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Editorial 
 

I am delighted to welcome you to the second issue of the Journal of New Theory (JNT) is 
completed with 11 articles.   

JNT publishes original research articles, reports, reviews and commentaries that are based on 
a theory of mathematics. However, the topics are not limited to only mathematics, but 
also include statistics, computer science, physics, engineering, chemistry, biology, economics 
or social sciences that use a theory of mathematics. 

JNT is a refereed, electronic, open access and international journal.  
 
Papers in JNT are published free of charge.  
 
We would like to express our deepest thanks to all of the members of the editorial board and 
reviewers of the papers in this issue who are U. Orhan, A. Filiz, A. Fenercioğlu, A. Sarı, A. 
Yıldırım, A. S. Sezer, B. Mehmetoğlu, B. H. Çadırcı, C. Kaya, Ç. Çekiç, E. Altuntaş, E. 
Turgut, F. Karaaslan, F. Smarandache, G. Erdal, H. Aktaş,  H. M. Doğan, H. Günal, H. 
Kızılaslan, H. Önen, H. Şimşek, İ. Zorlutuna, İ. Deli, İ. Gökçe, İ. Türkekul, İ. Parmaksız, J. 
Ye, M. Akar, M. Akdağ, M. Ali, M. Çavuş, M. Demirci,  M. Sağlam, N. Yeşilayar, O. 
Muhtaroğlu, P. K. Maji, R. Yayar, S. Broumi, S. Karaman, S. Tarhan, S. Enginoğlu, S. 
Demiriz, S. Karataş, S. Öztürk, S. Eğri, Ş. Sözen, Y. Budak, Y. Karadağ, P. G. Patil, S. 
Hussain, A. O. Akdemir, N. Çağman, E. E. Kara, M. Suresh, M. Öztürk, S. Halder, T.Som 
and I. Simşek.  
 
Pleases, write any original idea. If it is true, it gives an opportunity to use. If it is incomplete, 
it gives an opportunity to complete. If it is incorrect, it gives an opportunity to correct. 
 
You can reach us from journal homepage at http://www.newtheory.org. To receive further information 
and to send your recommendations and remarks, or to submit articles for consideration, please e-mail 
us at jnt@newtheory.org 
 
We hope you will enjoy this issue of JNT. We are looking forward to hearing your feedback and 
receiving your contributions. 
 
Happy reading! 

03 March 2015 
 
Naim Çağman  
Editor-in-Chief  
Journal of New Theory  
http://www.newtheory.org 
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NEW CONTINUOUS AND OPEN FUNCTIONS

IN TOPOLOGICAL SPACES

Md.Hanif PAGE* <hanif01@yahoo.com>

Department of Mathematics, B.V.B.College of Eng and Tech., Hubli,Karnatak State, India

Abstract − The aim of this paper is to introduce new continuous and open functions called somewhat
θgs-continuous and somewhat θgs-open functions using θgs-open sets.Its various characterisations and
properties are established.

Keywords − θgs-open set, Somewhat θgs-continuous, Somewhat θgs-irresolute , Somewhat θgs-open
functoin.

1 Introduction

Levine [6] introduced the notion of generalized closed set. This notion has been studied extensively in
recent years by many toplogists. The investigation of generalized closed sets had led to several new and
interesting concepts. Recently in [7] the notion of of θ-generalized semi closed (briefly,θgs-closed)set
was introduced by G.B.Navalagi et al. Gentry and Hoyle[4] introduced and studied the conepts of
somewhat continuous and somewhat open functions.In [11] the notion of somewhat ωα-continous and
somewhat ωα-open functions are introduced.
In this paper, we will continue the study of related functions with θgs-closed and θgs-open sets. We
introduce and charcterize the concept of somewhat θgs-continuous and somewhat θgs-irresolute and
somewhat θgs-open functions.

2 Preliminary

Throughout this paper (X, τ), (Y, σ)(or simply X, Y )denote topological spaces on which no separation
axioms are assumed unless explicitly stated. For a subset A of a space X the closure and interior of A
with respect to τ are denoted by Cl(A) and Int(A) respectively.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.



Journal of New Theory 2 (2015) 2-7 3

Definition 2.1. A subset A of a space X is called
(1) a semi-open set [5] if A ⊂ Cl(Int(A)).
(2) a semi-closed set [2] if Int(Cl(Int(A))) ⊂ A.

Definition 2.2. [3] A point x ∈ X is called a semi-θ-cluster point of A if sCl(U) ∩ A 6= φ, for each
semi-open set U containing x. The set of all semi-θ-cluster point of A is called semi-θ-closure of A and
is denoted by sClθ(A). A subset A is called semi-θ-closed set if sClθ(A) = A. The complement of
semi-θ-closed set is semi-θ-open set.

Definition 2.3. [7] A subset A of X is θgeneralized semi-closed(briefly, θgs-closed)set if sClθ(A) ⊂ U
whenever A ⊂ U and U is open in X. The complement of θgs-closed set is θgeneralized-semi open
(briefly,θgs-open).The family of all θgs-closed sets of X is denoted by θGSC(X,τ) and θgs-open sets
by θGSO(X,τ).

Definition 2.4. A function f : (X, τ) → (Y, σ) is called:
(i) θ-generalized semi-irresolute (briefly,θgs-irresolute)[8] if f−1(F ) is θgs-closed set in X for every
θgs-closed set F of Y
(ii) θ-generalized semi-continuous (briefly,θgs-continuous)[8] if f−1(F ) is θgs-closed set in X for every
closed set F of Y .
(iii) somewhat continuous [4] if for U ∈ σ and f−1(U) 6= φ there exists an open set V in X such that
V 6= φ and V ⊆ f−1(U).

Definition 2.5. [9] A function f : X → Y is said to be θgs-open (resp., θgs-closed) if f(V ) is θgs-open
(resp., θgs-closed) in Y for every open set (resp., closed) V in X.

3 Somewhat θgs-Continuous Functions

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be somewhat θgs-continuous function if for
every U ∈ σ and f−1(U) 6= φ there exists a θgs-open set V in X such that and V 6= φ and V ⊆ f−1(U).

Theorem 3.2. Every somewhat continuous function is somewhat θgs-continuous funtion.

Proof: Let f : X → Y is somewhat θgs-continuous function. Let U be any open set in Y such that
f−1(U) 6= φ. Since f is somewhat continuous function, there exists an open set V in X such that V 6= φ
and V ⊆ f−1(U). Since every open set is θgs-open set ,there exists θgs-open set V such that V 6= φ
and V ⊆ f−1(U), which implies f is somewhat θgs-continuous function.

Remark 3.3. . Converse of the above theorem need not be true in general which follows from the
following example.

Example 3.4. . Let X = Y = {a, b, c}, τ = {X, φ, {a}, {b}, {a, b}}, σ = {X, φ, {a}, {b, c}}. We have
θGSO(X) = {X,φ, {a}, {b, c}}. Then the identity function is somewhat θgs-continuous function but
not somewhat continuous function.

Theorem 3.5. . If f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two functions. If f is somewhat
θgs-continuous function and g is contonuous function, then g ◦ f is somewhat θgs-continuous funtion.

Proof: Let U be any open set in Z. Suppose that g−1(U) 6= φ. Since U ∈ η and g is continuous
function, g−1(U) ∈ η. Suppose that f−1(g−1(U)) 6= φ. By hypothesis f is somewhat θgs-continuous
function, there exists a θgs-open set in V in X such that V 6= φ and V ⊆ f−1(g−1(U)) = (g ◦ f)−1(U),
which implies that V ⊆ (g ◦ f)−1(U). Therefore g ◦ f is somewhat θgs-continuous funtion.

Definition 3.6. . A subset M of a topological space X is said to be θgs-dense in X if there is no
proper θgs-closed set F in X such that M ⊂ F ⊂ X.
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Theorem 3.7. . If f : (X, τ) → (Y, σ) be a function. Then the following are equivalent;
(i) f is somewhat θgs-continuous function.
(ii) If F is a closed subset of Y such that f−1(F ) 6= X, then there is proper θgs-closed subset D of X
such that f−1(F ) ⊂ D.
(iii) If M is a θgs-dense subset of X, then f(M) is a dense subset of Y.

Proof: (i)⇒(ii):Let F be a closed subset of Y such that f−1(F ) 6= X. Then f−1(Y − F ) = X −
f−1(F ) 6= φ. By hypothesis (i) there exists a θgs-open set V in X such that V 6= φ and V ⊂
f−1(Y − F ) = X − f−1(F ). This imples f−1(F ) ⊂ X − V and X-V = D is a θgs-closed set in
X.Therefore(ii) holds.

(ii)⇒ (i): Let U be an open set in Y and f−1(U) 6= φ. Then f−1(Y − U) = X − f−1(U) = φ.
By hypothesis, there exists a proper θgs-closed set D such that f−1(Y − U) ⊂ D. This implies that
X −D ⊂ f−1(U) and X-D is θgs-open and X −D 6= φ.

(ii)⇒(iii): Let M be any θgs-dense set in X. Suppose f(M) is not dense subset of Y, then there
exists a proper θgs-closed set D such that M ⊂ f−1(F ) ⊂ D ⊂ X. This contradicts the fact that M is
a θgs-dense set in X. Therefore (iii) holds.

(iii)⇒ (ii): Suppose (iii) is not true. Then there exists a closed set F in Y such that f−1(F ) 6= X.
But there is no proper θgs-closed set that f−1(F ) ⊂ D. This means that f−1(F ) is θgs-dense in X.
But from hypothesis f(f−1(F )) = F must be dense in Y, which is contradiction to the choice of F.
Hence (ii) hold.

Theorem 3.8. .If f : (X, τ) → (Y, σ) be a function and X = A ∪ B, A and B are open subsets of X
such that (f/A) and (f/B) are somewhat θgs-continuous functions then f is somewhat θgs-continuous
function.

Proof:Let U be an open set in Y such that f−1(U) 6= φ. Then (f/A)−1(U) 6= φ of (f/B)−1(U) 6= φ
or both (f/A)−1(U) 6= φ and (f/B)−1(U) 6= φ.

Case(i): Suppose (f/A)−1(U) 6= φ. Since (f/A) is somewhat θgs-continuous, then there exists a
θgs-open set V in A such that V 6= φ and V ⊂ (f/A)−1(U) ⊆ f−1(U). Since V is θgs-open set in A
and A is open in X,V is θgs-open in X. Hence f is somewhat θgs-continuous function.

Case(ii): Suppose (f/B)−1(U) 6= φ. Since (f/B) is somewhat θgs-continuous function, then there
exists a θgs-open set V in B such that V 6= φ and V ⊂ (f/B)−1(U) ⊂ f−1(U). Since V is θgs-open in
B and B is open in X, V is θgs-open in X. Hence f is somewhat θgs-continuous function.

Case(iii): Suppose (f/A)−1(U) 6= φ and (f/B)−1(U) 6= φ. Follows from case(i) and case(ii).

Definition 3.9. A topological space X is said to be θgs-separable if there exists a countable subset B
of X which is θgs-dense in X.

Theorem 3.10. . If f is somewhat θgs-continuous function from X onto Y and if X is θgs-separable,
then Y is separable.

Proof: Let f : (X, τ) → (Y, σ) be somewhat θgs-continuous function such that X is θgs-separable.
Then by definition there exists a countable subset B of X which is θgs-dense in X. Then by Theorem
3.7, f(B) is dense in Y. Since B is countable f(B) is also countable which is dense in Y, ehich implies
that Y is separable.

4 Somewhat θgs-irresolute Function

Definition 4.1. A function f : (X, τ) → (Y, σ) is said to be somewhat θgs-irresolute function if for
U ∈ θGSO(σ) and f−1(U) 6= φ there exists a non-empty θgs-open set V in X such that V ⊂ f−1(U).

Theorem 4.2. . If f is somewhat θgs-irresolute function and g is θgs-irresolute function, then g ◦ f is
somewhat θgs-irresolute function.



Journal of New Theory 2 (2015) 2-7 5

Proof: Let U ∈ θGSO(η). Suppose that g−1(U) 6= φ. Since U ∈ θGSO(η) and g is somewhat
θgs-irresolute function,there exists a θgs-open set V in X such that V 6= φ and V ⊆ f−1(g−1(U)).
But f−1(g−1(U)) = (g ◦ f)−1(U), which implies that V ⊆ (g ◦ f)−1(U). Therefore g ◦ f is somewhat
θgs-irresolute function.

Theorem 4.3. . If f : (X, τ) → (Y, σ) be a function. Then the following are equivalent;
(i) f is somewhat θgs-irresolute function.
(ii) If F is a closed subset of Y such that f−1(F ) 6= X, then there is proper θgs-closed subset D of X
such that f−1(F ) ⊂ D.
(iii) If M is a θgs-dense subset of X, then f(M) is a dense subset of Y.

Proof: Obvious.

Theorem 4.4. .If f : (X, τ) → (Y, σ) be a function and X = A ∪ B, A and B are open subsets of
X such that (f/A) and (f/B) are somewhat θgs-irresolute function then f is somewhat θgs-irresolute
function.

Proof: Obvious.

Definition 4.5. .[1] If X is a set and τ and σ are topologies for X, then τ is equivalent to σ provided
if U ∈ τ and U 6= φ, then there is a open set V in (X, σ) such that V 6= φ and V ⊂ U and if U ∈ σ
and U 6= φ then there is an open set V in (X, τ) such that V 6= φ and V ⊂ U .

Definition 4.6. If X is a set and τ and σ are topologies for X, then τ is said to be θgs-equivalent to
σ provided if U ∈ τ and U 6= φ, then there is a θgs-open set V in (X, σ) such that V 6= φ and V ⊂ U
and if U ∈ σ and U 6= φ then there is θgs-open set V in (X, τ) such that V 6= φ and V ⊂ U .

Theorem 4.7. . Let f : (X, τ) → (Y, σ) be a somewhat continuous function and let τ∗ be a topology
for X, which is θgs-equivalent to τ then the function f : (X, τ∗) → (Y, σ) is somewhat θgs-continuous
function.

Proof: Let U be any open set in (Y, σ) such that f−1(U) 6= φ. Since by hypothesis f : (X, τ) → (Y, σ)
is somewhat continuous function by definition there exists an open set in O in (X, τ) such that O 6= φ
and O ⊆ f−1(U). Since O is an open set in (X, τ) such that O 6= φ and since by hypothesis τ
is θgs-equivalent to τ∗ by definition there exists a θgs-open set V in (X, τ∗) such that V 6= φ and
V ⊂ O ⊂ f−1(U). Hence O ⊂ f−1(U). Thus for any open set U in (Y, σ) such that f−1(U) 6= φ
there exists a θgs-open set V in (X, τ∗) such that V ⊂ f−1(U). So f : (X, τ∗) → (Y, σ) is somewhat
θgs-continuous function.

Theorem 4.8. . Let f : (X, τ) → (Y, σ) be a somewhat θgs-continuous function and let σ∗ be
a topology for Y, which is equivalent to σ. Then the function f : (X, τ) → (Y, σ∗) is somewhat
θgs-continuous function.

Proof: Let U be any open set in (Y, σ∗) such that f−1(U) 6= φ which implies U 6= φ. Since σ and
σ∗ are equivalent, then there exists an open set W in (Y, σ) such that W 6= φ and W ⊂ U . Now, W
is open set such that W 6= φ, which implies f−1(W ) 6= φ. Now by hypothesis f : (X, τ) → (Y, σ)
is somewhat θgs-continuous function.Therefore there exists a θgs-open set in V in (X, τ) such that
V ⊆ f−1(W ). Now W ⊂ U implies f−1(W ) ⊂ f−1(U). This implies V ⊂ f−1(W ) ⊂ f−1(U). So, we
have V ⊂ f−1(U), which implies that f : (X, τ) → (Y, σ∗) is somewhat θgs-continuous function.

Theorem 4.9. . Let f : (X, τ) → (Y, σ) be a somewhat θgs-irresolute surjection and let τ∗ be
a topology for X, which is θgs-equivalent to τ then the function f : (X, τ∗) → (Y, σ) is somewhat
θgs-irresolute function.
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Proof: Let U be any open set in (Y, σ) such that f−1(U) 6= φ. Since by hypothesis f : (X, τ) → (Y, σ)
is somewhat θgs-irresolute, by definition there exists a θgs-open set in O in (X, τ) such that O 6= φ
and O ⊆ f−1(U). Since O is a θgs-open set in (X, τ) such that O 6= φ and since by hypothesis τ
is θgs-equivalent to τ∗ by definition there exists a θgs-open set V in (X, τ∗) such that V 6= φ and
V ⊂ O ⊂ f−1(U). Hence O ⊂ f−1(U). Thus for any open set U in (Y, σ) such that f−1(U) 6= φ
there exists a θgs-open set V in (X, τ∗) such that V ⊂ f−1(U). So f : (X, τ∗) → (Y, σ) is somewhat
θgs-irresolute function.

Theorem 4.10. . Let f : (X, τ) → (Y, σ) be a somewhat θgs-irresolute surjection function and let
σ∗ be a topology for Y, which is equivalent to σ. Then the function f : (X, τ) → (Y, σ∗) is somewhat
θgs-continuous function.

Proof: Let U be any open set in (Y, σ∗) such that f−1(U) 6= φ which implies U 6= φ. Since σ and σ∗

are equivalent, then there exists an open set W in (Y, σ) such that W 6= φ and W ⊂ U . Now, W is open
set such that W 6= φ, which implies f−1(W ) 6= φ. Now by hypothesis f : (X, τ) → (Y, σ) is somewhat
θgs-irresolute function. Therefore there exists a θgs-open set in V in X such that V ⊆ f−1(W ). Now
W ⊂ U implies f−1(W ) ⊂ f−1(U). This implies V ⊂ f−1(W ) ⊂ f−1(U). So, we have V ⊂ f−1(U),
which implies that f : (X, τ) → (Y, σ∗) is somewhat θgs-irresolute function.

5 Somewhat θgs-Open Functions

Definition 5.1. A function f : (X, τ) → (Y, σ) is said to be somewhat θgs-open function provided
that for every U ∈ τ and U 6= φ there exists a θgs-open set V in Y such that and V 6= φ and V ⊆ f(U).

Theorem 5.2. Every somewhat open function is somewhat θgs-open function.

Proof: Let f : (X, τ) → (Y, σ) is said to be somewhat open function. Let U ∈ τ and U 6= φ. Since
f is somewhat open function, there exists an open set V in Y such that V 6= φ and V ⊆ f(U). But
every open is θgs-open. So there exists a θgs-open set V in Y such that V 6= φ. Thus f is somewhat
θgs-open function.

Remark 5.3. .Converse of the above theorem need not be true in general, which follows from the
following example.

Example 5.4. .Let X = Y = {a, b, c}, τ = {X,φ, {b}, {c}, {b, c}}, σ = {Y, φ, {b}, {c}, {a}, {a, c}}.
We have θGSO(Y) = {Y, φ, {b}, {c}, {a, b}, {b, c}}. Then the identity function is somewhat θgs-open
function but not somewhat open function.

Theorem 5.5. . If f : (X, τ) → (Y, σ) is an open function and g : (Y, σ) → (Z, η) somewhat θgs-open
function then g ◦ f is somewhat θgs-open funtion.

Proof: Let U ∈ τ . Suppose U 6= φ. Since f is an open function, f(U) is open and f(U) 6= φ. Thus
f(U) ∈ σ and f(U) 6= φ. Since g is somewhat θgs-open function and f(U) ∈ σ such that f(U) 6= φ
there exists a θgs-open set in V ∈ η, V ⊂ g(f(U)), which implies g ◦ f is somewhat θgs-open funtion.

Theorem 5.6. . If f : (X, τ) → (Y, σ) be a bejective function. Then the following are equivalent;
(i) f is somewhat θgs-open function.
(ii) If F is a closed subset of Y such that f(F ) 6= Y , then there exists a θgs-closed subset D of Y such
that D 6= φ and f(F ) ⊂ D.

Proof: (i)⇒(ii):Let F be a closed subset of Y such that f(F ) 6= Y . From (i), there exists a θgs-open
set V in X such that V 6= φ such that V ⊂ f(X − F ). Put D = Y-V. Clearly D is a θgs-closed set in
Y and we claim that D 6= φ. If D = Y , then V = φ which is a contradiction. Since V ⊂ f(X − F ),
D = Y − V ⊂ Y − [f(X − F )] = f(F ).

(ii)⇒ (i): Let U be any non empty open set in X.Put F = X − U . Then F is a closed subset of
X and f(X − U) = f(F ) = Y − f(U) whicg implies f(F ) 6= φ. Therefore by (ii), there is a θgs-closed
subset D of Y such that f(U) ⊂ D. Put V = X-D, clearly V is θgs-open set and V 6= φ.Further
V = X −D ⊂ Y − f(F ) = Y − [Y − f(F )] = f(U).
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Theorem 5.7. . If f : (X, τ) → (Y, σ) be somewhat θgs-open function and A be any open subset of
X. Then f/A : (A, τ/A) → (Y, σ) is also somewhat θgs-open funtion.

Proof: Let U ∈ τ/A such that U 6= φ. Since U is open in A and A is open in (X, τ), U is open in
(X, τ) and since by hypothesis f is somewhat θgs-open function, then there exists a θgs-open set in V
in Y, such that V ⊂ f(U). Thus, for any open set U in (A, τ/A) with U 6= φ, there exists a θgs-open
set V in Y such that V ⊂ f(U) which implies f/A is somewhat θgs-open funtion.

Theorem 5.8. . Let f : (X, τ) → (Y, σ) be a function such that f/A and f/B are somewhat θgs-open,
then f is somewhat θgs-open funtion, where X = A ∪B, A and B are open subsets of X.

Proof:Let U be an open set in X such that U 6= φ. Since X = A∪B , either A∩U 6= φ or B ∩U 6= φ
or both A ∩ U 6= φ and B ∩ U 6= φ. Since U is opn in X, U is open in both Then A, τ/A and B, τ/B.

Case(i): Suppose U ∩A 6= φ where U ∩A is open in A, τ/A). Since by hypothesis f/A is somewhat
θgs-open function, then there exists a θgs-open set V in Y such that V ⊂ f(U ∩ A) ⊂ f(U),which
implies f is somewhat θgs-open function.

Case(ii): Suppose U ∩B 6= φ where U ∩B is open in B, τ/B). Since by hypothesis f/B is somewhat
θgs-open function, then there exists a θgs-open set V in Y such that V ⊂ f(U ∩ B) ⊂ f(U),which
implies f is somewhat θgs-open function.

Case(iii): Suppose that U ∩A 6= φ and U ∩B 6= φ. Then obviously f is somewhat θgs-open function
from case(i) and case(ii). Thus f is somewhat θgs-open function.
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Abstract − In this paper, a new class of open soft sets in a soft topological space, called b-open soft
sets, is introduced and studied. Moreover, the relations this class and these different types of subsets
of soft topological spaces, which introduced in [9], is studied. In particular, this class is contained in
the class of β-open soft sets and contains the classes of open soft sets, pre open soft sets, semi open
soft sets and α-open soft sets. Also, the authors introduce the concept of b-continuous soft functions
and study some of their properties in detail. As a consequence the relations of some soft continuities
are shown in a diagram.

Keywords − Soft set, Soft topological space, Pre-open soft set, α-open soft set, Semi-open soft set,
β-open soft set, b-open soft sets.

1 Introduction

The concept of soft sets was first introduced by Molodtsov [22] in 1999 as a general mathematical tool
for dealing with uncertain objects. In [22, 23], Molodtsov successfully applied the soft theory in several
directions, such as smoothness of functions,game theory, operations research,Riemann integration,
Perron integration, probability, theory of measurement, and so on.
After presentation of the operations of soft sets [20], the properties and applications of soft set theory
have been studied increasingly [4, 17, 23, 25]. In recent years, many interesting applications of soft set
theory have been expanded by embedding the ideas of fuzzy sets [2, 3, 5, 18, 19, 20, 21, 23, 24, 28].
To develop soft set theory, the operations of the soft sets are redefined and a uni-int decision making
method was constructed by using these new operations [6].
Recently, in 2011, Shabir and Naz [26] initiated the study of soft topological spaces. They defined
soft topology on the collection τ of soft sets over X. Consequently, they defined basic notions of soft
topological spaces such as open and closed soft sets, soft subspace, soft closure, soft nbd of a point, soft
separation axioms, soft regular spaces and soft normal spaces and established their several properties.
In [9], Kandil et. al. introduced some soft operations such as semi open soft, pre open soft, α-open
soft and β-open soft and investigated their properties in detail. Studies on the soft topological spaces
have been accelerated [7, 8, 10, 11, 12, 13, 14, 15, 16, 27].

**Edited by Serkan Karataş (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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The main purpose of this paper, is to introduce a new class of open soft sets in a soft topological
space, called b-open soft sets, to soft topological spaces. Also, the relations this class and these different
types of subsets of soft topological spaces is studied. Moreover, the authors introduced the concept of
b-continuous soft functions and study some of their properties in detail.

2 Preliminary

In this section, we present the basic definitions and results of soft set theory which will be needed in
the sequel.

Definition 2.1. [22] Let X be an initial universe and E be a set of parameters. Let P (X) denote
the power set of X and A be a non-empty subset of E. A pair (F,A) denoted by FA is called a soft
set over X , where F is a mapping given by F : A → P (X). In other words, a soft set over X is a
parametrized family of subsets of the universe X. For a particular e ∈ A , F (e) may be considered the
set of e-approximate elements of the soft set (F, A) and if e 6∈ A, then F (e) = φ i.e
FA = {F (e) : e ∈ A ⊆ E, F : A → P (X)}. The family of all these soft sets over X denoted by
SS(X)A.

Definition 2.2. [20] Let FA, GB ∈ SS(X)E . Then FA is soft subset of GB , denoted by FA⊆̃GB , if

(1) A ⊆ B, and

(2) F (e) ⊆ G(e), ∀e ∈ A.

In this case, FA is said to be a soft subset of GB and GB is said to be a soft superset of FA, GB⊇̃FA.

Definition 2.3. [20] Two soft subset FA and GB over a common universe set X are said to be soft
equal if FA is a soft subset of GB and GB is a soft subset of FA.

Definition 2.4. [4] The complement of a soft set (F,A), denoted by (F,A)′, is defined by (F, A)′ =
(F ′, A), F ′ : A → P (X) is a mapping given by F ′(e) = X − F (e), ∀ e ∈ A and F ′ is called the soft
complement function of F .
Clearly (F ′)′ is the same as F and ((F,A)′)′ = (F, A).

Definition 2.5. [26] The difference of two soft sets (F, E) and (G,E) over the common universe X,
denoted by (F, E)− (G,E) is the soft set (H,E) where for all e ∈ E, H(e) = F (e)−G(e).

Definition 2.6. [26] Let (F,E) be a soft set over X and x ∈ X. We say that x ∈ (F,E) read as x
belongs to the soft set (F,E) whenever x ∈ F (e) for all e ∈ E.

Definition 2.7. [26] Let x ∈ X. Then the soft set (x,E) over X, where xE(e) = {x} ∀e ∈ E, called
the singleton soft point and denoted by xE .

Definition 2.8. [20] A soft set (F, A) over X is said to be a NULL soft set denoted by φ̃ or φA if for
all e ∈ A, F (e) = φ (null set).

Definition 2.9. [20] A soft set (F, A) over X is said to be an absolute soft set denoted by Ã or XA

if for all e ∈ A, F (e) = X. Clearly we have X ′
A = φA and φ′A = XA.

Definition 2.10. [20] The union of two soft sets (F, A) and (G,B) over the common universe X is
the soft set (H,C), where C = A ∪B and for all e ∈ C,

H(e) =





F (e), e ∈ A−B,
G(e), e ∈ B −A,
F (e) ∪G(e), e ∈ A ∩B .

Definition 2.11. [20] The intersection of two soft sets (F, A) and (G,B) over the common universe
X is the soft set (H, C), where C = A ∩B and for all e ∈ C, H(e) = F (e) ∩G(e). Note that, in order
to efficiently discuss, we consider only soft sets (F,E) over a universe X in which all the parameter
set E are same. We denote the family of these soft sets by SS(X)E .

Definition 2.12. [29] Let I be an arbitrary indexed set and L = {(Fi, E), i ∈ I} be a subfamily of
SS(X)E .
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(1) The union of L is the soft set (H, E), where H(e) =
⋃

i∈I Fi(e) for each e ∈ E . We write⋃̃
i∈I(Fi, E) = (H, E).

(2) The intersection of L is the soft set (M,E), where M(e) =
⋂

i∈I Fi(e) for each e ∈ E . We write⋂̃
i∈I(Fi, E) = (M, E).

Definition 2.13. [26] Let τ be a collection of soft sets over a universe X with a fixed set of parameters
E, then τ ⊆ SS(X)E is called a soft topology on X if

(1) X̃, φ̃ ∈ τ , where φ̃(e) = φ and X̃(e) = X, ∀e ∈ E,

(2) the union of any number of soft sets in τ belongs to τ ,

(3) the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

Definition 2.14. [29] The soft set (F, E) ∈ SS(X)E is called a soft point in XE if there exist x ∈ X
and e ∈ E such that F (e) = {x} and F (e′) = φ for each e′ ∈ E − {e}, and the soft point (F, E) is
denoted by xe.

Definition 2.15. [29] The soft point xe is said to be belonging to the soft set (G,A), denoted by
xe∈̃(G,A), if for the element e ∈ A, F (e) ⊆ G(e).

Definition 2.16. [1] Let SS(X)A and SS(Y )B be families of soft sets, u : X → Y and p : A → B be
mappings. Let fpu : SS(X)A → SS(Y )B be a mapping. Then;

(1) If (F,A) ∈ SS(X)A. Then the image of (F, A) under fpu, written as fpu(F,A) = (fpu(F ), p(A)),
is a soft set in SS(Y )B such that

fpu(F )(b) =
{ ∪a∈p−1(b)∩A u(F (a)), p−1(b) ∩A 6= φ,

φ, otherwise.
for all b ∈ B.

(2) If (G,B) ∈ SS(Y )B . Then the inverse image of (G, B) under fpu, written as f−1
pu (G,B) =

(f−1
pu (G), p−1(B)), is a soft set in SS(X)A such that

f−1
pu (G)(a) =

{
u−1(G(p(a))), p(a) ∈ B,
φ, otherwise.

for all a ∈ A.

The soft function fpu is called surjective if p and u are surjective, also is said to be injective if p and
u are injective.

Definition 2.17 ([29]). Let (X, τ, A) and (Y, τ∗, B) be soft topological spaces and fpu : SS(X)A →
SS(Y )B be a function. Then

(1) The function fpu is called continuous soft (soft-cts) if f−1
pu (G, B) ∈ τ ∀ (G, B) ∈ τ∗.

(2) The function fpu is called open soft if fpu(G,A) ∈ τ∗∀ (G, A) ∈ τ .

Definition 2.18. [9] Let (X, τ,E) be a soft topological space and (F, E) ∈ SS(X)E . Then (F,E) is
said to be,

(1) Pre open soft set if (F,E)⊆̃int(cl(F, E)),

(2) Semi open soft set if (F,E)⊆̃cl(int(F, E)),

(3) α-open soft set if (F, E)⊆̃int(cl(int(F, E))),

(4) β-open soft set if (F, E)⊆̃cl(int(cl(F,E))).

The set of all pre open (resp. semi open, α-open, β-open) soft sets is denoted by POS(X) (resp.
SOS(X), αOS(X), βOS(X)) and the set of all pre closed (resp. semi closed, α-closed, β-closed) soft
sets is denoted by PCS(X) (resp. SCS(X), αCS(X), βCS(X)).
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Definition 2.19. [9] Let (X, τ, E) be a soft topological space, (F,E) ∈ SS(X)E . Then, the pre soft
interior (resp. semi soft interior, α-soft interior, β-soft interior) of (F, E) is denoted by PSint(F, E)
(resp. SSint(F,E), αSint(F,E), βSint(F, E) ), which is the soft union of all pre open (resp. semi
open, α-open, β-open) soft sets contained in (F, E).

Definition 2.20. [9] Let (X, τ, E) be a soft topological space, (F,E) ∈ SS(X)E . Then, the pre soft
closure (resp. semi soft closure, α-soft closure, β-soft closure) of (F, E) is denoted by PScl(F, E) (resp.
SScl(F, E), αScl(F,E), βScl(F, E) ), which is the soft intersection of all pre closed (resp. semi closed,
α-closed, β-closed) soft sets containing (F, E).

Theorem 2.1. [9] Let (X, τ, E) be a soft topological space and (F, E) ∈ SS(X)E . Then

(1) (F, E) ∈ SOS(X) if and only if cl(F, E) = cl(int(F,E)).

(2) If (G,E) ∈ OS(X). Then, (G,E)∩̃cl(F, E)⊆̃cl((F, E)∩̃(F, E)).

(3) If (H,E) ∈ CS(X). Then, int[(G, E)∪̃(H,E)]⊆̃int(G,E)∪̃(H, E).

Definition 2.21. [9] Let (X, τ1, A) and (Y, τ2, B) be soft topological spaces. Let u : X → Y and
p : A → B be a mappings. Let fpu : SS(X)A → SS(Y )B be a function. Then, the function fpu is
called,

(1) Pre-continuous soft (Pre-cts soft) if f−1
pu (G,B) ∈ POS(X)

∀ (G,B) ∈ τ2.

(2) α-continuous soft (α-cts soft) if f−1
pu (G, B) ∈ αOS(X)

∀ (G,B) ∈ τ2.

(3) Semi-continuous soft (semi-cts soft) if f−1
pu (G,B) ∈ SOS(X)

∀ (G,B) ∈ τ2.

(4) β-continuous soft (β-cts soft) if f−1
pu (G,B) ∈ βOS(X)

∀ (G,B) ∈ τ2.

3 b-open soft sets in soft topological spaces

Definition 3.1. Let (X, τ, E) be a soft topological space and (F, E) ∈ SS(X)E . Then (F,E) is called
a b-open soft set if (F,E)⊆̃cl(int(F, E))∪̃
int(cl(F, E)) and its complement is said to be b-closed soft set. The set of all b-open soft sets is
denoted by BOS(X, τ, E), or BOS(X) and the set of all b-closed soft sets is denoted by BCS(X, τ, E),
or BCS(X).

Theorem 3.1. Let (X, τ,E) be a soft topological space. Then

(1) Arbitrary soft union of b-open soft sets is b-open soft.

(2) Arbitrary soft intersection of b-closed soft sets is b-closed soft.

Proof.

(1) Let {FjE : j ∈ J} ⊆ BOS(X). Then, ∀ j ∈ J , FjE⊆̃[int(cl(FjE))]∪̃
[cl(int(FjE))]. It follows that,

⋃̃
jFjE⊆̃

⋃̃
j [[int(cl(FjE))]∪̃[cl(int(FjE))]]

=
⋃̃

j [int(cl(FjE))]∪̃[
⋃̃

j [cl(int(FjE))]]

⊆̃int(
⋃̃

jcl(FjE))∪̃[cl(int[
⋃̃

j(FjE)])]
= [int(cl(

⋃̃
jFjE))]∪̃[[cl(int[

⋃̃
j(FjE)])]].

Hence,
⋃̃

jFjE ∈ BOS(X) ∀ j ∈ J .

(2) By a similar way.
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Remark 3.1. A finite soft intersection of b-open soft sets need not to be b-open soft, as shown in the
following example. Therefore, the family of all b-open soft sets may be fail to be soft topology.1

Example 3.1. Suppose that there are three computers in the universe X given by X = {h1, h2, h3}.
Let E = {e1, e2} be the set of decision parameters which are stands for ”expensive” and ”beautiful”
respectively.
Let (F1, E) be a soft set over the common universe X, which describe the composition of the computers,
where
F (e1) = {h1, h3}, F (e2) = {h2, h3}.
Then τ = {X̃, φ̃, (F, E)} defines a soft topology on X. Hence, the sets (G,E) and (H, E) which defined
as follows:
G(e1) = {h1, h2}, G(e2) = {h1},
H(e1) = {h2, h3}, H(e2) = {h1},
are b-open soft sets of (X, τ, E), but their soft intersection (G,E)∩̃(H, E) = (M,E) where M(e1) =
{h2}, M(e2) = {h1} is not b-open soft set.

Remark 3.2. Note that the family of all b-open soft sets on a soft topological space (X, τ, E) forms
a supra soft topology, i.e τ contains X̃, φ̃ and closed under arbitrary soft union.

Definition 3.2. Let (X, τ,E) be a soft topological space, (F, E) ∈ SS(X)E and xe ∈ SS(X)E . Then

(1) xe is called a b-interior soft point of (F,E) if ∃ (G, E) ∈ BOS(X) such that xe ∈ (G, E)⊆̃(F, E),
the set of all b-interior soft points of (F,E) is called the b-soft interior of (F, E) and is denoted
by bSint(F, E)) consequently, bSint(F, E)) =

⋃̃{(G,E) : (G,E)⊆̃(F, E), (G, E) ∈ BOS(X)}.
(2) xe is called a b-closure soft point of (F, E) if (F, E)∩̃(H, E) 6= φ̃ ∀ (H,E) ∈ BOS(X). The set of

all b-closure soft points of (F, E) is called b-soft closure of (F, E) and is denoted by bScl(F,E))
consequently, bScl(F, E)) =

⋂̃{(H,E) : (H, E) ∈ BCS(X), (F, E)⊆̃(H, E)}.

Theorem 3.2. Let (X, τ, E) be a soft topological space. Then, the following properties are satisfied
for the b-soft interior operators, denoted by (bSint).

(1) bSint(X̃) = X̃ and bSint(φ̃) = φ̃.

(2) bSint(F, E)⊆̃(F,E).

(3) bSint(F, E) is the largest b-open soft set contained in (F, E).

(4) if (F, E)⊆̃(G,E), then bSint(F, E)⊆̃bSint(G,E).

(5) bSint(bSint(F,E)) = bSint(F, E).

(6) bSint(F, E)∪̃bSint(G,E)⊆̃bSint[(F, E)∪̃(G,E)].

(7) bSint[(F,E)∩̃(G,E)]⊆̃bSint(F, E)∩̃bSint(G, E).

Proof. Immediate.

Theorem 3.3. Let (X, τ, E) be a soft topological space. Then, the following properties are satisfied
for the b-soft closure operators, denoted by (bScl).

(1) bScl(X̃) = X̃ and bScl(φ̃) = φ̃.

(2) (F, E)⊆̃bScl(F, E).

(3) bScl(F, E) is the smallest b-closed soft set contains (F,E).

(4) if (F, E)⊆̃(G,E), then bScl(F, E)⊆̃bScl(G,E).

(5) bScl(bScl(F, E)) = bScl(F,E).

(6) bScl(F, E)∪̃bScl(G, E)⊆̃bScl[(F, E)∪̃(G,E)].

(7) bScl[(F, E)∩̃(G,E)]⊆̃bScl(F,E)∩̃bScl(G,E).

Proof. Immediate.
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Theorem 3.4. Let (X, τ, E) be a soft topological space. Then, the following properties are satisfied:

(1) PScl(F,E) = (F,E)∪̃cl(int(F, E)).

(2) PSint(F, E) = (F, E)∩̃int(cl(F, E)).

(3) αScl(F,E) = (F,E)∪̃cl(int(cl(F,E))).

(4) αSint(F, E) = (F,E)∩̃int(cl(int(F, E))).

(5) SScl(F, E) = (F, E)∪̃int(cl(F, E)).

(6) SSint(F,E) = (F,E)∩̃cl(int(F,E)).

(7) βScl(F,E) = (F,E)∪̃int(cl(int(F,E))).

(8) βSint(F,E) = (F,E)∩̃cl(int(cl(F,E))).

Proof. We shall prove only the first statement, the other cases are similar. Since cl(int[(F,E)∪̃cl(int(F,E))])⊆̃
cl[int(F, E)∪̃cl(int(F, E))] = cl(int(F, E))∪̃cl(int(F, E)) = cl(int(F,E))⊆̃(F, E)∪̃cl(int(F,E)) from
Theorem 2.1 (3). This means that, (F, E)∪̃cl(int(F,E)) is a pre closed soft set containing (F, E).
So, PScl(F,E)⊆̃(F,E)∪̃cl(int(F, E)). On the other hand, PScl(F, E) is pre closed soft. So, we have
cl(int(F, E))⊆̃ cl(int(PScl(F, E)))⊆̃PScl(F, E). Hence, (F, E)∪̃cl(int(F, E))⊆̃PScl(F,E). Therefore,
PScl(F, E) = (F, E)∪̃cl(int(F,E)). The rest of the proof by a similar way.

Theorem 3.5. Let (X, τ, E) be a soft topological space. Then, the following properties are satisfied:

(1) PScl(PSint(F, E)) = PSint(F, E)∪̃cl(int(F, E)).

(2) SScl(Sint(F, E)) = SSint(F, E)∪̃cl(int(cl(F, E))).

Proof.

(1) Since cl(int[PSint(F,E)∪̃cl(int(F,E))])⊆̃cl[int(PSint(F,E))∪̃cl(int(F, E))] = cl(int(PSint(F,E)))
∪̃cl(int(F,E)) = cl(int(F, E))⊆̃PSint(F, E)∪̃cl(int(F,E)) from Theorem 2.1 (3). This means
that, PSint(F,E)∪̃cl(int(F, E)) is a pre closed soft set containing PSint(F,E). So, PScl(PSint(F, E))
⊆̃PSint(F, E)∪̃cl(int(F, E)). On the other hand, PScl(PSint(F,E)) is the largest pre closed
soft set containing PSint(F, E). Hence, PSint(F, E)∪̃cl(int(F,E))⊆̃PScl(PSint(F, E)). There-
fore, PScl(PSint(F, E)) = PSint(F, E)∪̃cl(int(F, E)).

(2) By a similar way.

Theorem 3.6. Let (X, τ,E) be a soft topological space. Then, the following are equivalent:

(1) (F, E) is a b-open soft set.

(2) (F, E) = PSint(F, E)∪̃SSint(F, E).

(3) (F, E)⊆̃PScl(PSint(F, E)).

Proof.

(1) ⇒ (2) Let (F,E) be a b-open soft set. Then, (F,E)⊆̃cl(int(F, E))
∪̃int(cl(F,E)). By Theorem 3.4, PSint(F,E)∪̃SSint(F,E) = [(F, E)∩̃int(cl(F, E))]∪̃[(F, E)∩̃cl(int(F, E))] =
(F, E)∩̃[int(cl(F, E))∪̃cl(int(F,E))] = (F,E).

(2) ⇒ (3) (F, E) = PSint(F, E)∪̃SSint(F, E) = PSint(F, E)∪̃[(F, E)∩̃cl(int(F, E))]⊆̃PSint(F, E)∪̃cl(int(F, E)) =
PScl(PSint(F, E)), from Theorem 3.4 (6) and Theorem 3.5 (1).

(3) ⇒ (1) (F, E)⊆̃PScl(PSint(F,E)) = PSint(F,E)∪̃cl(int(F, E))⊆̃int(cl(F, E))∪̃cl(int(F, E)), from
Theorem 3.4 (1) and Theorem 3.5 (1).
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4 Relations between b-open soft sets and some types

of open soft sets of soft topological spaces

In this section, we introduce the relations between b-open soft sets and some special subsets of a soft
topological space (X, τ, E) mentioned in [9].

Theorem 4.1. In a soft topological space (X, τ, E), the following statements hold,

(1) Every open (resp. closed) soft set is b-open (resp. b-closed) soft.

(2) Every pre open (resp. pre closed) soft set is b-open (resp. b-closed) soft.

(3) Every semi open (resp. semi closed) soft set is b-open (resp. b-closed) soft.

(4) Every b-open (resp. b-closed) soft set is β-open (resp. β-closed) soft.

Proof. We prove the assertion in the case of b-open soft set in (4), the other case is clear.
Let (F,E) ∈ BOS(X). Then, (F,E)⊆̃int(cl(F, E))∪̃cl(int(F, E))

⊆̃cl(int(cl(F, E)))∪̃cl(int(F,E))
= cl[int(cl(F, E))∪̃int(F, E)]
⊆̃cl(int[cl(F,E)∪̃int(F, E)])
= cl(int(cl[(F, E)])).

Therefore, (F, E) ∈ βOS(X).

Remark 4.1. It is obvious that POS(X)∪SOS(X) ⊆ BOS(X) ⊆ βOS(X). The following examples
shall show that theses implications can not be reversed and the converse of Theorem 4.1 is not true in
general.

Examples 4.1. (1) In Example 3.1, the soft set (G,E) is b-open soft set, but it is not open soft.

(2) Suppose that there are four alternatives in the universe of dresses X = {h1, h2, h3, h4} and consider
E = {e1(cotton), e2(woollen)} be the set of parameters showing the material of the dresses.Let
(F1, E), (F2, E), (F3, E), (F4, E) be four soft sets over the common universe X which describe
the goodness of the dresses, where
F1(e1) = {h1}, F1(e2) = {h2},
F2(e1) = {h2}, F2(e2) = {h1},
F3(e1) = {h1, h2}, F3(e2) = {h1, h2},
F4(e1) = {h1, h2, h4}, F4(e2) = {h1, h2, h4}.
Then τ = {X̃, φ̃, (F1, E), (F2, E), (F3, E), (F4, E)} defines a soft topology on X. Hence, the soft
set (G, E) which defined by;
G(e1) = {h1, h4}, G(e2) = {h2, h4} is b-open soft set, but it is not pre open soft.

(3) In Example 3.1, the soft set (H, E) is b-open soft set, but it is not semi open soft.

(4) Suppose that there are four alternatives in the universe of houses X = {h1, h2, h3, h4} and consider
E = {e1, e2} be two parameter ”quality of houses” and ”wooden” to be the linguistic variable.
Let (F1, E), (F2, E), (F3, E) be three soft sets over the common universe X which describe the
goodness of the houses, where
F1(e1) = {h4}, F1(e2) = {h1, h2},
F2(e1) = {h1, h2}, F2(e2) = {h4},
F3(e1) = {h1, h2, h4}, F3(e2) = {h1, h2, h4}.
Then τ = {X̃, φ̃, (F1, E), (F2, E), (F3, E)} defines a soft topology on X. Hence, the soft set
(G,E) which defined by;
G(e1) = {h1}, G(e2) = {h3} is β-open soft set of (X, τ, E), but it is not b-open soft.

Corollary 4.1. For a soft topological space (X, τ, E) we have:
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OS(X) −→ POS(X)

↓ ↓
αOS(X) −→ SOS(X) −→ BOS(X) −→ βOS(X)

Proof. It is follows from Theorem 4.1 and [[9], Remark 4.2].

Theorem 4.2. Let (X, τ, E) be a soft topological space and (F, E) ∈ SS(X)E . Then the following
hold:

(1) bSint(F c, E) = X̃ − bScl(F,E).

(2) bScl(F c, E) = X̃ − bSint(F,E)).

Proof.

(1) X̃−bScl(F, E) = [
⋂̃{(G,E) : (F, E)⊆̃(G, E), (G,E) ∈ BCS(X)}]c =

⋃̃{(Gc, E) : (Gc, E)⊆̃(F c, E), (Gc, E) ∈
BOS(X)} = bSint(F c, E).

(2) X̃−bSint(F, E) = [
⋃̃{(G, E) : (G,E)⊆̃(F, E), (G,E) ∈ BOS(X)}]c =

⋂̃{(Gc, E) : (F c, E)⊆̃(Gc, E), (Gc, E) ∈
BCS(X)} = bScl(F c, E).

Theorem 4.3. Let (X, τ,E) be a soft topological space and (G, E) ∈ BOS(X).

(1) If (F, E) ∈ OS(X). Then, FE∩̃GE ∈ BOS(X).

(2) If (F, E) ∈ αOS(X). Then, FE∩̃GE ∈ BOS(X).

Proof.

(1) Let (F, E) ∈ OS(X) and (G,E) ∈ BOS(X). Then,
(F, E)∩̃(G,E)⊆̃int(F, E)∩̃[cl(int(G,E))∪̃int(cl(G,E))]
= [int(F, E)∩̃cl(int(G,E))]∪̃[int(F,E)∩̃int(cl(G,E))]
⊆̃cl[int(F,E)∩̃int(G,E)]∪̃int[int(F, E)∩̃cl(G,E)]
⊆̃cl(int[(F, E)∩̃(G,E)])∪̃ int(cl[(F, E)∩̃(G,E)]).
from Theorem 2.1 (2). Therefore, FE∩̃GE ∈ BOS(X).

(2) Let (F, E) ∈ αOS(X) and (G, E) ∈ BOS(X). Then,
(F, E)∩̃(G,E)⊆̃int(cl(int(F, E)))∩̃[cl(int(G,E))∪̃int(cl(G, E))]
= [int(cl(int(F,E)))∩̃cl(int(G,E))]∪̃[int(cl(int(F, E)))∩̃int(cl(G,E))]
⊆̃cl[int(cl(int(F,E)))∩̃int(G,E)]∪̃int[cl(int(F,E))∩̃int(cl(G,E))]
⊆̃cl(int[cl(int(F,E))∩̃int(G, E)])∪̃int(cl[int(F,E)∩̃int(cl(G, E))])
⊆̃cl(int(cl[int(F,E)∩̃int(G,E)]))∪̃int(cl(int[int(F,E)∩̃cl(G, E)]))
⊆̃cl(int(cl(int[(F, E)∩̃(G,E)])))∪̃int(cl(int(cl[(F, E)∩̃(G,E)])))
⊆̃cl(int[(F, E)∩̃(G,E)])∪̃int(cl[(F, E)∩̃(G,E)]).
from Theorem 2.1 (2). Therefore, FE∩̃GE ∈ BOS(X).

Proposition 4.1. Let (X, τ, E) be a soft topological space and (F,E) ∈ BOS(X).

(1) If int(F, E) = φ̃, then (F, E) is a pre open soft set.

(2) If cl(F,E) = φ̃, then (F, E) is a semi open soft set.

Proof. Obvious.

Proposition 4.2. Let (X, τ,E) be a soft topological space and (F,E) ∈ SS(X)E . Then (F,E) ∈
BCS(X) if and only if cl(int(F, E))∩̃int(cl(F, E))⊆̃(F, E).

Proof. Obvious.
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Theorem 4.4. Let (X, τ, E) be a soft topological space and (F,E) ∈ SS(X)E . Then, the following
properties are satisfied:

(1) bScl(F, E) = Scl(F, E)∩̃PScl(F, E).

(2) bSint(F, E) = Sint(F, E)∪̃PSint(F,E).

Proof.

(1) Since bScl(F,E) is a b-closed soft set. Then, cl(int(bScl(F, E)))∩̃int(cl(bScl(F,E)))⊆̃bScl(F, E).
It follows that, cl(int(F, E))∩̃int(cl(F, E))⊆̃bScl(F,E). So, (F, E)∪̃[cl(int(F,E))∩̃int(cl(F, E))]
⊆̃(F,E)∪̃bScl(F, E) = bScl(F, E). Hence, [(F,E)∪̃cl(int(F, E))]∩̃[(F, E)∪̃int(cl(F, E))]
= Scl(F, E)∩̃PScl(F, E), from Theorem 3.4. This means that, Scl(F, E)∩̃PScl(F, E)⊆̃bScl(F, E).
The reverse inclusion is obvious from Remark 4.1.

(2) By a similar way.

5 b-soft continuity

Definition 5.1. Let (X, τ1, A) and (Y, τ2, B) be soft topological spaces. Let u : X → Y and p : A → B
be mappings. Let fpu : SS(X)A → SS(Y )B be a function. Then, the function fpu is called a b-
continuous soft (b-cts soft) if f−1

pu (G, B) ∈ BOS(X)∀ (G, B) ∈ τ2.

Theorem 5.1. Let (X, τ, A) and (Y, τ∗, B) be soft topological spaces. Let u : X → Y and p : A → B
be mappings. Let fpu : SS(X)A → SS(Y )B be a function.Then, the following are equivalent:

(1) fpu is b-continuous soft function.

(2) f−1
pu (H, B) ∈ BCS(X) ∀ (H,B) ∈ CS(Y ).

(3) fpu(bScl(G,A) ⊆ clτ∗(fpu(G,A)) ∀ (G, A) ∈ SS(X)A.

(4) bScl(f−1
pu (H,B)) ⊆ f−1

pu (clτ∗(H, B)) ∀ (H, B) ∈ SS(Y )B .

(5) f−1
pu (intτ∗(H, B)) ⊆ bSint(f−1

pu (H, B)) ∀ (H, B) ∈ SS(Y )B .

Proof.

(1) ⇒ (2) Let (H, B) be a closed soft set over Y . Then, (H, B)′ ∈ OS(Y ) and f−1
pu (H, B)′ ∈ BOS(X)

from (1). Since f−1
pu (H, B)′ = (f−1

pu (H, B))′ from [[29], Theorem 3.14]. Thus, f−1
pu (H, B) ∈

BCS(X).

(2) ⇒ (3) Let (G,A) ∈ SS(X)A. Since (G,A)⊆̃f−1
pu (fpu(G,A))⊆̃f−1

pu (clτ∗(fpu(G, A))) ∈ BCS(X)
from (2) and [[29], Theorem 3.14]. Then (G,A)⊆̃bScl(G, A)⊆̃f−1

pu (clτ∗(fpu(G, A))). Hence,
fpu(bScl(G,A))⊆̃fpu(f−1

pu (clτ∗(fpu(G,A))))⊆̃clτ∗(fpu(G, A))) from [[29], Theorem 3.14]. Thus,
fpu(bScl(G,A))⊆̃clτ∗(fpu(G,A)).

(3) ⇒ (4) Let (H, B) ∈ SS(Y )B and (G,A) = f−1
pu (H, B). Then fpu(bSclf−1

pu (H, B))⊆̃clτ∗(fpu(f−1
pu (H, B)))

From (3). Hence, bScl(f−1
pu (H, B))⊆̃f−1

pu (fpu(bScl(f−1
pu (H, B))))⊆̃f−1

pu (clτ∗(fpu(f−1
pu (H, B))))⊆̃f−1

pu (clτ∗(H, B))
from [[29], Theorem 3.14]. Thus, bScl(f−1

pu (H,B))⊆̃f−1
pu (clτ∗(H,B)).

(4) ⇒ (2) Let (H, B) be a closed soft set over Y . Then bScl(f−1
pu (H,B))⊆̃f−1

pu (clτ∗(H,B)) = f−1
pu (H, B) ∀ (H, B) ∈

SS(Y )B from (4). But clearly, f−1
pu (H, B)⊆̃bScl(f−1

pu (H, B)). This means that, f−1
pu (H,B) =

bScl(f−1
pu (H,B)), and consequently f−1

pu (H, B) ∈ BCS(X).

(1) ⇒ (5) Let (H, B) ∈ SS(Y )B . Then, f−1
pu (intτ∗(H, B)) ∈ BOS(X) from (1). Hence, f−1

pu (intτ∗(H,B)) =
bSint(f−1

pu intτ∗(H, B))⊆̃bSint(f−1
pu (H, B)). Thus, f−1

pu (intτ∗(H, B))⊆̃bSint(f−1
pu (H, B)).

(5) ⇒ (1) Let (H, B) be an open soft set over Y . Then intτ∗(H,B) = (H, B) and f−1
pu (intτ∗(H, B)) =

f−1
pu ((H, B))⊆̃bSint(f−1

pu (H, B)) from (5). But, we have bSint(f−1
pu (H,B))⊆̃f−1

pu (H, B). This
means that, bSint(f−1

pu (H, B)) = f−1
pu (H,B) ∈ BOS(X). Thus, fpu is continuous soft function.
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Theorem 5.2. Let (X, τ,A), (Y, τ∗, B) be soft topological spaces and fpu : SS(X)A → SS(Y )B be a
function. Then

(1) Every continuous soft function is b-continuous soft function.

(2) Every pre-continuous soft function is b-continuous soft function.

(3) Every semi-continuous soft function is b-continuous soft function.

(4) Every b-continuous soft function is β-continuous soft function.

Proof. Immediate from Theorem 4.1.

On accounting of Theorem 5.2 and [[9], Corollary 5.1], we have the following corollary.

Corollary 5.1. For a soft topological space (X, τ, E) we have the following implications.

cts soft −→ Pre− cts soft

↙ ↓

α− cts soft −→ semi− cts soft −→ b− cts soft −→ β − cts soft

6 Conclusion

Topology is an important and major area of mathematics and it can give many relationships between
other scientific areas and mathematical models. Recently, many scientists have studied and improved
the soft set theory, which is initiated by Molodtsov [22] and easily applied to many problems having
uncertainties from social life. In this paper, a new class of open soft sets in a soft topological space,
called b-open soft sets, is introduced and studied. Moreover, the relations this class and these different
types of subsets of soft topological spaces ,which introduced in [9], is studied. In particular, this class
is contained in the class of β-open soft sets and contains the classes of open soft sets, pre open soft
sets, semi open soft sets and α-open soft sets. Also, the authors introduce the concept of b-continuous
soft functions and study some of their properties in detail. As a consequence the relations of some soft
continuities are shown in a diagram. In the next study, we extend the notion of b-open soft sets to
supra soft topological spaces and and other topological properties. Also, we will use some topological
tools in soft set application, like rough sets.
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Abstract - The dyestuff from onion (Allium cepa L.) was extracted using Soxhlet apparatus with distilled water. 

Wool and cotton fabrics were pretreated with (urea+ammonia+calcium oxalate ) mixtures, artificial animal urine 

system (AAUS) before dyeing. The solutions 0.1 M of CuSO4, FeSO4 and AlK(SO4)2.12H2O were used as 

mordant agents. Pre-mordanting, together mordanting and last mordanting methods were applied at pH =4 and 

pH= 7 for dyeing of fabrics. According to the fastness results, the best dyeing method was determined as 

together mordanting method at pH=4 for wool and last mordanting method at pH= 7  for cotton fabric. The 

results also reveal that the onion containing Quercetin dyestuff shall probably be an important raw material for 

dyeing process of natural textile fibers.  

 
Key words -  Wool, Cotton, Oxalate, Dyeing, Fastness 

 

 

1 Introduction 

 
Natural dyes have high importance in producing hand made carpets, kilim and similar 

industrial dyeing applications before of their advantage of high colour fastness, cheapness, 

long term colour stability and authentic properties. Nowadays, the natural dyes are being 

produced in Asian countries such as Turkey, Iran, India, Azerbaijani, and natural dye products 

are being used most countries of the world [1]. 

 

There are many industrial plants which contain natural dyes such as onion(Allium cepa L.) 

which has odoriferous, and  is used as spices plant, commonly. Onion has major flavone 

molecule which can be used as dyestuff of 3,5,7-tri hydroxy-2-(3’,4’ dihydroxy chromen-2-on 

called as Quercetin. [2] (Figure 1). The molecule structure of Quercetin play important role on 

dyeing process of natural fabric.  
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Figure 1. Chemical structure of quercetin  
                                      

 

The acquired dyeing and fastness properties of woolen and cotton fabrics are very important 

characteristic in terms of user. The interaction of mordant compounds with wool and cotton 

fibers effects the affinity to fibers of dyestuffs. Improving the dyeing and fastness properties 

of textile fibers constitute the main subject of various studies [4,5,6].  In another different and 

last study, Onal-1 mordant mixtures
 
in alkalin medium had been applied to wool fiber, 

feathered leather and cotton as a pretreatment process using Rubai tinctorum L. and  

Hyperium  scabrium L. [7,8].  

 

This study evaluates the average of dyeing properties of wool and cotton fabrics using Onion 

(Allium cepa L.) and the effect of (urea+ammonia +calcium oxalate) mixtures for each 

fabrics. 

 

 

2. Experimental 

 
Preparation of mordant solutions and dye-bath 

 

Wool and cotton samples were treated with artificial animal urine system (AAUS). The stem 

and leaves of Onion (A.cepa) were supplied Plant Research Laboratory, Gaziosmanpasa 

University, in June, 2010. It was dried in shade, cleaned and powdered by grinder before the 

experiments. Extraction of A. cepa was performed by soxhlet apparatus with distilled water. 1 

L of distilled water was used (for 100 g plant material) then the dyestuff was transferred to the 

aqueous media. 

 

Reagents and equipments 

 

All chemicals used in this work, were purchased from Merck. Distilled water was used for all 

steps. FeSO4.7H2O, AlK(SO4)2.12H2O and CuSO4.5H2O were purchased from Merck. 

Extraction was performed by using soxhlet apparatus. Colour codes were determined by 

Pantone Colour Guide. The wash-, crock- (wet, dry) and light  fastness of all dyed samples 

were established according to ISO 105-C06 and to CIS, respectively, and fastnesses were 

determined by Atlas Weather-ometer, a Launder-ometer and a 255 model crock-meter, 

respectively [9].  

 

Dyeing  procedures 

 

Dyeing procedures of wool and cotton samples were firstly treated with artificial animal urine 

system (AAUS). The undyed materials were kept into AAUS included NH3 (3%, v/v), 

CaC2O4 (3%, m/v) and urea (3%, m/v) for 24 h, at room temperature before dyeing 
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procedures.  At the end of the time, the samples rinsed with distilled water and dyed 

according to the dyeing methods that mentioned below. 

 

Pre-mordanting method  

 

The undyed material (1 g) which was treated with willow solution and AAUS for 24 h at 

room temperature, separately, was heated in 0.1 M mordant solution (100 mL) for 1 h at 90ºC. 

After cooling of sample, it was rinsed with distilled water and put into dye-bath solution (100 

mL). It was heated at 90ºC for 1 h, at the end of the period, the dyed material removed, rinsed 

with distilled water and dried.  

 

Together-mordanting method  

 

Both mordant (in solid state which equivalent to 0.1 M mordant solution) and dyestuff 

solution poured into a flask and the sample placed in this mixture. The complication was 

heated at 90ºC for 1 h. After cooling, it was rinsed and dried. 

 

Last-mordanting method  

 

On the contrary to pre-mordanting method, the undyed material (1 g) was first treated with 

dyestuff solution for 1 h at 90ºC. After cooling the sample, it was rinsed with distilled water 

and put into 0.1 M mordant solution (100 mL) and heated for 1 h at 90ºC. Finally, the dyed 

material was rinsed with distilled water and dried. 

 

 

3. Results and Discussion 
 

Proposed dyeing mechanism 

 

As the hydroxy (-OH) and carbonyl (C=O) groups forms coordine covalent bonds  with 

mordant cation, such as Cu
2+

 (Figure 2, Figure 3 and Figure 4).  

 

The dyeing mechanisms of wool with Salvigenin by pre-mordanting (1), together-mordanting 

(2) and last-mordanting (3) methods can be considered as follows [10] :  

 

(1)   Wool...........................Mordant (Me
n+

)........................Dyestuff  

 

 

R
H
C

COOH

NH2
Men+

R
H
C

C

H
N

O

HO

O

O

HO

OH

HO

OH

Me
n+

OH

 
 
Figure 2. Proposed mordant-dye complex according to pre-mordanting method in dyeing of wool fibers 
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(2)  Dyestuff......................Mordant (Me
n+

).....................Dyestuff 

 

 

Men+
O O

O

HO

C O

O

CH
N
H

R

OH

HO

HO

 
Figure 3. Proposed mordant-dye complex according to together-mordanting method in dyeing of wool fibers 

 

 (3) Wool............................Dyestuff (Me
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)..............................Mordant 
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Figure 4. Proposed mordant-dye complex according to last-mordanting method in dyeing of wool fibers 

 

 

Because of cotton has cellulosic structure, coordine covalent bonding occurs between 

CH2O- groups of cellulose and metal cation. The suggested mechanism is given below 

(Figure 5) 

 

The variation of average fastness for wool with respect to the mordant agent at Fig.6 and 

the variation of average fastness for cotton with respect to the mordant agent at fig.7. 

 

As seen from the curves in Fig. 6 the average fastness for wool samples decreases in the 

order of Fe(II)>Cu(II)>Al(III). Best values for wool samples obtained by using  Pre-

mordanting method with Fe(II) and Al(III) mordants. 

 

It can be clearly observed from the Fig.7, there is no considerable difference between 

together- and last-mordanting method with the use of Fe(II) and Al(III) mordants in dyeing 

of cotton fibers. 
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In general, from the Figures 6 and 7, the most effective mordant agent is Fe(II) and the 

most effective dyeing procedures are together- and  last-mordanting method. This situation 

can be explained by the high stability of Fe(II) complex. Based on the results, it can be 

noted that treatment of natural fibers with AAUS assists to strenght the coordinate covalent 

bonding of Fe(II) salt to natural fiber. 

 

 

Men+
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Figure 5: Proposed mordant-dye complex according to together-mordanting method in dyeing of cotton 

 

 

When evaluated the dyed  wool samples, green , brown  and its tones were obtained in the 

presence of pre- and together-mordanting methods  by CuSO4 and FeSO4 salts, and yellow 

tones were obtained by AlK(SO4)2.12H2O for three mordanting methods. 

 

 

 
 

Figure 6. The variation of average fastness for wool with respect to the mordant agent 
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In dyeing of cotton samples, gray, light gray and cream tones were occured. According to 

the experimental results, however, the colours fastness of dyed cotton  and wool samples 

have good degrees.  

 

 

 
Figure 7. The variation of average fastness for cotton with respect to the mordant agent 

 

 

The effect of AAUS was explained by Onal in 1996. Shortly, the components of AAUS 

(ammonia+ urea+ oxalate) have a great importance on the fastness of dyed fibers [10]. 

Here, ammonia helps the expanding of fiber misels so it facilitates the penetration of dye to 

the fiber. Urea serves as a pH regulator, and  as last, oxalate plays an important role during 

the formation of complex structure which occurs between dye and natural fiber. It makes 

this complex very stable, and so the fastness values of the dyed samples increase in the 

presence of AAUS.  

 

All the fastness values and colour codes are presented in Table I, Table II,  for wool and 

cotton samples, respectively. 

 

 
Table 1. Fastness values and color codes of dyed wool fabric (average values) 

 

Mordant Dyeing Method Wash-Fastness 

Crock Fastness   

Wet Dry 
Light 

fastness 

FeSO4.7H2O Pre-mordanting 4 5 5 6 

 Together-mordanting 4-5 5 5 6-7 

 Last-mordanting 4-5 5 5 6 

CuSO4.5H2O Pre-mordanting 4 5 5 6 

 Together-mordanting 3 5 5 7 

 Last-mordanting 4-5 4-5 4-5 6 

AlK(SO4)2.12H2O Pre-mordanting 3 5 5 6-7 

 Together-mordanting 3-4 5 5 7 

 Last-mordanting 4-5 4-5 4-5 6-7 

 

 

It can be clearly seen that wet and dry fastness values are very good for dyed wool and 

cotton fibers .  
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Table 2. Fastness values and colour codes of dyed cotton fabric (average values) 

 

Mordant Dyeing Method Wash-Fastness 

Crock Fastness   

Wet Dry 
Light 

fastness 

FeSO4.7H2O Pre-mordanting 5 5 5 5-6 

 Together-mordanting 3-4 5 3-4 5-6 

 Last-mordanting 5 5 5 6-7 

CuSO4.5H2O Pre-mordanting 4-5 5 4-5 6 

 Together-mordanting 4-5 5 4 5-6 

 Last-mordanting 5 5 5 6-7 

AlK(SO4)2.12H2O Pre-mordanting 4 5 5 5 

 Together-mordanting 3-4 4 4 5-6 

 Last-mordanting 5 5 5 6-7 

 

 

Consequently, the best dyeing conditions of wool materials are obtained with Fe(II) and 

Cu(II) mordants using pre- and together mordanting method. Generaly green and brown 

colour tones were obtained for wool samples. On the contrary to wool, the highest fastness 

values obtained for cotton fibers with Fe(II) according to all mordanting methods. The 

colours of cotton fibers are gray, yellow and cream tones.  In addition, AAUS  contributes 

the brightness of natural fibers dyed samples. 

 

A. cepa may be evaluated as an important natural dyestuff source. However, AAUS which 

called as Onal-1 mordant system, may be used as   pre- mordanting mixtures for cellulosic 

and protein fibers to increase the fastness and brightness of the textile products.   
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1 Introduction

In 1980, Nikodem [13] introduced the convex stochastic processes in his article. Later in 1995, Skowron-
ski [9] presented some further results on convex stochastic processes. Moreover, in 2011, Kotrys [7] de-
rived some Hermite-Hadamard type inequalities for convex stochastic processes. In 2014, Maden et.al.
[24] introduced the convex stochastic processes in the first sense and proved Hermite-Hadamard type
inequalities to these processes. Also in 2014, Set et.al. [25] presented the convex stochastic processes
in the second sense and they investigated Hermite-Hadamard type inequalities for these processes.
Moreover, in recent papers [22, 23], strongly λ-GA-convex stochastic processes and preinvex stochastic
processes has been introduced.

A function f : I → R, where I ⊆ R is an interval, is said to be a convex function on I if the
inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) (1)

holds for all x, y ∈ I and t ∈ [0, 1]. If the reversed inequality in (1) holds, then f is concave. For some
recent results related to this classic result, see the books [2, 4, 5, 6] and the papers [14, 15, 16, 17, 18,
19, 20, 21] where further references are given.
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Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and a < b. The
following double inequality

f(
a + b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(2)

is well known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction
if f is concave.

Recently, log-convex functions have gained much interest in mathematics and its sub-areas such
as optimization theory. Let f : I → R be a function where I is an interval of real numbers. f is said
to be convex on I if the following inequality holds for all x, y ∈ I and λ ∈ [0, 1].

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3)

A function f : I → [0,∞) is said to be log-convex (or multiplicatively convex) if log(f) is convex or
namely the following inequality

f(λx + (1− λ)y) ≤ [f(x)]λ[f(y)](1−λ) (4)

holds for all x, y ∈ I and λ ∈ [0, 1]. Moreover, any log-convex function is a convex function since the
inequality

[f(x)]λ[f(y)](1−λ) ≤ λf(x) + (1− λ)f(y) (5)

holds for all x, y ∈ I and λ ∈ [0, 1]. [1, p.7]
Let f : I ⊆ R → [0,∞) be a log-convex function defined on the interval I of real numbers and

a < b. The following double inequality

f(
a + b

2
) ≤ exp

[
1

b− a

∫ b

a

ln f(x)dx

]
≤

√
f(a)f(b) (6)

is well known in the literature as Hermite-Hadamard inequality for log-convex functions. Both in-
equalities hold in the reversed direction if f is concave.[18]

Furtermore, in [16], Dragomir and Mond proved that the following inequalities of Hermite–
Hadamard type hold for log-convex functions:

f

(
a + b

2

)
≤ exp

[
1

b− a

∫ b

a

ln f(t)dt

]
(7)

≤ 1
b− a

∫ b

a

G (f (t) + fa + b− t) dt

≤ 1
b− a

∫ b

a

f (t) dt

≤ L (f (a) , f(b))

More information about log-convex functions and their properties can be found in [1, 10, 11, 12].
In this paper we propose the generalization of convexity of this kind for stochastic processes.
Let (Ω,F , P ) be an arbitrary probability space. A function X : Ω → R is called a random variable

if it is F − measurable. Let (Ω,F , P ) be an arbitrary probability space and let T ⊂ R be time. A
collection of random variables X (t, w), t ∈ T with values in R is called a stochastic process. If
X (t, w) takes values in S = Rd, it is called a vector− valued stochastic process. If the time T can be
a discrete subset of R, then X (t, w) is called a discrete time stochastic process. If time is an interval,
R+ or R, it is called a stochastic process with continuous time. For any fixed ω ∈ Ω, one can regard
X (t, w) as a function of t. It is called a sample function of the stochastic process. In the case of a
vector − valued process, it is a sample path, a curve in Rd. Throughout the paper, we restrict our
attention stochastic processes with continuous time, i.e. , index set T = [0,∞).
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Definition 1.1. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that a
stochastic process X : T × Ω → R is

i. convex if
X (λu + (1− λ) v, ·) ≤ λX (u, ·) + (1− λ)X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. . This class of stochastic process are denoted by C.

ii. λ−convex (where λ is a fixed number in (0, 1) if

X (λu + (1− λ) v, ·) ≤ λX (u, ·) + (1− λ) X(u, ·)

for all u, v ∈ T and λ ∈ (0, 1). This class of stochastic process is denoted by Cλ.

iii. Wright-convex if

X (λu + (1− λ) v, ·) + X ((1− λ)u + λv, ·) ≤ X (u, ·) + X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. This class of stochastic process is denoted by W .

iv. Jensen-convex if

X

(
u + v

2
, ·

)
≤ X (u, ·) + X (v, ·)

2

[7, 8, 9, 13]

Clearly, C ⊆ Cλ ⊂ W and C 1
2
⊆ Cλ, for all λ ∈ (0, 1). [9]

Definition 1.2. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that the
stochastic process X : T × Ω → R is called

i. continuous in probability in interval T if for all t0 ∈ T

P − limX (t, ·) = X (t0, ·)
t→t0

where P − lim denotes the limit in probability;

ii. mean-square continuous in the interval T if for all t0 ∈ T

P − lim
t→t0

E [X(t, ·)−X (t0, ·)] = 0

where E [X(t, ·)] denotes the expectation value of the random variable X(t, ·);
iii. increasing (decreasing) if for all u, v ∈ T such that t < s,

X (u, ·) ≤ X (v, ·) , (X (u, ·) ≥ X (v, ·))

iv. monotonic if it is increasing or decreasing;

v. differantiable at a point t ∈ T if there is a random variable X ′(t, ·) : T × Ω → R

X ′(t, ·) = P − lim
t→t0

X (t, ·)−X (t0, ·)
t− t0

We say that a stochastic process X : T × Ω → R is continuous (differantiable) if it is continuous
(differantiable) at every point of the interval T . [7, 8, 9, 13]

Definition 1.3. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval with E[X(t)2] < ∞
for all t ∈ T . Let [a, b] ⊂ T , a = t0 < t1 < ... < tn = b be a partition of [a, b] and Θk ∈ [tk−1, tk] for
k = 1, ..., n. A random variable Y : Ω → R is called mean-square integral of the process X(t, ·) on
[a, b] if the following identity holds:
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lim
n→∞

E[(X(Θk (tk − tk−1)− Y )2] = 0.

Then we can write
b∫

a

X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,

b∫

a

X(t, ·)dt ≤
b∫

a

Z(t, ·)dt (a.e.),

where X(t, ·) ≤ Z(t, ·) (a.e.) in [a, b] [3].

In throughout the paper, we will consider the stochastic processes that is with continuous time
and mean-square continuous.

Now, we give the well-known Hermite-Hadamard integral inequality for convex stochastic processes:
If X : T × Ω → R is Jensen-convex and mean-square continuous in the interval T × Ω, then for

any u, v ∈ T , we have [7]

X

(
u + v

2
, ·

)
≤ 1

v − u

∫ v

u

X(t, ·)dt ≤ X(u, ·) + X(v, ·)
2

(8)

The main subject of this paper is to extend some well-known results concerning log-convex func-
tions to log-convex stochastic processes. Also, we investigate the relationship between log-convex
stochastic processes and convex stochastic processes. Moreover, we propose well-known Hermite-
Hadamard type inequalities for log−convex stochastic processes by the help of aritmetic and geometric
means.

2 Hermite-Hadamard Inequality For log−Convex

Stochastic Process

Definition 2.1. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that a
stochastic process X : T × Ω → [0,∞) is log−convex if

X (λs + (1− λ) t, ·) ≤ [X (s, ·)]λ [X (t, ·)]1−λ (9)

for all s, t ∈ T and λ ∈ [0, 1].
This class of stochastic process is denoted by Cl.

Proposition 2.2. If X : T×Ω → [0,∞) is a log-convex stochastic process, then X is convex stochastic
process. That is, Cl ⊆ C for all λ ∈ [0, 1] .

Proof. The proof is obvious from (9) and the arithmetic-geometric mean inequality which is known as
the inequality

[X (s, ·)]λ [X (t, ·)]1−λ ≤ λX (s, ·) + (1− λ) X (t, ·) (10)

for all s, t ∈ Tand λ ∈ [0, 1].

Proposition 2.3. Let f : T → [0,∞) and X : T ×Ω → [0,∞) be a function and a stochastic process,
respectively. If f and X are convex and f is increasing, then f ◦X is convex.
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Proof. Since f and X are convex and f is increasing

(f ◦X) (λs + (1− λ) t, ·) = f(X (λs + (1− λ) t, ·))
≤ f (λX (s, ·) + (1− λ) X (t, ·))
≤ λf(X (s, ·)) + (1− λ) f(X (t, ·))
= λ (f ◦X) (s, ·) + (1− λ) (f ◦X) (X (t, ·))

for all s, t ∈ T and λ ∈ [0, 1].
Let us recall the Hermite-Hadamard inequality

X

(
u + v

2
, ·

)
≤ 1

v − u

∫ v

u

X (t, ·) dt ≤ X (u, ·) + X (v, ·)
2

where X : T × Ω → R is a convex stochastic process on the interval T × Ω, u, v ∈ T and u < v.

Note that if we apply the above inequality for the log−convex stochastic process X : T×Ω → (0,∞)
, we have that

ln
[
X

(
u + v

2
, ·

)]
≤ 1

v − u

∫ v

u

ln [X (t, ·)] dt ≤ ln [X (u, ·)] + ln [X (v, ·)]
2

(11)

from which we get

X

(
u + v

2
, ·

)
≤ exp

[
1

v − u

∫ v

u

ln [X (t, ·)] dt

]
≤

√
X (u, ·)X (v, ·) (12)

which is an inequality of Hadamard’s type for log-convex stochastic process.
Let us denote by A(u, v) the arithmetic mean of the nonnegative real numbers, and by G(u, v) the

geometric mean of the same numbers.
Note that, by the use of these notations, Hadamard’s inequality (8) can be written in the form:

X (A(u, v), ·) ≤ 1
v − u

∫ v

u

A(X (t, ·) + X (u + v − t, ·))dt ≤ A(X (u, ·) + X (v, ·))

It is easy to see this as
∫ v

u

X (t, ·) dt =
∫ v

u

X (u + v − t, ·) dt

We now prove a similar result for log-convex stochastic process and geometric means.

Theorem 2.4. Let X : T ×Ω → [0,∞) be a log-convex stochastic process on T ×Ω and u, v ∈ T with
u < v. Then one has the inequality:

X (A(u, v), ·) ≤ 1
v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt ≤ G(X (u, ·) , X (v, ·)) (13)

Proof. Since X is log-convex, we have that

X (λs + (1− λ) t, ·) ≤ [X (s, ·)]λ [X (t, ·)]1−λ

for all λ ∈ [0, 1] and

X ((1− λ)s + λt, ·) ≤ [X (s, ·)]1−λ [X (t, ·)]λ

for all λ ∈ [0, 1].
If we multiply the above inequalities and take square roots, we obtain
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G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·)) ≤ G(X (u, ·) , X (v, ·))
Integrating this inequality on [0, 1] over λ, we get

∫ 1

0

G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·))dλ ≤ G(X (u, ·) , X (v, ·))

If we change the variable t := λu + (1− λ)v, λ ∈ [0, 1], we obtain

∫ 1

0

G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·))dλ

=
1

v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt

and the second inequality in (13) is proved.
Now, by (9) , for λ = 1

2 , we have that

X

(
s + t

2
, ·

)
≤ G(X (s, ·) , X (t, ·))

for all u, v ∈ T .
If we choose s := λu + (1− λ)v, t := (1− λ)u + λv, we get the inequality

X

(
u + v

2
, ·

)
≤ G(X (λu + (1− λ)v, ·) , X ((1− λ)u + λv, ·)) (14)

for all λ ∈ [0, 1]. Integrating this inequality on [0, 1] over λ, the first inequality in (13) is proved.

Corollary 2.5. With the above assumptions, u ≥ 0 and X nondecreasing on T × Ω, we have the
inequality:

X (G(u, v), ·) ≤ 1
v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt ≤ G(X (u, ·) , X (v, ·)) (15)

The following result offers another inequality of Hadamard type for convex stochastic process.

Corollary 2.6. Let X : T × Ω → [0,∞) be a convex stochastic process on T × Ω and u, v ∈ T with
u < v. Then one has the inequalities:

X

(
u + v

2
, ·

)
(16)

≤ ln
[

1
b− a

∫ v

u

exp [X (t, ·) + X (u + v − t, ·)] dt

]

≤ X (u, ·) + X (v, ·)
2

Proof. Define the mapping g : T → (0,∞), g(t) = exp(X(t, ·)) , which is clearly log-convex on I.
Now, if we apply Theorem 2.4, we obtain

expX(
u + v

2
, ·) ≤ 1

b− a

∫ v

u

√
exp X(t, ·)X(u + v − t, ·)dt ≤

√
expX(u, ·)X(v, ·),

which implies (16).

The following theorem for log-convex stochastic process also holds.
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Theorem 2.7. Let X : T ×Ω → (0,∞) be a log-convex stochastic process on T ×Ω and u, v ∈ T with
u < v. Then, one has the inequalities:

X

(
u + v

2
, ·

)
≤ exp

[
1

v − u

∫ v

u

ln [X (t, ·)] dt

]
(17)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt

≤ 1
v − u

∫ v

u

X (t, ·) dt

≤ L (X (u, ·) , X (v, ·)) ,

where L (p, q) := p−q
ln p−ln q if p 6= q and L (p, p) := p.

Proof. The first inequality in (17) was proved before. We now have that

G (X (t, ·) + X (u + v − t, ·)) = exp [ln G (X (t, ·) + X (u + v − t, ·))]

for all t ∈ [u, v].
Integrating this equality on [u, v] and using the well-known Jensen’s integral inequality for the

convex mapping exp(·), we have that

1
v − u

∫ v

u

G (X (t, ·) + X (u + v − t, ·)) dt (18)

=
1

v − u

∫ v

u

exp [ln (G (X (t, ·) + X (u + v − t, ·)))] dt

≥ exp
[

1
v − u

∫ v

u

ln (G (X (t, ·) + X (u + v − t, ·))) dt

]

= exp
[

1
v − u

∫ v

u

ln X (t, ·) + ln X (u + v − t, ·)
2

dt

]

= exp
[

1
v − u

∫ v

u

ln X (t, ·) dt

]
.

It is clear that
∫ v

u

ln X (t, ·) dt =
∫ v

u

ln X (u + v − t, ·) dt.

By the aritmetic mean -geometric mean inequality we have that

G (X (t, ·) , X (u + v − t, ·)) ≤ X (t, ·) + X (u + v − t, ·)
2

, t ∈ [u, v]

from which, by integration, we get

1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt ≤ 1
v − u

∫ v

u

X (t, ·) dt

and the third inequality in (18) is proved.
To prove the last inequality, we observe, by the log-convexity of X, that

X (λu + (1− λ) v, ·) ≤ [X (u, ·)]λ [X (v, ·)]1−λ (19)

for all u, v ∈ T .
Integrating (19) over λ in [0, 1] , we have
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∫ 1

0

X (λu + (1− λ) v, ·) dλ ≤
∫ 1

0

[X (u, ·)]λ [X (v, ·)]1−λ
dλ.

As
∫ 1

0

X (λu + (1− λ) v, ·) dλ =
1

v − u

∫ v

u

X (t, ·) dt

and
∫ 1

0

[X (u, ·)]λ [X (v, ·)]1−λ
dλ = L [X (u, ·) , X (v, ·)] ,

the theorem is proved.

Corollary 2.8. Let X : T ×Ω → R be a convex stochastic process on T ×Ω and u, v ∈ T with u < v.
Then one has the inequalities:

exp
[
X

(
u + v

2
, ·

)]
≤ exp

[
1

v − u

∫ v

u

X (t, ·) dt

]
(20)

≤ 1
v − u

∫ v

u

exp
[
X (t, ·) + X (u + v − t, ·)

2

]
dt

≤ 1
v − u

∫ v

u

exp [X (t, ·)] dt

≤ E (X (u, ·) , X (v, ·)) ,

where E is the exponential mean, i.e.,

E(p, q) :=
exp p− exp q

p− q
for p 6= q and E(p, p) = p.

Remark 2.9. Note that the inequality

exp
(

1
v − u

∫ v

u

ln [X (t, ·)] dt

)
(21)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt (22)

≤ 1
v − u

∫ v

u

X (t, ·) dt

holds for every strictly positive and integrable stochastic process X : I × Ω → R and the inequality

exp
[

1
v − u

∫ v

u

ln X (t, ·) dt

]
(23)

≤ 1
v − u

∫ v

u

exp
(

X (t, ·) + X (u + v − t, ·)
2

)
dt (24)

≤ 1
v − u

∫ v

u

exp X (t, ·) dt

holds for every X : T × Ω → R an integrable stochastic on [u, v] .
Taking into account that the above two inequalities hold, we can assert that for every X : T ×Ω →

(0,∞) an integrable stochastic process on [u, v] we have the inequalities:
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exp
(

1
v − u

∫ v

u

lnX (t, ·) dt

)
(25)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt

≤ 1
v − u

∫ v

u

X (t, ·) dt

≤ ln
[

1
v − u

∫ v

u

exp A (X (t, ·) , X (u + v − t, ·))
]

dt

≤ ln
[

1
v − u

∫ v

u

exp X (t, ·) dt

]
,

which is of interest in itself.
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[12] M. Tunç, Some integral inequalities for logarithmically convex functions, Journal of the Egyptian
Mathematical Society, Volume 22 (2014), 177-181

[13] K. Nikodem, On convex stochastic processes, Aequationes Mathematicae 20 (1980) 184-197.

[14] S.S. Dragomir, J.E. Pecaric, J. Sandor, A note on the Jensen–Hadamard inequality, Anal. Num.
Theor. Approx. 19 (1990) 29–34.
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NUMERICAL METHODS FOR

DISCONTINUOUS STURM-LIOUVILLE

PROBLEMS
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Abstract − This study is devoted to determining the eigenvalues and eigenfunctions of a discon-
tinuous Sturm-Liouville Problem. By modifying the finite difference method, we have developed a
numerical approximation to the eigenvalues and eigenfunctions.

Keywords − Sturm-Liouville, Discontinuous, Numerical Solution, Eigenvalues, Eigenfunctions, Trans-
mission Conditions

1 Introduction

Many physical systems are connected to a Sturm-Liouville problem. The computation of eigenvalues of
Sturm-Liouville problems is therefore important to many problems in Mathematical Pyhsics. Sturm-
Liouville systems arise from vibration problems in continuous media with non-uniform properties, such
as the propagation of sonar in water and the seismic waves in the Earth [4]. In the classical sense, the
Sturm-Liouville problem is replaced by a first order differential equation that is solved using Shooting
methods. Added in this class are the Prüfer phase methods ( [5] and [8]). In the recent years,
pursued with considerable success by a number of researchers including Pruess ( [9], [10]) and Paine
and de Hoog [7], a simpler problem is constructed by replacing the coefficients in the Sturm-Liouville
problem by piecewise constants. Anderssen and de Hoog [6] extend the results to the Liouville normal
form with general boundary conditions. Moreover, some important results in this field have also been
obtained for discontinuous Sturm-Liouville systems. It should be mentioned that O. Sh. Mukhtarov
and his colleagues [1, 2, 3] have constructed boundary value problems with discontinuities where an
eigenparameter appears not only in the differential equation, but also in the boundary and transmission
conditions.

The main goal of this study is to extend the finite difference method to a particular discontinuous
Sturm-Liouville problem.

Specifically, we shall compute approximations to the eigenvalues and eigenfunctions of a problem
with the following transmission and boundary conditions:

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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y
′′

+ λy = 0 xε[0, c) ∪ (c, π] (1)
y(0) = y(π) = 0 (2)

γ1y(c+) = γ2y(c−) (3)

1.1 Finite Difference Method

Under certain conditions, we can use Taylor’s formulae:

y(x + h) = y(x) + y′(x)h +
y′′(x)

2!
h2 + · · · (4)

and

y(x− h) = y(x)− y′(x)h +
y′′(x)

2!
h2 + · · · . (5)

Combining the two, we get

y(x + h) + y(x− h) ≈ 2y(x) + y′′(x)h2, (6)

discarding all higher-order terms. Thus, to approximate y′′(x), we can use the difference equation

y′′(x) ≈ y(x− h)− 2y(x) + y(x + h)
h2

. (7)

Substituting this approximation into the Sturm-Liouville equation (1.1), we get

−y(x− h)− 2y(x) + y(x + h)
h2

≈ λy(x). (8)

We now partition the interval [0, π] into 0 = x0 < x1 . . . < xN < xN+1 = π nodes, where xj = jh and
h = π

N+1 . We seek a solution to the Sturm-Liouville problem on these nodes. Naturally, we let

y(x0) = y(0) = 0

and
y(xN+1) = y(π) = 0

However, the solution is unknown at the interior points xj , j = 1, 2, . . . , N .
By evaluating the difference equation 8 at xj , we obtain

−h−2
[
y(xj − h)− 2y(xj) + y(xj + h)

] ≈ λy(xj).

Because h is the increment between consecutive points on our partition, xj − h = xj−1 and xj + h =
xj+1. Hence,

−h−2
[
y(xj−1)− 2y(xj) + y(xj+1)

] ≈ λy(xj).

We now replace y(xj) with yj and iterate the equation

−h−2
[
yj−1 − 2yj + yj+1

]
= λyj (9)

in order to find an approximate solution to the Sturm-Liouville problem.
It must be noted that y(xj) represents the exact value of the Sturm-Liouville solution evaluated

at xj , while the variable yj represents the approximation to y(xj) at xj .
For j = 1, equation 9 becomes

−h−2
[
y0 − 2y1 + y2

]
= λy1. (10)

Similarly, for j = 2, 3, and 4, we get

−h−2
[
y1 − 2y2 + y3

]
= λy2,

−h−2
[
y2 − 2y3 + y4

]
= λy3,

−h−2
[
y3 − 2y4 + y5

]
= λy4.



Journal of New Theory 2 (2015) 33-42 35

Finally, for j = N , we get
−h−2

[
yN−1 − 2yN + yN+1

]
= λyN . (11)

However, the boundary conditions require

y0 = y(x0) = y(0) = 0,

yN+1 = y(xN+1) = y(π) = 0,

so equation 10 becomes −h−2
[−2y1+y2

]
= λy1. Similarly, equation 11 becomes −h−2

[
yN−1−2yN

]
=

λyN . The full set is a system of N equations in N unknowns.

2h−2y1 − h−2y2 = λy1,
−h−2y1 + 2h−2y2 − h−2y3 = λy2,
−h−2y2 + 2h−2y3 − h−2y4 = λy3,
−h−2y3 + 2h−2y4 − h−2y5 = λy4,

...
−h−2yN−1 + 2h−2yN = λyN .

(12)

This system can be written in matrix form as



2h−2 −h−2 0 0 · · · 0
−h−2 2h−2 −h−2 0 · · · 0

0 −h−2 2h−2 −h−2 · · · 0
0 0 −h−2 2h−2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 2h−2







y1

y2

y3

y4

...
yN




= λ




y1

y2

y3

y4

...
yN




. (13)

By denoting

M =




2h−2 −h−2 0 0 · · · 0
−h−2 2h−2 −h−2 0 · · · 0

0 −h−2 2h−2 −h−2 · · · 0
0 0 −h−2 2h−2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 2h−2




and ~y =




y1

y2

y3

y4

...
yN




the system (13) can be written in the form

M~y = λ~y.

1.2 Neumann Conditions

Let us consider the same Sturm-Liouville equation, but this time attach a Neumann condition at the
right endpoint.

−y′′(x) = λy(x), y(0) = 0, y′(π) = 0 (14)

Since we still have −y′′(x) = λy(x), we can re-use equation (9), repeated here for convenience.

−h−2
[
yj−1 − 2yj + yj+1

]
= λyj

Because of the Neumann condition y′(π) = 0, we do not know the value of the solution at the right
endpoint (i.e., we do not know y(π)). Therefore, if we partition the interval as above, we will need to
compute y1, y2, . . . , yN+1 instead of y1, y2, . . . , yN . Solving this system requires the addition of an
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extra equation for the variable yN+1. The resulting system looks like this:

−h−2
[
y0 − 2y1 + y2

]
= λy1,

−h−2
[
y1 − 2y2 + y3

]
= λy2,

−h−2
[
y2 − 2y3 + y4

]
= λy3,

−h−2
[
y3 − 2y4 + y5

]
= λy4,

−h−2
[
y4 − 2y5 + y6

]
= λy5,

...

−h−2
[
yN−2 − 2yN+1 + yN+2

]
= λyN+1.

(15)

However, this gives us N + 1 equations in N + 3 unknowns. Because of the Dirichlet condition at the
left endpoint, we know that

y0 = y(x0) = y(0) = 0.

This condition eliminates the unknown y0. However, we will need to obtain an estimate for yN+2.
We can use a forward difference equation to approximate the first derivative:

y′(x) ≈ y(x + h)− y(x)
h

.

Using h as the step size in our partition of [0, π], we have

y′(xj) ≈ y(xj+1)− y(xj)
h

.

Using yj as an approximation of y(xj), we can write

y′j =
yj+1 − yj

h

or equivalently
yj+1 = yj + hy′j .

For j = N + 1, this gives us the equation yN+2 = yN+1 + hy′N+1. However, the Neumann condition
on the right endpoint of [0, π] is

y′N+1 = y′(xN+1) = y′(π) = 0.

Thus, we get yN+2 = yN+1.
Substituting y0 = 0 and yN+2 = yN+1 into the first and last equations respectively of system (15)

gives us N + 1 equations in N + 1 unknowns:

−h−2
[− 2y1 + y2

]
= λy1,

−h−2
[
y1 − 2y2 + y3

]
= λy2,

−h−2
[
y2 − 2y3 + y4

]
= λy3,

−h−2
[
y3 − 2y4 + y5

]
= λy4,

−h−2
[
y4 − 2y5 + y6

]
= λy5,

...

−h−2
[
yN − yN+1

]
= λyN+1.

This system can be written in matrix form.



2h−2 −h−2 0 · · · 0
−h−2 2h−2 h−2 · · · 0

0 −h−2 2h−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · h−2







y1

y2

y3

...
yN+1




= λ




y1

y2

y3

...
yN+1




. (16)
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x0

0

x1 ... xj−1

c

xj ... xN+1

π

Figure 1: Partitioning the solution interval [0; π]

By denoting

N =




2h−2 −h−2 0 · · · 0
−h−2 2h−2 −h−2 · · · 0

0 −h−2 2h−2 · · · 0
0 0 −h−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · h−2




and ~y =




y1

y2

y3

...
yN+1




the system (16) reduced to the form
N~y = λ~y.

2 A Numerical Method for Solving Discontinuous

Sturm-Liouville Problems

We now consider the Sturm-Liouville equation described in (1)- (3), which holds over the finite interval
[0, π] except at one inner point c ∈ [0, π].

First, we partition the interval [0, π] such that xj−1 < c < xj as in Figure 1. We then use equation
(9) to find an approximate solution at those points to the left of c: y0, y1, . . . , yj−1 at x0, x1, . . . , xj−1

by . Once yj−1 is known, the transmission condition (3) gives us a value for yj :

yj =
γ2

γ1
yj−1

at xj , on the right-hand side of c. Finally, with yj known, the values yj+1, . . . , yn at xj+1, . . . , xn can
be calculated from equation (9).

To generalize this solution, consider the new variable Yj :

Yj =

{
yj , j 6= j?

γ2
γ1

yj−1, j = j?
(17)

where
j? = min{k|xk > c}.

System (12) then becomes

−h−2
[
Y0 − 2Y1 + Y2

]
= λY1

−h−2
[
Y1 − 2Y2 +

γ1

γ2
Y3

]
= λY2

−h−2
[γ2

γ1
Y2 − 2Y3 +

γ2

γ1
Y4

]
= λY3

−h−2
[γ1

γ2
Y3 − 2Y4 + Y5

]
= λY4

−h−2
[
Y4 − 2Y5 + Y6

]
= λY5

...

−h−2
[
YN−1 − 2YN + YN+1

]
= λYN .
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for j = 1, . . . , N. The matrix form of this system is written as follows:

h−2




2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −γ1

γ2
0 · · · 0

0 0 −γ2
γ1

2 −γ2
γ1

· · · 0
0 0 0 −γ1

γ2
2 · · · 0

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 2







Y1

Y2

Y3

Y4

Y5

...
YN




= λ




Y1

Y2

Y3

Y4

Y5

...
YN




. (18)

3 Numerical Illustration

Example 3.1. For N = 30, γ1
γ2

= 1
2 and x2 < c < x3, we consider the discontinuous Sturm-Liouville

problem:
−y′′(x) = λy(x) xε[0, c) ∪ (c, π] (19)

y(0) = y(π) = 0

γ2y(c+) = γ1y(c−)

By applying the transformation (17) we obtain the following system of linear equations:

−h−2
[
Y0 − 2Y1 + Y2

]
= λY1

−h−2
[
Y1 − 2Y2 +

γ1

γ2
Y3

]
= λY2

−h−2
[γ2

γ1
Y2 − 2Y3 +

γ2

γ1
Y4

]
= λY3

−h−2
[γ1

γ2
Y3 − 2Y4 + Y5

]
= λY4

−h−2
[
Y4 − 2Y5 + Y6

]
= λY5

...

−h−2
[
Y28 − 2Y29 + Y31

]
= λY30

This system can be written as the following matrix equation:

h−2




2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −γ1

γ2
0 · · · 0

0 0 −γ2
γ1

2 −γ2
γ1

· · · 0
0 0 0 −γ1

γ2
2 · · · 0

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 2







Y1

Y2

Y3

Y4

Y5

...
Y30




= λ




Y1

Y2

Y3

Y4

Y5

...
Y30




. (20)

For this system, the following MatLAB commands generate approximations to the eigenvalue and the
eigenfunctions, as shown in Figure 2.
v =
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Figure 2: The first two eigenfunctions

Columns 1 through 5 Columns 29 through 30
-0.0253 0.0487 0.0703 -0.0917 0.1146 ... -0.2098 -0.2036
-0.0504 0.0954 0.1341 -0.1685 0.2005 ... 0.1848 0.2154
-0.0749 0.1382 0.1857 -0.2181 0.2359 ... 0.0470 -0.0243
-0.1974 0.3508 0.4404 -0.4645 0.4242 ... -0.4525 -0.3794
-0.1215 0.2054 0.2345 -0.2088 0.1350 ... 0.1522 0.2250
-0.1430 0.2269 0.2273 -0.1515 0.0239 ... 0.0922 -0.0483
-0.1630 0.2392 0.1993 -0.0696 -0.0932 ... -0.2334 -0.1739
-0.1814 0.2417 0.1529 0.0235 -0.1868 ... 0.1134 0.2322
-0.1979 0.2343 0.0926 0.1129 -0.2335 ... 0.1335 -0.0718
-0.2124 0.2173 0.0238 0.1839 -0.2215 ... -0.2310 -0.1563
-0.2247 0.1914 -0.0473 0.2251 -0.1539 ... 0.0700 0.2371
-0.2347 0.1576 -0.1140 0.2299 -0.0476 ... 0.1694 -0.0946
-0.2423 0.1174 -0.1702 0.1973 6 0.0707 ... -0.2191 -0.1370
-0.2474 0.0724 -0.2108 0.1328 0.1712 ... 0.0236 0.2396
-0.2499 0.0245 -0.2321 0.0468 0.2287 ... 0.1983 -0.1164
-0.2499 -0.0245 -0.2321 -0.0468 0.2287 ... -0.1983 -0.1164
-0.2474 -0.0724 -0.2108 -0.1328 0.1712 ... -0.0236 0.2396
-0.2423 -0.1174 -0.1702 -0.1973 0.0707 ... 0.2191 -0.1370
-0.2347 -0.1576 -0.1140 -0.2299 -0.0476 ... -0.1694 -0.0946
-0.2247 -0.1914 -0.0473 -0.2251 -0.1539 ... -0.0700 0.2371
-0.2124 -0.2173 0.0238 -0.1839 -0.2215 ... 0.2310 -0.1563
-0.1979 -0.2343 0.0926 -0.1129 -0.2335 ... -0.1335 -0.0718
-0.1814 -0.2417 0.1529 -0.0235 -0.1868 ... -0.1134 0.2322
-0.1630 -0.2392 0.1993 0.0696 -0.0932 ... 0.2334 -0.1739
-0.1430 -0.2269 0.2273 0.1515 0.0239 ... -0.0922 -0.0483
-0.1215 -0.2054 0.2345 0.2088 0.1350 ... -0.1522 0.2250
-0.0987 -0.1754 0.2202 0.2322 0.2121 ... 0.2262 -0.1897
-0.0749 -0.1382 0.1857 0.2181 0.2359 ... -0.0470 -0.0243
-0.0504 -0.0954 0.1341 0.1685 0.2005 ... -0.1848 0.2154
-0.0253 -0.0487 0.0703 0.0917 0.1146 ... 0.2098 -0.2036
The eigenvalues are

n 1 2 3 ..... 29 30
λn 0.9991 3.9863 8.9309 .... 385.4923 388.4795

The first two eigenfunctions are shown in Figure 2.

Example 3.2. For N = 30, γ1
γ2

= 1
2 and x2 < c < x3, we consider the same discontinuous Sturm-

Liouville problem with a Neumann boundary condition:

−y′′(x) = λy(x) x ∈ [0, c) ∪ (c, π] (21)
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y(0) = y
′
(π) = 0

γ2y(c+) = γ1y(c−)

By applying the transformation (17) we obtain the following system of linear equations:

−h−2
[− 2Y1 + Y2

]
= λY1

−h−2
[
Y1 − 2Y2 +

γ1

γ2
Y3

]
= λY2

−h−2
[γ2

γ1
Y2 − 2Y3 +

γ2

γ1
Y4

]
= λY3

−h−2
[γ1

γ2
Y3 − 2Y4 + Y5

]
= λY4

−h−2
[
Y4 − 2Y5 + Y6

]
= λY5

...

−h−2
[
Y30 + Y31

]
= λY31

The matrix form is

h−2




2 −1 0 0 0 0 · · · 0
−1 2 −1 0 0 0 · · · 0
0 −1 2 −γ1

γ2
0 0 · · · 0

0 0 −γ2
γ1

2 −γ2
γ1

0 · · · 0
0 0 0 −γ1

γ2
2 −1 · · · 0

0 0 0 0 −1 2 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · 1







Y1

Y2

Y3

Y4

Y5

Y6

...
Y31




= λ




Y1

Y2

Y3

Y4

Y5

Y6

...
Y31




. (22)

The following commands were used to generate the eigenvalues and eigenfunctions.

v =
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Columns 1 through 5 Columns 29 through 30
0.0257 -0.0483 -0.0673 0.0844 0.1018 ... 0.0468 0.0248
0.0511 -0.0945 -0.1282 0.1548 0.1773 ... -0.0917 -0.0494
0.2281 -0.4102 -0.5310 0.5979 0.6209 ... 0.3989 0.2205
0.1001 -0.1732 -0.2091 0.2105 0.1831 ... -0.1689 -0.0968
0.1232 -0.2023 -0.2213 0.1866 0.1120 ... 0.1979 0.1192
0.1449 -0.2229 -0.2127 0.1316 0.0119 ... -0.2190 -0.1404
0.1651 -0.2341 -0.1839 0.0545 -0.0913 ... 0.2313 0.1601
0.1835 -0.2353 -0.1377 -0.0316 -0.1709 ... -0.2342 -0.1782
0.2000 -0.2267 -0.0785 -0.1125 -0.2063 ... 0.2278 0.1946
0.2144 -0.2084 -0.0119 -0.1745 -0.1884 ... -0.2121 -0.2089
0.2265 -0.1814 0.0558 -0.2075 -0.1218 ... 0.1879 0.2212
0.2362 -0.1466 0.1183 -0.2058 -0.0237 ... -0.1561 -0.2312
0.2434 -0.1057 0.1696 -0.1697 0.0805 ... 0.1180 0.2389
0.2480 -0.0603 0.2048 -0.1053 0.1639 ... -0.0752 -0.2442
0.2500 -0.0124 0.2207 -0.0234 0.2049 ... 0.0294 0.2470
0.2493 0.0361 0.2157 0.0625 0.1930 ... 0.0294 0.2470
0.2460 0.0830 0.1903 0.1379 0.1312 ... -0.0640 0.2451
0.2401 0.1264 0.1469 0.1904 0.0355 ... 0.1077 -0.2404
0.2316 0.1645 0.0896 0.2110 -0.0694 ... -0.1472 0.2333
0.2207 0.1956 0.0238 0.1964 -0.1564 ... 0.1806 -0.2239
0.2075 0.2185 -0.0442 0.1490 -0.2029 ... -0.2068 0.2122
0.1920 0.2321 -0.1081 0.0768 -0.1970 ... 0.2247 -0.1984
0.1746 0.2360 -0.1617 -0.0083 -0.1402 ... -0.2335 0.1825
0.1552 0.2298 -0.2000 -0.0920 -0.0471 ... 0.2329 -0.1648
0.1342 0.2140 -0.2194 -0.1603 0.0581 ... -0.2229 0.1454
0.1118 0.1890 -0.2181 -0.2019 0.1483 ... 0.2040 -0.1246
0.0883 0.1562 -0.1961 -0.2097 0.2002 ... -0.1768 0.1025
0.0637 0.1167 -0.1556 -0.1826 0.2003 ... 0.1425 -0.0794
0.0385 0.0722 -0.1003 -0.1249 0.1487 ... -0.1024 0.0555
0.0129 0.0248 -0.0356 -0.0464 0.0586 ... 0.0583 -0.0310
-0.0128 -0.0238 0.0325 0.0398 -0.0466 ... -0.0117 0.0062

The eigenvalues are

n 1 2 3 ..... 29 30
λn 1.032 4.1148 9.2101 .... 385.5555 388.4954

The first two eigenfunctions are shown in Figure 3.

4 Conclusion

We have described a numerical method for approximating the eigenvalues and eigenfunctions of a
discontinuous Sturm-Liouville problem. Since the present method gives real and positive eigenvalues
at all nodes, if higher accuracy is required we can simply increase the number of nodes N .



Journal of New Theory 2 (2015) 33-42 42

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

 

 
λ

1

λ
2

Figure 3: The first two eigenfunctions with a Neumann boundary condition
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1 Introduction

By a sequence space, we mean any vector subspace of ω, the space of all real or complex valued
sequences x = (xk). The well-known sequence spaces that we shall use throughout this paper are as
following:

`∞: the space of all bounded sequences,
c: the space of all convergent sequences,
c0: the space of all null sequences,
bs: the space of all sequences which forms bounded series,
cs: the space of all sequences which forms convergent series,
`1: the space of all sequences which forms absolutely convergent series,
`p: the space of all sequences which forms p-absolutely convergent series,

where 1 < p < ∞.
Let λ, µ be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers

ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from λ into µ, and we denote it
by writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform
of x, is in µ; where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1)

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to
∞. By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus, A ∈ (λ : µ) if
and only if the series on the right side of (1) converges for each n ∈ N and every x ∈ λ, and we have

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.



Journal of New Theory 2 (2015) 43-54 44

Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A sequence x is said to be A-summable to α if Ax converges to
α which is called as the A-limit of x.

If a normed sequence space λ contains a sequence (bn) with the property that for every x ∈ λ there
is a unique sequence of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + ... + αnbn)‖ = 0,

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkbk which has the sum x is
then called the expansion of x with respect to (bn), and written as x =

∑
αkbk.

The β−dual of a subset X of ω is defined by

Xβ =
{
a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
.

The shift operator P is defined on ω by (Px)n = xn+1 for all n ∈ N. A Banach limit L is
defined on `∞, as a non-negative linear functional, such that L(Px) = L(x) and L(e) = 1. A sequence
x = (xk) ∈ `∞ is said to be almost convergent to the generalized limit α if all Banach limits of x are
α [1], and denoted by f − limxk = α. Let P j be the composition of P with itself j times and define
tmn(x) for a sequence x = (xk) by

tmn(x) =
1

m + 1

m∑

j=0

(P jx)n for all m,n ∈ N.

Lorentz [1] proved that f − limxk = α if and only if limm→∞ tmn(x) = α, uniformly in n. It is well-
known that a convergent sequence is almost convergent such that its ordinary and generalized limits
are equal. By f and f0, we denote the space of all almost convergent sequences and almost convergent
to zero sequences, respectively, i.e.,

f =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

k=0

xn+k

m + 1
= α uniformly in n

}

and

f0 =
{

x = (xk) ∈ ω : lim
m→∞

m∑

k=0

xn+k

m + 1
= 0 uniformly in n

}
.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all n ∈ N. It is trivial
that A(Bx) = (AB)x holds for triangle matrices A,B and a sequence x. Further, a triangle matrix U
uniquely has an inverse U−1 = V that is also a triangle matrix. Then, x = U(V x) = V (Ux) holds for
all x ∈ ω. We write by U and U0 for the sets of all sequences with non-zero terms and non-zero first
terms, respectively. For u ∈ U , let 1/u = (1/un).

Let us give the definition of some triangle limitation matrices which are needed in the text. Let
q = (qk) be a sequence of positive reals and write

Qn =
n∑

k=0

qk, (n ∈ N).

Then the Cesàro mean of order one, Riesz mean with respect to the sequence q = (qk) and Ar− mean
with 0 < r < 1 are respectively defined by the matrices C1 = (cnk), Rq = (rq

nk) and Ar = (ar
nk); where

cnk =

{ 1
n + 1

, (0 ≤ k ≤ n),

0, (k > n),
rq
nk =

{ qk

Qn
, (0 ≤ k ≤ n),

0, (k > n),

and

ar
nk =





1 + rk

1 + n
, (0 ≤ k ≤ n),

0, (k > n),
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for all k, n ∈ N. Additionally, the Euler mean of order r and the weighted mean matrix and the
double band matrix are respectively defined by the matrices Er = (er

nk), G(u, v) = (gnk) and B(r, s) =
{bnk(r, s)}; where

er
nk =

{ (n

k

)
(1− r)n−krk, (0 ≤ k ≤ n)

0, (k > n)
and gnk =

{
unvk, (0 ≤ k ≤ n),
0, (k > n),

and

bnk(r, s) =





r, (k = n),
s, (k = n− 1),
0, otherwise

for all k, n ∈ N and u, v ∈ U and r, s ∈ R\{0}.
For a sequence space λ, the matrix domain λA of an infinite matrix A is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ} , (2)

which is a sequence space. Although in the most cases the new sequence space λA generated in the
limitation matrix A from a sequence space λ is the expansion or the contraction of the original space λ,
it may be observed in some cases that those spaces overlap. Indeed, one can deduce that the inclusions
λS ⊂ λ strictly holds for λ ∈ {`∞, c, c0}. As this, one can deduce that the inclusions `p ⊂ bvp and
λ ⊂ λ∆1 also strictly hold for λ ∈ {c, c0}, where 1 ≤ p ≤ ∞ and the space (`p)∆(1) = bvp has been
studied by Başar and Altay [2], (see also Çolak and Et and Malkowsky [3]). However, if we define
λ = c0⊕z with z = ((−1)k), that is, x ∈ λ if and only if x = s+αz for some s ∈ c0 and some α ∈ C, and
consider the matrix A with the rows An defined by An = (−1)ne(n) for all n ∈ N, we have Ae = z ∈ λ
but Az = e /∈ λ which lead us to the consequences that z ∈ λ \ λA and e ∈ λA \ λ, where e(n) denotes
the sequence whose only non-zero term is a 1 in nth place for each n ∈ N and e = (1, 1, 1, ...). That
is to say that the sequence spaces λA and λ overlap but neither contains the other. The approach
constructing a new sequence space by means of the matrix domain of a particular limitation method
has been recently employed by Wang [4], Ng and Lee [5], Aydın and Başar [6], Altay and Başar [7],
and Altay et all. [8]. They introduced the sequence spaces (`∞)Nq and cNq in [4], (`p)C1 = Xp in [5],
(c0)Ar = ar

0 and cAr = ar
c in [6], (c0)Er = er

0 and cEr = er
c in [7], (`p)Er = er

p and (`∞)Er = er
∞ in [8];

where 1 ≤ p < ∞.
In this study, we summarize some knowledge in the existing literature on the almost A−null and

almost A−convergent sequence spaces derived by using the domain A−limitation matrix. Additionally,
we introduce the new sequence spaces f̄0(r, s, t) and f̄(r, s, t) and examine some properties of these
sequence spaces.

2 Domain of the A−limitation matrix in the se-

quence spaces f0 and f

In this section, we shortly give the knowledge on the sequence spaces derived by the A−limitation ma-
trix from well-known almost convergent and almost null sequence spaces. For the concerning literature
about the domain µA of an infinite limitation matrix A in a sequence space µ, Table 1 may be useful.

µ A µA refer to
f0, f B(r, s) f̂ , f̂0 [9]
f0, f C1 f̃ , f̃0 [14]
f0, f Rq fRq , {f0}Rq [15]
f0, f Ar ar

f , ar
f0

[16]
f0, f G(u, v) f0(G), f(G) [17]
f0, f Er f(E), f0(E) [18]
f0, f B(r, s, t) f(B), f0(B) [19]
f0, f Aλ Aλ(f0), Aλ(f) [20]

Table 1: The domains of the certain A−limitation matrix in the sequence spaces f0 and f
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The matrix domain of a certain limitation method on the sequence spaces f0 and f firstly were
studied by Başar and Kirişçi [9].

Başar and Kirişçi introduced the sequence spaces f̂0 and f̂ in [9] as follows:

f̂0 : =
{

x = (xk) ∈ ω : lim
m→∞

m∑

j=0

sxk−1+j + rxk+j

m + 1
= 0 uniformly in k

}
,

f̂ : =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

j=0

sxk−1+j + rxk+j

m + 1
= α uniformly in k

}
.

It is trivial that the sequence spaces f̂0 and f̂ are the domain of the matrix B(r, s) in the spaces f0

and f , respectively. Thus, with the notation of (2) we can redefine the spaces f̂0 and f̂ by

f̂0 := {f0}B(r,s) and f̂ := {f}B(r,s).

Define the sequence y = (yk) by the B(r, s)−transform of a sequence x = (xk), i.e.,

yk := sxk−1 + rxk for all k ∈ N. (3)

Since the matrix B(r, s) is triangle, one can easily observe that x = (xk) ∈ X̂ if and only if y =
(yk) ∈ X, where the sequences x = (xk) and y = (yk) are connected with the relation (3), and X
denotes any of the sequence spaces f0 and f . Therefore, one can easily see that the linear operator
T : X̂ → X, Tx = y = B(r, s)x which maps every sequence x in X̂ to the associated sequence y in X,
is bijective and norm preserving, where ‖x‖ bX = ‖B(r, s)x‖X . This gives the fact that X̂ and X are
norm isomorphic.

Başar and Kirişçi [9] proved that the sequence space f is a BK−space with the norm ‖.‖∞ and
non-separable closed subspace of `∞. So, the sequence space f has no Schauder basis. Jarrah and
Malkowsky [12] showed that the matrix domain λA of a normed sequence space λ has a basis whenever
A = (ank) is triangle. Then; our corollary concerning the space f̂0 and f̂ is about their Schauder basis:

Corollary 2.1. [9, Corollary 4.2] The space f̂ has no Schauder basis.

The gamma- and beta-duals of the spaces f̂0 and f̂ are determined. Also, some matrix transfor-
mations on these sequence spaces are characterized.

Quite recently, E. E. Kara and K. Elmaag̃aç [21] introduced the sequence space ĉu as follows:

ĉu =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

j=0

uk+jxk+j + uk−1+jxk−1+j

m + 1
= α uniformly in k

}
.

It is trivial that the sequence space ĉu is the domain of the matrix Au = (au
nk) in the space f ,

where the matrix Au = (au
nk) is defined by

au
nk =

{
(−1)n−kuk, n− 1 ≤ k ≤ n,
0, 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N. Also, they show that ĉu is linearly isomorphic to the space ĉ. Further, they compute
the β−dual of the space ĉu and characterize the classes of infinite matrices related to sequence space
ĉu.

3 Spaces of Ā(r, s, t)−almost null and Ā(r, s, t)−almost

convergent sequences

In this section, we study some properties of the spaces of the Ā(r, s, t)−almost null and Ā(r, s, t)−almost
convergent sequences.
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For any sequences s, t ∈ ω, the convolution s ∗ t is a sequence defined by

(s ∗ t)n =
n∑

k=0

sn−ktk; (n ∈ N).

Throughout this section, let r, t ∈ U and s ∈ U0. For any sequence x = (xn) ∈ ω, we define the
sequence x̄ = (x̄n) of generalized means of x by

xn =
1
rn

n∑

k=0

sn−ktkxk; (n ∈ N), (4)

that is xn = (s ∗ tx)n/rn for all n ∈ N. Further, we define the infinite matrix Ā(r, s, t) of generalized
means by

{Ā(r, s, t)}nk =

{ sn−ktk
rn

, 0 ≤ k ≤ n,

0, k > n
(5)

for all n, k ∈ N. Then, it follows by (4) that x̄ is the Ā(r, s, t)−transform of x, that is x̄ = (Ā(r, s, t)x)
for all x ∈ ω.

It is obvious by (5) that Ā(r, s, t) is a triangle. Moreover, it can easily be seen that Ā(r, s, t) is
regular if and only if sn−i = o(rn) for each i ∈ N,

∑n
k=0 |sn−ktk| = O(|rn|) and (s∗t)n/rn → 1 (n →∞).

The above definition of the matrix Ā(r, s, t) of generalized means given by (5) includes the following
special cases:

(1) If rn = (s∗t)n 6= 0 for all n, then Ā(r, s, t) reduces to the matrix (N, s, t) of generalized Nörlund
means [22, 23]. In particular, if t = e then Ā(r, s, t) reduces to the familiar matrix of Nörlund means
[30, 4].

(2) If α > 0, rk = Γ(α+k+1)
k!Γ(α+1) , sk = Γ(α+k)

k!Γ(α) and tk = 1 for all k, then Ā(r, s, t) reduces to the matrix
(C, α) of Cesàro means of order α [24, 25]. In particular, if α = 1 then Ā(r, s, t) reduces to the famous
matrix (C, 1) of arithmetic means [5, 26].

(3) If 0 < α < 1, rk = 1
k! , sk = (1−α)k

k! and tk = αk

k! for all k, then Ā(r, s, t) reduces to the matrix
(E, α) of Euler means of order α [7, 10, 8].

(4) If tn > 0 and rn =
∑n

k=0 tk for all n, then Ā(r, s, t) reduces to the matrix (N, t) of weighted
means [12, 27].

(5) If 0 < α < 1, rk = k + 1, sk = 1 and tk = 1 + αk for all k, then Ā(r, s, t) reduces to the matrix
Aα studied by Aydın and Başar [6, 28].

(6) If s = e(0) and t = e, then Ā(r, s, t) reduces to the diagonal matrix D1/r studied by de Malafosse
[29].

Now, since Ā(r, s, t) is a triangle, it has a unique inverse which is also a triangle. More precisely,
by making a slight generalization of a work done in [30], we put D

(s)
0 = 1/s0 and

D(s)
n =

1
sn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
s3 s2 s1 s0 · · · 0
...

...
...

...
. . .

...
sn−1 sn−2 sn−3 sn−4 · · · s0

sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣∣∣

; (n = 1, 2, ...).

Then the inverse of Ā(r, s, t) is the triangle B̄ = (b̄nk)∞n,k=0 defined by

b̄nk =





(−1)n−kD
(s)
n−krk

1
tn

, (0 ≤ k ≤ n),

0, (k > n),

for all n, k ∈ N. For an arbitrary subset X of ω, the set X(r, s, t) has recently been introduced in [31]
as the matrix domain of the triangle Ā(r, s, t) in X.

We introduce the sequence spaces f̄(r, s, t) and f̄0(r, s, t) as the sets of all sequences whose
Ā(r, s, t)−transforms are in the spaces f0 and f , that is
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f̄0(r, s, t) =
{

x = (xk) ∈ ω : lim
m→∞

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
= 0 uniformly in n

}
,

f̄(r, s, t) =
{

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
= l uniformly in n

}
.

With the notation of (2), we can redefine the spaces f̄(r, s, t) and f̄0(r, s, t) as follows:

f̄(r, s, t) = {f}Ā(r,s,t) and f̄0(r, s, t) = {f0}Ā(r,s,t).

It is worth mentioning that the general forms of the well-known matrices of Nörlund, Cesàro, Euler
and weighted means can be obtained as special cases of the matrix Ā(r, s, t) of generalized means.
Therefore, all of the sequence spaces in Tablo 1 can be obtained by special choice from the sequence
spaces f̄(r, s, t) and f̄0(r, s, t) which are defined by using matrix domain of the matrix Ā(r, s, t).

Theorem 3.1. The sequence spaces f̄(r, s, t) and f̄0(r, s, t) are BK−spaces with the same norm given
by

‖x‖f̄(r,s,t) = ‖Ā(r, s, t)x‖f = sup
m,n∈N

|tmn(Ā(r, s, t)x)|, (6)

where

tmn(Ā(r, s, t)x) =
1

m + 1

n∑

j=0

(Ā(r, s, t)x)n+j

=
1

m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn

for all m,n ∈ N.

Proof. f0 and f endowed with the norm ‖.‖∞ are BK−spaces [24, Example 7.3.2 (b)] and Ā(r, s, t) is
a triangle matrix, Theorem 4.3.2 of Wilansky [32, p.61] gives the fact that f̄(r, s, t) and f̄0(r, s, t) are
BK−spaces with the norm ‖.‖f̄(r,s,t).

Remark 3.2. It can easily be seen that the absolute property does not hold on the spaces f̄(r, s, t)
and f̄0(r, s, t), that is ‖x‖f̄(r,s,t) 6= ‖|x|‖f̄(r,s,t) for at least one sequence x in each of these spaces, where
|x| = (|xk|). Thus, the spaces f̄(r, s, t) and f̄0(r, s, t) are BK−spaces of non-absolute type.

Theorem 3.3. The sequence spaces f̄(r, s, t) and f̄0(r, s, t) are norm isomorphic to the spaces f and
f0, respectively.

Proof. Since the fact f̄0(r, s, t) ∼= f0 can be similarly proved, we consider only the case f̄(r, s, t) ∼= f .
To prove this, we should show the existence of a linear bijection between the spaces f̄(r, s, t) and f
which preserves the norm. Consider the transformation T defined, with the notation of (4), from
f̄(r, s, t) to f by x 7→ x̄ = Tx = Ā(r, s, t)x. The linearity of T is clear. Further, it is trivial that x = θ
whenever Tx = θ and hence T is injective.

Let us take any x̄ = (x̄k) ∈ f and define the sequence x = (xn) by

xn =
1
tn

n∑

k=0

(−1)n−kD
(s)
n−krkx̄k; for all n ∈ N. (7)

Then, it is immediate that

n+j∑

k=0

sn+j−ktkxk

rn
=

n+j∑

k=0

sn+j−ktk
rn

1
tk

k∑

i=0

(−1)k−iD
(s)
k−irix̄i

= x̄n+j
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which gives by a short calculation that

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
=

1
m + 1

m∑

j=0

x̄n+j .

Therefore, we have

lim
m→∞

1
m + 1

m∑

j=0

{Ā(r, s, t)x}n+j = lim
m→∞

1
m + 1

m∑

j=0

x̄n+j = l uniformly in n.

This means that x ∈ f̄(r, s, t) and hence T is surjective. Thus, one can easily see from (6) that T is a
norm preserving transformation. This completes the proof.

Remark 3.4. It is known from Corollary of Başar and Kirişçi [9] that the Banach space f has no
Schauder basis. It is also known from Theorem 2.3 of Jarrah and Malkowsky [12] that the domain λA

of a matrix A in a normed sequence space λ has a basis if and only if λ has a basis whenever A = (ank)
is a triangle. Combining these two facts one can immediately conclude that both the space f̄(r, s, t)
and the space f̄0(r, s, t) have no Schauder basis.

Now, we give the beta- and gamma-duals of the sequence spaces f̄(r, s, t) and f̄0(r, s, t). For this,
we need the following lemmas:

Lemma 3.5. [11] A = (ank) ∈ (f : `∞) if and only if

sup
n∈N

∑

k

|ank| < ∞. (8)

Lemma 3.6. [11] A = (ank) ∈ (f : c) if and only if (8) holds, and there are αk, α ∈ C such that

lim
n→∞

ank = αk for each k ∈ N, (9)

lim
n→∞

∑

k

ank = α, (10)

lim
n→∞

∑

k

∣∣∆(ank − αk)
∣∣ = 0. (11)

Theorem 3.7. Define the sets F1(r, s, t), F2(r, s, t), F3(r, s, t), F4(r, s, t), F5(r, s, t) as follows:

F1(r, s, t) =
{

a = (ak) ∈ ω : sup
n∈N

n∑

k=0

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ < ∞
}

,

F2(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj exists

}
,

F3(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

k=0

[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]
− exists

}
,

F4(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

k=0

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ = 0
}

,

F5(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

∞∑

k=n+1

∣∣∣∣
∞∑

j=n+1

(∆ājk − αk)
∣∣∣∣ = 0

}
.

Then, the β−dual of the sequence space f̄(r, s, t) is

5⋂

i=1

Fi(r, s, t).
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Proof. Let a = (ak) ∈ ω and consider the equality

n∑

k=0

akxk =
n∑

k=0

[
1
tk

k∑

j=0

(−1)k−jD
(s)
k−jrj x̄j

]
ak

=
n∑

k=0

[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]
x̄k = {F̄ (r, s, t)x̄}n, (12)

where F̄ (r, s, t) = {f̄nk(r, s, t)} is defined by

f̄nk(r, s, t) =





n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj (0 ≤ k ≤ n),

0 (k > n)

(13)

for all n, k ∈ N. Thus, we deduce from Lemma 3.6 with (12) that ax = (akxk) ∈ cs whenever
x = (xk) ∈ f̄(r, s, t) if and only if F̄ (r, s, t)x̄ ∈ c whenever x̄ = (x̄k) ∈ f , where F̄ (r, s, t) = {f̄nk(r, s, t)}
is defined by (13). Therefore, we derive from (8), (9), (10) and (11) that

sup
n∈N

∑

k

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ < ∞,

lim
n→∞

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj = αk for each fixed k ∈ N,

lim
n→∞

∑

k

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj = α,

lim
n→∞

∑

k

∣∣∣∣∆
[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]∣∣∣∣ = 0

which shows that

{f̄(r, s, t)}β =
5⋂

i=1

Fi(r, s, t).

Theorem 3.8. The γ−dual of the sequence spaces f̄(r, s, t) and f̄0(r, s, t) is the set F1(r, s, t).

Proof. This is similar to the proof of Theorem 3.7 with Lemma 3.5 instead of Lemma 3.6. So, we omit
the detail.

4 Matrix Transformations Related to The Sequence

Space f̄ (r, s, t)

In the present section, we characterize the matrix transformations from f̄(r, s, t) into any given sequence
space µ.

Since f̄(r, s, t) ∼= f , it is trivial that the equivalence ”x ∈ f̄(r, s, t) if and only if x̄ ∈ f” holds.

Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are connected
with the relation

enk =
∞∑

j=k

1
tj

(−1)j−kD
(s)
j−krkanj (14)

for all n, k ∈ N and µ is any given sequence space. Then A ∈ (f̄(r, s, t) : µ) if and only if {ank}k∈N ∈
{f̄(r, s, t)}β for all n ∈ N and E ∈ (f : µ).
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Proof. Let µ be any given sequence space. Suppose that (14) holds between A = (ank) and E = (enk),
and take into account that the spaces f̄(r, s, t) and f are linearly isomorphic.

Let A ∈ (f̄(r, s, t) : µ) and take any x̄ = (x̄k) ∈ f . Then EĀ(r, s, t) exists and {ank}k∈N ∈
∩5

i=1Fi(r, s, t) which yields that {enk}k∈N ∈ `1 for each n ∈ N. Hence, Ex̄ exists and thus
∑

k

enkx̄k =
∑

k

ankxk

for all n ∈ N. We have that Ex̄ = Ax which leads us to the consequence E ∈ (f : µ).
Conversely, let {ank}k∈N ∈ {f̄(r, s, t)}β for each n ∈ N and E ∈ (f : µ) hold, and take any

x = (xk) ∈ f̄(r, s, t). Then, Ax exists. Therefore, we obtain from the equality

m∑

k=0

ankxk =
m∑

k=0

[ m∑

j=k

1
tj

(−1)j−kD
(s)
j−krkanj

]
x̄k

for all n ∈ N, as m → ∞ that Ex̄ = Ax and this shows that A ∈ (f̄(r, s, t) : µ). This step completes
the proof.

By changing the roles of the spaces f̄(r, s, t) and µ in Theorem (4.1), we have:

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and C = (cnk) are
connected with the relation

cnk =
1
rn

n∑

j=0

sn−jtjajk for all n, k ∈ N.

Let µ be any given sequence space. Then, A = (ank) ∈ (µ : f̄(r, s, t)) if and only if C ∈ (µ : f).

Proof. Let z = (zk) ∈ µ and consider the following equality

m∑

k=0

cnkzk =
1
rn

n∑

j=0

sn−jtj

( m∑

k=0

ajkzk

)
for all m,n ∈ N,

which yields as m →∞ that (Cz)n = {Ā(r, s, t)(Az)}n for all n ∈ N. Therefore, one can observe from
here that Az ∈ f̄(r, s, t) whenever z ∈ µ if and only if Cz ∈ f whenever z ∈ µ. This completes the
proof.

Of course, Theorems 4.1 and 4.2 have several consequences depending on the choice of the sequence
space µ. Define a(n, k), a(n, k, m) and ∆ank for all k, m, n ∈ N as follows;

a(n, k) =
n∑

j=0

ajk, a(n, k, m) =
1

m + 1

m∑

j=0

an+j,k and ∆ank = ank − an,k+1.

Prior to giving some results as an application of this idea, we give the following basic lemma, which
is the collection of the characterizations of matrix transformations related to almost convergence:

Lemma 4.3. Let A = (ank) be an infinite matrix. Then, the following statements hold:
(i) [33, J. P. Duran]A = (ank) ∈ (`∞ : f) if and only if (8) holds and

∃αk ∈ C 3 f − lim ank = αk for all k ∈ N, (15)

∃αk ∈ C 3 lim
m→∞

∑

k

|a(n, k, m)− αk| = 0 uniformly in n (16)

also hold .
(ii) [33, J. P. Duran]A = (ank) ∈ (f : f) if and only if (8) and (15) hold, and

∃α ∈ C 3 f − lim
∑

k

ank = α, (17)
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∃αk ∈ C 3 lim
m→∞

∑

k

∣∣∣∣∆
[
a(n, k, m)− αk

]∣∣∣∣ = 0 uniformly in n (18)

also hold .
(iii) [34, J. P. King]A = (ank) ∈ (f : f) if and only if (8), (15) and (17) hold .
(iv) [35, Başar and Çolak]A = (ank) ∈ (cs : f) if and only if (15) holds, and

sup
n∈N

∑

k

|∆ank| < ∞ (19)

also holds .
(v) [36, Başar and Solak]A = (ank) ∈ (bs : f) if and only if (15) and (19) hold, and

lim
k→∞

ank = 0 for all n ∈ N, (20)

∃αk ∈ C 3 lim
q→∞

∑

k

1
q + 1

∣∣∣∣
q∑

i=0

∆
[
a(n + i, k)− αk

]∣∣∣∣ = 0 uniformly in n (21)

also hold .
(vi) [37, Başar]A = (ank) ∈ (f : cs) if and only if the following conditions hold:

sup
n∈N

∑

k

|a(n, k)| < ∞, (22)

∃αk ∈ C 3
∑

n

ank = αk for all k ∈ N, (23)

∃α ∈ C 3
∑

n

∑

k

ank = α, (24)

∃αk ∈ C 3 lim
n→∞

∑

k

∣∣∣∣∆
[
a(n, k)− αk

]∣∣∣∣ = 0. (25)

Now, we can give the following two corollaries as a direct consequence of Theorems 4.1 and 4.2
and Lemma 4.3:

Corollary 4.4. The following statements hold:
(i) A = (ank) ∈ (f̄(r, s, t) : `∞) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8) holds with enk

instead of ank.
(ii) A = (ank) ∈ (f̄(r, s, t) : c) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8), (9), (10) and (11)

hold with enk instead of ank.
(iii) A = (ank) ∈ (f̄(r, s, t) : bs) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (22) holds with enk

instead of ank.
(iv) A = (ank) ∈ (f̄(r, s, t) : cs) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (22), (23), (24) and (25)

hold with enk instead of ank.
(v) A = (ank) ∈ (f̄(r, s, t) : f) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8), (15), (17) and (18)

hold with enk instead of ank.

Corollary 4.5. The following statements hold:
(i) A = (ank) ∈ (`∞ : f̄(r, s, t)) if and only if (8), (15) and (17) hold with enk instead of ank.
(ii) A = (ank) ∈ (f : f̄(r, s, t)) if and only if (8), (15), (17) and (18) hold with enk instead of ank.
(iii) A = (ank) ∈ (c : f̄(r, s, t)) if and only if (8), (15) and (17) hold with enk instead of ank.
(iv) A = (ank) ∈ (bs : f̄(r, s, t)) if and only if (15), (19), (20) and (21) hold with enk instead of

ank.
(v) A = (ank) ∈ (cs : f̄(r, s, t)) if and only if (15) and (19) hold with enk instead of ank.
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Abstract − In this paper, a new class of sets called I πgα?-closed sets is introduced and its properties
are studied in ideal topological space. Moreover I πgα?-continuity and the notion of quasi-α?-I -normal
spaces are introduced.

Keywords − π-open set, Iπgα?-closed set, Iπgα?-continuity, quasi-α?-I-normal space.

1 Introduction and Preliminaries

An ideal topological space is a topological space (X, τ) with an ideal I on X, and is denoted by (X, τ ,
I ). A∗(I ) = {x ∈ X | U ∩ A /∈ I for each open neighborhood U of x} is called the local function of A
with respect to I and τ [9]. When there is no chance for confusion A∗(I ) is denoted by A∗. For every
ideal topological space (X, τ , I ), there exists a topology τ∗ finer than τ , generated by the base β(I, τ)
= {U\I | U∈ τ and I ∈ I }. In general β(I, τ) is not always a topology [8]. Observe additionally that
cl∗(A) = A∗ ∪ A [14] defines a Kuratowski closure operator for τ∗. int?(A) will denote the interior of
A in (X, τ?).

In this paper, we define and study a new notion I πgα?-closed set by using the notion of α?
I -open

set. Some new notions depending on I πgα?-closed sets such as I πgα?-open sets, I πgα?-continuity and
I πgα?-irresoluteness are also introduced and a decomposition of α?-I -continuity is given. Also by using
I πgα?-closed sets characterizations of quasi-α?-I -normal spaces are obtained. Several preservation
theorems for quasi-α?-I -normal spaces are given.

Throughout this paper, space (X, τ) (or simply X ) always means topological space on which no
separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure
of A and the interior of A are denoted by cl(A) and int(A), respectively.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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A subset A of a topological space (X, τ) is said to be regular open [13](resp. regular closed [13])
if A = int(cl(A)) (resp. A = cl(int(A))).

The finite union of regular open sets is said to be π-open [16] in (X, τ). The complement of a
π-open set is π-closed [16].

A subset A of a topological space (X, τ) is said to be α-open [10] if A ⊆ int(cl(int(A))) and the
complement of an α-open set is called α-closed [10].

The intersection of all α-closed sets containing A is called the α-closure [10] of A and is denoted
by αcl(A).

Note that αcl(A) = A ∪ cl(int(cl(A))).
A subset A of a space (X, τ) is said to be πg-closed [2] (resp. πgα-closed [1]) if cl(A) ⊆ U (resp.

αcl(A) ⊆ U) whenever A ⊆ U and U is π-open in X.
A function f : (X, τ) → (Y, σ) is said to be m-π-closed [4] if f(V) is π-closed in (Y, σ) for every

π-closed in (X, τ).
A function f : (X, τ) → (Y, σ) is said to be πg-continuous [2] (resp. πgα-continuous [1]) if f−1(V)

is πg-closed (resp. πgα-closed) in (X, τ) for every closed set V of (Y, σ).
A space (X, τ) is said to be quasi-normal [16] if for every pair of disjoint π-closed subsets A, B of

X, there exist disjoint open sets U, V of X such that A ⊆ U and B ⊆ V.
An ideal I is said to be codense [3] if τ ∩ I = ∅.
A subset A of an ideal topological space X is said to be ?-dense-in-itself [7](resp. α?-I -open or

α?
I -open [15], t-I -set [6], α-I -open [6]) if A ⊆ A? (resp. A ⊆ int?(cl(int?(A))), int(A) = int(cl?(A)), A
⊆ int(cl?(int(A)))).

The complement of α?
I -open is α?

I -closed.
A subset A of an ideal topological space X is said to be I πg-closed [11] if A?⊆ U whenever A ⊆ U

and U is π-open in X.
A function f : (X, τ , I ) → (Y, σ) is said to be I πg-continuous [11] if f−1(V) is I πg-closed in (X, τ ,

I ) for every closed set V of (Y, σ).

Lemma 1.1. [12] Let (X, τ , I) be an ideal topological space and A ⊆ X. If A ⊆ A?, then A? = cl(A?)
= cl(A) = cl?(A).

Theorem 1.2. [11] Every πg-closed set is Iπg-closed but not conversely.

Theorem 1.3. [11] For a function f : (X, τ , I) → (Y, σ), the following holds:
Every πg-continuous function is Iπg-continuous but not conversely.

Theorem 1.4. [1] Every πg-closed set is πgα-closed but not conversely.

Proposition 1.5. [6] Every α-I-open set is α-open but not conversely.

2 I πgα?-closed Sets

Theorem 2.1. For a function f : (X, τ) → (Y, σ), the following holds:
Every πg-continuous function is πgα-continuous but not conversely.

Example 2.2. Let X = {a, b, c, d}, τ ={X, ∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}}, Y = {x, y, z} and
σ = {Y, ∅, {y}, {y, z}}. Define a function f : (X, τ) → (Y, σ) as follows f(a) = f(b) = y, f(c)= x
and f(d) = z. Then f is πgα-continuous function but it is not an πg-continuous.

Definition 2.3. Let (X, τ , I) be an ideal topological space and let A be a subset of X. The union of
all α?

I -open sets contained in A is called the α?
I -interior of A and is denoted by α?

I int(A).

Definition 2.4. Let (X, τ , I) be an ideal topological space and let A be a subset of X. The intersection
of all α?

I -closed sets containing A is called the α?
I -closure of A and is denoted by α?

I cl(A).

Lemma 2.5. Let (X, τ , I) be an ideal topological space. For a subset A of X, the followings hold:

1. α?
I cl(A) = A ∪ cl?(int(cl?(A))),

2. α?
I int(A) = A ∩ int?(cl(int?(A))).
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Definition 2.6. A subset A of an ideal topological space (X, τ , I) is called Iπgα?-closed if α?
I cl(A) ⊆

U whenever A ⊆ U and U is π-open in X.
The complement of Iπgα?-closed set is said to be Iπgα?-open.

Proposition 2.7. Every α-open set is α?
I -open but not conversely.

Proof. Let A be α-open set. Then A ⊆ int(cl(int(A))) which implies A ⊆ int?(cl(int?(A))). Hence A
is α?

I -open set.

Example 2.8. Let X and τ be as in Example 2.2 and I = {∅, {a}, {b}, {a, b}}. Then {a, c} is
α?

I -open set but not an α-open set.

Theorem 2.9. Every ?-dense-in-itself and Iπgα?-closed set is a πgα-closed set.

Proof. Let A ⊆ U, and U is π-open in X. Since A is I πgα? -closed, α?
I cl(A) ⊆ U. By Lemmas 1.1

and 2.5, α?
I cl(A) = A ∪ cl?(int(cl?(A))) = A ∪ cl(int(cl(A))) = αcl(A). Then, αcl(A) ⊆ U. So A is

πgα-closed.

Theorem 2.10. Every π-open and Iπgα?-closed set is t-I-set.

Proof. α?
I cl(A) ⊆ A, since A is π-open and I πgα?-closed. We have cl?(int(cl?(A))) ⊆ A and int(cl?(A))

⊆ cl?(int(cl?(A))) ⊆ A. It implies int(cl?(A)) ⊆ int(A). Always int(A) ⊆ int(cl?(A)). Therefore int(A)
= int(cl?(A)), which shows that A is t-I -set.

Theorem 2.11. Let A be Iπgα?-closed in (X, τ , I). Then α?
I cl(A) \ A does not contain any non-empty

π-closed set.

Proof. Let F be a π-closed set such that F ⊆ α?
I cl(A) \ A. Then F ⊆ X \ A implies A ⊆ X \ F.

Therefore α?
I cl(A) ⊆ X \ F. That is F ⊆ X \ α?

I cl(A). Hence F ⊆ α?
I cl(A) ∩ (X \ α?

I cl(A))= ∅. This
shows F = ∅.
Theorem 2.12. If A is Iπgα?-closed and A ⊆ B ⊆ α?

I cl(A), then B is Iπgα?-closed.

Proof. Let A be I πgα? -closed and B ⊆ U, where U is π-open. Then A ⊆ B implies A ⊆ U. Since A is
I πgα?-closed, α?

I cl(A) ⊆ U. B ⊆ α?
I cl(A) implies α?

I cl(B) ⊆ α?
I cl(A). Therefore α?

I cl(B) ⊆ U and hence
B is I πgα?-closed.

Proposition 2.13. Let (X, τ , I) be an ideal topological space and A ⊆ X. Then the following properties
hold:

1. If A is πgα-closed, then A is Iπgα?-closed,

2. If A is Iπg-closed, then A is Iπgα?-closed.

Proof. The proof is obvious.

Remark 2.14. From Theorem 1.2, Theorem 1.4 and Proposition 2.13, we have the following diagram.
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πg-closed πgα-closed

I πg-closed I πgα? -closed

-

-
??

where none of these implications is reversible as shown in the following examples.

Example 2.15. (1) Let X and τ be as in Example 2.2. Then {c} is πgα-closed set but not an πg-
closed.
(2) In Example 2.8, {a} is Iπgα?-closed set but not πgα-closed.
(3) In Example 2.8, {c} is Iπgα?-closed set but not Iπg-closed.

Remark 2.16. The union of two Iπgα?-closed sets need not be Iπgα?-closed.

Example 2.17. In Example 2.8, {b} and {c} are Iπgα?-closed sets but their union {b, c} is not
Iπgα?-closed.

Remark 2.18. The intersection of two Iπgα?-closed sets need not be Iπgα?-closed.

Example 2.19. Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}} and I =
{∅, {a}}. Then A = {a, b, c} and B = {a, b, d} are Iπgα?-closed sets but A ∩ B = {a, b} is not
Iπgα?-closed set.

Definition 2.20. [5] An ideal topological space (X, τ , I) is said to be ?-extremally disconnected if the
?-closure of every open subset of X is open.

Theorem 2.21. [5] For an ideal topological space (X, τ , I), the following properties are equivalent:

1. X is ?-extremally disconnected,

2. cl?(int(V)) ⊆ int(cl?(V)) for every subset V of X.

Theorem 2.22. Let (X, τ , I) be a ?-extremally disconnected ideal topological space. Then every subset
of X is Iπgα?-closed if and only if every π-open set is t-I-set.

Proof. Necessity: It is obvious from Theorem 2.10.
Sufficiency: Suppose that every π-open set is t-I -set. Let A be a subset of X and U be π-open such
that A ⊆ U. By hypothesis cl?(int(cl?(A))) ⊆ int(cl?(A)) ⊆ int(cl?(U)) = int(U) ⊆ U. Then α?

I cl(A)
⊆ U. So A is I πgα?-closed.

Theorem 2.23. Let (X, τ , I) be an ideal topological space. A ⊆ X is Iπgα?-open if and only if F ⊆
α?

I int(A) whenever F is π-closed and F ⊆ A.

Proof. Necessity: Let A be I πgα? -open and F be π-closed such that F ⊆ A. Then X\A ⊆ X\F where
X\F is π-open. I πgα-closedness of X\A implies α?

I cl(X\A) ⊆ X\F. Then F ⊆ α?
I int(A).

Sufficiency: Suppose F is π-closed and F ⊆ A implies F ⊆ α?
I int(A). Let X\A ⊆ U where U is π-open.

Then X\U ⊆ A where X\U is π-closed. By hypothesis X\U ⊆ α?
I int(A). That is α?

I cl(X\A) ⊆ U. So,
A is I πgα?-open.

Definition 2.24. A subset A of an ideal topological space (X, τ , I) is called NI-set if A = U ∪ V
where U is π-closed and V is α?

I -open.

Proposition 2.25. Every π-closed set is NI-set but not conversely.

Example 2.26. In Example 2.19, {a} is NI-set but not π-closed set.

Proposition 2.27. Every α?
I -open set is NI-set but not conversely.

Example 2.28. In Example 2.19, {a, c, d} is NI-set but not α?
I -open set.

Proposition 2.29. Every α?
I -open set is Iπgα?-open but not conversely.
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Proof. Let A be α?
I -open set. Then A ⊆ int?(cl(int?(V))). Assume that F is π-closed and F ⊆ A. Then

F ⊆ int?(cl(int?(V))) which implies F ⊆ A ∩ int?(cl(int?(V))) = α?
I int(A) by Lemma 2.5. Hence, by

Theorem 2.23, A is I πgα?-open.

Example 2.30. In Example 2.19, {a, d} is Iπgα?-open set but not α?
I -open set.

Theorem 2.31. For a subset A of (X, τ , I) the following conditions are equivalent:

1. A is α?
I -open,

2. A is Iπgα?-open and a NI-set.

Proof. (1) ⇒ (2) It is obvious.
(2) ⇒ (1) Let A be I πgα?-open and a NI-set. Then there exist a π-closed set U and α?

I -open set V
such that A = U ∪ V. Since U ⊆ A and A is I πgα?-open, by Theorem 2.23, U ⊆ α?

I int(A) and U ⊆
int?(cl(int?(A))). Also, V ⊆ int?(cl(int?(V))) ⊆ int?(cl(int?(A))). Then A ⊆ int?(cl(int?(A))). So A is
α?

I -open.

The following examples show that concepts of I πgα?-open set and NI-set are independent.

Example 2.32. Let (X, τ , I) be the same ideal topological space as in Example 2.19. Then {c, d} is
NI-set but not Iπgα?-open set.

Example 2.33. Let (X, τ , I) be the same ideal topological space as in Example 2.19. Then {a, c} is
Iπgα?-open set but not a NI-set.

3 I πgα?-continuity and I πgα?-irresoluteness

Definition 3.1. A function f : (X, τ , I) → (Y, σ) is said to be Iπgα?-continuous (resp. α?-I-
continuous) if f−1(V) is Iπgα?-closed (resp. α?

I -closed) in X for every closed set V of Y.

Definition 3.2. A function f : (X, τ , I) → (Y, σ, J) is said to be Iπgα?-irresolute if f−1(V) is
Iπgα?-closed in X for every Jπgα?-closed set V of Y.

Definition 3.3. A function f : (X, τ , I) → (Y, σ) is said to be NI-continuous if f−1(V) is NI-set in
(X, τ , I) for every closed set V of (Y, σ.

Theorem 3.4. A function f : (X, τ , I) → (Y, σ) is α?-I-continuous if and only if it is NI-continuous
and Iπgα?-continuous.

Proof. This is an immediate consequence of Theorem 2.31.
The composition of two I πgα?-continuous functions need not be I πgα?-continuous. Consider the

following Example:

Example 3.5. Let X = {a, b, c, d}, τ = {X, ∅, {b}, {d}, {b, d}, {b, c, d}} and I = {∅, {c}, {d},
{c, d}}. Let Y = {x, y, z}, σ = {Y, ∅, {y, z}}, J = {∅, {x}}, Z = {1, 2} and η = {Z, ∅, {1}}.
Define f : (X, τ , I) → (Y, σ, J) by f(a)= f(c)= x, f(b)= y and f(d)= z and g : (Y, σ, J) → (Z,
η) by g(x)= 1 and g(y)= g(z)= 2. Then f and g are Iπgα?-continuous. {2} is closed in (Z, η), (g ◦
f)−1({2}) = f−1(g−1({2})) = f−1({y, z}) = {b, d} which is not Iπgα?-closed in (X, τ , I). Hence g ◦ f
is not Iπgα?-continuous.

Theorem 3.6. Let f : (X, τ , I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η, K) be any two functions.
Then

1. g ◦ f is Iπgα?-continuous, if g is continuous and f is Iπgα?-continuous,

2. g ◦ f is Iπgα?-continuous, if g is Jπgα?-continuous and f is Iπgα?-irresolute,

3. g ◦ f is Iπgα?-irresolute, if g is Jπgα?-irresolute and f is Iπgα?-irresolute.
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Proof. (1) Let V be closed in Z. Then g−1(V) is closed in Y, since g is continuous. I πgα?-continuity
of f implies that f−1(g−1(V)) is I πgα? -closed in X. Hence g ◦ f is I πgα?-continuous.
(2) Let V be closed in Z. Since g is J πgα?-continuous, g−1(V) is J πgα?-closed in Y. As f is I πgα?-
irresolute, f−1(g−1(V)) is I πgα?-closed in X. Hence g ◦ f is I πgα?-continuous. (3) Let V be K πgα?-
closed in Z. Then g−1(V) is J πgα?-closed in Y, since g is J πgα?-irresolute. Because f is I πgα?-irresolute,
f−1(g−1(V)) is I πgα?-closed in X. Hence g ◦ f is I πgα?-irresolute.

Remark 3.7. The following Examples show that:

1. every Iπgα?-continuous function is not πgα-continuous,

2. every Iπgα?-continuous function is not Iπg-continuous.

Example 3.8. Let (X, τ , I) be the same ideal topological space as in Example 2.8. Let Y = {x, y, z}
and σ = {Y, ∅, {y, z}}. Define a function f : (X, τ , I) → (Y, σ) as follows: f(a) = x, f(b) = f(c)= y
and f(d) = z. Then f is Iπgα?-continuous function but it is not πgα-continuous.

Example 3.9. Let (X, τ , I) be the same ideal topological space as in Example 2.8. Let Y = {x, y, z}
and σ = {Y, ∅, {y, z}}. Define a function f : (X, τ , I) → (Y, σ) as follows: f(a) = f(b) = z, f(c)= x
and f(d) = y. Then f is Iπgα?-continuous function but it is not Iπg-continuous.

Theorem 3.10. For a function f : (X, τ , I) → (Y, σ), the following properties hold:

πg-continuous πgα-continuous

I πg-continuous I πgα?-continuous

-

-

??

Proof. The proof is obvious by Remark 2.14.

4 Quasi-α?-I -normal Spaces

Definition 4.1. A space (X, τ) is said to be quasi-α-normal if for every pair of disjoint π-closed
subsets A, B of X, there exist disjoint α-open sets U, V of X such that A ⊆ U and B ⊆ V.

Definition 4.2. An ideal topological space (X, τ , I) is said to be quasi-α?-I-normal if for every pair
of disjoint π-closed subsets A, B of X, there exist disjoint α?

I -open sets U, V of X such that A ⊆ U
and B ⊆ V.

Proposition 4.3. If X is a quasi-α-normal space, then X is quasi-α?-I-normal.

Proof. It is obtained from Proposition 2.7.

Theorem 4.4. The following properties are equivalent for a space X:

1. X is quasi-α?-I-normal,

2. for any disjoint π-closed sets A and B, there exist disjoint Iπgα?-open sets U, V of X such that
A ⊆ U and B ⊆ V,

3. for any π-closed set A and any π-open set B containing A, there exists an Iπgα?-open set U such
that A ⊆ U ⊆ α?

I cl(U) ⊆ B.
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Proof. (1) ⇒ (2) The proof is obvious.
(2) ⇒ (3) Let A be any π-closed set of X and B any π-open set of X such that A ⊆ B. Then A and
X\B are disjoint π-closed subsets of X. Therefore, there exist disjoint I πgα? -open sets U and V such
that A ⊆ U and X\B ⊆ V. By the definition of I πgα?-open set, We have that X\B ⊆ α?

I int(V) and U
∩ α?

I int(V) = ∅. Therefore, we obtain α?
I cl(U) ⊆ α?

I cl(X\V) and hence A ⊆ U ⊂ α?
I cl(U) ⊆ B.

(3) ⇒ (1) Let A and B be any disjoint π-closed sets of X. Then A ⊆ X\B and X\B is π-open and hence
there exists an I πgα?-open set G of X such that A ⊆ G ⊆ α?

I cl(G) ⊆ X\B. Put U = α?
I int(G) and V

= X\ α?
I cl(G). Then U and V are disjoint α?

I -open sets of X such that A ⊆ U and B ⊆ V. Therefore,
X is quasi-α?-I -normal.

Theorem 4.5. Let f : X → Y be an Iπgα?-continuous m-π-closed injection. If Y is quasi-normal,
then X is quasi-α?-I-normal.

Proof. Let A and B be disjoint π-closed sets of Y. Since f is m-π-closed injection, f(A) and f(B) are
disjoint π-closed sets of Y. By the quasi-normality of X, there exist disjoint open sets U and V such that
f(A) ⊆ U and f(B) ⊆ V. Since f is I πgα?-continuous, then f−1(U) and f−1(V) are disjoint I πgα?-open
sets such that A ⊆ f−1(U) and B ⊆ f−1(V). Therefore X is quasi-α?-I -normal by Theorem 4.4.

Theorem 4.6. Let f : X → Y be an Iπgα?-irresolute m-π-closed injection. If Y is quasi-α?-I-normal,
then X is quasi-α?-I-normal.

Proof. Let A and B be disjoint π-closed sets of Y. Since f is m-π-closed injection, f(A) and f(B) are
disjoint π-closed sets of Y. By quasi-α?-I -normality of Y, there exist disjoint I πgα?-open sets U and
V such that f(A) ⊆ U and f(B) ⊆ V. Since f is I πgα?-irresolute, then f−1(U) and f−1(V) are disjoint
I πgα?-open sets such that A ⊆ f−1(U) and B ⊆ f−1(V). Therefore X is quasi-α?-I -normal.

Theorem 4.7. Let (X, τ , I) be an ideal topological space where I is codense. Then X is quasi-α?-I-
normal if and only if it is quasi-α-normal.

5 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are preserved under
continuous deformations including stretching and bending, but not tearing. By the middle of the 20th
century, topology had become a major branch of Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of qualitative prop-
erties of certain objects that are invariant under a certain kind of transformation especially those
properties that are invariant under a certain kind of equivalence and it is the study of those prop-
erties of geometric configurations which remain invariant when these configurations are subjected to
one-to-one bicontinuous transformations or homeomorphisms. Topology operates with more general
concepts than analysis. Differential properties of a given transformation are nonessential for topology
but bicontinuity is essential. As a consequence, topology is often suitable for the solution of problems
to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in Mathematics, we
have taken it up as a challenge and cherishingly worked out this research study. Ideal Topology is
a generalization of topology in classical mathematics, but it also has its own unique characteristics.
It can also further up the understanding of basic structure of classical mathematics and offers new
methods and results in obtaining significant results of classical mathematics. Moreover it also has
applications in some important fields of Science and Technology.

A new class of sets called I πgα?-closed sets is introduced and its properties are studied in ideal
topological space. Moreover I πgα?-continuity and the notion of quasi-α?-I -normal spaces are intro-
duced.
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Abstract − Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that
can be considered as an extension of the classical set theory. It has been used in many different
research areas, including those related to inductive machine learning and reduction of knowledge in
knowledge-based systems. Rough partial order relation and rough lattice are two important concepts
to introduce here based on RST. This paper provides some properties of rough relations, rough lattice,
rough boolean lattice and established their validity. Some results are established to illustrate the paper.
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1 Introduction

Rough set plays an important role for handling situations which are not crisp and deterministic but
associated with impreciseness in the form of indiscernibility between the objects of a set. So, in
case of dealing with some types of knowledge representation problems, rough algebraic structures are
useful. The concepts of Lattices and Boolean algebra [1] are of cardinal importance in the theory
and design of computers and of circuitry in general, besides having numerous other applications in
mathematical logic, probability theory and other fields of engineering and mathematics. Lattice is an
algebraic structure is of considerable importance, in view of its application in fields of mathematics
and computer science. The notions of rough partial order relation and rough lattice are based on RST
are needed in many applications, where experimental data are processes, in particular as a theoretical
basis for rough relation. In [2] Jouni Järvinen has proposed several direction of lattice theory for rough
set. We have also proposed lattice theory for rough set in different direction ([8],[9],[10],[11],[12]). This
paper presents the main concepts related to rough partial order relations, some of its properties and
related rough boolean algebra which are different but quite related with some special cases of Järvinen’s
work.

The remainder of this article is organized as follows. Section 2 gives account of previous work.
Our new and exciting results are described in Section 3 and Section 4. Finally, Section 5 gives the
conclusions.
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2 Definitions and Notations

2.1 Rough Set

Let U be a universe of discourse and E be an equivalence relation over U , called the indiscernibility
relation. By U/E, we denote the family of all equivalence classes induced by E on U . These classes
are referred to as categories or concepts of E and the equivalence class of an element x ∈ U , is denoted
by x/E or [x]E . The basic concept of rough set theory is the notion of an approximation space, which
is an ordered pair A = (U,E). For x, y ∈ U , if xEy then x and y are said to be indistinguishable in
A. The elements of U/E are called elementary sets in A. It is assumed that the empty set is also
elementary set for every approximation space. A definable set in A is any finite union of elementary
sets in A.

2.2 Rough Approximations

Theory of rough set was introduced by Z. Pawlak [4], assumed that set is chosen from a universe U ,
but that elements of U can be specified only upto an indiscernibility equivalence relation E on U . If a
subset X ⊆ U contains an element indiscernible from some elements not in X, then X is rough. Also
a rough set X is described by two approximations. Basically, in rough set theory, it is assumed that
our knowledge is restricted by an indiscernibility relation. An indiscernibility relation is an equiva-
lence relation E such that two elements of an universe of discourse U are E-equivalent if we cannot
distinguish these two elements by their properties known by us. By the means of an indiscernibility
relation E, we can partition the elements of U into three disjoint classes respect to any set X ⊆ U ,
defined as follows:

• The elements which are certainly in X. These are elements x ∈ U whose E-class x/E is
included in X.

• The elements which certainly are not in X. These are elements x ∈ U such that their E-class
x/E is included in Xco, which is the complement of X

• The elements which are possibly belongs to X. These are elements whose E-class intersects
with both X and Xco. In other words, x/E is not included in X nor in Xco.

From this observation, we defined lower approximation set X ↓ of X to be the set of those elements
x ∈ U whose E-class is included in X, i.e, X ↓= {x ∈ U : x/E ⊆ X} and for the upper approximation
set X ↑ of X consists of elements x ∈ U whose E-class intersect with X, i.e, X ↑= {x ∈ U : x/E∩X 6=
∅}. The difference between X ↓ and X ↑ treated as the actual area of uncertainty.

3 Rough Relation

The notion of rough relation was introduced and their properties were studied by Pawlak ([6], [7]).
Stepaniuk ([13], [14]) have established some more properties of rough relations and their applications.

Definition 3.1. Let A1 = (U1, E1) and A2 = (U2, E2) be two approximation spaces. The product of
A1 by A2 is the approximation space denoted by A = (U, S), where U = U1×U2 and the indiscernibility
relation S ⊆ (U ×U)2 is defined by (x1, y1), (x2, y2) ∈ S ⇔ (x1, x2) ∈ E1 and (y1, y2) ∈ E2, (x1, x2) ∈
U1 and (y1, y2) ∈ U2. It can be easily seen that S is an equivalence relation on U × U . The elements
(x1, y1) and (x2, y2) are indiscernible in S if and only if the elements x1 and x2 are indiscernible in E1

and so are the elements y1 and y2 in E2.

Definition 3.2. Let (U1 × U2, E) be an approximation space, where U1 and U2 are nonempty sets
and R ⊆ (U1×U2)2 be an equivalence relation. For any relation S ⊆ U1×U2 , we define two relations
L(S) and U(S) called lower and upper approximations of S respectively given by, L(S) = {(x1, x2) ∈
U1×U2 : [(x1, x2)]E ⊆ S}, U(S) = {(x1, x2) ∈ U1×U2 : [(x1, x2)]E ∩S 6= ∅}, where [(x1, x2)]E denotes
the equivalence class of relation E containing the pair (x1, x2). Rough relation of S is defined as the
pair (L(S), U(S)).
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Definition 3.3. If V and W are relations in A, then W ∗ V is a relation such that (a, b) ∈
V and (b, c) ∈ W for some b ∈ A}.

Proposition 3.4. If V, W, V1,W1 are relations in A, V1 ⊆ V and W1 ⊆ W , then W1 ∗ V1 ⊆ W ∗ V

Proof: Let (a, c) ∈ W1 ∗ V1 ⇒ ∃b ∈ A such that (a, b) ∈ V1 and (b, c) ∈ W1. Then (a, b) ∈ V
and (b, c) ∈ W so that (a, c) ∈ W ∗ V

Proposition 3.5. Let A = (U,R) be an approximation space and B = (U2, S) the approximation
product space of A×A. Then:

• [(x, y)]S = [x]E × [y]E , and

• [(y, z)]S ∗ [(x, y)]S = [(x, z)]S

Proof: The first result is trivially follows from the definition of the relation S.
For the second result let (a, c) ∈ [(y, z)]S ∗[(x, y)]S . Then there exist a, b ∈ U such that (a, b) ∈ [(x, y)]S
and (b, c) ∈ [(y, z)]S . It follows that (a, b)S(x, y) and (b, c)S(y, z). Hence aEx, bEy and cEz hold.
Consequently, (a, c) ∈ [(x, z)]S
On the other hand, let (a, c) ∈ [(x, z)]S . This gives (a, c)S(x, z). We thus get aEx and cEz. This clearly
implies (a, y)S(x, y) and (y, c)S(y, z). Hence (a, y) ∈ [(x, y)]S and (y, c) ∈ [(y, z)]S , and therefore
(a, c) ∈ [(y, z)]S ∗ [(x, y)]S

Definition 3.6. Let S = (U,E) be an approximation space and Eg be its generated relation of E, we
say that Sg = (U × U,Eg) is general approximation space of S.

Definition 3.7. [6] We consider a non-null subset M of U and a relation T on M . The rough relation
Eg(T )(M → M) is said to be Reflexive: if and only if ∀ m ∈ M, (m,m) ∈ Eg ↑ (T ). Symmetric:
if and only if ∀ m1,m2 ∈ M, (m1,m2) ∈ Eg ↑ (T ) ⇒ (m2,m1)Eg ↑ (T ). Transitive: if and only
if ∀ m1, m2, m3 ∈ M, (m1,m2) and (m2,m3)Eg ↑ (T ) ⇒ (m1,m3)Eg ↑ (T ). Antisymmetric: if and
only if ∀m1,m2 ∈ M, (m1,m2), (m2, m1) ∈ Eg ↑ (T ) ⇒ [m1]E = [m2]E . We only consider the upper
approximation as lower approximation is always subset of upper approximation.

Definition 3.8. A relation T is said to be a rough partially ordering if Eg(T ) is reflexive, symmetric
and transitive.

3.1 Rough Membership Function

Rough sets can also be defined by the rough membership function instead of approximation [5]. We
define the membership function of X with respect to E as µE

X : X → [0, 1], such that µE
X = |x/E∩X|

|x/E| ,
where || represents cardinality function on a set. The rough membership function can also be in-
terpreted as the conditional probability, and can be interpreted as a degree of certainty to which x
belongs to X. The rough membership function can be used to define the lower approximation, the
upper approximation and the boundary region of a set, as follows: E ↓ (X) = {x ∈ U : µE

X(X) =
1}, E ↑ (X) = {x ∈ U : µE

X(X) > 0} and
BNE(X) = {x ∈ U : 0 < µE

X(X) < 1}
µE

A∪B(X) ≥ max(µE
A(X), µE

B(X)) for any x ∈ U .
µE

A∩B(X) ≤ min(µE
A(X), µE

B(X)) for any x ∈ U .
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Definition 3.9. For any rough partial ordering T on a non-null subset M of U , the dominating class
of an element x in M is denoted by T≥[x]and is defined for every y in M as T≥[x](y) = rT (x, y), where

rT (x, y) = |[(x,y)]Eg∩T |
|[(x,y)]Eg | . For any rough partial ordering T on a non-null subset M of U , the dominating

class of an element x in M is denoted by T≤[x]and is defined for every y in M as T≤[x](y) = rT (y, x).

Definition 3.10. For any rough partial ordering T on a non-null subset M of U , the rough upper
bound of M is the rough set denoted by U(T, M) and is defined by U(T, M) =

⋂
x∈M

T≥[x] Here, the

operator “intersection” associates the minimum of the membership values in the constituents for each
element in M .

Definition 3.11. For any rough partial ordering T on a non-null subset M of U , the rough greatest
lower bound of M is a unique element x in L(T, M) such that L(T, M)(x) > 0 and rT (y, x) > 0 for all
elements in the support of L(T, M). The uniqueness of x is up to it equivalence class with respect to
E

Definition 3.12. A crisp subset M of U with a rough partial ordering T is said to be a rough lattice
if and only if for any subset {x, y} in M , the least upper bound (l.u.b) and the greatest lower bound
(g.l.b) exist in M . We denote the l.u.b. of {x, y} by x∨ y and the g.l.b of {x, y} by x∧ y. We say that
(M, T ) is a rough lattice on (U,E) and denoted it by L.

Example-1: Let A = (U,E) be an approximation space, where U = {a, b, c, d, e, f, g} and U/E =
{{a, b}, {c, d}, {e, f}, {g}} as shown here B = (U×U, S) = {(a, g), (b, g), (g, a), (g, b), (c, g), (d, g), (e, e),
(f, f), (e, f), (f, e), (a, c), (a, d), (b, d), (b, c), (d, a), (d, b), (c, a), (c, b), (a, e), (b, e), (a, f), (b, f), (e, a),
(e, b), (f, a), (f, b), (c, e), (d, e), (c, f), (d, f), (e, c), (e, d), (f, c), (f, d), (c, d), (d, c), (d, d), (c, c), (b, b),
(a, b), (b, a), (a, a), (g, c), (g, d), (e, g), (f, g), (g, e), (g, f), (g, g)}.
1. Let us consider two non empty subsets U1 = {a, b, c} and U2 = {f, g} of U . We take a subset
T of U1 × U2 as T = {(a, g), (b, g), (c, f), (c, g)}. The Eg ↓ (T ) = {(a, g), (b, g)} and Eg ↑ (T ) =
{(a, g), (b, g), (c, e), (d, e), (c, f), (d, f), (c, g), (d, g)}. rT (a, f) = 0 and rT (c, f) = 1

4 .
2. Let us take T = {(a, b), (c, d), (e, f), (g, g)}. Then Eg ↑ (T ) = {(e, e), (e, f), (f, f), (f, e), (c, d), (d, c),
(d, d), (c, c), (b, b), g(a, b), (b, a), (a, a), (g, g)}. It is easy to see that Rg(T ) is a rough equivalence rela-
tion.
3. Let T = {(a, g), (a, c), (c, e), (g, e), (g, g)}. Then Eg ↑ (T ) = {(a, g), (b, g), (a, c), (a, d), (b, d), (b, c),
(c, e), (d, e), (c, f), g(d, f), (g, e), (g, f), (g, g)}. So, Eg(T ) is antisymmetric.
4. Let T = {(a, g), (e, f), (c, d), (a, b), (g, g)}. Then Eg ↑ (T ) = {(a, g), (b, g), (e, e), (e, f), (f, f), (f, e),
(c, d), (d, c), (d, d), (c, c), g(b, b), (a, b), (b, a), (a, a), (g, g)} So, Eg(T ) is clearly reflexive.
Eg(T ) is antisymmetric as (e, f), (f, e) ∈ Rg ↑ (T ) and [e]E = [f ]E ; (c, d), (d, c) ∈ Rg ↑ (T ) and
[c]E = [d]E ; (a, b), (b, a) ∈ Rg ↑ (T ) and [a]E = [b]E . It is also clearly rough transitive. So, Eg(T )
is a rough partially ordered relation. if the universe is partitioned into at least three non singleton
equivalence classes which will give ultimately ” rough boolean lattice”.

4 Rough Boolean Lattice

Let R be a reflexive relation on U and X ⊆ U . The set R(X) = {y ∈ U : xRy, for some x ∈ X} is
the R-neighborhood of X. If X = {a}, then we write R(a) instead of R({a}). The approximations
are defined as XR = {x ∈ U : R(x) ⊆ X} and XR = {x ∈ U : R(x) ∩ X 6= ∅}. A set X ⊆ U is
called R-closed if R(X) = X, and an element x ∈ U is R-closed, if its singleton set {x} is R-closed.
The set of R-closed points is denoted by S. Let us assume that (U ;E) is an indiscernibility space.
The set of lower approximations BE(U) = {XE : X ⊆ U} and the set of upper approximations
BE(U) = {XE : X ⊆ U} coincide, so we denote this set simply by BE(U). The set BE(U) is a
complete Boolean sublattice of (P (U),⊆), where P (U) denotes the set of all subsets of U . This means
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that BE(U) forms a complete field of sets. Complete fields of sets are in one-to-one correspondence
with equivalence relations, meaning that for each complete field of sets F on U , we can define an
equivalence E such that BE(U) = F . Note that S and all its subsets belong to BE(U), meaning
that P (S) is a complete sublattice of BE(U), and therefore in this sense S can be viewed to consist of
completely defined objects. Each object in S can be separated from other points of U by the information
provided by the indiscernibility relation E, meaning that for any x ∈ S and X ⊆ U, x ∈ XE if and
only if x ∈ XE . The rough set of X is the equivalence class of all Y ⊆ U such that YE = XE

and Y E = XE . Since each rough set is uniquely determined by the approximation pair, one can
represent the rough set of X as (XE , XE) . This is known as increasing representation [3]. This
representations induce the sets IRE(U) = {(XE , XE) : X ⊆ U}. The set IRE(U) can be ordered
point wise (XE , XE) ≤ (YE , Y E) ⇔ XE ⊆ YE . Therefore, IRE(U) can form completely distributive
lattice. As shown in [8], IRE(U) is a complete sublattice of P (U) × P (U) ordered by the point wise
set-inclusion relation, meaning that IRE(U) is an algebraic completely distributive lattice such that∧{(XE , XE) : X ⊆ H} = (

⋂
X∈H

XE ,
⋂

X∈H

XE) and
∨{(XE , XE) : X ⊆ H} = (

⋃
X∈H

XE ,
⋃

X∈H

XE) for

all H ⊆ IRE(U).
Now we consider the rough lattice and rough boolean algebra which are parallel to fuzzy lattice and
fuzzy boolean algebra [15].

Definition 4.1. A complemented distributive rough lattice (M, T ) is known as rough Boolean algebra.
Every complemented rough lattice need to be bounded. So every rough Boolean algebra is necessarily
bounded rough lattice with bounds 0 and 1. Also every element a in M has an unique complement
denoted by aco

Lemma 4.2. Let L be a rough lattice on an approximation space (U,E) then for any two elements
a, b ∈ M , and b > a then rT (a, b) > 0 ⇔ a ∧ b = a ⇔ a ∨ b = b

Theorem 4.3. Let L be a rough lattice on the approximation space (U,E). Then for all a, b, c ∈ M ,
a ∧ a = a and a ∨ a = a, a ∧ b = b ∧ a and a ∨ b = b ∨ a, (a ∧ b) ∧ c = a ∧ (b ∧ c) and (a ∨ b) ∨ c =
a ∨ (b ∨ c), a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a

Theorem 4.4. Let L be a rough lattice on the approximation space (U,E). Then for all a, b, c ∈
M, rT ((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) > 0. rT ((a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) > 0

Definition 4.5. A rough lattice L on the approximation space (U,E) is said to be complete if every
subset of M has a l.u.b and a g.l.b. in (U,E)

Definition 4.6. A rough lattice L on the approximation space (U,E) is said to be bounded if ∃ two
elements 0, 1 ∈ M such that rT (0, x) > 0 and rT (x, 1) > 0 for all x ∈ M

Definition 4.7. A rough lattice L on the approximation space (U,E) is said to be distributive if and
only if for all a, b, c ∈ M , P1 : a∧ (b∨ c) = (a∧ b)∨ (a∧ c). P2 : a∨ (b∧ c) = (a∨ b)∧ (a∨ c). In this
connection we can show that the statement P1 , P2 are equivalent

Theorem 4.8. In a rough lattice L on the approximation space (U,E) the cancellation laws hold,
that is a ∨ b = a ∨ c ⇒ b = c and a ∧ b = a ∧ c ⇒ b = c

Theorem 4.9. In a rough distributive lattice L on the approximation space (U,E), the De Morgan’s
laws hold true. That is, (a∨ b)co = aco ∧ bco and (a∧ b)co = aco ∨ bco for all a, b ∈ L, where xco stands
for the complement of x

Definition 4.10. A rough chain is a partially ordered rough set (M, T ) on the approximation space
(U,E) in which for two elements a, b ∈ L, either rT (a, b) > 0 or rT (b, a) > 0

Definition 4.11. A rough lattice L on the approximation space (U,E) is said to be modular if
a ∨ (b ∧ c) = (a ∨ b) ∧ c, whenever rT (a, c) > 0 for all a, b, c ∈ L

Lemma 4.12. Every rough chain is a distributive rough lattice and every distributive rough lattice
is modular.

Lemma 4.13. In a complemented distributive rough lattice L on the approximation space (U,E), a, b ∈
L, rT (a, b) > 0 ⇔ a ∧ bco = 0 ⇔ aco ∨ b = 1 ⇔ rT (bco, aco) > 0
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5 Conclusion

In this paper, we have presented rough lattice through a rough partial ordering relation defined on
a crisp set. We have introduced some important definitions, properties and lemmas of rough lattice,
rough ordering relation based on rough approximation spaces, giving interesting example. The rough-
ness of Boolean lattice is also studied, which is an interesting topic, we will extend it further in the
future.
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Abstract − In this paper, the Authors establish some new inequalities related to perturbed trapezoid
inequality for the classes of functions whose second derivatives of absolute values are m and (α, m)-
convex. After, applications to special means have also been presented.
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1 Introduction

Definition 1.1. [11] A function f : I → R is said to be convex on I if inequality

f (tu + (1− t) v) ≤ tf (u) + (1− t) f (v) (1)

holds for all u, v ∈ I and t ∈ [0, 1]. We say that f is concave if (−f) is convex.

Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q
between P and R, then Q is on or below the chord PR.

In [14], G. Toader defined m-convexity: another intermediate between the usual convexity and
starshaped convexity.

Definition 1.2. [14] A function f : [0, b] → R is said to be m-convex, where m ∈ [0, 1], if we
have

f (tx + m (1− t) y) ≤ tf (x) + m (1− t) f (y) (2)

for all x, y ∈ [0, b] and t ∈ [0, 1] .We say that f is m-concave if −f is m-convex. Denote by Km(b) the
class of all m-convex functions on [0, b] for which f(0) ≤ 0.

Remark 1.3. For m = 1 in (2), we recapture the concept of convex functions defined on [0, b] and,
for m = 0, the concept of star-shaped functions defined on [0, b] is obtained.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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Definition 1.4. [1] The function f : [0, b] → R is said to be (α, m)-convex, where (α, m) ∈ [0, 1]2; if
for every u, v ∈ [0, b] and t ∈ [0, 1], we have

f (tu + (1− t) v) ≤ tαf (u) + m (1− tα) f (v) . (3)

Remark 1.5. Note that for (α,m) ∈ {(0, 0) , (α, 0) , (1, 0) , (1,m) , (1, 1) , (α, 1)} one obtains the fol-
lowing classes of functions: increasing, α-starshaped, starshaped, m-convex, convex and α-convex.

Theorem 1.6. (The Hermite-Hadamard inequality) Let f : I ⊆ R → R be a convex function
and u, v ∈ I with u < v. The following double inequality:

f

(
u + v

2

)
≤ 1

v − u

∫ v

u

f (x) dx ≤ f (u) + f (v)
2

(4)

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard inequality) for convex
functions. If f is a positive concave function, then the inequality is reversed.

In the literature [2]-[7] on numerical integration, the following estimation is well known as the
trapezoid inequality:

∣∣∣∣
∫ v

u

f (x) dx− 1
2

(v − u) (f (u) + f (v))
∣∣∣∣ ≤

1
12

M2 (v − u)3 , (5)

where f : [u, v] → R is supposed to be twice differentiable on the interval (u, v), with the second
derivative bounded on (u, v) by M2 = supx∈(u,v) |f ′′ (x)| < +∞.

For the perturbed trapezoid inequality, Dragomir et al. [4] obtained the following inequality by
an application of the Grüss inequality:

(6)∣∣∣∣
∫ v

u

f (x) dx− 1
2

(v − u) (f (u) + f (v)) +
1
12

(v − u)2 (f ′ (v)− f ′ (u))
∣∣∣∣

≤ 1
32

(Γ2 − γ2) (v − u)3 ,

where f is supposed to be twice differentiable on the interval (u, v), with the second derivative bounded
on (u, v) by Γ2 = supx∈(u,v) f ′′ (x) < +∞ and γ2 = infx∈(u,v) f ′′ (x) > −∞.

For recent results and generalizations concerning Hadamard’s inequality, concepts of convexity,
m-, (α, m)-convexity and trapezoid inequality see [1]-[19] and the references therein.

Throughout this paper we will use the following notations and conventions. Let J = [0,∞) ⊂ R =
(−∞,+∞) , and u, v ∈ J with 0 < u < v and f ′ ∈ L [u, v] and

A (u, v) =
u + v

2
, G (u, v) =

√
uv, I (u, v) =

1
e

(
vv

uu

) 1
v−u

(for u 6= v),

be the arithmetic mean, geometric mean, identric mean, for u, v > 0 respectively.
The aim of this paper is to establish some results connected with the perturbed trapezoid inequality

for m and (α,m)-convex functions as well as to apply them for some elementary inequalities for real
numbers and in numerical integration.

2 The New Results for m- and (α, m)-convex Func-

tions

To prove perturbed trapezoid inequalities for m-convex and (α,m)-convex functions, we use following
Lemma which was used by Tunç et al. (see [16])
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Lemma 2.1. [16] Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
f ′′ ∈ L[a, b], then the following equality holds:

(7)
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

=
(b− a)3

4

∫ 1

0

(t + 1)2 [f ′′ (ta + (1− t) b) + f ′′ (tb + (1− t) a)] dt

Theorem 2.2. [16] Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′′| is convex on [a, b], then the following inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (8)

≤ 7
12

(b− a)3 (|f ′′ (a)|+ |f ′′ (b)|) .

Theorem 2.3. Let f : I ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b and
m ∈ [0, 1]. If |f ′′| is m-convex on I, then the following inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (9)

(b− a)3

4

{
17 [|f ′′ (a)|+ |f ′′ (b)|]

12
+ m

11
[∣∣f ′′ ( a

m

)∣∣ +
∣∣f ′′ ( b

m

)∣∣]

12

}
.

Proof. Using Lemma 2.1 and Definition 1.2, it follows that
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

∫ 1

0

(t + 1)2 (|f ′′ (ta + (1− t) b)|+ |f ′′ (tb + (1− t) a)|) dt

≤ (b− a)3

4

∫ 1

0

(t + 1)2
{

t |f ′′ (a)|+ m (1− t)
∣∣∣∣f ′′

(
b

m

)∣∣∣∣

+t |f ′′ (b)|+ m (1− t)
∣∣∣f ′′

( a

m

)∣∣∣ dt
}

≤ (b− a)3

4

{(
[|f ′′ (a)|+ |f ′′ (b)|]

∫ 1

0

t (t + 1)2 dt

)

+m

[∣∣∣f ′′
( a

m

)∣∣∣ +
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
] ∫ 1

0

(t + 1)2 (1− t) dt

}

≤ (b− a)3

4

{
17 [|f ′′ (a)|+ |f ′′ (b)|]

12
+ m

11
[∣∣f ′′ ( a

m

)∣∣ +
∣∣f ′′ ( b

m

)∣∣]

12

}
.

Theorem 2.4. Let f : I ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b and
(α, m) ∈ [0, 1]2. If |f ′′| is (α, m)-convex on I, then the following inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (10)

≤ (b− a)3

4

{
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
[|f ′′ (a)|+ |f ′′ (b)|]

+
(

7
3
− 4α2 + 16α + 14

α3 + 6α2 + 11α + 6

)
m

[∣∣∣f ′′
( a

m

)∣∣∣ +
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
]}

.
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Proof. Using Lemma 2.1 and Definition 1.4, it follows that
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

∫ 1

0

(t + 1)2 (|f ′′ (ta + (1− t) b)|+ |f ′′ (tb + (1− t) a)|) dt

≤ (b− a)3

4

∫ 1

0

(t + 1)2
{

tα |f ′′ (a)|+ m (1− tα)
∣∣∣∣f ′′

(
b

m

)∣∣∣∣

+tα |f ′′ (b)|+ m (1− tα)
∣∣∣f ′′

( a

m

)∣∣∣ dt
}

≤ (b− a)3

4

{(
[|f ′′ (a)|+ |f ′′ (b)|]

∫ 1

0

tα (t + 1)2 dt

)

+m

[∣∣∣f ′′
( a

m

)∣∣∣ +
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
] ∫ 1

0

(t + 1)2 (1− tα) dt

}

≤ (b− a)3

4

{
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
[|f ′′ (a)|+ |f ′′ (b)|]

+m

(
7
3
− 4α2 + 16α + 14

α3 + 6α2 + 11α + 6

)[∣∣∣f ′′
( a

m

)∣∣∣ +
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
]}

.

Remark 2.5. i) In inequality (10), if we choose α = 1, inequality (10) reduces to inequality (9).
ii) In inequality (10), if we take α = 1, m = 1, inequality (10) reduces to inequality (8).

Theorem 2.6. [16] Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b, and let
p > 1 with 1/p + 1/q = 1. If the mapping |f ′′|q is convex on [a, b] then the following inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (11)

≤ (b− a)3

2

(
22p+1 − 1

2p + 1

) 1
p

( |f ′′ (a)|q + |f ′′ (b)|q
2

) 1
q

.

Theorem 2.7. Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b and
m ∈ [0, 1], and let p > 1 with 1/p+1/q = 1. If the mapping |f ′′|q is m-convex on I, then the following
inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (12)

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

×




[
|f ′′ (a)|q + m

∣∣f ′′ ( b
m

)∣∣q
2

] 1
q

+

[
|f ′′ (b)|q + m

∣∣f ′′ ( a
m

)∣∣q
2

] 1
q



 .
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Proof. Using Lemma 2.1, Definition 1.2 and Hölder’s integral inequality, we get
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

[∫ 1

0

|t + 1|2 |f ′′ (ta + (1− t) b)| dt

+
∫ 1

0

|t + 1|2 |f ′′ (tb + (1− t) a)| dt

]

≤ (b− a)3

4

[(∫ 1

0

|t + 1|2p
dt

) 1
p

(∫ 1

0

|f ′′ (ta + (1− t) b)|q dt

) 1
q

+
(∫ 1

0

|t + 1|2p
dt

) 1
p

(∫ 1

0

|f ′′ (tb + (1− t) a)|q dt

) 1
q

]

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

[(∫ 1

0

(
t |f ′′ (a)|q + m (1− t)

∣∣∣∣f ′′
(

b

m

)∣∣∣∣
q)

dt

) 1
q

+
(∫ 1

0

(
t |f ′′ (b)|q + m (1− t)

∣∣∣f ′′
( a

m

)∣∣∣
q)

dt

) 1
q

]

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

×




[
|f ′′ (a)|q + m

∣∣f ′′ ( b
m

)∣∣q
2

] 1
q

+

[
|f ′′ (b)|q + m

∣∣f ′′ ( a
m

)∣∣q
2

] 1
q



 .

Theorem 2.8. Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I with a < b,
(α, m) ∈ [0, 1]2, and let p > 1 with 1/p + 1/q = 1. If the mapping |f ′′|q is (α,m)-convex on I, then
the following inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (13)

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

×




[
|f ′′ (a)|q
α + 1

+
mα

∣∣f ′′ ( b
m

)∣∣q
α + 1

] 1
q

+

[
|f ′′ (b)|q
α + 1

+
mα

∣∣f ′′ ( a
m

)∣∣q
α + 1

] 1
q



 .
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Proof. Using Lemma 2.1, Definition 1.4 and Hölder’s integral inequality, we get
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

[∫ 1

0

|t + 1|2 |f ′′ (ta + (1− t) b)| dt

+
∫ 1

0

|t + 1|2 |f ′′ (tb + (1− t) a)| dt

]

≤ (b− a)3

4

[(∫ 1

0

|t + 1|2p
dt

) 1
p

(∫ 1

0

|f ′′ (ta + (1− t) b)|q dt

) 1
q

+
(∫ 1

0

|t + 1|2p
dt

) 1
p

(∫ 1

0

|f ′′ (tb + (1− t) a)|q dt

) 1
q

]

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

[(∫ 1

0

(
tα |f ′′ (a)|q + m (1− tα)

∣∣∣∣f ′′
(

b

m

)∣∣∣∣
q)

dt

) 1
q

+
(∫ 1

0

(
tα |f ′′ (b)|q + m (1− tα)

∣∣∣f ′′
( a

m

)∣∣∣
q)

dt

) 1
q

]

≤ (b− a)3

4

(
22p+1 − 1

2p + 1

) 1
p

×




[
|f ′′ (a)|q
α + 1

+
mα

∣∣f ′′ ( b
m

)∣∣q
α + 1

] 1
q

+

[
|f ′′ (b)|q
α + 1

+
mα

∣∣f ′′ ( a
m

)∣∣q
α + 1

] 1
q



 .

Remark 2.9. i) In (13), if we choose α = 1, we have the inequality in (12).
ii) In Theorem 2.8, if we choose α = m = 1, we obtain the inequality in (11).

Corollary 2.10. i) Under the assumptions of Theorem 2.7, if we choose p = m = 1, we obtain the
inequality;

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ 7 (b− a)3

6

[ |f ′′ (a)|q + |f ′′ (b)|q
2

] 1
q

.

ii) Under the assumptions of Theorem 2.8, if we choose p = m = 1, we obtain the inequality;
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ 7 (b− a)3

6

{[ |f ′′ (a)|q
α + 1

+
α |f ′′ (b)|q

α + 1

] 1
q

+
[ |f ′′ (b)|q

α + 1
+

α |f ′′ (a)|q
α + 1

] 1
q

}
.

Theorem 2.11. [16] Let f : I ⊆ R→ R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b, and
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let p > 1with 1/p + 1/q = 1. If the mapping |f ′′|p convex on [a, b], then the following inequality holds:

(14)∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

(
7
3

)1− 1
p

{(
17 |f ′′ (a)|p + 11 |f ′′ (b)|p

12

) 1
p

+
(

17 |f ′′ (b)|p + 11 |f ′′ (a)|p
12

) 1
p

}
.

Theorem 2.12. Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b, and
m ∈ [0, 1], and let p > 1 with 1/p+1/q = 1. If the mapping |f ′′|q is m-convex on I, then the following
inequality holds:

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣ (15)

≤ (b− a)3

4

(
7
3

)1− 1
p





(
17 |f ′′ (a)|p + m11

∣∣f ′′ ( b
m

)∣∣p
12

) 1
p

+

(
17 |f ′′ (b)|p + m11

∣∣f ′′ ( a
m

)∣∣p
12

) 1
p



 .

Proof. Using Lemma 2.1, Definition 1.2 and power mean integral inequality, we establish
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

∫ 1

0

|t + 1|2 |f ′′ (ta + (1− t) b) + f ′′ (tb + (1− t) a)| dt

≤ (b− a)3

4

(∫ 1

0

|t + 1|2 dt

)1− 1
p

{(∫ 1

0

(t + 1)2
(

t |f ′′ (a)|p + m (1− t)
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
p)

dt

) 1
p

+
(∫ 1

0

(t + 1)2
(
t |f ′′ (b)|p + m (1− t)

∣∣∣f ′′
( a

m

)∣∣∣
p)

dt

) 1
p

}

≤ (b− a)3

4

(
7
3

)1− 1
p

×




(
17 |f ′′ (a)|p + m11

∣∣f ′′ ( b
m

)∣∣p
12

) 1
p

+

(
17 |f ′′ (b)|p + m11

∣∣f ′′ ( a
m

)∣∣p
12

) 1
p



 .

Theorem 2.13. Let f : I ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b, and
(α, m) ∈ [0, 1]2, and let p > 1 with 1/p + 1/q = 1. If the mapping |f ′′|q is (α, m)-convex on I then the
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following inequality holds:

(16)∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

(
7
3

)1− 1
p

×




[
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
|f ′′ (a)|p +

mα
(
7α2 + 30α + 29

)

3 (α + 1) (α + 2) (α + 3)

∣∣∣∣f ′′
(

b

m

)∣∣∣∣
p
] 1

p

+

[
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
|f ′′ (b)|p +

mα
(
7α2 + 30α + 29

)

3 (α + 1) (α + 2) (α + 3)

∣∣∣f ′′
( a

m

)∣∣∣
p
] 1

p



 .

Proof. Using Lemma 2.1, Definition 1.4 and power mean integral inequality, we obtain
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4

∫ 1

0

|t + 1|2 |f ′′ (ta + (1− t) b) + f ′′ (tb + (1− t) a)| dt

≤ (b− a)3

4

(∫ 1

0

|t + 1|2 dt

)1− 1
p

{(∫ 1

0

(t + 1)2
(

tα |f ′′ (a)|p + m (1− tα)
∣∣∣∣f ′′

(
b

m

)∣∣∣∣
p)

dt

) 1
p

+
(∫ 1

0

(t + 1)2
(
tα |f ′′ (b)|p + m (1− tα)

∣∣∣f ′′
( a

m

)∣∣∣
p)

dt

) 1
p

}

≤ (b− a)3

4

(
7
3

)1− 1
p

×




[
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
|f ′′ (a)|p +

mα
(
7α2 + 30α + 29

)

3 (α + 1) (α + 2) (α + 3)

∣∣∣∣f ′′
(

b

m

)∣∣∣∣
p
] 1

p

+

[
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
|f ′′ (b)|p +

mα
(
7α2 + 30α + 29

)

3 (α + 1) (α + 2) (α + 3)

∣∣∣f ′′
( a

m

)∣∣∣
p
] 1

p



 .

Remark 2.14. i) In (16), if we choose α = 1, we have the inequality in (15).
ii) In (16), if we choose α = m = 1, we obtain the inequality in (14).

Corollary 2.15. i) Under the assumptions of Theorem 2.12, if we choose p = m = 1, we obtain the
inequality;

∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

2

(
17 |f ′′ (a)|+ 11 |f ′′ (b)|

12

)
.
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ii) Under the assumptions of Theorem 2.13, if we choose p = m = 1, we obtain the inequality;
∣∣∣∣∣
∫ b

a

f (x) dx− 1
2

(b− a) (f (a) + f (b)) +
5
4

(b− a)2 (f ′ (b)− f ′ (a))

∣∣∣∣∣

≤ (b− a)3

4
7α3 + 34α2 + 45α + 14
3 (α3 + 6α2 + 11α + 6)

[|f ′′ (a)|+ |f ′′ (b)|] .

3 Applications to Special Means

Now we shall use the results of Section 2 to prove the following new inequalities connecting the above
means for arbitrary real numbers.

Proposition 3.1. Let a, b ∈ (0, x) and x > 0, m ∈ [0, 1] with a < b. Then, the following inequality
holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ (b− a)2

2

(
17 + 11m3

)

12
A

(
a2, b2

)

G4 (a, b)
.

Proof. The proof is immediate from Theorem 2.3 applied for f(x) = − ln x, x ∈ R.

Proposition 3.2. Let (0, x), a, b ∈ (0, x) and x > 0, (α, m) ∈ [0, 1]2 with a < b. Then, the following
inequality holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ (b− a)2

2

(
4α2 + 16α + 14

α3 + 6α2 + 11α + 6
(
1−m3

)
+

7m3

3

)
A

(
a2, b2

)

G4 (a, b)
.

Proof. The proof is immediate from Theorem 2.4 applied for f(x) = − ln x, x ∈ R.

Proposition 3.3. Let (0, x), a, b ∈ (0, x) and x > 0, m ∈ [0, 1] , p > 1 with a < b. Then, the following
inequality holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ (b− a)2

22+ 1
q G4 (a, b)

(
22p+1 − 1

2p + 1

)1/p {[
b2q + a2qm1+q

] 1
q +

[
a2q + b2qm1+q

] 1
q

}
.

Proof. The proof is immediate from Theorem 2.7 applied for f(x) = − ln x, x ∈ R.

Proposition 3.4. Let (0, x), a, b ∈ (0, x) and x > 0, (α,m) ∈ [0, 1]2 , p > 1 with a < b. Then, the
following inequality holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ (b− a)2

4G4 (a, b)

(
22p+1 − 1

2p + 1

)1/p 1

(α + 1)
1
q

{[
b2q + a2qm1+qα

] 1
q

+
[
a2q + b2qm1+qα

] 1
q

}
.

Proof. The proof is immediate from Theorem 2.8 applied for f(x) = − ln x, x ∈ R..
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Proposition 3.5. Let (0, x), a, b ∈ (0, x) and x > 0, m ∈ [0, 1] , p > 1 with a < b. Then, the following
inequality holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ 7 (b− a)2

12G4 (a, b)

(
3
84

) 1
p {(

17b2p + 11mp+1a2p
)1/p

+
(
17a2p + 11mp+1b2p

)1/p
}

Proof. The proof is immediate from Theorem 2.12 applied for f(x) = − ln x, x ∈ R.

Proposition 3.6. Let (0, x), a, b ∈ (0, x) and x > 0, (α,m) ∈ [0, 1]2 , p > 1 with a < b. Then, the
following inequality holds:

∣∣∣∣∣− ln I (a, b) + A (ln a, ln b) +
5
4

(b− a)2

G2 (a, b)

∣∣∣∣∣

≤ (b− a)2

4G4 (a, b)

(
7
3

)1− 1
p

×




( (
4α2 + 16α + 14

)
b2p

(α3 + 6α2 + 11α + 6)
+

mp+1a2p
(
7α3 + 30α2 + 29α

)

3 (α3 + 6α2 + 11α + 6)

) 1
p

+

( (
4α2 + 16α + 14

)
a2p

(α3 + 6α2 + 11α + 6)
+

mp+1b2p
(
7α3 + 30α2 + 29α

)

3 (α3 + 6α2 + 11α + 6)

) 1
p



 .

Proof. The proof is immediate from Theorem 2.13 applied for f(x) = − ln x, x ∈ R.
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1 Introduction 
 

Modern set theory formulated by George Cantor is fundamental for the whole Mathematics. 

But to represent imprecise, vague data classical set theory is insufficient. So many non 

classical sets were put forward to overcome this problem. Some of them are fuzzy sets, soft 

sets, rough sets, multisets etc. To make these non classical sets even more powerful 

combinations of them were also introduced in time. One of them is Fuzzy Multisets.Fuzzy 

Multisetsis a powerful tool for modelling quantitative and qualitative properties of objects 

simultaneously. 

 

Many fields of modern mathematics have been emerged by violating a basic principle of a 

given theory only because useful structures could be defined this way. Set is a well-defined 

collection of distinct objects, that is, the elements of a set are pair wise different.  If we relax 

this restriction and allow repeated occurrences of any element, then we can get a 

mathematical structure that is known as Multisets or Bags.  For example, the prime 
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factorization of an integer n>0 is a Multiset whose elements are primes. The number 120 has 

the prime factorization 120 = 2
3
3

1
5

1
 which gives the Multiset {2, 2, 2, 3, 5}. A complete 

account of the development of multiset theory can be seen in [1,2, 9, 10,11,12,13]. As a 

generalization of multiset, Yager [6] introduced the concept of Fuzzy Multiset (FMS). An 

element of a Fuzzy Multiset can occur more than once with possibly the sameor different 

membership values. 

 

 

2 Preliminaries 
 

Definition 2.1.[11] Let X be a set. A multiset (mset) M drawn from X is represented by a 

function Count M or CM defined as CM : X {0,1, 2, 3,…}.For each xX, CM(x) is the 

characteristic value of x in M. Here CM(x) denotes the number of occurrences of x in M.  

 

Definition 2.2.[10] Let X  be a group. A multi set G over X is a multi group over X if the 

count of G satisfies the following two conditions 

 

1. CG(xy)  ≥   CG (x) CG(y)   x,y  X; 

2. CG(x
-1

)  ≥   CG(x)  x  X 

 
Definition 2.3.[12] If Xis a collection of objects, then a fuzzy set A in X is a set of ordered 

pairs: A = {(x,µA(x)) : x X,µA : X [0,1]} where µAis called the membership function of A, 

and is defined from X into [0, 1]. 

 

Definition 2.4.[2] Let G be a group and µ FP(G) (fuzzy power set of G), then µ is called 

fuzzy subgroup of G if 

 

1. µ(xy)  ≥µ(x) µ(y)  x, y    and 

2. µ(x 
-1

)   µ(x) x    

Definition 2.5.[9] Let X be a nonempty set. A Fuzzy Multiset (FMS) A drawn from X is 

characterized by a function, „count membership‟ of A denoted by CMA such that CMA :X  Q 

where Q is the set of all crisp multisets drawn from the unit interval [0,1].   

 

Then for any x  X, the value CMA(x) is a crisp multiset drawn from [0,1].  For each x  X, the 

membership sequence is defined as the decreasingly ordered sequence of elements in CMA(x). 

It is denoted by*   
 ( )    

 ( )    
 ( )        

 ( ) +       
 ( )     

 ( )      
 ( )       

   
 ( ). 

 

When every x  X is mapped to a finite multiset of Q under the count membership function 

CMA, then A is called a finite fuzzy multiset of X.The collection of all finite multisets of X is 

denoted by FM(X). Throughout this paper fuzzy multisets are taken from FM(X). 

 

Definition 2.6.[7] Let A   ( ) and x  A. Then   (     )      *     
 ( )    + 

When we define an operation between two fuzzy multisets, the length of their membership 

sequences should be set to equal. So if Aand B are FMS at consideration, take  (      )  
     * (   )  (   )+. When no ambiguity arises we denote the length of membership by 

L(x). 
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Basic relations and operations, assuming that A and B are two fuzzy multisets of X is taken 

from [7] and is given below. 

 

a) Inclusion 

     µ
 

 
( )  µ

 

 
( )            ( )      . 

 

b) Equality 

    µ
 

 
( )  µ

 

 
( )            ( )     . 

 

c) Union 

µ
   
 ( )  µ

 
 ( )  µ

 
 ( )            ( )  where   is the maximum operation. 

 

d) Intersection 

µ
   
 ( )  µ

 
 ( )  µ

 
 ( )            ( )where   is the minimum operation. 

 

By CMA(x) ≥ CMA(y) it is taken that µA
i
(x) ≥ µA

i
(y)  i= 1, . . . , Max{L(x), L(y)}. And 

CMA(x)CMA(y)  means that {µA
i
(x) µA

i
(y) }  i = 1, . . . , Max{L(x), L(y)}. And by CMA(x) 

CMA(y) we mean {µA
i
(x) µA

i
(y)}  i = 1, . . . , Max{L(x), L(y) }. 

 

Definition 2.7.[8] Let A  FM(X). Then A
-1

 is defined as CMA
-1

(x) = CMA(x
-1

). 

 

Definition 2.8.[8] Let A, B FM(X). Then define A o B as  

 

     ( )        *    ( )      ( )                    +. Also 

        ( )           *   ( )     ( 
   )+    

      *   (  
  )     ( )+     

 

Definition 2.9.[8] Let Xbe a group. A fuzzy multiset G over X is a fuzzy multi group (FMG) 

over X if the count (count membership) of G satisfies the following two conditions. 

 

1. CMG(xy)  ≥  CMG(x) CMG(y)         . 

2. CMG(x
-1

)  ≥CMG(x)     . 

 

Definition 2.10.[8] Let     ( )  Then  

A[α, n]  *        
 ( )      ( )             +. This is called n-α level set of A. 

 

Definition 2.11.[8] Let     ( ). Then define A*   *        ( )     ( ) }. 

 
Proposition 2.12.[8] Let A FMG (X). Then  

 

a) CMA(e)    ≥  CMA(x)   x    
b) CMA(x

n
)  ≥  CMA(x)   x   . 

c) A
-1⊇A. 

 

Proposition 2.13.[8] Let     ( )           ( ) iff  CMA(xy
-1

) ≥  CMA(x) ˄ CMA(y) 

 x, y  X. 
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Proposition 2.14.[8] If A    ( )  and H is a subgroup of X, then A|H (i.e. A restricted to 

H)    ( ) and is a fuzzy multi subgroup of A . 

 

Proposition 2.15.[8] Let      ( )  Then A[α, n] are subgroups of X. 

 

Proposition 2.16.[8] Let      ( ). Then A* is a subgroup of  X. 

 

Some of the basic properties of groups are given below. 

 

Definition 2.17.[14]Let (G,*),(  ,o) be two groups. A mapping          is called a 

homomorphism if   (   )    ( )  ( )        
 

Definition 2.18.[14] Let          be a homomorphism. Then the kennel of   is the set of 

all those elements of G which are mapped to the identity element of G‟. That is 

 Ker       *       ( )     +                                        
 

Proposition 2.19.[14] Let        be a homomorphism. Then 

 

 ( )      (   )  , ( )- -1 

 

Proposition 2.20. [14] Let       ‟ with kernel K. Then K is a normal subgroup of G. 

 

Definition 2.21.[14] A one-one homomorphism from G onto G‟ is called an isomorphism. 

 

Definition 2.22.[14] Two groups G, and G* are said tobe isomorphic if there is an 

isomorphism of G onto G*. 

 

Note :- If G and G* are isomorphic then both groups will have the same properties. 

 

Definition 2.23.[14] An isomorphism of a group G to itself is called an Automorphism. 

 

 

3. Abelian Fuzzy Multi Group 

Proposition 3.1. Let      ( ). Then the following assertions are equivalent. 

 

a)    (  )     (  )               

b)    (   
  )     ( )          

c)    (   
  )     ( )          

d)    (   
  )     ( )          

Proof. (a)   (b)    Let      . Then    (   
  )     ( 

    )     ( ) 
 

(b)   (c)Straight forward 

 

(c)   (d)   (   
  )     , 

  (     )(   )  -      ( ) 
 

(d)   (a)Let       

Then    (  )     , (  ) 
  -     (  )     , (  ) 

  -      (  ) 
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Hence    (  )     (  ).Thus the above assertions are equivalent. 

 

Definition 3.2. G  FMG(X)is called an Abelian fuzzy multi groupover X, if    (  )  
   (  )       . Let AFMG(X) denote the set of all abelian fuzzy multi groups over X. 

 

Example 3.3. Let X be an abelian group and G be a FMG of X. Then G is an abelian FMG 

over X. 

 

Proposition 3.4. Let A AFMG(X). Then A
*
, A[α,n]; n N, α  [0,1] are normal subgroups of 

X.  

 

Proof. By Propositions 2.15 and 2.16 A
*
 and A[α,n] are subgroups of X. 

 

1.  Let x X and y A
*
. So    ( )     ( ). Since A  AFMG(X)  

   (  )     (  )        So    (   
  )        ( )        ( )  by (3.1.)                 

So        . Hence the proof by the definition of normal subgroup. 

 

2. Let x X and y A[α, n]. Since A AFMG(X),    (  )     (  )        So 

   (   
  )        ( )  by(3.1.)  So xy     ,   - Hence the proof by the definition of 

normal subgroup. 

 

Proposition 3.5. Let A AFMG(X). Then A
j
; j N, isnormal subgroup of X iff  

  
   (    )             

 

Proof. In [8] it is proved thatA
j
 is a subgroup of Xiff   

   (    )              Let x X 

and y A
j
. So   

 ( )         
   ( )     Since A AFMG(X) , 

   (  )     (  )         So    (   
  )     ( )  by (3.1.).  Then                  

  
 (     )           

   (     )     So         . Hence the proof by the definition 

of normal subgroup. 

 

Corollary 3.6. Let A AFMG(X). Then  A
j
 ; j N, isnormal subgroup of X iff A

j
is a subgroup 

of X. 

 

Definition 3.7. Let X be a group andA FM(X).Then,   ( )-  FM(X) with only one 

element x and    ,   ( )- 
( )      ( )   

 

Definition 3.8. Let Xbe a group H FMG(X) and x X. Also let e be the identity element of X. 

Then 

 

a)  the FMS ,   ( )-      is called a left fuzzy multi coset (LFMC) of H in X and is denoted 

by xH, where  

    ( )     *   ,   ( )- 
( )       ( )       + 

    ,   ( )- 
( )       ( 

   ) 

                                                           ( )       ( 
   )   by  (3.9.) 

                                                     ( 
   )   by (2.10) 

 

b)  the FMS    ,   ( )- is called a right fuzzy multi coset (RFMC) of H in X and is 

denoted by Hx, where 
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    ( )     *    ( )     ,   ( )- 
( )        + 

      (  
  )       ,   ( )- 

( ) 

                                                            (  
  )       ( ) 

                                                            (  
  ) 

 

Remark 3.9. If H   AFMG(X), then xH = Hx,  x   X. 

 

Proof. Let  H   AFMG(X)  

 

    ( )         (  
  ) 

                          ( 
   ) 

                           ( ) 
 

Proposition 3.10. Let H   FMG(X). Then  x, y   X, 

 

a) xH = yH  xH* = yH*  

b) Hx = Hy H*x = H*y 

 

Proof. a)  Let xH = yH. Then     ( )      ( )  and hence 

    ( 
   )     ( 

   )   z   X.     

Now since z is arbitrary, put z = y, we get     ( 
   )     ( 

   )       ( ) 
Thus x

-1
y H* and hence xH* = yH*      

Conversely, let xH* = yH*. Thus x
-1

y, y
-1

x H*. …….(1) 

Now    ( 
   )         (, 

   -,    -)   by associativity of group  

       ( 
   )      ( 

   ) by (2.9) 

       ( )        ( 
   )  by (1)  

       ( 
   )         

Similarly      ( 
   )        ( 

   )        
So     ( )      ( )         Hence the proof. 

 

b)     Proof is similar to part (a).   

 

Proposition 3.11.  Let H AFMG(X). If xH = yH, then    ( )      ( )           
 

Proof. Let xH = yH. Then     ( )      ( )and hence    ( 
   )     ( 

   )  z X. 

Now since z is arbitrary, put z = y, we get     ( 
   )     ( 

   )       ( )   
Thus x

-1
y H*. Similarly  y

-1
x H*. ………….(1) 

Since H AFMG(X), it follows that    ( )         ( 
    )   by (3.1.)                       

      ( 
   )        ( )    by (2.9.) 

      ( )       ( )   by (1) and (2.10) 

      ( ) 
Similarly    ( )        ( )and hence the proof. 

 

Definition 3.12. Let A    ( )  Then 

 [A] = {x: x          (  )     (  )         + is called the normalizer of A in X. 

 

Proposition 3.13.  Let A    ( )  Then [A] is a subgroup of X and A|[A]     (, -)  
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Proof. Clearly e  , -  Let x, y , -  Then         
 

   (,  
  - )              ( , 

   -) 
                                          (, 

   - )      by  x , - and y
-1     

                                      (, 
     - )   by (2.9)  

                                          ( , 
     -)   by  y , - and x

-1
z

-1    
                                          (  ,  

  -)by (2.9)  ................... (1) 

 

   (  ,  
  -)             ( , 

     -) 
                                          (, 

     - )       
                                          (, 

   - ) 
                                          (,  

  - ) ........................(2) 

 

From (1) & (2) xy
-1 , - So [A] is a subgroup of X. By (2.14) it is provedA|[A]    (, -)  

And by the definition of  AFMG the proof is complete. 

 

Proposition 3.14.Let A, B    ( ) and A    Then the following assertions are 

equivalent.  

 

a)    (   
  )         ( )       ( )                  

b)    (  )         (  )       ( )                  
c) ,   ( )-            (  ,   ( )- )         
 

  Proof. (a)   (b) 

 

Since A     (  )       (    
  )          (  )      ( )        by(a) 

 

1. (b)   (c) 

          (,   ( )-      )
( )          ,  ,   ( )- 

( )       ( 
   )-  

                    ( )       ( 
   ) 

                                                        =      ( 
   ) 

                                                            ( 
   ) by(2.9.) 

                                                              (  
  )        ( 

  )  by (b)       

                                                             (  
  )        ( 

  )   by (2.9.) 

                                                        =       ( )        ( )  by(3.8 and 2.9)     

                                                        =   (    ( )       ( ))( ) 
 

2.  (b)    (a)               

   ( ,  
  -)               (,  

  - )        ( ) 
                                                             ( )         ( )     
 

3. (c)  (b)              

                                            (  )         ( 
     )  by(2.9) 

                                                                 ( 
  ) 

                                                   (  )    ( 
  )  by(c) 

                                                                 ( 
     )       ( 

  )    
                                                                (  )         ( )     Hence the proof by (2.9.) . 
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4 Fuzzy Multi Order 

 
4.1 Fuzzy Multi Order of an Element of a Group 

 

Throughout the rest of the paper we consider X as a group with finite order. And A 
   ( )  Also x, y     
 

Definition 4.1.1. Let A be a FMG of X and x  . The least positive integer n such that 

   ( 
 )     ( ) is known as fuzzy multi order of x w.r.t. A and is denoted by (O(x);A). If 

no such n exists, x is said to be of infinite order w.r.t. A.  

 

Example 4.1.2. (Z4, +4 ) is a group. Let A = {(.6, .4, .3, .1 )/2, (.9, .8, .7, .5, .1, .1)/0}  is a 

fuzzy multi group.     ( 
 )      ( ). So (O(2);A) = 2.  

 

Also O(x) = O(y) does not imply (O(x);A) = (O(y);A). It is illustrated below. Consider the 

Klein four cycle X = {e, a, b, c}. Then A = {(.6, .4, .3, .1)/a, (.9, .8, .7, .5, .1, .1)/b, (.9, .8, .7, 

.5, .1, .1)/c, (.9, .8, .7, .5, .1, .1)/e}. Here O(a) = O(b) = O(c). But (O(a);A)   (O(b); A) = 

(O(c);A). 

 

Proposition 4.1.3. Let A    ( )  If     ( 
 )     ( ), for some positive integer m, 

then  (O(x);A)|m. 

 

Proof. Let (O(x); A) = n. Given      ( 
 )     ( ). Hence n≤m. 

By division algorithm                such that m = ns+t ; 0    . The 

  

             ( 
 )       ( 

    ) 
                                   ( 

 (  )  ) 
                                  ( 

 )    ( 
 )    by (2.9)     

                          =       ( )    ( 
  )   

                          =       ( 
  )    by 2.12(a) 

                               ( 
  )  by 2.9 

                          =      ( 
 ) ) 

                               ( 
 )  by 2.12(b) 

                                ( ) 
 

So     ( 
 )       ( ). Hence t=0 by the minimality of n. i.e. m= ns. Hence the proof. 

 

Proposition 4.1.4.  Let A    ( )  Then        (O(x);A)|O(x). 

 

Proof. O(x) = m,   (O(x);A) =n 

   ( 
 )       ( ) 

So (O(x);A) = n  ( )    (Since n is the least) 

Let n   and let m = np + q ; 0 <q<n. Then 

 

         

        

          

   ( 
  )     ( 

  ) 
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Thus    ( 
  )     ( 

 )  by 2.9 

   ( 
 )     (( 

 ) )     ( )   by (2.9.) 

i.e.            ( 
 )     ( )  This is a contradiction to (O(x); A) =n.  

Hence the proof. 

 

Proposition 4.1.5.  Let A    ( )  Let x, y   such that ((O(x) ;A), (O(y); A) ) = 1 and xy 

= yx. Then if    (  )     (e), then    ( )     ( )     ( )  
 

Proof. Let (O(x); A) = n,  (O(y); A) = m. …….. (1) 

 

   ( )       (  )   (given) 

                    ((  )
 )by 2.12(b) 

                      ( 
   )   …………… (2)   

 

Hence      ( )         ( 
   )  by (2.10.) Now 

 

   ( 
 )          ( 

      ) 
                                                                           ( 

   )     (( 
 )  )   by  (2.9.)  

                                                                        ( )     ( )   by (1) and (2) and 2.9 

                                                                           ( )   
 

Thus     ( 
 )         ( )  Then n|m. (by 4.1.4). But (n, m) =1  (given). Thus n = 1.   

i.e.    ( )            ( 
 )          ( )  Similarly    ( )     ( )  

 

Corollory 4.1.6.  Let A    ( )  Let x, y   such that (O(x), O(y) ) = 1and xy = yx. Then if 

   (  )     (e), then    ( )     ( )     ( )  
 

Proof. (O(x), O(y) ) = 1 

(O(x) ;A)\ O(x).  by (4.1.5.). Then  

((O(x) ;A), (O(y); A) ) = 1 Then the proof  by (4.1.5) 

 

Theorem 4.1.7. Let A     ( )  Let (O(x); A) = n ; x    If m is an integer with (m,n) = d, 

then (O(x
m
); A) = n/d. 

 

Proof. Let (O(x
m
); A) = t. Now 

 

   (( 
 )   )         ( 

  )                +
 

                               ( 
 )  by  (2.12)   

                                      ( ) 
 

i.e.      (( 
 )   )       ( )  Thus t|(n/d)    by(4.1.3)     …………(1) 

Now, since (m, n) = d,                         So 

   ( 
  )        ( 

 (     )) 

                                                                        (( 
 )  )    ((( 

 ) ) )   
                                                                        ( 

 )     (( 
 ) )    by  (2. 12) 

                                                                           ( ) 
 

   ( 
  )       ( ) 
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 So n|(td)   by(4.1.3)  i.e. (n/d)|(td/d).  (n/d)|t. ……..(2) 

t = (n/d)   by (1) and (2). Hence the proof 

 

Proposition 4.1.8. Let A    ( )  Let (O(x); A) = n ; x    If m is an integer with (m, n) = 

1, then    ( 
 )       ( )  

 

Proof. Since (m, n) = 1,                          We then have  

 

   ( )              ( 
     ) 

                                                                            (( 
 ) )    (( 

 ) )    by  (2.9)  

                                                                           ( 
 )     ( 

 ) 
                                                                           ( )     ( 

 ) 
 

   ( )     ( 
 ) So 

   ( 
 )         ( )   by(2.12(b)) 

 

Theorem 4.1.9. Let       ( )  Let ( ( );  ) =   ;      If    (    )  i    . Then 

(O(  )  )    ( (  )  )   
 

Proof. ( (  )  )        ( (  )  )     Alsoi = j + nk; k  . So  

 

                                     (( 
 ) )         (( 

    ) ) 

                                                             (( 
 )

 
)    (( 

 )  ) 

    ( )     ( 
 )  

                                                              ( )     
 

Then    (( 
 ) )         ( )   by (2.12) 

So t|s. Similarly by    (( 
 ) )       ( )we get s|t. Thus t = s.  

 

Proposition 4.1.10. Let A    ( )  Let x, y   such that ((O(x);A), (O(y); A) ) = 1 and xy 

= yx. Then  (O(xy);A) = [(O(x); A)][(O(y);A)]. 

 

Proof. Let (O(xy);A) = n, (O(x); A)  =s,    (O(y);A) = t. Then (t,s) = 1  (given) 

 

                        ((  )
  )     ( 

  )    ( 
  ) 

                    ( 
 )    ( 

 ) 
         ( )     ( ) 

                 ( )     
 

So n|st  by (4.1.3)               ………………(1) 

Now     ( )          ((  )
 )        ( 

   )  
Since n|st and (t,s) = 1, n|s or n|t.Assume n|t, then (n,s) =1.  

So  ( (  )  )   /(n,s)  = s.    by (4.1.7) 

Also by the same  ( (  )  )      (   )    ……………..(a) 

Since (s,t) = 1, we have (s, (t/(n,t)) ) = 1.  

Thus  (( (  )  ) ( (  )  ))       by (a) 

Also    ((  )
 )        ( 

   )      ( )       (O(xy);A) = n.  
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Also    ( 
 )     ( 

 )     ( ) 
So s|n and t|n  by(4.1.3).  

Now since (s, t) =1, (st)|n.   ……………..(2)  Then from (1) and (2) n = st. 

 

Proposition4.1.11. Let A    ( )  Let z    (O(z); A) = mn with (m, n) = 1, then      
                 ( ( )  )        ( ( )  )      
 

Proof. (m,n) = 1                            ……………..(1) 

So (m,t) = (n,s) =1. Let x = z
nt

,  y = z
ms

. Then  xy  =  z
nt

 z
ms 

 =  z
ms 

z
nt

= yx  = z
nt+ms

=  z by (1) 

Given (O(z); A) = mn. So  by (4.1.7) 

( ( )  )   ( (   )  )      (     )        (   )            (since (m, t) =1) 

Similarly ( ( )  )        This proves the existence of x and y. 

 

 

4.2 Fuzzy Multi Order in Cyclic Groups 

 

In this section we consider X as a cyclic group with finite order. And A    ( )  
 

Lemma4.2.1. Let A    ( )  And let a, b be two generators of X. Then 

 

(O(a); A) =  (O(b); A). 

 

Proof. Let |X| = n. O(a) = O(b) = n. Now b = a
p
  ; p   . So (p,n) =1. Let( ( )   )      

Then m|n    by (4.1.4). Then 

( ( )   )    ( (  )   )      (   )               ( ( )   )   by (4.1.7)  

and since (p,n) =1. So (O(a);A) = (O(b);A). 

 

Theorem 4.2.2. Let A    ( ) with |X| = n.Then the following assertions hold          
 

a) If O(x)| O(y), then (O(x);A)| (O(y);A).      

b) If O(x) = O(y), then (O(x);A) = (O(y);A).          

c) If O(x) >O(y), then (O(x);A)   (O(y);A). 

 

Proof. Let X = (a), x = a
s
, y = a

t
 and (O(a);A) = m. HenceO(a) = n. Now by (4.2.1.) m is 

independent of a particular choice of a generatora ofX. Thus O(x) = n/(s,n) ,  By the property 

of a cyclic group  O(y) = n/(t,n) ………….(1) 

 

(O(x);A) = (O(a
s
);A) = m/(s,m)  by(4.1.7)  Similarly (O(y);A) = (O(a

t
);A) = m/(t,m)                                     

By (4.1.4) m|n. …………..(2) 

 

a) If O(x)| O(y), then by (1)  {n/(s,n)} | {n/(t,n)} =  (t,n)|(s,n). 

Now by (2)m|n                 So (t, mk)|(s, mk).  i.e. (t,m)|(s,m). 

Hence m/(s,m)| m/(t,m).  Hence the proof. 

 

b) Result follows from (a) 

 

c) O(x) >O(y), thenn/(s,n)   >n/(t,n)   So (s,n) < (t,n).  So (s,m)   (t,m)   by m|n. 
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5 Homomorphism between Fuzzy Multigroups 
 

Proposition 5.1 Let x, y be two groups and f: x y be a homomorphism. If 

A    ( )      ( )     ( ) 
 

Proof.  Let U,V, Y 

 

Case I: 

Let u,   ( )  Then 

   ( )( )     ( )( )         ( )(  ) 

   ( )( 
  )       ( )( ) 

 

Case II: 

   ( ) (    ( )                     )  
   ( )( )     ( )( )       ( )( )       ( )(  ) 

 

Case III: 

Let      ( ) Then there exist        such that  ( )     ( )    

Now    ( )( )    {  ( )( )      ( )    }   (1) 

 *  ( )(  )         ( )     ( )   + 

(Since    ( ) by the definition of homomorphism. i.e, 

  (  )   ( ) ( )    )  {  ( )( )    ( )( )         ( )     ( )   } 

           ( )   , *   ( )      ( )   +-  , *   ( )      ( )   +- 
     ( )( )     ( )( )  (2) 

Also 

           ( )( 
  )    *   ( 

  )          (   )   + 

                                  *   ( )      (   )     + (     ( )) 
                                *   ( )      ( )   + 
 

(f(   ) =  -1 (f(   ))
-1 

=( )-1   (f(   ))
-1

 =u  f( )=u, property of h-ism)  

=    ( )( )  ( ) 
 

From (2) and (3)   ( )       ( ) 
 

Proposition 5.2 Let x,y, be two groups and f: x  y be a homomorphism. If 

 

     ( )            ( ). 
 

Proof. Let x,y    

 

Case I, Case II, is similar to proposition 5.1. 

 

Case III 

Let x,y      ( )  Then there exist u,v,                 ( ) = x and     ( )   . 

Now      ( )(  ) =     (  ) (By definition  of inverse) 

       ( ) ( ) (Definition of homomorphism ) 

         ( )      ( ( ) (Since      ( ) 
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   =       ( )( )        ( )( ) 

Now      ( )( 
  ) =    ( ( 

  ))     (By definition of inverse) 

   =    ( ( ))
       (By definition of homomorphism) 

        ( ( ))       (Since      ( ) 
   =      ( )( ) 

 

Proposition 5.3 Let       ( ) and Y be a group. Suppose that       be an onto 

homomorphism. Then  ( )      ( ). 
 

Proof.By proposition 5.1,  ( )     ( ). Now let      . Since   is onto, there exist 

   . Such that  ( )   . Thus 

 
                ( )(   

  )    *   ( )      ( )       + 

    *   ( 
    )      (     )   + 

 

   ( )     ( 
    )             ( )                  

 

Now  ( )         ( ) ( ( ))   

 ( ( ))
  
 ( ) ( )     (   ) ( ) ( )    

  *   ( )      ( )   +     ( )( ) 

 

Hence by proposition 3.1,  ( )      ( ) 
 

Proposition 5.4 Let       ( ) and   be a group. Suppose that       be an into 

homomorphism. Then    ( )      ( ). 
 

Proof. By proposition 3.1,    ( )      ( ). Let      . Then  
 

     ( )(  )     , (  )-     , ( ) ( )-     , ( ) ( )- 

 
Since   is a homomorphism and       ( )     , (  )-        ( )(  ) 

Hence    ( )      ( ). 

 

6 Conclusions 

 
In this paperwe introduced the concept of Abelian fuzzy multi groups and find out some of 

the normal subgroups of X. Also left and right cosets of fuzzy multi groups and fuzzy multi 

order of an element of groups are introduced and its various properties are discussed. And it 

became evident that Fuzzy multi order of an element of a group has some properties similar 

to that of order of an element in a group. And finally we discussed some of the homomorphic 

properties of Fuzzy multigroups.  
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Abstract – The main purpose of this study is to determine the new encoding and decoding method. The 

encoding and decoding are an important tool for Coding Theory. İn this paper, we define soft codes by using 

definition soft sets. Also, we explain some algebraic properties of soft codes.   
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1 Introduction 

 

Soft set theory [1] was firstly introduced by Molodtsov in 1999 as general mathematical 

tool for dealing with uncertain, fuzzy, not clearly defined objects. He has shown several 

applications of this theory in solving many practical problems in economics, engineering, 

social science, medical science, etc. The soft set theory has been applied to many different 

fields with great success. Maji et al. [2] worked on theoretical study of soft sets in detail 

and [3] presented an application of soft set in the decision making problem using the 

reduction of rough sets [4]. Chen et al.[5] proposed parameterization reduction of soft sets, 

and then Kong et al. [6] presented the normal parameterization reduction of soft sets. We 

can say that The soft set has the similar applications with fuzzy sets and rough sets. H. 

Aktas and N. Cagman [7] has shown that every fuzzy set and every rough set can be 

considered as a soft set. In that sense we can say that this theory is much more general than 

its predecessors. 

 

With the increasing importance of digital communications and data storage, there is a in the 

area of coding theory and channel modelling to design codes need for research for channels 

that are power limited or bandwidth limited. The purpose of a communication system is, in 
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the broadest sense, the transmission of information from one point in space and time to 

another. We shall briefly explore the basic ideas of what information is and how it can be 

measured, and how these ideas relate to band width, capacity, signal-to-noise ratio, bit error 

rate and so on. 

 

İn this paper, the coding theory which based digital communication is studied over soft set. 

Also this structure is used for single error- correcting. These codes have different 

applications from the other codes.  

 

Through our study of error-control codes, we will model our data as strings of discrete 

symbols, often binary symbols {0,1}. When working with binary symbols, addition is done 

modulo 2. For example, . We will study channels that are corrected by 

additive white Gaussian noise, which we can model as a string of discrete symbols that get 

added symbol-wise to the code word. For example, if we wish to send the code word 

, noise may corrupt the codeword so that the  is received. In this 

case, we would say that the error vector is , since the codeword was corrupted 

in the first and fourth positions. Notice that , where the addition is done 

component-wise and modulo 2. The steps of encoding and decoding that concern us are as 

follows: 

 

 Encode   Noise    Decode   

 

where m is the message, c is the code word, e is the error vector due to noise, r is the 

received word or vector, and  is the decoded word or vector. The hope is that   . 

   

 

2 Preliminaries and Notation 
 

In this section, we present the basic definitions of soft set theory [8] and coding theory [9]. 

We consider a binary channel which can transmit either of two symbols 0 or 1. However, 

due to presence of noise a transmitted zero may sometimes be received as 1, and 

transmitted 1 may sometimes be received as 0. When this happens we say that there is an 

error in transmitting the symbol. The symbols successively presented to the channel for 

transmission constitute the input and the she symbols received constitute the output. Error 

control coding is a method to detect and possibly correct errors by introducing redundancy 

to the stream of bits to be sent to the channel. The Channel Encoder will add bits to the 

message bits to be transmitted systematically. After passing through the channel, the 

Channel decoder will detect and correct the errors. These definition sand more detailed 

explanations related to the soft sets and coding theory can be found in [10,11,12] and [13] 

respectively.                                                                

 

Throughout this work,  denotes to an set of vectors,  denotes the set of code words’s 

weight, A⊆ E and n is the code’s length, is the power set of , and . Also,  

and  denote that every position equals to 1 and 0, respectively.  

 

 

 

 

Definition 2.1.  [3] A pair  is called a soft set over  where  is a mapping given by 
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In other words, a soft set over  is parametriterized family of subsets of the universe . For 

 may be considered as the set of ε- elements of the soft set . 

 

Definition 2.2. [3] For two soft sets  and over  is called a soft subset 

of  if 

 

(1)  and 

(2) ∀ε A F(ε) and  are identical approximations 

 

This relationship is denoted by  

 

Similarly,  is called a soft superset of , if  is a soft subset of . This 

relationship is denoted by  

 

Definition 2.3. [3] Two soft sets   and  over  are called soft equal if  is 

a soft subset of  and  is a soft subset of  

 

Definition 2.4. [7] The intersection of two soft sets  and  over  is the soft set 

, where and ,  or  (as both are same set). This is 

denoted by  

 

Definition 2.5. [7] If  and  are two soft sets, then  and  is denoted 

.  is defined as , where  

 

 

Definition 2.6. [7] The union of two soft sets  and  over  is the soft set 

 where  and ∀ ε C  

 

  

 

This relationship is denoted by  

 

Definition 2.7.[14] The minimum distance of a code  is the minimum distance between 

any two code words in . We can indicate as follows. 

 

. 

 

Definition 2.8.[15] Weight  of a code word  is the number of nonzero components in 

the code words. 
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3 Soft Codes 

 
Definition 3.1. Let  denotes set of vectors,  be the power set of  be the set of 

code words’s weight, A⊆ E and n is the code’s length. A soft set  on the 

universe U which defined by the set of ordered triads is called soft code. 

 
                                 (  =  

 

where . 

 

Example 3.2. Let  be a soft code over  

. We define  as the 

following for ,  

=  So that, we denote to soft code as follows   

(

 
 

Definition 3.3. For a soft code   over , 

 

(a) (  is said to be a zero soft code,  if . It is denoted . 

 

(b) (  is said to be a universal soft code, if . It is denoted 

. 

 

Definition 3.4. For three soft codes , ,  over , 

 

(a) We define soft sub code as follows.  is soft sub code of  , if 

. It is denoted by  .   

 

(b) We define soft equal code as follows.  are equal soft 

codes,  if . It is denoted by . 

 

Definition 3.5. Let ,  and  ; 

 

(a) We define soft union code as follows. Union of  and over  is 

soft code where   , denoted by    

 

(b) We define soft intersection code as follows.  İntersection of  and 

over  is soft code where , denoted by   

 
 

(c) Complement of over , denoted by , =  - 

 

 

(d)  and are disjoint  if    . 

 

 

 

Proposition 3.6. Let   . Then  
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(a)   = , 

(b) = . 

 

Proof. İt is clear from Definition 3.5. 

 

Proposition 3.7. Let , . Then 

 

(a) , 

(b) , 

(c) , 

(d) ( )  = ) 

  

 

Proof. İt is straightforward. 

 

Proposition 3.4. Let , . Then  

 

(a) , 

(b) , 

(c)(  )  =  )  

 

Proof. It is proved by using Definition 3.5. 

 

Proposition 3.5. , . Then De Morgan’s laws are 

valid 

 

(a)  , 

(b) (  . 

 

Proof.  

(a) (   ) ) 

))) 

                                                             =  

 

(b) İt can be proved similarity. 

 

Proposition 3.6. Let , . Then 

 

(a) ((  

(( , 

 

(b) ((   

( ). 

 

   Proof.  It is clear from Definition 3.1. and Definition 3.5. 

 

 

3.1. Products of Soft Codes 
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In this part, we define three new definitions for soft encoding and decoding. 

 

  Definition 3.7. Let , . We define vectorel 

multiplication as following. 

 

   

 

 

Let’s accept , , define vectorel multiplication as 

following. Also we show symbol of vectorel multiplication with “ ”. 

 

 {(  {  { …  { ), (  {       

{ …{ {  )… (  { ,  {  …  {  ) . 

 

This multiplication is called as vectorel multiplication. Also this multiplication will create a 

basic for soft encoding and decoding. The soft encoding that set of a message which is 

showed by  is encoded by a soft code indicated by . Also we make by using inverse 

operation decoding. 

 

Definition 3.8. Let   be a soft code. The soft code has multiple of vectors. Each one of the 

vector has  information digits showed as follows.  

 

                                                             
 

The each one of the soft code’s elements is encoded by using Definition3.7. There are two 

multipliers of this product are called as message set and encoding set. The message set and 

encoding set is indicated and , respectively. is not used for soft encoding and 

decoding. 

 

Example 3.9. Let define the message set and the encoding set which are indicated and  

respectively.  

 

 
     

 

If we multiply sets of two codes, 

 

. 

Definition 3.10. The inverse operation of vectorel multiplication provides to find  

information digit. This method is called soft decoding. 

 

Example 3.11. Let’s think Example 3.9. and try to solve the message which is called . In 

this statement, we must note the following, while we multiply one digit with other digit the 

result code word consists from the large digits. If the digits equal one another, we write the 

common digit.       
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other elements of the message are found with similarity method. 

 

 

4   Error Correcting Soft Codes  

 

Firstly, we proof a theorem for error correct. This theorem will generate a structure to 

correct. 

 

Theorem 3.12. Distance of all of the codes which have same length and weight are always 

2.  

 

Proof.  

Let  and  be same length and weight. We will examine two statements which  is 

even and odd. 

 

(1) Let  be odd. In this statement,  but this means 

. This statement is contradiction with our acceptation. 

 

(2) Let  be even. In this statement, let be . This sort codes are 

cyclic but not linear so ıf 10… is an element in code, 01… is an element in code from 

cyclic definition so distance is always 2.      

 

Theorem 3.13. This collection can be or  if all of the codes which have same length 

and weight are collected.  

 

Proof. It is necessary to calculate the state of being one of each digit for this proof, 

examining all of the code words in code. Let’s imagine a code which is  weight and  

length.  

 

a) We calculate the first position is 1 which are number of the code words that  

  

  

 

b) Now, we calculate the second position is 1 which are number of the code words. There 

are two statements that …, … .  

 

1)     … 

             ↓ 
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2) 11… 
            ↓ 

    

 

If we collect two statements, it will be like first statement. 
 

=  

 

……………….. 

 
n) …1 
     ↓ 

  

 

For end digit, we invent the same result.  

 

Example 3.14. Let  be as following. 

 

                                                         . 

 

In this statement, as can be seen in the code, the number of code words in which the first 

position 1 is 2. Number of Second and third positions respectively are repetition 2.    

 

Theorem 3.15. The collection of elements of soft codes is or   

 

Proof. Let’s choose two sets which are named with sets of message and encoding and show 

with  and . We define as follows these sets, accept these sets have two elements. 

 and . Let’s multiply by using definition 

3.7..  

 

 

If we collect these elements, 

 

=

 

  

 

We know that collection of soft codes can be  or  from Teorem 3.13. . Such as, 

 or . Let’s accept this collection is . In this statement, 

 ıf  is even. ıf  is odd, we can create as follows  



Journal of New Theory 2 (2015) 94-104                                                                                                        102 
 

. Since  is a soft code, this 

result is either   or .      

 

Example 3.16. Let’s think multiplication of codes  

 

 the code words’ s 

collection is 111 000 000}  

 

 the total of these code 

words is {000 111 000}  

 

the sum of these code 

words is {000 000 111}=  

 

If we write these sums in a set, it would be as follows 

 
                                               

 

According to above theorem, the sum of the code words is either   or . 

 

Error Correcting Soft Codes 4.1. To correct the error in the soft code the following 

algorithm is used.  

 

Algorithm: These steps are followed for single error correcting soft codes. 

 

(1) Elements of code are collected. 

(2) If this collection has a mistake; this collection will be different from or . 

(3) We analyses minimum distance of this collection by comparing with  and . 

(4) We know that minimum distance of this collection is close to   or  . 

(5) The elements of code are compared with or . 

(6) Such as we find an element which has a different distance, because this element is 

           incorrect.  

(7) All of the elements are collected but error element is not collected.  

(8) This collection is collected with or , such as we find to correct element. 

 

Example 3.17. Let’s think a soft code as follows. Also we generate a mistake code word  

 

   

 

(1) If we collect elements of code,  it is  

 

(2) ,      

 
(3) this collection has to be 111111111 

 

(4) Let find by using definition 2.7.,  
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…………………………………. 

 

 (Incorrect code word) 

 

(5) We collect to code words but the incorrect code word is not collected. This 

collection is 100000100 

 

(6) 111111111+100000100 = 011111011, it is a correct code word.  

 

 

5 Conclusions 

 
In this essay, we define a new method for low complication encoding and decoding for 

nonlinear binary product codes has been recommended. This technique provides an 

important error-correcting algorithm by using soft sets. Thus, we divide according to the 

weights of the linear code sets and these sets create elements of soft set. Also, a low 

complexity decoding algorithm was proposed for the developed nonlinear binary product 

codes. Finally, we provided an example illustrating the successfully application of this 

method. 
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