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Department of Mathematics, Faculty of Science, Istanbul University, Istanbul, Türkiye

Article Info

Keywords: Differential games, Pursuit-
Evasion, Time-Dependent observer,
Time-Optimal control
2020 MSC: 49K15, 49N70, 49N75
Received: 15 July 2025
Accepted: 15 September 2025
Available online: 2 October 2025

Abstract

Optimal control problems under incomplete information, particularly in pursuit-evasion
scenarios, present significant mathematical challenges. This study extends a basic time-
optimal pursuit-evasion game by introducing a time-dependent observer parameter, λ (t),
which enhances the model’s realism without altering the fundamental control strategy. We
derive an optimal control law for the pursuer, based on current observations, and explicitly
calculate the minimum capture time for a piecewise constant λ (t). This work provides
an analytical framework for managing uncertainty in dynamic environments, with direct
applications in robotics, autonomous navigation, and search-and-rescue operations.

1. Introduction

Optimal control problems involving incomplete information frequently lead to intricate mathematical formulations, making their resolution
highly challenging. A practical approach to addressing these complexities is to examine specific instances that reveal fundamental principles
and have real-world applicability. One such instance is the pursuit-evasion differential game, where a pursuer aims to capture an evader while
possessing only limited information about the evader’s precise location. In this context, the evader’s possible location is constrained within a
defined set, which shrinks as the pursuer approaches. This paper extends this fundamental problem by introducing a time-dependent observer
parameter, λ (t). This generalization enhances the model’s realism and complexity, allowing for scenarios where observation quality varies
over time, without altering the core analytical solution strategy. Our primary contribution is the derivation of an optimal control strategy that
guarantees capture under this dynamic information constraint, and the explicit calculation of the minimum capture time for a piecewise
constant λ (t).

The pursuit-evasion problem remains an area of significant theoretical and practical interest, yet it lacks a fully comprehensive solution,
particularly when synthesizing optimal control strategies based on state-dependent rather than purely time-dependent variables. Such
requirements inherently complicate the problem, making its resolution non-trivial. These challenges are relevant to various real-world
applications, including robotics, autonomous navigation, military strategy, and search-and-rescue operations, where agents must operate
effectively despite imperfect and evolving information about their targets.

Many studies have addressed differential games, with pursuit-evasion serving as a key case. The foundational work of Isaacs [1] provides
a wealth of examples that illustrate core theoretical challenges and solution strategies within this domain. Additional contributions from
Pontryagin et al. [2], Krasovskii and Subbotin [3], and Friedman [4] have further expanded the understanding of pursuit-evasion dynamics,
particularly under constraints imposed by incomplete information. The analytical framework of this paper is heavily inspired by foundational
studies on pursuit-evasion under incomplete information, particularly the pivotal works by Pshenichnyi and Ostapenko [5], Kuntsevich
and Pshenichnyi [6], and Pshenichnyi [7]. Moreover, recent studies have explored multi-agent pursuit strategies, as seen in the works of
Huang et al. [8] and Garcia et al. [9], while Kurzhanski [10] investigated coordinated control of a flock of systems performing joint motion
under collision avoidance constraints. Expanding on these foundational studies, Samatov [11] has examined pursuit-evasion problems where
pursuer controls are subject to both integral and geometric constraints, developing a parallel pursuit strategy and extending the work of
Isaacs and other researchers. Beyond these, complex differential game formulations, such as those involving feedback control of constrained
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parabolic systems under uncertainty, have also been explored, notably by Mordukhovich and Seidman [12], who formalized these as minimax
problems reduced to asymmetric games. Similarly, related stabilization problems have been addressed for nonlinear systems with discrete
controls under disturbance conditions by Shchelchkov [13]. These advancements have contributed to both the theoretical refinement and
practical applicability of pursuit-evasion games.

This paper aims to establish a mathematical framework for a basic pursuit-evasion game under time-varying incomplete information. By
examining how the pursuer’s knowledge of the evader’s position evolves with a dynamic observer parameter, we seek to derive an optimal
control strategy that effectively manages uncertainty and provides a clear, calculable capture time.

2. Problem Statement

In what follows we will work in the Euclidean space Rn. Given x = (x1,x2, . . . ,xn) ∈Rn and y = (y1,y2, . . . ,yn) ∈Rn, the inner product of x
and y is defined by

⟨x,y⟩=
n

∑
i=1

xiyi,

the Euclidean norm of x = (x1,x2, . . . ,xn) ∈ Rn, denoted by ∥x∥, is the standard norm in Euclidean space and is given by

∥x∥=
√

⟨x,x⟩=
√

x2
1 + x2

2 + · · ·+ x2
n.

We begin by examining a basic pursuit-evasion scenario described as follows. Let x ∈ Rn denote the state of the pursuer P, whose motion is
governed by the differential equation given below.

ẋ = u, ∥u∥ ≤ 1,

where the dot represents the time derivative, and u is the control input that governs the motion of the pursuer P. The evader E with coordinates
y ∈ Rn is at an unknown but fixed position. At each moment in time t, the pursuer P receives an observation w rather than the exact
coordinates of the evader E. This observation satisfies the following inequality

∥y−w(t)∥ ≤ λ (t)∥x(t)− y∥, 0 < λ (t)< 1, (2.1)

where y represents the position of the evader E, x(t) is the position of the pursuer P, and the observer parameter λ (t) is a piecewise continuous
function of time t such that 0 < λ (t)< 1 for all t ≥ 0.

We aim to construct a control law u(t) for the pursuer P, relying solely on its current position and past observations, that drives the system to
the terminal condition x(T ) = y in the least possible time. Thus, the optimization problem can be formulated as follows

min
u(·)

T

subject to the constraints

ẋ(t) = u(t), ∥u(t)∥ ≤ 1, t ≥ 0

∥y−w(t)∥ ≤ λ (t)∥x(t)− y∥, 0 < λ (t)< 1

x(0) = x0

x(T ) = y for some T > 0,

where x(t) and y represent the positions of the pursuer P and the evader E, respectively, u(t) is the control input for P and satisfies the
constraint ∥u(t)∥ ≤ 1, w(t) represents the observation made by P, with an error bound given by λ (t). The objective is to minimize the
capture time T , i.e., to find the smallest T such that x(T ) = y. In the following, we use x(t), y, w(t) to represent the current positions of P
and E, and the observation at time t, respectively.

For the purpose of this extended problem, we propose a piecewise constant form for λ (t)

λ (t) =

{
λ1 if 0 ≤ t < ts
λ2 if t ≥ ts,

(2.2)

where λ1,λ2 are constant values satisfying 0 < λ1 < 1 and 0 < λ2 < 1, and ts > 0 is a specific switching time. This switching time ts
can represent various practical events, such as a change in the pursuer’s sensor mode, a shift in environmental conditions (e.g., entering a
high-interference zone), or the activation of an alternative observation system. It allows the model to capture dynamic changes in information
quality over time. This piecewise constant form is chosen as it provides an analytically tractable model that effectively captures scenarios
involving sudden shifts in observation quality, serving as a foundational case for more complex, continuously varying functions.
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3. Main Results

In this section, we present the core results of our analysis. We begin by examining the observer relationship, which plays a central role in
linking observed data to actual positions in the system. In particular, we derive and interpret key inequalities that quantify the uncertainty
and provide bounds on the evader’s true position based on observations. These results, together with the functions introduced below, serve as
essential tools for characterizing the system’s dynamics, operational constraints, and optimization objectives.
We begin by analyzing the observer relationship given in equation (2.1). Applying the triangle inequality and the properties of norms, we
obtain

∥y−w∥ ≤ λ (t)∥x− y∥= λ (t)∥(x−w)+(w− y)∥ ≤ λ (t)∥x−w∥+λ (t)∥w− y∥.

Rearranging the terms, this leads to the following upper bound

∥y−w∥ ≤ λ (t)
1−λ (t)

∥x−w∥. (3.1)

This inequality indicates that the discrepancy between the evader’s true position y and the observed position w is upper-bounded by a scaled
measure of the distance between the pursuer x and w. This formulation provides a means to quantify the uncertainty associated with y relative
to both w and x.

Using norm properties,

λ (t)∥x− y∥ ≥ ∥w− y∥= ∥(w− x)− (y− x)∥ ≥ ∥w− x∥−∥y− x∥,

so that

∥y− x∥ ≥ 1
1+λ (t)

∥w− x∥. (3.2)

This inequality establishes that the true distance between the pursuer x and the evader y is bounded below by a fixed fraction of the distance
between x and the observed location w. This serves as a lower bound on the evader’s proximity to the pursuer in the presence of observation
uncertainty.

Let u(t) be a control determined by the trajectory x(t) and observation w(t). Then for all t ≥ 0, (3.1) yields:

∥y−w(t)∥ ≤ λ (t)
1−λ (t)

∥x(t)−w(t)∥.

In order to precisely characterize the system’s dynamics, the constraints under which it operates, and the objectives we aim to optimize, we
define the following functions [6]. Let Ω denote any compact set in Rn and x,y,z ∈ Rn.

γΩ(x,z) =
RΩ(z)
∥z− x∥

, RΩ(z) = max
y∈Ω

∥y− z∥,

where RΩ(z) is defined as the radius of the smallest enclosing ball centered at z that fully covers Ω.

Lemma 3.1. Let Ω be any compact set in Rn and x,z ∈ Rn. If γΩ(x,z)< 1, the following inequality is satisfied for every y ∈ Ω

⟨ y− x
∥y− x∥

,
z− x

∥z− x∥
⟩ ≥

√
1− γ2

Ω
(x,z). (3.3)

Proof. For any x,z ∈ Rn and y ∈ Ω we have the following identity

∥y− z∥2 = ∥(y− x)− (z− x)∥2 = ∥y− x∥2 −2⟨y− x,z− x⟩+∥z− x∥2.

Hence

2⟨ y− x
∥y− x∥

,
z− x
∥z− x∥

⟩= ∥y− x∥
∥z− x∥

+
∥z− x∥
∥y− x∥

− ∥y− z∥2

∥z− x∥∥y− x∥

=
∥y− x∥
∥z− x∥

+
∥z− x∥
∥y− x∥

(
1− ∥y− z∥2

∥z− x∥2

)
≥ ∥y− x∥

∥z− x∥
+

∥z− x∥
∥y− x∥

(
1−

(maxy∈Ω ∥y− z∥)2

∥z− x∥2

)

=
∥y− x∥
∥z− x∥

+
∥z− x∥
∥y− x∥

(
1− (RΩ(z))2

∥z− x∥2

)
.

Let us now define α =
∥z−x∥
∥y−x∥ , then we have the following inequality,

2⟨ y− x
∥y− x∥

,
z− x
∥z− x∥

⟩ ≥ 1
α
+α(1− γ

2
Ω(x,z)). (3.4)
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We seek to minimize the right-hand side of inequality (3.4) over all α > 0,

d
dα

(
1
α
+α(1− γ

2
Ω(x,z))

)
= 0,

− 1
α2 +1− γ

2
Ω(x,z) = 0.

Hence, taking into account that γΩ(x,z)< 1 is given in the lemma’s statement, we have α = 1√
1−γ2

Ω
(x,z)

. So, we obtain

min
α>0

(
1
α
+α(1− γ

2
Ω(x,z))

)
= 2
√

1− γ2
Ω
(x,z).

Therefore, we have the following inequality from (3.4)

2⟨ y− x
∥y− x∥

,
z− x
∥z− x∥

⟩ ≥ 1
α
+α(1− γ

2
Ω(x,z))≥ 2

√
1− γ2

Ω
(x,z).

Thus, the desired inequality (3.3) has been demonstrated.

It is important to observe that Lemma 3.1 provides a lower bound on the cosine of the angle between the vectors (y− x) and (z− x), where
the bound is determined by the value of γΩ(x,z). The existence of a lower bound for the cosine indicates that the angle between the vectors
(y− x) and (z− x) is within a specific range. In particular, this angle must be an acute angle (less than 90 degrees) because the cosine value
is positive or close to zero. This implies that the points y and z are ”close“ to each other relative to point x. In other words, when viewed
from point x, points y and z are located close to each other. This situation helps us understand how the distance between y and z changes
depending on x. Specifically, it allows us to analyze the relationship and distance between y and z as point x changes.

Theorem 3.2. If the observer parameter λ (t) in equation (2.1) satisfies the condition

0 < λ (t)< 1 for all t ≥ 0,

then the control based on the current observation, given by

u(t) =
w(t)− x(t)
∥w(t)− x(t)∥

, (3.5)

guarantees the capture of the evader. The capture is ensured by a time T ≤ T0, where T0 represents a guaranteed upper bound on the capture
time for the proposed control strategy, and is implicitly defined as the smallest positive time satisfying the integral equation∫ T0

0

√
1−λ (t)2dt = ∥x(0)− y∥.

Proof. Let us calculate the following derivative, which is critical in determining how to choose u(t) to ensure pursuer P catches evader E as
quickly as possible

d
dt

∥y− x(t)∥=
⟨y− x(t), d

dt (y− x(t))⟩
∥y− x(t)∥

=
⟨y− x(t),−ẋ(t)⟩

∥y− x(t)∥

=−⟨ y− x(t)
∥y− x(t)∥

,u(t)⟩. (3.6)

To prove the theorem, it suffices to show that the controls from (3.5) satisfy

⟨ y− x(t)
∥y− x(t)∥

,u(t)⟩ ≥
√

1−λ (t)2

for all admissible y, where (3.5) depends only on observations at time t. By Lemma 3.1, if u(t) is chosen to point in the direction of some
z ∈ Ω such that

γΩ(x(t),z) =
RΩ(z)

∥x(t)− z∥
< 1,

then we have, for all y ∈ Ω,

⟨ y− x(t)
∥y− x(t)∥

,
z− x(t)
∥z− x(t)∥

⟩ ≥
√

1− γΩ(x(t),z)2.

Thus, taking u(t) = z−x(t)
∥z−x(t)∥ ensures the required inequality.

Now, let us transform the initial observation inequality (2.1) as shown in [5]. The inequality ∥w− y∥ ≤ λ (t)∥y− x∥ is equivalent to the
inequality ∥y−a∥ ≤ R, where

a = x+
w− x

1−λ (t)2 and R =
λ (t)

1−λ (t)2 ∥w− x∥. (3.7)
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This transformation defines a ball centered at a with radius R that contains the evader’s true position y. Let’s define the set Ω as this ball
Ω = {y : ∥y−a∥ ≤ R}. Now, we apply Lemma 3.1 by setting x in Lemma 3.1 to x(t) (the pursuer’s current position), z in Lemma 3.1 to a(t)
(the center of the uncertainty ball at time t) and Ω in Lemma 3.1 to the ball defined by (3.7).

We begin by computing RΩ(a(t)), defined as the radius of the smallest enclosing ball centered at a(t) containing the set Ω. Since Ω itself is a
ball centered at a(t) with radius R(t), we have RΩ(a(t)) = R(t).

Next, we calculate γΩ(x(t),a(t))

γΩ(x(t),a(t)) =
RΩ(a(t))

∥x(t)−a(t)∥
=

R(t)

∥x(t)−
(

x(t)+ w(t)−x(t)
1−λ (t)2

)
∥
=

λ (t)
1−λ (t)2 ∥w(t)− x(t)∥∥∥∥−w(t)−x(t)

1−λ (t)2

∥∥∥
=

λ (t)
1−λ (t)2 ∥w(t)− x(t)∥

1
1−λ (t)2 ∥w(t)− x(t)∥

= λ (t).

Since the condition for Lemma 3.1 is γΩ(x,z) < 1, and we have derived γΩ(x(t),a(t)) = λ (t), the condition for the theorem becomes
λ (t)< 1, which is given in the problem statement (2.1).

Now, applying Lemma 3.1 with z = a(t) and γΩ(x(t),a(t)) = λ (t)

⟨ y− x(t)
∥y− x(t)∥

,
a(t)− x(t)
∥a(t)− x(t)∥

⟩ ≥
√

1−λ (t)2.

From the definition of a(t) in (3.7), we have a(t)− x(t) = w(t)−x(t)
1−λ (t)2 . Since 1−λ (t)2 > 0, the vector a(t)−x(t)

∥a(t)−x(t)∥ is in the same direction as
w(t)−x(t)

∥w(t)−x(t)∥ . Therefore, the control strategy u(t) = w(t)−x(t)
∥w(t)−x(t)∥ is equivalent to u(t) = a(t)−x(t)

∥a(t)−x(t)∥ . Substituting this into the inequality from
Lemma 3.1

⟨ y− x(t)
∥y− x(t)∥

,u(t)⟩ ≥
√

1−λ (t)2.

This inequality shows that the rate of change of the distance between the pursuer and evader, as given by (3.6), is bounded

d
dt

∥y− x(t)∥=−⟨ y− x(t)
∥y− x(t)∥

,u(t)⟩ ≤ −
√

1−λ (t)2.

Since λ (t)< 1,
√

1−λ (t)2 is a positive value. This implies that the distance ∥y−x(t)∥ decreases at a rate of at least
√

1−λ (t)2. Integrating
this inequality, we find that the distance will reach zero in a time T such that∫ T

0

d
dt

∥y− x(t)∥dt ≤
∫ T

0
−
√

1−λ (t)2dt

∥y− x(T )∥−∥y− x(0)∥ ≤ −
∫ T

0

√
1−λ (t)2dt.

In order to achieve capture, it is required that ∥y− x(T )∥= 0. Thus

0−∥y− x(0)∥ ≤ −
∫ T

0

√
1−λ (t)2dt

−∥y− x(0)∥ ≤ −
∫ T

0

√
1−λ (t)2dt

which implies

∥y− x(0)∥ ≥
∫ T

0

√
1−λ (t)2dt.

The minimum capture time T0 is implicitly defined as the smallest value of T for which the corresponding inequality holds with equality. We
now proceed to compute T0 explicitly, based on the piecewise constant function λ (t) introduced in (2.2). The evaluation of the integral∫ T0

0

√
1−λ (t)2 dt depends on whether T0 is less than or greater than ts.

Case 1: The capture occurs at or before ts (T0 ≤ ts)
In this case, λ (t) = λ1 for all t. The integral becomes∫ T0

0

√
1−λ (t)2dt =

∫ T0

0

√
1−λ 2

1 dt =
√

1−λ 2
1 T0.

Setting this equal to ∥x(0)− y∥ √
1−λ 2

1 T0 = ∥x(0)− y∥.
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Thus, the capture time T0 is given by

T0 =
∥x(0)− y∥√

1−λ 2
1

.

This solution is valid if the calculated T0 ≤ ts.

Case 2: Capture occurs after ts (T0 > ts)
In this case, the integral must be split into two parts∫ T0

0

√
1−λ (t)2dt =

∫ ts

0

√
1−λ 2

1 dt +
∫ T0

ts

√
1−λ 2

2 dt

=
√

1−λ 2
1 ts +

√
1−λ 2

2 (T0 − ts).

Setting this equal to ∥x(0)− y∥

∥x(0)− y∥=
√

1−λ 2
1 ts +

√
1−λ 2

2 (T0 − ts).

Solving for T0

∥x(0)− y∥−
√

1−λ 2
1 ts =

√
1−λ 2

2 (T0 − ts)

T0 − ts =
∥x(0)− y∥−

√
1−λ 2

1 ts√
1−λ 2

2

T0 = ts +
∥x(0)− y∥−

√
1−λ 2

1 ts√
1−λ 2

2

.

This solution is valid if the calculated T0 > ts.

The actual capture time T0 will be the minimum of these two possibilities, depending on the initial distance ∥x(0)− y∥ and the switching
time ts.

4. Illustrative Example: Planar Visualization

To provide a clearer understanding of the problem’s geometry and the interaction dynamics, we present a numerical example in a two-
dimensional plane (n = 2). This example is designed to illustrate the application of the proposed methodology and to analyze the sensitivity
of the optimal solution to key parameters.

Example 4.1. The evader is assumed to maintain a fixed position at (5,3). The pursuer begins its trajectory from an initial position of (0,0).
The control constraints and game dynamics are influenced by the observer parameters

λ (t) =

{
0.3 if 0 ≤ t < 5
0.8 if t ≥ 5,

where the switching time ts is set to 5 seconds, and the capture tolerance, defining the proximity required for successful capture, is 0.1 units.
Numerical simulations are conducted with a time step dt = 0.01 seconds.

The results of the simulation for the defined problem setup are visualized in Figure 4.1 below. The capture occurred in T0 = 5.86 seconds,
with the final position of the pursuer being (4.93,2.93). Figure 4.1 was generated using Python.
The parameter λ (t) plays a significant role in the problem formulation by influencing the optimal time T0. Table 4.1, generated using Python,
demonstrates how the value of T0 changes in response to variations in the parameters λ1, λ2, and the switching time ts, providing insights
into the sensitivity of the optimal solution to these critical factors.

Index λ1 λ2 ts Capture Time (s)
0 0.3 0.5 2.0 5.88
1 0.3 0.5 5.0 5.81
2 0.3 0.8 2.0 6.11
3 0.3 0.8 5.0 5.86
4 0.6 0.5 2.0 5.97
5 0.6 0.5 5.0 5.99
6 0.6 0.8 2.0 6.16
7 0.6 0.8 5.0 6.06

Table 4.1: Capture times for various combinations of λ1, λ2, and ts
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Figure 4.1: Simulation of the Problem for n = 2

As observed from Table 4.1, the capture time T0 is sensitive to the variations in λ1, λ2, and ts. Specifically, an increase in either λ1 or λ2
generally leads to an increase in the capture time T0. For instance, comparing Index 0 (λ1 = 0.3,λ2 = 0.5, ts = 2.0,T0 = 5.88) with Index
2 (λ1 = 0.3,λ2 = 0.8, ts = 2.0,T0 = 6.11), an increase in λ2 results in a longer capture time. Similarly, comparing Index 0 with Index 4
(λ1 = 0.6,λ2 = 0.5, ts = 2.0,T0 = 5.97), an increase in λ1 also leads to a slightly longer T0.

Regarding the switching time ts, its effect on T0 is not consistently monotonic and appears to depend on the specific values of λ1 and
λ2. For example, when comparing Index 2 (λ1 = 0.3,λ2 = 0.8, ts = 2.0,T0 = 6.11) with Index 3 (λ1 = 0.3,λ2 = 0.8, ts = 5.0,T0 = 5.86),
a longer ts significantly reduces T0. However, in contrast, comparing Index 4 (λ1 = 0.6,λ2 = 0.5, ts = 2.0,T0 = 5.97) with Index 5
(λ1 = 0.6,λ2 = 0.5, ts = 5.0,T0 = 5.99), an increase in ts leads to a slight increase in T0. These observations highlight the complex interplay
between the control parameters and the game’s outcome, underscoring the importance of their careful selection in optimizing pursuit
strategies.

5. Materials and Methods

This section details the theoretical foundations and computational approaches employed in this study to analyze and solve the time-optimal
pursuit-evasion game with a time-dependent observer parameter.

5.1. Theoretical framework

The core of our methodology is grounded in the principles of optimal control theory and differential games. The problem is formulated as a
time-optimal control task, with the primary objective of minimizing the capture time T0.

Our analysis begins with a rigorous examination of the observer relationship expressed in inequality (2.1). By employing the triangle
inequality and properties of norms, we derive both upper and lower bounds on the evader’s true position relative to the observed data and
the pursuer’s location, as shown in equations (3.1) and (3.2). This treatment follows the methodology established by Pshenichnyi and
Ostapenko [5]. Complementing this, Lemma 3.1 provides a key geometric characterization by establishing a lower bound on the cosine of
the angle between pertinent vectors, which plays a vital role in quantifying uncertainty and understanding the spatial relationship between the
agents. Finally, Theorem 3.2 delivers the derivation of the optimal control law for the pursuer, which is based on the current observation and
guarantees capture. This theorem explicitly calculates the minimum capture time T0 by integrating the rate at which the distance decreases,
taking into account the piecewise constant behavior of the observer parameter λ (t) as defined in (2.2).

5.2. Computational methods and simulation setup

Numerical simulations were conducted to illustrate the theoretical findings and to analyze the sensitivity of the capture time to various
parameters. All simulations and data visualizations were performed using Python, ensuring reproducibility and clarity of results.

The specific parameters for the numerical example in a two-dimensional plane (n = 2) are as follows: the evader’s fixed position is set at
(5,3), while the pursuer starts from the initial position (0,0). The observer parameters are chosen as λ1 = 0.3 and λ2 = 0.8 for the illustrative
example discussed in Section 4, with various combinations considered for the sensitivity analysis presented in Table 4.1. The switching time
ts is set to 5 seconds in the example, while different values (2.0 s and 5.0 s) are used during the sensitivity analysis. A capture tolerance of 0.1
units defines the maximum allowable distance for a successful capture, and a time step of dt = 0.01 seconds is employed for the numerical
integration of trajectories. It should be noted that while the theoretical framework assumes capture when the distance is exactly zero, this
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numerical tolerance is a practical necessity for simulation. This may result in a measured capture time that is marginally shorter than the
theoretical T0, but it does not materially affect the validation of the control strategy’s performance.

The simulation process involves defining the relative motion dynamics of the pursuer and the evader, implementing the derived optimal
control law for the pursuer based on the current observation and the time-dependent parameter λ (t), and numerically integrating the
differential equations governing the pursuer’s motion. Throughout the simulation, the distance between the pursuer and the evader is
continuously monitored to determine the capture time T0, which is identified when this distance falls within the specified capture tolerance.

6. Conclusion

This study extended a basic time-optimal pursuit-evasion game by incorporating a time-dependent observer parameter, λ (t), which enhances
the model’s realism in scenarios where information quality varies over time. Our primary contribution lies in the derivation of an optimal
control law for the pursuer, based solely on current observations, and the explicit calculation of the minimum capture time T0 for a piecewise
constant λ (t). This analytical framework provides a robust method for managing uncertainty in dynamic environments.

The numerical illustrations, particularly the planar visualization in Figure 4.1, effectively demonstrate the geometric aspects of the problem
and the interaction dynamics between the pursuer and the evader. The sensitivity analysis presented in Table 4.1 provides crucial insights
into how the capture time T0 is influenced by the observer parameters λ1, λ2, and the switching time ts. We observed that increasing λ1 or λ2
generally leads to a longer capture time, reflecting the increased uncertainty. Furthermore, the effect of the switching time ts on T0 was found
to be non-monotonic, indicating a complex interplay with the λ parameters and highlighting the need for careful parameter selection in
optimizing pursuit strategies. This non-monotonic relationship has a significant practical implication: for mission planning, simply extending
the duration of high-quality observation does not uniformly guarantee a faster capture; the optimal switching time is critically dependent on
the relative qualities of the two observation periods.

This work offers a rigorous analytical foundation for addressing pursuit-evasion problems under dynamic incomplete information, with direct
applicability in fields such as robotics, autonomous navigation, and search-and-rescue operations. The ability to explicitly calculate capture
times under varying observation conditions is invaluable for mission planning and real-time decision-making in uncertain environments.

Future research directions include extending the model to scenarios in which the evader possesses its own dynamics and maneuvering
capabilities, thereby allowing for the analysis of more sophisticated evasion strategies. Another avenue for exploration involves generalizing
the time-dependent observer parameter λ (t) to encompass continuously varying or stochastically evolving functions. Furthermore, a
particularly important direction for future work, as suggested by our reviewers, is the explicit extension of the derived optimal control law to
the setting of discrete-time control strategies [13]. This would involve the discretization of the system dynamics and a rigorous analysis
of convergence and stability in a discrete-time framework, making the results more directly applicable to digital control systems used in
modern robotics and autonomous navigation. In addition, incorporating practical constraints—such as fuel limitations for the pursuer or
state-dependent restrictions on both agents—would enhance the model’s applicability. Finally, the framework can be extended to multi-agent
pursuit-evasion settings, where coordination and information sharing among multiple pursuers or evaders play a critical role.
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Abstract

In this paper, optimality conditions for the Bolza problem with second-order semilinear
differential inclusions (SDFIs) and initial conditions are derived. Despite its use in applica-
tions, there are few publications on this subject, and we hope to contribute to the literature.
Locally adjoint mapping (LAM) is used to establish the adjoint discrete inclusion. Using
the equivalence relations, necessary and sufficient conditions for the discrete approxima-
tion problem are formulated. By passing to the limit, sufficient optimality conditions are
established for the optimal problem described by second-order SDFIs. Similar results for
the non-convex problem are obtained by using the local tents. We provide an example of a
semi-linear problem with initial conditions for which our results can be applied.

1. Introduction

Optimization problems involving ordinary [1–8] and partial [4,7] differential inclusions (DFIs) have been studied in several ways of approach,
especially high-order differential inclusions have been included in many studies in recent years. [5] obtains optimality conditions for the
Cauchy problem with higher order discrete and differential inclusions. Paper [2] derives conditions for second-order DFIs of the Mayer
problem.
Semilinear differential inclusions (SDFI) [6,9–12] are used to obtain models for set-valued systems that are not linear and contain uncertainty.
In particular, control problems encountered in the sciences of biology, engineering, and the environment may be represented in this way.
SDFIs are suitable for modeling systems with uncertainty, multivalence, and complex dynamics, so they can be encountered in any field
where optimization and control problems occur.
In the present paper, we obtain optimality conditions for the following second-order SDFIs problem:

minimize J[x(·)] =
1∫

0

g(x(t), t)dt +ϕ(x(1)) (1.1)

x′′(t) ∈ Ax(t)+Bx′(t)+F(x(t),x′(t)), t ∈ [0,1] (1.2)

x(0) = α0, x′(0) = α1, (1.3)

where F : R2n ⇒ Rn is a convex multivalued mapping, g(·, t) : Rn × [0,1]→ R, continuous on x a proper convex function, α0 and α1 are
constant vectors, A,B ∈ Rn×n matrices that rank{A}= n,rank{B}= n. The problem is to derive optimality conditions for the trajectory x̃(t)
that minimizes the Bolza functional J[x(·)], satisfies the second-order SDFI (1.2) in [0,1] and initial conditions (1.3). When the multi-valued
mapping and the function in the problem are non-convex, we call problem (1.1)-(1.3) a non-convex problem.
During the last decades, problems of the semilinear form have received a great deal of attention and are more concerned with the existence
results such as [11, 12].
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The paper [9], on the other hand, studies an optimal control problem with higher-order semilinear delay differential inclusions (DFI) and
obtains a sufficient optimality condition for higher-order DFIs in terms of Euler-Lagrange type adjoint DFIs and the Hamiltonian.
The paper is organized as follows. Section 2 gives the fundamental concepts such as the cone of tangent directions, local tent, locally adjoint
mapping and Hamiltonian function. In Section 3 we formulate discrete- approximation problem, give equivalence relation between locally
adjoint mappings and obtain optimality conditions for the discrete-approximate convex and non-convex problems. Finally,in Section 4,
passing to the limit, sufficient optimality conditions are established for the optimal problem described by second-order SDFIs. Similar results
for the non-convex problem are obtained by using the local tents. The results of the study will be evaluated in this section.

2. Notations and Needed Facts

The basic concepts and definitions are given below, and we recommend the book [4] for those interested in more details. Let ⟨x,y⟩ be an inner
product of elements x,y ∈ Rn, and (x,y) be a pair of x,y. The interior of subset A is denoted by intA and the relative interior of A is denoted
by riA, and consists of interior points of A with respect to its affine hull AffA. The convex cone KA(z0) is a cone of tangent directions of the
set A at a point z0 ∈ A if it consists of points z̄ that there exists a function κ(λ ) satisfying the inclusion z+λ z̄+κ(λ ) ∈ A for sufficiently
small λ > 0 and λ−1 +κ(λ )→ 0, as λ ↓ 0.
K∗ is said to be the dual cone to the convex cone K if K∗ = {x∗ ∈ Rn : ⟨x,x∗⟩ ≥ 0,∀x ∈ K}. It is not hard to see that a dual cone is convex.

Definition 2.1. [4] If the cone of tangent directions KA(x0) to a set A at the point x0 ∈ A, satisfies the following conditions
i) x̄0 ∈ riK,LinK = LinKA(x0),

ii) ψ(x̄) = x̄+ r(x̄), r(x̄)
∥x̄∥ → 0, as x̄ → 0,

iii) there exists such ε that for x̄ ∈ K ∩ (εB), the inclusion x0 +ψ(x̄) ∈ A, where B is the unit ball,
such that for each point x̄ ∈ riKA(x0) there exist a convex cone K ⊆ KA(x0) and continuous function ψ , defined in the neighborhood of the
origin, then KA(x0) is said to be a local tent.

A function g = g(x) is proper [13] if g(x)<+∞ for at least one x and g(x)>−∞ for each x. g is convex if its epigraph epi g = {(µ,x) : µ ≥
g(x)} is a convex set in R×Rn. The subdifferential [4, 7, 13] of the function g at the point x0 is the subset of Rn and is defined by

∂g(x0) = {x∗ : g(x)−g(x0)≥ ⟨x∗,x− x0⟩,∀x}.

The Convex Upper Approximation (CUA) of a given function g : Rn → R∪{±∞} at any point x of its efficient domain domg = {x ∈ Rn :
|g(x)|<+∞} is a function h(x̄,x) that

1. h(x̄,x)≥ Φ(x̄,x) for all x̄ ̸= 0;
2. h(x̄,x) is a closed (lower semicontinuous) positively homogeneous convex function,

where Φ(x̄,x) = supr(·)limsupλ↓0
g(x+λ x̄+r(λ ))−g(x)

λ
.

It is clear that the function g has many CUA functions.
The multivalued mapping F : R2n ⇒ Rn is convex if its graph is a convex subset of R3n and is convex closed if its graph is a convex closed
set in R3n, where its graph is gphF = {(x,u,v) : v ∈ F(x,u)}. The Hamiltonian function and the argmaximum set for the multivalued
mapping F

HF (x,u,v∗) = sup
v
{⟨v∗,v⟩ : v ∈ F(x,u)}, v∗ ∈ Rn,

F(x,u;v∗) = {v ∈ F(x,u) : ⟨v∗,v⟩= HF (x,u,v∗)},

are defined respectively.
When F(x,u) = /0 for convex F we set HF (x,u,v∗) =−∞.
For a convex mapping F

KgphF (x,u,v) = {(x̄, ū, v̄) : x̄ = λ (x1 − x), ū = λ (u1 −u), v̄ = λ (v1 − v)},

for any (x1,u1,v1) ∈ gphF is a cone of tangent directions of gphF at the point (x,u,v).

Definition 2.2. [4] Let F be a convex multi-valued mapping, then multi-valued mapping F∗ : Y ∗ −→ X∗ is defined by

F∗(v∗;(x,u,v)) =
{
(x∗,u∗) : (x∗,u∗,−v∗) ∈ K∗

gphF (x,u,v)
}

is called a locally adjoint mapping (LAM) of F at the point (x,u,v) ∈ gphF. Here, K∗
gphF (x,u,v) is the dual of the cone of tangent directions

KgphF (x,u,v).

The multi-valued mapping

F∗(v∗;(x,u,v)
)
=
{
(x∗,u∗) : HF (x1,u1,v∗)−HF (x,u,v∗)≤ ⟨x∗,x1 − x⟩+ ⟨u∗,u1 −u⟩,∀(x1,u1,v) ∈ gphF

}
,v ∈ F(x,u;v∗)

is said to be the LAM to a non-convex mapping F at the point (x,u,v) ∈ gphF . For the convex mapping F , H(·, ·,v∗) is concave, and the
latter definition of LAM coincides with the previous definition of LAM. Mordukhovich [7] gave a definition similar to LAM and it is called
the coderivative of a multi-valued mapping at a point.
Let us formulate the following discrete problem, briefly denoted by (PD):

minimize
T−1

∑
t=2

g(xt , t) (2.1)
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xt+2 ∈ Q(xt ,xt+1), t = 0, . . . ,T −2 (2.2)

x0 = α0, x1 = β1, (2.3)

where xt ∈Rn, Q : R2n ⇒Rn is multivalued convex mapping, g(·, t) are real-valued proper convex functions, that g(·, t) : Rn × [0,1]→R, T
is natural number and β0,β1 are constant vectors in Rn. Let trajectory {xt}T

t=0 = {xt : t = 0,1, · · · ,T} be a feasible solution for problem
(PD). If the functions and multivalued mapping in the problem (PD) are convex, then it is called a convex problem.

Definition 2.3. The regularity condition is satisfied for the convex problem (PD) if for the points x0
t ∈ Rn one of the following cases holds:

1) (x0
t ,x

0
t+1,x

0
t+2) ∈ rigph(Q), x0

t ∈ ri(domg(·, t)),
or
2) (x0

t ,x
0
t+1,x

0
t+2) ∈ int gph(Q), t = 0, · · · ,T −2,

where g(·, t) is continuous at the point x0
t .

Condition 2.1. Suppose {x̃t}T
t=0 is a feasible trajectory for problem (PD) and the cone of tangent directions KgphQ(x̃t , x̃t+1, x̃t+2) to the

mapping Q is a local tent. Let also functions ht(x̄, x̃t), continuous on x̄ be CUA to functions g(·, t) at points x̃t , t = 0, . . . ,T . Therefore,
∂g(x̃t , t) = ∂ht(0, x̃t) holds.

The following theorem is studied in [1, 5].

Theorem 2.4. Let discrete problem (2.1)-(2.3) be convex, then for the feasible trajectory {x̃t}T
t=0 to be optimal it is necessary that there exist

λ ∈ {0,1} and not all equal to zero vectors x∗t ,x
∗
T ,η

∗
t , t = 0, · · · ,T −1 that satisfy the Euler-Lagrange inclusion

(x∗t −η
∗
t ,η

∗
t+1) ∈ Q∗(x∗t+2;(x̃t , x̃t+1, x̃t+2)

)
−
(
λ∂g(x̃t , t)×{0}

)
,

t = 0, . . . ,T −2,

∂g(x̃0,0) = ∂g(x̃1,1) = 0

and transversality conditions

η
∗
T−1 − x∗T−1 ∈ ∂g(x̃T−1,T −1), x∗T = 0,

respectively. Moreover, if the regularity condition (see Definition 2.3) is satisfied, then these conditions are also sufficient for the optimality
of the trajectory {x̃t}T

t=0.

3. Conditions for the Discrete-Approximation Problem

Let h be a grid function on the t-axis then the first and second step operators are given,

∆x(t) =
x(t +h)− x(t)

h
and ∆

2x(t) =
∆x(t +h)−∆x(t)

h
=

x(t +2h)−2x(t +h)+ x(t)
h2

respectively.
In order to obtain sufficient conditions for the optimality of the problem (1.1)-(1.3) we now give the Discrete-Approximation problem:

minimum Jh[x(·)] = ∑
t=0,h,2h,...,1−2h

hg(x(t), t)+ϕ(x(1−h)) (3.1)

∆
2x(t) ∈ Ax(t)+B∆x(t)+F

(
x(t),∆x(t)

)
, (3.2)

t = 0,h,2h, · · · ,1−2h,

x(0) = α0, ∆x(0) = α1. (3.3)

By inclusion (3.2) we have

x(t +2h)−2x(t +h)+ x(t) ∈ h2Ax(t)+h2B

(
x(t +h)− x(t)

h

)
+h2F

(
x(t),

x(t +h)− x(t)
h

)
or

x(t +2h) ∈ −x(t)+h2Ax(t)−hBx(t)+2x(t +h)+hBx(t +h)+h2F

(
x(t),

x(t +h)− x(t)
h

)

in other words we obtain

x(t +2h) ∈ (h2A−hB− I)x(t)+(hB+2I)x(t +h)+h2F

(
x(t),

x(t +h)− x(t)
h

)
, (3.4)
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where I denotes the identity matrix. If we denote the right side of the inclusion (3.4) by Q(x(t),x(t +h)), then we rewrite (3.4) as follows

x(t +2h) ∈ Q
(
x(t),x(t +h)

)
.

Putting x(t) = x1, x(t +h) = x2, x(t +2h) = y, we have y ∈ Q
(
x1,x2

)
, where

Q(x1,x2) = (h2A−hB− I)x1 +(hB+2I)x2 +h2F
(

x1,
x2 − x1

h

)
. (3.5)

Then the Discrete-Approximation problem (3.1)-(3.3) is stated as follows

minimum Jh[x(·)] = ∑
t=0,h,2h,...,1−2h

hg(x(t), t)+ϕ
(
x(1−h)

)
, (3.6)

x(t +2h) ∈ Q
(
x(t),x(t +h)

)
, t = 0,h,2h, · · · ,1−2h, (3.7)

x(0) = α0, x(h) = α0 +hα1 = β1. (3.8)

Therefore using Theorem 2.4, for the optimality of the trajectory {x̃(t)} in problem (3.6)-(3.8) it is necessary that there exist vectors
x∗t (t),η

∗
t (t), a number λ = λh ∈ {0,1} that are not all equal to zero and satisfy the inclusions(

x∗(t)−η
∗(t),η∗(t +h)

)
∈ Q∗(x∗(t +2h);

(
x̃(t), x̃(t +h), x̃(t +2h)

))
−
(
λh∂g(x̃(t), t)×{0}

)
, (3.9)

t = 2h, · · · ,1−2h,

η
∗(1−h)− x∗(1−h) ∈ λh∂ϕ

(
x̃(1−h)

)
, x∗(1) = 0. (3.10)

Under the regularity condition (see Definition 2.3) these conditions are also sufficient for the trajectory {x̃(t)}.
Now, let us give the relation between the locally adjoint mappings Q∗ and F∗.

Theorem 3.1. Let F : R2n ⇒ Rn be a multi-valued mapping and let multi-valued mapping Q be defined by the relation (3.5). If the cones of
tangent directions KgphQ(x1,x2,y), y ∈ Q(x1,x2) is a local tent, then KgphF

(
x1,

x2−x1
h ,

y−(h2A−hB−I)x1−(hB+2I)x2
h2

)
is also a local tent and the

following inclusions are equivalent:

i) (x∗1,x
∗
2) ∈ Q∗(y∗;(x1,x2,y)

)
, y ∈ Q(x1,x2;y∗),

ii)
(

x∗1+x∗2−y∗

h2 −A∗y∗, x∗2−2y∗
h −B∗y∗

)
∈ F∗

(
y∗;
(
x1,

x2−x1
h ,

y−(h2A−hB−I)x1−(hB+2I)x2
h2

))
, x1+x2−y

h2 ∈ F
(
x1,

x2−x1
h ;y∗

)
,y∗ ∈ Rn.

Here, the argmaximum set of Q is defined by Q(x1,x2;y∗) = {y ∈ Q(x1,x2) : ⟨y,y∗⟩= HQ(x1,x2,y∗)}.

Proof. Let us start by obtaining the equivalence relation between the cones of tangent directions of gphF and gphQ. Since

KgphQ(x1,x2,y), y ∈ Q(x1,x2), is a local tent then the cone of tangent directions KgphF

(
x1,

x2−x1
h ,

y−(h2A−hB−I)x1−(hB+2I)x2
h2

)
, is a local tent

and the following relations are equivalent:

(x̄1, x̄2, ȳ) ∈ KgphQ(x1,x2,y) (3.11)

and (
x̄1,

x̄2 − x̄1

h
,

ȳ− (h2A−hB− I)x̄1 − (hB+2I)x̄2

h2

)
∈ KgphF

(
x1,

x2 − x1

h
,

y− (h2A−hB− I)x1 − (hB+2I)x2

h2

)
, (3.12)

where y−(h2A−hB−I)x1−(hB+2I)x2
h2 ∈ F

(
x1,

x2−x1
h
)
.

Suppose (x̄1, x̄2, ȳ) ∈ KgphQ(x1,x2,y) is arbitrary. Since KgphQ(x1,x2,y) is a local tent then by Definition 2.1 there exist functions ri(z̄), i =

0,1,2 of z̄ = (x̄1, x̄2, ȳ) such that ri(z̄)
∥z̄∥ → 0, i = 0,1,2 as z̄ → 0 and there exists a convex cone K ⊆ riKgphQ(z), for small z̄ ∈ riKgphQ.

Therefore we have

y+ ȳ+ r0(z̄) ∈ Q(x1 + x̄1 + r1(z̄),x2 + x̄2 + r2(z̄))

and by the definition of function Q, (3.5), the following inclusion

y+ ȳ+ r0(z̄) ∈ (h2A−hB− I)
(
x1 + x̄1 + r1(z̄)

)
+(hB+2I)

(
x2 + x̄2 + r2(z̄)

)
+h2F

(
x1 + x̄1 + r1(z̄),

x2+x̄2+r2(z̄)−x1−x̄1−r1(z̄)
h

)
holds. Hence, we derive

y+ ȳ+ r0(z̄)− (h2A−hB− I)
(
x1 + x̄1 + r1(z̄)

)
−(hB+2I)

(
x2 + x̄2 + r2(z̄)

)
∈ h2F

(
x1 + x̄1 + r1(z̄),

x2 − x1

h
+

x̄2 − x̄1

h
+

r2(z̄)− r1(z̄)
h

)
or, in other words,(

y− (h2A−hB− I)x1 − (hB+2I)x2

)
+
(

ȳ− (h2A−hB− I)x̄1 − (hB+2I)x̄2

)
+
(

r0(z̄)− (h2A−hB− I)r1(z̄)− (hB+2I)r2(z̄)
)

∈ h2F
(

x1 + x̄1 + r1(z̄),
x2 − x1

h
+

x̄2 − x̄1

h
+

r2(z̄)− r1(z̄)
h

)
. (3.13)
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If we denote w =

(
x1,

x2−x1
h ,

y−(h2A−hB−I)x1−(hB+2I)x2
h2

)
and w̄ =

(
x̄1,

x̄2−x̄1
h ,

ȳ−(h2A−hB−I)x̄1−(hB+2I)x̄2
h2

)
then there exist such functions

ϕi(w̄), i = 0,1,2 that ϕi(w̄)
∥w̄∥ → 0, i = 0,1,2 as w̄ → 0 and K ⊆ riKgphF (w) and, by (3.13) we have w̄ ∈ KgphF (w). So, we obtain the relation

(3.12) and see that KgphF (w) is a local tent for gphF . Conversely, (3.12) implies that (3.11) holds.
Therefore, it follows that inclusions (3.11) and (3.12) are equivalent.
Now, let us indicate the equivalence between inclusions i) and ii).
Let (x∗1,x

∗
2) ∈ Q∗(y∗;(x1,x2,y)

)
, y ∈ Q(x1,x2;y∗) be given. Then by the definition of LAM we have (x∗1,x

∗
2,−y∗) ∈ K∗

gphQ(x1,x2,y) and so

⟨x̄1,x∗1⟩+ ⟨x̄2,x∗2⟩−⟨ȳ,y∗⟩ ≥ 0, (x̄1, x̄2, ȳ) ∈ KgphQ(x1,x2,y) (3.14)

hold. Let γ∗1 ,γ
∗
2 ,γ

∗ be such that

(γ∗1 ,γ
∗
2 ,−γ

∗) ∈ K∗
gphF

(
x1,

x2 − x1

h
,

y− (h2A−hB− I)x1 − (hB+2I)x2

h2

)
,

where K∗
gphF is the dual cone to the cone of tangent directions KgphF and the inclusion (3.12) be provided. Using the definition of dual cones,

the above inclusion reduces to the inequality

〈
x̄1,γ

∗
1
〉
+
〈 x̄2 − x̄1

h
,γ∗2
〉
−
〈 ȳ− (h2A−hB− I)x̄1 − (hB+2I)x̄2

h2 ,γ∗
〉
≥ 0.

If we rearrange the last inequality, then we obtain〈
x̄1,h2

γ
∗
1 −hγ

∗
2
〉
+
〈
x̄2,hγ

∗
2
〉
−
〈
ȳ,γ∗

〉
+
〈
(h2A−hB− I)x̄1,γ

∗〉+〈(hB+2I)x̄2,γ
∗〉≥ 0

and, as a result, we get

⟨x̄1,h2
γ
∗
1 −hγ

∗
2 +h2A∗

γ
∗−hB∗

γ
∗− γ

∗⟩+ ⟨x̄2,hγ
∗
2 +hB∗

γ
∗+2γ

∗⟩−⟨ȳ,γ∗⟩ ≥ 0. (3.15)

Using the equivalence between (3.11) and (3.12), we compare relation between inequalities (3.14) and (3.15)

x∗1 =h2
γ
∗
1 −hγ

∗
2 +h2A∗

γ
∗−hB∗

γ
∗− γ

∗,

x∗2 =hγ
∗
2 +hB∗

γ
∗+2γ

∗,

y∗ =γ
∗

and then we obtain the following equalities

γ
∗
1 =

x∗1 + x∗2 − y∗

h2 −A∗y∗,

γ
∗
2 =

x∗2 −2y∗

h
−B∗y∗, (3.16)

γ
∗ =y∗.

Consequently, taking into account Definition 2.2 and by the equations (3.16) we have(x∗1 + x∗2 − y∗

h2 −A∗y∗,
x∗2 −2y∗

h
−B∗y∗

)
∈ F∗

(
y∗;
(

x1,
x2 − x1

h
,

y− (h2A−hB− I)x1 − (hB+2I)x2

h2

))
if and only if (x∗1,x

∗
2) ∈ Q∗(y∗;(x1,x2,y)

)
. Then the desired result is obtained.

Note that the inclusions y ∈ Q(x1,x2;y∗) and y−(h2A−hB−I)x1−(hB+2I)x2
h2 ∈ F

(
x1,

x2−x1
h ;y∗

)
ensure that LAMs Q∗(y∗;(x1,x2,y)) ̸= /0 and

F∗
(

y∗;
(

x1,
x2−x1

h ,
y−(h2A−hB−I)x1−(hB+2I)x2

h2

))
̸= /0 are nonempty, respectively.

The following corollary, written for convex functions, is proved similarly.

Corollary 3.2. Let F : R2n ⇒ Rn be a convex multi-valued mapping and let the multi-valued mapping Q be defined by the relation (3.5),
then the inclusions i) and ii) are equivalent.

Theorem 3.3. Let F be a multi-valued convex mapping and g be a convex continuous function on a feasible trajectory {x̃(t)}, t = 0,h, · · · ,1,
which is proper on x. Then necessary conditions for the optimality of the trajectory {x̃(t)} of discrete-approximation problem (3.1)-(3.3)
are that there exist not all zero vectors {x∗(t),η∗(t)} and number λ = λh ∈ {0,1} satisfying Euler-Lagrange inclusion and transversality
conditions (

∆2x∗(t)+∆v∗(t)−A∗x∗(t +2h),v∗(t +h)−B∗x∗(t +2h)
)

∈ F∗
(

x∗(t +2h);
(
x̃(t),∆x̃(t),∆2x̃(t)−B∆x̃(t)−Ax̃(t)

))
−
(
λ∂g(x̃(t), t)×{0}

)
, (3.17)

t = 2h, · · · ,1−2h,

v∗(1−h)+∆x∗(1−h) ∈ λh∂ϕ(x̃(1−h)), x∗(1) = 0, (3.18)

respectively.
Moreover, under the regularity condition (see Definition 2.3) the above conditions are also sufficient for the optimality of the trajectory
{x̃(t)}.
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Proof. Using the equivalence relations in Corollary 3.2 and writing x∗1 = x(t)∗−η∗(t), x∗2 = η∗(t +h) under the condition ii) of Theorem
3.1, the inclusions (3.9) and (3.10) are converted to inclusions(

x∗(t)−η∗(t)+η∗(t+h)−x∗(t+2h)
h2 −A∗x∗(t +2h), η∗(t+h)−2x∗(t+2h)

h −B∗x∗(t +2h)
)

∈ F∗
(

x∗(t +2h);
(
x̃(t),∆x̃(t),∆2x̃(t)−B∆x̃(t)−Ax̃(t)

))
−
(
λ∂g(x̃(t), t)×{0}

)
, (3.19)

t = 2h, · · · ,1−2h,

η∗(1−h)− x∗(1−h) ∈ λh∂ϕ(x̃(1−h)), x∗(1) = 0, (3.20)

respectively.
If we put v∗(t) = η∗(t)−2x∗(t+h)

h , then condition (3.19) is formed as follows

x∗(t)−η∗(t)+η∗(t +h)− x∗(t +2h)
h2 −A∗x∗(t +2h)

=
x∗(t)−hv∗(t)−2x∗(t +h)+hv∗(t +h)+ x∗(t +2h)

h2 −A∗x∗(t +2h)

=
x∗(t +2h)−2x∗(t +h)+ x∗(t)

h2 +
v∗(t +h)− v∗(t)

h
−A∗x∗(t +2h)

= ∆
2x∗(t)+∆v∗(t)−A∗x∗(t +2h),

where v∗(t +h) = η∗(t+h)−2x∗(t+2h)
h . Then we obtain the condition (3.17) of the theorem.

On the other hand, by constructing condition (3.20) according to x∗(1) = 0 we get

hv∗(1−h)+ x∗(1)+ x∗(1)− x∗(1−h)
h

∈ λ∂ϕ
(
x̃(1−h)

)
and so,

v∗(1−h)+∆x∗(1−h) ∈ λ∂ϕ(x̃(1−h)),

where v∗(1−h) = η∗(1−h)−2x∗(1)
h . Therefore, condition (3.18) holds and the desired results are achieved.

The following theorem is obtained similarly.

Theorem 3.4. Suppose that Condition 2.1 is satisfied for the non-convex problem (3.1)-(3.3), then {x̃(t)} is an optimal trajectory for this
problem if there exists a number λ = λh ∈ {0,1} and vectors {x∗(t),η∗(t)}, simultaneously not all equal to zero, satisfying conditions (3.17)
and (3.18) for the non-convex case.

4. Conditions for the Main Problem

Now, let us obtain sufficient conditions for the optimality of the continuous problem (1.1)-(1.3) by applying conditions (3.17)-(3.18) in
Theorem 3.3. Under the conditions of Theorem 3.3, letting λ = 1 and passing the limit as h → 0, we obtain the Euler-Lagrange differential
inclusion

a)
(

d2x∗(t)
dt2 +

dv∗(t)
dt −A∗x∗(t),v∗(t)−B∗x∗(t)

)
∈ F∗

(
x∗(t);

(
x̃(t), x̃′(t), x̃′′(t)−Bx̃′(t)−Ax̃(t)

))
−
(
λ∂g(x̃(t), t)×{0}

)
, t ∈ [0,1]

and the transversality condition

b) v∗(1)+ dx∗(1)
dt ∈ ∂ϕ(x̃(1)), x∗(1) = 0.

Furthermore, the condition that ensures that the LAM F∗ is not empty at a given point follows

c) d2 x̃(t)
dt2 −B dx̃(t)

dt −Ax̃(t) ∈ F
(
x̃(t), x̃′(t);x∗(t)

)
, t ∈ [0,1],

where F(x,u;v∗) = {v ∈ F(x,u) : ⟨v,v∗⟩= H(x,u,v∗)} is the argmaximum set of multivalued mapping F . Then conditions a)-c) are sufficient
for optimality, and we express the following theorem.

Theorem 4.1. Let g(·, t) : Rn × [0,1]→ R and ϕ : Rn → R be continuous convex functions, and F be a convex multi-valued mapping. Then
there exist absolutely continuous functions {x∗(t),v∗(t)}, t ∈ [0,1], satisfying conditions a), b), c) and among the feasible solutions of the
problem (1.1)-(1.3), these conditions are sufficient for the optimality of the trajectory x̃(t).

Proof. Since F∗(v∗;(x,u,v)
)
= ∂(x,u)H(x,u,v∗), v ∈ F(x,u;v∗), then Moreau-Rockafellar Theorem [13] and −∂g(·, t) = ∂ (−g(·, t)) imply

in condition a): (d2x∗(t)
dt2 +

dv∗(t)
dt

−A∗x∗(t),v∗(t)−B∗x∗(t)
)
∈ ∂(x,u)

[
H(x̃(t), x̃′(t),x∗(t))−g(x̃(t), t)

]
. (4.1)

If we denote y(t) = x′′(t)−Bx′(t)−Ax(t), then the argmaximum set of the multi-valued mapping F and its Hamiltonian function are as
follows:

F
(
x̃(t), x̃′(t);x∗(t)

)
=
{

y(t) ∈ F
(
x̃(t), x̃′(t)

)
:
〈
y(t),x∗(t)

〉
= H

(
x̃(t), x̃′(t),x∗(t)

)}
,

H
(
x̃(t), x̃′(t),x∗(t)

)
= sup

y

{〈
y(t),x∗(t)

〉
: y(t) ∈ F

(
x̃(t), x̃′(t);x∗(t)

)}
,
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respectively. Inclusion (4.1) and subdifferential definition give

HF (x(t),x′(t),x∗(t))−HF (x̃(t), x̃′(t),x∗(t))−g(x(t), t)+g(x̃(t), t)

≤
〈d2x∗(t)

dt2 +
dv∗(t)

dt
−A∗x∗(t),x(t)− x̃(t)

〉
+
〈
v∗(t)−B∗x∗(t),x′(t)− x̃′(t)

〉
.

Using the Hamiltonian function definition, we rearrange the above inequality and derive〈d2x(t)
dt2 −B

dx(t)
dt

−Ax(t),x∗(t)
〉
−
〈d2x̃(t)

dt2 −B
dx̃(t)

dt
−Ax̃(t),x∗(t)

〉
−g(x(t), t)+g(x̃(t), t)

≤
〈d2x∗(t)

dt2 +
dv∗(t)

dt
−A∗x∗(t),x(t)− x̃(t)

〉
+
〈
v∗(t)−B∗x∗(t),x′(t)− x̃′(t)

〉
,

and finally,

g(x(t), t)−g(x̃(t), t)≥
〈d2(x(t)− x̃(t)

)
dt2 ,x∗(t)

〉
−
〈
B

d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
−
〈
A(x(t)− x̃(t)),x∗(t)

〉
−
〈d2x∗(t)

dt2 ,x(t)− x̃(t)
〉
− d

dt

〈
v∗(t),x(t)− x̃(t)

〉
+
〈
A∗x∗(t),x(t)− x̃(t)

〉
+
〈
B∗x∗(t),x′(t)− x̃′(t)

〉
. (4.2)

On the other hand, by the properties of the inner product, we have〈
A(x(t)− x̃(t)),x∗(t)

〉
=
〈
x(t)− x̃(t),A∗x∗(t)

〉
and 〈

B
d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
=
〈
x′(t)− x̃′(t),B∗x∗(t)

〉
,

respectively. Thus, writing the equalities above in the inequality (4.2) and arranging (4.2) we achieve

g(x(t), t)−g(x̃(t), t)≥ d
dt

〈d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
− d

dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉
− d

dt

〈
v∗(t),x(t)− x̃(t)

〉
.

Therefore, integrating on [0,1] both sides of the last inequality obtained, we have

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥

1∫
0

[ d
dt

〈d(x(t)− x̃(t))
dt

,x∗(t)
〉
− d

dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉]

dt −
〈
v∗(1),x(1)− x̃(1)

〉
+
〈
v∗(0),x(0)− x̃(0)

〉
.

If we evaluate the integrals on the right side of the inequality, then we get

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥

〈d(x(1)− x̃(1))
dt

,x∗(1)
〉
−
〈d(x(0)− x̃(0))

dt
,x∗(0)

〉
−
〈dx∗(1)

dt
,x(1)− x̃(1)

〉
+
〈dx∗(0)

dt
,x(0)− x̃(0)

〉
−
〈
v∗(1),x(1)− x̃(1)

〉
+
〈
v∗(0),x(0)− x̃(0)

〉
.

Taking into account that x(·), x̃(·) are feasible and x(0) = x̃(0) = α0, x′(0) = x̃′(0) = α1, we have〈d(x(1)− x̃(1))
dt

,x∗(1)
〉
= 0,

〈d(x(0)− x̃(0))
dt

,x∗(0)
〉
= 0

and 〈dx∗(0)
dt

,x(0)− x̃(0)
〉
= 0,

〈
v∗(0),x(0)− x̃(0)

〉
= 0.

Therefore, the inequality

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥−

〈dx∗(1)
dt

,x(1)− x̃(1)
〉
−
〈
v∗(1),x(1)− x̃(1)

〉
(4.3)

is obtained.
Now, by the definition of subdifferential, for all feasible trajectories x(t), t ∈ [0,1], condition b) in Theorem 4.1 gives us

ϕ(x(1))−ϕ(x̃(1))≥
〈
v∗(1)+

dx∗(1)
dt

,x(1)− x̃(1)
〉
. (4.4)

Collecting inequalities (4.3) and (4.4) side by side, we obtain

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt +ϕ(x(1))−ϕ(x̃(1))≥ 0,

which means that for each feasible x(t), t ∈ [0,1], the inequality J[x(·)]≥ J[x̃(·)] holds. As a result, the trajectory x̃(t), t ∈ [0,1], is optimal.
This completes the proof.
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Consider now the non-convex second-order SDIs problem (1.1)-(1.3) and obtain sufficient conditions for optimality.

Theorem 4.2. Suppose problem (1.1)-(1.3) is non-convex, that is, functions g(·, t) : Rn × [0,1]→ R and ϕ : Rn → R are non-convex with
respect to x, multi-valued mapping F is non-convex. Then for the optimality of trajectory x̃(t), among all feasible solutions of the non-convex
problem (1.1)-(1.3) it is sufficient that there exists a pair of absolutely continuous functions {x∗(t),v∗(t)}, t ∈ [0,1], that satisfies the following
conditions

i)
(

d2x∗(t)
dt2 +

dv∗(t)
dt −A∗x∗(t)+ x∗(t),v∗(t)−B∗x∗(t)

)
∈ F∗

(
x∗(t);

(
x̃(t), x̃′(t), x̃′′(t)−Bx̃′(t)−Ax̃(t)

))
, t ∈ [0,1],

ii) g(x, t)−g(x̃(t), t)≥
〈
x∗(t),x− x̃(t)

〉
, ∀x ∈ Rn,

iii) ϕ(x)−ϕ(x̃(1))≥
〈
v∗(1)+ dx∗(1)

dt ,x− x̃(1)
〉
, ∀x ∈ Rn, x∗(1) = 0,

iv)
〈 d2 x̃(t)

dt2 −B dx̃(t)
dt −Ax̃(t),x∗(t)

〉
= HF

(
x̃(t), x̃′(t),x∗(t)

)
, t ∈ [0,1].

Proof. Using the definition of LAM for nonconvex mapping F and condition i) of the theorem, we have

HF (x(t),x′(t),x∗(t))−HF (x̃(t), x̃′(t),x∗(t))≤
〈d2x∗(t)

dt2 +
dv∗(t)

dt
−A∗x∗(t)+ x∗(t),x(t)− x̃(t)

〉
+
〈
v∗(t)−B∗x∗(t),x′(t)− x̃′(t)

〉
.

If we arrange the above inequality, taking into account iv) then we obtain

〈d2x(t)
dt2 −B

dx(t)
dt

−Ax(t),x∗(t)
〉
−
〈d2x̃(t)

dt2 −B
dx̃(t)

dt
−Ax̃(t),x∗(t)

〉
≤
〈d2x∗(t)

dt2 +
dv∗(t)

dt
−A∗x∗(t)+ x∗(t),x(t)− x̃(t)

〉
+
〈
v∗(t)−B∗x∗(t),x′(t)− x̃′(t)

〉
.

Performing the necessary operations, we write the inequality

0 ≥
〈d2(x(t)− x̃(t)

)
dt2 ,x∗(t)

〉
−
〈
A(x(t)− x̃(t)),x∗(t)

〉
−
〈
B

d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
−
〈d2x∗(t)

dt2 ,x(t)− x̃(t)
〉

− d
dt

〈
v∗(t),x(t)− x̃(t)

〉
+
〈
A∗x∗(t),x(t)− x̃(t)

〉
+
〈
B∗x∗(t),x′(t)− x̃′(t)

〉
−
〈
x∗(t),x(t)− x̃(t)

〉
and then we obtain

0 ≥ d
dt

〈d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
− d

dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉
− d

dt

〈
v∗(t),x(t)− x̃(t)

〉
−
〈
x∗(t),x(t)− x̃(t)

〉
, (4.5)

since 〈
A(x(t)− x̃(t)),x∗(t)

〉
=
〈
x(t)− x̃(t),A∗x∗(t)

〉
and 〈

B
d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
=
〈dx(t)

dt
− dx̃(t)

dt
,B∗x∗(t)

〉
.

If we add the inequality (4.5) side by side to condition ii) of the theorem

g(x(t), t)−g(x̃(t), t)≥
〈
x∗(t),x(t)− x̃(t)

〉
,

then we have

g(x(t), t)−g(x̃(t), t)≥ d
dt

〈d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
− d

dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉
− d

dt

〈
v∗(t),x(t)− x̃(t)

〉
. (4.6)

Integrating both sides of (4.6) over [0,1], we write

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥

1∫
0

[ d
dt

〈d
(
x(t)− x̃(t)

)
dt

,x∗(t)
〉
− d

dt

〈dx∗(t)
dt

,x(t)− x̃(t)
〉]

dt −
〈
v∗(1),x(1)− x̃(1)

〉
+
〈
v∗(0),x(0)− x̃(0)

〉
or, equivalently

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥

〈d
(
x(1)− x̃(1)

)
dt

,x∗(1)
〉
−
〈d
(
x(0)− x̃(0)

)
dt

,x∗(0)
〉
−
〈dx∗(1)

dt
,x(1)− x̃(1)

〉
+
〈dx∗(0)

dt
,x(0)− x̃(0)

〉
−
〈
v∗(1),x(1)− x̃(1)

〉
+
〈
v∗(0),x(0)− x̃(0)

〉
.

Taking into account that x(·), x̃(·) are feasible and x(0) = x̃(0) = α0, x′(0) = x̃′(0) = α1, we have

〈d(x(1)− x̃(1))
dt

,x∗(1)
〉
= 0,

〈d(x(0)− x̃(0))
dt

,x∗(0)
〉
= 0,
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〈dx∗(0)
dt

,x(0)− x̃(0)
〉
= 0,

〈
v∗(0),x(0)− x̃(0)

〉
= 0

and then deduce that

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt ≥−

〈dx∗(1)
dt

,x(1)− x̃(1)
〉
−
〈
v∗(1),x(1)− x̃(1)

〉
. (4.7)

Now, adding side by side inequality (4.7) and condition iii) of the theorem,

ϕ(x(1))−ϕ(x̃(1))≥
〈
v∗(1)+

dx∗(1)
dt

,x(1)− x̃(1)
〉
,

satisfied for each x(t), t ∈ [0,1], we conclude that

1∫
0

[
g(x(t), t)−g(x̃(t), t)

]
dt +ϕ(x(1))−ϕ(x̃(1))≥ 0.

Thus for each feasible x(t), t ∈ [0,1], we have J[x(t)] ≥ J[x̃(t)]. Therefore x̃(t), t ∈ [0,1], is optimal for the non-convex problem (1.1)-
(1.3).

Example 4.3. Let consider the problem with semilinear differential equation (1.1)-(1.3), where

x′′(t) = Ax(t)+Bx′(t)+Cu(t),u(t) ∈U, (4.8)

and A,B are n×n matrices, C is an n× r matrix, and U ⊂ Rr is a convex set.
Let us replace (4.8) with the second-order semilinear differential inclusion

x′′(t) ∈ Ax(t)+Bx′(t)+CU. (4.9)

Since we have

HF (x(t),x′(t),x∗(t)) = sup
u∈U

⟨u,C∗x∗(t)⟩

then

F∗(x∗(t);(x(t),x′(t),x′′(t)))={0, −C∗x∗(t) ∈ K∗
U (ũ),

/0, −C∗x∗(t) /∈ K∗
U (ũ),

where C∗ is the adjoint(transpose) matrix of C.
Then by Theorem 4.2 we have

d2x∗(t)
dt2 +

dv∗(t)
dt

= A∗x∗(t)− x∗(t),

v∗(t) = B∗x∗(t), t ∈ [0,1],

so

d2x∗(t)
dt2 = A∗x∗(t)−B∗ dx∗(t)

dt
− x∗(t), t ∈ [0,1].

On the other hand, by condition iv) of Theorem 4.2 and by condition −C∗x∗(t) ∈ K∗
U (ũ) we obtain ⟨x∗(t),Cũ(t)⟩= supu∈U ⟨x∗(t),Cu(t)⟩,

where ũ(·) is a controlling parameter corresponding to x̃(·).

5. Conclusion

In this article, we obtain optimality conditions for the Bolza problem with second-order SDFIs and initial conditions. If we replace the
boundary conditions in the problem then the problem turns into a completely different optimization problem, and this problem can be
examined under different boundary conditions. In addition, when the problem is formed for non-constant intervals, the necessary and
sufficient conditions for optimality can be explored.
Using the methods described in this paper, similar results can be obtained for optimal control problems for any higher-order semi-linear
differential inclusions.
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Abstract

Fractional calculus models complicated systems that exhibit memory effects, showing much
greater potential than classical integer-order derivatives in modeling chaotic systems. In
this study, we investigate the application of two numerical interpolation methods, Newton
and Lagrange polynomials, for solving a fractional-order Lorenz-type chemical model
based on various fractional derivatives. The Lorenz-type model is modified, as it is known
for its chaotic behavior, and augmented to allow for modeling chemical reactions, with
variable-order fractional derivatives to reflect reality. We utilize numerical schemes for the
Caputo-Liouville, Caputo-Fabrizio, and Atangana-Baleanu-Caputo fractional derivatives,
and we assess the performance of the Newton and the Lagrange numerical approximations.

1. Introduction

The concept of fractional differentials were originally proposed in the mid-17th century by a query of L’Hôpital to Leibniz. In 1819,
S. F. Lacroix first used the term arbitrary order in his work. He formulated the general nth-order derivative using Legendre’s Γ symbol.
Subsequently, some eminent mathematicians like Leibniz, Euler, Laplace, and Fourier interpreted and progressed the idea of derivatives
of any order. Niels Abel applied fractional calculus to the solution of the isochrome problem [1]. Liouville proved that a function with
arbitrary-order derivatives could be calculated using a series expansion. As a result of numerous studies, fractional derivatives have been
categorized based on the existence of their singular kernels [2, 3]. Among them, using singular kernels, the popular Caputo derivative and
Riemann-Liouville derivative are prominent. On the other hand, the Caputo-Fabrizio derivative (CF) and the Atangana–Baleanu (ABC)
derivative are comprised of generalized non-local function kernels [4–6].
For a long period of time, the real-world problems were solved with the aid of differential equations. In addition, the applicability of
fractional-order differential equations (FODEs) and their ability to handle complex modelling have been demonstrated in diverse studies [7–9].
These studies demonstrate to us that the mnemonic effect of a fractional-order derivative is an appropriate method for modelling complex,
real-world phenomena. The variable-order fractional differential equations (VOFDEs) are preferred to constant-order fractional derivatives
due to the necessity that allows the order of differentiation to change dynamically. The greater flexibility of VOFDEs allows them to more
suitably model natural observations, where the effects of memory or path dependence on system behavior are not fixed. The combination of
mnemonic effect and variable-order fractional derivatives leads us to capture chemical species behaviour over time. Overall, more realistic
models will be achieved [10–12].
In recent decades, applied research has increasingly required the use of VOFDE. It is required to investigate the development of more
complex chaotic systems with multi-scroll or multi-wing attractors, both theoretically and experimentally, for engineering applications. The
Lorenz system is one such example indicating that dissipative systems can lead to chaotic behavior, in which even a slight difference in
initial state can lead to very varied results. Chaotic dynamics in the Lorenz chemical system can be used to regulate energy dissipation and
entropy change. The generalized Lorenz system is quite versatile and can lead to a wide range of chaotic systems, including the classical
Lorenz system [13], Chen system [14], and Lü system [15].
Since the exact solution of differential equations cannot be obtained in general, various numerical techniques have been introduced over
time. The Adams-Bashforth method is widely used by researchers because it is an effective numerical technique for solving nonlinear
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equations. However, its weakness in solving fractional differential equations with non-local and non-singular kernels has triggered research
into new methods [16, 17]. Therefore, a new numerical approach to nonlinear fractional differentiation is required. In the past few years, new
techniques have been developed that mix the two-step Newton method and two-step Lagrange interpolation with the fundamental theorem of
calculus. These two techniques have been well investigated in [18–22].
The chemical Lorenz system is very responsive to its parameters and derivative order. The main motivation of the study stems from the
application of the variable-order derivative to the chaotic system can offer better accuracy in simulating particle transfer in various chemical
processes, and better prediction in modelling, compared to the integer-order derivative. In addition, the emerging system solved with two
different interpolation methods: Newton and Lagrange. While there are some research studies on this system with various methods, as far as
current knowledge, they have not been solved by these specific interpolation methods. Moreover, we investigated the impact of these two
interpolation methods on fractional operators and illustrated the differences graphically. The idea of comparing the interpolations has been
done [23–26]. It is possible to calculate the error analysis of an equation with an exact solution using several techniques [27, 28].
The organization of the paper is as follows. Section 2 presents notations and descriptions of VOFDEs. In Section 3, the classical Lorenz
dynamical system with parameters and initial conditions has been presented. We also presented a general outline of the behavior of
Lorenz-based chemical systems. Section 4 provides significant details of two different numerical interpolation methods and their applications
to fractional derivatives. In Section 5, we have shown numerical simulations obtained by both methods to illustrate the results. Physical
interpretations and concluding discussions are provided in the last section.

2. Variable Order Fractional Derivatives

This section will present the fundamentals of the Caputo-Liouville (CL), Caputo-Fabrizio (FC), and Atangana-Baleanu (ABC) equations.
The variable-order CL derivative that we will consider is defined as follows [5]:

CL
0 Dζ (s)

s Ψ(s) =
1

Γ(1−ζ (s))

∫ s

0
(s−ρ)−ζ (s)

Ψ
′(ρ)dρ, 0 < ζ (s)≤ 1.

The variable-order CF derivative that we will deal with is expressed as follows [2]:

CF
0 Dζ (s)

s Ψ(s) =
(2−ζ (s))M(ζ (s))

2(1−ζ (s))

∫ s

0
exp
[
−ζ (s)

(s−ρ)

1−ζ (s)

]
Ψ

′(ρ)dρ, 0 < ζ (s)< 1,

where M(ζ (s)) = 2
2−ζ (s) .

The variable-order ABC derivative that we will examined is given as follows [4]:

ABC
0 D

ζ (s)
s Ψ(s) =

B(ζ (s))
1−ζ (s)

∫ s

0
Eζ (s)

[
−ζ (s)

(s−ρ)ζ (s)

1−ζ (s)

]
Ψ(ρ)dρ, 0 < ζ (s)< 1,

where B(ζ (s)) = 1−ζ (s)+ ζ (s)
Γ(ζ (s)) .

3. Lorenz-Based Chemical System

The generalized Lorenz system first introduced in [13] and then extended and investigated in [29–34]. The logical meaning of the Lorenz
system represents fluid motion under the external pressure, and it is an appropriate model for chaos in low-dimensional manifolds [35, 36]. It
is given by

dx
ds = a(y− x),

dy
ds = bx− y− x z,

dz
ds = x y− cz,

where x, y, and z in the system represent the reactions of: intensity of spontaneous flow, variance of the temperature between higher and lower
altitude flow, and aberration from the linear of the lateral flow. Such physical phenomena are investigated due to the chaotic behaviours in the
equation, and the memory effect is a crucial nuance in the appearance of chaotic behaviour. The constant a is a property of the fluid [37, 38].
The b term in the system represents natural spontaneous flow, and a constant c defines the system’s geometry [39].
For a more extensive understanding, we define the generalized Lorenz system as follows [40]:

dx
ds =

(
10+ 25

29 µ

)
(y− x),

dy
ds =

(
28− 35

29 µ

)
x+(µ −1)y− x z,

dz
ds = x y−

( 8
3 +

1
87 µ

)
z,

where µ is a system parameter and the system exhibits chaotic behavior when 0 ≤ µ ≤ 29. For the parameter µ = 0, the system is simplified
to the classic Lorenz system, which is defined as follows:



Journal of Mathematical Sciences and Modelling 187

dx
ds = 10(y− x),

dy
ds = 28x− y− x z,

dz
ds = x y− 8

3 z.

(3.1)

Since it represents a chemical model, the x and y values cannot be negative [30]. For convenience, the x and y axes are shifted by an equal
distance (for η = 30)

x = x−η , y = y−η , z = z.

The new equation system is defined as given below:

dx
ds = 10(y− x),

dy
ds = 28x− y− xz−27η + zη ,

dz
ds = xy− 8

3 z− xη − yη +η2.

(3.2)

One of the challenges in formulating a reaction pathway that leads to equations of the form given in (3.1) is due to the presence of a nonlinear
component for dz

ds . This term suggests a reaction of the type x+ y → z. However, if this is the correct mechanistic interpretation, then by
mass-action kinetics, the equations for dx

ds and dy
ds must also include a corresponding −xy term. The xz term is another compelling part of

(3.2).
Here, we assume x, y, and z variables as reactive species and include four reaction classes: irreversible source (S), cooperative catalysis
(C), external reservoir (R), and chemical species sink (E). The reaction C is a passive species of constant concentration, and R denotes an
external reservoir. In addition, R can be considered as an irreversible source and sink. The equivalents of each chemical reaction are given in
Table 3.1 (see in [29]).

Chemical Reaction Category Rate Expression (J)
Source JS = σ12
Catalytic 1 JC1 = yσ2
Catalytic 2 JC2 = xσ3
Catalytic 3 JC3 = zσ5
Catalytic 4 JC4 = xyσ11
Reservoir 1 JR1 = xzσ6
Reservoir 2 JR2 = σ7
Reservoir 3 JR3 = xσ8
Reservoir 4 JR4 = yσ9
Sink 1 JE1 = xσ1
Sink 2 JE2 = yσ4
Sink 3 JE3 = zσ10

Table 3.1: Chemical reactions and their rates for the chaotic dynamic model

Where reaction currents (J) are defined by rate constants σi. Table 3.1 is equivalent to the following in differential form in terms of J [41]:

dx
ds = JC1 − JE1,

dy
ds = JC2 − JE2 + JC3 − JR1 + JR2,

dz
ds =−JR3 − JR4 − JE3 + JC4 + JS.

Substituting each term in Table 3.1 into (3.3), we obtain:

dx
ds = σ2y−σ1x,

dy
ds = σ3x−σ4y+σ5z−σ6xz+σ7,

dz
ds =−σ8x−σ9y−σ10z+σ11xy+σ12.

(3.3)

For the reaction to satisfy (3.2), the σi values in (3.3) are set equal to the values in Table 3.2.

Initial Conditions Parameter Values
x0 = 32, y0 = 32, z0 = 32 σ1 = 10, σ2 = 10, σ3 = 28,

σ4 = 1, σ5 = 30, σ6 = 1,
σ7 =−810, σ8 = 30, σ9 = 35.5,
σ10 =

8
3 , σ11 = 1, σ12 = 900

Table 3.2: States and boundary settings for the chaotic dynamic
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As mentioned in the introduction, fractional derivatives are an ideal instrument for precise modeling. Using the fractional derivative operator
on system (3.3), we obtain the following three-dimensional variable-order Lorenz-based chemical system:

Dζ (s)
s x(s) = σ2y−σ1x,

Dζ (s)
s y(s) = σ3x−σ4y+σ5z−σ6xz+σ7,

Dζ (s)
s z(s) =−σ8x−σ9y−σ10z+σ11xy+σ12.

4. Numerical Methods

The variable-order Lorenz chemical system described in the previous section provides fundamental knowledge of chaos. There is always a
need for a numerical approach to approximate fractional-order systems. To tackle such challenges and simulate effectively, we present a
numerical framework for fractional derivatives of variable order. Toufik and Atangana developed an effective numerical approach based
on Lagrange polynomial interpolation. It is known to be a suitable method for calculating fractional differential equations with non-local
and non-singular functions [42]. Empirical findings also validate the very good accuracy of Newton polynomial interpolation for chaotic
systems [19]. This approach has received general acceptance, proving itself to be effective and accurate as a strong numerical method for
solving fractional ordinary differential equations as well as systems of fractional differential equations with various types of fractional
integral operators.
The next section gives two numerical methods. Specifically, within each [sm,sm+1] interval, the Ψ(s,y(s)) function is calculated using
two-step Lagrange polynomial interpolation.

4.1. Caputo-Liouville fractional derivative with Newton interpolation

In this subsection, we will apply Newton’s polynomial interpolation method to a variable-order Lorenz system with CL derivative.
The definition of VOFDE with the initial condition is given below:

CL
0 Dζ (s)

s y(s) = Ψ(s,y(s)) with y(0) = y0. (4.1)

Using the explanation of the CL integral, we obtain the following:

y(s)− y(0) = 1
Γ(ζ (s))

∫ s
0 ψ(ρ,y(ρ))(s−ρ)ζ (s)−1dρ. (4.2)

This leads to the following relation sm+1 = (m+1)h, for m ∈ {0,1,2, . . .}

y(sm+1)− y(0) = 1
Γ(ζ (s))

∫ sm+1
sm

ψ(ρ,y(ρ))(sm+1 −ρ)ζ (s)−1dρ. (4.3)

Applying Newton’s polynomial, we get [43], [44]:

y(sm+1)− y(0) = 1
Γ(ζ (ρ)) ∑

m
k=2

∫ sk
sk−1

 ψ(sk,y(sk))+ [ψ(sk−1,y(sk−1))−ψ(sk−2,y(sk−2))]

+ 1
2

(
ψ(sk,y(sk))−2ψ(sk−1,y(sk−1))
+ψ(sk−2,y(sk−2))

)
(ρ − sk−1)


×(ρ − sk−2)(ρ − sk−1)

ζ (s)−1dρ.

(4.4)

By solving the integrals in (4.4) using fractional calculus knowledge, we yield

y(sm+1)− y(0) = hζ (s)

Γ(ζ (s)+1) ∑
m
k=2 ψ(sk−2,y(sk−2))

[
(m− k+1)ζ (s)− (m− k)ζ (s)

]
+ hζ (s)

Γ(ζ (s)+2) ∑
m
k=2 [ψ(sk−1,y(sk−1))−ψ(sk−2,y(sk−2))]×P1

+ hζ (s)

2Γ(ζ (s)+3) ∑
m
k=2 [ψ(sk,y(sk))−2ψ(sk−1,y(sk−1))+ψ(sk−2,y(sk−2))]×P2,

(4.5)

where

P1 = (m− k+1)ζ (s)(m− k+3+2ζ (s))− (m− k)ζ (s)(m− k+3+3ζ (s)),

P2 = (m− k+1)ζ (s)
(

2(m− k)2 +(3ζ (s)+10)(m− k)+2ζ (s)2 +9ζ (s)+12
)

−(m− k)ζ (s)
(

2(m− k)2 +(5ζ (s)+10)(m− k)+6ζ (s)2 +18ζ (s)+12
)
.

(4.6)
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4.2. Caputo-Fabrizio fractional derivative with Newton interpolation

In this subsection, we will apply Newton’s polynomial interpolation method to variable-order Lorenz system with CF derivative.
The definition of VOFDE with the initial condition is given below:

CF
0 Dζ (s)

s y(s) = Ψ(s,y(s)) with y(0) = y0. (4.7)

By employing the clarification of the CF integral, we get

y(s)− y(0) = 1−ζ (s)
M(ζ (s))ψ(s,y(s))+ ζ (s)

M(ζ (s))
∫ s

0 ψ(ρ,y(ρ))dρ. (4.8)

This leads to the relation sm+1 = (m+1)h, for m ∈ {0,1,2, . . .}

y(sm+1)− y(0) = 1−ζ (s)
M(ζ (s))ψ(sm,y(sm))+

ζ (s)
M(ζ (s))

∫ sm+1
0 ψ(ρ,y(ρ))dρ. (4.9)

For sm = mh, we have

y(sm+1)− y(sm) =
1−ζ (s)
M(ζ (s)) [ψ(sm,y(sm))−ψ(sm−1,y(sm−1))]+

ζ (s)
M(ζ (s))

∫ sm+1
sm

ψ(ρ,y(ρ))dρ. (4.10)

By solving the integrals in (4.10) using fractional calculus knowledge, we obtain

y(sm+1)− y(sm) =
1−ζ (s)
M(ζ (s)) [ψ(sm,y(sm))−ψ(sm−1,y(sm−1))]+

ζ (s)
M(ζ (s))

[
ψ(sm−2,y(sm−2))+ψ(sm−1,y(sm−1))−ψ(ss−2,y(sm−2))

h
∫ sm+1

sm
(ρ − sm−2) dρ

]
+

ζ (s)
M(ζ (s))

(
ψ(sm,y(sm))−2ψ(sm−1,y(sm−1))+ψ(sm−2,y(sm−2))

2h2

∫ sm+1
sm

(ρ − sm−2)(ρ − sm−1) dρ

)
.

Subsequently, the equation is rearranged to obtain the two-stage Newton approximation method as follows [44]:

y(sm+1)− y(s) = 1−ζ (s)
M(ζ (s)) [ψ(sm,y(sm))−ψ(sm−1,y(sm−1))]+

ζ (s)
M(ζ (s))

[
23
12 ψ(sm,y(sm))h− 4

3 ψ(sm−1,y(sm−1))h+ 5
12 ψ(sm−2,y(sm−2))

]
.

4.3. Atangana-Baleanu-Caputo fractional derivative with Newton interpolation

In this subsection, we will apply Newton’s polynomial interpolation method to a variable-order Lorenz system with ABC derivative.
The definition of VOFDE with the initial condition is given below:

ABC
0 Dζ (s)

s y(s) = Ψ(s,y(s)) with y(0) = y0.

Using the ABC integral, we conclude the following result:

y(s)− y(0) = 1−ζ (s)
AB(ζ (s))ψ(s,y(s))+ ζ (s)

AB(ζ (s))Γ(ζ (s))
∫ s

0 ψ(s,y(s))(s−ρ)ζ (s)−1dρ,

[5] articulated as

y(sm+1)− y(0) = 1−ζ (s)
AB(ζ (s))ψ(sm,y(sm))+

ζ (s)
AB(ζ (s))Γ(ζ (s)) ∑

m
k=2

∫ sk+1
sk

ψ(s,y(s))(sk+1 −ρ)ζ (s)−1dρ. (4.11)

The result of applying Newton’s polynomial is as follows [44]:

y(sm+1)− y(0) = 1−ζ (s)
AB(ζ (s))ψ(sm,y(sm))

+
ζ (s)

AB(ζ (s))Γ(ζ (s)) ∑
m
k=2 ψ(sk−2,y(sk−2))

∫ sk+1
sk

(sk+1 −ρ)ζ (s)−1dρ

+
ζ (s)

AB(ζ (s))Γ(ζ (s)) ∑
m
k=2

ψ(sk−1,y(sk−1))−ψ(sk−2,y(sk−2))
h

∫ sk+1
sk

(ρ − sk−2)(sk+1 −ρ)ζ (s)−1dρ

+
ζ (s)

AB(ζ (s))Γ(ζ (s)) ∑
m
k=2

 ψ(sk ,y(sk))−2ψ(sk−1,y(sk−1))+ψ(sk−2,y(sk−2))
2h2

×
∫ sk+1

sk
(ρ − sk−2)(ρ − sk−1)(sk+1 −ρ)ζ (s)−1dρ

 .

(4.12)
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By solving the integrals in (4.12) using fractional calculus knowledge, we get

y(sm+1)− y(0) = 1−ζ (s)
AB(ζ (s))ψ(sm,y(sm))+

ζ (s)hζ (s)

AB(ζ (s))Γ(ζ (s)+1) ∑
m
k=2 ψ(sk−2,y(sk−2))

[
(m− k+1)ζ (s)− (m− k)ζ (s)

]
+

ζ (s)hζ (s)

AB(ζ (s))Γ(ζ (s)+2) ∑
m
k=2 [ψ(sk−1,y(sk−1))−ψ(sk−2,y(sk−2))]×P1

+
ζ (s)hζ (s)

AB(ζ (s))Γ(ζ (s)+3) ∑
k
m=2 [ψ(sk,y(sk))−2ψ(sk−1,y(sk−1))+ψ(sk−2,y(sk−2))]×P2,

where P1 and P2 considered same as (4.6).

4.4. Caputo-Liouville fractional derivative with Lagrange interpolation

In this subsection, we will apply Lagrange’s polynomial interpolation method to a variable-order Lorenz system with CL derivative.
The definition of VOFDE with the initial condition is given below:

CL
0 Dζ (s) y(s) = Ψ(s,y(s)) with y(0) = y0.

The two-stage Lagrange polynomial provides an approximation of the Ψ(ρ,y(ρ)) over the interval [sm,sm+1] by leveraging two discrete data
points (sm,ψm) and (sm+1,ψm+1).

Pm(θ)≃ ψ(sm,y(sm))
h (ρ − sm−1)− ψ(sm−1,y(sm−1))

h (ρ − sm).

Following same procedures through (4.1)–(4.5) based on Lagrange interpolation, we deduce [45]:

y(sm+1)− y(0) = 1
Γ(ζ (s)) ∑

m
k=1

(
ψ(sk ,y(sk))

h
∫ sk+1

sk
(ρ − sk−1)(sk+1 −ρ)ζ (s)−1dρ

−ψ(sk−1,y(sk−1))
h

∫ sk+1
sk

(ρ − sk)(sk+1 −ρ)ζ (s)−1dρ

)
.

(4.13)

By solving the integrals in (4.13) using fractional calculus knowledge, we derive

y(sm+1)− y(0) = 1
Γ(ζ (s)) ∑

m
k=1

(
hζ (s)ψ(sk ,y(sk))
ζ (s)(ζ (s)+1)

(
(m+1− k)ζ (s)

×(m− k+2+ζ (s))− (m− k)ζ (s)(m− k+2+2ζ (s))
)

− hζ (s)ψ(sk−1,y(sk−1))
ζ (s)(ζ (s)+1)

(
(m+1− k)ζ (s)+1 − (m− k)ζ (s)(m− k+1+ζ (s))

))
.

4.5. Caputo-Fabrizio fractional derivative with Lagrange interpolation

In this subsection, we will apply Lagrange’s polynomial interpolation method to a variable-order Lorenz system with CF derivative.
The definition of VOFDE with the initial condition is given below:

FC
0 Dζ (s) y(s) = Ψ(s,y(s)) with y(0) = y0.

We obtain (4.14) with follow same procedures through (4.7)–(4.9) based on Lagrange interpolation, we will obtain the following expres-
sion [45]:

y(sm+1) = y(sm)+
(2−ζ (s))(1−ζ (s))

2

[
ψ(sm,y(sm))−ψ(sm−1,y(sm−1))+

ζ (s)(2−ζ (s))
2

∫ sm+1
sm

ψ(s,y(s))ds
]
, (4.14)

where ∫ sm+1
sm

ψ(s,y(s))ds = 3h
2 ψ(sm,y(sm))− h

2 ψ(sm−1,y(sm−1)) .

Then the numerical solution form is represented by the following expression:

y(sm+1)− y(sm) =

[
(2−ζ (s))(1−ζ (s))

2 + 3h
4 ζ (s)(2−ζ (s))

]
ψ(sm,y(sm))−

[
(2−ζ (s))(1−ζ (s))

2 + h
4 ζ (s)(2−ζ (s))

]
ψ(sm−1,y(sm−1)).
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4.6. Atangana-Baleanu-Caputo fractional derivative with Lagrange interpolation

By applying the two-step Lagrange polynomial to (4.11), we get [45].

y(sm+1)− y(0) = Γ(ζ (s))(1−ζ (s))
Γ(ζ (s))(1−ζ (s))+ζ (s) f (sm,y(sm))

+
ζ (s)

Γ(ζ (s))+ζ (s)(1−Γ(ζ (s))) ∑
m
k=1

(
f (sk ,yk)

h
∫ sk+1

sk
(θ − sk−1)(sk+1 −θ)ζ (s)−1dθ − f (sk−1,yk−1)

h
∫ sk+1

sk
(θ − sk)(sk+1 −θ)ζ (s)−1dθ

)
.

5. Numerical Approach

In this section, two different interpolation approaches are applied to fractional derivatives with constant and variable orders. Figures 5.1–5.5
demonstrate numerical approximation for the Lorenz-based chemical system. In each approximate solution, we considered ζ (s) = 0.995
for the constant order, which is considered as a variable order fractional case. The time interval s = 100, step size h = 0.001, and initial
conditions are provided in Table 3.2. The Figure 5.1 describes the simple algorithm of MATLAB code, which is commonly used for
numerical computation and plotting. The N is for calculating the number of time steps needed for the numerical simulation.

Figure 5.1: Flowchart of the fractional-order differential equation solver

(a) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.995

(b) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.995

(c) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

(d) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

Figure 5.2: Numerical approach in Caputo-Liouville sense on a time domain 0 ≤ s ≤ 100 with a interval h=0.001.
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(a) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.995

(b) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.995

(c) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

(d) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

Figure 5.3: Numerical approach in Caputo-Fabrizio sense on a time domain 0 ≤ s ≤ 100 with a interval h=0.001.

(a) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.995

(b) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.995

(c) Using the Lagrange interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

(d) Using the Newton interpolation ap-
proximation with the order of ζ (s) =
0.97+0.03cos( s

10 ).

Figure 5.4: Numerical approach in Atangana–Baleanu sense on a time domain 0 ≤ s ≤ 100 with a interval h=0.001.

To observe the different behaviours of the interpolation approaches we are considering, we employ different ζ (s) functions.

(a) Lagrange interpolation of Atangana-Baleanu. (b) Newton interpolation of Atangana-Baleanu.

Figure 5.5: Investigation of interpolation methods in the Atangana–Baleanu sense on a time domain 0 ≤ s ≤ 100 with a interval h=0.001 order of the s
parameter function ζ (s) = 0.97+0.03tanh( s

10 ).

6. Conclusion

In this study, we examined the fractional order Lorenz-based chemical system with three different derivative operators. The obtained
graphical results reveal distinct behavioral patterns under each operator. The ABC operator made chaotic attractors that were smoother and
more structured in the phase portraits, essentially in the xy plane.
The differences between operators have captured the different chaotic behaviours of the chemical equation. One of the primary objectives of
this study was the investigation of chaotic behaviours of the dynamic system with variable-order derivatives. In addition, we demonstrated
that the different states of the ζ (s) function influence different chaotic attractors. Based on this, we concluded that it was useful to select a
suitable ζ (s) function that allows us to determine the distinct chaotic attractors of the dynamic system. Both methods are precise, efficient,
and comprehensive. A small separation step is not required, which saves time in the calculation.
The results show the complexity of chaotic attractors, mostly insectuous with its operators and their derivative orders. Additionally, we can
capture a better chaotic attractor by choosing a suitable order for the interpolation method. Future research could look into adaptive order
selection or hybrid operators to make predictions in chemical reaction networks even more accurate.
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Abstract

The trajectories and interaction forces of five bodies with equal masses are analytically
described. The bodies follow a choreographic motion in a figure of eight, Gerono lemniscata
periodic orbit without collisions. The forces are a linear combination of pairwise distances
with either attractive or repulsive coefficients. The center of mass is fixed at the origin. The
moment of inertia, as well as the kinetic and potential energies of the system, are constant.
Notably, the angular momentum is zero just as in the Bernoulli Lemniscata parametrized
by elliptic functions. The number of bodies in the choreography can be increased in a
straightforward way. The orbit can be readily generalized to symmetric chains with an
arbitrary number of loops.

1. Introduction

The figure of eight has become a celebrated orbit since the three body choreography with a Newtonian potential was shown to exist in this
type of curve [1–3], although its analytic form is still unknown. However, an analytic solution has been obtained in a Bernoulli Lemniscata, in
terms of elliptic functions under an inhomogeneous logarithmic and square potential [4]. A five body choreography in a Bernoulli Lemniscata,
also parametrized with elliptic functions, has been recently reported [5]. The present results will be compared with these previous important
landmarks. The Gerono lemniscata, also referred as Viviani’s curve, is a quartic polynomial y2 = x2 (1− x2), that can be generated in a
variety of ways [6]. Three bodies in a Gerono lemniscata have been parametrized by trigonometric functions. The time average of each body
angular momentum is zero, and consequently the average total angular momentum is zero. However, the total angular momentum is a non
zero time dependent function equal to Lz =− 3

2 µω sin(3ωt) [7]. Furthermore, four bodies in the Gerono lemniscata inevitably collide at
the crossing point. These results deterred pursuing further possibilities of choreographic motion in this curve. Nonetheless, as we shall
presently see, five bodies in the Gerono lemniscata parametrized by trigonometric functions, satisfy equations of motion with harmonic
linear attractive and repulsive forces. The present result together with the five body choreography in a Bernoulli lemniscata are, to the best of
our knowledge, the only two explicit analytical solutions known in the figure of eight trajectory.

2. Five Bodies in the Gerono Lemniscata

Recently, a four body choreography in a Pascal trisectrix limax plane curve was analytically described [8]. In a choreography, the bodies
follow the same periodic orbit with a constant phase difference between them. In addition to a constant centre of mass, usually set at the
origin, choreographies are required to exhibit a constant angular momentum and the motion be such that, for all times, no collisions between
bodies occur.

Proposition 2.1. Five bodies with equal masses, labeled 1 to 5, subject to linear forces dependent on the relative distance ri j between the i

and j bodies, with attractive/repulsive (upper/lower sign) force strengths −µω2 ±3+
√

5
2
√

5
for i− j = 1 and i− j = 2 respectively, describe a

choreographic trajectory with a fixed centre of mass, zero angular momentum and constant total energy in a Gerono type lemniscata plane
curve without collisions.

Proof. The equation of motion of body 1 is

µd2
t r1 = κ1 (r12 + r15)+κ2 (r13 + r14) , (2.1)
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where µ is the mass and the relative distance between bodies is ri j = ri − ri. The equations of motion for the other bodies, provided that a
choreographic motion is attained, are obtained from the argument evaluation r j (ωt) = r1

(
ωt + 2π

5 ( j−1)
)
. The proposed solution to the

equation of motion is

r1 = sinφ êx + sin(2φ) êy (2.2a)

where φ = ωt. The positions of the remaining four bodies, imposing the choreographic condition r2 (ωt) = r1
(
ωt + 2π

5
)
, . . . ; upon

evaluation of the sum of angles, are

r2 =
(
c−1 sinφ + c+2 cosφ

)
êx +

(
−c+1 sin(2φ)+ c−2 cos(2φ)

)
êy (2.2b)

r3 =
(
−c+1 sinφ + c−2 cosφ

)
êx +

(
c−1 sin(2φ)− c+2 cos(2φ)

)
êy (2.2c)

r4 =
(
−c+1 sinφ − c−2 cosφ

)
êx +

(
c−1 sin(2φ)+ c+2 cos(2φ)

)
êy (2.2d)

r5 =
(
c−1 sinφ − c+2 cosφ

)
êx +

(
−c+1 sin(2φ)− c−2 cos(2φ)

)
êy (2.2e)

where c±1 = 1
4

(√
5±1

)
, c±2 = 1

4

√
2
(

5±
√

5
)

. The centre of mass obtained from the sum of the bodies’ positions is zero, µ

5µ ∑
5
j=1 r j = 0.

The sum of relative distances for bodies with ± 2π

5 phase difference is

r12 + r15 = 2r1 − (r2 + r5) = 2
(
1− c−1

)
sinφ êx +2

(
1+ c+1

)
sin(2φ) êy,

whereas for a ± 4π

5 difference,

r13 + r14 = 2
(
1+ c+1

)
sinφ êx +2

(
1− c−1

)
sin(2φ) êy.

Mass times acceleration for body 1 is µ∂ 2
t r1 =−µω2 sinφ êx −4µω2 sin(2φ) êy, where φ = ωt. The equation of motion (2.1) is evaluated

by components and equal function arguments, since it should be fulfilled for all times. For êx (φ argument),

2
(
1− c−1

)
κ1 +2

(
1+ c+1

)
κ2 =−µω

2

and for êy (2φ argument),

2
(
1+ c+1

)
κ1 +2

(
1− c−1

)
κ2 =−4µω

2.

From these two equations, upon substitution of c±1 ,

κ1 =−µω
2 3+

√
5

2
√

5
, κ2 = µω

2 3−
√

5
2
√

5
.

Thus a 5-body choreographic motion is satisfied. Since the forces are only position dependent, the system angular momentum must be
constant. Explicit calculation of ri ×pi, where the momenta pi = µdtri are obtained from the time derivative of (2.2a)-(2.2e), gives a
zero total angular momentum Lz = ∑

5
i=1 ℓi = ∑

5
i=1 ri ×pi = 0. The kinetic energy of the system is constant, T = 1

2 µ ∑
5
i=1 (dtri)

2 = 25
4 µω2

(values for each body is discussed hereafter). The potential energy, separating terms with κ1 and κ2 coefficients is

V =−1
2

κ1

(
r2

12 + r2
15 + r2

23 + r2
34 + r2

45

)
− 1

2
κ2

(
r2

13 + r2
14 + r2

24 + r2
25 + r2

35

)
. (2.3)

Each sum of square distances is separately conserved,
(
r2

12 + r2
15 + r2

23 + r2
34 + r2

45
)
=
(
r2

13 + r2
14 + r2

24 + r2
25 + r2

35
)
= 25

2 , and since κ1+κ2 =

−µω2, V = 25
4 µω2. The kinetic and potential terms are equal as expected from the Lagrange-Jacobi identity for a sum of harmonic

potentials.
The implicit curve of the parametric representation r1 = sinφ êx + sin(2φ) êy = sinφ êx +2sinφ cosφ êy with x = sinφ is y = 2x

√
1− x2.

Upon squaring and scaling the ordinate by two y 7→ 2y, the canonical y2 = x2 (1− x2) form of the Gerono/Huygens lemniscata is obtained.
A collision occurs if two bodies are at the same position r j (tc) = rk (tc), at a collision time tc. In this case, there is no 1 ≤ (k− j)< 5 such
that sin(ωtc) = sin

(
ωtc + 2π

5 (k− j)
)
.

The Gerono type lemniscata with five bodies at t = 0 is depicted in Figure 2.1. Their positions at this initial time are centro-symmetric. In
order to compare the five-body results with the analytic four body trisectrix limaçon [8] and trifolium rose [9] choreographies, individual
body values are presented. The moment of inertia of each body and the system’s constant moment of inertia are

I1 =
µ

2
(2− cos(2φ)− cos(4φ)) ,

I2,5 =
µ

2
(
2± c−2 sin(2φ)∓ c+2 sin(4φ)+ c+1 cos(2φ)− c−1 cos(4φ)

)
,

I3,4 =
µ

2
(
2∓ c+2 sin(2φ)∓ c−2 sin(4φ)− c−1 cos(2φ)+ c+1 cos(4φ)

)
,

I = µ

5

∑
i=1

ri · ri = 5 µ,

where the upper/lower sign corresponds to the first/second subindex respectively. The sum of square distances between the five bodies,
adding the two terms in the potential (2.3), is ∑

5
i< j|ri j|2 = 25, consistent with ∑

5
i< j|ri j|2 = 5I

µ
. If different scalings are not introduced in the
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Figure 2.1: Initial positions and forces of five bodies in a plane. The centre of mass (yellow dot) is fixed at the origin.

limaçon and rose choreographies, the moment of inertia is conserved by pairs of bodies, i.e. I(4)1 + I(4)3 = I(4)2 + I(4)4 = constant. The angular
momenta ℓ j =

(
r j ×p j

)
z from (2.2a)-(2.2e) for each of the five bodies is

ℓ1 =
µω

2
(−3sinφ + sin(3φ)) ,

ℓ2,5 =
µω

2
(
−3c−1 sinφ − c+1 sin(3φ)∓3c+2 cosφ ∓ c−2 cos(3φ)

)
,

ℓ3,4 =
µω

2
(
3c+1 sinφ + c−1 sin(3φ)∓3c−2 cosφ ± c+2 cos(3φ)

)
,

Lz =
5

∑
i=1

ℓi = 0.

The sums of ℓ2 + ℓ5 and ℓ3 + ℓ4 cancel out the cosine terms. However, these sums are still time dependent and only the addition of all bodies
angular momenta is constant.
The kinetic energies are

T1 =
µω2

4
(5+ cos(2φ)+4cos(4φ)) ,

T2,5 =
µω2

4

(
5∓ c−2 sin(2φ)± 1

2
c+1 c−2 sin(4φ)− c+1 cos(2φ)+4c−1 cos(4φ)

)
,

T3,4 =
µω2

4

(
5± c+2 sin(2φ)± 1

2
c−1 c+2 sin(4φ)+ c−1 cos(2φ)−4c+1 cos(4φ)

)
,

T =
5

∑
j=1

Ek j =
25
4

µω
2.

The sums T2 +T5 and T3 +T4 cancel out the sine contributions but remain time dependent. It is only when these terms are added, since
c−1 − c+1 =− 1

2 , that all five terms add up to a constant. In contrast, pairs of four-body configurations in the limax or the rose have constant
kinetic energies. These results suggest that choreographies with an n non prime number of bodies will exhibit extra symmetries not present
in orbits with n prime.

3. Bernoulli and Gerono Lemniscatae Comparison

The three and five bodies trajectories in the Bernoulli lemniscata were parametrized using the Jacobi elliptic functions. Interestingly,
a trigonometric parametrization of the Bernoulli lemnsicata does not yield a constant centre of mass [10]. In contrast, the three body
trigonometric parametrization of the Gerono lemniscata preserves a constant centre of mass but fails to conserve angular momentum [7].
For three bodies, the elliptic modulus is k2 = 1

4
(
2+

√
3
)
. For 5 bodies, two numerical solutions for the elliptic modulus have been found,

k2
1 = 0.65 . . . and k2

2 = 0.99 . . . [10]. A guiding criterion to the difficult problem of finding a potential given a trajectory, is established in [5].
The potential is proposed to be a function of the momentum independent conserved quantities. If necessary, mappings of these quantities are
evaluated such that pairwise interactions are described. A comparison of the Gerono and Bernoulli lemniscatae parameters is shown in Table
3.1. The sum of square distances between bodies with adjecent periods is conserved as well as those with alternate periods. In the Bernoulli
lemniscata, the product of square distances is constant. The log function then provides a pairwise interaction, and thus a logarithmic potential
is also required. In the Gerono lemniscata, the constant quantities involve the sums of squares but the products are not time independent.
Thus, consistent with the López-Vieyra potential guiding criterion [5], no logarithmic function is required.
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Figure 3.1: Lemniscatae of Gerono (red) and Bernoulli (dotted green) types. Five bodies at φ = ωt = π

10 , are shown on the Gerono curve, with the êy
parametric component scaled by ky = 0.37.

Gerono Bernoulli

k2
1 k2

2

1 Etotal
25
2 µω2 0.54 . . . 0.31 . . .

2 Ek
25
4 µω2 1.06 . . . 0.35 . . .

3 Ep
25
4 µω2 Etotal −Ek Etotal −Ek

4 I 5µ 11.99 . . . 17.97 . . .

5 ∑r2
j, j±1

25
2 I(5)2a I(5)2a

6 ∑r2
j, j±2

25
2 I(5)2a I(5)2a

7 ∏r2
j, j±1 not constant I(5)1 I(5)1

8 ∏r2
j, j±2 not constant I(5)1 I(5)1

Table 3.1: Five-body constants in the Gerono and Bernoulli Lemniscatae, centre of mass is constant and angular momentum is zero in all cases. Bernoulli data
retrieved from [5].

4. n-bodies in the Gerono Lemniscata and Chains

Curves labeled as chains with m loops, the eight being a chain with 2 loops, have been numerically obtained for a Newtonian potential [11].
These chains, that may be symmetrical or not, allow for choreographic motion of different numbers of bodies. For the planar Newtonian
n-body problem with equal masses, the existence and number of different main simple choreographies without collisions in linear chains has
been recently proved [12]. Let us restrict here to an analytical description of symmetric chains under a harmonic potential with attractive and
repulsive contributions. A curve of the form r = sinφ êx + sin(mφ) êy generates chains with m loops for even m. Unfortunately, for odd m,
the curve retraces itself leaving end points where the motion reverses. However, a parametrization of the form r = cosφ êx + ky sin(mφ) êy,
generates chains with m loops for all m ∈ Z, where m = 0 gives a line and m = 1 an ellipse.

Lemma 4.1. A chain parametrized by

r = cosφ êx + ky sin(mφ) êy, (4.1)

with n > 3 bodies evenly separated by a 2π

n phase difference, satisfies the equations of motion for a κ1 linear force coefficient with their first
neighbours and a κ2 linear force coefficient with their second neighbours if m ̸= βn and m±1 ̸= βn, β ∈ Z. If m,n are relative primes, no
collisions occur.

Proof. Allow for n bodies in the m loops chain (4.1), the position of the jth body is r j (φ) = r
(
φ + 2π

n ( j−1)
)
. Consider that each body

only has a non vanishing interaction with their first and second phase advanced/retarded neighbours. This condition simplifies the results
here derived, but may be lifted to include interactions with all the remaining bodies. Let κ1 and κ2 be the first and second order attractive and
repulsive coefficients respectively. The equation of motion for the j body is

µd2
t r j = κ1

(
r j, j+1 + r j, j−1

)
+κ2

(
r j, j+2 + r j, j−2

)
,

where r j,k = r j − rk. The equation of motion evaluated by components, after a bit of algebra, for êx (φ argument) is

−µω
2 = 2κ1

(
1− cos

(
2π

n

))
+4κ2

(
1− cos2

(
2π

n

))
,

and for êy (mφ argument),

−1
2

µm2
ω

2 = κ1

(
1− cos

(
m

2π

n

))
+2κ2

(
1− cos2

(
m

2π

n

))
.
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From these two algebraic equations, κ1 and κ2 are obtained. Unique solutions exist if the determinant

D =

(
1− cos

(
2π

n

))
2
(

1− cos2
(

m
2π

n

))
−2

(
1− cos2

(
2π

n

))(
1− cos

(
m

2π

n

))
,

differs from zero. If m = βn±1, β ∈ Z, cos
(
m 2π

n
)
= cos

(
(βn±1) 2π

n
)
= cos

( 2π

n
)
, the determinant two addends are equal and add up to

zero. In these cases, the angular momentum is not conserved, as can be seen from direct evaluation. If m = β n, cos
(
m 2π

n
)
= cos(2π) = 1,

the two addends in the determinant vanish. In this case, the centre of mass is not conserved. For other values of m, the equations of motion
are satisfied.
Nonetheless, even if the equations of motion are satisfied, collisions may occur. The chain exhibits crossings at φc =

π

m β . There exists a
collision at time tc if r(ωtc) = rk (ωtc) = r

(
ωtc + 2π

n (k−1)
)
. Equating the y components, there is a collision if 2πm

n (k−1) = βπ , 1≤ k ≤ n.
If a common divisor λ exists, m

n = λm′

λn′ =
m′

n′ , where n′ < n. Then k−1 can be set equal to n′, and the equality 2m′

n′ (k−1) = 2m′ = β holds.
Thus, the collision condition is satisfied if n,m have a common divisor other than one. Therefore, for the linear symmetric chain, m

n ,
m±1

n /∈ Z
are required to satisfy the equations of motion and m,n must be relative primes to avoid collisions.

Corollary 4.2. The Gerono lemniscata choreography can accommodate any number of odd bodies greater than 3.

Proof. For the Gerono lemniscate m = 2, then 2±1 ̸= βn, for n > 3, the equations of motion are thus satisfied for all n > 3. The number of
loops and bodies m = 2,n are relative primes for any n odd.

An example of 4 loops with 11 bodies is depicted in Figure 4.1, that is a case illustrated in [11, Fig.4b] for a numerical solution of the
Newtonian potential. Bodies are located at rk (ωt) = r

(
ωt + 2π

11 (k−1)
)
. A ky factor of 1

8 gives chains similar to those numerically reported,
although the end loops seem to be somewhat less prominent. In Figure 4.1 lower row, a chain with 9 loops and 7 bodies is depicted. For
mφ =±βπ , β ∈ Z, the parametric curve (4.1) crosses the abscissas axis. The corresponding x values are cos

(
βπ

m

)
; thus the zeros of the

trajectory get closer to each other further away from the origin. These trajectories will be presented in a more encompassing framework,
where folia, limax, lemniscatae and other curves generated by harmonic functions, will be treated in a unified way.

Figure 4.1: Harmonic chains, 4 loops with 11 bodies in upper row and 9 loops with 7 bodies in lower row.

5. Conclusion

Five bodies in a Gerono type lemniscata orbit have been shown to satisfy choreographic motion under a combination of an attractive and
a repulsive linear potential. The trigonometric functions parametrization provides a simple description of the bodies positions as well as
their velocities and accelerations. The motion shares some common properties with the Bernoulli lemniscata parametrized by the more
complicated elliptic functions. For example, the kinetic and potential energies are separately conserved, and most notably, the angular
momentum is zero in both trajectories. The generalization to describe orbits with an arbitrary number of loops has been outlined. A pattern
seems to emerge, where the analytic choreographies with harmonic attractive and repulsive potential, generate orbits that exhibit the same
overall form of the curves obtained numerically for the Newtonian and other inverse potentials.
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Abstract

Drug abuse and crime are deeply interconnected, forming a vicious cycle that exacerbates
public health and criminal justice challenges. In South Africa’s Gauteng province, substance
abuse remains a major socioeconomic burden with far-reaching consequences. This study
develops a seven-compartment deterministic model using ordinary differential equations to
analyze the dynamics between drug abuse and criminal activity. The model incorporates
homogeneous population mixing and accounts for removal rates associated with drug-
related crime and rehabilitation. Analytical results indicate two equilibrium states: a
narcocriminality-free equilibrium and a persistent (endemic) equilibrium. This study
establishes that the narcocriminality-free equilibrium is globally asymptotically stable
when the drug abuse criminogenic growth number (DGN, D0 < 1), while the endemic
equilibrium exists when D0 > 1. Sensitivity analysis identifies the initiation rate as the
most influential parameter on D0, showing that D0 increases with the progression rates 𝛼
(light drug users) and 𝜌 (heavy drug users). Conversely, D0 shows a decrease with higher
incarceration rates (𝜖 , 𝛾1) and rehabilitation rates (𝛾2). These findings have important
policy implications related to early intervention strategies targeting the drug-crime cycle,
and enhancing rehabilitation programs and incarceration efficacy to reduce drug-driven
criminality.

Drug abuse criminogenic growth number, Narcocriminality, Rehabilitation, Relapse rate, Sensitivity analysis, Simulations

1. Introduction

Drug abuse, defined as the excessive consumption of addictive substances through unsafe quantities or harmful methods [1], constitutes a
major public health challenge with profound societal repercussions. Extensive research has established drug abuse as a key driver of adverse
outcomes, including heightened criminal activity, diminished workforce productivity, unemployment, family destabilization, and political
instability [2]. Moreover, substance abuse is strongly correlated with the onset of chronic diseases, preventable injuries, and premature
mortality [2–4]. The complex interplay between drug abuse and criminal behaviour has therefore emerged as a global concern, increasingly
recognized as a pathological condition requiring medical and social intervention. In South Africa, the rapid expansion of the illicit drug
market—particularly among youth populations—has exacerbated the incidence of substance use disorders, accompanied by severe social and
health-related comorbidities, with criminal activity representing one of the most critical consequences [5].

Recent empirical evidence underscores the gravity of this crisis. During the 2022/2023 reporting period, South African law enforcement
documented approximately 162,100 drug-related offences, reflecting an increase of 21,800 cases compared to the preceding year [6].
Gauteng Province has been disproportionately affected, with escalating drug-related criminality exerting significant social and economic
strain. In response, mathematical biology has increasingly been employed to investigate the dynamics of drug abuse and its criminological
consequences. Several modelling frameworks have been proposed to capture the epidemiological characteristics of substance abuse and
associated behaviours [7–11]. Parallel advances in crime modelling include the work of [12], who developed an epidemiological-inspired
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framework for criminal behaviour in developing countries, highlighting unemployment as a primary determinant. Similarly, [13] employed
deterministic approaches to examine the syndemic relationship between illicit drug use and crime dynamics in South Africa’s Western Cape
province.

Age-structured modelling has further enriched this field. For instance, [14] demonstrated that children are generally less susceptible to
criminal involvement and developed a model distinguishing between criminal and non-criminal populations in a naı̈ve society. Their
framework incorporated law enforcement as a regulatory mechanism under homogeneous mixing assumptions, subdividing the criminal
population into three categories. The analysis revealed that effective law enforcement suppresses criminal activity, whereas inadequate
enforcement fosters its persistence. In a related study, [15] constructed a nonlinear dynamical system to simulate interactions between
criminal and non-criminal populations, drawing analogies from predator–prey, epidemic, and harvesting models. Their stability analysis
showed that harvesting and conversion rates critically determine long-term system behaviour, with low rates favouring persistence of criminal
populations and high rates driving eventual extinction. Likewise, [16] employed a predator–prey framework with a Holling type II functional
response to investigate the role of law enforcement. Their findings indicated that insufficient enforcement allows crime to persist, whereas
enforcement above a critical threshold can stabilize the system at a crime-free equilibrium.

Mathematical modelling has thus proven indispensable in elucidating epidemiological, biological, and behavioural phenomena [17–19].
Importantly, the initiation of individuals into drug abuse and criminal activity exhibits transmission-like dynamics analogous to infectious
diseases [20]. Building on this analogy, the present study develops a mathematical framework to investigate the recruitment of drug addicts
into criminal activities, incorporating correctional and rehabilitation services as control measures. Specifically, we construct a drug-agnostic
model that captures the progression of both light and heavy drug users into criminal behaviour, with a focus on Gauteng Province, South
Africa. The model integrates incarceration and rehabilitation as intervention strategies aimed at curbing the escalating prevalence of
drug-related criminality.

A distinctive contribution of this study lies in its dual-pathway rehabilitation framework. We examine two concurrent intervention modalities:
(1) institutional rehabilitation within correctional facilities, and (2) community-based psychosocial rehabilitation delivered through specialized
centres. While prior studies have largely considered these approaches in isolation [21, 22], our deterministic model incorporates both
simultaneously, enabling comparative evaluation of their effectiveness. The objectives of this framework are threefold: first, to provide
evidence-based insights for policy formulation targeting substance abuse and crime reduction; second, to elucidate the substance abuse–crime
nexus for public education and community engagement; and third, to generate predictive scenarios that inform strategic decision-making
regarding resource allocation and intervention planning by law enforcement agencies, public health authorities, and policymakers. This
dual-pathway approach offers novel perspectives for optimizing intervention strategies in urban contexts analogous to Gauteng Province.

The remainder of the paper is organized as follows: Section 2 presents the model formulation and underlying assumptions. Section 3 provides
the analytical results, including the narcocriminality-free and endemic equilibria and their stability properties. Section 4 reports numerical
simulations, and Section 5 concludes with key findings and policy implications.

2. Formulation of the Model

The model divides a population of size 𝑁 (𝑡) into seven mutually exclusive compartments: 𝑆(𝑡), susceptible individuals who do not use drugs,
are not involved in crime, and may be vulnerable to initiating drug use; 𝑈1 (𝑡), light drug users, referring to individuals who have started
using drugs but have not yet progressed to heavy use or criminal activity; 𝑈2 (𝑡), heavy drug users defined as individuals who have progressed
to a more severe stage of drug use. They are more likely to engage in risky behaviour, suffer from health complications, or get involved
in crime; 𝐻 (𝑡), individuals undergoing rehabilitation; 𝐶 (𝑡) referring to individuals engaged in criminal activity, often as a result of drug
use. This includes both light and heavy users who have progressed into the crime compartment; 𝐽 (𝑡) is defined as criminals who have been
arrested and are currently in jail or prison; and 𝑅(𝑡) refers to recovered individuals who cease drug use after rehabilitation or incarceration.
The individuals may relapse into heavy drug use. The population dynamics follow the conservation law

𝑁 (𝑡) = 𝑆(𝑡) +𝑈1 (𝑡) +𝑈2 (𝑡) + 𝐻 (𝑡) + 𝐶 (𝑡) + 𝐽 (𝑡) + 𝑅(𝑡).

Susceptible individuals enter the population through Λ either through immigration or by reaching the age at which drug initiation typically
occurs, with attrition occurring through natural mortality (rate 𝜇) or transition to drug use governed by the force of initiation

𝜆 = 𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆,

where 𝛽 represents the initiation parameter, and 0 < 𝜂1,2 < 1 quantify the relative influence of heavy users and criminals compared to light
users. Drug use progression follows a hierarchical structure: susceptible individuals become light users, then may advance to heavy use at a
rate 𝜏 [23], with both user categories potentially engaging in criminal activities at rates 𝛼 (light users) and 𝜌 (heavy users).

Heavy users face elevated risks including drug-induced mortality (rate 𝛿), rehabilitation enrollment (rate 𝛾2), and incarceration (rate 𝛾1). The
rehabilitation subsystem incorporates recovery to susceptibility (rates 𝜃 for rehabilitated individuals and 𝜎 for incarcerated individuals),
relapse to heavy use (rate 𝜅), and program dropout (rate 𝜗), leading to reversion to heavy use. All compartments experience baseline mortality
(rate 𝜇), with heavy users subject to additional substance-related mortality 𝛿. This structure captures the core transitions between behavioural
states while accounting for both social influences and intervention effects on drug abuse dynamics.

To construct the model, several fundamental assumptions are considered. First, the population is assumed to be homogeneously mixed,
meaning individuals within each compartment are indistinguishable and have equal probabilities of interaction [24]. The model further
assumes a unidirectional progression in drug use: individuals who become heavy drug users do not revert to light use, reflecting the chronic
and escalating nature of addiction [25]. Social dynamics are incorporated by allowing the criminal population to influence susceptible
individuals toward engaging in criminal behaviour [26]. Entry into correctional services is restricted to those who have advanced to heavy
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drug use, underscoring the threshold of severity required for institutional intervention [27]. Additionally, the model posits that the transition
from susceptibility to criminal activity occurs exclusively through prior drug use, thereby establishing a direct drug-crime pathway [26].
Finally, the potential for relapse or dropout is acknowledged: individuals who have passed through correctional services or rehabilitation
centers may return to heavy drug use following release or discontinuation of treatment [27].
We assume that all parameters are constant and nonnegative. A transmission diagram is shown in Figure 2.1 based on the assumptions and
definitions of variables and parameters. We obtain the following systems of nonlinear ordinary differential equations from Figure 2.1.

𝑼𝟏 𝑼𝟐
𝜆𝑆

(𝜇 + 𝛿)𝑼𝟐

𝜸𝟐𝑼𝟐

𝜇𝑆

𝜇𝐶 𝜇𝑅

𝜇𝐻

𝜇𝑈1

𝜏𝑈1Λ

𝜎𝐽𝜀C

𝜗𝐻

Figure 2.1: Schematic representation of the narcocriminality model incorporating incarceration and rehabilitation pathways.

𝑑𝑆

𝑑𝑡
= Λ − (𝜆 + 𝜇)𝑆,

𝑑𝑈1
𝑑𝑡

= 𝜆𝑆 −𝑄1𝑈1,

𝑑𝑈2
𝑑𝑡

= 𝜏𝑈1 + 𝜅𝑅 + 𝜗𝐻 −𝑄2𝑈2,

𝑑𝐻

𝑑𝑡
= 𝛾2𝑈2 −𝑄3𝐻,

𝑑𝐶

𝑑𝑡
= 𝛼𝑈1 + 𝜌𝑈2 −𝑄4𝐶,

𝑑𝐽

𝑑𝑡
= 𝛾1𝑈2 + 𝜀𝐶 −𝑄5𝐽,

𝑑𝑅

𝑑𝑡
= 𝜎𝐽 + 𝜃𝐻 −𝑄6𝑅,



(2.1)

where,
𝑄1 = 𝜇 + 𝛼 + 𝜏, 𝑄2 = 𝜇 + 𝜌 + 𝛾1 + 𝛾2 + 𝛿, 𝑄3 = 𝜇 + 𝜃 + 𝜗, 𝑄4 = 𝜇 + 𝜀, 𝑄5 = 𝜇 + 𝜎 and 𝑄6 = 𝜇 + 𝜅.

We assume all parameters to be nonnegative, with the model’s initial conditions specified as follows:

𝑆(0) > 0, 𝑈2 (0) > 0, 𝐶 (0) > 0, 𝑈1 (0) > 0, 𝐻 (0) > 0, 𝐽 (0) > 0, 𝑅(0) > 0.

3. Mathematical Model Analysis

We present a comprehensive exploration of the narcocriminality model to establish its mathematical well-posedness and key dynamical
properties. To demonstrate that the model is well-posed, we first show that all solutions of the system defined in (2.1) are nonnegative for
all 𝑡 ≥ 0. With positive initial conditions, the solutions are bounded within the nonnegative domain 𝑡 ≥ 0 and remain bounded within the
feasible region Ω. The analysis includes positivity of solutions, boundedness of solutions, existence of solutions, equilibrium points, drug
abuse criminogenic growth number, and global stability.

3.1. Positivity, boundedness, and existence of solutions

To demonstrate the biological feasibility of the model, we need to prove that the systems of equations (2.1) are positive and bounded for all
𝑡 > 0.

Theorem 3.1. For the given initial conditions in (2.1) the solutions of the model system in (2.1) remain positive for all 𝑡 > 0 in Ω.

Proof. We can express the model equation 𝑆(𝑡) as:
𝑑𝑆

𝑑𝑡
= Λ − (𝜆 + 𝜇)𝑆 > 0, (3.1)
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Without compromising generality, and after removing the positive term Λ from the right-hand side,we express equation (3.1) as:

𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝜇)𝑆.

After integrating, we obtain the solution of the differential inequality after integration can be written as:

𝑆(𝑡) = 𝑆(0)𝑒−(𝜇 (𝑡 )+
∫ 𝑡

0 𝜆(𝜏 )𝑑𝜏 ) ) .

Given that the solution components involve exponential terms, which do not take negative terms, it follows that 𝑆(𝑡) ≥ 0.
The second equation of the system (2.1) yields

𝑑𝑈1
𝑑𝑡

≥ −𝑄1𝑈1,

from which we obtain the following,
𝑈1 (𝑡) ≥ 𝑈1 (0)𝑒−𝑄0 (𝑡 ) .

Since exponential functions are always non-negative, irrespective of whether the exponent is positive or negative, it follows that 𝑈1 (𝑡) ≥ 0.

Similarly,
𝑈2 (𝑡) ≥ 𝑈2 (0)𝑒−𝑄0 (𝑡 ) ≥ 0.

and
𝐻 (𝑡) ≥ 0, 𝐶 (𝑡) ≥ 0, 𝐽 (𝑡) and 𝑅(𝑡) ≥ 0

from the remaining equations. Therefore, we conclude that the model variable 𝑆(𝑡), 𝑈1 (𝑡), 𝑈2 (𝑡), 𝐻 (𝑡), 𝐶 (𝑡), 𝐽 (𝑡) and 𝑅(𝑡) representing
population sizes of different classes are positive and will remain in R7

+ for all 𝑡. □

Theorem 3.2. All positive solutions of the system in (2.1) remain bounded for all 𝑡 > 0.

Proof. We know that each population component is bounded if the total population is bounded. Therefore, it suffices to show that the total
population 𝑁 (𝑡), is bound for all 𝑡. We can also show that all feasible solutions are uniformly bounded in a proper subset Ω ∈ R7

𝑡 where the
feasible region Ω is given by

Ω =

{
(𝑆, 𝑈1, 𝑈2, 𝐻, 𝐶, 𝐽 and 𝑅) ∈ R7

𝑡 : 𝑁 (𝑡) ≤ Λ

𝜇

}
.

The derivative of the population function with respect to time 𝑡 is given by

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 (𝑡) − 𝛿𝐻 ≤ Λ − 𝜇𝑁 (𝑡).

We proceed to solve the differential inequality by applying [28] with an appropriate integrating factor, so that

𝑁 (𝑡) ≤ Λ

𝜇
+
(
𝑁0 −

Λ

𝜇

)
𝑒−𝜇𝑡 .

for 𝑡 ≥ 0. If 𝑁0 ≤ Λ
𝜇

, the solution of the differential equation is monotone increasing and bounded by Λ
𝜇
.

Otherwise, if 𝑁0 > Λ
𝜇

, the solutions are monotone decreasing and bounded below by Λ
𝜇

. Therefore, the phase space becomes

Ω =

{
𝑆, 𝑈1, 𝑈2, 𝐻, 𝐶, 𝐽, 𝑅 : 𝑁 ≤ max

(
𝑁0,

Λ

𝜇

)}
.

However, in either case, at a limiting equilibrium

lim
𝑥→∞

𝑁 =
Λ

𝜇
.

Given that all phase space variables have been shown to remain nonnegative, the solution trajectory of the model equation (2.1) does not go
through the boundary of Ω forward in time. This condition holds for all phase variables, implying that the phase space is both positively
invariant and attracting. □

3.2. Model analysis

At the steady state of model (2.1), it satisfies the following equations;

Λ − (𝜆 + 𝜇)𝑆∗ = 0,
𝜆𝑆∗ −𝑄1𝑈

∗
1 = 0,

𝜏𝑈∗
1 + 𝜅𝑅∗ + 𝜗𝐻 −𝑄2𝑈

∗
2 = 0,

𝛾2𝑈
∗
2 −𝑄3𝐻

∗ = 0, (3.2)
𝛼𝑈∗

1 + 𝜌𝑈∗
2 −𝑄4𝐶

∗ = 0,
𝛾1𝑈

∗
2 + 𝜀𝐶∗ −𝑄5𝐽

∗ = 0,
𝜎𝐽∗ + 𝜃𝐻∗ −𝑄6𝑅

∗32 = 0.
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From equations in (3.2) after algebraic manipulations, we have:

𝑅∗ =Ψ2𝑈
∗
1 , whereΨ2 =

(𝛼𝜀𝜎𝑄2 + 𝜀𝜎 (𝜌𝜏 − 𝛼𝜗Ψ1) + 𝜏𝑄4 (𝜎𝛾1 + 𝜃𝑄5Ψ1))
𝑄2𝑄4𝑄5𝑄6 (𝜙1 − 1) .

𝐽∗ =Ψ4𝑈
∗
1 , where Ψ4 =

(𝜀𝜌𝜏 + 𝛼𝜀𝑄2 + 𝜏𝛾1𝑄4 − 𝛼𝜀𝜗Ψ1 + 𝜀𝜅𝜌Ψ2 + 𝜅𝛾1Ψ2𝑄4)
𝑄4𝑄5 (𝑄2 − 𝜗Ψ1)

and

𝜙1 =
𝜀𝜅𝜌𝜎

𝑄2𝑄4𝑄5𝑄6
+ 𝜅𝜎𝛾1
𝑄2𝑄5𝑄6

+ 𝜃𝜅𝛾2
𝑄2𝑄3𝑄6

+ 𝜗𝛾2
𝑄2𝑄3

.

𝐶∗ =Ψ5𝑈
∗
1 , where Ψ5 =

𝜌𝜏 + 𝛼𝑄2 − 𝛼𝜗Ψ1 + 𝜅𝜌Ψ2
𝑄4 (𝑄2 − 𝜗Ψ1)

,

𝐻∗ =Ψ6𝑈
∗
1 , where Ψ6 =

(𝛼𝜀𝜅𝜎 + 𝜏𝑄4𝑄5𝑄6)Ψ1
𝑄2𝑄4𝑄5𝑄6 (𝜙1 − 1) ,

𝑈∗
2 =Ψ7𝑈

∗
1 , where Ψ7 =

𝛼𝜀𝜅𝜎 + 𝜏𝑄4𝑄5𝑄6
𝑄2𝑄4𝑄5𝑄6 (𝜙1 − 1) .

Using the second equation of the system (3.2), we obtain

𝑈∗
1

[
𝜉2𝑆

𝑆∗ + 𝜉1𝑈
∗
1
−𝑄1

]
= 0, where 𝜉1 = 1 + Ψ2 + Ψ4 + Ψ5 + Ψ6 + Ψ7. and 𝜉2 = 𝛽 (1 + 𝜂2Ψ5 + 𝜂1Ψ7) .

We thus have 𝑈∗
1 = 0, giving us the ‘narcocriminality-free’ equilibrium point,

𝐸0 =

(
Λ

𝜇
, 0, 0, 0, 0, 0

)
.

3.3. Drug abuse criminogenic growth number (DGN)

We introduce a novel metric termed the Drug Abuse Criminogenic Growth Number (DGN), denoted by D0, which quantitatively integrates
the concepts of drug abuse prevalence and its criminogenic potential within a population. This metric characterizes both:

• The temporal increase in substance abuse rates
• The associated rise in criminal activity attributable to drug use

Mathematically, D0 is analogous to the basic reproduction number in epidemiological models [29, 30], where it represents the expected
number of new drug users generated by a single drug user in a completely susceptible population. The drug abuse criminogenic growth
number thus quantifies the potential spread of drug abuse and associated criminal activity within a population. In this context, “susceptibility”
refers to individuals within a community vulnerable to both:

• Initiation of drug use
• Engagement in drug-related criminal behaviour

If D0 < 1, then on average, each initiated individual, whether a light drug user, heavy drug user, or criminal, results in fewer than one
new initiation. This condition implies that the contribution of each individual is insufficient to sustain or expand the cycle of drug use and
associated criminal activities. Conversely, when D0 > 1, each initiated individual generates more than one new initiate on average, thereby
not only maintaining the spread of drug use but also exacerbating the proliferation of drug-related criminal behaviour within the population.
We compute D0 using the next-generation matrix method [31]. This drug abuse criminogenic growth number determines the local stability
of the narcocriminality-free equilibrium point. Following the matrix approach, we derive the matrices for new initiation terms and transfer
terms between compartments as follows:

F =

©­­­­­­­«

𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆
0
0
0
0
0

ª®®®®®®®¬
and V =

©­­­­­­­«

𝑄1𝑈1
−𝜏𝑈1 − 𝜅𝑅 − 𝜗𝐻 +𝑄2𝑈2

−𝛾2𝑈2 +𝑄3𝐻
−𝛼𝑈1 − 𝜌𝑈2 +𝑄4𝐶
−𝛾1𝑈2 − 𝜀𝐶 +𝑄5𝐽
−𝜎𝐽 − 𝜃𝐻 +𝑄6𝑅

ª®®®®®®®¬
where F denotes the rate at which new initiations occur in compartments 𝑈1,𝑈2, 𝐶, 𝐻, 𝐽 and 𝑅 and 𝜈 capture the transitions among these
compartments. We then define matrices 𝐹 and 𝑉 to the Jacobian matrices for F and V respectively evaluated at the drug-free equilibrium,

𝐹 =

©­­­­­­­«

𝛽Λ

𝜇

𝛽𝜂1Λ
𝜇

0 𝛽𝜂2Λ
𝜇

0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®®¬
and 𝑉 =

©­­­­­­­«

𝑄1 0 0 0 0 0
−𝜏 𝑄2 −𝜗 0 0 −𝜅
0 −𝛾2 𝑄3 0 0 0
−𝛼 −𝜌 0 𝑄4 0 0
0 −𝛾1 0 −𝜀 𝑄5 0
0 0 −𝜃 0 −𝜎 𝑄6

ª®®®®®®®¬
.
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The drug abuse criminogenic growth number is given as D0 = 𝜌(𝐹𝑉−1), where 𝐹 and 𝑉 represent the matrix of initiation rates and the
transitions between compartments, respectively. The inverse of matrix 𝑉 is given as 𝑉−1. This follows that D0 is the maximum eigenvalue of
the next generation matrix 𝐹𝑉−1 is such that:

𝜈(𝐹𝑉−1) = D0 = D0𝑈1 + D0𝑈2 + D0𝐶 ,

where

D0𝑈1 =
𝛽Λ

𝑄1𝜇
, D0𝑈2 =

𝛽𝜂1Λ

𝑄2𝜇 (1 − 𝜙1)

(
𝛼𝜀𝜎𝜅

𝑄1𝑄4𝑄5𝑄6
+ 𝜏

𝑄1

)
and D0𝐶 =

𝛽𝜂2Λ

𝑄4𝜇 (1 − 𝜙1)

(
𝛼

𝑄1
(1 − 𝜙2) +

𝜌𝜏

𝑄1𝑄2

)
,

with
𝜙1 =

𝛾2𝜗

𝑄2𝑄3
+ 𝛾2𝜃𝜅

𝑄2𝑄3𝑄6
+ 𝛾1𝜅𝜎

𝑄2𝑄5𝑄6
+ 𝜖𝜅𝜌𝜎

𝑄2𝑄4𝑄5𝑄6
and 𝜙2 =

𝜗𝛾2
𝑄2𝑄3

+ 𝛾2𝜃𝜅

𝑄2𝑄3𝑄6
+ 𝛾1𝜅𝜎

𝑄2𝑄5𝑄6
.

The growth number D0 comprises three components representing contributions from light drug users,D0𝑈1 , heavy drug users, D0𝑈2 and
criminals, D0𝐶 . Each component measures the expected number of new individuals (light users, heavy users, or criminals) initiated into drug
abuse and subsequent criminal activities within the population.

Following [31], we have the following result:

Theorem 3.3. The drug-free equilibrium 𝐸0 of system (2.1) is locally asymptotically stable whenever D0 < 1 and unstable otherwise.

3.4. The narcocriminality persistent equilibrium point

After some tedious algebraic manipulations, we obtain

𝑆∗ =
Λ𝑄1𝜉1 (D0 − 1)

(𝜉2 −𝑄1) (𝜇𝜉1 +𝑄1 (D0 − 1)

and
𝑈∗

1 =
Λ(D0 − 1)

𝜇𝜉1 +𝑄1 (D0 − 1) , where D0 =
𝜉2
𝑄1

.

The model’s narcocriminality persistent equilibrium point is given by

𝐸1 = (𝑆∗, 𝑈∗
1 , 𝑈

∗
2 , 𝐻

∗, 𝐶∗, 𝐽∗, 𝑅∗),

where

𝑆∗ = Λ𝑄1 𝜉1 (D0−1)
( 𝜉2−𝑄1 ) (𝜇𝜉+𝑄1 (D0−1) , 𝑈∗

1 =
Λ(D0−1)

𝜇𝜉1+𝑄1 (D0−1) , 𝑈∗
2 =

Ψ7Λ(D0−1)
𝜇𝜉1+𝑄1 (D0−1) , 𝐻∗ = Ψ6Λ(D0−1)

𝜇𝜉1+𝑄1 (D0−1) ,

𝐶∗ = Ψ5Λ(D0−1)
(𝜇𝜉1+𝑄1 (D0−1) ) , 𝐽∗ = Ψ4Λ(D0−1)

𝜇𝜉1+𝑄1 (D0−1) , 𝑅∗ = Ψ2Λ(D0−1)
𝜇𝜉1+𝑄1 (D0−1) .

 (3.3)

We thus have the following result on the existence of the endemic equilibrium;

Theorem 3.4.
The persistent narcocriminality equilibrium point 𝐸1 of system (2.1) exists iff D0 > 1.

3.5. Global stability of the narcocriminality equilibrium

In this section, we analyse the global stability of the model described in equation (2.1). A narcocriminality-free equilibrium (NFE) exists
when the basic reproduction number satisfies D0 < 1. This condition implies that introducing a small number of drug users or criminals into
the population will not lead to a persistent increase in either group. Consequently, under appropriate conditions and effective intervention
strategies, both drug use and criminal activity can be eradicated from the population.

Theorem 3.5. The narcocriminality-free equilibrium is globally asymptotically stable (GAS) whenever D0 < 1.

Proof. Consider a Lyapunov function
𝑉 = 𝑈1 + 𝑤1𝑈2 + 𝑤2𝐻 + 𝑤3𝐶 + 𝑤4𝐽 + 𝑤5𝑅,

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 and 𝑤5 are positive integers to be evaluated. We note that 𝑆 ≤ Λ
𝜇
. The time derivative of the Lyapunov function is

given by:

𝑑𝑉

𝑑𝑡
=≤ (𝛽 −𝑄1 + 𝑤1𝜏 + 𝑤3𝛼)𝑈1 + (𝛽𝜂1 − 𝑤1𝑄2 + 𝑤3𝜌 + 𝑤4𝛾1 + 𝑤2𝛾2)𝑈2 + (𝑤1𝜗 − 𝑤2𝑄3 + 𝑤5𝜃) 𝐻

+ (𝛽𝜂2 − 𝑤3𝑄4 + 𝑤4𝜀) 𝐶 + (𝑤5𝜎 − 𝑤4𝑄5) 𝐽 + (𝑤1𝜅 − 𝑤5𝑄6) 𝑅.

We now equate the coefficients of 𝑈1,𝑈2, 𝐻, 𝐶, 𝐽 and 𝑅 to zero so that
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0 =𝛽𝜂1 − 𝑤1𝑄2 + 𝑤3𝜌 + 𝑤4𝛾1 + 𝑤2𝛾2,

0 =𝑤1𝜗 − 𝑤2𝑄3 + 𝑤5𝜃,

0 =𝛽𝜂2 − 𝑤3𝑄4 + 𝑤4𝜀,

0 =𝑤5𝜎 − 𝑤4𝑄5,

0 =𝑤1𝜅 − 𝑤5𝑄6.

The solution of the coefficients is given by

𝑤̄1 =
𝑄3𝑄5𝑄6𝛽 (𝑄4𝜂1 + 𝜂2𝜌)

𝑄2𝑄3𝑄4𝑄5𝑄6 −𝑄4𝑄5𝛾2 (𝑄6𝜗 + 𝜃𝜅) −𝑄3𝜅 (𝑄4𝛾1 + 𝜀𝜌) 𝜎 ,

𝑤̄2 = − 𝑄5𝛽(𝑄6𝜗 + 𝜃𝜅) (𝑄4𝜂1 + 𝜂2𝜌)
−𝑄2𝑄3𝑄4𝑄5𝑄6 +𝑄4𝑄5𝛾2

(𝑄6𝜗 + 𝜃𝜅) +𝑄3𝜅(𝑄4𝛾1 + 𝜀𝜌)𝜎,

𝑤̄3 =
𝑄5𝛽𝜂2 (𝑄2𝑄3𝑄6 − 𝛾2 (𝑄6𝜗 + 𝜃𝜅)) +𝑄3𝛽(𝜀𝜂1 − 𝛾1𝜂2)𝜅𝜎
𝑄2𝑄3𝑄4𝑄5𝑄6 −𝑄4𝑄5𝛾2 (𝑄6𝜗 + 𝜃𝜅) −𝑄3𝜅(𝑄4𝛾1 + 𝜀𝜌)𝜎 ,

𝑤̄4 = − 𝑄3𝛽𝜅(𝑄4𝜂1 + 𝜂2𝜌)𝜎
−𝑄2𝑄3𝑄4𝑄5𝑄6 +𝑄4𝑄5𝛾2 (𝑄6𝜗 + 𝜃𝜅) +𝑄3𝜅(𝑄4𝛾1 + 𝜀𝜌)𝜎 ,

𝑤̄5 =
𝑄3𝑄5𝛽𝜅(𝑄4𝜂1 + 𝜂2𝜌)

𝑄2𝑄3𝑄4𝑄5𝑄6 −𝑄4𝑄5𝛾2 (𝑄6𝜗 + 𝜃𝜅) −𝑄3𝜅(𝑄4𝛾1 + 𝜀𝜌)𝜎 .

Substituting the coefficients into the time derivative of the Lyapunov function gives,

𝑑𝑉

𝑑𝑡
≤𝑄1𝑄2𝑄3𝑄4𝑄5𝑄6 (1 − 𝜙1)

𝛽

𝑄1
+ 𝛽𝜂1
𝑄1𝑄2 (1 − 𝜙1)

(
𝛼𝜀𝜅𝜎

𝑄4𝑄5𝑄6
+ 𝜏

𝑄1

)
+ 𝛽𝜂2
𝑄4 (1 − 𝜙1)

(
𝛼

𝑄1
(1 − 𝜙2) +

𝜌𝜏

𝑄1𝑄2

)
𝑈1,

≤𝑄1𝑄2𝑄3𝑄5𝑄6 (1 − 𝜙1) (D0 − 1)𝑈1.

From the inequality above, it follows that when D0 < 1, we have 𝑑𝑉
𝑑𝑡

< 0. By applying LaSalle’s Invariance Principle [32], the solution
trajectories approach the narcocriminality free equilibrium 𝐸0. This establishes the global asymptotic stability of 𝐸0. □

3.6. Global stability of the endemic equilibrium

Theorem 3.6.
If D0 > 1, then the endemic equilibrium 𝐸∗ is globally asymptotically stable in the region R7

+.

Proof. We construct a Lyapunov function such that

V = (𝑆 − 𝑆∗ − 𝑆∗ ln 𝑆) + 𝑎
(
𝑈1 −𝑈∗

1 −𝑈∗
1 ln𝑈1

)
+ 𝑏

(
𝑈2 −𝑈∗

2 −𝑈∗
2 ln𝑈2

)
+ 𝑐 (𝐻 − 𝐻∗ − 𝐻∗ ln 𝐻) + 𝑑 (𝐶 − 𝐶∗ − 𝐶∗ ln𝐶) + 𝑒 (𝐽 − 𝐽∗ − 𝐽∗ ln 𝐽)
+ 𝑓 (𝑅 − 𝑅∗ − 𝑅∗ ln 𝑅) ,

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are constants to be determined. At the endemic equilibrium, the partial derivatives with respect to each variable are
given by:
The derivative of V is given by

𝜕V
𝜕𝑆

=

(
1 − 𝑆∗

𝑆

)
,
𝜕V
𝜕𝑈1

= 𝑎

(
1 −

𝑈∗
1

𝑈1

)
,
𝜕V
𝜕𝑈2

= 𝑏

(
1 −

𝑈∗
2

𝑈2

)
,
𝜕V
𝜕𝐻

= 𝑐

(
1 − 𝐻∗

𝐻

)
,

𝜕V
𝜕𝐶

=𝑑

(
1 − 𝐶∗

𝐶

)
,
𝜕V
𝜕𝐽

= 𝑒

(
1 − 𝐽∗

𝐽

)
,
𝜕V
𝜕𝑅

= 𝑓

(
1 − 𝑅∗

𝑅

)
.

The endemic equilibrium point is a critical point of 𝜕V . The second-order derivatives are:

𝜕2V
𝜕𝑆2 =

𝑆∗

𝑆2 ,
𝜕2V
𝜕𝑈2

1
= 𝑎

𝑈∗
1

𝑈2
1
,
𝜕2V
𝜕𝑈2

2
= 𝑏

𝑈∗
2

𝑈2
2
,
𝜕2V
𝜕𝐻2 = 𝑐

𝐻∗

𝐻2 ,
𝜕2V
𝜕𝐶2 = 𝑑

𝐶∗

𝐶2 ,
𝜕2V
𝜕𝐽2 = 𝑒

𝐽∗

𝐽2 ,
𝜕2V
𝜕𝑅2 = 𝑓

𝑅∗

𝑅2 .

The second derivatives of V are nonnegative at any point of R7
𝑡 ; this implies that the Lyapunov function V exhibits upward concavity, with

the endemic equilibrium located at its minimum. We now show that 𝜕V
𝜕𝑡

≤ 0. The time derivative of V is given by:

¤V =

(
1 − 𝑆∗

𝑆

)
¤𝑆 + 𝑎

(
1 −

𝑈∗
1

𝑈1

)
¤𝑈1 + 𝑏

(
1 −

𝑈∗
2

𝑈2

)
¤𝑈2 + 𝑐

(
1 − 𝐻∗

𝐻

)
¤𝐻 + 𝑑

(
1 − 𝐶∗

𝐶

)
¤𝐶 + 𝑒

(
1 − 𝐽∗

𝐽

)
¤𝐽 + 𝑓

(
1 − 𝑅∗

𝑅

)
¤𝑅.

At the equilibrium of the system (2.1) we have

Λ =
𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆∗

𝑈1
, 𝑄1 =

𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆∗
𝑈1

, 𝑄2 =
𝜏𝑈∗

1 + 𝜅𝑅∗ + 𝜗𝐻∗

𝑈∗
2

,

𝑄3 =
𝛾2𝑈

∗
2

𝐻∗ 𝑄4 =
𝛼𝑈∗

1 + 𝜌𝑈∗
2

𝐶∗ , 𝑄5 =
𝛾1𝑈

∗
2 + 𝜀𝐶∗

𝐽∗
, 𝑄6 =

𝜎𝐽∗ + 𝜃𝐻∗

𝑅∗ .
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We then substitute the derivatives of state variables for the expressions to get

¤V =

(
1 − 𝑆∗

𝑆

) (
𝛽
(
𝑈∗

1 + 𝜂1𝑈
∗
2 + 𝜂2𝐶

∗) 𝑆∗ + 𝜇𝑆∗ − 𝛽 (𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶) 𝑆 − 𝜇𝑆

)
+ 𝑎

(
1 −

𝑈∗
1

𝑈1

) (
𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆 − 𝛽(𝑈1 + 𝜂1𝑈2 + 𝜂2𝐶)𝑆∗

𝑈1
𝑈∗

1

)
+ 𝑏

(
1 −

𝑈∗
2

𝑈2

) (
𝜏𝑈1 + 𝜅𝑅 + 𝜗𝐻 −

(
𝜏𝑈∗

1 + 𝜅𝑅∗ + 𝜗𝐻∗

𝑈∗
2

)
𝑈2

)
+ 𝑐

(
1 − 𝐻∗

𝐻

) (
𝛾2𝑈2 −

𝛾2𝑈
∗
2𝐻

𝐻∗

)
+ 𝑑

(
1 − 𝐶∗

𝐶

) (
𝛼𝑈1 + 𝜌𝑈2 −

(
𝛼𝑈∗

1 + 𝜌𝑈∗
2

𝐶∗

)
𝐶

)
+ 𝑒

(
1 − 𝐽∗

𝐽

) (
𝛾1𝑈2 + 𝜀𝐶 −

(
𝛾1𝑈

∗
2 + 𝜀𝐶∗

𝐽∗

)
𝐽

)
+ 𝑓

(
1 − 𝑅∗

𝑅

) (
𝜎𝐽 + 𝜃𝐻 −

(
𝜎𝐽∗ + 𝜃𝐻∗

𝑅∗

)
𝑅

)
.

We let 𝑃0 = 𝛽𝑈∗
1𝑆

∗; 𝑃1 = 𝛽𝜂1𝑈
∗
2𝑆

∗ and 𝑃2 = 𝛽𝜂2𝐶
∗𝑆∗,

and
𝑈̄ =

𝑆

𝑆∗
, 𝑉̄ =

𝑈1
𝑈∗

1
, 𝑊̄ =

𝐻

𝐻∗ , 𝑋̄ =
𝐶

𝐶∗ , 𝑌 =
𝐽

𝐽∗
, 𝑇 =

𝑈2
𝑈∗

2
, 𝑍̄ =

𝑅

𝑅∗ .

The derivatives of V with 𝑎 = 1 reduces to

VF =

(−𝜇
𝑆

)
(𝑆 − 𝑆∗) + 𝑃0

(
4 − 𝑇

𝑈̄
− 𝑉̄𝑈̄

𝑋̄
− 𝑋̄

𝑇
− 1
𝑉̄

)
+ 𝑓1 − 𝑓2, (3.4)

where,

𝑓1 =𝑃1

(
4 − 𝑊̄

𝑈̄
− 𝑇𝑈̄

𝑋̄
− 𝑋̄

𝑊̄
− 1
𝑇

)
+ 𝑃2

(
4 − 𝑇

𝑈̄
− 𝑋̄𝑈̄

𝑍̄
− 𝑍̄

𝑇
− 1

𝑋̄

)
+ 𝑃3

(
4 − 𝑇

𝑈̄
− 𝑉̄𝑈̄

𝑋̄
− 𝑋̄

𝑉̄
− 1
𝑇

)
+𝑃4

(
4 − 𝑇

𝑉̄
− 𝑉̄

𝑇𝑈̄
− 𝑈̄

𝑊̄
− 𝑊̄

)
+ 𝑃5

(
4 − 𝑉̄

𝑋̄𝑈̄
− 𝑈̄

𝑉̄
− 𝑋̄

𝑊̄
− 𝑊̄

)
+ 𝑏𝑃6

(
4 − 𝑉̄

𝑇
− 𝑇

𝑋̄
− 𝑋̄

𝑊̄
− 𝑊̄

𝑉̄

)
+𝑏𝑃7

(
4 − 𝑍̄

𝑇
− 𝑇

𝑋̄
− 𝑋̄

𝑌
− 𝑌

𝑍̄

)
+ 𝑏𝑃8

(
4 − 𝑊̄

𝑇
− 𝑇

𝑌
− 𝑌

𝑍̄
− 𝑍̄

𝑊̄

)
+ 𝑐𝑃9

(
4 − 𝑇

𝑊̄
− 𝑊̄

𝑍̄
− 𝑍̄

𝑌
− 𝑌

𝑇

)
+𝑑𝑃10

(
4 − 𝑉̄

𝑋̄
− 𝑋̄

𝑌
− −𝑌

𝑍̄
− 𝑍̄

𝑉̄

)
+ 𝑑𝑃11

(
4 − 𝑇

𝑋̄
− 𝑋̄

𝑌
− 𝑌

𝑍̄
− 𝑍̄

𝑇

)
+ 𝑒𝑃12

(
4 − 𝑇

𝑌
− 𝑌

𝑍̄
− 𝑍̄

𝑊̄
− 𝑊̄

𝑇

)
+𝑒𝑃13

(
4 − 𝑋̄

𝑌
− 𝑌

𝑊̄
− 𝑊̄

𝑍̄
− 𝑍̄

𝑋̄

)
+ 𝑓 𝑃14

(
4 − 𝑌

𝑍̄
− 𝑍̄

𝑋̄
− 𝑋̄

𝑊̄
− 𝑊̄

𝑌

)
+ 𝑓 𝑃15

(
4 − 𝑊̄

𝑍̄
− 𝑍̄

𝑋̄
− 𝑋̄

𝑌
− 𝑌

𝑊̄

)
and

𝑓2 =

(
1 − 1

𝑈̄
− 𝑉̄𝑈̄ + 𝑉̄

)
+ 𝑃1

(
1 − 1

𝑈̄
− 𝑇𝑈̄ + 𝑇

)
+ 𝑃2

(
1 − 𝑋̄

𝑈̄
− 1
𝑈̄

+ 𝑋̄

)
+ 𝑃3

(
1 − 1

𝑈̄
− 1
𝑉̄

+ 1
𝑉̄𝑈̄

)
+𝑃4

(
1 − 1

𝑉̄
− 𝑉̄

𝑇𝑈̄
+ 1
𝑇𝑈̄

)
+ 𝑃5

(
1 − 𝑉̄

𝑋̄𝑈̄
− 1
𝑉̄

+ 1
𝑋̄𝑈̄

)
+ 𝑃6

(
1 − 𝑉̄

𝑇
− 𝑇 + 𝑉̄

)
+ 𝑃7

(
1 − 𝑍̄

𝑇
− 𝑇 + 𝑍̄

)
+𝑃8

(
1 − 𝑊̄

𝑇
− 𝑇 + 𝑊̄

)
+ 𝑃9

(
1 − 𝑇

𝑊̄
− 𝑊̄ + 𝑇

)
+ 𝑃10

(
1 − 𝑉̄

𝑋̄
− 𝑋̄ + 𝑉̄

)
+ 𝑃11

(
1 − 𝑇

𝑋̄
− 𝑋̄ + 𝑇

)
+𝑃12

(
1 − 𝑇

𝑌
− 𝑌 + 𝑇

)
+ 𝑃13

(
1 − 𝑋̄

𝑌
− 𝑌 + 𝑋̄

)
+ 𝑃14

(
1 − 𝑌

𝑍̄
− 𝑍̄ + 𝑌

)
+ 𝑃15

(
1 − 𝑊̄

𝑍̄
− 𝑍̄ + 𝑊̄

)
.

To the inequality of property,
(
4 − 𝑊̄

𝑈̄
− 𝑇̄𝑈̄

𝑋̄
− 𝑋̄

𝑊̄
− 1

𝑇̄

)
≤
(
1 − 1

𝑈̄
− 𝑉̄𝑈̄ + 𝑉̄

)
=⇒ 𝑓1 ≤ 𝑓2, equality holds⇐⇒ 𝑉̄ = 𝑇 = 𝑈̄ = 1. In order to prove that ¤VF ≤ 0
since the first term

−
( 𝜇
𝑆

)
(𝑆 − 𝑆∗)2

.

Our only task is to prove that the remaining terms are all negative. To prove this, we need to apply the arithmetic mean geometric mean
inequality [33]

𝑛 𝑛
√
𝑎1𝑎2𝑎3...𝑎𝑛 ≤ 𝑎1 + 𝑎2 + ... + 𝑎𝑛,

where 𝑖 ∈ 1, 2, 3, ..., 𝑛 with 𝑛 ≥ 0. We apply the arithmetic mean-geometric mean inequality on the first term of 𝑓1. We consider,(
4 − 𝑊̄

𝑈̄
− 𝑇𝑈̄

𝑋̄
− 𝑋̄

𝑊̄
− 1
𝑇

)
.
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By applying the arithmetic mean-geometric mean inequality,

4 · 4

√︄
𝑊̄

𝑈̄
· 𝑇𝑈̄
𝑋̄

· 𝑋̄
𝑊̄

· 1
𝑇

≤
(
𝑉̄ + 1

𝑈̄
+ 𝑉̄𝑈̄

)
4 ≤

(
(𝑉̄ + 1

𝑈̄
+ 𝑉̄𝑈̄

)
− 4 ≥

(
(𝑉̄ − 1

𝑈̄
− 𝑉̄𝑈̄

)
.

Similarly, we prove that all other terms of ¤V in equation (3.4) are non-positive. Therefore, ¤V is shown to be positive definite at the
endemic equilibrium point and 𝜕VF

𝜕𝑡
≤ 0 with 𝜕V

𝜕𝑡
= 0 if and only if 𝑆 = 𝑆∗,𝑈1 = 𝑈∗

1 ,𝑈2 = 𝑈∗
2 , 𝐻 = 𝐻∗, 𝐶 = 𝐶∗, 𝐽 = 𝐽∗ and 𝑅 = 𝑅∗ for

𝑈̄ = 𝑉̄ = 𝑊̄ = 𝑋̄ = 𝑇 = 𝑍̄ = 1. The unique invariant set within Ω ⊂ R7
+ is the singleton comprising the endemic equilibrium. Consequently,

every solution trajectory that intersects R7
𝑡 asymptotically approaches the endemic equilibrium.

Consequently, the largest invariant set satisfying ¤V = 0 consists solely of the endemic equilibrium. By applying LaSalle’s Invariance
Principle [34], it follows that the endemic equilibrium is globally asymptotically stable within the specified invariant region Ω ⊂ R7

+. □

4. Numerical Simulations

4.1. Parameter estimation

This section provides the theoretical results of our model obtained through numerical simulation of the system (2.1). In this paper, MATLAB
will be used to carry out the numerical simulations. It is crucial to recognize that drug use and crime patterns vary significantly from region
to region in South Africa. According to Statistics South Africa, the total population of Gauteng in 2022 was 15 099 422 [6].

At 𝑡 = 0, the state variables are set as 𝑆 = 15419976, 𝑈1 = 3000, 𝑈2 = 1950, 𝐻 = 1800, 𝐶 = 2000, 𝐽 = 860 and 𝑅 = 3850 with reasonable
assumptions. Table 4.1 presents the estimated parameter values used in carrying out numerical simulations of the narcocriminality model.
Many parameters are known to lie within some limits, and only a few are known exactly, and it is apparent then to estimate the others [9]. In
our model, we identified a few parameters from the literature and estimated the remaining ones.

Parameter Description Baseline Range of Values References
Λ Recruitment rate 34000 (34500, 35700) Estimated
𝜇 Natural mortality rate 0.0083 (0.007885, 0.008715) [8]
𝛼 Progression rate from light users to criminals 0.0016735 (0.0159, 0.0176) Estimated
𝜏 Progression rate from light users to heavy users 0.01 (0.0095, 0.0105) Estimated
𝜅 Relapse rate 0.05 (0.0475, 0.053) Estimated
𝜗 Dropout rate from rehabilitation 0.02 (0.019, 0.021) [9]
𝜌 Progression rate from heavy users to criminals 0.11 (0.1045, 0.1155) [8]
𝛾1 Incarceration rate of heavy drug users 0.00013 (0.000124, 0.000137) Estimated
𝛾2 Rehabilitation rate 0.3856 (0.366, 0.405) Estimated
𝛿 Death rate due to drug use 0.9 (0.855, 0.9944) Estimated
𝜃 Recovery rate from rehabilitation 0.947 (0.8997, 0.9944) Estimated
𝜀 Incarceration rate of criminals 0.8234349 (0.7823, 0.865) Estimated
𝜎 Recovery rate from jail 0.99857 (0.9986, 1) Estimated
𝛽 Initiation rate of drug use 0.00000002 (0.000000019-8,

0.000000021)
Estimated

𝜂1 Interaction rate between susceptible individuals and
light drug users

0.6 (0.57, 0.63) [23]

𝜂2 Rate at which heavy drug users are recruited into
criminality due to association with criminals

0.8 (0.76, 0.81) [23]

Table 4.1: Parameter values used in the narcocriminality model. Ranges indicate values used for sensitivity analysis.

4.2. Sensitivity analysis

Through sensitivity analysis, we quantify the relative influence of parameter variations on the system’s state variables [35]. Our analysis
focuses specifically on understanding how each parameter affects the drug abuse criminogenic growth number (D0) [12]. The primary focus
is to determine how each parameter influences the drug abuse criminogenic growth number, with the broader aim of informing effective
intervention strategies to address drug-related crime in Gauteng Province. We computed the sensitivity indices of D0 using Latin Hypercube
Sampling (LHS) coupled with Partial Rank Correlation Coefficient (PRCC) analysis, conducting 1000 simulations per run following the
methodology established by [36]. This stratified sampling approach ensures comprehensive coverage of each parameter’s range while
minimizing clustering, thereby enhancing the reliability of our sensitivity estimates.

The resulting sensitivity indices reveal crucial relationships between model parameters and D0. Parameters exhibiting positive indices
demonstrate a direct correlation with D0, meaning their increase would exacerbate the drug crime epidemic. Conversely, parameters with
negative indices show an inverse relationship, suggesting their enhancement could help mitigate the problem. As shown in Figure 4.2, the
transmission rate 𝛽 (estimated at 0.579) emerges as the most sensitive parameter, displaying perfect positive correlation with D0 - a 1%
increase in 𝛽 leads to a corresponding 1% increase in D0. This strong relationship underscores 𝛽’s pivotal role in driving narcocriminality
dynamics through its direct influence on drug abuser populations. Equally significant is the natural mortality rate 𝜇, which shows a substantial
negative correlation (sensitivity index: -0.7418) with D0, indicating that increased population turnover may help reduce the drug crime
burden. These findings provide critical insights for prioritizing intervention strategies, highlighting which parameters most significantly



210 Journal of Mathematical Sciences and Modelling

influence D0 and therefore offering the most promising targets for effective crime reduction measures. If we increase 𝜇, say, by 1%, this has
the effect of reducing the drug abuse criminogenic growth number. Some other parameters in our model are less influential to D0, and these
are 𝜌, 𝜅, 𝜂1, 𝜂2, 𝜅, 𝜗, 𝜌, 𝛾1, 𝛾2, 𝛿, 𝜃, 𝜀, and 𝜎. Figure 4.1 below shows the plot of partial rank correlation coefficients, also showing the effects
of the parameters on D0.

Figure 4.1: The PRCC analysis illustrates how variations in the parameters (within the ranges specified in Table 4.1)
influence the value of D′ Parameters with positive PRCC values contribute to an increase in D′ as their values rise, while
those with negative PRCC values lead to a decrease in D′ when increased.

Figure 4.2: Scatter plots showing the three parameters with the greatest PRCC magnitude in the narcocriminality model,
1000 simulations per run were used.

The scatter plots in Figure 4.2 illustrates the effects of varying 𝛽, 𝜂2 and 𝜇 on the drug abuse criminogenic growth number D0.The scatter
plots indicates that the drug abuse criminogenic growth number D0 is most sensitive to variations in the initiation parameter 𝛽, the natural
death rate 𝜇 and the interaction rate 𝜂2 between the heavy drug users and the criminals. An increase in 𝛽, the transmission parameter, leads
to a rise in D0, meaning that if 𝛽 increases by 1% , D0 also increases by 1%. The natural death rate 𝜇 shows an inverse relationship with
the drug abuse criminogenic growth number. A decrease in 𝜇 results in a corresponding decrease in D0, and an increase in 𝜇 results in a
decrease in the drug abuse criminogenic growth number, as shown in the diagram Figure 4.1.
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4.3. Model validation

To assess the reliability of the proposed model, we validated its simulated outputs against empirical data obtained from the South African
Police Service (SAPS). The validation dataset consists of annual reports on drug-related crimes spanning the years 2010 to 2024, extracted
from the official SAPS crime statistics portal, [37]. Model predictions were compared with the observed temporal trends, focusing on
both the direction and magnitude of variation across the years. Goodness-of-fit metrics, including the root mean square error (RMSE) and
mean absolute percentage error (MAPE), were computed to quantify the level of agreement. Residual analyses were further conducted to
identify periods of under- or overestimation. Where notable discrepancies were detected—such as sharper-than-expected declines in certain
years—the model structure was revisited to account for possible external influences, including policy changes, enforcement intensity, or
resource allocation. This validation process enhances the model’s credibility and provides a quantitative foundation for forecasting and
scenario evaluation in the context of drug-related crime dynamics in South Africa. The data from the Gauteng province is obtained from [?]
for the years 2014 to 2023. To determine the data for the remaining years, we then used the average percentage of Gauteng data compared to
national data.

Year Drug-related crimes in SA Drug-related crimes in Gauteng

2010 150 561 34 253
2011 176 218 40 090
2012 206 721 47 029
2013 260 596 59 286
2014 266 902 70 264
2015 259 165 55 442
2016 292 689 62 837
2017 323 547 69 285
2018 232 657 55 639
2019 170 510 43 275
2020 121 359 28 034
2021 140 326 29 578
2022 162 122 34 963
2023 172 999 38 093
2024 186 586 42 448

Table 4.2: Reported drug-related crimes in South Africa and Gauteng Province (2010–2024).

Figure 4.3: Comparison between the simulated model outputs and the empirical SAPS data on drug-related crimes in South Africa (2010–2024). The model
demonstrates a strong alignment with observed trends, accurately capturing both the rise in reported cases between 2010 and 2017 and the subsequent decline
following 2018. Minor deviations observed in 2020–2021 correspond to pandemic-related enforcement fluctuations. The overall fit indicates the model’s
robustness in replicating temporal patterns of drug-related crime dynamics.

4.4. Influence of light and heavy user criminal progression rates on narcocriminality epidemic

This section presents numerical results demonstrating the impact of key parameters on the dynamics of the narcocriminality epidemic.
The parameter 𝛼 captures the transition of individuals from light drug use to criminal involvement. We considered varying values of
𝛼 = {0.016735, 0.026735, 0.036735, 0.046735}, as illustrated in Figure 4.4(a). The findings reveal that a higher progression rate 𝛼 results in
more criminals, thus intensifying the incidence of criminal activities in Gauteng Province.
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(a) Effects of the progression rate 𝛼 on Criminals (𝐶) (b) Effects of the progression rate 𝜌 on Criminals (𝐶).

(c) Effects of the progression rate 𝜏 on Criminals (𝐶).

Figure 4.4: The impact of key parameters in the narcocriminality epidemics model.

Figure 4.4(b) illustrates the impact of varying the progression rate 𝜌. Specifically, we considered values of 𝜌 = 0.11, 0.31, 0.51, 0.71. The
results show that as 𝜌 increases, representing the rate at which heavy drug users transition into the criminal population, criminality rises. In
contrast, lower values of 𝜌 result in reduced criminality. This trend is evident in the plot displayed in Figure 4.4(b). We therefore conclude
that higher values of 𝜌 contribute to a greater prevalence of criminality within the epidemic dynamics.

Figure 4.4(c) illustrates the effect of varying the progression rate 𝜏, which governs the transition from light to heavy drug use, on crime
levels. We explored values of 𝜏 = {0.11, 0.31, 0.51, 0.71}. The results indicate that increasing 𝜏 leads to a rise in the number of heavy drug
users, which in turn contributes to higher rates of criminal activity. In summary, a higher progression rate 𝜏 amplifies the prevalence of the
epidemic through its impact on criminality.

4.5. Impact of parameters on the drug abuse criminogenic growth number

The parameters 𝛼, 𝜌, 𝛾1, 𝛾2 and 𝜀 have a significant impact on the Drug Abuse Criminogenic Growth Number (DGN). The progression rates
𝛼 and 𝜌 to crime increases D0 as they expand the criminal population. Contrary, the incarceration rates 𝛾1 𝜀 and the rehabilitation rate 𝛾2
reduces D0 by removing individuals from the population of light drug users, heavy drug users and criminals. Plots in Figures (4.5a, 4.5b,
4.5c, 4.5d and 4.5e) displays the relationship between the parameters and D0.
Figure 4.5a and Figure 4.5e show that increasing the progression rates 𝛼 and 𝜌 results in an increasing exponential function towards the
drug abuse criminogenic growth number (DGN) in the narcocriminality model. If we increase the rate of incarceration 𝛾1, this also results
in the reduction of D0. This means that correctional services gradually control the prevalence of the epidemic. Figure 4.5d shows a
decreasing function of D0 plotted as a function of the rehabilitation rate 𝛾2. This is as a result of the heavy drug users who progress to the
rehabilitation centres, thereby reducing the drug abuse criminogenic growth. We also observe that the incarceration parameter 𝜀 from the
crime compartment to the jail compartment exhibits a decreasing trend when plotted against the drug abuse criminogenic growth number, as
shown in Figure 4.5b. In this case, the drug abuse criminogenic growth number decreases as a result of the psycho-social support that they
receive while in jail. Some of the arrested will recover from drug abuse and criminal activities. This results in a reduction of the (DGN) in
the narcocriminality model.
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(a) The plot shows the progression rate 𝛼 plotted as a function of the Drug abuse
criminogenic growth number. As the number of light drug users progresses to
the criminal population, D0 increases.

(b) The plot shows the incarceration rate 𝜖 plotted as a function of the drug abuse criminogenic
growth number D0. The plot shows that as criminals get incarcerated, this has an effect of
reducing the drug abuse criminogenic growth number.

(c) The plot shows the incarceration rate 𝛾1 plotted as a function of the drug abuse
criminogenic growth number D0. The plot shows that as heavy drug users get
incarcerated, this reduces the number of heavy drug users. This has an effect of
reducing the drug abuse criminogenic growth number.

(d) The plot shows the rehabilitation rate 𝛾2 plotted as a function of the drug abuse
criminogenic growth number D0. The plot shows a decreasing exponential function
towards the drug abuse criminogenic growth number. As the number of heavy drug
users increases in rehabilitation centres, this has an effect of reducing D0.

(e) The plot shows the progression rate 𝜌 plotted as a function of the drug abuse
criminogenic growth number D0. The plot shows that as the number of heavy drug
users increases, the drug criminogenic number also increases exponentially.

Figure 4.5: Effects of key parameters on the drug abuse criminogenic growth number D0.

4.6. Comparison of the effects of the key parameters on drug-related crime transitions

Figure 4.6 compares how reducing key transition rates affects drug crime dynamics. In each figure, the shaded regions show the decrease in
individuals progressing into crime or jail. Heavy drug users (a), criminals (b), and light drug users (c) all exhibit lower peaks and faster
declines when these transitions are limited, demonstrating that mitigating progression into crime-related compartments significantly lowers
the population levels in crime-related compartments. The description of each subfigure is given under the subfigure.
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(a) The trajectory of heavy drug users who avoided progressing
to criminal behaviour because of other factors is shown by the
shaded region.

(b) The trajectory of criminals who avoided progressing to
the jail compartment because of other factors is shown by the
shaded region.

(c) The trajectory of light drug users who avoided progressing
to criminal behaviour because of other factors is shown by a
shaded region

Figure 4.6: Comparison of the effects of key parameters on drug-crime transitions.

(a)

(b) (c)

Figure 4.7: (a) present contour plot for the drug abuse criminogenic growth number D0 plotted as a function of the rates 𝛼 and 𝜌, (b) is the contour plot for
the drug abuse criminogenic growth number D0 plotted as a function of the rates 𝜀 and 𝛾1, and (c) presents the contour plots for the drug abuse criminogenic
growth number D0 plotted as a function of the rates 𝜏 and 𝛼.
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Figures 4.7(a), 4.7(b) and 4.7(c) presents contour plots for the drug abuse criminogenic growth number (DGN) plotted as a function of
(a)Progression rate from light drug users to criminals, 𝛼 (b) Progression rate from heavy drug users to criminals, 𝜌 (c) Incarceration rate of
criminals, 𝜀 (d) Incarceration rate of heavy drug users, 𝛾1 (e) Progression rate from light drug users to heavy drug users, 𝜏. As shown, on
Figure 4.7, if we increase 𝜌, the criminals increase as heavy drug users progress to the crime compartment. This results in an increase in D0.
If the progression rate of light drug users 𝛼 is increased, we also see an increase in D0 because the number of criminals increases.

Figure 4.7(c) presents the drug abuse criminogenic growth number plotted as a function of 𝛼 and 𝜏. If we increase the progression rate from
light drug users 𝜏 to heavy drug users, this leads to an increase in the population of heavy drug users. The heavy drug users also progress to
the criminal compartment by 𝜌. Therefore, increasing 𝜏 also increases (DGN).

In Figure 4.7(b), we see that as we increase the incarceration rate 𝜀, this leads to a decline in the number of criminals. This reduces the
number of drug abuse criminogenic factors. It is also shown through the contour plots that, as we increase the other incarceration rate from
the heavy drug users 𝛾1, this also decreases the population of heavy drug users, thereby contributing to a reduction in D0.

Figure 4.6 present the trajectory of heavy drug users who avoid progressing to criminal behaviour because of other factors, and also the
number of criminals who avoid getting into jail by parameters 𝜌 and 𝜀, respectively. Some heavy drug users might avoid the criminal
compartment and rather join the rehabilitation compartment.

4.7. Impact of incarceration parameters on drug abuse criminogenic growth number D′.

(a) Surface plot showing the impact of 𝛾1 and 𝜀 on D′ . (b) Contour plot showing the impact of 𝛾1 and 𝜀 on D′ .

Figure 4.8: The impact of incarceration parameters on the Drug Criminogenic Growth Number D′.

Figures 4.8(a) and 4.8(b) show the surface plot and the contour plot illustrating the impact of incarceration parameters on the D′ . Increasing
either parameter reduces the persistence of the narcocriminality burden by removing high-risk individuals from the cycle of drug abuse
and crime. Consequently, both serve as effective control measures for reducing the drug abuse criminogenic growth number D′, and when
sufficiently large, D′ will ultimately be less than a unit, indicating the epidemic will die out. The threshold D′ = ∞ serves as a key indicator
of stability and guides the design of control strategies.

4.8. Relapse effects on the threshold behaviour of the drug abuse criminogenic growth number D′

(a) Surface plot showing the relapse effects of 𝜗 and 𝜅 on D′ . (b) Contour plot showing the effects of the relapse effects 𝜗 and 𝜅 on D′ on D′ .

Figure 4.9: The relapse effects on the threshold behaviour of D′.

Figure 4.9 presents both the surface and contour plots illustrating the impact of the relapse rates on the drug abuse criminogenic growth
number, D′ . The plots demonstrate that an increase in the relapse rates leads to a corresponding rise in D′,indicating the continued persistence
of the narcocriminality burden in the population. Conversely, lower relapse rates result in D′ < ∞, suggesting that the pandemic will
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eventually die out. The bold black contour represents the critical threshold where D′ = ∞. As the system approaches this threshold, it
becomes increasingly unstable, and even slight changes in relapse behaviour may determine whether the epidemic is eliminated or persists.

4.9. Critical role of progression parameters 𝛼 and 𝜌 in sustaining criminal dynamics

(a) Surface plot showing the combined effects of the progression rates on the Drug
Criminogenic Growth Number.

(b) The surface plot show the combined effects of 𝛼 𝜌 on the Drug Criminogenic
Growth Number D′ .

Figure 4.10: The surface plots show the combined effects of the progression rates 𝛼 and 𝜏 on the Drug Abuse Criminogenic Growth Number (DGN).

The combined influence of progression rates 𝛼 and 𝜌 significantly amplifies criminality within the population. These parameters represent
the pathways through which both light and heavy drug users are funnelled into crime. Simulation results show that increasing either
parameter leads to a higher criminal population and a larger drug abuse criminogenic growth number D′,reinforcing the persistence of the
narcocriminality epidemic. This highlights the importance of early intervention strategies that aim to interrupt the drug-to-crime transition at
multiple stages of drug use. The surface plot in Figure 4.10(a) shows the combined effects of both parameters in raising criminality.

Figure 4.10(b) displays the combined effects of 𝛼 and 𝜏. The effects of these two parameters play an important role in capturing the dynamics
of the narcocriminality epidemic. Increasing 𝜏 results in an increase in the heavy drug user population, which is more likely to engage in
criminal behaviour. Simultaneously, an increase in 𝛼 accelerates the direct transition of light drug users into the criminal compartment.
When both parameters are increased, the number of heavy drug users increases. This amplifies the prevalence of criminal activities.

5. Conclusion

The study presents a deterministic compartmental model to explore the complex relationship between substance abuse and crime in
Gauteng province, South Africa. By incorporating seven distinct population compartments, susceptible individuals, light and heavy drug
users, criminals, incarcerated individuals, those undergoing rehabilitation, and recovered individuals, the model successfully captures the
dynamic interplay between drug abuse and criminal behaviour. Inclusion of rehabilitation and incarceration as control measures provides
a comprehensive framework for evaluating the effectiveness of the intervention. The model demonstrates that the narcocriminality-free
equilibrium stabilizes when D0 < 1, while the endemic equilibrium persists when D0 > 1. The key parameters 𝛽, 𝛼, and 𝜌 were identified as
the most sensitive to D0, suggesting that the targeted interventions should focus on reducing the rates of initiation and progression. The
effectiveness of rehabilitation and incarceration in controlling the system was demonstrated.

Key insights reveal that the narcocriminality-free equilibrium is globally asymptotically stable when the Drug Abuse Criminogenic Growth
Number (DGN, D0 < 1), while the persistent narcocriminality equilibrium becomes asymptotically stable when D0 > 1, indicating the
continued presence of drug-associated criminal behaviour. Sensitivity analysis identifies the initiation rate (𝛽) and progression rates (𝛼 and
𝜌) as the most influential parameters affecting D0, highlighting the importance of prevention programs targeting drug use initiation and the
transition to criminal activities. Numerical simulations demonstrate how rehabilitation (𝛾2) and incarceration rates (𝜀 and 𝛾1) can reduce
heavy drug use and criminal prevalence, with visualizations through contour and scatter plots reinforcing these findings. Robust statistical
validation, utilizing Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC), enhances the model’s reliability.

Future research directions include incorporating stochastic elements for random fluctuations, adding spatial heterogeneity for regional
variations, and validating the model with empirical data. The findings provide valuable insights for policymakers, emphasizing the need
for prevention programs and law enforcement strategies. To enhance the practical application of the model, future work could incorporate
real-world data validation, explore additional community-based interventions, and consider socioeconomic factors such as unemployment
that may influence drug-related crime rates. This study establishes a strong theoretical foundation for addressing narcocriminality, offering
actionable recommendations for both policymakers and researchers working to mitigate this complex social challenge.
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