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SYMMETRIC IDENTITIES INVOLVING CARLITZ'S-TYPE
TWISTED (h,q)-TANGENT-TYPE POLYNOMIALS UNDER Ss

Ugur Duran®”  <duran.ugur@yahoo.com >
Mehmet Acikgoz® <acikgoz@gantep.edu.tr>

!Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, 27310 Gaziantep, Turkey

Abstract — In [11], Ryoo introduced the Carlitz’s-type twisted (h,q)-Tangent numbers and polynomials. In
this paper, we consider some new symmetric identities involving Ryoo’s Carlitz’s-type twisted (h,q) Tangent-

type polynomials arising from the fermionic p-adic invariant integral on Zp under 35 termed symmetric
group of degree five.

Keywords — Symmetric identities; Carlitz’s-type twisted (h,q)-Tangent-type polynomials; Fermionic p-adic
invariant integral on Z , ; Invariant under Sg.

1 Introduction

In the complex plane, the Euler polynomials are defined by

NN U S
ZOEn(X)n— = me t, (|t| < 7Z')

n

When x =0, then we get E, (0):= E, is called the n-th Euler numbers, see [5], [7], [14].

As well-known that the Tangent numbers T,, , (n>1) are defined as the coefficients of the
Taylor expansion of tan x:

=T
tanx =) 2Ly 10,14]).
an x ;(Zn—l)!x (see [10,14])

“Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
“Corresponding Author.
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Kim et al. [10] obtained the following relation between Tangent numbers and Euler
numbers:

n Ton
E,..=(-1) # (1.2)

Ryoo [14] introduced Tangent-type polynomial T.(x) which is different from original
definition, as follows:

ZT (X 1e“, (|t|<%). (1.2)

Letting x=0 in the Eq. (1.2) reduces to T.(0):=T. that is called n-th Tangent-type
number (see, e.g., [11], [14]).

Ryoo’s Tangent polynomial holds the following equality (see [14])

_Tona

E2n—l - 22n—1 . (13)
Note that the Eq. (1.3) is different from the Eq. (1.1). Further we have
Tona=(-1)"T,, . (1.4)

Because of (1.4), we call Tn (x) and T. as Tangent-type polynomials and Tangent-type
numbers, respectively.

Let p be chosen as a fixed odd prime number. Along this paper Z ;, Q, Q, and C will
denote topological closure of Z, the field of rational numbers, topological closure of Q
and the field of p-adic completion of an algebraic closure of Q, respectively. Let

N={1,2,3,---} and N" = NuU{0}.
For d an odd positive number with (d, p) =1, let

X=Xy =limZ/dp"Z and X, =2,

and
t+dp"z, = {XE X |x=t(mod de)}

where te Z liesin 0<t <dp". See, for more details, [1-11].

The normalized absolute value according to the theory of p-adic analysis is given by
|p|p = p~. The notation "q" can be considered as an indeterminate, a complex number
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qeC with |g<1, or a p-adic number qeC_  with |q—]4p<p‘1"p‘1’ and

q = exp(x log q) for |x|p <1. It is always clear in the content of the paper.

For any x, let us introduce the following notation (see [1-14])

1-q

o (15)

[x], =
known as q-number of x. Note that as g —1, the notation [x]q reduces to the x. For
feUD(Z,) :{f |g:0 , >0, is uniformly differentiable function},

Kim [7] defined the p-adic invariant integral on Z ; as follows:

1(f)j X)d e, (x -@Ozf ) (1) (1.6)
From Eq. (1.6), we get
1, (f)= (f)+22 1" £ (k)

where f (x) means f(x+n). For more details about the p -adic invariant integral on Z ,
see the references, e.g., [5], [7], [11], [12], [13], [14].

LetheZ and T, = UCPN = IimNAprN , Where C = {WZWPN :1} is the cyclic group of

N>1 P
order p". For weT,, we indicate by ¢,:Z —C, the locally constant function x — w".

For geC, with |1—q|p <1 and weT,, the h-extension of Carlitz’s-type twisted -
Tangent-type polynomials are defined by the following p -adic invariant integral on Z ,
with respect to x ,, in [11]:

[, wa[2y +x] dg, (y) =Thaw(x) (n20). (1.7)

If we let x=0 into the Eq. (1.7), we then have T(nh,g,w(O) ::Tf:c)l,w called n-th h-extension

of Carlitz’s-type twisted ¢-Tangent-type number. These numbers can be generated by the
following recurrence relation:

(h) )

th(quq,w +[2]q) +Thg

W

|2, ifn=0
1o, ifn=0
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n
with the usual convention about replacing (T 2“&) by T(nhgw

When q—1 and w=1 inthe Eq. (1.7), it gives
(h) . n
Traw(X) > Ta(¥):= [ Qy+x)"du, ().
p

Recently, symmetric identities on some special polynomials, e.g. Bernoulli polynomials,
Euler polynomails, Genocchi polynomials etc., have been studied by many mathematicians.
For instance, Agyuz et al. [1] obtained a further investigation for the q-Genocchi numbers

and polynomials of higher order under third Dihedral group D, and established some

closed formulae of the symmetric identities. They also established some known identities
for the classical Genocchi numbers and polynomials by using fermionic p -adic q-integral

on Z . Duran et al. [2] investigated some new symmetric identities for g-Genocchi
polynomials which are derived from the fermionic p -adic q-integral on Z . Duran et al.
[3] derived symmetric identities involving weighted q-Genocchi polynomials using the
fermionic p -adic g-integral on Z . Araci et al. [5] performed to get some new symmetric
identities for q-Frobenius-Euler polynomials under symmetric group of degree five, which
are derived from the fermionic p -adic q-integral over the p -adic numbers field. Kim et
al. [9] introduced new symmetry identities for Carlitz’s q-Bernoulli polynomials under

symmetric group of degree five. Kim et al. [7] investigated some new properties of
symmetry for the Carlitz’s-type q-Euler polynomials invariant under the symmetric group

of degree five. Kim [8] considered new properties of symmetry for the higher-order
Carlitz’s ¢ -Bernoulli polynomials which derived from p -adic g-integral on Z  under the

symmetric group of degree five.

In the present paper, we investigate some not only new but also interesting identities for h -
extension of Carlitz’s-type twisted g -Tangent-type polynomials arising from the fermionic

p -adic invariant integral on Z & symmetric group of degree five.

2 Symmetric Identities Involving T.%), (x) under s;

For w, e N with w, =1(mod2) with i e{1,2,3,4,5}, by the Egs. (1.6) and (1.7), we get

'[ WW1W2W3W4y q hwlw2w3w4 y " e[WlW2W3W4 2 y+le2w3w4w5x+w5w4W2W3i FWEW, Wy Wy j +FWEW, 4w1w2k +W5w3wlwzs]
z

p

e, (y) (2.)

N
p_1 Way W W g 2 YWy W, W Wy Wi XHWi Wy Way Woal -+Wig W Wy Wy +Wis W Wy Wo K +We W W Wiy S |t
= lim Z (_1)yleW2w3W4thV\ﬁW2W3W4y xe["‘ﬁ 23y £Y+ Wy Wo WaWy WX+ Wiy Wo Wl + W Wy Wy Wa ]+ Wi W Wy WK +WgWighg W Jq
N—o0 U2
y=0
W5—1pN_l
= lim Z Z (_1)|+yWW1W2W3W4(|+W5y)thlW2W3W4(|+W5y)
N

2%1=0 y=0
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e[Wlwzw?’w4 2(I +W5y)+W1W2W3W4W5X+W5W4W2W3i FWEW, Wy Wa j +w5w4wlwzk +w5W3wlwzs}qt
X

o IWg—1w, ) ) ) .
Z Z Z (_1)i+j+k+s \,\/""5‘“’4‘“’2‘“’3'*""5‘“’4‘“’1""3J*""5"V4W1""2k*"sz:s‘“’l""zS X qh("VSW4W2""3'+ W5W4"‘ﬁW3J+W5W4W1""2k+W5W3W1""25)

on the both sides of Eq. (2.1) gives

Wy - —1w. 1w3 -1lw,-1

2 4
K Wix W g Woy Wonl Wiz W W Wiy Wiz W g Wa Wi K -+ Wi W W Woy S
ZZ Z( 1)I+J++S 5 Wi W Wl +Wis W g Wi Wag J o+ Wi W g Wy Wop K+ Wi W Wiy Woy (2.2)

i=0 j=0 k=0 s=0

N Wi W g Wi Wiyl + Wi Wy Wy Wy +Wis W g W Wi K +Wie Wi Wy Wy S WoWaW, Y v Wowaw, y
Xq 5\ W Wal +Wig Wy Wy W ]+ W Wy Wy Woy 5312)... WW1234q 1727374

Zp

e[W1W2W3W4 2 y+wlw2W3w4w5x+w5w4w2w3i HF W W, Wy Wy j +w5w4wlw2k +w5w3wlw25] t

T (y)

4 ) )
i Z Z Z (_1)i+j+k+s+y+l y lew2w3w4(l+w5y)+w5w4w2w3|+w5w4wlw3j+w5w4w1w2k+w5w3wlw25

h(w1w2w3w4(l +Wg y)+w5w4w2w3i HFWE W, Wy Wy j +w5w4le2k +w5w3wlwzs)

e[Wlwzw?’w4 2(I +W5y)+W1W2W3W4W5X+W5W4W2W3i FWEW, Wy Wa j +w5w4wlwzk +w5W3wlwzs}qt

Note that the Eq. (2.2) is invariant for any permutation o €S;. Therefore, we obtain the
following theorem.

Theorem 1 Let w, e N with w, =1(mod2) and i €{1,2,3,4,5} . Then the following

W I —lwa o) —1WO_ ®) —1WU ) -1

Z Z Z Z (_1)i+j+k+s

i=0  j=0 k=0 s=0

XWWa(s)Wa(4)Wo(2)Wa(3)”Wa(5)Wa(4)Wa(1)Wa(3) 0o (5)Wor (4) Wor (1) Vor (2) K+ Wor (5) Vor (3) Wor (1) Wor (2)

h[Wa(5>Wa(4)Wa(2)Wa(3)i+Wa(5)Wa<4>Wa(1)Wa(3)"+Wa(5)Wa(4)Wa<1)Wa(2>k+Wa(5>Wa(s>Wa(1)Wa(2)S]
xq
y I WWa(l)Wa<2)Wa(3)Wa(4)('*Wa(S)V)qhWa(l)Wa(Z)Wa(3)Wa<4)('+Wa(5)y)

Z

xeXp([ ey Wo) Wo3) 0(4)2y+ o)) Wor 2 Wor (3) Wor () Wor ) X T Wos (5) Wor () Wor ) a(s)

W, 6 Woy ) W 1y Wor gy Wo 5y Wy Wor 0y W ) K W 5 W ) W, 0y W, S, t)d/‘ (Y)
holds true for any o €S,.
By Eqg. (1.5), one can easily see that

[V W, VW, 2+ VW, W W, W X+ W W W W + W W, W W -+ W W, W, WK -+ W Wo W W, S ]q (2.3)
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W, W. . W W,
:[W1W2W3W4]q|:2y+wsx+—5|+_5J+_5k+_55} .
W W, W, W, Wy WoWaWy

From Eqgs. (2.1) and (2.3), we obtain

h [W1W2W3W4 2 y+WlW2W3W4W5X+W5W4W2W3I +W5W4W1W3 j +W5W4W1W2k +W5W3V\ﬁ_W2 }
.[z WW1""2""3""4Vq VWY o du,(y) (2.4)
P
S (h) W W . W, w, |t"
[w,w,w,w, | T WX+—i+— j+—=Kk+—=5 [—.
W WoWaWy Wy W Wy 5
pry ng W w,oow," w, w, /n!
By Eqg. (2.4), we have
J’ lewzw3w4thwlwzw3w4y (25)
z

X [ VWV, W5 W, 2+ W W, W W, VW X+ VW, W, Wi+ VW, W W  + VW, Wo WL K -+ W W W, W, S ]: dz,(y)

(h)

[wwww] T wx+%i+%j+%k+%s}(n20).

5
ng 1"2"3% ,"1"2"3"a ( W, W, W, W,
Thus, from Theorem 1 and (2.5), we have the following theorem.

Theorem 2 For w, e N with w, =1(mod2) with i {1,2,3,4,5}, the following

Wor (1) " Wor(2) Mir(3) Wora) 2

[ W W Woo W, (4)] Z Z(; Z ; (1)

Yo 6) Vo (4) Vo (2) Vor (3) Vo (5) o () Wor(2) o(s)J*Wo(S)Wa(zt)Wa(l)Wa(Z)"*Wa<5>Wo(3)Wa(1)Wa(2)3

“(Wo(S)Wa(A)Wa<2>Wa(3>i+Wa(5)Wa(4)Wa(l)Wa<s> W (5) Yo () Wor(1) Vor(2) X Wor(5) Wa(s)Wo(l)Wa(Z)s)

xq

(h) Woe) . Woi . Ws W, )
Yo W)Yo @)V @) Vo @) Vo 1) Vo (2) Vo (3) Vo (4) Woi X + I+ J+ K+ S
n.q W Wcr(l) Wo‘(Z) Wa(s) Wo‘(4)

holds true forany o €S;.

It is easy to show by using the definition of [x]q that

n

W.. W, . W, W,
{2y+w5x+—5|+—51+—5k+—55 (26)

A W, W, A M2y

n—-m
) n (n [ 5]q . . n-m
=2 m W [ W W Wi+ W W, W, WK -+ W, WS | wg
m=0

xq

M Wiz W g Wey Wiyl +Win W g Wi Wey J Wiz W4 Wa Woy K -+ Wi Wi W Wy S m
(g i+ g g g 5312)[2y+W5X]q%W2W3W4.
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Taking J; w'2"s" g2y (y) on the both sides of Eq. (2.6) gives
p

n
[ wesagrey {2y+w5x+%i + 2%y T +%s} du,(y) (@7)

P W, W, W, A
n—m
_Z”:(nj [Ws]q [WWWi+WWWj+WWWk+WWWS]n_m
= L T 23V 173" 1o Wy W, WSS | v
m=0\M [W1W2W3W4]q
m i H K s )
g SIS [\ [y X g A2 (Y)
p
n—-m
_ (YDl N
B mZ;) m W [W2W3W4I TWWEW, J + W W, W, +W1W2W35] 0%

m(w5w4w2W3i+w5w4wlw3j+w5w4wlwzk+w5w3wlw25) (h) (W X)
m ’quW2W3W4 ‘WW1W2W3W4 57"

xq

By the Eq. (2.7), we have

£

1W2 1W31W41
n T K S « o Wi Wy W Wi Wi W0 Wa Wy 4+ Wi Wy Wi Wo K+ Wi W Wa Wiy S

[W1W2W3W 2:2:2:( 1)+J++ 5 \Wig Woy W+ Wi W g Wi Wi J + Wi W g W Wiy KW W Wy Woy (2.8)
q

j=0 k=0 s=0

T}
o

h (W5W4W2W3i +FWEW, Wy Wy j +w5W4wlw2k +W5W3W1W25)

xq

n
o We. W, . W, W,
x[ R e | oy wex+ 2= j+ ks dua(y)
z woow, W, Wy | mwpwawy

(" m n-m (h) w 1w, -1
= Z m [W1W2W3W4]q [WS ]q Tm'qW1W2W3W4 R (W5X) ;JZO
Wy —w, -1
32 42 ( 1)'+ Irks WW5W4W2W3'+W5W4W1W3J+W5W4wlw2k+w5W3W1W23
k=0 s=0

M-+h ) W W W Wagl Wi W g Wa Wiy -+ Wiz Wy Wa Woy K+ Wi W Wa Wi S . . n-m
g™ g kg )X[W2W3W4I VWG, -+ VWL WK W W, WS | g

_ 0 n m n-m — (h)
- mzzo(mj [WlWZWSWA]q [WS ]q T m,qW1W2W3W4 ,WW1W2W3W4 (WSX)CnquS ,WW5 (Wl’ W2 ’ W3 ’ W4 I m):

where
G g (Wi, Wy, Wy, W, | m) (2.9)
wy 1w, —Iwg —1w, —1
_ Z Z Z z( 1)|+j+k+5 W2W3W4|+\N1W3W4J+W1W2W4k+WlW2W3S
i=0 j=0 k=0 s=0
m+h i j k S . - -
g [ W WoW i -+ MWW, -+ W, WK -+ s s

As aresult, by (2.9), we arrive at the following theorem.
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Theorem 3 Let w, e N with w; =1(mod2) with i{1,2,3,4,5}. For n>0, the following
expression

nin m n-m
Z;) m [wa(l)wg(z)w[f@wa@)}q [WG(S)]q
m=

(h) (
X w X)C W_ ..\, W_ o, W_ o, W m
m’qwo_(1)wo_(z)wo_(s)wo_(‘l) YWWo-(l)Wo-(Z)Wo(3)Wa(4) o (5) n,qWU(S) 'WWO'(S) ( o(1) a(2) a(3) o(4) | )

holds true for some o € S..
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Abstaract — In this paper, we defined new relationship between k£ Lucas sequences and determi-
nants of their associated matrices, this approach is different and never tried in k& Fibonacci sequence
literature.

Keywords — k-Fibonacci sequence, k-Lucas sequence, Recurrence relation.

1 Introduction

The Fibonacci sequence is a source of many nice and interesting identities. Many
identities have been documented in [9],[10],[11],[12],[16],[2],[3]. A similar interpre-
tation exists for k£ Fibonacci and k£ Lucas numbers. Many of these identities have
been documented in the work of Falcon and Plaza [6],[7],[8], where they are proved
by algebraic means, many of another interesting algebraic identities are also proved
in [1],[4]. In this paper determinantal techniques are used to obtain several k Lucas
identities.

2 Preliminary

Definition 2.1. The k—Fibonacci sequence {Fj,}o2, is defined as, Fy,11 = k -
ka + ka,l, with Fk70 = O,F]ﬁl = 1, for n 2 1

Definition 2.2. The k— Lucas sequence {Ly ,}>2, is defined as, Ly 11 = k- Ly, +
Lyp1, with Lo =2,Ly1 =k, forn > 1

™ Edited by Adem Sahin and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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Characteristic equation of the initial recurrence relation is,

P —k-r—1=0 (1)
Characteristic roots are
k+VEk24+4
"= (2)
2
and
k—Vk2+4
rp= (3)

Characteristic roots verify the properties

RN S (4)
7"1+T2:]{5 (5)
r.re = —1 (6)

Binet forms for Fj,, and Ly, are

and

Lk,n = 7”? + 7’3 (8)

2.1 First 11 k Fibonacci sequences as numbered in the En-
cyclopedia of Integer Sequences

F}, | Classification
Fi, A000045
Fs,, A000129
Fs, A006190
Fy, A001076
Fs ., A052918
Fs ., A005668
F;, A054413
Fy,, A041025
Fyp, A099371
Fion A041041
Fiin A049666
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3 Determinantal Identities

Theorem 3.1. If n,i, j,t,m are positive integers with 0 <t <i, i+ 1 <m, j =1,

then
[ Lz,nﬂ + 4[’%,1171' Lk,n+i+j Lk,n+i+j ]
Lk,n+t 4Li,n+i + Li,n+¢+j Lk,n+t
det = 8L mtiLintLkntiv
I ) 97, ) Li,nJriJrj + Lz,nth
k,n-+i k,n+i 2Lk7n+i
(9)
Proof. Let
[ Li,n-i—t + 4L%,n—i Lk,n+z’+j Lk,n+i+j |
Linye ALE i+ Lipyin Lyt
Nl = det ) ) (10)
I i 27, s n+i+j k.n+t
k, + k, —+ 2Lk,n_‘_z
Assume that
Lk,n—i—t = ¢
Lk,n+i =@
Then
Linyivy =ko+ ¢
Now,
S .
ko + ¢ keo+¢
ko + ¢
©*+(ko+¢)?
Ny, —det| © 5 ¢
¢ + (ko + ¢)°
2
2
Making the row operations ! (ke + ¢)Ry] ! [¢Ro] ! (R3], g
W —— (ko , = , — [pRs], gives
(ke + ¢) R R
[ P+ 0* (ke +9)? (ke + ¢)°
1 2 2 2 2
N, = det o ©° + (ko + ) ¢ (11)
pp(kp + ) ) , , ,
© @ ¢* + (ko + @)
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making row operations Ry + Ry + R3 — Ry, R3— Ry — R3 and Ry — Ry — R», gives
[ *+ ¢ PPt (bt ) ¢+ (ko +0)* |

_ 1 —¢? 0 —(kp +¢)°
Ny = — g 2
LS St t )

¢° — (ko + ¢)? 0

Expanding we get
Ry = 8¢p(ky + ¢)

Putting
Linyt = ¢
Lipyi =
Lyptivi =ko+ ¢
Gives

Ny = 8Lk,n+iLk,n+th,n+i+j
[

Theorem 3.2. If n,1, j,t,m are positive integers with 0 <t <i,1+1<m, j=1,
then

2
L i 2Lk ntiLli nyivj LimttLintiv; + Linyiv;
2 2
Lk n—+t + 2Lk,n+iLk,n+t 4Lk n+i Lk:,n+th:,n+i+j
det ’ ’ (12)
2Lkn+ilkn+t ALE o yi + 2LkntiLkntivg L} nyits

= [4Lk,n+iLk,n+i+j]2

Proof. Let
I L3 i 2Ly i Lk nyitj LipttLintivi + Linyits |
NZ = det Li,n—l—t + 2Lk,n+iLk,n+t 4Lz,n+i Lk,n+th,n+i+j
2Lk nyi Lkt ALY o vi + 2Lk i Lk nyiv LE i
) (13)
Assume that
Lk,n—i—t - ¢
Lk,n—‘ri =@
Then _ ) ) -
¢ plko+¢)  dke+ o)+ (kp + )
N, = det ¢* + dp @ (ko + ¢)

b O+ ok +0) (ko + ¢)?
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Making the row operations Ry — Ry — (R; + R3)), gives
6 (kpt+9) o+ (ke+ o)
N, = 1 det 0 —2(kp+o) —2(kp+0e) (14)

(ke + @)
o o+ (ko+o) (kp+0¢)

making Column operations C'y — Cy — (5 and expanding gives

Ny = 4 [200(kp + ¢)]°

Putting
Lypnit = ¢
Lipyi =@
Lintivi = ke + ¢
Gives

Ny = [4Lk,n+iLk,n+i+j]2

]

Corollary 3.3. If n,i, j,t, m are positive integers with 0 <t <i, i +1<m, j =1,
then

_ ) _
_Lk,n—l—t 2Lk,n+z’Lkz,n+t Lk7n+th,n+i+j
2L L 412 . 2L L w 2
det Fonheontt kit ikt | = (4L nti Lt Lic i)
2
LiptLkpnvivi 2Lknvilinyivg —Liiivj

(15)

Corollary 3.4. If n,i, j,t, m are positive integers with 0 <t <i, 1 +1<m, j =1,
then

B 2 2
4Lk,n+i + Lk,n+i+j 2Lk,n+iLk:,n+t Lk,n+th,n+i+j

2Lk Lk t L2 2Lk Lk -7 2
det Mt Rnt kntt ikt = [ALg i Lt Lk nivs]

2 2
LinitLinvivi  2Lkntilknvivg 4Lk + Lo

(16)

Corollary 3.5. If n,i, j,t,m are positive integers with 0 <t <i,14+1<m, j =1,
then

[ 2Ly ntitj + 2Lgnti + Lignte Ly 2Ly i
det Ly ntitj 2Lt + 2Lk pyi + Ligpyitj 2Ly i
Ly ntitj 2Lyt AL pvi + Lyt + Lignyitj

=2 [2Lk,n+’i + Lk,n+t + Lk,n+i+j]3
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Corollary 3.6. If n,i, j,t,m are positive integers with 0 <t <i, 14+ 1<m, j =1,
then

[ 1 + Lk,n+t 1 1
et 1 1+ 2L n4i 1
1 1 14+ Lyntitj
1 1 1
= {2Lk7n+iLk,n+th,n+i+j}{ + + + 1}

Lkm—&—t 2Lk,n+i Lk,n+i+j
{2Ln+iLlknstLintivj + 2Lk nviLlintivi + LinstLinttLinvivi + 2Lk nviLipt )

4 Conclusion

In this paper we described determinantal identities for £ Lucas sequence; same iden-
tities can be derived for k£ Fibonacci sequence.
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Abstract — The aim of this paper is to introduce the concept of pre my continuous function and to show some
of its application. Also the concept of pre my open mapping and pre my homeomorphism is studied. The
concept of pre my open set has already been introduced by the authors in 2011.In this paper a topology is
considered which is generated from my structure and it is denoted as me. The concept of pre my continuous

function is discussed in the topological space (X, Trm,) generated from (X, my).

Keywords — Pre my continuous function, Pre my open mapping, Topology generated by my structure.

1. Introduction and Preliminaries

The concept of mx-open set has been introduced by H. Maki in 1996.[8] and the concept of
preopen set has been introduced by Mashour et al [9] .Lots of applications of preopen set
and my structure in ordinary topological space has been introduced by various
researchers.[1][2][3]. The concept of mx pre-open set has been introduced by Ennis Rosas,
Neelamegarajan Rajesh, Carlos Carpintero[17]. And the concept of Pre myx open set has
been introduced by the authors in 2011[4]. In this paper the concept of Pre myx continuous
function, Pre my irresolute continuous function, Pre my open mapping, Introduction. Pre
mx irresolute mapping, Pre myx homeomorphism etc are introduced and some properties are
discussed.

In the second section the concept of pre mx-continuous function, pre mx irresolute
continuous function is discussed.

In the third section, the concept of pre myx open mapping etc is introduced and their
connection are shown. Lastly the concept of pre myx homeomorphism is introduced and
some of its utility is studied.

“Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
*Corresponding Author.
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Let us rememorize some of the basic concepts used by various researchers.

Defintion 1.1. [8] A structure is said to be a myx structure iff pemyx, X emx. From this
structure the following operators may be defined as below:

For any subset A of X

myx IntA = U{G: GCA , G is a mx open set in X}
myx CIA = n{G: GoA , G is a mx closed set in X}

The subset A of X is said to be a

1.[8] open my.set in a my structure if my intA=A

2. [9] Preopen set in ordinary topological space if Acint(cl(A))
3. [14] mx-regular open set in my structure if A= mx.int my.clA.

4. [8] mx-generalized closed set in myx structure if there exist a myx-open set containing A
such that myCIAcU whenever AcU.

5. [17] mx--preopen set in X if AcmxInt(mxCI(A))

6. [4] Pre-mx open set on an my structure if Ac Int(mx-CI(A))).

From the above definitions a connection between the sets are shown in the following figiire

mx- dense

!

Mx- open — myx-pre open — pre-Mx open — b-mxopen

1

regular my-open

Definition 1.2. A mapping f: X—Y is said to be a

1. [9] pre continuous function in an ordinary topological space if f *(A)cPO(X) for every
opensetA inY.

2. [14] mx-regular continuous function in a my structure if f “(A) is a myx regular open set
in X for every my-regular open set Ain Y.

3. [13] mx-generalized continuous function in a my structure if f (A) is a mx closed set in
X for every my-closed set Ain Y.

4.[8] mx-continuous function in a my structure if f *(A) is a mx open set in X whenever A
iIsan my opensetin.
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5. [9] Preopen mapping in an ordinary topological space if the image of each open set in X
Isa preopensetin.

6. [8] mx-open mapping in a my structure if image of each mx -open set in X is a my -
opensetin.

7. [14] mx- regular-open mapping in a mx structure if the image of each mx -open set in X
iIsamy— regular opensetin.

8.[9] pre irresolute continous function in an ordinary topological space if f ~}(U)cPO(X)
for every UcPO(Y ),

9. [17] mx pre irresolute continuous function in a my structure if the inverse image of
every my pre open setin Y is a my pre open set in X.

Definition 1.3 [9] A bijective mapping f :(X,t) — (Y,0) from X to Y is called a pre
homeomorphism if both fand f ™ are pre irresolute mappings.

Throughout this paper we are considering the topological space as the structure formed by
introducing the missing elements in my structure i.e. along with the elements of my
structure we are also introducing the elements which are essentially needed for a
topological space .Let us name this type of topological space as a topological space
generated by an mx structure and denote it as T, .

Let X = {a,b,c} and the corresponding myx structure be {¢, X, {a,b}{b,c}}. It is not a
topology since finite intersection of the elements in myx is not in mx. Now Tm, ={¢, X,

{a,b},{b,c}, {b}}.This is a topology generated by an my structure.

For a topology generated by my structure let us denote the interior as Intrm, and the closure
as CITmx ‘Now since mxc Tmy » Mx Int < Intym, < CImes mx CI.

2. Pre my Continuous Function

In this section the concept of pre mx continuous function, pre my irresolute continuous
mapping, pre my open mapping, pre myx homeomorphism are introduced and their
properties are studied.

Definition 2.1.A function f :(X, Tm,) —(Y, Tm,) is said to be a pre mx-continuous function
if the inverse image of each mx-open set in Y is a pre my -open set in X.

Example 2.2. Let X = {a, b, ¢, d} and the mx structure be mx = {¢», X, {a,b}, {c}},
Tm, ={¢, X, {a,b}, {c}, {a,b,c}}.

Let ' Y = {xyz 1t} then myx structure is mx(y)={d, Y, {x}, {y}} and
Tm ={¢,Y, {x}{y}{x.y}}
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Let us consider a mapping f : (X, Tm,) —(Y,Tm,) such that f(a) = x, f(b)=y, f(c)=z, f(d)=t.
Now the inverse image of each my open set in Y are respectively ¢, X, {a}, {b}. Now a
subset A of X is said to be a Pre-mx open set on an my structure if Ac Intym, (Mx.CI(A))).

Here ¢, X, {a},{b} are all pre my open set. Hence f is a pre my continuous function.

Theorem 2.3. Let f :(X,Tm,) —(Y,Tm,) be a mapping from X to Y. Every my continuous
function f is also a pre mx —continuous function.

Proof: Let xeX and V be any mx open set containing f(x).Since f is a mx — continuous
function there exist Uemx(X) containing x such that f (V) is mx- open in X. By the
figure indicating the connection of the set ,it is shown that every my open set is a pre mx
open set, thus f (V) isa pre mx —open set. Hence the proof.

Remark 2.4. The converse of the theorem is not true, which follows from the example 2.2.
Here the function is a pre myx continuous function but not a mx continuous function since
the inverse image of {x}, {y} are respectively {a}, {b} which are not a mx open set in X.

Theorem 2.5. Let f :((X,Tm,) —(Y,Tm,) be a mapping from X to Y. Every mx -
preirresolute continuity is pre mx-continuous.

Proof: Let V be a mx-open set in Y. Since every my open set in Y is also a mx pre open set
in Y thus V is a my pre open set in Y and f being my pre irresolute continuous function
from definition 1.1(9), f ™ (V) is a mx- preopen set in X i.e. inverse image of a my open
set in Y is a my—preopen set in X. Again since mx—preopen set is a pre myx—open set in
X. Hence f is a pre my-continuous

Remark 2.6. The converse of the theorem is not true which follows from the following
example: Let

X={a,b,c,d},

mX: {¢1 X’ {a},{b},{a,C},{b,C}},

Tm, ={¢,X,{a}.{b}.{c}.{a,b,c}},

Y={m,n,l} and m,, = {o,Y . {m}, {1} .{n,1},{m,n}},
Tmy={¢,Y.{m}, {1}, {n}, {m,1}, {n,I}, {m,n}}.

Let f: X—Y be a mapping defined by f(a)=m, f(b)=l, f(c) = f(d)=n. Then clearly fis pre
Mx- continuous but it is not a mx-preirresolute continuity. Since

f 1 ({m,n}) ={a,d}z mx-PO(X).

Theorem 2.7. Let f :(X, Tm,) —(Y, Tm,) . Every mx - regular continuity is pre mx-
continuity.

Proof: Let xeX and V be any mx open set of Y containing f(x). Since f is mx — regular
continuous there exist Uemx containing x such that f* (V) is mx- regular open in X. By
figure indicating connections between various set, (V) is pre mx- open in X. Hence the
proof.
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Remark 2.8. The converse of the theorem is not true, which follows from the following
example : Let

X={a,b,c,d},
mx={¢,X,{d}{b}.{c}{a,b}.{a,c}},
mez{q),x,{d},{b},{c},{a}, {a,b}, {a,c} {b,d}, {d,c}{ab,c}{ab,d}{ac,d}}and

Y={m,n,I}and my={¢,Y {I}.{m,n}.{n,1}} and Tm,, ={¢,Y {I}.{n},{m,n},{n,1}}.

Let f:(X, Tm,)—(Y,Tm,) be a function defined by f(a) = m, f(b)=l, f(c) = f(d)= n. Then
clearly f is pre myx-continuous but it is not a my - regular continuous. Since

f{mn}) ={ad}z Tm,

We denote the relation discussed above by a figure below.

myx-continuity » Pre my - continuit\
mx pre - irresol/

my -regular continuity

Definition 2.9. Let (X, Tm, ) be a space with a mx —structure. For AcX, the pre-mx-

closure and the pre- my-interior of A, denoted by PmxCI(A) and PmxInt(A) respectively
are defined as the following:

PmxCI(A)=n{FcX:AcF, F is Pre mx.closed in X}and
PmyxInt(A)=u{Uc=X:UcA,U is Pre-my open in X}.

Theorem 2.10.

(1) Ais a pre-mx-open set iff PmxInt(A)= A
(2) A is a pre-myx-closed set iff PmyCI(A)= A

Proof : (1) Let if possible A be a pre-mx-open set then obviously PmxInt(A)= A
Conversely let PmxInt(A)= A, then

PmxInt(A)= A= u{UcX:UcA,U is Pre-mx open in X}.
Since arbitrary union of pre-mx-open set is a pre-mx-open set[From theorem 3.3 of [17],
and A being the arbitrary union of pre-mx-open set, A is a pre-mx-open set. This proves the

theorem.

(2) can be proved similarly.
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Lemma 2.11. For any subset A, B of X the following properties hold.

(i)  PmxInt(¢) = ¢, PmxInt(X) = X, PmxCIl(¢) = ¢, PmxCI(X) = X
(i)  PmxInt PmxInt(A) = PmxInt(A), PmxCIPmxCI(A) = PmxCI(A)
(iii) PmxInt(A) < A < PmxCI(A)
(iv) PmxInt(A) cPmxInt(B) , PmxCI(A) < PmxCI(B) whenever A — B
(v)  PmxInt(UA;: 1 € 1) ou {PmxInt(A): i e I},
PmxCI(nA;i: i € 1) c n {PmxCI(A): i I}
(vi) PmxCI(UAi: i € 1) o U {PmxCI(A): i€ I},
PmxInt(nAi: i € 1) < n {PmxInt(A): i el}
(vii) PmxInt(X-A)= X- PmxCI(A).
Proof : (i), (iii), (iv), (v), (vi) and (vii) are obvious.
To prove (ii)
From (iii) , PmxInt(A) < A and from (iv), PmxIntPmxInt(A) < PmxInt(A)
Now we have to prove that
PmyxIntPmxInt(A) o PmxInt(A)
From definition it follows that,
PmyxInt(A)=u{UcX:UcA,U is Pre-mxopenin X} o U
So PmxInt PmxInt(A) o PmxInt (U) = U, U is a Pre-mx open set in X
Thus PmxInt PmxInt(A) o u{UcX:UcA,U is Pre-mx open in X}= PmxInt(A)
Thus PmyxInt PmxInt(A) = PmxlInt (A)

Remark 2.12: From Lemma 2.11(ii) and theorem 2.10, it is obvious that PmxInt(A) is a
Pre my open set and PmxCI(A) is a Pre mx Closed set

Theorem 2.13: Let f:(X, Tmx)—(Y,Tm, ) be a function from X to Y . Then the followings
are equivalent.

i)  fisapre mx-continuous function.

i)  foreach my openset VinY,f(V)is pre mx open.
i) for each my closed set B in Y,f(B) is pre mx closed.
iv)  f(p mx CI(A)) = mxCI(f(A)) for AcX.

v)  pmx CI(f (B))cf *(mxCI(B)) for BCY.

vi)  fl(mxInt(B))c p mx Int(f *(B)) for BCY.

Proof: (i) < (ii). Obvious.

(ii) = (iii). Obvious.
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(iil) = (iv). For AcX.
f Y mxCIF(A)))=f Y(~{F<Y:f(A)F and F is mx closed in Y})
> {f 1 (F)eX: A <f(F) and f(F) is pre mx closed in X}
[since every myx closed in X is a pre my closed set in X, so arbitrary intersection of mx
closed set in X containing f(A) is a superset of intersection of Pre myx closed set in X
containing f(A). And f being pre mx-continuous function, f *(F) is pre mx closed in X
whenever F is a mx closed in Y]
=p my CI(A)
implies f (mxCI(f(A))) o p mx CI(A)
ie. f( £ {(mxCI(f(A)))) = f(p mx CI(A))
i.e. mxCI(f(A)) 2 f(f(mxCI(f(A)))) = f(p mx CI(A) )
i.e. mxCI(f(A)) = f(p mx CI(A) )
(iv) = (v). Let A=f(B) then f(A) =ff }(B) = B. From (iv)
f(p mx CI(A) ) = f( p mx CI(f *(B))) = mxCI(f(A)) = mxCI((B))
= f f (p mx CI(f (B))) < f "mxCI((B))
= pmxCI(f (B))) = f f (p mx CI(f *(B))) = f 'mxCI((B)).
(v) = (vi). from (v) X - Pmx CI(f *(B)))=X - f * (CI((B))= PmxInt(f *(B))=f *(Int(B)).
(vi) = (i). For xeX and for each my open set V containing f(x),from (vi),it follows

xef 1 (V)=F H(mx Int(V)) < pmxInt(f *(V))

From lemma 2.11(iii), pmxInt(f *(V)) < £ (V). So pmxInt(f *(V)) = f }(V). Thus f (V) is
a my open set in X. This implies that f is a pre my continuous function.

Theorem 2.14. Let f : (X, Tm,)—(Y, Tm,) be a pre mx-continuous function. Then the
following statements holds:

(i) fH(V)cPmxiInt(mxCI(f *(V))) for each my.openset Vin Y.
(i) PmxCl(mxInt(f * (G))) c f *(G) for each my.closed set G in Y.
(iii)  fF(PmxCl(mxInt(A)))=mxCI(f(A)) for AcX.

(iv) PmxCl(mxInt(f *(B)))<f *(mxCI(B)) for BCY.

(v)  f(mxInt(C))c PmxInt(mxCI(f *(C))) for CY.

Proof: To Prove (i) Let V be a mx open set in Y. Since f is a pre mx-continuous function,
(V) is pre mx-open in X. Therefore f (V) =PmxInt(f *(V) = PmxInt(mxCI(f * (V))) .

(i) = (ii). Let G =Y -V be a mx.closed set in Y.From (ii)

X — (V) 2 X - PmxInt(mxCI(f * (V)))
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=f(G) oPmxCl(mxInt(X — f 1(V)))
= f}(G) oPmxCl(mxInt(f (G))) .

(ii) = (iii). Let A= f™(G) then from (i)
PmxCI(mxInt(A)) € A= FPmxCI(mxInt(A))) < f(A) = mxCI(F(A)).
(iiii) = (iv). Let f(A)=B=A c f"(B) then from (iv)

f(PmxCI(mxInt(A))) = f(PmxCl(mxInt(f *(B)))) = mxCI(B)
= PmxCl(mxInt(f *(B)))< f *f(PmxCl(mxInt(A))) < f *(mxCI(B)).

(iv) = (V). it is obvious.

Definition 2.15.A function f: (X, Tm,) — (Y, Tm,) is said to be a pre my irresolute

continuous function iff the inverse image of each pre-mx-open set in Y is a pre myx open set
in X.

Theorem 2.16. Consider a function f: (X, Tm,) — (Y, Tm,) .Every pre mx -irresolute
continuous function is a pre my —continuous function.

Proof: Let xeX and V be any myx open in Y. Then we have V is a pre mx-open in Y
containing f(x). Since f is pre mx irresolute map then f (V) is pre mx -open in X. Hence
the theorem.

Remark 2.17. The converse of the theorem is not true, which follows from the following
example: Let

X={a,b,c,d},

mx={¢,X,{a,b},{b,c}, {a,c,d}},

Tm, ={.X, {a,b}, {b,c}, {a,b,c}, {a,c,d}.{b}},
Y={x,y,z,t}

my={¢,Y {x.y}{y.z}}

Tm={¢,Y, {xy}r{y.z}{xy.z}{y}} .

Let f: X —Y be a mapping defined by f(a)=x, f(b)=y, f(c)=z, f(d)=t. Then clearly f is pre
Mx - continuous, but it is nota pre mx -irresolute map. since f1({y}) = {b} is not a pre mx
open set in X.

We denote the relation discussed above by a figure below.

Mmx-continuity ——  pre my - continuity «<—— Pre my - irresolute

mx pre - irresol/ mx -regular continuity
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Theorem 2.18. The following statements are equivalent for a function
f:(X, Tmy) —(Y, Tm,)

(i) fis pre my irresolute.
(ii) For each point x of X and each pre my neighborhood V of f(x), there exists a pre
myx - neighborhood U of x such that f(U) c V.
(iii) For each xe X and each Vc PmxO(Y), there exists Uc P mxO(X) such that f(U) c V.

Proof. (i) = (ii). Assume that xeX and V isa pre mx- open set in Y containing f(x).Since
fisa pre myx - irresolute and let U = f *(\V) be a pre mx - open set in X containing x and
hence f(U) = ff* (V) c V.

(if) =>(iii). Assume that V < Y is a pre my open set containing f(x). Then by (ii),there
exists a pre mx open set G such that xeG c f (V). Therefore, xef (V). This shows that
"L(V) is a pre mx neighborhood of x.

(iii)= (i). Let VV be a pre mx-open set in Y, then (V) is pre mx neighborhood each x of
X. Thus, for each x is a pre mx interior point of f (V) which implies that f *(V)<Int(mx
CI(FY(V)). Therefore f (V) isa pre mx open set in X and hence f is a pre my -
reirresolute.

Theorem 2.19. The following are equivalent for a function f : (X, Tm,) —(Y, Tm,)

(i) fis pre my-irresolute continuous.

(it) f(PmxCI(v))=Pmx-CIf(v) .

(iii) PmxCI(f “(B))=f ' (Pmx-CI(B)) .

(iv) Pmx-Int(f 1(A))=f ( PmxInt(A)).

(V) f(Pmx-Int(B))oPmx-Intf(B) if f is bijective.

Proof: (i) = (ii). Let xe X and V<X then

PmxCI(v)cPmxCI(f *(f(v))cPmx-CI(f *(Pmx-CI(f (v))) = f (Pmx-CIf(v))
=Ff(Pmx-CI(v))=ff (Pmx-CI(f (v))= Pmx-CI(f(v)).

Therefore f(PmxCI(v))c Pmx-CIf(v).
(ii) = (iii). Let xeX and VcX and BY such that V = f *(B) then

f(Pmx-CI(f* (B)))< PmxCI ff *(B)< PmxCI (B)
= f H(PmxCI(F*(B)))=f(PmxCI (B))= PmxCI f((B))=f*(PmxCI(B)).

(iii) =(iv) Let A be any subset of Y such that B°=A. By (iii)
X - Pmx-CI(f }(B))2X - f ' (Pmx-CI(B))

= PmyxlIntf (B®)of (PmxInt (B®))
=PmyIntf *(A)=f *(PmxInt (A)).
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(iv) = (i) Let C be any sub set of Y such that A=PmxIntC. By (iv)
PmxIntf {(PmxIntC)=f *(PmxInt (C))oPmxIntf (PmxIntC)

Therefore f *(PmxInt(C))=Pmxintf *(PmxIntC).

Therefore f is a pre my irresolute continuous.

(ii)<>(v) Let A be a subset of X and f is a bijective then
f(X — A)= X — f(A) and X — A=A°=B (say)

Now,
f(Pmxcl(A))cPmyx-clf(A)
= X-f(Pmxcl(A))2X-Pmx-clf(A)
= f(Pmxint(B))2 PmxInt(f(B))

Converse part holds similarly
Hence the statements are equivalent is proved as follows

(i) =(ii) =(iii) =(iv) = (i),

v)

Theorem 2.20.

(1) If £:(X, Tmy) —(Y, Tm,) is pre my irresolute and g:(Y, Tm,) —(Z, Tm,) is pre mx
continuous then gof is pre my continuous.

(2) If f:(X, Tmy) —(Y, Tm,) is pre mx irresolute and g:(Y, Tm,) —(Z, Tm,) is mx
continuous then gof is pre mx continuous.

(3) If f:(X, Tmy) —(Y, Tm,) is pre mx continuous and g:(Y, Tm,) —(Z, Tm,) is mx
continuous then gof is pre my continuous.

(4) If £:(X, Tmy) —(Y, Tm, ) is pre mx irresolute continuous and g:(Y, Tm,) —(Z, Tm,)
IS pre my irresolute continuous then gof is pre my irresolute continuous.

Proof: To Prove (1) Let W be any mx-open set of Z. since fis pre my irresolute then
(gof) (w)=F(g™*(w))
is pre my open in X and hence gof is a pre mx continuous function.

The other can be proved similarly.

3. Pre my Open Mapping

In this section the concept of Pre my open mapping is introduced and also the concept of
Pre my irresolute mapping is introduced and some of its properties were discussed.
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Definition 3.1. A function f : (X, Tm,) —(Y, Tm, ) is said to be a pre mx -open mapping
if the image of each Pre my open set in X isa mx-open setinY.

Example 3.2. Let X = {ab,c} and Y = {x,y,z}. Let mx = {¢,X,{a,b},{c,b}}. Then
Tm, ={¢,X,{a,b}, {b,c},{b}}. Here the pre my open sets are ¢,X,{a,b},{c,b}, {b}. Let

my={¢,Y . {x,y}{y.z} {y}} and Tm_={¢. X { x,y} {y.z} {y}}.

Let f: (X, Tm,) —(Y, Tm,) be a mapping such that f(a)=x, f(b)=y, f(c)=z. Then the
mapping is a pre mx open mapping .

Theorem 3.3. Consider a function f : (X, Tm, ) —(Y, Tm,)) .Every pre mx open map is a
open map.

Proof: Let A be a open set in (X, Tm,) then A is a pre mx open set in (X,Tm,). Since fis a
pre mx open map, f(A) is a mx open setin (Y, Tm, ). Since every mx open set in (Y, Tm, )
is also a open set . So f is a open map

Remark 3.4. The converse of the theorem is not true which follows from the following
example : Let

X={x,y,z,t},

mX:{d)va{X’y}’{y’Z}}and

Tm, ={o. XXy HAY.ZhAx Y.z} Ay}
Let

Y={a,b,c,d},

mY:{¢1Y1 {a,b},{b,C}, {a,C,d}}
Tm,, ={¢,Y {a,b},{b,c}{a,c,d}.{b}.{a,b,c}}.

Let f: (X, Tmy) —(Y,Tm,)isamap defined by f(x)=a, f(y)=b and f(z)=c, f(t)=d. Here f
is a open map but not a pre my open mapping

Definition 3.5. A function f: (X, Tm,) —(Y, Tm, ) is said to be a pre my -irresolute
mapping if the image of each Pre my open set in X isa pre my-open setinY.

Example 3.6.The example 3.2 is also an example of Pre my -irresolute mapping

Theorem 3.7. Consider a function f : (X, Tm,) —(Y, Tm,)) . Every Pre mx — open map is
also a Pre my —irresolute map

Proof: Let A be a Pre mx —open set in X . Since f is a Pre myx —open map, f(A) is mx —open
set in Y. Every my —open set is also an open set and a Pre my —open set. Thus f(A) is a Pre
myx —open set. This proves that f is a Pre mx —irresolute mapping.

Remark 3.8. The converse of the above theorem need not be true which follows from the
following example : Let
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X ={a,b,c,d} and Y={x,y,z,t},
mx={¢, X, {a}, {b}, {c}} and
Tm,={¢, X, {a}, {b}, {c}{ab}, {ac}, {b.c}},

mv=1{¢, Y, {x}, {y}, {z}} and
Tmy={o, Y, {x} {y} {z}.{xy} .z} {y.z}}

Let f: (X, Tmy) —(Y, Tm,)isamap defined by f(x)= a, f(y)=b and f(z)=c, f(t)=d. Then f
is a pre my irresolute map but not a Pre my open map.

We denote the relation discussed above by a figure below.

Pre mx-Open map » Mx—Open map

Pre mx - irresolute map Open Map

Theorem 3.9. The following are equivalent for a function f : (X, Tm,) —(Y, Tm,)
(i) fis pre- my irresolute mapping.

(i) f 1 (Pmxint(v)) oPmyx Int(f *(v))

(iii) £ (Pmx CI(v)) cPmxCI(f *(v))

(iv) PmxIntf(A)of (PmxInt(A))

(v) f(PmxCI(B)) oPmxCIf(B) if f is bijective.

Proof : (i) =(ii). Let xe X and V<X then

PmxInt(v) © PmxIntff 1(v)) o PmxIntf(PmxIntf (v)) =f(PmxIntf*(v))
= F1(PmxInt(v))of ' f(PmxIntf *(v))oPmxInt(f*(v)).

Therefore
1 (PmxInt(v))oPmxInt(f 2(v)).
(ii) <(iii). From (ii),
X - f(Pmxint(v)) =X- Pmxint(f *(v)) = f {(Pmxclv) cPmxcl(f *(v)).
The converse part may be proved similarly.
(i) =(iv). Let xeX and V<X and let f *(v)=A. From (i),
£ (Pmxintf(A)) o Pmxint(A)
Therefore Pmxintf(A))of(Pmxint(A)).
(iv)=i) Let A=Pmxint(C).From (iv),

Pmyintf(Pmxint(C))of(Pmxint(Pmxint(C))=f(Pmxint(C)) = Pmy intf(Pmxint(C))
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Therefore f(Pmxint(C)) is a pre-mxopen i.e. the image of a pre my open set is a pre mx
open set

(iv) <(v)Let A be any subset of X and f is a bijective mapping then f(X — A)=X- f(A) and
X — A=B(say).Therefore from (iv)

f(PmxintB) < Pmyintf(B)
= Y-f(PmxintB) Y- Pmxint(f(B))
= f(Y - Pmxint(B)) o Pmxclf(B)
= f(Pmyxcl(B)) oPmxclf(B).

Converse part can be proved similarly. The equivalence relation is proved as below
(i) = (ii) < (iii)
U

(iv) < (v)

4. Pre myx Homeomorphism

In this section we introduce the concept of Pre myx homeomorphism and study some of its
properties.

Definition 4.1: A bijective mapping f:( X,mx) — (Y,Tm,) from a space X into a space Y
is called pre-mx homeomorphism if f and f * are pre mx-irresolute mapping.

Theorem 4.2:Let f:(X,mx) — (Y,my) be a bijective mapping from a myx structure( X,my)
to a topological space (Y, Tm,).The following statements are equivalent.

(i) fisapre mx homeomorphism.

(i) fisa pre mx homeomorphism.

(ilf) fisapre mx irresolute mapping and a pre mx irresolute continuous .

(iv) The image of a pre my open set in X is a pre my open setinY and a pre my
continuous mapping.

(v) (P mxInt(v)) = PmxInt(f 2(v)).

(vi) f1(PmxCI(B))= Pmx cl(f *(B)).

(vii) PmxIntf(A)= f(PmxInt(A)).

(viii) f(PmxCI(B)) =PmxCIf(B).

Proof: (i) <(ii). it follows from the definition.

(i) <(iii). Let f be a pre my homeomorphism implies that f and f * are pre my irresolute
mapping .Now f * isa pre my irresolute mapping implies that (f *)*(A) i.e f(A) isa pre
myx open for each A being a pre my open set in X. Therefore fis a pre my irresolute
mapping and a pre my irresolute continuous.
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Converse: since f is a pre myx irresolute mapping then f ™ is a pre mx irresolute
continuous. Hence f and f* are pre mx irresolute continuous mapping. Then obviously f is a
pre my homeomorphism.

(iii) <(iv). Let f be a pre my irresolute mapping then for each pre mx open set A of X ,
f(A)isa pre myopenand fis also pre my irresolute continuous then by theorem 2.5 we
say that image of a pre my open set in X isa pre mx open set in Y and hence fis a pre
mx irresolute continuous mapping.

(iii) = (v). Let Let xeX and VX, if fis  pre my irresolute continuous then from theorem
3.7(iv)

Pmyx Intf 2(A)of ( PmxInt(A))......(a)
and if fis pre my irresolute mapping then from theorem 3.8(ii)
f 1(PmxInt(v))cPmxInt(f 1(V)) ............ (b).
Combining (a) and (b) we get the result.
(v) =(vi) since f is bijective and from (v)

X - fH(Pmxint(v)) = X - Pmxint(f *(v))
= f (X - Pmxint(v)) =Pmx CI(f *(v))
= f Y(PmxCI(v)) = PmxCI(f *(v))

(vi) = (v). It is obvious.
(v) = (vii). Let xeX and VX and let f *(v) =A then from(v),
PmxInt(v)= f(PmxInt(f *(v)) = Pmy intf(A) = f(Pmxint(A)).proof.

(vii) = (viii). It is obvious.
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1 Introduction

Many problems in economics, engineering, environmental scinece and social science
are highly dependent on the task of modelling uncertain data, but modelling uncer-
tain data is usually highly complicated and difficult to characterize. There are several
theories which can be used for dealing these difficulties. Some of these theories are
probability theory, fuzzy set theory, rough set theory and the interval mathematics.
However, these theories have their own difficulties. In 1999, the soft set theory was
introduced as a new mathematical tool to solve these diffuculties by Molodtsov [17].
Following his work Maji et.al. [14] gave several basic notions and the first practical
application of soft sets in decision making problems. After that, Pei Miao [18] and
Chen [9] improved the work of Maji et. al.. Many researchers applied this concept
on topological spaces [7, 19, 21, 3], group theory, ring theory [1, 4, 12, 11, 13|, and
also decison making problems [5, 6, 9, 15].

Recently, Shabir and Naz [19] introduced the soft topological spaces. They de-
fined soft open sets, soft closed sets, soft subspace, soft closure, soft nhood, soft sper-
ation axioms and their several properties. In 2012, Zorlutuna et. al. [21] initiated
the soft continuity of soft functions, soft compactness and studied some properties.
Then, many reasarchers [2, 10, 8, 20, 16] improved to concept of soft topological
spaces.

In this paper, we introduce a notion of one point compactification on soft topo-
logical spaces.

** Edited by Naim Cagman (Editor-in-Chief).
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2 Preliminary

Throughout this paper X denotes initial universe, E' denotes the set of all possible
parameters which are attributes, characteristic or properties of the objects in X, and
the set of all subsets of X will be denoted by P(X).

Definition 2.1. [17] Let X be the initial universe set and E be the set of parameters.
A pair (F, A) is called a soft set over X where F'is a mapping given by F': A — P(X)
and A C F.

In the other words, the soft set is a parametrized family of subsets of the set X.
Every set F'(e), for every e € A, from this family may be considered as the set of
e-elements of the soft set (F, A).

From now on, the set of all soft sets over X will be denoted by S(X, E).

Definition 2.2. [5]Let A C E. A soft set F4 over universe X is mapping from the
parameter set £ to P(X), i.e., Fy : E — P(X), where Fu(e) # @ ife € A C E and
Fale)=oife ¢ A.

Definition 2.3. [5] The soft set Fr € S(X, E) is called null soft set, denoted by Fp,
if foralle e E, Fg(e) = @.

Definition 2.4. [5|Let Fg € S(X, E). The soft set Fg is called universal soft set,
denoted by Fg, if for all e € E, Fg(e) = X .

Definition 2.5. [5]Let F4,Gp € S(X,E). Fy4 is called a soft subset of Gp if
Fa(e) C Gp(e) for every e € E and we write FaCGp.

Definition 2.6. [5|Let Fly,Gp € S(X, E). F4 and Gp are said to be equal, denoted
by FA = GB if FAéGB and GBéFA.

Definition 2.7. [5|Let Fiu,Gp € S(X, E). Then the union of F4 and Gp is also a
soft set He, defined by He(e) = Fa(e) U Gg(e) for all e € E, where C = AU B.
Here we write Ho = F4UGE.

Definition 2.8. [5|Let F4,Gp € S(X, E). Then the intersection of Fy and Gp is
also a soft set He, defined by Ho(e) = Fa(e)NGp(e) for all e € E, where C' = ANB.
Here we write Ho = FANGp.

Definition 2.9. [5]Let Fy € S(X, E). The complement of Fy, denoted by FY, is a
soft set defined by F(e) = X — Fa(e) for every e € E.

Let us call F'§ to be soft complement function of F4. Clearly (F§)° = Fjy,
(Fg)® = Fy and (Fp)® = Fpg.

Definition 2.10. Let Fy € S(X,E) and x € X. Then F4Ux is soft set in S(X, ),
defined by (F4Ux)(e) = Fa(e) U{x} for alle € E.

Example 2.11. Let £ = {ej,eq,e3}, X = {x1, 29,23} and Fa = {(e1,{x1}),
(e3,{xa, x3})}. Then FyUzy = {(e1, {x1, 12}),(€2, {x2}) (€3, {m2, 25})}.
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Definition 2.12. (see [19]) A soft topological space is a triple (X, 7, E') where X is a
nonempty set and 7 is a family of soft sets over X satisfying the following properties:
(1) Fg,FgeT
(2) If Fu, G € 7, then FAﬁGB cT
(3) If Fy, € 7, Vi € J, then iL;JIFAi €.
Then 7 is called a topology of soft sets on X. Every member of 7 is called soft open.
Gp is called soft closed in (X, 7, E) if (Gg)® €7 .

Example 2.13. Let E = {ej, e, ..., €;} set of parameter, X = [0, 1),
1
Fan ={(e5,[0,1 = ~)) s e; € Byn € N\{0,1}}

and 7 = {Fa, }nem{o13 U Fo U Flo1y Then (X, 7, E) soft topological space on X.

Definition 2.14. Let (X, 7, E) be a soft topological space and Fx € S(X, F). Then
TFy = {FAﬁGB . GB € 7'}.

Example 2.15. Let F = {ey, eq,e3}, X = {x1, 29,23}, Fa = {(e1,{21}), (e3, {x2,23})}
and 7 = {Fy, Fr, Gp}, where G = {(e1,{z1,22}), (€2, X)}. Then 7p, = {Fg, Fa,
FaNGp}, where FANGp = {(e1, {z1})}.

Definition 2.16. [19]Let (X, 7, E) be a soft topological space and Fa € S(X, E).
The soft closure of F)4 denoted by F4 is the intersection of all soft closed supersets
of FA.

Clearly, F 4 is the smallest soft closed set over X which contains Fj.

Definition 2.17. Let (X, 7, E) be a soft topological space and Fy € S(X, E) . Fa
is called dense soft set in X if F)y = Fg.

Definition 2.18. Let (X, 7, E) be a soft topological space and U = {F}, : i € I}.
A family U of soft sets is a cover of a soft set F if FACU{Fy, :i € I}.

Definition 2.19. A soft topological space (X, 7, F) is compact if each soft open
cover of Fg has a finite subcover.

Example 2.20. Let us consider the soft topological space (X, 7, E) in example 2.13.
Then (X, 7, E) is not compact topological space because {F4, }nen f0,13 is soft open
cover of Flg but there is no finite subcover.

Definition 2.21. Let (X, 7, E) be a soft topological space and Fiy € S(X,E) . Fy
is called compact soft subset if (F4, 7p,.F) is compact.

Proposition 2.22. Let (X, 7, F) be a soft topological space and Fq € S(X, E). Fy
is a compact if and only if each soft open cover of F)4 has a finite subcover.

Proof. Let F4 be a compact and U*= {Gp, : Gp, € Tr,,1 € I} be a soft open cover
of Fy. Since G'p, € Tr,, then there exist Fy, soft open sets such that Gp, = F4,NF}4.
Since F4 is compact, F)4 has a finite subcover of U*. n

Theorem 2.23. Soft closed set of the compact soft topological space is compact.



Journal of New Theory 12 (2016) 23-28 26

Proof. Let (X, 7, E) be a soft topological space, Fj4 is a soft closed set in X and
U={Fy, : i € I} soft open cover of F}y. Then FAE.O]FAZ.. Since F'{ soft open
1€

set, U*=UU(FS) is a soft open cover of Fe . Again since, (X, 7, E) is a compact

n
soft topological space, then /* has a finite subfamily such that Fg = glF 4;, hence
FACQl(FAﬁFA) = glFAi. Thus Fy is compact. O

Proposition 2.24. Let (X, 7, E') be a noncompact soft topological space,
X* = X U{x} and W = {F,Uz : F§ compact, Fy € 7}. Then 7% = 7 UW is soft
topology on X*.

Proof. T1) Since Fyy and Fg elements of 7, then Fo,Fg et
T2) Let Fyu,, Fa, € 7". Then
Case 1. If Fa,, F4, € 7, then the proof is clear.

Case II. If F)y, € 7 and F4, € W, then there exists Gp € 7 such that Fy, = GpUz
and G% is compact. Since Fa,NFa, = F4,N(GpUx) = F4,NGp, then F4,NFy, € T.
Thus, we have Fiy,NFy, € 7*.

Case IIL If F,, Fa, € W, then there exist Fly, = G, Uz and Fy, = G p,Uxr such
that Gp,,Gp, € T and G%,,G%, are compact. Since Fu,NFy, = (Gp,Uz)N(Gp,Uz) =
(GBlﬁGBQ)OZL‘, (GBlﬁGBQ)C 1s compact, then FAlﬁFAg S

T3) Let I be an arbitrary index set and Fl4, € 7* for all i € I. Then
Case L. If F4,€7 for all i € I, then 'OIFAET.
1€

Case II. If Fu,, EW for some iy € I, then there exists Gp,, € 7 such that Fy, =

Gg,, Uz and G, is compact. Therefore, we have LNJ]FAZ. = (g FAZ.)LNJ(GBZ,O Ur) =
“ € 1710

(2

(U F4,)UGp, )UJz. Then (( U Fa,)UGg, )¢ = ( N F$)N(G% ). Since N F§ is soft
i#ig 0 i;ﬁ’io~ B 0 i#ig ¢ ‘0 itip
closed and G, is compact, ((;J Fa,)UGp, )¢ is compact.
i#1g
Case II1. If F,y,€W for all i € I, then there exist G, € 7 such that Fy, = G, Ur
and G% is compact. Therefore, we have OIF ', = OI(G’ p,Ur) = (OIGBi)OIL’. Then
i i€ i€ ic
(('OIGBi)Ox)C = (ﬁIGCB_). Since G is compact for all i € I, then ﬁIGCB_ is compact.
i€ i€ ¢ ¢ i€ !
Hence DIF W, ET™ ]
S

Proposition 2.25. (X* 7% F) soft topological space is compact.

Proof. LetU = {F4, : i € I} be a cover of Fg. Since x € X*, then there exists ip € 1

such that x € F Ay, € U . Then there exists Gg € 7 such that F Ay = G Uz where
% 1s compact. Since G4 is compact, then there exist Fu,, Fa,, ..., Fla, € U such

that G5CFa,UF,0..0F,. Then Fy = (Fg\Gp)UFa, CFa,0F4,0..0F,UFy, .
Hence (X*, 7%, F) topological space is compact. ]
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Proposition 2.26. Fj is dense soft subset in (X*, 7%, E) topological space.

Proof. Since Fp is the intersection of all soft closed supersets of F in S(X*, E),
Fg = F;. Hence we have Ig is dense soft subset in (X, 7%, E). O

Example 2.27. Let us consider the soft topological space (X, 7, E) in example 2.13
and X* = X U{1} =[0,1]. Since Fyz only compact soft set in 7, then

W = {FaUzx : FScompact, Fy € 7} = {FpUz}

Again since 7" = 7 U W, then (X* 7% E) soft compact. Hence (X*, 7%, E) soft
compactification of (X, 7, F).

3 Conclusion

In the present work, we have continued to study soft topological spaces. We introduce
soft compactifiation. We hope that the findings in this paper will help researcher en-
hance and promote the further study soft topology to carry out a general framework
for their applications in practical life.
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1 Introduction

In 1986, Maki [24] introduced the notion of A-sets in topological spaces. A A-set is a
set A which is equal to its kernel (= saturated set) i.e to the intersection of all open
supersets of A. Arenas et al. [4] introduced and investigated the notion of A-closed
sets by involving A-sets and closed sets. In 1965, Njastad [29] introduced a-open sets
which have been considered as an important research tool in the field of topology.

In this paper, we introduce generalized A-closed sets in topological spaces. In
Section 3, we obtain characterizations of generalized A-closed sets. In Section 4, we
obtain some decompositions of topological functions.

2 Preliminaries

Throughout this paper (X, 7) and (Y, o) (or X and Y) represent topological spaces
on which no separation axioms are assumed unless otherwise mentioned. For a subset
A of a space (X, 7), cl(A) and int(A) denote the closure of A and the interior of A
respectively.

We recall the following definitions and remark which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, T) is called

" Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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1. a-open [29] if A C int(cl(int(A)));
preopen [26] if A C int(cl(A));
semi-open [22] if A C cl(int(A));

B-open [1] if A C cl(int(cl(4)));

b-open [3] if A C int(cl(A)) U cfint(A));

The complements of the above mentioned open sets are called their respective
closed sets.

The collection of all a-open (resp. semi-open, preopen, (3-open, b-open) sets is
denoted by aO(X) (resp. SO(X), PO(X), BO(X), bO(X)).

The preclosure [31] (resp. semi-closure [14], a-closure [27], B-closure [1], b-
closure [3]) of a subset A of X, denoted by pcl(A) (resp. scl(A), acl(A), Bel(A),
bel(A)), is defined to be the intersection of all preclosed (resp. semi-closed, a-closed,
B-closed, b-closed) sets of (X, T) containing A. It is known that pcl(A) (resp. scl(A),
acl(A), Bel(A), bel(A)) is a preclosed (resp. semi-closed, a-closed, (-closed, b-closed)

set.
Definition 2.2. A subset A of a topological space (X, T) is called
1. generalized closed (briefly g-closed) [23] if cl(A) C U whenever A C U and U

1S open.

2. a-generalized closed (briefly ag-closed) [25] if acl(A) C U whenever A C U

and U 1is open.

3. a generalized semiclosed (briefly gs-closed) [7] if scl(A) C U whenever A C U
and U 1is open.

4. a generalized preclosed (briefly gp-closed) [8] if pcl(A) C U whenever A C U
and U 1is open.

5. a generalized semi-preclosed (briefly gsp-closed) [15] if Bcl(A) C U whenever
A C U and U is open.

6. a generalized b-closed (briefly gb-closed) [17] if bel(A) C U whenever A C U
and U 1is open.

The complements of the above mentioned closed sets are called their respective
open sets.

Definition 2.3. A subset A of a topological space (X, T) is called

. A-set if A = A" where A» =N {G:ACG, GerT} [24

2. Ny-set if A = N, (A) where Ay (A) =N {G:AC G, Ge aO(X)}[13].
3. Ng-set if A = As(A) where Ag(A) =N {G:AC G, Ge SO(X)}[12].
4. Ny-set if A = A, (A) where Ay(A) =N {G:AC G, Ge PO(X)}/[19)].
5

. Ng-set (= Agp-set [30]) if A = Ay (A) where Ay, (A) =N {G:ACG, Ge
BO(X);.

~
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6. Ap-set if A = Ay(A) where Ay(A) =N {G:AC G, Ge bOX)}[11].

Remark 2.4. In a topological space, every a-closed set is ag-closed but not con-
versely [25].

Definition 2.5. A subset A of a topological space (X, ) is called

1. locally closed set (briefly lc-set)[18] if A = L N F, where L is open and F is
closed.

2. alc*-set [21] if A = L N F, where L is open and F is a-closed.
3. slc*-set [5] if A = L N F, where L is open and F is semi-closed.
4. A-closed set [4] if A = L N F, where L is A-set and F is closed.
Definition 2.6. A function f: X — Y is called
1. continuous [9] if f1(V) is closed in X for every closed subset V of Y.
2. a-continuous [27] if f1(V) is an a-closed in X for every closed subset V of Y.

3. ag-continuous [20] if f1(V) is an ag-closed in X for every closed subset V of
Y.

4. alc*-continuous [21] if f1(V) is alc*-set in X for every closed subset V of Y.

Sa

semi-continuous [22] if f1(V) is semi-closed in X for every closed subset V of

Y.
gs-continuous [32] if [1(V) is gs-closed in X for every closed subset V of Y.
slc*-continuous [5] if f1(V) is slc*-set in X for every closed subset V of Y.

precontinuous [26] if f1(V) is preclosed in X for every closed subset V of Y.

AN S

gp-continuous [6] if {1(V) is gp-closed in X for every closed subset V of Y.
10. gsp-continuous [15] if f1 (V) is gsp-closed in X for every closed subset V of Y.
11. gb-continuous [17] if f1(V) is gb-closed in X for every closed subset V of Y.
12. B-continuous [1] if f~1(V) is B-closed in X for every closed subset V of Y.

18. b-continuous [16] if f1(V) is b-closed in X for every closed subset V of Y.

3 Characterizations of generalized \-closed sets

Definition 3.1. A subset A of a topological space (X, T) is called
1. ag*-closed [28] if cl(A) C U whenever A C U and U is a-open.
2. sg*-closed [28] if cl(A) C U whenever A C U and U is semi-open.

3. pg*-closed [28] if cl(A) C U whenever A C U and U is preopen.
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4. Bg*-closed [28] if cl(A) C U whenever A C U and U is (3-open.

5. bg*-closed if cl(A) C U whenever A C U and U is b-open.
Definition 3.2. A subset A of a topological space (X, ) is called

1. ale-set [2] if A = L N F where L is a-open and F is closed.

2. sle-set [10] if A = L N F where L is semi-open and F' is closed.

3. ple-set [10] if A = L N F where L is preopen and F is closed.

4. Ble-set [10] if A = L N F where L is B-open and F is closed.

5. blc-set if A = L N F where L is b-open and F is closed.

Definition 3.3. A subset A of a topological space (X, T) is called A-a-closed if A =
L N F, where L is A-set and F is an a-closed set.

Proposition 3.4. Every A-closed set is A-a-closed but not conversely.

Example 3.5. Let X = {a, b, ¢} with T = {0, {a}, X}. Then {b} is A\-a-closed but
not \-closed.

Lemma 3.6. For a subset A of a topological space (X, T), the following conditions
are equivalent.

1. A is A\-a-closed.
2. A =Ln acl(A) where L is a A-set.
3. A =A"nNacl(A).
Lemma 3.7. In a space X, the following statements hold.
1. Fvery a-closed set is A-a-closed but not conversely.
2. Every A-set is A-a-closed but not conversely.
3. Every a-closed set is alc*-set but not conversely.
4. Bvery alc*-set is A\-a-closed.
Example 3.8. Let X and 7 be as in Example 3.5. Then
1. {a} is A-a-closed but not a-closed.
2. {b} is A\-a-closed but not A-set.
3. {a} is alc*-set but not a-closed.
Lemma 3.9. A subset A C (X, 7) is ag-closed if and only if acl(A) C A™.

Theorem 3.10. For a subset A of a topological space (X, T), the following conditions
are equivalent.

1. A 1s a-closed.
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2. A is ag-closed and alc*-set.
3. A is ag-closed and \-a-closed.

Proof. (1) = (2) and (2) = (3) : Obvious.
(3) = (1) : Since A is ag-closed, by Lemma 3.9, acl(A) C A". Since A is
A-a-closed, by Lemma 3.6, A = A" N acl(A) = acl(A). Hence A is a-closed.

Remark 3.11. The following Example shows that the concepts of ag-closed set and
alc*-set are independent of each other.

Example 3.12. Let X and 7 be as in Example 3.5. Then {a, b} is ag-closed but
not alc*-set in (X, 7). Moreover, {a} is alc*-set but not ag-closed in (X, 7).

Remark 3.13. The following Example shows that the concepts of ag-closed set and
A-a-closed set are independent of each other.

Example 3.14. Let X = {a, b, ¢} withT = {0, {a, b}, X}. Then {a, c} is ag-closed
but not A\-a-closed in (X, 7). Moreover, {a, b} is \-a-closed but not ag-closed in (X,

T).
Definition 3.15. A subset A of a topological space (X, T) is called
1. A-s-closed if A = L N F, where L is A-set and F is semi-closed.
2. A-p-closed if A = L N F, where L is A-set and F is preclosed.
3. A-B-closed if A = L N F, where L is A-set and F is 3-closed.
4. A-b-closed if A = L N F, where L is A-set and F is b-closed.
Definition 3.16. A subset A of a topological space (X, T) is called
1. plc*-setif A = L N F, where L is open and F is preclosed.
2. Blc*-set if A = L N F, where L is open and F is 3-closed.
3. blc*-set if A = L N F, where L is open and F is b-closed.
Lemma 3.17. A subset A C (X, 7) is
1. gs-closed if and only if scl(A) C A,
2. gp-closed if and only if pcl(A) C A".
3. gsp-closed if and only if Bcl(A) C AM.
4. gb-closed if and only if bel(A) C A,

Corollary 3.18. For a subset A of a topological space (X, T), the following conditions
are equivalent.

1. (a) A is semi-closed.
(b) A is gs-closed and slc*-set.
(c) A is gs-closed and \-s-closed.
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2. (a) A is preclosed.
(b) A is gp-closed and plc*-set.
(c) A is gp-closed and \-p-closed.

3. (a) A is f-closed.
(b) A is gsp-closed and Blc*-set.
(c) A is gsp-closed and \--closed.

4. (a) A s b-closed.
(b) A is gb-closed and blc*-set.
(c) A is gb-closed and \-b-closed.

Proof. The proof is similar to that of Lemma 3.6, Lemma 3.17 and Theorem 3.10.
Remark 3.19. The following Fxamples show that the concepts of
1. gs-closed set and slc*-set are independent of each other.
2. gs-closed set and \-s-closed set are independent of each other.
3. gp-closed set and plc*-set are independent of each other.
4. gp-closed set and \-p-closed set are independent of each other.
5. gsp-closed set and (lc*-set are independent of each other.
6. gsp-closed set and \-f-closed set are independent of each other.
7. gb-closed set and blc*-set are independent of each other.
8. gb-closed set and \-b-closed set are independent of each other.
Example 3.20. Let X and 7 be as in Example 3.14. Then

1. {a, ¢} is gs-closed but not slc*-set in (X, 7). Moreover, {a, b} is slc*- set but
not gs-closed in (X, 7).

2. {b, c} is gs-closed but not A-s-closed in (X, 7). Moreover, {a, b} is A-s-closed
but not gs-closed in (X, 7).

Example 3.21. Let X = {a, b, ¢} with 7 = {0, {a}, {a, ¢}, X}. Then

1. {a, b} is gp-closed but not plc*-set in (X, 7). Moreover, {a, ¢} is plc*-set but
not gp-closed in (X, 7).

2. {a, b} is gp-closed but not A\-p-closed in (X, 7). Moreover, {a} is A-p-closed
but not gp-closed in (X, 7).

Example 3.22. Let X = {a, b, ¢} with ™ = {0, {b}, {a, b}, X}. Then

1. {b, c} is gsp-closed but not Blc*-set in (X, 7). Moreover, {b} is Blc*- set but
not gsp-closed in (X, 7).
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2. {b, ¢} is gsp-closed but not A-B-closed in (X, 7). Moreover, {a, b} is A\-(-closed
but not gsp-closed in (X, 7).

3. {b, ¢} is gb-closed but not blc*-set in (X, 7). Moreover, {a, b} is blc*-set but
not gb-closed in (X, T).

4. {b, ¢} is gb-closed but not A-b-closed in (X, 7). Moreover, {b} is \-b-closed
but not gb-closed in (X, 7).

Remark 3.23. We have the following diagrams for the subsets we stated above:

Diagram 1.

closed —— «a-closed — semi-closed

NN

A-closed —— \-a-closed —— \-s-closed

Y
preclosed —— b-closed —— [3-closed

Y Y
A-p-closed ———— A-b-closed ——— A\-(3-closed

Diagram 2.

closed — a-closed —— semi-closed

NG N

lc ~ alc >~ slc*

Y Y
preclosed —— b-closed —— [3-closed

NLN

pler —————— bl ———— Bl

Definition 3.24. A subset A of a topological space (X, T) is called

1. A-ag*-closed if A = L N F, where L is a A,-set and F is closed.
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2. \-sg*-closed if A = L N F, where L is a Ag-set and F is closed.
3. A-pg*-closed if A = L N F, where L is a A,-set and F'is closed.
4. A-Bg*-closed if A = L N F, where L is a Ayy-set and F is closed.
5. A-bg*-closed if A = L N F, where L is a Ny-set and F is closed.

Lemma 3.25. 1. Every alc-set (resp. slc-set, ple-set, (lc-set, blc-set) is A\-ag*-
closed (resp. A-sg*-closed, A\-pg*-closed, A\-3g*-closed, \-bg*-closed).

2. Every A,-set (resp. Ag-set, N,-set, Ag,-set, Ay-set) is A\-ag*-closed (resp. A-
sg*-closed, \-pg*-closed, \-Bg*-closed, \-bg*-closed).

Lemma 3.26. 1. A subset A C (X, 7) is ag*-closed if and only if cl(A) C Ay (A).
2. A subset A C (X, 1) is sg*-closed if and only if cl(A) C As(A).
3. A subset A C (X, 7) is pg*-closed if and only if cl(A) C A, (A).
4. A subset A C (X, 1) is Bg*-closed if and only if cl(A) C Ag(A).
5. A subset A C (X, 7) is bg*-closed if and only if cl(A) C Ay(A).

Lemma 3.27. For a subset A of a topological space (X, T), the following conditions
are equivalent.

1. A is A-ag*-closed.
2. A =LnNcl(A) where L is a A,-set.
3. A =A,(A)N cl(A).

Theorem 3.28. For a subset A of a topological space (X, T), the following conditions
are equivalent.

1. (a) A is closed.
(b) A is ag*-closed and alc-set.
(c) A is ag*-closed and \-ag*-closed.

2. (a) A is closed.
(b) A is sg*-closed and slc-set.
(c) A is sg*-closed and \-sg*-closed.

Remark 3.29. The following Fxamples show that the concepts of
1. ag*-closed set and alc-set are independent of each other.
2. ag*-closed set and A\-ag*-closed set are independent of each other.
3. sg*-closed set and slc-set are independent of each other.

4. sg*-closed set and \-sq*-closed set are independent of each other.

Example 3.30. Let X and 7 be as in Example 3.14. Then
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1. {a, c} is ag*-closed but it is neither alc-set nor A\-ag*-closed in X.

2. {a, b} is both alc-set and A-ag*-closed but not ag*-closed in X.
Example 3.31. Let X = {a, b, ¢} with 7 = {0, {b, ¢}, X}. Then

1. {a, b} is sg*-closed but it is neither slc-set nor A-sg*-closed in X.

2. {b, ¢} is both slc-set and A-sg*-closed but not sg*-closed in X.

Remark 3.32. We have the following diagrams for the subsets we stated above:

Diagram 3.

A, -set Ag-set

NN

A-ag*-closed — \-sg*-closed

Y

Ay-set

Y
Ap-set Agp-set

Y

Y
A-pg*-closed —— X\-bg*-closed — \-Bg*-closed

Diagram 4.

Q-open ——— Semi-open

NN

alc-set ——— > sle-set

Y
preopen —————>b-open ——— > (3-open

Y

ple-set > blc-set > Blc-set

4 Decompositions of Topological Functions
Definition 4.1. A function f: (X, 7) — (Y, 0) is called

1. M-a-continuous if (V) is a A-a-closed set in X for every closed subset V of
Y.
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2.

3.

4

5.

A-s-continuous if f1(V) is a A-s-closed set in X for every closed subset V of
Y.

A-p-continuous if f1(V) is a A-p-closed set in X for every closed subset V of
Y.

A\-B-continuous if f1(V) is a A-B-closed set in X for every closed subset V of
Y.

A-b-continuous if f1(V) is a A\-b-closed set in X for every closed subset V of
Y.

Definition 4.2. A function f: (X, 7) — (Y, 0) is called

1.

8.

9.

ag*-continuous if (V) is an ag*-closed set in X for every closed subset V of

Y.

sg*-continuous if f1(V) is a sg*-closed set in X for every closed subset V of

Y.

alc-continuous if f1(V) is an ale-set in X for every closed subset V of Y.

. sle-continuous if f1(V) is a slc-set in X for every closed subset V of Y.

A-ag*-continuous if f1(V) is an \-ag*-closed set in X for every closed subset
Vof Y.

A-sg*-continuous if f1(V) is a A-sg*-closed set in X for every closed subset V
of Y.

ple*-continuous if f~1(V) is a plc*-set in X for every closed subset V of Y.
Blc*-continuous if f1(V) is a Blc*-set in X for every closed subset V of Y.

blc*-continuous if f1(V) is a blc*-set in X for every closed subset V of Y.

We have the following decompositions of topological functions.

Theorem 4.3. Let f : X — Y be a function. Then the following are equivalent.

1. f s a-continuous.

2. fis ag-continuous and alc*-continuous.

3. fis ag-continuous and \-a-continuous.

Proof. 1t follows from Theorem 3.10.

Theorem 4.4. Let f : X — Y be a function. Then the following are equivalent.

1. fis semi-continuous.

2. fis gs-continuous and slc*-continuous.

3. fis gs-continuous and \-s-continuous.

Proof. 1t follows from Corollary 3.18 (1).
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Theorem 4.5. Let f: X — Y be a function. Then the following are equivalent.

1. fis precontinuous.
2. fis gp-continuous and plc*-continuous.
3. fis gp-continuous and A-p-continuous.

Proof. 1t follows from Corollary 3.18(2).

Theorem 4.6. Let f: X — Y be a function. Then the following are equivalent.

1. fis B-continuous.
2. fis gsp-continuous and (lc*-continuous.
3. fis gsp-continuous and \-f-continuous.

Proof. 1t follows from Corollary 3.18(3).

Theorem 4.7. Let f: X — Y be a function. Then the following are equivalent.

1. fis b-continuous.
2. fis gb-continuous and blc*-continuous.
3. fis gb-continuous and \-b-continuous.

Proof. 1t follows from Corollary 3.18(4).

Theorem 4.8. Let f: X — Y be a function. Then the following are equivalent.

1. fis continuous.
2. fis ag*-continuous and alc-continuous.
3. fis ag*-continuous and \-ag*-continuous.

Proof. 1t follows from Theorem 3.28(1).

Theorem 4.9. Let f: X — Y be a function. Then the following are equivalent.

1. fis continuous.
2. fis sg™-continuous and slc-continuous.
3. fis sg*-continuous and \-sg*-continuous.

Proof. 1t follows from Theorem 3.28(1).

39

Remark 4.10. The following Examples show that the concepts of the following are

independent of each other.
1. ag-continuity and alc*-continuity.
2. ag-continuity and A-a-continuity.

3. gs-continuity and slc*-continuity.
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gs-continuity and \-s-continuity.
gp-continuity and plc*-continuity.
gp-continuity and \-p-continuity.
gsp-continuity and Blc*-continuity.

gsp-continuity and \-3-continuity.

© RS G

gb-continuity and blc*-continuity.
10. gb-continuity and A-b-continuity.

11. ag*-continuity and alc-continuity.
12. ag*-continuity and \-ag*-continuity.
13. sg*-continuity and slc-continuity.

14. sg*-continuity and \-sg*-continuity.

Example 4.11. Let X = Y = {a, b, ¢}, 7 = {0, {a, b}, X} and o = {0, {b}, {q,
b}, Y}. Then the identity function f: (X, 7) — (Y, o) is ag-continuous but it is
neither alc*-continuous nor A-c-continuous.

Example 4.12. Let X = Y = {a, b, ¢}, 7 = {0, {a}, {a, b}, X} and o = {0, {c},
{b, ¢}, Y}. Then the identity function f: (X, 7) — (Y, o) is both alc*-continuous
and A-a-continuous but not ag-continuous.

Example 4.13. Let X, Y, 7 and o be as in Example 4.11. Then the identity function
f: (X, 7)— (Y, 0)is ag*continuous but it is neither alc-continuous nor A-ag*-
continuous.

Example 4.14. Let X = Y = {a, b, ¢}, 7 = {0, {a, b}, X} and 0 = {0, {c},
Y}. Then the identity function f : (X, 7) — (Y, o) is both alc-continuous and
A-ag*-continuous but not ag*-continuous.

Example 4.15. Let X = Y ={a, b, ¢}, 7 = {0, {a}, X} and 0 = {0, {c}, {a, ¢},
Y}. Then the identity function f: (X, 7) — (Y, o) is gs-continuous but it is neither
sle*-continuous nor \-s-continuous.

Example 4.16. Let X = Y = {a, b, ¢}, 7 = {0, {a}, X} and o = {0, {a}, {0,
c}, Y}. Then the identity function f: (X, 7) — (Y, o) is both slc*-continuous and
A-s-continuous but not gs-continuous.

Example 4.17. Let X = Y ={a, b, ¢}, 7 = {0, {b, ¢}, X} and o = {0, {c}, {0,
c}, Y}. Then the identity function f: (X, 7) — (Y, o) is sg*-continuous but it is
neither slc-continuous nor \-sg*-continuous.

Example 4.18. Let X = Y = {a, b, ¢}, 7 = {0, {b, ¢}, X} and 0 = {0, {a},
Y}. Then the identity function f: (X, 7) — (Y, o) is both slc-continuous and
A-sg*-continuous but not sg*-continuous.
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Example 4.19. Let X = Y ={a, b, ¢}, 7 = {0, {b}, X} and 0 = {0, {c}, {b, ¢},
Y}. Then the identity function f : (X, 7) — (Y, o) is gp-continuous but it is neither
plc*-continuous nor A-p-continuous.

Example 4.20. Let X = Y = {a, b, ¢}, 7 = {0, {b}, X} and 0 = {0, {a, ¢},
Y}. Then the identity function f: (X, 7) — (Y, o) is both plc*-continuous and
A-p-continuous but not gp-continuous.

Example 4.21. In Example 4.19, fis gsp-continuous but it is neither Blc*-continuous
nor \-3-continuous

Example 4.22. In Example 4.18, f is both Blc*-continuous and \-3-continuous but
not gsp-continuous.

Example 4.23. In Example .20, f is gb-continuous but it is neither blc*-continuous
nor A-b-continuous.

Example 4.24. Let X, Y and 7 be as in Example 4.15 and o = {0, {b, ¢}, Y}. Then
the identity function f: (X, 7) — (Y, o) is both blc*-continuous and \-b-continuous
but not gb-continuous.

5 Conclusion

Topology is an area of Mathematics concerned with the properties of space that are
preserved under continuous deformations including stretching and bending, but not
tearing. By the middle of the 20th century, topology had become a major branch of
Mathematics.

Topology as a branch of Mathematics can be formally defined as the study of
qualitative properties of certain objects that are invariant under a certain kind of
transformation especially those properties that are invariant under a certain kind of
equivalence and it is the study of those properties of geometric configurations which
remain invariant when these configurations are subjected to one-to-one bicontinuous
transformations or homeomorphisms. Topology operates with more general concepts
than analysis. Differential properties of a given transformation are nonessential for
topology but bicontinuity is essential. As a consequence, topology is often suitable
for the solution of problems to which analysis cannot give the answer.

Though the concept of topology has been identified as a difficult territory in
Mathematics, we have taken it up as a challenge and cherishingly worked out this
research study. It can also further up the understanding of basic structure of classical
mathematics and offers new methods and results in obtaining significant results of
classical mathematics. Moreover it also has applications in some important fields of
Science and Technology.

In this paper, we obtained new classes of sets by using A-closed sets in topological
spaces and studied their basic properties; and their connections with other kind of
topological sets. Moreover new decompositions of topological functions are obtained.
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Abstaract — Fletcher et al. [1] introduced the concept of pairwise compactness for bitopological
spaces. Reilly extended this concept to a larger class of bitopological spaces, called pairwise Lindelof
spaces. In this paper we prove some results on the bitopological spaces which have well known
topological analogues.

Keywords — Bitopological space; pairwise Lindelof; pairwise countably compact.

1 Introduction

In 1963, Kelly [2] introduced the notion of bitopological spaces. Such spaces equipped
with its two (arbitrary) topologies. The reader is suggested to refer [2] for the detail
definitions and notations. Furthermore, Kelly was extended some of the standard
results of separation axioms in a topological space to a bitopological space. Such
extensions are pairwise regular, pairwise Hausdorff and pairwise normal. There
are several works [1] dedicated to the investigation of bitopologies, i.e., pairs of
topologies on the same set; most of them deal with the theory itself but very few
with applications. We are concerned in this paper with the idea of pairwise Lindelof
in bitopological spaces and give some results.

2 Preliminary

Throughout this paper, all spaces (X, 7) and (X, 7y, 72) (or simply X) are always
mean topological spaces and bitopological spaces, respectively. Let F' be a subset

** Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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of (X,m,7), 1 — cl(F) and 15 — cl(F') represent the 1-closure and 7y-closure of
F with respect to 71 and 7y, respectively. The open (respectively closed) sets in
X with respect to 7y is denoted by 7-open (respectively 7i-closed), and the open
(respectively closed) sets in X with respect to 7 is denoted by m-open (respectively
To-closed).

Definition 2.1. A bitopological space (X, T, 7T2) is said to be pairwise-compact if
the topological space (X, 1) and (X, T2) are both compact. Equivalently, (X, 11, T2) is
pairwise-compact if every T -open cover of X can be reduced to a finite Ti-open cover
and every To-open cover of X can be reduced to a finite To-open cover.

In [5], it was mentioned that Birsan has given definitions of pairwise compactness
which do allow Tychonoff product theorems. According to Birsan, a bitopological
space (X, 71, 72) is said to be pairwise compact (denote p;-compact) if every 7-open
cover of X can be reduced to a finite m-open cover and every my-open cover of X
can be reduced to a finite 7-open cover. We will generalize it to pairwise Lindelof
in Section 4.

We shall sometimes say that a bitopological space (X, 1, 72) has a particular
topological property, without referring specifically to 7 or 75, and we shall then
mean that both (X, 1) and (X, 75) have the property; for instance, (X, 71, 72) is said
to satisfy second axiom of countability if both (X, ) and (X, 72) do so.

Definition 2.2. Let (X, 7y, 72) be a bitopological space.
(a) A set G is said to be pairwise open if G are both T1-open and To-open in X,
(b) A set F is said to be pairwise closed if F' are both 1 -closed and 1o-closed in X .

(c) A cover of a bitopological space (X, T1,T2) is called pairwise open if its elements
are members of 71 and T, and if contains at least one non-empty member of
each 71 and 7.

3 Bitopological Separation Axioms

Definition 3.1. /2] In a bitopological space (X, T, 72), 71 is said to be reqular with

respect to o if, for each point x € X, there is a Ti-neighbourhood base of To-closed

sets, or, as is easily seen to be equivalent, if, for each point x € X and each 1, -closed

set F' such that x ¢ F,there are a Ti-open set U and a o-open set V' such that
x€U, FCV,andUNV = 0.

(X, 71, 72) 18, or 7y and 1o are, pairwise reqular if Ty is reqular with respect to T and

vice versa.

Theorem 3.1. In a bitopological space (X,11,T2), T is reqular with respect to To
if and only if for each point x € X and 1 -open set H containing x, there exists a
T1-open set U such that

reUCn—cdU)CH.
Proof. (Necessity) suppose 11 is reqular with respect to 5. Let x € X and H is a
T1-open set containing x. Then G = X\ H is a 11-closed set which © ¢ G. Since 1y is
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reqular with respect to 1o, then there are Ti-open set U and 1o-open set V' such that
reUGCV andUNV =0. Since U C X\V, then 7 — cl(U) C 15 — cl(X\V) =
X\VCX\G=H. Thus, z € U C 1o —cl(U) C H as desired.

(Sufficiency)Suppose the condition holds. Let x € X and F is a 1y-closed set such
that © ¢ F. Then x € X\F, and by hypothesis there exists a Ti-open set U such
that x € U C 1 — cl(U) C X\F. It follows that x € U, FF C X\1o — cl(U) and
UnN(X\7m —cl(U)) =0. This completes the proof. O

Remark 3.1. In other words, Theorem 3.1 stated that T, is reqular with respect to 5
if, for each point x € X, there is a T -neighbourhood base of To-closed sets containing
x. This is equivalent definition in Definition 3.1.

If 7 is also regular with respect to 71, we have the similar result as previous
theorem and stated in the following corollary. By these reason we obtain a pairwise
regular space.

Corollary 3.1. In a space bitopological space (X, T, Ts), To is reqular with respect to
71 if and only if for each point x € X and 19-open set H containing x, there exists a
Ty-open set U such that v € U C 1 —cl(U) C H.

If Y C X, then the collections (11)y = {ANY : A€ n}and (n)y ={BNY : B €
7o} are the relative topology on Y . A bitopological space (Y, (71)y, (72)y) is then
called a subspace of (X, 7y, 72). Moreover, Y is said to be pairwise closed subspace
of X if Y is both (71)y-closed and (73)y-closed in X. The pairwise open subspace is
defined in the similar way.
the following theorem shows that, pairwise regular spaces satisfy the hereditary prop-
erty.

Theorem 3.2. Every subspace of a pairwise reqular bitopological space (X, Ty, T2) is
pairwise reqular.
Proof. Let (X, 7,72) be a pairwise reqular space and let (Y, (m1)y, (12)y) be a sub-
space of (X, 11,72). Furthermore, let F' be a (11)y-closed set in Y, thenF = ANY
where A is a 1y-closed set in X. Now ify € Y and y ¢ F, theny ¢ A, so there are
T1-open set U and To-open set V' such that

yelU, ACVandUNV =40.
But UNY and VNY are (11)y -open set and (19)y -open set in'Y', respectively. Also
yeUNY, FCVNYand UNY)N(VNY)=UNV)NY =0.

Similarly, let G be a (19)y-closed set in'Y" | then G = BNY where B is a To-closed
set in X. Nowify € Y andY ¢ G, then y ¢ B, so there are m-open set U and
To-open set V' such that

yecU, BCVandUNV =0.
But UNY and VNY are (12)y-open set and (11)y-open set in Y, respectively. Also
yeUNY,GCVNY and (UNY)N(VNY)=0. This completes the proof. O

Definition 3.2. (Kelly, 1963). A bitopological space (X, 11, To) is said to be pairwise
normal if, given a Ti-closed set A and a To-closed set B with AN B = (), there exist
a To-open set U and a Ti-open set V such that A C U,B CV and UNV = (.
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FEquivalently, (X, 11, T2) is pairwise normal if, given a Ty-closed set C' and a 11 -open
set D such that C C D, there are a Ti-open set G and To-closed set F' such that
CCGECFCD.

We shall prove the equivalent definition above in the following theorem.

Theorem 3.3. A bitopological space (X, 11, T2) is pairwise normal if and only if given
a To-closed set C' and a T -open set D such that C' C D, there are a 11-open set G
and a To-closed set F' such that C C G C F C D.

Proof. (Necessity) Suppose (X, 11, T2) is pairwise normal. Let C' be a 1o-closed set and
D a 7y-open set such that C C D. Then K = X\D is a 11-closed set with KNC' = ().
Since (X, T, T2) 1s pairwise normal, there exists a Ty-open set U and a Ti-open set
V such that K CU,C C G and UNG =(. Hence G C X\U C X\K = D. Thus
C C G C X\UCD and the result follows by taking X\U = F.
(Sufficiency)Suppose the condition holds. Let A be a Ti-closed set and B a mo-closed
set with AN B = (. Then D = X\A is a 11-open set with B C D. By hypothesis,
there are a T -open set G and a To-closed set F' such that B C G C F C D. It follows
that A= X\D C X\F,B C G and (X\F)NG = 0. where X\F is m5-open set and
G is T -open set. This completes the proof. O

Theorem 3.4. A bitopological space (X, T1,T2) is pairwise normal if and only if given
a Ti-closed set C' and a mo-open set D such that C' C D, there are a To-open set U
and a 11-closed set F' such that C CU C F C D.

Proof. (Necessity) Suppose (X, 71, 72) is pairwise normal. Let C' be a 1 -closed set
and D a 1y-open set such that C C D. Then K = X — D 1s a 1»-closed set with
CNK = 0. Since (X, 11, 72) is pairwise normal, there exists a To-open set U and a 7, -
open set V such that C CU, K CV , andUNV =0. HenceU C X\V C X\K = D.
Thus C CU C X\V C D and the result follows by taking X\V = F.
(Sufficiency)Suppose the condition holds. Let A be a Ti-closed set and B a mo-closed
set with ANB =1(. Then D = X — B is a T2-open set with A C D. By hypothesis,
there are a To-open set U and a 1 -closed set F' such that A C U C F C D. It follows
that B = X\D C X\F,A CU and (X\F)NU = (. where X\F is m9-open set and
U is m9-open set. This completes the proof. O

Now we define a new weaker form of pairwise normal bitopological spaces.

Definition 3.3. A space (X, 71, 72) is said to be pairwise weak normal if, given A
and B are pairwise closed sets with AN B = (), there exist a To-open set U and a
T1-open set V' such that ACU,BCV ,and UNV = .

Theorem 3.5. A bitopological space (X, 11, 72) is pairwise weak normal if and only
if given a pairwise closed set C' and a pairwise open set D such that C C D, there
are a T -open set G and a To-closed set F such that C C G C F C D.

Proof. (Necessity) Suppose (X, 1, 72) is pairwise weak normal. Let C be a pairwise
closed set and D a pairwise open set such that C C D. Then K = X\D is a pairwise
closed set with K N C = (. Since (X, 71, 72) is pairwise weak normal, there exists a
To-open set U and a Ti-open set G such that K C U,C C G and UNG = (. Hence
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GCX\UCX\K=D. Thus C C G C X\U C D and the result follows by taking
X\U =F.

(Sufficiency)Suppose the condition holds. Let A and B are pairwise closed sets with
ANB =0. Then D = X\ A is a pairwise open set with B C D. By hypothesis, there
are a T1-open set G and a To-closed set F' such that B C G C F C D. It follows that
A=X\D CX\F,BCG and (X\F)NG = 0. where X\F is 15-open set and G is
Ti-open set. This completes the proof. O

Example 3.1. Consider X = {a,b,c} with topologies 1 = {0,{b},{c},{b,c}, X}
and 1o = {0, {a}, {b}, {a,b},{b,c}, X} defined on X. Observe that 11-closed subsets
of X are ), {a,c},{a,b},{a}, and X and m5-closed subsets of X are (,{b,c}, {a,c},{c},{a}
and X. It follows that (X, T, T2) does satisfy the condition in definition of pairwise
normal. One of them we can take A = {a}, B = {b,c},U = {a} and V = {b,c} in

the definition, we can checks for the other. Hence (X, 11, T2) is pairwise normal, and
hence pairwise weak normal.

It is clear from definition that every pairwise normal space is pairwise weak
normal. The converse is not true in general as shown in the following counter-
example.

Example 3.2. Consider X = {a,b,c,d} with topologies 71 = {0,{a,b}, X} and
7 = {0,{a}, {b},{b,c,d}, X} defined on X. Observe that 1-closed subsets of X
are 0, {c,d} and X and m5-closed subsets of X are 0,{b,c,d},{a} and X is pairwise
weak normal as we can checks since the only pairwise closed sets of X are () and
X. However (X, 1, 7) is not pairwise normal since the 1-closed set A = {¢,d} and
To-closed set B = {a} satisfy AN B = 0, but do not exist the To-open set U and
T1-open set V such that ACU,BCV andUNV = (.

Naturally, any result stated in terms of 71 and 75 has a dual, in terms of 75 and 7.
The definitions of separation properties of two topologies 71 and 7», such as pairwise
regularity, of course reduce to the usual separation properties of one topology 71,
such as regularity, when we take 71 = 75, and the theorems quoted above then yield
as corollaries of the classical results of which they are generalizations.

4 Pairwise Lindelof Spaces

According to Definition 2.1, we generalize pairwise compact spaces to pairwise Lin-
delof as the following.

Definition 4.1. A bitopological space (X, 11, 72) is said to be pairwisw Lindeldf if
the topological space (X, ) and (X, 12) are both Lindeldf. FEquivalently, (X, T, 72)
is pairwisw Lindelof if every m-open cover of X can be reduced to a countable T-
open cover and every To-open cover of X can be reduced to a countable T5-open cover.
Equivalently, (X, T, T2) is pairwise Lindeldf if every pairwise open cover of (X, 1y, T2)
be a countable subcover.

Recall that, the relation between compactness and Lindelofness is very strong,
where every pairwise compact space is pairwise Lindelof but not the converse, and
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hence the relation between pairwise compactness and pairwise Lindelofness is very
strong also.

Example 4.1. Let X = [0,], 7y be the discrete topology on X and 1o be the topology
{0, X, (a,Q2)} for each a € X. Then Reilly in [}] proved that (X, T, 72) is pairwise
Lindeldf. Furthermore, (X, 11,T2) is not pairwise compact.

Theorem 4.1. If (X, 7, 7) is second countable bitopological space, then (X, 11, Ts)
is pairwise Lindeldf.

Proof. In bitopological space (X,11,72), let {B,} and {C,}, n=1,2,... be countable
bases for 7 and 1o respectively. Let U = {U, : a € V} be a 1-open cover of X,
then for every x € X, there exists U, € U such that x € U,. From hypothesis
(X, 11, 72) is second countable, then so is (X, 7). Since {B,} is a base for i, for
each v € U, and U, € U , there is B, € {B,} such that x € B, C U, . Hence
X =U{B::z€ X}. But {B, : z € X} C {B,}, so it is countable and hence
{By:xe€ X} ={B,:ne€ N }. Foreachn e N, choose one set B, € {B,} such
that B, CU,. Then X = J{B,:n€ N }={U,:ne€ N } and so{U,:ne N}
is a countable subcover of X. Thus (X, 1) is a Lindeldf space. Similarly (X, ) is
also a Lindeldf space. Therefore (X, 1, T2) is pairwise Lindeldf. O

Proposition 4.1. Every pairwise closed subset of a pairwise Lindelof bitopological
space (X, 1, 72) is pairwise Lindeldf.

Proof. Let (X, 11, T2) be a pairwise Lindeldf bitopological space and let F' be a pairwise
closed subset of X. Then (X, 1) and (X, 72) are Lindeldf, and F are 11-closed and
Ty-closed subset of X. If {U, : a € V} is a 1y-open cover of F', then X = {UU, : a €
V} U (X\F). Hence the collection {U, : o € V} and X\F form a i -open cover of
X. Since (X, 1) is Lindeldf, there will be a countable subcover, {X\F,Uqy1,Uqsg, ...}
But F and X\F are disjoint; hence the subcollection of Ti-open set {Uy; : 1 € N }
also cover F, and so {U, : « € V} has a countable subcover. O

Definition 4.2. [3] A bitopological space (X, 11, 73) is called pairwise countably com-
pact if every countable pairwise open cover of (X, T, T2) has a finite subcover.

The proof of the following two results are straightforward.

Proposition 4.2. In a pairwise Lindelof space, pairwise countable compactness, is
equivalent to pairwise compactness.

Proposition 4.3. The pairwise continuous image of a pairwise Lindelof space is
pairwise Lindelof.

Theorem 4.2. If A is a proper subset of a pairwise Lindeldf bitopological space
(X, 11, 72) which is Ty -closed, then A is pairwise Lindeldf and To-Lindeldf.

Proof. Let (3 be any pairwise open cover of a bitopological space (A, T1|A, 12|A). Then
BU{(X\A)} induces a pairwise open cover of a bitopological space (X, Ty, Ty) which
has a countable subcover and hence so does 3. Let 3* be any To-open cover of A.
Then 5* U {(X\A)} is a pairwise open cover of (X, T1,72) which has a countable
subcover and hence so does (3*.
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Proposition 4.4. In a bitopological space (X, T, 7T2), let 7y be Lindeldf with respect
to 5. Then 1 -closed subset of (X, 11, 7Ts) is also Ti-Lindeldf with respect to Ts.
Proof. Let F be a Ti-closed subset of (X, 1,72) and let {U, : a € V} be a 11-open
cover of F', then X = (U{U, : a € V}) U (X\F), hence the collection {U, : o € V}
form a T -open cover of X. Since 11 1s Lindelof with respect to o, then the Ti-open
cover of X can be reduced to a countable To-open cover { X\F, Uy, Uy, ...}. But for
X\F are disjoint, hence the subcollection of To-open set {Uy; :i € N } also cover F
and so {U, : a € V} can be reduced to a countable mo-open cover. This shows that
F' is 7 -Lindelof with respect to 7.

Corollary 4.1. If 7 is Lindelof with respect to 11, then To-closed subset of a bitopo-
logical space (X, T, T2) is To-Lindeldf with respect to .

5 Conclusion

For the following separation axioms, we can apply the results established in Sections
3 and 4:

(1) Spaces defined in Definition 3.3.

(2) Spaces defined in Definition 4.1.
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1 Introduction

Since Chang [6] introduced fuzzy set theory to topology, many researchers have
successfully generalized the theory of general topology to the fuzzy setting with
crisp methods. In Chang’s I-topology on a set X, each open set was fuzzy, while the
topology itself was a crisp subset of the family of all fuzzy subsets of X.

From a different direction, the fundamental idea of a topology itself being fuzzy
was first defined by Héhle [14] in 1980, then was independently generalized be each of
Kubiak [17] and Séstak [25] in 1985 and independently rediscovered by Ying [26, 27|
in Hohle’s original setting in 1991 in Hohle’s approach a topology was an L-subset
of a traditional powerset.

In 1999, the axioms of many-valued L-fuzzy topological spaces and L-fuzzy con-
tinuous mappings are given a lattice-theoretical foundation by Hohle and Sostak
and a categorical foundation by Rodabaugh [23]. Sostak [25] introduced the fuzzy

** Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
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topology as an extension of Chang’s fuzzy topology, Ramadan and his colleagues [21]
called it smooth topology.

Closure and interior operators on ordinary sets belongs to the very fundamental
mathematical structure with direct applications, both mathematical (topology, logic,
for instance) and extra mathematical (e.g. data mining, knowledge representation).
In fuzzy set theory, several particular cases as well as general theory of closure
operators which operate with fuzzy sets (so called fuzzy closure operators) are studied
(Mashour and Ghanim [19], Bandler and Kohout [1], Bélohavek [2, 3], Gerla [11]).

Interior operators, however, have appeared in a few studies only (Bandler and
Kohout [1], Dubois and Prade [7], Bodenhofer et al [5]), and it seem that no general
theory of interior operators appeared so far. In ordinary set theory, closure and
interior operators on a set in a bijective correspondence.

In this paper is, we investigate the concept of L-fuzzy interior (closure) operators
using the definition of the L-fuzzy topology, which deduced an L-fuzzy (interior)
closure spaces and vise versa. Continuity property and examples of those spaces are
also discussed.

2 Preliminary

Definition 2.1. [4, 15] An algebra (L,A,V,®,—, L, T) is called a complete resid-
uated lattice if it satisfies the following conditions

(C1) L= (L,<,V,A, L, T)is a complete lattice with the greatest element T and
the least element L ;

(C2) (L,®, T) is a commutative monoid;

(C3rzoy<zifz <y— zforzy, z€ L.

An operator * : L — L defined by a* = a — 0 is called a strong negation if

a™ = a.
For a € L, X € LX, we denote (v — \), (a ®N), ax, T, € LX as

(a—=XN)(z)=a—=Az), (@@N)(z)=a0 Xz), ax(z) =q,

T, ity=a,
Ta(y) = { 1, otherwise.

In this paper, we assume that (L,V,A,®,—, *, L, T) be a complete residuated
lattice with a strong negation *.

Lemma 2.2. [4, 15, 24] For each z,vy, z, x;,y; € L, the following properties hold.

Dez—-y=Tiffe<y, z2—>T=Tand T -z =z,
2 Ify<zthner -y<z—z z—-ax<y—z by <zxdzand
zOyY<z0O 2,
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T
O Vier¥i) = Vier(z © yi) and © © (Ajer vi) < Njer(z © 91),
T ® (Vier ¥i) = Vier(@ @ wi) and (V;cp @) ©y = Vep(z: D v),
T — (Nier ¥i) = Nier( — i) and (Ajep 20) — vy > Viep(Ti — y),
r— (\/ier Yi) > vier(x — y;) and (vier Ti) — Y= /\ier(xi —Y),
\/ier Ti — \/ier Yi = /\ier(xi — y;) and /\ieF Ti — /\ieF Yi > /\iEF(mi — Yi),
(z—y)oz<yand (zr -y Oy —2) < (v — 2),
r—y<(y—z —(r—2z2,2—>y<(z—2 — (2 —y) and

<(
O@F—w) <(zd2)— (ydw),
<(z0z2) = (yow),

Definition 2.3. [2, 3] Let X be a set. A function R : X x X — L is called an
L-partial order if it satisfies the following conditions

(E1) reflexive if R(z,x) =T for all x € X,

(E2) transitive if R(z,y) ® R(y,2) < R(z, z) for all z,y,z € X,

(E3) if R(z,y) = R(y,x) = T, then z = y.

Lemma 2.4. [2, 3] For a given set X, define a binary mapping S : LX x L* — L by
S = N\ (Az) = p(x)).
zeX

Then, for each \, i, p,v € L* and « € L the following properties hold.
(1) S is an L-partial order on L¥,

)
) A< piff S\, p)>T,
(3) If A < pu, then S(p, \) < S(p, n) and S(A, p) > S(u, p) for each p € L,
(4) S\, ) © S(v,p) < SAOV, p©p),
(5) S\ p) © S(v,p) < SASv,n® p),
6) SN a—pu)=Sao\p)=a— S\ u) and a® S\ u) < S\ a6 p),
() p©S(p,A) <A, S, A) = A= pand S(A, p) = S(p, A).

Proof. We need to prove (5) by Lemma 2.2(8),(14), we have
Shev,pep) = N\ (Aev) () = (usp) ()

> (ANOX =)o (A\w-—p)

=S\, pn) ©S(v,p).
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Lemma 2.5. [2, 3] Let ¢ : X — Y be an ordinary mapping. Define ¢~ : L* — LY
and ¢~ : LY — LX by

\/ Mz) VaeL® yev,
é(z)=y
¢~ (1) (x) = w(d(x)) = pog(x) Ve L.
Then for \,pu € LX and p,v e LY,

S n) <897 (A), 07 (1), Sp,v) <S¢ (p), ¢~ (v)),

and the equalities hold if ¢ is bijective.

Definition 2.6. [15] A map 7 : L* — L is called an L-fuzzy topology on X if it
satisfies the following conditions.

(LO1) T(Lx)=T(Tx)=T,
(LO2) TG>T\ o T(1), VA ue LY,
(LO3) T(V; M) = N, T(N), YV {Aitier € L.

An L-fuzzy topology is enriched if (R) 7(a® X) > T (\) for all A € LX o € L.

The pair (X,7) is called an L-fuzzy topological space. Let (X, 7x) and (Y, 7y)
be two L-fuzzy topological spaces. A mapping ¢ : X — Y is said to be LF-fuzzy
continuous iff for each A € LY, we have

Ty(A) < Tx (97 (N))-

Definition 2.7. [15] A map F : LX — L is called an L-fuzzy co-topology on X if it
satisfies the following conditions.

(LF1) F(lx)=F(Tx) =T,
(LF2) FOA @) > F(N) @ F(u), ¥ Ape LX)
(LE3) F(A; X)) < Vi F(N), ¥ {Aidier € LY.

The pair (X, F) is called an L-fuzzy co-topological space. An L-fuzzy co-topology
is called enriched if ~ (S) F(a — A) > F()\) forall A€ L¥ and a € L.

Let (X, Fx) and (Y, Fy) be two L-fuzzy co-topological spaces. A mapping ¢ :
X — Y is said to be LF-fuzzy continuous iff for each A € LY, we have

Fr(A) < Fx(9™ (V).

Definition 2.8. [22] Amap Z: LX x L, — L%, L, = L — {1} is called an L-fuzzy
interior operator on X if Z satisfies the following conditions

(I1) Z(Tx,r) = Tx,
(I2) Z(\,r) < A, or equivalently, S(Z(\,7),\) > T for all A € L¥,
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(I3) SO\, 1) < S(Z(A,7),Z(,r)) for all A\, u € L,
(I4) If r < s, then I()\ s) <I(\1),
(I5) I(A@/L,r@s) >Z(A\ ) @I(u, s).

The pair (X,Z) is called an L-fuzzy interior space. An L-fuzzy interior space
(X,Z) is topological if
(T) Z(Z(\,r),r) =Z(\,7) YA€ LX relL,.

Let (X,Zx) and (X,Zy) be two L-fuzzy interior spaces. A map ¢: X — Y is
called Z-map if

¢ (Zy (u, 7)) < Ix(p~(p),r) Ype LY relL,.

Lemma 2.9. Let Z : LX x L, — LX, L, = L — {1} be a map. It satisfies
S\, 1) < SN, 7),Z(u,r)) for all \,u € LY iff Z(a® \,7) > a ® Z(\,r) and
I 1) <Z(p,r)if X <p.

Proof. X < pu, T =S\ pn) <S(Z(\r),Z(u,r)), then Z(\,r) < Z(u,r). Moreover,
SZ\ ), I(a® A1) >SN\ a®A) > a. That is,
a®@INr)<I(a®AT).
On the other hand, put a = S(A, p), then
S ) OZA 1) <Z(SA\p) @A r) <Z(u,r).

Hence, S\, p) < SZ\71),Z(u,1)).

Definition 2.10. A map C : LX x L, — L is called an L-fuzzy closure operator
on X if C satisfies the following conditions

(C1) C(Lx,r) = Lx,

(C2) C(\,r) > A, or equivalently, S(\,C(\,r)) = Tx for all A € L¥,
(C3) S\, ) < S(C(N,7),C(p, 7)) for all A, € LY,

(C4) If r < s, then C(\, 1) < C(\,s),

(C5) CAD p, 7 ©s) <C(A\ 1) DC(, 5).

The pair (X,C) is called an L-fuzzy closure space. An L-fuzzy closure space
C) is topological if
(T) C(C(\,r),r)=C\,r)VY e LX relL,.

(X7

Let (X,Cx) and (X,Cy) be two L-fuzzy closure spaces. A map ¢ : X — Y is
called a C-map if ¢~ (Cy (A, 7)) > Cx(¢~(N),r), YAe LY, relL,.

Lemma 2.11. Let C : LX x L, — LX, L, = L — {L} be a map. It satisfies
S\, 1) < S(C\71),Cp,r)) for all \,p € LX iff C(a® \,7) > a® C(\,7) and
CAr) <C(u,r)if A < p.
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3 L-fuzzy Interior Space Induced by L-fuzzy Topo-
logical Space

Theorem 3.1. Let (X,7) be an L-fuzzy topological space. Define the mapping
Ir : LX x L, — LX as follows

Ir(\r) = \/{MQSIM A) [T (p) =7}

Then we have the following properties.
(1) (X,Zr) is an L-fuzzy interior space,
(2) If (X, 7) is enriched, then (X,Zr) is a strong L-fuzzy interior space,

)
)
(3) Zr(Ar) <V{p | p < AT (p) =7},
(4) If (X, 7) is enriched, then the equality in (3) holds.

Proof. (1) (I1) For each T (u) >, S(Tx, Tx) = T. Thus,
Ir(Tx,r) > Tx ®T = Tx. Therefore, Zr(Tx,r) = Tx.

(12) By Lemma 2.4(7), we have  Z7(A\,7) =\ {p © S(u, A) [ T () > 1} < A
for all A € L¥.

(I3) Using Lemma 2.2(8),(10), we can get

S(Zr(\r). Ir(p,r) = N\ (Zr(\r)(x) = Ir(p,r)(x))

zeX

=A(V rp@)osw)— p(x) © S(p, 1))
(p)2r

xeX T

/\ /\ ) © S(p,A) = plx) © S(p, )

zeX T(p)>r

> A\ A (SN = S(p, 1) = SO, ).

zeX T(p)>r

(I4) If r <'s, then

Ir(\s) =\ oSN < \/ noS(u ) =Ir(\r).
T(p)>s T(p)=zr

(I5) By Lemma 2.4(4), we have

Ir(\ 1) ©I7(p, s) = \/ p1©S(p1, A) © \/ p2 © S(p2, 1)

T(p1)2r T (p2)=s

V'V (010m) @S, N) @ S(a, )

T(p1)2r T(p2)=s

< Vo (m©p)0S(©p O p)
T(p1)OT (p2)2rOs

=Zr(A O p,ros).
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(2) Since 7 is enriched, 7 (Z7 (A, 7)) > r. Thus,

ZT(ZT<>‘7T>7T>: \/ MGS(Ma:ZT()"T))

T(p)>r

> Tr(\ ) © S(Zr(\ 1), Zr(A\ 1) = Tr(\ 7).

(3) For each 7 (u) > r with p <X, wehave p=T0Ou < S(u, A) ©p, it follows
that

Vo lplnsay< \/ Swhop=Ir(\r).

T(u)>r T(n)>r

(4) For any 7T (p) >r, T(S(u,\) ©p) > T (n) > r, because 7 is enriched.
ThUS, I’T(}‘a M) = \/T(M)ET S(,ua A) Op =< \/T(u)zr{:u ’ S )‘}

Theorem 3.2. Let (X,Z) be an L-fuzzy interior space. Define the mapping
Tr: LX — L by
Tr(\) = \/{re L| S\I(\r) =T}

Then, 77 is an enriched L-fuzzy topology on X.

Proof. (LO1) Tz(Tx)=V{re L | S(Tx,Z(Tx,r)) = T}, and
Tr(Lx) =V{relL|S(Llx,Z(Lx,r)) =T}

(LO2) By Lemma 2.4(4) and Definition 2.8(I5), we have

S(/\l,I()\l,T>) ® S()\Q,I()\Q, S)) S S()\l ® )\2,1()\1,7") @I()\Q, S))
S S()\l ® )\Q,I()\l ® )\2,7“ ® S))

If S(A1,Z(A,7)) =T and S(A2,Z(Ag,s)) = T, then
SA O X, I(M © Ag,r @) = T. Thus, Tz(M © Ag) > Tz(A) © Tz(A2).

(LO3) For a family of {)\; | i € [} C L*, we have

T\ M) = \V{re LS\ I\ hir) =T}

> /\\/{r €L | S(Ai,I(\/ Xiyr)) =T}
> /\\/{r eL|S\N,IN,7)=T}= /\TI(AZ.).

Finally, for a € L, and X € L*, we have
Tr(aoN) =\/{reL|S(@@\I(a®\r) =T}
>\/{reL|SaoXaoI(\r) =T}
>\/{re LI S(\Z(\r)=T}="T(N.

Hence, 77 is an enriched L-fuzzy topology on X.
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Theorem 3.3. (1) If (X,Z) is an L-fuzzy interior space, then Zr, < 7.
(2) If (X, 7) is an L-fuzzy topological space, then 77, > 7.

Proof. (1) By Lemma 2.4(7), we have

Iz (A7) \/{MQS ) | Tr(n) > r}
= \/{u@ S(A) © ST 1) | Talu) > r)

<\A{u o SIr) | Ta(p) >} <T(A,7).

m
(2) Let 7(X) > r. Then, Zy(\,r) = \. Thus, 7z, (\) > r. Hence, 7z, > 7.

Theorem 3.4. Let (X,7y) and (Y,7y) be two L-fuzzy topological spaces. If
¢: (X, Tx) — (Y,7y) is an LF-continuous map, then ¢ : (X,Zr.) — (Y,Zz,) is
an [-map.

Proof. By Lemma 2.5 and Definition 2.6, we have

¢~ (Ir, (A1) = ¢~ \/{u@Su, A) | Ty (p) > r})

\/ 6 © S ) | o) 2 1)
(»)

< \/ {07 () © 5007 (1), ¢~ (V) [ Tx(¢™ (1)) = 7}

< \/{p®5 p, ¢~ (W) | Tx(p) = 1} = Iry (¢ (A), 7).

p

Theorem 3.5. Let (X,Zx) and (Y,Zy) be two L-fuzzy interior spaces. If ¢ :
(X,Zx) — (Y,Zy) is an I-map, then ¢ : (X, 77, ) — (Y, 7z, ) is LF-continuous.

Proof. From Theorem 3.4 and Lemma 2.5, we have
S(@7 (), Zx (¢ (A),1) 2 S(¢7(A), 07 (Zy (A, 1)) = S(A, Zy (A, 7))
So, Tz (67 (A) = T (A).

4 [-fuzzy Closure Space Induced by L-fuzzy Co-
topological Space

Theorem 4.1. Let (X, F) be an L-fuzzy co-topological space. Define the mapping
Cr:LXxL, — L% by

F(u)>r
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Then we have the following properties.

(1) (X,Cx) is an L-fuzzy closure space,

(2) If (X, F) is enriched, then (X,Cx) is a topological L-fuzzy closure space,
(3) C(A*,r) = Iz (A, 1),

(49) Cr(\ 1) < Apuyorlit | A < 12}

(5) If (X, F) is enriched, Cr(A, 1) = A gy, {1 | A < ph

Proof. (1) (C1) By Lemma 2.4(7), we have
Cr(Llx,m)(@) = N\ (S(Lx,p) = p(x)) > Lx(z) = L.
F(p)zr

(C2) By Lemma 2.2(11), we have
S\ Cr(A 1) =\ (M) = Cr(A 1) (2))
= ANO@— A (SO n) — px))

zeX F(p)>r

=N\ A Q@ = (A M) ) = ulx)))

z€X F(pu)>r zeX

> A A (@) = (M@) = ale) = ()

ze€X F(u)>r

aANANL () = (\(@) = p(2))) = T.

z€X F(u)>r

(C3) By Lemma 2.2(10), we have

S(Cr(A1),Cr(p,1)) = [\ (Cx(A 1) (@) = Cx(p,7)(x))

xeX ]-—() .7-'(,u )>>r
> A /\ S ) = () = (S(p, p) — p(x)))
zeX F(u

> /\ puHSAu))ZS(M})

(w)>r
(C4) It follows from the definition of Cr.

(C5) By Lemma 2.4(5) and Lemma 2.2(15), we have

68
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CrO @ & Cr(ps) @)= ( N\ SOm) = m@) & ( N\ Sl pe) = pale))

F(p)>r F(p2)>s

= AN A (SO m) = m(@) @ (S(p, p2) — pa(2)))

F(p)2r F(uz)>s

> /\ (SO 1) @ S(p, p2)) — (11 @ p2)())

F(u1®up2)>rOs
> /\ (SA® p, 11 ® p2) — (1 @ p2) ()

Fp1@p2)>ros
=Cr(A® p,r ©s)(x).

(2) Since F is enriched, then F(Cxr(A,r) > r. Thus,

Cr(Cr(\r),r)(@) = [\ (S(Cr(\ 1), 1) — p(x))

F(p)>r
< A (SCrA ), Cr(pr)) — Cr(A7)(2))
FCr(Ar))2r
=Cr(\,7r)(x).
(3)
={ A\ (50w =)}
F(p*)=r
=\ SOpeu =\ poSk)=Ir(\r).
Fu*)>r T(u)>r

(4) If <A then S(A\,u) =T and S\, ) — p < p. Thus,

AN (SO —p) < N\ {nlr<p)

F(p)zr F(pw)zr

(5) For any F(u) > r, F(S(\p) — p) > F(u), ie, F(SA\p) —p) >r
because F is enriched. Thus,

N SO =)= N {nlr<u)

F(u)>r Fp)>r

Theorem 4.2. If C: L% x L, is an L-fuzzy closure operator. Define the mapping
Fe:LX — L by
=\/{reL|SECKr),\=T}

Then, F¢ is an enriched L-fuzzy co-topology on X.
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Proof. (LF1) Fe(Tx)=V{reL|S(C(Tx,r), Tx)=T} by (C2), and
JTC(J—X) = \/{7" €L | S(C(Lx,r),Lx> = T} by (Cl)

(LF2) By Lemma 2.4(5) and (C4), we have

S(C(/\l,r), )\1) ® S(C()\Q,?”), )\2) S S(C()\l,r) EBC()\Q,T), )\1 D )\2)
S S(C()\l S¥) )\2,7“),/\1 ©® )\2)

If S(C(A\,7),A1) =T and S(C(Ag,7),A2) =T, then
S(C()\l S¥ )\2,7“), )\1 &b )\2) =1T. Thus, .'Fc(>\1 N> )\2) > fc(Al) ®© FCO‘Q)'

LF3) For a family of {\; | i € I} C LX, we have
(LF3) y ,

Fe(\M)=\{reL|SCN\xr.m), \N) =

< \/\/{r €L s</\C(Ai,r),AZ-> =T}
<V Vire LIS n) = Th =/ Felh)

Hence, F¢ is an L-fuzzy co-topology on X. By Lemma 2.4(3), (6), we have
Felao— N) = \/{TEL|S(C(0¢—>A7’)0¢—U\)=T}
=\/{reL|S(aocCla—Ar)x=T}
>\/{reL|S5C(@—\),r),\ =T}
> \{reL|S(CM\r).\)=T}=Fe).
Theorem 4.3. Let (X,Cr) be an L-fuzzy closure space, then Cr, > C.
Proof. By Lemma 2.4(7), we have

Cfc(Avr) = /\ (S()HP’) _)M) = /\ ((S(C()\,T),)\)@S()\,/L)) _)/L)
Fe(uw)zr Fe(p)zr

> N (SCA ), n) = n) >CA 7).

Fe(w)>r

Theorem 4.4. Let (X, Fx) and (Y,Fy) be two L-fuzzy co-topological spaces. If
¢ (X,Fx) — (Y, Fy) is an LF-continuous map, then ¢ : (X,Cxr,) — (Y,Cx,) is
a C-map.

Proof. By Lemma 2.11, we have
o Crm) =0 N\ (SOw—-w)= N (SOm) =6 ()

Fy (p)>r Fy (pw)2>r

> A (SN0 (W) = 67 () =Cre (67 (N), 7).

Fx (o (w)2r
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Theorem 4.5. Let (X,Cx) and (Y,Cy) be two L-fuzzy closure spaces. If ¢ :
(X,Cx) — (Y,Cy) is a C-map, then ¢ : (X, Fe,) — (Y, Fey, ) is LEF-continuous.

Proof. From Theorem 4.3, we have

Fex(6~(N) = \/{r € L SCx(¢7(N),r),¢~(N) = T}
z\ﬂfeLIS “(Cy(A 1), 67 () =T}
=\{rerL| A\ Cr\r)(é@) = Ao(x) =T}

zeX

>\/{reL| A\ () —Ay) =T}

yey

=\/{reL|SCy(\r)\)=T}=7Fe ).
Example 4.6. Let (L = [0,1],®, —, *) be a complete residuated lattice defined as
rOy=(+y—-1)V0, z—-y=01—-z+y) Al zx=1—1z.
Let X = {xz,y,2} be a set and let u € [0,1]* be a fuzzy set as follow
p(x) =05, uly) =03, u(z)=0.6.
We define the [0, 1]-fuzzy topology 7 : [0,1]%¥ — [0,1] as follows

1, lf)\:J_X or Tx,
0.3, ifA=pou,
0.6, if A=p,

0, otherwise.

TO) =

Also, we define the [0, 1]-fuzzy co-topology F : [0, 1]* — [0, 1] as follows

]_, lf/\:J_X or Tx,
0.2, iftA=pudupu,

0.6, if A =p,

0, otherwise.

FA) =

(1) By Theorem 3.1, we have Z7 : [0, 1]% x (0, 1] — [0, 1] as a [0, 1]-fuzzy interior
space as follows

(A=), if > 0.6,
IO ) — (AXMx))V (n©® Sk, N), if0.3<r<0.6,
T =0 (AA@) V(10 S ), if0<r <03,
V(g ©p© S o p, ).

For A = (0.1,0, 2,0, 3), we have

7(X,05) = (A M)V (1 ® S(i, N) = (0.1,0.1,0.2)
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Since Z7((0.1,0.1,0.2),7) = (0.1,0.1,0.2) for 0 < r < 0.6, then we have
T(Z7(0.1,0.1,0.2)) = 0.6.

(2) By Theorem 4.1, we have Cr : [0,1]% x (0,1] — [0,1]* as a [0, 1]-fuzzy
closure space as follows

Vaex M), if r > 0.6,
Col ) — (V@) A (SN ) — p), if0.3<r<0.6,
F(A.r) = (V@) A (SN p) —p), if0<r<0.3,
NS p @ p) = p o p),

because S(A,0) = 0= A, .x(A\(2)) = 0=V, cx Al®).

For A = (0.7,0,6,0,8), C£(X,0.5) = (
Since (0.9,0.8,0.9) = Cx(Cr(A,0.5),0.5) # Cx(,0.5) = (0.8,0.8,0.9).

<
,><
=2
>
©
>
=
!
=
I

(0.8,0.8,0.9).

5 Conclusion

In this paper, we managed to deduce a new form of an L-fuzzy interior space ( L-fuzzy
closure space) through an L-fuzzy topological space (L-fuzzy co-topological space)
and vise versa in a complete residuated lattice. We gave an example on [0,1] interval
and finally we proved that the continuity property is compatible with the introduced
spaces.
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Abstract — The concepts of exterior and boundary in multiset topological space are introduced. We
further established few relationships between the concepts of boundary, closure, exterior and interior
of an M- set. These concepts have been pigeonholed by other existing notions viz., open sets, closed
sets, clopen sets and limit points. The necessary and sufficient condition for a multiset to have an
empty exterior is also discussed.
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1 Introduction

The theory of sets is indispensable to the world of mathematics. But in set theory where repetitions
of objects are not allowed it often become difficult to complex systems. If one considers those complex
systems where repetitions of objects become certainly inevitable, the set theoretical concepts fails and
thus one need more sophisticated tools to handle such situations. This led to the initiation of multiset
(M-set) theory by Blizard [1] in 1989 as a generalization of set theory. Multiset theory was further
studied by Dedekind [3] by considering each element in the range of a function to have a multiplicity
equal to the number of elements in the domain that are mapped to it. The theory of multisets have
been studied by many other authors in different senses [8], [10], [13], [16], [17], [18] and [24].

Since its inception M-set theory have been receiving considerable attention from researchers and
wide application of the same can be found in literature [[17],[18], [23] etc |. Algebraic structures for
multiset space have been constructed by Ibrahim et al. in [11]. In [15], use of multisets in colorings
of graphs have been discussed by Okamota et al. Application of M-set theory in decision making can
be seen in [23]. Syropoulos [20], presented a categorical approach to multisets along with partially
ordered multisets. Venkateswaran [22] found a large new class of multisets Wilf equivalent pairs which

** Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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is claimed to be the most general multiset Wilf equivalence result to date. In 2012, Girish and John
[7] introduced multiset topologies induced by multiset relations. The same authors further studied the
notions of open sets, closed sets, basis, sub basis, closure and interior, continuity and related properties
in M-topological spaces in [9]. Further the concepts of semi open, semi closed multisets were introduced
in [14], which were then used to study semicompactness in multiset topology.

In this paper, we introduce the concept of exterior and boundary in multiset topological space.
We begin with preliminary notions and definitions of multiset theory in Section 2. Section 3 which
contains main results forms the most fundamental part of the paper and it is followed by Section 4
which contains the concluding remarks.

2 Preliminaries
Below are some definitions and results as discussed in [7], which are required throughout the paper.

Definition 2.1. An M-set M drawn from the set X is represented by a function Count M or
Cy 0 X — W, where W represents the set of whole numbers.

Here Cjps(x) is the number of occurrences of the element z in the M-set M. We represent the
M-set M drawn from the set X = {z1,...,z,} as M = {m1/x1,m2/x2,...,my/x,} where m; is the
number of occurrences of the element x;,7 = 1,2, ...,n in the M-set M. Those elements which are not
included in the M-set have zero count.

Note: Since the count of each element in an M-set is always a non-negative integer so we have
taken W as the range space instead of V.

Example 2.2. Let X = {a,b,c}. Then M = {3/a,5/b,1/c} represents an M-set drawn from X.

Various operations on M-sets are defined as follows:
If M and N are two M-sets drawn from the set X, then

e M =N&Cyx)=Cn(z) Ve e X.

e MCN & Cpy(z) <Cn(x)Vx e X.

e P=MUN & Cp(z) = max{Cy(z),Cn(z)} Vz € X.
e P=MNN < Cp(xz) =min{C(z),Cn(x)} Vz € X.
e P=M®®&N < Cp(x) =Cp(z)+ Cn(z) Vo € X.

e P=MoN & Cp(z) = max{Cpn(z) — Cn(z),0} Vo € X, where @ and © represents M-set
addition and M-set subtraction respectively.

Operations under collections of M-sets: Let [X]“ be an M-space and {M; | ¢ € I} be a collection
of M-sets drawn from [X]*. Then the following operations are defined

. LEJIMi ={Cu, (2)/2 | Cnp, (%) = max{Cy,(z) | v € X}}.
. QIMi ={Cwm,(#)/z | Cn,(x) = min{Cu, (z) | v € X}}.

Definition 2.3. The support set of an M-set M, denoted by M* is a subset of X and is defined as
M*={xe X | Cpy(z)>0}. M* is also called root set.

Definition 2.4. An M-set M is called an empty M-set if Cps(2) =0, V€ X.
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Definition 2.5. A domain X, is defined as the set of elements from which M-set are constructed. The
M-set space [X]* is the set of all M-sets whose elements are from X such that no element occurs more
than w times.

Remark 2.6. It is clear that the definition of the operation of M-set addition is not valid in the
context of M-set space [X]™, hence it was refined as
Cryem, () = min{w, Cap, (x) + Ca, (z)} for all z € X.

In multisets the number of occurrences of each element is allowed to be more than one which leads
to generalization of the definition of subsets in classical set theory. So, in contrast to classical set
theory, there are different types of subsets in multiset theory.

Definition 2.7. A subM-set N of M is said to be a whole subM-set if and only if Cn(z) = Cas(x) for
every x € N.

Definition 2.8. A subM-set N of M is said to be a partial whole subM-set if and only if C (z) = Cps(x)
for some x € N.

Definition 2.9. A subM-set N of M is said to be a full subM-set if and only if C(z) < Cy(x) for
every x € N.

As various subset relations exist in multiset theory, the concept of power M-set can also be gener-
alized as follows:

Definition 2.10. Let M € [X]" be an M-set.
e The power M-set of M denoted by P(M) is defined as the set of all subM-sets of M.

e The power whole M-set of M denoted by PW(M) is defined as the set of all whole subM-sets
of M.

e The power full M-set of M denoted by PF(M) is defined as the set of all full subM-sets of M.
The power set of an M-set is the support set of the power M-set and is denoted by P*(M).

Definition 2.11. Let M € [X]¥ and 7 C P*(M). Then 7 is called an M-topology if it satisfies the
following properties:

e The M-set M and the empty M-set ¢ are in 7.
e The M-set union of the elements of any subcollection of 7 is in 7.
e The M-set intersection of the elements of any finite subcollection of 7 is in 7.

The elements of 7 are called open M-set and their complements are called closed M-sets.

Definition 2.12. Given a subM-set A of an M-topological space M in [X]¥

e The interior of A is defined as the M-set union of all open M-sets contained in A and is denoted
by int(A) i.e., Cipyay(x) = Cug(z) where G is an open M-set and G C A.

e The closure of A is defined as the M-set intersection of all closed M-sets containing A and is
denoted by cl(A) i.e., Cya)(z) = Crk (x) where G is a closed M-set and A C K.

Definition 2.13. If M is an M-set, then the M-basis for an M-topology in [X]* is a collection B of
subM-sets of M such that

e For each x€™M, for some m > 0 there is at least one M-basis element B € B containing m/x.
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e If m/x belongs to the intersection of two M -basis elements P and @), then 3 an M- basis element
R containing m/x such that R C PN Q with Cr(z) = Cpng(z) and Cr(y) < Cpng(y) Yy # .

Definition 2.14. Let (M, 7) be an M-topological space in [X]|* and A is a subM-set of M. If k/x is
an element of M then k/x is a limt point of an M-set when every neighborhood of k/z intersects A in
some point (point with non-zero multiplicity) other than k/z itself.

Definition 2.15. Let (M, 7) be an M-topological space and N is a subM-set of M. The collection
v ={NNU :U € 7} is an M-topology on N, called the subspace M-topology. With this M-topology,
N is called a subspace of M.

Throughout the paper we shall follow the following definition of complement in an M- topological
space.

Definition 2.16. [14] The M-complement of a subM-set N in an M-topological space (M, 7) is denoted
and defined as N =M © N.

3 Exterior and Boundary of Multisets

The notions of interior and closure of an M-set in M-topology have been introduced and studied by
Jacob et al. [7]. The other topological structures like exterior and boundary have remain untouched.
In this section, we introduce the concepts of exterior and boundary in multiset topology.

Consider an M-topological space (M, 7) in [X]*.

Definition 3.1. The exterior of an M-set A in M is defined as the interior of M-complement of A and
is denoted by ext(A), i.e.,

Cemt(A) (LU): Cint(AC)($> for all x € X.

Example 3.2. Let X = {a,b},w =3 and M = {2/a,3/b}. We consider the topology 7 = {¢, M, {1/a},
{2/b},{1/a,2/b}} on M. Then exterior of the M-set A = {1/a,3/b} is {1/a}.

Remark 3.3. ext(A) is the largest open subM-set contained in A°.

Definition 3.4. The boundary of an M-set A is the M-set of elements which does not belong to the
interior or the exterior of A. In other words, the boundary of an M-set A is the M-set of elements

which belongs to the intersection of closure of A and closure of M-complement of A. It is denoted by
bd(A).

de(A) (1’) = Ccl(A)ﬂcl(AC)(x) for all z € X.
Example 3.5. Let X = {a,b,¢,d}, w =5 and M = {5/a,3/b,5/¢,5/d}. We consider the topology
T = {¢,M,{1/a,2/b,3/c,2/d},{1/a,3/c},{2/b,5/d}, {1/a,2/b,3/c,5/d},{2/b,2/d}} on M. Then
for any set A = {3/a,3/b,3/c,3/d} we have cl(A) = M and cl(A°) = {4/a,1/b,2/c,3/d}. Hence,
bd(A) ={4/a,1/b,2/c,3/d}.
Remark 3.6. bd(A) is the smallest closed subM-set containing A€.
Remark 3.7. A and A° both have same boundary.
Theorem 3.8. Let (M, 7) be an M-topological space. Then

(1) Cewt(AUB) (’JC) - Cewt(A)ﬂewt(B)(z) 7VIL’ € X.
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(11) Cewt(AﬁB) > Cemt A)Uemt(B)( ) Vz € X.

Proof. (i) From the definition of exterior,

Cext(AUB) (CU)

Cext(AﬂB) (‘T)

v

Cint(AuB)e ()
Cint(acnpe)(x)
Cint(AC)ﬁint(BC)(x)
Cext(A)neat(B) (T), VT € X.

Cint(AnB)e ()
Cint(acupe)(x)
Cint(AC)uint(BC)(x)
Cext(A)ueat(B) (T), VT € X.

79

O

Theorem 3.9. Let (M, 7) be an M-topological space in [X]*. For any two M-sets A and B in M,

the following results hold:

(i) C(bd(A e(z) = Cmt(A)Uint(Ac)(x) = Cmt(A)Ueact(A)(x)

(i) Can (@) = Cisiayopan @)
(iii) de(A) (z) = Ccl(A)emt(A)(x)
Cmt(A) CA@bd(A)(l‘)
Proof.
(0)Cpacay- (@)
(1) Cint(ayubaca) ()

(iii) We have Ccl(A)eznt( (2)

e Case 1: max is 0
So we must have Ccl(

Then de(A)( ) = ant(A)mcl(AC)(x) =

)= Cloeny (@)

e Case 2: max is CCZ(A)(SC

Cler(aynei(aey)(x)
Clei(ay)eu(el(aey) ()
Cint(Ac)uint(A)(T)
Cint(A)Ueat(a)(T).

Cint(A)yu(ei(a)ne(Ae)) (z)

Clint(A)U(cl(A)N(int(A)Uel(Ae)) (T)

Cer(a)n(int(A)u(int(A))e) (Z)
Cei(a) ().

= max{ Ccl 4)(x

A) -

de

int(A) (SC)

(a)(7)

Cfint(A) (l‘), 0}

int(A)N(int(A))e (T) = C¢($)«

Then

Cei(a)nei(ae) ()
Ca(a)n(int(A))e ()
Ccl(A) (.’ﬂ) - Cint(A) ((E) .
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(iv) We have U gcpaca)(®) = max{ C de(A (x),0}

e Case 1: When max is 0 proof is trivial.

e (Case 2: When max is CA(x)f de(A)(:c), we have

Cacpaay(®) = Canpacay-(x)
= Cun znt(A)Uezt(A))(x)
= Can(int(A)Uint(Ae)) ()
= Clanint(A)U(Anint(Ae)) (T)
= Cint(ayue(T)
= Cinta ().

The following three theorems characterize the open and closed M-sets in terms of boundary.

Theorem 3.10. Let A be a subM-sets in an M-topology (M, 7). Then A is open if and only if
CAﬁbd(A)(x) =0, Vzre X.

Proof. Let A be an open M-set. Then Qnt(A) (z) = CA(x) , Ve € X. Now,
CAmbd(A) (z) = ant(A)mbd(A) (z) =0.

Conversely, let A be an M-set such that OAmbd(A)(x) = 0 = Usn@@)na@eyp(@) = 0 =
CAmcl(Ac)(x) =0= Ugae(z) < Uae(x) = A is closed M-set = A is open M-set. O

Theorem 3.11. Let A be a subM-sets in an M-topology (M, 7). ThenA is closed if and only if
de(A) < C , Ve € X.

Proof. Let A be a closed M-set. Then CCZ(A) (x) = CA(x) , Vo € X. Now,
de(A)(x) = Ccz(A)mcz(Ac)(fv) < Ugay(z) = CA($)7 Vz e X.

Conversely, let de(A) (z) < OA(x) = de(A)mAc (r) = 0 = Upgraeynac(x) = 0. Therefore, A°
is an open M-set. Hence, A is a closed M-set. O

Theorem 3.12. Let A be a subM-sets in an M-topology (M, 7). Then A is clopen if and only if
de(A)(l‘) =0.

PTOOf. Let Cfbd(A) (:C) =0= CI(A)QCZ(Ac)(x) =0= cl(A) (ac) < (cl(Ae))e (x) =
Ccl(A)(x) < Uineay () < CA(x) = A is a closed M-set.

Again, Ugayne(ae)(z) =0= Ccz(A)m(mt(A))c(a?) = Uan(inta)y)(r) = C < Uingay () =
A is an open M-set.
Conversely, let A be both open and closed M-set.

Then Obd(A)(l’) = Ccl(A)ﬁcl(AC)<x) = G:l(A)ﬁ(int(A))“(x) = OAmAc(SE) =0. O
Theorem 3.13. For any two M-sets A and B in (M, 1) the followings hold true:

(i) de(AUB) < de(A)Ubd(B (z), Yz € X.
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Proof. Let A and B be any two M-sets in (M, 7). Then,

Craaup)(z) = CorauB)ne(aun)e ()

Clei(A)uel(B))N[el(Ac)nel(B<)] (T)

Cl(el(A)nel(A¢))N(el(A)Nel(B)]U[(el(B)Nel(Ae))N(el(B)nel(B<))] (Z)
= Cld(A)n(cl(A)nel(Be))]U[(cl(B)nel(Ae))nbd(B)] (T)

IA

de(A)Ubd(B) ().

(ii) de(AmB)(-%") < de(A)mbd(B)(x)’ Vo e X.
Proof. Let A and B be any two M-sets in (M, 7). Then,

Craans)(®) = Ceaanp)ne(ans)- ()
Clei(A)nel(B)N[el(Ac)uel(B<)] (T)
Cl(et(A)nel(Ae)N(el(A)Nel (BNl (B)Nel(A<)N(cl(B)nel(Be))] (Z)

Clvd(A)n(cl(A)nel(Be)N[(el(B)el(A))nbd(B)] (T)

IN

Cra(aynba(s) ().

Theorem 3.14. In an M-topological space, for any M-set A bd(bd(A)) is a closed M-set.
Proof. Let bd(A) = B. Then

Cawapaay) (@) = Capan)) (@)
Cae(B)neu(Be)) ()

IN

Cei(et(B))nei(el(Be)) ()
Ca(Bynese)(x)
de(B)(CU)

Chagacay) (z)-

i.e., closure of bd(bd(A)) is contained in itself and hence is a closed M-set.
Theorem 3.15. In an M-topological space, for any M-set A we have the following:
(i) de(bd(A))(ff) < de(A)(x)a Vo e X.
Proof.

Crawa(ay () = Cha(ei(aynel(ae)) (T)
Clei(el(A)nel(A)nfel(cl(A)nei(Ae))] ()

IN

Clei(A)nei(Ae)n[el(int(A<)Uint(A))] (L)

Cra(aynei () ()
= Chaaynm(z)
Cha(ay(T).
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(ii) de(bd(bd(A)))(fE) = de(bd(A))(x)a Vz e X.

Proof.
Crawapwd(a)) () = Capdbvd(A)))nel(bd(bd(A)))e (T) (1)
= Chavd(A))nel(bd(bd(A)))e (T)- (2)
Now, Cpapacay)e(®) = Clapd(ay)nepd(A))ee ()

= Cpaa)ne(bd(A))e)e ()
= Cd(a))eulcl(bd(A))e)e (T)

Taking closure on both sides and considering c¢l(bd(A))¢ = B, we have

Capdpaay)- (@) = Cpuacse)(z)
> Cpupe(x)
= C]u(.’L‘).

\%

Now, substituting this in equation(1)

de(bd(bd(A)))(x) = Ccl(bd(bd(A)))ﬂM(x)
de(bd(A)) ().

The following theorem decomposes boundary of an M-set.

Theorem 3.16. de(A) (x) = Cint(bd(A))Ubd(bd(A))(I)v Vo e X.

Proof. From theorem 3.12(i) and the property of interior i.e.,Cinipa(a))(z) < Chaca)(x), its obvious
that Cintvaca)y)ubdpaay) () < Craay(z), Vo € X. O

Following is a theorem to characterize boundary of an M-set in terms of limit points of the set.

Theorem 3.17. An M-set A in an M-topology (M, 7) contains all its boundary points if and only if
it contains all its limit points.

Proof. Suppose A contains all its boundary points and if possible let k/x € A€ be a limit point of
A. Since every neighborhood of k/x contains both a point of A¢ and a point of A, we have k/x
€ bd(A) C cl(A), which is a contradiction since A contains all its boundary points.

Conversely, let A contains all its limit points. If k/z € A © bd(A) and N is a neighborhood of k/x
then N contains a point of A which cannot be equal to k/z since k/x ¢ A. Therefore, k/x is a limit
point of A and is not contained in A. Hence, A contains all its boundary points. O

Theorem 3.18. Let A be an M-set in an M-topology (M, 7). Then ext(A) is empty if and only if
every nonempty open M-set in M contains a point of A.
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Proof. Let every non empty open M- set in M, 7 contains a point of A. Then, every k/xz € A C M is
a limit point if A. So,

k < Cuaya) = Cu@) < Caay ) (3)

Now, to show that Ceypay(r) = Cy(x)
& Cinae)(r) = Cy(w)

& Claaye(z) = Cy(z)

& Cawy(z) = Culz)

But then we have,

So, (3) and (4) imply that ext(A) is empty.

Conversely, let C.p¢(a)(x) = Cy(x). Let O be any open M -set in (M, 7). To show that O contains
a point of A.
Let k/x € O. Since ext(A) is empty so no neighborhood of k/x is contained in A€, i.e., all neighborhoods
of k/x are contained in A. Therefore we have, Cona(z) # Cy(x). O

4 Conclusion

The notions of exterior and boundary in context of multiset theory have been introduced and studied
in this paper.Some properties of the introduced notions are studied along with their characterization
and decomposition. Further, boundary is characterized in terms of open sets, closed sets, clopen sets.
Theorem 3.17 characterizes boundary in terms of limit points. The necessary and sufficient condition
for an M- set to have empty exterior is contemplated by Theorem 3.18.

Topological and topology-based data are useful for detecting and correcting digitizing errors which
occurs in spatial analysis. Keeping this in view, applications of the initiated concepts in those models
which are designed using multiset theory can be considered for future work.
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Abstaract — The concept of neutrosophic h-bi-ideals and neutrosophic h-quasi-ideals of a I'-
hemiring are introduced and some of their related properties are investigated. The notions of
h-hemiregularity, h-intra-hemiregularity of a I'-hemiring are studied and some of their characteri-
zations in terms of neutrosophic h-ideals are also obtained.

Keywords — T'-hemiring, neutrosophic h-ideal, neutrosophic h-bi-ideal, neutrosophic h-quasi-
ideal, h-hemiregular, h-intra-hemiregular.

1 Introduction

Semiring is a well known universal algebra. This is a generalization of an associa-
tive ring (R, +,.). If (R,+) becomes a semigroup instead of a group then (R, +,.)
reduces to a semiring. Semiring has been found very useful for solving problems in
different areas of applied mathematics and information sciences, since the structure
of a semiring provides an algebraic framework for modelling and studying the key
factors in these applied areas. Ideals of semiring play a central role in the structure
theory and useful for many purposes. However they do not in general coincide with
the usual ring ideals and for this reason, their use is somewhat limited in trying to
obtain analogues of ring theorems for semiring. To ammend this gap Henriksen [12]
defined a more restricted class of ideals, which are called k-ideals. A still more re-
stricted class of ideals in hemirings are given by lizuka [14], which are called h-ideals.
LaTorre [18], investigated h-ideals and k-ideals in hemirings in an effort to obtain
analogues of ring Results for hemiring and to amend the gap between ring ideals
and semiring ideals. The theory of I'-semiring was introduced by Rao [24]. These
concepts are extended by Dutta and Sardar [10].

The theory of fuzzy sets, proposed by Zadeh [29], has provided a useful math-
ematical tool for describing the behavior of the systems that are too complex or
illdefined to admit precise mathematical analysis by classical methods and tools.

™ Edited by Said Broumi (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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The study of fuzzy algebraic structure has started by Rosenfeld [26]. Since then
many researchers developed this ideas.

As a generalization of fuzzy sets, the intuitionistic fuzzy set was introduced by
Atanassov [1] in 1986, where besides the degree of membership of each element
there was considered a degree of non-membership with (membership value + non-
membership value) < 1.

There are also several well-known theories, for instances, rough sets, vague sets,
interval-valued sets etc. which can be considered as mathematical tools for dealing
with uncertainties. In 1995, inspired from the sport games (winning/tie/ defeat-
ing), votes, from (yes/NA/no), from decision making(making a decision/ hesitat-
ing/not making), from (accepted/pending/rejected) etc. and guided by the fact
that the law of excluded middle did not work any longer in the modern logics, F.
Smarandache [23] combined the non-standard analysis [8, 25] with a tri-component
logic/set /probability theory and with philosophy and introduced Neutrosophic set
which represents the main distinction between fuzzy and intuitionistic fuzzy logic/set.
Here he included the middle component. i.e. the neutral/ indeterminate/ un-
known part (besides the truth/membership and falsehood/non-membership com-
ponents that both appear in fuzzy logic/set) to distinguish between 'absolute mem-
bership and relative membership’ or ’absolute non-membership and relative non-
membership’(see, [16, 27]). There are also several authors, for example [3, 4, 5, 6, 7]
who have enriched the theory of neutrosophic sets.

Inspired from the above idea and motivated by the fact that ’semirings arise
naturally in combinatorics, mathematical modelling, graph theory, automata theory,
parallel computation system etc.’, in the paper, we have used that to study the h-
ideals, h-bi-ideals, h-quasi-ideals [13, 15, 19, 21, 22, 28, 30] of I'-semirings [24] - a
generalization of semirings [11] and obtain some of its characterizations.

2 Preliminaries

We recall the following preliminaries for subsequent use.

Definition 2.1. [11] A hemiring [respectively semiring] is a non-empty set S
on which operations addition and multiplication have been defined such that the
following conditions are satisfied:

(i) (S,+) is a commutative monoid with identity 0.

(ii) (S,.) is a semigroup [respectively monoid with identity 1g].
(iii) Multiplication distributes over addition from either side.
(iv) 0s =0=s0for all s € S.

(

v 157&0

Definition 2.2. [21] Let S and I' be two additive commutative semigroups with
zero. Then S is called a ['—hemiring if there exists a mapping
SxI'xS— S ((aab)+— aab) satisfying the following conditions:

(i) (a+ b)ac = aac + bac,
(ii) aa(b + ¢) = aadb + aac,
(iii) a(a + B)b = aab + afb,
(iv) aa(bfBc) = (aab)e.
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(v) Osaa = 0g = aalg,
(Vi)CLOFb = 05 = bOFCL

for all a,b,c € S and for all o, 3 € T.
For simplification we write 0 instead of Og and Or.

Throughout this paper, unless otherwise mentioned S denotes a I'—hemiring and
Xs be its characteristic function.

A subset A of a I'-hemiring S is called a left(resp. right) ideal of S if A is closed
under addition and STA C A (resp. AI'S C A). A subsetA of a hemiring S is called
an ideal if it is both left and right ideal of S

A subset A of a I'-hemiring S is called a quasi-ideal of S if A is closed under
addition and STAN AI'S C A.

A subset A of a I'-hemiring S is called a bi-ideal(resp. interior ideal) if A is closed
under addition and AI'STA C A(resp. STAI'S C A).

A left ideal A of S is called a left h-ideal if z,z2 € S, a, b€ Aandz+a+2=0b+ 2
implies x € A. A right h-ideal is defined analoguesly.

The h-closure A of A in S is defined as A = {x € S | v +a+ 2z = b+
z, for some a,b € A and z € S}.

Now if A is a left (right) ideal of S, then A is the smallest left (right) h-ideal
containing A.

A quasi-ideal(resp. bi-ideal) A of S is called an h-quasi-ideal(resp. h-bi-ideal) of
S if STAN ATS(resp. ATSTA) C Aand x +a+ 2z = b+ z implies € A for all
x,z € S and a,b e A.

Definition 2.3. [29] A fuzzy subset of a nonempty set X is defined as a function
e X —[0,1].

Definition 2.4. [23] A neutrosophic set A on the universe of discourse X is
defined as A = {< z, AT (z), Al(x), AP (z) >,x € X}, where AT/ AT AT : X —
]70,17[ and ~0 < AT(z) + A(z) + A" (x) < 3% . From philosophical point of view,
the neutrosophic set takes the value from real standard or non-standard subsets
of |70,1%[. But in real life application in scientific and engineering problems it is
difficult to use neutrosophic set with value from real standard or non-standard subset
of ]70,17[. Hence we consider the neutrosophic set which takes the value from the
subset of [0, 1].

3 Neutrosophic h-ideals in I'-hemiring

Using the above concepts, we now define neutrosophic left(right) h-ideal, neutro-
sophic h-bi-ideal, neutrosophic h-quasi-ideal and several operations such as compo-
sition, cartesian product, intersection etc. on them and use these to study some of
their related properties. At the time of investigation we may see that the obtained
results are parallel to that of I-hemiring and by routine verification we can proof
them. So, after giving one introductory proof, I omit all the proof.

Definition 3.1. Let pu = (u?, u!, u¥") be a non empty neutrosophic subset of a
[-semiring S (i.e. anyone of u”'(x), u!(x) or u¥(z) not equal to zero for some x € S).
Then p is called a neutrosophic left ideal of S if
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(i) p"(z+y) >min{u"(x), u" ()}, p" (2yy) > 1" (y)
(i) pl(x +y) > LGB T gy > (y)
(iti) p"(z +y) < max{p"(x), u"(y)}, 1" (2yy) < p(y).

for all z,y € S and vy € I.

A neutrosophic left ideal is called neutrosophic left h-ideal if for x,a,b,z € S
with x 4+ a + z = b + 2z implies

(1) p' () = min{p" (a), u* (b)},

(i) p () > Lilakbr®)

(iif) p"(z) < max{p"(a), x"(0)}.
Similarly we can define neutrosophic right h-ideal of S.

Result 3.2. Intersection of a nonempty collection of neutrosophic left h-ideals is
a neutrosophic left h-ideal of S.

Proof. Let {u; : i € I} be a non-empty family of neutrosophic left h-ideals of S and
xz,y € S and v e€TI. Then

()@ +y) =inf pf (@+y) > inf {minf] (@), 1l (v)}}
= min{iglefl ul(x), l?efl 1l (y)}
= min{(igu?)(%)a (iQIuiT)(y)}

I _ I S inf A@+e W)
(D) +y) =mf pi(e+y)>nf 2=

: I : I
inf pi (@) +inf pi(y)

2
I I
B FaNts (‘T)JQ-Q#‘Z' (y)

[\V]

(D)@ +y) = sup i (2 +y) < sup {max{p (), 47 (1)}

= max{sg pl (), SUP i (y)}
= max{(0 ") (@), (ﬂuz )(y)}

T —inf 7 > inf u? T
(0 i Jayy) = mb pi (ayy) 2 inf i (y) = (0 4)(y)-

(D) (ayy) = inf pj(yy) > inf g (y) = (0 0)().

(0 ) (@yy) = sup pf (wyy) < sup pf (y) = (O u)(y).
el i€l il il
Hence ﬂl,ui is a neutrosophic left ideal of S.
1€

Now suppose x,a,b,z € S with x +a+ 2z = b+ z. Then

(Dpi)(@) =inf pj(z) > inf min{u(a), 1 (0)}
= min{inf pf (a),inf 7 (0)} = min{ (0 p7)(a), (O ) (@)},



Journal of New Theory 12 (2016) 85-94 89

I —inf f(z) > inf HL@+ri®)
(Dpi)(x) =inf p;(z) > inf =55
b, iy (y)+inf | (0) _ 01 W)+ ,0 1 (0)

2 2

(Npf)(z) =sup pf(z) < sup max{y/ (a), uf (b}

i€l icl
= max{sup 1 (a),sup g (b)} = max{(0 ") (a), (N p;")(a)}.
icl icl il il
Therefore .ﬂlui is a neutrosophic left h-ideal of S. O
1€

Definition 3.3. Let p and 6 be two neutrosophic sets of a I'-hemiring S. Now
h-product of p and 6 denoted by popf and defined as

plond" (x) = sup[min{u(a;), u" (c;), 07 (bi), 67 (di)}}]

n

=1

i=1
= 0, if z cannot be expressed as above

plond! (x) = sup[min{3[u'(a;) + p'(c:) + 07 (b:)+6" (d)]}}]

T+ i az%bz +z = i Czézdl +z
i=1 =1

=0, if 2 cannot be expre;sed as above
plond” (z) = inflmax{[u"(a:), u (c:), 07 (i), 0 (d;)]}}]

T+ i Clz’ylbl +z= i Cléldl +z
=1 =1

= 0, if z cannot be expressed as above

where x, 2, a;,b;,¢;,d; € S and v;,0; € ', for i =1, ..., n.

Result 3.4. If ;1 and v be two neutrosophic left h-ideals of S then pov is also a
neutrosophic left h-ideal of S.

Result 3.5. Let uy, e be two neutrosophic h-ideal of a I'-hemiring S. Then
p10pp2 © pa O pg © fiq, fo.
Result 3.6. Let S be a I-hemiring and A, B C S. Then we have

(i) AC B if and only if x4 C x5.
(i) xa N XB = XanB
(iil) xa0nXB = XaTB

Definition 3.7. Let p and v be two neutrosophic subsets of S. The cartesian
product of u and v is defined by

(1" x v")(z,y) = min{u" (z), " (y)}

I o1 (@) + ()
(! o),y = )

(1" x V) (z,y) = max{u” (z), " (y)}
for all z,y € S.
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Result 3.8. Let p and v be two neutrosophic left h-ideals of S. Then p x v is a
neutrosophic left h-ideal of S x S.

Definition 3.9. A neutrosophic subset i of a I'-hemiring .S is called neutrosophic
h-bi-ideal if for all z,y, z,a,b € S and «a, 5 € I we have

(i) #"(z +y) = min{p” (), u"(y)}

(i) o' (zay) > min{p" (2), u"(y)}

(iii) p"(vayBz) > min{u"(2), 1" (2)}

(iv) z+a+z=b+2z = p’(x) > min{u’ (a), u” (b)}
() (a4 y) >

(vi) p!(zay) > u’(x);ru’(y)

(vii) p! (zayBz) > @05

(vili) x+a+z2=b+z2 = pu’(z) > M
(ix) (2 +y) < max{p(z), " (y)}

(x) p"(zay) < max{p”(z), 1" (y)}
) 1 (zayBz) < max{p” (z), 41" (2)}

(xii) v +a+z=0+z = p(x) < max{p(a), u"(b)}

(xi

Definition 3.10. A neutrosophic subset p of a I'-hemiring S'is called neutrosophic
h-quasi-ideal if for all x,y, z,a,b € S we have

(i) p"(z+y) > min{u"(z), u" (y)}
I 4y) > G0

i (x +y) < max{u”(z), u" (y)}

(i

(iii

(iv) (nTonx§) N (x§onp™) < p”

(v) (1lonx§) N (xGonp') C 1!

(vii)) z+a+2=0b+2 = p’(z) > min{u’(a), u* (b)}

(vili) z+a+z2z=0b+2 = ul'(z) > ~ w#(a)+u"(b)

i) p
)
)
)
(vi) (nFonxs) N (x§onp™) 2 1"
)
) :
x)

(i

r+a+z=b+z = pf(z) < max{p(a), u"(b)}

For any neutrosophic subset in a set X and any ¢ € [0, 1], define level subsets of
pby {ul ={x e S:pul(x) >t t €01}, pl :={xeS:u(x)>t tel0l]}
and pl" == {x € S : uf(x) <t t e]0,1]}} . In [17], Kondo et al. introduced
the Transfer Principle in fuzzy set theory, from which a neutrosophic set can be
characterized by its level subsets. For any algebraic system U = (X, F), where F
is a family of operations defined on X, the Transfer Principle can be formulated as
follows:
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Result 3.11. A fuzzy subset defined on U has the property P if and only if all
non-empty level subset p; have the property P.

As a direct consequence of the above Result, the following two results can be
obtained.

Result 3.12. Let S be a I'-hemiring. Then the following conditions hold:

(i) p is a neutrosophic left(resp. right) h-ideal of S if and only if all non-empty
level subsets p; are left (resp. right) h-ideals of S.

(ii) p is a neutrosophic h-bi-ideal of S if and only if all non-empty level subsets p;
are h-bi-ideals of S.

(iii) p is a neutrosophic h-quasi-ideal of S if and only if all non-empty level subsets
1 are h-quasi-ideals of S.

Result 3.13. Let S be a I'-hemiring and A C S. Then the following conditions
hold:

(i) Ais aleft(resp. right) h-ideal of S if and only if x 4 is a neutrosophic left (resp.
right) h-ideal of S.

(ii) A is an h-bi-ideal of S if and only if x4 is a neutrosophic h-bi-ideal of S.

(iii) A is an h-quasi-ideal of S if and only if x4 is a neutrosophic h-quasi-ideal of

S.

Result 3.14. Any neutrosophic h-quasi-ideal of S is a neutrosophic h-bi-ideal of
S.

Definition 3.15. [19] A I'-hemiring S is said to be h-hemiregular if for each
x € S, there exist a,b € S and «, 3,7, € ' such that © + zaafz + 2 = zybdx + z.

Result 3.16. A I'-hemiring S is h-hemiregular if and only if for any neutrosophic
right h-ideal p and any neutrosophic left h-ideal v of S we have popv = pNw.

Now we obtain the following characterizations of h-hemiregular I'-hemirings.
Note that for any two neutrosophic subsets y and v of S, p C v implies u” C v7T,
p! Cvland pf’ D UE.

Result 3.17. Let S be a [-hemiring. Then the following conditions are equivalent.
(i) S is h-hemireglar.
(i) u C popxsopp for every neutrosophic h-bi-ideal p of S.
(iii) p C popxsopp for every neutrosophic h-quasi-ideal p of S.

Result 3.18. Let S is a I'-hemiring. Then the following conditions are equivalent.
(i) S is h-hemiregular.
(ii) p N v T popropp for every neutrosophic h-bi-ideal p and every neutrosophic
h-ideal v of S.
(iii) N v E popvopu for every neutrosophic h-quasi-ideal 1 and every neutrosophic
h-ideal v of S.
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Result 3.19. Let S is a I'-hemiring. Then the following conditions are equivalent.

(i) S is h-hemiregular.

(ii)) w N v C popv for every neutrosophic h-bi-ideal p and every neutrosophic left
h-ideal v of S.

(iii) u N v C popv for every neutrosophic h-quasi-ideal p and every neutrosophic left
h-ideal v of S.

(iv) pNv C popv for every neutrosophic right h-ideal p and every neutrosophic
h-bi-ideal v of S.

(V) pNv C popv for every neutrosophic right h-ideal p and every neutrosophic h-
quasi-ideal v of S.

(vi) pNvNw E poprvopw for every neutrosophic right h-ideal p, for every neutrosophic
h-bi-ideal v and for every neutrosophic left h-ideal w of S.

(vii) pNvNw C popvopw for every neutrosophic right h-ideal p, for every neutrosophic
h-quasi-ideal v and for every neutrosophic left h-ideal w of S.

Result 3.20. If a I'-hemiring S is h-hemiregular then any neutrosophic right h-
ideal p and neutrosophic left h-ideal v are idempotent and popv is an quasi-ideal of

S.

Definition 3.21. A I'-hemiring S is said to be h-intra-hemiregular if for each
x € S, there exist z,ai,a;,bi,b; €S, and «;, G, 7, 0;,m € T', i€ N the set of natural

numbers, such that z + Zaiaixn:vﬂia; + 2z = Zbi%mnﬁb; + z.
i=1 i=1
Result 3.22. Let S be a ['-hemiring. Then S is h-intra-hemiregular if and only

if uNv C popr for every neutrosophic left h-ideal p and every neutrosophic right
h-ideal v of S.

Result 3.23. Let S be a [-hemiring and x € S. Then S is h-intra-hemiregular if
and only if p(z) = p(xyz), for all neutrosophic h-ideal p of S and for all x € S and
vyel.

Result 3.24. Let S be a I'-hemiring. Then the following conditions are equivalent.

(i) S is both h-hemiregular and h-intra-hemiregular.
(ii) p = popp for every h-bi-ideal p of S.
(iii) p = popu for every h-quasi-ideal p of S.

Result 3.25. Let S be a I'-hemiring. Then the following conditions are equivalent.

(i) S is both h-hemiregular and h-intra-hemiregular.

(ii) p Nv C popv for all neutrosophic h-bi-ideals p and v of S.

(iii) u N v C popr for every neutrosophic h-bi-ideals p and every neutrosophic h-
quasi-ideal v of S.

(iv) pNv C popv for every neutrosophic h-quasi-ideals p and every neutrosophic
h-bi-ideal v of S.

(v) pNv C popv for all neutrosophic h-quasi-ideals p and v of S.

Conclusion: Since I have studied the results in case of I'-hemiring — a general
setting of hemiring, the obtained results are also true for hemiring along with some
parallel changes. In a similar way, neutrosophic k-ideals of I'-semiring can be studied.
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Abstaract — In this study, we define a new boundedness concept different from existing definitions.
Also we give some theorems and results in topological groups. The new definition more general
than boundedness definition in topological vector spaces.

Keywords — Topological Groups, Boundedness.

1 Introduction

There exists some works with regards to boundedness of topological groups. Bruguera,
Tkachenko and Hejecman have presented another boundedness definitions in topolog-
ical groups [1], [2]. In 1991, Atkin gave the boundedness concept in uniform spaces
which are more general structures than topological groups [3]. Then Hernandez pre-
sented Pontryagin duality for topological abelian groups in [4]. If a set is absorbed
by every neighbourhood of 0 the set is called as a bounded set in a topological vector
space. That is, there exists a number € > 0 for each neighbourhood U of 0 such that
tA C U for every |t| < e. The operation of scalar multiplication tA is very important
in this definition. There isn’t exist this operation in groups so it cannot be applied
directly to the topological groups. We know that every topological vector space has
an additive topological group structure so the boundedness definition is also gen-
eralization of current available boundedness definition in topological vector spaces.
Therefore we present a kind of boundedness definition in topological groups so sim-
ilar to those in topological vector spaces. The new definition is not a generalization
of existing boundedness definitions for topological groups.

2 Preliminaries

Let G be an abstract group, A and B be two subsets of G. Then AB is the set of all
elements of xy such that x € A and y € B. The definition of A% and A™ = A™ 1A

™ Edited by Hakan Simsek and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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is clear by taking B = A for some m € N. Further, A™! = {a™!':a € A}, A7™ =
(A7 and A = {e} for the unit element e of G. Given z € A™ there exist some
ay, as, ..., ay € A such that © = ajag...ap,. If 2™ € A™ and e ¢ A then 2™ may not
be an element of A™, for n < m. Hence we define the set AS™ by x = ajas...a,
for m,n € N, ay,as,...,a, € A and some n < m. It is clear that A™ C AS™ and
A™ = AS™ whenever e is contained by A.

It is known as every topological vector space is an additive group, it is written
mU instead of U™. Then a set B is bounded if and only if there exists a positive
integer m depend on U for every symmetrical neighbourhood U such that B C U or
%B C U. This is known as boundedness definition in topological vector spaces.

Now we mention that some definitions and propositions in topological groups.
Since a topological group has a local basis of symmetrical neighbourhood of the unit
element e, a connected topological group G is generated by a neighbourhood U of
e i.e. all elements of GG is denoted by finite multiplication of elements belong to U
[5]. A set S is called as precompact set in a topological group if there exists a finite
set F' for each neighbourhood U of e such that S C FU. We have known that if a
set is bounded then it is metrically bounded i.e. boundedness with respect to the
semimetric in a topological vector space. But opposite of this proposition is not
correct [6].

Let G be a group and p : G — R be a function. p is called an absolute value
function on G if satisfies the following properties for each x,y,a € G

(i) p()=0,

(i) p(e)=0andp(a™)=p(z),

(i) p(zy) <p(x)+py),

(iv) If p(x,) — 0 then p (ax,a™') — 0 for every sequence (z,).

Last condition is unnecessary for abelian groups. The equality d (z,y) = p (z™'y)
defines a semimetric generating group topology on G. d is called a left invariant
semimetric if d (ax, ay) = d (x,y) for every x,y,a € G. The topology of a topological
group first countable comes from a left invariant semimetric [7].

Let G is a topological group and B C G. If the set B absorbs every bounded set
then B is called a bornivorous.

Let G is a topological group. If every bornivorous in G is a neighbourhood of e
then G is called bornological group [5].

3 Main Results

In this section, we will give some new definitions and results in topological groups.

Definition 3.1. Let G be a topological group and A C G. The set A is called as
absorbing set if there exist a finite set F, C G and a number m € N for every x € GG
such that x € F,A™.

Definition 3.2. Let G be a topological group and A C G. The set A is called as
a bounded set if the set is absorbed by every neighbourhood of the unit element e

of G i.e. there exist a finite set ' and a number m € N for every U € N, such that
ACFU™ = U {2U™}.

el
Proposition 3.3. According to this (boundedness) definition, boundedness of a set

A in a topological group (X, +) is equivalent to boundedness of A in the topological
vector space X.
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Proof. Now we take a subset A is bounded in the topological vector space X. There
exists a number A > 0 for every U € N, such that A C AU. Therefore we get
A C([[A]]+ 1)U. If we select F' = {0} and ([[A]] + 1) = m then

AC(N]+ DU =F+mU=F+U™

Thus the subset A is bounded in the topological group (X, +).
On the contrary, A C F' + U™ = F +mU. If we take F' = {0} and m = X then
ACNU. [l

Theorem 3.4. Every singleton is bounded in a topological group.

Proof. 1f we take F' = {a} and m = 1 then {a} C {a}U = {aU}. This completes
the proof, easily. n

Theorem 3.5. Union of two bounded sets is also bounded in a topological group.

Proof. Let A and B be two bounded subsets in a topological group X. There exists
a finite set F' C X and a number m € N for every U € N, such that

AUBC FU" = U {aU™}

zeF

We suppose that the above inclusion isn’t true. Thus A U B isn’t covered by FU™
for every finite set F' C X and every number m € N. Then A isn’t covered by FU™
or B isn’t covered by FFU™. This contradict with our hypothesis. O

Corollary 3.6. Every subset of a bounded set is bounded in a topological group.
Corollary 3.7. Intersection of two bounded sets is bounded in a topological group.
Theorem 3.8. Every finite set is bounded in a topological group.

Proof. 1t is easily seen that union of finite number of bounded sets is bounded by
induction method since we know that every set is written by union of singletons. [J

Theorem 3.9. Every precompact set is bounded in a topological group.

Proof. Let G be a topological group, S be a precompact set in G, U be any neigh-
bourhood of e and V' be an other neighbourhood of e such that VV C U. There
exists a finite set F' such that S C F'V by hypothesis then F' is bounded. Thus there
exist a number n € N and a finite set G such that F* C GV". Then

SCFVCGV'V CcGV'VT=GVV)" Cc GU"
i.e. S is a bounded set. O
Corollary 3.10. Every compact set is bounded in a topological group.
Lemma 3.11. Let X be a topological group and x € X. Then zD, (e) = D, (z).

Proof. y € xD, (e) < if and only if there exists a point a € D, (e) such that y = za.
Thus

a€ D,(e) & dlea)<
& de,?) <
< d(e,z” y)
and also since d(e, 7 'y) = d(ze,xz'y) = d(z,y) then y € D,(z). O
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Lemma 3.12. Let X be a topological group and z € X then xD,.(e)™ C (zD,(e))™.
Lemma 3.13. Let X be a topological group and z € X then D,.(z)" C D,, ().
Proof. If y € D, (x)™ there exist aj,as,...,a, € D, (x) such that y = ajas...apn.

Hence
dly,z) = d(aag...am, )
< d(xz,a1) +d(z,a2) + ... +d(x,an)
< r+r+..+r
= mr
Thus y € D). O

Theorem 3.14. Let G be a semimetric group and A C G be a bounded set then A
is a metrically bounded.

Proof. Let G be a semimetric group and A C G. A set A is bounded if and only if
there exists a number m € N and a finite set F' such that A C FD, (e)”. Thus

ACFED,(e)" & AC LEJF{xD,, (€)™} C Dy (2).

This completes the proof. n

Proposition 3.15. A set is absorbed by each member of a local basis of neighbour-
hoods of e if and only if this set is bounded.

Proof. Let B = {U, : a € I} be a basis of neighbourhoods of e in a topological group
G. It is easily seen that a subset A C G is absorbed for every neighbourhood U,. On
the contrary, if every U € N, then U, C U for every a € I. The set A is absorbed
by U, for a € A if and only if there exists a finite set Fy, and a number m € N such
that A C Fy, U™ C Fy, U™. Thus the set A is bounded. O]

Proposition 3.16. Every bounded subset of a topological group is contained by the
set {e}.
Proof. Let G be a topological group and S be a bounded subset of G. Now we show

that S C {e}. We assume that = € {e} is wrong. U N {e} = () for a neighbourhood
U € N, if and only if U C {e}“ or {e} C U°. There exists a finite set F' and m € N
such that z € § C FW™ because S is bounded and = € S for every W € N,.
There exists f € F and w € W™ such that + = fw. Then FW™ € N,. That is
Fwm™n{e} = fLEJF {fwm™} n{e} # 0. This is a contradiction. O

Theorem 3.17. A set B is bounded if and only if every countable subset of B is
bounded in a topological space.

Proof. 1t is obvious that every countable subset of this set is bounded since if a set
is bounded then every subset of this set is bounded.

On the contrary, we assume that every countable subset of B is bounded, but B
isn’t bounded. There exists a neighbourhood U of e such that B isn’t included by
FU™ for every number m € N and a finite set . Now, we construct the sequence
{zn}°_; such that

x1 € B\FU, zy € B\FU?, ...,x; € B\FU', ...

Obviously the sequence {z,,}°°_; isn’t absorbed by U ie. {x,}>*_; C B isn’t
bounded. This contradict with our hypothesis. O]
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Now we give definitions of bounded mapping, bornological group and then we
prove some theorems connected with these concepts.

Definition 3.18. If a mappings is conserved bounded sets between topological
groups then this mapping is called as bounded mapping.

Lemma 3.19. Let f be any homomorphism and m € N then {f~! (V)}™ C f~1(V™).

Proof. For all z € f~1(V)™ there exist aj,as,....,a, € f~1(V) such that z =
a103...Qp,.

1 2f(z) = f(arag...ar,) = f(a1)f(az)...f(an) and f(a;) € V for all 1 < i < m.
f(z) € V™ then z € f~1 (V™). Since f(S) € U {f(x)f({f(V™}H} and

V)Y S fH (V) then £(S) € U { (@) £ (f (V™)) Thus
F(8)C UAf @V} = fEV™

zeF

]

Theorem 3.20. Every continuous homomorphism between topological groups must

be bounded.

Proof. Let G and G’ be two topological groups, f : G — G’ be a homomorphism and
S C G be bounded. Also let e and €’ be unit elements of G and G, respectively. Since
S is bounded there exists a number m € N and a finite set F' for every neighbourhood
U of e such that S C FU™ = U {zU™}.

zeF

xU™ € N, because U™ € N,. If we take V € N, then f~1 (V) € N, and

SCE{T W= U {zf 1 (V)"

then
(9 o) = g (e wm).
Hence
F$) € U @) vy}
and

1) € ULF@V™} = fEV™.
O

Definition 3.21. Let G be a topological group and B C G. If the set B absorbs
every bounded set then B is called as a bornivorous.

Definition 3.22. Let G be a topological group. If every bornivorous in G is a
neighbourhood of e then G is called as a bornological group.

Theorem 3.23. Every bornivorous in a semimetric group G is a neighbourhood of
e.
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Proof. Let B be a bornivorous in G. We assume that B isn’t a neighbourhood of e.
In this case, the set B" isn’t also a neighbourhood of e for every number n € N .

The open sphere D1 (e) = {z : d(z,e) < ~} isn’t contained by B, for every
number n. So this sphere isn’t contained the sets B" because they aren’t also neigh-
bourhood of e. Then {D1 (e)}\B™ # ¢ for every number n. The sequence {z,,}>°_;
which is constructed the style that

z1 € {D1(e)}\B, w2 € {D1(e)}\B=*, ...

isn’t absorbed by the set B. But the sequence is bounded since {z,,}>_; is ab-
sorbed by neighbourhood D; (e) of e. This case is contrary to the fact that B is a
bornivorous. N

Remark 3.24. Obviously every neighbourhood of e is a bornivorous. Also it is
understand that every semimetric group is a bornological group by above theorem.

Proposition 3.25. Let G and H be two topological groups, f : G — H be a
bounded homomorphism. If A C G is a bornivorous, then f(A) is also a bornivorous
in H.

Proof. Let we take y € f(S). Then
ye f(S) = [f(z)e f(5)

= z€8
= ge&FA"

Thus f(S) C f(FA") = f( gF{xA"}) = f( LGJF{x}))f(A”) f(A) is a bornivorous
in H because f(F') is a finite set. O

Proposition 3.26. Let G and H be two topological groups, f : G — H be a
bounded homomorphism. If B C f (G) is a bornivorous in H, then f~!(B) is also a
bornivorous in G.

Theorem 3.27. Let GG be a bornological group. In this case, every bounded homo-
morphism f which is defined from G into any topological group H is continuous.

Proof. Let U be a neighbourhood of e in H then the set U absorbs every bounded
set in H. Thus the set U is a bornivorous. f~!(U) is a bornivorous in G by above
proposition and G is also a neighbourhood of e by hypothesis i.e. f is continuous on
e. So f is continuous in everywhere. m

Proposition 3.28. Let (X, 7) and (Y, 7') be any topological groups and f: X — Y
be a continuous homomorphism. If A C X is bounded then (f (4)) C Y is bounded.

Proof. Let we take any V € N, so f~' (V) € N,. Since A is bounded set, there
exists a finite set F' and a number m € N such that A C Ff~*(V)™. Thus f (A4) C

FE)FUTTW)™) S LE)FHV™) S f(F) V™ and then (f (A)) C f (F) V™

ie. (f(A)) is bounded. O

Proposition 3.29. Let (X, 7;),.; is any family of topological groups, X = 'HIXi
1€

and II; : X — X; be the projection. A C X is bounded if and only if II; (A) C X is
bounded for every ¢ € I.
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Proof. If A is bounded in (X, 7) there exists a finite set F' and m € N such that
AC (I;H (Vi)™ F. 10 (A) C I (I (V)™) I, (F). Then

I (4) € I ({I5 (V) ™) I (F) C I0 (I (V™) T (F) € V™I (F) -

On the contrary, let II; (A) is bounded in (X;, ;) for every i € 1.
We take any V' € N,. For every i € I and V; € N; (e;), V = ‘szi' There exists a
1€

finite set F; and m € N such that II; (A) C V" F; because 11, (A) is bounded for every
i € I. Let we take II; (A) = A;. Therefore 11 A; C II (V"F;) = (HV}) I1F,.

il iel iel iel
Thus A CV™F je. A C X is bounded.
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