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WEIGHTED NEUTROSOPHIC SOFT SETS APPROACH IN A MULTI-

CRITERIA DECISION MAKING PROBLEM  

 
Pabitra Kumar Maji

 

 

<pabitra_maji@yahoo.com> 

 
 

 
Bidhan Chandra College, Mathematics Department, Asansol, 713 304, West Bengal, INDIA. 

 

 
Abstract – The paramount importance of decision making problem in an imprecise environment is becoming 

very much significant in recent years. In this paper we have studied weighted neutrosophic soft sets which are a 

hybridization of neutrosophic sets with soft sets corresponding to weighted parameters. We have considered here 

a multicriteria decision making problem as an application of weighted neutrosophic soft sets.  
 
Keywords – Soft sets, neutrosophic sets, neutrosophic soft sets, weighted neutrosophic soft sets.  
 

 

1 Introduction  
 

In 1999, Molodtsov initiated the novel concept, the concept of ‘soft set theory’ [ 1 ] which has 

been proved as a generic mathematical tool to deal with problems involving uncertainties. 

Due to the inadequacy of parametrization in the theory of fuzzy sets [ 2 ], rough sets [ 3 ], 

vague sets [ 4 ], probability theory etc. we become handicapped to use them successfully. 

Consequently Molodtsov has shown that soft set theory has a potential to use in different 

fields [ 1 ]. Recently, the works on soft set theory is growing very rapidly with all its 

potentiality and is being used in different fields [ 5 - 10 ]. A detailed theoretical study may be 

found in [ 10 ]. Depending on the characteristics of the parameters involved in soft set 

different hybridization viz. fuzzy soft sets [ 11 ], soft rough sets [ 12 ], intuitionistic fuzzy soft 

sets [ 13 ], vague soft sets [ 14 ], neutrosophic soft sets [ 15 ] etc. have been introduced. The 

soft set theory is now being used in different fields as an application of it. Some of them have 

been investigated in [ 6 -10, 16 ]. Based soft set [ 1 ] and neutrosophic sets [ 17 ] a hybrid 

structure ‘neutrosophic soft sets’ has been initiated [15 ]. The parameters considered here are 

neutrosophic in nature. Imposing the weights on the parameters ( may be in a particular 

parameter also) a weighted neutrosophic soft sets has been introduced [ 18 ]. In this paper we 

                                                 
*
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use this concept to solve a multi-criteria decision making problem. In section 2 of this paper 

we briefly recall some relevant preliminaries centered around our problem. Some basic 

definitions on weighted neutrosophic soft sets relevant to this work are available in section 3. 

A decision making problem has been discussed and solved in section 4. Conclusions are there 

in the concluding Section 5.  

 

 

2 Preliminaries  
 

Most of the real life problems in the fields of medical sciences, economics, engineering etc. 

the data involve are imprecise in nature. The classical mathematical tools are not capable to 

handle such problems. The novel concept ‘soft set theory’ initiated by Molodtsov [ 1 ] is a 

new mathematical tool to deal with such problems. For better understanding we now 

recapitulate some preliminaries relevant to the work. 

 

Definition 2.1 [ 1 ] Let U be an initial universe set and E be a set of parameters. Let P( U ) 

denotes the power set of U. Consider a nonempty set A, A  E.  

A pair ( F, A ) is called a soft set over U, where F is a mapping given by F : A → P ( U ). 

A soft set over U is a parameterized family of subsets of the universe U. For ε  A, F(ε ) may 

be considered as the set of ε - approximate elements of the soft set ( F, A ). 

 

Definition 2.2 [ 10 ] For two soft sets ( F, A ) and ( G, B ) over a common universe U, we 

say that ( F, A ) is a soft subset of ( G, B ) if 

 

       (i)  A  B, and 

       (ii)   ε  A, F(ε) and G(ε) are identical approximations. 

 

We write ( F, A ) 
~

 ( G, B ).  

 

( F, A ) is said to be a soft super set of ( G, B ), if ( G, B ) is a soft subset of ( F, A ). We 

denote it by ( F, A ) 
~

 ( G, B ). 

 

Let A and B be two subsets of E, the set of parameters. Then BA  EE . Now we are in 

the position to define ‘AND’, ‘OR’ operations on two soft sets over a common universe. 

 

Definition 2.3 [ 10 ] If ( F, A ) and ( G, B ) be two soft sets over a common universe U then  

‘( F, A ) AND ( G, B )’ denoted by ( F, A ) ^ ( G, B ) is defined by  

 

( F, A ) ^ ( G, B ) = ( H,  BA  ), 

 

where H( α, β) = F(α) ∩ G(β),     .BAβα,    

 

Definition 2.4 [ 10 ] If ( F, A ) and ( G, B ) be two soft sets over a common universe U then  

‘( F, A ) OR ( G, B )’ denoted by ( F, A )   ( G, B ) is defined by 
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( F, A )   ( G, B ) = ( O, A  B), 

 

where, O(α, β ) = F(α)   G(β),     .BAβα,    

 

The non-standard analysis was introduced by Abraham Robinson in 1960. The non-standard 

analysis is a formalization of analysis and a branch of mathematical logic that rigorously 

defines the infinitesimals. Informally, an infinitesimal is an infinitely small number. Formally, 

x is said to be infinitesimal if and only if for all positive integers n one has  x  < 
1

n . Let ε > 0 

be a such infinitesimal number. Let’s consider the non-standard finite numbers +1 = 1+ ε, 

where ‘1’ is its standard part and ‘ε’  its non-standard part, and 0 = 0 – ε,  where ‘0’ is its 

standard part and ‘ε’  its non-standard part. 

 

Definition 2.5 [ 17 ] A neutrosophic set A on the universe of discourse X is defined as 

 

A = {< x, TA(x), IA(x), FA(x) > x  X}, 

 

where TA, IA, FA: X → ] 0 , +1 [  and 

AA F+I+TA 0 +3 .  

 

Here TA, IA, FA are respectively the true membership, indeterministic membership and false 

membership function of an object Xx . 

 

From philosophical point of view, the neutrosophic set takes the value from real standard or 

non-standard subsets of ] 0 , +1 [. But in real life applications in scientific and engineering 

problems it is difficult to use neutrosophic set with value from real standard or non-standard 

subset of ] 0 , +1 [. Hence we consider the neutrosophic set which takes the value from the 

subset of [0, 1]. 

 

Definition 2.6 [ 15 ] Let U be an initial universe set and E be a set of parameters which is of 

neutrosophic in nature. Consider A  E. Let P( U ) denotes the set of all neutrosophic sets of 

U. 

 

The collection ( F, A ) is termed to be the neutrosophic soft set ( N S S ) over U, where F is a 

mapping given by F : A → P ( U ). 

 

For an illustration we consider the following example. 

 

Example 2.7  Let U be the set of objects under consideration and E is the set of parameters. 

Each parameter is a neutrosophic word or sentence involving neutrosophic words. Consider 

E= {beautiful, large, very large, small, average large, costly, cheap, brick build }. In this case 

to define a neutrosophic soft set means to point out beautiful objects, large objects, very large 

objects etc. and so on. Suppose that there are five objects in the universe U given by U = { o1, 

o2, o3, o4, o5 } and the set of parameters A = { e1, e2, e3, e4 } where e1 stands for the parameter 

‘large’, e2 stands for the parameter ‘very large’, e3 stands for the parameter ‘small’ and e4 
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stands for the parameter ‘average’. Suppose that the NSS ( F, A ) describes the length of the 

objects under consideration for which, 

 

F(large) = {< o1, 0.6, 0.4, 0.7 >, < o2, 0.5, 0.6, 0.8 >, < o3, 0.8, 0.7, 0.7 >, < o4, 0.6, 0.4, 0.8 >,   

                              < o5, 0.8, 0.6, 0.7 > }, 

 

F(very large) = {< o1, 0.5, 0.3, 0.6 >, < o2, 0.8, 0,5, 0.7 >, < o3, 0.9, 0.7, 0.8 >, < o4, 0.7, 0.6,   

                                        0.7 >, < o5, 0.6, 0.7, 0.9 > }, 

 

F(small) = {< o1, 0.3, 0.8, 0.9 >, < o2, 0.4, 0.6, 0.8 >, < o3, 0.6, 0.8, 0.4 >, < o4, 0.7, 0.7, 0.6 >,   

                                           < o5, 0.6, 0.7, 0.9 > }, 

 

F(average) = {< o1, 0.8, 0.3, 0.4 >, < o2, 0.9, 0.6, 0.8 >, < o3,0.8, 0.7, 0.8 >, < o4, 0.6, 0.7, 0.>,    

                                           < o5, 0.7, 0.6, 0.8 > }. 

 

So, F(large) means large objects, F(small) means the objects having small length etc. For the 

purpose of storing a neutrosophic soft set in a computer, we could represent it in the form of a 

table as shown below ( corresponding to the neutrosophic soft set in the above example ). In 

this table, the entries cij correspond to the object oi and the parameter ej, where cij = ( true-

membership value of oi, indeterminacy-membership value of oi, falsity-membership value of 

oi ) in F(ej ). The tabular representation of the neutrosophic soft set ( F, A ) is as follow: 
 

 

Table 1. The Tabular form of the NSS ( F, A ). 

 

U e1 = large  e2 = very large  e3 = small  e4 = average 

o1 ( 0.6, 0.4, 0.7 ) ( 0.5, 0.3, 0.6 ) ( 0.3, 0.8, 0.9 ) ( 0.8, 0.3, 0.4 ) 

o2 ( 0.5, 0.6, 0.8 ) ( 0.8, 0.5, 0.7 ) ( 0.4, 0.6, 0.8 ) ( 0.9, 0.6, 0.8 ) 

o3 ( 0.8, 0.7, 0.7 ) ( 0.9, 0.7, 0.8 ) ( 0.6, 0.8, 0.4 ) ( 0.8, 0.7, 0.8 ) 

o4 ( 0.6, 0.4, 0.8 ) ( 0.7, 0.6, 0.7 ) ( 0.7, 0.7, 0.6 ) ( 0.6, 0.7, 0.5 ) 

o5 ( 0.8, 0.6, 0.7 ) ( 0.6, 0.7, 0.9 ) ( 0.6, 0.7, 0.9 ) ( 0.7, 0.6, 0.8 ) 

 

 

Definition 2.8 [ 15 ] Let ( F, A ) and ( G, B ) be two neutrosophic soft sets over the common 

universe U. ( F, A ) is said to be neutrosophic soft subset of ( G, B ) if A  B and 

TF(e)(x) ≤  TG(e)(x),  IF(e)(x)  ≤  IG(e)(x), FF(e)(x)   FG(e)(x),  .Ae   

 

We denote it by ( F, A )    ( G, B ). ( F, A ) is said to be neutrosophic soft super set of 

( G, B ) if ( G, B )is a neutrosophic soft subset of ( F, A ).  

 

Definition 2.9 [ 15 ] AND operation on two neutrosophic soft sets. 

 

Let ( H, A ) and ( G, B ) be two NSSs over the same universe U. Then the ‘AND’ operation 

on them is denoted by ‘( H, A ) ^ ( G, B )’ and is defined by ( H, A ) ^ ( G, B ) = ( K, BA ), 

where the truth-membership value, indeterminacy-membership value and falsity-membership 

value  of ( K, BA  ) are as follows: 
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TK(α, β) (m) = min(TH(α) (m), TG(β) (m)), 

 

2
   ,

(m)I+(m)I
=(m)I

G(β(H(α(

β)K(α , and 

 

FK(α, β) (m) = max(FH(α) (m), FG( β)  (m)),   α A,  β  B. 

 

The decision maker may not have equal choice for all the parameters. He/she may impose 

some conditions to choose the parameters for which the decision will be taken. The conditions 

may be imposed in terms of weights ( positive real numbers ≤ 1 ). This imposition motivates 

us to define weighted neutrosophic soft sets. 

 
 

3 Weighted Neutrosophic Soft Sets  
 

Definition 3.1 [ 18 ] A neutrosophic soft set is termed to be a weighted neutrosophic soft sets 

(WNSS) if the weights ( wi, a real positive number ≤ 1 ) be imposed on the parameters of it. 

The entries of the weighted neutrosophic soft set dij = iji cw   , where cij is the ij-th entry in 

the table of neutrosophic soft set. 
 
 

For an illustration we consider the following example. 
 
Example 3.2 Consider the example 2.7 . Suppose that the decision maker has no equal 

preference for each of the parameters. He may impose the weights of preference for the 

parameters ‘e1= large’ as ‘w1 = 0.8’, ‘e2= very large’ as ‘w2 = 0.4’, ‘e3= small’ as ‘w3 = 0.5’, 

‘e4= average large’ as ‘w4 = 0.6’. Then the weighed neutrosophic soft set obtained from  

( F, A ) denoted as  ( H, A
w

 ) and its tabular representation is as below: 

 

 
Table 2: Tabular form of the weighted NSS ( H, A

w
 ). 

 

U e1,w1 = 0.8 e2, w2 = 0.4 e3, w3 = 0.5 e4,w4 = 0.6 

o1 (0.48, 0.32, 0.56) (0.20, 0.12, 0.24 ) (0.15, 0.40, 0.45) (0.48, 0.18, 0.24) 

o2 (0.40, 0.48, 0.64) (0.32, 0.20, 0.28) 
 

(0.20, 0.30, 0.40) (0.54, 0.36, 0.48) 

o3 (0.64, 0.56, 0.56) (0.36, 0.28,0.32) (0.30,0.40,0.20) (0.48,0.42,0.48) 

o4 (0.48, 0.32, 0.64) (0.28, 0.24,0.28) (0.35,0.35,0.30) (0.36,0.42,0.30) 

o5 (0.64, 0.48, 0.56) (0.24, 0.28,0.36) (0.30,0.35,0.45) (0.42,0.36,0.48) 
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Definition 3.3 [ 18 ] AND operation on two weighted neutrosophic soft sets. 
 

Let ( H, A
w1

 ) and ( G, B
w2

 ) be two WNSSs over the same universe U. Then the ‘AND’ 

operation on them is denoted by ‘( H, A
w1

 ) ^ ( G, B
w2

 )’ and is defined by ( H, A
w1

 ) ^ ( G, 

B
w2

 ) = ( K, A
w1

   B
w2

 ), where the truth-membership value, indeterminacy-membership 

value and falsity-membership value of ( K, A
w1

   B
w2

 ) are as follows: 

 

TK(α
w

1, β
w

2) (m) = min(w1, w2).min(TH(α) (m), TG(β) (m)),  α  A,  β B, 

 

I
K (αw 1 , β

w2
)

(m)=  
I

H (α
w

1
)
(m)+I

G (β
w

2
)
(m)

2
, α  A,  β B, 

 
 

FK(α
w

1, β
w

2) (m) = max(w1, w2).max(FH(α) (m), FG(β) (m)),  α  A,  β B. 
 

Definition 3.4 Comparison Matrix. It is a matrix whose rows are labelled by n object o1, o2, 

...., on and the columns are labelled by m weighted parameters e1, e2, ....., em. The entries cij 

of the comparison matrix are evaluated by cij = a + b - c, where ‘a’ is the positive integer 

calculated as ‘how many times Toi (ej) exceeds or equal to Tok (ej)’, for i ≠  k,   i = 1, 2, ...., 

n, ‘b’ is the positive integer calculated as ‘how many times Ioi (ej) exceeds or equal to Iok 

(ej)’,  for i ≠ k and   i = 1, 2, ...., n and ‘c’ is the integer ‘how many times Foi (ej) exceeds or 

equal to Fok (ej)’, for i ≠ k and   i = 1, 2, ...., n. 

 
Definition 3.5  Score of an Object. The score of an object oi is Si and is calculated as  
 
                  

  Si = 
j

ijc  ,   i = 1, 2, ...., n. 

 
 

Here we consider a problem to choose an object from a set of given objects with respect to a 

set of choice parameters P. We follow an algorithm to identify an object based on 

multiobserver ( considered here three observers with their own choices ) input data 

characterized by colours ( F, A
w
 ), size ( G, B

w
 ) and surface textures ( H, C

w
 ) features. The 

algorithm to choose an appropriate object depending upon the choice parameters is given 

below. 

 

3.6  Algorithm  
 
1. input the neutrosophic soft sets ( H, A ), ( G, B ) and ( H, C ) ( for three observers )  

2. input the weights (wi) for the parameters A, B and C  

3. compute weighted neutrosophic soft sets (H, A
w

), (G, B
w

) and (H, C
w

) corresponding to 
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the NSSs ( H, A ), ( G, B ) and ( H, C ) respectively 
4. input the parameter set P as preferred by the decision maker  

5. compute the corresponding NSS ( S, P) from the WNSSs (H, A
w

), (G, B
w

) and (H, C
w

) 

and place in tabular form  
 

6. compute the comparison matrix of the NSS ( S, P )  

7. compute the score Si of oi,   i = 1, 2, ...., n 

8. the decision is ok if Sk =
ii

Saxm  

9. if k has more than one values then any one of oi may be chosen.  
 
Based on the above algorithm we consider the following multi-criteria decision making 

problem. 
 
 

4 Application in a Decision Making Problem  
 

Let U = { o1, o2, o3, o4, o5  } be the set of objects characterized by different lengths, colours 

and surface texture. Consider the parameter set, E = { blackish, dark brown, yellowish, 

reddish, large, small, very small, average, rough, very large, coarse, moderate, fine, smooth, 

extra fine }. Also consider A = { very large, small, average large }, B = { reddish, yellowish, 

blackish } and C = { smooth, rough, moderate } be three subsets of the set of parameters E. 

Let the NSSs ( F, A ), ( G, B ) and ( H, C ) describe the objects ‘having different lenghts’, 

‘objects having different colours’ and ‘surface structure features of the objects’ respectively. 

These NSSs as computed by the three observers Mr. X, Mr. Y and Mr. Z respectively, are 

given below in their respective tabular forms in table 3, 4 and 5. Now suppose that the 

decision maker imposes the weights on the parameters A, B and C and the repective weighted 

neutrosophic soft sets are ( F, A
w

 ), ( G, B
w

 ) and ( H, C
w

 ). The WNSS ( F, A
w

 ) describes 

the ‘objects having different lengths’, the WNSS ( G, B
w

 ) describes the ‘different colours of 

the objects’ and the WNSS ( H, C
w

 ) describes the ‘surface structure feature of the objects’. 

We consider the problem to identify an object from U based on the multiobservers 

neutrosophic data, specified by different observers ( we consider here three observers ), in 

terms of WNSSs ( F, A
w

 ), ( G, B
w

 ) and ( H, C
w

 ) as described above. 
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Table 3: Tabular form of the WNSS ( F, A
w
 ). 

 

U a1 = very large a2 = small a3 = average large 

o1 ( 0.5, 0.6, 0.8 ) ( 0.7, 0.3, 0.5 ) ( 0.6, 0.7, 0.3 ) 

o2 
( 0.6, 0.8, 0.7 ) ( 0.3, 0.6, 0.4 ) ( 0.8, 0.3, 0.5 ) 

o3 
( 0.3, 0.5, 0.8 ) ( 0.8, 0.3, 0.2 ) ( 0.3, 0.2, 0.6 ) 

o4 
( 0.8, 0.3, 0.5 ) ( 0.3, 0.5, 0.3 ) ( 0.6, 0.7, 0.3 ) 

o5 
( 0.7, 0.3, 0.6 ) ( 0.4, 0.6, 0.8 ) ( 0.8, 0.3, 0.8 ) 

weight w1 = 0.5 w2 = 0.6 w3 = 0.3 

o1 ( 0.25, 0.30, 0.40 ) ( 0.42, 0.18, 0.30 ) ( 0.18, 0.21, 0.09 ) 

o2 
( 0.30, 0.40, 0.35 ) ( 0.18, 0.36, 0.24 ) ( 0.24, 0.09, 0.15 ) 

o3 
( 0.15, 0.25, 0.40 ) ( 0.48, 0.18, 0.12 ) ( 0.09, 0.06, 0.18 ) 

o4 
( 0.40, 0.15, 0.25 ) ( 0.18, 0.30, 0.18 ) ( 0.18, 0.21, 0.09 ) 

o5 
( 0.35, 0.15, 0.30 ) ( 0.24, 0.36, 0.48 ) ( 0.24, 0.09, 0.24 ) 

 

 

 

Table 4: Tabular form of the WNSS ( G, B
w
 ). 

 

U b1 = reddish b2 = yellowish b3 = blackish 

o1 ( 0.5, 0.7, 0.3 ) ( 0.7, 0.8, 0.6 ) ( 0.8, 0.3, 0.4 ) 

o2 
 0.6, 0.7, 0.3 ) ( 0.8, 0.5, 0.7 ) ( 0.6, 0.7, 0.3 ) 

o3 
( 0.8, 0.5, 0.6 ) ( 0.7, 0.3, 0.6 ) ( 0.8, 0.3, 0.5 ) 

o4 
( 0.7, 0.2, 0.6 ) ( 0.8, 0.6, 0.5 ) ( 0.6, 0.7, 0.3 ) 

o5 
( 0.8, 0.4, 0.7 ) ( 0.6, 0.5, 0.8 ) ( 0.7, 0.4, 0.2 ) 

weight w1 = 0.6 w2 = 0.4 w3 = 0.7 

o1 ( 0.30, 0.42, 0.18 ) ( 0.28, 0.32, 0.24 ) ( 0.56, 0.21, 0.28 ) 

o2 
( 0.36, 0.42, 0.18 ) ( 0.32, 0.20, 0.28 ) ( 0.42, 0.49, 0.21 ) 

o3 
( 0.48, 0.30, 0.36 ) ( 0.28, 0.12, 0.24 ) ( 0.56, 0.21, 0.35 ) 

o4 
( 0.42, 0.12, 0.36 ) ( 0.32, 0.24, 0.20 ) ( 0.42, 0.49, 0.21 ) 

o5 
( 0.48, 0.24, 0.42 ) ( 0.24, 0.20, 0.32 ) ( 0.49, 0.28, 0.14 ) 
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Table 5: Tabular form of the WNSS ( H, C
w
 ). 

 
 

 
U 

c1 = smooth c2 = rough c3 = moderate 

o1 ( 0.8, 0.5, 0.6 ) ( 0.8, 0.7, 0.3 ) ( 0.8, 0.6, 0.4 ) 

o2 
( 0.7, 0.6, 0.7 ) ( 0.7, 0.5, 0.6 ) ( 0.7, 0.5, 0.6 ) 

o3 
( 0.8, 0.7, 0.6 ) ( 0.6, 0.3, 0.7 ) ( 0.8, 0.2, 0.4 ) 

o4 
( 0.7, 0.5, 0.7 ) ( 0.8, 0.7, 0.4 ) ( 0.7, 0.8, 0.7 ) 

o5 
( 0.8, 0.7, 0.4 ) ( 0.7, 0.4, 0.8 ) ( 0.8, 0.6, 0.5 ) 

weight w1 = 0.6 w2 = 0.8 w3 = 0.5 

o1 ( 0.48, 0.30, 0.36 ) ( 0.64, 0.56, 0.24 ) ( 0.40, 0.30, 0.20 ) 

o2 
( 0.42, 0.36, 0.42 ) ( 0.56, 0.40, 0.48 ) ( 0.35, 0.25, 0.30 ) 

o3 
( 0.48, 0.42, 0.36 ) ( 0.48, 0.24, 0.56 ) ( 0.40, 0.10, 0.20 ) 

o4 
( 0.42, 0.30, 0.42 ) ( 0.64, 0.56, 0.32 ) ( 0.35, 0.40, 0.35 ) 

o5 
( 0.48, 0.42, 0.24 ) ( 0.56, 0.32, 0.64 ) ( 0.40, 0.30, 0.25 ) 

 
 

 
In the above two WNSSs ( F, A

w
 ) and ( G, B

w
 ) given in their respective tabular form in 3 

and 4, if the evaluator wants to perform the operation ‘( F, A
w
 ) AND ( G, B

w
 )’ then we will 

have  33  = 9 parameters of the form eij, where eij = ai ^ bj, for i= 1, 2, 3 and j = 1, 2, 3 and 

eij EE . On the basis of the choice parameters of the evaluator if we consider the WNSS 

with parameters R = { e11, e21, e22, e31, e32 } we have the WNSS ( K, R
w
 ) obtained from the 

WNSSs ( F, A
w
 ) and ( G, B

w
 ). So e11 = ( very large, reddish), e22 = (small, yellowish) etc. 

Computing ‘( F, A
w
 ) AND ( G, B

w
 )’ for the choice parameters R, we have the tabular 

representation of the WNSS ( K, R
w
 ) as below: 

 

 
Table 6: Tabular form of the WNSS ( K, R

w
 ). 

 
U

 
e11 e21 

 

e22 

 

e31 

 

e32 

o1 ( 0.25, 0.36, 0.48) (0.30, 0.30, 0.30) (0.28, 0.25, 0.36) (0.15, 0.615, 0.18) (0.18, 0.265, 0.24) 

o2 
( 0.30, 0.41, 0.56) (0.18, 0.39, 0.24) (0.12, 0.28, 0.42) (0.18, 0.255, 0.30) (0.24, 0.145, 0.28) 

o3 
( 0.15, 0.275, 0.48) (0.48, 0.24, 0.36) (0.28, 0.15, 0.36) (0.09, 0.18, 0.36) (0.09, 0.09, 0.24) 

o4 
( 0.35, 0.135, 0.36) (0.18, 0.21, 0.36) (0.12, 0.27, 0.30) (0.18, 0.165, 0.36) (0.18, 0.175, 0.20) 

o5 
( 0.35, 0.195, 0.42) (0.24, 0.30, 0.48) (0.16, 0.28, 0.48) (0.24, 0.285, 0.48) (0.18, 0.145, 0.32) 
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Computing the WNSS ( S, P ) from the WNSSs ( K, R
w

 ) and ( H, C
w

 ) for the specified 

parameters P = { e11 ^ c1, e21 ^ c2, e21 ^ c3, e31 ^ c1 }, where the parameter e11 ^ c1 means  

( very large, reddish, smooth ), e21 ^ c2 means ( small, reddish, rough ) etc. The tabular form 

of the WNSS ( S, P ) is as below: 

 
Table 7: Tabular form of the WNSS ( S, P ). 

 

U
 

e11 ^ c1
 

e21 ^c2
 

e21 ^c3
 

e31 ^c1 

o
1 ( 0.25, 0.4375, 0.48 ) ( 0.30, 0.58, 0.40 ) ( 0.25, 0.425, 0.30 ) ( 0.15, 0.45, 0.36 ) 

o2 ( 0.30, 0.6675, 0.42 ) ( 0.18, 0.488, 0.48) ( 0.15, 0.388, 0.36) ( 0.18, 0.455, 0.42 ) 

o3 ( 0.15, 0.51, 0.48 ) ( 0.36, 0.295, 0.56 ) ( 0.40, 0.20, 0.36 ) ( 0.09, 0.4975, 0.36) 

o4 ( 0.35, 0.3375, 0.42 ) ( 0.18, 0.542, 0.48) ( 0.15, 0.488, 0.42) ( 0.18, 0.388, 0.42) 

o5 ( 0.35, 0.4725, 0.42 ) ( 0.24, 0.385, 0.64 ) ( 0.20, 0.425, 0.48 ) ( 0.24, 0.4725, 0.48) 

 

 

Then the tabular form of the comparison matrix for the WNSS ( S, P ) is as below: 
 
 

Table 8: Tabular form of the comparison matrix of the WNSS ( S, Q ). 
 
 

 
U

 e11^c1 

 

e21^c2 

 

e21^c3 

 

e31^c1 

o
1 

-2 7 6 1 

o2 4 1 0 2 

o3 -1 1 2 3 

o4 2 2 2 -2 

o5 4 -1 1 3 

 
Computing the score for each of the objects we have the respective scores as below: 

 

U Score 

o1 
12 

o2 7 

o3 5 

o4 4 

o5 7 
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Clearly, the maximum score is 12 and scored by the object o1. The selection will be in favour 

of the object o1. The second choice will be in favour of either o2 or o5 as they have the same 

score 7. Next the decision maker may choose the objects o3 and o4 as the score 5 and 4 are 

scored by them respectively. 
 
 

5 Conclusion  

 

Since its initiation the soft set theory is being used in variety of many fields involving 

imprecise and uncertain data. In this paper we present an application of weighted 

neutrosophic soft sets for selection of an object. Here the selection is based on multicriteria 

input data of neutrosophic in nature. We also introduce an algorithm to select an appropriate 

object from a set of objects based on some specified parameters. 
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Abstract − In this short paper, the authors establish some inequalities involving the q and (q, k)
deformed Gamma functions by employing some basic analytical techniques.
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1 Introduction

Let Γ(x) be the classical Gamma function and ψ(x) be the classical Psi or Digamma function defined
for x ∈ R+ as:

Γ(x) =
∫ ∞

0

tx−1e−t dt,

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

.

It is common knowledge in literature that the Gamma function satisfies the following properties.

Γ(n + 1) = n!, n ∈ Z+,

Γ(x + 1) = xΓ(x), x ∈ R+.

Also, let Γq(x) be the q-deformed Gamma function (also known as the q-Gamma function or the q-
analogue of the Gamma function) and ψq(x) be the q-deformed Psi function defined for q ∈ (0, 1) and
x ∈ R+ as (See [6], [7] and the references therein):

Γq(x) = (1− q)1−x
∞∏

n=1

1− qn

1− qx+n
and ψq(x) =

d

dx
ln Γq(x)

**Edited by Erhan Set and Naim Cagman (Editor-in-Chief).
*Corresponding Author.
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with Γq(x) satisfying the properties:

Γq(n + 1) = [n]q! n ∈ Z+, (1)

Γq(x + 1) = [x]qΓq(x) x ∈ R+. (2)

where [x]q = 1−qx

1−q and [x + y]q = [x]q + qx[y]q for x, y ∈ R+. See [2].

Similarly, let Γ(q,k)(x) be the (q, k)-deformed Gamma function and ψ(q,k)(x) be the (q, k)-deformed
Psi function defined for q ∈ (0, 1), k > 0 and x ∈ R+ as (See [2], [8], [10] and the references therein):

Γ(q,k)(x) =
(1− qk)

x
k−1

q,k

(1− q)
x
k−1

=
(1− qk)∞q,k

(1− qx)∞q,k.(1− q)
x
k−1

and ψ(q,k)(x) =
d

dx
ln Γ(q,k)(x)

where (x + y)n
q,k =

∏n−1
j=0 (x + qjky) with Γ(q,k)(x) satisfying the following property:

Γ(q,k)(x + k) = [x]qΓ(q,k)(x), x ∈ R+. (3)

The q-addition (otherwise known as the q-analogue or q-deformation of the ordinary addition) can be
defined in the following two ways:

The Nalli-Ward-Alsalam q-addition, ⊕q is defined (See [11], [1], [3]) as:

(a⊕q b)n :=
n∑

k=1

(
n

k

)

q

akbn−k for a, b ∈ R, n ∈ N. (4)

where
(
n
k

)
q

:= [n]q !
[k]q ![n−k]q! is the q-binomial coefficient.

The Jackson-Hahn-Cigler q-addition, ¢q is defined (See [4], [5], [3]) as:

(a ¢q b)n :=
n∑

k=1

(
n

k

)

q

q
k(k−1)

2 an−kbk for a, b ∈ R, n ∈ N. (5)

Notice that both ⊕q and ¢q reduce to the ordinary addition, + when q = 1.

In a recent paper [9], the inequalities:

Γ(m + n + 1)
Γ(m + 1)Γ(n + 1)

<
(m + n)m+n

mmnn
, m, n ∈ Z+ (6)

Γ(x + y + 1)
Γ(x + 1)Γ(y + 1)

≤ (x + y)x+y

xxyy
, x, y ∈ R+ (7)

which occur in the study of probability theory were presented together with some other results. In this
paper, the objective is to establish related inequalities for the q and (q, k) deformed Gamma functions.
The results are presented in the following section.

2 Main Results

Theorem 2.1. Let q ∈ (0, 1) and m,n ∈ Z+. Then, the inequality:

Γq(m + n + 1)
Γq(m + 1)Γq(n + 1)

≤ (m⊕q n)m+n

mmnn
(8)

holds true.
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Proof. By equation (4) we obtain;

(m⊕q n)m+n ≥
(

m + n

m

)

q

mmnn

since the binomial expansion of (m ⊕q n)m+n includes the term
(
m+n

m

)
q
mmnn as well as some other

terms. That implies,
[m + n]q!
[m]q![n]q!

≤ (m⊕q n)m+n

mmnn
.

Now using relation (1) yields,

Γq(m + n + 1)
Γq(m + 1)Γq(n + 1)

≤ (m⊕q n)m+n

mmnn

completing the proof.

Theorem 2.2. Let q ∈ (0, 1) and m,n ∈ Z+. Then, the inequality:

Γq(m + n + 1)
Γq(m + 1)Γq(n + 1)

≤ (m ¢q n)m+nq
n(1−n)

2

mmnn
(9)

holds true.

Proof. Similarly, by equation (5) we obtain;

(m ¢q n)m+n ≥
(

m + n

n

)

q

q
n(n−1)

2 mmnn.

Implying,
[m + n]q!
[m]q![n]q!

≤ (m ¢q n)m+nq
n(1−n)

2

mmnn
.

By relation (1), we obtain;

Γq(m + n + 1)
Γq(m + 1)Γq(n + 1)

≤ (m ¢q n)m+nq
n(1−n)

2

mmnn

concluding the proof.

Lemma 2.3. If q ∈ (0, 1) and x ∈ (0, 1) then,

ln(1− qx)− ln(1− q) < 0. (10)

Proof. We have qx > q for all q ∈ (0, 1) and x ∈ (0, 1). That implies, 1 − qx < 1 − q. Taking the
logarithm of both sides concludes the proof.

Theorem 2.4. Let q ∈ (0, 1) fixed, x ∈ (0, 1) and y ∈ (0, 1) be such that ψq(x + 1) > 0. Then, the
inequality:

Γq(x + y + 1)
Γq(x + 1)Γq(y + 1)

≥ [x + y][x+y]q
q

[x][x]q
q [y]qeqx[y]qΓq(y)

(11)

holds true.
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Proof. Let Q and T be defined for q ∈ (0, 1) fixed, x ∈ (0, 1) and y ∈ (0, 1) by,

Q(x) =
e[x]qΓq(x + 1)

[x][x]q
q

and T (x, y) =
Q(x + y)
Q(x)Q(y)

.

Let µ(x) = ln Q(x). That is,

µ(x) = [x]q + ln Γq(x + 1)− [x]q ln[x]q. Then,

µ(x)′ = ψq(x + 1) + (ln q)
qx

1− q
ln[x]q

= ψq(x + 1) + (ln q)
qx

1− q
(ln(1− qx)− ln(1− q)) > 0

This is as a result of Lemma 2.3 and the fact that ln q < 0 for q ∈ (0, 1). Hence Q(x) is increasing.

Next, we have,

T (x, y) =
Q(x + y)
Q(x)Q(y)

=
Q(x + y)

Q(x)
.

1
Q(y)

≥ 1
Q(y)

=
[y][y]q

q

e[y]q [y]qΓq(y)

since Q(x) is increasing and Γq(y + 1) = [y]qΓ(y). That implies,

T (x, y) =
[x][x]q

q [y][y]q
q

[x + y][x+y]q
q

.
e[x+y]q

e[x]q+[y]q
.

Γq(x + y + 1)
Γq(x + 1)Γq(y + 1)

=
[x][x]q

q [y][y]q
q

[x + y][x+y]q
q

.
e[x]q+qx[y]q

e[x]q+[y]q
.

Γq(x + y + 1)
Γq(x + 1)Γq(y + 1)

≥ [y][y]q
q

e[y]q [y]qΓq(y)

yielding the results as in (11).

Remark 2.5. Let Bq(x, y) = Γq(x)Γq(y)
Γq(x+y) be the q-deformation of the classical Beta function. Then,

inequality (11) can be rearranged as follows.

Bq(x, y) ≤ [x][x]q−1
q eqx[y]qΓq(y)

[x + y][x+y]q−1
q

.

Theorem 2.6. Let q ∈ (0, 1) fixed, k > 0 and x ∈ (0, 1) be such that ψ(q,k)(x + k) > 0. Then, the
inequality:

Γ(q,k)(x + y + k)
Γ(q,k)(x + k)Γ(q,k)(y + k)

≥ [x + y][x+y]q
q

[x][x]q
q [y]qeqx[y]qΓ(q,k)(y)

(12)

is valid.

Proof. Let G and H be defined for q ∈ (0, 1) fixed, k > 0, x ∈ (0, 1) and y ∈ (0, 1) by,

G(x) =
e[x]qΓ(q,k)(x + k)

[x][x]q
q

and H(x, y) =
G(x + y)
G(x)G(y)

.

In a similar fashion, let λ(x) = ln G(x). That is,

λ(x) = [x]q + lnΓ(q,k)(x + k)− [x]q ln[x]q. Then,

λ(x)′ = ψ(q,k)(x + k) + (ln q)
qx

1− q
(ln(1− qx)− ln(1− q)) > 0.
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Hence G(x) is increasing.

Next, observe that,

H(x, y) =
G(x + y)
G(x)G(y)

=
G(x + y)

G(x)
.

1
G(y)

≥ 1
G(y)

=
[y][y]q

q

e[y]q [y]qΓ(q,k)(y)

since G(x) is increasing and Γ(q,k)(y + k) = [y]qΓ(q,k)(y). That implies,

H(x, y) =
[x][x]q

q [y][y]q
q

[x + y][x+y]q
q

.
e[x]q+qx[y]q

e[x]q+[y]q
.

Γ(q,k)(x + y + k)
Γ(q,k)(x + k)Γ(q,k)(y + k)

≥ [y][y]q
q

e[y]q [y]qΓ(q,k)(y)

establishing the results as in (12).

Remark 2.7. Let B(q,k)(x, y) = Γ(q,k)(x)Γ(q,k)(y)

Γ(q,k)(x+y) be the (q, k)-deformation of the classical Beta func-
tion. Then, inequality (12) can be written as follows.

B(q,k)(x, y) ≤ [x][x]q−1
q eqx[y]qΓ(q,k)(y)

[x + y][x+y]q−1
q

.

3 Concluding Remarks

Some new inequalities related to (6) and (7) have been established for the q and (q, k) deformed
Gamma functions. In particular, if we allow q → 1 in either inequality (8) or (9), then, inequality
(6) is restored as a special case. Also, by allowing q → 1 in (12), then we obtain the k-analogue of
inequality (11).
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HOMOMORPHISM IN ROUGH LATTICE
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Abstract − In this paper, we introduce the concept of set-valued homomorphism of a lattice which is
the generalization of ordinary lattice homomorphism. We construct generalized rough lower and upper
approximations operators, by means of a set-valued mapping, which are also the generalized form of
lower and upper approximations of a lattice, and the corresponding properties are investigated and
finally we cite an example to show usefulness of the paper.

Keywords − Rough Set, Lower and Upper approximations, Lattice, Equivalence Relation, Homo-
morphism.

1 Introduction

In this section, we give some basic notions and results about generalized rough sets and lattices. The
concept of rough sets was introduced by Pawlak [13], a mathematical tool for dealing with uncertainty
or vagueness ([14],[20]). In rough set theory, rough set can be described by a pair of ordinary sets called
lower and upper approximations. The theory of rough set is an extension of set theory. The study of
the algebraic structure of the mathematical theory proves itself effective in making the applications
more efficient. Such researches may not only provide more insight into rough set theory, but also
hopefully developed methods for applications. Rough set has been studied from algebraic view points
by many researchers. Pomykala [15] showed that the set of rough set forms a stone algebra. Iwinski
[4] suggested a lattice theoretic approach to the rough set. Liu and Zhu [8] presented the structures of
the approximations based on arbitrary binary relation. The generalized rough sets over fuzzy lattices
have been explored by Liu [7]. Algebraic structure of T-rough set and corresponding lattice theory
are explored in ([5], [2]) respectively. In mathematics, a lattice is a partially ordered set in which any
two elements have a unique supremum and infimum. Lattice can also be characterized as algebraic
structures satisfying certain axiomatic identities. Since the two definitions are equivalent, lattice theory
draws on both order theory and universal algebra. In this paper, we consider a lattice as a universal
set and study the rough sets in a lattice.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editors-in-Chief).
*Corresponding Author.
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2 Preliminaries

Definition 2.1. Let U and V be two non-empty universes. Let f be a set-valued mapping given
by f : U −→ P (V ). Then the triple (U, V, f) is referred to as a generalized approximation space or
generalized rough set. Any set-valued function from U to P (V ) defines a binary relation from U to V
by setting Rf = {(x, y) : y ∈ f(x)}. Obviously, if R is an arbitrary relation from U to V , then it can
be defined a set-valued mapping fR : U −→ P (V ) by fR(x) = {y ∈ V : (x, y) ∈ R} where x ∈ U . For
any set A ⊆ V , the lower and upper rough approximations A ↓ f and A ↑ f , are defined by

A ↓f = {x ∈ U : f(x) ⊆ X} (1)
and A ↑f = {x ∈ U : f(x) ∩A 6= ∅}. (2)

The pair (A ↓f , A ↑f ) is referred to as a generalized rough set. If a subset A ⊆ V satisfies that
A ↓f= A ↑f , then A is called a definable set of (U, V, f). We denote all the definable sets of (U, V, f)
by Def(f).

Definition 2.2. Let L be a lattice and ∅ 6= A ⊆ L. Then A is called a sublattice if a, b ∈ A implies
a ∨ b ∈ A and a ∧ b ∈ A.

Definition 2.3. Let L and K be two complete lattices. A mapping f : L −→ P (K) is called a
complete set-valued homomorphism if∨
i∈I

f(ai) ⊆ f(
∨
i∈I

ai)
∧
i∈I

f(ai) ⊆ f(
∧
i∈I

ai).

A set-valued mapping f is called a strong complete set-valued homomorphism
if

∨
i∈I

f(ai) = f(
∨
i∈I

ai) and
∧
i∈I

f(ai) = f(
∧
i∈I

ai).

Definition 2.4. A non-empty sub-set A of L is called a sublattice of L if a ∨ b ∈ A, a ∧ b ∈ A for all
a, b ∈ A

Definition 2.5. A non-empty sub-set A of L is called a convex sublattice of L if [a∨ b, a∧ b] ⊆ A for
any a, b ∈ A.

Definition 2.6. An equivalence relation E on L is a reflexive, symmetric, and transitive binary
relation on L. If E is an equivalence relation on L then the equivalence class of x ∈ L is the set
{y ∈ L : (x, y) ∈ E}. We write it as [x]E .

Let us illustrate this definition using the following example.
Example (1) Let L = {a, b, c, d} such that c ∨ b = b, c ∨ d = d, b ∨ d = a and K = {u, v, x, y, z} such
that z∨x = x, y∨z = y, x∨y = v, u∨v = u. Consider the set-valued mapping f : L −→ P (K) defined
by f(a) = {u, v}, f(b) = {v, x}, f(c) = y, f(d) = {y, z}. Then f is set valued homomorphism but not
a strong set valued homomorphism for f(b) ∨ f(c) = v 6= f(b ∨ c) = f(a) = {u, v}.
(2) Let g be a lattice homomorphism from L to K. Then the set valued mapping f : L −→ P (K)
defined by f(a) = {g(a) : a ∈ L} is a strong set valued homomorphism. If L and K are complete, then
f is a strong complete set valued homomorphism.

3 Rough Lattice and Set-valued Homomorphism

Rough set was originally proposed by Pawlak [13] with the consideration of an equivalence relation.
An equivalence relation is sometimes difficult to be obtained in real-world problems due to vagueness
and incompleteness of human knowledge. From this point of view, in this section, we introduce the
concept of set-valued isomorphism of lattices. Let L and K be two lattices. A mapping f is a set-
valued mapping from L to P (K). Where P (K) represents the set of all non-empty sub set of K. For
a, b ∈ L, we define f(a) ∨ f(b) = {x ∨ y : x ∈ f(a), y ∈ f(b)}.
f(a) ∧ f(b) = {x ∧ y : x ∈ f(a), y ∈ f(b)}.
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Definition 3.1. Let L and K be two lattices. A mapping f : L −→ P (K) is called a set-valued
homomorphism if
f(a)

∨
f(b) ⊆ f(a

∨
b)

f(a)
∧

f(b) ⊆ f(a
∧

b) for all a, b ∈ L.
A set-valued mapping f is called a strong set-valued homomorphism if
f(a)

∨
f(b) = f(a

∨
b)

f(a)
∧

f(b) = f(a
∧

b) for all a, b ∈ L.

Theorem 3.2. Let L,K be lattices and f : L −→ P (K) be a strong set valued homomorphism. If
A,B are two non empty subset of K, then (1)f ↓ (A) ∨ f ↓ (B) ⊆ f ↓ (A ∨B)
(2)f ↓ (A) ∧ f ↓ (B) ⊆ f ↓ (A ∧B)

Proof: (1) Assume that x ∈ f ↓ (A)∨ f ↓ (B), then there exist y ∈ f ↓ (A), z ∈ f ↓ (B) such that
x = y∨z. Since f is a strong set-valued homomorphism, we have f(x) = f(y∨z) = f(y)∨f(z) ⊆ A∨B.
So x ∈ f ↓ (A ∨B).
(2) Again we assume that x ∈ f ↓ (A) ∧ f ↓ (B), then there exist y ∈ f ↓ (A), z ∈ f ↓ (B) such that
x = y∧z. Since f is a strong set-valued homomorphism, we have f(x) = f(y∧z) = f(y)∧f(z) ⊆ A∧B.
So x ∈ f ↓ (A ∧B).

Theorem 3.3. Let L,K be two lattices. Then (1) Let f : L −→ P (K) be a set-valued homomorphism.
If A is a sublattice of K and f ↑ (A) is non-empty subset of L, then f ↑ (A) is a sublattice of L
(2) Let f : L −→ P (K) be a strong set-valued homomorphism. If A is a sublattice of K and f ↓ (A)
is non-empty subset of L, then f ↓ (A) is a sublattice of L.

Proof: (1) Assume that x, y ∈ f ↑ (A) there exist a, b ∈ A such that a ∈ f(x), b ∈ f(y). Since
f is a set-valued homomorphism and A is a sublattice, we have a ∨ b ∈ f(x) ∨ f(y) ⊆ f(x ∨ y) and
a∨ b ∈ A. So a∨ b ∈ f(x∨y)∩A which implies that x∨y ∈ f ↑ (A). Similarly, we have x∧y ∈ f ↑ (A)
(2) Assume that x, y ∈ f ↓ (A), we have f(x) ⊆ A, f(y) ⊆ A. Since f is a strong set-valued
homomorphism and A is a sublattice, we have f(x∧y) = f(x)∧f(y) which implies that x∨y ∈ f ↓ (A).
Similarly, we have x ∧ y ∈ f ↓ (A).

Theorem 3.4. Let f : L −→ P (K) be a set-valued homomorphism of lattices. If A,B are down-sets
of K, then f(A ∩B) = fA) ∩ f(B).

Proof: Assume that x ∈ f ↑ (A) ∩ f ↑ (B), there exist y ∈ A, z ∈ B such that y.z ∈ f(x).
Since A,B are down-sets, we have y ∧ z ∈ A ∩ B. f is a set-valued homomorphism, we have y ∧ z ∈
f(x) ∩ f(x) ⊆ f(x ∧ x) = f(x). So y ∧ z ∈ f(x) ∩ (A ∩B) which implies x ∈ f(A ∩B). We also know
that f ↑ (A ∩B) ⊆ f ↑ (A) ∩ f ↑ (B). Thus, we get the conclusion easily.

Definition 3.5. [5] Let E be an equivalence relation on L, then E is called a full congruence relation
if (a, b) ∈ E and (c, d) ∈ E ⇔ (a ∨ c, b ∨ d) ∈ E and (a ∧ c, b ∧ d) ∈ E for all a, b, c, d ∈ L.

Definition 3.6. Let E be an equivalence relation on L, then (a, b) ∈ E ⇔ (a∨x, b∨x), (a∧x, b∧x) ∈ E
for all x ∈ L. If A, B are non empty subset of L, for any a ∈ L we define A∨B = {x∨y : x ∈ A, y ∈ B}
a ∧A = {x ∧ y : x ∈ A}
A ∧B = {x ∧ y : x ∈ A, y ∈ B}.

Theorem 3.7. Let E be an equivalence relation on Land if a, b ∈ L, then
(1) [a]E ∨ [b]E ⊆ [a ∨ b]E
(2) [a]E ∧ [b]E ⊆ [a ∧ b]E

Proof: Suppose z ∈ [a]E ∨ [b]E then there exist x ∈ [a]E and y ∈ [b]E such that z = x ∨ y. Since
(a, x) ∈ E and (b, y) ∈ E, we have (a ∨ b, x ∨ y) ∈ E, namely (a ∨ b, z) ∈ E, so z ∈ [a ∨ b]E
Again, suppose z ∈ [a]E ∧ [b]E then there exist x ∈ [a]E and y ∈ [b]E such that z = x ∧ y. Since
(a, x) ∈ E and (b, y) ∈ E, we have (a ∧ b, x ∧ y) ∈ E, namely (a ∧ b, z) ∈ E, so z ∈ [a ∧ b]E .
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Definition 3.8. [5] Let E be a full congruence relation, then E is called a complete full congruence
relation if [a]E ∨ [b]E = [a ∨ b]E and [a]E ∧ [b]E = [a ∧ b]E for all a, b ∈ L.

Theorem 3.9. Let E be a complete equivalence relation on L, if A,B are non- empty subsets of L,
then E ↑ (A) ∨ E ↑ (B) ⊆ E ↑ (A ∨B) and E ↑ (A) ∧ E ↑ (B) ⊆ E ↑ (A ∧B)

Proof: Let us suppose z ∈ E ↑ (A)∨E ↑ (B), then there exist x ∈ E ↑ (A) and y ∈ E ↑ (B) such
that z = x∨ y. Then [x]E ∩A 6= ∅ and [y]E ∩B 6= ∅, so there exist a ∈ [x]E , a ∈ A and b ∈ [y]E , b ∈ B.
Then a ∨ b ∈ [x]E ∨ [y]E ⊆ [x ∨ y]E = [z]E and a ∨ b ∈ A ∨ B. Thus [z]E ∩ (A ∨ B) 6= ∅ and hence
z ∈ E ↑ (A ∨B).
Next suppose z ∈ E ↑ (A) ∧ E ↑ (B), then there exist x ∈ E ↑ (A) and y ∈ E ↑ (B) such that
z = x∧ y. Then [x]E ∩A 6= ∅ and [y]E ∩B 6= ∅, so there exist a ∈ [x]E , a ∈ A and b ∈ [y]E , b ∈ b. Then
a∧b ∈ [x]E∧[y]E ⊆ [x∧y]E = [z]E and a∧b ∈ A∧B. Thus [z]E∩(A∧B) 6= ∅ and hence z ∈ E ↑ (A∧B).

Theorem 3.10. Let E be a complete equivalence relation on L, if A,B are non empty subsets of L,
then E ↓ (A) ∨ E ↓ (B) ⊆ E ↑ (A ∨B) and
E ↓ (A) ∧ E ↓ (B) ⊆ E ↓ (A ∧B)

Proof: Suppose z ∈ E ↓ (A) ∨ E ↓ (B), then there exist x ∈ E ↓ (A) and y ∈ E ↓ (B) such that
z = x∨ y. Then [x]E ⊆ and [y]E ⊆ B then [x]E ∨ [y]E ⊆ A∨B. Since E is a full complete equivalence
relation on L, we have [x]E ∨ [y]E = [x ∨ y]E = [z]E , namely [z]E ⊆ A ∨B. Hence z ∈ f ↓ (A ∨B).
Again suppose z ∈ E ↓ (A) ∧ E ↓ (B), then there exist x ∈ E ↓ (A) and y ∈ E ↓ (B) such that
z = x ∧ y. Then [x]E ⊆ and [y]E ⊆ B then [x]E ∧ [y]E ⊆ A ∧ B. Since E is a complete equivalence
relation on L, we have [x]E ∧ [y]E = [x] ∧ y]E = [z]E , namely [z]E ⊆ A ∧B. Hence z ∈ f ↓ (A ∧B).

Theorem 3.11. Suppose E1, E2 are two complete equivalence relations on L, A is a non empty subset
of L, then (E1 ∩ E2) ↑ (A) ⊆ E1 ↑ (A) ∩ E2 ↑ (A)

Proof: Let us suppose that x ∈ (E1 ∩ E2) ↑ (A), then [x]E1∩E2 6= ∅. So there exists a ∈
[x]E1∩E2 ∩ A. Since (a, x) ∈ E1 ∩ E2, then (a, x) ∈ E1 and (a, x) ∈ E2. Thus a ∈ [x]E1 and
a ∈ [x]E2 . Then [x]E1 ∩ A 6= ∅ and [x]E2 ∩ A 6= ∅. Therefore, x ∈ E1 ↑ (A) and x ∈ E2 ↑ (A). Hence
x ∈ E1 ↑ (A) ∩ E2 ↑ (A). Thus (E1 ∩ E2) ↑ (A) ⊆ E1 ↑ (A) ∩ E2 ↑ (A).

Definition 3.12. Let L be a complete lattice and let k ∈ L. k is said to be compact if, for every subset
S of L, k ≤ ∨

S ⇒ k ≤ ∨
T for some finite subset T of S. The set of all compact elements of L is

denoted K(L). A complete lattice L is said to be algebraic if, for each a ∈ L; a =
∨{k ∈ k(L) : k ≤ a}.

Definition 3.13. Let (L,≤) and (K,≤) be two lattices and A ∈ P (K) where P (K) denotes the set
of all non-empty subsets of K. Let f : L → P (K) be a set-valued mapping. The lower and upper
approximations of A under f are defined by f ↓ (A) = {x ∈ L : f(x) ⊆ A}f ↑ (A) = {x ∈ L :
f(x) ∩A 6= ∅}.

Definition 3.14. The pair (f ↓ (A), f ↑ (A)) is referred to as the generalized rough set with respect
to A, induced by f or f - rough set with respect to A.

Example Let (L,E) be an approximation space and f : L → P (L) be a set-valued mapping where
f(x) = [x]E for all x ∈ L, then for any A ⊆ L, f ↓ (A) and f ↑ (A) are lower and upper approximations
respectively.

Proposition 3.15. Let L and K be two lattices and A,B ∈ P (K). Let f : L → P (K) be a set-valued
mapping. Then the following assertions hold:
(i)f ↑ (A ∪B) = f ↑ (A) ∪ f ↑ (B);
(ii)f ↓ (A ∩B) = f ↓ (A) ∩ f ↓ (B);
(iii)A = B implies f ↓ (A) = f ↓ (B) and f ↑ (A) = f ↑ (B);
(iv)f ↓ (A) ∪ f ↓ (B) = f ↓ (A ∪B); (v)f ↑ (A ∩B) = f ↑ (A) ∩ f ↑ (B).
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Definition 3.16. A non-empty subset K of L is a sublattice of the lattice (L,
∧

,
∨

) if a∨ b, a∧ b ∈ K
for all a, b ∈ K.

Definition 3.17. If A and B are non-empty subsets of L, we define A
∧

B and A
∨

B as follows:
A

∧
B = {a ∧ b : a ∈ A, b ∈ B}; A ∨

B = {a ∨ b : a ∈ A, b ∈ B}.

Definition 3.18. Let L and K be two lattices and f : L → P (K) be a set- valued mapping. f is called
a set-valued homomorphism if (i)f(x ∧ y) = f(x)

∧
f(y); (ii)f(x ∨ y) = f(x)

∨
f(y), for all x, y ∈ L.

Lemma 3.19. Let L and K be two lattices and f : L → P (K) be a set-valued homomorphism. If S
is a sublattice of K and f ↓ (S) 6= ∅, and f ↑ (S) 6= ∅, then f ↓ (S) and f ↑ (S) are sublattices of L.

Proof: Let x, y ∈ f ↓ (S) , by definition we have f(x), f(y) ⊆ S. Since S is a sublattice of K, we
have f(x∨ y) = f(x)

∨
f(y) ⊆ S and f(x∧ y) = f(x)

∧
f(y) = S. It shows that x∨ y; x∧ y ∈ f ↓ (S).

Moreover, let x, y ∈ f ↑ (S), by definition, f(x)
⋂

S 6= ∅ and f(y)
⋂

S 6= ∅. Suppose a ∈ f(x) ∩ S and
b ∈ f(y) ∩ S. Since S is a sublattice of K, we have a ∨ b ∈ S and a ∧ b ∈ f(x)

∨
f(y) = f(x ∨ y). It

implies that a∨ b ∈ f(x∨y)
⋂

S. Hence f(x∨y)
⋂

S 6= ∅. It means that x∨y ∈↑ (S). Again, a∧ b ∈ S
and a ∧ b ∈ f(x)

∨
f(y). So that a ∧ b ∈ f(x ∧ y)f ∩ S. Therefore f(x ∧ y)

⋂
S 6= ∅. It means that

x ∧ y ∈ f ↑ (S).

Lemma 3.20. Let L and K be two lattices and f : L → P (K) be a set- valued homomorphism. If S
is a sublattice of K and f ↓ (S) 6= ∅ 6= f ↑ (S), then (f ↓ (S), f ↑ (S)) is a rough sublattice of L.

Proposition 3.21. Let L and K be two lattices and f : L → P (K) be a set-valued homomorphism.
If A,B be non-empty subsets of K , then (1)f ↓ (A)

∨
f ↓ (B) ⊆ f ↓ (A

∨
B); (2)f ↓ (A)

∧
f ↓ (B) ⊆

f ↓ (A
∧

B).

Proof: Suppose z be any element of f ↓ (A)
∨

f ↓ (B). Then z = a ∨ b for some a ∈ f ↓ (A)
and b ∈ f ↓ (B). By definition, f(a) ⊆ A and f(b) ⊆ B. Since f(a ∨ b) = f(a)

∨
f(b) = {x ∨ y :

x ∈ f(a), y ∈ f(b)} ⊆ {x ∨ y : x ∈ A, y ∈ B} = A
∨

B, we imply that a ∨ b ∈ f ↓ (A
∨

B) and so
z ∈ f ↓ (A

∨
B). The proof of (2) is similar to the proof of (1).

The following examples show that the converse of above proposition is not true.
Example (1): Let L = {x0, x1, x2, . . . , x7}, where x0 < x1 < x2 < x3 < x4 < x5 < x6 < x7 . Let
a ∨ b = max{a, b} and a ∧ b = min{a, b} for all a, b ∈ L . Then (L,∨,∧) is a lattice. If we consider
equivalence classes [x0] = {x0, x1, x2}, [x3] = {x3, x4}, [x5] = {x5, x6, x7} and f : L → P (L) be a set-
valued homomorphism with f(x) = [x] for all x ∈ L. Let A = {x3, x4, x5, x7}, B = {x0, x1, x2, x3, x6}.
Then A

∨
B = {x3, x4, x5, x6, x7}, f ↓ (A

∨
B) = {x3, x4, x5, x6, x7}, f ↓ (A) = {x3, x4}, f ↓ (B) =

{x0, x1, x2} and f ↓ (A)
∨

f ↓ (B) = {x3, x4}. And so f ↓ (A
∨

B) 6⊆ f ↓ (A)
∨

f ↓ (B).
(2): Let L = [0, 1] and f : L → P (L) be a set-valued homomorphism with f(x) = [0, x] for all x ∈ L.
And let A = {0, 1

2}, B = {1
3 , 1

2}. Then f ↓ (A) = {0}, f ↓ (B) = ∅, f ↓ (A
∧

B) = {0}, f ↓ (A)
∧

f ↓
(B) = ∅. Therefore f ↓ (A

∧
B) 6⊆ f ↓ (A)

∧
f ↓ (B).

Proposition 3.22. [3] Let L and K be two lattices and f : L → P (K) be a set-valued homomorphism.
If A,B be non-empty subsets of K, then
(1) f ↑ (A)

∨
f ↑ (B) ⊆ f ↑ (A

∨
B); (2)f ↑ (A)

∧
f ↑ (B) ⊆ f ↑ (A

∧
B) .

Proof: (1) Let us suppose that z ∈ f ↑ (A)
∨

f ↑ (B). Then z = a ∨ b for some a ∈ f ↑ (A) and
b ∈ f ↑ (B). Hence, f(a)

⋂
A 6= ∅ and f(b)

⋂
B 6= ∅ and so there exist x ∈ f(a)

⋂
A and y ∈ f(b)

⋂
B.

Therefore, x ∨ y ∈ A
∨

B and x ∨ y ∈ f(a)
∨

f(b) = f(a ∨ b). Thus x ∨ y ∈ f(a ∨ b)
⋂

(A
∨

B) which
implies that f(a ∨ b)

⋂
f(A

∨
B) 6= ∅. So z = a ∨ b ∈ f ↑ (A

∨
B).

(2). The proof is obvious as that of (1).
The following examples show that the converse of above proposition is not true.
Example (i) Let L = {0, x1, x2, x3, x4, x5, 1} be the lattice and f : L → P (L) be a set-valued
homomorphism with f(x) = {x5} for all x ∈ L. And let A = {x2, x3}, B = {x1, x2}. Then f ↑ (A) =
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∅, f ↑ (B) = ∅, f ↑ (A
∨

B) = L, f ↑ (A)
∨

f ↑ (B) = ∅. Therefore f ↑ (A
∨

B) ⊆ f ↑ (A)
∨

f ↑ (B).
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Figure-1: Lattice Structure of L

(ii) Let L be the above lattice and f : L → P (L) be a set-valued homomorphism with f(x) = {x2}
for all x ∈ L. And let A = {x4}, B = {x5}. Then f ↑ (A) = ∅, f ↑ (B) = ∅, f ↑ (A

∧
B) = L, f ↑

(A)V f ↑ (B) = ∅. Therefore f ↑ (A
∧

B) 6⊆ f ↑ (A)
∧

f ↑ (B).

4 Conclusion

The paper is devoted to the application of rough lattice determined by Pawlak’s Information System
in which the concept of upper and lower approximations of a subset in a lattice are considered and
studied their algebraic properties. By some indiscernibility relation, we have shown that the entries
of the indiscernibility relation of an information system forms a rough lattice. Some properties of
set valued homomorphism are obtained which shall be very practical in the theory and application of
rough lattice.
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Abstract - In this paper we introduced  mapping on neutrosophic soft expert sets through which we can study 

the images and inverse images of neutrosophic soft expert sets. Further, we investigated the basic operations 

and other  related properties of mapping on neutrosophic soft expert sets in this paper. 
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1.  Introduction 

 
Neutrosophy has been introduced by Smarandache [14, 15, 16] as a new branch of 

philosophy. Smarandache using this philosophy of neutrosophy to initiate neutrosophic sets 

and logics which is the generalization of fuzzy logic, intuitionistic fuzzy logic, 

paraconsistent logic etc. Fuzzy sets [42] and intuitionistic fuzzy sets [36] are characterized 

by membership functions, membership and non-membership functions, respectively. In 

some real life problems for proper description of an object in uncertain and ambiguous 

environment, we need to handle the indeterminate and incomplete information. Fuzzy sets 

and intuitionistic fuzzy sets are not able to handle the indeterminate and inconsistent 

information. Thus neutrosophic set (NS in short) is defined by Samarandache [15], as a 

new mathematical tool for dealing with problems involving incomplete, indeterminacy, 

inconsistent knowledge. In NS, the indeterminacy is quantified explicitly and truth-

membership, indeterminacy membership, and false-membership are completely 

independent. From scientific or engineering point of view, the neutrosophic set and set- 

theoretic view, operators need to be defined. Otherwise, it will be difficult to apply in the 
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real applications. Therefore, H. Wang et al [19] defined a single valued neutrosophic set 

(SVNS) and then provided the set theoretic operations and various properties of single 

valued neutrosophic sets. Recent research works on neutrosophic set theory and its 

applications in various fields are progressing rapidly. A lot of literature can be found in this 

regard in [3, 6, 7, 8, 9, 10, 11, 12, 13,  25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 61, 62,70, 

73, 76, 80, 83,84, 85, 86]. 

 

In other hand, Molodtsov [12] initiated the theory of  soft set as a general mathematical 

tool for dealing with uncertainty and vagueness and how soft set theory is free from the 

parameterization inadequacy syndrome of fuzzy set theory, rough set theory, probability 

theory. A soft set is a collection of approximate descriptions of an object. Later Maji et 

al.[58] defined several operations on soft set. Many authors [37, 41, 44, 47, 49, 50, 51, 52, 

53, 54, 55, 56, 57, 60] have combined soft sets with other sets to generate hybrid structures 

like fuzzy soft sets, generalized fuzzy soft sets, rough soft sets, intuitionistic fuzzy soft sets, 

possibility fuzzy soft sets, generalized intuitionistic fuzzy softs, possibility vague soft sets 

and so on. All these research aim to solve most of our real life problems in medical 

sciences, engineering, management, environment and social  sciences which involve data 

that are not crisp and precise. But most of these models deal with only one opinion (or) 

with only one expert. This causes a problem with the user when questionnaires are used for 

the data collection. Alkhazaleh and Salleh in 2011 [65] defined the concept of soft expert 

set  and created a model in which the user can know the opinion of the experts in the model 

without any operations and  give an application of this concept in decision making 

problem. Also, they introduced the concept of the fuzzy soft expert set [64] as a 

combination between the soft expert set and the fuzzy set. Based on [15], Maji [53] 

introduced  the concept of neutrosophic soft set a more generalized concept, which is a 

combination of neutrosophic set and soft set and studied its properties. Various kinds of 

extended neutrosophic soft sets such as intuitionistic neutrosophic soft set [68, 70, 79], 

generalized neutrosophic soft set [61, 62], interval valued neutrosophic soft set [23], 

neutrosophic parameterized fuzzy soft set [72], Generalized interval valued neutrosophic 

soft sets [75], neutrosophic soft relation [20, 21], neutrosophic soft multiset theory [24] and 

cyclic fuzzy neutrosophic soft group [61] were studied. The combination of neutrosophic 

soft sets and rough sets [77, 81, 82] is another interesting topic.  

 

Recently, Broumi and Smaranadache [88] introduced, a more generalized concept, the 

concept of the intuitionistic fuzzy soft expert set as a combination between the soft expert 

set and the intuitionistic fuzzy set. The same authors defined the concept of single valued 

neutrosophic soft expert set [87] and gave the application in decision making problem. The 

concept of single valued neutrosophic soft expert set deals with indeterminate and 

inconsistent data. Also, Sahin et al. [91] presented the concept of neutrosophic soft expert 

sets.  The soft expert models are richer than soft set models since the soft set models are 

created with the help of one expert where as the soft expert models are made with the 

opinions of all experts. Later on, many researchers have worked with the concept of soft 

expert sets and their hybrid structures [1, 2, 17, 18, 24, 38, 39, 46, 48, 87, 91, 92].  

 

The notion of mapping on soft classes are introduced by Kharal and Ahmad [4]. The same 

authors presented the concept of a mapping on classes of fuzzy soft sets [5] and studied the 

properties of fuzzy soft images and fuzzy soft inverse images of fuzzy soft sets, and 

supported them with examples and counter inconsistency in examples. In neutrosophic 

environment, Alkazaleh et al [67] studied the notion of mapping on neutrosophic soft 

classes. 
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Until now, there is no study on mapping on the classes of neutrosophic soft expert sets, so 

there is a need to develop a new mathematical tool called “Mapping on neutrosophic soft 

expert set”. 

 

In this paper, we introduce the notion of mapping on neutrosophic soft expert classes and 

study the properties of neutrosophic soft expert images and neutrosophic soft expert inverse 

images of neutrosophic soft expert sets. Finally, we give some illustrative examples of 

mapping on neutrosophic soft expert for intuition. 

 

 

2. Preliminaries 
 

In this section, we will briefly recall the basic concepts of neutrosophic sets, soft sets, 

neutrosophic soft sets, soft expert sets, fuzzy soft expert sets, intutionistic fuzzy soft expert 

sets and neutrosophic soft expert sets. 

 

Let U be an initial universe set of objects and E is the set of parameters in relation to 

objects in U. Parameters are often attributes, characteristics or properties of objects. Let  

P (U) denote the power set of U and A   E. 

 

 

2.1. Neutrosophic Set 

 

Definition 2.1 [15]  Let U be an universe of discourse, Then the neutrosophic set A is an 

object having the form A = {< x:      ,      ,      >, x ∈ U},where the functions      , 

     ,       : U→]
−
0,1

+
[ define respectively the degree of membership, the degree of 

indeterminacy, and the degree of non-membership of the element x ∈ X to the set A with 

the condition.  

 
−
0 ≤        +         +         ) ≤ 3

+
. 

 

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]
−
0,1

+
[. So instead of ]

−
0,1

+
[ we need to take the interval [0,1] 

for technical applications, because ]
−
0,1

+
[ will be difficult to apply in the real applications  

such as in scientific and engineering problems. 

For two NS, 

 

   = {<x,      ,             > |  ∈   } 

 

And 

 

   = {<x,      ,             > |  ∈   } 

 

We have,  

 

1.         if and only if 

 

                        ,             . 
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2.                          ,  
 

      =     ,       =     ,       =      for all   ∈  . 

 

3. The complement of     is denoted by    
  and is defined by 

 

   
 = {<x,                    |  ∈   } 

 

4. A B = {<x, min{           } max{           }, max{           }>: ∈   } 

 

5. A B = {<x, max{          } min{           }, min{           }>: ∈   } 

 

As an illustration, let us consider the following example. 

 

Example 2.2. Assume that the universe of discourse U={x1, x2, x3,   }. It may be further 

assumed that the values of x1, x2,   and    are in [0, 1], then  A is a neutrosophic set (NS) 

of U  such that, 

 

A= {< x1,0.4, 0.6, 0.5 >,< x2,0.3, 0.4, 0.7>, < x3,0.4, 0.4, 0.6>,<  ,0.5, 0.4, 0.8 >} 

 

 

2.2. Soft Set 

 

Definition 2.3  [12] Let U be an initial universe set and E be a set of parameters. Let P(U) 

denote the power set of U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft 

set over U, where K is a mapping given by K : A → P(U).  

 

As an illustration, let us consider the following example. 

 

Example 2.4 Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., 

h5}. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . 

. ., e8 stand for the attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, 

respectively.  

 

In this case, to define a soft set means to point out expensive houses, beautiful houses, and 

so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 

the opinion of a buyer, say Thomas, may be defined like this:  

 

A={e1, e2, e3, e4, e5};  

 

K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  

 

 

2.3 Neutrosophic Soft  Sets 

 

Definition 2.5 [59] Let  be an initial universe set and   ⊂    be a set of parameters. Let 

NS(U) denotes the set of all neutrosophic subsets of  . The collection       is termed to 

be the neutrosophic soft set over  , where   is a mapping given by             . 

Example 2.6 Let U be the set of houses under consideration and E is the set of parameters. 
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Each parameter is a neutrosophic word or sentence involving neutrosophic words. Consider 

   {beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in 

bad repair, cheap, expensive}. In this case, to define a neutrosophic soft set means to point 

out beautiful houses, wooden houses, houses in the green surroundings and so on. Suppose 

that, there are five houses in the universe  given by                  and the set of 

parameters 

 

                 ,where    stands for the parameter `beautiful',    stands for the parameter 

`wooden',    stands for the parameter `costly' and the parameter   stands for `moderate'. 

Then the neutrosophic set       is defined as follows: 

 

      

{
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Definition 2.7 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then 

the union of  (H, A) and (G, B), is denoted by ” (H, A) ̃(G, B)” and is defined by(H, 

A)  ̃ (G, B)= (K, C), where  C= A B  and the truth-membership, indeterminacy-

membership and falsity-membership of (K, C) are as follows: 

 

        ={

            ∈    

            ∈    

   (              )    ∈    

 

 

        =

{
 

 
            ∈    

            ∈    

(                 )

 
    ∈    

 

 

        ={

            ∈    

            ∈    

   (              )    ∈    

 

 

Definition 2.8 [59] Let (H, A) and (G, B) be two NSs over the common universe U. Then 

the intersectionof  (H, A) and (G, B), is denoted by ” (H, A) ̃(G, B)” and is defined by(H, 

A)  ̃ (G, B)= (K, C), where  C= A  B  and the truth-membership, indeterminacy-

membership and falsity-membership of (K, C) are as follows: 
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        ={

            ∈    

            ∈    

   (              )     ∈    

 

 

        =

{
 

 
            ∈    

            ∈    

(                 )

 
   ∈    

 

 

        ={

            ∈    

            ∈    

   (              )     ∈    

 

 

 

2.4. Soft expert sets 

 

Definition 2.9 [65] Let U be  a  universe set, E be a set of parameters and X   be  a  set  of  

experts (agents). Let O={1=agree, 0=disagree} be a set of opinions. Let Z= E   X   O and 

A   Z. 

 

A pair (F, E) is called a soft expert set over U, where F is a mapping given by F: A → P(U) 

and P(U) denote the power set of U. 

 

Definition 2.10 [65] An agree-soft expert set          over U, is a soft expert subset of 

( ,A) defined as : 

 

        = {F( ): ∈ E   X  {1}}. 

 

Definition 2.11 [65] A disagree- soft expert set          over U, is a soft expert subset of 

( ,A) defined as : 

 

       = {F( ): ∈ E   X  {0}}. 

 

 

2.5. Fuzzy Soft expert sets 

 

Definition 2.12 [64] A pair (F, A) is called a fuzzy soft expert set over U, where F is a 

mapping given by  

 

F : A→   , and    denote the set of all fuzzy subsets of  U. 

 

 

2.6. Intuitionitistic Fuzzy Soft Expert sets 

 

Definition  2.13 [88] Let  U={ 1u , 2u , 3u ,…, nu } be  a  universal  set  of  elements,  E={ 1e ,

2e , 3e ,…, me } be  a universal  set  of  parameters,  X={ 1x , 2x , 3x ,…, ix } be  a  set  of  

experts  (agents)  and   O= {1=agree, 0 = disagree} be  a  set  of  opinions.  Let  Z= { E   
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X   Q }  and  A   Z. Then  the  pair (U, Z)  is  called  a  soft universe.  Let          

    where        denotes the collection of all intuitionistic fuzzy subsets of U.  Suppose   

            be a function defined as: 

 

)(zF = F(z)( iu ), for all iu U. 

 

Then )(zF  is called an intuitionistic fuzzy soft expert set  (IFSES  in short ) over the soft 

universe (U, Z)      

      

For  each iz  Z. )(zF = F( iz )( iu ) where F( iz ) represents  the  degree  of  

belongingnessand non-belongingness  of  the  elements  of  U  in F( iz ). Hence  )( izF   

can be written as: 

 

)( izF
=

{( 
))(( 11

1

uzF

u
),….,( 

))(( ii

i

uzF

u
)} ,for i=1,2,3,…n 

 

where  F( iz )( iu ) = < )iF(z ( iu ), )iF(z ( iu )>  with )iF(z ( iu ) and )iF(z ( iu )  representing  the  

membership function and non-membership function of each of the elements iu  U   

respectively. 

 

Sometimes we write   as ( , Z). If A   Z. we can also have  IFSES ( , A). 

 

 

2.7 Neutrosophic Soft Expert Sets 

 

Definition 2.14 [89] A pair (F, A) is called a neutrosophic soft expert set over U, where F 

is a mapping given by  

 

F : A→      

 

where P(U) denotes the power neutrosophic set of U. 

 

 

3. Mapping on Neutrosophic Soft Expert Set 
 

In this paper, we introduce the mapping on neutrosophic soft expert classes. Neutrosophic 

soft expert classes are collections of neutrosophic soft expert sets. We also define and study 

the properties of neutrosophic soft expert images and neutrosophic soft expert inverse 

images of neutrosophic soft expert sets, and support them with examples and theorems. 

 

Definition 3.1 Let      ̃            ̃   be neutrosophic soft expert classes. Let r: U Y and  

s: Z    be mappings.  

 

Then a mapping  f:     ̃        ̃  is defined as follows : 
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For a neutrosophic soft expert set (F, A) in      ̃ ,  f (F, A) is  a neutrosophic soft expert set 

in       ̃ , where 

 

f(F, A) (  ) (y) ={
⋁  ⋁                                  ∈      

                                                                                   
 

 

for  ∈ s(Z)    , y ∈ Y and   ∈         ,  f(F, A) is called a neutrosophic soft expert 

image of the neutrosophic soft expert  set (F, A). 

 

Definition 3.2 Let      ̃            ̃  be the neutrosophic soft expert classes. Let r: U Y 

and  s: Z    be mappings. Then a mapping      :      ̃       ̃   is defined as follows : 

For a neutrosophic soft expert set (G, B) in       ̃ ,     ( , B) is  a neutrosophic soft 

expert set in      ̃ , 

 

   ( , B)  (  ) (u) ={
 (    )(    )                                               ∈  

                                                                                   
 

 

For  ∈           and u ∈ U.    ( , B) is called a neutrosophic soft expert inverse 

image of the neutrosophic soft expert  set ( F, A). 

 

Example 3.3. Let U={  ,   ,   }, Y={  ,  ,  } and let A   Z = {(  , p, 1), (  , p, 0), 

(  , p,1)}, and       ={(  
 ,   ,1), (  

 ,   ,0), (  
 ,   ,1)}. 

 

Suppose that      ̃            ̃  are  neutrosophic soft expert classes. Define  r : U   Y and 

s: A     as follows : 

 

r(  ) =   ,  r(  ) =   , r(  ) =   , 

 

s (  , p, 1) = (  
 ,   ,0) , s (  , p, 0) = (  

 ,   ,1), s (  , p, 1) = (  
 ,   ,1), 

 

Let (F, A) and (G,   ) be two neutrosophic soft experts over U and Y respectively such 

that. 

 

(F, A) = 

{(         {
  

             
  

  

             
 

  

             
}),

(         {
  

             
  

  

             
 

  

             
}), 

(         {
  

             
  

  

             
 

  

             
})}, 

 

(G,   ) = 

{(   
        {

  

             
  

  

             
 

  

             
}),

(   
        {

  

             
  

  

             
 

  

             
 }), 

(   
        {

  

             
  

  

             
 

  

             
 })} 
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Then  we define the mapping from  f:     ̃        ̃  as follows : 

 

 For a neutrosophic soft expert set ( F, A) in ( U, Z), (f (F, A), K) is neutrosophic soft 

expert set in (Y,   ) where  

 

K= s(A)={(  
 ,   ,1), (  

 ,   ,0), (  
 ,   ,1)} and is obtained as follows: 

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                             
=(0.5, 0.45, 0.2)     

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                            

=(0.6, 0.4, 0.3)      

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈                    ) ∈     

                                    =                            

=(0.5, 0.35, 0.4) 

 

Then, 

 

f (F, A) (  
 ,   ,1) = {

  

              
  

  

             
 

  

              
} 

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                    =               

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =             ) 

 

f (F, A) (  
 ,   ,0) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

Next, 

 

f (F, A) ((  
 ,   ,0)= {

  

             
  

  

             
 

  

             
} 

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                    =               

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

f (F, A) (  
 ,   ,1) (  ) = ⋁  ⋁        ∈        = ⋁ (⋁      ∈          ) ∈     

                                     =               

 

Also. 
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f (F, A) ((  
 ,   ,1)= {

  

             
  

  

             
 

  

             
} 

 

Hence, 

 

           ={(   
        {

  

              
  

  

             
 

  

              
}),  

                         (   
        {

  

             
  

  

             
 

  

             
}), 

(   
        {

  

             
  

  

             
 

  

             
})} 

 

Next, for the neutrosophic soft expert set inverse images, we have the following: 

For a neutrosophic soft expert set ( G,   ) in ( Y,   ), (    (G,   ), D) is  a neutrosophic 

soft expert set in (U,  ), where  

 

D=    (  )= {(  , p, 1), (  , p, 0), (  , p,1)}, and is obtained as follows: 

 

    (G, B) (  , p, 1) (  ) =              (     ) =      
             =               

    (G, B) (  , p, 1) (  ) =              (     ) =      
             =              

    (G, B) (  , p, 1) (  ) =              (     ) =      
            =(0.1, 0.7, 0.5)    

 

Then      

  

    (G, B) (  , p, 1) = {
  

             
  

  

             
 

  

             
} 

    (G, B) (  , p, 0) (  ) =             (     ) =      
             =              

   G, B) (  , p, 0) (  ) =              (     ) =      
             =              

    (G, B) (  , p, 0) (  ) =              (     ) =      
            =(0.5, 0.6, 0.4)     

 

Then, 

 

    (G, B) (  , p, 0)= {
  

             
  

  

             
 

  

             
} 

    (G, B) (  , p,1) (  ) =  (         )(     ) =  (   
       )     =              

    (G, B) (  , p,1)  (  ) =             (     ) =      
             =              

    (G, B) (  , p,1) (  ) =             (     ) =      
            =(0.5, 0.2, 0.3)     

 

Then    

    

    (G, B) (  , p,1)= {
  

             
  

  

             
 

  

             
} 

 

Hence 

 

              ={(         {
  

             
  

  

             
 

  

             
}), 
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(         {
  

             
  

  

             
 

  

             
}),

(         {
  

             
  

  

             
 

  

             
})} 

 

Definition 3.4 Let  f:      ̃        ̃  be a mapping and (F, A) and  (G, B) a neutrosophic 

soft expert sets in      ̃. Then for  ∈   ,  ∈   the union and intersection of neutrosophic 

soft expert images (F, A) and (G, B) are defined as follows : 

 

(      ⋁̃      )( )(y) =      ( )(y)⋁̃      ( )(y). 

(       ̃      )( )(y) =      ( )(y) ̃      ( )(y). 

 

Definition 3.5 Let  f:      ̃        ̃  be a mapping and (F, A) and  (G, B) a neutrosophic 

soft expert sets in      ̃. Then for ∈  , ∈  , the union and intersection of neutrosophic 

soft  expert inverse images (F, A) and (G, B) are defined as follows : 

 

(        ⋁̃        )( )(u) =        ( )(u)⋁ ̃        ( )(u). 

(         ̃        )( )(u) =        ( )(u) ̃        ( )(u). 

 

Theorem 3.6 Let f:      ̃        ̃  be a mapping. Then for  neutrosophic soft expert sets 

(F, A)  and (G, B) in the neutrosophic soft expert class      ̃. 

 

1. f( )=  

2. f( )  . 

3.  (     ⋁̃     )=      ⋁̃       

4.  (      ̃      )=       ̃        

5. If            , then              . 

 

Proof: For (1) ,(2) and (5) the proof is trivial, so we just give the proof of (3) and (4). 

(3).  For ∈    and y ∈  , we want to prove that 

 

(      ⋁̃      )( )(y) =      ( )(y) ⋁̃      ( )(y) 

 

For left hand side, consider  (     ⋁̃     )( )(y) =         ( )(y). Then 

 

        ( )(y)={
⋁  ⋁                                          ∈      

                                                                                   
          (1,1) 

 

such that       =     ̃      where  ̃ denotes neutrosophic union. 

Considering only the non-trivial case, Then equation 1.1 becomes: 

 

        ( )(y) = ⋁  ⋁      ̃        ∈                                                                   (1,2) 

 

For right hand side and by using definition 3.4, we have 
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(      ⋁̃      )( )(y)=      ( )(y) ⋁      ( )(y) 

                              =(⋁ (⋁      ∈        ) ∈         )⋁(⋁ (⋁       ∈        ) ∈         ) 

                              =   ⋁ ∈      ⋁      ⋁      ∈             

      =⋁  ⋁      ̃        ∈                                                                   (1,3) 

 

From equation  (1.1) and (1.3) we get (3) 

 

(4). For  ∈    and y ∈  , and using definition 3.4, we have 

 

 (      ̃      )( )(y) 

=        ( )(y) 

=⋁ (⋁      ∈            ) ∈      (x) 

=⋁ (⋁      ̃      ∈            ) ∈      (x) 

=⋁ (⋁         ̃      ∈               )  ∈       

 ( ⋁ ( ⋁     

 ∈        

)

  ∈      

)  ⋁ ( ⋁     

 ∈        

)

  ∈      

 

=  (                       ) 

=(       ̃        )       

 

This gives (4). 

 

Theorem 3.7  Let     :      ̃        ̃  be a an inverse mapping. Then for  neutrosophic 

soft expert sets (F, A)  and (G, B) in the neutrosophic soft expert class      ̃. 

 

1.     ( )=  

2.     ( )  . 

3.    (     ⋁̃     )=        ⋁̃         

4.    (      ̃      )=         ̃          

5. If            , Then                  . 

 

Proof. The proof is straightforward. 

 

4. Conclusion 
 

In this paper, we studied mappings on neutrosophic soft expert classes and their basic  

properties. We also give some illustrative examples of mapping on neutrosophic soft expert 

set. We hope these fundamental results will help the researchers to enhance and promote 

the research on neutrosophic soft set theory. 
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Abstract − The aim of this paper is to introduce and study the classes of g̈-locally closed sets, g̈-lc?
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1 Introduction

The first step of locally closedness was done by Bourbaki [4]. He defined a set A to be locally closed if
it is the intersection of an open set and a closed set. In literature many general topologists introduced
the studies of locally closed sets. Extensive research on locally closedness and generalizing locally
closedness were done in recent years. Stone [20] used the term FG for a locally closed set. Ganster
and Reilly used locally closed sets in [7] to define LC-continuity and LC-irresoluteness. Balachandran
et al [2] introduced the concept of generalized locally closed sets. Veera Kumar [23] (Sheik John [19])
introduced ĝ-locally closed sets (=ω-locally closed sets) respectively.

In this paper, we introduce three forms of locally closed sets called g̈-locally closed sets, g̈-lc? sets
and g̈-lc?? sets. Properties of these new concepts are studied as well as their relations to the other
classes of locally closed sets will be investigated.

2 Preliminaries

Throughout this paper (X, τ) (or X) represents topological spaces on which no separation axioms are
assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and Ac denote
the closure of A, the interior of A and the complement of A, respectively.

We recall the following definitions, Corollary and Remarks which are useful in the sequel.

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
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Definition 2.1. A subset A of a space (X, τ) is called:

1. semi-open set [10] if A⊆cl(int(A));

2. α-open set [11] if A⊆int(cl(int(A)));

3. regular open set [21] if A=int(cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.
The semi-closure [5] of a subset A of X, denoted by scl(A), is defined to be the intersection of all

semi-closed sets of (X, τ) containing A. It is known that scl(A) is a semi-closed set.

Definition 2.2. A subset A of a space (X, τ) is called

1. a generalized closed (briefly g-closed) set [9] if cl(A)⊆U whenever A⊆U and U is open in (X,
τ). The complement of g-closed set is called g-open set;

2. a semi-generalized closed (briefly sg-closed) set [3] if scl(A)⊆U whenever A⊆U and U is semi-
open in (X, τ). The complement of sg-closed set is called sg-open set;

3. a regular generalized closed (briefly rg-closed) set [12] if cl(A)⊆U whenever A⊆U and U is
regular open in (X, τ). The complement of rg-closed set is called rg-open set;

4. a ĝ-closed set [22] (=ω-closed set [19]) if cl(A)⊆U whenever A⊆U and U is semi-open in (X,
τ). The complement of ĝ-closed set is called ĝ-open set;

5. a g̈-closed set [15] if cl(A)⊆U whenever A⊆U and U is sg-open in (X, τ). The complement of
g̈-closed set is called g̈-open set.

Remark 2.3. The collection of all g̈-closed (resp. ω-closed, g-closed, rg-closed, sg-closed) sets in X is
denoted by G̈C(X) (resp. ωC(X), GC(X), RGC(X), SGC(X)).

The collection of all g̈-open (resp. ω-open, g-open, rg-open, sg-open) sets in X is denoted by G̈O(X)
(resp. ωO(X), GO(X), RGO(X), SGO(X)).

We denote the power set of X by P(X).

Definition 2.4. A subset S of a space (X, τ) is called:

1. locally closed (briefly lc) [7] if S=U∩F, where U is open and F is closed in (X, τ).

2. generalized locally closed (briefly glc) [2] if S=U∩F, where U is g-open and F is g-closed in (X,
τ).

3. semi-generalized locally closed (briefly sglc) [13] if S=U∩F, where U is sg-open and F is sg-closed
in (X, τ).

4. regular-generalized locally closed (briefly rg-lc) [1] if S=U∩F, where U is rg-open and F is rg-
closed in (X, τ).

5. generalized locally semi-closed (briefly glsc) [8] if S=U∩F, where U is g-open and F is semi-closed
in (X, τ).

6. locally semi-closed (briefly lsc) [8] if S=U∩F, where U is open and F is semi-closed in (X, τ).

7. α-locally closed (briefly α-lc) [8] if S=U∩F, where U is α-open and F is α-closed in (X, τ).

8. ω-locally closed (briefly ω-lc) [19] if S=U∩F, where U is ω-open and F is ω-closed in (X, τ).

9. sglc? [13] if S=U∩F, where U is sg-open and F is closed in (X, τ).

The class of all locally closed (resp. generalized locally closed, generalized locally semi-closed,
locally semi-closed, ω-locally closed) sets in X is denoted by LC(X) (resp. GLC(X), GLSC(X), LSC(X),
ω-LC(X)).

Definition 2.5. [16] For any A⊆X, g̈-int(A) is defined as the union of all g̈-open sets contained in
A. i.e., g̈-int(A)=∪{G : G⊆A and G is g̈-open}.
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Definition 2.6. [16] For every set A⊆X, we define the g̈-closure of A to be the intersection of all
g̈-closed sets containing A. ie., g̈-cl(A)=∩{F : A⊆F∈G̈C(X)}.

Definition 2.7. [17] A space (X, τ) is called a Tg̈-space if every g̈-closed set in it is closed.

Recall that a subset A of a space (X, τ) is called dense if cl(A)=X.

Definition 2.8. A topological space (X, τ) is called:

1. submaximal [6, 23] if every dense subset is open.

2. ĝ (or ω)-submaximal [19, 23] if every dense subset is ω-open.

3. g-submaximal [2] if every dense subset is g-open.

4. rg-submaximal [12] if every dense subset is rg-open.

Remark 2.9. For a topological space X, the following statements hold:

1. Every closed set is g̈-closed but not conversely [15].

2. Every g̈-closed set is ω-closed but not conversely [15].

3. Every g̈-closed set is g-closed but not conversely [15].

4. Every g̈-closed set is sg-closed but not conversely [15].

5. Every g̈-open set is ω-open but not conversely [18].

6. A subset A of X is g̈-closed if and only if g̈-cl(A)=A [16].

7. A subset A of X is g̈-open if and only if g̈-int(A)=A [16].

Corollary 2.10. [15] If A is a g̈-closed set and F is a closed set, then A∩F is a g̈-closed set.

Theorem 2.11. [23] Let (X, τ) be a topological space.

1. If X is submaximal, then X is ĝ-submaximal.

2. If X is ĝ-submaximal, then X is g-submaximal.

3. If X is g-submaximal, then X is rg-submaximal.

4. The respective converses of the above need not be true in general.

3 g̈-locally Closed Sets

We introduce the following definition.

Definition 3.1. A subset A of (X, τ) is called g̈-locally closed (briefly g̈-lc) if A=S∩G, where S is
g̈-open and G is g̈-closed in (X, τ).

The class of all g̈-locally closed sets in X is denoted by G̈LC(X).

Proposition 3.2. Every g̈-closed (resp. g̈-open) set is g̈-lc set but not conversely.

Proof. It follows from Definition 3.1.

Example 3.3. Let X={a, b, c} with τ={∅, {b}, X}. Then the set {b} is g̈-lc set but it is not g̈-closed
and the set {a, c} is g̈-lc set but it is not g̈-open in (X, τ).

Proposition 3.4. Every lc set is g̈-lc set but not conversely.

Proof. It follows from Remark 2.9 (1).

Example 3.5. Let X={a, b, c} with τ={∅, {b, c}, X}. Then the set {b} is g̈-lc set but it is not lc set
in (X, τ).
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Proposition 3.6. Every g̈-lc set is a (1) ω-lc set, (2) glc set and (3) sglc set. However the separate
converses are not true.

Proof. It follows from Remark 2.9 (2), (3) and (4).

Example 3.7. Let X={a, b, c} with τ={∅, {a}, X}. Then the set {b} is g-lc set but it is not g̈-lc set
in (X, τ). Moreover, the set {c} is sg-lc set but it is not g̈-lc set in (X, τ).

Example 3.8. Let X={a, b, c} with τ={∅, {b}, {a, c}, X}. Then the set {a} is ω-lc set but it is not
g̈-lc set in (X, τ).

Remark 3.9. The concepts of α-lc set and g̈-lc set are independent of each other.

Example 3.10. The set {b, c} in Example 3.3 is α-lc set but it is not a g̈-lc set in (X, τ) and the set
{a, b} in Example 3.5 is g̈-lc set but it is not an α-lc set in (X, τ).

Remark 3.11. The concepts of lsc set and g̈-lc set are independent of each other.

Example 3.12. The set {a} in Example 3.3 is lsc set but it is not a g̈-lc set in (X, τ) and the set {a,
b} in Example 3.5 is g̈-lc set but it is not a lsc set in (X, τ).

Remark 3.13. The concepts of g̈-lc set and glsc set are independent of each other.

Example 3.14. The set {b, c} in Example 3.3 is glsc set but it is not a g̈-lc set in (X, τ) and the set
{a, b} in Example 3.5 is g̈-lc set but it is not a glsc set in (X, τ).

Remark 3.15. The concepts of g̈-lc set and sglc? set are independent of each other.

Example 3.16. The set {b, c} in Example 3.3 is sglc? set but it is not a g̈-lc set in (X, τ) and the
set {a, b} in Example 3.5 is g̈-lc set but it is not a sglc? set in (X, τ).

Theorem 3.17. For a Tg̈-space (X, τ), the following properties hold:

1. G̈LC(X)=LC(X).

2. G̈LC(X)⊆GLC(X).

3. G̈LC(X)⊆GLSC(X).

4. G̈LC(X)⊆ω-LC(X).

Proof. (1) Since every g̈-open set is open and every g̈-closed set is closed in (X, τ), G̈LC(X)⊆LC(X)
and hence G̈LC(X)=LC(X).

(2), (3) and (4) follows from (1), since for any space (X, τ), LC(X)⊆GLC(X), LC(X)⊆GLSC(X)
and LC(X)⊆ω-LC(X).

Corollary 3.18. If GO(X)=τ , then G̈LC(X)⊆GLSC(X)⊆LSC(X).

Proof. GO(X)=τ implies that (X, τ) is a Tg̈-space and hence by Theorem 3.17, G̈LC(X) ⊆GLSC(X).
Let A∈GLSC(X). Then A=U∩F, where U is g-open and F is semi-closed. By hypothesis, U is open
and hence A is a lsc-set and so A∈LSC(X).

Definition 3.19. A subset A of a space (X, τ) is called

1. g̈-lc? set if A=S∩G, where S is g̈-open in (X, τ) and G is closed in (X, τ).

2. g̈-lc?? set if A=S∩G, where S is open in (X, τ) and G is g̈-closed in (X, τ).

The class of all g̈-lc? (resp. g̈-lc??) sets in a topological space (X, τ) is denoted by G̈LC?(X) (resp.
G̈LC??(X)).

Proposition 3.20. Every lc set is g̈-lc? set but not conversely.

Proof. It follows from Definitions 2.4 (1) and 3.19 (1).

Example 3.21. The set {b} in Example 3.5 is g̈-lc? set but it is not a lc set in (X, τ).

Proposition 3.22. Every lc set is g̈-lc?? set but not conversely.
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Proof. It follows from Definitions 2.4 (1) and 3.19 (2).

Example 3.23. The set {a, c} in Example 3.5 is g̈-lc?? set but it is not a lc set in (X, τ).

Proposition 3.24. Every g̈-lc? set is g̈-lc set but not conversely.

Proof. It follows from Definitions 3.1 and 3.19 (1).

Example 3.25. The set {a, b} in Example 3.5 is g̈-lc set but it is not a g̈-lc? set in (X, τ).

Proposition 3.26. Every g̈-lc?? set is g̈-lc set but not conversely.

Proof. It follows from Definitions 3.1 and 3.19 (2).

Question 1. Give an example for a set which is g̈-lc set but not g̈-lc?? set.

Remark 3.27. The concepts of g̈-lc? set and lsc set are independent of each other.

Example 3.28. The set {c} in Example 3.5 is g̈-lc? set but it is not a lsc set in (X, τ) and the set
{a} in Example 3.3 is lsc set but it is not a g̈-lc? set in (X, τ).

Remark 3.29. The concepts of g̈-lc?? set and α-lc set are independent of each other.

Example 3.30. The set {a, b} in Example 3.5 is g̈-lc?? set but it is not an α-lc set in (X, τ) and the
set {a, b} in Example 3.3 is α-lc set but it is not a g̈-lc?? set in (X, τ).

Remark 3.31. From the above discussions we have the following implications where A → B (resp. A
= B) represents A implies B but not conversely (resp. A and B are independent of each other).

g̈-lc? ¾ lc - g̈-lc??

?

6

g̈-lclsc α-lc

j ? + ?

6

-¾ -¾

glsc glc sglc ω-lc sglc?
¼

*

BB ® ? U s

k

Proposition 3.32. If GO(X)=τ , then G̈LC(X)=G̈LC?(X)=G̈LC??(X).

Proof. For any space (X, τ), τ⊆G̈O(X)⊆GO(X). Therefore by hypothesis, G̈O(X)=τ . i.e., (X, τ) is
a Tg̈-space and hence G̈LC(X)=G̈LC?(X)=G̈LC??(X).

Remark 3.33. The converse of Propositions 3.32 need not be true.

For the topological space (X, τ) in Example 3.3. G̈LC(X)=G̈LC?(X)=G̈LC??(X). However GO(X)={∅,
{a}, {b}, {c}, {a, b}, {b, c}, X}6=τ .

Proposition 3.34. Let (X, τ) be a topological space. If GO(X)⊆LC(X), then G̈LC(X) =G̈LC??(X).

Proof. Let A∈G̈LC(X). Then A=S∩G where S is g̈-open and G is g̈-closed. Since G̈O(X)⊆GO(X)
and by hypothesis GO(X)⊆LC(X), S is locally closed. Then S=P∩Q, where P is open and Q is
closed. Therefore, A=P∩(Q∩G). By Corollary 2.10, Q∩G is g̈-closed and hence A∈G̈LC??(X). i.e.,
G̈LC(X)⊆G̈LC??(X). For any topological space, G̈LC??(X)⊆G̈LC(X) and so G̈LC(X)=G̈LC??(X).

Remark 3.35. The converse of Proposition 3.34 need not be true in general.
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For the topological space (X, τ) in Example 3.3, then G̈LC(X)=G̈LC??(X)={∅, {b}, {a, c}, X}.
But GO(X)={∅, {a}, {b}, {c}, {a, b}, {b, c}, X}*LC(X)={∅, {b}, {a, c}, X}.
Corollary 3.36. Let (X, τ) be a topological space. If ωO(X)⊆LC(X), then G̈LC(X) =G̈LC??(X).

Proof. It follows from the fact that ωO(X)⊆GO(X) and Proposition 3.34.

Remark 3.37. The converse of Corollary 3.36 need not be true in general.

For the topological space (X, τ) in Example 3.8, then G̈LC(X)=G̈LC??(X)={∅, {b}, {a,c}, X}.
But ωO(X)=P(X)*LC(X)={∅, {b}, {a, c}, X}.

The following results are characterizations of g̈-lc sets, g̈-lc? sets and g̈-lc?? sets.

Theorem 3.38. For a subset A of (X, τ) the following statements are equivalent:

1. A∈G̈LC(X),

2. A=S∩g̈-cl(A) for some g̈-open set S,

3. g̈-cl(A)−A is g̈-closed,

4. A∪(g̈-cl(A))c is g̈-open,

5. A⊆g̈-int(A∪(g̈-cl(A))c).

Proof. (1) ⇒ (2). Let A∈G̈LC(X). Then A=S∩G where S is g̈-open and G is g̈-closed. Since A⊆G,
g̈-cl(A)⊆G and so S∩g̈-cl(A)⊆A. Also A⊆S and A⊆g̈-cl(A) implies A⊆S∩g̈-cl(A) and therefore A=S∩g̈-
cl(A).

(2) ⇒ (3). A=S∩g̈-cl(A) implies g̈-cl(A)−A=g̈-cl(A)∩Sc which is g̈-closed since Sc is g̈-closed and
g̈-cl(A) is g̈-closed.

(3) ⇒ (4). A∪(g̈-cl(A))c=(g̈-cl(A)−A)c and by assumption, (g̈-cl(A)−A)c is g̈-open and so is
A∪(g̈-cl(A))c.

(4) ⇒ (5). By assumption, A∪(g̈-cl(A))c=g̈-int(A∪(g̈-cl(A))c) and hence A⊆g̈-int(A∪(g̈-cl(A))c).
(5) ⇒ (1). By assumption and since A⊆g̈-cl(A), A=g̈-int(A∪(g̈-cl(A))c)∩g̈-cl(A). Therefore,

A∈G̈LC(X).

Theorem 3.39. For a subset A of (X, τ), the following statements are equivalent:

1. A∈G̈LC?(X),

2. A=S∩cl(A) for some g̈-open set S,

3. cl(A)−A is g̈-closed,

4. A∪(cl(A))c is g̈-open.

Proof. (1) ⇒ (2). Let A∈G̈LC?(X). There exist an g̈-open set S and a closed set G such that A=S∩G.
Since A⊆S and A⊆cl(A), A⊆S∩cl(A). Also since cl(A)⊆G, S∩cl(A)⊆S∩G=A. Therefore A=S∩cl(A).

(2) ⇒ (1). Since S is g̈-open and cl(A) is a closed set, A=S∩cl(A)∈G̈LC?(X).
(2) ⇒ (3). Since cl(A)−A=cl(A)∩Sc, cl(A)−A is g̈-closed by Corollary 2.10.
(3) ⇒ (2). Let S=(cl(A)−A)c. Then by assumption S is g̈-open in (X, τ) and A=S∩cl(A).
(3) ⇒ (4). Let G=cl(A)−A. Then Gc=A∪(cl(A))c and A∪(cl(A))c is g̈-open.
(4) ⇒ (3). Let S=A∪(cl(A))c. Then Sc is g̈-closed and Sc=cl(A)−A and so cl(A)−A is g̈-closed.

Theorem 3.40. Let A be a subset of (X, τ). Then A∈G̈LC??(X) if and only if A=S∩g̈-cl(A) for
some open set S.

Proof. Let A∈G̈LC??(X). Then A=S∩G where S is open and G is g̈-closed. Since A⊆G, g̈-cl(A)⊆G.
We obtain A=A∩g̈-cl(A)=S∩G∩g̈-cl(A)=S∩g̈-cl(A).

Converse part is trivial.

Corollary 3.41. Let A be a subset of (X, τ). If A∈G̈LC??(X), then g̈-cl(A)−A is g̈-closed and
A∪(g̈-cl(A))c is g̈-open.

Proof. Let A∈G̈LC??(X). Then by Theorem 3.40, A=S∩g̈-cl(A) for some open set S and g̈-cl(A)−A=g̈-
cl(A)∩Sc is g̈-closed in (X, τ). If G=g̈-cl(A)−A, then Gc=A∪(g̈-cl(A))c and Gc is g̈-open and so is
A∪(g̈-cl(A))c.
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4 g̈-dense Sets and g̈-submaximal Spaces

We introduce the following definition.

Definition 4.1. A subset A of a space (X, τ) is called g̈-dense if g̈-cl(A)=X.

Example 4.2. Consider the topological space (X, τ) in Example 3.5. Then the set A={b, c} is g̈-dense
in (X, τ).

Proposition 4.3. Every g̈-dense set is dense.

Proof. Let A be an g̈-dense set in (X, τ). Then g̈-cl(A)=X. Since g̈-cl(A)⊆cl(A), we have cl(A)=X
and so A is dense.

The converse of Proposition 4.3 need not be true as can be seen from the following example.

Example 4.4. The set {a, c} in Example 3.5 is a dense in (X, τ) but it is not g̈-dense in (X, τ).

Definition 4.5. A topological space (X, τ) is called g̈-submaximal if every dense subset in it is g̈-open
in (X, τ).

Proposition 4.6. Every submaximal space is g̈-submaximal.

Proof. Let (X, τ) be a submximal space and A be a dense subset of (X, τ). Then A is open. But
every open set is g̈-open and so A is g̈-open. Therefore (X, τ) is g̈-submaximal.

The converse of Proposition 4.6 need not be true as can be seen from the following example.

Example 4.7. For the topological space (X, τ) of Example 3.5, every dense subset is g̈-open and hence
(X, τ) is g̈-submaximal. However, the set A={a, b} is dense in (X, τ), but it is not open in (X, τ).
Therefore (X, τ) is not submaximal.

Proposition 4.8. Every g̈-submaximal space is ω-submaximal.

Proof. Let (X, τ) be an g̈-submaximal space and A be a dense subset of (X, τ). Then A is g̈-open. But
every g̈-open set is ω-open [Remark 2.9 (5)] and so A is ω-open. Therefore is (X, τ) is ω-submaximal.

The converse of Proposition 4.8 need not be true as can be seen from the following example.

Example 4.9. Consider the topological space (X, τ) in Example 3.8. Then (X, τ) is ω-submaximal
but it is not g̈-submaximal, because the set A={b, c} is a dense set in (X, τ) but it is not g̈-open in
(X, τ).

Remark 4.10. From Propositions 4.6, 4.8 and Theorem 2.11, we have the following diagram:

submaximal −→ g̈-submaximal −→ ω-submaximal −→ g-submaximal
↓

rg-submaximal

Theorem 4.11. A space (X, τ) is g̈-submaximal if and only if P(X)=G̈LC?(X).

Proof. Necessity. Let A∈P(X) and let V=A∪(cl(A))c. This implies that cl(V)=cl(A)∪ (cl(A))c=X.
Hence cl(V)=X. Therefore V is a dense subset of X. Since (X, τ) is g̈-submaximal, V is g̈-open. Thus
A∪(cl(A))c is g̈-open and by Theorem 3.39, we have A∈G̈LC?(X).

Sufficiency. Let A be a dense subset of (X, τ). This implies A∪(cl(A))c=A∪Xc=A∪∅ =A. Now
A∈G̈LC∗(X) implies that A=A∪(cl(A))c is g̈-open by Theorem 3.39. Hence (X, τ) is g̈-submaximal.

Proposition 4.12. For subsets A and B in (X, τ), the following are true:

1. If A, B∈G̈LC(X), then A∩B∈G̈LC(X).

2. If A, B∈G̈LC?(X), then A∩B∈G̈LC?(X).

3. If A, B∈G̈LC??(X), then A∩B∈G̈LC??(X).

4. If A∈G̈LC(X) and B is g̈-open (resp. g̈-closed), then A∩B∈G̈LC(X).
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5. If A∈G̈LC?(X) and B is g̈-open (resp. closed), then A∩B∈G̈LC?(X).

6. If A∈G̈LC??(X) and B is g̈-closed (resp. open), then A∩B∈G̈LC??(X).

7. If A∈G̈LC?(X) and B is g̈-closed, then A∩B∈G̈LC(X).

8. If A∈G̈LC??(X) and B is g̈-open, then A∩B∈G̈LC(X).

9. If A∈G̈LC??(X) and B∈G̈LC?(X), then A∩B∈G̈LC(X).

Proof. By Remark 2.9 and Corollary 2.10., (1) to (8) hold.
(9). Let A=S∩G where S is open and G is g̈-closed and B=P∩Q where P is g̈-open and Q is closed.

Then A∩B=(S∩P)∩(G∩Q) where S∩P is g̈-open and G∩Q is g̈-closed, by Corollary 2.10. Therefore
A∩B∈G̈LC(X).

Remark 4.13. Union of two g̈-lc sets (resp. g̈-lc? sets, g̈-lc?? sets) need not be an g̈-lc set (resp. g̈-lc?

set, g̈-lc?? set) as can be seen from the following examples.

Example 4.14. Let X={a, b, c} with τ={∅, {a}, {a, b}, X}. Then G̈LC(X)={∅, {a}, {b}, {c}, {a,
b}, {b, c}, X}. Then the sets {a} and {c} are g̈-lc sets, but their union {a, c}/∈G̈LC(X).

Example 4.15. Let X={a, b, c} with τ ={∅, {b}, {a, b}, X}. Then G̈LC?(X)={∅, {a}, {b}, {c}, {a,
b}, {a, c}, X}. Then the sets {b} and {c} are g̈-lc? sets, but their union {b, c}/∈G̈LC?(X).

Example 4.16. Let X={a, b, c} with τ={∅, {b}, {b, c}, X}. Then G̈LC??(X)={∅, {a}, {b}, {c}, {a,
c}, {b, c}, X}. Then the sets {a} and {b} are g̈-lc?? sets, but their union {a, b}/∈G̈LC??(X).

We introduce the following definition.

Definition 4.17. Let A and B be subsets of (X, τ). Then A and B are said to be g̈-separated if
A∩g̈-cl(B)=∅ and g̈-cl(A)∩B=∅.
Example 4.18. For the topological space (X, τ) of Example 3.5. Let A={b} and let B={c}. Then
g̈-cl(A)={a, b} and g̈-cl(B)={a, c} and so the sets A and B are g̈-separated.

Proposition 4.19. For a topological space (X, τ), the followings are true:

1. Let A, B∈G̈LC(X). If A and B are g̈-separated then A∪B∈G̈LC(X).

2. Let A, B∈G̈LC?(X). If A and B are separated (i.e., A∩cl(B)=∅ and cl(A)∩B=∅), then A∪B∈G̈LC?(X).

3. Let A, B∈G̈LC??(X). If A and B are g̈-separated then A∪B∈G̈LC??(X).

Proof. (1) Since A, B∈G̈LC(X), by Theorem 3.38, there exist g̈-open sets U and V of (X, τ) such
that A=U∩g̈-cl(A) and B=V∩g̈-cl(B). Now G=U∩(X−g̈-cl(B)) and H=V∩(X−g̈-cl(A)) are g̈-open
subsets of (X, τ). Since A∩g̈-cl(B)=∅, A⊆(g̈-cl(B))c. Now A=U∩g̈-cl(A) becomes A∩(g̈-cl(B))c=G∩g̈-
cl(A). Then A=G∩g̈-cl(A). Similarly B=H∩g̈-cl(B). Moreover G∩g̈-cl(B)=∅ and H∩g̈-cl(A)=∅. Since
G and H are g̈-open sets of (X, τ), G∪H is g̈-open. Therefore A∪B=(G∪H)∩g̈-cl(A∪B) and hence
A∪B∈G̈LC(X).

(2) and (3) are similar to (1), using Theorems 3.39 and 3.40.

Remark 4.20. The assumption that A and B are g̈-separated in (1) of Proposition 4.19 cannot be
removed. In the topological space (X, τ) in Example 4.14, the sets {a} and {c} are not g̈-separated
and their union {a, c}/∈G̈LC(X).
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5 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are preserved under
continuous deformations including stretching and bending, but not tearing. By the middle of the 20th
century, topology had become a major branch of Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of qualitative prop-
erties of certain objects that are invariant under a certain kind of transformation especially those
properties that are invariant under a certain kind of equivalence and it is the study of those prop-
erties of geometric configurations which remain invariant when these configurations are subjected to
one-to-one bicontinuous transformations or homeomorphisms. Topology operates with more general
concepts than analysis. Differential properties of a given transformation are nonessential for topology
but bicontinuity is essential. As a consequence, topology is often suitable for the solution of problems
to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in Mathematics, we
have taken it up as a challenge and cherishingly worked out this research study. It can also further
up the understanding of basic structure of classical mathematics and offers new methods and results
in obtaining significant results of classical mathematics. Moreover it also has applications in some
important fields of Science and Technology.

In this paper we introduced and studied the classes of g̈-locally closed sets, g̈-lc? sets and g̈-lc??

sets which are weaker forms of the class of locally closed sets. Furthermore the relations with other
notions connected with the forms of locally closed sets are investigated.
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Abstract – The main purpose of this paper is to study some interesting properties of the soft mapping            

π : S(U)E → S(U)E which satisfy the condition πFB ⊂ πFD whenever FB ⊂ FD ⊂   ̃. A new class of 

generalized soft open sets, called soft π-open sets is introduced and studied their basic properties. A soft set 

FG ⊂   ̃ is said to be a soft π-open set iff FG ⊂ πFG. The notions of soft interior and soft closure are 

generalized using these sets. We then introduce the concepts of soft π-interior iπFG, soft π-closure cπFG, soft 

π*FG of a soft set FG ⊂   ̃. Under suitable conditions on π, the soft π-interior iπFG and the soft π-closure cπFG 

of a soft set FG ⊂   ̃ are easily obtained by explicit formulas. The soft μ-semi-open sets, soft μ-pre-open sets, 

soft μ-α-open sets and soft μ-β-open sets for a given Soft Generalized Topological Space (  ̃, μ) can be 

obtained from soft π-open sets which are important for further research on soft generalized topology. 
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1 Introduction 
 

The concept of soft set theory was introduced by Molodtsov [19] in 1999 as a mathematical 

tool for modeling uncertainties. Molodtsov successfully applied the soft set theory in 

several directions such as game theory, probability, Perron and Riemann Integration, theory 

of measurements [20]. Maji et al [17] and Naim Cagman et al. [5] have further modified 

the theory of soft sets which is similar to that of Molodtsov. After the introduction of the 

notion of soft sets, several researchers improved this concept. Cagman [6] presented the 

soft matrix theory and set up the maximum decision making method. D. Pei and D Miao 

[21] showed that soft sets are a class of special information systems. Babitha and Sunil [4] 

studied the soft set relation and discussed some related concepts. Kharal et al. [16] 

introduced soft functions over classes of soft sets. The notion of soft ideal is initiated for 
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the first time by Kandil et al. [13]. Feng et al. [9] worked on soft semi rings, soft ideals and 

idealistic soft semi rings. 

 

It is known that topology is an important area of mathematics, with many applications in 

the domain of computer science and physical sciences. Topological structure of soft sets 

was also studied by many researchers. Shabir and Naz [22] and Cagman [7] initiated the 

study of soft topology and soft topological spaces independently. Shabir and Naz defined 

soft topology on the collection of soft sets over an initial universe with a fixed set of 

parameters. On the other hand, Cagman et al. [7] introduced soft topology on a soft set and 

defined soft topological space. The notion of soft topology by Cagman is more general than 

that by Shabir and Naz. B Ahmad and S Hussain [1] explored the structures of soft 

topology using soft points. Weak forms of soft open sets were first studied by Chen [8]. He 

investigated soft semi-open sets in soft topological spaces and studied some properties of it. 

Arockiarani and Lancy [3] are defined soft β-open sets and continued to study weak forms 

of soft open sets in soft topological space. Akdag and Ozkan [2], defined soft α-open and 

soft α-closed sets in soft topological spaces and studied many important results and some 

properties of it. Soft pre-open sets were introduced by [3]. Kandil et al. [14] introduced a 

unification of some types of different kinds of subsets of soft topological spaces using the 

notion of γ-operations. Kandil et al. [15] generalize this unification of types of different 

kinds of subsets of soft topological spaces using the notion of γ-oprations to supra 

topological spaces. Soft generalized topology is relatively new and promising domain 

which can lead to the development of new mathematical models and innovative approaches 

that will significantly contribute to the solution of complex problems in engineering and 

environment. Jyothis and Sunil [10] introduced the notion of soft generalized topology 

(SGT) on a soft set and studied basic concepts of soft generalized topological spaces 

(SGTS). It is showed that a soft generalized topological space gives a parameterized family 

of generalized topological space. They also define and discuss the properties of soft 

generalized separation axioms which are important for further research on soft topology 

[12]. Jyothis and Sunil [11] introduced the concept of soft μ-compactness in soft 

generalized topological spaces as a generalization of compact spaces.  

 

This paper is organized as follows. In section 2, we begin with the basic definitions and 

important results related to soft set theory which are useful for subsequent sections. In 

section 3, the definitions and basic theorems of soft generalized topology on an initial soft 

set are given. Finally in section 4, we study some interesting properties of the soft mapping 

π : S(U)E → S(U)E which satisfy the condition πFB ⊂ πFD whenever FB ⊂ FD ⊂ F . We 

introduce the concept of soft π-open sets and study their basic properties. The most 

important special cases are obtained if μ is a SGT, iμ and cμ denote the soft μ-interior and 

soft μ-closure respectively, and π = cμiμ, π = iμcμ, π = iμcμiμ and π = cμiμcμ. The 

corresponding soft π-open sets are called the soft μ-semi-open sets, soft μ-pre-open sets, 

soft μ-α-open sets and soft μ-β-open sets. Under suitable conditions on π, the soft π-interior 

iπFG and the soft π-closure cπFG of a soft set FG ⊂ F  are easily obtained by explicit 

formulas. 

 

 

2 Preliminaries 
 

In this section we recall some definitions and results defined and discussed in [5, 10, 11, 

16]. Throughout this paper U denotes the initial universe, E denotes the set of all possible 

parameters,  (U) is the power set of U and A is a nonempty subset of E. 
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Definition 2.1. A soft set    on the universe U is defined by the set of ordered pairs 

                                , where           such that       = ∅ if e ∉ 

A. Here    is called an approximate function of the soft set   . The value of       may be 

arbitrary. Some of them may be empty, some may have nonempty intersection. The set of 

all soft sets over U with E as the parameter set will be denoted by S(U)E or simply S(U). 

Definition 2.2. Let     S(U). If       = ∅ for all e    E, then    is called an empty soft 

set, denoted by  ∅.       = ∅ means that there is no element in U related to the parameter e 

in E. Therefore we do not display such elements in the soft sets as it is meaningless to 

consider such parameters. 

Definition 2.3. Let     S(U). If       = U for all e    A, then    is called an A-universal 

soft set, denoted by   ̃. If A = E, then the A-universal soft set is called an universal soft set, 

denoted by   ̃. 

Definition 2.4. Let        S(U). Then    is a soft subset of    (or    is a soft superset of 

  ), denoted by      , if            , for all e    E. 

Definition 2.5. Let        S(U). Then    and     are soft equal, denoted by       , if 

           , for all e    E. 

Definition 2.6. Let        S(U). Then, the soft union of    and   , denoted by       , 

is defined by the approximate function                       . 

Definition 2.7. Let        S(U). Then, the soft intersection of    and   , denoted by 

      , is defined by the approximate function                       . 

Definition 2.8. Let        S(U). Then, the soft difference of    and   , denoted by 

      , is defined by the approximate function                       . 

Definition 2.9. Let     S(U). Then, the soft complement of   , denoted by     
 , is 

defined by the approximate function               
 , where        

  is the complement 

of the set      , that is,        
            for all e    E. 

Cleary      
          ∅ 

     ̃  and    ̃ 
    ∅. 

Definition 2.10. Let     S(U). The soft power set of   , denoted by  (   , is defined by 

           
      

          .  

Theorem 2.11. Let            S(U). Then, 

(1)           . 

(2)           . 

(3)      ∅     . 

(4)      ∅    ∅. 

(5)       ̃     ̃. 

(6)       ̃     . 

(7)         
     ̃. 

(8)         
    ∅. 

(9)                . 
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(10)                . 

(11)         
       

       
 . 

(12)         
       

       
 . 

(13)                             . 

(14)                             . 

(15)                                    . 

(16)                                    . 

Definition 2.12. [16] Let S(U)E and S(V)K be the families of all soft sets over U and V, 

respectively. Let   : U → V and   : E → K be two mappings. The soft mapping 

  : S(U)E → S(V)K 

is defined as: 

(1) Let    be a soft set in S(U)E. The image of    under the soft mapping    is the soft 

set over V, denoted by        and is defined by 

 

            {
⋃   (     )          if  

            ∅               

∅                               otherwise
   

 

for all    . 

 

(2) Let    be a soft set in S(V)K. The inverse image of    under the soft mapping    is 

the soft set over U, denoted by    
       and is defined by 

 

                 
           {

                              if         
∅                                       otherwise

              

 

for all    . 

 

The soft mapping    is called injective, if   and   are injective. The soft mapping    is 

called surjective, if   and   are surjective. 

The soft mapping from S(U)E to itself is denoted by  : S(U)E → S(U)E 

Definition 2.13. Let   : S(U)E → S(V)K and   : S(V)K → S(W)L, then the soft 

composition of the soft mappings    and   , denoted by        , is defined by         

              . 

 

 

3 Soft Generalized Topological Spaces 

 

Definition 3.1. [10] Let      S(U). A Soft Generalized Topology (SGT) on   , denoted by 

μ or    
 is a collection of soft subsets of    having the following properties: 

(1)  ∅    

(2) Any soft union of members of μ belongs to μ. 
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The pair        is called a Soft Generalized Topological Space (SGTS) 

Observe that      must not hold. 

Definition 3.2. [10] A soft generalized topology   on    is said to be strong if     .  

Definition 3.3. [10] Let        be a SGTS. Then, every element of μ is called a soft μ–

open set. 

Definition 3.4. [10] Let        be a SGTS and      . Then the collection    
     

           is called a Subspace Soft Generalized Topology (SSGT) on   . The pair 

       
  is called a Soft Generalized Topological Subspace (SGTSS) of   . 

Definition 3.5. [10] Let         be a SGTS and      . Then the soft μ-interior of    

denoted by        is defined as the soft union of all soft μ-open subsets of   . 

Note that        is the largest soft μ-open set that is contained in   . 

Theorem 3.6. [10] Let         be a SGTS and      . Then    is a soft μ-open set if and 

only if    =       . 

Theorem 3.7. [10] Let        be a SGTS and         . Then  

(1)                    

(2)                     

(3)                           

(4)                          

(5)          .  

Definition 3.8. [10] Let        be a SGTS and      . Then    is said to be a soft μ-

closed set if its soft complement     
  is a soft μ-open set.  

Theorem 3.9. [10] Let        be a SGTS and      . Then the following conditions 

hold: 

(1) The universal soft set   ̃ is soft μ–closed.  

(2) Arbitrary soft intersections of the soft μ–closed sets are soft μ–closed.  

Definition 3.10. [10] Let        be a SGTS and      . Then the soft μ-closure of   , 

denoted by        is defined as the soft intersection of all soft μ-closed super sets of   . 

Note that        is the smallest soft μ-closed superset of   . 

Theorem 3.11. [10] Let        be a SGTS and      .    is a soft μ-closed set if and 

only if    =       . 

Theorem 3.12. [10] Let         be a SGTS and      . Then                      

Theorem 3.13. [10] Let        be a SGTS and         . Then  

(1)                   

(2)                     

(3)                         
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(4)                         

 

 

4 Soft π-Open Sets 
 

Consider the soft mapping π : S(U)E → S(U)E possessing the property of monotony, i.e, FB 

⊂ FD imply πFB ⊂ πFD. We denote the collection of all soft mapping having this property 

by Π. Consider the following conditions for a soft mapping π   Π, FB ⊂ F   

(Π0) πF∅ = F∅ 

(Π1) πF  = F  

(Π2) π
2
FB = ππFB = πFB 

(Π3) FB ⊂ πFB,  

(Π4) πFB ⊂ FB,  

(Π5) π
2
FB ⊂ πFB,  

Example 4.1. The soft identity mapping id: S(U)E → S(U)E   (Π0), (Π1), (Π2), (Π3), (Π4).  

Let (F , μ) be a SGTS and iμ : S(U)E → S(U)E and cμ : S(U)E → S(U)E be the soft μ-interior 

and soft μ-closure operators respectively. If π = iμ, then π   (Π0), (Π2), (Π4). If π = cμ, then 

π   (Π1), (Π2), (Π3). 

Definition 4.2. A soft set FG ⊂ F  is said to be a soft π-open set iff FG ⊂ πFG. 

Example 4.3. The following are some examples of soft π-open sets: 

1. F∅ is always soft π-open for any π   Π 

2. F  is soft π-open iff π   (Π1) 

3. Every soft set of the form πFG is soft π-open if π   (Π2) 

4. Every soft subset of F  is soft π-open if π   (Π3) 

5. If π   (Π4), then FG is soft π-open iff FG = πFG 

Note: Let (F , μ) be a SGTS. Then FG is soft iμ-open (i.e, if π = iμ) iff FG ⊂ iμFG. But iμFG ⊂ 

FG. Thus FG is soft iμ-open iff FG = iμFG iff FG is soft μ-open by theorem 3.6. Hence soft iμ-

open set coincides with the soft μ-open sets. 

Theorem 4.4. Any soft union of soft π–open sets is soft π–open. 

Proof. Let {FBj}j J be a collection of soft π-open sets. i.e, FBj ⊂ πFBj ∀ j   J. Let FB = ⋃j  J 

FBj. Now FBj ⊂ FB imply πFBj ⊂ πFB ∀ j   J. Therefore FB = ⋃j  J FBj ⊂ ⋃j  J πFBj ⊂ πFB. 

i.e, FB ⊂ πFB. Hence FB is soft π-open.∎ 

Theorem 4.5. The collection of all soft π-open sets is a SGT. 

Theorem 4.6.  If μ is a SGT on F , then there is a soft mapping π   (Π0), (Π2), (Π4) such 

that μ is the collection of all soft π-open sets. 
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Proof. Define πFG to be the soft union of all FH   μ satisfying FH ⊂ FG. Then clearly πFG   

μ and πFG ⊂ FG, πF∅ = F∅. Now FH   μ   πFH = FH ⊃ FH so that the elements of μ are soft 

π-open, while FG ⊂ πFG   πFG = FG and FG   μ. Finally πFG   μ   ππFG = πFG.∎ 

Definition 4.7. Let FB ⊂ F . The soft union of all soft π-open subsets of the soft set FB is 

called the soft π-interior of FB, and is denoted by iπFB. 

Theorem 4.8.  The soft set iπFB is the largest soft π-open subset of FB. 

Note: Let (F , μ) be a SGTS and suppose π = iμ, then the soft set iiμFB is the largest soft iμ-

open  subset of FB. Since soft iμ-open sets are soft μ-open sets, iiμFB is the largest soft μ-

open subset of FB. Hence iiμ = iμ. 

Theorem 4.9.  For any π   Π and FB ⊂ F , 

i) iπF∅ = F∅ 

ii) iπFB = iπiπFB  

iii) iπFB ⊂ FB, and  

iv) iπF  = F  iff πF  = F  

 

i.e, iπ   (Π0), (Π2) and (Π4) for any π   Π; iπ   (Π1) iff π   (Π1) 

Conversely if π   (Π0), (Π2)and (Π4), then π = iπ. 

Proof. First show that iπ possess the property of monotony. Suppose FG ⊂ FH. By definition 

of iπ and by theorem 4.8, iπFG ⊂ FG and iπFH ⊂ FH. iπFH is the largest soft π-open subset of 

FH. Hence iπFG ⊂ iπFH. Clearly iπF∅ = F∅. i.e, iπ   (Π0). By definition 4.7, iπFG ⊂ FG for any 

FG ⊂ F . i.e, iπ   (Π4). By theorem 4.8, iπFG is soft π –open, so iπ(iπFG) = largest soft π-

open subset of iπFG = iπFG. i.e, iπ   (Π2). Again iπF  = largest soft π-open subset of F  = F  

⇔ F  is a soft π-open set ⇔ π   (Π1). 

Conversely, assume that π   (Π0), (Π2) and (Π4). π   (Π2)   π(πFG) = πFG   πFG is soft 

π-open. π   (Π4)   πFG ⊂ FG for any FG ⊂ F . Therefore πFG is a soft π-open subset of FG. 

Next if FH ⊂ FG is soft π-open, then FH ⊂ πFH ⊂ πFG. So πFG = largest soft π-open subset 

of FG. Hence iπ = π.∎ 

Theorem 4.10. A soft set FG is soft iπ-open iff FG = iπFG iff FG is soft π-open.  

Proof. iπ possess the property of monotony. i.e, if FG ⊂ FH, then iπFG ⊂ iπFH. Also iπFG ⊂ 

FG for any FG ⊂ F . Now FG is soft iπ-open iff FG ⊂ iπFG iff FG = iπFG iff FG is soft π-open 

by theorem 4.8.∎ 

Definition 4.11. A soft set FG ⊂ F  is soft π-closed iff its soft complement (FG)
c
 is soft π-

open.  

Note: 1) Since F∅ is always soft π-open, F  is always soft π-closed, for any π   Π   

          2) F∅ is soft π-closed iff F  is soft π-open iff π   (Π1) 

          3) If π   (Π3), every soft subset of F  is soft π-closed. 

Theorem 4.12. Any soft intersection of soft π-closed sets is soft π-closed.  
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Proof. Suppose {FGj}j J be a collection of soft π-closed sets. Then {(FGj)
c
}j J is a collection 

of soft π-open sets. By theorem 4.4, ⋃j J(FGj)
c
 is soft π-open    (⋂j JFGj)

c
 is soft π-open   

⋂j JFGj is soft π-closed.∎ 

Theorem 4.13. Let ξ be the collection of all soft π-closed sets. Then the following 

conditions hold. 

1. The universal soft set F    ξ. 

2. Arbitrary soft intersection of members of ξ belongs to ξ. 

Definition 4.14. The soft intersection of all soft π-closed supersets of FG is called the soft 

π-closure of FG and is denoted by cπFG. 

Theorem 4.15. The soft set cπFG is the smallest soft π-closed super set of FG.  

Note: Let (F , μ) be a SGTS and if π = iμ, then FG is soft iμ-closed set ⇔ (FG)
c
 is soft iμ-

open ⇔ (FG)
c
 is soft μ-open ⇔ FG is soft μ-closed. Hence soft iμ-closed sets coincides with 

the soft μ-closed ones and ciμ = cμ 

Definition 4.16. For any π   Π and FG ⊂ F , π*FG = [π(FG)
c
]

c
.     

Theorem 4.17. For any π   Π, the following conditions hold:  

π*   Π, (π*)* = π, π   (Π0) ⇔ π*   (Π1), π   (Π1) ⇔ π*   (Π0), π   (Π2) ⇔ π*   (Π2), 

π   (Π3) ⇔ π*   (Π4), (iπ)* = cπ.  

Proof . Assume that π   Π, i.e, if FG ⊂ FH, then πFG ⊂ πFH. Now FG ⊂ FH   (FG)
c
 ⊃ (FH)

c
 

  π(FG)
c
 ⊃ π(FH)

c
   (π(FG)

c
)
c
 ⊂ (π(FH)

c
)
c
   π*FG ⊂ π*FH. Hence π*   Π. π*FG = 

(π(FG)
c
)
c
. ∴ (π*)* FG = [π*(FG)

c
]

c
 = [(πFG)

c
]

c
 =πFG. Hence (π*)* = π. π   (Π0) ⇔ πF∅ = F∅ 

⇔ (πF∅)
c
 = F  ⇔ (π(F )

c
)
c
 = F  ⇔ π*F  = F  ⇔ π*   (Π1). π   (Π1) ⇔ πF  = F  ⇔ 

(πF )
c
 = F∅ ⇔ (π(F∅)

c
)
c
 = F∅ ⇔ π*F∅ = F∅ ⇔ π*   (Π0). π   (Π2) ⇔ π(π(FG)

c
) = π(FG)

c
 ⇔ 

[π(π(FG)
c
)]

c
 = [π(FG)

c
]

c
 ⇔ [π(π*FG)

c
]

c
= π*FG ⇔ π*(π*FG) = π*FG ⇔ π*   (Π2). π   (Π3) 

⇔ (FG)
c
 ⊂ π(FG)

c
 ⇔ FG ⊃ (π(FG)

c
)
c
 ⇔ FG ⊃ π*FG ⇔ π*   (Π4). (iπ)*FG = (iπ(FG)

c
)
c
. By 

theorem 4.8, iπ(FG)
c
 is the largest soft π-open subset of (FG)

c
. Hence its soft complement 

coincides with the smallest soft π-closed super set of FG. i.e, (iπ)*FG = cπFG for any FG ⊂ 

F . Hence (iπ)* = cπ.∎ 

Theorem 4.18. Let (F , μ) be a SGTS. Then (iμ)* = cμ.  

Proof. Take π = iμ and since iiμ = iμ, the proof follows from theorem 4.17.∎ 

Theorem 4.19. A soft set FG ⊂ F  is soft π*-closed ⇔ πFG ⊂ FG. 

Proof. FG is soft π*-closed ⇔ (FG)
c
 is soft π*-open ⇔ (FG)

c
 ⊂ π*(FG)

c ⇔ (FG)
c
 ⊂ (πFG)

c
 ⇔ 

πFG ⊂ FG.∎ 

Theorem 4.20. For any π   Π, cπ   (Π1), (Π2), (Π3); cπ   (Π0) iff π   (Π1). Conversely, if 

π   (Π1), (Π2), (Π3), then π = cπ*.  

Proof. Assume that FG ⊂ FH ⊂ F . By theorem 4.15, cπFH is the smallest soft π-closed 

super set of FH. But FH ⊃ FG. ∴ cπFH is a soft π-closed super set of FG. Again by theorem 
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4.15, cπFG is the smallest soft π-closed super set of FG. Hence cπFH ⊃ cπFG   cπ   Π. Since 

F  is a soft π-closed set, cπF  = F    cπ   (Π1). By theorem 4.15, cπFG is soft π-closed for 

any FG ⊂ F . Therefore cπ(cπFG) = cπFG   cπ   (Π2). By theorem 4.15, cπFG is the smallest 

soft π-closed super set of FG, cπFG ⊃ FG   cπ   (Π3). cπF∅ = F∅ ⇔ F∅ is soft π-closed set 

⇔ F  is soft π-open set ⇔ F  = πF . Hence cπ   (Π0) iff π   (Π1).  

Conversely, assume that π   (Π1), (Π2), (Π3). Since π   (Π2), π(πFG) = πFG   πFG is soft 

π*-closed by theorem 4.19. Since π   (Π3), πFG is soft π*-closed super set of FG, for any 

FG ⊂ F . If FH ⊃ FG is a soft π*-closed set, then by theorem 4.19, πFH ⊂ FH, so FH ⊃ πFH ⊃ 

πFG ⊃ FG. i.e, πFG is the smallest soft π*-closed super set of FG. Hence π = cπ*.∎ 

Theorem 4.21. Any soft set FG is soft iπ-closed iff FG = cπFG iff FG is soft π-closed. 

Proof. By theorem 4.9, iπ   Π. By theorem 4.17 and 4.19, FG is soft iπ-closed ⇔ FG is soft 

((iπ)*)*-closed ⇔ FG is soft (cπ)*-closed ⇔ cπFG ⊂ FG ⇔ cπFG = FG ⇔ FG is soft π-closed 

by theorem 4.15.∎ 

Theorem 4.22. If π1, π2   Π,  π2π1   Π. If π1 and π2   (Π0), (Π1), (Π3), (Π4), then π2π1   

(Π0), (Π1), (Π3), (Π4) and (π2π1)* = π2*π1*. 

Suppose the soft mappings θ, σ   (Π2). We will consider the soft mappings π that are the 

products of factors θ or σ. Only the products of alternating factors θ, σ need be taken into 

consideration. 

Theorem 4.23. If θ, σ   (Π2), θσFG ⊂ σFG, θσFG ⊂ σθσFG, and θFG ⊂ σθFG for any FG ⊂ 

F . Then π   (Π2) if π is a product of alternating factors θ and σ.  

Proof. Clearly π   Π by theorem 4.22. Since θσFG ⊂ σFG, θσ(θFG) ⊂ σ(θFG) and hence 

σθσθ(FG) ⊂ σθFG. Again since θσFG ⊂ σFG and θFG ⊂ σθFG, θFG ⊂ σθFG   θθFG ⊂ θσθFG 

  θFG ⊂ θσθFG   σθFG ⊂ σθσθFG. Hence σθσθ = σθ   σθ   (Π2). Since θσFG ⊂ σFG   

σθσFG ⊂ σσFG   σθσFG ⊂ σFG   θσθσFG ⊂ θσFG. Again θσFG ⊂ σθσFG   θθσFG ⊂ 

θσθσFG   θσFG ⊂ θσθσFG. Hence θσθσ = θσ   θσ   (Π2). Further, since θσθσ = θσ, 

(θσθ)(θσθ) = (θσθσ)θ = θσθ   θσθ   (Π2). (σθσ)(σθσ) =σ(θσθσ) = σθσ   σθσ   (Π2). 

(θσθσ)(θσθσ) = (θσ)(θσ)   θσθσ   (Π2). (σθσθ)(σθσθ) = σ(θσθσ)(θσθ) = σ(θσ)(θσθ) = 

σ(θσθσ)θ = σ(θσ)θ   σθσθ   (Π2). Again any alternating products of k  5 factors is equal 

to another such product of (k – 2) factor and the statement holds for it.∎ 

Theorem 4.24. If θ   (Π2), (Π4) and σ   (Π2), (Π3), then π   (Π2) if π is any product of 

the factors θ and σ. 

Proof. If θ   (Π2), (Π4) and σ   (Π2), (Π3), then θσFG ⊂ σFG, θσFG ⊂ σθσFG, and θFG ⊂ 

σθFG for any FG ⊂ F . The proof follows from theorem 4.23. 

Note: Let (F , μ) be a SGTS. Clearly the soft mappings θ = iμ   (Π2), (Π4) and σ = cμ   

(Π2), (Π3), so by theorem 4.24 any product of factor iμ and cμ is idempotent. In particular 

iμcμiμcμ = iμcμ and cμ iμcμ iμ = cμiμ so that any product of this kind is equal to one of the 

mappings iμ, cμ, iμcμ, cμiμ, iμcμiμ, cμiμcμ. 

Theorem 4.25. Let (F , μ) be a SGTS. Then the soft mappings iμ, cμ, iμcμ, cμiμ, iμcμiμ, cμiμcμ 

are all belong to (Π2). 
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Proof. Take π1 = iμ and π2 =cμ, where iμFG be the soft μ-interior of the soft set FG and cμFG 

be the soft μ-closure of the soft set FG w.r. t. the SGT μ. Clearly the soft mappings π1 = iμ   

(Π2), (Π4) and π2 = cμ (Π2), (Π3). So by theorem 4.24, the soft mappings iμ, cμ, iμcμ, cμiμ, 

iμcμiμ, cμiμcμ are all belong to (Π2)∎ 

Definition 4.26. Let (F , μ) be a SGTS. Then a soft set FG ⊂ F  is said to be a soft μ-semi-

open set iff FG ⊂ cμiμFG (i.e, the case when π = cμiμ). The class of all soft μ-semi-open sets 

is denoted by δ(μ) or δμ. 

Definition 4.27. Let (F , μ) be a SGTS. Then a soft set FG ⊂ F  is said to be a soft μ-pre-

open set iff FG ⊂ iμcμFG (i.e, the case when π = iμcμ). The class of all soft μ-pre-open sets is 

denoted by ρ(μ) or ρμ. 

Definition 4.28. Let (F , μ) be a SGTS. Then a soft set FG ⊂ F  is said to be a soft μ-α-

open set iff FG ⊂ iμcμiμFG (i.e, the case when π = iμcμiμ). The class of all soft μ-α-open set is 

denoted by α(μ) or αμ. 

Definition 4.29. Let (F , μ) be a SGTS. Then a soft set FG ⊂ F  is said to be a soft μ-β-

open sets iff FG ⊂ cμiμcμFG (i.e, the case when π = cμiμcμ). The class of all soft μ-β-open set 

is denoted by β(μ) or βμ.  

Example 4.30. Let U = {h1, h2, h3}, E = {e1, e2} and μ = {F∅, FA, F } where FA = {(e1, 

{h3}), (e2, {h1})}. Then (F , μ) is a SGTS. The Soft set FG = {(e1, {h1, h3}), (e2, {h1})} is a 

soft μ-semi-open sets 

Example 4.31. Let U = {h1, h2, h3}, E = {e1, e2} and μ = {F∅, FB, F } where FB = {(e1, {h1, 

h2}), (e2, {h1, h3})}. Then (F , μ) is a SGTS. The Soft sets FG = {(e1, {h2, h3}), (e2, {h2})}, 

FH = {(e1, {h1, h3}), (e2, {h2})} are soft μ-pre-open sets 

Example 4.32. Let U = {h1, h2, h3}, E = {e1, e2} and μ = {F∅, FD, F } where FD = {(e1, 

{h1}), (e2, {h2})}. Then (F , μ) is a SGTS. The Soft set FG = {(e1, {h1, h2}), (e2, {h2})} is a 

soft μ-α-open sets 

Example 4.33. Let U = {h1, h2, h3, h4}, E = {e1} and μ = {F∅, FP, FQ, FR, FS, F } where FP 

= {(e1, {h4})}, FQ = {(e1, {h1})}, FR = {(e1, {h1, h4})}, FS = {(e1, {h1, h3, h4})}. Then (F , μ) 

is a SGTS. The Soft set FG = {(e1, {h3, h4})} is a soft μ-β-open sets 

Theorem 4.34. Let (F , μ) be a SGTS. Then δμ, ρμ, αμ and βμ are SGT’s.  

Proof. Follows from theorem 4.5.∎ 

Now consider the soft mappings π   (Π5) 

Theorem 4.35. If π   Π, then every soft π-open set is soft π
n
–open and πFG ⊂ π

n
FG for n   

N.  

Proof. Suppose FG is soft π-open. Then FG ⊂ πFG. Now FG ⊂ πFG   π
m

FG ⊂ π
m+1

FG   FG 

⊂ πFG ⊂ π
n
FG   FG is soft π

n
–open.∎  

Theorem 4.36. If π   (Π5), then π
n
FG ⊂ πFG and soft π-open sets and soft π

n
–open sets 

coincide, n   N. 
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Proof. Suppose π   (Π5), then π
2
FG ⊂ πFG  π

m+1
FG ⊂ π

m
FG and π

n
FG ⊂ πFG. Hence by 

theorem 4.35, πFG = π
n
FG. Threfore soft π-open sets and soft π

n
–open sets coincide.∎ 

Theorem 4.37. If θ, σ   (Π5) satisfies θσFG ⊂ σFG, then any product of factors θ and σ 

belong to (Π5). If both θ and σ occur among the factors of a product of this kind, then 

(1) soft θπ′σ-open   soft θσ-open 

(2) soft θπ′θ-open   soft θσθ-open 

(3) soft σπ′θ-open   soft σθ-open 

(4) soft σπ′σ-open   soft σθσ-open  

The converse implication is true if no factor θ is immediately followed by another such 

factor. 

Proof. Since θ, σ   (Π5), by theorem 4.36, we have θ
n
FG ⊂ θFG  and σ

n
FG ⊂ σFG for n   N 

and since θσFG ⊂ σFG, (θσ)
n
FG ⊂ σ

n
FG ⊂ σFG. ∴ θ

n
θ

n
FG ⊂ θθ

n
FG ⊂ θ

2
θ

n-1
FG ⊂ θθ

n-1
FG ⊂ 

θ
n
FG. Hence π   (Π5) if π = θ

n
.  Suppose π is a product of factors θ and σ, containing 

atleast one factor σ.  Then π can be written in the form π1σπ2, where π1 and π2 (may be 

empty) are products of factors θ and σ. Then ππFG = π1σπ2π1σπ2FG. Since θ
n
FG ⊂ θFG, σ

n
FG 

⊂ σFG and (θσ)
n
FG ⊂ σFG, in the product σπ2π1σ, each group of factors θ

p
 can be replaced 

by θ, each group of factors σ
q
 can be replaced by σ, and then (θσ)

r
 can be replaced by σ. 

Therefore ππFG = π1σπ2π1σπ2FG  ⊂ π1σσπ2FG ⊂ π1σπ2FG = πFG. Hence π   (Π5). 

Consider (1). Suppose FG is soft θπ′σ-open, where π′ is any product of both the factors θ 

and σ. Then FG ⊂ θπ′σFG, Now consider the product θπ′σ, by theorem 4.36, each group of 

factors θ
p
 can be replaced by θ and each group of factors σ

q
 can be replaced by σ, so we can 

write θπ′σFG ⊂ (θσ)
n
FG. ∴ FG ⊂ θπ′σFG ⊂ (θσ)

n
FG = θσ(θσ)

n-1
FG ⊂ θσσ

n-1
FG ⊂ θσ

n
FG ⊂ 

θσFG for a suitable n   N. Hence FG is soft θσ-open. Conversely suppose that FG is soft θσ-

open and no factor θ is followed by another one in π = θπ′σ. Then FG ⊂ θσFG   FG ⊂ 

(θσ)
m

FG by theorem 4.35, where m is the number of the factors σ in the product π. Apply 

the condition θσFG ⊂ σFG repeatedly, then it is easy to show that (θσ)
m

FG ⊂ θπ′σFG. Hence 

FG is soft θπ′σ-open. 

Consider (2). Suppose FG is soft θπ′θ-open, where π′ is any product of both the factors θ 

and σ. Then FG ⊂ θπ′θFG. By theorem 4.36, we can write θπ′θFG ⊂ (θσ)
k
θFG. Since (θσ)

n
FG 

⊂ θσFG, (θσ)
k
θFG ⊂ θσθFG. Hence FG ⊂ θσθFG   FG is soft θσθ-open. Conversely assume 

that FG is soft θσθ-open and no factor θ is followed by another one in π = θπ′θ. Then FG ⊂ 

θσθFG   (θσ)
j
θFG ⊂ (θσ)

j
θθσθFG ⊂ (θσ)

j
θσθFG = (θσ)

j+1
θFG for j   N. i.e, FG ⊂ θσθFG ⊂ 

(θσ)
j+1
θFG and as above θσθFG ⊂ (θσ)

m
θFG ⊂ θπ′θFG by the repeated application of the 

condition θσFG ⊂ σFG. Hence FG is soft θπ′θ-open. 

Consider (3). Suppose FG is soft σπ′θ-open, where π′ is any product of both the factors θ 

and σ. Then FG ⊂ σπ′θFG. Since (θσ)
n
FG ⊂ θσFG and σθ   (Π5), we can write σπ′θFG ⊂ 

(σθ)
k
FG = σ(θσ)

k-1
θFG ⊂ σ(θσ)θFG ⊂ σθFG for some k   N. Hence FG ⊂ σθFG   FG is soft 

σθ-open. Conversely assume that FG is soft σθ-open and no factor θ is followed by another 

one in π = σπ′θ. Then FG ⊂ σθFG   FG ⊂ (σθ)
m

FG, by theorem 4.35. Since θσFG ⊂ σFG, it 

is easy to show that (σθ)
m

FG ⊂ σπ′θFG. Hence FG ⊂ σπ′θFG   FG is soft σπ′θ-open.  

Consider (4).  Suppose FG is soft σπ′σ-open, then FG ⊂ σπ′σFG. Since (σθ)
k
FG ⊂ σθFG, we 

can write σπ′σFG ⊂ (σθ)
k
σFG ⊂ σθσFG. Thus FG ⊂ σπ′σFG   FG ⊂ σθσFG   FG is soft 

σθσ-open. Conversely assume that FG is soft σθσ-open and no factor θ is followed by 
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another one in π = σπ′σ. Then FG ⊂ σθσFG   (σθ)
j
σFG ⊂ (σθ)

j
σσθσFG ⊂ (σθ)

j
σθσFG = 

(σθ)
j+1
σFG. Hence σθσFG ⊂ (σθ)

m-1
σFG. Since θσFG ⊂ σFG, it is easy to show that (σθ)

m-

1
σFG ⊂ σπ′σFG. Hence FG ⊂ σπ′σFG   FG is soft σπ′σ-open.∎ 

Theorem 4.38. If θ   (Π4) and σ   (Π5) then the statements of theorem 4.37 are valid; 

moreover, soft θσθ–open ⇔ (soft θσ-open and soft σθ–open)   (soft θσ-open or soft σθ-

open)   soft σθσ-open   soft σ-open. 

Proof. If θ   (Π4), then θFG ⊂ FG   θθFG ⊂ θFG   θ   (Π5) and also θσFG ⊂ σFG. Now 

the hypotheses of theorem 4.37 are fulfilled. Further, θσ(θFG) ⊂ θσFG and θ(σθFG) ⊂ σθFG; 

i.e FG is soft θσθ–open   FG ⊂ θσθFG ⊂ θσFG and FG ⊂ θσθFG ⊂ σθFG   FG is both soft 

θσ-open and soft σθ–open. Conversely assume that FG is both soft θσ-open and soft σθ-

open. Then FG ⊂ θσFG and FG ⊂ σθFG   FG ⊂ θσFG ∩ σθFG   FG ⊂ θσFG ⊂ θσ(σθFG) ⊂ 

θσθFG   FG is soft θσθ–open. Again, FG is soft θσ-open or soft σθ-open   FG ⊂ θσFG or 

FG ⊂ σθFG   FG ⊂ θσθσFG or FG ⊂ σθσθFG respectively. Hence FG ⊂ σθσFG by θ   (Π4) 

  FG is soft σθσ-open. And FG is soft σθσ-open   FG ⊂ σθσFG ⊂ σFG by θ   (Π4) and σ   

(Π5)   FG is soft σ-open.∎ 

Note: Let (F , μ) be a SGTS. Then we can say that a soft set FG is soft iμcμiμ–open iff it is 

both soft iμcμ–open and soft cμiμ–open. 

Theorem 4.39. If π   (Π5) and FG is soft π-open then cπ*FG = πFG. 

Proof. Since π   (Π5), ππFG ⊂ πFG   πFG is soft π*-closed by theorem 4.19. If FH ⊃ FG is 

soft π*-closed, then FH ⊃ πFH ⊃ πFG. Hence πFG ⊃ FG is the smallest soft π*-closed super 

set of FG. Hence cπ*FG = πFG.∎ 

Theorem 4.40. For any π   Π and FG ⊂ F , we have iπFG ⊂ FG ∩ πFG. 

Proof. Suppose FH ⊂ FG is soft π-open. Then FH ⊂ πFH ⊂ πFG so that FH ⊂ FG ∩ πFG. 

Hence iπFG ⊂ FG ∩ πFG.∎ 

Theorem 4.41. Let (F , μ) be a SGTS and if π = cμiμ or π = iμcμiμ, then iπFG = FG ∩ πFG for 

any FG ⊂ F .  

Proof. Clearly iμFG ⊂ cμiμFG for FG ⊂ F  and iμFG ⊂ cμiμFG   iμiμFG ⊂ iμcμiμFG   iμFG⊂ 

iμcμiμFG. Therefore iμFG ⊂ FG ∩ cμiμFG and iμFG ⊂ FG ∩ iμcμiμFG. Hence iμiμFG ⊂ iμ(FG ∩ 

cμiμFG) and iμiμFG ⊂ iμ(FG ∩ iμcμiμFG). i.e, iμ FG ⊂ iμ(FG ∩ cμiμFG) and iμFG ⊂ iμ(FG ∩ 

iμcμiμFG). Therefore cμiμFG ⊂ cμiμ(FG ∩ cμiμFG) and iμcμiμFG ⊂ iμcμiμ(FG ∩ iμcμiμFG). Hence 

FG ∩ cμiμFG ⊂ cμiμ(FG ∩ cμiμFG) and FG ∩ iμ cμiμFG ⊂ iμcμiμ(FG ∩ iμcμiμFG). ie, FG ∩ πFG ⊂ 

π(FG∩ πFG) for π = cμiμ or π = iμcμiμ. i.e, FG ∩ πFG is soft π-open for π = cμiμ or π = iμcμiμ. 

Thus FG ∩ πFG ⊂ iπFG in these two cases. But by theorem 4.40, iπFG ⊂ FG ∩ πFG. Hence 

iπFG = FG ∩ πFG for π = cμiμ or π = iμcμiμ.∎ 

Theorem 4.42. For π   Π and FG ⊂ F , iπFG = FG ∩ πFG for FG ⊂ F  is true iff cπFG = FG   

π*FG.  

Proof. Suppose iπFG = FG ∩ πFG is true. Then by theorem 4.17, cπFG = (iπ)*FG = [iπ(FG)
c
]

c
 = 

[(FG)
c
 ∩ π(FG)

c
]

c
 = FG   [π(FG)

c
]

c
 = FG   π*FG. Conversely, suppose that cπFG = FG   

π*FG. Then iπFG = (cπ)*FG = [cπ(FG)
c
]

c
 = [FG

c
   π*(FG)

c
]

c
 = FG ∩ [π*(FG)

c
]
c
 = FG ∩ πFG, by 

theorem 4.17.∎ 
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Theorem 4.43. Let (F , ) be a SGTS. Then cπFG = FG   π*FG is true if π = ci  or π = 

ici.  

Proof. The proof follows from theorem 4.41 and 4.42. 

 

Conclusion 
 

In the present work, we mainly study some interesting properties of the soft mapping π : 

S(U)E → S(U)E which satisfy the condition πFB ⊂ πFD whenever FB ⊂ FD ⊂ F . The 

concept of soft π-open set is introduced and established some of their properties. The 

notions of soft interior and soft closure are generalized using these sets and under suitable 

conditions on π, the soft π-interior iπFG and the soft π-closure cπFG of a soft set FG ⊂ F  are 

easily obtained by explicit formulas. We expect that results in this paper will be a basis for 

applications of soft π-open sets in soft set theory and will promote the further study on soft 

generalized topology to carry out general frame work for the applications in practical life. 
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Abstract − In this paper, the notions of IΛg -closed sets and IΛg -open sets are introduced. Charac-
terizations and properties of such notions are obtained. Suitable examples are given to substantiate
each established notions.

Keywords − Topological space, open set, λ-closed set, Λg-closed set, Ig-closed set, Iπg-closed set,
ideal.

1 Introduction and Preliminaries

In 1986, Maki [12] introduced the notion of Λ-sets in topological spaces. A Λ-set is a set A which is
equal to its kernel (= saturated set) i.e to the intersection of all open supersets of A. Arenas et al [1]
introduced and investigated the notion of λ-closed sets by involving Λ-sets and closed sets.

The notion of closed set is fundamental in the study of topological spaces. In 1970, Levine [11]
introduced the concept of generalized closed sets in a topological space by comparing the closure of
a subset with its open supersets. He defined a subset A of a topological space X to be generalized
closed (briefly, g-closed) if cl(A) ⊆ U whenever A ⊆ U and U is open. This notion has been studied
extensively in recent years by many topologists. After advent of g-closed sets, many generalizations of
g-closed sets are being introduced and investigated by modern topologists.

An ideal on a set X is a non empty collection of subsets of X with heredity property which is
also closed under finite unions. Quite Recently, Jafari and Rajesh [8] have introduced and studied the
notion of generalized closed (g-closed) sets with respect to an ideal. Many generalizations of g-closed
sets are being introduced and investigated by modern researchers. One among them is Λg-closed sets
which were introduced by Caldas et al [2]. In this paper, we introduce and investigate the concept of
Λg-closed sets with respect to an ideal.

Indeed ideals are very important tools in General Topology. It was the works of Newcomb [13],
Rancin [14], Samuels [16] and Hamlett and Jankovic (see [4, 5, 6, 7, 9]) which motivated the research in
applying topological ideals to generalize the most basic properties in General Topology. A nonempty

**Edited by Rodyna A. Hosny and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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collection I of subsets on a topological space (X, τ) is called a topological ideal [10] if it satisfies the
following two conditions:

1. If A ∈ I and B ⊆ A implies B ∈ I (heredity)

2. If A ∈ I and B ∈ I, then A ∪ B ∈ I (finite additivity)

If A is a subset of a topological space (X, τ), cl(A) and int(A) denote the closure of A and the interior
of A, respectively. Let A ⊆ B ⊆ X. Then clB(A) (resp. intB(A)) denotes closure of A (resp. interior
of A) with respect to B.

In this paper, we introduce and study the concept of Λg-closed sets with respect to an ideal, which
is the extension of the concept of Λg-closed sets.

The following Definitions, Result, Lemma and Remarks are useful in the sequel.

Definition 1.1. A subset A of a topological space (X, τ) is called regular open [17] if A = int(cl(A)).

Definition 1.2. The finite union of regular open sets is called π-open [18]. The complement of π-open
set is called π-closed [18].

Definition 1.3. A subset A of a topological space (X, τ) is called

1. λ-closed [1] if A = L ∩ D, where L is a Λ-set and D is a closed set.

2. λ-open [1] if its complement is λ-closed.

3. Λg-closed [2] if cl(A)⊆U whenever A⊆U and U is λ-open.

4. π-generalized closed (briefly, πg-closed) [3] if cl(A) ⊆ U whenever A ⊆ U and U is π-open.

Definition 1.4. Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to be
generalized closed with respect to an ideal (briefly Ig-closed) [8] if and only if cl(A)−B ∈ I, whenever
A ⊆ B and B is open.

Result 1.5. For a subset of a topological space, the following properties hold:

1. Every closed set is Λg-closed but not conversely [2].

2. Every Λg-closed set is g-closed but not conversely [2].

3. Every closed set is λ-closed but not conversely [1, 2].

Remark 1.6. [8] Every g-closed set is Ig-closed but not conversely.

Definition 1.7. [15] Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is
said to be π-generalized closed with respect to an ideal (briefly Iπg-closed) if and only if cl(A)−B ∈ I,
whenever A ⊆ B and B is π-open.

Remark 1.8. [15] For several subsets defined above, we have the following implications.

Ig-closed set −→ Iπg-closed set
↑ ↑

closed set −→ g-closed set −→ πg-closed set

The reverse implications are not true.

Lemma 1.9. [1] Let Ai(i ∈ I) be subsets of a topological space (X, τ). The following properties hold:

1. If Ai is λ-closed for each i ∈ I, then ∩i∈IAi is λ-closed.

2. If Ai is λ-open for each i ∈ I, then ∪i∈IAi is λ-open.

Recall that the intersection of a λ-closed set and a closed set is λ-closed.

Definition 1.10. [2] A function f : (X, τ) → (Y, σ) is called λ-irresolute if the inverse image of
λ-open set of Y is λ-open in X.
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2 Λg-Closed Sets with Respect to an Ideal

Definition 2.1. Let (X, τ) be a topological space and I be an ideal on X. A subset A of X is said to
be Λg-closed with respect to an ideal (briefly IΛg -closed) if and only if cl(A)−B ∈ I, whenever A ⊆ B
and B is λ-open.

Remark 2.2. Every Λg-closed set is IΛg -closed, but the converse need not be true, as this may be seen
from the following Example.

Example 2.3. Let X = {a, b, c}, τ = {φ, X, {a, c}} and I = {φ, {b}}. Then {a} is IΛg
-closed but

not Λg-closed.

The following Theorem gives a characterization of IΛg
-closed sets.

Theorem 2.4. A set A is IΛg -closed in (X, τ) if and only if F ⊆ cl(A)−A and F is λ-closed in X
implies F ∈ I.
Proof. Assume that A is IΛg -closed. Let F ⊆ cl(A)−A. Suppose F is λ-closed. Then A ⊆ X−F. By
our assumption, cl(A)−(X−F) ∈ I. But F ⊆ cl(A)−(X−F) and hence F ∈ I.

Conversely, assume that F ⊆ cl(A)−A and F is λ-closed in X implies that F ∈ I. Suppose A ⊆ U
and U is λ-open. Then cl(A)−U = cl(A) ∩ (X−U) is a λ-closed set in X, that is contained in cl(A)−A.
By assumption, cl(A)−U ∈ I. This implies that A is IΛg -closed.

Theorem 2.5. If A and B are IΛg -closed sets of (X, τ), then their union A ∪ B is also IΛg -closed.

Proof. Suppose A and B are IΛg -closed sets in (X, τ). If A ∪ B ⊆ U and U is λ-open, then A ⊆ U
and B ⊆ U. By assumption, cl(A)−U ∈ I and cl(B)−U ∈ I and hence cl(A ∪ B)−U = (cl(A)−U) ∪
(cl(B)−U) ∈ I. That is A ∪ B is IΛg -closed.

Remark 2.6. The intersection of two IΛg -closed sets need not be an IΛg -closed as shown by the
following Example.

Example 2.7. Let X = {a, b, c, d}, τ = {φ, X, {a}, {d}, {a, d}} and I = {φ, {c}}. Then A = {a,
b} and B = {a, c} are IΛg -closed but their intersection A ∩ B = {a} is not IΛg -closed.

Remark 2.8. Every IΛg -closed set is Ig-closed but not conversely.

Example 2.9. Let X = {a, b, c}, τ = {φ, X, {b}, {b, c}} and I = {φ}. Then {a, b} is Ig-closed but
not IΛg -closed.

Remark 2.10. For several subsets defined above, we have the following implications.

IΛg -closed set −→ Ig-closed set −→ Iπg-closed set
↑ ↑ ↑

closed set −→ Λg-closed set −→ g-closed set −→ πg-closed set

The reverse implications are not true.

Theorem 2.11. If A is IΛg -closed and A ⊆ B ⊆ cl(A) in (X, τ), then B is IΛg -closed in (X, τ).

Proof. Suppose A is IΛg -closed and A ⊆ B ⊆ cl(A) in (X, τ). Suppose B ⊆ U and U is λ-open. Then
A ⊆ U. Since A is IΛg -closed, we have cl(A)−U ∈ I. Now B ⊆ cl(A). This implies that cl(B)−U ⊆
cl(A)−U ∈ I. Hence B is IΛg -closed in (X, τ).

Theorem 2.12. Let A ⊆ Y ⊆ X and suppose that A is IΛg -closed in (X, τ). Then A is IΛg -closed
relative to the subspace Y of X, with respect to the ideal IY = {F ⊆ Y : F ∈ I}.
Proof. Suppose A ⊆ U ∩ Y and U is λ-open in (X, τ), then A ⊆ U. Since A is IΛg -closed in (X, τ),
we have cl(A)−U ∈ I. Now (cl(A) ∩ Y)−(U∩Y) = (cl(A)−U) ∩ Y ∈ I, whenever A ⊆ U ∩ Y and U
is λ-open. Hence A is IΛg -closed relative to the subspace Y.

Theorem 2.13. Let A be an IΛg -closed set and F be a closed set in (X, τ), then A ∩ F is an IΛg -closed
set in (X, τ).
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Proof. Let A ∩ F ⊆ U and U is λ-open. Then A ⊆ U ∪ (X−F). Since A is IΛg
-closed, we have

cl(A)−(U ∪ (X−F)) ∈ I. Now, cl(A ∩ F) ⊆ cl(A) ∩ F = (cl(A) ∩ F)−(X−F). Therefore, cl(A ∩ F)−U
⊆ (cl(A) ∩ F)−(U ∩ (X−F)) ⊆ cl(A)−(U ∪ (X−F)) ∈ I. Hence A ∩ F is IΛg -closed in (X, τ).

Definition 2.14. Let (X, τ) be a topological space and I be an ideal on X. A subset A ⊆ X is said to
be Λg-open with respect to an ideal (briefly IΛg -open) if and only if X−A is IΛg -closed.

Theorem 2.15. A set A is IΛg
-open in (X, τ) if and only if F−U ⊆ int(A), for some U ∈ I, whenever

F ⊆ A and F is λ-closed.

Proof. Suppose A is IΛg -open. Suppose F ⊆ A and F is λ-closed. We have X−A ⊆ X−F. By
assumption, cl(X−A) ⊆ (X−F) ∪ U, for some U ∈ I. This implies X−((X−F) ∪ U) ⊆ X− (cl(X−A))
and hence F−U ⊆ int(A).

Conversely, assume that F ⊆ A and F is λ-closed. Then F−U ⊆ int(A), for some U ∈ I. Con-
sider an λ-open set G such that X−A ⊆ G. Then X−G ⊆ A. By assumption, (X−G)−U ⊆ int(A) =
X−cl(X−A). This gives that X−(G ∪ U) ⊆ X−cl(X−A). Then, cl(X−A) ⊆ G ∪ U, for some U ∈ I.
This shows that cl(X−A)−G ∈ I. Hence X−A is IΛg

-closed.

Recall that the sets A and B are said to be separated if cl(A) ∩ B = φ and A ∩ cl(B) = φ.

Theorem 2.16. If A and B are separated IΛg -open sets in (X, τ), then A ∪ B is IΛg -open.

Proof. Suppose A and B are separated IΛg -open sets in (X, τ) and F be a λ-closed subset of A ∪
B. Then F ∩ cl(A) ⊆ (A ∪ B) ∩ cl(A) = (A ∩ cl(A)) ∪ (B ∩ cl(A)) = A ∪ φ = A and F ∩ cl(B) ⊆
(A ∪ B) ∩ cl(B) = (A ∩ cl(B)) ∪ (B ∩ cl(B)) = φ ∪ B = B. By assumption and by Theorem 2.15,
(F ∩ cl(A))−U1 ⊆ int(A) and (F ∩ cl(B))−U2 ⊆ int(B), for some U1, U2 ∈ I. It means that ((F ∩
cl(A))−int(A)) ∈ I and ((F ∩ cl(B))−int(B)) ∈ I. Then ((F ∩ cl(A))−int(A)) ∪ ((F ∩ cl(B))−int(B))
∈ I. Hence (F ∩ (cl(A) ∪ cl(B))−(int(A) ∪ int(B))) ∈ I. But F = F ∩ (A ∪ B) ⊆ F ∩ cl(A ∪ B),
and we have F−int(A ∪ B) ⊆ (F ∩ cl(A ∪ B))−int(A ∪ B) ⊆ (F ∩ cl(A ∪ B))−(int(A) ∪ int(B)) ∈
I. Hence, F−U ⊆ int(A ∪ B), for some U ∈ I. This proves that A ∪ B is IΛg -open.

Corollary 2.17. Let A and B be IΛg -closed sets and suppose X−A and X−B are separated in (X, τ).
Then A ∩ B is IΛg -closed.

Corollary 2.18. If A and B are IΛg -open sets in (X, τ), then A ∩ B is IΛg -open.

Proof. If A and B are IΛg -open, then X−A and X−B are IΛg -closed. By Theorem 2.5, X−(A ∩ B) is
IΛg -closed, which implies A ∩ B is IΛg -open.

Theorem 2.19. If int(A) ⊆ B ⊆ A and A is IΛg -open in (X, τ), then B is IΛg -open in X.

Proof. Suppose int(A) ⊆ B ⊆ A and A is IΛg -open. Then X−A ⊆ X−B ⊆ cl(X−A) and X−A is
IΛg -closed. By Theorem 2.11, X−B is IΛg -closed and hence B is IΛg -open.

Theorem 2.20. Let (X, τ) be a topological space. Then a set A is IΛg -closed in X if and only if
cl(A)−A is IΛg -open in X.

Proof. Necessity: Suppose F ⊆ cl(A)−A and F be λ-closed. Then by Theorem 2.4, F ∈ I. This
implies that F−U = φ, for some U ∈ I. Clearly, F−U ⊆ int(cl(A)−A). By Theorem 2.15, cl(A)−A is
IΛg -open.

Sufficiency: Suppose A ⊆ G and G is λ-open in (X, τ). Then cl(A) ∩ (X−G) ⊆ cl(A) ∩ (X−A) =
cl(A)−A. By hypothesis and by Theorem 2.15, (cl(A) ∩ (X−G))−U ⊆ int(cl(A)−A) = φ, for some U
∈ I. This implies that cl(A) ∩ (X−G) ⊆ U ∈ I and hence cl(A)−G ∈ I. Thus, A is IΛg -closed.

Theorem 2.21. Let f : (X, τ) → (Y, σ) be λ-irresolute and closed. If A ⊆ X is IΛg -closed in X,
then f(A) is f(I)Λg -closed in (Y, σ), where f(I) = {f(U) : U ∈ I}.
Proof. Suppose A ⊆ X and A is IΛg -closed. Suppose f(A) ⊆ G and G is λ-open in Y. Then A ⊆
f−1(G). By definition, cl(A)−f−1(G) ∈ I and hence f(cl(A))−G ∈ f(I). Since f is closed, cl(f(A)) ⊆
cl(f(cl(A))) = f(cl(A)). Then cl(f(A))−G ⊆ f(cl(A))−G ∈ f(I) and hence f(A) is f(I)Λg -closed in Y.
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3 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are preserved under
continuous deformations including stretching and bending, but not tearing. By the middle of the 20th
century, topology had become a major branch of Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of qualitative prop-
erties of certain objects that are invariant under a certain kind of transformation especially those
properties that are invariant under a certain kind of equivalence and it is the study of those prop-
erties of geometric configurations which remain invariant when these configurations are subjected to
one-to-one bicontinuous transformations or homeomorphisms. Topology operates with more general
concepts than analysis. Differential properties of a given transformation are nonessential for topology
but bicontinuity is essential. As a consequence, topology is often suitable for the solution of problems
to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in Mathematics, we
have taken it up as a challenge and cherishingly worked out this research study. It can also further
up the understanding of basic structure of classical mathematics and offers new methods and results
in obtaining significant results of classical mathematics. Moreover it also has applications in some
important fields of Science and Technology.

In this paper, the notions of IΛg -closed sets and IΛg -open sets are introduced. Furthermore the
relations with other notions connected with the notions of IΛg -closed sets and IΛg -open are investi-
gated.

References

[1] F. G. Arenas, J. Dontchev and M. Ganster, On λ-sets and dual of generalized continuity, Questions
Answer Gen. Topology, 15(1997), 3-13.

[2] M. Caldas, S. Jafari and T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math.
Hungar., 118(4)(2008), 337-343.

[3] J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar.,
89(3)(2000), 211-219.

[4] T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita., (7),
4-B(1990), 849-861.

[5] T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll. Un. Mat.
Ita., 7(1990), 863-874.

[6] T. R. Hamlett and D. Jankovic, Ideals in General Topology and Applications (Midletown, CT,
1988), Lecture Notes in Pure and Appl. Math. Dekker, New York, (1990), 115-125.

[7] T. R. Hamlett and D. Jankovic, Compatible extensions of ideals, Boll. Un. Mat. Ita., 7(1992),
453-465.

[8] S. Jafari and N. Rajesh, Generalized closed sets with respect to an ideal, European J. Pure Appl.
Math., 4(2)(2011), 147-151.

[9] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Month.,
97(1990), 295-310.

[10] K. Kuratowski, Topologies I, Warszawa, 1933.

[11] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo., 19(2)(1970), 89-96.

[12] H. Maki, Generalized Λ-sets and the associated closure operator, The special issue in commemo-
ration of Prof. Kazusada IKEDA’ Retirement, 1. Oct. (1986), 139-146.

[13] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D Dissertation, Univ. Cal.
at Santa Barbara, 1967.

[14] D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13(1972), 193-197.



Journal of New Theory 5 (2015) 67-72 72

[15] O. Ravi, M. Suresh and A. Pandi, π-Generalized closed sets with respect to an ideal, International
Journal of Current Research in Science and Technology, Accepted.

[16] P. Samuels, A topology from a given topology and ideal, J. London Math. Soc., (2)(10)(1975),
409-416.

[17] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math.
Soc., 41(1937), 375-481.

[18] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad.
Nauk. SSSR, 178(1968), 778-779.



http://www.newtheory.org ISSN: 2149-1402

Received : 21.05.2015 Year : 2015, Number : 5 , Pages: 72-79
Accepted : 25.06.2015 Original Article**

FUZZY ALMOST CONTRA

θ-SEMIGENERALIZED-CONTINUOUS

FUNCTIONS

Md. Hanif Page* <hanif01@yahoo.com>

Department of Mathematics, B.V.B College of Engineering and Technology, Hubli-580031,Karnataka
State, India.

Abstract − The aim of this paper is to introduce new notion of the fuzzy almost contra θ-semigeneralized-
continuous functions using fuzzy θ-semigeneralized-closed set and to investigate properties and rela-
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1 Introduction

The concept of fuzzy sets due to Zadeh [10] naturally plays important role in the study of fuzzy
topological space which has been introduced by Chang [2]. In 2013, Zabidin Salleh et al introduced
and studied the notion of θ-semi-generalized-closed sets in fuzzy topological spaces. Ekici and Kerre
[4] introduced the concept of fuzzy contra continuous functions. The purpose of this paper is to
introduce the forms of fuzzy almost contra θsg-continuous functions and to investigate properties and
relationships of fuzzy functions. We have also defined fuzzy θsg-compact and fuzzy θsg-connected
spaces.

2 Preliminary

Throughout this paper X be a set and I the unit interval. A fuzzy set in X is an element of the set
of all functions from X to I. The family of all fuzzy sets in X is denoted by IX . A fuzzy singleton xα is
a fuzzy set in X define by xα(x) = α, xα(y) = 0 for all y 6= x, x ∈ (0, 1]. The set of all fuzzy singletons
in X is denoted by S(X). For every xα ∈ S(X) and µ ∈ IX , we define xα ∈ µ if and only if xα ≤ µ(x).
The members of τ are called fuzzy open sets and their complements are fuzzy closed sets. Spaces (X, τ)
and (Y, σ)(or simply, X and Y) always mean fuzzy topological spaces in the sense of Chang [2]. By 1X

and 0X , we mean fuzzy sets with constant function 1 (unit function) and 0 (zero function), respectively.

**Edited by P. G. Patil and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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For a fuzzy set µ of X, fuzzy closure and fuzzy interior of µ denoted by cl(µ) and int(µ), respec-
tively. The operators fuzzy closure and fuzzy interior are defined by cl(µ) = ∧{λ : λ ≥ µ, 1 − µ ∈ τ}
where λ is fuzzy closed set in X and intµ = ∧{η : η ≤ µ, η ∈ τ [9] where η is fuzzy open set in X. Fuzzy
semi-closure [9] of µ denoted by scl(µ) = ∧{η : µ ≤ η, η ∈ FSC(X)} and fuzzy θ-closure of µ denoted
by clθ = ∧{cl(η) : µ ≤ η, η ∈ τ}[3]. θ-semi-generalized closed set in fuzzy topology is introduced by
Z.Salleh et al [8].

Definition 2.1. A subset A of a space X is called
(1) Fuzzy semi-open(briefly, Fs-open) set [1] if A ≤ cl(int(A)).
(2) Fuzzy semi-closed (briefly, Fs-closed)set[1] if int(cl(A)) ≤ A.
(3) Fuzzy regular closed [1] if cl(int(A)) = A and fuzzy regular open if int(cl(A)) = A. The family of all
fuzzy semi open and fuzzy semi closed sets in X will be denoted by FSO(X)and FSC(X), respectively.

Definition 2.2. [8] Let X be a fuzzy topological space and µ be a fuzzy set of X. Then the operators
semi-θ-closure of µ denoted by sclθ(µ) and fuzzy semi-θ-interior of µ is denoted by sintθ(µ) are defined
as follows,

sclθ(µ) = ∧{scl(η) : µ ≤ η, η ∈ FSO(X)},
sintθ(µ) = ∨{sint(η) : µ ≥ η, η ∈ FSC(X)}.
Definition 2.3. A fuzzy set µ in X is called
(1) fuzzy θ-generalized closed [3] (briefly, f-θg-closed set) if clθ(µ) ≤ η whenever µ ≤ η and η is fuzzy
open
(2)fuzzy θ-semigeneralized-closed set [8] (briefly, f-θsg-closed set) if sclθ(µ) ≤ η whenever µ ≤ η and
η is fuzzy semiopen. The coplement of fuzzy θ-semi-generalized-closed set is fuzzy θ-semi-generalized-
open set (briefly, f-θsg-open set). The family of all Fθsg-closed sets in X are denoted by FθSGC(X)and
The family of all f-θsg-open sets in X are denoted by FθSGO(X)

Definition 2.4. [8] A function f : X → Y is said to be
(1) fuzzy θ-semi-generalized continuous(briefly, f-θsg-continuous) if f−1(λ) is f-θsg-closed in X for each
fuzzy semi-closed set λ in Y.
(2)fuzzy θ-semi-generalized irresolute(briefly, f-θsg-irresolute) if f−1(λ) is f-θsg-closed in X for each
f-θsg-closed set λ in Y.
(3) fuzzy θ-semi-generalized open(briefly, f-θsg-open) if f(λ) of Y and for each f-θsg-open in Y for
every fuzzy semi-open set λ in X.

3 Fuzzy Almost Contra θ-Semigeneralized-Continuous

Functions

In this section, the notion of fuzzy almost contra θsg-continuous functions via f-θsg-closed set is intro-
duced.

Definition 3.1. Let X and Y be fuzzy topological spaces. A fuzzy function f : X → Y is said to
be fuzzy almost θ-semigeneralized-continuous (briefly, fuzzy almost contra θsg-continuous) if inverse
image of each fuzzy regular open set in Y is f-θsg-closed in X.

Example 3.2. Let X = Y = {a, b, c}. A, B, C are fuzzy sets of X defined as A(a) =0, A(b) = 1, A(c)
= 0, B(a) = 0, B(b)= 0, B(c)= 1 and C(a)=0, C(b)=1, C(c)=1 and D be a fuzzy set of Y defined as
D(a)=1, D(b)=0, D(c)=0. Then τ = {0, 1, A, B,C}and µ = {0, 1, D} be fuzzy toplogies on sets X and
Y respectively. The identity function f : X → Y is fuzzy almost contra-θsg-continuous fucntion.

Theorem 3.3. For a function f : X → Y , the following statements are equivalent:
(i) f is fuzzy almost contra θsg-continuous.
(ii) For every fuzzy regular closed set µ in Y, f−1(µ) is f-θsg-open.
(iii) For each x ∈ X and each fuzzy regular closed set λ in Y containing f(x), there exists a f-θsg-open
set η in X containing x such that f(η) ≤ λ.
(iv) For each x ∈ X and fuzzy regular open set µ in Y containing f(x), there exists a f-θsg-open set ω
in X containing x such that f−1(µ) ≤ ω.
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Proof:(i) ⇒ (ii). Let µ be a fuzzy regular closed set in Y, then Y-µ is fuzzy regular open set in Y.
By (i) f−1(Y − µ) = X − f−1(µ) is f-θsg-closed set in X. This implies that f−1(µ) is f-θsg-open set in
X. Therefore (ii) holds.
(ii) ⇒ (i). Let G be a fuzzy regular open set of Y. Then Y-G be a fuzzy regular closed set in Y. By
(ii) f−1(Y −G) is f-θsg-open set in X. This implies that X − f−1(G) is f-θsg-open in X, which implies
f−1(G) is f-θsg-closed set in X. Therefore (i) holds.
(ii) ⇒ (iii). Let λ be a fuzzy regular closed set of Y containing f(x). By (ii) f−1(λ) is f-θsg-open set
in X and x ∈ f−1(λ). Take η = f−1(λ). Then f(η) ≤ λ.
(iii) ⇒ (ii). Let λ be a fuzzy regular closed set of Y and x ∈ f−1(λ). From (iii), there exists a
f-θsg-open set η in X containing x suxh that η ≤ f−1(λ). We have f−1(λ) = ∨x∈f−1(λ)η. Thus f−1(λ)
is f-θsg-open set in X.
(iii) ⇒ (iv). Let µ be a fuzzy regular open set in Y not containing f(x). Then and 1 − µ is a fuzzy
regular closed set containing f(x). By (iii), there exists a f-θsg-open set η in X containing x suxh that
f(η) ≤ 1−µ. Hence η ≤ f−1(1−µ) ≤ 1−f−1(µ) and then f−1(µ) ≤ 1−η. Take ω = 1−η. Therefore
we obtain that ω is a f-θsg-open set in X not containing x. The converse can be be shown easily.

Theorem 3.4. Let f : X → Y be a function and let g : X → X × Y be the fuzzy graph function of f
defined by g(x∈) = (x∈, f(x∈)) for every x∈ ∈ X. If g is fuzzy almost contra θsg-continuous, then f is
fuzzy almost contra θsg-continuous.

Proof: Let µ be a fuzzy regular closed set in Y, then X×µ is fuzzy regular closed set in X×Y . Since
g is fuzzy almost contra θsg-continuous, then f−1(µ) = g−1(X ×µ) is f-θsg-open in X. Thus, f is fuzzy
almost contra θsg-continuous.

Definition 3.5. A fuzzy filter base Λ is said to be fuzzy θsg-convergent to a fuzzy singleton x∈ in X
if for any f-θsg-open set µ in X containing x∈, there exists a fuzzy set η ∈ Λ such that η ≤ µ.

Definition 3.6. A fuzzy filter base Λ is said to be fuzzy rc-convergent[5] to a fuzzy singleton x∈ in X
if for any fuzzy regular closed set µ in X containing x∈, there exists a fuzzy set η ∈ Λ such that η ≤ µ.

Theorem 3.7. If a function f : X → Y is fuzzy almost contra θsg-continuous, then for each fuzzy
singleton x∈ ∈ X and each filter base Λ in X fuzzy θsg-converging to x∈, the fuzzy filter base f(Λ) is
fuzzy rc-convergent to f(x∈).

Proof: Let x∈ ∈ X and Λ be any fuzzy filter base in fuzzy θsg-converging to x∈. Since f is fuzzy
almost contra θsg-continuous, then for any fuzzy regular closed set λ in Y containing f(x∈), there
exists a Fθsg-open set µ ∈ X containing x∈ such that f(µ) ≤ λ. Since Λ is fuzzy θsg-converging to
x∈, there exists a A ∈ Λ such that A ≤ µ. This means that f(A) ≤ µ and therefore the fuzzy filter
base f(Λ) is fuzzy rc-convergent to f(x∈).

4 Fuzzy θ-Semigeneralized-Connectedness

In this section we introduce fuzzy θ-semigeneralized-connected (briefly, FTSGO-connected) and fuzzy
θ-semigeneralized-normal spaces.

Definition 4.1. A fuzzy topological space X is called Fuzzy θ-semigeneralized-connected(briefly,FTSGO-
Connected) if X is not the union of two disjoint nonempty f-θsg-open sets.

Definition 4.2. A fuzzy topological space X is called fuzzy connected [7] if X is not the union of two
disjoint nonempty fuzzy open sets.

Theorem 4.3. If f : X → Y is fuzzy almost contra θsg-continuous surjection and X is FTSGO-
connected, then Y is fuzzy connected.

Proof:Suppose Y is not fuzzy connected. Then there exist nonempty disjoint fuzzy open sets µ1 and
µ2 such that Y = µ1 ∧ µ2. Therefore,µ1 and µ2 are fuzzy clopen in Y. Since f is fuzzy almost contra
θsg-continuous , f−1(µ1) and f−1(µ2) are f-θsg-open in in X. Moreover, f−1(µ1) and f−1(µ2) are
nonempty disjoint and X = f−1(µ1) ∧ f−1(µ2). This shows that X is not FTSGO-connected. This
contradicts the fact that Y is not Fuzzy connected assumed. Hence Y is fuzzy connected.
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Definition 4.4. A fuzzy space X is said to be fuzzy θsg-normal (briefly,f-θsg-normal)if every pair of
nonempty disjoint fuzzy closed sets can be separated by disjoint f-θsg-open sets.

Definition 4.5. A fuzzy space X is said to be fuzzy strongly θsg-normal if every pair of nonempty
disjoint fuzzy closed sets A and B there exist disjoint f-θsg-open sets U and V such that A ≤ U , B ≤ V
and cl(A) ∧ cl(B) = φ.

Theorem 4.6. If Y is fuzzy strongly θsg-normal and f : X → Y is fuzzy almost contra θsg-continuous
closed surjection, then X is f-θsg-normal.

Proof:Let A and B be disjoint nonempty fuzzy closed sets of X. Since f is injective and closed, f(A) and
f(B) are disjoint fuzzy closed sets. Since Y is fuzzy strongly θsg-normal, then there exist f-θsg-open
sets U and V such that f(A) ≤ U and f(B) ≤ V and cl(A) ∧ cl(B) = φ. Then, since cl(A) and
cl(B) are regular closed and f is fuzzy almost contra θsg-continuous, f−1(cl(A)) and f−1(cl(B)) are
f-θsg-open sets. Since, U ≤ f−1(cl(A)) , V ≤ f−1(cl(B)) and f−1(cl(A)) and f−1(cl(B)) are disjoint,
X is f-θsg-normal.

Definition 4.7. A fuzzy space X is said to be fuzzy θsg−T1 if for each pair of distinct fuzzy singletons
x and y in X, there exist f-θsg-open sets U and V containing x and y respectively, such that y /∈ U and
x /∈ V .

Definition 4.8. A fuzzy space X is said to be fuzzy θsg − T2 if for each pair of distinct fuzzy points
x and y in X, there exist f-θsg-open set U containing x and f-θsg-open set V containinig y such that
U ∧ V = φ.

Theorem 4.9. If f : X → Y is a fuzzy almost contra θsg-continuous injection and Y is fuzzy Urysohn,
then X is fuzzy θsg − T2.

Proof:Let Y is fuzzy Urysohn. By the injectivity of f, it follows that f(x) 6= f(y) for any distinct
fuzzy singletons x and y in X. Since Y is fuzzy Urysohn, then there exist fuzzy open sets U and V such
that f(x) ∈ U and f(y) ∈ V and cl(U)∧cl(V ) = φ. Since f is fuzzy almost contra θsg-continuous, then
there exist fuzzy open sets W and Z in X containing x and y, respectively, such that f(W ) ≤ cl(U)
and f(Z) ≤ cl(V ). Hence W ∧ Z = φ. This shows that X is fuzzy θsg − T2.

Definition 4.10. A fuzzy space X is said to be fuzzy weakly T2 [5] if each element of X is an intersection
of fuzzy regular closed sets.

Theorem 4.11. If f : X → Y is a fuzzy almost contra θsg-continuous injection and Y is fuzzy weakly
T2, then X is fuzzy θsg − T1.

Proof:Suppose that Y is fuzzy weakly T2. For any distinct points x and y in X, there exist fuzzy
regular closed sets U , V in Y such that f(x) ∈ U, f(y) /∈ U , f(x) /∈ V and f(y) ∈ V . Since f is fuzzy
almost contra θsg-continuous , by Theorem 3.2(ii), f−1(U) and f−1(V ) are f-θsg-open subsets of X
such that x ∈ f−1(U), y /∈ f−1(U) and x /∈ f−1(V ), y ∈ f−1(V ). This shows that X is fuzzy θsg − T1.

Definition 4.12. The fuzzy graph G(f) of a fuzzy function f : X → Y is said to be fuzzy strongly
contra-θsg-closed if for each (x, y) ∈ (X × Y ) - G(f), there exist a f-θsg-open set U in x containing x
and a fuzzy regular closed set V in Y containing y, such that (U × V ) ∧G(f) = φ.

Lemma 4.13. The following properties are equivalent for the fuzzy graph G(f) of a fuzzy fuction f:
(i) G(f) is fuzzy strongly contra-θsg-closed.
(ii) For each (x, y) ∈ (X×Y )-G(f), there exist a f-θsg-open set U in X containing x and a fuzzy regular
closed set V containing y such that f(U) ∧ V = φ.

Theorem 4.14. If f : X → Y is fuzzy almost contra θsg-continuous and Y is fuzzy Urysohn, G(f) is
fuzzy strongly contra-θsg-closed set in X × Y .

Proof:Let Y is fuzzy Urysohn. Let (x, y) ∈ (X × Y ) G(f). It follows that f(x) 6= y. Sinc Y is fuzzy
Urysohn, then there exist fuzzy open sets U and V such that f(x) ∈ U, y ∈ V and cl(U) ∧ cl(V ) = φ.
Since f is fuzzy almost contra θsg-continuous, then there exists a f-θsg-open set µ in X containing x
such that f(µ) ≤ cl(U). Therefore, f(µ) ∧ cl(V ) = φ and G(f) is fuzzy strongly contra-θsg-closed in
X × Y .
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Theorem 4.15. Let f : X → Y is fuzzy strongly contra-θsg-closed graph. If f is injective, then X is
fuzzy θsg − T1.

Proof: Let x and y be any two distinct points of X. Then, we have (x, f(y)) ∈ (X × Y )-G(f). By
Lemma 4.13, there exist a f-θsg-open set µ containing x and a fuzyy regular closed set η in Y containing
f(y) such that f(µ) ∧ η = φ;hence µ ∧ f−1(η) = φ. Therefore, we have y /∈ µ. This implies that X is
fuzzy θsg − T1.

5 Fuzzy Weakly Almost Contra-θ-Semigeralized-

Continuous Functions

In this section, Fuzzy weakly almost contra-θ-semigeneralized-continuous function is introduced. The
relationships between fuzzy almost contra-θsg-continuous functions and other forms are investigated.
Also introduced the concept of Fuzzy θ-semigeneralized-compact (briefly, FTSGO-Compact)space.

Definition 5.1. A function f : X → Y is called fuzzy weakly almost contra-θsg-continuous if for each
x ∈ X and each fuzzy regular closed set η of Y containing f(x), there exists f-θsg-open set µ in X
containing x, such that int(f(µ)) ≤ η.

Definition 5.2. A function f : X → Y is called fuzzy(θsg,s)-open if the image of each f-θsg-open set
is Fs-open.

Theorem 5.3. If a function f : X → Y is fuzzy weakly almost contra-θsg-continuous and fuzzy
(θsg,s)-open, then f is fuzzy almost contra-θsg-continuous.

Proof: Let x ∈ X and η be a fuzzy regular closed set containing f(x). Since f is fuzzy weakly almost
contra-θsg-continuous, there exists a f-θsg-open set µ in X containig x such that int(f(µ)) ≤ η. Since
f is fuzzy (θsg, s)-open, f(µ) is a Fs-open set in Y and f(µ) ≤ cl(int(f(µ))) ≤ η. This shows that f is
fuzzy almost contra-θsg-continuous.

Definition 5.4 (5). A fuzzy space is said to be fuzzy PΣ if for any fuzzy open set µ of X and each
xΣ ∈ mu, there exists fuzzy regular closed set ρ containing x∈ such that x∈ ∈ ρ ≤ µ.

Theorem 5.5. Let f : X → Y ba a fuzzy function. Then, if f is fuzzy almost contra-θsg-continuous
and Y is fuzzy PΣ, then f is fuzzy almost contra-θsg-continuous.

Proof: Let µ be a fuzzy ope set in Y. Since Y is fuzzy PΣ, there exists a family Ψ whose members are
fuzzy regular closed set of Y such that µ = ∧{ρ : ρ ∈ Ψ}. Since f is fuzzy almost contra-θsg-continuous,
f−1(ρ) is f-θsg-open in X for each ρ ∈ Ψ and f−1(µ) is f-θsg-open in X. Therefore, f is fuzzy almost
contra-θsg-continuous.

Definition 5.6 (5). A fuzzy space is said to be fuzzy weakly PΣ if for any fuzzy regular open set µ of
X and each xΣ ∈ mu, there exists fuzzy regular closed set ρ containing x∈ such that x∈ ∈ ρ ≤ µ.

Definition 5.7. A function f : X → Y is said to be fuzzy almost θsg-continuous at x∈ ∈ µ if
for each fuzzy open set η containing f(x∈), there exists a f-θsg-open set µ containing x∈ such that
f(µ) ≤ int(cl(η)).

Theorem 5.8. Let f : X → Y be a fuzzy almost contra-θsg-continuous function. If Y is fuzzy weakly
PΣ, then f is fuzzy almost θsg-continuous.

Proof: Let µ be any fuzzy regular open set of Y. Since Y is fuzzy weakly PΣ, there exists a family Ψ
whose members are fuzzy regular closed set of Y such that µ = ∧{ρ : ρ ∈ Ψ}. Since f is fuzzy almost
contra-θsg-continuous, f−1(µ) is f-θsg-open in X. Hence, f is fuzzy almost θsg-continuous.

Theorem 5.9. Let X, Y, Z be fuzzy topological spaces and let f : X → Y and g : Y → Z be fuzzy
functions. If f is fuzzy θsg-irresolute and g is fuzzy almost contra-θsg-continuous, then g ◦ f : X → Z
is a fuzzy almost contra-θsg-continuous function.



Journal of New Theory 5 (2015) 72-79 78

Proof: Let µ ≤ Z be any fuzzy regular closed set and let (g ◦ f)(x∈) ∈ µ. Then g(f(x∈)) ∈ µ. Since g
is fuzzy almost contra-θsg-continuous fuction, it follows that there exists a f-θsg-open set ρ containing
f(x∈) such that g(ρ) ≤ µ. Since f is fuzzy θsg-irresolute fuction, it follows that there exists a f-θsg-open
set η containiing x∈ such that f(η) ≤ ρ. From here we obtain that (g ◦ f)(η) = g(f(η)) ≤ g(ρ) ≤ µ.
Thus we have shown that g ◦ f is fuzzy almost contra-θsg-continuous function.

Theorem 5.10. If f : X → Y is a surjective fuzzy θsg-open function and g : Y → Z is a fuzzy
function such that g ◦ f : X → Z is fuzzy almost contra-θsg-continuous, then g is fuzzy almost
contra-θsg-continuous.

Proof: Suppose that x∈ is a fuzzy singleton in X. Let η be regular closed set in Z containing (g◦f)(x∈.
Then there exists a f-θsg-open set µ in X containing x∈ such that g(f(µ)) ≤ η. Since f is f-θsg-open,
f(µ) is a f-θsg-open set in Y containing f(x∈) such that g(f(µ)) ≤ η. This implies that g is fuzzy
almost contra-θsg-continuous.

Corollary 5.11. If f : X → Y be a surjective f-θsg-irresolute and f-θsg-open function and let g : Y →
Z is a fuzzy function. Then g ◦ f : X → Z is fuzzy almost contra-θsg-continuous if and only if g is
fuzzy almost contra-θsg-continuous.

Proof: It can be obtained from Theorem 5.9 and Theorem 5.10.

Definition 5.12. A space X is said to be fuzzy θsg-compact(briefly, FTSGO-Compact) if every f-θsg-
open cover of X has a finite subcover.

Definition 5.13. A space X is said to be fuzzy θsg-closed-compact if every f-θsg-closed cover of X
has a finite subcover.

Definition 5.14 (6). A space X is said to be fuzzy nearly compact if every fuzzy regular open cover
of X has a finite subcover.

Theorem 5.15. The fuzzy almost contra-θsg-continuous images of fuzzy θsg-closed-compact spaces
are fuzzy nearly compact.

Proof: Suppose that f : X → Y is a fuzzy almost contra-θsg-continuous surjection. Let {ηi : i ∈ I} be
any fuzzy regular open cover of Y. Since f is fuzzy almost contra-θsg-continuous, then

{
f−1(ηi) : i ∈ I

}
uzzy is a f-θsg-closed cover of X. Since X is fuzzy θsg-closed-compact, there exists a finite subset Io of
I such that X = ∧{

f−1(ηi) : i ∈ Io

}
. Thus, we have Y = ∧{ηi : i ∈ Io} and Y is nearly compact.
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Abstract - In this paper, we first present the concept of Q- intuitionistic fuzzy soft sets which combine Q- 

intuitionistic fuzzy sets and soft sets. Basic properties are introduced along with illustrative examples. We 

also define its basic operations, namely equality, subset, complement, union, intersection, AND and OR, and 

study some related properties with supporting proofs. This concept is a generalization of Q-fuzzy soft sets. 

 

Keywords - Intuitionistic fuzzy sets, Q-intuitionistic fuzzy sets, Q-intuitionistic fuzzy soft sets. 

 

 

1. Introduction  
 

The concept of fuzzy sets was introduced by Zadeh [10] whose basic component is only a 

degree of membership. Atanassov [7] generalized this idea to intuitionistic fuzzy set (IFS in 

short) using a degree of membership and a degree of non-membership, under the constraint 

that the sum of the two degrees does not exceed one. The conception of IFS can be viewed 

as an appropriate /alternative approach in case where available information is not sufficient 

to define the impreciseness by the conventional fuzzy set. The idea of “intuitionistic Q-

fuzzy set” was first published by Atanassov [8], as a generalization of the notion of fuzzy 

set. 

 

In many fields, such as economics, engineering, environment, involve data that contain 

uncertainties. To understand and manipulate the uncertainties, there are many approaches 

such as probability theory, fuzzy set theory [10], intuitionistic fuzzy sets [7], rough set 

theory [20], etc. Each of these theories has its own difficulties as pointed out in [1]. To 

address these difficulties, Molodtsov[1] introduced the concept of soft set as a new 

mathematical tool for dealing with uncertainties that is free from difficulties. The main 

advantage of soft set theory in data analysis is that it does not need any grade of 

membership as in the fuzzy set theory. In soft set theory there is no limited condition to the 

description of the objects; so researchers can choose the form of parameter they need which 

greatly simplifies the decision making process and make the process more efficient in the 
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absence of partial information. After Molodtsov’s work, Maji et al.[14] introduced the 

concept of fuzzy soft set, a more generalized concept, which is a combination of fuzzy set 

and soft set and studied its properties and also discussed their properties. Also, Maji et 

al.[15] devoted the concept of intuitionistic fuzzy soft sets by combining intuitionistic 

fuzzy sets with soft sets.By using this definition of  intuitionistic fuzzy  soft  sets  many  

interesting  applications  of  soft  set theory  have  been  expanded  by  some  researchers 

[9, 11, 12 , 13, 16, 17,18]. Recently Adam et al. [5] defined a new concept called Q-fuzzy 

soft set which combine Q-fuzzy set and soft set. The same authors introduced the concept 

of multi Q-fuzzy set and a multi Q-fuzzyparameterized soft set [2], studied their operations 

and gave an application in decision making. Based on [5] and [8], we presented the concept 

of Q-intuitionistic fuzzy soft sets as ageneralization of Q-fuzzy soft sets. 

 

The rest structure of this paper is as follows: part 2 presents some definitions which will be 

used in the sequel. Part 3 discusses the concept of Q-intuitionistic fuzzy soft set. Part 4 

introduced the union, intersection, AND and OR operations on a Q-intuitionistic fuzzy soft 

set. Part 5 gives the conclusion. 

 

 

2. Preliminaries 

 
In this section we present the basic definitions of soft set theory, Q-fuzzy set, multi Q-

fuzzy set, Q-fuzzy soft set, intuitionistic fuzzy set,Q- intuitionistic fuzzy set, intuitionistic 

fuzzy soft set and multi-Q intuitionistic fuzzy set required in this paper. 

 

 

2.1. Soft Sets 

 

Definition 2.1[1] A pair (F, E) is called a soft set over U, if and only if F is a mapping of E 

into the set of all subsets of the set U. In other words, the soft set is parameterized family of 

subsets of the set U. 

 

As an illustration, let us consider the following example. 

 

Example 2.2. Suppose that U is the set of houses under consideration, say U =                

{h1, h2,...,h5}. Let E be the set of some attributes of such houses, say E = {e1, e2, . . ., e8}, 

where e1, e2, . . ., e8 stand for the attributes “beautiful”, “costly”, “in the green 

surroundings”, “moderate”, respectively.  

 

In this case, to define a soft set means to point out expensive houses, beautiful houses, and 

so on. For example, the soft set (K, A) that describes the “attractiveness of the houses” in 

the opinion of a buyer, say Thomas, may be defined like this:  

 

A={e1,e2,e3,e4,e5}; 

 

K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}. 
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2.2 Q-fuzzy Sets 

 

Definition 2.3 Let X be a non-empty set and Q be a non-empty set. A Q-fuzzy subset A of 

X is a function 

 

A : XxQ → [ 0, 1 ]. 

 

Definition 2.4: The union of two Q-fuzzy subsets A and B of a set X is defined by  

 

(A B)(x,q) = max { A(x, q), B(x, q) } 

 

for all x in X and q in Q.  

 

Definition 2.5: The intersection of two Q-fuzzy subsets A and B of a set X is defined by  

 

(A    B)(x, q) = min { A(x, q), B(x, q) } 

 

for all x in X and q in Q. 

 

 

2.3 Multi Q-fuzzy Sets 

 

Definition 2.5 [2] Let I be a unit interval [0, 1], k be a positive integer. U be a universal set 

and Q be a non-empty set. A multi Q-fuzzy set   ̃  in U and q is a set of ordered sequences   

 

 ̃ ={(u,q),   (u, q): u  U, q   Q} 

 

where   : U  Q    .The function   (u, q),  (u, q),…,  (u, q) is called membership 

function of  multi Q-fuzzy set  ̃  ; and   (u, q)+  (u, q)+…+  (u, q)   1, k is called the 

dimension of  ̃ . The set of all  multi Q-fuzzy sets of dimension k in U and Q is denoted 

by   QF(U). 

 

 

2.4 Q-fuzzy Soft Sets 

 

Definition 2.6 [5] Let U  be a universal set, E be a set of parameters, and Q be a non-empty 

set. Let  QF(U) denote the power set of all multi Q-fuzzy subset of U with dimension k= 

1. Let A   E. A pair (  ,A) is called  a Q-fuzzy  soft set ( in short QF-soft set)  over U 

where    is a mapping given by 

 

  : A    QF(U) such that         =   if x   A. 

 

Here a Q-fuzzy soft set can be represented by the set of ordered pairs 

 

                                      (  ,A)= {(x,     ): x   U,          QF(U) } 

 

Note that the set of all Q-fuzzy soft set over U will be denoted by QFS(U). 
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Definition 2.7 [5] Let (  , A) and (  , B)  QFS(U). The union of  two Q-fuzzy soft sets 

(  , A) and (  , B), is  the Q-fuzzy soft set (  , C),  written as   (  , A)   (  , B) = (  , 

C), where  C = A  B for all e   C and  

 

     ={

                

               

                       

 

 

 

Definition 2.8 [5] Let (  , A) and (  , B)  QFS(U). The intersection  of  two Q-fuzzy soft 

sets (  , A) and (  , B), is  the Q-fuzzy soft set (  , C),  written as   (  , A)   (  , B) = 

(  , C), where  C = A  B for all e   C,  

 

(  , C)= {e, min {    
(x, q),     

(y, q)} : u  U, q   Q}and i=1, 2,…,k. 

 

 

2.5. Intuitionistic Fuzzy Sets 

 

Definition 2.9 [7] Let U be an universe of discourse then the intuitionistic fuzzy set A is an 

object having the form A = {< x,  
 
   ,      >,x   U},where the functions      ,  

 

      : U→[0,1] 

 

define respectively the degree of membership, and the degree of non-membership of the 

element x   X to the set A with the condition.  

 

0  ≤ 
 
   +      ≤1. 

 

For two IFS, 

 

    = {<x,  
 
   ,      > |     } 

 

And 

 

    = {<x,  
 
   ,      > |     } 

 

Then, 

 

1.          if and only if 

 

 
 
     

 
                

 

2.                            ,  
 

 
 
    = 

 
    ,      =      for any    . 

 

3. The complement of      is denoted by     
  and is defined by 
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 = {<x,         

   |     } 

 

4. A B = {<x, min{ 
 
     

 
   }  max{           }>:    } 

 

5. A B = {<x, max{ 
 
     

 
   }  min{           }>:    } 

 

6.      = (0, 1) and      = (1, 0) 

 

As an illustration, let us consider the following example. 
 

Example 2.10. Assume that the universe of discourse U={x1, x2, x3,  }. It may be further 

assumed that the values of x1, x2,   and   are in [0, 1] Then,  A is an intuitionistic fuzzy 

set (IFS) of U, such that, 

 

A= {< x1, 0.4, 0.6>, < x2, 0.3, 0.7>, < x3, 0.2,0.8>,<  , 0.2,0.8>} 

 

 

2.6. Q-intuitionistic Fuzzy Sets 

 

Definition 2.11 [8] A Q-intuitionistic fuzzy subset A in X is defined as an object of the 

form  

 

A= {< (x, q),   (x, q),   (x, q) > / x   X and q in Q} 

 

where   : X  Q   [0, 1] and   : X  Q   [0, 1] define the degree of membership and the 

degree of non-membership of the element x in X and q in A respectively and for every x in 

X and q in Q satisfying   

 

0     (x, q) +  (x, q)   1. 

 

Definition 2.12 [8] If A is a Q-intuitionistic fuzzy subset A of  X, then the complement of 

A, denoted    is the Q-intuitionistic fuzzy set of  X, given by 

 

  (x, q) = {< (x, q),   (x, q),   (x, q) > / x   X and q in Q}. 

 

Definition 2.13 [8] Let A and B be Q-intuitionistic fuzzy subsets of sets G and H 

respectively. The product of A and denoted by  A   B is defined as  

 

A   B={< ((x, y) , q),       ((x, y), q),      ((x, y), q) > / x  in G and y in H and q in Q}, 

 

where 

 

      ((x, y), q) = min {  (x, q),   (y, q)} and       ((x, y), q) = max {  (x, q),   (y, q)}. 

 

Definition 2.14 [8] Let A be a Q-intuitionistic fuzzy subset in a set S, the strongest Q-

intuitionistic fuzzy relation on S, that is a Q-intuitionistic fuzzy relation on A is V given by 

 

   ((x, y), q) = min {  (x, q),   (y, q)} and   ((x, y), q) = max {  (x, q),   (y, q)},  
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for all x and y in S and q in Q. 

 

 

2.7 Intuitionistic Fuzzy Soft Sets 

 

Definition 2.15 [15] Let   be an initial universe set and       be a set of parameters. Let 

IFS(U) denotes the set of all intuitionistic fuzzy  subsets of  . The collection       is 

termed to be the intuitionistic fuzzy soft set over  , where   is a mapping given by  

 

             . 
 

Example 2.16 Let U be the set of houses under consideration and E is the set of parameters. 

Each parameter is a word or sentence involving intuitionistic fuzzy words. Consider 

   {beautiful, wooden, costly, very costly, moderate, green surroundings, in good repair, in 

bad repair, cheap, expensive}. In this case, to define an intuitionistic fuzzy soft set means to 

point out beautiful houses, wooden houses, houses in the green surroundings and so on. 

Suppose that, there are five houses in the universe   given by    {            } and the 

set of parameters     {           },where    stands for the parameter `beautiful',    stands 

for the parameter `wooden',    stands for the parameter `costly' and the parameter    stands 

for `moderate'. Then the intuitionistic fuzzy set       is defined as follows: 

 

 

      

{
 
 
 
 

 
 
 
 (  {
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(  {
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2.8. Multi Q-intuitionistic Fuzzy Sets 

 

Definition 2.17 [19] Let I be  a unit interval [0, 1], k be a positive integer. U be a universal 

set and Q be a non-empty set. A multi Q-intuitionistic fuzzy set   ̃  in U and q is a set of 

ordered sequences   

 

 ̃ ={(u,q),   (u, q),  (u, q): u  U, q   Q} 

 

where    :U  Q      and   :U  Q    and . The functions   (u, q),  (u, q),…,  (u, q) 

is called membership function of  multi Q-fuzzy set  ̃   and the functions   (u, q),  (u, 

q),…,  (u, q) is called non-membership function of  multi Q-intuitionistic fuzzy set  ̃ ; 

and 0     (x, q) +  (x, q)   1, for i=1,2,….k. k is called the dimension of  ̃ . The set of 

all  multi Q- intuitionistic fuzzy sets of dimension k in U and Q is denoted by   QIF(U). 
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Example 2.18 [19] Let U= {  ,   ,   ,   } be a universal set, Q ={p, q } be a non- empty 

set ,  and k = 3 be a positive integer. If  ̃   is  a function from  U  Q  to     then the set 

 ̃ ={((  , q),(0.2, 0.3),(0.4, 0.5),(0.4, 0.6)), ((  , p),(0.4, 0.5), (0.1, 0.2),(0.2, 0.4)), ((  ,q), 

(0.3, 0.5),(0.2, 0.5), (0.3, 0.4))} is a multi Q- intuitionistic fuzzy sets in U and Q. 

 

Remark 2.19: If   (u, q) = 0, then the multi Q intuitionistic fuzzy set  ̃ ={(u,q),   (u, 

q),  (u, q): u   U, q   Q} degenerate to the multi Q fuzzy set  ̃ ={(u,q),   (u, q) : u  U, q 

  Q} 

 

 

3. Q-Intuitionistic Fuzzy Soft Sets 
 

In this section we introduce the concept Q- intuitionistic fuzzy soft set and define some 

properties of a Q- intuitionistic fuzzy soft set namely, null, absolute, subset, equality and 

complement, and give an example of Q- intuitionistic fuzzy soft set. 

 

Definition 3.1 Let U  be a universal set, E be a set of parameters, and Q be a non-empty 

set. Let  QIF(U) denote the power set of all multi Q- intuitionistic fuzzy subset of U with 

dimension k= 1. Let A   E. A pair (  ,A) is called  a Q- intuitionistic fuzzy  soft set ( in 

short QIF-soft set)  over U where    is a mapping given by 

 

  : A    QIF(U) such that         =   if x   A. 

 

Here a Q- intuitionistic fuzzy soft set can be represented by the set of ordered pairs 

 

                                      (  ,A)= {(x,     ): x   U,          QIF(U) } 

 

Note that the set of all Q- intuitionistic fuzzy soft set over U will be denoted by QIFS(U). 

 

Example 3.2 Let U= {  ,   ,   ,   ,   } be a universal set, Q ={p, q, r} be a non- empty 

set , and E= {  ,   ,   ,   ,   } be a set of parameters. If  

 

A={  ,   ,   }   E, 

      ={((  ,p),(0.2, 0.3)), ((  ,q),(0.4, 0.5)), ((  ,r),(0.3, 0.5))} 

      ={((  ,p),(0.1, 0.4)), ((  ,q),(0.2, 0.3)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), 

((  ,q),(0.3, 0.4)), ((  ,r),(0.2, 0.3))} 

      ={((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))},  

 

then 

 

(  ,A)={(  , {((  ,p),(0.2, 0.3)), ((  ,q),(0.4, 0.5)), ((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.1, 

0.4)), ((  ,q),(0.2, 0.3)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), ((  ,q),(0.3, 0.4)), 

((  ,r),(0.2, 0.3))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})}  

 

is  Q- intuitionistic fuzzy soft set. 

 

Definition 3.3 Let (  , A)   QIFS(U). If   (x) =   for all x   E then (  , A) is called a 

null QIF-S-set denoted by  ( , A).  
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Example 3.4 ( ,A)={(  , {((  ,p),(0, 1)), ((  ,q),(0, 1)), ((  ,r),(0, 1))}), (  , {((  ,p),(0, 

1)), ((  ,q),(0, 1)), ((  ,r),(0, 1)), ((  ,p),(0, 1)), ((  ,q),(0, 1)), ((  ,r),(0, 1))}), (  , 

{((  ,p),(0, 1)), ((  ,q),(0, 1)), ((  ,r),( 0, 1))})}. 

 

Definition3.5 Let (  , A)   QIFS(U). If   (x) = U for all x   E then (  , A) is called an 

absolute QIF-soft set denoted by  (U, A).  

 

Example 3.6 (U, A)={(  , {((  ,p),(1, 0)), ((  ,q),(1, 0)), ((  ,r),(1, 0))}), (  , {((  ,p),(1, 

0)), ((  ,q),(1, 0)), ((  ,r),(1, 0)), ((  ,p),(1, 0)), ((  ,q),(0, 1)), ((  ,r),(1, 0))}), (  , 

{((  ,p),(1, 0)), ((  ,q),(1, 0)), ((  ,r),(1, 0))})}. 

 

Definition 3.7 Let (  , A), (  , B)   QIFS(U). then we say that (  , A) is a QIF-soft 

subset of (  ,B), denoted by  (  , A)   (  , B), if A   B and   (x)    (x) for all x   U. 

 

Proposition 3.8 Let (  , A), (  , B)   QIFS(U).Then  

1. (  , A)   (U, E) 

2. ( , A)   (  , A) 

3. If (  , A)   (  , B) and (  , B)   (  , C), then  (  , A)   (  , C) 

 

Proof. The proof can be easily obtained from Definition 3.7 

 

Proposition 3.9Let (  , A), (  , B)   QIFS(U). If (  , A) = (  , B) and (  , B) =(  , C) 

Then (  , A) = (  , C). 

 

Proof. The proof can be easily obtained from Definition 3.7 

 

Definition 3.10 Let (  , A)   QIFS(U). Then, the complement of QIF-soft set denoted by 

         is defined by        
  =    

      where 

 

  
  :  A  QIF(U) 

 

is the mapping given by   
     = Q - intuitionistic fuzzy complement for every e   A. 

 

Example 3.11 Consider example 3.2 

 

(  ,A)={(  , {((  ,p),(0.2, 0.3)), ((  ,q),(0.4, 0.5)), ((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.1, 

0.4)), ((  ,q),(0.2, 0.3)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), ((  ,q),(0.3, 0.4)), 

((  ,r),(0.2, 0.3))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

 

Then 

 

       ={(  , {((  ,p),(0.3, 0.2)), ((  ,q),(0.5, 0.4)), ((  ,r),(0.5, 0.3))}), (  , 

{((  ,p),(0.4, 0.1)), ((  ,q),(0.3, 0.2)), ((  ,r),(0.5, 0.3)), ((  ,p),(0.6, 0.2)), ((  ,q),(0.4, 

0.3)), ((  ,r),(0.3, 0.2))}), (  , {((  ,p),(0.3, 0.6)), ((  ,q),(0.3, 0.4)), ((  ,r),(0.2, 0.3))})} 
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Proposition 3.12 Let (  , A)   QIFS(U).Then 

1. (      
 )

 
 =         

2.        = (U, E) 

3.        = ( , E) 

 

Proof. The proof can be easily obtained from Definition 3.7 

 

 

4. Union and Intersection of Q-intuitionistic Fuzzy Soft Set. 

 
In this section we introduce the union, intersection, AND and OR operations on a Q-

intuitionistic fuzzy soft set. 

 

Definition 4.1 Let (  , A) and (  , B)   QIFS(U). The union of  two Q- intuitionistic 

fuzzy soft sets (  , A) and (  , B), is  the Q- intuitionistic fuzzy soft set (  , C),  written 

as   (  , A)   (  , B) = (  , C), where  C = A  B for all e   C and  

 

     ={

                

                

                        

 

 

Example 4.2 : Let U= {  ,   ,   ,   ,   } be a universal set, Q ={p, q,r} be a non- empty 

set , and E= {  ,   ,   ,   ,   } be a set of parameters. If A={  ,   ,   }   E, and B={  , 

  ,   }   E 

 

(  ,A)={(  , {((  ,p),(0.2, 0.3)), ((  ,q),(0.4, 0.5)), ((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.1, 

0.4)), ((  ,q),(0.2, 0.3)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), ((  ,q),(0.3, 0.4)), 

((  ,r),(0.2, 0.3))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

 

And 

 

(  ,B)={(  , {((  ,p),(0.4, 0.5)), ((  ,q),(0.3, 0.2)), ((  ,r),(0.2, 0.4))}), (  , {((  ,p),(0.3, 

0.5)), ((  ,q),(0.3, 0.6)), ((  ,r),(0.4, 0.5)), ((  ,p),(0.3, 0.6)), ((  ,q),(0.2, 0.3)), 

((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

  

Then 

 

(  , C)= {(  , {((  ,p),(0.4, 0.3)), ((  ,q),(0.4, 0.2)), ((  ,r),(0.3, 0.4))}), (  , 

{((  ,p),(0.3, 0.4)), ((  ,q),(0.3, 0.3)), ((  ,r),(0.4, 0.5)), ((  ,p),(0.3, 0.6)), ((  ,q),(0.3, 

0.3)), ((  ,r),(0.3, 0.3))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))}), 

(  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

 

Definition 4.3 Let (  , A) and (  , B)   QIFS(U). The intersection  of  two Q- 

intuitionistic fuzzy soft sets (  , A) and (  , B), is  the Q- intuitionistic fuzzy soft set (  , 

C),  written as   (  , A)   (  , B) = (  , C), where  C = A  B for all e   C,  

 

(  , C)= {e, (min {    
(x, q),     

(y, q), max({    
(x, q),     

(y, q)))} : u  U, q   Q} 
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and i=1, 2,…,k. 

 

Example 4.4 : Let U= {  ,   ,   ,   ,   } be a universal set, Q ={p, q,r} be a non- empty 

set , and E= {  ,   ,   ,   ,   } be a set of parameters. If A={  ,   ,   }   E, and B={  , 

  ,   }   E 

 

(  ,A)={(  , {((  ,p),(0.2, 0.3)), ((  ,q),(0.4, 0.5)), ((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.1, 

0.4)), ((  ,q),(0.2, 0.3)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), ((  ,q),(0.3, 0.4)), 

((  ,r),(0.2, 0.3))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

 

And 

 

(  ,B)={(  , {((  ,p),(0.4, 0.5)), ((  ,q),(0.3, 0.2)), ((  ,r),(0.2, 0.4))}), (  , {((  ,p),(0.3, 

0.5)), ((  ,q),(0.3, 0.6)), ((  ,r),(0.4, 0.5)), ((  ,p),(0.3, 0.6)), ((  ,q),(0.2, 0.3)), 

((  ,r),(0.3, 0.5))}), (  , {((  ,p),(0.6, 0.3)), ((  ,q),(0.4, 0.3)), ((  ,r),(0.3, 0.2))})} 

  

Then 

 

(  , C)= {(  , {((  ,p),(0.2, 0.5)), ((  ,q),(0.3, 0.5)), ((  ,r),(0.2, 0.5))}), (  , 

{((  ,p),(0.1, 0.5)), ((  ,q),(0.2, 0.6)), ((  ,r),(0.3, 0.5)), ((  ,p),(0.2, 0.6)), ((  ,q),(0.2, 

0.4)), ((  ,r),(0.2, 0.5))})} 

 

Proposition 4.5 Let (  , A), (  , B) and (  , C)    QIFS(U).Then 

1. (  , A)   ( , A) = (  , A) 

2. (  , A)   ( , A) = ( , A) 

3. (  , A)   (  , A)  = (  , A)   

4. (  , A)  (  , B)  = (  , B)  (  , A)   

5. (  , A)   (  , B)   (  , C)) = ((  , A)  (  , B))   (  , C)   

 

Proof. The proof can be easily obtained from Definition 4.1 

 

Proposition 4.6 Let (  , A), (  , B) and (  , C)    QIFS(U).Then 

1. (  , A)   ( , A) = ( , A) 

2. (  , A)   ( , A) = (  , A) 

3. (  , A)   (  , A)  = (  , A)   

4. (  , A)  (  , B)  = (  , B)  (  , A)   

5. (  , A)   (  , B)  (  , C)) = ((  , A)  (  , B))   (  , C) 

 

Proof. The proof are straightforward. 

 

Proposition 4.7 Let (  , A), (  , B) and (  , C)    QIFS(U).Then 

1.                 
 =       

        
  

2.                 
 =       

        
  

 

The proof are straightforward by using the properties of a multi Q–intuitionistic fuzzy sets. 
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Proposition 4.8 Let (  , A), (  , B) and (  , C)    QIFS(U) .Then 

 

1. (  , A)   (  , B)  (  , C)) = ((  , A)  (  , B))   ((  , A)  (  , C)) 

2. (  , A)   (  , B)  (  , C)) = ((  , A)  (  , B))   ((  , A)  (  , C)) 

 

Definition 4.9 Let (  , A) and (  , B)   QIFS(U). Then (  , A) AND (  , B) is the Q- 

intuitionistic fuzzy soft set denoted by (  , A)   (  , B) and defined by  

 

(  , A)   (  , B) =(  , A  ) 

 

where   (    ) =             for all    A and    B, is the operation of intersection 

of two Q-intuitionistic fuzzy sets. 

 

Definition 4.10 Let (  , A) and (  , B)   QIFS(U). Then (  , A) OR (  , B) is the Q- 

intuitionistic fuzzy soft set denoted by (  , A)   (  , B) and defined by  

 

(  , A)   (  , B) = (  , A  ) 

 

where   (    ) =             for all    A and    B, is the operation of union of 

two Q-intuitionistic fuzzy sets. 

 

 

Conclusion  
 

In this paper we have introduced the concept of Q-intuitionistic fuzzy soft sets and studied 

some related properties with supporting proofs. The equality, subset, complement, union, 

intersection, AND or OR operations have been defined on the Q-intuitionistic fuzzy soft 

sets. This new extension will provide a significant addition to existing theories for handling 

uncertainties, and lead to potential areas of further research and pertinent applications. 
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Abstract − In this paper, we first define operators m-convex functions for positive, bounded, self-
adjoint operators in Hilbert space via m-convex functions. Secondly, we establish some new theorems
for them. Finally, we obtain the Hermite-Hadamard type inequalities for the product two operators
m-convex functions in Hilbert space.

Keywords − The Hermite-Hadamard inequality, m-convex functions, operator m-convex functions,
selfadjoint operator, inner product space, Hilbert space.

1 Introduction

The following inequality holds for any convex function f define on R and a, b ∈ R, with
a < b

f

(
a + b

2

)
≤ 1

b− a

∫ 1

0

f(x)dx ≤ f(a) + f(b)

2
(1)

both inequalities hold in the reversed direction if f is concave.
The inequality (1) is known in the literature as the Hermite-Hadamard’s inequality.

The Hermite-Hadamard’s inequality may be regarded as a refinement of the concept
of convexity and it follows easily from Jensen’s inequality. The classical Hermite-
Hadamard inequality provides estimates of the mean value of a continuous convex
function f : [a, b] → R. In this paper, Firstly we defined for bounded positive self-
adjoint operator m-convex functions in Hilbert space, secondly established some new

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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theorems for them and finally Hermite-Hadamard type inequalities for product two
bounded positive selfadjoint operators m-convex set up in Hilbert space.

2 Preliminary

First, we review the operator order in B(H) and the continuous functional calculus for
a bounded selfadjoint operator. For selfadjoint operators A,B ∈ B(H) we write, for
every x ∈ H

A ≤ B(or B ≥ A) if 〈Ax, x〉 ≤ 〈Bx, x〉(or 〈Bx, x〉 ≥ 〈Ax, x〉)
we call it the operator order.
Let A be a selfadjoint linear operator on a complex Hilbert space (H, 〈., .〉) and

C(Sp(A)) the C∗ -algebra of all continuous complex-valued functions on the spectrum
A. The Gelfand map establishes a ∗-isometrically isomorphism Φ between C(Sp(A))
and the C∗-algebra C∗(A) generated by A and the identity operator 1H on H as follows
[1].

For any f, g ∈ C(Sp(A)) and any α, β ∈ C we have

i. Φ(αf + βg) = αΦ(f) + βΦ(g) ;

ii. Φ(fg) = Φ(f)Φ(g) and Φ(f ∗) = Φ(f)∗;

iii. ‖Φ(f)‖ = ‖f‖ := supt∈Sp(A)|f(t)| ;

iv. Φ(f0) = 1 and Φ(f1) = A, where f0(t) = 1 and f1(t) = t, for t ∈ Sp(A)

If f is a continuous complex-valued functions on C(Sp(A), the element Φ(f) of
C∗(A) is denoted by f(A), and we call it the continuous functional calculus for a
bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on
Sp(A), then f(t) ≥ 0 for any t ∈ Sp(A) implies that f(A) ≥ 0, i.e f(A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp(A) such that
f(t) ≤ g(t) for any t ∈ Sp(A), then f(A) ≤ f(B) in the operator order B(H).

A real valued continuous function f on an interval I is said to be operator convex
(operator concave ) if

f((1− λ)A + λB) ≤ (≥)(1− λ)f(A) + λf(B)

in the operator order in B(H), for all λ ∈ [0, 1] and for every bounded self-adjoint
operator A and B in B(H) whose spectra are contained in I.

We denoted by B(H)+ the set of all positive operators in B(H).
G.H. Toader [2] defines the m-convexity, on intermediate between the usual convex-

ity and starshaped property.

Definition 2.1. [2] The function f : [a, b] → R is said to be m-convex, where m ∈ [0, 1],
if for x, y ∈ [a, b] and t ∈ [0, 1] we have f(tx + m(1− t)y) ≤ tf(x) + m(1− t)f(y)

Denote by Km(b) the set of the m-convex functions on [a,b] for which f(0) ≤ 0.
Note that, for m = 1, we recapture the concept of convex functions defined on [a, b]
and for m = 0 we get the concept of starshaped functions on [a, b]. We recall that
f : [a, b] → R is starshaped if f(tx) ≤ tf(x), for all t ∈ [0, 1] and x ∈ [a, b].
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3 The Hermite-Hadamard Type Inequalities for Op-

erator m-convex Functions in Hilbert Space

3.1 Operator m-convex Functions in Hilbert Space

The following definition is firstly defined by Yeter Erdaş

Definition 3.1. Let I be an interval in R and K be convex subset of B(H)+. A
continuous function f : I ⊆ [0,∞) → R is said to be operator m-convex on I for
operators in K if

f(tA + m(1− t)A) ≤ tf(A) + m(1− t)f(A)

in the operator order in B(H)+, for all m, t ∈ [0, 1] and for every positive operators A
and B in K whose spectra are contained in I.

Lemma 3.2. If f is operator m-convex on [0,∞) for operator in K, then f(A) is positive
for every A ∈ K.

Proof. For A ∈ K, we have

f(A) = f

(
tA + m(1− t)A + (1− t)A + mtA

2

)

≤ f(tA + m(1− t)A + (1− t)A + mtA)

≤ tf(A) + m(1− t)f(A) + (1− t)f(A) + mtf(A)

= tf(A) + mf(A)−mtf(A) + f(A)− tf(A) + mtf(A)f(A)

≤ f(A)(m + 1)

≤ mf(A)

This implies that f(A) ≥ 0.
Moslehian and Najafi [3] proved the following theorem for positive operators as

follows:

Theorem 3.3. [3] Let A,B ∈ B(H)+. Then AB + BA is positive if and only if
f(A + B) ≤ f(A) + f(B) for all non-negative operator functions f on [0,∞).

Dragomir in [4] has proved a Hermite-Hadamard type inequality for operator convex
function as following

Theorem 3.4. [4] Let f : I → R be an operator convex function on the interval I.
Then for all selfadjoint operators A and B with spectra in I we have the inequality

(
f

(
A + B

2
) ≤

)
1

2

[
f

(
3A + B

4

)
+ f

(
A + 3B

4

)]

≤
∫ 1

0

f

(
(1− t)A + tB

))
dt

≤ 1

2

[
f(

A + B

2

)
+

f(A) + f(B)

2

]

(
≤ f(A) + f(B)

2

)]
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Let X be a vector space, x, y ∈ X, x 6= y. Define the segment

[x, y] := (1− t)x + ty; t ∈ [0, 1].

We consider the function f : [x, y] :→ R and the associated function

g(x, y) : [0, 1] → R

g(x, y)(t) := f((1− t)x + ty), t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1]. For any
convex function defined on a segment [x, y] ∈ X, we have the Hermite-Hadamard
integral inequality

f

(
x + y

2

)
≤

∫ 1

0

f((1− t)x + ty)dt ≤ f(x) + f(y)

2

which can be derived from the classical Hermite-Hadamard inequality for the convex
g(x, y) : [0, 1] → R.

Lemma 3.5. Let f : I ⊆ [0,∞) → R be a continuous function on the interval I. Then
for every two positive operators A,B ∈ K ⊆ B(H)+ with spectra in I the function f is
operator m-convex for operators in

[A,B] := {(1− t)A + mtB : t ∈ [0, 1]}

if and only if the function ϕx,A,B : [0, 1] → R defined by

ϕx,A,B(t) = 〈f((1− t)A + mtB)x, x〉

is m-convex on [0, 1] for every x ∈ H with ‖x‖ = 1.

Proof. Let f be operator m-convex for operators in [A,B] then for any t1, t2 ∈ [0, 1]
and λ, γ ≥ 0 with λ + γ = 1 we have

ϕx,A,B(λt1 + γt2) = 〈f((1− (λt1 + γt2)A) + m(λt1 + γt2)B)x, x〉

= 〈f(λA + γA− λAt1 − γAt2 + mλt1B + mγt2B)x, x〉

= 〈f(λ[(1− t1)A + mt1B] + γ[(1− t2)A + mt2B])x, x〉

≤ λϕx,A,B(t1)ϕx,A,B(t2)

showing that ϕx,A,B is a m-convex function on [0, 1]. Let now ϕx,A,B be m-convex
on [0, 1], we show that f is operator convex for operators in [A,B]. For every C :=
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(1− t1)A + mt1B and D := (1− t2)A + mt2B we have

〈f((1− λ)C + mλD)x, x〉 = 〈f((1− λ)[(1− t1)A + mt1B]

+mλ[(1− t2)A + mt2B])x, x〉

= 〈f(A− t1A + mt1B − λA + λt1A−mλt1B

+mλA−mλt2A + m2λt2B)x, x〉

= 〈f(A(1− t1)− λA(1− t1) + mλA(1− t2)

+mt1B + m2λt2B −mλt1B)x, x〉

= 〈f(−λ((1− t1)A + mt1B) + A(1− t1)

+mt1B + mλ(A(1− t2) + mt2B))x, x〉

= 〈f((1− λ)((1− t1)A + mt1B)

+mλ((1− t2)A + mt2B))x, x〉

≤ (1− λ)〈f(C)x, x〉+ mλ〈f(D)x, x〉

Theorem 3.6. Let f : I → R be an operator m-convex function on the interval
I ⊆ [0,∞) for operators in K ⊆ B(H)+. Then for all positive operators A and B in K
with spectra in I we have the inequality

f(
A + B

2
) ≤

∫ 1

0

[
tf(A) + m(1− t)f(A) + tf(B) + m(1− t)f(B)

]
dt

≤ (m + 1)(f(A) + f(B))

Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1], we have

〈[tA + m(1− t)B]x, x〉 = t〈Ax, x〉+ m(1− t)〈Bx, x〉 ∈ I (2)

since 〈Ax, x〉 ∈ Sp(A) ⊆ I and 〈Bx, x〉 ∈ Sp(B) ⊆ I, (2) imply that the operator-

valued integral
∫ 1

0
f(tA + (1 − t)B)dt exists. Since f is operator m-convex, therefore

for t in [0, 1] and A,B ∈ K we have

f(tA + m(1− t)B) ≤ tf(A) + m(1− t)f(B) (3)

integrating both sides of (3) over [0, 1] we get the following inequality
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∫ 1

0

[
f(tA + m(1− t)B)

]
dt ≤

∫ 1

0

[
tf(A) + m(1− t)f(B)

]
dt

= f(A) + mf(B)− f(B)

= f(A) + (m− 1)Bf(
A + B

2
)

= f
(tA + m(1− t)A + (1− t)A + mtA + tB + m(1− t)B + (1− t)B + mtB

2(m + 1)

)

≤ f
(t(A + B) + m(1− t)(A + B) + (1− t)(A + B) + mt(A + B)

2

)

≤ tf(A) + tf(B) + m(1− t)f(A) + m(1− t)f(B) + f(A) + f(B)

−tf(A)− tf(B) + mtf(A) + mtf(B)

= (m + 1)[f(A) + f(B)]

∫ 1

0

f(tA + m(1− t)B)dt

=

∫ 1

0

f((1− t)A + mtB)dt

4 The Hermite-Hadamard Type Inequalites for Prod-

uct Two Operators m-convex Functions

Let f : I → R be operator m-convex and g : I → R operator m-convex function on the
interval I. Then for all positive operators A and B on a Hilbert space H with spectra
in I, we define real functions K(A)(x), L(A,B)(x), R(A,B)(x), S(B)(x), M(A,B)(x),
N(A,B)(x) on H by

K(A)(x) = 〈f(A)x, x〉〈g(A)x, x〉
L(A,B)(x) = 〈f(A)x, x〉〈g(B)x, x〉
R(A,B)(x) = 〈f(B)x, x〉〈g(A)x, x〉

S(B)(x) = 〈f(B)x, x〉〈g(B)x, x〉
M(A,B)(x) = 〈f(A)x, x〉〈g(A)x, x〉+ 〈f(B)x, x〉〈g(B)x, x〉
N(A,B)(x) = 〈f(A)x, x〉〈g(B)x, x〉+ 〈f(B)x, x〉〈g(A)x, x〉.

Theorem 4.1. Let f : I → R be operator m1-convex and g : I → R operator m2-
convex function on the interval I for operators in K ⊆ B(H)+. Then for all positive
operators A and B in K with spectra in I, the inequality

∫ 1

0

[
〈f(tA + m1(1− t)B)x, x〉〈g(tA + m2(1− t)B)x, x〉

]
dt
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≤
(K

3

)
+

(m2L

6

)
+

(m1R

6

)
−

(m1m2S

3

)

Proof. For x ∈ H with ‖x‖ = 1 and t ∈ [0, 1] we have

〈[tA + m(1− t)B]x, x〉 = t〈Ax, x〉+ m(1− t)〈Bx, x〉 ∈ I (4)

since 〈Ax, x〉 ∈ Sp(A) ⊆ I and 〈Bx, x〉 ∈ Sp(B) ⊆ I. Continuity of f, g and (4) imply

that the operator valued integrals
∫ 1

0
f(tA+m1(1−t)B)dt,

∫ 1

0
g(tA+m2(1−t)B)dt and∫ 1

0
(fg)(tA + m(1− t)B)dt exist. Since f, g are operator convex, therefore for t ∈ [0, 1]

and t ∈ [0, 1] we have

〈f(tA + m1(1− t)B)x, x〉 ≤ t〈f(A)x, x〉+ m1(1− t)〈f(B)x, x〉

〈g(tA + m2(1− t)B)x, x〉 ≤ t〈g(A)x, x〉+ m2(1− t)〈g(B)x, x〉

(
〈f(tA + m1(1− t)B)x, x〉

)(
〈g(tA + m2(1− t)B)x, x〉

)

≤ t2〈f(A)x, x〉〈g(A)x, x〉+ tm2(1− t)〈f(A)x, x〉〈g(B)x, x〉 (5)

+tm1(1− t)〈f(B)x, x〉〈g(A)x, x〉

+m1m2(1− t)2〈f(B)x, x〉〈g(B)x, x〉

Integrating both sides of (5) over [0, 1], we get the following inequality

∫ 1

0

[
〈f(tA + m1(1− t)B)x, x〉〈g(tA + m2(1− t)B)x, x〉

]
dt ≤

(K

3

)
+

(m2L

6

)
+

(m1R

6

)
−

(m1m2S

3

)

Theorem 4.2. Let f : I → R be operator m1-convex and g : I → R operator m2-
convex function on the interval I for operators in K ⊆ B(H)+. Then for all positive
operators A and B in K with spectra in I, the inequality

〈f
(A + B

2

)
x, x〉〈g

(A + B

2

)
x, x〉

≤
[1−m1m2

3
+

m1 + m2

6

]
M(A,B)(x)N(A,B)(x)
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Since f is operator m1-convex and g is operator m2-convex, for any t ∈ I and any
x ∈ H with ‖x‖ = 1 we observe that

〈f
(A + B

2

)
x, x〉

≤ 〈[tf(A) + m1(1− t)f(A) + tf(B) + m1(1− t)f(B)]x, x〉

〈g
(A + B

2

)
x, x〉

≤ 〈[tg(A) + m2(1− t)g(A) + tg(B) + m2(1− t)g(B)]x, x〉
(
〈f

(A + B

2

)
x, x〉

)(
〈g

(A + B

2

)
x, x〉

)

≤ t2〈f(A)x, x〉〈g(A)x, x〉+ tm2(1− t)〈f(A)x, x〉〈g(A)x, x〉

+ t2〈f(A)x, x〉〈g(B)x, x〉

+ tm2(1− t)〈f(A)x, x〉〈g(B)x, x〉

+ tm1(1− t)〈f(A)x, x〉〈g(A)x, x〉+ m1m2(1− t)2〈f(A)x, x〉〈g(A)x, x〉
+ tm1(1− t)〈f(A)x, x〉〈g(B)x, x〉+ m1m2(1− t)2〈f(A)x, x〉〈g(B)x, x〉

+ t2〈f(B)x, x〉〈g(A)x, x〉+ tm2(1− t)〈f(B)x, x〉〈g(A)x, x〉

+ t2〈f(B)x, x〉〈g(B)x, x〉+ tm2(1− t)〈f(B)x, x〉〈g(B)x, x〉

+ tm1(1− t)〈f(B)x, x〉〈g(A)x, x〉+ m1m2(1− t)2〈f(B)x, x〉〈g(A)x, x〉

+ tm1(1− t)〈f(B)x, x〉〈g(B)x, x〉+ m1m2(1− t)2〈f(B)x, x〉〈g(B)x, x〉

Integrating both sides of (6) over [0, 1] we get the following inequality

〈f
(A + B

2

)
x, x〉〈g

(A + B

2

)
x, x〉

≤
[1−m1m2

3
+

m1 + m2

6

]
M(A,B)(x)N(A,B)(x)

and this finishes the proof.
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