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SYMMETRIC IDENTITIES INVOLVING CARLITZ'S-TYPE 

TWISTED (h,q)-TANGENT-TYPE POLYNOMIALS UNDER S₅ 
 

Uğur Duran
1,*

 

Mehmet Açıkgöz
1 

<duran.ugur@yahoo.com > 

<acikgoz@gantep.edu.tr> 

 

 
 1

Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, 27310 Gaziantep, Turkey 

 

 
Abstract – In [11], Ryoo introduced the Carlitz’s-type twisted (h,q)-Tangent numbers and polynomials. In 

this paper, we consider some new symmetric identities involving Ryoo’s Carlitz’s-type twisted (h,q) Tangent-

type polynomials arising from the fermionic p-adic invariant integral on pZ  under 5S  termed symmetric 

group of degree five.  

 

Keywords – Symmetric identities; Carlitz’s-type twisted (h,q)-Tangent-type polynomials; Fermionic p-adic 

invariant integral on pZ ; Invariant under 5S . 

 

 

1 Introduction 
 

In the complex plane, the Euler polynomials are defined by 
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When = 0x , then we get  0 :=n nE E  is called the n -th Euler numbers, see [5], [7], [14]. 

As well-known that the Tangent numbers 2 1nT    1n   are defined as the coefficients of the 

Taylor expansion of tan x : 
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Kim et al. [10] obtained the following relation between Tangent numbers and Euler 

numbers:  

   2 1
2 1 2 1

= 1 .
2

n n
n n

T
E 

 
  (1.1) 

 

Ryoo [14] introduced Tangent-type polynomial ( )nT x  which is different from original 

definition, as follows: 
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  (1.2) 

 

Letting = 0x  in the Eq. (1.2) reduces to (0) :=n nT T  that is called n -th Tangent-type 

number (see, e.g., [11], [14]). 

 

Ryoo’s Tangent polynomial holds the following equality (see [14]) 

 

 
2 1

2 1 2 1
= .

2

n

n n

T
E



 
 (1.3) 

 

Note that the Eq. (1.3) is different from the Eq. (1.1). Further we have 

 

  2 1 2 1= 1 .
n

n nT T   (1.4) 

 

Because of (1.4), we call  nT x  and nT  as Tangent-type polynomials and Tangent-type 

numbers, respectively. 

 

Let p  be chosen as a fixed odd prime number. Along this paper pZ , Q , pQ  and pC  will 

denote topological closure of Z , the field of rational numbers, topological closure of Q  

and the field of p -adic completion of an algebraic closure of pQ , respectively. Let 

 = 1,2,3,N  and  = 0 N N . 

 

For d  an odd positive number with  , =1d p , let 

 

 1:= = / and  =lim
N

d p
n

X X dp XZ Z  Z  

and 

   = | mod N N

pt dp x X x t dp  Z  

 

where tZ  lies in 0 < Nt dp . See, for more details, [1 11 ]. 

 

The normalized absolute value according to the theory of p -adic analysis is given by 
1=

p
p p . The notation " q " can be considered as an indeterminate, a complex number 
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qC  with < 1q , or a p -adic number 
pqC  with 1/( 1)1 < p

p
q p   and 

 = exp logxq x q  for 1
p

x  . It is always clear in the content of the paper. 

 

For any x , let us introduce the following notation (see [1-14]) 

 

  
1

=
1

x

q

q
x

q




  (q≠1) (1.5) 

 

known as q -number of x . Note that as 1q  , the notation  
q

x  reduces to the x . For 

 

   :  is uniformly differentiable function ,p p pf UD f g  Z  

 

Kim [7] defined the p-adic invariant integral on pZ  as follows:  
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From Eq. (1.6), we get 
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where ( )nf x  means ( )f x n . For more details about the p -adic invariant integral on pZ , 

see the references, e.g., [5], [7], [11], [12], [13], [14]. 

 

Let hZ  and 
1

= = limNp N Np p
N

T C C



, where  = : =1
Np

Np
C w w  is the cyclic group of 

order Np . For pw T , we indicate by :w p pC Z  the locally constant function xx w . 

For pq C  with 1 <1
p

q  and pw T , the h -extension of Carlitz’s-type twisted q -

Tangent-type polynomials are defined by the following p -adic invariant integral on pZ , 

with respect to 1 , in [11]: 
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w q y x d y T x n Z  (1.7) 

 

If we let = 0x  into the Eq. (1.7), we then have 
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, , , ,(0) :=
h h

n q w n q wT T  called n -th h -extension 

of Carlitz’s-type twisted q -Tangent-type number. These numbers can be generated by the 

following recurrence relation: 
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with the usual convention about replacing 
  ,

n
h

q wT  by 
 

, ,

h

n q wT . 

 

When 1q   and =1w  in the Eq. (1.7), it gives 

 

 
 

 , , 1( ) ( ) := (2 ) .
h n

n q w n

p

T x T x y x d y Z  

 

Recently, symmetric identities on some special polynomials, e.g. Bernoulli polynomials, 

Euler polynomails, Genocchi polynomials etc., have been studied by many mathematicians. 

For instance, Agyuz et al. [1] obtained a further investigation for the q -Genocchi numbers 

and polynomials of higher order under third Dihedral group 3D  and established some 

closed formulae of the symmetric identities. They also established some known identities 

for the classical Genocchi numbers and polynomials by using fermionic p -adic q -integral 

on 
pZ . Duran et al. [2] investigated some new symmetric identities for q -Genocchi 

polynomials which are derived from the fermionic p -adic q -integral on 
pZ . Duran et al. 

[3] derived symmetric identities involving weighted q -Genocchi polynomials using the 

fermionic p -adic q -integral on 
pZ . Araci et al. [5] performed to get some new symmetric 

identities for q -Frobenius-Euler polynomials under symmetric group of degree five, which 

are derived from the fermionic p -adic q -integral over the p -adic numbers field. Kim et 

al. [9] introduced new symmetry identities for Carlitz’s q -Bernoulli polynomials under 

symmetric group of degree five. Kim et al. [7] investigated some new properties of 

symmetry for the Carlitz’s-type q -Euler polynomials invariant under the symmetric group 

of degree five. Kim [8] considered new properties of symmetry for the higher-order 

Carlitz’s q -Bernoulli polynomials which derived from p -adic q-integral on 
pZ  under the 

symmetric group of degree five. 

 

In the present paper, we investigate some not only new but also interesting identities for h -

extension of Carlitz’s-type twisted q -Tangent-type polynomials arising from the fermionic 

p -adic invariant integral on 
pZ  symmetric group of degree five. 

 

 

2  Symmetric Identities Involving  
, , ( )
h

n q wT x  under 5S  

 

For iw N  with 1( 2)iw mod  with  1,2,3,4,5i , by the Eqs. (1.6) and (1.7), we get 
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h w w w w i w w w w j w w w w k w w w w sw w w w i w w w w j w w w w k w w w w si j k s

i j k s

w q

  
       

 

on the both sides of Eq. (2.1) gives 

 
11 1 1

31 2 4
5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2

=0 =0 =0 =0

( 1)

ww w w
w w w w i w w w w j w w w w k w w w w si j k s

i j k s

w

  
      (2.2) 

 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2 1 2 3 4 1 2 3 4
h w w w w i w w w w j w w w w k w w w w s w w w w y hw w w w y

p

q w q
  

 Z  

2
1 2 3 4 1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2

1( )
w w w w y w w w w w x w w w w i w w w w j w w w w k w w w w s t

qe d y
     
 

  

 
1 11 1 1 13 51 2 4

1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2

=0 =0 =0 =0 =0 =0

= ( 1)lim

Nw ww w w p
w w w w l w y w w w w i w w w w j w w w w k w w w w si j k s y l

N i j k s l y

w

    
        



 

 

  1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2
h w w w w l w y w w w w i w w w w j w w w w k w w w w s

q
    

  

 2
1 2 3 4 5 1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2

.
w w w w l w y w w w w w x w w w w i w w w w j w w w w k w w w w s t

qe
      
 

  

 

Note that the Eq. (2.2) is invariant for any permutation 5S  . Therefore, we obtain the 

following theorem. 

 

Theorem 1 Let iw N  with 1( 2)iw mod  and  1,2,3,4,5i . Then the following 

 
1 1 1 1

(1) (2) (3) (4)

=0 =0 =0 =0

( 1)

w w w w

i j k s

i j k s

      

       

(5) (4) (2) (3) (5) (4) (1) (3) (5) (4) (1) (2) (5) (3) (1) (2)
w w w w i w w w w j w w w w k w w w w s

w                  

  

(5) (4) (2) (3) (5) (4) (1) (3) (5) (4) (1) (2) (5) (3) (1) (2)
w w w w i w w w w j w w w w k w w w w s

h

q

                  
 
 
   

   (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
w w w w l w y hw w w w l w y

p

w q
          

Z  

 (1) (2) (3) (4) (1) (2) (3) (4) (5) (5) (4) (2) (3)exp [ 2w w w w y w w w w w x w w w w i                

(5) (4) (1) (3) (5) (4) (1) (2) (5) (3) (1) (2) 1] ( )qw w w w j w w w w k w w w w s t d y                

 

holds true for any 5.S    

 

By Eq. (1.5), one can easily see that 

 

 1 2 3 4 1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 22
q

w w w w y w w w w w x w w w w i w w w w j w w w w k w w w w s      (2.3) 
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  5 5 5 5
1 2 3 4 5

1 2 3 41 2 3 4

= 2 .
q

w w w w
q

w w w w
w w w w y w x i j k s

w w w w

 
     

 
 

 

From Eqs. (2.1) and (2.3), we obtain 

 
2

1 2 3 4 1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 21 2 3 4 1 2 3 4
1( )

w w w w y w w w w w x w w w w i w w w w j w w w w k w w w w s tw w w w y hw w w w y q

p

w q e d y
     
 

Z  (2.4) 

 
 

5 5 5 5
1 2 3 4 51 2 3 4 1 2 3 4, ,

=0 1 2 3 4

= .
!

n
hn

w w w w w w w wq
n q w

n

w w w w t
w w w w T w x i j k s

w w w w n

  
    

 
  

 

By Eq. (2.4), we have 

 

 1 2 3 4 1 2 3 4
w w w w y hw w w w y

p

w qZ  (2.5) 

 1 2 3 4 1 2 3 4 5 5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2 12 ( )
n

q
w w w w y w w w w w x w w w w i w w w w j w w w w k w w w w s d y                  

 
 

 5 5 5 5
1 2 3 4 51 2 3 4 1 2 3 4, ,

1 2 3 4

= , 0 .
hn

w w w w w w w wq
n q w

w w w w
w w w w T w x i j k s n

w w w w

 
     

 
 

 

Thus, from Theorem 1 and (2.5), we have the following theorem. 

 

Theorem 2 For iw N  with 1( 2)iw mod  with  1,2,3,4,5i , the following 

 
1 1 1 1

(1) (2) (3) (4)

(1) (2) (3) (4)

=0 =0 =0 =0

( 1)

w w w w
n

i j k s

q
i j k s

w w w w
   

   

   

           
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w
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q
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  
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n q w
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T w x i j k s

w w w w

   

       
   

 
      

 

 

 

holds true for any 5S  .  

 

It is easy to show by using the definition of  
q

x  that 

 

 5 5 5 5
5

1 2 3 41 2 3 4

2

n

w w w w
q

w w w w
y w x i j k s

w w w w

 
     

 
 (2.6) 
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n m
n

n mq
w

q
m q

wn
w w w i w w w j w w w k w w w s

m w w w w




  
        

  

 
   5 4 2 3 5 4 1 3 5 4 1 2 5 3 1 2

1 2 3 452 .
m w w w w i w w w w j w w w w k w w w w s m

w w w w
q

q y w x
  
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Taking 1 2 3 4 1 2 3 4
1( )

w w w w y hw w w w y

p

w q d yZ  on the both sides of Eq. (2.6) gives 
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By the Eq. (2.7), we have 
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As a result, by (2.9), we arrive at the following theorem. 



Journal of New Theory 12 (2016) 51-59                                                                                                         58 
 

Theorem 3 Let 
iw N  with 1( 2)iw mod  with  1,2,3,4,5i . For 0n  , the following 

expression 

 (1) (2) (3) (4) (5)
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m n m

q q
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holds true for some 5.S    
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Abstaract − In this paper, we defined new relationship between k Lucas sequences and determi-
nants of their associated matrices, this approach is different and never tried in k Fibonacci sequence
literature.

Keywords − k-Fibonacci sequence, k-Lucas sequence, Recurrence relation.

1 Introduction

The Fibonacci sequence is a source of many nice and interesting identities. Many
identities have been documented in [9],[10],[11],[12],[16],[2],[3]. A similar interpre-
tation exists for k Fibonacci and k Lucas numbers. Many of these identities have
been documented in the work of Falcon and Plaza [6],[7],[8], where they are proved
by algebraic means, many of another interesting algebraic identities are also proved
in [1],[4]. In this paper determinantal techniques are used to obtain several k Lucas
identities.

2 Preliminary

Definition 2.1. The k−Fibonacci sequence {Fk,n}∞n=1 is defined as, Fk,n+1 = k ·
Fk,n + Fk,n−1, with Fk,0 = 0, Fk,1 = 1, for n ≥ 1

Definition 2.2. The k− Lucas sequence {Lk,n}∞n=1 is defined as, Lk,n+1 = k ·Lk,n +
Lk,n−1, with Lk,0 = 2, Lk,1 = k, for n ≥ 1

**Edited by Adem Şahin and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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Characteristic equation of the initial recurrence relation is,

r2 − k · r − 1 = 0 (1)

Characteristic roots are

r1 =
k +

√
k2 + 4

2
(2)

and

r2 =
k −√k2 + 4

2
(3)

Characteristic roots verify the properties

r1 − r2 =
√

k2 + 4 =
√

∆ = δ (4)

r1 + r2 = k (5)

r1.r2 = −1 (6)

Binet forms for Fk,n and Lk,n are

Fk,n =
rn
1 − rn

2

r1 − r2

(7)

and

Lk,n = rn
1 + rn

2 (8)

2.1 First 11 k Fibonacci sequences as numbered in the En-
cyclopedia of Integer Sequences

Fk,n Classification
F1,n A000045
F2,n A000129
F3,n A006190
F4,n A001076
F5,n A052918
F6,n A005668
F7,n A054413
F8,n A041025
F9,n A099371
F10,n A041041
F11,n A049666
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3 Determinantal Identities

Theorem 3.1. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




L2
k,n+t + 4L2

k,n−i Lk,n+i+j Lk,n+i+j

Lk,n+t 4L2
k,n+i + L2

k,n+i+j Lk,n+t

Lk,n+i 2Lk,n+i

L2
k,n+i+j + L2

k,n+t

2Lk,n+i




= 8Lk,n+iLk,n+tLk,n+i+j

(9)

Proof. Let

ℵ1 = det




L2
k,n+t + 4L2

k,n−i Lk,n+i+j Lk,n+i+j

Lk,n+t 4L2
k,n+i + L2

k,n+i+j Lk,n+t

Lk,n+i 2Lk,n+i

L2
k,n+i+j + L2

k,n+t

2Lk,n+i




(10)

Assume that
Lk,n+t = φ

Lk,n+i = ϕ

Then
Lk,n+i+j = kϕ + φ

Now,

ℵ1 = det




φ2 + ϕ2

kϕ + φ
kϕ + φ kϕ + φ

φ ϕ2+(kϕ+φ)2

φ
φ

ϕ ϕ
φ2 + (kϕ + φ)2

ϕ




Making the row operations
1

(kϕ + φ)
[(kϕ + φ)R1],

1

φ
[φR2],

1

ϕ
[ϕR3], gives

ℵ1 =
1

φϕ(kϕ + φ)
det




φ2 + ϕ2 (kϕ + φ)2 (kϕ + φ)2

φ2 ϕ2 + (kϕ + φ)2 φ2

ϕ2 ϕ2 φ2 + (kϕ + φ)2




(11)



Journal of New Theory 12 (2016) 01-07 4

making row operations R1 +R2 +R3 → R1, R3−R1 → R3 and R2−R1 → R2, gives

ℵ1 =
1

φϕ(kϕ + φ)
det




φ2 + ϕ2 ϕ2 + (kϕ + φ)2 φ2 + (kϕ + φ)2

−ϕ2 0 −(kϕ + φ)2

φ2 −(kϕ + φ)2 0




Expanding we get
ℵ1 = 8φϕ(kϕ + φ)

Putting
Lk,n+t = φ

Lk,n+i = ϕ

Lk,n+i+j = kϕ + φ

Gives
ℵ1 = 8Lk,n+iLk,n+tLk,n+i+j

Theorem 3.2. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




L2
k,n+t 2Lk,n+iLk,n+i+j Lk,n+tLk,n+i+j + Lk,n+i+j

L2
k,n+t + 2Lk,n+iLk,n+t 4L2

k,n+i Lk,n+tLk,n+i+j

2Lk,n+iLk,n+t 4L2
k,n+i + 2Lk,n+iLk,n+i+j L2

k,n+i+j




(12)

= [4Lk,n+iLk,n+i+j ]
2

Proof. Let

ℵ2 = det




L2
k,n+t 2Lk,n+iLk,n+i+j Lk,n+tLk,n+i+j + Lk,n+i+j

L2
k,n+t + 2Lk,n+iLk,n+t 4L2

k,n+i Lk,n+tLk,n+i+j

2Lk,n+iLk,n+t 4L2
k,n+i + 2Lk,n+iLk,n+i+j L2

k,n+i+j




(13)
Assume that

Lk,n+t = φ

Lk,n+i = ϕ

Then

ℵ2 = det




φ2 ϕ(kϕ + φ) φ(kϕ + φ) + (kϕ + φ)2

φ2 + φϕ ϕ2 φ(kϕ + φ)

φϕ ϕ2 + ϕ(kϕ + φ) (kϕ + φ)2



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Making the row operations R2 → R2 − (R1 + R3)), gives

ℵ1 =
1

φϕ(kϕ + φ)
det




φ (kϕ + φ) φ + (kϕ + φ)

0 −2(kϕ + φ) −2(kϕ + φ)

ϕ ϕ + (kϕ + φ) (kϕ + φ)




(14)

making Column operations C2 → C2 − C3 and expanding gives

ℵ2 = 4 [2φϕ(kϕ + φ)]2

Putting
Lk,n+t = φ

Lk,n+i = ϕ

Lk,n+i+j = kϕ + φ

Gives
ℵ2 = [4Lk,n+iLk,n+i+j]

2

Corollary 3.3. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




−L2
k,n+t 2Lk,n+iLk,n+t Lk,n+tLk,n+i+j

2Lk,n+iLk,n+t −4L2
k,n+i 2Lk,n+iLk,n+i+j

Lk,n+tLk,n+i+j 2Lk,n+iLk,n+i+j −L2
k,n+i+j




= [4Lk,n+iLk,n+tLk,n+i+j]
2

(15)

Corollary 3.4. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




4L2
k,n+i + L2

k,n+i+j 2Lk,n+iLk,n+t Lk,n+tLk,n+i+j

2Lk,n+iLk,n+t L2
k,n+t 2Lk,n+iLk,n+i+j

Lk,n+tLk,n+i+j 2Lk,n+iLk,n+i+j 4L2
k,n+i + L2

k,n+t




= [4Lk,n+iLk,n+tLk,n+i+j]
2

(16)

Corollary 3.5. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




2Lk,n+i+j + 2Lk,n+i + Lk,n+t Lk,n+t 2Lk,n+i

Lk,n+i+j 2Lk,n+t + 2Lk,n+i + Lk,n+i+j 2Lk,n+i

Lk,n+i+j 2Lk,n+t 4Lk,n+i + Lk,n+t + Lk,n+i+j




= 2 [2Lk,n+i + Lk,n+t + Lk,n+i+j]
3
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Corollary 3.6. If n, i, j, t,m are positive integers with 0 < t < i, i + 1 < m, j = 1,
then

det




1 + Lk,n+t 1 1

1 1 + 2Lk,n+i 1

1 1 1 + Lk,n+i+j




= {2Lk,n+iLk,n+tLk,n+i+j}{ 1

Lk,n+t

+
1

2Lk,n+i

+
1

Lk,n+i+j

+ 1}
{2Lk,n+iLk,n+tLk,n+i+j + 2Lk,n+iLk,n+i+j + Lk,n+tLk,n+tLk,n+i+j + 2Lk,n+iLk,n+t}

4 Conclusion

In this paper we described determinantal identities for k Lucas sequence; same iden-
tities can be derived for k Fibonacci sequence.
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Abstract – The aim of this paper is to introduce the concept of pre mX continuous function and to show some 

of its application. Also the concept of pre mX open mapping and pre mX homeomorphism is studied. The 

concept of pre mX open set has already been introduced by the authors in 2011.In this paper a topology is 

considered which is generated from mX structure and it is denoted as Tm
X
. The concept of pre mX continuous 

function is discussed in the topological space (X, Tm
X
) generated from (X, mX). 

 

Keywords – Pre mX continuous function, Pre mX open mapping, Topology generated by mX structure. 

 

 

1. Introduction and Preliminaries 
 

The concept of mX-open set has been introduced by H. Maki in 1996.[8] and the concept of 

preopen set has been introduced by Mashour et al [9] .Lots of applications of preopen set 

and mX structure in ordinary topological space has been introduced by various 

researchers.[1][2][3]. The concept of mX pre-open set has been introduced by Ennis Rosas, 

Neelamegarajan Rajesh, Carlos Carpintero[17]. And the concept of Pre mX open set has 

been introduced by the authors in 2011[4]. In this paper the concept of Pre mX continuous 

function, Pre mX irresolute continuous function, Pre mX open mapping, Introduction. Pre 

mX irresolute mapping, Pre mX homeomorphism etc are introduced and some properties are 

discussed. 

 

In the second section the concept of pre mX-continuous function, pre mX irresolute 

continuous function is discussed. 

 

In the third section, the concept of pre mX open mapping etc is introduced and their 

connection are shown. Lastly the concept of pre mX homeomorphism is introduced and 

some of its utility is studied.   
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Let us rememorize some of the basic concepts used by various researchers. 

 

Defintion 1.1. [8] A structure is said to be a mX structure iff mX, X mX. From this 

structure the following operators may be defined as below:  

 

For any subset A of X  

 

mX IntA = {G: GA , G is a mX open set in X} 

mX ClA = {G: GA , G is a mX closed set in X} 

 

The subset A of X is said to be a 

 

1.[8]  open mX- set in a mX structure if mX intA=A  

 

2. [9] Preopen set in ordinary topological space if Aint(cl(A)) 

 

3. [14] mX-regular open set in mX structure if A= mX-int mX-clA. 

 

4. [8] mX-generalized closed set in mX structure if there exist a mX-open set containing A 

such that mXClAU whenever AU. 

 

5. [17] mX--preopen set in X if AmXInt(mXCl(A)) 

 

6. [4] Pre-mX open set on an mX structure if A Int(mX-Cl(A))). 

 

 

From the above definitions a connection between the sets are shown in the following figüre 

 

                                                                    mX- dense  

                                                                          ↓ 

                      mX- open → mX-pre open → pre-mX open → b-mXopen  

                                                                            ↑ 

                                                                 regular mX-open 

 

 

Definition 1.2. A mapping f : X→Y is said to be a 

 

1. [9]  pre continuous function in an ordinary topological space if f 
-1

(A)PO(X) for every 

open set A  in Y. 

 

2.  [14] mX-regular continuous function in a mX structure if f 
-1

(A) is a mX regular open set 

in X for every mX-regular open set A in Y.  

 

3. [13] mX-generalized continuous function in a mX structure if f 
-1

(A) is a mX closed set in 

X for every mX-closed set A in Y. 

 

4. [8]  mX-continuous function in a mX structure if f 
-1

(A) is a mX open set in X whenever A 

is an mX   open set in Y. 
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5. [9] Preopen mapping in an ordinary topological space if the image of each open set in X 

is a preopen set in Y. 

 

6. [8]  mX-open mapping in a mX structure if image of  each mX -open set in X is a mX -

open set in Y. 

 

7. [14] mX- regular-open mapping in a mX structure if the image of each mX -open set in X 

is a mX –   regular open set in Y. 

 

8.[9]  pre irresolute continous function in an ordinary topological space if f 
−1

(U)PO(X) 

for every UPO(Y ), 

 

9. [17]  mX pre irresolute continuous function in a mX structure  if the inverse image of 

every mX pre open set in Y  is a mX pre open set in X. 

 

Definition 1.3 [9] A bijective mapping f :(X,τ) → (Y,σ) from X to Y is called a pre 

homeomorphism if both  f and f 
–1

 are pre irresolute mappings. 

 

Throughout this paper we are considering the topological space as the structure formed by 

introducing the missing elements in mX structure i.e. along with the elements of mX 

structure we are also introducing the elements which are essentially needed for a 

topological space .Let us name this type of topological space as a topological space 

generated by an mX structure and denote it as TmX
 .  

 

Let X = {a,b,c} and the corresponding mX structure be {, X, {a,b},{b,c}}. It is not a 

topology since finite intersection of the elements in mX is not in mX. Now TmX
 ={, X, 

{a,b},{b,c}, {b}}.This is a topology generated by an mX structure.  

 

For a topology generated by mX structure let us denote the interior as IntTmX 
and the closure 

as ClTmX .Now since mX TmX
 , mX Int  IntTmX 

 ClTmX 
 mX Cl. 

 

 

2. Pre mX Continuous Function 

 
In this section the concept of pre mX continuous function, pre mX irresolute continuous 

mapping, pre mX open mapping, pre mX homeomorphism are introduced and their 

properties are studied. 

 

Definition 2.1.A function f :(X, TmX
) →(Y, TmY

) is said to be a pre mX-continuous function 

if the inverse image of each  mX-open set in Y is a pre mX -open set in X.  

 

Example 2.2. Let X = {a, b, c, d} and the mX structure be mX = {, X, {a,b}, {c}}, 

Tm
X
={, X, {a,b}, {c}, {a,b,c}}. 

 

Let Y = {x,y,z, t} then mX structure is mX(y)={, Y, {x}, {y}} and 

Tm
X
={,Y,{x},{y},{x,y}} 
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Let us consider a mapping f : (X,TmX
) →(Y,TmY

) such that f(a) = x, f(b)=y, f(c)=z, f(d)=t. 

Now the inverse image of each mX open set in Y are respectively , X, {a}, {b}. Now a 

subset A of X is said to be a Pre-mX open set on an mX structure if A IntTmX
(mX-Cl(A))). 

Here , X, {a},{b} are all pre mX open set. Hence f is a pre mX continuous function.  

 

Theorem 2.3. Let f :(X,TmX
) →(Y,TmY

) be a mapping from X to Y. Every mX continuous 

function f is also a pre mX –continuous function. 

 

Proof: Let xX and V be any mX open set containing f(x).Since f is a mX – continuous 

function there exist UmX(X) containing x such that f 
-1

(V) is  mX- open in X. By the 

figure indicating the connection of the set ,it is shown that every mX open set is a pre mX 

open set, thus f 
-1 

(V) is a  pre mX –open set. Hence the  proof.     

 

Remark 2.4. The converse of the theorem is not true, which follows from the  example 2.2.  

Here the function is a pre mX continuous function but not a mX continuous function since 

the inverse image of {x}, {y} are respectively {a}, {b} which are not a mX open set in X. 

 

Theorem 2.5. Let f :(X,TmX
) →(Y,TmY

) be a mapping from X to Y. Every mX - 

preirresolute continuity is pre mX-continuous.  

 

Proof: Let V be a mX-open set in Y. Since every mX open set in Y is also a mX pre open set 

in Y thus V is a mX pre open set in Y and f being mX pre irresolute continuous function  

from definition 1.1(9),   f 
-1 

(V) is a mX- preopen set in X i.e. inverse image of a mX open 

set in Y is a mX–preopen set in X. Again since    mX–preopen  set is a pre mX–open set in 

X. Hence f is a pre mX-continuous  

 

Remark 2.6. The converse of the theorem is not true which follows from the following 

example: Let  

 

 X={a,b,c,d}, 

 mX= {, X, {a},{b},{a,c},{b,c}}, 

 Tm
X 

={,X,{a},{b},{c},{a,b,c}}, 

 Y= {m,n,l} and  m
Y
 = {,Y,{m}, {l},{n,l},{m,n}}, 

 Tm
Y={,Y,{m}, {l}, {n}, {m,l}, {n,l}, {m,n}}. 

 

Let f: X→Y be a mapping defined by f(a)= m, f(b)=l, f(c) = f(d)= n. Then clearly f is pre 

mX- continuous but it is not a mX-preirresolute continuity. Since  

 

 f 
-1 

({m,n}) ={a,d} mX-PO(X).  

 

Theorem 2.7. Let f :(X, TmX
) →(Y, TmY

) . Every mX - regular continuity is   pre mX-

continuity. 

 

Proof: Let xX and V be any mX open set of Y containing f(x). Since f is mX – regular 

continuous there exist UmX containing x such that f
-1 

(V) is mX- regular open in X. By 

figure indicating connections between various set,  f
-1 

(V) is pre mX- open in X. Hence the 

proof. 
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Remark 2.8. The converse of the theorem is not true, which follows from the following 

example : Let  

 

 X={a,b,c,d},  

 mX={,X,{d},{b},{c},{a,b},{a,c}},  

 Tm
X={,X,{d},{b},{c},{a}, {a,b}, {a,c} {b,d}, {d,c},{a,b,c},{a,b,d},{a,c,d}}and  

 Y={m,n,l}and mY={,Y,{l},{m,n},{n,l}} and Tm
Y
 ={,Y,{l},{n},{m,n},{n,l}}. 

 

Let f:(X, Tm
X
)→(Y,Tm

Y
) be a function defined by f(a) = m, f(b)=l, f(c) = f(d)= n. Then 

clearly f is pre mX-continuous but it is not a mX -  regular continuous. Since 

 

  f 
-1 

({m,n}) = {a,d} Tm
X
              

 

 We denote the relation discussed above by a figure below.                 

               

                                                                                                                                               

                  mX-continuity                        pre mX - continuity 
 

 

  

                             mX pre - irresolute                                       mX -regular continuity 

 

                     

Definition 2.9. Let (X, Tm
X 

) be a space with a mX –structure. For AX, the pre-mX-

closure and the pre- mX-interior of A, denoted by  PmXCl(A) and PmXInt(A) respectively 

are defined as the following: 

 

 PmXCl(A)={FX:AF, F is Pre mX-closed in X}and  

 PmXInt(A)={UX:UA,U is Pre-mX open in X}.       
 

Theorem 2.10. 

 

  (1) A is a pre-mX-open set iff PmXInt(A)= A 

  (2) A is a pre-mX-closed set iff PmXCl(A)= A 

 

Proof : (1) Let if possible A be a pre-mX-open set then obviously PmXInt(A)= A 

Conversely let PmXInt(A)= A, then  

 

 PmXInt(A)= A= {UX:UA,U is Pre-mX open in X}.   
 

Since arbitrary union of pre-mX-open set is a pre-mX-open set[From theorem 3.3 of [17], 

and A being the arbitrary union of pre-mX-open set, A is a pre-mX-open set.This proves the 

theorem. 

 

(2) can be proved similarly. 
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Lemma 2.11. For any subset A, B of X the following properties hold. 

 

(i) PmXInt() = , PmXInt(X) = X, PmXCl() = , PmXCl(X) = X 

(ii) PmXInt PmXInt(A) = PmXInt(A), PmXClPmXCl(A) = PmXCl(A) 

(iii) PmXInt(A)  A   PmXCl(A) 

(iv) PmXInt(A) PmXInt(B) , PmXCl(A)  PmXCl(B) whenever A  B 

(v) PmXInt(Ai: i  I)   {PmXInt(Ai):  i  I},  

         PmXCl(Ai: i  I)   {PmXCl(Ai):  i  I} 

(vi) PmXCl(Ai: i  I)   {PmXCl(Ai):  i  I},  

         PmXInt(Ai: i  I)   {PmXInt(Ai):  i I} 

(vii) PmXInt(X-A)= X- PmXCl(A). 

 

Proof : (i), (iii), (iv), (v), (vi) and (vii) are obvious. 

 

To prove (ii) 

 

From (iii) , PmXInt(A)  A and from (iv), PmXIntPmXInt(A)  PmXInt(A) 

 

Now we have to prove that 

 

 PmXIntPmXInt(A)  PmXInt(A) 

 

From definition it follows that, 

 

        PmXInt(A)={UX:UA,U is Pre-mX open in X}  U 
 

So PmXInt PmXInt(A)  PmXInt (U) = U, U is a Pre-mX open set in X 

 

Thus PmXInt PmXInt(A)  {UX:UA,U is Pre-mX open in X}= PmXInt(A) 

 

Thus PmXInt PmXInt(A) = PmXInt (A) 

 

Remark 2.12:  From Lemma 2.11(ii) and theorem 2.10, it is obvious that PmXInt(A) is a 

Pre mX open set and PmXCl(A) is a Pre mX Closed set 

 

Theorem 2.13: Let f:(X,TmX)→(Y,Tm
Y
) be a function from X to Y . Then the followings 

are equivalent.  

 

i) f is a pre mX-continuous function. 

ii) for each  mX open set V in Y,f
 -1

(V) is  pre mX open. 

iii) for each mX closed set B in Y,f
 -1

(B) is  pre mX closed.  

iv) f( p mX Cl(A))  mXCl(f(A)) for AX.   

v)  p mX Cl(f
 -1

(B))f
 -1

(mXCl(B)) for BY.   

vi) f
 -1

(mXInt(B)) p mX Int(f
 -1

(B)) for BY.    

 

Proof: (i)  (ii).  Obvious. 

 

(ii)  (iii). Obvious. 
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(iii)  (iv).  For AX. 

 

f
 -1

(mXCl(f(A)))=f 
-1

({FY:f(A)F and F is mX closed in Y}) 

                         {f
 -1 

(F)X: A f
 -1

(F) and f
 -1

(F)  is pre mX closed in X}  

[since every mX closed in X is a pre mX closed set in X, so arbitrary intersection of mX 

closed set in X containing f(A) is a superset of intersection of Pre mX closed set in X 

containing f(A). And f being pre mX-continuous function, f
 -1

(F)  is pre mX closed in X 

whenever F  is a mX closed in Y] 

                        = p mX Cl(A)  

 

implies f
 -1

(mXCl(f(A)))  p mX Cl(A)  

 

i.e. f( f
 -1

(mXCl(f(A))))  f(p mX Cl(A) ) 

 

i.e. mXCl(f(A))  f( f
 -1

(mXCl(f(A))))  f(p mX Cl(A) ) 

 

i.e. mXCl(f(A))  f(p mX Cl(A) ) 

 

(iv)  (v).  Let A=f
 -1

(B) then f(A) =ff
 -1

(B)  B. From (iv)  

 

      f(p mX Cl(A) ) = f( p mX Cl(f
 -1

(B)))  mXCl(f(A))  mXCl((B))  

  f 
-1

f ( p mX Cl(f
 -1

(B)))  f 
-1

mXCl((B))  

  pmXCl(f
 -1

(B)))  f 
-1

f ( p mX Cl(f
 -1

(B)))  f 
-1

mXCl((B)). 

 

(v)  (vi).  from (v) X - PmX Cl(f
 -1

(B)))X - f 
-1 

(Cl((B)) PmXInt(f
 -1

(B))f
 -1

(Int(B)). 

 

(vi)  (i). For xX and for each mX open set V containing f(x),from (vi),it follows  

 

 xf
 -1

(V)=f
 -1

(mX Int(V))  pmXInt(f
 -1

(V)) 

 

From lemma 2.11(iii), pmXInt(f
 -1

(V))  f
 -1

(V). So pmXInt(f
 -1

(V)) = f
 -1

(V). Thus f
 -1

(V) is 

a mX open set in X. This implies that f is a pre mX continuous function. 

 

Theorem 2.14. Let f : (X, Tm
X
)(Y, Tm

Y
) be a pre mX-continuous function. Then the 

following statements holds: 

 

(i) f 
-1

(V)PmXInt(mXCl(f 
-1

(V))) for each mX-open set V in Y. 

(ii) PmXCl(mXInt(f 
-1

 (G)))  f 
-1

(G) for each mX-closed set G in Y. 

(iii) f(PmXCl(mXInt(A)))mXCl(f(A)) for AX. 

(iv) PmXCl(mXInt(f
 -1

(B)))f
 -1

(mXCl(B)) for BY. 

(v) f
 -1

(mXInt(C)) PmXInt(mXCl(f
 -1

(C))) for CY.  

 

Proof:  To Prove (i) Let V be a mX open set in Y. Since f is a pre mX-continuous function, 

f
 -1

(V) is pre mX-open in X. Therefore f
 -1

(V) =PmXInt(f
 -1

(V)  PmXInt(mXCl(f 
-1

 (V))) . 

 

(i)  (ii). Let G =Y –V be a mX-closed set in Y.From (ii)   

 

     X – f
 -1

(V)  X - PmXInt(mXCl(f 
-1

 (V)))  
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 f
 -1

(G) PmXCl(mXInt(X – f
 -1

(V))) 

  f
 -1

(G) PmXCl(mXInt(f
 -1

(G))) . 

 

(ii)  (iii).  Let A= f
 -1

(G) then from (iii)  

 

 PmXCl(mXInt(A))  A f(PmXCl(mXInt(A)))  f(A)  mXCl(f(A)). 

 

(iii)  (iv). Let f(A)=BA  f
 -1

(B) then from (iv)  

 

      f(PmXCl(mXInt(A)))  f(PmXCl(mXInt(f
 -1

(B))))  mXCl(B) 

  PmXCl(mXInt(f
 -1

(B))) f
 -1

f(PmXCl(mXInt(A)))  f
 -1

(mXCl(B)).
 

 

(iv)  (v). it is obvious. 

 

Definition 2.15.A function f: (X, Tm
X
) → (Y, Tm

Y
) is said to be a pre mX irresolute 

continuous function iff the inverse image of each pre-mX-open set in Y is a pre mX open set 

in X.  

 

Theorem 2.16. Consider a function f: (X, Tm
X
) → (Y, Tm

Y
) .Every pre mX -irresolute 

continuous function is a pre mX –continuous function.  

 

Proof: Let xX and V be any  mX open in Y. Then we have V is  a pre mX-open in Y 

containing f(x). Since f is   pre mX irresolute map then f 
-1

(V) is pre mX -open in X. Hence 

the  theorem. 

 

Remark 2.17. The converse of the theorem is not true, which follows from the following 

example: Let  

 

 X={a,b,c,d},  

 mX={,X,{a,b},{b,c}, {a,c,d}}, 

 Tm
X={,X, {a,b}, {b,c}, {a,b,c}, {a,c,d},{b}}, 

 Y={x,y,z,t}   

 mY= {,Y,{x,y},{y,z}}  

 Tm
Y={,Y, {x,y},{y,z},{x,y,z},{y}}  . 

 

Let f: X →Y be a mapping defined by f(a)=x, f(b)=y, f(c)=z, f(d)=t. Then clearly f is  pre 

mX - continuous, but it is not a  pre mX -irresolute map. since  f
-1

({y}) = {b} is not a pre mX 

open set in X.  

 

We denote the relation discussed above by a figure below.                            

                                                                                                                                               

                mX-continuity                        pre mX - continuity                 Pre mX  - irresolute                                        
 

 

  

                             mX pre - irresolute                                       mX -regular continuity 
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Theorem 2.18. The following statements are equivalent for a function  

 

f :(X, Tm
X
) →(Y, Tm

Y
) 

 

(i)  f is  pre mX irresolute.  

(ii) For each point x of X and each pre mX neighborhood V of f(x), there exists a pre  

      mX -  neighborhood U of x such that f(U)  V.  

(iii) For each xX and each V PmXO(Y), there exists U P mXO(X) such that f(U)  V . 

 

Proof. (i)  (ii). Assume that xX and V is a   pre mX- open set in Y containing f(x).Since 

f is a  pre mX - irresolute and let U = f
 -1

(V) be a  pre mX - open set in X containing x and 

hence f(U) = f f
-1

 (V)  V. 

 

(ii) (iii). Assume that V  Y is a pre mX open set containing f(x). Then by (ii),there 

exists a  pre mX open set G such that xG  f 
-1

(V). Therefore, xf 
-1

(V). This shows that f 
-1

(V) is a pre mX neighborhood of x. 

 

(iii) (i). Let V be a  pre mX-open set in Y, then f
-1

(V) is  pre mX neighborhood  each x of 

X. Thus, for each x is a  pre mX interior point of f 
-1

(V)  which implies that f 
-1

(V)Int(mX-

Cl(f
-1

(V)). Therefore  f 
-1

(V) is a   pre mX open set in X and hence f is a  pre mX -

reirresolute.  

 

Theorem 2.19. The following are equivalent for a function f : (X, Tm
X
) →(Y, Tm

Y
)  

 

(i)   f is pre mX-irresolute continuous. 

(ii)  f(PmXCl(v))PmX-Clf(v) . 

(iii)  PmXCl(f 
-1

(B))f -1(PmX-Cl(B)) .  

(iv)  PmX-Int(f 
-1

(A))f 
-1

( PmXInt(A)). 

(v)   f(PmX-Int(B))PmX-Intf(B) if f is bijective.  

 

Proof: (i)  (ii). Let xX and VX then   

 

 PmXCl(v)PmXCl(f
 -1

(f(v))PmX-Cl(f
 -1

(PmX-Cl(f
 
(v))) = f

 -1
(PmX-Clf(v)) 

     f(PmX-Cl(v))ff
 -1

(PmX-Cl(f
 
(v)) PmX-Cl(f(v)). 

 

Therefore f(PmXCl(v)) PmX-Clf(v). 

 

(ii)  (iii). Let xX and VX and BY  such that V = f 
-1

(B) then  

 

 f(PmX-Cl(f
-1 

(B))) PmXCl ff 
–1

(B) PmXCl (B)  

     f 
-1

f(PmXCl(f
-1

(B)))f
-1

(PmXCl (B)) PmXCl f
-1

((B))f
-1

(PmXCl(B)). 

 

(iii) (iv) Let A be any subset of Y such that B
C
=A. By (iii)  

 

      X - PmX-Cl(f 
-1

(B))X - f -1(PmX-Cl(B))  

       PmXIntf 
-1

(B
C
)f 

-1
(PmXInt (B

C
))  

    PmXIntf 
-1

(A)f 
-1

(PmXInt (A)).  
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(iv)  (i) Let C be any sub set of Y such that A=PmXIntC. By (iv)  

 

 PmXIntf 
-1

(PmXIntC)f 
-1

(PmXInt (C))PmXIntf 
-1

(PmXIntC) 

 

Therefore f 
-1

(PmXInt(C))=PmXintf 
-1

(PmXIntC). 

 

Therefore f is a  pre mX irresolute continuous. 

 

(ii)(v) Let A be a subset of X and f is a bijective then  

 

f(X – A)= X – f(A) and X – A=A
C
=B (say) 

 

Now,  

      f(PmXcl(A))PmX-clf(A) 

  X-f(PmXcl(A))X-PmX-clf(A) 

  f(PmXint(B)) PmXInt(f(B))   

 

Converse part holds similarly  

Hence the statements are equivalent is proved as follows 

 

              (i) (ii) (iii) (iv) (i) ,  
             

                                             

                  (v)  

  

Theorem 2.20. 

(1) If  f :(X, Tm
X
) →(Y, Tm

Y
) is pre mX irresolute and g:(Y, Tm

Y
) →(Z, Tm

Z
) is  pre mX 

continuous then gof is  pre mX continuous.  

(2) If  f :(X, Tm
X
) →(Y, Tm

Y
) is pre mX irresolute and g:(Y, Tm

Y
) →(Z, Tm

Z
) is mX 

continuous then gof is  pre mX continuous.  

(3) If  f :(X, Tm
X
) →(Y, Tm

Y
) is pre mX continuous and g:(Y, Tm

Y
) →(Z, Tm

Z
) is  mX 

continuous then gof is  pre mX continuous.  

(4) If  f :(X, Tm
X
) →(Y, Tm

Y
) is pre mX irresolute continuous and g:(Y, Tm

Y
) →(Z, Tm

Z
) 

is  pre mX irresolute continuous then gof is  pre mX irresolute continuous.  

 

Proof: To Prove (1) Let W be any  mX-open set of Z. since f is  pre mX irresolute then  

 

(gof)
-1

(w)=f
-1

(g
-1

(w)) 

 

is pre mX open in X and hence gof is a pre mX continuous function. 

 

The other can be proved similarly. 

 

 

3. Pre mX  Open Mapping 
 

In this section the concept of Pre mX open mapping is introduced and also the concept of 

Pre mX irresolute mapping is introduced and some of its properties were discussed. 
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Definition 3.1.  A function f : (X, Tm
X
) →(Y, Tm

Y
) is said to be a pre mX -open  mapping  

if the image of each Pre mX open set in X is a  mX -open  set in Y. 

 

Example 3.2. Let X = {a,b,c} and Y = {x,y,z}. Let mX = {,X,{a,b},{c,b}}. Then 

Tm
X
={,X,{a,b}, {b,c},{b}}. Here the pre mX open sets are  ,X,{a,b},{c,b}, {b}. Let  

 

 mY= {,Y,{x,y},{y,z},{y}} and Tm
Y
={,X,{ x,y},{y,z},{y}}. 

 

Let f : (X, Tm
X
) →(Y, Tm

Y
) be a mapping such that f(a)=x, f(b)=y, f(c)=z. Then the 

mapping is a pre mX open mapping .  

 

Theorem 3.3. Consider a function f : (X, Tm
X
) →(Y, Tm

Y
) .Every pre mX open map is a 

open  map.  

 

Proof: Let A be a open set in (X, Tm
X
) then A is a pre mX open set in (X,Tm

X
). Since f is a 

pre mX open  map, f(A) is a mX open set in (Y, Tm
Y
). Since every mX open set in (Y, Tm

Y
) 

is also a open set . So f is a open map  

 

Remark 3.4. The converse of the theorem is not true which follows from the following 

example : Let  

 

 X={x,y,z,t}, 

 mX={,X,{x,y},{y,z}}and  

 Tm
X
={,X,{x,y},{y,z},{x,y,z},{y}}.  

Let  
 Y={a,b,c,d},  

 mY={,Y, {a,b},{b,c}, {a,c,d}}  

 Tm
Y ={,Y,{a,b},{b,c},{a,c,d},{b},{a,b,c}}. 

 

Let  f : (X, Tm
X
) →(Y, Tm

Y
) is a map  defined by f(x)= a, f(y)=b and f(z)=c, f(t)=d. Here f 

is a open map but not a pre mX open  mapping  

 

Definition 3.5. A function f : (X, Tm
X
) →(Y, Tm

Y
) is said to be a  pre mX -irresolute  

mapping  if the image of each Pre mX open set in X is a  pre mX -open  set in Y. 

 

Example 3.6.The example 3.2 is also an example of Pre mX -irresolute mapping 

 

Theorem 3.7. Consider a function f : (X, Tm
X
) →(Y, Tm

Y
) . Every Pre mX – open map is 

also a Pre mX –irresolute map 

 

Proof: Let A be a Pre mX –open set in X . Since f is a Pre mX –open map, f(A) is mX –open 

set in Y. Every mX –open set is also an open set and a Pre mX –open set. Thus f(A) is a Pre 

mX –open set. This proves that f is a Pre mX –irresolute mapping. 

 

Remark 3.8.  The converse of the above theorem need not be true which follows from the 

following example : Let  
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 X = {a,b,c,d} and Y={x,y,z,t} ,  

 mX= {, X, {a}, {b}, {c}} and  

 Tm
X
= {, X, {a}, {b}, {c},{a,b}, {a,c}, {b,c}},  

 mY= {, Y, {x}, {y}, {z}} and  

 Tm
Y
= {, Y, {x}, {y}, {z},{x,y}, {x,z}, {y,z}},  

 

Let  f : (X, Tm
X
) →(Y, Tm

Y
) is a map  defined by f(x)= a, f(y)=b and f(z)=c, f(t)=d. Then f 

is a pre mX irresolute map but not a Pre mX open map. 

 

We denote the relation discussed above by a figure below.          

                     

Pre  mX-Open map                        mX – Open map                                        

 

 

Pre mX  - irresolute map           Open Map 

 

Theorem 3.9. The following are equivalent for a function f : (X, Tm
X
) →(Y, Tm

Y
)  

(i)   f is pre- mX irresolute mapping. 

(ii)  f 
-1

(PmXInt(v)) PmX Int(f
 -1

(v)) 

(iii) f
 -1

 (PmX Cl(v)) PmXCl(f 
-1

(v)) 

(iv) PmXIntf(A)f (PmXInt(A)) 

(v)  f(PmXCl(B)) PmXClf(B) if f is bijective. 

 

Proof : (i) (ii). Let xX and VX then  

 

      PmXInt(v)  PmXIntff
 -1

(v))  PmXIntf(PmXIntf 
-1

(v)) =f(PmXIntf
-1

(v)) 

  f
-1

(PmXInt(v))f-1f(PmXIntf
- 1

(v))PmXInt(f
-1

(v)). 

 

Therefore      

 

f
-1 

(PmXInt(v))PmXInt(f
 -1

(v)). 

 

(ii) (iii). From (ii),  

 

 X -  f 
-1

(PmXint(v)) X- PmXint(f
 -1

(v))  f 
-1

(PmXclv) PmXcl(f
 -1

(v)). 

 

The converse part may be proved similarly. 

 

(ii) (iv). Let xX and VX and let f
 -1

(v)=A. From (ii),  

 

 f
 -1

 (PmXintf(A))  PmXint(A) 

 

Therefore PmXintf(A))f(PmXint(A)). 

 

(iv)i) Let A=PmXint(C).From (iv),  

 

PmXintf(PmXint(C))f(PmXint(PmXint(C))=f(PmXint(C))⊇ PmX intf(PmXint(C)) 
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Therefore f(PmXint(C)) is a pre-mXopen i.e. the image of a pre mX open set is a pre mX 

open set 

 

(iv) (v)Let A be any subset of X and f is a bijective mapping then f(X – A)=X- f(A) and 

X – A=B(say).Therefore from (iv)  

 

      f(PmXintB)  PmXintf(B)  

  Y-f(PmXintB) Y- PmXint(f(B)) 

  f(Y - PmXint(B))  PmXclf(B) 

  f(PmXcl(B)) PmXclf(B). 

 

Converse part can be proved similarly. The equivalence relation is proved as below 

 

(i)  (ii)  (iii) 

                                                     

                                                      
             

                                            (iv)  (v) 

 

 

 

4. Pre mX Homeomorphism 
 

In this section we introduce the concept of Pre mX homeomorphism and study some of its 

properties. 

 

Definition 4.1: A bijective mapping  f:( X,mX) → (Y,Tm
Y
) from a space X into a space Y 

is called   pre-mX homeomorphism if f and f 
-1 

 are pre mX-irresolute mapping. 

 

Theorem 4.2:Let  f :(X,mX) → (Y,mY) be a bijective mapping from a mX structure( X,mX)  

to a  topological space (Y, Tm
Y
).The following statements are equivalent. 

 

(i)     f is a pre mX homeomorphism.   

(ii)    f 
-1

 is a pre mX homeomorphism. 

(iii)   f is a pre mX irresolute  mapping and a  pre mX irresolute continuous . 

(iv)   The image of a pre mX open set in X is a pre mX open  set in Y and a  pre mX   

         continuous  mapping. 

(v)    f 
-1

( P mXInt(v)) = PmXInt(f
 -1

(v)). 

(vi)   f
 -1

(PmXCl(B))= PmX cl(f 
-1

(B)). 

(vii)  PmXIntf(A)= f(PmXInt(A)). 

(viii) f(PmXCl(B)) =PmXClf(B). 

 

Proof: (i) (ii). it follows from the definition. 

 

(i) (iii). Let f be a  pre mX homeomorphism implies that f and f 
-1

 are  pre mX irresolute 

mapping  .Now f 
-1 

  is a  pre mX irresolute mapping implies that (f 
-1

)
-1

(A) i.e f(A)  is a   pre 

mX open  for each A being a pre mX open set in X. Therefore  f is a   pre mX irresolute  

mapping and a  pre mX irresolute continuous. 
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Converse:  since f is a    pre mX irresolute mapping then f 
-1

 is a pre mX irresolute 

continuous. Hence f and f
-1

 are pre mX irresolute continuous mapping. Then obviously f is a 

pre mX homeomorphism. 

 

(iii) (iv). Let f  be a pre mX irresolute  mapping then for each pre mX open set A of X , 

f(A) is a   pre mX open and f is  also  pre mX irresolute continuous  then by theorem  2.5  we 

say that image of a    pre mX  open set in X is a  pre mX open set in Y and hence f is  a  pre 

mX irresolute continuous  mapping.     

 

(iii)  (v). Let Let xX and VX , if f is   pre mX irresolute continuous then from theorem 

3.7(iv)  

 

PmX Intf 
-1

(A)f 
-1

( PmXInt(A))……(a) 

 

and if f is   pre mX irresolute mapping then from theorem 3.8(ii) 

 

f 
-1

(PmXInt(v))PmXInt(f
 -1

(v)) ............(b). 

 

Combining (a) and (b) we get the result. 

 

(v) (vi) since f is bijective and from (v)  

 

      X -  f 
-1

(PmXint(v)) = X -  PmXint(f
 -1

(v)) 

  f 
-1

( X - PmXint(v)) =PmX Cl(f
 -1

(v))  

  f 
-1

(PmXCl(v)) = PmXCl(f
 -1

(v))  

 

(vi)  (v). It is obvious. 

 

(v)  (vii). Let xX and VX and let f 
-1

(v) =A then from(v),  

 

 PmXInt(v)= f(PmXInt(f
 -1

(v))  PmX intf(A) = f(PmXint(A)).proof. 

 

(vii)  (viii). It is obvious. 
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Abstaract − In this work, we define dense soft set and compact softsubset. We then define one
point compactification on soft topological spaces.

Keywords − Soft sets, soft topology, soft compactification.

1 Introduction

Many problems in economics, engineering, environmental scinece and social science
are highly dependent on the task of modelling uncertain data, but modelling uncer-
tain data is usually highly complicated and difficult to characterize. There are several
theories which can be used for dealing these difficulties. Some of these theories are
probability theory, fuzzy set theory, rough set theory and the interval mathematics.
However, these theories have their own difficulties. In 1999, the soft set theory was
introduced as a new mathematical tool to solve these diffuculties by Molodtsov [17].
Following his work Maji et.al. [14] gave several basic notions and the first practical
application of soft sets in decision making problems. After that, Pei Miao [18] and
Chen [9] improved the work of Maji et. al.. Many researchers applied this concept
on topological spaces [7, 19, 21, 3], group theory, ring theory [1, 4, 12, 11, 13], and
also decison making problems [5, 6, 9, 15].

Recently, Shabir and Naz [19] introduced the soft topological spaces. They de-
fined soft open sets, soft closed sets, soft subspace, soft closure, soft nhood, soft sper-
ation axioms and their several properties. In 2012, Zorlutuna et. al. [21] initiated
the soft continuity of soft functions, soft compactness and studied some properties.
Then, many reasarchers [2, 10, 8, 20, 16] improved to concept of soft topological
spaces.

In this paper, we introduce a notion of one point compactification on soft topo-
logical spaces.

**Edited by Naim Çağman (Editor-in-Chief).



Journal of New Theory 12 (2016) 23-28 24

2 Preliminary

Throughout this paper X denotes initial universe, E denotes the set of all possible
parameters which are attributes, characteristic or properties of the objects in X, and
the set of all subsets of X will be denoted by P (X).

Definition 2.1. [17] Let X be the initial universe set and E be the set of parameters.
A pair (F, A) is called a soft set over X where F is a mapping given by F : A → P (X)
and A ⊆ E.

In the other words, the soft set is a parametrized family of subsets of the set X.
Every set F (e), for every e ∈ A, from this family may be considered as the set of
e-elements of the soft set (F,A).

From now on, the set of all soft sets over X will be denoted by S(X, E).

Definition 2.2. [5]Let A ⊆ E. A soft set FA over universe X is mapping from the
parameter set E to P (X), i.e., FA : E → P (X), where FA(e) 6= ∅ if e ∈ A ⊂ E and
FA(e) = ∅ if e /∈ A.

Definition 2.3. [5] The soft set FE ∈ S(X,E) is called null soft set, denoted by F∅,
if for all e ∈ E, FE(e) = ∅.

Definition 2.4. [5]Let FE ∈ S(X, E). The soft set FE is called universal soft set,
denoted by F eE, if for all e ∈ E, FE(e) = X .

Definition 2.5. [5]Let FA, GB ∈ S(X,E). FA is called a soft subset of GB if
FA(e) ⊂ GB(e) for every e ∈ E and we write FA⊂̃GB.

Definition 2.6. [5]Let FA, GB ∈ S(X, E). FA and GB are said to be equal, denoted
by FA = GB if FA⊂̃GB and GB⊂̃FA.

Definition 2.7. [5]Let FA, GB ∈ S(X,E). Then the union of FA and GB is also a
soft set HC , defined by HC(e) = FA(e) ∪ GB(e) for all e ∈ E, where C = A ∪ B.
Here we write HC = FA∪̃GB.

Definition 2.8. [5]Let FA, GB ∈ S(X, E). Then the intersection of FA and GB is
also a soft set HC , defined by HC(e) = FA(e)∩GB(e) for all e ∈ E, where C = A∩B.
Here we write HC = FA∩̃GB.

Definition 2.9. [5]Let FA ∈ S(X, E). The complement of FA, denoted by F c
A, is a

soft set defined by F c
A(e) = X − FA(e) for every e ∈ E.

Let us call F c
A to be soft complement function of FA. Clearly (F c

A)c = FA,
(F eE)c = F∅ and (F∅)c = F eE.

Definition 2.10. Let FA ∈ S(X,E) and x ∈ X. Then FA∪̃x is soft set in S(X, E),
defined by (FA∪̃x)(e) = FA(e) ∪ {x} for all e ∈ E.

Example 2.11. Let E = {e1, e2, e3}, X = {x1, x2, x3} and FA = {(e1, {x1}),
(e3, {x2, x3})}. Then FA∪̃x2 = {(e1, {x1, x2}),(e2, {x2}) (e3, {x2, x3})}.
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Definition 2.12. (see [19]) A soft topological space is a triple (X, τ, E) where X is a
nonempty set and τ is a family of soft sets over X satisfying the following properties:

(1) F eE, F∅ ∈ τ
(2) If FA, GB ∈ τ , then FA∩̃GB ∈ τ
(3) If FAi

∈ τ , ∀i ∈ J , then ∪̃
i∈I

FAi
∈ τ .

Then τ is called a topology of soft sets on X. Every member of τ is called soft open.
GB is called soft closed in (X, τ, E) if (GB)c ∈ τ .

Example 2.13. Let E = {e1, e2, ..., ek} set of parameter, X = [0, 1),

FAn = {(ei, [0, 1− 1

n
)) : ei ∈ E, n ∈ N\{0, 1}}

and τ = {FAn}n∈N\{0,1} ∪ F∅ ∪ F[0,1) Then (X, τ, E) soft topological space on X.

Definition 2.14. Let (X, τ, E) be a soft topological space and FA ∈ S(X, E). Then
τFA

= {FA∩̃GB : GB ∈ τ}.
Example 2.15. Let E = {e1, e2, e3}, X = {x1, x2, x3}, FA = {(e1, {x1}), (e3, {x2, x3})}
and τ = {F∅, FE, GB}, where GB = {(e1, {x1, x2}), (e2, X)}. Then τFA

= {F∅, FA,
FA∩̃GB}, where FA∩̃GB = {(e1, {x1})}.
Definition 2.16. [19]Let (X, τ, E) be a soft topological space and FA ∈ S(X, E).
The soft closure of FA denoted by FA is the intersection of all soft closed supersets
of FA.

Clearly, FA is the smallest soft closed set over X which contains FA.

Definition 2.17. Let (X, τ, E) be a soft topological space and FA ∈ S(X,E) . FA

is called dense soft set in X if FA = FE.

Definition 2.18. Let (X, τ, E) be a soft topological space and U = {FAi
: i ∈ I}.

A family U of soft sets is a cover of a soft set FA if FA⊂̃∪̃{FAi
: i ∈ I}.

Definition 2.19. A soft topological space (X, τ, E) is compact if each soft open
cover of F eE has a finite subcover.

Example 2.20. Let us consider the soft topological space (X, τ, E) in example 2.13.
Then (X, τ, E) is not compact topological space because {FAn}n∈N\{0,1} is soft open
cover of F eE but there is no finite subcover.

Definition 2.21. Let (X, τ, E) be a soft topological space and FA ∈ S(X,E) . FA

is called compact soft subset if (FA, τFA
.E) is compact.

Proposition 2.22. Let (X, τ, E) be a soft topological space and FA ∈ S(X, E). FA

is a compact if and only if each soft open cover of FA has a finite subcover.

Proof. Let FA be a compact and U∗= {GBi
: GBi

∈ τFA
, i ∈ I} be a soft open cover

of FA. Since GBi
∈ τFA

, then there exist FAi
soft open sets such that GBi

= FAi
∩̃FA.

Since FA is compact, FA has a finite subcover of U∗.

Theorem 2.23. Soft closed set of the compact soft topological space is compact.
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Proof. Let (X, τ, E) be a soft topological space, FA is a soft closed set in X and
U = {FAi

: i ∈ I} soft open cover of FA. Then FA⊂̃ ∪̃
i∈I

FAi
. Since F c

A soft open

set, U∗= U∪̃(F c
A) is a soft open cover of F eE . Again since, (X, τ, E) is a compact

soft topological space, then U∗ has a finite subfamily such that F eE =
n

∪̃
i=1

FAi
, hence

FA⊂̃
n

∪̃
i=1

(FAi
∩̃FA) =

n

∪̃
i=1

FAi
. Thus FA is compact.

Proposition 2.24. Let (X, τ, E) be a noncompact soft topological space,
X∗ = X ∪ {x} and W = {FA∪̃x : F c

A compact, FA ∈ τ}. Then τ ∗ = τ ∪W is soft
topology on X∗.

Proof. T1) Since F∅ and F eE elements of τ , then F∅,F ∗
eE ∈ τ ∗.

T2) Let FA1 , FA2 ∈ τ ∗. Then

Case I. If FA1 , FA2 ∈ τ , then the proof is clear.

Case II. If FA1 ∈ τ and FA2 ∈ W , then there exists GB ∈ τ such that FA2 = GB∪̃x
and Gc

B is compact. Since FA1∩̃FA2 = FA1∩̃(GB∪̃x) = FA1∩̃GB, then FA1∩̃FA2 ∈ τ .
Thus, we have FA1∩̃FA2 ∈ τ ∗.

Case III. If FA1 , FA2 ∈ W , then there exist FA1 = GB1∪̃x and FA2 = GB2∪̃x such
that GB1 ,GB2 ∈ τ and Gc

B1
,Gc

B2
are compact. Since FA1∩̃FA2 = (GB1∪̃x)∩̃(GB2∪̃x) =

(GB1∩̃GB2)∪̃x, (GB1∩̃GB2)
c is compact, then FA1∩̃FA2 ∈ τ ∗.

T3) Let I be an arbitrary index set and FAi
∈ τ ∗ for all i ∈ I. Then

Case I. If FAi
∈̃τ for all i ∈ I, then ∪̃

i∈I
FAi

∈̃τ .

Case II. If FAi0
∈̃W for some i0 ∈ I, then there exists GBi0

∈ τ such that FAi0
=

GBi0
∪̃x and Gc

Bi0
is compact. Therefore, we have ∪̃

i∈I
FAi

= ( ∪̃
i6=i0

FAi
)∪̃(GBi0

∪̃x) =

(( ∪̃
i6=i0

FAi
)∪̃GBi0

)∪̃x. Then (( ∪̃
i6=i0

FAi
)∪̃GBi0

)c = ( ∩̃
i6=i0

F c
Ai

)∩̃(Gc
Bi0

). Since ∩̃
i6=i0

F c
Ai

is soft

closed and Gc
Bi0

is compact, (( ∪̃
i6=i0

FAi
)∪̃GBi0

)c is compact.

Case III. If FAi
∈̃W for all i ∈ I, then there exist GBi

∈ τ such that FAi
= GBi

∪̃x
and Gc

Bi
is compact. Therefore, we have ∪̃

i∈I
FAi

= ∪̃
i∈I

(GBi
∪̃x) = ( ∪̃

i∈I
GBi

)∪̃x. Then

(( ∪̃
i∈I

GBi
)∪̃x)c = ( ∩̃

i∈I
Gc

Bi
). Since Gc

Bi
is compact for all i ∈ I, then ∩̃

i∈I
Gc

Bi
is compact.

Hence ∪̃
i∈I

FAi
∈̃τ ∗.

Proposition 2.25. (X∗, τ ∗, E) soft topological space is compact.

Proof. Let U = {FAi
: i ∈ I} be a cover of F ∗

eE. Since x ∈ X∗, then there exists i0 ∈ I

such that x ∈ FAi0
∈ U . Then there exists GB ∈ τ such that FAi0

= GB∪̃x where
Gc

B is compact. Since Gc
B is compact, then there exist FA1 , FA2 , ..., FAn ∈ U such

that Gc
B⊂̃FA1∪̃FA2∪̃...∪̃FAn . Then F ∗

eE = (F eE \̃GB)∪̃FAi0
⊂̃FA1∪̃FA2∪̃...∪̃FAn∪̃FAi0

.
Hence (X∗, τ ∗, E) topological space is compact.
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Proposition 2.26. F eE is dense soft subset in (X∗, τ ∗, E) topological space.

Proof. Since F eE is the intersection of all soft closed supersets of F eE in S(X∗, E),
F eE = F ∗

eE. Hence we have F eE is dense soft subset in (X∗, τ ∗, E).

Example 2.27. Let us consider the soft topological space (X, τ, E) in example 2.13
and X∗ = X ∪ {1} = [0, 1]. Since F∅ only compact soft set in τ , then

W = {FA∪̃x : F c
Acompact, FA ∈ τ} = {FE∪̃x}

Again since τ ∗ = τ ∪ W , then (X∗, τ ∗, E) soft compact. Hence (X∗, τ ∗, E) soft
compactification of (X, τ, E).

3 Conclusion

In the present work, we have continued to study soft topological spaces. We introduce
soft compactifiation. We hope that the findings in this paper will help researcher en-
hance and promote the further study soft topology to carry out a general framework
for their applications in practical life.
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Abstaract − We obtain new classes of sets by using λ-closed sets in topological spaces and study
their basic properties; and their connections with other kind of topological sets. Moreover new
decompositions of topological functions are obtained.
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1 Introduction

In 1986, Maki [24] introduced the notion of Λ-sets in topological spaces. A Λ-set is a
set A which is equal to its kernel (= saturated set) i.e to the intersection of all open
supersets of A. Arenas et al. [4] introduced and investigated the notion of λ-closed
sets by involving Λ-sets and closed sets. In 1965, Njastad [29] introduced α-open sets
which have been considered as an important research tool in the field of topology.

In this paper, we introduce generalized λ-closed sets in topological spaces. In
Section 3, we obtain characterizations of generalized λ-closed sets. In Section 4, we
obtain some decompositions of topological functions.

2 Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or X and Y) represent topological spaces
on which no separation axioms are assumed unless otherwise mentioned. For a subset
A of a space (X, τ), cl(A) and int(A) denote the closure of A and the interior of A
respectively.

We recall the following definitions and remark which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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1. α-open [29] if A ⊆ int(cl(int(A)));

2. preopen [26] if A ⊆ int(cl(A));

3. semi-open [22] if A ⊆ cl(int(A));

4. β-open [1] if A ⊆ cl(int(cl(A)));

5. b-open [3] if A ⊆ int(cl(A)) ∪ cl(int(A));

The complements of the above mentioned open sets are called their respective
closed sets.

The collection of all α-open (resp. semi-open, preopen, β-open, b-open) sets is
denoted by αO(X) (resp. SO(X), PO(X), βO(X), bO(X)).

The preclosure [31] (resp. semi-closure [14], α-closure [27], β-closure [1], b-
closure [3]) of a subset A of X, denoted by pcl(A) (resp. scl(A), αcl(A), βcl(A),
bcl(A)), is defined to be the intersection of all preclosed (resp. semi-closed, α-closed,
β-closed, b-closed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A),
αcl(A), βcl(A), bcl(A)) is a preclosed (resp. semi-closed, α-closed, β-closed, b-closed)
set.

Definition 2.2. A subset A of a topological space (X, τ) is called

1. generalized closed (briefly g-closed) [23] if cl(A) ⊆ U whenever A ⊆ U and U
is open.

2. α-generalized closed (briefly αg-closed) [25] if αcl(A) ⊆ U whenever A ⊆ U
and U is open.

3. a generalized semiclosed (briefly gs-closed) [7] if scl(A) ⊆ U whenever A ⊆ U
and U is open.

4. a generalized preclosed (briefly gp-closed) [8] if pcl(A) ⊆ U whenever A ⊆ U
and U is open.

5. a generalized semi-preclosed (briefly gsp-closed) [15] if βcl(A) ⊆ U whenever
A ⊆ U and U is open.

6. a generalized b-closed (briefly gb-closed) [17] if bcl(A) ⊆ U whenever A ⊆ U
and U is open.

The complements of the above mentioned closed sets are called their respective
open sets.

Definition 2.3. A subset A of a topological space (X, τ) is called

1. Λ-set if A = A∧ where A∧ = ∩ {G : A ⊆ G, G ∈ τ} [24].

2. Λα-set if A = Λα(A) where Λα(A) = ∩ {G : A ⊆ G, G ∈ αO(X)}[13].
3. Λs-set if A = Λs(A) where Λs(A) = ∩ {G : A ⊆ G, G ∈ SO(X)}[12].
4. Λp-set if A = Λp(A) where Λp(A) = ∩ {G : A ⊆ G, G ∈ PO(X)}[19].
5. Λβ-set (= Λsp-set [30]) if A = Λsp(A) where Λsp(A) = ∩ {G : A ⊆ G, G ∈

βO(X)}.
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6. Λb-set if A = Λb(A) where Λb(A) = ∩ {G : A ⊆ G, G ∈ bO(X)}[11].
Remark 2.4. In a topological space, every α-closed set is αg-closed but not con-
versely [25].

Definition 2.5. A subset A of a topological space (X, τ) is called

1. locally closed set (briefly lc-set)[18] if A = L ∩ F, where L is open and F is
closed.

2. αlc*-set [21] if A = L ∩ F, where L is open and F is α-closed.

3. slc*-set [5] if A = L ∩ F, where L is open and F is semi-closed.

4. λ-closed set [4] if A = L ∩ F, where L is Λ-set and F is closed.

Definition 2.6. A function f : X → Y is called

1. continuous [9] if f−1(V) is closed in X for every closed subset V of Y.

2. α-continuous [27] if f−1(V) is an α-closed in X for every closed subset V of Y.

3. αg-continuous [20] if f−1(V) is an αg-closed in X for every closed subset V of
Y.

4. αlc*-continuous [21] if f−1(V) is αlc*-set in X for every closed subset V of Y.

5. semi-continuous [22] if f−1(V) is semi-closed in X for every closed subset V of
Y.

6. gs-continuous [32] if f−1(V) is gs-closed in X for every closed subset V of Y.

7. slc*-continuous [5] if f−1(V) is slc*-set in X for every closed subset V of Y.

8. precontinuous [26] if f−1(V) is preclosed in X for every closed subset V of Y.

9. gp-continuous [6] if f−1(V) is gp-closed in X for every closed subset V of Y.

10. gsp-continuous [15] if f−1(V) is gsp-closed in X for every closed subset V of Y.

11. gb-continuous [17] if f−1(V) is gb-closed in X for every closed subset V of Y.

12. β-continuous [1] if f−1(V) is β-closed in X for every closed subset V of Y.

13. b-continuous [16] if f−1(V) is b-closed in X for every closed subset V of Y.

3 Characterizations of generalized λ-closed sets

Definition 3.1. A subset A of a topological space (X, τ) is called

1. αg*-closed [28] if cl(A) ⊆ U whenever A ⊆ U and U is α-open.

2. sg*-closed [28] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open.

3. pg*-closed [28] if cl(A) ⊆ U whenever A ⊆ U and U is preopen.
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4. βg*-closed [28] if cl(A) ⊆ U whenever A ⊆ U and U is β-open.

5. bg*-closed if cl(A) ⊆ U whenever A ⊆ U and U is b-open.

Definition 3.2. A subset A of a topological space (X, τ) is called

1. αlc-set [2] if A = L ∩ F where L is α-open and F is closed.

2. slc-set [10] if A = L ∩ F where L is semi-open and F is closed.

3. plc-set [10] if A = L ∩ F where L is preopen and F is closed.

4. βlc-set [10] if A = L ∩ F where L is β-open and F is closed.

5. blc-set if A = L ∩ F where L is b-open and F is closed.

Definition 3.3. A subset A of a topological space (X, τ) is called λ-α-closed if A =
L ∩ F, where L is Λ-set and F is an α-closed set.

Proposition 3.4. Every λ-closed set is λ-α-closed but not conversely.

Example 3.5. Let X = {a, b, c} with τ = {∅, {a}, X}. Then {b} is λ-α-closed but
not λ-closed.

Lemma 3.6. For a subset A of a topological space (X, τ), the following conditions
are equivalent.

1. A is λ-α-closed.

2. A = L ∩ αcl(A) where L is a Λ-set.

3. A = A∧ ∩ αcl(A).

Lemma 3.7. In a space X, the following statements hold.

1. Every α-closed set is λ-α-closed but not conversely.

2. Every Λ-set is λ-α-closed but not conversely.

3. Every α-closed set is αlc*-set but not conversely.

4. Every αlc*-set is λ-α-closed.

Example 3.8. Let X and τ be as in Example 3.5. Then

1. {a} is λ-α-closed but not α-closed.

2. {b} is λ-α-closed but not Λ-set.

3. {a} is αlc*-set but not α-closed.

Lemma 3.9. A subset A ⊂ (X, τ) is αg-closed if and only if αcl(A) ⊂ A∧.

Theorem 3.10. For a subset A of a topological space (X, τ), the following conditions
are equivalent.

1. A is α-closed.
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2. A is αg-closed and αlc*-set.

3. A is αg-closed and λ-α-closed.

Proof. (1) ⇒ (2) and (2) ⇒ (3) : Obvious.
(3) ⇒ (1) : Since A is αg-closed, by Lemma 3.9, αcl(A) ⊂ A∧. Since A is

λ-α-closed, by Lemma 3.6, A = A∧ ∩ αcl(A) = αcl(A). Hence A is α-closed.

Remark 3.11. The following Example shows that the concepts of αg-closed set and
αlc*-set are independent of each other.

Example 3.12. Let X and τ be as in Example 3.5. Then {a, b} is αg-closed but
not αlc*-set in (X, τ). Moreover, {a} is αlc*-set but not αg-closed in (X, τ).

Remark 3.13. The following Example shows that the concepts of αg-closed set and
λ-α-closed set are independent of each other.

Example 3.14. Let X = {a, b, c} with τ = {∅, {a, b}, X}. Then {a, c} is αg-closed
but not λ-α-closed in (X, τ). Moreover, {a, b} is λ-α-closed but not αg-closed in (X,
τ).

Definition 3.15. A subset A of a topological space (X, τ) is called

1. λ-s-closed if A = L ∩ F, where L is Λ-set and F is semi-closed.

2. λ-p-closed if A = L ∩ F, where L is Λ-set and F is preclosed.

3. λ-β-closed if A = L ∩ F, where L is Λ-set and F is β-closed.

4. λ-b-closed if A = L ∩ F, where L is Λ-set and F is b-closed.

Definition 3.16. A subset A of a topological space (X, τ) is called

1. plc*-set if A = L ∩ F, where L is open and F is preclosed.

2. βlc*-set if A = L ∩ F, where L is open and F is β-closed.

3. blc*-set if A = L ∩ F, where L is open and F is b-closed.

Lemma 3.17. A subset A ⊂ (X, τ) is

1. gs-closed if and only if scl(A) ⊂ A∧.

2. gp-closed if and only if pcl(A) ⊂ A∧.

3. gsp-closed if and only if βcl(A) ⊂ A∧.

4. gb-closed if and only if bcl(A) ⊂ A∧.

Corollary 3.18. For a subset A of a topological space (X, τ), the following conditions
are equivalent.

1. (a) A is semi-closed.

(b) A is gs-closed and slc*-set.

(c) A is gs-closed and λ-s-closed.
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2. (a) A is preclosed.

(b) A is gp-closed and plc*-set.

(c) A is gp-closed and λ-p-closed.

3. (a) A is β-closed.

(b) A is gsp-closed and βlc*-set.

(c) A is gsp-closed and λ-β-closed.

4. (a) A is b-closed.

(b) A is gb-closed and blc*-set.

(c) A is gb-closed and λ-b-closed.

Proof. The proof is similar to that of Lemma 3.6, Lemma 3.17 and Theorem 3.10.

Remark 3.19. The following Examples show that the concepts of

1. gs-closed set and slc*-set are independent of each other.

2. gs-closed set and λ-s-closed set are independent of each other.

3. gp-closed set and plc*-set are independent of each other.

4. gp-closed set and λ-p-closed set are independent of each other.

5. gsp-closed set and βlc*-set are independent of each other.

6. gsp-closed set and λ-β-closed set are independent of each other.

7. gb-closed set and blc*-set are independent of each other.

8. gb-closed set and λ-b-closed set are independent of each other.

Example 3.20. Let X and τ be as in Example 3.14. Then

1. {a, c} is gs-closed but not slc*-set in (X, τ). Moreover, {a, b} is slc*- set but
not gs-closed in (X, τ).

2. {b, c} is gs-closed but not λ-s-closed in (X, τ). Moreover, {a, b} is λ-s-closed
but not gs-closed in (X, τ).

Example 3.21. Let X = {a, b, c} with τ = {∅, {a}, {a, c}, X}. Then

1. {a, b} is gp-closed but not plc*-set in (X, τ). Moreover, {a, c} is plc*-set but
not gp-closed in (X, τ).

2. {a, b} is gp-closed but not λ-p-closed in (X, τ). Moreover, {a} is λ-p-closed
but not gp-closed in (X, τ).

Example 3.22. Let X = {a, b, c} with τ = {∅, {b}, {a, b}, X}. Then

1. {b, c} is gsp-closed but not βlc*-set in (X, τ). Moreover, {b} is βlc*- set but
not gsp-closed in (X, τ).
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2. {b, c} is gsp-closed but not λ-β-closed in (X, τ). Moreover, {a, b} is λ-β-closed
but not gsp-closed in (X, τ).

3. {b, c} is gb-closed but not blc*-set in (X, τ). Moreover, {a, b} is blc*-set but
not gb-closed in (X, τ).

4. {b, c} is gb-closed but not λ-b-closed in (X, τ). Moreover, {b} is λ-b-closed
but not gb-closed in (X, τ).

Remark 3.23. We have the following diagrams for the subsets we stated above:

Diagram 1.

closed -

A
A
AU

α-closed -

@
@

@R

semi-closed
@

@
@R

λ-closed -

?

λ-α-closed -

?

λ-s-closed

preclosed
@

@
@R

- b-closed
@

@
@R

- β-closed
@

@
@R?

λ-p-closed - λ-b-closed
?

- λ-β-closed

Diagram 2.

closed -

A
A
AU

α-closed -

@
@

@@R

semi-closed
@

@
@R

lc -

?

αlc∗ -

?

slc∗

preclosed
@

@
@R

- b-closed
@

@
@R

- β-closed
@

@
@R?

plc∗ - blc∗
?

- βlc∗

Definition 3.24. A subset A of a topological space (X, τ) is called

1. λ-αg*-closed if A = L ∩ F, where L is a Λα-set and F is closed.
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2. λ-sg*-closed if A = L ∩ F, where L is a Λs-set and F is closed.

3. λ-pg*-closed if A = L ∩ F, where L is a Λp-set and F is closed.

4. λ-βg*-closed if A = L ∩ F, where L is a Λsp-set and F is closed.

5. λ-bg*-closed if A = L ∩ F, where L is a Λb-set and F is closed.

Lemma 3.25. 1. Every αlc-set (resp. slc-set, plc-set, βlc-set, blc-set) is λ-αg*-
closed (resp. λ-sg*-closed, λ-pg*-closed, λ-βg*-closed, λ-bg*-closed).

2. Every Λα-set (resp. Λs-set, Λp-set, Λsp-set, Λb-set) is λ-αg*-closed (resp. λ-
sg*-closed, λ-pg*-closed, λ-βg*-closed, λ-bg*-closed).

Lemma 3.26. 1. A subset A ⊂ (X, τ) is αg*-closed if and only if cl(A) ⊂ Λα(A).

2. A subset A ⊂ (X, τ) is sg*-closed if and only if cl(A) ⊂ Λs(A).

3. A subset A ⊂ (X, τ) is pg*-closed if and only if cl(A) ⊂ Λp(A).

4. A subset A ⊂ (X, τ) is βg*-closed if and only if cl(A) ⊂ Λβ(A).

5. A subset A ⊂ (X, τ) is bg*-closed if and only if cl(A) ⊂ Λb(A).

Lemma 3.27. For a subset A of a topological space (X, τ), the following conditions
are equivalent.

1. A is λ-αg*-closed.

2. A = L ∩ cl(A) where L is a Λα-set.

3. A = Λα(A) ∩ cl(A).

Theorem 3.28. For a subset A of a topological space (X, τ), the following conditions
are equivalent.

1. (a) A is closed.

(b) A is αg*-closed and αlc-set.

(c) A is αg*-closed and λ-αg*-closed.

2. (a) A is closed.

(b) A is sg*-closed and slc-set.

(c) A is sg*-closed and λ-sg*-closed.

Remark 3.29. The following Examples show that the concepts of

1. αg*-closed set and αlc-set are independent of each other.

2. αg*-closed set and λ-αg*-closed set are independent of each other.

3. sg*-closed set and slc-set are independent of each other.

4. sg*-closed set and λ-sg*-closed set are independent of each other.

Example 3.30. Let X and τ be as in Example 3.14. Then
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1. {a, c} is αg*-closed but it is neither αlc-set nor λ-αg*-closed in X.

2. {a, b} is both αlc-set and λ-αg*-closed but not αg*-closed in X.

Example 3.31. Let X = {a, b, c} with τ = {∅, {b, c}, X}. Then

1. {a, b} is sg*-closed but it is neither slc-set nor λ-sg*-closed in X.

2. {b, c} is both slc-set and λ-sg*-closed but not sg*-closed in X.

Remark 3.32. We have the following diagrams for the subsets we stated above:

Diagram 3.

Λα-set -

@
@

@R

?

Λs-set
@

@
@R

λ-αg∗-closed -

?

λ-sg∗-closed

Λp-set
@

@
@R

-

?

Λb-set
@

@
@R

- Λsp-set
@

@
@R?

λ-pg∗-closed - λ-bg∗-closed - λ-βg∗-closed

Diagram 4.

α-open -

@
@

@R

?

semi-open
@

@
@R

αlc-set -

?

slc-set

preopen
@

@
@R

-

?

b-open
@

@
@R

- β-open
@

@
@R?

plc-set - blc-set - βlc-set

4 Decompositions of Topological Functions

Definition 4.1. A function f : (X, τ) → (Y, σ) is called

1. λ-α-continuous if f−1(V) is a λ-α-closed set in X for every closed subset V of
Y.
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2. λ-s-continuous if f−1(V) is a λ-s-closed set in X for every closed subset V of
Y.

3. λ-p-continuous if f−1(V) is a λ-p-closed set in X for every closed subset V of
Y.

4. λ-β-continuous if f−1(V) is a λ-β-closed set in X for every closed subset V of
Y.

5. λ-b-continuous if f−1(V) is a λ-b-closed set in X for every closed subset V of
Y.

Definition 4.2. A function f : (X, τ) → (Y, σ) is called

1. αg*-continuous if f−1(V) is an αg*-closed set in X for every closed subset V of
Y.

2. sg*-continuous if f−1(V) is a sg*-closed set in X for every closed subset V of
Y.

3. αlc-continuous if f−1(V) is an αlc-set in X for every closed subset V of Y.

4. slc-continuous if f−1(V) is a slc-set in X for every closed subset V of Y.

5. λ-αg*-continuous if f−1(V) is an λ-αg*-closed set in X for every closed subset
V of Y.

6. λ-sg*-continuous if f−1(V) is a λ-sg*-closed set in X for every closed subset V
of Y.

7. plc*-continuous if f−1(V) is a plc*-set in X for every closed subset V of Y.

8. βlc*-continuous if f−1(V) is a βlc*-set in X for every closed subset V of Y.

9. blc*-continuous if f−1(V) is a blc*-set in X for every closed subset V of Y.

We have the following decompositions of topological functions.

Theorem 4.3. Let f : X → Y be a function. Then the following are equivalent.

1. f is α-continuous.

2. f is αg-continuous and αlc*-continuous.

3. f is αg-continuous and λ-α-continuous.

Proof. It follows from Theorem 3.10.

Theorem 4.4. Let f : X → Y be a function. Then the following are equivalent.

1. f is semi-continuous.

2. f is gs-continuous and slc*-continuous.

3. f is gs-continuous and λ-s-continuous.

Proof. It follows from Corollary 3.18 (1).
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Theorem 4.5. Let f : X → Y be a function. Then the following are equivalent.

1. f is precontinuous.

2. f is gp-continuous and plc*-continuous.

3. f is gp-continuous and λ-p-continuous.

Proof. It follows from Corollary 3.18(2).

Theorem 4.6. Let f : X → Y be a function. Then the following are equivalent.

1. f is β-continuous.

2. f is gsp-continuous and βlc*-continuous.

3. f is gsp-continuous and λ-β-continuous.

Proof. It follows from Corollary 3.18(3).

Theorem 4.7. Let f : X → Y be a function. Then the following are equivalent.

1. f is b-continuous.

2. f is gb-continuous and blc*-continuous.

3. f is gb-continuous and λ-b-continuous.

Proof. It follows from Corollary 3.18(4).

Theorem 4.8. Let f : X → Y be a function. Then the following are equivalent.

1. f is continuous.

2. f is αg*-continuous and αlc-continuous.

3. f is αg*-continuous and λ-αg*-continuous.

Proof. It follows from Theorem 3.28(1).

Theorem 4.9. Let f : X → Y be a function. Then the following are equivalent.

1. f is continuous.

2. f is sg*-continuous and slc-continuous.

3. f is sg*-continuous and λ-sg*-continuous.

Proof. It follows from Theorem 3.28(1).

Remark 4.10. The following Examples show that the concepts of the following are
independent of each other.

1. αg-continuity and αlc*-continuity.

2. αg-continuity and λ-α-continuity.

3. gs-continuity and slc*-continuity.
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4. gs-continuity and λ-s-continuity.

5. gp-continuity and plc*-continuity.

6. gp-continuity and λ-p-continuity.

7. gsp-continuity and βlc*-continuity.

8. gsp-continuity and λ-β-continuity.

9. gb-continuity and blc*-continuity.

10. gb-continuity and λ-b-continuity.

11. αg*-continuity and αlc-continuity.

12. αg*-continuity and λ-αg*-continuity.

13. sg*-continuity and slc-continuity.

14. sg*-continuity and λ-sg*-continuity.

Example 4.11. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {b}, {a,
b}, Y}. Then the identity function f : (X, τ) → (Y, σ) is αg-continuous but it is
neither αlc*-continuous nor λ-α-continuous.

Example 4.12. Let X = Y = {a, b, c}, τ = {∅, {a}, {a, b}, X} and σ = {∅, {c},
{b, c}, Y}. Then the identity function f : (X, τ) → (Y, σ) is both αlc*-continuous
and λ-α-continuous but not αg-continuous.

Example 4.13. Let X, Y, τ and σ be as in Example 4.11. Then the identity function
f : (X, τ) → (Y, σ) is αg*-continuous but it is neither αlc-continuous nor λ-αg*-
continuous.

Example 4.14. Let X = Y = {a, b, c}, τ = {∅, {a, b}, X} and σ = {∅, {c},
Y}. Then the identity function f : (X, τ) → (Y, σ) is both αlc-continuous and
λ-αg*-continuous but not αg*-continuous.

Example 4.15. Let X = Y = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {c}, {a, c},
Y}. Then the identity function f : (X, τ) → (Y, σ) is gs-continuous but it is neither
slc*-continuous nor λ-s-continuous.

Example 4.16. Let X = Y = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {a}, {b,
c}, Y}. Then the identity function f : (X, τ) → (Y, σ) is both slc*-continuous and
λ-s-continuous but not gs-continuous.

Example 4.17. Let X = Y = {a, b, c}, τ = {∅, {b, c}, X} and σ = {∅, {c}, {b,
c}, Y}. Then the identity function f : (X, τ) → (Y, σ) is sg*-continuous but it is
neither slc-continuous nor λ-sg*-continuous.

Example 4.18. Let X = Y = {a, b, c}, τ = {∅, {b, c}, X} and σ = {∅, {a},
Y}. Then the identity function f : (X, τ) → (Y, σ) is both slc-continuous and
λ-sg*-continuous but not sg*-continuous.
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Example 4.19. Let X = Y = {a, b, c}, τ = {∅, {b}, X} and σ = {∅, {c}, {b, c},
Y}. Then the identity function f : (X, τ) → (Y, σ) is gp-continuous but it is neither
plc*-continuous nor λ-p-continuous.

Example 4.20. Let X = Y = {a, b, c}, τ = {∅, {b}, X} and σ = {∅, {a, c},
Y}. Then the identity function f : (X, τ) → (Y, σ) is both plc*-continuous and
λ-p-continuous but not gp-continuous.

Example 4.21. In Example 4.19, f is gsp-continuous but it is neither βlc*-continuous
nor λ-β-continuous

Example 4.22. In Example 4.18, f is both βlc*-continuous and λ-β-continuous but
not gsp-continuous.

Example 4.23. In Example 4.20, f is gb-continuous but it is neither blc*-continuous
nor λ-b-continuous.

Example 4.24. Let X, Y and τ be as in Example 4.15 and σ = {∅, {b, c}, Y}. Then
the identity function f : (X, τ) → (Y, σ) is both blc*-continuous and λ-b-continuous
but not gb-continuous.

5 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are
preserved under continuous deformations including stretching and bending, but not
tearing. By the middle of the 20th century, topology had become a major branch of
Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of
qualitative properties of certain objects that are invariant under a certain kind of
transformation especially those properties that are invariant under a certain kind of
equivalence and it is the study of those properties of geometric configurations which
remain invariant when these configurations are subjected to one-to-one bicontinuous
transformations or homeomorphisms. Topology operates with more general concepts
than analysis. Differential properties of a given transformation are nonessential for
topology but bicontinuity is essential. As a consequence, topology is often suitable
for the solution of problems to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in
Mathematics, we have taken it up as a challenge and cherishingly worked out this
research study. It can also further up the understanding of basic structure of classical
mathematics and offers new methods and results in obtaining significant results of
classical mathematics. Moreover it also has applications in some important fields of
Science and Technology.

In this paper, we obtained new classes of sets by using λ-closed sets in topological
spaces and studied their basic properties; and their connections with other kind of
topological sets. Moreover new decompositions of topological functions are obtained.
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Abstaract − Fletcher et al. [1] introduced the concept of pairwise compactness for bitopological
spaces. Reilly extended this concept to a larger class of bitopological spaces, called pairwise Lindelöf
spaces. In this paper we prove some results on the bitopological spaces which have well known
topological analogues.
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1 Introduction

In 1963, Kelly [2] introduced the notion of bitopological spaces. Such spaces equipped
with its two (arbitrary) topologies. The reader is suggested to refer [2] for the detail
definitions and notations. Furthermore, Kelly was extended some of the standard
results of separation axioms in a topological space to a bitopological space. Such
extensions are pairwise regular, pairwise Hausdorff and pairwise normal. There
are several works [1] dedicated to the investigation of bitopologies, i.e., pairs of
topologies on the same set; most of them deal with the theory itself but very few
with applications. We are concerned in this paper with the idea of pairwise Lindelöf
in bitopological spaces and give some results.

2 Preliminary

Throughout this paper, all spaces (X, τ) and (X, τ1, τ2) (or simply X) are always
mean topological spaces and bitopological spaces, respectively. Let F be a subset
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of (X, τ1, τ2), τ1 − cl(F ) and τ2 − cl(F ) represent the τ1-closure and τ2-closure of
F with respect to τ1 and τ2, respectively. The open (respectively closed) sets in
X with respect to τ1 is denoted by τ1-open (respectively τ1-closed), and the open
(respectively closed) sets in X with respect to τ2 is denoted by τ2-open (respectively
τ2-closed).

Definition 2.1. A bitopological space (X, τ1, τ2) is said to be pairwise-compact if
the topological space (X, τ1) and (X, τ2) are both compact. Equivalently, (X, τ1, τ2) is
pairwise-compact if every τ1-open cover of X can be reduced to a finite τ1-open cover
and every τ2-open cover of X can be reduced to a finite τ2-open cover.

In [5], it was mentioned that Birsan has given definitions of pairwise compactness
which do allow Tychonoff product theorems. According to Birsan, a bitopological
space (X, τ1, τ2) is said to be pairwise compact (denote p1-compact) if every τ1-open
cover of X can be reduced to a finite τ2-open cover and every τ2-open cover of X
can be reduced to a finite τ1-open cover. We will generalize it to pairwise Lindelöf
in Section 4.

We shall sometimes say that a bitopological space (X, τ1, τ2) has a particular
topological property, without referring specifically to τ1 or τ2, and we shall then
mean that both (X, τ1) and (X, τ2) have the property; for instance, (X, τ1, τ2) is said
to satisfy second axiom of countability if both (X, τ1) and (X, τ2) do so.

Definition 2.2. Let (X, τ1, τ2) be a bitopological space.

(a) A set G is said to be pairwise open if G are both τ1-open and τ2-open in X,

(b) A set F is said to be pairwise closed if F are both τ1-closed and τ2-closed in X.

(c) A cover of a bitopological space (X, τ1, τ2) is called pairwise open if its elements
are members of τ1 and τ2 and if contains at least one non-empty member of
each τ1 and τ2.

3 Bitopological Separation Axioms

Definition 3.1. [2] In a bitopological space (X, τ1, τ2), τ1 is said to be regular with
respect to τ2 if, for each point x ∈ X, there is a τ1-neighbourhood base of τ2-closed
sets, or, as is easily seen to be equivalent, if, for each point x ∈ X and each τ1-closed
set F such that x /∈ F ,there are a τ1-open set U and a τ2-open set V such that

x ∈ U , F ⊆ V , and U ∩ V = ∅.
(X, τ1, τ2) is, or τ1 and τ2 are, pairwise regular if τ1 is regular with respect to τ2 and
vice versa.

Theorem 3.1. In a bitopological space (X, τ1, τ2), τ1 is regular with respect to τ2

if and only if for each point x ∈ X and τ1-open set H containing x, there exists a
τ1-open set U such that

x ∈ U ⊆ τ2 − cl(U) ⊆ H.
Proof. (Necessity) suppose τ1 is regular with respect to τ2. Let x ∈ X and H is a
τ1-open set containing x. Then G = X\H is a τ1-closed set which x /∈ G. Since τ1 is
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regular with respect to τ2, then there are τ1-open set U and τ2-open set V such that
x ∈ U,G ⊆ V and U ∩ V = ∅. Since U ⊆ X\V , then τ2 − cl(U) ⊆ τ2 − cl(X\V ) =
X\V ⊆ X\G = H. Thus, x ∈ U ⊆ τ2 − cl(U) ⊆ H as desired.
(Sufficiency)Suppose the condition holds. Let x ∈ X and F is a τ1-closed set such
that x /∈ F . Then x ∈ X\F , and by hypothesis there exists a τ1-open set U such
that x ∈ U ⊆ τ2 − cl(U) ⊆ X\F . It follows that x ∈ U, F ⊆ X\τ2 − cl(U) and
U ∩ (X\τ2 − cl(U)) = ∅. This completes the proof. 2

Remark 3.1. In other words, Theorem 3.1 stated that τ1 is regular with respect to τ2

if, for each point x ∈ X, there is a τ1-neighbourhood base of τ2-closed sets containing
x. This is equivalent definition in Definition 3.1.

If τ2 is also regular with respect to τ1, we have the similar result as previous
theorem and stated in the following corollary. By these reason we obtain a pairwise
regular space.

Corollary 3.1. In a space bitopological space (X, τ1, τ2), τ2 is regular with respect to
τ1 if and only if for each point x ∈ X and τ2-open set H containing x, there exists a
τ2-open set U such that x ∈ U ⊆ τ1 − cl(U) ⊆ H.

If Y ⊆ X, then the collections (τ1)Y = {A∩Y : A ∈ τ1} and (τ2)Y = {B∩Y : B ∈
τ2} are the relative topology on Y . A bitopological space (Y, (τ1)Y , (τ2)Y ) is then
called a subspace of (X, τ1, τ2). Moreover, Y is said to be pairwise closed subspace
of X if Y is both (τ1)Y -closed and (τ2)Y -closed in X. The pairwise open subspace is
defined in the similar way.
the following theorem shows that, pairwise regular spaces satisfy the hereditary prop-
erty.

Theorem 3.2. Every subspace of a pairwise regular bitopological space (X, τ1, τ2) is
pairwise regular.
Proof. Let (X, τ1, τ2) be a pairwise regular space and let (Y, (τ1)Y , (τ2)Y ) be a sub-
space of (X, τ1, τ2). Furthermore, let F be a (τ1)Y -closed set in Y , thenF = A ∩ Y
where A is a τ1-closed set in X. Now if y ∈ Y and y /∈ F , then y /∈ A, so there are
τ1-open set U and τ2-open set V such that

y ∈ U , A ⊆ V and U ∩ V = ∅.
But U ∩Y and V ∩Y are (τ1)Y -open set and (τ2)Y -open set in Y , respectively. Also
y ∈ U ∩ Y , F ⊆ V ∩ Y and (U ∩ Y ) ∩ (V ∩ Y ) = (U ∩ V ) ∩ Y = ∅.

Similarly, let G be a (τ2)Y -closed set in Y , then G = B∩Y where B is a τ2-closed
set in X. Now if y ∈ Y and Y /∈ G, then y /∈ B, so there are τ2-open set U and
τ2-open set V such that

y ∈ U , B ⊆ V and U ∩ V = ∅.
But U ∩ Y and V ∩ Y are (τ2)Y -open set and (τ1)Y -open set in Y , respectively. Also
y ∈ U ∩ Y , G ⊆ V ∩ Y and (U ∩ Y ) ∩ (V ∩ Y ) = ∅. This completes the proof. 2

Definition 3.2. (Kelly, 1963). A bitopological space (X, τ1, τ2) is said to be pairwise
normal if, given a τ1-closed set A and a τ2-closed set B with A ∩ B = ∅, there exist
a τ2-open set U and a τ1-open set V such that A ⊆ U,B ⊆ V and U ∩ V = ∅.
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Equivalently, (X, τ1, τ2) is pairwise normal if, given a τ2-closed set C and a τ1-open
set D such that C ⊆ D, there are a τ1-open set G and τ2-closed set F such that
C ⊆ G ⊆ F ⊆ D.

We shall prove the equivalent definition above in the following theorem.

Theorem 3.3. A bitopological space (X, τ1, τ2) is pairwise normal if and only if given
a τ2-closed set C and a τ1-open set D such that C ⊆ D, there are a τ1-open set G
and a τ2-closed set F such that C ⊆ G ⊆ F ⊆ D.
Proof. (Necessity) Suppose (X, τ1, τ2) is pairwise normal. Let C be a τ2-closed set and
D a τ1-open set such that C ⊆ D. Then K = X\D is a τ1-closed set with K∩C = ∅.
Since (X, τ1, τ2) is pairwise normal, there exists a τ2-open set U and a τ1-open set
V such that K ⊆ U,C ⊆ G and U ∩ G = ∅. Hence G ⊆ X\U ⊆ X\K = D. Thus
C ⊆ G ⊆ X\U ⊆ D and the result follows by taking X\U = F .
(Sufficiency)Suppose the condition holds. Let A be a τ1-closed set and B a τ2-closed
set with A ∩ B = ∅. Then D = X\A is a τ1-open set with B ⊆ D. By hypothesis,
there are a τ1-open set G and a τ2-closed set F such that B ⊆ G ⊆ F ⊆ D. It follows
that A = X\D ⊆ X\F, B ⊆ G and (X\F ) ∩G = ∅. where X\F is τ2-open set and
G is τ1-open set. This completes the proof. 2

Theorem 3.4. A bitopological space (X, τ1, τ2) is pairwise normal if and only if given
a τ1-closed set C and a τ2-open set D such that C ⊆ D, there are a τ2-open set U
and a τ1-closed set F such that C ⊆ U ⊆ F ⊆ D.
Proof. (Necessity) Suppose (X, τ1, τ2) is pairwise normal. Let C be a τ1-closed set
and D a τ2-open set such that C ⊆ D. Then K = X − D is a τ2-closed set with
C∩K = ∅. Since (X, τ1, τ2) is pairwise normal, there exists a τ2-open set U and a τ1-
open set V such that C ⊆ U,K ⊆ V , and U∩V = ∅. Hence U ⊆ X\V ⊆ X\K = D.
Thus C ⊆ U ⊆ X\V ⊆ D and the result follows by taking X\V = F .
(Sufficiency)Suppose the condition holds. Let A be a τ1-closed set and B a τ2-closed
set with A ∩ B = ∅. Then D = X − B is a τ2-open set with A ⊆ D. By hypothesis,
there are a τ2-open set U and a τ1-closed set F such that A ⊆ U ⊆ F ⊆ D. It follows
that B = X\D ⊆ X\F,A ⊆ U and (X\F ) ∩ U = ∅. where X\F is τ2-open set and
U is τ2-open set. This completes the proof. 2

Now we define a new weaker form of pairwise normal bitopological spaces.

Definition 3.3. A space (X, τ1, τ2) is said to be pairwise weak normal if, given A
and B are pairwise closed sets with A ∩ B = ∅, there exist a τ2-open set U and a
τ1-open set V such that A ⊆ U,B ⊆ V , and U ∩ V = ∅.
Theorem 3.5. A bitopological space (X, τ1, τ2) is pairwise weak normal if and only
if given a pairwise closed set C and a pairwise open set D such that C ⊆ D, there
are a τ1-open set G and a τ2-closed set F such that C ⊆ G ⊆ F ⊆ D.
Proof. (Necessity) Suppose (X, τ1, τ2) is pairwise weak normal. Let C be a pairwise
closed set and D a pairwise open set such that C ⊆ D. Then K = X\D is a pairwise
closed set with K ∩ C = ∅. Since (X, τ1, τ2) is pairwise weak normal, there exists a
τ2-open set U and a τ1-open set G such that K ⊆ U,C ⊆ G and U ∩G = ∅. Hence
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G ⊆ X\U ⊆ X\K = D. Thus C ⊆ G ⊆ X\U ⊆ D and the result follows by taking
X\U = F .
(Sufficiency)Suppose the condition holds. Let A and B are pairwise closed sets with
A∩B = ∅. Then D = X\A is a pairwise open set with B ⊆ D. By hypothesis, there
are a τ1-open set G and a τ2-closed set F such that B ⊆ G ⊆ F ⊆ D. It follows that
A = X\D ⊆ X\F,B ⊆ G and (X\F ) ∩G = ∅. where X\F is τ2-open set and G is
τ1-open set. This completes the proof. 2

Example 3.1. Consider X = {a, b, c} with topologies τ1 = {∅, {b}, {c}, {b, c}, X}
and τ2 = {∅, {a}, {b}, {a, b}, {b, c}, X} defined on X. Observe that τ1-closed subsets
of X are ∅, {a, c}, {a, b}, {a}, and X and τ2-closed subsets of X are ∅, {b, c}, {a, c}, {c}, {a}
and X. It follows that (X, τ1, τ2) does satisfy the condition in definition of pairwise
normal. One of them we can take A = {a}, B = {b, c}, U = {a} and V = {b, c} in
the definition, we can checks for the other. Hence (X, τ1, τ2) is pairwise normal, and
hence pairwise weak normal.

It is clear from definition that every pairwise normal space is pairwise weak
normal. The converse is not true in general as shown in the following counter-
example.

Example 3.2. Consider X = {a, b, c, d} with topologies τ1 = {∅, {a, b}, X} and
τ2 = {∅, {a}, {b}, {b, c, d}, X} defined on X. Observe that τ1-closed subsets of X
are ∅, {c, d} and X and τ2-closed subsets of X are ∅, {b, c, d}, {a} and X is pairwise
weak normal as we can checks since the only pairwise closed sets of X are ∅ and
X. However (X, τ1, τ2) is not pairwise normal since the τ1-closed set A = {c, d} and
τ2-closed set B = {a} satisfy A ∩ B = ∅, but do not exist the τ2-open set U and
τ1-open set V such that A ⊆ U,B ⊆ V and U ∩ V = ∅.

Naturally, any result stated in terms of τ1 and τ2 has a dual, in terms of τ2 and τ1.
The definitions of separation properties of two topologies τ1 and τ2, such as pairwise
regularity, of course reduce to the usual separation properties of one topology τ1,
such as regularity, when we take τ1 = τ2, and the theorems quoted above then yield
as corollaries of the classical results of which they are generalizations.

4 Pairwise Lindelöf Spaces

According to Definition 2.1, we generalize pairwise compact spaces to pairwise Lin-
delöf as the following.

Definition 4.1. A bitopological space (X, τ1, τ2) is said to be pairwisw Lindelöf if
the topological space (X, τ1) and (X, τ2) are both Lindelöf. Equivalently, (X, τ1, τ2)
is pairwisw Lindelöf if every τ1-open cover of X can be reduced to a countable τ1-
open cover and every τ2-open cover of X can be reduced to a countable τ2-open cover.
Equivalently, (X, τ1, τ2) is pairwise Lindelöf if every pairwise open cover of (X, τ1, τ2)
be a countable subcover.

Recall that, the relation between compactness and Lindelöfness is very strong,
where every pairwise compact space is pairwise Lindelöf but not the converse, and
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hence the relation between pairwise compactness and pairwise Lindelöfness is very
strong also.

Example 4.1. Let X = [0, Ω], τ1 be the discrete topology on X and τ2 be the topology
{∅, X, (a, Ω)} for each a ∈ X. Then Reilly in [4] proved that (X, τ1, τ2) is pairwise
Lindelöf. Furthermore, (X, τ1, τ2) is not pairwise compact.

Theorem 4.1. If (X, τ1, τ2) is second countable bitopological space, then (X, τ1, τ2)
is pairwise Lindelöf.
Proof. In bitopological space (X, τ1, τ2), let {Bn} and {Cn}, n = 1, 2, ... be countable
bases for τ1 and τ2 respectively. Let U = {Uα : α ∈ ∇} be a τ1-open cover of X,
then for every x ∈ X, there exists Ux ∈ U such that x ∈ Ux. From hypothesis
(X, τ1, τ2) is second countable, then so is (X, τ1). Since {Bn} is a base for τ1, for
each x ∈ Ux and Ux ∈ U , there is Bx ∈ {Bn} such that x ∈ Bx ⊆ Ux . Hence
X =

⋃{Bx : x ∈ X}. But {Bx : x ∈ X} ⊆ {Bn}, so it is countable and hence
{Bx : x ∈ X} = {Bn : n ∈ N }. For each n ∈ N , choose one set Bn ∈ {Bn} such
that Bn ⊆ Un. Then X =

⋃{Bn : n ∈ N } = {Un : n ∈ N } and so {Un : n ∈ N }
is a countable subcover of X. Thus (X, τ1) is a Lindelöf space. Similarly (X, τ2) is
also a Lindelöf space. Therefore (X, τ1, τ2) is pairwise Lindelöf. 2

Proposition 4.1. Every pairwise closed subset of a pairwise Lindelöf bitopological
space (X, τ1, τ2) is pairwise Lindelöf.
Proof. Let (X, τ1, τ2) be a pairwise Lindelöf bitopological space and let F be a pairwise
closed subset of X. Then (X, τ1) and (X, τ2) are Lindelöf, and F are τ1-closed and
τ2-closed subset of X. If {Uα : α ∈ ∇} is a τ1-open cover of F , then X = {∪Uα : α ∈
∇} ∪ (X\F ). Hence the collection {Uα : α ∈ ∇} and X\F form a τ1-open cover of
X. Since (X, τ1) is Lindelöf, there will be a countable subcover, {X\F,Uα1, Uα2, ...}.
But F and X\F are disjoint; hence the subcollection of τ1-open set {Uαi : i ∈ N }
also cover F , and so {Uα : α ∈ ∇} has a countable subcover. 2

Definition 4.2. [3] A bitopological space (X, τ1, τ2) is called pairwise countably com-
pact if every countable pairwise open cover of (X, τ1, τ2) has a finite subcover.

The proof of the following two results are straightforward.

Proposition 4.2. In a pairwise Lindelöf space, pairwise countable compactness, is
equivalent to pairwise compactness.

Proposition 4.3. The pairwise continuous image of a pairwise Lindelöf space is
pairwise Lindelöf.

Theorem 4.2. If A is a proper subset of a pairwise Lindelöf bitopological space
(X, τ1, τ2) which is τ1-closed, then A is pairwise Lindelöf and τ2-Lindelöf.
Proof. Let β be any pairwise open cover of a bitopological space (A, τ1|A, τ2|A). Then
β ∪ {(X\A)} induces a pairwise open cover of a bitopological space (X, τ1, τ2) which
has a countable subcover and hence so does β. Let β∗ be any τ2-open cover of A.
Then β∗ ∪ {(X\A)} is a pairwise open cover of (X, τ1, τ2) which has a countable
subcover and hence so does β∗.
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Proposition 4.4. In a bitopological space (X, τ1, τ2), let τ1 be Lindelöf with respect
to τ2. Then τ1-closed subset of (X, τ1, τ2) is also τ1-Lindelöf with respect to τ2.
Proof. Let F be a τ1-closed subset of (X, τ1, τ2) and let {Uα : α ∈ ∇} be a τ1-open
cover of F , then X = (∪{Uα : α ∈ ∇}) ∪ (X\F ), hence the collection {Uα : α ∈ ∇}
form a τ1-open cover of X. Since τ1 is Lindelöf with respect to τ2, then the τ1-open
cover of X can be reduced to a countable τ2-open cover {X\F, Uα1, Uα2, ...}. But for
X\F are disjoint, hence the subcollection of τ2-open set {Uαi : i ∈ N } also cover F
and so {Uα : α ∈ ∇} can be reduced to a countable τ2-open cover. This shows that
F is τ1-Lindelöf with respect to τ2.

Corollary 4.1. If τ2 is Lindelöf with respect to τ1, then τ2-closed subset of a bitopo-
logical space (X, τ1, τ2) is τ2-Lindelöf with respect to τ1.

5 Conclusion

For the following separation axioms, we can apply the results established in Sections
3 and 4:
(1) Spaces defined in Definition 3.3.
(2) Spaces defined in Definition 4.1.
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Abstaract − The aim of this paper is to introduce the concept of L-fuzzy interior (closure) spaces
and the L-fuzzy topological space in a complete residuated lattice. We study some relationships
among those structures. Finally, we give their examples.
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1 Introduction

Since Chang [6] introduced fuzzy set theory to topology, many researchers have
successfully generalized the theory of general topology to the fuzzy setting with
crisp methods. In Chang’s I-topology on a set X, each open set was fuzzy, while the
topology itself was a crisp subset of the family of all fuzzy subsets of X.

From a different direction, the fundamental idea of a topology itself being fuzzy
was first defined by Höhle [14] in 1980, then was independently generalized be each of
Kubiak [17] and Sôstak [25] in 1985 and independently rediscovered by Ying [26, 27]
in Höhle’s original setting in 1991 in Höhle’s approach a topology was an L-subset
of a traditional powerset.

In 1999, the axioms of many-valued L-fuzzy topological spaces and L-fuzzy con-
tinuous mappings are given a lattice-theoretical foundation by Höhle and Sôstak
and a categorical foundation by Rodabaugh [23]. Sôstak [25] introduced the fuzzy

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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topology as an extension of Chang’s fuzzy topology, Ramadan and his colleagues [21]
called it smooth topology.

Closure and interior operators on ordinary sets belongs to the very fundamental
mathematical structure with direct applications, both mathematical (topology, logic,
for instance) and extra mathematical (e.g. data mining, knowledge representation).
In fuzzy set theory, several particular cases as well as general theory of closure
operators which operate with fuzzy sets (so called fuzzy closure operators) are studied
(Mashour and Ghanim [19], Bandler and Kohout [1], Bêlohàvek [2, 3], Gerla [11]).

Interior operators, however, have appeared in a few studies only (Bandler and
Kohout [1], Dubois and Prade [7], Bodenhofer et al [5]), and it seem that no general
theory of interior operators appeared so far. In ordinary set theory, closure and
interior operators on a set in a bijective correspondence.

In this paper is, we investigate the concept of L-fuzzy interior (closure) operators
using the definition of the L-fuzzy topology, which deduced an L-fuzzy (interior)
closure spaces and vise versa. Continuity property and examples of those spaces are
also discussed.

2 Preliminary

Definition 2.1. [4, 15] An algebra (L,∧,∨,¯,→,⊥,>) is called a complete resid-
uated lattice if it satisfies the following conditions

(C1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and
the least element ⊥;

(C2) (L,¯,>) is a commutative monoid;
(C3) x¯ y ≤ z iff x ≤ y → z for x, y, z ∈ L.

An operator ∗ : L → L defined by a∗ = a → 0 is called a strong negation if
a∗∗ = a.

For α ∈ L, λ ∈ LX , we denote (α → λ), (α¯ λ), αX , >x ∈ LX as

(α → λ)(x) = α → λ(x), (α¯ λ)(x) = α¯ λ(x), αX(x) = α,

>x(y) =

{ >, if y = x,
⊥, otherwise.

In this paper, we assume that (L,∨,∧,¯,→, ∗,⊥,>) be a complete residuated
lattice with a strong negation ∗.

Lemma 2.2. [4, 15, 24] For each x, y, z, xi, yi ∈ L, the following properties hold.

(1) x → y = > iff x ≤ y, x → > = > and > → x = x,
(2) If y ≤ z, then x → y ≤ x → z, z → x ≤ y → x, x ⊕ y ≤ x ⊕ z and

x¯ y ≤ x¯ z,
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(3) x¯ y ≤ x⊕ y,
(4) x¯ (

∨
i∈Γ yi) =

∨
i∈Γ(x¯ yi) and x¯ (

∧
i∈Γ yi) ≤

∧
i∈Γ(x¯ yi),

(5) x⊕ (
∨

i∈Γ yi) =
∨

i∈Γ(x⊕ yi) and (
∨

i∈Γ xi)⊕ y =
∨

i∈Γ(xi ⊕ y),
(6) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi) and (

∧
i∈Γ xi) → y ≥ ∨

i∈Γ(xi → y),
(7) x → (

∨
i∈Γ yi) ≥

∨
i∈Γ(x → yi) and (

∨
i∈Γ xi) → y =

∧
i∈Γ(xi → y),

(8)
∨

i∈Γ xi →
∨

i∈Γ yi ≥
∧

i∈Γ(xi → yi) and
∧

i∈Γ xi →
∧

i∈Γ yi ≥
∧

i∈Γ(xi → yi),
(9) (x → y)¯ x ≤ y and (x → y)¯ (y → z) ≤ (x → z),
(10) x → y ≤ (y → z) → (x → z), x → y ≤ (z → x) → (z → y) and
y → z ≤ x¯ y → x¯ z,

(11) (x¯ y) → z = x → (y → z) = y → (x → z),
(12) x¯ (y → z) ≤ y → (x¯ z),
(13) (x → y)¯ (z → w) ≤ (x¯ z) → (y ¯ w),
(14) (x → y)¯ (z → w) ≤ (x⊕ z) → (y ⊕ w),
(15) (x → y)⊕ (z → w) ≤ (x¯ z) → (y ⊕ w),
(16) x∗ → y∗ = y → x,
(17)

∧
i∈Γ x∗i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x∗i = (
∧

i∈Γ xi)
∗,

(18) (x¯ y)∗ = x → y∗ and (x → y)∗ = x¯ y∗,
(19) x¯ (x∗ ⊕ y∗) ≤ y∗.

Definition 2.3. [2, 3] Let X be a set. A function R : X × X → L is called an
L-partial order if it satisfies the following conditions

(E1) reflexive if R(x, x) = > for all x ∈ X,
(E2) transitive if R(x, y)¯R(y, z) ≤ R(x, z) for all x, y, z ∈ X,
(E3) if R(x, y) = R(y, x) = >, then x = y.

Lemma 2.4. [2, 3] For a given set X, define a binary mapping S : LX ×LX → L by

S(λ, µ) =
∧
x∈X

(λ(x) → µ(x)).

Then, for each λ, µ, ρ, ν ∈ LX and α ∈ L the following properties hold.
(1) S is an L-partial order on LX ,
(2) λ ≤ µ iff S(λ, µ) ≥ >,
(3) If λ ≤ µ, then S(ρ, λ) ≤ S(ρ, µ) and S(λ, ρ) ≥ S(µ, ρ) for each ρ ∈ LX ,
(4) S(λ, µ)¯ S(ν, ρ) ≤ S(λ¯ ν, µ¯ ρ),
(5) S(λ, µ)¯ S(ν, ρ) ≤ S(λ⊕ ν, µ⊕ ρ),
(6) S(λ, α → µ) = S(α¯ λ, µ) = α → S(λ, µ) and α¯ S(λ, µ) ≤ S(λ, α¯ µ),
(7) µ¯ S(µ, λ) ≤ λ, S(µ, λ) → λ ≥ µ and S(λ, µ) = S(µ∗, λ∗).

Proof. We need to prove (5) by Lemma 2.2(8),(14), we have

S(λ⊕ ν, µ⊕ ρ) =
∧
x∈X

(
(λ⊕ ν)(x) → (µ⊕ ρ)(x)

)

≥
∧
x∈X

(
(λ → µ)(x)¯ (ν → ρ)(x)

)

≥ ( ∧
x∈X

(λ → µ)(x)
)¯ ( ∧

x∈X

(ν → ρ)(x)
)

= S(λ, µ)¯ S(ν, ρ).
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Lemma 2.5. [2, 3] Let φ : X → Y be an ordinary mapping. Define φ→ : LX → LY

and φ← : LY → LX by

φ→(λ)(y) =
∨

φ(x)=y

λ(x) ∀ λ ∈ LX , y ∈ Y,

φ←(µ)(x) = µ(φ(x)) = µ ◦ φ(x) ∀ µ ∈ LY .

Then for λ, µ ∈ LX and ρ, ν ∈ LY ,

S(λ, µ) ≤ S(φ→(λ), φ→(µ)), S(ρ, ν) ≤ S(φ←(ρ), φ←(ν)),

and the equalities hold if φ is bijective.

Definition 2.6. [15] A map T : LX → L is called an L-fuzzy topology on X if it
satisfies the following conditions.

(LO1) T (⊥X) = T (>X) = >,
(LO2) T (λ¯ µ) ≥ T (λ)¯ T (µ), ∀ λ, µ ∈ LX ,
(LO3) T (

∨
i λi) ≥

∧
i T (λi), ∀ {λi}i∈Γ ⊆ LX .

An L-fuzzy topology is enriched if (R) T (α¯ λ) ≥ T (λ) for all λ ∈ LX , α ∈ L.

The pair (X, T ) is called an L-fuzzy topological space. Let (X, TX) and (Y, TY )
be two L-fuzzy topological spaces. A mapping φ : X → Y is said to be LF -fuzzy
continuous iff for each λ ∈ LY , we have

TY (λ) ≤ TX(φ←(λ)).

Definition 2.7. [15] A map F : LX → L is called an L-fuzzy co-topology on X if it
satisfies the following conditions.

(LF1) F(⊥X) = F(>X) = >,
(LF2) F(λ⊕ µ) ≥ F(λ)¯F(µ), ∀ λ, µ ∈ LX ,
(LF3) F(

∧
i λi) ≤

∨
iF(λi), ∀ {λi}i∈Γ ⊆ LX .

The pair (X,F) is called an L-fuzzy co-topological space. An L-fuzzy co-topology
is called enriched if (S) F(α → λ) ≥ F(λ) for all λ ∈ LX and α ∈ L.

Let (X,FX) and (Y,FY ) be two L-fuzzy co-topological spaces. A mapping φ :
X → Y is said to be LF -fuzzy continuous iff for each λ ∈ LY , we have

FY (λ) ≤ FX(φ←(λ)).

Definition 2.8. [22] A map I : LX ×L⊥ → LX , L⊥ = L−{⊥} is called an L-fuzzy
interior operator on X if I satisfies the following conditions

(I1) I(>X , r) = >X ,
(I2) I(λ, r) ≤ λ, or equivalently, S(I(λ, r), λ) ≥ > for all λ ∈ LX ,
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(I3) S(λ, µ) ≤ S(I(λ, r), I(µ, r)) for all λ, µ ∈ LX ,
(I4) If r ≤ s, then I(λ, s) ≤ I(λ, r),
(I5) I(λ¯ µ, r ¯ s) ≥ I(λ, r)¯ I(µ, s).

The pair (X, I) is called an L-fuzzy interior space. An L-fuzzy interior space
(X, I) is topological if

(T) I(I(λ, r), r) = I(λ, r) ∀ λ ∈ LX , r ∈ L⊥.

Let (X, IX) and (X, IY ) be two L-fuzzy interior spaces. A map φ : X → Y is
called I-map if

φ←(IY (µ, r)) ≤ IX(φ←(µ), r) ∀ µ ∈ LY , r ∈ L⊥.

Lemma 2.9. Let I : LX × L⊥ → LX , L⊥ = L − {⊥} be a map. It satisfies
S(λ, µ) ≤ S(I(λ, r), I(µ, r)) for all λ, µ ∈ LX iff I(α ¯ λ, r) ≥ α ¯ I(λ, r) and
I(λ, r) ≤ I(µ, r) if λ ≤ µ.

Proof. If λ ≤ µ, > = S(λ, µ) ≤ S(I(λ, r), I(µ, r)), then I(λ, r) ≤ I(µ, r). Moreover,
S(I(λ, r), I(α¯ λ, r)) ≥ S(λ, α¯ λ) ≥ α. That is,

α¯ I(λ, r) ≤ I(α¯ λ, r).

On the other hand, put α = S(λ, µ), then

S(λ, µ)¯ I(λ, r) ≤ I(S(λ, µ)¯ λ, r) ≤ I(µ, r).

Hence, S(λ, µ) ≤ S(I(λ, r), I(µ, r)).

Definition 2.10. A map C : LX × L⊥ → LX is called an L-fuzzy closure operator
on X if C satisfies the following conditions

(C1) C(⊥X , r) = ⊥X ,
(C2) C(λ, r) ≥ λ, or equivalently, S(λ, C(λ, r)) = >X for all λ ∈ LX ,
(C3) S(λ, µ) ≤ S(C(λ, r), C(µ, r)) for all λ, µ ∈ LX ,
(C4) If r ≤ s, then C(λ, r) ≤ C(λ, s),
(C5) C(λ⊕ µ, r ¯ s) ≤ C(λ, r)⊕ C(µ, s).

The pair (X, C) is called an L-fuzzy closure space. An L-fuzzy closure space
(X, C) is topological if

(T) C(C(λ, r), r) = C(λ, r) ∀ λ ∈ LX , r ∈ L⊥.

Let (X, CX) and (X, CY ) be two L-fuzzy closure spaces. A map φ : X → Y is
called a C-map if φ←(CY (λ, r)) ≥ CX(φ←(λ), r), ∀ λ ∈ LY , r ∈ L⊥.

Lemma 2.11. Let C : LX × L⊥ → LX , L⊥ = L − {⊥} be a map. It satisfies
S(λ, µ) ≤ S(C(λ, r), C(µ, r)) for all λ, µ ∈ LX iff C(α ¯ λ, r) ≥ α ¯ C(λ, r) and
C(λ, r) ≤ C(µ, r) if λ ≤ µ.
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3 L-fuzzy Interior Space Induced by L-fuzzy Topo-

logical Space

Theorem 3.1. Let (X, T ) be an L-fuzzy topological space. Define the mapping
IT : LX × L⊥ → LX as follows

IT (λ, r) =
∨
µ

{µ¯ S(µ, λ) | T (µ) ≥ r}.

Then we have the following properties.
(1) (X, IT ) is an L-fuzzy interior space,
(2) If (X, T ) is enriched, then (X, IT ) is a strong L-fuzzy interior space,
(3) IT (λ, r) ≤ ∨{µ | µ ≤ λ, T (µ) ≥ r},
(4) If (X, T ) is enriched, then the equality in (3) holds.

Proof. (1) (I1) For each T (µ) ≥ r, S(>X ,>X) = >. Thus,
IT (>X , r) ≥ >X ¯> = >X . Therefore, IT (>X , r) = >X .

(I2) By Lemma 2.4(7), we have IT (λ, r) =
∨

µ{µ ¯ S(µ, λ) | T (µ) ≥ r} ≤ λ

for all λ ∈ LX .

(I3) Using Lemma 2.2(8),(10), we can get

S(IT (λ, r), IT (µ, r)) =
∧
x∈X

(IT (λ, r)(x) → IT (µ, r)(x)
)

=
∧
x∈X

( ∨

T (ρ)≥r

ρ(x)¯ S(ν, λ) →
∨

T (ρ)≥r

ρ(x)¯ S(ρ, µ)
)

≥
∧
x∈X

∧

T (ρ)≥r

(
ρ(x)¯ S(ρ, λ) → ρ(x)¯ S(ρ, µ)

)

≥
∧
x∈X

∧

T (ρ)≥r

(S(ρ, λ) → S(ρ, µ)) ≥ S(λ, µ).

(I4) If r ≤ s, then

IT (λ, s) =
∨

T (µ)≥s

µ¯ S(µ, λ) ≤
∨

T (µ)≥r

µ¯ S(µ, λ) = IT (λ, r).

(I5) By Lemma 2.4(4), we have

IT (λ, r)¯ IT (µ, s) =
∨

T (ρ1)≥r

ρ1 ¯ S(ρ1, λ)¯
∨

T (ρ2)≥s

ρ2 ¯ S(ρ2, µ)

=
∨

T (ρ1)≥r

∨

T (ρ2)≥s

(ρ1 ¯ ρ2)¯ S(ρ1, λ)¯ S(ρ2, µ)

≤
∨

T (ρ1)¯T (ρ2)≥r¯s

(ρ1 ¯ ρ2)¯ S(ρ1 ¯ ρ2, λ¯ µ)

= IT (λ¯ µ, r ¯ s).
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(2) Since T is enriched, T (IT (λ, r)) ≥ r. Thus,

IT (IT (λ, r), r) =
∨

T (µ)≥r

µ¯ S(µ, IT (λ, r))

≥ IT (λ, r)¯ S(IT (λ, r), IT (λ, r)) = IT (λ, r).

(3) For each T (µ) ≥ r with µ ≤ λ, we have µ = >¯µ ≤ S(µ, λ)¯µ, it follows
that ∨

T (µ)≥r

{µ | µ ≤ λ} ≤
∨

T (µ)≥r

S(µ, λ)¯ µ = IT (λ, r).

(4) For any T (µ) ≥ r, T (S(µ, λ) ¯ µ) ≥ T (µ) ≥ r, because T is enriched.
Thus, IT (λ, µ) =

∨
T (µ)≥r S(µ, λ)¯ µ ≤ ∨

T (µ)≥r{µ | µ ≤ λ}.
Theorem 3.2. Let (X, I) be an L-fuzzy interior space. Define the mapping
TI : LX → L by

TI(λ) =
∨
{r ∈ L | S(λ, I(λ, r)) = >}.

Then, TI is an enriched L-fuzzy topology on X.

Proof. (LO1) TI(>X) =
∨{r ∈ L | S(>X , I(>X , r)) = >}, and

TI(⊥X) =
∨{r ∈ L | S(⊥X , I(⊥X , r)) = >}.

(LO2) By Lemma 2.4(4) and Definition 2.8(I5), we have

S(λ1, I(λ1, r))¯ S(λ2, I(λ2, s)) ≤ S(λ1 ¯ λ2, I(λ1, r)¯ I(λ2, s))

≤ S(λ1 ¯ λ2, I(λ1 ¯ λ2, r ¯ s)).

If S(λ1, I(λ1, r)) = > and S(λ2, I(λ2, s)) = >, then
S(λ1 ¯ λ2, I(λ1 ¯ λ2, r ¯ s)) = >. Thus, TI(λ1 ¯ λ2) ≥ TI(λ1)¯ TI(λ2).

(LO3) For a family of {λi | i ∈ I} ⊆ LX , we have

TI(
∨
i∈I

λi) =
∨
{r ∈ L | S(

∨
i∈I

λi, I(
∨
i∈I

λi, r)) = >}

≥
∧
i∈I

∨
{r ∈ L | S(λi, I(

∨
i∈I

λi, r)) = >}

≥
∧
i∈I

∨
{r ∈ L | S(λi, I(λi, r)) = >} =

∧
i∈I

TI(λi).

Finally, for α ∈ L⊥ and λ ∈ LX , we have

TI(α¯ λ) =
∨
{r ∈ L | S(α¯ λ, I(α¯ λ, r)) = >}

≥
∨
{r ∈ L | S(α¯ λ, α¯ I(λ, r)) = >}

≥
∨
{r ∈ L | S(λ, I(λ, r)) = >} = TI(λ).

Hence, TI is an enriched L-fuzzy topology on X.
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Theorem 3.3. (1) If (X, I) is an L-fuzzy interior space, then ITI ≤ I.
(2) If (X, T ) is an L-fuzzy topological space, then TIT ≥ T .

Proof. (1) By Lemma 2.4(7), we have

ITI(λ, r) =
∨
µ

{µ¯ S(µ, λ) | TI(µ) ≥ r}

=
∨
µ

{µ¯ S(µ, λ)¯ S(λ, I(λ, r)) | TI(µ) ≥ r}

≤
∨
µ

{µ¯ S(µ, I(λ, r)) | TI(µ) ≥ r} ≤ I(λ, r).

(2) Let T (λ) ≥ r. Then, IT (λ, r) = λ. Thus, TIT (λ) ≥ r. Hence, TIT ≥ T .

Theorem 3.4. Let (X, TX) and (Y, TY ) be two L-fuzzy topological spaces. If
φ : (X, TX) → (Y, TY ) is an LF -continuous map, then φ : (X, ITX

) → (Y, ITY
) is

an I-map.

Proof. By Lemma 2.5 and Definition 2.6, we have

φ←(ITY
(λ, r)) = φ←

( ∨
µ

{µ¯ S(µ, λ) | TY (µ) ≥ r})

=
∨

φ←(µ)

{φ←(µ)¯ S(µ, λ) | TY (µ) ≥ r}

≤
∨

φ←(µ)

{φ←(µ)¯ S(φ←(µ), φ←(λ)) | TX(φ←(µ)) ≥ r}

≤
∨
ρ

{ρ¯ S(ρ, φ←(λ)) | TX(ρ) ≥ r} = ITX
(φ←(λ), r).

Theorem 3.5. Let (X, IX) and (Y, IY ) be two L-fuzzy interior spaces. If φ :
(X, IX) → (Y, IY ) is an I-map, then φ : (X, TIX

) → (Y, TIY
) is LF -continuous.

Proof. From Theorem 3.4 and Lemma 2.5, we have

S(φ←(λ), IX(φ←(λ), r)) ≥ S(φ←(λ), φ←(IY (λ, r))) ≥ S(λ, IY (λ, r)).

So, TIX
(φ←(λ)) ≥ TIY

(λ).

4 L-fuzzy Closure Space Induced by L-fuzzy Co-

topological Space

Theorem 4.1. Let (X,F) be an L-fuzzy co-topological space. Define the mapping
CF : LX × L⊥ → LX by

CF(λ, r)(x) =
∧

F(µ)≥r

(
S(λ, µ) → µ(x)

)
.
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Then we have the following properties.

(1) (X, CF) is an L-fuzzy closure space,
(2) If (X,F) is enriched, then (X, CF) is a topological L-fuzzy closure space,
(3) C∗F(λ∗, r) = IT (λ, r),
(4) CF(λ, r) ≤ ∧

F(µ)≥r{µ | λ ≤ µ},
(5) If (X,F) is enriched, CF(λ, r) =

∧
F(µ)≥r{µ | λ ≤ µ}.

Proof. (1) (C1) By Lemma 2.4(7), we have

CF(⊥X , r)(x) =
∧

F(µ)≥r

(
S(⊥X , µ) → µ(x)

) ≥ ⊥X(x) = ⊥.

(C2) By Lemma 2.2(11), we have

S(λ, CF(λ, r)) =
∧
x∈X

(
λ(x) → CF(λ, r)(x)

)

=
∧
x∈X

(λ(x) →
∧

F(µ)≥r

(
S(λ, µ) → µ(x))

)

=
∧
x∈X

∧

F(µ)≥r

(
λ(x) → ((

∧
x∈X

λ(x) → µ(x)) → µ(x))
)

≥
∧
x∈X

∧

F(µ)≥r

(
λ(x) → ((λ(x) → µ(x)) → µ(x))

)

=
∧
x∈X

∧

F(µ)≥r

(
(λ(x) → µ(x)) → (λ(x) → µ(x))

)
= >.

(C3) By Lemma 2.2(10), we have

S(CF(λ, r), CF(ρ, r)) =
∧
x∈X

(CF(λ, r)(x) → CF(ρ, r)(x)
)

=
∧
x∈X

(
(

∧

F(µ)≥r

S(λ, µ) → µ(x)) → (
∧

F(µ)≥r

S(ρ, µ) → µ(x))
)

≥
∧
x∈X

∧

F(µ)≥r

(
(S(λ, µ) → µ(x)) → (S(ρ, µ) → µ(x))

)

≥
∧

F(µ)≥r

(
S(ρ, µ) → S(λ, µ)

) ≥ S(λ, ρ).

(C4) It follows from the definition of CF .

(C5) By Lemma 2.4(5) and Lemma 2.2(15), we have
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CF(λ, r)(x)⊕ CF(ρ, s)(x) =
( ∧

F(µ1)≥r

S(λ, µ1) → µ1(x)
)⊕ ( ∧

F(µ2)≥s

S(ρ, µ2) → µ2(x)
)

=
∧

F(µ1)≥r

∧

F(µ2)≥s

(
(S(λ, µ1) → µ1(x))⊕ (S(ρ, µ2) → µ2(x))

)

≥
∧

F(µ1⊕µ2)≥r¯s

(
(S(λ, µ1)¯ S(ρ, µ2)) → (µ1 ⊕ µ2)(x)

)

≥
∧

F(µ1⊕µ2)≥r¯s

(
S(λ⊕ ρ, µ1 ⊕ µ2) → (µ1 ⊕ µ2)(x)

)

= CF(λ⊕ ρ, r ¯ s)(x).

(2) Since F is enriched, then F(CF(λ, r) ≥ r. Thus,

CF(CF(λ, r), r)(x) =
∧

F(µ)≥r

(
S(CF(λ, r), µ) → µ(x)

)

≤
∧

F(CF (λ,r))≥r

(
S(CF(λ, r), CF(µ, r)) → CF(λ, r)(x)

)

= CF(λ, r)(x).

(3)

C∗F(λ∗, r) =
{ ∧

F(µ∗)≥r

(
S(λ∗, µ∗) → µ∗

)}∗

=
∨

F(µ∗)≥r

(
S(λ∗, µ∗)¯ µ

)
=

∨

T (µ)≥r

µ¯ S(µ, λ) = IT (λ, r).

(4) If µ ≤ λ, then S(λ, µ) = > and S(λ, µ) → µ ≤ µ. Thus,

∧

F(µ)≥r

(
S(λ, µ) → µ

) ≤
∧

F(µ)≥r

{µ | λ ≤ µ}.

(5) For any F(µ) ≥ r, F(
S(λ, µ) → µ

) ≥ F(µ), i.e., F(
S(λ, µ) → µ

) ≥ r,
because F is enriched. Thus,

∧

F(µ)≥r

(
S(λ, µ) → µ

) ≥
∧

F(µ)≥r

{µ | λ ≤ µ}.

Theorem 4.2. If C : LX ×L⊥ is an L-fuzzy closure operator. Define the mapping
FC : LX → L by

FC(λ) =
∨
{r ∈ L | S(C(λ, r), λ) = >}.

Then, FC is an enriched L-fuzzy co-topology on X.



Journal of New Theory 12 (2016) 60-74 70

Proof. (LF1) FC(>X) =
∨{r ∈ L | S(C(>X , r),>X) = >} by (C2), and

FC(⊥X) =
∨{r ∈ L | S(C(⊥X , r),⊥X) = >} by (C1).

(LF2) By Lemma 2.4(5) and (C4), we have

S(C(λ1, r), λ1)¯ S(C(λ2, r), λ2) ≤ S(C(λ1, r)⊕ C(λ2, r), λ1 ⊕ λ2)

≤ S(C(λ1 ⊕ λ2, r), λ1 ⊕ λ2).

If S(C(λ1, r), λ1) = > and S(C(λ2, r), λ2) = >, then
S(C(λ1 ⊕ λ2, r), λ1 ⊕ λ2) = >. Thus, FC(λ1 ⊕ λ2) ≥ FC(λ1)¯FC(λ2).

(LF3) For a family of {λi | i ∈ I} ⊆ LX , we have

FC(
∧
i∈I

λi) =
∨
{r ∈ L | S(C(

∧
i∈I

λi, r),
∧
i∈I

λi) = >}

≤
∨
i∈I

∨
{r ∈ L | S(

∧
i∈I

C(λi, r), λi) = >}

≤
∨
i∈I

∨
{r ∈ L | S(C(λi, r), λi) = >} =

∨
i∈I

FC(λi).

Hence, FC is an L-fuzzy co-topology on X. By Lemma 2.4(3), (6), we have

FC(α → λ) =
∨
{r ∈ L | S(C(α → λ, r), α → λ) = >}

=
∨
{r ∈ L | S(α¯ C(α → λ, r), λ) = >}

≥
∨
{r ∈ L | S(C(α¯ (α → λ), r), λ) = >}

≥
∨
{r ∈ L | S(C(λ, r), λ) = >} = FC(λ).

Theorem 4.3. Let (X, CF) be an L-fuzzy closure space, then CFC ≥ C.

Proof. By Lemma 2.4(7), we have

CFC(λ, r) =
∧

FC(µ)≥r

(
S(λ, µ) → µ

)
=

∧

FC(µ)≥r

(
(S(C(λ, r), λ)¯ S(λ, µ)) → µ

)

≥
∧

FC(µ)≥r

(
S(C(λ, r), µ) → µ

) ≥ C(λ, r).

Theorem 4.4. Let (X,FX) and (Y,FY ) be two L-fuzzy co-topological spaces. If
φ : (X,FX) → (Y,FY ) is an LF -continuous map, then φ : (X, CFX

) → (Y, CFY
) is

a C-map.

Proof. By Lemma 2.11, we have

φ←(CFY
(λ, r)) = φ←

( ∧

FY (µ)≥r

(S(λ, µ) → µ)
)

=
∧

FY (µ)≥r

(S(λ, µ) → φ←(µ))

≥
∧

FX(φ←(µ))≥r

(
S(φ←(λ), φ←(µ)) → φ←(µ)

)
= CFX

(φ←(λ), r).
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Theorem 4.5. Let (X, CX) and (Y, CY ) be two L-fuzzy closure spaces. If φ :
(X, CX) → (Y, CY ) is a C-map, then φ : (X,FCX

) → (Y,FCY
) is LF -continuous.

Proof. From Theorem 4.3, we have

FCX
(φ←(λ)) =

∨
{r ∈ L | S(CX(φ←(λ), r), φ←(λ)) = >}

≥
∨
{r ∈ L | S(φ←(CY (λ, r)), φ←(λ)) = >}

=
∨
{r ∈ L |

∧
x∈X

(CY (λ, r)(φ(x)) → λ(φ(x))
)

= >}

≥
∨
{r ∈ L |

∧
y∈Y

(CY (λ, r)(y) → λ(y)
)

= >}

=
∨
{r ∈ L | S(CY (λ, r), λ) = >} = FCY

(λ).

Example 4.6. Let (L = [0, 1],¯,→, ∗) be a complete residuated lattice defined as

x¯ y = (x + y − 1) ∨ 0, x → y = (1− x + y) ∧ 1, x∗ = 1− x.

Let X = {x, y, z} be a set and let µ ∈ [0, 1]X be a fuzzy set as follow

µ(x) = 0.5, µ(y) = 0.3, µ(z) = 0.6.

We define the [0, 1]-fuzzy topology T : [0, 1]X → [0, 1] as follows

T (λ) =





1, if λ = ⊥X or >X ,
0.3, if λ = µ¯ µ,
0.6, if λ = µ,
0, otherwise.

Also, we define the [0, 1]-fuzzy co-topology F : [0, 1]X → [0, 1] as follows

F(λ) =





1, if λ = ⊥X or >X ,
0.2, if λ = µ⊕ µ,
0.6, if λ = µ,
0, otherwise.

(1) By Theorem 3.1, we have IT : [0, 1]X×(0, 1] → [0, 1]X as a [0, 1]-fuzzy interior
space as follows

IT (λ, r) =





(
∧

λ(x)), if r > 0.6,
(
∧

λ(x)) ∨ (µ¯ S(µ, λ)), if 0.3 < r ≤ 0.6,
(
∧

λ(x)) ∨ (µ¯ S(µ, λ)), if 0 < r ≤ 0.3,
∨(µ¯ µ¯ S(µ¯ µ, λ)).

For λ = (0.1, 0, 2, 0, 3), we have

IT (λ, 0.5) = (
∧

λ(x)) ∨ (µ¯ S(µ, λ)) = (0.1, 0.1, 0.2).
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Since IT ((0.1, 0.1, 0.2), r) = (0.1, 0.1, 0.2) for 0 < r ≤ 0.6, then we have

T (IT (0.1, 0.1, 0.2)) = 0.6.

(2) By Theorem 4.1, we have CF : [0, 1]X × (0, 1] → [0, 1]X as a [0, 1]-fuzzy
closure space as follows

CF(λ, r) =





∨
x∈X λ(x), if r > 0.6,

(
∨

λ(x)) ∧ (S(λ, µ) → µ), if 0.3 < r ≤ 0.6,
(
∨

λ(x)) ∧ (S(λ, µ) → µ), if 0 < r ≤ 0.3,
∧(S(λ, µ⊕ µ) → µ⊕ µ),

because S(λ, 0) → 0 =
∧

x∈X(λ∗(x)) → 0 =
∨

x∈X λ(x).

For λ = (0.7, 0, 6, 0, 8), CF(λ, 0.5) = (
∨

λ(x)) ∧ (S(λ, µ) → µ) = (0.8, 0.8, 0.9).
Since (0.9, 0.8, 0.9) = CF(CF(λ, 0.5), 0.5) 6= CF(λ, 0.5) = (0.8, 0.8, 0.9).

5 Conclusion

In this paper, we managed to deduce a new form of an L-fuzzy interior space (L-fuzzy
closure space) through an L-fuzzy topological space (L-fuzzy co-topological space)
and vise versa in a complete residuated lattice. We gave an example on [0,1] interval
and finally we proved that the continuity property is compatible with the introduced
spaces.
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Abstract − The concepts of exterior and boundary in multiset topological space are introduced. We
further established few relationships between the concepts of boundary, closure, exterior and interior
of an M - set. These concepts have been pigeonholed by other existing notions viz., open sets, closed
sets, clopen sets and limit points. The necessary and sufficient condition for a multiset to have an
empty exterior is also discussed.
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1 Introduction

The theory of sets is indispensable to the world of mathematics. But in set theory where repetitions
of objects are not allowed it often become difficult to complex systems. If one considers those complex
systems where repetitions of objects become certainly inevitable, the set theoretical concepts fails and
thus one need more sophisticated tools to handle such situations. This led to the initiation of multiset
(M-set) theory by Blizard [1] in 1989 as a generalization of set theory. Multiset theory was further
studied by Dedekind [3] by considering each element in the range of a function to have a multiplicity
equal to the number of elements in the domain that are mapped to it. The theory of multisets have
been studied by many other authors in different senses [8], [10], [13], [16], [17], [18] and [24].

Since its inception M-set theory have been receiving considerable attention from researchers and
wide application of the same can be found in literature [[17],[18], [23] etc ]. Algebraic structures for
multiset space have been constructed by Ibrahim et al. in [11]. In [15], use of multisets in colorings
of graphs have been discussed by Okamota et al. Application of M-set theory in decision making can
be seen in [23]. Syropoulos [20], presented a categorical approach to multisets along with partially
ordered multisets. Venkateswaran [22] found a large new class of multisets Wilf equivalent pairs which

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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is claimed to be the most general multiset Wilf equivalence result to date. In 2012, Girish and John
[7] introduced multiset topologies induced by multiset relations. The same authors further studied the
notions of open sets, closed sets, basis, sub basis, closure and interior, continuity and related properties
in M-topological spaces in [9]. Further the concepts of semi open, semi closed multisets were introduced
in [14], which were then used to study semicompactness in multiset topology.

In this paper, we introduce the concept of exterior and boundary in multiset topological space.
We begin with preliminary notions and definitions of multiset theory in Section 2. Section 3 which
contains main results forms the most fundamental part of the paper and it is followed by Section 4
which contains the concluding remarks.

2 Preliminaries

Below are some definitions and results as discussed in [7], which are required throughout the paper.

Definition 2.1. An M-set M drawn from the set X is represented by a function Count M or
CM : X −→ W , where W represents the set of whole numbers.

Here CM (x) is the number of occurrences of the element x in the M-set M . We represent the
M-set M drawn from the set X = {x1, ..., xn} as M = {m1/x1,m2/x2, ..., mn/xn} where mi is the
number of occurrences of the element xi, i = 1, 2, ..., n in the M-set M . Those elements which are not
included in the M-set have zero count.

Note: Since the count of each element in an M -set is always a non-negative integer so we have
taken W as the range space instead of N .

Example 2.2. Let X = {a, b, c}. Then M = {3/a, 5/b, 1/c} represents an M-set drawn from X.

Various operations on M-sets are defined as follows:
If M and N are two M-sets drawn from the set X, then

• M = N ⇔ CM (x) = CN (x) ∀x ∈ X.

• M ⊆ N ⇔ CM (x) ≤ CN (x) ∀x ∈ X.

• P = M ∪N ⇔ CP (x) = max{CM (x), CN (x)} ∀x ∈ X.

• P = M ∩N ⇔ CP (x) = min{CM (x), CN (x)} ∀x ∈ X.

• P = M ⊕N ⇔ CP (x) = CM (x) + CN (x) ∀x ∈ X.

• P = M ª N ⇔ CP (x) = max{CM (x) − CN (x), 0} ∀x ∈ X, where ⊕ and ª represents M-set
addition and M-set subtraction respectively.

Operations under collections of M-sets: Let [X]w be an M-space and {Mi | i ∈ I} be a collection
of M-sets drawn from [X]w. Then the following operations are defined

• ⋃
i∈I

Mi = {CMi(x)/x | CMi(x) = max{CMi(x) | x ∈ X}}.

• ⋂
i∈I

Mi = {CMi(x)/x | CMi(x) = min{CMi(x) | x ∈ X}}.

Definition 2.3. The support set of an M-set M , denoted by M∗ is a subset of X and is defined as
M∗ = {x ∈ X | CM (x) > 0}. M∗ is also called root set.

Definition 2.4. An M-set M is called an empty M-set if CM (x) = 0, ∀ x ∈ X.
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Definition 2.5. A domain X, is defined as the set of elements from which M-set are constructed. The
M-set space [X]w is the set of all M-sets whose elements are from X such that no element occurs more
than w times.

Remark 2.6. It is clear that the definition of the operation of M-set addition is not valid in the
context of M-set space [X]w, hence it was refined as
CM1⊕M2(x) = min{w, CM1(x) + CM2(x)} for all x ∈ X.

In multisets the number of occurrences of each element is allowed to be more than one which leads
to generalization of the definition of subsets in classical set theory. So, in contrast to classical set
theory, there are different types of subsets in multiset theory.

Definition 2.7. A subM-set N of M is said to be a whole subM-set if and only if CN (x) = CM (x) for
every x ∈ N .

Definition 2.8. A subM-set N of M is said to be a partial whole subM-set if and only if CN (x) = CM (x)
for some x ∈ N .

Definition 2.9. A subM-set N of M is said to be a full subM-set if and only if CN (x) ≤ CM (x) for
every x ∈ N .

As various subset relations exist in multiset theory, the concept of power M-set can also be gener-
alized as follows:

Definition 2.10. Let M ∈ [X]w be an M-set.

• The power M-set of M denoted by P(M) is defined as the set of all subM-sets of M.

• The power whole M-set of M denoted by PW(M) is defined as the set of all whole subM-sets
of M.

• The power full M-set of M denoted by PF(M) is defined as the set of all full subM-sets of M.

The power set of an M-set is the support set of the power M-set and is denoted by P∗(M).

Definition 2.11. Let M ∈ [X]w and τ ⊆ P∗(M). Then τ is called an M-topology if it satisfies the
following properties:

• The M-set M and the empty M-set φ are in τ .

• The M-set union of the elements of any subcollection of τ is in τ .

• The M-set intersection of the elements of any finite subcollection of τ is in τ .

The elements of τ are called open M-set and their complements are called closed M-sets.

Definition 2.12. Given a subM-set A of an M-topological space M in [X]w

• The interior of A is defined as the M-set union of all open M-sets contained in A and is denoted
by int(A) i.e., Cint(A)(x) = C∪G(x) where G is an open M-set and G ⊆ A.

• The closure of A is defined as the M-set intersection of all closed M-sets containing A and is
denoted by cl(A) i.e., Ccl(A)(x) = C∩K(x) where G is a closed M-set and A ⊆ K.

Definition 2.13. If M is an M-set, then the M-basis for an M-topology in [X]w is a collection B of
subM-sets of M such that

• For each x∈mM , for some m > 0 there is at least one M-basis element B ∈ B containing m/x.
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• If m/x belongs to the intersection of two M -basis elements P and Q, then ∃ an M- basis element
R containing m/x such that R ⊆ P ∩Q with CR(x) = CP∩Q(x) and CR(y) ≤ CP∩Q(y) ∀y 6= x.

Definition 2.14. Let (M, τ) be an M-topological space in [X]w and A is a subM-set of M. If k/x is
an element of M then k/x is a limt point of an M-set when every neighborhood of k/x intersects A in
some point (point with non-zero multiplicity) other than k/x itself.

Definition 2.15. Let (M, τ) be an M-topological space and N is a subM-set of M. The collection
τN = {N ∩U : U ∈ τ} is an M-topology on N, called the subspace M-topology. With this M-topology,
N is called a subspace of M.

Throughout the paper we shall follow the following definition of complement in an M- topological
space.

Definition 2.16. [14] The M-complement of a subM-set N in an M-topological space (M, τ) is denoted
and defined as N c = M ªN .

3 Exterior and Boundary of Multisets

The notions of interior and closure of an M-set in M-topology have been introduced and studied by
Jacob et al. [7]. The other topological structures like exterior and boundary have remain untouched.
In this section, we introduce the concepts of exterior and boundary in multiset topology.
Consider an M-topological space (M, τ) in [X]w.

Definition 3.1. The exterior of an M-set A in M is defined as the interior of M-complement of A and
is denoted by ext(A), i.e.,

Cext(A)(x)= Cint(Ac)(x) for all x ∈ X.

Example 3.2. Let X = {a, b},w = 3 and M = {2/a, 3/b}. We consider the topology τ = {φ,M, {1/a},
{2/b}, {1/a, 2/b}} on M . Then exterior of the M-set A = {1/a, 3/b} is {1/a}.

Remark 3.3. ext(A) is the largest open subM-set contained in Ac.

Definition 3.4. The boundary of an M-set A is the M-set of elements which does not belong to the
interior or the exterior of A. In other words, the boundary of an M-set A is the M-set of elements
which belongs to the intersection of closure of A and closure of M-complement of A. It is denoted by
bd(A).

Cbd(A)(x) = Ccl(A)∩cl(Ac)(x) for all x ∈ X.

Example 3.5. Let X = {a, b, c, d}, w = 5 and M = {5/a, 3/b, 5/c, 5/d}. We consider the topology
τ = {φ,M, {1/a, 2/b, 3/c, 2/d}, {1/a, 3/c}, {2/b, 5/d}, {1/a, 2/b, 3/c, 5/d}, {2/b, 2/d}} on M . Then
for any set A = {3/a, 3/b, 3/c, 3/d} we have cl(A) = M and cl(Ac) = {4/a, 1/b, 2/c, 3/d}. Hence,
bd(A) = {4/a, 1/b, 2/c, 3/d}.

Remark 3.6. bd(A) is the smallest closed subM-set containing Ac.

Remark 3.7. A and Ac both have same boundary.

Theorem 3.8. Let (M, τ) be an M-topological space. Then

(i) Cext(A∪B)(x) = Cext(A)∩ext(B)(x) ,∀x ∈ X.
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(ii) Cext(A∩B)(x) ≥ Cext(A)∪ext(B)(x) ,∀x ∈ X.

Proof. (i) From the definition of exterior,

Cext(A∪B)(x) = Cint(A∪B)c(x)
= Cint(Ac∩Bc)(x)
= Cint(Ac)∩int(Bc)(x)
= Cext(A)∩ext(B)(x), ∀x ∈ X.

(ii)

Cext(A∩B)(x) = Cint(A∩B)c(x)
= Cint(Ac∪Bc)(x)
≥ Cint(Ac)∪int(Bc)(x)
= Cext(A)∪ext(B)(x), ∀x ∈ X.

Theorem 3.9. Let (M, τ) be an M-topological space in [X]w. For any two M-sets A and B in M ,
the following results hold:

(i) C(bd(A))c(x) = Cint(A)∪int(Ac)(x) = Cint(A)∪ext(A)(x)

(ii) Ccl(A)(x) = Cint(A)∪bd(A)(x)

(iii) Cbd(A)(x) = Ccl(A)ªint(A)(x)

(iv) Cint(A)(x) = CAªbd(A)(x)

Proof.

(i)C(bd(A))c(x) = C(cl(A)∩cl(Ac))c(x)
= C(cl(A))c∪(cl(Ac))c(x)
= Cint(Ac)∪int(A)(x)
= Cint(A)∪ext(A)(x).

(ii)Cint(A)∪bd(A)(x) = Cint(A)∪(cl(A)∩cl(Ac))(x)
= C(int(A)∪(cl(A))∩(int(A)∪cl(Ac))(x)
= Ccl(A)∩(int(A)∪(int(A))c)(x)
= Ccl(A)(x).

(iii) We have Ccl(A)ªint(A)(x) = max{ Ccl(A)(x)−Cint(A)(x), 0}
• Case 1: max is 0

So we must have Ccl(A)(x) = Cint(A)(x).

Then Cbd(A)(x) = Cint(A)∩cl(Ac)(x) = Cint(A)∩(int(A))c(x) = Cφ(x).

• Case 2: max is Ccl(A)(x)−Cint(A)(x). Then

C bd(A)(x) = Ccl(A)∩cl(Ac)(x)
= Ccl(A)∩(int(A))c(x)
= Ccl(A)(x)− Cint(A)(x).
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(iv) We have CAªbd(A)(x) = max{ CA(x)−Cbd(A)(x), 0}
• Case 1: When max is 0 proof is trivial.

• Case 2: When max is CA(x)−Cbd(A)(x), we have

CAªbd(A)(x) = CA∩(bd(A))c(x)
= CA∩(int(A)∪ext(A))(x)
= CA∩(int(A)∪int(Ac))(x)
= C(A∩int(A))∪(A∩int(Ac))(x)
= Cint(A)∪φ(x)
= Cint(A)(x).

The following three theorems characterize the open and closed M-sets in terms of boundary.

Theorem 3.10. Let A be a subM-sets in an M-topology (M, τ). Then A is open if and only if

CA∩bd(A)(x) = 0, ∀x ∈ X.

Proof. Let A be an open M-set. Then Cint(A)(x) = CA(x) , ∀x ∈ X. Now,

CA∩bd(A)(x) = Cint(A)∩bd(A)(x) = 0.

Conversely, let A be an M-set such that CA∩bd(A)(x) = 0 ⇒ CA∩(cl(A)∩cl(Ac))(x) = 0 ⇒
CA∩cl(Ac)(x) = 0 ⇒ Ccl(Ac)(x) ≤ CAc(x) ⇒ Ac is closed M-set ⇒ A is open M-set.

Theorem 3.11. Let A be a subM-sets in an M-topology (M, τ). ThenA is closed if and only if

Cbd(A)(x) ≤ CA(x) , ∀x ∈ X.

Proof. Let A be a closed M-set. Then Ccl(A)(x) = CA(x) , ∀x ∈ X. Now,

Cbd(A)(x) = Ccl(A)∩cl(Ac)(x) ≤ Ccl(A)(x) = CA(x), ∀x ∈ X.

Conversely, let Cbd(A)(x) ≤ CA(x) ⇒ Cbd(A)∩Ac(x) = 0 ⇒ Cbd(Ac)∩Ac(x) = 0. Therefore, Ac

is an open M-set. Hence, A is a closed M-set.

Theorem 3.12. Let A be a subM-sets in an M-topology (M, τ). Then A is clopen if and only if

Cbd(A)(x) = 0.

Proof. Let Cbd(A)(x) = 0 ⇒ Ccl(A)∩cl(Ac)(x) = 0 ⇒ Ccl(A)(x) ≤ C(cl(Ac))c(x) ⇒
Ccl(A)(x) ≤ Cint(A)(x) ≤ CA(x) ⇒ A is a closed M-set.

Again, Ccl(A)∩cl(Ac)(x) = 0 ⇒Ccl(A)∩(int(A))c(x) ⇒CA∩(int(A))c(x) ⇒CA(x) ≤Cint(A)(x) ⇒
A is an open M-set.

Conversely, let A be both open and closed M-set.
Then Cbd(A)(x) = Ccl(A)∩cl(Ac)(x) = Ccl(A)∩(int(A))c(x) = CA∩Ac(x) = 0.

Theorem 3.13. For any two M-sets A and B in (M, τ) the followings hold true:

(i) Cbd(A∪B)(x) ≤ Cbd(A)∪bd(B)(x), ∀x ∈ X.
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Proof. Let A and B be any two M-sets in (M, τ). Then,

Cbd(A∪B)(x) = Ccl(A∪B)∩cl(A∪B)c(x)
= C[cl(A)∪cl(B)]∩[cl(Ac)∩cl(Bc)](x)
= C[(cl(A)∩cl(Ac))∩(cl(A)∩cl(Bc))]∪[(cl(B)∩cl(Ac))∩(cl(B)∩cl(Bc))](x)
= C[bd(A)∩(cl(A)∩cl(Bc))]∪[(cl(B)∩cl(Ac))∩bd(B)](x)
≤ Cbd(A)∪bd(B)(x).

(ii) Cbd(A∩B)(x) ≤ Cbd(A)∩bd(B)(x), ∀x ∈ X.

Proof. Let A and B be any two M-sets in (M, τ). Then,

Cbd(A∩B)(x) = Ccl(A∩B)∩cl(A∩B)c(x)
= C[cl(A)∩cl(B)]∩[cl(Ac)∪cl(Bc)](x)
= C[(cl(A)∩cl(Ac))∩(cl(A)∩cl(Bc))]∩[(cl(B)∩cl(Ac))∩(cl(B)∩cl(Bc))](x)
= C[bd(A)∩(cl(A)∩cl(Bc))]∩[(cl(B)∩cl(Ac))∩bd(B)](x)
≤ Cbd(A)∩bd(B)(x).

Theorem 3.14. In an M-topological space, for any M-set A bd(bd(A)) is a closed M-set.

Proof. Let bd(A) = B. Then

Ccl(bd(bd(A)))(x) = Ccl(bd(B))(x)
= Ccl(cl(B)∩cl(Bc))(x)
≤ Ccl(cl(B))∩cl(cl(Bc))(x)
= Ccl(B)∩cl(Bc)(x)
= Cbd(B)(x)
= Cbd(bd(A))(x).

i.e., closure of bd(bd(A)) is contained in itself and hence is a closed M-set.

Theorem 3.15. In an M-topological space, for any M-set A we have the following:

(i) Cbd(bd(A))(x) ≤ Cbd(A)(x), ∀x ∈ X.

Proof.

Cbd(bd(A))(x) = Cbd(cl(A)∩cl(Ac))(x)
= C[cl(cl(A)∩cl(Ac))]∩[cl(cl(A)∩cl(Ac))c](x)
≤ C[cl(A)∩cl(Ac)]∩[cl(int(Ac)∪int(A))](x)
= Cbd(A)∩cl(M)(x)
= Cbd(A)∩M (x)
= Cbd(A)(x).
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(ii) Cbd(bd(bd(A)))(x) = Cbd(bd(A))(x), ∀x ∈ X.

Proof.

Cbd(bd(bd(A)))(x) = Ccl(bd(bd(A)))∩cl(bd(bd(A)))c(x) (1)
= Cbd(bd(A))∩cl(bd(bd(A)))c(x). (2)

Now, C(bd(bd(A)))c(x) = C[cl(bd(A))∩cl(bd(A))c]c(x)
= C[bd(A)∩cl(bd(A))c]c(x)
= C(bd(A))c∪[cl(bd(A))c]c(x)

Taking closure on both sides and considering cl(bd(A))c = B, we have

Ccl(bd(bd(A)))c(x) = CB∪cl(Bc)(x)
≥ CB∪Bc(x)
= CM (x).

Now, substituting this in equation(1)

Cbd(bd(bd(A)))(x) = Ccl(bd(bd(A)))∩M (x)
= Cbd(bd(A))(x).

The following theorem decomposes boundary of an M-set.

Theorem 3.16. Cbd(A)(x) = Cint(bd(A))∪bd(bd(A))(x), ∀x ∈ X.

Proof. From theorem 3.12(i) and the property of interior i.e.,Cint(bd(A))(x) ≤ Cbd(A)(x), its obvious
that Cint(bd(A))∪bd(bd(A))(x) ≤ Cbd(A)(x), ∀x ∈ X.

Following is a theorem to characterize boundary of an M-set in terms of limit points of the set.

Theorem 3.17. An M-set A in an M-topology (M, τ) contains all its boundary points if and only if
it contains all its limit points.

Proof. Suppose A contains all its boundary points and if possible let k/x ∈ Ac be a limit point of
A. Since every neighborhood of k/x contains both a point of Ac and a point of A, we have k/x
∈ bd(A) ⊆ cl(A), which is a contradiction since A contains all its boundary points.
Conversely, let A contains all its limit points. If k/x ∈ A ª bd(A) and N is a neighborhood of k/x
then N contains a point of A which cannot be equal to k/x since k/x /∈ A. Therefore, k/x is a limit
point of A and is not contained in A. Hence, A contains all its boundary points.

Theorem 3.18. Let A be an M-set in an M-topology (M, τ). Then ext(A) is empty if and only if
every nonempty open M-set in M contains a point of A.
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Proof. Let every non empty open M - set in M, τ contains a point of A. Then, every k/x ∈ A ⊆ M is
a limit point if A. So,

k ≤ Ccl(A)(x) ⇒ CM(x) ≤ Ccl(A)(x) (3)

Now, to show that Cext(A)(x) = Cφ(x)
⇔ Cint(Ac)(x) = Cφ(x)
⇔ C(cl(A))c(x) = Cφ(x)
⇔ Ccl(A)(x) = CM (x)

But then we have,

Ccl(A)(x) ≤ CM (x), ∀x. (4)

So, (3) and (4) imply that ext(A) is empty.
Conversely, let Cext(A)(x) = Cφ(x). Let O be any open M -set in (M, τ). To show that O contains

a point of A.
Let k/x ∈ O. Since ext(A) is empty so no neighborhood of k/x is contained in Ac, i.e., all neighborhoods
of k/x are contained in A. Therefore we have, CO∩A(x) 6= Cφ(x).

4 Conclusion

The notions of exterior and boundary in context of multiset theory have been introduced and studied
in this paper.Some properties of the introduced notions are studied along with their characterization
and decomposition. Further, boundary is characterized in terms of open sets, closed sets, clopen sets.
Theorem 3.17 characterizes boundary in terms of limit points. The necessary and sufficient condition
for an M - set to have empty exterior is contemplated by Theorem 3.18.

Topological and topology-based data are useful for detecting and correcting digitizing errors which
occurs in spatial analysis. Keeping this in view, applications of the initiated concepts in those models
which are designed using multiset theory can be considered for future work.
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Abstaract − The concept of neutrosophic h-bi-ideals and neutrosophic h-quasi-ideals of a Γ-
hemiring are introduced and some of their related properties are investigated. The notions of
h-hemiregularity, h-intra-hemiregularity of a Γ-hemiring are studied and some of their characteri-
zations in terms of neutrosophic h-ideals are also obtained.
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1 Introduction

Semiring is a well known universal algebra. This is a generalization of an associa-
tive ring (R, +, .). If (R, +) becomes a semigroup instead of a group then (R, +, .)
reduces to a semiring. Semiring has been found very useful for solving problems in
different areas of applied mathematics and information sciences, since the structure
of a semiring provides an algebraic framework for modelling and studying the key
factors in these applied areas. Ideals of semiring play a central role in the structure
theory and useful for many purposes. However they do not in general coincide with
the usual ring ideals and for this reason, their use is somewhat limited in trying to
obtain analogues of ring theorems for semiring. To ammend this gap Henriksen [12]
defined a more restricted class of ideals, which are called k-ideals. A still more re-
stricted class of ideals in hemirings are given by Iizuka [14], which are called h-ideals.
LaTorre [18], investigated h-ideals and k-ideals in hemirings in an effort to obtain
analogues of ring Results for hemiring and to amend the gap between ring ideals
and semiring ideals. The theory of Γ-semiring was introduced by Rao [24]. These
concepts are extended by Dutta and Sardar [10].

The theory of fuzzy sets, proposed by Zadeh [29], has provided a useful math-
ematical tool for describing the behavior of the systems that are too complex or
illdefined to admit precise mathematical analysis by classical methods and tools.

**Edited by Said Broumi (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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The study of fuzzy algebraic structure has started by Rosenfeld [26]. Since then
many researchers developed this ideas.

As a generalization of fuzzy sets, the intuitionistic fuzzy set was introduced by
Atanassov [1] in 1986, where besides the degree of membership of each element
there was considered a degree of non-membership with (membership value + non-
membership value) ≤ 1.

There are also several well-known theories, for instances, rough sets, vague sets,
interval-valued sets etc. which can be considered as mathematical tools for dealing
with uncertainties. In 1995, inspired from the sport games (winning/tie/ defeat-
ing), votes, from (yes/NA/no), from decision making(making a decision/ hesitat-
ing/not making), from (accepted/pending/rejected) etc. and guided by the fact
that the law of excluded middle did not work any longer in the modern logics, F.
Smarandache [23] combined the non-standard analysis [8, 25] with a tri-component
logic/set/probability theory and with philosophy and introduced Neutrosophic set
which represents the main distinction between fuzzy and intuitionistic fuzzy logic/set.
Here he included the middle component. i.e. the neutral/ indeterminate/ un-
known part (besides the truth/membership and falsehood/non-membership com-
ponents that both appear in fuzzy logic/set) to distinguish between ’absolute mem-
bership and relative membership’ or ’absolute non-membership and relative non-
membership’(see, [16, 27]). There are also several authors, for example [3, 4, 5, 6, 7]
who have enriched the theory of neutrosophic sets.

Inspired from the above idea and motivated by the fact that ’semirings arise
naturally in combinatorics, mathematical modelling, graph theory, automata theory,
parallel computation system etc.’, in the paper, we have used that to study the h-
ideals, h-bi-ideals, h-quasi-ideals [13, 15, 19, 21, 22, 28, 30] of Γ-semirings [24] - a
generalization of semirings [11] and obtain some of its characterizations.

2 Preliminaries

We recall the following preliminaries for subsequent use.

Definition 2.1. [11] A hemiring [respectively semiring] is a non-empty set S
on which operations addition and multiplication have been defined such that the
following conditions are satisfied:

(i) (S, +) is a commutative monoid with identity 0.
(ii) (S, .) is a semigroup [respectively monoid with identity 1S].
(iii) Multiplication distributes over addition from either side.
(iv) 0s = 0 = s0 for all s ∈ S.
(v) 1S 6= 0

Definition 2.2. [21] Let S and Γ be two additive commutative semigroups with
zero. Then S is called a Γ−hemiring if there exists a mapping
S × Γ× S → S ( (a,α,b) 7→ aαb) satisfying the following conditions:

(i) (a + b)αc = aαc + bαc,
(ii) aα(b + c) = aαb + aαc,
(iii) a(α + β)b = aαb + aβb,
(iv) aα(bβc) = (aαb)βc.
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(v) 0Sαa = 0S = aα0S,
(vi)a0Γb = 0S = b0Γa

for all a, b, c ∈ S and for all α, β ∈ Γ.
For simplification we write 0 instead of 0S and 0Γ.

Throughout this paper, unless otherwise mentioned S denotes a Γ−hemiring and
χS be its characteristic function.

A subset A of a Γ-hemiring S is called a left(resp. right) ideal of S if A is closed
under addition and SΓA ⊆ A (resp. AΓS ⊆ A). A subsetA of a hemiring S is called
an ideal if it is both left and right ideal of S

A subset A of a Γ-hemiring S is called a quasi-ideal of S if A is closed under
addition and SΓA ∩ AΓS ⊆ A.

A subset A of a Γ-hemiring S is called a bi-ideal(resp. interior ideal) if A is closed
under addition and AΓSΓA ⊆ A(resp. SΓAΓS ⊆ A).
A left ideal A of S is called a left h-ideal if x, z ∈ S, a, b ∈ A and x + a + z = b + z
implies x ∈ A. A right h-ideal is defined analoguesly.

The h-closure A of A in S is defined as A = {x ∈ S | x + a + z = b +
z, for some a, b ∈ A and z ∈ S}.

Now if A is a left (right) ideal of S, then A is the smallest left (right) h-ideal
containing A.

A quasi-ideal(resp. bi-ideal) A of S is called an h-quasi-ideal(resp. h-bi-ideal) of
S if SΓA ∩ AΓS(resp. AΓSΓA) ⊆ A and x + a + z = b + z implies x ∈ A for all
x, z ∈ S and a, b ∈ A.

Definition 2.3. [29] A fuzzy subset of a nonempty set X is defined as a function
µ : X → [0, 1].

Definition 2.4. [23] A neutrosophic set A on the universe of discourse X is
defined as A = {< x, AT (x), AI(x), AF (x) >, x ∈ X}, where AT , AI , AF : X →
]−0, 1+[ and −0 ≤ AT (x) + AI(x) + AF (x) ≤ 3+ . From philosophical point of view,
the neutrosophic set takes the value from real standard or non-standard subsets
of ]−0, 1+[. But in real life application in scientific and engineering problems it is
difficult to use neutrosophic set with value from real standard or non-standard subset
of ]−0, 1+[. Hence we consider the neutrosophic set which takes the value from the
subset of [0, 1].

3 Neutrosophic h-ideals in Γ-hemiring

Using the above concepts, we now define neutrosophic left(right) h-ideal, neutro-
sophic h-bi-ideal, neutrosophic h-quasi-ideal and several operations such as compo-
sition, cartesian product, intersection etc. on them and use these to study some of
their related properties. At the time of investigation we may see that the obtained
results are parallel to that of Γ-hemiring and by routine verification we can proof
them. So, after giving one introductory proof, I omit all the proof.

Definition 3.1. Let µ = (µT , µI , µF ) be a non empty neutrosophic subset of a
Γ-semiring S (i.e. anyone of µT (x), µI(x) or µF (x) not equal to zero for some x ∈ S).
Then µ is called a neutrosophic left ideal of S if
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(i) µT (x + y) ≥ min{µT (x), µT (y)}, µT (xγy) ≥ µT (y)

(ii) µI(x + y) ≥ µI(x)+µI(y)
2

, µI(xγy) ≥ µI(y)

(iii) µF (x + y) ≤ max{µF (x), µF (y)}, µF (xγy) ≤ µF (y).

for all x, y ∈ S and γ ∈ Γ.

A neutrosophic left ideal is called neutrosophic left h-ideal if for x, a, b, z ∈ S
with x + a + z = b + z implies

(i) µT (x) ≥ min{µT (a), µT (b)},

(ii) µI(x) ≥ µI(a)+µI(b)
2

,

(iii) µF (x) ≤ max{µF (a), µF (b)}.
Similarly we can define neutrosophic right h-ideal of S.

Result 3.2. Intersection of a nonempty collection of neutrosophic left h-ideals is
a neutrosophic left h-ideal of S.

Proof. Let {µi : i ∈ I} be a non-empty family of neutrosophic left h-ideals of S and
x, y ∈ S and γ ∈ Γ. Then

( ∩
i∈I

µT
i )(x + y) = inf

i∈I
µT

i (x + y) ≥ inf
i∈I
{min{µT

i (x), µT
i (y)}}

= min{inf
i∈I

µT
i (x), inf

i∈I
µT

i (y)}
= min{( ∩

i∈I
µT

i )(x), ( ∩
i∈I

µT
i )(y)}

( ∩
i∈I

µI
i )(x + y) = inf

i∈I
µI

i (x + y) ≥ inf
i∈I

µI
i (x)+µI

i (y)

2

=
inf
i∈I

µI
i (x)+inf

i∈I
µI

i (y)

2

=
∩

i∈I
µI

i (x)+ ∩
i∈I

µI
i (y)

2

( ∩
i∈I

µF
i )(x + y) = sup

i∈I
µF

i (x + y) ≤ sup
i∈I

{max{µF
i (x), µF

i (y)}}
= max{sup

i∈I
µF

i (x), sup
i∈I

µF
i (y)}

= max{( ∩
i∈I

µF
i )(x), ( ∩

i∈I
µF

i )(y)}

( ∩
i∈I

µT
i )(xγy) = inf

i∈I
µT

i (xγy) ≥ inf
i∈I

µT
i (y) = ( ∩

i∈I
µT

i )(y).

( ∩
i∈I

µI
i )(xγy) = inf

i∈I
µI

i (xγy) ≥ inf
i∈I

µI
i (y) = ( ∩

i∈I
µI

i )(y).

( ∩
i∈I

µF
i )(xγy) = sup

i∈I
µF

i (xγy) ≤ sup
i∈I

µF
i (y) = ( ∩

i∈I
µF

i )(y).

Hence ∩
i∈I

µi is a neutrosophic left ideal of S.

Now suppose x, a, b, z ∈ S with x + a + z = b + z. Then

( ∩
i∈I

µT
i )(x) = inf

i∈I
µT

i (x) ≥ inf
i∈I

min{µT
i (a), µT

i (b)}
= min{inf

i∈I
µT

i (a), inf
i∈I

µT
i (b)} = min{( ∩

i∈I
µT

i )(a), ( ∩
i∈I

µT
i )(a)}.
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( ∩
i∈I

µI
i )(x) = inf

i∈I
µI

i (x) ≥ inf
i∈I

µI
i (y)+µI

i (b)

2

=
inf
i∈I

µI
i (y)+inf

i∈I
µI

i (b)

2
=

∩
i∈I

µI
i (y)+ ∩

i∈I
µI

i (b)

2
.

( ∩
i∈I

µF
i )(x) = sup

i∈I
µF

i (x) ≤ sup
i∈I

max{µF
i (a), µF

i (b}
= max{sup

i∈I
µF

i (a), sup
i∈I

µF
i (b)} = max{( ∩

i∈I
µF

i )(a), ( ∩
i∈I

µF
i )(a)}.

Therefore ∩
i∈I

µi is a neutrosophic left h-ideal of S.

Definition 3.3. Let µ and θ be two neutrosophic sets of a Γ-hemiring S. Now
h-product of µ and θ denoted by µohθ and defined as
µT ohθ

T (x) = sup[min
i
{µT (ai), µ

T (ci), θ
T (bi),

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

θT (di)}}]

= 0, if x cannot be expressed as above

µIohθ
I(x) = sup[min

i
{1

4
[µI(ai) + µI(ci) + θI(bi)+

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

θI(di)]}}]

= 0, if x cannot be expressed as above

µF ohθ
F (x) = inf[max

i
{[µF (ai), µ

F (ci), θ
F (bi),

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

θF (di)]}}]

= 0, if x cannot be expressed as above

where x, z, ai, bi, ci, di ∈ S and γi, δi ∈ Γ, for i = 1, ..., n.

Result 3.4. If µ and ν be two neutrosophic left h-ideals of S then µoν is also a
neutrosophic left h-ideal of S.

Result 3.5. Let µ1, µ2 be two neutrosophic h-ideal of a Γ-hemiring S. Then
µ1ohµ2 ⊆ µ1 ∩ µ2 ⊆ µ1, µ2.

Result 3.6. Let S be a Γ-hemiring and A,B ⊆ S. Then we have

(i) A ⊆ B if and only if χA ⊆ χB.
(ii) χA ∩ χB = χA∩B

(iii) χAohχB = χAΓB

Definition 3.7. Let µ and ν be two neutrosophic subsets of S. The cartesian
product of µ and ν is defined by

(µT × νT )(x, y) = min{µT (x), νT (y)}

(µI × νI)(x, y) =
µI(x) + νI(y)

2

(µF × νF )(x, y) = max{µF (x), νF (y)}
for all x, y ∈ S.
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Result 3.8. Let µ and ν be two neutrosophic left h-ideals of S. Then µ× ν is a
neutrosophic left h-ideal of S × S.

Definition 3.9. A neutrosophic subset µ of a Γ-hemiring S is called neutrosophic
h-bi-ideal if for all x, y, z, a, b ∈ S and α, β ∈ Γ we have

(i) µT (x + y) ≥ min{µT (x), µT (y)}
(ii) µT (xαy) ≥ min{µT (x), µT (y)}
(iii) µT (xαyβz) ≥ min{µT (x), µT (z)}
(iv) x + a + z = b + z ⇒ µT (x) ≥ min{µT (a), µT (b)}

(v) µI(x + y) ≥ µI(x)+µI(y)
2

(vi) µI(xαy) ≥ µI(x)+µI(y)
2

(vii) µI(xαyβz) ≥ µI(x)+µI(z)
2

(viii) x + a + z = b + z ⇒ µT (x) ≥ µI(a)+µI(b)
2

(ix) µF (x + y) ≤ max{µF (x), µF (y)}
(x) µF (xαy) ≤ max{µF (x), µF (y)}
(xi) µF (xαyβz) ≤ max{µF (x), µF (z)}
(xii) x + a + z = b + z ⇒ µF (x) ≤ max{µF (a), µF (b)}

Definition 3.10. A neutrosophic subset µ of a Γ-hemiring S is called neutrosophic
h-quasi-ideal if for all x, y, z, a, b ∈ S we have

(i) µT (x + y) ≥ min{µT (x), µT (y)}

(ii) µI(x + y) ≥ µI(x)+µI(y)
2

(iii) µF (x + y) ≤ max{µF (x), µF (y)}
(iv) (µT ohχ

T
S ) ∩ (χT

Sohµ
T ) ⊆ µT

(v) (µIohχ
I
S) ∩ (χI

Sohµ
I) ⊆ µI

(vi) (µF ohχ
F
S ) ∩ (χF

S ohµ
F ) ⊇ µT

(vii) x + a + z = b + z ⇒ µT (x) ≥ min{µT (a), µT (b)}

(viii) x + a + z = b + z ⇒ µT (x) ≥ µI(a)+µI(b)
2

(ix) x + a + z = b + z ⇒ µF (x) ≤ max{µF (a), µF (b)}
For any neutrosophic subset in a set X and any t ∈ [0, 1], define level subsets of

µ by {µT
t := {x ∈ S : µT (x) ≥ t, t ∈ [0, 1]}, µI

t := {x ∈ S : µI(x) ≥ t, t ∈ [0, 1]}
and µF

t := {x ∈ S : µF (x) ≤ t, t ∈ [0, 1]}} . In [17], Kondo et al. introduced
the Transfer Principle in fuzzy set theory, from which a neutrosophic set can be
characterized by its level subsets. For any algebraic system U = (X, F ), where F
is a family of operations defined on X, the Transfer Principle can be formulated as
follows:
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Result 3.11. A fuzzy subset defined on U has the property P if and only if all
non-empty level subset µt have the property P .

As a direct consequence of the above Result, the following two results can be
obtained.

Result 3.12. Let S be a Γ-hemiring. Then the following conditions hold:

(i) µ is a neutrosophic left(resp. right) h-ideal of S if and only if all non-empty
level subsets µt are left (resp. right) h-ideals of S.

(ii) µ is a neutrosophic h-bi-ideal of S if and only if all non-empty level subsets µt

are h-bi-ideals of S.

(iii) µ is a neutrosophic h-quasi-ideal of S if and only if all non-empty level subsets
µt are h-quasi-ideals of S.

Result 3.13. Let S be a Γ-hemiring and A ⊆ S. Then the following conditions
hold:

(i) A is a left(resp. right) h-ideal of S if and only if χA is a neutrosophic left (resp.
right) h-ideal of S.

(ii) A is an h-bi-ideal of S if and only if χA is a neutrosophic h-bi-ideal of S.

(iii) A is an h-quasi-ideal of S if and only if χA is a neutrosophic h-quasi-ideal of
S.

Result 3.14. Any neutrosophic h-quasi-ideal of S is a neutrosophic h-bi-ideal of
S.

Definition 3.15. [19] A Γ-hemiring S is said to be h-hemiregular if for each
x ∈ S, there exist a, b ∈ S and α, β, γ, δ ∈ Γ such that x + xαaβx + z = xγbδx + z.

Result 3.16. A Γ-hemiring S is h-hemiregular if and only if for any neutrosophic
right h-ideal µ and any neutrosophic left h-ideal ν of S we have µohν = µ ∩ ν.

Now we obtain the following characterizations of h-hemiregular Γ-hemirings.
Note that for any two neutrosophic subsets µ and ν of S, µ v ν implies µT ⊆ νT ,
µI ⊆ νI and µF ⊇ νF .

Result 3.17. Let S be a Γ-hemiring. Then the following conditions are equivalent.
(i) S is h-hemireglar.
(ii) µ v µohχSohµ for every neutrosophic h-bi-ideal µ of S.
(iii) µ v µohχSohµ for every neutrosophic h-quasi-ideal µ of S.

Result 3.18. Let S is a Γ-hemiring. Then the following conditions are equivalent.
(i) S is h-hemiregular.
(ii) µ ∩ ν v µohνohµ for every neutrosophic h-bi-ideal µ and every neutrosophic
h-ideal ν of S.
(iii) µ ∩ ν v µohνohµ for every neutrosophic h-quasi-ideal µ and every neutrosophic
h-ideal ν of S.
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Result 3.19. Let S is a Γ-hemiring. Then the following conditions are equivalent.

(i) S is h-hemiregular.
(ii) µ ∩ ν v µohν for every neutrosophic h-bi-ideal µ and every neutrosophic left
h-ideal ν of S.
(iii) µ∩ ν v µohν for every neutrosophic h-quasi-ideal µ and every neutrosophic left
h-ideal ν of S.
(iv) µ ∩ ν v µohν for every neutrosophic right h-ideal µ and every neutrosophic
h-bi-ideal ν of S.
(v) µ ∩ ν v µohν for every neutrosophic right h-ideal µ and every neutrosophic h-
quasi-ideal ν of S.
(vi) µ∩ν∩ω v µohνohω for every neutrosophic right h-ideal µ, for every neutrosophic
h-bi-ideal ν and for every neutrosophic left h-ideal ω of S.
(vii) µ∩ν∩ω v µohνohω for every neutrosophic right h-ideal µ, for every neutrosophic
h-quasi-ideal ν and for every neutrosophic left h-ideal ω of S.

Result 3.20. If a Γ-hemiring S is h-hemiregular then any neutrosophic right h-
ideal µ and neutrosophic left h-ideal ν are idempotent and µohν is an quasi-ideal of
S.

Definition 3.21. A Γ-hemiring S is said to be h-intra-hemiregular if for each
x ∈ S, there exist z, ai, a

′
i, bi, b

′
i ∈S, and αi, βi, γi, δi, η ∈ Γ, i∈ N, the set of natural

numbers, such that x +
n∑

i=1

aiαixηxβia
′
i + z =

n∑
i=1

biγixηxδb
′
i + z.

Result 3.22. Let S be a Γ-hemiring. Then S is h-intra-hemiregular if and only
if µ ∩ ν v µohν for every neutrosophic left h-ideal µ and every neutrosophic right
h-ideal ν of S.

Result 3.23. Let S be a Γ-hemiring and x ∈ S. Then S is h-intra-hemiregular if
and only if µ(x) = µ(xγx), for all neutrosophic h-ideal µ of S and for all x ∈ S and
γ ∈ Γ.

Result 3.24. Let S be a Γ-hemiring. Then the following conditions are equivalent.

(i) S is both h-hemiregular and h-intra-hemiregular.
(ii) µ = µohµ for every h-bi-ideal µ of S.
(iii) µ = µohµ for every h-quasi-ideal µ of S.

Result 3.25. Let S be a Γ-hemiring. Then the following conditions are equivalent.

(i) S is both h-hemiregular and h-intra-hemiregular.
(ii) µ ∩ ν v µohν for all neutrosophic h-bi-ideals µ and ν of S.
(iii) µ ∩ ν v µohν for every neutrosophic h-bi-ideals µ and every neutrosophic h-
quasi-ideal ν of S.
(iv) µ ∩ ν v µohν for every neutrosophic h-quasi-ideals µ and every neutrosophic
h-bi-ideal ν of S.
(v) µ ∩ ν v µohν for all neutrosophic h-quasi-ideals µ and ν of S.

Conclusion: Since I have studied the results in case of Γ-hemiring − a general
setting of hemiring, the obtained results are also true for hemiring along with some
parallel changes. In a similar way, neutrosophic k-ideals of Γ-semiring can be studied.
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Abstaract− In this study, we define a new boundedness concept different from existing definitions.
Also we give some theorems and results in topological groups. The new definition more general
than boundedness definition in topological vector spaces.

Keywords − Topological Groups, Boundedness.

1 Introduction

There exists some works with regards to boundedness of topological groups. Bruguera,
Tkachenko and Hejcman have presented another boundedness definitions in topolog-
ical groups [1], [2]. In 1991, Atkin gave the boundedness concept in uniform spaces
which are more general structures than topological groups [3]. Then Hernandez pre-
sented Pontryagin duality for topological abelian groups in [4]. If a set is absorbed
by every neighbourhood of 0 the set is called as a bounded set in a topological vector
space. That is, there exists a number ε > 0 for each neighbourhood U of 0 such that
tA ⊆ U for every |t| < ε. The operation of scalar multiplication tA is very important
in this definition. There isn’t exist this operation in groups so it cannot be applied
directly to the topological groups. We know that every topological vector space has
an additive topological group structure so the boundedness definition is also gen-
eralization of current available boundedness definition in topological vector spaces.
Therefore we present a kind of boundedness definition in topological groups so sim-
ilar to those in topological vector spaces. The new definition is not a generalization
of existing boundedness definitions for topological groups.

2 Preliminaries

Let G be an abstract group, A and B be two subsets of G. Then AB is the set of all
elements of xy such that x ∈ A and y ∈ B. The definition of A2 and Am = Am−1A

**Edited by Hakan Şimşek and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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is clear by taking B = A for some m ∈ N. Further, A−1 = {a−1 : a ∈ A}, A−m =
(A−1)

m
and A0 = {e} for the unit element e of G. Given x ∈ Am there exist some

a1, a2, ..., am ∈ A such that x = a1a2...am. If xm ∈ Am and e /∈ A then xn may not
be an element of Am, for n < m. Hence we define the set A≤m by x = a1a2...an

for m,n ∈ N, a1, a2, ..., an ∈ A and some n ≤ m. It is clear that Am ⊆ A≤m and
Am = A≤m whenever e is contained by A.

It is known as every topological vector space is an additive group, it is written
mU instead of Um. Then a set B is bounded if and only if there exists a positive
integer m depend on U for every symmetrical neighbourhood U such that B ⊆ U or
1
m

B ⊆ U . This is known as boundedness definition in topological vector spaces.
Now we mention that some definitions and propositions in topological groups.

Since a topological group has a local basis of symmetrical neighbourhood of the unit
element e, a connected topological group G is generated by a neighbourhood U of
e i.e. all elements of G is denoted by finite multiplication of elements belong to U
[5]. A set S is called as precompact set in a topological group if there exists a finite
set F for each neighbourhood U of e such that S ⊆ FU . We have known that if a
set is bounded then it is metrically bounded i.e. boundedness with respect to the
semimetric in a topological vector space. But opposite of this proposition is not
correct [6].

Let G be a group and p : G → R be a function. p is called an absolute value
function on G if satisfies the following properties for each x, y, a ∈ G

(i) p (x) ≥ 0,
(ii) p (e) = 0 and p (x−1) = p (x) ,
(iii) p (xy) ≤ p (x) + p (y) ,
(iv) If p (xn) → 0 then p (axna−1) → 0 for every sequence (xn).
Last condition is unnecessary for abelian groups. The equality d (x, y) = p (x−1y)

defines a semimetric generating group topology on G. d is called a left invariant
semimetric if d (ax, ay) = d (x, y) for every x, y, a ∈ G. The topology of a topological
group first countable comes from a left invariant semimetric [7].

Let G is a topological group and B ⊆ G. If the set B absorbs every bounded set
then B is called a bornivorous.

Let G is a topological group. If every bornivorous in G is a neighbourhood of e
then G is called bornological group [5].

3 Main Results

In this section, we will give some new definitions and results in topological groups.

Definition 3.1. Let G be a topological group and A ⊆ G. The set A is called as
absorbing set if there exist a finite set Fx ⊆ G and a number m ∈ N for every x ∈ G
such that x ∈ FxA

m.

Definition 3.2. Let G be a topological group and A ⊆ G. The set A is called as
a bounded set if the set is absorbed by every neighbourhood of the unit element e
of G i.e. there exist a finite set F and a number m ∈ N for every U ∈ Ne such that
A ⊆ FUm = ∪

x∈F
{xUm}.

Proposition 3.3. According to this (boundedness) definition, boundedness of a set
A in a topological group (X, +) is equivalent to boundedness of A in the topological
vector space X.
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Proof. Now we take a subset A is bounded in the topological vector space X. There
exists a number λ > 0 for every U ∈ N0 such that A ⊆ λU . Therefore we get
A ⊆ ([[λ]] + 1)U . If we select F = {0} and ([[λ]] + 1) = m then

A ⊆ ([[λ]] + 1)U = F + mU = F + Um

Thus the subset A is bounded in the topological group (X, +).
On the contrary, A ⊆ F + Um = F + mU . If we take F = {0} and m = λ then

A ⊆ λU .

Theorem 3.4. Every singleton is bounded in a topological group.

Proof. If we take F = {a} and m = 1 then {a} ⊂ {a}U = {aU}. This completes
the proof, easily.

Theorem 3.5. Union of two bounded sets is also bounded in a topological group.

Proof. Let A and B be two bounded subsets in a topological group X. There exists
a finite set F ⊆ X and a number m ∈ N for every U ∈ Ne such that

A ∪B ⊆ FUn = ∪
x∈F

{xUm}

We suppose that the above inclusion isn’t true. Thus A ∪ B isn’t covered by FUm

for every finite set F ⊆ X and every number m ∈ N. Then A isn’t covered by FUm

or B isn’t covered by FUm. This contradict with our hypothesis.

Corollary 3.6. Every subset of a bounded set is bounded in a topological group.

Corollary 3.7. Intersection of two bounded sets is bounded in a topological group.

Theorem 3.8. Every finite set is bounded in a topological group.

Proof. It is easily seen that union of finite number of bounded sets is bounded by
induction method since we know that every set is written by union of singletons.

Theorem 3.9. Every precompact set is bounded in a topological group.

Proof. Let G be a topological group, S be a precompact set in G, U be any neigh-
bourhood of e and V be an other neighbourhood of e such that V V ⊂ U . There
exists a finite set F such that S ⊂ FV by hypothesis then F is bounded. Thus there
exist a number n ∈ N and a finite set G such that F ⊂ GV n. Then

S ⊂ FV ⊂ GV nV ⊂ GV nV n = G(V V )n ⊂ GUn

i.e. S is a bounded set.

Corollary 3.10. Every compact set is bounded in a topological group.

Lemma 3.11. Let X be a topological group and x ∈ X. Then xDr (e) = Dr (x).

Proof. y ∈ xDr (e) ⇔ if and only if there exists a point a ∈ Dr (e) such that y = xa.
Thus

a ∈ Dr (e) ⇔ d(e, a) < r
⇔ d(e, y

x
) < r

⇔ d(e, x−1y) < r

and also since d(e, x−1y) = d(xe, xx−1y) = d(x, y) then y ∈ Dr(x).
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Lemma 3.12. Let X be a topological group and x ∈ X then xDr(e)
m ⊆ (xDr(e))

m.

Lemma 3.13. Let X be a topological group and x ∈ X then Dr(x)m ⊆ Drm (x).

Proof. If y ∈ Dr (x)m there exist a1, a2, ..., am ∈ Dr (x) such that y = a1a2...am.
Hence

d(y, x) = d(a1a2...am, x)
< d(x, a1) + d(x, a2) + ... + d(x, am)
< r + r + ... + r
= mr

Thus y ∈ Drm(x).

Theorem 3.14. Let G be a semimetric group and A ⊆ G be a bounded set then A
is a metrically bounded.

Proof. Let G be a semimetric group and A ⊆ G. A set A is bounded if and only if
there exists a number m ∈ N and a finite set F such that A ⊆ FDr (e)m. Thus

A ⊆ FDr (e)m ⇔ A ⊆ ∪
x∈F

{xDr (e)m} ⊆ Drm (x) .

This completes the proof.

Proposition 3.15. A set is absorbed by each member of a local basis of neighbour-
hoods of e if and only if this set is bounded.

Proof. Let B = {Uα : α ∈ I} be a basis of neighbourhoods of e in a topological group
G. It is easily seen that a subset A ⊆ G is absorbed for every neighbourhood Uα. On
the contrary, if every U ∈ Ne then Uα ⊆ U for every α ∈ I. The set A is absorbed
by Uα for α ∈ A if and only if there exists a finite set FUα and a number m ∈ N such
that A ⊆ FUαUm

α ⊆ FUαUm. Thus the set A is bounded.

Proposition 3.16. Every bounded subset of a topological group is contained by the

set
−
{e}.

Proof. Let G be a topological group and S be a bounded subset of G. Now we show

that S ⊆
−
{e}. We assume that x ∈

−
{e} is wrong. U ∩ {e} = ∅ for a neighbourhood

U ∈ Nx if and only if U ⊆ {e}c or {e} ⊆ U c. There exists a finite set F and m ∈ N
such that x ∈ S ⊆ FWm because S is bounded and x ∈ S for every W ∈ Ne.
There exists f ∈ F and w ∈ Wm such that x = fw. Then FWm ∈ Nx. That is
FWm ∩ {e} = ∪

f∈F
{fWm} ∩ {e} 6= ∅. This is a contradiction.

Theorem 3.17. A set B is bounded if and only if every countable subset of B is
bounded in a topological space.

Proof. It is obvious that every countable subset of this set is bounded since if a set
is bounded then every subset of this set is bounded.

On the contrary, we assume that every countable subset of B is bounded, but B
isn’t bounded. There exists a neighbourhood U of e such that B isn’t included by
FUm for every number m ∈ N and a finite set F . Now, we construct the sequence
{xm}∞m=1 such that

x1 ∈ B\FU, x2 ∈ B\FU2, ..., xi ∈ B\FU i, ....

Obviously the sequence {xm}∞m=1 isn’t absorbed by U i.e. {xm}∞m=1 ⊂ B isn’t
bounded. This contradict with our hypothesis.
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Now we give definitions of bounded mapping, bornological group and then we
prove some theorems connected with these concepts.

Definition 3.18. If a mappings is conserved bounded sets between topological
groups then this mapping is called as bounded mapping.

Lemma 3.19. Let f be any homomorphism and m ∈ N then {f−1 (V )}m ⊆ f−1(V m).

Proof. For all z ∈ f−1 (V )m there exist a1, a2, ..., am ∈ f−1 (V ) such that z =
a1a2...am.

f (z) = f (a1a2...am) = f (a1)f(a2)...f(am) and f (ai) ∈ V for all 1 ≤ i ≤ m.
f (z) ∈ V m then z ∈ f−1 (V m). Since f (S) ⊆ ∪

x∈F
{f (x) f ({f−1 (V m)})} and

{f−1 (V )}m ⊆ f−1 (V m) then f (S) ⊆ ∪
x∈F

{f (x) f (f−1 (V m))}. Thus

f (S) ⊆ ∪
x∈F

{f (x) V m} = f(F )V m

Theorem 3.20. Every continuous homomorphism between topological groups must
be bounded.

Proof. Let G and G
′
be two topological groups, f : G → G

′
be a homomorphism and

S ⊆ G be bounded. Also let e and e
′
be unit elements of G and G

′
, respectively. Since

S is bounded there exists a number m ∈ N and a finite set F for every neighbourhood
U of e such that S ⊆ FUm = ∪

x∈F
{xUm}.

xUm ∈ Nx because Um ∈ Ne. If we take V ∈ Nep then f−1 (V ) ∈ Ne and

S ⊆ F
{
f−1 (V )

}m
= ∪

x∈F

{
xf−1 (V )m}

then

f

(
∪

x∈F

{
xf−1 (V )m})

= ∪
x∈F

{
f (x) f

(
f−1 (V )m)}

.

Hence
f (S) ⊆ ∪

x∈F

{
f (x) f({f−1 (V )}m)

}

and
f(S) ⊆ ∪

x∈F
{f(x)V m} = f(F )V m.

Definition 3.21. Let G be a topological group and B ⊆ G. If the set B absorbs
every bounded set then B is called as a bornivorous.

Definition 3.22. Let G be a topological group. If every bornivorous in G is a
neighbourhood of e then G is called as a bornological group.

Theorem 3.23. Every bornivorous in a semimetric group G is a neighbourhood of
e.
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Proof. Let B be a bornivorous in G. We assume that B isn’t a neighbourhood of e.
In this case, the set Bn isn’t also a neighbourhood of e for every number n ∈ N .

The open sphere D 1
n

(e) = {x : d (x, e) < 1
n
} isn’t contained by B, for every

number n. So this sphere isn’t contained the sets Bn because they aren’t also neigh-
bourhood of e. Then {D 1

n
(e)}\Bn 6= φ for every number n. The sequence {xm}∞m=1

which is constructed the style that

x1 ∈ {D1(e)}\B, x2 ∈ {D 1
2
(e)}\B≤2, ...

isn’t absorbed by the set B. But the sequence is bounded since {xm}∞m=1 is ab-
sorbed by neighbourhood D1 (e) of e. This case is contrary to the fact that B is a
bornivorous.

Remark 3.24. Obviously every neighbourhood of e is a bornivorous. Also it is
understand that every semimetric group is a bornological group by above theorem.

Proposition 3.25. Let G and H be two topological groups, f : G → H be a
bounded homomorphism. If A ⊆ G is a bornivorous, then f(A) is also a bornivorous
in H.

Proof. Let we take y ∈ f (S). Then

y ∈ f (S) ⇒ f (x) ∈ f(S)
⇒ x ∈ S
⇒ x ∈ FAn

Thus f (S) ⊆ f (FAn) = f( ∪
x∈F

{xAn}) = f( ∪
x∈F

{x}))f(An). f (A) is a bornivorous

in H because f(F ) is a finite set.

Proposition 3.26. Let G and H be two topological groups, f : G → H be a
bounded homomorphism. If B ⊆ f (G) is a bornivorous in H, then f−1(B) is also a
bornivorous in G.

Theorem 3.27. Let G be a bornological group. In this case, every bounded homo-
morphism f which is defined from G into any topological group H is continuous.

Proof. Let U be a neighbourhood of e in H then the set U absorbs every bounded
set in H. Thus the set U is a bornivorous. f−1 (U) is a bornivorous in G by above
proposition and G is also a neighbourhood of e by hypothesis i.e. f is continuous on
e. So f is continuous in everywhere.

Proposition 3.28. Let (X, τ) and (Y, τ p) be any topological groups and f : X → Y

be a continuous homomorphism. If A ⊆ X is bounded then
−

(f (A)) ⊆ Y is bounded.

Proof. Let we take any V ∈ Nep so f−1 (V ) ∈ Ne. Since A is bounded set, there
exists a finite set F and a number m ∈ N such that A ⊆ Ff−1 (V )m. Thus f (A) ⊆
f (F ) f (f−1 (V )m) ⊆ f (F ) f (f−1 (V m)) ⊆ f (F ) V m and then

−
(f (A)) ⊆ f (F ) V m+1

i.e.
−

(f (A)) is bounded.

Proposition 3.29. Let (Xi, τi)i∈I is any family of topological groups, X = Π
i∈I

Xi

and Πi : X → Xi be the projection. A ⊆ X is bounded if and only if Πi (A) ⊆ Xi is
bounded for every i ∈ I.
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Proof. If A is bounded in (X, τ) there exists a finite set F and m ∈ N such that
A ⊆ (

Π−1
i (Vi)

)m
F . Πi (A) ⊆ Πi

(
Π−1

i (Vi)
m)

Πi (F ). Then

Πi (A) ⊆ Πi

({Π−1
i (Vi)}m

)
Πi (F ) ⊆ Πi

(
Π−1

i (V m
i )

)
Πi (F ) ⊆ V m

i Πi (F ) .

On the contrary, let Πi (A) is bounded in (Xi, τi) for every i ∈ I.
We take any V ∈ Ne. For every i ∈ I and Vi ∈ Ni (ei), V = Π

i∈I
Vi. There exists a

finite set Fi and m ∈ N such that Πi (A) ⊆ V m
i Fi because Πi (A) is bounded for every

i ∈ I. Let we take Πi (A) = Ai. Therefore Π
i∈I

Ai ⊆ Π
i∈I

(V m
i Fi) =

(
Π
i∈I

Vi

)m

Π
i∈I

Fi.

Thus A ⊆ V mF i.e. A ⊆ X is bounded.
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