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RESEARCH ARTICLE

Hybrid continuous multi-step method for second order problems in
ordinary differential equations

Oluwasayo Esther Taiwo1* , Nicholas S. Yakusak2 , and Muideen O. Ogunniran 3

1Ajayi Crowther University, Department of Mathematical Sciences, Oyo, Nigeria
2Federal College of Education, Departments of Mathematics, Okene, Kogi State
3Osun State University Osogbo, Department of Mathematical Sciences, Nigeria

ABSTRACT
This study presents the development and analysis of a class of hybrid continuous methods designed for solving second-order
initial value problems in ordinary differential equations. The formulation of the method is based on the application of a class
of orthogonal and Chebyshev polynomials, which serve as a basis for the numerical approximation. The constructed scheme is
subjected to a rigorous stability and convergence analysis, demonstrating its reliability and suitability for the class of problems under
consideration. To evaluate the method’s effectiveness, numerical experiments were conducted on selected benchmark problems
from the literature. The results highlight the efficiency and accuracy of the proposed approach, showing improved numerical
performance compared to existing methods. The hybrid continuous formulation ensures better approximation properties while
maintaining computational efficiency. The stability properties confirm that the method remains robust across a range of problem
scenarios, making it a viable tool for solving second-order differential equations. The study contributes to the ongoing advancement
of numerical techniques for differential equations, particularly by leveraging hybrid continuous methods with polynomial-based
approximations. The promising results from numerical experiments further establish the potential of this approach for broader
applications in computational mathematics and applied sciences.

Mathematics Subject Classification (2020): 65L05

Keywords: Block Method, Hybrid method, Initial Value Problems, One-fourth Step Order, Interpolation and Collocation

1. INTRODUCTION

Ordinary differential equations (ODEs) play a fundamental role in modeling dynamic systems across various scientific and engi-
neering disciplines. In particular, second-order ODEs arise in many real-world applications such as mechanical systems, electrical
circuits, and celestial mechanics, where acceleration, forces, or other second derivatives are central to the system’s behavior.
Traditional numerical methods, such as Runge-Kutta and finite difference techniques, are often used to solve these problems.
However, they can encounter limitations in efficiency and accuracy when applied to stiff or highly oscillatory systems. To address
these related challenges, hybrid numerical methods have been developed, combining the strengths of different schemes to improve
convergence and stability. One such approach is the hybrid continuous multi-step method, which leverages the advantages of both
continuous and discrete numerical techniques. By incorporating multiple evaluation points within each step, this method offers
enhanced accuracy for second-order ODEs while maintaining computational efficiency. Several numerical methods have been
proposed by various authors to address the challenges of solving second-order ODEs efficiently and accurately. These methods
often focus on improving convergence, stability, and computational cost through hybrid and multistep techniques. For instance,
Odejide et al. (2012) developed a continuous five-step block method using a multistep collocation approach, which produced a
class of eight discrete schemes. Their method was designed to provide a balance between computational efficiency and accuracy,
particularly for stiff ODEs. By employing multiple collocation points, they were able to increase the accuracy without significantly
increasing the computational load. Their work demonstrated the potential of block methods for solving complex ODE systems
in a stable and efficient manner. Ibiyola et al. (2011) focused on the formation of hybrid block methods with higher step sizes,
utilizing the continuous multistep collocation technique. His approach aimed at improving both the accuracy and stability of
numerical solutions for ODEs. By extending the step size while maintaining stability, their method allowed for more efficient
solutions to initial value problems (IVPs) in ODEs, especially when dealing with large systems or when high precision was
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required. Adeniyi et al. (2015) work led to the development of higher step hybrid block methods specifically tailored for solving
IVPs in ODEs. Their method sought to refine the accuracy of existing block methods by integrating additional evaluation points
and employing higher-order techniques, thereby enhancing both accuracy and computational efficiency. More recently, Taiwo et
al. (2023) proposed a one-fifth hybrid block approach designed for second-order ODEs. Their method demonstrated significant
improvements in accuracy and computational performance, particularly for systems characterized by high oscillatory behavior or
stiffness. The use of hybrid block methods in this context highlighted the ongoing refinement and adaptation of multistep methods
for complex differential equations. These works collectively emphasize the importance of hybrid and continuous multistep methods
in solving ODEs, particularly when dealing with higher-order systems or stiff problems. Building on these foundational studies,
our work introduces a new class of hybrid methods using the combination of two orthogonal polynomials, as the basis functions.
By incorporating these polynomials into a higher step-size framework, we aim to further improve both the stability and accuracy
of numerical solutions for second-order ODEs. The use of Chebyshev polynomials, known for their optimal properties in approx-
imation theory, enhances the precision of our method while maintaining computational efficiency. Anake (2011) thesis offered
foundational framework for the use of continuous implicit hybrid methods in numerical analysis, offering a robust alternative for
solving a broad class of second-order ODEs with significant implications in various scientific and engineering applications.
Recently, Emmanuel et al. (2024) introduce multi-derivative hybrid block methods for singular initial value problems, demon-
strating their applicability to complex systems. A related study by the same authors Emmanuel et al. (2024) explores the use of
feed-forward neural networks to improve the computational efficiency of hybrid block derivative methods for second-order ODE
systems. These works underscore the growing integration of machine learning techniques in numerical analysis. Ogunniran et al.
(2023) generalize a class of uniformly optimized 𝑘-step hybrid block methods for solving two-point boundary value problems,
extending the versatility of these approaches. Further expanding on rational approximations, Ogunniran et al. (2024) present an
enhanced rational multi-derivative integrator for singular problems, with applications to advection equations. Taiwo et al. (2022)
contribute to the development of interpolation techniques by proposing an enhanced moving least square method for solving
Volterra integro-differential equations, emphasizing polynomial interpolation. Similarly, Adenipekun et al. (2024) introduce a
hybrid shifted polynomial scheme for approximating solutions to nonlinear partial differential equations, Ogunniran et al. (2025)
present an enhanced method for solving bvps. Together, these studies reflect the continuous evolution of numerical techniques,
bridging traditional methods with modern computational strategies to tackle increasingly complex mathematical models.
In this paper, we present a hybrid continuous multi-step method specifically designed for solving second-order ODEs. Our method
is derived using a class of orthogonal polynomials and Chebyshev polynomials, as basis functions within a multistep collocation
framework. This approach allows for enhanced accuracy and stability, particularly when dealing with oscillatory or stiff problems
that commonly arise in various scientific and engineering applications. We rigorously derive the method, analyzing its conver-
gence and stability properties through theoretical examination and numerical experimentation. Furthermore, we perform a detailed
comparative analysis against existing numerical methods, highlighting the improvements in accuracy and computational efficiency
achieved by our approach. The results indicate that the hybrid continuous multi-step method provides a more reliable and efficient
solution framework, especially for challenging differential systems characterized by rapid changes or stiffness.

2. PRELIMINARIES

2.1. Specification of the Methods

Our work use Chebyshev polynomial as an approximate basis of the solution and we develop some block methods for the numerical
solution of the IVP in ODE of the form:

𝑦′′ (𝑥) = 𝑓 (𝑥, 𝑦, 𝑦′) 𝑦′ (𝑥0) = 𝑧0, 𝑦(𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏] . (1)

Then, we shall construct continuous one-step method with two off-step. These will be used to generate the main method and other
methods required to set up the desired block method.
We approximate the analytical solution of the problem in (1) by a trial solution of the form

𝑛∑︁
𝑗=0

𝛼𝑖𝑦𝑛+ 𝑗 = ℎ

𝑛∑︁
𝑗=0

𝛽 𝑗 𝑓𝑛+ 𝑗 + ℎ𝛽𝑣 𝑓𝑛+𝛼 (2)

where 𝛼 𝑗 and 𝛽 𝑗 are continuous coefficients.
In order to obtain coefficients of (1), we proceed by generating the approximation of the exact solution 𝑦(𝑥):

𝑦(𝑥) =
𝑗∑︁
𝑖

𝑎𝑖𝑇𝑖 (𝑥) +
𝑝+𝑞−1∑︁
𝑗+1

𝑎 𝑗+1𝛼 𝑗+1 (𝑥) ≡ 𝑦(𝑥) =
𝑝+𝑞−1∑︁
𝑗=0

𝑎𝑖𝜑𝑛 (𝑥) (3)

2
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where 𝑇𝑖 (𝑥) is the Chebyshev polynomial, 𝑎𝑖 are unknown coefficients, 𝛼𝑛 (𝑥) is the orthogonal polynomial, 𝑝 + 𝑞− 1 is the degree
of the polynomial , where the number of interpolation point 𝑝 and the number of distinct collocation point 𝑞 are respectively
chosen to satisfy 1 ≤ 𝑝 ≤ 𝑘 and 𝑞 > 0. The integer 𝑘 ≥ 1 denotes the step number of the method.

2.1.1. One-step Method with Two Off-step Point

To obtain this, two off-step points are introduced. These off-step point are wisely chosen to guarantee zero stability condition. For
the method, the off-step points 𝑣 = 1

3 and 𝑣 = 2
3 using (3) with 𝑝 = 2, 𝑞 = 4, we have a polynomial of degree 𝑝 + 𝑞 − 1 as follows

𝑦(𝑥) =
5∑︁
𝑗=0

𝑎 𝑗𝛼𝑛 (𝑥) (4)

where 𝑡 = 𝑥−𝑥𝑛
ℎ

. With the orthogonal polynomial earlier obtained, equation (4) now becomes

𝑦 = 𝑎0 + (2 𝑡 − 1) 𝑎1 +
(
8 𝑡2 − 8 𝑡 + 1

)
𝑎2 +

(
280 𝑡3 − 660 𝑡2 + 510 𝑡 − 129

)
𝑎3+(

2016 𝑡4 − 6272 𝑡3 + 7224 𝑡2 − 3648 𝑡 + 681
)
𝑎4+(

1478 𝑡5 − 571202 𝑡4 + 87360 𝑡3 + 66080 𝑡2 + 24710 𝑡 + 3653
)
𝑎5 (5)

the second derivative of (5) gives

𝑓 = 16 𝑎2 + (1680 𝑡 − 1320) 𝑎3 +
(
24192 𝑡2 − 37632 𝑡 + 14448

)
𝑎4

+
(
295680 𝑡3 − 685440 𝑡2 − 52416 𝑡 + 132160

)
𝑎5 (6)

Interpolating (5) at 𝑥𝑛+ 1
3
, 𝑥𝑛+ 2

3
collocating (6) at 𝑥𝑛, 𝑥𝑛+ 1

3
, 𝑥𝑛+ 2

3
𝑥𝑛+1 yield.

©­­­­­­­«

1 − 1
3 − 7

9 − 593
27

1627
27

13555
81

1 − 1
3 − 7

9 + 17
27 − 13

27 − 17
81

0 0 16 −1320 14448 −132160
0 0 16 −760 45992 − 203840

9
0 0 16 200 112 2240

9
0 0 16 360 1008 −2240

ª®®®®®®®¬

©­­­­­­­­­«

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6

ª®®®®®®®®®¬
=

©­­­­­­­­­«

𝑦𝑛+ 1
3

𝑦𝑛+ 2
3

ℎ2 𝑓𝑛
ℎ2 𝑓𝑛+ 1

3
ℎ2 𝑓𝑛+ 2

3
ℎ2 𝑓𝑛+1

ª®®®®®®®®®¬
(7)

Solving (7) by Gaussian elimination method, with the aid of Maple yields

𝑎0 =
1
2
𝑦𝑛+ 1

3
+ 1

2
𝑦𝑛+ 2

3
− 61

15120
ℎ2 𝑓𝑛 −

2993
120960

ℎ2 𝑓𝑛+ 1
3
+ 2993

120960
ℎ2 𝑓𝑛+ 2

3
+ 341

17280
ℎ2 𝑓𝑛+1

𝑎1 = −3
2
𝑦𝑛+ 1

3
+ 3

2
𝑦𝑛+ 2

3
− 3203

483840
ℎ2 𝑓𝑛 −

2521
53760

ℎ2 𝑓𝑛+ 1
3
− 103

7680
ℎ2 𝑓𝑛+ 2

3
+ 12997

483840
ℎ2 𝑓𝑛+1

𝑎2 = − 9
3584

ℎ2 𝑓𝑛 −
45

3584
ℎ2 𝑓𝑛+ 1

3
+ 207

3584
ℎ2 𝑓𝑛+ 2

3
+ 53

3584
ℎ2 𝑓𝑛+1

𝑎3 = − 1
6720

ℎ2 𝑓𝑛 +
1

1344
ℎ2 𝑓𝑛+ 1

3
− 1

1344
ℎ2 𝑓𝑛+ 2

3
+ 3

2240
ℎ2 𝑓𝑛+1

𝑎4 = − 1
16896

ℎ2 𝑓𝑛 +
29

118272
ℎ2 𝑓𝑛+ 1

3
− 65

118272
ℎ2 𝑓𝑛+ 2

3
+ 29

118272
ℎ2 𝑓𝑛+1

𝑎5 = − 3
197120

ℎ2 𝑓𝑛 +
9

197120
ℎ2 𝑓𝑛+ 1

3
− 9

197120
ℎ2 𝑓𝑛+ 2

3
+ 3

197120
ℎ2 𝑓𝑛+1



(8)

Substituting (8) into (5) yield

𝑦(𝑥) = 𝛼0 (𝑥)𝑦𝑛 + 𝛼 1
2
(𝑥)𝑦𝑛 +

1
2
+ ℎ

( 2∑︁
𝑗=1

𝛽𝑖 (𝑥) 𝑓𝑛+ 𝑗 + 𝛽𝑛+ 𝑗 𝑓𝑛+ 1
2

)
(9)

where 𝛼0 (𝑥) and 𝛽𝑖 (𝑥) are continuous coefficient. Equation (9) yield the parameter 𝛼𝑖 and 𝛽𝑖 as the following continuous function
of 𝑡

3
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𝛼 1
3
(𝑡) = −3𝑡 + 2

𝛼 2
3
(𝑡) = 3𝑡 − 1

𝛽0 (𝑡) = ℎ2 ( 1
108

− 127
1080

𝑡 − 1
2
𝑡2 − 11

12
𝑡3 + 3

4
𝑡4 − 9

40
𝑡5)

𝛽 1
3
(𝑡) = ℎ2 ( 5

54
− 23

60
𝑡 − 3

2
𝑡3 − 15

8
𝑡4 − 27

40
𝑡5)

𝛽 2
3
(𝑡) = ℎ2 ( 1

108
− 1

120
𝑡 − 3

4
𝑡3 + 3

2
𝑡4 − 27

40
𝑡5)

𝛽1 (𝑡) = ℎ2 (− 1
135

𝑡 − 1
6
𝑡3 + 3

8
𝑡4 − 9

40
𝑡5)



(10)

where 𝑡 = 𝑥−𝑥𝑛
ℎ

.
We evaluate (9) at 𝑥𝑛, 𝑥𝑛+1 in order to derive the block method

𝑦𝑛 = 2𝑦𝑛+ 1
3
− 𝑦𝑛+ 2

3
+ ℎ2 (− 1

180
𝑓𝑛 −

5
54

𝑓𝑛+ 1
3
− 1

108
𝑓𝑛+ 2

3
)

𝑦𝑛+1 = −𝑦𝑛+ 1
3
+ 2𝑦𝑛+ 2

3
+ ℎ2 (−421

540
𝑓𝑛 −

19
108

𝑓𝑛+ 1
3
+ 2

27
𝑓𝑛+ 2

3
+ 1

108
𝑓𝑛+1)

 . (11)

Differentiating (9) gives

𝛼′
1
3
(𝑡) = −3

ℎ

𝛼′
2
3
(𝑡) = 3

ℎ

𝛽′0 (𝑡) = ℎ(− 127
1080

− 𝑡 − 11
4
𝑡3 + 4𝑡3 − 9

8
𝑡4)

𝛽′1
3
(𝑡) = ℎ(−23

60
− 9

2
𝑡2 − 15

2
𝑡3 − 27

8
𝑡4)

𝛽′2
3
(𝑡) = ℎ(− 1

120
− 9

4
𝑡2 + 6𝑡3 − 27

8
𝑡4)

𝛽′1 (𝑡) = ℎ(− 1
135

− 1
2
𝑡2 − 3

2
𝑡3 − 9

8
𝑡4)



(12)

The first derivative of (9) together with (10) when evaluated at 𝑥 = 𝑥𝑛, 𝑥𝑛+ 1
3
, 𝑥𝑛+ 2

3
and 𝑥𝑛+1 respectively give:

𝑦′𝑛 = −3𝑦𝑛+ 1
3
+ 3𝑦𝑛+ 2

3
+ ℎ2 (− 127

1080
𝑓𝑛 −

23
60

𝑓𝑛+ 1
3
− 1

120
𝑓𝑛+ 2

3
− 1

135
𝑓𝑛+1)

𝑦′
𝑛+ 1

3
= −3𝑦𝑛+ 1

3
+ 3𝑦𝑛+ 2

3
+ ℎ2 (− 1

135
𝑓𝑛 −

43
360

𝑓𝑛+ 1
3
− 7

90
𝑓𝑛+ 2

3
+ 7

108
𝑓𝑛+1)

𝑦′
𝑛+ 2

3
= −3𝑦𝑛+ 1

3
+ 3𝑦𝑛+ 2

3
+ ℎ2 (− 7

1080
𝑓𝑛 −

11
180

𝑓𝑛+ 1
3
− 37

360
𝑓𝑛+ 2

3
− 1

135
𝑓𝑛+1)

𝑦′𝑛+1 = −3𝑦𝑛+ 1
3
+ 3𝑦𝑛+ 2

3
+ ℎ2 ( 1

135
𝑓𝑛 −

1
120

𝑓𝑛+ 1
3
+ 11

30
𝑓𝑛+ 2

3
+ 127

1080
𝑓𝑛+1)


(13)
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We simultaneously solve the main method and its additional method to obtained the method below

𝑦𝑛+ 1
3
= 𝑦𝑛 +

1
3
𝑦′𝑛 + ℎ2 ( 94

3240
𝑓𝑛 +

19
540

𝑓𝑛+ 1
3
− 13

1080
𝑓𝑛+ 1

3
− 1

405
𝑓𝑛+1)

𝑦𝑛+ 2
3
= 𝑦𝑛 +

1
3
𝑦′𝑛 + ℎ2 ( 28

408
𝑓𝑛 +

22
135

𝑓𝑛+ 1
3
− 2

135
𝑓𝑛+ 1

3
+ 2

405
𝑓𝑛+1)

𝑦𝑛+1 = 𝑦𝑛 +
2
3
𝑦′𝑛 + ℎ2 ( 13

120
𝑓𝑛 +

3
10

𝑓𝑛+ 1
3
+ 3

40
𝑓𝑛+ 2

3
+ 1

60
𝑓𝑛+1)

𝑦′
𝑛+ 1

3
= 𝑦′𝑛 + ℎ( 1

8
𝑓𝑛 +

19
72

𝑓𝑛+ 1
3
− 5

72
𝑓𝑛+ 2

3
− 1

72
𝑓𝑛+1)

𝑦′
𝑛+ 2

3
= 𝑦′𝑛 + ℎ( 1

9
𝑓𝑛 +

4
9
𝑓𝑛+ 1

3
− 1

9
𝑓𝑛+ 2

3
)

𝑦′𝑛+1 = 𝑦′𝑛 + ℎ( 1
8
𝑓𝑛 +

3
8
𝑓𝑛+ 1

3
− 3

8
𝑓𝑛+ 2

3
− 1

8
𝑓𝑛+1)



(14)

which is in Block form.

3. ANALYZING THE MAIN METHOD

3.1. Order of the Methods

With the Linear Multistep Methods , we associate the operator L defined by:

𝐿 [𝑦(𝑥) : ℎ] =
𝑘∑︁
𝑗=0

[𝛼 𝑗 𝑦(𝑥𝑛 + 𝑗 ℎ) − ℎ𝛽
(𝑖)
𝑗
𝑦′ (𝑥𝑛 + 𝑗 ℎ)] (15)

where 𝑦(𝑥) is an arbitrary test function that is continuously differentiable in the interval [a,b]. Expanding 𝑦(𝑥𝑛+ 𝑗 ℎ) and 𝑦′ (𝑥𝑛+ 𝑗 ℎ)
in Taylor series about 𝑥𝑛 and collecting like terms in h and y gives:

𝐿 [𝑦(𝑥) : ℎ] = 𝐶0𝑦(𝑥) + 𝑐
(1)
1 ℎ𝑦′ (𝑥) + 𝐶

(1)
2 𝑦(𝑥) + ... + 𝐶𝑝ℎ

𝑝𝑦𝑝 (𝑥) (16)

Definition 1Lambert (1991)
The differential operator and the associated Linear Multistep Method (14) are said to be of order p if:

𝐶0 = 𝐶1 = 𝐶2 = ...𝐶𝑝 = 𝐶𝑝+1 = 0, 𝐶𝑝+1 ≠ 0 (17)

Definition 2 Lambert (1991)
The term 𝐶𝑝+2 is called error constant and it implies that the local truncation error is given by

𝐸𝑛+𝑘 = 𝐶𝑝+2ℎ
𝑝+2𝑦𝑝+2 (𝑥𝑛) + 0(ℎ𝑝+3) (18)

3.2. Consistency and Zero-stability

Definition 3 Lambert (1991) The linear Multistep Method (14) is said to be Consistent if it has order order 𝑃 ≥ 1.
Definition 4 Lambert (1991) The linear Multistep Method (14) is said to be zero-stable if no root of the first characteristic
polynomial has modulus greater than one and if every root with modulus one is simple.
Definition 5 Lambert (1991) The hybrid block method is said to be zero-stable if the roots z of the characteristic polynomial
𝑝(𝑧), defined by:

𝑝(𝑅) = 𝑑𝑒𝑡 [𝑅𝐴 − 𝐴′]

satisfies |𝑅 | ≤ 1 and every root with |𝑧0 | = 1 has multiplicity not exceeding two in the limit as 𝑛 → 0

3.3. Convergence

The convergence of the continuous hybrid one step method is considered in the light of the basic properties discussed earlier in
conjunction with the fundamental theorem of Dahlquist (Henrici,1962) for linear multistep method. We state Dahlquist theorem
without proof.
Theorem 1 Lambert (1991)
The necessary and sufficient condition for a multistep method to be convergent is for it to be consistent and zero stable.
Table 2 Features of One-step Method with two off-step points
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k Evaluating Point order Error Constant

1 𝑦(𝑥 = 𝑥𝑛+ 1
2
) 4 − 7

349920
𝑦(𝑥 = 𝑥𝑛+ 1

2
) 4 − 1

21870
𝑦(𝑥 = 𝑥𝑛+1) 4 − 1

12960
𝑦′ (𝑥 = 𝑥𝑛+ 1

2
) 4 − 19

174960
𝑦′ (𝑥 = 𝑥𝑛+ 1

2
) 4 − 1

21870
𝑦′ (𝑥 = 𝑥𝑛+1) 4 − 1

6480

3.4. Stability of Block Method

The equation (14) when put together formed the block we have the first characteristic polynomial as

𝑃(𝑅) = 𝑑𝑒𝑡

©­­­­­­­«
𝑅



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


−



0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



ª®®®®®®®¬

= 𝑑𝑒𝑡

©­­­­­­­«



𝑅 0 0 0 0 0
0 𝑅 0 0 0 0
0 0 𝑅 0 0 0
0 0 0 𝑅 0 0
0 0 0 0 𝑅 0
0 0 0 0 0 𝑅


−



0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



ª®®®®®®®¬

= 𝑑𝑒𝑡



𝑅 0 −1 0 0 0
0 𝑅 −1 0 0 0
0 0 𝑅 − 1 0 0 0
0 0 0 𝑅 0 0
0 0 0 0 𝑅 0
0 0 0 0 0 𝑅


.

Solving for R in
𝑅3 (𝑅 − 1) = 0
gives 𝑅 = 0 or 𝑅 = 1.
Therefore, the block method (14) is stable since |𝑅0 | = 1 is simple.

4. NUMERICAL EXAMPLES

Example 1
A constant-coefficient homogenous problem
𝑦′′1 (𝑥) + 𝑦′1 (𝑥) = 0.001𝑐𝑜𝑠(𝑥) 𝑦1 (0) = 1 𝑦′1 (0) = 0 ℎ = 0.001 0 ≤ 𝑥 ≤ 1
Analytical solution: 𝑦1 (𝑥) = 𝑐𝑜𝑠(𝑥) + 0.0005𝑥𝑠𝑖𝑛(𝑥)
Example 2
A constant-coefficient non-homogenous problem
𝑦′′ + 1001𝑦′ + 1000𝑦 = 0 𝑦(0) = 1 𝑦′ (0) = −1 ℎ = 0.1
Analytical solution: 𝑦(𝑥) = 1 − 𝑒𝑥𝑝(𝑥)
Example 3
A constant-coefficient non-homogenous problem
𝑦′′ (𝑥) + 𝑦(𝑥) = 0.001𝑠𝑖𝑛(𝑥) 𝑦(0) = 0 𝑦′ (0) = 0.9995 ℎ = 0.001
Analytical solution: 𝑦(𝑥) = 𝑠𝑖𝑛(𝑥) − 0.0005𝑥𝑐𝑜𝑠(𝑥)
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Table of Results

Table 1: Numerical Results for Example 1

x Exact Present Method

0.001 0.999999500500041584 0.999999500500041583
0.002 0.999998002000665334 0.999998002000665334
0.003 0.999995504503368249 0.999995504503368250
0.004 0.999992008010645328 0.999992008010645329
0.005 0.999987512525989562 0.999987512525989563
0.006 0.999982018053891935 0.999982018053891937
0.007 0.999975524599841420 0.999975524599841422
0.008 0.999968032170324971 0.999968032170324972
0.009 0.999959540772827514 0.999959540772827516
0.01 0.999950050415831949 0.999950050415831951
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Table 2 Error of the methods for Example 1

X Present Method Olabode, (2016) at 𝑦1

0.001 1.10E-18 1.64E-18
0.002 0.00E-00 2.87E-18
0.003 1.10E-18 1.26E-18
0.004 1.10E-18 5.73E-18
0.005 1.10E-18 4.10E-18
0.006 2.10E-18 8.60E-18
0.007 2.10E-18 6.97E-17
0.008 1.10E-18 1.14E-17
0.009 2.10E-18 9.83E-18
0.010 2.10E-18 1.43E-17

Remark: It is clearly noticeable the effective of the proposed methods from this table viz-a-viz the results of olabode(2016)

Table 3: Numerical results for Example 2

x Exact Present Method

0.001 0.904837414697 0.904837418055
0.002 0.818730746678 0.818730753091
0.003 0.740818211507 0.740818220707
0.004 0.670320034376 0.670320046056
0.005 0.606530645855 0.606530659741
0.006 0.548811620317 0.548811636119
0.007 0.496585286363 0.496585303821
0.008 0.449328945292 0.449328964144
0.009 0.406569639758 0.406569659770
0.01 0.367879420254 0.367879441199

8



Taiwo et. al, Hybrid continuous multi-step method for second order problems in ordinary differential equations

Table 4: Error of the methods for Example 2

X Present Method Anake (2011)

0.1 1.9 × 10−11 1.09 × 10−08

0.2 1.3 × 10−11 2.08 × 10−08

0.3 2.5 × 10−11 2.86 × 10−08

0.4 2.0 × 10−11 3.48 × 10−08

0.5 2.8 × 10−11 3.96 × 10−08

0.6 2.5 × 10−11 4.31 × 10−08

0.7 3.0 × 10−11 4.56 × 10−08

0.8 2.7 × 10−11 4.72 × 10−08

0.9 2.9 × 10−11 4.82 × 10−08

1.0 2.8 × 10−11 4.85 × 10−08

Remark: We note the desirability of the proposed schemes from the results in this table when compared with those of Anake(2011)

Table 5: Numerical results for Example 3

x Exact Present Method

0.001 0.000999499833583340260 0.000999499833583341646
0.002 0.00199899866866692989 0.00199899866866693267
0.003 0.00299849550675201577 0.00299849550675201994
0.004 0.00399798934934183978 0.00399798934934184533
0.005 0.00499747919794263628 0.00499747919794264321
0.006 0.00599636405766462315 0.00599696405406463794
0.007 0.00699574292493968432 0.00699644291922304135
0.008 0.00799511480347234520 0.00799591479493905024
0.009 0.00899447869489078220 0.00899537868274084386
0.01 0.00999383360083115085 0.00999483358416458135
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Table 6: Error of the methods for Example 3

X Present Method Olabode, (2016) at 𝑦2

0.001 0.00E00 7.20E-21
0.002 0.00E00 2.40E-21
0.003 0.00E00 4.33E-20
0.004 0.00E00 6.30E-20
0.005 0.00E00 1.09E-19
0.006 0.00E00 1.15E-19
0.007 0.00E00 1.85E-19
0.008 0.00E00 1.81E-19
0.009 0.00E00 2.79E-19
0.01 0.00E00 2.61E-19

Remark: The performance of the proposed method is better than that of Olabode(2016)

5. DISCUSSION OF RESULTS AND CONCLUSION

The results obtained from the numerical experiments demonstrate the effectiveness of the proposed hybrid continuous multi-step
method in solving second-order ODEs. The method was tested on various benchmark problems to evaluate its performance against
other existing methods. One key observation from the numerical results is the enhanced accuracy of our method, particularly
in handling oscillatory problems. By utilizing orthogonal polynomials, especially Chebyshev polynomials, the method is able
to better approximate solutions within each step, leading to higher precision even when larger step sizes are employed. This
accuracy is maintained across a range of problem types, demonstrating the versatility of the method. The stability properties of
the method were also verified through comparison with standard multistep and hybrid methods. Our method showed improved
stability, particularly in stiff systems, where traditional methods often struggle with instability or require excessively small step
sizes to maintain accuracy. The hybrid approach, combined with the continuous framework, allows for better control of error
propagation, even over longer integration intervals. Moreover, the computational efficiency of the method was highlighted in
the experiments. While maintaining high accuracy, the method was able to achieve significant reductions in computation time
compared to other high-order methods. This efficiency is primarily due to the use of block evaluation techniques and the optimal
properties of Chebyshev polynomials in minimizing interpolation error.
In comparison to existing methods, including those by Odejide et al. (2012), Ibiyola et al. (2011) and Taiwo et al. (2023), our
method demonstrates clear advantages in terms of both precision and computational speed. For instance, when solving stiff systems,
our method consistently outperformed others in terms of the number of function evaluations required to achieve a desired level of
accuracy, while still maintaining robust stability.
In conclusion, we have developed and analyzed a hybrid continuous multi-step method tailored for solving second-order ordinary
differential equations. By employing orthogonal polynomials as basis functions, our method achieves superior accuracy and
stability when compared to existing techniques. The numerical results demonstrate that this method is particularly well-suited
for handling oscillatory and stiff problems, which often pose challenges for traditional methods. The theoretical analysis of the
method’s stability and convergence, along with its performance in real-world applications, underscores its potential as a reliable
and efficient tool for solving complex ODEs. Furthermore, the reduction in computational cost, without sacrificing accuracy,
makes this method a strong candidate for large-scale problems where efficiency is critical. In future work, we plan to extend
this approach to higher-order differential equations and explore its applicability to more complex, multi-dimensional systems.
Additionally, further research could investigate adaptive step-size strategies to further enhance the computational efficiency of the
method in real-time applications.
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ABSTRACT
In this article, we investigate the Dirichlet problem for the generalized Beltrami equation. Firstly, we introduce the solutions of
the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc. Secondly, we state the properties of the
integral operators for regular domains. Then, by using Banach fixed point theorem, we obtain the existence of the unique solution
of the Dirichlet problem for the generalized Beltrami equation in the unit disc.
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1. INTRODUCTION AND PRELIMINARIES

Many researchers studied Dirichlet problem in different domains Begehr, H. (2005a,b); Vaitsiakhovich, T. (2008a); Vaitekhovich,
T.S. (2008b); Vaitekhovich, T. (2007); Gökgöz, P.A. (2024a,b); Begehr, H. and Shupeyeva, B. (2021); Wang, Y. and Du, J. (2015);
Aksoy, Ü. and Çelebi, A.O. (2012); Begehr, H.G.W. (1994); Vekua, I.N. (1962); Aksoy, Ü. and Çelebi, A.O. (2010); Begehr, H.
and Vaitekhovich, T., (2012); Begehr, H. and Gaertner, E. (2007). In this paper, we study the Dirichlet problem for the generalized
Beltrami equation in the unit disc. The rest of the paper is structured as follows: Section 2 is reserved for an overview of the
Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc. In Section 3, we examine the properties of
the integral operators. In the last section, we obtain the existence of the unique solution of the Dirichlet problem for the generalized
Beltrami equation in the unit disc using Banach fixed point theorem.

Now we provide the necessary background and fundamental concepts required for the development of the main results in this
paper.

One of the main tools in solving complex boundary value problems is the complex analogue of Gauss’s theorems Begehr, H.
(2005a).

Theorem 1.1. Gauss Theorems (complex form)
Let 𝑤 ∈ 𝐶1 (𝐷;C) ∩ 𝐶 (�̄�;C) in a regular domain 𝐷 of the complex plane C then∫

𝐷

𝑤 �̄� (𝑧)𝑑𝑥𝑑𝑦 =
1
2𝑖

∫
𝜕𝐷

𝑤(𝑧)𝑑𝑧

and ∫
𝐷

𝑤𝑧 (𝑧)𝑑𝑥𝑑𝑦 = − 1
2𝑖

∫
𝜕𝐷

𝑤(𝑧)𝑑𝑧

From the Gauss theorems in complex form, the following representation formulas can be deduced Begehr, H. (2005a,b); Begehr,
H.G.W. (1994). The following formulas provide an explicit representation of the solution of boundary value problems.

Theorem 1.2. Cauchy-Pompeiu representations
Let 𝐷 ⊂ C be a regular domain and 𝑤 ∈ 𝐶1 (𝐷;C) ∩ 𝐶 (�̄�;C). Then using 𝜁 = 𝜉 + 𝑖𝜂 in for 𝑧 ∈ 𝐷

𝑤(𝑧) = 1
2𝜋𝑖

∫
𝜕𝐷

𝑤(𝜁) 𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
𝐷

𝑤𝜁 (𝜁)
𝑑𝜉𝑑𝜂

𝜁 − 𝑧
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and

𝑤(𝑧) = − 1
2𝜋𝑖

∫
𝜕𝐷

𝑤(𝜁) 𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
𝐷

𝑤𝜁 (𝜁)
𝑑𝜉𝑑𝜂

𝜁 − 𝑧

hold.

For the proof of Theorem 1.2, see for instance Begehr, H. (2005a). We can observe that if 𝑤𝜁 is given in 𝐷 and the values of
𝑤 along the boundary is known, we can identify a unique function 𝑤(𝑧). This representation is an example of the solution of the
Dirichlet problem. This highlights how integral representation formulas facilitate the solution of boundary value problems.

In connection with the Hölder continuity of Cauchy integrals we mention a result from Begehr, H.G.W. (1994).

Theorem 1.3. Let 𝑤 = 𝑢 + 𝑖𝑣 be analytic in the unit disc D, where 𝑣 is continuous in the closure D and Hölder continuous on the
boundary 𝜕D satisfying

|𝑣(𝜁) − 𝑣(𝜏) | ≤ 𝐻 |𝜁 − 𝜏 |𝛼, 𝜁 , 𝜏 ∈ 𝜕D.

Then 𝑤 is Hölder continuous in D with the same exponent and the constant 𝑘𝐻 where 𝑘 only depends on 𝛼, i.e.

|𝑤(𝑧) − 𝑤 (𝑧0) | ≤ 𝑘𝐻 |𝑧 − 𝑧0 |𝛼 , 𝑧, 𝑧0 ∈ D.

2. DIRICHLET PROBLEM IN THE UNIT DISC

Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc has been studied by Begehr, H. (2005b). Now
we state this problem as follows.

Theorem 2.1. Begehr, H. (2005b) The Dirichlet problem for the inhomogeneous polyanalytic equation in the unit disc

𝜕𝑛�̄� 𝑤 = 𝑓 in D, 𝜕𝜈
�̄� 𝑤 = 𝛾𝜈 on 𝜕D, 0 ≤ 𝜈 ≤ 𝑛 − 1,

is uniquely solvable for 𝑓 ∈ 𝐿1 (D;C), 𝛾𝜈 ∈ 𝐶 (𝜕D;C), 0 ≤ 𝜈 ≤ 𝑛 − 1, if and only if for 0 ≤ 𝜈 ≤ 𝑛 − 1
𝑛−1∑︁
𝜆=𝜈

𝑧

2𝜋𝑖

∫
|𝜁 |=1

(−1)𝜆−𝜈 𝛾𝜆 (𝜁)
1 − 𝑧𝜁

(𝜁 − 𝑧)𝜆−𝜈
(𝜆 − 𝜈)! 𝑑𝜁

+ (−1)𝑛−𝜈𝑧
𝜋

∫
|𝜁 |<1

𝑓 (𝜁)
1 − 𝑧𝜁

(𝜁 − 𝑧)𝑛−1−𝜈

(𝑛 − 1 − 𝜈)! 𝑑𝜉𝑑𝜂 = 0.

The solution then is

𝑤(𝑧) =
𝑛−1∑︁
𝜈=0

(−1)𝜈
2𝜋𝑖

∫
|𝜁 |=1

𝛾𝜈 (𝜁)
𝜈!

(𝜁 − 𝑧)𝜈
𝜁 − 𝑧

𝑑𝜁

+ (−1)𝑛
𝜋

∫
|𝜁 |<1

𝑓 (𝜁)
(𝑛 − 1)!

(𝜁 − 𝑧)𝑛−1

𝜁 − 𝑧
𝑑𝜉𝑑𝜂.

Proof. For the proof of this theorem, we may use induction. In the case of 𝑛 = 1, we obtain the Dirichlet problem for the
Cauchy-Riemann equation in the unit disc as

𝜕𝑧𝑤 = 𝑓 in D, 𝑤 = 𝛾0 𝑜𝑛 𝜕D.

The solution is given by the classical Cauchy-Pompeiu formula:

𝑤(𝑧) = 1
2𝜋𝑖

∫
|𝜁 |=1

𝛾0 (𝜁)
𝜁 − 𝑧

𝑑𝜁 − 1
𝜋

∫
|𝜁 |<1

𝑓 (𝜁)
𝜁 − 𝑧

𝑑𝜉𝑑𝜂.

if the solvability condition holds.
Assume that the result holds for order 𝑛 − 1. In the case of 𝑛 can be structured by decomposing the problem into the following
system of equations:

𝜕𝑛−1
�̄� 𝑤 = 𝜔 in D, 𝜕𝜈

�̄� 𝑤 = 𝛾𝜈 on 𝜕D, 0 ≤ 𝜈 ≤ 𝑛 − 2,
𝜕�̄�𝜔 = 𝑓 in D, 𝜕�̄�𝜔 = 𝛾𝑛−1 on 𝜕D,

where

𝜔(𝑧) = 1
2𝜋𝑖

∫
|𝜁 |=1

𝛾𝑛−1 (𝜁)
𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
|𝜁 |<1

𝑓 (𝜁) 𝑑𝜉𝑑𝜂
𝜁 − 𝑧

13
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Each of these two problems is solved explicitly using known integral representations for lower-order cases. 𝜔 is substituted into
the expression for 𝑤, thereby completing the proof.

3. PROPERTIES OF THE INTEGRAL OPERATORS

In this section, we state the properties of the integral operators for regular domains. The properties of the integral operators have
been extensively investigated in Begehr, H. (2005a); Begehr, H. and Hile, G.N., (1997); Vekua, I.N. (1962).

Definition 3.1. Begehr, H. (2005a) For 𝑓 ∈ 𝐿1 (𝐷;C) the integral operator

𝑇 𝑓 (𝑧) = − 1
𝜋

∫
𝐷

𝑓 (𝜁) 𝑑𝜉𝑑𝜂
𝜁 − 𝑧

, 𝑧 ∈ C

is called Pompeiu operator.

Theorem 3.2. Begehr, H. (2005a) If 𝑓 ∈ 𝐿1 (𝐷;C) then for all 𝜑 ∈ 𝐶1
0 (𝐷;C)∫

𝐷

𝑇 𝑓 (𝑧)𝜑 �̄� (𝑧)𝑑𝑥𝑑𝑦 +
∫
𝐷

𝑓 (𝑧)𝜑(𝑧)𝑑𝑥𝑑𝑦 = 0.

Proof. We use the Cauchy-Pompeiu representation formula and the fact that the boundary values of 𝜑 vanish at the boundary. We
obtain

𝜑(𝑧) = 1
2𝜋𝑖

∫
𝜕D

𝜑(𝜁) 𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
𝐷

𝜑𝜁 (𝜁)
𝑑𝜉𝑑𝜂

𝜁 − 𝑧
=

(
𝑇𝜑𝜁

)
(𝑧).

We can interchange the order of integration∫
𝐷

𝑇 𝑓 (𝑧)𝜑 �̄� (𝑧)𝑑𝑥𝑑𝑦 = − 1
𝜋

∫
𝐷

𝑓 (𝜁)
∫
𝐷

𝜑 �̄� (𝑧)
𝑑𝑥𝑑𝑦

𝜁 − 𝑧
𝑑𝜉𝑑𝜂 = −

∫
𝐷

𝑓 (𝜁)𝜑(𝜁)𝑑𝜉𝑑𝜂.

This means that

𝜕�̄�𝑇 𝑓 = 𝑓

in distributional sense.

Theorem 3.3. Vekua, I.N. (1962) If 𝑓 ∈ 𝐿1 (𝐷) then 𝑇 𝑓 has generalized first order derivative with respect to 𝑧 equal to 𝑓 , i.e.,

𝜕

𝜕𝑧
𝑇 𝑓 = 𝑓 .

Proof. This theorem is a consequence of Theorem 3.2.

Also, we can compute the 𝑧 derivative of 𝑇 𝑓 (𝑧).

Remark 3.4. For 𝑧 ∈ C\�̄�, 𝑇 𝑓 is analytic and its derivative with respect to 𝑧 is

𝜕𝑧𝑇 𝑓 (𝑧) = Π 𝑓 (𝑧) = − 1
𝜋

∫
𝐷

𝑓 (𝜁) 𝑑𝜉𝑑𝜂

(𝜁 − 𝑧)2 .

Theorem 3.5. Vekua, I.N. (1962) For 𝑓 ∈ 𝐿 𝑝 (C) we have Π 𝑓 ∈ 𝐿 𝑝 (C) and

∥Π 𝑓 ∥𝐿𝑝 (C) ≤ Λ𝑝 ∥ 𝑓 ∥𝐿𝑝 (C) (𝑝 > 1)

with ∥Π∥𝐿2 (C) = 1.

Proof. For the proof of this theorem, see for instance Vekua, I.N. (1962), p. 66-72.

4. DIRICHLET PROBLEM FOR THE GENERALIZED BELTRAMI EQUATION IN THE UNIT DISC

Some of the boundary value problems for the Beltrami equation are studied by several researchers see for instance Begehr, H. and
Harutyunyan, G. (2009); Begehr, H. and Obolashvili, E. (1994); Harutyunyan, G. (2007); Tutschke, W. (1983); Begehr, H. and
Vaitekhovich, T. (2007); Yüksel, U. (2010).

In this section, we prove the existence and uniqueness of the solution to the Dirichlet problem for the generalized Beltrami
equation in the unit disc using Banach fixed point theorem. Let D be the unit disc, 𝜕D its boundary and 𝐶𝛼 (D) the space of Hölder
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continuous functions in D with the Hölder exponent 𝛼, where 0 < 𝛼 < 1. Based on Begehr, H. and Vaitekhovich, T. (2007), the
problem under consideration is as follows:

"Find the unique solution of the complex differential equation

𝑤 �̄� = 𝐹 (𝑧, 𝑤, 𝑤𝑧) := 𝑞1 (𝑧)𝑤𝑧 + 𝑞2 (𝑧)𝑤𝑧 + 𝑎(𝑧)𝑤 + 𝑏(𝑧)�̄� + 𝑐(𝑧) 𝑖𝑛 D (1)

satisfying the boundary condition

𝑤 = 𝛾 𝑜𝑛 𝜕D (2)

where

|𝑞1 (𝑧) | + |𝑞2 (𝑧) | ≤ 𝑞0 < 1 (3)

and 𝑞1, 𝑞2, 𝑎, 𝑏, 𝑐 ∈ 𝐶𝛼 (D), 𝛾 ∈ 𝐶𝛼 (𝜕D), 1 < 𝑝.”
We need some assumptions on the function 𝐹 (𝑧, 𝑤, 𝑤𝑧).

• The function 𝐹 (𝑧, 𝑤, 𝑤𝑧) is Hölder continuous with respect to 𝑧.
For 𝑧1, 𝑧2 ∈ D, we obtain

|𝐹 (𝑧1, 𝑤, 𝑤𝑧) − 𝐹 (𝑧2, 𝑤, 𝑤𝑧) | = | (𝑞1 (𝑧1) − 𝑞1 (𝑧2))𝑤𝑧 + (𝑞2 (𝑧1) − 𝑞2 (𝑧2))𝑤𝑧

+ (𝑎(𝑧1) − 𝑎(𝑧2))𝑤 + (𝑏(𝑧1) − 𝑏(𝑧2))𝑤 + 𝑐(𝑧1) − 𝑐(𝑧2) |
≤ |𝑤𝑧 | |𝑞1 (𝑧1) − 𝑞1 (𝑧2) | + |𝑤𝑧 | |𝑞2 (𝑧1) − 𝑞2 (𝑧2) |
+ |𝑤 | |𝑎(𝑧1) − 𝑎(𝑧2) | + |𝑤 | |𝑏(𝑧1) − 𝑏(𝑧2) | + |𝑐(𝑧1) − 𝑐(𝑧2) |.

So

|𝐹 (𝑧1, 𝑤, 𝑤𝑧) − 𝐹 (𝑧2, 𝑤, 𝑤𝑧) | ≤ 𝐶 (1 + |𝑤 | + |𝑤𝑧 |) |𝑧1 − 𝑧2 |𝛼 .

• The function 𝐹 (𝑧, 𝑤, 𝑤𝑧) satisfies the Lipschitz conditions with respect to 𝑧 and 𝑤𝑧 .
For 𝑧1, 𝑧2 ∈ D and 𝑤𝑧1, 𝑤𝑧2 ∈ C, we obtain

|𝐹 (𝑧1, 𝑤, 𝑤𝑧1) − 𝐹 (𝑧2, 𝑤, 𝑤𝑧2) | = |𝑞1 (𝑧1)𝑤𝑧1 − 𝑞1 (𝑧2)𝑤𝑧2 + 𝑞2 (𝑧1)𝑤𝑧1 − 𝑞2 (𝑧2)𝑤𝑧2

+ (𝑎(𝑧1) − 𝑎(𝑧2))𝑤 + (𝑏(𝑧1) − 𝑏(𝑧2))𝑤 + 𝑐(𝑧1) − 𝑐(𝑧2) |
≤ |𝑞1 (𝑧1) | |𝑤𝑧1 − 𝑤𝑧2 | + |𝑞1 (𝑧1) − 𝑞1 (𝑧2) | |𝑤𝑧2 |
+ |𝑞2 (𝑧1) | |𝑤𝑧1 − 𝑤𝑧2 | + |𝑞2 (𝑧1) − 𝑞2 (𝑧2) | |𝑤𝑧2 |
+ |𝑎(𝑧1) − 𝑎(𝑧2) | |𝑤 | + |𝑏(𝑧1) − 𝑏(𝑧2) | |𝑤 | + |𝑐(𝑧1) − 𝑐(𝑧2) |

We know that all coefficients of (1) are in 𝐶𝛼 (D). Also we have the condition (3). Using these, the result follows.

|𝐹 (𝑧1, 𝑤, 𝑤𝑧1) − 𝐹 (𝑧2, 𝑤, 𝑤𝑧2) | ≤ 𝑞0 |𝑤𝑧1 − 𝑤𝑧2 | + 𝐶 (1 + |𝑤 | + |𝑤𝑧2 |) |𝑧1 − 𝑧2 |𝛼 .

Our aim is to transform the Dirichlet problem for the generalized Beltrami equation (1) with (2) to a fixed point problem.
We prove the following theorem.

Theorem 4.1. A function 𝑤 ∈ 𝐶1,𝛼 (Ω̄) is a solution to the Dirichlet problem (1) with the boundary condition (2) if and only if 𝑤
can be written as the integral equation

𝑤(𝑧) = 𝜑(𝑧) + 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧), (4)

where 𝜑 ∈ 𝐶𝛼 (Ω̄) is holomorphic in the domain D satisfying the Dirichlet boundary condition

𝜑(𝑧) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] 𝑜𝑛 𝜕D. (5)

Proof. We assume that 𝑤 ∈ 𝐶1,𝛼 (Ω̄) is a solution to the Dirichlet problem (1) with the boundary condition (2). We define a
function 𝜑 by

𝜑(𝑧) = 𝑤(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧).

Differentiating 𝜑 with respect to 𝑧, we obtain

𝜑 �̄� = 𝑤 �̄� − [𝐹 (𝑧, 𝑤, 𝑤𝑧)] = 0.

That is, 𝜑 is a holomorphic function in D. The Dirichlet condition (2) becomes

𝜑(𝑧) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] 𝑜𝑛 𝜕D.
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for the holomorphic function 𝜑. We have 𝛾 ∈ 𝐶𝛼 (𝜕D). Further, 𝐹 (𝑧, 𝑤, 𝑤𝑧) ∈ 𝐶𝛼 (D̄) and therefore 𝑇Ω [𝐹 (𝑧, 𝑤, 𝑤𝑧)] ∈ 𝐶𝛼 (D̄).
Then, by Theorem 1.3, 𝜑(𝑧) ∈ 𝐶𝛼 (Ω̄) and therefore we have provided that 𝑤 can be written as the integral equation (4) and
Dirichlet boundary condition (5) is satisfied.

Conversely, suppose that 𝑤 can be written as the integral equation (4), where 𝜑 is a holomorphic function satisfying (5).
Differentiating (4) with respect to 𝑧, we obtain

𝑤 �̄� = 𝐹 (𝑧, 𝑤, 𝑤𝑧) .

This shows that 𝑤 ∈ 𝐶1,𝛼 (D̄) is a solution of the Dirichlet problem (1) with (2).

We use the representation

𝑤(𝑧) = 𝜑(𝑧) + 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧) (6)

where 𝜑(𝑧) is an analytic function in D. Differentiating (6) with respect to 𝑧 and using the properties of the Pompeiu operators,
we obtain

𝑤𝑧 (𝑧) = 𝜑′ + Π [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧). (7)

The boundary condition becomes

𝜑(𝑧) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] 𝑜𝑛 𝜕D. (8)

The equations (6) and (7) form the following system of integro-differential equations.

𝑤(𝑧) =𝜑(𝑧) + 𝑇 [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧)
𝑤𝑧 (𝑧) =𝜑′ (𝑧) + Π [𝐹 (𝑧, 𝑤, 𝑤𝑧)] (𝑧)

For the simplicity, we denote 𝑤𝑧 by 𝑤∗. Let 𝑤 and 𝑤∗ be any functions in 𝐶𝛼 (D̄).
We define an operator 𝑄 by

𝑄 : (𝑤, 𝑤∗) → (𝑊,𝑊∗)

where

𝑊 = 𝜑 (𝑤,𝑤∗ ) + 𝑇 [𝐹 (·, 𝑤, 𝑤∗)]
𝑊∗ = 𝜑′

(𝑤,𝑤∗ ) + Π [𝐹 (·, 𝑤, 𝑤∗)],
𝜑 (𝑤,𝑤∗ ) is holomorphic in D and satisfies the Dirichlet boundary condition

𝜑 (𝑤,𝑤∗ ) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤, 𝑤∗)] 𝑜𝑛 𝜕D.

The fixed point of the operator 𝑄 provides the solution of the (1) satisfying Dirichlet boundary condition (2). We will obtain the
conditions on the coefficients of 𝐹 under which the operator 𝑄 has a fixed point.
We introduce function space

𝑆 =
{
(𝑤, 𝑤∗) : 𝑤, 𝑤∗ ∈ 𝐶𝛼 (D̄)

}
equipped with the norm

∥(𝑤, 𝑤∗)∥∗,𝛼 = max (∥𝑤∥𝛼, ∥𝑤∗∥𝛼) ,

where ∥ · ∥𝛼 denotes the Hölder norm in 𝐶𝛼 (Ω̄). Since 𝐶𝛼 (Ω̄) is a Banach space, 𝑆 is a Banach space.
We pick (𝑤1, 𝑤

∗
1) and (𝑤2, 𝑤

∗
2) from 𝑆. Now let 𝑄

(
𝑤1, 𝑤

∗
1
)
=
(
𝑊1,𝑊

∗
1
)

and 𝑄
(
𝑤2, 𝑤

∗
2
)
=
(
𝑊2,𝑊

∗
2
)
. Then we have

𝑊1 = 𝜑(𝑤1 ,𝑤
∗
1) + 𝑇

[
𝐹
(
·, 𝑤1, 𝑤

∗
1
) ]

𝑊∗
1 = 𝜑′

(𝑤1 ,𝑤
∗
1)

+ Π
[
𝐹
(
·, 𝑤1, 𝑤

∗
1
) ]

and

𝑊2 = 𝜑(𝑤2 ,𝑤
∗
2) + 𝑇

[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]

𝑊∗
2 = 𝜑′

(𝑤2 ,𝑤
∗
2)

+ Π
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]
.

where

𝜑 (𝑤1 ,𝑤1∗ ) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤1, 𝑤1
∗)] 𝑜𝑛 𝜕D.
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and

𝜑 (𝑤2 ,𝑤2∗ ) = 𝛾(𝑧) − 𝑇 [𝐹 (𝑧, 𝑤2, 𝑤2
∗)] 𝑜𝑛 𝜕D

respectively.
We obtain

∥𝑊1 −𝑊2∥𝛼 ≤



𝜑(𝑤1 ,𝑤

∗
1) − 𝜑(𝑤2 ,𝑤

∗
2)




𝛼
+ ∥𝑇

[
𝐹
(
·, 𝑤1, 𝑤

∗
1
)
]

− 𝑇
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]

∥𝛼

𝑊∗
1 −𝑊∗

2



𝛼
≤



𝜑′

(𝑤1 ,𝑤
∗
1)

− 𝜑
′

(𝑤2 ,𝑤
∗
2)




𝛼
+ ∥Π

[
𝐹
(
·, 𝑤1, 𝑤

∗
1
)
]

− Π
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]

∥𝛼 .

For these computations, we set

𝐶1 := ∥𝑇 ∥𝛼
(
𝐶11



𝑤∗
1 − 𝑤∗

2



𝛼
+ 𝐶12 ∥𝑤1 − 𝑤2∥𝛼

)
𝐶2 := ∥Π∥𝛼

(
𝐶11



𝑤∗
1 − 𝑤∗

2



𝛼
+ 𝐶12 ∥𝑤1 − 𝑤2∥𝛼

)
where 𝐶11 := ∥𝑞1∥𝛼 + ∥𝑞2∥𝛼 and 𝐶12 = ∥𝑎∥𝛼 + ∥𝑏∥𝛼.

Now, we use the fact that the operators 𝑇 and Π are bounded in 𝐶𝛼 (Ω̄).

𝑇 [
𝐹
(
·, 𝑤1, 𝑤

∗
1
) ]

− 𝑇
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]



𝛼
≤ ∥𝑇 ∥𝛼∥𝐹

(
·, 𝑤1, 𝑤

∗
1
)
− 𝐹

(
·, 𝑤2, 𝑤

∗
2
)
∥𝛼 ≤ 𝐶1.

∥Π
[
𝐹
(
·, 𝑤1, 𝑤

∗
1
)
] − Π

[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]

∥𝛼 ≤ ∥Π ∥𝛼∥ 𝐹
(
·, 𝑤1, 𝑤

∗
1
)
− 𝐹

(
·, 𝑤2, 𝑤

∗
2
)
∥𝛼 ≤ 𝐶2

and using Theorem 1.3, we have 


𝜑(𝑤1 ,𝑤
∗
1) − 𝜑(𝑤2 ,𝑤

∗
2)




𝛼
≤ 𝐶1𝑘

where 𝑘 depends only on 𝛼. Similarly, 


𝜑′

(𝑤1 ,𝑤
∗
1)

− 𝜑
′

(𝑤2 ,𝑤
∗
2)




𝛼
≤ 𝐶2 �̂�

where �̂� depends only on 𝛼.
Now we consider the distance 𝑑

(
𝑄

(
𝑤1, 𝑤

∗
1
)
, 𝑄

(
𝑤2, 𝑤

∗
2
) )

.

𝑑
(
𝑄

(
𝑤1, 𝑤

∗
1
)
, 𝑄

(
𝑤2, 𝑤

∗
2
) )

=


(𝑊1 −𝑊2) ,

(
𝑊∗

1 −𝑊∗
2
)



= max
(
∥𝑊1 −𝑊2∥𝛼 ,



𝑊∗
1 −𝑊∗

2



𝛼

)
≤ max

(


𝜑(𝑤1 ,𝑤
∗
1) − 𝜑(𝑤2 ,𝑤

∗
2)




𝛼
+

𝑇 [

𝐹
(
·, 𝑤1, 𝑤

∗
1
) ]

− 𝑇
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]



𝛼
, ∥𝜑′

(𝑤1 ,𝑤
∗
1)
−

𝜑′
(𝑤2 ,𝑤

∗
2)

∥𝛼+∥ Π
[
𝐹
(
·, 𝜔1, 𝑤

∗
1
) ]

− Π
[
𝐹
(
·, 𝑤2, 𝑤

∗
2
) ]




𝛼

≤ max
(
𝐶1𝑘, 𝐶2 �̂�

)
≤ (𝐶1 + 𝐶2) 𝑑

( (
𝑤1, 𝑤

∗
1
)
,
(
𝑤2, 𝑤

∗
2
) )

max (𝑘 ∥𝑇 ∥𝛼

, �̂� ∥Π∥𝛼
)
.

The operator 𝑄 is contractive if

∥𝑞1∥𝛼 + ∥𝑞2∥𝛼 + ∥𝑎∥𝛼 + ∥𝑏∥𝛼 <
1

max
(
𝑘 ∥𝑇 ∥𝛼 + �̂� ∥Π∥𝛼

)
We obtain the existence of the unique solution (𝑤, 𝑤∗) by using Banach fixed point theorem.
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Remark 4.2. The methodology considered in this work suggests the potential for analogous studies regarding the solvability of
the generalized Beltrami equation under alternative boundary conditions.
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Conformal Kaehler Manifolds
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ABSTRACT
In this paper, we derive curvature identities for Lagrangian submersions from globally conformal Kaehler manifolds onto Rieman-
nian manifolds. Then, we give a relation between the horizontal lift of the curvature tensor of the base manifold and the curvature
tensor of a fiber. We examine the necessary and sufficient conditions for the total manifolds of Lagrangian submersions to be
Einstein. We also obtain Ricci, scalar, sectional, holomorphic bisectional and holomorphic sectional curvatures for these submer-
sions. Finally, we give some inequalities involving the scalar and Ricci curvatures, and we also provide Chen-Ricci inequality for
Lagrangian submersions from globally conformal Kaehler space forms.
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1. INTRODUCTION

Curvature invariants play the most important role in Riemannian geometry. They determine the intrinsic and extrinsic properties
of Riemannian manifolds. Chen (1993) established a relationship between the intrinsic and extrinsic invariants. He also obtained
an inequality between Ricci curvature and the squared mean curvature of a submanifold of a real space form (Chen (1999)). After
then, he obtained a generalization of this inequality which is known as Chen-Ricci inequality (Chen (2005)).
On the other hand, the notion of Riemannian submersion is a generalization of an isometry between two Riemannian manifolds
which was introduced by O’Neill (1966) and Gray (1967), independently. This notion was extended to almost complex and almost
contact manifolds (Watson (1976), Chinea (1985)). After that, Riemannian submersions are studied widely in various kinds of
structures for both almost complex and almost contact manifolds such as almost Hermitian (Şahin (2017)), almost contact (Taştan
(2017)), cosymplectic (Taştan and Gerdan Aydın (2019)) and Sasakian (Taştan and Gerdan (2016)). These structures have also
examined in different types of Riemannian submersions such as anti-invariant submersions (Şahin (2010)), Lagrangian submersions
(Taştan (2014)) etc. Riemannian submersions have also been studied in globally conformal Kaehler manifolds which are a special
class of Kaehler manifolds. The globally and locally conformal Kaehler manifolds were studied widely by Vaisman (1980). Then,
locally conformal Kaehler submersions were introduced by Marrero and Rocha (1994) and studied by many researchers (Çimen
et al. (2024), Pirinççi et al. (2023)).
In this paper, we study the curvature relations for Lagrangian submersions which are defined from globally conformal Kaehler
manifolds onto Riemannian manifolds. First, we obtain curvature identities for Lagrangian submersions whose total manifolds
are globally conformal Kaehler manifolds. Then, we give a relation between the horizontal lift of the curvature tensor of the base
manifold and the curvature tensor of a fiber. We obtain Ricci curvatures and scalar curvatures for these submersions. Then, we
give the necessary and sufficient conditions for the total manifolds of such submersions to be Einstein. We also obtain sectional,
holomorphic bisectional and holomorphic sectional curvatures. Finally, we derive some inequalities involving the scalar curvature
and Ricci curvature of Lagrangian submersions from globally conformal Kaehler space forms and give Chen-Ricci inequality for
such submersions as well.
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2. GLOBALLY CONFORMAL KAEHLER MANIFOLDS

A Hermitian manifold (𝑀2𝑛, 𝐽, 𝑔) with an almost complex structure 𝐽 and a Hermitian metric 𝑔 is called a locally conformal
Kaehler (l.c.K.) manifold, if there exists an open cover {O𝑖}𝑖∈𝐼 of 𝑀2𝑛 with a family {𝜎𝑖}𝑖∈𝐼 of smooth functions 𝜎𝑖 : O𝑖 → R
such that

𝑔𝑖 = 𝑒
−𝜎𝑖𝑔 |O𝑖

are Kaehler metrics for every 𝑖 ∈ 𝐼 (Dragomir and Ornea (1998)). If �̃� = 𝑒−𝜎𝑔 is Kaehlerian for a smooth function 𝜎 : 𝑀2𝑛 → R,
then (𝑀2𝑛, 𝐽, 𝑔) is called a globally conformal Kaehler (g.c.K.) manifold. Dragomir and Ornea (1998) gave the following theorem
for locally conformal Kaehler manifolds.

Theorem 2.1. Let Φ be a 2-form defined by Φ(𝑋,𝑌 ) = 𝑔(𝑋, 𝐽𝑌 ) on a Hermitian manifold (𝑀2𝑛, 𝐽, 𝑔), where 𝑋,𝑌 are vector
fields on 𝑀2𝑛. Then (𝑀2𝑛, 𝐽, 𝑔) is a locally conformal Kaehler manifold if and only if there exists a closed 1- form 𝜔 defined on
𝑀2𝑛 globally such that 𝑑Φ = 𝜔 ∧Φ.

If 𝜔 is exact, then (𝑀2𝑛, 𝐽, 𝑔) is a g.c.K. manifold. In the case 𝜔 ≡ 0, a g.c.K. manifold reduces a Kaehler manifold. The 1-form
𝜔 is called Lee form of (𝑀2𝑛, 𝐽, 𝑔) and a g.c.K. manifold (𝑀2𝑛, 𝐽, 𝑔) with Lee form 𝜔 is denoted by (𝑀2𝑛, 𝐽, 𝑔, 𝜔).

For the Riemannian connections ∇ of (𝑀2𝑛, 𝐽, 𝑔, 𝜔) and ∇̃ of Kaehler metric �̃�, we have

∇̃𝑋𝑌 = ∇𝑋𝑌 − 1
2

{
𝜔(𝑋)𝑌 + 𝜔(𝑌 )𝑋 − 𝑔(𝑋,𝑌 )𝐵

}
, (1)

where 𝑋,𝑌 are vector fields on 𝑀2𝑛 and 𝐵 is the 𝑔- dual vector field of 𝜔 which is called Lee vector field of (𝑀2𝑛, 𝐽, 𝑔, 𝜔). ∇̃ is a
torsion-free connection and also satisfies ∇̃𝐽 = 0. Hence, using (1), we have

(∇𝑋𝐽)𝑌 =
1
2

{
𝜔(𝐽𝑌 )𝑋 − 𝜔(𝑌 )𝐽𝑋 −Φ(𝑋,𝑌 )𝐵 + 𝑔(𝑋,𝑌 )𝐽𝐵

}
.

Now, from (1), Vaisman (1980) gave curvature identity between Riemannian curvature tensors of ∇ and ∇̃ as follows:

�̃�(𝑋,𝑌 )𝑍 = 𝑅(𝑋,𝑌 )𝑍

− 1
2

{
𝐿 (𝑋, 𝑍)𝑌 − 𝐿 (𝑌, 𝑍)𝑋 − 𝑔(𝑌, 𝑍)

[
∇𝑋𝐵 + 1

2
𝜔(𝑋)𝐵

]
+ 𝑔(𝑋, 𝑍)

[
∇𝑌𝐵 + 1

2
𝜔(𝑌 )𝐵

]}
(2)

− ||𝜔 | |2
4

{
𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌

}
,

where | |𝜔 | |2 = 𝑔(𝐵, 𝐵),

𝐿 (𝑋,𝑌 ) = (∇𝑋𝜔) (𝑌 ) +
1
2
𝜔(𝑋)𝜔(𝑌 ) = 𝑔(∇𝑋𝐵,𝑌 ) +

1
2
𝜔(𝑋)𝜔(𝑌 ),

and 𝑋,𝑌, 𝑍 are vector fields on 𝑀2𝑛.
We note that 𝐿 is a symmetric (0,2)-tensor on 𝑀2𝑛. From (2), he also obtained the well-known formula:

𝑒𝜎 �̃�(𝑋,𝑌, 𝑍,𝑊) = 𝑅(𝑋,𝑌, 𝑍,𝑊)

− 1
2

{
𝐿 (𝑋, 𝑍)𝑔(𝑌,𝑊) − 𝐿 (𝑌, 𝑍)𝑔(𝑋,𝑊)

− 𝐿 (𝑋,𝑊)𝑔(𝑌, 𝑍) + 𝐿 (𝑌,𝑊)𝑔(𝑋, 𝑍)
}

(3)

− ||𝜔 | |2
4

{
𝑔(𝑌, 𝑍)𝑔(𝑋,𝑊) − 𝑔(𝑋, 𝑍)𝑔(𝑌,𝑊)

}
,

where �̃� denotes the Riemannian curvature tensor of the Kaehler metric �̃�. Now, since �̃� is a Kaehler metric, the Riemannian
curvature tensor �̃� satisfies �̃�(𝐽𝑋, 𝐽𝑌, 𝐽𝑍, 𝐽𝑊) = �̃�(𝑋,𝑌, 𝑍,𝑊). If we use the last equation in (3), then we get the following result
as in the l.c.K submersion case in Pirinççi et al. (2023).
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Theorem 2.2. Let (𝑀, 𝐽, 𝑔, 𝜔) be a g.c.K. manifold. Then we have

𝑅(𝑋,𝑌, 𝑍,𝑊) = 𝑅(𝐽𝑋, 𝐽𝑌, 𝐽𝑍, 𝐽𝑊)

+ 1
2

{
𝛿(𝑋, 𝑍)𝑔(𝑌,𝑊) − 𝛿(𝑌, 𝑍)𝑔(𝑋,𝑊) (4)

− 𝛿(𝑋,𝑊)𝑔(𝑌, 𝑍) + 𝛿(𝑌,𝑊)𝑔(𝑋, 𝑍)
}
,

where

𝛿(𝑋,𝑌 ) = 𝐿 (𝑋,𝑌 ) − 𝐿 (𝐽𝑋, 𝐽𝑌 ),

and 𝑋,𝑌, 𝑍,𝑊 are vector fields on 𝑀2𝑛.

3. LAGRANGIAN SUBMERSIONS

In this section, we will give the notion of Riemannian submersion and its special type Lagrangian submersion. We deduce the
curvature relations for Lagrangian submersions.

Let (𝑀𝑛
1 , 𝑔1) and (𝑀𝑚

2 , 𝑔2) be Riemannian manifolds with dimensions 𝑛 and 𝑚, respectively. O’Neill (1966) called a mapping
𝜓 of (𝑀𝑛

1 , 𝑔1) onto (𝑀𝑚
2 , 𝑔2) that satisfies the following two conditions a Riemannian submersion:

(i) The rank of 𝜓 is maximal;
which means that the derivative map𝜓∗ is surjective. Hence for each 𝑦 ∈ 𝑀𝑚

2 ,𝜓−1 (𝑦) is an (𝑛−𝑚)-dimensional closed submanifold
of 𝑀𝑛

1 . A submanifold 𝜓−1 (𝑦) is called a fiber. The vector fields on 𝑀𝑛
1 which are tangent to a fiber is called vertical, and the

vector fields on 𝑀𝑛
1 orthogonal to a fiber is called horizontal. Vertical and horizontal distributions of the tangent space of 𝑀𝑛

1 are
denoted by 𝑘𝑒𝑟𝜓∗ and (𝑘𝑒𝑟𝜓∗)⊥ , respectively. A horizontal vector field 𝑋 on 𝑀𝑛

1 is called basic if 𝜓∗ (𝑋) = 𝑋∗ , for a vector field
𝑋∗ on 𝑀𝑚

2 .
(ii) 𝜓∗ is a linear isometry on (𝑘𝑒𝑟𝜓∗)⊥.

Let 𝐸𝑣 and 𝐸ℎ be the vertical and horizontal part of a vector field on 𝑀𝑛
1 , respectively. Then, the covariant derivatives of vertical

and horizontal vector fields are defined by O’Neill (1966) as follows:

T𝐸𝐹 = (∇𝐸𝑣𝐹𝑣)ℎ + (∇𝐸𝑣𝐹ℎ)𝑣 , (5)

A𝐸𝐹 = (∇𝐸ℎ𝐹𝑣)ℎ + (∇𝐸ℎ𝐹ℎ)𝑣 , (6)

where 𝐸 and 𝐹 are vector fields on 𝑀𝑛
1 and ∇ is the Riemannian connection of 𝑔1. The tensors T and A defined above are

called O’Neill’s tensors. T𝐸 and A𝐸 are skew-symmetric operators and each one reverses the vertical distribution to the horizontal
distribution, and vice versa.

Lemma 3.1. Let 𝜓 : (𝑀𝑛
1 , 𝑔1) → (𝑀𝑚

2 , 𝑔2) be a Riemannian submersion, and 𝑋,𝑌 be basic vector fields on 𝑀𝑛
1 . Then,

(i) 𝑔1 (𝑋,𝑌 ) = 𝑔2 (𝑋∗, 𝑌∗) ◦ 𝜓,
(ii) 𝜓∗ ( [𝑋,𝑌 ]ℎ) = [𝑋∗, 𝑌∗],
(iii) 𝜓∗ ((∇𝑋𝑌 )ℎ) = ∇∗

𝑋∗𝑌∗.

Using (5), (6) and Lemma 3.1 we obtain the following equations:

T𝑈𝑉 = T𝑉𝑈, (7)

A𝑋𝑌 = − A𝑌 𝑋 =
1
2
[𝑋,𝑌 ]𝑣 , (8)

∇𝑈𝑉 = T𝑈𝑉 + (∇𝑈𝑉)𝑣 , (9)

∇𝑈𝑋 = (∇𝑈𝑋)ℎ + T𝑈𝑋, (10)
∇𝑋𝑈 = A𝑋𝑈 + (∇𝑋𝑈)𝑣 , (11)

∇𝑋𝑌 = (∇𝑋𝑌 )ℎ + A𝑋𝑌, (12)

(∇𝑈𝑋)ℎ = A𝑋𝑈, for a basic vector field 𝑋, (13)

where 𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥. T is the second fundamental form of all the fibers. We say that the fibers are totally
geodesic when T = 0. If {𝑈1, ...,𝑈𝑛} is an ortonormal frame of 𝑘𝑒𝑟𝜓∗, then 𝐻 = 1

𝑛

∑𝑛
𝑖=1 T𝑈𝑖

𝑈𝑖 is called the mean curvature vector
field of the fibers. For more information about Riemannian submersions, we refer to O’Neill (1966) and Falcitelli et al. (2004).

Now, using Lemma 3.1 and the equations (7)∼(13) we have the following curvature relations for every 𝑈,𝑉,𝑊,𝑊 ′ ∈ 𝑘𝑒𝑟𝜓∗
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and 𝑋,𝑌, 𝑍, 𝑍 ′ ∈ (𝑘𝑒𝑟𝜓∗)⊥:

𝑅1 (𝑈,𝑉,𝑊,𝑊 ′) = �̂�(𝑈,𝑉,𝑊,𝑊 ′) + 𝑔1 (T𝑈𝑊 ′,T𝑉𝑊) − 𝑔1 (T𝑈𝑊,T𝑉𝑊 ′), (14)
𝑅1 (𝑈,𝑉,𝑊, 𝑋) = 𝑔1 ((∇𝑉T)𝑈𝑊, 𝑋) − 𝑔1 ((∇𝑈T)𝑉𝑊, 𝑋), (15)
𝑅1 (𝑋,𝑌, 𝑍, 𝑍 ′) = 𝑅∗ (𝑋,𝑌, 𝑍, 𝑍 ′) − 2𝑔1 (A𝑋𝑌,A𝑍𝑍

′)
− 𝑔1 (A𝑋𝑍,A𝑌 𝑍

′) + 𝑔1 (A𝑋𝑍
′,A𝑌 𝑍), (16)

𝑅1 (𝑋,𝑌, 𝑍,𝑈) =𝑔1 ((∇𝑍A)𝑋𝑌,𝑈) + 𝑔1 (A𝑋𝑌,T𝑈𝑍) + 𝑔1 (A𝑋𝑍,T𝑈𝑌 )
− 𝑔1 (A𝑌 𝑍,T𝑈𝑋), (17)

𝑅1 (𝑋,𝑌,𝑈,𝑉) = 𝑔1 ((∇𝑈A)𝑋𝑌,𝑉) − 𝑔1 ((∇𝑉A)𝑋𝑌,𝑈) + 𝑔1 (A𝑋𝑈,A𝑌𝑉)
− 𝑔1 (A𝑋𝑉,A𝑌𝑈) − 𝑔1 (T𝑈𝑋,T𝑉𝑌 ) + 𝑔1 (T𝑉𝑋,T𝑈𝑌 ), (18)

𝑅1 (𝑋,𝑈,𝑌,𝑉) = 𝑔1 ((∇𝑋T)𝑈𝑉,𝑌 ) + 𝑔1 ((∇𝑈A)𝑋𝑌,𝑉) − 𝑔1 (T𝑈𝑋,T𝑉𝑌 )
+ 𝑔1 (A𝑋𝑈,A𝑌𝑉), (19)

where 𝑅1 and 𝑅2 are Riemannian curvature tensors of 𝑀𝑛
1 and 𝑀𝑚

2 , respectively, 𝑅∗ is the horizontal lift of the curvature tensor
of 𝑅2, i.e., 𝑅∗ (𝑋,𝑌, 𝑍, 𝑍 ′) = 𝑔1 (𝑅∗ (𝑍, 𝑍 ′)𝑌, 𝑋) = 𝑅2 (𝜓∗𝑋, 𝜓∗𝑌, 𝜓∗𝑍, 𝜓∗𝑍 ′) ◦ 𝜓 and �̂� is the curvature tensor of 𝜓−1 (𝑦) (see
O’Neill (1966)).

We note that (∇𝐸A)𝐹 and (∇𝐸T)𝐹 are skew-symmetric and linear operators defined by

(∇𝐸A)𝐹𝐺 =∇𝐸 (A𝐹𝐺) − A (∇𝐸𝐹 )𝐺 − A𝐹 (∇𝐸𝐺),
(∇𝐸T)𝐹𝐺 =∇𝐸 (T𝐹𝐺) − T(∇𝐸𝐹 )𝐺 − T𝐹 (∇𝐸𝐺),

respectively, where 𝐸, 𝐹 and 𝐺 are vector fields on 𝑀𝑛
1 . Moreover, 𝑔1 ((∇𝐸A)𝑋𝑌,𝑈) is alternate in 𝑋 and 𝑌 , 𝑔1 ((∇𝐸T)𝑈𝑉, 𝑋) is

symmetric in 𝑈 and 𝑉 , where 𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥. Furthermore, (14) and (15) are the corresponding Gauss and
Codazzi equations, (16) and (17) are their dual equations.

Definition 3.2. Let𝜓 be a Riemannian submersion from a Hermitian manifold (𝑀2𝑛
1 , 𝐽, 𝑔1) onto a Riemannian manifold (𝑀𝑚

2 , 𝑔2).
𝜓 is called an anti-invariant Riemannian submersion, if its vertical distribution is anti-invariant with respect to 𝐽, i.e. 𝐽 (𝑘𝑒𝑟𝜓∗) ⊆
(𝑘𝑒𝑟𝜓∗)⊥. Especially, 𝜓 is called a Lagrangian submersion when 𝐽 (𝑘𝑒𝑟𝜓∗) = (𝑘𝑒𝑟𝜓∗)⊥. In this case 𝐽 reverses the vertical
(horizontal) distributions to the horizontal (vertical) distributions, and 𝑚 = 𝑛.

4. CURVATURE IDENTITIES FOR LAGRANGIAN SUBMERSIONS

In this section, we obtain curvature relations using the following result due to Pirinççi (2025). From now on, (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔)

represents a g.c.K. manifold and (𝑀𝑛
2 , 𝑔2) represents a Riemannian manifold.

Lemma 4.1. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion. Then we have

T𝑈𝐽𝑉 = 𝐽T𝑈𝑉 + 1
2
{𝜔(𝐽𝑉)𝑈 + 𝑔1 (𝑈,𝑉)𝐽𝐵ℎ},

T𝑈𝐽𝑋 = 𝐽T𝑈𝑋 − 1
2
{𝜔(𝑋)𝐽𝑈 − 𝑔1 (𝐽𝑈, 𝑋)𝐵ℎ},

A𝑋𝐽𝑈 = 𝐽A𝑋𝑈 − 1
2
{𝜔(𝑈)𝐽𝑋 + 𝑔1 (𝑋, 𝐽𝑈)𝐵𝑣},

A𝑋𝐽𝑌 = 𝐽A𝑋𝑌 + 1
2
{𝜔(𝐽𝑌 )𝑋 + 𝑔1 (𝑋,𝑌 )𝐽𝐵𝑣},

where𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓⊥
∗ ).

Pirinççi (2025) showed that for a Lagrangian submersion 𝜓 from a l.c.K. manifold onto a Riemannian manifold, if 𝐽𝑈 is a basic
vector field for any 𝑈 ∈ 𝑘𝑒𝑟𝜓∗, then the Lee vector field 𝐵 cannot be vertical. Therefore, we will examine the curvature relations
in the special case where the Lee vector field 𝐵 is horizontal. In this case he showed that the horizontal distribution is integrable
and totally geodesic, i.e., A ≡ 0. Then we get the following result from (13)∼(18):

Corollary 4.2. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. Then,
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we have the following curvature relations for every𝑈,𝑉,𝑊,𝑊 ′ ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌, 𝑍, 𝑍 ′ ∈ (𝑘𝑒𝑟𝜓∗)⊥:

𝑅1 (𝑈,𝑉,𝑊,𝑊 ′) = �̂�(𝑈,𝑉,𝑊,𝑊 ′) + 𝑔1 (T𝑈𝑊 ′,T𝑉𝑊) − 𝑔1 (T𝑈𝑊,T𝑉𝑊 ′), (20)
𝑅1 (𝑈,𝑉,𝑊, 𝑋) = 𝑔1 ((∇𝑉T)𝑈𝑊, 𝑋) − 𝑔1 ((∇𝑈T)𝑉𝑊, 𝑋), (21)
𝑅1 (𝑋,𝑌, 𝑍, 𝑍 ′) = 𝑅∗ (𝑋,𝑌, 𝑍, 𝑍 ′), (22)
𝑅1 (𝑋,𝑌, 𝑍,𝑈) = 0, (23)
𝑅1 (𝑋,𝑌,𝑈,𝑉) = 𝑔1 (T𝑉𝑋,T𝑈𝑌 ) − 𝑔1 (T𝑈𝑋,T𝑉𝑌 ), (24)
𝑅1 (𝑋,𝑈,𝑌,𝑉) = 𝑔1 ((∇𝑋T)𝑈𝑉,𝑌 ) − 𝑔1 (T𝑈𝑋,T𝑉𝑌 ). (25)

Now, if we use A ≡ 0, (20) and (22) in (4), then we get the following relation between the horizontal lift of the curvature tensor
of 𝑅2 and the curvature tensor of a fiber.

Theorem 4.3. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. Then,
we have the following curvature relation for every𝑈,𝑉,𝑊,𝑊 ′ ∈ 𝑘𝑒𝑟𝜓∗:

�̂�(𝑈,𝑉,𝑊,𝑊 ′) = 𝑅∗ (𝐽𝑈, 𝐽𝑉, 𝐽𝑊, 𝐽𝑊 ′) − 𝑔1 (T𝑈𝑊 ′,T𝑉𝑊) + 𝑔1 (T𝑈𝑊,T𝑉𝑊 ′)

+ 1
2

{
𝛿(𝑈,𝑊)𝑔1 (𝑉,𝑊 ′) − 𝛿(𝑉,𝑊)𝑔1 (𝑈,𝑊 ′) (26)

− 𝛿(𝑈,𝑊 ′)𝑔1 (𝑉,𝑊) + 𝛿(𝑉,𝑊 ′)𝑔1 (𝑈,𝑊)
}
.

In a similar way, if we use (21) and (23) in (4), then we have

𝑔1 ((∇𝑉T)𝑈𝑊, 𝑋) − 𝑔1 ((∇𝑈T)𝑉𝑊, 𝑋) =
1
2

{
𝛿(𝑉, 𝑋)𝑔1 (𝑈,𝑊) − 𝛿(𝑈, 𝑋)𝑔1 (𝑉,𝑊)

}
.

Using the skew-symmetry property of the operator (∇𝑉T)𝑈 , we get

(∇𝑈T)𝑉𝑋 − (∇𝑉T)𝑈𝑋 =
1
2

{
𝛿(𝑉, 𝑋)𝑈 − 𝛿(𝑈, 𝑋)𝑉

}
. (27)

We will examine the conditions for 𝑀2𝑛
1 to be an Einstein manifold. To obtain these conditions we will first find the Ricci and

scalar curvatures of 𝑀2𝑛
1 using the following notation:

T 𝑘
𝑖 𝑗 = 𝑔1 (T𝑈𝑖

𝑈 𝑗 , 𝐽𝑈𝑘), (28)

| |T | |2 =

𝑛∑︁
𝑖, 𝑗=1

𝑔1 (T𝑈𝑖
𝑈 𝑗 ,T𝑈𝑖

𝑈 𝑗 ) =
𝑛∑︁

𝑘=1

𝑛∑︁
𝑖, 𝑗=1

(T 𝑘
𝑖 𝑗 )2, (29)

𝛿(T ) =
𝑛∑︁

𝑖, 𝑗=1
𝑔1 ((∇𝐽𝑈𝑖

T)𝑈 𝑗
𝑈 𝑗 , 𝐽𝑈𝑖), (30)

where {𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗.

Lemma 4.4. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field B be horizontal. Then the
Ricci tensor 𝑅𝑖𝑐1 and the scalar curvature 𝜌1 of 𝑀2𝑛

1 satisfy the following relations:

𝑅𝑖𝑐1 (𝑈,𝑉) = ˆ𝑅𝑖𝑐(𝑈,𝑉) − 1
2
𝜔(𝐽𝑈)𝜔(𝐽𝑉) + 𝑔1 (𝑈,𝑉) | |𝜔 | |2

− 𝑛𝑔1 (𝐻,T𝑈𝑉) +
𝑛∑︁
𝑖=1

𝑔1 ((∇𝐽𝑈𝑖
T)𝑈𝑉, 𝐽𝑈𝑖), (31)

𝑅𝑖𝑐1 (𝑈, 𝑋) =
𝑛 − 1

2
(∇𝑈𝜔)𝑋, (32)

𝑅𝑖𝑐1 (𝑋,𝑌 ) = 𝑅𝑖𝑐∗ (𝑋,𝑌 ) +
𝑛∑︁
𝑖=1

{
𝑔1 ((∇𝑋T)𝑈𝑖

𝑈𝑖 , 𝑌 ) − 𝑔1 (T𝑈𝑖
𝑋,T𝑈𝑖

𝑌 )
}
, (33)

𝜌1 = �̂� + 𝜌∗ + (2𝑛 − 1) | |𝜔 | |2 − 𝑛2 | |𝐻 | |2 − ||T ||2 + 2𝛿(T ), (34)

where 𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗, 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥, {𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗, ˆ𝑅𝑖𝑐 is Ricci tensor of any fiber, 𝑅𝑖𝑐∗ is
the horizontal lift of Ricci tensor of 𝑀𝑛

2 , �̂� is scalar curvature of any fiber and 𝜌∗ is the lift of scalar curvature of 𝑀𝑛
2 .
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Proof. Let {𝑈1, ...,𝑈𝑛} be an ortonormal frame of 𝑘𝑒𝑟𝜓∗. From the definition of Ricci tensor, (20) and (25) we have

𝑅𝑖𝑐1 (𝑈,𝑉) =
𝑛∑︁
𝑖=1

𝑅1 (𝑈𝑖 ,𝑈,𝑈𝑖 , 𝑉) +
𝑛∑︁
𝑖=1

𝑅1 (𝐽𝑈𝑖 ,𝑈, 𝐽𝑈𝑖 , 𝑉)

=

𝑛∑︁
𝑖=1

{
�̂�(𝑈𝑖 ,𝑈,𝑈𝑖 , 𝑉) + 𝑔1 (T𝑈𝑖

𝑉,T𝑈𝑈𝑖) − 𝑔1 (T𝑈𝑖
𝑈𝑖 ,T𝑈𝑉)

}
+

𝑛∑︁
𝑖=1

{
𝑔1 ((∇𝐽𝑈𝑖

T)𝑈𝑉, 𝐽𝑈𝑖) − 𝑔1 (T𝑈𝐽𝑈𝑖 ,T𝑉 𝐽𝑈𝑖)
}

= ˆ𝑅𝑖𝑐(𝑈,𝑉) − 𝑛𝑔1 (𝐻,T𝑈𝑉)

+
𝑛∑︁
𝑖=1

{
𝑔1 (T𝑈𝑈𝑖 ,T𝑉𝑈𝑖) + 𝑔1 ((∇𝐽𝑈𝑖

T)𝑈𝑉, 𝐽𝑈𝑖) − 𝑔1 (T𝑈𝐽𝑈𝑖 ,T𝑉 𝐽𝑈𝑖)
}
. (35)

Now, from Lemma 4.1 we have

𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝐽𝑈𝑖 ,T𝑉 𝐽𝑈𝑖) =
𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝑈𝑖 ,T𝑉𝑈𝑖) +
1
2

𝑛∑︁
𝑖=1

{
𝜔(𝐽𝑈𝑖)𝑔1 (𝐽T𝑈𝑈𝑖 , 𝑉)

+ 𝑔1 (𝑉,𝑈𝑖)𝑔1 (T𝑈𝑈𝑖 , 𝐵
ℎ) + 𝜔(𝐽𝑈𝑖)𝑔1 (𝑈, 𝐽T𝑉𝑈𝑖)

+ 𝑔1 (𝑈,𝑈𝑖)𝑔1 (T𝑉𝑈𝑖 , 𝐵
ℎ)
}

=

𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝑈𝑖 ,T𝑉𝑈𝑖) −
1
2

𝑛∑︁
𝑖=1

{
𝑔1 (𝑈𝑖 , 𝐽𝐵)𝑔1 (𝑈𝑖 ,T𝑈𝐽𝑉)

+ 𝑔1 (𝑉,𝑈𝑖)𝑔1 (𝑈𝑖 ,T𝑈𝐵) + 𝑔1 (𝑈𝑖 , 𝐽𝐵)𝑔1 (T𝑉 𝐽𝑈,𝑈𝑖)

+ 𝑔1 (𝑈,𝑈𝑖)𝑔1 (𝑈𝑖 ,T𝑉𝐵)
}

=

𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝑈𝑖 ,T𝑉𝑈𝑖)

+ 1
2

{
𝜔(𝐽T𝑈𝐽𝑉) + 2𝜔(T𝑈𝑉) + 𝜔(𝐽T𝑉 𝐽𝑈)

}
. (36)

Moreover, from Lemma 4.1, since

𝜔(𝐽T𝑈𝐽𝑉) = − 𝑔1 (T𝑈𝐽𝑉, 𝐽𝐵)

= − 𝑔1 (𝐽T𝑈𝑉 + 1
2
{𝜔(𝐽𝑉)𝑈 + 𝑔1 (𝑈,𝑉)𝐽𝐵ℎ}, 𝐽𝐵)

= − 𝜔(T𝑈𝑉) +
1
2
𝜔(𝐽𝑉)𝜔(𝐽𝑈) − 𝑔1 (𝑈,𝑉) | |𝜔 | |2

=𝜔(𝐽T𝑉 𝐽𝑈),

equation (36) becomes

𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝐽𝑈𝑖 ,T𝑉 𝐽𝑈𝑖) =
𝑛∑︁
𝑖=1

𝑔1 (T𝑈𝑈𝑖 ,T𝑉𝑈𝑖) +
1
2
𝜔(𝐽𝑈)𝜔(𝐽𝑉) − 𝑔1 (𝑈,𝑉) | |𝜔 | |2. (37)

Using (37) in (35), we obtain (31).
Similarly, using (21), (22), (23), (25) and (27) we obtain (32) and (33). Now, from the definition of scalar curvature, (31) and (33)
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we have

𝜌1 =

𝑛∑︁
𝑗=1

𝑅𝑖𝑐1 (𝑈 𝑗 ,𝑈 𝑗 ) +
𝑛∑︁
𝑗=1

𝑅𝑖𝑐1 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 )

=

𝑛∑︁
𝑗=1

{
ˆ𝑅𝑖𝑐(𝑈 𝑗 ,𝑈 𝑗 ) −

1
2
𝜔(𝐽𝑈 𝑗 )𝜔(𝐽𝑈 𝑗 ) + 𝑔1 (𝑈 𝑗 ,𝑈 𝑗 ) | |𝜔 | |2

+
𝑛∑︁
𝑖=1

[
𝑔1 ((∇𝐽𝑈𝑖

T)𝑈 𝑗
𝑈 𝑗 , 𝐽𝑈𝑖) − 𝑔1 (T𝑈𝑖

𝑈𝑖 ,T𝑈 𝑗
𝑈 𝑗 )

]}
+

𝑛∑︁
𝑗=1

{
𝑅𝑖𝑐∗ (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 ) +

𝑛∑︁
𝑖=1

[
𝑔1 ((∇𝐽𝑈 𝑗

T)𝑈𝑖
𝑈𝑖 , 𝐽𝑈 𝑗 ) − 𝑔1 (T𝑈𝑖

𝐽𝑈 𝑗 ,T𝑈𝑖
𝐽𝑈 𝑗 )

]}
= �̂� + 𝜌∗ + 2𝑛 − 1

2
| |𝜔 | |2 − 𝑛2 | |𝐻 | |2

+ 2
𝑛∑︁

𝑖, 𝑗=1
𝑔1 ((∇𝐽𝑈𝑖

T)𝑈 𝑗
𝑈 𝑗 , 𝐽𝑈𝑖) −

𝑛∑︁
𝑖, 𝑗=1

𝑔1 (T𝑈𝑖
𝐽𝑈 𝑗 ,T𝑈𝑖

𝐽𝑈 𝑗 )

Finally, if we use (29), (30) and (37) in the last equation, we get (34).

Theorem 4.5. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. Then,
(𝑀2𝑛

1 , 𝐽, 𝑔1, 𝜔) is an Einstein manifold if and only if the following relations hold:

ˆ𝑅𝑖𝑐(𝑈,𝑉) = ( 𝜌1
2𝑛

− ||𝜔 | |2)𝑔1 (𝑈,𝑉) + 𝑛𝑔1 (𝐻,T𝑈𝑉) +
1
2
𝜔(𝐽𝑈)𝜔(𝐽𝑉)

−
𝑛∑︁
𝑖=1

𝑔1 ((∇𝐽𝑈𝑖
T)𝑈𝑉, 𝐽𝑈𝑖),

𝑅𝑖𝑐∗ (𝑋,𝑌 ) = 𝜌1
2𝑛
𝑔1 (𝑋,𝑌 ) −

𝑛∑︁
𝑖=1

{
𝑔1 ((∇𝑋T)𝑈𝑖

𝑈𝑖 , 𝑌 ) − 𝑔1 (T𝑈𝑖
𝑋,T𝑈𝑖

𝑌 )
}
,

and

(∇𝑈𝜔)𝑋 = 0,

where𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗, 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥ and {𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗.

Proof. (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) is an Einstein manifold if and only if 𝑅𝑖𝑐1 =

𝜌1
2𝑛
𝑔1. Using this in (31), (32) and (33), we get the results.

Theorem 4.6. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥, then the sectional curvature 𝐾1 is given by

𝐾1 (𝑈,𝑉) = �̂� (𝑈,𝑉) + | |T𝑈𝑉 | |2 − 𝑔1 (T𝑈𝑈,T𝑉𝑉)
| |𝑈 ∧𝑉 | |2

,

𝐾1 (𝑋,𝑌 ) =𝐾∗ (𝑋,𝑌 ),

𝐾1 (𝑋,𝑈) =
𝑔1 ((∇𝑋T)𝑈𝑈, 𝑋) − ||T𝑈𝑋 | |2

| |𝑋 | |2 | |𝑈 | |2
,

where | |𝑈 ∧𝑉 | |2 = | |𝑈 | |2 | |𝑉 | |2 − (𝑔1 (𝑈,𝑉))2.

Proof. If we use the definition of the sectional curvature 𝐾1 (𝐸, 𝐹) =
𝑅1 (𝐸, 𝐹, 𝐸, 𝐹)
| |𝐸 ∧ 𝐹 | |2

in (20), then we have

𝐾1 (𝑈,𝑉) =
𝑅1 (𝑈,𝑉,𝑈,𝑉)
| |𝑈 ∧𝑉 | |2

=
1

| |𝑈 ∧𝑉 | |2
{
�̂�(𝑈,𝑉,𝑈,𝑉) + 𝑔1 (T𝑈𝑉,T𝑉𝑈) − 𝑔1 (T𝑈𝑈,T𝑉𝑉)

}
= �̂� (𝑈,𝑉) + | |T𝑈𝑉 | |2 − 𝑔1 (T𝑈𝑈,T𝑉𝑉)

| |𝑈 ∧𝑉 | |2
.

Similarly, using (22) and (25), we obtain the other two equations.
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The holomorphic bisectional curvature and the holomorphic sectional curvature of an almost Hermitian manifold (𝑀2𝑛, 𝐽, 𝑔) are
defined for any nonzero vector fields 𝐸, 𝐹 on 𝑀2𝑛 as

𝐵(𝐸, 𝐹) =𝑅(𝐸, 𝐽𝐸, 𝐹, 𝐽𝐹)
| |𝐸 | |2 | |𝐹 | |2

,

and

𝐻 (𝐸) = 𝐵(𝐸, 𝐸),

respectively. Hence, we have the following results.

Theorem 4.7. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
𝑈,𝑉 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌 ∈ (𝑘𝑒𝑟𝜓∗)⊥, then the holomorphic bisectional curvature 𝐵1 is given by

𝐵1 (𝑈,𝑉) =
𝑔1 ((∇𝐽𝑈T)𝑈𝑉, 𝐽𝑉) − 𝑔1 (T𝑈𝐽𝑈,T𝑉 𝐽𝑉)

| |𝑈 | |2 | |𝑉 | |2
,

𝐵1 (𝑋,𝑌 ) =
𝑔1 ((∇𝑋T)𝐽𝑋𝐽𝑌,𝑌 ) − 𝑔1 (T𝐽𝑋𝑋,T𝐽𝑌𝑌 )

| |𝑋 | |2 | |𝑌 | |2
,

𝐵1 (𝑋,𝑈) =
𝑔1 (T𝐽𝑋𝑋,T𝑈𝐽𝑈) − 𝑔1 ((∇𝑋T)𝐽𝑋𝑈, 𝐽𝑈)

| |𝑋 | |2 | |𝑈 | |2
.

Proof. Using the definition of the holomorphic bisectional curvature in (25), we obtain the results immediately.

Theorem 4.8. Let 𝜓 : (𝑀2𝑛
1 , 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
𝑈 ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋 ∈ (𝑘𝑒𝑟𝜓∗)⊥, then the holomorphic sectional curvature 𝐻1 is given by

𝐻1 (𝑈) =
𝑔1 ((∇𝐽𝑈T)𝑈𝑈, 𝐽𝑈) − ||T𝑈𝐽𝑈 | |2

| |𝑈 | |4
,

𝐻1 (𝑋) =
𝑔1 ((∇𝑋T)𝐽𝑋𝐽𝑋, 𝑋) − ||T𝐽𝑋𝑋 | |2

| |𝑋 | |4
.

Proof. Using the definition of the holomorphic bisectional curvature in Theorem 4.7, we obtain the above equations.

5. CHEN-RICCI INEQUALITY

A Kaehler manifold (𝑀2𝑛, 𝐽, 𝑔) with constant holomorphic sectional curvature 𝑐 is called a complex space form and denoted by
(𝑀2𝑛 (𝑐), 𝐽, 𝑔). The curvature tensor 𝑅 of (𝑀2𝑛 (𝑐), 𝐽, 𝑔) satisfies

𝑅(𝑋,𝑌, 𝑍,𝑊) = 𝑐

4

{
𝑔(𝑋,𝑊)𝑔(𝑌, 𝑍) − 𝑔(𝑋, 𝑍)𝑔(𝑌,𝑊) + 𝑔(𝐽𝑋,𝑊)𝑔(𝐽𝑌, 𝑍) (38)

− 𝑔(𝐽𝑋, 𝑍)𝑔(𝐽𝑌,𝑊) − 2𝑔(𝐽𝑋,𝑌 )𝑔(𝐽𝑍,𝑊)
}

for every vector fields 𝑋,𝑌, 𝑍,𝑊 on 𝑀2𝑛 (𝑐).
A g.c.K. manifold (𝑀2𝑛

1 , 𝐽, 𝑔1, 𝜔) with constant holomorphic sectional curvature 𝑐 is called a globally conformal complex space
form and denoted by (𝑀2𝑛

1 (𝑐), 𝐽, 𝑔1, 𝜔). Using (3) and (38), we get

𝑅1 (𝑋,𝑌, 𝑍,𝑊) = 𝑒−𝜎 𝑐

4

{
𝑔1 (𝑋,𝑊)𝑔1 (𝑌, 𝑍) − 𝑔1 (𝑋, 𝑍)𝑔1 (𝑌,𝑊) + 𝑔1 (𝐽𝑋,𝑊)𝑔1 (𝐽𝑌, 𝑍)

− 𝑔1 (𝐽𝑋, 𝑍)𝑔1 (𝐽𝑌,𝑊) − 2𝑔1 (𝐽𝑋,𝑌 )𝑔1 (𝐽𝑍,𝑊)
}

+ 1
2

{
𝐿 (𝑋, 𝑍)𝑔1 (𝑌,𝑊) − 𝐿 (𝑌, 𝑍)𝑔1 (𝑋,𝑊) (39)

− 𝐿 (𝑋,𝑊)𝑔1 (𝑌, 𝑍) + 𝐿 (𝑌,𝑊)𝑔1 (𝑋, 𝑍)
}

+ ||𝜔| |2
4

{
𝑔1 (𝑌, 𝑍)𝑔1 (𝑋,𝑊) − 𝑔1 (𝑋, 𝑍)𝑔1 (𝑌,𝑊)

}
for every vector fields 𝑋,𝑌, 𝑍,𝑊 on 𝑀2𝑛

1 (𝑐).
Let 𝜓 : (𝑀2𝑛

1 (𝑐), 𝐽, 𝑔1, 𝜔) → (𝑀𝑛
2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. Now, using (20)
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and (22) in (39), we have

�̂�(𝑈,𝑉,𝑊,𝑊 ′) =
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

) {
𝑔1 (𝑈,𝑊 ′)𝑔1 (𝑉,𝑊) − 𝑔1 (𝑈,𝑊)𝑔1 (𝑉,𝑊 ′)

}
+ 1

2

{
𝐿 (𝑈,𝑊)𝑔1 (𝑉,𝑊 ′) − 𝐿 (𝑉,𝑊)𝑔1 (𝑈,𝑊 ′) (40)

− 𝐿 (𝑈,𝑊 ′)𝑔1 (𝑉,𝑊) + 𝐿 (𝑉,𝑊 ′)𝑔1 (𝑈,𝑊)
}

+ 𝑔1 (T𝑈𝑊,T𝑉𝑊 ′) − 𝑔1 (T𝑈𝑊 ′,T𝑉𝑊)
and

𝑅∗ (𝑋,𝑌, 𝑍, 𝑍 ′) =
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

) {
𝑔1 (𝑋, 𝑍 ′)𝑔1 (𝑌, 𝑍) − 𝑔1 (𝑋, 𝑍)𝑔1 (𝑌, 𝑍 ′)

}
+ 1

2

{
𝐿 (𝑋, 𝑍)𝑔1 (𝑌, 𝑍 ′) − 𝐿 (𝑌, 𝑍)𝑔1 (𝑋, 𝑍 ′)

− 𝐿 (𝑋, 𝑍 ′)𝑔1 (𝑌, 𝑍) + 𝐿 (𝑌, 𝑍 ′)𝑔1 (𝑋, 𝑍)
}
,

for every𝑈,𝑉,𝑊,𝑊 ′ ∈ 𝑘𝑒𝑟𝜓∗ and 𝑋,𝑌, 𝑍, 𝑍 ′ ∈ (𝑘𝑒𝑟𝜓∗)⊥.
We will use the following remark in the examination of the curvature relations.

Remark 5.1. Pirinççi (2025) showed that the vertical distribution of a Lagrangian submersion from a l.c.K. manifold onto a
Riemannian manifold cannot be totally geodesic, i.e., T ≠ 0.

Proposition 5.2. Let 𝜓 : (𝑀2𝑛
1 (𝑐), 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
{𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗, then we have

ˆ𝑅𝑖𝑐(𝑈1) < (1 − 𝑛)
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

)
+ 𝑛𝑔1 (T𝑈1𝑈1, 𝐻) (41)

− 1
2

{
(𝑛 − 2)𝜔(T𝑈1𝑈1) + 𝑛𝜔(𝐻)

}
,

where

ˆ𝑅𝑖𝑐(𝑈1) =
𝑛∑︁
𝑖=1

�̂�(𝑈1,𝑈𝑖 ,𝑈1,𝑈𝑖). (42)

Proof. We note that if the Lee vector field 𝐵 is horizontal, then 𝐿 (𝑈,𝑉) = −𝜔(T𝑈𝑉). So for every 𝑈,𝑉,𝑊,𝑊 ′ ∈ 𝑘𝑒𝑟𝜓∗, (40)
becomes

�̂�(𝑈,𝑉,𝑊,𝑊 ′) =
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

) {
𝑔1 (𝑈,𝑊 ′)𝑔1 (𝑉,𝑊) − 𝑔1 (𝑈,𝑊)𝑔1 (𝑉,𝑊 ′)

}
− 1

2

{
𝜔(T𝑈𝑊)𝑔1 (𝑉,𝑊 ′) − 𝜔(T𝑉𝑊)𝑔1 (𝑈,𝑊 ′) (43)

− 𝜔(T𝑈𝑊 ′)𝑔1 (𝑉,𝑊) + 𝜔(T𝑉𝑊 ′)𝑔1 (𝑈,𝑊)
}

+ 𝑔1 (T𝑈𝑊,T𝑉𝑊 ′) − 𝑔1 (T𝑈𝑊 ′,T𝑉𝑊).
Using (43) in (42), we have

ˆ𝑅𝑖𝑐(𝑈1) =
𝑛∑︁
𝑖=1

( 𝑐𝑒−𝜎 + ||𝜔 | |2
4

) {
𝑔1 (𝑈1,𝑈𝑖)𝑔1 (𝑈𝑖 ,𝑈1) − 𝑔1 (𝑈1,𝑈1)𝑔1 (𝑈𝑖 ,𝑈𝑖)

}
− 1

2

𝑛∑︁
𝑖=1

{
𝜔(T𝑈1𝑈1)𝑔1 (𝑈𝑖 ,𝑈𝑖) − 𝜔(T𝑈𝑖

𝑈1)𝑔1 (𝑈1,𝑈𝑖)

− 𝜔(T𝑈1𝑈𝑖)𝑔1 (𝑈𝑖 ,𝑈1) + 𝜔(T𝑈𝑖
𝑈𝑖)𝑔1 (𝑈1,𝑈1)

}
+

𝑛∑︁
𝑖=1

{
𝑔1 (T𝑈1𝑈1,T𝑈𝑖

𝑈𝑖) − 𝑔1 (T𝑈1𝑈𝑖 ,T𝑈𝑖
𝑈1)

}
= (1 − 𝑛)

( 𝑐𝑒−𝜎 + ||𝜔 | |2
4

)
+ 𝑛𝑔1 (T𝑈1𝑈1, 𝐻) − ||T𝑈𝑖

𝑈1 | |2

− 1
2

{
(𝑛 − 2)𝜔(T𝑈1𝑈1) + 𝑛𝜔(𝐻)

}
.

Hence, (41) comes from Remark 5.1.
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Proposition 5.3. Let 𝜓 : (𝑀2𝑛
1 (𝑐), 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
{𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗, then the scalar curvature of the vertical distribution holds

�̂� < 𝑛(1 − 𝑛)
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4
+ 𝜔(𝐻)

)
+ 𝑛2 | |𝐻 | |2, (44)

where

�̂� =

𝑛∑︁
𝑖, 𝑗=1

�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ). (45)

Proof. If we use (43) in (45), then we have

�̂� =

𝑛∑︁
𝑖, 𝑗=1

( 𝑐𝑒−𝜎 + ||𝜔 | |2
4

) {
𝑔1 (𝑈𝑖 ,𝑈 𝑗 )𝑔1 (𝑈 𝑗 ,𝑈𝑖) − 𝑔1 (𝑈𝑖 ,𝑈𝑖)𝑔1 (𝑈 𝑗 ,𝑈 𝑗 )

}
− 1

2

𝑛∑︁
𝑖, 𝑗=1

{
𝜔(T𝑈𝑖

𝑈𝑖)𝑔1 (𝑈 𝑗 ,𝑈 𝑗 ) − 𝜔(T𝑈 𝑗
𝑈𝑖)𝑔1 (𝑈𝑖 ,𝑈 𝑗 )

− 𝜔(T𝑈𝑖
𝑈 𝑗 )𝑔1 (𝑈 𝑗 ,𝑈𝑖) + 𝜔(T𝑈 𝑗

𝑈 𝑗 )𝑔1 (𝑈𝑖 ,𝑈𝑖)
}

+
𝑛∑︁

𝑖, 𝑗=1

{
𝑔1 (T𝑈𝑖

𝑈𝑖 ,T𝑈 𝑗
𝑈 𝑗 ) − 𝑔1 (T𝑈𝑖

𝑈 𝑗 ,T𝑈 𝑗
𝑈𝑖)

}
= 𝑛(1 − 𝑛)

( 𝑐𝑒−𝜎 + ||𝜔 | |2
4

)
− ||T ||2 + 𝑛2 | |𝐻 | |2 + 𝑛(1 − 𝑛)𝜔(𝐻).

The result is obtained by using Remark 5.1.

Proposition 5.4. Let 𝜓 : (𝑀2𝑛
1 (𝑐), 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
{𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗, then the scalar curvature of the horizontal distribution holds

𝜌∗ < 𝑛(1 − 𝑛)
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4
− 𝜔(𝐻)

)
+ ||T ||2 + (𝑛 − 1)Trace(𝐿), (46)

where

𝜌∗ =
𝑛∑︁

𝑖, 𝑗=1
𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ). (47)
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Proof. From (26) we have
𝑛∑︁

𝑖, 𝑗=1
�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) =

𝑛∑︁
𝑖, 𝑗=1

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )

−
𝑛∑︁

𝑖, 𝑗=1
𝑔1 (T𝑈𝑖

𝑈 𝑗 ,T𝑈 𝑗
𝑈𝑖) +

𝑛∑︁
𝑖, 𝑗=1

𝑔1 (T𝑈𝑖
𝑈𝑖 ,T𝑈 𝑗

𝑈 𝑗 )

+ 1
2

𝑛∑︁
𝑖, 𝑗=1

{
𝛿(𝑈𝑖 ,𝑈𝑖)𝑔1 (𝑈 𝑗 ,𝑈 𝑗 ) − 𝛿(𝑈 𝑗 ,𝑈𝑖)𝑔1 (𝑈𝑖 ,𝑈 𝑗 )

− 𝛿(𝑈𝑖 ,𝑈 𝑗 )𝑔1 (𝑈 𝑗 ,𝑈𝑖) + 𝛿(𝑈 𝑗 ,𝑈 𝑗 )𝑔1 (𝑈𝑖 ,𝑈𝑖)
}

=

𝑛∑︁
𝑖, 𝑗=1

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ) − ||T ||2 + 𝑛2 | |𝐻 | |2

+ (𝑛 − 1)
𝑛∑︁
𝑖=1

𝛿(𝑈𝑖 ,𝑈𝑖)

=

𝑛∑︁
𝑖, 𝑗=1

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ) − ||T ||2 + 𝑛2 | |𝐻 | |2

+ (𝑛 − 1)
𝑛∑︁
𝑖=1

{
𝐿 (𝑈𝑖 ,𝑈𝑖) − 𝐿 (𝐽𝑈𝑖 , 𝐽𝑈𝑖)

}
=

𝑛∑︁
𝑖, 𝑗=1

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ) − ||T ||2 + 𝑛2 | |𝐻 | |2

− 𝑛(𝑛 − 1)𝜔(𝐻) − (𝑛 − 1)
𝑛∑︁
𝑖=1

𝐿 (𝐽𝑈𝑖 , 𝐽𝑈𝑖).

If we use (45), (47) and

Trace(𝐿) =
𝑛∑︁
𝑖=1

{
𝐿 (𝑈𝑖 ,𝑈𝑖) + 𝐿 (𝐽𝑈𝑖 , 𝐽𝑈𝑖)

}
= −𝑛𝜔(𝐻) +

𝑛∑︁
𝑖=1

𝐿 (𝐽𝑈𝑖 , 𝐽𝑈𝑖),

in the last equation, then we have

�̂� = 𝜌∗ − ||T ||2 + 𝑛2 | |𝐻 | |2 − 2𝑛(𝑛 − 1)𝜔(𝐻) − (𝑛 − 1)Trace(𝐿). (48)

Finally, using (44) in (48), we get (46).

Now, we give the Chen-Ricci inequality for a Lagrangian submersion from a g.c.K manifold onto a Riemannian manifold by using
the following equation which was introduced by Gülbahar et al. (2017):

| |T | |2 =
𝑛2

2
| |𝐻 | |2 + 1

2

𝑛∑︁
𝑘=1

(T 𝑘
11 − T 𝑘

22 − ... − T 𝑘
𝑛𝑛)2 + 2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=2

(T 𝑘
1 𝑗 )

2 (49)

− 2
𝑛∑︁

𝑘=1

𝑛∑︁
2≤𝑖< 𝑗

{
T 𝑘
𝑖𝑖 T 𝑘

𝑗 𝑗 − (T 𝑘
𝑖 𝑗 )2

}
.

Theorem 5.5. Let 𝜓 : (𝑀2𝑛
1 (𝑐), 𝐽, 𝑔1, 𝜔) → (𝑀𝑛

2 , 𝑔2) be a Lagrangian submersion and the Lee vector field 𝐵 be horizontal. If
{𝑈1, ...,𝑈𝑛} is an orthonormal frame of 𝑘𝑒𝑟𝜓∗, then we have

ˆ𝑅𝑖𝑐(𝑈1) + 𝑅𝑖𝑐∗ (𝐽𝑈1) + 𝛿(T ) + (𝑛2 + 5𝑛 − 2)𝑐𝑒−𝜎

4
+ 𝑛

2 + 6𝑛 − 4
4

| |𝜔 | |2

< | |T | |2 + 𝑛
2

4
| |𝐻 | |2 + 𝑛 + 1

2
Trace(𝐿)

+ 𝑛 − 2
2

{
𝐿 (𝑈1,𝑈1) + 𝐿 (𝐽𝑈1, 𝐽𝑈1)

}
,

where

𝑅𝑖𝑐∗ (𝐽𝑈1) =
𝑛∑︁
𝑖=1

𝑅𝑖𝑐∗ (𝐽𝑈1, 𝐽𝑈𝑖 , 𝐽𝑈1, 𝐽𝑈𝑖).
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Proof. Using (39), we have
𝑛∑︁

𝑖, 𝑗=1
𝑅1 (𝑈𝑖 , 𝐽𝑈 𝑗 ,𝑈𝑖 , 𝐽𝑈 𝑗 ) =

𝑛∑︁
𝑖, 𝑗=1

[
𝑒−𝜎 𝑐

4

{
𝑔1 (𝑈𝑖 , 𝐽𝑈 𝑗 )𝑔1 (𝐽𝑈 𝑗 ,𝑈𝑖) − 𝑔1 (𝑈𝑖 ,𝑈𝑖)𝑔1 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 )

− 𝑔1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )𝑔1 (𝑈 𝑗 ,𝑈𝑖) + 𝑔1 (𝐽𝑈𝑖 ,𝑈𝑖)𝑔1 (𝑈 𝑗 , 𝐽𝑈 𝑗 )

− 2𝑔1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )𝑔1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )
}

+ 1
2

{
𝐿 (𝑈𝑖 ,𝑈𝑖)𝑔1 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 ) − 𝐿 (𝐽𝑈 𝑗 ,𝑈𝑖)𝑔1 (𝑈𝑖 , 𝐽𝑈 𝑗 )

− 𝐿 (𝑈𝑖 , 𝐽𝑈 𝑗 )𝑔1 (𝐽𝑈 𝑗 ,𝑈𝑖) + 𝐿 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 )𝑔1 (𝑈𝑖 ,𝑈𝑖)
}

+ ||𝜔 | |2
4

{
𝑔1 (𝐽𝑈 𝑗 ,𝑈𝑖)𝑔1 (𝑈𝑖 , 𝐽𝑈 𝑗 ) − 𝑔1 (𝑈𝑖 ,𝑈𝑖)𝑔1 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 )

}]
=
𝑛

2
Trace(𝐿) − 𝑛(𝑛 + 3)𝑐𝑒−𝜎

4
− 𝑛2

4
| |𝜔 | |2.

If we substitute the above equation in the definition of the scalar curvature,

𝜌1 =

𝑛∑︁
𝑗=1

𝑅𝑖𝑐1 (𝑈 𝑗 ,𝑈 𝑗 ) +
𝑛∑︁
𝑗=1

𝑅𝑖𝑐1 (𝐽𝑈 𝑗 , 𝐽𝑈 𝑗 )

=

𝑛∑︁
𝑖, 𝑗=1

𝑅1 (𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) + 2
𝑛∑︁

𝑖, 𝑗=1
𝑅1 (𝑈𝑖 , 𝐽𝑈 𝑗 ,𝑈𝑖 , 𝐽𝑈 𝑗 ) (50)

+
𝑛∑︁

𝑖, 𝑗=1
𝑅1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ),

then we have

𝜌1 = 2
𝑛∑︁

1≤𝑖< 𝑗

𝑅1 (𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) + 2
𝑛∑︁

1≤𝑖< 𝑗

𝑅1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ) (51)

+ 𝑛Trace(𝐿) − 𝑛(𝑛 + 3)𝑐𝑒−𝜎

2
− 𝑛2

2
| |𝜔 | |2.

On the other hand if we use (20), (25), (30) and (37) , then we have
𝑛∑︁

𝑖, 𝑗=1
𝑅1 (𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) =

𝑛∑︁
𝑖, 𝑗=1

{
�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) + 𝑔1 (T𝑈𝑖

𝑈 𝑗 ,T𝑈 𝑗
𝑈𝑖) − 𝑔1 (T𝑈𝑖

𝑈𝑖 ,T𝑈 𝑗
𝑈 𝑗 )

}
= 2

𝑛∑︁
1≤𝑖< 𝑗

�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) + | |T ||2 − 𝑛2 | |𝐻 | |2,

and
𝑛∑︁

𝑖, 𝑗=1
𝑅1 (𝑈𝑖 , 𝐽𝑈 𝑗 ,𝑈𝑖 , 𝐽𝑈 𝑗 ) =

𝑛∑︁
𝑖, 𝑗=1

𝑅1 (𝐽𝑈 𝑗 ,𝑈𝑖 , 𝐽𝑈 𝑗 ,𝑈𝑖)

=

𝑛∑︁
𝑖, 𝑗=1

{
𝑔1 ((∇𝐽𝑈 𝑗

T)𝑈𝑖
𝑈𝑖 , 𝐽𝑈 𝑗 ) − 𝑔1 (T𝑈𝑖

𝐽𝑈 𝑗 ,T𝑈𝑖
𝐽𝑈 𝑗 )

}
= 𝛿(T ) −

𝑛∑︁
𝑖=1

{ 𝑛∑︁
𝑗=1
𝑔1 (T𝑈𝑖

𝑈 𝑗 ,T𝑈𝑖
𝑈 𝑗 )

+ 1
2
𝜔(𝐽𝑈𝑖)𝜔(𝐽𝑈𝑖) − 𝑔1 (𝑈𝑖 ,𝑈𝑖) | |𝜔 | |2

}
= 𝛿(T ) − ||T ||2 +

(2𝑛 − 1
2

)
| |𝜔 | |2.

If we write the last two equations in (50) and use (22), then we get

𝜌1 = 2
𝑛∑︁

1≤𝑖< 𝑗

�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) + 2
𝑛∑︁

1≤𝑖< 𝑗

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 ) (52)

+ 2𝛿(T ) + (2𝑛 − 1) | |𝜔 | |2 − 𝑛2 | |𝐻 | |2 − ||T ||2.
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Making use of (51) and (52), we have
𝑛∑︁

1≤𝑖< 𝑗

𝑅1 (𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) +
𝑛∑︁

1≤𝑖< 𝑗

𝑅1 (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )

+ 𝑛
2

Trace(𝐿) − 𝑛(𝑛 + 3)𝑐𝑒−𝜎

4
− 𝑛2 + 4𝑛 − 2

4
| |𝜔 | |2 (53)

=

𝑛∑︁
1≤𝑖< 𝑗

�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) +
𝑛∑︁

1≤𝑖< 𝑗

𝑅∗ (𝐽𝑈𝑖 , 𝐽𝑈 𝑗 , 𝐽𝑈𝑖 , 𝐽𝑈 𝑗 )

+ 𝛿(T ) − 𝑛2

2
| |𝐻 | |2 − 1

2
| |T | |2.

Now, using (28) and (29) in (20) we obtain
𝑛∑︁

2≤𝑖< 𝑗

𝑅1 (𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) =
𝑛∑︁

2≤𝑖< 𝑗

�̂�(𝑈𝑖 ,𝑈 𝑗 ,𝑈𝑖 ,𝑈 𝑗 ) −
𝑛∑︁

𝑘=1

𝑛∑︁
2≤𝑖< 𝑗

{
T 𝑘
𝑖𝑖 T 𝑘

𝑗 𝑗 − (T 𝑘
𝑖 𝑗 )2

}
.

Substituting the last equation in (53), we get
𝑛∑︁
𝑗=2

𝑅1 (𝑈1,𝑈 𝑗 ,𝑈1,𝑈 𝑗 )+
𝑛∑︁
𝑗=2

𝑅1 (𝐽𝑈1, 𝐽𝑈 𝑗 , 𝐽𝑈1, 𝐽𝑈 𝑗 ) −
𝑛∑︁

𝑘=1

𝑛∑︁
2≤𝑖< 𝑗

{
T 𝑘
𝑖𝑖 T 𝑘

𝑗 𝑗 − (T 𝑘
𝑖 𝑗 )2

}
+ 𝑛

2
Trace(𝐿) − 𝑛(𝑛 + 3)𝑐𝑒−𝜎

4
− 𝑛2 + 4𝑛 − 2

4
| |𝜔| |2

= ˆ𝑅𝑖𝑐(𝑈1) + 𝑅𝑖𝑐∗ (𝐽𝑈1) + 𝛿(T ) − 𝑛2

2
| |𝐻 | |2 − 1

2
| |T | |2.

If we use (39) for the first and the second terms on the left hand side of the last equation, namely
𝑛∑︁
𝑗=2

𝑅1 (𝑈1,𝑈 𝑗 ,𝑈1,𝑈 𝑗 ) = (1 − 𝑛)
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

)
+ 1

2

{
(𝑛 − 2)𝐿 (𝑈1,𝑈1) − 𝑛𝜔(𝐻)

}
,

and
𝑛∑︁
𝑗=2

𝑅1 (𝐽𝑈1, 𝐽𝑈 𝑗 , 𝐽𝑈1, 𝐽𝑈 𝑗 ) = (1 − 𝑛)
( 𝑐𝑒−𝜎 + ||𝜔 | |2

4

)
+ 1

2

{
(𝑛 − 2)𝐿 (𝐽𝑈1, 𝐽𝑈1) + Trace(𝐿) + 𝑛𝜔(𝐻)

}
,

then we have
𝑛 + 1

2
Trace(𝐿) + 𝑛 − 2

2

{
𝐿 (𝑈1,𝑈1) + 𝐿 (𝐽𝑈1, 𝐽𝑈1)

}
− (𝑛2 + 5𝑛 − 2)𝑐𝑒−𝜎

4

− 𝑛2 + 6𝑛 − 4
4

| |𝜔 | |2 −
𝑛∑︁

𝑘=1

𝑛∑︁
2≤𝑖< 𝑗

{
T 𝑘
𝑖𝑖 T 𝑘

𝑗 𝑗 − (T 𝑘
𝑖 𝑗 )2

}
= ˆ𝑅𝑖𝑐(𝑈1) + 𝑅𝑖𝑐∗ (𝐽𝑈1) + 𝛿(T ) − 1

2
| |T | |2 − 𝑛2

2
| |𝐻 | |2.

Now, using (49) in the last equation, we have

ˆ𝑅𝑖𝑐(𝑈1) + 𝑅𝑖𝑐∗ (𝐽𝑈1) + 𝛿(T ) − ||T ||2 − 𝑛2

4
| |𝐻 | |2

=
𝑛 + 1

2
Trace(𝐿) + 𝑛 − 2

2

{
𝐿 (𝑈1,𝑈1) + 𝐿 (𝐽𝑈1, 𝐽𝑈1)

}
− (𝑛2 + 5𝑛 − 2)𝑐𝑒−𝜎

4
− 𝑛2 + 6𝑛 − 4

4
| |𝜔 | |2

− 1
4

𝑛∑︁
𝑘=1

(T 𝑘
11 − T 𝑘

22 − ... − T 𝑘
𝑛𝑛)2 −

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=2

(T 𝑘
1 𝑗 )

2.

The result comes from Remark 5.1.
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ABSTRACT
The moment curves and their normalizations are key tools in obtaining the famous Kac formula from the theory of random
polynomials. We study here the normalized moment curves Γ𝑛 ∈ 𝑆𝑛 in the low dimensions 𝑛 where 𝑆𝑛 is the Euclidean 𝑛-
dimensional unit sphere; more precisely we consider 𝑛 = 3 and 𝑛 = 2. First, we compute the image of the normalized moment
curve Γ3 under the well-known Hopf fibre map and show that this remarkable map reduces the length of Γ3. Second, we analyze
the curve Γ2 using the theory of spherical Legendre curves. An image of Γ2 is included.
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Keywords: moment curve, Hopf map, spherical curve

1. INTRODUCTION

The setting of this paper is provided by the space R𝑛+1, 𝑛 ∈ N∗ = {1, 2, ...}, which is an Euclidean vector space with respect to the
canonical inner product: {

⟨𝑢, 𝑣⟩ := 𝑢1𝑣1 + ... + 𝑢𝑛+1𝑣𝑛+1, 𝑢 = (𝑢1, ..., 𝑢𝑛+1), 𝑣 = (𝑣1, ..., 𝑣𝑛+1) ∈ R𝑛+1,

0 ≤ ∥𝑢∥2 := ⟨𝑢, 𝑢⟩. (1.1)

A special curve, called moment curve, is defined in (Edelman et al. 1995, p. 5-6) as:

𝛾𝑛 : R → R𝑛+1, 𝛾𝑛 (𝑡) := (1, 𝑡, ...., 𝑡𝑛). (1.2)

It is a regular curve since the norm of its derivative is strictly positive: ∥𝛾′𝑛 (𝑡)∥ > 0 for all 𝑡 ∈ R. Also, the normalized moment
curve is:

Γ𝑛 : R → S𝑛, Γ𝑛 (𝑡) :=
𝛾𝑛 (𝑡)
∥𝛾𝑛 (𝑡)∥

. (1.3)

where 𝑆𝑛 is the unit sphere of E𝑛+1 := (R𝑛+1, ⟨·, ·⟩). A main result of Edelman et al. (1995) is that the expected number of real
zeros 𝐸𝑛 of a random polynomial of degree 𝑛 if the coefficients are independent and distributed normally is given by:

𝐸𝑛 =
𝐿 (Γ𝑛)
𝜋

(1.4)

where 𝐿 (Γ𝑛) is the Euclidean length of Γ𝑛. The first few values of 𝐸𝑛 are: 1, 1.29702, 1.49276, 1.64049. Also, it is easy to express
the image of the curve Γ𝑛 through the stereographic projection 𝜑𝑁 from the North pole 𝑁 (0, ..., 0, 1) ∈ 𝑆𝑛:

𝜑𝑁 (Γ𝑛 (𝑡)) =
𝛾𝑛−1 (𝑡)√

1 + 𝑡2 + ... + 𝑡2𝑛 − 𝑡𝑛
∈ R𝑛. (1.5)

The present work concerns with the normalized moment curve Γ𝑛 for the low values 𝑛 = 3 and 𝑛 = 2. More precisely, when
𝑛 = 3 we use the well-known Hopf bundle and as result we obtain a lower length. The second case is treated in the framework
of spherical Legendre curves since Γ2 appears as a frontal curve in this theory. For both values of 𝑛 we study the image of the
normalized moment curve through the Veronese map. Other spherical curves in the case 𝑛 = 2, as the Clelia curve and the spherical
nephroid, are studied in Crasmareanu (2024).
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2. THE MOMENT CURVE IN R4 AND THE HOPF MAP

The setting of this section is provided by 𝑛 = 3 since the sphere 𝑆3 = 𝑆𝑈 (2) is the total space of the famous Hopf bundle
𝐻 : 𝑆3 ⊂ C2 → 𝑆2

(
1
2

)
⊂ R × C:

𝐻 (𝑧, 𝑤) =
(

1
2
( |𝑧 |2 − |𝑤 |2), 𝑧�̄�

)
. (2.1)

We express the curve Γ3 as:

Γ3 (𝑡) = (𝑧(𝑡), 𝑤(𝑡)), 𝑧(𝑡) = 1 + 𝑖𝑡√︁
(1 + 𝑡2) (1 + 𝑡4)

, 𝑤(𝑡) = 𝑡2𝑧(𝑡), |𝑧(𝑡) |2 =
1

1 + 𝑡4
(2.2)

and then a straightforward computation gives:

𝐻 (Γ3 (𝑡)) =
1
2

(
1 − 𝑡4

1 + 𝑡4
,

2𝑡2

1 + 𝑡4
, 0

)
∈ 𝑆2

(
1
2

)
⊂ R × R × {0}. (2.3)

Returning to the expectation numbers it is very easy to see that 𝐸1 = 1. Indeed, for Γ1 (𝑡) = 1√
1+𝑡2 (1, 𝑡) ∈ 𝑆1 we consider the

change of parameter 𝑡 = tan 𝜑. It follows:

Γ1 (𝜑) = (cos 𝜑, sin 𝜑) ∈ 𝑆1

and the condition cos 𝜑 = 1√
1+𝑡2 > 0 yields the domain 𝜑 ∈

(
0, 𝜋

2
)
∪

(
3𝜋
2 , 2𝜋

)
. Then we have the length 𝐿 (𝛾1) = 𝜋

2 + 𝜋
2 = 𝜋 and it

results 𝐸1 = 1.

For the case 𝑛 = 3 we perform the change of parameter 𝑡2 = tan 𝜑 ≥ 0 and then:

𝐻 (Γ3 (𝜑)) =
1
2
(cos 2𝜑, sin 2𝜑, 0) ∈ 𝑆2

(
1
2

)
(2.4)

but now 𝜑 ∈
(
0, 𝜋

2
)
∪

(
𝜋, 3𝜋

2

)
. It follows that 2𝜑 ∈ (0, 𝜋) ∪ (2𝜋, 3𝜋) which implies that:

𝐿 (𝐻 ◦ Γ3) =
1
2
(𝜋 + 𝜋) = 𝜋 < 𝐿(Γ3) ≃ 1.49𝜋. (2.5)

Hence, the first conclusion of this section is that the Hopf map reduces the length of the normalized moment curve Γ3.

Expressing 𝑧 = 𝑧1 = 𝑞1 + 𝑖𝑝1, 𝑤 = 𝑧2 = 𝑞2 + 𝑖𝑝2 the standard contact form of 𝑆3 is the restriction of the 1-form:

𝜆0 :=
1
2
(𝑝1𝑑𝑞1 − 𝑞1𝑑𝑝1 + 𝑝2𝑑𝑞2 − 𝑞2𝑑𝑝2) (2.6)

to 𝑆3. The tangent vector field of the normalized moment curve is:

Γ′
3 (𝑡) =

1
(1 + 𝑡2 + 𝑡4) 3

2
(−𝑡 − 𝑡3, 𝑡, 2𝑡 + 𝑡3 + 𝑡5, 3𝑡2 + 2𝑡4 + 2𝑡6) (2.7)

and then:

𝜆0 (Γ′
3 (𝑡)) =

−𝑡 (1 + 𝑡 + 2𝑡3 + 𝑡5 + 𝑡7)
(1 + 𝑡2 + 𝑡4)2 . (2.8)

As element in the Lie group 𝑆𝑈 (2) the normalized moment curve Γ3 is:

Γ3 (𝑡) =
1√︁

(1 + 𝑡2) (1 + 𝑡4)

(
𝑡2 (𝑡 + 𝑖) 𝑡 + 𝑖

−(𝑡 − 𝑖) 𝑡2 (𝑡 − 𝑖)

)
∈ 𝑆𝑈 (2), 𝑇𝑟Γ3 (𝑡) = 2𝐼𝑚(𝑤(𝑡)). (2.9)

Secondly, we recall the complex Veronese map 𝑉 : 𝑆3 ⊂ C2 → 𝑆5 ⊂ C3:

𝑉 (𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑢 + 𝑖𝑣) := (𝑧2,
√

2𝑧𝑤, 𝑤2) =

= (𝑥2 − 𝑦2, 2𝑥𝑦,
√

2(𝑥𝑢 − 𝑦𝑣),
√

2(𝑥𝑣 + 𝑦𝑢), 𝑢2 − 𝑣2, 2𝑢𝑣). (2.10)

We obtain the new spherical curve:

𝑉 ◦ Γ3 (𝑡) =
1

(1 + 𝑡2) (1 + 𝑡4)
(1 − 𝑡2, 2𝑡,

√
2𝑡2 (1 − 𝑡),

√
2𝑡2 (1 + 𝑡), 𝑡4 (1 − 𝑡2), 2𝑡5) ∈ 𝑆5. (2.11)
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3. THE MOMENT CURVE IN R3 AND THE SPHERICAL LEGENDRE CURVES

Now we consider 𝑛 = 2 and recall that the unit spherical bundle is a compact 3-dimensional contact metric manifold given by:

𝑇1𝑆
2 := {(𝑢, 𝑣) ∈ 𝑆2 × 𝑆2; ⟨𝑢, 𝑣⟩ = 0} (3.1)

see for example Crasmareanu (2016). There is a natural action of 𝑂 (3) on 𝑇1𝑆
2:

(𝐴, (𝑢, 𝑣)) ∈ 𝑂 (3) × 𝑇1𝑆
2 → (𝐴𝑢, 𝐴𝑣) ∈ 𝑇1𝑆

2, ⟨𝐴𝑢, 𝐴𝑣⟩ = ⟨𝑢, 𝑣⟩ = 0. (3.2)

For example, the complex Veronese map applied on a pair (𝑧, 𝑤) ∈ 𝑆3 with |𝑧 | = |𝑤 | = 1√
2

gives the symmetric orthogonal matrix:

𝐴 =
1
2

©­­«
1

√
2 1√

2 0 −
√

2
1 −

√
2 1

ª®®¬ ∈ 𝑆𝑦𝑚(3) ∩𝑂− (3),

where 𝑂− (3) := {Γ ∈ 𝑂 (3); det Γ = −1} and 𝑆𝑦𝑚(3) is the linear subspace of 𝑀3 (R) consisting in symmetric matrices.
Considering this matrix as representing a conic in the plane E2 (see the formalism of Crasmareanu (2021)) it is a hyperbola.

The general notion of Legendre curves associated to a contact form is well-known, but we will work directly in our framework
using the approach of Takahashi (2016) (see also CrasmareanuChapter (2024)):

Definition 3.1 The smooth map 𝐿𝐶 := (𝛾, 𝜈) : 𝐼 ⊆ R → 𝑇1𝑆
2, 𝑡 ∈ 𝐼 → (𝛾(𝑡), 𝜈(𝑡)) is a spherical Legendre curve if

⟨𝛾′ (𝑡), 𝜈(𝑡)⟩ = 0 for all 𝑡 in the open interval 𝐼. The map 𝛾 is called the frontal and 𝜈 is the dual of 𝛾.

Since R3 is endowed also with the cross product × we define 𝜇 = 𝛾×𝜈 and hence the triple F := {𝛾, 𝜈, 𝜇}𝑡 is an positive oriented
moving frame along the frontal 𝛾; here 𝑡 means the transposition, so F is a column matrix. Its moving equation is provided by the
Proposition 2.2. of ?:

𝑑

𝑑𝑡
F (𝑡) = ©­«

0 0 𝑘1 (𝑡)
0 0 𝑘2 (𝑡)

−𝑘1 (𝑡) −𝑘2 (𝑡) 0

ª®¬F (𝑡), ©­«
0 0 𝑘1 (𝑡)
0 0 𝑘2 (𝑡)

−𝑘1 (𝑡) −𝑘2 (𝑡) 0

ª®¬ ∈ 𝑜(3). (3.3)

The pair of smooth functions (𝑘1, 𝑘2) is called the curvature of the spherical Legendre curve 𝐿𝐶 = (𝛾, 𝜈). Sometimes, it is more
useful to denote a given 𝐿𝐶 with all its elements as 𝐿𝐶 = (𝛾, 𝜈; 𝜇).

Let us consider now the Example 2.8. of Takahashi (2016); equivalently the Example 2.6 of CrasmareanuChapter (2024).
Starting with the natural numbers (𝑘, 𝑚, 𝑛) satisfying 𝑚 = 𝑘 + 𝑛 the 𝐿𝐶 is defined as:

𝛾(𝑡) = 1
√

1 + 𝑡2𝑛 + 𝑡2𝑚
(1, 𝑡𝑛, 𝑡𝑚), 𝜈(𝑡) = 1

√
𝑛2 + 𝑚2𝑡2𝑘 + 𝑘2𝑡2𝑚

(𝑘𝑡𝑚,−𝑚𝑡𝑘 , 𝑛), 𝑡 ∈ R (3.4)

with the associated curvature pair:

𝑘1 (𝑡) = − 𝑡𝑛−1
√
𝑛2 + 𝑚2𝑡2𝑘 + 𝑘2𝑡2𝑚

1 + 𝑡2𝑛 + 𝑡2𝑚
, 𝑘2 (𝑡) =

𝑘𝑚𝑛𝑡𝑘−1
√

1 + 𝑡2𝑛 + 𝑡2𝑚

𝑛2 + 𝑚2𝑡2𝑘 + 𝑘2𝑡2𝑚
. (3.5)

In fact, we have:

𝜈 =
𝛾 × 𝛾′

∥𝛾 × 𝛾′∥ =
𝛾 × 𝛾′

∥𝛾′∥ = 𝛾 × 𝑇 (3.6)

where {𝑇, 𝑁, 𝐵} is the Frenet frame of the 𝛾 as bi-regular space curve. We point out that the general normalized moment curve Γ𝑛
is exactly the tangent vector field 𝑇 of the curve:

𝑡 ∈ R → (
∫

𝛾𝑛) (𝑡) =
(
𝑡,
𝑡2

2
, ...,

𝑡𝑛+1

𝑛 + 1

)
.

Returning to our normalized moment curve Γ2 it results that it corresponds exactly to the curve 𝛾 for 𝑘 = 𝑛 = 1 < 𝑚 = 2;
therefore 𝜈 can be called the Legendre dual of the normalized moment curve Γ3. We have:

Γ′
2 (𝑡) =

1
(1 + 𝑡2 + 𝑡4) 3

2
(−(𝑡 + 2𝑡3), 1 − 𝑡4, 2𝑡 + 𝑡3), 𝜈(𝑡) = 1

√
1 + 4𝑡2 + 𝑡4

(𝑡2,−2𝑡, 1) (3.7)

and the curvature pair:

𝑘1 (𝑡) = −
√

1 + 4𝑡2 + 𝑡4

1 + 𝑡2 + 𝑡4
< 0, 𝑘2 (𝑡) =

2
√

1 + 𝑡2 + 𝑡4

1 + 4𝑡2 + 𝑡4
> 0. (3.8)

The length of the curve Γ2 is approximately 4.07472 < 2𝜋.
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Figure 1.The curve Γ2.

Recall the standard parametrization of 𝑆2 as regular surface:

𝑆2 : 𝑟 (𝑢, 𝑣) = (cos 𝑢 cos 𝑣, cos 𝑢 sin 𝑣, sin 𝑢), 𝑢 ∈ (0, 2𝜋), 𝑣 ∈
(
−𝜋

2
,
𝜋

2

)
. (3.9)

The normalized moment curve Γ2 ∈ 𝑆2 is given then by 𝑢 = 𝑢(𝑡), 𝑣 = 𝑣(𝑡) with:{
cos 𝑢(𝑡) =

√
1+𝑡2√

1+𝑡2+𝑡4 > 0, sin 𝑢(𝑡) = 𝑡2
√

1+𝑡2+𝑡4 ≥ 0,
cos 𝑣(𝑡) = 1√

1+𝑡2 > 0, sin 𝑣(𝑡) = 𝑡√
1+𝑡2 .

(3.10)

With the change of parameter 𝑡 = tan 𝜑 we have also:
Γ2 (𝜑) = 1√

cos2 𝜑+sin4 𝜑
(cos2 𝜑, sin 𝜑 cos 𝜑, sin2 𝜑),

𝜈(𝜑) = 1√
1+2 cos2 𝜑 sin2 𝜑

(sin2 𝜑,− sin 2𝜑, cos2 𝜑). (3.11)

We point out that Γ2 is not a Viviani curve being the intersection of the sphere 𝑆2 not with a cylinder but with the elliptic cone
𝐸𝐶 : 𝑥𝑧 = 𝑦2.

Moreover, the above spherical curves can be studied through the Veronese map:

𝑉 : 𝑆2 ⊂ R3 → 𝑆4 ⊂ R5, 𝑉 (𝑢, 𝑣, 𝑤) :=

(
√

3𝑣𝑤,
√

3𝑤𝑢,
√

3𝑢𝑣,
√

3
2

(𝑢2 − 𝑣2), 𝑤2 − 𝑢2 + 𝑣2

2

)
. (3.12)

Then: 
𝑉 ◦ Γ2 (𝑡) = 1

1+𝑡2+𝑡4

(√
3𝑡3,

√
3𝑡2,

√
3𝑡,

√
3

2 (1 − 𝑡2), 𝑡4 − 1+𝑡2

2

)
,

𝑉 ◦ 𝜈(𝑡) = 1
1+2𝑡2+𝑡4

(
−2

√
3𝑡,

√
3𝑡2,−2

√
3𝑡3,

√
3𝑡2

2 (𝑡2 − 4), 1 − 𝑡4+4𝑡2

2

)
.

(3.13)

An important remark is that the new curves, 𝑉 ◦ Γ2 and 𝑉 ◦ 𝜈, are not orthogonal in E6.
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An overview of complex boundary value problems
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ABSTRACT
In this overview we have pointed out some boundary value problems in a subset of complex plane. We start with Cauchy-Riemann
operator and their conjugates. Then we introduce the Cauchy- Riemann operator and its conjugate. Firstly, we introduce the
polyanalytic Pompeiu integral representation 𝑇 𝑓 and its conjugate which vanish at infinity. The basic polyanalytic Schwarz and
polyanalytic Dirichlet problems are introduced. The later part is devoted to polyanalytic problems and discussions on polyharmonic
problems. We have also summarized polyanalytic Neumann problem in the unit disk for 𝜕𝑧𝑤 = 𝑓 . In this case, we may have three
types of boundary value problems. Those are polyharmonic Dirichlet problem, polyharmonic Neumann problem and polyharmonic
Riquier (Navier) problem. In this later part we have given the iterated polyharmonic Green function.

Mathematics Subject Classification (2020): 30E25 35N15

Keywords: Dirichlet, Neumann, Riquier

1. INTRODUCTION

Our aim is to discuss some boundary value problems related to Dirichlet problems in C. This type of problems have started with
Riemann and later on modified by Hilbert. The problems have been investigated over many different domains in C, I.N. Vekua
(1962); H. Begehr (2025); Aksoy at al. (2025).

1.1. Model representations

For a complex partial differential equation the variables are 𝑧 and 𝑧 and the operators 𝜕�̄� and 𝜕𝑧 are known as Cauchy-Riemann
operator and its conjugate. One of the main theorems in complex form is given in the following result.

Theorem 1.1. (Gauss-Ostrogradskii theorem) In a regular domain 𝐷 ⊂ C, any function 𝑤 ∈ 𝐶 (𝐷;C) ∩ 𝐶1 (𝐷;C) satisfies the
following relations ∫

𝐷

𝑤 �̄� (𝑧) 𝑑𝑥𝑑𝑦 =
1
2𝑖

∫
𝜕𝐷

𝑤(𝑧) 𝑑𝑧 (1)∫
𝐷

𝑤𝑧 (𝑧) 𝑑𝑥𝑑𝑦 = − 1
2𝑖

∫
𝜕𝐷

𝑤(𝑧) 𝑑𝑧 . (2)

Now let us recall the Theorem 1.12 in I.N. Vekua (1962).

Theorem 1.2. Let 𝐷 be a bounded domain. If 𝑓 ∈ 𝐿1 (𝐷) then the integrals

𝑇 𝑓 = − 1
𝜋

∫
𝐷

𝑓 (𝜁)𝑑𝜉𝑑𝜂
𝜁 − 𝑧

𝑇 𝑓 = − 1
𝜋

∫
𝐷

𝑓 (𝜁)𝑑𝜉𝑑𝜂
𝜁 − 𝑧

exist for all points 𝑧 outside 𝐷, 𝑇 𝑓 and 𝑇 𝑓 are holomorphic outside 𝐷 with respect to 𝑧 and 𝑧, respectively, and vanish at infinity.
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𝑇 𝑓 is called Pompeiu integral for Cauchy-Riemann operator and it satisfies 𝜕�̄�𝑇 𝑓 = 𝑓 . This is a model equation for general first
order complex differential equation.

2. POLYANALYTIC SCHWARZ AND DIRICHLET PROBLEMS

The basic representation formula for differential operator 𝜕�̄� is given below.

Theorem 2.1. (Cauchy-Pompeiu integral representation)
Any function 𝑤 ∈ 𝐶 (�̄�;C) ∩ 𝐶1 (𝐷;C) can be represented in the form

𝑤(𝑧) = 1
2𝜋𝑖

∫
𝜕D

𝑤(𝜁) 𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
D

𝑤𝜁 (𝜁)
𝑑𝜉𝑑𝜂

𝜁 − 𝑧
, 𝜁 = 𝜉 + 𝑖𝜂 (3)

for 𝑧 ∉ 𝐷 the left-hand side must be replaced by 0.

Decomposing 𝜕𝑚�̄� 𝑤 = 𝑓 into a system of 𝑚 Cauchy-Riemann equations we end up with the polyanalytic Cauchy-Pompeiu
formula.

Theorem 2.2. (Polyanalytic Cauchy-Pompeiu Integral formula)
Any function 𝑤 ∈ 𝐶𝑚−1 (�̄�;C) ∩ 𝐶𝑚 (𝐷;C) can be represented in the form

𝑤(𝑧) =
𝑚−1∑︁
𝜇=0

1
2𝜋𝑖

∫
𝜕𝐷

(−1)𝜇 (𝜁 − 𝑧)𝜇
𝜇!(𝜁 − 𝑧) 𝜕

𝜇

𝜁
𝑤(𝜁)𝑑𝜉

− 1
𝜋

∫
𝐷

(−1)𝑚−1 (𝜁 − 𝑧)𝑚−1

(𝑚 − 1)!(𝜁 − 𝑧) 𝜕𝑚
𝜁
𝑤(𝜁)𝑑𝜉𝑑𝑧, 𝑧 ∈ 𝐷.

For 𝑧 ∉ �̄� the left-hand side must be replaced by 0 .

2.1. Polyanalytic Schwarz problem

We start with the unit disc D = {|𝑧 | < 1}. Then we have the following lemma for Schwarz problem.

Lemma 2.3. The Schwarz problem for the Cauchy-Riemann operator

𝜕𝑧𝑤 = 𝑓 in D, Re𝑤 = 𝛾 on 𝜕D, Im𝑤(0) = 𝑐,

𝑓 ∈ 𝐿𝑝 (D;C), 2 < 𝑝, 𝛾 ∈ 𝐶 (𝜕D;R), 𝑐 ∈ R,

is uniquely solvable by

𝑤(𝑧) = 𝑖𝑐 + 1
2𝜋𝑖

∫
𝜕D

𝛾(𝜁) 𝜁 + 𝑧

𝜁 − 𝑧

𝑑𝜁

𝜁

− 1
2𝜋

∫
D

[ 𝑓 (𝜁)
𝜁

𝜁 + 𝑧

𝜁 − 𝑧
+ 𝑓 (𝜁)

𝜁

1 + 𝑧𝜁

1 − 𝑧𝜁

]
𝑑𝜉𝑑𝜂.

Then we can give the Cauchy-Schwarz-Pompeiu representation for polyanalytic operators in D.

Theorem 2.4. (Cauchy-Schwarz-Pompeiu representation for the polyanalytic operator)
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Any 𝑤 ∈ 𝐶𝑚−1 (𝐷;C) ∩ 𝐶𝑚 (𝐷,C), 𝑚 ∈ N, is representable as

𝑤(𝑧) =

𝑚−1∑︁
𝜇=0

{
𝑖Im𝜕

𝜇

𝑧
𝑤(𝑧0)

𝜇!
(𝑧 − 𝑧0 + 𝑧 − 𝑧0)𝜇

+ (−1)𝜇
2𝜋𝑖𝜇!

∫
𝜕𝐷

Re𝜕𝜇

𝜁
𝑤(𝜁) (𝜁 − 𝑧 + 𝜁 − 𝑧)𝜇

×
[

𝜁 − 𝑧0
(𝜁 − 𝑧) (𝜁 − 𝑧0)

𝑑𝜁 +
(
ℎ1𝜁 (𝑧, 𝜁) −

1
𝜁 − 𝑧0

)
𝑑𝜁

]}
+ (−1)𝑚

2𝜋(𝑚 − 1)!

∫
𝐷

{
𝜕𝑚
𝜁
𝑤(𝜁)

[
𝜁 + 𝑧 − 2𝑧0

(𝜁 − 𝑧) (𝜁 − 𝑧0)
− ℎ1𝜁 (𝑧0, 𝜁)

]
−𝜕𝑚

𝜁
𝑤(𝜁)

[
2ℎ1𝜁 (𝑧, 𝜁) − ℎ1𝜁 (𝑧0, 𝜁) −

1
𝜁 − 𝑧0

]}
×(𝜁 − 𝑧 + 𝜁 − 𝑧)𝑚−1𝑑𝜉𝑑𝜂.

It is easy to observe that this formula is the solution of the polyanalytic problem

𝜕𝑚
𝑧
𝑤 = 𝑓 in D, 𝑓 ∈ 𝐿𝑝 (D;C), 2 < 𝑝,

Re𝜕𝜇

𝑧
𝑤 = 𝛾𝜇 on 𝜕D, 𝛾𝜇 ∈ 𝐶 (𝜕D;R), 0 ≤ 𝜇 ≤ 𝑚 − 1,

Im𝜕
𝜇

𝑧
𝑤(0) = 𝑐𝜇, 𝑐𝜇 ∈ R, 0 ≤ 𝜇 ≤ 𝑚 − 1.

This solution may also be represented in terms of Green function 𝐺 (𝑧, 𝜁). We should note that a domain 𝐷 whose Green function
𝐺1 (𝑧, 𝜁) is such that

ℎ1 (𝑧, 𝜁) = log |𝜁 − 𝑧 |2 + 𝐺1 (𝑧, 𝜁)

that satisfies for 𝜁 ∈ 𝜕𝐷, 𝑧 ∈ 𝐷,

Re
[ 𝑑𝜁

𝜁 − 𝑧
− ℎ1𝜁 (𝑧, 𝜁)𝑑𝜁

]
= 0.

2.2. Polyanalytic Dirichlet problem

Firstly let us state the solution of the inhomogeneous polyanalytic equation

𝜕𝑚
𝑧
𝑤 = 𝑓 in 𝐷, 𝑓 ∈ 𝐿𝑝 (𝐷;C), 2 < 𝑝,

satisfying the conditions

𝜕
𝜇

𝑧
𝑤 = 𝛾𝜇 on 𝜕𝐷, 𝛾𝜇 ∈ 𝐶 (𝜕𝐷;R), 0 ≤ 𝜇 ≤ 𝑚 − 1.

Now let us start the case 𝑚 = 1.

Lemma 2.5. For 𝑓 ∈ 𝐿𝑝 (𝐷;C), 2 < 𝑝, and 𝛾 ∈ 𝐶 (𝜕𝐷;C), the Dirichlet problem

𝑤𝑧 = 𝑓 in 𝐷, 𝑤 = 𝛾 on 𝜕𝐷,

is uniquely solvable and the solution is given by the formula

𝑤(𝑧) = 1
2𝜋𝑖

∫
𝜕𝐷

𝛾(𝜁) 𝑑𝜁

𝜁 − 𝑧
− 1

𝜋

∫
𝐷

𝑓 (𝜁) 𝑑𝜉𝑑𝜂
𝜁 − 𝑧

if and only if the following condition holds:
1

2𝜋𝑖

∫
𝜕𝐷

𝛾(𝜁)ℎ1𝜁 (𝑧, 𝜁)𝑑𝜁 =
1
𝜋

∫
𝐷

𝑓 (𝜁)ℎ1𝜁 (𝑧, 𝜁)𝑑𝜉𝑑𝜂 .

Theorem 2.6. The polyanalytic Dirichlet problem where 𝑓 ∈ 𝐿𝑝 (𝐷;C), 2 < 𝑝, 𝛾𝜇 ∈ 𝐶 (𝜕𝐷;C), 0 ≤ 𝜇 ≤ 𝑚 − 1, has the solution

𝑤(𝑧) =
𝑚−1∑︁
𝜇=0

1
2𝜋𝑖

∫
𝜕𝐷

(−1)𝜇 (𝜁 − 𝑧)𝜇
𝜇!(𝜁 − 𝑧) 𝛾𝜇 (𝜁)𝑑𝜁

− 1
𝜋

∫
𝐷

(−1)𝑚−1 (𝜁 − 𝑧)𝑚−1

(𝑚 − 1)!(𝜁 − 𝑧) 𝑓 (𝜁)𝑑𝜉𝑑𝜂
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if and only if 1
2𝜋𝑖

∫
𝜕𝐷

𝛾𝜇 (𝜁)𝜕𝜁 ℎ1 (𝑧, 𝜁)𝑑𝜁

+
𝑚−1∑︁
𝜈=𝜇+1

1
2𝜋𝑖

∫
𝜕𝐷

𝛾𝜈 (𝜁𝜈−𝜇+1)
( 1
𝜋

∫
𝐷

)𝜈−𝜇
𝜕𝜁1ℎ1 (𝑧, 𝜁1)

×
𝜈−𝜇∏
𝜆=1

𝑑𝜁𝜆𝑑𝜂𝜆

𝜁𝜆 − 𝜁𝜆+1
𝑑𝜁𝜈−𝜇+1

=
1
𝜋

∫
𝐷

𝑓 (𝜁𝑚−𝜇)
( 1
𝜋

∫
𝐷

)𝑚−𝜇−1
𝜕𝜁1ℎ1 (𝑧, 𝜁1)

×
𝑚−𝜇−1∏
𝜆=1

𝑑𝜉𝜆𝑑𝜂𝜆

𝜁𝜆 − 𝜁𝜆+1
𝑑𝜉𝑚−𝜇𝑑𝜂𝑚−𝜇 for 0 ≤ 𝜇 ≤ 𝑚 − 1

holds.

3. POLYANALYTIC NEUMANN-N PROBLEM IN THE UNIT DISK

Neumann boundary value problem demands to find functions with prescribed behaviour of its normal derivative on the boundary.
The problem is not a well-posed problem. But it is solvable under solvability conditions. For 𝑛 = 1 the statement of the problem
may be reduced to Dirichlet problem. For 1 < 𝑛 then we employ an iteration for Cauchy-Riemann equation.

Theorem 3.1. The iterated Neumann-n problem for the polyanalytic operator in the unit disk D The iterated Neumann-n problem
for the polyanalytic operator in the unit disk D

𝜕𝑛�̄� 𝑤 = 𝑓 in D, 𝜕𝜈𝜕
𝜇

�̄�
𝑤 = 𝛾𝜇 on 𝜕D, 𝜕𝜇

�̄�
𝑤(0) = 𝑐𝜇, 0 ≤ 𝜇 ≤ 𝑛 − 1

for 𝑓 ∈ 𝐶𝛼 (D;C), 0 < 𝛼 < 1, 𝛾𝜇 ∈ 𝐶 (𝜕D;C), 𝑐𝜇 ∈ C, is uniquely solvable if and only if for any 𝜇, 0 ≤ 𝜇 ≤ 𝑛 − 1,
𝑛−1∑︁
𝜚=𝜇

1
2𝜋𝑖

∫
𝜕D

𝛾𝜚 (𝜁)
(−1) 𝜚−𝜇
(𝜚 − 𝜇)!

(𝜁 − 𝑧) 𝜚−𝜇
1 − 𝑧𝜁

d𝜁
𝜁

+ 1
2𝜋𝑖

∫
𝜕D

𝑓 (𝜁) (−1)𝑛−1−𝜇

(𝑛 − 1 − 𝜇)!
(𝜁 − 𝑧)𝑛−1−𝜇

1 − 𝑧𝜁
d𝜁

+ 𝑧

𝜋

∫
D
𝑓 (𝜁) (−1)𝑛−1−𝜇

(𝑛 − 1 − 𝜇)!
(𝜁 − 𝑧)𝑛−1−𝜇

(1 − 𝑧𝜁)2 d𝜉 d𝜂 = 0 (1)

are satisfied. The solution then is

𝑤(𝑧) =
𝑛−1∑︁
𝜇=0

[
𝑐𝜇

𝜇!
𝑧𝜇 − 1

2𝜋𝑖

∫
𝜕D

𝛾𝜇 (𝜁)
(−1)𝜇
𝜇!

(𝜁 − 𝑧)𝜇 log(1 − 𝑧𝜁) d𝜁
𝜁

]
− 1

2𝜋𝑖

∫
𝜕D

𝑓 (𝜁) (−1)𝑛−1

(𝑛 − 1)! (𝜁 − 𝑧)𝑛−1 log(1 − 𝑧𝜁)d𝜁

− 𝑧

𝜋

∫
D
𝑓 (𝜁) (−1)𝑛−1

(𝑛 − 1)!
(𝜁 − 𝑧)𝑛−1

𝜁 (𝜁 − 𝑧) d𝜉 d𝜂. (2)

4. POLYHARMONIC PROBLEMS

The poly-Poisson equation of order 𝑛

(𝜕𝑧𝜕𝑧)𝑛𝑤 = 𝑓 in 𝐷.

will assume different names depending on its boundary conditions

(i) If the boundary condition is

𝜕
𝜇
𝜈 𝑤 = 𝛾𝜇, 0 ≤ 𝜇 ≤ 𝑛 − 1, on 𝜕𝐷,

we get the the classical polyharmonic Dirichlet problem.
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(ii) If

𝜕
𝜇
𝜈 𝑤 = 𝛾𝜇, 1 ≤ 𝜇 ≤ 𝑛, on 𝜕𝐷,

we get the the polyharmonic Neumann problem.
(iii) If

(𝜕𝑧𝜕𝑧)𝜇𝑤 = 𝛾𝜇, 0 ≤ 𝜇 ≤ 𝑛 − 1, on 𝜕𝐷,

we get the the polyharmonic Riquier (Navier) problem.

We may also present the following boundary value problems for the polyharmonic 𝑛-Poisson equation:
Problem I

𝜕𝜈 (𝜕𝑧𝜕𝑧)𝜇𝑤 = 𝛾𝜇, 0 ≤ 𝜇 ≤ 𝑛 − 1, on 𝜕𝐷,

Problem II

(𝜕𝑧𝜕𝑧)𝜇𝑤 = 𝛾0𝜇, 0 ≤ 2𝜇 ≤ 𝑛 − 1,

𝜕𝜈 (𝜕𝑧𝜕𝑧)𝜇𝑤 = 𝛾1𝜇, 0 ≤ 2𝜇 ≤ 𝑛 − 2, on 𝜕𝐷.

4.1. Iterated polyharmonic Green functions

We rewrite the 𝑛-Poisson equation with the Riquier conditions which we can decompose it into Dirichlet problems for the Poisson
equation

𝜕𝑧𝜕𝑧𝑤𝜇 = 𝑤𝜇+1 in 𝐷, 𝑤𝜇 = 𝛾𝜇 on 𝜕𝐷, 0 ≤ 𝜇 ≤ 𝑛 − 1.

Naturally we assume 𝑤0 = 𝑤 and 𝑤𝑛 = 𝑓 . Using iteration technique we start with solutions

𝑤𝜇 (𝑧) = − 1
4𝜋

∫
𝜕𝐷

𝛾𝜇 (𝜁)𝜕𝜈𝜁𝐺1 (𝑧, 𝜁)𝑑𝑠𝜁 − 1
𝜋

∫
𝐷

𝑤𝜇+1 (𝜁)𝐺1 (𝑧, 𝜁)𝑑𝜉𝑑𝜂,

and find

𝑤(𝑧) = − 1
4𝜋

𝑛−1∑︁
𝜇=0

∫
𝜕𝐷

𝛾𝜇 (𝜁)𝜕𝜈𝜁𝐺𝜇+1 (𝑧, 𝜁)𝑑𝑠𝜁 − 1
𝜋

∫
𝐷

𝑓 (𝜁)𝐺𝑛 (𝑧, 𝜁)𝑑𝜉𝑑𝜂

where

𝐺𝜇 (𝑧, 𝜁) = − 1
𝜋

∫
𝐷

𝐺1 (𝑧, 𝜁)𝐺𝜇−1 (𝜁, 𝜁)𝑑𝜉𝑑𝜂, 2 ≤ 𝜇 ≤ 𝑛.

Thus we have obtained the following theorem.

Theorem 4.1. If 𝑓 ∈ 𝐿𝑝 (𝐷;C), 2 < 𝑝, 𝛾𝜇 ∈ 𝐶0,𝛼 (𝜕𝐷;C), 0 < 𝛼 < 1, then the Riquier boundary value problem

(𝜕𝑧𝜕𝑧)𝑛𝑤 = 𝑓 in 𝐷,

(𝜕𝑧𝜕𝑧)𝜇𝑤 = 𝛾𝜇 on 𝜕𝐷, 0 ≤ 𝜇 ≤ 𝑛 − 1,

is uniquely solvable and its solution has the form

𝑤(𝑧) = − 1
4𝜋

∫
𝜕𝐷

𝑛−1∑︁
𝜇=0

𝜕𝜈𝑧𝐺𝜇+1 (𝑧, 𝜁)𝛾𝜇 (𝜁)𝑑𝑠𝜁 − 1
𝜋

∫
𝐷

𝐺𝑛 (𝑧, 𝜁) 𝑓 (𝜁)𝑑𝜉𝑑𝜂.

The iterated polyharmonic Green function 𝐺𝑛 (𝑧, 𝜁) has the following properties

• 𝐺𝑛 ( · , 𝜁) is polyharmonic of order 𝑛 in 𝐷\{𝜁 },

• 𝐺𝑛 (𝑧, 𝜁) +
|𝜁 − 𝑧 |2(𝑛−1)

(𝑛 − 1)!2 log |𝜁 − 𝑧 |2 is polyharmonic of order 𝑛 for 𝑧 ∈ 𝐷, 𝜁 ∈ 𝐷,

• (𝜕𝑧𝜕𝑧)𝜇𝐺𝑛 (𝑧, 𝜁) = 0 for 0 ≤ 𝜇 ≤ 𝑛 − 1 and 𝑧 ∈ 𝜕𝐷, 𝜁 ∈ 𝐷.

• 𝐺𝑛 (𝑧, 𝜁) = 𝐺𝑛 (𝜁, 𝑧) for 𝑧, 𝜁 ∈ 𝐷, 𝑧 ≠ 𝜁,

• (𝜕𝑧𝜕𝑧)𝐺𝑛 (𝑧, 𝜁) = 𝐺𝑛−1 (𝑧, 𝜁) in 𝐷

• For any 𝜁 ∈ 𝐷, 𝐺𝑛 (𝑧, 𝜁) = 0 on 𝜕𝐷.
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