Ankara Üniversitesi Tıp Fakültesi Mecmuası

JOURNAL of ANKARA UNIVERSITY FACULTY OF MEDICINE

E-ISSN: 1307-5608

https://dergipark.org.tr/en/pub/autfm

Volume: 78 Issue: 3 September 2025

Journal of Ankara University Faculty of Medicine

Ankara Üniversitesi Tıp Fakültesi Mecmuası

Owner President - On behalf of Journal of Ankara University Faculty of Medicine

Prof. Dr. Zehra Aycan

Dean of Ankara University Faculty of Medicine, Ankara, Türkiye

ORCID ID: 0000-0003-4584-2976 E-mail: zaycan@ankara.edu.tr

Editorial Manager

Prof. Neriman Defne Altıntaş

Ankara University Faculty of Medicine, Department of Internal Medicine,

Division

of Intensive Care, Ankara, Türkiye

Editor-in-Chief

Prof. Neriman Defne Altınta:

Ankara University Faculty of Medicine, Department of Internal Medicine,

Division of Intensive Care, Ankara, Türkiye ORCID ID: 0000-0002-7885-8942

E-mail: defne98hac@yahoo.com

Associate Editors (In alphabetical order)

Assoc. Prof. Ayşegül Gürsoy Çoruh

Ankara University Faculty of Medicine, Department of Radiology, Ankara,

Türkiye

ORCID ID: 0000-0002-8638-8688 E-mail: draysegulgursoy@gmail.com

Asst. Prof. Ali Can Kurtipek

Ankara University Faculty of Medicine, Department of Internal Medicine,

Ankara, Türkiye

ORCID ID: 0000-0002-3504-7402 E-mail: ackurtipek@ankara.edu.tr

Prof. Berk Burgu

Ankara University Faculty of Medicine, Department of Urology, Division of

Pediatric Urology, Ankara, Türkiye ORCID ID: 0000-0003-1546-1179 E-mail: Berkburgu@gmail.com

Asst. Prof. Cemal Koçak

Ankara University Faculty of Medicine, Department of Internal Medicine,

Ankara, Türkiye

ORCID ID: 0000-0003-4799-5669 E-mail: ckocak@ankara.edu.tr Prof. Mine Havrive Sorgun

Ankara University Faculty of Medicine, Department of Neurology, Ankara,

Türkiye

ORCID ID: 0000-0003-2370-7319 E-mail: mhsorgun@ankara.edu.tr

Prof. Nihal Apaydın

Ankara University Faculty of Medicine, Department of Anatomy, Ankara,

Türkiye

ORCID ID: 0000-0002-7680-1766 E-mail: napaydin@gmail.com

Prof. Zeynep Ceren Karahan

Ankara University Faculty of Medicine, Department of Medical Microbio-

logy, Ankara, Türkiye

ORCID ID: 0000-0001-7727-3363

E-mail: ckarahan@medicine.ankara.edu.tr

Previous Editors

Prof. Çetin Erol

Ankara University Faculty of Medicine, Department of Cardiology, Anka-

ra, Türkiye

ORCID ID: 0000-0001-7396-3818 E-mail: cerol@medicine.ankara.edu.tr

Prof. Aydın Yağmurlu

Ankara University Faculty of Medicine, Department of Surgical Medical

Sciences, Division of Pediatric Surgery, Ankara, Türkiye

ORCID ID: 0000-0002-3294-4482

E-mail: eayagmur@medicine.ankara.edu.tr

Prof. K. Osman Memikoğlu

Ankara University Faculty of Medicine, Department of Clinical Microbio-

logy and Infectious Diseases, Ankara, Türkiye

ORCID ID: 0000-0001-7206-3552 E-mail: memikoglu@ankara.edu.tr

Journal of Ankara University Faculty of Medicine is an official journal of the Ankara University Faculty of Medicine. Ankara Üniversitesi Tıp Fakültesi Mecmuası, Ankara Üniversitesi Tıp Fakültesi'nin resmi yayın organıdır.

Publisher/Yayınevi: Ankara Üniversitesi Yayınevi

Address/Adres: Ankara Üniversitesi, Beşevler 10. Yıl Yerleşkesi, Uluslararası Merkez Binası, Emniyet

Mahallesi 06100 Yenimahalle/Ankara

Cover Design/ Kapak Tasarımı: Ankara Üniversitesi Tıp Fakültesi Basın Yayın Birimi

Phone/Telefon: +90 (312) 212 60 40 (Dahili: 2438)

E-mail/E-posta: yayinevi@ankara.edu.tr Web: https://yayinevi.ankara.edu.tr

Publisher Certificate Number/Yayıncı Sertifika No: 74300 Publishing Date/Yayın Tarihi: September 2025 / Eylül 2025

E-ISSN: 1307-5608

International scientific journal published quarterly.

Üç ayda bir yayımlanan süreli yayındır.

Faculty of Medicine Ankara Üniversitesi Tıp Fakültesi Mecmuası

Please refer to the journal's webpage (https://dergipark.org.tr/en/pub/autfm) for "Aims and Scope", "Instructions to Authors" and "Ethical Policy".

The editorial and publication process of Journal of Ankara University Faculty of Medicine are shaped in accordance with the guidelines of ICMJE, WAME, CSE, COPE, EASE, and NISO. The journal is in conformity with the Principles of Transparency and Best Practice in Scholarly Publishing.

Journal of Ankara University Faculty of Medicine is indexed in Tübitak/Ulakbim TR Dizin, EBSCO (Central & Eastern European Academic Source), Gale, ProQuest, CABI, IdealOnline, J-GATE, Hinari, GOALI, ARDI, OARE, AGORA, Türk Medline, Embase and Türkiye Atıf Dizini.

The journal is published electronically.

Owner: Zehra Aycan on behalf of Journal of Ankara University Faculty of Medicine

Chief Editor: Neriman Defne Altıntaş

Journal of Ankara University Faculty of Medicine

Ankara Üniversitesi Tıp Fakültesi Mecmuası

CONTENTS / İÇİNDEKİLER

Research Articles / Özgün Makaleler

Evaluation of Pediatricians' Awareness, Knowledge, and Attitudes Toward Avoidant/Restrictive Food Intake Disorder

Pediatristlerin Kaçıngan Kısıtlayıcı Gıda Alım Bozukluğu Hakkındaki Farkındalık, Bilgi ve Tutumlarının Değerlendirilmesi
Ayşe Gül Güven, Serçin Taşar, Deniz Güven, Simay Mirioğlu, Cemal Koçak, Zehra Aycan

167

Determinants of ICU Outcomes in Fully Active Patients Before Critical Illness

Kritik Hastalık Öncesi Performans Durumu Tam Aktif Bireylerin Yoğun Bakım Sonuçlarına Etki Eden Faktörlerinin Değerlendirilmesi 177

Nazlıhan Boyacı Dündar, Kamil İnci, Büşra Tüfekçi, Gülbin Aygencel, Melda Türkoğlu

Predictive Performance of Admission Hematological Parameters for Adverse Clinical Outcomes in Acute Cholangitis

Akut Kolanjit Hastalarında Olumsuz Klinik Sonuçları Öngörmede Başvuru Hematolojik Parametrelerinin Tahmin Gücü Mustafa Çomoğlu, Emin Altıparmak, Hüseyin Çamlı, İhsan Ateş 187

Diagnostic Utility of PRAME in Differentiating Melanocytic Lesions, Especially Spitzoid Tumors

Akut Kolanjit Hastalarında Olumsuz Klinik Sonuçları Öngörmede Başvuru Hematolojik Parametrelerinin Tahmin Gücü Zarifa Gahramanli, Aylin Okcu Heper, Ayça Kırmızı 199

Evaluation of Toxoplasmosis Serology Results and Test Request Dynamics in Ankara University Medical Faculty Hospitals

Ankara Üniversitesi Tıp Fakültesi Hastanelerinde Toksoplazmoz Seroloji Sonuçlarının ve Test İsteme Dinamiklerinin Değerlendirilmesi **207** Özlem Ulusan Bağcı, Rabia Önder, Gülay Aral Akarsu

Impact of Obesity and Prognostic Nutritional Index on Outcomes of Ventricular Tachycardia Ablation in Patients with Structural Heart Disease

Yapısal Kalp Hastalığı Olan Hastalarda Ventriküler Taşikardi Ablasyonunun Sonuçları Üzerinde Obezite ve Prognostik Beslenme

217

Emir Baskovski, Ömer Akyurek, Timuçin Altın, Mahmut Ekrem Cünetoğlu

Patterns of Organ Involvement and Mortality in Extrapulmonary Tuberculosis: A Twelve-Year Retrospective Study

Tüberkülozda Organ Tutulum ve Mortalite Modelleri: On İki Yıllık Retrospektif Çalışma Halime Araz, Saliha Kazcı, Fatma Eser, Adalet Altunsoy

227

Desmopressin, Alarm, or Both? Evaluating Efficacy and Relapse in Children with Primary Monosymptomatic Nocturnal Enuresis

Primer Monosemptomatik Enürezis Nokturna'da Alarm Cihazı, Desmopressin ve Kombinasyon Tedavisinin Etkinliğinin Karsılastırılması

239

Aykut Akıncı, Murat Can Karaburun

Post-ERCP Pancreatitis and Serum Asprosin: A Potential Marker Associated with Beta Cell Damage

ERCP Sonrası Pankreatit ve Serum Asprosini: Beta Hücre Hasarı ile İlişkili Potansiyel Bir Belirteç

245

Oğuzhan Zengin, Burak Göre, Oğuz Öztürk, Özge Doğanay, Abdullah Köse, Ali Can Kurtipek, Esma Andaç Uzdoğan, Feyza Yıldırım, Emra Asfuroğlu Kalkan, İhsan Ateş

Review / Derleme

Decoding Autism: The Role of Synaptic Dysfunction in Neurodevelopment

Otizmin Şifresini Çözmek: Nörogelişimde Sinaptik Disfonksiyonun Rolü

259

Filiz Çetinkaya, Duygu Bandırmalı, Güvem Gümüş-Akay

Evaluation of Pediatricians' Awareness, Knowledge, and Attitudes Toward Avoidant/Restrictive Food Intake Disorder

Pediatristlerin Kaçıngan Kısıtlayıcı Gıda Alım Bozukluğu Hakkındaki Farkındalık, Bilgi ve Tutumlarının Değerlendirilmesi

1 Division of Adolescent Medicine, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Turkey
2 Department of Pediatrics, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
3 Department of Pediatrics, Etlik City Hospital, University of Health Sciences, Ankara, Turkey
4 Ankara University, Graduate School of Health Sciences, Ankara, Turkey
5 Department of Public Health, Faculty of Medicine, Ankara University, Ankara, Turkey

ABSTRACT

Objective: Despite the inclusion of Avoidant/Restrictive Food Intake Disorder (ARFID) in the DSM-5 in 2013, there is limited research assessing physicians' awareness and knowledge of the disorder. This study aimed to evaluate pediatricians' knowledge, awareness, clinical experience, and referral practices related to ARFID.

Materials and Methods: This cross-sectional study was conducted with 216 pediatricians (specialists and residents) working in three major hospitals in Ankara, Türkiye. Data were collected using an original, literature-based questionnaire developed by the researchers.

Results: Among participants, 28.5% correctly identified the expanded form of ARFID, and 38% recognized it as a DSM-5-defined eating disorder. A total of 52.3% misclassified body image disturbance as a subtype of ARFID, suggesting a conceptual overlap with anorexia nervosa. While 34.9% reported encountering ARFID cases in their clinical practice, 29.8% had referred such patients to other healthcare professionals. The most commonly reported referral disciplines were child and adolescent psychiatry, pediatric gastroenterology, and dietetics. Only 4.3% of respondents reported feeling competent in managing ARFID, while 90.7% expressed a need for further education and training.

Conclusion: The findings highlight significant gaps in pediatricians' knowledge and clinical management of ARFID. The development of structured guidelines, standardized diagnostic tools, and targeted training programs is warranted to improve early identification and multidisciplinary management of ARFID in pediatric settings

Keywords: Avoidant/Restrictive food intake disorder, awareness, pediatricians

ÖZET

Amaç: Kaçıngan/Kısıtlayıcı Gıda Alım Bozukluğu (ARFID), DSM-5'te 2013'de tanımlanmasına rağmen hekimlerin bu konu hakkındaki farkındalık ve bilgi seviyesi literatürde yeteri kadar çalışılmamıştır. Bu çalışma, pediatri hekimlerinin ARFID'e ilişkin bilgi düzeyini, farkındalığını, klinik deneyimlerini ve yönlendirme davranışlarını değerlendirmeyi amaçlamaktadır.

Gereç ve yöntem: Ankara'daki üç büyük hastanede görev yapan 216 pediatri uzmanı ve asistanıyla yürütülen bu kesitsel araştırmada, veri toplama aracı olarak literatüre dayalı özgün bir anket formu kullanılmıştır.

Bulgular: Çalışmaya katılan pediatristlerin %28,5'i ARFID'nin açılımını bildiğini, %38'i ise bu bozukluğun DSM-5'te tanımlı olduğunu ifade etmiştir. Ayrıca, %52,3'lük bir kısmı beden algısı bozukluğunu ARFID alt tipi olarak belirtmiş, bu da anoreksiya nervoza ile kavramsal karışıklık yaşandığını göstermektedir. Katılımcıların %34,9'u mesleki yaşamlarında ARFID olgusu ile karşılaştığını, %29,8'i ise bu grup hastayı başka bir uzmana yönlendirdiğini ifade etmiştir. En sık yönlendirilen disiplinler çocuk ve ergen psikiyatrisi, pediatrik gastroenteroloji ve diyetisyenlik olmuştur. Hekimlerin yalnızca %4,3'ü ARFID yönetiminde kendini yetkin hissettiğini ifade etmiş, %90,7'si ise bu konuda ek eğitim ihtiyacı olduğunu belirtmiştir.

Sonuç: Bu çalışmada pediatristlerin ARFID'e yönelik bilgi düzeyi, tanı süreci ve yönlendirme uygulamalarında yetersizlikler olduğu bulunmuştur. Bu bağlamda yapılandırılmış rehberlerin, tanısal araçların ve hedefe yönelik eğitim programlarının geliştirilmesinin pediatri hasta bakım uygulamalarına katkı sağlayabileceğini düşünmekteyiz.

Anahtar kelimeler: Kaçıngan/kısıtlayıcı gıda alım bozukluğu, farkındalık, pediatristler

Corresponding author: Ayşe Gül Güven

Division of Adolescent Medicine, Department of Pediatrics, Faculty of Medicine, Ankara University, 06590, Ankara, Turkey

E-mail: aysegulguven1@gmail.com ORCID ID: orcid.org/0000-0003-3129-4315

Received: 24.06.2025 Accepted: 23.07.2025 Publication Date: 30.09.2025

Cite this article as: Güven, A.G., Taşar, S., Güven, D., et al. Evaluation of pediatricians' awareness, knowledge, and attitudes toward avoidant/restrictive food intake disorder. J Ankara Univ Fac Med. 2025;78(3):167-176.

Introduction

Avoidant/Restrictive Food Intake Disorder (ARFID) is an eating disorder first introduced in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) in 2013 (1). According to the DSM-5 criteria, ARFID is characterized by a persistent restriction of food intake due to low appetite, sensory sensitivities, or fear-based aversions stemming from negative eating experiences. This restrictive intake can result in significant weight loss, faltering growth, nutritional deficiencies, dependence on enteral or oral nutritional supplementation, and marked impairment in psychosocial functioning (1,2,3). Unlike anorexia nervosa (AN) or bulimia nervosa (BN), AR-FID is not associated with body image disturbances, which may lead to underrecognition or misdiagnosis in clinical settings (4).

Individuals with ARFID often present with comorbid psychiatric conditions such as anxiety disorders, mood disorders, or substance use, alongside nutritional deficiencies severe enough to impact growth and development (5). Although data have been collected from both community and clinical samples, the prevalence and clinical characteristics of ARFID remain insufficiently explored in the literature, partly due to the recency of its inclusion in the DSM-5 (6).

Limited awareness of ARFID among pediatricians may contribute to delays in diagnosis and intervention (3,7). Given the relatively high prevalence of feeding difficulties and psychiatric comorbidities in both community and pediatric healthcare settings, it is likely that pediatric healthcare professionals encounter individuals with ARFID in routine clinical practice. Notably, an international expert consensus on eating disorders reported that individuals with ARFID frequently present to non-psychiatric medical services, underscoring the importance of cross-disciplinary awareness among healthcare providers who may encounter this population (3,7,9).

Since the inclusion of Avoidant/Restrictive Food Intake Disorder (ARFID) in the DSM-5, awareness among healthcare professionals has increased; however, significant gaps in knowledge and clinical experience regarding diagnosis and management persist

(4,10). In a study conducted in Canada by Coelho et al.(10), only 37% of pediatric healthcare professionals were able to fully identify the DSM-5 diagnostic criteria for ARFID. Moreover, marked inconsistencies in diagnostic practices were observed when participants were presented with clinical vignettes. Similarly, Harrison (2) reported that primary care providers in the United Kingdom experienced difficulty recognizing ARFID in children, and even when a diagnosis was made, there was often insufficient knowledge regarding appropriate referral pathways. Healthcare professionals in that study identified the absence of a specific treatment protocol and referral framework for ARFID as a systemic barrier (2,11).

The lack of standardized clinical guidelines for the management of ARFID remains a critical issue (5,12) A physician survey conducted in the United States revealed considerable variation in inpatient treatment protocols for ARFID cases, with many clinicians applying anorexia nervosa—based protocols. Due to the absence of ARFID-specific treatment pathways, providers reported challenges in developing appropriate management plans (5). These findings underscore the need for enhanced training for healthcare professionals to differentiate ARFID from other eating disorders and to implement tailored management strategies (13).

The diagnosis of Avoidant/Restrictive Food Intake Disorder (ARFID) in childhood and adolescence is closely linked to the knowledge and awareness levels of pediatricians (6,10,14). In Türkiye, there is currently no awareness study specifically targeting pediatricians in relation to ARFID. This study aims to assess the knowledge, attitudes, and awareness levels of pediatric healthcare professionals regarding ARFID and to contribute to the existing body of literature in this field (15).

Methods

Participants and Sampling

This cross-sectional study was conducted among pediatricians and pediatric residents working in the pediatric clinics of three major hospitals in Ankara, each serving diverse patient populations. A conve-

nience sampling method was used. Inclusion criteria were: being an actively practicing pediatrician or pediatric resident providing outpatient or inpatient care in any pediatric unit, and willingness to participate voluntarily. Since there was no existing validated scale for ARFID awareness targeting pediatricians and the questionnaire was developed specifically for this study, the sample size calculation assumed a prevalence of 50%. Using the G*Power 3.1 software, with 50% prevalence, 95% power, and a Type I error rate (α) of 0.05, a minimum of 48 participants per hospital was required to detect a medium effect size (0.5). The study aimed to reach the maximum number of pediatricians and residents across different hospitals to ensure diversity in professional background and institutional settings, thereby increasing the representativeness of the sample. Data were collected using an online and paper-based questionnaire developed by the researchers, informed by prior studies in the literature. A total of 216 pediatricians who completed the questionnaire in full were included in the analysis.

The survey form consisted of four main components: (1) demographic questions; (2) items assessing participants' knowledge of the definition and subtypes of ARFID; (3) questions evaluating clinical diagnostic and referral behaviors; and (4) open-ended qualitative questions exploring participants' educational needs, diagnostic challenges, and referral practices. The content and clarity of the questionnaire were evaluated through a pilot test conducted with 10 pediatricians working in clinical settings, and necessary modifications were made based on their feedback.

Participants were informed about the study's purpose, the voluntary nature of participation, and confidentiality principles. Written informed consent was obtained prior to participation. Each participant was permitted to complete the survey only once, and all responses were collected anonymously. The survey link and study information were distributed through professional communication platforms (e.g., WhatsApp, email, social media) and via pediatricians who were co-authors of the study. Participation in

the survey was entirely voluntary. The online format was preferred to enhance participant accessibility, reduce response time, and improve data collection efficiency.

Data Analysis and Statistical Evaluation

Data were analyzed using IBM SPSS Statistics for Windows, Version 30.0. Descriptive statistics, including mean, standard deviation, median, minimum, maximum, frequency, and percentage, were calculated. Chi-square tests were used to compare categorical variables according to independent factors. A p-value of less than 0.05 was considered statistically significant.

Results

A total of 216 pediatricians participated in this study, of whom 170 (78.7%) were female and 46 (21.3%) were male. The participants included 133 (61.6%) pediatric residents (specialty trainees), 33 (15.3%) general pediatric specialists, 31 (14.4%) pediatric subspecialty residents, and 19 (8.7%) pediatric subspecialists. The mean age of participants was 32.6 \pm 6.4 years (range: 23–55), and the mean duration of pediatric clinical experience was 5.8 \pm 5.9 years (range: 0.4–26). On average, participants reported seeing 495.4 \pm 398.9 patients per month (range: 17–2500). A total of 154 participants (71.3%) were working in institutions with a dedicated adolescent health unit.

Awareness, Knowledge, and Attitudes of Pediatricians Regarding ARFID

The awareness and knowledge levels of pediatricians regarding ARFID are summarized in Table 1. Prior to reading the study title, only 61 participants (28.5%) reported that they knew the full term for ARFID. While 82 participants (38.0%) recognized ARFID as a DSM-5-defined eating disorder, 127 (58.8%) stated they were uncertain. Regarding subtypes of ARFID, 157 (72.7%) identified "food-related fears," 135 (62.5%) identified "lack of interest in eating," and 113 (52.3%) incorrectly identified "body image disturbance" as a subtype, indicating a potential conceptual confusion with anorexia nervosa.

	n	%
Were you familiar with the term "ARFID" before reading the title of th	is study?	
Yes	61	28.5
No	155	71.5
Is ARFID a diagnosis included in the DSM-5?		
Yes	82	38.0
No	7	3.2
Not Sure	127	58.8
Which of the following are diagnostic presentations of ARFID accord	ing to DSM-5?[Multiple resp	onses allowe
Avoidance based on the sensory characteristics of food	109	50.5
Apparent lack of interest in eating or food	135	62.5
Body image disturbance	113	52.3
Concern about aversive consequences of eating	157	72.7
Are you aware of common psychiatric and developmental comorbidi	ties of ARFID?	
Yes (anxiety disorders, autism spectrum disorder, ADHD)	153	70.8
No	61	28.2
ARFID may present with diminished appetite or disinterest in eating.		
Yes	185	85.6
No	1	0.5
I am not familiar	30	13.9
ARFID may involve avoidance of food due to sensory sensitivities.		
Yes	178	82.4
No	7	3.2
I am not familiar	31	14.4
ARFID may develop following fear of negative consequences related	to eating.	
Yes	167	77.3
No	8	3.7
I am not familiar	41	19.0
ARFID may result in significant weight loss or failure to achieve expe	cted weight gain.	
Yes	179	82.9
No	4	1.9
I am not familiar	33	15.3
ARFID may lead to nutritional deficiencies requiring oral supplement	ts or enteral feeding.	
Yes	160	74.1
No	9	4.2
I am not familiar	47	21.8
ARFID can cause marked psychosocial impairment.		
Yes	178	82.4
No	4	1.9

I am not familiar	34	15.7
Restrictive eating in ARFID cannot be better explained by a medical condition vailability.	, cultural practio	ce, or food una-
Yes	120	56.1
No	38	17.8
I am not familiar	56	26.1
Individuals with ARFID fear gaining weight.		
Yes	98	45.6
No	57	26.5
I am not familiar	60	27.9
Have you ever diagnosed or suspected ARFID in your clinical practice?		
Yes	75	34.9
No	140	65.1
Have you ever referred a patient suspected of ARFID to another specialty?		
Yes	64	29.8
No	151	70.2
Which specialties do you referr to? [Multiple responses allowed]		
Child and Adolescent Psychiatry	117	54.2
Pediatric Gastroenterology	99	45.8
Nutrition and Dietetics	98	45.4
I don't reffer	78	36.1
Other (e.g., Adolescent Health, Occupational Therapy, Developmental Pediatrics)	9	4.2
How competent do you feel in diagnosing and managing ARFID?		
Not competent at all	86	41.0
Slightly competent	85	40.5
Moderately competent	30	14.3
Quite/Very competent	9	4.3
Have you ever received any formal education or training on ARFID?		
Yes	14	6.5
No	202	93.5
Do you think pediatricians need additional training regarding ARFID?		
Yes	195	90.7
No	20	9.3
Would you participate in ARFID-related training if offered?		
Yes	186	87.3
No	27	12.7

n = frequency; % = percentage of respondents.

Awareness of Clinical Features and Referral Practices Related to ARFID

When asked about their awareness of the clinical characteristics of Avoidant/Restrictive Food Intake Disorder (ARFID), 178 participants (82.9%) indicated that ARFID could lead to weight loss or faltering growth in children. Additionally, 160 participants (74.1%) acknowledged that ARFID may result in significant nutritional deficiencies requiring oral supplements or tube feeding. A total of 185 respondents (85.6%) reported that loss of appetite could be a presenting feature of ARFID, 178 (82.4%) mentioned avoidance due to sensory sensitivities, and 167 (77.3%) cited fear of adverse eating consequences (e.g., choking or vomiting) as possible manifestations.

In contrast, 98 participants (45.6%) incorrectly stated that individuals with ARFID experience a fear of gaining weight. Furthermore, 120 participants (56.1%) correctly noted that the food restriction seen in ARFID cannot be attributed to medical conditions, cultural practices, or limited access to food.

Pediatricians' clinical experience with ARFID and their referral behaviors are presented in Table 1. Of the respondents, 75 (34.9%) reported having diagnosed or suspected a case of ARFID during their professional practice. Additionally, 64 participants (29.8%) had referred such patients to other specialists. The most frequently reported referral destinations were child and adolescent psychiatry (117; 54.2%), pediatric gastroenterology (99; 45.8%), and dietetics (98; 45.4%). Nine respondents (4.2%) selected "other" as the referral category, specifying adolescent health, occupational therapy, and developmental pediatrics as relevant fields.

Pediatricians' perceived competence in ARFID management and their educational background are also summarized in Table 1. Only 9 participants (4.3%) reported feeling "very competent" or "quite competent" in diagnosing and managing ARFID, whereas 86 (41.0%) stated they did not feel competent at all, and 85 (40.5%) reported feeling minimally competent. A total of 14 respondents (6.5%) had previously received any formal training on ARFID. However, 195 participants (90.7%) believed that pediatricians need

additional training on the topic, and 186 (87.3%) expressed willingness to attend such training if offered.

The comparison of pediatricians' knowledge levels regarding ARFID based on their professional titles is presented in Table 2. Pediatric subspecialists demonstrated significantly higher rates of correct responses regarding core clinical criteria of ARFID, such as weight loss and nutritional deficiencies, compared to other groups (p < 0.05). They also reported the highest perceived competence in diagnosing and managing ARFID (p = 0.020). Pediatric residents were more likely to incorrectly endorse "fear of gaining weight"—a feature associated with anorexia nervosa—as a characteristic of ARFID (p = 0.020).

When pediatricians were stratified by the presence of an adolescent health unit in their institution, those working in institutions with such a unit were significantly more knowledgeable. Among them, 51 participants (33.1%) reported knowing the expanded form of ARFID prior to reading the study title, compared to 10 (16.1%) in institutions without an adolescent health unit (p = 0.012). Awareness that ARFID is a DSM-5defined disorder was higher among the former group (67; 43.5%) than the latter (15; 24.2%) (p = 0.014). Additionally, recognition that ARFID can lead to significant weight loss or growth faltering was reported by 135 participants (87.7%) in institutions with adolescent health units versus 44 (71.0%) in those without (p = 0.013). Awareness that ARFID can cause psychosocial impairment was similarly higher among pediatricians in adolescent health-equipped institutions (87.1% vs. 71.0%, p = 0.011). Furthermore, more pediatricians from these institutions had encountered ARFID cases (39.9% vs. 22.6%, p = 0.016) and had referred such cases to other specialists (35.3% vs. 16.1%, p = 0.005).

Regarding clinical experience, knowledge levels improved with increasing years in practice. The proportion of pediatricians who reported knowing the expanded form of ARFID prior to reading the study title was 16.1% among those with ≤ 2 years of experience, 30.3% in those with 2–4 years, and 36.8% among those with more than 4 years (p = 0.025). Similarly, the percentage of those who had referred an ARFID

case to another specialist increased with experience (17.7% for \leq 2 years, 36.8% for 2–4 years, and 32.0% for \geq 4 years; p = 0.043).

No statistically significant differences were observed in ARFID awareness or attitudes based on the number of patients seen monthly.

Responses to open-ended questions were thematically analyzed. Barriers to diagnosis and management included lack of familiarity with the disorder, difficulty in differential diagnosis, insufficient time during outpatient visits to assess for eating disorders, difficulty accessing dietitians and child/ adolescent psychiatry teams, limited physician experience in managing eating disorders, and communication challenges with pediatric and adolescent patients. Recommendations for improving ARFID management included: structured educational programs covering diagnosis, differential diagnosis, and treatment tailored to pediatricians; increased awareness and early detection training for family physicians; extended consultation time for outpatient visits; enhanced awareness among schoolteachers and guidance counselors; and incorporating mandatory rotations in adolescent health units during pediatric residency training.

Discussion

This study revealed that pediatricians have limited awareness and knowledge regarding ARFID, experience difficulties in its clinical management, and express a need for further training. The findings indicate that the proportion of pediatricians who recognized ARFID as a DSM-5-defined eating disorder was relatively low. While participants most frequently and correctly identified "food-related fears" and "lack of interest in eating" as ARFID subtypes, a considerable proportion also incorrectly identified "body image disturbance"—a feature not associated with ARFID suggesting conceptual confusion with anorexia nervosa. Pediatric subspecialists demonstrated higher accuracy in identifying clinical features such as weight loss and nutritional deficiencies associated with AR-FID compared to other professional groups.

The results are consistent with those of Harrison (2), who conducted a study in the United Kingdom

assessing healthcare professionals' knowledge and referral practices related to ARFID. Among 45 participants, 40% were working in primary care (e.g., general practitioners, school nurses), and 60% in secondary care (e.g., pediatricians, speech therapists, psychologists, dietitians). In the primary care group, 67% reported difficulty diagnosing ARFID and determining appropriate referral pathways. Although 74% of secondary care providers were familiar with the diagnosis, only 33% expressed confidence in making appropriate referrals. The study highlighted key barriers including lack of knowledge, confusion with picky eating, insufficient training, and the absence of multidisciplinary teams. Notably, 88% of participants believed that children with ARFID were falling through systemic gaps without receiving proper care. Similarly, Coelho et al. (4) conducted a study in Canada involving 93 healthcare professionals from various disciplines, including pediatricians, adolescent health specialists, dietitians, psychiatrists, nurses, family physicians, psychologists, occupational therapists, and social workers. Only 37% of participants could accurately identify all DSM-5 diagnostic criteria for ARFID, and most clinicians reported a lack of confidence in their diagnostic abilities. In another qualitative study by Magel et al. (6), more than half of participating professionals—including pediatricians, psychologists, nutritionists, and social workers—had never heard of ARFID, and only 8.6% had received specific training. Participants emphasized the absence of diagnostic and referral protocols and the ambiguity of professional roles in the management of ARFID.Guss et al. (5) surveyed U.S.-based physicians, including pediatricians, child and adolescent psychiatrists, adolescent medicine specialists, and clinicians in nutrition medicine. The study showed that during inpatient refeeding of adolescents with ARFID, protocols designed for anorexia nervosa were commonly used, revealing a lack of standardized approaches. Although multidisciplinary methods were frequently employed, pharmacologic interventions were reported less often. These findings align closely with our own results, which collectively suggest that ARFID remains under-recognized within health systems, and that structural and educational gaps

	Pediatric Resident	General Pediatrician	Subspecialty Fellow	Subspecialist
	n (%)	n (%)	n (%)	n (%)
ARFID may resul	t in significant weight loss or	failure to achieve expected wei	ght gain.	
Yes	112 (84.2)	21 (63.7)	28 (90.3)	18 (94.7)
No	3 (2.3)	1 (3.0)	-	-
Not familiar	18 (13.5)	11 (33.3)	3 (9.7)	1 (5.3)
p:0.051 chi squa	re:12.513			
ARFID may lead t	o nutritional deficiencies rec	quiring oral supplements or ente	eral feeding.	
Yes	98 (73.7)	16 (48.5)	28 (90.3)	18 (94.7)
No	7 (5.3)	2 (5.1)	-	-
Not familiar	28 (21.1)	15 (45.5)	3 (9.7)	1(5.3)
p :0.002 chi squa	re: 20.873			
Individuals with	ARFID fear gaining weight.			
Yes	72 (54.1)	10 (31.2)	10 (32.3)	6 (31.6)
No	25 (18.8)	11 (34.4)	12 (38.7)	9 (47.4)
Not familiar	36 (27.1)	11(34.4)	9 (29.0)	4 (21.1)
p:0.020 chi squar	e: 15.038			
ARFID can cause	marked psychosocial impair	ment.		
Yes	111 (83.5)	22 (66.7)	27 (87.1)	18(94.7)
No	3 (2.3)	-	1(3.2)	-
Not familiar	19 (14.3)	11(33.3)	3 (9.7)	1(5.3)
p:0.073 chi square	e: 11.556			
Restrictive eating	g in ARFID cannot be better e	xplained by a medical condition	, cultural practice, or food un	availability.
Yes	72(54.1)	13(40.6)	21(70.0)	14(73.7)
No	27(20.3)	5(15.6)	4(13.3)	2(10.5)
Not familiar	34(25.6)	14(43.8)	5(16.7)	3(15.8)
p:0.101 chi square	e : 10.612			

n = frequency; % = percentage of respondents.

persist in both diagnosis and management. Greater efforts are needed to implement training programs, clinical guidance, and interdisciplinary collaboration.

In our study, pediatricians working in tertiary university and training hospitals were assessed in terms of their awareness, knowledge, clinical experience, and referral behaviors regarding ARFID. The results mirror international findings. Only 28.5% of participants reported knowing the expanded form of ARFID, and 38% identified it as a DSM-5-defined disorder. These figures are comparable to Harrison's (2) findings, where 67% of primary care providers reported difficulty identifying ARFID. Moreover, 52.3% of participants in our study mistakenly identified "body image disturbance" as an ARFID subtype, reflecting the

diagnostic confusion noted by Coelho et al. (4), who found variability in clinicians' interpretation of diagnostic criteria. The fact that 45.6% of pediatricians believed individuals with ARFID feared weight gain further illustrates a misunderstanding of a key distinguishing feature of the disorder.

With respect to clinical experience, only 34.9% of participants reported having diagnosed or suspected an ARFID case, and 29.8% had referred a patient to another specialist. These findings support the notion, emphasized in Harrison et al.'s research (2), that children with ARFID often fall through gaps between disciplines due to insufficient referral pathways. Likewise, Magel et al. (6) reported that only 8.6% of clinicians had received ARFID-specific train-

ing, while 57.1% had managed ARFID cases without formal training. Consistent with our data, many participants lacked knowledge about appropriate healthcare services to which ARFID patients should be referred and often continued treatment themselves without involving specialized care.

In both the current and previous studies, the lack of training emerged as a key barrier. Notably, 90.7% of pediatricians in our sample emphasized the need for formal education on ARFID. Compared to the above-mentioned studies, our findings indicate even lower rates of ARFID awareness and referral practices among pediatricians. In Türkiye, the prevalence of ARFID in childhood is unknown. Therefore, the frequency of encountering ARFID cases in outpatient or inpatient settings may differ from countries where previous studies were conducted, suggesting that population-level differences could account for the observed disparities.

The diagnostic complexity of ARFID—particularly when symptom profiles overlap with neurodevelopmental conditions such as autism spectrum disorder—was reported both in our findings and in the study by Magel et al. (6) .Additionally, Guss et al. (5) found that during hospital admissions of ARFID-diagnosed adolescents, inpatient refeeding protocols were often modeled after those for anorexia nervosa, reflecting a lack of disorder-specific treatment models and considerable heterogeneity in clinical practice. These findings align with our data, where 76.3% of pediatricians did not feel competent in managing ARFID.

Coelho et al. (4) showed that experienced clinicians demonstrated higher confidence in diagnosis and greater likelihood of referring ARFID cases. This finding corresponds with our result that pediatricians working in institutions with adolescent health units and those with more than four years of experience exhibited significantly greater awareness and referral behaviors.

In summary, insufficient knowledge, diagnostic confusion, limited referral pathways, and ambiguity surrounding refeeding practices for ARFID appear to be prevalent across healthcare systems. These challenges underscore the urgent need for interdisciplinary collaboration, standardized diagnostic and treat-

ment protocols, and targeted education programs, as consistently highlighted in the international literature.

In addition to variability in the interpretation of AR-FID diagnostic criteria, the impact of these differences on patient management practices may partially explain discrepancies in prevalence data. Distinguishing ARFID presentations that involve only psychosocial impairment—but not medical compromise—also remains diagnostically challenging (3). Furthermore, validated assessment tools developed to objectively evaluate ARFID symptoms (e.g., PARDI, NIAS) have only recently been introduced into clinical practice, contributing to diagnostic heterogeneity (8,9). We believe that achieving greater diagnostic consensus and integrating high-validity screening instruments into routine practice are crucial steps toward standardization of ARFID diagnosis.

Strengths

One of the key strengths of this study is that it represents the first investigation in Türkiye to assess AR-FID awareness among pediatricians. All participants were actively practicing physicians, including both pediatric residents and specialists, from tertiary care hospitals providing inpatient and outpatient services. The questionnaire used in this study was developed through a comprehensive review of the current literature, and unlike previous studies (2,4), it addressed DSM-5 diagnostic criteria alongside referral practices and educational needs. Furthermore, inclusion of physicians from university and city hospitals that serve diverse patient populations, along with a relatively large sample size compared to similar studies, enhances the generalizability of the findings.

Limitations

This study included only pediatricians and did not assess other professional groups involved in ARFID management, such as child and adolescent psychiatrists, psychologists, and dietitians. Although this may be viewed as a limitation, it is important to note that in Türkiye's healthcare system, pediatricians are often the first point of contact in the diagnostic process. Therefore, we do not consider this exclusion to be a significant limitation.

Conclusion

The findings of this study reflect challenges that align with those reported in the international literature, including limited recognition of DSM-5 diagnostic criteria for ARFID, confusion with anorexia nervosa, gaps in referral systems, and unmet educational needs. Most participants had only limited familiarity with the concept of ARFID and reported uncertainty regarding appropriate referral pathways following diagnosis.

Factors such as length of clinical experience and institutional structure—particularly the presence of adolescent health units—were significantly associated with better awareness and referral behavior. In light of these findings, we conclude that implementation of structured training programs, interdisciplinary referral guidelines, and standardized clinical protocols is necessary to improve early and accurate identification of ARFID in pediatric practice. Moreover, due to the heterogeneous clinical presentations and high rates of psychiatric comorbidities, enhancing both the conceptual and practical clarity of ARFID diagnostic criteria—and promoting the use of validated assessment tools—will be essential to achieving diagnostic and treatment standardization.

Author Contributions: Surgical and Medical Practices: A.G.G., S.M., Z.A, Concept: A.G.G., S.M., Z.A., Design: A.G.G., S.M., Z.A., Data Collection or Processing: A.G.G., S.T., D.G., S.M., Analysis or Interpretation: A.G.G., S.M., C.K., Z.A., Literature Search: A.G.G., S.M., Writing: A.G.G., S.M., C.K., Z.A

Ethics: The study received approval from the Non-Interventional Clinical Research Ethics Committee of Non-Interventional Clinical Research Ethics Committee of Ankara University (Approval No: İ05-421-25). All participant data were treated with strict confidentiality. Participation was entirely voluntary, and no identifying personal information, such as names or contact details, was collected.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

Informed Consent: Written informed consent was obtained from all participants.

References

- American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
- Harrison A. Falling through the cracks: UK health professionals' perspective
 of diagnosis and treatment for children and adolescents with avoidant/
 restrictive food intake disorder. Child Care Pract. 2025;31(1):141–51.
- Eddy KT, Harshman SG, Becker KR, Bern E, Bryant-Waugh R, Hilbert A, et al. Radcliffe ARFID Workgroup: Toward operationalization of research diagnostic criteria and directions for the field. Int J Eat Disord. 2019;52(4):361–6.
- 4. Coelho JS, Norris ML, Tsai SCE, Wu YJ, Lam PY. Health professionals' familiarity and experience with providing clinical care for pediatric avoidant/restrictive food intake disorder. Int J Eat Disord. 2020;54(4):587–94.
- Guss CE, Richmond TK, Forman S. A survey of physician practices on the inpatient medical stabilization of patients with avoidant/restrictive food intake disorder. J Eat Disord. 2018;6:22.
- 6. Magel C, Hewitt K, Dimitropoulos G, von Ranson K, McMorris C. Who is treating ARFID, and how? The need for training for community clinicians. Eat Weight Disord. 2021;26(4):1279–80.
- Eddy KT, Harshman SG, Becker KR, Bern E, Bryant-Waugh R, Hilbert A, et al. Radcliffe ARFID Workgroup: Toward operationalization of research diagnostic criteria and directions for the field. Int J Eat Disord. 2019;52(4):361–6.
- Bryant-Waugh R, Micali N, Cooke L, Lawson EA, Eddy KT, Thomas JJ. Development of the Pica, ARFID, and Rumination Disorder Interview, a multi-informant, semi-structured interview of feeding disorders across the lifespan: A pilot study for ages 10–22. Int J Eat Disord. 2019;52(4):378–87.
- Schmidt R, Kirsten T, Hiemisch A, Kiess W, Hilbert A. Interview-based assessment of avoidant/restrictive food intake disorder (ARFID): A pilot study evaluating an ARFID module for the Eating Disorder Examination. Int J Eat Disord. 2019;52(4):388–97.
- Katzman DK, Stevens K, Norris M. Redefining feeding and eating disorders: What is avoidant/restrictive food intake disorder? Paediatr Child Health. 2014;19(8):445–6.
- 11. Seike K, Nakazato M, Hanazawa H, Ohtani T, Niitsu T, Ishikawa SI, et al. A questionnaire survey regarding the support needed by Yogo teachers to take care of students suspected of having eating disorders (second report). BioPsychoSoc Med. 2016;10:28.
- 12. Bourne L, Bryant-Waugh R, Cook J, Mandy W. Avoidant/restrictive food intake disorder: A systematic scoping review of the current literature. Psychiatry Res. 2020;288:112961.
- 13. Norris ML, Spettigue W, Hammond N, Katzman DK, Zucker N, Yelle K, et al. Building evidence for the use of descriptive subtypes in youth with avoidant/restrictive food intake disorder. Int J Eat Disord. 2018;51(2):170–3.
- 14. Strand M, von Hausswolff-Juhlin Y, Welch E. A systematic scoping review of diagnostic validity in avoidant/restrictive food intake disorder. Int J Eat Disord. 2019;52(4):331–60.
- 15. Norris ML, Spettigue WJ, Katzman DK. Update on eating disorders: Current perspectives on avoidant/restrictive food intake disorder in children and youth. Neuropsychiatr Dis Treat. 2016;12:213–8.

Determinants of ICU Outcomes in Fully Active Patients Before Critical Illness

Kritik Hastalık Öncesi Performans Durumu Tam Aktif Bireylerin Yoğun Bakım Sonuçlarına Etki Eden Faktörlerinin Değerlendirilmesi

Nazlıhan Boyacı Dündar¹,
 Kamil İnci¹,
 Büşra Tüfekçi²,
 Gülbin Aygencel¹,
 Melda Türkoğlu¹

1 Department of Internal Medicine, Division of Intensive Care Medicine, Gazi University School of Medicine, Ankara, Turkey 2 Department of Internal Medicine, Gazi University School of Medicine, Ankara, Turkey

ABSTRACT

Aim: To investigate ICU outcomes and early mortality predictors in fully active patients prior to critical illness, a population often considered resilient, yet underrepresented in outcome studies.

Materials and Methods: This retrospective cohort study included 139 patients admitted to the medical ICUs of a tertiary hospital between November 2022 and February 2025. Only patients with preserved pre-ICU performance status [Eastern Cooperative Oncology Group (ECOG)≤1 or Clinical Frailty Scale (CFS)≤3] were included. Demographics, comorbidities, admission diagnoses, severity scores (Acute Physiology and Chronic Health Evaluation II [APACHE-II], Sequential Organ Failure Assessment [SOFA]), interventions, and laboratory parameters were recorded. Logistic regression was used to identify the independent predictors for ICU mortality.

Results: The ICU mortality rate was 16.5% in fully active critically ill patients. Non-survivors had significantly higher APACHE II and SOFA scores, abnormal laboratory findings, and a greater requirement for mechanical ventilation and renal replacement therapy. Cardiac arrest prior to admission and concominant septic shock were more frequently in non-survivors. ICU admission from inpatient wards (OR 5.69,p=0.023), cardiac arrest before ICU admission (OR 33.45,p=0.002), pulmonary disease as a comorbidity (OR 15.19,p=0.002), concomitant septic shock (OR 5.08,p=0.032), and acute kidney injury (AKI)(OR 10.02,p=0.032) were independent risk factors for ICU mortality, Moreover, SOFA and APACHE II scores showed strong discriminative ability for ICU mortality (AUCs:0.916 and 0.873).

Conclusion: Although fully active before critical illness, these patients are not immune to poor ICU outcomes. Our findings highlight that specific clinical presentations like septic shock, cardiac arrest, and AKI carry substantial prognostic value, even in patients considered low-risk by baseline performance.

Keywords: fully active, performance status, ECOG, clinical fraiilty score, mortality, critical illness

ÖZET

Amaç: Bu çalışma ile kritik hastalık öncesinde tam fonksiyonel durumda olan ve bu sebeple fiziki olarak dayanıklı kabul edebileceğimiz hastalarda yoğun bakım sonuçları ve erken mortalite belirteçlerini incelenmeyi amaçlanmıştır.

Gereç ve Yöntem: Kasım 2022-Şubat 2025 tarihleri arasında üçüncü basamak bir hastanenin dahili yoğun bakım ünitelerine kabul edilen, kritik hastalık öncesi performans durumu Eastern Cooperative Oncology Group Performance Status (ECOG)≤1 veya Clinical Frailty Scale (CFS)≤3 olan 139 erişkin hasta retrospektif olarak değerlendirildi. Demografik özellikler, komorbiditeler, yatış tanıları, Acute Physiology and Chronic Health Evaluation II (APACHE-II) ve S equential Organ Failure Assessment (SOFA) skorları, organ destek tedavileri ve laboratuvar verileri kaydedildi. Birincil sonlanım noktası yoğun bakım mortalitesi olup, bağımsız belirleyiciler lojistik regresyonla (LR) ile değerlendirildi.

Bulgular: Mortalite orani %16,5 olarak hesaplanan kohortta ölen hastalarda APACHE-II ve SOFA skorlari, mekanik ventilasyon ve renal replasman gereksinimleri daha yüksek saptandı. Ölen grupta, servislerden yatış, kabul öncesi kardiyak arrest ve sepsis varlığında şok daha fazla gözlemlendi. LR analizinde servislerden yatış (OR 5.69, p=0.023), kabul öncesi kardiyak arrest (OR 33.45, p=0.002), pulmoner hastalık varlığı (OR 15.19, p=0.002), septik şok varlığı (OR 5.08, p=0.032), ve ABH varlığı (OR 10.02, p=0.032) mortalitenin bağımsız belirleyicileri olarak bulundu. SOFA ve APACHE-II skorları mortaliteyi yüksek doğrulukla öngördü (AUC: 0.916 ve 0.873).

Sonuç: Kritik hastalık öncesinde tam fonksiyonel durumda olmalarına rağmen, bu hastalar kötü prognoz riski taşımaktadır. Bulgularımız, septik şok, kardiyak arrest ve akut böbrek hasarı gibi belirli klinik tabloların, başlangıçtaki iyi performans durumuna rağmen düşük riskli kabul edilen hastalarda bile anlamlı prognostik değere sahip olduğunu ortaya koymaktadır.

Anahtar Kelimeler: tam aktif birey, performans durumu, ECOG, klinik kırılganlık skoru, mortalite, kritik hastalık

Corresponding author: Nazlıhan Boyacı Dündar

Department of Internal Medicine, Division of Intensive Care Medicine, Gazi University School of Medicine, Ankara, Turkey

E-mail: nazlihan_boyaci@yahoo.com ORCID ID: orcid.org/0000-0003-4264-9249

Received: 27.06.2025 Accepted: 29.07.2025 Publication Date: 30.09.2025

Cite this article as: Boyacı Dündar, N., İnci, K., et al. Determinants of ICU outcomes in fully active patients before critical illness. J Ankara Univ Fac Med. 2025;78(3):177-186.

Introduction

Functional status prior to critical illness has been increasingly recognized as a key determinant of intensive care unit (ICU) outcomes, especially in older and comorbid populations (1). Among the available tools, the Eastern Cooperative Oncology Group (ECOG) Performance Status Scale has long been utilized to assess the baseline functional reserve of patients, predominantly in oncology and geriatrics (2-5). It provides a graded evaluation of a patient's capacity to perform daily activities independently, with scores ranging from 0 (fully active) to 5 (deceased) (2).

In recent years, ECOG performance status has also been applied to critically ill patients as a surrogate marker for functional status prior to critical illness. Several studies have demonstrated a strong association between worse ECOG scores, increased ICU and in-hospital mortality, and reduced likelihood of discharge to home (1,3,4). Moreover, these associations appear to be independent of age, comorbidities, or illness severity scores, underscoring the prognostic value of pre-critical illness performance status in intensive care settings (3,6).

In parallel frailty, quantified through tools such as the Clinical Frailty Scale (CFS), has emerged as an important predictor of adverse outcomes among ICU patients, particularly those over 65 years of age (7). Patients with higher frailty scores exhibit prolonged ICU stays, increased risk of complications, and higher short-term mortality (8-10). Despite the growing literature, most studies have focused on individuals with impaired pre-critical illness functionality (e.g., ECOG \geq 2 or CFS \geq 5), while relatively little is known about patients with preserved baseline functional capacity (11,12).

Patients who are fully active prior to critical illness (ECOG≤1 or CFS≤3) represent a unique and understudied subgroup (11,12). These individuals are theoretically expected to have better outcomes, yet may still experience significant morbidity and mortality during critical illness. Understanding the factors that influence prognosis in this population may

help identify modifiable risks and guide early, targeted interventions.

Therefore, in this retrospective cohort study, we aimed to evaluate the ICU outcomes of patients with a fully active functional status prior to critical illness and to identify the clinical and contextual factors associated with poor prognosis in this seemingly lowrisk group. By focusing on a high-functioning cohort, this study seeks to inform personalized care strategies and improve clinical decision-making in intensive care medicine.

Materials and Methods

Study Design and Setting

This retrospective, single-center cohort study was conducted in the internal medicine ICUs of Gazi University Hospital, a tertiary academic hospital in Ankara, Turkey. Data were obtained from ICU patients admitted between November 17, 2022, and February 31, 2025.

Ethical Statement

This study was approved by the Gazi University Ethics Committee (Date: April 15, 2025, Number: 2025–627). Informed consent was not obtained because of the retrospective nature of the study. All patient data were anonymized and handled according to institutional and national ethical guidelines.

Study Population and Inclusion Criteria

The study included adult patients (≥18 years) with a documented ECOG performance status ≤1 and/or a CFS score ≤3 prior to ICU admission. Only patients who were followed in the internal medicine ICUs during the specified period were eligible. Patients with incomplete medical records or lacking documentation of baseline performance status were excluded. Only the patient's first admission data was used for the study in multiple admissions.

Data Collection

Demographic information, comorbidities, ICU admission diagnoses, acute illness severity [Acute Physiology and Chronic Health Evaluation II (APACHE II)] and organ disfunction scores [Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Scale (GCS), calculated on the first day of ICU

admission], source of ICU referral, and ICU interventions, including mechanical ventilation, vasopressor use, and renal replacement therapy, were recorded. Additional variables such as sepsis during the ICU stay and laboratory parameters on the day of ICU admission were also recorded. Data were retrospectively collected from electronic medical records and paper-based ICU charts using a standardized case report form.

Outcome Measures

The primary outcome was ICU mortality. Patients were grouped as survivors or non-survivors, and clinical characteristics, interventions, and baseline features were compared between the two groups. Associations between clinical variables and ICU mortality were further analyzed to identify independent risk factors.

Statistical Analysis

Descriptive statistics were used to summarize the demographic and clinical characteristics. Continuous variables were presented as means ± standard deviation (SD) or medians with interquartile ranges (Q1-Q3), depending on the data distribution. Categorical variables were expressed as frequencies and percentages. Continuous variables were compared using Student's t-test or the Mann-Whitney U test. Categorical variables were analyzed using the Chisquare test. Multivariate logistic regression analysis was conducted to identify independent predictors of ICU mortality. Receiver operating characteristic (ROC) curve analysis was performed to assess the ability of severity scores to predict mortality. The area under the curve (AUC) was calculated to quantify the overall discriminative power of each score. ROC curves were also generated to illustrate the trade-off between sensitivity and specificity across a range of cut-off values. A p-value ≤0.05 was considered statistically significant. All analyses were performed by using IBM SPSS Statistics (version 22).

Results

A total of 139 fully active critically ill patients were included in the final analysis. Among them, 116 (83.5%) survived and 23 (16.5%) died during their ICU stay.

Baseline characteristics, ICU-related data and laboratory findings according to ICU mortality status are presented in Tables 1 and Supplemental Table.

Non-survivors had significantly higher severity scores upon admission, including APACHE-II (30 [19–39] vs. 15 [10–18], p<0.001), SOFA (10 [7–13] vs. 3 [2–5], p<0.001), and modified Nutrition Risk in the Critically ill (NUTRIC) (5 [4–6] vs. 3 [1–4], p<0.001). The Charlson Comorbidity Index (CCI) and GCS were also worse in non-survivors (CCI: 5 [3–8] vs. 3 [1–5], p=0.001; GCS: 7 [3–15] vs. 15 [15–15], p<0.001). Non-survivors were more frequently admitted from inpatient wards (60.9% vs. 27.6%, p=0.002) and less often from emergency departments (26.1% vs. 62.9%, p=0.001). Length of hospital stay prior to ICU admission was also longer in non-survivors (3 [1–12] vs. 1 [0–1.5] days, p=0.005).

Cardiac decompensation and renal failure as an admission diagnosis were more prevalent in non-survivors (30.4% vs. 6.9%, p<0.001; and 47.8% vs. 26.7%, p=0.044, respectively). Pulmonary disease (52.5% vs. 14.3%, p<0.001), and gastrointestinal disease as comorbidities (30.4% vs. 10.3%, p=0.018) were also significantly more common in the non-survivor group. Cardiac arrest before ICU admission (26.1% vs. 2.6%, p<0.001) and concominant shock with septic pateints were observed more frequently in non-survivors (100% vs. 40% within septic patients (n)=57, p<0.001)

In terms of interventions and organ support, non-survivors more frequently required invasive mechanical ventilation (IMV) (95.7% vs. 16.4%, p<0.001), continuous renal replacement therapy (CRRT; 60.9% vs. 2.6%, p<0.001), albumin replacement (52.2% vs. 9.6%, p<0.001), and blood product transfusion (34.8% vs. 7.8%, p = 0.002) than survivors. Parenteral nutritional support was also more common in non-survivors (43.5% vs. 12.9%, p = 0.002).

Non-survivors exhibited significantly abnormal laboratory parameters, including higher blood urea nitrogen, creatinine, magnesium, liver transaminases, INR, direct bilirubin, and lactate levels, alongside lower albumin and hemoglobin concentrations (all

Table 1. Comparison of baseline characteristics and ICU-related data according to ICU outcome in fully active critically ill patients

active critically in patients				
	All Patients n=139	Survivors n=116	Non-survivors n=23	P value
Baseline Characteristics and ICU Admission	n Data			
Age*	59 [41-67]	56 [38-67]	61 [51-70]	0.253
Gender, n (%)				0.233
Female	45 (32.4)	40 (34.5)	5 (21.7)	
Male	94 (67.6)	76 (65.5)	18 (78.3)	
BMI (kg/m²)*	24.6 [22.2-28.3]	24.9 [22.5-28.3]	24.2 [22-29.2]	0.747
APACHE II Score*	15 [11-21]	15 [10-18]	30 [19-39]	<0.001
SOFA Score*	4 [2-7]	3 [2-5]	10 [7-13]	<0.001
mNUTRIC Score*	3 [1-4]	3 [1-4]	5 [4-6]	<0.001
CCI*	3 [1-5]	3 [1-5]	5 [3-8]	0.001
Glasgow Coma Scale*	15 [13-15]	15 [15-15]	7 [3-15]	<0.001
ECOG Performance Status, n (%)				0.051
0	62 (44.6)	56 (48.3)	6 (26.1)	
1	77 (55.4)	60 (51.7)	17 (73.9)	
Clinical Frailty Scale, n (%)				
1	16 (11.5)	16 (13.8)	0	0.074
2	37 (26.6)	32 (27.6)	5 (21.7)	0.562
3	86 (61.9)	68 (58.6)	18 (78.3)	0.076
Length of ICU stay (day)*	4 [2-7]	4 [2-7]	5 [2-10]	0.619
Length of Hospital stay before ICU (day)*	1 [0-3]	1 [0-1.5]	3 [1-12]	0.005
Admission source, n (%)				
Emergency department	79 (56.8)	73 (62.9)	6 (26.1)	0.001
Inpatient wards	46 (33.1)	32 (27.6)	14 (60.9)	0.002
Transfer from other ICUs	4 (2.9)	3 (2.6)	1 (4.3)	0.519
Transfer from other hospitals	10 (7.2)	8 (6.9)	3 (8.7)	0.671
Admission Diagnosis, n (%)				
Respiratory failure	61 (43.9)	50 (43.1)	11 (47.8)	0.677
Sepsis	57 (41.0)	45 (38.8)	12 (52.2)	0.233
Renal failure	42 (30.2)	31 (26.7)	11 (47.8)	0.044
Acute GIS disorders	22 (15.8)	18 (15.5)	4 (17.4)	0.762
Cardiac decompensation	15 (10.8)	8 (6.9)	7 (30.4)	<0.001
Intoxication	13 (9.4)	13 (11.2)	0	0.92
Acute neurological disorders	13 (9.4)	10 (8.6)	3 (13.0)	0.451
Metabolic disturbances	9 (6.5)	9 (7.8)	0	0.356
Surgery	4 (2.9)	3 (2.6)	1 (4.3)	0.519
Trauma	4 (2.9)	4 (3.4)	0	1.0
Cardiac arrest before ICU admission, n (%)	9 (6.5)	3 (2.6)	6 (26.1)	<0.001

Comorbidities, if (%)				
Hypertension	52 (37.4)	41 (35.3)	11 (47.8)	0.258
Endocrinological	46 (33.1)	40 (34.5)	6 (26.1)	0.434
Cardiac disorders	36 (25.9)	27 (23.3)	9 (39.1)	0.113
Pulmonary disease	29 (20.9)	17 (14.3)	12 (52.5)	<0.001
Chronic renal disease	21 (15.1)	19 (16.4)	2 (8.7)	0.527
Malignancy	26 (18.7)	19 (16.4)	7 (30.4)	0.143
Gastroenterologic disorders	19 (13.7)	12 (10.3)	7 (30.4)	0.018
Rheumatological	14 (10.1)	12 (10.3)	2 (8.7)	1.0
Neurological	8 (5.8)	5 (4.3)	3 (13.0)	0.127
Source of sepsis (n=57), n (%)				
Respiratory system	28 (49.1)	23 (51.1)	5 (41.7)	0.561
Abdominal	12 (21.1)	8 (17.8)	4 (33.3)	0.25
BSI	8 (15.0)	6 (13.3)	2 (16.7)	0.67
Urinary tract	6 (10.5)	5 (11.1)	1 (8.3)	1.0
Soft tissue	2 (3.5)	2 (4.4)	0	1.0
CNS	1 (1.8)	0	1 (8.3)	0.211
Concominant shock with septic patients (n=57), n (%)	32 (56.1)	18 (40.0)	12 (100)	<0.001
Immunosuppression at ICU admission, n (%)	23 (16.5)	16 (13.8)	7 (30.4)	0.05
Nutritional support, n (%)				
Parenteral	25 (18.0)	15 (12.9)	10 (43.5)	0.002
Enteral	51 (36.7)	42 (36.2)	9 (39.1)	0.790
Requirement of respiratory support, n (%)				
Invasive mechanical ventilation	41 (29.5)	19 (16.4)	22 (95.7)	<0.001
Non-invasive mechanical ventilation	25 (18)	21 (18.1)	4 (17.4)	1.0
HFNO	24 (17.3)	21 (18.1)	3 (13.0)	0.765
AKIN stage, n (%)				<0.001
1	36 (25.9)	24 (20.7)	12 (52.2)	
II	10 (7.2)	8 (6.9)	2 (8.7)	
III	20 (14.4)	13 (11.2)	7 (30.4)	
Requirement of RRT, n (%)				
Intermittent hemodialysis	28 (20.1)	22 (19.0)	6 (26.1)	0.409
CRRT	17 (12.2)	3 (2.6)	14 (60.9)	<0.001
Blood Product Replacement, n (%)	17 (12.2)	9 (7.8)	8 (34.8)	0.002
Albumin Replacement, n (%)	23 (16.7)	11 (9.6)	12 (52.2)	<0.001

^{*}median [25th percentile-75th percentile]

ICU: Intensive Care Unit, BMI: Body Mass Index, APACHE: Acute Physiology and Chronic Health Evaluation, SOFA: Sequential Organ Failure Assessment, mNUTRIC: modified Nutrition Risk in Critically Ill, CCI: Charlson Comorbidity Index, ECOG: Eastern Cooperative Oncology Group, GIS: Gastrointestinal System, BSI: Bloodstream infection, CNS: Central Nervous System, HFNO: High Flow Nasal Oxygen, AKIN: Acute Kidney Injury Network, RRT: Renal Replacement Therapy, CRRT: Continuous Renal Replacement Therapy

Supplemental Table. Comparison of baseline laboratory findings according to ICU outcome in fully active critically ill patients

	All Patients n=139	Survivors n=116	Non-survivors n=23	P value
Blood Urea Nitrogen(mg/dL)	24 [13-40]	19.5 [11.5-36.5]	97.8 [21.8-186]	<0.001
Creatinine (mg/dL)	1.07 [0.74-1.96]	0.94 [0.72-1.8]	1.82 [1.27-2.11]	<0.001
Sodium (mEq/L)	128 [133-141]	137 [133-140]	139 [135-142]	0.124
Chloride (mEq/L)	104 [100-108]	103.5 [100-108]	104 [100-107]	0.948
Potassium (mEq/L)	4.2 [3.7-4.7]	4.2 [3.8-4.7]	4.2 [3.6-4.7]	0.860
Calcium (mg/dL)	8.6 [8.3-9.1]	8.6 [8.3-9]	8.7 [8.2-9.7]	0.338
Phosphorus (mg/dL)	3.6 [2.7-]	3.6 [2.7-4.2]	4.7 [3.3-6.7]	0.002
Magnesium (mg/dL)	1.8 [1.7-2.1]	1.8 [1.6-2.1]	2.3 [1.8-2.5]	<0.001
Alanine transaminase (U/L)	27 [14-56]	24 [1444]	87 [30152]	<0.001
Aspartat transaminase (U/L)	34 [21-74]	30 [20-61]	154 [31-275]	<0.001
INR	1.12 [1.03-1.29]	1.08 [1.02-1.25]	1.37 [1.14-1.7]	<0.001
Total Bilirubin (mg/dL)	0.6 [0.4-1.0]	0.6 [0.4-0.9]	0.9 [0.4-2.2]	0.065
Direct Bilirubin (mg/dL)	0.23 [0.16-0.43]	0.22 [0.15-0.37]	0.43 [0.18-1.27]	0.014
Albumin (g/dL)	3.3 [2.9-3.9]	3.5 [3.0-3.9]	2.8 [2.4-3.3]	<0.001
Blood gas sampling				
рН	7.38 [7.32-7.43]	7.38 [7.34-7.43]	7.24 [7.08-7.42]	0.003
PCO ₂ (mmHg)	37 [32-45]	37 [32-45]	38 [32-50]	0.658
HCO ₃ (mEq/L)	21.9 [18.7-25.2]	22.4 [19.5-25]	18.6 [12.8-23]	0.002
Lactate (mmol/L)	1.8 [1.3-3.4]	1.7 [1.3-2.7]	5.5 [1.5-9.5]	<0.001
WBC (x10³/μl)	10 [6.8-15.6]	10 [7.36-14.7]	12.8 [3.8-24.3]	0.584
PMNL (x10³/µL)	7.9 [4.8-12.3]	7.75 [5.0-11.7]	10.1 [2.5-17.9]	0.677
Lmyphocytes (x10³/µL)	0.98 [0.5-1.5]	1.0 [0.54-1.5]	0.6 [0.39-1.4]	0.227
Hgb (g/dL)	11.7[9.4-13.8]	11.9 [9.9-13.8]	9.1 [7.8-11.9]	0.012
PLT (x10 ³ /µL)	203 [140-295]	210 [159-295]	181 [50-243]	0.036
C-reactive protein (mg/L)	85.8 [16.2-179]	85.8 [162-158]	97.8 [21.8-186]	0.653
Procalcitonin (ng/mL)	0.43 [0.1-4.12]	0.35 [0.09-2.89]	34 [26-62]	0.026

^{*}median [25th percentile-75th percentile]

ICU: Intensive Care Unit, INR: International Normalized Ratio, PCO₂: Partial pressure of carbon dioxide, HCO₃: Bicarbonate, WBC: white blood cell count, PMNL: polymorphonuclear leukocytes, Hgb: Hemoglobin, PLT: Platelets,

p<0.05) (Supplemental Table). Additionally, arterial blood gas analysis revealed significantly lower pH and bicarbonate levels in non-survivors (p=0.003 and p=0.002, respectively), suggesting more pronounced metabolic acid-base disturbances.

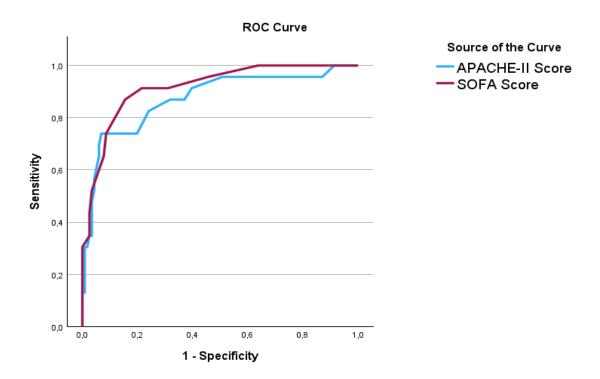
Multivariate logistic regression analysis identified that ICU admission from inpatient wards [OR 5.69, 95% CI:1.270-25.518, p=0.023], cardiac ar-

rest before ICU admission [OR 33.45, 95% CI:3.813-293-468, p=0.002], pulmonary disease as a comorbidity [OR 15.19, 95% CI:2.826-81.677, p=0.002], concomitant shock in septic patients [OR 5.08, 95% CI:1.147-22.535, p=0.032], and AKI according to AKIN classification [OR 10.02, 95% CI:1.435-69.909, p=0.032] were independent risk factors for ICU mortality (Table 2).

Table 2. Multivariate analysis for independent risk factors of ICU mortality in fully active critically ill	
patients	

	Adjusted OR (95% CI)	P Value
ICU admission from inpatient wards	5.694 (1.270-25.518)	0.023
Cardiac arrest before ICU admission	33.453 (3.813-293-468)	0.002
Pulmonary disease as a comorbidity	15.193 (2.826-81.677)	0.002
Gastroenterologic disorders as a comorbidity	3.283 (0.520-20.725)	0.206
Immunosuppression at ICU admission	1.650 (0.315-8.634)	0.553
Concomitant shock in septic patients	5.085 (1.147-22.535)	0.032
AKI according to AKIN classification	10.015 (1.435-69.909)	0.02
CCI	1,038 (,784-1,374)	0.795

ICU: Intensive Care Unit, AKI: Acute Kidney Injury, AKIN: Acute Kidney Injury Network, CCI: Charlson Comorbidity Index


ROC curve analysis revealed that SOFA score had superior discriminative ability for predicting ICU mortality (AUC: 0.916, 95% CI 0.856-0.976) compared to APACHE-II (AUC: 0.873, 95% CI 0.784-0.962). The optimal cutoffs were 6.6 for SOFA (sensitivity 87.0%, specificity 84.5%) and 18.5 for APACHE II (sensitivity 82.6%, specificity 75.9%) (Figure 1, Table 3).

Discussion

This study focused on fully active critically ill patients with good functional performance before acute deterioration, as indicated by ECOG 0-1 or CSF Score of 3 or below. While performance status has been extensively studied in populations with advanced cancer, elderly, or high comorbidity burden, data specifically addressing the determinants of outcomes among fully active individuals in the ICU remain limited. (3,13,14). Our findings underscore that even patients considered "resilient" may face a considerable risk of adverse outcomes once critical illness develops. Among the 139 patients analyzed, 16.5% died during their ICU stay, a rate notably lower than higher-risk populations, but still clinically meaningful given their preserved baseline function. Specifically, ICU mortality was independently associated with several early clinical features, including admission from inpatient wards, cardiac arrest prior to ICU admission, pulmonary comorbidities, sepsis-related shock, and acute kidney injury as defined

by the AKIN classification.

The ICU mortality rate observed in this cohort (16.5%) aligns with contemporary reports from broad ICU populations. For instance, a large meta-analysis reported a pooled ICU mortality of approximately 38% (range 13-70%) across various settings, and a recent study on non-COVID ICU patients found rates around 29.6% (15,16). Previous studies have consistently shown that ECOG is the most potent independent predictor of in-hospital mortality in oncologic ICU patients, while the CFS independently predicts both short-term and long-term mortality in diverse ICU populations, including older adults and general critically ill patients, with adjusted effect sizes reaching hazard ratios around 1.26 per unit increase (17-19). Given that previously reported ICU mortality rates range from 19% to 59% in these higher-risk populations, such as cancer patients or the frail elderly, the 16.5% mortality observed in our fully active cohort, although seemingly modest, warrants attention (20-23). Unlike these higher-risk populations, fully active patients present with preserved physical function and are often perceived as resilient. Therefore, their risk of adverse outcomes may not be adequately captured by conventional predictors, underscoring the need for alternative markers tailored to this unique and less-studied physiological baseline.

Figure 1. ROC curves of acute illness severity and organ failure scores (**APACHE:** Acute Physiology and Chronic Health Evaluation, **SOFA:** Sequential Organ Failure Assessment, **AUC:** Area Under the Curve, **ROC:** Receiver Operating Characteristic)

Table 3. Sensitivity, specificity, and ROC curve analysis of APACHE II and SOFA scores in fully active critically ill patients

	AUC	P Value	Cut-Off	Sensitivity (%)	Specificity (%)
APACHE II	0.873	0.000	18.5	82.6	75.9
SOFA	0.916	0.000	6.6	87.0	84.5

ROC: Receiver Operating Characteristic, **APACHE:** Acute Physiology and Chronic Health Evaluation, **SOFA:** Sequential Organ Failure Assessment, **AUC:** Area under the curve

In univariate analyses, indicators of organ failure, such as the presence of shock, need for IMV, requirement for RRT, low GCS, and laboratory markers of organ dysfunction, were significantly associated with ICU mortality, as were higher disease severity scores, including SOFA and APACHE II. While these variables are well-established prognostic markers, their predictive value often reflects downstream consequences of disease severity in both general ICU populations and specific patient groups (24-28). Therefore, in our multivariate model, we intentionally excluded overt severity indicators like SOFA and APACHE II scores, IMV, RRT, and markers of advanced organ failure to focus on admission-level features that may facilitate earlier risk stratification. Accordingly, ICU admission from inpatient wards, cardiac arrest prior to ICU admission, pulmonary disease as a comorbidity, concomitant shock in septic patients, and AKI defined by the AKIN classification emerged as independent predictors of ICU mortality. These variables represent clinical conditions that are typically identifiable at the time of ICU referral, prior to the onset of irreversible organ dysfunction.

Importantly, our ROC analysis supports this approach. Both SOFA and APACHE-II scores demonstrated strong discriminative ability for ICU mortality in our cohort, with AUC values exceeding 0.85, consistent with current literature where admission SOFA AUC ranges between 0.80 and 0.92 (27,29). In fact, SOFA emerged as the best single predictor, likely because its components reflect both the extent of organ dysfunction across six organ systems and the need

for corresponding organ support interventions, such as MV, vasopressor use, and neurologic assesment (27,30). Rather than relying solely on broadly validated illness severity scores, which are well-established across nearly all ICU populations, we sought to enhance early and proactive risk stratification in this clinically significant yet understudied subgroup by narrowing our focus to admission-level characteristics. These findings carry notable clinical implications, suggesting that part of the mortality observed in functionally independent patients may stem from delays in recognizing early signs of deterioration in non-ICU settings. Our study revealed that non-survivors were more frequently admitted from inpatient wards, had a higher incidence of cardiac arrest prior to ICU admission, and more often presented with shock in the context of sepsis, underscoring the need for prompt triage and ICU referral (31). Previous studies have demonstrated that structured early warning systems, such as the Modified Early Warning Score (MEWS) and the National Early Warning Score (NEWS), can facilitate timely escalation of care and improve outcomes by identifying deterioration before it becomes critical (32-33). Our results emphasize that even patients with preserved baseline function may be prone to sudden deterioration and therefore require appropriate monitoring and timely clinical response (34).

Several limitations warrant consideration. First, this was a single-center, retrospective study, which may limit generalizability and introduce selection bias. Second, the sample size, although sufficient for preliminary inference, remains modest, particularly for subgroup comparisons and multivariate modeling, which may affect statistical power and confidence intervals. Third, despite our deliberate exclusion of downstream severity indicators from the multivariate model, residual confounding cannot be entirely ruled out, especially given the inherent complexity of critical illness trajectories. Additionally, we did not include long-term functional or survival outcomes beyond ICU discharge, which may underestimate the broader prognostic implications for this patient group and further limits the assessment

of the long-term prognostic significance of baseline functional independence. Lastly, some relevant variables, such as frailty indices beyond CFS, biomarker data, or time to ICU referral, were not systematically captured and could provide further insight in future prospective designs. Despite several limitations, this study provides novel insight into an often-overlooked subgroup of ICU patients, those who are functionally independent at baseline. By strictly defining inclusion criteria based on ECOG and CFS scores, we ensured a homogenous population with preserved performance status prior to ICU admission.

Conclusion

Fully active patients, despite preserved baseline performance, are not immune to poor ICU outcomes, particularly when high-risk features such as admission from inpatient wards, septic shock, cardiac arrest prior to ICU admission, and acute kidney injury are present. These findings challenge the assumption that good pre-ICU functional status ensures favorable prognosis. Instead, they highlight the need for early recognition of physiological deterioration using admission-level indicators and support risk-based triage strategies that go beyond traditional performance metrics.

Author Contributions: Surgical and Medical Practices: N.B.D., K.İ., B.T., B.T., G.A., M.T., Concept: N.B.D., K.İ., Design: N.B.D., K.İ., Data Collection or Processing: N.B.D., K.İ., B.T., Analysis or Interpretation: N.B.D., K.İ., G.A., M.T., Literature Search: N.B.D., K.İ., B.T., Writing: N.B.D., K.İ., G.A., M.T.

Ethical Statement: This study was approved by the Gazi University Ethics Committee (Date: April 15, 2025, Number: 2025–627).

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

Informed Consent: Written informed consent was obtained from all participants.

References

- 1. Zampieri FG, Bozza FA, Moralez GM, et al. The effects of performance status one week before hospital admission on the outcomes of critically ill patients. Intensive Care Med. 2017;43(1):39-47.
- 2. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649-55.
- 3. Van der Zee EN, Noordhuis LM, Epker JL, et al. Assessment of mortality and performance status in critically ill cancer patients: A retrospective cohort study. PLoS One. 2021;16(6):e0252771.
- 4. Gattani S, Ramaswamy A, Noronha V, et al. ECOG performance status as a representative of deficits in older Indian patients with cancer: A cross-sectional analysis from a large cohort study. Cancer Research, Statistics, and Treatment. 2022;5(2):256-262.
- 5. Pieralli F, Vannucchi V, De Marzi G, et al. Performance status and in-hospital mortality of elderly patients with community acquired pneumonia. Intern Emerg Med. 2018;13(4):501-507.
- Díaz-Díaz D, Villanova Martínez M, Palencia Herrejón E. Oncological patients admitted to an intensive care unit. Analysis of predictors of in-hospital mortality. Med Intensiva (Engl Ed). 2018;42(6):346-353.
- 7. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489-95.
- 8. Kara I, Yildirim F, Zerman A, et al. The impact of frailty on noninvasive mechanical ventilation in elderly medical intensive care unit patients. Aging Clin Exp Res. 2018;30(4):359-366.
- 9. Wozniak H, Beckmann TS, Dos Santos Rocha A, et al. Long-stay ICU patients with frailty: mortality and recovery outcomes at 6 months. Ann Intensive Care. 2024;14(1):31.
- 10. Fronczek J, Polok K, de Lange DW, et al. VIP1; VIP2 study group. Relationship between the Clinical Frailty Scale and short-term mortality in patients ≥ 80 years old acutely admitted to the ICU: a prospective cohort study. Crit Care. 2021;25(1):231.
- 11. Krinsley JS, Wasser T, Kang G, et al. Pre-admission functional status impacts the performance of the APACHE IV model of mortality prediction in critically ill patients. Crit Care. 2017;21(1):110.
- 12. Ekerstad N, Javadzadeh D, Alexander KP, et al. Clinical Frailty Scale classes are independently associated with 6-month mortality for patients after acute myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2022;11(2):89-98.
- 13. Flaatten H, De Lange DW, Morandi A, et al. VIP1 study group. The impact of frailty on ICU and 30-day mortality and the level of care in very elderly patients (≥ 80 years). Intensive Care Med. 2017;43(12):1820-1828.
- Bagshaw SM, Stelfox HT, McDermid RC, et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study. CMAJ. 2014;186(2):E95-102.
- 15. Vincent JL, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2(5):380-6.
- Demass TB, Guadie AG, Mengistu TB, et al. The magnitude of mortality and its predictors among adult patients admitted to the Intensive care unit in Amhara Regional State, Northwest Ethiopia. Sci Rep. 2023;13(1):12010.

- 17. Montull L, Fernández R, Montón C, et al. Oncological patients admitted to the intensive care unit: a multicenter study of mortality predictors. Med Intensiva. 2018;42(4):225–233.
- 18. Sanchez D, Brennan K, Al Sayfe M, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. Crit Care. 2020;24(1):609.
- Subramaniam A, Aalap C, Orford NR, et al. Hospital Frailty Risk Score and Clinical Frailty Scale as predictors of mortality and length of stay in older critically ill patients: a multicentre retrospective study. Crit Care. 2022;26(1):284.
- 20. Kolay F, Gülen D, Kahvecioğlu A, et al. Evaluation of mortality prediction models for oncology patients in intensive care unit. Signa Vitae. 2025;21(3):46-52.
- 21. Martos-Benítez FD, Soler-Morejón CD, Lara-Ponce KX, et al. Critically ill patients with cancer: A clinical perspective. World J Clin Oncol. 2020;11(10):809-835.
- 22. Kingah P, Alzubaidi N, Yafawi JZD, et al. Factors Associated with Mortality in Patients with a Solid Malignancy Admitted to the Intensive Care Unit A Prospective Observational Study. J Crit Care Med (Targu Mures). 2018;4(4):137-142.
- 23. Sanchez D, Brennan K, Al Sayfe M, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. Crit Care 2020;24(1):609.
- 24. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.
- 25. McGrath BA, Wallace S, Buchanan K. Early versus late mechanical ventilation in ICU mortality: a systematic review and meta-analysis. Crit Care. 2022;26(1):207.
- 26. Chandel A, Leazer S, Alcover KC, et al. ICU mortality associated with organ-support in COVID-19: systematic review and meta-analysis. Crit Care Explor. 2023;5(3):e0876.
- 27. Raith EP, Udy AA, Bailey M, et al. Prognostic accuracy of the SOFA score for in-hospital mortality among adults with suspected infection: JAMA. 2017;317(3):290–300.
- 28. Inci K, Aygencel G, Boyaci Dundar N, et al. Factors and outcomes related to new-onset acute kidney injury in septic medical intensive care unit patients. North Clin Istanb. 2024;11(5):414-421.
- 29. Zhang L, Xie X, Zhang Y, et al. Value of SOFA score, APACHE-II score, and WBC count for mortality risk assessment in septic patients: a ROC curve analysis. Medicine (Baltimore). 2025;104(15):eXXXX.
- 30. Ferreira FL, Bota DP, Bross A, et al. Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754–8.
- Aujla S, Banstola S, Laha S, et al. A retrospective comparison study of delayed admissions into the critical care unit. J Intensive Care Soc. 2025 May 26:17511437251333268.
- 32. Subbe CP, Kruger M, Rutherford P, et al. Validation of a modified Early Warning Score in medical admissions. QJM. 2001;94(10):521-6.
- 33. Smith GB, Prytherch DR, Meredith P et al. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013;84(4):465-70.
- 34. Maharaj R, Raffaele I, Wendon J. Rapid response systems: a systematic review and meta-analysis. Crit Care. 2015;19(1):254.

Predictive Performance of Admission Hematological Parameters for Adverse Clinical Outcomes in Acute Cholangitis

Akut Kolanjit Hastalarında Olumsuz Klinik Sonuçları Öngörmede Başvuru Hematolojik Parametrelerinin Tahmin Gücü

o Mustafa Çomoğlu¹, o Emin Altıparmak², o Hüseyin Çamlı¹, o İhsan Ateş¹

- 1 Department of Internal Medicine, Ankara Bilkent City Hospital, Ankara, Turkiye
- 2 Department of Gastroenterology, Ankara Bilkent City Hospital, Ankara, Turkiye

ABSTRACT

Objectives: This study aimed to evaluate the prognostic performance of hematological parameters, including red cell distribution width (RDW) and neutro-phil-to-lymphocyte ratio (NLR), in patients with acute cholangitis (AC).

Materials and Methods: In this prospective study, 202 patients diagnosed with AC between December 2023 and August 2024 were included. The predictive performance of admission hematological parameters for clinical outcomes, including in-hospital mortality, bacteremia, need for inotropic support, prolonged hospital stay, intensive care unit (ICU) admission, and prolonged ICU stay, was assessed and compared.

Results: Among the 202 patients, 16 (7.9%) died during hospitalization. Multivariate regression analysis identified RDW as an independent risk factor for in-hospital mortality (odds ratio [OR]: 2.25, 95% confidence interval [CI]: 1.48-3.42, p<0.001). For the composite outcome, both NLR (OR: 1.04, 95% CI: 1.01-1.07, p=0.009) and RDW (OR: 1.61, 95% CI: 1.26-2.10, p<0.001) were independent risk factors. Receiver operating characteristic (ROC) analysis showed that RDW had the highest predictive accuracy for both in-hospital mortality (AUC [95% CI]: 0.826 [0.711-0.941]) and the composite outcome (AUC [95% CI]: 0.761 [0.681-0.842]) At a cut-off value of 15.6, RDW yielded a sensitivity of 75% and specificity of 88.2% for predicting in-hospital mortality. Patients with RDW >15.6 had a 21.3-fold higher risk of in-hospital mortality compared to those with lower RDW values (OR: 21.3, 95% CI: 6.3-71.5).

Conclusion: RDW demonstrated the strongest prognostic value among hematological parameters and may serve as a practical and reliable marker for early risk stratification in patients with AC.

Keywords: acute cholangitis, hematological parameters, mortality

ÖZET

Amaç: Bu çalışma, akut kolanjit (AC) hastalarında eritrosit dağılım genişliği (RDW) ve nötrofil-lenfosit oranı (NLR) dahil olmak üzere hematolojik parametrelerin prognostik performansını değerlendirmeyi amaçlamıştır.

Gereç ve Yöntem: Bu prospektif çalışmaya, Aralık 2023 ile Ağustos 2024 tarihleri arasında AC tanısı almış 202 hasta dâhil edildi. Başvuru anındaki hematolojik parametrelerin, hastane içi mortalite, bakteriyemi, inotrop ihtiyacı, uzamış hastane yatışı, yoğun bakım (ICU) yatışı ve uzamış ICU yatışı gibi klinik sonuçları öngörme gücü değerlendirildi ve karşılaştırıldı.

Bulgular: Çalışmaya dâhil edilen 202 hastanın 16'sı (%7.9) hayatını kaybetti. Çok değişkenli regresyon analizinde RDW, hastane içi mortalite için bağımsız bir risk faktörü olarak bulundu (odds ratio [OR]: 2.25, %95 güven aralığı [GA]: 1.48–3.42, p<0.001). Kompozit sonlanım açısından hem NLR (OR: 1.04, %95 GA: 1.01–1.07, p=0.009) hem de RDW (OR: 1.61, %95 GA: 1.26–2.10, p<0.001) bağımsız risk faktörleri olarak bulundu. ROC analizinde, hematolojik parametreler arasında hastane içi mortaliteyi ve kompozit sonlanımı en iyi öngören parametrenin RDW olduğu belirlendi (sırasıyla, AUC [%95 GA]: 0.826 [0.711–0.941] ve AUC [%95 GA]: 0.761 [0.681–0.842]). 15.6 kesme değeri için RDW'nin mortalite için duyarlılığı %75, özgüllüğü ise %88.2 olarak hesaplandı. RDW >15.6 olan hastaların, diğer hastalara kıyasla 21.3 kat daha fazla hastane içi mortalite riski taşıdığı saptandı (OR: 21.3, %95 GA: 6.3–71.5).

Sonuç: RDW, hematolojik parametreler arasında en güçlü prognostik değeri göstermiştir ve AC hastalarında erken risk sınıflandırması için pratik ve güvenilir bir belirteç olarak hizmet edebilir.

Anahtar kelimeler: akut kolanjit, hematolojik parametreler, mortalite

Corresponding author: Mustafa Çomoğlu

Department of Internal Medicine, Ankara Bilkent City Hospital, Universiteler Neighborhood 1604. Street No: 9 Çankaya, Ankara, Turkey

E-mail: comogludr@gmail.com ORCID ID: 0000-0003-4977-9919

Received: 04.06.2025 **Accepted:** 05.08.2025 **Publication Date:** 30.09.2025

Cite this article as: Çomoğlu, M., Altıparmak, E., et al. Predictive performance of admission hematological parameters for adverse clinical outcomes in acute cholangitis. J Ankara Univ Fac Med. 2025;78(3):187-197.

Introduction

Acute cholangitis (AC) is a condition that occurs due to biliary obstruction and subsequent infection of the biliary tree (1). Although there have been advances in the diagnosis and treatment of AC, if appropriate and timely management is not provided, it may lead to severe implications, such as sepsis and multiorgan failure (2). It is very important to recognize patients who are at high risk for poor outcome in order to direct the management and determine the appropriate timing of biliary drainage (3).

Hematological parameters have emerged as easy to use and cost-effective biomarkers for predicting the severity of disease and the outcome in different inflammatory and infectious diseases (4). Parameters such as white blood cell (WBC) count, neutrophil-to-lymphocyte ratio (NLR), platelet count, and red cell distribution width (RDW) have demonstrated prognostic value in conditions ranging from sepsis to acute pancreatitis (5-7). In recent years, several studies have highlighted the prognostic value of hematological indices, particularly RDW and NLR, in infection-related emergencies such as sepsis, community-acquired pneumonia, and biliary tract infections (8-10). These parameters have been associated with mortality, ICU admission, and prolonged hospitalization in various acute care settings. Nevertheless, their prognostic utility in acute cholangitis has not been fully investigated. Incorporating insights from these recent studies may help improve early risk stratification, particularly in emergency department settings.

The Tokyo guidelines, especially the latest version Tokyo 2018 (TG18) offers a guideline for the management and diagnosis of AC (11). However, the present guidelines do not emphasize the prognostic value of hematological parameters despite presenting clinical, laboratory, and imaging criteria for disease severity (11). Assessing the application of these prominent parameters in AC, which have gained significance in many inflammatory diseases today, will be valuable in understanding their role and providing guidance for future guidelines. In this study, we aim

to evaluate the prognostic significance of hematological parameters in patients with AC.

Materials And Methods

Study design and clinical outcomes

This prospective study was conducted between December 2023 and August 2024, including 202 patients. Ethical approval was obtained from the Hospital Ethics Committee (Approval number: E2-22-2101), and written informed consent was obtained from all participants. The study was conducted in accordance with the principles of the Declaration of Helsinki. Patients aged 18 years or older who met the diagnostic criteria for AC according to the TG18 were included in the study. Patients diagnosed with AC at their initial presentation to the emergency department were enrolled, while those who developed AC during hospitalization were excluded. Additionally, patients with a suspected but unconfirmed diagnosis of AC and those with malignancy were excluded.

The prognostic role of hematological parameters, including WBC count, hemoglobin, platelet count, NLR, and RDW, at the time of presentation was investigated in patients with AC. The primary outcome was in-hospital mortality. Secondary outcomes included prolonged hospital stay, intensive care unit (ICU) admission, bacteremia, and the development of inotropic support requirements. Furthermore, patients were also evaluated for composite outcomes, including in-hospital mortality, inotropic support requirement, prolonged ICU stay, and bacteremia.

Definitions and data collection

The diagnosis and severity classification of AC were based on TG18 criteria (11). Patients meeting all three of the following criteria were diagnosed with AC: (1) evidence of systemic inflammation, such as body temperature >38°C, WBC count >10 × 10^9 /L, or C reactive protein (CRP) >10 mg/L; (2) evidence of cholestasis, such as jaundice (total bilirubin ≥ 2 mg/dL) or abnormal liver enzymes (more than 1.5 times the upper limit of normal); and (3) imaging evidence of biliary dilatation or underlying etiology (e.g., stricture, stones, or stent). Patients were classified as having severe AC (Grade III) in the presence of at

least one organ/system dysfunction, including cardiovascular, neurological, respiratory, renal, hepatic, or hematological dysfunction. Moderate AC (Grade II) was defined by the presence of two or more of the following criteria: abnormal WBC count ($<4 \times 10^9$ /L or $>12 \times 10^9$ /L), fever $\ge 39^\circ$ C, age ≥ 75 years, total bilirubin ≥ 5 mg/dL, and hypoalbuminemia (<70% of the lower normal limit). Mild AC was diagnosed in cases not meeting the criteria for moderate or severe AC.

Data collected included demographic characteristics, vital signs, comorbid conditions, detailed hematological and biochemical parameters at admission, the presence of bacteremia, length of hospital stay, radiological findings, ICU admission status and duration, and inotropic support requirements. Bacteremia was defined as blood culture positivity deemed clinically significant by the infectious diseases team; contaminants and clinically irrelevant findings were excluded. The time from hospital admission to biliary drainage was recorded in hours. Endoscopic retrograde cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTC) were performed as biliary drainage methods in the study cohort. Patients with hospital or ICU stays exceeding the 75th percentile of the overall study population were classified as having prolonged hospital or ICU stays.

Statistical analysis

IBM SPSS software version 26.0 for Windows (IBM Corp., Armonk, NY, USA) was used for statistical analyses. The normality of data distribution was checked with the Kolmogorov-Smirnov test. Continuous variables were presented as mean ± standard deviation or median (interquartile range) and compared with Student's t-test or Mann-Whitney U test, while categorical variables were presented as number (%) and compared with Pearson's Chisquare or Fisher's exact test. Parameters associated with mortality and composite outcome at P < 0.1 level were included in the univariate logistic regression analysis. Parameters found to be associated with mortality and composite outcome at P < 0.1 level in the univariate analysis were included in the forward stepwise multivariate logistic regression

analysis to determine independent risk factors for in-hospital mortality and composite outcome. The area under the curve (AUC) values of the predictors for primary and secondary endpoints were calculated using the receiver operating characteristic (ROC) curve analysis. The appropriate cut-off values of the independent risk factors were determined based on Youden's index using the ROC curve (12). At the appropriate cut-off values of the predictors, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were also calculated. A *P* < 0.05 was considered statistically significant.

Results

Comparison of baseline characteristics according to mortality

In the total population, 16 patients (7.9%) died. The median age of deceased patients was 84 (76-87) years, compared to 69 (55-79) years for survivors (p<0.001). The proportion of females was higher in the deceased group (p=0.034). The deceased group had lower mean arterial pressure and oxygen saturation (p < 0.001), while heart rate and respiratory rate were higher (p = 0.002 and p < 0.001, respectively). Altered mental status at admission was present in 12 (75%) deceased patients (p < 0.001). The Charlson comorbidity index score was significantly higher in the deceased group (p < 0.001). RDW and NLR values were higher in the deceased group, whereas hemoglobin and platelet levels were lower (p<0.001, p=0.004, p=0.022, and p=0.027, respectively). Comparisons of other baseline characteristics and laboratory parameters are shown in Table 1.

Comparison of clinical outcomes according to mortality

In the deceased group, 13 patients (81.3%) had grade 3 AC according to TG18, compared to 30 patients (16.1%) in the survivor group (p < 0.001). Systemic inflammatory response syndrome (SIRS) score was significantly higher in the deceased group (p < 0.001). Length of hospital stay was similar between the deceased and survivor groups (p = 0.412). The duration from admission to biliary drainage was also comparable between the groups (p = 0.968). Of the 28 pa-

Table 1. Comparison of clinical ch	aracteristics and labo	ratory parameters		
Parameter	Overall n = 202	Survivors n = 186	Non-survivors n = 16	р
Age, years	69 (56-80)	69 (55-79)	84 (76-87)	<0.001
Female gender	100 (49.5)	88 (47.3)	12 (75)	0.034
Comorbidities				
Cardiovascular disease	45 (22.3)	37 (19.9)	8 (50)	0.010
Hypertension	117 (57.9)	107 (57.5)	10 (62.5)	0.699
Diabetes mellitus	64 (31.7)	57 (30.6)	7 (43.8)	0.280
Main complaint at admission				
Abdominal pain	198 (98)	184 (98.9)	14 (87.5)	0.032
Jaundice	54 (26.7)	49 (26.3)	5 (31.3)	0.769
Fever	35 (17.3)	29 (15.6)	6 (37.5)	0.026
Vital signs				
Mean arterial pressure	90 (83-99)	92 (84-99)	69 (59-79)	<0.001
Heart rate per minute	85 (79-96)	84 (78-95)	99 (91-106)	0.002
Respiratory rate per minute	15 (14-18)	15 (14-17)	20 (18-24)	<0.001
Oxygen saturation, %	95 (92-98)	96 (93-98)	90 (87-92)	<0.001
Altered mental status	20 (9.9)	8 (4.3)	12 (75)	< 0.001
Concomitant acute pancreatitis	88 (43.6)	82 (44.1)	6 (37.5)	0.610
Concomitant acute cholecystitis	47 (23.3)	44 (23.7)	3 (18.8)	0.656
History of cholecystectomy	35 (17.3)	34 (18.3)	1 (6.3)	0.316
Charlson comorbidity index	1 (0-2)	1 (0-2)	4 (2-6)	< 0.001
Laboratory parameters				
White blood cell count, 109/L	10.3 (7.4-13.9)	10.2 (7.4-13.8)	12.4 (8.4-25.3)	0.175
Neutrophil count, 10°/L	8.3 (5.5-11.8)	8.3 (5.5-11.8)	8.5 (6-22)	0.435
Lymphocyte count, 10 ⁹ /L	0.9 (0.6-1.4)	0.9 (0.6-1.4)	0.5 (0.4-1.2)	0.093
Hemoglobin, g/dL	13.5 (12.1-14.7)	13.5 (12.1-14.9)	12.5 (11.2-13.5)	0.022
Platelet count, 10°/L	225 (176-288)	226 (183-288)	169 (124-268)	0.027
RDW	14.2 (13.5-14.9)	14.1 (13.5-14.8)	16.8 (15.1-18)	<0.001
NLR	8.9 (4.9-18)	8.4 (4.6-16.6)	19.8 (9.2-33.3)	0.004
Total bilirubin, mg/dL	3.1 (1.7-5.1)	3.2 (1.7-5.1)	2.8 (1.3-7.3)	0.925
Creatinine, mg/dL	0.9 (0.7-1.1)	0.9 (0.7-1)	1.3 (1.1-2.5)	<0.001
Albumin, g/dL	4 (3.7-4.3)	4.1 (3.7-4.3)	3.3 (2.6-3.6)	<0.001
C-reactive protein, mg/L	41 (16-125)	37 (15-114)	98 (44-266)	0.009
Procalcitonin, µg/L	0.5 (0.14-4.06)	0.47 (0.13-3.51)	4.29 (0.35-35)	0.006

Categorical variables are presented as n (%), non-normally distributed numerical variables as median (first quartile, third quartile), and normally distributed numerical variables as mean ± standard deviation. Abbreviations: RDW; red cell distribution width, NLR; neutrophil to lymphocyte ratio,

Parameter	Overall n = 202	Survivors n = 186	Non-survivors n = 16	р
TG18 severity grading				<0.001
Grade 1 (mild)	110 (54.5)	109 (58.6)	1 (6.3)	
Grade 2 (moderate)	49 (24.3)	47 (25.3)	2 (12.5)	
Grade 3 (severe)	43 (21.3)	30 (16.1)	13 (81.3)	
SIRS score, ≥2	53 (26.2)	40 (21.5)	13 (81.3)	<0.001
Duration from admission to biliary drainage, hours	96 (34-168)	96 (36-168)	76 (28-252)	0.968
Biliary drainage method				0.145
ERCP	127 (62.9)	124 (66.7)	3 (18.8)	
PTC	5 (2.5)	4 (2.2)	1 (6.4)	
Length of hospital stay, day	9 (7-13)	9 (7-13)	6 (3-25)	0.412
Prolonged hospitalization	42 (20.8)	36 (19.4)	6 (37.5)	0.107
ICU admission	51 (25.2)	36 (19.4)	15 (93.8)	<0.001
Length of ICU stay, day	5 (3-14)	6 (3-12)	4 (2-25)	0.640
Prolonged ICU stay	12 (5.9)	7 (3.8)	5 (31.3)	0.287
Inotrope requirement	20 (9.9)	6 (3.2)	14 (87.5)	<0.001
Bacteremia	28 (13.9)	17 (9.1)	11 (68.8)	<0.001
Gram-negative	19 (9.4)	14 (7.5)	5 (31.3)	
Gram-positive	9 (4.5)	3 (1.6)	6 (37.5)	

TG18; Tokyo 2018 guidelines, SIRS; systemic inflammatory response syndrome, ERCP; endoscopic retrograde cholangiopancreatography, PTC; percutaneous transhepatic cholangiography, ICU; intensive care unit

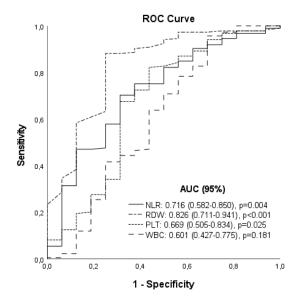


Figure 1. Predictive performance of hematologic parameters for in-hospital mortality.

NLR: Neutrophil-to-Lymphocyte Ratio; PLT: Platelet count; RDW: Red Cell Distribution Width; WBC: White Blood Cell count

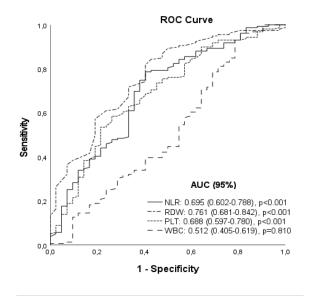


Figure 2. Predictive performance of hematologic parameters for composite outcome.

NLR: Neutrophil-to-Lymphocyte Ratio; PLT: Platelet count; RDW: Red Cell Distribution Width; WBC: White Blood Cell count

Table 3. Univariate and ROC analysis results of hematological parameters for clinical outcomes

		Prolonged hospital- ization	ICU admission	In-hospital mortality	Bacteremia
WBC	AUC	0.402 (0.300-0.505) p=0.052	0.530 (0.435-0.626) p=0.516	0.601 (0.427-0.775) p=0.181	0.517 (0.385-0.649) p=0.0775
	OR	0.97 (0.92-1.03) p=0.336	1.02 (0.98-1.08) p=0.307	1.09 (1.03-1.16) p=0.006	1.05 (0.99-1.11) p=0.058
NEU	AUC	0.401 (0.299-0.504) p=0.050	0.538 (0.443-0.632) p=0.422	0.557 (0.378-0.737) p=0.446	0.532 (0.401-0.663) p=0.586
	OR	0.97 (9.91-1.03) p=0.352	1.03 (0.98-1.09) p=0.252	1.08 (1.01-1.16) p=0.018	1.06 (1.00-1.12) p=0.047
LYM	AUC	0.605 (0.514-0.696) p=0.036	0.682 (0.596-0.767) p=<0.001	0.627 (0.463-0.790) p=0.093	0.726 (0.618-0.834) p<0.001
	OR	0.49 (0.25-0.95) p=0.036	0.37 (0.19-0.71) p=0.003	0.79 (0.34-1.87) p=0.602	0.17 (0.06-0.482) p<0.001
НВ	AUC	0.611 (0.504-0.717) p=0.027	0.639 (0.550-0.728) p=0.003	0.672 (0.551-0.794) p=0.022	0.624 (0.519-0.728) 0.036
	OR	0.79 (0.68-0.95) p=0.012	0.76 (0.64-0.90) p=0.002	0.68 (0.52-0.89) p=0.005	0.75 (0.61-0.93) p=0.008
PLT	AUC	0.604 (0.502-0.707) p=0.038	0.686 (0.600-0.773) p<0.001	0.667 (0.503-0.831) p=0.027	0.711 (0.609-0.813) p<0.001
	OR	0.99 (0.99-1.00) p=0.560	0.99 (0.98-0.99) p=0.002	0.99 (0.98-0.99) p=0.027	0.99 (0.98-0.99) p=0.001
RDW	AUC	0.642 (0.556-0729) p=0.005	0.697 (0.612-0.781) p<0.001	0.826 (0.711-0.941) p<0.001	0.744 (0.652-0.837) p<0.001
	OR	1.27 (1.05-1.56) p=0.016	1.49 (1.21-1.83) p<0.001	1.90 (1.43-2.51) p<0.001	1.51 (1.20-1.89) P<0.001
NLR	AUC	0.538 (0.445-0.631) p=0.538	0.675 (0.586-0.764) p<0.001	0.716 (0.582-0.850) p=0.004	0.708 (0.600-0.816) p<0.001
	OR	0.99 (0.97-1.02) p=0.780	1.04 (1.02-1.06) p<0.001	1.04 (1.01-1.07) p=0.005	1.05 (1.02-1.07) p<0.001

WBC; white blood cells, NEU; neutrophil, LYM; lymphocyte, HB; hemoglobin, PLT; platelet, RDW; red cell distribution width, NLR; neutrophil to lymphocyte ratio, ICU; intensive care unit, ROC; receiver operating characteristic.

tients with bacteremia, the most frequently isolated pathogen was Escherichia coli (n=14), followed by Enterococcus spp. (n=6), Klebsiella spp. (n=3), Pseudomonas spp. (n=2), and Acinetobacter spp. (n=3). Bacteremia was significantly more common in the deceased group (68.8% vs. 9.1%, p < 0.001). Comparative clinical outcomes are summarized in Table 2.

Predictive performance of hematologic parameters

Univariate regression and ROC analyses were conducted to evaluate the predictive performance of

WBC, neutrophil (NEU), lymphocyte (LYM), hemoglobin (HB), platelet (PLT), RDW, and NLR for prolonged hospital stay, ICU admission, in-hospital mortality, and bacteremia. RDW demonstrated the highest predictive accuracy for in-hospital mortality, with an AUC (95% CI) of 0.826 (0.711–0.941) (Figure 1). For the composite outcome, which included the need for inotropes, mortality, prolonged ICU stay, and bacteremia, RDW was also the best predictor, with an AUC (95% CI) of 0.761 (0.681–0.842) (Figure 2). The predictive performances of hematologic parameters for

Table 4. Parameters predicting in-hospital mortality and composite outcome						
	Univariate analysis	Univariate analysis				
	OR (95% CI)	р	OR (95% CI)	р		
In-hospital mortality						
Age	1.12 (1.04-1.17)	0.001				
Mean arterial pressure	0.91 (0.87-0.95)	<0.001				
White blood cell count	1.09 (1.03-1.16)	0.006				
Hemoglobin	0.68 (0.52-0.89)	0.005				
Platelet count	0.99 (0.98-0.99)	0.027				
RDW	1.90 (1.43-2.52)	<0.001	2.27 (1.42-3.62)	<0.001		
NLR	1.04 (1.01-1.07)	0.005				
Albumin	0.07 (0.03-0.21)	<0.001				
C-reactive protein	1.01 (1.00-1.01)	0.002				
Procalcitonin	1.01 (0.99-1.02)	0.137				
TG18 severity grading	7.83 (2.98-20.6)	<0.001	4.80 (1.41-16.32)	0.012		
Charlson comorbidity index	1.40 (1.19-1.65)	<0.001				
SIRS score ≥ 2	15.8 (4.3-58.2)	<0.001				
Altered mental status	66.75 (17.56-253.6)	<0.001	42.31 (6.91-259.27)	<0.001		
Composite outcome						
Age	1.07 (1.04-1.11)	<0.001				
Mean arterial pressure	0.94 (0.92-0.97)	<0.001				
White blood cell count	1.04 (0.99-1.09)	0.087				
Hemoglobin	0.75 (0.63-0.90)	0.002				
Platelet count	0.99 (0.98-0.99)	<0.001				
RDW	1.71 (1.36-2.14)	<0.001	1.61 (1.26-2.1)	<0.001		
NLR	1.06 (1.03-1.08)	<0.001	1.04 (1.01-1.07)	0.009		
Albumin	0.16 (0.08-0.33)	<0.001				
C-reactive protein	1.01 (1.00-1.01)	<0.001				
Procalcitonin	1.04 (1.02-1.07)	<0.001				
TG18 severity grading	4.89 (2.96-8.01)	<0.001	3.80 (2.21-6.54)	<0.001		
Charlson comorbidity index	1.28 (1.12-1.47)	<0.001				
SIRS score ≥ 2	6.93 (3.31-14.51)	<0.001				

Composite outcome includes in-hospital mortality, need for inotropes, prolonged ICU stay, and bacteremia. SIRS; systemic inflammatory response syndrome, RDW; red cell distribution width, NLR; neutrophil to lymphocyte ratio, CRP; C-reactive protein, TG18; Tokyo 2018 guidelines, GCS; Glasgow Coma Scale

prolonged hospital stay, ICU admission, in-hospital mortality, and bacteremia are presented in Table 3.

Predictors of in-hospital mortality

Univariate and multivariate regression analyses were performed to identify predictors of in-hospital mortality and the composite outcome. While many parame-

ters were associated with in-hospital mortality in the univariate analysis, multivariate analysis identified TG18 severity grading (p = 0.012), RDW (p < 0.001), and altered mental status (p < 0.001) as independent predictors of in-hospital mortality. For the composite outcome, multivariate analysis revealed NLR (p =

Table 5. Predictive abilities of hematologic parameters for clinical outcomes at different cut-off values

		Cut-off value	Number of patients*	OR (95% CI)	Sens	Spec	PPV	NPV
RDW	Composite outcome	15	46 (22.8%)	6.2 (2.9-13.1)	52.4%	85%	47.8%	87.2%
	In-hospital mortality	15.6	34 (16.8%)	21.3 (6.3-71.5)	75%	88.2%	35.3%	97.6%
NLR	Composite outcome	15.7	59 (29.2%)	5.4 (2.6-11.2)	59.5%	78.8%	42.4%	88.1%
	In-hospital mortality	14.6	66 (32.7%)	5.2 (1.7-15.8)	68.8%	70.4%	16.7%	96.3%
PLT	Composite outcome	150.000	28 (13.9%)	4.3 (1.9-10.1)	52.9%	90.7%	52.9%	80.8%
	In-hospital mortality	150.000	28 (13.9%)	4.5 (1.5-13.5)	31%	90.6%	46.4%	83.3%

Composite outcome includes in-hospital mortality, need for inotropes, prolonged ICU stay, and bacteremia. PLT; platelet, RDW; red cell distribution width, NLR; neutrophil to lymphocyte ratio, Sens; sensitivity, Spec; specificity, PPV; positive predictive value, NPV; negative predictive value, "Number (%) of patients with values above or below the given cut-off values

0.009), RDW (p < 0.001), and TG18 severity grading (p < 0.001) as independent predictors (Table 4).

The optimal cut-off values for independent predictors were determined using ROC analysis with Youden's index. For in-hospital mortality, the optimal RDW cut-off value was 15.6, with a sensitivity of 75% and a specificity of 88.2%. For the composite outcome, the RDW cut-off value was 15, with a sensitivity of 52.4% and a specificity of 85%. Patients with an RDW value > 15.6 had a 21.3-fold increased risk of in-hospital mortality (OR = 21.3, 95% CI: 6.3-71.5) (Table 5).

Discussion

In this prospective study, we evaluated the prognostic significance of routinely available hematological parameters in patients with AC, a condition associated with substantial morbidity and mortality. Our findings revealed that RDW was the most powerful hematological marker for predicting in-hospital mortality. Furthermore, RDW also served as a reliable predictor of adverse composite outcomes, including bacteremia, prolonged ICU stay, in-hospital mortality, need for inotropic support, and prolonged hospital stay.

AC is a critical condition requiring timely intervention, particularly in severe cases, as delays in treatment can lead to poor outcomes such as sepsis and mortality (13, 14). Therefore, the early identification of high-risk patients at presentation is crucial for patient triage and determining the timing of interven-

tional procedures such as ERCP. Currently, the primary guideline for risk stratification and assessing disease severity is the TG18 (11). According to TG18, AC severity is classified into three grades (11, 15). For Grade 3 patients, in addition to appropriate fluid resuscitation and antibiotic therapy, urgent ERCP is recommended, whereas Grade 1 patients are advised to receive more conservative treatment approaches (15). Among hematological parameters, WBC and PLT are the two markers included in the TG18 criteria, classified as Grade 2 and Grade 3 severity markers, respectively (11).

WBC count is widely used as a marker of infection and inflammation in clinical practice due to its rapid and accessible measurement (16). Elevated WBC levels are often indicative of systemic inflammatory responses, such as those observed in sepsis, AC, or other infectious processes (17). In a study by Murayama et al., a WBC count exceeding 20,000 was identified as a poor prognostic factor in AC patients (18). Similar findings have been reported in other studies, where a WBC count above 20,000 was associated with worse outcomes (19, 20). However, the diagnostic specificity of WBC is limited, as elevated levels may also occur in non-infectious inflammatory conditions or due to physiological stress (21, 22). In our study, although WBC was associated with in-hospital mortality in univariate analysis, its prognostic value was lower than other hematological parameters based on ROC analysis.

Another widely used hematological parameter is the PLT count. Beyond its role in hemostasis, PLT count serves as an inflammatory marker in various clinical conditions (23). Thrombocytopenia is frequently associated with severe infections, systemic inflammation, or disseminated intravascular coagulation, reflecting disease severity (24). It is also recognized as a poor prognostic factor in numerous conditions, including AC, where it may indicate advanced disease, systemic involvement, or increased risk of complications (25). In a study by Chen et al., PLT was shown to predict bacteremia, with an AUC of 0.649, a finding consistent with our study (26). TG18 also includes thrombocytopenia (PLT < 100,000/ μL) as a marker of poor prognosis (11). Similarly, our findings support the predictive value of PLT for adverse outcomes, in alignment with the TG18 criteria.

In recent years, alongside traditional hematological parameters, novel markers such as the NLR and RDW have been shown to predict poor prognosis, particularly in inflammatory conditions (5, 7, 8). RDW primarily reflects heterogeneity in erythrocyte size and serves as an indicator of the systemic effects of inflammation (27). In states of chronic inflammation and oxidative stress, erythropoiesis is suppressed, iron metabolism is disrupted, and erythrocyte lifespan is shortened (28). These mechanisms lead to increased RDW, which has been associated with the severity of inflammatory diseases and worse clinical outcomes (29). Additionally, elevated RDW may reflect endothelial dysfunction and microvascular injury, further linking it to adverse prognostic outcomes (30).

NLR, on the other hand, is regarded as a marker of the balance between pro-inflammatory and anti-inflammatory responses in the immune system (31). During inflammation, neutrophil mobilization increases, while lymphocyte counts decrease, resulting in an elevated NLR (32). A high NLR indicates an exaggerated immune response, as observed in conditions such as SIRS and sepsis, where immune dysregulation can lead to organ dysfunction or multi-organ failure. NLR is also associated with severe inflammatory responses, such as cytokine storms,

and serves as an indirect measure of inflammatory burden (10, 32-34). The distinct mechanisms by which RDW and NLR reflect different aspects of the inflammatory response suggest that these parameters could play complementary roles in assessing disease severity in conditions like AC.

In a study by Yesil et al., NLR was found to predict AC severity (35). Similar findings from other studies have demonstrated NLR as a strong predictor of adverse outcomes in AC (36, 37). In our study, while NLR was a reliable predictor of composite outcomes, its ability to predict in-hospital mortality was lower in multivariate analysis. Moreover, NLR's prognostic value for both in-hospital mortality and composite outcomes was inferior to RDW based on ROC analysis. Our study highlights that RDW outperformed all other hematological parameters in predicting poor prognosis. These findings suggest that incorporating RDW into AC guidelines and severity classifications could enhance patient prognosis and triage decisions. To the best of our knowledge, this is the first prospective study of this scale to demonstrate the superior prognostic value of RDW in AC, emphasizing its potential role in future clinical decision-making.

Our study has some limitations. The primary limitations are the small sample size and the single-center design. However, despite being a single-center study, it is noteworthy that our hospital is one of the largest healthcare institutions in Türkiye, serving a heterogeneous patient population referred from various healthcare facilities. Additionally, our study evaluated hematological parameters obtained at the time of hospital admission. As a result, these values may not fully reflect the initial stages of the disease. Nevertheless, given that studies on AC can only be conducted in advanced tertiary care hospitals, this limitation is inevitable.

In conclusion, our study, which thoroughly investigated the prognostic value of hematological parameters in AC, demonstrated that RDW reflects AC prognosis significantly better than traditionally used parameters such as PLT and WBC. However, for RDW to be incorporated into clinical guidelines and

gain widespread clinical utility in assessing AC severity, future multicenter studies with larger patient cohorts are needed.

Author Contributions: Concept: M.Ç., E.A., İ.A., Design: M.Ç., E.A., Data Collection or Processing: M.Ç., Analysis or Interpretation: M.Ç., İ.A., Literature Search: M.Ç., Writing: M.Ç., E.A., H.Ç., İ.A.

Ethics Committee Approval: This study was conducted with the approval of the Hospital Ethics Committee (Number: E2-22-2101).

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

Informed Consent: Written informed consent was obtained from all participants.

References

- Hanau LH, Steigbigel NH. Acute (ascending) cholangitis. Infect Dis Clin North Am. 2000;14(3):521-46.
- 2. Mosler P. Diagnosis and management of acute cholangitis. Curr Gastroenterol Rep. 2011;13(2):166-72.
- 3. Okamoto K, Suzuki K, Takada T, et al. Tokyo Guidelines 2018: flowchart for the management of acute cholecystitis. J Hepatobiliary Pancreat Sci. 2018;25(1):55-72.
- 4. Chatterjee U, Butina M. Biomarkers of Infection and Inflammation. Clin Lab Sci. 2019;32(4):149-155.
- 5. Zhang HB, Chen J, Lan QF, et al. Diagnostic values of red cell distribution width, platelet distribution width and neutrophil-lymphocyte count ratio for sepsis. Exp Ther Med. 2016;12(4):2215-2219.
- 6. Vo H, Truong-Thi N, Ho-Thi H, et al. The value of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, red cell distribution width, and their combination in predicting acute pancreatitis severity. Eur Rev Med Pharmacol Sci. 2023 Dec;27(23):11464-11471.
- 7. Hu Z-D, Lippi G, Montagnana M. Diagnostic and prognostic value of red blood cell distribution width in sepsis: a narrative review. Clini Biochem. 2020;77:1-6.
- 8. Wu Y-C, Chen H-H, Chao W-C. Association between red blood cell distribution width and 30-day mortality in critically ill septic patients: a propensity score-matched study. J Intensive Care. 2024;12(1):34.
- Wong BPK, Lam RPK, Ip CYT, et al. Applying artificial neural network in predicting sepsis mortality in the emergency department based on clinical features and complete blood count parameters. Sci Rep. 2023;13(1):21463.
- Li D, Sun J, Qi C, et al. Predicting severity of inpatient acute cholangitis: combined neutrophil-to-lymphocyte ratio and prognostic nutritional index. BMC Gastroenterol. 2024;24(1):468.
- 11. Kiriyama S, Kozaka K, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholangitis (with videos). J Hepatobiliary Pancreat Sci. 2018;25(1):17-30.

- 12. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47(4):458-72.
- 13. Ahmed M. Acute cholangitis-an update. World J Gastrointest Pathophysiol. 2018;9(1):1.
- 14. Sokal A, Sauvanet A, Fantin B, et al. Acute cholangitis: Diagnosis and management. J Visc Surg. 2019;156(6):515-25.
- 15. Yokoe M, Hata J, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos). J Hepatobiliary Pancreat Sci. 2018;25(1):41-54.
- Fleming C, Russcher H, Lindemans J, et al. Clinical relevance and contemporary methods for counting blood cells in body fluids suspected of inflammatory disease. Clin Chem Lab Med. 2015;53(11):1689-706.
- 17. Agnello L, Giglio RV, Bivona G, et al. The value of a complete blood count (CBC) for sepsis diagnosis and prognosis. Diagnostics. 2021;11(10):1881.
- 18. Murayama KM. Acute Cholangitis Management: Prevention of Organ Failure and Death. JAMA Surg. 2016;151(11):1045.
- Rosing DK, De Virgilio C, Nguyen AT, et al. Cholangitis: analysis of admission prognostic indicators and outcomes. Am Surg. 2007;73(10):949-54.
- Schwed AC, Boggs MM, Pham X-BD, et al. Association of admission laboratory values and the timing of endoscopic retrograde cholangiopancreatography with clinical outcomes in acute cholangitis. JAMA Surg. 2016;151(11):1039-45.
- 21. Liba Z, Nohejlova H, Capek V, et al. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One. 2019;14(7):e0219987.
- 22. Lavoignet C-E, Le Borgne P, Chabrier S, et al. White blood cell count and eosinopenia as valuable tools for the diagnosis of bacterial infections in the ED. Eur J Clin Microbiol Infect Dis. 2019;38(8):1523-32.
- 23. Germolec DR, Shipkowski KA, Frawley RP, et al. Markers of inflammation. Methods Mol Biol. 2018;1803:57-79.
- 24. Bedet A, Razazi K, Boissier F, et al. Mechanisms of thrombocytopenia during septic shock: a multiplex cluster analysis of endogenous sepsis mediators. Shock. 2018;49(6):641-8.
- 25. Iba T, Watanabe E, Umemura Y, et al. Sepsis-associated disseminated intravascular coagulation and its differential diagnoses. J Intensive Care. 2019;7:1-13.
- 26. Chen X, Wei F, Zhang D, et al. Platelet index on admission as a predictor of bacteremia in acute cholangitis: a 7-year retrospective observational study. Platelets. 2022;33(8):1279-86.
- 27. Salvagno GL, Sanchis-Gomar F, Picanza A, et al. Red blood cell distribution width: a simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 2015;52(2):86-105.
- 28. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res. 1998;18(8):555-9.
- 29. Krongsut S, Na-Ek N, Khongthon N. Admission red blood cell distribution width as a prognostic biomarker of stroke-associated pneumonia and mortality in acute ischemic stroke patients treated with thrombolysis. J Stroke Cerebrovasc Dis. 2025;34(4):108254.
- 30. Tenekecioglu E, Yilmaz M, Yontar OC, et al. Red blood cell distribution width is associated with myocardial injury in non-ST-elevation acute coronary syndrome. Clinics (Sao Paulo). 2015;70(1):18-23.
- 31. Bath J, Smith JB, Kruse RL, et al. Neutrophil-lymphocyte ratio predicts disease severity and outcome after lower extremity procedures. J Vasc Surg. 2020;72(2):622-31.

- 32. Balta S, Kurtoglu E, Kucuk U, et al. Neutrophil-lymphocyte ratio as an important assessment tool. Expert review of cardiovascular therapy. 2014;12(5):537-8.
- 33. Huang Z, Fu Z, Huang W, et al. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: a meta-analysis. American J Emerg Med. 2020;38(3):641-7.
- 34. Wu H, Cao T, Ji T, et al. Predictive value of the neutrophil-to-lymphocyte ratio in the prognosis and risk of death for adult sepsis patients: a meta-analysis. Front Immunol. 2024;15:1336456.
- 35. Yeşil B, Çalişkan A, Koşar K, et al. Lymphocyte count and NLR as predictive value for the severity of acute cholangitis. Eur Rev Med Pharmacol Sci. 2023;27(18):8732-8739.
- 36. Lee S-H, Lee T-Y, Jeong J-H, et al. Clinical Significance of the Neutrophil-Lymphocyte Ratio as an Early Predictive Marker for Adverse Outcomes in Patients with Acute Cholangitis. Medicina. 2022;58(2):255.
- 37. Fuss J, Voloboyeva A, Bojko V, et al. Neutrophil to lymphocyte ratio in predicting complications and prognosis in patients with acute cholangitis. Pol Przegl Chir. 2023;96(2):1-5.

Diagnostic Utility of PRAME in Differentiating Melanocytic Lesions, Especially Spitzoid Tumors*

Melanositik Tümörlerin Tanısında PRAME'in Tanısal Değeri

o Zarifa Gahramanli¹, o Aylin Okcu Heper¹, o Ayça Kırmızı¹

1 Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye

ABSTRACT

Objectives: Differential diagnosis of melanoma and nevi is usually straightforward. However, there can be difficult cases, and additional reliable methods are needed for differentiating benign melanocytic lesions from malignant ones. We aimed to investigate the role of PRAME in challenging melanocytic lesions.

Materials and Methods: The study group included 27 atypical Spitz tumors, 12 Spitzoid melanomas, 20 conventional melanomas, and 10 high-grade dysplastic nevi. The control group included 20 melanocytic nevi, 20 Spitz nevi, and 10 low-grade dysplastic nevi. Immunohistochemistry for PRAME, BRAF, p16, BAP1, MelanA, and Ki67 was performed using automated systems. A staining percentage of \geq 75% was considered PRAME positive. Data were analyzed using SPSS v11.5, and a p-value <0.05 was accepted as significant.

Results: PRAME positivity (≥75%) was observed in 60% of melanomas and 25% of Spitzoid melanomas, but not in any type of nevi. Mean PRAME staining percentages: conventional melanoma (58.1%), Spitzoid melanoma (28%), atypical Spitz tumor (2%), Spitz nevus (3.3%), dysplastic nevi (0.75%), and 0% in melanocytic nevi. PRAME showed 60% sensitivity and 100% specificity for melanoma, and 25% sensitivity and 100% specificity for Spitzoid melanoma. A 55% threshold increased sensitivity to 70% and 33.3%, respectively, without reducing specificity. PRAME expression correlated with Clark level in atypical Spitz tumors, tumor-infiltrating lymphocytes in Spitzoid melanomas, but not with Breslow thickness or dysplasia grade.

Conclusion: PRAME shows high specificity in distinguishing melanoma from benign lesions. Lowering the positivity threshold to 55–60% may improve sensitivity, especially in Spitzoid variants, without compromising specificity.

Key Words: PRAME, melanoma, atypical Spitz tumor, Spitzoid melanoma, nevi

ÖZET

Amaç: Melanositik lezyonların ayırıcı tanısında bazı vakalar zorlayıcı olabilmekte ve benign melanositik lezyonları malign olanlardan ayırt edebilmek için ek güvenilir yöntemlere ihtiyaç duyulmaktadır. Bu çalışmada tanı güçlüğü yaşanan melanositik lezyonlarda PRAME'in rolünü araştırmak amaçlanmıştır.

Gereç ve Yöntem: Çalışma grubuna 27 atipik Spitz tümör, 12 Spitzoid melanom, 20 konvansiyonel melanom ve 10 yüksek dereceli displazili displastik nevüs dahil edilmiştir. Kontrol grubunu 20 melanositik nevüs, 20 Spitz nevüs ve 10 düşük dereceli displazili displastik nevüs oluşturmuştur. PRAME, BRAF, p16, BAP1, MelanA ve Ki67 immünohistokimya boyamaları otomatik boyama cihazında gerçekleştirilmiştir. %75 ve üzeri boyanma PRAME pozitif olarak tanımlandı. Veriler SPSS v11.5 programı ile analiz edilerek, p<0,05 değeri istatistiksel anlamlı kabul edilmiştir.

Bulgular: PRAME pozitifliği (≥%75), konvansiyonel melanomların %60'ında ve Spitzoid melanomların %25'inde gözlenmiştir. Nevüslerde boyanma saptanmamıştır. Ortalama PRAME boyanma oranları: konvansiyonel melanomda %58,1; Spitzoid melanomda %28; atipik Spitz tümörde %2; Spitz nevüste %3,3; displastik nevüslerde %0,75 ve melanositik nevüslerde %0 olarak bulunmuştur. PRAME; melanom tanısı için %60 duyarlılık ve %100 özgüllük; Spitzoid melanomlar için %25 duyarlılık ve %100 özgüllük göstermiştir. Pozitiflik için eşik değer %55'e indirildiğinde, melanom için duyarlılık %70'e, Spitzoid melanomlar için ise %33,3'e yükselmiş; özgüllük ise değişmemiştir. PRAME ekspresyonu, atipik Spitz tümörlerde Clark seviyesi, Spitzoid melanomlarda tümörü infiltre eden lenfositler ile anlamlı ilişki göstermiştir. Ancak Breslow kalınlığı veya displazi derecesiyle ilişki saptanmamıştır.

Sonuç: PRAME, melanomun benign lezyonlardan ayırt edilmesinde yüksek özgüllük göstermektedir. Pozitiflik için eşik değerin %55–60'a düşürülmesi, özellikle Spitzoid varyantlarda duyarlılığı yükseltip ve özgüllükten ödün vermeden tanısal doğruluğu artırabilmektedir.

Anahtar Kelimeler: PRAME, melanom, atipik Spitz tümör, Spitzoid melanom, nevüs

Corresponding author: Ayça Kırmızı

Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye

E-mail: akarabork@yahoo.com ORCID ID: 0000-0003-3192-1921

Received: 11.07.2025 **Accepted:** 21.08.2025 **Publication Date:** 30.09.2025

Cite this article as: Gahramanli, Z., Okcu Heper, A., Kırmızı, A. Diagnostic utility of PRAME in differentiating melanocytic lesions, especially spitzoid tumors. *J Ankara Univ Fac Med*. 2025;78(3):199-206.

* This study was published in the Virchows Archiv abstract book of 35th European Congress of Pathology, 9–13 September 2023, Dublin, Ireland.

Copyright© 2025 The Author. Published by Ankara University Press on behalf of Ankara University Faculty of Medicine . This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

Introduction

Melanocytic lesions encompass a broad spectrum ranging from benign nevi to melanoma. These lesions exhibit diverse histopathological features, genetic alterations, and clinical behaviours (1). Although most melanocytic tumors can be classified as benign or malignant based on histopathologic morphological features on hematoxylin and eosin (H&E) sections, a significant number pose diagnostic challenges (2,3). Immunohistochemistry (IHC) is often employed in challenging cases. IHC markers such as S100, SOX10, Melan-A, MITF, HMB45, and tyrosinase are routinely used to confirm melanocytic differentiation. Evaluation of MelanA+Ki67 dual immunostaining, HMB45 expression pattern (for investigating nevus maturation), loss of p16 expression provides valuable information in distinguishing benign from malignant melanocytic lesions. (4,5).

PRAME (PReferentially expressed Antigen in MElanoma) is a tumor-associated antigen initially identified in metastatic melanoma through autologous T-cell analysis. It has since been recognized as a useful marker due to its frequent expression in melanomas and absence in most benign melanocytic lesions, offering diagnostic value in challenging cases (6-8).

Spitz tumors represent a distinct subset of melanocytic proliferations characterized by unique cytological and molecular features. Differentiating Spitz nevi from their malignant counterparts, particularly Spitzoid melanoma, remains a well-known diagnostic difficulty due to overlapping histologic features (9,10).

Our study aimed to investigate the expression of PRAME antibody, which has gained importance in distinguishing melanoma from benign lesions in recent years, and it's importance especially in Spitzoid lesions in the diagnostic approach with BRAF(VE1), p16, BAP1, and MelanA+Ki67 dual stains.

Material and Methods

The study was approved by Ankara University Human Research Ethics Committee under decision number I11-684-21 on 9 December 2021 and was conducted in full compliance with the principles of the Declaration of Helsinki. Human Research Ethics Committee under decision number I11-684-21 on 9 December

2021 and was conducted in full compliance with the principles of the Declaration of Helsinki.

Study Design and Case Selection

A total number of 119 melanocytic lesion cases diagnosed at Ankara University Faculty of Medicine, Department of Pathology, between 2005 and 2022 were included in the study. The study group consisted of 27 atypical Spitz tumors (AST), 12 Spitzoid melanoma, 20 conventional melanoma, and 10 dysplastic nevi showing high-grade dysplasia. The control group consisted of patients diagnosed with 20 melanocytic dermal nevi, 20 Spitz nevi, and 10 dysplastic nevi showing low-grade dysplasia (Table 1).

The conventional melanomas were categorized into 3 nodular, 4 lentigo malignant melanoma (LMM), 4 superficial spreading, 3 acral, 1 desmoplastic, 1 nevoid melanoma, and 4 melanomas developing on a nevus.

The melanocytic nevi group was divided into four groups: 5 congenital nevi, 5 junctional, 5 compound, and 5 dermal nevi. H&E-stained sections were re-evaluated by two pathologists.

Group	Subtype	(n)
Study Group	Atypical Spitz Tumor	27
	Spitzoid Melanoma	12
	Conventional Melanoma	20
	Dysplastic Nevus (High-grade)	10
Control Group	Melanocytic Dermal Nevus	20
	Spitz Nevus	20
	Dysplastic Nevus (Low-grade)	10
Total		119

Histopathological evaluation

In melanoma cases, Breslow tumor thickness, Clark level, mitotic rate (per mm²), lymphovascular invasion (LVI), ulceration, regression, and tumor-infiltrating lymphocytes (TIL) were evaluated. In dysplastic nevi, the degree of dysplasia was assessed by the presence of both cellular and structural dysplasia.

Table 2. Antibodies, Clones, and Staining Conditions Used for Immunohistochemical Evaluation in Melanocytic Lesions

Antibody	Clone	Host Species	Dilution	Incubation Time	Antigen Retrieval
PRAME	Cell Marque	Rabbit	1:100	92 min	Extended
BRAF	VE1	Mouse	RTU	120 min + AMP	Extended
p16	NK1	Mouse	RTU	120 min	Extended
BAP1	C-4	Mouse	1:50	92 min + AMP	Standard
Melan-A	Mart-1 A103	Mouse	RTU	120 min	Standard
Ki-67	30-9	Rabbit	RTU	48 min	Standard

All immunohistochemical stains were performed using automated immunostainers (Ventana, Roche, USA) with the Streptavidin-Biotin Peroxidase method. OptiView and UltraView DAB detection kits were used.

Immunohistochemical evaluation

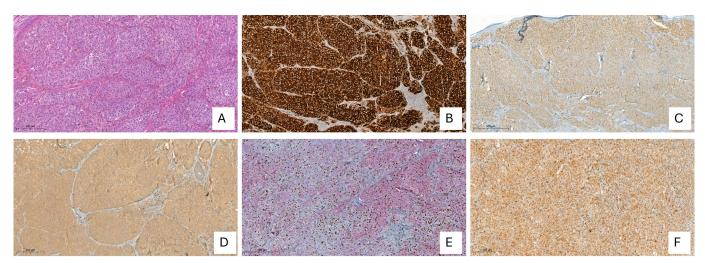
PRAME, BRAF, p16, BAP1, MelanA, and Ki67 antibodies were applied to the sections using the Streptavidin-Biotin Peroxidase method on automatic immunohistochemistry staining devices (Roche-Ventana) (Table 2). Evaluation of immunohistochemical examinations (PRAME, BRAF, p16, BAP1, MelanA, Ki67) was performed under light microscopy. The evaluation of these markers was as follows:

PRAME expression was scored according to both the intensity and the percentage of stained cells (0%-100%). Diffuse moderate to strong membranous staining for the BRAF VE1 antibody was considered positive. Focal staining or complete absence of nuclear expression was defined as loss of p16 expression. Only diffuse BAP1 loss was considered positive. MelanA and Ki67 dual staining was performed to show the Ki-67 proliferation index at MelanA-positive melanocytic cells.

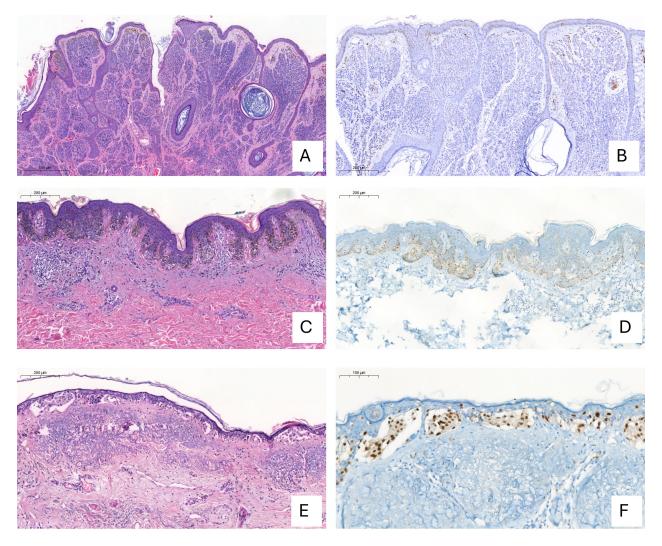
Statistical analysis

SPSS version 11.5 (IBM Corporation, Armonk, NY, USA) was used for statistical analysis. Categorical variables were presented with frequencies and percentages, while metric variables were presented with mean ± SD or median with minimum and maximum values. The chi-square test was used to compare categorical variables, while the Kruskal–Wallis variance analysis was employed for comparisons among more than two independent groups. Spearman's rank correlation coefficient (Spearman's rho) was used to assess the relationship between PRAME expression and histopathological parameters, including Clark

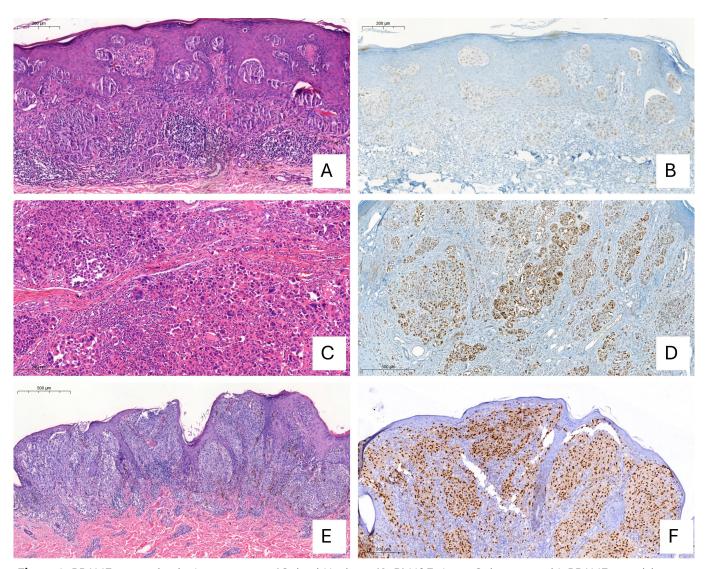
level, Breslow thickness, tumor-infiltrating lymphocytes (TILs), and dysplasia grade. Additionally, receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic performance of PRAME expression and determine the optimal cutoff point using the Youden index. A p-value of <0.05 was considered statistically significant.


Results

Among the 119 cases included in the study, 66 (55.5%) were female and 53 (44.5%) were male. The mean age of patients was 36.84 ± 20.16 years, with a range of 1 to 94 years.


The microscopic images of some immunohistochemical stainings are illustrated in Figures 1-3.

Mean staining percentages for PRAME were as follows in the groups; Conventional melanoma: 58.05% ±38.76 (ranging between 0% to 95%), Spitzoid melanoma: 28% ±37.72 (ranging between 0% and 85%), AST: 2% ±9.60 (ranging between 0% and 50%), Spitz nevi: 3.25% ±8.31 (ranging between 0% and 30%), and dysplastic nevi 0.75% ±2.44 (ranging between 0% and 30%). Melanocytic nevi did not show any nuclear staining (Figure 4).


When a threshold of >75% staining was used to define PRAME positivity, 12/20 (60%) cases in the conventional melanoma group and 3/12 (25%) cases in the Spitzoid melanoma group were positive. Nuclear staining with PRAME below the threshold value was seen in 1 of 27 cases (3.7%) in AST, in 3 (15%) of 20 cases in Spitz nevi, and 2 (10%) of 20 cases in dysplastic nevi.

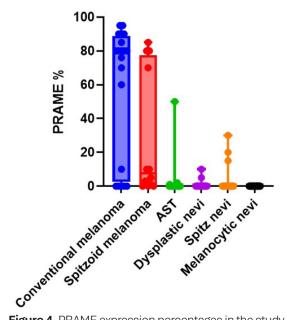

Figure 1. Histopathologic and immunohistochemical features of conventional melanoma **(A)** Hematoxylin and eosin (H&E) stain reveals a dermal-based atypical melanocytic proliferation, x200 **(B)** BRAF V600E shows diffuse, strong cytoplasmic positivity, x200 **(C)** PRAME is strongly and diffuse positive (score:3+, 90%) ,x200 **(D)** p16 demonstrates complete loss of nuclear expression in tumor cells, x200 **(E)** Melan A+Ki-67 double stain demonstrates a high (20%) proliferative index in tumor cells, x200 **(F)** BAP1 shows retained nuclear expression in tumor cells, x 500.

Figure 2. PRAME expression in benign and dysplastic melanocytic lesions. **(A-B)** H&E shows a compound nevus which is PRAME negative, x200 **(C-D)** H&E shows high-grade dysplastic nevus with weak to moderate PRAME positivity (score: 3+, 10%), x200. **(E-F)** H&E reveals lentigo maligna and the tumor is diffusely PRAME positive (score: +3, 90%), x200.

Figure 3: PRAME expression in the spectrum of Spitzoid lesions. **(A–B)** H&E shows Spitz nevus with PRAME negativity, x200 **(C–D)** H&E shows atypical Spitz tumor and PRAME is patchy nuclear positive (score: 3+, 50%), x500. **(E–F)** H&E shows Spitzoid melanoma with diffuse PRAME positivity (score: 3+, 80%), x200.

Figure 4. PRAME expression percentages in the study and control groups. Significantly higher PRAME percentages were seen in the melanoma groups (Kruskal–Wallis test, p < 0.0001).

A statistically significant difference was found for PRAME staining between conventional melanoma and melanocytic nevi, dysplastic nevi, AST, and Spitz nevi (p<0.05). When staining over 75% was considered the threshold for PRAME, the sensitivity was 60%, and the specificity was 100% in conventional melanomas. For Spitzoid melanomas, the sensitivity was 25%, and the specificity was 100%.

As a result of ROC analysis, the highest Youden index was found at 55%. When 55% was considered the positivity threshold for PRAME, sensitivity increased to 70% in conventional melanomas and 33.3% in Spitzoid melanomas without any change in specificity.

There was no statistically significant relationship between PRAME expression and the degree of dysplasia. However, the percentage and the intensity of PRAME expression increased with the severity of dysplasia.

In AST cases, there was a statistically significant relationship between PRAME expression and Clark level (p<0.05). However, there was no significant correlation between Clark level or Breslow thickness and PRAME expression in Spitzoid or conventional melanoma cases (p>0.05).

We found a statistically significant relationship between TILs and PRAME expression in Spitzoid melanoma cases (p<0.05). However, in conventional melanoma cases, no statistically significant association was found (p=0.5).

BRAF VE1 antibody immunoreactivity was observed in 9 of 20 conventional melanoma (45%), 6 of 12 Spitzoid melanoma (50%), 1 of 27 AST (3.7%), 9 of 20 Spitz nevi (45%), 11 of 20 dysplastic nevi (55%), and 19 of 20 melanocytic nevi (95%).

Loss of **p16** expression was not observed in melanocytic nevi or dysplastic nevi cases. Focal loss of p16 expression was detected in 2 of 20 Spitz nevi (10%) and in 1 of 12 Spitzoid melanomas (8.3%). Among 27 AST, diffuse or focal loss of p16 expression was identified in 3 cases (11.1%). Loss of p16 expression was observed in 4 of 20 conventional melanomas (3 nodular and 1 nevoid melanoma) (20%). Statistical analysis revealed a significant difference in p16 expression loss between ASTs and conventional melanomas (p = 0.009), as well as between conventional melanomas and melanocytic nevi (p = 0.001).

None of the cases exhibited diffuse loss of **BAP1** expression. BAP1 staining was generally observed as diffuse nuclear staining. In some cases, focal and scattered nuclear staining was accompanied by cytoplasmic and perinuclear staining patterns.

Using **MelanA + Ki-67** dual immunostaining, the Ki-67 proliferation index was observed to range between 10–40% in conventional melanomas, 4–50% in Spitzoid melanomas, 1–20% in ASTs, 0–10% in Spitz nevi, 0–3% in dysplastic nevi, and 0–5% in melanocytic nevi.

Discussion

This study supports the diagnostic utility of PRAME immunohistochemistry in distinguishing melanoma from benign melanocytic lesions. Our findings are in concordance with Lezcano et al, who reported diffuse PRAME expression in melanoma and minimal staining in benign nevi (6). Similarly, we observed high and widespread PRAME expression in malignant lesions and no nuclear staining in conventional melanocytic nevi. Notably, we identified that adjusting the positivity threshold from 75% to 55% enhanced sensitivity in detecting melanoma without compromising specificity, suggesting that a 55% cut-off may be more appropriate for diagnostic purposes.

Lohman et al reported a sensitivity of 67% and specificity of 100% using a +4 PRAME score for melanoma diagnosis, similar to our sensitivity rates of 60% at the 75% cut-off and 70% at the 55% cut-off (11).

Previous studies have demonstrated that PRAME expression complements other melanocytic markers such as Melan-A and HMB-45, and is particularly valuable in challenging cases (12). In lentigo maligna and lentigo malignant melanoma, Tio et al, showed variable PRAME expression, with stronger expression in LMM (13). Our study supports these findings; in one LMM case, PRAME positive cells were observed at the surgical margin, although no visible lesion was detected in H&E-stained sections.

The interpretation of PRAME expression in Spitzoid lesions remains challenging. Our results were consistent with Raghavan et al., who reported diffuse PRAME staining in only a minority of Spitzoid melanomas and emphasized its rarity in Spitz nevi and ASTs. Only 4 of 12 Spitzoid melanomas (33.3%) showed positivity at the 55% threshold, and most ASTs exhibited weak, heterogeneous staining below 50%. Another point to emphasize is that Raghavan et al reported PRAME-positive ASTs harbored CDKN2A deletions (7). In parallel with this, we observed that one of our AST cases, having no 9p21 deletion, had a low (under 50%) PRAME expression. These results underline the importance of integrating PRAME IHC with cytogenetic and morphological assessments.

The diagnostic relevance of PRAME in dysplastic nevi remains limited. Although PRAME positivity is rare in these lesions, our study noted focal but strong staining in a small subset of high-grade dysplastic nevi. Koch et al proposed quantitative digital thresholds for PRAME positivity in distinguishing dysplastic nevi from thin superficial spreading melanomas (14). Olds et al similarly emphasized the importance of quantifying PRAME-positive cells per mm² to differentiate early melanoma in situ from benign lesions (15). Our findings suggest a potential association between the severity of dysplasia and increased PRAME expression, although the correlation did not reach statistical significance.

Lezcano et al cautioned that focal PRAME staining may occur in junctional melanocytes or sun-damaged skin, advising careful interpretation in small biopsies (6,16). Raghavan et al further recommended against malignancy diagnosis based solely on PRAME positivity in small or traumatized specimens (7). Finally, while rare, PRAME expression may be observed in proliferative nodules of congenital melanocytic nevi. Gill et al demonstrated its utility in evaluating such proliferations when molecular tests are unavailable (17).

One of the main strengths of our study was the evaluation of Spitzoid and non-Spitzoid melanocytic lesions in a diagnostic spectrum from benign to borderline to malignant ones. Another strong aspect of our study was the presence of different histopathological subtypes of lesions in both benign and malignant non-Spitzoid melanocytic groups.

Study Limitations

This study has several limitations. Firstly, the number of cases in each different histopathological subtype of conventional melanoma groups, as well as Spitzoid melanoma cases, could be expanded. Secondly, immunohistochemical markers such as ALK, NTRK, and ROS could be added to the panel in the evaluation of Spitzoid lesions.

Conclusion

In conclusion, our study supports the role of PRAME IHC in distinguishing benign from malignant mela-

nocytic tumors, although a limited help in Spitzoid lesions. Lowering the diagnostic threshold to 55% improves sensitivity without decreasing specificity. While PRAME is not an independent marker, its expression (particularly when combined with morphology and genetic findings) can significantly aid diagnostic precision.

Acknowledgements: The authors thank Gokhan Ozdogan and Ahmet Sarp Yilmaz from the Digital Pathology Unit, Department of Pathology, for their dedicated work in transferring the cases to digital format.

Author Contributions: Surgical and Medical Practices: A.O.H., A.K., Concept: A.O.H., A.K., Design: Z.G.Ö., A.K., Data Collection or Processing: Z.G.Ö., A.O.H., Analysis or Interpretation: Z.G.Ö., A.O.H., A.K., Literature Search: Z.G.Ö., Writing: Z.G.Ö., A.K.

Ethical Statement: The study was approved by Ankara University Human Research Ethics Committee under decision number I11-684-21 on 9 December 2021 and was conducted in full compliance with the principles of the Declaration of Helsinki.

Supporting Institution: The research was supported by Ankara University Scientific Research Project Council.

Project Number: TTU-2022-2490

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The research was supported by Ankara University Scientific Research Project Council (project number: TTU-2022-2490).

Informed Consent: Written informed consent was obtained from all participants.

References

- Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345-58.
- 2. Brenn T. Pitfalls in the evaluation of melanocytic lesions. Histopathology. 2012;60(5):690-705.
- Lam GT, Prabhakaran S, Sorvina A, et al. Pitfalls in Cutaneous Melanoma Diagnosis and the Need for New Reliable Markers. Mol Diagn Ther. 2023;27(1):49-60.
- 4. Saleem A, Narala S, Raghavan SS. Immunohistochemistry in melanocytic lesions: Updates with a practical review for pathologists. Semin Diagn Pathol. 2022;39(4):239-47.
- Rasic D, Korsgaard N, Marcussen N, et al. Diagnostic utility of combining PRAME and HMB-45 stains in primary melanocytic tumors. Ann Diagn Pathol. 2023;67:152211.
- 6. Lezcano C, Jungbluth AA, Nehal KS, et al. PRAME expression in melanocytic tumors. American J Surg Pathol. 2018;42(11):1456-65.

- 7. Raghavan SS, Wang JY, Kwok S, et al. PRAME expression in melanocytic proliferations with intermediate histopathologic or Spitzoid features. J Cutan Pathol 2020;47(12):1123-31.
- 8. Mert M, Bozdogan O, Bozdogan N, et al. PRAME and Historical Immunohistochemical Antibodies Ki-67, P16, and HMB-45 in Ambiguous Melanocytic Tumors. Am J Dermatopathol. 2024;46(10):653-62.
- Yeh I, Busam KJ. Spitz melanocytic tumours–a review. Histopathology. 2022;80(1):122-34.
- 10. Wiesner T, Kutzner H, Cerroni L, et al. Genomic aberrations in Spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology. 2016;48(2):113-31.
- 11. Lohman ME, Steen AJ, Grekin RC, et al. The utility of PRAME staining in identifying malignant transformation of melanocytic nevi. J Cutan Pathol 2021;48(7):856-62.
- 12. Gradecki SE, Valdes@Rodriguez R, Wick MR, et al. PRAME immunohistochemistry as an adjunct for diagnosis and histological margin assessment in lentigo maligna. Histopathology. 2021;78(7):1000-8.

- Tio D, Willemsen M, Krebbers G, et al. Differential expression of cancer testis antigens on lentigo maligna and lentigo maligna melanoma. Am J Dermatopathol. 2020;42(8):625-7.
- 14. Koch EA, Erdmann M, Berking C, et al. Standardized computer-assisted analysis of PRAME Immunoreactivity in Dysplastic Nevi and superficial spreading melanomas. Int J Mol Sci. 2023;24(7):6388.
- 15. Olds H, Utz S, Abrams J, et al. Use of PRAME immunostaining to distinguish early melanoma in situ from benign pigmented conditions. J Cutan Pathol. 2022;49(6):510-4.
- Lezcano C, Pulitzer M, Moy AP, et al. Immunohistochemistry for PRAME in the distinction of nodal nevi from metastatic melanoma. Am J Surg Pathol. 2020;44(4):503-8.
- 17. Gill P, Prieto VG, Austin MT, et al. Diagnostic utility of PRAME in distinguishing proliferative nodules from melanoma in giant congenital melanocytic nevi. J Cutan Pathol. 2021;48(11):1410-5.

Evaluation of Toxoplasmosis Serology Results and Test Request Dynamics in Ankara University Medical Faculty Hospitals*

Ankara Üniversitesi Tıp Fakültesi Hastanelerinde Toksoplazmoz Seroloji Sonuçlarının ve Test İsteme Dinamiklerinin Değerlendirilmesi

o Özlem Ulusan Bağcı¹, o Rabia Önder², o Gülay Aral Akarsu¹

1 Ankara University Faculty of Medicine, Department of Parasitology, Ankara, Türkiye 2 Ankara University Faculty of Medicine, Department of Microbiology, Ankara, Türkiye

ABSTRACT

Background: Toxoplasmosis, caused by *Toxoplasma gondii*, is one of the most common parasitic diseases in the world and in our country. Serological methods are mainly used for diagnosis; however, there are some difficulties in the diagnosis of acute infection.

Aim: The aim of this study was to evaluate the anti-*Toxoplasma* IgM and anti-*Toxoplasma* IgG results of serum samples sent to Ankara University İbni Sina Research and Training Hospital from various clinics, as well as the sociodemographic characteristics of the patients.

Materials and Methods: Blood sample results from January 1, 2021, to September 1, 2024, were assessed. Anti-*Toxoplasma* antibodies were examined using the Elecsys kit in the Cobas device with the electrochemiluminescence immunoassay technique.

Results: Anti-Toxoplasma IgG and IgM positivity rates were found to be 23.95% and 1.30%, respectively, between the specified dates. IgG results were positive in 21.54% of women and 30.48% of men. There was a statistically significant difference between the two genders (p<0.001). It was discovered that 1.19% of males and 1.34% of women had reactive anti-Toxoplasma IgM results; however, the difference was not statistically significant between the two genders (p=0.667). Most patients who tested positive for anti-Toxoplasma IgM and IgG were 80 years of age or above. Anti-Toxoplasma IgG positivity was highest in immunocompromised adult and pediatric clinics (44.06% and 42.21%, respectively); however, the adult infection service had the highest percentage (1.59%) for IgM positivity.

Conclusion: Studies conducted in Türkiye revealed that the range of anti-*Toxoplasma* IgG positivity varied between 20.3% and 69.6%. Our study's anti-*Toxoplasma* IgG positivity rate was between this range near the lower limit and consistent with prior studies conducted in Ankara. Studies in Türkiye have shown that IgM seropositivity varied from 0% to 9.7%. The anti-*Toxoplasma* IgM positivity ratio of our study was in this range and close to the lower limit similar to the anti-*Toxoplasma* IgG.

 $\textbf{Keywords:} \ \text{Anti-} \textit{Toxoplasma} \ \text{IgM, anti-} \textit{Toxoplasma} \ \text{IgG, positivity rate, immunocompromised, pregnant}$

ÖZET

Giriş: Toxoplasma gondii'nin neden olduğu toksoplazmoz dünyada ve ülkemizde yaygın olarak görülen paraziter hastalıklardan biridir. Tanısında başlıca serolojik yöntemlerden faydalanılmasına rağmen akut enfeksiyon tanısında birtakım güçlükler yaşanmaktadır.

Amaç: Bu çalışmanın amacı Ankara Üniversitesi İbni Sina Uygulama ve Araştırma Hastanesi'ne çeşitli kliniklerden gönderilen serum örneklerinin anti-*Toxoplasma* IgM ve anti-*Toxoplasma* IgG sonuçlarını ve hastaların sosyodemografik özelliklerini değerlendirmektir.

Gereç ve yöntem: Çalışma kapsamında 1 Ocak 2021 ile 1 Eylül 2024 tarihleri arasında alınan kan örneklerinin sonuçları değerlendirildi. Anti-*Toxoplasma* anti-korları Elecsys kiti ile Cobas cihazında elektrokemilüminesan immünoassay tekniği kullanılarak incelendi.

Bulgular: Anti-*Toxoplasma* IgG ve IgM pozitiflik oranları sırasıyla %23,95 ve %1,30 olarak bulundu. Anti-*Toxoplasma* IgG kadınların %21,54'ünde ve erkeklerin %30,48'inde pozitifli. İki cinsiyet arasında istatistiksel olarak anlamlı bir fark vardı (p<0,001). Erkeklerin %1,19'unun ve kadınların %1,34'ünün anti-*Toxoplasma* IgM sonuçları reaktif olarak saptandı, ancak fark istatistiksel olarak anlamlı değildi (p=0,667). Anti-*Toxoplasma* IgM ve IgG sonuçları pozitif olan hastaların çoğu 80 yaş ve üzeriydi. Anti-*Toxoplasma* IgG pozitiflik yüzdesi en yüksek, immün sistemi baskılanmış yetişkin ve çocuk kliniklerinde (sırasıyla %44,06 ve %42,21) saptanırken; yetişkin enfeksiyon servisi anti-*Toxoplasma* IgM pozitifliği bakımından en yüksek yüzdeye sahipti (%1,59).

Sonuç: Türkiye'de yapılan çalışmalar anti-*Toxoplasma* IgG pozitifliğinin %20,3 ile %69,6 arasında değiştiğini göstermektedir. Çalışmamızın anti-*Toxoplasma* IgG pozitiflik oranı bu aralığın içinde alt sınıra yakın olup, Ankara'da yapılan önceki çalışmalarla uyumlu bulunmuştur. Türkiye'deki çalışmalarda IgM seropozitifliğinin %0 ile %9,7 arasında değiştiği gösterilmiştir. Çalışmamızın anti-*Toxoplasma* IgM pozitiflik oranı anti-*Toxoplasma* IgG ile benzer olarak bu aralığın içinde alt sınıra yakın olarak saptanmıştır.

Anahtar kelimeler: Anti-Toxoplasma IgG, anti-Toxoplasma IgG, pozitiflik oranı, bağışıklığı baskılanmış, gebe

Corresponding author: Özlem Ulusan Bağcı

E-mail: drozlemulusan@gmail.com, oubagci@ankara.edu.tr ORCID ID: 0000-0002-9695-5703

Received: 21.07.2025 Accepted: 22.08.2025 Publication Date: 30.09.2025

Cite this article as: Ulusan Bağcı, Ö., Önder, R., Aral Akarsu, G. Evaluation of toxoplasmosis serology results and test request dynamics in Ankara University Medical Faculty hospitals. J Ankara Univ Fac Med. 2025;78(3):207-215

 * The study has not been $\,$ presented previously as an abstract in any congress or symposium

Copyright© 2025 The Author. Published by Ankara University Press on behalf of Ankara University Faculty of Medicine . This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

Introduction

One of the most prevalent protozoa in the world and in Türkiye is *Toxoplasma gondii* [1, 2]. Whereas felines are the agent's definitive host, mammals, including humans, are intermediate hosts. The protozoa is primarily spread via eating undercooked meat harboring tissue cysts, consuming food contaminated with oocysts excreted in cat feces, organ and blood transplantation, and transplacental transmission from mother to fetus. In an individual with a competent immune system, the disease proceeds asymptomatically or with mild symptoms resembling those of infectious mononucleosis, but it can be fatal in a patient with a compromised immune system. Moreover, congenital abnormalities, stillbirth, and miscarriage may also occur as a result of transmission of the protozoan from mother to fetus during pregnancy. Therefore, toxoplasmosis is an urgent threat for immunocompromised patients and pregnant women, and the approach to diagnostic testing and treatment must be carefully considered [2-4].

The majority of toxoplasmosis diagnoses are made by serological testing. Anti-Toxoplasma IgM turns positive in the first week of infection, peaks in the 1st-3rd months, begins to decline thereafter, and usually turns negative six months later, or within a year [5]. Positive results, however, may sometimes last for years [6]. Anti-Toxoplasma IgG turns positive in the second week, peaks in the 3rd-6th months, then starts to decline and stabilizes after a while. It usually remains positive for the rest of the life [7]. It can be challenging to differentiate between acute and past infections since anti-Toxoplasma IgM positivity may last for a long time [5]. The time of infection could be ascertained using the avidity test. High avidity definitely rules out the diagnosis of acute infection and suggests that the infection occurred at least 16 weeks earlier. Low avidity, on the other hand, could indicate either an acute infection or a past infection with inadequate avidity maturation. In this case, the dynamics of the anti-Toxoplasma IgG test must be assessed in conjunction with the avidity index. The procedure of assessing the findings of serological tests used to diagnose toxoplasmosis is intricate [7, 8]. For the tests to be used effectively, it would be advantageous for the centers to ascertain their own test request and interpretation dynamics.

The aim of this study was to evaluate the results of serum samples sent to Ankara University İbni Sina Research and Training Hospital for anti-*Toxoplasma* IgM and anti-*Toxoplasma* IgG requests from various clinics, together with the sociodemographic characteristics of the patients.

Materials and Methods

In the course of the study, the results of blood samples sent for anti-*Toxoplasma* IgM and anti-*Toxoplasma* IgG testing to İbni Sina Research and Training Hospital at Ankara University Faculty of Medicine between January 1, 2021, and September 1, 2024, were assessed retrospectively. The patient's age and gender, clinics and outpatient clinics where the sample was sent, anti-*Toxoplasma* IgM, anti-*Toxoplasma* IgG, and avidity test results were recorded. The patients were evaluated in nine age-based groups: 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, and 80 and above. When a patient gave multiple samples over the course of specified years, only the initial result—if any, the first positive result—was included.

The Elecsys Anti-Toxoplasma kit (Roche Diagnostics, Rotkreuz, Switzerland), which detects anti-Toxoplasma antibodies using the electrochemiluminescence immunoassay (ECLIA) method, was used on a Cobas system (Mannheim, Baden-Württemberg: Roche Diagnostics GmbH, Germany). Test results for IgM with a score of less than 0.8 were evaluated as negative, 0.8–1 as borderline, and 1 and higher as positive. Test results for IgG, which were less than 1 IU/ml, were reported as negative; those that were 1-30 were reported as intermediate, and those that were 30 and higher as positive. The avidity index had three categories, such as low avidity (less than 70), grey zone (70-79), and high avidity (80 and above). The study was approved by the Human Research Ethics Committee of Ankara University (date: 07.10.2024, desicion number: 108-650-24).

Statistical analysis

The statistical analysis was conducted with IBM Statistical Package for the Social Sciences for Windows

Table 1. Distribution of anti-Toxoplasma IgG positivity rate according to age groups and gender

		Anti-To	Anti-Toxoplasma IgG							
Age groups	Gender	Negati	ve	Inter	mediate	Positi	ve	Total		
		n	%	n	%	n	%	n	%	
	Women	422	80.38	6	1.14	97	18.48	525	100	
0-9	Men	530	81.54	8	1.23	112	17.23	650	100	
	Total	952	81.02	14	1.19	209	17.79	1175	100	
	Women	298	86.38	5	1.45	42	12.17	345	100	
10-19	Men	268	83.23	7	2.17	47	14.60	322	100	
	Total	566	84.86	12	1.80	89	13.34	667	100	
	Women	2356	88.70	3	0.11	297	11.18	2656	100	
20-29	Men	270	82.32	6	1.83	52	15.85	328	100	
	Total	2626	88.00	9	0.30	349	11.70	2984	100	
	Women	2022	81.53	2	0.08	456	18.39	2480	100	
30-39	Men	273	75.62	3	0.83	85	23.55	361	100	
	Total	2295	80.78	5	0.18	541	19.04	2841	100	
40-49	Women	412	65.09	1	0.16	220	34.76	633	100	
	Men	200	58.31	4	1.17	139	40.52	343	100	
	Total	612	62.70	5	0.51	359	36.78	976	100	
	Women	199	47.84	4	0.96	213	51.20	416	100	
50-59	Men	164	51.41	4	1.25	151	47.34	319	100	
	Total	363	49.39	8	1.09	364	49.52	735	100	
	Women	115	36.62	1	0.32	198	63.06	314	100	
60-69	Men	121	42.46	5	1.75	159	55.79	285	100	
	Total	236	39.40	6	1.00	357	59.60	599	100	
	Women	47	39.83	0	0.00	71	60.17	118	100	
70-79	Men	47	37.30	0	0.00	79	62.70	126	100	
	Total	94	38.52	0	0.00	150	61.48	244	100	
	Women	7	20.59	1	2.94	26	76.47	34	100	
80 and above	Men	13	37.14	2	5.71	20	57.14	35	100	
	Total	20	28.99	3	4.35	46	66.67	69	100	
	Women	5878	78.15	23	0.31	1620	21.54	7521	100	
All ages	Men	1886	68.11	39	1.41	844	30.48	2769	100	
	Total	7764	75.45	62	0.6	2464	23.95	10290	100	

(version 23.0; Armonk, NY: IBM Corp., USA). The chi-square test and Fisher's exact test were used to compare qualitative variables. A p-value of less than 0.05 was considered statistically significant.

Results

A total of 10,290 patient samples were examined for anti-*Toxoplasma* IgG and 10,685 samples for anti-*Toxoplasma* IgM between January 1, 2021, and September 1, 2024. Anti-*Toxoplasma* IgG and IgM

positivity rates were detected as 23.95% and 1.30%, respectively. There were 2769 men and 7521 women whose anti-Toxoplasma IgG was tested. Among these patients, 30.48% of men had IgG-positive results and 1.41% had intermediate values, whereas 21.54% of women were IgG positive and 0.31% were within the intermediate values. There was a statistically significant difference between anti-Toxoplasma IgG seropositivity of men and women (p<0.001). Anti-Toxoplasma IgM was investigated in 2952 men and 7733 women. Anti-Toxoplasma IgM was found to be positive in 1.34% of women and borderline in 0.65% of them, while 1.19% of men tested positive and 0.54% of them were borderline. There was no statistically significant difference between the anti-Toxoplasma IgM positivity rate of men and women (p=0.667).

When the anti-Toxoplasma IgG positivity rates were evaluated according to the age groups of the patients, it was seen that the positivity rate, which was 17.79% in the 0-9 age group, decreased until the 20-29 age group (11.7%) and increased from the 30-39 age group onwards, reaching its highest point in patients aged 80 and above (66.67%) (Table 1). The differences between the anti-Toxoplasma IgG positivity rates of the age groups were found to be statistically significant (p<0.001). Analysis of the anti-Toxoplasma IgM positivity rates by age groups revealed that, resembling the IgG test results, the highest positivity rate was 5.33% in patients 80 years of age and above, and followed by the 40-49 (2.14%), 50-59 (1.73%), and 10-19 (1.54%) age groups (Table 2). The differences were also found to be statistically significant between the anti-Toxoplasma IgM seropositivity rates of age groups (p<0.001).

Immunocompromised adult and pediatric clinics showed the greatest percentages of anti-*Toxoplasma* IgG positivity (44.06% and 42.21%, respectively), while pediatric infection clinics had the lowest rate (7.55%). For ophthalmology services, the seropositivity rate was 28.02%, and for newborn units, it was 26.25%; however, for obstetrics and gynecology clinics, it was 14.83%. The differences between the positivity rates of departments were found to be statistically significant (p<0.001). For anti-*Toxoplasma*

IgM positivity, adult infection clinics led with 1.99%, followed by adult immunocompromised with 1.69% and ophthalmology clinics with 1.59%; however, the differences between clinics were not found to be statistically significant (p=0.158). The distribution of anti-*Toxoplasma* IgG and IgM positivity rates according to clinics was given in Table 3.

Sixty-five patients, 18 of whom were men and 47 of whom were women, had anti-Toxoplasma IgG avidity test results during the study period. Six men had low avidity, three had grey zone avidity, and nine had high avidity, while 15 women had low avidity, 10 had grey zone avidity, and 22 had high avidity (Table 4). There was no statistically significant difference between the avidity indexes of men and women (p=0.917). Of the 23 patients who visited the obstetrics and gynecology services, six had low avidity, five had grey zone, and 12 had high avidity. Of the patients in whom avidity testing was performed, 64 were anti-Toxoplasma IgM positive, while one was negative. The sample with negative anti-Toxoplasma IgM came from the neonatal intensive care unit, and the avidity testing was reported as a grey zone.

Discussion

Toxoplasmosis is a neglected parasitic disease caused by the obligate intracellular protozoan Toxoplasma gondii. The disease is common all over the world and significant, especially in pregnant women and immunocompromised patients. The average of various studies undertaken globally indicates that approximately one-third of the population has had toxoplasmosis at a time in their lives [9]. The studies conducted in various regions of Türkiye reveal a prevalence ranging from 20.3% to 69.6%, as shown in Table 5 [10-32]. Anti-Toxoplasma IgG positivity in our study was found to be 23.95%, which is around the lower limit of the range of the studies conducted in our country. In Ankara, three studies investigating Toxoplasma seroprevalence in pregnant women reported similar ratios of 21.85%, 22.3%, and 25.5% [19, 20, 23]. Contrary to the studies conducted in Ankara, the ratios reported from Şanlıurfa city and the southeastern region were found to be the highest among the local studies in Türkiye. The high positivity ratio in this region was asso-

Table 2. Distribution of anti-Toxoplasma IgM positivity rate according to age groups and gender

		Aust T		1-1-1-4						
			Anti-Toxoplasma IgM							
Age groups	Gender	Negativ			derline	Positiv		Total		
		n	%	n	%	n	%	n	%	
	Women	595	99.50	3	0.50	0	0.00	598	100	
0-9	Men	719	99.58	2	0.28	1	0.14	722	100	
	Total	1314	99.55	5	0.38	1	0.08	1320	100	
	Women	354	97.52	2	0.55	7	1.93	363	100	
10-19	Men	343	97.72	4	1.14	4	1.14	351	100	
	Total	697	97.62	6	0.84	11	1.54	714	100	
	Women	2606	98.27	12	0.45	34	1.28	2652	100	
20-29	Men	325	98.48	1	0.30	4	1.21	330	100	
	Total	2931	98.29	13	0.44	38	1.27	2982	100	
	Women	2418	97.66	24	0.97	34	1.37	2476	100	
30-39	Men	349	97.21	5	1.39	5	1.39	359	100	
	Total	2767	97.60	29	1.02	39	1.38	2835	100	
	Women	640	96.82	5	0.76	16	2.42	661	100	
40-49	Men	359	98.09	1	0.27	6	1.64	366	100	
	Total	999	97.27	6	0.58	22	2.14	1027	100	
	Women	457	98.07	1	0.21	8	1.72	466	100	
50-59	Men	338	97.97	1	0.29	6	1.74	345	100	
	Total	795	98.03	2	0.25	14	1.73	811	100	
	Women	345	98.57	2	0.57	3	0.86	350	100	
60-69	Men	294	98.33	2	0.67	3	1.00	299	100	
	Total	639	98.46	4	0.62	6	0.92	649	100	
	Women	129	99.23	0	0.00	1	0.77	130	100	
70-79	Men	139	97.89	0	0.00	3	2.11	142	100	
	Total	268	98.53	0	0.00	4	1.47	272	100	
	Women	35	94.59	1	2.70	1	2.70	37	100	
80 and above	Men	35	92.11	0	0.00	3	7.89	38	100	
	Total	70	93.33	1	1.33	4	5.33	75	100	
	Women	7579	98.01	50	0.65	104	1.34	7733	100	
All ages	Men	2901	98.27	16	0.54	35	1.19	2952	100	
	Total	10480	98.08	66	0.62	139	1.30	10685	100	

ciated with conditions such as warm and humid climate, unhygienic eating habits, eating raw meatballs, and drinking contaminated water [12, 16, 26].

In the current study, there was a statistically significant difference in the IgG positivity ratio of men and women (p<0.001). This may be due to a couple

of reasons. Firstly, far more tests were requested from women than men, and especially from gynecology clinics accounted for around half of all women's test requests as preconceptional and pregnancy screening tests. One possible explanation for the low positivity rate among women may be the large quan-

Table 3. Distribution of anti-Toxoplasma IgG and anti-Toxoplasma IgM positivity rates according to departments

Departments		Anti- <i>Toxopl</i>	asma IgG	Anti-Toxoplasma IgM					
		Negative	Intermediate	Positive	Total	Negative	Borderline	Positive	Total
Obstetrics and	n	3714	3	647	4364	4266	34	56	4356
Gynecology	%	85.11	0.07	14.83	100	97.93	0.78	1.29	100
Adult immunocom-	n	595	17	482	1094	1157	4	20	1181
promised*	%	54.39	1.55	44.06	100	97.97	0.34	1.69	100
Pediatric immuno-	n	133	8	103	244	251	1	2	254
compromised**	%	54.51	3.28	42.21	100	98.82	0.39	0.79	100
Adult infection	n	359	0	143	502	488	5	10	503
	%	71.51	0.00	28.49	100	97.02	0.99	1.99	100
Pediatric infection	n	195	1	16	212	215	0	1	216
Pediatric infection	%	91.98	0.47	7.55	100	99.54	0.00	0.46	100
Adult other	n	1553	18	817	2388	2433	13	38	2484
Addit other	%	65.03	0.75	34.21	100	97.95	0.52	1.53	100
Dodistrice (other)	n	971	15	163	1149	1303	9	8	1320
Pediatrics (other)	%	84.51	1.31	14.19	100	98.71	0.68	0.61	100
Ophtalmology	n	185	0	72	257	247	0	4	251
Ophiaimology	%	71.98	0.00	28.02	100	98.41	0.00	1.59	100
Newborn	n	59	0	21	80	120	0	0	120
INGMUUII	%	73.75	0.00	26.25	100	100.00	0.00	0.00	100
Total	n	7764	62	2464	10290	10480	66	139	10685
Total	%	75.45	0.60	23.95	100	98.08	0.62	1.30	100

^{*}Adult immunocompromised=hematology, medical oncology, transplantation unit

tity of screening tests that were ordered. Secondly, the positivity rate of men may be significantly higher because anti-Toxoplasma antibody tests are mostly requested from men suspected to have toxoplasmosis. In most of the studies, the anti-Toxoplasma IgG positivity rate was found to be higher in women than in men [10, 17, 21, 25, 27]. However, a single study reported higher seropositivity among men, which was similar to our study [28]. This finding may also change based on patients' demographic properties and test-request patterns of the hospital. Anti-Toxoplasma IgM positivity was found to be 1.30% in our study. According to studies conducted in Türkiye, IgM seropositivity ranged from 0% to 9.7% (Table 5). The finding of our investigation falls within this range and is around the lower limit, similar to that of anti-*Toxoplasma* IgG. Anti-*Toxoplasma* IgM positivity was 1.34% among women, and it was 1.19% among men. However, the difference between two genders was not deemed statistically significant (p=0.667).

The majority of patients with anti-*Toxoplasma* IgM and IgG positivity were 80 years of age and above. Similarly, the study by Alver et al. in 2019 indicated that patients aged 60 and above had the greatest prevalence of both anti-*Toxoplasma* IgG and *anti-Toxoplasma* IgM positivity [21]. Anti-*Toxoplasma* IgM and anti-*Toxoplasma* IgG positivity were shown to be highest in the 20–39 age range in two further investigations published in the literature [22, 28]. Comparing our study with these two studies, we found lower positivity rates of anti-*Toxoplasma* IgG and IgM among women in the childbearing age group of 20–39 years.

^{**}Pediatric immunocompromised=pediatric hematology, pediatric oncology, pediatric immunology, pediatric bone marrow transplantation

		Avidity							
Gender		Low	Grey-zone	High	Total				
Women	n	15	10	22	47				
	%	31.91	21.28	46.81	100				
Men	n	6	3	9	18				
	%	33.33	16.67	50	100				
Total	n	21	13	31	65				
	%	32.31	20	47.69	100				

Both adult and pediatric immunocompromised individuals had the highest anti-Toxoplasma IgG positivity rates (Table 3). In a study by Taşbent et al. that evaluated *Toxoplasma* serology in different patient groups, in contrast to our results, immunocompromised patients exhibited lower anti-Toxoplasma IgG and IgM positivity rates by 14.7% and 0.5%, respectively [27]. The IgG positivity rate among patients referred from obstetrics and gynecology services was found to be 14.83% in our study. This rate seems to be lower than the positivity rates reported in other published studies in the literature [11-15, 18-20, 23, 24, 23, 24, 23, 24, 23, 24, 28-32]. In our study, the adult infection service led in IgM positivity rate with 1.99%. The patients whose samples were detected positive for anti-Toxoplasma IgM in the adult infection units may be the patients who were tested positive in other healthcare facilities and were referred to our hospital for further investigation. When Toxoplasma seropositivity distribution according to the clinics was examined, 26.25% of the newborns' samples tested positive for anti-Toxoplasma IgG, while none tested positive for anti-Toxoplasma IgM. This indicates that around one in four newborns was detected as IgG positive. Toxoplasma serology is typically requested from newborns who exhibit symptoms suggestive of congenital toxoplasmosis or whose mothers have been diagnosed or suspected of having acute toxoplasmosis, which may be the cause of the high seropositivity rate. During pregnancy, IgG can passively diffuse from mother to fetus. In this case, the diagnostic exclusion of congenital toxoplasmosis could be made by either using an immunoblot test to compare the IgG patterns of the

mother's and the newborn's sera or by monitoring the decline in IgG levels at specific intervals [33].

Low avidity was detected in six of the samples sent from the obstetrics and gynecology service. These results may indicate acute toxoplasmosis in these pregnant women, but not enough for a definite diagnosis. Due to the retrospective nature of the study and the restriction in patient data within the hospital information management system, information about the subsequent processes of the pregnant women could not be obtained.

Study limitations

The study's limitations include its retrospective design, the fact that it only included data from one center, and the fact that patient data was restricted to information found in the hospital information management system. Prospectively planned studies are required in which the results of the avidity, anti-*Toxoplasma* IgM, and anti-*Toxoplasma* IgG tests are assessed together within clinical and serological follow-up to find out how the avidity test contributes to the diagnosis of acute toxoplasmosis, which is not within the scope of our study.

Conclusion

Our study is expected to contribute to the literature by highlighting the results of patients whose *Toxoplasma* serology was requested according to age groups, gender, and the clinics they applied to during the 44-month period. The anti-*Toxoplasma* IgG positivity rate was determined to be 23.95%, and the results of the study are similar to the results of other studies conducted in our province.

Table 5. Summary	of studies co	nducted in Tiirk	ive investigating	Toxonlası	na serolog	V	
Study population	The number of serum samples (n)	The positivity rate of anti- <i>Toxoplasma</i> IgG (%)	The positivity rate of anti-Toxoplasma	The test method	City	Time Interval	References
All patients	4908	31.01	0.77	ELISA	Elazığ	1999-2003	10
Pregnant women	4651	39.9	2.5	ELISA	İzmir	2003-2008	11
Pregnant women	1652	52.1	0.54	ELISA	Hatay	2004-2006	12
Women (childbearing age)	17751	24.61	1.34	ELFA	İstanbul, Bursa, Adana, Kayseri, Kocaeli	2004-2010	13
Pregnant women	389	30.1	0	ELISA, IFA, DA	Aydın	-	14
Pregnant women	1972	48.3	0.4	ELISA	Kocaeli	2005-2007	15
Women	2586	69.6	3	CLIA	Şanlıurfa	2006	16
All patients	8095	31.5	1.6	ELISA, IFA	Aydın	2007-2017	17
Pregnant women	1102	37	1.4	-	Denizli	2008-2009	18
Pregnant women	30863	25.5	0.3	CLIA	Ankara	2008-2010	19
Pregnant women	84587	22.3	0.64	CLIA	Ankara	2008-2017	20
All patients	25251	30.7	9.7	ELFA	Bursa	2009-2016	21
All patients	2778	47.1	1.19	ELISA	Reference laboratory	2009-2019	22
Syrian pregnant women Turkish pregnant women	752 76835	47 21.85	0.4 0.56	CLIA	Ankara	2010-2018	23
Pregnant women	9809	37.6	1.1	ELISA	Van	2012-2013	24
All patients	3899	32.4	2.7	ELISA	İzmir	2012-2013	25
Farmworker women	684	58.3	1	EIA	Southeas- tern region	2013	26
All patients	20875	24.1	2.4	ELFA	Konya	2015-2019	27
All patients Turkish pregnant women Syrian pregnant women	12694 3798 264	29.58 25.88 47.10	0.94 0.49 1.83	CMIA	İzmir	2017-2021	28
Pregnant women	3141	23	0.6	CLIA	İstanbul	2018-2019	29
Pregnant women	1294	20.3	1.1	CLIA	Kastamo- nu	2018-2022	30
Pregnant women	1844	28.7	0.7	ELFA	Mersin	2019	31
Pregnant women	256612	36.76	2.91	-	Türkiye	Last 30 years	32

ELISA: Enzyme-Linked Immunosorbent Assay

ELFA: Enzyme-Linked Fluorescent Assay

IFA: Immunofluorescent Antibody DA: Direct Agglutination

CLIA: Chemiluminescent Immunoassay

Author Contributions: Concept: Ö.U.B., R.Ö., G.A.A., Design: Ö.U.B., R.Ö., Data Collection or Processing: Ö.U.B., R.Ö., Analysis or Interpretation: Ö.U.B., G.A.A., Literature Search: Ö.U.B., Writing: Ö.U.B., G.A.A.

Conflict of Interest: No conflict of interest was declared

EIA: Enzyme Immonoassay

CMIA: Chemiluminescent Microparticle Immunoassay

DA: Direct Agglutination

by the authors.

Financial Disclosure: The authors declared that this

study received no financial support.

Informed Consent: Written informed consent was ob-

tained from all participants.

References

- 1. Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 2002;8(10):634-640.
- Madireddy S, Mangat R. Toxoplasmosis. Last accessed date: 2025 January 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK563286/
- 3. Marín-García PJ, Planas N, Llobat L. Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods. 2022;11(16):2542.
- Centers for Disease Control and Prevention. Toxoplasmosis. [Internet].
 [Retrieved on March 20, 2025]. Available from: https://www.cdc.gov/toxoplasmosis/about/index.html.
- Murata FH, Ferreira MN, Camargo NS, Santos GS, Spegiorin LC, Silveira-Carvalho AP, Pereira-Chioccola VL, Mattos LC, Mattos CC. Frequency of anti- Toxoplasma gondii IgA, IgM, and IgG antibodies in high-risk pregnancies, in Brazil. Rev Soc Bras Med Trop. 2016;49(4):512-4.
- Vargas-Villavicencio JA, Cañedo-Solares I, Correa D. Anti-Toxoplasma gondii IgM Long Persistence: What Are the Underlying Mechanisms? Microorganisms. 2022;10(8):1659.
- 7. Nasir IA, Shehu MS, Adekola HA. Anti-Toxoplasma gondii IgG avidity testing is necessary for diagnosis of acute toxoplasmosis. J Taibah Univ Med Sci. 2017;12(1):87-88.
- 8. Teimouri A, Mohtasebi S, Kazemirad E, Keshavarz H. Role of Toxoplasma gondii IgG Avidity Testing in Discriminating between Acute and Chronic Toxoplasmosis in Pregnancy. J Clin Microbiol. 2020; 58(9):e00505-20.
- Mose JM, Kagira JM, Kamau DM, Maina NW, Ngotho M, Karanja SM. A Review on the Present Advances on Studies of Toxoplasmosis in Eastern Africa. Biomed Res Int. 2020;2020:7135268.
- 10. Kuk S, Özden M. Hastanemizde dört yıllık Toxoplasma gondii seropozitifliğinin araştırılması. Turkiye Parazitol Derg. 2007;31(1): 1-3.
- 11. Uysal A, Cüce M, Tañer CE, Uysal F, Atalay S, Göl B, Köse S. Prevalence of congenital toxoplasmosis among a series of Turkish women. Rev Med Chil. 2013;141(4):471-6.
- 12. Ocak S, Zeteroglu S, Ozer C, Dolapcioglu K, Gungoren A. Seroprevalence of Toxoplasma gondii, rubella and cytomegalovirus among pregnant women in southern Turkey. Scand J Infect Dis. 2007;39(3):231–234.
- 13. Akyar I. Seroprevalence and Coinfections of Toxoplasma gondii in Childbearing Age Women in Turkey. Iran J Public Health. 2011;40(1):63-7.
- Ertug S, Okyay P, Turkmen M, Yuksel H. Seroprevalence and risk factors for Toxoplasma infection among pregnant women in Aydin province, Turkey. BMC Public Health. 2005;5:66.
- Aynioglu A, Aynioglu O, Altunok ES. Seroprevalence of Toxoplasma gondii, rubella and Cytomegalovirus among pregnant females in north-western Turkey. Acta Clin Belg. 2015;70(5):321-4.
- Tekay F, Ozbek E. Çiğ köftenin yaygın tüketildiği Şanlıurfa ilinde kadınlarda Toxoplasma gondii seroprevalansı, Turkiye Parazitol Derg. 2007;31(3):176-9.
- 17. Malatyalı E, Yıldız İ, Tileklioğlu E, Ertabaklar H, Ertuğ S. Retrospective Analysis of Toxoplasma gondii Serology Results from Adnan Menderes University Faculty of Medicine Parasitology Laboratory from 2007 to 2017. Turkiye Parazitol Derg. 2019;43:1-4.
- 18. Karabulut A, Polat Y,Türk M, Balcı YI. Evaluation of Rubella, Toxoplasma gondii, and Cytomegalovirus seroprevalences among pregnant women in Denizli province. Turk J Med Sci.2011;41(1):21.

- Çelen Ş, Sargın A, Çitil A, Saygan S, Ünlü S, Danışman N, Seçkin B. Seroprevalence of Toxoplasma gondii and rubella mong pregnant women in central Turkey. Afr J Microbiol Res. 2013;7(21):2524-2529.
- Sert UY, Ozgu-Erdinc AS, Gokay S, Engin-Ustun Y.. Toxoplasma Screening Results of 84587 Pregnant Women in a Tertiary Referral Center in Turkey. Fetal Pediatr Pathol. 2019;38(4):307-316.
- Alver O, Payaslıoğlu M, Ener B. Investigation of Toxoplasma gondii Seropositivity in Uludağ University Hospital between 2009-2016. Turkiye Parazitol Derg. 2019;43:8-12.
- 22. Babür C, Yücesan B, Sezen F, Kılıç S. Ulusal Parazitoloji Evaluation of Seropositivity of Toxoplasmosis Suspected Patients Admitted to the National Parasitology Reference Laboratory Between 2009 and 2019. Turkiye Parazitol Derg. 2021;45:181-9.
- 23. Halici-Ozturk F, Yakut K, Öcal FD, Erol A, Gökay S, Çağlar AT, Engin- Üstün Y, Ozgu-Erdinc AS. Seroprevalence of Toxoplasma gondii infections in Syrian pregnant refugee women in Turkey. Eur J Obstet Gynecol Reprod Biol. 2021;256:91-94.
- 24. Parlak M, Çim N, Nalça Erdin B, Güven A, Bayram Y, Yıldızhan R. Seroprevalence of Toxoplasma, Rubella, and Cytomegalovirus among pregnant women in Van. Turk J Obstet Gynecol. 2015;12(2):79-82.
- 25. Pektaş B, Aksoy Gökmen A, Er HH, Güngör S, Kaya S, Demirci M. Evaluation of Serological Results of Patients with Suspected Toxoplasmosis. Turkiye Parazitol Derg. 2015;39:90-3.
- 26. Yentur Doni N, Simsek Z, Gurses G, Yildiz Zeyrek F, Demir C. Prevalence and associated risk factors of Toxoplasma gondii in female farmworkers of southeastern Turkey. J Infect Dev Ctries. 2015;9:087–093.
- 27. Esenkaya Taşbent F, Beder D, Özdemir M, Doğan M, Feyzioğlu B. Seroprevalence of Toxoplasma gondii in Different Patient Groups in Our Hospital. Turkiye Parazitol Derg. 2022;46(1):1-6.
- 28. Ulusan Bağcı Ö, Bayındır Bilman F, Baran N, Peker BO, Pektaş B, Gökmen AA, Er HH, Kaya S. Bir Eğitim ve Araştırma Hastanesine 2017-2021 Yılları Arasında Başvuran Hastalarda Toxoplasma Serolojisinin Retrospektif Olarak Değerlendirilmesi. Turkiye Parazitol Derg. 2022;46(3):235-241.
- Alaçam S, Bakır A, Karatas A, Yolburun B, Uzunkaya Ö, Aktaş F, Canberk M. Investigation of Seroprevalence of Toxoplasma, Rubella and Cytomegalovirus in Pregnant Population in Istanbul. JAMER. 2020;5(3):19-24.
- 30. Tüfekci EF, Duman MY, Çalışır B, Kılınç Ç, Uzel A. Investigation of Toxoplasma gondii Seropositivity in Pregnant Women in Kastamonu Province, Turkey. Turkiye Parazitol Derg. 2022;46(4):288-292.
- Gonca S, Serin MS, Halepliler S, Erden Ertürk S. Seroprevalence of Toxoplasma gondii in pregnant women admitted to a state hospital in Mersin, 2019. Türkiye Parazitol Derg. 2021;45(3):176-180.
- 32. Dindar Demiray EK, Alkan S, Barutçu A, Tahmaz A. Investigating the Toxoplasmosis seroprevalence in pregnant women from Turkey by pool analyses method. Pediatr Pract Res. 2022;10(1):16-21.
- 33. Villard O, Cimon B, L'Ollivier C, Fricker-Hidalgo H, Godineau N, Houze S, Paris L, Pelloux H, Villena I, Candolfi E. Serological diagnosis of Toxoplasma gondii infection: Recommendations from the French National Reference Center for Toxoplasmosis. Diagn Microbiol Infect Dis. 2016;84(1):22-33.

Impact of Obesity and Prognostic Nutritional Index on Outcomes of Ventricular Tachycardia Ablation in Patients with Structural Heart Disease

Yapısal Kalp Hastalığı Olan Hastalarda Ventriküler Taşikardi Ablasyonunun Sonuçları Üzerinde Obezite ve Prognostik Beslenme İndeksinin Etkisi

© Emir Baskovski¹, © Ömer Akyurek¹, © Timuçin Altın¹, © Mahmut Ekrem Cünetoğlu¹

1 Ankara University, Department of Cardiology, Ankara, Turkey

ABSTRACT

Objectives: Previous studies have demonstrated that nutritional disorders such as obesity and malnutrition are associated with adverse events in patients with a structural heart disease. The impact of these conditions in patients undergoing ventricular tachycardia (VT) ablation is not known. In this study we sought to investigate the effect of obesity and malnutrition on procedural and post-procedural midterm outcomes in patients undergoing VT ablation.

Materials and methods: This is a single center, retrospective study which enrolled patients undergoing structural VT ablation. Patients were classified as normal weight, overweight and obese by body mass index (BMI). Malnutrition was defined as prognostic nutritional score (PNI) < 38. Outcomes between groups were compared.

Results: A total of 203 patients were enrolled to this study. Among these patients, 54 (25.6%) were normal weight, 102 patients (50.2%) were overweight, and 47 patients (23.1%) were obese. 18 patients (8.8%) were classified as malnourished. No significant difference in VT recurrence was observed across BMI (p=0.335) or nutritional status (p=0.556). However, mortality during follow-up was significantly higher in the malnourished group (50% vs. 7%, p<0.001), while BMI showed no significant association with mortality (p=0.202). On multivariate analysis, only PNI <38 (HR 6.659, 95% CI 2.553–17.369, p<0.001) and electrical storm (HR 2.848, 95% CI 1.133–7.160, p=0.026) remained independent predictors of mortality.

Conclusion: This study demonstrated that malnourished patients, as classified by PNI, had significantly worse acute success and higher long-term mortality with similar VT recurrence rate, compared to non-malnourished patients. Obesity status, as defined by BMI, did not lead to different outcomes.

Keywords: catheter ablation; heart failure; malnutrition; obesity; ventricular tachycardia

ÖZET

Amaç: Önceki çalışmalar, obezite ve malnütrisyon gibi beslenme bozukluklarının yapısal kalp hastalığı olan hastalarda olumsuz sonuçlarla ilişkili olduğunu göstermiştir. Bu durumların ventriküler taşikardi (VT) ablasyonu geçiren hastalardaki etkisi ise bilinmemektedir. Bu çalışmada, VT ablasyonu geçiren hastalarda obezite ve malnütrisyonun işlem sırasındaki ve işlem sonrası orta vadeli sonuçlar üzerindeki etkisini araştırmayı amaçladık.

Gereç ve yöntem: Bu tek merkezli, retrospektif çalışmaya yapısal VT ablasyonu uygulanan hastalar dahil edilmiştir. Hastalar beden kitle indeksi (BKİ) kullanılarak normal kilolu, fazla kilolu ve obez olarak sınıflandırılmıştır. Malnütrisyon, prognostik beslenme indeksi (PNI) < 38 olarak tanımlanmıştır. Gruplar arasındaki sonuçlar karşılaştırılmıştır.

Bulgular: Çalışmaya toplam 203 hasta dahil edilmiştir. Bu hastaların 54'ü (%25,6) normal kilolu, 102'si (%50,2) fazla kilolu ve 47'si (%23,1) obez olarak sınıflandırılmıştır. Öte yandan, 18 hasta (%8,8) malnütrisyonlu olarak tanımlanmıştır. BKİ (p=0,335) veya beslenme durumu (p=0,556) ile VT nüksü arasında anlamlı bir ilişki gözlemlenmemiştir. Ancak takip sürecinde mortalite, malnütrisyonlu grupta anlamlı şekilde daha yüksek bulunmuştur (%50 ve %7, p<0,001); buna karşın BKİ ile mortalite arasında anlamlı bir ilişki saptanmamıştır (p=0,202). Çok değişkenli analizde, yalnızca PNI <38 (HR 6,659, %95 GA 2,553–17,369, p<0,001) ve elektriksel fırtına (HR 2,848, %95 GA 1,133–7,160, p=0,026) mortalitenin bağımsız belirleyicileri olduğu saptanmıştır.

Sonuç: Bu çalışma, PNI ile malnütrisyonlu olarak sınıflandırılan hastaların, malnütrisyonlu olmayan hastalara kıyasla benzer VT nüks oranına rağmen anlamlı şekilde daha düşük akut başarı ve daha yüksek uzun vadeli mortaliteye sahip olduğunu göstermiştir. BKİ ile tanımlanan obezite durumu ise sonlanım noktalarında farklılığa yol açmamıştır.

Anahtar kelimeler: kateter ablasyon; kalp yetersizliği; malnutrisyon; obezite; ventriküler taşikardi

Corresponding author: Emir Baskovski

Ankara University, Cardiology Dept, Cebeci Heart Center, Cebeci, 06590, Ankara, Turkey

E-mail: emirbaskovski@gmail.com ORCID ID: 0000-0002-5492-2508

Received: 20.06.2025 Accepted: 21.09.2025 Publication Date: 30.09.2025

Cite this article as: Baskovski, E., Akyurek, Ö., et. al. Impact of obesity and prognostic nutritional index on outcomes of ventricular tachycardia ablation in patients with structural heart disease. J Ankara Univ Fac Med. 2025;78(3):217-225

Introduction

Ventricular tachycardias (VTs) impose a significant burden on patients with reduced ejection fraction (EF) in terms of increased mortality rates and worsening heart failure (HF).(1) Although recent studies have reported improvement in outcomes in patients undergoing VT catheter ablation(2,3), studies identifying factors that affect clinical outcomes remain scarce. Identification of optimal clinical settings as well as modifiable factors associated with adverse outcomes is crucial for patient selection and preprocedural optimization of the clinical condition.

Previous studies have demonstrated that nutritional disorders such as obesity and malnutrition are associated with adverse events in HF patients. (4,5) Furthermore, there is an established relation between obesity and ventricular arrhythmias (including sudden cardiac death). (6,7) Limited data suggest that obesity is associated with prolonged hospitalization and higher rate of pericardial effusion/hemopericardium following VT ablation, however, long-term outcomes are not known. (8) Currently, no data are present assessing outcomes of VT ablation in malnourished patients. Comparably, malnourished patients have higher recurrence risk after atrial fibrillation (AF) ablation compared to non-malnourished patients. (9)

The question of whether aforementioned nutritional disorders affect outcomes of patients undergoing VT ablation is of great clinical importance. Accordingly, in this study we sought to investigate the effect of obesity and malnutrition on procedural and post-procedural midterm outcomes in patients undergoing VT ablation.

Methods

This is a single center retrospective observational study. Ethical approval was obtained from the Ankara University Clinical Research Ethical Committee. The study was conducted in accordance with the Declaration of Helsinki. All participants or their legal guardians (when consent could not be obtained from the patient) provided written informed consent for participation.

Patient selection and subgroups

The study was conducted between 1st February 2022 and 1st April 2025. All patients undergoing VT or ventricular fibrillation (VF) ablation in the setting of structural heart disease by one of the first three authors (EB, TA, OA) were screened for inclusion to this study. Usual indications for ablation were in accordance with the current clinical practice guidelines (including electrical storm, an ICD shock, three or more VT episodes treated by anti-tachycardia pacing).(10) A minimum follow-up of two months (except for the patients who died prior to this period) was required for the enrollment to the study. Patients with known liver disease, severe chronic kidney disease (estimated glomerular filtration rate < 30 mL/ min/1.73 m²), known hematologic disease, known malignancy and those with chronical inflammatory/ infections disease were excluded from the study.

Patients were classified as normal weight, overweight and obese by body mass index (BMI) as previously defined (BMI<25 kg/m², BMI \geq 25-<30 kg/m², and BMI \geq 30 kg/m², respectively).(5) The malnutrition status was assessed by prognostic nutritional index (PNI), a well-validated index calculated by 10 × serum albumin (g/dl) + 0.005 × total lymphocyte count (mm³).(11) Patients with PNI < 38 were assigned to the malnourished group, with all other patients being assigned to the control group.(11)

The procedure

Multiple techniques and protocols exist for VT/VF catheter ablation and the procedure may vary among centers. Detailed presentation of our ablation approach has been previously published.(12,13) Briefly, we perform a mixture of substrate and activation mapping (when patient has a hemodynamically and clinically tolerable VT) under conscious sedation or general anesthesia using 3D mapping systems and multipolar mapping catheters. All targeted areas (based on the substrate and VT isthmi) are then ablated with radiofrequency ablation catheters. Acute success was defined as non-inducibility by multisite, multiple programmed extra-stimulus deliveries depending on the initial VT induction protocol and/or patients' hemodynamic status.

Table 1. Baseline			an indov	Classification by presence of malautrities				
			n by body mass index			Classification by presence of malnutrition		
	Normal weight (n=54)	Overwei- ght (n=102)	Obese (n=47)	Statis- tics	Malnutriotion(-) n=185	Malnutrition (+) n=18	Statistics	
Age, years medi- an (IQR)	67.5(74.2- 58)	66(72-58)	61.5(68- 44.3)	0.038	65(71-57)	72(76-68)	0.007	
Sex Male, -n(%)	44(18.5)	89(87.3)	39(83)	0.59	157(84.9)	15(83.3)	0.863	
EF, % median (IQR)	25(40-20)	25(35-20)	30(40-20)	0.568	25(40-20)	20(28.5-15)	0.214	
EF < 25% -n(%)		47(46.1)	22(46.8)	0.944	87(47.0)	6(33.3)	0.257	
Diabetes Melli- tus, -n(%)	15(27.8)	32(31.4)	17(36.2)	0.614	60(32.4)	4(22.2)	0.366	
Hypertension, -n(%)	36(66.7)	74(72.5)	36(76.6)	0.624	131(70.8)	15(83.3)	0.272	
CABG, -n(%)	16(29.6)	24(23.5)	10(21.3)	0.583	40(21.6)	10(55.6)	0.001	
PCI, -n(%)	25(46.3)	60(58.8)	23(48.9)	0.263	96(51.9)	12(66.7)	0.230	
Atrial fibrilla- tion,-n(%)	17(31.5)	44(43.1)	17(36.2)	0.34	70(37.8)	8(44.4)	0.582	
Prosthetic valve, -n(%) -MVR -AVR	4(7.4)	5(4.9)	3(6.4) 1(2.1)	0.438	11(5.9) 1(0.5)	1(5.6)	0.950	
Previous history of VT ablation, -n(%)	2(3.7)	10(9.8)	5(10.6)	0.346	15(8.1)	2(11.1)	0.661	
Beta blocker usage, -n(%)	47(87)	99(97.1)	45(95.7)	0.035	173(93.5)	18(100)	0.265	
Ischemic etiolo- gy, -n(%)	32(59.3)	72(70.6)	25(53.2)	0.1	115(62.5)	14(77.8)	0.198	
Implantable cardioverted defibrillator, -n(%)								

AVR: aortic valve replacement, CABG: Coronary artery bypass grafting, EF: ejection fraction, IQR: interquartile range, MVR: mitral valve replacement, VT: ventricular tachycardia

0.909

75(40.5)

20(42.6)

Data gathering and study endpoints

21(38.9)

43(42.2)

Electrical storm

Clinical data of participants was collected from electronic patient record system. Patient height and weight was measured and recorded prior to the procedure. Blood panels were measured utilizing Beckman Coulter Analyzer, an automatic blood cell counter. Follow-up data were obtained from patient files.

Ablation success was defined as VT non-inducibility at the end of the procedure. Periprocedural death was defined as death from any cause occurring during the same hospitalization as for ablation. Recurrence of VT was identified by any therapy delivered by an ICD device (either shocks or anti-tachycardia pacing) or if the patient presented with sus-

9(50)

0.437

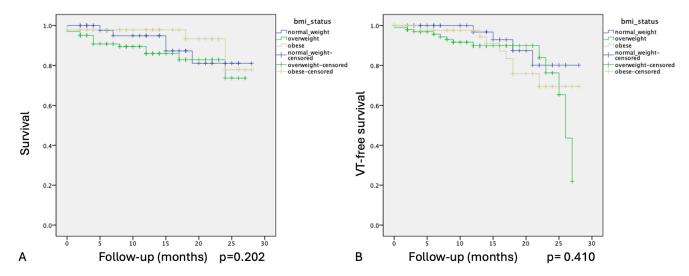



Figure 2. Kaplan Meier curves displaying death-free (A) and VT-free (B) survival in malnourished (prognostic nutritional index (PMI) <38) and non-malnourished (PNI \ge 38) groups.

tained, hemodynamically stable VT. Mid-term death was defined as death from any cause occurring during the follow-up period. The standard follow-up schedule included an initial visit one month after the procedure, followed by visits every three months. Patients who could not present for a device interrogation were contacted by a telephone call. Patients with missing procedural of follow-up data were excluded from the study.

Statistical analysis

Statistical analysis in this study was conducted using SPSS Statistics version 23 (IBM, New York, NY, USA). Categorical variables are presented as numbers and percentages, while continuous variables

are expressed as mean \pm standard deviation (SD) for normally distributed data and as median (interquartile range [IQR]) for non-normally distributed data. The Kolmogorov–Smirnov test was used to assess normality Parametric data were analyzed using the unpaired Student's t-test, whereas non-parametric data were compared using the Mann-Whitney U test. Categorical variables were evaluated using the chisquare (χ^2) test. Survival analysis was performed with Kaplan-Meier graphs. Univariate and multivariate Cox regression analyses were performed to explore the relationship between VT ablation outcomes and obesity/malnutrition. All probabilities are 2-tailed and p<0.05 was considered statistically significant.

Table 2. Procedural and	l tol	low-up data	ı
-------------------------	-------	-------------	---

	Classification by body mass index				Classification by presence of malnut- rition		
	Normal weight (n=54)	Overwe- ight (n=102)	Obese (n=47)	Statis- tics	Malnutrio- tion(-) n=185	Malnutriti- on (+) n=18	Statis- tics
Procedure dura- tion, median (IQR)	135(168-90)	132(160- 100)	145(184- 103.7)	0.391	130(170- 100)	157(208- 135)	0.029
Rf time, minutes median (IQR)	30(41-20)	31(41.2- 20)	36.5(48.5- 24.1)	0.203	32(43- 20.1)	32.6(53.5- 29)	0.284
Fluoro duration, minutes median (IQR)	4,7(16-1.7)	4,4(10- 1.3)	5.6(9.6-3)	0.313	4.4(10.5- 2.3)	7.3(14.6- 3.5)	0.197
ECMO, -n(%)	1(1.9)	0	1(2.2)	0.352	2(1.1)	0(0)	0.656
General anesthesia, -n(%)	32(59.3)	61(59.8)	29(61.7)		107(57.8)	15(83.3)	0.035
Intraaortic balloon counterpulsation, -n(%)	0	4(3.9)	3(6.4)	0.201	7(3.8)	0(0)	0.401
Epicardial access, -n(%)	6(11.1)	18(17.6)	11(23.4)	0.261	30(16.2)	5(27.8)	0.215
Early death, -n(%)	0	3(2.9)	1(2.1)	0.452	2(1.1)	2(11.1)	0.04
Acute Success Non-inducible, -n(%)	51(94.4)	100(98)	44(93.8)	0.338	180(97.8)	15(83.3)	0.035
Acute kidney injury, -n(%) Tamponade Respiratory	2(3.7)	2(2.0) 0	4(8.5) 2(4.3)		6(3.2) 2(1.1)	2(11.1)	
Failure, -n(%)	0	3(2.9)	2(4.3)		3(1.6)	2(11.1)	
Follow-up du- ration, median months (IQR)	13(19.25-5)	12(17-5.5)	15(22-8.7)	0.059	12(19-6)	7.5(20-2)	0.214
Follow-up recurrence, -n(%)	4(7.4)	13(12.7)	8(17)	0.335	22(11.9)	3(16.7)	0.556
Follow-up death, -n(%)	5(9.3)	14(13.7)	3(6.4)	0.371	13(7)	9(50)	<0.001

ECMO: extracorporeal membrane oxygenation, IQR: interquartile range

Results

A total of 203 patients were enrolled to this study. Among these patients, 54 (25.6%) were normal weight, 102 patients (50.2%) were overweight, and 47 patients (23.1%) were obese. One patient had BMI > 40, and one patient had BMI < 18. Conversely,

18 patients (8.8%) were classified as malnourished by PNI < 38. All baseline characteristics of study groups are present at Table 1. Obese patients were significantly younger compared to normal-weight patients (median age: 61.5 [IQR 68–44.3] vs. 67.5 [74.2–58] years, p=0.038). Malnourished patients

were older than those without malnutrition (median age: 72 [76–68] vs. 65 [71–57] years, p=0.007). No significant differences were observed in terms of sex distribution, EF, diabetes, hypertension, AF, or ischemic etiology between BMI or nutritional subgroups.

Comparison of procedural and follow-up data

Comparison of procedural and follow-up data is presented at Table 2. Procedure durations were similar across all BMI groups. Conversely, malnourished patients had longer median procedure duration compared to non-malnourished patients (157 [208–135] vs. 130 [170–100] minutes, p=0.029). Additionally, although there was no early mortality difference across various BMI groups, early mortality was higher in the malnourished group (11.1% vs. 1.1%, p=0.04).

The median follow-up duration was similar among BMI groups but trended shorter in malnourished patients (7.5 [20–2] months vs. 12 [19–6], p=0.214). No significant difference in VT recurrence was observed across BMI (p=0.335) or nutritional status (p=0.556). However, mortality during follow-up was significantly higher in the malnourished group (50% vs. 7%, p<0.001), while BMI showed no significant association with mortality (p=0.202). Acute kidney injury following the ablation was numerically higher in both obese and malnourished patients (Table 2).

Kaplan-Meier curves depicted similar long-term death and VT-free survival among various BMI groups (p=0.202 and p=0.410, respectively) (Figure 1). Malnourished patients had significantly worse long-term mortality but similar VT-free survival when compared to non-malnourished patients (p<0.001 and p=0.532, respectively) (Figure 2).

Predictors of death during follow-up (Table 3)

In univariate Cox regression, age >70 years (HR 2.688, 95% CI 1.161–6.266, p=0.021), presence of electrical storm (HR 2.566, 95% CI 1.076–6.121, p=0.034), and PNI <38 (HR 7.820, 95% CI 3.327–18.380, p<0.001) were significantly associated with increased mortality. On multivariate analysis, only PNI <38 (HR 6.659, 95% CI 2.553–17.369, p<0.001) and electrical storm (HR 2.848, 95% CI 1.133–7.160, p=0.026) remained independent predictors of mortality. BMI >30 was not significantly associated with long-term mortality.

Discussion

This retrospective study investigated how obesity and malnutrition affect procedural outcomes, long-term mortality, and VT-free survival. Our findings indicate that although being overweight or obese was common among participants, the acute procedural and long-term follow-up outcomes were similar regardless of the BMI group. In contrast, we observed a significantly higher rate of early death, lower procedure success and importantly, substantially greater long-term mortality in malnourished patients compared to their non-malnourished counterparts.

Obesity and ventricular arrhythmias in structural heart disease

Similar to the acute outcomes after VT catheter ablation reported by Tan et al.(8), as well as similar acute outcomes in AF ablation patients(14), we have confirmed that obesity has no impact on early mortality implying that overall safety of VT ablation procedure is similar to non-obese patients. Previous data have shown that vascular complications are most common in extreme BMI (underweight or extreme obesity) patients(15,16). We did not observe this trend, likely due to a low number of patients with extreme obesity (i.e. BMI>40) and no routine post-procedural imaging which may have led to underdiagnosis of femoral pseudoaneurysms.

The similar long-term mortality in obese vs nonobese patients observed in this study can be partly explained by the 'obesity paradox' that has been previously observed in both heart failure and cardiovascular diseases (4). Secondly, the prognostic weight of advanced heart failure may dominate in this clinical setting, rendering obesity non-influential. Thirdly, although BMI is a well validated tool for classification, it may be imperfect due to failure of identification of increased body fat. Finally, similar VT-free survival among groups may be an additional factor contributing to long-term mortality. Obesity has been shown to negatively impact arrhythmia free survival in AF ablation patients, which contrasts with our findings in VT ablation(14,16). This discrepancy may be attributed to the higher prevalence of advanced atrial fibrillation (AF) substrate in obese individuals, while

Table 3. Univariate an	d multivariate anal	vses for death	prediction
------------------------	---------------------	----------------	------------

	Univariate			Multivariate	9	
	HR	Confidence intervals	Statistics	HR	Confidence intervals	Statistics
Age > 70 years	2.688	1.161-6.266	0.021	1.229	0.478-3.158	0.668
Male sex	0.984	0.290-3.332	0.979			
Electrical storm	2.566	1.076-6.121	0.034	2.848	1.133-7.160	0.026
Ischemic etiology	0.653	0.255-1.668	0.373			
Coronary artery bypass grafting	2.007	0.885-4.875	0.093			
Atrial fibrillation	1.455	0.630-3.359	0.380			
BMI > 25	1.292	0.476-3.508	0.615			
BMI >30	0.335	0.099-1.134	0.079	0.586	0.156-2.065	0.390
PNI < 38	7.820	3.327-18.380	<0.001	6.659	2.553-17.369	<0.001
EF < 25%	0.569	0.232-1.397	0.219			
Epicardial access	1.363	0.502-3.700	3.700			
General anesthesia	0.841	0.359-1.971	0.690			

obesity appears to have a limited effect on the ventricular arrhythmogenic substrate.

Malnutrition, prognostic nutritional index and VT ablation

Contrary to our observation that obesity has no prognostic impact in patient undergoing VT ablation, malnutrition has been identified as a strong predictor of both acute and long-term mortality. Previous studies have demonstrated that acute complications are more common in malnourished AF patients, and they may have worse long-term arrhythmia-free survival(9,17). Therefore, worse acute outcomes in terms of success and complications (including death) in VT population is not surprising. Interestingly, although there is a hypothetical association between arrhythmogenesis and malnutrition, long-term recurrence was similar in malnourished patients most probably due to competing outcomes (i.e. death). It is well known that malnutrition is a predictor of death in advanced heart failure patients (18), with our study now extending the prognostic impact to those with ventricular arrhythmias. Overall, these findings suggest that non-arrhythmic death is predominant mechanism of mortality in malnourished population.

Recent studies have tried to identify predictors of mortality in patients undergoing VT ablation. PAINESD score is probably the best studied score with aim of predicting outcomes(19,20). In contrast to the PAINESD score, PNI incorporates serum albumin which may be potential therapeutic target. Whether a therapeutic intervention targeting serum albumin and improving nutritional status may improve outcomes should be studied. This hypothesis is particularly important in patients presenting for ablation in non-emergent settings, leaving sufficient window for therapeutic intervention.

In this study we observed that obese patients were found to be younger compared to normal-weight patients and malnourished patients were older than those without malnutrition. It is well known that sarcopenia is common in both advanced age and heart failure patients, therefore it is likely that this condition may have contributed to our observations.(21) Nevertheless, we could not diagnose sarcopenia due to lack of muscle strength, muscle quantity or quality and physical performance measurements, as per European Working Group on Sarcopenia in Older People, 2019 update.(22) This association and

prognostic impact of sarcopenia should be investigated in separate studies.

Limitations of our study

This study must be interpreted cautiously due to the single-center, retrospective nature. The sample size, particularly for the malnourished subgroup, was relatively small, which may limit the statistical power to detect smaller differences in outcomes. Additionally, given the modest sample size, the possibility that the mortality results are attributable to chance cannot be excluded. Furthermore, although PNI is a well validated score, it is imperfect particularly due to potential influence of systemic inflammation and hepatic dysfunction. Waist circumference measurements were not available which is an additional limitation. Finally, despite multivariate analysis, we cannot exclude the possibility of residual unmeasured confounders, such as frailty, sarcopenia, or the severity of non-cardiac comorbidities, which may be correlated with both PNI and mortality.

Conclusion

This study demonstrated that malnourished patients, as classified by PNI, had significantly worse acute success and higher long-term mortality with similar VT recurrence rate, compared to non-malnourished patients. These findings suggest that PNI may be used as a pre-procedural screening tool, pending approval from larger studies. Additionally, studies are needed to show whether preprocedural intervention targeting PNI>38 can improve acute and long-term outcomes. Finally, obesity status as defined by BMI did not lead to different outcomes.

Author Contributions: Surgical and Medical Practices: E.B., Ö.A., T.A., Concept: E.B., Design: E.B., M.E.C., Data Collection or Processing: M.E.C., Analysis or Interpretation: E.B., Literature Search: E.B., Ö.A., M.E.C., Writing: E.B.

Funding: No funding was received.

Conflicts of Interest: None declared.

Ethics Approval: The study was approved by Ankara University Ethics Committee (Decision no: İ05-430-25, date: 19.06.2025).

Patient Consent Statement: All patients have provided written consent for participation.

Clinical Trial Registration: N/A No materials from other sources have been reproduced.

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

- Tan NY, Roger VL, Killian JM, et al. Ventricular Arrhythmias Among Patients With Advanced Heart Failure: A Population@Based Study. J Am Heart Assoc. 2022;11(1):e023377.
- Della Bella P, Baratto F, Vergara P, et al. Does Timing of Ventricular Tachycardia Ablation Affect Prognosis in Patients With an Implantable Cardioverter Defibrillator? Results From the Multicenter Randomized PARTITA Trial. Circulation. 2022;145(25):1829–38.
- Tung R, Xue Y, Chen M, et al. First-Line Catheter Ablation of Monomorphic Ventricular Tachycardia in Cardiomyopathy Concurrent With Defibrillator Implantation: The PAUSE-SCD Randomized Trial. Circulation. 2022;145(25):1839–49.
- 4. Esteban-Fernández A, Villar-Taibo R, Alejo M, et al. Diagnosis and Management of Malnutrition in Patients with Heart Failure. J Clin Med. 2023;12(9):3320.
- Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;143(21):e984-e1010.
- Messerli FH. Overweight and sudden death. Increased ventricular ectopy in cardiopathy of obesity. Arch Intern Med. 1987;147(10):1725–8.
- 7. Adabag S, Huxley RR, Lopez FL, et al. Obesity related risk of sudden cardiac death in the atherosclerosis risk in communities study. Heart. 2015;101(3):215–21.
- 8. Tan MC, Yeo YH, Ang QX, et al. Impact of obesity on catheter ablation of ventricular tachycardia: In-hospital and 30-day outcomes. J Arrhythm. 2023;39(4):672–5.
- Wattanachayakul P, Srikulmontri T, Prasitsumrit V, et al. Malnutrition and risks of atrial fibrillation recurrence after catheter ablation. J Arrhythm. 2025;41(1):e13196.
- Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997–4126.
- Raposeiras Roubín S, Abu Assi E, Cespón Fernandez M, et al. Prevalence and Prognostic Significance of Malnutrition in Patients With Acute Coronary Syndrome. J Am Coll Cardiol. 2020;76(7):828–40.
- 12. Baskovski E, Altin T, Akyurek O, et al. Fascicular/Purkinje Tissue Colocalized With Scar in Cardiomyopathy Patients Undergoing Ventricular Fibrillation Ablation. Pacing Clin Electrophysiol. 2025;48(7):672-681.
- 13. Baskovski E, Altin T, Akyurek O, et al. Contemporary outcomes of catheter ablation of the structural ventricular tachycardias in severe ischemic and non⊡ischemic cardiomyopathies in Turkish population. J Arrhythm. 2024;40(6):1425–31.
- Tabaja C, Younis A, Santageli P, et al. Impact of obesity on catheter ablation of atrial fibrillation: Patient characteristics, procedural complications, outcomes, and quality of life. J Cardiovasc Electrophysiol. 2023;34(8):1648–57.
- 15. Cox N, Resnic FS, Popma JJ, et al. Comparison of the risk of vascular complications associated with femoral and radial access coronary catheterization procedures in obese versus nonobese patients. Am J Cardiol. 2004;94(9):1174–7.

- 16. Winkle RA, Mead RH, Engel G, et al. Impact of obesity on atrial fibrillation ablation: Patient characteristics, long-term outcomes, and complications. Heart Rhythm. 2017;14(6):819–27.
- 17. Kim D, Shim J, Kim YG, et al. Malnutrition and Risk of Procedural Complications in Patients With Atrial Fibrillation Undergoing Catheter Ablation. Front Cardiovasc Med. 2021;8:736042.
- 18. Pagnesi M, Serafini L, Chiarito M, et al. Impact of malnutrition in patients with severe heart failure. Eur J Heart Fail. 2024;26(7):1585–93.
- 19. Darma A, Bertagnolli L, Dinov B, et al. Predictors of long-term mortality after catheter ablation of ventricular tachycardia in a contempo-

- rary cohort of patients with structural heart disease. EP Europace. 2020;22(11):1672-9.
- 20. Muser D, Castro SA, Liang JJ, Santangeli P. Identifying Risk and Management of Acute Haemodynamic Decompensation During Catheter Ablation of Ventricular Tachycardia. Arrhythm Electrophysiol Rev. 2018;7(4):1.
- 21. Collamati A, Marzetti E, Calvani R, et al. Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol. 2016;13(7):615–24.
- 22. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

Patterns of Organ Involvement and Mortality in Extrapulmonary Tuberculosis: A Twelve-Year Retrospective Study

Tüberkülozda Organ Tutulum ve Mortalite Modelleri: On İki Yıllık Retrospektif Çalışma

Halime Araz¹, Saliha Kazcı², Fatma Eser³, Adalet Altunsoy⁴

1 Department of Infectious Disease and Clinical Microbiology, Ankara Bilkent City Hospital, Ankara, Turkey
2 Department of Clinical Microbiology, Ankara Bilkent City Hospital, Ankara, Turkey
3 Department of Infectious Disease and Clinical Microbiology, Ankara Bilkent City Hospital, Ankara Yildirim Beyazit University, Ankara, Turkey
4 Department of Infectious Disease and Clinical Microbiology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey

ABSTRACT

Background: Extrapulmonary tuberculosis (EPTB) constitutes a significant proportion of the tuberculosis (TB) burden and has diagnostically challenging manifestations. This study aimed to evaluate the demographic, clinical, diagnostic, and treatment characteristics of adult patients with EPTB in a tertiary care setting in Türkiye.

Methods: This retrospective cohort study included adult patients (≥18 years) diagnosed with EPTB between June 2010 and March 2022 at two tertiary hospitals in Ankara, Türkiye. Demographic, clinical, diagnostic, treatment, and outcome data were also collected. Comparative analyses between survivors and non-survivors were performed using the chi-square test, Fisher's exact test, and Mann–Whitney U test, with significance set at p < 0.05.

Results: Ninety-three patients were included (51.6% men; median age, 55 y). The most frequent sites of involvement were the vertebral bones and joints (32.3%), lymph nodes (26.9%), and central nervous system (16.1%). Histopathological confirmation was obtained in 60.2% of patients, culture positivity in 30.1% of patients, and PCR positivity in 31.2% of patients. Standard quadruple anti-TB therapy was initiated in 95.7% of the cases, with a median total treatment duration of 6 months (range, 1–13 months). Surgical intervention was required in 22.6% of the patients. During the follow-up period, 9 patients (9.7%) died. Immunosuppressive conditions were significantly more frequent among non-survivors than among survivors (44.4% vs. 11.9%, p = 0.027). The median duration of dual therapy (1 vs. 4 months, p < 0.001) and total therapy (3 vs. 6 months, p < 0.001) were significantly shorter in non-survivors.

Conclusions: Adult EPTB presents with diverse and often severe manifestations. Vertebral and central nervous system involvement predominated in this tertiary-care cohort. Mortality was associated with immunosuppression and shorter treatment duration. Comprehensive diagnostic strategies and tailored management of high-risk patients are essential to improve outcomes in EPTB.

Keywords: Extrapulmonary tuberculosis; spinal TB; TB meningitis; histopathology; mortality

ÖZET

Giriş: Ekstrapulmoner tüberküloz (EPTB), küresel tüberküloz yükünün artan bir kısmını oluşturmaktadır ve Türkiye dâhil birçok ülkede insidansı yükselmektedir. Bu çalışmada, üçüncü basamak bir sağlık kuruluşunda EPTB tanısı alan erişkin hastaların demografik, klinik, tanısal ve tedaviye ilişkin özelliklerinin değerlendirilmesi amaçlanmıştır.

Yöntem: Bu retrospektif kohort çalışmaya, Haziran 2010 – Mart 2022 tarihleri arasında Ankara'daki iki üçüncü basamak hastanede EPTB tanısı alan 18 yaş ve üzeri erişkin hastalar dâhil edilmiştir. Tanımlayıcı ve karşılaştırmalı istatistiksel analizler yapılmıştır.

Bulgular: Toplam 93 hasta dâhil edilmiştir (%51,6 erkek; medyan yaş: 55 yıl). En sık tutulan bölgeler omurga/eklemler (%32,3), lenf nodları (%26,9) ve merkezi sinir sistemi (%16,1) idi. Histopatolojik doğrulama %60,2, kültür pozitifliği %30,1, PCR pozitifliği %31,2 oranında sağlandı. AFB boyası %25,8 pozitifti. İlaç duyarlılık testi %27,9 hastada yapılmış ve iki olguda direnç saptanmıştır. Hastaların %95,7'sine standart dörtlü anti-TB tedavisi uygulanmış, medyan tedavi süresi 6 ay (1–13 ay) idi. %22,6 hastada cerrahi müdahale gerekmiştir. Takipte 9 hasta (%9,7) hayatını kaybetti. Bağışıklık baskılanması ölenlerde anlamlı düzeyde daha fazlaydı (%44,4 vs. %11,9, p = 0,027) ve bu hastalarda tedavi süresi daha kısaydı (p < 0,001).

Sonuç: EPTB erişkinlerde ciddi tablolarla seyredebilir. Vertebra ve merkezi sinir sistemi tutulumu sık olup, tanıda histopatoloji belirleyicidir. Bağışıklık baskılanması ve yetersiz tedavi süresi mortaliteyle ilişkilidir. Erken tanı ve bireyselleştirilmiş tedavi yaklaşımları önem taşımaktadır.

Anahtar kelimeler: Ekstrapulmoner tüberküloz, spinal TB, TB menenjiti, mortalite, histopatoloji

Corresponding author: Halime Araz

Ankara Bilkent City Hospital, Üniversiteler Mah. Bilkent Cad. No:1 Çankaya/Ankara/Turkey

E-mail: halimecavlak@gmail.com ORCID ID: 0000-0003-4774-5950

Received: 23.06.2025 **Accepted:** 23.09.2025 **Publication Date:** 30.09.2025

Cite this article as: Araz, H., Kazcı, S., et. al., Patterns of organ involvement and mortality in extrapulmonary tuberculosis: a twelve-year retrospective study. J Ankara Univ Fac Med. 2025;78(3):227-238

Copyright© 2025 The Author. Published by Ankara University Press on behalf of Ankara University Faculty of Medicine . This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

Introduction

Despite being preventable and curable, tuberculosis (TB) remains a significant global health challenge and ranks among the top causes of death worldwide. According to World Health Organization (WHO), approximately 10.6 million individuals fell ill with TB in 2021, resulting in 1.6 million deaths, including 187,000 among people with Human Immunodeficiency Virus (HIV) (1, 2). According to the 2024 WHO Global Tuberculosis Report, TB remains the second leading infectious killer worldwide, with approximately 10.8 million new cases and 1.25 million deaths in 2023(3). Although pulmonary tuberculosis (PTB) is the most common form, extrapulmonary tuberculosis (EPTB), characterized by Mycobacterium tuberculosis infection outside the lung parenchyma, accounts for a substantial disease burden and presents unique clinical, diagnostic, and therapeutic challenges (4, 5). EPTB may involve any organ system, with the lymph nodes, pleura, bones, meninges, genitourinary tract, and gastrointestinal system being the commonly affected sites (6). The disease is insidious in onset and heterogeneous in presentation, often mimicking other conditions, leading to diagnostic delays and deferred treatment (7). Unlike PTB, which relies on sputum-based diagnostics, EPTB requires invasive procedures, histopathological confirmation, and advanced imaging, particularly when microbiological evidence is limited (8). The relative proportion of EPTB among patients with TB has increased in multiple settings, including high-burden countries and industrialized regions. This shift has been attributed to improved pulmonary TB control, better access to imaging, increased awareness of EPTB manifestations, and the rising prevalence of immunosuppressive conditions such as HIV infection, malignancies, and immunomodulatory therapies (9, 10). Data from the Turkish Ministry of Health show that extrapulmonary involvement accounts for over one-third of new TB cases, with lymphadenitis and pleural and skeletal system involvement being the most common (11-13).

Given the heterogeneity of EPTB and the paucity of long-term institutional data in Türkiye, we conducted a 12-year retrospective cohort study of adult

patients with extrapulmonary tuberculosis across two tertiary hospitals. The primary objective was to characterize the demographic and clinical features, diagnostic modalities, and treatment strategies, with a particular focus on organ-specific patterns and factors associated with mortality. This study is expected to contribute to the evidence base needed for improved diagnostic and therapeutic strategies in similar, high-burden healthcare settings.

Materials and Methods

Study Design and Setting

This retrospective observational study was conducted at two tertiary care centers in Turkey. Adult patients (aged ≥18 years) diagnosed with EPTB between June 2010 and March 2022 were included. The study population consisted of patients evaluated at the Infectious Diseases and Clinical Microbiology outpatient clinics and inpatient services of Ankara Numune Training and Research Hospital (June 2014 – May 2019) and Ankara Bilkent City Hospital (June 2019 – March 2022).

Inclusion and Exclusion Criteria

Patients were eligible for inclusion if they had a clinical, histopathological, or microbiological diagnosis of EPTB, defined as a TB infection involving anatomical sites other than the lung parenchyma. Patients with isolated pulmonary TB or concomitant pulmonary and extrapulmonary involvement were excluded unless the extrapulmonary manifestations were the primary diagnostic component. Only cases with complete clinical and diagnostic records were included in the study.

Data Collection

Patient data were obtained from the institutional electronic medical record systems (FONET® and HICAMP®) and the national MEDULLA physician platform. The following parameters were collected: demographics (age, sex, nationality, and province of residence). Medical history: presence of comorbidities (diabetes mellitus, malignancy, cardiovascular disease, chronic kidney disease, and HIV), immunosuppressive conditions, and family history of TB. Diagnostic methods: Purified Protein Derivative (PPD), interferon-gamma release assay (IGRA),

acid-fast bacilli (AFB) smear, TB polymerase chain reaction (PCR), culture, and histopathology results. Site of involvement: classified by organ system involvement (lymph nodes, central nervous system, peritoneum, bone and joints, skin, and genitourinary tract). Treatment data included standard first- or second-line anti-TB regimens, treatment duration, surgical intervention, and resistance testing. All included patients were newly diagnosed with extrapulmonary tuberculosis and had no prior history of TB. Immunosuppression was defined as the presence of HIV infection, ongoing chemotherapy, long-term corti-

costeroid use (>20 mg/day prednisone equivalent for >4 weeks), or treatment with other immunosuppressive drugs (methotrexate, cyclosporine, and biologics). Mortality was defined as all-cause mortality during hospitalization or follow-up, regardless of the direct attribution of TB.

Ethical Approval

The study protocol was approved by the Ethics Committee of Ankara Bilkent City Hospital (Decision No: E2-22-1952, Date: 08/06/2022). This study was conducted in accordance with the Declaration of Hel-

Parameter	n (%)
Sex	,
- Male	48 (51.61)
- Female	45 (48.39)
Age, Median (Min-Max)/Mean ± SD	55 (18–88) (52.20 ± 18.90)
Nationality	
- Turkish citizen	84 (90.32)
– Foreign national	9 (9.68)
Place of residence	
– Ankara	56 (60.22)
– Outside Ankara	37 (39.78)
Family history of tuberculosis	
- Absent	85 (91.40)
- Present	6 (6.45)
– Unknown	2 (2.15)
Comorbidity status	
– No comorbidity	52 (55.91)
- At least one comorbidity	41 (44.09)
• Diabetes mellitus	17 (18.28)
Malignancy	12 (12.90)
Cardiovascular disease	20 (21.51)
Chronic kidney disease	3 (3.23)
HIV infection	2 (2.15)
Immunosuppression	
- Absent	79 (84.95)
- Present	14 (15.05)

SD: Standard deviation. HIV: Human immunodeficiency virus. Percentages are column percentages, unless otherwise specified.

Diagnostic Parameter	n (%)
PPD	
- Negative	35 (37.63)
- Positive	58 (62.37)
IGRA	
- Negative	14 (15.05)
- Positive	38 (40.86)
- Not performed	41 (44.09)
Acid-Fast Bacilli Smear	
- Negative	51 (54.84)
- Positive	24 (25.81)
- Not performed	18 (19.35)
TB PCR	
- Negative	22 (23.66)
- Positive	29 (31.18)
- Not performed	42 (45.16)
Histopathology	
– Compatible with TB	56 (60.22)
- Not compatible with TB	3 (3.23)
– Not available	34 (36.56)
Culture	
- Negative	40 (43.01)
- Positive	28 (30.11)
- Not performed	25 (26.88)
Diagnostic approach	
– Diagnosis prior to treatment	61 (65.59)
– Diagnosis confirmed after treatment initiation	32 (34.41)

PPD: purified protein derivative; IGRA: interferon-gamma release assay; AFB: acid-fast bacilli; PCR: polymerase chain reaction. The percentages represent the proportion of total patients (n = 93).

sinki and the institutional data protection regulations. The need for individual informed consent was waived because of the retrospective nature of the study.

Statistical Analysis

Statistical analyses were performed using IBM SPSS

Statistics for Windows version 20.0 (Armonk, NY: IBM Corp). Continuous variables are expressed as mean ± standard deviation (SD) and median (minimum-maximum), depending on the distribution. Categorical variables are presented as frequencies and percentages.

Table 3. Distribution of Extrapulmonary Tu	iberculosis Sites of Involvement
Site of Involvement	n (%)
Vertebral bone and joint	30 (32.26)
Peripheral lymphadenitis (non-thoracic)	25 (26.88)
Meningitis	15 (16.13)
Peritoneal / gastrointestinal system	11 (11.83)
Genitourinary system	7 (7.53)
Cutaneous	3 (3.23)
Non-vertebral bone and joint	2 (2.15)

Percentages are based on the total number of patients (n = 93). A single patient may present with more than one site of involvement, although primary sites are prioritized for treatment.

Comparisons between survivors and non-survivors were performed using the chi-square or Fisher's exact test for categorical variables and independent-samples t-test or Mann–Whitney U test for continuous variables, depending on the distribution. Statistical significance was set at p < 0.05.

Results

A total of 93 adult patients were included, comprising 48 men (51.6%) and 45 women (48.4%), with a median age of 55 years (range, 18–88 years). Most patients were Turkish citizens (90.3%), while nine (9.7%) were foreign nationals (six Syrian, two Afghan, and one Iraqi). Comorbidities were present in 44.1% of patients, most frequently cardiovascular disease (21.5%) and diabetes mellitus (18.3%). Immunosuppression was documented in 15.1% of the cases (Table 1).

Diagnostic evaluation revealed a positive PPD result in 62.4% of patients and a positive IGRA result in 40.9% of patients. The AFB smear, TB PCR, and culture positivity rates were 25.8%, 31.2%, and 30.1%, respectively. Histopathological confirmation was obtained in 60.2% of the cases. The diagnosis was established before treatment initiation in 65.6% of patients (Table 2).

The most common sites of involvement were the vertebral bones and joints (32.3%), lymph nodes (26.9%), and central nervous system (16.1%).Less frequent sites included the peritoneal/gastrointestinal (11.8%), genitourinary (7.5%), cutaneous

(3.2%), and non-vertebral skeletal (2.2%) localizations (Table 3).

First-line quadruple therapy was administered to 95.7% of the patients. The median duration of dual therapy was 4 months (range, 0–10 months), and the median total treatment duration was 6 months (range, 1–13 months). Surgical intervention was performed in 22.6% of the cases. Drug susceptibility testing was performed in 27.9% of patients, of whom 2.2% showed resistance (Table 4).

During the follow-up period, 9 patients (9.7%) died. No significant differences between survivors and non-survivors were observed in age, sex, nationality, place of residence, family history of TB, AFB or culture positivity, or surgical intervention. Immunosuppression was significantly more frequent among non-survivors than among survivors (44.4% vs. 11.9%, p = 0.027). The median duration of dual therapy (1 vs. 4 months, p < 0.001) and total therapy (3 vs. 6 months, p < 0.001) were significantly shorter in non-survivors. No association with drug resistance was identified, although the subgroup numbers were small (Table 5).

Discussion

National and Global Perspectives Our 12-year retrospective cohort highlights the growing burden of EPTB in Turkey and worldwide. Globally, EPTB accounts for 15–20% of all tuberculosis cases(14). According to the WHO, 16% of the 7.1 million TB cases notified in 2019 were extrapulmonary, ranging

Table 4. Anti-Tuberculosis Treatment Characteristics and Drug Resistance Status					
Treatment Parameter	n (%)				
Initial anti-TB regimen					
– INH, RIF, PZ, ETB (first-line quadruple)	89 (95.70)				
- Moxifloxacin, Cycloserine, ETB, Streptomycin	3 (3.23)				
– INH, RIF, ETB, Streptomycin	1 (1.08)				
Duration of quadruple therapy, Median (Min-Max)/ Mean ± SD	2 (1–3) (2.10 ± 0.30)				
Duration of dual therapy, Median (Min-Max)/ Mean ± SD	4 (0–10) (5.40 ± 2.60)				
Total treatment duration, Median (Min-Max)/ Mean ± SD	6 (1–13) (7.40 ± 2.80)				
Surgical intervention					
- Not performed	72 (77.42)				
- Performed	21 (22.58)				
Drug susceptibility testing performed					
- Not performed	67 (72.04)				
- Performed	26 (27.96)				
• Susceptible	24 (25.81)				
• Resistant	2 (2.15)				

INH: Isoniazid; RIF: Rifampicin; PZ: Pyrazinamide; ETB: Ethambutol. SD: Standard deviation. The duration values are expressed in months.

from 8% in the Western Pacific to 24% in the Eastern Mediterranean (15). In high-income, low-incidence settings, the proportion is higher; EPTB constitutes 27% of TB cases in the United States and 38% in the Netherlands(14). Turkey has one of the highest EPTB proportions; before the COVID-19 pandemic, over one-third of Turkish TB cases were extrapulmonary. National data show that the share rising from 28.6% in 2005 to 35–36% by 2018(15). Ulusoy et al. reported that immunosuppressive medication use was significantly more frequent among patients with PTB than among those with EPTB in a Turkish cohort (16).

Recent data show that this proportion increased to 41.6% in 2020, with 3,710 extrapulmonary cases among 8,925 new TB cases(17). This increase is partly due to the declining pulmonary TB notifications during the pandemic and better EPTB recognition. Improvements in pulmonary TB control have left a larger fraction of TB presenting at extrapulmonary

sites(15). The rise in immunosuppressive comorbidities also contributes to the changing epidemiology. Our cohort reflects these trends: EPTB remains significant, with median patient age in the sixth decade and nearly equal sex distribution. Unlike pulmonary TB's male predominance, many EPTB series show a balanced sex ratio, as European studies noted women and older adults at higher risk for EPTB(15). The epidemiological profile of our patients aligns with national data and shows EPTB increasing where overall TB incidence is declining(15). This emphasizes the need for continued vigilance for extrapulmonary TB under national programs as we strive to meet End TB targets amid the COVID-19 pandemic.

Patterns of Organ Involvement and Clinical Comparisons

The spectrum of organ involvement in our 93 patients demonstrated both concordance with and distinctive differences from patterns reported in the literature.In

Table 5. Comparison of Demographic and Clinical Characteristics Between Survivors and Non-Survivors

Tuble (). Comparison of Demog	Parameter	Survivors	Non-survivors 9)	р
Sex	Male	43 (51.19)	5 (55.56)	1.000
Sex	Female	41 (48.81)	4 (44.44)	1.000
Age	Mean ± SD	51.40 ± 18.40	60.60 ± 22.10	0.096
Age	Median (Min–Max)	54 (18–88)	71 (22–82)	0.090
Nationality	Turkish citizen	75 (89.29)	9 (100.00)	0.592
Nationality	Foreign national	,	0 (0.00)	0.552
Place of residence	Ankara	9 (10.71)	4 (44.44)	0.475
Place of residence	Outside Ankara	52 (61.90)	5 (55.56)	0.475
Equily history of TD (n = 01)		32 (38.10)	,	0.570
Family history of TB (n = 91)	Absent	77 (91.67)	8 (88.89)	0.572
Immunosuppressive condition	Present	5 (6.00)	1 (11.11)	0.007
immunosuppressive condition	Absent	74 (88.10)	5 (55.56)	0.027
AFD	Present	10 (11.90)	4 (44.44)	0.004
AFB smear	Negative	48 (57.14)	3 (33.33)	0.201
	Positive	20 (23.81)	4 (44.44)	0.004
Culture result	Negative	35 (41.67)	5 (55.56)	0.691
	Positive	26 (30.95)	2 (22.22)	
Site of involvement	Vertebral bone and joint	27 (32.14)	3 (33.33)	-
	Lymphadenitis	23 (27.38)	2 (22.22)	
	Meningitis	12 (14.29)	3 (33.33)	
	Peritoneal / GI system	11 (13.10)	0 (0.00)	
	Genitourinary system	7 (8.33)	0 (0.00)	
	Cutaneous	2 (2.38)	1 (11.11)	
	Non-vertebral bone and joint	2 (2.38)	0 (0.00)	
Initial anti-TB regimen	INH, RIF, PZ, ETB	80 (95.24)	9 (100.00)	_*
	Moxifloxacin, Cycloserine, ETB, SM	3 (3.57)	0 (0.00)	
	INH, RIF, ETB, SM	1 (1.19)	0 (0.00)	
Duration of quadruple therapy	Mean ± SD	2.10 ± 0.30	1.90 ± 0.60	0.108
	Median (Min–Max)	2 (2–3)	2 (1–3)	
Duration of dual therapy	Mean ± SD	5.80 ± 2.30	1.30 ± 1.70	<0.001
	Median (Min–Max)	4 (4–10)	1 (0–4)	
Total treatment duration	Mean ± SD	7.90 ± 2.40	3.20 ± 2.10	
	Median (Min–Max)	6 (6–13)	3 (1–7)	<0.001
Surgical intervention	Not performed	64 (76.19)	8 (88.89)	0.678
	Performed	20 (23.81)	1 (11.11)	
Drug resistance testing	Not performed	60 (71.43)	7 (77.78)	_*
	Performed	24 (28.57)	2 (22.22)	
	Susceptible	22 (26.19)	2 (22.22)	
	Resistant	2 (2.38)	0 (0.00)	

Pyrazinamide; ETB: Ethambutol; SM: Streptomycin; SD: Standard deviation. AFB: Acid-Fast Bacilli; TB: Tuberculosis; INH: Isoniazid; RIF: Rifampicin; PZ: Pyrazinamide

^{*}Pearson's chi-square test could not be applied due to expected frequencies <5 in some cells. The duration values are expressed in months. Survivors (n = 84), Non-survivors (n = 9)

general, TB lymphadenitis is the most common form of EPTB across many populations (13). For example, Turkish Ministry of Health data indicate that extrathoracic lymph node TB comprises approximately one-third of EPTB cases nationally (31.6%), followed by pleural TB (22–23%) as the next leading site (17). Our cohort also had a high frequency of lymph node TB (26.9% of cases), consistent with the notion that lymphatic involvement is the dominant clinical form of EPTB. However, the most frequent site in our series was skeletal TB, particularly vertebral disease, which accounted for 32.3% of cases. This is a noticeably higher share than that generally reported; typically, bone and joint TB constitutes approximately 10-15% of EPTB cases in large cohorts (13). Similarly, central nervous system (CNS) TB accounted for 16.1% of our cases, whereas population-based data often show CNS TB to be relatively rare, at approximately 3-7% of EPTB (13). The prominence of spinal and CNS TB in our study likely reflects a referral bias; being tertiary care centers, our hospitals receive complicated EPTB cases that might be managed at specialty centers, whereas more straightforward EPTB cases are often handled by general pulmonary services. Indeed, pleural TB was notably under-represented in our cohort; none of our patients had isolated pleural involvement, even though pleural TB is traditionally among the top two extrapulmonary sites in national statistics (17). This anomaly reinforces that our hospital-based series is enriched for severe, multi-system, or diagnostically challenging EPTB presentations rather than the full spectrum seen in the community setting.

Despite differences in distribution, our findings mirror the global diversity of EPTB manifestations. Consistent with published observations, virtually any organ system can be affected. In addition to lymphatic, osteoarticular, and CNS TB, we observed intra-abdominal TB in 12% of patients, genitourinary TB in 8%, and rare cutaneous TB (3%). Such heterogeneity is documented; Baykan et al. reported that the most common sites globally are peripheral lymph nodes (50% of EPTB cases), pleura (18%), and genitourinary, bone/joint, gastrointestinal, and

CNS in descending order (13). A recent national survey in China found lymphatic TB most frequent but highlighted regional variations and showed no single site predominates universally (18). Our cohort's profile shows tertiary centers may see cases skewed toward severe forms, which is important when comparing clinical studies. It emphasizes the need for clinical suspicion across specialties; patients often presented to neurology, orthopedics, or gastroenterology before TB was recognized. As noted previously, EPTB can mimic other diseases and presents insidiously. The diverse organ involvement reinforces the importance of maintaining TB in the differential diagnosis for persistent lymphadenopathy, chronic back pain, unexplained meningitic syndromes, or fever of unknown origin, especially in TB-endemic regions.

Diagnostic Challenges and Advances

Our experience highlights diagnostic challenges of EPTB. Unlike pulmonary TB, where sputum microscopy and Xpert testing can rapidly confirm cases, extrapulmonary disease requires invasive sampling of inaccessible sites, with modest yields. In our cohort, 25.8% of patients had positive acid-fast bacilli smears, and 30.1% had cultures that grew M. tuberculosis. These figures align with other series; a Turkish study reported microbiological confirmation in roughly one-third of EPTB patients (15). The paucibacillary nature of EPTB means many patients are microbiologically negative despite active disease. In our study, most cases relied on clinical, radiological, and histopathological evidence. Histopathology showing caseating granulomas supported TB in 60% of patients, highlighting that tissue biopsy remains crucial when direct bacteriological proof is elusive. In 34% of patients, diagnosis was confirmed only after empiric treatment began, showing that clinicians often make therapeutic decisions based on presumptive evidence. This scenario is common; as Yıldız et al. noted, invasive procedures are required for EPTB diagnosis, and delays or misdiagnoses remain problematic (15). Critical forms like TB meningitis or miliary TB can be fatal if not recognized early, yet these forms are most difficult to diagnose definitively (15). Our findings support initiating empiric

therapy for life-threatening EPTB while awaiting results, given reasonable clinical suspicion, as recent guidelines emphasize.

Advances in diagnostics have improved our ability to confirm EPTB. The WHO now recommends rapid molecular tests as the initial diagnostic for suspected EPTB, showing higher sensitivity than smear microscopy in extrapulmonary specimens (15). During our study, Xpert became widely available with a positive yield in 31% of patients, contributing to the high rate of microbiological confirmation. Studies show good sensitivity of Xpert in tissue and pus samples, though lower in paucicellular fluids like pleural fluid or CSF (19, 20). Molecular diagnostics has narrowed this gap. Tools like adenosine deaminase (ADA) assays for pleural or peritoneal fluid and IGRA support diagnoses (21). In our cohort, IGRA tests were positive in 41% of those tested, though many patients did not undergo IGRA. While positive IGRA or tuberculin skin tests support EPTB diagnosis, they lack specificity and often show negative in immunosuppressed patients. Our experience confirms that diagnosing EPTB requires a multimodal approach, combining clinical judgment with imaging, biopsy/histology, and microbiologic tests. The high rate of empiric treatment reflects the need to treat presumptively when diagnostic certainty is difficult. This must balance with obtaining specimens for culture and drug susceptibility testing (DST) when possible, as WHO emphasizes for managing drug-resistant TB. We performed DST in 28% of patients, finding two cases of drug-resistant TB. This low resistance rate matches the national data on multidrug-resistant TB in Turkey but suggests possible undetected resistance in culture-negative EPTB (15). New tools like next-generation sequencing and improved imaging may enhance EPTB diagnosis. Our findings highlight the need for better diagnostics and early sample collection, as delays link to worse outcomes.

Treatment Outcomes and Clinical Outcomes in Context

Despite the challenges in diagnosis, once EPTB is recognized and treated, the outcomes are generally favorable, varying by disease form and patient factors. All patients received standard combination anti-TB therapy under the National TB Program. Treatment aligned with international and local guidelines: 96% started the conventional four-drug first-line regimen(3, 22). Exceptions were patients requiring second-line drugs or those unable to use pyrazinamide. The median therapy duration was 6 months, reflecting the recommended 2-month intensive phase + 4-month continuation phase for drug-susceptible TB. However, many patients, especially those with severe disease, were treated longer at their physicians' discretion. Mean treatment length was 7.4 ± 2.8 months, with longest courses reaching 12–13 months in some cases. Extended treatments were for TB meningitis and skeletal TB patients, where clinicians often prolong therapy. WHO and Turkish guidelines recommend 6-month regimens for most extrapulmonary TB forms, similar to pulmonary TB, but acknowledge CNS or bones/joints TB may need 9–12 months (23). Tuberculous meningitis typically requires 12 months with adjunctive corticosteroids initially due to risks of inadequate treatment. In our series, all CNS TB cases received adjuvant highdose steroids and were treated for ≥12 months. Our management aligns with WHO's latest TB guidelines (2022-2023), which emphasize individualized treatment duration for extrapulmonary disease severity, while recommending at least 6 months of rifamycin-based therapy for drug-susceptible cases (24). Ongoing trials have explored shorter regimens for limited EPTB, but such strategies remain unadopted in adults.

Treatment outcomes in our cohort were positive with important caveats. Among the 93 patients, most achieved cure or treatment completion, as documented by the national TB registry. We observed no treatment failures in drug-susceptible patients, and few defaulted or were lost to follow-up, due to robust follow-up through TB dispensaries. This reflects Turkey's TB control program strength, which employs directly observed therapy and systematic monitoring (15). Comparable success rates have been reported elsewhere; a recent study from India noted treatment success of 91% among EPTB patients, ex-

ceeding the WHO target of 90% (14). Our real-world cohort of complex cases suggests high success when patients adhere to therapy. However, mortality emerged as significant, with a 9.7% overall rate. This aligns with the 8-10% early mortality in other Turkish hospital-based EPTB series (15)and shows that some EPTB patients, especially those with disseminated or CNS disease, succumb despite treatment. This in-hospital mortality rate exceeds the average TB mortality in national program data. The TB-related death rate among notified EPTB cases in many countries is approximately 3-5% (14), indicating many extrapulmonary cases have excellent prognosis. The higher mortality in our series reflects case severity and referral patterns; our hospitals treated high-risk EPTB cases. This is supported by profiles of deceased patients: their median age was higher than survivors, and most had CNS TB, miliary TB, or advanced malignancy comorbidities. Similarly, in the Acta Medica study from Gazi University, the most frequent EPTB types among deceased patients were CNS and miliary TB, with median age of 65 years versus 49 years in survivors (15). Our findings confirm that advanced age and severe disease drive mortality risk.

Mortality Risk Factors and Comparative Clinical Features

Comparing survivors and non-survivors in our cohort revealed clinical risk factors that mirror those reported elsewhere. Immunosuppressive conditions were significantly associated with mortality: 44% of patients who died had an immunosuppressive comorbidity versus 12% of survivors. This aligns with global observations that patients with TB and impaired immunity fare worse. Although only 2.1% of patients were HIV-positive, one had disseminated TB with poor outcomes. Worldwide, HIV coinfection drives extrapulmonary and disseminated TB; in 2021, 187,000 of the 1.6 million TB deaths were in people with HIV. These patients often present with atypical or multiple-site disease and high mortality if not promptly treated. Chronic kidney disease, diabetes, and malignancy were present in several patients, potentially contributing to worse outcomes (24). Diabetes was a common comorbidity, reflecting its high prevalence in TB cohorts and association with delayed sputum conversion and treatment complications. While diabetes wasn't an independent predictor of death in our small sample, its frequency reinforces the importance of managing comorbidities during TB therapy. In the Gazi University study's multivariate analysis, independent risk factors for early mortality were older age, high ESR (>50 mm/h), miliary TB, and CNS involvement (15). Our data, though underpowered for a multivariate model, agree; all fatal cases were elderly and/or had CNS or disseminated disease. Several non-survivors experienced diagnostic delays, highlighting the importance of timely detection of severe EPTB. Our cohort's median age of 55 years exceeds that in high-burden countries but matches Turkish and European case series (15), reflecting TB demographics in a middle-income country with an aging population. The near-equal sex distribution contrasts with male-predominant pulmonary TB, while some studies note slight female EPTB predominance. European surveys show females have higher EPTB odds, possibly due to biological or healthcare access factors. While our data cannot confirm sex differences, they show EPTB affects both sexes and all ages, and clinicians should consider TB in older adults or females without classic risk factors (24, 26).

When comparing outcomes, our results show most patients with EPTB can be cured with appropriate therapy. High treatment success is achievable for extrapulmonary disease when patients are diagnosed and supported through treatment (14). However, experience shows certain subgroups, such as the elderly, immunosuppressed, and those with CNS or disseminated TB, remain at high risk of poor outcomes. These findings call for targeted interventions, including closer monitoring of highrisk patients, managing comorbidities, and possibly novel therapies. Our findings align with national and international data, showing EPTB as an evolving challenge. It accounts for a growing proportion of TB cases in Turkey, presents with diverse manifestations, and requires a high degree of suspicion for

timely diagnosis. The distribution of organ involvement in our cohort, weighted towards severe forms such as skeletal and CNS TB, underscores the need for robust diagnostic strategies and specialist input. Our patients' outcomes were comparable to global figures, with high treatment completion but significant mortality in severe cases. These comparisons with studies and WHO reports highlight key areas for improvement: enhancing early detection, ensuring microbiological testing for EPTB patients, and sustaining TB care amid challenges such as pandemics. By integrating local insights with global evidence, we can better address the challenges of extrapulmonary TB and improve outcomes.

Study Strengths and Study Limitations

This study represents one of the few long-term institutional analyses in Türkiye that focused on adult EPTB.Its strengths include a large cohort spanning 12 years, systematic data collection across two tertiary care centers, and documentation of diagnostic modalities, organ-specific distribution, and mortality-associated factors. Multiple diagnostic test outcomes, treatment durations, and mortality comparisons provide comprehensive clinical and epidemiological insights relevant to national TB control efforts. However, as a retrospective, single-country, hospital-based study, the findings may be influenced by referral and selection bias, particularly for complex EPTB presentations such as CNS or vertebral involvement. The lack of universal microbiological confirmation limited molecular testing in the early years, and the absence of post-treatment follow-up data restricted generalizability. Small subgroup sizes also limited the power of the multivariate risk analysis of mortality predictors.

Conclusion

This 12-year retrospective cohort study demonstrated that extrapulmonary tuberculosis (EPTB) in Türkiye remains an important clinical and epidemiological challenge. Vertebral bone, lymph nodes, and central nervous system were the predominant sites of involvement, reflecting the referral profile of tertiary centers. Although most patients achieved

successful outcomes with standard anti-tuberculosis therapy, mortality reached 9.7% and was strongly associated with immunosuppressive conditions and shortened treatment durations. These findings emphasize the necessity of early recognition, comprehensive diagnostic evaluation, and individualized therapeutic strategies, particularly for high-risk subgroups such as immunosuppressed patients and those with CNS disease. Sustained investment in rapid diagnostics, systematic drug susceptibility testing, and multidisciplinary management should remain priorities of national TB programs to reduce mortality and improve EPTB outcomes.

Acknowledgements: We would like to express our sincere gratitude to Dr. Filiz Duyar Ağca, one of the physicians at Ankara Tuberculosis Dispensary No. 3, for her valuable support and contributions.

Author Contributions: Surgical and Medical Practices: H.A., S.K., F.E., A.A., Concept: H.A., A.A., Design: H.A., S.K., A.A., Data Collection or Processing: H.A., S.K., F.A., Analysis or Interpretation: S.K., Literature Search: H.A., F.A., Writing: H.A., S.K., F.E., A.A.

Ethical Statement: The study protocol was approved by the Ethics Committee of Ankara Bilkent City Hospital (Decision No: E2-22-1952, Date: 08/06/2022). This study was conducted in accordance with the Declaration of Helsinki and the institutional data protection regulations.

References

- Bagcchi S. WHO's global tuberculosis report 2022. Lancet Microbe. 2023;4(1):e20.
- Lee H, Kim J, Kim J, Park Y-J. Review of the global burden of tuberculosis in 2023: insights from the WHO Global Tuberculosis Report 2024. Public Health Weekly Report 2025; 18(Suppl 11): S55-S69.
- Estaji F, Kamali A, Keikha M. Strengthening the global Response to Tuberculosis: Insights from the 2024 WHO global TB report. J Clin Tuberc Other Mycobact Dis. 2025;39:100522.
- Priyadharshini A. The spectrum of Extra Pulmonary Tuberculosis: emphasizing the importance of Microbiological diagnosis - A Case Series. Indian Journal of Tuberculosis. online June 2025.
- 5. Gopalaswamy R, Dusthackeer VA, Kannayan S, Subbian S. Extrapulmonary tuberculosis—an update on the diagnosis, treatment and drug resistance. J Resp. 2021;1(2):141-64.
- 6. Naranjo MZ, Torres JDA, Poveda ATS, García V, Paternina MA. Tuberculosis Beyond the Lungs: A Pictorial Review of Key Diagnostic Imaging Insights. Cureus. 2025;17(3).
- 7. Azad KAK, Chowdhury T. Extrapulmonary Tuberculosis (Eptb): An Over-

- view. Bangladesh Journal of Medicine. 2022;33(2):130-7.
- 8. Davidson G, Davidson DU, Okoye OK, Mensah LS, Ukaegbu EC, Agbor DBA, et al. Overview of tuberculosis: causes, symptoms and risk factors. Asian J Res Infect Dis. 2024;15(9):8-19.
- 9. Ammari L, Berriche A, Kooli I, Marrakchi W, Chakroun M. Epidemiology of tuberculosis. Imaging of Tuberculosis: Springer; 2022. p. 1-13.
- Maheswary D, Ravi SSS, Leela KV, Lathakumari RH, Gireesan M. Epidemiological Trends in Pulmonary and Extra pulmonary Tuberculosis: A 5 year Retrospective Analysis of Acid Fast Bacilli. The International Journal of Mycobacteriology. 2025;14(1):56-65.
- Dara M, Kuchukhidze G, Yedilbayev A, Perehinets I, Schmidt T, Van Grinsven WL, et al. Early COVID-19 pandemic's toll on tuberculosis services, WHO European Region, January to June 2020. Eurosurveillance. 2021;26(24):2100231.
- 12. Merdan YE, Etiz P. A scopus-based bibliometric analysis of global tuberculosis publications: 1849-2020. Turk Thorac J. 2022;23(3):246.
- 13. Baykan AH, Sayiner HS, Aydin E, Koc M, Inan I, Erturk SM. Extrapulmonary tuberculosis: an old but resurgent problem. Insights Imaging. 2022;13(1):39.
- 14. VidyaRaj CK, Vadakunnel MJ, Mani BR, Anbazhagi M, Pradhabane G, Venkateswari R, et al. Prevalence of extrapulmonary tuberculosis and factors influencing successful treatment outcomes among notified cases in South India. Sci Rep. 2025;15(1):8290.
- 15. Yıldız PA, Karamanlıoğlu D, Özger HS, Katı H, Tunçcan ÖG, Dizbay M. Extrapulmonary tuberculosis: clinical and diagnostic features and risk factors for early mortality. Acta Medica. 2022;53(4):367-74.
- 16. Ulusoy TU, Agca FD, Demirköse H, Parlayan HNK, Altın N, Bulut D, et al. Comparative analysis of pulmonary and extrapulmonary tuberculosis: A seven-year experience from a refugee host country, Turkiye. Asian Pacific Journal of Tropical Medicine. 2024;17(11):508-15.
- 17. Topçu E, Elmaslar-Mert HT, Bal E, Kuloğlu HF. Ekstrapulmoner Tüberküloz Olgularının Retrospektif Değerlendirilmesi. Klimik Journal/Klimik Dergisi. 2024;37(3).

- 18. Li L, Lv Y, Su L, Liu Q, Lan K, Wei D, et al. Epidemiology of extrapulmonary tuberculosis in central Guangxi from 2016 to 2021. Eur J Clin Microbiol Infect Dis. 2023;42(2):129-40.
- Kohli M, Schiller I, Dendukuri N, Dheda K, Denkinger CM, Schumacher SG, et al. Xpert(*) MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance. Cochrane Database Syst Rev. 2018;8(8):Cd012768.
- Rindi L. Rapid molecular diagnosis of extra-pulmonary tuberculosis by Xpert/RIF Ultra. Front Microbiol. 2022;13:817661.
- 21. Mahajan M, Prasad ML, Kumar P, Kumar A, Chatterjee N, Singh S, et al. An updated systematic review and meta-analysis for the diagnostic test accuracy of ascitic fluid adenosine deaminase in tuberculous peritonitis. Infect Chemother. 2023;55(2):264.
- 22. Hamdar H, Nahle AA, Ataya J, Jawad A, Salame H, Jaber R, et al. Comparative analysis of pediatric pulmonary and extrapulmonary tuberculosis: A single-center retrospective cohort study in Syria. Heliyon. 2024;10(17):e36779.
- 23. Miiro E, Olum R, Baluku JB. Clinical features, resistance patterns and treatment outcomes of drug-resistant extra-pulmonary tuberculosis: A scoping review. J Clin Tuberc Other Mycobact Dis. 2023;33:100390.
- 24. Klingmüller A, Feldmann M, Rohr S, Helmhold L, Junker L, Scherer M, et al. Clinical heterogeneity and treatment outcomes of extrapulmonary tuberculosis in a low-incidence setting: insights from a prospective cohort study. Infection. 2025:1-10.
- 25. Sama LF, Sadjeu S, Tchouangueu TF, Dabou S, Kuh GF, Ngouateu OB, et al. Diabetes Mellitus and HIV Infection among Newly Diagnosed Pulmonary Tuberculosis Patients in the North West Region of Cameroon: A Cross©Sectional Study. Int J Clinical Pract. 2023;2023(1):5998727.
- 26. Rachwal N, Idris R, Dreyer V, Richter E, Wichelhaus TA, Niemann S, et al. Pathogen and host determinants of extrapulmonary tuberculosis among 1035 patients in Frankfurt am Main, Germany, 2008–2023. Clin Microbiol Infect. 2025;31(3):425-32.

Desmopressin, Alarm, or Both? Evaluating Efficacy and Relapse in Children with Primary Monosymptomatic Nocturnal Enuresis

Primer Monosemptomatik Enürezis Nokturna'da Alarm Cihazı, Desmopressin ve Kombinasyon Tedavisinin Etkinliğinin Karşılaştırılması

Department of Urology, Pamukkale University, Denizli, TURKEY
 Department of Urology, Etlik City Hospital, Ankara, TURKEY

ABSTRACT

Background: Monosymptomatic nocturnal enuresis (MNE) is a common pediatric condition that affects a child's self-esteem and daily family life. Both enuresis alarm and desmopressin are recommended as first-line treatment options, but their comparative effectiveness and relapse rates remain subjects of discussion.

Aim: This study aimed to compare the short-term treatment outcomes and relapse rates of desmopressin, alarm therapy, and combination therapy in children with primary MNE.

Materials and Methods: This retrospective two-center study included 202 children diagnosed with MNE between September 2022 and January 2025. Patients were grouped into desmopressin monotherapy (n=124), alarm therapy (n=45), and combination therapy (n=33). Demographic data, treatment responses, and relapse rates were evaluated.

Results: Complete response rates were 39.5% for desmopressin, 42.2% for alarm therapy, and 63.6% for the combination group. Relapse occurred in 48.4% of the desmopressin group, 33.3% of the alarm group, and 30.3% of the combination group. Although the combination group showed higher response rates and lower relapse rates, these differences were not statistically significant (p>0.05).

Conclusion: Desmopressin, alarm therapy, and their combination are effective options for the treatment of primary MNE. Combination therapy may provide added benefit in selected patients, but no clear superiority was demonstrated in this study. Treatment plans should consider individual factors such as nocturnal urine output and family compliance.

Keywords: Monosymptomatic nocturnal enuresis, Desmopressin, Enuresis alarm

ÖZET

Giriş: Monosemptomatik noktürnal enürezis (MNE), çocuklarda özgüven ve aile düzenini olumsuz etkileyen yaygın bir durumdur. Enürezis alarmı ve desmopressin birinci basamak tedavi seçenekleri arasında yer almakta, ancak etkinlik ve nüks oranları hâlâ tartışılmaktadır.

Amaç: Bu çalışmanın amacı, primer MNE tanılı çocuklarda desmopressin, alarm tedavisi ve kombine tedavinin kısa dönem tedavi sonuçları ile nüks oranlarını karşılaştırmaktır.

Gereç ve Yöntem: Bu retrospektif iki merkezli çalışmaya, Eylül 2022 ile Ocak 2025 tarihleri arasında MNE tanısı alan 202 çocuk dahil edildi. Hastalar desmopressin monoterapisi (n=124), alarm tedavisi (n=45) ve kombine tedavi (n=33) gruplarına ayrıldı. Demografik veriler, tedavi yanıtları ve nüks oranları değerlendirildi.

Bulgular: Tam yanıt oranları desmopressin grubunda %39,5, alarm grubunda %42,2 ve kombine grupta %63,6 idi. Nüks oranı desmopressin grubunda %48,4, alarm grubunda %33,3 ve kombine grupta %30,3 olarak saptandı. Kombine tedavi sayısal olarak daha iyi sonuç verse de fark istatistiksel olarak anlamlı değildi (p>0,05).

Sonuç: Primer MNE tedavisinde desmopressin, alarm tedavisi ve kombine tedavi etkili seçeneklerdir. Kombine tedavi bazı hastalarda ek fayda sağlayabilir, ancak bu çalışmada belirgin bir üstünlük göstermemiştir. Tedavi planı, bireysel faktörler ve aile uyumu göz önünde bulundurularak yapılmalıdır.

Anahtar kelimeler: Monosemptomatik noktürnal enürezis, Desmopressin, Enürezis alarmı

Corresponding author: Aykut Akıncı

Pamukkale University Urology Department 3rd floor Denizli\Turkey

E-mail: aykut-akinci@hotmail.com ORCID ID: 0000-0003-4026-1371

Received: 11.07.2025 Accepted: 26.09.2025 Publication Date: 30.09.2025

Cite this article as: Akıncı, A., Karaburun, M. C., Desmopressin, alarm, or both? Evaluating efficacy and relapse in children with primary monosymptomatic nocturnal enuresis.

JAnkara Univ Fac Med. 2025;78(3):239-243.

Introduction

Monosymptomatic nocturnal enuresis (MNE) is one of the most common pediatric urological conditions, characterized by involuntary bedwetting during sleep in children without other lower urinary tract symptoms(1). This condition can considerably impair a child's psychosocial well-being, self-esteem, and daily family life(2).

The International Children's Continence Society (ICCS) recommends both enuresis alarm therapy and desmopressin as first-line treatment options for MNE(2). Alarm devices aim to condition the child's arousal response to bladder filling, thereby training the child to wake up and void when necessary(3). Desmopressin, a synthetic analog of vasopressin, reduces nocturnal urine production by increasing renal water reabsorption(4). Despite their proven efficacy, each option has its limitations: alarm therapy requires strong family motivation and consistent compliance, whereas desmopressin is associated with higher relapse rates after treatment discontinuation(5).

Recent randomized controlled trials and meta-analyses have compared these modalities individually and have also begun to explore their combined use (5, 6). Some studies suggest that combination therapy may offer added benefits in children with high nocturnal urine production or poor response to single treatment(7).

Nevertheless, despite increasing evidence, data comparing these treatment approaches in routine clinical practice are still relatively limited. Therefore, this retrospective two-center study was designed to examine and compare the short-term effectiveness, relapse rates, and treatment adherence of alarm therapy, desmopressin monotherapy, and their combination in children with primary MNE. It is expected that combined therapy may provide higher treatment success and lower relapse rates than monotherapy alone, offering additional insight for clinical decision-making.

Methods

Study Design and Ethics

This retrospective, two-center cohort study was conducted in accordance with the principles of the Declaration of Helsinki and was approved by the local Non-Interventional Clinical Research Ethics Committee (Approval No: E-60116787-020-622659).

Patient Selection

Medical records of pediatric patients diagnosed with primary MNE were retrospectively reviewed. Eligible patients were those who attended the urology and pediatric urology outpatient clinics of two tertiary centers between September 2022 and January 2025.

Inclusion criteria were:

- Age ≥5 years,
- Diagnosis of MNE according to ICCS criteria,
- At least two wet nights per week before treatment,
- No prior pharmacological or surgical treatment for enuresis.

Children with non-monosymptomatic enuresis, daytime urinary tract symptoms, neurological or anatomical urinary tract abnormalities, urinary tract infections, or incomplete records were excluded.

Treatment Allocation

Patients were categorized into three groups based on their documented treatment strategy:

- **1. Alarm Therapy Group:** Managed with enuresis alarm alone, with family guidance on daily use and device maintenance.
- 2. Desmopressin Group: Treated with oral desmopressin melt at standard pediatric doses (120 μ g/day, adjusted if needed).
- **3. Combination Group:** Received both alarm therapy and desmopressin melt concurrently, either as initial treatment or after insufficient response to monotherapy.

All patients received standard urotherapy advice, including healthy voiding habits, evening fluid restriction after dinner, and constipation management.

Table 1. Demographic and Clinical Characteristics					
Variable	Desmopressin (n=124)	Alarm (n=45)	Combined (n=33)	p-value	
Age (years), median [min-max]	9 [5–16]	10 [5–15]	9 [5–15]	0.458*	
Baseline wet nights/week, median [min–max]	6 [3–7]	6 [4–7]	6 [4–7]	0.873*	
Post-treatment wet nights/week, median [min-max]	2 [0–7]	2 [0–6]	1 [0–6]	0.061*	
Male (n, %)	71 (57.3%)	25 (55.6%)	21 (63.6%)	0.753**	
Family history of enuresis (n, %)	49 (39.5%)	19 (42.2%)	12 (36.4%)	0.872**	

P*: P-values calculated using Kruskal-Wallis test for continuous variables

Data Collection and Definitions

Demographic data (age, sex), baseline frequency of wet nights, family history of enuresis, and bladder diary records were extracted. Treatment duration, adherence notes, treatment response, and any relapse were documented.

Treatment response was defined according to ICCS standards as:

- Complete Response: Total dryness during follow-up.
- *Partial Response*: ≥50% reduction in wet nights per week compared to baseline.
- No Response: <50% reduction.

Relapse was defined as the recurrence of more than one wet night per month after treatment discontinuation or initial dryness.

Statistical Analysis

Statistical analyses were performed using SPSS version 26.0 (IBM Corp., Armonk, NY, USA), consistent with our previous methodology. Continuous variables were reported as mean ± standard deviation or median with interquartile ranges, based on distribution. Normality was tested using the Kolmogorov–Smirnov test. Between-group comparisons were made using one-way ANOVA or the Kruskal–Wallis test for continuous variables and chi-square or Fisher's exact test for categorical variables. A p-value of <0.05 was considered statistically significant.

Results

A total of 202 children with monosymptomatic nocturnal enuresis (MNE) were included in the study.

Of these, 124 received desmopressin monotherapy, 45 received alarm therapy, and 33 received combined therapy. The mean age was 9.26 ± 2.49 years in the desmopressin group, 9.78 ± 2.58 years in the alarm group, and 9.30 ± 2.66 years in the combined group (p=0.458). The male proportion was 57.3% for desmopressin, 55.6% for alarm, and 63.6% for combined therapy (p=0.753). A positive family history of enuresis was present in 39.5%, 42.2%, and 36.4% of the desmopressin, alarm, and combined groups, respectively (p=0.872). The demographic and clinical characteristics of the study groups are summarized in Table 1. The median follow-up duration was 3 months (range 3–6) in the desmopressin group, 3 months (range 3-5) in the alarm group, and 3 months (range 3–6) in the combined therapy group. There was no statistically significant difference between the groups (p = 0.642).

The baseline mean number of wet nights per week was 5.90 ± 0.94 in the desmopressin group, 5.87 ± 0.97 in the alarm group, and 5.82 ± 0.95 in the combined group (p=0.873). After treatment, the mean number of wet nights per week decreased to 1.94 ± 1.82 for desmopressin, 1.76 ± 1.75 for alarm, and 1.12 ± 1.65 for combined therapy (p=0.061).

According to ICCS criteria, the complete response rate was 39.5% for desmopressin, 42.2% for alarm, and 63.6% for combined therapy. The partial response rate was 32.3%, 33.3%, and 18.2%, respectively. Non-response rates were 28.2% for desmopressin, 24.4% for alarm, and 18.2% for combined therapy (p=0.168).

p**: P-values calculated using Chi-square test for categorical variables

Table 2. Treatment Response and Relapse				
Outcome	Desmopressin (n=124)	Alarm (n=45)	Combined (n=33)	p-value
Complete Response (n, %)	49 (39.5%)	19 (42.2%)	21 (63.6%)	
Partial Response (n, %)	40 (32.3%)	15 (33.3%)	6 (18.2%)	0.168*
No Response (n, %)	35 (28.2%)	11 (24.4%)	6 (18.2%)	0.100
Relapse (n, %)	60 (48.4%)	15 (33.3%)	10 (30.3%)	0.070*

P*: P-values calculated using Chi-square test for categorical variables

Relapse was observed in 48.4% of patients in the desmopressin group, 33.3% in the alarm group, and 30.3% in the combined therapy group (p=0.070). Treatment response and relapse rates are presented in Table 2.

Discussion

In this retrospective two-center study, we compared the treatment outcomes of desmopressin monotherapy, enuresis alarm therapy, and their combination in children with primary MNE. Our results showed that although the combined therapy group demonstrated numerically higher complete response rates and lower relapse rates compared to either monotherapy, these differences did not reach statistical significance. Similarly, while the relapse rate appeared lower for combined therapy than for desmopressin alone, this difference also failed to show a significant statistical effect. These findings indicate that the combined therapy did not demonstrate the strong benefit that might have been expected, highlighting the need for careful patient selection and realistic treatment expectations.

Several previous studies have similarly reported that while combination therapy intuitively seems promising due to its ability to target both the physiological (nocturnal polyuria) and behavioral (arousal training) components of enuresis, its superiority over monotherapy is not always evident in practice(7, 8). Randomized controlled trials and meta-analyses have shown that alarm therapy alone can achieve sustained dryness when families are well motivated(5, 9), whereas desmopressin provides rapid symptom relief but is associated with higher relapse rates when withdrawn abruptly(5). In this context, our results align with reports suggesting that adding

desmopressin to alarm therapy does not consistently produce a statistically significant improvement in treatment success or relapse prevention, especially when alarm therapy is implemented effectively as a first-line intervention.

One possible explanation for the lack of a clear statistical advantage of combined therapy in our study may be related to the absence of detailed subgroup analyses rather than insufficient data collection. Although voiding diaries were routinely used to assess nocturnal urine output and bladder function, our study did not include separate analyses for children with specific risk factors such as pronounced nocturnal polyuria or reduced bladder capacity, which have been shown to influence response to desmopressin-based regimens(7, 8). Moreover, adherence to alarm use and family motivation, which are known to impact alarm therapy outcomes, were not quantitatively evaluated in our cohort(6, 9). These aspects may partly explain why the expected benefit of combination therapy did not clearly emerge and underline the importance of individualized treatment planning based on patient-specific characteristics.

Taken together, our findings support the view that all three treatment modalities, desmopressin, alarm therapy and their combination, are effective options for managing primary MNE and may be selected according to individual patient needs and family circumstances. Alarm therapy can be a good choice in families who are highly motivated and able to maintain consistent device use, while desmopressin may be preferable for children needing rapid symptom control, especially in the presence of nocturnal polyuria(7, 9). For patients with an insufficient response to either monotherapy, combined treatment remains a reasonable alternative, although its benefit may not

be as pronounced as expected in all cases (6, 10, 11). Future prospective studies with larger sample sizes and clear subgroup analyses are needed to better define which children benefit most from each approach.

This study has several limitations that should be acknowledged. First, its retrospective design may carry inherent biases related to data completeness and treatment documentation. Second, although voiding diaries were used for initial assessment, detailed subgroup analyses based on nocturnal polyuria or bladder capacity could not be performed due to the retrospective nature of the dataset. Third, treatment adherence and family motivation, which are known to influence outcomes especially in alarm therapy, were not quantitatively measured. Finally, the relatively small size of the combined therapy group may have limited the statistical power to detect significant differences. These factors should be considered when interpreting our results and highlight the need for future prospective studies with more rigorous subgroup evaluation.

Conclusion

This study adds to the existing evidence by demonstrating that although combined therapy may provide additional benefit for selected children with primary MNE, it did not show clear superiority over monotherapy in this cohort. Clinicians should carefully consider individual factors such as nocturnal urine production, bladder capacity, and family motivation when planning treatment. Well-designed prospective studies are still needed to clarify optimal patient selection and to identify the most effective sequencing or combination of available treatment options.

Author Contributions: Surgical and Medical Practices: A.A., M.C.K., Concept: A.A., Design: A.A., Data Collection or Processing: A.A., M.C.K., Analysis or Interpretation: M.C.K., Literature Search: M.C.K., Writing: A.A.

Ethical Statement: This study was approved by the Non-Interventional Clinical Research Ethics Committee of Pamukkale University (Approval No: E-60116787-020-622659, Date: 10.12.2024). The study was conducted in accordance with the principles of the Declaration of Helsinki.

Conflict of Interest Statement: The named authors have no conflict of interest, financial orotherwise.

Funding Information: No grants or awards were utilized to fund this study

References

- Austin PF, Bauer SB, Bower W, et al. The standardization of terminology of lower urinary tract function in children and adolescents: Update report from the standardization committee of the International Children's Continence Society. Neurourol Urodyn. 2016;35(4):471-81.
- Nevéus T, Fonseca E, Franco I, et al. Management and treatment of nocturnal enuresis-an updated standardization document from the International Children's Continence Society. J Pediatr Urol. 2020;16(1):10-9.
- Caldwell PH, Deshpande AV, Von Gontard A. Management of nocturnal enuresis. BMJ. 2013;347:f6259.
- 4. Bayne AP, Skoog SJ. Nocturnal enuresis: an approach to assessment and treatment. Pediatr Rev. 2014;35(8):327-34; quiz 35.
- Purnomo AF, Daryanto B, Nurhadi P. Monosymptomatic Nocturnal Enuresis Treatment Using Alarm-Therapy and Desmopressin: A Meta-analysis Approach. Med Arch. 2021;75(6):431-5.
- Aksakallı T, Cinislioğlu AE, Aksoy Y. The Efficacy of Combined Alarm Therapy Versus Alarm Monotherapy in the Treatment of Monosymptomatic Nocturnal Enuresis: A Review of Current Literature. Eurasian J Med. 2022;54(Suppl1):164-7.
- Kamperis K, Hagstroem S, Rittig S, Djurhuus JC. Combination of the enuresis alarm and desmopressin: second line treatment for nocturnal enuresis. J Urol. 2008;179(3):1128-31.
- 8. Song P, Huang C, Wang Y, et al. Comparison of desmopressin, alarm, desmopressin plus alarm, and desmopressin plus anticholinergic agents in the management of paediatric monosymptomatic nocturnal enuresis: a network meta-analysis. BJU Int. 2019;123(3):388-400.
- Zhai R, Shao S, Lv L, et al. Efficacy of desmopressin and enuresis alarm in the treatment of monosymptomatic nocturnal enuresis: a multicenter prospective randomized controlled study. Pediatr Nephrol. 2025;40(10):3137-3144.
- Mello MF, Locali RF, Araujo RM, et al. A prospective and randomized study comparing the use of alarms, desmopressin and imipramine in the treatment of monosymptomatic nocturnal enuresis. J Pediatr Urol. 2023;19(3):241-6.
- 11. Naitoh Y, Kawauchi A, Yamao Y, et al. Combination therapy with alarm and drugs for monosymptomatic nocturnal enuresis not superior to alarm monotherapy. Urology. 2005;66(3):632-5.

Post-ERCP Pancreatitis and Serum Asprosin: A Potential Marker Associated with Beta Cell Damage

ERCP Sonrası Pankreatit ve Serum Asprosini: Beta Hücre Hasarı ile İlişkili Potansiyel Bir Belirteç

Oğuzhan Zengin¹, o Burak Göre², o Oğuz Öztürk³, o Özge Doğanay⁴, o Abdullah Köse⁵, o Ali Can Kurtipek⁶,
 Esma Andaç Uzdoğan⁻, o Feyza Yıldırım⁵, o Emra Asfuroğlu Kalkan¹, o İhsan Ateş¹

1 Department of Internal Medicine, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, 06800, Türkiye 2 Çerkeş State Hospital, Department of Internal Medicine, Çankırı, 18600, Türkiye 3 Department of Gastroenterology, Ankara Bilkent City Hospital, Ankara, 06800, Türkiye 4 Söğüt State Hospital Department of Internal Medicine, Bilecik, 11600, Turkiye 5 Department of Internal Medicine, Ankara Bilkent City Hospital, Ankara, 06800, Türkiye 6 Department of Internal Medicine, Faculty of Medicine, Ankara University, 06230 Ankara, Türkiye 7 Department of Medical Biochemistry, Ankara Bilkent City Hospital, Ankara, 06800, Türkiye

ABSTRACT

Aim: Asprosin, an adipose-derived protein, plays a key role in glucose regulation. Pancreatitis-related inflammation causes beta cell injury and functional decline. Recent studies have shown a relationship between asprosin and pancreatic beta cell damage. This research aimed to examine the association between pancreatitis developing after endoscopic retrograde cholangiopancreatography (ERCP) and asprosin levels, which may reflect beta cell damage.

Materials and Methods: The study was conducted with 25 patients who developed pancreatitis after ERCP and 21 participants as a control group at Ankara Bilkent City Hospital. Acute pancreatitis was diagnosed through correlation of clinical, imaging, and laboratory findings. In addition, the post-ERCP pancreatitis (PEP) group was classified as "mild" and "moderate-severe" according to disease severity, and asprosin levels were compared between the groups. Severity was classified as mild or moderate-severe because of the limited sample size.

Results: Serum asprosin concentrations were elevated in the PEP group (p < 0,001). Amylase, lipase, GGT, AST, total and direct bilirubin levels also increased significantly in the pancreatitis group. In the pancreatitis group, a negative correlation was observed between asprosin levels and leukocyte (r = -0.433; p = 0.031) and lymphocyte counts (r = -0.440; p = 0.028). No meaningful correlation was observed between asprosin concentrations and the severity of pancreatitis (p = 0.347).

Conclusion: In patients with PEP, asprosin levels are increased, which could potentially be associated with the inflammatory response. However, asprosin does not seem to directly reflect disease severity. Thus, asprosin may serve as a potential marker of pancreatic beta cell injury and inflammation.

Keywords: Asprosin; Endoscopic Retrograde Cholangiopancreatography; Pancreatic Beta Cells; Pancreatitis

ÖZET

Amaç: Asprosin, glukoz metabolizmasının düzenlenmesinde önemli bir role sahip olan yağ dokusu tarafından üretilen bir proteindir. Pankreatitteki inflamasyon, beta hücre hasarına ve beta hücre fonksiyonlarının bozulmasına yol açar. Son çalışmalarda asprosin ile pankreatik beta hücre hasarı arasında bir ilişki gösterilmiştir. Bu araştırmanın amacı, endoskopik retrograd kolanjiopankreatografi (ERCP) sonrası gelişen pankreatit ile beta hücre hasarını yansıtabileceği düşünülen asprosin seviyeleri arasındaki ilişkiyi incelemektir.

Yöntem: Çalışma Ankara Bilkent Şehir Hastanesinde ERCP sonrası pankreatit gelişen 25 hasta ve kontrol grubu olarak 21 katılımcı ile yürütüldü. Akut pankreatit tanısı klinik, görüntüleme ve laboratuvar bulgularının korelasyonu ile konuldu. Ayrıca, ERCP sonrası pankreatit grubu hastalık şiddetine göre "hafif" ve "orta-şiddetli" olarak sınıflandırıldı ve asprosin seviyeleri gruplar arasında karşılaştırıldı. Asprosin ile biyokimyasal ve hematolojik parametreler arasındaki korelasyonlar analiz edildi.

Bulgular: Serum asprosin konsantrasyonlari ERCP sonrası pankreatit grubunda yüksekti (p < 0.001). Amilaz, lipaz, GGT, AST, toplam ve direkt bilirubin seviyeleri de pankreatit grubunda anlamlı şekilde arttı. Pankreatit grubunda, asprosin seviyeleri ile lökosit (r = -0.433; p = 0.031) ve lenfosit sayıları (r = -0.440; p = 0.028) arasında negatif bir korelasyon gözlendi. Asprosin konsantrasyonları ile pankreatit şiddeti arasında anlamlı bir korelasyon gözlenmedi (p = 0.347).

Sonuç: ERCP sonrssında pankreatit gelişen hastalarda asprosin düzeyleri artar ve bu potansiyel olarak inflamatuar yanıtla ilişkilendirilebilir. Ancak asprosin düzeylerinin hastalığın şiddetini doğrudan yansıtmadığı düşünülmektedir. Bu nedenle asprosin pankreas beta hücre hasarı ve inflamasyonuyla ilişkili yeni bir biyobelirteç adayı olarak düşünülebilir; ancak tanısal ve prognostik rolünü açıklamak için ek araştırmalara ihtiyaç vardır.

Anahtar Kelimeler: Asprosin; Endoskopik Retrograd Kolanjiyopankreatografi (ERCP); Pankreas Beta Hücreleri; Pankreatit

Corresponding author: Oğuzhan Zengin

 $University\ of\ Health\ Sciences,\ Ankara\ Bilkent\ City\ Hospital,\ Department\ of\ Internal\ Medicine,\ Ankara,\ Turkiye$

E-mail: oguzhanzengin91@gmail.com ORCID ID: 0000-0001-6575-4450

Received: 22.07.2025 Accepted: 29.09.2025 Publication Date: 30.09.2025

Cite this article as: Zengin, O., et. al., Post-ERCP pancreatitis and serum asprosin: A potential marker associated with beta cell damage. J Ankara Univ Fac Med. 2025;78(3):245-257.

Copyright© 2025 The Author. Published by Ankara University Press on behalf of Ankara University Faculty of Medicine . This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

Introduction

Acute pancreatitis is a serious inflammatory disease with local and systemic complications. Assessing severity and managing complications are crucial. Hospitalizations rise, but mortality decreases with experience [1,2].

Recent studies have observed an increasing occurrence of diabetes mellitus (DM) following acute pancreatitis. Exocrine pancreatic dysfunction leads to the development of DM, also known as Type 3c DM or secondary pancreatic DM [3]. Due to pancreatitis, all cells in the pancreas are affected, and beta cell damage is also observed. For this reason, there is a risk of impaired insulin secretion and the development of DM [4].

Asprosin was discovered in 2016 and is an adipokine secreted from fat tissue. It increases glucose release from the liver, and high levels of asprosin have been associated with DM [5, 6]. The literature has demonstrated a potential association between asprosin and pancreatic cancer [7]. It has also been observed that asprosin is associated with beta cell damage in mice. Recently, new ways were found to explain how asprosin causes inflammation, cell dysfunction, and apoptosis in human primary islet cells and pancreatic β -cells. Studies have shown that asprosin supports β -cell apoptosis in Mouse Insulinoma 6 (MIN6) cells [8, 9].

In pancreatic β cells, asprosin has been shown to induce inflammation and apoptosis through Toll-like receptor 4 (TLR4)-mediated pathways and reduce insulin secretion, suggesting a potential role in β -cell damage and metabolic disorders [10].

Pancreatitis is the most common complication of ERCP, occurring in 2–10% of cases, with mortality about 1 in 500 [11].

PEP may result from contrast reaction, obstruction, or ductal pressure. Papillary trauma during ERCP causes edema and enzyme activation [12,13].

We chose to investigate asprosin, a potential but unexplored marker in acute pancreatitis, specifically in post-ERCP cases due to the homogeneity and iatrogenic origin of this patient group. In contrast to other etiologies such as gallstones, alcohol use, or hyperlipidemia, which may involve additional pathophysiological mechanisms affecting pancreatic beta-cell function, post-ERCP pancreatitis results directly from an interventional procedure. This distinction helps minimize potential confounding factors. Consequently, it allows for a more accurate assessment of whether changes in serum asprosin levels are directly related to the pathophysiology of pancreatitis itself.

Material and Method

All procedures in this study were approved by the Ethics Committee and conducted in accordance with the ethical standards outlined in the Declaration of Helsinki and its subsequent revisions (Date: 18/09/2024, Approval Number: TABED 2-24-387). A total of 25 patients diagnosed with PEP and 21 healthy control participants who presented to the Department of Internal Medicine and Clinic of Ankara Bilkent City Hospital were prospectively enrolled. Informed consent was obtained from all participants. The diagnosis of PEP was established based on the criteria defined by Cotton et al. According to these criteria, PEP diagnosis requires the presence of new or worsened epigastric abdominal pain within 24 hours following ERCP, serum amylase and/or lipase levels elevated to at least three times the upper limit of normal, and a clinical course necessitating hospitalization for a minimum of 2 days (14).

PEP diagnosis followed Cotton criteria, while severity was graded per the revised Atlanta definitions, which are widely used for acute pancreatitis severity stratification and facilitate comparability with prior AP literatüre. Due to the limited sample size of the study, patients were grouped into two categories—mild and moderate-severe—for analysis. This approach was chosen to enhance the reliability of statistical analyses and to make comparisons between groups more meaningful (15, 16).

The Bedside Index for Severity in Acute Pancreatitis (BISAP) score was assessed based on five criteria: blood urea nitrogen (BUN) level exceeding 25 mg/dL, Glasgow Coma Scale (GCS) score below 15, presence of SIRS with a score of 2 or more, age over 60 years, and detection of pleural effusion on imaging

studies. These assessments were performed upon hospital admission and, when necessary, completed within 48 hours (17).

Ranson criteria were also applied at admission and during the first 48 hours to assess severity, using standard clinical and laboratory parameters (18).

ERCP procedures were performed in accordance with the indications outlined by the American Society for Gastrointestinal Endoscopy (ASGE) and the European Society of Gastrointestinal Endoscopy (ESGE) guidelines. Patients referred for ERCP generally presented with signs of biliary obstruction that could not be explained by non-invasive imaging methods and exhibited bile duct dilatation. Additionally, to prevent potential alterations in asprosin levels, only patients without signs of cholangitis or pancreatitis prior to the procedure and who did not require emergency intervention—those scheduled for elective ERCP—were included in the study (19).

All procedures were performed under sedation by experienced gastroenterologists following the standard protocols of the Ankara Bilkent City Hospital Gastroenterology Clinic. Patient-related risk factors such as normal bilirubin levels, history of PEP, diabetes, and smoking were considered exclusion criteria, and patients with these characteristics were not included in the study.

In this study, no pharmacological treatments, except for non-steroidal anti-inflammatory drugs, were administered to prevent the development of PEP. The procedures were performed by experienced operators, and the patients had no history of smoking, with no procedure-related risk factors such as difficult cannulation, pancreatic duct injection, or pancreatic stent placement being applied to any of the patients. Although these procedure-related risk factors are important for PEP development, the aim of our study was to evaluate asprosin levels in patients who developed pancreatitis after ERCP; therefore, separate analyses of these risk factors were not conducted. Given the limited sample size and the inclusion of only patients who developed pancreatitis, the occurrence of pancreatitis itself was considered sufficient for the study regardless of the presence or absence of these interventions.

In this study, the focus was specifically on cases of PEP rather than general acute pancreatitis cases. The primary reason for this was that PEP represents an iatrogenic form of pancreatitis with a defined timing. This approach allowed for the exclusion of pre-existing inflammatory processes and minimized the influence of confounding factors that could affect asprosin levels. This controlled setting enabled a more isolated and reliable evaluation of the role of asprosin, a novel potential marker, in the pathophysiology of acute pancreatitis.

Serum asprosin levels were measured using a sandwich-type enzyme-linked immunosorbent assay (ELISA). Measurements were performed with the Human Asprosin ELISA Kit (Cat. No: EH4176) from FineTest® (Wuhan Fine Biotech Co., Ltd., China). According to the manufacturer, the kit's analytical performance characteristics include a detection range of 1.563–100 ng/mL and a sensitivity of 0.938 ng/mL. All measurements were conducted exclusively on serum samples following the manufacturer's protocol.

In the PEP group, serum samples were collected 4 hours after the procedure, following an 8-hour fasting period prior to ERCP. In the control group, serum samples were obtained at the end of a 12-hour fasting period. Serum samples and other blood tests from both groups were analyzed simultaneously at the Ankara Bilkent City Hospital Central Biochemistry Laboratory after a total fasting duration of 12 hours.

The reason for collecting blood samples 4 hours post-ERCP is that potential marker related to pancreatic injury—particularly pancreatic enzymes such as amylase and lipase—begin to rise rapidly during this timeframe, becoming clinically significant for evaluation. Therefore, obtaining serum samples at 4 hours post-procedure allowed monitoring of the early pancreatic response and provided an appropriate and methodologically justified time point for assessing the early-phase dynamics of potential novel potential marker like asprosin. Due to the unpredictable nature and low incidence of PEP, pre-procedure serum asprosin levels were not measured in this group (20).

The control group consisted of healthy individuals over the age of 18 with no prior history of ERCP,

Table 1: Demographics of control and post-ERCP pancreatitis groups

	Control group (n=21)	Post Ercp pancreatitis group (n=25)	р
Age (years), mean ±SD	53.2 ±23.1	61 ±19.8	0.223
Female gender, n (%)	12 (57.1%)	15 (60%)	0.845

Continuous variables are presented as mean ± standard deviation (SD) and compared using the independent samples t-test. Categorical variables are expressed as number (percentage) and compared using the Chi-square test. A p-va-lue<0.05 was considered statistically significant.

pancreatitis, gastrointestinal interventions, or abdominal surgery. Additionally, participants had no systemic diseases and exhibited routine laboratory values within normal limits. This selection was made to minimize potential confounding factors that could arise from procedure-related or inflammatory variables.

Exclusion criteria included the presence of chronic kidney disease, known coronary artery disease, diabetes mellitus, alcohol dependence, hyperlipidemia, sepsis, hypertension, malignancy, acute cholangitis, smoking, acute pancreatitis due to causes other than ERCP, acute cholecystitis, pre-procedural infections, acute renal failure, chronic pancreatitis, pancreatic duct cannulation or stent placement, age under 18, and failure to provide written informed consent.

Statistical Analysis

The statistical analysis was performed using SPSS 26.0 (IBM Corp., Armonk, NY, USA). Categorical data were summarized as frequencies and percentages, and the chi-square test was used to compare differences between groups. To verify the normality of continuous variables, both histograms and the Shapiro-Wilk test were utilized. Normally distributed data were expressed as means with standard deviation (SD), and the Student's t-test was employed for group comparisons. For variables not following a normal distribution, medians with the interquartile range (25th and 75th percentiles) were reported, and the Mann-Whitney U test was used to assess differences between groups.

The relationship between asprosin levels and other laboratory and clinical parameters was assessed

using Spearman's rank correlation coefficient. For normally distributed data, Pearson's correlation was used for correlation analysis. Correlation analyses were conducted to evaluate the relationships between asprosin levels and parameters such as amylase, lipase, bilirubin, i, and other relevant clinical and laboratory parameters.

The severity of PEP was categorized into mild and moderate-severe groups, and the asprosin levels between these groups were compared using the Mann-Whitney U test. The significance level for all statistical tests was set at p<0.05. The required sample size was estimated using G*Power 3.1 software for a two-tailed independent samples t-test, based on an assumed effect size due to the absence of prior similar studies. At a significance level of α = 0.05, and following Cohen's classification of effect sizes, the comparison between patients with PEP (n = 25) and healthy controls (n = 21) yielded an estimated statistical power of approximately 80% for detecting a large effect (Cohen's d = 0.88).

In subgroup analyses, PEP patients were categorized as having mild (n = 13) or moderate-to-severe (n = 12) disease. The observed difference in serum asprosin levels between these subgroups corresponded to a large effect size (Cohen's d \approx 1.38). A post-hoc power analysis indicated that, with the available sample sizes, the achieved power was approximately 91%, exceeding the commonly accepted threshold of 80%. Therefore, the study is adequately powered to detect large effects in both the overall and subgroup comparisons.

However, it should be noted that the ability to detect medium or small effect sizes is limited, and this

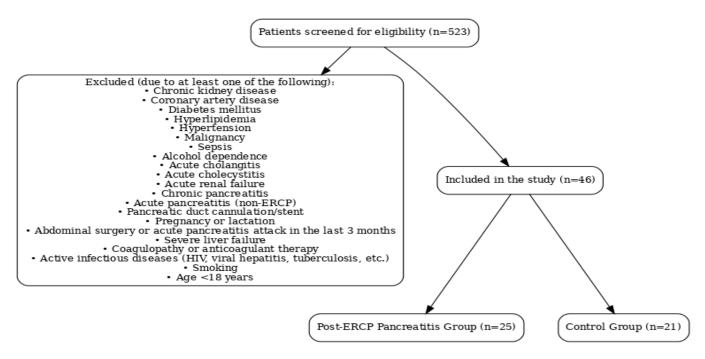


Figure 1. Flowchart of the study.

limitation has been clearly acknowledged in the discussion of study limitations.

Results

Table 1 shows demographics. Mean age was 53.2 in controls and 61 in PEP, with no significant difference (p=0.223). Female ratio was similar (57.1% vs. 60%, p=0.845).

Table 2 shows labs. Urea, creatinine, albumin were similar. AST was higher in PEP (p=0.029). ALT and ALP increased but not significantly. GGT was higher (p=0.008). LDH showed no difference.

As expected, amylase and lipase levels, key markers of pancreatitis, were markedly elevated in the PEP group, with statistically significant differences observed for both parameters (p<0.001). Both total and direct bilirubin levels were higher in the pancreatitis group (p=0.007 and p=0.004, respectively), which may be associated with biliary obstruction. While procalcitonin levels were higher in the pancreatitis group, the difference was not found to be statistically significant (p=0.317).

WBC and neutrophils were higher in PEP (p=0.016, p=0.001), lymphocytes lower (p=0.018). Hemoglobin and platelets were similar. CRP was higher but not significant. Asprosin was markedly higher in PEP (p<0.001).

Serum asprosin levels were higher in the PEP group compared to the control group (Figure 2), supporting the role of asprosin as a biochemical potential marker of beta cell damage in the context of pancreatic inflammation.

Asprosin was higher in PEP (p<0.001). No correlations were found in controls. In PEP, asprosin correlated negatively with leukocytes (r=-0.433) and lymphocytes (r=-0.44). No associations with other labs or severity scores (p>0.05) (Table 3).

Asprosin levels were slightly higher in mild vs. moderate-severe cases but not significant (p=0.347) (Figure 3).

Although asprosin levels were higher in the mild pancreatitis group, this difference was not statistically significant (p=0.347). Sample sizes for each group are indicated above the boxes.

To further illustrate the relationship between serum asprosin levels and immune cell counts, scatter plots were generated for leukocyte and lymphocyte counts in the PEP group. As shown in Figure 4A, an inverse linear trend was observed between asprosin levels and leukocyte count (r=-0.433; p=0.031), suggesting that higher asprosin levels are associated with a lower leukocyte/lymphocyte count; causality cannot be inferred. Similarly, as depicted in Fig-

Table 2: Comparison of Laboratory Parameters Between Control and Post-ERCP Pancreatitis Groups				
Parameter	Control group (n=21)	Post ERCP pancreatitis group (n=25)	р	
Body mass index (kg/m²) (mean ± SD)	26.4 ± 3.2	26.8 ± 3.5	0.721	
Fasting glucose (mg/dL) (median/IQR)	95 (88–104)	98 (90–110)	0.412	
Total cholesterol (mg/dL) (mean ± SD)	188 ± 32	192 ± 35	0.683	
LDL cholesterol (mg/dL) (mean ± SD)	112 ± 26	115 ± 28	0.644	
HDL cholesterol (mg/dL) (median/IQR)	48 (42–55)	47 (41–54)	0.587	
Triglycerides (mg/dL) (median/IQR)	135 (110–155)	140 (115–160)	0.497	
Urea (mg/dL) (median/IQR)	33 (24-45)	28 (21-43)	0.279	
Creatinine (mg/dL) (median/IQR)	0.76 (0.66-1)	0.75 (0.61-1.06)	0.627	
Albumin (g/L) (median/IQR)	38 (32-39)	38 (35-39)	0.626	
Aspartate Aminotransferase (U/L) (median/IQR)	19 (13-31)	32 (18-89)	0.029	
Alanine Aminotransferase (U/L) (median/IQR)	23 (19-35)	28 (23-138)	0.122	
Alkaline phosphatase (U/L) (median/IQR)	93 (74-109)	118 (74-181)	0.182	
Gamma glutamyl transferase (U/L) (median/IQR)	26 (16-81)	104 (36-276)	0.008	
Lactate dehydrogenase (U/L) (mean ± SD)	237,8 ± 62.3	231.5 ±54.9	0.718	
Amylase (U/L) (median/IQR)	72 (55-93)	706 (361-1115)	<0.001	
Lipase (U/L) (median/IQR)	43 (30-64)	837 (348-1420)	<0.001	
Total bilirubin (mg/dL) (median/IQR)	0.5 (0.3-0.7)	1 (0.5-1.7)	0.007	
Direct bilirubin (mg/dL) (median/IQR)	0.1 (0.1-0.2)	0.5 (0.2-1)	0.004	
Procalcitonin (µg/L) (median/IQR)	0.04 (0.03-0.06)	0.08 (0.03-0.2)	0.317	
Leukocyte (x10°/L) (median/IQR)	6.67 (5.83-8.89)	10.37 (6.78-12.31)	0.016	
Neutrophil (x10°/L) (median/IQR)	4.41 (3.78-5.32)	8.5 (5.08-9.93)	0.001	
Lymphocyte (x10°/L) (median/IQR)	1.75 (1.13-2.18)	1.16 (0.83-1.43)	0.018	
Hemoglobin (g/dL) (mean ± SD)	11.8 ±2.4	12.8 ±2	0.153	
Platelet (x10°/L) (median/IQR)	265 (196-310)	216 (188-285)	0.440	
CRP (mg/dL) (median/IQR)	8 (4-16)	11 (5-28)	0.559	
Asprosin (ng/mL) (median/IQR)	1.93 (1.6-2.34)	3.3 (2.78-3.84)	<0.001	

Data are presented as median (interquartile range) for non-normally distributed variables and as mean ± standard deviation for normally distributed variables. Comparisons between groups were performed using the Mann–Whitney U test or independent samples t-test, as appropriate. A p-value<0.05 was considered statistically significant.

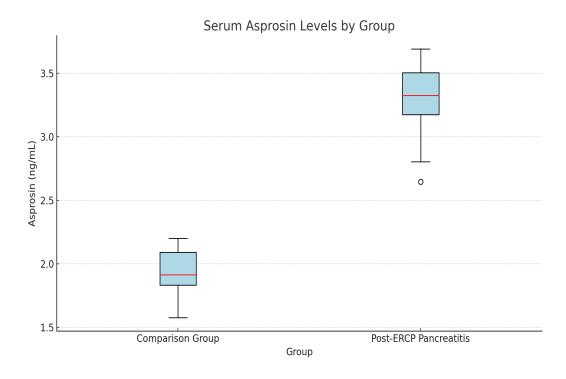
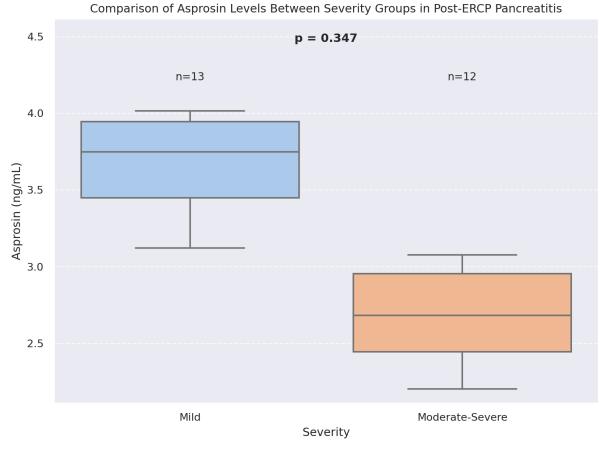


Figure 2. Box plot showing serum asprosin levels in the post-ERCP pancreatitis group (n=25) and the control group (n=21). The horizontal line within each box represents the median, the lower and upper edges represent the interquartile range (IQR), whiskers denote the minimum and maximum values within 1.5×IQR, and circles indicate outliers. Statistical comparison was performed using the Mann–Whitney U test. the interquartile range (IQR), whiskers denote the minimum and maximum values within 1.5×IQR, and circles indicate outliers. Statistical comparison was performed using the Mann–Whitney U test. (p<0.001)

ure 4B, a strong inverse relationship was observed between asprosin concentrations and lymphocyte count (r=-0.440; p=0.028), potentially reflecting an immunosuppressive effect or redistribution of lymphocytes in the inflammatory response. These visualizations reinforce the statistical findings and highlight a potential link between increased asprosin levels and systemic inflammation in PEP.

A significant inverse correlation was found between serum asprosin concentrations and leukocyte count (Spearman ρ = -0.521, p = 0.003). This finding may suggest that higher asprosin levels are associated with a lower systemic inflammatory response or reduced lymphocyte-mediated immune activity. However, as these data are based solely on correlation, no causal relationship can be inferred, and the potential influence of confounding factors should be considered in the interpretation of these results. A statistically significant negative correlation was observed between serum asprosin levels and

lymphocyte count (Spearman's ρ =–0.553, p=0.002), indicating that increased asprosin concentrations might be linked to decreased lymphocyte-mediated immune activity.

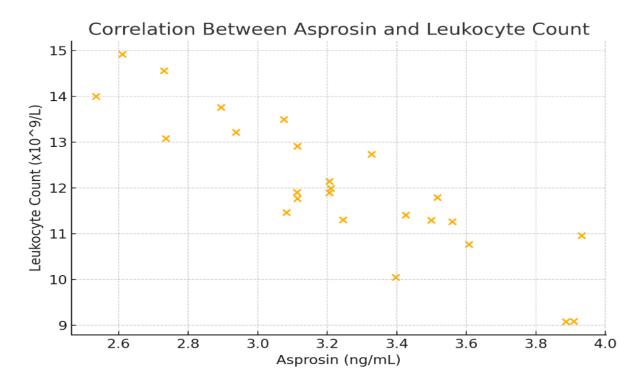

Discussion

Asprosin is a peptide secreted from adipocytes that plays an important role in glucose metabolism and affects insulin secretion [21]. This study's results indicate an increase in asprosin levels in patients with PEP. This finding may be an indication that beta cell damage occurs during the course of pancreatitis. However, we found no relationship between the asprosin level and the Ranson and BISAP scores, which determine the severity of pancreatitis. This suggests that asprosin levels may not directly reflect the severity of pancreatitis but may indicate beta cell damage. However, since beta cell function could not be directly measured in patients with pancreatitis, the elevation in asprosin was interpreted as an indirect

Table 3: Correlations of asprosin levels with other parameters in control and post-ERCP pancreatitis groups

Parameter	Control group	Control group (n=21)		Acute pancreatitis group (n=25)	
	r	р	r	р	
Body mass index (kg/m²)	0.045	0.82	-0.061	0.77	
Fasting glucose (mg/dL)	0.102	0.65	-0.085	0.69	
Total cholesterol (mg/dL)	0.073	0.74	-0.042	0.81	
LDL cholesterol (mg/dL)	0.088	0.70	-0.052	0.78	
HDL cholesterol (mg/dL)	-0.066	0.76	0.071	0.72	
Triglycerides (mg/dL)	0.089	0.70	-0.058	0.75	
Age	0.312	0.156	0.039	0.852	
Urea (mg/dL)	0.381	0.088	0.006	0.977	
Creatinine (mg/dL)	0.305	0.179	-0.134	0.522	
Aspartate Aminotransferase (U/L)	0.191	0.408	0.123	0.559	
Alanine Aminotransferase (U/L)	0.091	0.695	0.076	0.719	
Alkaline phosphatase (U/L)	-0.07	0.763	0.245	0.238	
Gamma glutamyl transferase (U/L)	0.361	0.108	0.112	0.594	
Lactate dehydrogenase (U/L)	0.165	0.475	-0.311	0.13	
Amylase (U/L)	0.119	0.617	-0.162	0.44	
Lipase (U/L)	-0.002	0.993	-0.035	0.869	
Total bilirubin (mg/dL)	-0.079	0.734	-0.046	0.828	
Direct bilirubin (mg/dL)	0.186	0.42	0.117	0.577	
Procalcitonin (µg/L)	-0.009	0.969	-0.224	0.281	
Leukocyte (x10°/L)	-0.121	0.602	-0.433	0.031	
Neutrophil (x10°/L)	-0.044	0.849	-0.336	0.1	
Lymphocyte (x10°/L)	-0.283	0.215	-0.44	0.028	
Hemoglobin (g/dL)	-0.395	0.076	0.008	0.97	
Platelet (x10°/L)	-0.236	0.303	-0.119	0.57	
CRP (mg/dL)	-0.004	0.985	-0.163	0.436	
Ranson's criteria	-	-	-0.059	0.779	
BISAP score	-	-	-0.073	0.729	

Spearman correlation analysis was used to evaluate the relationship between serum asprosin levels and clinical/laboratory parameters. Correlation coefficients (r) and corresponding p-values are presented for each group. A p-value<0.05 was considered statistically significant and is highlighted in bold.

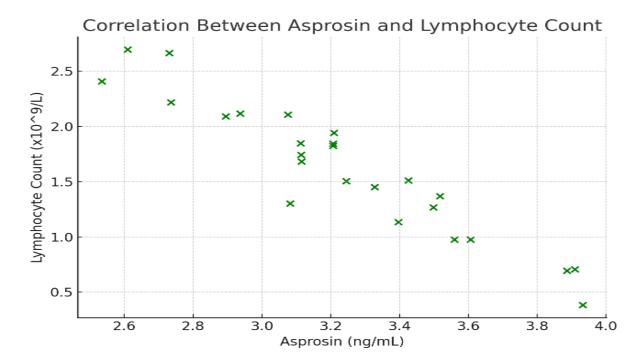

Figure 3. Comparison of serum asprosin levels between mild and moderate—severe post-ERCP pancreatitis groups. The horizontal line within the box represents the median value, the lower and upper edges of the box indicate the interquartile range (IQR). Whiskers represent the minimum and maximum values within 1.5×IQR, and circles denote outliers. Group sizes (n) are indicated above each box. Statistical comparison was performed using the Mann–Whitney U test.

marker of beta cell damage. Causality cannot be established in this study; thus, mechanistic investigations are warranted.

PEP is iatrogenic and usually resolves quickly, with rare complications. The effect on beta cells is unclear. Demonstrating beta cell injury would add to the literature. Lee et al. showed asprosin with palmitate increased cytokines, reduced insulin release, and harmed beta cells. Other studies found that reducing beta cell inflammation improved insulin secretion and glycemia. [9,22]. Earlier research has demonstrated that asprosin stimulates glucose production in the liver through the activation of cyclic AMP (cAMP) as a secondary messenger, a molecule that is also involved in regulating inflammatory processes [23-25]. Pancreatitis is a condition characterized by inflammation of the pancreas, which can disrupt the function of beta cells [26]. In our study, we found that asprosin levels increased in PEP patients. This suggests that asprosin levels increase in response to inflammatory processes of the pancreas. We found a link between PEP and asprosin, which is a sign of beta cell damage. We believe that measuring asprosin levels will help us predict the onset of diseases related to pancreatic beta cell dysfunction in the future.

The correlation analysis revealed a relationship between serum asprosin levels and amylase, lipase, systemic inflammatory index, AST, lymphocytes, and neutrophils across the entire population. We did not find a relationship between asprosin levels and pancreatitis severity scores. This suggests a potential relationship between asprosin levels and beta cell damage, rather than the severity of pancreatitis. The literature has demonstrated a correlation between oxidative stress and asprosin levels [27].

Several studies have shown a notable rise in the expression and secretion of pro-inflammatory cy-


Figure 4a. Scatter plot showing the correlation between serum asprosin levels (ng/mL) and leukocyte count ($\times 10^9$ /L) in patients with post-ERCP pancreatitis. Each dot represents an individual patient. A negative trend was observed between asprosin concentration and leukocyte count.

tokines upon asprosin stimulation, and our study established a relationship between the systemic inflammatory index and asprosin levels [28, 29]. In our study, we did not find a relationship between age and asprosin levels, similar to the study by Wang et al. [30].

Previous studies have shown that asprosin not only blocks the insulin signaling pathway but also stimulates the increase of triglyceride and total cholesterol concentrations in peripheral blood. Studies have also demonstrated its potential to suppress insulin secretion from pancreatic beta cells and disturb the balance of blood glucose. Studies have shown that injecting an asprosin antibody into mice improves insulin sensitivity [31]. Even though we don't fully understand how asprosin affects the beta cell, some studies have shown that it causes apoptosis by stopping the beta cell's autophagy through the AMPK-mTOR pathway [8]. Furthermore, studies have demonstrated an increase in asprosin levels in patients' Chronic renal disease, diabetic nephropathy, and terminal renal failure [32]. We excluded these patients from our study to avoid any limitations. Previous studies have found a relationship between asprosin levels and DM in patients diagnosed with the disease for more than 10 years [31]. In contrast to that study, our study included participants without a diagnosis of DM in both groups. In this way, the likelihood of asprosin levels being influenced by other conditions was minimized.

Since the c peptide level varies according to the fasting and satiety status and these patients had to fast for at least 8 hours before the procedure and this period varies from patient to patient, c peptide was not measured [33].

In our study, serum asprosin levels were found to be higher in patients with mild post- PEP compared to those with severe forms of the condition. This finding suggests that asprosin may play a compensatory role during the early or less intense phases of inflammation. Asprosin is an adipokine primarily secreted during fasting that contributes to glucose homeostasis; however, it has also been shown to participate in immune and inflammatory responses. It has been reported to enhance the secretion of pro-inflammatory cytokines such as TNF- α , IL-1 β , and IL-8. In mild

Figure 4b. Scatter plot showing the correlation between serum asprosin levels (ng/mL) and lymphocyte count (×10⁹/L) in patients with post-ERCP pancreatitis. Each dot represents an individual patient. A negative correlation between asprosin concentration and lymphocyte count is observed.

PEP cases, the systemic inflammatory response may remain limited, allowing for the continued or even increased secretion of asprosin. In contrast, severe PEP is typically associated with widespread tissue damage, organ dysfunction, and metabolic disturbances, all of which may negatively affect asprosin production or its levels in circulation (34, 35).

One of the limitations of our study is the relative-ly small sample size, which may restrict the generalizability of the findings. Additionally, the lack of pre-ERCP asprosin measurements represents another significant limitation. Future prospective cohort studies involving serial measurements before and after ERCP would provide more robust and reliable data. Due to the cross-sectional design of our study, it is not possible to establish a causal relationship. Further molecular and experimental research is required to determine whether asprosin plays an active role in pancreatic beta-cell dysfunction.

Since PEP is an unpredictable complication, we did not measure asprosin levels prior to ERCP. However, the absence of baseline measurements limited our ability to assess intra-individual changes and

interpret dynamic variations in asprosin levels over time.

Our study also lacked a control group consisting of individuals who underwent ERCP but did not develop pancreatitis. This limits our ability to determine whether the observed changes in asprosin levels are solely attributable to pancreatitis or potentially influenced by the ERCP procedure itself. However, to date, there is no evidence in the literature suggesting that ERCP, in the absence of secondary complications, directly alters serum asprosin levels. Therefore, based on the current body of evidence, it is more plausible that the observed increase in asprosin is associated with the pathophysiology of pancreatitis. Nonetheless, our findings should be interpreted in light of this limitation.

Conclusion

Serum asprosin levels were higher in PEP cases compared to the control group. Asprosin may represent a potential biomarker associated with pancreatitis-induced beta cell stress rather than clinical severity. To better evaluate this relationship, prospective studies incorporating serial pre/post-ERCP sampling and

direct assessments of β -cell function are needed. These findings may contribute to a better understanding of the complex interactions between pancreatitis and beta cell injury and may guide future research efforts.

List of Abbreviations

ALT - Alanine Aminotransferase

ALP - Alkaline Phosphatase

AST – Aspartate Aminotransferase

BISAP – Bedside Index for Severity in Acute Pancreatitis

BUN – Blood Urea Nitrogen

CRP - C-Reactive Protein

CT - Computed Tomography

DM - Diabetes Mellitus

ELISA – Enzyme-Linked Immunosorbent Assay

ERCP – Endoscopic Retrograde Cholangiopancreatography

GGT - Gamma-Glutamyl Transferase

GCS - Glasgow Coma Scale

LDH - Lactate Dehydrogenase

MRI – Magnetic Resonance Imaging

NSAID - Non-Steroidal Anti-Inflammatory Drug

PEP – Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis

RRT – Renal Replacement Therapy

SD – Standard Deviation

SIRS – Systemic Inflammatory Response Syndrome

TLR4 - Toll-like Receptor 4

ULR - Upper Limit of Reference

Author Contributions: Surgical and Medical Practices: O.Z., B.G., O.Ö., A.K., A.C.K., E.A.K., İ.A., Concept: O.Z., B.G., O.Ö., Ö.D., A.K., A.C.K., A.U., E.A.K., İ.A., Design: O.Z., Ö.D., A.C.K., A.U., F.Y., İ.A., Data Collection or Processing: O.Z., B.G., O.Ö., Ö.D., A.K., A.C.K., F.Y., İ.A., Analysis or Interpretation: O.Z., B.G., Ö.D., A.K., A.U., F.Y., E.A.K., İ.A. Literature Search: O.Z., B.G., O.Ö., Ö.D., A.K., A.C.K., A.U., F.Y., E.A.K., İ.A.

Conflict of Interest Statement: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

Ethics Committee Approval: This study was conducted with the approval of the Hospital Ethics Committee (Approval Number: TABED 2-24-387).

Informed Consent: Written informed consent was obtained from all participants.

References

- Zerem E. Treatment of severe acute pancreatitis and its complications. World J Gastroenterol. 2014;20(38):13879-13892.
- 2. Krishna SG, Kamboj AK, Hart PA, Hinton A, Conwell DL. The Changing Epidemiology of Acute Pancreatitis Hospitalizations: A Decade of Trends and the Impact of Chronic Pancreatitis. Pancreas. 2017;46(4):482-488.
- 3. Vonderau JS, Desai CS. Type 3c: Understanding pancreatogenic diabetes. JAAPA. 2022;35(11):20-24.
- 4. Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J Gastroenterol Hepatol. 2019;34(2):346-354.
- Romere C, Duerrschmid C, Bournat J, Constable P, Jain M, Xia F et al. Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell. 2016;165(3):566-579.
- 6. Diao H, Li X, Xu Y, Xing X, Pang S. Asprosin, a novel glucogenic adipokine implicated in type 2 diabetes mellitus. J Diabetes Complications. 2023;37(11):108614.
- 7. Nam H, Hong SS, Jung KH, Kang S, Park MS, Kang S, et al. A Serum Marker for Early Pancreatic Cancer With a Possible Link to Diabetes. J Natl Cancer Inst. 2022;114(2):228-234.
- 8. Wang R, Hu W. Asprosin promotes β -cell apoptosis by inhibiting the autophagy of β -cell via AMPK-mTOR pathway. J Cell Physiol. 2021;236(1):215-221.
- Lee T, Yun S, Jeong JH, Jung TW. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol Cell Endocrinol. 2019;486:96-104.
- 10. Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64.
- 11. Cozma MA, Angelescu C, Haidar A, Mateescu RB, Diaconu CC. Incidence, Risk Factors, and Prevention Strategies for Post-ERCP Pancreatitis in Patients with Biliopancreatic Disorders and Acute Cholangitis: A Study from a Romanian Tertiary Hospital. Biomedicines. 2025;13(3):727.
- Morales SJ, Sampath K, Gardner TB. A Review of Prevention of Post-ER-CP Pancreatitis. Gastroenterol Hepatol (N Y). 2018;14(5):286-292.
- Cahyadi O, Tehami N, de-Madaria E, Siau K. Post-ERCP Pancreatitis: Prevention, Diagnosis and Management. Medicina (Kaunas). 2022;58(9):1261.
- Cotton PB, Lehman G, Vennes J, et al. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc. 1991;37(3):383-393.
- Zhang Y, Ye XL, Wan XY. Early prediction of post-endoscopic retrograde cholangiopancreatography pancreatitis via dynamic changes of leukocyte: A retrospective study. J Formos Med Assoc. 2024;17:S0929-6646(24)00431-5.
- 16. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102-111.
- 17. Gao W, Yang HX, Ma CE. Correction: The Value of BISAP Score for Predicting Mortality and Severity in Acute Pancreatitis: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(10):e0142025.
- Kiat TTJ, Gunasekaran SK, Junnarkar SP, Low JK, Woon W, Shelat VG. Are traditional scoring systems for severity stratification of acute pancreatitis sufficient?. Ann Hepatobiliary Pancreat Surg. 2018;22(2):105-115.

- Bhatt H. Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis: An Updated Review of Current Preventive Strategies. Clin Exp Gastroenterol. 2021;14:27-32.
- Abdel Aziz AM, Lehman GA. Pancreatitis after endoscopic retrograde cholangio-pancreatography. World J Gastroenterol. 2007;13(19):2655-2668.
- 21. Yuan M, Li W, Zhu Y, Yu B, Wu J. Asprosin: A Novel Player in Metabolic Diseases. Front Endocrinol (Lausanne). 2020;11:64.
- 22. van Raalte DH, Diamant M. Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable therapy?. Diabetes Res Clin Pract. 2011;93 Suppl 1:S37-S46.
- 23. Jenei-Lanzl Z, Zwingenberg J, Lowin T, Anders S, Straub RH. Proinflammatory receptor switch from Gas to Gai signaling by β -arrestin-mediated PDE4 recruitment in mixed RA synovial cells. Brain Behav Immun. 2015;50:266-274.
- 24. Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci. 2013;34(7):413-423.
- 25. Zimmerman NP, Kumar SN, Turner JR, Dwinell MB. Cyclic AMP dysregulates intestinal epithelial cell restitution through PKA and RhoA. Inflamm Bowel Dis. 2012;18(6):1081-1091.
- 26. Yang Y, Sun Z, Li J, Song Y, Xu W. Neutrophil-derived IL-10 increases CV-B3-induced acute pancreatitis pathology via suppressing CD8+T cell activation while increasing macrophage STAT3-IL-6 cascade. Cytokine. 2024;184:156784.
- 27. Senyigit A, Durmus S, Gelisgen R, Uzun H. Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control. Biomolecules. 2024;14(9):1123.

- 28. Ge R, Chen JL, Zheng F, Yin SM, Dai M, Wang YM et al. Asprosin promotes vascular inflammation via TLR4-NFkB-mediated NLRP3 inflammasome activation in hypertension. Heliyon. 2024;10(11):e31659.
- 29. Shabir K, Gharanei S, Orton S, Patel V, Chauhan P, Karteris E et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227.
- 30. Wang Y, Qu H, Xiong X, Qiu Y, Liao Y, Chen Y et al. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion. Mediators Inflamm. 2018;2018:9471583.
- 31. Ma L, Wang Z, Sun L, Li M, Wu Q, Liu M et al. Association analysis between serum asprosin and metabolic characteristics, Complications in type 2 diabetic patients with different durations. J Diabetes Investig. 2024;15(12):1781-1787.
- 32. Zhang H, Hu W, Zhang G. Circulating asprosin levels are increased in patients with type 2 diabetes and associated with early-stage diabetic kidney disease. Int Urol Nephrol. 2020;52(8):1517-1522.
- 33. Jones AG, Hattersley AT. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med. 2013;30(7):803-817.
- 34. Shabir K, Gharanei S, Orton S, et al. Asprosin Exerts Pro-Inflammatory Effects in THP-1 Macrophages Mediated via the Toll-like Receptor 4 (TLR4) Pathway. Int J Mol Sci. 2022;24(1):227.
- 35. Hong T, Li JY, Wang YD, et al. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol. 2021;2021:6622129.

Decoding Autism: The Role of Synaptic Dysfunction in Neurodevelopment

Otizmin Şifresini Çözmek: Nörogelişimde Sinaptik Disfonksiyonun Rolü

o Filiz Çetinkaya¹,²,³, o Duygu Bandırmalı²,3,4,5, o Güvem Gümüş-Akay¹,²,3,4,5

1 Ankara University, Graduate School of Health Sciences, Department of Interdisciplinary Neuroscience, Ankara, Turkey
2 Ankara University, Brain Research Center (AÜBAUM), Ankara, Turkey
3 Ankara University, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
4 Ankara University, Graduate School of Health Sciences, Department of Physiology, Ankara, Turkey
5 Ankara University, School of Medicine, Department of Physiology, Ankara, Turkey

ABSTRACT

The human brain is comprised of intricate neuronal networks that comprise approximately 100 trillion synapses, which underpin functional connectivity. Disruptions in these synaptic connections play a fundamental role in several neurological disorders, such as autism spectrum disorder (ASD). During early development, genes related to ASD, coupled with environmental stressors, effect brain development and neural circuit formation. Genes associated with the structure and functioning of synapses demonstrate a significant prevalence of mutations within individuals diagnosed with ASD. In addition, environmental factors and mitochondrial dysfunction affecting synaptic metabolism also contribute to the pathophysiology of ASD. Understanding the link between synaptic dysfunction and autism symptoms may provide new perspectives for therapeutic approaches. The purpose of the present analysis is to furnish the reader with an overview of the findings pertaining to synaptic dysfunction in ASD.

Keywords: Autism spectrum disorder, Synaptic transmission, Synapse

ÖZET

İnsan beyni, yaklaşık 100 trilyon sinaps içeren karmaşık nöronal ağlardan oluşmakta ve bu yapılar, işlevsel bağlantısallığın temelini oluşturmaktadır. Bu sinaptik bağlantılardaki bozulmalar, otizm spektrum bozukluğu (OSB) da dahil olmak üzere çeşitli nörolojik hastalıklarda kritik bir rol oynamaktadır. Erken gelişim sürecinde, OSB ile ilişkili genler çevresel stres faktörleri ile birlikte beyin gelişimini ve nöral devre oluşumunu etkilemektedir. Sinaptik yapı ve işlevle ilişkili genler, OSB'de belirgin şekilde mutasyona uğramaktadır. Ayrıca, sinaptik metabolizmayı etkileyen çevresel faktörler ve mitokondriyal işlev bozukluğu da OSB'nin patofizyolojisine katkıda bulunmaktadır. Sinaptik disfonksiyon ile otizm semptomları arasındaki ilişkinin anlaşılması, terapötik yaklaşımlar açısından yeni bakış açıları sunabilir. Bu derleme, OSB'de sinaptik disfonksiyon ile ilgili bulguların genel bir değerlendirmesini sunmayı amaçlamaktadır.

Anahtar Kelimeler: Otizm spektrum bozukluğu, Sinaptik iletim, Sinaps

Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects early intellectual development. It is characterized by impaired motor coordination, deficits in social communication, and repetitive, restricted behaviors. ASD was originally categorized into multiple diagnoses, including Asperger's disorder, childhood disintegrative disorder, and pervasive developmental disorder-not otherwise specified, but these are now unified under

the broader ASD classification (1).

The etiology of ASD involves a heterogeneous mix of genetic and environmental factors. Genome-wide association studies have been undertaken to identify rare variants, single nucleotide polymorphisms (SNPs), and de novo copy number variations (CNVs) contributing to ASD risk. These have led to the discovery of many ASD-associated genes, now included in major genomic databases (2).

Corresponding author: Güvem Gümüş-Akay

Ankara University, School of Medicine, Department of Physiology, Ankara, Turkey

E-mail: guvemakay@gmail.com ORCID ID: 0000-0002-6564-3133

Received: 10.06.2025 Accepted: 23.07.2025 Publication Date: 30.09.2025

Cite this article as: Çetinkaya, F., Bandırmalı, D., Gümüş Akay, G. Decoding autism: the role of synaptic dysfunction in neurodevelopment. *J Ankara Univ Fac Med*. 2025;78(3):259-272.

Recent findings suggest these genetic alterations converge on core neurodevelopmental pathways (3). Neurobiological studies show dysregulation in gene expression—via epigenetics and transcription—alongside disrupted synaptic communication and neurotransmission. Many ASD-related genes are expressed during critical stages of brain development, from prenatal to early postnatal periods (4), and their protein products are regulated by neural activity via transcription, splicing, translation, and degradation (5).

At the structural level, synapses represent the fundamental communication units between neurons, composed of a presynaptic terminal that releases neurotransmitters, a synaptic cleft, and a postsynaptic membrane equipped with specialized receptors (6). Genes such as NRXN, NLGN, SHANK3, and DLG4—frequently implicated in ASD—play essential roles in synapse formation, stabilization, and signal transduction (7). Animal and genetic studies consistently demonstrate that mutations in these and other ASD-related genes, including FMR1, MECP2, UBE3A, and TSC1/2, lead to disruptions in synaptic integrity and circuit-level connectivity, ultimately contributing to deficits in social interaction, sensory processing, and cognitive function (8-11). Together, these findings highlight synaptic dysfunction as a central mechanism in ASD pathophysiology (12).

The following sections examine core molecular mechanisms underlying synaptic dysfunction in ASD, with a particular focus on synaptic cell adhesion molecules, postsynaptic scaffold and signaling proteins, mitochondrial impairment, and the resulting excitation/inhibition (E/I) imbalance. While additional contributors—such as epigenetic modulation, impaired synaptic pruning, and environmental factors—are also implicated in ASD pathophysiology, they are only briefly addressed or remain beyond the scope of this review.

Synaptic Cell Adhesion Molecules

Synaptic cell adhesion molecules (CAMs) play a central role in establishing and maintaining synaptic connectivity. By spanning the synaptic cleft, these molecules mediate structural alignment between pre- and postsynaptic neurons and modulate key processes such as synaptogenesis, synaptic stabi-

lization, and plasticity mechanisms including long-term potentiation (LTP) and long-term depression (LTD) (13). Among the CAMs, neurexins (NRXNs), neuroligins (NLGNs), and Contactin-Associated Protein-Like 2 (CASPR2) have been extensively linked to ASD through both genetic and functional studies.

Neurexins

NRXNs are presynaptic adhesion molecules that interact with postsynaptic neuroligins (NLGNs) to form trans-synaptic complexes essential for synaptic differentiation and communication. The three NRXN genes—*NRXN1*, *NRXN2*, and *NRXN3*—each produce multiple alpha and beta isoforms that regulate synapse specificity, plasticity, and neurotransmitter release (14).

Disruptions in NRXNs, particularly *NRXN1*, are among the most frequently reported mutations in ASD. Both gene deletions and duplications impair synaptic transmission, disturb E/I balance, and lead to altered neural circuitry associated with social deficits and repetitive behaviors (15).

Studies on *Nrxn1* knockout (KO) mice show impairments in synaptic organization and cognitive functions, underscoring its role in neurodevelopment (16). Given their central function in synaptic communication, *NRXNs* remain a major focus in ASD research, particularly with regard to understanding how their dysfunction impacts neural circuit formation and cognitive processes (17). The investigation of these molecules may offer valuable insights that could inform the development of therapeutic strategies aimed at restoring synaptic balance in individuals with ASD.

Neuroligins

NLGNs are postsynaptic adhesion molecules that play a crucial role in synapse identity and functional development (14). They interact with presynaptic NRXNs to facilitate synapse formation and stabilization. NLGNs exist in multiple isoforms, each with distinct localization and functional properties. Specifically, NLGN1 is primarily found in glutamatergic excitatory synapses, while NLGN2 is localized to y-aminobutyric acid-ergic (GABAergic) inhibitory synapses, playing a crucial role in maintaining E/I balance (18).

Functional studies demonstrate that *NLGN1* over-expression increases excitatory signaling and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to NMDA (N-methyl-D-aspartate) receptor ratios, while *NLGN2* overexpression strengthens inhibitory responses (19, 20). Notably, *Nlgn1* KO mice exhibit impaired hippocampal LTP, reduced dendritic spine density, and increased repetitive grooming behavior—core features of ASD. The phenotypes observed in these models, including spatial memory deficits and disrupted corticostriatal signaling, support a critical role for NLGNs in synapse morphology and ASD-like behavior (19).

Contactin-Associated Protein-Like 2

CASPR2, encoded by the *CNTNAP2* gene, is a member of the NRXN family. CASPR2 was initially identified as a synaptic protein involved in synapse formation and maintenance, but recent research has expanded its functional relevance to neurodevelopmental processes. CASPR2 plays significant roles in dendritic arborization, dendritic spine stabilization, and AMPAR trafficking, highlighting its importance in neuronal connectivity and signaling (21, 22).

The presence of recessive mutations and chromosomal inversions in the *CNTNAP2* gene has been identified in individuals diagnosed with both intellectual disabilities and ASD. *CNTNAP2*, alongside genes such as *KMT2C* and *SHANK3*, has been associated with ASD, speech, and language impairments. These mutations are known to disrupt critical protein domains involved in language-related neural functions (23, 24).

Cntnap2 KO mice exhibit ASD-like behaviors including repetitive actions, restricted social interactions, and impaired communication (21). These models also show disrupted cortical inhibitory interneuron migration, further supporting CNTNAP2's contribution to the neural mechanisms underlying ASD (22). Additionally, CNTNAP2 dysfunction is associated with altered sensory processing, likely due to impaired Kv1 potassium channel function, which contributes to neuronal hyperexcitability and pain hypersensitivity (25).

SNP rs2710102 in the *CNTNAP2* gene has been associated with language development deficits in ASD. Individuals carrying the A-allele tend to exhibit lower language skills compared to G-allele homozygotes, despite no significant difference in overall communication abilities. Moreover, studies in *Cntnap2*-deficient mice showed that dysfunction of this gene influences affective processing beyond basic sensory and motor domains (26). These findings highlight the gene's broad involvement in both synaptic and circuit-level phenotypes relevant to ASD.

Postsynaptic Density and Scaffold Proteins

The postsynaptic density (PSD) is a protein-dense region located at the postsynaptic membrane of excitatory synapses, essential for regulating synaptic transmission and plasticity (6). This specialized structure hosts neurotransmitter receptors, kinases, structural proteins, and signaling molecules essential for synaptic function (27).

Scaffold proteins, as core components of the postsynaptic density (PSD), organize and stabilize multiprotein complexes at synaptic sites. Through interaction domains such as PDZ (PSD-95/Discs large/ZO-1) and SH3 (Src Homology 3), they orchestrate intracellular signaling cascades and modulate synaptic structure in an activity-dependent manner (28). Disruptions in these proteins lead to synaptic instability and are linked to ASD-related neurodevelopmental deficits (29).

PSD-95

PSD-95, encoded by *DLG4*, is a key scaffold protein at glutamatergic synapses, regulating receptor clustering, dendritic spine morphology, and NMDA receptor-mediated plasticity (27). It plays a central role in trafficking NMDA and AMPA receptors and in maintaining synaptic integrity during maturation (30).

Mutations in *DLG4* have been associated with increased ASD risk, and loss-of-function variants impair synaptic connectivity, leading to social and cognitive dysfunctions (27, 31). Proteomic analyses in individuals with idiopathic ASD indicate downregulation of PSD-95-associated complexes, contrib-

uting to delayed synaptic maturation and cognitive impairment (32).

Animal models revealed that environmental exposures can alter PSD-95 expression, disrupting plasticity and inducing ASD-like behaviors (33). *Dlg4* KO mice exhibit repetitive behaviors and social deficits, while pharmacological upregulation of PSD-95 restores synaptic function and ameliorates behavioral abnormalities in ASD models (34).

HOMER Protein Family

The HOMER family consists of three homologous genes—HOMER1, HOMER2, and HOMER3—encoding proteins that act as multimodal scaffolds. These proteins interact with type I metabotropic glutamate receptors (mGluR1–5), SH3 and multiple ankyrin repeat domains (SHANK) proteins, and inositol1,4,5-trisphosphate receptors (IP3Rs), anchoring them to cytoskeletal components and supporting synaptic signaling and plasticity. HOMER proteins are essential for cell signaling, neuronal excitability, synaptic neurotransmission, and neural plasticity (35).

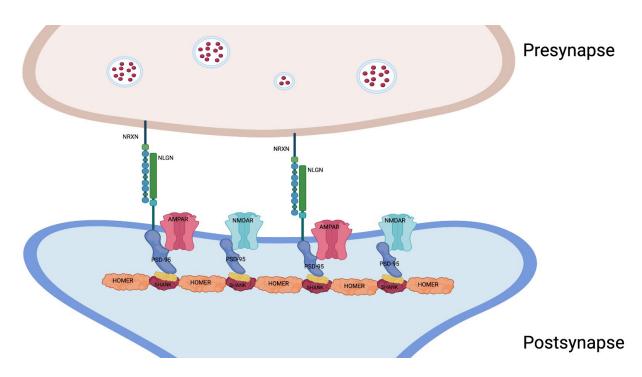
Two experimental findings link HOMER dysfunction to ASD: First, *Homer1a* is upregulated in the basolateral amygdala (BLA) of valproic acid (VPA)-exposed rats, a widely used ASD model. Overexpression of *Homer1a* in the BLA of healthy mice induces ASD-like behaviors, such as impaired fear conditioning and reduced social interaction (36). Second, HOMER1A a interacts with SHANK3, and disruption of this interaction affects synaptic plasticity and connectivity, suggesting a mechanistic pathway contributing to ASD phenotypes (37).

SH3 and multiple ankyrin repeat domains protein 3

SHANK3 is a key postsynaptic scaffold protein highly enriched in the postsynaptic density (PSD) of excitatory synapses. It plays a central role in synaptic organization by linking neurotransmitter receptors, such as NMDA and AMPA receptors, to intracellular signaling complexes and the actin cytoskeleton. SHANK3 directly interacts with PSD-95, HOMER, and other Membrane-Associated Guanylate Kinase (MAGUK) proteins, thereby contributing to synaptic strength, plasticity, and spine morphology (28).

Genetic studies have identified *SHANK3* mutations and deletions as one of the most consistent and penetrant monogenic causes of ASD (38). Animal models with *Shank3* deficiency exhibit core ASD-like phenotypes, including impaired social behaviors, repetitive actions, and disrupted synaptic transmission (39). Given its structural and functional significance, SHANK3 represents a critical node in the molecular architecture of ASD-related synaptic dysfunction.

The Discs Large Protein Subfamily


DLG proteins, including DLG1, DLG2, DLG3, and DLG4, are members of the MAGUK family and regulate glutamatergic receptor positioning and postsynaptic signaling. These proteins contain three PDZ domains and serve as scaffolds for NMDA and AMPA receptor complexes, and link extracellular stimuli to postsynaptic signaling pathways (40, 41).

In addition to postsynaptic roles, DLG proteins influence ion channel trafficking, presynaptic excitability, and neurotransmitter release (42). Their differential expression across development suggests stage-specific functions (30). Genetic variants in the DLG1 gene and 3q29 microdeletions have been associated with ASD and schizophrenia (43). In mice, Dlg2 (PSD-93) deficiency results in reduced corticostriatal synaptic transmission and ASD-like behaviors, including social withdrawal and cognitive inflexibility (44).

Figure 1 highlights the NRXN–NLGN trans-synaptic complex, postsynaptic scaffold proteins (PSD-95, SHANK, HOMER), and their roles in anchoring AMPA and NMDA receptors at excitatory synapses.

Synaptic Signaling and Protein Synthesis Regulators

Synaptic signaling and protein synthesis are critical for neurodevelopment and cognitive function. In ASD, disruptions in these processes contribute to abnormal plasticity, impaired neuronal communication, and altered protein regulation. Key molecular regulators of these pathways include Fragile X Mental Retardation Protein (FMRP), Tuberous Sclerosis Complex (TSC), Phosphatase and Tensin Homolog

Figure 1. NRXN–NLGN trans-synaptic complex, postsynaptic scaffold proteins (PSD-95, SHANK, HOMER), and their roles in anchoring AMPA and NMDA receptors at excitatory synapses.NLGN: neuroligins, NRXN: Neurexins, PSD95: Postsynaptic Density Protein 95, SHANK: SH3 and multiple ankyrin repeat domains protein. This figure was created using a personally licensed BioRender account.

(PTEN), Methyl-CpG Binding Protein 2 (MECP2), and Ubiquitin-Protein Ligase E3A (UBE3A). Mutations or dysregulation of these proteins are strongly implicated in ASD pathophysiology and represent promising targets for therapeutic intervention (45).

Fragile X Mental Retardation Protein

FMRP is an RNA-binding protein encoded by the *FMR1* gene and is essential for local protein synthesis at synapses. Its loss leads to Fragile X Syndrome (FXS), the most common inherited cause of intellectual disability and a well-established monogenic contributor to ASD. Approximately 20–30% of males with FXS meet full ASD diagnostic criteria, and 2–4% of ASD cases are linked to FXS (46). FXS is caused by CGG trinucleotide repeat expansion (>200 repeats) in the promoter region of *FMR1*, leading to transcriptional silencing. In addition, point mutations have been observed to contribute to FXS pathogenesis, albeit less frequently.

FMRP regulates synaptic plasticity by controlling the translation of specific mRNAs, including those related to dendritic spine maturation. *Fmr1* KO models exhibit social deficits, seizures, anxiety, and synaptic abnormalities—features overlapping with ASD (47). While

the exact mechanism linking FXS and ASD remains unclear, studies using human genetics and animal models suggest that FMRP interacts with key translation regulators such as CYFIP1 and eIF4E. Dysregulation of these interactions alters protein synthesis and contributes to ASD-related phenotypes (45, 48)

TSC1/TSC2 complex

The *TSC1* and *TSC2* genes encode hamartin and tuberin, which form a complex that negatively regulates the mammalian target of rapamycin (mTOR) pathway, a central mediator of cell growth and metabolism. Mutations in either gene cause TSC, a multisystem disorder often presenting with epilepsy, intellectual disability, and ASD. Up to 36% of individuals with TSC mutations develop ASD features (21).

Loss of TSC function results in hyperactive mTOR signaling, disrupting synaptic plasticity and neuronal morphology (49). Impaired synaptic plasticity, neuronal morphological abnormalities, and aberrant cell growth and proliferation are observed in TSC-related conditions (50). *TSC2* mutations are particularly enriched among individuals with ASD, further implicating the mTOR pathway in ASD pathophysiology (49).

Phosphatase and Tensin Homolog

PTEN is a tumor suppressor gene that antagonizes the PI3K/AKT/mTOR pathway. While best known for its role in cancer, germline *PTEN* mutations are also associated with neurodevelopmental abnormalities and ASD (51).

Approximately 10-20% of individuals with ASD and macrocephaly harbor PTEN mutations (52). These mutations have also been observed in Cowden syndrome, a condition characterized by macrocephaly and increased cancer risk. Some individuals with Cowden syndrome have been found to exhibit autistic traits (53). Genetic sequencing of the PTEN gene in ASD patients has identified three heterozygous germline mutations and one missense mutation (54).

Mouse models with *Pten* mutations (e.g. *Pten*^{m3m4/m3m4}) display ASD-like behaviors and molecular hallmarks of ASD (55). Studies have shown that ASD- and cancer-associated *PTEN* germline mutations predominantly occur in the ATP-binding motif type B and around the highly conserved P-loop in the active site, supporting their pathogenic significance (56). Furthermore, PTEN regulates alternative splicing of ASD-associated transcripts, affecting synaptic function and gene expression regulatory processes. This mis-splicing is developmentally regulated and involves other susceptibility genes, underscoring the multifactorial nature of PTEN-associated ASD (52).

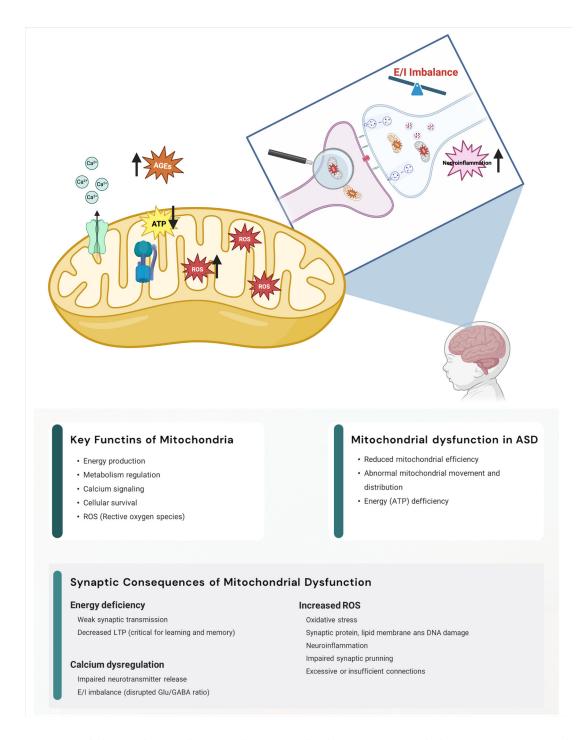
Methyl-CpG Binding Protein 2

MECP2 encodes a transcriptional regulator that plays a crucial role in neuronal development, and its mutations are known to cause Rett Syndrome (RTT) and ASD (57). Loss of MECP2 function leads to delayed language development, psychomotor regression, seizures, and impaired social interactions following an initial period of normal development (58). Studies suggest that MECP2 deficiency is linked to Brain-Derived Neurotrophic Factor (BDNF) dysregulation, cytokine production in astrocytes, and impaired neuronal dendritic branching (59). Additionally, MECP2-deficient astrocytes fail to support normal dendritic morphology in wild-type neurons (60). In Mecp2-null mice, astrocyte-specific restoration of MECP2 expression was found to rescue normal neuronal dendritic mor-

phology, improving locomotion, anxiety, and respiratory deficits (61). *MECP2* mutations and duplications have been identified in ASD cohorts and are linked to stereotypic behaviors, communication deficits, and sensory abnormalities (62, 63).

Ubiquitin-Protein Ligase E3A

UBE3A is a dual-function protein that acts as both a ubiquitin ligase and a transcriptional co-activator. Loss of maternal *UBE3A* expression leads to Angelman Syndrome (AS), characterized by severe intellectual disability, ataxia, epilepsy, and autistic features (64, 65).


Some experts classify AS as a syndromic form of ASD, as studies indicate that a subset of AS individuals meet the full diagnostic criteria for ASD (66). In ASD individuals, 15q11-q13 duplications are among the most common chromosomal abnormalities (67). This region includes the PWS/AS critical locus, which is subject to genomic imprinting. While maternally inherited duplications in this region are strongly associated with ASD, paternally inherited duplications tend to result in a normal phenotype (68). These findings underscore the critical role of UBE3A and 15q11-q13 genomic variations in ASD, highlighting their impact on neurodevelopment and potential therapeutic targets for intervention (69).

Synaptic Metabolic Stress and Excitatory/Inhibitory Imbalance in ASD

Emerging evidence suggests that disruptions in neuronal metabolism and synaptic energy homeostasis are closely linked to E/I imbalance, a core feature in the pathophysiology of ASD. Synaptic transmission is highly energy-dependent, requiring tightly regulated ATP production, calcium buffering, and redox homeostasis to maintain functional neurotransmitter signaling. Mitochondrial dysfunction, frequently reported in ASD, impairs these processes and disrupts the delicate balance between excitatory glutamatergic and inhibitory GABAergic signaling (70, 71).

Mitochondrial Dysfunction and Synaptic Vulnerability

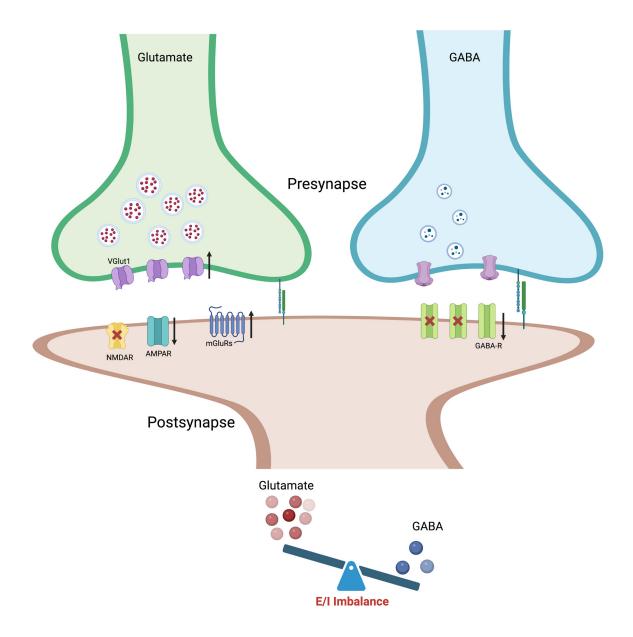

Mitochondria are essential for sustaining synaptic plasticity and neuronal survival through ATP synthe-

Figure 2. The schematic illustration of mitochondrial dysfunction in ASD. Arrows pointing upwards represent increases, whereas arrows pointing downwards represent decreases. AGEs: advanced glycation end-products, ROS: reactive oxygen species. This figure was created using a personally licensed BioRender account.

sis, calcium regulation, and reactive oxygen species (ROS) detoxification. Studies have shown that neurons from individuals with ASD exhibit impaired mitochondrial movement, abnormal distribution at synaptic terminals, and reduced respiratory efficiency (72). Such dysfunction compromises LTP-related processes and synaptic pruning, both vital for cognitive development and circuit refinement.

Elevated ROS levels can damage synaptic lipids and proteins, disrupt calcium-dependent vesicle release, and promote neuroinflammation. Postmortem studies confirm elevated oxidative stress in ASD brains, implicating mitochondrial redox imbalance in synaptic pathology (73). Furthermore, in syndromic ASD models such as FXS, mitochondrial impairment is closely linked to FMRP deficiency, affecting both energy metabolism and synaptic transmission (45, 73).

Figure 3. The schematic illustration of excitatory/inhibitory imbalance in ASD. Arrows pointing upwards represent increases, whereas arrows pointing downwards represent decreases. A cross (X) symbol denotes dysfunction in the corresponding component. AMPAR: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, GABA: Gamma-aminobut-yric acid, NMDAR: N-methyl-D-aspartate receptors, VGlut1: Vesicular glutamate transporter 1, mGluRs: metabotropic glutamate receptor. This figure was created using a personally licensed BioRender account.

Recent pharmacological studies targeting synaptic mitochondria have shown promise. For instance, activation of 5-HT1A receptors via eltoprazine improved mitochondrial performance and synaptic function in a Drosophila FXS model (74). Additionally, the accumulation of advanced glycation end-products (AGEs) and their precursor methylglyoxal (MG) has been linked to mitochondrial dysfunction and synaptic impairments, contributing to cognitive decline. Samantha et al. (2025) have examined the role of AGE and MG accumulation in synaptic mitochondrial stress and

transmission in transgenic mice. The study found that overexpression of glyoxalase 1 (GLO1), an enzyme that detoxifies AGEs, reduced AGE accumulation, restored mitochondrial function, and improved cognitive performance in aging mice. Ex vivo and in vitro studies on hippocampal neurons confirmed that GLO1 rescued LTP and synaptic transmission, mitigating synaptic plasticity deficits (75).

Frye et al. (2024) further demonstrated that individuals with ASD and neurodevelopmental regression (NDR) exhibit hyperactive yet fragile mito-

chondrial respiration, showing reduced resilience to oxidative stress compared to typically developing siblings (76). Taken together, these findings underscore the vulnerability of synaptic mitochondria in ASD. Importantly, mitochondrial impairments not only disrupt local synaptic energy metabolism and calcium signaling but also converge on one of the core neurobiological mechanisms of ASD: E/I imbalance. Figure 2 illustrates the key functions of mitochondria at the synapse and the consequences of mitochondrial dysfunction, including ATP deficiency, oxidative stress, impaired calcium buffering, and downstream effects on E/I balance.

Excitation/Inhibition Imbalance and Synaptic Signaling Disruption

The fine-tuned balance between excitatory glutamatergic and inhibitory GABAergic neurotransmission is crucial for normal brain development, synaptic plasticity, and cognitive function. Disruption of this E/I balance represents a core pathophysiological mechanism in ASD, contributing to altered network dynamics and behavioral abnormalities (77). Figure 3 visually summarizes key alterations in excitatory and inhibitory synaptic components—including changes in receptor expression and presynaptic transporters—culminating in the disrupted E/I balance observed in ASD.

GABAergic Dysfunction in ASD

GABA is the major inhibitory neurotransmitter in the brain. Dysfunction of GABAergic signaling has been extensively documented in ASD. Ionotropic *GABAA* and metabotropic *GABAB* receptor genes—particularly *GABRB3* and *GABRA5*—are located within the 15q11–q13 chromosomal region, which is frequently duplicated in individuals with ASD (78, 79).

Mouse models of this duplication recapitulate ASD-like behaviors, including poor social interaction, behavioral inflexibility, and abnormal ultrasonic vocalizations (80). Postmortem studies have revealed reduced expression of GABAergic genes and related proteins in ASD brain tissue (81). Furthermore, the expression of GABAB receptors, particularly GABAB1 and GABAB2, has been found to be decreased in ASD

brain samples, which may be critical for maintaining the E/I balance (82).

Glutamatergic Signaling Alterations

Glutamate serves as the primary excitatory neurotransmitter in the central nervous system. Its receptors include ionotropic types (AMPA, NMDA, and kainate receptors) and metabotropic types (mGluRs) (83). The paucity of postmortem tissue available for research has restricted the progress of studies on glutamate receptor expression in ASD. Nevertheless, postmortem cerebellar tissue samples have revealed a reduction in AMPAR density and an increase in mGluRs expression, suggesting altered glutamatergic signaling in ASD (84). Changes in AMPAR subunit expression influence LTP and LTD, fundamental mechanisms linked to learning and memory. Disruptions in these mechanisms could contribute to cognitive deficits in ASD (47).

NMDAR dysfunction has been observed in *Shank3*, *Nlgn1*, *Fmr1* KO mice, and *Mecp2* transgenic mouse models (85). Although *Nlgn1*-KO mice display increased repetitive behaviors, they do not exhibit the full spectrum of autism-associated behavioral impairments. Mutations in the genes encoding glutamate receptors, particularly *GRIN2B*, *GRIN2A*, and *GRIK2* have been associated with ASD in human genetic studies (86).

Among metabotropic receptors, mGluR1 and mGluR5 have been the most extensively studied in ASD and related disorders, including FXS, obsessive-compulsive disorder, and intellectual disability (87). Elevated mGluR5 protein levels have been reported in the vermis region of the cerebellum in children with ASD compared to controls (88). mGluR5 KO mice exhibit cognitive deficits, highlighting its importance in synaptic regulation (89).

Epigenetic and Structural Contributors to E/I Imbalance

Emerging evidence suggests that E/I imbalance in ASD may also result from transcriptional and epigenetic dysregulation. Histone modifications such as H3K4me2/3, H3K9ac, H3K27ac, H3K9me2, and H3K27me3 have been shown to affect the expression of the genes related to excitatory and inhibitory

transmission in the prefrontal cortex of ASD patients (90). Additionally, synaptic structural studies using VGlut1 (presynaptic excitatory marker) and PSD-95 (postsynaptic marker) revealed increased excitatory and decreased inhibitory synapse numbers in the upper cortical layers of ASD brains, confirming functional synaptic imbalance (91). Conditional KO mice for *Arid1b*, an ASD risk gene, also demonstrate interneuron dysfunction and cortical hyperexcitability, further supporting the genetic basis of E/I dysregulation (92).

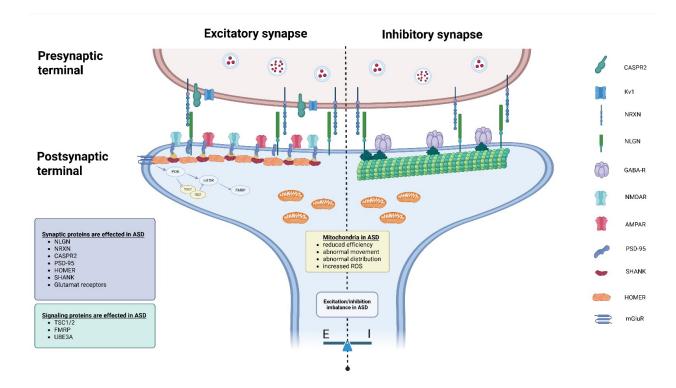
Environmental Influences on Synaptic Function

Beyond genetic and cellular mechanisms, growing evidence highlights the significant impact of environmental factors on synaptic dysfunction in ASD. Microglial cells, which support synaptic homeostasis and pruning, have been implicated in ASD pathophysiology. Dysfunction in these cells may lead to neuroinflammation and impaired synaptic refinement, both of which can disrupt neural circuit development (93).

Environmental insults during prenatal development may alter microglial activity, contributing to E/I imbalance and aberrant network formation. For instance, a recent mouse study examined the effects of valproic acid (VPA) and Poly I:C exposure during embryogenesis. Male offspring exhibited both stereotypical behaviors and impaired social interactions, while female mice showed only repetitive behaviors. Remarkably, restoration of GABA levels on postnatal day 10 prevented the onset of ASD-like behaviors, suggesting that environmental factors can perturb neurotransmitter balance and synaptic function (94).

Additionally, prenatal exposure to endocrine-disrupting chemicals such as Bisphenol A (BPA) and its analogs has emerged as a potential risk factor. 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP), a BPA substitute, is frequently detected in breast milk and placental tissue. A 2024 study by Zhang et al. demonstrated that early-life exposure to BPSIP (0.02–0.5 mg/kg/day) in mice led to increased anxiety and impaired spatial memory in both sexes. Synaptic plasticity was altered via changes in Synapsin I (SYN1) and PSD-95 levels in the cerebellum and hippocampus (33).

It should be noted that these examples represent a subset of known environmental contributors to ASD. Due to space constraints, only select cases are highlighted here.


Therapeutic Approaches and Future Directions

Several studies have focused on targeting synaptic dysfunction in ASD, exploring various synaptic proteins, ion channels, and regulatory mechanisms. These therapeutic approaches can be classified into pharmacological and non-pharmacological interventions (78). Research has demonstrated that impairments in AMPAR-mediated neurotransmission are linked to autism, particularly in conditions involving SHANK3 or SYNGAP1 protein dysfunction. The use of AMPAR modulators, such as Perampanel, has been proposed as a potential treatment for these synaptic dysfunctions (95).

Another promising avenue is the development of genetic-based interventions, including Clustered Regularly Interspaced Short Palindromic Repeats (CRIS-PR)-based gene editing, which aims to correct mutations affecting synaptic function. Such approaches are currently under investigation for their potential in restoring normal synaptic signaling in ASD (96, 97).

Conclusion

Taken together, these findings suggest that synaptic dysfunction in ASD arises from complex interactions among adhesion molecules, postsynaptic scaffold proteins, intracellular signaling pathways, mitochondrial impairments, and neurotransmitter imbalance. Figure 4 provides an integrative schematic representation of the excitatory and inhibitory synapses, highlighting how synaptic, signaling, and metabolic components converge to drive ASD-related neurodevelopmental disturbances. Therapeutic efforts focusing on restoring synaptic function through targeted pharmacological treatments and genetic interventions hold promise for future treatment strategies. Continued research is necessary to further elucidate the molecular underpinnings of ASD and develop effective, personalized therapies to improve outcomes for individuals affected by the disorder.

Figure 4. The schematic representation of the key synaptic and signalling proteins affected in autism spectrum disorder (ASD). The excitatory synapse illustrates the involvement of postsynaptic glutamate receptors (AMPA, NMDA, mGluR), scaffold proteins (PSD-95, SHANK, HOMER), and the neurexin–neuroligin adhesion complex, while the inhibitory synapse displays GABA receptors and associated presynaptic elements. The inclusion of proteins such as TSC1/2, mTOR, FMRP, and UBE3A is intended to represent altered intracellular signalling pathways. Mitochondria have been observed to reflect ASD-related changes, including reduced efficiency, abnormal distribution, and increased ROS. The imbalance between excitation and inhibition (E/I) is central to the pathophysiology of ASD, resulting from both synaptic structural and functional alterations. GABAR: Gamma-aminobutyric acid receptor. This figure was created using a personally licensed BioRender account.

Acknowledgements: We would like to thank and apologize to those scientists whose works have not been cited in this article due to limited space.

Authorship Contributions: Concept: F.Ç., D.B., G.G.A., Design: F.Ç., D.B., G.G.A., Literature Search: F.Ç., D.B., G.G.A., Writing: F.Ç., D.B., G.G.A.

Conflict of Interest: There is no potential conflict of interest to declare

Financial Disclosure: This study received no financial support

Statement for AI Usage: "During the preparation of this manuscript, the authors utilized DeepL for assistance with English language translation and linguistic refinement. The accuracy and scholarly integrity of the translations were carefully verified through manual review and editing by the authors. Consequently, the authors accept full responsibility for the final content of this publication. The use of this AI-based tool exclusively facilitated lan-

guage translation and grammatical improvements and did not alter the manuscript's intellectual or scientific content."

References

- American Psychiatric Association D. Diagnostic and statistical manual of mental disorders: DSM-5: American psychiatric association Washington, DC; 2013.
- 2. Leblond CS, Le TL, Malesys S, et al. Operative list of genes associated with autism and neurodevelopmental disorders based on database review. Mol Cell Neurosci. 2021;113:103623.
- 3. Strathearn L, Momany A, Kovács EH, et al. The intersection of genome, epigenome and social experience in autism spectrum disorder: Exploring modifiable pathways for intervention. Neurobiol Learn Mem. 2023;202:107761.
- 4. Courchesne E, Pramparo T, Gazestani VH, et al. The ASD Living Biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 2019;24(1):88-107.
- 5. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16(9):551-63.

- Qi C, Luo L-D, Feng I, et al. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci. 2022;14:939793.
- Zhang Y, Tang R, Hu Z-M, et al. Key Synaptic Pathology in Autism Spectrum Disorder: Genetic Mechanisms and Recent Advances. J Integr Neurosci. 2024;23(10):184.
- 8. Baig DN, Yanagawa T, Tabuchi K. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders. Brain Res Bull. 2017;129:82-90.
- 9. Chaste P, Klei L, Sanders SJ, et al. Adjusting head circumference for covariates in autism: clinical correlates of a highly heritable continuous trait. Biol Psychiatry. 2013;74(8):576-84.
- Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci. 2015;18(2):302-9.
- 11. Masini E, Loi E, Vega-Benedetti AF, et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci. 2020;21(21):8290.
- 12. de la Torre-Ubieta L, Won H, Stein JL, et al. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345-61.
- 13. Hayano Y, Miyoshi G, Paul A, et al. Cellular and molecular mechanisms that govern assembly, plasticity, and function of GABAergic inhibitory circuits in the mammalian brain. Front Cell Neurosci. 2025. p. 1568845.
- 14. Südhof TC, Malenka RC. Understanding synapses: past, present, and future. Neuron. 2008;60(3):469-76.
- Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Neurosci Res. 2018;127:53-60.
- 16. Südhof TC. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171(4):745-69.
- 17. Guang S, Pang N, Deng X, et al. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci. 2018;12:470.
- 18. Nguyen TA, Wu K, Pandey S, et al. A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y. Neuron. 2020;106(5):759-68.e7.
- Blundell J, Blaiss CA, Etherton MR, et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci. 2010;30(6):2115-29.
- 20. Chen J, Yu S, Fu Y, et al. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276.
- Varghese M, Keshav N, Jacot-Descombes S, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017;134:537-66.
- 22. Peñagarikano O, Abrahams BS, Herman EI, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147(1):235-46.
- 23. Gerik@Celebi HB, Bolat H, Unsel@Bolat G. Rare heterozygous genetic variants of NRXN and NLGN gene families involved in synaptic function and their association with neurodevelopmental disorders. Dev Neurobiol. 2024; 84(3):158-168.
- 24. Agarwala S, Ramachandra NB. Role of CNTNAP2 in autism manifestation outlines the regulation of signaling between neurons at the synapse. Egyptian J Med Hum Genet. 2021;22:1-13.
- 25. Carroll L, Braeutigam S, Dawes JM, et al. Autism spectrum disorders: multiple routes to, and multiple consequences of, abnormal synaptic function and connectivity. Neuroscientist. 2021;27(1):10-29.

- 26. Mohapatra AN, Jabarin R, Ray N, et al. Impaired emotion recognition in Cntnap2-deficient mice is associated with hyper-synchronous prefrontal cortex neuronal activity. Mol Psychiatry. 2024:1-13.
- Coley AA, Gao W-J. PSD95: A synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:187-94.
- 28. Ball NJ, Barnett SF, Goult BT. Mechanically operated signalling scaffolds. Biochem Soc Trans. 2024;52(2):517-27.
- 29. Verpelli C, Schmeisser MJ, Sala C, et al. Scaffold proteins at the postsynaptic density. Adv Exp Med Biol. 2012:970:29-61.
- Oliva C, Escobedo P, Astorga C, et al. Role of the MAGUK protein family in synapse formation and function. Dev Neurobiol. 2012;72(1):57-72.
- 31. Farahani M, Rezaei-Tavirani M, Zali A, et al. Systematic Analysis of Protein–Protein and Gene–Environment Interactions to Decipher the Cognitive Mechanisms of Autism Spectrum Disorder. Cell Mol Neurobiol. 2022;42(4):1091-103.
- 32. Fatemi SH, Eschenlauer A, Aman J, et al. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb Cortex. 2024;34(13):161-71.
- 33. Zhang S, Zhou Y, Shen J, et al. Early-Life Exposure to 4-Hydroxy-4'-l-sopropoxydiphenylsulfone Induces Behavioral Deficits Associated with Autism Spectrum Disorders in Mice. Environ Sci Technol. 2024;58(36):15984-96.
- 34. Medina G, MacKenzie AE. Neurodevelopmental disorders and the role of PSD-95: Understanding pathways and pharmacological interventions. Adv Neurol. 2024;3(1):2095.
- 35. Shiraishi-Yamaguchi Y, Furuichi T. The Homer family proteins. Genome Biol. 2007;8:1-12.
- 36. Banerjee A, Luong JA, Ho A, et al. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol Autism. 2016;7:1-15.
- 37. Lin R, Learman LN, Bangash MA, et al. Homer1a regulates Shank3 expression and underlies behavioral vulnerability to stress in a model of Phelan-McDermid syndrome. Cell Rep. 2021;37(7). 110014.
- 38. Leblond CS, Nava C, Polge A, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10(9):e1004580.
- 39. Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437-42.
- 40. Howard MA, Elias GM, Elias LA, et al. The role of SAP97 in synaptic glutamate receptor dynamics. Proc Natl Acad Sci. 2010;107(8):3805-10.
- 41. Soler J, Fañanás L, Parellada M, et al. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. J Psychiatry Neurosci. 2018;43(4):223-44.
- 42. Montgomery J, Zamorano P, Garner C. MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci. 2004;61:911-29.
- Iossifov I, O'roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216-21.
- 44. Yoo T, Joshi S, Prajapati S, et al. A deficiency of the psychiatric risk gene DLG2/PSD-93 causes excitatory synaptic deficits in the dorsolateral striatum. Front Mol Neurosci. 2022;15:938590.
- 45. Jurado O, José MV, Frixione E. Fragile X mental retardation protein modulates translation of proteins with predicted tendencies for liquid-liquid phase separation. BioSystems. 2025:105405.

- 46. Saldarriaga W, Payán-Gómez C, González-Teshima LY, et al. Double genetic hit: fragile X syndrome and partial deletion of protein patched homolog 1 antisense as cause of severe autism spectrum disorder. J Dev Behav Pediatr. 2020;41(9):724-8.
- 47. Carlson GC. Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders. Pharmacol Biochem Behav. 2012;100(4):850-4.
- 48. Bagni C, Tassone F, Neri G, et al. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest. 2012;122(12):4314-22.
- 49. Eser M, Hekimoglu G, Kutlubay B, et al. Analysis of TSC1 and TSC2 genes and evaluation of phenotypic correlations with tuberous sclerosis. Mol Genet Genomics. 2025;300(1):1-10.
- 50. Karalis V, Wood D, Teaney NA, et al. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry. 2024:1-14.
- 51. Yehia L, Keel E, Eng C. The clinical spectrum of PTEN mutations. Annu Rev Med. 2020;71(1):103-16.
- 52. Rademacher S, Preußner M, Rehm MC, et al. PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons. Brain. 2025;148(1):47-54.
- 53. Pilarski R, Eng C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet. 2004;41(5):323-6.
- 54. Hashem S, Nisar S, Bhat AA, et al. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry. 2020;10(1):229.
- 55. Sarn N, Jaini R, Thacker S, et al. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry. 2021;26(5):1458-71.
- 56. Smith IN, Thacker S, Jaini R, et al. Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. J Biomol Struct Dyn. 2019;37(7):1766-82.
- 57. Moore JR. Regulation of Neuronal Cell-Type-Specific Transcription by Non-CG Methylation and MeCP2: Washington University in St. Louis; 2024.
- 58. Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380-4.
- 59. Maezawa I, Swanberg S, Harvey D, et al. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009;29(16):5051-61.
- Ballas N, Lioy DT, Grunseich C, et al. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci. 2009;12(3):311-7.
- 61. Lioy DT, Garg SK, Monaghan CE, et al. A role for glia in the progression of Rett's syndrome. Nature. 2011;475(7357):497-500.
- 62. Peters SU, Hundley RJ, Wilson AK, et al. The behavioral phenotype in MECP 2 duplication syndrome: a comparison with idiopathic autism. Autism Res. 2013;6(1):42-50.
- 63. Wen Z, Cheng T-L, Li G-z, et al. Identification of autism-related MECP2 mutations by whole-exome sequencing and functional validation. Mol Autism. 2017;8:1-10.
- 64. Bonati MT, Russo S, Finelli P, et al. Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics. 2007;8:169-78.
- 65. Vatsa N, Jana NR. UBE3A and its link with autism. Frontiers in molecular neuroscience. 2018;11:448.

- 66. Kelleher RJ, Bear MF. The autistic neuron: troubled translation? Cell. 2008:135(3):401-6.
- 67. Vorstman J, Staal W, Van Daalen E, et al. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11(1):18-28.
- 68. Bolton PF, Dennis N, Browne C, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet. 2001;105(8):675-85.
- 69. Khatri N, Man H-Y. The autism and Angelman syndrome protein Ube3A/ E6AP: The gene, E3 ligase ubiquitination targets and neurobiological functions. Front Mol Neurosci. 2019;12:109.
- 70. Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry. 2024:1-22.
- Lindberg D, Shan D, Ayers-Ringler J, et al. Purinergic signaling and energy homeostasis in psychiatric disorders. Curr Mol Med. 2015;15(3):275-95.
- 72. Dhillon S, A Hellings J, G Butler M. Genetics and mitochondrial abnormalities in autism spectrum disorders: a review. Curr Genomics. 2011;12(5):322-32.
- 73. Valenti D, de Bari L, De Filippis B, et al. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev. 2014;46:202-17.
- 74. Vannelli A, Mariano V, Bagni C, et al. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci. 2024;25(16):8787.
- 75. Samanta S, Akhter F, Xue R, et al. Synaptic mitochondria glycation contributes to mitochondrial stress and cognitive dysfunction. Brain. 2025;148(1):262-75.
- 76. Frye RE, McCarty PJ, Werner BA, et al. Bioenergetic signatures of neurodevelopmental regression. Front Physiol. 2024;15:1306038.
- 77. Canitano R, Palumbi R. Excitation/inhibition modulators in autism spectrum disorder: current clinical research. Front Neurosci. 2021:15:753274.
- 78. Depienne C, Moreno-De-Luca D, Heron D, et al. Screening for genomic rearrangements and methylation abnormalities of the 15q11-q13 region in autism spectrum disorders. Biol Psychiatry. 2009;66(4):349-59.
- 79. Martin ER, Menold M, Wolpert C, et al. Analysis of linkage disequilibrium in √2 aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet. 2000;96(1):43-8.
- 80. Nakatani J, Tamada K, Hatanaka F, et al. Abnormal behavior in a chromosome- engineered mouse model for human 15q11-13 duplication seen in autism. Cell. 2009;137(7):1235-46.
- 81. Fatemi SH, Halt AR, Stary JM, et al. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002;52(8):805-10.
- 82. Fatemi SH, Folsom TD, Reutiman TJ, et al. Expression of GABAB receptors is altered in brains of subjects with autism. Cerebellum. 2009;8:64-9.
- 83. Lodge D. The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology. 2009;56(1):6-21.
- 84. Purcell A, Jeon O, Zimmerman A, et al. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001;57(9):1618-28.
- 85. Rojas DC. The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment. J Neural Transm. 2014;121:891-905.

- 86. Valbuena S, Lerma J. Kainate receptors, homeostatic gatekeepers of synaptic plasticity. Neuroscience. 2021;456:17-26.
- 87. Nisar S, Bhat AA, Masoodi T, et al. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry. 2022;27(5):2380-92.
- 88. Fatemi SH, Folsom TD, Kneeland RE, et al. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec. 2011;294(10):1635-45.
- 89. Xu J, Zhu Y, Contractor A, et al. mGluR5 has a critical role in inhibitory learning. J Neurosci. 2009;29(12):3676-84.
- 90. Fard YA, Sadeghi EN, Pajoohesh Z, et al. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet. 2024:e32986.
- 91. Vakilzadeh G, Maseko BC, Bartely TD, et al. Increased number of excitatory synapsis and decreased number of inhibitory synapsis in the prefrontal cortex in autism. Cereb Cortex. 2024;34(13):121-8.
- 92. Marshall AH, Boyle DJ, Hanson MA, et al. Arid1b haploinsufficiency in cortical inhibitory interneurons causes cell-type-dependent changes in cellular and synaptic development. bioRxiv. 2024:2024.06. 07.597984.

- 93. Meng J, Zhang L, Zhang Y-w. Microglial Dysfunction in Autism Spectrum Disorder. Neuroscientist. 2024;30(6):744-758.
- 94. Godavarthi SK, Li H-q, Pratelli M, et al. Embryonic exposure to environmental factors drives transmitter switching in the neonatal mouse cortex causing autistic-like adult behavior. Proc Natl Acad Sci USA. 2024;121(35):e2406928121.
- 95. Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry. 2024;15:1304300.
- 96. Kerna NA, Ngwu DC, Keke CO, et al. The Gut-Brain Axis in Neurodevelopmental Disorders: Mechanistic Insights, Clinical Implications, and Public Health Strategies. Eur J Theor Appl Sci. 2024;2(6):580-96.
- 97. Pizzella A, Penna E, Liu Y, et al. Alterations of synaptic plasticity in Angelman syndrome model mice are rescued by 5-HT7R stimulation. Prog Neurobiol. 2024;242:102684.

Bridging Statistical Rigor and Clinical Usability: The CORMeta App for Meta-Analysis of Correlated Outcomes

Klinik Uygulamalarda CORMeta Meta-Analiz Uygulaması

o Tuğba Akkaya Hocagil¹, o Richard J. Cook², o Louise M. Ryan³

1 Department of Biostatistics, Ankara University School of Medicine, Ankara, Türkiye 2 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada 3 School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, Australia

ABSTRACT

Background: In clinical research, multiple outcomes are often measured within the same cohort, leading to statistical dependencies that violate assumptions of traditional meta-analytic methods. While advanced models can accommodate such correlations, they typically require programming expertise, limiting accessibility for many physician-researchers.

Objective: We present a user-friendly, interactive Shiny web application designed to perform meta-analyses of correlated outcomes, with particular relevance for cohort-based clinical datasets.

Methods: The application implements a modified multivariate meta-analytic framework that accounts for the correlation structure of outcomes within cohorts. Users can upload their data, define correlation matrices, and filter observations by any variable (e.g., age, domain, exposure) without writing code. The application provides graphical output (forest plots) along with estimates of overall effect size, heterogeneity (τ^2), and p-values.

Results: A demonstration dataset on prenatal alcohol exposure and neurodevelopmental outcomes is simulated to illustrate the application's functionality. The application automatically generates correlation matrices where needed, adjusts for intra-cohort dependencies, and produces interpretable results suitable for clinical research reports.

Conclusion: This open-access application bridges the gap between complex statistical modeling and clinical usability. It enables physicians to conduct robust meta-analyses of correlated outcomes with ease, supporting evidence-based practice and local research initiatives. The tool is particularly valuable in multi-domain or multi-cohort studies where outcome correlation is non-negligible.

Availability: The CORMeta app is freely available at https://fasdprojectapp.shinyapps.io/CORMetaApp/. Users can upload their own summary datasets or explore the app using a preloaded sample dataset (example_data.csv), which is included with the source code. The complete app and codebase are available at https://github.com/takkaya/Meta-Analysis-of-Correlated-Outcomes-Made-Easy-Introducing-CORMeta-for-Clinicians.git

Keywords: meta-analysis, correlated outcomes, Shiny app, clinical research, multivariate models

ÖZET

Arka Plan: Klinik araştırmalarda, aynı kohort içinde birden fazla sonuç ölçütü değerlendirilmekte olup bu durum, geleneksel meta-analiz yöntemlerinin varsa-yımlarını ihlal eden istatistiksel bağımlılıklara yol açmaktadır. Bu tür korelasyonları dikkate alabilen gelişmiş modeller mevcut olmakla birlikte, bu modellerin kullanımı genellikle programlama bilgisi gerektirdiğinden, birçok hekim araştırmacı için erişilebilir değildir.

Amaç: Kohort tabanlı klinik veri setleriyle ilişkili korele sonuçlar üzerinde meta-analiz yapabilmeyi kolaylaştırmak amacıyla, kullanıcı dostu ve etkileşimli bir Shiny web uygulaması sunmaktayız.

Yöntemler: Bu uygulama, kohort içi sonuçların korelasyon yapısını dikkate alan, uyarlanmış bir çok değişkenli meta-analiz çerçevesini uygulamaktadır. Kullanıcılar veri yükleyebilir, korelasyon matrislerini tanımlayabilir ve herhangi bir değişkene (örneğin yaş, alan, maruziyet) göre gözlemleri filtreleyebilir; tüm bunlar kod yazmadan gerçekleştirilebilmektedir. Uygulama, grafiksel çıktılar (orman grafikleri) ile birlikte genel etki büyüklüğü, heterojenite (τ^2) ve p-değerleri gibi sonuçları sunmaktadır.

Bulgular: Uygulamanın işlevselliğini göstermek amacıyla, doğum öncesi alkol maruziyeti ve nörogelişimsel sonuçlara ilişkin simüle edilmiş bir veri seti kullanılmıştır. Uygulama, gerekli durumlarda korelasyon matrislerini otomatik olarak oluşturur, kohort içi bağımlılıkları dikkate alır ve klinik araştırma raporlarına uygun, yorumlanabilir sonuçlar üretir.

Sonuç: Bu açık erişimli uygulama, karmaşık istatistiksel modelleme ile klinik uygulanabilirlik arasındaki boşluğu kapatmaktadır. Hekimlerin, korele sonuçlar üzerinde sağlam meta-analizler yapabilmesini kolaylaştırarak kanıta dayalı uygulamaları ve yerel araştırma girişimlerini desteklemektedir. Araç, özellikle çok alanlı veya çok kohortlu çalışmalarda, sonuçlar arasındaki korelasyonun göz ardı edilemeyecek düzeyde olduğu durumlarda büyük değer taşımaktadır.

Anahtar kelimeler: Monosemptomatik noktürnal enürezis, Desmopressin, Enürezis alarmı

Corresponding author: Tuğba Akkaya Hocagil

Department of Biostatistics, Ankara University School of Medicine, Ankara, Türkiye

E-mail: tahocagil@ankara.edu.tr **ORCID ID:** 0000-0002-1234-5678

Received: 05.08.2025 **Accepted:** 29.09.2025 **Publication Date:** 30.09.2025

Cite this article as: Akkaya-Hocagil, T., et. al., Bridging statistical rigor and clinical usability: The cormeta app for meta-analysis of correlated outcomes. *J Ankara Univ Fac Med*, 2025;78(3):259-268.

Copyright© 2025 The Author. Published by Ankara University Press on behalf of Ankara University Faculty of Medicine . This is an open access article under the Creative Commons AttributionNonCommercial 4.0 International (CC BY-NC 4.0) License.

1. Introduction

Meta-analysis plays an important role in synthesizing evidence across studies, particularly in clinical research where multiple outcomes are often reported within the same cohort. In such settings, traditional univariate meta-analytic approaches may be inappropriate ¹, as they typically assume that outcomes are statistically independent. This assumption is frequently violated when correlated outcomes—such as neurodevelopmental domains or imaging markers—are measured within the same study population. Ignoring these dependencies can lead to biased estimates and underestimated uncertainty ².

To address this issue, advanced multivariate meta-analytic methods have been developed. These methods explicitly account for the correlation structure among outcomes. One such method is multivariate meta-analysis, which allows for the simultaneous synthesis of multiple outcomes across studies, estimating multiple pooled effects while preserving their interrelationships. Another technique, the three-level meta-analytic model ³, accommodates dependencies by modeling the nested structure of effect sizes, where non-independence arises from clustering rather than repeated measurements on the same individuals.

An additional strategy is the two-stage meta-analysis using summary measures, which incorporates robust variance estimation (RVE) ⁴. RVE adjusts the standard errors of pooled effects or meta-regression coefficients without needing to model the dependence structure explicitly. Instead, it approximates the correlation between outcomes to estimate between-studyvariance and derive near-optimal weights.

Building upon these advances, Akkaya Hocagil et al. (2022) proposed a novel hierarchical meta-analysis tailored for cases where each cohort provides multiple, potentially correlated endpoints ⁵. They applied this method to data from six longitudinal cohorts that used various cognitive assessments to measure child neurodevelopment. Their model assumes that all endpoints reflect effects of exposure on a shared underlying construct. A major advantage of this approach is its ability to integrate multi-

ple outcomes within cohorts and evaluate whether consistent patterns emerge across cohorts.

Despite these methodological developments, adoption of these methods in clinical setting has been limited due to the requirement of statistical and programming expertise to run such models. Consequently, many clinician-researchers rely on simpler, less suitable methods that may compromise the validity of their results.

To bridge this gap between methodological rigor and clinical usability, we developed a user-friendly, interactive Shiny web application, CORMeta. The application is designed specifically for conducting meta-analyses of correlated outcomes and tailored for researchers working with cohort-based datasets where multiple outcomes are measured per study. The application enables users to upload their own data, define correlation structures, and customize the analysis through an intuitive graphical interface without requiring any programming skills. It provides comprehensive outputs, including forest plots, pooled effect estimates, heterogeneity statistics, and confidence intervals.

In this paper, we introduce the methodological framework underpinning the application, demonstrate its use with a simulated dataset that mimics a real-world dataset on prenatal alcohol exposure and neurodevelopment, and discuss its potential to improve evidence-based practice in clinical settings where accounting for outcome correlation is essential.

2. Statistical Framework

2.1. Multivariate Meta-Analysis of Correlated Outcomes

In many clinical studies, multiple outcomes are reported within the same patient cohort. When these outcomes are synthesized across studies, conventional univariate meta-analytic methods may not be appropriate, as they assume independence among effect sizes. This assumption is violated when outcomes are measured on the same participants, leading to correlated effect estimates and underestimation of standard errors.

To address this issue, we implement a multivariate meta-analytic (MVMA) framework that explicitly

models the correlation between multiple outcomes measured within the same study. This approach allows for the simultaneous estimation of multiple effect sizes while accounting for their interdependencies, improving the accuracy and interpretability of pooled estimates.

While traditional multivariate meta-analysis estimates separate pooled effects for each outcome, our framework simplifies to a univariate structure when only one outcome is available per study but retains valid heterogeneity and standard error estimation by incorporating user-specified outcome correlations. This enables flexible modeling of both single and multiple correlated endpoints within cohorts.

The general form of the multivariate model 6 is: $\theta_i^{\cdot} \sim N(\theta_i, V_i)$, $\theta_i^{\cdot} \sim N(\mu, \Sigma)$ Where:

- $\theta \hat{}_i$ is the vector of observed effect sizes from study i
- V_{i} is the corresponding within-study variance-covariance matrix
- μ is the overall vector of true effect sizes
- $\boldsymbol{\Sigma}$ is the between-study variance-covariance matrix capturing heterogeneity and outcome correlations

2.2. Modeling Within-Cohort Correlation Structure

To correctly estimate V_i , the within-study variance-covariance matrix must reflect the correlations between outcomes within each cohort. In our application, users can either:

- Upload a custom correlation matrix that reflects outcome dependencies (e.g., based on domain knowledge, pilot data, or previous validation studies), or
- Allow the application to automatically generate a pooled or cohort-aware dummy correlation matrix from cohorts reporting more than one outcome, under the assumption of a shared correlation structure.

If users do not have access to an empirically derived correlation matrix, they may choose to generate a dummy matrix using a predefined or manually

selected value of ρ (residual correlation). This approach is particularly useful when exact correlations are unknown but can be reasonably approximated based on outcome type and measurement context. Suggested default values, informed by prior literature ^{7,8}, include:

- Surrogate endpoints: p=0.1users must ensure that stratification does not lead to overfitting
- Psychological test scores: ρ=0.5
- Longitudinal repeated measures: ρ=0.8
- Independent outcomes: ρ=0

This flexibility ensures that outcome dependency is explicitly incorporated into the meta-analytic model, thereby avoiding biased estimates and inflated precision that arise from ignoring within-cohort correlations. However, when only one outcome is provided per study and users select the "Independent" correlation option (ρ = 0), the residual correlation matrix becomes the identity matrix, and the analysis simplifies to a standard univariate meta-analysis 9. In this scenario, the model behavior is equivalent to conventional random-effects meta-analysis methods (e.g., rma.uni() from the metafor package 10), and results (effect size, standard error, τ^2) are interpreted as in traditional meta-analyses.

2.3. Estimation of Effect Sizes and Heterogeneity

Parameter estimation is performed using Restricted Maximum Likelihood (REML), which is robust for estimating between-study variance components in multivariate models. REML jointly estimates the pooled effect sizes (μ) and the between-study covariance matrix (Σ), which includes both heterogeneity (e.g., τ^2) and cross-outcome correlations. To derive study-specific and overall estimates, we employ Best Linear Unbiased Predictions (BLUPs), which improve precision by borrowing strength across correlated outcomes and cohorts. The primary heterogeneity measure reported is τ^2 , representing the variance of the true effect sizes across studies, adjusted for outcome correlation.

Schematic Overview of Data Structure with Final Study Labels

Figure 1. Schematic representation of the multilevel data structure used in CORMeta

3. Application Architecture and Design

3.1. Overview of the Shiny App Framework

The CORMeta application was developed using the Shiny web framework for R, which facilitates the creation of interactive, browser-based tools. Shiny allows reactive programming and dynamic UI rendering, enabling users to upload data, adjust parameters, and view real-time outputs without requiring any programming expertise. This architecture was chosen to maximize accessibility for clinician-researchers who may not have experience with statistical software or coding. The app runs entirely in the browser, either via a hosted web server or locally, and does not require users to install R or other dependencies.

3.2. Backend Libraries Used

The core analytical engine of the application builds upon the widely used metafor package in R, which offers flexible modeling of complex random-effects structures, REML estimation, and forest plot visualization. To accommodate correlated outcomes within cohorts, we extended metafor's functionality by incorporating methodology described in Akkaya Hocagil et al. (2022), enabling hierarchical multivariate meta-analysis with user-specified correlation structures ⁵.

Additional libraries such as 'shinyWidgets', 'DT', and 'ggplot2' are used for enhancing user interface components, data tables, and graphics respectively. These packages enable seamless interaction and customization, even for users unfamiliar with R.

3.3 User Workflow and Application Guidance

Clinical studies frequently assess multiple outcomes within the same group of participants. For example, in studies of child neurodevelopment, researchers may evaluate several domains such as language, motor skills, and cognitive function each assessed using multiple standardized tests. These outcomes are inherently correlated, as they are measured on the same individuals and often reflect overlapping constructs.

CORMeta is specifically designed to handle this type of complex, multilevel data structure. The tool assumes and accommodates the following hierarchy:

- 1. Study Level (e.g., S_1 to S_6): Each study or cohort includes participants assessed under a common study protocol.
- 2. Domain Level (e.g., Language, Motor, Cognitive): Within each study, outcomes are organized into broader conceptual domains.
- 3. Test Level (e.g., Test₁ to Test₂₀): Each doma-

Table 1. Structure of the Summary Dataset Used in the CORMeta application

cohort_new	domain	dependent	age	beta_alcohol	se_beta
Study_1	Language	Test_1	7	-0.011	0.163
Study_1	Language	Test_18	5	0.747	0.144
Study_1	Motor	Test_20	6	0.121	0.271
Study_1	Motor	Test_8	7	0.892	0.284
Study_2	Language	Test_4	5	-1.507	0.199
Study_2	Language	Test_9	5	-0.204	0.299
Study_2	Motor	Test_16	5	-0.318	0.202
Study_2	Motor	Test_2	6	-0.991	0.278
•	•				
		•			
		•			

in contains specific outcome measures or tests (e.g., vocabulary comprehension for language, reaction time for motor skills).

4. Correlation Structure: Outcome measures within the same domain and study are typically correlated, as they are administered to the same participants and assess related aspects of development. CORMeta explicitly models this correlation structure, leading to more accurate effect estimates and confidence intervals.

To operationalize this hierarchical data structure within the CORMeta application (Figure 1), users follow a structured workflow that mirrors the organization of their dataset. The interface is designed to guide users through each step of the analysis process—beginning with uploading properly formatted data and continuing through model specification, correlation handling, and result interpretation. Below, we outline the key steps for preparing and analyzing your data using the application.

Step 1: Upload Summary Data

Users begin by uploading a .csv file containing study-level summary data (Table 1). The dataset must include the following columns:

- Effect Size Estimates: A column containing regression coefficients or other effect size estimates (e.g., beta_alcohol).
- Standard Errors: A corresponding column with the standard errors of the effect sizes (e.g., se_beta).
- Study Identifier: A column indicating the study or cohort from which each estimate originates (e.g., cohort_new).
- Outcome Label: A column specifying the outcome measure or domain being assessed (e.g., domain or dependent_label_new).

Each row represents a single outcome measured within a study cohort. The dataset includes the study identifier (cohort_new), outcome domain (e.g., language, motor, cognitive), specific test name (de-

pendent), participant age at assessment, estimated effect size (beta_alcohol) for prenatal alcohol exposure, and its associated standard error (se_beta). Multiple outcomes from different domains are often reported within the same cohort, reflecting the hierarchical structure of the data. Once the file is uploaded, the application automatically detects all column names for use in subsequent steps.

Step 2: Specify Column Names

Using the dropdown menus, users select the appropriate column names corresponding to:

- Effect size (Select Effect Size Column)
- Standard error (Select Standard Error Column)
- Study/Cohort ID (Select Study ID Column)

These menus are dynamically populated based on the uploaded dataset, reducing the risk of typos and promoting flexibility across datasets with varying column names.

Step 3: Upload or Generate Correlation Matrix

If available, users can upload a pre-computed residual correlation matrix (e.g., derived from model residuals). Alternatively, the user can generate a study-aware dummy correlation matrix using a predefined or manually selected value of ρ (residual correlation), based on common scenarios ^{7,8} such as:

- Surrogate endpoints ($\rho = 0.1$)
- Psychological test scores (p = 0.5)
- Longitudinal repeated measures ($\rho = 0.8$)
- Independent outcomes ($\rho = 0$)

After selecting an appropriate correlation profile, clicking the "Generate Dummy Correlation Matrix" button creates a block-diagonal matrix that assumes constant residual correlations within each cohort and independence between cohorts. This matrix can be previewed and downloaded for verification or further refinement. The flexibility to specify or simulate within-study correlations ensures that the meta-analytic model appropriately accounts for outcome dependency, avoiding biases and overcon-

fident inferences that arise when correlations are ignored.

Step 4: Optional Subgroup Analysis

Users may optionally perform subgroup analyses by selecting a variable from the *Subgroup Analysis By* dropdown menu. Based on the chosen variable type, the application dynamically displays appropriate filtering controls—such as a range slider for continuous variables or a checkbox selector for categorical variables—allowing users to restrict the analysis to a specific subset of the data.

Figure 2. Screenshot of the CORMeta user interface during Step 2.

CORMeta: Meta-analysis of Correlated Outcomes To get started, you can either upload your own summary dataset as a .csv file, or download and use the example dataset by clicking the 'Download Sample Data' button above. Then upload it below to run the analysis. 🚣 Download Sample Data Jpload Summary Data (.csv) Browse... No file selected Select Standard Error Colum Select Study ID Column: Select p Profile: You selected 'Custom'. Please upload your Set o (Residual Correlation): 0 Upload Correlation Matrix (.csv) No file selected ▲ Download Generated R Subgroup Analysis By: dependent can run a subgroup analysis by selecting a variable and either a numeric range or category Categories: Run Meta-Analysis 🕹 Download Results 🕹 Download Forest Plot (PNG)

Users assign column roles using dropdown menus that are automatically populated based on the uploaded dataset. This design minimizes user error and allows flexibility in handling datasets with diverse naming conventions.

Step 5: Run Meta-Analysis

After defining the inputs, the user initiates the meta-analysis by clicking Run Meta-Analysis. The app executes the modified multivariate meta-analytic model, accounting for the correlation structure and study identifiers as described in Section 3.

Step 6: Review and Download Results

Upon completion, the application displays:

- A forest plot summarizing the pooled effect
- A data table of the included studies and parameters
- A printed summary of key statistics, including:
- Pooled estimate (μ)
- Standard error (SE)
- Between-study variance (τ²)
- P-value

Results can be exported as an Excel workbook containing both the input data and the statistical summary using the Download Results button. Users can also download the forest plot as png file.

4. Demonstration: Case Example

4.1. Description of Demonstration Dataset

To demonstrate the functionality of the application, we generated a simulated dataset that mimics real-world cohort studies examining the association between prenatal alcohol exposure and neurodevelopmental outcomes in children. The simulated data reflect the typical structure of such studies, including:

Multiple correlated neurodevelopmental outcomes (e.g., cognitive, motor, language),

Binary exposure variable (prenatal alcohol exposure: exposed vs. unexposed),

Several cohorts contributing data, each with unique sample sizes and measurement variability,

A shared latent structure where all outcomes reflect an underlying neurodevelopmental construct influenced by exposure.

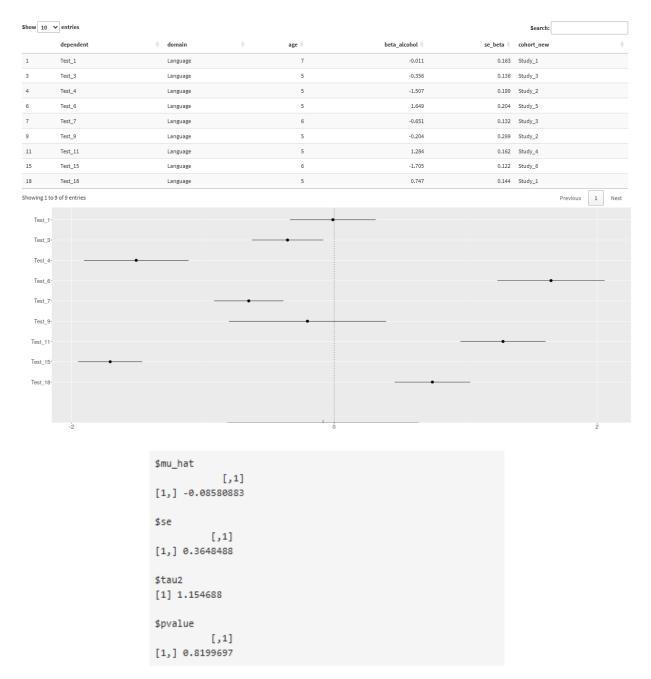
4.2. Analytical Setup

Users selected three neurodevelopmental out-comes—cognitive, motor, language domains—for analysis. For each cohort, effect estimates and asso-

ciated standard errors were derived from regression models examining the association between prenatal alcohol exposure and each outcome given all potential confounders. These estimates reflect adjusted regression coefficients (e.g., from linear models), accounting for relevant covariates within each study. Because multiple outcomes were measured on the same individuals within each cohort, the estimates are likely correlated. To account for this within-study correlation structure, users can specify or upload a correlation matrix, enabling multivariate meta-analysis that appropriately pools effects across outcomes and cohorts.

4.3. Interpretation of Output

The application generated pooled effect size estimates for each outcome, along with 95% confidence intervals and τ^2 heterogeneity statistics. The forest plot provided a clear visual summary of the effect sizes, illustrating both individual study estimates and the overall pooled estimate for each outcome. The results revealed moderate negative associations between prenatal alcohol exposure and all three outcomes, with the largest effect observed in expressive language. Heterogeneity was moderate across outcomes, indicating variation in effect sizes that was partially explained by cohort-level differences.


4.3. Example Forest Plot and Heterogeneity Results

Each dot represents the estimated regression coefficient for the association between prenatal alcohol exposure and a specific neurodevelopmental test (e.g., Test_1, Test_3, Test_4, etc.). Horizontal lines denote the 95% confidence intervals, while the vertical dashed line at zero represents the **null** hypothesis of no effect.

Most of the CIs span the null value, suggesting that the estimated associations are not statistically significant at the 0.05 level. Notably, no test shows a confidence interval that is clearly separated from zero, indicating limited evidence of a consistent effect of prenatal alcohol exposure across the evaluated outcomes (Figure 3).

The pooled estimate of the effect was:

Figure 3. Forest plot and summary statistics generated by the CORMeta application.

In Figure 3, the upper panel shows the study-level data table and resulting forest plot for 10 language domain outcomes across multiple cohorts. Each point represents the estimated effect of prenatal alcohol exposure on the respective test, with horizontal lines denoting 95% confidence intervals. The lower panel presents the pooled effect size estimate (μ), standard error (SE), between-study variance (τ^2), and p-value derived from the multivariate meta-analytic model.

- Mean estimate (μ): -0.086
- Standard error (SE): 0.364
- Between-study variance (τ²): 1.15
- P-value: 0.820

These findings indicate substantial heterogeneity across outcomes, reflected in the large τ^2 value

and variable CI widths. The results highlight the value of using a multivariate meta-analytic approach that accounts for correlations among outcomes and between-study variability. Despite the nonsignificant overall effect, this approach provides more efficient and nuanced insight than a series of univariate models.

5. Discussion

This paper presents a web-based application, CORMeta, designed to perform multivariate meta-analyses of correlated outcomes, addressing a critical gap in usability for clinician-researchers. While multivariate models are well established in statistical literature, their adoption in clinical research has been limited by accessibility barriers, particularly the requirement for programming expertise and manual data formatting. By integrating these models into a Shiny interface, we allow users to use advanced meta-analytic methods and we promote default values, informed by prior literature methodological rigor in evidence synthesis.

The primary innovation lies in the application's ability to handle outcome correlations that arise when multiple endpoints are measured within the same study population. Failure to account for these correlations can lead to underestimated standard errors, inflated precision, and potentially misleading inferences ^{11, 12}. Our framework addresses this by allowing users to input custom correlation matrices or apply empirically derived default structures, enabling flexibility while preserving statistical validity.

The demonstration using neurodevelopmental outcomes following prenatal alcohol exposure illustrates how outcome domains with known correlation (e.g., language and cognition) can be simultaneously modeled, yielding pooled estimates that better reflect underlying study heterogeneity. This is especially relevant in pediatrics, neurology, and psychiatry, where multidimensional assessments are standard practice.

Despite its strengths, the application has limitations. It currently supports only continuous outcomes and assumes homogeneity of correlation structures across studies when automatic estimation is used. Additionally, while subgroup analysis is supported, users should be cautious of overfitting or sparsity when performing subgroup analyses. Future updates may incorporate Bayesian estimation, imputation of missing data, and support for binary or time-to-event outcomes to expand functionality.

6. Conclusion

We developed and validated an open-access, clinician-friendly Shiny application that enables multivariate meta-analyses of correlated outcomes. By removing the need for programming knowledge and providing real-time visualization and customization, the app supports clinician-researchers in conducting more accurate and transparent evidence syntheses. This tool is particularly valuable in multi-domain or multi-cohort studies where statistical dependencies among outcomes are non-negligible. We encourage the research community to adopt, adapt, and contribute to the tool as part of broader efforts to enhance methodological accessibility in clinical research.

Acknowledgements: The author would like to express their sincere gratitude to Joseph L. Jacobson, and Sandra W. Jacobson for their valuable contributions to the conceptualization of this work. The idea for the CORMeta application originated from a project in which they served as Principal Investigators. Their insightful feedback on the functionality and usability of the tool greatly informed its development.

Author Contributions: Concept: T.A.H., Design: T.A.H., Data Collection or Processing: T.A.H., Analysis or Interpretation: T.A.H., Literature Search: T.A.H., Writing: T.A.H. **Conflict of Interest Statement:** The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

- Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481-98.
- 2. Cheung MWL. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol Rev. 2019;29(3):387-96.
- 3. Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39-65.
- Van den Noortgate W, López-López JA, Marín-Martínez F, et al. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45(2):576-94.
- 5. Hocagil TA, Ryan LM, Cook RJ, et al. A hierarchical meta-analysis for settings involving multiple outcomes across multiple cohorts. Stat (Int Stat Inst). 2022;11(1):e462.
- 6. Riley RD, Thompson JR, Abrams KR. An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics. 2008;9(1):172-86.

- 7. Daniels MJ, Hughes MD. Meta-analysis for the evaluation of potential surrogate markers. Stat Med. 1997;16(17):1965-82.
- 8. Riley RD, Abrams KR, Lambert PC, et al. An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. Stat Med. 2007;26(1):78-97.
- 9. Langan D, Higgins JP, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2019;10(1):83-98.
- $10. \ Vie cht bauer \ W. \ Conducting \ meta-analyses \ in \ R \ with \ the \ meta for \ package. \ J \ Stat \ Softw. \ 2010; 36(3):1-48.$
- 11. Gleser LJ, Olkin I. Stochastically dependent effect sizes. In: Cooper H, Hedges LV, Valentine JC, editors. The handbook of research synthesis and meta-analysis. 2nd ed. New York: Russell Sage Foundation; 2009. p.357-76.
- 12. Riley RD, Price MJ, Jackson D, et al. Multivariate meta-analysis using individual participant data. Res Synth Methods. 2015;6(2):157-74.