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Editorial 
 

I am delighted to welcome you to the first issue of the Journal of New Theory (JNT). After 
receiving first manuscript at 12.11.2014, this issue is now complete with 9 papers. One of the 
papers is about computer sciences and the others are all about mathematics.    
 
It is truly a collaborative effort and thanks go to many scientists who have helped start this 
journal. ISSN: 2149-1402 is obtained at 27.01.2015.  
 
We would like to express our deepest thanks to all of the members of the editorial board and 
reviewers of the papers in this issue who are  U. Orhan, A. Filiz, A. Fenercioğlu, A. Sarı, A. 
Yıldırım, A. S. Sezer, B. Mehmetoğlu, B. H. Çadırcı, C. Kaya, Ç. Çekiç, E. Altuntaş, E. 
Turgut, F. Karaaslan, F. Smarandache, G. Erdal, H. Aktaş,  H. M. Doğan, H. Günal, H. 
Kızılaslan, H. Önen, H. Şimşek, İ. Zorlutuna, İ. Deli, İ. Gökçe, İ. Türkekul, İ. Parmaksız, J. 
Ye, M. Akar, M. Akdağ, M. Ali, M. Çavuş, M. Demirci,  M. Sağlam, N. Yeşilayar, O. 
Muhtaroğlu, P. K. Maji, R. Yayar, S. Broumi, S. Karaman, S. Tarhan, S. Enginoğlu, S. 
Demiriz, S. Karataş, S. Öztürk, S. Eğri, Ş. Sözen, Y. Budak, Y. Karadağ, S. J. John, M. Ali 
and O. Ravi.  
 
JNT publishes original research articles, reports, reviews and commentaries that are based on 
a theory of mathematics. However, the topics are not limited to only mathematics, but 
also include statistics, computer science, physics, engineering, chemistry, biology, economics 
or social sciences that use a theory of mathematics. 
JNT is a refereed, electronic, open access and international journal.  
 
Papers in JNT are published free of charge.  
 
Pleases, write any original idea. If it is true, it gives an opportunity to use. If it is incomplete, 
it gives an opportunity to complete. If it is incorrect, it gives an opportunity to correct. 
 
You can reach us from journal homepage at http://www.newtheory.org. To receive further 
information and to send your recommendations and remarks, or to submit articles for 
consideration, please e-mail us at jnt@newtheory.org 
 
We hope you will enjoy this issue of JNT. We are looking forward to hearing your feedback 
and receiving your contributions. 
 
Happy reading! 

27 January 2015 
Naim Çağman  
Editor-in-Chief  
Journal of New Theory  
http://www.newtheory.org 
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Connectedness on Intuitionistic Fuzzy Soft

Topological Spaces

Serkan Karataş1,*(serkankaratas@odu.edu.tr)
Mehmet Akif İşleyen1 (mehmetakifisleyen@msn.com)

1Department of Mathematics, Faculty of Arts and Sciences, Ordu University, 52200 Ordu, Turkey

Abstract − In this study, we introduce intuitionistic fuzzy soft connected sets in intuitionistic fuzzy
soft topological spaces and some properties. Moreover, we extend the notion of Ci connectedness
(i = 1, 2, 3, 4) to intuitionistic fuzzy soft topological spaces.

Keywords − Intuitionistic fuzzy soft set, intuitionistic fuzzy soft topological space, intuitionistic fuzzy
soft connectedness.

1 Introduction

Nowadays, several researchers investigate to model the uncertainties. They use different set theories
for this, for example fuzzy set theory [1] and intuitionistic fuzzy set theory [2] are the most common.
But, such theories have their own difficulties such as constructing membership function. Therefore,
Molodtsov [6] proposed a new mathematical tool for uncertainties, called soft set theory. In this theory,
it is not necessary which constructing membership function. Soft sets can apply several areas such as
Riemann-integration, Perron integration, game theory, operations research, probability theory, etc.

Many researchers study on soft set theory, especially soft topological structures. For example, soft
topology and related properties were studied in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Then, several
paper were published about fuzzy soft topological spaces [18, 19, 20, 21, 22, 23]. Moreover, recently,
some authors have studied over intuitionistic fuzzy soft topological spaces [26, 27, 28, 29].

In this article, we introduce the connectedness on intuitionisitic fuzzy soft topological spaces.
Then, we are compare the ifs Ci themselves.

2 Preliminary

In this section, we will give basic definitions and theorems with ifs-sets, intuitionistic fuzzy soft topology
and intuitionistic fuzzy soft continuous functions. Throughout this paper, P(X), E and IF(X) denote
power set of X, set of parameter and set of all intuitionistic fuzzy sets over X, respectively.

**Edited by Naim Çağman (Editors-in-Chief) and Oktay Muhtaroğlu (Area Editor).
*Corresponding Author.
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Definition 2.1. [2] Let X be a nonempty set. An intuitionistic fuzzy set A is defined by

A =
{〈

x, µA(x), νA(x)
〉

: x ∈ X
}

where µA : X → [0, 1] and νA : X → [0, 1] denote membership and nonmembership functions respec-
tively. Therefore, µA(x) and νA(x) are membership and nonmembership degree of each element x ∈ X
to the intuitionistic fuzzy set A and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

Definition 2.2. [2] Let {Ai}i∈I ⊆ IF(X), A =
{〈x, µA(x), νA(x)〉 : x ∈ X

}
and B =

{〈x, µB(x), νB(x)〉 :
x ∈ X

}
be two intuitionistic fuzzy sets on X. Then, some basic set operations of intuitionistic fuzzy

sets are defined as follows.

i. A ⊆ B ⇔ µB(x) ≥ µA(x) and νB(x) ≤ νA(x) for all x ∈ X

ii. A = B ⇔ A ⊆ B and B ⊆ A.

iii.
⋃

i∈I Ai =
{〈

x,
∨

i∈I µAi
(x),

∧
i∈I νAi

(x)
〉

: x ∈ X
}

iv.
⋂

i∈I Ai =
{〈

x,
∧

i∈I µAi
(x),

∨
i∈I νAi

(x)
〉

: x ∈ X
}

v. ¤A =
{〈

x, µA(x), 1− µA(x)
〉

: x ∈ X
}

vi. ♦A =
{〈

x, 1− νA(x), νA(x)
〉

: x ∈ X
}

vii. Ac =
{〈x, νA(x), µA(x)〉 : x ∈ X

}

viii. 1̃ =
{〈x, 1, 0〉 : x ∈ X

}
and 0̃ =

{〈x, 0, 1〉 : x ∈ X
}
.

Theorem 2.3. [3] Let A,B, C ∈ IF(X). Then

i. A ⊆ B and B ⊆ C ⇒ A ⊆ C

ii. A ⊆ B ⇒ A ∪ C ⊆ B ∪ C and A ∩ C ⊆ B ∩ C

iii. (A ∩B)c = Ac ∪Bc and (A ∪B)c = Ac ∩Bc

iv. (Ac)c = A, 1̃c = 0̃ and 0̃c = 1̃

v. A ⊆ B ⇒ Bc ⊆ Ac

Definition 2.4. [6] A pair (F,A) is called a soft set over X, if F is a mapping defined by F : A → P(X),
where A ⊆ E.

Now, we will give a new soft set definition who was given by Çağman [7]. The definition is a new
comment for the soft sets.

Definition 2.5. [7] A soft set F over X is a set valued function from E to P(X). It can be written a
set of ordered pairs

F =
{
(e, F (e)) : e ∈ E

}
.

Note that if F (e) = ∅, then the element (e, F (e)) is not appeared in F . Set of all soft sets over X is
denoted by S.

According to Definition 2.5 we will redefine ifs-set and its set operations.

Definition 2.6. An intuitionistic fuzzy soft set (or namely ifs-set) f over X is a set valued function
from E to IF(X). It can be written a set of ordered pairs

f =
{(

e, {〈x, µf(e)(x), νf(e)(x)〉 : x ∈ X}) : e ∈ E
}

Note that if f(e) = 0̃, then the element (e, f(e)) is not appeared in f . Set of all ifs-sets over X is
denoted by IFSE

X .
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Definition 2.7. Let f, g, h ∈ IFSE
X . Then some basic set operations of ifs-sets are defined as follows:

i. (Inclusion) f v g iff f(e) ⊆ g(e) for all e ∈ E.

ii. (Equality) f = g iff f v g and g v f

iii. (Union) h = f t g iff h(e) = f(e) ∪ g(e) for all e ∈ E.

iv. (Intersection) h = f u g iff h(e) = f(e) ∩ g(e) for all e ∈ E.

v. (Complement) h = f c̃ iff h(e) =
(
f(e)

)c̃ for all e ∈ E

vi. (Null ifs-set) f is called the null ifs-set and denoted by Φ, if f(e) = 0̃ for all e ∈ E.

vii. (Universal ifs-set) f is called the universal ifs-set and denoted by X̃, if f(e) = 1̃ for all e ∈ E.

Theorem 2.8. Let {fi}i∈Λ ⊆ IFSE
X and g ∈ IFSE

X . Then

i. g u
(⊔

i∈Λ fi

)
=

⊔
i∈Λ(g u fi)

ii. g t
(d

i∈Λ fi

)
=
d

i∈Λ(g t fi)

iii.
( ⊔

i∈Λ fi

)c̃

=
d

i∈Λ f c̃
i

iv.
(d

i∈Λ fi

)c̃

=
⊔

i∈Λ f c̃
i

v. Φ v f v X̃, X̃ c̃ = Φ and Φc̃ = X̃,

vi. g t gc̃ = X̃ and
(
gc̃

)c̃ = g.

Definition 2.9. [25, 29] Let IFSE
X and IFSK

Y be sets of all ifs-sets on X and Y , respectively. Let
ϕ : X → Y and ψ : E → K be two mappings. Then a mapping ϕψ : IFSE

X → IFSK
Y is defined as:

i. For f ∈ IFSE
X , the image of f under ϕψ, denoted ϕψ(f), is an ifs-set in IFSK

Y given by

µϕ(f)(k)(y) =

{
supe∈ψ−1(k), x∈ϕ−1(y) µf(e)(x), if ϕ−1(y) 6= ∅
0, otherwise

and

νϕ(f)(k)(y) =

{
infe∈ψ−1(k), x∈ϕ−1(y) νf(e)(x), if ϕ−1(y) 6= ∅
1, otherwise

ii. For g ∈ IFSK
Y , the inverse image of g under ϕψ, denoted by ϕ−1

ψ (g) is an ifs-set in IFSE
X given by

µϕ−1(g)(e)(x) = µg(ψ(e))(ϕ(x)) and νϕ−1(g)(e)(x) = νg(ψ(e))(ϕ(x))

for all e ∈ E and x ∈ X.

If ϕ and ψ are injective (surjective) then the ifs-mapping ϕψ is said to be ifs-injective (ifs-
surjective).

Theorem 2.10. [25] Let ϕψ : IFSE
X → FSK

Y be a intuitionistic fuzzy soft mapping, f ∈ IFSE
X and

{fi}i∈Λ ⊆ IFSE
X . Then

i. If f1 v f2, then ϕψ(f1) v ϕψ(f2)

ii. ϕψ

(⊔
i∈Λ fi

)
=

⊔
i∈Λ ϕψ(fi)

iii. ϕψ

(d
i∈Λ fi

)
v d

i∈Λ ϕψ(fi)

iv.
(
ϕψ(f)

)c̃ v ϕψ

(
f c̃

)

v. If ϕψ surjective, then ϕψ(X̃) = Ỹ
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vi. f v ϕ−1
ψ

(
ϕψ(f)

)
, the equality holds if ϕψ is ifs-injective.

Theorem 2.11. [25] Let ϕψ : IFSE
X → IFSK

Y be a intuitionistic fuzzy soft mapping, g ∈ IFSK
Y and

{gj}j∈J ⊆ IFSK
Y . Then

i. If g1 v g2, then ϕ−1
ψ (g1) v ϕ−1

ψ (g2)

ii. ϕ−1
ψ

( ⊔
i∈J gj

)
=

⊔
j∈J ϕ−1

ψ (gj)

iii. ϕ−1
ψ

(d
i∈J gj

)
=
d

j∈J ϕ−1
ψ (gj)

iv.
(
ϕ−1

ψ (g)
)c̃ = ϕ−1

ψ

(
gc̃

)

v. ϕ−1
ψ (Ỹ ) = X̃ and ϕ−1

ψ (Φ) = Φ

vi. ϕψ

(
ϕ−1

ψ (g)
) v g, the equality holds if ϕψ is ifs-surjective.

Definition 2.12. [26] An ifs-topological space is a triplet (X, τ, E) where X is a nonempty set and τ
a family of ifs-sets over X satisfying the following properties:

i. Φ, X̃ ∈ τ ,

ii. If f, g ∈ τ , then f u g ∈ τ ,

iii. If {fi}i∈Λ ⊆ τ , then
⊔

i∈Λ fi ∈ τ.

Then, the family τ is called an ifs-topology on X. Every member of τ is called ifs-open. g is called
ifs-closed in (X, τ, E) if gc̃ ∈ τ .

If f is ifs-open and ifs-closed, then it is called ifs-clopen set. In case f 6= X̃ and f 6= Φ, f is called
ifs-proper set.

Example 2.13. τ0 = {X̃, Φ} and τ1 = IFSE
X are ifs-topologies on X.

Definition 2.14. [26] Let (X, τ, E) be a ifs-topological space and f ∈ IFSE
X . Then, ifs-interior of f

denoted by f◦ is the union of all ifs-open subsets of f . So, we can write the ifs-interior of f as

f◦ =
⊔

gvf
g∈τ

g.

Definition 2.15. [26] Let (X, τ, E) be a ifs-topological space and f ∈ IFSE
X . Then, ifs-closure of f

denoted by f is the intersection of all ifs-closed supersets of f . So, we can write the ifs-closure of f as

f =
l

fvh

hc̃∈τ

h.

It can be seen clearly that f◦ and f are the largest ifs-open set which contained in f and the
smallest ifs-closed set which contains f over X, respectively.

Definition 2.16. Let (X, τ, E) be a ifs-topological space and f ∈ IFSE
X . If f =

(
f
)◦, then f is called

ifs-regular open set. If If f = f◦, then f is called ifs-regular closed set.

Theorem 2.17. [26] Let (X, τ,E) be a ifs-topological space and f , g ∈ IFSE
X . Then,

i. If f v g, then f◦ v g◦ and f v g

ii. f is a soft open set iff f◦ = f

iii. f is a soft closed set iff f = f

iv.
(
f
)c̃ =

(
f c̃

)◦ and
(
f c̃

)
=

(
f◦

)c̃

Definition 2.18. [29] Let (X, τ, E) and (Y, σ,K) be two ifs-topological spaces. An ifs-mapping
ϕψ : (X, τ, E) → (Y, σ,K) is called an ifs-continuous mapping if ϕ−1

ψ (g) ∈ τ for all g ∈ σ.

Example 2.19. [29] In Example 2.13, every ifs-mapping ϕψ : (X, τ1, E) → (Y, σ,K) is an ifs-
continuous mapping.
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3 Intuitionistic Fuzzy Soft Connectedness

In this section, we will give definition of ifs-connected spaces and their some properties. Further, we
will introduce ifs Ci−connectedness (i = 1, 2, 3, 4) and ifs-super connectedness.

Definition 3.1. Let (X, τ,E) be a ifs-topological space and f ∈ IFSE
X . If there are two ifs-proper

open sets g1 and g2 such that f v g1 t g2 and g1 u g2 = Φ, then the ifs-set f is called ifs-disconnected
set. If there does not exist such two ifs-proper open sets, then the ifs-set f is called ifs-connected set.
If we take X̃ instead of f , then the (X, τ, E) is called ifs-disconnected (connected) space.

Example 3.2. Let consider the ifs-topological spaces (X, τ0, E) and (X, τ1, E) in Example 2.13,
(X, τ0, E) is an ifs-connected topological space, but (X, τ1, E) is an ifs-disconnected topological space.

Theorem 3.3. Let (X, τ, E) be a ifs-topological space. (X, τ, E) ifs-connected if and only if there
does not exist a ifs-proper clopen set f in (X, τ,E).

Proof. (⇒) : Let (X, τ, E) be a ifs-connected space. Suppose that there exist a ifs-proper clopen set
f in (X, τ, E) such that f t f c̃ = X̃ and f u f c̃ = Φ. It is a contradiction.

(⇐) : It is clear.

Theorem 3.4. Let (X, τ,E) be a ifs-topological space and σ ⊆ τ . Then, (X, σ,E) is a connected
ifs-topological space.

Proof. It is clear.

Theorem 3.5. Let (X, τ, E) and (Y, σ,K) be two ifs-topological spaces, f ∈ IFSE
X and ϕψ : (X, τ, E) →

(Y, σ,K) be an ifs-continuous mapping. If f is an ifs-connected set, then ϕψ(f) is an ifs-connected
set.

Proof. Assume that ϕψ(f) is an ifs-disconnected set. Therefore, there exist two ifs-proper open sets
g and h such that ϕψ(f) v g t h and g u h = Φ. By Theorem 2.11, we have

f v ϕ−1
ψ

(
ϕψ(f)

) v ϕ−1
ψ (g) t ϕ−1

ψ (h)

and
ϕ−1

ψ (g) u ϕ−1
ψ (h) = ϕ−1

ψ (Φ) = Φ.

It is a contradiction and this complete the proof.

Theorem 3.6. Let (X, τ, E) and (Y, σ,K) be two ifs-topological spaces and ϕψ : (X, τ,E) → (Y, σ,K)
be an ifs-continuous and ifs-surjective mapping. If (X, τ,E) is an ifs-connected space, then (Y, σ,K)
is also an ifs-connected space.

Proof. Assume that (Y, σ,K) is an ifs-disconnected space. So, there exist two ifs-proper open sets
g1 and g2 such that g1 t g2 = Ỹ , g1 u g2 = Φ. By Theorem 2.11 ϕ−1

ψ (g1) t ϕ−1
ψ (g2) = X̃ and

ϕ−1
ψ (g1) u ϕ−1

ψ (g2) = Φ. This contradiction completes the proof.

Definition 3.7. Let (X, τ,E) be an ifs-topological space. If there exist f, g ∈ IFSE
X which are ifs-

proper, such that f u g = Φ and f u g = Φ then the ifs-sets f and g are called ifs-separated sets.

Theorem 3.8. Let (X, τ,E) be a ifs-topological space, f and g be two ifs-open sets. If f u g = Φ,
then f and g are ifs-separated sets.

Proof. Let f, g ∈ τ and f u g = Φ. Then, f c̃ t gc̃ = X̃. So, f v gc̃ and g v f c̃. f c̃ and gc̃ are ifs-closed
sets. By 2.17, we have

f v gc̃ = gc̃ and g v f c̃ = f c̃.

Therefore, f u g = Φ and f u g = Φ.

Theorem 3.9. Let (X, τ, E) be an ifs-topological space, f and g be two ifs-closed sets. If f u g = Φ,
then f and g are ifs-separated sets.

Proof. From Theorem 2.17, it is clear.
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Theorem 3.10. An ifs-topological space (X, τ, E) is connected if and only if X̃ cannot be written as
union of ifs-separated sets.

Proof. (⇒) : Assume that X̃ can be written as union of ifs-separated sets f and g. Thus, X̃ = f t g,
f u g = Φ and f u g = Φ. So, we have f u g = Φ, f = gc̃ and g = f c̃. Furthermore

f = f u X̃

= f u (
f t g

)

=
(
f u f

) t (
f u g

)

= f.

Thus, f is an ifs-closed set. With similar way, it can be seen clearly that g is also an ifs-closed set.
This is a contradiction because f = gc̃ and g = f c̃, f and g are ifs-open sets.

(⇐) : Assume that (X, τ,E) is not an ifs-connected space. Thus, there exist an ifs-proper clopen
set f . But it contradicts by hypothesis.

Theorem 3.11. Let (X, τ,E) be an ifs-topological space and f ∈ IFSE
X be an ifs-open connected set.

If f v g v f , then g is an ifs-connected set.

Proof. Suppose that g is an ifs-disconnected set. Then, there exist two ifs-open proper sets h1 and h2

such that
h1 u h2 = Φ and g v h1 t h2.

So,
f =

[
f u h1

] t [
f u h2

]

and [
f u h1

] u [
f u h2

]
= Φ.

But it is a contradiction. Thus g is an ifs-connected set.

Remark 3.12. Let (X, τ,E) be an ifs-topological space and f ∈ IFSE
X be an ifs-open set. If f is an

ifs-connected set, then f is an ifs-connected set.

Definition 3.13. Let (X, τ,E) be an ifs-topological space. If there exist an ifs-regular open proper
set f , then (X, τ,E) is called ifs-super disconnected.

Example 3.14. Let X = {x1, x2, x3} and E = {e1, e2}. Then, for

f =
{(

e1, {〈x1, 0.4, 0.6〉, 〈x2, 0.6, 0.3〉, 〈x3, 0.2, 0.3〉}),
(
e2, {〈x1, 0.6, 0.4〉, 〈x2, 0.3, 0.6〉, 〈x3, 0.3, 0.2〉})

}

g =
{(

e1, {〈x1, 0.5, 0.2〉, 〈x2, 0.3, 0.6〉, 〈x3, 0.4, 0.3〉}),
(
e2, {〈x1, 0.2, 0.5〉, 〈x2, 0.6, 0.3〉, 〈x3, 0.3, 0.4〉})

}

h =
{(

e1, {〈x1, 0.5, 0.4〉, 〈x2, 0.4, 0.5〉, 〈x3, 0.2, 0.4〉}),
(
e2, {〈x1, 0.4, 0.5〉, 〈x2, 0.5, 0.4〉, 〈x3, 0.4, 0.2〉})

}

τ = {X̃, Φ, f, g, h} is an ifs-topology on X and (X, τ, E) is an ifs-super connected space.

Theorem 3.15. The followings are equivalent.

i. (X, τ, E) is an ifs-super connected space

ii. For each f such that f 6= Φ, f = X̃

iii. For each f such that f 6= Φ, f◦ = Φ

iv. There exist no ifs-open sets f and g such that f 6= Φ, g 6= Φ and f v gc̃

v. There exist no ifs-open sets fand g such that f 6= Φ, g 6= Φ, g = (f)c̃ and f = (g)c̃
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vi. There exist no ifs-closed sets fand g such that f 6= X̃, g 6= X̃, g = (f◦)c̃ and f = (g◦)c̃

Proof. (i. ⇒ ii.): Suppose that there exists an ifs-open f such that f 6= Φ and f 6= X̃. If we take
g = (f)◦, then g is an ifs-proper and regular open set. But it is a contradiction.

(ii. ⇒ iii.): Let f 6= X̃ be an ifs-closed set. If we take g = f c̃, then g is an ifs-open and g 6= Φ.
For g = X̃, we have (g◦)c̃ = Φ and (g)◦ = Φ. So, f◦ = Φ.

(iii. ⇒ iv.): Let f and g be ifs-open sets such that f 6= Φ, g 6= Φ and f v gc̃. Thus, gc̃ is an
ifs-closed set and because of g 6= Φ, gc̃ 6= X̃. So, we obtain (gc̃)◦ = Φ. But, with f v gc̃, we can write
Φ 6= f = f◦ v (gc̃)◦ = Φ. It is a contradiction

(iv. ⇒ i.): Let f be an ifs-regular open proper. If we take g = (f)c̃, we obtain g 6= Φ. (Otherwise,
(f)c̃ = Φ ⇒ f = X̃ and so, f = (f)◦ = X̃. But it contradicts the fact f 6= X̃.)

(i. ⇒ v.): Let f and g be ifs-open sets such that f 6= Φ, g 6= Φ, g = (f)c̃ and f = (g)c̃. Then we
have (f)◦ = (gc̃)◦ = (g)c̃ = f where f 6= Φ and f 6= X̃. (Otherwise, if f = X̃, then X̃ = (g)c̃ and thus
Φ = g.) But it is a contradiction.

(v. ⇒ i.): Let f be an ifs-open proper set such that f = (f)◦. If we take g = (f)c̃, then we have
g 6= Φ, g ∈ τ , g = (f)c̃ and so

(g)c̃ =
(
(f)c̃

)c̃ =
(
((f)◦)c̃

)c̃ = (f)◦ = f

but it is a contradiction.
(v. ⇒ vi.): Let f and g be ifs-closed sets such that f 6= X̃, g 6= X̃, g = (f◦)c̃ and f = (g◦)c̃. If we

take h1 = f c̃ and h2 = gc̃, then h1 and h2 become ifs-open sets such that h1 6= Φ and h2 6= Φ. Thus
(h1)c̃ = (f c̃)c̃ =

(
(f◦)

)c̃ = f◦ = gc̃ = h2 and similarly (h2)c̃ = h1. But this is a contradiction, clearly.
(vi. ⇒ v.): It can be proved similar way in (v. ⇒ vi.)

Now, we will introduce ifs Ci−connected spaces (i = 1, 2, 3, 4) by helping of fuzzy Ci−connectedness
in intuitionistic fuzzy sets [4]. Definitions of ifs Ci−connected spaces can be seen as an extension of
intuitionistic fuzzy connected space.

Definition 3.16. Let (X, τ, E) be a ifs-topological space and f ∈ IFSE
X . f is called

i. ifs C1−connected iff does not exist two non null ifs-open sets g and h such that f v g t h,
g u h v f c̃, f u g 6= Φ and f u h 6= Φ.

ii. ifs C2−connected iff does not exist two non null ifs-open sets g and h such that f v g t h,
f u g u h = Φ f u g 6= Φ and f u h 6= Φ.

iii. ifs C3−connected iff does not exist two non null ifs-open sets g and h such that f v g t h,
g u h v f c̃, g v/ f c̃ and h v/ f c̃.

iv. ifs C4−connected iff does not exist two non null ifs-open sets g and h such that f v g t h,
f u g u h = Φ, g v/ f c̃ and h v/ f c̃.

From Definition 3.16, relations between ifs Ci−connectedness (i = 1, 2, 3, 4) can be described by the
following diagram:

ifs C1 connectedness −−−−→ ifs C2 connectednessy
y

ifs C3 connectedness −−−−→ ifs C4 connectedness

In the following examples, we illustrate all reverse implications.
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Example 3.17. Let X = [0, 1] and E = {a, b}. Moreover, define soft sets f , g and h as following:

f =
{(

a, {〈x, µf(a)(x), νf(a)(x)〉 : x ∈ X}),
(
b, {〈x, µf(b)(x), νf(b)(x)〉 : x ∈ X})

}

g =
{(

a, {〈x, µg(a)(x), νg(a)(x)〉 : x ∈ X}),
(
b, {〈x, µg(b)(x), νg(b)(x)〉 : x ∈ X})

}

h =
{(

a, {〈x, µh(a)(x), νh(a)(x)〉 : x ∈ X}),
(
b, {〈x, µh(b)(x), νh(b)(x)〉 : x ∈ X})

}

where

µg(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
1, if 0 ≤ x ≤ 1

3

and µg(b)(x) =

{
1, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,

νg(a)(x) =

{
1, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,
and νg(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
1, if 0 ≤ x ≤ 1

3

µh(a)(x) =

{
1, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

and µh(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
1, if 0 ≤ x ≤ 1

3

νh(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
1, if 0 ≤ x ≤ 1

3

and νh(b)(x) =

{
1, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

µf(a)(x) = µf(b)(x) = νf(a)(x) = νf(b)(x) = 3/4 for all x ∈ [0, 1]. τ = {Φ, X̃, g, h, guh} is a ifs-topology
on X. It can be see clearly that f is ifs C4−connected but ifs C3−disconnected.

Example 3.18. Let X = [0, 1] and E = {a, b}. Moreover, define soft sets g, h and f as following:

g =
{(

a, {〈x, µg(a)(x), νg(a)(x)〉 : x ∈ X}),
(
b, {〈x, µg(b)(x), νg(b)(x)〉 : x ∈ X})

}

h =
{(

a, {〈x, µh(a)(x), νh(a)(x)〉 : x ∈ X}),
(
b, {〈x, µh(b)(x), νh(b)(x)〉 : x ∈ X})

}

f = g t h

where

µg(a)(x) =

{
0, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

and µg(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
0, if 0 ≤ x ≤ 1

3 ,

νg(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
0, if 0 ≤ x ≤ 1

3 ,
and νg(b)(x) =

{
0, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

µh(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
0, if 0 ≤ x ≤ 1

3 ,
and µh(b)(x) =

{
0, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

νh(a)(x) =

{
0, if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3

and νh(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
0, if 0 ≤ x ≤ 1

3 ,

τ = {Φ, X̃, g, h, g th} is a ifs-topology on X. It can be seen clearly that f is ifs C4−connected but ifs
C2−disconnected.
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Example 3.19. Let X = [0, 1] and E = {a, b}. Moreover, define soft sets f , g and h as following:

f =
{(

a, {〈x, µf(a)(x), νf(a)(x)〉 : x ∈ X}),
(
b, {〈x, µf(b)(x), νf(b)(x)〉 : x ∈ X})

}

g =
{(

a, {〈x, µg(a)(x), νg(a)(x)〉 : x ∈ X}),
(
b, {〈x, µg(b)(x), νg(b)(x)〉 : x ∈ X})

}

h =
{(

a, {〈x, µh(a)(x), νh(a)(x)〉 : x ∈ X}),
(
b, {〈x, µh(b)(x), νh(b)(x)〉 : x ∈ X})

}

where

µg(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 1

3

and µg(b)(x) =

{
2
3 , if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,

νg(a)(x) =

{
2
3 , if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,
and νg(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 1

3

µh(a)(x) =

{
2
3 , if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,
and µh(b)(x) =

{
1
3 , if 1

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 1

3

νh(a)(x) =

{
1
3 , if 1

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 1

3

and νh(b)(x) =

{
2
3 , if 1

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 1

3 ,

µf(a)(x) = µf(b)(x) = νf(a)(x) = νf(b)(x) = 1/3 for all x ∈ [0, 1]. τ = {Φ, X̃, g, h, g u h, g t h} is a
ifs-topology on X. It can be seen clearly that f is ifs C3−connected and ifs C2−connected but ifs
C1−disconnected.

Example 3.20. Let X = [0, 1] and E = {a, b}. Moreover, define soft sets f , g and h as following:

f =
{(

a, {〈x, µf(a)(x), νf(a)(x)〉 : x ∈ X}),
(
b, {〈x, µf(b)(x), νf(b)(x)〉 : x ∈ X})

}

g =
{(

a, {〈x, µg(a)(x), νg(a)(x)〉 : x ∈ X}),
(
b, {〈x, µg(b)(x), νg(b)(x)〉 : x ∈ X})

}

h =
{(

a, {〈x, µh(a)(x), νh(a)(x)〉 : x ∈ X}),
(
b, {〈x, µh(b)(x), νh(b)(x)〉 : x ∈ X})

}

where

µg(a)(x) =

{
0, if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

and µg(b)(x) =

{
1
3 , if 2

3 < x ≤ 1
0, if 0 ≤ x ≤ 2

3 ,

νg(a)(x) =

{
1
3 , if 2

3 < x ≤ 1
0, if 0 ≤ x ≤ 2

3 ,
and νg(b)(x) =

{
0, if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

µh(a)(x) =

{
1
3 , if 2

3 < x ≤ 1
0, if 0 ≤ x ≤ 2

3 ,
and µh(b)(x) =

{
0, if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

νh(a)(x) =

{
0, if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

and νh(b)(x) =

{
1
3 , if 2

3 < x ≤ 1
0, if 0 ≤ x ≤ 2

3 ,
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µf(a)(x) =

{
1
3 , if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

and µf(b)(x) =

{
2
3 , if 2

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 2

3

νf(a)(x) =

{
2
3 , if 2

3 < x ≤ 1
1
3 , if 0 ≤ x ≤ 2

3

and νf(b)(x) =

{
1
3 , if 2

3 < x ≤ 1
2
3 , if 0 ≤ x ≤ 2

3

τ = {Φ, X̃, g, h, g th} is a ifs-topology on X. It can be seen clearly that f is ifs C3−connected but ifs
C2−disconnected and ifs C1−disconnected.

Example 3.21. In the Example 3.19, if we take µf(a)(x) = µf(b)(x) = νf(a)(x) = νf(b)(x) = 2
3 for all

x ∈ [0, 1], then f is ifs C2−connected but ifs C3−disconnected.

Theorem 3.22. Let ϕψ : (X, τ,E) → (Y, σ,K) be a ifs-surjective continuous mapping and f ∈ IFSE
X .

If f is a ifs C1−connected, then ϕψ(f) is ifs C1−connected.

Proof. Suppose that ϕψ(f) is not ifs C1−connected. Then, there exist two non null ifs-open sets g
and h in (Y, σ,K) such that

ϕψ(f) v g t h,

g u h v (
ϕψ(f)

)c̃
,

ϕψ(f) u g 6= Φ,

ϕψ(f) u h 6= Φ.

Thus, by Theorem 2.11 we have

f v ϕ−1
ψ (g) t ϕ−1

ψ (h),

ϕ−1
ψ (g) u ϕ−1

ψ (h) v f c̃

ϕ−1
ψ (g) u f 6= Φ,

ϕ−1
ψ (h) u f 6= Φ.

But this contradict by hypothesis. So, ϕψ(f) is an ifs C1−connected.

Theorem 3.23. Let ϕψ : (X, τ,E) → (Y, σ,K) be a ifs-surjective continuous mapping and f ∈ IFSE
X .

If f is a ifs C2−connected, then ϕψ(f) is ifs C2−connected.

Proof. it can be proved similar way to above theorem.

Theorem 3.24. Let ϕψ : (X, τ) → (Y, σ) be ifs-continuous surjective mapping and f ∈ IFSE
X . If f is

a ifs C3−connected, then ϕψ(f) is a ifs C3−connected.

Proof. Assume that, ϕψ(f) is not ifs C3−connected. Then, there exist two non null ifs-open sets g
and h in (Y, σ,K) such that

ϕψ(f) v g t h,

g u h v (
ϕψ(f)

)c̃
,

g v/ (
ϕψ(f)

)c̃
,

h v/ (
ϕψ(f)

)c̃
.

By Theorem 2.11,

f v ϕ−1
ψ

(
ϕψ(f)

) v ϕ−1
ψ

(
g t h

)
= ϕ−1

ψ (g) t ϕ−1
ψ (h)

and
ϕ−1

ψ

(
g u h

)
= ϕ−1

ψ (g) u ϕ−1
ψ (h) v f c̃.

Since, f v ϕ−1
ψ

(
ϕψ(f)

)
implies

(
ϕ−1

ψ (ϕψ(f))
)c̃ v f c̃ and ϕψ is a ifs-continuous function, so ϕ−1

ψ (g), ϕ−1
ψ (h) ∈

τ . Moreover, from g v/(
ϕψ(f)

)c̃ and h v/(
ϕψ(f)

)c̃, there exist y1, y2 ∈ Y such that

ge(y1) ≥ 1− ϕψ(f)(k)(y1) (1)
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he(y2) ≥ 1− ϕψ(f)(k)(y2) (2)

We claim that ϕ−1
ψ (g) v/f c̃ and ϕ−1

ψ (h) v/f c̃. To prove the claim, we suppose ϕ−1
ψ (g) v f c̃. Clearly, this

claim contradicts by (1). Similarly, ϕ−1
ψ (h) v f c̃ contradicts by (2). So, ϕψ(f) is ifs C3−connected.

Theorem 3.25. Let ϕψ : (X, τ) → (Y, σ) be ifs-continuous surjevtive mapping and f ∈ IFSE
X . If f is

a ifs C4−connected, then ϕψ(f) is a SC4 connected.

Proof. It can be proved similarly way in Theorem 3.24.

Theorem 3.26. Let (X, τ, E) be a ifs-topological space, f1 and f2 be two ifs C1−connected ifs-sets
such that f1 u f2 6= Φ. Then, f1 t f2 is ifs C1−connected.

Proof. It is easy.

Remark 3.27. From Theorem 3.26, we can say easily that if f1 and f2 be two ifs C2−connected
ifs-sets such that f1 u f2 6= Φ, then f1 t f2 is ifs C2−connected.

Theorem 3.28. Let (X, τ, E) be a ifs-topological space and {fk}k∈Λ ⊆ IFSE
X be family of ifs

C1−connected ifs-sets such that fiufj 6= Φ for i, j ∈ Λ (i 6= j). Then,
⊔

k∈Λ fk is is a ifs C1−connected
ifs-set.

Proof. It can be proved by using Theorem 3.26.

4 Conclusion

In this paper we introduced ifs-connectedness which super ifs connectedness and ifs Ci (i = 1, 2, 3, 4)
connectedness and presented fundamentals properties. For future works, we consider to study on ifs
CM and C5 connected sets in ifs topological spaces.
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[23] Ç. Gündüz and S. Bayramov Some results on fuzzy soft topological spaces Hindawi Publishing
Corporation Mathematical Problems in Engineering Volume 2013, Article ID 835308.

[24] P.K. Maji, R. Biswas, and A.R. Roy, Intuitionistic fuzzy soft sets, The Journal of Fuzzy Mathe-
matics 9(3), 677–692 (2001)

[25] Y. Yin, H. Li, Y.B. Jun, On algebraic structures of intuitionistic fuzzy soft sets, Computers and
Mathematics with Applications 61 (2012) 2896-2911.

[26] Z. Li and R. Cui, On the topological structure of intuitionistic fuzzy soft set, Annals of Fuzzy
Mathematics and Informatics, Volume 5, No. 1 (2013), pp. 229-239.
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Abstract – Because prototype based classifiers are both easy and reasonable methods, there have been many 

studies on similarity based supervised learning. In order to detect each class region, they should not only 

appropriately locate the prototypes, but also deal with overfitting and instability. In this study, by considering 

all these criteria, we develop a new classifier method based on the prototypes selected from dense patterns. 

While the method determines details of the prototypes, it evades overfitting according to relation of the 

correct classification accuracy and the number of prototypes. Because of its similarity in point of architecture, 

we compare it with learning vector quantization (LVQ) method by using some synthetic and benchmark 

datasets. This comparison shows that our method is better than the other, and it may cause new suggestions 

on classification and some real applications. 

 

Keywords – Supervised learning, prototype classifier, learning vector quantization (LVQ), overfitting. 

 

 

1. Introduction 
 

The simplest supervised learning method classifies samples based on similarity according 

to their class labels. Because prototype based classifiers are both easy and reasonable 

methods, there have been many studies on similarity based supervised learning. Each 

prototype represents a group of patterns with the same class. There are different viewpoints 

to prototype term. In the some of the approaches, each pattern acts as a prototype, but the 

approaches using fewer prototypes are more widespread. Learning Vector Quantization 

(LVQ) which finds prototypes using cluster analyze [7] and self-generating neural tree [19] 

are well-known prototype classifiers. Some other prototype classifiers are hyper-spheres 

[13], hyper-ellipsoids [8] and hyper-rectangles [14] based methods.  
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In some studies, special terms are used instead of prototypes. For instance Expectation 

Maximization (EM) and Gaussian Mixture (GM) models use components instead of 

prototypes in estimation of the class densities [6]. Minimum enclosing axis-parallel boxes 

in the method of Kudo et al. [9] and Takigawa et al. [15] represent also prototypes. In two 

algorithms offered by Takigawa et al. [16], convex balls are regarded as prototypes. 

Besides some researchers proposed some methods on logical analysis of box-based data [1, 

4], ball-based combinatorial classifier [2, 3, 10, 12], and support vector machines (SVM) 

[18]. SVM is a classifier which selects the vectors on the margin of the classes. If the 

selected vectors are considered as the prototypes, SVM can be regarded as a prototype 

based classifier. In contrast to other prototype classifiers, SVM selects the weakest patterns 

as prototypes. Fayed et al. [5] suggest starting with one prototype for each class, assigns 

patterns into prototypes, and reduces prototypes. 

 

The commonest handicaps of all prototype based methods are determining the number and 

starting positions of prototypes. In order to prevent these disadvantages, the most methods 

are run for different numbers of prototypes. In this paper, we offer a novel supervised 

learning algorithm called supervised learning based on the prototypes selected from dense 

patterns (SLDP) which no need running more times. 

 

The paper is organized as follows: section 2 describes the structure of new method, section 

3 presents some applications on some artificial and real datasets to verify the effectiveness 

of the proposed method, and finally, section 4 gives the conclusions. 

 

 

2. Supervised Learning Based on the Prototypes Selected from Dense 

Patterns 
 

A dataset usually includes many regions which have different densities based on the 

distances among the patterns.  Dense regions within each class can be symbolized by the 

prototypes.  

 

Inspired by gravity, we suppose that each pattern has potential energy, and this energy (or 

weight) can be computed by using neighborhood among patterns. If we accept that each 

pattern has unit mass [11], the potential weight can be easily calculated as follow. 

 


 


n

i
ji

j

xx
w

1
2

1
,   for kji Cxx , where  ck ,...,2,1  (1) 

where n is the number of patterns, ji xx   is  Euclidean distance between patterns xi and xj, 

Ck is class k and c is the number of classes in the dataset.  

 

The pattern with the maximum potential weight is selected as a prototype. The location (xi) 

and the potential weight (wi) of the selected pattern are assigned the location (Xi) of the 

prototype and its absolute weight (Wi) respectively. According to the second step of the 

study, the classification process is operated by the determined prototypes. The 

classification effect of each class (Ck) on a new pattern (Y) is calculated by 
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



j

j

j

k

YX

W
2

 ,   for all kj CX   where  k =1, 2,…,c 
(2) 

where j values list is increased as new prototypes are discovered. Then the class of the new 

pattern (Z) can be estimated by 

 

)(arg kmaxZ  , for k =1, 2,…,c (3) 

where Z is the estimated class of pattern Y. In training process, the pattern is identified as a 

misclassified pattern, if its desired class is not the same with Z. Then, the one with 

maximum potential weight among the misclassified patterns is selected as a new prototype. 

Training process stays in this loop until the gradient between number of prototypes and 

misclassification error get less than a predefined threshold value. Our learning algorithm 

consists of the following steps. 

 

Step 1. Calculate wj using Equation 1, and choose one prototype for each class. 

Step 2. For each pattern in dataset, calculate ki ,..,1  using Equation 2, and decide Z by 

Equation 3. If YCZ  , signify Y as a misclassified pattern. 

Step 3. Compute the gradient between misclassification error and the number of prototypes. 

If it is less than a predefined threshold value, stop the algorithm. 

Step 4. Set the misclassified pattern with the maximum weight as new prototype. 

Step 5. Go to Step 2. 

 

Unlike a common LVQ network, the locations and weights of the prototypes does not 

change in SLDP. In each iteration of the training process, only one prototype is discovered. 

 

 

3. Numerical Results and Comparisons 
 

In the numerical experiments, we use some synthetic and real datasets. To show behaviors 

of the proposed method, five synthetic datasets are preferred as two dimensional, and to 

prove success of it, four real datasets are chosen from multidimensional benchmark 

datasets. The classification behaviors of the method are illustrated in Figure 1(a) and 1(b). 

In the first experiment, the method classifies an asymmetric dataset with 171 patterns. In 

Figure 1(a), the algorithm reaches success 81.38% with 12 prototypes by avoiding 

overfitting. As seen in Figure 1(b), if the algorithm does not consider overfitting, it can 

reach 100% success with 44 prototypes. 
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 (a)  (b) 

Figure 1. The classification maps of SLDP for a dataset including outliers (a) by avoiding 

overfitting (b) by not avoiding overfitting. 

 

 

Frequently, high success brings to mind overfitting. The success of the algorithm is 81.38% 

for 12 prototypes in Figure 1(a). Even though 32 new prototypes are discovered, the 

success increases only 18.62%. This increase values cannot be accepted as consistent. 

We have also prepared four synthetic datasets which are discrete, complex, symmetric and 

asymmetric. Figure 2 shows the classification maps of the method for these four synthetic 

datasets. 
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 (c) (d) 

Figure 2. The classification maps of SLDP for synthetic datasets with (a) 4 symmetric classes 

(b) chain shaped 2 classes (c) 2 asymmetric classes (d) 3 symmetric classes 
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In order to compare our algorithm with some other methods, we applied it to some 

benchmark datasets listed in Table 1 [17].  

 

 
Table 1.  Summary of datasets. 

 

Dataset 
Instan

ces 

Attribute

s 

The 

number 

of 

classes 

Iris 150 4 3 

Parkinson 195 22 2 

Spect Heart 267 44 2 

Statlog (Landsat) 6435 36 6 

 

 

The numbers of prototypes found by SLDP for Iris, Parkinson, Spect Heart, and Statlog are 

5, 6, 3, and 7 respectively. They are also used as the number of prototypes of LVQ for real 

datasets. For example, the new method finds 1, 2, and 2 prototypes for each class of Iris 

dataset. LVQ is started with the same distribution of prototypes for each class. Table 2 

shows the correct classification values of LVQ and SLDP for real datasets. 

 

 
Table 2. The correct classification values of LVQ and SLDP for real datasets. 

 

Datasets 

LVQ 

(%) 
SLDP 

(%) 

Iris 95,33 96,00 

Parkinson 60,00 88,72 

Spect Heart 53,18 81,27 

Statlog (Landsat) 20,45 68,47 

 

 

The novel method reaches the same result each time. But LVQ is run 500 times and 500 

iterations for each dataset and the highest results are selected for this comparison. As seen 

in Table 2, the most successful method is SLDP. 

 

There is no method which is able to reach high success for every dataset without 

overfitting. The relation between the misclassification error and the number of prototypes is 

very important in dealing with overfitting. In Figure 3, we can see the regions with 

overfitting for four real datasets.  

 



Journal of New Theory 1 (2015) 17-23                                                                                                             22 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7

number of prototypes

m
is

c
la

s
s
ifi

c
a
tio

n
 e

rr
o
r

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9

number of prototypes

m
is

c
la

s
s
ifi

c
a
tio

n
 e

rr
o
r

 
 (a) Iris (b) Parkinson  

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of prototypes

m
is

c
la

s
s
ifi

c
a
tio

n
 e

rr
o
r

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

number of prototypes

m
is

c
la

s
s
ifi

c
a
tio

n
 e

rr
o
r

 
 (c) Spect Heart (d) Statlog 

 
Figure 3. The relation between misclassification error and the number of prototypes for real 

datasets. 

 

 

In Figure 3, if gradient of the relation is less than 0.01, overfitting starts. In this situation, 

the algorithm must be stopped. Otherwise, it will continue overfitting. Thus there is no 

learning after 5 prototypes for Iris, 6 prototypes for Parkinson, 3 prototypes for Spect 

Heart, and 7 prototypes for Statlog. 

 

 

4. Conclusion 
 

In this paper, we proposed a new method called supervised learning based on the 

prototypes selected from dense patterns (SLDP). While the method learns the number of 

prototypes and its locations by avoiding overfitting, it determines prototypes by using the 

potential weights of each pattern. Its other two advantages are that it does not depend on 

the sequence of patterns in a dataset and does not require any input parameters. The method 

also offers a new approach to control overfitting. Although it needs many more 

experiments, we hope that SLDP will be a source of inspiration for new methods. 
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Abstract - An interval neutrosophic set is an instance of a neutrosophic set, which  can be used in real 

scientific and engineering. In this paper, three new operations on interval neutrosophic sets  based on the 

arithmetic mean, geometrical mean, and respectively harmonic mean are defined on  interval neutrosophic 

set. 

 

Keywords  -  Neutrosophic Sets, Interval Valued  Neutrosophic Sets.  

 

 

1. Introduction 

 
In recent decades, several types of sets, such as fuzzy sets [1], interval-valued fuzzy sets 

[2], intuitionistic fuzzy sets [3, 4], interval-valued intuitionistic fuzzy sets [5], type 2 fuzzy 

sets [6, 7], type n fuzzy sets [6], and hesitant fuzzy sets [8], neutrosophic set theory [9], 

interval valued neutrosophic set [11]  have been introduced and investigated widely. The 

concept of neutrosophic sets introduced by Smarandache [6, 9]  is interesting and useful in 

modeling several real life problems. 

 
The  neutrosophic set theory (NS for short) which is a generalization  of intuitionistic fuzzy 

set  has three associated defining functions, namely the membership function, the non-

membership function and the indeterminacy function which are completely independent. 

After the pioneering work of Smarandache [9], Wang et al.[11]  introduced the notion of  

interval neutrosophic sets theory (INS for short) which is a special set of neutrosophic sets. 

This concept  is characterized by a membership function, a non-membership function and 

indeterminacy function whose values are intervals rather than real number, INS is more 

powerful in dealing with vagueness and uncertainty than NS, also INS is regarded as a 
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useful and practical tool for dealing with indeterminate and inconsistent information in real 

world . 

 

The theories of both neutrosophic set (NS)  and interval neutrosophic set (INS) have 

achieved great success in various areas such as medical diagnosis [11], database [12,13], 

topology [14], image processing [15,16,17], and decision making problem [18]. 

 

Recently, Ye [19] defined the similarity measures between INSs on the basis of the 

hamming and Euclidean distances, and a multicriteria decision–making method based on 

the similarity  degree is proposed. Some set theoretic operations such as union, intersection 

and complement on interval neutrosophic  sets have also been proposed by Wang et al.  

[11]. Later on, Broumi and Smarandache [21] also defined correlation coefficient of 

interval neutrosophic set. In 2013, Peide Liu [21] have presented some new operational 

laws for interval neutrosophic sets (INSs) and studied their properties and proposed some 

aggregation operators, include interval neutrosophic power generalized weighted 

aggregation (INPGWA) operator and interval neutrosophic power generalized ordered 

weighted aggregation (INPGOWA) operator and gave  a decision making method based on 

these operators.  

 

In this paper, our aim is to propose three new operations on interval neutrosophic sets  

(INSs) and study their properties. 

 

Therefore, the rest of the paper is set out as follows: In Section 2, some basic definitions 

related to neutrosophic sets, and interval valued neutrosophic set are briefly discussed. In 

Section 3, three new operations on interval neutrosophic sets have been proposed and some 

properties of the proposed operations on interval neutrosophic sets  are proved. In section 4 

we concludes the paper. 

 

 

2. Preliminaries 

 
In this section, we mainly recall some notions related to neutrosophic sets, and interval 

neutrosophic sets relevant to the present work. See especially [9, 10, 21] for further details 

and background. 

 

Definition 2.1 ([9]). Let U be an universe of discourse;  then the neutrosophic set A is an 

object having the form A = {< x:      ,      ,      >, x ∈ U}, where the functions T, I, F 

: U→]
−
0,1

+
[  define respectively the degree of membership, the degree of indeterminacy, 

and the degree of non-membership of the element x ∈ U to the set A with the condition: 

 

                   
−
0 ≤      +      +      ≤ 3

+
.                        (1) 

 

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]
−
0,1

+
[.So instead of ]

−
0,1

+
[ we need to take the interval [0,1] for 

technical applications, because ]
−
0,1

+ 
[ will be difficult to apply in the real applications  

such as in scientific and engineering problems.  

 

Definition 2.2 [10]. Let X be a space of points (objects) with generic elements in X 

denoted by x. An interval neutrosophic set (for short INS) A in X is characterized by truth-
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membership function      , indeteminacy-membership function       and falsity-

membership function       . For each point x in X, we have that  

 

     ,      ,      ∈  [ 0 ,1] 

 

For convenience, we can use  x =( [    ,   ],  [   ,   ],  [    ,   ] ) to represent an element 

in INS. 

 

Remark 1. An INS is clearly a NS.  

 

Definition 2.3 [10]. Let A ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 

 

i. An INS A is empty if   
    

 = 0,   
    

 = 1,    
    

 = 1, for all x in A. 

ii. Let   = <0, 1 ,1>   and   = <1, 0 ,0> 

 

In the following, we introduce some basic concepts related to INSs. 

 

Definition  2.4 [21] Let      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} and      = {([   
  ,   

 ] ,   
[  

  ,   
 ] ,   [   

  ,   
 ])} be two INSs. 

 
i.          =[max(   

 ,   
 ), max(   

  ,  
 )  ], [       

    
  ,min(   

    
   ] , 

[       
    

  ,min(   
    

   ] } 

ii.          =[min(   
 ,   

 ), min(   
  ,  

 )  ], [       
    

  max(   
    

   ] , 
[       

    
  ,max(   

    
   ] } 

 

Definition 2.5.  Let      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} and      = {([   
  ,   

 ] ,   

[  
  ,   

 ] ,   [   
  ,   

 ])} be two INSs, then the operational laws are defined as follows. 

 

i.     = [    ,   ] ,   [     ,     ] ,   [    ,   ] 

ii.           = 

    
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

    
iii.           = [  

    
   ,    

    
 )],[   

    
     

   
  ,   

    
     

   
 ], [  

    
  

   
   

   ,   
    

     
   

  ] 

iv.      =                                                                 . 
 

 

3. Three New Operations on INSs 
 

Definition 3.1 Let     and     two interval neutrosophic set, we propose the following 

operations on INSs as follows: 

 

     @       = {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
],   

 

where 

 

 <   ,   ,     ∈     ,<   ,   ,    ∈      } 
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             = {( [   
    

 ,    
    

  ], [   
    

 ,     
    

  ] , [   
    

 ,     
    

  ] }  

 

where 

 

 <   ,   ,     ∈     ,<   ,   ,    ∈     } 

 

     #       = {( [ 
    

    
  

  
     

  , 
    

    
  

  
     

 ], [
    

    
  

  
     

  , 
    

    
  

  
     

 ] , [
    

    
  

  
     

  , 
    

    
  

  
     

 ]}  ,  

 

where  

 

<   ,   ,     ∈     ,<   ,   ,     ∈     } 

 

With 

 

   = [  
  ,   

 ] ,   = [  
  ,   

 ] ,   = [  
  ,   

 ] and    = [  
  ,   

 ] ,   = [  
  ,   

 ] ,   = [  
 ,  

 ]  

 

Obviously, for every two     and    ,(    @   ),  (       ) and (       ) are also INSs. 

 

Example 3.2 Let    (x)= {([0.2, 0.3], [0.5, 0.6] , [ 0.2 , 0.4  ]),([0.5, 0.8], [0.1, 0.2], [ 0.6 ,0.1 ])} 

and      (x)= {([0.4, 0.6],[0.3, 0.4], [   0.3 , 0.5]), ([0.3, 0.5], [0.1, 0.2], [ 0.5 ,0.1 ]) be two interval 

neutrosophic sets. Then we have 

 

      @     ) = {([0.3, 0.45], [0.4, 0.5],[  0.25 ,0.45 ] ),(b, [0.4, 0.65], [0.1, 0.2], [ 0.55 ,  0.1 ])} 

 

(         ) ={(a, [0.28, 0.42], [0.38, 0.48], [ 0.24  ,0.44 ]),(b, [0.38, 0.63], [0.1, 0.2], [0.55  ,0.1 ])} 

 

 (       ) = {(a, [0.26, 0.4], [0.37, 0.48] , [ 0.24  , 0.44] ),  (b, [0.37, 0.61], [0.1, 0.2], [ 0.54 , 0.1 ])} 

 

With these operations, several results follow. 

 

Theorem  3.4 For    ,     ∈ INSs(X), 

 

(i)     @     =     @   ; 

(ii)     $     =     $    ; 

(iii)     #    =    #    ; 

 

Proof. These also follow from definitions. 

 

Theorem 3.5  For    ,     ∈ INSs(X),      
       

      =    @   .                                                                

 

Proof.      @       = {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
]   

 
where  
 
<   ,   ,     ∈     ,<   ,   ,    ∈      } 
 
      

  ={( [   
  ,   

 ] ,   [1-   
  ,     

 ] ,   [   
  ,   

 ] )} 
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  = {([   

  ,   
 ] ,   [1-   

  ,     
 ] ,   [   

  ,   
 ])} 

 

   
       

  ={ [ 
  
     

  

 
 , 

  
     

  

 
], [

     
         

   

 
 , 

     
         

   

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
]  } 

 

     
       

       =   
  
     

  

 
  
  
     

  

 
   

     
         

   

 
  
     

         
   

 
      

  
     

  

 
  
  
     

  

 
  

 

 

 

                                     

=    
  
     

  

 
  
  
     

  

 
     

     
         

   

 
     

     
         

   

 
     

  
     

  

 
  
  
     

  

 
     

 

=     
  
     

  

 
  
  
     

  

 
   

        
     

    

 
  
        

     
     

 
     

  
     

  

 
  
  
     

  

 
     

 

=   
  
     

  

 
  
  
     

  

 
   

   
     

   

 
  
   

     
    

 
     

  
     

  

 
  
  
     

  

 
     

 

Then        
       

        =     @      

 

This proves the theorem. 

 

Note 1:  One can easily verify that 

 

(i)      
       

           $      

(ii)      
       

        #     

 

Theorem 3.6  For    ,      and      ∈ INSs(X), we have the following identities: 

 

(i)  (        ) @     = (    @    )   (    @    ); 

(ii)  (         ) @     =(     @    )   (   @    ) 

(iii)  (        ) $    = (   $    )  (    $    ); 

(iv)  (         ) $    = (   $    )   (    $    ); 

(v)  ((         )) #    = (   #    )  (     #    ); 

(vi)  (         ) #    = (   #    )   (    #    ); 

 (vii)  (   @    )       = (         ) @(          ); 

(viii)  (   @   )      =(        )@ (         ) 

 

Proof . We prove (i), (iii), (v), (vii) and (ix), results (ii), (iv), (vi), (viii) and (x) can be 

proved analogously 

 

(i) Using definitions in 2.4, 2.5 and 3.1, we have 

 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 
      = {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 
(        ) @     =  {( [max(   

    
   ,max(   

    
  ] ,   [min (  

    
    ,min(   

    
  ] ,   

 
 [min(   

  ,   
 ),min(   

    
  ] )}  @ {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 
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={[
       

    
     

   

 
  , 

       
    

       
 

 
 ] , [ 

       
    

     
   

 
 , 

       
    

     
   

 
 ],  

[ 
       

     
     

  

 
 , 

       
    

     
   

 
 ]} 

 

={[max(   
  
    

  

 
,  

  
    

 

 
  ) , max(   

  
    

  

 
,  

  
    

 

 
  ) ], [ min ( 

  
    

  

 
  
  
    

  

 
 ) ,  

min (
  
    

  

 
  
  
    

  

 
 )], [min ( 

  
    

  

 
  
  
    

  

 
 ) , min (

  
    

  

 
  
  
    

  

 
 ] } 

 
= (    @    )   (    @    )  

 

This proves (i) 

 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 

 

(        ) $     = {( [max(   
    

   ,max(   
    

  ] ,   [min (  
    

    ,min(   
    

  ] ,    
[min(   

  ,   
 ),min(   

    
  ] )} $ {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 

=    {  [        
    

     
   ,         

    
     

     ] , [        
    

     
   , 

        
    

     
 ], [        

     
     

   ,         
    

     
  ]}. 

 

={ [ max(   
    

     ,    
    

    ) , max(   
    

     ,    
    

    ) ] , [min(   
    

     ,    
    

  ) , 

min(   
    

     ,    
    

    )], [min(   
   

     ,    
    

    ) , min(   
    

     ,    
    

   )]} 

 

=(   $   )   (    $   ) 

 

This proves (iii). 

 

(v) Using definitions in 2.4, 2.5 and 3.1, we have 

 

 ((        )) #     = {( [max(   
    

   ,max(   
    

  ] ,   [min (  
    

    ,min(   
    

  ] ,    
[min(   

  ,   
 ),min(   

    
  ] )} # {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 

   = { [ 
         

    
     

  

       
    

      
  , 

         
     

     
 

       
     

        
 ], [

         
    

     
  

       
    

      
  , 

         
    

      
 

       
    

       
 ],  

[
         

    
     

  

       
    

      
  , 

         
    

      
 

       
    

       
 ]  } 

 

 ={[ max (
     

     
  

  
     

  , 
     

     
  

  
     

 ) , max (
     

     
  

  
     

  , 
     

     
  

  
     

  )],  

[ min (
     

    
  

  
     

  ,  
     

    
  

   
     

 ) , min (
     

    
  

  
     

 ,  
     

    
  

   
     

  )], [min (
     

    
  

  
     

   , 
     

    
  

   
     

 ),   

min (
     

    
  

  
     

   , 
     

    
  

   
     

  )]} 

 

=(    #   )   (    #   )    

    

This proves (v) 
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(vii) Using definitions in 2.4, 2.5 and 3.1, we have 

 

 (   @    )       = (         ) @(          ); 

 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

      = {([   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ])} 
 

   = {( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

= {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
])} 

   {( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

={[
  
     

  

 
 +  

  - 
  
     

  

 
    

 ,   
  
     

  

 
 +  

  - 
  
     

  

 
     

  ] , [
  
     

  

 
   
 ,   

  
     

  

 
   

 ] , 

 [
  
     

  

 
   

 ,   
  
     

  

 
   

 ] } 

 

={ [
   

    
     

   
      

    
    

   
  

 
 ,  

   
    

     
   

      
    

    
   

  

 
 ], [

  
     

  

 
   
 ,   

  
     

  

 
   

 ] , 

[
  
     

  

 
   

 ,   
  
     

  

 
   

 ] } 

 
= (        ) @ (         ) 

 

This proves (vi)  

 

Theorem 3.7. For    and    ∈ INSs(X), we have the following identities: 

 

(i)  (        )    (        ) =        ; 

(ii)  (        )   (        ) =         ; 

(iii)  (        )    (    @    ) =    @    ; 

(iv)  (        )   (    @    )=         ; 

(v)  (       )    (    @    )=        ; 

(vi)  (       )   (    @   )=    @    ; 

(vii)  (       )    (    $    )=     $    ; 

(viii)  (       )   (    $    )=         ; 

(ix)  (       )    (    $    )=        ; 

(x)  (       )   (    $   )=    $    ; 

(xi) (        )   (    #    )=    #    ; 

(xii)  (        )   (    #   )=        ; 

(xiii)  (       )∩ (    #   )=        ; 

(xiv)  (       ) (    #   )=    #    

 

Proof  .We prove (i), (iii), (v), (vii), (ix), (xi) and (xii), other results can be proved 

analogously. 

 

(i) From definitions in 2.4, 2.5 and 3.1, we have 

 



Journal of New Theory 1 (2015) 24-37                                                                                                                      31 

 
(       )    (        )  
 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

      = {([   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ])} 
 
=    

    
     

   
     

    
     

   
       

    
     

    
       

   
     

   
     {    

    
     

    
   

   
    

     
   

    
    

     
   

      [    
    

     
   

  ,   
    

     
   

  ] } 

 

={[ min (  
    

     
   

  ,   
    

   ) , min (  
    

     
   

   ,   
    

 )] , 

  [ max (  
    

   ,   
    

     
   

  ) , max (  
    

 ,   
    

     
   

 )],   

[ max (  
   

   ,   
    

     
   

 ) , max (  
   

 ,   
    

     
   

 )]} 

 

=[  
    

   ,    
    

 )],[   
    

     
   

  ,   
    

     
   

 ], [  
    

     
   

   ,   
    

     
   

  ] 

 

=        

 

This proves (i) 

 

(iii) Using definitions in 2.4, 2.5 and 3.1, we have 

 

(       )   (    @   ) =    @    ; 

 

={     
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

     ( [ 
  
     

  

 
 , 
  
     

  

 
], 

[
  
     

  

 
 , 
  
     

  

 
]  ,[ 

  
     

  

 
 , 
  
     

  

 
])  

 

= {[ min  (  
    

     
   

  , 
  
     

  

 
 ) , min (  

    
     

   
  , 

  
     

  

 
] ) ], 

[ max (  
    

  , 
  
     

  

 
) , max (  

    
 , 

  
     

  

 
)] , [ max (  

   
  , 

  
     

  

 
) , max (  

   
 , 

  
     

  

 
)]}.  

 

={ [
  
     

  

 
 ,
  
     

  

 
 ] , [ 

  
     

  

 
  ,  

  
     

  

 
], [  

  
     

  

 
  , 

  
     

  

 
   ]  

 

=     @     

 

This proves (iii). 

 

(v) From definitions in 2.4, 2.5 and 3.1, we have 

 

(       )   (    @   ) =        ; 

 

{[  
    

   ,    
    

 )],[   
    

     
   

  ,   
    

     
   

 ],  

[  
    

     
   

   ,   
    

     
   

  ]}  { [
  
     

  

 
 ,
  
     

  

 
 ] , [ 

  
     

  

 
  ,  

  
     

  

 
],  

[  
  
     

  

 
  , 

  
     

  

 
 ]}. 

 

={[ min  (  
    

   , 
  
     

  

 
) , min (  

    
  ,  

  
     

  

 
) ],[ max (  

    
     

   
  ,

  
     

  

 
) ,  

max (  
    

     
   

 , 
  
     

  

 
) ], [max (  

    
     

   
    ,

  
     

  

 
) ,  

max (  
    

     
   

  , 
  
     

  

 
)]}. 
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= {[   
    

   ,    
    

   ], [  
    

     
   

  ,     
    

     
   

 ],  

[   
    

     
   

  ,    
    

     
   

  ] } 

 

=           
 
This proves (v). 
 
(vii) Using definitions in 2.4, 2.5 and 3.1, we have 
 
(       )   (    $    )=     $     

 

=      
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

      

  {( [   
    

 ,    
    

  ], [   
    

 ,     
    

  ] , [   
    

 ,     
    

  ]} 
 

= { [ min (  
    

     
   

  ,    
    

  ) , min (  
    

     
   

  ,    
    

   )],   

[max (   
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This proves (vii) 
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This proves (ix) 

 

(xiii) From definitions in 2.3, 2.5 and  3.1, we have 
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This proves (xiii). This proves the theorem. 

 

Theorem 3.8 . For     and     ∈ INSs(X), then following relations are valid: 

 

(i)  (   #   ) $ (    #   ) =    #    ; 

(ii)  (       ) $ (        ) =        ; 

(iii)  (       ) $ (        ) =        ; 

(iv)  (   @    ) $ (    @    ) =    @    ; 

(v)  (   #    ) @ (     #    ) =     #    ; 

(vi) (        ) @ (        ) =    @    ; 

(vii)  (        ) @ (        ) =    @   ; 

(viii)  (        ) $ (        ) =    $    ; 

(ix)  (        ) # (        ) =    #    ; 

 

Proof. The proofs of these results are the same as in the above proof 

 

Theorem 3.9 For every two     and      ∈ INSs(X), we have: 

 

(i)  ((       )   (        )) @ ((        )   (        )) =    @   ;  

(ii) ((       )#(    ∩   )) $ ((       ) @ (         )) =    $     

(iii)  ((       )   (        )) @ ((        )   (        ))=    @   ; 
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(v)  ((       )   (    #   )) @ ((        )   (    #   )) =    @   ; 

(vi)  ((        )   (    $   )) @ ((        )   (    $   )) =    @   ; 

(vii)  ((       )   (    @   )) @ ((        )   (    #   )) =    $   . 

 

Proof . In the following, we prove (i) and (iii), other results can be proved analogously. 

 

(i) From definitions in 2.4, 2.5 and 3.1, we have 
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This proves (i). 

 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 
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This proves (iii). 
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4. Conclusion  

 
In this paper we have defined three new operations on interval neutrosophic sets  based on 

the arithmetic mean, geometrical mean, and respectively harmonic mean, which involve 

different defining functions. Some related results have been proved and bring out the 

characteristics of the interval neutrosophic sets.  
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Abstract − The main purpose of this paper, is to introduce the notion of ditopological texture
spaces with ideal. We study the notions of ?-connected ditopological texture spaces with an ideal
and ?-connected sets in ditopological texture spaces with ideal. Some new types of connectedness in
?-ditopological texture spaces namely, locally ?-connectedness, totally ?-disconnectedness, hypercon-
nectedness and ?-hyperconnectedness have investigated.

Keywords − Texturing, Texture space, Bitopology, Ditopology, Connectedness, ?-connected sets, Di-
topological texture spaces with ideal, ?-ditopological texture spaces, ?-separated sets, ?-connectedness,
?-component, Locally ?-connectedness, Totally ?-disconnectedness, ?-hyperconnected.

1 Introduction

The notion of a texture space, under the name of fuzzy structure, was introduced by Brown in [2].
The motivation for the study of texture spaces is that they allow us to represent, for instance, classical
fuzzy sets, L-fuzzy sets [14], intuitionistic fuzzy sets [1] and intuitionistic sets [9], as lattices of crisp
subsets of some base set S. A detailed analysis of this relation between texture spaces and lattices of
fuzzy sets of various kinds may be found in [5, 6, 9]. The concept of a ditopology on a texture space
is introduced in [3] and corresponds in a natural way to a fuzzy topology. In general ditopological
texture spaces may be regarded as natural generalizations of both topological spaces and bitopolog-
ical spaces [16]. The notion of connectedness in ditopological texture space was introduced in [10],
which is being extended by Tantawy et al. in [12]. In this paper, we introduce the notion of ditopo-
logical texture spaces with ideal. Also connectedness in ditopological texture spaces with an ideal is
studied. We study the notions of ?-connectedness in ditopological texture spaces with ideal. Some
new types of connectedness in ?-ditopological texture spaces namely, locally ?-connectedness, totally
?-disconnectedness, hyperconnectedness and ?-hyperconnectedness have investigated.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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2 Preliminary

The aim of this section is to collect the relevant definitions and results from texture space and ditopol-
ogy which will be needed in the sequel.

Definition 2.1. [2]. Let X be a set. Then L ⊆ P (X) is called texturing of X and X is said to be
textured by L if L is separates the points of X, complete, completely distributive lattice with respect
to inclusion, which contains X, φ, and for which arbitrary meet coincides with intersection and finite
joins coincide with unions. The pair (X,L) is then known as a texture space.
In any texture space, the p-sets and q-sets for each x ∈ X are the sets px =

⋂{A ∈ L : x ∈ A} and
qx =

∨{A ∈ L : x 6∈ A}.
A surjection σ : L → L is called a complementation if σ2(A) = A ∀A ∈ L and A ⊆ B in L implies
σ(B) ⊆ σ(A). A texture with a complementation is said to be complemented.
We now recall the definition of a dichotomous topology (or ditopology for short) on a texture given in
[2].

Definition 2.2. [3]. (L, τ,K) is called a ditopological texture space on X if

(1) τ ⊆ L satisfies

(a) X, φ ∈ τ ,

(b) G1, G2 ∈ τ ⇒ G1 ∩G2 ∈ τ , and

(c) Gi ∈ τ , i ∈ I ⇒ ∨
i∈I Gi ∈ τ , and

(2) K ⊆ L satisfies

(a) X, φ ∈ K,

(b) F1, F2 ∈ K ⇒ F1 ∪ F2 ∈ K, and

(c) Fi ∈ K, i ∈ I ⇒ ∧
i∈I Fi ∈ K .

The elements of τ are called open and those of K are called closed. We refer to τ as the topology and
to K as the cotopology of (τ ,K).
In general there is no a priori relation between τ and K , but if σ is a complementation on (X, L), and
τ , k are related by the relation K = σ(τ), then we call (τ,K) a complemented ditopology on (X, L, σ).
Finally, let Z ⊆ X. Then the closure of Z is the set [Z] =

⋂{F ∈ K : Z ⊆ F}, the interior is
]Z[=

∨{G ∈ τ : G ⊆ Z}}, the exterior is ext(Z) =
∨{G ∈ τ : G ∩ Z = φ} and Z is called dense in X

if [Z] = X. Also, if A * F ∀F ∈ K − {X}, we say A is co-dense.

Example 2.1. [8].

(1) For any texture (X, L), a ditopology (τ, K) with τ = L is called discrete, and one with K = L is
called co-discrete.

(2) For any texture (X,L), a ditopology (τ,K) with τ = {X, φ} is called indiscrete, and one with
K = {X,φ} is called co-indiscrete.

(3) For any topology τ on X, (τ, τ ′), τ ′ = {X − G : G ∈ τ}, is a complemented ditopology on
the usual(crisp) set structure (X, P (X), σX) of X, where σX : P (X) → P (X) defined by
σX(A) = A′ where A′ = X −A ∀A ∈ P (X).

(4) For any bitopology (τ1, τ2) on X, (τ1, τ
′
2) is a ditopology on(X, P (X)).

Definition 2.3. [10]. Let (X,L) be a texture space, A ⊆ X.Then, We define λ(A) by λ(A) =
∨

x∈A Px.
Hence, λ(A) is the smallest element of L containing A.

Definition 2.4. [10]. Let (Xi,Li) be a texture spaces on Xi,i = 1, 2 andf : X1 → X2 a mapping. We
define the mapping f̃−1 : L2 → L1 by f̃−1(l) = λ1(f−1(l) ∀l ∈ L2, where λ1 is defined for L1 as in
definition 2.3.

Theorem 2.1. [10].The following are equivalent for a function f : X1 → X2.
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(1) f−1(l) ∈ L1 ∀l ∈ L2.

(2) f̃−1(l) = f−1(l) ∀l ∈ L2.

Definition 2.5. [10]. Let (Xi,Li,Ki) be a ditopological texture space on Xi, i = 1, 2 and f : X1 → X2

a mapping. We say that f is continuous if
(1) f̃−1(G) ∈ τ1 ∀G ∈ τ2, and
(2) f̃−1(F ) ∈ K1 ∀F ∈ K2.

Definition 2.6. [10]. Let(X,L) be a texture space and φ 6= Z ⊆ X. {A, B} ⊆ P (X) is said to be a
partition of Z if A ∩ Z 6= φ, Z * B and A ∩ Z = B ∩ Z. Here we may interchange the roles of A and
B. Indeed if {A,B} is a partition of Z, then we also have B ∩ Z 6= φ and Z * A.

Definition 2.7. [10]. Let (L, τ,K) be a ditopological texture space on X and Z ⊆ X. Z is said to be
connected if there exists no partition {G,F} with G ∈ τ and F ∈ K.

Theorem 2.2. [10]. Let (X, L, τ, K) be a ditopological texture space, then X is connected if and only
if τ ∩K = {X, φ}.

Theorem 2.3. [10]. Let Z be a connected set in a ditopological texture space (X1, L1, τ1,K1) and f
be a continuous function of X1 in to a ditopological texture space (X2, L2, τ2,K2) satisfying one of the
equivalent conditions of Theorem 2.1. Then f(Z) is connected in X2.

Definition 2.8. [12]. A set which is τ -open as well as K-closed is said to be clopen.

Theorem 2.4. [12]. Let (X,L, τ, K) be a ditopological texture space, then the following are equivalent:

(1) X is connected.

(2) X has no a partition {A,B} ⊆ P (X) with A ∈ τ and B ∈ K.

(3) There is no proper subset A of X which is clopen.

(4) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ and
B ∈ K ′.

(5) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ ′ and
B ∈ K.

(6) X can not be expressed as an union of two separated subsets A, B of X.

Definition 2.9. [12]. Let (X,L, τ,K) be a ditopological texture space and let Z ⊆ X with x ∈ Z.
Then the component of Z w.r.t x is the maximal of all connected subsets of Z containing the point x
and denoted by C(Z, x), i.e

C(Z, x) =
∨{Y ⊆ Z : x ∈ Y, Y is connected}.

Theorem 2.5. [12]. Every clopen connected subset of a ditopological texture space (X, L, τ, K) is a
component of X.

Theorem 2.6. [12]. Let (Y, LY , τY ,KY ) be a subspace of a ditopological texture space (X, L, τ,K)
and A ⊆ Y . Then

(1) ClY (A) = [A] ∩ Y .

(2) ]A[⊆ IntY (A).

(3) extY (A) = Y ∩ ext(A).

Definition 2.10. [12]. A ditopological texture space (X, L, τ, K) is said to be locally connected at a
point x ∈ X if and only if every open subset of X containing x contains a connected open set containing
x. X is said to be locally connected if and only if it is locally connected at each of its points.

Theorem 2.7. [12]. Every connected ditopological texture space is a locally connected.
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Definition 2.11. [12]. A ditopological texture space (X, L, τ, K) is said to be totally disconnected if
and only if ∀x, y ∈ X s.t x 6= y ∃ non empty disjoint clopen proper subsets A, B of X s.t x ∈ A and
y ∈ B.

Definition 2.12. [12]. A ditopological texture space (X, L, τ, K) is said to be extremely disconnected
if for every open set G ⊆ X we have [G] is open in X.

Theorem 2.8. [12]. Let (Y, LY , τY , KY ) be a subspace of a ditopological texture space (X, L, τ, K).
Then

(1) Every τY open set is τ open set if and only if Y ∈ τ .

(2) Every KY closed set is K closed set if and only if Y ∈ K.

Definition 2.13. [17]. A topological space (X, τ) is said to be hyperconnected if for every pair of
nonempty open sets of X has a nonempty intersection.

Definition 2.14. [15]. A nonempty collection I of subsets of a nonempty set X is said to be an ideal
on X, if it satisfies the following two conditions:

(1) A ∈ I and B ⊆ A ⇒ B ∈ I,

(2) A ∈ I and B ∈ I ⇒ A ∪B ∈ I.

Given a topological space (X, τ) with an ideal I on X and if P (X) is the set of all subsets of X, a
set operator ()∗ : P (X) → P (X), called a local function of A with respect to τ and I, is denoted by
A∗(I, τ) or A∗(I) and defined as follows, for A ⊆ X, A∗(I, τ) = {x ∈ X : Ox ∩ A 6∈ I ∀ Ox ∈ τ}. A
Kuratowski closure operator for the topology τ∗(I, τ), called the ?-topology, finer than τ , is defined by
Cl∗(A) = A ∪ A∗ and τ∗(I, τ) or τ∗(I) is defined by τ∗(I) = {A ⊆ X : Cl∗(A′) = A′}. Also, (X, τ, I)
is called an ideal topological space or simply an ideal space.
For any ideal space (X, τ, I), the collection{G− V : G ∈ τ, V ∈ I} is a basis for τ∗.

Definition 2.15. [13]. Nonempty subsets A, B of a topological space with an ideal I on X (X, τ, I)
are said to be ?-separated sets if Cl∗(A) ∩B = A ∩ Cl(B) = φ.

Definition 2.16. [13]. A subset A of a topological space (X, τ, I) with an ideal I on X is said to be
?s-connected if A is not the union of two ?-separated sets in (X, τ, I).

Definition 2.17. [13]. Let (X, τ, I) be a topological space with an ideal I on X and x ∈ X. The
union of all ?s-connected subsets of X containing x is called the ?s-component of X containing x.

Definition 2.18. [11]. A subset A of an ideal topological space (X, τ, I) is said to be ?-dense if
Cl∗(A) = X. An ideal topological space (X, τ, I) is said to be ?-hyperconnected if A is ?-dense for
every nonempty open subset A of X has a nonempty intersection.

3 Ideal Ditopological Texture Spaces

In this section we introduce a ditopological texture space finer than the given ditopological texture
space (X,L, τ,K) on the same set X by using the ideal notion. We extend the notion of connectedness
to such spaces and study some of its basic properties. We denote by (X, L, τ, K, I) as a ditopological
texture space with an ideal I on X.

Definition 3.1. Let (τ,K) be a ditopological space on any texture space with an ideal (X, L, I). Then

(1) define the local function ()∗τ : P (X) → P (X) by A∗(I, τ) = {x ∈ X : Ox ∩A 6∈ I ∀ Ox ∈ τ} ∀ A ∈
P (X). A Kuratowski closure operator Cl∗τ (.) for the topology τ∗(I, τ), called the ∗-topology,
finer than τ , induced by Cl∗τ (A) = A ∪A∗(I, τ), where τ∗ = {G ⊆ X : Cl∗τ (G′) = G′}.

(2) let K ′ = {X − F : F ∈ K}, which is a topology on X, so we again define a local function
()∗K′ : P (X) → P (X), where A∗(I, K ′) is the local function of A w.r.t I, K ′. Also a Kuratowski
closure operator Cl∗K′(.) for the topology K ′∗(I, K ′), called the ∗-topology, finer than K ′. Hence,
K ′∗′ = K∗ is a family of closed subsets of X finer than K.
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(3) let (X, L∗) be the smallest texture structure space containing L, τ∗ and K∗. Hence, (τ∗,K∗) is
called the ?-ditopology on (X, L∗), finer than (τ, K) on (X, L).

Finally, let Z ⊆ X. Then the ?-closure of Z is the set [Z]K
∗

=
⋂{F ∈ K∗ : Z ⊆ F}, the ?-interior

is ]Z[τ∗=
∨{G ∈ τ∗ : G ⊆ Z}}, the ?-exterior is extτ∗(Z) =

∨{G ∈ τ∗ : G ∩ Z = φ} and Z is called
?-dense in X if [Z]K

∗
= X. Also if A * F ∀F ∈ K∗ − {X}, we say A is ?-co-dense.

Examples 3.1. (1) If I = φ, then A∗(I, τ) = [A]τ and A∗(I, K ′) = [A]K ∀A ∈ P (X). Hence,
Cl∗τ (A) = [A]τ , Cl∗K′(A) = [A]K , τ∗ = τ and K∗ = K.

(2) If I = P (X), then A∗(I, τ) = φ and A∗(I, K ′) = φ ∀A ∈ P (X). Hence, Cl∗τ (A) = A, Cl∗K′(A) =
A, τ∗ = P (X) and K∗ = P (X).

(3) If I ⊆ J , then A∗(I, τ) ⊆ A∗(J, τ) and A∗(I,K ′) ⊆ A∗(J,K ′). Hence, the ?- ditopological texture
space (X,L∗, τ∗(J),K∗(J)) is finer than the ?- ditopological texture space (X,L∗, τ∗(I),K∗(I)).

Remark 3.1. In the case of ?- ditopological texture space, we choose L∗ ⊇ L. Indeed sometimes
τ∗,K∗ * L, as in the following examples.

Examples 3.2. (1) Let X = {a, b, c}, L = {X, φ, {b}, {c}, {b, c}}, τ = {X, φ, {b}}, K = {X, φ, {c}}
and I = {φ, {b}} be an ideal on X. Then τ∗ = {X,φ, {b}, {a, c}}, K∗ = {X, φ, {b}, {c}, {b, c}}
and τ∗ * L. Hence, L∗ = {X, φ, {b}, {c}, {b, c}, {a, c}}.

(2) Let X = {a, b, c}, L = {X, φ, {b}, {c}, {b, c}, {a, b}}, τ = {X, φ, {b}, {a, b}, K = L and I =
{φ, {a}, {b}, {a, b}} be an ideal on X. Then τ∗ = P (X), K∗ = P (X) and τ∗, K∗ * L. Hence,
L∗ = P (X).

(3) Let X = [0, 1], L = {[0, r] : r ∈ X} ∪ {φ}, τ = K = {X,φ}, I = {A ⊆ X : A is finite}. Then
τ∗ = τ∞ [15], where τ∞ is the cofinite topology, τ∞ * L, also K∗ = τ ′∞ and K∗ * L. Hence,
L∗ = P (X).

Theorem 3.1. Let (L, τ, K) be a ditopological texture space on X, I be an ideal on X and (X,L∗, τ∗,K∗
be the ?-ditopological texture space w.r.t I. Then

(1) β(I, τ) = {G− V : G ∈ τ, V ∈ I} is a basis of τ∗.

(2) β(K ′, I) = {F − V : F ∈ K ′, V ∈ I} is a basis of K∗′ .

Proof. (1) Since X ∈ τ, φ ∈ I, then X − φ ∈ β, hence X ∈ β and
⋃

i∈I(Gi − Vi) = X. Also, let
G1 − V1, G2 − V2 ∈ β, s.t x ∈ (G1 − V1) ∩ (G2 − V2), then x ∈ (G1 ∩ G2) − (V1 ∪ V2) ∈ β.
Therefore, x ∈ (G1 ∩G2)− (V1 ∪ V2) ⊆ (G1 − V1) ∩ (G2 − V2). Hence, β is a basis of τ∗.

(2) By a similar way.

Definition 3.2. Let (X,L, τ,K, I) be a ditopological texture space with an ideal, Y ⊆ X s.t Y ∈ L
and let LY , τY ,KY , IY are the restriction of L, τ, K, I on I, then (Y,LY , τY ,KY , IY ) is a ditopological
texture subspace with an ideal IY on Y .

Theorem 3.2. Let (X, L, τ, K, I) be a ditopological texture space with an ideal I on X and A ⊆ Y ⊆
X. Then

(1) A∗(τY , IY ) = Y ∩A∗(τ, I).

(2) A∗(K ′
Y , IY ) = Y ∩A∗(K ′, I).

Proof. (1) A∗(τY , IY ) = {y ∈ Y : Oy ∩ A 6∈ IY ∀ Oy ∈ τY } = {y ∈ Y : (Y ∩G) ∩ A 6∈ IY ∀ Y ∩G ∈
τY } = {y ∈ Y : G ∩A 6∈ I ∀ G ∈ τ} = Y ∩ {y ∈ X : G ∩A 6∈ I ∀ G ∈ τ} = Y ∩A∗(τ, I).

(2) By a similar way.

Theorem 3.3. Let (Y, LY , τY , KY , IY ) be a ditopological texture subspace with an ideal IY on Y of
a ditopological texture space (X,L, τ,K, I) and A ⊆ Y ⊆ X. Then
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(1) [A]K
∗

Y = Y ∩ [A]K
∗
, where K∗Y is the family of K∗-closed subsets of Y .

(2) ]A[τ
∗⊆ Intτ

∗
Y (A), where τ∗Y is the family of τ∗-open subsets of Y .

(3) extτ
∗
Y (A) = Y ∩ extτ

∗
(A).

Proof. Immediate from Theorem 2.6, Definition 3.1 and Theorem 3.2.

Remark 3.2. Note that, the equality in Theorem 3.3(2) holds for all subsets of Y if and only if Y
is τ∗-open. Indeed, if x ∈ Intτ

∗
Y (A). Then x ∈ ∨{G ∩ Y ∈ τ∗Y : G ∩ Y ⊆ A}. Since Y ∈ τ∗, then

x ∈]A[τ
∗
.

Theorem 3.4. Let (Y, LY , τY ,KY , IY ) be a ditopological texture subspace with an ideal IY on Y of a
ditopological texture space (X, L, τ, K, I) and consider the ?-ditopological texture space (X, L∗, τ∗,K∗).
Then

(1) Every τ∗Y -open set is τ∗-open set if and only if Y ∈ τ∗.

(2) Every K∗Y -closed set is K∗-closed set if and only if Y ∈ K∗.

Proof. (i) Suppose that every τ∗Y -open set is τ∗-open set, then Y ∈ τ∗Y ⊆ τ∗. Conversely, if Y ∈ τ∗

and A ⊆ Y is τ∗Y -open, then A = Y ∩G for some G ∈ τ∗, but Y ∈ τ∗, hence A ∈ τ∗.

(2) By a similar way.

Corollary 3.1. Let (Y, LY , τY ,KY , IY ) be a τ -open subspace of (X, L, τ, K, I), consider the ?-ditopological
texture space (X, L∗, τ∗,K∗) and A ⊆ Y . Then A is τ∗Y -open set if and only if it is τ∗-open set.

Proof. Immediate from Theorem 3.4.

Corollary 3.2. Let (Y, LY , τY ,KY , IY ) be a K-closed subspace of (X, L, τ, K, I), consider the ?-
ditopological texture space (X, L∗, τ∗,K∗) and A ⊆ Y . Then A is K∗Y -closed set if and only if it is
K∗-closed set .

Proof. Immediate from Theorem 3.4.

Definition 3.3. Let (X, L, τ, K, I) be a ditopological texture space with an ideal on X and Z ⊆ X.
{A,B} ⊆ P (X), where (A,B) ∈ τ∗×K or (A,B) ∈ K∗×τ , is said to be a ?-partition of Z if A∩Z 6= φ,
Z * B and A ∩ Z = B ∩ Z.

Definition 3.4. Let (X, L, τ, K, I) be a ditopological texture space with an ideal on X and Z ⊆ X.
Z is said to be ?-connected if there exists no ?-partition of Z.

Theorem 3.5. Let (X,L, τ,K, I) be a ditopological texture space with an ideal on X and (X, L∗, τ∗,K∗)
be a ?-ditopological texture space, then the following are equivalent:

(1) X is ?-connected.

(2) There is no proper subset A of X with A ∈ τ∗ ∩K and A ∈ K∗ ∩ τ .

(3) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ and
B ∈ K∗′ (resp. A ∈ τ∗ and B ∈ K ′).

(4) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ ′ and
B ∈ K∗ (resp. A ∈ τ∗

′
and B ∈ K).

Proof. Immediate by Theorem 2.4 and Definition 3.4.

Theorem 3.6. Let (X, L, τ, K, I) be a ?-connected ditopological texture space with an ideal. Then
(X, L, τ, K) is connected.

Proof. Immediate.
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Remark 3.3. The converse of Theorem 3.6 is not true in general, as in the following example.
Let X = {a, b, c}, L = {X,φ, {b}, {c}, {b, c}, {a, b}}, τ = {X, φ, {b}, {a, b}}, K = {X, φ, {c}}, and
I = {φ, {a}, {b}, {a, b}} be an ideal on X, then τ∗ = P (X), K∗ = P (X) and L∗ = P (X). Then
(X, L, τ, K) is connected but (X, L, τ, K, I) is ?-disconnected.

Theorem 3.7. Let (X, L, τ, K, I) be a ?-connected ditopological texture space with an ideal. Then
(X, L, τ, K) is locally connected.

Proof. Immediate by Theorem 2.7 and Theorem 3.6.

Theorem 3.8. X is ?-connected if for all pair of point x, y ∈ X with x 6= y there exists a ?-connected
set Z ⊆ X with x, y ∈ Z.

Proof. Suppose that X is ?-disconnected. Then by Theorem 3.5 there exists a proper subset A of X
s.t A ∈ τ∗∩K or A ∈ τ ∩K∗. If A ∈ τ∗∩K. Then we choose x, y ∈ X with x ∈ A and y 6∈ A. If there
exists a ?-connected set Z with x, y ∈ Z, then Z * A and A ∩ Z 6= φ. Hence, {A, A} is a partition of
Z, which is a contradiction with the ?-connectedness of Z. By a similar way if A ∈ τ ∩K∗. Hence, we
get the proof.

Corollary 3.3. Let Z be a ?-connected set in a ditopological texture space with an ideal (X1, L1, τ1,K1, I1)
and f be a continuous function of X1 into a ditopological texture space with an ideal (X2, L2, τ2, K2, I2)
satisfying one of the equivalent conditions of Theorem 2.1. Then f(Z) is ?-connected in X2.

Proof. Suppose that f(Z) is not ?-connected in X2. Let {G,F} ⊆ P (X) be a partition of f(Z) with
G ∈ τ∗2 and F ∈ K2 or G ∈ τ2 and F ∈ K∗2. If G ∈ τ∗2 and F ∈ K2. Then f(Z)∩G 6= φ, f(Z) * F and
f(Z) ∩ G = f(Z) ∩ F . Since f̃−1(G) = f−1(G) and f̃−1(F ) = f−1(F ), then {f−1(G), f−1(F )} is a
partition of Z where f−1(G) ∈ τ∗1 and f−1(F ) ∈ K1, which is a contradiction with the ?-connectedness
of Z. By a similar way if G ∈ τ2 and F ∈ K∗2. Hence, we get the proof.

Definition 3.5. Let (X, L, τ, K, I) be a ditopological texture space with an ideal and let Z ⊆ X with
x ∈ Z.Then the ?-component of Z w.r.t x is the maximal of all ?-connected subsets of Z containing
the point x and denoted by C(Z, x), i.e

C(Z, x) =
∨{Y ⊆ Z :x ∈ Y, Y is ?−connected}.

Theorem 3.9. If Z is a ?-component and extτ∗(Z) = φ, then Z = [Z]∗.

Proof. We want to prove that [Z]∗ ⊆ Z. So Let (X, L, τ, K, I) be a ditopological texture space with
an ideal, Z be a ?-component subset of (X, L∗, τ∗,K∗) and x 6∈ Z, but Z is a maximal ?-connected
set, then Z ∪ {x} can not be ?-connected set. Take a partition {A,B} of Z ∪ {x} s.t (A,B) ∈ τ∗ ×K
with A ∩ (Z ∪ {x}) 6= φ, Z ∪ {x} * B and (Z ∪ {x}) ∩ A = (Z ∪ {x}) ∩ B. Since Z ⊆ Z ∪ {x}, then
Z ∩ A = Z ∩B and Z is ?-connected. Hence, either Z ∩ A = φ or Z ⊆ B. Suppose Z ∩ A = φ. Since
x 6∈ Z and A ∩ (Z ∪ {x}) 6= φ, then x ∈ A. Hence, x ∈ extτ

∗
(Z), which is a contradiction. If Z ⊆ B

and Z ∪ {x} * B, then x 6∈ B and [Z]∗ ⊆ B. Hence, x 6∈ [Z]∗. By a similar way if we take a partition
{A,B} of Z ∪ {x} s.t (A,B) ∈ τ ×K∗. This completes the proof.

Theorem 3.10. Let {Zi : i ∈ I} be a family of ?-connected subsets in L∗ with
⋂

i∈I Zi 6= φ, then∨
i∈I Zi is also ?-connected.

Proof. Suppose that Z =
∨

i∈I Zi is ?-disconnected. Then we may choose a partition {A, B} of Z s.t
(A,B) ∈ τ∗×K or (A,B) ∈ τ ×K∗ with Z ∩A 6= φ, Z * B and A∩Z = B ∩Z. Since Zi ⊆ Z ∀i ∈ I,
then A∩Zi = B ∩Zi ∀i ∈ I. But Zi is ?-connected, then either Zi ∩B = φ or Zi ⊆ A. Now we choose
x ∈ ⋂

i∈I Zi, then x ∈ Zi ∀i ∈ I, so either x ∈ A or x 6∈ B. Suppose x ∈ A, then A ∩ Zi 6= φ ∀i ∈ I,
A ∩ Zi = B ∩ Zi and Zi is ?-connected, then Zi ⊆ B ∀i ∈ I. Hence, Z =

∨
i∈I Zi ⊆ B, which is a

contradiction. Now suppose x 6∈ B, since x ∈ Zi ∀i ∈ I, then Zi * B, A ∩ Zi = B ∩ Zi ∀i ∈ I and Zi

is ?-connected. Hence, A ∩ Zi = φ and A ∩ Z = A ∩ (
∨

i∈I Zi) =
∨

i∈I(A ∩ Zi) =
∨

i∈I(φ) = φ, which
is a contradiction.
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Corollary 3.4. Let {Zi : i ∈ I} be a family of ?-connected subsets of a ditopological texture space
with an ideal (X, L, τ, K, I) s.t one of the members of the family intersects every other members, then
Z =

∨
i∈I Zi is ?-connected.

Proof. Let Zi0 ∈ {Zi : i ∈ I} s.t Zi0 ∩ Zi 6= φ ∀i ∈ I. Then Zi0

∨
Zi is ?-connected ∀i ∈ I by

Theorem 3.10., hence the collection {Zi0 ∨ Zi : i ∈ I} is a collection of a ?-connected subsets of X,
which having a non-empty intersection. So Z =

∨
i∈I Zi is ?-connected by Theorem 3.10.

Theorem 3.11. Let Z ⊆ X be a ?-connected set, Z ⊆ Y ⊆ [Z]∗ and extτ
∗
(Z) ∩ Y = φ, then Y is

?-connected.

Proof. Suppose that Y is ?-disconnected. Take a partition {A,B} of Y with (A,B) ∈ τ∗ ×K. Then
Y ∩ A 6= φ, Y * B and Y ∩ A = Y ∩ B. Since Z ⊆ Y , then Z ∩ A = Z ∩ B but Z is ?-connected,
so either Z ∩ A = φ or Z ⊆ B. Suppose Z ∩ A = φ, then A ⊆ ext∗(Z) and Y ∩ A ⊆ Y ∩ ext∗(Z).
Hence, A ∩ Y = φ is a contradiction. Now suppose Z ⊆ B, then [Z]∗ ⊆ B, hence Y ⊆ B, which is a
contradiction.

Corollary 3.5. The K∗-closure of ?-connected subset of a ditopological texture space (X,L, τ,K, I)
with an ideal is ?-connected.

Proof. Immediate by Theorem 3.11.

Corollary 3.6. Every ?-component of a ditopological texture space (X, L, τ, K, I) with an ideal is
K∗-closed set.

Proof. Immediate from Definition 3.5 and Corollary 3.5.

4 ?s-Connectedness in Ditopological Texture Spaces

Modulo Ideal

Definition 4.1. Nonempty subsets A, B of a ditopological texture space with (X, L, τ, K, I) an ideal
are said to be ?-separated sets if either A ∩ [B]τ

∗
= B ∩ [A]K = φ or A ∩ [B]K

∗
= B ∩ [A]τ = φ.

Theorem 4.1. Let (X, L, τ, K, I) be a ditopological texture space with an ideal and (X,L∗, τ∗,K∗)
be a ?-ditopological texture space, then the following are equivalent:

(1) X is ?-connected.

(2) There is no proper subset A of X with A ∈ τ∗ ∩K and A ∈ K∗ ∩ τ .

(3) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ and
B ∈ K∗′ (resp. A ∈ τ∗ and B ∈ K ′).

(4) X can not be expressed as an union of two nonempty disjoint subsets A, B of X with A ∈ τ ′ and
B ∈ K∗ (resp. A ∈ τ∗

′
and B ∈ K).

(5) X can not be expressed as an union of two ?-separated sets.

Proof. Immediate from Theorem2.4 and Definition 4.1.

Theorem 4.2. Let (X, L, τ, K, I) be a ditopological texture space with an ideal I. If A and B are
?-separated sets of X s.t A ∪B ∈ τ ∩K, then either A (resp.B) ∈ τ∗ ∩K or A (resp.B) ∈ K∗ ∩ τ .

Proof. Suppose that A, B be a ?-separated sets s.t A ∪ B ∈ τ ∩ K, then [A ∪ B]τ
∗ ∈ τ∗

′
. Since

[B]τ
∗ ∈ τ∗

′
, then ([B]τ

∗
)′ ∈ τ∗, it follows that (A ∪ B) ∩ ([B]τ

∗
)′ ∈ τ∗. Then A = (A ∩ ([B]τ

∗
)′) ∪

(B ∩ ([B]τ
∗
)′ ∈ τ∗, hence A ∈ τ∗. Since A ∪ B ∈ K and [A]K ∈ K, then (A ∪ B) ∩ [A]K ∈ K. Then,

A = (A ∩ [A]K) ∪ (B ∩ [A]K) ∈ K, it follows that A ∈ K. This means that, A ∈ τ∗ ∩K. The rest of
the proof by s similar way.
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Definition 4.2. A subset Z of a ditopological texture space with an ideal (X,L, τ,K, I) is called
?s-connected if Z is not the union of two ?-separated sets in (X,L, τ,K, I).

Theorem 4.3. Let Y be a clopen subset of a ditopological texture space with an ideal (X, L, τ, K, I).
Then Y is ?s-connected if and only if it is ?-connected.

Proof. ⇒: Suppose that Y is ?-disconnected, then either ∃ nonempty disjoint τ∗Y -open and KY -open
or K∗-closed and τ -open subsets A, B of Y s.t Y = A ∪ B. Since Y ∈ τ ∩K, by Theorem 2.8
and Theorem 3.4, A and B are τ∗-open and K-open or K∗-closed and τ -closed subsets of X.
Since A and B are disjoint, then either B ∩ [A]τ

∗
= A∩ [B]K = φ or A∩ [B]K

∗
= B ∩ [A]τ = φ.

This implies that, A, B are ?-separated sets in X s.t Y = A∪B. Hence, Y is not ?s-connected,
which is a contradiction.

⇐: Suppose that Y is not ?s-connected in X, then ∃ ?-separated sets A, B s.t Y = A∪B. By Theorem
4.2 A ∈ τ∗ ∩K. By Theorem 2.8 and Theorem 3.4, A ∈ τ∗Y ∩KY . Hence, Y is ?-disconnected
by Theorem 4.1, which is a contradiction.

Theorem 4.4. Let Z be a ?s-connected subset of a ditopological texture space with an ideal I on X
(X, L, τ, K, I) and A, B are ?-separated subsets of X with Z ⊆ A ∪B, then either Z ⊆ A or Z ⊆ B.

Proof. Let Z ⊆ A ∪ B for some ?-separated subsets A, B of X. Since Z = (Z ∩ A) ∪ (Z ∩ B),
then (Z ∩ A) ∩ ([Z ∩ B]τ

∗
) ⊆ A ∩ [B]τ

∗
= φ. By a similar way, we have (Z ∩ B) ∩ ([Z ∩ A]K) = φ,

(Z ∩A)∩ ([Z ∩B]K
∗
) = φ and (Z ∩B)∩ ([Z ∩A]τ ) = φ. Suppose that Z ∩A and Z ∩B are nonempty.

Then Z is not ?s-connected, which is a contradiction. Thus, either Z ∩ A = φ or Z ∩ B = φ. This
implies that, Z ⊆ A or Z ⊆ B.

Theorem 4.5. Let {Zi : i ∈ J} be a nonempty family of ?s-connected subsets of a ditopological
texture space with an ideal (X, L, τ, K, I) with

⋂
i∈J Zi 6= φ, then

∨
i∈J Zi is also ?s-connected.

Proof. Suppose that Z =
∨

i∈J Zi is not ?s-connected. Then Z = A ∪ B for some two ?-separated
subsets A, B of X. Since

⋂
i∈J Zi 6= φ, then ∃ x ∈ ⋂

i∈J Zi ∀i ∈ J , so x ∈ Zi ∀i ∈ J and x ∈ A or
x ∈ B. Suppose that x ∈ A. Since Zi ⊆ A∪B ∀i ∈ J , then Zi ⊆ A or Zi ⊆ B ∀i ∈ J by Theorem 4.4.
Since A ∩ B = φ, Zi ⊆ A;∀i ∈ J , then Z ⊆ A. This implies that, B = φ, which is a contradiction.
The rest of the proof is similar.

Corollary 4.1. Let {Zi : i ∈ J} be a nonempty family of ?s-connected subsets of a ditopological
texture space with an ideal (X, L, τ, K, I) s.t one of the members of the family intersects every other
members, then Z =

∨
i∈J Zi is ?s-connected.

Proof. The proof is similar to Corollary 3.4.

Definition 4.3. Let (X, L, τ, K, I) be a ditopological texture space with an ideal and let Z ⊆ X with
x ∈ Z. Then the ?s-component of Z w.r.t x is the maximal of all ?s-connected subsets of Z containing
the point x.

Theorem 4.6. Every ?s-component of a ditopological texture space with an ideal (X, L, τ, K, I) is a
maximal ?s-connected subset of X.

Proof. Immediate from Definition 4.3.

Theorem 4.7. Let (X, L, τ, K, I) be a ditopological texture space with an ideal. Then:

(1) Each point in X is contained in exactly one component of X.

(2) Any two components w.r.t two different points of X are either disjoint or identical.

(3) Every τ∗-open and K-closed ?s-connected subset of X is a ?s-component of X.

Proof. Immediate from Theorem 2.5 and Theorem4.6.

Corollary 4.2. The set of all distinct ?s-components of a ditopological texture space with an ideal
(X, L, τ, K, I) partition the set X.

Proof. Immediate from Theorem 4.7.
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5 Relation Between the ?-Connectedness

In this section we introduce some new types of a ?-connectedness in a ditopological texture spaces
with an ideal (X,L, τ,K, I).

Definition 5.1. A ditopological texture space with an ideal (X, L, τ, K, I) is said to be locally ?-
connected at a point x ∈ X if and only if every τ∗-open and K-closed set and for every K∗-closed
and τ -open set containing x contains a ?-connected open set containing x and is said to be locally
?-connected if and only if it is locally ?-connected at each of its points.

Theorem 5.1. Every ?-connected space is a locally ?-connected space.

Proof. Suppose that (X, L, τ, K, I) be a ?-connected ditopological texture space with an ideal and
(X, L∗, τ∗,K∗) be a ?-ditopological texture space. Then τ∗ ∩K = {X,φ} and K∗ ∩ τ = φ, hence ∀x ∈
X ∃ X ∈ τ∗ which is ?-connected set and x ∈ X ⊆ X. Then X is locally ?-connected.

Theorem 5.2. Every ?-component of a locally ?-connected ditopological texture space with an ideal
(X, L, τ, K, I) is a ?-open set.

Proof. Let (X, L, τ, K, I) be a locally ?-connected ditopological texture space with an ideal, x ∈ X and
C be a ?-component of X w.r.t x. Since (X, L, τ, K, I) is a locally ?-connected space. Therefore, every
τ∗-open and K-closed set and every K∗-closed and τ -open set containing x contains a ?-connected
open set G containing x, but C is the largest ?-connected set containing x, then x ∈ G ⊆ C, i.e C is a
τ∗-nbd of x. Then C is a τ∗-nbd of each of its points. This implies that, C is a ?-open set.

Definition 5.2. A ditopological texture space with an ideal (X, L, τ, K, I) is said to be totally ?-
disconnected if and only if ∀x, y ∈ X s.t x 6= y ∃ a non empty disjoint τ∗-open and K-closed or
K∗-closed and τ -open subsets A, B of X s.t x ∈ A and y ∈ B.

Theorem 5.3. The ?-components of a totally ?-disconnected ditopological texture space with an ideal
(X, L, τ, K, I) are the singleton subsets of X.

Proof. Suppose that Y be a subset of a totally ?-disconnected ditopological texture space with an
ideal (X, L, τ, K, I), which containing more than one point of X. Let y1, y2 ∈ Y ⊆ X s.t y1 6= y2,
since X is totally ?-disconnected, then ∃ a non empty disjoint τ∗-open and K-closed or K∗-closed and
τ -open proper subsets A, B of X s.t y1 ∈ A and y2 ∈ B. Clearly, {A,A} is a partition of Y in both
cases, then Y is ?-disconnected set, but the ?-components are ?-connected set, hence no subsets of X
containing more than one point can be a ?-component of X.

Definition 5.3. Let (X,L, τ,K) be a ditopological texture space. Then X is said to be hyperconnected
if every pair of nonempty τ -open and K-open proper subsets A, B of X respectively, has a nonempty
intersection, i.e
(X, L, τ, K) is said to be hyperconnected if ∀ A ∈ τ and B ∈ K ′ we have A ∩B 6= φ.

Theorem 5.4. Every hyperconnected ditopological texture space is connected.

Proof. Suppose that (X, L, τ, K) be a disconnected ditopological texture space, then there exists a
proper subset A of X with A ∈ τ ∩ K. Then A ∈ τ and A′ ∈ K s.t A ∩ A′ = φ, hence X is not
hyperconnected, which is a contradiction.

Remark 5.1. The converse of Theorem 5.4 is not true in general, for the following example,
let X = {a, b, c}, L = {X,φ, {a}, {c}, {a, c}, {a, b}}, τ = {X, φ, {a}}, K = {X,φ, {b}}. Then
(X, L, τ, K) is connected but not hyperconnected.

Theorem 5.5. Every hyperconnected space is a locally connected space.

Proof. Immediate by Theorem 2.7 and Theorem 5.4.

Definition 5.4. Let (X, L, τ, K, I) be a ditopological texture space with an ideal and (X,L∗, τ∗,K∗)
be a ?-ditopological texture space. Then X is said to be a ?-hyperconnected if A is ?-dense for ever
nonempty τ -open subset A of X.
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Theorem 5.6. Every ?-hyperconnected ditopological texture space is ?-connected.

Proof. Suppose that (X, L, τ, K, I) be a ?-disconnected ditopological texture space with an ideal. Then
either ∃ A ∈ τ and B ∈ K∗′ or A ∈ τ∗ and B ∈ K ′ s.t A∩B = φ and X = A∪B. Then B = φ, which
is a contradiction.Then (X, L, τ,K, I) be a ?-connected.

Theorem 5.7. Every ?-hyperconnected ditopological texture space is locally ?-connected.

Proof. Immediate by Theorem 5.1 and Theorem 5.6.

Theorem 5.8. Let (X, L, τ, K, I) be a ?-hyperconnected ditopological texture space with an ideal,
then (X, L, τ, K) is hyperconnected.

Proof. Immediate.

Remark 5.2. The converse of Theorem 5.8 not true in general, for the following example,
let X = {a, b, c}, L = {X, φ, {b}, {c}, {b, c}}, τ = {X, φ, {b}}, K = {X, φ, {c}} and I = {φ, {b}}
be an ideal onX, then τ∗ = {X, φ, {b}, {a, c}} and K∗ = {X, φ, {b}, {c}, {b, c}}. Hence, L∗ =
{X, φ, {b}, {c}, {b, c}, {a, c}}. Then (X, L, τ, K) is hyperconnected and (X, L, τ, K, I) is not ?-hyperconnected.

Theorem 5.9. . Let (X,L, τ,K, I) be a ?-hyperconnected ditopological texture space with an ideal,
then (X, L, τ, K) is connected.

Proof. Immediate by Theorem 3.6 and Theorem 5.6.

Theorem 5.10. Let (X,L, τ,K, I) be a ?-hyperconnected ditopological texture space with an ideal,
then (X, L, τ, K) is locally connected.

Proof. Immediate by Theorem 2.7, Theorem 3.6 and Theorem 5.6.

Theorem 5.11. The following implications hold for a ditopological texture space (X,L, τ,K, I) with
an ideal.
(X, L, τ, K, I) is ?-hyperconnected ⇒ (X, L, τ, K) is hyperconnected
⇓ ⇓
(X, L, τ, K, I) is ?-connected ⇒ (X, L, τ, K) is connected
⇓ ⇓
(X, L, τ, K, I) is locally ?-connected (X, L, τ, K) is locally connected

Proof. Immediate by Theorem 2.7, Theorem 3.6, Theorem 5.5, Theorem 5.6, Theorem 5.8 and Theorem
5.10.

6 Conclusion

Topology is an important and major area of mathematics and it can give many relationships between
other scientific areas and mathematical models. The notion of a texture space, under the name
of fuzzy structure, was introduced by Brown in [2], as a means of representing a lattice of fuzzy
sets as a lattice of crisp subsets of some base set. The notion of connectedness in ditopological
texture spaces was initiated by Diker in [10], which is being extended in [12]. The main purpose of
this paper, is to introduce the notion of ditopological texture spaces with ideal (X, L, τ, K, I), which
is finer than the given ditopological texture space (X, L, τ, K) on the same set X. We study the
notions of ?-connected ditopological texture spaces with an ideal and ?-connected sets in ditopological
texture spaces with ideal. Moreover, we introduce new types of connectedness in ?-ditopological
texture spaces namely, locally ?-connectedness, totally ?-disconnectedness, hyperconnectedness and
?-hyperconnectedness have investigated.
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Abstract − In this article, by using basic properties of soft multi topology and soft multi function,
we define the notion of soft multi continuous function. We also introduce some basic definitions and
theorems of the concept.
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1 Introduction

Classical mathematical methods are not enough to solve the problems of daily life and also are not
enough to meet the new requirements. Therefore, some theories such as Fuzzy set theory [23], Rough
set theory [15], Soft set theory [12] and Multiset (or Bag) theory [22] have been developed to solve
those problems.

Applications of these theories exists in many areas of mathematics. Shabir and Naz [17] defined
the soft topological space and studied the concepts of soft open set, soft multi interior point, soft
neighborhood of a point, soft separation axioms, and subspace of a soft topological space. Aygunoglu
and Aygun [2] introduced the soft continuity of soft mapping, soft product topology and studied soft
compactness and generalized Tychonoff theorem to the soft topological space. Min [11] gave some
results on soft topological spaces. Zorlutuna et al. [24] also investigated soft interior point and soft
neighborhood. There are some other studies on the structure of soft topological spaces ([3],[21]). Maji
et al. [9] also initiated the more generalized concept of fuzzy soft sets which is a combination of fuzzy
set and soft set. Tanay and Kandemir introduced topological structure of fuzzy soft set in [18] and
gave a introductory theoretical base to carry further study on this concept. Following this study, some
others ([20],[8],[1],[16]) studied on the concept of fuzzy soft topological spaces.

The concept of soft multisets which is combination of soft sets and multisets can be used to solve
some real life problems. Also this concept can be used in many areas, such as data storage, computer
science, information science, medicine, engineering, etc. The concept of soft multisets was introduced
in [19]. Moreover, in [19],[13] and [14] soft multi topology and its some properties were given.

In this work we will recall soft multi function between two soft multiset. Then we will introduce soft
multi continuous function on soft multi topological spaces and will give basic definitions and theorems
of soft multi continuity.

**Edited by Serkan Karataş (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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2 Preliminaries

2.1 Soft Sets, Multisets and Soft Multisets

In this section, we present the basic definitions of soft set, multiset and soft multiset which may be
found in earlier studies [6, 12, 19].

Definition 2.1 (Soft set). [12] Let U be an initial universe set and E be set of parameters. Let P (U)
denotes the power set of U and A ⊆ U . A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A → P (U).

Definition 2.2 (Multiset). [6] An mset M drawn from the set X is represented by a function Count
M or CM defined as CM : X → N. The word “multiset”is often shortened to “mset”.

Let M be an mset from X with x appearing n times in M . It is denoted by x ∈n M . If
M = {k1/x1, k2/x2, ..., kn/xn}, then, x1 appearing k1 times, x2 appearing k2 times and so on.

Definition 2.3. [6] Let M be an mset drawn from a set X. The support set of M denoted by M∗ is
a subset of X and M∗ = {x ∈ X : CM (x) > 0}. i.e., M∗ is an ordinary set and it is also called root
set.

The power set of an mset is the support set of the power mset and is denoted by P ∗ (M).

Example 2.4. [5] Let M = {2/x, 3/y} be an multiset. Then M∗ = {x, y} is the support set of M .
The collection

P (M) = {3/ {2/x, 1/y} , 3/ {2/x, 2/y} , 6/ {1/x, 1/y} , 6/{1/x, 2/y}, 2/ {1/x, 3/y} , 1/ {2/x} , 2/ {1/x} ,
1/ {3/y} , 3/ {2/y} , 3/ {1/y} ,M, ∅}

is the power multiset of M . The collection
P ∗ (M) = {{2/x, 1/y} , {2/x, 2/y} , {1/x, 1/y} , {1/x, 2/y}, {1/x, 3/y} , {2/x} , {1/x} , {3/y} , {2/y} ,

{1/y} ,M, ∅}
is the support set of P (M).

Definition 2.5 (Soft multiset). [19] Let U be an multiset, E be set of parameters and A ⊆ E. Then
a pair (F, A) is called a soft multiset where F is a mapping given by F : A → P ∗ (U) . For ∀e ∈ A,
multiset F (e) represent by count function CF (e) : U∗ → N.

Example 2.6. [19] Let U = {1/x, 5/y, 3/z, 4/w} and E = {p, q, r} . Define a mapping F : E → P ∗ (U)
as follows:

F (p) = {1/x, 2/y, 3/z} , F (q) = {4/w} and F (r) = {3/y, 1/z, 2/w} .
Then (F, A) is a soft multiset where for ∀e ∈ A, F (e) multiset represent by count function CF (e) :
U∗ → N, which are defined as follows:

CF (p) (x) = 1, CF (p) (y) = 2,
CF (q) (x) = 0, CF (q) (y) = 0,
CF (r) (x) = 0, CF (r) (y) = 3,

CF (p) (z) = 3, CF (p) (w) = 0,
CF (q) (z) = 0, CF (q) (w) = 4,

CF (r) (z) = 1, CF (r) (w) = 2.
Then (F,A) = {F (p) , F (q) , F (r)} = {{1/x, 2/y, 3/z} , {4/w} , {3/y, 1/z, 2/w}}.
Definition 2.7. [19] For two soft multisets (F, A) and (G,B) over U , we say that (F, A) is a soft
submultiset of (G,B) if

i. A ⊆ B

ii. CF (e) (x) ≤ CG(e) (x) , ∀x ∈ U∗, ∀e ∈ A

We write (F, A)⊂̃(G,B).
In addition to (F, A) is a whole soft submultiset of (G,B) if CF (e) (x) = CG(e) (x) , ∀x ∈ U∗, ∀e ∈ A.

Definition 2.8. [19] Let (F, A) and (G,B) be two soft multisets over U .

Equality (F, A) = (G,B) ⇔ (F, A) ⊆̃ (G,B) and (F, A) ⊇̃ (G,B) .

Union (H, C) = (F,A)∪̃(G,B) where C = A ∪ B and CH(e) (x) = max{CF (e) (x) , CG(e) (x)},∀e ∈
A ∪B, ∀x ∈ U∗.
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Intersection (H,C) = (F,A)∩̃(G,B) where C = A∩B and CH(e) (x) = min{CF (e) (x) , CG(e) (x)}, ∀e ∈
A ∩B, ∀x ∈ U∗.

Difference (H, E) = (F, E)\(G,E) where CH(e) (x) = max
{
CF (e) (x)− CG(e) (x) , 0

}
, ∀x ∈ U∗.

Null A soft multiset (F, A) is said to be a NULL soft multiset denoted by Φ if for all e ∈ A, F (e) = ∅.
Complement The complement of a soft multiset (F, A) is denoted by (F, A)c and is defined by

(F, A)c = (F
c

, A) where F
c

: A → P ∗(U) is a mapping given by F c(e) = U\F (e) for all e ∈ A
where CF c(e) (x) = CU (x)− CF (e) (x) , ∀x ∈ U∗.

Definition 2.9. Let (F,E) be a soft set over U . The soft set (F, E) is called a soft multi point,
denoted by xe, if for the element e ∈ E, F (e) = {1/x} = {x} and F (é) = ∅, for all é ∈ E − {e}.

Definition 2.10. Let (F,E) be a soft set over U and e ∈ E. xe ∈ (F, E) if for CF (e)(x) = n, n ≥ 1.

Example 2.11. Let U = {2/x, 1/y, 1/z, 3/w}, E = {e1, e2, e3} and (F,A) = {F (e1), F (e2)} =
{{1/x, 1/z, 2/w} , {1/y, 2/w}}. Then ye2 ∈ (F,A) since CF (e2)(y) = 1. But ye1 ∈ (F, A) since
CF (e1)(y) = 0.

Definition 2.12. [19] Let V be a non-empty submultiset of U , then Ṽ denotes the soft multiset (V,E)
over U for which V (e) = V , for all e ∈ E.

In particular, (U,E) will be denoted by Ũ .

2.2 Soft Multi Function

In this section, we recall soft multi function which was given in [13].

Definition 2.13. [13] Let X be multiset and E be set of parameters. Then the collection of all soft
multisets over X with parameters from E is called a soft multi class and is denoted as XE .

Definition 2.14. [13] Let XE and YK be two soft multi class. Let ϕ : X∗ → Y ∗ and ψ : E → K be
two function. Then the pair (ϕ,ψ) is called a soft multi function and denoted by f = (ϕ,ψ) : XE → YK

is defined as follows:
Let (F, E) be a soft multiset in XE . Then the image of (F,E) under soft multi function f is soft
multiset in YK defined by f (F, E), where for k ∈ ψ(E) ⊆ K and y ∈ Y ∗,

Cf(F,E)(k)(y) =

{
sup

e∈ψ−1(k)∩E,x∈ϕ−1(y)

CF (e) (x) , if ψ−1(k) 6= ∅, ϕ−1(y) 6= ∅;
0, otherwise.

Let (G,K) be a soft multiset in YK . Then the inverse image of (G,K) under soft multi function f is
soft multiset in XE defined by f−1 (G,K), where for e ∈ ψ−1(K) ⊆ E and x ∈ X∗,

Cf−1(G,K)(e)(x) = CG(ψ(e)) (ϕ(x)).

f is said to be injective (onto or surjective) if both ϕ : X∗ → Y ∗ and ψ : E → K are injective
(onto or surjective) mappings. If f is both injective as well as surjective, then f is said to be a soft
multi bijective function.

Example 2.15. [13] Let X = {2/a, 3/b, 4/c, 5/d}, Y = {5/x, 4/y, 3/z, 2/w}, E = {e1, e2, e3, e4},
K = {k1, k2, k3} and XE , YK , classes of soft multisets. Let ϕ : X∗ → Y ∗ and ψ : E → K be two
function defined as

ϕ(a) = z, ϕ(b) = y, ϕ(c) = y, ϕ(d) = x,
ψ(e1) = k1, ψ(e2) = k3, ψ(e3) = k2, ψ(e4) = k1.

Choose two soft multisets in XE and YK , respectively, as
(F,A) = {e1 = {1/a, 2/b, 1/d}, e3 = {3/b, 2/c, 1/d}, e4 = {2/a, 5/d}},
(G,B) = {k1 = {4/x, 2/w}, k2 = {1/x, 1/y, 2/z, 2/w}}

Then soft multiset image of (F, A) under f : XE → YK is obtained as
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Cf(F,A)(k1)(x) =

{
sup

e∈ψ−1(k1)∩A,a∈ϕ−1(x)

CF (e) (a) , if ψ−1(k1) 6= ∅, ϕ−1(x) 6= ∅;
0, otherwise.

=

{
sup

e∈{e1,e4},a∈{d}
CF (e) (a) , if ψ−1(k1) 6= ∅, ϕ−1(x) 6= ∅;

0, otherwise.
= sup

{
CF (e1) (d) , CF (e4) (d)

}
= 5,

Cf(F,A)(k1)(y) = sup
{
CF (e1) (b) , CF (e4) (b) , CF (e1) (c) , CF (e4) (c)

}
= 2,

Cf(F,A)(k1)(z) = sup
{
CF (e1) (a) , CF (e4) (a)

}
= 2,

Cf(F,A)(k1)(w) = 0 (since ϕ−1(w) = ∅ ),

Cf(F,A)(k2)(x) =

{
sup

e∈ψ−1(k2)∩A,a∈ϕ−1(x)

CF (e) (a) , if ψ−1(k2) 6= ∅, ϕ−1(x) 6= ∅;
0, otherwise.

=

{
sup

e∈{e3},a∈{d}
CF (e) (a) , if ψ−1(k2) 6= ∅, ϕ−1(x) 6= ∅;

0, otherwise.
= sup

{
CF (e3) (d)

}
= 1,

Cf(F,A)(k2)(y) = sup
{
CF (e3) (b) , CF (e3) (c)

}
= 3,

Cf(F,A)(k2)(z) = sup
{
CF (e3) (a)

}
= 0,

Cf(F,A)(k2)(w) = 0 (since ϕ−1(w) = ∅ ).

Consequently, we have
(f(F,A), B) = {k1 = {5/x, 2/y, 2/z}, k2 = {1/x, 3/y}}.

Soft multiset inverse image of (G,B) under f : XE → YK is obtained as
Cf−1(G,B)(e3)(a) = CG(ψ(e3)) (ϕ(a)) = CG(k2) (z) = 2,
Cf−1(G,B)(e3)(b) = CG(ψ(e3)) (ϕ(b)) = CG(k2) (y) = 1,
Cf−1(G,B)(e3)(c) = CG(ψ(e3)) (ϕ(c)) = CG(k2) (y) = 1,
Cf−1(G,B)(e3)(d) = CG(ψ(e3)) (ϕ(d)) = CG(k2) (x) = 1,
Cf−1(G,B)(e4)(a) = CG(ψ(e4)) (ϕ(a)) = CG(k1) (z) = 0,
Cf−1(G,B)(e4)(b) = CG(ψ(e4)) (ϕ(b)) = CG(k1) (y) = 0,
Cf−1(G,B)(e4)(c) = CG(ψ(e4)) (ϕ(c)) = CG(k1) (y) = 0,
Cf−1(G,B)(e4)(d) = CG(ψ(e4)) (ϕ(d)) = CG(k1) (x) = 4.

Consequently, we have
(f−1(G,B), D) = {e3 = {2/a, 1/b, 1/c, 1/d}, e4 = {4/d}}.

Theorem 2.16. [13] Let f : XE → YK be a soft multi function, (F, A), (Fi, A) soft multisets in XE

and (G,B), (Gi, B) soft multisets in YK .

(1) f(Φ) = Φ, f(X̃)⊆̃Ỹ ,

(2) f−1(Φ) = Φ, f−1(Ỹ ) = X̃,

(3) f((F1, A1)∪̃(F2, A2)) = f(F1, A1)∪̃f(F2, A2).
In general, f(∪̃i∈I(Fi, Ai)) = ∪̃i∈I f(Fi, Ai),

(4) f−1((G1, B)∪̃(G2, B)) = f−1(G1, B)∪̃f−1(G2, B).
In general, f−1(∪̃i∈I(Gi, B)) = ∪̃i∈I f−1(Gi, B),

(5) f((F1, A)∩̃(F2, A))⊆̃f(F1, A)∩̃f(F2, A).
In general, f(∩̃i∈I(Fi, A))⊆̃∩̃i∈I f(Fi, A),

(6) f−1((G1, B)∩̃(G2, B)) = f−1(G1, B)∩̃f−1(G2, B).
In general, f−1(∩̃i∈I(Gi, B)) = ∩̃i∈I f−1(Gi, B),

(7) If (F1, A)⊆̃(F2, A), then f(F1, A)⊆̃f(F2, A),

(8) If (G1, B)⊆̃(G2, B), then f−1(G1, B)⊆̃f−1(G2, B).
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2.3 Soft Multi Topology

In this section, we recall soft multi topology which was given in [19].

Definition 2.17. [19] Let τ ⊆ XE , then τ is said to be a soft multi topology on X if the following
conditions hold.

i. Φ,X̃ belong to τ .

ii. The union of any number of soft multisets in τ belongs to τ .

iii. The intersection of any two soft multisets in τ belongs to τ .

τ is called a soft multi topology over X and the binary (XE , τ) is called a soft multi topological
space over X.

The members of τ are said to be soft multi open sets in X.
A soft multiset (F, E) over X is said to be a soft multi closed set in X, if its complement (F, E)c

belongs to τ .

Example 2.18. [19] Let X = {2/x, 3/y, 4/z, 5/w}, E = {p, q} and τ = {Φ, X̃, (F1, E), (F2, E),
(F3, E)} where (F1, E), (F2, E), (F3, E) are soft multisets over X, defined as follows

F1 (p) = {1/x, 2/y, 3/z} ,
F2 (p) = X,
F3 (p) = {2/x, 3/y, 3/z, 1/w} ,

F1 (q) = {4/w}
F2 (q) = {1/x, 3/y, 4/z, 5/w}
F3 (q) = {1/x, 4/w} .

Then τ defines a soft multi topology on X and hence (XE , τ) is a soft multi topological space over
X.

Remark 2.19. In the example above, without allowing the repetitions for the elements of X, we
obtain soft topology on X. Thus the concept of soft multi topology is more general than that of soft
topology.

Definition 2.20. [19] Let X be multiset, E be the set of parameters.

• let τ1 be the collection of all soft multisets which can be defined over X. Then τ1 is called the
soft multi discrete topology on X and (XE , τ1) is said to be a soft multi discrete space over X.

• τ0 = {Φ, X̃} is called the soft multi indiscrete topology on X and (XE , τ0) is said to be a soft
indiscrete space over X.

3 Soft Multi Continuous Functions

In this section, we define soft multi continuous functions and examine their properties.

Definition 3.1. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. For each soft multi open neighbourhood (G,B) of f(x)k, if there exists a soft
multi open neighbourhood (F, A) of xe such that f((F, A))⊂̃(G,B) then f is said to be soft multi
continuous function on xe. If f is soft multi continuous function for all xe, then f is called soft multi
continuous function.

Theorem 3.2. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. Then f is soft multi continuous function if and only if f−1((G,B)) is a soft
multi open set in XE , for each soft multi open set (G,B) in YK .

Proof. ⇒: Let (G, B) be a soft multi open set in YK and xe ∈ f−1((G,B)) be an arbitrary soft multi
point. Then f(x)k = f(xe) ∈ f(f−1((G,B)))⊆̃(G,B). Since f is soft multi continuous function, there
exists soft multi open set xe ∈ (F,A) such that f((F, A))⊂̃(G,B). This implies that xe ∈ (F, A)⊆̃
f−1(f((F,A)))⊆̃(f−1((G,B)) is a soft multi open set in XE .

⇐:Let xe be a soft multi point and f(x)k ∈ (G,B) be an arbitrary soft multi open neighbourhood.
Then (F,A) = f−1((G, B)) is a soft multi open set in XE , xe ∈ (F, A) and f((F, A))⊂̃(G, B).
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Theorem 3.3. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. Then f is soft multi continuous function if and only if f−1((G,B)) is a soft
multi closed set in XE , for each soft multi closed set (G,B) in YK .

Proof. This proof is similar to Theorem 3.2.

Example 3.4. Let (XE , τ) and (YK , σ) be two soft multi topological spaces. If τ = τ1, then every
function f : (XE , τ) → (YK , σ) is soft multi continuous. Also if σ = τ0, then every function f :
(XE , τ) → (YK , σ) is soft multi continuous.

Example 3.5. Let X = {6/a, 7/b, 8/c}, Y = {8/x, 9/y, 7/z}, E = {e1, e2, e3, e4} and K = {k1, k2, k3}.
Let τ = {Φ, X̃, (F1, A1), (F2, A2)} and σ = {Φ, Ỹ , (G1, B1), (G2, B2)} where soft multisets defined as
follows

(F1, A1) = {F1(e1), F1(e2)} = {{1/a, 2/b, 2/c}, {1/a, 2/b, 2/c}},
(F2, A2) = {F2(e1), F2(e2), F2(e2)} = {{6/a, 7/b, 7/c}, {6/a, 7/b, 7/c}, {6/a, 4/b, 4/c}},
(G1, B1) = {G1(k1), G1(k2)} = {{3/x, 2/y, 3/z}, {5/x, 9/y, 6/z}},
(G2, B2) = {G2(k1), G2(k2), G2(k3)} = {{3/x, 7/y, 6/z}, {8/x, 9/y, 7/z}, {2/x, 4/y, 6/z}}.

Then (XE , τ) and (YK , σ) are soft multi topological spaces over X and Y , respectively. Let
ϕ : X∗ → Y ∗ and ψ : E → K be two function defined as

ϕ(a) = z, ϕ(b) = y, ϕ(c) = y,
ψ(e1) = k1, ψ(e2) = k1, ψ(e3) = k3, ψ(e4) = k2.

Since f−1(Φ) = Φ, f−1(Ỹ ) = X̃, f−1((G1, B1)) = (F1, A1) and f−1((G2, B2)) = (F2, A2), then
function f : (XE , τ) → (YK , σ) is soft multi continuous.

Theorem 3.6. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. Then the following statements are equivalent:

i. f is soft multi continuous function,

ii. For each soft multi set (F,A) in XE , f((F, A))⊆̃f((F,A)),

iii. For each soft multi set (G,B) in YK , f−1((G,B)) ⊆̃f−1((G,B)).

iv. For each soft multi set (G,B) in YK , f−1((G,B)◦)⊆̃f−1((G,B))◦

Proof. i. ⇒ ii. Let f be soft multi continuous function and (F,A) be soft multi set in XE . Since
f((F, A))⊆̃f((F,A)), then (F, A)⊆̃f−1(f((F, A)))⊆̃f−1(f((F, A)). Using this statement and
continuity of f , we have soft multi closed set f−1(f((F, A)) in YK and f−1(f((F, A)) =
f−1(f((F, A)). Then (F, A)⊆̃f−1(f((F, A)) and so f((F, A))⊆̃f((F, A)).

ii. ⇒ iii. Let (G,B) be a soft multi set in YK and f−1((G,B)) = (F,A) . By part ii., we have
f((F, A)) = f( f−1((G, B)))⊆̃ f(f−1((G,B))) ⊆̃ (G, B). Then f−1((G,B)) = (F,A)⊆̃f−1((F, A))⊆̃
f−1((G,B)).

iii. ⇒ iv. Let (G,B) be a soft multi set in YK . Using part iii., we have f−1((G,B)c) ⊆̃f−1((G,B)c).
Since (G,B)◦ = ((G,B)c)c, then f−1((G,B)◦) = f−1(((G,B)c)c) = (f−1((G, B)c))c⊆̃(f−1((G,B)c))c =
f−1((G,B))◦.

iv. ⇒ i. Let (G,B) be a soft multi open set in YK . Since f−1((G,B)) = f−1((G,B)◦)⊆̃f−1((G,B))◦,
we have f−1((G,B))◦ = f−1((G,B)). Then f−1((G, B)) is soft multi open set in XE and so f
is soft multi continuous function.

Definition 3.7. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function.

– [13] Soft multi function f is called soft multi open if f((F,A)) is a soft multi open set in YK , for
each soft multi open set (F, A) in XE .
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– Soft multi function f is called soft multi closed if f((F, A)) is a soft multi closed set in YK , for each
soft multi closed set (F,A) in XE .

Theorem 3.8. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function.

i. f is a soft multi open function if and only if for each soft multi set (F, A) in XE , f((F,A)◦)⊆̃(f((F,A)))◦

is satisfied.

ii. f is a soft multi closed function if and only if for each soft multi set (F,A) in XE , f((F, A))⊆̃f((F,A))
is satisfied.

Proof. i. Let f be a soft multi open function and (F,A) be a soft multiset in XE . Since (F,A)◦⊆̃(F,A)
and f is soft multi open function, then f((F, A)◦)⊆̃f((F,A)) and f((F,A)◦) is a soft multi open
set in YK . Thus f((F, A)◦)⊆̃(f((F, A)))◦.
Let (F, A) be any soft open multiset in XE . Using (F, A) = (F, A)◦, we have f((F, A)) =
f((F, A)◦)⊆̃(f((F,A)))◦. Then f((F, A)) = (f((F,A)))◦ and so f is a soft multi open function.

ii. Let f be a soft multi closed function and (F, A) be a soft multiset in XE . Since (F,A)⊆̃(F,A) and
f is soft multi closed function, then f((F,A))⊆̃f((F, A)) and f((F, A)) is a soft multi closed set
in YK . Thus f((F,A))⊆̃f((F, A)).
Let (F,A) be any soft closed multiset in XE . Using (F, A) = (F, A), we have f((F, A))⊆̃f((F, A)) =
f((F, A)). Then f((F, A)) = f((F, A)) and so f is a soft multi closed function.

Theorem 3.9. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi bijection function. f is a soft multi open function if and only if f is a soft multi closed
function.

Proof. For any soft multiset (F, A) in XE , f((F,A)c) = (f((F,A)))c.
Let (F, A) be any soft closed multiset in XE . Then (F, A)c is soft open multiset in XE . Since f

is a soft multi open function and f((F,A)c) = (f((F,A)))c, then (f((F,A)))c is soft open multiset in
YK . Thus f((F, A)) is soft closed multiset in YK and so f is a soft multi closed function.

Let (F, A) be any soft open multiset in XE . Then (F,A)c is soft closed multiset in XE . Since f
is a soft multi closed function and f((F,A)c) = (f((F,A)))c, then (f((F, A)))c is soft closed multiset
in YK . Thus f((F, A)) is soft open multiset in YK and so f is a soft multi open function.

Theorem 3.10. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi injective function. f is a soft multi continuous and a soft multi open function if and
only if for each soft multi set (F, A) in XE , (f((F, A)))◦ = f((F,A)◦) is satisfied.

Proof. It can be proved easily using Theorem 3.6 and Theorem 3.8.

Theorem 3.11. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. f is a soft multi continuous and a soft multi closed function if and only if for
each soft multi set (F,A) in XE , f((F, A)) = f((F, A)) is satisfied.

Proof. It can be proved easily using Theorem 3.6 and Theorem 3.8.

Theorem 3.12. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi bijection function. f is a soft multi continuous if and only if f is a soft multi open
(closed) function.

Proof. Let (G,B) be a soft multi open (closed) set in YK . Since f is soft multi continuous, then
f−1((G, B)) is soft multi open (closed) set in XE . Thus it clear that f−1 is soft multi open (closed)
function.

Let (G,B) be a soft multi open (closed) set in YK . Since f−1 is soft multi open (closed) function,
then f−1((G,B)) is soft multi open (closed) set in XE . Thus it clear that f−1 is soft multi continuous
function.
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Definition 3.13. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. If f is a soft multi bijection, soft multi continuous and f−1 is a soft multi
continuous function, then f is said to be soft multi homeomorphism from X to Y . When a homeo-
morphism f exists between X and Y , we say that X is soft multi homeomorphic to Y .

Theorem 3.14. Let (XE , τ) and (YK , σ) be two soft multi topological spaces, f : (XE , τ) → (YK , σ)
be a soft multi function. Then the following statements are equivalent:

i. f is a soft multi homeomorphism,

ii. f is a soft multi continuous and soft multi open function,

iii. f is a soft multi continuous and soft multi closed function,

iv. For each soft multi set (F, A) in XE , f((F, A)) = f((F, A)).

Proof. i.⇔ ii. İt is clear from Theorem 3.12.

ii.⇔ iii. İt is clear from Theorem 3.9.

iii.⇔ iv. İt is clear from Theorem 3.11.

4 Conclusion

In this work, we introduced soft multi continuous function , soft multi open function, soft multi closed
function and soft multi homeomorphism. Also we gave some basic properties of these concepts.
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Abstract − In this paper, we define the upper and lower inverse of a fuzzy soft multifunction and
prove some basic identities. Then by using these ideas we introduced the concept of fuzzy soft con-
tinuity and obtain many interesting properties of upper and lower fuzzy soft continuous multifunctions.
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1 Introduction

Engineering, physics, computer sciences, economics, social sciences, medical sciences and many other
diverse fields deal with the uncertain data that may not be successfully modeled by the classical math-
ematics. There are some mathematical tools for dealing with uncertainties; two of them are fuzzy set
theory, developed by Zadeh [24], and soft set theory, introduced by Molodtsov [19], that are related
to this work. At present, works on the soft set theory and its applications are progressing rapidly.
Maji et al [14] defined operations of soft sets to make a detailed theoretical study on the soft sets.
By using these definitions, soft set theory has been applied in several directions, such as topology
[5, 17, 22, 23, 25], various algebraic structures [2, 3, 7, 11], operations research [4, 9, 10] especially
decision-making [6, 8, 13, 15, 20]. In recent times, researchers have contributed a lot towards fuzzifi-
cation of soft set theory. Maji et al. [16] introduced the concept of fuzzy soft set and some properties
regarding fuzzy soft union, intersection, complement of a fuzzy soft set, De Morgan Law etc. These
results were further revised and improved by Ahmad and Kharal [1]. Tanay and Kandemir [23] intro-
duced the definition of fuzzy soft topology over a subset of the initial universe set. Later, Roy and
Samanta [21] gave the definition of fuzzy soft topology over the initial universe set. There are various
types of functions which play an important role in the classical theory of set topology. A great deal
of works on such functions has been extended to the setting of multifunctions. A multifunction is a
set-valued function. The theory of multifunctions was first codified by Berge [26]. In the last three
decades, the theory of multifunctions has advanced in a variety of ways and applications of this theory,
can be found for example, in economic theory, noncooparative games, artificial intelligence, medicine,
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information sciences and decision theory. Papageorgiou [27], Allbrycht and Maltoka [28] , Beg [29],
Heilpein [30] and Butnairu [31] have started the study of fuzzy multifunctions and obtained several
fixed point theorems for fuzzy mappings.

In this paper our purpose is two fold. First, we define upper and lower inverse of a fuzzy soft
multifunction and study their various properties. Next, we use these ideas to introduce upper fuzzy
soft continuous multifunctions and lower soft continuous multifunctions. Moreover, we obtain some
characterizations and several properties concerning such multifunctions.

2 Preliminary

Throughout this paper X denotes initial universe, E denotes the set of all possible parameters which
are attributes, characteristic or properties of the objects in X, and the set of all subsets of X will be
denoted by P (X).

Definition 2.1. [24] A fuzzy set A of a non-empty set X is characterized by a membership function
µA : X → [0, 1] whose value µA(x) represents the ”grade of membership” of x in A for x ∈ X.

Let IX denotes the family of all fuzzy sets on X. If A,B ∈ IX , then some basic set operations for
fuzzy sets are given by Zadeh as follows:

(1) A ≤ B ⇔ µA(x) ≤ µB(x), for all x ∈ X.
(2) A = B ⇔ µA(x) = µB(x), for all x ∈ X.
(3) C = A ∨B ⇔ µC(x) = µA(x) ∨ µB(x), for all x ∈ X.
(4) D = A ∧B ⇔ µD(x) = µA(x) ∧ µB(x), for all x ∈ X.
(5) E = AC ⇔ µE(x) = 1− µA(x), for all x ∈ X.
A fuzzy point in X, whose value is α (0 < α ≤ 1) at the support x ∈ X, is denoted by xα [24]. A

fuzzy point xα ∈ A, where A is a fuzzy set in X iff α ≤ µA(x) [24]. The class of all fuzzy points will
be denoted by S(X).

Definition 2.2. [18] For two fuzzy sets A and B in X, we write AqB to mean that A is quasi-
coincident with B, i.e., there exists at least one point x ∈ X such that µA(x) + µB(x) > 1. If A is not
quasi-coincident with B, then we write AqB.

Definition 2.3. [19] Let X be the initial universe set and E be the set of parameters. A pair (F,A)
is called a soft set over X where F is a mapping given by F : A −→ P (X) and A ⊆ E.

In the other words, the soft set is a parametrized family of subsets of the set X. Every set F (e),
for every e ∈ A, from this family may be considered as the set of e-elements of the soft set (F, A).

Definition 2.4. [16] Let A ⊆ E. A pair (f, A) is called a fuzzy soft set over X if f : A −→ IX is a
function.

We will use FS(X, E) instead of the family of all fuzzy soft sets over X.

Roy and Samanta [21] did some modifications in above definition analogously ideas made for soft
sets.

Definition 2.5. [21] Let A ⊆ E. A fuzzy soft set fA over universe X is mapping from the parameter
set E to IX , i.e., fA : E −→ IX , where fA(e) 6= 0X if e ∈ A ⊂ E and fA(e) = 0X if e /∈ A, where 0X

denotes empty fuzzy set on X.

Definition 2.6. [21] The fuzzy soft set f∅ ∈ FS(X, E) is called null fuzzy soft set, denoted by 0̃E , if
for all e ∈ E, f∅(e) = 0X .

Definition 2.7. [21] Let fE ∈ FS(X,E). The fuzzy soft set fE is called universal fuzzy soft set,
denoted by 1̃E , if for all e ∈ E, fE(e) = 1X where 1X(x) = 1 for all x ∈ X.

Definition 2.8. [21] Let fA, gB ∈ FS(X,E). fA is called a fuzzy soft subset of gB if fA(e) ≤ gB(e)
for every e ∈ E and we write fA v gB .
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Definition 2.9. [21] Let fA, gB ∈ FS(X,E). fA and gB are said to be equal, denoted by fA = gB if
fA v gB and gB v fA.

Definition 2.10. [21] Let fA, gB ∈ FS(X,E). Then the union of fA and gB is also a fuzzy soft set
hC , defined by hC(e) = fA(e) ∨ gB(e) for all e ∈ E, where C = A ∪B. Here we write hC = fA t gB .

Definition 2.11. [21] Let fA, gB ∈ FS(X, E). Then the intersection of fA and gB is also a fuzzy soft
set hC , defined by hC(e) = fA(e)∧gB(e) for all e ∈ E, where C = A∩B. Here we write hC = fAugB .

Definition 2.12. [23] Let fA ∈ FS(X, E). The complement of fA, denoted by f c
A, is a fuzzy soft set

defined by fc
A(e) = 1− fA(e) for every e ∈ E.

Let us call f c
A to be fuzzy soft complement function of fA. Clearly (fc

A)c = fA, (1̃E)c = 0̃E and
(0̃E)c = 1̃E .

Definition 2.13. [12] Let FS(X,E) and FS(Y, K) be the families of all fuzzy soft sets over X and
Y , respectively. Let u : X → Y and p : E → K be two functions. Then fup is called a fuzzy soft
mapping from X to Y and denoted by fup : FS(X, E) → FS(Y,K).

(1) Let fA ∈ FS(X, E), then the image of fA under the fuzzy soft mapping fup is the fuzzy soft
set over Y defined by fup(fA), where

fup(fA)(k)(y) =
{ ∨x∈u−1(y)(∨e∈p−1(k)∩AfA(e))(x) if u−1(y) 6= ∅, p−1(k) ∩A 6= ∅;

0Y otherwise.
(2) Let gB ∈ FS(Y,K), then the preimage of gB under the fuzzy soft mapping fup is the fuzzy

soft set over X defined by f−1
up (gB), where

f−1
up (gB)(e)(x) =

{
gB(p(e))(u(x)) for p(e) ∈ B;

0X otherwise.

If u and p are injective then the fuzzy soft mapping fup is said to be injective. If u and p are
surjective then the fuzzy soft mapping fup is said to be surjective. The fuzzy soft mapping fup is called
constant, if u and p are constant.

Theorem 2.14. [12] Let fA,∈ FS(X, E), {fAi}i∈J ⊂ FS(X, E) and gB ∈ FS(Y, K), {gBi}i∈J ⊂
FS(Y, K), where J is an index set.

(1) If (fA1) v (fA2), then fup(fA1) v fup(fA2).
(2) If (gB1) v (gB2), then f−1

up (gB1) v f−1
up (gB2).

(3) fup(ti∈J (fAi)) = ti∈Jfup(fAi).
(4) fup(ui∈J (fAi)) v ui∈Jfup(fAi).
(5) f−1

up (ti∈J(gBi)) = ti∈Jf−1
up (gBi).

(6) f−1
up (ui∈J(gBi)) = ui∈Jf−1

up (gBi).
(7) f−1

up (1̃K) = 1̃E and f−1
up (0̃K) = 0̃E .

(8) fup(0̃E) = 0̃K and fup(1̃E) v 1̃K .

Theorem 2.15. [32] Let fA,∈ FS(X, E), {fAi}i∈J ⊂ FS(X, E) and gB ∈ FS(Y, K), {gBi}i∈J ⊂
FS(Y, K), where J is an index set.

(1) fup(ui∈J (fAi)) = ui∈Jfup(fAi) if fup is injective.
(2) fup(1̃E) = 1̃K if fup is surjective.
(3) f−1

up (f c
A) = (f−1

up (fA))c.

2.1 Soft quasi-coincidence

Definition 2.16. [32] The fuzzy soft set fA ∈ FS(X,E) is called fuzzy soft point if A = {e} ⊆ E
and fA(e) is a fuzzy point in X, i.e., there exists x ∈ X such that fA(e)(x) = α (0 < α ≤ 1) and
fA(e)(y) = 0 for all y ∈ X − {x}. We denote this fuzzy soft point fA = eα

x = {(e, xα)}.
Definition 2.17. [32] Let eα

x , fA ∈ FS(X, E). We say that eα
x ∈̃fA read as eα

x belongs to the fuzzy
soft set fA if for the element e ∈ A, α ≤ fA(e)(x).

Proposition 2.18. [32] Every non null fuzzy soft set fA can be expresssed as the union of all the
fuzzy soft points which belong to fA.
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Definition 2.19. [32] Let xα ∈ S(X) and fA ∈ FS(X, E). We say that xα ∈ fA read as xα belongs
to the fuzzy soft set fA whenever xα ∈ fA(e), i.e., α ≤ fA(e)(x) for all e ∈ A.

Definition 2.20. [32] Let fA, gB ∈ FS(X, E). fA is said to be soft quasi-coincident with gB , denoted
by fAqgB , if there exist e ∈ E and x ∈ X such that fA(e)(x) + gB(e)(x) > 1.

If fA is not soft quasi-coincident with gB , then we write fAqgB .

Definition 2.21. [32] Let xα ∈ S(X) and fA ∈ FS(X, E). xα is said to be soft quasi-coincident with
fA, denoted by xαqfA, if and only if there exists an e ∈ E such that α + fA(e)(x) > 1.

Proposition 2.22. [32] Let fA, gB ∈ FS(X, E), then the followings are true.
(1) fA v gB ⇔ fAqgc

B .
(2) fAqgB ⇒ fA u gB 6= 0̃E .
(3) xαqfA ⇔ xα ∈ fc

A.
(4) fAqf c

A.
(5) fA v gB ⇒ xαqfA implies xαqgB .
(6) fAqgB ⇔there exists an eα

x ∈̃fA such that eα
xqgB .

(7) eα
xqfA ⇔ eα

x ∈̃f c
A.

(8) fA v gB ⇔ If eα
xqfA, then eα

xqgB for all eα
x ∈ FS(X, E).

Definition 2.23. (see [23] , [21]) A fuzzy soft topological space is a pair (X, τ) where X is a nonempty
set and τ is a family of fuzzy soft sets over X satisfying the following properties:

(1) 0̃E , 1̃E ∈ τ
(2) If fA, gB ∈ τ , then fA u gB ∈ τ
(3) If fAi ∈ τ , ∀i ∈ J , then ti∈JfAi ∈ τ .

Then τ is called a topology of fuzzy soft sets on X. Every member of τ is called fuzzy soft open. gB

is called fuzzy soft closed in (X, τ) if (gB)c ∈ τ .

Theorem 2.24. [32] Let (X, τ) be a fuzzy soft topological space and τ ′ denotes the collection of all
fuzzy soft closed sets. Then

(1) 0̃E , 1̃E ∈ τ ′

(2) If fA, gB ∈ τ ′ , then fA t gB ∈ τ ′

(3) If fAi ∈ τ ′, ∀i ∈ J , then ui∈JfAi ∈ τ ′.

Definition 2.25. [23] Let (X, τ) be a fuzzy soft topological space and fA ∈ FS(X, E). The fuzzy soft
closure of fA denoted by cl (fA) is the intersection of all fuzzy soft closed supersets of fA.

Clearly, cl (fA)is the smallest fuzzy soft closed set over X which contains fA.

Definition 2.26. [23] Let (X, τ) be a fuzzy soft topological space and fA ∈ FS(X, E). The fuzzy soft
interior of fA denoted by f◦A is the union of all fuzzy soft open subsets of fA.

Clearly, f◦A is the largest fuzzy soft open set over X which contained in fA.

Theorem 2.27. [32] Let (X, τ) be a fuzzy soft topological space and fA, gB ∈ FS(X, E). Then,
(1) (fA)c v (f c

A)◦.
(2) (f◦A)c v (f c

A).

Definition 2.28. [32] A fuzzy soft set fA in FS(X, E) is called Q-neighborhood (briefly, Q-nbd) of
gB if and only if there exists a fuzzy soft open set hC in τ such that gBqhC v fA.

Theorem 2.29. [32] Let eα
x , fA ∈ FS(X, E). Then eα

x ∈̃fA if and only if each Q-nbd of eα
x is soft

quasi-coincident with fA.

Definition 2.30. [23] Let (X, τ) be a fuzzy soft topological space and β be a subfamily of τ . If every
element of τ can be written as the arbitrary fuzzy soft union of some elements of β, then β is called a
fuzzy soft basis for the fuzzy soft topology τ .
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Proposition 2.31. [32] Let (X, τ) be a fuzzy soft topological space and β is subfamily of τ . β is a
base for τ if and only if for each eα

x in FS(X, E) and for each fuzzy soft open Q-nbd fA of eα
x , there

exists a gB ∈ β such that eα
xqgB v fA.

Definition 2.32. [23] A fuzzy soft set gB in a fuzzy soft topological space (X, τ) is called a fuzzy soft
neighborhood (briefly: nbd) of the fuzzy soft set fA if there exists a fuzzy soft open set hC such that
fA v hC v gB .

Theorem 2.33. [32] gB is fuzzy soft open if and only if for each fuzzy soft set fA contained in gB ,
gB is a fuzzy soft neighborhood of fA.

Definition 2.34. [32] Let (X, τ1) and (Y, τ2) be two fuzzy soft topological spaces. A fuzzy soft
mapping fup : (X, τ1) → (Y, τ2) is called fuzzy soft continuous if f−1

up (gB) ∈ τ1 for all gB ∈ τ2.

Theorem 2.35. [32] Let (X, τ1) and (Y, τ2) be fuzzy soft topological spaces. For a function fup :
FS(X, E) −→ FS(Y,K), the following statements are equivalent:

(a) fup is fuzzy soft continuous;
(b) for each fuzzy soft set fA in FS(X, E), the inverse image of every nbd of fup(fA) is a nbd of

fA;
(c) for each soft set fA in FS(X,E) and each nbd hC of fup(fA), there is a nbd gB of fA such

that fup(gB) v hC .

Theorem 2.36. [32] A mapping fup : (X, E) → (Y, K) is fuzzy soft continuous if and only if corre-
sponding fuzzy soft open Q-nbd gB of kα

y in FS(Y, K) there exists a fuzzy soft open Q-nbd fA of eα
x

in FS(X, E) such that fup(fA) v gB , where fup(eα
x ) = kα

y .

Theorem 2.37. [32] Let (X, τ1) and (Y, τ2) be two fuzzy soft topological spaces and fup : FS(X,E) →
FS(Y, K) be a fuzzy soft mapping. Then the followings are equivalent:

(1) fup is continuous;
(2) f−1

up (hC) v ( f−1
up (hC))◦, ∀hC ∈ τ2;

(3) fup(cl (fA)) v cl (fup(fA)), ∀fA ∈ FS(X, E);
(4) cl

(
f−1

up (gB)
) v f−1

up (cl (gB)), ∀gB ∈ FS(Y, K);
(5) f−1

up (g◦B) v (f−1
up (gB))◦, ∀gB ∈ FS(Y, K).

3 Continuity of Fuzzy Soft Multifunctions

Let Y be an initial universe set and E be the non-empty set of parameters.

Definition 3.1. A soft multifunction F from an ordinary topological space (X, τ) into a fuzzy soft
topological space (Y, σ,E) assings to each x in X a soft set F (x) over Y . A fuzzy soft multifunction
will be denoted by F : (X, τ) → (Y, σ,E). F is said to be onto if for each fuzzy soft set gB over Y,
there exists a point x ∈ X such that F (x) = gB .

Definition 3.2. For a fuzzy soft multifunction F : (X, τ) → (Y, σ,E), the upper inverse F+(gB) and
the lower inverse F−(gB) of a fuzzy soft set gB over Y are defined as follows: F+(gB) = {x ∈ X :

F (x)⊆̃gB} and F−(gB) = {x ∈ X : F (x)ũgB 6=
∼
Φ}. Moreover, for a subset M of X, F (M) = t̃{F (x) :

x ∈ X}.

Definition 3.3. [27] Let (X, τ) be an ordinary topological space and (Y, ϑ) be a fuzzy topological
space. F : (X, τ) → (Y, ϑ) is called a fuzzy multifunction iff for every x ∈ X, F (x) is a fuzzy set in Y.

Remark 3.4. Since every fuzzy set is a soft set, then every fuzzy multifunction is a soft multifunction.

Proposition 3.5. Let M be a subset of X. Then the follows are true for a fuzzy soft multifunction
F : (X, τ) → (Y, σ,E);
(a) M ⊂ F+(F (M)). If F is onto M = F+(F (M)).
(b) M ⊂ F−(F (M)). If F is onto M = F−(F (M)).
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Proof. (a) Let x ∈ M. Then F (x)⊆̃F (M) = t̃ {F (x) : x ∈ M} and so x ∈ F+(F (M)). Hence, M ⊂
F+(F (M)).
(b) The proof is similar to (a) .

Proposition 3.6. Let gB be a fuzzy soft set over Y. Then the followings are true for a fuzzy soft
multifunction F : (X, τ) → (Y, σ,E) :
(a) F+((gB)c) = X − F−(gB)
(b) F−((gB)c) = X − F+(gB).

Proof. (a) If x ∈ X − F−(gB) then x /∈ F−(gB) which implies F (x)ũ(gB) =
∼
Φ and therefore

F (x)⊆̃(gB)c. Thus x ∈ F+((gB)c) and X − F−(gB)⊆̃F+((gB)c).

Conversely, if x ∈ F+((gB)c) then F (x)⊆̃(gB)c which implies F (x)ũ(gB) =
∼
Φ and therefore x /∈

F−(gB). Thus x ∈ X − F−(gB) and F+((gB)c)⊆̃X − F−(gB).

(b) If x ∈ X − F+(gB) then x /∈ F+(gB) which implies F (x)*̃(gB) and therefore F (x)ũ((gB)c) 6=
∼
Φ.

Thus x ∈ F−((gB)c) and X − F+(gB)⊆̃F−((gB)c).

Conversely, if x ∈ F−((gB)c) then F (x)ũ((gB)c) 6=
∼
Φ which implies F (x)

∼
* (gB) and therefore

x /∈ F+(gB). Thus x ∈ X − F+(gB) and F−((gB)c)⊆̃X − F+(gB).

Proposition 3.7. Let (gBi) be fuzzy soft sets over Y for each i ∈ I. Then the follows are true for a
fuzzy soft multifunction F : (X, τ) → (Y, σ,E) ;
(a) F−( t̃

i∈I
gBi) = t

i∈I
(F−(gBi)).

(b) F+( ũ
i∈I

gBi) = u
i∈I

(F−(gBi)).

Proof. (a) For every x ∈ F−( t̃
i∈I

gBi), F (x)ũ( t
i∈I

gBi) 6=
∼
Φ. There exists i ∈ I such that F (x)ũ(gBi) 6=

∼
Φ.

For the same i ∈ I, x ∈ F−(gBi). Therefore x ∈ t
i∈I

(F−(gBi). Thus F−( t̃
i∈I

gBi) v t
i∈I

(F−(gBi).

Conversely, for every x ∈ t
i∈I

(F−(gBi), there exists i ∈ I such that x ∈ F−(gBi). For the same i ∈ I,

F (x)ũ(gBi) 6= Φ. Therefore, F (x)ũ( t̃
i∈I

gBi) 6= φ and x ∈ F−( t̃
i∈I

gBi). Thus t
i∈I

(F−(gBi) v F−( t̃
i∈I

gBi).

(b)The proof is similar of (a).

Definition 3.8. Let (X, τ) be an ordinary topological space and (Y, σ,E) be a fuzzy soft topological
space. Then a fuzzy soft multifunction F : (X, τ) → (Y, σ,E) is said to be;

(a) upper fuzzy soft continuous ( briefly: u.fuzzy soft c.) at a point x ∈ X if for each fuzzy soft
open gB such that F (x) ⊆̃(gB), there exists an open neighborhood P (x) of x such that F (z) ⊆̃gB for
all z ∈ P (x) .

(b) lower fuzzy soft continuous ( briefly: l. fuzzy soft c.) at a point x ∈ X if for each fuzzy soft open

gB such that F (x) ũgB 6=
∼
Φ, there exists an open neighborhood P (x) of x such that F (z) ũgB 6=

∼
Φ

for all z ∈ P (x) .
(c) upper(lower) fuzzy soft continuous if F has this property at every point of X.

Proposition 3.9. A fuzzy soft multifunction F : (X, τ) → (Y, σ,E) is upper fuzzy soft continuous if
and only if for all fuzzy soft open set gB over Y , F+(gB) is open in X.

Proof. First suppose that F is upper fuzzy soft continuous. Let gB is be fuzzy soft open set over Y
and x ∈ F+(gB). Then from Definition 29, we know that there exists an open neighborhood P (x) of x
such that for all z ∈ P (x), F (z)⊆̃F+(gB) which means that F+(gB) is open as claimed. The direction
is just the definition of upper fuzzy soft continuity of F.

Proposition 3.10. F : (X, τ) → (Y, σ,E) is lower fuzzy soft continuous multifunction if and only if
for every fuzzy soft open set gB over Y , F−(gB) is open set in X.

Proof. First assume that F is lower fuzzy soft continuous. Let gB fuzzy soft open over Y and x ∈
F−(gB). Then there is an open neighborhood P (x) of x such that F (z)ũ gB 6=

∼
Φ for all z ∈ P (x).

So P (x) ⊆ F−(gB) which implies that F−(gB) is open in X. Now suppose that F−(gB) is open.
Let x ∈ F−(gB).Then F−(gB) is an open neighborhood of x and for all z ∈ F−(gB) we have F (z)ũ
gB 6=

∼
Φ. So, F is lower fuzzy soft continuous.
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Theorem 3.11. The followings are equivalent for a fuzzy soft multifunction F : (X, τ) → (Y, σ,E);
(a) F is upper fuzzy soft continuous
(b) for each fuzzy soft closed set gB over Y , F−(gB) is closed in X.
(c) for each fuzzy soft set gB over Y , cl(F−(gB) ⊆ F− (cl(gB) .
(d) for each fuzzy soft set gB over Y , F+(Int(gB)) ⊆ Int(F+(gB).

Proof. (a)=⇒(b) Let gB be a closed fuzzy soft over Y. Then proposition1 implies (gB)c is fuzzy soft
open and F+ ((gB)c) = X − F−(gB), then since F−(gB) is open and so F−(gB) is closed.

(b)=⇒(c) Let gB be any fuzzy soft set over Y . Then cl(gB) is fuzzy soft closed set. By (b)
F− (cl(gB)) is closed in X. Hence, cl(F−(gB) ⊆ F− (cl(gB)) and since F−(gB) ⊆ F− (cl(gB)). Thus,
cl(F−(gB)) ⊆ F− (cl(gB)).

(c)=⇒(d) Let gB be any fuzzy soft set over Y . By (c), cl(F−((gB)c) ⊆ F− (cl(gB)c), X −
F−((int(gB)c) ⊆ int(X − F−((int(gB)c)), X −X − F+(int(gB)) ⊆ intF+(gB).

(d)=⇒(a) Let gB be any fuzzy soft set over Y . By (d), F+(int(gB)) = F+(gB) ⊆ int(F+(gB) and
so F+(gB) is open in X. They by proposition (1), F is upper fuzzy soft continuous.

Theorem 3.12. The following are equivalent for a fuzzy soft multifunction F : (X, τ) → (Y, σ,E);
(a) F is lower fuzzy soft continuous.
(b) for each fuzzy soft closed set gB over Y , F+(gB) is closed in X.
(c) for each fuzzy soft set gB over Y , cl(F+(gB) ⊆ F+ (cl(gB)).
(d) for each fuzzy soft set gB over Y , F−(int(gB) ⊆ int(F−(gB).

Proof. It is similar the proof of Theorem 4.

Definition 3.13. For a fuzzy soft multifunction F : (X, τ) → (Y, σ,E), the graph fuzzy soft multi-
function GF : X → X × Y is defined as follows: GF (x) = {x} × F (x), for every x ∈ X.

Lemma 3.14. For a fuzzy soft multifunction F : (X, τ) → (Y, σ,E), the followings are hold:
(a) G+

F (M × hB) = M ∩ F+(hB)
(b) G−F (M × hB) = M ∩ F−(hB)

Proof. (a)Let M be any subset of X and let hB be any fuzzy soft set over Y. Let x ∈ G+
F (M × hB).

Then GF (x)⊆̃(M × hB) that is ({x} × F (x))⊆̃M × hB . Therefore, we have x ∈ M and F (x)⊆̃hB .
Hence x ∈ M ∩ F+(hB).
Conversely, let x ∈ M ∩ F+(hB). Then x ∈ M and x ∈ F+(hB). Thus x ∈ M and F (x)⊆̃hB that is
GF (x)⊆̃(M × hB). Therefore x ∈ G+

F (M × hB).
(b)Let M be any subset of X and let hB be any fuzzy soft set over Y. Let x ∈ G−F (M × hB). Then
∼
Φ 6= GF (x)ũ(M × hB) = ({x} × F (x))ũ(M × hB) = ({x} ∩ M) × (F (x)ũhB). Therefore, we have

x ∈ M and F (x)ũhB 6=
∼
Φ. Hence x ∈ M ∩ F−(hB).

Conversely, let x ∈ M ∩ F−(hB). Then x ∈ M and x ∈ F−(hB). Thus x ∈ M and F (x)ũhB 6=
∼
Φ that

is GF (x)ũ(M × hB) 6=
∼
Φ. Therefore x ∈ G−F (M × hB).

Theorem 3.15. Let F : (X, τ) → (Y, σ,E) be a fuzzy soft multifunction. If the graph fuzzy soft
function of F is lower (upper) fuzzy soft continuous, then F is lower (upper) fuzzy soft continuous.

Proof. For a subset V of X and hB a fuzzy soft set over Y , we take (V×hB)(z, y) =
{

Φ, if z /∈ V
hB(y), if z ∈ V

Let x ∈ X and let hB be fuzzy soft open set such that x ∈ F−(hB). Then we obtain that x ∈
G−F (X × hB) and X × hB is a fuzzy soft set over Y . Since fuzzy soft graph multifuntion GF is lower
fuzzy soft continuons, it follows that there exists an open set P containg x such that P ⊆ G−F (X×hB).
From here, we obtain that P ⊆ F−(hB). Thus, F is lower fuzzy soft continuous.
The proof of the upper fuzzy soft continuity of F is similar to the above.

Theorem 3.16. Let F : (X, τ) → (Y, σ,E) be a fuzzy soft multifunction and M be an open set of X.
Then the restriction F |M is upper fuzzy soft continuous if F is upper fuzzy soft continuous.



Journal of New Theory 1 (2015) 59-68 66

Proof. Let hB be any fuzzy soft open set over Y such that (F |M )(x)⊆̃hB . Since F is upper fuzzy soft
continuous and F (x) = (F|M )(x)⊆̃hB , there exists open set U ⊆ X containing x such that F (z)⊆̃hB for
all z ∈ U. Put U1 = U∩M then we have U1 is open set in M containing x and F (U1) = (F |M )(U1)⊆̃hB .
This shows that F |M is upper fuzzy soft continuous.

Theorem 3.17. Let F : (X, τ) → (Y, σ,E) be a fuzzy soft multifunction and M be an open set of X.
Then F is lower fuzzy soft continuous if and only if the restriction F |M is lower fuzzy soft continuous.

Proof. Let hB be any fuzzy soft open set over Y such that (F |M )(x)ũhB 6=
∼
Φ. Since F (x) = (F |M )(x),

then F (x)ũhB 6=
∼
Φ. Also since F is lower fuzzy soft continuous there exists an open set U ⊆ X

containing x such that F (z)ũhB 6=
∼
Φ for all z ∈ U. Put U1 = U ∩M then we have U1 is open set in M

containing x and F (U1)ũhB 6=
∼
Φ.Therefore (F |M )(U1)ũhB 6=

∼
Φ.This shows that F |M is lower fuzzy

soft continuous.

Remark 3.18. Let F : (X, τ) → (Y, σ,E) be a fuzzy soft multifunction and {Mi : i ∈ I} be an open
cover set of X. The followings are hold :

(a) F is lower fuzzy soft continuous if and only if the restriction F |Mi
is lower fuzzy soft continuous

for every i ∈ I.
(b) F is upper fuzzy soft continuous if and only if the restriction F |Mi is upper fuzzy soft continuous

for every i ∈ I.

Definition 3.19. Let F : (X, τ) → (Y, σ) be a multifunction and let G : (Y, σ) → (Z, ϑ, E) be a
fuzzy soft multifunction. Then the fuzzy soft multifunction G ◦ F : (X, τ) → (Z, ϑ, E) is defined by
(G ◦ F )(x) = G(F (x)).

Proposition 3.20. Let F : (X, τ) → (Y, σ) be a multifunction and let G : (Y, σ) → (Z, ϑ, E) be a
fuzzy soft multifunction. Then we have

(a) (G ◦ F )+(hB) = F+(G+(hB))
(b) (G ◦ F )−(hB) = F−(G−(hB))

Proof. Clear from the Definitions 17 and 20.

Definition 3.21. [1] Let (X, τ) and (Y, σ) be two ordinary topological spaces. Then a multifunction
F : (X, τ) → (Y, σ) is said to be

(a) upper semi continuous if for each open V in Y, F+(V ) is an open set in X.
(b) lower semi continuous if for each soft open V in Y, F−(V ) is an open set in X.

Theorem 3.22. Let F : (X, τ) → (Y, σ) be a multifunction and let G : (Y, σ) → (Z, ϑ, E) be a fuzzy
soft multifunction. If F is upper semi continuous and G is upper fuzzy soft continuous then G ◦ F is
upper fuzzy soft continuous.

Proof. Let hB be any fuzzy soft open subset of Z. Since G is upper fuzzy soft continuous then
G+(hB) is open in Y. Since F is upper semi continuous then F+(G+(hB)) = (G ◦ F )+(hB) is open in
X. Therefore G ◦ F is upper fuzzy soft continuous.

Definition 3.23. A family Ψ of fuzzy soft sets is a cover of a soft set hB if hB ⊂̃∪̃ {hBi : hBi ∈ Ψ, i ∈ I} .
It is fuzzy soft open cover if each of Ψ is a fuzzy soft open set. A subcover of Ψ is a subfamily of Ψ
which is also cover.

Definition 3.24. A fuzzy fuzzy soft topological space (Y, σ,E) is fuzzy soft compact if each fuzzy soft
open cover of Ỹ has a finite subcover.

Theorem 3.25. The image of a fuzzy soft compact set under upper fuzzy soft continuous multifunction
is fuzzy soft compact.

Proof. Let F : (X, τ) → (Y, σ,E) be an onto fuzzy soft multifunction and let Ψ = {hBi : i ∈ I} be a
cover of Ỹ by fuzzy soft open sets. Then since F is upper fuzzy soft continuous, the family of all open
sets of the form F+(hBi), for hBi ∈ Ψ is an open cover of X which has a finite subcover. However since
F is surjective, then it is eaisly seen that F (F+(hBi)) = hBi for any fuzzy soft set hBi over Y . There

the family of image members of subcover is a finite subfamily of Ψ which covers
v
Y . Conseqventhy

(Y, σ,E) is fuzzy soft compact.
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4 Conclusion

In the present work, we have continued to study the properties of fuzzy soft topological spaces. We
introduce soft quasi-coincidence and have established several interesting properties. We hope that
the findings in this paper will help researcher enhance and promote the further study on fuzzy soft
topology to carry out a general framework for their applications in practical life.
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1 Introduction

Several authors ([1, 4, 5, 19]) working in the field of general topology have shown more interest in
studying the concepts of generalizations of continuous functions. A weak form of continuous functions
called g-continuous functions were introduced by Balachandran et al [3]. Recently Sheik John [18] have
introduced and studied another form of generalized continuous functions called ω-continuous functions.

In this paper, we first study (1, 2)?-g#-continuous functions and investigate their relations with var-
ious generalized (1, 2)?-continuous functions. We also discuss some properties of (1, 2)?-g#-continuous
functions. We also introduce (1, 2)?-g#-irresolute functions and study some of its applications. Finally
using (1, 2)?-g#-continuous function we obtain a decomposition of (1, 2)?-continuity.

2 Preliminary

Throughout this paper, X, Y and Z denote bitopological spaces (X, τ1, τ2), (Y, σ1, σ1 ) and (Z, η1,
η2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called τ1,2-open [9] if A = P
∪ Q, for some P ∈ τ1 and Q ∈ τ2. The complement of τ1,2-open set is called τ1,2-closed.

The family of all τ1,2-open (resp. τ1,2-closed) sets of X is denoted by (1, 2)?-O(X) (resp. (1, 2)?-
C(X)).

Definition 2.2. Let A be a subset of a bitopological space X. Then

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editors-in-Chief).
*Corresponding Author.
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1. the τ1,2-interior of A, denoted by τ1,2-int(A), is defined by ∪ { U : U ⊆ A and U is τ1,2-open};
2. the τ1,2-closure of A, denoted by τ1,2-cl(A), is defined by ∩ { U : A ⊆ U and U is τ1,2-closed}.

Remark 2.3. Notice that τ1,2-open subsets of X need not necessarily form a topology.

Definition 2.4. Let A be a subset of a bitopological space X is called

1. (1, 2)?-semi-open set [9] if A ⊆ τ1,2-cl(τ1,2-int(A)).

2. (1, 2)?-preopen set [9] if A ⊆ τ1,2-int(τ1,2-cl(A)).

3. (1, 2)?-α-open set [9] if A ⊆ τ1,2-int(τ1,2-cl(τ1,2-int(A))).

4. (1, 2)?-β-open set [12] if A ⊆ τ1,2-cl(τ1,2-int(τ1,2-cl(A))).

5. (1, 2)?-regular open set [13] if A = τ1,2-int(τ1,2-cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.

The (1, 2)?-preclosure [11] (resp. (1, 2)?-semi-closure [11], (1, 2)?-α-closure [11], (1, 2)?-β-closure
[16]) of a subset A of X, denoted by (1, 2)?-pcl(A) (resp. (1, 2)?-scl(A), (1, 2)?-αcl(A), (1, 2)?-βcl(A)) is
defined to be the intersection of all (1, 2)?-preclosed (resp. (1, 2)?-semi-closed, (1, 2)?-α-closed, (1, 2)?-
β-closed) sets of X containing A. It is known that (1, 2)?-pcl(A) (resp. (1, 2)?-scl(A), (1, 2)?-αcl(A),
(1, 2)?-βcl(A)) is a (1, 2)?-preclosed (resp. (1, 2)?-semi-closed, (1, 2)?-α-closed, (1, 2)?-β-closed) set.
For any subset A of an arbitrarily chosen bitopological space, the (1, 2)?-semi-interior [11] (resp. (1, 2)?-
α-interior [11], (1, 2)?-preinterior [11]) of A, denoted by (1, 2)?-sint(A) (resp. (1, 2)?-αint(A), (1, 2)?-
pint(A)), is defined to be the union of all (1, 2)?-semi-open (resp. (1, 2)?-α-open, (1, 2)?-preopen) sets
of X contained in A.

Definition 2.5. Let A be a subset of a bitopological space X is called

1. a (1, 2)?-generalized closed (briefly, (1, 2)?-g-closed) set [17] if τ1,2-cl(A) ⊆ U whenever A ⊆ U
and U is τ1,2-open in X.
The complement of (1, 2)?-g-closed set is called (1, 2)?-g-open set.

2. a (1, 2)?-g?-closed set [17] if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-g-open in X.
The complement of (1, 2)?-g?-closed set is called (1, 2)?-g?-open set.

3. a (1, 2)?-semi-generalized closed (briefly, (1, 2)?-sg-closed) set [2] if (1, 2)?-scl(A) ⊆ U whenever
A ⊆ U and U is (1, 2)?-semi-open in X.
The complement of (1, 2)?-sg-closed set is called (1, 2)?-sg-open set.

4. a (1, 2)?-generalized semi-closed (briefly, (1, 2)?-gs-closed) set [2] if (1, 2)?-scl(A) ⊆ U whenever
A ⊆ U and U is τ1,2-open in X.
The complement of (1, 2)?-gs-closed set is called (1, 2)?-gs-open set.

5. an (1, 2)?-α-generalized closed (briefly, (1, 2)?-αg-closed) set [6] if (1, 2)?-αcl(A) ⊆ U whenever
A ⊆ U and U is τ1,2-open in X.
The complement of (1, 2)?-αg-closed set is called (1, 2)?-αg-open set.

6. a (1, 2)?-generalized semi-preclosed (briefly, (1, 2)?-gsp-closed) set [6] if (1, 2)?-βcl(A) ⊆ U
whenever A ⊆ U and U is τ1,2-open in X.
The complement of (1, 2)?-gsp-closed set is called (1, 2)?-gsp-open set.

7. a (1, 2)?-gα-closed set [15] if (1, 2)?-αcl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-α-open in X.
The complement of (1, 2)?-gα-closed set is called (1, 2)?-gα-open set.
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Remark 2.6. The collection of all (1, 2)?-g?-closed (resp. (1, 2)?-g-closed, (1, 2)?-gs-closed, (1, 2)?-
gsp-closed, (1, 2)?-αg-closed, (1, 2)?-sg-closed, (1, 2)?-α-closed, (1, 2)?-semi-closed) sets of X is denoted
by (1, 2)?-G?C(X) (resp. (1, 2)?-GC(X), (1, 2)?-GSC(X), (1, 2)?-GSPC(X), (1, 2)?-αGC(X), (1, 2)?-
SGC(X), (1, 2)?-αC(X), (1, 2)?-SC(X)).

The collection of all (1, 2)?-g?-open (resp. (1, 2)?-g-open, (1, 2)?-gs-open, (1, 2)?-gsp-open, (1, 2)?-
αg-open, (1, 2)?-sg-open, (1, 2)?-α-open, (1, 2)?-semi-open) sets of X is denoted by (1, 2)?-G?O(X)
(resp. (1, 2)?-GO(X), (1, 2)?-GSO(X), (1, 2)?-GSPO(X), (1, 2)?-αGO(X), (1, 2)?-SGO(X), (1, 2)?-
αO(X), (1, 2)?-SO(X)).

We denote the power set of X by P(X).

Definition 2.7. [10] Let A be a subset of a bitopological space X. Then A is called

1. (1, 2)?-g#-closed set if τ1,2-cl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-αg-open in X.
The family of all (1, 2)?-g#-closed sets in X is denoted by (1, 2)?-G#C(X).

2. (1, 2)?-g#
α -closed set if (1, 2)?-αcl(A) ⊆ U whenever A ⊆ U and U is (1, 2)?-αg-open in X.

The family of all (1, 2)?-g#
α -closed sets in X is denoted by (1, 2)?-G#

α C(X).

Definition 2.8. A function f : X → Y is called:

1. (1, 2)?-g?-continuous [7] if f−1(V) is a (1, 2)?-g?-closed set in X for every σ1,2-closed set V of
Y.

2. (1, 2)?-g-continuous [7] if f−1(V) is a (1, 2)?-g-closed set in X for every σ1,2-closed set V of Y.

3. (1, 2)?-αg-continuous [16] if f−1(V) is an (1, 2)?-αg-closed set in X for every σ1,2-closed set V
of Y.

4. (1, 2)?-gs-continuous [16] if f−1(V) is a (1, 2)?-gs-closed set in X for every σ1,2-closed set V of
Y.

5. (1, 2)?-gsp-continuous [16] if f−1(V) is a (1, 2)?-gsp-closed set in X for every σ1,2-closed set V
of Y.

6. (1, 2)?-sg-continuous [14] if f−1(V) is a (1, 2)?-sg-closed set in X for every σ1,2-closed set V of
Y.

7. (1, 2)?-semi-continuous [11] if f−1(V) is a (1, 2)?-semi-open set in X for every σ1,2-open set V
of Y.

8. (1, 2)?-α-continuous [11] if f−1(V) is an (1, 2)?-α-closed set in X for every σ1,2-closed set V of
Y.

Definition 2.9. A function f : X → Y is called:

1. (1, 2)?-αg-irresolute [16] if the inverse image of every (1, 2)?-αg-closed (resp. (1, 2)?-αg-open)
set in Y is (1, 2)?-αg-closed (resp. (1, 2)?-αg-open) in X.

2. (1, 2)?-gc-irresolute [7] if the inverse image of every (1, 2)?-g-closed set in Y is (1, 2)?-g-closed
in X.

3. (1, 2)?-sg-irresolute [16] if the inverse image of every (1, 2)?-sg-closed (resp. (1, 2)?-sg-open)
set in Y is (1, 2)?-sg-closed (resp. (1, 2)?-sg-open) in X.

Definition 2.10. [16] A function f : X → Y is called pre-(1, 2)?-αg-closed if f(U) is (1, 2)?-αg-closed
in Y, for each (1, 2)?-αg-closed set U in X.

Definition 2.11. A bitopological space X is called:

1. (1, 2)?-T1/2-space [14] if every (1, 2)?-g-closed set in it is τ1,2-closed.

2. (1, 2)?-T?1/2-space [12] if every (1, 2)?-?g-closed set in it is τ1,2-closed.

3. (1, 2)?-?T1/2-space [12] if every (1, 2)?-g-closed set in it is (1, 2)?-g?-closed.

4. (1, 2)?-Tb-space [12] if every (1, 2)?-gs-closed set in it is τ1,2-closed.
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5. (1, 2)?-αTb-space [16] if every (1, 2)?-αg-closed set in it is τ1,2-closed.

6. (1, 2)?-Td-space [16] if every (1, 2)?-αg-closed set in it is (1, 2)?-g-closed.

7. (1, 2)?-α-space [11] if every (1, 2)?-α-closed set in it is τ1,2-closed.

8. (1, 2)?-T#g-space [10] if every (1, 2)?-g#-closed set in it is τ1,2-closed.

Theorem 2.12. [10] A set A of X is (1, 2)?-g#-open if and only if F ⊆ τ1,2-int(A) whenever F is
(1, 2)?-αg-closed and F ⊆ A.

Theorem 2.13. [10] For a space X, the following properties are equivalent:

1. X is a (1, 2)?-T#
g -space.

2. Every singleton subset of X is either (1, 2)?-αg-closed or τ1,2-open.

3 (1, 2)?-g#-Continuous Functions

We introduce the following definitions:

Definition 3.1. A function f : X → Y is called:

1. (1, 2)?-g#-continuous if the inverse image of every σ1,2-closed set in Y is (1, 2)?-g#-closed set
in X.

2. (1, 2)?-g#
α -continuous if f−1(V) is an (1, 2)?-g#

α -closed set in X for every σ1,2-closed set V of Y.

3. strongly (1, 2)?-g#-continuous if the inverse image of every (1, 2)?-g#-open set in Y is τ1,2-open
in X.

Example 3.2. Let X = {a, b, c}, τ1 = {φ, {c}, X} and τ2 = {φ, {a, c}, X}. Then the sets in {φ,
{c}, {a, c}, X} are called τ1,2-open and the sets in {φ, {b}, {a, b}, X} are called τ1,2-closed. Let Y =
{a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {c}, Y}. Then the sets in {φ, {c}, Y} are called σ1,2-open and
the sets in {φ, {a, b}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {b}, {a, b}, X}. Let
f : X → Y be the identity function. Then f is (1, 2)?-g#-continuous.

Proposition 3.3. Every (1, 2)?-continuous function is (1, 2)?-g#-continuous but not conversely.

Example 3.4. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a, b}, X}. Then the sets in {φ, {a, b},
X} are called τ1,2-open and the sets in {φ, {c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
{b}, Y} and σ2 = {φ, Y}. Then the sets in {φ, {b}, Y} are called σ1,2-open and the sets in {φ, {a,
c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {c}, {a, c}, {b, c}, X}. Let f : X → Y
be the identity function. Then f is (1, 2)?-g#-continuous but not (1, 2)?-continuous, since f−1({a, c})
= {a, c} is not τ1,2-closed in X.

Proposition 3.5. Every (1, 2)?-g#-continuous function is (1, 2)?-g#
α -continuous but not conversely.

Example 3.6. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {b}, X}. Then the sets in {φ, {b}, X}
are called τ1,2-open and the sets in {φ, {a, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
Y} and σ2 = {φ, {b, c}, Y}. Then the sets in {φ, {b, c}, Y} are called σ1,2-open and the sets in {φ,
{a}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a, c}, X} and (1, 2)?-G#

α C(X) = {φ,
{a}, {c}, {a, c}, X}. Let f : X → Y be the identity function. Then f is (1, 2)?-g#

α -continuous but not
(1, 2)?-g#-continuous, since f−1({a}) = {a} is not (1, 2)?-g#-closed in X.

Proposition 3.7. Every (1, 2)?-g#-continuous function is (1, 2)?-g?-continuous but not conversely.

Example 3.8. Let X = {a, b, c}, τ1 = {φ, {c}, X} and τ2 = {φ, {a, c}, X}. Then the sets in {φ,
{c}, {a, c}, X} are called τ1,2-open and the sets in {φ, {b}, {a, b}, X} are called τ1,2-closed. Let Y
= {a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {a}, Y}. Then the sets in {φ, {a}, Y} are called σ1,2-open
and the sets in {φ, {b, c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {b}, {a, b}, X}
and (1, 2)?-G?C(X) = {φ, {b}, {a, b}, {b, c}, X}. Let f : X → Y be the identity function. Then f is
(1, 2)?-g?-continuous but not (1, 2)?-g#-continuous, since f−1({b, c}) = {b, c} is not (1, 2)?-g#-closed
in X.
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Proposition 3.9. Every (1, 2)?-g#-continuous function is (1, 2)?-g-continuous but not conversely.

Example 3.10. Let X = {a, b, c}, τ1 = {φ, {a}, X} and τ2 = {φ, {b, c}, X}. Then the sets in {φ,
{a}, {b, c}, X} are called τ1,2-open and the sets in {φ, {a}, {b, c}, X} are called τ1,2-closed. Let Y =
{a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {c}, Y}. Then the sets in {φ, {c}, Y} are called σ1,2-open and
the sets in {φ, {a, b}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a}, {b, c}, X} and
(1, 2)?-GC(X) = P(X). Let f : X → Y be the identity function. Then f is (1, 2)?-g-continuous but not
(1, 2)?-g#-continuous, since f−1({a, b}) = {a, b} is not (1, 2)?-g#-closed in X.

Proposition 3.11. Every (1, 2)?-g#-continuous function is (1, 2)?-αg-continuous but not conversely.

Example 3.12. Let X = {a, b, c}, τ1 = {φ, {a}, X} and τ2 = {φ, {b, c}, X}. Then the sets in {φ,
{a}, {b, c}, X} are called τ1,2-open and the sets in {φ, {a}, {b, c}, X} are called τ1,2-closed. Let Y =
{a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {b}, Y}. Then the sets in {φ, {b}, Y} are called σ1,2-open and
the sets in {φ, {a, c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a}, {b, c}, X} and
(1, 2)?-αGC(X) = P(X). Let f : X → Y be the identity function. Then f is (1, 2)?-αg-continuous but
not (1, 2)?-g#-continuous, since f−1({a, c}) = {a, c} is not (1, 2)?-g#-closed in X.

Proposition 3.13. Every (1, 2)?-g#-continuous function is (1, 2)?-gs-continuous but not conversely.

Example 3.14. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a}, X}. Then the sets in {φ, {a}, X}
are called τ1,2-open and the sets in {φ, {b, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, Y}
and σ2 = {φ, {a, b}, Y}. Then the sets in {φ, {a, b}, Y} are called σ1,2-open and the sets in {φ, {c},
Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {b, c}, X} and (1, 2)?-GSC(X) = {φ, {b},
{c}, {a, b}, {a, c}, {b, c}, X}. Let f : X → Y be the identity function. Then f is (1, 2)?-gs-continuous
but not (1, 2)?-g#-continuous, since f−1({c}) = {c} is not (1, 2)?-g#-closed in X.

Proposition 3.15. Every (1, 2)?-g#-continuous function is (1, 2)?-gsp-continuous but not conversely.

Example 3.16. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {b}, X}. Then the sets in {φ, {b}, X}
are called τ1,2-open and the sets in {φ, {a, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, Y}
and σ2 = {φ, {a, b}, Y}. Then the sets in {φ, {a, b}, Y} are called σ1,2-open and the sets in {φ, {c},
Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a, c}, X} and (1, 2)?-GSPC(X) = {φ, {a},
{c}, {a, b}, {a, c}, {b, c}, X}. Let f : X → Y be the identity function. Then f is (1, 2)?-gsp-continuous
but not (1, 2)?-g#-continuous, since f−1({c}) = {c} is not (1, 2)?-g#-closed in X.

Proposition 3.17. Every (1, 2)?-g#-continuous function is (1, 2)?-sg-continuous but not conversely.

Example 3.18. Let X = {a, b, c}, τ1 = {φ, {a}, X} and τ2 = {φ, {b, c}, X}. Then the sets in {φ,
{a}, {b, c}, X} are called τ1,2-open and the sets in {φ, {a}, {b, c}, X} are called τ1,2-closed. Let Y =
{a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {a, b}, Y}. Then the sets in {φ, {a, b}, Y} are called σ1,2-open
and the sets in {φ, {c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a}, {b, c}, X} and
(1, 2)?-SGC(X) = P(X). Let f : X → Y be the identity function. Then f is (1, 2)?-sg-continuous but
not (1, 2)?-g#-continuous, since f−1({c}) = {c} is not (1, 2)?-g#-closed in X.

Remark 3.19. The following examples show that (1, 2)?-g#-continuity is independent of (1, 2)?-α-
continuity and (1, 2)?-semi-continuity.

Example 3.20. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a, b}, X}. Then the sets in {φ, {a, b},
X} are called τ1,2-open and the sets in {φ, {c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
Y} and σ2 = {φ, {a}, Y}. Then the sets in {φ, {a}, Y} are called σ1,2-open and the sets in {φ, {b, c},
Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {c}, {a, c}, {b, c}, X} and (1, 2)?-αC(X) =
(1, 2)?-SC(X) = {φ, {c}, X}. Let f : X → Y be the identity function. Then f is (1, 2)?-g#-continuous
but it is neither (1, 2)?-α-continuous nor (1, 2)?-semi-continuous, since f−1({b, c}) = {b, c} is neither
(1, 2)?-α-closed nor (1, 2)?-semi-closed in X.

Example 3.21. In Example 3.14, we have (1, 2)?-G#C(X) = {φ, {b, c}, X} and (1, 2)?-αC(X) =
(1, 2)?-SC(X) = {φ, {b}, {c}, {b, c}, X}. Let f : X → Y be the identity function. Then f is both
(1, 2)?-α-continuous and (1, 2)?-semi-continuous but it is not (1, 2)?-g#-continuous, since f−1({c}) =
{c} is not (1, 2)?-g#-closed in X.
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Proposition 3.22. A function f : X → Y is (1, 2)?-g#-continuous if and only if f−1(U) is (1, 2)?-g#-
open in X for every σ1,2-open set U in Y.

Proof. Let f : X → Y be (1, 2)?-g#-continuous and U be an σ1,2-open set in Y. Then Uc is σ1,2-closed
in Y and since f is (1, 2)?-g#-continuous, f−1(Uc) is (1, 2)?-g#-closed in X. But f−1(Uc) = (f−1(U))c

and so f−1(U) is (1, 2)?-g#-open in X.
Conversely, assume that f−1(U) is (1, 2)?-g#-open in X for each σ1,2-open set U in Y. Let F be a

σ1,2-closed set in Y. Then Fc is σ1,2-open in Y and by assumption, f−1(Fc) is (1, 2)?-g#-open in X.
Since f−1(Fc) = (f−1(F))c, we have f−1(F) is (1, 2)?-g#-closed in X and so f is (1, 2)?-g#-continuous.

Remark 3.23. The composition of two (1, 2)?-g#-continuous functions need not be a (1, 2)?-g#-
continuous function as is shown in the following example.

Example 3.24. Let X = {a, b, c}, τ1 = {φ, {a}, {a, c}, X} and τ2 = {φ, {a, b}, X}. Then the sets
in {φ, {a}, {a, b}, {a, c}, X} are called τ1,2-open and the sets in {φ, {b}, {c}, {b, c}, X} are called
τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, Y} and σ2 = {φ, {a, b}, Y}. Then the sets in {φ, {a, b},
Y} are called σ1,2-open and the sets in {φ, {c}, Y} are called σ1,2-closed. Let Z = {a, b, c}, η1 = {φ,
Z} and η2 = {φ, {b}, Z}. Then the sets in {φ, {b}, Z} are called η1,2-open and the sets in {φ, {a, c},
Z} are called η1,2-closed. Let f : X → Y and g : Y → Z be the identity functions. Then f and g are
(1, 2)?-g#-continuous but their g o f : X → Z is not (1, 2)?-g#-continuous, since for the set V = {a,
c} is η1,2-closed in Z, (g o f)−1(V) = f−1(g−1(V)) = f−1(g−1({a, c})) = f−1({a, c}) = {a, c} is not
(1, 2)?-g#-closed in X.

Proposition 3.25. Let X and Z be bitopological spaces and Y be a (1, 2)?-T#
g -space. Then the com-

position g o f : X → Z of the (1, 2)?-g#-continuous functions f : X → Y and g : Y → Z is (1, 2)?-g#-
continuous.

Proof. Let F be any η1,2-closed set of Z. Then g−1(F) is (1, 2)?-g#-closed in Y, since g is (1, 2)?-g#-
continuous. Since Y is a (1, 2)?-T#

g -space, g−1(F) is σ1,2-closed in Y. Since f is (1, 2)?-g#-continuous,
f−1(g−1(F)) is (1, 2)?-g#-closed in X. But f−1(g−1(F)) = (g o f)−1(F) and so g o f is (1, 2)?-g#-
continuous.

Proposition 3.26. Let X and Z be bitopological spaces and Y be a (1, 2)?-T1/2-space (resp. (1, 2)?-Tb-
space, (1, 2)?-αTb-space). Then the composition g o f : X → Z of the (1, 2)?-g#-continuous function f
: X → Y and the (1, 2)?-g-continuous (resp. (1, 2)?-gs-continuous, (1, 2)?-αg-continuous) function g :
Y → Z is (1, 2)?-g#-continuous.

Proof. Similar to Proposition 3.25.

Proposition 3.27. If f : X → Y is (1, 2)?-g#-continuous and g : Y → Z is (1, 2)?-continuous, then
their composition g o f : X → Z is (1, 2)?-g#-continuous.

Proof. Let F be any η1,2-closed set in Z. Since g : Y → Z is (1, 2)?-continuous, g−1(F) is σ1,2-closed
in Y. Since f : X → Y is (1, 2)?-g#-continuous, f−1(g−1(F)) = (g o f)−1(F) is (1, 2)?-g#-closed in X
and so g o f is (1, 2)?-g#-continuous.

Proposition 3.28. Let A be (1, 2)?-g#-closed in X. If f : X → Y is (1, 2)?-αg-irresolute and (1, 2)?-
closed, then f(A) is (1, 2)?-g#-closed in Y.

Proof. Let U be any (1, 2)?-αg-open in Y such that f(A) ⊆ U. Then A ⊆ f−1(U) and by hypothesis,
τ1,2-cl(A) ⊆ f−1(U). Thus f(τ1,2-cl(A)) ⊆ U and f(τ1,2-cl(A)) is a σ1,2-closed set. Now, σ1,2-cl(f(A)) ⊆
σ1,2-cl(f(τ1,2-cl(A))) = f(τ1,2-cl(A)) ⊆ U. i.e., σ1,2-cl(f(A)) ⊆ U and so f(A) is (1, 2)?-g#-closed in Y.

Theorem 3.29. Let f : X → Y be a pre-(1, 2)?-αg-closed and (1, 2)?-open bijection. If X is a (1, 2)?-
Tg#-space, then Y is also a (1, 2)?-Tg#-space.

Proof. Let y ∈ Y. Since f is bijective, y = f(x) for some x ∈ X. Since X is a (1, 2)?-Tg# -space, {x}
is (1, 2)?-αg-closed or τ1,2-open by Theorem 2.13. If {x} is (1, 2)?-αg-closed then {y} = f({x}) is
(1, 2)?-αg-closed, since f is pre-(1, 2)?-αg-closed. Also {y} is σ1,2-open if {x} is τ1,2-open since f is
(1, 2)?-open. Therefore by Theorem 2.13, Y is a (1, 2)?-Tg# -space.
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Theorem 3.30. If f : X → Y is (1, 2)?-g#-continuous and pre-(1, 2)?-αg-closed and if A is an (1, 2)?-
g#-open (or (1, 2)?-g#-closed) subset of Y, then f−1(A) is (1, 2)?-g#-open (or (1, 2)?-g#-closed) in
X.

Proof. Let A be an (1, 2)?-g#-open set in Y and F be any (1, 2)?-αg-closed set in X such that F ⊆
f−1(A). Then f(F)⊆ A. By hypothesis, f(F) is (1, 2)?-αg-closed and A is (1, 2)?-g#-open in Y. Therefore,
f(F) ⊆ σ1,2-int(A) by Theorem 2.12, and so F ⊆ f−1(σ1,2-int(A)). Since f is (1, 2)?-g#-continuous and
σ1,2-int(A) is σ1,2-open in Y, f−1(σ1,2-int(A)) is (1, 2)?-g#-open in X. Thus F ⊆ τ1,2-int(f−1(σ1,2-
int(A))) ⊆ τ1,2-int(f−1(A)). i.e., F ⊆ τ1,2-int(f−1(A)) and by Theorem 2.12, f−1(A) is (1, 2)?-g#-open
in X. By taking complements, we can show that if A is (1, 2)?-g#-closed in Y, f−1(A) is (1, 2)?-g#-closed
in X.

Corollary 3.31. If f : X → Y is (1, 2)?-continuous and pre-(1, 2)?-αg-closed and if B is a (1, 2)?-
g#-closed (or (1, 2)?-g#-open) subset of Y, then f−1(B) is (1, 2)?-g#-closed (or (1, 2)?-g#-open) in
X.

Proof. Follows from Proposition 3.3, and Theorem 3.30.

Corollary 3.32. Let X, Y and Z be any three bitopological spaces. If f : X → Y is (1, 2)?-g#-
continuous and pre-(1, 2)?-αg-closed and g : Y → Z is (1, 2)?-g#-continuous, then their composition
g o f : X → Z is (1, 2)?-g#-continuous.

Proof. Let F be any η1,2-closed set in Z. Since g : Y → Z is (1, 2)?-g#-continuous, g−1(F) is (1, 2)?-
g#-closed in Y. Since f : X → Y is (1, 2)?-g#-continuous and pre-(1, 2)?-αg-closed, by Theorem 3.30,
f−1(g−1(F)) = (g o f) −1(F) is (1, 2)?-g#-closed in X and so g o f is (1, 2)?-g#-continuous.

4 (1, 2)?-g#-Irresolute Functions

We introduce the following definition.

Definition 4.1. A function f : X → Y is called an (1, 2)?-g#-irresolute if the inverse image of every
(1, 2)?-g#-closed set in Y is (1, 2)?-g#-closed in X.

Remark 4.2. The following examples show that the notions of (1, 2)?-sg-irresolute functions and
(1, 2)?-g#-irresolute functions are independent.

Example 4.3. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a, b}, X}. Then the sets in {φ, {a, b},
X} are called τ1,2-open and the sets in {φ, {c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
{a}, {a, b}, Y} and σ2 = {φ, {b}, Y}. Then the sets in {φ, {a}, {b}, {a, b}, Y} are called σ1,2-open
and the sets in {φ, {c}, {a, c}, {b, c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {c},
{a, c}, {b, c}, X}, (1, 2)?-SGC(X) = {φ, {c}, {a, c}, {b, c}, X}, (1, 2)?-G#C(Y) = {φ, {c}, {a, c},
{b, c}, Y} and (1, 2)?-SGC(Y) = {φ, {a}, {b}, {c}, {a, c}, {b, c}, Y}. Let f : X → Y be the identity
function. Then f is (1, 2)?-g#-irresolute but it is not (1, 2)?-sg-irresolute, since f−1({b}) = {b} is not
(1, 2)?-sg-closed in X.

Example 4.4. Let X = {a, b, c}, τ1 = {φ, {a}, {a, b}, X} and τ2 = {φ, {b}, X}. Then the sets
in {φ, {a}, {b}, {a, b}, X} are called τ1,2-open and the sets in {φ, {c}, {a, c}, {b, c}, X} are called
τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, {b}, Y} and σ2 = {φ, {b, c}, Y}. Then the sets in {φ, {b},
{b, c}, Y} are called σ1,2-open and the sets in {φ, {a}, {a, c}, Y} are called σ1,2-closed. We have
(1, 2)?-G#C(X) = {φ, {c}, {a, c}, {b, c}, X} and (1, 2)?-SGC(X) = {φ, {a}, {b}, {c}, {a, c}, {b, c},
X}, (1, 2)?-G#C(Y) = {φ, {a}, {a, c}, Y} and (1, 2)?-SGC(Y) = {φ, {a}, {c}, {a, c}, Y}. Let f : X
→ Y be the identity function. Then f is (1, 2)?-sg-irresolute but it is not (1, 2)?-g#-irresolute, since
f−1({a}) = {a} is not (1, 2)?-g#-closed in X.

Proposition 4.5. A function f : X → Y is (1, 2)?-g#-irresolute if and only if the inverse of every
(1, 2)?-g#-open set in Y is (1, 2)?-g#-open in X.

Proof. Similar to Proposition 3.22.

Proposition 4.6. If a function f : X → Y is (1, 2)?-g#-irresolute then it is (1, 2)?-g#-continuous but
not conversely.
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Example 4.7. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {b}, X}. Then the sets in {φ, {b}, X}
are called τ1,2-open and the sets in {φ, {a, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
Y} and σ2 = {φ, {a, b}, Y}. Then the sets in {φ, {a, b}, Y} are called σ1,2-open and the sets in {φ,
{c}, Y} are called σ1,2-closed. We have (1, 2)?-G#C(X) = {φ, {a, c}, X} and (1, 2)?-G#C(Y) = {φ,
{c}, {a, c}, {b, c}, Y}. Let f : X → Y be the identity function. Then f is (1, 2)?-g#-continuous but it
is not (1, 2)?-g#-irresolute, since f−1({a}) = {a} is not (1, 2)?-g#-open in X.

Proposition 4.8. Let X be any bitopological space, Y be a (1, 2)?-Tg#-space and f : X → Y be a
function. Then the following are equivalent:

1. f is (1, 2)?-g#-irresolute.

2. f is (1, 2)?-g#-continuous.

Proof. (1) ⇒ (2) Follows from Proposition 4.6.
(2) ⇒ (1) Let F be a (1, 2)?-g#-closed set in Y. Since Y is a (1, 2)?-Tg# -space, F is a σ1,2-closed

set in Y and by hypothesis, f−1(F) is (1, 2)?-g#-closed in X. Therefore f is (1, 2)?-g#-irresolute.

Definition 4.9. A function f : X → Y is called pre-(1, 2)?-αg-open if f(U) is (1, 2)?-αg-open in Y,
for each (1, 2)?-αg-open set U in X.

Proposition 4.10. If f : X → Y is bijective pre-(1, 2)?-αg-open and (1, 2)?-g#-continuous then f is
(1, 2)?-g#-irresolute.

Proof. Let A be (1, 2)?-g#-closed set in Y. Let U be any (1, 2)?-αg-open set in X such that f−1(A)
⊆ U. Then A ⊆ f(U). Since A is (1, 2)?-g#-closed and f(U) is (1, 2)?-αg-open in Y, σ1,2-cl(A) ⊆ f(U)
holds and hence f−1(σ1,2-cl(A)) ⊆ U. Since f is (1, 2)?-g#-continuous and σ1,2-cl(A) is σ1,2-closed in
Y, f−1(σ1,2-cl(A)) is (1, 2)?-g#-closed and hence τ1,2-cl(f−1(σ1,2-cl(A))) ⊆ U and so τ1,2-cl(f−1(A)) ⊆
U. Therefore, f−1(A) is (1, 2)?-g#-closed in X and hence f is (1, 2)?-g#-irresolute.

The following examples show that no assumption of Proposition 4.10 can be removed.

Example 4.11. The identity function defined in Example 4.7 is (1, 2)?-g#-continuous and bijective
but not pre-(1, 2)?-αg-open and so f is not (1, 2)?-g#-irresolute.

Example 4.12. Let X = {a, b, c}, τ1 = {φ, {a}, {a, b}, X} and τ2 = {φ, {b}, X}. Then the sets
in {φ, {a}, {b}, {a, b}, X} are called τ1,2-open and the sets in {φ, {c}, {a, c}, {b, c}, X} are called
τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, {a}, Y} and σ2 = {φ, {b, c}, Y}. Then the sets in {φ, {a},
{b, c}, Y} are called σ1,2-open and the sets in {φ, {a}, {b, c}, Y} are called σ1,2-closed. We have
(1, 2)?-G#C(X) = {φ, {c}, {a, c}, {b, c}, X} and (1, 2)?-SGC(X) = {φ, {a}, {b}, {c}, {a, c}, {b,
c}, X}, (1, 2)?-G#C(Y) = {φ, {a}, {b, c}, Y} and (1, 2)?-SGC(Y) = P(Y). Let f : X → Y be the
identity function. Then f is bijective and pre-(1, 2)?-αg-open but not (1, 2)?-g#-continuous and so f is
not (1, 2)?-g#-irresolute, since f−1({a}) = {a} is not (1, 2)?-g#-closed in X.

Proposition 4.13. If f : X → Y is bijective (1, 2)?-closed and (1, 2)?-αg-irresolute then the inverse
function f−1 : Y → X is (1, 2)?-g#-irresolute.

Proof. Let A be (1, 2)?-g#-closed in X. Let (f−1)−1(A) = f(A) ⊆ U where U is (1, 2)?-αg-open in Y.
Then A ⊆ f−1(U) holds. Since f−1(U) is (1, 2)?-αg-open in X and A is (1, 2)?-g#-closed in X, τ1,2-cl(A)
⊆ f−1(U) and hence f(τ1,2-cl(A)) ⊆ U. Since f is (1, 2)?-closed and τ1,2-cl(A) is τ1,2-closed in X, f(τ1,2-
cl(A)) is σ1,2-closed in Y and so f(τ1,2-cl(A)) is (1, 2)?-g#-closed in Y. Therefore σ1,2-cl(f(τ1,2-cl(A)))
⊆ U and hence σ1,2-cl(f(A)) ⊆ U. Thus f(A) is (1, 2)?-g#-closed in Y and so f−1 is (1, 2)?-g#-irresolute.

5 Applications

To obtain a decomposition of (1, 2)?-continuity, we introduce the notion of (1, 2)?-αglc#-continuous
function in bitopological spaces and prove that a function is (1, 2)?-continuous if and only if it is both
(1, 2)?-g#-continuous and (1, 2)?-αglc#-continuous.

Definition 5.1. A subset A of a bitopological space X is called (1, 2)?-αglc?-set if A = M ∩ N, where
M is (1, 2)?-αg-open and N is τ1,2-closed in X.
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The family of all (1, 2)?-αglc?-sets in a space X is denoted by (1, 2)?-αglc?(X).

Example 5.2. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {c}, X}. Then the sets in {φ, {c}, X}
are called τ1,2-open and the sets in {φ, {a, b}, X} are called τ1,2-closed. Then {a} is (1, 2)?-αglc?-set
in X.

Remark 5.3. Every τ1,2-closed set is (1, 2)?-αglc?-set but not conversely.

Example 5.4. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a}, X}. Then the sets in {φ, {a}, X} are
called τ1,2-open and the sets in {φ, {b, c}, X} are called τ1,2-closed. Then {a, b} is (1, 2)?-αglc?-set
but not τ1,2-closed in X.

Remark 5.5. (1, 2)?-g#-closed sets and (1, 2)?-αglc?-sets are independent of each other.

Example 5.6. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a, c}, X}. Then the sets in {φ,
{a, c}, X} are called τ1,2-open and the sets in {φ, {b}, X} are called τ1,2-closed. Then {b, c} is a
(1, 2)?-g#-closed set but not (1, 2)?-αglc?-set in X.

Example 5.7. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {b}, X}. Then the sets in {φ, {b}, X} are
called τ1,2-open and the sets in {φ, {a, c}, X} are called τ1,2-closed. Then {a, b} is an (1, 2)?-αglc?-set
but not (1, 2)?-g#-closed set in X.

Proposition 5.8. Let X be a bitopological space. Then a subset A of X is τ1,2-closed if and only if it
is both (1, 2)?-g#-closed and (1, 2)?-αglc?-set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both (1, 2)?-g#-closed and (1, 2)?-
αglc?-set. Then A = M ∩ N, where M is (1, 2)?-αg-open and N is τ1,2-closed in X. Therefore, A ⊆ M
and A ⊆ N and so by hypothesis, τ1,2-cl(A) ⊆ M and τ1,2-cl(A) ⊆ N. Thus τ1,2-cl(A) ⊆ M ∩ N = A
and hence τ1,2-cl(A) = A i.e., A is τ1,2-closed in X.

We introduce the following definition.

Definition 5.9. A function f : X → Y is said to be (1, 2)?-αglc#-continuous if for each σ1,2-closed
set V of Y, f−1(V) is an (1, 2)?-αglc?-set in X.

Example 5.10. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a}, X}. Then the sets in {φ, {a}, X}
are called τ1,2-open and the sets in {φ, {b, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
{a}, Y} and σ2 = {φ, {b, c}, Y}. Then the sets in {φ, {a}, {b, c}, Y} are called σ1,2-open and the
sets in {φ, {a}, {b, c}, Y} are called σ1,2-closed. Let f : X → Y be the identity function. Then f is
(1, 2)?-αglc#-continuous function.

Remark 5.11. From the definitions it is clear that every (1, 2)?-continuous function is (1, 2)?-αglc#-
continuous but not conversely.

Example 5.12. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {b}, X}. Then the sets in {φ, {b},
X} are called τ1,2-open and the sets in {φ, {a, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 =
{φ, {b}, Y} and σ2 = {φ, {a, c}, Y}. Then the sets in {φ, {b}, {a, c}, Y} are called σ1,2-open and
the sets in {φ, {b}, {a, c}, Y} are called σ1,2-closed. Let f : X → Y be the identity function. Then f
is (1, 2)?-αglc#-continuous function but not (1, 2)?-continuous. Since for the σ1,2-closed set {b} in Y,
f−1({b}) = {b}, which is not τ1,2-closed in X.

Remark 5.13. (1, 2)?-g#-continuity and (1, 2)?-αglc#-continuity are independent of each other.

Example 5.14. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a, b}, X}. Then the sets in {φ, {a, b},
X} are called τ1,2-open and the sets in {φ, {c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ,
Y} and σ2 = {φ, {a}, Y}. Then the sets in {φ, {a}, Y} are called σ1,2-open and the sets in {φ, {b,
c}, Y} are called σ1,2-closed. Let f : X → Y be the identity function. Then f is (1, 2)?-g#-continuous
function but not (1, 2)?-αglc#-continuous.

Example 5.15. Let X = {a, b, c}, τ1 = {φ, X} and τ2 = {φ, {a}, X}. Then the sets in {φ, {a}, X}
are called τ1,2-open and the sets in {φ, {b, c}, X} are called τ1,2-closed. Let Y = {a, b, c}, σ1 = {φ, Y}
and σ2 = {φ, {b, c}, Y}. Then the sets in {φ, {b, c}, Y} are called σ1,2-open and the sets in {φ, {a},
Y} are called σ1,2-closed. Let f : X → Y be the identity function. Then f is (1, 2)?-αglc#-continuous
function but not (1, 2)?-g#-continuous.
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We have the following decomposition for (1, 2)?-continuity.

Theorem 5.16. A function f : X → Y is (1, 2)?-continuous if and only if it is both (1, 2)?-g#-
continuous and (1, 2)?-αglc#-continuous.

Proof. Assume that f is (1, 2)?-continuous. Then by Proposition 3.3 and Remark 5.11, f is both
(1, 2)?-g#-continuous and (1, 2)?-αglc#-continuous.

Conversely, assume that f is both (1, 2)?-g#-continuous and (1, 2)?-αglc#-continuous. Let V be a
σ1,2-closed subset of Y. Then f−1(V) is both (1, 2)?-g#-closed set and (1, 2)?-αglc?-set. By Proposition
5.8, f−1(V) is a τ1,2-closed set in X and so f is (1, 2)?-continuous.

6 Conclusion

The notions of the sets, functions and spaces in bitopological spaces are highly developed and
used extensively in many practical and engineering problems, computational topology for geometric
design, computer-aided geometric design, engineering design research and mathematical sciences. Also,
topology plays a significant role in space time geometry and high-energy physics. Thus generalized
continuity is one of the most important subjects on topological spaces. Hence we studied new types of
generalizations of non-continuous functions, obtained some of their properties in bitopological spaces.
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Abstract  – In this paper, the notions of smarandache soft semigroups (SS-semigroups) introduced for the 

first time. An SS-semigroup ( , )F A  is basically a parameterized collection of subsemigroups which has 

atlest a proper soft subgroup of ( , )F A . Some new type of SS-semigroup is also presented here such as 

smarandache weak commutative semigroup, smarandache weak cyclic semigroup, smarandache hyper 

subsemigroup etc. Some of their related properties and other notions have been discussed with sufficient 

amount of examples. 
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1 Introduction 
 

Raul [26]  introduced in 1998, the notions of Smarandache semigroup in the article 

“Smaradache Algebraic Structures”.  Smarandache semigroup is analogous to the 

smarandache group. F. Smarandache in [30] first introduced the theory of Smarandach 

algebraic structures in a paper “Special Algebraic Structures”.  The Smarandache 

semigroups exhibit characteristics and features of  both groups and semigroups 

simultaneously. The Smarandache semigroups are a class of innovative and conceptually a 

new structure in nature. The concept of Smarandache algebraic structures almost exist in 

every algebraic structure such as Smarandache groupoid which are discussed in [17], 

Smarandache rings [20], Smarandache semirings, semifields, semivector spaces [18], 

Smarandache loops [19] etc. Kandassamy have written several books on Smarandache 

algebraic structures and their related theory. 

 

Molodtsov [25] initiated the theory of soft sets in 1995. Soft set theory is a mathematical 

tool which is free from parameterization inadequacy, syndrome of fuzzy set theory, rough 

set theory, probability theory and so on. This theory has been applications in many fields 
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such as smoothness of functions, game theory, operation research, Riemann integration, 

Perron integration, and probability etc. Recently soft set theory gain much attention of the 

researchers since its introduction. There are a lot of soft algebraic structures introduced in 

soft set theory successfully. H. Aktas and N. Cagmann [1] introduced soft groups, soft 

semigroups [15]. The work which is based on several operations of soft sets discussed in 

[12,13]. Some properties and related algebra may be found in [14]. Some other concepts 

and notions together with fuzzy set and rough set were studied in [23,24]. Some useful 

study about soft  neutrosophic algebraic structures have been discussed in 

[3,4,5,6,7,8,9,10,11,28,29,31]. 

 

The organization of this paper is below. In first section,  some basic concepts and notions 

about smarandache semigroups, soft sets, and soft semigroups are presented. In the next 

section Smarandache soft semigroup shortly SS-semigroups is introduced. In this section 

some related theory and characterization is also presented with illustrative examples. In the 

further section, Smarandache hyper soft semigroup is studied with some of their core 

properties.  

 

 

2 Basic Concepts 
 
In this section, fundamental concepts about Smarandache semigroups, soft sets, and soft 

semigroups is presented with some of their basic properties. 

 
2.1 Smarandache Semigroups 

 

Definition 2.1.1: A smarandache semigroup is define to be a semigroup S  such that a 

proper subset of S  is a group with respect to the same induced operation. A smarandache 

semigroup S  is denoted by S -semigroup. 

 

Definition 2.1.2: Let S  be a smarandache semigroup. If every proper subset A  in S  

which is a group is commutative, then S  is said to be a smarandache commutative 

semigroup. 

If S  has atleast one proper subgroup, then S  is called a weak smarandache commutative 

semigroup. 

 

Definition 2.1.3: Let S  be a smarandache semigroup. If every proper subset A  of S  is a 

cyclic group, then S  is said to be a smarandache cyclic semigroup. 

If S  has atleast one proper cyclic subgroup, then S  is called a weak smarandache 

commutative semigroup. 

 

Definition 2.1.4: Let S  be a smarandache semigroup. A proper subset A  of S  is called a 

samarandache subsemigroup if A  itself is a smarandache semigroup under the operation of 

S . 

 

Definition 2.1.5: Let S  be a smarandache semigroup. If A  be a proper subset of S which 

subsemigroup of S and A  contains the largest group of S .Then A  is called a smarandache 

hyper subsemigroup. 
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2.2 Soft Sets 

 
Throughout this subsection U  refers to an initial universe, E  is a set of parameters, ( )PU  

is the power set of  U , and ,A B E . Molodtsov defined the soft set in the following 

manner: 

 

Definition 2.2.1: A pair ( , )F A  is called a soft set over U  where F is a mapping given by 

: ( )F A PU . In other words, a soft set over  U  is a parameterized family of subsets of 

the universe  U . For  a A  , (a)F   may be considered as the set of  a -elements of the 

soft set ( , )F A  , or as the set of  a -approximate elements of the soft set. 

 

Definition 2.2.2:  For two soft sets ( , )F A  and  ( , )H B  over U , ( , )F A  is called a soft 

subset of  ( , )H B  if 

 

1. A B   and 

2. ( ) ( )F a H a , for all  x A   

 

This relationship is denoted by ( , ) ( , )F A H B . Similarly ( , )F A  is called a soft superset 

of ( , )H B  if  ( , )H B  is a soft subset of ( , )F A  which is denoted by  ( , ) ( , )F A H B . 

 

Definition 2.2.3:  Two soft sets ( , )F A  and ( , )H B  over  U are called soft equal if ( , )F A  

is a soft subset of  ( , )H B  and ( , )H B  is a soft subset of ( , )F A . 

 

Definition 2.2.4:  Let ( , )F A  and ( , )K B  be two soft sets over a common universe U such 

that  A B  . Then their restricted intersection is denoted by 

( , ) ( , ) ( , )RF A K B H C  where ( , )H C  is defined as  ( ) ( ) )H c F c c  for all  

c C A B  . 
 

Definition 2.2.5:  The extended intersection of two soft sets  ( , )F A  and  ( , )K B  over a 

common universe U is the soft set  ( , )H C  , where  C A B  , and for all  c C  , 

( )H c  is defined as 

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

 

We write  ( , ) ( , ) ( , )F A K B H C . 

 

Definition 2.2.6: The restricted union of two soft sets  ( , )F A  and ( , )K B  over a common 

universe U is the soft set  ( , )H C , where  C A B  , and for all  c C  , ( )H c  is  

defined as  ( ) ( ) ( )H c F c G c   for all  c C  . We write it as 
  

( , ) ( , ) ( , ).RF A K B H C
 

 

Definition 2.2.7:  The extended union of two soft sets  ( , )F A  and ( , )K B  over a common 

universe U is the soft set  ( , )H C , where  C A B  , and for all  c C  ,  ( )H c   is 

defined as 
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( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

 

We write ( , ) ( , ) ( , )F A K B H C . 

 

Definition 2.2.8: A soft set ( , )F A  over S  is called a soft semigroup over S  if  

( , ) ( , ) ( , )F A F A F A


 . 

 

It is easy to see that a soft set ( , )F A  over S  is a soft semigroup if and only if ( )F a   is 

a subsemigroup of S  for all a A . 

 

 

3  Smarandache Soft Semigroups 
 

In this section we define smarandache soft semigroups and give some of their properties 

with sufficient amount of examples. 

 

Definition 3.1: Let S  be a semigroups and ( , )F A  be a soft semigroup over S . Then  

( , )F A  is called a smarandache soft semigroup over U  if a proper soft subset ( , )G B  of 

( , )F A  is a soft group under the operation of S . We denote a smarandache soft semigroup 

by SS -semigroup. 

 

A smarandache soft semigroup is a parameterized collection of smarandache 

subsemigroups of S .  

 

Example 3.2: Let 12 {0,1,2,3,...,11}  be the semigroup under multiplication modulo 12. 

Let 1 2 3 4 5 6{ , , , , , }A a a a a a a  be a set of parameters. Let ( , )F A  be a soft semigroup over 

12 , where 

 

 1 2( ) {1,3,5,9},F {1,4,7,8}F a a  , 

3( ) {1,5,7,11}F a  , 4( ) {3,4,8,9}F a  , 

5( ) {1,3,9,11}F a  , 6( ) {1,4,5,8}F a  . 

 

Let 1 2 4 5{ , , , }B a a a a A  . Then ( , )G B  is a soft subgroup of ( , )F A  over U , where 

 

1 2( ) {1,5}, ( ) {4,8}G a G a  , 

4 5( ) {3,9}, ( ) {1,11}G a G a  . 

 

Thus clearly ( , )F A  is a smarandache semigroup over 12 . 

 

Proposition 3.3: If S  is a smarandache semigroup, then ( , )F A  is also a smarandache soft 

semigroup over S . 
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Proposition 3.4: The extended union of two SS -semigroups ( , )F A  and ( ,B)G  over S  is 

a SS -semigroup over S . 

 

Proposition 3.5: The extended intersection of two SS -semigroups ( , )F A  and ( ,B)G  over 

S  is a SS -semigroup over S . 

 

Proposition 3.6: The restricted union of two SS -semigroups ( , )F A  and ( ,B)G  over S  is 

a SS -semigroup over S . 

 

Proposition 3.7: The restricted intersection of two SS -semigroups ( , )F A  and ( ,B)G  over 

S  is a SS -semigroup over S . 

 

Proposition 3.8: The AND operation of two SS -semigroups ( , )F A  and ( ,B)G  over S  is 

a SS -semigroup over S . 

 

Proposition 3.9: The OR operation of two SS -semigroups ( , )F A  and ( ,B)G  over S  is a 

SS -semigroup over S . 

 

Definition 3.10: Let ( , )F A  be a SS -semigroup over a semigroup S . Then ( , )F A  is 

called  a commutative SS -semigroup if each proper soft subset ( , )G B  of ( , )F A  is a 

commutative group. 

 

Definition 3.11: Let ( , )F A  be a SS -semigroup over a semigroup S . Then ( , )F A  is 

called  a weakly commutative SS -semigroup  if atleast one  proper soft subset ( , )G B  in  

( , )F A  is a commutative group. 

 

Proposition 3.12: If  S  is a commutative S -semigroup, then ( , )F A  over S  is also a 

commutative SS -semigroup. 

 

Definition 3.13: Let ( , )F A  be a SS -semigroup over a semigroup S . Then ( , )F A  is 

called  a cyclic SS -semigroup if each proper soft subset ( , )G B  of ( , )F A  is a cyclic 

subgroup. 

 

Proposition 3.14:  Let ( , )F A  and ( , )H B  be two  strong soft groups over a semigroup S . 

Then 

 

1. ( , ) ( , )RF A H B  is a  strong soft group over S . 

2. ( , ) ( , )EF A H B  is a  strong soft group over S . 

 

Definition 3.15: Let ( , )F A  be a SS -semigroup over a semigroup S .  If there exist atleast 

one proper soft subset ( , )G B  of ( , )F A  which is a cyclic subgroup. Then ( , )F A  is termed 

as weakly cyclic SS -semigroup. 

 

Proposition 3.16: If  S  is a cyclic S -semigroup, then ( , )F A  over S  is also a cyclic SS -

semigroup. 
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Proposition 3.17: If  S  is a cyclic S -semigroup, then ( , )F A  over S  is a commutative 

SS -semigroup. 

 

Definition 3.18: Let S  be a semigroup and ( , )F A  be a SS -semigroup. A proper soft 

subset ( , )G B  of ( , )F A  is said to be a smarandache soft subsemigroup if ( , )G B  is itself a 

smarandache soft semigroup over S . 

 

Definition 3.19: Let S  be a semigroup and ( , )F A  be a soft set over S . Then S  is called a 

parameterized smarandache semigroup if ( ) SF a   such that ( )F a  is a group under the 

operation of S  for all a A . In this case ( , )F A  is called a strong soft group. 

 

A strong soft group is a parameterized collection of the subgroups of the semigroup S . 

 

Proposition 3.20: Let S  be a semigroup and ( , )F A  be a soft set over S . Then S  is a 

parameterized smarandache semigroup if ( , )F A  is a soft group over S . 

 

Proof: Suppose that ( , )F A  is a soft group over S . This implies that each ( )F a  is a 

subgroup of the semigroup S  for al a A  and thus S  is a parameterized smarandache 

semigroup. 

 

Example 3.21: Let 12 {0,1,2,3,...,11}  be the semigroup under multiplication modulo 12. 

Let 1 2 3{ , , }A a a a  be a set of parameters. Let ( , )F A  be a soft semigroup over 12 , where 

 

 1 2( ) {3,9},F {1,7}F a a  , 

3( ) {1,5}F a  . 

 

Then 12   is a parameterized smarandache semigroup. 

 

Proposition 3.22:  Let ( , )F A  and ( , )H B  be two  strong soft groups over a semigroup S . 

Then 

 

1. ( , ) ( , )RF A H B  is a  strong soft group over S . 

2. ( , ) ( , )EF A H B  is a  strong soft group over S . 

 

Remark 3.23: Let ( , )F A  and ( , )H B  be two  strong soft groups over a semigroup S . 

Then 

 

1. ( , ) ( , )RF A H B  need not be strong soft group over S . 

2. ( , ) ( , )EF A H B  need not be strong soft group over S . 

 

For this, we take the following example. 
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Example 3.24: Let 12 {0,1,2,3,...,11}  be the semigroup under multiplication modulo 12. 

Let 1 2 3 4 5{ , , , , }A a a a a a  be a set of parameters. Let ( , )F A  be a strong soft group over 

12 , where 

 

 1 2( ) {1,5},F {4,8}F a a  , 

3( ) {7,11}F a  , 4( ) {3,9}F a  , 

5( ) {1,11}F a  . 

 

Let 1 2 7{ , , }B a a a . Then (H, )B  is another strong soft group over 12 , where 

 

1 2H( ) {3,9},H( ) {1,5}a a  , 

7H( ) {3,9}a  . 

 

Then clearly 1 2{ , }C A B a a  . Now 1 1( ) ( ) {1,3,5,9}F a H a   and 

2 2( ) ( ) {1,4,5,8}F a H a   are not subgroups of 12 . Thus ( , ) ( , )RF A H B  is not a strong 

soft group over 12S  . 

 

One can easily show 2 with the help of examples. 

 

 

4 Smarandache Hyper Soft Subsemigroups 
 

Definition 4.1: Let ( , )F A  be a SS -semigroup over S  and (H,B)  be a SS -subsemigroup 

of ( , )F A . Then ( , )H B  is called a smarandache hyper soft subsemigroup if ( , )H B  

contains a proper soft subset ( , )K C  such that ( )K c  is a smarandache hyper subsemigroup 

of S  for all c B . 

 

Theorem 4.2: Every smarandache hyper subsemigroup is a smarandache subsemigroup. 

Proof: Its obvious. 

 

Definition 4.3: Let ( , )F A  be a SS -semigroup. Then ( , )F A  is called simple SS -

semigroup if ( , )F A  has no smarandach hyper subsemigroup. 

 

Theorem 4.4: If S  is a simple smarandache semigroup. Then ( , )F A  over S  is also a 

simple SS -semigroup. 

 

Proof. The proof is simple. 

 

Theorem 4.5: If S  is a smarandache semigroup of prime order p . Then ( , )F A  is a simple 

SS -semigroup over S . 
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Conclusion   

 
 In this paper Smaradache soft semigroups are introduced. Their related properties and 

results are explained with many illustrative examples. This theory opens a new way for 

researchers to define these type of soft algebraic strucutres in almost all areas of algebra in 

the future. 
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Abstract - In this paper, we first introduced the concept of intuitionistic fuzzy soft expert sets (IFSESs for 

short) which combines intuitionistic fuzzy sets and soft expert sets. We also define its basic operations, 

namely complement, union, intersection, AND and OR, and study some of their properties. This concept is a 

generalization of fuzzy soft expert sets (FSESs). Finally, an approach for solving MCDM problems is 

explored by applying intuitionistic fuzzy soft expert sets, and an example is provided to illustrate the 

application of the proposed method. 

 

Keywords - Intuitionistic fuzzy sets, soft expert sets, intuitionistic fuzzy soft expert sets, decision making. 

 

 

1. Introduction 

 
Intuitionistic fuzzy set (IFS in short) on a universe was introduced by Atanassov [7] in 

1983, as a generalization of fuzzy set [13]. The conception of IFS can be viewed as an 

appropriate /alternative approach in case where available information is not sufficient to 

define the impreciseness by the conventional fuzzy set. In fuzzy sets the degree of 

acceptance is considered only but IFS is characterized by a membership function and a 

non-membership function so that the sum of both values is less than one. A detailed 

theoretical study may be found in [7]. 

 

Soft set theory was originally introduced by Molodtsov [3] as a general mathematical tool 

for dealing with uncertainties which traditional mathematical tools cannot handle and how 

soft set theory is free from the parameterization inadequacy syndrome of fuzzy set theory, 
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rough set theory, and probability theory.  A soft set is in fact a set-valued map which gives 

an approximation description of objects under consideration based on some parameters.  

After Molodtsov’s work, Maji et al. [26] introduced the concept of fuzzy soft set, a more 

generalized concept, which is a combination of fuzzy set and soft set and studied its 

properties and also discussed their properties. Also, Maji et al. [27] devoted the concept of 

intuitionistic fuzzy soft sets by combining intuitionistic fuzzy sets with soft sets. Then, 

many interesting results of soft set theory have been studied on fuzzy soft sets [19, 20, 24, 

25], on intuitionistic fuzzy soft set theory [21, 22, 23, 27], on possibility fuzzy soft set [31], 

on generalized fuzzy soft sets [5,29], on generalized intuitionistic fuzzy soft [12, 28], on 

possibility intuitionistic fuzzy soft set [14], on possibility vague soft set [8] and so on. All 

these research aim to solve most of our real life problems in medical sciences, engineering, 

management, environment and social  science which involve data that are not crisp and 

precise. Moreover all the models created will deal only with one expert. To redefine this 

one expert opinion, Alkhazaleh and Salleh in 2011 [29] defined the concept of soft expert 

set in which the user can know the opinion of all the experts in one model and give an 

application of this concept in decision making problem. Also, they introduced the concept 

of the fuzzy soft expert set [30] as a combination between the soft experts set and the fuzzy 

set. After Alkhazaleh’s work, many researchers have worked with the concept of soft 

expert sets [1, 2, 4, 6, 9, 10, 11, 15, 16, 18, 33]. 

 

Until now, there is no study on soft experts in intuitionistic fuzzy environment, so there is a 

need to develop a new mathematical tool called “intuitionistic fuzzy soft expert sets. 

 

The paper is organized as follows. In Section 2, we first recall the necessary background on 

intuitionistic fuzzy sets, soft set, intuitionistic fuzzy soft sets, soft expert sets, fuzzy soft 

expert sets. Section 3 reviews various proposals for the definition of intuitionistic fuzzy 

soft expert sets and derive their respective properties. Section 4 presents basic operations 

on intuitionistic fuzzy soft expert sets. Section 5 presents an application of this concept in 

solving a decision making problem. Finally, we conclude the paper. 

 

 

2. Preliminaries 

 
In this section, we will briefly recall the basic concepts of intuitionistic fuzzy sets, soft set, 

soft expert sets and fuzzy soft expert sets. 

 

Let U be an initial universe set of objects and E the set of parameters in relation to objects 

in U. Parameters are often attributes, characteristics or properties of objects. Let P (U) 

denote the power set of U and A   E. 

 

 

2.1. Intuitionistic Fuzzy Set 

 

Definition 2.1 [7 ]: Let U be an universe of discourse then the intuitionistic fuzzy set A is 

an object having the form A = {< x,   
 
   ,       >,x ∈  U},where the functions       , 

       : U→[0,1] define respectively the degree of membership, and the degree of non-

membership of the element x ∈  X to the set A with the condition.  

 

0 ≤  
 
   +      ≤1. 
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For two IFS, 

 

     = {<x,  
 
   ,       > |     } 

 

and 

 

     = {<x,  
 
   ,       > |     } 

 

Then, 

 

1.           if and only if 

 

 
 
     

 
                  

 

2.                             ,  
 

 
 
    = 

 
    ,       =      for any   . 

 

3. The complement of      is denoted by     
  and is defined by 

 

    
 = {<x,         

 
    > |     } 

 

4. A B = {<x, min{ 
 
     

 
   }  max{             }> |     } 

 

5. A B = {<x, max{ 
 
     

 
   }  min{             }> |     } 

 

As an illustration, let us consider the following example. 
 

Example 2.2. Assume that the universe of discourse U={x1,x2,x3,  }. It may be further 

assumed that the values of x1, x2,   and   are in [0, 1] Then,  A is an intuitionistic fuzzy 

set (IFS) of U, such that, 

 

A= {< x1, 0.4, 0.6>, < x2, 0.3, 0.7>, < x3, 0.2,0.8>,<  , 0.2,0.8>} 

 

 

2.2. Soft Set 

 

Definition 2.3. [3] Let U be an initial universe set and E be a set of parameters. Let P(U) 

denote the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft 

set over U, where K is a mapping given by K : A → P(U).  

 

As an illustration, let us consider the following example. 

 

Example 2.4 .Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., 

h5}. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . 

. ., e8 stand for the attributes “beautiful”, “costly”, “in the green surroundings”, “moderate”, 

respectively.  
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In this case, to define a soft set means to point out expensive houses, beautiful houses, and 

so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 

the opinion of a buyer, says Thomas, and may be defined like this:  

 

A={e1,e2,e3,e4,e5};  

 

K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  

 

 

2.3. Intuitionistic Fuzzy Soft Sets 

 

Definition 2.5 [27] Let   be an initial universe set and   ⊂    be a set of parameters. Let 

IFS(U) denotes the set of all intuitionistic fuzzy  subsets of  . The collection       is 

termed to be the intuitionistic fuzzy soft set over  , where   is a mapping given by 

             . 

 

Example 2.6 Let U be the set of houses under consideration and E is the set of parameters. 

Each parameter is a word or sentence involving intuitionistic fuzzy words. Consider 

   {beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in 

bad repair, cheap, expensive}. In this case, to define a intuitionistic fuzzy soft set means to 

point out beautiful houses, wooden houses, houses in the green surroundings and so on. 

Suppose that, there are five houses in the universe   given by                   and the 

set of parameters 

 

                 ,where    stands for the parameter `beautiful',    stands for the parameter 

`wooden',    stands for the parameter `costly' and the parameter   stands for `moderate'. 

Then the intuitionistic fuzzy set       is defined as follows: 

 

      

{
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2.5. Soft Expert Sets 

 

Definition 2.7 [29] Let U be a universe set, E be a set of parameters and X   be a set of 
experts (agents). Let O= {1=agree, 0=disagree} be a set of opinions.  Let Z= E   X   O and 
A   Z 

 
A pair (F, E) is called a soft expert set over U, where F is a mapping given by F : A → 

P(U) and P(U) denote the power set of U. 
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Definition 2.8 [29] An agree- soft expert set         over U, is a soft expert subset of 
( ,A) defined as : 
 
                                                                 = {F( ) |    E   X  {1}}. 
 

Definition 2.9[29] A disagree- soft expert set         over U, is a soft expert subset of 
( ,A) defined as : 
 
                                                               = {F( ) |    E   X  {0}}. 
 

 

2.6. Fuzzy Soft Expert Sets 

 

Definition 2.10 [30] A pair (F, A) is called a fuzzy soft expert set over U, where F is a 

mapping given by  F : A→   ,and    denote the set of all fuzzy subsets of  U. 

 

 

3. Intuitionistic Fuzzy Soft Expert Sets 

 
In this section, we generalize the fuzzy soft expert sets as introduced by Alkhazaleh and 

Salleh [30] to intuitionistic fuzzy soft expert sets and give the basic properties of this 

concept. 

 

Let  U   be  universal  set  of  elements, E  be  a  set  of  parameters, X   be  a  set  of  

experts (agents), O= {1=agree, 0=disagree}  be a set of opinions. Let Z= E   X  O and  

 

Definition  3.1 Let  U=   { 1u , 2u , 3u ,…, nu } be  a  universal  set  of  elements, E={ 1e , 2e ,

3e ,…, me } be  a universal  set  of  parameters,  X={ 1x , 2x , 3x ,…, ix } be  a  set  of  experts  

(agents)  and   O= {1=agree, 0=disagree} be  a  set  of  opinions.  Let  Z= { E   X   Q }  

and  A   Z. Then  the  pair (U, Z)  is  called  a  soft universe.  Let          where  

   denotes the collection of all intuitionistic fuzzy subsets of U.    Suppose             be 

a function defined as: 

 

)(zF = F(z)( iu ), for all iu U. 

 

Then  )(zF   is called an intuitionistic fuzzy soft expert set (IFSES in short) over the soft 

universe (U, Z).           

 

For  each iz Z. )(zF = F( iz )( iu ) where F( iz )  represents  the  degree  of  belongingness 

and non-belongingness  of  the  elements  of  U  in F( iz ). Hence  )( izF   can be written as: 

 

)( izF
=

{( 
))(( ii

i

uzF

u
),…, ( 

))(( ii

i

uzF

u
)}, for i=1,2,3,…,n                         
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where  F( iz )( iu ) = < )iF(z ( iu ), )iF(z ( iu )> with )iF(z ( iu )  and )iF(z ( iu )   representing  

the  membership function  and non-membership function of each of the elements iu U   

respectively. 

 

Sometimes we write   as ( , Z) . If A   Z. we can also have  IFSES ( , A). 

 

Example 3.2 Let U={  ,  ,   } be a set of elements, E={  ,  } be a set of decision 

parameters, where    ( i= 1, 2,3} denotes the parameters E ={  = beautiful,   = cheap} and 

X= {  ,  } be  a set of experts. Suppose that   :Z      is function defined as follows: 

 

 (  ,  , 1)  = { )
8.0,1.0

1(


u , )
,6.0,1.0

2(


u , )
5.0,4.0

3(


u }, 

 ( 2e , 1x ,1 ) = { )
25.0,5.0

1(


u , )
6.0,25.0

2(


u , )
4.0,4.0

3(


u }, 

 ( 1e , 2x ,1 ) = { )
7.0,2.0

1(


u , )
3.0,4.0

2(


u , )
2.0,6.0

3(


u }, 

  ( 2e , 2x ,1 ) = { )
6.0,2.0

1(


u , )
2.0,3.0

2(


u , )
5.0,3.0

3(


u }, 

 ( 1e , 1x ,0 ) = { )
4.0,2.0

1(


u , )
9.0,1.0

2(


u , )
5.0,2.0

3(


u }, 

  ( 2e , 1x ,0 ) = { )
4.0,3.0

1(


u , )
7.0,2.0

2(


u , )
2.0,5.0

3(


u }, 

 ( 1e , 2x ,0 ) = { )
4.0,3.0

1(


u , )
6.0,1.0

2(


u , )
3.0,6.0

3(


u } 

 ( 2e , 2x ,0 ) = { )
4.0,4.0

1(


u , )
2.0,8.0

2(


u , )
4.0,2.0

3(


u  

 

Then we can view the intuitionistic fuzzy soft expert set ( , Z)  as consisting of the 

following collection of approximations: 

 

( , Z) ={ (  ,  , 1)  = { )
8.0,1.0

1(


u , )
,6.0,1.0

2(


u , )
5.0,4.0

3(


u }}, 

{( 2e , 1x ,1 ) = { )
25.0,5.0

1(


u , )
6.0,25.0

2(


u , )
4.0,4.0

3(


u }}, 

{( 1e , 2x ,1 ) = { )
7.0,2.0

1(


u , )
3.0,4.0

2(


u , )
2.0,6.0

3(


u }}, 

{( 2e , 2x ,1 ) = { )
6.0,2.0

1(


u , )
2.0,3.0

2(


u , )
5.0,3.0

3(


u }}, 

{( 1e , 1x ,0 ) = { )
4.0,2.0

1(


u , )
9.0,1.0

2(


u , )
5.0,2.0

3(


u }}, 

{( 2e , 1x ,0 ) = { )
4.0,3.0

1(


u , )
7.0,2.0

2(


u , )
2.0,5.0

3(


u }}, 

{( 1e , 2x ,0 ) = { )
4.0,3.0

1(


u , )
6.0,1.0

2(


u , )
3.0,6.0

3(


u }}, 

 ( 2e , 2x ,0 ) = { )
4.0,4.0

1(


u , )
2.0,8.0

2(


u , )
4.0,2.0

3(


u }}. 

 

Then ( , Z)  is an intuitionistic fuzzy soft expert set over the soft universe ( U, Z). 

 

Definition 3.3. For two intuitionistic fuzzy soft expert sets ( ,A) and ( ,B) over a soft 

universe (U, Z). Then ( , A) is said to be an intuitionistic fuzzy soft expert subset of  ( ,B) 

if 

 

i. B   A 

ii.      is an intuitionistic fuzzy subset of      , for all    A 
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This relationship is denoted as ( , A)  ̃  ( , B). In this case, ( , B) is called an 

intuitionistic fuzzy soft expert superset (IFSES superset) of ( , A)  . 

 

Definition 3.4. Two intuitionistic fuzzy soft expert sets ( , A) and ( , B) over soft 

universe (U, Z) are said to be equal if ( , A)  is a intuitionistic fuzzy soft expert subset of 

( , B)  and ( , B)  is an intuitionistic fuzzy soft expert subset of ( , A).      

 

Definition 3.5. An IFSES ( , A) is said to be a null intuitionistic fuzzy soft expert sets 

denoted    ̃     and defined as: 

 

  ̃      = F( )  where    Z. 

 

Where F( )= < 0, 1>, that is      =0 and      = 1 for all    Z. 

 

Definition 3.6. An IFSES ( , A) is said to be an absolute intuitionistic fuzzy soft expert 

sets denoted            and defined as: 

 

          = F( ), where    Z. 

 

Where F( )= <1, 0>, that is      = 1 and      = 0 , for all    Z. 

 

Definition 3.7. Let ( , A) be an IFSES over a soft universe (U,Z). An agree- intuitionistic 

fuzzy soft expert set (agree- IFSES) over U, denoted as         is an intuitionistic fuzzy 

soft expert subset of ( , A) which is defined as : 

 

        = {F( ) |    E   X  {1}}. 

 

Definition 3.8. Let ( , A) be a IFSES over a soft universe (U, Z). A disagree- intuitionistic 

fuzzy soft expert set (disagree- IFSES) over U, denoted as         is a intuitionistic fuzzy 

soft expert subset of ( , A) which is defined as : 

 

        = {F( ) |    E   X  {0}}. 

 

Example 3.9 consider Example 3.2 .Then the agree- intuitionistic fuzzy soft soft expert set  

 

       = {((  ,  , 1),{ )
8.0,1.0

1(


u , )
6.0,1.0

2(


u , )
5.0,4.0

3(


u }), 

               (( 2e , 1x ,1 ),{ )
25.0,5.0

1(


u , )
6.0,25.0

2(


u , )
4.0,4.0

3(


u }), 

               (( 1e , 2x ,1 ),{ )
7.0,2.0

1(


u , )
3.0,4.0

2(


u , )
2.0,6.0

3(


u }), 

               (( 2e , 2x ,1 ),{ )
6.0,2.0

1(


u , )
2.0,3.0

2(


u , )
5.0,3.0

3(


u })} 

 

And the disagree-intuitionistic fuzzy soft expert set over U 

 

       ={ (( 1e , 1x ,0 ),{ )
4.0,2.0

1(


u , )
9.0,1.0

2(


u , )
5.0,2.0

3(


u }), 

(( 2e , 1x ,0 ), { )
6.0,4.0,3.0

1(


u , )
7.0,2.0

2(


u , )
2.0,5.0

3(


u }), 
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(( 1e , 2x ,0 ),{ )
4.0,3.0

1(


u , )
6.0,1.0

2(


u , )
3.0,6.0

3(


u }) 

(( 2e , 2x ,0 ), { )
4.0,4.0

1(


u , )
2.0,8.0

2(


u , )
4.0,2.0

3(


u })} 

 

 

4. Basic Operations on Intuitionistic Fuzzy Soft Expert Sets 
 

In this section, we introduce some basic operations on IFSES, namely the complement, 

AND, OR, union and intersection of IFSES, derive their properties, and give some 

examples.  

 

Definition  4.1  Let   ),( AF be  an  IFSES  over  a  soft  universe (U, Z).  Then  the  

complement  of   ),( AF denoted by   
cAF ),( is defined as: 

 
cAF ),(   =  c~ (F( )) for all  U. 

 

where c~  is an  intuitionistic fuzzy complement . 

 

Example 4.2 Consider the IFSES ),( ZF  over a soft universe (U, Z)    as given in Example 

3.2.  By using the intuitionistic fuzzy complement for F( ),  we  obtain  
cZF ),(  which is 

defined as: 

 
cZF ),( ={ (  ,  , 1)  = { )

1.0,8.0

1(


u , )
,1.0,6.0

2(


u , )
4.0,5.0

3(


u }}, 

{( 2e , 1x ,1 ) = { )
5.0,25.0

1(


u , )
25.0,6.0

2(


u , )
4.0,4.0

3(


u }}, 

{( 1e , 2x ,1 ) = { )
2.0,7.0

1(


u , )
4.0,3.0

2(


u , )
6.0,2.0

3(


u }}, 

{( 2e , 2x ,1 ) = { )
2.0,6.0

1(


u , )
3.0,2.0

2(


u , )
3.0,5.0

3(


u }}, 

{( 1e , 1x ,0 ) = { )
2.0,4.0

1(


u , )
1.0,9.0

2(


u , )
2.0,5.0

3(


u }}, 

{( 2e , 1x ,0 ) = { )
3.0,4.0

1(


u , )
2.0,7.0

2(


u , )
5.0,2.0

3(


u }}, 

{( 1e , 2x ,0 ) = { )
3.0,4.0

1(


u , )
1.0,6.0

2(


u , )
6.0,3.0

3(


u }}, 

 ( 2e , 2x ,0 ) = { )
4.0,4.0

1(


u , )
8.0,2.0

2(


u , )
2.0,4.0

3(


u }}. 

 

Proposition 4.3    If        is an IFSES over a soft universe (U, Z), then,  

 

          =      . 
 

Proof.  Suppose that is       an IFSES over a soft universe (U, Z) defined as        = 

F(e). Now let IFSES       =     . Then by Definition 4.1,       = G(e) such that G(e) 

= ̃ (F( )),  Thus it follows that: 

 

       =  ̃ (G( )) =(  ̃ ( ̃ (F( )))   F(e)=     . 

 

Therefore  
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           =      =     .Hence it is proven that           =      . 

 

Definition 4.4   Let        and        be any two IFSES s over a soft universe (U, Z). 

Then the union of        and      , denoted by        ̃       is an IFSES defined as 

      ̃       =     , where C= A   B   and 

 

                                        H( ) = F( )  ̃ G( ), for all    C 

 

   where                             H( ) = {

                            
                              

 (         )         
 

 

Where    is a s- norm. 

 

Proposition 4.5 Let      ,       and        be any three IFSES over a soft universe (U, 

Z).Then the following properties hold true. 

 

(i)       ̃      =       ̃       

(ii)       ̃        ̃       =        ̃        ̃       

(iii)       ̃             

(iv)       ̃ ),( A = ),( A  
 

Proof 
(i) Let       ̃      =      . Then by definition 4.4, for all    C, we have 

      = H( ) 

 

Where  

 

H( ) = F( )  ̃ G( ) However H( ) = F( )  ̃ G( )= G( )  ̃ F( ) since the union of these 

sets are commutative by definition 4.4. Therfore       =      ̃      . Thus the union of 

two IFSES are commutative i.e       ̃      =       ̃      . 

 

(ii) The proof is similar to proof of part(i) and is therefore omitted 

(iii) The proof is straightforward and is therefore omitted. 

(iv) The proof is straightforward and is therefore omitted. 

 

Definition 4.6  Let        and        be any two IFSES over a soft universe (U, Z). Then 

the intersection of        and      , denoted by       ̃       is an IFSES defined as 

      ̃       =      where C= A   B   and 

 

                                         H( ) = F( ) ̃ G( ), for all    C 

 

   where                             H( ) = {

         
                                 

 (         )         
 

Where    is a t-norm  
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Proposition 4.7   If       ,        and       are three IFSES over a soft universe (U, Z), 

then, 

 

(i)       ̃      =       ̃       

(ii)       ̃        ̃       =        ̃        ̃       
(iii)       ̃             

(iv) ),( AF  ̃ ),( A = ),( A  

 

Proof 

(i) The proof is similar to that of Propositio 4.5 (i) and is therefore omitted 

(ii) The prof is similar to the prof of part (i) and is therefore omitted 

(iii) The proof is straightforward and is therefore omitted. 

(iv) The proof is straightforward and is therefore omitted. 

 

 Proposition 4.8.  If      ,       and       are three IFSES over a soft universe (U, Z), 

then,  

 

(i)       ̃ (           ) = (      ̃      )  ̃ (      ̃      ) 

(ii)       ̃ (      ̃      ) = (      ̃      )  ̃ (      ̃      ) 

 

Proof. The proof is straightforward by definitions 4.4 and 4.6 and is therefore omitted. 
 

Proposition  4.9 If       ,        are two IFSES over a soft universe (U, Z), then,  

 

i.        ̃           =        ̃       . 

ii.        ̃           =        ̃       . 

 

Proof. 

(i) suppose that        and      be IFSES over a soft universe (U, Z)  defined as: 

 

        =  F( )  for all  A   Z and        =  G( )  for all  B   Z. Now , due to the 

commutative and associative properties of  IFSES, it follows that: by Definition 4.10 and 

4.11, it follows that: 

 

       ̃        =         ̃         

                              = ( ̃ (F( )))  ̃ ( ̃ (G( ))  

                              = (  ̃ (F( )  ̃G( )) 

                              =        ̃        . 

 

(ii) The proof is similar to the proof of part (i) and is therefore omitted. 

 

Definition 4.10 Let        and        be any two IFSES over a soft universe (U, Z). Then  

“        AND       “ denoted       ̃       is a defined by: 

 

      ̃      = (       
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Where (       = H(   ),  such that H(   ) = F( )   G( ) , for all (   )     .  and 

  represent the basic intersection. 

 

Definition 4.11 Let        and        be any two IFSES over a soft universe (U, Z). Then  

“        OR       “ denoted       ̃       is a defined by: 

 

      ̃      = (       

 

Where (       = H(   ) such that H(   ) = F( )   G( ), for all (   )     .  and   

represent the basic union. 

 

Proposition 4.12 If      ,       and       are three IFSES over a soft universe (U, Z), 

then,  

 

i.       ̃ (      ̃     ) = (      ̃     )  ̃      

ii.       ̃ (      ̃      ) = (      ̃      )  ̃       

iii.       ̃ (      ̃     ) = (      ̃      )  ̃ (      ̃      ) 

iv.       ̃ (      ̃      ) = (      ̃      )  ̃ (      ̃      ) 

 

Proof. The proofs are straightforward by Definitions 4.10 and 4.11 and are therefore 

omitted. 

 

Note: The “AND” and “OR” operations are not commutative since generally A   B   B 

 A. 

 

Proposition 4.13. If        and        are two IFSES over a soft universe (U, Z), then,  

 

i.        ̃           =        ̃       . 

ii.        ̃           =        ̃       . 

 

Proof. 

(i) suppose that         and         be IFSES over a soft universe (U, Z)  defined as: 

 

 (       = (F( ) for all  A   Z and       =  G( )  for all  B   Z. Then by 

Definition 4.10 and 4.11, it follows that: 

 

               ̃         =        ̃        

                                      =              

                                      = ( ̃ (F( )  G( )) 

                                      = (  ̃ (F( ))   ̃ (G( ))) 

                                      =         ̃         

                                      =        ̃       . 

 

(ii) the proof is similar to that of part (i) and is therefore omitted. 
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5. Application of Intuitionistic Fuzzy Soft Expert Sets in a Decision 

Making Problem. 
 

In this section,  we introduce a generalized algorithm which will be applied to the IFSES 

model introduced in Section 3 and used to solve a hypothetical decision making problem.  

 

Suppose  that  company  Y  is  looking  to  hire  a  person  to  fill  in  the  vacancy  for  a  

position  in  their company.  Out of all the people who applied for the position,  three  

candidates were  shortlisted  and these three candidates  form  the  universe  of  elements, 

U=   { 1u , 2u , 3u }  The  hiring  committee  consists  of  the  hiring manager, head of 

department and the HR director of the company and this committee is  represented by the 

set {p, q, r }(a set of experts)  while the set Q= {1=agree, 0=disagree  } represents the  set 

of opinions of  the hiring  committee  members.  The  hiring  committee  considers  a  set  

of  parameters,   E={ 1e , 2e , 3e , 4e } where  the  parameters ie represent  the  characteristics  

or  qualities  that  the  candidates  are assessed  on,  namely  “relevant  job  experience”,  

“excellent  academic  qualifications  in  the  relevant  field”, “attitude and level of 

professionalism” and “technical knowledge” respectively. After interviewing all the three 

candidates  and  going  through  their  certificates  and  other  supporting  documents,  the  

hiring  committee constructs the following IFSES. 

 

( , Z) ={ (  ,  , 1)  = { )
4.0,2.0

1(


u , )
4.0,1.0

2(


u , )
7.0,1.0

3
(



u }}, 

 (  ,  , 1) = { )
,2.0,3.0

1(


u , )
2.0,25.0

2(


u , )
6.0,2.0

3(


u }}, 

 (  ,  , 1) = { )
7.0,2.0

1(


u , )
3.0,4.0

2(


u , )
6.0,1.0

3(


u }}, 

  (  ,  , 1) = { )
6.0,2.0

1(


u , )
2.0,3.0

2(


u , )
1.0,3.0

3(


u }}, 

  (  ,  , 1) = { )
6.0,4.0

1(


u , )
3.0,2.0

2(


u , )
2.0,3.0,

3(


u }}, 

  (  ,  , 1) = { )
3.0,3.0

1(


u , )
1.0,9.0

2(


u , )
2.0,1.0

3(


u }}, 

  (  ,  , 1) ={ )
4.0,1.0

1(


u , )
2.0,6.0

2(


u , )
4.0,2.0

3(


u }}. 

  (  ,  , 1) ={ )
3.0,5.0

1(


u , )
2.0,8.0

2(


u , )
4.0,3.0

3(


u }}. 

 (  ,  , 1) = { )
5.0,4.0

1(


u , )
4.0,6.0

2(


u , )
4.0,2.0

3(


u }}. 

 (  ,  , 1) = {
 7.0,3.0

1(
u , )

2.0,3.0

2(


u , )
2.0,2.0

3(


u }}. 

 (  ,  , 1) = { )
2.0,5.0

1(


u , )
6.0,1.0

2(


u , )
2.0,3.0

3(


u }}. 

 (  ,  , 0) = { )
4.0,1.0

1(


u , )
2.0,3.0

2(


u , )
4.0,2.0

3(


u }}. 

 (  ,  , 0) = { )
2.0,3.0

1(


u , )
4.0,2.0

2(


u , )
1.0,3.0

3(


u }}. 

 (  ,  , 0) = { )
2.0,3.0

1(


u , )
,4.0,6.0

2(


u , )
5.0,4.0

3(


u }}. 

 (  ,  , 0) = { )
4.0,2.0

1(


u , )
9.0,1.0

2(


u , )
2.0,1.0

3(


u }}, 

  (  ,  , 0) = { )
4.0,3.0

1(


u , )
7.0,2.0

2(


u , )
5.0,3.0

3(


u }}, 

 (  ,  , 0) = { )
8.0,2.0

1(


u , )
2.0,1.0

2(


u , )
3.0,6.0

3(


u }}, 

 (  ,  , 0) = { )
4.0,2.0

1(


u , )
2.0,6.0

2(


u , )
4.0,3.0

3(


u }}. 

 (  ,  , 0) = { )
4.0,3.0

1(


u , )
6.0,3.0

2(


u , )
2.0,25.0

3(


u }}. 
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 (  ,  , 0) = { )
5.0,4.0

1(


u , )
2.0,4.0

2(


u , )
3.0,4.0

3(


u }}. 

 (  ,  , 0) = { )
2.0,3.0

1(


u , )
5.0,3.0

2(


u , )
1.0,5.0

3(


u }}. 

 

Next the IFSES ( F , Z ) is used  together with a generalized  algorithm to solve the  

decision making problem  stated  at  the  beginning  of  this  section.  The  algorithm  given  

below  is  employed  by  the  hiring committee to determine  the best or most suitable 

candidate to be hired  for the position.  This algorithm is a generalization of the algorithm 

introduced by  Alkhazaleh and Salleh (see [30]) which  is used in the  context of the IFSES 

model that is introduced in this paper. The generalized algorithm is as follows: 

 

Algorithm 

 

1. Input the IFSES ( F , Z ). 

 

2. Find the values of       
    -       

      for each element iu U  where       
    , and 

       
     are the membership function and non-membership function of each of the 

elements iu U   respectively.  

 

3.  Find the highest numerical grade for the agree- IFSES and disagree- IFSES. 

 

4.  Compute the score of each element   iu U  by taking the sum of the products of the 

numerical grade of each  element   for  the  agree- IFSES  and  disagree IFSES, denoted by  

iA  and  iD   respectively.  

 

5.  Find the values of the score ir = iA - iD    for each element   iu U.        

 

 

Table I.  Values of        
    -       

       for all iu U. 

 

 
1u  2u  

3u   
1u  2u  

3u  

(  ,  , 1) -0.2 -0.3 -0.6 (  ,  , 0) 0.1 -0.2 0.2 

(  ,  , 1) 0.1 0.05 -0.4 (  ,  , 0) 0.1 -0.2 - 0.1 

(  ,  , 1) -0.5 0.1 -0.5 (  ,  , 0) -0.2 -0.8 -0.1 

(  ,  , 1) -0.4 0.1 0.2 (  ,  , 0) -0.1 -0.5 -0.2 

(  ,  , 1) -0.2 -0.1 0.1 (  ,  , 0) -0.6 -0.1 0.3 

(  ,  , 1) 0 0.8 -0.1 (  ,  , 0) -0.1 0.4 -0.1 

(  ,  , 1) -0.3 0.4 -0.2 (  ,  , 0) -0.1 -0.3 0.05 

(  , , 1) 0.2 0.6 -0.1 (  ,  , 0) -0.1 0.2 0.1 

(  ,  , 1) -0.1 0.2 -0.2 (  ,  , 0) 0.1 -0.2 0.4 

(  ,  , 1) -0.4 0.1 0 

(  ,  , 1) 0.3 -0.5 0.1 

(  ,  , 0) -0.3 0.1 -0.2 
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6.  Determine the value of the highest score, s= 
iumax { ir  }.  Then the decision is to choose 

element as the optimal or best solution to the problem. If there is more than one element 

with the highest ir  score, then any one of those elements can be chosen as the optimal 

solution.  

 

Then we can conclude that the optimal choice for the hiring committee is to hire candidate  

iu   to fill the vacant position 

 

Table I gives the values of         
    -       

      for each element  iu U    The notation 

a ,b   gives the values of        
    -       

    . 

 

In Table  II and  Table  III, we  gives the highest numerical grade  for the  elements in the 

agree- IFSES and disagree IFSES respectively.  
 

Table II.    Numerical Grade for Agree- IFSES 

 

    
Highest Numeric Grade 

(  ,  , 1)    -0.2 

(  ,  , 1)    0.1 

(  ,  , 1)    0.1 

(  ,  , 1)    0.2 

(  ,  , 1)    0.1 

(  ,  , 1)    0.8 

(  ,  , 1)    0.4 

(  , , 1)    0. 6 

(  ,  , 1)    0.2 

(  ,  , 1)    0.1 

(  ,  , 1)    0.3 

 
 

Score (   ) = -0.1 + 0.3 =  0.2 

Score (   ) =  0.1+0.80.4+0.6+0.2+0.1 = 2.2 

Score (   ) =0.2+0.1 = 0.3 

 
Table III.    Numerical Grade for Disagree-IFSES 

 

    
Highest Numeric Grade 

(  ,  , 0)    0.1 

(  ,  , 0)    0.2 

(  ,  , 0)    0.1 

(  ,  , 0)    -0.1 

(  ,  , 0)    -0.1 

(  ,  , 0)    0.3 

(  ,  , 0)    0.4 

(  ,  , 0)    0.05 

(  ,  , 0)    0.2 

(  ,  , 0)    0.4 
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Score (   ) = 0.1-0.1 =0                 

Score (   ) =  0.1+0.4+0.2 = 0.7  

Score (   ) = 0.2 -0.1 +0.3 + 0.05 +0.4  = 0.85 

 

Let    iA  and  iD   represent  the  score  of  each  numerical  grade  for  the  agree- IFSES  

and  disagree- IFSES respectively. These values are given in Table IV. 

 

 
Table IV.  The score    =    -    

 

         
Score (   ) = 0.2 Score (   ) = 0 0.2 

Score (   ) = 2.2 Score (   ) = 0.7 1.45 

Score (   ) = 0.3 Score (   ) = 0.85 -0.55 

 

 

Then s= 
iumax { ir  } =   , the hiring committee should hire candidate    to fill in the 

vacant position  

 

 

6. Conclusion 

 
In this paper we have introduced the concept of intuitionistic fuzzy soft expert soft  set and 

studied some of its properties. The complement, union,  intersection, AND or OR 

operations have been defined on the intuitionistic fuzzy soft expert set. Finally, an 

application of this concept is given in solving a decision making problem. This new 

extension will provide a significant addition to existing theories for handling uncertainties, 

and lead to potential areas of further research and pertinent applications. 
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