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In this study, a numerical model was developed to analyze the thermal
behavior of a panel type (PKP) aluminum radiator used for space heating.
The developed model was applied to a slice of the radiator and, convection
and radiation effects were included in the calculations. Model accuracy
tests were performed in the test room located in the Thermal Sciences
Laboratory of the Mechanical Engineering Department of the Faculty of
Engineering at Gazi University, using the experimental results performed
according to the TS EN 442 standard on the market equivalent of the
analyzed radiator. The test room was equipped according to the
ANSI/ASHRAE-138 standard and made suitable with the EN 442 radiator
test. The numerical analysis results showed that; 600-800-1100-1400 W
thermal power can be obtained for 30-40-50-60°C temperature differences
using the radiator under study and the heat transfer coefficient of the

radiator is an average of 6.35 W/m?K.

2017 Batman University. All rights reserved

1. Introduction

With approximately 45% of the world's total energy consumption, buildings are one of the largest energy
consumers [1]. Building heating contributes significantly to this proportion. Therefore, the demand for
heating systems with higher efficiency and thermal output is on the increase day by day. One of the most
widely used heating devices for the heating of buildings is the panel radiator with convection fins
(convector) [2, 3]. Therefore, it is important to increase the thermal output of panel radiators. The
thermal performance of panel radiators is affected by the internal fin designs, water channels, and
ventilation holes and grilles. In this study, the panel radiator slice is examined and the thermal
performance of the radiator is determined. The design of the convectors that are used in the panel
radiators has a significant impact on the determination of the total thermal output of the radiator.
Therefore, in order to achieve the highest possible thermal output of panel radiators, the geometry and
dimensions of the convectors play an important role. For the purpose of getting higher thermal
efficiency, it is focused on the internal design of the panel. Although the majority of the heat transfer
from panel radiators occurs by natural convection, the contribution of radiation was observed to be
around 26% for an inlet/outlet temperature of 75/65 °C [4]. The hot water circulating in the pipes
transfers its energy to the ambient air by convection and radiation through the panels and convectors.
The temperature difference between the radiator surfaces and the ambient air is the main factor that
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causes heat transfer. In order to increase the convective heat transfer, most panel radiators are equipped
with convective fins (convectors) [5]. Recent studies have focused on enhancing the thermal efficiency
of domestic convectors. Embaye et al. [6] and Calisir et al. [7] examined the impact of pulsating flow
regimes on energy consumption in Type 10 and Type 11 convectors. Their findings suggest that constant
flow rates fail to optimize heating performance, whereas intermittent flow conditions significantly
improve efficiency. Computational Fluid Dynamics (CFD) simulations were employed to analyze
localized flow dynamics within the convector systems. Marchesi et al. [8] experimentally compared the
thermal behavior of traditional cast iron and modern aluminum convectors under varying hydraulic
configurations, flow rates, and mounting positions. Their results demonstrated that aluminum
convectors exhibit superior thermal efficiency. Dzierzgowski [9] identified limitations in the EN-442
standard [10], revealing a 22.3% underestimation of thermal output for cast iron convectors under low-
flow conditions through tests involving multiple convector types and operational parameters. Calisir et
al. [11] analyzed geometric parameters (e.g., panel height, wall thickness, trapezoidal geometry) and
concluded that increasing material thickness and panel height enhances heat transfer, albeit at elevated
costs. Gritzki et al. [12] questioned the reliability of EN-442 for Type 22 convectors, particularly at
reduced flow rates, and explored how inlet-outlet configurations and flow direction adjustments
influence heating performance. Beck et al. [13] proposed a novel double-panel convector design
incorporating radiative plates, which reduced manufacturing complexity and dust accumulation
compared to traditional finned designs but introduced trade-offs in thermal output. Despite these
advancements, a systematic investigation linking inlet water temperature, flow rate variations, and
localized thermal characteristics in domestic convectors remains absent. This study addresses this gap
through experimental analysis of thermal dynamics and the development of a predictive model for
average surface temperature.

2. Methodology

2.1 Model Definition

For a radiator with a height of 600 mm, a length of 1000 mm and an inner diameter of 13.3 mm water
pipe, the thermal performance of an aluminum panel slice is simulated using ANSYS. The slice width
of the radiator is 8 cm and the thickness is 4 cm. A domain size of 460x40x1600 is used in the analysis.
The panel has fins, water pipe and air channels in the rear section, and the geometry and boundary
conditions of these components are given in Table-3.

WATER PIPE

SYMMETRY

0,000 0,300 0,600 (m)
1

0,150 0,450

BOTTOM

(a) Boundary conditions of model (b) A slice of aluminum radiator model (c) Aluminum radiator model

Figure 1. Numerical model solution domain and boundaries for the radiator slice: (a) Boundary conditions of
model (b) A slice of aluminum radiator model (¢) Aluminum radiator model
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2.2 Governing Equations

In this study, the continuity equation, the momentum equation and the energy conservation equation for
the air inside the radiator slice and the radiation equation between the air and the radiator are solved
together. The continuity equation is reduced to the following form by the assumption that the Boussinesq
equation is incompressible,

V-3=0 D

The symbol ¥ in Equation (1) represents the velocity of the air.
The momentum equation takes the following form when the effect of buoyancy and viscous forces are
taken into account,

_ VP 1 Lo T

V-(ﬁﬁ):—p—+p—v-<u(vﬁ+(vﬁ) )>—§B (T — 293.15) )
In this equation, P represents the air pressure, p the density of air, p the viscosity of air and it is assumed
to vary with temperature.
The energy equation is reduced to the following form under the influence of advective and conduction
terms,

- - 1 - -
V-(vh)=p—|7-(k|7T) (3)
The term h in equation 3 is the enthalpy of the air and Kk is the thermal conductivity of the air.

The discrete ordinate model given in Equation 4 was used to solve the radiative heat transfer between
the radiator surface and the surrounding environment simultaneously with the conservation equations.

g 4T
7 (4G + @+ 0L =l g [ BN - $)d @
0
In Eq. 4, A is the wavelength, a; is the spectral absorption coefficient and I;is the radiation intensity.

The turbulence model used was the SST k-® model. Details of the SST k-® model are given in Menter's
study [14].

2.3 Material Properties
The characteristics of the aluminium radiator materials used in the market are given in Table-2.

Table 1. Properties of aluminium material used in the analyses
Property Value | Unit
Density 2719 kg/m?
Specific heat (Cp) 871 J/(kg-K)
Thermal Conductivity | 202.4 W/(m-K)

The thermophysical properties of air are given in Table-3. The Sutherland model[15] used for dynamic
viscosity in the material properties of air is given in Eg. (5).

3
T )5273.11+110.56 kg] (5)

=1,716 X 10-5(
K 27311) ~ T+11056  |ms

Table 2. Properties of air used in the analyses
Property Value Unit
Density 1.11267 kg/m?
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Specific heat (Cp) Segmented polynomial | J/(kg-K)
Thermal Conductivity Polynomial W/(m-K)
Dynamic Viscosity Sutherland model kg/(m-s)
Absorption Coefficient 0.01 1/m
Scattering Coefficient 1E-05 1/m
Scattering Phase Function Isotropic -
Thermal expansion coefficient | 0.00341122 1/K
Refractive Index 1.0003 -

The thermal conductivity polynomial is formed according to the working range and is given in Eg. (6).

w
k =1.1144132 x 1073 + 9,324767 X 1075T — 3,63004 x 107872 p— (6)

2.4 Mesh Structure

An important parameter that directly affects the accuracy of the model and the reliability of the solution
is the mesh structure created for the finite element analysis of the panel slice. In this study, an attempt
was made to keep the skewness, number of elements and orthogonal quality values, which indicates the
quality of the mesh created to solve the numerical model, at minimum values to ensure convergence of
the results and independence from the mesh structure. Accordingly, the number of mesh elements was
sett0 2.965.115, the maximum value of skewness was set to 0.978 and the minimum value of orthogonal
quality was set to 0.1 and the mesh structure was formed as shown in Figure-2.

(b) View from the mesh structure around the panel-water pipe
on the axis of symmetry

a) View from the mesh structure on
the symmetry axis in the entire (c) Symmetry axis view of the mesh structure in and around the

solution domain panel-water pipe

Figure 2. Solution region used in the numerical model for the radiator slice: (a) View of the mesh structure in
the symmetry axis in the entire solution region (b) around the water pipe-panel (c) in and around the panel-water

pipe
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2.5 Boundary Conditions

The boundary conditions used in the analysis are given in Table-3. The analyses were performed in 4
different ways by applying variable temperature conditions in the water pipe. Constant temperatures
were set for the water pipe and different temperature values were applied. Adiabatic conditions were
provided on the bottom and back walls and a certain emission coefficient was used for radiation. On the
front and top surface, the outlet pressure was defined as 1 atm and radiation conditions were taken into
account. For the radiator walls, solid-fluid interface conditions were applied and the radiation emission
coefficient was specified.

Table 3. Boundary conditions for numerical model solution region

No | Boundary BC Thermal BC | Radiation BC

Al | T=50°C
. A2 | T=60°C

1 Water pipe Constant Temp. A3 [ T=70°C N/A
A4 | T=80°C

2 Ground-back wall Wall Adiabatic &=0,98

3 Front-Top Pressure Outlet P=1atm £=0,98

4 | Radiator Walls wall Solid-liquid £=0,95
interface

5 Symmetry - - -

3. Introduction of Test Chamber, Test Specimen and Experimental Setup

Capacity determination tests were performed according to TS EN 442-2 standard in test room designed
according to ANSI/ASHRAE 138 standard, where air temperature and wall surface temperatures can be
controlled, located in Gazi University Mechanical Engineering Department Heat Science Laboratory,
shown in Figure-3,4,5.

"

Electric
Boiler

.
EEEEEEEn

—
-

Figure 3. View of the test chamber and mechanical installation equipment

Test samples: MARKET ‘Type 21 PKP Aluminium Panel Radiator’
The front and top views of the tested radiator are presented below;



S.N.Isiksacar, M.Erbas and A. Biyikoglu/Journal of Engineering and Tecnology 6;1 (2025) 1-10

Figure 5. View of the radiator test measurement set-up

4. Experimental Method

The panel radiator to be tested is mounted in the middle of the wall in the test room at a height of 50 cm
from the floor. The water inlet and outlet temperatures and the water flow rate of the panel radiator are
measured. The panel radiator is supplied with hot water at 75°C and the water flow rate is adjusted so
that the radiator outlet temperature is 65°C. The indoor temperature of the test room is measured from
four different positions (5 cm from the ceiling, 5 cm from the floor, 75 cm and 150 cm) specified in the
standard on a vertical rod placed in the centre of the room. The test room is conditioned by cooling from
the walls other than the wall where the radiator is located, so that the room temperature is maintained at
20 °C. The average surface temperature of the radiator is calculated using data from three thermocouples
placed on the infeed, mid-feed and outfeed surfaces.

Unlike the TS EN 442-2 standard, this test was carried out by feeding water heated by an electric heater
in a chamber directly to the radiator by means of a circulating pump. The difference is in the method
used to measure the water flow rate, in this test the water flow rate was measured using a calibrated flow
meter. The accuracy of the flow meter is £0.471 g/s. The method used to determine the thermal output,
as specified in the standard, is to measure the water flow through the radiator and to measure the
temperatures at the supply and return connections to determine the enthalpy difference.
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5. Results

Figure 6 shows the results of the analyses carried out on a section of the radiator at (a) the front, (b) the
side and (c) the back. The flow curve and velocity of the ambient air at room conditions are shown. The
hottest region in a slice is at the center line. The lower end of the radiator has the lowest temperature.
The temperature of the metal increases as it rises. Because the water pipe of the radiator is closer to the
back surface, the back surface is hotter than the front surface. The air flow in the radiator is accelerated
from bottom to top. As the temperature of the air entering the radiator and the region with the lowest
boundary layer thickness is at the bottom, the highest heat transfer coefficient occurs at the bottom.

Temperature Heat Flux
Temp Isi :
352.9 5000.0
352.4 4500.0
352.0
3516 4000.0
22(1) ; 3500.0
- gggg - 3000.0
H : 2500.0 |
(l) 349.4 |i
349.0 2000.0
s 15000 ‘
-k
3473 | 1000.0
346.9 500.0
346.5
3460 ‘ a.0 ‘
K ‘ | W mA-2]
b) (c)

(a) ( (a) (c)

HTC

Velocity
Streamline 1

1.088
0.870
0.653
0.435
0.218
0.000

[m s?-1]

3.900e+02
2.686e+02
© 1.850e+02
1.2746+02
- 8.7756+01
- 6.044e+01
-~ 4.1636+01
2.867e+01
1.9756+01
1.360e+01
9.368+00
6.452¢+00
4.4446+00
3.061e+00
2.108e+00
1.4526+00
1.000e+00
[W mA-2 KA-1]

(iii)

(a)

(C) . o wwom
e
- =

Figure 6. Radiator slice (i) temperature, (ii) heat flux, (iii) heat transfer coefficient (HTC) and air flow (velocity)
distributions for AT =60 K

The radiator thermal power was calculated by taking the sum of the local heat flux obtained over the
water pipe wall as a result of the analysis over the surface area,
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" g (7)
Q= f q"-dA
and the average heat transfer coefficient was calculated using the following integral,
1 ".dA
Rang = f _aah (®)
A T —293.15

The analyzed radiator consists of 13 slices. Therefore, while calculating the radiator thermal power,
the numerical result obtained for the slice was multiplied by the number of slices.

The radiator heat transfer coefficient is the same as the radiator slice heat transfer coefficient and is
calculated by taking the integral of the local heat flux on the radiator panel surfaces divided by the
local temperature difference (difference between local water temperature and ambient temperature)
over the total surface as a result of the analysis.

The thermal power and heat transfer coefficients obtained as a result of numerical analysis are given in
Table-4.

Table 4. Radiator power and average heat transfer coefficient obtained in the analysis

Temperature Water Inlet Water Outlet Radiator Average Heat
Difference, Temperature, | Temperature, | Thermal Power, | Transfer Coefficient,
AT [°C] Tin [°C] Tou [°C] P [W] HTC [W/m? K]
30 55 45 538 5.63
40 65 55 781 6.15
50 75 65 1040 6.57
60 90 70 1335 7.05

6. Evaluation of The Results

Radiator thermal power values obtained as a result of computational fluid dynamics (CFD) analysis are
presented in Figure-6. The market equivalent radiator of the analyzed radiator was tested in accordance
with TS EN 442 standard in the test room installed in the Thermal Science Laboratory of Gazi University
Faculty of Engineering, Department of Mechanical Engineering. The difference between the average
temperature of the water in the radiator and the ambient temperature was 50°C. The radiator thermal
power was measured as 1050 W and the heat transfer coefficient was calculated as 7.18 W/m2K. As a
result of the numerical analysis, the radiator thermal power was calculated as 1040 W and the heat
transfer coefficient was calculated as 6.57 W/m2K. As a result, it was determined that the numerical
analysis model gave results compatible with the experiments and its accuracy was proved.

In Figure 7, the radiator thermal powers obtained from the numerical results according to the change of
the difference between the average water temperature inside the radiator and the ambient temperature

are shown as dots and the correlation curve is shown with a dashed curve. The formulation of the
correlation curve obtained in Figure-7 is given by Equation 9.

Q =7,881154L (AT)4E (W] 9)

In Eq. (9), AT represents the temperature difference [K] and L represents the radiator length [m].
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The exponential value of the correlation proposed in the literature for natural convection [16] was found
to be 5/4, the same as the value obtained in this study. In the light of these results, it was determined
that the model developed for the numerical analysis of the radiator gives results compatible with both
the literature and experiments and can be used in different types of radiator thermal power calculations
and heat transfer coefficient calculations.

Radiator Size (600mm x 1000mm)

-
pras
e
-

-
-
-
-

0 10 20 30 40 50 60
Temperature Difference [K]
B CFD Results ------- Regression
Figure 7. Radiator thermal powers according to temperature difference

Table 5. Radiator power and average heat transfer coefficient obtained in the analysis

Temperature Experimental Numerical Regression Error Rate (%)

Difference (AT) | thermal power Thermal Power | Estimation (W) | (Experimental vs.
(W) (W) Numerical)

30 K (30°C) 484,0 538 479,6 +10,0

50 K (50°C) 980,4 1040 1048 +5,7

60 K (60°C) 1259,9 1335 1362 +5,7

For AT =30°C, the experimental thermal power (484 W) is approximately 10% lower than the numerical
result (538 W) in Table 5. This discrepancy may arise due to weak natural convection at low temperature
differences and the model’s inability to fully capture boundary layer effects. For AT = 50°C and 60°C,
the error rate is 5.7%, indicating that the model produces closer predictions to experimental data at
higher temperature differences. The regression curve in Equation 9 aligns almost perfectly with the
numerical results but shows slight deviations compared to experimental data. This suggests that the
regression is based on numerical data and does not fully account for practical limitations in experimental
conditions, such as heat losses or measurement precision.

The experimental methodology was meticulously executed in accordance with the TS EN 442-2
standard, thereby ensuring optimal reliability and reproducibility. Tests were conducted in a controlled
environment that was compliant with ANSI/ASHRAE-138. In this environment, the temperature of both
the walls and the air were regulated with a high degree of precision, with the target temperature set at
20°C. Key parameters, including water flow rate (£0.471 g/s accuracy) and inlet/outlet temperatures
(£0.1°C precision), were measured using calibrated instruments, as detailed in the provided test results
table. For instance, at a temperature difference of 50°C, the measured thermal power (980.4 W) closely
aligns with the numerical prediction (1040 W), with a mere 5.7% deviation, thereby underscoring the
consistency of the experimental setup. Furthermore, corrections for barometric pressure effects were
applied (e.g., ®=484.0 W at AT = 30°C), and repeated trials under identical conditions yielded minimal
variability, as demonstrated in the tabulated data. The employment of multiple thermocouples for the
calculation of surface temperatures, in conjunction with the adherence to the enthalpy-based calculation
method stipulated in EN 442, serves to further substantiate the veracity of the results obtained. This
meticulous approach aligns with established studies on radiator performance evaluation, thereby
reinforcing the credibility of the experimental outcomes for both academic and industrial applications.

9
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1. Introduction

Microgrids are becoming increasingly important in energy management and distribution, particularly
with the integration of renewable energy sources. These systems aim to enhance energy efficiency,
ensure reliability, and strengthen sustainability by bringing together small-scale energy production,
storage, and consumption units. The successful management of microgrids is critical for balancing
variable and intermittent renewable energy sources such as solar and wind. This balancing relies on the
data provided by sensors integrated into smart energy management systems.

The objective of this study is to examine the contributions of sensor technologies to the optimization of
energy systems in microgrids. Sensors play a critical role in maintaining the balance between energy
production and consumption, enhancing system stability, and enabling the effective integration of
renewable energy sources. In this context, the significance of the study lies in highlighting the role of
sensors in reducing energy costs and fostering sustainable energy solutions. Looking ahead,
advancements in sensor technologies are expected to play a pioneering role in making energy systems
smarter and more efficient.
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2. Basic Sensor Types

With the use of loT-based sensors in microgrids, the necessity of managing multi-layered structures in
harmony has emerged. The place and functioning of sensors in the microgrid infrastructure; 1oT-based
microgrid architecture (layered structure such as sensor layer, network layer, application layer), data
flow diagram (from sensors to cloud, analysis layer) and sensor communication network topology are
given in Figure 1 [1-4].

Sensor Communication

APPLICATION LAYER Network Topology
—
= = Q.9
= n

loT &,_, e
NETWORK LAYER ‘ %esh

D =—e il

10s

Star

Tree

Figure 1. loT based microgrid architecture

Many different types of sensors are used in microgrids depending on their intended use. General trends
of the most commonly used sensor types in microgrids, based on literature reviews and industry reports,
are given in Figure 2 [1-4].

Temperature 18%

Current 15%

Voltage 13%

Power 12%

Humidity 10%

Frequency 8%

Pressure 7%

Vibration 5%

i
i
i
i
i
} 9%
i
i
i
}

Light 39

Usage (%)

' L L
0.0 2.5 5.0 1.5 10.0 125 15.0 17.5

Figure 2. Distribution of sensors used in microgrids
2.1 Current sensor

Current sensors provide data to energy management systems in microgrids by monitoring the current
drawn by devices and lines [5]. These sensors optimize energy flow, balance loads, and protect the
system by detecting overcurrent conditions. They are employed in generators, solar panels, wind
turbines, energy storage systems, and power converters to enhance efficiency and provide protection
against overloads [6]. Additionally, current sensors monitor energy flow in distribution lines, detect
imbalances, and trigger circuit breakers in hazardous situations, ensuring system safety. The types of
current sensors used in microgrids are outlined below:

12
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Hall Effect Current Sensor: These sensors measure current non-invasively by detecting magnetic
fields [7]. They are commonly used in high-current applications. Accuracies up to 0.5%, measuring
range up to £1000 A. They are affected by temperature variations, magnetic saturation and offset
deviations. In closed loop Hall sensors, error compensation methods can be applied in low current ranges
[8].

Rogowski Coil: Particularly suitable for monitoring large current values, these sensors operate with a
coil wrapped around the conductor carrying the current [9]. Sensitivity is in the range of 0.1-1.0% and
is effective at high currents (kA levels). Good performance at high frequency currents, no saturation
problem. Sensitivity depends on coil positioning and frequency content [10], [11].

Shunt Resistor: This method directly measures current by evaluating the voltage drop across a small
resistor through which the current flows [12]. Their accuracy is up to 0.1% and they usually have a
measurement range of 0-600 A. Temperature variations and interference can cause measurement errors.
Cooling and calibration are important for low cost and high accuracy [13].

Current Transformer (CT): Designed for high-current measurement, these transformers reduce
current to a lower level, making it safer and easier to monitor [14]. Measurement class according to IEC
61869 standard ranges from 0,1 to 1. Typical accuracy is between +0,5% and +1%. Sources of error can
occur due to signal distortion and magnetic saturation [15], [16].

2.2 Voltage sensor

Mikro sebekelerde kullanilan gerilim sensorleri; elektrik sistemindeki gerilim seviyelerini izler ve bu
Voltage sensors in microgrids monitor voltage levels within the electrical system, ensuring safe and
efficient operation by maintaining stability [17]. They regulate voltage fluctuations during energy
generation and distribution, trigger protection relays during overvoltage events, and safeguard
equipment. These sensors monitor voltage levels in solar panels, wind turbines, generators, and batteries,
ensuring energy quality and safety. Additionally, they are employed in inverters and converters for
voltage regulation, enhancing system stability.

The types of voltage sensors used in microgrids are listed below:

Voltage Transformer (VT): These sensors step down high voltage levels to lower, measurable levels
[18]. They are widely used in large energy generation facilities and distribution networks. According to
the IEC 61869 standard, accuracy classes are 0.1%, 0.2%, 0.5% and 1%. Voltage transformers used in
medium voltage applications generally operate with a ratio error of 0,5% to 1%. However, harmonic
distortions can affect this accuracy [19].

Hall Effect Voltage Sensor: This type of sensor performs contactless voltage measurement through
magnetic fields [20]. It can accurately measure both AC and DC voltages. Hall-effect voltage sensors
measure voltage due to the influence of a magnetic field and typically offer an accuracy of 0,5-1.0%.
However, temperature variations and electromagnetic interference can affect measurement accuracy.
They offer the advantage of isolation and compactness.

Optical Voltage Sensor: These sensors utilize optical fibers for voltage measurement [21]. Suitable
for high voltage applications. Especially used in critical applications as it is not affected by
electromagnetic interference. Mechanical disturbances and temperature variations can affect its
performance. At voltages above 100 V, it offers +0,2% accuracy; for voltages of 200 V and above, the
accuracy goes up to +0,1% [22].

Capacitive Voltage Sensor: These sensors measure voltage by utilizing the capacitance between two
points [23]. They are typically preferred in low-cost applications. Can be used over wide voltage ranges.
It has high accuracy and low power consumption. Environmental conditions and temperature changes
can affect its performance [24].

2.3 Power sensor

Power sensors in microgrids are crucial for monitoring and controlling power flow (consumption and
generation) [25]. These sensors continuously monitor active and reactive power, performing both AC
and DC measurements. Data from the sensors is transmitted to energy management systems (EMS),
balancing power demand and generation. By detecting excessive power draw and imbalances, they
trigger protection circuits to prevent equipment damage. They also detect harmonic distortions and
fluctuations, ensuring the accurate conversion of power in inverters and converters.

The types of power sensors used in microgrids are listed below:
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Current and Voltage-Based Power Sensor: These sensors combine current and voltage data to
calculate instantaneous power values [26]. These sensors calculate power based on current and voltage
measurements. Accuracy depends on the sensitivity of the current and voltage sensors used. Typically,
+0,5% accuracy can be achieved [27].

Hall Effect Power Sensor: These sensors perform contactless power measurements through magnetic
fields, providing reliable and contactless power readings, which enhances the system's longevity [28].
Power sensors based on the Hall effect principle offer +1% accuracy. Measurement range up to £1000
A and +1000 V is available. They provide non-contact measurement and isolation. However,
temperature variations and magnetic field interference can affect measurement accuracy [29].

2.4 Frequency sensor

Frequency sensors continuously monitor the frequency of the microgrid [30]. In AC (alternating current)
systems, frequency values must be maintained within a specific standard range (typically 50 Hz or 60
Hz). The grid frequency is monitored to maintain a balance between energy production and
consumption. When energy demand increases, the frequency may drop, indicating the need for increased
energy production. Frequency sensors detect abnormally low or high frequency conditions and trigger
protection systems to prevent damage to equipment. In microgrids connected to the central grid,
frequency sensors monitor the frequency differences between the microgrid and the grid, ensuring
synchronization. This allows the microgrid to operate in an isolated mode when necessary. Frequency
sensors operate with less than 1% error at input frequencies up to 1/10 of their natural frequency. The
error rate increases at higher frequencies. The measurement range is 0.1 Hz - 1 MHz. Electromagnetic
interference and temperature variations can affect measurement accuracy [31].

2.5 Light sensor

Light sensors are used in solar tracking systems to monitor the movement of the sun and ensure that
panels remain in their optimal position. Additionally, in solar power plants, light sensors are employed
to monitor system performance. These sensors help in the effective management of energy production.
By monitoring shading and light levels, the efficiency of the panels is continuously optimized [32]. The
measurement range is from 0.01 Ix to 100000 Ix and sensitivity down to 0.01 Ix (lux) and below is
possible. Temperature variations and aging effects can affect measurement accuracy [33].

2.6 Speed sensor

In microgrids, speed sensors are used to measure the velocity of fluids (e.g., air or water) to enhance
system efficiency and ensure safety [34]. In renewable energy systems like wind turbines, monitoring
wind speed is crucial for improving turbine efficiency. The sensors adjust the turbine's angle based on
wind speed, optimizing energy production. In water-based energy generation systems (e.g.,
hydroelectric plants), speed sensors monitor water flow rates, providing information on how much
energy can be generated. This data is transmitted to energy management systems. Speed sensors can
operate in measurement ranges from 0 - 10000 RPM and above with error rates of +0,5% or less.
Mechanical vibrations and temperature variations can affect measurement accuracy [35].

2.7 Humidity sensor

Humidity sensors are strategically placed at various points within microgrids to enhance system
performance and ensure energy efficiency. Excess humidity can affect the performance of solar panels
and wind turbines [36]; by monitoring the surrounding humidity levels, their efficiency can be improved.
In battery storage areas, humidity levels are monitored to prevent damage or performance loss caused
by excessive moisture. Humidity sensors generally operate with an accuracy of +2% to £5% RH. The
measurement range is 0% - 100% RH. Temperature influence, contamination and aging can affect the
measurement accuracy [37].
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2.8 Gas sensor

Gas sensors are essential components used to monitor the presence, concentration, and quality of gases
in microgrids [38]. These sensors are strategically placed to enhance the safety, energy efficiency, and
environmental monitoring of microgrids. Calibrated gas sensors can provide +2% accuracy under ideal
conditions. However, in some sensors this can be +25% or more. The accuracy of gas sensors varies
depending on the type of sensor and the characteristics of the gas being targeted. For example, +25%
accuracy is acceptable for ozone sensors. Accuracy is in ppm (parts per million) and the measurement
range can be 0-10000 ppm (depending on the gas type). It may measure inaccurately due to temperature,
relative humidity and sensor aging [39].

Gas sensors are used in microgrids in the following areas:

o Detecting leaks of natural gas, methane, or other potentially harmful gases, reducing the risk of fire
or explosion.

e Monitoring air quality, especially in enclosed spaces, by tracking levels of harmful gases (such as
carbon monoxide, carbon dioxide, etc.).

e Monitoring the quality and quantity of gas used in fuel systems (e.g., gas generators), ensuring
efficient fuel utilization.

o Detecting by-products (such as hydrogen gas) that may form in solar panels or other energy
production systems.

e Monitoring emissions in energy production facilities and other industrial areas, helping control
harmful gases released into the environment.

o Tracking levels of greenhouse gases, like carbon dioxide, providing data for climate change
research.

2.9 Vibration sensor

In microgrids, vibration sensors are important components used to monitor system conditions, identify
maintenance needs, and enhance overall safety [40]. Vibration sensors monitor the vibrations of
equipment, such as generators, motors, and other moving parts, under normal operating conditions.
Abnormal vibration levels allow for the early detection of potential failures. Early diagnosis can prevent
large and costly repairs, reducing operational costs. Monitoring vibrations ensures the safe operation of
energy production systems and contributes to preventing potential accidents. General purpose vibration
sensors operate in the frequency range 30-900000 CPM (0,5-15000 Hz). The accuracy is usually around
+1%. Mounting conditions, environmental factors, noise and mechanical resonances can affect the
measurement accuracy [41].

2.10 Acoustic sensor

Acoustic sensors are used in microgrids not directly for energy production or distribution functions, but
in supportive areas such as condition monitoring, fault detection, and security. These sensors help
improve the performance of the microgrid and detect faults in advance [42].

Acoustic sensors can detect abnormalities by monitoring the sounds and vibrations produced by
electrical equipment during operation. For example, faults in a generator, transformer, or electric motor
may produce abnormal sounds during operation. These sensors can be used for early warning systems
by detecting unusual sound frequencies from equipment.

Some microgrids include large structural components, such as wind turbines or solar panels. In such
systems, acoustic sensors are used to monitor the condition of the structures. For instance, damage to
wind turbine blades or solar panel mounts can be detected through acoustic emissions.

The accuracy of acoustic sensors varies depending on the frequency range and application area. Usually
+1% accuracy can be achieved. The measurement range is 20 Hz - 20 kHz (20 kHz-10 MHz for
ultrasonics). Wind, echo and environmental noise can cause inaccurate measurements [43].

2.11 Pressure sensor

Pressure sensors monitor the pressure of gas or liquid systems within microgrids, and are especially
important in hydrogen storage systems. In hydroelectric power generation, controlling water levels and
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pressure ensures the stability of energy production. Monitoring the internal pressure of energy storage
systems enhances safety. In liquid and gas distribution systems, the pressure of fluids (water, air, gas)
is monitored to ensure efficient system operation and detect leaks [44]. The types of pressure sensors
used in microgrids are listed below:

Analog and Digital Pressure Sensors: These sensors transmit pressure changes as a continuous voltage
signal. Typical accuracy is +0,5% Full Scale (FS). It usually operates with +0.5% accuracy. It can
operate in the measurement range 0 - 1000 bar. Errors such as temperature effect, analog and signal
interference can affect the measurement accuracy [45].

Piezoelectric Sensors: These sensors are sensitive to pressure changes and measure pressure using
piezoelectric materials. They are typically used in applications that require high precision [46]. Suitable
for measuring high frequency pressure changes, especially dynamic pressure changes; accuracy depends
on the application. Not suitable for static measurements. Typical accuracies range from 0,2% to 1%.
They are resistant to high temperature conditions and can operate up to 500°C. They have fast response
at high frequency and low long-term stability [47].

Capacitive Pressure Sensors: Pressure changes are measured by changes in capacitance. These sensors
are commonly used in applications that require high accuracy and low power consumption [48].
Capacitive sensors offer high accuracy, typically +0,1% Full Scale (FS). With low power consumption,
they are common in long-term monitoring systems [49].

2.12 Temperature sensor

Temperature sensors are critical for ensuring the safe and efficient operation of energy systems in
microgrids [50]. Different types of temperature sensors offer tailored solutions for various applications,
enhancing the overall performance of energy systems.

One of the most commonly used temperature sensors in microgrids is found in energy storage systems,
particularly in batteries [51]. In battery systems, NTC/PTC thermistors are widely used. Thermistors are
high precision temperature sensors. Their typical accuracy is between +£0,1°C and +0,5°C. They are
more accurate in lower temperature ranges, but their accuracy can decrease as the temperature increases
[52]. To ensure efficient and long-lasting battery performance, temperature must be kept within a
specific range. Overheating can shorten battery life and pose safety risks, such as the potential for fire.
Resistance Temperature Detector (RTD), another type of temperature sensor, has high accuracy (+0,1
°C) and is widely used, especially in industrial environments. Platinum (PT100) type RTDs are the most
stable [53]. Thermocouples used in temperature monitoring have a wide temperature range (-200°C to
+1300°C). However, their accuracy is around +1°C and calibration requirements are high [54].

In microgrids, particularly in enclosed spaces or battery rooms, fire risks can arise. Since excessive
temperature increases can create fire hazards, temperature sensors are critical for fire safety [55]. When
temperature limits are exceeded, these sensors activate fire suppression systems to minimize fire risk.

3. Internet of Things (10T) Based Sensor Integration
3.1 10T platforms

loT platforms are the software and hardware components used to manage data collection, analysis, and
control processes for sensors and devices. The key 10T platforms used in microgrids are:

Azure 10T Hub: A service provided by Microsoft, it allows devices to securely connect to a cloud-
based system [56]. It offers advanced features such as data analytics and machine learning integration.
Amazon Web Services (AWS) loT Core: A platform provided by Amazon Web Services [57], it
facilitates the easy connection, management, and data exchange of devices in the cloud. It is equipped
with security features and data analytics tools.

Google Cloud 10T: Google’s cloud-based 10T solution [58] offers comprehensive services for device
management, data streaming, and analytics. It also supports integration with machine learning and
artificial intelligence.
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IBM Watson loT Platform: A platform offering solutions for industrial 10T applications [59], it
provides a comprehensive structure for device connectivity, data collection, and analysis. It is equipped
with big data and analytics features.

3.2 10T protocols

loT protocols are a set of rules used to ensure data transmission and communication between devices.
The key loT protocols commonly used in microgrids include:

Message Queuing Telemetry Transport (MQTT): A lightweight messaging protocol [60]. It works
effectively in environments with low bandwidth and high latency, and is commonly used for collecting
and transmitting sensor data.

Constrained Application Protocol (CoAP): A protocol designed for devices with low power
consumption and bandwidth requirements [61]. It provides RESTful communication between loT
devices and is commonly used for monitoring environmental data, such as temperature and humidity.
Hypertext Transfer Protocol (HTTP/HTTPS): A widely used protocol on the internet [62]. In 10T
applications, it can be used for receiving or sending data from devices. However, due to its high energy
consumption, it is less preferred for energy efficiency.

Zigbee: A wireless communication protocol designed for low power consumption and short-range
communication [63]. It is commonly used in home automation and industrial 10T applications.

Long Range Wide Area Network (LoRaWAN): A protocol used for long-range communication [64].
It enables data transmission over large areas with low power consumption and is commonly used in
agriculture, smart city applications, and environmental monitoring systems.

A comparison of the key characteristics of 10T protocols is given in Table 1.

Table 1. Key characteristics of 10T protocols

Data Power Security
Protocol Latency Rate Consumption Level Use Care
. Medium Sensor data collection (real-time)

MQTT Low Medium Very Low

Q y (TLS) [60]
CoAP Very Low | Low Very Low Medium Environmental monitoring [61]

. Low—

LoRaWAN | High Low Ultra Low M;I(\jlium Remote rural sensor networks [64]
Zigbee Low Medium Low High Short-range control systems [63]
HTTPS High High High Very High | Secure control interfaces [62]

3.3 Data collection and transmission

For loT-based sensor integration [65] in microgrids, sensors suitable for the parameters to be measured
are selected and placed in suitable locations where data can be collected. Placing the sensors in
appropriate locations is critical for accurate data collection Sensors collect data [66] by monitoring in
real time. This data is usually recorded at regular intervals or when certain thresholds are exceeded. The
collected data is usually stored in a digital format (e.g. JSON, XML). This improves compatibility and
accessibility during data transmission. The collected data is transmitted to a centralized system or cloud
platform [67] via established data communication protocols. The transmitted data is analyzed and
processed and visualized with graphs or panels for easy understanding. Based on the data obtained,
necessary measures can be taken. Based on the obtained data, the system can automatically activate
control mechanisms to optimize performance.

3.4 Processing of sensor data
Veri isleme, sensorlerden toplanan ham verilerin kullanilabilir ve analiz edilebilir formata

doniistiriilmesini kapsar. Mikro sebekelerden toplanan veriler, biiyiik hacimli ve ¢esitli formatlarda
olabilir. Bu verilerin islenmesi asagidaki adimlar igerir:
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Data Filtering and Cleaning: Raw data collected by sensors may contain noise, particularly due to
environmental factors. This noise is filtered out using data processing algorithms to improve the data
quality [68]. Missing data that might result from sensor errors or connectivity issues can be filled using
various techniques (e.g., data prediction algorithms).

Data Transformation: Data received from sensors may be in different formats (e.g., digital or analog).
These data are converted into a centralized data format [69]. Data from different sensors are integrated,
and the transformed data allows for the evaluation of parameters such as energy production,
consumption, weather, and power quality in a unified dataset.

Data Storage:Cleaned and transformed data is stored in a database or cloud system for analysis. In
microgrids, large volumes of data are typically stored in distributed databases or data lakes [70]. Data
collected from microgrids is often stored in time-series format. This format allows for tracking how
dynamic parameters, such as energy production and consumption, change over time.

3.5 Sensor data analysis

Data analysis is the process of transforming processed data into meaningful insights for microgrid
operations and management. This step is carried out using various analysis techniques and algorithms
[71]:

Descriptive Analysis:Descriptive analysis involves summarizing key information, such as energy
production and consumption, grid loads, and power quality, for a specific time period from time-series
data. This analysis is used to assess the overall performance of the microgrid. The results of descriptive
analysis are typically reported to relevant stakeholders for decision-making.

Diagnostic Analysis:This analysis focuses on identifying deviations and anomalies in the collected
data. It helps determine the root causes of system failures or malfunctions. Diagnostic analysis is crucial
for fault detection and resolving issues within the microgrid system.

Predictive Analysis:Using loT-based sensor data, predictive analysis examines the state of machines
or equipment before failure. This allows for the creation of proactive maintenance schedules and helps
predict potential system faults. Additionally, sensor data is used to forecast future energy demands based
on historical consumption data. These predictions are vital for energy production planning.
Optimization Analysis: The data provided by loT sensors are used to optimize both energy production
and consumption. By analyzing real-time data, it is possible to fine-tune energy generation and storage
strategies, ensuring that resources are used as efficiently as possible, ultimately enhancing the overall
performance of the microgrid.

3.6 Security concerns

loT-based sensor integration in microgrids brings security and privacy threats. Security measures and
privacy policies against these threats are vital for the safe, efficient and sustainable operation of
microgrids. The security dimension of loT-based sensor integration should be addressed at many
different layers, from physical security to data security.

Physical Security: Physical damage to sensors can cause corruption of energy data or malfunctioning
of other equipment in the system. Physical protection is important against unauthorized access and
security measures should be taken against attacks such as physical destruction or the addition of
counterfeit sensors.

Network Security: During the transmission of data from sensors to the central management system, the
data passing through the network can be vulnerable to attacks [72]. Network attacks, such as man-in-
the-middle (MITM) attacks, can result in data being intercepted or altered. Strong encryption algorithms
must be used to prevent unauthorized reading or modification of the data transmitted by the sensors. For
this, standard encryption techniques such as AES (Advanced Encryption Standard) and RSA are widely
used. In addition, each device should be authenticated on the network to prevent unauthorized access
and only authorized devices should be allowed to transmit data.

Data Integrity and Accuracy:The data from sensors can be manipulated by malicious actors. For
example, energy consumption data may be reported incorrectly, potentially misleading energy
management systems. To ensure data accuracy in microgrids, signature verification protocols and error
detection algorithms [73] can be employed. These mechanisms allow for the verification of whether the
data has been altered after it has been transmitted.
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Cyber Attacks:loT devices in microgrids can be vulnerable to Distributed Denial of Service (DDoS)
attacks [74]. These attacks can overload sensors or central systems, leading to service disruptions. To
protect against DDoS attacks, security measures such as firewalls and intrusion detection systems should
be implemented in microgrids. Continuous monitoring of incoming network traffic is necessary to detect
abnormal behavior and mitigate potential threats.

3.7 Privacy concerns

Mikro sebekelerde IoT tabanli sensorlerin topladigi veriler, kullanicilarin enerji tikketim aliskanliklarim
ve hassas bilgilerini igerebilir. Bu nedenle, gizlilik 6nemli bir konu haline gelir.

Data Privacy: Data collected through sensors may reveal personal information, such as individuals'
energy consumption habits. Protecting such data [75] is crucial for ensuring personal privacy.
Anonymizing user data ensures that personal information cannot be directly linked to individuals.
Anonymized data can be used for analysis and reporting purposes while maintaining individual privacy.
Data Sharing: Data collected in microgrids may be shared with energy providers, third-party service
providers, or governments. However, during this sharing process, sensitive information should not be
disclosed without the owner's consent. Access control mechanisms should be implemented to ensure
that loT-based sensor data in microgrids can only be accessed by authorized individuals and systems
[76]. Access should be restricted according to the level authorized by users.

Data Storage and Retention Period: Policies should be established regarding how long the collected
sensor data will be stored. Storing data for unnecessarily long periods can lead to privacy violations.
Once the data retention period has expired or when the data is no longer needed, it must be securely
destroyed.

3.8 Security and privacy technologies

Various technologies and approaches are used to ensure security and privacy in loT-based sensor
integration in microgrids:

Blockchain Technology: Blockchain technology can be used in microgrids to enhance data security
[77]. This technology ensures that data is securely stored and processed, and it provides guarantees
regarding the source and accuracy of the data.

Artificial Intelligence (Al)-Assisted Security: Al and machine learning algorithms can detect
anomalous data patterns in sensor networks [78]. This plays a significant role in early detection and
prevention of attacks.

Data Encryption and Privacy Protocols: New techniques such as homomorphic encryption [79] and
differential privacy [80] can be used to increase the privacy of data. These techniques increase the level
of confidentiality while enabling data to be analyzed.

4. Ensuring Sensor Accuracy
4.1 Accuracy ensuring techniques

Periodic calibration of sensors [81] is crucial for the accuracy and reliability of energy measurements.
Calibration involves the process of comparing the measurements of a device with a known and accepted
reference standard. Failure to calibrate leads to misdirection of energy resources due to inaccurate data,
incorrect calculation of energy costs, system instability, equipment failures and reduced energy
efficiency. Sensor redundancy [82] is a way to ensure accuracy by using multiple sensors at the same
measurement point. If one sensor produces inaccurate values, these deviations can be detected by
comparing the data from other sensors. This minimizes the impact of failures of a single sensor.
Sensor fusion [83] is a method of combining data from different sensors with the help of algorithms and
providing a more reliable measurement based on this data. This technique is used to increase the
sensitivity of different parameters in complex systems, especially in microgrids. Also, since
environmental conditions (temperature, humidity, pressure, etc.) can affect the accuracy of sensors,
sensors that monitor environmental conditions are used in addition to the main sensors. 3.4 to ensure
that clean and accurate data is obtained by using the data processing methods specified in clause 3.4.
This reduces the effects of sensor failures or transient problems.
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Sensors used in microgrids may have a certain margin of error during their lifetime. In order to detect
these faults [84] and take corrective measures in advance, algorithms are used to analyze the failure
tendencies of sensors, predict and correct possible faults. With regular maintenance and monitoring of
sensors, faults due to wear or aging can be detected early. Sensors that wear out or degrade in
performance are removed from the system or repaired.

4.2 Challenges in sensor calibration

Accurately calibrating sensors is critical to the effectiveness and reliability of these systems, but
calibration processes are not without their challenges.

Various and Dynamic Operating Conditions: The dynamic situation caused by operating conditions,
variable environmental factors (light, temperature, wind speed and weather, etc.) and production
methods complicate the calibration process of sensors. The high impact of these conditions on the
correct operation of the sensors can lead to the need for more frequent calibration.

Different Sensor Types and Applications: Sensors used in microgrids measure very different
parameters. Therefore, each type of sensor requires different calibration procedures depending on its
sensitivity and accuracy requirements. Integrating the calibration of each sensor is difficult and requires
a complex structure.

Local and Remote Distributed Sensors: With wide-area deployment, sensors in local or remote areas
can be isolated from each other. It is sometimes difficult to physically access each of these sensors for
calibration. When calibration operations have to be performed at remote sites [85], logistical and time
problems arise.

Sensor Aging and Wear: The environmental conditions, long-term use and wear and tear effects to
which sensors are constantly exposed create deviations in their accuracy and require more frequent
calibration.

Long Calibration Intervals and Process Complexity: Long and complex calibration processes can
lead to system downtime or performance degradation. Therefore, it is essential to find calibration
solutions that do not cause interruptions during the process.

Limitations of Automatic Calibration Methods: Although automatic calibration technologies are
advanced, these systems may have limitations in ensuring complete accuracy. While automatic
calibration systems may be used for sensors in remote areas, it can be challenging for these technologies
to adapt to every sensor type. Additionally, the installation and maintenance of such systems can be
costly.

Adapting to Innovative Sensor Technologies: The rapid development of sensor technologies leads to
the emergence of new sensor types. However, developing calibration methods suitable for these new
technologies may take time and can be difficult to integrate into microgrid systems.

5. Success Stories of Sensor Use in Microgrids

Hawaii Kauai Island Microgrid: Kauai is an island in Hawaii that has developed a microgrid based
on renewable energy sources [86]. This microgrid integrates solar energy and energy storage systems to
meet the island’s energy needs. The sensors used in the microgrid play a critical role in monitoring the
energy production from solar panels and managing the energy storage systems. Thanks to the sensors,
the balance between energy production and demand has been continuously optimized. As a result, Kauai
Island has reduced its energy costs and significantly decreased its use of fossil fuels.

Brooklyn Microgrid: The Brooklyn Microgrid is a microgrid established in New York with the aim of
increasing energy independence [87]. This system enables energy trading among homes equipped with
solar panels. Sensors monitor the energy production and consumption of each home to manage this
trade. This project stands out as an example of using sensors to turn energy consumers into producers
and support energy exchanges within local communities. The sensor data has ensured the system
remains sustainable and economical by balancing energy supply and demand.

Sendai Microgrid, Japan: After the major earthquake and tsunami in Japan in 2011, a microgrid [88]
was established in Sendai City. This microgrid was designed to meet the energy needs of critical
infrastructure in emergency situations. Sensors ensure continuous monitoring of the system and enable
rapid responses during emergencies. For example, energy consumption sensors and grid status sensors
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have made it possible for the microgrid to operate independently from the main grid. The Sendai
Microgrid quickly recovered after the disaster, providing energy to the community and demonstrating
the importance of sensors in crisis situations.

Stone Edge Farm Microgrid, California: Stone Edge Farm is a vineyard that applies innovative
energy solutions in wine production. The microgrid [89] established here includes solar energy,
hydrogen fuel cells, and energy storage systems. Sensors optimize the farm's energy management by
monitoring energy production, storage status, and consumption levels. The sensor data has been used to
meet the farm's energy needs and sell excess energy to the grid. This microgrid has reduced energy costs
and increased environmental sustainability.

Loxton Village Microgrid, South Australia: Loxton Village in South Australia, a remote settlement,
faced energy supply challenges. The microgrid [90] established here consists of solar energy, wind
energy, and energy storage systems. Sensors played a critical role in monitoring local energy production
and managing storage systems. This microgrid has increased the village's energy security, reduced
energy costs, and decreased reliance on the grid. The data provided by the sensors has enabled the
dynamic management of the microgrid and enhanced Loxton Village’s energy independence.

6. Future Directions and Innovations

Sensor technologies used in microgrids are rapidly evolving to improve the efficiency of energy systems,
optimize energy production and ensure system security. These technologies contribute more to energy
management systems (EMS) as sensors become more sensitive, intelligent and communication capable.

6.1 Smart Sensors

Smart sensors are equipped with embedded processors and software to collect, analyze, and process
environmental data to generate meaningful information [91], [92]. These sensors collect various
environmental data such as temperature, humidity, light, and pressure, and process this data in real-time.
Based on the data they collect, they establish automatic control mechanisms within the system. For
instance, they can automatically turn on power sources based on energy demand. Smart sensors can
transmit the data they collect to energy management systems or cloud platforms via wireless networks
[93], enabling integration with a central control system. Smart sensors optimize the balance of supply
and demand by monitoring energy flow. For example, they can monitor light levels to improve the
efficiency of solar panels. They ensure system safety by detecting excessive temperature, pressure, or
power losses. In such cases, they can automatically activate protection circuits. To enhance the
efficiency of energy sources, they analyze which resources are used more effectively and can
automatically switch between energy sources when needed. By analyzing the data they collect, they
identify energy consumption trends [94] and report this data to assist system administrators in decision-
making. Smart sensors continuously monitor the system's status and provide the possibility of quick
intervention. By automating energy management processes, they reduce human error and increase
system efficiency [95]. With the data they collect and process, they enable system administrators to
make better decisions [96]. Thanks to remote access, they offer remote monitoring and control
capabilities [97].

6.2 Wireless Sensor Networks (WSN)

Wireless sensor networks are emerging as a critical technology to support functions such as energy
management and environmental monitoring in microgrids. These are systems in which various sensors
are wirelessly connected within a given area to collect and transmit data [98], [99]. These sensors are
designed to monitor various variables and send the collected data to a centralized control unit or data
processing unit [100]. Wireless communication allows sensors to interact with each other and with the
central system without the need for physical connections. Wireless sensors are used in microgrids to
monitor energy consumption and production [101]. Data from renewable energy sources such as solar
panels and wind turbines are collected [102] and analyzed to improve the efficiency of these sources.
Energy management systems (EMS) use this data to balance energy demand and production and support
the efficient use of energy resources [103].
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Environmental factors such as air quality, temperature, humidity, and noise levels can be monitored
through wireless sensors. These data are crucial for enhancing the sustainability of the microgrid and
reducing environmental impacts [104]. Wireless sensor networks can be used to improve energy
efficiency in lighting, HVAC (heating, ventilation, and air conditioning), and other automatic control
systems. Sensors make automatic adjustments based on environmental conditions to minimize energy
consumption. For security purposes, wireless sensors can be integrated with motion detectors and
camera systems [105]. These sensors create a rapid response mechanism in the event of a security
incident, enhancing the security of the microgrid. Thanks to their wireless nature, there is no need for
cabling, which reduces installation costs and shortens installation time [106]. This provides significant
advantages, especially in hard-to-reach areas or temporary installations. The ease of changing the
placement of sensors increases the scalability of the system, making it easier to adapt to future expansion
or modification requests [107]. By collecting real-time data, wireless sensors contribute to fast decision-
making processes, which is a significant advantage in energy management and environmental
monitoring [108]. Most wireless sensors are designed to consume low power, extending their battery
life and reducing maintenance needs. This ensures that sensors can operate continuously for long
periods. However, wireless communication may be more vulnerable to cyberattacks and data breaches
[109]. Therefore, implementing security protocols and continuous monitoring is essential. When large
amounts of sensor data are collected, managing and analyzing this data can become complex [110]. This
can affect the performance and efficiency of data processing units. The range limitations of sensors
[111] can impact the coverage area of the network. This can be a problem, especially when sensors need
to be distributed over large areas.

6.3 1oT Based Sensors

The Internet of Things (loT) is a technology that enables sensors to work together and integrate with
other devices over the internet, playing a significant role in microgrids [112]. loT-based sensors offer
great benefits for the continuous monitoring and management of microgrid systems. 10T sensors
transmit data to cloud-based platforms, where this data is processed in real-time. Sensors integrated with
loT provide detailed information about energy consumption and production. These 10T sensors allow
for better analysis of the system and enable detailed processing of data for energy efficiency.

6.4 Fiber Optic Sensors

Optical sensors used in microgrids are devices that evaluate environmental conditions by detecting light
levels, wavelengths, or the light spectrum [113], [114]. They typically include components such as
photodiodes, phototransistors, and photoresistors, providing information about the presence, intensity,
or quality of light. Optical sensors collect essential data for energy consumption and production by
detecting light levels in the environment. The collected light data is then analyzed and used to optimize
the system’s energy management strategies. For example, they can automatically adjust the orientation
of solar panels based on the amount of sunlight, making real-time adjustments according to the light
conditions in the environment. These sensors also allow system administrators to monitor the system
remotely [115].

6.5 Digital Twin Technology Integrated Sensors

Digital twin technology [116] enables the creation of virtual models of physical entities, making real-
time data flow possible. Sensors used in microgrids, when integrated with digital twins, allow for the
early detection of potential issues in the system and the simulation of the energy production process.
Digital twins create a virtual replica of the system using sensor data, enabling real-time monitoring,
maintenance, and optimization. This technology helps by predicting failures in advance, ensuring more
efficient operation of the system's sensors, reducing maintenance costs, and improving production
processes.

6.6 Autonomous Sensor Systems

Autonomous sensor systems are sensors that can calibrate themselves, optimize energy consumption,
and respond to abnormalities in the system without the need for external intervention [117]. Equipped
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with advanced software and artificial intelligence, they have self-learning and calibration capabilities.
They continuously optimize system performance. These sensors detect faults in the system without
human intervention and make the necessary corrections, thereby ensuring more efficient and secure
energy management.

6.7 Energy Harvesting Sensors

Energy harvesting sensors operate by collecting energy from environmental sources [118]. These
sensors can power themselves using energy obtained from sources such as sunlight, heat, or vibrations,
creating an energy-independent system. These sensors are especially useful in areas where powering the
system is challenging, such as remote locations, and they provide long-term, sustainable operation by
utilizing environmental energy sources. Energy-independent sensors reduce costs, decrease
maintenance, and offer significant advantages in energy management for remote areas.

7. The Future of Sensors in Microgrids

Sensor technologies in microgrids are among the key components that will enable more efficient,
flexible, secure and sustainable operation of systems in the future. Smart sensors will provide
autonomous management and proactive intervention in microgrids by integrating with artificial
intelligence, 10T, wireless networks and advanced security protocols. Sensors of the future will be able
to detect system anomalies, self-calibrate, react autonomously, minimize human intervention and reduce
maintenance costs. By analyzing sensor data with artificial intelligence and machine learning, failures
will be predicted, energy production will be optimized, and carbon emissions will be reduced. Thanks
to loT-based systems, real-time data collection and analysis will be possible, and the energy production-
consumption balance will be monitored instantly.Wireless sensor networks (WSN) will make it possible
to spread over larger areas at low cost, while energy harvesting technologies will enable sensors to
generate their own energy and become more sustainable. 5G and similar communication technologies
will enable fast and reliable operation of sensors with low latency and high data rates, enabling instant
response to emergencies. The increasing number of connected devices makes cyber security critical. In
this context, strong security protocols and solutions such as blockchain will protect data integrity. In
addition, within the scope of combating climate change, sensors will contribute to the environmental
sustainability of microgrids by monitoring environmental parameters such as temperature, humidity and
air quality more precisely.

8. Conclusion

This study has shown that sensor technologies significantly improve the reliability, efficiency and
resilience of microgrids. Sensor technologies in loT-based microgrids not only contribute to the
optimization of existing systems, but also play a key role in building sustainable, smart and resilient
energy infrastructures. Thanks to their functions such as real-time data collection, monitoring energy
consumption and generation patterns, and early detection of system failures, sensors increase energy
efficiency, reduce costs and strengthen system security.

Analyzing sensor data with artificial intelligence and machine learning algorithms provides insights that
turn into decision support systems in energy management, enabling microgrids to operate more flexibly
and efficiently. The effective use of sensors in load management, demand response strategies and
optimization of renewable energy sources (solar, wind, etc.) makes significant contributions to ensuring
energy supply-demand balance and reducing environmental impacts. Case studies such as the Sendai
and Kauai microgrids have shown that sensor-driven architectures reduce energy costs and increase
disaster resilience.

However, there are some limitations to the widespread adoption of these technologies. Technical
challenges such as energy consumption of sensors, reliability of communication infrastructures, data
security, system integration and hardware resilience are among the key issues that still need to be
addressed. In addition, real-time and secure processing of large data sets requires high processing power
and advanced algorithms.
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Future research should specifically focus on the following areas:

e  Development of energy harvesting and low power consumption sensor systems

Artificial intelligence supported sensor architectures that can make autonomous decisions
Advanced automation systems in demand response applications

Effective management of sensor data with cloud and edge computing integration
Development of smart interfaces that analyze and guide user behavior

As a result, sensor technologies not only improve technical system performance, but also contribute to
the spread of sustainability awareness by increasing the awareness of energy users. Smart sensor systems
integrated into microgrids are positioned as one of the basic building blocks of the environmentally
friendly, digital and flexible energy systems of the future.

Limitations

This study is limited by the lack of primary simulation or experimental validation. While the literature
review is extensive, experimental tests or prototype implementations could further validate the findings.
Performance metrics of the sensors (e.g. accuracy, latency, energy consumption) were synthesized from
secondary sources; actual values may vary under different operating conditions. In addition, the
cybersecurity analyses are theoretical and practical threat modeling is proposed for future work.
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