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ON (L, M)-FUZZY TOPOGENOUS SPACES

Ahmed Abdel-Kader Ramadan™ <aramadan58@hotmail.com>
Enas Hassan El-kordy <enas.elkordi@science.bsu.edu.eg>

Department of Mathematics, faculty of Science, University of Beni-Suif, Beni-Suif, Eqypt.

Abstract — In this paper, we introduce the concept of an (L, M)-fuzzy topogenous space, where
L, M are strictly two sided commutative quantales lattices. Basic properties of (L, M )-fuzzy topoge-
nous spaces are studied, (L, M )-fuzzy topological spaces, (L, M )-fuzzy uniform spaces and (L, M )-
fuzzy proximity space are characterized in the framework of (L, M)-fuzzy topogenous spaces. We
study some relationships between previous spaces and give their examples. The notion of their

continuity property is investigated.

Keywords — Complete residuated lattice, (L, M)-fuzzy topogenous order, (L, M)-fuzzy uniform
space, L-fuzzy topologies.

1 Introduction

The concepts of topogenous order and topogenous space were first introduced by
Csaszer [8] in 1963. These concepts allow to develop a unified approach to the
three spaces: topologies, proximities and uniformities. This enabled him to evolve a
theory including the foundations of the three classical theories of topological spaces,
uniform spaces and proximity spaces.

In the case of the fuzzy structures there are at least two notions of fuzzy topoge-
nous structures, the first notion worked out in (Katsaras 1983 [24], 1985 [26], 1988
[27]) present a unified approach to the theories of Chang in 1968 [6] fuzzy topological
spaces, Hutton fuzzy uniform spaces (Hutton, 1977 [19]), Katsaras fuzzy proximity

™ Edited by Idris Zorlutuna (Area Editor) and Naim Cagman (Editor-in-Chicf).
* Corresponding Author.
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spaces (Katsaras 1979 [21], 1985 [26], 1990 [28]) and Artico fuzzy proximity (Artico
and Moresco 1984 [2]).

The second notion worked out in Katsaras (1990 [28],1991 [29]) agree very well
with Lowen fuzzy topological spaces (Lowen 1976 [35]) and Lowen-Hohle fuzzy uni-
form spaces (Lowen 1981 [36]). Cimoka [7] introduced L-fuzzy topogenous struc-
tures in complete lattices. El-Dardery investigated L-fuzzy topogenous order which
induced L-fuzzy topology [9].

Based on the idea of (L, M )-fuzzy topological space introduced by Kubiak [33, 34]
(the motivation for this concept comes from an idea of Hohle [15] which was called
fuzzifying topology in [46]).

In this paper, we introduce the concept of an (L, M)-fuzzy topogenous space,
where L, M are strictly two sided commutative quantales lattices. Basic proper-
ties of (L, M)-fuzzy topogenous spaces are studied, (L, M)-fuzzy topological spaces,
(L, M )-fuzzy uniform space and (L, M)-fuzzy proximity space are characterized in
the framework of (L, M)-fuzzy topogenous spaces. We give some important propo-
sitions that link the previous spaces to each other. We study some relationships
between previous spaces and give their examples. The notion of their continuity
property is investigated.

2 Preliminary

In this paper, Let X be a non-empty set and let L = (L, <,V, A, 0,1) be a completely
distributive lattice with the least element 07 and the greatest element 1; in L.

Definition 2.1. [14, 16, 41] A complete lattice (L, <,®) is called a strictly two-
sided commutative quantale (stsc-quantale, for short) iff it satisfies the following
properties.

(L1) (L,®) is a commutative semigroup,

(L2) x =2 ® 1, for each x € L and 1 is the universal upper bound,

(L3) ® is distributive over arbitrary joins, i.e. (\/,z;) ©y = V. (x;: © y).

There exists a further binary operation — (called the implication operator or
residuated) satisfying the following condition

x—>y:\/{zEL|x®z§y}.
Then it satisfies Galois correspondence; i.e, (r®@z) <y iff z < (x — y).

Remark 2.2. Every completely distributive lattice (L, <, A, V,* ) with an order re-
versing involution * is a stsc-quantale (L, <, ®, @®,* ) with an order reversing involu-
tion * where ® = A and @ = V.

In this paper, we always assume that (L, <,®,®,*) (resp. (M,<,0,®,")) is a
stsc-quantale with an order reversing involution * which is defined by

r@y=(x"0y), 2v=2—-0
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unless otherwise specified.

Lemma 2.3. [16, 17, 42] For each x,y, z, z;, y;,w € L, we have the following prop-
erties.

()1l—-2=2,00z=0andz—0==x

2)Ify <z thenzOy < zOz,2dy <zdz,x my<z—zandz—x<y—=z
(B)nySxAyS:chSx@y,

4) (Niva) = Viu, Vaw)" = N\ vi,s

(5) z© (Aiwi) < /\Z(I ® ¥i),

©6) z® (N;iyi) = Niz®y), v (V,u1) = V,(x D i),

(M) = (ANiwi) = Niz — wi),

&) (Vizi) =y = Ni(zi — v),

9) = (V) > V(@ — i),

(10) (A;zi) =y > Vy(zi — ),

(1) (z0y) mz=0—(y—2)=y— (z—2),
(12)z0(r—y)<yandr —y<(y —2) = (z — 2),
(B)zo(@ay) <y ,zoy=(—y) andrdy=2a"—y,
(4) (z—y)ok—w) < (z02) = (yow),

() z—y<(r0z) = (yo©z)and (z —y) Oy —2z) <z — 2z

(16) (z = 9) O (z mw) < (2@ 2) = (y Sw).

Definition 2.4. [10, 11] For a given set X, define a binary mapping S : LX x LX — L
by
SO = N\ (M) = ple) ¥ A e LY,
zeX
then S is an L-partial order on L*. For A\, u € L*, S(\, p) can be interpreted as
the degree to which A\ is a subset of u. It is called the subsethood degree or the
fuzzy inclusion order.

Lemma 2.5. [10, 11] Let S be the fuzzy inclusion order, then V \, i, p,v € L and
a € L the following statements hold

(D p<pesSup) =1,

(2) S(A,p) © (p, ) < S(A, ),

B)yu<p= S()\ w) < S\, p) and S(u,\) > S(p,\) Ve L¥,

(4) S\ ) ©S(p,v) < SA©p,nov), and S, 1) AS(p,v) < S(AAp, pAv).

Definition 2.6. [34] A map 7 : L* — M is called an (L, M)-fuzzy topology on X
if it satisfies the following conditions.
(O1) T(0x)=T(1x) = 1u,
(02) T(M O X)) 2T (M) OT(N) VA, A € LK,

03) TV, ) > NTM) YN eLl™X iel

The pair (X,7) is called an (L, M)-fuzzy topological space. Let (X,7;) and
(Y, T3) be L-fuzzy topological spaces and f: X — Y be a map. Then f is called
LF-continuous if

L) <T(f~(\) YAe L.
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Definition 2.7. [7] A map F : LX — M is called an (L, M)-fuzzy cotopology on X
if it satisfies the following conditions.

(F1) F(0x) = F(1x) = 1,

(F2) F(M @ A2) > F(M) ©F(N2), VA, e € LK,

The pair (X, F) is called an (L, M)-fuzzy cotopological space. Let (X, F;) and
(Y, F3) be (L, M)-fuzzy topological spaces and f : X — Y be a map. Then f is
called LF-continuous if

Fo(N) < F(f(N), YrelLY.

3 Perfect (L, M)-fuzzy topogenous structures and
(L, M)-fuzzy topologies

Definition 3.1. A mapping ¢ : LY x LY — L is called an (L, M)-fuzzy semi-
topogenous order on X if it satisfies the following axioms.

(ST1) £(1x,1x) = &(0x,0x) = 1,

(ST2) £(A, 1) < S(A, ),

(ST3) If Ay <A, p <y, then &\ ) < &A1, ).

Remark 3.2. If £ is an (L, M)-fuzzy semi-topogenous order on X. Then

(1) If &N\, i) = 1y, then A < p,

2) €(1x.A) £ A A@) and € 0x) < A, V(@)

(3) Define a mapping £ : LY x LX — M as &% (\, u) = &(u*, \*). Then £° is an
(L, M)-fuzzy semi-topogenous order on X.

Definition 3.3. An (L, M)-fuzzy semi-topogenous order £ on X is called symmetric
if
(5) ¢=¢"

Definition 3.4. For every Ay, Ao, pi1, i € L, an (L, M)-fuzzy semi-topogenous
order ¢ is called
(1) (L, M)-fuzzy topogenous if

(T) €M © A2, 11 © pa) > E(A1, 1) © E(Ag, p2),
(2) (L, M)-fuzzy co-topogenous if
(CT) €A1 @ g, pr @ pi2) 2 E(1, 1) © E(Ag, pi2),

(3) (L, M)-fuzzy bitopogenous if € are (L, M )-fuzzy topogenous and (L, M )-fuzzy
cotopogenous.
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Remark 3.5. Let (L = M,® = A, & = V) be a complete lattice, then (L, M )-fuzzy
bitopogenous order is an L-fuzzy topogenous in a Cimoka sense from:

(T) 6()\ A A?Nl A ,u2) 2 5()\7 :ul) A 6()\27/’@)7
(CT) &MV Ao, V) = E(A, 1) AE(A, ).

Definition 3.6. An (L, M)-fuzzy topogenous (resp. cotopogenous) order £ on X is
said to be L-fuzzy topogenous (resp. cotopogenous) space if £ o > &, where

(TS) (G 0&)(A 1) =V epx &(A p) © &2(p, 1)

Definition 3.7. An (L, M)-fuzzy semi-topogenous order £ on X is called perfect if

(ST4) &(V; Xis i) = N (X, ).
An (L, M)-fuzzy semi-topogenous order £ on X is called co-perfect if

An (L, M)-fuzzy semi-topogenous order £ on X is called bi-perfect if £ are (L, M)-
fuzzy perfect and (L, M )-fuzzy co-perfect.

Theorem 3.8. Let & and & be (L, M)-fuzzy cotopogenous (respectively, topoge-
nous, perfect, co-perfect) order on X. Define the composition (& 0&) of & and &
by

(&ro&)h ) =\ &\ p) © &lp, p).

peX

Then (& o &) is (L, M)-fuzzy cotopogenous (respectively, topogenous perfect, co-
perfect) order on X.

Proof. (ST2) By Lemma 2.5 (2), we have

(§10&) (N, 1) \/ & (N p) © &(p, 1) \/ SN\, p) ©S(p, ) < S(A, ).

peX peX
(CT)

(&1 0 &) (A1, ) © (&1 0 &) (A2, p2)
= \/ (&A1, p1) © &a(p1, 1)) © \/ (E1(A2, p2) © E2(p2, p12))

p1eLlX p2eLlX
< V(G p) @&, p2) © (&lpr1 i) © &a(pa, 12)))
p1,p2€LX

<\ (GO ® A, 01 B p2) © alpr @ p2y 1 B i) < (€10 &) (M B Ao, i B i)

p1,p2€LX
Other cases are similarly proved .

Theorem 3.9. Let £ be a co-perfect (L, M )-fuzzy cotopogenous order, then

(1) The mapping F¢ : L* — M defined by F¢(A\) = £(A\,\) is an (L, M)-fuzzy
cotopology on X,

(2) &° is a perfect (L, M)-fuzzy topogenous order.
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Proof. (1) (F1) F¢(0x) = £(0x,0x) = §(1x, 1x) = Fe(1x) = 1,
(F2) Fe(A1 @ X2) = (A1 D Aa, A B Na) > £, A1) ©@E(A2, Aa) = Fe(M1) © Fe(Na),

(F3> ]:E(/\i )‘i) = §<Az Ais /\z )‘i) > /\zf(/\z Ais )‘i) > /\ig(/\iv )‘i) = /\7, ff(/\i)-

(2) (T) MO O pz) =E((11 © p2)", (A © Ag)7)
= &(1 ® p3, AT A3) = E(p1, AT) © §(a, A7) 2 €5(Ar, 1) © €7( Az, pia).

Other cases are easily proved.

Theorem 3.10. Let F be an (L, M)-fuzzy cotopology on X, then
(1) The mapping &7 : LX x LY — M defined by

GO =\{F@) [ X<y <uyel™}
is a co-perfect L-fuzzy cotopogenous space. Moreover, F¢, = F,
(2) If ¢ is a co-perfect (L, M)-fuzzy cotopogenous order, then {7, < ¢&.
Proof. (1) (ST1) ££(0x,0x) = V{F(7) | 0x <7< 0x,v€ L¥} = F(0yx) =1,
Er(lx 1) =V{F () | Ix Sy < 1x v € LY} = F(ly) = 1.

(ST2) If A <, then S(A\, u) = 1. If A £, then

VAFO) [ A<y <pye X} =o.

It is trivial.
(ST3) If Ay <A, <y, then A\ <A<~y <pu<pu. So, \y <7 < py. Thus,

e = \V{FM) [ A<y <pye LX)
< \/{F(V) | M <y <,y € LY} = Ex(M, ).

(CT)

Er( A, 1) © Ep(Ag, po) = (\/{-7:(71) M <7 <m})o (\/{-7:(%) | X2 <7 < po})
< \/{}_(’71) OF(2) | M@ A <71 @y <t @ o}
S\/{}—(’Yl@’h) [ M B A <71 By <y @ st

<VAF@) T M@ X <y < @ po}
=Er(A D Ao, 11 B pi2).
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(ST5)
#O0 N\ ) = VAFOA <7 < /\uz} =\{F) = /\7 A<y < i
> \/{/\F Y)A < v < iy = /\ VAFGIN <3 < aud) = \&r X ).

Finally,  Fe, () = &\ A) = VIF() | A <7 < Ay € LY} = F(N).

2) e =\{F A<y <= V@) I A<y <u} <€ p).

Theorem 3.11. Let & be a perfect (L, M) -fuzzy topogenous order, then
(1) The mapping Z¢ : LX — M defined by Z¢(\) = £(A\, \) is an L-fuzzy topology
on X,
(2) & is a coperfect (L, M)-fuzzy cotopogenous order such that Fes(X) = T¢(A\*),
(3) If £ is a symmetric bi-perfect (L, M )-fuzzy bitopogenous order, then 7, = F.

Proof. (1) It is similarly proved as Theorem 3.9(1).
(2) Te(X7) = (A, A7) = €5(A A) = Fes (A),
(3) Ze(A) = EAA) = &7(A, A) = Fes (A).

Theorem 3.12. Let 7 be an (L, M)-fuzzy topology on X.
(1) The mapping &7 : LY x LX — M defined by

=T [ A<y <pyel™y

is a perfect (L, M)-fuzzy topogenous space. Moreover, T¢, =T,
(2) If Fr(N\) = T(X\) is an (L, M)-fuzzy topology on X, then &z, = &5

Proof. (1) It is similarly proved as Theorem 3.10 (1).

) &rr M) = V{FrMIN <y < = \HT () Im <97 <X =&, ) = &5 (M ).
Example 3.13. Let (L = M = [0, 1], ®, —) be a complete residuated lattice defined

by
rOy=(r+y—1)V0, z—-y=_1—-x+y) Al

Let X = {z,y} be a set and u,v € L such that
u(z) = 0.6,u(y) = 0.5, v(x)=04,v(y) =0.7.
Define 7, F : LX — M as follows

1, if/\E{lx,Ox} 1, if/\E{lx,Ox}
0.6, if A\ =u, ) 0.7, it A=,
T\ = 03, if A\=udu, A= 04, if A\=vdw,

0, otherwise 0, otherwise.
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(1) Since 0.3 =T (u©®u) > 7T (u) ©7T(u) = 0.2, T is an (L, M)-fuzzy topology
on X. By Theorem, we obtain a perfect topogenous space &7 @ LY x LX — L as

follows

1, if)\ZOXOI‘pzlx,
_ ) 0.6, ifu@u}_é)\gugp,
sr(Ap) = 03, if Ox #X<ucu<pufp,
0, otherwise.
By Theorem 3.12, we obtain a co-perfect cotopogenous space &5 : LY x LX — L
as follows
1, ifA=0xorp=1x
& p) = 0.6, ifA<u*<p,pPu du*
T\ P) = 03, f A<u"du*<p#lx,\Lu*,
0, otherwise.

Moreover, Fes (A) = T (\*).

(2) Since 0.4 = F(vdv) > F(v

) ® F(v) =04, Fisan (L, M)-fuzzy cotopology

on X. By Theorem 3.10, we obtain co-perfect cotopogenous order &7 : LX x LY — M

as follows

1, if)\:OXOI“pzlx
)07, ifvdvZA<vu<p,
&) = 0.5, if Ox #A<vdv<pvLp,
0, otherwise.

By Theorem 3.10, we obtain perfect topogenous order &7 : LX x LX — M as
follows

1, if)\:OXOI‘p::lX
s 0.7, fvev2A<v* <ppFtovov
§r(Ap) = 0.5, if A<v*Ov* < p, ALk,

0, otherwise.

Moreover, T¢s (A) = F(X¥).

Definition 3.14. Let {x and &y be two (L, M)-fuzzy semi-topogenous orders on
X and Y, respectively. A mapping f : (X,&x) — (Y, &y) is said to be topogenous
continuous if

Er(Ap) <Ex(fTN), f(w), YApel”

Theorem 3.15. Let (X,{y) and (Y, &y) be perfect (L, M)-fuzzy topogenous space.
If a mapping f : (X,&x) — (Y,&) is topogenous continuous, then the mapping
[ (X, Ze,) — (Y, T, ) is LF-continuous.

Conversely, a mapping f : (X, 7x) — (Y, 7y) is LF-continuous iff f: (X, &7, ) —
(Y, &7, ) is topogenous continuous.
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Proof. Since f: (X, {x) — (Y, &) is LF-topogenous continuous, then

Tex (7 (X)) = &x(f (N, [T (N) 2 & (A A) = Ty (M)

Conversely, since f : (X,7x) — (Y, 7Zy) is LF-continuous, then

) =\H{Tr () X<y < <\H{TX(FO)) 17N < () < ()}
<\VA{Tx() [ p=1f"(7), F~(N) <p<
=& (T (N, 7 (W)

Conversely, since Te; = Tx and 7¢, = Tx from Theorem 3.12(1), it is trivial.

Corollary 3.16. Let (X,{x) and (Y,&y) be co-perfect (L, M)-fuzzy cotopogenous
space. If a mapping f : (X,&x) — (Y,&) is topogenous continuous, then the
mapping f : (X, Fey) — (Y, Fe, ) is LF-continuous.

Conversely, a mapping f : (X, Fx) — (Y, Fy)is LF-continuous iff f: (X, {x,) —
(Y, &5, ) is topogenous continuous.

Lemma 3.17. Let f: X — Y be a mapping, then the following inequalities hold.
(1) ()" < f7 (),

[\
=z
Sy

1
R
{

!
=
-
=

TINA

SN wW=0\V we@y= N nwx)s \  u@)=0" 0.

zef 1 (y) zef~'({y}) zef~ ' ({y})

(2) Let y, € Y, then

ST N = AU = (1)) )

Hence, S(f~(A), (f7(1"))*) < S(A p).



Journal of New Theory 8 (2015) 01-28 10

(3)
SN () = N\ A @) = ulf(@) = N\ My) = ny) = S, ).
(4)
fFaeomw =\ (o) < Ao ( '\  ul@)
ref-1({y)) vef-1({y)) ref-1({yh)
<)o f7 ().
(5)
Fhomy =\ Qo) < Aa)o( \/  u@)
ref-1({y}) vef-1({y)) ref-1({y))
<M e ().

Other cases are easily proved.

Theorem 3.18. let f : X — Y be a mapping. Let & be an (L, M)-fuzzy topogenous

(co-topogenous, perfect, co-perfect, respectively) order on Y. We define the pre-
image [ (&) of £ under f as

FEON ) =&, (F7 (")), YA e L™

Then,

(1) f=(¢) is an (L, M)-fuzzy topogenous (co-topogenous, perfect, co-perfect, re-
spectively) order on X. Moreover, if £ 0 & < &, then f(£) o f(&) < f(&).

(2) A mapping f : (X,{x) — (Y,&) is topogenous continuous if and only if
f7(6) <é&x.

Proof. (1) (ST2) By Lemma 3.17, we have
SO ) =&~ N, (f (1)) < ST, (F7 (1)) < S ).
(T)
SO O A, 1 © po)

(A1 @A), (f 7 (11 © p2)"))")
(M) © f7(A2), (F7 (k1) © (f 7 (13))")
(M), (F7 (")) © €07 (A2), (F 7 (1)7)
T(E)(A1y 1) © FT(E) (N2, pa2).

E(f~
=<~
>&(f
=f

(CT)

FTEOM® Ao, 1 ® o) =M@ X)), (f 7 ((11 ® p2)™))*) (by Lemma 3.17)
T(A) @ ST (), (FT (1) @ (f T (13))7)
A, (7 (5)") © €0~ (A2), (F 7 (1))
§

(A, 1) © F7(6) (A2, i)

VAA/-\
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If 0 & <&, then f~(€) o f(€) < f(£) since
F©of~©O0mw =\ F©ONp o[ w)

peLX

=V €SO (7)) (), (f~ (1)) (by Lemma 3.17(1))

< V €GN0 @& (0 (F (1))

<& 7 W)7) = 1O ).

(2) For any p,v € L*, we have
7@, v) =& (), (7)) < & (f~ (7 (), [~ (f7 (")) < Ex(p,v),
Ex(fT ), () = F U V), () = £ (), (U ()")7) = € ).

4 Perfect (L, M)-fuzzy topogenous space and (L, M)-
fuzzy quasi-proximities

Kim et al [30] introduced the concept of L-fuzzy proximities in a strictly two sided,
commutative quantales. We here reintroduce them in a slightly different way as
follows.

Definition 4.1. A mapping § : LY x L* — M is called an (L, M)-fuzzy quasi-
proximity on X if it satisfies the following axioms.

(QP1) 6(0x,1x) =0(1x,0x) = Oy,

(QP2) 60 1) = Vyex (A © ) (a),

(QP3) If Ay < g, p1 < po, then 5(A1, p1) < (N, po) V p € LXK,

(QP4) 6(A1 © Az, p1 @ p2) < 6(A1, p1) © 0( A2, p2),

(QP5) (A, p) = N\{6(A p) & 6(p, p)}-

The pair (X, ) is called an (L, M)-fuzzy quasi-proximity space. We call §(\, )
a gradation of nearness.

Let 6; and d3 be (L, M)-fuzzy quasi-proximities on X. Then ¢; is called coarser
than 8y if dy(\, 1) < 61(\, ) for all A\, € LX.

An (L, M )-fuzzy quasi-proximity is called (L, M )-fuzzy proximity on X if it sat-
isfies the following axiom
(P) 6(A, 1) = o(p, ).

An (L, M)-fuzzy quasi-proximity is called perfect if it satisfies the following axiom
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(PP) 5(\/1‘@ )‘i7 N) = \/iel“ 5()‘27 p)-

An (L, M)-fuzzy quasi-proximity is called co-perfect if it satisfies the following
axiom

(CPP) 0(A, Vier £i) = Vier 0(A, pi)-
Proposition 4.2. (1) If 0 is an (L, M)-fuzzy quasi-proximity space and we define
6 LX x LX — M by

85N\, p) = 6(u*, "), VA peLX,
then §° is an (L, M)-fuzzy quasi-proximity space.

(2) If (X, €) is a perfect (L, M)-fuzzy topogenous space and we define d; : LX x
LX — M by
Se(\p) =&\ p*) VA peL™,

then 0¢ is a perfect (L, M)-fuzzy quasi-proximity space on X. Moreover, if ¢ is
symmetric, then ¢ is a bi-perfect (L, M )-fuzzy proximity space on X.

(3) If (X,€) is a co-perfect (L, M)-fuzzy co-topogenous space and we define J; :
LX x LX — M by
Oe(A\ ) = € (u, A*) ¥ A pe LY,

then d¢ is a co-perfect (L, M)-fuzzy quasi-proximity space on X. Moreover, if £ is
symmetric, then &g is a bi-perfect (L, M )-fuzzy proximity space on X.

(4) If 6 is an (resp. perfect) (L, M)-fuzzy quasi-proximity space and we define
& LX x LX — M by

Es(A ) =6\ p*) VA pe L,

then &5 is an (resp. perfect) (L, M)-fuzzy topogenous space such that dg, = 0.
Moreover, if £ is an (resp. perfect) (L, M)-fuzzy topogenous space, then &5, = &.

(5) If § is an (resp. co-perfect) (L, M)-fuzzy quasi-proximity space and we define
& LX x LX — M by

E(Ap) = 6" (u*,\) VA, pe L¥,

then &; is an (resp. co-perfect) (L, M)-fuzzy co-topogenous space such that ¢, = 0.
Moreover, if  is an (resp. co-perfect) (L, M )-fuzzy co-topogenous space, then &5, = &.

Proof. (1) It is easily proved.

(2) (Qpl) 55(1)(,0)() = f*(lx,O}) = f*(lx,OX) - OM Similarly, (55(0)(, 1)() = 0
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(QP2) By Definition 3.1 (ST2) and Lemma 2.3 (16), we have

(N Q@) = w@) =\ M) = w (@) =\ hou)(@).

zeX zeX zeX

Og(A, p) = (S(A, p7))”

(QP3) If A > p, then
E(N, p") < &, p") HEE (1, p7) < E°(N, p7), then d¢(p, p) < d¢(A, p).
(QP4)

0e(M @ A2, p1 B p2) = (M © Ag, (p1 @ p2)") = £ (M1 © Ao, p © p3)
< E (A, 1) @ €5 (Mo, 05) = 0e( A1, p1) D de( N2, p2).

(QP5) Since £ o0& > ¢ by definition 3.7, then

0e(M 1) = E (A 1") > (£ 0 &) (V &nyoih.w)
~yeLX
= AN clnesme) = N sy (v p.
yeLX yeLX

(PP) 0c(Vier Mis 1) = & (Vier Ais %) = Vier € (N 17) = Vier 0e(Ais 1)

Let & = &° be given, then £ is co-perfect by

XN p) =N p) =6\ o A7) = N ) = N&Op) = N pi)

i€l i€l i€l i€l i€l i€l
(P) de(A, ) = & (A, 1) = ()" (A, 1) = &7 (1, A7) = deps, ).

(CPP)  0¢(X Vier i) = €A Nicr 1) = Vier (A p7) = Vier 0¢(A, pi). Hence
¢ is a biperfect (L, M )-fuzzy proximity space on X.

(3) It is similarly proved as (2).
(QP4)

0e(A1 © A2, p1 @ p2) = £ (p1 @ p2, (M1 © X2)*) = £ (p1 D p2, A] © A5)
<& (1, ML) @ € (p2, A3) = 0e( A1, p1) D de( N2, p2).

Other cases are similarly proved as (2).
(4) (ST1)  &(lx,1x) =6"(1x,1%) = 6"(1x,0x) = 0% = Ly,

&(0x,0x) = 0"(0x,0%) = 0"(0x, 1x) = 0" = 1p.
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(ST2) From Lemma 2.3 (16), we have

SO =) < (Vo) @) = ANou) ()

= \OG) = 1) = 50

(ST3) If Ay < A, g <y, then from (QP3) and (QP6)

Es(Ap) = 07 (A, ") = 0" (A, p7) = 07 (p", ) 2 07 (py, M) = 67 (Aa, pp) = Es(Aa, ).
(ST4) Obviously, &(A, 1) = 6*(A, p*) = 6" (p", A) = &(p", A") = §(A, ).
(T)

féo\la,ul) © 560\2’#2) = 5*()\1,M1) © 5* )\2,M2

:( )\hlul @5 )‘27/’62))
< 0" ()\1 @)\2,#1 @Hg) = 5*()\1 ®)‘2a (:ul ®lu2) ) =

Es(AM1 O Ag, 11 © pa).

5&5(/\7 :u) = 5;()‘7 M*) = 5(/\7 :u)a 555()‘a :u) = 52()‘7 p,*) = g()" :u)'
(5) (CT)

Es(A1, 1) © E5(Ng, p2) = 6% (15, A1) © 6% (15, o) = (0(1y, A1) & 6(s, )\2))
< O] © pgy A ® Ag) = 0 (111 @ p12)"s A A2) = &s(M & Ao, i1 © paa).

656()\7 ILL) = 5;(:“7 )‘*) = 6()\7 ILL)’ 565(>‘a M) = 5§(u*a )‘) = §(>‘a M)
Theorem 4.3. Let ¢ be an (L, M)-fuzzy quasi-proximity on X, then

(1) If § is perfect and the mapping 75 : L* — M defined by 7T5(\) = 6*(\, \*),
then 75 is an (L, M )-fuzzy topology on X.

(2) If 6 is co-perfect and the mapping Fs : L* — M defined by Fs(A\) = §*(A*, \),
then Fj is an (L, M )-fuzzy cotopology on X.

(3) If 0 is a perfect (L, M)-fuzzy proximity on X, then Z5(\) = Fs(N).

Proof. (1) Let ¢ be a perfect (L, M )-fuzzy quasi-proximity on X and define {5(\, p) =
0*(A\, u*), then &5 a perfect (L, M)-fuzzy topogenuous and

Hence 75 is an (L, M )-fuzzy topology on X.

(2) It is easily proved as  Z5(\) = (A, A*) = 0" (A", \) = T5(N).
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Theorem 4.4. Let F be an (L, M)-fuzzy co-topology on X, then

(1) The mapping 0z : L x LX — M defined by

Sr(hp) = N(F@) [ <y <A}
is a co-perfect (L, M)-fuzzy quasi-proximity space. Moreover, Fj, = F.

(2) If 0 is a co-perfect (L, M)-fuzzy quasi-proximity on X, then 0z > 9.
Theorem 4.5. Let 7 be an (L, M)-fuzzy topology on X, then

(1) The mapping d7 : LX x L* — M defined by

sr(h ) = AT A<y <p'}

is a perfect (L, M)-fuzzy quasi-proximity space. Moreover, 75 = 7.

(2) If Fr(X\) =T (\*) is an (L, M)-fuzzy topology on X, then &z, = d5.

Example 4.6. Let & be given as Example 3.13 and since d¢, (A, p) = &(A, p*), then
we have

0 p) = S" (M) =\ (A @p) (),

zeX

Og, (As p) = { 0, (A, p) = {

Example 4.7. Let 7, F be given as Example 3.13.

0, if A <p*,
1, otherwise.

0, ifA=0x, orp=_0yx,
1, otherwise

(1) By Theorems 4.2(2) and 4.5, we obtain a perfect (L, M )-quasi-proximity
Sy = 07 L* x L* — M as follows

0, if A=0xor p=0x

5e (M, p) = 04, fucouP<u<lp

¢r P 0.7, f Ox #A<uou<puLp,
1, otherwise.

By Theorems 4.2(2) and 4.5, we obtain a co-perfect (L, M )-quasi-proximity
Ogs = Oy = L™ x LY — M with T*(\) = T(\*) as follows

0, if \=0x or p=0x

Ses (M, p) = 04, ifAX<u* <p* p"2u du

&\ P 0.7, it A<u" @u* <p"#1x, A Lu,
1, otherwise.

Moreover, Fj,, (A) =T (\).
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(2) By Theorems 4.2(2) and 4.4, we obtain co-perfect (L, M )-quasi-proximity
0¢r = 05 : LY x L* — M as follows

0, ifA=0xorp=0x
_J 03, ifvevFr<v<p,
e (N, p) = 0.5, if Ox ZX<v@ov < p* v L p,
1, otherwise.

By Theorems 4.2(2) and 4.4, we obtain perfect (L, M)-quasi-proximity
Ogs. = Op+ : L™ x LY — M with F*(X) = F(\*) as follows

0, if \=0xor p=_0x
Ses (A, p) = 0.3, fvdv2Z2Alv <pp v Ov*
&GP 0.5, if A<v"ov* <p* A Lo,

1, otherwise.

Moreover, 7}5}(/\) = F(\).

Definition 4.8. Let (X, dx) and (Y, dy) be two (L, M )-fuzzy quasi-proximity spaces.
A mapping f: (X,0x) — (Y,dy) is said to be L-fuzzy proximally continuous if

Ox(\ ) <oy (f7(N). fT (W), VA peLl”,

or equivalently,  dx (F~(N), £~ (1)) < by (A ).

Theorem 4.9. A mapping [ : (X,0x) — (Y, dy) of two (L, M )-fuzzy quasi-proximity
spaces is L-fuzzy proximally continuous iff the the mapping f : (X, &) — (Y, &)
is topogenous continuous.

Conversely, a mapping f : (X,{x) — (Y, &) of (L, M)-fuzzy topogenous spaces
is topogenous continuous iff the mapping f : (X, d¢, ) — (Y, d¢, ) of the corresponding
(L, M)-fuzzy quasi-proximity spaces is L-fuzzy proximally continuous.

Proof. Since f: (X,0x) — (Y, dy) is L-fuzzy proximally continuous, then
Eox (f (N S (1) = X (F(A), (f 7~ ())")
(N ) < B () = &y (A ).
Conversely, Since f: (X,£x) — (Y, &y) is topogenous continuous, then
O (ST (A, S (1) = & (F(N), (F 7 ())")
=TT (W) S G KT =g (A ).

Theorem 4.10. Let (Y, ) be an (L, M )-fuzzy quasi-proximity space, X be a non-
empty set and f : X — Y be a mapping. We define §; : LX x LX — M by

O\ ) = 6(f7(N), f7 (W), VA e L™



Journal of New Theory 8 (2015) 01-28 17

Then,

(1) &5 is the coarsest (L, M)-fuzzy quasi-proximity for which f is L-fuzzy
proximally continuous,

(2) A mapping g¢:(Z,€) — (X,0f) is L-fuzzy proximally continuous iff fog
is L-fuzzy proximally continuous.

Proof. (QP1) é;(1x,0x) = 0(f~(1x), f~(0x)) < d(1y,0y) = Op. Similarly,
5]0(0)(, 1)() =0p.

(QP2)
S ) =6(f~ (N, f~(w) =\ (=N o f~(m)w)
> \/ Moo \/ we)=\ M) o) =\ (Ao ().
vEF=(yo) xeﬁyo) veX reX
(QP3) If A < p, then d¢(A,p) = 6(f7(N), f7(p) < 6(f~ (1), [~ (p) = 65 (1, p)-
(QP4)
0(A1, p1) @ 05 (N2, p2) = 0(f7 (A1), [ (p1) @ 8(f 7 (A2), [ (p2))
>6(f7 (M) O (A, [T (p1) @ f(p2))
>0(fT (MO N), [T (p1 @ p2)) = 55 (M © Mg, p1 @ ).
(QP5) Since d¢(A, (f7(p))*) = o(f~(N), f7(f7(p"))) < 3(f7(N),p*), then we

have

SrA ) = 0(f~ (N, f7(w) =\ 5(F7 (N, p) @ 6(F7 (1), p")

peLX

> A GO (0) @8 (F(0))
f=(p)eLX

>' /\ 5f 695f L,y )
yeLX

From the definition of ds, f is L-fuzzy proximally continuous. Let f : (X, 1) —
(Y,0) be L-fuzzy proximally continuous, and since

S1( A, ) < O(fF7(N), f () = 0p(A, ).

Then, ¢y is coarser than d;.

(2) Let g be L-fuzzy proximally continuous. So,

EA 1) < 0p(g7 (M), g7 () = 6(f (g7 (M), S (g7 ().
Hence, f o g is L-fuzzy proximally continuous. Let f o g be L-fuzzy proximally
continuous, then

EA ) <o(f (g7 (W), f (g7 () = 097 (A), 97 ().

Then ¢ is L-fuzzy proximally continuous.
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5 (L, M)-fuzzy topogenous order induced by (L, M)-
fuzzy quasi uniformity

Definition 5.1. [31, 47] A mapping U : L**X — M is called an (L, M)-fuzzy
quasi-uniformity on X iff it satisfies the properties.

(LU1) There exists u € L**X such that U(u) = 1y,
(LU2) If v < u, then U(v) < U(u),

(LU3) For every u,v € L% U(u®v) > U(u) ®©U(v),
(LU4) If U(u) # Opr, then 1o < u, where

1 ifx=

(LUS) U <UoU, where UoU(u) =\ {U(v) oU(w) | vow < u},

vow(x,y) = \/ (v(z,2) ©v(z,y)), YVz,yeX.

zeX

Remark 5.2. Let (X,U) be an (L, M)-fuzzy quasi-uniform space, then by (LU1)
and (LU2), we have U(lxxx) = 1y because u < lx.x for all u e LX*X,

Definition 5.3. [31, 47] Let (X,U) and (Y,V) be (L, M)-fuzzy uniform spaces,
and ¢: X — Y baa mapping. Then ¢ is said to be L-uniformly continuous if

V(v) <U((¢ x @) (v)),

for every v € LY*Y.

Lemma 5.4. [31] Let (X,U) be an (L, M)-fuzzy quasi-uniform space. For each
u € L% and A € LX, the image u[)\] of \ with respect to u is the fuzzy subset of
X defined by

uN(@) = \/ (\y) @ uly,2)), VreX

yeX

For each u, v, ui,us € LX*X and X, p, A1, A2, \; € LY | we have

< wu[A], for each U(u) > 0y,
<wou, foreach U(u) > 0y,

o uw)[A] = vlu[All,

ViAil = ViulAdl,

(u1 © ug)[A1 © Ap] < ur[Ai] © uafAs],
(U1 O] Ug)[)\l S, )\2] < ul[)\l] @b u2[>\2].

A
(v
ul
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Theorem 5.5. Let (X,U) be an (L, M )-fuzzy quasi-uniform space. Define a map-
ping & : LX x LX — M by

= \/{U(w) | ul\] < p}.
Then (X, &) is an (L, M)-fuzzy topogenous space.

Proof. . (ST1) Since u[0 X] = Ox and u[lx] = 1y, for U(u) = 1y, we have
Su(lx,1x) = &u(0x,0x) = 1us

(ST2) Since for all U(u) > 0y, we have X < u[A]. Then if &\, pu) = 1a, we
have A < p.

(ST3) If Ay < A, p < pyq, then

= \/{U(u) ] < n} < \{U(u) ] <}
< ViU | <} = &ilAr, ).
(T)

§u(A, 1) © &u(Aa, o) = \/ U(u) | | < Ml}@\/{u v[Ao] < o}
g\/L{(u [)\]GUP\]<M1®N2}
<\{Uwo UQU)[A1®/\2]<M1®M2}
S\/ |w)\1®)\2]<M1®M2}

=&u(M © Ao, 11 © p12).

(CT)
&M, ) © &g, i) = \/ ] < m}@\/{u v[ha] < o}
< u[A1] © v[Aq] <u1@,u2}
S\/ |u®UP\1@/\2]<M1@N2}

§u ()\1 B Ao, 11 B pa).

(TS) For each u € LX*¥ such that wu[\] < p, by (LU5), we have

=\/{U®) w) | vow < ul.
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Thus,
\/{U(u) ] <} < \{U(v) | vowl[A = v[wA]] < p}
<\ {\/{U w) | wA] <, vyl < p}}

~yeLX

V AV U@ [ ob] < uy o \{U(w) | wi] <A1}

~yeLX

=\ @&x) oty

yeLX

IA

Example 5.6. Let (L = M = [0,1],®, —) be a complete residuated lattice defined
as
rOy=(x4+y—1)V0, z—y=>1—-x+y) AL

Let X = {x,y,z} be a set and w € L**X such that

1 05 0.3 1 0 0
w=| 07 1 05 ], wow=| 04 1 0
0.6 0.6 1 02 02 1

Define U : LX*X — M as follows

1, ﬂlL:<Txxx,

0.6, ifwﬁu%TXxX,
0.3, if wow<uPw,
0, otherwise.

U(u) =

Since 0.3 =U(wOw) >U(w)OU(w) = 0.2 and wow = w, (WOwW)o(wOwW) =
(w®w), then U is an (L, M )-fuzzy quasi-uniformity on X.

By Theorem 5.5, we obtain (L, M)-fuzzy topogenous order &, : L* x LX — M
as follows

1’ lf/\ < \/xeX ([L’) S
A _ 067 if Ox 7é A< 'LU[)\] < 7\/z€X )\(.1') ﬁ Ps
©P) =90 030 it X< (wow) < pui £ p,

0, otherwise.

Definition 5.7. Let (X,¢x) and (Y,&y) be two (L, M)-fuzzy topogenous orders
and let f: X — Y beamap. Then f:(X,{x)— (Y,&) is called an L-fuzzy open
topogenous map if

ExO\ ) S& (TN (), VA pe L

Theorem 5.8. Let (X,U) and (Y,V) be (L, M)-fuzzy quasi-uniform spaces. If
f:(X,U) — (Y,V) is LF-uniformly continuous, then f : (X,&,) — (Y,&y) is an
L-fuzzy open topogenous map.
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Proof. Let v[f~(\)] < f7(n), then

(f < )7 WA ==l M) <77 () < pe

Hence,

() f (1)

I
<
——
<
<

) Lol < f7 ()}

FX @) LW < 7 ()}
FX 7)1 (> )7 WA < p}

| w

VAR
<< <
N

Theorem 5.9. Let (X,U) be an (L, M)-quasi uniform space. Define a mapping
& o L% — L such that

&N p) = \/ {U(w) © S, ulp]) },

then &, is an (L, M)-fuzzy topogenous order.
Proof. (ST1) Since u[0x]| = Oy, and u[lx] = 1x, then

&u(0x,0x) =&(1x,1x) = \/U(u) = 1.

(ST2) By (QU1) and Lemma 2.3 (16), we have

&) < N\ (N oul)) (@) = A (] = (ulw])) ().

zeX zeX

For U(u) > 0y, we have A < w[A] and p > (u[p*])*. Thus, by Lemma 2.3 (2), we
have

A @) = @) ) (@) < N (@N@) = n@) < N\ (M) = p@) = SO, p).

zeX zeX rzeX

Since A < ul)], u[p*]* <p,

&\ p) =\ {U(w) © SN, ulp])} < \/{U(w) © S, p)} < SO p).

Therefore, & (A, p1) < S(\ p).

(ST3) It is obvious.
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(ST4) By Lemma 2.5(3) and Lemma 5.4(5), we have

§u(M © Az, p1 © o) \/ {U(u) ulh © Ao, ul(pr @ p2)]") }
>\/{u M@l )" © alp3)))
>\/{u o V() © S(ubvd )

= fu()\b p1) © &u(Aa, p2).

(T) By Lemma 2.5(3) and Lemma 5.4(6), we have
(M ® Aoy p1 @ po) = \/ {U(w) © S(ulhy @ Ao], ul(p1 ® )]}
> \/ {U(u) © S(ulM] & ula], ulpi]* & ulp3]) }

> \/ {U(w) © S(ul\], ulpi] }@\/{u ], ulps]") }

u

= &u(A1, p1) © &u(Na, p2).

Theorem 5.10. Let (X,U) and (Y,V) be two (L, M)-fuzzy quasi uniform spaces
and f: X — Y be LF-uniformly continuous, then f : (X, &) — (Y,&) is L- fuzzy
topogenous continuous.

Proof. Since (f X f)~(u)[f=(N)] = f~([f~(f~(A)]) < f~(v[A]) and by Theorem
5.7 for u = (f x f)~(v), we have for all \,u € L

= \/{V(v) © S (wp']))}
< \/{V ) © S (A, S~ (e ])) )
< \/{U ST @l D)) < &l (M), f (w)-

Lemma 5.11. For every A, p € L%, we define u,\,p,u;j) : X x X — L by

unp(@, ) = M) = p(y), uy,(,y) = u,(y, ©),

then we have the following statements

(]-) ]-XXX - qu, OX = /LLIX7 lx7

(2) IF A\ < Xy and py < po, then wuy, ,, < up, p,,

(3) EX<p, then 1n <wy,,

(4) For every w,, € L*** and X € L*, we have u,,o0uy, < uy,,
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) Ury,p1 O] Uy, po < U1 025 Up1Gp2s
) Ury,p1 ® UNg,po < U125 Upi®p2s
) “K,}; = Up*a+s
; u;11®>\2,P1®p2 = Upjops N ®A;

UN @Aa,p1Bp2 — WpiOP5, N ON;

(1) Ixux(z,y) = 1 = ugy 05 (7,y) = 0x(2) — Ox(y) = 1x(7) — 1x(y) = w115 (7, 9).
(2) Let Ay < Ay and p; < po, then

Ung,pr (T,Y) = A2(z) = p1(y) < Mi(x) = pa(y) = un (2, 9)-
(3) Since 1A[A] = A < p, then 1a < uy),.

(4)
(@, 2) 0 urs (2,2) = \/ (W) = p(2))O(A(@) = 7(9))) < A@) = ply) = urpla, 2).

(5)
(uhym © U)\2,p2)(l‘, Z) = Ui, (I7 Z) © Uxg,py (:L‘a Z)
< (M(2) = p(y) © (Ma(x) = pa(y))
< )\1(3:) © AQ(x) - Pl(y) © pQ(y) = UX;OA2; uﬂl@ﬁz(xﬂy)'
(6)

(uALPl © u>\27p2)<x7 y) = Uxy,py (QJ, y) © Uy, (SC, Z/)
< (M) = () © (Aa(x) = p2(y))
< )‘1(‘%‘) D )‘Q(x) - pl(y) D pQ(y) = UNi@A2s Up1Dpo (IL‘, y)

(1) (,y) = ur,p(y,2) = My) — p(a) = p*(x) = X (y) = wpe e (2,9).
(8),(9) are similarly proved.

In the following theorem, we obtain an (L, M)-fuzzy quasi uniform space from
an (L, M)-fuzzy topogenous order.

Theorem 5.12. Let (X,¢) be an (L, M)-fuzzy quasi topogenous space. Define
Ug : LY — M by

Ug(u) = \/{Qyzlg(ﬂhpi) | ®zT‘L:1 Ui, ps < u}7
i=1,2,3,....,n}. Then,

where \/ is taken over every finite family {u,, ,,
(1) Ug is an (L, M)-fuzzy quasi uniformity on X,
(2) &, =¢.
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Proof. (1) (LU1) Since (0x,0x) = §(1x, Lx) = 1ar, there exists 1xxx = uoy 0y =
u’lx,lx - LXXX. It fOHOWS uf(]‘XXX) — 1M

(LU2) It is trivial from the definition of .

(LU3) For every u,v € L*** each two families {u,, ,,

®?=1 Upi,p; < u} and
k
{uyjzwj | ®J:1 ul/j,w]‘ S /U}7 we have

U, ( ) ®u§ \/{Qz 15 :U’lvpl)| ®z 1 Ypipi < u} © \/{Q;C:lg Vi7wi)| ®§:1 Uy w; < U})
< VO & (i p1) © (O (v wy)) | Oy, < 1 OFy Uy, < 0}

< VA@L &, ) © (O wi) | (Ot p,) © (Ot ) < @)
< Ue(u O ).
(LU4) If U(u) # Op, there exists a family {uy,,, | O, uy,, < u} such that
1
=1

E(Ni,pi) # Opr. Since £(N;, pi) # On, for @ = 1,2,...,m, then \; < p; for
2 api- Thus 1a <O uy, p, < u.

g eeey TN, i.e. 1A S U
LU5) Suppose there exists u € LX*X such that
( pp

VA Ue(v) ©Us(w) | vow < u} # Ue(u)

Put t = V{ Ue(v) ©Ue(w) | vow < u}. From the Definition of Ue(u), there exists
family {w,, , | Oy up,,, < u} such that

t £ O (N, pi)-
Since 605 Z 57 t z @ 15 g )‘mpz) - QI{VWELX{g(Vapi) © (§<AZ77))}} and L

is a stsc-quantal, then there exist 7; € L~ such that

t £ O (E(v, pi) © E(Niy ).

On the other hand v; = u., ,,, w; = uy, ~,, then it satisfies

Vi O Wi < Uy, p, O U,y S U ;s u{(“l') > 5(%’7/01')’ Z/{E(wi) > 5()‘2':%')'

Let v = @2v; and w = O ,w; be given. Since wv; o w; < wy,,,, for each
1=1,2,3,...... ,m, we have

(OF v)o (O, v)=0R (tiow) <O Uy, < u.
Then, we have vow <wu, Ue(v) > O, Ue(v;) and Ug(w) > OF 4 Ug(w;). Thus,
t=\/{Ue(w) O Ue(w) | wow <u} > U(v) © Ue(w) > O, (€(%,p1) © (i 1))-
It is a contradiction. Thus, U, is an (L, M)-fuzzy quasi uniformity on X.

(2) Since u[A] < p, then wu < wu,,. Hence,

(N p) = \[{Ue(w) | ulN] < p} = Ue(un,) = €N, p).
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6 Conclusion

The main purpose of this paper is to introduce concepts in fuzzy set theory, namely
that an (L, M )-fuzzy semi-topogenous order, (L, M )-fuzzy topogenous space, (L, M )-
fuzzy uniform space and the (L, M)-fuzzy proximity space in strictly two sided,
commutative quantales. On the other hand, we study some relationships between
previous spaces and we give their examples. As a special case our (L, M)-fuzzy
topogenous structures contain classical Csdszer topogenous structures, Katasaras
fuzzy topogenous structures and Cimoka L-fuzzy topogenous structures.
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Abstract — This paper aims to introduce and investigate a collection of pre open soft sets in a
soft topological space via soft grill G, namely pre G-open soft sets. Detailed study on pre G-open
soft sets through soft sets theory with examples is carried out. Suitable condition on the collection

of pre G-open soft sets to coincide with soft topology is deduced.

Keywords — Soft sets, Soft topological spaces, Soft grill, Pre open soft sets, Semi open soft sets,

Regular open soft sets.

1 Introduction

In [25], D. Molodtsov introduced the concept of soft set theory and it has received
much attention since its inception. Molodtsov presented the fundamental results of
new theory and successfully applied it into several directions such as smoothness of
functions, game theory, operations research, Riemann-integration, Perron integra-
tion, theory of probability etc. A soft set is a collection of approximate description
of an object. He also showed how soft set theory is free from parametrization inad-
equacy syndrome of fuzzy set theory, rough set theory, probability theory and game
theory. Soft systems provide a very general framework with the involvement of pa-
rameters. Research works on soft set theory and its applications in various fields are
progressing rapidly in these years. After presentation of the operations of soft sets
[23], the properties and applications of soft set theory have been studied increasingly
[2, 20, 26, 27]. In recent years, many interesting applications of soft set theory have
been expanded by embedding the ideas of fuzzy sets [9, 18, 21, 22, 23, 24, 26]. To
develop soft set theory, the operations of the soft sets are redefined and a uni-int
decision making method was constructed by using these new operations [3]. It got
some stability only after the introduction of soft topology [31] in 2011. In [10], Kandil
et al. introduced some soft operations such as semi open soft, pre open soft, «—open

* Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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soft and f—open soft and investigated their properties in detail. The notion of soft
ideal was initiated for the first time by Kandil et al. [13]. They also introduced
the concept of soft local function. Applications to various fields were further inves-
tigated by Kandil et al. [11, 12, 17, 14, 15, 16, 19]. The notion of b—open soft sets
was initiated for the first time by El-sheikh and Abd El-latif [6], which is generalized
to the supra soft topological spaces in [1, 8]. Properties of b—open soft sets in [28]
are discussed. The notions of soft grill G and soft operators ¢, ¥ were introduced
in [29]. These concepts are discussed with a view to find new soft topologies 7 from
the original one 7 via soft grill G. Pei and Miao [27] showed that soft sets are a class
of special information systems. Nevertheless, the idea of pre G-open soft sets in soft
topological spaces and suitable conditions for the collection of pre G-open soft sets
to be soft topology are not investigated, which are the aims of the current paper.

2 Preliminary

Definition 2.1. [25] Let X be an initial universe and E be a set of parameters.
Let P(X) denote the power set of X and A be a non-empty subset of E. A pair
F' denoted by Fj is called a soft set over X , where F' is a mapping given by
F : A — P(X). In other words, a soft set over X is a parametrized family of
subsets of the universe X. For a particular e € A, F(e) may be considered the set
of e—approximate elements of the soft set (F, A) and if e &€ A, then F(e) = 0 i.e
Fy={F(e):ec ACE, F: A— P(X)}.

Definition 2.2. [4] A soft set F' over X is a set valued function from E to P(X). It
can be written a set of ordered pairs F' = {(e, F(e)) : e € E'}. Note that if F'(e) = 0,
then the element (e, F'(e)) is not appeared in F. The set of all soft sets over X is
denoted by Sg(X).

Definition 2.3. [4] Let F,G € Sg(X). Then,
(i). If F(e) = 0 for each e € E, F is said to be a null soft set, denoted by 0.
(7). If F(e) = X for each e € E, F is said to be absolute soft set, denoted by X.
(iii). F is soft subset of G, denoted by FCG, if F(e) C G(e) for each e € E.
(). F =G, if FCG and GCF.

(v). Soft union of F' and G, denoted by FUG, is a soft set over X and defined by
FUG : E — P(X) such that (FUG)(e) = F(e) UG(e) for each e € E.

(vi). Soft intersection of F' and G, denoted by FNG, is a soft set over X and defined
by FNG : E — P(X) such that (FNG)(e) = F(e) N G(e) for each e € E.

(vit). Soft difference of F" and G, denoted by F\G, is a soft set over U whose approxi-
mate function is defined by F\G : E — P(X) such that (F\G)(e)=F(e)\G(e).

(viii). Soft complement of F' is denoted by F¢ and defined by F¢: E — P(X) such
that F¢(e) = X \ F(e) for each ¢ € E.

Definition 2.4. [33] Let A be an arbitrary indexed set and T = {F; | i € A} be a
subfamily of Sg(X), then
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(i). The soft union of T is the soft set H, however, H(e) = U{F;(e) | i € A} for
all e € F that can be write as U;ea F; = H.

(11). The soft intersection of T is the soft set K, however K(e) = N{F;(e) | i € A}
for all e € F that can be write as U;ea F; = K.

Definition 2.5. [33] The soft set F' € Sg(X) is called a soft point if there exist an
e € E such that F(e) # 0 and F(¢') = 0 for each ¢’ € E \ {e}, and the soft point
F' is denoted by er. The soft point er is said to be in the soft set G, denoted by
er€G, if F(e)CG(e) for the element e € E.

Definition 2.6. [17, 31] The soft set F' over X such that F(e) = {z} Ve € E is
called singleton soft point and denoted by zg or (z, E).

Definition 2.7. [31] Let 7 be a collection of soft sets over a universe X with a fixed
set of parameters E, then 7 C Sg(X) is called a soft topology on X if

(i). X,0 € 7, where §(¢) = ) and X(e) = X, for each e € E,
(i1). The soft union of any number of soft sets in 7 belongs to T,
(#1). The soft intersection of any two soft sets in 7 belongs to 7.

The triplet (X, 7, E) is called a soft topological space over X. A soft set F' over
X is said to be open soft set in X if F' € 7, and it is said to be closed soft set in X,
if its relative complement F° is an open soft set.

Definition 2.8. [31] Let (X, 7, E) be a soft topological space over X and F €
SE(X). Then, the soft interior and soft closure of F', denoted by int(F') and cl(F),
respectively, are defined as,

int(F) = U{G:G is open soft set and GCF}
cd(F) = N{H:H is closed soft set and FCH }.

Definition 2.9. [31] Let F' be a soft set over X and v € X. z € F whenever
x € F(e) for all e € E. Note that for any v € X, x ¢ F, if x ¢ F(e) for some e € E.

Definition 2.10. [33] A soft set H of a soft topological space (X, 7, E') is known as
a soft neighborhood (soft nbd.) of the soft point z, if there is a soft open set K such
that r € KCF.

Lemma 2.11. [23] Let (X, 7, E) be a soft topological space and F' be a soft set.
Then,

(i). int(FOH)Cint(F)UH, if H is a T-closed soft set.
(ii). HOcl(F)Ccl(HUF), if H is a 7-open soft set, then.

Definition 2.12. A soft set F' of a soft topological space (X, 7, F) is called
(i). [10] Pre open soft, if FCint clF (resp., pre closed soft, if cl int FCF).

(ii). [5] Semi open soft, if FCcl intF (resp., semi closed soft, if int clFCF).
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(117). [32] Regular open soft, if F' = int clF (resp., regular closed soft, if F =
cl intF).

(). [10] a-open soft, if FCint cl intF.

Definition 2.13. [5] Let (X, 7, E) be a soft topological space, then a semi soft
closure Scl F' of a soft set F'is the intersection of all semi-closed soft supersets of F'.
In other words, Scl,F' = FUint clF.

Definition 2.14. [30] A soft set F' is called dense soft in H (resp., dense soft), if
HCCLF (resp., clF = X).

Definition 2.15. [29] A non-empty collection GCSg(X) of soft sets over X is known
as a soft grill, if these conditions hold:

(i). b ¢ G
(ii). If F € G and FCH, then H € G.
(u1). If FUH € G, then F € G or H € G.

Definition 2.16. [29] Let G be a soft grill over a soft topological space (X, 1, E).
Now consider the soft operator ¢ : Sgp(X) — Sg(X), given by, for every soft set
F, oq(F)={z | UNF € G for every soft open nbd. U of z}. Then, the soft operator
g @ Sp(X) — Sg(X), defined by for every soft set F, ¥q(F) = FUpg(F) is a
kuratowski‘s soft closure operator and hence gives rise to a new soft topology over
X with the same parameters, 7¢ = {H | ¥g(X — H) = (X — H)}, which is finer
than 7 in general.

Lemma 2.17. [29] Let G be a soft grill over a soft topological space (X, 7, E'). Then,
for every soft set I’ the following statements hold:

(i). If F ¢ G then, og(F) = 0. Moreover, g (f) = 0.

(i1). papa(F)Coa(F) = clog(F)CclF. Moreover, ¢g(F) is soft 7-closed.
(iii). pcvc(F) = bapc(F) = pa(F).

(). If a soft set F is 7-closed, then ¢g(F)CF. Moreover, ¢q(F)CF.

(v). A soft set F' is 7g-closed if and only if ¢q(F)CF.

Lemma 2.18. [29] Let G be a soft grill over a soft topological space (X, 7, E). Then,
for soft sets F', H the following statements hold:

(i). FCH implies oa(F)Cpa(H).

(it). pc(FUH) = pa(F)Upc(H) and po(FNH)Cpa(F)Noe(H).
(iti). c(F) —pc(H) = pc(F — H) — pc(H).
(iv). Tt H ¢ G, then po(FOH) = oa(F) = pa(F — H).

Lemma 2.19. [29] Let G be a soft grill over a soft topological space (X, 7, E) with
(r — {0})CG. Then, the following statements hold:
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(i). pa(X) = X.
(ii). HCpq(H), for any open soft set H.

Theorem 2.20. [29] Let G be a soft grill over a soft topological space (X, 7, F) and
F be soft set such that FCyq (F). Then, clF = ¢g(F) = 1¢ — dlF = cl(pa(F)) =

wa(F).

Theorem 2.21. [29] Let G be a soft grill over a soft topological space (X, 1, ). If
H is a T-open soft set, then HNyg(F) = HNpg(HNF), for every soft set F.

Lemma 2.22. [29] Let (X, 7, F) be a soft topological space and F' be a soft set.
Then, for soft grills G;, G5 over X the following statements hold:

(Z) If GléGg, then gDGl(F)éwgg(F)
(i1). pcroea(F) = a1 (F)Upca(F).

Lemma 2.23. [29] Let (X, 7, E) be a soft topological space with G = P(X) — {0},
then for any soft set F, pg(F) = F. Moreover, ¢c(F) = F.

Definition 2.24. [30] Let G be a soft grill over a soft topological space (X, 7, E).
A soft set F'is called

(i). Ta-perfect (resp., G-dense) soft, if pg(F) = F (resp., pa(F) = X)

(i1). G-dense in a soft set H (resp., G-dense in itself) soft, if HCpq(F) (resp.,
FCopq(F)).

Lemma 2.25. [30] Every G-dense soft is dense soft set.

3 Pre G-Open Soft Sets

Definition 3.1. Let GG be a soft grill over a soft topological space (X, 7, E). A soft
set F'is called pre G-open soft, if FCintog(F'). The complement of such set will be
called pre G-closed soft.

Remark 3.2. (i). G-dense soft set = pre G-open soft set = pre open soft set.
(i1). pre G-open soft set = G-dense in it self soft set.
These implications are irreversible as indicated in the next example.

Example 3.3. Let X = {a,b,c}, A = {e1,ex}, 7 = {0, X, F\, Fs, Fs, Fy, Fs, Fg, Fy, Fy, Fy}
and G = {X,C, D, E, K} where Iy, Fy, Fy, Fy, Fs, Fs, F;, Fy, Fy, C, D, M, K are soft
sets over X, explained as follow

Fy = {{a}, ®}7F2 = {{b. ¢}, {a}}, F5 = {X, {a}}, Fu = {{b},{a,c}},

Fs = {{CL, b}7 {a7 C}}7 Fe = {{b7 C}7 {a’7 C}}7 Fr = {X7 {av C}}7 Fy = {{b}7 {CL}},

Fy = {{CL, b}7 {a’}}v ¢ = {{a}7 ®}7 D= {{CL, C}7®}7 M = {{CL, b}7@}7K = {X>®}

It is clear that
(1). Fs = {{b},{a}} is pre open soft set, but it is not pre G-open soft set.

(i1). Fy = {{a},0} is pre G-open soft set, but it is not G-dense soft set.
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The following example indicates that the notions pre G-open soft and open soft sets
are independent.

Example 3.4. Let X = {a,b}, A = {e1, ea}. Define Iy = {{a},{b}}, F2 = { X, {b}}, F3 =

{{a}, X} are all soft sets on universe set X. Soft topology 7 = {0, X, Fy, F,} and
soft grill G = {X , F3}. Tt is clear that F3 is pre G-open soft set, but it is not open
soft. Also, F is open soft set, but it is not pre G-open soft.

Example 3.5. If G = P(X) — {0}, then in view of Lemma 2.6, the concepts pre
G-open soft and open soft sets are equivalent.

Theorem 3.6. For any soft set F in a soft topological space (X, 7, E) with grill G,
the following properties hold:

(i). If (17 — {@})QG, then each 7-open soft set is pre G-open soft.

(i1). If F is pre G-open soft and 7g-closed soft set, then it is 7-open soft set.
Moreover, p(F') is T-open soft set.

(#3). If F' is pre G-open soft and 7g-perfect soft set, then it is 7-open soft set.

Proof. We prove only (ii) and the rest of the proof may be done straightforward.
Let F be a 7¢-closed soft set, then g (F)CF, follows directly in view of Lemma 2.2.
Since F is a pre G-open soft set, then FCintog(F). Hence, FCint(F) and so I is
a T-open soft set. Also, pq(F)CFCintoq(F). Hence, pg(F) is a T-open soft set.
The following corollary is immediate from (i) of Theorem 3.1.

Corollary 3.7. If F' is pre G-open soft and 7g-closed soft set, then intog(F) =
wa(intF).

Definition 3.8. A soft topological space (X, 7, E) is known as soft locally indiscrete,
if each open soft set is closed soft.

Definition 3.9. A soft set /" in a soft topological space (X, 7, E) with soft grill G
is said to be semi G-open soft, if FCpq(intF).

Theorem 3.10. Let GG be a soft grill on a soft locally indiscrete topological space
(X, 1, E). Therefore, F'is pre G-open soft, if it is a semi G-open soft set.

Proof. Let F be a semi G-open soft set, then F@pgint(F)@pG( ). Since (X, 7, E) is
soft locally indiscrete space and in view of Lemma 2.2, then FCypgint(F)Ccl intF =
intF Cintpg(F). Thus, F is a pre G-open soft set.

Theorem 3.11. Let G be a soft grill on a soft topological space (X, 7, E) with

(r — {(b})éG Then, F'is a G-dense soft set with respect to 7 if and only if it is a
dense soft set with respect to 7.

Proof. Let F be a G-dense soft set, then X = ¢g(F)Ctpg(F). Hence, F is a dense
soft set with respect to 74. Conversely7 let ' be a dense soft set with respect to
76, then X = 1g(F). Then, X = ¢¢(F) follows directly since (1 — {#})CG and by
using (i47) of Lemma 2.2, (2) of Lemma 2.3 and (¢) of Lemma 2.4. Consequently, F'
is a GG-dense soft set with respect to 7.

Theorem 3.12. Let G be a soft grill on a soft topological space (X, 7, E) with
(1 —{0})CG. Then, F is a pre G-open soft set with respect to 7, if and only if it is
a pre open soft set with respect to 74.
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Proof. 1t is clear that, every pre G-open soft set with respect to 7 is a pre open
soft set with respect to 7. Conversely, let F' be a pre open soft set with respect to
Ta, then FCint.gg(F). Hence, x is a 7g-interior soft point of ¢q(F) for x € F.
Consequently, there exists a 7g-open soft set H of x which is a subset of ¥ (F')
and then further there exists a soft open base member (U — K) where U is 7-
open soft set containing z and K ¢ G such that (U — K)CHCqvq(F). Hence,
0a(U—K)Cpaihg(F) follows directly from Lemma 2.3. Therefore, pg(U)Cwq(F) by
using Lemmas 2.2 and 2.3. Since (7 — {0})CG, U is 7-open soft set containing z and
FCU, then UCpq(U)Cpg(F) follows from Lemma 2.4. Consequently, UCintoq(F).
Then, FCintpg(F) and so F is a pre G-open soft set with respect to 7.

Theorem 3.13. Let G be a soft grill on a soft topological space (X, 7, E'). Then,

(i). If H is a pre G-open soft set and FCHCypq(F), then F is a pre G-open soft
set.

(ii). Let F be a G-dense in an open soft set H and FCH, then F is a pre G-open
soft set.

Proof. We prove only (i) and the rest of the proof is obvious. Since FCH Cpg(F) and
H is a pre G-open soft set, then H Cintypg(H) and so FCH Cintog(H)Cintpapa(F).
Then, FCintpg(F) is obtained by using Lemma 2.2. Consequently, F is a pre G-
open soft set.

The following theorem is immediate in view of Lemma 2.5.

Theorem 3.14. Let (X, 7, ) be a soft topological space with soft grills G, G5 over
X. Then,

(i). Gi-pre open soft set is Gi-pre open soft, if G1CGs.

(ii). If a soft set F' is both Gi-pre open soft and Ga-pre open soft, then it is a
(G1UG5)-pre open soft set.

Theorem 3.15. Let G be a soft grill on a soft topological space (X, 7, E). Then,
an arbitrary union (resp., intersection) of pre G-open (resp., pre G-closed) soft sets
is a pre G-open (resp., pre G-closed) soft.

Proof. Let {F; | i € T} be a class of pre G-open soft sets, then for each i € T,
FiCintpg(F;). Hence, Uier(F;) CUier (intwq (Fi)) Cintea (Uier (F;)) and so Uier (F;)
is a pre G-open soft set. The other result follows immediately by taking complements.

The next example shows that intersection of two pre G-open soft sets may not be a
pre G-open soft.

Example 3.16. Let X = {a,b}, A = {ej,es}. Define Fy = {{a},{b}}, F» =
{X, {b}}, F5 = {{a}, X}, Fy = {{a}i 0}, Fs = {X,0}, Fs = {X,{a}} are all soft
sets on universe set X and 7 = {(Z),X,Fl,Fg} is soft topology over X If G =
{X,F\, Fy, Fs,F,, F5, Fg} is a soft grill over X, then it is clear that Fs, Fy are pre
G-open soft sets, but their intersection Fy is not a pre G-open soft set.

Lemma 3.17. Let G be a soft grill on a soft topological space (X, 7, E). Then,

(i). The intersection of pre G-open soft set and open soft set is a pre G-open soft.



Journal of New Theory 8 (2015) 29-40 36

(ii). The intersection of G-dense soft set and open soft set is a pre G-open soft.

Proof.  (1). Let F be a pre G-open soft set and H be an open soft set, then

FCintpg(F) and H = intH. Therefore, (HNF)Cint HNintpg(F) = int(HNpg(F))

Cintpg(HANF), in view of Theorem 2.2. This shows that (HNF) is a pre G-
open soft set.

(it). Let F' be a G-dense soft set and H be an open soft set, then pg(F) = X and
H = intH. Hence, (HNF)CH = intH = int(HNpe(F))Cintpg(HNF), by
using Theorem 2.2. Then, (HNF') is pre G-open soft set.

Theorem 3.18. Let G be a soft grill on a soft topological space (X, 7, E) with

(7 — {0})CG. Then, A soft set is pre G-open soft if and only if it is the intersection
of G-dense soft set and open soft set.

Proof. Let H be G-dense soft set and U be open soft set, then by using (ii) of Lemma

3.1 Hﬁg is pre G-open soft set. On the other hand, let F' be pre G-open soft set,
then FCintpg(F). X = popc(F)U(X — papc(F))Cpa(F)U(X — vapa(F)) =

va(F)U(pa(X) —pava(F)) Cpa(F)0pa(X —pa(F))CpaFOX —pa(F))], in view

of Lemmas 2.2, 2.3 and 2.4. Consequently, [FU(X — ¢g(F))] is G-dense soft set. It
is obvious that F' = [FU(X — ¢ (F))]Nintpq(F).

Definition 3.19. A soft topological space (X, 7, E) is called soft G-sub maximal, if
each soft G-dense set is a soft open set.

In the following theorem, conditions for the collection of soft pre G-open sets to be
soft topology will be deduced.

Theorem 3.20. Let G be a soft grill on a soft topological space (X, 7, E) with
(1 — {0})CG. Then, 7 is the collection of pre G-open soft sets if and only if a soft
topological space (X, 7, E) is soft G-sub maximal.

Proof. Let T be a collection of soft pre G-open sets i.e every soft pre G-open soft set
is open soft, then in view of Remark 3.1, the space (X, 7, F') is soft G-sub maximal.
Conversely, since (1 — {@})QG and F' is open soft set, then F'is a pre G-open soft
set follows from (7) of Theorem 3.1. On the other hand, let F' be a pre G-open soft
set; then in view of Theorem 3.8, there exist G-dense soft set H and open soft set U
such that F = HNU. Since (X, 7, E) be a soft G-sub maximal, then H is an open
soft set. Consequently, F' is an soft open soft set.

Theorem 3.21. Let G be a soft grill on a soft topological space (X, 7, E). Then,
for every soft set F' the following statements are equivalent

(1). F is pre G-open soft set.
(7). F is G-dense in itself soft and pre open soft set.
(iii). F is G-dense in itself soft set and Scly(F') = int cl(F).

Proof. (i) = (ii) In view of Remark 3.1, every pre G-open soft set is G-dense in
itself soft and pre open soft.

(11) = (i17) Let F' be G-dense in itself soft and pre open soft set, then in view
of Definition 2.12, Scl(F') = FUint clF = intcl(F).
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(7i1) = (i) Straightforward.

Corollary 3.22. Let G be a soft grill on a soft topological space (X, 1, F). If F'is
a semi-closed soft and pre G-open soft set, then it is a regular open soft.

Lemma 3.23. Let GG be a soft grill on a sgft topology space (X, 7, E). If I is a pre
G-closed soft set, then pg(intF)Ccl int FCF.

Proof. Let F be pre G-closed soft set, then (F')¢ is pre G-open soft i.e
(F)*Cintpe((F))Coa((F)). ¢a((F)) = c((F)?) = (int(F))* follows directly by
using Theorem 2.1. Therefore, (F)*Cint(intF)® = (cl intF)°. Thus, cl intFCF.
Moreover, og(intF)Cecl int FCF follows from Lemma 2.2.

Theorem 3.24. Let G be a soft grill on a soft topological space (X, 7, E). If F'is a
pre G-closed soft and a-open soft set, then it is regular clopen soft.

Proof. Let F be a soft a-open set, then it is semi open soft and pre open soft
set. Therefore, FCecl intF and FCint clF. Since F is pre G-closed soft set, then
cl intFCF follows from Lemma 3.2. Hence, cl intF = F and so FCint clFCclF =
cl cl intF = cl intF = F. Consequently, F' = cl intF = int clF and so F is a soft
regular clopen set.

Theorem 3.25. Let G be a soft grill on a soft topological space (X, 7, E) with
(1 — {0})CG. Then, for every soft set F' the following statements are equivalent

(i). F is pre G-open soft set.

(ii). There is regular open soft set U such that FCU and ¢a(F) = pq(U).
(iii). F'=UNH, where U be regular open soft set and H be G-dense soft set.
(w). F'=UNH, where U be open soft set and H be G-dense soft set.

Proof. (i) = (ii) Let I be pre G-open soft set, then FCintoq(F)Cpq(F). Hence,
wa(F)Coa(intea(F))Cpaoa(F)Cpq(F) follows from Lemmas 2.2 and 2.3. Thus,
pa(intea(F)) = wa(F). Put U = intpa(F), then FCU, ¢a(U) = ¢a(F) and
integ(U) = intpe(F). In view of Theorem 2.1, int cl(U) = intoq(U) = intpg(F) =
U. Hence, U is regular open soft set.

(i) = (ii1) Let FCU and U be a soft regular open set such that ¢g(F) =
¢a(U). Suppose H = FU(U)®, then pq(H) = ¢q(FUU)®) = pa(F)0pa((U)°) =
0 (U)0pa((U)°) = oa(UU(U)°) = pa(X) = X, follows by using Lemmas 2.3, 2.4.
Hence, H is a soft G-dense set and UNH = F. The rest of the proof are immediate.

The collection G5 = {F | int clF # (0} is a soft grill on X.

Theorem 3.26. Let G5 be a soft grill on a soft topological space (X, 7, F). F is a
soft pre Gs-open set if and only if it is a pre open soft.

Proof. Clearly, pre Gs-open soft set is a pre open soft. Conversely, let F' be a
soft pre open set, subsequently FCint clF. Let © ¢ pgs(F), then there exists
soft open nbd. U of x such that (UNF) ¢ Gs. Hence, int cl(UNF) = § and
(UAF)C(UAint clF) = int(UNF)Aint cl(UNF) = () follows from Lemma 1.10.
Therefore, = ¢ F and so FCpqs(F). FCint cl(F) = intpgs(F) follows directly by
using Theorem 1.19. Consequently, F' is soft pre Gs-open set.
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Definition 3.27. A soft G P-interior of F, denoted by Sintgp(F'), is defined as the
largest soft pre G-open sets contained in F'.

Theorem 3.28. Let G be a soft grill on a soft topological space (X, 7, E). Then,
for any soft set F' the following statements hold:

(i). (FNinteg(F)) is a soft pre G-open set.
(ii). Sintgp(F) = Fhintog(F).
(iii). F ¢ G, then Sintgp(F) = 0.
(iv). If F is soft pre G-open set and Sintgp(F) = 0, then F = ()
(v). (Fivpa(F))ESintar(F).
Proof.  (i). Since int pg(F) = pa(F)Nintpe(F), then in view of Theorem 2.2 int

0a(F)Coa(Fhintpg(F)). Hence, (FNintog(F))Cintpg(F)Cintpq(FNinteg(F)).

Thus, (FNintpg(F)) is soft pre G-open set.

(i1). (FNintpg(F)) is soft pre G-open set contained in F', From (i). Suppose H is
soft pre G-open set contained in F, then H Cintpg(H) and intoq(H)Cintpg(F).
Therefore, H Cintpg(F) and so HC(FRintog(F)). Consequently, (FMintpg(F))
is largest soft pre G-open sets contained in F'. Then, Sintgp(F) = FNintog(F).

(iii). In view of Lemma 2.2 and F ¢ G, then Sintgp(F) = Fintpg(F) = 0.
(iv). Straightforward.

(1. Since (Figa(F)—Sintap(F)) = [(FAga(F)—(Fliinteg(F))] = [(Fge(F))—
intpc(F)], then by (i) Sintgp[(FNec(F)) — intpa(F)] = [(FNpa(F)) —
intoe(F)|Nintec[(FNpa(F)) — intea(F)] = 0.

Corollary 3.29. Sintgp(F) = FNyg(F)
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Abstract — In the paper, tangent similarity measure of neutrosophic refined set is proposed and its
properties are studied. The concept of this tangent similarity measure of single valued neutrosophic refined
sets is an extension of tangent similarity measure of single valued neutrosophic sets. Finally, using the
propsed refined tangent similarity measure of single valued neutrosophic sets, a numerical example on
medical diagnosis is presented.
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1. Introduction

Similarity measure is now an interesting research tropic for multi attribute decision making
in current neutrosophic environment. Literature review reflects that several similarity
measures have been proposed by researchers to deal with different type problems. Broumi
and Smarandache [1] studied the neutrosophic Hausdorff distance between neutrosophic
sets. In their study, they also presented some similarity measures based on the geometric
distance models, set theoretic approach, and matching function to determine the similarity
degree between neutrosophic sets. Broumi and Smarandache [2] also proposed the
correlation coefficient between intervals valued neutrosophic sets. Majumdar and Samanta
[3] studied several distance based similarity measures of single valued neutrosophic set
(SVNS), a matching function, membership grades, and then proposed an entropy
measure for a SVNS. Ye [4] proposed three vector similarity measures between SVNSs
as a generalization of the Jaccard, Dice, and cosine similarity measures in vector space and
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applied them to the multicriteria decision-making problem with simplified neutrosophic
information. Ye [5] also proposed single-valued neutrosophic clustering methods dealing
with two distance-based similarity measures of SVNSs and presented a clustering
algorithm based on the similarity measures of SVNSs to cluster single-valued neutrosophic
data. Ye and Ye [6] proposed Dice similarity measure and weighted Dice similarity
measure for single valued neutrosophic multisets (SVNMs) and investigated their
properties. The Dice similarity measure of SVNMs proposed by Ye and Ye [6] is effective
in handling the medical diagnosis problems with indeterminate and inconsistent
information . Ye [7] further studied multiple attribute group decision-making method with
completely unknown weights based on similarity measures under single valued
neutrosophic environment. In the study, Ye [7] proposed two weight models based on the
similarity measures to derive the weights of the decision makers and the attributes from the
decision matrices represented by the form of single valued neutrosophic numbers (SVNNSs)
to decrease the effect of some unreasonable evaluations. Then, he [7] introduced the
weighted similarity measure between the evaluation value (SVNS) for each alternative and
the ideal solution (ideal SVNS) for the ideal alternative to rank the alternatives and select
the best one(s).Ye and Zhang [8] developed three similarity measures between SVNSs
based on the minimum and maximum operators and investigated their properties. Then they
[8] proposed weighted similarity measure of SVNS and applied them to multiple attribute
decision-making problems under single valued neutrosophic environment. Ye [9] proposed
improved cosine similarity measures of simplified neutrosophicsets based on cosine
function, including single valued neutrosophic cosine similarity measures and interval
neutrosophic cosine similarity measures and demonstrated that improved cosine similarity
measures overcome some drawbacks of existing cosine similarity measures of simplified
neutrosophicsets. Biswas et al. [10] studied cosine similarity measure based multi-attribute
decision-making with trapezoidal fuzzy neutrosophic numbers. They [10] developed
expected value theorem and cosine similarity measure of trapezoidal fuzzy neutrosophic
numbers. Pramanik and Mondal [11] proposed rough cosine similarity measure in rough
neutrosophic environment. Mondal and Pramanik [12] also proposed refined cotangent
similarity measure in single valued neutrosophic environment. Mondal and Pramanik [13]
further proposed cotangent similarity measure under rough neutrosophic environments.

The concept of multi sets, the generalization of normal set theory was introduced by Yager
[14]. Sebastian and Ramakrishnan [15] studied multi fuzzy sets, which is the generalization
of multi sets. Sebastian and Ramakrishnan [16] also established more properties on multi
fuzzy sets. Shinoj and John [17] extended the concept of fuzzy multi sets (FMSs)
intuitionistic fuzzy multi sets (IFMSs). An element of a FMS can occur more than once
with possibly the same or different membership values. An element of intuitionistic fuzzy
multi sets has repeated occurrences of membership and non-membership values.
Practically, the concepts of FMS and IFMS are not capable of dealing with indeterminacy.
Smarandache [18] extended the classical neutrosophic logic to n-valued refined
neutrosophic logic. Here each neutrosophic component T, I, F refine into respectively,T;
T2, .. Tp,and , Iy I, ... lgand Fy ,F>, ... Fr. Broumi and Smarandache [19] proposed
neutrosophic refined similarity measure based on cosine function.

Pramanik and Mondal [20] studied weighted fuzzy similarity measure based on tangent
function and provided its application to medical diagnosis. Mondal and Pramanik [21] also
proposed tangent similarity measure on intuitionistic fuzzy environment. Mondal and
Pramanik [22] also proposed tangent similarity measure on neutrosophic environment.
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In the paper, motivated by study of Mondal and Pramanik [12], we propose a new
similarity measure called “refined tangent similarity measure for single valued
neutrosophic sets”. The proposed refined tangent similarity measure is applied to medical
diagnosis problem.

Rest of the paper is structured as follows. Section 2 presents neutrosophic preliminaries.
Section 3 is devoted to introduce refined tangent similarity measure for single valued
neutrosophic sets and some of its properties. Section 4 presents decision making based on
refined tangent similarity measure. Section 5 presents the application of refined tangent
similarity measure to the problem on medical diagnosis. Finally, section 6 presents the
concluding remarks and future scope of this research.

2. Mathematical preliminaries

2.1 Neutrosophic Sets

Definition 1 [23] Let X be an universe of discourse. Then the neutrosophic set N is of the
form N = {< x:Tn(X), In(X), Fn(X)> X <X }, where the functions T, I, F: X— 170,17 are
defined respectively the degree of membership, the degree of indeterminacy, and the
degree of non-membership of the element xe X to the set N satisfying the following the
condition.

"0 < supTn(X)+ supln(X)+ supFn(x) < 37 (1)

For two neutrosophic sets, N = {< x: Ty (X ), In(X), Fn(X)> | X eX }and P = {< x, Tp(X ),
Ip(x ), Fp(X)> | x e X } the two relations are defined as follows:

(1) NP if and only if Tn(X) < Tr(X ), In(X ) = In(x ), Fn(x )= Fp(X)
(2) N=P if and only if Tn(X) = Te(x), In(X) = Ip(X), Fn(X) = Fp(X)

2.2 Single Valued Neutrosophic sets

Definition 2.2 [24] Let X be a space of points with generic elements in X denoted by x. A
SVNS N in X is characterized by a truth-membership function Ty(x), an indeterminacy-
membership function Iy(x), and a falsity membership function Fy(x), for each point x in X,
Tn(x), In(X), Fn(X) € [0, 1]. When X is continuous, a SVNS N can be written as:

N :Jx <TN(X)1|N)((X)1FN(X)> ‘Xe X

When X is discrete, a SVNS N can be written as:

N =ZL<TN(X')’IN)((Xi)'FN(X')> X € X

For two SVNSs , Ngyns = {<x: Tn(Xx ), In(X), Fn(X )> | X € X} and Psyns = {<X, Tp(X), Ip(X),
Fp(X)> | xe X } the two relations are defined as follows:(1) Nsyns<Pswns if and only if
TN(X) < Tp(X), |N(X) > |p(X), FN(X ) > Fp( X)
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Nsvns = Pswns if and only if Ty(X) = Tp(X), In(X) = 1p(X), Fn(X) = Fp(X) for any xe X
2.3 Neutrosophic Refined Sets

Definition 2.3 [20] Let M be a neutrosophic refined set.
M ={L<X, Th 00 TR O e T 06 ) CHha 0D 4 130 06) eves 15 00D )y (PR O) 3 FR () v Fla () ))>1X e X3

Wherev T}VI (Xi) y T%/I(Xi) IEERT] TII;/I(XI) X € [0 11]! |:ll\/l(xi) ’ |§/I(Xi) IEERT] |lr\/I(X|) X € [O 11]1 and F}VI (Xi) y
F () 10 Flu(x): Xe[0,1], such that o<supT}, (x)+supl}, (x) +supF}, (x) <3, fori=1,2, ..., r
for any xeX.

NOW, (T3 06) s T3 06) -+ T 0) ) (1 O6) 5 130 00) 5-ees 154 00 )5 (Fha ) 5 3 (60) 525 Fla () ) S the truth-
membership sequence, indeterminacy-membership sequence and falsity-membership
sequence of the element x, respectively. Also, r is called the dimension of neutrosophic
refined sets M.

3. Tangent Similarity Measure for Single Valued Refined Neutrosophic
Sets

Let N = <x(Th(x), 1h(x), FA(x))> and P = < X(Th(x), 1H(x), FA(x))> be two single valued
refined neutrosophic numbers. Now refined tangent similarity function which measures the
similarity between two vectors based only on the direction, ignoring the impact of the
distance between them can be presented as:

Turs(N.P)= %zj{’_l[%z{‘1<l—tan(l—7;qT 50T 800 1 400 -1 40 |+ Fdx) —F dex) |)j>} )

Proposition 3.1. The defined refined tangent similarity measure Tyrs(N, P) between NRSs
N and P satisfies the following properties:

0< Tnrs (N, P)<1

TNRs(N, P) =1iff N=P

Tnrs(N, P) = Tars(P, N)

If R iS a. NRS |n X and N (= PC R then TNRS(N/ R) < TNRS(N/ P) and TNRS(N/ R) < TNRS(P; R)

el N

Proofs: (1) The membership, indeterminacy and non-membership functions of the NRSs
are within [0 ,1]. Again ostan[l_’TZQTg(xi)—Tg(xi)|+|lg(xi)—lQi(xi)|+|Fg(xi)—Fg(xi)mﬂ. So, refined

tangent similarity function is also within [ 0,1]. Hence 0< Tngrs(N, P)<1

(2) For any two NRS N and P if N = P this implies TJ() =T x), 1l)=13(x), Fix)=Fi(x).
Hence

[TA0) =T 00| =0, |11 -120|=0, |[Fi(x)-F (x| =0, Thus Tnrs(N, P) = 1

Conversely,
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If Tnrs(N, P) =1 then IT,J(X)—T pj(x)|:0, || Jo -1 g(x)|:o, |Fg(x)—Fg(x) =o0since tan(0)=0. So we
can write T (x) =T 3(x), 1) =11(x), FIx)=FJ(x)
Hence N = P.

(3) This proof is obvious.

(4) FNcPcRthen TJ(x)<T )<TI0, 1500<1300<13(x), Fl)<Flx)<FJx)forxe X.
Now we can write the following inequalities:

[T 00T 300] < [T 60 =T 409, [T 00T 00| < [T J 60 T )| ;
1400 =1 00| <[1de0 -1 00| Ao -1 o] < ieo -1 o)

[F 00 —F 09| <[F 00 ~F d09)] [F 400 —F §00] < F {00 —F )

Thus Tnrs(N, R) <Tnrs(N, P) and Tnrs(N, R) < Tnrs(P, R), since tangent function is
increasing in the interval [0, ﬂ .

4. Decision Making Under Single Valued Refined Neutrosophic
Environment Based on Tangent Similarity Measure

Let A;, A2, ..., Ap be a discrete set of candidates, C1, Cy, ..., C, be the set of criteria of each
candidate, and By, By, ..., Bk are the alternatives of each candidates. The decision-maker
provides the ranking of alternatives with respect to each candidate. The ranking presents
the performances of candidates A; (i = 1, 2,..., m) against the criteria Cj(j = 1, 2, ..., n). The
single valued neutrosophic values associated with the candidates and their attributes for
MADM problem can be presented in the following decision matrix (see the table 1).

Table 1: The relation between candidates and attributes

| Cl CZ Cn
A (G502 0) (GRG0 mdy) o (dhdzdy)
A, [{dddZdg) (dhdzd )

Am <dni'dnéllrl""dn;> <dn%ldn.§.:"'ldn£> <dmnl’dm;é:"'fdmrz>

The relational values between attributes and alternatives in terms of single valued
neutrosophic numbers can be presented as follows (see the table 2).

Table 2: The relation between attributes and alternatives
|B, B, .. B
cl é:ll é:lz élk
C2 9‘!21 ‘):‘:22 §2k

Cn é:nl §n2 gnk
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Hered;and ¢, and are all single valued neutrosophic numbers.

The steps corresponding to refined neutrosophic similarity measure based on tangent
function are presented as follows.

Step 1: Determination the relation between candidates and attributes: Each candidate
Ai (i=1, 2, ..., m) having the attribute C; (j = 1, 2, ..., n) is presented as follows (see the
table 3):

Table 3: Relation between candidates and attributes in terms of NRSs

C, c, C,
RS )
(TLIRER) [(Ta1aF), (TA1LFS)

N R S SED S SR
(TaleFa) | [(Tarsr) (T F)
(TAAF] [(TALAE), (TALAF,
(TAIAFRN [(TALAFR), (TA1LF2),

A, | e e S S ,
(TahFa) | [(Ta sk (TP
Tl,lul,Fl, T 1,|"'1,F 1’ Tl,lml,Fl,
< ml ml! m1> < m2 m2 m2> < mn mn mn>
<T mi' I m217 F mi>’ <T m;' I m;’ F m§>’ <T mi' I mi’ F mi>'

N I8 SO S SN SR
(Tl i F) | TR ) (T ot i F o)

Step 2: Determination the relation between attributes and alternatives: The relation
between attributes C; (i = 1, 2, ..., n) and alternatives B; (t = 1, 2, ..., k) is presented in the
table 4.

Table 4: The relation between attributes and alternatives in terms of NRSs

| B, B, B,
C, <T11: I F11> <T12: 12 F12> <T1k' Lo Flk>
C, <T211 (P F21> <T 2 12 F22> <T2k1 o F2k>

Cn <Tn1'|n1’Fnl> <Tn27|n2'Fn2> <Tnk’|nk’Fnk>

Step 3: Determination of the relation between attributes and alternatives: Determine
the correlation measure (Tnrs(N, P)) between the table 3 and the table 4 using equation 1.
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Step 4: Ranking the alternatives: Ranking of alternatives is prepared based on the
descending order of correlation measures. Highest value indicates the best alternatives.

Step 5: End

5. Example on Medical Diagnosis

Let us consider an illustrative example on medical diagnosis. As medical diagnosis
contains a large amount of uncertainties and increased volume of information available to
physicians from new updated technologies, the process of classifying different set of
symptoms under a single name of a disease. In some practical situations, there is the
possibility of each element having different truth membership, indeterminate and
falsity membership functions. The proposed similarity measure among the patients versus
symptoms and symptoms versus diseases will give the proper medical diagnosis. The main
feature of the proposed method is that it includes multi truth membership, multi-
indeterminate and multi-falsity membership by taking many times inspection for diagnosis.
Now, an example of a medical diagnosis will be presented. Example: Let P = {P4, P,, P3,
P,} be a set of patients, D = {Viral fever, malaria, typhoid, stomach problem, chest
problem} be a set of diseases and S ={Temperature, headache, stomach pain, cough,
chest pain.} be a set of symptoms. The solution strategy is to examine the patient which
will provide truth membership, indeterminate and false membership function for each
patient regarding the relation between patient and different symptoms. Here we take three
observations in a day: at 7 am, 1 pm and 6pm. (See the table 5).

Table 5: (Relation-1)The relation between patients and symptoms

Temperature Headache Stomach pain Cough Chest pain
P, |(0.8,0.1,0.1) | (0.6,0.1,0.3) | (0.2,0.8,0.0) | (0.6,0.1,0.3) (0.1,0.6, 0.3)
(0.6,0.3,0.3) | (0.5,0.2,0.4) | (0.3,0.5,0.2) | (0.4,0.4,0.4) (0.3,0.4,0.5)
(0.6,0.3,0.1) | (0.5,0.1,0.2) | (0.2,0.3,0.4) | (0.4,0.3,0.3) (0.2,0.5,0.4)
P, |(0.0,0.8,0.2) | (0.4,0.4,0.2) | (0.6,0.1,0.3) | (0.1,0.7,0.2) | (0.1,0.8,0.1)
(0.2,0.6,0.4) | (0.5,0.4,0.1) | (0.4,0.2,0.5) | (0.2,0.7,0.5) | (0.3,0.6,0.4)
(0.1,0.6,0.4) | (0.4,0.6,0.3) | (0.3,0.2,0.4) | (0.3,0.5,0.4) | (0.3,0.6,0.3)
P; | (0.8,0.1,0.1) | (0.8,0.1,0.1) | (0.0,0.6,0.4) | (0.2,0.7,0.1) | (0.0,0.5,0.5)
(0.6,0.4,0.1) | (0.6,0.2,0.4) | (0.2,0.5,0.5) | (0.2,0.5,0.5) | (0.2,0.5,0.3)
(0.5,0.3,0.3) | (0.6,0.1,0.3) | (0.3,0.4,0.6) | (0.1,0.6,0.3) | (0.3,0.3,0.4)
P, | (06,0.1,0.3) | (0.5,0.4,0.1) | (0.3,0.4,0.3) | (0.7,0.2,0.1) | (0.3,0.4,0.3)
(04,0.3,0.2) | (0.4,0.4,0.4) | (0.2,0.4,0.5) | (0.5,0.2,0.4) | (0.4,0.3,0.4)
(05,0.2,0.3) | (0.5,0.2,0.4) | (0.1,0.5,0.4) | (0.6,0.4,0.1) | (0.3,05,0.5)

Now the relation between symptoms and diseases in terms of single valued neutrosophic
form are given below (see table 6).
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Table 6: (Relation-2)The relation between symptoms and diseases

48

Viral fever Malaria Typhoid Stomach Chest problem

problem
Temperature | (0.6,0.3,0.3) | (0.2,0.5,0.3) | (0.2,0.6,0.4) (0.1, 0.6, 0.6) (0.1,0.6,0.4)
Headache (0.4,05,0.3) | (0.2,0.6,0.4) | (0.1,05,0.4) (0.2,0.4,0.6) (0.1,0.6,0.4)
Stomach pain | (0.1,0.6,0.3) | (0.0,0.6,0.4) | (0.2,0.5,0.5) (0.8,0.2,0.2) (0.1,0.7,0.1)
Cough (0.4,0.4,0.4) | (0.4,0.1,0.5) | (0.2,05,0.5) (0.1,0.7,0.4) (0.4,0.5,0.4)
Chest pain (0.1,0.7,0.4) | (0.1,0.6,0.3) | (0.1,0.6,0.4) (0.1,0.7,0.4) (0.8,0.2,0.2)

Using equation (1) the tangent refined correlation measures (TRCM) between Relation-1
and Relation-2 are presented as follows (see the table 7).

Table 7: The tangent refined correlation measure between Relation-1 and Relation-2

TRSM Viral Fever Malaria Typhoid | Stomach Chest
problem problem

P1 0.8963 0.8312 0.8237 0.8015 0.7778
P, 0.8404 0.8386 0.8877 0.8768 0.8049
P3 0.8643 0.8091 0.8393 0.7620 0.7540
P4 0.8893 0.8465 0.8335 0.7565 0.7959

The highest correlation measure from the Table 7 reflects the proper medical diagnosis.
Therefore, patient P, suffers from viral fever, P, suffers from typhoid, P suffers from viral
fever and P4 also suffers from viral fever.

6. Conclusions

In this paper, we have proposed a refined tangent similarity measure approach of single
valued neutrosophic set and proved some of their basic properties. We have presented an
application of tangent similarity measure of single valued neutrosophic sets in medical
diagnosis. The concept presented in the paper can be applied in other practical decision
making problems involving uncertainity, falsity and indeterminacy. The proposed concept
can be extended to the hybrid envirobment namely, rough neutrosophic environment.
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1. Introduction

In many real world practical problems with competitive situation, it is required to take the
decision where there are two or more opposite parties with conflicting interests and the
action of one depends upon the action which is taken by the opponent. A great variety of
competitive situation is commonly seen in everyday life viz., in military battles, political
campaign, elections, advertisement, etc. Game theory is a mathematical way out for finding
of conflicting interests with competitive situations, which includes players or decision
makers (DM) who select different strategies from the set of admissible strategies.

During the past, several researchers formulated and solved matrix game considering
crisp/precise payoff. This means that every probable situation to select the payoff involved
in the matrix game is perfectly known in advance. In this case, it is usually assumed that
there exists some complete information about the payoff matrix. However, in real-life
situations, there are not sufficient data available in most of the cases where the situation is
known or it exists only a market situation. It is not always possible to observe the stability

from the statistical point of view. This means that only some partial information about the
situations is known. In these cases, parameters are said to be imprecise.
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To handle the problem with such types of imprecise parameters, generally stochastic, fuzzy
and fuzzy-stochastic approaches are applied and the corresponding problems are converted
into deterministic problems for solving them. In this paper, we have treated imprecise
parameters considering fuzzy sets/fuzzy numbers. In the last few years, several attempts
have been made in the existing literature for solving game problem with fuzzy payoff.
Fuzziness in game problem has been well discussed by Campos [1]. Sakawa and Nishizaki
[2] introduced max-min solution procedure for multi-objective fuzzy games. Based on
fuzzy duality theory [3, 4, 5], Bector et al. [6, 7], and Vijay et al. [8] proved that a two
person zero-sum matrix game with fuzzy goals and fuzzy payoffs is equivalent to a pair of
linear programming problems. Nayak and Pal [9, 10] studied the interval and fuzzy matrix
games. Chen and Larbani [11] used two persons zero-sum game approach to solve fuzzy
multiple attributes decision making problem. Cevikel and Ahlatc¢ioglu [12] presented new
concepts of solutions for multi-objective two person zerosum games with fuzzy goals and
fuzzy payoffs using linear membership functions. Li and Hong [13] gave an approach for
solving constrained matrix games with payoffs of triangular fuzzy numbers.
Bandyopadhyay et al. [14] well studied a matrix game with payoff as triangular
intuitionistic fuzzy number. Very recently, Mijanur et al. [15] introduced an alternative
approach for solving fuzzy matrix games.

In this paper, two person matrix games have taken into consideration. The element of
payoff matrix is considered to be fuzzy number [16]. Then the corresponding problem has
been converted into crisp equivalent two person matrix game using different
defuzzification methods [17]. The value of the matrix game for each player is obtained by
solving corresponding crisp game problems using the existing method. Finally, to illustrate
the methodology, a numerical example has been applied for different defuzzification
methods and the computed results have been compared.

The rest of the paper is organized as follows. Sec. 2 presents the basic definition and
preliminaries of Fuzzy Numbers. Defuzzification method is presented in Sec. 3.
Mathematical model of matrix game is described in Sec. 4. Solution of matrix game is
presented in Sec. 5. Numerical example and Computational results are reported in Sec. 6
and a conclusion has been drawn in Sec 7.

2. Definition and Preliminaries

Definition 2.1. Let X be a non empty set. A fuzzy set A is defined as the set of
pail’SAz{(X,,uA(X))ZXeX}, where u;:X —[0,1]is a mapping and u;(x)is called the
membership function of Aor grade of membership of xin A. The value u;(x)=0is used to
represent for complete non-membership, whereas u;(x)=1is used to represent for

complete membership. The values in between zero and one are used to represent
intermediate degrees of membership.

Definition 2.2. A fuzzy  set A is called convex iff  for
all x,, X, € X 43 (A% + (L= 2)%,) = min{z (%), 125 (%)}, where 1 €[0,1] .
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Definition 2.3. The set of elements that belong to the fuzzy set A at least to the degree « is
called the «-level set or o-cut and is given byA, ={xeX uz(X)=a}.

If A, ={xeX: 15 (x) > a}, itis called strong « -level set or strong  -cut.

Definition 2.4. A fuzzy set A is called a normal fuzzy set if there exists at least one
x € X such that sz (x) =1.

Definition 2.5. A fuzzy number A is a fuzzy set on the real line R, must satisfy the
following conditions.

() There exists at least one x, € R for which (%) =1.

(i) uz(X)is pair wise continuous.
(iii) Amust be convex and normal.

Definition 2.6. A triangular fuzzy number (TFN) A is a normal fuzzy number represented
by the triplet (a;,a,,a;) Wwhere a <a, <ajare real numbers and its membership function

15 (x): X —[0,1] is given below

X—a .
ifa, <x<a,
Q-
Hi(X)=
ag—Xx .
ifa, <x<ag
0 otherwise

Definition 2.7. A parabolic fuzzy number (PFN) A is a normal fuzzy number represented
by the triplet (a;,a,,a;) Wwhere a <a, <ajare real numbers and its membership function

15 (X): X —[0,1] is given below

2

Q-
H1i(x) = )
X—a .
1- 2 ifa, <x<a,
a3~

0 otherwise
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3. Defuzzification

Defuzzification is the process of producing a quantifiable result in fuzzy logic, given the
fuzzy sets and the corresponding degrees of membership. There are several defuzzification
techniques available in the existing literature. However, the common and useful techniques
are as follows:

3.1. Centre of Area of Fuzzy Number (COA of Fuzzy Number)

This defuzzification can be expressed as

IXyA(x)dx
Xcon = —IyA(X)dX

X

where xco, is the crisp output, u,(x) is the membership function corresponding to the

fuzzy number and x is the output variable. This method is also known as center of gravity
or centroid defuzzification method.

3.2. Bisector of Area of Fuzzy Number (BOA of Fuzzy Number)

The bisector of area is the vertical line that divides the region into two sub-regions of equal
area. The formula for xgg, is given by

XBOA ay
I H, (x)dx = I 1, (x)dx.
8 XBOA
It is sometimes, but not always coincident with the centroid line.

3.3. Largest of Maxima of Fuzzy Number (LOM of Fuzzy Number)

Largest of maximum x,_o,, takes the largest amongst all x that belong to [a,,a;] as the
crisp value.

3.4. Smallest of Maxima of Fuzzy Number (SOM of Fuzzy Number)

It takes the smallest output with the maximum membership function as the crisp value and
it is denoted by Xgop -

3.5. Mean of Maxima of Fuzzy Number (MOM of Fuzzy Number)

In this method only active rules with the highest degree of fulfillment are taken into
account. The output is computed as:
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1
XMom =§(XLOM + Xsom )-
3.6. Regular Weighted Point of Fuzzy Number (RWP of Fuzzy Number)

For the fuzzy number A=(aj,a,,a;), thea—cut is A, =[L,(a),Ra()] and the regular
weighted point for A is given by Saneifard [18].

T(LA@);RA(@}(Q}M

RWP(A) =2

1

=[(La(@)+Ra(@)) f (a)da

where
1-2a when 2 €[0,1/2]
f(a)=
20-1 when o e[1/2,1] .

3.7. Graded Mean Integration Value of Fuzzy Number (GMIV of Fuzzy Number)

For the generalized fuzzy number A with membership function 15 (x), according to Chen
et al. [19], the Graded Mean Integral Value Py, (A) of A is given by

1
J.x{(l— W)L (x) + WR_l(X)} dx
PdGW(A) =0

i =Z}X{(l—W)L‘l(x)+WR‘1(x)}dx
dex 0
0

where the pre-assigned parameter we[0,1] refers the degree of optimism. w=1 represents

an optimistic point of view, w=0represents a pessimistic point of view and w=0.5
indicates a moderately optimistic decision makers’ point of view.

3.8. Centre of the Approximated Interval of Fuzzy Number (COAI of Fuzzy Number)

Let A be a fuzzy number with interval of confidence at the level o, then the o -cut
iS[A (@), Ax(@)]. The nearest interval approximation of A with respect to the distance
metricd is

1 1
Ca(A) =| [A(@)da,[ Ay(@)de |,
0 0

where
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1 1
d(A B) :\/I{AL(a)— BL(2)}" dar + [ { Ag (@) ~ By ()} dar.
0 0

The interval approximation for the triangular fuzzy number A=(a,a,,a;)

is[(alzaZ),(a2;a3)} and for the parabolic fuzzy number A=(a,a,,a;) Iis

[%(2a1+a2),%(a2+2a3)} The defuzzified value for triangular fuzzy number

is%(a1 +2a, +a3) and for the parabolic fuzzy number is %(a1 +a, +a5). The defuzzification

values for different fuzzy numbers are listed in Table 1.

4. Mathematical Model of a Matrix Game

Let A e{A,A;, ... A,} be apure strategy available for player A andB; {B,,B,,...B.} be a

pure strategy available for player B. When player A chooses a pure strategy A and the
player B chooses a pure strategy B;, then g; is the payoff for player A and -g; be a

payoff for player B. The two-person zero-sum matrix game G can be represented as a pay-
off matrixG =| g; |

mxn )
4.1 Fuzzy Payoff matrix:

Let players A has mstrategies, say, A,A,,..,A,and player Bhas n strategies, say,
B,,B,.....B, .

Table 1. Defuzzified values for different fuzzy numbers.

Defuzzification Defuzzified value Defuzzified value
technique for TEN for PEN
COA %(aﬁaz +ag) %(3611+2a2 +3ay)
BOA %(a1+2a2+a3) %(al+a2+a3)
MOM 3 8
SOM 3, 3,
LOM a a
1
RWP Z(a1+2a2+a3) a2+72(\/i+1)(a3—2a2+a1)
GMIV 1 1
(With o ) g(a1 +4a, +a;) E(4a1 +7a, +4a,)
COAI %(a1+2a2+a3) %(a1+a2+a3)
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Here, it is assumed that each player has his/her choices from amongst the pure strategies.
Also, it is assumed that player A is always the gainer and player B is always the loser.
That is, all payoffs are assumed in terms of player A. Let g; be the fuzzy payoff which is

the gain of player A from player B if player Achooses strategy A where as player B
chooses B; . Then the fuzzy payoff matrix of player A and Aand B isG =[gij} .
mxn

4.2 Mixed strategy

Let us consider the fuzzy matrix game whose payoff matrix is G =| g | . The mixed

m
strategy for the player-A, is denoted by & =(x,---, X, )', wherex; >0,i=12,...mand ) x =1.
i=1
It is to be noted that e =(0,--,0,1,0,---,0), i=12,---,mrepresent the pure strategy for the
m m
player-Aand&=>ex . If S = {5 1% 20, DX =1} thens,, €E,.

i=1 i=1

Similarly, a mixed strategy for the player-B is denoted by nz(yl,yz,--‘,yn)' where

n
y; 20, j=12-n and>y;=1. It is to be note that e}=(0,0,,010,0),
j=1

n
j=12,---,nrepresent the pure strategy of the player-B andn:Ze’j‘yj. If
j=1

n
Snz{n:yjzo, Zyjzl}, then S, eE,. Where S and S, are the spaces of mixed
j=1

strategies for the player-A and player-B respectively.

4.3. Maximin-Minimax principle or Maximin-Minimax criteria of optimality for
Fuzzy Payoff matrix

Let the player A’s payoff matrix be| g | . If player A takes the strategy A then surely

mx
he/she will get at least i=1,2,...,mfor taking any strategy by the opponent player B. Thus
by the maximin-minimax criteria of optimality, the player A will choose that strategy
which corresponds to the best of these worst outcomes

min DFV (gy;), min DFV (§j,;),...,min DFV (G, )
j j j

Thus the maximin value for player A is given by m_ax(m_in DFV(gij)j
i i

Similarly, player B will choose that strategy which corresponds to the best (minimum) of
the worst outcomes (maximum losses)
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max D FV (§;;), max DFV (gj,),..., max DFV (§;,)
i 1 i

Thus the minimax value for player B is given by mjn[max DFV(gij)J
J i

Here, DFV(g;;) represents defuzzified value of the fuzzy number gj; .

Theorem 4.1. If a matrix game possesses a saddle point, it is necessary and sufficient that

max min DFV (g;;) = min max DFV (gj)
i j J |

Definition 4.2. A pair (&,7) of mixed strategies for the players in a matrix game is called
a situation in mixed strategies. In a situation (&,77) of mixed strategies each usual situation
(i, J) in pure strategies becomes a random event occurring with probabilities x;, y;. Since in
the situation (i, j), player-A receives a payoff DFV (g;) , the mathematical expectation of his
payoff under (&,7) is equal to

m n

=Y > DFV(G;)% Y;

i=1j-1

Theorem 4.2. Let E(&,n) be such that both mmrgnng(g ,n) and gnaxmln E(&,n) exist,
1n€Sy $€Sm

then

min max E(&,7) > max min E(&,7)
nesS, £eSy £eSy nesy

4.4 Saddle point of a function

Let E(&,n)be a function of two variables (vectors) £andnin S, andS, respectively. The
point (£,7,), & €S, n, €S, ISsaid to be the saddle point of the function E(&,7)if

E(S.n.)<E(S.n.)<E(S.m)

Theorem 4.3. Let E(&,7)be a function of two variables £eS,, and 7 €S, such that
mgx min E(&,77) and min m?x E(&,n) exist. Then the necessary and sufficient condition for
n n

the existence of a saddle point (&,,7,) of E(&,n)is that

E(S.,n.) =maxmin E(&,7) = minmax E(&, 77)
n ¢ n ¢
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4.4 Value of a Matrix Game

The common value of mgx{min E(f,n)} and min{mgx E(§,77)} is called the value of the
n n

matrix game with payoff matrix G =[g~ij] and denoted by v(G) or simplyv.

Definition 4.3. Thus if (5*,77*) is an equilibrium situation in mixed strategies of the

game(S,,,S,.E), then &, are the optimal strategies for the players A and B respectively
in the matrix game with fuzzy payoff matrixéz[gij] . Hence &, are optimal

mxn

strategies for the players A and B respectively iff
E(§,n*)s E(.:f*,n*)g E(a;*,n) VEeS,  nes,

Definition4.2.
(i) mgin E(&n)= E(g‘, 77*):>.'. mgx{mﬂin E(é;,ry)}: max E(g,n*) = E(.f*,n*)

(ii) m?xE(e;,n): E(g‘*,n):m’jn{m?x E(f,n)}: mnin E(&n)= E(g*,n*)

Theorem 4.4, v= m?x{m_in E(& j)} = min{max E(i,n)} and the outer extrema are attained at
] n I

optimal strategies of players.
Theorem 4.5. max{m_in DFV(gij)} <v<min {max DFV(gij)}
i j j i
Proof: By the theorem 4.4, we have v= m?x{m_in E(< j)} VvE&eS,. But

J

m?x{m_in E(§,j)}2m_in E(& ) VEeS,,. Therefore v=minE(¢,j) VEeS,. Letting £=¢
J J J

we have v>min E(e{”, j):m_in E(i, j)=min DFV(g;)and we get v>minDFV(g;). The left
J J J J
side v is independent of i so that taking maximum with respect to i, we obtain

V> max{m_in DFV(gij)} . Proof of the second part is similar.
i i

Theorem 4.6. X
(i). If player-A possesses a pure optimal strategy i , then

V= max(m_in DFV(gNij)j =min DFV(g,*j)
[ j j :
(ii). If player-B possesses a pure optimal strategy j*, then
v=min (max DFV (§j; )) =max DFV(q_J_*)
i i i !
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Proof: v=maxminE(¢&, j) =min E(eiT, j) as & :eiT is optimal. Proof of the rest is similar.
& i

5. Solution of Matrix Game

Let us consider a 2 x 2 Matrix game whose fuzzy payoff matrix G is given by

é — |:§11 ?12 :|
U1 92
If G has a saddle point, solution is obvious.

Let G have no saddle point. Let the player-A has the strategy
E=(x,%) =(x1-x)(0<x<1) and the player-B has the strategy 7=(y,1-y) (0<y<1),
Then

2 2

E(fﬂ)ZZZDFV(Gij)Xi Yj

=
If & =(x1-x) . #"=(y".1-y") be optimal strategies, then from

E(&n")<E(&n")<E(n) vEeS, nes,
we have E(xy")<E(x",y")<E(x"y) vxe(0,1), y(0.1).

From the first part of the inequality, we set that E(x, y*) regarded as a function of x has a

maximum at X~ thus,

a_E
OX

0my - DFV (g,) ~ DFV (dy,) |
(¢ (DFV (1) + DFV(8;,)) ~ (DFV (d12) + DFV (G4))

Provided that (DFV (g;;) + DFV (§,,)) — (DFV (§;,) + DFV (§,,)) =0

Similarly, from the second part of the inequality, it is seen that E(x*,y) regard as a

function of y has a minimum at y” i.e.,

ok * DFV (G2,) — DFV (G1)

~0 - .
¥ey)  (OFV(@)+DFV(8)) ~(DFV(g:,) + DFV(G)
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Provided that (DFV (gy,) + DFV (G,,)) — (DFV (Gy,) + DFV (G)) #0 . And

V= E(x* y*) __ DFV(611)DFV (Gy,) — DFV (1) DFV (g21)
’ (DFV (g;;) + DFV (G,,)) — (DFV (d;,) + DFV (G,))

It can be proved that (DFV(g;)+ DFV (g,,))—(DFV (§;,) + DFV(§,))=0 implies that G
has a saddle point.

6. Numerical Example

To illustrate the proposed methodology, we have solved one numerical example. In this
example, the elements of payoff matrix are fuzzy valued (taken from Mijanur et al. [15]).
Using eight different defuzzification methods, the matrix game has been converted into
eight matrix games which are shown in Table 2. Finally, we have solved all the matrix
games and computed results have been presented in Table 3.

Example-1

Suppose that there are two companies A and B to enhance the market share of a new
product by competing in advertising. The two companies are considering two different
strategies to increase market share: strategy | (adv. by TV), Il (adv. by Newspaper). Here it
is assumed that the targeted market is fixed, i.e. the market share of the one company
increases while the market share of the other company decreases and also each company
puts all its advertisements in one. The above problem may be regarded as matrix game.
Namely, the company A and B are considered as players A and B respectively.

Table 2. Converted matrix games

Defuzzification | Defuzzified Pay of Defuzzified Pay of
Methods Matrix for TEN Matrix for PFN
COA 181.67 154.67 181.88 154.50
( 9 181.67] ( 9 181.88]
BOA 181.25 155.00 181.65 154.67
[ 90 181.25} 90 181.65)
MOM 180.00 156.00 180.00 156.00
( 90 180.00J [ 90 180.00)
SOM 180.00 156.00 180.00 156.00
( 90 180.00J [ 90 180.00]
LOM 180.00 156.00 180.00 156.00
( 90 180.00] [ 90 180.00)
RWP 181.25 155.00 181.61 154.71
[ 90 181.25) ( 90 181.61)
GMIV (with [180.83 155.33] (131.33 154.93]
w=05 ) 90 180.83 90 181.33
COAI 181.25 155.00 181.25 154.67
( 90 181.25] ( 90 181.25]
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The marketing research department of company A establishes the following pay-off matrix.

Adv. by TV  Adv. by Newspaper
. Adv.byTV (175,180,190) (150,156,158)
G= AdvbyNewspaper | (80,90,100) (175,180,190)

Where the element (175, 180, 190) in the matrix G indicates that the sales amount of the
company A increase by “about 180 units when the company A and B use the strategy |

(adv. by TV) simultaneously. The other elements in the matrix G can be explained
similarly.

Table 3. Solutions of matrix games

Defuzzification Player-A (For TFEN)
Methods For PEN (Player-A)
X 1-x Al X 1-x" Al
COA 0.227522 | 0.772478 | 160.81309 | 0.229324 | 0.770676 | 160.80972
BOA 0.223404 | 0.776596 | 160.86436 | 0.227430 | 0.772570 | 160.80606
MOM 0.210526 | 0.789474 | 161.05263 | 0.210526 | 0.789474 | 161.05263
SOM 0.210526 | 0.789474 | 161.05263 | 0.210526 | 0.789474 | 161.05263
LOM 0.210526 | 0.789474 | 161.05263 | 0.210526 | 0.789474 | 161.05263
RWP 0.223404 | 0.776596 | 160.86436 | 0.226985 | 0.773015 | 160.81590
G'\S'J':VO(‘;")““ 0.219204 | 0.780796 | 160.91970 | 0.224242 | 0.775758 | 160.84999
COAI 0.223404 | 0.776596 | 160.86436 | 0.225579 | 0.774421 | 160.66590

The computational results have been shown in Table 3 for different parametric values.
From Table 3, it follows that in the case of TFN values, the best game value is obtained in
the cases of MOM, SOM and LOM. In case of PFN values, the best game value is obtained
in cases of MOM, SOM and LOM.

161.25

161 -

160.75

HEFor TEN
160.5
O For PFN

160.25 -+

160 -
COA BOA MOM SOM LOM RWP GMIV COAI

Fig. 1. Value of the game for different defuzzification methods

All the results have been shown in Fig. 1. The optimal solution sets, as obtained by the
defuzzification approach, are consistent with those obtained by standard existing approach
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under fuzzy set up. Thus, it can be claimed that the defuzzification approach attempted in
this work well to handle the matrix game with fuzzy payoff.

7. Conclusion

In this paper, a method of solving fuzzy game problem using several fuzzy defuzzification
techniques of fuzzy numbers has been considered. A Numerical example is presented to
illustrate the proposed methodology. Due to the choices of decision makers’, the payoff
value in a zero sum game might be imprecise rather than precise value. This impreciseness
may be represented by various ways. In this paper, we have represented this by fuzzy
number. Then the fuzzy game problem has been converted into crisp game problem after
defuzzification in which all the payoff values are crisp valued. Here, several defuzzification
techniques have been used to solve the fuzzy game and the corresponding crisp games with
their strategies and value of the game have been presented and compared.
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Abstract — The notion of A,-closed sets is introduced in ideal topological spaces. Characteriza-
tions and properties of Z, -closed sets and 7, -open sets are given. A characterization of normal
spaces is given in terms of 7, -open sets. Also, it is established that an Z, -closed subset of an

Z-compact space is Z-compact.
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1 Introduction and Preliminaries

In 1986, Maki [14] introduced the notion of A-sets in topological spaces. A A-set is a
set A which is equal to its kernel (= saturated set) i.e to the intersection of all open
supersets of A. Arenas et al [1] introduced and investigated the notion of A-closed
sets by involving A-sets and closed sets. Caldas et al [2] introduced and investigated
the notion of A,-closed sets in topological spaces and established several properties
of such sets.

In this paper, the notion of A,-closed sets is introduced in ideal topological spaces.
Characterizations and properties of Zy -closed sets and 7, -open sets are given. A
characterization of normal spaces is given in terms of 7, -open sets. Also, it is
established that an Zj -closed subset of an Z-compact space is Z-compact.

An ideal Z on a topological space (X, 7) is a nonempty collection of subsets of X
which satisfies

* Edited by Metin Akdag (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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1. AeZ and BCA=Be7Z and
2. A€eZ and BeZ=AUB€eZT.

Given a topological space (X, 7) with an ideal Z on X and if p(X) is the set of
all subsets of X, a set operator (.)* : p(X)—p(X), called a local function [11] of A
with respect to 7 and Z is defined as follows: for ACX, A*(Z,7)={xeX | UNA¢Z for
every UeT(x)} where 7(x)={Uéer | x€U}. We will make use of the basic facts about
the local functions [[8], Theorem 2.3] without mentioning it explicitly. A Kuratowski
closure operator cl*(.) for a topology 7*(Z,7), called the *-topology, finer than 7 is
defined by cI*(A)=AUA*(Z,7) [24]. When there is no chance for confusion, we will
simply write A* for A*(Z,7) and 7" for 7*(Z,7).

If 7 is an ideal on X, then (X, 7, Z) is called an ideal topological space. N is
the ideal of all nowhere dense subsets in (X, 7). A subset A of an ideal topological
space (X, 7, Z) is *-closed [8] (resp. *-dense in itself [6]) if A*CA (resp. ACA*). A
subset A of an ideal topological space (X, 7, Z) is Z,-closed [3] if A*CU whenever
ACU and U is open.

By a space, we always mean a topological space (X, 7) with no separation prop-
erties assumed. If ACX, cl(A) and int(A) will, respectively, denote the closure and
interior of A in (X, 7) and int*(A) will denote the interior of A in (X, 7*).

A subset A of a space (X, 7) is an a-open [19] (resp. semi-open [12], preopen
[15], regular open [23]) set if ACint(cl(int(A))) (resp. ACcl(int(A)), ACint(cl(A)),
A = int(cl(A))).

The family of all a-open sets in (X, 7), denoted by 72, is a topology on X finer
than 7. The closure of A in (X, 7) is denoted by cl,(A).

Definition 1.1. A subset A of a space (X, 7) is said to be

1. g-closed [13] if cl(A)CU whenever ACU and U is open.

2. g-open [13] if its complement is g-closed.
A-closed [1] if A = L N D, where L is a A-set and D is a closed set.
A-open [1] if its complement is A-closed.

Ag-closed [2] if cl(A)CU whenever ACU and U is A-open.

A A

g-closed [25] or w-closed [22] or s*g-closed [10, 16, 20] if cl(A)CU whenever
ACU and U is semi-open.

Definition 1.2. An ideal 7 is said to be
1. codense [4] or 7-boundary [18] if 7 N Z={¢},

2. completely codense [4] if PO(X)NZ={¢}, where PO(X) is the family of all
preopen sets in (X, 7).

Lemma 1.3. Every completely codense ideal is codense but not conversely [4].
The following Lemmas, Result and Definition will be useful in the sequel.

Lemma 1.4. [8] Let (X, 7, Z) be an ideal topological space and A, B subsets of X.
Then the following properties hold:



Journal of New Theory 8 (2015) 65-77 67

1. ACB=A*CB*,
2. A*=cl(A*)Ccl(A),
3. (AM)*CA~,

4. (AUB)*=A*UB*,
5. (ANB)*CA*NB*.

Lemma 1.5. Let (X, 7, Z) be an ideal topological space and ACX. If ACA*, then
A*=cl(A*)=cl(A) =cI*(A) [[21], Theorem 5].

Lemma 1.6. Let (X, 7, Z) be an ideal topological space. Then Z is codense if and
only if GCG* for every semi-open set G in X [[21], Theorem 3].

Lemma 1.7. Let (X, 7, Z) be an ideal topological space. If Z is completely codense,
then 7*Cr [[21], Theorem 6].

Result 1.8. For a subset of a topological space, the following properties hold:
1. Every closed set is Ag-closed but not conversely [2].
2. Every Aj-closed set is g-closed but not conversely [2].
3. Every closed set is A-closed but not conversely [1, 2].
4. Every closed set is g-closed but not conversely [25].
5. Every g-closed set is g-closed but not conversely [25].

Definition 1.9. An ideal space (X, 7, 7) is said to be a Tz-space [3] if every Z,-closed
subset of X is a x-closed set.

Lemma 1.10. If (X, 7, Z) is a Ty-space and A is an Z,-closed set, then A is a
*-closed set [[17], Corollary 2.2].

Lemma 1.11. Every g-closed set is Z,-closed but not conversely [[3], Theorem 2.1].

Lemma 1.12. [1] Let A;(« € Z) be subsets of a topological space (X, 7). The
following properties hold:

1. If A; is A-closed for each i € I, then N;c;A; is A-closed.
2. If A; is A-open for each i € I, then U;c; A; is A-open.

Recall that the intersection of a A-closed set and a closed set is A-closed.
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2 Ideal Topological View of A -closed Sets

Definition 2.1. A subset A of an ideal topological space (X, 7, Z) is said to be
1. Zy,-closed if A*CU whenever ACU and U is A-open,

2. Ip,-open if its complement is 7 -closed.

Theorem 2.2. If (X, 7, ) is any ideal topological space, then every T -closed set
is Z,-closed but not conversely.

Proof. 1t follows from the fact that every open set is A-open.

Example 2.3. Let X={a, b, ¢}, 7={¢, X, {a}, {a, b}} and Z={¢}. It is clear that
{a, c} is Z,-closed but it is not T -closed.

The following Theorem gives characterizations of 7 -closed sets.

Theorem 2.4. If (X, 7, 7) is any ideal topological space and ACX, then the following
are equivalent.

1. Ais Zy -closed,
2. cI*(A)CU whenever ACU and U is A-open in X,
3. cI*(A)—A contains no nonempty A-closed set,

4. A*—A contains no nonempty A-closed set.

Proof. (1) = (2) Let A C U where U is A-open in X. Since A is T -closed, A* C U
and so cI*(A) = AU A* C U.

(2) = (3) Let F be a A-closed subset such that F C cI*(A)—A. Then F C cI*(A).
Also F C cI*(A)—A C X — A and hence A C X — F where X — F is A-open. By (2)
c"(A) C X —FandsoF C X —cl*(A). Thus F C cI*(A) N X — clI*(A) = ¢.

(3)=(4) A* —A=AUA*— A =cl"(A) — A which has no nonempty A-closed
subset by (3).

(4) = (1) Let A C U where U is A-open. Then X — U C X — A and so A* N (X
—U)CA* N (X —A)=A* — A. Since A* is always a closed subset and X — U is
A-closed, A* N (X — U) is a A-closed set contained in A* — A and hence A* N (X —
U) = ¢ by (4). Thus A* C U and A is Z, -closed.

Theorem 2.5. Every x-closed set is Zj -closed but not conversely.

Proof. Let A be a x-closed. To prove A is Z, -closed, let U be any A-open set such
that A C U. Since A is x-closed, A* € A C U. Thus A is Z -closed.

Example 2.6. Let X={a, b, ¢}, 7={¢, X, {a}} and Z={¢}. It is clear that {b} is
Zy,-closed set but it is not x-closed.

Theorem 2.7. Let (X, 7, Z) be an ideal topological space. For every A€Z, A is
Ta,-closed.

Proof. Let A € 7 and let A C U where U is A-open. Since A € 7, A* = ¢ C U.
Thus A is Z -closed.

Theorem 2.8. If (X, 7, ) is an ideal topological space, then A* is always 7 -closed
for every subset A of X.
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Proof. Let A*CU where U is A-open. Since (A*)*CA* [8], we have (A*)* CU. Hence
A* is T, -closed.

Theorem 2.9. Let (X, 7, Z) be an ideal topological space. Then every Ty -closed,
A-open set is *-closed.

Proof. Let A be Z, -closed and A-open. We have A C A where A is A-open. Since
A'is Ty ,-closed, A* C A. Thus A is x-closed.

Corollary 2.10. If (X, 7, 7) is a Tz-space and A is an T -closed set, then A is
*-closed set.

Proof. By assumption A is Z, -closed in (X, 7, Z) and so by Theorem 2.2, A is
Z,-closed. Since (X, 7, T) is a Tz-space, by Definition 1.9, A is x-closed.
Corollary 2.11. Let (X, 7, Z) be an ideal topological space and A be an Z, -closed
set. Then the following are equivalent.

1. A is a x-closed set,

2. cI*(A)—A is a A\-closed set,

3. A*—A is a A-closed set.

Proof. (1) = (2) By (1) A is *-closed. Hence A* C A and cI*(A) — A = (A U AY)
— A = ¢ which is a A-closed set.
(2) = (3) A* —A=AUA* — A =cl*(A) — A which is a A-closed set by (2).
(3) = (1) Since A is T -closed, by Theorem 2.4 A* — A contains no non-empty
A-closed set. By assumption (3) A* — A is A-closed and hence A* — A = ¢. Thus
A* C A and A is x-closed.

Theorem 2.12. Let (X, 7, Z) be an ideal topological space. Then every A -closed
set is an 7 -closed set but not conversely.

Proof. Let A be a Agj-closed set. Let U be any A-open set such that A C U. Since A
is Ag-closed, cl(A) € U. So, by Lemma 1.4, A* C cl(A) € U and thus A is T -closed.
Example 2.13. Let X={a, b, ¢}, 7={¢, X, {a}, {c}, {a, b}, {a, c¢}} and ZT={¢,
{a}}. It is clear that {a} is Z -closed set but it is not Ag-closed.

Theorem 2.14. If (X, 7, 7) is an ideal topological space and A is a x-dense in itself,
T,-closed subset of X, then A is Ay-closed.

Proof. Let A C U where U is A-open. Since A is 7y -closed, A* C U. As A is x-dense
in itself, by Lemma 1.5, cI(A) = A*. Thus cI(A)CU and hence A is Aj-closed.

Corollary 2.15. If (X, 7, Z) is any ideal topological space where Z={¢}, then A is
Tp,-closed if and only if A is Ag-closed.

Proof. In (X, 7, Z), if T = {¢} then A* = cl(A) for the subset A. A is 7, -closed <
A* C U whenever A C U and U is A-open < cl(A) C U whenever A C U and U is
A-open < A is Ay-closed.

Corollary 2.16. In an ideal topological space (X, 7, Z) where 7 is codense, if A is
a semi-open and Ty -closed subset of X, then A is Ag-closed.

Proof. By Lemma 1.6, A is x-dense in itself. By Theorem 2.14, A is Aj-closed.
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Example 2.17. In Example 2.3, it is clear that {a, c} is g-closed set but it is not
Zy,-closed.

Example 2.18. In Example 2.13, it is clear that {a} is Z, -closed set but it is not
g-closed.

Example 2.19. In Example 2.6, it is clear that {b} is A j-closed but it is not g-closed.
Example 2.20. In Example 2.6, it is clear that {a} is g-closed but it is not A,-closed.
Remark 2.21. We see that

1. From Examples 2.17 and 2.18, g-closed sets and Z, -closed sets are indepen-
dent.

2. From Examples 2.19 and 2.20, Aj-closed sets and g-closed sets are independent.

Remark 2.22. We have the following implications for the subsets stated above.

g-closed

R

closed g-closed

1

3

;‘\g—ciosed

*-closed L,-closed

~, 1

1, ,-closed

Theorem 2.23. Let (X, 7, Z) be an ideal topological space and ACX. Then A is
Zp,-closed if and only if A=F—N where F is x-closed and N contains no nonempty
A-closed set.

Proof. If A is Ty -closed, then by Theorem 2.4 (4), N=A*—A contains no nonempty
A-closed set. If F=cl*(A), then F is x-closed such that F—N=(AUA*)—(A*—A)=(AU
AFIN(A*NAY)=(AUA*)N((A*)UA)=(AUA*)N(AU(A*))= AU(A*N(A*)°)=A.
Conversely, suppose A=F—N where F is x-closed and N contains no nonempty -
closed set. Let U be an A\-open set such that ACU. Then F—NCU which implies that
FN(X—U)CN. Now ACF and F*CF then A*CF* and so A*N(X—U)CF*N(X—-U)CFN
(X—=U)CN. Since A*N(X—U) is A-closed, by hypothesis A*N(X—U)=¢ and so A*CU.
Hence A is T -closed.
Theorem 2.24. Let (X, 7, Z) be an ideal topological space and ACX. If ACBCA*,
then A*=B* and B is x-dense in itself.

Proof. Since ACB, then A*CB* and since BCA*, then B*C(A*)*CA*. Therefore
A*=B* and BCA*CB*. Hence proved.
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Theorem 2.25. Let (X, 7, Z) be an ideal topological space. If A and B are subsets
of X such that ACBCcl*(A) and A is 7 -closed, then B is 7, -closed.

Proof. Since A is Ty -closed, then by Theorem 2.4 (3), cI*(A)—A contains no non-
empty A-closed set. But cl*(B)—BCcl*(A)—A and so cl*(B)—B contains no nonempty
A-closed set. Hence B is Z -closed.

Corollary 2.26. Let (X, 7, Z) be an ideal topological space. If A and B are subsets
of X such that ACBCA* and A is 7 -closed, then A and B are Ay-closed sets.

Proof. Let A and B be subsets of X such that ACBCA*. Then ACB CA*Ccl*(A).
Since A is Zy,-closed, by Theorem 2.25, B is Z -closed. Since ACBCA*, we have
A* = B*. Hence A C A* and B C B*. Thus A is xdense in itself and B is x-dense
in itself and by Theorem 2.14, A and B are Aj-closed.

The following Theorem gives a characterization of Z, -open sets.

Theorem 2.27. Let (X, 7, Z) be an ideal topological space and ACX. Then A is
Ta,-open if and only if FCint*(A) whenever F is A-closed and FCA.

Proof. Suppose A is Zj,-open. If F is A-closed and FCA, then X—ACX~F and
so cI*(X—A)CX—F by Theorem 2.4(2). Therefore FCX—cl*(X—A)=int*(A). Hence
FCint*(A).

Conversely, suppose the condition holds. Let U be a A-open set such that
X—ACU. Then X—UCA and so X—UCint*(A). Therefore cI*(X—A)CU. By The-
orem 2.4(2), X—A is 7, -closed. Hence A is Z, -open.

Corollary 2.28. Let (X, 7, Z) be an ideal topological space and ACX. If A is
Ta,-open, then FCint*(A) whenever F is closed and FCA.

The following Theorem gives a property of T -closed.

Theorem 2.29. Let (X, 7, Z) be an ideal topological space and ACX. If A is Z, -
open and int*(A)CBCA, then B is Ta,-open.

Proof. Since int*(A) C B C A, wehave X — AC X — B C X — int*(A) = cI*(X —
A). By assumption A is 7, -open and so X — A is Ty -closed. Hence by Theorem
2.25, X — B is 7, ,-closed and B is 7, -open.

The following Theorem gives a characterization of Zj -closed sets in terms of
Z),-open sets.

Theorem 2.30. Let (X, 7, Z) be an ideal topological space and ACX. Then the
following are equivalent.

1. Ais Zy,-closed,

2. AU(X—A%) is T,-closed,

3. A*—Ais 7, -open.
Proof. (1)=-(2) Let U be any A-open set such that AU(X—A*)CU. Then U°¢ C
[AUX—=A*)] = [A U (A")]° = A*NA°=A*—A where U¢ is A-closed. Since A is
Ta,-closed, by Theorem 2.4(4), U¢ = ¢ and X=U. Thus X is the only A-open set
containing AU(X—A*) and hence AU(X—A*) is Z, -closed.

(2)=3) (A* —A)*=(A*NA°)=AUA* =AU (X — A*) which is Z, -closed
by (2). Hence A* — A is Ty -open.
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(3) = (1) Since A* — A'is Tp,-open, (A* — A)° = A U A*®is Ty -closed. Hence
by Theorem 2.4(4) (A U (A*)°)* — (A U A*) contains no nonempty A-closed subset.
But (A U (A%)%)* — (A U (A%)) = (A U (A)9)* 1 (AU (A%))° = (A U (A))* 1
(A*UAS) = (A*U (AH)) N (A* N A°) = A* N A° = A* — A. Thus A* — A has
no nonempty A-closed subset. Hence by Theorem 2.4(4), A is Z, -closed.

Theorem 2.31. Let (X, 7, Z) be an ideal topological space. Then every subset of
X is Zy,-closed if and only if every A-open set is x-closed.

Proof. Suppose every subset of X is 7, -closed. Let U be A-open in X. Then U C U
and U is 7, -closed by assumption implies U* C U. Hence U is %-closed.

Conversely, let A C X and U be A-open such that A C U. Since U is *-closed by
assumption, we have A* C U* C U. Thus A is Z -closed.

The following Theorem gives a characterization of normal spaces in terms of
Zj,-open sets.

Theorem 2.32. Let (X, 7, Z) be an ideal topological space where Z is completely
codense. Then the following are equivalent.

1. X is normal,

2. For any disjoint closed sets A and B, there exist disjoint Z -open sets U and
V such that ACU and BCV,

3. For any closed set A and open set V containing A, there exists an Z, -open set

U such that ACUCcl*(U)CV.

Proof. (1)=(2) The proof follows from the fact that every open set is 7y -open.

(2)=-(3) Suppose A is closed and V is an open set containing A. Since A and
X~V are disjoint closed sets, there exist disjoint Z, -open sets U and W such that
ACU and X—VCW. Since X—V is A-closed and W is Z, -open, X—=VCint*(W). Then
X—int*(W)CV. Again UNW=¢ which implies that UNint*(W)=¢ and so U CX— int
*(W). Then cI*(U)CX—int*(W)CV and thus U is the required 7, -open sets with
ACUCecl*U)CV.

(3)=(1) Let A and B be two disjoint closed subsets of X. Then A is a closed
set and X — B an open set containing A. By hypothesis, there exists an 7, -open
set U such that ACUCcl*(U)CX—B. Since U is Z) -open and A is A-closed we have
ACint*(U). Since Z is completely codense, by Lemma 1.7, 7*C7® and so int*(U)
and X—cl*(U)er®. Hence ACint*(U)C int(cl(int(int*(U))))=G and BCX—cl*(U)C
int(cl(int(X—cl*(U)))) =H. G and H are the required disjoint open sets containing
A and B respectively, which proves (1).

Definition 2.33. A subset A of a topological space (X, 7) is said to be an Ay,-closed
set if cl,(A)CU whenever ACU and U is A-open. The complement of Ag,-closed is
said to be an Ay,-open set.

If Z=N, it is not difficult to see that T,-closed sets coincide with Ag,-closed sets
and so we have the following Corollary.

Corollary 2.34. Let (X, 7, Z) be an ideal topological space where Z=N". Then the
following are equivalent.

1. X is normal,
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2. For any disjoint closed sets A and B, there exist disjoint Ag,-open sets U and
V such that ACU and BCV,

3. For any closed set A and open set V containing A, there exists an Ay,-open

set U such that ACUCcl,(U)CV.

Definition 2.35. A subset A of an ideal topological space is said to be Z-compact
[5] or compact modulo Z [18] if for every open cover {U, | a€A} of A, there exists
a finite subset Ay of A such that A—U{U, | a€Ay}€Z. The space (X, 7, Z) is
Z-compact if X is Z-compact as a subset.

Theorem 2.36. Let (X, 7, Z) be an ideal topological space. If A is an Z,-closed
subset of X, then A is Z-compact [[17], Theorem 2.17].

Corollary 2.37. Let (X, 7, Z) be an ideal topological space. If A is an 7 -closed
subset of X, then A is Z-compact.

Proof. The proof follows from the fact that every Z, -closed is Z,-closed.

3 A-Z-locally Closed Sets
Definition 3.1. A subset A of an ideal topological space (X, 7, Z) is called a A\-Z-
locally closed set (briefly, \-Z-LC) if A=UNV where U is A-open and V is x-closed.

Definition 3.2. [9] A subset A of an ideal topological space (X, 7, Z) is called a
weakly Z-locally closed set (briefly, weakly Z-L.C) if A=UNV where U is open and
V is x-closed.

Proposition 3.3. Let (X, 7, Z) be an ideal topological space and A a subset of X.
Then the following hold.

1. If A is A-open, then A is A\-Z-LC-set.
2. If A is x-closed, then A is \-Z-LC-set.
3. If A is a weakly Z-LC-set, then A is a A-Z-LC-set.

The converses of the above Proposition 3.3 need not be true as shown in the
following examples.
Example 3.4. 1. In Example 2.6, it is clear that {a} is a A-Z-LC-set but it is
not x-closed.

2. In Example 2.3, it is clear that {b} is a \-Z-LC-set but it is not A-open.

Example 3.5. In Example 2.3, it is clear that {a, c} is a A-Z-LC-set but it is not a
weakly Z-LC-set.

Theorem 3.6. Let (X, 7, Z) be an ideal topological space. If A is a \-Z-LC-set and
B is a x-closed set, then ANB is a A-Z-LC-set.

Proof. Let B be x-closed, then ANB=(UNV)NB=UN(VNB), where VNB is *-closed.
Hence ANB is a A-Z-LC-set.

Theorem 3.7. A subset of an ideal topological space (X, 7, 7) is *-closed if and
only if it is
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1. weakly Z-LC and Z ,-closed [7]
2. A-I-LC and Z, -closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be A\-Z-LC-set and
TIa,-closed set. Since A is A-Z-LC, A=UNV, where U is A-open and V is *-closed.
So, we have A=UNVCU. Since A is T -closed, A* C U. Also since A = UNVCV
and V is x-closed, we have A* C V. Consequently, A* CUNV = A and hence A is
*-closed.

Remark 3.8. 1. The notions of weakly Z-LC-set and Z,-closed set are indepen-
dent [7].
2. The notions of A\-Z-LC-set and T -closed set are independent.
Example 3.9. In Example 2.6, it is clear that {a} is A-Z-LC-set but not Z -closed.

Example 3.10. In Example 2.6, it is clear that {a, c} is T, -closed set but not
A-Z-LC-set.

Definition 3.11. Let A be a subset of a topological space (X, 7). Then the A-kernel
of the set A, denoted by A-ker(A), is the intersection of all A-open supersets of A.

Definition 3.12. A subset A of a topological space (X, 7) is called Ay-set if A=\-
ker(A).

Definition 3.13. A subset A of an ideal topological space (X, 7, Z) is called \*-Z-
closed if A=LNF where L is a A -set and F is *-closed.

Lemma 3.14. 1. Every %-closed set is A*-Z-closed but not conversely.
2. Every Ay-set is \*-Z-closed but not conversely.

3. Every A\-Z-LC-set is A*-Z-closed but not conversely.

Example 3.15. In Example 2.6, it is clear that {a} is A*-Z-closed set but not *-
closed.

Example 3.16. Let X = {a, b, ¢, d}, 7 = {6, X, {c}, {d}, {a, c}, {c, d}, {a, ¢, d}}
and Z = {¢}. It is clear that {a} is A*-Z-closed but not a A,-set.

Example 3.17. In Example 3.16, it is clear that {a} is \*-Z-closed but not a A\-Z-
LC-set.

Remark 3.18. The following Example supports the concepts of Ay-set and x-closed
set are independent. Let X = {a, b, ¢}, 7 = {¢, X, {b, c}} and Z = {¢, {a}, {b},
{a, b}}. Tt is clear that {b, c} is a A -set but not a *-closed whereas {b} is x-closed
but not a A,-set.

Lemma 3.19. For a subset A of an ideal topological space (X, 7, Z), the following
are equivalent.

1. A is A*-Z-closed.
2. A=LNcl*(A) where L is a A,-set.
3. A=X-ker(A)Ncl*(A).
Lemma 3.20. A subset AC(X, 7, Z) is Z,-closed if and only if cI*(A)C A-ker(A).
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Proof. Suppose that A C X is an 7 -closed set. Suppose x ¢ A-ker(A). Then there
exists an A-open set U containing A such that x ¢ U. Since A is an T -closed set,
A C U and U is A-open implies that cI*(A) C U and so x ¢ cI*(A). Therefore cl*(A)
C A-ker(A).

Conversely, suppose cl*(A) C A-ker(A). If A C U and U is A-open, then cl*(A)
C A-ker(A) C U. Therefore, A is T, -closed.

Theorem 3.21. For a subset A of an ideal topological space (X, 7, Z), the following
are equivalent.

1. A is x-closed.
2. Ais T -closed and A-Z-LC.
3. A'is I -closed and \*-Z-closed.

Proof. (1)=-(2)=-(3) Obvious.
(3)=(1) Since A is Z -closed, by Lemma 3.20, cI*(A)CA-ker(A). Since A is \*-
Z-closed, by Lemma 3.19, A=\-ker(A)Ncl*(A)=cl*(A). Hence A is x-closed.

The following two Examples show that the concepts of Z -closedness and A\*-Z-
closedness are independent.

Example 3.22. In Example 2.6, it is clear that {b} is Z» -closed set but not A\*-Z-
closed.

Example 3.23. In Example 2.6, it is clear that {a} is A*-Z-closed but not Z -closed.

4 Decompositions of x-continuity

Definition 4.1. A function f: (X, 7, Z)—(Y, o) is said to be x-continuous [7] (resp.
T -continuous [7], A-Z-LC-continuous, A\*-I-continuous, 7 -continuous, weakly Z-
LC-continuous [9]) if £71(A) is x-closed (resp. Z,-closed, A-Z-LC-set, A*-Z-closed,
Ty,-closed, weakly Z-LC-set) in (X, 7, Z) for every closed set A of (Y, o).

Theorem 4.2. A function f: (X, 7, Z)—(Y, o) is x-continuous if and only if it is
1. weakly Z-LC-continuous and Z ,-continuous [7].
2. A-ZI-LC-continuous and Z, -continuous.

Proof. Tt is an immediate consequence of Theorem 3.7.

Theorem 4.3. For a function f: (X, 7, Z)—(Y, o), the following are equivalent.
1. fis x-continuous.
2. fis Ty -continuous and A-Z-LC-continuous.
3. fis I -continuous and \*-Z-continuous.

Proof. Tt is an immediate consequence of Theorem 3.21.
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1. Introduction

The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the
main tools in Algebraic Geometry. Atiyah and Macdonald [1] introduced the spectrum
Spc(R) of aring R as the following: for each ideal | of R,V (1) ={P e Spec(R): | < P},
then the set V(1) satisfy the axioms for the closed sets of a topology on Spc(R), called the

Zariski topology. Also, the notion of a spectrum of modules has been introduced by many
authors see [2, 5, 6 and 7]. Prabpayak and Leerawat [11] introduced a new algebraic
structure which is called KU-algebras. They introduced the concept of homomorphisms of
KU-algebras and investigated some related properties. In [3, 4, 12 and 13], the authors
introduced topologies on the set of all prime ideals by different way. In this paper, we study
the relationship between a KU-algebra and topological space by the notion of the Zariski
topology. We give the new concept of KU-lattice, involutory ideal and prime ideal of a
KU-algebra X and discuss some properties which related to these concepts. Consequently,
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we show that Spc(X) of a KU-algebra X is a compact and disconnected space. Also, we
study some of separation axioms and continuous map of this topological space.

2. Preliminaries

Now we recall some known concepts related to KU-algebra from the literature which will
be helpful in further study of this article.

Definition 2.1 [11]. Let X be a nonempty set with a binary operation*and a constantO .
The triple (X ,*,0)is called a KU-algebra, if the following axioms are satisfied. For all

X,y,ze X .

(ku) (x*y)*[(y*2))*(x*2)]=0.

(ku,) x*0=0.

(kuy) Oxx=x.

(ku,) x*y=0and y*x=0 impliesx=y.
(kug) x*x=0.

On a KU-algebra X, we can define a binary relation < on X by putting x<y< y*x=0.
Then (X,<)is a partially ordered set and 0Ois its smallest element. Thus (X ,*,0) satisfies
the following conditions. For all x,y,z e X , we that

(kuy) (y*2z)*(x*2) < (x*y)

(ku,) 0<x

(ku,) x<y,y<x implies x=y,

(ku,) y#*x<x.

Theorem 2.2 [8]. In a KU-algebra X . The following axioms are satisfied.
Forall x,y,ze X,

(1) x<yimplyy*z<x=*z,
(2) x*(y*z)=y=*(x*2),
@) (y*x)*x)<y.

Definition 2.3 [11]. A non-empty subset | of a KU-algebra X is called an ideal of X if
forany x,y e X, then

(i) 0el and

(i) xxy,xel imply yel.

Definition 2.4 [9]. A KU-algebraX is said to be KU-commutative if it satisfies
(yxx)xx=(x*xy)=y, forall x,y inX.

Lemma 2.5 [9]. If X is KU-commutative algebra, then for any distinct elements
X, ¥,2€ X , XA(Yy*2)=(XAY)*(XAZ).
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Definition 2.6. If there is an element E of a KU-algebra X satisfying x<E forall xe X,
then the element E is called unit of X . A KU-algebra with unit is called bounded. In a
bounded KU-algebra X , we denote x*E by N, . Itis easy to see that N =0,N, =E.

Example 2.7. Let X = {O,a,b,c,d} be a set with a binary operation * defined by the
following table.

« [0 |la|b|c|d]|e
0 |0ja|bjc|d]e
a |00 |bjc|b]cC
b |{0|a|0|bj|a|d
c [0Ola|0]|0]a|a
d 0|00 |b|O]|Db
e |0O|0|0]O0]|0]O

Using the algorithms in Appendix, we can prove that (X, *, 0) is a KU-algebra and by
routine calculations, we can see that X is a bounded KU-algebra with unit "d".

Theorem 2.8. For a bounded KU-commutative algebra X , we denote xv y =N .y, and
forall x,y e X, we have

(a) NNx =X,

(b) N, AN, =N, N, VN =N,
(c) x<yimplies N, <N,.

(d) EAXx=X,

(e) xXAE=E.

Proof. The proof is straightforward. [

Definition 2.9. A partially ordered set (L,<) is said to be a lower semilattice if every pair

of elements in L has a greatest lower bound and it is called to be an upper semilattice if
every pair of elements in L has a least upper bound. If Lis a lattice, then we define
XAYy=glb{x,y}and xvy=Ilub{x,y}. A lattice L is said to be distributive if it satisfies

the following conditions. For all x,y,zeL
(1) xA(Yyv2)=(XAY)V(XAZ),
(2) xv(yA2)=(Xvy)A(xv2).

Theorem 2.10. Every KU-commutative algebra X is a KU-lower semilattice with respect
to(X,5).

Proof. Suppose X is a KU-commutative algebra. We know thatxAy<xand XAy<y .
Let z be any element of X suchthat z<xandz<y,thenx*z=y=*z=0 (by Definition of

commutativty

<),sowehavethatz=0%z=(Xx*z)*z=(z*X)*X.
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By the same reason we havez =(z*y)*y, and hence
Z=(z*x)*x=(((z*y)*y)*x)*x<(y*X)*X=XAY, thus XAy is the greatest KU-
lower bound and so (X,<)is a KU-lower semilattice.[]

The converse of this theorem may not be true. For example, in Example 2.7 we have that
X is a lower semilattice, but(a*c)*c=c*c=0=2a=0*a=(c*a)*a.

Theorem 2.11. Any bounded KU-commutative algebra X with respect to (X,<) is a KU-
lattice.

Proof. Since N, AN, <N, andN, AN, <N, from Theorem 2.8 we have that

X=Ny <N iny=Xvyandy=Ny <Ny n)=XVY.

This shows that xv y is a common upper bound of x andy. Now, by Theorem 2.8 if
x<zandy<z, thenN, <N andN,<N . It follows that N, <N, AN, , therefore
N(NMNy) <N, andxvy<z.Hence xvy isaleast upper bound ofx andy, i.e. (X,<)is

a KU-upper semilattice. By using Theorem 2.10 and this Theorem, we obtain (X,<)is a
KU-lattice. [

Definition 2.12. Let X be a KU-algebra and A a nonempty subset of X . The ideal of
X generated by Ais denoted by (A) ={x e X :Ja,,...,a, € A such that(a, *(...x(a, *x) =0}, if
A= ¢. We have that (¢) ={0}.

Definition 2.13. Let X be KU-commutative algebra and A a subset of X . Then we define
A" ={xe X :aAx=0forallae A}and call it the KU-annihilator of A.

We write A*in place of (A®)". Note that A*is a nonempty since 0e A*. Obviously we
have X*={0}and {0} =X . If Ais an ideal it is easy to see that ANA"={0}. We
observe that if xe A"then aAx=0for all ae A. It follows that (x*a)*a=0 then
a<x*a anda=*(x*a)=0, hencex*a<a which implies that a=x+*a. Thus xe A"if

and only if a=x=a forall ae A. Moreover if X is commutative, then x e A*if and only
if a=x=a forall aeA.

If A={a}, then we write (a)"instead of ({a})".

Example 2.14. Let X ={0,a,b,c,d,e} be a set with a binary operation * defined by the
following table.

It is easy to show that X is a bounded KU-commutative algebra. If A={b,c}, then
A" ={0,a}.

Definition 2.15. An ideal A of a KU-commutative algebra X is said to be involutory if

A= A"". Moreover a KU-commutative algebra X is said to be involutory if every ideal of
X is involutory.
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Clearly {0}and X are involutory ideals.

Remark 2.16. In involutory KU-commutative algebra X , for any two ideals A,B of X , we
have that (AN B)" =(A"UB").

Lemma 2.17. Let X be involutory KU-commutative algebra. Then X ={(AU A") for any
ideal Aof X .

Proof. Note that A A" ={0}. By Remark 2.16 and note X is involutory, we have
(AUA"Y =(A"UA" Y =(A"NA) =(0)"=X.

Definition 2.18. A KU-algebra X is said to be KU-positive implicative if it satisfies that
(z=x)*(zxy)=z*(x*y), forall x,y,z inX.

Definition 2.19. A nonempty subset | of a KU-algebra X is said to be a KU-positive
implicative ideal if for all x,y,z in X, then

(1) Oel and
(2) zx(x*y)eland zxxelimplyzxyel.

Theorem 2.20. If we are given an ideal | of a KU-algebra X, thenl is a KU-positive
implicative if and only if, foranyae X theset A, ={xe X :a*xe l}isan ideal of X .

Proof. (=) Suppose that 1 is positive implicative ideal and (x*y)e A and x€ A, . Then
ax(x*xy)elanda=xel. By Definition 2.19 we obtain (a*y)el i.e. ye A, . This says
A, is an ideal.

(<=) Suppose that A, is an ideal of X , for any ae X . If zx(x*y)elandz*xel, then

(x*y)e Aand xe A, . Since A, is an ideal of X then ye Ajand z*y e | . This means that
| is positive implicative ideal. [

Corollary 2.21. If | is a KU-positive implicative ideal of X , then A, ={xe X :a*xel}is
the least ideal containing | anda, foranyae X .

Definition 2.22. A nonempty subset | of a KU-algebra X is said to be a KU-implicative
ideal if for all x,y,z in X, then

(1) 0Oel and

(2) zx((x*y)*x)eland zelimplyxel.

Definition 2.23. A proper ideal | of a KU-algebra X is called a maximal ideal if and only
if | c Ac X impliesthat | = Aor A= X, forany ideal Aof X .

Theorem 2.24. If 1| is an ideal of a KU-algebra X . Then the following statements are
equivalent.

(@) 1 is maximal and KU-implicative ideals,

(b) 1 is maximal and KU-positive implicative ideals,

(c) x,yelimpliesx*yeland y*xel forall x,y inX.
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Proof. (a)= (b). Suppose that | is KU-implicative ideal and z*(x*y)el,z*xel . Since
(z*X)*(z*(z*y)<x*x(zxy)=z*(X*y)el then (z*x)*(z*(z*y))eland zxxel.
lis an ideal, we have that (zx(zxy))el. It  follows  that
((zxy)*xy)*x(z*xy)=z*(z*y)el and 0*(((z*y)*Yy))*(z*y))el. Combining Oel
we obtain z*y e | . Hence | is KU-positive implicative ideal.

(b) =(c). Letx,ygl. Since 1is KU-positive implicative. By Corollary 2.21
A ={ue X :ux*yel}is the least ideal containing | andy. Using maximality of I we

have that A, = X .Hencexe A, thatisx*yel. Likewise for y*xel .

(c) = (a) At first we prove that | is KU-implicative. Suppose | does not KU implicative,
then there are x,y inXsuch that (x*y)*xelbutxgl. Ifx*yel, combining

(x*y)*xxelwe getxel. This contradicts to xgl. If x*xyegl, by (c) we have
yelasxgl.Byku,, we havex*y <y, we getx*yel. This contradicts to x*yel.

Hence | is KU-implicative. Next we prove that | is maximal. Note that | is also KU-
positive implicative. Hence it is sufficient to prove that for any aglwe have
A ={xe X :x*xael}=X. By Corollary 2.21, A, is the least ideal containing | and a.
For all x in X, when xel then xe A and when xgl, byael and (c) we have that

x*a el ie. xe A,. This means that A, = X . Therefore | is maximal ideal of X . [l

Definition 2.25. Let X be a KU-lower semilattice and P a proper ideal of X . Then P is
said to be a prime ideal if aAbe P implies aeP or be P, forany a,b inX.

Theorem 2.26. In a KU-lower semilattice X , a proper ideal P of X is said to be a prime if
ANBgc P implies AcP orBc P, foranyideals A,B inX.

Proof. Suppose that AN\Bc P, Az Pand B P for some two ideals A,B in X .

Thus there exist aand b such that ae A—Pand be B—P. From aAb<a and aAb<b
it follows that aAbe A,BandaAbe ANNBc< P. This contradicts to primness of P.

Hence AcP orBcP.

Theorem 2.27. If X is a KU-implicative algebra, then each prime ideal of X is maximal.

Proof. Suppose that Pis prime ideal anda,bgP. Since X is KU-implicative, then
aA(axb)=((axb)xa)*xa=a*xa=0<P. Noticingag P, we havea*b e P. By the same
way we get b+a e P. Hence P is maximal ideal by Theorem 2.24. [

Lemma 2.28. Let X be a KU-lower semilattice. If a< x"and a < x™ for natural numbers n
and m, then there exists a natural number psuch thata<(xAy)®", foranyx,y,ae X.

Proof. Since for m<n,a<x"impliesa<x", it suffices to verify that when
x"+*a=y"+*a=0, there exist a natural number p such that (xAy)?*a=0. We proceed
by induction onn. Whenn=1, we havex*a=y*a=0, a<x and a<y. Hence
asxAy,le,(xAy)*a=0.
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Now suppose the assertion holds for natural numbern, that is, x"*a=y"*a=0 implies
that there exists a natural number p such that(x A y)? *a=0.

If X" xa=y"*a=0,then 0=x""*a=(x*(y"*(x"*a))

By the same argument we have 0 = y*(y" *(x"*a) In view of the first step of induction
we get

(XAY)*(y"*(x"*a) =0 (y"*(x"*((xAy)*a) =0 (xx(X""*(y" *((x Ay)*a))=0.

Fromy"™xa=0. It easily follows that(y=(x"*#(y"*((xAy)*a)=0_  Hence
x"x(y"#((xAy)’*a)=0 | Repeating the above procedure n times we obtain
y' (XA Y #a) = 0. (@) . By an entirely similar way we have that

X" x (XA Y)™ #8) = 0 (2) . By the induction hypothesis and (1), (2), we know that

there is a natural number p such that (XA Y)? *((xAy)™ *a) =0 (xAy)""*a=0_ [J

Corollary 2.29. Let X be a KU-lower semilattice and P an ideal in X . Then for any
x,ye X if xAyeP,then(PU{x}P)(PU{yp=P.

Definition 2.30. Let X be a KU-lower semilattice. A nonempty subset S of X is said to be
A -Closed if xAyeS wheneverx,yeS.

Theorem 2.31. Let X be a KU-lower semilattice and Sa nonempty A -closed subset
of X such that 0¢ S, 1(X) denotes the set of all ideals of X then {l e I(X):1NS=¢}

have a maximal ideal P such thatP(1S =¢ . Moreover P is a prime ideal.

Proof. The existence of an ideal P easily follows from Zorn's lemma. We will prove that
Pis a prime ideal. Let us suppose it is not the case, i.e., there exist X,y e X such that

xXAyeP, xgP andyegP. Then Pis properly contained in both
(PU{x} =R and(PU{y}) = P,. Because of maximality of P, PNS#gandP,NS#4¢.
Lets; e PNS,i=12. We known s AsS,<s,i=12implies s As,ePR P, =P(by
Corollary 2.29). On the other hands, As, € S. This is a contradiction. Hence P is a prime
ideal. [

Theorem 2.32. In a KU-lower semilattice X . Any maximal ideal must be prime.

Proof. By using Theorem 2.31 and Corollary 2.29, we obtain the result.

Definition 2.33. Let | be an ideal of a KU-algebra X . We will call an ideal J of X a
minimal prime ideal associated with the ideal I if Jis a minimal element in the set of all
prime ideals containing | .
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Lemma 2.34. Let | be a proper ideal of a KU-lower semilattice X .Then

(@) 1is contained in a prime ideal,

(b) Any prime ideal containing | contains a minimal prime ideal associated with the
ideal I .

Proof. If | is a prime ideal, then the Lemma is true. Let us suppose that | is not a prime
ideal andae X —1 . Obviously, S ={xe X :a<x}is anonempty, A-closedand O¢ S . By

Theorem 2.31, there exists a prime ideal P such that PN S =¢. (a) holds.

To show (b) it is sufficient to show that the intersection of any chain of prime ideals is a
prime ideal. Let {P. :i € @w}be a chain of prime ideals of X and P=(¥P :i e @}. Suppose

that Pis not a prime ideal, that is, there are x,ye Xsuch that xAyeP,xgP,ygP.
Thus, there are i, j e @ such thatx ¢ B,y & P,. Without loss of generality we can assume

that Bc P, x¢PR,y¢ PR and xAye P c R . This contradicts to P, being a prime.

3. Topology Spectrum of KU-commutative algebra x

In this section, we define the notion of a spectrum of KU-commutative algebra X and
study some of its properties.

Definition 3.1. Let X be KU-commutative algebra and Spec(X) the set of all prime ideals
of X . Then for any ideal Aof X , we define W(A)={P e Spec(X)| Az P} .

Proposition 3.2. Let X be KU-commutative semilattice algebra. Then
(i) Ac B implies that W(A) cW (B), for any ideals A,Bof X,
(i) W(A) =W({A)).

Proof. (i) Let LeW(A) = Az L.SinceAcB = LeW(B). Hence W(A)cW(B).

(if) Since Ac(A) from (i) we get that W(A) cW((A)). Let PeW((A)) = (A)« P and
since Ac(Aythen Az P,P eW (A) it follows that

W({AY) cW(A). Hence W(A)=W(A)).

Theorem 3.3. Let Xbe KU-commutative algebra. Then the family
T(X)={W(A)}r(x, forms a topology on Spec(X) .

Proof. W(0) ={P e Spec(X) : (0)  P}=¢ and
W (X)={P e Spec(X): X & P}=Spec(X). For any family {W (A )},
UW(A)={P e Spec(X): A ¢ Pforsome A}={Pe Spec(X):UA z P}

={P e Spec(X) :(( JAY 2 P}=W((JA)) implies that | JW(A)eT(X).

Finally, W(A) ﬂWI(EB) ={Pe Spec(Xle) Az P} {Pe Spleec(X) :Bz P}
={P e Spec(X): Az Pand B & P}.

Since P is a prime ideal, therefore can be written as
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W(A)NW(B)={P e Spec(X): ANB& P}=W(ANB), i.e., W(A)NW(B)eT(X). Hence
T(X)is atopology on Spec(X), this topology will be called the spectrum topology.

Example 3.4. In Example 2.14. By using the algorithms in Appendix A, we can found that
{X,{0},{0,a},{0,b,c}} is the set of all ideals. Note that {{0,a} ,{0,b,c}} is the set of all
prime ideals of X and Spec(X)={{0,a},{0,b,c}}. Therefore T(X)={¢, Spec(X)} this is
the indiscrete topology.

Definition 3.5. For any Ae I (X) we denote the complement of W(A) by V(A). Hence
V(A)={P espec(X)| Ac P}, it follows that the set {V(A)},,x,is the family of the
closed sets of a topological space Spec(X) .

Remark 3.6. For any x e A we denote V ({x}) by V(x)and W ({x}) byW(x), i.e.
V (X) ={P e spec(X)|x e P} and W(x) ={P e spec(X) | x ¢ P}.
Now, we give some properties of the topological space Spec(X) .

Theorem 3.7. Let X be a KU-commutative semilattice. The family {W(x)} ., is a basis

for the topology of Spec(X) .

XeA

Proof. Let AgcX and W(A)an open subset of  Spec(X), then
W (A) =W(U{x}) = UW(x). Hence, any open set of Spec(X) is union of subsets from the

xeA XeA

Family W (X0}

Theorem 3.8. Let X be a KU-lower semilattice and A a proper ideal of X . Then Ais equal
to the intersection of all minimal prime ideals associated with it.

Proof. Denote J(A)=(XP e I(X):Pisaprime ideal and associated with A}.

It is clearly Ac J(A). We will show that J(A) < A. Let us suppose that it is not the case,
then there is ae J(A)andag A. As in the proof of Lemma 2.34, we can show that if
S={xe X :a< x}, then there exists a prime ideal P such that Ac PandPS=¢. The
existence of such a prime ideal P contradicts to the assumptions. Hence J(A)=A. [

Lemma 3.9. The mapping f:I1(X)—>T(X) given by f(A)=W(A) is a lattice
isomorphism.

Proof. By Theorem 3.3 of W(A) , it follows that f define a lattice homomorphism. We
only show that fis one to one and onto. For any ideals A,Be I(X). Suppose that
f(A)= f(B) then W(A)=W(B) and Spec(X)—W ((A)= Spec(X)—-W(B). Consequently,
J(A)=J(B), hence A=B, it follows that f is one to one and onto. Hence 1(X) and
T(X) are isomorphic. [

Proposition 3.10. If X is a bounded KU-commutative algebra, then Spec(X) is a compact
space.
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Proof. Let {W(A)}., be an open cover of Spec(X) . Then
spec(X)=|JW(A)=W(|JA)). By injectiveness of W (Lemma3.9) implies that

((JAY=X . Since Xis a bounded= Ee<(| JA) and hence(a, *(a, *(...*(a, *E)) =0.

iel iel

We may assume that a, e Afork=1.2,..,n, then a, eUAk for allk=1,2,...,n. This
k=1
implies that E e(U A, ) and hence (U A, ) = X (because no proper ideal containsE). This
k=1 k=1

shows that [ JW (A )=W(JA )=W(JA,))=W(X)=Spec(X). Thus we obtain a
k=1 k=1 k=1
finite Sub cover and consequently, Spec(X) is compact. [

Proposition 3.11. Let X be KU-commutative algebra. Then Spec(X)is T, topological
space.

Proof. Let P and Q be any two distinct prime ideals in Spec(X). Then either Pz Qor
QuzP. If PzQ, there exists xeP such that x ¢ Qwhich implies that Q € W (x) and
P W (x) . Therefore exists an open set W (x) containing Q but notP . Similarly, if Q& P.
There exists x e Qsuch that x ¢ P, which implies that Q W (x) and P e W (x) . Therefore
exists an open set W (x) containing P but notQ . Hence Spec(X)is a T,-space.

Proposition 3.12. If X is a KU-implicative algebra. Then Spec(X)is T, topological
space.

Proof. If Spec(X) = ¢, then Spec(X) is trivial space and itis a T, space.

If Spec(X) = ¢, then there exist a prime ideal P of Spec(X) . It follows by Theorem 2.27
that Pis a maximal ideal. Hence V(P)={i} and {i}is closed set in Spec(X), i.e.
Spec(X)is a T, space. [

Proposition 3.13. If Ais an involutory ideal of X and P e Spec(X), then P gW (A")if and
only if PeW(A).

Proof. If PgW(A"), then A* < P. Since A is an involutory ideal of X , therefore by
Lemma 2.17 X =(AUA") and hence Az P. This implies thatP e W (A).

Conversely, assume that P eW(A) then Az P. Since AN A*={0}c P and Pis a prime
ideal. Therefore by Theorem 2.26 AcPor A" P, but Az P. It follows that A® < P and
consequently we have P g W (A*) .[]

Proposition 3.14. Let X be an involutory KU-algebra with at least one involutory ideal
(proper). Then Spec(X) is a disconnected topological space.

Proof. Let Abe an involutory (proper) ideal of X . We claim that W(A)and W (A*) form
disconnection of Spec(X). That W(A)and W (A*)mutually exclusive, follows from
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Proposition 3.13. We show that Spec(X) =W (A)UW (A"). Indeed Ais an involutory ideal,
then X =(AU A") . This implies that

W(X) =W ((AUA") =W(AUA") =W (A UW(A").

This means that Spec(X)=W(A)UW (A")and consequently Spec(X)is a disconnected
space. [

Proposition 3.15. If X is an involutory KU-algebra, then Spec(X) is Hausdorff space.

Proof. Let Pand Q be any two distinct prime ideals in Spec(X). Then there exists an
element x in X such that xe Pand xgQ. This implies that (xX) c P and{(xX) z Q. In

other word P gW ({x)) and Q e W({x)). By Proposition 3.13, we have P e W ({x)*). Thus
we obtain two open sets W({x))and W ({x)*)such that PeW({(x)*)and QeW(x)). It
follows that W ({x}) MW ({(x)*) =W ({(x)N{x)*) =W (0)=¢. Hence Spec(X)is Hausdorff
space. [

Corollary 3.16. If X is a bounded involutory KU-algebra, then Spec(X) is normal space.

Definition 3.17 [4]. Let (G,*0)and (H,e,0) be KU-algebras. A homomorphism is a map
h: G — H satisfying h(x*y) =h(x)eh(y)for all x,y e G. An injective homomorphism is
called monomorphism and a surjective homomorphism is called epimorphism.

Proposition 3.18. Let (G*0)and (H,,0)be KU-algebras and h:G—>H a
homomorphism map of KU-algebras, then for any prime ideal Pof H. The ideal
h™(P)={xe G :h(x) e P} is also a prime ideal of G .

Proof. Let xAyeh™(P) forany x,y eG, then

(y *x)*x € h™(P) = h((y * X) * x) € P(by homomorphism) = h(y *x)eh(x) e P =
(h(y) e h(x))eh(x) e P = h(x) A h(y) € P.

Since Pisprime = h(x)e P or h(y)e P

= xeh™(P) or yeh™(P) . Hence h™(P) is prime ideal of G . [

Theorem 3.19. Let (G,*,0), (H,,0) be KU-algebras and h: G — H a homomorphism map

of KU-algebras. If o : SpecH — SpecG , define by o(P)=h"(P) for any P e SpecH , then
o IS continuous map.

Proof. Let W(x) be a basic open set in Spec(G), forany xe G . Then

o (W(X))={P e SpecH : o(P) e W (x)}
={P e SpecH :h™(P) eW(x)}
={P e SpecH : x¢ h™(P)}
={P e SpecH : h(x) ¢ P}, which is open in Spec(H).
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Thus the inverse image of any open set in Spec(G) is open in Spec(H) and hence ois a
continuous map. [

4. Conclusion

This work is a study of the relationship between the KU-algebras and topological spaces.
We introduced the topology spectrum of a commutative KU-algebra and we obtained some
results that were different from the topology spectrum of commutative ring. However, there
are differences because KU-algebras are not rings. We proved that the spectrum of KU-
algebra is compact, disconnected and Hausdorff space. Also, we studied the continuous
map of this topological space. The main purpose of our future work is to investigate the
fuzzy topology of KU-algebras, which may have a lot of applications in different branches
of mathematics.
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Appendix Algorithms

Algorithm for KU-algebras
Input ( X :set, *:binary operation)
Output (“ X is a KU-algebra or not™)
Begin

If X =¢ thengoto (1.);

EndlIf

If 0g X thengoto (1.);

EndIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do

If x; *x, =0 then

Stop: = true;

EndIf

j=1

While j <|X| and not (Stop) do
If ((y; *x)*x)=0 then

Stop: = true;

EndIf

EndIf

k=1

While k <|X| and not (Stop) do

If (% *y;)*((y; *2,) * (% *2,)) = 0 then

Stop: = true;
EndIf
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EndIf While
EndIf While
EndIf While
If Stop then

(1.)  Output (“ X is not a KU-algebra”)
Else
Output (“ X is a KU-algebra”)
EndIf
End

Algorithm for ideals

Input ( X : KU-algebra, | :subset of X );
Output (“ 1 is an ideal of X or not”);

Begin

If | =¢ thengoto (1.);

EndlIf

If 0¢ I thengoto (1.);

EndlIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do
j=1

While j <|X| and not (Stop) do
If (x; *y;)eland x; el then
If y; 1 then

Stop: = true;
EndIf
EndlIf

EndIf While
EndIf While
EndIf While
If Stop then
Output (“ 1 is an ideal of X )
Else
(1.) Output (“ I is not an ideal of X ™)

EndlIf
End
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Abstract - In this study, the usage of Sarikiz herb tea (Sideritis trojana ehrend) was examined in terms of textile
dyeing. For this purpose, cotton and wool fabrics were treated with willow extract for 24 h, at room temperature.
The pretreated samples were dyed with S. trojana extract in the presence of three mordants including alum
(AIK(SO,4),-12H,0), ferrous sulfate heptahydrate (FeSO,-7H,0) and copper sulfate pentahydrate (CuSO,4-5H,0)
and using three mordanting methods (pre-mordanting, meta-mordanting and post-mordanting). Fastness
properties (rubbing and light) were also determined. Generally, high fastness values were obtained. The color
strength values of the wool fabrics were found to be higher than that of cotton fabrics. It is concluded that, S.
trojana ehrend has affinity to the wool fabrics, and can be used as an alternative source in the presence of willow
extract in natural dyeing.

Keywords - Sideritis trojana ehrend, mordant, dyeing, fastness, wool, cotton

1. Introduction

Natural coloring agents have been used since beginning of the time to color wool, silk, cotton
and leather [1]. Natural dyes are widely used in textile dyeing due to their ecofriendly
properties [2-4]. In addition, those pigments are anti-allergic and harmless to human and
environment [5]. Natural dyes and pigments can be considered as an important alternative to
the harmful synthetic dyes and generally they give soft and lustrous pastel colors. It is known
that, synthetic dyes are synthesized from petrochemical sources that resulted chemical
substances which are hazardous to human health and environment. Thus, there is a growing
interest to natural dyes due to their biodegradable, less toxic and eco-friendly properties in
recent years [6, 7]. Therefore, necessity of lowered cost natural dyeing for production was
canalized people to use of dyestuff containing wastes such as food, beverage and aerial parts
of the plants [8].

“Edited by Yakup Budak (Area Editor).
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To color the fiber, generally different parts of plants have been used including bark, flowers,
leaves and seed. Although bark of the plant is rich with coloring agent, usage of the bark
could Kill the plant. Bark is preferred in dyeing because of its high percentage of coloring
agent. Therefore, leaves, flowers and seeds are used for the extraction of the dyestuff from the
plant. The leaves of the plant provide abundant and easy availability source for dyeing
industry [9].

S. trojana ehrend belongs to Labiatae family and grows in Kaz mountains in Turkey. It is
called as Sarikiz herb tea. There are 45 genus, 546 type and 730 taxa in Turkey. [10]

S. trojana exhibits antioxidant and antimicrobial activity [11] and has been using as a natural
tea.

Best to our knowledge, there is no study on the dyeing properties of S. trojana. It is reported
that, the plant contains o- methyl- izo skultelarin-7-0-[(6- o- acetyl- Beta-allopyrazonyl-
(1,2)]- beta- glucopiyranoside as coloring agent (Figure 1) [12].

OCH;

OCOCH

HO
OH

Figure.1. O- methyl- izo skultelarin-7-o-[(6- o- acetyl- g-allopyrazonyl-(1,2)]- s-glucopiyranoside

The dyestuff has oxochorome groups (carbonyl and hydroxide groups) which may be
exhibited good dyeing properties.

2. Experimental
Fabrics

Scoured, bleached and mercerized plain weaved cotton fabric (240 g/m?) and wool fabric (125
g/m?) were purchased from Has Ozgen Textile Company (Tokat, Turkey).

Preparation of willow extract

Willow branches (1 kg) were soaked in distilled water (10 L) for 21 days at room temperature
and then filtered. The filtrate was used in the pre-treatment processes.

Preparation of the mordant solutions and the dye-bath
To prepare wool and cotton samples for dyeing processes, the samples were treated with the

water extract of willow, at room temperature for 24 h. The stem and the leaves of S. tojana
were supplied from Plant Research Laboratory, Gaziosmanpasa University, in June, 2014.
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The parts of the plant were dried and cleaned in order to remove the impurities. Soxhlet
apparatus was used for the extraction of the plant. Plant material (100 g) was extracted with
distilled water (1 L). Extraction was maintained at its boiling point, for 12 h. After the end of
the period, the mixture was filtered and the clear solution was used as dye bath in the dyeing
experiments.

Reagents and equipments

Analytically grade chemicals including alum (AIK(SO,4),-12H,0), ferrous sulfate
heptahydrate (FeSO,4-7H,0) and copper sulfate pentahydrate (CuSO4-5H,0) were supplied
from Merck. Soxhlet apparatus was used for the extraction process. Premier Colorscan SS
6200A Spectrophotometer was used for the determination of CIELab values (L*, a*, b*) and
color strength (K/S) values. Kubelka-Munk equation was used for the expression of color
strength values of the dyed samples as K/S values:

K/S=(1-R)’/2R

K indicates the absorption coefficient, R is the reflectance of the dyed sample and S is the
scattering coefficient.

Fastness levels of the dyed fabrics were evaluated using rubbing (wet, dry) and light fastness
tests and determined according to ISO 105-C06 and to CIS, respectively. For light fastness,
dyed samples were exposure to bare sunlight for 200 h. After the end of the time, light
fastness ratings of dyed samples were given on 1-8 grey scale. A 255 model crock-meter and
Atlas Weather-ometer were used for the determination of rubbing and light fastness values,
respectively. [13].

Dyeing procedures

Dyeing procedures of the wool and the cotton samples were carried out according to the
dyeing diagram (Figure 2). The undyed materials were kept into willow extract for 24h, at
room temperature before dyeing procedures. At the end of the time, the samples were rinsed
with distilled water and dyed using pre-mordanting, meta-mordanting and post-mordanting
methods.

60 min

95°C

«———C
A:Pretreated sample
B: Natural dye

C: Washing

25°C
Figure 2. Dyeing diagram

Dyeing process was started at 25°C. Natural dye and the samples which were pretreated with
willow extract were added and the temperature was increased to 95°C. Dyeing was continued
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at the same temperature for 60 min. After the dyeing process, the dyed material was cooled
and rinsed with distilled water [14].

Dyeing method

For pre-mordanting method, fabrics (pre-treated and unpretreated) were soaked into mordant
solution (0.1 M, 100 mL) and heated for 30 min at 95°C. Then, it was cooled and washed with
distilled water. The fabric was then placed into the dye-bath solution (100 mL) and dyed at
95°C for 1 h. At the end of the period, the dyed material was removed, rinsed with distilled
water and dried.

In meta-mordanting method, both mordant (in solid form that is equal to 0.1 M mordant
solution) and the dye residue was transferred to a conical flask and the fabric was poured into
the mixture. Then the mixture was heated at 95°C until 1 h. Then it was cooled and washed
with distilled water, squeezed and finally it was dried.

For post-mordanting method, the non-colored material (1 g) was firstly treated with the dye
solution for 1 h at 95°C. Then the material was cooled, washed twice with distilled water and

poured into 0.1 M mordant solution (100 mL). It was heated for 30 min. at 95°C. After the
end of the process, the dyed fabrics were rinsed with distilled water [15].

3. Results and Discussion

Proposed dyeing mechanism

/ \\
HoN 8" ok

|
C—OH

|
R—CH

Figure 3. Proposed mordant-dye complex in the dyeing of wool fabrics
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Wool structure contains both —NH, and —COOH groups. Therefore, it is expected that
chemical interactions between S. trojana extract dye and the wool fabric occurred between —
OH (hydroxyl) group of the dye molecule and oxygen and nitrogen atoms of the wool fabric
via H-bonding (Figure 3).

The structure of mordant-dye complex that occurred in the dyeing of wool fabric with S.
trojana extract can be considered as follows [15]:

Cotton consists of CH,O- units. Due to its cellulosic structure, formation of complex is
expected between CH,O- groups of cellulose and metal cation via coordinate covalent
bonding. The predicted structure is given below (Figure 4):

"
Jiy fo "
0] ; \ + Me'
HC™ o\ |
OH \
/ \
/ \
6 Poos
OH CH, H,C
o] o)
o)
d /%/ o=
H H
HO OH H HOH My

H3C

Figure 4. Proposed mordant-dye complex according to meta-mordanting method in the dyeing of cotton (Me™:
mordant cation)

Fastness properties

Fastness values of the dyed fabrics are given in Table 1. Rubbing fastness of the dyed samples
was determined in both dry and wet form. It is observed that rubbing fastness values were
found higher in the dry form than in the wet form. Additionally, higher rubbing fastness rates
were obtained with pre-mordanting method for cotton fabrics. The light fastness values of the
dyed fabrics range between 3 and 7 i.e. moderate to excellent. There is no important
difference between pH 4 and pH 8 in all mordanting methods and each three mordants in
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terms of light fastness levels. Dyeing of wool and cotton fabrics in the presence of copper
sulfate mordant exhibited higher light fastness values than the other mordants (Table 1).

Table 1. Light and rubbing fastness results for the dyed cotton and the wool samples

Rubbing fastness
Light fastness Dry Wet
CuSO04|FeS0O4 A|K(SO4)2 CuSOq, FGSO4A|K(SO4)2 CuSO0,|FeS0O, A|K(SO4)2
SlpH4| 6 | 3 3 5 | 4 5 5 | 4 415
(@]
@) .
Pre. pH:8| 6 4 3 5 | 5 5 5 5 5
mord.| S |pH:4| 7 5 6 5 | 4 5 45 | 5 4
= pH:8| 7 7 6 5 | 5 5 415 | 4/5 4/5
g _pH:4| 6 5 4 5 5 5 5 4/5 4/5
Meta-© |pH:8| 6 5 7 45 | 4 5 4 | 45 5
mord.| 'S |pH:4| 7 | 4 6 5 | 5 4/5 5 5 4/5
= [pH:8| 7 7 6 4 | 45 5 34 | 4/5 5
S [pH4] 6 4 4 5 | 5 5 5 5 4/5
Post | O |pH:8| 6 5 5 5 | 4/5 5 415 | 4/5 5
mord.| 5 |pH:4) 6 | 5 6 5 | 4 5 5 | 45 5
= pH8| 7 | 7 7 5 | 4 5 5 | 5 5

Determination of color strength and color coordinates

Table 2. The CIELab values for the dyed cotton samples

Dyeing | mordant Control samples (untreated and | Cotton samples (pre-treated with
method dyed with S. trojana extract) willow extract and dyed with S.
trojana extract)
L* a* b* L* a* b*
CuSO4 71.7 4.4 37.7 64.5 7.5 26.2
4 'g FeSO, 67.7 6.7 23.1 69.3 4.4 20.3
g £ AIK(SOy); 77.4 2.0 28.6 76.1 4.1 25.9
&5 CuSOq 71.9 2.8 27.8 65.5 5.1 26.5
D o FeSO, 55.1 8.3 25.0 55.1 4.1 16.4
= E AIK(SOy), 82.2 0.3 27.7 81.8 -2.1 16.2
oS CuSO, 78.1 -0.4 17.8 75.1 15 17.2
3 5 FeSO, 68.4 10.7 34.1 69.6 3.8 20.1
o E AIK(SO,), 86.6 -0.2 10.5 83.2 2.5 16.9
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Evaluation of color parameters was performed using CIELab system. Results were given in
Table 2 and Table 3, respectively. Lightness-darkness values of dyed fabrics symbolized with
“L” and these values varied between 100 and 0, representing white to black; + values of a*
and b* indicate redness and yellowness shade, respectively. Additionally, - values of a* and
b* refer to greenness and blueness color tones, respectively. Lightness values of the dyed
fabrics were found between 55-87 and 54-84, for cotton and wool fabrics, respectively.
Darker color and color tones were obtained with pre-treatment processes in the dyeing of
wool fabric. Cream and brown color and color tones were obtained in the dyeing of cotton
fabrics. Cream and yellow color and color shades were achieved in the dyeing of wool fabrics.
Additionally, it is observed that different mordants are not only affected the hue of the color

but also color strength of the dyed fabrics.

Table 3. The CIELab values for the dyed wool samples

98

Dyeing | mordant Control samples (untreated and Wool samples (pre-treated with
method dyed with S. trojana extract) willow extract and dyed with S.
trojana extract)
L* ax b* L* a* b*
_ CuSO, 69.9 2.9 34.7 59.7 5.4 30.0
4 g FeSO,4 83.7 -0.6 9.3 54.4 2.9 14.2
g € AlIK(SO,), 79.9 0.4 22.0 69.4 4.5 25.6
&S CuSO, 71.6 1.3 23.7 71.9 4.7 28.4
T S FeSO, 67.1 3.6 16.2 55.9 2.9 13.8
= E AlIK(SO,), 79.8 -0.6 13.4 65.8 3.9 28.4
.S CuSO, 79.9 -3.7 11.9 69.6 1.7 17.8
3 5 FeSO, 68.9 10.1 33.0 60.5 7.0 25.6
& [AIK(SOs), | 63.0 5.9 20.5 79.7 -0.1 13.0
mpre-mord. M meta-mord. post-mord.
8
7
6
5
4 -
3 |
2 |
1 |
0 -
Cuso4 ‘ FeSO4 ‘ AIK(SO4)2 | CuSO4 ‘ FeSO4 ‘ AIK(SO4)2
control pre-treated

Figure 5. K/S values of the dyed wool samples
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Influence of various mordants such as alum, ferrous sulfate and copper sulfate was
investigated for wool and cotton fabrics (Figure 5 and Figure 6). The highest K/S value (8.5)
was obtained in the presence of ferrous sulfate mordant for cotton fabric (Figure 5). The
results also indicated that pre-treatment agent (willow extract) generally helps to increase the
color strength of the dyed samples. It is observed that K/S values depend on the mordant type,
dyeing method and pre-treatment process.

mpre-mord. M meta-mord. post-mord.

O = NW R O N WD

CuSO4 ‘ FeSO4 ‘AIK(SO&)Z CuSO4 ‘ FeSO4 ‘AIK(SO&)Z

control pre-treated

Figure 6. K/S values of the dyed cotton samples

4. Conclusions

The way to improve the quality of the dyeing is to use natural mordants such as willow
extract. This extract plays an important role on the brightness of the colors. Willow extract
contains salicylic acid and other tannins [16]. These components extend the pores of the fiber
micelles during the pre-treatment process, and so, it facilitates to increase the affinity of the
dye to the keratin. Therefore, high color fastness values were obtained in the presence of
willow extract.

As a result, fastness values of the wool samples are found higher than that of cotton samples.
Yellow, brown, cream color and color tones are obtained from the dyeing of the fabrics with
S. trojana extract in the presence of willow extract pre-treatment. High fastness values are
obtained for three mordanting methods with all mordants that used in the study.

Consequently, S. trojana is a proper natural source for dyeing of wool and cotton fabrics.
Therefore, this plant may be used as a natural source in the production of the carpets and
kilims.
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