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(λ, µ)-FUZZY IDEALS OF ORDERED Γ-SEMIRINGS

Debabrata Mandal <dmandaljumath@gmail.com>

Department of Mathematics, Raja Peary Mohan College, Uttarpara, Hooghly-712258, India

Abstaract − The notions of (λ, µ)-fuzzy ideals, (λ, µ)-fuzzy k-ideals, (λ, µ)-fuzzy k-bi-ideals,
(λ, µ)-fuzzy k-quasi-ideals of an ordered Γ-semirings are introduced and some related properties
are investigated. The concepts of k-regularity, k-intra-regularity are studied along with some of
their characterizations.

Keywords − Cartesian product, (λ, µ)-fuzzy ideal, homomorphism, k-intra-regular, k-regular, or-
dered Γ-semiring.

1 Introduction

Uncertainties, which could be caused by information incompleteness, data random-
ness limitations of measuring instruments, etc., are pervasive in many complicated
problems in biology, engineering, economics, environment, medical science and so-
cial science. We cannot successfully use the classical methods for these problems.
To solve this, the concept of fuzzy sets was introduced by Zadeh [12] in 1965 where
each element have a degree of membership and has been extensively applied to many
scientific fields.

Semirings [3] which provide a common generalization of rings and distributive
lattices arise naturally in such diverse areas of mathematics as combinatorics, func-
tional analysis, graph theory, automata theory, mathematical modelling and parallel
computation systems etc.(for example, see [3], [4]). Semirings have also been proved
to be an important algebraic tool in theoretical computer science, see for instance [4],
for some detail and example. Many of the semirings have an order structure in ad-
dition to their algebraic structure and indeed the most interesting results concering
them make use of the interplay between these two structures.

Ideals of semirings play an important role in the structure theory of ordered semi-
rings and useful for many purposes. In this paper, like ordered semigroup [2, 5, 6, 8],
it is an attempt to study how similar is the theory in terms of fuzzy for the case of or-
dered Γ-semiring [10], a generalization of ordered semirings [9] , since nowadays fuzzy
research concerns standardization, axiomatization, extensions to lattice-valued fuzzy
sets, critical comparison of the different so-called soft computing models that have

*Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
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been launched during the past three decennia for the representation and processing
of incomplete information [7].

Here we first introduce (λ, µ)-fuzzy ideals of ordered Γ-semirings. After that we
define intersection, cartesian product and composition of (λ, µ)-fuzzy ideals and use
these to study regular (resp. intra-regular) ordered Γ-semirings.

2 Preliminaries

We recall the following definitions for subsequent use.

Definition 2.1. Let S and Γ be two additive commutative semigroups with zero.
Then S is called a Γ-semiring if there exists a mapping S × Γ× S → S ( (a,α,b) 7→
aαb) satisfying the following conditions:

(i) (a + b)αc = aαc + bαc

(ii) aα(b + c) = aαb + aαc

(iii) a(α + β)b = aαb + aβb

(iv) aα(bβc) = (aαb)βc

(v) 0Sαa = 0S = aα0S

(vi) a0Γb = 0S = b0Γa

where a, b, c ∈ S, α, β ∈ Γ, 0S is the zero element of S and 0Γ is the zero element of
Γ.

For simplification we write 0 instead of 0S and 0Γ.

Definition 2.2. A left ideal I of Γ-semiring S is a nonempty subset of S satisfying
the following conditions:

(i) If a, b ∈ I then a + b ∈ I

(ii) If a ∈ I, s ∈ S and γ ∈ Γ then sγa ∈ I

(iii) I 6= S.

A right ideal of S is defined in an analogous manner and an ideal of S is a nonempty
subset which is both a left ideal and a right ideal of S.

Definition 2.3. An ordered semiring is a Γ-semiring S equipped with a partial order
≤ such that the operation is monotonic and constant 0 is the least element of S.

Definition 2.4. Let R, S be two Γ-semirings and a, b ∈ R, γ ∈ Γ. A function
f : R → S is said to be a homomorphism if

(i) f(a + b) = f(a) + f(b)

(ii) f(aγb) = f(a)γf(b)

(iii) f(0R) = 0S where 0R and 0S are the zeroes of R and S respectively.

Now we recall the definition and example of ordered ideal from [1]
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Definition 2.5. A left (resp. right ) ideal I of S is called a left (resp. right ) ordered
ideal, if for any a ∈ S, b ∈ I, a ≤ b implies a ∈ I (i.e. (I]⊆ I). I is called an ordered
ideal of S if it is both a left and a right ordered ideal of S.

Example 2.6. Let S = ([0, 1],∨, ·, 0) where [0,1] is the unit interval a∨b = max{a, b}
and a · b = (a + b− 1) ∨ 0 for a, b ∈ [0, 1]. Then it is easy to verify that S equipped
with the usual ordering ≤ is an ordered semiring and I = [0, 1

2
] is an ordered ideal

of S.

Definition 2.7. [12] Let S be a non-empty set. A mapping f : S → [0, 1] is called
a fuzzy subset of S.

Definition 2.8. The union and intersection of two fuzzy subsets f and σ of a set S,
denoted by f ∪ σ and f ∩ σ respectively, are defined by

(f ∪ σ)(x) = f(x) ∨ σ(x) for all x ∈ S

(f ∩ σ)(x) = f(x) ∧ σ(x) for all x ∈ S.

3 (λ, µ)-fuzzy ideals with some operations

Throughout this paper unless otherwise mentioned S denote the ordered Γ-semiring
with identity 1, χS denote its characteristic function and we will always assume that
0 ≤ λ < µ ≤ 1.

Definition 3.1. Let f and g be two fuzzy subsets of an ordered Γ-semiring S. We
define two compositions of f and g as follows:

f ◦1 g(x) = ∨{∧
x+y1αz1≤y2βz2

{f(y1), f(y2), g(z1), g(z2)}}
= 0, if x cannot be expressed as x + y1αz1 ≤ y2βz2

where x, y1, y2, z1, z2 ∈ S and α, β ∈ Γ

and
fo2g(x) = ∨[∧

i
{∧{f(ai), f(ci), g(bi),

x+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

g(di)}}]

= 0, if x cannot be expressed as above
where x, z, ai, bi, ci, di ∈ S and αi, βi ∈ Γ.

Definition 3.2. Let f be a non-empty fuzzy subset of an ordered Γ-semiring S (i.e.
f(x) 6= 0 for some x ∈ S). Then f is called a (λ, µ)-fuzzy left ideal [resp. (λ, µ)-fuzzy
right ideal] of S if

(i) f(x + y) ∨ λ ≥ f(x) ∧ f(y) ∧ µ

(ii) f(xγy) ∨ λ ≥ f(y) ∧ µ [resp. f(xγy) ∨ λ ≥ f(x) ∧ µ] and

(iii) x ≤ y implies f(x) ∨ λ ≥ f(y) ∧ µ.
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for all x, y ∈ S and γ ∈ Γ.
A (λ, µ)-fuzzy ideal of an ordered Γ-semiring S is a non-empty (λ, µ)-fuzzy subset of
S which is a (λ, µ)-fuzzy left ideal as well as a (λ, µ)-fuzzy right ideal of S.
Note that for (λ, µ)-fuzzy k-ideal the following additional relation must be holds:
For x, a, b ∈ S with x + a ≤ b ⇒ f(x) ∨ λ ≥ f(a) ∧ f(b) ∧ µ.

Example 3.3. Let S = Γ = {0, a, b} with the ordered relation 0 ≺ b ≺ a. Define
operations on S by following:

⊕ 0 a b
0 0 a b
a a a b
b b b b

and

¯ 0 a b
0 0 0 0
a 0 a a
b 0 b b

Then (S,⊕,¯) forms an ordered semiring.
We now define a fuzzy subset µ of S by µ(0) = 1, µ(b) = 0.2, and µ(a) = 0.1, then
µ will be a (0.5, 0.8)-fuzzy right ideal of S.

Theorem 3.4. Let S be an ordered Γ-semiring and f be a (λ, µ)-fuzzy right (resp.
left) ideal of S. Then Ia = {b ∈ S|f(b)∨ λ ≥ f(a)∧ µ} is a right (resp. left) ideal of
S for every a ∈ S.

Proof. Let f be a (λ, µ)-fuzzy right ideal of S and a ∈ S. Then Ia 6= φ because a ∈ Ia

for every a ∈ S. Let b, c ∈ Ia, γ ∈ Γ and x ∈ S. Since b, c ∈ Ia, f(b) ∨ λ ≥ f(a) ∧ µ
and f(c) ∨ λ ≥ f(a) ∧ µ. Now

f(b + c) ∨ λ ≥ f(b) ∧ f(c) ∧ µ [∵ f is a (λ, µ)-fuzzy right ideal]
≥ f(a) ∧ µ.

which implies b + c ∈ Ia.
Also f(bγx) ∨ λ ≥ f(b) ∧ µ ≥ f(a) ∧ µ i.e. bγx ∈ Ia.
Let b ∈ Ia and S � x ≤ b. Then f(x) ∨ λ ≥ f(b) ∧ µ ≥ f(a) ∧ µ ⇒ x ∈ Ia.
Thus Ia is a right ideal of S.
Similarly we can prove the result for left ideal also.

Proposition 3.5. Intersection of a non-empty collection of (λ, µ)-fuzzy right (resp.
left) ideals is also a (λ, µ)-fuzzy right (resp. left) ideal of S.

Proof. Let {fi : i ∈ I} be a non-empty family of (λ, µ)-fuzzy right ideals of S and
x, y ∈ S, γ ∈ Γ.
Then

( ∩
i∈I

fi)(x + y) ∨ λ = ∧
i∈I
{fi(x + y) ∨ λ} ≥ ∧

i∈I
{fi(x) ∧ fi(y) ∧ µ}

= ∧{ ∧
i∈I

fi(x), ∧
i∈I

fi(y)} ∧ µ = ( ∩
i∈I

fi)(x) ∧ ( ∩
i∈I

fi)(y) ∧ µ.

Again

( ∩
i∈I

fi)(xγy) ∨ λ = ∧
i∈I
{fi(xγy) ∨ λ} ≥ ∧

i∈I
fi(x) ∧ µ = ( ∩

i∈I
fi)(x) ∧ µ.

Suppose x ≤ y. Then fi(x)∨λ ≥ fi(y)∧µ for all i ∈ I which implies ( ∩
i∈I

fi)(x)∨λ ≥
( ∩
i∈I

fi)(y) ∧ µ. Hence ∩
i∈I

fi is a (λ, µ)-fuzzy right ideal of S.

Similarly we can prove the result for (λ, µ)-fuzzy left ideal also.
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Proposition 3.6. Let f : R → S be a morphism of ordered Γ-semirings i.e. Γ-
semiring homomorphism satisfying additional condition a ≤ b ⇒ f(a) ≤ f(b). Then
if φ is a (λ, µ)-fuzzy left ideal of S, then f−1(φ) [11] is also a (λ, µ)-fuzzy left ideal
of R.

Proof. Let f : R → S be a morphism of ordered semirings.
Let φ be a (λ, µ)-fuzzy left ideal of S.
Now f−1(φ)(0R) ∨ λ = φ(0S) ∨ λ ≥ φ(x

′
) 6= 0 for some x

′ ∈ S.
Therefore f−1(φ) is non-empty.
Now, for any r, s ∈ R and γ ∈ Γ

f−1(φ)(r + s) ∨ λ = φ(f(r + s)) ∨ λ = φ(f(r) + f(s)) ∨ λ
≥ φ(f(r)) ∧ φ(f(s)) ∧ µ = (f−1(φ))(r) ∧ (f−1(φ))(s) ∧ µ.

Again
(f−1(φ))(rγs) ∨ λ = φ(f(rγs)) ∨ λ = φ(f(r)γf(s)) ∨ λ

≥ φ(f(s)) ∧ µ = (f−1(φ))(s) ∧ µ.

Also if r ≤ s, f(r) ≤ f(s). Then

(f−1(φ))(r) ∨ λ = φ(f(r)) ∨ λ ≥ φ(f(s)) ∧ µ = (f−1(φ))(s) ∧ µ.

Thus f−1(φ) is a (λ, µ)-fuzzy left ideal of R.

Definition 3.7. Let f and g be fuzzy subsets of X. The cartesian product of f and
g is defined by (f × g)(x, y) = f(x) ∧ g(y) for all x, y ∈ X.

Theorem 3.8. Let f and g be (λ, µ)-fuzzy left ideals of an ordered Γ-semiring S.
Then f × g is a (λ, µ)-fuzzy left ideal of S × S.

Proof. Let (x1, x2), (y1, y2) ∈ S × S and γ ∈ Γ. Then

(f × g)((x1, x2) + (y1, y2)) ∨ λ = (f × g)(x1 + y1, x2 + y2) ∨ λ
= (f(x1 + y1) ∧ g(x2 + y2)) ∨ λ
= (f(x1 + y1) ∨ λ) ∧ (g(x2 + y2) ∨ λ)
≥ (f(x1) ∧ f(y1) ∧ µ) ∧ (g(x2) ∧ g(y2) ∧ µ)
= (f × g)(x1, x2) ∧ (f × g)(y1, y2) ∧ µ

and

(f × g)((x1, x2)γ(y1, y2)) ∨ λ = (f × g)(x1γy1, x2γy2) ∨ λ
= (f(x1γy1) ∧ g(x2γy2)) ∨ λ
= (f(x1γy1) ∨ λ) ∧ (g(x2γy2) ∨ λ)
≥ f(y1) ∧ g(y2) ∧ µ = (f × g)(y1, y2) ∧ µ.

Also if (x1, x2) ≤ (y1, y2), then

(f × g)(x1, x2) ∨ λ = (f(x1) ∧ g(x2)) ∨ λ = (f(x1) ∨ λ) ∧ (g(x2) ∨ λ)
≥ (f(y1) ∧ µ) ∧ (g(y2) ∧ µ) = f(y1) ∧ g(y2) ∧ µ
= (f × g)(y1, y2) ∧ µ.

Therefore f × g is a (λ, µ)-fuzzy left ideal of S × S.
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Theorem 3.9. Let f be a (λ, µ)-fuzzy subset in an ordered Γ-semiring S. Then f
is a (λ, µ)-fuzzy left ideal of S if and only if f ×f is a (λ, µ)-fuzzy left ideal of S×S.

Proof. Assume that f is a (λ, µ)-fuzzy left ideal of S. Then by Theorem 3.8, f × f
is a (λ, µ)-fuzzy left ideal of S × S.
Conversely, suppose that f×f is a (λ, µ)-fuzzy left ideal of S×S. Let x1, x2, y1, y2 ∈ S
and γ ∈ Γ. Then

(f(x1 + y1) ∧ f(x2 + y2)) ∨ λ = (f × f)(x1 + y1, x2 + y2) ∨ λ
= (f × f)((x1, x2) + (y1, y2)) ∨ λ
≥ (f × f)(x1, x2) ∧ (f × f)(y1, y2) ∧ µ
= (f(x1) ∧ f(x2) ∧ µ) ∧ (f(y1) ∧ f(y2) ∧ µ).

Now, putting x1 = x, x2 = 0, y1 = y and y2 = 0, in this inequality and noting that
f(0) ≥ f(x) for all x ∈ S, we obtain f(x + y) ∨ λ ≥ f(x) ∧ f(y) ∧ µ.
Next, we have

(f(x1γy1) ∧ f(x2γy2)) ∨ λ = (f × f)(x1γy1, x2γy2) ∨ λ
= (f × f)((x1, x2)γ(y1, y2)) ∨ λ
≥ (f × f)(y1, y2) ∧ µ
= f(y1) ∧ f(y2) ∧ µ.

Taking x1 = x, y1 = y and y2 = 0, we obtain f(xγy) ∨ λ ≥ f(y) ∧ µ.
Also if (x1, x2) ≤ (y1, y2), then (f(x1)∧ f(x2))∨ λ ≥ f(y1)∧ f(y2)∧µ. Now, putting
x1 = x, x2 = 0, y1 = y and y2 = 0, in this inequality we have f(x) ∨ λ ≥ f(y) ∧ µ.
Hence f is a (λ, µ)-fuzzy left ideal of S.

Theorem 3.10. If f1, f2 be any two (λ, µ)-fuzzy k-ideals of an ordered semiring S
then f1o2f2 is a (λ, µ)-fuzzy ideal of S.

Proof. Let f1, f2 be any two (λ, µ)-fuzzy k-ideals of an ordered semiring S and
x, y ∈ S and γ ∈ Γ. Then

(f1o2f2)(x + y) ∨ λ
= ∨{∧{f1(ai), f2(bi),

x+y+
P

aiαibi≤
P

ciβidi

f1(ci), f2(di)}} ∨ λ

≥ ∨{∧{f1(x1i), f1(x3i), f1(y1i), f1(y3i),
x+y+

P
x1iα1ix2i+

P
y1iα2iy2i≤

P
x3iβ1ix4i+

P
y3iβ2iy4i

f2(x2i), f2(x4i), f2(y2i), f2(y4i)}} ∨ λ

≥ ∧{ ∨{∧{f1(x1i), f1(x3i),
x+
P

x1iα1ix2i≤
P

x3iβ1ix4i

f2(x2i), f2(x4i)}}, ∨{∧{f1(y1i), f1(y3i),
y+
P

y1iα2iy2i≤
P

y3iβ2iy4i

f2(y2i), f2(y4i)}}} ∧ µ

= (f1o2f2)(x) ∧ (f1o2f2)(y) ∧ µ.

Now assuming f1, f2 are as (λ, µ)-fuzzy right ideals we have

(f1o2f2)(xγy) ∨ λ = ∨{∧{f1(ai), f2(bi),
xγy+

P
aiγibi≤

P
ciδidi

f1(ci), f2(di)}} ∨ λ

≥ ∨{∧{f1(x1i), f1(x3i),
xγy+

P
x1iαix2iγy≤Px3iβix4iγy

f2(x2iγy), f2(x4iγy)}} ∨ λ

≥ ∨{∧{f1(x1i), f1(x3i),
x+
P

x1iαix2i≤
P

x3iβix4i

f2(x2i), f2(x4i)}} ∧ µ

= (f1o2f2)(x) ∧ µ.

Similarly, assuming f1, f2 are as (λ, µ)-fuzzy left k-ideals we can show that (f1o2f2)(xγy) ≥
(f1o2f2)(y).



Journal of New Theory 10 (2016) 1-11 7

Now suppose x ≤ y. Then f1(x) ∨ λ ≥ f1(y) ∧ µ and f2(x) ∨ λ ≥ f2(y) ∧ µ.

(f1o2f2)(x) ∨ λ = ∨{∧{f1(x1i), f1(x3i),
x+
P

x1iαix2i≤
P

x3iβix4i

f2(x2i), f2(x4i)}} ∨ λ

≥ ∨{∧{f1(y1i), f1(y3i), f2(y2i), f2(y4i)
x+
P

y1iγ1iy2i≤y+
P

y1iγ2iy2i≤
P

y3iγ3iy4i

}} ∧ µ

= ∨{∧{f1(y1i), f1(y3i),
y+
P

y1iγ1iy2i≤
P

y3iγ3iy4i

f2(y2i), f2(y4i)}} ∧ µ

= (f1o2f2)(y) ∧ µ.

Hence f1o2f2 is a (λ, µ)-fuzzy ideal of S.

4 (λ, µ)-fuzzy ideals of regular ordered Γ-semiring

Definition 4.1. A fuzzy subset f of an ordered semiring S is called (λ, µ)-fuzzy
bi-ideal if for all x, y ∈ S and α, β ∈ Γ we have

(i) f(x + y) ∨ λ ≥ f(x) ∧ f(y) ∧ µ

(ii) f(xαy) ∨ λ ≥ f(x) ∧ f(y) ∧ µ

(iii) f(xαyβz) ∨ λ ≥ f(x) ∧ f(z) ∧ µ

(iv) x ≤ y ⇒ f(x) ∨ λ ≥ f(y) ∧ µ.

Definition 4.2. A (λ, µ)-fuzzy subset f of an ordered Γ-semiring S is called (λ, µ)-
fuzzy quasi-ideal if for all x, y ∈ S we have

(i) f(x + y) ∨ λ ≥ f(x) ∧ f(y) ∧ µ

(ii) ((fo2χS) ∩ (χSo2f))(x) ∧ µ ≤ f(x) ∨ λ

(iii) x ≤ y ⇒ f(x) ∨ λ ≥ f(y) ∧ µ.

Proposition 4.3. Intersection of a non-empty collection of (λ, µ)-fuzzy bi-ideals of
S is also a (λ, µ)-fuzzy bi-ideal of S.

Proof. The proof follows by routine verifications.

Proposition 4.4. Let {fi : i ∈ I} be a family of bi-ideals of S such that fi ⊆ fj or
fj ⊆ fi for i, j ∈ I. Then ∪

i∈I
fi is a (λ, µ)-fuzzy bi-ideal of S.

Proof. Straightforward.

Lemma 4.5. In an ordered Γ-semiring every (λ, µ)-fuzzy quasi ideals are (λ, µ)-fuzzy
bi-ideals.

Proof. Let f be a (λ, µ)-fuzzy quasi ideal of S. It is sufficient to prove that f(xαyβz)∨
λ ≥ f(x)∧ f(z)∧ µ for all x, y, z ∈ S and α, β ∈ Γ. Since f is a (λ, µ)-fuzzy quasi
ideal of S, we have

f(xαyβz) ∨ λ ≥ ((fo2χS) ∩ (χSo2µ))(xαyβz) ∧ µ
= {(fo2χS)(xαyβz) ∧ (χSo2f)(xαyβz)} ∧ µ
= ∧{ ∨(f(ai) ∧ f(ci))

xαyβz+

n∑
i=1

aiγibi ≤
n∑

i=1

ciδidi

, ∨(f(bi) ∧ f(di))

xαyβz+

n∑
i=1

aiγibi ≤
n∑

i=1

ciδidi

} ∧ µ

≥ f(0) ∧ f(x) ∧ f(0) ∧ f(z)) ∧ µ(since xαyβz + 0γ0 + 0 = xαyβz + 0)
= f(x) ∧ f(z) ∧ µ.
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Similarly, we can show that f(xαy) ∨ λ ≥ f(x) ∧ f(y) ∧ µ for all x, y ∈ S and
α ∈ Γ.

Definition 4.6. An ordered Γ-semiring S is said to be k-regular if for each x ∈ S,
there exist a, b ∈ S and α, β, γ, δ ∈ Γ such that x + xαaβx ≤ xγbδx.

Definition 4.7. An ordered Γ-semiring S is said to be k-intra-regular if for each
x ∈ S, there exist z, ai, a

′
i, bi, b

′
i ∈ S, α1i, α2i, α3i, β1i, β2i, β3i ∈ Γ, i ∈ N, the set of

natural numbers, such that x +
n∑

i=1

aiα1ixα2ixα3ia
′
i ≤

n∑
i=1

biβ1ixβ2ixβ3ib
′
i.

Theorem 4.8. Let S be a k-regular ordered semiring and x ∈ S. Then

(i) f(x) ∧ µ ≤ (fo2χSo2f)(x) ∨ λ for every (λ, µ)-fuzzy k-bi-ideal f of S.

(ii) f(x) ∧ µ ≤ (fo2χSo2f)(x) ∨ λ for every (λ, µ)-fuzzy k-quasi-ideal f of S.

Proof. Let S be a k-regular ordered semiring and x be any element of S. Suppose
f be any (λ, µ)-fuzzy k-bi-ideal of S. Since S is k-regular there exist a, b ∈ S and
α, β, γ, δ ∈ Γ such that x + xαaβx ≤ xγbδx. Now

(fo2χSo2f)(x) ∨ λ
= ∨(∧{(fo2χS)(ai), (fo2χS)(ci),

x+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

f(bi), f(di)}) ∨ λ

≥ ∧{(fo2χS)(xαa), (fo2χS)(xγb), f(x)} ∧ µ
= ∧{ ∨(∧{(f(ai), f(ci))})

xαa+

n∑
i=1

aiα1ibi ≤
n∑

i=1

ciβ1idi

, ∨(∧{(f(ai), f(ci))})
xγb+

n∑
i=1

aiα2ibi ≤
n∑

i=1

ciβ2idi

, f(x)} ∧ µ

≥ ∧{f(x), f(x), f(x)} ∧ µ
(since xαa + xαaβxαa ≤ xγbδxαa and xγb + xαaβxγb ≤ xγbδxγb)

= f(x) ∧ µ.

This implies that f(x) ∧ µ ≤ (fo2χSo2f)(x) ∨ λ.
(i) ⇒ (ii) is straight forward from Lemma 4.5.

Theorem 4.9. Let S be a k-regular ordered semiring and x ∈ S. Then

(i) (f ∩ g)(x)∧ µ ≤ (fo2go2f)(x)∨ λ for every (λ, µ)-fuzzy k-bi-ideal f and every
(λ, µ)-fuzzy k-ideal g of S.

(ii) (f ∩ g)(x) ∧ µ ≤ (fo2go2f)(x) ∨ λ for every (λ, µ)-fuzzy k-quasi-ideal f and
every (λ, µ)-fuzzy k-ideal g of S.

Proof. Assume that S is a k-regular ordered semiring. Let f and g be any (λ, µ)-fuzzy
k-bi-ideal and (λ, µ)-fuzzy k-ideal of S, respectively and x be any element of S. Since
S is k-regular, there exist a, b ∈ S and α, β, γ, δ ∈ Γ such that x + xαaβx ≤ xγbδx.
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Then

(fo2go2f)(x) ∨ λ
= ∨(∧{(fo2g)(ai), (fo2g)(ci), f(bi), f(di)})

x+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

∨ λ

≥ ∧{(fo2g)(xαa), (fo2g)(xγb), f(x)} ∧ µ
= ∧{∨(∧{(f(ai), f(ci), g(bi), g(di))})

xαa+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

,∨(∧{(f(ai), f(ci), g(bi), g(di))})
xγb+

n∑
i=1

aiγibi ≤
n∑

i=1

ciδidi

, f(x)} ∧ µ

≥ ∧{∧{f(x), f(aβxαa), g(bδxαa)},∧{f(x), g(aβxγb), g(bδxγb)}, f(x)} ∧ µ
(since xαa + xαaβxαa ≤ xγbδxαa and xγb + xαaβxγb ≤ xγbδxγb)

≥ f(x) ∧ g(x) ∧ µ = (f ∩ g)(x) ∧ µ.

(i)⇒(ii) is straight forward from Lemma 4.5.

Theorem 4.10. Let S is both k-regular and k-intra-regular an ordered semiring and
x ∈ S. Then

(i) f(x) ∧ µ = (fo2f)(x) ∨ λ for every (λ, µ)-fuzzy k-bi-ideal f of S

(ii) f(x) ∧ µ = (fo2f)(x) ∨ λ for every (λ, µ)-fuzzy k-quasi-ideal f of S.

Proof. Suppose S is both k-regular and k-intra-regular ordered semiring. Let x ∈ S
and f be any fuzzy k-bi-ideal of S. Since S is both k-regular and k-intra-regular
there exist ai, bi, ci, di ∈ S, α1i, α2i, α3i, α4i, α5i, β1i, β2i, β3i, β4i, β5i ∈ Γ, i ∈ N such

that x +
n∑

i=1

xα1iaiα2ixα3ixα4ibiα5ix ≤
n∑

i=1

xβ1iciβ2ixβ3ixβ4idiβ5ix. Therefore

(fo2f)(x) ∨ λ = ∨[∧
i
{∧{f(ai), f(ci), f(bi),

x+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

f(di)}}] ∨ λ

≥ ∧
i
[∧{f(xα1iaiα2ix), f(xα4ibiα5ix), f(xβ1iciβ2ix), f(xβ4idiβ5ix)}]

x+

n∑
i=1

xα1iaiα2ixα3ixα4ibiα5ix ≤
n∑

i=1

xβ1iciβ2ixβ3ixβ4idiβ5ix

∧ µ

≥ f(x) ∧ µ.

Now (fo2f)(x) ∨ λ ≤ (fo2χS)(x) ∧ µ ≤ f(x) ∧ µ. Hence f(x) ∧ µ = (fo2f)(x) ∨ λ
for every (λ, µ)-fuzzy k-bi-ideal f of S.
(i) ⇒ (ii) is straightforward from the Lemma 4.5.

Theorem 4.11. Let S is both k-regular and k-intra-regular ordered semiring and
x ∈ S. Then

(i) (f ∩ g)(x) ∧ µ ≤ (fo2g)(x) ∨ λ for all (λ, µ)-fuzzy k-bi-ideals f and g of S.

(ii) (f ∩ g)(x) ∧ µ ≤ (fo2g)(x) ∨ λ for every (λ, µ)-fuzzy k-bi-ideals f and every
(λ, µ)-fuzzy k-quasi-ideal g of S.
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(iii) (f ∩ g)(x)∧µ ≤ (fo2g)(x)∨λ for every (λ, µ)-fuzzy k-quasi-ideals f and every
(λ, µ)-fuzzy k-bi-ideal g of S.

(iv) (f ∩ g)(x) ∧ µ ≤ (fo2g)(x) ∨ λ for all (λ, µ)-fuzzy k-quasi-ideals f and g of S.

Proof. Assume that S is both k-regular and k-intra-regular ordered semiring. Let
x ∈ S and f , g be any (λ, µ)-fuzzy k-bi-ideals of S. Since S is both k-regular and
k-intra-regular there exist ai, bi, ci, di ∈ S, α1i, α2i, α3i, α4i, α5i, β1i, β2i, β3i, β4i, β5i ∈
Γ, i ∈ N such that x +

n∑
i=1

xα1iaiα2ixα3ixα4ibiα5ix ≤
n∑

i=1

xβ1iciβ2ixβ3ixβ4idiβ5ix.

Therefore

(fo2g)(x) ∨ λ
= ∨[∧

i
{∧{f(ai), f(ci), g(bi),

x+

n∑
i=1

aiαibi ≤
n∑

i=1

ciβidi

g(di)}}] ∨ λ

≥ ∧
i
[∧{f(xα1iaiα2ix), g(xα4ibiα5ix), f(xβ1iciβ2ix), g(xβ4idiβ5ix}] ∧ µ

≥ f(x) ∧ g(x) ∧ µ = (f ∩ g)(x) ∧ µ.

(i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv) are obvious from Lemma 4.5.

5 Conclusion

In this paper, the concept of (λ, µ)-fuzzy ideals and k-ideals of an ordered Γ-semiring
is introduced and studied along with some operation on them and some of their char-
acterizations are obtained. Actually the main aim of studying the concept of (λ, µ)-
fuzzy set is to restrict ourself to the interval (λ, µ) with 0 ≤ λ < µ ≤ 1. The case
for which λ = 0 and µ = 1, the results will coincide with the fuzzy ideals of ordered
Γ-semiring. We can similarly obtain the parallel results for fuzzy h-ideal also. The fu-
ture work may be focused on prime(semiprime) fuzzy ideal, prime(semiprime) fuzzy
h-ideal, fuzzy h-bi(quasi, interior)-ideal, prime(semiprime)fuzzy h-bi(quasi, interior)-
ideal etc..
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Abstract – In this paper, we obtain a unique common fixed point theorem for six weakly compatible 

mappings in G-fuzzy metric spaces.  
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1 Introduction 
 

Mustafa and Sims [3] introduced a G-metric space and obtained some fixed point theorems 

in it. Some interesting references in G-metric spaces are [2-6,8].  We have generalized the 

result of  Rao et al. [7]. Before giving our main results,  we obtain a unique common fixed 

point theorem for six weakly compatible mappings in G-fuzzy metric spaces.  

 

Definition 1.1 Let X be a nonempty set and let G  X × X × X → [0,∞) be a function 

satisfying the following properties  

 

(G1) G(x, y, z) = 0 if x = y = z, 

(G2) 0 < G(x, x, y) for all x, y ∈ X with x   y, 

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y   z, 

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three variables, 

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X. 
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Then, the function G is called a generalized metric or a G-metric on X and the pair (X, G) is 

called a G-metric space. 

 

Definition 1.2    The G-metric space (X, G) is called symmetric if  G(x, x, y) = G(x, y, y) 

for all  x, y ∈ X. 

 

Definition 1.3   A 3-tuple (X, G, *) is called a G- fuzzy metric space if X is an arbitrary 

nonempty set, * is a continuous t-norm, and G is a fuzzy set on X
3
 × (0, ∞) satisfying the 

following  conditions for each t, s > 0  

 

(i) G(x, x, y, t) > 0 for all x, y ∈  X with x   y, 

(ii) G(x, x, y, t)   G(x, y, z, t) for all x, y, z ∈  X with y   z, 

(iii) G(x, y, z, t) = 1 if and only if x = y = z,  

(iv) G(x, y, z, t) = G(p(x, y, z), t), where p is a permutation function, 

(v) G(x, y, z, t + s)   G(a, y, z, t) * G(x, a, a, s) for all x, y, z, a ∈  X, 

(vi) G(x, y, z, ·)  (0,∞) → [0, 1] is continuous. 

 

Definition 1.4   A G- fuzzy metric space (X,G,*) is said to be symmetric if  

 

G(x, x, y, t) = G(x, y, y, t)  

 

for all x, y ∈ X and for each t > 0. 

 

Example 1.5   Let X be a nonempty set and let G be a G-  fuzzy metric on X. Denote  

a*b=ab for all a, b ∈ [0, 1].  For each t > 0,  

 

G(x, y, z, t) = 
 

            
  

 

is a G- fuzzy metric on X. Let (X, G,*) be a G - fuzzy metric space.  For  t > 0, 0 < r < 1, 

and x ∈ X, the set   

 

BG(x, r, t) = { y ∈ X  G(x, y, y, t) >1 − r} 

 

is called an open ball with center x and radius r. A subset A of  X is called an open set if for 

each x ∈ X, there exist t > 0 and  0 < r < 1 such that BG(x, r, t) ⊆ A. A sequence {xn} in G- 

fuzzy metric space X is said to be G- convergent to x ∈ X if  G(xn, xn, x, t) → 1 as n → ∞ 

or each t > 0. It is called a G- Cauchy sequence if  G(xn, xn, xm, t) → 1 as n, m → ∞ for 

each t > 0. X is called G- complete if every  G- Cauchy sequence in X is G- convergent  in 

X. 

 

Lemma 1.6    Let (X, G,*) be a G- fuzzy metric space. Then, G(x, y, z, t) is nondecreasing 

with respect to t for all  x, y, z ∈ X. 

 

Lemma  1.7    Let (X, G, *) be a G- fuzzy metric space.  If there exists k ∈ (0, 1) such that 

 

min  {G(x, y, z, kt), G(u, v,w, kt)} ≥ min {G (x, y, z, t), G(u, v,w, t)}                             (1) 

 

for all x, y, z, u, v, w ∈ X and t  > 0, then x = y = z and  u = v = w. 
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2  Main Result 

 

Let Φ denote the set of all continuous non decreasing functions    [0,∞) → [0,∞) such that 

  n
(t) → 0 as n → ∞ for all t > 0. It is clear that  (t) < t for all t > 0 and   (0) = 0. 

 

Theorem 2.1 Let (X, G, *) be a G-  fuzzy metric space and S, T, R, f, g, h  X → X be 

satisfying  

 

(i)        S(X) ⊆ g(X), T(X) ⊆ h(X) and R(X) ⊆ f(X), 

(ii) One of  f(X), g(X) and h(X) is a complete subspace of  X, 

(iii) The  pairs (S, f), (T, g) and (R, h) are weakly compatible, and  

 

(iv)               ≥       

             
 

 
                                              

 

 
                                             

   

 

for all x, y, z   X, where  ∈ Φ. 

 

Then either one of the pairs (S, f), (T, g), and (R, h) has a coincidence point or the maps 

S,T, R, f, g and h have a unique common fixed point in X. 

 

Proof: Choose x0 X. By (i), there exist x1, x2, x3, ∈ X such that  Sx0 = gx1 = y0, 

Tx1=hx2=y1  and Rx2 = fx3 = y2. Inductively, there exist sequences {xn} and {yn} in X such 

that y3n = Sx3n = gx3n+1, y3n+1 = Tx3n+1 = hx3n+2 and y3n+2 = Rx3n+2 = fx3n+3, where n = 0,1,… 

 

If y3n = y3n+1 then x3n+1 is a coincidence point of g and T. 

 

If y3n+1 = y3n+2 then x3n+2 is a coincidence point of h and R. 

 

If y3n+2 = y3n+3 then x3n+3 is a coincidence point of f and S. 

 

Now assume that yn ≠ yn+1 for all n. Denote dn = G(yn, yn+1, yn+2, t). Putting x = x3n, y=x3n+1, 

z = x3n+2 in (iv),  we get 

 

               d3n = G(y3n, y3n+1, y3n+2, t)  

 

                     = G(Sx3n, Tx3n+1, Rx3n+2, t) 

                       ≥   
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                        ≥  

 

 
 
   

 
 
 

 
                       

 

 
                      

                                             
 

 
                                            

                       
 
 

 
 

 

 
 

 

 

                       ≥       
      

 

 
                

 

 
                       

                                           (2)                  

 

If d3n ≤  d3n-1 then from (1), we have d3n  ≥   (d3n) > d3n. It is a contradiction. Hence  

d3n≥d3n-1. Now from (1),  d3n  ≥   (d3n-1). Similarly, by putting x = x3n+3, y = x3n+1, z = x3n+2 

and x = x3n+3, y = x3n+4, z = x3n+2 in (iv), we get  

 

d3n+1 ≥   (d3n)   and                                                                                                               (3)      

 

d3n+2 ≥   (d3n+1)                                                                                                                    (4) 

 

Thus from (1), (2) and (3), we have 

 

G(yn, yn+1, yn+2, t) ≥   (G (yn-1, yn, yn+1, t)) 

                              ≥  
 2 

(G (yn-2, yn-1, yn, t)) 

                                   . 

                                   . 

                                   . 

                               ≥   n 
(G (y0, y1, y2, t))                                                                            (5)  

 

we have  G (yn, yn, yn+1, t) ≥ G (yn, yn+1, yn+2, t) ≥   n
(G (y0, y1, y2, t)). Now  for m > n,  we 

have 

 

G (yn, yn, ym, t) ≥ G (yn, yn, yn+1, t) + G (yn+1, yn+1, yn+2, t) + … + G (ym-1, ym-1, ym, t) 

                         ≥   n 
(G (y0, y1, y2, t)) +   n+1

(G (y0, y1, y2, t)) + … +   m-1
(G (y0, y1, y2, t)) 

                         → 1 as n → ∞,  

 

Since   n
(t) → 1 as n → ∞ for all t > 0. Hence {yn} is G- Cauchy. Suppose f(X) is G-

complete. Then there exist p, t   X such that y3n+2 → p = f t.  Since {yn} is G- Cauchy, it 

follows that  y3n → p and y3n+1 → p as n → ∞. 

 

G (St, Tx3n+1, Rx3n+2, t) 

                               

 

 
 
   

 
 
 

 
                       

 

 
                   

                                                  
 

 
                                            

                        
 
 

 
 

 

 
 

 

 

Letting n → ∞, we get   
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G(Sp, p, p, t)  ≥       
  

 

 
                           

 

 
                  

   

 

G(St, p, p, t) ≥   (G(St, p, p, t), since   is non decreasing. Hence St = p. Thus p = f t = St. 

Since the pair (S, f) is weakly compatible, we have fp = Sp. Putting x = p, y = x3n+1, z=x3n+2 

in (iv), we get 

 

G (Sp, Tx3n+1, Rx3n+2, t)         

                      ≥  

 

 
 
   

 
 
 

 
                        

 

 
                   

                                                  
 

 
                                             

                        
 
 

 
 

 

 
 

  

 

Letting n → ∞, we have 

 

G(Sp, p, p, t)           
            

 

 
                             

 

 
                                     

   

 

Since   G(Sp, Sp, p, t)  ≥  2G(Sp, p, p, t),  we have G(Sp, p, p, t) ≥  (G(Sp, p, p, t)). Thus 

Sp = p. Hence  

 

f p = Sp = p.                         (6) 

 

Since p = Sp   g(X), there exists v   X such that p = gv. Putting x = p, y = v, z = xn+2 in 

(iv), we get 

 

G(Sp, Tv, Rxn+2, t) ≥   

 

 
 
   

 
 
 

 
                   

 

 
               

                                         
 

 
                                    

                     
 
 

 
 

 

 
 

 

 

Letting n → ∞, we deduce that  

 

G(p, Tv, p, t) ≥       
  

 

 
                            

 

 
                 

   

                                         ≥   (G(p, Tv, p, t)), 

 

since   is non decreasing. Thus Tv = p, so that p = Tv = gv. Since the pair (T, g) is weakly 

compatible, we have Tp = gp. 
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G(Sp, Tp, Rx3n+2, t) ≥   

 

 
 
   

 
 
 

 
                   

 

 
               

                                         
 

 
                                    

                     
 
 

 
 

 

 
 

 

 

Letting n → ∞, we have 

 

G(p, Tp, p, t) ≥       
            

 

 
                           

 

 
                                     

   

 

Since  G(Tp, Tp, p, t) ≥ 2G(Tp, p, p, t),  we have ,G(p, Tp, p, t) ≥   (G(p, Tp, p, t)). Thus 

Tp = p. Hence  

 

gp = Tp = p.                                                                                                (7) 

 

Since p = Tp   h(X), there exists w   X such that p = hw.    Putting x = p, y = p, z = w in 

(iv), we get 

 

G(Sp, Tp, Rw,  t)  ≥    

 

 
 
   

 
 
 

 
               

 

 
               

                             
 

 
                            

                
 
 

 
 

 

 
 

 

 

G(p, p, Rw, t)  ≥       
  

 

 
                            

 

 
                 

   ≥   (G(p, p, Rw, t)),  

 

since   is non decreasing. Thus Rw = p, so that p =  hw = Rw. Since the pair (R, h) is 

weakly compatible, we have Rp = hp. Putting x = p, y = p, z = p in (iv), we get, 

 

G(p, p, Rp, t) = G(Sp, Tp, Rp, t )  ≥  

 

 
 
   

 
 
 

 
               

 

 
    

                          
 

 
                         

              
 
 

 
 

 

 
 

 

 

Since G(Rp, Rp, p, t) ≥ 2G(p, p, Rp, t), we have  

 

G(p, p, Rp, t) ≥  (G(p, p, Rp, t)).                                                                            (8) 

 

Thus Rp = p,  so that Rp = hp = p. From  (6), (7) and (8), it follows that p is a common 

fixed point of  S, T, R, f ,g and h.  Uniqueness of common fixed point follows easily from 

(iv).  Similarly, we can prove the theorem when g(X) or h(X) is a complete subspace of  X. 
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Corollary 2.2  Let (X, G, *)  be a G -fuzzy metric space and S, T, R, f, g, h,  X → X be 

satisfying 

 

(i)         S(X) ⊆ g(X), T(X) and R(X) ⊆ f(X), 

(ii) One of  f(X) , g(X) and h(X) is a complete subspace of X, 

(iii) The pairs (S, f) ,(T, g) and  (R, h) ate weakly compatible and  

(iv) G(Sx, Ty, Rz, t) ≥   (G(fx, gy, hz, t)) for all x, y, z   X, where      Φ. 

 

Then the maps S, T, R, f, g and h have a unique fixed point in X. 

 

Corollary 2.3  Let(X, G, *) be a complete G - fuzzy metrics space and S, T, R  X → X be 

satisfying G(Sx, Ty, Rz, t) ≥   (G(x, y, z, t)) for all x, y, z   X, where  ∈ Φ. Then the 

maps S, T and R have a unique common fixed point, p   X and S,T and R are G-continuous 

at p. 

 

Proof: There exists p   X such that p is the unique common fixed point of S, T and R as in  

Theorem 2.1.  Let {yn} be any sequence in X which G –converges to p. Then  

 

G(Syn, Sp, Sp, t) = G(Syn, Tp, Rp, t) ≤   (G(yn, p, p, t)) → 1 as n → ∞. 

 

Hence S is G - continuous at p.  Similarly, we can show that T and R are also G-continuous 

at p. 
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Abstaract − We introduce the class of (k, h)-convex stochastic processes and we generalize re-
sults given for (k, h)-convex functions in [10] and h-convex stochastic process in [1], among them,
Hermite-Hadamard and Fejér-type inequalities.

Keywords − (k, h)-convex stochastic processes, h−convex stochastic processes, converse Jensen-
type inequality, Fejér-type inequality, Hermite-Hadamard-type inequality.

1 Introduction

In 1980, Nikodem [11] stated the line of investigation on stochastic convexity and
later, several types of convex stochastic processes have been studied [1, 2, 4, 5, 6, 7,
8, 11, 12, 14] based in the classical convex notions for functions.

Micherda and Rajba, introduced in [10] the family of (k, h)−convex functions as
the solutions of the functional inequality

f(k(t)x + k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y),

where k, h : (0, 1) → R are given. The notion of (k, h)-convexity generalizes s-Orlicz
convexity [3], subaditivity [9] and h-convexity [13].

In this paper, we introduce the notion of (k, h)-convex stochastic processes as
a counterpart of the (k, h)-convex functions and a generalization of h-convex sto-
chastic processes defined in [1]. Also, we prove properties of (k, h)-convex stochastic
processes, among them, Hermite-Hadamard and Fejér-type inequalities.

Now, we would like to recall the context where the stochastic convexity is studied.
Let (Ω,A,P) be a probability space. A function X : Ω → R is a random variable

if it is A-measurable. A function X : I × Ω → R, where I ⊆ R is an interval, is a
stochastic process if for every t ∈ I the function X(t, ·) is a random variable.

**Edited by Kazimierz Nikodem and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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If h : (0, 1) → R is a non-negative function, h 6≡ 0, a stochastic process X :
I × Ω → R is h-convex, if for every t1, t2 ∈ I and λ ∈ (0, 1), the following inequality
holds

X(λt1 + (1− λ)t2, ·) ≤ h(λ)X(t1, ·) + h(1− λ)X(t2, ·), (a.e.).

When h is equal to the identity function, X is said to be convex, and additionally, if
λ = 1

2
then X is Jensen-convex.

Some examples and properties related with convex, Jensen-convex and h-convex
stochastic processes can be readed in [1, 2, 8, 11, 14].

Now, for calculation, we need to introduce additional definitions:
Let X : I ×Ω → R be a stochastic process such that E[X(t)]2 < ∞ for all t ∈ I,

where E[X(t)]2 < ∞ denotes the expectation value of X(t, ·). The stochastic process
X is

1. continuous in probability in the interval I, if for all t0 ∈ I, we have

P − lim
t→t0

X(t, ·) = X(t0, ·),
where P − lim denotes the limit in probability.

2. mean-square continuous in the interval I, if for all t0 ∈ I

lim
t→t0

E[(X(t)−X(t0))
2] = 0.

Is important to note that mean-square continuity implies continuity in probabil-
ity, but the converse implication is not true.

We say that the stochastic process X is mean-square integrable in [a, b] ⊆ I, if
there exists a random variable Y such that for all normal sequence of partions of the
interval [a, b], a = t0 < t1 < ... < tn = b, holds

lim
n→∞

E

[
n∑

k=1

X(θk) · (tk − tk−1)− Y

]2

= 0.

The random variable Y : Ω → R is the mean-square integral of the process X on
[a, b] and we can also write

Y (·) =

∫ b

a

X(s, ·)ds, (a.e).

Definition and properties of mean-square integral can be readed in [15].

2 (k, h)-convex Stochastic Processes

In order to extend the definition of h-convexity for stochastic processes, we introduce
the notion of (k, h) stochastic convexity.

Given a function k : (0, 1) → R, a set D ⊆ R is k-convex if k(λ)t1+k(1−λ)t2 ∈ D
for all t1, t2 ∈ D and t ∈ (0, 1).

In [10], k-convex sets were defined in real linear spaces and some examples for
chosen functions k are given.
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Definition 2.1. Let k, h : (0, 1) → R be two given functions and D ⊂ R a k-convex
set. A stochastic process X : D × Ω → R is (k, h)-convex if, for all t1, t2 ∈ D and
λ ∈ (0, 1),

X(k(λ)t1 + k(1− λ)t2, ·) ≤ h(λ)X(t1, ·) + h(1− λ)X(t2, ·) (a.e.). (1)

If in (1) the equality holds, the stochastic process X is called (k, h)-affine.

This definition coincides in many important cases with other ones previously
introduced, some of which are listed bellow.

Example 2.2. 1. For k(λ) = λ, the notion of (k, h)-convexity matches with the
h-convexity one given in [1] (without the additional assumption of non negativity).

2. For k(λ) = h(λ) = 1, the class of (k, h)-convex stochastic processes consists in
all stochastic process which are subadditive.

3. If k(λ) = h(λ) = 1/2 for all λ, then (1) gives the family of Jensen-convex
stochastic processes.

4. Let k be defined by the formula

k(λ) =





2λ, λ ≤ 1/2,

0, λ > 1/2.

Then X is a (k, k)-convex stochastic process if and only if it is starshaped, i.e.,
X(λt, ·) ≤ λX(t, ·) almost everywhere, for all λ ∈ (0, 1) and t ∈ D. In fact, fix
t1, t2 ∈ D and choose λ ∈ (0, 1). Then, assuming that X is a (k, k)-convex stochastic
process, we get

X(λt, ·) = X

(
k

(
λ

2

)
t + k

(
1− λ

2

)
t, ·

)
≤ λX (t, ·) ,

and

X(0, ·) = X

(
k

(
λ

2

)
t + k

(
λ

2

)
t, ·

)
= 0,

almost everywhere.
On the other hand, if X is starshaped, for anyone t1, t2 ∈ D,λ ∈ (0, 1) we obtain

X(k(λ)t1 + k(1− λ)t2, ·) =





X(2λt1, ·) ≤ 2λX(t1, ·), λ ∈ (0, 1/2),

X(0, ·) ≤ 0, λ = 1/2,

X((2− 2λ)t2, ·) ≤ (2− 2λ)X(t2, ·), λ ∈ (1/2, 1).

Hence, (1) is satisfied for all t ∈ D and λ ∈ (0, 1).

Hereinafter, we keep the notation used in the definition (2.1) for D, k and h.

3 Properties of (k, h)-convex Stochastic Processes

Many of the well-known properties of convex stochastic processes are satisfied by
(k, h)-convex stochastic processes too. In the following propositions we present some
basic properties for (k, h)-convex stochastic processes.
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Proposition 3.1. If X, Y : D×Ω → R be a (k, h)-convex stochastic processes and
c ≥ 0, then X + Y and cX are also (k, h)-convex stochastic processes.

Proof. Let be t1, t2 ∈ D, λ ∈ (0, 1) and c ≥ 0. Then,

(X + Y )(k(λ)t1 + k(1− λ)t2, ·)
= X(k(λ)t1 + k(1− λ)t2, ·) + Y (k(λ)t1 + k(1− λ)t2, ·)
≤ h(λ)(X + Y )(t1, ·) + h(1− λ)(X + Y )(t2, ·), (a.e).

Also,

c(X(k(λ)t1 + k(1− λ)t2, ·)) ≤ c[h(λ)X(t1, ·) + h(1− λ)X(t2, ·)]
≤ h(λ)(cX)(t1, ·) + h(1− λ)(cX)(t2, ·), (a.e).

Proposition 3.2. Let k, h1, h2 : (0, 1) → R be non negative functions and X, Y :
D × Ω → R non-negative stochastic processes such that:

(X(t1, ·)−X(t2, ·))(Y (t1, ·)− Y (t2, ·)) ≥ 0, (2)

for all t1, t2 ∈ D. If X is (k, h1)-convex, Y is (k, h2)-convex and h(λ) + h(1− λ) ≤ c
for all λ ∈ (0, 1), where h(λ) = max{h1(λ), h2(λ)} and c is a fixed positive number,
then the product XY is a (k, ch)-convex stochastic process.

Proof. Fix t1, t2 ∈ D and λ, β ∈ (0, 1) such that λ + β = 1. First, note that if
(X(t1, ·)−X(t2, ·))(Y (t1, ·)− Y (t2, ·)) ≥ 0 holds almost everywhere, then:

X(t1, ·)Y (t2, ·) + Y (t1, ·)X(t2, ·) ≤ X(t1, ·)Y (t1, ·) + Y (t2, ·)X(t2, ·), (a.e).

Hence,

(XY )(k(λ)t1 + k(1− λ)t2, ·) ≤ (h(λ)X(t1, ·) + h(1− λ)X(t2, ·))
·(h(λ)Y (t1, ·) + h(1− λ)Y (t2, ·))

≤ (h(λ))2(XY )(t1, ·)
+h(λ)h(1− λ)[(XY )(t1, ·) + (XY )(t2, ·)]
+(h(1− λ))2(XY )(t2, ·)

= (h(λ) + h(1− λ))

·[h(λ)(XY )(t1, ·) + h(1− λ)XY (t2, ·)]
≤ ch(λ)(XY )(t1, ·) + ch(1− λ)X(t2, ·)], (a.e).

Proposition 3.3. Let X : I × Ω → R be a (k, h)-convex stochastic process and
f : R → R an increasing (h, h)-convex function. Then, f ◦ X : I × Ω → R is a
(k, h)-convex stochastic process.

Proof. For arbitrary t1, t2 ∈ I and λ ∈ (0, 1), we have

f(X(k(λ)t1 + k(1− λ)t2, ·)) ≤ f(h(λ)X(t1, ·) + h(1− λ)X(t2, ·))
≤ h(λ)f(X(t1, ·)) + h(1− λ)f(X(t2, ·)) (a.e)



Journal of New Theory 10 (2016) 19-29 23

In [8], Kotrys and Nikodem defined for every stochastic process X and random
variable A, the sublevel set as follows

LA = {t ∈ D : X(t, ·) ≤ A(·), (a.e.)}.

In the following proposition we present a condition for h in way to the sublevel set
LA be k-convex for given (k, h)-convex stochastic process X and random variable A.

Proposition 3.4. Let X : D × Ω → R be a (k, h)-convex stochastic process, with
h a positive function. For every random variable A : Ω → R, the sublevel set LA is
k-convex if the inequality h(λ) + h(1− λ) ≤ 1 holds for every λ ∈ (0, 1).

Proof. Since X is (k, h)-convex, for t1, t2 ∈ LA and λ ∈ (0, 1), we have:

X(k(λ)t1 + k(1− λ)t2, ·) ≤ h(λ)X(t1, ·) + h(1− λ)X(t2, ·)
≤ h(λ)A(·) + h(1− λ)A(·)
= (h(λ) + h(1− λ))A(·) ≤ A(·), (a.e.).

Therefore, LA is k-convex set.

Example 3.5. Considering h(λ) = λ in the previous proposition, the result holds.

The proof of the following proposition follows immediately from the definitions.

Proposition 3.6. If h1, h2 are functions such that h2 ≥ h1, then every non-negative
(k, h1)-convex stochastic process is also (k, h2)-convex stochastic process.

Remark 3.7. Note that if D is a k-convex subset of X and X : D × Ω → R is a
(k, h)-affine stochastic process, then the image of X not necessarily is an h-convex
set in R. For instance, if D = Ω = [0, 1], k, h are the identity function and X is
defined by

X(t, ω) =





0, if t 6= ω,

1, if t = ω.

then X(D × Ω) = {0, 1} is not an h-convex subset of R.

In the following theorem we present conditions under the inequality

X(k(λ)t1 + k(β)t2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·),
holds almost everywhere, for all λ, β > 0 such that λ + β ≤ 1.

In the following theorem definitions of supermultiplicative and submultiplicative
functions are needed. We recall these notions:

Definition 3.8. A function f : (0, 1) → R is said to be supermultiplicative if for all
x, y ∈ (0, 1),

f(x)f(y) ≤ f(xy), (3)

If inequality (3) is reversed, then f is a submultiplicative function. Moreover, if the
equality holds in (3), f is multiplicative.
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Theorem 3.9. Let be k, h : (0, 1) → R non-negative functions and D ⊆ R a
k−convex set such that 0 ∈ D . If k is submultiplicative, h is supermultiplicative
and X : D × Ω → R is a (k, h)-convex and non-decreasing stochastic process such
that X(0, ·) = 0, then the inequality

X(k(λ)t2 + k(β)t2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·),
hold almost everywhere, for all λ, β > 0 such that λ + β ≤ 1.

Proof. If λ + β = 1, the inequality holds from (k, h)-convex stochastic process def-
inition. Let λ, β > 0 be numbers such that λ + β = γ with γ < 1. Let us define
numbers a := λ

γ
and b := β

γ
. Then, a + b = 1 and fixed t1, t2 ∈ D, we have the

following inequality:

X(k(aγ)t1 + k(bγ)t2, ·) ≤ X(k(a)k(γ)t1 + k(b)k(γ)t2, ·)
≤ h(a)X(k(γ)t1, ·) + h(b)X(k(γ)t2, ·)
= h(a)X(k(γ)t1 + k(1− γ)0, ·)

+h(b)X(k(γ)t1 + k(1− γ)0, ·)
≤ h(a)[h(γ)X(t1, ·) + h(1− γ)X(0, ·)]

+h(b)[h(γ)X(t1, ·) + h(1− γ)X(0, ·)]
= h(a)h(γ)X(t1, ·) + h(b)h(γ)X(t2, ·)
≤ h(aγ)X(t1, ·) + h(bγ)X(t2, ·)
= h(λ)X(t1, ·) + h(β)X(t2, ·), (a.e).

Theorem 3.10. Let k, h be non-negative functions and D ⊆ R a k-convex set such
that 0 ∈ D. If X : D × Ω → R is a non-negative stochastic process such that

X(k(λ)t1 + k(β)t2, ·) ≤ h(λ)X(t1, ·) + h(β)X(t2, ·) (a.e), (4)

holds for any t1, t2 ∈ D and λ, β > 0 with λ+β ≤ 1 and h(λ) < 1
2

for some λ ∈ (0, 1
2
),

then X(0, ·) = 0.

Proof. Let us suppose that exists w ∈ Ω with X(0, ω) 6= 0, then X(0, ω) > 0 and
putting t1 = t2 = 0 in the inequality (4), we get

X(0, ω) ≤ h(λ)X(0, ω) + h(β)X(0, ω),

for λ, β > 0 such that λ+β ≤ 1. Putting λ = β, λ ∈ (0, 1
2
) and dividing by X(0, ω),

we obtain 1 ≤ h(λ) + h(λ) = 2h(λ) for all λ ∈ (0, 1
2
). That is, 1

2
≤ h(λ) for all

λ ∈ (0, 1
2
), what is a contradiction with the assumption of theorem.

In the following proposition we present a Schur-type inequality.

Proposition 3.11. If k, h : (0, 1) → R are non-negative functions, with k(λ) ≥ λ,
h submultiplicative and X : D×Ω → R is a non-decreasing (k, h)-convex stochastic
process, then the following inequality holds:

h(t3 − t2)X(t1, ·)− h(t3 − t1)X(t2, ·) + h(t2 − t1)X(t3, ·) ≥ 0, (a.e.), (5)

for t1, t2, t3 ∈ D, such that t1 < t2 < t3 and t3 − t1, t3 − t2, t2 − t1 ∈ D.



Journal of New Theory 10 (2016) 19-29 25

Proof. Consider t1, t2, t3 ∈ D be numbers wich satisfy assumptions of the proposition.
Then,

t3 − t2
t3 − t1

,
t2 − t1
t3 − t1

∈ (0, 1),

and
t3 − t2
t3 − t1

+
t2 − t1
t3 − t1

= 1.

Also, since h is supermultiplicative and non-negative, we have

h(t3 − t2) = h

(
t3 − t2
t3 − t1

.(t3 − t1)

)
≥ h

(
t3 − t2
t3 − t1

)
h(t3 − t1),

h(t2 − t1) = h

(
t2 − t1
t3 − t1

.(t3 − t1)

)
≥ h

(
t2 − t1
t3 − t1

)
h(t3 − t1),

Let h(t3 − t1) > 0. Because k(λ) ≥ λ, X is non-decreasing and (k, h)-convex, X
satisfies:

X(λz1+(1−λ)z2, ·) ≤ X(k(λ)z1+k(1−λ)z2, ·) ≤ h(λ)X(z1, ·)+h(1−λ)X(z2, ·), (a.e),

for all z1, z2 ∈ D, λ ∈ (0, 1). In particular, for λ = t3−t2
t3−t1

, z1 = t1, z2 = t3, we have
t2 = λz1 + (1− λ)z2 and

X(t2, ·) ≤ h

(
t3 − t2
t3 − t1

)
X(t1, ·) + h

(
t2 − t1
t3 − t1

)
X(t3, ·) (6)

≤ h(t3 − t2)

h(t3 − t1)
X(t1, ·) +

h(t2 − t1)

h(t3 − t1)
X(t3, ·), (a.e).

Finally, multiplying by h(t3 − t1), we obtain the following

h(t3 − t1)X(t2, ·) ≤ h(t3 − t2)X(t1, ·) + h(t2 − t1)X(t3, ·), (a.e).

That is,

0 ≤ h(t3 − t2)X(t1, ·)− h(t3 − t1)X(t2, ·) + h(t2 − t1)X(t3, ·), (a.e).

The following theorem is an converse Jensen-type inequality.

Theorem 3.12. Let λ1, λ2, ..., λn be positive real numbers such that
∑n

i=1 λi = 1
and (m,M) ⊆ I. If k, h : (0, 1) → R is a non negative with k(λ) ≥ λ and h
supermultiplicative function, and X : I × Ω → R is an (k, h)-convex stochastic
process, then for any t1, t2, ..., tn ∈ [m,M ], the following inequality holds almost
everywhere

n∑
i=1

h(λi)X(ti, ·) ≤ X(m, ·)
n∑

i=1

h (λi) h

(
M − ti
M −m

)

+X(M, ·)
n∑

i=1

h (λi) h

(
ti −m

M −m

)
.
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Proof. Fix i ∈ {1, ..., n}. Putting t1 = m, t2 = ti, t3 = M and λ =
(

M−ti
M−m

) ∈ [0, 1] in
the inequality (6), we get

X(ti, ·) ≤ h

(
M − ti
M −m

)
X(m, ·) + h

(
ti −m

M −m

)
X(M, ·), (a.e).

Since h is non negative, we have that multiplying by h(λi):

h(λi)X(ti, ·) ≤ h(λi)h

(
M − ti
M −m

)
X(m, ·)

+h(λi)h

(
ti −m

M −m

)
X(M, ·).

Adding all inequalities for i = 1, ..., n, we complete the proof.

4 Main Results

We will prove the main results of this paper which consists in some new Fejér and
Hermite-Hadamard-type inequalities for (k, h)-convex stochastic processes. From
now, we suppose that all mean-square integrals considered bellow exist.

Theorem 4.1. (First Fejér-type inequality) If there are X : D × Ω → R a
(k, h)-convex stochastic process with h(1/2) > 0, a < b such that [a, b] ⊂ D and
G : [a, b]×Ω → R a non-negative and symmetric respect a+b

2
mean-square integrable

stochastic process, then the following inequality holds almost everywhere:

X(k(1/2)(a + b), ·)
2h(1/2)

∫ b

a

G(t, ·)dt ≤
∫ b

a

X(t, ·)G(t, ·)dt, (a.e). (7)

Proof. From the definition with λ = 1/2, t1 = wa + (1−w)b and t2 = (1−w)a + wb
with w ∈ [0, 1], then

X

(
k

(
1

2

)
(a + b), ·

)
= X

(
k

(
1

2

)
t1 + k

(
1

2

)
t2, ·

)

= X

(
k

(
1

2

)
(wa + (1− w)b) + k

(
1

2

)
((1− w)a + wb), ·

)

≤ h

(
1

2

)
X(wa + (1− w)b, ·)

+h

(
1

2

)
X((1− w)a + wb, ·), (a.e). (8)

Multiplying both sides of the inequality (8) for G(t1, ·) = G(t2, ·), almost everywhere
and integrate it with respect to w, getting:

X

(
k

(
1

2

)
(a + b), ·

)
·
∫ 1

0

G(wa + (1− w)b, ·)dw

≤ h

(
1

2

)[∫ 1

0

X(wa + (1− w)b, ·)G(wa + (1− w)b, ·)dw

+

∫ 1

0

X((1− w)a + wb, ·)G((1− w)a + wb, ·)dw

]
,
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almost everywhere. This implies

X

(
k

(
1

2

)
(a + b), ·

)
· 1

b− a

∫ b

a

G(t, ·)dt ≤ h

(
1

2

)
· 2 · 1

b− a

∫ b

a

X(t, ·)G(t, ·)dt,

which completes the proof.

Some important results are obtained as consequence of the previous result, among
them, a Hermite-Hadamard-type inequality for (k, h)-convex stochastic processes, as
the following corollary shows.

Corollary 4.2. Let X : D × Ω → R be a (k, h)- convex stochastic process with
h(1/2) > 0 and fixed a < b such that [a, b] ⊂ D. Then

X(k(1/2)(a + b), ·)
2h(1/2)

≤ 1

b− a

∫ b

a

X(t, ·)dt, (a.e). (9)

Remark 4.3. 1. If X is an h-convex stochastic process, then (7) gives the following
inequality

1

2h(1/2)
X

(
a + b

2
, ·

) ∫ b

a

G(t, ·)dt ≤
∫ b

a

X(t, ·)G(t, ·)dt.

2. For every convex stochastic process X the following Fejér-type inequality is
valid by Theorem 4.1,

X

(
a + b

2
, ·

) ∫ b

a

G(t, ·)dt ≤
∫ b

a

X(t, ·)G(t, ·)dt.

In particular, for G(t, ·) = 1 we get the Hermite-Hadamard inequality

X

(
a + b

2
, ·

)
≤ 1

b− a

∫ b

a

X(t, ·)dt.

3. From (7) and (9) we recover the left-hand sides of the classical Fejér and
Hermite-Hadamard-type inequalities for Jensen-convex stochastic processes.

Theorem 4.4. (Second Fejér-type inequality) Let be k, h : (0, 1) → R given
functions such that h(1/2) > 0 and k(w) + k(1 − w) = 0 for all w ∈ [0, 1]. If
X : D×Ω → R is a (k, h)-convex stochastic, a, b ∈ D, a < b and G : [a, b]×Ω → R
is a non-negative and symmetric respect to a+b

2
mean-square integrable stochastic

process, then the following inequality holds almost everywhere:

1

h
(

1
2

)
∫ 1

0

X

(
k

(
1

2

)
[k(t) + k(1− t)](a + b), ·

)
G(ta + (1− t)b, ·)dt

≤
∫ 1

0

X(k(t)a + k(1− t)b, ·)G(at + (1− t)b, ·)dt (10)

≤ [X(a, ·) + X(b, ·)]
∫ 1

0

h(t)G(at + (1− t)b, ·)dt.
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Proof. By definition (1) with t1 = k(w)a + k(1 − w)b, t2 = k(1 − w)a + k(w)b and
t = 1/2, we have the following inequality almost everywhere:

X

(
k

(
1

2

)
[k(w) + k(1− w)] · (a + b), ·

)
= X

(
k

(
1

2

)
t1 + k

(
1

2

)
t2, ·

)

≤ h

(
1

2

)
[X(k(w)a + k(1− w)b, ·) + X(k(1− w)a + k(w)b, ·)]. (11)

As in the proof of the previous theorem, we multiply both sides of the inequality (11)
by G(wa + (1 − w)b, ·) = G((1 − w)a + wb, ·), and we integrate the new inequality
over (0, 1), getting

∫ 1

0

X

(
k

(
1

2

)
[k(w) + k(1− w)] · (a + b), ·

)
G(wa + (1− w)b, ·)dt

≤ h

(
1

2

)[∫ 1

0

X(k(w)a + k(1− w)b, ·)G(wa + (1− w)b, ·)dw

+

∫ 1

0

X(k(1− w)a + k(w)b, ·)G(wa + (1− w)b, ·)dw

]

≤ 2h

(
1

2

)
·
∫ 1

0

X(k(1− w)a + k(w)b, ·)G(wa + (1− w)b, ·)dw, (a.e).

From this we obtain the first desired inequality.
To prove the second one, we need to use the definition of (k, h)-convexity with

x = a and y = b. Namely, we have:

X(k(t)a + k(1− t)b, ·) ≤ h(t)X(a, ·) + h(1− t)X(b, ·), (a.e),

witch, by symmetry of G(t, ·), implies

∫ 1

0

X (k(t)a + k(1− t)b, ·) G(ta + (1− t)b, ·)dt

≤ X(a, ·)
∫ 1

0

h(t)G(wa + (1− w)b, ·)dw

+X(b, ·)
∫ 1

0

h(1− t)G((1− w)a + wb, ·)dw

= [X(a, ·) + X(b, ·)]
∫ 1

0

h(t)G(wa + (1− w)b, ·)dw, (a.e),

and the proof is complete.

As a corollary, we obtain the second Hermite-Hadamard inequality for (k, h)-
convex stochastic processes.

Corollary 4.5. Let X : D × Ω → R be a (k, h)-convex stochastic process where
h(1/2) > 0 and choose a, b ∈ D such that a < b. Then

1

h(1/2)

∫ 1

0

X

(
k

(
1

2

)
[k(t) + k(1− t)](a + b), ·

)
dt

≤
∫ 1

0

X (k(t)a + k(1− t)b, ·) dt ≤ [X(a, ·) + X(b, ·)]
∫ 1

0

h(t)dt.
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Abstaract − Different kind of stability have been studied concerning several areas of mathematics
and fuzziness of such concepts, which is an extension of the former, are being introduced in recent
times. The object of the present paper is to appraise generalization of the Hyers-Ulam-Rassias
stability theorem for the functional equation

f ( 2 x + y ) + f ( x + 2 y ) = 4 f ( x + y ) + f (x ) + f ( y )
in fuzzy Banach spaces .

Keywords − Fuzzy norm, functional equation, Hyers-Ulam stability, fuzzy Banach spaces.

1 Introduction

In 1940, Ulam [18] first formulated stability for functional equation concerning group
homomorphism and that was partially solved by Hyers [8] in the next year for Cauchy
functional equations in Banach spaces and thereafter it was further generalized by
Aoki [1]. The stability came in this way was known to be Hyers-Ulam stability.
Later on the Hyers-Ulam stability was further generalized by Rassias [15]. The
idea of such stability (which subsequently came to be known as Hyers-Ulam-Rassias
stability) was generalized and extended to several areas of mathematics over the
years. For instances, such stabilities were considered for differential equations [9],
functional equations [7], isometries [5] etc.

After the introduction fuzzy set theory, it has been brought quick inroads to deal
with uncertainty and vagueness for various problems in many branches of mathemat-
ics including functional analysis. In fact, when fuzzy norm on a linear space was first

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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introduced by Katsaras [10], a great amendment has come forward in mathemati-
cal analysis and specially in functional analysis. Thereafter a few mathematicians
have introduced and analyzed several notions of fuzzy norm from different points of
views [3, 6, 13, 14, 16]. In particular, in 2003, Bag and Samanta [2] gave an idea of
fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and
Michalek [12] type. Thus the notion of fuzzy Banach space came in this way and
since then it is being used extensively to study the stability of functional equations,
differential equation etc.

The functional equation

f ( x + y ) + f ( x − y ) = 2 f ( x ) + 2 f ( y ) (1)

is known as quadratic functional equation, since it is satisfied by the quadratic func-
tion f( x ) = c x 2 . The stability problem for the quadratic functional equation has
been extensively investigated by a number of mathematicians [4, 11, 15, 17]. In this
paper we now consider the functional equation

f ( 2 x + y ) + f ( x + 2 y ) = 4 f ( x + y ) + f ( x ) + f ( y ) (2)

which is also satisfied by the quadratic function f( x ) = c x 2 but different from the
functional equation (1). Here we like to deal with Hyers-Ulam-Rassias stability for
the functional equation (2) in fuzzy Banach spaces.

2 Preliminary

We adopted some definitions and notations of fuzzy norm which will be needed in
the sequel.

Definition 2.1. Let X be a real linear space. A function N : X × R → [ 0 , 1 ] is
said to be a fuzzy norm on X if for all x , y ∈ X and all s , t ∈ R
(N 1 ) N ( x , c ) = 0 for c ≤ 0 ;
(N 2 ) x = 0 if only if N ( x , c ) = 1 for all c > 0 ;
(N 3 ) N ( c x , t ) = N ( x , t

|c| ) if c 6= 0 ;

(N 4 ) N ( x + y , s + t ) ≥ min {N ( x , s ) , N ( y , t )} ;
( N 5 ) lim

t→∞
N ( x , t ) = 1 .

Then the pair ( X , N ) is called a fuzzy normed linear space .

Example 2.2. Let ( X , ‖.‖ ) be a normed linear space. then

N ( x , t ) =
t

t + k ‖x‖ , t > 0

= 0 , t ≤ 0

is a fuzzy norm on X .

Definition 2.3. Let ( X , N ) be a fuzzy normed linear space. A sequence { xn}
in X is said to be convergent if there exists x ∈ X such that
lim

n→∞
N ( xn − x , t ) = 1 for all t > 0 and we denote it by N − lim

n→∞
xn = x .
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Definition 2.4. A sequence { xn} in a fuzzy normed space ( X , N ) is said to be
Cauchy if for each ε > 0 and each t > 0 , we can find some n 0 such that for all
n ≥ n 0 and all p > 0 we have N ( xn + p − xn , t ) > 1 − ε .

Now we know that every convergent sequence in a fuzzy normed space is Cauchy.
If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and a complete fuzzy normed space is called a fuzzy Banach space .

3 Hyers-Ulam-Rassias Stability for the Functional

Equation

Theorem 3.1. Let X be a linear space and f be a mapping from X to a fuzzy
Banach space ( Y , N ) such that f ( 0 ) = 0 . Suppose that φ is a function from X
to a fuzzy normed space ( Z , N ′ ) such that

N ( f ( 2 x + y ) + f ( x + 2 y ) − 4 f ( x + y ) − f ( x ) − f ( y ), t + s )

≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( y ) , s )} (3)

for all x , y ∈ X and positive real numbers t , s . If φ ( 3 x ) = α φ ( x ) for some
real number α with 0 < α < 9 then there exits a unique quadratic mapping

Q : X → Y define by Q ( x ) = lim
n→∞

(
f ( 3 n x )

9 n

)
and satisfying

N ( f ( x ) − Q ( x ) , t ) ≥ M

(
x , t

9 − α

18

)
(4)

Where

M ( x , t ) = min

{
N ′

(
φ ( x ) ,

9 t

5

)
, N ′

(
φ ( x ) ,

9 t

5

)
, N ′

(
φ ( x ) ,

9 t

5

)
,

N ′
(

φ ( 0 ) ,
9 t

5

)}
.

Proof. Putting y = x and s = t in (3) , we get

N ( 2 f ( 3 x ) − 4 f ( 2 x ) − 2 f ( x ) , 2 t ) ≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t )}
i. e. , N ( f ( 3 x ) − 2 f ( 2 x ) − f ( x ) , t ) ≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t )} .

Again putting y = 0 in (3) , we get

N ( f ( 2 x ) − 4 f ( x ) , 2 t ) ≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( 0 ) , t )} .

Now

N ( f ( 3 x )− 9 f ( x ) , 5 t )

= N ( f ( 3 x )− 2 f ( 2 x )− f ( x ) + 2 f ( 2 x )− 8 f ( x ) , t + 4 t )

≥ min {N ( f ( 3 x )− 2 f ( 2 x )− f ( x ) , t ) , N ( f ( 2 x )− 4 f ( x ) , 2 t )}
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≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t ) , N ′ ( φ ( 0 ) , t )}

or , N

(
f ( x ) − f ( 3 x )

9
,

5 t

9

)

≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t ) , N ′ ( φ ( x ) , t ) , N ′ ( φ ( 0 ) , t )} ,

i. e. , N

(
f ( x ) − f ( 3 x )

9
, t

)

≥ min

{
N ′ ( φ ( x ) ,

9 t

5
) , N ′ ( φ ( x ) ,

9 t

5
) , N ′ ( φ ( x ) ,

9 t

5
) , N ′ ( φ ( 0 ) ,

9 t

5
)

}

= M ( x , t ) (5)

Where

M ( x , t ) = min

{
N ′

(
φ ( x ) ,

9 t

5

)
, N ′

(
φ ( x ) ,

9 t

5

)
, N ′

(
φ ( x ) ,

9 t

5

)
,

N ′
(

φ ( 0 ) ,
9 t

5

)}

Now from our assumption,

M ( 3 x , t ) = M

(
x ,

t

α

)
(6)

Replacing x by 3x in (5) and using (6) we have

N

(
f ( 3 n x )

9n
− f ( 3 n+1 x )

9n+1
,

αn t

9n

)

= N

(
f ( 3n x ) − f ( 3n+1 x )

9
, αn t

)

≥ M ( 3 n x , α n t ) = M ( x , t )

Since
f ( 3 n x )

9 n
− f ( x ) =

n−1∑

k=0

(
f (3 k +1x )

9 k +1
− f (3 kx )

9 k

)

then we have

N

(
f ( 3 n x )

9 n
− f ( x ) , t

n−1∑

k=0

αk

9 k

)

= N

(
n−1∑

k=0

(
f ( 3 k+1 x )

9 k+1
− f ( 3 k x )

9 k

)
, t

n−1∑

k=0

αk

9 k

)

= N

(
f ( 3 x )

9
− f ( x ) +

n−1∑

k=1

(
f ( 3 k+1 x )

9 k+1
− f ( 3 k x )

9 k

)
, t + t

n−1∑

k=1

αk

9 k

)

≥ min

{
M ( x , t ), N

(
n−1∑

k=1

(
f ( 3 k+1 x )

9 k+1
− f ( 3 k x )

9 k

)
, t

n−1∑

k=1

αk

9 k

)}
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≥ min

{
M ( x , t ), N

(
f ( 3 2 x )

9 2
− f ( 3 x )

9
, t

α

9

)
, N

(
f ( 3 3 x )

9 3
− f ( 3 2 x )

9 2
,

t α 2

9 2

)
,

N

(
f ( 3 4 x )

9 4
− f ( 3 3 x )

9 3
,

t α 3

9 3

)
, ..., N

(
f ( 3 k x )

9 k
− f ( 3 k− 1 x )

9k−1
,

t α k−1

9 k−1

)}

≥ min {M ( x , t ) , M ( x , t ) , M ( x , t ) , M ( x , t ) , ... , M ( x , t )}
= M ( x , t )

Therefore

N

(
f ( 3 n x )

9 n
− f ( x ) , t

)
≥ M

(
x , t

n−1∑

k=0

9 k

α k

)
(7)

Replacing x by 3 m x in (7) we get

N

(
f ( 3 n+m x )

9 m+n
− f ( 3 m x )

9 m
, t

)
≥ M

(
x , t

m + n−1∑

k=m

9 k

α k

)
(8)

Since lim
t→∞

M ( x , t ) = 1, taking limit m → ∞,

the R. H. S. of (8) tends to 1 as m → ∞.

Therefore
{

f(3 n x )
9 n

}
is a Cauchy sequence in ( Y , N ). Since ( Y , N ) is a com-

plete fuzzy normed space, the sequence converges to some point Q ( x ) ∈ Y . So we

can define a mapping Q : X → Y by Q ( x ) : = N lim
n→∞

f ( 3 n x )
9 n for all n ∈ N .

Also

N ( Q ( x ) − f ( x ) , t ) = N

(
Q ( x ) − f ( 3 n x )

9 n
+

f ( 3 n x )

9 n
− f ( x ) ,

t

2
+

t

2

)

≥ min

{
N

(
Q ( x ) − f ( 3 n x )

9 n
,

t

2

)
, N

(
f ( 3 n x )

9 n
− f ( x ) ,

t

2

) }

≥ M


 x ,

t

2
∞∑

k=0

(
α
9

)
k


 = M


 x ,

t

2
(

1
1− α

9

)

 = M

(
x ,

t ( 9 − α )

18

)

To show that Q satisfies the functional equation (2), we replacing x by 3 n x and y
by 3 n y in (3)

N ( f ( 3 n ( 2 x + y ) ) + f ( 3 n ( x + 2 y ) ) − 4 f ( 3 n ( x + y ) )

− f ( 3 n ( x ) ) − f ( 3 n ( y ) ), t )

≥ min

{
N ′ ( φ ( 3 n x ) ,

t

2
) , N ′ ( φ ( 3 n y ) ,

t

2
)

}

or , N

(
f( 3n ( 2 x + y ) )

9 n
+

f( 3n ( x + 2 y ) )

9 n
− 4 f( 3n ( x + y ) )

9 n
−

f( 3n ( x ) )

9 n
− f( 3n ( y ) )

9 n
,

t

9n

)
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≥ min

{
N ′ ( φ ( 3 n x ) ,

t

2
) , N ′ ( φ ( 3 n y ) ,

t

2
)

}

or , N

(
f( 3n ( 2 x + y ) )

9 n
+

f( 3n ( x + 2 y ) )

9 n
− 4 f( 3n ( x + y ) )

9 n

−f( 3n ( x ) )

9 n
− f( 3n ( y ) )

9 n
, t

)

≥ min

{
N ′ ( φ ( 3 n x ) ,

9 n t

2
) , N ′ ( φ ( 3 n y ) ,

9 n t

2
)

}

= min

{
N ′

(
φ ( x ) ,

(
9

α

)n
t

2

)
, N ′

(
φ ( y ) ,

(
9

α

)n
t

2

)}

for all x , y ∈ X , t > 0 .
As 0 < α < 9 , taking limit n → ∞ we get

N ( Q ( 2 x + y ) + Q ( x + 2 y )− 4 Q ( x + y )−Q ( x )−Q ( y ), t ) = 1

Therefore

Q ( 2 x + y ) + Q ( x + 2 y ) = 4 Q ( x + y ) + Q ( x ) + Q ( y )

Hence Q satisfies (2).
Uniqueness : Let T : X → Y be an another quadratic mapping which satisfies
(3). Since Q ( 2 x ) = 4 Q ( x ) and Q ( 3 x ) = 2 Q ( 2 x ) + Q ( x ) = 9 Q ( x ) .
Therefore it can be proved by induction that Q ( 3 n x ) = 9 n Q ( x ). Now fix x ∈ X
and using Q ( 3n x) = 9 n Q ( x ) and T ( 3n x ) = 9n T ( x ) for all x ∈ X . Now

N ( Q ( x )−T ( x ) , t ) = N

(
Q ( 3 n x )

9 n
− T ( 3 n x )

9 n
, t

)

= N ( Q ( 3 n x ) − T ( 3 n x ) , 9 n t )

≥ min

{
N

(
Q ( 3 n x ) − f ( 3 n x ) ,

9 n t

2

)
, N

(
T ( 3 n x ) − f ( 3 n x ) ,

9 n t

2

)}

≥ min

{
M

(
3 n x ,

9 n t ( 9 − α)

2 × 18

)
, M

(
3 n x ,

9 n t ( 9 − α)

2 × 18

)}

= min

{
M

(
x ,

t ( 9 − α)

2 × 18

(
9

α

)n )
, M

(
x ,

t ( 9 − α)

2 × 18

(
9

α

)n )}

= M

(
x ,

t ( 9 − α)

2 × 18

(
9

α

)n )

for all x ∈ X and t > 0. Since 0 < α < 9 , and lim
n→∞

(
9
α

)
n = ∞ therefore right

hand side of the inequality tend to 1 as n → ∞. Hence Q ( x ) = T ( x ) for all
x ∈ X . This completes the proof of the theorem.
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Corollary 3.2. Let δ > 0 and X be a linear space, ( Y , N ′ ) be a fuzzy Banach
space. If let f : X → Y be a mapping and z 0 is a fixed vector of a fuzzy normed
space ( Z , N ′′ ) such that

N ′ ( f ( 2 x + y ) + f ( x + 2 y ) − 4 f ( x + y ) − f ( x ) − f ( y ), t + s )

≥ min {N ′′ ( δ z0 , t ) , N ′′ ( δ z0 , s )} (9)

for all x , y ∈ X and positive real numbers t, s. Then there exits a unique quadratic

mapping Q : X → Y define by Q ( x ) = lim
n→∞

(
f ( 3 n x )

9 n

)
and satisfying

N ′ ( f ( x ) − Q ( x ) , t ) ≥ N ′′
(

z0 ,
9 t

5 δ

)
(10)

Proof. Define φ ( x ) = δ z 0 , then the proof is followed by the previous Theorem .

Corollary 3.3. Let ε ≥ 0 and X be a linear space, ( Y , N ′′ ) be a fuzzy Banach
space. If let f : X → Y be a mapping such that

N ′′ ( f ( 2 x + y ) + f ( x + 2 y ) − 4 f ( x + y ) − f ( x ) − f ( y ), t ) ≥ ε

for all x , y ∈ X and positive real numbers t. Then there exits a unique quadratic

mapping Q : X → Y define by Q ( x ) = lim
n→∞

(
f ( 3 n x )

9 n

)
and satisfying

N ′′ ( f ( x ) − Q ( x ) ,
5

8
t ) ≥ ε

Proof. The proof is same as that of the previous theorem .

Example 3.4. Let X be a normed algebra. Define f : ( X , N ) → ( X , N ′ ) by
f ( x ) = x2 + ‖x‖x 0, and
φ ( x , y ) = ( ‖2x + y‖ + ‖x + 2y‖ − 4‖x + y‖ − ‖x‖ − ‖y‖ )x0 where x 0 is a unit
vector in X. Then

N ( f ( 2 x + y ) + f ( x + 2 y ) − 4 f ( x + y ) − f ( x ) − f ( y ), t + s )

≥ min {N ′ ( φ ( x ) , t ) , N ′ ( φ ( y ) , s )}
Also φ ( 3 x , 3 y ) = 3 φ ( x , y ) for each x , y ∈ X. Hence all the conditions of
Theorem (3.1) holds for α = 1 . Therefore fuzzy difference between Q ( x ) =

lim
n→∞

(
f ( 3 n x )

9 n

)
= x2 and f ( x ) is equal to [ using Example 2.2 ]

N ( f ( x ) − Q ( x ) , t ) = N ( ‖x‖x0 , t )

=
t

t + ‖x‖ = N ( x , t ) ≥ N ′ ( x , t ) ≥ M

(
x ,

4

9
t

)
.



Journal of New Theory 10 (2016) 30-38 37

4 Conclusion

In this article, to establish Hyers-Ulam-Rassias stability we have used the functional
equation (2) having quadratic function as its one particular solution. But this equa-
tion is not known as quadratic functional equation. So, natural question arises,
whether the functional equation (2) can be derived from the quadratic functional
equation (1) or the equation (1) can be derived from the equation (2). In fact, what
could be the general solution of the equation (2). Can we establish the Theorem
(3.1) for complex valued function f of complex variable satisfying the equation (2)?
So, in our view, this article has good prospect for future work.
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Abstract – Single-valued neutrosophic set (SVNS) is very suitable for expressing indeterminate and 

inconsistent information in fault diagnosis problems, and then its cosine measure is a useful mathematical 

tool for handling the decision making, pattern recognition, and fault diagnosis problems. However, due to the 

lack of engineering applications of SVNSs in fault diagnoses, the paper develops a cosine measure-based 

fault diagnosis method and applies it to the misfire fault diagnosis of gasoline engines with SVNS 

information. Through the cosine measure between each fault pattern and a real-testing sample, according to 

the largest cosine measure value, we can determine that the testing sample should belong to the fault pattern. 

Finally, we provide nine real-testing samples to illustrate the misfire fault diagnoses of gasoline engines. All 

diagnosis results are in accordance with actual fault types. The results demonstrate the effectiveness and 

rationality of the proposed diagnosis method. 

 

Keywords  –  Cosine measure, single-valued neutrosophic set, misfire fault diagnosis, gasoline engine. 

 

 

1 Introduction 
 

Neutrosophic set proposed by Smarandache [1] is a powerful tool to deal with incomplete, 

indeterminate and inconsistent information in real world. It is a generalization of the theory 

of fuzzy sets, vague sets, intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy 

sets, then the neutrosophic set is characterized by a truth-membership degree, an 

indeterminacy-membership degree and a falsity-membership degree independently, which 

are within the real standard or nonstandard unit interval ]
−
0, 1

+
[. Therefore, if their range is 

restrained within the real standard unit interval [0, 1], the neutrosophic set is easily applied 

to engineering problems. For this purpose, Wang et al. [2] introduced the concept of a 

single-valued neutrosophic set (SVNS) as a subclass of the neutrosophic set.  
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In a fault diagnosis problem, various symptoms usually imply a lot of incomplete, 

uncertainty and inconsistent information for a fault, which characterizes a relation between 

symptoms and a fault. Thus we work with the uncertainties and inconsistencies to lead us 

to proper fault diagnosis. Hence, SVNSs are very suitable for expressing incomplete, 

indeterminate and inconsistent information comprehensively in fault diagnosis problems. 

However, similarity measure is an important mathematical tool in fault diagnoses. 

Recently, Ye [3] proposed cotangent similarity measures between SVNSs based on 

cotangent function and successfully applied them to the fault diagnosis of steam turbine 

under a single-valued neutrosophic environment. Because misfire fault problems of 

gasoline engines are usually produced in operating process [4], they can affect the 

operating power and working performance of gasoline engines and increase fuel 

consumption. To find out misfire fault problems in gasoline engines, extension set theory 

and neutrosophic numbers have been applied respectively to the misfire fault diagnosis of 

gasoline engines [4, 5]. However, till now SVNSs have been not applied to fault diagnoses 

of gasoline engines. To extend existing fault diagnosis methods, the main purposes of this 

paper are to propose a fault diagnosis method based on the cosine measure of SVNSs and 

to apply it to the misfire fault diagnosis of gasoline engines with single-valued 

neutrosophic information. 

 

The remainder of this paper is organized as follows. Section 2 briefly describes some basic 

concepts and cosine measure of SVNSs. Section 3 establishes a fault diagnosis method 

using the cosine measure of SVNSs and applies it to the misfire fault diagnosis of gasoline 

engines under a single-valued neutrosophic environment to demonstrate the effectiveness 

and nationality of the developed method. Section 4 contains conclusions and future 

research direction. 

 

 

2 Some Concepts and Cosine Measure of SVNSs 
 

Smarandache [1] firstly proposed the concept of the neutrosophic set from a philosophical 

viewpoint. Then, it is difficult to apply the neutrosophic set to engineering applications. 

Consequently, Wang et al. [2] introduced the definition of a SVNS, which is a subclass of 

the neutrosophic set. 

 

Definition 2.1. [2]. Let X be a universal of discourse. A SVNS N in X is characterized by a 

truth-membership function tN(x), an indeterminacy-membership function iN(x)
 
and a falsity-

membership function fN(x). Then, a SVNS N can be denoted by the following form: 

 

 XxxfxixtxN NNN  |)(),(),(, , 

 

where tN(x), iN(x), fN(x)  [0, 1] for each point x in X. Obviously, the sum of tN(x), iN(x) and 

fN(x) is 0 ≤ tN(x) + iN(x) + fN(x) ≤ 3. 

 

Let  XxxfxixtxN NNN  |)(),(),(,  and  XxxfxixtxM MMM  |)(),(),(,  be two 

SVNSs. Then there are the following relations [2]: 

 

(1) Complement:  XxxtxixfxN NNN

c  |)(),(1),(, ; 
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(2) Inclusion: N ⊆ M if and only if tN(x) ≤ tM(x), iN(x) ≥ iM(x) and fN(x) ≥ fM(x) for any x in 

X; 

(3) Equality: N = M if and only if N ⊆ M and M ⊆ N. 

 

Based on cosine function, Ye [6] proposed an improved cosine measure between SVNSs 

and gave the following definition. 

 

Definition 2.2. [6] Let two SVNSs N and M in the universe of discourse X = {x1, x2, , xn} 

be  XxxfxixtxN jjNjNjNj  |)(),(),(,  and  XxxfxixtxM jjMjMjMj  |)(),(),(, . Then, 

a cosine measure between SVNSs N and M is defined as 

 

 
 









n

j

jMjNjMjNjMjN xfxfxixixtxt
n

MNC
1

)()()()()()(
6

cos
1

),(


,  (1) 

 

The cosine measure C(N, M) satisfies the following properties (1)-(4) [6]: 

 

(1) 0  C(N, M)  1; 

(2) C(N, M) = 1 if and only if N = M; 

(3) C(N, M) = C(M, N); 

(4) If P is a SVNS in X and N  M  P, then C(N, P)  C(N, M) and C(N, P)  C(M, P). 

 

Considering the importance of elements in the universe of discourse, one needs to give the 

weight wj of the element xj (j = 1, 2,…, n) with wj  [0, 1] and 1
1

 

n

j jw . Then, the 

weighted cosine measure between SVNSs N and M can be introduced as follows [6]: 

 

  
 









n

j

jMjNjMjNjMjNj xfxfxixixtxtwMNW
1

)()()()()()(
6

cos),(


,        (2) 

 

 

3 Application of the Cosine Measure in Misfire Fault Diagnosis of 

Gasoline Engines 
 

3.1 Fault Diagnosis Method Based on the Cosine Measure  
 

In general, a set of m fault patterns (fault knowledge) P = {P1, P2, …, Pm} and a set of n 

characteristics (attributes) A = {A1, A2, …, An} should be established in a fault diagnosis 

problem. Then the fault information of each fault pattern Pk (k = 1, 2, …, m) with respect to 

characteristics of Aj (j = 1, 2, …, n) can be expressed by a set of single-valued neutrosophic 

values (SVNVs) Pk = {pk1, pk2, …, pkn}, where pkj = <tkj, ikj, fkj> is a SVNV, which is a basic 

component in the SVNS Pk, for 0  tkj + ikj + fkj  3 (k = 1, 2, …, m; j = 1, 2, …, n). Then, 

the information of a testing sample is expressed by a set of SVNVs St = {st1, st2, …, stn}, 

where stj = <ttj, itj, ftj> is a SVNV in the SVNS St for 0  ttj + itj + ftj  3 (t = 1, 2, …, q; j = 

1, 2, …, n).  

 

Then, the cosine measure between a testing sample St and each fault pattern Pk (k =1,2,…, 

m) can be calculated by the following formula: 
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n

j

kjtjkjtjkjtjjkt ffiittwPSW
1 6

cos),(


.                     (3) 

 

According to the largest measure value of W(St, Pk), we can determine that the testing 

sample St should belong to the fault pattern Pk. 

 

3.2 Application in the Misfire Fault Diagnosis of Gasoline Engines 
 

In this subsection, we apply the fault diagnosis method based on the cosine measure to the 

misfire fault diagnosis of gasoline engines to show the effectiveness and rationality of the 

proposed diagnosis method.  

 

Misfire fault problems are usually produced in operating process of gasoline engines [4, 5]. 

Thus, they can reduce the operating power and working performance of gasoline engines 

and increase fuel consumption so that they aggravate the pollution of exhaust emission 

when the burning quality of mixture gases descends in the combustion chamber of gasoline 

engines. To keep better working performance of gasoline engines, we have to find out and 

eliminate the affected factors of low burning quality in gasoline engines. Then, the main 

components of HC, NOx, CO, CO2, O2, water vapor etc included in the exhaust emission of 

gasoline engines can affect the burning quality of mixture gases in the engines. Under 

different burning conditions in the engines, the exhaust emission content can be changed in 

some variable ranges corresponding to the change of operating status or the occurrences of 

various mechanical and electronic faults in the engines. We have discovered the relation 

between the misfire fault and the content of the components in the exhaust emission of 

gasoline engines [4]. Hence, we can judge the operating status of the engines by analyzing 

the change of exhaust emission content. 

 

Let us investigate the misfire fault diagnosis problem of the gasoline engine EQ6102 [4, 5]. 

In general, the misfire faults of the engine can be classified into three fault types: no misfire 

(normal work), slight misfire and severe misfire to indicate the operating status of the 

engine. The slight misfire indicates the decline in the performance of ignition capacitance 

or the ignition delay, or the spark plug misfire in one of six cylinders; while the severe 

misfire indicates the spark plug misfire in two of six cylinders. According to real-testing 

data [4, 5], we can obtain three kinds of fault patterns: no misfire (P1), slight misfire (P2), 

severe misfire (P3), which are denoted by a set P = {P1, P2, P3}, with respect to five 

characteristics (HC, NOx, CO, CO2, O2) denoted by a set A = {A1, A2, A3, A4, A5}, as shown 

in Table 1. 

 

In Table 1, HC10
2

, CO2, NOx10, CO10
1

 and O2 in the characteristic set A = {A1, 

A2, A3, A4, A5} indicate the exhaust emission concentration of the five components HC, 

CO2, NOx, CO and O2 expressed by volume percentage [4, 5], and then the characteristic 

values of Aj (j = 1, 2, 3, 4, 5) are expressed as SVNVs in Table 1. 

 

To illustrate the effectiveness of the misfire fault diagnosis of the engine, we introduce the 

nine sets of real-testing samples for the engine EQ6102 from [4, 5], and then the 

characteristic values in the real-testing samples are expressed by SVNVs, which are shown 

in Table 2. 

 

 

 



Journal of New Theory 10 (2016) 39-44                                                                                                          43 
 

Table 1. Fault knowledge expressed bySVNVs for the engine EQ6102 [5] 

 

 
A1 

(HC10
2

) 
A2 (CO2) A3 (NOx10) 

A4 

(CO10
1

) 
A5 (O2) 

P1 

(Normal 

work) 

<0.03, 0.05, 

0.92> 

<0.51, 0.42, 

0.07> 

<0.03, 0.05, 

0.92> 

<0.3, 0.2, 

0.5> 

<0.062, 

0.028, 0.91> 

P2 

(Slight 

misfire) 

<0.01, 0.036, 

0.954> 

<0.428, 0.41, 

0.16> 

<0.04, 0.08, 

0.88> 

<0.29, 0.21, 

0.5> 

<0.04, 0.07, 

0.89> 

P3 

(Severe 

misfire) 

<0.2, 0.3, 

0.5> 
<0.3, 0.4, 0.3> 

<0.1, 0.2, 

0.7> 

<0.1, 0.2, 

0.7> 

<0.07, 0.08, 

0.85> 

 
Table 2. Real-testing samples of exhaust emission 

 

 
A1 

(HC 10
2

) 

A2 

(CO2) 

A3 

(NOx 10) 

A4 

(CO10
1

) 

A5 

(O2) 

Actual 

fault type 

S1 
<0.0455, 0, 

0.9545> 

<0.047, 

0, 0.953> 

<0.033, 0, 

0.967> 

<0.48, 0, 

0.52> 

<0.0527, 

0, 0.9473> 
P2 

S2 
<0.0572, 0, 

0.9428> 

<0.075, 

0, 0.925> 

<0.062, 0, 

0.938> 

<0.42, 0, 

0.58> 

<0.0751, 

0, 0.9249> 
P1 

S3 
<0.0261, 0, 

0.9739> 

<0.065, 

0, 0.935> 

<0.086, 0, 

0.914> 

(0.453, 0, 

0.547> 

<0.0431, 

0, 0.9569> 
P2 

S4 
<0.0312, 0, 

0.9688> 

<0.062, 

0, 0.938> 

<0.051, 0, 

0.949> 

<0.287, 0, 

0.713> 

<0.1064, 

0, 0.8936> 
P2 

S5 
<0.3761, 0, 

0.6239> 

<0.045, 

0, 0.955> 

<0.139, 0, 

0.861> 

<0.179, 0, 

0.821> 

<0.1025, 

0, 0.8975> 
P3 

S6 
<0.422, 0, 

0.578> 

<0.052, 

0, 0.948> 

<0.188, 0, 

0.812> 

<0.194, 0, 

0.806> 

<0.0931, 

0, 0.9069) 
P3 

S7 
<0.0189, 0, 

0.9811> 

<0.081, 

0, 0.919> 

<0.091, 0, 

0.909> 

<0.459, 0, 

0.541> 

<0.0377, 

0, 0.9623> 
P2 

S8 
<0.0555, 0, 

0.9445> 

<0.086, 

0, 0.914> 

<0.057, 0, 

0.943> 

<0.39, 0, 

0.61> 

<0.0736, 

0, 0.9264> 
P1 

S9 
<0.0551, 0, 

0.9449> 

<0.085, 

0, 0.915> 

<0.05, 0, 

0.95> 

<0.386, 0, 

0.614> 

<0.0789, 

0, 0.9211> 
P1 

 
Table 3. Fault diagnosis results of the nine real-testing samples 

 

 P1 P2 P3 
Diagnosis 

result 

Actual 

fault type 

S1 0.9552 0.9616 0.9364 P2 P2 

S2 0.9618 0.9617 0.9358 P1 P1 

S3 0.9616 0.9618 0.9421 P2 P2 

S4 0.9611 0.9616 0.9490 P2 P2 

S5 0.9402 0.9512 0.9560 P3 P3 

S6 0.9482 0.9493 0.9560 P3 P3 

S7 0.9615 0.9617 0.9232 P2 P2 

S8 0.9618 0.9586 0.9170 P1 P1 

S9 0.9618 0.9602 0.9187 P1 P1 
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Then, the importance of the five characteristics (five components) is considered by the 

weight vector W = (w1, w2, w3, w4, w5) = (0.05, 0.35, 0.3, 0.2, 0.1) [4]. By using Eq. (3), the 

diagnosis results are shown in Table 3. From Table 3, all the fault diagnosis results are in 

accordance with all the actual fault types. 

 

Therefore, the proposed fault diagnosis method for the gasoline engine is effective. 

Compared with the fault diagnosis method for the gasoline engine in [4, 5], the fault 

diagnosis method proposed in this paper is simpler and easier than the fault diagnosis 

method by using extension set theory [4], and then the fault diagnosis method with SVNSs 

in this paper contains more information (including truth information, indeterminacy 

information and falsity information) than the fault diagnosis method using the neutrosophic 

numbers [5] which consist of the determinate part and indeterminate part. 

 

 

4 Conclusions 
 

This paper proposed a fault diagnosis method based on the cosine measure of SVNSs and 

applied it to the misfire fault diagnosis of gasoline engines under a single-valued 

neutrosophic environment. The fault diagnosis results of the gasoline engine demonstrated 

the effectiveness and rationality of the proposed fault diagnosis method. The diagnosis 

method proposed in this paper is an extension of existing fault diagnosis methods and 

provides a new way for fault diagnoses of gasoline engines. In the future, the developed 

diagnosis method will be extended to other fault diagnoses, such as vibration faults of 

turbines, aircraft engines and gearboxes. 
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Abstract − In this paper, we investigate a new form of continuity called perfect ω-irresoluteness
and we use functions which have this type of continuity as a tool to set new characterizations of
some properties of topological spaces.
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1 Introduction

An ω-closed set is a set which contains all its condensation points [5]. Since the
advent of this notion, lots of topologist have studied on it and most of topological
notions such as continuity, compactness, connectedness were generalized. Especially,
some new strong and weak forms of continuity have been arised during the last
years. One of these is ω-irresoluteness introduced by Al-Zoubi [4]. On the other
hand, in 1984, Noiri [8] introduced and investigated the notion of perfect continuity
of functions between topological spaces.

This paper devoted to investigate a new type of continuity is stronger than ω-
irresoluteness and perfect continuity. In section 3, definition and fundamental prop-
erties are given. In section 4, we use perfectly ω-irresolute functions as a tool to
set new characterizations of connectedness. Moreover some separation axioms re-
lated to ω-open sets are investigated. The last section deals with graphs of perfectly
ω-irresolute functions.

2 Preliminaries

Throughout the present paper, spaces always mean topological spaces on which no
separation axiom is assumed unless explicitly stated and f : (X, τ) → (Y, σ) (or
simply f : X → Y ) denotes a function f from a topological space (X, τ) into a
topological space (Y, σ). Let A be a subset of a space X. A point x ∈ X is called
a condensation point of A if for each open set U with x ∈ U , the set U ∩ A is
uncountable. A is called ω-closed [5] if it contains all its condensation points. The

**Edited by Takashi Noiri and Naim Çağman (Editor-in-Chief).
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complement of an ω-closed set is called ω-open. The family of all ω-open subsets of
(X, τ) is denoted by τω. It is known that τω is a topology for X and τ ⊂ τω. For
a subset A of (X, τ), the closure of A and the interior of A denoted by Cl(A) and
Int(A), respectively. The closure of A with respect to τω denoted by ωCl(A). A is
called regular closed [9] if A = Cl(Int(A)).

Let us recall the following definitions which we shall require later.

Definition 2.1. A function f : X → Y is called perfectly continuous [8] if f−1(V )
is clopen in X for every open set V of Y .

Definition 2.2. A function f : X → Y is called ω-irresolute [4] if f−1(V ) is ω-open
in X for every ω-open set V of Y .

3 Perfectly ω-irresolute Functions

Definition 3.1. A function f : X → Y is said to be perfectly ω-irresolute if f−1(V )
is clopen in X for every ω-open set V of Y .

Theorem 3.2. For a function f : (X, τ) → (Y, σ), the followings are equivalent:
(1) f is perfectly ω-irresolute;
(2) for every ω-closed subset F of Y , f−1(F ) is clopen in X;
(3) f : (X, τ) → (Y, σω) is perfectly continuous.

Proof. (1)⇒(2). Let F be a ω-closed subset of Y . Then Y \F is an ω-open subset
and by (1), f−1(Y \F ) = X\f−1(F ) is clopen in X. Hence f−1(F ) is also clopen in
X.

(2)⇒(3). Let V ∈ σω. Then Y \V is an ω-closed in Y and by (2), f−1(Y \V ) =
X\f−1(V ) is clopen in X. Hence f−1(V ) is also clopen in X.

(3)⇒(1). It can be shown easily. Recal that a space (X, τ) is said to be ω-space
[1] if every ω-open set is open and is said to be locally ω-indiscrete [1] if every ω-open
set is closed in X.

Then we have the following theorem which gives a characterization of locally
ω-indiscrete ω-space. Its proof is clear.

Theorem 3.3. A space X is ω-space and locally ω-indiscrete if and only if the
identity map of X is perfectly ω-irresolute.

Theorem 3.4. For a function f : X → Y , the following are true.
(1) If f is perfectly ω-irresolute and A ⊆ X, then f |A: A → Y is perfectly

ω-irresolute.
(2) If {Gα : α ∈ I} is a locally finite clopen cover of X and if for each α,

fα = f |Gα is perfectly ω-irresolute, then f is perfectly ω-irresolute.

Proof. The proof of (1) is clear. We will only prove (2).
Let F be a ω-open subset of Y . Since each fα is perfectly ω-irresolute, each

f−1
α (F ) is clopen in Gα and hence in X. Thus f−1(F ) = ∪{f−1

α (F ) : α ∈ I} is
open in X. On the other hand, since the family {Gα : α ∈ I} is locally finite,
{f−1

α (F ) : α ∈ I} is a locally finite family of closed sets in X. Hence f−1(F ) being
the union of a locally finite collection of closed sets is closed in X. Consequently,
f−1(F ) is clopen in X.
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Definition 3.5. A function f : X → Y is called
(1) ω-continuous [6] f−1(V ) is ω-open in X for every open set V of Y .
(2) slightly ω-continuous [7] f−1(V ) is ω-open in X for every clopen set V of Y .
(3) contra ω-irresolute if f−1(V ) is ω-closed in X for every ω-open set V of Y .

Theorem 3.6. The followings hold for functions f : X → Y and g : Y → Z:
(1) If f : X → Y is perfectly ω-irresolute and g : Y → Z is ω-irresolute, then

g ◦ f : X → Z is perfectly ω-irresolute.
(2) If f : X → Y is perfectly ω-irresolute and g : Y → Z is ω-continuous, then

g ◦ f : X → Z is perfectly continuous.
(3) If f : X → Y is slightly ω-continuous and g : Y → Z is perfectly ω-irresolute,

then g ◦ f : X → Z is ω-irresolute.
(4) If f : X → Y is perfectly ω-irresolute and g : Y → Z is contra ω-irresolute,

then g ◦ f : X → Z is perfectly ω-irresolute.

Proof. (1) Let V be any ω-open set in Z. By the ω-irresoluteness of g, g−1(V ) is
ω-open. Since f is perfectly ω-irresolute, f−1(g−1(V )) = (g ◦ f)−1(V ) is clopen in
X. Therefore, g ◦ f is perfectly ω-irresolute.

The others can be proved similarly.

Theorem 3.7. If f : X → Y is a surjective open and closed function and g : Y → Z
is a function such that gof : X → Z is perfectly ω-irresolute function, then g is
perfectly ω-irresolute function.

Proof. Let V be any ω-open set in Z. Since gof is perfectly ω-irresolute, (gof)−1(V )
is clopen in X. Since f is surjective open and closed, f((g◦f)−1(V )) = f((f−1(g−1(V ))) =
g−1(V ) is clopen in Y . Therefore, g is perfectly ω-irresolute.

It is easy to show that perfect ω-irresoluteness implies perfect continuity and
ω-irresoluteness. The following theorems are about reverse of these implications and
they can be proved directly.

Theorem 3.8. Let X be a locally ω-indiscrete and ω-space. Then for any topological
space Y , a function f : X → Y is perfectly ω-irresolute if and only if f is ω-irresolute.

Theorem 3.9. Let Y be an ω-space. Then for any topological spaces X, a function
f : X → Y is perfectly ω-irresolute if and only if f is perfectly continuous.

Theorem 3.10. For a function f : X → Y , the following properties are equivalent:
(1) f is contra ω-irresolute;
(2) for every ω-closed F of Y , f−1(F ) is ω-open in X;
(3) for every x ∈ X and for every ω-closed set F containing f(x), there exists an

ω-open set U containing x such that f(U) ⊆ F .

Proof. (1)⇔(2). These follow from equality f−1(Y \F ) = X\f−1(F ) for each subset
F of Y .

(2)⇒(3). Let F be an ω-closed set containing f(x). Then by (2), f−1(F ) is
ω-open in X containing x. If we choose U = f−1(F ), proof is completed.

(3)⇒(2). Obvious.
A space X is called anti locally countable (see [3]) if every nonempty open set is

uncountable. It is shown in [7] that in an anti locally countable space X, U is clopen
in X iff U is ω-open and ω-closed in X. Then we have the following corollary.
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Corollary 3.11. Let (X, τ) be an anti locally countable space. Then for any topo-
logical spaces (Y, σ), a function f : (X, τ) → (Y, σ) is perfectly ω-irresolute if and
only if f is ω-irresolute and contra ω-irresolute.

A space X is called ω-regular [7] if for each closed set F and each point x ∈ X−F ,
there exist disjoint ω-open sets U and V such that x ∈ U and F ⊆ V . It is shown in
[2] that a space X is ω-regular if and only if for every point x of X and every open
set V containing x, there exists an ω-open set U such that x ∈ U ⊆ ωCl(U) ⊆ V .

Theorem 3.12. Let X be an anti local countable space and let Y be an ω-regular
space. For a function f : X → Y , the following properties are equivalent:

(1) f is perfectly ω-irresolute;
(2) for every ω-open set V in Y , f−1(V ) is regular closed in X;
(3) for every ω-open set V in Y , f−1(V ) is closed in X;
(4) f is contra-ω-irresolute.

Proof. The implications (1)⇒(2)⇒(3)⇒(4) are trivial. If we show that f is ω-
irresolute by Corollary 3.11, we have the proof of the implication (4)⇒(1). Let
x ∈ X be an arbitrary point and V be an ω-open set of Y containing f(x). Since
Y is ω-regular, there exists an ω-open set W in Y such that f(x) ∈ ωCl(W ) ⊆ V .
Since f is contra-ω-irresolute, there exists an ω-open set Ux containing x such that
f(Ux) ⊆ ωCl(W ). Then Ux ⊆ f−1(V ). This shows that f−1(V ) is ω-open in X.

4 Applications

Note that (X, τω) is always a T1-space for any given space (X, τ) [3]. Hence we have
the following results.

Theorem 4.1. If f : (X, τ) → (Y, σ) is a perfectly ω-irresolute function, then f is
constant on each component of X.

Proof. Let a and b be two points of X that lie in same component C of X. Assume
that f(a) 6= f(b). Since (Y, σω) is T1- space, there exists an U ∈ σω containing say
f(a) but not f(b). By perfect ω-irresoluteness of f , f−1(U) and X − f−1(U) are
disjoint clopen sets containing a and b, respectively. This is a contradiction with the
fact that C is a component containing a and b. Hence we have the result.

Corollary 4.2. If f : X → Y is a perfectly ω-irresolute function and if A is non-
empty connected subset of X, then f(A) is a single point.

Theorem 4.3. A space X is connected if and only if every perfectly ω-irresolute
function from a space X into any space Y is constant.

Proof. The first part of the proof is clear by Theorem 4.1. For the seconf part, assume
that X is not connected. Then there exists a proper non-empty clopen subset A of
X. Let Y = {u, v} and σ be discrete topology on Y . Then the function f : X → Y
defined by f(x) = u if x ∈ A, f(x) = v if x /∈ A is non-constant and perfectly
ω-irresolute. This is a contradiction by Theorem 4.1. Hence X must be connected.

Note that the topological space consisting of two points with the discrete topology
is usually denoted by 2.
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Corollary 4.4. For a topological space X, the following are equivalent :
(1) X is connected;
(2) Every perfectly ω-irresolute function f : X → 2 is constant;
(3) There is no perfectly ω-irresolute function f : X → 2 is surjective.

Definition 4.5. A space X is said to be ultra Hausdorff [9] (resp. ω-T2 [3]) if every
two distinct points of X can be separated by disjoint clopen (resp. ω-open) sets.

Theorem 4.6. If f : X → Y is a perfectly ω-irresolute injection, then X is ultra
Hausdorff.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then f(x1) 6= f(x2). Since Y is always
ω − T1, there exists an ω-open set U containing say f(x1) but not f(x2). By perfect
ω-irresoluteness of f , f−1(U) and X − f−1(U) are disjoint clopen sets containing x1

and x2, respectively. Thus X is ultra Hausdorff.
The quasi-topology denoted by τq on X is the topology having as base the clopen

subsets of (X, τ). A subset A of X is called quasi open if A ∈ τq. The complement
of a quasi-open set is called quasi-closed [9].

Theorem 4.7. Let Y be ω-T2 space.
(1) If f , g : X → Y are perfectly ω-irresolute functions, then the set A = {x ∈

X : f(x) = g(x)} is quasi-closed in X.
(2) If f : X → Y is perfectly ω-irresolute function, then the subset E = {(x, y) :

f(x) = f(y)} is quasi-closed in X ×X.

Proof. (1). Let x /∈ A. Then f(x) 6= g(x). Since Y is ω-T2, there exist disjoint ω-open
sets V1 and V2 in Y such that f(x) ∈ V1 and g(x) ∈ V2. Since f and g are perfectly
ω-irresolute, f−1(V1) and g−1(V2) are clopen sets. Put U = f−1(V1)∩ g−1(V2). Then
U is clopen set containing x and U ∩A = ∅. Hence we have U ⊆ X−A. This shows
that X − A is quasi-open or equivalently A is quasi-closed.

(2). Let (x, y) /∈ E. Then f(x) 6= f(y). Since Y is ω-T2, there exist disjoint
ω-open sets V1 and V2 containing f(x) and f(y) respectively. Since f is perfectly
ω-irresolute, f−1(V1) and f−1(V2) are clopen sets. Then for the clopen set U =
f−1(V1)×f−1(V2) containing (x, y), we have U ∩E = ∅ i.e. U ⊆ (X×X)−E. This
shows that (X ×X)− E is quasi-open or equivalently E is quasi-closed.

Definition 4.8. [5]A function f : X → Y is called
(a) ω-closed if for each closed set K in X, f(K) is ω-closed in Y .
(b) ω-open if for each open set U in X, f(U) is ω-open in Y .

Theorem 4.9. A function f : X → Y is ω-closed (resp. ω-open) if and only if for
each subset S of Y and for each open (resp. closed) subset U of X with f−1(S) ⊆ U ,
there exists an ω-open (resp. ω-closed) set V of Y such that S ⊆ V and f−1(V ) ⊆ U .

Proof. We only prove for the ω-closedness. The other is entirely analogous.
(⇒): Suppose that f is ω-closed. Let S be any subset of Y and U be an open

subset of X with f−1(S) ⊆ U . Since f is ω-closed, Y − f(X − U) is an ω-open
set in Y . Then for the set V = Y − f(X − U), we have S ⊆ V and f−1(V ) =
f−1(Y − f(X − U)) = X − f−1(f(X − U)) ⊆ U .

(⇐): Let K be any closed subset of X and S = Y − f(K). Then f−1(S) ⊆
X − K. By hypothesis, there exists an ω-open set V in Y containing S such that
f−1(V ) ⊆ X−K. Then, we have K ⊆ X−f−1(V ) and Y −V = f(K). Since, Y −V
is ω-closed, f(K) is ω-closed and thus f is an ω-closed function. A topological space
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X is called ω-normal [7] if for every pair of disjoint closed subsets F1 and F2 of X,
there exists disjoint ω-open sets U and V such that F1 ⊆ U and F2 ⊆ V .

Theorem 4.10. If f : X → Y is a continuous ω-closed surjection and if X is normal
space, then Y is ω-normal.

Proof. Let F1 and F2 be disjoint closed sets of Y . Since f is continuous and X is
normal, there exist disjoint open sets U and V such that f−1(F1) ⊆ U and f−1(F2) ⊆
V . By Theorem 4.9, there exist ω-open sets G and H such that F1 ⊆ G, F2 ⊆ H
and f−1(G) ⊆ U and f−1(H) ⊆ V . Then we have f−1(G) ∩ f−1(H) = ∅ and hence
G ∩H = ∅. This shows that Y is ω-normal. The following theorem shows that we
can get same result under different hypothesis.

Theorem 4.11. If f : X → Y is perfectly ω-irresolute, ω-open bijection and X is a
normal space, then Y is ω-normal.

Proof. Let F1 and F2 be disjoint closed sets in Y . Since F1 and F2 are also ω-closed
and f is perfectly ω-irresolute, f−1(F1) and f−1(F2) are disjoint clopen and so closed
sets in X. By normality of X, there exist disjoint open sets U and V such that
f−1(F1) ⊆ U and f−1(F2) ⊆ V . Then we obtain that F1 ⊆ f(U) and F2 ⊆ f(V )
such that f(U) and f(V ) are disjoint ω-open sets. Thus Y is ω-normal.

Theorem 4.12. If f : X → Y is a continuous, ω-open, ω-closed surjection and if X
is regular, then Y is ω-regular.

Proof. Let y ∈ Y and V be an open set in Y with y ∈ V . Take y = f(x). Since f is
continuous and X is regular, there exist an open set U such that x ∈ U ⊆ Cl(U) ⊆
f−1(V ). Then y ∈ f(U) ⊆ f(Cl(U)) ⊆ V . By assumptions, f(U) is ω-open and
f(Cl(U)) is ω-closed set in Y . Therefore, we have y ∈ f(U) ⊆ ωClf(U) ⊆ V . This
shows that Y is ω-regular.

Theorem 4.13. If f : X → Y is perfectly ω-irresolute, ω-open bijection and if X is
regular, then Y is ω-regular.

Proof. It is similar to that of Theorem 4.11.

Definition 4.14. A space (X, τ) is called
(1) mildly compact [9] (resp. ω-compact [1]) if every clopen (resp. ω-open) cover

of X has a finite subcover.
(2) mildly Lindelöf [9] if every cover of X by clopen sets has a countable subcover.

Theorem 4.15. Let f : X → Y be a perfectly ω-irresolute surjection. If X is mildly
compact, then Y is ω-compact.

Proof. Let f be a perfectly ω-irresolute surjection and let X be a mildly com-
pact space. If {Vi}i∈I is an ω-open cover of Y , by perfect ω-irresoluteness of f ,
{f−1(Vi)}i∈I is a clopen cover of X and so there is a finite subset I0 of I such that
X = ∪i∈I0f

−1(Vi). Therefore, we have Y = ∪i∈I0Vi since f is surjective. Thus Y is
ω-compact.

Theorem 4.16. [6]For a topological space (X, τ), (X, τ) Lindelöf if and only if
(X, τω) Lindelöf.

Theorem 4.17. Let f : X → Y be a perfectly ω-irresolute surjection. If X is mildly
Lindelöf, then Y is Lindelöf.
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Proof. It is similar to that of Theorem 4.15. We notice that a subspace A of a space
X is mildly Lindelöf relative to X if for every cover {Vi : i ∈ I} of A by clopen sets
of X, there exists a countable subset I0 of I such that {Vi : i ∈ I0} covers A.

Theorem 4.18. Let f : X → Y be an ω-closed surjection such that f−1({y}) is
a mildly Lindelöf relative to X for each y ∈ Y . If Y is Lindelöf, then X is mildly
Lindelöf.

Proof. Let {Ui : i ∈ I} be an clopen cover of X. Since f−1({y}) is a mildly Lindelöf
relative to X for each y ∈ Y , there exists a countable subset Iy of I such that
f−1({y}) ⊆ ∪{Ui : i ∈ Iy}. Put Uy = ∪{Ui : i ∈ Iy}. Then since f is ω-closed,
Vy = Y − f(X − Uy) is an ω-open set containing y such that f−1(Vy) ⊆ Uy. Again
since {Vy : y ∈ Y } is an ω-open cover of the Lindelöf space Y , by Theorem 4.16, there
exist countable points of Y , says, y1, y2, ..., yn, ... such that Y = ∪n∈NVyn . Therefore,
we have X = f−1(∪n∈NVyn) = ∪n∈Nf−1(Vyn) ⊆ ∪n∈NUyn = ∪n∈N(∪{Ui : i ∈ Iyn}) =
∪{Ui : i ∈ Iyn , n ∈ N}. This completes the proof.

Corollary 4.19. Let f : X → Y be an perfectly ω-irresolute and ω-closed surjection
such that f−1({y}) is a mildly Lindelöf relative to X for each y ∈ Y . Then X is
mildly Lindelöf if and only if Y is Lindelöf.

5 Graphs of Perfectly ω-irresolute Functions

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} ⊂ X × Y is
called the graph of f and is denoted by G(f).

Definition 5.1. The graph G(f) of a function f : X → Y is said to be quasi-ω-
closed if for each (x, y) ∈ (X × Y ) − G(f), there exist a clopen set U containing x
and an ω-open set V containing y such that (U × V ) ∩G(f) = ∅.

The proof of the following lemma is clear.

Lemma 5.2. The graph G(f) of a function f : X → Y is quasi-ω-closed in X × Y
if and only if for each (x, y) ∈ (X ×Y )−G(f), there exist a clopen set U containing
x and an ω-open set V containing y such that f(U) ∩ V = ∅.

Theorem 5.3. If f : X → Y is perfectly ω-irresolute and Y is ω-T2, then G(f) is
quasi-ω-closed.

Proof. Let (x, y) /∈ G(f), then y 6= f(x). Since Y is ω-T2, there exist disjoint ω-
open sets V1 and V2 containing f(x) and y, respectively. Again since f is perfectly
ω-irresolute, f−1(V1) is clopen set containing x. If we choose U = f−1(V1), then
we have f(U) ∩ V2 = ∅ and hence G(f) is quasi-ω-closed. A subset A of a space
X is said to be mildly compact (resp. ω-compact) relative to X if for every cover
{Vi : i ∈ I} of A by clopen (resp. ω-open) sets of X, there exists a finite subset I0

of I such that A ⊆ ∪{Vω : ω ∈ I0}.
Theorem 5.4. If a function f : (X, τ) → (Y, σ) has quasi-ω-closed graph, then the
followings are true.

(1) f(E) is ω-closed in Y for every subset E which is mildly compact relative to
X.

(2) f−1(K) is quasi-closed in X for every subset K which is ω-compact relative
to Y .
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Proof. (1) Let E be mildly compact relative to X and y /∈ f(E). Then we have
(x, y) ∈ (X × Y )−G(f) for each x ∈ E and by Lemma 5.2, there exist a clopen set
Ux and ω-open set Vx containing x and y respectively, such that f(Ux) ∩ Vx = ∅.
Since the family of {Ux : x ∈ E} is a cover of E by clopen sets of X, there exists a
finite number of points, say, x1, x2, ..., xn of E such that E ⊆ ∪{Uxi

: i = 1, 2, ..., n}.
Set V = ∩{Vxi

: i = 1, 2, ..., n}, then V is an ω-open set containing y and f(E)∩V ⊆
(∪{f(Uxi

) : i = 1, 2, ..., n})∩V = ∅. Therefore, we have, y /∈ ωCl(f(E)). This shows
that f(E) is ω-closed in Y .

(2) It is similar.

Theorem 5.5. Let f : (X, τ) → (Y, σ) have the quasi-ω-closed graph. If f is
injective, then (X, τq) is T1.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then, we have f(x1) 6= f(x2) and so
(x1, f(x2)) ∈ (X × Y ) − G(f). By quasi-ω-closedness of graph G(f), there exist
a clopen set U and an ω-open set V containing x1and f(x2) respectively, such that
f(U) ∩ V = ∅, and hence U ∩ f−1(V ) = ∅. Since x2 ∈ f−1(V ), clopen sets U and
X − U are desired sets. This completes the proof.

Theorem 5.6. If f : X → Y is an injection with quasi-ω-closed graph, then X is
ultra Hausdorff.

Proof. Let x1 and x2 be distinct points in X. Then f(x1) 6= f(x2) and so (x1, f(x2)) /∈
G(f). Therefore, there exist a clopen set U and an ω-open set V such that (x1, f(x2)) ∈
U × V and U ∩ f−1(V ) = ∅. Hence we have disjoint clopen sets U and X\U con-
taining x1 and x2 respectively. This shows that X is ultra Hausdorff.

Theorem 5.7. Let f : X → Y have the quasi-ω-closed graph. If f is a surjective
ω-open function, then Y is ω-T2.

Proof. Let y1 and y2 be any distinct points of Y . Since f is surjective, f(x) = y1 for
some x ∈ X and (x, y2) ∈ (X × Y ) − G(f). By quasi-ω-closedness of graph G(f),
there exist a clopen set U and an ω-open set V such that (x, y2) ∈ (U × V ) and
f(U)∩ V = ∅. Since f is ω-open, then f(U) is ω-open such that f(x) = y1 ∈ f(U).
This shows that Y is ω-T2.

Definition 5.8. A topological space X is said to be hyperconnected [10] if every
pair nonempty open sets of X has nonempty intersection.

Theorem 5.9. Let X be hyperconnected. If f : X → Y is a perfectly ω-irresolute
function with quasi-ω-closed graph, then f is constant.

Proof. Suppose that f is not constant. Then there exist two point x1 and x2 of X
such that f(x1) 6= f(x2). Then we have (x1, f(x2)) /∈ G(f). Since G(f) is quasi-ω-
closed, there exist a clopen set U and an ω-open set V such that (x1, f(x2)) ∈ U ×V
and f(U) ∩ V = ∅. Therefore, we have U ∩ f−1(V ) = ∅. This is a contradiction
with the hyperconnectedness of X since f−1(V ) is non-empty open set in X.
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Abstaract − In this paper, we introduce a new class of convex functions which is called (s,m)-
preinvex functions in the second sense then we establish some new Hermite-Hadamard’s inequalities
whose modulus of the first derivatives are in this novel class.

Keywords − Hermite-Hadamard inequality, Hölder’s inequality, power mean inequality.

1 Introduction

One of the most well-known inequalities in mathematics for convex functions is so
called Hermite-Hadamard integral inequality

f

(
a + b

2

)
≤ 1

b− a

b∫

a

f(x)dx ≤ f (a) + f (b)

2
, (1)

where f is a real continuous convex function on the finite interval [a, b]. If the function
f is concave, then (1) holds in the reverse direction (see [18]).

The Hermite-Hadamard inequality play an important role in nonlinear analysis
and optimization. The above double inequality has attracted many researchers,
various generalizations, refinements, extensions and variants of (1) have appeared in
the literature, we can mention the works [1, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17] and the
references cited therein.

*Edited by Uzair Awan and Naim Çaǧman (Editor-in-Chief).
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In recent years, lot of efforts have been made by many mathematicians to gen-
eralize the classical convexity. Hanson in [7], introduced a new class of generalized
convex functions, called invex functions. In [2], the authors gave the concept of
preinvex functions which is special case of invexity. Pini [19], Noor [11, 12], Yang
and Li [23] and Weir [22], have studied the basic properties of preinvex functions
and their role in optimization, variational inequalities and equilibrium problems.

In [5], Dragomir and Agarwal established the following Hermite-Hadamard’s in-
equalities for differentiable convex functions:

Theorem 1.1. [Theorem 2.2] Let f : I◦ ⊂ R → R be a differentiable mapping on
I◦, a, b ∈ I◦ with a < b. If |f ′| is convex on [a, b], then the following inequality holds:

∣∣∣∣∣∣
f(a) + f(b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ (b− a) (|f ′ (a)|+ |f ′(b)|)

8
. (2)

Theorem 1.2. [Theorem 2.3] Let f : I◦ ⊂ R → R be a differentiable mapping on
I◦, a, b ∈ I◦ with a < b and let p > 1. If the new mapping |f ′| p

p−1 is convex on [a, b],
then the following inequality holds:

∣∣∣∣∣∣
f(a) + f(b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣

≤ (b− a)

2 (p + 1)
1
p

(
|f ′(a)| p

p−1 + |f ′(b)| p
p−1

2

) p−1
p

. (3)

In [17], Pearce and Pečarić generalized Theorem 2.3 from [5] as follows:

Theorem 1.3. [Theorem 1] Let f : I◦ ⊂ R→ R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b and let q ≥ 1. If the mapping |f ′|q is convex on [a, b], then

∣∣∣∣∣∣
f(a) + f(b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ (b− a)

4

( |f ′ (a)|q + |f ′(b)|q
2

) 1
q

. (4)

In [8], Kirmaci et al. gave a variant of Theorem 1.1 from [13] for functions whose
first derivatives in absolute values are s-convex in the second sense as follows:

Theorem 1.4. [Theorem 1] Let f : I → R, I ⊂ [0,∞) be a differentiable mapping
on I◦ such that f ′ ∈ L ([a, b]) , where a, b ∈ I, a < b, If |f ′|q is s-convex on [a, b] for
some fixed s ∈ (0, 1) and q ≥ 1, then

∣∣∣∣∣∣
f(a) + f(b)

2
− 1

b− a

b∫

a

f(x)dx

∣∣∣∣∣∣
≤ b− a

2

(
1

2

) q−1
q

(
s +

(
1
2

)s

(s + 1) (s + 2)

) 1
q

× (|f ′ (a)|q + |f ′(b)|q)
1
q . (5)
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In [1], Barani et al. obtained similar results given in [5] for differentiable preinvex
functions as follows:

Theorem 1.5. [Theorem 2.1] Let A ⊆ R be an open invex subset with respect to
η : A × A → R. Suppose that f : A → R is a differentiable function. If |f ′| is
preinvex on A then, for every a, b ∈ A with η(a, b) 6= 0 the following inequality holds

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ |η (b, a)|
8

[|f ′ (a)|+ |f ′(b)|] . (6)

Theorem 1.6. [Theorem 2.2] Let A ⊆ R be an open invex subset with respect to
η : A × A → R. Suppose that f : A → R is a differentiable function. Assume that
p ∈ R with p > 0. If |f ′| p

p−1 is preinvex on A then, for every a, b ∈ A with η(a, b)
6= 0 the following inequality holds

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ |η (b, a)|
2 (p + 1)

1
p

(
|f ′(a)| p

p−1 + |f ′(b)| p
p−1

2

) p−1
p

. (7)

In [9], Latif and Shoaib established the following Hermite-Hadamard’s inequalities
for functions whose first derivatives in absolute values are m-preinvex as follows:

Theorem 1.7. [Theorem 4] Let K ⊆ [0, b∗] , b∗ > 0 be an open invex subset with
respect to η : K ×K → R and a, b ∈ K with a < a + η(b, a). Suppose f : K → R is
differentiable mapping on K such that f ′ ∈ L ([a, a + η(b, a)]) . If |f ′| is m-preinvex
on K, then the following inequalities holds

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

8

[
|f ′ (a)|+ m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
]

. (8)

Theorem 1.8. [Theorem 5] Let K ⊆ [0, b∗] , b∗ > 0 be an open invex subset with
respect to η : K ×K → R and a, b ∈ K with a < a + η(b, a). Suppose f : K → R is
differentiable mapping on K such that f ′ ∈ L ([a, a + η(b, a)]) . If |f ′|q is m-preinvex



Journal of New Theory 10 (2016) 54-65 57

on K for q > 1, then we have the following inequalities holds
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2( p + 1)
1
p

(
|f ′ (a)|q + m

∣∣f ′( b
m

)
∣∣q

2

) 1
q

, (9)

where 1
p

+ 1
q

= 1.

Theorem 1.9. [Theorem 6] Let K ⊆ [0, b∗] , b∗ > 0 be an open invex subset with
respect to η : K ×K → R and a, b ∈ K with a < a + η(b, a). Suppose f : K → R is
differentiable mapping on K such that f ′ ∈ L ([a, a + η(b, a)]) . If |f ′|q is m-preinvex
on K for q ≥ 1, then we have the following inequalities holds

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

4

(
|f ′ (a)|q + m

∣∣f ′( b
m

)
∣∣q

2

) 1
q

. (10)

Motivated by the above results, in this paper we first define a novel class of convex
functions called (s,m)-preinvexity in the second sense then we establish some new
Hermite-Hadamard’s inequalities based on this new definition.

2 Preliminaries

In this section we recall some concepts of convexity that are well known in the
literature. Throughout this section I is an interval of R.

Definition 2.1. [18] A function f : I → R is said to be convex, if

f (tx + (1− t) y) ≤ tf (x) + (1− t) f(y),

holds for all x, y ∈ I and all t ∈ [0, 1].

Definition 2.2. [3] A nonnegative function f : I ⊂ [0,∞) → R is said to be
s-convex in the second sense, if the following inequality

f(tx + (1− t)y) ≤ tsf(x) + (1− t)sf(y),

holds, for all x, y ∈ I and t ∈ [0, 1].
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Definition 2.3. [20] A function f : [0, b∗] → R , is said to be m-convex function
where m ∈ [0, 1] and b∗ > 0, if

f(tx + m(1− t)y) ≤ tf (x) + m(1− t)f(y),

holds for all x, y ∈ [0, b∗] and t ∈ [0, 1] .

Definition 2.4. [6] A nonnegative function f : [0, b∗] → R , is said to be (s,m)-
convex function in the second sense where s,m ∈ (0, 1] and b∗ > 0, if

f(tx + m(1− t)y) ≤ tsf (x) + m(1− t)sf(y),

holds for all x, y ∈ [0, b∗] and t ∈ [0, 1] .

Let K be a subset in Rn and let f : K → R and η : K ×K → Rn be continuous
functions.

Definition 2.5. [22] A set K is said to be invex at x with respect to η, if

x + tη (y, x) ∈ K,

holds for all x, y ∈ K and t ∈ [0, 1] .
K is said to be an invex set with respect to η if K is invex at each x ∈ K.

Definition 2.6. [22] A function f on the invex set K is said to be preinvex with
respect to η, if

f (x + tη (y, x)) ≤ (1− t) f (x) + tf(y),

holds for all x, y ∈ K and t ∈ [0, 1] .

Definition 2.7. [13, 21] A nonnegative function f on the invex set K ⊆ [0,∞) is
said to be s-preinvex in the second sense with respect to η, if

f (x + tη (y, x)) ≤ (1− t)sf (x) + tsf(y),

holds for all x, y ∈ K and t ∈ [0, 1] .

Definition 2.8. [9] Let K be an invex set with K ⊆ [0, b∗] , b∗ > 0. A function
f : K → R is said to be m-preinvex function with respect to η, where m ∈ (0, 1] and
b∗ > 0, if

f (x + tη (y, x)) ≤ (1− t) f (x) + mtf(
y

m
),

holds for all x, y ∈ K, t ∈ [0, 1] .

Lemma 2.9. [10] The Hypergeometric function is defined as follows:

2F1(a, b; c; z) =

1∫

0

tb−1(1− t)c−b−1 (1− tz)−a dt,

for t ∈ [0, 1] and Rec > Reb > 0 and |arg (1− z)| < π.
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Lemma 2.10. [1] Let K ⊆ R be an open invex subset with respect to η : K×K →
R and a, b ∈ K with a < a + η (b, a). Suppose f : K → R is a differentiable function
such that f ′ ∈ L ([a, a + η (b, a)]) , then the following equality holds

1

η (b, a)

a+η(b,a)∫

a

f(x)dx− f(a) + f(a + η (b, a))

2

=
η (b, a)

2

1∫

0

(1− 2t) f ′(a + tη(b, a))dt.

3 Main Results
We will start with the following definition.

Definition 3.1. Let K be an invex set with K ⊆ [0, b∗] , b∗ > 0. A nonnegative
function f : K → R is said to be (s,m)-preinvex function in the second sense with
respect to η, where (s,m) ∈ (0, 1]2, if

f (x + tη (y, x)) ≤ (1− t)s f (x) + mtsf(
y

m
),

holds for all x, y ∈ K and t ∈ [0, 1].

Remark 3.2. Definition 3.1 recapture all definitions cited above with the exception
of Definition 2.5 for well-chosen values of η(., .), s and m.

Now, we can state our results.

Theorem 3.3. Let K ⊆ [0, b∗] , b∗ > 0 be an invex subset with respect to η, a, b ∈ K◦

(interior of K) with η(b, a) > 0. Let f : K → (0,∞) be differentiable mapping on K
such that f ′ ∈ L ([a, a + η(b, a)]) . If |f ′| is (s,m)-preinvex in the second sense on K
for some fixed s,m ∈ (0, 1] , then the following inequality:

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2

s +
(

1
2

)s

(s + 1) (s + 2)

[
|f ′ (a)|+ m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
]

, (11)

holds for all x ∈ [a, a + η (b, a)].

Proof. From Lemma 2.10 and properties of modulus, we have
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2

1∫

0

|1− 2t| |f ′(a + tη(b, a))| dt, (12)
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since |f ′| is (s, m)-preinvex function in the second sense, we have
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2

1∫

0

|1− 2t|
[
(1− t)s |f ′ (a)|+ mts

∣∣∣∣f ′(
b

m
)

∣∣∣∣
]

dt

=
η (b, a)

2


|f ′ (a)|

1∫

0

|1− 2t| (1− t)s dt

+m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
1∫

0

|1− 2t| tsdt




=
η (b, a)

2

s +
(

1
2

)s

(s + 1) (s + 2)

(
|f ′ (a)|+ m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
)

, (13)

where we use the facts that

1∫

0

|1− 2t| (1− t)s dt =

1∫

0

|1− 2t| tsdt =
s +

(
1
2

)s

(s + 1) (s + 2)
. (14)

The proof is completed.

Remark 3.4. In Theorem 3.3, if we choose s = 1, (s,m) = (1, 1) or (η (b, a) , s, m) =
(b− a, 1, 1), then (11) reduce to (8), (6) and (2) respectively.

Theorem 3.5. Let K ⊆ [0, b∗] , b∗ > 0 be an invex subset with respect to η, a, b ∈ K◦

(interior of K) with η(b, a) > 0. Let f : K → (0,∞) be differentiable mapping on
K such that f ′ ∈ L ([a, a + η(b, a)]) and let q > 1 with 1

p
+ 1

q
= 1. If |f ′|q is (s,m)-

preinvex in the second sense on K for some fixed s, m ∈ (0, 1] , then the following
inequality:

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2( p + 1)
1
p (s + 1)

1
q

((
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q)) 1

q

, (15)

holds for all x ∈ [a, a + η (b, a)].
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Proof. From Lemma 2.10, properties of modulus, Hölder’s inequality and (s,m)-
preinvexity of |f ′|q , we obtain

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2




1∫

0

|1− 2t|p dt




1
p



1∫

0

|f ′(a + tη(b, a))|q dt




1
q

=
η (b, a)

2( p + 1)
1
p




1∫

0

|f ′(a + tη(b, a))|q dt




1
q

≤ η (b, a)

2( p + 1)
1
p


|f ′ (a)|q

1∫

0

(1− t)s dt + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q

1∫

0

tsdt




1
q

=
η (b, a)

2 (s + 1)
1
q ( p + 1)

1
p

(
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q) 1

q

,

where we have use the facts that
1∫

0

(1− t)s dt =

1∫

0

tsdt =
1

s + 1
,

and
1∫

0

|1− 2t|p dt =
1

p + 1
.

The proof is achieved.

Remark 3.6. In Theorem 3.5, if we choose s = 1, (s,m) = (1, 1) or (η (b, a) , s, m) =
(b− a, 1, 1), then (15) reduce to (9), (7) and (3) respectively.

Theorem 3.7. Let K ⊆ [0, b∗] , b∗ > 0 be an invex subset with respect to η, a, b ∈ K◦

(interior of K) with η(b, a) > 0. Let f : K → (0,∞) be differentiable mapping on
K such that f ′ ∈ L ([a, a + η(b, a)]) and let q ≥ 1. If |f ′|q is (s,m)-preinvex in the
second sense on K for some fixed s,m ∈ (0, 1] , then the following inequality:

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2 2− 1
q

(
s +

(
1
2

)s

(s + 1) (s + 2)

) 1
q [
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q] 1

q

, (16)

holds for all x ∈ [a, a + η (b, a)].
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Proof. From Lemma 2.10, properties of modulus and power mean inequality, we have
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2




1∫

0

|1− 2t| dt




1− 1
q



1∫

0

|1− 2t| |f ′(a + tη(b, a))|q dt




1
q

=
η (b, a)

2 2− 1
q




1∫

0

|1− 2t| |f ′(a + tη(b, a))|q dt




1
q

, (17)

since |f ′|q is (s,m)-preinvex function in the second sense, we have

1∫

0

|1− 2t| |f ′(a + tη(b, a))|q dt

≤ |f ′ (a)|q
1∫

0

|1− 2t| (1− t)s + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q

1∫

0

ts |1− 2t| dt

=
s +

(
1
2

)s

(s + 1) (s + 2)

[
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q]

, (18)

where we have use (14). Substituting (18) into (17), we get the desired inequality in
(16).

Remark 3.8. In Theorem 3.7, if we choose s = 1, (η (b, a) , s, m) = (b− a, s, 1) and
(η (b, a) , s, m) = (b− a, 1, 1), then (16) reduce to (10), (5) and (4) respectively.

Theorem 3.9. Suppose that all the assumptions of Theorem 3.7 are satisfied. Then
the following inequality:

∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣
≤ η (b, a)

2

×
(

1

2s+1
B (s + 1, q + 1) +

2F1

(
1,−s; q + 2; 1

2

)

q + 2

) 1
q (
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q) 1

q

,

(19)

holds for all x ∈ [a, a + η (b, a)] where 2F1 (., .; .; .) is the Hypergeometric function
and B (., .) is the beta function.
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Proof. From Lemma 2.10, properties of modulus and power mean inequality, we have
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2




1∫

0

dt




1− 1
q



1∫

0

|1− 2t|q |f ′(a + tη(b, a))|q dt




1
q

=
η (b, a)

2




1∫

0

|1− 2t|q |f ′(a + tη(b, a))|q dt




1
q

, (20)

using (s,m)-preinvexity of |f ′|q, (20) gives
∣∣∣∣∣∣
f(a) + f(a + η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫

a

f(x)dx

∣∣∣∣∣∣

≤ η (b, a)

2




1∫

0

|1− 2t|q
(

(1− t)s |f ′ (a)|q + mts
∣∣∣∣f ′(

b

m
)

∣∣∣∣
q)

dt




1
q

=
η (b, a)

2


|f ′ (a)|q




1
2∫

0

(1− t)s (1− 2t)q dt +

1∫

1
2

(1− t)s (2t− 1)q dt




+m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q




1
2∫

0

ts (1− 2t)q dt +

1∫

1
2

ts (2t− 1)q dt







1
q

=
η (b, a)

2


|f ′ (a)|q


1

2

1∫

0

(1− t)q

(
1− 1

2
t

)s

dt +
1

2s+1

1∫

0

ts (1− t)q dt




+m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q

 1

2s+1

1∫

0

ts (1− t)q dt +
1

2

1∫

0

(1− t)q

(
1− 1

2
t

)s

dt







1
q

=
η (b, a)

2

(
1

2s+1
B (s + 1, q + 1) +

2F1

(
1,−s; q + 2; 1

2

)

2q + 4

) 1
q

×
(
|f ′ (a)|q + m

∣∣∣∣f ′(
b

m
)

∣∣∣∣
q) 1

q

.

Which is the desired result.
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Abstract – In this paper, we review some operations in intuitionistic fuzzy soft multi set theory in different 

approach and show that the De Morgan’s types of results hold in intuitionistic fuzzy soft multi set theory for 

these operations in our way. Basic supporting tools in information system are also defined. Application of 

intuitionistic fuzzy soft multi sets in information system are presented and discussed. Also we show that 

every intuitionistic fuzzy soft multi set is an intuitionistic fuzzy multi valued information system. 

 

Keywords – Soft sets, fuzzy soft multi sets, ıntuitionistic fuzzy soft multi sets, information system. 

 

 

1 Introduction 
 

Most of the problems in engineering, computer science, medical science, economics, 

environments etc. have various uncertainties. In 1999, Molodstov [12] initiated the concept 

of soft set theory as a mathematical tool for dealing with uncertainties. Later on Maji et 

al.[11] presented some new definitions on soft sets such as subset, union, intersection and 

complements of soft sets and discussed in details the application of soft set in decision 

making problem. Based on the analysis of several operations on soft sets introduced in 

[12], Ali et al. [2] presented some new algebraic operations for soft sets and proved that 

certain De Morgan’s law holds in soft set theory with respect to these new definitions. 

Combining soft sets [12] with fuzzy sets [15] and intuitionistic fuzzy sets [5], Maji et al. 

[[9], [10]] defined fuzzy soft sets and intuitionistic fuzzy soft sets, which are rich potential 

for solving decision making problems. Alkhazaleh and others [[1], [4], [6], [7], [14]] as a 

generalization of Molodtsov’s soft set, presented the definition of a soft multi set and its 

basic operations such as complement, union, and intersection etc and thereafter Balami and 

others [[7], [8]] discussed the application of soft multiset and multi-soft set in information 
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system. In 2012 Alkhazaleh and Salleh [3] introduced the concept of fuzzy soft multi set 

theory and studied the application of these sets and recently, Mukherjee and Das [13] 

introduced the concepts of intuitionistic fuzzy soft multi sets and studied intuitionistic 

fuzzy soft multi topological spaces in details. 

 

In this paper, we review some new operations in intuitionistic fuzzy soft multi set theory 

and applications of intuitionistic fuzzy soft multi sets in information system are presented 

and discussed. Also we show that every intuitionistic fuzzy soft multi set is an intuitionistic 

fuzzy multi valued information system. 

 

 

2 Preliminary Notes 
 

In this section, we recall some basic notions in soft set theory, fuzzy soft multi set theory 

and intuitionistic fuzzy soft multi set theory. Molodstov defined soft set in the following 

way. Let U be an initial universe and E be a set of parameters. Let P(U) denotes the power 

set of U and AE. 

 

Definition 2.1. [12] A pair (F, A) is called a soft set over U, where F is a mapping given by 

F: A P(U). In other words, soft set over U is a parameterized family of subsets of the 

universe U. 

 

Definition 2.2. [3] Let  :iU i I
 
be a collection of universes such that i I iU  

 
and let 

 :
iUE i I  be a collection of sets of parameters. Let  i I iU FS U  where  iFS U

 

denotes the set of all fuzzy subsets of  iU ,
ii I UE E   and A E . A pair (F, A) is called 

a fuzzy soft multi set over U, where F is a mapping given by F: A U . 
 

Definition 2.3. [3] For any fuzzy soft multi set (F, A), a pair  
,, ,

i U ji
U j ee F  is called a 

iU  fuzzy 

soft multiset part ,iU j ke a 
 

and 
,

( )
U ji

eF F A  is a fuzzy approximate value set, where 

ka A , k {1,2,3,..,m} , {1,2,3,..,n}i  
and {1,2,3,..,r}j .  

 

Definition 2.4. [13] Let  :iU i I
 
be a collection of universes such that i I iU   and 

let  :iE i I  be a collection of sets of parameters. Let  i I iU IFS U  where  iIFS U
 

denotes the set of all intuitionistic fuzzy subsets of iU , 
ii I UE E   and A E . A pair 

(F, A) is called an intuitionistic fuzzy soft multi set (briefly, IFSM-set) over U, where F is a 

mapping given by :  .F A U  
 

Definition 2.5. [13] The complement of an IFSM-set (F, A) over U is denoted by 
c(F, A)
 
and is 

defined by 
c c(F, A) (F , A) , where 

cF : A U  is a mapping given by 

 cF ( ) F( ) ,c A     , where c is an intuitionistic fuzzy complement. 
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Definition 2.6. [13] An IFSM-set (F, A) over U is called an absolute IFSM-set, denoted by (F, A)U , 

if  
,, , , .

i U ji
U j e ie F U i   

 

Definition 2.7. [13] A null IFSM-set (F, A)  over U is an IFSM-set in which all the IFSM-

set parts equals . 

 

Definition 2.8. [13] Union of two IFSM-sets (F, A) and (G, B) over U is an IFSM-set (H, 

D), where D A B   and ,e D   

                      
 

( ),

( ) ( ),

( ), ( ) , ,

F e if e A B

H e G e if e B A

F e G e if e A B

  


  


 

 

where  
, ,

( ), ( )
U j U ji i

e eF e G e F G  {1,2,3,..,m}i  , {1,2,3,..,n}j  with   as an 

intuitionistic fuzzy union and is written as (F, A) (G, B)=(H,D).  

 

Definition 2.9. [13] Intersection of two IFSM-sets (F, A) and (G, B) over U is an IFSM-set 

(H, D) where D A B   and ,e D   

                              
 

( ),

( ) ( ),

( ), ( ) ,

F e if e A B

H e G e if e B A

F e G e if e A B

  


  


 

 

where  
, ,

( ), ( ) ,
U j U ji i

e eF e G e F G  {1,2,3,..,n},i   {1,2,3,..,n}j  with   as an 

intuitionistic fuzzy intersection and is written as (F, A) (G, B)=(H,C).  

 

 

3 Results on Intuitionistic Fuzzy Soft Multisets 
 

In this section, we review some operation on IFSM-sets in different approach and show that 

the De Morgan’s types of results hold in intuitionistic fuzzy soft multi set theory for these 

operations in our way.  
 

Let  :iU i I
 
be a collection of universes such that i I iU  

 
and let  :iE i I  be a 

collection of sets of parameters. Let   ,i I iU IFS U  where  iIFS U
 
denotes the set of 

all intuitionistic fuzzy subsets of iU , 
ii I UE E   and A E . 

 

Definition 3.1. A pair (F, A) is called an intuitionistic fuzzy soft multi set (brıefly, IFSM-

set)over U, where F is a mapping given by :  F A U , such that ,e A   

 ( ) ( )

( ) : :
( ), ( )

i

F e F e

u
F e u U i I

u u 

   
    
    

. 
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Definition 3.2. For any IFSM-set (F, A), a iU  intuitionistic fuzzy soft multiset part 

(briefly, 
iU  IFSMS-part) of (F, A) over U, is of the form  

 ( ) ( )

:  ,  
( ), ( )

i

F e F e

u
u U e A

u u 

  
  

  
. 

 

Definition 3.3. The union of two IFSM-sets  F, A
 
and  G, B

 
over a common universe U 

is an IFSM-set  H, C , where C=A B and e C, u U     

 

 

 

 

    

 

 

 

F(e)

H(e) G(e)

F(e) G(e)

F(e)

H(e) G(e)

μ u ,                           if e A-B

μ u μ u ,                          if e B-A

max μ u ,μ u ,  if e A B

u ,                           if e A-B

u u ,                        

and



 

 


 


 





    F(e) G(e)

  if e B-A

min u , u ,   if e A B 







 

 

We write      ,  ,  ,  .F A G B H C   

 

Definition 3.4. The intersection of two IFSM-sets  F, A and  G, B
 
over a common 

universe U is an IFSM-set  H, C ,  where
 
C=A B and e C, u U     

 

 

 

 

    

 

 

 

F(e)

H(e) G(e)

F(e) G(e)

F(e)

H(e) G(e)

μ u ,                           if e A-B

μ u μ u ,                          if e B-A

min μ u ,μ u ,  if e A B

u ,                           if e A-B

u u ,                        

and



 

 


 


 





    F(e) G(e)

  if e B-A

max u , u ,  if e A B 







 

 

We write      ,  ,  ,  .F A G B H C 
 

 

Definition 3.5. The complement of an IFSM-set (F, A) over U is denoted by ( , )cF A  and is 

defined by ( , ) ( , )c cF A F A , where  
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 ( ) ( )

( ) : :
( ), ( )

c

i

F e F e

u
F e u U i I

u u 

   
    
    

, .e A 
 

 

Proposition 3.6. For two IFSM-sets (F, A) and (G, B) over U, then we have 

1.  ( ,  ) ( ,  ) ( ,  ) ( ,  )
c c cF A G B F A G B   

2.  ( ,  ) ( ,  ) ( ,  ) ( ,  )
cc cF A G B F A G B   

Proof. Let ( ,  ) ( ,  ) ( , ),F A G B H C  where C A B   and ,e C   

 

 

 

    

 

 

 

F(e)

H(e) G(e)

F(e) G(e)

F(e)

H(e) G(e)

μ u ,                           if e A-B

μ u μ u ,                          if e B-A

max μ u ,μ u ,  if e A B

u ,                           if e A-B

u u ,                        

and



 

 


 


 





    F(e) G(e)

  if e B-A

min u , u ,   if e A B 







 

 

 

Thus  ( ,  ) ( ,  ) ( , ) ( , ),
c c cF A G B H C H C   where C A B   and ,e C   

   

 

 

    

   

 

 

F(e)

H(e) G(e)( )

F(e) G(e)

F(e)

H(e) G(e)( )

u ,                           if e A-B

u u u ,                          if e B-A

min u , u ,   if e A B

μ u ,                           if e A-B

u μ u μ u ,       

c

c

H e

H e

and



  

 



 


  


 



 

    F(e) G(e)

                   if e B-A

max μ u ,μ u ,  if e A B







 

 

 

Again,  ( ,  ) ( ,  ) ( ,  ) ( ,  ) ,c c c cF A G B F A G B K D   . Where D A B   and ,e D    
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F(e)

( ) G(e)

F(e) G(e)

( )( )

F(e)

( ) G(e)

u ,                           if e A-B

u u ,                          if e B-A

max u , u ,   if e A B

i.e.   u u  

and

μ u ,                           if e A-B

u μ u , 

c

K e

K eH e

K e



 

 

 



 


 


 







    

   

F(e) G(e)

( )( )

                         if e B-A

min μ u ,μ u ,  if e A B

i.e. u u .c K eH e
 







 



 

We see that C=D and ,e C  ( ) ( )cH e K e . Thus  ( ,  ) ( ,  ) ( ,  ) ( ,  )
c c cF A G B F A G B  . 

 

The other can be proved similarly. 

 

Proposition 3.7. If  ,F A
 
and  ,G A

 
are two FSM-sets in  AFSMS AF , , then we have 

the following 

    c c. (F, A) (G, A) (F, A) (G, A)
c

i     

   
c c c. (F, A) (G, A) (F, A) (G, A)ii   

 
 

Proof. (i). Let ( ,  ) ( ,  ) ( , ),F A G B H C  where C A B   and ,e C   

 

 

 

    

 

 

 

F(e)

H(e) G(e)

F(e) G(e)

F(e)

H(e) G(e)

μ u ,                           if e A-B

μ u μ u ,                          if e B-A

max μ u ,μ u ,  if e A B

u ,                           if e A-B

u u ,                          i



 

 


 


 





    F(e) G(e)

f e B-A

min u , u ,   if e A B 







 

 

Thus  ( ,  ) ( ,  ) ( , ) ( , ),
c c cF A G B H C H C   where C A B   and ,e C   
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F(e)

H(e) G(e)( )

F(e) G(e)

F(e)

H(e) G(e)( )

u ,                           if e A-B

u u u ,                          if e B-A

min u , u ,   if e A B

μ u ,                           if e A-B

u μ u μ u ,          

c

c

H e

H e



  

 



 


  


 



 

    F(e) G(e)

                if e B-A

max μ u ,μ u ,  if e A B







 

 

 

Also, let  ( ,  ) ( ,  ) ( ,  ) ( ,  ) ,c c c cF A G B F A G B K D   . Where D A B   and ,e D   

 

 

 

    

 

F(e)

( ) G(e)

F(e) G(e)

( )

u ,                           if e A-B

u u ,                          if e B-A

min u , u ,   if e A B

              u ,c

K e

H e



 

 



 


 


 



 

 

 

 

    

 

F(e)

( ) G(e)

F(e) G(e)

( )

μ u ,                           if e A-B

u μ u ,                          if e B-A

max μ u ,μ u ,  if e A B

              u .c

K e

H e

and





 


 


 



 

 

We see that C=D and ,e C  ( ) ( )cH e K e . Hence the result. 

 

The other can be proved similarly. 
 

Definition 3.8. A IFSM-set (F, A) over U is called an absolute IFSM-set, denoted by 

( , )UF A , if ( ) ( ),  ( ) 1 and ( ) 0,  ,   .F e F e ie A u u u U i I          

 

Definition 3.9. A null IFSM-set ( , )UF A  over U is an IFSM-set in which 

( ) ( ),  ( ) 0 and ( ) 1,  ,  .F e F e ie A u u u U i I         

 

Proposition 3.10. If (F, A) be any IFSM-set in over U, then 

 ( ) , ( , ) ( , ) ,i F A G B G B    
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     ( ) , , , ,
U

ii F A H C F A   

   ( ) , ( , ) , ,d F A G B F A   

     ( ) , , , .
U U

iv F A H C H C   

 

 

4 An Application of IFSM-set in information system 
 

Definition 4.1. An intuitionistic fuzzy multi-valued information system is a quadruple 

 , , ,systemInf X A f V  where X is a non empty finite set of objects, A is a non empty finite 

set of attribute, 
a

a A
V V


  , where V is the domain (an intuitionistic fuzzy set,) set of 

attribute, which has multi value and :f X A V   is a total function such that 

 , af x a V  for every  , .x a X A   

 

Proposition 4.2. If  ,F A  is an IFSM-set over universe U, then  ,F A  is an intuitionistic 

fuzzy multi-valued information system. 

 

Proof. Let  :iU i I
 
be a collection of universes such that 

i I iU  
 
and let  :iE i I  

be a collection of sets of parameters. Let  i I iU IFS U  where  iIFS U denotes the set 

of all intuitionistic fuzzy subsets of 
iU , 

ii I UE E  and A E .   Let  ,F A  be an IFSM-

set over U and i
i I

X U


  . We define a mapping f where :f X A V  , defined as  

 
        

,
,

F a F a

x
f x a

x x 
 . 

 

Hence a
a A

V V


   where aV  is the set of all counts of in  F a  and   represent the 

classical set union. Then the intuitionistic fuzzy multi-valued information system 

 , , ,X A f V  represents the IFSM-set  ,F A . 

 

Example 4.3. Let us consider there are two universes 
1 2  .U and U

 
Let  1 1 2 3, ,U h h h  and 

 2 1 2,U c c . Let  
1 2
,U UE E

 
be a collection of sets of decision parameters related to the 

above universes, where 

    
1 1 1 2 2 2 2,1 ,2 ,1 ,2 ,3expensive, wooden ,   sporty, cheap, 2010 modelU U U U U U UE e e E e e e       .  

Let  2

1i iU IFS U , 2

1 ii UE E
  
and  

1 2 1 2 1 21 ,1 ,1 2 ,1 ,2 3 ,1 ,3( , ),   ( , ), ( , ) .U U U U U UA e e e e e e e e e      

 

Let 



Journal of New Theory 10 (2016) 66-75                                                                                                          74 

 

 

 

 

31 2 1 2
1

31 2 1 2
2

31 2 1 2
3

, , , , ,
(.2,.7) (.4,.5) (0,1) (.8,.1) (0,1)

, , , , ,
(0,1) (.7,.2) (1,0) (0,1) (.6,.3)

, , , ,
(0,1) (.8,.1) (0,1) (0.5,0.3) (.6,.3)

hh h c c
F e

hh h c c
F e

hh h c c
F e

    
     

    

    
     

    

   
    

   





 

 

Then the IFSM-set  ,F A  defined above describes the conditions of some “house” and 

“car” in a state. Then the quadruple  , , ,X A f V  corresponding to the IFSM-set given 

above is an intuitionistic fuzzy multi-valued information system. 

 

Where 
2

1
i

i
X U


   and A is the set of parameters in the IFSM-set and  

1

2

3

31 2 1 2

31 2 1 2

31 2 1 2

, , , , ,
(.2,.7) (.4,.5) (0,1) (.8,.1) (0,1)

, , , , ,
(0,1) (.7,.2) (1,0) (0,1) (.6,.3)

, , , ,
(0,1) (.8,.1) (0,1) (0.5,0.3) (.6,.3)

e

e

e

hh h c c
V

hh h c c
V

hh h c c
V

 
  
 

 
  
 

 
  
 

 

 

For the pair  1 1,h e  we have  1 1,f h e  = (0.2, 0.7), for  2 1,h e , we have  2 1,f h e   (0.4, 

0.5). Continuing in this way we obtain the values of other pairs. Therefore, according to the 

result above, it is seen that IFSM-sets are intuitionistic fuzzy soft multi-valued information 

systems. Nevertheless, it is obvious that intuitionistic fuzzy soft multi-valued information 

systems are not necessarily IFSM-sets. We can construct an information table representing 

IFSM-set  ,F A  defined above as in Table 1. 

 
Table 1.  The information table representing IFSM-set  ,F A . 

 

 e1 e2 e3 

h1 

h2 

h3 

c1 

c2 

(0.2,0.7) 

(0.4,0.5) 

(0,1) 

(0,1) 

(0,1) 

(0,1) 

(0.7,0.2) 

(1,0) 

(0,1) 

(0.6,0.3) 

(0,1) 

(0.8,0.1) 

(0,1) 

(0.5,0.3) 

(0.6,0.3) 

 

 

5   Conclusion 
 

In this paper, we have made an investigation on existing basic notions and results on IFSM-

sets. Some new results have been stated in our work. Here we shall present the application 

of IFSM-set in information system and show that every IFSM-set is an intuitionistic fuzzy 

multi valued information system. 
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ON NEW INEQUALITIES OF HERMITE-HADAMARD
TYPE FOR FUNCTIONS WHOSE FOURTH

DERIVATIVE ABSOLUTE VALUES ARE
QUASI-CONVEX WITH APPLICATIONS
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Abstaract − We establish some new inequalities of Hermite-Hadamard type for functions whose
fourth derivatives absolute values are quasi-convex. Further, we give new identity.Using this new
identity, we establish similar inequalities for left-hand side of Hermite-Hadamard result.Also, we
present applications to special means.

Keywords − Hermite-Hadamard type inequalities, Quasi-convex function, Power mean inequality.

1 Introduction

A function f : I ⊆ R → R is called convex function if f(λx + (1 − λ)y) ≤ λf(x) +
(1− λ)f(y) for all x, y ∈ I and λ ∈ [0, 1]. Geometrically, this means that if P,Q and
R are three distinct points on graph of f with Q between P and R, then Q is on
or below chord PR. There are many results associated with convex functions in the
area of inequalities, but one of them is the classical Hermite-Hadamard inequalities:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

for all a, b ∈ I, with a < b.

Recently, numerous authors [1-7] developed and discussed Hermite-Hadamard’s
inequalities in terms of refinements, counter-parts, generalizations and new Hemitte-
Hadamard’s type inequalities.

The notion of quasi-convex function which is generalization of convex function is
defined as:

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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Definition 1.1. A function F : [a, b] → R is called quasi-convex on [a, b], if

f(λx + (1− λ)y) ≤ max{f(x), f(y)}, ∀x, y ∈ [a, b].

Any convex function is quasi-convex but converse is not true in general(See for
example [3]). D.A Ion [6] established inequalities of right hand side of Hermite-
Hadamard’s type inequality for functions whose derivatives in absolute values are
quasi-convex functions. These inequalities appear in the following theorems:

Theorem 1.2. Let f : I◦ ⊆ R→ R be a function, differentiable on I◦ with a, b ∈ I◦

and a < b. If |f ′| is quasi-convex on [a, b], then we have:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤
(b− a)

4
max{|f ′(a)|, |f ′(b)|}.

Theorem 1.3. Let f : I◦ ⊆ R→ R be a function, differentiable on I◦ with a, b ∈ I◦

and a < b. If |f ′| p
p−1 is quasi-convex on [a, b], then we have:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤
(b− a)

2(p + 1)
1
p

(max{|f ′(a)| p
p−1 , |f ′(b)| p

p−1}) p−1
p .

Theorem 1.4. Let f : I◦ ⊆ R → R be a function, twice differentiable on I◦ with
a, b ∈ I◦ and a < b. If |f ′′| is quasi-convex on [a, b], then we have:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤
(b− a)2

12
max{|f ′′(a)|, |f ′′(b)|}.

In paper [8], S.Qaisar, S.Hussain, C. He established new refined inequalities of
right hand side of Hermite-Hadamard result for the class of functions whose third
derivatives at certain powers are quasi-convex functions as follow:

Theorem 1.5. Let f : I ⊆ R→ R be thrice differentiable mapping on I◦ such that
f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′| is quasi-convex on [a, b], then we have
the following inequality:
∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx−b− a

12
[f ′(b)−f ′(a)]

∣∣∣∣ ≤
(b− a)3

192
max{|f ′′′(a)|, |f ′′′(b)|}.

Theorem 1.6. Let f : I ⊆ R→ R be three time differentiable mapping on I◦ such
that f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′| p

p−1 is quasi-convex on [a, b], and
p > 1, then we have the following inequality:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

96

(
1

p + 1

) 1
p

(max{|f ′′′(a)|q, |f ′′′(b)|q}) 1
q .

Theorem 1.7. Let f : I ⊆ R→ R be thrice differentiable mapping on I◦ such that
f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′|q is quasi-convex on [a, b], and q ≥ 1,
then we have following inequality:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

192
(max{|f ′′′(a)|q, |f ′′′(b)|q}) 1

q .
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In this paper, we establish new refined inequalities of the right hand side of
Hermite-Hadamard result for the class of functions whose fourth derivative at certain
powers are quasi-convex functions. Further, we establish new identity using which,
we establish new refined inequalities of left hand side of Hermit-Hadamard result for
the same class of functions considered earlier.

2 Main Results

For establishing new inequalities of right hand side of Hermite-Hadamard result for
the functions whose fourth derivative at certain powers are quasi-convex, we need
the following identity:

Lemma 2.1. Let Let f : I ⊆ R → R be four times differentiable mapping on I◦

such that f (iv) ∈ L[a, b], where a, b ∈ I with a < b, then

1

b− a

∫ b

a

f(x)dx +
b− a

12
[f ′(b)− f ′(a)]− f(a) + f(b)

2

=
(b− a)4

24

∫ 1

0

(λ(1− λ))2f (iv)(aλ + (1− λ)b)dλ

Theorem 2.2. Let f : I ⊆ R → R be a four times differentiable mapping on I◦

such that f (iv) ∈ L[a, b], where a, b ∈ I with a < b. If |f iv| is quasi-convex on [a, b],
then we have the following inequality:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)4

720
max{|f (iv)(a)|, |f (iv)(b)|}. (1)

Proof. Using Lemma 2.1 and quasi-convexity of |f (iv)|, we get

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)4

24

∫ 1

0

(λ(1− λ))2
∣∣f (iv)(aλ + (1− λ)b)

∣∣dλ

≤ (b− a)4

24
max{|f (iv)(a)|, |f (iv)(a)|}

∫ 1

0

(λ(1− λ))2dλ

=
(b− a)4

720
max{|f (iv)(a)|, |f (iv)(a)|}

the proof is completed.

Theorem 2.3. Let f : I ⊆ R → R be a four times differentiable mapping on I◦

such that f (iv) ∈ L[a, b], where a, b ∈ I with a < b. If |f (iv)| p
p−1 is quasi-convex on

[a, b], and p > 1, then we have the following inequality:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣
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≤ (b− a)4

24
β

1
p (2p + 1, 2p + 1)(max{|f (iv)(a)|q, |f (iv)(b)|q}) 1

q , (2)

where q = p
p−1

.

Proof. Using Lemma 2.1, Holder’s inequality and quasi-convexity of |f (iv)| p
p−1 , we

get ∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)4

24

∫ 1

0

(λ(1− λ))2
∣∣f (iv)(aλ + (1− λ)b)

∣∣dλ

≤ (b− a)4

24

( ∫ 1

0

(λ(1− λ))2pdλ

) 1
p
( ∫ 1

0

∣∣f (iv)(aλ + (1− λ)b)|q
) 1

q

≤ (b− a)4

24

( ∫ 1

0

(λ(1− λ))2pdλ

) 1
p

(max{|f (iv)(a)|q, |f (iv)(b)|q}) 1
q

It is easy to note that

β(2p + 1, 2p + 1) =

∫ 1

0

(λ(1− λ))2pdλ

which completes the proof.

Theorem 2.4. Let f : I ⊆ R → R be a four times differentiable mapping on I◦

such that f (iv) ∈ L[a, b], where a, b ∈ I with a < b. If |f iv|q is quasi-convex on [a, b],
and q ≥ 1, then we have following inequality:

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)4

720
(max{|f (iv)(a)|q, |f ((iv))(b)|q}) 1

q . (3)

Proof. Using Lemma 2.1, power mean inequality and quasi-convexity of |f (iv)|q, we
get ∣∣∣∣

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx− b− a

12
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)4

24

∫ 1

0

(λ(1− λ))2
∣∣f (iv)(aλ + (1− λ)b)

∣∣dλ

≤ (b− a)4

24

( ∫ 1

0

(λ(1− λ))2dλ

)1− 1
q
( ∫ 1

0

(λ(1− λ))2
∣∣f (iv)(aλ + (1− λ)b)|q

) 1
q

≤ (b− a)4

24

(
1

30

)1− 1
q
(

1

30
max{|f (iv)(a)|q, |f (iv)(b)|q}

) 1
q

=
(b− a)4

720
(max{|f (iv)(a)|q, |f (iv)(b)|q}) 1

q .

which completes the proof.
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Now, to develop new refined inequalities of left hand side of Hermite-Hadamard
result for the class of functions whose third derivatives at certain powers are quasi-
convex, we need the following identity:

Lemma 2.5. Let Let f : I ⊆ R → R be three times differentiable mapping on I◦

such that f (′′′) ∈ L[a, b], where a, b ∈ I with a < b, then

f

(
a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

=
(b− a)3

24

[ ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)f ′′′(λa + (1− λ)b)dλ

−
∫ 1

2

0

λ(1− 2λ)(1 + 2λ)f ′′′(λb + (1− λ)a)dλ

]

Proof. Integrating by parts, we have

∫ 1
2

0

λ(1− 2λ)(1 + 2λ)f ′′′(λa + (1− λ)b)dλ

=
1

b− a

∫ 1
2

0

(1− 12λ2)f ′′(λa + (1− λ)b)dλ

=
2

(b− a)2
f ′

(
a + b

2

)
+

f ′(b)
(b− a)2

− 24

(b− a)2

∫ 1
2

0

λf ′(λa + (1− λ)b)dλ

=
2

(b− a)2
f ′

(
a + b

2

)
+

f ′(b)
(b− a)2

+
12

(b− a)3
f

(
a + b

2

)
+

24

(a− b)4

∫ a+b
2

b

f(x)dx

and ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)f ′′′(λb + (1− λ)a)dλ

=
−1

b− a

∫ 1
2

0

(1− 12λ2)f ′′(λb + (1− λ)a)dλ

=
2

(b− a)2
f ′

(
a + b

2

)
+

f ′(a)

(b− a)2
− 24

(b− a)2

∫ 1
2

0

λf ′(λb + (1− λ)a)dλ

=
24

(b− a)2
f ′

(
a + b

2

)
+

f ′(a)

(b− a)2
− 12

(b− a)3
f

(
a + b

2

)
+

2

(b− a)4

∫ a+b
2

a

f(x)dx

this ends the proof.

Theorem 2.6. Let f : I ⊆ R → R be a three time differentiable mapping on I◦

such that f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′| is quasi-convex on [a, b],
then we have following inequality:

∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

192

(
max{|f ′′′(a)|, |f ′′′(b)|}

)
. (4)
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Proof. Using Lemma 2.5 and quasi-convexity of |f ′′′|, we get

∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

24

[ ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λa + (1− λ)b)|dλ

+

∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λb + (1− λ)a)|dλ

]

≤ (b− a)3

24

(
max{|f ′′′(a)|, |f ′′′(b)|}

)

×
[ ∫ 1

2

0

λ(1− 2λ)(1 + 2λ)dλ +

∫ 1
2

0

λ(1− 2λ)(1 + 2λ)dλ

]

=
(b− a)3

192

(
max{|f ′′′(a)|, |f ′′′(b)|}

)

this complete the proof.

Theorem 2.7. Let f : I ⊆ R → R be a three time differentiable mapping on I◦

such that f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′| p
p−1 is quasi-convex on [a, b],

and p > 1, then we have following inequality:

∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

96
(

1

p + 1
)

1
p
(
max{|f ′′′(a)|q, |f ′′′(b)|q})

1
q , (5)

where q = p
p−1

.

Proof. Using Lemma 2.5, Holder’s inequality and quasi-convexity of |f ′′′ | p
p−1 , we get

∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

24

[ ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λa + (1− λ)b)|dλ

+

∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λb + (1− λ)a)|dλ

]

≤ (b− a)3

24

[( ∫ 1
2

0

λ(1− 2λ)p(1 + 2λ)pdλ

) 1
p
( ∫ 1

2

0

λ|f ′′′(λa + (1− λ)b)|qdλ

) 1
q

+

( ∫ 1
2

0

λ(1− 2λ)p(1 + 2λ)pdλ

) 1
p
( ∫ 1

2

0

λ|f ′′′(λb + (1− λ)a)|qdλ

) 1
q
]
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≤ (b− a)3

24

(
max{|f ′′′(a)|q, |f ′′′(b)|q}

) 1
q
[(∫ 1

2

0

λ(1−2λ)p(1+2λ)pdλ

) 1
p
( ∫ 1

2

0

λdλ

) 1
q

+

( ∫ 1
2

0

λ(1− 2λ)p(1 + 2λ)pdλ

) 1
p
( ∫ 1

2

0

λdλ

) 1
q
]

=
(b− a)3

96

(
1

p + 1

) 1
p
(

max{|f ′′′(a)|q, |f ′′′(b)|q}
) 1

q

Theorem 2.8. Let f : I ⊆ R → R be a three time differentiable mapping on I◦

such that f ′′′ ∈ L[a, b], where a, b ∈ I with a < b. If |f ′′′|q is quasi-convex on [a, b],
and q ≥ 1, then we have following inequality:

∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

192

(
max{|f ′′′(a)|q, |f ′′′(b)|q})

1
q . (6)

Proof. Using Lemma 2.5, power mean inequality and quasi-convexity of |f ′′′|q, we
get ∣∣∣∣f

(
a + b

2

)
− 1

b− a

∫ b

a

f(x)dx +
b− a

24
[f ′(b)− f ′(a)]

∣∣∣∣

≤ (b− a)3

24

[ ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λa + (1− λ)b)|dλ

+

∫ 1
2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λb + (1− λ)a)|dλ

]

≤ (b− a)3

24

[( ∫ 1
2

0

λ(1−2λ)(1+2λ)dλ

)1− 1
q
( ∫ 1

2

0

λ(1−2λ)(1+2λ)|f ′′′(λa+(1−λ)b)|qdλ|
) 1

q

+

( ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)dλ

)1− 1
q
( ∫ 1

2

0

λ(1− 2λ)(1 + 2λ)|f ′′′(λb + (1− λ)a)|qdλ

) 1
q
]

≤ (b− a)3

24

(
max{|f ′′′(a)|q, |f ′′′(b)|q}

) 1
q

×
[( ∫ 1

2

0

λ(1− 2λ)(1 + 2λ)dλ

)1− 1
q
( ∫ 1

2

0

λ(1− 2λ)(1 + 2λ)dλ|
) 1

q

+

( ∫ 1
2

0

λ(1− 2λ)(1 + 2λ)dλ

)1− 1
q
( ∫ 1

2

0

λ(1− 2λ)(1 + 2λ)dλ

) 1
q
]

=
(b− a)3

192

(
max{|f ′′′(a)|q, |f ′′′(b)|q}

) 1
q
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the proof is so completed.

3 Application to Some Special Means

We now consider the application of our theorem to the special means.
For positive numbers a > 0 and b > 0, define A(a, b) = a+b

2
and

Lp(a, b) =





[
bp+1−ap+1

(p+1)(b−a)

]
, p 6= −1, 0

b−a
ln b−ln a

, p = −1

1
e

(
bb

aa

) 1
b−a

, p = 0

We know that A and Lp respectively are called the arithmetic and generalized log-
arithmic means of two positive numbers a and b. By applying Hermite-Hadamard
type inequalities established in Section 2, we are in a position to construct some
inequalities for special means A and LP . Consider the following function:

f(x) =
xα+4

(α + 1)(α + 2)(α + 3)(α + 4)
(7)

for 0 < α ≤ 1 and x > 0. Since f (iv)(x) = xα and (λx+(1−λ)y)α ≤ λαxα+(1−λ)αyα

for all x, y > 0 and λ ∈ [0, 1], then f (iv)(x) = xα is α-convex function on R+ and

f(a) + f(b)

2
=

1

(α + 1)(α + 2)(α + 3)(α + 4)
A(aα+4, bα+4),

1

b− a

∫ b

a

f(x)dx =
1

(α + 1)(α + 2)(α + 3)(α + 4)
Lα+4(a, b),

f ′(b)− f ′(a) =
b− a

(α + 1)(α + 2)
Lα+2(a, b)

Theorem 3.1. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12A(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)4

60
(α + 1)(α + 2)(α + 3)(α + 4) max{|aα|, |bα|}

Proof. The assertion follows from inequality (1 ) applied to mapping (7).
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Theorem 3.2. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12A(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)4

2
β

1
p (2p + 1, 2p + 1)(α + 1)(α + 2)(α + 3)(α + 4)(max{|aα|q, |bα|q}) 1

q .

Proof. The assertion follows from inequality (2) applied to the mapping (7).

Theorem 3.3. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12A(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)4

60
(α + 1)(α + 2)(α + 3)(α + 4)(max{|aα|q, |bα|q}) 1

q .

Proof. The assertion follows from inequality (3) applied to the mapping (7).

Theorem 3.4. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12Aα+4(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)3

16
(α + 1)(α + 2)(α + 3)(α + 4)(max{|aα|, |bα|}).

Proof. The assertion follows from inequality (4) applied to the mapping (7).

Theorem 3.5. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12Aα+4(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)3

8
(

1

p + 1
)

1
p (α + 1)(α + 2)(α + 3)(α + 4)

(
max{|aα|q, |bα|q})

1
q

Proof. The assertion follows from inequality (5) applied to the mapping (7).

Theorem 3.6. For positive numbers a and b such that b > a and 0 < α ≤ 1, we
have

∣∣∣∣12Aα+4(aα+4, bα+4)− 12Lα+4(a, b)− (b− a)2(α + 3)(α + 4)(α + 4)Lα+2(a, b)

∣∣∣∣

≤ (b− a)3

16
(α + 1)(α + 2)(α + 3)(α + 4)

(
max{|aα|q, |bα|q})

1
q .
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Proof. The assertion follows from inequality (6) applied to the mapping (7).
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Abstract - The notion of single valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy 

sets. We apply the concept of single valued neutrosophic sets, an instance of neutrosophic sets, to graphs. We 

introduce certain types of single valued neutrosophic graphs (SVNG) and investigate some of their properties 

with proofs and examples. 

 
Keywords - Single valued neutrosophic set, single valued neutrosophic graph, strong single valued 

neutrosophic graph, constant single valued neutrosophic graph, complete single valued neutrosophic graph. 

 

 

1.  Introduction 

 
Neutrosophic sets (NSs) proposed by Smarandache [12, 13] is a powerful  mathematical 

tool for dealing with incomplete, indeterminate and inconsistent information in real world. 

they are a generalization of the theory of fuzzy sets [24], intuitionistic fuzzy sets [21, 23] 

and interval valued intuitionistic fuzzy sets [22]. The neutrosophic sets are characterized by 

a truth-membership function (t), an indeterminacy-membership function (i) and a falsity-

membership function (f) independently, which are within the real standard or nonstandard 

unit interval ]
−
0, 1

+
[. In order to practice NS in real life applications conveniently, Wang et 

al.[16] introduced the concept of a single-valued neutrosophic sets (SVNS), a subclass of 

the neutrosophic sets. The SVNS is a generalization of intuitionistic fuzzy sets, in which 

three membership functions are independent and their value belong to the unit interval [0, 

1]. Some more work on  single valued neutrosophic sets and their extensions may be found 

on [2, 3, 4, 5,15, 17, 19, 20, 27, 28, 29, 30]. 
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Graph theory has now become a major branch of applied mathematics and it is generally 

regarded as a branch of combinatorics. Graph is a widely used tool for solving 

combinatorial problems in different areas such as geometry, algebra, number theory, 

topology, optimization and computer science. Most important thing which is to be noted is 

that, when we have uncertainty regarding either the set of vertices or edges or both, the 

model becomes a fuzzy graph. Lots of works on fuzzy graphs and intuitionistic fuzzy 

graphs [6, 7, 8, 25, 27] have been carried out and all of them have considered the vertex 

sets and edge sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations between 

nodes(or vertices) in problems are indeterminate, the fuzzy graphs and intuitionistic fuzzy 

graphs are failed. For this purpose, Samarandache [9, 10, 11, 14, 34] have defined  four 

main categories of neutrosophic graphs, two based on literal indeterminacy (I), which 

called them; I-edge neutrosophic graph and I-vertex neutrosophic graph, these concepts are 

studied deeply and has gained popularity among the researchers due to its applications via 

real world problems [1, 33, 35]. The two others graphs are based on (t, i, f) components and 

called them; The (t, i, f)-Edge neutrosophic graph and the (t, i, f)-vertex neutrosophic 

graph, these concepts are not developed at all. In the literature the study of single valued 

neutrosophic graphs (SVN-graph) is still blank, we shall focus on the study of single 

valued neutrosophic graphs in this paper.  
 

In this paper, some certain types of single valued neutrosophic graphs are developed and 

some interesting properties are explored. 
 

 

2. Preliminaries  

 
In this section, we mainly recall some notions related to neutrosophic sets, single valued 

neutrosophic sets, fuzzy graph and  intuitionistic fuzzy graph  relevant to the present work. 

See especially [6, 7, 12, 13, 16] for further details and background. 

 

Definition 2.1 [12]. Let X  be a space of points (objects) with generic elements in X 

denoted by x;  then the neutrosophic set A (NS A) is an object having the form 

 

A = {< x:      ,      ,      >, x   X} 

 

where the functions T, I, F: X→]
−
0,1

+
[  define respectively the a truth-membership 

function, an indeterminacy-membership function, and a falsity-membership function of the 

element x   X to the set A with the condition 

 

                      
−
0 ≤      +      +      ≤ 3

+
               (1)             

 

The functions      ,       and       are real standard or nonstandard subsets of ]
−
0,1

+
[. 

 

Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the 

concept of a SVNS, which is an instance of a NS and can be used in real scientific and 

engineering applications. 

 

Definition 2.2 [16]. Let X be a space of points (objects) with generic elements in X denoted 

by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-membership 

function      , an indeterminacy-membership function      , and a falsity-membership 
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function      . For each point x in X       ,      ,         [0, 1]. A SVNS A can be 

written as  

 

             A = {< x:      ,      ,      >, x   X}                  (2) 

 

Definition 2.3 [6]. A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset 

of a non empty set V and     is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] and  

 : VxV [0,1] such that     (  ) ≤ σ(u)   σ(v)  for all u, v   V where uv denotes the edge 

between u and v and σ(u)   σ(v) denotes the minimum of σ(u) and σ(v). σ is called the 

fuzzy vertex set of V and    is called the fuzzy edge set of E. 

 

 

 
 

 

 

 

 

 

                                                                 

                                                       

 

 

 

Figure 1: Fuzzy Graph 

 

Definition 2.4 [6]. The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ) 

If τ(u) ≤ σ(u) for all u   V and ρ(u, v) ≤   ( ,  )  for all u, v   V. 

 

Definition 2.5 [7]. An Intuitionistic fuzzy graph is of the form G =(V, E ) where 

 

i. V={  ,   ,….,    } such that   : V  [0,1] and   : V   [0,1] denote the degree of 

membership and nonmembership of the element      V, respectively, and  

0 ≤   (  ) +   (  )) ≤ 1   for every        V, (i = 1, 2, ……. n), 

 

ii.  E      V x V where    : VxV [0,1] and    : VxV  [0,1] are such that 

  (  ,   ) ≤ min [  (  ),   (  )] and   (  ,   )   max [  (  ),   (  )]  

and 0 ≤   (  ,   ) +   (  ,   ) ≤ 1 for every (  ,   )   E, ( i, j = 1,2, ……. n) 

 
 

 

 

 

 

 

 

 

 

                              

 
 

 

Figure 2: Intuitionistic Fuzzy Graph 
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Definition 2.6 [31]. Let A = (  ,    ,   ) and B = (  ,    ,   )  be single valued 

neutrosophic sets on a set X. If A = (  ,    ,   ) is a single valued neutrosophic relation on a 

set X, then A =(  ,    ,   ) is called a single valued neutrosophic relation on B = (  ,    , 

  ) if 

 

  (x, y) ≤ min(  (x),   (y))  

  (x, y) ≥ max(  (x),   (y)) and 

  (x, y) ≥ max(  x),    y)) for all x, y   X.  

 

A single valued neutrosophic relation A on X  is called symmetric if  

 

  (x, y) =   (y, x),  

  (x, y) =   (y, x),   (x, y) =   (y, x) and  

  (x, y) =   (y, x),   (x, y) =   (y, x) and  

  (x, y) =   (y, x) for all x, y   X. 

 

 

3. Single Valued Neutrosophic Graphs 
 

Throught this paper, we denote    = (V, E) a crisp graph, and G =(A, B) a single valued 

neutrosophic graph. 

 

Definition 3.1. A single valued neutrosophic graph (SVN-graph) with underlying set V is 

defined to be a pair G= (A,  B) where  

 

1.The functions   :V [0, 1],   :V [0, 1] and   :V [0, 1] denote the degree of truth-

membership, degree of indeterminacy-membership and falsity-membership of the element 

     V, respectively,  and 

 

0         +   (  ) +        3 for all      V (i=1, 2, …,n) 

 

2. The functions     : E   V x V  [0, 1],   :E   V x V  [0, 1] and   : E   V x V  [0, 1] 

are defined by 

 

              min [      ,       ], 

              max [      ,       ] and 

              max [      ,       ] 

 

Denotes the degree of truth-membership, indeterminacy-membership and falsity-

membership of the edge (  ,   )   E respectively, where 

 

 0              +            +              3  for all           E (i, j = 1, 2,…, n) 

 

We call A the single valued neutrosophic vertex set of V, B the single valued neutrosophic 

edge set of E, respectively, Note that B is a symmetric single valued neutrosophic relation 

on A. We use the notation         for an element of E Thus, G = (A, B) is a single valued 

neutrosophic graph of   = (V, E) if  
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            min [      ,       ], 

            max [      ,       ] and 

            max [      ,       ]     for all           E 

 

Example 3.2. Consider  a graph    such that V= {  ,   ,   ,   }, E={    ,     ,     , 

    }. Let A be a single valued neutrosophic subset of V and let B a single valued 

neutrosophic subset of E denoted by  
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Figure 3: G: Single valued neutrosophic graph 

 

In figure 3,  (i)   (  ,0.5, 0.1,0.4) is a single valued neutrosophic vertex or SVN-vertex 

 

(ii) (    , 0.2, 0.3, 0.4) is a single valued neutrosophic edge or SVN-edge 

 

(iii) (  , 0.5, 0.1, 0.4) and (  , 0.6, 0.3, 0.2) are single valued neutrosophic adjacent 

vertices. 

 

(iv) (    , 0.2, 0.3, 0.4)  and (    , 0.1, 0.2, 0.5)   are  a single valued neutrosophic 

adjacent edge. 

 

Note 1. (i) When       =      =       for some i and j, then there is no edge between    and    

. 

Otherwise there exists an edge between    and    . 

(ii)If one of the inequalities is not satisfied in (1) and (2), then G is not an SVNG 

 

The single valued neutrosophic graph G depicted in figure 3 is represented by the following  

adjacency  matrix     

 

(    , 0.2, 0.3 ,0.4) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1 ,0.4) 

   

 

   

 

   

 

   

 

(0.6, 0.3 ,0.2) 

(    , 0.2, 0.3 ,0.4) 

 

(0.4, 0.2 ,0.5) 

(0
.3

, 0
.3

 ,0
.4

) 

(0
.1

, 0
.2

 ,0
.5

) 
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   = [

                                                

                                                 

                                                 

                                                  

] 

 
 

Definition 3.3. A partial SVN-subgraph of  SVN-graph G= (A, B)  is a SVN-graph  

H = (   ,   ) such that  

 

(i)       , where     
       ,     

       ,     
        for all       . 

(ii)       , where      
       ,      

        ,      
         for all (         . 

 

Definition 3.4. A SVN-subgraph of  SVN-graph G= (V, E)  is a SVN-graph H = (   ,   ) 

such that  

 

(i)       , where     
        ,     

       ,     
        for all     in the vertex set of     . 

(ii)       , where      
       ,      

        ,      
         for every (          in the 

edge set of    . 

 

Example 3.5.     in Figure 4   is a SVN-graph .    in Figure 5 is a partial SVN-subgraph and 

 

   in Figure 6  is a SVN-subgraph of    

 

 

 

 

 

 

 

 
Figure 4:   , a single valued neutrosophic graph 

 

 

 

                                     

 

 

 

 

 

 
Figure 5:   , a partial SVN-subgraph of     

 

 

 

 

 

                                 

 
Figure 6:   , a SVN-subgraph of    . 
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Definition 3.6. The two vertices are said to be adjacent in a single valued neutrosophic  

graph  G= (A, B) if             min [      ,       ],             max [      ,       ] and  

            max [      ,       ]. In this case,    and    are said to be neighbours and (  , 

  ) is incident at    and    also. 

 

Definition 3.7. A path  P  in a single valued neutrosophic  graph G= (A, B) is a sequence of 

distinct vertices   ,   ,    ,…     such that                  0,                 0 and 

               0  for  0  i   1. Here n   1 is called the length of the path P. A single node 

or vertex    may also be considered as a path. In this case the path is of the length (0, 0, 0). 

The consecutive pairs            are called edges of the path.We call P a cycle if   =    

and n 3. 

 

Definition 3.8. A single valued neutrosophic graph G= (A, B) is said to be connected if 

every pair of vertices has at least one single valued neutrosophic path between them, 

otherwise it is disconnected. 

 

Definition 3.9. A vertex     V of single valued neutrosophic graph G= (A, B) is said to be 

an isolated vertex if there is no effective edge incident at   . 

 

 

 

 

 

 

 

 
Figure 7: Example of single valued neutrosophic graph 

 

In figure 7, the single valued neutrosophic vertex      is an isolated vertex. 

 

Definition 3.10. A vertex in a single valued neutrosophic G= (A, B) having exactly one 

neighbor is called a pendent vertex. Otherwise, it is called non-pendent vertex. An edge in 

a single valued neutrosophic graph incident with a pendent vertex is called a pendent edge. 

Otherwise it is called non-pendent edge. A vertex in a single valued neutrosophic graph 

adjacent to the pendent vertex is called a support of the pendent edge 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8 :  Incident SVN-graph. 
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Definition 3.11. A single valued neutrosophic graph G= (A, B) that has neither self loops 

nor parallel edge is called simple single valued neutrosophic graph. 

  

Definition  3.12. When a vertex    is end vertex of some edges (  ,   )  of any SVN-graph  

G= (A, B). Then     and (  ,   ) are said to be incident to each other. In Figure 8,     , 

     and       are incident on   . 

 

Definition 3.13. Let G= (A, B) be a single valued neutrosophic graph. Then the degree of 

any vertex v is sum of degree of truth-membership, sum of degree of indeterminacy-

membership and sum of degree of falsity-membership of all those edges which are incident 

on vertex v denoted by d(v)= (     ,      ,      ) where  

 

     =∑            denotes  degree of truth-membership vertex. 

     =∑            denotes degree of indeterminacy-membership vertex. 

     =∑            denotes degree of falsity-membership vertex. 

 

Example 3.14. Let us consider a single valued  neutrosophic graph  G= (A, B) of     = (V, 

E) where V ={  ,   ,   ,   } and E={    ,     ,      ,     }.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Degree of vertex of single  valued neutrosophic graph 

 

We have, the degree of each vertex as follows: 

 

     =   0.3, 0.5, 0.9),      =   0.5, 0.6, 0.8),      =   0.5, 0.6, 0.9),      =   0.3, 0.5, 1) 

 

Definition 3.15 . A single valued neutrosophic graph G= (A, B) is  called constant if 

degree of each vertex is k =(  ,   ,   ). That is, d( ) = (  ,   ,   ) for all     V.  

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Constant SVN-graph. 
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Example 3.16. Consider a single valued  neutrosophic graph  G such that V ={  ,   ,   , 

  } and E={    ,     ,      ,     }.  

 

Clearly, as it is seen in Figure 10, G is constant SVN-graph since the degree of    ,   ,    

and    is (0.4, 0.6, 0.8). 

 

Definition 3.17. A single valued neutrosophic graph G=(A, B) of   = (V, E) is called  

strong single valued neutrosophic graph if  

 

            min [      ,        ] 

            max [      ,        ]  

            max [      ,       ]  

For all          E. 

 

Example 3.18. Consider  a graph    such that V= {  ,   ,   ,   }, E={    ,     ,     , 

    }. Let A be a single valued neutrosophic subset of V and let B a single valued 

neutrosophic subset of E denoted by  
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Figure 11: Strong SVN-graph 

 

By routing computations, it is easy to see that G is a strong single valued neutrosophic of 

  . 

 

Proposition 3.19. A single valued neutrosophic graph is the generalization of fuzzy graph 

 

(0.5, 0.3 ,0.4) 

(0.2, 0.3 ,0.4) 

(0.5, 0.1 ,0.4) 

   

 

   

 

   

 

   

 

(0.6, 0.3 ,0.2) 

(0.2, 0.3 ,0.5) 
(0.4, 0.2 ,0.5) 

(0
.2

, 0
.3

 ,0
.4

) 

(0
.4

, 0
.2

 ,0
.5

) 



Journal of New Theory 10 (2016) 86-101                              95 

 

Proof: Suppose G= (V, E) be a single valued neutrosophic graph. Then by setting the 

indeterminacy- membership and falsity- membership values of vertex set and edge set  

equals to zero reduces the single valued neutrosophic graph to fuzzy graph. 

 

Proposition 3.20. A single valued neutrosophic graph is the generalization of intuitionistic 

fuzzy graph. 

 

Proof: Suppose G=(V, E) be a single valued neutrosophic graph. Then by setting the 

indeterminacy- membership value of vertex set and edge set equals to zero reduces the 

single valued neutrosophic graph to  intuitionistic fuzzy graph. 

 

Definition 3.21. The complement of a single valued neutrosophic graph G (A, B) on     is 

a single valued neutrosophic graph  ̅ on    where: 

 

1.  ̅ =A 

2.   
̅̅ ̅(   =       ,    ̅(   =       ,    

̅̅ ̅(    =       , for all     V. 

3.   
̅̅ ̅(      =     [         (  )] -  (     ) 

  ̅(      =     [         (  )]  -  (     ) and 

  
̅̅ ̅(      =     [         (  )]  -  (     ),  For all          E 

 

Remark 3.22. if G= (V, E) is  a single valued neutrosophic graph on    . Then from above 

definition, it follow that  ̅ ̅ is given by the single valued neutrosophic graph   ̅ ̅ =( ̅ ̅,  ̅ ̅) on 

   where 

 

  ̅ ̅=V and   
̅̅ ̅̅̅ ̅(      =     [         (  )]-  (     ),  

   ̅
̅ (      =     [         (  )]-  (     ),and 

   
̅̅ ̅̅̅ ̅(       =     [         (  )]-  (     ) For all          E. 

 

Thus    
̅̅ ̅̅̅ ̅ =  ,    ̅

̅  =  ,  and   
̅̅ ̅̅̅ ̅ =    on V, where E =(   ,    ,    ) is the  single valued 

neutrosophic relation on V. For any single valued neutrosophic graph G,  ̅ is strong single 

valued neutrosophic graph and  G    ̅. 

 

Proposition 3.23. G=  ̅ ̅ if and only if G is a strong single valued  neutrosophic graph. 

 

Proof. it is obvious. 

 

 

 

 

 
        

 

 

 

 

 
              Figure 12: G: Strong SVN- graph                                  Figure 13:  ̅ Strong SVN- graph 
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Figure 14:  ̅ ̅ Strong SVN- graph 

 

Definition 3.24. A strong single valued neutrosophic graph G is called self complementary 

if G   ̅. Where  ̅ is the complement of single valued neutrosophic graph G. 

 

Example 3.25. Consider a graph    = (V, E) such that V ={  ,   ,   ,   }, E={    ,     , 

    ,     }. Consider a single valued  neutrosophic graph G as in Figure 12 and 13, 

 

Clearly, as it is seen in Figure 14, G   ̅ ̅. Hence  G is self complementary. 

 

Proposition 3.26. Let G=(A, B) be a strong single valued neutrosophic graph. If 

 

            min [      ,       ], 

            max[      ,       ] and 

            max [      ,       ] for all        V.  

 

Then G is self complementary. 

 

Proof. Let G=(A, B) be a strong single valued neutrosophic graph such that  

 

            min [      ,       ] 

             max [      ,       ]  

             max [      ,       ]  

 

For all        V. Then G    ̅ ̅ under the identity map I: V  V. Hence G is self 

complementary . 

 

Proposition 3.27. Let G be a self complementary  single valued neutrosophic graph. Then 

 

∑               
 = 

 

 
 ∑                         

 

∑               
 = 

 

 
 ∑                         

 

∑               
 = 

 

 
∑                         

 

 

Proof. If G be a self complementary single valued neutrosophic graph. Then there exist an 

isomorphism  f:       satisfying   
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̅̅ ̅̅ (          

              
     

   
̅̅ ̅(          

              
     

   
̅̅ ̅̅̅̅ ̅̅ (          

              
       for all       .  

 

And  

 

   
̅̅ ̅̅ (     ,      ) =   

(     ,      ) =   
(     ) 

   
̅̅̅̅ (     ,      ) =   

(     ,      ) =   
(     ) 

    
̅̅ ̅̅ (     ,      ) =   

(     ,      ) =   
(     )  for all             

 

We have  

 

   
̅̅ ̅̅ (     ,      ) =         

̅̅ ̅̅            
̅̅ ̅̅              

(     ,      ) 

i.e,     
(     ) =         

        
          

(     ,      ) 

   
(     ) =         

        
          

(     ) 

 

That is 

 

∑    
            

 +∑    
            

= ∑         
        

          
 

∑    
            

 +∑    
            

= ∑         
        

          
 

∑    
            

 +∑    
            

= ∑         
        

          
 

2 ∑    
            

 =  ∑         
        

          
 

2 ∑    
            

 =  ∑         
        

          
 

2∑    
            

 =  ∑         
        

          
 

 

From these equations, Proposition 3.27 holds 

 

Proposition 3.28. Let    and    be strong single valued neutrosophic graph,   
̅̅ ̅      

̅̅ ̅ 

(isomorphism) 

 

Proof. Assume that    and    are isomorphic, there exist a bijective map  f:        

satisfying   

 

    
(  ) =   

(     ),  

    
(  ) =   

(     ), 

    
(  ) =   

(     )    for all       .  

 

And  

 

   
(     ) =   

(     ,      ), 

    
(     ) =   

(     ,      ), 

    
(     ) =    

(     ,      )  for all             

 

By definition 3.21, we have  
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̅̅ ̅̅ (      = min [   

    ,    
    ]     

(     ) 

               = min [   
(     ),     

(     )]     
(     ,      ), 

              =   
̅̅ ̅̅ (     ,      ), 

 

     
̅̅̅̅ (      = max [   

    ,     
    ]     

(     ) 

               = max[   
(     ),    

(     )]     
(     ,      ), 

              =   
̅̅̅̅ (     ,      ), 

 

   
̅̅ ̅̅ (      = min [   

    ,    
    ]     

(     ) 

               = min [   
(     ),    

(     )]     
(     ,      ), 

              =   
̅̅ ̅̅ (     ,      ), 

 

For all            . Hence   
̅̅ ̅     

̅̅ ̅  The converse  is straightforward. 

 

4. Complete Single Valued Neutrosophic Graphs 

 
For the sake of simplicity we denote      ) by     ,      ) by    , and      ) by    . Also 

        ) by      ,         ) by      and         ) by     . 

 

Definition 4.1.  A single valued neutrosophic graph G= (A, B) is called complete  if   

    = min(   ,    ),      = max(   ,    ) and     = max(   ,    ) for all        V. 

 

Example 4.2. Consider a graph    = (V, E) such that V ={   ,   ,   ,   }, 

E={    ,     ,     ,     ,      ,     }. Then  G= (A, B) is a complete single valued  

neutrosophic graph of   . 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 13: Complete single valued neutrosophic graph 

 

Definition 4.3. The complement of a complete single valued neutrosophic    graph G =( A, 

B) of     = (V, E) is a single valued neutrosophic complete graph  ̅= ( ̅,  ̅) on   = ( ,  ̅)  

where 

 

1.  ̅ =V 

2.   
̅̅ ̅(   =       ,    ̅(   =       ,    

̅̅ ̅(   =       , for all     V.  

3.   
̅̅ ̅(      =     [         (  )]     (     ) 
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  ̅(      =     [         (  )]      (     ) and 

  
̅̅ ̅(      =     [         (  )]      (     ) for all          E 

 

Proposition 4.4. The complement of complete SVN-graph is a SVN-graph with no edge. 

Or if G is a complete then in  ̅ the edge is empty. 

 

Proof. Let G= (A, B) be a complete SVN-graph. So   

 

     = min(   ,    ),      = max(   ,    ) and     = max(   ,    )  for all        V 

 

Hence in  ̅, 

 

  ̅   =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

 

and 

 

   ̅  =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

Also 

 

 ̅   =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

 

Thus ( ̅   ,   ̅  ,  ̅   ) = (0 , 0, 0) 

 

Hence, the edge set of  ̅ is empty if G is a complete SVN-graph. 

 

4. Conclusion  

 
Neutrosophic sets is a generalization of the notion of fuzzy sets and intuitionistic fuzzy 

sets. Neutrosophic models gives more precisions, flexibility and compatibility to the 

system as compared to the classical, fuzzy and/or intuitionistic fuzzy models. In this paper, 

we have introduced certain types of  single valued neutrosophic graphs, such as  strong 

single valued neutrosophic graph, constant single valued neutrosophic graph and complete 

single valued neutrosophic graphs. In future study, we plan to extend our research to 

regular and irregular single valued neutrosophic graphs, bipolar single valued neutrosophic 

graphs, interval valued neutrosophic graphs, strong interval valued neutrosophic, regular 

and irregular interval valued neutrosophic. 
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