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Abstract – In this paper, we introduce Stereographic- l -axial Weibull and Stereographic Circular Weibull 

distributions for modeling l -axial and circular data by extending the Stereographic Semicircular Weibull 

distribution [8]. Discussed the estimation of parameters also and derived the first two trigonometric moments 

for the proposed Stereographic Circular Weibull  model. 

 

Keywords – Semicircular models, l -axial data, Stereographic projection, Trigonometric moments. 

 

 

1 Introduction 
 

In some of the cases the directional / angular data does not required full circular models for 

modeling, this fact is noted in Guardiola [3], Jones [5], Byoung et al [1] and Yedlapalli et 

at [8].  For example, when sea turtles emerge from the ocean in search of a nesting site on 

dry land, a random variable having values on a semicircle is well sufficient for modeling 

such data.   Similarly, when an aircraft is lost but its departure and its initial headings are 

known, a semicircular random variable is sufficient for such angular data. And few more 

examples of semicircular data is available in Ugai et al [10]. 

 

Toshihiro Abe et al [11] constructed some Unimodal and symmetric distributions by 

applying Inverse Stereographic projection, Yedlapalli et al [8] constructed some 

semicircular distributions by applying Inverse Stereographic projection. In this paper we 

developed the Stereographic- l -axial Weibull distribution by extending the Stereographic 

Semicircular Weibull and observed that Stereographic Circular Weibull distribution is a 
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special case to proposed model and also Stereographic Circular Exponential [9] and 

Stereographic Circular Rayleigh Distributions are special cases to Stereographic Circular 

Weibull Distribution, where the same is true in linear case also . We plotted the graphs of 

the density function for various values of parameters. First two trigonometric moments for 

proposed model are derived, we estimate parameters of the Stereographic Circular Weibull 

model by a maximum likelihood method. 

 

 

2 Stereographic- l -axial Weibull Distribution 
 

Here we recall the definition of Stereographic Semicircular Weibull Distribution  [8].  

 

Definition 2.1 (Stereographic Semicircular Weibull Distribution) A random variable   

on unit semicircle is said to have Stereographic Semicircular Weibull distribution with 

shape parameter 0c   and scale parameter 0  denoted by SCW  ,c  , if the probability 

density and cumulative distribution functions are given by  

 

1.  
1

2 1
sec tan exp tan , for 0 , 0 and 0

2 2 2 2

c c

c
g c

  
   

 

          
                       

 

2.  
1

tan
2

1

c

G e





  
   

     

 

We extend the above   Stereographic Semicircular  Weibull model [8] to the l  -axial 

distribution, which is applicable to any arc of arbitrary length say 2
l

 for 1,2,...,l   so it 

is desirable to extend the Stereographic Semicircular Weibull distribution[8] to construct 

the Stereographic- l -axial Weibull distribution, we consider the density function of 

Stereographic Semicircular Weibull distribution and use the transformation 

2 ,
l

  1,2,...,l  . The probability density function of    is given by  

 

 
1

2 1
sec tan exp tan ,

4 4 4 4

c c

cl l l l
g

  


 

          
                    

   

                                          
2

0 , 0, 0 and 1,2,..c l
l


          (2.1.1) 

 

We call it as Stereographic - l -axial Weibull distribution 

 

 

Case (1) When 1l  , in the probability density function (2.1.1), we get the density function     

 

         
1

2 1
sec tan exp tan ,

4 4 4 4

c c

c
g

  


 

          
                    
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                                               0 2 , 0  and 0c          (2.1.2)

 

  

 

We call it as Stereographic Circular Weibull distribution.  

 

Case (2) When 2l  , the probability density function (2.1.1) is the same as that of 

Stereographic  Semicircular Weibull Distribution  [8]. 

 

 

2.2 Stereographic Circular Weibull Distribution 

   

A random variable  SX  on a unit circle is said to have Stereographic Circular Weibull 

Distribution with scale parameters 0   , shape parameter 0c    and location parameter  

  denoted by SCWD  , ,c   . If its probability density and cumulative distribution 

functions are given by  

 

 
1

2 1
sec tan exp tan ,

4 4 4 4

c c

c
g

     


 

            
                        

                                                      0 , 2 , 0 and 0c           (2.2.1)

   

 

1
tan

4
1

c

G e

 




  
       

        (2.2.2)  

 

Special Cases 

 

Case1: When 1,c in (2.1.1), we get the density function of Stereographic- l - axial 

Exponential  Distribution[9]. i.e.,

   

  2 1 2
sec exp tan , 0 , 0 and 1,2,..

4 4 4

l l l
g l

l

  
  

 

     
          

       (2.2.3) 

 

Case2: When 1& 1c l   , in (2.1.1), we get the density function  

 

  21 1
sec exp tan , 0 2 , 0

4 4 4
g

 
   

 

     
         

         (2.2.4) 

 

We call it as Stereographic Circular Exponential Distribution [9]. 

 

 

Case3: When 1& 2c l   , in (2.1.1), we get the density function of Stereographic 

Semicircular   Exponential Distribution [8].  

 

Case 4: When 2 & 1c l   , in (2.1.1), we get the density function 
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 
2

21 1
sec tan exp tan ,

2 4 4 4
g

  


 

         
                         (2.2.5) 

                                                                             0 2 , 0    

  

We call it as Stereographic Circular Rayleigh Distribution

 

 

The same is true in linear case also. 

 

2.3 Graphs of Density  Function of Stereographic Circular Weibull Distribution 

for Various Values of the Parameters 

 

 

 

3 Trigonometric moments of Stereographic Circular Weibull Model 
 

Without loss of generality here we assume that 0  , in (2.1.2) .The trigonometric 

moments of the distribution are given by  p : p 0, 1, 2, 3,... ,     where 

p p p ,i    with  p cospE    and  p sin pE    being the thp   order cosine and 

sine moments of the random angle , respectively.  
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Theorem 3.1 Under the pdf of Stereographic Circular Weibull Model with 0   , the first 

four  p cospE   and  p sin p ,E  p 1,2. are given as follows: 

 

   
    

2 2

1

0

8 2 2
1 1 1

n c
n

c

n

n c
n

c
 



   
 
 



  
     

 


 

 

         
2 2 2 4

1

0 0

4 2 2 8 2 4
1 1 1 1

n c n c
n n

c c

n n

n c n c
n n

c c
  

 

       
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Proof:  

 

           p
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              
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      p pcos p sin p for p=1,2.E i E i        

 

For the first cosine and sine moments, use the transformation tan
4

x
 

  
 

, 

 

2

2
2

8
cos 1

1

x
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  

and 

   
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4 8
sin

1 1

x x

x x
  

 
 ,the results 1 and 1  

follows by the integral formula  

 

3.478.1 [2]. Now   

 

    
1 12 tan

42

0

E cos p cos p sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    

     

 

and 
  

    
1 12 tan

42

0

E sin p sin p sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    


 

1 12 tan
42

1

0

cos sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    

  

 

12
1

2
2

0

8
1

1

cx
cc x

x e dx
x










 
  
 
 

  

 

 
1

2
1 2

0

8
1 1+

cx
cc

x x e dx






    

   
1

1 2

00

8
1 1 1

cxnc n

n

c
x n x e dx



  




     

   

2 2

0

8 1 1 2 2
1 1 1

n c

cn

n

c n c
n

c c 

  
 
 



    
       

   
  

    
2 2

1

0

8 2 2
1 1 1

n c
n

c

n

n c
n

c
 



   
 
 



  
     

 
  

1 12 tan
42

1

0

sin sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    



 

   

13
1

2 2
2 2

0

4 8

1 1

cx
cc x x

x e dx
x x










 
  
  
 

  



Journal of New Theory 14 (2016) 01-09                                                                                                             7 
 

   

1 11 3

2 2
2 2

0 0

4 8

1 1

c cc c
x xc x c x

e dx e dx
x x

 

 

  
 

 
 

   

       
1 1

1 2 3 2

0 00 0

4 8
1 1 1 1

c cx xn nc n c n

n n

c c
x n x e dx x n x e dx 

 

   
 

 

       
 

           
1 1

2 2 1 2 4 1

0 00 0

4 8
1 1 1 1

c cx xn nn c n c

n n

c c
n x e dx n x e dx 

 

   
     

 

         

         
2 2 2 4

1

0 0

4 2 2 8 2 4
1 1 1 1

n c n c
n n

c c

n n

n c n c
n n

c c
  

 

       
   
   
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To obtain second cosine and sine moments 2 and 2 ,
 we use the  transformation   

 

tan
4

x
 

  
 

,  

   

4 2

4 2
2 2

12 32
cos 2 1
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x x

x x
   
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and  

 

       

3 3 5

2 2 4 4
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8 16 64 128
sin 2

1 1 1 1

x x x x

x x x x
    

   
,   

 

the results of 2 and 2  
follows by the  same integral formula of 1 . 

 
1 12 tan

42

2

0

cos2 sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    



 

   

14 2
1

4 2
2 2

0

12 32
1

1 1

cx
cc x x

x e dx
x x










 
   
  
 

   

   
1 1

4 2
3 2 1 2

0 0

12 32
1 1 1

c cx x
c cc c

x x e dx x x e dx 

 


  

 



     

           
1 1

2 2 1 2 4 1

0 00 0

32 12
1 1 1 3,3 1

c cx xn nn c n c

n n

c c
n x e dx C n x e dx 

 

  
 

     

 

        
 

    
2 2

2

0

32 2 2
1 1 1

n c
n

c

n

n c
n

c
 




  

 
 



  
     

 


 

                 
2 4

0

12 2 4
1 3,3

n c
n

c

n

n c
C n

c





  

 
 



  
    

 
 , 

1 12 tan
42

2

0

sin2 sec tan
4 4 4

c
c

c
e d


 

  


   
   

  
    

     
    



 



Journal of New Theory 14 (2016) 01-09                                                                                                             8 
 

       

13 3 5
1

2 2 4 4
2 2 2 2

0

8 16 64 128

1 1 1 1

cx
cc x x x x

x e dx
x x x x










 
    
    
 


 

   
1 1

2 2
2 2 2

0 0

8 16
1 1

c cx x
c cc c

x x e dx x x e dx 

 



  
      

           
1 1

4 4
3 2 4 2

0 0

64 128
1 1

c cx x
c cc c

x x e dx x x e dx 

 



  
        

           
1 1

2 1 1 2 3 1

0 00 0

8 16
1 1 1 1

c cx xn nn c n c

n n

c c
n x e dx n x e dx 

 

 

 
     

 

 

       

                
1 1

2 4 1 2 5 1

0 00 0

64 128
1 3,3 1 3,3

c cx xn nn c n c

n n

c c
C n x e dx C n x e dx 

 

 

 
     

 

 

         

        
2 1 2 3

2

0 0

8 2 1 16 2 3
1 1 1

n c n c
n n

c c

n n

n c n c
n

c c
  

 

      
   
   

 

       
         

   
   

         
2 4 2 5

0 0

64 2 4 128 2 5
1 3,3 1 3,3

n c n c
n n

c c

n n

n c n c
C n C n

c c
 

 

      
   
   

 

       
          

   
 

 

In the similar process  we can obtain the higher order moments also .

 

 

 

4 Estimation of Parameter 

 
The minus log-likelihood for a random sample of size 1 2 3, , , ,..., nn     , from the Circular 

Weibull distribution is given by  

 

   
1

2

1 1

1
, ; sec tan exp tan

4 4 4 4

c c
n n

i i i
i

i i

c
L g

     
   

 



 

             
            
            

   

(4.1) 
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  

                                           
 

1

1
1 log tan

4

n
i

i

c
 

 

   
            

    (4.2) 

 

To find maximum likelihood estimates, we can use any minimization subroutine for direct 

minimization of the minus log-likelihood itself. 

 

5 Conclusions 
  

In this paper, we discussed circular distribution resulting from extending Stereographic 

Semicircular Weibull distribution on unit semicircle which is obtained by inducing Inverse 

Stereographic Projection on the real line. The density and distribution functions of 
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Stereographic Circular Weibull distribution admit explicit forms, as do trigonometric 

moments and observed that in similar to linear case, Stereographic Circular Exponential 

and Stereographic Circular Rayleigh distributions are Special cases to proposed 

Stereographic Circular Weibull Distribution. As this distribution is asymmetric, promising 

for modeling asymmetrical directional data. 
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Abstract - Many disciplines, including engineering, economics, medical science and social science are highly 

dependent on the task of modeling and computing uncertain data. When the uncertainty is highly complicated and 

difficult to characterize, classical mathematical approaches are often insufficient to derive effective or useful 

models. Testifying to the importance of uncertainties that cannot be defined by classical mathematics, researchers 

are introducing alternative theories every day. In addition to classical probability theory, some of the most important 

results on this topic are fuzzy sets, intuitionistic fuzzy sets, vague sets, interval-valued fuzzy set and rough sets. But 

each of these theories has its inherent limitations as pointed out by Molodtsov. For example, in probability theory, 

we require a large number of experiments in order to check the stability of the system. To define a membership 

function in case of fuzzy set theory is not always an easy task. Theory of rough sets requires an equivalence relation 

defined on the universal set under consideration. But in many real life situations such an equivalence relation is very 

difficult to find due to imprecise human knowledge. Perhaps the above mentioned difficulties associated with these 

theories are due to their incompatibility with the parameterization tools. Molodtsov introduced soft set theory as a 

completely new approach for modeling vagueness and uncertainty. This so-called soft set theory is free from the 

above mentioned difficulties as it has enough parameters. In soft set theory, the problem of setting membership 

function simply doesn’t arise. This makes the theory convenient and easy to apply in practice. Soft set theory has 

potential applications in various fields including smoothness of functions, game theory, operations research, 

Riemann integration, probability theory and measurement theory. Most of these applications have already been 

demonstrated by Molodtsov.    

 

In this paper a new approach called refined soft sets is presented. Mathematically, this so called notion of refined 

soft sets may seem different from the classical soft set theory but the underlying concepts are very similar. In this 

paper the concept of refined soft set is introduced and the several operations between refined soft sets and soft sets 

are discussed. We also present the concept of soft images and soft inverse image of refined soft sets.  The concept of 

image of a refined soft set has been used in a customer query problem.    
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1. Introduction 
 

The traditional soft set is a mapping from a parameter to the crisp subset of universe. Molodtsov 

[15] introduced the theory of soft sets as a generalized tool for modeling complex systems 

involving uncertain or not clearly defined objects. Soft set is a parameterized general 

mathematical tool which deals with a collection of approximate descriptions of objects. Each 

approximate description has two parts, a predicate and an approximate value set. In the soft set 

theory, the initial description of the object has an approximate nature, and we do not need to 

introduce the notion of exact solution. The absence of any restrictions on the approximate 

description in soft set theory makes this theory very convenient and easily applicable in practice. 

Any parameterization we prefer can be used with the help of words and sentences, real numbers, 

functions, mappings and so on.  In recent years, soft set theory have been developed rapidly and 

focused by many researchers in theory and practice. Maji et al. [14] defined several operations 

on soft sets and made a theoretical study on the theory of soft sets. Aktas and Cagman [1] 

compared soft sets to the related concepts of fuzzy sets and rough sets. They also defined the 

notion of soft groups. Jun [10] applied soft set to the theory of BCK/BCI algebra and introduced 

the concept of soft BCK/BCI algebra. Jun and park [11] discussed the applications of soft sets in 

ideal theory of BCK/BCI algebra. Feng et al. [7] defined soft semi rings and several related 

notions in order to establish a connection between soft sets and semi rings. Furthermore based on 

[14], Ali et al. [2] introduced some new operations on soft sets and by improving the notion of 

complement of soft set, proved that certain De Morgan’s laws hold in soft set theory. Qin and 

Hong [17] introduced the notion of soft equality and established lattice structures and soft 

quotient algebras of soft sets. Chen et al. [6] presented a new definition of soft set 

parameterization reduction and compared this definition to the related concept of attribute 

reduction in rough set theory. Kong et al. [13] introduced the notion of normal parameter 

reduction of soft sets and constructed a reduction algorithm based on the importance degree of 

parameters. Babitha and Sunil [5] made an attempt to explain the equivalent version of some 

theories on relations and functions in the background of soft sets. In 2011, Kharal and Ahmad 

[12] introduced the notion of soft images and soft inverse images and they applied these notions 

to the problem of medical diagnosis. 

 

In this paper a new approach called refined soft sets is presented. Mathematically, this so called 

notion of ultra soft sets may seem different from the classical soft set theory but the underlying 

concepts are very similar. These new type of soft sets satisfy all the basic properties of soft sets. 

The organization of the paper is as follows: Section 2 briefly reviews some background on soft 

set. Section 3 focuses on the concepts and operations of refined soft sets. Moreover the basic 

properties of refined soft sets are presented. In section 4, we propose two different types 

operations between refined soft sets and soft sets. Section 5 is devoted to the discussion of soft 

images and soft inverse images of refined soft sets. The last section summarizes all the 

contributions made and points out future research work. 
 

 

2. Preliminaries 
 

In this section, some definitions and notions about soft sets are given. These will be useful in 

later sections.   
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Let U be an universe set and E be a set of possible parameters with respect to U. Usually 

parameters are attributes, characteristics or properties of the objects in U.  Let P(U) denotes the 

power set of  U and A,BE. 

 

Definition 2.1: [16] A pair (f, A) is called a soft set over U, where AE and f is a mapping given 

by f: A P(U). 

 

In other words, a soft set over U can be regarded as a parameterized family of subsets of  U, 

which gives an approximation(soft) description of the objects in U. For eA, f(e) may be 

considered as the set of e-approximate elements of the soft set (f, A). 

 

Definition 2.2: [15] For two soft sets  ,f A and  ,g B over a common universe U , we say that 

 ,f A is a soft subset of  ,g B if 

(i)
 
A B  

(ii)
 

( ) ( ) for .f e g e e A   

 

Definition 2.3: [15] The extended union of two soft sets  ,f A and  ,g B over a common 

universe U  is the soft set  ,h C where C A B   and e C   

 

  

( )

( ) ( )

( ) ( )

f e if e A B

h e g e if e B A

f e g e if e A B

 


  
   

 

 

We write      , , , .f A g B h C   

 

Definition 2.4: [15] The extended intersection of two soft sets  ,f A and  ,g B over a common 

universe U  is the soft set  ,h C where C A B   and e C   

 

  

( )

( ) ( )

( ) ( )

f e if e A B

h e g e if e B A

f e g e if e A B

 


  
   

 

 

we write      , , , .f A g B h C   

 

Definition 2.5: [15] The complement of a soft set  ,f A is denoted by  ,
c

f A and is defined by 

     , , , where :
c c cf A f A f A P U  is a mapping defined by     .cf e U f e for e A    
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Definition 2.6: [15] A soft set  ,f A is called a null soft set denoted by 
soft if for all 

 , (nullset).e A f e    

 

Definition 2.7: [15] A soft set  ,f A is called an absolute soft set denoted by 
softU if for all 

 , .e A f e U   

 

Definition 2.8: [12] Let ,U V  be two universe sets and ,A B  be two sets of parameters Let 

, :u U V p A B    be mappings. Then a mapping    :pu A B
f SS U SS U  is defined as: 

 

(i) let  ,g A
 
be a soft set in  

A
SS U  Then the image of  ,g A  under puf , denoted by 

 , ,puf g A is a soft set in  
B

SS U defined by 

 

        , , , , ,pu puf g A f g p A where for y p A    

 

  
  

 

 
1

1

,

x p y A
pu

u g x if p y A

f g y

otherwise









 

  


 


 

 

(ii) let  ,h B
 
be a soft set in  

B
SS U . Then the inverse image of  ,h B  under puf , denoted by 

 1 , ,puf h B is a soft set in  
A

SS U defined by 

 

     1 1 1, , , ,pu puf h B f h p B where for x A     

 

  
     1

1

,
pu

u h p x if p x B
f h x

otherwise




 

 


 

 

 

3. Refined Soft Sets  
 

According to Molodtsov [15] a pair (f, A) is called a soft set over U, where AE and f is a 

mapping given by f: A P(U). In this case f(a)U for all aA. But there are many situations in 

real life problems in which f(a) is itself a soft set for each .a A Consider the following 

example: 

 

Among thousands of paper submitted to a journal of Mathematical Science in a particular month, 

suppose the Editor initially selected 10 papers and forwarded them to two Reviewers to review 

those papers. Each of the Reviewers will review each paper depending upon the following 

parameters: 
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(i) originality of the paper 

(ii) applications on real life problems 

(iii)  general interest on the topic chosen 

 

The Editor will accept or reject a paper depending upon the review report of the Reviewers. 

 1 2 3 10, , ,....,Let U p p p p
 
be the universe set of 10 papers. Let  

 

 1 2( 1 Re ), ( 2 Re )B b opinion of the st viewer b opinion of the nd viewer , 

 





1 2

3

(originality of the paper), (applications on real life problems),

(general interest on the topic choosen) .

A a a

a


 

 

 ˆ ,Let B P A U   (where  ˆ ,P A U denotes the collection of all soft sets over the universe set 

U ) be defined by 

 

        1 1 1 2 7 8 2 1 3 5 9 3 2 8 10, , , , , , , , , , ,b a p p p p a p p p p a p p p       

 

        2 1 2 7 8 2 1 5 9 3 8 10, , , , , , , .b a p p p a p p p a p p      

 

Here  , B is not a traditional soft set. We call these type of sets as refined soft sets. 

 

Definition 3.1: Let U  be an universe set and E , F  be two sets of parameters such 

that E F   . Let A E  and B F . Let us define a soft set  , B  where  ˆ ,B P A U    is 

defined by    ,bb f A   for each b B  where  ,bf A  is a soft set over U  for each b B . 

Then we say that  , B  is a soft-soft set. We denote it by , B . 

 

Example 3.2: Consider the example that has been given in the beginning of the section-3. Then  

, B  is a refined soft set. 

 

Soft set theory basically deals with the opinion of one person depending on some parameters, 

whereas refined soft set theory deals with the opinion of several persons based on the common 

set of parameters which makes this theory more convenient and broadly applicable. When all the 

persons have same opinion, the corresponding refined soft set reduces to an ordinary soft set. 

Thus one can say that refined soft set is a generalization of traditional soft set. To illustrate this 

let us consider the following example: 

 

Suppose Mr. X and his wife wants to jointly purchase a house depending upon the following 

parameters: 



Journal of New Theory 14 (2016) 10-25                                                                                                                      15 

 

 

 

 

(i) Beautiful and cheap 

(ii) Wooden 

 

 1 2 3 4 5Let , , , ,U h h h h h be the set of houses under consideration. 

 

Let  1 2(opinion of Mr. X), (opinion of  the wife of Mr. X)B b b , and 

 

 1 2(   ), ( )A a beautiful and cheap a wooden  be defined by 

 

             1 1 1 2 4 2 1 5 2 1 1 2 4 2 1 5, , , , , , , , , .b a h h h a h h b a h h h a h h         

 

Here  , B is an refined soft set. But since the opinion of Mr. X and his wife are same based on 

the same set of parameters, we conclude that  , B reduces to a soft set  , whereg A
 

 

       1 1 2 4 2 1 5, , , , .g a h h h g a h h   

 

Thus we can say that soft set theory deals with collective decisions. On the other hand refined 

soft set theory deals with individual decisions. 

         

Let U  be a universe set and E , F  be two sets of parameters such that E F   . Let A E  

and , ,B C D F . Let , B , ,C  and , D
 

be three refined soft sets over U , where 

 ˆ ,B P A U    is defined by    ,bb f A   for each b B ;  ˆ ,C P A U    is defined by 

   ,cc g A   for each c C  and  ˆ ,D P A U    is defined by    ,dd z A   for each 

d D .  

 

Definition 3.3: The union of , B  and ,C  is denoted by , ,B C   and is defined by 

the refined soft set , K  where K B C   and  ˆ ,K P A U    is given by 

 

 

 

 

   

e if e B C

e e if e C B

e e if e B C



 

 

 


  
   

 

 

Where        , ,e ee e f A g A     
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Definition 3.4: The intersection of , B  and ,C  is denoted by , ,B C   and is 

defined by the refined soft set , K  where K B C   and  ˆ ,K P A U    is given by 

 

 

 

 

   

e if e B C

e e if e C B

e e if e B C



 

 

 


  
   

 

 

Where        , ,e ee e f A g A     

 

Definition 3.5: The complement of  , B  is a refined soft set defined by ,
c

B  and is defined 

by  , ,
c cB B   where  ˆ ,c B P A U    is a mapping given by  ( ) ,c c

bb f A  for b B  

where ˆ: ( , )c

bf A P A U is a mapping defined by ( ) ( )c

b bf a U f a  for .a A  

 

Definition 3.7: A refined soft set , B  is called a null refined soft set denoted by *  if 

   ,bb f A  = soft  for each b B . 

 

Definition 3.8: A refined soft set , B  is called an absolute refined soft set denoted by *U
 
if 

   ,bb f A  = softU  for each b B . 

 

Theorem 3.9: 

I. , B  * = * , ,B B     and , B  * = * , *B     

II. , B  *U = * , *U B U   and , B  *U = * , ,U B B    

III. , , , ,B C C B       

IV. , , , ,B C C B       

V.    , , , , , ,B C D B C D           

VI.    , , , , , ,B C D B C D           

VII.      , , , , , , ,B C D B C B D             

VIII.      , , , , , , ,B C D B C B D             

IX.  , , , ,
c c c

B C B C       

X.  , , , ,
c c c

B C B C       
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4. Operations between Refined Soft Sets and Soft Sets 
 

Let us consider U  as a universe set and E , F  be two sets of parameters such that E F   . Let 

A E  and ,B C F . Let us consider a refined soft set , B where  ˆ ,B P A U     is 

defined by    ,bb f A   for each .b B  Let  ,g B be a soft set over U. Then  

 

Definition 4.1: 

(i) The operation “ , B  necessary  ,g B  ” denoted by  , ,B g B is defined by the soft 

refined set    , , ,B g B B where   for  b B , ( )b        b

a A

U f a g b


   

(ii) The operation “ , B  possibility  ,g B  ” denoted by  , ,B g B  is defined by the refined 

soft set  , , ,B g B B where   for b B , ( )b      b

a A

f a g b


  

 

Theorem 4.2: Let    1 2, ,g B and g B be two soft sets over U. Then 

(i) , ,soft soft soft softB U U and B       

(ii)
 

     1 1, , , , ,B g B g B B g B     

(iii)
 
       1 2 1 2, , , , , ,g B g B B g B B g B     

(iv)
 
       1 2 1 2, , , , , ,g B g B B g B B g B       

 (v)
 

          1 2 1 2, , , , , , ,B g B g B B g B B g B      

(vi)
 

          1 2 1 2, , , , , , ,B g B g B B g B B g B      

(vii)
 

          1 2 1 2, , , , , , ,B g B g B B g B B g B         

(viii)
 

          1 2 1 2, , , , , , ,B g B g B B g B B g B         

(ix)
 

    1 1, , , ,
c c

B g B B g B    

(x)
 

    1 1, , , ,
c c

B g B B g B    

 

Proof: (i)-(iv) are straight forward. 

 

(v)  Let     1 2, , ,B g B g B  =  , B . Then for b B , we have 

 

        

            

1 2

1 2

( ) b

a A

b b

a A

b U f a g b g b

U f a g b U f a g b






   

     
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Again      1 2, , , ,B g B B g B  =      1 2 3, , ,B B B     where for b B , we have 

 

           

            

3 1 2

1 2

1 2

( ) ( ) ( )

b b

a A a A

b b

a A

b b b

U f a g b U f a g b

U f a g b U f a g b

  

 



 

 
      

 

     

 

 

Hence           1 2 1 2, , , , , , ,B g B g B B g B B g B     . 

 

(vi) Let     1 2, , ,B g B g B  =  , B . Then for b B , we have 

        

            

1 2

1 2

( ) b

a A

b b

a A

b U f a g b g b

U f a g b U f a g b






   

     
 

 

Again      1 2, , , ,B g B B g B  =      1 2 3, , ,B B B     where for b B , we have 

 

           

3 1 2

1 2

( ) ( ) ( )

b b

a A a A

b b b

U f a g b U f a g b

  

 

 

 
      

 

 

 

Hence           1 2 1 2, , , , , , ,B g B g B B g B B g B     . 

 

Since            1 1 2 2 1 2 ,g b g b g b and g b g b g b      we have 

 

              1 1 2b b

a A a A

U f a g b U f a g b g b and
 

       

 

              2 1 2 .b b

a A a A

U f a g b U f a g b g b
 

      Consequently, 

 

     1b

a A

U f a g b


                 2 1 2b b

a A a A

U f a g b U f a g b g b
 

      . 

 

So           1 2 1 2, , , , , , , .B g B g B B g B B g B      

 

(vii)-(viii) can be proved similarly. 
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(ix) Let  1, , ,
c

B g B B where   for b B , we have       ( ) b

a A

b f a U g b


    

 

Again for   1, ,
c

B g B =  , B and for b B , we have 

 

     

     

( ) b

a A

b

a A

b U U f a g b

f a U g b






 
    

 

  

  

 

Consequently,     1 1, , , ,
c c

B g B B g B   . 

 

(x) Proof is similar to (ix). 

 

 

5. Soft Images and Soft Inverse Images of Refined Soft Sets 
 

Definition 5.1: Let ,U V  be two universe sets and 
1 2 1 2, , ,E E F F  be four universe sets of 

parameters such that for , 1,2.i jE F i j   . Let 1 1 2 2andA E A E   and 

1 2andB F C F  . Let 1 2, : :u U V p B C and q A A     be mappings. Let 

   1 2and
A A

B C
SS U SS V  be two families of refined soft sets. Then a mapping 

   1 2:
A A

qpu B C
f SS U SS U  is defined as: 

 

(i) Let , B
 
be a refined soft set in   1A

B
SS U  and    1,bb r A   for each b B . Then the 

image of , B  under qpuf , denoted by , ,qpuf B is a refined soft set in   2A

C
SS U defined by 

          2, , , where for , ,qpu qpu qpu cf B f p B c p B f c z A     where for 2

//a A  

 

 
  

  

   /

/ 1 / 1 //
1

/ 1 1 //

1//

,

c
c c p c B a q a A

u r a if p c B and q a A
z a

otherwise

 



 

 

   

  
      

  
 




 

 

(ii) Let ,C
 
be a refined soft set in   2A

C
SS U  and    2,cc k A   for each c C . Then the 

inverse image of ,C  under qpuf , denoted by 
1 , ,qpuf C

is a refined soft set in 

  1A

B
SS U defined by 

 

          1 1 1 1 1

1, , , where for , ,qpu qpu qpu bf C f p C b p C f b t A         where for  
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1

/ ,a A          1 /

/

,

p b

b

u k q a if p b
t a

otherwise





 
 


 

 

The refined soft function qpuf is called surjective if p , q, u are all surjective. The refined soft 

function qpuf is called injective if p , q, u are all injective. 

 

Example 5.2: Let    1 2 3 4 5 6 1 2 3, , , , , , , , and :U h h h h h h V v v v u U V   be defined by 

 

           1 1 2 3 3 3 4 1 5 2 1 1, , , , , .u h v u h v u h v u h v u h v u h v       

 

   1 2 1 2, , , and :Let B b b B c c p B C    be defined by    1 1 2 1, .p b c p b c   

 

 1 1 2 3, , ,Let A     2 1 2 3 1 2, , :A and q A A    be defined by   

 

     1 1 2 1 3 2, , .q q q         

 

              1 1

1 1 1 1 2: and so , .p B p b b B c c p B c c and p c p c b b          

 

 

           

           
1 1 1

2 2 2

1 1 2 4 2 1 3 5 3 2 3 6

1 1 3 4 6 2 3 4 5 3 2 5

Let , , , , , , , , ,

, , , , , , and , .

b b b

b b b

r h h h r h h h r h h h

r h h h h r h h h r h h

  

  

  

  
 

 

 

                   

                   

   

1 1

1 2

//

2 1 2 3

1 1 2 1 2 4 1 3 5 1 3 1 2 3 1 2 3

2 3 3 2 3 6 2 5 1 3 1 2 3 1 2 3

3

Here  , , .

, , , , , , , , , ,

, , , , , , , , ,

.

c b b

c b b

c

a A

z u r u r u h h h u h h h v v v v v v v v

z u r u r u h h h u h h v v v v v v v v

z

  

  

  



 

      

      



 

       1 1 1 2 3 2 1 2 3 3Hence , , , , , , , .qpuf B c v v v v v v         

   1

1 2, .p C b b   

 

                   

   

             

             

1 1 1 2 2

2

1 1 1

1 1 1

1 1 2 2 3 3 1 3 1 2 2 2 3

3 1 2 3

1 1 1

1 1 1 1 2 1 4 5 6

1 1 1

2 2 1 1 2 1 4 5 6

Let , , , , , , ,

and , , .

Then , , , , ,

, , , , ,

c c c c c

c

b c c

b c c

k v v k v k v v k v k v v

k v v v

t u k q u k u v v h h h h

t u k q u k u v v h h h h

    



  

  

  

  

    



   

   
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             

             

1 1 1

2 1 1

1 1 1

3 3 2 3 2 3

1 1 1

1 1 1 1 2 1 4 5 6

, ,

, , , , ,

b c c

b c c

t u k q u k u v h h

t u k q u k u v v h h h h

  

  

  

  

   

   
 

             

             

    

    

2 1 1

2 1 1

1 1 1

2 2 1 1 2 1 4 5 6

1 1 1

3 3 2 3 2 3

1

1 1 2 1 4 5 6 3 2 3

2 1 2 1 4 5 6 3 2 3

, , , , ,

, .

Hence  , , , , , , ,

, , , , , .

b c c

b c c

qpu

t u k q u k u v v h h h h

t u k q u k u v h h

f C b h h h h h h

b h h h h h h

  

  

   

  

  

  



   

   

    

   

 

 

6. Application 
 

The concept of image of a refined soft set can be used in a customer query problem. Suppose the 

following is a narration by a customer to a shopkeeper: 

 

“I mainly need an android smart phone with long battery life and minimum 1GB of RAM. There 

should be 3G type network connectivity in the mobile. The rear and front camera should be a 

minimum of 5MP and 2MP respectively. Can you please give me some idea about the cost and 

the OS version of a smart phone which has 4.8 inch or 5 inch display size?” 

 

According to the demand of the customer and based on the availability of the smart phones in the 

shop, let us consider the following refined soft set on the universe of smart phones U={m1, m2, 

m3,…, m10}: 

 

 

   

   

   

 

   

   

   

1 1 2 7

1 2 4 5 6

3 3 8 9 10

1 1 4 6

2 2 2 3 8

3 5 7 9 10

, ,

, ,

, , ,
,

, ,

, ,

, , ,

high importance a m m m

battery b medium importance a m m m

low importance a m m m m
g B

high importance a m m m

camera b medium importance a m m m

low importance a m m m m

  
 

 
  

 
 


 
 






 

 

where B={b1,b2} and let  1 2 3, ,A a a a . Let V= {o1 (jellybean), o2 (kitkat), o3 (lollipop)} be the 

set of android versions; A2= { 1a  (high cost (more than 10,000)), 1a  (medium cost (between 

7000-10,000)), 1a  (low cost (less than 7000))}; C= {c1 (display size is 4.8 inch), c2 (display size 

is 5 inch)}. 

 

Let :u U V  be defined by      1 3 9 1u m u m u m o   ,      2 5 7 2u m u m u m o   , 

       4 6 8 10 3u m u m u m u m o    . Let :p B C  be defined by  1 1p b c ,  2 2p b c . Let  

 

1 2:q A A  be defined by  1 3q a a  ,  2 2q a a   3 1q a a  . 
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Then       1 2: ,p B p b b B c c   . 

 

Now    , ,qpu qpuf g B f p B . 

 

where for  c p B ,    2,qpu cf C Z A , 

 

where for 2a A ,  
   

  
1 1

1

c c
c p c B a q a A

Z a u r a
 


     

   

 

So 

 

 

 
   

  

  

  

 

1
1 3

1

1

3

3 8 9 10

1 3

, , ,

,

c c
c b a a

b

Z a u r a

u r a

u m m m m

o o


  

 







 

 

 
   

  

  

  

 

1
1 2

1

2

2

4 5 6

2 3

, ,

,

c c
c b a a

b

Z a u r a

u r a

u m m m

o o


  

 







 

 

 
   

  

  

  

 

1
1 1

1

3

1

1 2 7

1 2

, ,

,

c c
c b a a

b

Z a u r a

u r a

u m m m

o o


  

 







 

 

 
   

  

  

  

 

2
2 3

2

1

3

5 7 9 10

1 2 3

, , ,

, ,

c c
c b a a

b

Z a u r a

u r a

u m m m m

o o o


  

 






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 
   

  

  

  

 

2
2 2

2

2

2

2 3 8

1 2 3

, ,

, ,

c c
c b a a

b

Z a u r a

u r a

u m m m

o o o


  

 







 

 

 
   

  

  

  

 

2
2 1

2

3

1

1 4 6

1 3

, ,

,

c c
c b a a

b

Z a u r a

u r a

u m m m

o o


  

 







 

 

Thus 

 

 

 

 

 

 

 

 

 

 

1 1 3

1 2 2 3

3 1 2

1 1 2 3

2 2 1 2 3

3 1 3

1 3

2 3

1 2

,

,

,

,

, ,

, ,

,

,

4.8 ,

,

5

qpu

a o o

c a o o
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Thus 

 

(i)     Considering the display size 4.8 inch and high cost, the preferred operating systems are 

 1o  and 3o . 

(ii) Considering the display size 4.8 inch and medium cost, the preferred operating systems  

are 2o  and 3o . 

(iii) Considering the display size 4.8 inch and low cost, the preferred operating systems are 1o   

and 2o . 
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(iv) Considering the display size 5 inch and high cost, the preferred operating systems are 1o ,  

2o  and 3o . 

(v) Considering the display size 5 inch and medium cost, the preferred operating systems are  

1o , 2o  and 3o . 

(vi) Considering the display size 5 inch and low cost, the preferred operating systems are 1o   

and 3o . 

 

 

7. Conclusion and Future Works 

 
 Soft set theory is a general method for solving problem of uncertainty. In the present paper the 

structure of refined soft set is discussed together with their operations and basic properties. 

Moreover the concept of soft image and soft inverse image in refined soft set theory context are 

presented which may be useful in medical expert system.  

  

With the motivation of ideas presented in this paper one can think of similarity measures, 

Cartesian products and relations on refined soft sets. Further studies on the topology generated 

by the refined soft sets or refined soft set  relations  may be done so that we may brood over the 

topological side of  refined soft sets or refined soft set relations. Moreover the refined soft sets 

and the refined soft set relations can be extended in fuzzy refined soft sets and fuzzy refined soft 

set relations respectively and thus one can get more affirmative solution in decision making 

problems in real life situations. It is hoped that the combinations of refined soft sets, fuzzy sets 

and rough sets will generate potentially interesting some new research direction.  
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Abstract − In this paper we give some generalizations of the Banach’s contraction principle on a
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1 Introduction

Metric spaces and fixed-point theory have an important role in various areas of
mathematics such as analysis, topology, differential equation etc. Fixed-point theory
begin with the Banach’s contraction principle. Then the principle has been studied
and generalized on some metric spaces (see [1], [2], [6], [7] and [8]). Recently, it has
been introduced the notion of an S-metric space as a generalization of a metric space
[8]. Some mathematicans proved new fixed-point theorems on an S-metric space (see
[4], [5], [6], [8], [9] and [10]). Mlaiki presented the concept of a complex valued S-
metric space and gave a common fixed-point theorem of two self-mappings on a
complex valued S-metric space [3]. The present authors investigated new common
fixed-point theorems using the notion of CS-compatibility on a complex valued S-
metric space [7].

Let X = C and the function S : C× C× C→ C be defined by

S(x, y, z) = i (|x− z|+ |y − z|) ,

**Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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for all x, y, z ∈ C. Then the function S is a complex valued S-metric space on C.
Let us define the self-mapping T : C→ C as follows:

Tx = 1− x,

for all x ∈ C. Then T is a self-mapping on the complete complex valued S-metric
space (C, S). T has a fixed point x = 1

2
, but it does not satisfy the condition of

Banach’s contraction principle. Therefore it is important to study new generalized
fixed-point theorems.

Motivated by the above studies, in this paper, we investigate new fixed-point the-
orems as generalizations of the Banach’s contraction principle on a complete complex
valued S-metric spaces. We expect that new generalized fixed-point theorems will
be obtained using our main theorems.

In Section 2 we recall some known definitions, lemmas and a theorem. In Section
3 we generalize the Banach’s contraction principle on a complete complex valued S-
metric space. Also we give an example which satisfies the conditions of our results,
but does not satisfy the condition of Banach’s contraction principle.

2 Preliminary

In this section we recall some definitions, lemmas and a theorem which is called the
Banach’s contraction principle.

Let C be the set of complex numbers and z1, z2 ∈ C. The partial order - is
defined on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2)

and
z1 ≺ z2 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Also we write z1 - z2 if one of the following conditions hold:

1. Re(z1) = Re(z2) and Im(z1) < Im(z2),

2. Re(z1) < Re(z2) and Im(z1) = Im(z2),

3. Re(z1) = Re(z2) and Im(z1) = Im(z2).

Note that
0 - z1 � z2 ⇒ |z1| < |z2|

and
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.



Journal of New Theory 14 (2016) 26-36 28

Definition 2.1. [3] Let X be a nonempty set. A complex valued S-metric on X
is a function S : X × X × X → C that satisfies the following conditions for all
x, y, z, t ∈ X:

(CS1) 0 - S(x, y, z),
(CS2) S(x, y, z) = 0 if and only if x = y = z,
(CS3) S(x, y, z) - S(x, x, t) + S(y, y, t) + S(z, z, t).
The pair (X, S) is called a complex valued S-metric space.

Definition 2.2. [3] Let (X, S) be a complex valued S-metric space. Then

1. A sequence {an} in X converges to x if and only if for all ε such that 0 ≺
ε ∈ C there exists a natural number n0 such that for all n ≥ n0, we have
S(an, an, x) ≺ ε and it is denoted by

lim
n→∞

an = x.

2. A sequence {an} in X is called a Cauchy sequence if for all ε such that 0 ≺
ε ∈ C there exists a natural number n0 such that for all n,m ≥ n0, we have
S(an, an, am) ≺ ε.

3. A complex valued S-metric space (X, S) is called complete if every Cauchy
sequence is convergent.

Lemma 2.3. [3] Let (X, S) be a complex valued S-metric space and {an} be a
sequence in X. Then {an} converges to x if and only if

|S(an, an, x)| → 0,

as n →∞.

Lemma 2.4. [3] Let (X, S) be a complex valued S-metric space and {an} be a
sequence in X. Then {an} is a Cauchy sequence if and only if

|S(an, an, am)| → 0,

as n →∞.

Lemma 2.5. [3] If (X, S) be a complex valued S-metric space then

S(x, x, y) = S(y, y, x),

for all x, y ∈ X.

Lemma 2.6. [9] Let (X,S), (Y, S ′) be two S-metric spaces and f : X → Y be a
function. Then f is continuous at x ∈ X if and only if f(xn) → f(x) whenever
xn → x.
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In the next section, we consider two complex valued S-metric spaces in Lemma
2.6.

Now we recall the following theorem which is called the Banach’s contraction
principle.

Theorem 2.7. [7] Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X satisfying

S(Tx, Tx, Ty) - hS(x, x, y) (1)

for all x, y ∈ X and some 0 ≤ h < 1. Then f has a fixed point in X.

3 Main Results

In this section we prove new generalizations of the Banach’s contraction principle.

Theorem 3.1. Let (X,S) be a complete complex valued S-metric space and T be
a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4 satisfying
max{c1 + 3c3 + 2c4, c1 + c2 + c3, c2 + 2c4} < 1 such that

S(Tx, Tx, Ty) ¹ c1S(x, x, y) + c2S(Tx, Tx, y) + c3S(Ty, Ty, x) (2)

+c4 max{S(Tx, Tx, x), S(Ty, Ty, y)},

for all x, y ∈ X, then T has a unique fixed point x in X and T is continuous at x.

Proof. Let a0 ∈ X and the sequence {an} be defined by

T na0 = an.

Assume that an 6= an+1 for all n. Using the inequality 2 we obtain

S(an, an, an+1) = S(Tan−1, Tan−1, Tan) ¹ c1S(an−1, an−1, an) (3)

+c2S(an, an, an) + c3S(an+1, an+1, an−1)

+c4 max{S(an, an, an−1), S(an+1, an+1, an)}
= c1S(an−1, an−1, an) + c3S(an+1, an+1, an−1)

+c4 max{S(an, an, an−1), S(an+1, an+1, an)}.

Using the condition (CS3), we get

S(an+1, an+1, an−1) ¹ 2S(an+1, an+1, an) + S(an−1, an−1, an). (4)

Hence using the inequalities (3), (4) and Lemma 2.5, we have

S(an, an, an+1) ¹ c1S(an−1, an−1, an) + 2c3S(an+1, an+1, an) + c3S(an−1, an−1, an)
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+c4S(an, an, an−1) + c4S(an+1, an+1, an),

(1− 2c3 − c4)S(an, an, an+1) ¹ (c1 + c3 + c4)S(an−1, an−1, an)

and

S(an, an, an+1) ¹ c1 + c3 + c4

1− 2c3 − c4

S(an−1, an−1, an). (5)

Let c = c1+c3+c4
1−2c3−c4

. Then we find c < 1 since c1 + 3c3 + 2c4 < 1. Using the inequality
(5), we obtain

S(an, an, an+1) ¹ cnS(a0, a0, a1). (6)

For all n,m ∈ N, n < m, using the inequality (6) and the condition (CS3), we have

S(an, an, am) ¹ 2S(an, an, an+1) + 2S(an+1, an+1, an+2) + · · ·+ 2S(am−1, am−1, am)

¹ 2(cn + cn+1 + · · ·+ cm−1)S(a0, a0, a1)

¹ 2cn(1 + c + · · ·+ cm−n−1)S(a0, a0, a1)

¹ 2cn 1− cm−n

1− c
S(a0, a0, a1)

¹ 2cn

1− c
S(a0, a0, a1),

which implies

|S(an, an, am)| ≤ 2cn

1− c
|S(a0, a0, a1)| .

Therefore |S(an, an, am)| → 0 as n,m →∞. Hence {an} is a Cauchy sequence. Since
(X, S) is complete, there exists x ∈ X such that {an} converges to x.

Now we show that x is a fixed point of T . Suppose that Tx 6= x. Then we get

S(an, an, Tx) = S(Tan−1, Tan−1, Tx) ¹ c1S(an−1, an−1, x)

+c2S(an, an, x) + c3S(Tx, Tx, an−1)

+c4 max{S(an, an, an−1), S(Tx, Tx, x)}
and

|S(an, an, Tx)| ≤ c1 |S(an−1, an−1, x)|+ c2 |S(an, an, x)|+ c3 |S(Tx, Tx, an−1)|
+c4 |max{S(an, an, an−1), S(Tx, Tx, x)}| .

If we take limit for n →∞, then using the continuity of S and Lemma 2.5, we have

|S(x, x, Tx)| = |S(Tx, Tx, x)| ≤ (c3 + c4) |S(Tx, Tx, x)| ,
which is a contradiction since 0 ≤ c3 + c4 < 1. Hence we obtain Tx = x.

Now we show that x is unique. Let y be another fixed point of T such that x 6= y.
Using the inequality (2) and Lemma 2.5, we have

S(Tx, Tx, Ty) = S(x, x, y) ¹ c1S(x, x, y) + c2S(x, x, y)

+c3S(y, y, x) + c4 max{S(x, x, x), S(y, y, y)}
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and
|S(x, x, y)| ≤ (c1 + c2 + c3) |S(x, x, y)| ,

which implies x = y since c1 + c2 + c3 < 1.
Now we prove that T is continuous at x. For n ∈ N, using the inequality (2), we

get

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, x) (7)

+c3S(Tx, Tx, an) + c4 max{S(Tan, Tan, an), S(Tx, Tx, x)}.

Using the condition (CS3), the inequality (7) and Lemma 2.5, we obtain

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, x) + c3S(Tx, Tx, an)

+2c4S(Tan, Tan, x) + c4S(an, an, x)

and
(1− c2 − 2c4)S(Tan, Tan, Tx) ¹ (c1 + c3 + c4)S(an, an, x),

which implies

|S(Tan, Tan, Tx)| ≤ c1 + c3 + c4

1− c2 − 2c4

|S(an, an, x)| .

If we take limit for n →∞, then we have

|S(Tan, Tan, Tx)| → 0.

Therefore {Tan} is convergent to Tx = x. Consequently, T is continuous at x by
Lemma 2.6.

Remark 3.2. (1) Theorem 3.1 is a generalization of the Banach’s contraction prin-
ciple on complete complex valued S-metric spaces. Indeed, if we take c1 = h and
c2 = c3 = c4 = 0 in Theorem 3.1, then we obtain the Banach’s contraction condition
in Theorem 2.7.

(2) If we take the function S : X × X × X → [0,∞) in Theorem 3.1, Then we
have Theorem 3 in [6].

Corollary 3.3. Let (X, S) be a complete complex valued S-metric space and T be
a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4 satisfying
max{c1 + 3c3 + 2c4, c1 + c2 + c3, c2 + 2c4} < 1 such that

S(T px, T px, T py) ¹ c1S(x, x, y) + c2S(T px, T px, y) + c3S(T py, T py, x)

+c4 max{S(T px, T px, x), S(T py, T py, y)},

for all x, y ∈ X and some p ∈ N, then T has a unique fixed point x in X and T p is
continuous at x.
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Proof. Using the similar arguments in Theorem 3.1, we can easily see that T p has a
unique fixed point x in X and T p is continuous at x. Also we obtain

Tx = TT px = T p+1x = T pTx,

which implies that Tx is a fixed point of T p. Consequently we have Tx = x since x
is a unique fixed point.

Theorem 3.4. Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4, c5, c6

satisfying max{c1 + c2 + 3c4 + c5 + 3c6, c1 + c3 + c4 + c6, 2c2 + c3 + 2c6} < 1 such that

S(Tx, Tx, Ty) ¹ c1S(x, x, y) + c2S(Tx, Tx, x) + c3S(Tx, Tx, y) (8)

+c4S(Ty, Ty, x) + c5S(Ty, Ty, y) + c6 max{S(x, x, y),

S(Tx, Tx, x), S(Tx, Tx, y), S(Ty, Ty, x), S(Ty, Ty, y)},
for all x, y ∈ X, then T has a unique fixed point x in X and T is continuous at x.

Proof. Let a0 ∈ X and the sequence {an} be defined by

T na0 = an.

Assume that an 6= an+1 for all n. Using the inequality 8, the condition (CS3) and
Lemma 2.5, we obtain

S(an, an, an+1) = S(Tan−1, Tan−1, Tan) ¹ c1S(an−1, an−1, an) + c2S(an, an, an−1)

+c3S(an, an, an) + c4S(an+1, an+1, an−1) + c5S(an+1, an+1, an)

+c6 max{S(an−1, an−1, an), S(an, an, an−1), S(an, an, an),

S(an+1, an+1, an−1), S(an+1, an+1, an)}
= c1S(an−1, an−1, an) + c2S(an, an, an−1) + c4S(an+1, an+1, an−1)

+c5S(an+1, an+1, an) + c6 max{S(an−1, an−1, an), S(an, an, an−1),

S(an+1, an+1, an−1), S(an+1, an+1, an)}
¹ (c1 + c2 + c4 + c6)S(an−1, an−1, an)

+(2c4 + c5 + 2c6)S(an+1, an+1, an)

and

S(an, an, an+1) ¹ c1 + c2 + c4 + c6

2c4 + c5 + 2c6

S(an−1, an−1, an). (9)

Let c = c1+c2+c4+c6
2c4+c5+2c6

. Then we find c < 1 since c1 + c2 + 3c4 + c5 + 3c6 < 1. Using the
inequality (9), we obtain

S(an, an, an+1) ¹ cnS(a0, a0, a1). (10)

For all n,m ∈ N, n < m, using the inequality (10) and the condition (CS3), we have

S(an, an, am) ¹ 2cn

1− c
S(a0, a0, a1),
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which implies

|S(an, an, am)| ¹ 2cn

1− c
|S(a0, a0, a1)| .

Therefore |S(an, an, am)| → 0 as n,m →∞. Hence {an} is a Cauchy sequence. Since
(X, S) is complete, there exists x ∈ X such that {an} converges to x.

Now we show that x is a fixed point of T . Suppose that Tx 6= x. Then we get

S(an, an, Tx) = S(Tan−1, Tan−1, Tx) ¹ c1S(an−1, an−1, x) + c2S(an, an, an−1)

+c3S(an, an, x) + c4S(Tx, Tx, an−1) + c5S(Tx, Tx, x)

+c6 max{S(an−1, an−1, x), S(an, an, an−1), S(an, an, x),

S(Tx, Tx, an−1), S(Tx, Tx, x)}

and

|S(an, an, Tx)| ≤ c1 |S(an−1, an−1, x)|+ c2 |S(an, an, an−1)|+ c3 |S(an, an, x)|
+c4 |S(Tx, Tx, an−1)|+ c5 |S(Tx, Tx, x)|
+c6

∣∣∣∣
max{S(an−1, an−1, x), S(an, an, an−1), S(an, an, x),

S(Tx, Tx, an−1), S(Tx, Tx, x)}
∣∣∣∣ .

If we take limit for n →∞, then using the continuity of S and Lemma 2.5, we have

|S(Tx, Tx, x)| ≤ (c4 + c5 + c6) |S(Tx, Tx, x)| ,

which is a contradiction since 0 ≤ c4 + c5 + c6 < 1. Hence we obtain Tx = x.
Now we show that x is unique. Let y be another fixed point of T such that x 6= y.

Using the inequality (8) and Lemma 2.5, we have

S(Tx, Tx, Ty) = S(x, x, y) ¹ c1S(x, x, y) + c2S(x, x, x) + c3S(x, x, y)

+c4S(y, y, x) + c5S(y, y, y) + c6 max{S(x, x, y),

S(x, x, x), S(x, x, y), S(y, y, x), S(y, y, y)}

and
|S(x, x, y)| ≤ (c1 + c3 + c4 + c6) |S(x, x, y)| ,

which implies x = y since c1 + c3 + c4 + c6 < 1.
Now we prove that T is continuous at x. For n ∈ N, using the inequality (8), the
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condition (CS3) and Lemma 2.5, we obtain

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, an) + c3S(Tan, Tan, x)

+c4S(Tx, Tx, an) + c5S(Tx, Tx, x)

+c6 max{S(an, an, x), S(Tan, Tan, , an), S(Tan, Tan, x),

S(Tx, Tx, an), S(Tx, Tx, x)}
¹ c1S(an, an, x) + 2c2S(Tan, Tan, x) + c2S(an, an, x)

+c3S(Tan, Tan, x) + c4S(Tx, Tx, an)

+c6 max{S(an, an, x), 2S(Tan, Tan, x) + S(an, an, x),

S(Tan, Tan, x)}
= (c1 + c2 + c4 + c6)S(an, an, x) + (2c2 + c3 + 2c6)S(Tx, Tx, Tan)

and

(1− 2c2 − c3 − 2c6)S(Tan, Tan, Tx) ¹ (c1 + c2 + c4 + c6)S(an, an, x),

which implies

|S(Tan, Tan, Tx)| ≤ c1 + c2 + c4 + c6

1− 2c2 − c3 − 2c6

|S(an, an, x)| .

If we take limit for n →∞, then we have

|S(Tan, Tan, Tx)| → 0.

Therefore {Tan} is convergent to Tx = x. Consequently, T is continuous at x by
Lemma 2.6.

Remark 3.5. (1) Theorem 3.4 is a generalization of Banach’s contraction principle
on complete complex valued S-metric spaces. Indeed, if we take c1 = h and c2 =
c3 = c4 = c5 = c6 = 0 in Theorem 3.4, then we obtain the Banach’s contraction
condition in Theorem 2.7.

(2) If we take the function S : X × X × X → [0,∞) in Theorem 3.4, Then we
have Theorem 4 in [6].

Corollary 3.6. Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4, c5, c6

satisfying max{c1 + c2 + 3c4 + c5 + 3c6, c1 + c3 + c4 + c6, 2c2 + c3 + 2c6} < 1 such that

S(T px, T px, T py) ¹ c1S(x, x, y) + c2S(T px, T px, x) + c3S(T px, T px, y)

+c4S(T py, T py, x) + c5S(T py, T py, y) + c6 max{S(x, x, y),

S(T px, T px, x), S(T px, T px, y), S(T py, T py, x), S(T py, T py, y)},
for all x, y ∈ X and some p ∈ N, then T has a unique fixed point x in X and T p is
continuous at x.



Journal of New Theory 14 (2016) 26-36 35

Proof. It follows from Theorem 3.4 by the same argument used in the proof of
Corollary 3.3.

In the following example we give a self-mapping satisfying the conditions of our
results, but does not satisfy the condition of the Banach’s contraction principle.

Example 3.7. Let X = R and the function S : X ×X ×X → C be defined as

S(x, y, z) = eit(|x− z|+ |x + z − 2y|),

for all x, y, z, t ∈ R. Then (R, S) is a complete complex valued S-metric space. Let
us define the self-mapping T : R→ R as follows:

Tx =

{
x + 70 if x ∈ {0, 6}

65 if otherwise
,

for all x ∈ R. Therefore T satisfies the inequality (2) in Theorem 3.1 for c1 = c2 =
c3 = 0, c4 = 1

4
and the inequality (8) in Theorem 3.4 for c1 = c3 = c4 = c5 = 0,

c2 = c6 = 1
5
. So T has a unique fixed point x = 65. But T does not satisfy the

Banach’s contraction condition in Theorem 2.7. Indeed, for x = 6, y = 2, we obtain

S(Tx, Tx, Ty) = S(76, 76, 65) = 22eit ¹ hS(x, x, y) = hS(6, 6, 2) = 8heit

and ∣∣22eit
∣∣ = 22 ≤

∣∣8heit
∣∣ = 8h,

which is a contradiction h < 1.
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[4] N. Y. Özgür and N. Taş, Some fixed point theorems on S-metric spaces, sub-
mitted for publication.
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1.  Introduction 

The most successful theoretical approach to vagueness is undoubtedly fuzzy set theory 

introduced by Zadeh [14]. The theory is used commonly in different areas as engineering, 

medicine and economics, among others. The fuzzy set theory is based on the fuzzy 

membership function . By the fuzzy membership function, we can 

determine the membership grade of an element with respect to a set.  The fuzzy set theory 

has become very popular and has been used to solve problems in different areas. But there 

exists a difficulty: how to set the membership function in each particular case. The theory 

of soft sets is introduced by Molodtsov [8] as a new tool to discuss (vagueness) uncertainty. 

A soft set is a collection of approximate descriptions of an object. Each approximate 

description has two parts: a predicate and an approximate value set. In classical 

mathematics, we construct a mathematical model of an object and define the notion of the 

exact solution of this model. Usually the mathematical model is too complicated and we 

cannot find the exact solution. So, in the second step, we introduce the notion of 

approximate solution and calculate that solution. In the Soft Set Theory, we have the 

opposite approach to this problem. The initial description of the object has an approximate 

nature, and we do not need to introduce the notion of the exact solution. The absence of any 

restrictions on the approximate description in Soft Set Theory makes this theory very 

convenient and easily applicable in practice. Soft set theory has potential applications in 

many fields, including the smoothness of functions, game theory, operations research, 

Riemann integration, Perron integration, probability theory and measurement theory. Most 
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of these applications have already been demonstrated in Molodtsov's paper [8]. Authors in 

[13] gave an application of soft sets to diagnose the prostate cancer risk. Cagman et al. [2] 

applied the soft set to the theory of groups. They studied the soft int-groups, which are 

different from the definition of soft groups in [1, 9]. This new approach is based on the 

inclusion relation and intersection of sets. It brings the soft set theory, set theory and the 

group theory together. Some supplementary properties of soft int-groups and normal soft 

int-groups, analogues to classical group theory and fuzzy group theory are introduced in [3, 

10]. Recently, Ideal theory in semigroups based on soft int-semigroup is investigated in 

[11]. Authors in [12] discussed the applications of fuzzy soft sets to ordered semi group 

theory. Khan et al. [7], presented the concepts of a fuzzy soft left (right) ideal and fuzzy 

soft interior ideal over an ordered semigroup. 

    

In this paper, the notions of soft int-ordered groupoids and soft left (resp., right) ideals are 

introduced. The characterization of soft int-ordered groupoids in terms of characteristic and 

inclusive sets is discussed. The concepts of soft prime ideals and soft int-filters are also 

introduced, and the relation between them is investigated. 

 

2. Preliminaries 

We denote by  an ordered groupiod, that is, a groupiod  with a simple order  

which satisfies the following condition: 

 

  implies    and  . 

 

Definition 2.1. [5]  A non-empty subset  of  is called a left (resp. right) ideal of  if  

1)  (resp.  )  

 2)   implies .  

 

Definition 2.2. [5] A (non-empty) set A is called an ideal of S if it is both a left and a right 

ideal of S. 

 

Definition 2.3. [4] A subgroupoid  of  is called a filter of  if  

1)   implies  , 

2)   implies .  

 

For , we define  }. 

 

    Let  be an initial universe set and let  be a set of parameters. Let  denote the 

power set of   and . 

 

Definition 2.4. [8] A soft set   over  is defined to be the set of ordered pairs 

 

 ; 

 

where  such that   if . 

 

Definition 2.5. [11] Let  and   be two soft sets. Then,  is a soft subset of 

, denoted by   if  for all  and  are 

called soft equal, denoted by   if and only if  for all .  
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Definition 2.6. [11] Let  and   be two soft sets. Then, union    

and intersection    are defined by 

 

 

 
respectively. 

 

Definition 2.7.  A soft set  in a groupoid  is called a soft int- subgroupoid of  if  

 

 for all . 

 

3.  Soft Left and Soft Right Ideals in Ordered Groupoids 
 

In what follows, we take , as a set of parameters , which is a groupoid unless 

otherwise stated. For a nonempty subset A of  , define a map   as follows: 

 

 
 

Then  is a soft set over , which is called the characteristic soft set  ( see [11]). 

 

Lemma 3.1.  If   is an ordered groupoid and  , the characteristic Soft 

set    is satisfying the condition:  

 

  implies  

 

Proof. By definition,  is a mapping from  into . Suppose   

.If  then   and . Consider the case  then  

. Because  there exists  such that  and consequently . 

Thus . Therefore, .  ■ 

 

Proposition 3.2.  Let   be an ordered groupoid and . Then  if 

and only if  satifies 

 

  implies   

 

Proof. Assume that , the desired result comes directly from lemma 3.1. Conversely, 

suppose that for    implies  . Let . There exists  

so that  . By the hypothesis, we have  Since , we have 

. Thus  and  . Therefore  .  ■ 

 

Here, we introduce the concepts of soft (left, right) ideals in ordered groupoids and 

characterize them in terms of soft sets. 

 

Definition 3.3.  Let   be an ordered groupoid. A soft set   over U is called a 

soft left ideal over U if 
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1)   for all  

2)   implies  

 
Definition 3.4. Let   be an ordered groupoid. A soft set  over U is called a 

soft right ideal over  U if 

 

1)  for all  

2)  implies  
 

A soft set   over U is called a soft ideal over U if it is both a soft left and a soft right 

ideal over U. 

 

Theorem 3.5.[11] For any nonempty subset  of a groupoid , the following are 

equivalent. 

 

1)  is a left (resp., right) ideal of . 

2) The characteristic soft set   is a soft left (resp., right) ideal over . 

 

Theorem 3.6. Let   be an ordered groupoid, and  . Then A is a left 

(right) ideal of S if and only if  is a soft left (right) ideal over U . 

 

Proof. Assume that A is a left ideal of . For any  , . If  then 

 and  . It is clear that . If , then 

 and  . Since  and  a left ideal of , we have  and so 

. Thus again  and . Therefore,  is a 

soft left ideal over U. Similarly,  is a soft right ideal over U when  is a left ideal of 

. Conversely, suppose that  is a soft left ideal over . Let  and  such 

that . Then , and so . Since  is a soft left 

ideal over   and  , we have . Since , . Then 

, and  The rest of the proof is a consequence of theorem 3.5. Similarly, 

we can show that if  is a soft right ideal over , then  is a right ideal of .  ■ 

 

Definition 3.7.[10] For a soft set  over  and a non-empty subset   of , the -

inclusive set of , denoted by , is defined to be the set  

 

 
 

    As a generalization of Theorem 3.6, we have the following result. 

 

Theorem 3.8.  Let  be an ordered groupoid and   a soft set over . Then 

   is a soft ideal over  if and only if   is an ideal of  provided . 

 

Proof.  Assume that   is a soft ideal over . Let , then . Since  is 

a soft ideal, we have  and   for all . Thus 

 and . Furthermore, let  and  such that . Then . 

Indeed, since , , and  is a soft ideal over , we have 

 , so . Therefore,   is an ideal of . Conversely, let   be an 

ideal of  for every non-empty subset . For any  , take . Then . 

Since   is an ideal of , we have  and so  , for all . 
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Moreover, if   then . Indeed: Let . Then . Since is 

an ideal of S, we have . Then  . Therefore,  is a soft right 

ideal over . In a similar way, we can show that  is also a soft left ideal over , and 

so   is a soft ideal over .  ■ 

 

   For an ordered groupoid , let   be the soft set over  defined by   for all 

.  Let , define . For two soft sets  and 

 , we define The soft product of  and   as the soft set  over U 

defined by 

 
 

Here, we give equivalent definitions of soft right (resp. left) ideals and soft ideals. 

 

Theorem 3.9.. Let   be an ordered groupoid. A soft set   over U is called a 

soft left ideal over U if and only if 

 

1)   

2)   implies  

 

Proof.  Assume that  is a soft left ideal over U. Let . Then . 

Indeed: If , then  . Let . Then 

 

 
 

        
 

Now, we show that   for every . In fact: If , then 

  . Since   is a soft left ideal, we have . Therefore we 

have 

 
 

                   
 

Conversely, let  . By hypothesis, we have .  Since 

, we have 

 

 
 

 
 

Hence we obtain , that is,   is a soft left ideal over U . ■ 
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In a similar argument we prove the following result. 

 

Theorem 3.10. Let   be an ordered groupoid. A soft set   over U is called a 

soft ideal ideal over U if and only if 

 

1)   

2)   implies  

 

Theorem 3.11. Let   be an ordered semigroup.  is regular if and only if for every 

soft set   over U we have   . 

 

Proof.  Assume that  is regular and that   is a soft set over U. For   there exists 

 such that . Since , we have 

 

 
 

. 

 

Since  , we have 

 

 
 

. 

 

Hence we have . Therefore, . Conversely,  

Let  . By hypothesis, we have  

 

. 

Thus  

. 

 

If , then , a contradiction. So  , then 

 

 
. 

 

Claim:  There exists  such that  and . 

Proof.  Suppose that    or  for every , then 

 for every . This implies that  

 

 
 
 

But this contradicts 

. 
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If  then . By the claim, we have ,  and . Let  

be empty, then . By the claim, we have . Then 

 

 
 

If  for every , then . Hence . By the claim, 

there exists  such that . Then  and .  Thus we have  

. Therefore,  is regular. ■ 

 

4. Soft Filters in Ordered Groupoids 
 

In this section, we introduce the concept of int-soft filters in ordered groupoids, and we 

characterize filters of ordered groupoids in terms of int-soft filters. 

 

Definition 4.1.  Let  be an ordered groupoid. A soft set  over  is called a 

soft int-filter over  if 

 

1)  

2)  
 

 It is well known that a subset  of a groupoid  is a subgroupoid iff the soft set  is a 

soft int-groupoid over  [11]. 

 

Proposition 4.2.  Let  be an ordered groupoid and  . Then  is a 

filter of  if and only if the soft set  is a soft int-filter over . 

 

Proof. Assume that  is a filter of  and that  . If  , then . 

Hence  . If  , then . Since  , we have . 

Then , and again . In order to show 

that , let  such that . Then 

. Moreover   implies  or . Then .  or . 

So , and . Now, consider 

. Then . Since  , we have  and . Then 

, whence     and . 

Conversely, let  be a soft int-filter over . By the condition 2 of definition 4.1,  is a 

sub-groupoid of . Let , . Since  is a soft int-filter over , then 

. Since  , we have . Then 

, and  . Let , . Then we have 

. Since    , we have . Therefore, , and . This 

completes the proof.  ■ 

 

    In the rest of this section, we give the relation between int-soft filters and soft prime 

ideals of ordered groupoids. In an ordered groupoid, a non-empty subset  is a filter if and 

only if  or  is a prime ideal of S [6]. An analogous result holds for soft sets, 

as well. 
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Definition 4.3.  Let  be an ordered groupoid and  a soft set over  . The complement 

of   is the soft set  defined by  

 

 
where   . 

 

Lemma 4.4. Let S be a groupoid and   a soft set over U. The following are 

equivalent: 

1)   

2)   

 

Proof.   Straightforward.  ■ 

 

Definition 4.5. For a groupoid ,  a soft set  over   is called a soft prime ideal over 

U if  

 . 

 

Theorem 4.6.  Let be an ordered groupoid and  a soft set over . Then 

 is a soft int-filter over  if and only if   is an soft prime ideal over U . 

 

Proof. Suppose   is a soft int-filter over . Let   . Then, we 

have . Then     Now, for any 

, we have . Then by lemma 4.4, . 

Therefore,   is an soft prime ideal over . Conversely, Let . 

Since   is a soft ideal, we have , and consequently . 

Since   is an soft prime ideal, we have . Then, by 

lemma 4.4, . Therefore,   is a soft int-filter  over .  ■ 
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Abstract − In this study, we define a cipher method that is called fragmented Caesar cipher
method that based on the basic logic of Caesar cipher. This new method has more possibility then
the classical Caesar cipher because of the fragmented alphabet is used to cipher. We then construct
a mathematical modeling and make a computer programs of the method.

Keywords − Caesar cipher, encryption, decryption, plaintext, ciphertext, fragmented Caesar ci-
pher.

1 Introduction

One of the earliest known cryptographic systems was used by Julius Caesar. In the
Caesar cipher, each letter in a plaintext is shifted by a letter a certain number of
positions down the alphabet. The Caesar cipher can be decrypted an easy way with
the brute-force attack. Since then a lots of technics of cipher have been developed
to obtain an unbroken cipher technic. For examples, Omolara et al. [5], Patni [7, 8],
Dey et al. [2] and Mishra [4]. More detailed explanations related to the Caesar
cipher can be found in [9] and [6].

In this study, we define a cipher method that is called fragmented Caesar cipher
method that is based on the Caesar cipher. In the fragmented Caesar cipher, the
alphabet broken into small fragments and each letter in each fragment is replaced by
a letter some arbitrary number of positions down. We then construct a mathematical

**Edited by Oktay Muhtaroğlu (Area Editor)
*Corresponding Author.
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modeling and make a computer programs of the method. We finally give an example
to show the cipher method is working successfully.

The present paper is a condensation of part of the dissertation [1].

2 Fragmented Caesar Cipher Method

In this section, we define a new cipher method which depends on the Caesar cipher
method. In this method, we firstly divide the alphabet arbitrary fragments. And
then each letter in each fragment is replaced by a letter some fixed number of posi-
tions down. Therefor, we call this method as fragmented Caesar cipher method or
in sort FCC-method.

2.1 Mathematical Model of FCC-method

In this subsection, we first give a mathematical model of the FCC-method. We then
write an algorithm of the FCC-method to make a computer program.

Throughout this paper, ASCII (American Standard Code for Information Interchange)
is used, In = {1, 2, ..., n} for all n ∈ N is an index set and U is a set of using characters
which is ordered according to the ASCII.

Definition 1. Let |U | = n and X = {xi : i ∈ In} be an ordered set according to the
index set In. Then,

α : U → X, α(i-th element) = xi, i ∈ In,

is called indexing function of U . Here, xi is called indexed element of ith element
of U and the set X is called indexed character set of U .

Example 2. Let 1, 9, b, M , < and + be using characters. Then, the character set
U is written as U = {+, 1, 9, <, M, b} since

x + 1 9 < M b
ASCII 43 49 57 60 77 98

Therefore the indexed character set of U is obtained as X = {x1, x2, x3, x4, x5, x6}
since

x + 1 9 < M b
α(x) x1 x2 x3 x4 x5 x6

Definition 3. Let X be an indexed character set and |X| = n. Then, for ap ∈ N,
p ∈ In, a fragmentation algorithm is set up as follows:

Algorithm of Fragmentation:

Step 1: Choose a1 such that 2 ≤ a1 ≤ n1 = n− 2
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Step 2: Let n2 = n1 − a1. If n2 > 4, choose a2 such that 2 ≤ a2 ≤ n2 − 2, if not
a2 = n2 which means the process is terminated.

...
Step p: Let np = np−1 − ap−1. If np > 4, choose ap such that 2 ≤ ap ≤ np − 2, if

not ap = np which means the process is terminated.

Here, p is called a fragment number, ap is number of characters in a fragment
and P = (a1, a2, ..., ap) is called fragment key of X.

We can briefly choose values ap as follow, for p ∈ In and i ∈ Ip,



2 ≤ a1 ≤ n1, if p = 1, n1 = n− 2
2 ≤ ap ≤ ni − 2, if p > 1, 4 < np, np = np−1 − ap−1

np = ap, if p > 1, np < 4, np = np−1 − ap−1

Example 4. Let X be an indexed character set and |X| = 13. If the fragmentation
algorithm is working as follows,

Step 1: Choose a1 = 5 such that 2 ≤ a1 ≤ n1 = 13− 2 = 11,
Step 2: Choose a2 = 6 such that 2 ≤ a2 ≤ 8− 2, because of n2 = 13− 5 = 8 and

8 > 4,
Step 3: Choose a3 = 2 because of n3 = 8− 6 = 2 and 2 < 4.
Then, we obtain that p = 3 and P = (5, 6, 2).

Definition 5. Let X = {x1, x2, ..., xn} be an indexed character set. For all i ∈ In

and k ∈ In−i, the set W = {xi, xi+1, ..., xi+k} is called as a block subset of X and
denoted by W v X.

Definition 6. Let X be an indexed character set, p be a number of fragment of X.
If Xi v X has the following conditions, then family of set {Xi : i ∈ Ip} is called an
ordered fragmentation of X.

1. |Xi| = ai,

2. Xi ∩Xj = ∅ for i, j ∈ Ip, i 6= j,

3. X =
⋃

i∈Ip
Xi,

4. xmax(Xi)+1 = xmin(Xi+1) for i ∈ Ip, where xmin(Xi) and xmax(Xi) be the first and
the last element of Xi, respectively.

Here, the Xi is called a fragment of X for i ∈ Ip.

Example 7. Let us consider Example 4 where X = {x1, x2, ..., x13} and P = (5, 6, 2).
Then, for a1 = 5, a2 = 6 and a3 = 2 the ordered fragmentation of X are respectively
as follow,

X1 = {x1, x2, x3, x4, x5}
X2 = {x6, x7, x8, x9, x10, x11}
X3 = {x12, x13}

Therefor, the ordered fragmentation of X is obtained as {X1, X2, X3}.
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Definition 8. Let Xi be a fragment of X and ai be the number of Xi for all i ∈ Ip.
If 0 < ri < ai, then R = (r1, r2, ..., rp) is called rotation key of X.

Here, the ri is called a number of rotation of Xi for all i ∈ Ip.
Note that the key of this method has two part, one of them is a fragment key P

and the other is a rotation key R.

Example 9. Let us consider Example 4, if we choose number of rotations r1 = 3,
r2 = 4 and r3 = 1 for X1, X2, X3, respectively. Then, the rotation key of X would
be R = (3, 4, 1).

Definition 10. Let X be an indexed character set, {X1, X2, ..., Xp} be an ordered
fragmentation of X and P = (a1, a2, ..., ap) be a fragment key of X. Then, mi is
defined by

mi =

{
0, i = 0
mi−1 + ai, i ∈ Ip

and called a module of Xi for all i ∈ Ip.

It is clear to see that xmi
= xmax(Xi) for i ∈ Ip.

Definition 11. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If mi is a module of Xi for all i ∈ Ip and R = (r1, r2, ..., rp) is a
rotation key of X, then Xi-rotation function, denoted by βi, is defined by

βi : Xi → Xi, βi(xt) =

{
xt+ri

, t + ri ≤ mi

x(t+ri)(mod mi)+mi−1
, t + ri > mi

where t ∈ Iai
.

Definition 12. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If βi is an Xi-rotation function for all i ∈ Ip, then the following
function

β : X → X, β(x) =





β1(x), x ∈ X1

β2(x), x ∈ X2
...

βp(x), x ∈ Xp

is called a rotation function of X.

Definition 13. Let α : U → X be an indexing function. Then for all t ∈ In, inverse
of α is called a characterization function and defined by

α−1 : X → U, α−1(xt) = ”t-th element of U ”

Definition 14. If α : U → X, α−1 : X → U and β : X → X be indexing,
characterization and rotation functions, respectively, then an encryption function
on U is defined by

γ : U → U, γ(x) = α−1(β(α(x)))
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Definition 15. Let X be an indexed character set and {X1, X2, ..., Xp} be an or-
dered fragmentation of X. If R = (r1, r2, ..., rp) is a rotation key of X, βi : Xi → Xi

is an Xi-rotation function and mi is a module of Xi for all i ∈ Ip, then inverse of
rotation function of Xi, denoted by β−1

i , is defined by

β−1
i : Xi → Xi,

β−1
i (xt) =

{
xt+mi−(ri+mi−1), t + mi − (ri + mi−1) ≤ mi

x(t+mi−(ri+mi−1))(mod mi)+mi−1
, t + mi − (ri + mi−1) > mi

where t ∈
Iai

.

Definition 16. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If β−1

i is an inverse of rotation function of Xi for all i ∈ Ip, then
the following function

β−1 : X → X, β−1(x) =





β−1
1 (x), x ∈ X1

β−1
2 (x), x ∈ X2

...
β−1

p (x), x ∈ Xp

is called a inverse of rotation function of X.

Definition 17. If α : U → X, α−1 : X → U , β−1 : X → X and γ : U → U be
indexing, characterization, inverse of rotation and encryption functions, respectively,
then a decryption function on U is defined by

γ−1 : U → U, γ−1(x) = α−1(β−1(α(x)))

It is clear to see that γ−1(x) = α−1(β−1((α−1)−1(x))) = α−1(β−1(α(x))).

Definition 18. Let U be a character set, P be a fragment key, R be a rotation
key and γ be an encryption function. The four tuple (U, P, R, γ) is called an FCC-
encryption on U . The four tuple (U, P,R, γ−1) is called an FCC- decryption on
U .

2.2 FCC-Encryption Algorithm

Assume that U is a character set and X is an indexed character set. Then, an
algorithm of the FCC-encryption is set up as follows:

Algorithm of FCC-Encryption:

Step 1: Find the fragment number p and the P = (a1, a2, ..., ap),
Step 2: Choose the R = (r1, r2, ..., rp) according to the P ,
Step 3: Find the {Xi : i ∈ Ip} and the module mi for each Xi,
Step 4: Find the βi(xt) for xt ∈ Xi t ∈ Iai

and i ∈ Ip,
Step 5: Find the α−1(xt) for xt ∈ Xi, t ∈ Iai

and i ∈ Ip,
Step 6: Find the γ(x) for x ∈ U .
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Example 19. Let

U = {ç, d, e, f, g, ğ, h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p,r, s, ş, t, z, v, y}

and

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, ..., x29}

Then,
Step 1: By using the algorithm of fragmentation, we can obtain the fragment

number p = 4 and the P = (11, 6, 9, 3) where a1 = 11, a2 = 6, a3 = 9 and a4 = 3.
Step 2: For a1 = 11, a2 = 6, a3 = 9 and a4 = 3 the rotation key is obtained as

R = (3, 4, 7, 2) since 0 < r1 = 3 < a1 = 11, 0 < r2 = 4 < a2 = 6, 0 < r3 = 7 <
a3 = 9, 0 < r1 = 2 < a4 = 3.

Step 3: For ai (i = 1, 2, 3, 4) the fragments of X, Xi, are obtained as,

for a1 = 11, X1 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
for a2 = 6, X2 = {x12, x13, x14, x15, x16, x17}
for a3 = 9, X3 = {x18, x19, x20, x21, x22, x23, x24, x25, x26}
for a4 = 3, X4 = {x27, x28, x29}

and value of mi (i = 0, 1, 2, 3, 4) can also choose as,

for i = 0, m0 = 0
for i = 1, m1 = (m0 = 0) + (a1 = 11) = 11
for i = 2, m2 = (m1 = 11) + (a2 = 6) = 17
for i = 3, m3 = (m2 = 17) + (a3 = 9) = 26
for i = 4, m4 = (m3 = 26) + (a4 = 3) = 29.

Step 4: For i = 1, 2, 3, 4 values of the Xi-rotation function βi are obtained as
follows. Here, we first obtain the values of β1 as,

β1(x1) = x4, since 1 + r1 = 1 + 3 = 4 because of 1 + 3 < 11
β1(x2) = x5, since 2 + r1 = 1 + 3 = 5 because of 2 + 3 < 11
β1(x3) = x6, since 3 + r1 = 1 + 3 = 6 because of 3 + 3 < 11
β1(x4) = x7, since 4 + r1 = 1 + 3 = 7 because of 4 + 3 < 11
β1(x5) = x8, since 5 + r1 = 1 + 3 = 8 because of 5 + 3 < 11
β1(x6) = x9, since 6 + r1 = 1 + 3 = 9 because of 6 + 3 < 11
β1(x7) = x10, since 7 + r1 = 1 + 3 = 10 because of 7 + 3 < 11
β1(x8) = x11, since 8 + r1 = 1 + 3 = 11 because of 8 + 3 = 11
β1(x9) = x1, since (9 + 3)(mod 11) + 0 = 1 because of 9 + 3 > 11
β1(x10) = x2, since (10 + 3)(mod 11) + 0 = 2 because of 10 + 3 > 11
β1(x11) = x3, since (11 + 3)(mod 11) + 0 = 3 because of 11 + 3 > 11

and for i = 2, 3, 4 the values of βi are obtained similarly. Hence
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X1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

β1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X1 x4 x5 x6 x7 x8 x9 x10 x11 x1 x2 x3

X2 x12 x13 x14 x15 x16 x17

β2 ↓ ↓ ↓ ↓ ↓ ↓
X2 x16 x17 x12 x13 x14 x15

X3 x18 x19 x20 x21 x22 x23 x24 x25 x26

β3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X3 x25 x26 x18 x19 x20 x21 x22 x23 x24

X4 x27 x28 x29

β4 ↓ ↓ ↓
X4 x29 x27 x28

and therefore,

X x1 x2 ... x11 x12 x13 ... x17 x18 x19 ... x26 x27 x28 x29

β ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X x4 x5 ... x3 x16 x17 ... x15 x25 x26 ... x24 x29 x27 x28

Step 5: Values of the characterization function α−1 are obtained as following list:

X x4 x5 ... x3 x16 x17 ... x15 x25 x26 ... x24 x29 x27 x28

α−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U ç d ... c m n ... l u ü ... t z v y

Step 6: Values of the encryption function γ are obtained as following list:

U a b c ç d e f g ǧ h ı i j k l m n ... v y z
γ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U ç d e f g ǧ h ı a b c m n o i j k ... z v y

In this example we showed that the plaintext ”ankara” is encrypted as ”çliçöç”
according to the method which can be seen in Figure 1.

Figure 1: Encryption of ”ankara” by FCEA
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2.3 FCC-Decryption Algorithm

Assume that U is a character set and X is an indexed character set. Then, an
algorithm of the FCC-Decryption is set up as follows:

Algorithm of FCC-Decryption:

Step 1: Use the {Xi : i ∈ Ip} and the module mi for each Xi,
Step 2: Find the β−1

i (xt) for xt ∈ Xi, t ∈ Iai
and i ∈ Ip,

Step 3: Find the α−1(x) for x ∈ U ,
Step 4: Find the γ−1(x) for x ∈ U .

Example 20. Let us consider the result of Example 19 where

U = {ç, d, e, f, g, ğ,h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p, r, s, ş, t, z, v, y}
and

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, ..., x29}
Then,

Step 1 : In Example 19, for ai (i = 1, 2, 3, 4) the fragments of X, Xi, and was
obtained as

for a1 = 11, X1 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
for a2 = 6, X2 = {x12, x13, x14, x15, x16, x17}
for a3 = 9, X3 = {x18, x19, x20, x21, x22, x23, x24, x25, x26}
for a4 = 3, X4 = {x27, x28, x29}

and value of mi (i = 0, 1, 2, 3, 4) was also choosen as,

for i = 0, m0 = 0
for i = 1, m1 = (m0 = 0) + (a1 = 11) = 11
for i = 2, m2 = (m1 = 11) + (a2 = 6) = 17
for i = 3, m3 = (m2 = 17) + (a3 = 9) = 26
for i = 4, m4 = (m3 = 26) + (a4 = 3) = 29

Step 2 : For i = 1, 2, 3, 4 values of the Xi-rotation function β−1
i are obtained as

follows. Here, we first obtain the values of β−1
1 as,

β−1
1 (x1) = x9, since 1 + m1 − r1 = 1 + 11− 3 = 9 because of 1 + 11− 3 < 11

β−1
1 (x2) = x10, since 2 + m1 − r1 = 2 + 11− 3 = 10 because of 2 + 11− 3 < 11

β−1
1 (x3) = x11, since 3 + m1 − r1 = 3 + 11− 3 = 11 because of 3 + 11− 3 = 11

β−1
1 (x4) = x1, since (4 + 11− 3)(mod 11) + 0 = 1 because of 4 + 11− 3 > 11

β−1
1 (x5) = x2, since (5 + 11− 3)(mod 11) + 0 = 2 because of 5 + 11− 3 > 11

β−1
1 (x6) = x3, since (6 + 11− 3)(mod 11) + 0 = 3 because of 6 + 11− 3 > 11

β−1
1 (x7) = x4, since (7 + 11− 3)(mod 11) + 0 = 4 because of 7 + 11− 3 > 11

β−1
1 (x8) = x5, since (8 + 11− 3)(mod 11) + 0 = 5 because of 8 + 11− 3 > 11

β−1
1 (x9) = x6, since (9 + 11− 3)(mod 11) + 0 = 6 because of 9 + 11− 3 > 11

β−1
1 (x10) = x7, since (10 + 11− 3)(mod 11) + 0 = 7 because of 10 + 11− 3 > 11

β−1
1 (x11) = x8, since (11 + 11− 3)(mod 11) + 0 = 8 because of 11 + 11− 3 > 11
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and for i = 2, 3, 4 the values of β−1
i are obtained similarly. Hence,

X1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

β−1
1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X1 x9 x10 x11 x1 x2 x3 x4 x5 x6 x7 x8

X2 x12 x13 x14 x15 x16 x17

β−1
2 ↓ ↓ ↓ ↓ ↓ ↓

X2 x14 x15 x16 x17 x12 x13

X3 x18 x19 x20 x21 x22 x23 x24 x25 x26

β−1
3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X3 x20 x21 x22 x23 x24 x25 x26 x18 x19

X4 x27 x28 x29

β−1
4 ↓ ↓ ↓

X4 x29 x27 x28

and therefore,

X x1 x2 ... x11 x12 x13 ... x17 x18 x19 ... x26 x27 x28 x29

β−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X x9 x10 ... x8 x14 x15 ... x13 x20 x21 ... x19 x29 x27 x28

Step 3: Values of the characterization function α−1 are obtained as following
list:

X x9 x10 ... x8 x14 x15 ... x13 x20 x21 ... x19 x29 x27 x28

α−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U a b ... ı i j ... n o ö ... ü v y z

Step 4: Values of the decryption function γ−1 are obtained as following list:

U ç d e f g ǧ h ı a b c m n o i j k ... z v y
γ−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U a b c ç d e f g ǧ h ı i j k l m n ... v y z

In this example we showed that the ciphertext ”çliçöç” is decrypted as ”ankara”.

3 FC Encryption Program Codes

In this section, the FCC-method is programmed by using C# as follows:

private static string[] alf_tex()

{

string[] alphabet = { "a", "b",..,"Y", "Z"}; //caharacter set

return alpabet;

}

private static int _rnd(int bas, int bit)
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{

Random rnd = new Random();

int deger = rnd.Next(bas, bit);

return deger;

}

private static string _key(int alphabet_number)

{

string key = "";

int n = alphabet_number;

int a,r;

do

{

if (n >= 6)

{

a = _rnd(3, n - 3); //Fragment key

}

else

{

a = n;

}

r = _rnd(2, a);//Rotation key

key += a.ToString() + "," + r.ToString() + ’-’;

n = n - a;

}

while (n > 0);

return key;

}

private void btn_creat_alphabet_Click(object sender, EventArgs e)

{

//key function

if (rdsifre.Checked)

{

string key = _key(alp_tex().Length);

txtanahtar.Text = key;

}

int alfabe_sayac = 1;

string[] fragment = key.Substring(0,key.Length-1).Split(’-’);

string[][] U = new string[fragment.Length][];//(Açık U)

string[][] SU = new string[fragment.Length][];//(encrypted U)

//be divided into sets of the alphabet

for (int j = 0; j < parca.Length; j++)

{

string[] parca_a = fragment[j].ToString().Split(’,’);
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int P = int.Parse(fragment_a[0]); //fragment key

U[j] = new string[alp_tex().Length + 1];

SU[j] = new string[alp_tex().Length + 1];

for (int x = 0; x < P; x++)

{

U[j][alfabe_sayac] = alp_tex()[alphabet_sayac - 1];

alphabet_sayac++;

}

}

//encrypting alphabet

int m = 0;

int index = 1;

for (int j = 0; j < U.Length; j++)

{

string[] parca_a = fragment[j].ToString().Split(’,’);

int P = int.Parse(fragment_a[0]); //fragment key

int R = int.Parse(fragment_a[1]); //rotation key

m += P;

for (int x = 0; x < P; x++)

{

int k = 0;

if ((index + R) <= m) //rotation function

{

k = index + R;

}

else if ((index + R) > m)

{

k = ((index + R) % m) + (m - P);

}

SU[j][index] = U[j][k];

index++;

}

}

}

4 Conclusions

In this work, a cipher method so called fragmented Caesar cipher method is defined.
A mathematical modeling and then a computer programs of the method have done.
The method is based on the basic logic of Caesar cipher. The classical Caesar cipher
is a type of substitution cipher in which each letter is replaced by a letter some
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fixed number of positions in the alphabet. The Fragmented Caesar cipher has more
possibility then the classical Caesar cipher because of the fragmented alphabet is
used to cipher. We finally give an example to show the cipher method is working
successfully.
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1 Introduction

One of the earliest well known cryptographic systems was used by Julius Caesar [5].
In Caesar cipher that is a simple substitution cipher and an example of monoalpha-
betic cipher, each letter in the plaintext is shifted by a letter a certain number of
positions down the alphabet. The Caesar cipher can be decrypted in an easy way
with the brute-force attack [4]. One of the first polyalphabetic ciphers called Vi-
genere cipher dates back to the 16th century. This cipher was named after Vigenere
(1523-1596). The Vigenere cipher works by using different shift ciphers to encrypt
different letters [3].

Aydoǧan et al. [1] defined the fragmented Caesar (FC) cipher which is based
on the basic logic of Caesar cipher. The FC-cipher has more possibility then the
classical Caesar cipher because of the fragmented alphabet is used to cipher. They
also construct a mathematical modeling and make a computer program of the FC-
cipher.

In this study, we define a polyalphabetic cipher that is called fragmented polyal-
phabetic (FP) cipher. The FP-cipher is based on the FC-cipher. The FP-cipher is
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also generalized of the Vigenere cipher. In the FC-cipher, the alphabet is broken
into small fragments and each letter is replaced by a letter some arbitrary number
of positions down in each fragment. The FP-cipher uses different alphabets that are
obtained by using the FC-cipher to encrypt different letters. We then construct a
mathematical modeling and make a computer program of this cipher method.

The present paper is a condensation of part of the dissertation [2].

2 Preliminary

In this section, we give definitions and properties of the FC-cipher which are taken
directly from [1].

2.1 Mathematical Model of FC-cipher

Throughout this paper, ASCII (American Standard Code for Information Inter-
change) is used, In = {1, 2, ..., n} for all n ∈ N is an index set and U is a set of using
characters which is ordered according to the ASCII.

Definition 1. Let |U | = n and X = {xi : i ∈ In} be an ordered set according to the
index set In. Then,

α : U → X, α(i-th element) = xi, i ∈ In,

is called indexing function of U . Here, xi is called indexed element of ith element
of U and the set X is called indexed character set of U .

Example 2. Let 1, 9, b, M , < and + be using characters. Then, the character set
U is written as U = {+, 1, 9, <, M, b} since

x + 1 9 < M b
ASCII 43 49 57 60 77 98

Therefore the indexed character set of U is obtained as X = {x1, x2, x3, x4, x5, x6}
since

x + 1 9 < M b
α(x) x1 x2 x3 x4 x5 x6

Definition 3. Let X be an indexed character set and |X| = n. Then, for ap ∈ N,
p ∈ In, a fragmentation algorithm is set up as follows:

Algorithm of Fragmentation:

Step 1: Choose a1 such that 2 ≤ a1 ≤ n1 = n− 2
Step 2: Let n2 = n1 − a1. If n2 > 4, choose a2 such that 2 ≤ a2 ≤ n2 − 2, if not

a2 = n2 which means the process is terminated.
...
Step p: Let np = np−1 − ap−1. If np > 4, choose ap such that 2 ≤ ap ≤ np − 2, if

not ap = np which means the process is terminated.
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Here, p is called a fragment number, ap is number of characters in a fragment
and P = (a1, a2, ..., ap) is called fragment key of X.

We can briefly choose values ap as follow, for p ∈ In and i ∈ Ip,





2 ≤ a1 ≤ n1, if p = 1, n1 = n− 2
2 ≤ ap ≤ ni − 2, if p > 1, 4 < np, np = np−1 − ap−1

np = ap, if p > 1, np < 4, np = np−1 − ap−1

Example 4. Let X be an indexed character set and |X| = 13. If the fragmentation
algorithm is working as follows,

Step 1: Choose a1 = 5 such that 2 ≤ a1 ≤ n1 = 13− 2 = 11,
Step 2: Choose a2 = 6 such that 2 ≤ a2 ≤ 8− 2, because of n2 = 13− 5 = 8 and

8 > 4,
Step 3: Choose a3 = 2 because of n3 = 8− 6 = 2 and 2 < 4.
Then, we obtain that p = 3 and P = (5, 6, 2).

Definition 5. Let X = {x1, x2, ..., xn} be an indexed character set. For all i ∈ In

and k ∈ In−i, the set W = {xi, xi+1, ..., xi+k} is called as a block subset of X and
denoted by W v X.

Definition 6. Let X be an indexed character set, p be a number of fragment of X.
If Xi v X has the following conditions, then family of set {Xi : i ∈ Ip} is called an
ordered fragmentation of X.

1. |Xi| = ai,

2. Xi ∩Xj = ∅ for i, j ∈ Ip, i 6= j,

3. X =
⋃

i∈Ip
Xi,

4. xmax(Xi)+1 = xmin(Xi+1) for i ∈ Ip, where xmin(Xi) and xmax(Xi) be the first and
the last element of Xi, respectively.

Here, the Xi is called a fragment of X for i ∈ Ip.

Example 7. Let us consider Example 4 where X = {x1, x2, ..., x13} and P = (5, 6, 2).
Then, for a1 = 5, a2 = 6 and a3 = 2 the ordered fragmentation of X are respectively
as follow,

X1 = {x1, x2, x3, x4, x5}
X2 = {x6, x7, x8, x9, x10, x11}
X3 = {x12, x13}

Therefor, the ordered fragmentation of X is obtained as {X1, X2, X3}.
Definition 8. Let Xi be a fragment of X and ai be the number of Xi for all i ∈ Ip.
If 0 < ri < ai, then R = (r1, r2, ..., rp) is called rotation key of X.

Here, the ri is called a number of rotation of Xi for all i ∈ Ip.
Note that the key of this method has two part, one of them is a fragment key P

and the other is a rotation key R.
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Example 9. Let us consider Example 4, if we choose number of rotations r1 = 3,
r2 = 4 and r3 = 1 for X1, X2, X3, respectively. Then, the rotation key of X would
be R = (3, 4, 1).

Definition 10. Let X be an indexed character set, {X1, X2, ..., Xp} be an ordered
fragmentation of X and P = (a1, a2, ..., ap) be a fragment key of X. Then, mi is
defined by

mi =

{
0, i = 0
mi−1 + ai, i ∈ Ip

and called a module of Xi for all i ∈ Ip.

It is clear to see that xmi
= xmax(Xi) for i ∈ Ip.

Definition 11. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If mi is a module of Xi for all i ∈ Ip and R = (r1, r2, ..., rp) is a
rotation key of X, then Xi-rotation function, denoted by βi, is defined by

βi : Xi → Xi, βi(xt) =

{
xt+ri

, t + ri ≤ mi

x(t+ri)(mod mi)+mi−1
, t + ri > mi

where t ∈ Iai
.

Definition 12. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If βi is an Xi-rotation function for all i ∈ Ip, then the following
function

β : X → X, β(x) =





β1(x), x ∈ X1

β2(x), x ∈ X2
...

βp(x), x ∈ Xp

is called a rotation function of X.

Definition 13. Let α : U → X be an indexing function. Then for all t ∈ In, inverse
of α is called a characterization function and defined by

α−1 : X → U, α−1(xt) = ”t-th element of U ”

Definition 14. If α : U → X, α−1 : X → U and β : X → X be indexing,
characterization and rotation functions, respectively, then an encryption function
on U is defined by

γ : U → U, γ(x) = α−1(β(α(x)))

Definition 15. Let X be an indexed character set and {X1, X2, ..., Xp} be an or-
dered fragmentation of X. If R = (r1, r2, ..., rp) is a rotation key of X, βi : Xi → Xi

is an Xi-rotation function and mi is a module of Xi for all i ∈ Ip, then inverse of
rotation function of Xi, denoted by β−1

i , is defined by

β−1
i : Xi → Xi,

β−1
i (xt) =

{
xt+mi−(ri+mi−1), t + mi − (ri + mi−1) ≤ mi

x(t+mi−(ri+mi−1))(mod mi)+mi−1
, t + mi − (ri + mi−1) > mi

where t ∈
Iai

.
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Definition 16. Let X be an indexed character set and {X1, X2, ..., Xp} be an ordered
fragmentation of X. If β−1

i is an inverse of rotation function of Xi for all i ∈ Ip, then
the following function

β−1 : X → X, β−1(x) =





β−1
1 (x), x ∈ X1

β−1
2 (x), x ∈ X2

...
β−1

p (x), x ∈ Xp

is called a inverse of rotation function of X.

Definition 17. If α : U → X, α−1 : X → U , β−1 : X → X and γ : U → U be
indexing, characterization, inverse of rotation and encryption functions, respectively,
then a decryption function on U is defined by

γ−1 : U → U, γ−1(x) = α−1(β−1(α(x)))

It is clear to see that γ−1(x) = α−1(β−1((α−1)−1(x))) = α−1(β−1(α(x))).

Definition 18. Let U be a character set, P be a fragment key, R be a rotation key
and γ be an encryption function. The four tuple (U, P, R, γ) is called an FC-cipher
encryption on U . The four tuple (U, P, R, γ−1) is called an FC-cipher decryption
on U .

2.2 FC-cipher Encryption Algorithm

In this subsection, we give the algorithm of FC-cipher.
Assume that U is a character set and X is an indexed character set. Then, an

algorithm of the FC-cipher encryption is set up as follows:

Algorithm of FC-cipher Encryption:

Step 1: Find the fragment number p and the P = (a1, a2, ..., ap),
Step 2: Choose the R = (r1, r2, ..., rp) according to the P ,
Step 3: Find the {Xi : i ∈ Ip} and the module mi for each Xi,
Step 4: Find the βi(xt) for xt ∈ Xi t ∈ Iai

and i ∈ Ip,
Step 5: Find the α−1(xt) for xt ∈ Xi, t ∈ Iai

and i ∈ Ip,
Step 6: Find the γ(x) for x ∈ U .

Example 19. Let

U = {ç, d, e, f, g, ğ, h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p,r, s, ş, t, z, v, y}

and

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, ..., x29}

Then,

Step 1: By using the algorithm of fragmentation, we can obtain the fragment
number p = 4 and the P = (11, 6, 9, 3) where a1 = 11, a2 = 6, a3 = 9 and a4 = 3.
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Step 2: For a1 = 11, a2 = 6, a3 = 9 and a4 = 3 the rotation key is obtained as
R = (3, 4, 7, 2) since 0 < r1 = 3 < a1 = 11, 0 < r2 = 4 < a2 = 6, 0 < r3 = 7 <
a3 = 9, 0 < r1 = 2 < a4 = 3.

Step 3: For ai (i = 1, 2, 3, 4) the fragments of X, Xi, are obtained as,

for a1 = 11, X1 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
for a2 = 6, X2 = {x12, x13, x14, x15, x16, x17}
for a3 = 9, X3 = {x18, x19, x20, x21, x22, x23, x24, x25, x26}
for a4 = 3, X4 = {x27, x28, x29}

and value of mi (i = 0, 1, 2, 3, 4) can also choose as,

for i = 0, m0 = 0
for i = 1, m1 = (m0 = 0) + (a1 = 11) = 11
for i = 2, m2 = (m1 = 11) + (a2 = 6) = 17
for i = 3, m3 = (m2 = 17) + (a3 = 9) = 26
for i = 4, m4 = (m3 = 26) + (a4 = 3) = 29.

Step 4: For i = 1, 2, 3, 4 values of the Xi-rotation function βi are obtained as
follows. Here, we first obtain the values of β1 as,

β1(x1) = x4, since 1 + r1 = 1 + 3 = 4 because of 1 + 3 < 11
β1(x2) = x5, since 2 + r1 = 1 + 3 = 5 because of 2 + 3 < 11
β1(x3) = x6, since 3 + r1 = 1 + 3 = 6 because of 3 + 3 < 11
β1(x4) = x7, since 4 + r1 = 1 + 3 = 7 because of 4 + 3 < 11
β1(x5) = x8, since 5 + r1 = 1 + 3 = 8 because of 5 + 3 < 11
β1(x6) = x9, since 6 + r1 = 1 + 3 = 9 because of 6 + 3 < 11
β1(x7) = x10, since 7 + r1 = 1 + 3 = 10 because of 7 + 3 < 11
β1(x8) = x11, since 8 + r1 = 1 + 3 = 11 because of 8 + 3 = 11
β1(x9) = x1, since (9 + 3)(mod 11) + 0 = 1 because of 9 + 3 > 11
β1(x10) = x2, since (10 + 3)(mod 11) + 0 = 2 because of 10 + 3 > 11
β1(x11) = x3, since (11 + 3)(mod 11) + 0 = 3 because of 11 + 3 > 11

and for i = 2, 3, 4 the values of βi are obtained similarly. Hence

X1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

β1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X1 x4 x5 x6 x7 x8 x9 x10 x11 x1 x2 x3

X2 x12 x13 x14 x15 x16 x17

β2 ↓ ↓ ↓ ↓ ↓ ↓
X2 x16 x17 x12 x13 x14 x15

X3 x18 x19 x20 x21 x22 x23 x24 x25 x26

β3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X3 x25 x26 x18 x19 x20 x21 x22 x23 x24

X4 x27 x28 x29

β4 ↓ ↓ ↓
X4 x29 x27 x28
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and therefore,

X x1 x2 ... x11 x12 x13 ... x17 x18 x19 ... x26 x27 x28 x29

β ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X x4 x5 ... x3 x16 x17 ... x15 x25 x26 ... x24 x29 x27 x28

Step 5: Values of the characterization function α−1 are obtained as following list:

X x4 x5 ... x3 x16 x17 ... x15 x25 x26 ... x24 x29 x27 x28

α−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U ç d ... c m n ... l u ü ... t z v y

Step 6: Values of the encryption function γ are obtained as following list:

U a b c ç d e f g ǧ h ı i j k l m n ... v y z
γ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U ç d e f g ǧ h ı a b c m n o i j k ... z v y

In this example we showed that the plaintext ”ankara” is encrypted as ”çliçöç”
according to the method which can be seen in Figure 1.

Figure 1: Encryption of ”ankara” by FCEA

2.3 FC-cipher Decryption Algorithm

In this subsection, we give the algorithm of FC-cipher decryption method.
Assume that U is a character set and X is an indexed character set. Then, an

algorithm of the FC-cipher decryption is set up as follows:

Algorithm of FC-cipher Decryption:

Step 1: Use the {Xi : i ∈ Ip} and the module mi for each Xi,
Step 2: Find the β−1

i (xt) for xt ∈ Xi, t ∈ Iai
and i ∈ Ip,

Step 3: Find the α−1(x) for x ∈ U ,
Step 4: Find the γ−1(x) for x ∈ U .

Example 20. Let us consider the result of Example 19 where

U = {ç, d, e, f, g, ğ,h, ı, a, b, c, m, n, i, j, k, l, u, ü, o, ö, p, r, s, ş, t, z, v, y}

and

X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, ..., x29}

Then,
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Step 1 : In Example 19, for ai (i = 1, 2, 3, 4) the fragments of X, Xi, and was
obtained as

for a1 = 11, X1 = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}
for a2 = 6, X2 = {x12, x13, x14, x15, x16, x17}
for a3 = 9, X3 = {x18, x19, x20, x21, x22, x23, x24, x25, x26}
for a4 = 3, X4 = {x27, x28, x29}

and value of mi (i = 0, 1, 2, 3, 4) was also choosen as,

for i = 0, m0 = 0
for i = 1, m1 = (m0 = 0) + (a1 = 11) = 11
for i = 2, m2 = (m1 = 11) + (a2 = 6) = 17
for i = 3, m3 = (m2 = 17) + (a3 = 9) = 26
for i = 4, m4 = (m3 = 26) + (a4 = 3) = 29

Step 2 : For i = 1, 2, 3, 4 values of the Xi-rotation function β−1
i are obtained as

follows. Here, we first obtain the values of β−1
1 as,

β−1
1 (x1) = x9, since 1 + m1 − r1 = 1 + 11− 3 = 9 because of 1 + 11− 3 < 11

β−1
1 (x2) = x10, since 2 + m1 − r1 = 2 + 11− 3 = 10 because of 2 + 11− 3 < 11

β−1
1 (x3) = x11, since 3 + m1 − r1 = 3 + 11− 3 = 11 because of 3 + 11− 3 = 11

β−1
1 (x4) = x1, since (4 + 11− 3)(mod 11) + 0 = 1 because of 4 + 11− 3 > 11

β−1
1 (x5) = x2, since (5 + 11− 3)(mod 11) + 0 = 2 because of 5 + 11− 3 > 11

β−1
1 (x6) = x3, since (6 + 11− 3)(mod 11) + 0 = 3 because of 6 + 11− 3 > 11

β−1
1 (x7) = x4, since (7 + 11− 3)(mod 11) + 0 = 4 because of 7 + 11− 3 > 11

β−1
1 (x8) = x5, since (8 + 11− 3)(mod 11) + 0 = 5 because of 8 + 11− 3 > 11

β−1
1 (x9) = x6, since (9 + 11− 3)(mod 11) + 0 = 6 because of 9 + 11− 3 > 11

β−1
1 (x10) = x7, since (10 + 11− 3)(mod 11) + 0 = 7 because of 10 + 11− 3 > 11

β−1
1 (x11) = x8, since (11 + 11− 3)(mod 11) + 0 = 8 because of 11 + 11− 3 > 11

and for i = 2, 3, 4 the values of β−1
i are obtained similarly. Hence,

X1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

β−1
1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X1 x9 x10 x11 x1 x2 x3 x4 x5 x6 x7 x8

X2 x12 x13 x14 x15 x16 x17

β−1
2 ↓ ↓ ↓ ↓ ↓ ↓

X2 x14 x15 x16 x17 x12 x13

X3 x18 x19 x20 x21 x22 x23 x24 x25 x26

β−1
3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X3 x20 x21 x22 x23 x24 x25 x26 x18 x19

X4 x27 x28 x29

β−1
4 ↓ ↓ ↓

X4 x29 x27 x28

and therefore,

X x1 x2 ... x11 x12 x13 ... x17 x18 x19 ... x26 x27 x28 x29

β−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
X x9 x10 ... x8 x14 x15 ... x13 x20 x21 ... x19 x29 x27 x28
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Step 3 : Values of the characterization function α−1 are obtained as following
list:

X x9 x10 ... x8 x14 x15 ... x13 x20 x21 ... x19 x29 x27 x28

α−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U a b ... ı i j ... n o ö ... ü v y z

Step 4 : Values of the decryption function γ−1 are obtained as following list:

U ç d e f g ǧ h ı a b c m n o i j k ... z v y
γ−1 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
U a b c ç d e f g ǧ h ı i j k l m n ... v y z

In this example we showed that the ciphertext ”çliçöç” is decrypted as ”ankara”.

3 Fragmented Polyalphabetic Cipher

In this section, we define a new cipher method which is called fragmented polyal-
phabetic cipher (FP-cipher) based on the FC-cipher. In the FP-cipher, the plaintext
is encrypted by multiple encryption alphabets which are obtained by using the FC-
cipher.

From now on, we use k ∈ N as a number of encrypted alphabets that are obtained
by using the FC-cipher.

3.1 Mathematical Model of FP-cipher

In this subsection, we first give a mathematical model of the FP-cipher. We then
write an algorithm of the FP-cipher to make a computer program.

Definition 21. Let U be a character set and γi : U → U be an encryption function
for all i ∈ Ik. If all of the characters in the plaintext are indexed as y1y2...yq for
q ∈ N, then a k-multiple encryption function on U is defined by

δk : U → U, δk(yt) =

{
γi(yt), t ≡ i(mod k)
γk(yt), t ≡ 0(mod k)

for all t ∈ Iq and i ∈ Ik.

Definition 22. Let U be a character set and γ−1
i : U → U be an encryption function

for all i ∈ Ik. If all of the characters in the ciphertext are indexed as s1s2...sq for
q ∈ N, then a k-multiple decryption function on U is defined by

δ−1
k : U → U, δ−1

k (st) =

{
γ−1

i (st), t ≡ i(mod k)
γ−1

k (st), t ≡ 0(mod k)

for all t ∈ Iq and i ∈ Ik.

The Definitions 21 and 22 are demonstrated in Figure 2.

Definition 23. Let U be a character set and Pi be a fragment key, Ri be a rotation
key for all i ∈ Ik. Then a k-multiple fragment key and k-multiple rotation key
are defined as follow, respectively

Pk = (P1, P2, ..., Pk), Rk = (R1, R2, ..., Rk).
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Figure 2: FP-cipher

Definition 24. Let (U, Pi, Ri, γi) be an FC-cipher encryption and (U, Pi, Ri, γ
−1
i ) be

an FC-cipher decryption on U for all i ∈ Ik. Then, each five tuple

(U, k, Pk, Rk, δk), (U, k, Pk, Rk, δ
−1
k )

is called an FP-cipher encryption and FP-cipher decryption on U , respectively.

3.2 FP-cipher Encryption Algorithm

In this subsection, we give an algorithm of the FP-cipher encryption method.
Assume that all of characters in a plaintext are be indexed as y1y2...yq and k be

a number of encrypted alphabets that are obtained by using the FC-cipher. Then,
an algorithm of the FP-cipher encryption is set up as follow:

Algorithm of FP-cipher Encryption

Step 1 : Find the Pk = (P1, P2, ..., Pk) and Rk = (R1, R2, ..., Rk),
Step 2 : Find the values of γi for i ∈ Ik,
Step 3 : Find the values δ(yt) for all t ∈ Iq.

Example 25. Let

U = {a, b, c, ç, d, e, f, g, ğ, h, ı, i, j, k, l, m, n, o, ö, p, r, s, ş, t, u, ü, v, y, z}
be a character set and ”ankara” be a plaintext. Assume that this plaintext is indexed
as y1y2y3y4y5y6 and encrypted by 3-FP-cipher encryption. Then,

Step 1 : The Pi and Ri can be obtained by using the FC-cipher as follow,

i Pi Ri

1 (11,6,10,2) (4,2,5,1)
2 (10,9,5,5) (3,4,2,3)
3 (5,6,4,10,4) (2,2,1,3,1)

Step 2 : For i = 1, 2, 3, the values γi(x) are obtained as follow,

x a b c ç d e f g ǧ h ı i j k l
γ1(x) d e f g ǧ h ı a b c ç m n i j
γ2(x) ç d e f g ǧ h a b c l m n o ö
γ3(x) c ç d a b g ǧ h ı e f j k l i
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m n o ö p r s ş t u ü v y z
k l ş t u ü v o ö p r s z y
ı i j k s ş t p r y z u ü v
ö p r s ş t u m n o v y z ü

Step 3 : For all t ∈ I6, the values δ(yt) are obtained as follow,

for i = 1, δ(y1) = γ1(a) = d because of 1 ≡ 1(mod 3)
for i = 2, δ(y2) = γ2(n) = i because of 2 ≡ 2(mod 3)
for i = 3, δ(y3) = γ3(k) = l because of 3 ≡ 0(mod 3)
for i = 4, δ(y4) = γ1(a) = d because of 4 ≡ 1(mod 3)
for i = 5, δ(y5) = γ2(r) = ş because of 5 ≡ 2(mod 3)
for i = 6, δ(y6) = γ3(a) = c because of 6 ≡ 0(mod 3)

Therefore,
yt a n k a r a

δ(yt) d i l d ş c

This example is demonstrated in Figure 3.

Figure 3: Encrypting the word of ”ankara” by FP-cipher
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3.3 FP-cipher Decryption Algorithm

In this subsection, we give an algorithm of the FP-cipher decryption method.
Assume that all of characters in a ciphertext are indexed as s1s2...sq. Here, we

have to use the same values of Pi and Ri are obtained in the encryption. Then, an
algorithm of the FP-cipher decryption is set up as follow.

Algorithm of FP-cipher Decryption

Step 1 : Find the values of γ−1
i for i ∈ Ik,

Step 2 : Find the values δ−1(st) for all t ∈ Iq.

Example 26. Let us consider Example 25 where ”ankara” was encrypted as ”dildşc”.
Now, the cipher text ”dildşc” is decrypted. Here, we have to use same values of Pi

and Ri in Example 25. Assume that this ciphertext is indexed as s1s2s3s4s5s6 and
decrypted by 3-FP-cipher decryption. Then,

Step 1 : For i = 1, 2, 3, the values γ−1
i (x) are obtained as follow,

x a b c ç d e f g ǧ h ı i j k l m n o ö
γ−1

1 (x) d e f g ǧ h ı a b c ç m n i j k l ş t
γ−1

2 (x) ç d e f g ǧ h a b c l m n o ö ı i j k
γ−1

3 (x) c ç d a b g ǧ h ı e f j k l i ö p r s

γ−1
1 (x) u ü v o ö p r s z y

γ−1
2 (x) s ş t p r y z u ü v

γ−1
3 (x) ş t u m n o v y z ü

x p r s ş t u ü v y z

Step 3 : For all t ∈ I6, the values δ−1(st) are obtained as follow,

for i = 1, δ−1(s1) = γ−1
(1)(s1) = a because of 1 ≡ 1(mod 3)

for i = 2, δ−1(s2) = γ−1
(2)(s2) = n because of 2 ≡ 2(mod 3)

for i = 3, δ−1(s3) = γ−1
(3)(s3) = k because of 3 ≡ 0(mod 3)

for i = 4, δ−1(s4) = γ−1
(1)(s4) = a because of 4 ≡ 1(mod 3)

for i = 5, δ−1(s5) = γ−1
(2)(s5) = r because of 5 ≡ 2(mod 3)

for i = 6, δ−1(s6) = γ−1
(3)(s6) = a because of 6 ≡ 0(mod 3)

Therefore,
st d i l d ş c

δ−1(st) a n k a r a

3.4 FP-cipher Program Codes

In this subsection, FP-cipher is programmed by using C# as follows:

private void btn_alfabe_olustur_Click(object sender, EventArgs e)

{

//txtanahtar.Text = "";

if (rdsifre.Checked)
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{

txtanahtar.Text = "";

//anahtar oluşturma

for (int i = 0; i < trczorluk.Value; i++)

{

System.Threading.Thread.Sleep(500);

string anahtar = _anahtar(alf_metin().Length);

txtanahtar.Text += anahtar.Substring(0,

anahtar.Length - 1) + "*";

}

}

//sanal matris oluşturma

DataTable matris = new DataTable();

for (int i = 0; i <alf_metin().Length; i++)

{

matris.Columns.Add(alf_metin()[i]);

}

string[] key = txtanahtar.Text.Substring(0,

txtanahtar.Text.Length - 1).Split(’*’);

for (int i = 0; i < key.Length; i++)

{

int alfabe_sayac = 1;

string[] parca = key[i].Substring(0, key[i].Length).

ToString().Split(’-’);

string[][] U = new string[parca.Length][];//(Açık U)

string[][] SU = new string[parca.Length][];//(Şifreli U)

//alfabenin kümelere bölnmesi

for (int j = 0; j < parca.Length; j++)

{

string[] parca_a = parca[j].ToString().Split(’,’);

int P = int.Parse(parca_a[0]); //parça anahtarı

U[j] = new string[alf_metin().Length+1];

SU[j] = new string[alf_metin().Length+1];

for (int x = 0; x < P; x++)

{

U[j][alfabe_sayac] = alf_metin()[alfabe_sayac-1];

alfabe_sayac++;

}

}

//alfabenin şifrelenmesi

int m = 0;

int indis = 1;

for (int j = 0; j < U.Length; j++)

{

string[] parca_a = parca[j].ToString().Split(’,’);

int P = int.Parse(parca_a[0]); //parça anahtarı

int R = int.Parse(parca_a[1]); //öteleme anahtarı
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m += P;

for (int x = 0; x < P; x++)

{

int k = 0;

if ((indis+R)<=m) //öteleme fonksiyonu

{

k = indis + R;

}

else if ((indis + R) > m)

{

k = ((indis + R) % m)+(m-P);

}

SU[j][indis] = U[j][k];

indis++;

}

}

//matrise değerlerin eklenmsi

matris.Rows.Add();

int alsayac = 0;

for (int j = 0; j < U.Length; j++)

{

string[] parca_a = parca[j].ToString().Split(’,’);

int P = int.Parse(parca_a[0]); //parça anahtarı

for (int x = 0; x < P; x++)

{

matris.Rows[i][alsayac] = SU[j][alsayac + 1];

alsayac++;

}

}

dataGridView1.DataSource = matris;

}

}

4 Conclusions

In this work, we defined the FP-cipher that is a generalization of the Vigenere ci-
pher. The Vigenere cipher is a type of polyalphabetic cipher in which different shift
ciphers are used to encryption. In the FP-cipher, plaintext is encrypted by multiple
encryption alphabets which are obtained by using the FC-cipher. Therefore, the key
space of FP-cipher cipher has more possibility then the Vigenere cipher. We then
constructed a mathematical modeling and make a computer program of the method.
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[1] Y. Aydoğan, N. Çağman, I. Şimşek, Fragmented Caesar Cipher, Journal of New
Theory 14 (2016) 46-57.
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