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In this study, a numerical model was developed to analyze the thermal 

behavior of a panel type (PKP) aluminum radiator used for space heating. 

The developed model was applied to a slice of the radiator and, convection 

and radiation effects were included in the calculations. Model accuracy 

tests were performed in the test room located in the Thermal Sciences 

Laboratory of the Mechanical Engineering Department of the Faculty of 

Engineering at Gazi University, using the experimental results performed 

according to the TS EN 442 standard on the market equivalent of the 

analyzed radiator. The test room was equipped according to the 

ANSI/ASHRAE-138 standard and made suitable with the EN 442 radiator 

test. The numerical analysis results showed that; 600-800-1100-1400 W 

thermal power can be obtained for 30-40-50-60oC temperature differences 

using the radiator under study and the heat transfer coefficient of the 

radiator is an average of 6.35 W/m2K. 
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1. Introduction 

 

With approximately 45% of the world's total energy consumption, buildings are one of the largest energy 

consumers [1]. Building heating contributes significantly to this proportion. Therefore, the demand for 

heating systems with higher efficiency and thermal output is on the increase day by day. One of the most 

widely used heating devices for the heating of buildings is the panel radiator with convection fins 

(convector) [2, 3]. Therefore, it is important to increase the thermal output of panel radiators. The 

thermal performance of panel radiators is affected by the internal fin designs, water channels, and 

ventilation holes and grilles. In this study, the panel radiator slice is examined and the thermal 

performance of the radiator is determined. The design of the convectors that are used in the panel 

radiators has a significant impact on the determination of the total thermal output of the radiator. 

Therefore, in order to achieve the highest possible thermal output of panel radiators, the geometry and 

dimensions of the convectors play an important role. For the purpose of getting higher thermal 

efficiency, it is focused on the internal design of the panel. Although the majority of the heat transfer 

from panel radiators occurs by natural convection, the contribution of radiation was observed to be 

around 26% for an inlet/outlet temperature of 75/65 °C [4]. The hot water circulating in the pipes 

transfers its energy to the ambient air by convection and radiation through the panels and convectors. 

The temperature difference between the radiator surfaces and the ambient air is the main factor that 
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causes heat transfer. In order to increase the convective heat transfer, most panel radiators are equipped 

with convective fins (convectors) [5]. Recent studies have focused on enhancing the thermal efficiency 

of domestic convectors. Embaye et al. [6] and Calisir et al. [7] examined the impact of pulsating flow 

regimes on energy consumption in Type 10 and Type 11 convectors. Their findings suggest that constant 

flow rates fail to optimize heating performance, whereas intermittent flow conditions significantly 

improve efficiency. Computational Fluid Dynamics (CFD) simulations were employed to analyze 

localized flow dynamics within the convector systems. Marchesi et al. [8] experimentally compared the 

thermal behavior of traditional cast iron and modern aluminum convectors under varying hydraulic 

configurations, flow rates, and mounting positions. Their results demonstrated that aluminum 

convectors exhibit superior thermal efficiency. Dzierzgowski [9] identified limitations in the EN-442 

standard [10], revealing a 22.3% underestimation of thermal output for cast iron convectors under low-

flow conditions through tests involving multiple convector types and operational parameters. Calisir et 

al. [11] analyzed geometric parameters (e.g., panel height, wall thickness, trapezoidal geometry) and 

concluded that increasing material thickness and panel height enhances heat transfer, albeit at elevated 

costs. Gritzki et al. [12] questioned the reliability of EN-442 for Type 22 convectors, particularly at 

reduced flow rates, and explored how inlet-outlet configurations and flow direction adjustments 

influence heating performance. Beck et al. [13] proposed a novel double-panel convector design 

incorporating radiative plates, which reduced manufacturing complexity and dust accumulation 

compared to traditional finned designs but introduced trade-offs in thermal output. Despite these 

advancements, a systematic investigation linking inlet water temperature, flow rate variations, and 

localized thermal characteristics in domestic convectors remains absent. This study addresses this gap 

through experimental analysis of thermal dynamics and the development of a predictive model for 

average surface temperature. 

 

2. Methodology 

 

2.1 Model Definition 

 

For a radiator with a height of 600 mm, a length of 1000 mm and an inner diameter of 13.3 mm water 

pipe, the thermal performance of an aluminum panel slice is simulated using ANSYS. The slice width 

of the radiator is 8 cm and the thickness is 4 cm. A domain size of 460x40x1600 is used in the analysis. 

The panel has fins, water pipe and air channels in the rear section, and the geometry and boundary 

conditions of these components are given in Table-3. 
 

 

 

 

 

 

                  

 

 

 

 

(a) Boundary conditions of model    (b) A slice of aluminum radiator model (c) Aluminum radiator model 

Figure 1. Numerical model solution domain and boundaries for the radiator slice: (a) Boundary conditions of 

model (b) A slice of aluminum radiator model (c) Aluminum radiator model 
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2.2 Governing Equations 

 

In this study, the continuity equation, the momentum equation and the energy conservation equation for 

the air inside the radiator slice and the radiation equation between the air and the radiator are solved 

together. The continuity equation is reduced to the following form by the assumption that the Boussinesq 

equation is incompressible, 

 

𝛻⃗ ⋅ 𝑣⃗ = 0 (1) 

 

The symbol 𝑣  in Equation (1) represents the velocity of the air. 

The momentum equation takes the following form when the effect of buoyancy and viscous forces are 

taken into account, 

𝛻⃗ ⋅ (𝑣  𝑣 ) = −
𝛻⃗ 𝑃

𝜌
+

1

𝜌
𝛻⃗ ⋅ (𝜇 (𝛻⃗ 𝑣 + (𝛻⃗ 𝑣 )

𝑇
)) − 𝑔 𝛽 (𝑇 − 293.15) (2) 

In this equation, P represents the air pressure, ρ the density of air, μ the viscosity of air and it is assumed 

to vary with temperature.  

The energy equation is reduced to the following form under the influence of advective and conduction 

terms,  

𝛻⃗ ⋅ (𝑣  ℎ) =
1

𝜌
𝛻⃗ ⋅ (𝑘𝛻⃗ 𝑇) (3) 

The term h in equation 3 is the enthalpy of the air and k is the thermal conductivity of the air. 

 

The discrete ordinate model given in Equation 4 was used to solve the radiative heat transfer between 

the radiator surface and the surrounding environment simultaneously with the conservation equations. 

𝛻 ⋅ (𝐼𝜆(𝑟 , 𝑠 )𝑠 ) + (𝑎𝜆 + 𝜎𝑠)𝐼𝜆(𝑟 , 𝑠 ) = 𝑎𝜆𝐼𝑏𝜆 +
𝜎𝑠

4𝜋
∫

4𝜋

0

   𝐼𝜆(𝑟 , 𝑠 
′)𝛷(𝑠 ⋅ 𝑠 ′)𝑑𝛺′ (4) 

In Eq. 4, λ is the wavelength, 𝑎𝜆 is the spectral absorption coefficient and  𝐼𝜆is the radiation intensity.  

 

The turbulence model used was the SST k-ɷ model. Details of the SST k-ɷ model are given in Menter's 

study [14]. 

 

2.3 Material Properties 

 

The characteristics of the aluminium radiator materials used in the market are given in Table-2. 

 

Table 1. Properties of aluminium material used in the analyses  

Property Value Unit 

Density 2719 kg/m³ 

Specific heat (Cp) 871 J/(kg·K) 

Thermal Conductivity 202.4 W/(m·K) 

 

The thermophysical properties of air are given in Table-3. The Sutherland model[15] used for dynamic 

viscosity in the material properties of air is given in Eq. (5). 

 

𝜇 = 1,716 × 10−5 (
𝑇

273,11
)

3
2 273.11 + 110.56

𝑇 + 110.56
   [

𝑘𝑔

𝑚 𝑠
] (5) 

 

Table 2. Properties of air used in the analyses  

Property Value Unit 

Density 1.11267 kg/m³ 
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Specific heat (Cp) Segmented polynomial J/(kg·K) 

Thermal Conductivity Polynomial W/(m·K) 

Dynamic Viscosity Sutherland model kg/(m·s) 

Absorption Coefficient 0.01 1/m 

Scattering Coefficient 1E-05 1/m 

Scattering Phase Function Isotropic - 

Thermal expansion coefficient 0.00341122 1/K 

Refractive Index 1.0003 - 

 

The thermal conductivity polynomial is formed according to the working range and is given in Eq. (6). 

𝑘 = 1.1144132 × 10−3 + 9,324767 × 10−5𝑇 − 3,63004 × 10−8𝑇2 [
𝑊

𝑚𝐾
] (6) 

 

2.4 Mesh Structure 

 

An important parameter that directly affects the accuracy of the model and the reliability of the solution 

is the mesh structure created for the finite element analysis of the panel slice. In this study, an attempt 

was made to keep the skewness, number of elements and orthogonal quality values, which indicates the 

quality of the mesh created to solve the numerical model, at minimum values to ensure convergence of 

the results and independence from the mesh structure. Accordingly, the number of mesh elements was 

set to 2.965.115, the maximum value of skewness was set to 0.978 and the minimum value of orthogonal 

quality was set to 0.1 and the mesh structure was formed as shown in Figure-2. 

 
Figure 2. Solution region used in the numerical model for the radiator slice: (a) View of the mesh structure in 

the symmetry axis in the entire solution region (b) around the water pipe-panel (c) in and around the panel-water 

pipe 

  

(b) View from the mesh structure around the panel-water pipe 

on the axis of symmetry 

(c) Symmetry axis view of the mesh structure in and around the 

panel-water pipe 

 

a) View from the mesh structure on 

the symmetry axis in the entire 

solution domain 
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2.5 Boundary Conditions 

 

The boundary conditions used in the analysis are given in Table-3. The analyses were performed in 4 

different ways by applying variable temperature conditions in the water pipe. Constant temperatures 

were set for the water pipe and different temperature values were applied. Adiabatic conditions were 

provided on the bottom and back walls and a certain emission coefficient was used for radiation. On the 

front and top surface, the outlet pressure was defined as 1 atm and radiation conditions were taken into 

account. For the radiator walls, solid-fluid interface conditions were applied and the radiation emission 

coefficient was specified. 

 

Table 3. Boundary conditions for numerical model solution region 

No Boundary BC Thermal BC Radiation BC 

1 Water pipe Constant Temp. 

A1 T=50oC 

N/A 
A2 T=60oC 

A3 T=70oC 

A4 T=80oC 

2 Ground-back wall Wall Adiabatic ε= 0,98 

3 Front-Top Pressure Outlet P = 1 atm ε =0,98 

4 Radiator Walls Wall 
Solid-liquid 

interface  
ε =0,95 

5 Symmetry - - - 

 

3. Introduction of Test Chamber, Test Specimen and Experimental Setup 

 

Capacity determination tests were performed according to TS EN 442-2 standard in test room designed 

according to ANSI/ASHRAE 138 standard, where air temperature and wall surface temperatures can be 

controlled, located in Gazi University Mechanical Engineering Department Heat Science Laboratory, 

shown in Figure-3,4,5. 

 

Figure 3. View of the test chamber and mechanical installation equipment 

 

Test samples: MARKET ‘Type 21 PKP Aluminium Panel Radiator’ 

The front and top views of the tested radiator are presented below; 
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Figure 4. Aluminium 600*1000 (13 sections) Radiator - thermocouple locations 

 

 

Figure 5. View of the radiator test measurement set-up 

 

4. Experimental Method 

 

The panel radiator to be tested is mounted in the middle of the wall in the test room at a height of 50 cm 

from the floor. The water inlet and outlet temperatures and the water flow rate of the panel radiator are 

measured. The panel radiator is supplied with hot water at 75oC and the water flow rate is adjusted so 

that the radiator outlet temperature is 65oC. The indoor temperature of the test room is measured from 

four different positions (5 cm from the ceiling, 5 cm from the floor, 75 cm and 150 cm) specified in the 

standard on a vertical rod placed in the centre of the room. The test room is conditioned by cooling from 

the walls other than the wall where the radiator is located, so that the room temperature is maintained at 

20 oC. The average surface temperature of the radiator is calculated using data from three thermocouples 

placed on the infeed, mid-feed and outfeed surfaces.  

 

Unlike the TS EN 442-2 standard, this test was carried out by feeding water heated by an electric heater 

in a chamber directly to the radiator by means of a circulating pump. The difference is in the method 

used to measure the water flow rate, in this test the water flow rate was measured using a calibrated flow 

meter. The accuracy of the flow meter is ±0.471 g/s. The method used to determine the thermal output, 

as specified in the standard, is to measure the water flow through the radiator and to measure the 

temperatures at the supply and return connections to determine the enthalpy difference. 
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5. Results 

 

Figure 6 shows the results of the analyses carried out on a section of the radiator at (a) the front, (b) the 

side and (c) the back. The flow curve and velocity of the ambient air at room conditions are shown. The 

hottest region in a slice is at the center line. The lower end of the radiator has the lowest temperature. 

The temperature of the metal increases as it rises. Because the water pipe of the radiator is closer to the 

back surface, the back surface is hotter than the front surface. The air flow in the radiator is accelerated 

from bottom to top. As the temperature of the air entering the radiator and the region with the lowest 

boundary layer thickness is at the bottom, the highest heat transfer coefficient occurs at the bottom. 

 

 
 

  
 

Figure 6. Radiator slice (i) temperature, (ii) heat flux, (iii) heat transfer coefficient (HTC) and air flow (velocity) 

distributions for ΔT = 60 K 

 

The radiator thermal power was calculated by taking the sum of the local heat flux obtained over the 

water pipe wall as a result of the analysis over the surface area,  

 

(i) 
(ii) 

HTC 

 

 

(iii) 
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𝑄 = ∫ 𝑞′′ ⋅ 𝑑 𝐴  

 

   (7) 

and the average heat transfer coefficient was calculated using the following integral, 

ℎ𝑎𝑣𝑔 =
1

𝐴
∫

𝑞′′ ⋅ 𝑑 𝐴 

𝑇 − 293.15
 (8) 

The analyzed radiator consists of 13 slices. Therefore, while calculating the radiator thermal power, 

the numerical result obtained for the slice was multiplied by the number of slices. 

 

The radiator heat transfer coefficient is the same as the radiator slice heat transfer coefficient and is 

calculated by taking the integral of the local heat flux on the radiator panel surfaces divided by the 

local temperature difference (difference between local water temperature and ambient temperature) 

over the total surface as a result of the analysis. 

 

The thermal power and heat transfer coefficients obtained as a result of numerical analysis are given in 

Table-4. 

 

Table 4. Radiator power and average heat transfer coefficient obtained in the analysis 

Temperature 

Difference, 

ΔT [oC] 

Water Inlet 

Temperature, 

Tin [oC] 

Water Outlet 

Temperature, 

Tout [oC] 

Radiator 

Thermal Power, 

P [W] 

Average Heat 

Transfer Coefficient, 

𝐻𝑇𝐶 [W/m2 K] 

30 55 45 538 5.63 

40 65 55 781 6.15 

50 75 65 1040 6.57 

60 90 70 1335 7.05 

 

6. Evaluation of The Results 

 

Radiator thermal power values obtained as a result of computational fluid dynamics (CFD) analysis are 

presented in Figure-6. The market equivalent radiator of the analyzed radiator was tested in accordance 

with TS EN 442 standard in the test room installed in the Thermal Science Laboratory of Gazi University 

Faculty of Engineering, Department of Mechanical Engineering. The difference between the average 

temperature of the water in the radiator and the ambient temperature was 50oC. The radiator thermal 

power was measured as 1050 W and the heat transfer coefficient was calculated as 7.18 W/m2K. As a 

result of the numerical analysis, the radiator thermal power was calculated as 1040 W and the heat 

transfer coefficient was calculated as 6.57 W/m2K. As a result, it was determined that the numerical 

analysis model gave results compatible with the experiments and its accuracy was proved.  

 

In Figure 7, the radiator thermal powers obtained from the numerical results according to the change of 

the difference between the average water temperature inside the radiator and the ambient temperature 

are shown as dots and the correlation curve is shown with a dashed curve. The formulation of the 

correlation curve obtained in Figure-7 is given by Equation 9. 

 

𝑄 = 7,881154 𝐿 (∆𝑇)
5
4  [𝑊]  

(9) 

 

In Eq. (9), ∆T represents the temperature difference [K] and L represents the radiator length [m].  
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The exponential value of the correlation proposed in the literature for natural convection [16] was found 

to be 5/4, the same as the value obtained in this study. In the light of these results, it was determined 

that the model developed for the numerical analysis of the radiator gives results compatible with both 

the literature and experiments and can be used in different types of radiator thermal power calculations 

and heat transfer coefficient calculations. 

 
Figure 7. Radiator thermal powers according to temperature difference 

 

Table 5. Radiator power and average heat transfer coefficient obtained in the analysis 

Temperature 

Difference (ΔT) 

Experimental 

thermal power 

(W) 

Numerical 

Thermal Power 

(W) 

Regression 

Estimation (W) 

Error Rate (%) 

(Experimental vs. 

Numerical) 

30 K (30°C) 484,0 538 479,6 +10,0 

50 K (50°C) 980,4 1040 1048 +5,7 

60 K (60°C) 1259,9 1335 1362 +5,7 

 

For ΔT = 30°C, the experimental thermal power (484 W) is approximately 10% lower than the numerical 

result (538 W) in Table 5. This discrepancy may arise due to weak natural convection at low temperature 

differences and the model’s inability to fully capture boundary layer effects. For ΔT = 50°C and 60°C, 

the error rate is 5.7%, indicating that the model produces closer predictions to experimental data at 

higher temperature differences. The regression curve in Equation 9 aligns almost perfectly with the 

numerical results but shows slight deviations compared to experimental data. This suggests that the 

regression is based on numerical data and does not fully account for practical limitations in experimental 

conditions, such as heat losses or measurement precision. 

 

The experimental methodology was meticulously executed in accordance with the TS EN 442-2 

standard, thereby ensuring optimal reliability and reproducibility. Tests were conducted in a controlled 

environment that was compliant with ANSI/ASHRAE-138. In this environment, the temperature of both 

the walls and the air were regulated with a high degree of precision, with the target temperature set at 

20°C. Key parameters, including water flow rate (±0.471 g/s accuracy) and inlet/outlet temperatures 

(±0.1°C precision), were measured using calibrated instruments, as detailed in the provided test results 

table. For instance, at a temperature difference of 50°C, the measured thermal power (980.4 W) closely 

aligns with the numerical prediction (1040 W), with a mere 5.7% deviation, thereby underscoring the 

consistency of the experimental setup. Furthermore, corrections for barometric pressure effects were 

applied (e.g., Φ = 484.0 W at ΔT = 30°C), and repeated trials under identical conditions yielded minimal 

variability, as demonstrated in the tabulated data. The employment of multiple thermocouples for the 

calculation of surface temperatures, in conjunction with the adherence to the enthalpy-based calculation 

method stipulated in EN 442, serves to further substantiate the veracity of the results obtained. This 

meticulous approach aligns with established studies on radiator performance evaluation, thereby 

reinforcing the credibility of the experimental outcomes for both academic and industrial applications. 
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This article examines the importance of sensors used in microgrids for 

energy management and their impact on system efficiency, reliability, and 

sustainability. The primary research question addresses the contribution of 

sensors to the effective management of microgrids and their critical roles 

in energy production, distribution, and consumption processes. The 

methodology focuses on the integration of various sensor types with smart 

energy management systems and the analysis of IoT-based solutions. The 

article analyzes the role of smart sensors, wireless sensor networks, and 

IoT-based sensor integrations in optimizing the performance of microgrids. 

The findings indicate that sensors help maintain the balance between 

energy production and consumption, reducing energy costs and enhancing 

system stability. It is particularly highlighted that sensors play a critical 

role in mitigating the variability of renewable energy sources. In 

conclusion, it is emphasized that sensor technologies will play a more 

central role in energy management processes in the future, enhancing 

energy efficiency and contributing to sustainable energy management. 

Accordingly, the development and integration of sensors will continue to 

lead innovation in the energy sector. 
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1. Introduction 

 

Microgrids are becoming increasingly important in energy management and distribution, particularly 

with the integration of renewable energy sources. These systems aim to enhance energy efficiency, 

ensure reliability, and strengthen sustainability by bringing together small-scale energy production, 

storage, and consumption units. The successful management of microgrids is critical for balancing 

variable and intermittent renewable energy sources such as solar and wind. This balancing relies on the 

data provided by sensors integrated into smart energy management systems. 

The objective of this study is to examine the contributions of sensor technologies to the optimization of 

energy systems in microgrids. Sensors play a critical role in maintaining the balance between energy 

production and consumption, enhancing system stability, and enabling the effective integration of 

renewable energy sources. In this context, the significance of the study lies in highlighting the role of 

sensors in reducing energy costs and fostering sustainable energy solutions. Looking ahead, 

advancements in sensor technologies are expected to play a pioneering role in making energy systems 

smarter and more efficient. 
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2. Basic Sensor Types 

 

With the use of IoT-based sensors in microgrids, the necessity of managing multi-layered structures in 

harmony has emerged.  The place and functioning of sensors in the microgrid infrastructure; IoT-based 

microgrid architecture (layered structure such as sensor layer, network layer, application layer), data 

flow diagram (from sensors to cloud, analysis layer) and sensor communication network topology are 

given in Figure 1 [1-4]. 

 

 
Figure 1. IoT based microgrid architecture 

 

Many different types of sensors are used in microgrids depending on their intended use. General trends 

of the most commonly used sensor types in microgrids, based on literature reviews and industry reports, 

are given in Figure 2 [1-4]. 

 

 
Figure 2. Distribution of sensors used in microgrids 

 

2.1 Current sensor 

 

Current sensors provide data to energy management systems in microgrids by monitoring the current 

drawn by devices and lines [5]. These sensors optimize energy flow, balance loads, and protect the 

system by detecting overcurrent conditions. They are employed in generators, solar panels, wind 

turbines, energy storage systems, and power converters to enhance efficiency and provide protection 

against overloads [6]. Additionally, current sensors monitor energy flow in distribution lines, detect 

imbalances, and trigger circuit breakers in hazardous situations, ensuring system safety. The types of 

current sensors used in microgrids are outlined below: 
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Hall Effect Current Sensor: These sensors measure current non-invasively by detecting magnetic 

fields [7]. They are commonly used in high-current applications. Accuracies up to 0.5%, measuring 

range up to ±1000 A. They are affected by temperature variations, magnetic saturation and offset 

deviations. In closed loop Hall sensors, error compensation methods can be applied in low current ranges 

[8].  

Rogowski Coil: Particularly suitable for monitoring large current values, these sensors operate with a 

coil wrapped around the conductor carrying the current [9]. Sensitivity is in the range of 0.1-1.0% and 

is effective at high currents (kA levels). Good performance at high frequency currents, no saturation 

problem. Sensitivity depends on coil positioning and frequency content [10], [11]. 

Shunt Resistor: This method directly measures current by evaluating the voltage drop across a small 

resistor through which the current flows [12]. Their accuracy is up to 0.1% and they usually have a 

measurement range of 0-600 A. Temperature variations and interference can cause measurement errors. 

Cooling and calibration are important for low cost and high accuracy [13]. 

Current Transformer (CT): Designed for high-current measurement, these transformers reduce 

current to a lower level, making it safer and easier to monitor [14]. Measurement class according to IEC 

61869 standard ranges from 0,1 to 1. Typical accuracy is between ±0,5% and ±1%. Sources of error can 

occur due to signal distortion and magnetic saturation [15], [16]. 

 

2.2 Voltage sensor 

 

Mikro şebekelerde kullanılan gerilim sensörleri; elektrik sistemindeki gerilim seviyelerini izler ve bu 

Voltage sensors in microgrids monitor voltage levels within the electrical system, ensuring safe and 

efficient operation by maintaining stability [17]. They regulate voltage fluctuations during energy 

generation and distribution, trigger protection relays during overvoltage events, and safeguard 

equipment. These sensors monitor voltage levels in solar panels, wind turbines, generators, and batteries, 

ensuring energy quality and safety. Additionally, they are employed in inverters and converters for 

voltage regulation, enhancing system stability. 

The types of voltage sensors used in microgrids are listed below: 

Voltage Transformer (VT): These sensors step down high voltage levels to lower, measurable levels 

[18]. They are widely used in large energy generation facilities and distribution networks. According to 

the IEC 61869 standard, accuracy classes are 0.1%, 0.2%, 0.5% and 1%. Voltage transformers used in 

medium voltage applications generally operate with a ratio error of 0,5% to 1%. However, harmonic 

distortions can affect this accuracy [19]. 

Hall Effect Voltage Sensor: This type of sensor performs contactless voltage measurement through 

magnetic fields [20]. It can accurately measure both AC and DC voltages. Hall-effect voltage sensors 

measure voltage due to the influence of a magnetic field and typically offer an accuracy of 0,5-1.0%. 

However, temperature variations and electromagnetic interference can affect measurement accuracy. 

They offer the advantage of isolation and compactness. 

Optical Voltage Sensor:  These sensors utilize optical fibers for voltage measurement [21]. Suitable 

for high voltage applications. Especially used in critical applications as it is not affected by 

electromagnetic interference. Mechanical disturbances and temperature variations can affect its 

performance. At voltages above 100 V, it offers ±0,2% accuracy; for voltages of 200 V and above, the 

accuracy goes up to ±0,1% [22]. 

Capacitive Voltage Sensor: These sensors measure voltage by utilizing the capacitance between two 

points [23]. They are typically preferred in low-cost applications. Can be used over wide voltage ranges. 

It has high accuracy and low power consumption. Environmental conditions and temperature changes 

can affect its performance [24]. 

 

2.3 Power sensor  

 

Power sensors in microgrids are crucial for monitoring and controlling power flow (consumption and 

generation) [25]. These sensors continuously monitor active and reactive power, performing both AC 

and DC measurements. Data from the sensors is transmitted to energy management systems (EMS), 

balancing power demand and generation. By detecting excessive power draw and imbalances, they 

trigger protection circuits to prevent equipment damage. They also detect harmonic distortions and 

fluctuations, ensuring the accurate conversion of power in inverters and converters. 

The types of power sensors used in microgrids are listed below: 



G. Kucur/Journal of Engineering and Tecnology 6;1 (2025)11-29 

14 

 

 

Current and Voltage-Based Power Sensor: These sensors combine current and voltage data to 

calculate instantaneous power values [26]. These sensors calculate power based on current and voltage 

measurements. Accuracy depends on the sensitivity of the current and voltage sensors used. Typically, 

±0,5% accuracy can be achieved [27]. 

Hall Effect Power Sensor: These sensors perform contactless power measurements through magnetic 

fields, providing reliable and contactless power readings, which enhances the system's longevity [28]. 

Power sensors based on the Hall effect principle offer ±1% accuracy. Measurement range up to ±1000 

A and ±1000 V is available. They provide non-contact measurement and isolation. However, 

temperature variations and magnetic field interference can affect measurement accuracy [29]. 

 

2.4 Frequency sensor 

 

Frequency sensors continuously monitor the frequency of the microgrid [30]. In AC (alternating current) 

systems, frequency values must be maintained within a specific standard range (typically 50 Hz or 60 

Hz). The grid frequency is monitored to maintain a balance between energy production and 

consumption. When energy demand increases, the frequency may drop, indicating the need for increased 

energy production. Frequency sensors detect abnormally low or high frequency conditions and trigger 

protection systems to prevent damage to equipment. In microgrids connected to the central grid, 

frequency sensors monitor the frequency differences between the microgrid and the grid, ensuring 

synchronization. This allows the microgrid to operate in an isolated mode when necessary. Frequency 

sensors operate with less than 1% error at input frequencies up to 1/10 of their natural frequency. The 

error rate increases at higher frequencies. The measurement range is 0.1 Hz - 1 MHz. Electromagnetic 

interference and temperature variations can affect measurement accuracy [31]. 

 

2.5 Light sensor 

 

Light sensors are used in solar tracking systems to monitor the movement of the sun and ensure that 

panels remain in their optimal position. Additionally, in solar power plants, light sensors are employed 

to monitor system performance. These sensors help in the effective management of energy production. 

By monitoring shading and light levels, the efficiency of the panels is continuously optimized [32]. The 

measurement range is from 0.01 lx to 100000 lx and sensitivity down to 0.01 lx (lux) and below is 

possible. Temperature variations and aging effects can affect measurement accuracy [33]. 

 

2.6 Speed sensor 

 

In microgrids, speed sensors are used to measure the velocity of fluids (e.g., air or water) to enhance 

system efficiency and ensure safety [34]. In renewable energy systems like wind turbines, monitoring 

wind speed is crucial for improving turbine efficiency. The sensors adjust the turbine's angle based on 

wind speed, optimizing energy production. In water-based energy generation systems (e.g., 

hydroelectric plants), speed sensors monitor water flow rates, providing information on how much 

energy can be generated. This data is transmitted to energy management systems. Speed sensors can 

operate in measurement ranges from 0 - 10000 RPM and above with error rates of ±0,5% or less. 

Mechanical vibrations and temperature variations can affect measurement accuracy [35]. 

 

2.7 Humidity sensor 

 

Humidity sensors are strategically placed at various points within microgrids to enhance system 

performance and ensure energy efficiency. Excess humidity can affect the performance of solar panels 

and wind turbines [36]; by monitoring the surrounding humidity levels, their efficiency can be improved. 

In battery storage areas, humidity levels are monitored to prevent damage or performance loss caused 

by excessive moisture. Humidity sensors generally operate with an accuracy of ±2% to ±5% RH. The 

measurement range is 0% - 100% RH. Temperature influence, contamination and aging can affect the 

measurement accuracy [37]. 
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2.8 Gas sensor 

 

Gas sensors are essential components used to monitor the presence, concentration, and quality of gases 

in microgrids [38]. These sensors are strategically placed to enhance the safety, energy efficiency, and 

environmental monitoring of microgrids. Calibrated gas sensors can provide ±2% accuracy under ideal 

conditions. However, in some sensors this can be ±25% or more. The accuracy of gas sensors varies 

depending on the type of sensor and the characteristics of the gas being targeted. For example, ±25% 

accuracy is acceptable for ozone sensors. Accuracy is in ppm (parts per million) and the measurement 

range can be 0-10000 ppm (depending on the gas type). It may measure inaccurately due to temperature, 

relative humidity and sensor aging [39]. 

 

Gas sensors are used in microgrids in the following areas: 

 Detecting leaks of natural gas, methane, or other potentially harmful gases, reducing the risk of fire 

or explosion. 

 Monitoring air quality, especially in enclosed spaces, by tracking levels of harmful gases (such as 

carbon monoxide, carbon dioxide, etc.). 

 Monitoring the quality and quantity of gas used in fuel systems (e.g., gas generators), ensuring 

efficient fuel utilization. 

 Detecting by-products (such as hydrogen gas) that may form in solar panels or other energy 

production systems. 

 Monitoring emissions in energy production facilities and other industrial areas, helping control 

harmful gases released into the environment. 

 Tracking levels of greenhouse gases, like carbon dioxide, providing data for climate change 

research. 

 

2.9 Vibration sensor 

 

In microgrids, vibration sensors are important components used to monitor system conditions, identify 

maintenance needs, and enhance overall safety [40]. Vibration sensors monitor the vibrations of 

equipment, such as generators, motors, and other moving parts, under normal operating conditions. 

Abnormal vibration levels allow for the early detection of potential failures. Early diagnosis can prevent 

large and costly repairs, reducing operational costs. Monitoring vibrations ensures the safe operation of 

energy production systems and contributes to preventing potential accidents. General purpose vibration 

sensors operate in the frequency range 30-900000 CPM (0,5-15000 Hz). The accuracy is usually around 

±1%. Mounting conditions, environmental factors, noise and mechanical resonances can affect the 

measurement accuracy [41]. 

 

2.10 Acoustic sensor 

 

Acoustic sensors are used in microgrids not directly for energy production or distribution functions, but 

in supportive areas such as condition monitoring, fault detection, and security. These sensors help 

improve the performance of the microgrid and detect faults in advance [42]. 

Acoustic sensors can detect abnormalities by monitoring the sounds and vibrations produced by 

electrical equipment during operation. For example, faults in a generator, transformer, or electric motor 

may produce abnormal sounds during operation. These sensors can be used for early warning systems 

by detecting unusual sound frequencies from equipment. 

Some microgrids include large structural components, such as wind turbines or solar panels. In such 

systems, acoustic sensors are used to monitor the condition of the structures. For instance, damage to 

wind turbine blades or solar panel mounts can be detected through acoustic emissions. 

The accuracy of acoustic sensors varies depending on the frequency range and application area. Usually 

±1% accuracy can be achieved. The measurement range is 20 Hz - 20 kHz (20 kHz-10 MHz for 

ultrasonics). Wind, echo and environmental noise can cause inaccurate measurements [43]. 

 

2.11 Pressure sensor  

 

Pressure sensors monitor the pressure of gas or liquid systems within microgrids, and are especially 

important in hydrogen storage systems. In hydroelectric power generation, controlling water levels and 
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pressure ensures the stability of energy production. Monitoring the internal pressure of energy storage 

systems enhances safety. In liquid and gas distribution systems, the pressure of fluids (water, air, gas) 

is monitored to ensure efficient system operation and detect leaks [44]. The types of pressure sensors 

used in microgrids are listed below: 

 

Analog and Digital Pressure Sensors: These sensors transmit pressure changes as a continuous voltage 

signal. Typical accuracy is ±0,5% Full Scale (FS). It usually operates with ±0.5% accuracy. It can 

operate in the measurement range 0 - 1000 bar. Errors such as temperature effect, analog and signal 

interference can affect the measurement accuracy [45]. 

Piezoelectric Sensors: These sensors are sensitive to pressure changes and measure pressure using 

piezoelectric materials. They are typically used in applications that require high precision [46]. Suitable 

for measuring high frequency pressure changes, especially dynamic pressure changes; accuracy depends 

on the application. Not suitable for static measurements. Typical accuracies range from 0,2% to 1%. 

They are resistant to high temperature conditions and can operate up to 500°C. They have fast response 

at high frequency and low long-term stability [47]. 

Capacitive Pressure Sensors: Pressure changes are measured by changes in capacitance. These sensors 

are commonly used in applications that require high accuracy and low power consumption [48]. 

Capacitive sensors offer high accuracy, typically ±0,1% Full Scale (FS). With low power consumption, 

they are common in long-term monitoring systems [49]. 

 

 

2.12 Temperature sensor 

Temperature sensors are critical for ensuring the safe and efficient operation of energy systems in 

microgrids [50]. Different types of temperature sensors offer tailored solutions for various applications, 

enhancing the overall performance of energy systems. 

 

One of the most commonly used temperature sensors in microgrids is found in energy storage systems, 

particularly in batteries [51]. In battery systems, NTC/PTC thermistors are widely used. Thermistors are 

high precision temperature sensors. Their typical accuracy is between ±0,1°C and ±0,5°C. They are 

more accurate in lower temperature ranges, but their accuracy can decrease as the temperature increases 

[52]. To ensure efficient and long-lasting battery performance, temperature must be kept within a 

specific range. Overheating can shorten battery life and pose safety risks, such as the potential for fire. 

Resistance Temperature Detector (RTD), another type of temperature sensor, has high accuracy (±0,1 

°C) and is widely used, especially in industrial environments. Platinum (PT100) type RTDs are the most 

stable [53]. Thermocouples used in temperature monitoring have a wide temperature range (-200°C to 

+1300°C). However, their accuracy is around ±1°C and calibration requirements are high [54].  

 

In microgrids, particularly in enclosed spaces or battery rooms, fire risks can arise. Since excessive 

temperature increases can create fire hazards, temperature sensors are critical for fire safety [55]. When 

temperature limits are exceeded, these sensors activate fire suppression systems to minimize fire risk. 

 

3. Internet of Things (IoT) Based Sensor Integration 

 

3.1 IoT platforms 

 

IoT platforms are the software and hardware components used to manage data collection, analysis, and 

control processes for sensors and devices. The key IoT platforms used in microgrids are: 

 

Azure IoT Hub: A service provided by Microsoft, it allows devices to securely connect to a cloud-

based system [56]. It offers advanced features such as data analytics and machine learning integration. 

Amazon Web Services (AWS) IoT Core: A platform provided by Amazon Web Services [57], it 

facilitates the easy connection, management, and data exchange of devices in the cloud. It is equipped 

with security features and data analytics tools. 

Google Cloud IoT: Google’s cloud-based IoT solution [58] offers comprehensive services for device 

management, data streaming, and analytics. It also supports integration with machine learning and 

artificial intelligence. 
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IBM Watson IoT Platform: A platform offering solutions for industrial IoT applications [59], it 

provides a comprehensive structure for device connectivity, data collection, and analysis. It is equipped 

with big data and analytics features.  

 

3.2 IoT protocols 

 

IoT protocols are a set of rules used to ensure data transmission and communication between devices. 

The key IoT protocols commonly used in microgrids include: 

 

Message Queuing Telemetry Transport (MQTT): A lightweight messaging protocol [60]. It works 

effectively in environments with low bandwidth and high latency, and is commonly used for collecting 

and transmitting sensor data. 

Constrained Application Protocol (CoAP): A protocol designed for devices with low power 

consumption and bandwidth requirements [61]. It provides RESTful communication between IoT 

devices and is commonly used for monitoring environmental data, such as temperature and humidity. 

Hypertext Transfer Protocol (HTTP/HTTPS): A widely used protocol on the internet [62]. In IoT 

applications, it can be used for receiving or sending data from devices. However, due to its high energy 

consumption, it is less preferred for energy efficiency. 

Zigbee: A wireless communication protocol designed for low power consumption and short-range 

communication [63]. It is commonly used in home automation and industrial IoT applications. 

Long Range Wide Area Network (LoRaWAN): A protocol used for long-range communication [64]. 

It enables data transmission over large areas with low power consumption and is commonly used in 

agriculture, smart city applications, and environmental monitoring systems. 

 

A comparison of the key characteristics of IoT protocols is given in Table 1. 
 

Table 1. Key characteristics of IoT protocols 

Protocol Latency 
Data 

Rate 

Power 

Consumption 

Security 

Level 
Use Care 

MQTT Low Medium Very Low 
Medium 

(TLS) 

Sensor data collection (real-time) 

[60] 

CoAP Very Low Low Very Low Medium Environmental monitoring [61] 

LoRaWAN High Low Ultra Low 
Low–

Medium 
Remote rural sensor networks [64]  

Zigbee Low Medium Low High Short-range control systems [63] 

HTTPS High High High Very High Secure control interfaces [62]  

 
3.3 Data collection and transmission 

 

For IoT-based sensor integration [65] in microgrids, sensors suitable for the parameters to be measured 

are selected and placed in suitable locations where data can be collected. Placing the sensors in 

appropriate locations is critical for accurate data collection Sensors collect data [66] by monitoring in 

real time. This data is usually recorded at regular intervals or when certain thresholds are exceeded. The 

collected data is usually stored in a digital format (e.g. JSON, XML). This improves compatibility and 

accessibility during data transmission. The collected data is transmitted to a centralized system or cloud 

platform [67] via established data communication protocols. The transmitted data is analyzed and 

processed and visualized with graphs or panels for easy understanding. Based on the data obtained, 

necessary measures can be taken. Based on the obtained data, the system can automatically activate 

control mechanisms to optimize performance. 

 

3.4 Processing of sensor data 

 

Veri işleme, sensörlerden toplanan ham verilerin kullanılabilir ve analiz edilebilir formata 

dönüştürülmesini kapsar. Mikro şebekelerden toplanan veriler, büyük hacimli ve çeşitli formatlarda 

olabilir. Bu verilerin işlenmesi aşağıdaki adımları içerir: 

 



G. Kucur/Journal of Engineering and Tecnology 6;1 (2025)11-29 

18 

 

Data Filtering and Cleaning: Raw data collected by sensors may contain noise, particularly due to 

environmental factors. This noise is filtered out using data processing algorithms to improve the data 

quality [68]. Missing data that might result from sensor errors or connectivity issues can be filled using 

various techniques (e.g., data prediction algorithms). 

Data Transformation: Data received from sensors may be in different formats (e.g., digital or analog). 

These data are converted into a centralized data format [69]. Data from different sensors are integrated, 

and the transformed data allows for the evaluation of parameters such as energy production, 

consumption, weather, and power quality in a unified dataset. 

Data Storage:Cleaned and transformed data is stored in a database or cloud system for analysis. In 

microgrids, large volumes of data are typically stored in distributed databases or data lakes [70]. Data 

collected from microgrids is often stored in time-series format. This format allows for tracking how 

dynamic parameters, such as energy production and consumption, change over time. 

 

3.5 Sensor data analysis 

 

Data analysis is the process of transforming processed data into meaningful insights for microgrid 

operations and management. This step is carried out using various analysis techniques and algorithms 

[71]: 

Descriptive Analysis:Descriptive analysis involves summarizing key information, such as energy 

production and consumption, grid loads, and power quality, for a specific time period from time-series 

data. This analysis is used to assess the overall performance of the microgrid. The results of descriptive 

analysis are typically reported to relevant stakeholders for decision-making. 

Diagnostic Analysis:This analysis focuses on identifying deviations and anomalies in the collected 

data. It helps determine the root causes of system failures or malfunctions. Diagnostic analysis is crucial 

for fault detection and resolving issues within the microgrid system. 

Predictive Analysis:Using IoT-based sensor data, predictive analysis examines the state of machines 

or equipment before failure. This allows for the creation of proactive maintenance schedules and helps 

predict potential system faults. Additionally, sensor data is used to forecast future energy demands based 

on historical consumption data. These predictions are vital for energy production planning. 

Optimization Analysis:The data provided by IoT sensors are used to optimize both energy production 

and consumption. By analyzing real-time data, it is possible to fine-tune energy generation and storage 

strategies, ensuring that resources are used as efficiently as possible, ultimately enhancing the overall 

performance of the microgrid. 

 

3.6 Security concerns 

 

IoT-based sensor integration in microgrids brings security and privacy threats. Security measures and 

privacy policies against these threats are vital for the safe, efficient and sustainable operation of 

microgrids. The security dimension of IoT-based sensor integration should be addressed at many 

different layers, from physical security to data security. 

 

Physical Security: Physical damage to sensors can cause corruption of energy data or malfunctioning 

of other equipment in the system. Physical protection is important against unauthorized access and 

security measures should be taken against attacks such as physical destruction or the addition of 

counterfeit sensors. 

Network Security: During the transmission of data from sensors to the central management system, the 

data passing through the network can be vulnerable to attacks [72]. Network attacks, such as man-in-

the-middle (MITM) attacks, can result in data being intercepted or altered. Strong encryption algorithms 

must be used to prevent unauthorized reading or modification of the data transmitted by the sensors. For 

this, standard encryption techniques such as AES (Advanced Encryption Standard) and RSA are widely 

used. In addition, each device should be authenticated on the network to prevent unauthorized access 

and only authorized devices should be allowed to transmit data. 

Data Integrity and Accuracy:The data from sensors can be manipulated by malicious actors. For 

example, energy consumption data may be reported incorrectly, potentially misleading energy 

management systems. To ensure data accuracy in microgrids, signature verification protocols and error 

detection algorithms [73] can be employed. These mechanisms allow for the verification of whether the 

data has been altered after it has been transmitted. 
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Cyber Attacks:IoT devices in microgrids can be vulnerable to Distributed Denial of Service (DDoS) 

attacks [74]. These attacks can overload sensors or central systems, leading to service disruptions. To 

protect against DDoS attacks, security measures such as firewalls and intrusion detection systems should 

be implemented in microgrids. Continuous monitoring of incoming network traffic is necessary to detect 

abnormal behavior and mitigate potential threats. 

 

3.7 Privacy concerns 

 

Mikro şebekelerde IoT tabanlı sensörlerin topladığı veriler, kullanıcıların enerji tüketim alışkanlıklarını 

ve hassas bilgilerini içerebilir. Bu nedenle, gizlilik önemli bir konu haline gelir. 

Data Privacy: Data collected through sensors may reveal personal information, such as individuals' 

energy consumption habits. Protecting such data [75] is crucial for ensuring personal privacy. 

Anonymizing user data ensures that personal information cannot be directly linked to individuals. 

Anonymized data can be used for analysis and reporting purposes while maintaining individual privacy. 

Data Sharing: Data collected in microgrids may be shared with energy providers, third-party service 

providers, or governments. However, during this sharing process, sensitive information should not be 

disclosed without the owner's consent. Access control mechanisms should be implemented to ensure 

that IoT-based sensor data in microgrids can only be accessed by authorized individuals and systems 

[76]. Access should be restricted according to the level authorized by users. 

Data Storage and Retention Period: Policies should be established regarding how long the collected 

sensor data will be stored. Storing data for unnecessarily long periods can lead to privacy violations. 

Once the data retention period has expired or when the data is no longer needed, it must be securely 

destroyed.  

 

3.8 Security and privacy technologies 

 

Various technologies and approaches are used to ensure security and privacy in IoT-based sensor 

integration in microgrids: 

Blockchain Technology: Blockchain technology can be used in microgrids to enhance data security 

[77]. This technology ensures that data is securely stored and processed, and it provides guarantees 

regarding the source and accuracy of the data. 

Artificial Intelligence (AI)-Assisted Security: AI and machine learning algorithms can detect 

anomalous data patterns in sensor networks [78]. This plays a significant role in early detection and 

prevention of attacks. 

Data Encryption and Privacy Protocols: New techniques such as homomorphic encryption [79] and 

differential privacy [80] can be used to increase the privacy of data. These techniques increase the level 

of confidentiality while enabling data to be analyzed. 

 

4. Ensuring Sensor Accuracy  

 

4.1 Accuracy ensuring techniques 

 

Periodic calibration of sensors [81] is crucial for the accuracy and reliability of energy measurements. 

Calibration involves the process of comparing the measurements of a device with a known and accepted 

reference standard. Failure to calibrate leads to misdirection of energy resources due to inaccurate data, 

incorrect calculation of energy costs, system instability, equipment failures and reduced energy 

efficiency. Sensor redundancy [82] is a way to ensure accuracy by using multiple sensors at the same 

measurement point. If one sensor produces inaccurate values, these deviations can be detected by 

comparing the data from other sensors. This minimizes the impact of failures of a single sensor. 

Sensor fusion [83] is a method of combining data from different sensors with the help of algorithms and 

providing a more reliable measurement based on this data. This technique is used to increase the 

sensitivity of different parameters in complex systems, especially in microgrids. Also, since 

environmental conditions (temperature, humidity, pressure, etc.) can affect the accuracy of sensors, 

sensors that monitor environmental conditions are used in addition to the main sensors. 3.4 to ensure 

that clean and accurate data is obtained by using the data processing methods specified in clause 3.4. 

This reduces the effects of sensor failures or transient problems. 
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Sensors used in microgrids may have a certain margin of error during their lifetime. In order to detect 

these faults [84] and take corrective measures in advance, algorithms are used to analyze the failure 

tendencies of sensors, predict and correct possible faults. With regular maintenance and monitoring of 

sensors, faults due to wear or aging can be detected early. Sensors that wear out or degrade in 

performance are removed from the system or repaired. 

 

4.2 Challenges in sensor calibration  

 

Accurately calibrating sensors is critical to the effectiveness and reliability of these systems, but 

calibration processes are not without their challenges. 

 

Various and Dynamic Operating Conditions:The dynamic situation caused by operating conditions, 

variable environmental factors (light, temperature, wind speed and weather, etc.) and production 

methods complicate the calibration process of sensors. The high impact of these conditions on the 

correct operation of the sensors can lead to the need for more frequent calibration. 

Different Sensor Types and Applications: Sensors used in microgrids measure very different 

parameters. Therefore, each type of sensor requires different calibration procedures depending on its 

sensitivity and accuracy requirements. Integrating the calibration of each sensor is difficult and requires 

a complex structure. 

Local and Remote Distributed Sensors: With wide-area deployment, sensors in local or remote areas 

can be isolated from each other. It is sometimes difficult to physically access each of these sensors for 

calibration. When calibration operations have to be performed at remote sites [85], logistical and time 

problems arise. 

Sensor Aging and Wear: The environmental conditions, long-term use and wear and tear effects to 

which sensors are constantly exposed create deviations in their accuracy and require more frequent 

calibration. 

Long Calibration Intervals and Process Complexity: Long and complex calibration processes can 

lead to system downtime or performance degradation. Therefore, it is essential to find calibration 

solutions that do not cause interruptions during the process. 

Limitations of Automatic Calibration Methods: Although automatic calibration technologies are 

advanced, these systems may have limitations in ensuring complete accuracy. While automatic 

calibration systems may be used for sensors in remote areas, it can be challenging for these technologies 

to adapt to every sensor type. Additionally, the installation and maintenance of such systems can be 

costly. 

Adapting to Innovative Sensor Technologies:The rapid development of sensor technologies leads to 

the emergence of new sensor types. However, developing calibration methods suitable for these new 

technologies may take time and can be difficult to integrate into microgrid systems. 

 

 

5. Success Stories of Sensor Use in Microgrids  

 

Hawaii Kauai Island Microgrid: Kauai is an island in Hawaii that has developed a microgrid based 

on renewable energy sources [86]. This microgrid integrates solar energy and energy storage systems to 

meet the island’s energy needs. The sensors used in the microgrid play a critical role in monitoring the 

energy production from solar panels and managing the energy storage systems. Thanks to the sensors, 

the balance between energy production and demand has been continuously optimized. As a result, Kauai 

Island has reduced its energy costs and significantly decreased its use of fossil fuels. 

Brooklyn Microgrid: The Brooklyn Microgrid is a microgrid established in New York with the aim of 

increasing energy independence [87]. This system enables energy trading among homes equipped with 

solar panels. Sensors monitor the energy production and consumption of each home to manage this 

trade. This project stands out as an example of using sensors to turn energy consumers into producers 

and support energy exchanges within local communities. The sensor data has ensured the system 

remains sustainable and economical by balancing energy supply and demand. 

Sendai Microgrid, Japan: After the major earthquake and tsunami in Japan in 2011, a microgrid [88] 

was established in Sendai City. This microgrid was designed to meet the energy needs of critical 

infrastructure in emergency situations. Sensors ensure continuous monitoring of the system and enable 

rapid responses during emergencies. For example, energy consumption sensors and grid status sensors 
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have made it possible for the microgrid to operate independently from the main grid. The Sendai 

Microgrid quickly recovered after the disaster, providing energy to the community and demonstrating 

the importance of sensors in crisis situations. 

Stone Edge Farm Microgrid, California: Stone Edge Farm is a vineyard that applies innovative 

energy solutions in wine production. The microgrid [89] established here includes solar energy, 

hydrogen fuel cells, and energy storage systems. Sensors optimize the farm's energy management by 

monitoring energy production, storage status, and consumption levels. The sensor data has been used to 

meet the farm's energy needs and sell excess energy to the grid. This microgrid has reduced energy costs 

and increased environmental sustainability. 

Loxton Village Microgrid, South Australia: Loxton Village in South Australia, a remote settlement, 

faced energy supply challenges. The microgrid [90] established here consists of solar energy, wind 

energy, and energy storage systems. Sensors played a critical role in monitoring local energy production 

and managing storage systems. This microgrid has increased the village's energy security, reduced 

energy costs, and decreased reliance on the grid. The data provided by the sensors has enabled the 

dynamic management of the microgrid and enhanced Loxton Village’s energy independence. 

 

6. Future Directions and Innovations  

 

Sensor technologies used in microgrids are rapidly evolving to improve the efficiency of energy systems, 

optimize energy production and ensure system security. These technologies contribute more to energy 

management systems (EMS) as sensors become more sensitive, intelligent and communication capable.  

 

6.1 Smart Sensors  

 

Smart sensors are equipped with embedded processors and software to collect, analyze, and process 

environmental data to generate meaningful information [91], [92]. These sensors collect various 

environmental data such as temperature, humidity, light, and pressure, and process this data in real-time. 

Based on the data they collect, they establish automatic control mechanisms within the system. For 

instance, they can automatically turn on power sources based on energy demand. Smart sensors can 

transmit the data they collect to energy management systems or cloud platforms via wireless networks 

[93], enabling integration with a central control system. Smart sensors optimize the balance of supply 

and demand by monitoring energy flow. For example, they can monitor light levels to improve the 

efficiency of solar panels. They ensure system safety by detecting excessive temperature, pressure, or 

power losses. In such cases, they can automatically activate protection circuits. To enhance the 

efficiency of energy sources, they analyze which resources are used more effectively and can 

automatically switch between energy sources when needed. By analyzing the data they collect, they 

identify energy consumption trends [94] and report this data to assist system administrators in decision-

making. Smart sensors continuously monitor the system's status and provide the possibility of quick 

intervention. By automating energy management processes, they reduce human error and increase 

system efficiency [95]. With the data they collect and process, they enable system administrators to 

make better decisions [96]. Thanks to remote access, they offer remote monitoring and control 

capabilities [97]. 

 

6.2 Wireless Sensor Networks (WSN) 

 

Wireless sensor networks are emerging as a critical technology to support functions such as energy 

management and environmental monitoring in microgrids. These are systems in which various sensors 

are wirelessly connected within a given area to collect and transmit data [98], [99]. These sensors are 

designed to monitor various variables and send the collected data to a centralized control unit or data 

processing unit [100]. Wireless communication allows sensors to interact with each other and with the 

central system without the need for physical connections. Wireless sensors are used in microgrids to 

monitor energy consumption and production [101]. Data from renewable energy sources such as solar 

panels and wind turbines are collected [102] and analyzed to improve the efficiency of these sources. 

Energy management systems (EMS) use this data to balance energy demand and production and support 

the efficient use of energy resources [103]. 
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Environmental factors such as air quality, temperature, humidity, and noise levels can be monitored 

through wireless sensors. These data are crucial for enhancing the sustainability of the microgrid and 

reducing environmental impacts [104]. Wireless sensor networks can be used to improve energy 

efficiency in lighting, HVAC (heating, ventilation, and air conditioning), and other automatic control 

systems. Sensors make automatic adjustments based on environmental conditions to minimize energy 

consumption. For security purposes, wireless sensors can be integrated with motion detectors and 

camera systems [105]. These sensors create a rapid response mechanism in the event of a security 

incident, enhancing the security of the microgrid. Thanks to their wireless nature, there is no need for 

cabling, which reduces installation costs and shortens installation time [106]. This provides significant 

advantages, especially in hard-to-reach areas or temporary installations. The ease of changing the 

placement of sensors increases the scalability of the system, making it easier to adapt to future expansion 

or modification requests [107]. By collecting real-time data, wireless sensors contribute to fast decision-

making processes, which is a significant advantage in energy management and environmental 

monitoring [108]. Most wireless sensors are designed to consume low power, extending their battery 

life and reducing maintenance needs. This ensures that sensors can operate continuously for long 

periods. However, wireless communication may be more vulnerable to cyberattacks and data breaches 

[109]. Therefore, implementing security protocols and continuous monitoring is essential. When large 

amounts of sensor data are collected, managing and analyzing this data can become complex [110]. This 

can affect the performance and efficiency of data processing units. The range limitations of sensors 

[111] can impact the coverage area of the network. This can be a problem, especially when sensors need 

to be distributed over large areas. 

 

6.3 IoT Based Sensors 

 

The Internet of Things (IoT) is a technology that enables sensors to work together and integrate with 

other devices over the internet, playing a significant role in microgrids [112]. IoT-based sensors offer 

great benefits for the continuous monitoring and management of microgrid systems. IoT sensors 

transmit data to cloud-based platforms, where this data is processed in real-time. Sensors integrated with 

IoT provide detailed information about energy consumption and production. These IoT sensors allow 

for better analysis of the system and enable detailed processing of data for energy efficiency. 

 

6.4 Fiber Optic Sensors  

 

Optical sensors used in microgrids are devices that evaluate environmental conditions by detecting light 

levels, wavelengths, or the light spectrum [113], [114]. They typically include components such as 

photodiodes, phototransistors, and photoresistors, providing information about the presence, intensity, 

or quality of light. Optical sensors collect essential data for energy consumption and production by 

detecting light levels in the environment. The collected light data is then analyzed and used to optimize 

the system’s energy management strategies. For example, they can automatically adjust the orientation 

of solar panels based on the amount of sunlight, making real-time adjustments according to the light 

conditions in the environment. These sensors also allow system administrators to monitor the system 

remotely [115]. 

 

6.5 Digital Twin Technology Integrated Sensors  

 

Digital twin technology [116] enables the creation of virtual models of physical entities, making real-

time data flow possible. Sensors used in microgrids, when integrated with digital twins, allow for the 

early detection of potential issues in the system and the simulation of the energy production process. 

Digital twins create a virtual replica of the system using sensor data, enabling real-time monitoring, 

maintenance, and optimization. This technology helps by predicting failures in advance, ensuring more 

efficient operation of the system's sensors, reducing maintenance costs, and improving production 

processes. 

 

6.6 Autonomous Sensor Systems  

 

Autonomous sensor systems are sensors that can calibrate themselves, optimize energy consumption, 

and respond to abnormalities in the system without the need for external intervention [117]. Equipped 
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with advanced software and artificial intelligence, they have self-learning and calibration capabilities. 

They continuously optimize system performance. These sensors detect faults in the system without 

human intervention and make the necessary corrections, thereby ensuring more efficient and secure 

energy management. 

 

6.7 Energy Harvesting Sensors  

 

Energy harvesting sensors operate by collecting energy from environmental sources [118]. These 

sensors can power themselves using energy obtained from sources such as sunlight, heat, or vibrations, 

creating an energy-independent system. These sensors are especially useful in areas where powering the 

system is challenging, such as remote locations, and they provide long-term, sustainable operation by 

utilizing environmental energy sources. Energy-independent sensors reduce costs, decrease 

maintenance, and offer significant advantages in energy management for remote areas. 

 

7. The Future of Sensors in Microgrids  

 

Sensor technologies in microgrids are among the key components that will enable more efficient, 

flexible, secure and sustainable operation of systems in the future. Smart sensors will provide 

autonomous management and proactive intervention in microgrids by integrating with artificial 

intelligence, IoT, wireless networks and advanced security protocols. Sensors of the future will be able 

to detect system anomalies, self-calibrate, react autonomously, minimize human intervention and reduce 

maintenance costs. By analyzing sensor data with artificial intelligence and machine learning, failures 

will be predicted, energy production will be optimized, and carbon emissions will be reduced. Thanks 

to IoT-based systems, real-time data collection and analysis will be possible, and the energy production-

consumption balance will be monitored instantly.Wireless sensor networks (WSN) will make it possible 

to spread over larger areas at low cost, while energy harvesting technologies will enable sensors to 

generate their own energy and become more sustainable. 5G and similar communication technologies 

will enable fast and reliable operation of sensors with low latency and high data rates, enabling instant 

response to emergencies. The increasing number of connected devices makes cyber security critical. In 

this context, strong security protocols and solutions such as blockchain will protect data integrity. In 

addition, within the scope of combating climate change, sensors will contribute to the environmental 

sustainability of microgrids by monitoring environmental parameters such as temperature, humidity and 

air quality more precisely. 

 

8. Conclusion 

 

This study has shown that sensor technologies significantly improve the reliability, efficiency and 

resilience of microgrids. Sensor technologies in IoT-based microgrids not only contribute to the 

optimization of existing systems, but also play a key role in building sustainable, smart and resilient 

energy infrastructures. Thanks to their functions such as real-time data collection, monitoring energy 

consumption and generation patterns, and early detection of system failures, sensors increase energy 

efficiency, reduce costs and strengthen system security. 

 

Analyzing sensor data with artificial intelligence and machine learning algorithms provides insights that 

turn into decision support systems in energy management, enabling microgrids to operate more flexibly 

and efficiently. The effective use of sensors in load management, demand response strategies and 

optimization of renewable energy sources (solar, wind, etc.) makes significant contributions to ensuring 

energy supply-demand balance and reducing environmental impacts. Case studies such as the Sendai 

and Kauai microgrids have shown that sensor-driven architectures reduce energy costs and increase 

disaster resilience. 

 

However, there are some limitations to the widespread adoption of these technologies. Technical 

challenges such as energy consumption of sensors, reliability of communication infrastructures, data 

security, system integration and hardware resilience are among the key issues that still need to be 

addressed. In addition, real-time and secure processing of large data sets requires high processing power 

and advanced algorithms. 
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Future research should specifically focus on the following areas: 

 Development of energy harvesting and low power consumption sensor systems 

 Artificial intelligence supported sensor architectures that can make autonomous decisions 

 Advanced automation systems in demand response applications 

 Effective management of sensor data with cloud and edge computing integration 

 Development of smart interfaces that analyze and guide user behavior 

 

As a result, sensor technologies not only improve technical system performance, but also contribute to 

the spread of sustainability awareness by increasing the awareness of energy users. Smart sensor systems 

integrated into microgrids are positioned as one of the basic building blocks of the environmentally 

friendly, digital and flexible energy systems of the future. 

Limitations 

This study is limited by the lack of primary simulation or experimental validation. While the literature 

review is extensive, experimental tests or prototype implementations could further validate the findings. 

Performance metrics of the sensors (e.g. accuracy, latency, energy consumption) were synthesized from 

secondary sources; actual values may vary under different operating conditions. In addition, the 

cybersecurity analyses are theoretical and practical threat modeling is proposed for future work. 
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