
2s

(
s⌊
s
2
⌋) (1.1)

where
(

s⌊
s
2
⌋) is the central binomial coefficient [13] and ⌊.⌋ represents the floor function. This sequence

is associated with the sequence A283208 in the Online Encyclopedia of Integer Sequences (OEIS) [14].
As can be observed from [13,15–19], Vietoris’ sequence is one of the members of rational sequences,
and some terms are as follows:

1,
1
2 ,

1
2 ,

3
8 ,

3
8 ,

5
16 ,

5
16 ,

35
128 ,

35
128 ,

63
256 ,

63
256 , · · ·

In addition, the sequence of Appell-Vietoris polynomials [20], namely {Vn(x)}n≥0, is defined. For this
sequence,

Vn(x) =
n∑

k=0
Tn

kxk =
n∑

k=0

(
n

k

)
cn−kxk

where Tn
k and ck are triangle, i.e., these numbers form a triangular array with n + 1 rows, indexed

from k = 0 to k = n, and k−th term of the Vietoris sequence, respectively. In [20], it can be seen that
Vietoris’ sequence via the sequence of Appell-Vietoris polynomials for x = 0.

In this paper, we investigate the following questions: Is it possible to determine a special type of Vietoris-
like polynomials by considering the properties of Vietoris’ numbers? If so, what relations, identities,
and properties do they satisfy? What conditions must be imposed on Vietoris-like polynomials to
obtain meaningful results? This paper aims to explore and provide answers to the questions posed.

The rest of this study is structured as follows: Section 2 introduces the fundamental concepts to be
utilized throughout the paper. Section 3 defines special Vietoris-like polynomials, investigates some of
their basic properties, and analyzes their recurrence relations, special equalities, and identities such as
those of Catalan, Cassini, and d’Ocagne. Finally, Section 4 provides the conclusions.

2. Preliminaries

This section discusses the basic properties of Vietoris’ number sequence {vs}s≥0 with the s-th element
in (1.1), For more details, see [10–18]. Even members of {vs}s≥0 are as follows:

v2n = 1
22n

(
2n

n

)
, n ≥ 0

where v2n = v2n−1. The two-term recurrence relation for {v2n}n≥0 is as follows:

v2n+2 = L(2n)v2n, n ≥ 0 (2.1)

where
L(k) = k + 1

k + 2 , k ≥ 0 (2.2)

Thus, the expression for v2n in terms of any v2k is as follows:

v2n =
n−k∏
l=1

L(2n − 2l)v2k, n > k
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Similarly, v2n in terms of v0 is as follows:

v2n+2 =
n∏

i=0
L(2i)v0 = (2n + 1)!!

(2n + 2)!!

Here, the double factorial of a number is defined as the product of all positive integers up to this
number that shares the same parity (odd or even) as itself. The three consecutive-term recurrence
relation for {v2n}n≥0 is as follows [17]:

v2n+2 =
1
2v2n+1 +

1
2L(2n)v2n, n ≥ 0 (2.3)

The characteristic equation for the recurrence relation in (2.3) is given by [17]:

t2 − 1
2 t − 1

2L(2n) = 0

with roots

r
†1
2n =

1
4

(
1 −

√
1 + 8L(2n)

)
and r

†2
2n =

1
4

(
1 +

√
1 + 8L(2n)

)
(2.4)

According to the roots in (2.4), Vietoris’ number sequence provides the following Binet-like formula [17]:

v2n = c
†1
2n

(
r

†1
2n

)2n
+ c

†2
2n

(
r

†2
2n

)2n

where

c
†1
2n =

(
r

†2
2n

)2n
− v2(

r
†2
2n

)2n
−
(
r

†1
2n

)2n

n−1∏
k=1

(
2r

†1
2k − 1

)
r

†1
2k and c

†2
2n =

v2 −
(
r

†1
2n

)2n

(
r

†2
2n

)2n
−
(
r

†1
2n

)2n

n−1∏
k=1

(
2r

†2
2k − 1

)
r

†2
2k

By the roots in (2.4), the following holds: r
†2
0 = 1+

√
5

4 (half of the golden ratio), r
†1
2n + r

†2
2n =

1
2, and

r
†1
2nr

†2
2n = −L(2n)

2 [17]. Using (2.1), (2.3) of order two for the even index is rewritten as [17]:

v2n+2 = 1
2L(2n)v2n + 1

2L(2n)L(2n − 2)v2n−2, n ≥ 1

The characteristic equation of this recurrence is as follows [17]:

t2 − 1
2L(2n)t − 1

2L(2n)L(2n − 2) = 0

with roots

r†1
2n = L(2n)

4

(
1 −

√
1 + 8L(2n − 2)

L(2n)

)
and r†2

2n = L(2n)
4

(
1 +

√
1 + 8L(2n − 2)

L(2n)

)
(2.5)

According to these roots, Vietoris’ number sequence provides the Binet-like formula [17]:

v2n = c†1
2n

(
r†1

2n

)2n
+ c†2

2n

(
r†2

2n

)2n

where

c†1
2n =

(2n − 1)!!
(

−L(2n)
(
r†2

2n

)2n
+
(
r†2

2n+2

)2n+2
)

2nn!
((

r†1
2n

)2n (
r†2

2n+2

)2n+2
−
(
r†2

2n

)2n (
r†1

2n+2

)2n+2
)

and

c†2
2n =

(2n − 1)!!
(

L(2n)
(
r†1

2n

)2n
−
(
r†1

2n+2

)2n+2
)

2nn!
((

r†1
2n

)2n (
r†2

2n+2

)2n+2
−
(
r†2

2n

)2n (
r†1

2n+2

)2n+2
)
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By the roots in (2.5), the following hold: r†1
2n + r†2

2n =
L(2n)

2 and r†1
2nr†2

2n = −
L(2n)L(2n − 2)

2 [17].
Moreover, the generating function is given by [15]:

g(z) =
√

1 + z −
√

1 − z

z
√

1 − z
=

∞∑
p=0

vpzp, 0 < |z| < 1

3. Special Vietoris-like Polynomials

This section introduces special Vietoris-like polynomials and presents several of their properties.

Definition 3.1. For real variable x, the s-th element of Vietoris-like polynomial sequence {Vs(x)}s≥0

is defined by

Vs(x) =

 L(s − 1)Vs−1(x), if s is odd
x+1

2 L(s − 2)Vs−2(x), if s is even
(3.1)

where V0(x) = 1.

The first few Vietoris-like polynomials are

1, 1
2 , x+1

4 , 3(x+1)
16 , 3(x+1)2

32 , 5(x+1)2

64 , 5(x+1)3

128 , 35(x+1)3

1024 , 35(x+1)4

2048 , 63(x+1)4

4096 , 63(x+1)5

8192 , · · · (3.2)

In particular, for x = 1, Vietoris-like polynomials are equal to Vietoris’ sequence. For x = −1, Vs(x) = 0
where s ≥ 2. It can be observed the graphs of the first eleven elements of Vietoris-like polynomial
sequence in Figure 1, for −5 ≤ x ≤ 5.

Figure 1. First eleven elements of Vietoris-like polynomial sequence

Corollary 3.2. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, two-term recurrence
relation, for {V2n(x)}n≥0 is obtained from (3.1), for s = 2n + 2 as follows:

V2n+2(x) = x + 1
2 L(2n)V2n(x) (3.3)

Moreover, even members can be also written using (2.2) such that:

V2n(x) =
(

x + 1
2

)n 1
22n

(
2n

n

)
, n ≥ 0 (3.4)

Corollary 3.3. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Considering (3.3) in terms of
{V2n(x)}n≥0,
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V2n+2(x) =
(

x + 1
2

)2
L(2n)L(2n − 2)V2n−2(x), n ≥ 1 (3.5)

Additionally, the term V2n(x) in terms of any V2k(x) is as follows:

V2n(x) =
n−k∏
l=1

(
x + 1

2

)n−k

L(2n − 2l)V2k(x), n > k (3.6)

The following equality in terms of V0(x) is obtained:

V2n+2(x) =
(

x + 1
2

)n+1 n∏
i=0

L(2i)V0(x) =
(

x + 1
2

)n+1 (2n + 1)!!
(2n + 2)!! (3.7)

Proof. By putting s = 2n + 2 and s = 2n in (3.1), (3.3) and

V2n(x) = x + 1
2 L(2n − 2)V2n−2(x) (3.8)

calculates, respectively. When (3.8) is substituted into (3.3), (3.5) is obtained. If this process continues,
(3.6) is obtained. Moreover, for a particular value k = 0, (3.6) is transformed into (3.7). Here, it is
clear that

n∏
i=0

L(2i) = (2n+1)!!
(2n+2)!! via (2.2)

Corollary 3.4. The three consecutive-term recurrence relation for {V2n(x)}n≥0 is as follows:

V2n+2(x) =
x

2V2n+1(x) +
L(2n)

2 V2n(x) (3.9)

Proof. From (3.3), V2n+2(x) = x+1
2 L(2n)V2n(x). Then, it follows V2n+2(x) = x

2 L(2n)V2n(x) +
1
2L(2n)V2n(x). From (3.1), L(2n)V2n(x) for V2n+1. This ultimately leads to the three-consecutive-term
recurrence relation (3.9).

Corollary 3.5. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, two-term recurrence
relation, for {V2n+1(x)}n≥0 is obtained from (3.1), for s = 2n + 1 as follows:

V2n+1(x) = x + 1
2 L(2n)V2n−1(x) (3.10)

Moreover, odd members can be also written using (2.2) such that:

V2n−1(x) =
(

x + 1
2

)n−1 1
22n

(
2n

n

)
, n ≥ 0

Corollary 3.6. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Considering (3.10) in terms of
{V2n+1(x)}n≥0,

V2n+1(x) =
(

x + 1
2

)2
L(2n)L(2n − 2)V2n−3(x), n ≥ 1 (3.11)

Additionally, by using (3.10), the term V2n+1(x) in terms of any V2k+1(x) is as follows:

V2n−1(x) =
n−k∏
l=1

(
x + 1

2

)n−k

L(2n − 2l)V2k−1(x), n > k (3.12)

the term V2n+1(x) in terms of V0(x) is obtained as follows:

V2n+1(x) =
(

x + 1
2

)n n∏
i=0

L(2i)V0(x) =
(

x + 1
2

)n (2n + 1)!!
(2n + 2)!! (3.13)
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Proof. By putting s = 2n + 1 and s = 2n − 1 in (3.1), (3.10) and

V2n−1(x) = x + 1
2 L(2n − 2)V2n−3(x), (3.14)

is calculated, respectively. When (3.14) is substituted into (3.10), (3.11) is obtained. If this process
continues, (3.12) is obtained. Moreover, for a particular value k = 0, (3.12) is transformed into (3.13).
Here, it is clear that

n∏
i=0

L(2i) = (2n+1)!!
(2n+2)!! via (2.2)

Theorem 3.7 (Binet-like Formula-Form 1). Let {V2n(x)}n≥0 be Vietoris-like polynomial sequence.
Then, for n > 1, it provides Binet-like formula:

V2n(x) = C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n (3.15)

where
R

†1
2n(x) = 1

4

(
x −

√
x2 + 8L(2n)

)
, R

†2
2n(x) = 1

4

(
x +

√
x2 + 8L(2n)

)
(3.16)

and 
C

†1
2n(x) =

(
x+1

2

)n−1 (R†2
2n(x))2n − V2(x)

(R†2
2n(x))2n − (R†1

2n(x))2n

n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x)

C
†2
2n(x) =

(
x+1

2

)n−1 V2(x) − (R†1
2n(x))2n

(R†2
2n(x))2n − (R†1

2n(x))2n

n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)

(3.17)

Proof. Considering (3.9), characteristic equation for {V2n(x)}n≥0 is written by

t2 − 1
2xt − 1

2L(2n) = 0 (3.18)

Thus, its roots R
†1
2n(x) and R

†2
2n(x) are

R
†1
2n(x) = 1

4

(
x −

√
x2 + 8L(2n)

)
and R

†2
2n(x) = 1

4

(
x +

√
x2 + 8L(2n)

)
(3.19)

By (3.17),

C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n =
(

x + 1
2

)n−1

((
R

†2
2n(x)

)2n
− V2(x)

)
n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x)
(
R

†1
2n(x)

)2n

(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+
(

x + 1
2

)n−1

(
V2(x) −

(
R

†1
2n(x)

)2n
)

n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)
(
R

†2
2n(x)

)2n

(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

=
(

x + 1
2

)n−1

(
R

†2
2n(x)

)2n (
R

†1
2n(x)

)2n n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2k(x) −
(
R

†1
2n(x)

)2n (
R

†2
2n(x)

)2n n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+
(

x + 1
2

)n−1 −V2(x)
(
R

†1
2n(x)

)2n n−1∏
k=1

(2R
†1
2k(x) − x)R†1

2n(2k) + V2(x)
(
R

†2
2n(x)

)2n n−1∏
k=1

(2R
†2
2k(x) − x)R†2

2k(x)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

=
(

x + 1
2

)n−1

(
R

†2
2n(x)

)2n (
R

†1
2n(x)

)2n n−1∏
k=1

(
2
(
R

†1
2k(x)

)2
− xR

†1
2k(x)

)
−
(

2
(
R

†2
2k(x)

)2
− xR

†2
2k(x)

)
(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

+ V2(x)
(

x + 1
2

)n−1 −
(
R

†1
2n(x)

)2n n−1∏
k=1

(
2
(
R

†1
2k(x)

)2
− xR

†1
2k(x)

)
+
(
R

†2
2n(x)

)2n n−1∏
k=1

(
2
(
R

†2
2k(x)

)2
− xR

†2
2k(x)

)
(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

Since R
†1
2n(x) and R

†2
2n(x) in (3.19) satisfies (3.18), then

2
(
R

†1
2k(x)

)2
− xR

†1
2k(x) = L(2k) and 2

(
R

†2
2k(x)

)2
− xR

†2
2k(x) = L(2k)
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Then,

C
†1
2n(x)(R†1

2n(x))2n + C
†2
2n(x)(R†2

2n(x))2n = V2(x)
(

x + 1
2

)n−1 −
(
R

†1
2n(x)

)2n n−1∏
k=1

L(2k) +
(
R

†2
2n(x)

)2n n−1∏
k=1

L(2k)(
R

†2
2n(x)

)2n
−
(
R

†1
2n(x)

)2n

= V2(x)
(

x + 1
2

)n−1 n−1∏
k=1

L(2k)

Furthermore, using (3.6), for k = 1, the equality V2n(x) =
n−1∏
l=1

(
x+1

2

)n−1
L(2n − 2l)V2(x) is obtained,

and thus (3.15) is valid.

Example 3.8. Calculate V6(x) and V8(x) using Binet-like Formula-Form 1 for n = 3 and n = 4,
respectively. Through (3.16) and (3.17),

R
†1
6 (x) =

(
x −

√
x2 + 7

)6

4096

R
†2
6 (x) =

(
x +

√
x2 + 7

)6

4096

C
†1
6 (x) =

(x+1)2(x+
√

x2+6)
(

x+
√

x2+ 20
3

)
(−x+ 1

2 (x+
√

x2+6))
(

−x+ 1
2

(
x+
√

x2+ 20
3

))(
1
4 (−1−x)+(x+

√
x2+7)6

4096

)
64
(

−(x−
√

x2+7)6

4096 +(x+
√

x2+7)6

4096

)
and

C
†2
6 (x) =

(x+1)2(x−
√

x2+6)
(

x−
√

x2+ 20
3

)
(−x+ 1

2 (x−
√

x2+6))
(

−x+ 1
2

(
x−
√

x2+ 20
3

))(
1+x

4 −(x−
√

x2+7)6

4096

)
64
(

−(x−
√

x2+7)6

4096 +(x+
√

x2+7)6

4096

)
Then, V6(x) = C

†1
6 (x)(R†1

6 (x))6 + C
†2
6 (x)(R†2

6 (x))6 = 5(x+1)3

128 . It can also be observed that V6(x) via
(3.2). Similarly, through (3.16) and (3.17),

R
†1
8 (x) =

(
x −

√
x2 + 36

5

)8

65536

R
†2
8 (x) =

(
x +

√
x2 + 36

5

)8

65536

C
†1
8 (x) =

(x+1)3(−x+
√

x2+6)(x+
√

x2+6)
(

− x
2 + 1

2

√
x2+ 20

3

)(
x+
√

x2+ 20
3

)
(−x+

√
x2+7)(x+

√
x2+7)

(
1
4 (−x−1)+

(
x+

√
x2+ 36

5
)8

65536

)

2048

(
−

(
x−

√
x2+ 36

5
)8

65536 +

(
x+

√
x2+ 36

5
)8

65536

)
and

C
†2
8 (x) =

(x+1)3(−x−
√

x2+6)(x−
√

x2+6)
(

x−
√

x2+ 20
3

)(
− x

2 − 1
2

√
x2+ 20

3

)
(−x−

√
x2+7)(x−

√
x2+7)

(
1+x

4 −

(
x−

√
x2+ 36

5
)8

65536

)

2048

(
−

(
x−

√
x2+ 36

5
)8

65536 +

(
x+

√
x2+ 36

5
)8

65536

)

Then, it follows that V8(x) = C
†1
8 (x)(R†1

8 (x))8 + C
†2
8 (x)(R†2

8 (x))8 = 35(x+1)4

2048 . It can also be checked
via (3.2).

Remark 3.9. The following hold for R
†1
2n(x) and R

†2
2n(x):

i. R
†2
0 (1) = 1+

√
5

4 , which is half of the golden ratio
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ii. R
†1
2n(x) + R

†2
2n(x) = x

2

iii. R
†1
2n(x)R†2

2n(x) = −L(2n)
2

Theorem 3.10 (Binet-like Formula-Form 2). Let {V2n(x)}n≥0 be Vietoris-like polynomial sequence.
Then, it provides Binet-like formula

V2n(x) = C†1
2n(x)(R†1

2n(x))2n + C†2
2n(x)(R†2

2n(x))2n (3.20)

where 
R†1

2n(x) = L(2n)
4

(
x −

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)

R†2
2n(x) = L(2n)

4

(
x +

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

) (3.21)

and 

C†1
2n(x) =

(
x + 1

2

)n (2n − 1)!!
(
−L(2n)(R†2

2n(x))2n + (R†2
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

C†2
2n(x) =

(
x + 1

2

)n (2n − 1)!!
(
L(2n)(R†1

2n(x))2n − (R†1
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
(3.22)

Proof. Considering (3.5), the characteristic equation of Vietoris-like polynomials is as follows:

t2 − x

2 L(2n)t − x + 1
2

L(2n)L(2n − 2)
2 = 0

Thus, its roots R
†1
2n(x) and R†2

2n(x) are as follows:

R†1
2n(x) = L(2n)

4

(
x −

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)
and

R†2
2n(x) = L(2n)

4

(
x +

√
x2 + 4(x + 1)L(2n − 2)

L(2n)

)

By using (3.22), calculate C†1
2n(x)(R†1

2n(x))2n + C†2
2n(x)(R†2

2n(x))2n as:

=
(

x + 1
2

)n (2n − 1)!!
(
−L(2n)(R†2

2n(x))2n + (R†2
2n+2(x))2n+2

)
(R†1

2n(x))2n

2nn!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

+
(

x + 1
2

)n (2n − 1)!!
(
L(2n)(R†1

2n(x))2n − (R†1
2n+2(x))2n+2

)
(R†2

2n(x))2n

2nn!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)

=
(

x + 1
2

)n (2n − 1)!!
(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
2nn!

(
(R†1

2n(x))2n(R†2
2n+2(x))2n+2 − (R†2

2n(x))2n(R†1
2n+2(x))2n+2

)
=
(

x + 1
2

)n (2n − 1)!!
2nn!

=
(

x + 1
2

)n (2n − 1)!!
(2n)!!
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Using (3.7), (3.20) is obtained.

Example 3.11. Calculate V6(x) with Binet-like Formula-Form 2 for n = 3. Through (3.21) and (3.22),

R†1
6 (x) = 117649

64

x −

√
x2 + 80 (x + 1)

21

6

R†2
6 (x) = 117649

64

x −

√
x2 + 80 (x + 1)

21

6

C†1
6 =

1953125(x+1)3

(
1679616(3x+

√
9x2+35x+35)8

390625 − 823543
512

(
x+
√

x2+ 80(x+1)
21

)6
)

4608
(
(3x+

√
9x2+35x+35)8(−21x+

√
21

√
21x2+80x+80)6−(−3x+

√
9x2+35x+35)8(21x+

√
21

√
21x2+80x+80)6

)
and

C†2
6 (x) =

1953125(x+1)3

(
−

1679616(−3x+
√

9x2+35x+35)8

390625 + 823543
512

(
x−
√

x2+ 80(x+1)
21

)6
)

4608
(
(3x+

√
9x2+35x+35)8(−21x+

√
21

√
21x2+80x+80)6−(−3x+

√
9x2+35x+35)8(21x+

√
21

√
21x2+80x+80)6

)
Then, V6(x) = C†1

6 (x)(R†1
6 (x))6 + C†2

6 (x)(R†2
6 (x))6 = 5(x+1)3

128 . It can be checked via (3.2). It can also be
observed that R(x) and C(x) values obtained in this example are different from R(x) and C(x) values
found in Example 3.8.

Remark 3.12. The following hold for R†1
2n(x) and R†2

2n(x):

i. R†1
2n(x) + R†2

2n(x) =
L(2n)x

2

ii. R†1
2n(x)R†2

2n(x) = −
L(2n)L(2n − 2)(x + 1)

4
Remark 3.13. By setting x = 1 in the previously obtained results, the concepts related to Vietoris’
number sequence {vs}s≥0 can be observed.

It can be observed that Theorem 3.7 presents Binet-like formula based on the three consecutive-term
recurrence relation (3.9). Theorem 3.10 adapts the recurrence relation (3.1) into (3.9) and also derives
Binet-like formula again. This leads to two alternative expressions, referred to as Form 1 and Form 2,
for the Binet-like formula.

3.1. Some Identities for Vietoris-like Polynomials

This subsection investigates several identities for Vietoris-like polynomial sequence {Vs(x)}s≥0.

Proposition 3.14. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then, the following properties
hold:

i. V2n(x) + V2n−1(x) =
x + 3

2 L(2n − 2)V2n−2(x)

ii. V2n(x) − V2n−1(x) =
x − 1

2 L(2n − 2)V2n−2(x)

iii. V2n+1(x) + V2n−1(x) =
(

x+1
2 L(2n) + 1

)
L(2n − 2)V2n−2(x)

iv. V2n+1(x) − V2n−1(x) =
(

x+1
2 L(2n) − 1

)
L(2n − 2)V2n−2(x)

v. V2n(x) + V2n+2(x) =
(

x+1
2 L(2n) + 1

)
V2n(x) =

(
V2n+2(x)

V2n(x) + 1
)

V2n(x)
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vi. V2n(x) − V2n+2(x) =
(

x+1
2 L(2n) − 1

)
V2n(x) =

(
V2n+2(x)

V2n(x) − 1
)

V2n(x)

Proof. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence.

i. From (3.8) and (3.1), V2n(x) = x+1
2 L(2n−2)V2n−2(x) and V2n−1(x) = L(2n−2)V2n−2(x), respectively.

The proof is completed when these equations are added side by side.

ii. From (3.3) and (3.8), V2n(x) + V2n+2(x) =
(

x+1
2 L(2n) + 1

)
V2n(x). Since V2n+2(x)

V2n(x) = x+1
2 L(2n), the

desired result is obtained.

The other proofs are similar.

Proposition 3.15 (Catalan-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. For
s > t and K = Vs+t(x)Vs−t(x) − (Vs(x))2, the following relation is valid: For all n ≥ 1 and m > 1,

K =



(
t/2∏
l=1

(
x+1

2

)t/2
L(s + t − 2l) −

t/2∏
l=1

(
x+1

2

)t/2
L(s − 2l)

)
Vs(x)Vs−t(x), s = 2n and t = 2m

(
L(s − t − 1)

(t+1)/2∏
l=1

(
x+1

2

)(t−1)/2
L(s + t + 1 − 2l) −

(t+1)/2∏
l=1

(
x+1

2

)(t+1)/2
L(s − 2l)

)
Vs−t−1(x)Vs(x), s = 2n and t = 2m − 1

(
t/2∏
l=1

(
x+1

2

)(t−4)/2
L(s + t + 1 − 2l) −

t/2∏
l=1

(
x+1

2

)(t−4)/2
L(s + 1 − 2l)

)
Vs+1(x)Vs−t+1(x), s = 2n − 1 and t = 2m

 t−1
2∏

l=1

(
x+1

2

) t−1
2 L(s + t − 2l) −

t+1
2∏

l=1

(
x+1

2

) t−3
2 L(s + 1 − 2l)

Vs+1(x)Vs−t(x), s = 2n − 1 and t = 2m − 1

Proof. Consider (3.6). For s = 2n and t = 2m,

Vs+t(x)Vs−t(x) − (Vs(x))2 =V2n+2m(x)V2n−2m(x) − (V2n(x))2

=
m∏

l=1

(
x + 1

2

)m

L(2n + 2m − 2l)V2n(x)V2n−2m(x)

−
m∏

l=1

(
x + 1

2

)m

L(2n − 2l)V2n(x)V2n−2m(x)

=
(

m∏
l=1

(
x + 1

2

)m

L(2n + 2m − 2l) −
m∏

l=1

(
x + 1

2

)m

L(2n − 2l)
)

V2n(x)V2n−2m(x)

=

 t/2∏
l=1

(
x + 1

2

)t/2
L(s + t − 2l) −

t/2∏
l=1

(
x + 1

2

)t/2
L(s − 2l)

Vs(x)Vs−t(x)

For s = 2n and t = 2m − 1, using (3.1),

Vs+t(x)Vs−t(x) − (Vs(x))2 =V2n+2m−1(x)V2n−2m+1(x) − (V2n(x))2

=2V2n+2m(x)
x + 1

2V2n−2m+2(x)
x + 1 − (V2n(x))2

=
m∏

l=1

(
x + 1

2

)m−2
L(2n + 2m − 2l)V2n(x)V2n−2m+2(x)

− V2n(x)
m−1∏
l=1

(
x + 1

2

)m−1
L(2n − 2l)V2n−2m+2(x)

=

(t+1)/2∏
l=1

(
x + 1

2

)(t−3)/2
L(s + t + 1 − 2l) −

(t−1)/2∏
l=1

(
x + 1

2

)(t−1)/2
L(s − 2l)

Vs−t+1(x)Vs(x)
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For s = 2n − 1 and t = 2m,

Vs+t(x)Vs−t(x) − (Vn(x))2 =V2n+2m−1(x)V2n−2m−1(x) − (V2n−1(x))2

=2V2n+2m(x)
x + 1

2V2n−2m(x)
x + 1 −

(2V2n(x)
x + 1

)2

=
(

m∏
l=1

(
x + 1

2

)m−2
L(2n + 2m − 2l) −

m∏
l=1

(
x + 1

2

)m−2
L(2n − 2l)

)
V2n(x)V2n−2m(x)

=

 t/2∏
l=1

(
x + 1

2

)(t−4)/2
L(s + t + 1 − 2l) −

t/2∏
l=1

(
x + 1

2

)(t−4)/2
L(s + 1 − 2l)

Vs+1(x)Vs−t+1(x)

For s = 2n − 1 and t = 2m − 1,

Vs+t(x)Vs−t(x) − (Vs(x))2 = V2n+2m−2(x)V2n−2m(x) − (V2n−1(x))2

= V2n+2m−2(x)V2n−2m(x) −
(2V2n(x)

x + 1

)2

=
(

m−1∏
l=1

(
x + 1

2

)m−1
L(2n + 2m − 2 − 2l)

m∏
l=1

(
x + 1

2

)m−2
L(2n − 2l)

)
V2n(x)V2n−2m(x)

=


t−1

2∏
l=1

(
x + 1

2

) t−1
2

L(s + t − 2l) −
t+1

2∏
l=1

(
x + 1

2

) t−3
2

L(s + 1 − 2l)

Vs+1(x)Vs−t(x)

The above proposition is also valid for s > t > 2.

Example 3.16. Considering (3.2), we compute V10(x)V2(x) − V6(x)2 = 13(x+1)6

32768 , where s = 6 and
t = 4. Besides, using the above formula, we obtain the same results

V10(x)V2(x) − V6(x)2 =
( 2∏

l=1

(
x+1

2

)2
L(10 − 2l) −

2∏
l=1

(
x+1

2

)2
L(6 − 2l)

)
V6(x)V2(x)

=
13(x + 1)6

32768
Similarly, for s = 6 and t = 3,

V9(x)V3(x) − V6(x)2 =
(

L(2)
2∏

l=1

(
x+1

2

)
L(10 − 2l) −

2∏
l=1

(
x+1

2

)2
L(6 − 2l)

)
V6(x)V2(x)

= −
(x + 1)5 (−89 + 100x)

65536
For s = 9 and t = 4,

V13(x)V5(x) − V9(x)2 =
( 2∏

l=1
L(14 − 2l) −

2∏
l=1

L(10 − 2l)
)

V10(x)V6(x)

=
321(1 + x)8

16777216
For s = 5 and t = 3,

V8(x)V2(x) − V5(x)2 =
(

x+1
2 L(6) −

2∏
l=1

L(6 − 2l)
)

V6(x)V2(x)

=
5(x + 1)4 (−3 + 7x)

8192
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Proposition 3.17. For n ≥ 1,

Vs+2(x)Vs−2(x) − (Vs(x))2 =


x + 1

2
2

s(s + 2)Vs(x)Vs−2(x), s = 2n

x + 1
2

2
(s + 1)(s + 3)Vs(x)Vs−2(x), s = 2n − 1

Moreover, for x = 1, considering (3.1), we obtain the following result as in [18]:

vs+2vs−2 − (vs)2 =


2

s(s + 2)vsvs−2, s = 2n

2
(s + 1)(s + 3)vs+1vs−1, s = 2n − 1

Proposition 3.18 (Cassini-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence. Then,

Vs+1(x)Vs−1(x) − (Vs(x))2 =


x+1

2

(
L(s) − x+1

2

)
(Vs−1(x))2, s = 2n

L(s − 1)
(

x+1
2 − L(s − 1)

)
(Vs−1(x))2, s = 2n − 1

where n ≥ 1.

Proof. Consider (3.12). For s = 2n,

Vs+1(x)Vs−1(x) − (Vs(x))2 = V2n+1(x)V2n−1(x) − (V2n(x))2

= x + 1
2 L(2n)V2n−1(x)V2n−1(x) −

(
x + 1

2 V2n−1

)2

= x + 1
2

(
L(2n) − x + 1

2

)
(V2n−1(x))2

= x + 1
2

(
L(s) − x + 1

2

)
(Vs−1(x))2

For s = 2n − 1,

Vs+1(x)Vs−1(x) − (Vs(x))2 = V2n(x)V2n−2(x) − (V2n−1(x))2

= x + 1
2 L(2n − 2)V2n−2(x)V2n−2(x) − L2(2n − 2)(V2n−2(x))2

= L(2n − 2)
(

x + 1
2 − L(2n − 2)

)
(V2n−2(x))2

= L(s − 1)
(

x + 1
2 − L(s − 1)

)
(Vs−1(x))2

Proposition 3.19 (d’Ocagne-like Identity). Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence.
Then,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) =



(L(t) − L(s)) Vs(x)Vt(x), s = 2n and t = 2m

(
1 − 2L(s)

x+1

)
Vs(x)Vt+1(x), s = 2n and t = 2m − 1

(
2L(t)
x+1 − 1

)
Vs+1(x)Vt(x), s = 2n − 1 and t = 2m

0, s = 2n − 1 and t = 2m − 1

(3.23)

where n, m ≥ 1.
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Proof. Consider (3.3). For s = 2n and t = 2m,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n(x)V2m+1(x) − V2n+1(x)V2m(x)

= V2n(x)L(2m)V2m(x) − L(2n)V2n(x)V2m(x)

= (L(2m) − L(2n)) V2n(x)V2m(x)

= (L(t) − L(s)) Vs(x)Vt(x)

Additionally, by (2.2),

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) =
(

t − s

(s + 2)(t + 2)

)
Vs(x)Vt(x)

Then, for s = 2n and t = 2m − 1,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n(x)V2m(x) − V2n+1(x)V2m−1(x)

= V2n(x)V2m(x) − L(2n)V2n(x)2V2m(x)
x + 1

=
(

1 − 2L(2n)
x + 1

)
V2n(x)V2m(x)

=
(

1 − 2L(s)
x + 1

)
Vs(x)Vt+1(x)

For s = 2n − 1 and t = 2m,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n−1(x)V2m+1(x) − V2n(x)V2m(x)

= 2V2n(x)
x + 1 L(2m)V2m(x) − V2n(x)V2m(x)

=
(2L(2m)

x + 1 − 1
)

V2n(x)V2m(x)

=
(2L(t)

x + 1 − 1
)

Vs+1(x)Vt(x)

For s = 2n − 1 and t = 2m − 1,

Vs(x)Vt+1(x) − Vs+1(x)Vt(x) = V2n−1(x)V2m(x) − V2n(x)V2m−1(x)

= 2V2n(x)
x + 1 V2m(x) − V2n(x)2V2m(x)

x + 1
= 0

Remark 3.20. For x = 1, (3.23) becomes the following formula as in [18]:

vsvt+1 − vs+1vt =



t − s

(s + 2)(t + 2)vsvt, s = 2n and t = 2m

1
s + 2vsvt+1, s = 2n and t = 2m − 1

−
1

t + 2vs+1vt, s = 2n − 1 and t = 2m

0, s = 2n − 1 and t = 2m − 1
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Proposition 3.21. Let {Vs(x)}s≥0 be Vietoris-like polynomial sequence and n ≥ 2. Then,

V2n+2(x) =
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)(1
2V2n(x) + x + 1

4 V2n−1(x)
)

(3.24)

Proof. From (3.4) and the Pascal’s identity
(n

k

)
=
(n−1

k−1
)

+
(n−1

k

)
,

V2n+2(x) =
(

x + 1
2

)n+1 1
22n+2

(
2n + 2
n + 1

)

=
(

x + 1
2

)n+1 1
22n+2

((
2n + 1

n

)
+
(

2n + 1
n + 1

))

=
(

x + 1
2

)n+1 1
22n+2

((
2n

n − 1

)
+
(

2n

n

)
+
(

2n

n

)
+
(

2n

n + 1

))

=
(

x + 1
2

)n+1
(

1
22n+2

((
2n

n − 1

)
+
(

2n

n + 1

))
+ 1

22n+1

(
2n

n

))
Using

(n
k

)
=
( n

n−k

)
,

V2n+2(x) =
(

x + 1
2

)n+1
(

1
22n+2

((
2n

n − 1

)
+
(

2n

2n − n − 1

))
+ 1

22n+1

(
2n

n

))

=
(

x + 1
2

)n+1
(

1
22n+1

(
2n

n − 1

)
+ 1

22n+1

(
2n

n

))

Using
(n

k

)
= n

n−k

(n−1
k

)
and (3.4),

V2n+2(x) =
(

x + 1
2

)n+1 1
22n+1

2n

(n + 1)

(
2n − 1
n − 1

)
+
(

x + 1
4

)(
x + 1

2

)n 1
22n

(
2n

n

)

=
(

x + 1
2

)2 2n − 1
22(n + 1)

(
x + 1

2

)n−1 1
22n−2

(
2n − 2
n − 1

)
+
(

x + 1
4

)
V2n(x)

=
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)
V2n(x)

From (3.1) and (3.3),

V2n+2(x) =
(

x + 1
2

)2 2n − 1
22(n + 1)V2n−2(x) +

(
x + 1

4

)(1
2V2n(x) + x + 1

4 V2n−1(x)
)

Remark 3.22. For x = 1, (3.24) becomes the following equality as in [18]:

v2n+2 =
(1

4v2n + 1
4v2n−1

)
+ 2n − 1

4(n + 1)v2n−2, n ≥ 2

4. Conclusion

Many researchers have studied number sequences and their properties, which play an essential role in
mathematics. Hence, the polynomial forms of these number sequences for any variable quantity x have
also become an area of significant interest. The Fibonacci polynomials were among the first polynomial
forms considered. Since Fibonacci-type polynomials have significant applications in geometry and
algebra, various researchers have extensively studied them in number theory. In this paper, we provided
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an affirmative answer to a question related to the existence of special Vietoris-like polynomials by
using the properties of Vietoris’ numbers. Hence, we derived special Vietoris-like polynomials and
investigated their basic properties, recurrence relations, and special equalities. We also constructed
an analogy with the studies [10–12, 15–18] using Vietoris-like polynomial approach and established
some conditions for obtaining interesting results inspired by studies [2–9]. We determined Catalan-like,
Cassini-like and d’Ocagne-like identities. We also presented their special cases corresponding to
the existing identities in Vietoris’ number sequence. We believe that the calculations of this work
contribute to the broader understanding of polynomial structures and their connections with well-known
number sequences and enable new studies. Specifically, the results of Vietoris-like polynomials and
the properties of Vietoris’ hybrid numbers (for more details on hybrid numbers, see [21]) of the form
VHs = vs +vs+1i+εvs+2 +hvs+3 where i2 = −1, ε2 = 0, h2 = 1, and ih = −hi = ε+i [22], Vietoris-like
hybrid binomial sequence and its remarkable features represent key areas for future research.
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Abstract− Let Dn be the semigroup of all order-decreasing full transformations on Xn =
{1, 2, . . . , n} under its natural order, and let N(Dn) be the subsemigroup of all nilpotent
elements of Dn, where n ∈ Z+, the set of all positive integers. In this paper, for 1 ≤ r ≤ n−1,
we determine the cardinality and rank of nilpotent subsemigroup N(Dn,r) = {α ∈ N(Dn) :
|im(α)| ≤ r} of N(Dn). We then find the cardinalities of D2,2

n and N(Dn)p,p. Furthermore,
we present an alternative combinatorial approach to determine the cardinality and rank
of Dn(ξ) = {α ∈ Dn : αk = ξ, for some k ∈ Z+}, for all idempotent ξ ∈ Dn within the
scope of this study. Here, for all α ∈ Dn, imc(α) = {t ∈ im(α) : |tα−1| ≥ 2}. Besides, for
all 2 ≤ p ≤ r ≤ n and C ∈ {N(Dn),Dn}, Cp =

{
α ∈ C : t ∈ imc(α) and |tα−1| = p

}
and

Cp,r =

{
α ∈ Cp :

∣∣∣∣ ⋃
t∈imc(α)

tα−1

∣∣∣∣ = r

}
.

Keywords − Order-decreasing, transformations, collapse, nilpotent, rank

Mathematics Subject Classification (2020) 06F05, 20M20

1. Introduction

For an arbitrary set Xn = {1, 2, . . . , n}, ordered standard way, such that n ∈ Z+, the set of all positive
integers, the notation Tn denote the full transformation semigroup on Xn, i.e., all mappings from X to
X, under the operation of composition. We compose the functions from left to right. A transformation
α ∈ Tn is called order-preserving if x ≤ y implies xα ≤ yα, for all x, y ∈ Xn, and decreasing if xα ≤ x

(xα ≥ x), for all x ∈ Xn. Let
Dn = {α ∈ Tn : ∀x ∈ Xn, xα ≤ x}

be the semigroup of all order-decreasing full transformations. For any transformation α ∈ Tn, the
collapse, the image, and the fix of α are defined as follows, respectively:

c(α) =
⋃

t∈im(α)
{tα−1 : |tα−1| ≥ 2}

im(α) = {xα : x ∈ Xn}

and
fix(α) = {x ∈ Xn : xα = x}
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https://dergipark.org.tr/tr/pub/jnt
https://doi.org/10.53570/jnt.1663409
https://orcid.org/0000-0002-4085-0419


Korkmaz / Combinatorial Results on Some Nilpotent Subsemigroups of a Semigroup of Order-Decreasing Full Transformations 27

For any semigroup S, an element e in S is said to be an idempotent if e2 = e. It is known that
α ∈ E(Tn) if and only if fix(α) = im(α). Let S be a semigroup with zero element 0. An element a in
S is said to be a nilpotent element if there exists a k ∈ Z+ such that ak = 0. A subsemigroup T ⊆ S is
called nilpotent if there exists an m ∈ Z+ such that T m = {0} or T is a nilpotent as a semigroup with
different 0 which means that there exists an idempotent e ∈ T differs from 0 such that T k = {e}, for
some k ∈ Z+. It is proven in [1] that a finite semigroup S with 0 is nilpotent if and only if the unique
idempotent of S is 0. The set of all nilpotent subsemigroups of S is partially ordered with respect to
inclusions, and each maximal elements of this set are called maximal nilpotent subsemigroup of S.
Throughout this study, let E(S) and N(S) denote the set of all idempotent and nilpotent elements of
S, respectively. It should be noted that N(S) may not be a subsemigroup of S.

A subset W of a semigroup S is a generating set of S if every element of S is expressible as a product
of the elements of W . Further, ⟨W ⟩ denotes the subsemigroup generated by a non-empty subset W of
S. If S is finitely generated, then its rank and idempotent rank are defined as follows, respectively:

rank(S) = min{|W | : W ⊆ S and ⟨W ⟩ = S}

and
idrank(S) = min{|W | : W ⊆ E(S) and ⟨W ⟩ = S}

The problem of determining the cardinality and aforementioned ranks of a certain finite transformation
semigroups is closely related to combinatorics, is classical, and has been extensively explored. The
authors [2] considered the ideal (and hence subsemigroup) Kn,r = {α ∈ Tn : im(α) ≤ r} and
demonstrated that rank(Tn,r) = idrank(Tn,r) = S(n, r). Afterward, Ruškuc [3] gave an alternative
proof for the rank of Kn,r. These results provided that to be applicable in other semigroups as well
as Dn. This was followed by a number of articles on Dn in terms of algebraic, combinatorial, and
(idempotent) rank properties [4–9]. In particular,

rank(Dn) = idrank(Dn) = n(n − 1)
2

rank(N(Dn)) = (n − 2) ! (n − 2)

|Dn| = n!

|N(Dn)| = (n − 1)!

and
|E(Dn)| =

n∑
r=0

S(n, r)

For further research on transformations semigroups within the scope of this study, see [10–12], and for
more information about semigroup theory, see [1, 13].

The rest of the paper is organized as follows: Section 2 provides some combinatorial results on a
nilpotent subsemigroup of Dn and certain invariants related to the collapse. Section 3 demonstrates
the efficacy of enumerative techniques by providing alternative proofs for the cardinality and rank of
maximal nilpotent subsemigroups of Dn. The last section concludes the paper.

2. Cardinality and Rank Properties

Given a finite semigroup S with zero 0, S is nilpotent if and only if Sm = {0}, for some positive
integer m. Let S be a finite nilpotent semigroup with |S| ≥ 2. In [15], it was shown that S \ S2 is the
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minimum generating set of S, and thus

rank(S) = |S| − |S2|

Therefore, throughout this paper, we consider non-trivial nilpotent semigroups by determining their
ranks.

For 1 ≤ r ≤ n − 1, let α and β be two elements in

N(Dn,r) = {α ∈ N(Dn) : |im(α)| ≤ r}

Given that im(αβ) ⊆ im(β) implies |im(αβ)| ≤ r, then N(Dn,r) is a nilpotent subsemigroup of both Dn

and N(Dn) with the zero element 0n. It can be observed that N(Dn,1) = {0n} and N(Dn,n−1) = N(Dn).
We aim to discover a formula for the cardinality of N(Dn,r), for 2 ≤ r ≤ n − 1, and then utilize this
formula to determine the rank of N(Dn,r).

Lemma 2.1. For 2 ≤ r ≤ n − 1,

|N(Dn,r)| =
r∑

k=1

k−1∑
i=0

(−1)i

(
n

i

)
(k − i)n−1

Proof. For α ∈ Dn−1, let α̂ : Xn → Xn be defined by 1α̂ = 1α = 1 and iα̂ = (i−1)α, for all 2 ≤ i ≤ n.
It can be observed that α̂ ∈ N(Dn). For all α ∈ Dn−1, since the function φ : Dn−1 → N(Dn) defined
by (α)φ = α̂ is a bijection, then |Dn−1| = |N(Dn)|. For 1 ≤ k ≤ r ≤ n − 1, consider the sets

Dn(k) = {α ∈ Dn : |im(α)| = k} and N(Dn(k)) = {α ∈ N(Dn) : |im(α)| = k}

It is known from [6] that |Dn(k)| =
k−1∑
i=0

(−1)i
(n+1

i

)
(k − i)n. It can be observed from the aforementioned

bijection that α ∈ Dn−1(k) if and only if α̂ ∈ N(Dn(k)). Hence,

|N(Dn(k))| = |Dn−1(k)| =
k−1∑
i=0

(−1)i

(
n

i

)
(k − i)n−1

Since N(Dn,r) is the union of disjoint sets N(Dn(k)), for 1 ≤ k ≤ r, then

|N(Dn,r)| =
r∑

k=1

k−1∑
i=0

(−1)i

(
n

i

)
(k − i)n−1

Afterward, we present one of the key results of this study.

Theorem 2.2. For 2 ≤ r ≤ n − 2,

rank(N(Dn,r)) =
r∑

k=1

k−1∑
i=0

(−1)i

(
n

i

)
(k − i)n−1 −

r∑
k=1

k−1∑
i=0

(−1)i

(
n − 1

i

)
(k − i)n−2

Proof. Since N(Dn,r) is a nilpotent semigroup, it follows that

rank(N(Dn,r)) = |N(Dn,r) \ N(Dn,r)2| = |N(Dn,r)| − |N(Dn,r)2|

The cardinality of N(Dn,r)2 can be calculated by constructing the well-defined bijection f : N(Dn−1,r) →
N(Dn,r)2 in the following way:(

1 2 3 4 · · · n − 1
1 1 c2 c3 · · · cn−1

)
→
(

1 2 3 4 5 · · · n

1 1 1 c2 c3 · · · cn−1

)
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where 1 ≤ ci ≤ i, for 2 ≤ i ≤ n − 1. As a result, it follows from Lemma 2.1 that

|N(Dn,r)2| = |N(Dn−1,r)| =
r∑

k=1

k−1∑
i=0

(−1)i

(
n − 1

i

)
(k − i)n−2

and thus

rank(N(Dn,r)) =
r−1∑
k=1

k−1∑
i=0

(−1)i

(
n

i

)
(k − i)n−1 −

r∑
k=1

k−1∑
i=0

(−1)i

(
n − 1

i

)
(k − i)n−2

Example 2.3. Let N(D6,4) = {α ∈ N(D6) : |im(α)| ≤ 4}. Then,

|N(D6)(1)| = 1

|N(D6)(2)| =
1∑

i=0
(−1)i

(
6
i

)
(2 − i)5 = 19

N(D6)(3)| =
2∑

i=0
(−1)i

(
6
i

)
(3 − i)5 = 66

|N(D6)(4)| =
3∑

i=0
(−1)i

(
6
i

)
(4 − i)5 = 26

and

|N(D6,4| =
4∑

k=1

k−1∑
i=0

(−1)i

(
6
i

)
(k − i)5 = 112

Furthermore,

|N(D6,4)2| = |N(D5,4)| = |N(D5)| =
4∑

k=1

k−1∑
i=0

(−1)i

(
5
i

)
(k − i)4 = 24

Therefore,
rank(N(D6,4)) = |N(D6,4| − |N(D6,4)2| = 112 − 24 = 88

Lemma 2.4. For n ≥ 2,
|D2,2

n | = 2n−1 − 1

Proof. For a given α ∈ D2,2
n , there exists an i ∈ im(α) such that |iα−1| = 2 and min{iα−1} = i.

Thus,

α =
(

{1} {2} · · · {i − 1} {i, i + 1} {i + 2} · · · {n}
1 2 · · · i − 1 i (i + 2)α · · · nα

)

where 1 ≤ i ≤ n − 1. It can be observed that there is only one transformation in D2,2
n , for i = n − 1.

Hence, suppose that i ≠ n − 1. Since each block {j} is a singleton for i + 2 ≤ j ≤ n, we deduce that
there are exactly two possibilities for jα. Consequently, the number of transformations in D2,2

n for a
fixed i is given by 2n−i−1. Since 1 ≤ i ≤ n − 2, then∣∣∣D2,2

n

∣∣∣ = 1 +
n−2∑
i=1

2n−i−1 = 2n−1 − 1

Lemma 2.5. For n ≥ 3 and 2 ≤ p ≤ n − 1, let
∣∣1α−1∣∣ = p and Xn \ 1α−1 = {b1, . . . , bn−p}. Then,

|N(Dn)p,p| = (b1 − 2)(b2 − 3)(b3 − 3) . . . (bn−k − 3)
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Proof. Given α ∈ N(Dn)p,p the conditions 1α = 2α = 1 implies that |1α−1| = p. If Xn \ 1α−1 =
{b1, . . . , bn−p}, then

α =
(

A {b1} {b2} · · · {bn−p}
1 b1α b2α · · · bn−pα

)

Recall that the conditions 1α = 2α = 1 implies that bj ≥ 3, for each 1 ≤ j ≤ n − p. Since α ∈ N(Dn)
and {bj} is a singletion, we deduce that there are exactly b1 − 2 possibilities, for b1α, and bi − 3
possibilities, for biα, where 2 ≤ i ≤ n − p. Hence,

|N(Dn)p,p| = (b1 − 2)(b2 − 3)(b3 − 3) . . . (bn−k − 3)

Example 2.6. Consider the sets

D
2,2
4 =

{(
{1, 2} {3} {4}

1 2 3

)
,

(
{1, 2} {3} {4}

1 2 4

)
,

(
{1, 2} {3} {4}

1 3 2

)
,

(
{1, 2} {3} {4}

1 3 4

)
,(

{1} {2, 3} {4}
1 2 3

)
,

(
{1} {2, 3} {4}
1 2 4

)
,

(
{1} {2} {3, 4}
1 2 3

)}
and

N(D5)3,3 =
{(

{1, 2, 3} {4} {5}
1 2 3

)
,

(
{1, 2, 3} {4} {5}

1 2 4

)
,

(
{1, 2, 3} {4} {5}

1 3 2

)
,

(
{1, 2, 3} {4} {5}

1 3 4

)}

Thus,
∣∣∣D2,2

4

∣∣∣ = 24−1 − 1 = 7 and
∣∣∣N(D5)3,3

∣∣∣ = (4 − 2)(5 − 3) = 4, where 1α−1 = {1, 2, 3} and
Xn \ 1α−1 = {4, 5} = {b1, b2}.

3. Maximal Nilpotent Subsemigroups of Dn

This section demonstrates the efficacy of enumerative techniques by providing alternative proofs for
the cardinality and rank of maximal nilpotent subsemigroups of Dn. If α ∈ Dn, then

α =
(

A1 A2 · · · Ar

a1 a2 · · · ar

)

to indicate that im(α) = {1 = a1, a2, . . . , ar} and aiα
−1 = Ai, for each 1 ≤ i ≤ r, and A1, A2, . . . , Ar

also called blocks of α are all non-empty. It is known that every transformation α ∈ Dn is idempotent
if and only if ai = min Ai, for each 1 ≤ i ≤ r. Every transformation α ∈ Dn is nilpotent if and only
if fix(α) = {1}. In this paper, we denote the zero and the identity elements of Dn by 0n and 1n,
respectively.

For each ξ ∈ E(Dn), let Dn(ξ) = {α ∈ Dn : αk = ξ, for some k ∈ Z+} be the maximum nilpotent
subsemigroup of Dn with the zero element ξ. For any ξ ∈ E(Dn), the cardinality and rank of Dn(ξ)
were computed in [14].

In this section, we demonstrate the efficacy of enumerative techniques by providing alternative proofs
for the cardinality and rank of Dn(ξ). These proofs, derived through distinct block enumerations of ξ,
highlight the potency of these techniques in tackling complex combinatorial challenges.

Theorem 3.1. For any ξ ∈ E(Dn), let fix(ξ) = {1 = a1 < a2 < · · · < ar} and Ai be blocks of ξ with
|Ai| = ki, for each 1 ≤ i ≤ r. Then,

|Dn(ξ)| =
r∏

i=1
(ki − 1)!
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Proof. Let Ai = {ai +si1 , ai +si2 , . . . , ai +siki
} with si1 = 0. For α ∈ Dn(ξ), if (ai +sij )α = ai +simj

,
for 1 ≤ j ≤ ki, then m1 = 1 and mj ∈ {1, 2, . . . , j − 1}, for each 2 ≤ j ≤ ki. Consider

αi =
(

1 2 · · · ki

m1 m2 · · · mki

)
It can be observed that αi ∈ N(Dki

), for each 1 ≤ i ≤ r. Therefore, the function

f : Dn(ξ) → N(Dk1) × N(Dk2) × · · · × N(Dkr )

defined by αf = (α1, α2, . . . , αr) is a well-defined bijection. Thus,

|Dn(ξ)| =
r∏

i=1
(ki − 1)!

Theorem 3.2. For any ξ ∈ E(Dn), let fix(ξ) = {1 = a1 < a2 < · · · < ar} and Ai be blocks of ξ with
|Ai| = ki, for each 1 ≤ i ≤ r. Then,

rank(Dn(ξ)) =
r∏

i=1
(ki − 1)! −

r∏
i=1

(ki − 2)!

Proof. Let Ai = {ai+si1 , ai+si2 , . . . , ai+siki
} with si1 = 0. For α ∈ Dn(ξ)2, let (ai+sij)α = ai+simj

,
for 1 ≤ j ≤ ki. Then, m1 = m2 = 1 and mj ∈ {1, . . . , j − 2}, for each 3 ≤ j ≤ ki. Consider

αi =



(
1
1

)
, ki ∈ {1, 2}

(
1 2 · · · ki − 1

m1 m2 · · · mki−1

)
, ki ≥ 3

Assuming that N(Dki−1) = N(D1), for ki = 1, then αi ∈ N(Dki−1), for each 1 ≤ i ≤ r. Consequently,
the function

f : Dn(ξ)2 → N(Dk1−1) × N(Dk2−1) × · · · × N(Dkr−1)

defined by αf = (α1, α2, . . . , αr) is a well-defined bijection. By taking into account the assumption
that N(Dki−1) = N(D1) when ki = 1, that is, |N(Dki−1)| = (ki − 2)! = 1 for ki = 1, the result follows
from the fact that Dn(ξ) \ Dn(ξ)2 is the minimum generating set of Dn(ξ). Therefore,

rank(Dn(ξ)) =
∣∣∣Dn(ξ) \ Dn(ξ)2

∣∣∣ =
∣∣∣Dn(ξ)

∣∣∣− ∣∣∣Dn(ξ)2
∣∣∣ =

r∏
i=1

(ki − 1)! −
r∏

i=1
(ki − 2)!

4. Conclusion

In this study, we determined the cardinality and rank of the nilpotent subsemigroup N(Dn,r) of N(Dn)
and, consequently, of Dn. We also found the cardinalities of D2,2

n and N(Dn)p,p. Furthermore, we
provided an alternative combinatorial approach to determine the cardinality and rank of Dn(ξ) for
each ξ ∈ Dn. Future studies may delve deeper into the structural properties of nilpotent subsemigroups
within other transformation semigroups, expanding the scope beyond Dn. Moreover, exploring the
interrelations between combinatorial approaches and other algebraic methods could yield new insights
and simplify complex calculations.



Korkmaz / Combinatorial Results on Some Nilpotent Subsemigroups of a Semigroup of Order-Decreasing Full Transformations 32

Author Contributions

The author read and approved the final version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

Ethical Review and Approval

No approval from the Board of Ethics is required.

References

[1] O. Ganyushkin, V. Mazorchuk, Classical finite transformation semigroups, Springer-Verlag, 2009.

[2] J. M. Howie, R. B. McFadden, Idempotent rank in finite full transformation semigroups, Proceed-
ings of the Royal Society of Edinburgh Section A: Mathematics 114 (3-4) (1990) 161–167.
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Hatice Çay1 ID

Article Info

Received: 7 Apr 2025

Accepted: 18 Jun 2025

Published: 30 Jun 2025

Research Article

Abstract− This paper first defines the 1-absorbing version of principally right primary ideals
(P1ARP ideals), generalizing prime ideals, for noncommutative rings. It then investigates
various properties of this ideal structure in different ring settings. It obtains some essential
results in ring extensions, such as homomorphic images, product rings, local rings, and
idealization. While this study enables the obtaining of original results due to structural
differences between commutative and noncommutative rings, it shows that some properties
valid in commutative rings are preserved. Finally, the paper concludes by discussing two
open problems that could guide future studies.
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1. Introduction

Working with non-commutative rings is generally more challenging than working with commutative
rings. Consequently, numerous results proven for commutative rings still remain unresolved in the
setting of non-commutative rings. In this study, we aim to introduce a suitable version of 1-absorbing
primary ideals–originally defined for commutative rings–for non-commutative rings. As a starting
point, we conduct a literature review and investigate similar definitions and results in the context of
commutative rings. This will serve to illustrate the background and motivation for our work.

The study of prime ideal structures and their various generalizations in commutative rings has been a
significant area of research in ring theory, as these concepts contribute significantly to understanding
the properties and classification of rings. One of these generalizations is the concept of 1-absorbing
primary ideals, introduced by Badawi and Çelikel [1]. The authors proved that a ring containing a
1-absorbing primary ideal that is not primary must be a quasi-local ring. Additionally, they explored
the relationship between these ideals and the connection between Noetherian domains and Dedekind
domains, presenting several significant results. Subsequently, Nikandish et al. [2] investigated various
properties of these ideals and introduced a more general version known as the weakly 1-absorbing
primary ideals, integrating the characteristics of weakly prime ideals and 1-absorbing primary ideals.
They studied the key properties of these ideals in the context of polynomial rings, principal ideal
domains (PIDs), and idealization structures.
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The study of primary ideals, initially focused on commutative rings, has been expanded to noncom-
mutative settings to investigate more extensive ideal structures. In particular, Birkenmeier et al. [3]
introduced various generalizations of primary ideals to address the complexities of noncommutative rings.
These generalizations establish a foundation for exploring ideal structures in noncommutative rings,
enabling the extension of classical commutative algebra results to broader algebraic systems. Investiga-
ting these properties has contributed to significant advancements in understanding the decomposition
of ideals in noncommutative rings and their algebraic representations [4–11].

In 2022, Groenewald [11] defined the concept of a weakly right primary ideal in noncommutative rings.
Additionally, in 2021, Groenewald [10] defined p-2-absorbing right primary ideals, which generalize
principally right primary ideals. The aforementioned generalizations of prime ideals are as in Figure 1.

Prime Ideals
Primary
Ideals

1-Absorbing
Primary
Ideals

2-Absorbing
Primary
Ideals

Figure 1. Relations between the aforementioned generalizations of prime ideals

Therefore, this study fills the gap between right principally primary ideals and principally 2-absorbing
right primary ideals, which are defined in noncommutative rings, by introducing principally 1-absorbing
right primary ideals. This new class of ideals plays a significant role in the characterization of local
rings, as demonstrated in Theorem 3.12 and Proposition 3.14. The remainder of this study is organized
as follows: Section 2 presents some basic notions to be needed in the following section. Section 3
introduces principally 1-absorbing right primary ideals and explores some of their basic properties.
The last section discusses the need for further research.

2. Preliminaries

This section presents some basic definitions and properties to be used in the following section. Through-
out this paper, H denotes a noncommutative ring unless otherwise specified.

Definition 2.1. [3] Let J be a proper ideal of H. Then, the pseudo-radical of J is defined by
√

J :=
∑ {

K � H | Kn ⊆ J for some n ∈ Z+
}

It is clear that
√

J is an ideal of H. In this context, the term P∗(J) denotes the prime radical of J ,
defined as the intersection of all prime ideals of H containing J . In commutative rings, the definition
of the radical of an ideal is the same as this concept. The radical of an ideal in noncommutative
rings differs slightly from its definition in commutative rings. It is known that

√
J ⊆ P∗(J), and as

established in Lemma 2.7 iv,
√

J is strictly contained within P∗(J). Therefore, this study differs from
generalizations related to primary ideals defined in commutative rings. Specifically, the collection of all
prime ideals of H, represented by P (H), corresponds to P∗(0).

Definition 2.2. [1] A proper ideal A of a commutative ring H is said to be a 1-absorbing primary
ideal if, for any nonunit elements u, v, z ∈ H, the condition uvz ∈ A implies that either uv ∈ A or
z ∈

√
A.

Definition 2.3. [3] An ideal A of H is defined as a (principally) right primary ideal if, for any
(principal) ideals K and L of H satisfying KL ⊆ A, it follows that either K ⊆ A or Ln ⊆ A for some
n ∈ Z+.
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Definition 2.4. [3] An ideal A of H is referred to as a (principally) semiprimary ideal if, for any
(principal) ideals K and L of H such that KL ⊆ A, it holds that either K l ⊆ A or Ln ⊆ A for some
positive integers l and n.

Definition 2.5. [11] An ideal A of H is defined as a weakly (principally) right primary ideal if, any
time K and L are (principal) ideals of H satisfying {0} ≠ KL ⊆ A, then either K ⊆ A or there is
n ∈ Z+ such that Ln ⊆ A.

Definition 2.6. [10] An A � H is defined as a p-right 2-absorbing primary ideal if, for any elements
u, v, k ∈ H, the condition uHvHk ⊆ A implies that at least one of the following holds: uv ∈ A,
uk ∈

√
A or vk ∈

√
A.

Lemma 2.7. [3] The following properties hold for some ideals K, L, and J in H:

i. If K ⊆ L, then
√

K ⊆
√

L.

ii. If K ⊆
√

J , then Kn ⊆ J for some n ∈ Z+ under the condition that K is finitely generated or there
exists an m ∈ Z+ such that (

√
J)m ⊆ J . In particular, if

√
J is finitely generated, then there exists an

n ∈ Z+ such that (
√

J)n ⊆ J .

iii.
√

KL =
√

K ∩ L =
√

K ∩
√

L

iv. If (
√

J)l ⊆ J , for an l ∈ Z+, then
√

J = P∗(J) =
√√

J .

Definition 2.8. [10] An ideal J of H is called a principally 2-absorbing right primary ideal of H if,
for all x, y, z ∈ H, whenever xHyHz ⊆ J , this means that xy ∈ J or xz ∈

√
J or yz ∈

√
J .

Note that the definition of semiprime in noncommutative rings is as follows:

Definition 2.9. An ideal L of H is said to be semiprime if, for any ideal J of H, whenever a positive
power of J , say Jk, is contained in L for some natural number k, then J itself must also be contained
in L.

Lemma 2.10. [10] For a ring homomorphism φ : H1 → H2 and ideals A1 � H1 and A2 � H2, the
following hold:

i. φ−1(
√

A2) =
√

φ−1(A2)

ii. If Ker(φ) ⊆ A1, then φ(
√

A1) ⊆
√

φ(A1).

Lemma 2.11. [12] If, for each nonunit x ∈ H and each unit y ∈ H, the sum x + y is a unit, then H
is a local ring.

Remark 2.12. [13] If x ∈
√

J , then there exists n ∈ Z+ such that (⟨x⟩)n ⊆ J . Thus, for any ideals
I, J of H, if I ⊈

√
J then In ⊈ J , for each n ∈ N.

Unless otherwise stated, throughout this paper, all rings are assumed to be noncommutative and
possess a nonzero identity element, denoted by H.

3. Main Results

This section defines principally 1-absorbing right primary ideals and investigates some of their basic
properties.

Definition 3.1. A proper ideal J of a ring H is called a principally 1-absorbing right primary ideal if,
for all nonunit elements x, y, z ∈ H, the condition xHyHz ⊆ J implies that either xy ∈ J or z ∈

√
J .
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For the sake of convenience, we will use the abbreviations P1ARP to refer to “principally 1-absorbing
right primary,” and PRP refer to “principally right primary” for the remainder of our work.

We should note that a principally 2-absorbing right primary ideal is more general than a P1ARP ideal.
Hence, every P1ARP ideal is a subclass of a principally 2-absorbing right primary ideal. To support
this claim, we provide a counterexample.

Example 3.2. Let H = M2(Z) and J = M2(⟨12⟩). From [10], J is a principally 2-absorbing right
primary ideal. However, J is not a P1ARP ideal since, although[

2 0
0 0

]
H

[
2 0
0 0

]
H

[
3 0
0 0

]
⊆ J

it can be observed that [
2 0
0 0

] [
2 0
0 0

]
/∈ J and

[
3 0
0 0

]
/∈

√
J

Theorem 3.3. Let J be a P1ARP ideal of H. If xHyK ⊆ J , for all nonunits x, y ∈ H and proper
ideals K of H, then xy ∈ J or K ⊆

√
J .

Proof. Suppose that xHyK ⊆ J , for nonunits x, y ∈ H and K ◁ H with xy /∈ J and K ⊈
√

J . Then,
there exists an a ∈ K such that a /∈

√
J . Hence, xHyHa ⊆ J , while neither xy ∈ J nor a ∈

√
J ,

contradicting the fact that J is a P1ARP.

Theorem 3.4. Let K be a proper ideal of H. The following statements are equivalent:

i. K is a P1ARP ideal of H.

ii. For some proper ideals J1, J2, J3 of H with J1J2J3 ⊆ K, J1J2 ⊆ K or J3 ⊆
√

K.

Proof. Assume that K is a proper ideal of H.

i ⇒ ii: Let K be a P1ARP ideal and J1J2J3 ⊆ K with J1J2 ⊈ K, for some proper ideals J1, J2, J3 of
H. Then, there exist nonunits x ∈ J1 and y ∈ J2 such that xy /∈ K. Since xHyJ3 ⊈ K and xy /∈ K,
then J3 ⊆

√
K by Theorem 3.3.

ii ⇒ i: Let x, y, z be some nonunits of H such that xHyHz ⊆ K with xy /∈ K. Assume that J1 = HxH,
J2 = HyH, and J3 = HzH. Then, J1J2J3 ⊆ K and J1J2 ⊆ K. Hence, J3 ⊆

√
K, and thus z ∈

√
K.

Proposition 3.5. Assume that H has a nonzero identity. For K � H, if
√

K is a PRP ideal, then K

is a P1ARP1.

Proof. Suppose that uRvRz ⊆ K, for some nonunits u, v, z ∈ H and z /∈
√

K. Consider that
uvRz ⊆ uRvRz ⊆ K ⊆

√
K. Since

√
K is a PRP ideal, then uv ∈ K. Therefore, K is a P1ARP.

Theorem 3.6. If J is a semiprime ideal, then the following condition holds:

J is a prime ideal ⇔ J is a P1ARP ideal

Proof. Let J be a semiprime ideal.

(⇒) The proof follows directly from the definitions.

(⇐) Assume that ⟨x⟩⟨y⟩⟨z⟩ ⊆ J and ⟨x⟩⟨y⟩ ⊈ J , for nonunits x, y, z ∈ H. Since xyHz ⊆ xHyHz ⊆
⟨x⟩⟨y⟩⟨z⟩ ⊆ J and J is a P1ARP ideal, then ⟨z⟩n ⊆ J by Remark 2.12, and since J is a semiprime
ideal, then ⟨z⟩ ⊆ J . Therefore, xy /∈ J and z ∈ J and hence J is a prime ideal.

Proposition 3.7. If the radical of J is a prime ideal in H, then J is a P1ARP ideal.
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Proof. Let xHyHz ⊆ J with xy /∈ J , for nonunits x, y, z ∈ H. Then, xyHz ⊆ xHyHz ⊆ J ⊆
√

J

since
√

J is prime and xy /∈ J , i.e., xy /∈
√

J , then z ∈
√

J . Hence, J is a P1ARP ideal.

Theorem 3.8. Let A be a P1ARP ideal of H. If k ∈ H \ A is a nonunit element, then (A : ⟨k⟩) =
{t ∈ H : ⟨k⟩t ⊆ A} is a PRP ideal of H.

Proof. Let A be a P1ARP ideal of H and k ∈ H \ A be a nonunit element. For some nonunits
u, v ∈ H, assume that uHv ⊆ (A : ⟨k⟩). If u /∈ (A : ⟨k⟩), then ⟨k⟩u ⊈ A. Since ⟨k⟩uHv ⊆ A and
⟨k⟩u ⊈ A, then kHuHv ⊆ A and ku /∈ A. Therefore, v ∈

√
A ⊆

√
(A : ⟨k⟩) since A is a P1ARP ideal.

Hence, (A : ⟨k⟩) is a PRP ideal of H.

3.1. Homomorphic Images

The subsection investigates the relations between ring homomorphisms and P1ARP ideals.

Theorem 3.9. The following conditions hold under the surjective ring homomorphism φ : H1 → H2.

i. If A2 is a P1ARP ideal of H2, then φ−1(A2) is a P1ARP ideal of H1.

ii. If A1 is a P1ARP ideal with Ker(φ) ⊆ A1, then φ(A1) is a P1ARP ideal of H2.

Proof. Let φ : H1 → H2 be a surjective ring homomorphism.

i. For some nonunits u, v, z ∈ H1, suppose that uH1vH1z ⊆ φ−1(A2). Then, φ(uH1vH1z) ⊆
φ(u)H2φ(v)H2φ(z) ⊆ A2. Thus, φ(u)φ(v) ∈ A2 or φ(z) ∈

√
A2, i.e., uv ∈ φ−1(A2) or z ∈ φ−1(

√
A2) =√

φ−1(A2). Hence, φ−1(A2) is a P1ARP ideal.

ii. For some nonunits u, v, z ∈ H2, assume that uH2vH2z ⊆ φ(A1). Hence, there exist φ(k) = u,
φ(l) = v, and φ(m) = z such that φ(kH1lH1m) = uH2vH2z ⊆ φ(A1). Since Ker(φ) ⊆ A1, then
kH1lH1m ⊆ A1. Thus, kl ∈ A1 or m ∈

√
A1. Therefore, uv ∈ φ(A1) or z ∈ φ(

√
A1) ⊆

√
φ(A1).

Consequently, φ(A1) is a P1ARP ideal of H2.

Corollary 3.10. Let A1 and A2 be proper ideals of H satisfying the condition A1 ⊆ A2. Then, A1 is
a P1ARP ideal if and only if A2/A1 is a P1ARP ideal of H/A1.

Proof. Take φ : H → H/A1 with φ(x) = x + A1. Assume that A2 is a P1ARP ideal of H. By
Theorem 3.9 ii, φ(A2) = A2/A1 is a P1ARP since Ker(φ) = A1 ⊆ A2. Conversely, assume that A2/A1

is a P1ARP ideal of H/A1. By Theorem 3.9 i, φ−1(A2/A1) = A2 is a P1ARP.

3.2. Product Rings

The following identities are well known:√
J1 × H2 =

√
J1 × H2

and √
H1 × J2 = H1 ×

√
J2

Theorem 3.11. Let H be the product of two unital rings H1 and H2, i.e., H = H1 × H2. Then, the
following properties are valid.

i. If J1 is a P1ARP ideal of H1, then J1 × H2 is a P1ARP ideal of H.

ii. If J2 is a P1ARP ideal of H2, then H1 × J2 is a P1ARP ideal of H.
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Proof. Let H be the product of two unital rings H1 and H2, i.e., H = H1 × H2.

i. Assume that (x, y)H(z, d)H(k, l) = xH1zH1k×yH2dH2l ⊆ J1 ×H2 for nonunits (x, y), (z, d), (k, l) ∈
H. Since J1 is a P1ARP ideal, xz ∈ J1 or k ∈

√
J1. Thus, (x, y)(z, d) ∈ J1 × H2 or (k, l) ∈

√
J1 × H2 =√

J1 × H2. Therefore, J1 × H2 is a P1ARP ideal of H.

ii. The proof is similar to the proof of i.

3.3. Results in Local Rings

This subsection presents the following useful results on local rings.

Theorem 3.12. If H has a P1ARP ideal that is not PRP, then H is local.

Proof. If J is a P1ARP ideal of H that is not PRP, then there exist nonunits x, y ∈ H such that
xHy ⊆ J , but x /∈ J and ⟨y⟩n ⊈ J . Assume that k is a nonunit and l is a unit element of H. Suppose
that k+l is a nonunit. Since J is a P1ARP ideal and kHxHy ⊆ J , then kx ∈ J . Thus, (k+l)HxHy ⊆ J

and hence (k + l)x ∈ J , i.e., lx ∈ J . But since l is a unit, then x ∈ J , which contradicts the assumption
x /∈ J . Therefore, H is local by Lemma 2.11.

Theorem 3.13. Let H be a local ring with the unique maximal ideal M . Thus, the following are
identical:

i. J is a P1ARP ideal.

ii. J is a PRP ideal or M2 ⊆ J ⊆ M .

Proof. Assume that H is a local ring with the unique maximal ideal M .

i ⇒ ii: Suppose that J is a P1ARP ideal that is not prime. Then, J ⊊ M , and there exist x, y ∈ M \ J

with xHy ⊆ J . Let k, l ∈ M . Then, (kHlH)HxHy ⊆ J . Consider that M is the unique maximal ideal
of H, (kHl) ⊆ M , x, y ∈ M , and y /∈ J ⊆

√
J . Noting that J is a P1ARP ideal, then (kHl)x ⊆ J .

Moreover, since k, l, x ∈ M and x /∈ J ⊆
√

J , then kl ∈ J .

ii ⇒ i: It can be observed that if J is a PRP ideal, then it is a P1ARP ideal. Assume that M2 ⊆ J ⊆ M .
Hence, J is a proper ideal. Suppose that xHyHz ⊆ J , for x, y, z ∈ M . Thus, xy ∈ M2 ⊆ J . Therefore,
J is a P1ARP ideal.

Proposition 3.14. A is not a PRP ideal of H that is a P1ARP ideal if and only if H is a local ring
whose maximal ideal M fulfills M2 ̸= M .

Proof. (⇒) Assume that A is not a PRP ideal which is a P1ARP. Then, by Theorem 3.13, H is a
local ring and its maximal ideal M satisfies M2 ⊆ A ⊂ M and thus M2 ̸= M .

(⇐) Assume that M is a maximal ideal of a local ring H and M2 ̸= M . Thus, M2 ⊂ M . Suppose that
x, y ∈ M \ M2. Thus, ⟨x⟩⟨y⟩ ⊆ M2, but neither ⟨x⟩ ⊆ M2 nor ⟨y⟩n ⊂ ⟨y⟩ ⊆ M2. Thus, M2 is not a
P1ARP ideal. If x, y, z ∈ H are nonunits with xHyHz ⊆ M2, then M2 is a P1ARP ideal which is not
PRP since xy ∈ M2.

Proposition 3.15. Let K and L be P1ARP ideals of H which are not PRP. Then, K + M and K ∩ L

(or KL) are P1ARP ideals.
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Proof. By Theorem 3.12, H is a local ring, and from Theorem 3.13, M2 ⊆ K ∩ L. Suppose that
uRvRk ⊆ K ∩ L, where u, v, k ∈ H are nonunits and k /∈

√
K ∩ L =

√
KL. Since u, v ∈ M , then

uv ∈ M2 ⊆ K ∩ L ⊆ KL. Therefore, K ∩ L (or KL) is a P1ARP ideal. With a similar way, it can be
observed that K + L is a P1ARP ideal.

Proposition 3.16. Let H1 and H2 be unital rings, and define H as their direct product, i.e.,
H = H1 × H2. If A1 × A2 is a P1ARP ideal of H, where A1 and A2 are ideals of H1 and H2,
respectively, then A1 and A2 are P1ARP ideals of H1 and H2, respectively.

Proof. For some nonunits u, v, z ∈ H1, assume that uH1vH1z ⊆ A1. Then, for a ∈ H2,

(uH1vH2z, aH2aH2a) ⊆ A1 × A2

Since A1 × A2 is a P1ARP ideal, then (u, a)(v, a) ∈ A1 × A2 or (z, a) ∈
√

A1 × A2 =
√

A1 ×
√

A2.
Hence, uv ∈ A1 or z ∈

√
A1 and thus A1 is a P1ARP ideal of H1. In similar manner, it can be observed

that A2 is a P1ARP ideal of H2.

3.4. Idealization

This section explores certain properties of P1ARP ideals within the idealization of a ring. Recall that
the structure H⊞M is referred to as the idealization, where H is a ring and M is an H-H-bimodule. The
multiplication in this ring is defined as follows: Let k, l ∈ H and z, t ∈ M , then (k, z)(l, t) = (kl, kt+zl).
In Remark 3.1 of [12], it is established that an element (u, v) ∈ H ⊞M is a nonunit if and only if u is a
nonunit in H.

Theorem 3.17. Let H be a unital ring and M be a H-H-bimodule. For K � H, K ⊞ M is a P1ARP
ideal of H ⊞ M if and only if K is a P1ARP ideal of H.

Proof. Suppose that K ⊞ M is a P1ARP ideal of H ⊞ M and that uRvRz ⊆ K, where u, v, and z

are nonunits in H. Then, for nonunits (u, 0), (v, 0), (z, 0) ∈ H ⊞ M ,

(u, 0)(H ⊞ M)(v, 0)(H ⊞ M)(z, 0) ⊆ K ⊞ M

Since K ⊞ M is a P1ARP ideal of H ⊞ M , then (u, 0)(v, 0) ∈ K ⊞ M or (z, 0) ∈
√

K ⊞ M =
√

K ⊞ M .
Hence, uv ∈ K or z ∈

√
K. Then, K is a P1ARP ideal of H.

Remark 3.18. For an H-H-bisubmodule N of M and A�H, A⊞N is an ideal of H ⊞M if and only
if AM + MA ⊆ N .

Theorem 3.19. Let
√

A be a PRP ideal and N be an H-H-bisubmodule with AM + MA ⊆ N . Then,
the ideal A ⊞ N is a P1ARP ideal of H ⊞ M .

Proof. From [14],
√

A ⊞ N =
√

A⊞N is a PRP ideal of H⊞M since
√

A is a PRP ideal of H. Thus,
by Proposition 3.5, A ⊞ N is a P1ARP ideal of H ⊞ M .

4. Conclusion

In this study, we have investigated the structural properties of P1ARP ideals, their behaviour under
homomorphisms, and the conditions they satisfy in ring extensions such as idealization, leading to
significant results. On the other hand, certain localized studies in commutative ring theory—such
as the relationship between PIDs and Dedekind domains, as well as ring localizations defined via
multiplicatively closed subsets, i.e., S, leading to S−1H, remain open problems for the context of
noncommutative rings. Since ring localizations defined through structures like Ore extensions differ
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significantly from those in commutative settings, it is natural to ask whether similar ideal-theoretic
properties can be established in these cases.

As a result, we pose the following two open problems for further research:

i. What are the structural properties of P1ARP ideals in noncommutative domains? In such settings,
can a meaningful relationship be established between prime ideals and PRP ideals?

ii. What structural properties do P1ARP ideals exhibit in ring localizations defined via Ore or Dorroh
extensions? Under what conditions—analogous to those in commutative rings—can similar behaviors
be observed in these noncommutative settings?
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Abstract− This study computes the permanent of a square matrix by reducing it to
triangular form. To achieve the triangularization of a matrix, this paper employs additive
row operations. Although applying an additive row operation does not alter the determinant,
it does affect the permanent, thereby increasing the complexity of the computational process.
This difficulty has discouraged previous attempts to compute the permanent via triangular-
ization. This paper addresses this challenge and introduces a novel approach for computing
the permanent of a square matrix.
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1. Introduction

In linear algebra, the determinant is a well-known and extensively studied function of a matrix, with
numerous applications in fields as varied as mathematics, physics, and engineering. The permanent, a
function analogous to the determinant but without the alternating sign characteristic, has also attracted
broad interest, particularly for its applications in combinatorial enumeration problems and quantum
computing. For example, the connections between the permanent and the quantum entanglement have
been investigated in [1].

The permanent computation of a matrix according to the classical Binet’s formula, also called the
naive algorithm, is as follows: Let A = [aij ] be a square matrix of size n by n with elements in a field
F . Then, the permanent of A is defined by

per(A) =
∑

σ∈Sn

n∏
i=1

aiσi (1.1)

where Sn is the symmetric group which consists of all permutations of {1, 2, . . . , n}, and σ is an element
of this symmetric group where σ = (σ1, σ2, ..., σn) [2].

Despite the permanent similarity to the determinant, this function differs significantly in its properties.
For example, the Gaussian elimination method, which can be used for reducing a matrix, allows
efficient evaluation of the determinant by row reduction. However, using this method to compute the
permanent is far more complex. The elementary row operations affect these two functions differently
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because the permanent is unstable, as the determinant is under some matrix operations. For example,
adding a non-zero scalar multiple of one row to another does not vary the determinant of a matrix
but affects the permanent. While the determinant of a matrix with two identical rows is zero, the
permanent of such a matrix does not necessarily have to be zero. Multiplying a row by a scalar requires
multiplying the determinant by the same scalar. This is also valid for the permanent. In addition,
interchanging two rows changes the sign of the determinant, but keeps the permanent unchanged.
These differences complicate the computation of the permanent and offer possibilities for further
research on computational complexity.

The problem of computing the permanent was proven to be #P-complete by Valiant [3]. It is therefore
unlikely to have a polynomial-time solution. The algorithms for evaluating the permanent of a matrix
have an exponential time complexity. Any method to evaluate the permanent is thus of fundamental
interest to complexity theory [4]. Ryser [5] introduced an algorithm to calculate the permanent of
an n × n matrix with complexity time O(n22n−1). An improved version, known as the Ryser-NW
algorithm, was later improved by Nijenhuis and Wilf [6], achieving a time complexity of O(n2n−1).
Another formula, also with the same time complexity, was presented by Glynn [7].

Recent literature has introduced a range of novel perspectives on the computation of matrix permanents.
Küçük [8] provides a combinatorial interpretation of the rectangular permanent problem, linking its
evaluation to the solution of a structured combinatorial problem. Baykasoglu [9] offered a visual
explanation of permanent computation by using directed graphs and subgraph enumeration. Chabaud
et al. [10] used quantum-inspired methods to give quick proofs for several key theorems related to the
permanent, including the MacMahon Master Theorem. Masschelein [11] adapted Glynn’s algorithm for
rectangular matrices and incorporated it into a computational framework that selects the most suitable
algorithm – Naive, Ryser’s, or Glynn’s – based on the matrix’s characteristics. Another relevant
contribution is SUperman, an open-source tool introduced in [12], which provides a practical framework
for computing matrix permanents efficiently across different matrix types and application domains.
One notable approach involves using the permanents of submatrices, as presented in [13]. This method
leverages the permanents of smaller submatrices to construct the permanent of the original matrix.
This approach reduces the overall computational complexity by systematically breaking down the
original matrix into smaller components.

However, despite the advancements in the usage of submatrix permanents, challenges remain in
achieving computational efficiency, particularly for large matrices. The present study addresses these
difficulties by proposing an approach that utilizes the triangularization of a matrix to compute its
permanent. The triangularization process involves additive row operations, which alter the permanent,
although they do not affect the determinant, introducing additional complexity into the calculation. In
the previous study [14], we dealt with this problem by examining the variation in the permanent. We
established a theorem that quantifies the variation in the permanent when a scalar multiple of one row
is added to another row in a square matrix.

On this basis, the current study introduces an algorithm for computing the permanent of a square
matrix using a triangularization process. Traditional methods for computing determinants, such as
Gaussian elimination, are known for their efficiency and stability. However, these methods are not
directly applicable to the computation of permanents due to the instability mentioned earlier under
additive row operations. The new approach herein formulates a systematic method to compute the
permanent by transforming the matrix into a triangular form, considering the variations introduced by
additive row operations.
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Building on [14], we offer a novel perspective on permanent computation, providing a systematic and
theoretically grounded method. This work does not claim superiority over existing algorithms regarding
efficiency or computational complexity. Instead, it aims to expand availability for researchers, offering
a new approach that could inspire further exploration in matrix permanents.

The rest of this paper is organized as follows: Section 2 presents the preliminaries and necessary
notations. Section 3 introduces the obtained main results herein, including the new variation formula
and a novel algorithm for permanent computation. Section 4 details the proposed algorithm for
permanent computation via an illustrative example. Finally, Section 5 discusses the obtained results.

2. Preliminaries

In this section, we present the notations used in this study and explores the potential improvement
and efficiency of the variation formula introduced in [14].

Let A = [ai,j ] be an n× n matrix. Then, Ãr|t denotes the submatrix obtained by deleting the rth row
and the tth column of A. Similarly, Ãi,r|j,t denotes the submatrix obtained by deleting the ith and
rth rows and the jth and tth columns of A. Moreover, Ãi,r,m|j,t,z denotes the submatrix obtained by
deleting the ith, rth, and mth rows, as well as the jth, tth, and zth columns of A. Here, the submatrix
Ãr|t is of order n − 1 by n − 1, the submatrix Ãi,r|j,t is of order n − 2 by n − 2, and the submatrix
Ãi,r,m|j,t,z is of order n− 3 by n− 3. To exemplify, consider the 4× 4 matrix as follows:

A =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


Then,

Ã1|4 =


b1 b2 b3

c1 c2 c3

d1 d2 d3

 , Ã1,2|3,4 =
[

c1 c2

d1 d2

]
, and Ã1,2,3|1,2,3 =

[
d4
]

Throughout this study, let [n] := {1, 2, 3, . . . , n}, for all n ∈ Z+, the set of all positive integers.

Theorem 2.1. [14] Let A = [ai,j ] be a matrix of order n× n, and let B be the matrix obtained by
adding k times of the ith row to the rth row of matrix A. If

V := per(B)− per(A)

then
V = 2k

∑
(j,t)∈Ω

ai,jai,t per
(
Ãi,r|j,t

)
(2.1)

where the summation extends over the set

Ω = {(j, t) | j < t and j, t ∈ [n]}

Consider a matrix A = [aij ] with order 5× 5. Add k times of the 4th row to the 5th row of matrix A.
Here, i = 4 and r = 5. Thus, the variation formula seen by (2.1) is in the form of

V = 2k
∑
Ω

a4,ja4,t per
(
Ã4,5|j,t

)
where

Ω = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}
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In that case, for example, if j ≥ 3, then the following permanents occur:

per
(
Ã4,5|3,4

)
= per


a11 a12 a15

a21 a22 a25

a31 a32 a35



per
(
Ã4,5|3,5

)
= per


a11 a12 a14

a21 a22 a24

a31 a32 a34


and

per
(
Ã4,5|4,5

)
= per


a11 a12 a13

a21 a22 a23

a31 a32 a33


Two columns of the matrices Ã4,5|3,4, Ã4,5|3,5, and Ã4,5|4,5 are the same, but only one column is different.
Upon these two same columns, the following identical submatrices appear:[

a11 a12

a21 a22

]
,

[
a21 a22

a31 a32

]
, and

[
a11 a12

a31 a32

]

These identical submatrices can be determined by expanding the permanents of the matrices Ã4,5|3,4,
Ã4,5|3,5, and Ã4,5|4,5. From this point of view, it seems that the variation formula given by (2.1) for a
matrix A = [ai,j ] of order 5× 5 can be formalized in terms of the permanents of submatrices of order
2× 2.

3. Main Results

In this section, first, we present an improved variation formula that replaces the formula provided by
(2.1), achieved by using n− 3 order permanents instead of n− 2 order permanents. Then, we presents
a new method and algorithm to compute the permanent of order n.

Theorem 3.1. Let A = [ai,j ] be n× n matrix, and let B be the matrix obtained by adding k times of
the ith row to the rth row of the matrix A. Let E denote the additive row operation applied to matrix
A, and let VE denote the variation between the permanents of the matrices A and B, i.e.,

E(A) = B

and
VE := per(B)− per(A)

Then,
VE = 2k

∑
∆

(ai,pai,tam,z + ai,pai,zam,t + ai,tai,zam,p) per
(
Ãi,r,m|p,t,z

)
(3.1)

where the summation extends over the set

∆ = {(p, t, z) | p < t < z and p, t, z ∈ [n]}

Moreover, m is chosen arbitrarily from the set M = [n] \ {i, r}.

Proof. In the variation formula given by (2.1), the Laplace expansion is applied to each of n − 2
ordered permanents along the mth rows. These expansion process produces n− 3 ordered permanents,
denoted as per

(
Ãi,r,m|p,t,z

)
. The permanents of order n − 3 are rearranged by parenthesizing the

identical ones, and the formula given with (3.1) is obtained.
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3.1. Computing the Permanent of a Square Matrix by Using the Proposed New
Variation Formula

In this subsection, we establish the theoretical basis for the proposed new variation formula, focusing
on the method used to compute the permanent of a square matrix. The method involves reducing a
square matrix, for which we wish to compute the permanent, to upper triangular form. To achieve
this, we will utilize only the elementary row operation, which adds a row, multiplied by a constant,
to another row. Throughout this study, we will refer to the term “additive row operation” to denote
the operation of adding c ∈ R times of the ith row to the jth row of a matrix, and we represent it by
cRi + Rj .

3.1.1. Description of the Method

For a matrix A = [ai,j ] with n× n, define the elementary row operation

Ej
i := k(i, j)Rj + Ri+j (3.2)

where
k(i, j) = −ai+j,j

aj,j
∈ R (3.3)

such that j ∈ [n− 1] and i := i(j) ∈ [n− j]. Let Bf(i,j) represent the matrices obtained by successively
applying elementary row operations defined by (3.2), and let

Ej
i (Bf(i,j)−1) = Bf(i,j)

where
f(i, j) = n(j − 1) + i− 1− (j − 2)(j + 1)

2
and with the initial condition that B0 = A. Here, the indices range over 1 ≤ j < n and 1 ≤ i < n− j.
By considering Theorem 3.1, the following equalities can be written for the matrices Bf(i,j):

per
(
Bf(1,1)

)
− per (A) = VE1

1
(3.4)

per
(
Bf(2,1)

)
− per

(
Bf(1,1)

)
= VE1

2
(3.5)

...

per
(
Bf(2,n−2)

)
− per

(
Bf(1,n−2)

)
= VEn−2

2
(3.6)

and
per

(
Bf(1,n−1)

)
− per

(
Bf(2,n−2)

)
= VEn−1

1
(3.7)

From (3.4)-(3.7),
per

(
Bf(1,n−1)

)
− per (A) =

∑
j∈[n−1]
i∈[n−j]

VEj
i

Since Bf(1,n−1) is an upper triangular matrix, then

per
(
Bf(1,n−1)

)
=

n∏
r=1

αr
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where αr represents the rth diagonal element of the matrix Bf(1,n−1). Thus,

per (A) =
n∏

r=1
αr −

∑
j∈[n−1]
i∈[n−j]

VEj
i

In the proposed method, during the computation of the k value given by (3.3), it is assumed that
ajj ̸= 0. If ajj = 0, the procedure continues by interchanging the jth row with one of the rows below
it. This case is explicitly incorporated into the algorithm presented in the following section. Moreover,
as mentioned in the Introduction, interchanging two rows does not alter the value of the permanent.

3.2. Proposed Algorithm for Computing the Permanent

In this subsection, we outline the algorithm designed to implement the method described in the previous
subsection for computing the permanent of a square matrix.

Algorithm 1 Computation of the Permanent via Triangularization
Require: A matrix A ▷ of order n by n

1: ω ← 1 and β ← 0
2: for j = 1 to n− 1 do
3: for i = 1 to n− j do
4: if ai+j,j ̸= 0 then
5: if aj,j = 0 then
6: Aj+i ←→ Aj ▷ the jth and (j + i)th rows of matrix A have interchanged.
7: else
8: k(i, j)← −(ai+j,j/aj,j)
9: β ← β + VE ▷ the variation VE defined by (3.1)

10: A← Ej
i (A) ▷ Ej

i is defined by (3.2)
11: end if
12: end if
13: end for
14: end for
15: for i = 1 to n do
16: ω ← ω ∗ ai,i

17: end for
18: return ω − β

4. Illustrative Example

Consider a 4× 4 matrix A and use the diagram below to illustrate the row operations necessary to
reduce it to the upper triangular form:

A
E1

1−→ B1
E1

2−→ B2
E1

3−→ B3
E2

1−→ B4
E2

2−→ B5
E3

1−→ B6

More explicitly,

E1
1 (A) = B1, E1

2 (B1) = B2, E1
3 (B2) = B3, E2

1 (B3) = B4, E2
2 (B4) = B5, and E3

1 (B5) = B6
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Some of the matrices Bi that emerge in this process are as follows:

B3 =


α1 ∗ ∗ ∗
0 α2 ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 , B5 =


α1 ∗ ∗ ∗
0 α2 ∗ ∗
0 0 α3 ∗
0 0 ∗ ∗

 , and B6 =


α1 ∗ ∗ ∗
0 α2 ∗ ∗
0 0 α3 ∗
0 0 0 α4

 (4.1)

It is clear that per(B6) =
4∏

r=1
αr. Moreover, according to Theorem 3.1, we have the following equations:

VE3
1

= per (B6)− per (B5) (4.2)

VE2
2

= per (B5)− per (B4) (4.3)

VE2
1

= per (B4)− per (B3) (4.4)

VE1
3

= per (B3)− per (B2) (4.5)

VE1
2

= per (B2)− per (B1) (4.6)

and
VE1

1
= per (B1)− per (A) (4.7)

Finally, from (4.2)-(4.7),

VE3
1

+ VE2
2

+ VE2
1

+ VE1
3

+ VE1
2

+ VE1
1

= per(B6)− per(A)

where the calculation of each VEj
i

is based on the formula given by (3.1). To exemplify, the calculation
of the variation VE3

1
, necessary due to the transformation E3

1 (B5) = B6, is as follows: For the matrix
B5 = [bij ], according to (3.2) and (3.3),

E3
1 = −b43

b33
R3 + R4

where R3 and R4 denote the third and fourth rows of the matrix B5, respectively. Moreover, according
to Theorem 3.1,

∆ = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}

for a 4× 4 matrix. Since i = 3 and r = 4, m = 1 or m = 2. Consider m = 1. Thus,

VE3
1

= −2 b43
b33

(
(b31b32b13 + b31b33b12 + b32b33b11) per

(
Ã3,4,1|1,2,3

)
+(b31b32b14 + b31b34b12 + b32b34b11) per

(
Ã3,4,1|1,2,4

)
+(b31b33b14 + b31b34b13 + b33b34b11) per

(
Ã3,4,1|1,3,4

)
+(b32b33b14 + b32b34b13 + b33b34b12) per

(
Ã3,4,1|2,3,4

))
(4.8)

We note that Ã’s in (4.8) are the submatrices of B5 = [bij ]. Since the matrix B5 has the form seen by
(4.1), then

VE3
1

= −2b43 (b34b11b22 + b34b12b21)

5. Conclusion

The section begins with a performance analysis of the new variation formula in (3.1), in comparison
with the earlier formula (2.1), originally proposed in [14]. Then, the computational complexity analysis
of the proposed permanent algorithm is provided, along with a comparison to Ryser’s classical formula.
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Let the variation formula given by (2.1) be denoted V1, and the variation formula given by (3.1) be
denoted V2. Then,

O(V1) =
(

n

n− 2

)[
O
(
per

(
Ãi,r|j,t

))
+ 2

]
and

O(V2) =
(

n

n− 3

)[
O
(
per

(
Ãi,r,m|j,t,z

))
+ 9

]
where O(V) denotes the number of arithmetic operations required for calculating the variation formula
V. The computation of the permanent of an n × n matrix A = [ai,j ] by using the Binet formula
requires (n−1)n! multiplication operations and n!−1 addition operations. Therefore, the total number
of arithmetic operations required to compute the permanent of the matrix A via (1.1) is n(n!) − 1.
Accordingly,

O
(
per

(
Ãn−2×n−2

))
= (n− 2)(n− 2)!− 1

for each n− 2 by n− 2 submatrix Ãi,r|j,t, and

O
(
per

(
Ãn−3×n−3

))
= (n− 3)(n− 3)!− 1

for each n− 3 by n− 3 submatrix Ãi,r,m|j,t,z. Taking these into account,

O(V1) =
(

n

n− 2

)
[(n− 2)(n− 2)! + 1]

and
O(V2) =

(
n

n− 3

)
[(n− 3)(n− 3)! + 8]

and therefore
O(V1)−O(V2) = n!

(
2n− 3 + 19− 8n

(n− 2)!

)
The result of O(V1)−O(V2) is positive for n ≥ 5. Therefore, the variation formula V2 yields results
in a shorter time for square matrices of order at least 5× 5. Moreover, since O(V2) and O(V1) are
sequences with positive terms, they can be subjected to the limit comparison test:

lim
n→∞

O(V2)
O(V1) = 1

3
Thus, it is clear that the variation V2 yields results in a shorter time. These results collectively confirm
that V2 is the more efficient and preferable variation formula for square matrices of order at least 5× 5.

An analysis of the computational complexity of the proposed algorithm yields the following results:
Given an n× n matrix A, the algorithm requires the computation of permanents of (n−3)× (n−3)
submatrices of A. These sub-permanents can be computed using any known method from the literature;
such as R-NW algorithm, which has a computational complexity of O(n2n−1). Accordingly, the
complexity of computing a permanent of size n−3 is O((n− 3)2n−4).

In our proposed method, the triangularization of an n× n matrix A requires applying the variation
formula n(n−1)

2 times. At each application of the variation formula,
( n

n−3
)

distinct submatrices of size
n− 3 are produced, and their permanents need to be computed. Here, assuming that the permanent
of each submatrix is computed using Ryser’s algorithm, the overall computational complexity of the
proposed algorithm becomes

n2(n− 1)2(n− 2)
12 O

(
(n− 3)2n−4

)
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Beyond providing a method for computing the permanent of a square matrix, the approach introduced
in this study also contributes to the theoretical background of the permanent function. Furthermore,
the algorithm developed here holds potential for enhancement through techniques such as parallel
computation. By exploiting such improvements, more efficient algorithms could be realized, paving the
way for future research, particularly in areas where the permanent plays a central role, including its
emerging applications in quantum mechanics.
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Abstract− This paper investigates the theoretical structure and practical implications of
isotonic extensions of soft sets. It utilizes isotonic operators—functions satisfying groundedness
and order-preserving properties—to derive new soft sets that reflect observed attributes
and potential latent associations within a system. This study presents foundational results
on preserving key soft set structures under isotonic extension and examines how internal
approximation relations evolve under such operators. The study provides an application
to infectious disease risk modeling in a hospital environment as a practical demonstration.
Here, isotonic extensions enable the identification of asymptomatic but exposed individuals,
offering a novel mathematical approach to decision-making under uncertainty.
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1. Introduction

The necessity of coping with uncertainty and incomplete information is a fundamental challenge in
modern mathematical modeling. In this context, the soft set theory, introduced by Molodtsov in
1999 [1], presents a significant innovation, particularly in modeling uncertainty through parametric
representations. By providing a more flexible structure compared to classical logic frameworks, soft sets
have found applications in numerous fields, such as multi-criteria decision making, information systems,
medicine, engineering, and economics. However, existing approaches in the literature predominantly
focus on observable, direct data, living out the modeling of indirect, implicit, or potentially risky
relationships. This limitation leads to the inadequacy of decision models, especially in areas where
indirect interactions are decisive, such as epidemiology, security analysis, and network theory.

The definition of a topology on a set extends beyond the traditional axioms for open sets, encompassing
collections of closed sets, neighborhood systems, closure operators, and interior operators, among
other constructs. For instance, Day [2] and Hausdorff [3] have developed topological concepts by
leveraging the notions of convergence, closure, and neighborhoods. Kuratowski [4] has pioneered a
distinct approach to constructing a topological structure on a non-empty set U through the definition
of a closure operator µ : P (U) → P (U), where P (U) is the power set of U . Utilizing this framework,
the closure operator satisfying the established axioms enables the definition of the topological space
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(U, µ) by identifying closed sets as those satisfying µ(X) = X. Furthermore, Kuratowski has broadened
the scope of topological spaces by relaxing the axiom µ(X ∪Y ) ⊆ µ(X)∪µ(Y ), thereby defining closure
spaces. Conversely, Čech’s approach [5] to the definition of closure spaces omits the idempotence axiom
µ(µ(X)) = µ(X). The terms “Kuratowski closure space” and “Čech closure space” are employed in
the literature to mitigate terminological ambiguity. Additionally, Gnilka [6–8] and Hammer [9,10] have
preferred the term “extended topological space” over “closure space”. These studies have investigated
fundamental concepts, such as compactness, quasi-metrizability, symmetry, and continuity through
the lens of closure operators. More recently, Stadler and Stadler [11] and Stadler et al. [12,13] have
unveiled a topological approach to chemical organizations, evolutionary theory, and combinatorial
chemistry, elucidating the relationships between topological concepts, such as similarity, neighborhood,
connectedness, and continuity within chemical and biological contexts. In these interdisciplinary
studies, the authors have considered the foundational concepts of closure and isotonic spaces, defining
an isotonic space as a closure space (U, µ) that satisfies only the axioms of groundedness, i.e., the
condition µ(∅) = ∅, and isotonicity, i.e., the condition X ⊆ Y ⇒ µ(X) ⊆ µ(Y ), for all X, Y ∈ P (U).
Moreover, Habil and Elzenati [14, 15] have explored the notions of connectedness and lower and upper
separation axioms in isotonic spaces.

Current research concerning soft sets primarily concentrates on fundamental set operations, equivalence
structures, decision-making algorithms, and generalized operators. For instance, Maji et al. [16] have
defined basic operations on soft sets; Ali et al. [17] extended these operations; and Molodtsov [18]
provided a theoretical foundation for correct operation definitions in soft sets. Rapid advancements in
soft set theory have led to the definition of a multitude of novel operations, such as multiplication and
complementation on soft sets, along with their various modifications. The theoretical properties of
these operations have been extensively studied in [19–28]. Alongside these, numerous studies concern
variations of soft sets and their applications to decision-making problems [29–43]. Nevertheless, the vast
majority of these studies are based on models where only existing information is processed. A framework
for systematically including implicit relationships, chains of contact, or potential impacts into the model
remains absent within the classical structure. This gap can lead to serious consequences, particularly
in decision-making problems involving high uncertainty, such as the detection asymptomatic infections.

This study proposes a novel mathematical approach by extending soft sets through isotonic operators
in this context. These operators consider not only the observed information but also the potential
relationships arising from the structural nature of the system. Thus, elements that are not directly
observable but are systemically at risk can be incorporated into the model. For instance, in a hospital,
an asymptomatic individual, while not exhibiting direct symptoms, may carry a risk due to past contact
with symptomatic individuals. The inability to integrate such indirect information into the classical
soft set structure leads to deficient decision-making processes; the isotonic operator-extended soft sets
aim to bridge this gap.

The core problem of this study is the inability of classical soft sets to systematically model indirect and
potential information; the central hypothesis, on the other hand, posits that “soft sets extended with
isotonic operators will be an effective tool in incorporate implicit relationships into decision systems by
enhancing their sensitivity”. The studies conducted in this direction in the literature are quite limited
and mostly confined to specific examples. This study aims to reveal the structural properties of the
isotonic extension at a theoretical level and demonstrate the model’s functionality through a real-world
application scenario.

Within this framework, the structure of the study is organized as follows: The second section presents the
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necessary preliminary information and conceptual foundation. The third section provides definitions of
soft sets defined on isotonic spaces and the fundamental definitions for the extension of these structures.
The fourth section examines the structural properties of the isotonic extension in detail and presents
various theoretical results. The fifth section, on the other hand, conducts an exemplary application
on infectious disease risk in a hospital setting, discussing the advantages of the isotonic extension
compared to classical models. Finally, the conclusion section provides a general evaluation based on
the findings obtained and offered by suggestions for future research.

2. Preliminaries

In this section, we lay the groundwork by introducing essential definitions and concepts from soft set
theory and topology, fundamental to understanding the proposed methodology.

Definition 2.1. [1] Let U be a universe of discourse and E be the set of all parameters associated
with the elements of U . The ordered pair (F, E) is called a soft set over U , where F : E → P (U) is a
set-valued function.

Definition 2.2. [18] Let (F, E) be a soft set over U . Then, the family

APP (F, E) = {F (p) | p ∈ E}

is designated as a family of approximate descriptions, contingent upon the selection of E.

Definition 2.3. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. (F, E1) and (G, E2) are termed equal soft sets, denoted by (F, E1) = (G, E2), if E1 = E2 and F = G.

ii. (F, E1) and (G, E2) are termed equivalent soft sets, denoted by (F, E1) ∼= (G, E2), if APP (F, E1) =
APP (G, E2).

Note that this equivalence holds if and only if for every p ∈ E1, there exists a q ∈ E2 such that
F (p) = G(q), and for every q ∈ E2, there exists a p ∈ E1 such that G(q) = F (p).

Definition 2.4. [18] Let U be a universe of discourse.

i. A unary operation Φ on soft sets is a mapping over U that associates a soft set (F, E1) with another
soft set (G, E2), i.e., Φ(F, E1) = (G, E2). Moreover, Φ is deemed correct if (F, E1) ∼= (G, E2) ⇒
Φ(F, E1) ∼= Φ(G, E2).

ii. A binary operation Θ on soft sets is a mapping that assigns to any two soft sets (F, E1) and (G, E2)
over U , a novel soft set (H, E3), i.e., Θ((F, E1), (G, E2)) = (H, E3). Moreover, Θ is considered correct
if (F1, E1) ∼= (F2, E2) ∧ (G1, E3) ∼= (G2, E4) ⇒ Θ((F1, E1), (G1, E3)) ∼= Θ((F2, E2), (G2, E4)).

iii. A relationship Ω between two soft sets (F, E1) and (G, E2) is a mapping assigning the values 0 or 1
to Ω((F, E1), (G, E2)). If Ω((F, E1), (G, E2)) = 1, then it is denoted by (F, E1)Ω(G, E2). Moreover, Ω
is correct if (F1, E1) ∼= (F2, E2) ∧ (G1, E3) ∼= (G2, E4) ⇒ Ω((F1, E1), (G1, E3)) = Ω((F2, E2), (G2, E4)).

Definition 2.5. [18] The complement of a soft set (F, E) is defined as a unary operation, denoted by
(F, E)c = (F c, E), where F c(p) = U \ F (p), for all p ∈ E.

Definition 2.6. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. The intersection of (F, E1) and (G, E2) is a binary operation denoted by (F, E1)∩̃(G, E2) = (H, E1 ×
E2), where H(p, q) = F (p) ∩ G(q), for all (p, q) ∈ E1 × E2.

ii. The union of (F, E1) and (G, E2) is a binary operation denoted by (F, E1)∪̃(G, E2) = (K, E1 × E2),
where K(p, q) = F (p) ∪ G(q), for all (p, q) ∈ E1 × E2.
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Definition 2.7. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. (F, E1) is termed an internal approximation of (G, E2), denoted by (F, E1)⊆̃(G, E2), if, for all q ∈ E2

such that G(q) ̸= ∅, there exists a p ∈ E1 that satisfies ∅ ̸= F (p) ⊆ G(q).

ii. (F, E1) is termed an external approximation for (G, E2), denoted by (F, E1)⊇̃(G, E2), if, for all
q ∈ E2 such that G(q) ̸= ∅, there exists a p ∈ E1 which satisfies U ̸= F (p) ⊇ G(q).

Definition 2.8. [18] Let (F, E) be a soft set over a universe U .

i. (F, E) is classified as a null soft set, denoted by ∅̃, if and only if APP (F, E) = {∅}.

ii. (F, E) is classified as an absolute soft set, denoted by Ũ, if and only if APP (F, E) = {U}.

Definition 2.9. [4] Let U ̸= ∅. Then, a function µ : P (U) → P (U) is called a Kuratowski closure
operator if it satisfies the following properties, for all X, Y ∈ P (U):

(K0) µ(∅) = ∅ (groundedness)

(K1) X ⊆ Y ⇒ µ(X) ⊆ µ(Y ) (isotonicity)

(K2) X ⊆ µ(X) (expansiveness)

(K3) µ(X ∪ Y ) ⊆ µ(X) ∪ µ(Y ) (sub-additivity)

(K4) µ(µ(X)) = µ(X) (idempotence)

Definition 2.10. [4, 5] Let U ̸= ∅ and µ : P (U) → P (U) be a function.

i. A topological space (U, µ) can be defined by a Kuratowski closure operator µ, where closed sets are
the sets X ⊆ U satisfying the condition µ(X) = X.

ii. An ordered pair (U, µ) is called a closure space such that µ satisfies the conditions (K0)-(K3), where
µ is called a closure operator.

Lemma 2.11. [5] Let (U, µ) be a closure space. Then, the following hold:

i. µ(X) ∪ µ(Y ) ⊆ µ(X ∪ Y ), for all X, Y ∈ P (U)

ii. µ(X ∩ Y ) ⊆ µ(X) ∩ µ(Y ), for all X, Y ∈ P (U)

Definition 2.12. [11–13] Let U ̸= ∅ and µ : P (U) → P (U) be a function. Then, the ordered pair
(U, µ) is called an isotonic space if µ satisfies the conditions (K0) and (K1).

Example 2.13. Let U = {a, b} and consider the function µ : P (U) → P (U) defined by µ(∅) = ∅,
µ({a}) = {b}, µ({b}) = {b}, and µ(U) = U . It can be observed that µ is grounded. Furthermore, it is
isotonic because µ(A) ⊆ µ(B), for all A ⊆ B. Therefore, (U, µ) is an isotonic space. It must be noted
that µ is not a Kuratowski closure operator and not a closure operator because {a} ⊈ µ({a}).

3. Soft Sets over Isotonic Spaces

In this section, we provide some results based on the relationship between soft sets and isotonic and
closure spaces. Unless otherwise claimed, we consider the parameter set E for all soft sets.

Definition 3.1. Let (U, µ) be an isotonic space and (F, E) and (G, E) be soft sets over U . If µ◦F = G,
i.e., (µ ◦ F )(p) = G(p), for all p ∈ E, then (G, E) is called an isotonic extension of (F, E) and denoted
by (µF, E).

This definition allows for to extend a soft set by incorporating external information, such as indirect
contact or inferred proximity, through the isotonic operator. It can be observed that Definition 3.1
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yields the following commutative diagram:

E
F //

µF
!!

P (U)
µ

��

P (U)

Furthermore, since the operator µ defines a new soft set, it functions as a unary operation among soft
sets. Consequently, the following proposition is derived.

Proposition 3.2. Let (U, µ) be an isotonic space and (F, E) and (G, E) be soft sets over U . If
(F, E) ∼= (G, E), then (µF, E) ∼= (µG, E).

Proof. Let (U, µ) be an isotonic space, (F, E) and (G, E) be soft sets over U , and (F, E) ∼= (G, E).
Then, there exist p, q ∈ E such that F (p) = G(q). Thus, µ(F (p)) = µ(G(q)). Hence, there exist p, q ∈ E

such that (µ ◦ F )(p) = (µ ◦ G)(q). Therefore, APP (F, E) = APP (G, E) and thus (µF, E) ∼= (µG, E).

It should be noted that the converse of this proposition is not always true. For example, let U = {1, 2, 3}
and E = {p} and define the soft sets (F, E) and (G, E) such that F (p) = {1} and G(p) = {1, 2}.

Consider the isotonic operator µ : P (U) → P (U) given by µ(X) =
{

X ∪ {2}, X = {1}
X, otherwise

. Since

µ({1}) = {1, 2} and µ({1, 2}) = {1, 2}, then (µ ◦ F )(p) = µ(F (p)) = µ({1}) = {1, 2} and (µ ◦ G)(p) =
µ(G(p)) = µ({1, 2}) = {1, 2} and thus (µF, E) ∼= (µG, E) and (F, E) ≇ (G, E).

Corollary 3.3. Let (U, µ) be an isotonic space. Then, the isotonic extension operation Φ on soft sets
over U defined by Φ(F, E) = (µF, E) is correct.

Proposition 3.4. Let (U, µ) be an isotonic space. Then, the null soft set ∅̃ is preserved the under
isotonic extension in Corollary 3.3.

Proof. Let (U, µ) be an isotonic space and ∅̃ = (F, E). Then, APP (F, E) = {∅}. By the property of
groundedness, µ(∅) = ∅. Thus, APP (µF, E) = {∅}. Hence, Φ

(
∅̃
)

= ∅̃.

This result implies that the isotonic operator preserves the structure of complete absence (null soft
set), ensuring no unintended elements are added during extension.

Proposition 3.5. Let (U, µ) be an isotonic space. Then, the absolute soft set Ũ is preserved under
isotonic extension if and only if µ(U) = U .

Proof. Let (U, µ) be an isotonic space and (F, E) = Ũ.

(⇒): Suppose that the absolute soft set (F, E) is preserved under isotonic extension. Then, APP (F, E) =
{U} = {µ(U)} = APP (µF, E). Thus, µ(U) = U .

(⇐): Suppose that µ(U) = U . Then, µ(F (p)) = µ(U) = U , for all p ∈ E. Thus, APP (µF, E) = {U}.
Hence, Φ(F, E) = (F, E). Therefore, the absolute soft set (F, E) is preserved under isotonic extension.

3.1. Structural Properties of Isotonic Extensions

In this subsection, we provide structural properties of isotonic extensions. These properties collectively
show that isotonic extension behaves structurally consistently, preserving logical relations among soft
sets and enabling risk propagation mechanisms.
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Proposition 3.6. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , and
(H, E × E) = (F, E)∪̃(G, E). Then, the following hold:

i. (µF, E)∪̃(µG, E)⊆̃(µH, E × E)

ii. If µ is preserved under the union operation, then (µH, E × E) = (µF, E)∪̃(µG, E)

The proof can be observed from Lemma 2.11 (i).

Proposition 3.7. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , and
(H, E × E) = (F, E)∩̃(G, E). Then,

i. (µH, E × E)⊆̃(µF, E)∩̃(µG, E)

ii. If µ is preserved under the intersection operation, then (µH, E × E) = (µF, E)∩̃(µG, E)

The proof can be observed from Lemma 2.11 (ii).

It is important to note that the complement of the isotonic extension of a soft set may not be equal to
the isotonic extension of the complement of the soft set. Indeed, consider the soft set (F, E), where
U = {1, 2, 3}, E = {p}, and F (p) = {1}. Let the isotonic operator µ : P(U) → P(U) be defined by

µ(X) =
{

X ∪ {2}, X = {1}
X, otherwise

Since F c(p) = U \ F (p) = {2, 3}, then (µ ◦ F c)(p) = µ({2, 3}) = {2, 3}. Furthermore, (µ ◦ F )(p) =
µ({1}) = {1, 2} and (µ ◦ F )c(p) = U \ {1, 2} = {3}. Therefore, (µ ◦ F c)(p) ̸= (µ ◦ F )c(p).

Proposition 3.8. Let (U, µ) be an isotonic space. If (F, E)⊆̃(G, E), then (µF, E)⊆̃(µG, E).

Proof. Let (U, µ) be an isotonic space and (F, E)⊆̃(G, E). According to the definition of internal
approximation, for all q ∈ E, there exists a p ∈ E such that ∅ ̸= F (p) ⊆ H(q). Since µ is grounded
and isotonic, µ(F (p)) ⊆ µ(H(q)). Thus, (µF, E)⊆̃(µH, E).

Proposition 3.9. Let (U, µ) be an isotonic space. If the closure operator is extensive, then
(F, E)⊆̃(µF, E).

Proof. Let (U, µ) be an isotonic space and µ be extensive. Then, for all p ∈ E such that (µF )(p) ̸= ∅,
∅ ̸= F (p) ⊆ (µF )(p). Thus, (F, E) is an internal approximation of (µF, E), i.e., (F, E)⊆̃(µF, E).

Definition 3.10. Let (U, µ) be an isotonic space and (F, E) be a soft set over U . If (µF, E) = (F, E),
then (F, E) is called a µ-closed soft set over U .

Proposition 3.11. Let (U, µ) be an isotonic space and (F, E) be a soft set over U . Then, (F, E) is a
µ-closed soft set over U if and only if for all p ∈ E, F (p) is closed in the isotonic space (U, µ).

Proof. Let (U, µ) be an isotonic space and (F, E) be a soft set over U .

(⇒): Suppose that (F, E) is a µ-closed soft set over U . Then, (µF, E) = (F, E). Thus, µ(F (p)) = F (p),
for all p ∈ E. Hence, F (p) is closed in the isotonic space (U, µ), for all p ∈ E.

(⇐): Suppose that F (p) is closed in the isotonic space (U, µ), for all p ∈ E. Then, µ(F (p)) = F (p), for
all p ∈ E. Hence, (µF, E) = (F, E). Therefore, (F, E) is a µ-closed soft set over U .

Proposition 3.12. Let (U, µ) be an isotonic space and (F, E) and (G, E) be two soft sets over U . If
(F, E) and (G, E) are µ-closed soft sets over U and µ is extensive, then (F, E)∩̃(G, E) is a µ-closed
soft set over U .
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Proof. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , (F, E) and (G, E)
be µ-closed soft sets over U , µ be extensive, and (F, E)∩̃(G, E) = (H, E × E). By Proposition 3.7 (i),
(µH, E × E)⊆̃(µF, E)∩̃(µG, E). Since (F, E) and (G, E) are µ-closed soft sets over U , (µF, E) = (F, E)
and (µG, E) = (G, E), which implies (µH, E × E)⊆̃(H, E × E). Moreover, since µ is extensive,
H(p, q) ⊆ µ(H(p, q)), for all (p, q) ∈ E × E. Thus, (µH, E × E) = (H, E × E). Hence, (F, E)∩̃(G, E)
is a µ-closed soft set over U .

Proposition 3.13. Let (U, µ) be an isotonic space and (F, E) and (G, E) be two soft sets over U . If
(F, E) and (G, E) are µ-closed soft sets over U and µ is sub-additive, then (F, E)∪̃(G, E) is a µ-closed
soft sets over U .

The proof can be observed from Proposition 3.6 and the property of sub-additivity.

4. An Application of Isotonic Extensions of Soft Sets to Medical Diagnosis

To demonstrate the practical utility of isotonic extensions of soft sets, we consider an example involving
infectious disease surveillance in a hospital setting. The goal is to detect symptomatic patients and those
with potential exposure risks. This section details a novel approach to infectious disease surveillance
through soft set-based risk modeling.

Algorithm 1 Core Algorithm Implemented in the Application
Input
1. The universal set U is defined as the collection of all patients or individuals.
2. The parameter set E whose elements represent symptoms or risk indicators.
3. The initial soft set (F, E), where the observed individuals are considered for each parameter.
4. The exposure rule R = {(Ci, ai) | Ci ⊆ U, ai ∈ U}.
Output
1. The isotonic extension (µF, E).
2. Risk frequencies obtained by the function risk : U → N defined by risk(h) = |{p ∈ E | h ∈
(µF )(p)}|.
3. Priority ranking descending by risk scores.
Steps
Step 1. Define the isotonic operator µ(X) = X ∪ {ai | (Ci, ai) ∈ R and X ∩ Ci ̸= ∅}.
Step 2. Obtain the isotonic extension (µF, E).
Step 3. Calculete risk frequencies, for each individual.
Step 4. Apply the prioritization rule, i.e., rank individuals in descending order according to their risk
frequencies. Determine arbitrary priority for equal risk scores and consider additional criteria.

Following a respiratory disease outbreak, a metropolitan hospital faces a subtle yet significant challenge:
identifying not only patients who exhibit overt symptoms but also asymptomatically infected individuals
who may be silently transmitting the disease within the hospital environment. Conventional diagnostic
methodologies predominantly focus on symptomatic individuals; however, the transmission dynamics
of infectious diseases often transcend such clinical presentations.

In this paper, we introduce an innovative soft set-based decision support model that extends beyond the
analysis of observable symptoms by incorporating exposure-based information through the application
of an isotonic operator. The central objective is to develop a mathematical framework, utilizing soft
sets enriched with contact-tracing semantics, to effectively model latent infection risk within a hospital
milieu.
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Consider patients who present without symptoms yet have a documented history of sharing rooms or
interacting with confirmed cases. Their seemingly benign status raises a critical question: Are they
truly risk-free?

4.1. Soft Set Modeling of Symptom Data

We define the universal set of patients as follows:

U = {h1, h2, h3, h4, h5, h6}

Let the set of pertinent symptoms be represented by E = {p1, p2, p3}, where p1: Fever, p2: Cough, and
p3: Sore throat. Consider the soft set (F, E) defined by

F (p1) = {h1, h2}, F (p2) = {h1, h3}, and F (p3) = {h5}

Moreover, (F, E) can also be represented as shown in Table 1:

Table 1. A representation of (F, E)
Pertinent symptoms Patients exhibiting the symptom

Fever (p1) {h1, h2}
Cough (p2) {h1, h3}

Sore throat (p3) {h5}

4.2. Integration of Related Contact Data (Exposure (Semantics) Rules)

To enhance the model’s granularity, we incorporate hospital contact data:

i. Patient h4 shared a room with patients h1 and h2.

ii. Patient h6 had close contact with patient h5.

These documented connections serve as the basis for the subsequent application of the considered
isotonic operator. This relationship is illustrated in Figure 1:

h1 h2 h3

h4 h5 h6

Figure 1. Contact network among patients

Thus, the exposure rule R is obtained as follows:

R = {({h1, h2}, h4), ({h5}, h6)}

where C1 = {h1, h2} and C2 = {h5}; a1 = h4 and a2 = h6.

4.3. Isotonic Extension Operator: Capturing Exposure Risk

Consider the function µ : P (U) → P (U) defined by

µ(X) = X ∪ {ai | (Ci, ai) ∈ R and X ∩ Ci ̸= ∅}

Then, µ is an isotonic operator on U . This operator is designed to capture the risk associated with
indirect exposure and embodies a proactive infection control strategy by identifying individuals at
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elevated risk due to their proximity to confirmed cases. The isotonic extension effectively models the
amplification of infection risk based on spatial and social proximity within the hospital environment.
The isotonic extension of the soft set can be illustrated in Figure 2.

Fever
F (p1) = {h1, h2}

Cough
F (p2) = {h1, h3}

Sore throat
F (p3) = {h5}

µF (p1) = {h1, h2, h4}

µF (p2) = {h1, h3, h4}

µF (p3) = {h5, h6}

µ

µ

µ

Figure 2. Diagram of the isotonic extension of (F, E)

4.4. Isotonic Extension of the Soft Set and Risk Frequencies

Applying the isotonic operator µ to each symptom-based patient set yields the following sets:

µF (p1) = {h1, h2, h4}, µF (p2) = {h1, h3, h4}, and µF (p3) = {h5, h6}

From these sets, we compute risk frequencies for each patient (see Table 2):

Table 2. Risk Frequencies of Patients

Patients Frequencies

h1 2
h2 1
h3 1
h4 2
h5 1
h6 1

The visual representation illustrating the risk frequencies for each patient is provided in Figure 3:

h1 h2 h3 h4 h5 h6

0

1

2

3

2

1 1

2

1 1

Patients

R
isk

Fr
eq

ue
nc

ie
s

Figure 3. Risk frequencies for each patient computed from (µF, E)
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4.5. Decision Outcome: Prioritization for Intervention

Employing a straightforward decision rule, prioritize the patient who appears in the highest number of
extended symptom sets, the analysis reveals:

i. Patients h1 and h4 appear in two symptom sets of the isotonic extension.

ii. Patient h1 is symptomatic.

iii. Patient h4 is asymptomatic but identified as high-risk due to exposure.

Consequently, the proposed system recommends that both patients should be prioritized for isolation
and further diagnostic testing. This simple yet powerful rule highlights how isotonic extension enhances
the soft set model: it successfully identifies asymptomatic individuals (e.g., h4) who, despite not
presenting symptoms, pose a risk due to documented exposure. Traditional soft set models would fail
to flag such individuals.

5. Conclusion

This paper presents a theoretical and applied framework for extending soft sets via isotonic operators.
The proposed approach addresses a key limitation in classical soft set theory: the inability to represent
indirect or latent information such as exposure risk. The study establishes a consistent and correct
unary operation that preserves equivalence on soft sets, the null soft set, and the absolute soft set
under certain conditions by introducing and formalizing the isotonic extension of a soft set. From a
practical standpoint, the application to hospital-based infection surveillance demonstrates the real-
world relevance of isotonic extensions of soft sets. The model identifies high-risk individuals not
based solely on observed symptoms but also on indirect contact information, an essential advancement
in decision-making under uncertainty. Future research may explore further generalizations using
parameter-dependent isotonic operators or the integration of temporal dynamics, enabling real-time
risk modeling in evolving systems.
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Abstract− In this paper, we first establish the relation between B-maximal and sharp
B-maximal functions generated by the generalized translation operator connected with
the Laplace-Bessel differential operator. We then prove some sharp B-maximal function
estimates and present an application using these sharp estimates to study singular integral
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1. Introduction

In 1938, Morrey [1] introduced the classical Morrey spaces, an extension of the classical Lebesgue spaces.
In Morrey spaces, numerous researchers have studied the boundedness and compactness properties
of maximal and singular integral operators. Due to the applications in the study of Morrey spaces,
this space has aroused widespread interest and curiosity [2]. Thus far, many papers have focused on
various Morrey spaces. They extended Morrey spaces to different settings. For example, Guliyev [3, 4],
Sawano [5], and Nakai [6] introduced the generalized Morrey spaces. Moreover, they investigated the
similar boundedness problems of maximal and singular integral operators in these spaces.

Additionally, weighted inequalities are crucial in Fourier analysis and have numerous applications in
solving boundedness problems for certain integral operators. In particular, weight theory is critical
in studying boundary value problems for the Laplace equation on Lipschitz regions. Muckenhoupt’s
characterization provides the foundation for defining the class Ap and developing weighted inequalities,
ensuring that the Hardy–Littlewood maximal operator maps the weighted Lebesgue space Lp(w) ≡
Lp(Rn, w) onto itself.

The study of the Littlewood-Paley g-theory enjoys a natural motivation and great interest. Many works
and topics have been studied. To study the dyadic decomposition of Fourier series, Littlewood and
Paley [7–9] introduced the g-function of one dimension. The function g is basic in the Littlewood-Paley
theory of Fourier series [10]. Littlewood and Paley proved that
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Ap∥f∥p ≤ ∥g(f)∥p ≤ Bp∥f∥p (1.1)

where on the left side of the above inequality, it was assumed that
2π∫
0

f(θ)dθ = 0. Later, Stein [11]

defined the following n-dimensional form of the Littlewood-Paley g-function and obtained the same
norm inequality as (1.1),

g(f)(x) =

 ∞∫
0

t|∇u(x, t)|2dt

1/2

where u(x, t) = Pt ∗ f(x) denotes the Poisson integral of f . Afterward, many mathematicians have
studied Littlewood-Paley g-function of higher dimensions with more general kernels [12–16].

Over the past 30 years, considerable developments have been made to extend the classical Littlewood-
Paley g-function to some different settings. Akbulut et al. [17] are interested in problems related to
weighted inequalities for the g-Littlewood-Paley functions associated with the Laplace-Bessel differential
operators. However, in [18], they establish some sharp maximal function estimates for certain Toeplitz-
type operators (including the Littlewood-Paley operator) associated with some fractional integral
operators with a general kernel. Moreover, Lerner [19] has established sharp weighted estimates for
any convolution Calderón-Zygmund operator, for all 1 < p ≤ 3/2 and 3 ≤ p < ∞.

Highly inspired by [12–19], in this paper, we are interested in problems related to weighted inequalities
for the Littlewood-Paley g-functions connected with the Laplace-Bessel differential operators ∆ν .
Moreover, we are motivated by the work of Akbulut et al. [20] in which there is a different setting of the
Littlewood-Paley g-function has different settings. We obtained a similar Fefferman-Stein boundedness
result for this operator on generalized B-Morrey spaces by utilizing B-sharp maximal functions related
to the Laplace-Bessel operator.

The rest of the paper is organized as follows: Section 2 presents the basic notations needed throughout
this paper. Section 3 concerns maximal functions related to the Laplace-Bessel differential operator
and its properties. Section 4 defines the integral operator g. The last section indicates the boundedness
of this integral operator on generalized B-Morrey spaces.

2. Preliminaries

This section presents the basic notations and concepts to be required. Throughout this paper, let Q

denote a cube of Rn
+, the upper half region of Rn, n dimensional Euclidean space with sides parallel to

the axes and x = (x′, xn), x′ = (x1, . . . , xn−1) ∈ Rn−1. Moreover, let E(x, t) = {y ∈ Rn
+ ; |x − y| < t}

and E(x, t)c = Rn
+\E(x, t). If E is a Lebesgue measurable set, then χE is the characteristic function of

E, and the weighted Lebesgue measure of E denoted by |E|ν , where |E|ν =
∫
E

xν
ndx such that ν > 0.

Besides, let |E(0, r)|ν = w(n, ν)rn+ν , where

w(n, ν) =
∫

E(0,1)

xν
ndx =

π
n−1

2 Γ
(

ν+1
2
)

2Γ
(

n+ν−2
2
)

The weight w is a nonnegative locally integrable function on Rn
+ that takes values in (0, +∞) almost

everywhere.
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Let the class Ap,ν consist of those weights w for which 1
|E|ν

∫
E

w(x)xν
n dx

1/p 1
|E|ν

∫
E

w(x)−p′/p xν
ndx

1/p′

≤ C

Here, p′ is the dual of p such that 1
p + 1

p′ = 1, for 1 < p < ∞. The class A1,ν is defined replacing the
above inequality by

1
|E|ν

∫
E

w(x) xν
ndx ≤ Cess inf

x∈E
w(x)

for every ball E ⊆ Rn
+. Further, let A∞ =

⋃
1≤p<∞

Ap,ν . It is well known from [21] that if w ∈ Ap,ν with

1 ≤ p < ∞ (or w ∈ A∞), then w satisfies the doubling condition; that is, for all ball E, there exists an
absolute constant C > 0 such that w(2E) ≤ C w(E). Furthermore, if w ∈ A∞, then for all ball B and
all measurable subset E of a ball B, there exists a number δ > 0 independent of E and B such that
w(E)
w(B) ≤ C

(
|E|
|B|

)δ
[21]. Given a weight function w on Rn

+, the weighted Lebesgue space Lp,w,ν(Rn
+), for

1 ≤ p < ∞, is defined as the set of all functions f for which∥∥f
∥∥

Lp,w,ν
:=
( ∫
Rn

+

∣∣f(x)
∣∣pw(x) xν

ndx

)1/p

< ∞

In addition, let WLp,w,ν(Rn), 1 ≤ p < ∞, denote the weighted weak Lebesgue space consisting of all
measurable functions f such that∥∥f

∥∥
W Lp,w,ν

:= sup
λ>0

λ
[
w
({

x ∈ Rn : |f(x)| > λ
})]1/p

< ∞

Additionally, the generalized translate operator T y is defined by

T yf(x) = cν

π∫
0

. . .

π∫
0

f
(
x′ − y′, (xn, yn)θ

)
dµ(θ)

where cν =
π− 1

2 Γ
(

ν+1
2
)

Γ
(

ν
2
) , (xn, yn)θ =

√
x2

n − 2xnyn cos θ + y2
n, and dµ (θ) = sinν−1 θ dθ.

The operator T y acts from Lp(Rn
+, dµ) to Lp(Rn

+, dµ) and satisfies the conditions ||T yf ||p < ||f ||p,
T y1 = 1, and Lp-boundedness. We remark that the generalized translate operator T y is closely related
to the Laplace-Bessel differential operator ∆ν defined by

∆ν =
n−1∑
i=1

∂2

∂x2
i

+ B where B = ∂2

∂x2
n

+ ν

xn

∂

∂xn
such that ν > 0

For n = 1 and n > 1, see [22–26]. The generalized translate operator T y generates the corresponding
B-convolution

(f ⊗ g)(x) =
∫
Rn

+

f(y)T yg(x)yν
ndy

for which the following Young inequality holds:

∥f ⊗ g∥Lr,ν
≤ ∥f∥Lp,ν

∥g∥Lq,ν

such that 1 ≤ p, q ≤ r ≤ ∞ and 1
p + 1

q = 1
r + 1.
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Lemma 2.1. [27] For all x ∈ Rn
+, the following equality holds:∫

Et

T yg(x)yν
ndy =

∫
E((x,0),t)

g

(
z′,
√

z2
n + z2

n

)
dµ(z′, zn)

where E((x, 0), t) = {(z, zn) ∈ Rn × (0, ∞) : |(x − z, zn)| < t}.

Lemma 2.2. [27] For all x ∈ Rn
+, the following equality holds:∫

Rn
+

T yg(x)φ(y)MνχEr
(y)yν

ndy =
∫

Rn×(0,∞)

g

(
z′,
√

z2
n + z2

n

)
φ
(
z′, zn

)
Mνχ

E((x,0),r)(z
′, zn)dµ(z′, zn)

Lemmas 2.1 and 2.2 can be obtained via the following substitutions: z′ = x′, zn = yn cos θ, and
zn = yn sin α, where 0 ≤ θ < π, y ∈ Rn

+, and (z, zn) ∈ Rn × (0, ∞). Let S ′
+ = S ′

+
(
Rn

+
)

denote the
topological dual of S+, the collection of all tempered distributions on Rn

+.

Definition 2.3. [27, 28] Let ω be a positive measurable weight function. Then, Mp,ω,ν(Rn
+) denotes

the generalized B-Morrey spaces as the set of all locally integrable functions f with finite quasi-norm

||f ||Mp,ω,ν = sup
x∈Rn

+,r>0

r
− n+ν

p

ω(r)

∫
E(0,r)

T y[|f(x)|]p yν
ndy


1
p

< ∞

Note that

i. if ω(r) = r
− n+ν

p , then Mp,ω,ν(Rn
+) ≡ Lp

ν(Rn
+).

ii. if ω(r) = r
λ−n−ν

p and 0 ≤ λ < n + ν, then Mp,ω,ν(Rn
+) = Mp,λ,ν(Rn

+).

3. B-Maximal Functions

This section includes a modified version of the sharp maximal operator, as introduced by Fefferman
and Stein [29]. A variant of the sharp maximal function, namely the sharp B-maximal function M#

ν f ,
associated with the Laplace–Bessel differential operator, was introduced in [30] as follows:

M#
ν f(x) = sup

x∈Q
inf

c

1
|Q|ν

∫
Q

∣∣∣T yf(x) − c
∣∣∣yν

n dy ≈ sup
x∈Q

1
|Q|ν

∫
Q

|T yf(x) − fQ|yν
n dy

Here, fQ = 1
|Q|ν

∫
Q

T yf(x)yν
n dy denotes the average of f over E. Moreover, for δ > 0,

M#
ν,δf(x) = M#

ν

(
|f |δ
)

(x)
1
δ

which is useful for the sharp B-maximal operator below. We denote the Hardy-Littlewood maximal
function, i.e., B-maximal function, by Mνf , defined as follows [30]:

Mνf(x) = sup
r>0

1
|Q|ν

∫
Q

T y|f(x)|yν
n dy

It is well known that the B-maximal function provides control over the mean value of a function
concerning any radially decreasing function in L1,ν . Moreover, boundedness estimates for Mν can be
established in the framework of generalized B-Morrey spaces.

Theorem 3.1. [20] Let 1 ≤ p < ∞ and ω be positive measurable weight function on Rn
+ satisfying

the condition
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∞∫
t

ω(x, τ)dτ

τ
≤ Cω(x, t) (3.1)

where the constant C is independent of x and t. Then, for p > 1, the maximal operator Mν is bounded
on Mp,ω,ν(Rn

+) and for p = 1, it is bounded on M1,ω,ν(Rn
+).

The proof can be obtained using a similar way to the one employed in the proof of Theorem 4.1 in [20].

The following inequalities, inspired by the work of Fefferman and Stein [29], will be used in the
remainder of this section.

Lemma 3.2. [29] Let 1 ≤ p < ∞ and ω be an A∞ weight. Then, there exists a constant C such that
the following inequality holds for every function f for which the left-hand side is finite:∫

Rn
+

|Mνf(x)|pω(x) xν
n dx ≤ C

∫
Rn

+

∣∣M#
ν f(x)

∣∣pω(x) xν
n dx

4. Littlewood-Paley g-Function

This section is devoted to defining and investigating the Littlewood-Paley g-function associated with
the Laplace-Bessel differential operator in the generalized B-Morrey space Mp,w,ν(Rn

+).

Definition 4.1. [31] Let f ∈ S(Rn
+), the space of infinitely differentiable functions on Rn

+ that
decrease rapidly at infinity together with all their derivatives. For t > 0, the Poisson-type integral
ut(f) is defined by

u(f)(x, t) = ut(f)(x) :=
∫
Rn

+

pt(y) T yf(x) yν
ndy

where x ∈ Rn
+ and pt denotes the Poisson-type kernel given by

pt(x) = p(x, t) = cν
t

(t2 + |x|2)
n+ν+1

2
where cν =

2n+νΓ
(

n+ν+1
2
)

Γ
(1

2
)

Recall that the Poisson-type integral ut(f), defined by ut(f) = (pt ⊗ f)(x), is a B-convolution type
singular integral operator and satisfies the following properties:

Proposition 4.2. [20] Let f ∈ S(Rn
+) be a positive function and p > 1. Then,

i. ut(x) ≤ C(t2 + |x|2)(
n−ν+3

2 )

ii. ∂u

∂t
(x) ≤ Ctn−ν+4

iii. ∂u

∂xi
(x) ≤ C(t2 + |x|2)(

n−ν+4
2 ), for all 1 ≤ i ≤ n

iv. (pt ∗ f)(x) ≤ Mνf(x)

where Mνf is the B-maximal function.

Definition 4.3. [20] Let f ∈ S(Rn
+). Then, a g-function associated with the Laplace-Bessel differential

operators is defined by

g(f)(x) =

 ∞∫
0

|∇ut(x)|2 t dt

1/2

(4.1)

where x ∈ Rn
+, ut is the Poisson-type integral, and |∇t(x)|2 =

∣∣∂u
∂t (x)

∣∣2 +
n∑

i=1

∣∣∣ ∂u
∂xi

(x)
∣∣∣2.
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Theorem 4.4. [20] Let 1 < p < 2 and ω be positive measurable weight function on Rn
+ × [0, ∞)

satisfying (3.1). Then, there exists a positive constant Cp,ν such that for all f ∈ Mp,ω,ν(Rn
+),

∥g(f)∥Mp,ω,ν ≤ Cp,ν∥f∥Mp,ω,ν

The proof follows from the proof of Theorem 6.1 in [20].

5. Main Results

This section primarily employs similar techniques to those in [32,33] to derive the following lemmas,
which play a crucial role in establishing the boundedness of the Littlewood-Paley g-function. Afterward,
it provides the main result, Theorem 5.5. This section considers the Littlewood-Paley g-function with
the same kind of kernel as in (4.1). This leads to the following definition:

Definition 5.1. Let ε > 0 and φ be a fixed function satisfying the following properties:

i.
∫
Rn

+

φ(x)xν
ndx = 0

ii. |T yφ(x)| ≤ T y|φ(x)| ≤ C(1 + |x|)−(n+ν+1)

iii. If 2|y| < |x|, then |T yφ(x) − φ(y)| ≤ C|y|ε(1 + |x|)−(n+ν+1+ε)

Here, C > 0 is a constant independent of x. Thus, the Littlewood-Paley g-function is defined by

g(f)(x) =

 ∞∫
0

|φt ⊗ f(x)|2 dt

t

1/2

where φt is the dilation of φ given by φt(x) = tn+νφ(x
t ).

Lemma 5.2. Let 1 < p < ∞ and 0 < D < 2n+ν . Then, for any smooth function f for which the
left-hand side is finite,

||Mνf ||Mp,φ,ν ≤ C||M#
ν f ||Mp,φ,ν

Proof. For any cube Q = Q(x, r) in Rn
+, Mν(χQ)(x) ∈ A1,ν by [34]. It must be noted that

Mν(χQ)(x) ≤ 1. By Lemma 3.2, for f ∈ Mp,ω,ν(Rn
+),∫

Q

T y|Mνf(x)|p(x) yν
n dy =

∫
Rn

+

T y|Mνf(x)|p(x) (χQ)(x) yν
n dy

≤
∫
Rn

+

T y|Mνf(x)|p(x)Mν(χQ)(x) yν
n dy

=
∫
Rn

+

|Mνf(y)|p T yMν(χQ)(x) yν
n dy

≤ C

∫
Rn

+

|M#
ν f(y)|pT yMν(χQ)(x) yν

n dy

≤ C

∫
Q

|M#
ν f(y)|pT yMν(χQ)(x)yν

ndy

+
∞∑

k=0

∫
2k+1Q\2kQ

|M#
ν f(y)|pT yMν(χQ)(x)yν

n dy
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≤ C

∫
Q

T y|M#
ν f(x)|p yν

n dy +
∞∑

k=0

∫
2k+1Q\2kQ

T y|M#
ν f(x)|p |Q|ν

|2k+1Q|ν
yν

n dy


≤ C

∫
Q

T y|M#
ν f(x)|p yν

n dy +
∞∑

k=0

∫
2k+1Q

T y|M#
ν f(x)|p 2−k(n+ν) yν

n dy


≤ C||T y(M#

ν (f))||pMp,φ,ν

∞∑
k=0

2−k(n+ν)φ(2k+1r)

≤ C||T y(M#
ν (f))||pMp,φ,ν

∞∑
k=0

(2−(n+ν)D)kφ(r)

≤ C||T y(M#
ν )(f)||pMp,φ,ν

φ(r)

Thus,  1
φ(r)

∫
Q

T y|Mνf(x)|pxν
ndx


1/p

≤ C

 1
φ(r)

∫
Q

T y|M#
ν f(x)|pxν

ndx


1/p

Hence,
||Mν(f)||Mp,φ,ν ≤ C||M#

ν (f)||Mp,φ,ν

Theorem 5.3. [35] Let T be a convolution-type singular integral operator. Then, there exists a
constant C > 0 for ω ∈ A1,ν , for 0 < p < 1, and for every ball Q such that

∫
Q

|Tf |pω(x)xν
n dx ≤ C(n, p, [ω])A1,ν ω(E)1−p

∫
Rn

+

|f(x)|ω(x)xν
n dx


p

Lemma 5.4. Let 0 < δ < 1. Then, there exists a constant C > 0 only depending on δ such that

M#
ν (g(f))(x) ≤ CMν(f)(x) (5.1)

where

M#
ν (g(f))(x) =

sup
x∈Q

inf
c∈R

1
|Q|ν

∫
Q

∣∣∣T y|g(f)|δ − |c|δ
∣∣∣yν

n dy


1
δ

Proof. Let x ∈ Rn
+ and Q be a cube containing x. To obtain (5.1), it suffices to show that 1

|Q|ν

∫
Q

∣∣∣|T y[g(f)]|δ − |c|δ
∣∣∣ yν

n dy


1
δ

≤ CMνf(x)

for some constant c to be determined. Using the inequality
∣∣∣|u|δ − |v|δ

∣∣∣ ≤ |u − v|δ such that 0 < δ < 1,
define (

g(f)
)

Q
= 1

|Q|ν

∫
Q

T y
(

g(f)
)

(x)yν
ndy
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Denote f as f = f1 + f2, where f1 = λ2Q. We will show that c =
(

g(f2)
)

Q
satisfies the required

inequality. By the linearity of the Littlewood-Paley operator g(f),

M#
ν,δ([g(f)])(x) :=

(
sup

Q
M#

ν

(
[g(f)]δ

)) 1
δ

=

 1
|Q|ν

∫
Q

∣∣∣∣∣∣∣T y
(

g(f)
)

(x)
∣∣∣δ − |c|δ

∣∣∣∣ yν
n dy


1
δ

≤ C


 1

|Q|ν

∫
Q

∣∣∣g(T yf1(x)
)∣∣∣δ yν

n dy


1
δ

+

 1
|Q|ν

∫
Q

∣∣∣g(T yf2(x)
)

− c
∣∣∣δ yν

n dy


1
δ


:= C(I1 + I2)

First, we show the estimate I1. For 0 < δ < 1, applying Theorem 5.3 (Kolmogorov’s estimate of Bessel
type),

I1 =

 1
|Q|ν

∫
Q

∣∣∣g(T yf(x)
)∣∣∣δ yν

n dy


1
δ

≤ 1
|Q|ν

|Q|1−δ
ν


∫

Q

|T yf1(x)| yν
n dy


δ

1
δ

≤ CMνf(x)

For the estimate of I2, if |x − y| > 2r, by the Jensen inequality and Fubini’s theorem for integrals,

I2 = 1
|Q|ν

∫
Q

∣∣∣∣T y (g(f2)(x)) −
(

g(f2)
)

Q

∣∣∣∣ yν
n dy

= 1
|Q|ν

∫
Q

∣∣∣∣∣T y
(

gf2(x)
)

− 1
|Q|ν

∫
Q

T y
(

g(f2)(x)
)

zν
n dz

∣∣∣∣∣yν
n dy

≤ 1
|Q|ν

∫
Q

 1
|Q|ν

∫
Q

∣∣∣g(T yf2(x)
)

− gf2(y)
∣∣∣ zν

n dz

 yν
n dy

≤ 1
|Q|ν

∫
Q

1
|Q|ν


∫

Q

∣∣∣∣∣
∫
Rn

+

φ(τ)T τ
(

T yf2(x)
)

τν
n dτ −

∫
Rn

+

φ(τ)T τ f2(x)τν
n dτ

∣∣∣∣∣zν
n dz

 yν
n dy

≤ 1
|Q|ν

∫
Q

1
|Q|ν


∫

Q

∣∣∣∣∣
∫
Rn

+

φ(τ)T yT τ f2(x)τν
n dτ −

∫
Rn

+

φ(τ)T τ f2(x)τν
n dτ

∣∣∣∣∣zν
n dz

 yν
n dy

≤ 1
|Q|ν

∫
Q

1
|Q|ν


∫

Q

∣∣∣∣∣
∫
Rn

+

T yφ(τ)T τ f2(x)τν
n dτ −

∫
Rn

+

φ(τ)T τ f2(x)τν
n dτ

∣∣∣∣∣zν
n dz

 yν
n dy
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≤ 1
|Q|ν

∫
Q

1
|Q|ν

∣∣∣∣∣
∫
Q

[
T yφ(τ) − φ(τ)

]
T τ f2(x)τν

n dτ

∣∣∣∣∣zν
n dz

 yν
n dy

≤ 1
|Q|2ν

∫
Q

zν
n dz

∫
Q

∫
Q

∣∣∣T yφ(τ) − φ(τ)
∣∣∣yν

n dy

T τ f2(x)τν
n dτ

≤ C
1

|Q|τ

∫
Q

T τ |f2(x)|τν
n dτ ≤ CMνf(x)

Theorem 5.5. Let 1 ≤ p < ∞ and ω ∈ A1,ν(Rn
+). Then, there exists a positive constant C > 0 such

that
||g(f)||Mp,ω,ν ≤ C∥f∥Mp,ω,ν

The proof can be easily observed from Lemmas 5.2 and 5.4.

6. Conclusion

This paper presents a Fefferman-Stein type boundedness result for the Littlewood-Paley g-operator on
generalized B-Morrey spaces by utilizing B-sharp maximal functions. The importance and fundamental
difference of this paper lie in its use of different transformations (generalized transformations) of
the obtained results. Future studies can extend this work to encompass multilinear analogues of the
results presented here. B-Sharp maximal function estimates for multilinear singular integrals and their
commutators can be constructed. In addition, their boundedness properties can be investigated on
generalized B-Morrey spaces.
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Abstract− This paper investigates the population dynamics of solutions to a parabolic-
parabolic-elliptic type of multi-species Keller-Segel chemotaxis system under the Neumann
boundary conditions in a smoothly bounded domain. It studies dynamical properties such as
Lρ-bounds, global existence, global boundedness, and combined mass persistence of solutions
for the aforementioned system. Under certain specified parameter conditions, the paper shows
that the system admits a unique global classical solution that remains uniformly bounded
from above. Furthermore, it establishes that the entire population persists at all times;
in other words, this study proves that any globally bounded classical solution maintains a
positive lower mass bound.
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1. Introduction

Chemotaxis is the process of directed movement of mobile organisms or cells in response to a chemical
gradient. Keller and Segel [1, 2] first established a mathematical model to explain this phenomenon in
the late 1970s. This phenomenon plays a key role in many biological processes, including population
dynamics, immune cell migration, and tumor growth. In the aftermath of this period, many authors
investigated various chemotaxis models from various perspectives, including local existence, uniqueness,
finite time blow-up, global existence and boundedness, persistence, stability, and special solutions in
various research publications, making significant contributions to the mentioned problems above. For
further details, see [3–5].

Regarding these problems in more general frameworks, including two species with chemical signals,
some variants of the model of (1.1) have also been researched in various ways. A comprehensive com-
parison exists between one-species and multi-species chemotaxis models, addressing their mathematical
frameworks, biological implications, and essential dynamical characteristics, and they are applicable in
symbiotic or competitive systems, predator-prey dynamics, and host-pathogen interactions. The main
difference between one-species and two-species chemotaxis models lies in the number of interacting
populations and their interaction with chemical signals. In simpler terms, in a one-species system,
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the cell population reacts to a single stimuli, while in two-species models, the system comprises two
populations that interact with one another and respond to a single chemical. It is well-known that
multi-species chemotaxis models offer a more accurate representation of biological scenarios. Neverthe-
less, these models, while more realistic, working on those ones mathematically is quite challenging.
It is also natural to regard competition and cooperation in chemotaxis models. In this context, the
paper presents a model that incorporates three interacting populations responding to a single chemical,
which allow for to study new challenges and areas of research, such as coexistence and extinction,
provided that a globally bounded classical solution exists. In this regard, this article first studies
global existence, global boundedness, and persistence of solutions within the following model, thereby
providing a way for an exploration of the model’s long-term behaviors. However, we leave open the
topics associated with the large time behaviors to investigate somewhere else.

This paper aims to investigate a more realistic scenario in a biological environment by illustrating the
interactions among three different cell populations as they react to one chemical. This is far more
realistic compared to the previous works, revealing numerous intriguing dynamic scenarios within such
chemotaxis systems. In this respect, this research paper analyzes the dynamical characteristics of the
population as described by the subsequent parabolic-parabolic-parabolic-elliptic chemotaxis growth
model involving strong logistic kinetics:

ut = ∆u − χ1∇ · (u∇z) + u(h1 − k1u)

vt = ∆v − χ2∇ · (v∇z) + v(h2 − k2v)

wt = ∆v − χ3∇ · (w∇z) + w(h3 − k3w)

0 = ∆z − az + bu + cv + dw

(1.1)

with the Neumann boundary conditions
∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= ∂z

∂ν
= 0

and the initial data u0(x) := u(0, x; u0), v0(x) := v(0, x; u0), and w0(x) := w(0, x; u0) satisfying

u0, v0, w0 ∈ C0(S̄) and u0, v0, w0 ≥ 0 (1.2)

where S ⊆ Rn with n ≥ 1 is a smooth bounded domain; a, b, c, d > 0, and χi, hi, ki > 0, for i ∈ {1, 2, 3}.
Moreover, assume that

k1 > (n − 2)
{

bχ1
n

+ (c + d)χ1
n + 2 + 2b(χ2 + χ3)

n(n + 2)

}
(1.3)

k2 > (n − 2)
{(b + d)χ2

n + 2 + cχ2
n

+ 2c(χ1 + χ3)
n(n + 2)

}
(1.4)

and
k3 > (n − 2)

{(b + c)χ3
n + 2 + 2d(χ1 + χ2)

n(n + 2) + dχ3
n

}
(1.5)

From a biological standpoint, the system described by (1.1) illustrates the evolution of three competing
mobile species, namely u, v, and w, which are affected by a single chemical substance z. In this context,
the mobile cells u, v, and z are attracted by the chemical substance z. In the framework of (1.1), the
unknown functions u(x, t), v(x, t), and w(x, t) represent the density of cells, while z(x, t) indicates the
concentration of the chemical signal at time t and space x ∈ Ω; the cross-diffusion terms −χ1∇ · (u∇z),
−χ2∇ · (v∇z), and −χ3∇ · (w∇z) reflect the chemotactic movement, where χ1, χ2, χ3 > 0 are the
chemotactic sensitivity coefficients. The parameters h1, h2, h3 > 0 represent the intrinsic growth
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rates, while the parameters k1, k2, k3 > 0 indicate the self-limitation effects of the species u, v and w,
respectively. Additionally, the parameters a > 0 indicate the degradation rate of chemical substance w;
the parameters b, c, d > 0 denote the production rate of the mobile cells u, v, and w.

In the competitive scenario, all three species strive to generate stimuli to attract their rivals to
gain dominance. Multi-species chemotaxis models have a great biological importance in real-world
scenarios, as they provide insights into the movement of different cell types or organisms in response
to chemical signals, particularly when interacting among various species or cell types. From the
biological perspective, the model in (1.1) describes the evolution of three competitive species subject
to one chemical substance. It is essential to highlight that the system represented by (1.1) is under
investigation for the first time. It is particularly noteworthy that the system incorporates three species
and one stimulus with regular sensitivity, which gives us the opportunity to compare and discuss these
three distinct cell populations at the same time. Hence, we explore the interactions among all the
species and their mutual influences on the dynamic properties of the system in (1.1). Throughout
this study, investigate the Lρ-boundedness, global existence, global boundedness, and combined mass
persistence of solutions to the system in (1.1).

Various versions of the system in (1.1), such as one-species or multi-species and one-multi type
chemical substance models, have been analyzed in many research papers so far. First, assume that
v(x, t) = w(t, x) = 0. Then, the following system is obtained:

ut = ∆u − χ∇ · (u∇z) + h1u − k1u2

0 = ∆z − az + bu
(1.6)

For the case n ≥ 2 and h1 = k1 = 0, (1.6) has a finite-time blows-up in solutions of (1.1) under some
restriction on the initial data, see [6–9]. For the case a = b = 1 and h1, k1 > 0, (1.6) has a bounded
classical solution if n < 2 or n ≥ 3 whenever χ1 < k1n

n−2 [10]. Moreover, the global existence and
boundedness of this model was obtained at the critical point, which is χ1 = k1n

n−2 with n ≥ 3 [11]. In
addition, the mass persistence of solutions of (1.6) was first studied in [12], and it was shown that in
any space dimensional setting, when S is a convex domain, all positive solutions to the model in (1.1)
always persists as a whole, that is, ∫

S
u ≥ c∗ > 0 (1.7)

Recently, the convexity condition for the persistence of mass of solutions has been eliminated in [13]
under the the following explicit conditions, which means (1.7) also holds for any domain S ⊆ Rn if

n ≤ 2 or χ ≤ k1
b

· n

n − 2 with n ≥ 3

For the other dynamical behaviors of solutions, including weak solutions, stability, and persistence,
see [11,14–26].

A selection of known results concerning similar models of (1.1) can be outlined as follows: Consider
the subsequent two-species one chemoattractant Keller-Segel model

ut = d1∆u − χ1∇ · (u∇z) + µ1u(1 − u − a1v)

vt = d2∆v − χ2∇ · (u∇z) + µ2v(1 − a2u − v)

0 = d3∆z − γz + αu + βv

(1.8)

Tello and Winkler [27] established the global existence, boundedness, and stability of solutions of
(1.8) under the conditions d3 = α = β = 1, 2(χ1 + χ2) + a2µ1 < µ2, and 2(χ1 + χ2) + a1µ2 < µ1.
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The same results [28] were achieved under the relaxed conditions provided that χ1
µ1

< min
{

d3
2α , a1d3

β

}
,

χ2
µ2

< min
{

d3
2β , a2d3

α

}
, and a1a2d2

3 <
(
d3 − 2αχ1

µ1

) (
d3 − 2βχ2

µ2

)
. The long-time behaviors of solutions to

the system in (1.8) has been established in [29] provided that a1 > 1 > a2, d3 = β = 1, χ1
µ1

≤ a1,
χ2
µ2

≤ 1
2 , and χ1

µ1
+ max

{
χ2
µ2

, a2(µ2−χ2)
µ2−2χ2

, (α−a2)χ2
µ2−2χ2

}
< 1. Afterward, in the general case, i.e., a1, a2 > 0, it

was demonstrated in [30] that the system in (1.8) has a global bounded classical solutions if n ≤ 2 or
n ≥ 3 with χ1

µ1
< d3n

n−2 min
{

1
α , a1

β

}
and χ2

µ2
< d3n

n−2 min
{

1
β , a2

α

}
. This result was improved in [31] when

α = β = γ = 1 if χ1
µ1

+ χ2
µ2

< d3. Finally, in [32], the most general case for the arbitrary parameters,
the system in (1.8) admits a bounded solution under the much milder suitable conditions on the
parameters. For the existence, boundedness, long-term behavior of solutions, such as asymptotic
stability, persistence, competitive exclusion, and coexistence, for similar models of (1.8), see [33–41].

The remainder of this paper is structured as follows: Section 2 focuses on presenting key estimates
and Lρ-bounds and discussing the global existence and boundedness of solutions to (1.1). Section 3
analyzes the persistence of the mass of globally bounded solutions to (1.1). The last section discusses
the need for further research.

2. Preliminaries

This section aims to introduce several fundamental lemmas. Initially, it discusses the local existence
and uniqueness of the solution to (1.1).

Lemma 2.1. For all u0 and v0 satisfying (1.2), there exists a Tmax(u0, v0, w0) ∈ (0, ∞] such that
the system described by (1.1) and (1.2) admit a classical solution on (0, Tmax) with initial conditions
u(0, x) = u0(x), v(0, x) = v0(x), and w(0, x) = w0(x) satisfying

lim
t→0

∥u(t, ·) − u0(·)∥L∞(S̄) = lim
t→0

∥v(t, ·) − v0(·)∥L∞(S̄) = lim
t→0

∥w(t, ·) − w0(·)∥L∞(S̄) = 0

where u, v, w ∈ C((0, Tmax) × S̄) ∩ C2,1((0, Tmax) × S̄)) and z ∈ C2,0((0, Tmax) × S̄)). In addition, being
Tmax(u0, v0, w0) < ∞ also implies

∥u(t, ·) + v(t, ·) + w(t, ·)∥L∞(S̄) = ∞ as t → Tmax

The proof can be obtained from the similar operations of Theorem 2.1 in [10].

In the subsequent discussion, we establish upper bounds for the solutions that serve as a foundation for
proving the main results herein. Note that we prove the following lemmas in the interval t ∈ (0, Tmax),
for all 0 < t < Tmax(u0, v0, w0) ∈ (0, ∞].

Lemma 2.2. The following hold:

i. Let |S| be the Lebesgue measure of S. Then,∫
S

u ≤ m1 := max
{h1

k1
|S|,

∫
S

u0
}

∫
S

v ≤ m2 := max
{h2

k2
|S|,

∫
S

v0
}

and ∫
S

w ≤ m3 := max
{h3

k3
|S|,

∫
S

v0
}

for all t ∈ (0, Tmax).
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ii. Let ξ > 1. For all ε > 0, there are C(ε, ξ, m1) > 0, C(ε, ξ, m2) > 0, and C(ε, ξ, m3) such that∫
S

uξ ≤ ε

∫
S

uξ−2|∇u|2 + C(ε, ξ, m1)∫
S

vξ ≤ ε

∫
S

vξ−2|∇v|2 + C(ε, ξ, m2)

and ∫
S

wξ ≤ ε

∫
S

wξ−2|∇w|2 + C(ε, ξ, m3)

for all t ∈ (0, Tmax).

Proof. i. Integrating the first and second equalities in (1.1) and using Hölder inequality,
d

dt

∫
S

u = h1

∫
S

u − k1

∫
S

u2 ≤ h1

∫
S

u − k1
|S|

( ∫
S

u
)2

d

dt

∫
S

v = h2

∫
S

v − k2

∫
S

v2 ≤ h2

∫
S

v − k2
|S|

( ∫
S

v
)2

and
d

dt

∫
S

w = h3

∫
S

v − k3

∫
S

w2 ≤ h3

∫
S

w − k3
|S|

( ∫
S

w
)2

for all t ∈ (0, Tmax). Then, i follows from the ODE’s comparison principle.

ii. By the Erhling type lemma, for ε > 0, C(ε, ξ) > 0 such that∫
S

uξ ≤ 4ε

ξ2

∫
S

|∇u
ξ
2 |2 + C(ε, ξ)

( ∫
S

u
)ξ

≤ ε

∫
S

uξ−2|∇u|2 + C(ε, ξ)(m1)ξ

∫
S

vξ ≤ 4ε

ξ2

∫
S

|∇v
ξ
2 |2 + C(ε, ξ)

( ∫
S

v
)ξ

≤ ε

∫
S

vξ−2|∇v|2 + C(ε, ξ)(m2)ξ

and ∫
S

wξ ≤ 4ε

ξ2

∫
S

|∇w
ξ
2 |2 + C(ε, ξ)

( ∫
S

w
)ξ

≤ ε

∫
S

wξ−2|∇w|2 + C(ε, ξ)(m3)ξ

for all t ∈ (0, Tmax). Then, ii follows.

Lemma 2.3. Let ξ > 0. Then, for all t ∈ (0, Tmax),∫
S

uξ−1∇u · ∇z ≤
[

b

ξ
+ c

ξ + 1 + d

ξ + 1

] ∫
S

uξ+1 + c

ξ(ξ + 1)

∫
S

vξ+1 + d

ξ(ξ + 1)

∫
S

wξ+1

∫
S

vξ−1∇v · ∇z ≤ b

ξ(ξ + 1)

∫
S

uξ+1 +
[

b

ξ + 1 + c

ξ
+ d

ξ + 1

] ∫
S

vξ+1 + d

ξ(ξ + 1)

∫
S

wξ+1

and ∫
S

wξ−1∇w · ∇z ≤ b

ξ(ξ + 1)

∫
S

uξ+1 + c

ξ(ξ + 1)

∫
S

vξ+1 +
[

b

ξ + 1 + c

ξ + 1 + d

ξ

] ∫
S

wξ+1

Proof. By multiplying the third equality in (1.1) by uξ−1 and integrating by parts over S,∫
S

uξ−1 · (∆z − az + bu + cv + dw) = 0

which gives by Young’s inequality

ξ

∫
S

uξ−1∇u · ∇z + a

∫
S

zuξ = b

∫
S

uξ+1 + c

∫
S

vuξ + d

∫
S

wuξ

≤ b

∫
S

uξ+1 + c

ξ + 1

∫
S

vξ+1 + cξ

ξ + 1

∫
S

uξ+1 + d

ξ + 1

∫
S

wξ+1 + dξ

ξ + 1

∫
S

uξ+1
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for all t ∈ (0, Tmax). Similarly,

ξ

∫
S

vξ−1∇v · ∇z + a

∫
S

zvξ = b

∫
S

uvξ + c

∫
S

vξ+1 + d

∫
S

wvξ

≤ b

ξ + 1

∫
S

uξ+1 + bξ

ξ + 1

∫
S

vξ+1 + c

∫
S

vξ+1 + d

ξ + 1

∫
S

wξ+1 + dξ

ξ + 1

∫
S

vξ+1

and

ξ

∫
S

wξ−1∇w · ∇z + a

∫
S

zwξ = b

∫
S

uwξ + c

∫
S

vwξ + d

∫
S

wξ+1

≤ b

ξ + 1

∫
S

uξ+1 + bξ

ξ + 1

∫
S

wξ+1 + c

ξ + 1

∫
S

vξ+1 + cξ

ξ + 1

∫
S

wξ+1 + d

∫
S

wξ+1

for all t ∈ (0, Tmax).

The subsequent lemma represents a significant estimate for the Lρ-bounds of u + v.

Lemma 2.4. Assume that (1.3)-(1.5) holds. Then for all k1, k2 and k3, there is a ξ := ξ(k1, k2, k3) > 1
such that ∫

S
uξ +

∫
S

vξ +
∫

S
wξ ≤ C

for all t ∈ (0, Tmax).

Proof. Multiplying the first equality in (1.1) by uξ−1 and integrating it over S,
1
ξ

· d

dt

∫
S

uξ =
∫

S
uξ−1∆u − χ1

∫
S

uξ−1∇ · (u∇z) + h1

∫
S

uξ − k1

∫
S

uξ+1

= −(ξ − 1)
∫

S
uξ−2|∇u|2 + (ξ − 1)χ1

∫
S

uξ−1∇u · ∇z + h1

∫
S

uξ − k1

∫
S

uξ+1
(2.1)

for all t ∈ (0, Tmax). Similarly,
1
ξ

· d

dt

∫
S

vξ = −(ξ − 1)
∫

S
vξ−2|∇v|2 + (ξ − 1)χ2

∫
S

vξ−1∇v · ∇z + h2

∫
S

vξ − k2

∫
S

vξ+1 (2.2)

and
1
ξ

· d

dt

∫
S

wξ = −(ξ − 1)
∫

S
wξ−2|∇w|2 + (ξ − 1)χ3

∫
S

wξ−1∇w · ∇z + h3

∫
S

wξ − k3

∫
S

wξ+1 (2.3)

for all t ∈ (0, Tmax). By adding (2.1)-(2.3),

1
ξ

· d

dt

(∫
S

uξ +
∫

S

vξ +
∫

S

wξ

)
= −(ξ − 1)

∫
S

uξ−2|∇u|2 − (ξ − 1)
∫

S

vξ−2|∇v|2 − (ξ − 1)
∫

S

wξ−2|∇w|2

+ (ξ − 1)χ1

∫
S

uξ−1∇u · ∇z + (ξ − 1)χ2

∫
S

vξ−1∇v · ∇z + (ξ − 1)χ3

∫
S

wξ−1∇w · ∇z

+ h1

∫
S

uξ + h2

∫
S

vξ + h3

∫
S

wξ − k1

∫
S

uξ+1 − k2

∫
S

vξ+1 − k3

∫
S

wξ+1

for all t ∈ (0, Tmax). By Lemma 2.2, there is a positive number C > 0 such that

h1

∫
S

uξ ≤ (ξ − 1)
∫

S
uξ−2|∇u|2 + C

3

h2

∫
S

vξ ≤ (ξ − 1)
∫

S
vξ−2|∇v|2 + C

3
and

h3

∫
S

wξ ≤ (ξ − 1)
∫

S
wξ−2|∇w|2 + C

3
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for all t ∈ (0, Tmax). Moreover, by Lemma 2.3,

(ξ−1)χ1

∫
S

uξ−1∇u·∇z ≤ (ξ−1)χ1

[
b

ξ
+ c

ξ + 1 + d

ξ + 1

] ∫
S

uξ+1+c(ξ − 1)χ1

ξ(ξ + 1)

∫
S

vξ+1+d(ξ − 1)χ1

ξ(ξ + 1)

∫
S

wξ+1

(ξ−1)χ2

∫
S

vξ−1∇v·∇z ≤ (ξ−1)χ2

[
b

ξ + 1 + c

ξ
+ d

ξ + 1

] ∫
S

vξ+1+b(ξ − 1)χ2

ξ(ξ + 1)

∫
S

uξ+1+d(ξ − 1)χ2

ξ(ξ + 1)

∫
S

wξ+1

and

(ξ−1)χ3

∫
S

wξ−1∇w·∇z ≤ b(ξ − 1)χ3

ξ(ξ + 1)

∫
S

uξ+1+c(ξ − 1)χ3

ξ(ξ + 1)

∫
S

vξ+1+(ξ−1)χ3

[
b

ξ + 1 + c

ξ + 1 + d

ξ

] ∫
S

wξ+1

which yields

(ξ − 1)

[
χ1

∫
S

uξ−1∇u · ∇z + χ2

∫
S

vξ−1∇v · ∇z + χ3

∫
S

wξ−1∇w · ∇z

]
≤ (ξ − 1)

[
bχ1

ξ
+

(c + d)χ1

ξ + 1
+

b(χ2 + χ3)
ξ(ξ + 1)

]∫
S

uξ+1

+ (ξ − 1)
[

(b + d)χ2

ξ + 1
+

cχ2

ξ
+

c(χ1 + χ3)
ξ(ξ + 1)

]∫
S

vξ+1

+ (ξ − 1)
[

(b + c)χ3

ξ + 1
+

d(χ1 + χ2)
ξ(ξ + 1)

+
dχ3

ξ

]∫
S

wξ+1

(2.4)

for all t ∈ (0, Tmax). It then follows that
1
ξ

· d

dt

(∫
S

uξ +
∫

S
vξ +

∫
S

wξ
)

≤
{

(ξ − 1)
(

bχ1
ξ

+ (c + d)χ1
ξ + 1 + b(χ2 + χ3)

ξ(ξ + 1)

)
− k1

}∫
S

uξ+1

+
{

(ξ − 1)
((b + d)χ2

ξ + 1 + cχ2
ξ

+ c(χ1 + χ3)
ξ(ξ + 1)

)
− k2

}∫
S

vξ+1

+
{

(ξ − 1)
((b + c)χ3

ξ + 1 + d(χ1 + χ2)
ξ(ξ + 1) + dχ3

ξ

)
− k3

}∫
S

vξ+1 + C

for all t ∈ (0, Tmax). Fix ξ > 1 sufficiently close to 1 such that ξ := 1 + ε, for ε ≪ 1. By (1.3)-(1.5), for
all k1, k2, and k3,

ε ·
[

bχ1
1 + ε

+ (c + d)χ1
2 + ε

+ b(χ2 + χ3)
(1 + ε)(2 + ε)

]
− k1 < 0

ε ·
[(b + d)χ2

2 + ε
+ cχ2

1 + ε
+ c(χ1 + χ3)

(1 + ε)(2 + ε)

]
− k2 < 0

and
ε ·
[(b + c)χ3

2 + ε
+ d(χ1 + χ2)

(1 + ε)(2 + ε) + dχ3
1 + ε

]
− k3 < 0

Then, by Young’s inequality with some elementary arrangements, there is a k∗ > 0 such that
1
ξ

· d

dt

(∫
S

uξ +
∫

S
vξ +

∫
S

wξ
)

≤ −k∗
(∫

S
uξ +

∫
S

vξ +
∫

S
wξ
)

+ C∗

for all t ∈ (0, Tmax). Let y(t) :=
∫

S uξ +
∫

S vξ +
∫

S wξ, which yields y′ ≤ −ξk∗y + ξC∗. Then, the ODE’s
comparison principle yields∫

S
uξ +

∫
S

vξ +
∫

S
wξ ≤ C, for all t ∈ (0, Tmax)

3. Main Results

This section provides the obtained primary results.
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3.1. Lρ-Bounds

This subsection establishes Lρ-bounds of u + v + w.

Theorem 3.1 (Lρ-boundedness). Suppose that the initial functions u0, v0, and w0 satisfy (1.2), and
the assumptions in (1.3)-(1.5) are valid. Then, for any given n

2 < ρ < n,∫
S

uρ +
∫

S
vρ +

∫
S

wρ ≤ C, for all t ∈ (0, Tmax)

Proof. Fix n
2 < ξ < n. Then, the main assumptions in (1.3)-(1.5) guarantee that the following hold:

(ξ − 1)
(

bχ1
ξ

+ (c + d)χ1
ξ + 1 + b(χ2 + χ3)

ξ(ξ + 1)

)
− k1 < 0

(ξ − 1)
((b + d)χ2

ξ + 1 + cχ2
ξ

+ c(χ1 + χ3)
ξ(ξ + 1)

)
− k2 < 0

and
(ξ − 1)

((b + c)χ3
ξ + 1 + d(χ1 + χ2)

ξ(ξ + 1) + dχ3
ξ

)
− k3 < 0

Hence, by Lemma 2.4, ∫
S

uξ +
∫

S
vξ +

∫
S

wξ ≤ Cξ

for all t ∈ (0, Tmax). Moreover, by the Gagliardo-Nirenberg embedding theorem and Young’s inequality,
for all ε > 0, ∫

S
uρ+1 = ∥u

ρ
2 ∥

2(ρ+1)
ρ

L
2(ρ+1)

ρ (S)

≤ C∥∇u
ρ
2 ∥

2(ρ+1)θ
ρ

L2(S) ∥u
ρ
2 ∥

2(ρ+1)(1−θ)
ρ

L
2ξ
ρ (S)

+ C∥u
ρ
2 ∥

2(ρ+1)θ
ρ

L
2ξ
ρ (S)

≤ C

(
ρ2

4

∫
S

uρ−2|∇u|2
) (ρ+1)θ

ρ

(Cξ)
(ρ+1)(1−θ)

ξ + C(Cξ)
(ρ+1)θ

ξ

≤ ε

∫
S

uρ−2|∇u|2 + C(ρ, ξ, ε, θ, Cξ, |S|) for all t ∈ (0, Tmax)

(3.1)

where

θ =
ρ
2ξ − ρ

2(ρ+1)
1
n + ρ

2ξ − 1
2

= ρn

ρ + 1 · ρ + 1 − ξ

2ξ + n(p − ξ) ∈ (0, 1) and (ρ + 1)θ
ρ

< 1

due to the fact that (1.3) implies

χ1 <
n

n − 2 · k1
b1

for all n − 2
2 <

n

2 < ρ < n

Similarly, ∫
S

vρ+1 ≤ ε

∫
S

vρ−2|∇v|2 + C(ρ, ξ, ε, θ, Cξ, |S|) (3.2)

and ∫
S

wρ+1 ≤ ε

∫
S

wρ−2|∇w|2 + C(ρ, ξ, ε, θ, Cξ, |S|) (3.3)

for all t ∈ (0, Tmax). Besides, multiplying the first equality in (1.1) by uρ−1 with ρ > 1, the second
equality in (1.1) by vρ−1 with ρ > 1, and the third equality in (1.1) by wρ−1 with ρ > 1, integrating
them over S, and adding these equations,
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1
ρ

d

dt

(∫
S

uρ +
∫

S

vρ +
∫

S

wρ

)
= −(ρ − 1)

∫
S

uρ−2|∇u|2 − (ρ − 1)
∫

S

vρ−2|∇v|2 − (ρ − 1)
∫

S

wρ−2|∇w|2

+ (ρ − 1)χ1

∫
S

uρ−1∇u · ∇z + (ρ − 1)χ2

∫
S

vρ−1∇v · ∇z + (ρ − 1)χ3

∫
S

wρ−1∇w · ∇z

+ h1

∫
S

uρ + h2

∫
S

vρ + h3

∫
S

wρ − k1

∫
S

uρ+1 − k2

∫
S

vρ+1 − k3

∫
S

wρ+1

(3.4)

for all t ∈ (0, Tmax). In view of (2.4), (3.1), (3.2), and (3.3),

(ρ − 1)

[
χ1

∫
S

uρ−1∇u · ∇z + χ2

∫
S

vρ−1∇v · ∇z + χ3

∫
S

wρ−1∇w · ∇z

]
≤ (ξ − 1)

[
bχ1

ξ
+

(c + d)χ1

ξ + 1
+

b(χ2 + χ3)
ξ(ξ + 1)

]∫
S

uρ+1

+ (ξ − 1)
[

(b + d)χ2

ξ + 1
+

cχ2

ξ
+

c(χ1 + χ3)
ξ(ξ + 1)

]∫
S

vρ+1

+ (ξ − 1)
[

(b + c)χ3

ξ + 1
+

d(χ1 + χ2)
ξ(ξ + 1)

+
dχ3

ξ

]∫
S

wρ+1

≤ (ρ − 1)

∫
S

vρ−2|∇v|2 + (ρ − 1)

∫
S

vρ−2|∇v|2

+ (ρ − 1)

∫
S

wρ−2|∇w|2 + C

(3.5)

for t ∈ (0, Tmax). Moreover, by Young’s inequality,

h1

∫
S

uρ ≤ k1
2

∫
S

uρ+1 + C(h1, k1, |S|) (3.6)

h2

∫
S

vρ ≤ k2
2

∫
S

vρ+1 + C(h2, k2, |S|) (3.7)

and

h3

∫
S

wρ ≤ k3
2

∫
S

wρ+1 + C(h3, k3, |S|) (3.8)

for all t ∈ (0, Tmax). Collecting (3.4)-(3.8),
1
ρ

d

dt

(∫
S

uρ +
∫

S
vρ +

∫
S

wρ
)

≤ − min
{

k1
2 ,

k2
2 ,

k3
2

}(∫
S

uρ +
∫

S
uρ +

∫
S

wρ
)

+ C∗

which implies by the ODE’s comparison principle that∫
S

uρ +
∫

S
vρ +

∫
S

wρ ≤ max
{∫

S
(uρ

0 + vρ
0 + wρ

0), 4C∗

min{k1, k2, k3}

}
for all t ∈ (0, Tmax). The proof is thus over.

3.2. Global Existence and Boundedness

This subsection presents the subsequent observation related to the global existence and boundedness of
solutions to (1.1).

Theorem 3.2 (Global existence and boundedness). Assume that the initial functions u0, v0, and w0

satisfy (1.2), and (1.3) and (1.4) hold. Then, the solution (u, v, w, z) is global, i.e.,

Tmax(u0, v0, w0) = ∞
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Moreover, there is a K∞ > 0 such that

∥u + v + w∥L∞(S) ≤ K∞, for all t > 0

Proof. It is well known that if ρ > n
2 , then Lρ-boundedness of solutions in time implies the L∞-

boundedness in time of solutions. Thus, by Theorem 3.1 and similar operations in the proof of Theorem
2.5 in [27], Tmax(u0, v0, w0) = ∞ and

sup ∥u(t, ·) + v(t, ·) + w(t, ·)∥L∞(S) < ∞, for all t > 0

3.3. Combined Mass Persistence

This section analyzes the combined mass persistence of solutions to (1.1). It first present the following
key estimate.

Lemma 3.3. Let β0, β1, and β2 be positive, θ1 > 1, θ2 > 1, t0 ∈ R, and y ∈ C1 ([t0, ∞)) be nonnegative
and satisfy the following inequality, for all t > 0:

y′(t) ≥ β0y(t) − β1yθ1(t) − β2yθ2(t)

Then,

y(t) ≥ min
{

y(t0),
(

β0
2β1

) 1
θ1−1

,

(
β0
2β2

) 1
θ2−1

}

The proof follows from the argument of Lemma 2.5 in [42]

Afterward, we provide an estimate from below for u(t, x) + v(t, x) + w(t, x).

Lemma 3.4. Assume that δ ∈ (0, 1). Then, there is a σ > 0 such that∫
S
(uδ(t, x) + vδ(t, x) + wδ(t, x)) dx ≥ σ, for all t > 0

Proof. Let δ ∈ (0, 1). Then, multiplying the first equality in (1.1) by uδ−1 with , the second equality
in (1.1) by vδ−1 with δ ∈ (0, 1), and the third equality in (1.1) by wδ−1 with δ ∈ (0, 1), integrating
them over S, and adding these equations, for all t > 0,

1
δ

· d

dt

(∫
S

uδ +
∫

S

vδ +
∫

S

wδ

)
= (1 − δ)

∫
S

uδ−2|∇u|2 + (1 − δ)
∫

S

vδ−2|∇v|2 + (1 − δ)
∫

S

wδ−2|∇w|2

− (1 − δ)χ1

∫
S

uδ−1∇u · ∇z − (1 − δ)χ2

∫
S

vδ−1∇v · ∇z

− (1 − δ)χ3

∫
S

wδ−1∇w · ∇z + h1

∫
S

uδ + h2

∫
S

vδ + h3

∫
S

wδ

− k1

∫
S

uδ+1 − k2

∫
S

vδ+1 − k3

∫
S

wδ+1

(3.9)

From Lemma 2.3, the third equality in (1.1), and integration by parts over S,

(1 − δ)χ1

∫
S

uδ−1∇u · ∇z ≤ (1 − δ)χ1

(
b

δ
+ c + d

δ + 1

)∫
S

uδ+1 + (1 − δ)cχ1
δ(δ + 1)

∫
S

vδ+1 + (1 − δ)dχ1
δ(δ + 1)

∫
S

wδ+1

(1 − δ)χ2

∫
S

vδ−1∇v · ∇z ≤ (1 − δ)bχ2
δ(δ + 1)

∫
S

uδ+1 + (1 − δ)χ2

(
b + d

δ + 1 + c

δ

)∫
S

vδ+1 + (1 − δ)bχ2
δ(δ + 1)

∫
S

wδ+1

and

(1−δ)χ3

∫
S

wδ−1∇w·∇z ≤ b(δ − 1)χ3

δ(δ + 1)

∫
S

uδ+1+ c(δ − 1)χ3

δ(δ + 1)

∫
S

vδ+1+(δ−1)χ3

(
b

δ + 1 + c

δ + 1 + d

δ

)∫
S

wδ+1
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which entail for all t > 0 that

(1 − δ)
[

χ1

∫
S

uδ−1∇u · ∇z + χ2

∫
S

vδ−1∇v · ∇z + χ3

∫
S

wδ−1∇w · ∇z

]
≤ C1

∫
S

uδ+1 + C2

∫
S

vδ+1 + C3

∫
S

wδ+1 (3.10)

where
C1 = (1 − δ)χ1

(
b

δ
+ c + d

δ + 1

)
+ (1 − δ)bχ2

δ(δ + 1)
b(δ − 1)χ3
δ(δ + 1)

C2 = (1 − δ)cχ1
δ(δ + 1) + (1 − δ)χ2

(
b + d

δ + 1 + c

δ

)
+ c(δ − 1)χ3

δ(δ + 1)
and

C3 = (1 − δ)dχ1
δ(δ + 1) + (1 − δ)bχ2

δ(δ + 1) + (δ − 1)χ3

(
b

δ + 1 + c

δ + 1 + d

δ

)
Define ζ > 0 such that

0 <
ξ(n − 2δ)
n(ξ − δ) < ζ < 1 < ξ

where ξ > 1 is as in Lemma 2.4. By Hölder’s inequality, for all t > t0 > 0,∫
S

uδ+1 =
∫

S
uζ · uδ+1−ζ ≤

( ∫
S

uξ
) ζ

ξ
( ∫

S
u

ξ(δ+1−ζ)
ξ−ζ

) ξ−ζ
ξ ≤ (Cξ)

ζ
ξ

( ∫
S

u
ξ(δ+1−ζ)

ξ−ζ

) ξ−ζ
ξ (3.11)

Employing the Gagliardo–Nirenberg Theorem and Young’s inequality yields that( ∫
S

u
ξ(δ+1−ζ)

ξ−ζ

) ξ−ζ
ξ = ∥u

δ
2 ∥

2(δ+1−ζ)
δ

L
2q(δ+1−ζ)

δ(ξ−ζ) (S)

≤ C∥∇u
δ
2 ∥

2(δ+1−ζ)θ
δ

L2(S) ∥u
δ
2 ∥

2(δ+1−ζ)(1−θ)
δ

L2(S) + C∥u
δ
2 ∥

2(δ+1−ζ)
δ

L2(S)

≤ C
( ∫

S
uδ−2|∇u|2

) (δ+1−ζ)θ
δ

( ∫
S

uδ
) (δ+1−ζ)(1−θ)

δ + C
( ∫

S
uδ
) δ+1−ζ

r

≤ (1 − δ)C−1
1 (Cξ)− ζ

ξ

∫
S

uδ−2|∇u|2 + C̃
( ∫

S
uδ
) (δ+1−ζ)(1−θ)

δ−θ(δ+1−ζ) + C
( ∫

S
uδ
) δ+1−ζ

δ

where

θ =
1
2 − δ(ξ−ζ)

2ξ(δ+1−ζ)
1
n + 1

2 − 1
2

= n

2ξ
· ξ − ζξ + ζδ

δ + 1 − ζ
∈ (0, 1)

(δ + 1 − ζ)θ
δ

= n(ξ − ξζ + δζ)
2ξδ

∈ (0, 1)

(δ + 1 − ζ)(1 − θ)
δ − θ(δ + 1 − ζ) = 1 + 1 − ζ

δ − θ(δ + 1 − ζ) > 1

and
δ + 1 − ζ

δ
> 1

It then follows that for all t > t0,

C1

∫
S

ur+1 ≤ (1 − δ)
∫

S
uδ−2|∇u|2 + β1

( ∫
S

uδ
)θ1

+ β2
( ∫

S
uδ
)θ2

(3.12)

where β1, β2 > 0 are certain positive constants and θ1, θ2 > 1. Similarly, for all t > t0,

C2

∫
S

vδ+1 ≤ (1 − δ)
∫

S
vδ−2|∇v|2 + β3

( ∫
S

vδ
)θ1

+ β4
( ∫

S
vδ
)θ2

(3.13)

and
C3

∫
S

wδ+1 ≤ (1 − δ)
∫

S
wδ−2|∇w|2 + β5

( ∫
S

wδ
)θ1

+ β6
( ∫

S
wδ
)θ2

(3.14)
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where β3, β4, β5, β6 > 0 are certain positive constants. Hence, from (3.10)-(3.14),

(1 − δ)

[
χ1

∫
S

uδ−1∇u · ∇z + χ2

∫
S

vδ−1∇v · ∇z + χ3

∫
S

wδ−1∇w · ∇z

]
≤ (1 − δ)

[∫
S

uδ−2|∇u|2 +

∫
S

vδ−2|∇v|2 +

∫
S

wδ−2|∇w|2
]

+ β1

(∫
S

uδ

)θ1

+ β3

(∫
S

vδ

)θ1

+ β5

(∫
S

wδ

)θ1

+ β2

(∫
S

uδ

)θ2

+ β4

(∫
S

vδ

)θ2

+ β6

(∫
S

wδ

)θ2

≤ (1 − δ)

[∫
S

uδ−2|∇u|2 +

∫
S

vδ−2|∇v|2 +

∫
S

wδ−2|∇w|2
]

+ β7

(∫
S

uδ +

∫
S

vδ +

∫
S

wδ

)θ1

+ β8

(∫
S

uδ +

∫
S

vδ +

∫
S

wδ

)θ2

for some β7, β8 > 0. Together with (3.9), this yields that
1
δ

· d

dt

(∫
S

uδ +
∫

S
vδ +

∫
S

wδ

)
≥ min{h1, h2, h3}

(∫
S

uδ +
∫

S
vδ +

∫
S

wδ

)
− β5

( ∫
S

uδ +
∫

S
vδ +

∫
S

wδ
)θ1

− β6

( ∫
S

uδ +
∫

S
vδ +

∫
S

wδ
)θ2

for all t > t0. Consequently, by Lemma 3.3, there is a σ > 0 such that for all t > t0,∫
S

uδ +
∫

S
vδ +

∫
S

wδ ≥ σ

Theorem 3.5 (Combined mass persistence). Suppose that initial functions u0, v0, and w0 satisfy
(1.2), and the main assumptions in (1.3) and (1.4) are valid. Then, there is a σ∗ > 0 such that∫

S
(u + v + w) ≥ σ∗, for all t > 0

Proof. By Hölder inequality, for all δ ∈ (0, 1) and for all t > 0,∫
S
(u + v + w) ≥ |S|

δ−1
δ

(∫
S
(u + v + w)δ

) 1
δ

≥ |S|
δ−1

δ

{∫
S

uδ +
∫

S
vδ +

∫
S

wδ
} 1

δ

Afterward, by Lemma 3.4, for all δ ∈ (0, 1), there is a σ > 0 such that for all t > 0,∫
S

uδ +
∫

S
vδ +

∫
S

wδ ≥ σ

Therefore, for all t > 0,∫
S
(u + v + w) ≥ |S|

δ−1
δ

{∫
S

uδ +
∫

S
vδ +

∫
S

wδ
} 1

δ

≥ |S|
δ−1

δ σ
1
δ

4. Conclusion

In this section, we analyze the obtained findings, outline open problems related to the system in (1.1),
and suggest potential directions for future research. To begin with, we remark that the system in (1.1)
represents a mixed-type Keller-Segel chemotaxis model, incorporating three mobile species and a single
chemical stimulus. This model combines standard sensitivities with competitive dynamics defined
by weak logistic sources. Furthermore, it is significant to point out that this is the inaugural study
documented related to the system in (1.1) in the related literature.
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Afterward, we discuss the results obtained in Theorems 3.1, 3.2, and 3.5. To begin with, we note that
compared to the Lotka-Volterra kinetics, which involves interactions among multiple species such as
competition, predation, or mutualism, the current logistic source for any cell represented by u, v, w

in the system described in (1.1) does not interact with other species. This situation presents both
advantages and disadvantages for the system in (1.1). The benefit of the existing logistic source is its
ability to prevent species extinction, refers to persistence. In contrast, the limitations are connected to
the continuous evolution of the cell population over time, avoiding infinite growth or collapse within a
finite period, which relates to global existence and boundedness, under more stronger assumptions
regarding the parameters, particularly k1, k2, and k3. The Lotka-Volterra kinetics offers more beneficial
conditions for achieving outcomes associated with global existence and boundedness; however, it can
also cause the extinction of one or two species as time progresses. While the current logistic kinetics
requires more rigorous conditions on the parameters to secure the stated results on existence, it will
ensure the strict positivity of species at any moment they exist. Therefore, the assumptions herein in
establishing the main results presented in Theorem 3.5 compared to the previous works are considerably
more stronger than those in earlier studies [12, 35] in terms of the persistency of species. On the
other hand, these current results indicate the upper bounds for global existence, boundedness, and
persistence in the (1.1) if the Lotka-Volterra kinetics is integrated into the system. We highlight that
the global existence, boundedness and combined mass persistence of the current system has been
established for the first time in this paper. Hence, future works associated with the system in (1.1)
can focus on the following topics:

i. If (1.3) and (1.4) are not valid, then the global existence, boundedness, and mass persistence of the
solution to the system in (1.1) is still open. The next phases of this research could involve an analysis
of the asymptotic stability, co-existence, extinction, and bifurcation analysis of solutions, along with
their numerical simulations.

ii. Another future works related to system in (1.1) may involve integrating Lotka-Volterra kinetics
into the system to investigate its dynamics, followed by comparing the results from each model.
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Abstract− This study investigates the nonlinear time-fractional Schrödinger model by
utilizing this prototype in fields like nonlinear optics, plasma physics, soliton theory, quantum
field theory, and dark matter/neural network modeling. It analyzes the equation to reveal key
insights into fundamental physical phenomena, advancing novel technological applications.
The paper presents fractional derivatives using M-truncated and Atangana-Baleanu operators.
The approach employs Bäcklund transformation and Wang’s direct mapping method to
derive soliton solutions, including exponential, sin-cos, sinh-cosh, rational, trigonometric, and
hyperbolic forms. The present study constructs the energy balance method via the problem’s
Hamiltonian and variational principle, offering a promising approach. It complements
analytical results with numerical simulations to enhance understanding of solution behavior.
The study provides foundations for further exploration, ensuring practical, reliable solutions
for complex nonlinear problems. The methods prove robust, efficient, and applicable to
diverse nonlinear PDEs.
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1. Introduction

Fractional calculus plays a key role by offering a more detailed and accurate mathematical framework
for modeling, analyzing, and understanding complex systems and phenomena. It bridges the gap
between traditional calculus and the intricate dynamics observed in real-world applications, thereby
enabling advancements in technology, scientific research, and various applied fields. Considerable strides
have been made in fractional calculus to overcome the limitations of classical differential operators.
Consequently, researchers have developed new operators or modified existing ones. The non-singular
operator introduced by Caputo and Fabrizio [1] was proposed to resolve the singularity issues present
in traditional definitions. However, the Caputo–Fabrizio operator still exhibits non-local behavior,
which can be problematic in contexts requiring localized modeling. To simultaneously overcome both
singularity and non-locality challenges, Atangana and Baleanu [2] introduced a new fractional operator.
This operator forms provides an effective alternative by reducing non-local effects while eliminating
singularities.
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Fractional derivatives have a wide range of implications in various fields, such as physics, transport,
fluid motion, elastic media, robotics, mechanics, electromagnetic theory, engineering, geophysics, signal
processing, and biology. ecent advancements have shown that fractional derivatives can also be used to
describe financial [3] and economic systems [4]. Given that many complex problems can be expressed
as fractional differential equations (FDEs), the exploration of both analytical and numerical methods
for solving such equations is of significant interest [5,6]. These models are valuable for studying various
real-world nonlinear phenomena that arise across diverse disciplines, including engineering, physics,
and applied mathematics.

Classical definitions of fractional derivatives often face limitations regarding physical interpretability
and are highly sensitive to initial conditions. In contrast, the M-truncated and Atangana–Baleanu (AB)
fractional derivatives employed in this study offer significant advantages for modeling complex memory
effects and damping behaviors in physical systems. Notably, the Mittag–Leffler kernel associated
with the AB derivative enhances its ability to capture long-term effects more accurately than classical
approaches. On the other hand, the M-truncated derivative provides greater flexibility in analytical
treatment, making it more suitable for various solution strategies. Consequently, both operators serve
as effective modeling tools, capable of representing physical processes with both mathematical rigor
and practical relevance.

The Schrödinger equation is one of the fundamental models in quantum theory. In the Schrödinger
equation, Naber [7] included the time-fractional derivative. This equation is applied in a variety of
physics fields, including particle physics, biological systems, nuclear physics, atomic physics, molecular
chemistry, astrophysics, solid-state physics, quantum mechanics in nanostructures, condensed matter
physics, and quantum information and computing [8].

Several analytical methods have been used to obtain exact soliton solutions. These include the modified
generalized Riccati equation mapping method [9], the auxiliary equation method [10], the improved
modified Sardar sub-equation method [11], the new version of the generalized exponential rational
function method [12], the modified Kudryashov method [13], the sine-cose method [14], the modified
extended Tanh expansion method [15], the extended simplest equation method [16], and Lie symmetry
analysis and conservation laws [17]. In this study, a nonlinear time-fractional model with M-truncated
and AB fractional operators are used. These investigations include both singular and non-singular
operators. The Bäcklund transformation-based method, Wang’s direct mapping method, and the
energy balance method (EBM) are utilized to obtain the soliton solutions. Additionally, these methods
are novel in the literature for the investigated model.

The remaining sections of this paper are organized as follows: Section 2 describes the model used in
the study. Section 3 presents the preliminary definitions. Section 4 proposes the fractional model.
Section 5 uses the homogeneous balancing approach to obtain the Bäcklund transformation and the
ansatz function schemes to construct numerous exact solutions through symbolic computation. Section
6 investigates the various soliton solutions using Wang’s direct mapping method. Section 7 implements
the EBM. Section 8 provides comparisons. Section 9 presents the physical properties of the obtained
results in graphical form. Finally, Section 10 provides the conclusions.

2. A Summary of the Model

Consider the nonlinear time-fractional Schrödinger equation [18]:

iVt + a1Vxx + a2 |V |2 V = 0 (2.1)
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where V = V (x, t) represents a complex-valued function depend on both the spatial variable x and the
temporal variable t, where t > 0. The nonlinear Schrödinger equation is a fundamental equation in
quantum mechanics, playing a pivotal role in understanding various phenomena. The model presented
is of significant importance in contemporary scientific research and is regarded as a widely applicable
indirect model. It arises from diverse applied mathematics and physics areas, including astrophysics,
biophysics, plasma dynamics, quantum optics, fluid dynamics, chaos theory, nonlinear wave propagation,
and quantum information theory [19]. The specific form considered here is a well-known variant of the
classical Schrödinger equation, where the constant parameter a2 determines the type of soliton solution:
a positive a2 leads to bright solitons, while a negative a2 produces dark solitons [18]. Previous studies
have investigated this model using different fractional derivatives. For example, Gurefe [20] applied
Atangana’s conformable fractional derivative and obtained five exact solutions via the generalized
Kudryashov method. Ahmad et al. [21] used the unified method, and Asjad et al. [22] employed an
extended direct algebraic technique to construct multiple exact solutions for the same model.

3. Preliminaries

This section presents the AB fractional operator and the M-truncated operator, along with a description
of the operators used.

Definition 3.1. [2] Let g : [a, b] → R be a continuous function and 0 < ε < 1. Then, the AB-type
fractional operator in the sense of the Riemann–Liouville operator is defined by

ABR
0 𭟋ε

a+(g(t)) = AB(ε)
(1 − ε)

d

dt

∫ t

a
g(t)Eε

(−ε(t − t)ε

1 − ε

)
dt

where the normalization is represented by AB(ε), and the Mittag-Leffer function is shown by Eε.
Consequently,

ABR
0 𭟋ε

a+(g(t)) = AB(ε)
(1 − ε)

∞∑
j=0

( −ε

1 − ε

)j
RLIεj

α g(t)

Definition 3.2. [23] Let h : R+ → R be a differentiable function, 0 < ε < 1, γ > 0, and t > 0. Then,
the generalized fractional operator is defined by

ι𭟋ε,γ
M (h(t)) = lim

ε→0

h(t +ι Eγ(εt−ε)) − h(t)
ε

in which ιEγ(·) is a single-parameter Mittag-Leffer function.

Definition 3.3. [24] Let γ > 0, Z ∈ C, and ι ∈ N. Then, ιEγ is defined as follows:

ιEγ(Z) =
ι∑

j=0

Zj

Γ(γj + 1)

Theorem 3.4. Let h : R+ → R be a function that is continuous at t = 0, and differentiable at some
t0 > 0 both in the classical and fractional sense of order α ∈ (0, 1), with a fixed parameter γ > 0.
Then, the function h satisfies the required conditions for the application of the generalized fractional
operator.

Theorem 3.5. [23] Let c1, c2, c3 ∈ R, 0 < ε ≤ 1, γ > 0, and g, h : R+ → R be differentiable functions
for t > 0. Then, the following properties hold for the fractional operator ι𭟋ε,γ

M :

ι𭟋ε,γ
M (c3) = 0

ι𭟋ε,γ
M (k(g(t))) = k ι𭟋ε,γ

M (g(t))
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ι𭟋ε,γ
M (c1(g(t)) + c2(h(t))) = c1 ι𭟋ε,γ

M (g(t)) + c2 ι𭟋ε,γ
M (h(t))

ι𭟋ε,γ
M (h(t) ∗ g(t)) = (h(t)) ι𭟋ε,γ

M (g(t)) ∗ (g(t)) ι𭟋ε,γ
M (h(t))

ι𭟋ε,γ
M

(
h(t)
g(t)

)
= (g(t)) ι𭟋ε,γ

M (h(t)) − (h(t)) ι𭟋ε,γ
M (g(t))

(g(t))2

ι𭟋ε,γ
M (tϑ) = T ϑ−ε, ϑ ∈ R

and
ι𭟋ε,γ

M (g(h))(t) = g
′(h ι𭟋ε,γ

M (h))

4. Fractional Representations of the Aforementioned Model

This section presents the fractional structure of the nonlinear partial differential equation (NLPDE)
using two different fractional operators, including both singular and nonsingular kernels.

i. The R-L sense form of (2.1) has the fractional operator AB as

ιAB
0 𭟋ε

t V + a1Vxx + a2 |V |2 V = 0

where the AB in the context of R-L operators with regard to t is represented by AB
0 𭟋ε

t .

ii. The modified M-truncated form of the fractional operator of (2.1) is

ι𭟋ε
M,tV + a1Vxx + a2 |V |2 V = 0

where the modified M-truncated operators based on t is represented by 𭟋ε
M,t.

4.1. Construction of the Operational Transformation Scheme

Consider the following wave transformation:

V = V (x, t) = L(ξ)eiΘ (4.1)

The analysis of the fractional derivatives will be carried out with respect to ξ and Θ.

i. For the M-truncated operator, we produce ξ and Θ as follows:

ξ = x − 2a4a5
ε

(
t + 1

Γ(ε)

)ε

and
Θ = xa3 + a4

ε

(
t + 1

Γ(ε)

)ε

+ θ (4.2)

ii. For the AB operator in RL sense, we produce ξ and Θ as follows:

ξ = x − (1 − ε)(2a4a5t−nε)

AB(ε)
∞∑

n=0

(
−ε
1−ε

)
Γ(1 − εn)

and
Θ = a3x + (1 − ε)(a4t−nε)

AB(ε)
∞∑

n=0

(
−ε
1−ε

)
Γ(1 − εn)

+ θ (4.3)
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5. Methodology

Consider the subsequent NLPDE:

P1(V, Vx, Vt, Vxx, Vxt,...) = 0 (5.1)

in which (5.1) is satisfied by V = V (x, t). By applying the transformation given in (4.1), where ξ is
defined accordingly, the formulation is considered both for the M-truncated operator as in (4.2) and
for the AB operator in the Riemann–Liouville sense as in (4.3). Consequently, (5.1) is transformed
into an nonlinear ordinary differential equation (NODE) as follows:

P2(L, L′, L′′, ...) = 0 (5.2)

Applying (4.1) into (2.1), the imaginary and real components are obtained as follows, respectively:

a5 = a1a3
a4

and
a1L

′′ −
(
a4 + a1a2

3

)
L + a2L3 = 0 (5.3)

5.1. Bäcklund Transformation and Implementing

Assume that (5.2) provides the subsequent solution form [25]:

L = A1
∂ϱℏ
∂ξϱ

+ A2 (5.4)

To calculate the value of the equilibrium parameter ϱ, we utilize (5.3) to balance L
′′ and L3. Thus,

ϱ = 1.

5.1.1. Type-I: Exponential Function

Assume that
ℏ(ξ) = ln (n1 exp(−ξ) + n0 + n2 exp(ξ)) (5.5)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.5) into (5.3) and taking
the coefficients of exp(ξ) as zero, an algebraic equation system is produced. The solutions of this
system are obtained as follows:

Set I.

n0 = n0, n1 = 0, n2 = n2, a1 = − 2a4
2a2

3 + 1
, A1 = −

√
4a4(

2a2a2
3 + a2

) , and A2 =
√

a4(
2a2a2

3 + a2
)

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,1(x, t) = −

√
a4

a2(2a2
3+1) (n2 exp (ξ) − n0)

n0 + n2 exp (ξ) ei(Θ) (5.6)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set II.

n0 = n0, n1 = n1, n2 = 0, a1 = − 2a4
2a2

3 + 1
, A1 =

√
4a4(

2a2a2
3 + a2

) , and A2 =
√

a4(
2a2a2

3 + a2
)
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Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,2(x, t) = −

√
a4

a2(2a2
3+1) (n1 exp (−ξ) − n0)

n0 + n1 exp (−ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set III.

n0 = 2
√

n1n2, n1 = n1, n2 = n2, a1 = − 2a4
2a2

3 + 1
, A1 =

√
a4(

2a2a2
3 + a2

) , and A2 = 0

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,3(x, t) = −

√
a4

a2(2a2
3+1) (n1 exp (−ξ) − n2 exp (ξ))

n1 exp (−ξ) + 2 √
n1n2 + n2 exp (ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set IV.

n0 = 0, n1 = n1, n2 = n2, a1 = − a4
a2

3 + 2
, A1 =

√
4a4(

2a2a2
3 + a2

) , and A2 = 0

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,4(x, t) = −

√
4a4

a2(2a2
3+1) (n1 exp (−ξ) − n2 exp (ξ))

n1 exp (−ξ) + n2 exp (ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.2. Type-II: Sin-Cos Function

Assume that
ℏ(ξ) = ln (n0 cos(ξ) + n1 + n2 sin(ξ)) (5.7)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.7) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is reached as follows:

Set I.

n0 = n0, n1 = n1, n2 = −a2n0
(
2a2

3 − 1
)

a4

√
− a4(

2a2a2
3 − a2

)√ a4(
2a2a2

3 − a2
) , a1 = − 2a4

2a2
3 − 1

A1 =
√

4a4(
2a2a2

3 − a2
) , and A2 =

√
− a4(

2a2a2
3 − a2

)
Combining (5.4), (5.7), and (4.1) with above results, the sin-cos function solution of (2.1) is obtained
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as follows:

V2,1,1(x, t) =

a4


sin (ξ) n0

√
a4

a2(2a2
3−1)

+ cos (ξ) n0
√

− a4
a2(2a2

3−1)
−
√

− a4
a2(2a2

3−1)n1


 (

2 sin (ξ) a2a2
3n0 − sin (ξ) a2n0

)√ a4
a2(2a2

3−1)
√

− a4
a2(2a2

3−1)
− cos (ξ) a4n0 − a4n1

ei(Θ) (5.8)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.3. Type-III: Sinh–Cosh Function

Assume that
ℏ(ξ) = ln (n0 cosh(ξ) + n1 + n2 sinh(ξ)) (5.9)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.9) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is attained as follows:

Set I.
n0 = n0, n1 = n1, n2 = −a2n0

(
2a2

3 + 1
)(

2a2a2
3 + a2

) , a1 = − 2a4
2a2

3 + 1
,

A1 =
√

4a4(
2a2a2

3 + a2
) , and A2 =

√
a4(

2a2a2
3 + a2

)
Combining (5.4), (5.9), and (4.1) with above results, the sinh–cosh function solution of (2.1) is obtained
as follows:

V3,1,1(x, t) = −

√
a4

a2(2a2
3+1) (sinh (ξ) n0 − cosh (ξ) n0 + n1)

(sinh (ξ) n0 − cosh (ξ) n0 − n1) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.4. Type-IV: Rational Function

Assume that
ℏ(ξ) = ln (n0 + n1(ξ)) (5.10)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.10) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is gained as follows:

Set I.

n0 = n0, n1 = n1, n2 = n2, a1 = −a4
a2

3
, A1 =

√
2a4
a2

a3
, and A2 = 0

Combining (5.4), (5.10), and (4.1) with above results, the rational function solution of (2.1) is obtained
as follows:

V4,1,1(x, t) = −

√
a4

a2(2a2
3+1) (sinh (ξ) n0 − cosh (ξ) n0 + n1)

(sinh (ξ) n0 − cosh (ξ) n0 − n1) ei(Θ)
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Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

6. Wang’s Direct Mapping Approach

In this section, (5.3) is addressed using Wang’s direct mapping approach. This approach gives the
auxiliary function listed below [25]:(

Λ′ (ξ)
)2

= φτ2Λ2 (ξ) + ϑτ2

ρ2 Λ4 (ξ)

where
Λ (ξ) = ρ sec h (τξ) , φ = 1 and ϑ = −1

Λ (ξ) = ρ csc h (τξ) , φ = 1 and ϑ = 1

Λ (ξ) = ρ sec (τξ) , φ = −1 and ϑ = 1

and
Λ (ξ) = ρ csc (τξ) , φ = −1 and ϑ = 1 (6.1)

If (5.3) is integrated with respect to ξ and the integral constant is set to zero, the following results are
obtained: (

L
′)2

= − a2
2a1

L4 +
(
a1a2

3 + a4
)

a1
L2 (6.2)

Using (6.2) to map (6.1), the solution are derived as follows:

Set I.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,1(x, t) =

√
2a2

(
a1a2

3 + a4
)

sec h

(√
a1(a1a2

3+a4)
a1

ξ

)
a2

ei(Θ) (6.3)

Set II.

φ = 1, ϑ = 1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = − a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
−2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,2(x, t) =

√
−2a2

(
a1a2

3 + a4
)

csc h

(√
a1(a1a2

3+a4)
a1

ξ

)
a2

ei(Θ)

Set III.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,3(x, t) =

√
2a2

(
a1a2

3 + a4
)

sec
(√

a1(a1a2
3+a4)

a1
ξ

)
a2

ei(Θ)
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Set IV.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,4(x, t) =

√
2a2

(
a1a2

3 + a4
)

csc
(√

a1(a1a2
3+a4)

a1
ξ

)
a2

ei(Θ)

7. EBM

To apply the EBM, we refer to (5.3), as presented in [26]:

L
′′ −

(
a4 + a1a2

3
)

a1
L + a2

a1
L3 = 0 (7.1)

The subsequent is the expression for the relevant variational principle:

Y (L) =
∫ π

4

0

(
1
2L

′ +
(
a4 + a1a2

3
)

2a1
L2 − a2

4a1
L4
)

dξ

This implies that

Y (L) =
∫ π

4

0

(
1
2L

′ −
[

a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2
])

dξ =
∫ π

4

0
(R − P ) dξ

Here, R and P represents kinetic energy and potential energy and are expressed as follows, respectively:

R = 1
2L

′ and P = a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2

Therefore, the Hamiltonian invariant is given by

H = R + P = 1
2L

′ + a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2

The solution to (7.1) can be written as follows:

L (ξ) = K cos (φξ) (7.2)

Based on the EBM, the Hamiltonian invariant must remain constant, i.e.,

H = P + R = 1
2L

′ + a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2 = H0 (7.3)

For (7.2), the initial conditions are expressed as:

L
′ (0) = 0 and L(0) = K

By replacing these into (7.3),

L0 = a2
4a1

K4 −
(
a4 + a1a2

3
)

2a1
K2 (7.4)

Inserting the expressions from (7.4) and (7.2) into (7.3) leads to the following equality:

1
2 (−ζK cos (ζξ))2 + a2

4a1
(K cos (ζξ))4 −

(
a4 + a1a2

3
)

2a1
(K cos (ζξ))2 = a2

4a1
K4 −

(
a4 + a1a2

3
)

2a1
K2 (7.5)

After applying ζξ = π
4 to (7.5),

1
4ζ2K2 + a2

16a1
K4 −

(
a4 + a1a2

3
)

4a1
K2 = a2

4a1
K4 −

(
a4 + a1a2

3
)

2a1
K2
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Consequently,

ζ =

√
a1
(
3K2a2 − 4a1a2

3 − 4a4
)

2a1

Therefore, the following statement is the outcomes to (5.2):

L (x, t) = K cos (ζξ)

After entering L’s value into (5.1),

V3,1,1(x, t) = K cos (ζξ) ei(Θ) (7.6)

8. Comparisons

In this paper, the Bäcklund transformation-based method, Wang’s direct mapping methodology, and
the EBM have been used to generate new soliton solutions for the mathematical and physical problems
describing by nonlinear fractional model. Gurefe [20] analyzed the model using Atangana’s conformable
fractional derivative. He produced only five results using the generalized Kudryashov technique. Ahmad
et al. [21] applied the unified technique. Asjad et al. [22] used the novel extended direct algebraic
technique to obtain several solutions for the model. Notably, the current study has yielded new
solutions with various physical properties, such as bright solitons and periodic-type wave structures.
The soliton solutions have a wide range of critical real-world applications in fields such as nonlinear
optics, phase evolution, chaos theory, condensed matter physics, astronomy, fluid mechanics, biology,
and nonlinear quantum field theory. The obtained solutions provide valuable insights into the physical
behaviors of the modal. Moreover, a visual depiction of the solutions, systematically derived through
analytical methods, is included.

9. Physical Interpretation

This section provides a graphical interpretation of some of the solutions derived from the nonlinear
fractional model. Various soliton solutions of the prototype were constructed using the Bäcklund
transformation-based method, Wang’s direct mapping approach, and EBM.

In Figures 1 and 2, the periodic waves behavior are investigated using M-truncated operators in
subfigures a, b, and c and AB fractional operators in subfigures d, e, and f. In Figures 3 and 4, the
dark-bright soliton behavior are investigated using M-truncated operators in subfigures a, b, and c and
AB fractional operators in subfigures d, e, and f. In Figure 1, the 3d, 2d, and contour plots for the real
part of V1,1,1(x, t) in (5.6) with fractional order ε = 0.5, by choosing the values a4 = 3, a2 = 2, a3 = 1,

n0 = 1.5, n2 = 7, a1 = 0.7, n = 0.5, and θ = 0. In Figure 2, the 3d, 2d, and contour plots for the real
part of V2,1,1(x, t) in (5.8) with fractional order ε = 0.5, by choosing the values a4 = 1.7, a2 = 0.9,

a3 = 0.2, n0 = 1, n1 = 2, a1 = 0.4, n = 1, and θ = 0. In Figure 3, the 3d, 2d, and contour plots for the
real part of V2,2,1(x, t) in (6.3) with fractional order ε = 0.5, by choosing the values a4 = 0.7, a2 = 1.2,

a3 = 0.5, a1 = 0.07, n = 0.5, and θ = 0. In Figure 4, the 3d, 2d, and contour plots for the real part of
V3,1,1(x, t) in (7.6) with fractional order ε = 0.5, by choosing the values a4 = 0.02, a2 = 4, a3 = 0.5,

a1 = 1.9, K = 1, n = 0.5, and θ = 0.

The parameters in the diagrams have distinct physical meanings. Whereas a2 describes the type and
degree of nonlinearity in the system, a1 is the dispersion coefficient that controls the wave spreading
behavior throughout space. Whether a solution covers a bright or dark soliton depends on the sign
of a2. Whereas a4 aids in the temporal phase evolution, a3 influences the spatial phase modulation.
The memory effect in the system is controlled by the parameter ε, which represents the order of
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the fractional derivative. Stronger nonlocal temporal effects are associated with lower levels of ε.
Together, these parameters determine the outcome of soliton structures’ propagation, shape, and
stability properties.

In particular, the effect of the fractional order ε changes depending on whether the M-truncated or AB
fractional operators are used. By changing the fractional order ε, the impact of previous states on the
system’s current behavior is directly changed. In the AB operator situation, the dispersive smoothing
in the wave propagation is improved by decreasing ε because it increases the nonlocal interactions
caused by the Mittag-Leffler kernel. Energy spreads throughout a greater area, making solutions
smoother and broader. In contrast, because the influence range is bounded and the kernel is truncated
for the M-truncated operator, the fractional order has a more localized mathematical effect. Sharp,
high-amplitude solitons can appear for small ε because of increased nonlinearity and limited dispersion,
but solutions shift to more classical waveforms as ε grows. This shows that the two operators are
not affected by the same fractional order ε in the same way; the M-truncated derivative shows more
sensitive and localized alterations, whilst the AB derivative reacts more slowly and universally.

By assigning specific values to the parameters, periodic waves and dark-bright soliton solutions were
obtained from these results. Periodic solitons are wave structures that continuously repeat in a specific
pattern and are often observed in media, such as optical fibers, water waves, or plasma. They enable
the undistorted and stable propagation of energy-carrying waves through a medium. Dark-bright
solitons combine structures in which the intensity decreases in one part of a wave packet dark soliton,
and increases in the other part, a bright soliton. Such solutions have critical applications, particularly
in optical systems and atomic physics, because combining two opposite interactions offers opportunities
for innovative applications in areas such as energy and information transport, lasers, or quantum
computing. These solutions are fundamental tools for understanding and controlling physical processes
described by nonlinear equations. It is important to emphasize that the findings and solutions presented
in this paper are novel and have not been previously documented.

(a)
(b)

(c)

(d)
(e)

(f)
Figure 1. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V1,1,1(x, t)
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(a) (b) (c)

(d) (e) (f)
Figure 2. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V2,1,1(x, t)

(a) (b) (c)

(d) (e) (f)
Figure 3. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V2,2,1(x, t)
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(a) (b) (c)

(d) (e) (f)
Figure 4. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V3,1,1(x, t)

10. Conclusion

This study investigated the nonlinear time-fractional Schrödinger model’s wave propagation, which
arises in different fields of physics and mathematics. Fractional transformations for the wave variables
ξ and θ using M-truncated and AB fractional operators were applied to the prototype and converted
to a nonlinear ordinary differential equation. Two new approaches, the Bäcklund transformation-based
method and Wang’s direct mapping method, were used to find a wide range of optical soliton solutions.
The solutions for a wide range of solitons were obtained by expressing them as exponential wave
solutions, sin-cos wave solutions, sinh-cosh wave solutions, rational wave solutions, trigonometric
functions, and hyperbolic function solutions. The EBM was also used, providing an efficient approach
by deriving the Hamiltonian and applying the variational principle to the problem. In addition, 3d, 2d,
and contour plots were used to illustrate the profiles of different soliton solutions. The findings obtained
by the investigated techniques demonstrate that these techniques effectively examine nonlinear wave
equations, enhancing the comprehension of their complicated structures and expanding the potential
for theoretical investigation. The applied methods are adaptable and applicable to many different
types of NLPDEs. Although the methods are pretty flexible, they can not be suitable for all NLPDEs,
particularly those that do not satisfy the predetermined criteria or structures that these methods
can handle. Future research could concentrate on analyzing these solutions’ behavior under various
circumstances and investigating their physical effects. This will help to improve science in physics and
its broader applications while offering a greater knowledge of nonlinear wave processes.

Author Contributions

The author read and approved the final version of the paper.
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[25] M. Wang, Y. Wang, A new Bäcklund transformation and multi-soliton solutions to the KdV
equation with general variable coefficients, Physics Letters A 287 (3-4) (2001) 211–216.

[26] K. J. Wang, J. H. Liu, Periodic solution of the time-space fractional Sasa-Satsuma equation in the
monomode optical fibers by the energy balance theory, Europhysics Letters 138 (2) (2022) 25002.


