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Abstract: In this paper, a new class of generalized soft open sets in soft topological spaces, called soft e-open 

set is focused and investigated some properties of them. Then focused the relationships among soft δ-pre 

open sets, soft δ-semi open sets, soft pre-open sets and soft e-open sets. We also investigated the concepts of 

soft e-open functions, soft e-continuous, soft e-irresolute and soft e-homeomorphism on soft topological 

space and discussed their relations with existing soft continuous and other weaker forms of soft continuous 

functions. Further soft e-separation axioms have been introduced and investigated with the help of soft e-open 

sets. Finally, we observed that the collection Ser-h(X,τ,E) form a soft group. 

 

Keywords: Soft e-open (Se-open) sets, Soft e-closed (Se-closed) sets, Soft e-continuous, soft e-irresolute and 

soft e-homomorphism. 

 

 

1. Introduction 
 

Molodtsov [1] initiated a novel concept of soft set theory, which is completely a new 

approach for modeling vagueness and uncertainty. He successfully applied the soft set 

theory into several directions such as smoothness of functions, game theory, Riemann 

Integration, theory of measurement, and so on. Soft set theory and its applications have 

shown great development in recent years. This is because of the general nature of 

parametrization expressed by a soft set. Shabir and Naz [2] introduced the notion of soft  

topological spaces which are defined over an initial universe with a fixed set of parameters. 

Later, Zorlutuna et al.[3], Aygunoglu and Aygun [4] and Hussain et al are continued to 

study the properties of soft topological space. They got many important results in soft 

topological spaces. Weak forms of soft open sets were first studied by Chen [5].He 

investigated soft semi-open sets in soft topological spaces and studied some properties of it. 

Yumak and Kaymakci [10] are defined soft β-open sets and continued to study weak forms 
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of soft open sets in soft topological space. Later, Akdag and Ozkan [6] [7] defined soft b-

open (soft b-closed) sets and soft α-open(soft α-closed) sets respectably.  

In the present study, first of all, we have focused some new concepts such as soft e-open 

sets, soft e-closed sets, soft e-interior, soft e-closure in soft topological spaces and 

investigated some of their properties. Secondly, we have defined the concepts of soft e-

continuous, soft e-open, soft e-irresolute mappings and soft e-homeomorphism on soft 

topological spaces and obtained some characterizations of these mappings. We have also 

studied the relationships among soft δ-semi-continuity, soft δ-pre-continuity and soft e-

continuity and with the help of counter examples we have shown the non-coincidence of 

these various types of mappings. Further soft e-separation axioms have been introduced 

and investigated with the help of soft e-open sets. Finally, we have observed that the 

collection Ser-h(X, τ,E) form a soft group. 

 

2. Preliminaries 

 

Throughout the paper, the space X and Y stand for soft topological spaces with (X,τ, E) 

and (Y,ν, K) assumed unless otherwise stated. Moreover, throughout this paper, a soft 

mapping f : X →Y stands for a mapping, where f : (X,τ, E) → (Y,ν, K), u : X →Y and p : 

E →K are assumed mappings unless otherwise stated. 

 

Definition: 2.1[1]. Let X be an initial universe and E be a set of parameters. Let P(X) 

denotes the power set of X and A be a non-empty subset of E. A pair (F,A) is called a soft 

set over X, where F is a mapping given by F: A→P(X) defined by F(e)∈P(X) ∀e∈A. In 

other words, a soft set over X is a parameterized family of subsets of the universe X. For 

e∈A, F(e) may be considered as the set of e-approximate elements of the soft set (F,A). 

 

Definition 2.2[11]. A soft set (F,A) over X is called a null soft set, denoted by ϕ% , if 

e∈A,F(e)=ϕ. 

 

Definition 2.3[11]. A soft set (F,A) over X is called an absolute soft set, denoted by A% , if 

e∈A, F(e)=X. If A=E, then the A-universal soft set is called a universal soft set, denoted 

by X% . 

 

Theorem 2.4[2]. Let Y be a non-empty subset of X, then Y%  denotes the soft set (Y,E) over 

X for which Y(e)=Y, for all e∈E. 

 

Definition 2.5 [11]. The union of two soft sets (F,A) and (G,B) over the common universe 

X is the soft set (H,C), where C=A∪B and for all e∈C, 

 

H(e)=

( ),

( ),

( ) ( ),

F e ife A B

G e ife B A

F e G e ife A B

∈ −


∈ −
 ∪ ∈ ∩

  

 

We write (F,A) ∪% (G,B) = (H,C) 
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Definition 2.6 [11]. The intersection (H,C) of two soft sets (F,A) and (G,B)  over a 

common universe X, denoted by (F,A) ∩% (G,B), is defined as C=A∩B and H(e)= F(e) ∩ 

G(e) for all e∈C. 

 

Definition 2.7[2]. Let (F,A) be a soft set over a soft topological space (X,τ,E). We say that 

x∈(F,E) read as x belongs to the set (F,E) whenever x∈F(e) for all e∈E. Note that for any 

x∈X, x∉(F,E), if x∉F(e) for some e∈E. 

 

Definition 2.8 [11]. Let (F,A) and (G,B) be two soft sets over a common universe X. Then  

(F,A) ⊆% (G,B) if A ⊆ B, and F(e) ⊆ G(e) for all e∈A. 

 

Definition 2.9 [2]. Let τ be the collection of soft sets over X, then τ is said to be a soft 

topology on X if it satisfies the following axioms. 

 

(1) ϕ% , X% belong to τ. 

(2) The union of any number of soft sets in τ belongs to τ. 

(3) The intersection of any two soft sets in τ belongs to τ. 

 

The triplet (X,τ,E) is called a soft topological space over X. Let (X,τ,E) be a soft 

topological space over X, then the members of τ are said to be soft open sets in X. A 

soft set (F,A) over X is said to be a soft closed set in X, if its relative complement (F,A)
c
 

belongs to τ. 

 

Definition 2.10 [12]. For a soft set (F,A) over X, the relative complement of (F,A) is 

denoted by (F,A)
c
 and is defined by (F,A)

c
 = (F

c
,A), where F

c
 : A→P(X) is a mapping 

given by F
c
(e) =X-F(e), for all e∈A. 

 

Definition 2.11. A soft set (F,A) in a soft topological space X is called                                          

(i) soft regular open (resp.soft regular closed) set [13] if (F,A) = Int(Cl(F,A)) [resp. (F,A) = 

Cl(Int (F,A))]. 

(ii) soft semi-open (resp.soft semi-closed) set [5] if (F,A) ⊆% Cl(Int(F,A)) [resp. Int(Cl(F,A)) 

⊆% (F,A). 

(iii) soft pre-open (resp.soft pre-closed)[13] if (F,A) ⊆% Int(Cl(F,A)) [resp. Cl(Int(F,A)) 

⊆% (F,A). 

(iv) soft α-open (resp.soft α-closed)[13] if (F,A) ⊆% Int(Cl(Int(F,A))) [resp. Cl(Int(Cl(F,A))) 

⊆% (F,A)]. 

(v) soft β-open (resp.soft β-closed) set [13] if (F,A) ⊆% Cl(Int(Cl(F,A))) [resp. 

Int(Cl(Int(F,A))) ⊆% (F,A)]. 

(vi) soft γ-open (resp.soft γ-closed) set [6] if (F,A) ⊆% [Int(Cl(F,A)) ∪% Cl(Int(F,A))]  [resp. 

Int(Cl(F,A)) ∩% Cl(Int(F,A)) ⊆% (F,A)]. 

 

Definition 2.12[15]. The soft set (F,A) in a soft topological space (X,τ,E) is called a soft 

point in X, denoted by F
Pλ , if for λ∈A, F(λ) ≠ ϕ and F(β) = ϕ, for β∉A.  
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3. Soft e-open Sets and Soft e-closed Sets 

 
In this section we introduce soft δ-open, soft δ-semi open, soft δ-pre open and soft e-open 

sets in soft topological spaces and study some of their properties. 

 

Definition 3.1. A soft point F
Pλ in a soft topological space (X,τ,E) is called a soft  δ-cluster 

point of a soft Set (G,A) if for each soft regular open set (U,A) containing F
Pλ , 

(G,A) ∩% (U,A) ≠ ϕ% . 

     

  The set of all soft δ-cluster points of (G,A)  is called soft δ-closure of (G,A)  and is 

denoted by [(G,A)]δ or SClδ(G,A).Soft δ-interior of a soft set (F,A) denoted by SIntδ(F,A) 

={ F
Pλ ∈X: for some soft open subset (G,A) of  X, F

Pλ ∈(G,A) ⊆%  Int(Cl(G,A)) ⊆%  (F,A)}. 

 

Definition 3.2.  A soft set (G,A) in a soft topological space (X,τ,E) is called soft δ-closed 

set iff (G,A) = [(G,A)]δ and it’s compliment X% - (G,A) is called soft δ-open sets in X. 

Or, equivalently, if (G,A) is the union of soft regular open sets, then (G,A) is said to be 

soft δ-open sets in X. 

 

  The collection of all soft δ-open sets & soft δ-closed sets are respectably, denoted by 

SδOS(X) & SδCS(X). 

 

Definition 3.3. A soft set (F,A) in a soft topological space (X,τ,E) is called  

(i) soft δ-semi open (Sδ-semi open) set iff (F,A) ⊆% Cl(Intδ(F,A)). 

(ii)  soft δ-semi closed (Sδ-semi closed) set iff  Int(Clδ(F,A)) ⊆% (F,A). 

 

The union of all soft δ-semi open sets contained in a soft set (F,A) in a soft topological 

space X is called the soft δ-semi interior of (F,A) and it is denoted by SSIntδ(F,A). The 

intersection of all soft δ-semi closed sets containing a soft set (F,A) in a soft topological 

space X is called the soft δ-semi closure of (F,A) and it is denoted by SSClδ(F,A). 

 

Definition 3.4. A soft set (F,A) in a soft topological space (X,τ,E) is called  

(i) soft δ-pre open (Sδ-pre open) set iff (F,A) ⊆% Int(Clδ(F,A)). 

(ii)  soft δ-pre closed (Sδ-pre closed) set iff Cl(Intδ(F,A)) ⊆%  (F,A). 

 

The union of all soft δ-pre open sets contained in a soft set (F,A) in a soft topological space 

X is called the soft δ-pre interior of (F,A) and it is denoted by SPIntδ(F,A). The intersection 

of all soft δ-pre closed sets containing a soft set (F,A) in a soft topological space X is called 

the soft δ-pre closure of (F,A) and it is denoted by SPClδ(F,A). 

 

Definition 3.5. A soft set (F,A) in a soft topological space (X,τ,E) is called  

(i) soft e-open (se-open) set iff (F,A) ⊆% [Int(Clδ(F,A)) ∪% Cl(Intδ(F,A))] 

(ii)  soft e-closed (se-closed) set iff (F,A) ⊇% [Int(Clδ(F,A)) ∩% Cl(Intδ(F,A))] 

 

Example 3.6. Let X ={x1, x2, x3, x4}, E ={e1, e2, e3} and τ ={ϕ% , X% , (G,E)} where, (G,A) = 

{(e1,{ x1}), (e2,{ x2,x4}), (e3,{x2})}. Then, (X,τ,E) is a soft topological space and (G,A) =   

{ (e1,{ x1}),(e2,{x2, x4}),(e3,{x2})} is a soft e-open set.  
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Theorem 3.7. For a soft set (F,A) in a soft topological space (X,τ,E)  

(i) (F,A) is a soft e-open set iff (F,A)
c
  is a soft e -closed set. 

(ii)  (F,A) is a soft e-closed set iff (F,A)
c
  is a soft e-open set. 

 

Proof. Obvious from the Definition 3.5. 

 

Definition 3.8.  Let (X,τ,E) be a soft topological space and (F,A) be a soft set over X. 

(i) Soft e-closure of a soft set (F,A) in X is denoted by Se-Cl(F,A)= ∩% {(H,A) ⊃% (F,A): 

(H,A) is a soft e-closed set of X}. 

(ii) Soft e-interior of a soft set (F,A) in X is denoted by Se-Int(F,A)= ∪% {(G,A) ⊂%  (F,A): 

(G,A) is a soft e-open set of X}. 

 

   Clearly, Se-Cl(F,A) is the smallest soft e-closed set over X which contains (F,A) and Se-

Int(F,A) is the largest soft e-open set over X which is contained in (F,A). 

 

Theorem 3.9. Let (F,A) be any soft set in a soft topological space X. Then, 

(i) Se-Cl(F,A)
c
  = X% -Se-Int(F,A). 

(ii) Se-Int(F,A)
c
 = X% -Se-Cl(F,A). 

 

Proof. (i) Let soft e-open set (G,A) ⊂% (F,A) and soft e-closed set (H,A) ⊃% (F,A)
c
. Then 

Se-Int(F,A)= ∪% {(H,A)
c
 : (H,A) is  soft e-closed set and (H,A) ⊃% (F,A)

c
 } = X% - ∩% {(H,A): 

(H,A) is  soft e-closed set and (H,A) ⊃% (F,A)
c
 }= X% - Se-Cl(F,A)

c
.So,Se-Cl(F,A)

c
 = X% -Se-

Int(F,A). 

 

(ii)  Let (G,A) be a soft e-open set. Then for a soft e-closed set (G,A)
c
 ⊃% (F,A), (G,A) 

⊂% (F,A)
c
. Now, Se-Cl(F,A)= ∩% {(G,A)

c
 : (G,A) is  soft e-open set and (G,A) ⊂% (F,A)

c
} 

= X% - ∪% {(G,A): (G,A) is  soft e-open set and (G,A) ⊂% (F,A)
c
 }= X% - Se-Int(F,A)

c
.  

So, Se-Int(F,A)
c
  = X% -Se-Cl(F,A). 

 

Theorem 3.10. In a soft topological space X, (F,A) be a soft e-closed (resp. soft e-open) if 

and only if (F,A) = Se-Cl(F,A) (resp. (F,A)= Se-Int(F,A). 

 

Proof. Suppose (F,A) = Se-Cl(F,A)= ∩% {(H,A) ⊃%  (F,A): (H,A) is a soft e-closed set of 

X}.This means (F,A)∈ ∩% {(H,A) ⊃% (F,A): (H,A) is a soft e-closed set of X} and hence 

(F,A)  is soft e-closed set. 

Conversely, suppose (F,A) be a soft e-closed in X. Then we have (F,A)∈{(H,A) ⊃%  (F,A): 

(H,A) is a soft e-closed set of X}. Hence, (F,A) ⊂%  (H,A) implies (F,A) = ∩% {(H,A) ⊃%  

(F,A):  (H,A) is a soft e-closed set of X }= Se-Cl(F,A). 

Similarly for (F,A)= Se-Int(F,A)). 

 

Theorem 3.11. In a soft topological space X, the following holds for soft e-closure and soft 

e-interiors. 

(i) Se-Cl (ϕ% ) = ϕ% . 

(ii) Se-Int(ϕ% ) = ϕ% . 

(iii)  Se-Cl(F,A) is a soft e-closed set in X. 

(iv) Se-Int(F,A) is a soft e-open set in X. 

(v) Se-Cl(F,A) ⊆% Se-Cl(G,A) if (F,A) ⊆%  (G,A). 

(vi) Se-Int(F,A) ⊆% Se-Int(G,A) if (F,A) ⊆%  (G,A). 
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(vii) Se-Cl(Se-Cl(F,A)) = Se-Cl(F,A). 

(viii) Se-Int(Se-Int(F,A)) = Se-Int(F,A). 

 

Theorem 3.12. In a soft topological space X, we have 

(i) Se-Cl ((F,A) ∪% (G,A)) ⊇% Se-Cl(F,A) ∪% Se-Cl(G,A). 

(ii)  Se-Cl((F,A) ∩% (G,A)) ⊆% Se-Cl(F,A) ∩% Se-Cl(G,A). 

 

Proof. (i) (F,A) ⊆%  ((F,A) ∪% (G,A)) or (G,A) ⊆%  ((F,A) ∪% (G,A)) this implies Se-Cl(F,A) ⊆%  

Se-Cl((F,A) ∪%  (G,A)) or Se-Cl (G,A) ⊆%  Se-Cl((F,A) ∪%  (G,A)).Therefore Se-

Cl((F,A) ∪% (G,A)) ⊇% Se-Cl(F,A) ∪% Se-Cl(G,A).                                                                                        

 

(ii) Similar to the proof of (i). 

 

Theorem 3.13. In a soft topological space X, we have 

(i) Se-Int((F,A) ∪% (G,A)) ⊇% Se-Int(F,A) ∪% Se-Int(G,A) 

(ii)  Se-Int((F,A) ∩% (G,A)) ⊆% Se-Int(F,A) ∩%  Se-Int(G,A) 

 

Proof. Same as the proof of theorem 3.12. 

 

Theorem 3.14. Let (F,A) be soft e-open set,  

(i) If Intδ(F,A) = ϕ% , then (F,A)  is soft δ-preopen set. 

(ii) If Clδ(F,A) = ϕ% , then (F,A)  is soft δ-semiopen set. 

 

Proof. Ovious from definition 3.5. 

 

Lemma 3.15.  Let (F,A) be a soft subset of X, then 

(i) SSClδ(F,A) = (F,A) ∪% Int(Clδ(F,A)) and SSIntδ(F,A)  = (F,A) ∩% Cl(Intδ(F,A)) 

(ii) SPClδ(F,A) = (F,A) ∪% Cl(Intδ(F,A))and SPIntδ(F,A)  = (F,A) ∩% Int(Clδ(F,A)). 

 

Proof. (i) SSClδ(F,A) ⊇%  Int(Clδ( SSClδ(F,A))) ⊇% Int(Clδ(F,A)) 

⇒ (F,A) ∪%  SSClδ(F,A) ⊇%  (F,A) ∪%  Int(Clδ(F,A)) 

So, (F,A) ∪%  Int(Clδ(F,A)) ⊆%  SSClδ(F,A)……….......(i) 

Also, (F,A) ⊆%  SSClδ(F,A) 

⇒ Int(Clδ(F,A)) ⊆%  Int(Clδ(SSClδ(F,A))) ⊆%  SSClδ(F,A) 

⇒ (F,A) ∪%  Int(Clδ(F,A)) ⊆%  SSClδ(F,A) ∪%  SSClδ(F,A)= SSClδ(F,A)……(ii) 

Hence, from (i) and (ii), SSClδ(F,A) = (F,A) ∪% Int(Clδ(F,A)). 

 

(ii) Follows immediately from (i) by taking the complements. 

 

Theorem 3.16. For any soft subset (F,A) of a space X, (F,A) is soft e-open if and only if  

(F,A) = SPIntδ(F,A) ∪% SSIntδ(F,A). 

 

Proof. Let (F,A) be soft e-open. Then (F,A) ⊆%  Int(Clδ(F,A)) ∪% Cl(Intδ(F,A))).By above 

lemma 3.15, we have, SPIntδ(F,A) ∪%  SSIntδ(F,A) = [(F,A) ∩% Int(Clδ(F,A))] ∪% [ (F,A) ∩%  

Cl(Intδ(F,A))]= (F,A) ∩% (Int(Clδ(F,A))] ∪% Cl(Intδ(F,A))) = (F,A). 
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Conversely, if  (F,A) = SPIntδ(F,A) ∪% SSIntδ(F,A), then by above lemma 3.15, (F,A) = 

SPIntδ(F,A) ∪%  SSIntδ(F,A) = [(F,A) ∩% Int(Clδ(F,A))] ∪% [ (F,A) ∩%  Cl(Intδ(F,A))] = (F,A) 

∩% (Int(Clδ(F,A))) ∪% Cl(Intδ(F,A))) ⊆%  (Int(Clδ(F,A))) ∪% Cl(Intδ(F,A))) 

and hence (F,A) is soft e-open set. 

 

Theorem 3.17. Let (F,A) be a soft subset of a space X, then, Se-Cl(F,A) = SPClδ(F,A) ∩%  

SSClδ(F,A). 

 

Proof. It is obvious that, Se-Cl(F,A) ⊆%  SPClδ(F,A) ∩% SSClδ(F,A). 

Conversely, from definition we have, Se-Cl(F,A) ⊇%  [Int(Clδ(Se-Cl(F,A)) ∩% Cl(Intδ(Se-

Cl(F,A))] ⊇% Cl(Intδ(F,A)) ∩% Int(Clδ((F,A)). Since Se-Cl(F,A) is soft e-closed, by lemma 

3.15, we have, SPClδ(F,A) ∩% SSClδ(F,A) = [(F,A) ∪% Cl(Intδ(F,A))] ∩% [(F,A) ∪% Int            

(Clδ(F,A))] = [(F,A) ∪% (Cl(Intδ(F,A)) ∩% Int(Clδ(F,A)))] = (F,A) ⊆%  Se-Cl(F,A). 

 

Theorem 3.18. Let (F,A) be a soft subset of a space X, then, Se-Int(F,A)= SPIntδ(F,A) 

∩% SSIntδ(F,A). 

 

Proof. It is similar to the above proof. 

 

Theorem 3.19. In a Soft topological space X, we have the followings: 

(i) Arbitrary union of Soft e-open sets is a Soft e-open set, and 

(ii) Arbitrary intersection of Soft e-closed sets is a Soft e-closed set. 

 

Proof. (i) Let {(F,A)α:α∈Λ,an index set} be a collection of Soft e-open sets. Then for each 

α, (F,A) α ⊆% [Int(Clδ((F,A) α)) ∪% Cl(Intδ((F,A) α))].  

Taking union of all such relations we get,  

∪% {(F,A) α } ⊆% ∪%  [Int(Clδ((F,A)α)) ∪% Cl(Intδ((F,A)α))] 

⊆% [Int(Clδ( ∪%  (F,A)α)) ∪% Cl(Intδ( ∪%  (F,A)α))]. 

Thus ∪% (F,A) α  is Soft e-open set. 

(ii) Follows immediately from (i) by taking the complements. 

 

Definition 3.20 [10]. Let τS be the collection of soft sets over X, then τS is said to be a soft 

supra topology on X if it satisfies the following axioms. 

(1) ϕ% , X% belong to τS. 

(2) The union of any number of soft sets in τS belongs to τS. 

The triplet (X,τS,E) is called a soft supratopological space over X. 

Now we give the following property for soft e-open sets. 

 

Proposition 3.21. The collection τS  = S.e.OS(X) of all soft e-open sets form a soft supra 

topology over a soft space (X,τ,E). 

 

Proof. (1) is obvious. 

 

(2) Let (F,E)α ∈τS, ∀α ∈Λ = {1, 2, 3.....}. Then, for ∀α∈Λ, (F,E)α ⊆% Int(Clδ((F,A)α)) 

∪% Cl(Intδ((F,A)α)).Taking union of all such relations we get,  

∪% {(F,A)α } ⊆% ∪%  [Int(Clδ((F,A)α)) ∪% Cl(Intδ((F,A)α))] 

⊆% [Int(Clδ( ∪% (F,A)α)) ∪% Cl(Intδ( ∪% (F,A)α))]. 
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This implies that ∪% (F,A)α  is Soft e-open set and hence, ∪% (F,A)α∈τS. 

 

Remark 3.22. In a soft topological space it is obvious that 

(i) Every soft regular open set is soft δ-open set. 

(iii) Every soft δ-open set is both soft δ-semi-open and soft δ-pre-open set.                                           

(iii) Every soft δ-semi-open set and every soft δ-pre-open set is soft e-open set. 

 

Let (X,τ,E) be a soft topological space. Then, the family of all soft e-open set (resp. soft 

open,soft regular open, soft δ-open, soft δ-semi-open, soft δ-pre-open) sets in X may be 

denoted by Se-OS(X) (resp. SOS(X), SROS(X), SδOS(X), SδSOS(X), SδPOS(X) ).The 

family of all soft regular closed (resp. soft δ-closed, soft δ-semi-closed, soft δ-pre-closed) 

sets in X may be denoted by Se-CS(X) (resp.SRCS(X), SδCS(X), SδSCS(X) , SδPCS(X). 

Thus we have implications as shown in Figure 1.  

 

                     Soft regular open  

                              ↓ 

                      Soft δ-open → Soft open → soft semi-open→soft γ-open→soft β-open 

                        ↓            ↓ 

   Soft δ-pre open          Soft δ-semi open 

                        ↓            ↓ 

                      Soft e-open set 

                                                                      
                                          Figure-1 

 

The examples given below show that the converses of these implications are not true. 

 

Example 3.23. Let X={x1, x2, x3, x4},E ={e1, e2, e3} and τ ={ϕ% , X% , (F1,E),( F2,E), (F3,E), 

(F4,E), (F5,E), (F6,E), (F7,E), (F8,E), (F9,E), (F10,E), (F11,E), (F12,E), (F13,E)} where, 

(F1,E),(F2,E), (F3,E), (F4,E), (F5,E), (F6,E), (F7,E), (F8,E), (F9,E), (F10,E), (F11,E), (F12,E), 

and (F13,E) are soft sets over X, defined as follows: 

(F1,E) ={(e1,{ x1}),(e2,{x2,x3}),(e3,{x1,x3})}; 

(F2,E) ={(e1,{x2,x4}),(e2,{ x1,x3,x4}),(e3,{ x1, x2, x4})}; 

(F3,E) ={ (e1, ϕ),(e2,{x3}),(e3,{ x1})};  

(F4,E) ={ (e1, {x1,x2,x4}),(e2, X),(e3,X)}; 

(F5,E) ={ (e1,{x1,x3}),(e2,{x2, x4}),(e3,{x2})}; 

(F6,E) = {(e1,ϕ),(e2,{x2}),(e3, ϕ)}; 

(F7,E) ={ (e1,{ x1,x3}),(e2,{ x2, x3, x4}),(e3,{ x1, x2,x3})};  

(F8,E) ={ (e1,{x3}),(e2,{ x4}),(e3,{x2})}; 

(F9,E) ={ (e1,X),(e2,X),(e3,{ x1, x2, x3})}; 

(F10,E) ={ (e1,{ x1,x3}),(e2,{ x2, x3, x4}),(e3,{ x1, x2})}; 

(F11,E) ={ (e1,{ x3}),(e2,{ x2, x4}),(e3,{x2})};  

(F12,E) ={ (e1,{x1}),(e2,{x2}),(e3, ϕ)}; 

(F13,E) = { (e1,{x1}),(e2,{ x2, x3}),(e3,{x1})}. 

 

Then, τ defines a soft topology on X, and thus (X,τ, E) is a soft topological space over X. 

Clearly, soft closed sets are ϕ% , X% , (F1, E)
c
, (F2, E)

c
, (F3, E)

c
, (F4, E)

c
, (F5, E)

c
, (F6, E)

c
, 

(F7,E)
c
, (F8,E)

c
, (F9, E)

c
, (F10,E)

c
, (F11, E)

c
, (F12, E)

c
 and (F13, E)

c
.  
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Now, consider the soft set (G,E)={ (e1,{x1,x2}),(e2,{x2,x3}),(e3,{x1,x3})}, then, 

[Int(Clδ(G,E)) ∪% Cl(Intδ(G,E))]=(F8,E)
c ⊃% (G,E).So,(G,E) ⊆% Int(Clδ(G,E)) ∪% Cl(Intδ(G,E)). 

Thus, (G,E) is soft e-open set but since, Int(Clδ(G,E))=(F1,E) which does not contain (G,E). 

So (G,E) is not soft δ-pre open set. Also it is clear that (G,E) is neither soft δ-open nor soft 

regular open nor soft open nor soft semi-open nor γ-open nor β-open set. 

 

Again, consider the soft set (F,E) ={(e1,{x4}),(e2,{ x1, x3}),(e3,{x1,x2})}, then 

[Int(Clδ(F,E)) ∪% Cl(Intδ(F,E))]={(e1,{x2,x4}), (e2,{x1,x3,x4}),(e3,X)} and so,(F,A) ⊆% [Int 

(Clδ(F,E)) ∪% Cl(Intδ(F,E))]. Thus, (F,E) is soft e-open set but since Cl(Intδ(F,E))  = (F5,E)
c
 

which does not contain (F,E). So (F,E) is not soft δ-semi open set. Also it is clear that (F,E) 

is neither soft δ-open nor soft regular open nor soft open nor soft semi-open nor γ-open nor 

β-open set. 

 

Remark 3.24. The intersection of two soft e-open sets need not be soft e-open set as is 

illustrated by the following example. 

 

Example 3.25. Let (X,τ,E) be a soft topological space defined in Example 3.23. Now we 

consider two soft sets (G,E) and (H,E) in (X,τ,E) defined as follows: 

(G,E) ={(e1,{ x1}),(e2,{ x2})};(H,E)= {(e1,{x1}),(e2,{ x3}),(e3, {x3})}. 

Then, (G,E) and (H,E) are soft e-open sets over X, therefore, (G,E) ∩% (H,E) ={(e1,{x1})}= 

(K,E) and Int(Clδ(K,E)) ∪% Cl(Intδ(K,E)) ={(e1,{x1}), (e2,{x2})} ⊇/%  (K,E). Hence, K,E) is not 

a soft e-open set. 

 

Remark 3.26. The union of two soft e-closed sets need not be soft e-closed set as is 

illustrated by the following example. 

 

Example 3.27. Let (X,τ,E) be a soft topological space defined in Example 3.23. Now we 

consider two soft sets (A,E) and (B,E) in (X,τ,E) defined as follows: 

 

(A,E) ={ (e1,{x2,x3,x4}),(e2,{ x1, x3, x4}),(e3,X)};(B,E)= {(e1,{ x2, x3, x4}),(e3,{x1, x2,x4}), 

(e3, {x1, x2,x4})}.Then, (A,E) and (B,E) are soft e-closed sets over X , therefore, (A,E) ∪%  

(B,E) = {(e1,{ x2, x3, x4}),(e3,X), (e3, X)} = (C,E) and Int(Clδ(C,E)) ∩% Cl(Intδ(C,E) = X ⊄%  

(C,E). Hence, (C,E) is not a soft e-closed set. 

 

Theorem 3.28. In a soft topological space X, 

(i) Every soft δ-pre-open set is soft e-open set. 

(ii) Every soft δ-semi-open set is e-open set. 

 

Proof . (i) Let (F,A) be a soft δ-pre-open set in a soft topological space X. 

Then, (F,A) ⊆%  Int(Clδ(F,A)) which implies that 

(F,A) ⊆% [Int(Clδ(F,A)) ∪% Intδ(F,A))] ⊆% [Int(Clδ(F,A)) ∪% Cl(Intδ(F,A))] 

Thus (F,A) is soft e-open set. 

 

(ii) Let (F,A) be a soft δ-semi-open set in a soft topological space X.  

Then, (F,A) ⊆%  Cl(Intδ(F,A)) which implies that 

(F,A) ⊆% [Cl(Intδ(F,A)) ∪% Int(F,A))] ⊆% [Cl(Intδ(F,A)) ∪% Int(Clδ(F,A))] 

Thus (F,A) is soft e-open set. 
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4. Soft e-continuity and Soft e-homeomorphisms 
 

In this section, we introduce soft e-continuous maps, soft e-irresolute maps, soft e-closed 

maps, soft e-open maps and soft e-homeomorphisms. We also study some of their 

properties and separation axioms with the help of soft e-open sets. 

 

Definition 4.1 [14]. Let (X,E) and (Y,K) be two soft classes. Let u : X → Y and p : E → K 

be mappings.Then a mapping f : (X,E) → (Y,K) is defined as follows: for a soft set (F,A) in 

(X,E) , (f(F,A),B), B = p(A) ⊆%  K is a soft set in (Y,K) given by  

f(F,A)(β) = u
1

( )

( )

F

p A

α

α β−

∪ 
 

∈ ∩ 
 β∈K and (f(F,A),B) is called a soft image of a soft set 

(F,A) . If B=K, then we will write ( f(F,A),K) as f(F,A). 

 

Definition 4.2 [14]. Let f : (X,E) → (Y,K) be a mapping from a soft class (X,E) to another 

soft class (Y,K), and (G,C) a soft set in soft class (Y,K), where, C ⊆ K. Let u : X → Y and p 

: E →K be mappings.Then (f
-1

(G,C),D), D=p
-1

(C), is a soft set in the soft classes(X,E), 

defined as (f
-1

(G,C)(α) = u
-1

(G(p(α))) for α∈D ⊆ E. (f
-1

(G,C),D) is called a soft inverse 

image of (G,C). Hereafter, we shall write, (f
-1

(G,C),E) as (f
-1

(G,C). 

 

Theorem 4.3 [14]. Let f : (X,E) → (Y,K) ; u : X → Y and p : E →K be mappings. Then for 

soft sets (F,A), (G,B) and a family of soft sets {(Fα,Aα):α∈Λ,an index set} in the soft class 

(X,E), we have: 

(1) ƒ(ϕ% ) = ϕ% , 

(2) ƒ( X% ) =Y% , 

(3) ƒ((F,A) ∪% (G,B)) = ƒ(F,A) ∪% ƒ(G,B), in general,  

ƒ( ( , )F Aα α
α∈Λ

U ) = ( ( , )f F Aα α
α∈Λ

U ), 

(4) ƒ((F,A) ∩% (G,B)) ⊆% ƒ(F,A) ∩% ƒ(G,B), in general,  

ƒ( ( , )F Aα α
α∈Λ

I ) ∩%  ( ( , )f F Aα α
α∈Λ

I ), 

(5) If (F,A) ⊆% (G,B) then,  f (F,A) ⊆%  f (G,B), 

(6) ƒ-1
(ϕ% ) = ϕ% , 

(7) ƒ-1
(Y% ) = X% , 

(8) ƒ-1
((F,A) ∪% (G,B))=ƒ-1

(F,A) ∪% ƒ-1
(G,B),ingeneral, 

ƒ-1
( ( , )F Aα α

α∈Λ

U )=( 1( , )f F Aα α
α

−

∈Λ

U ), 

(9) ƒ-1
((F,A) ∩% (G,B))=ƒ-1

(F,A) ∩% ƒ-1
(G,B),ingeneral, 

ƒ-1
( ( , )F Aα α

α∈Λ

I ) ⊆%  ( 1( , )f F Aα α
α

−

∈Λ

I ), 

(10)  If (F,A) ⊆% (G,B) then,  f
-1

 (F,A) ⊆%  f
-1

 (G,B), 

 

Definition 4.4. A mapping  f :(X,τ1,E) → (Y,τ2,K) is said to be a soft δ-pre continuous if ƒ-

1
(F,A) is soft δ-pre open in X for every soft open set (F,A) in Y. 

 

Definition 4.5. A mapping f :(X,τ1,E) → (Y,τ2,K) is said to be a soft δ-semi continuous if 

ƒ-1
(F,A) is soft δ-semi open in X for every soft open set (F,A) in Y. 
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Definition 4.6. A mapping f :(X,τ1,E) → (Y,τ2,K) is said to be a soft e-continuous if                    

ƒ-1
(F,A) is soft e-open in X for every soft open set (F,A) in Y. 

 

Definition 4.7. A mapping f :(X,τ1,E) → (Y,τ2,K) is said to be a soft e-irresolute if                    

ƒ-1
(F,A) is soft e-open in X for every soft e-open set (F,A) in Y. 

 

Remark 4.8. It is clear that every soft δ-pre continuous map and soft δ-semi continuous 

map is soft e-continuous. Thus we have implications as shown in Figure 2. 

The converses of these implications are not necessarily true, which is clear from the 

following examples. 

 

                                   Soft δ-pre continuous              Soft δ-semi continuous 

                                                                  ↓               ↓ 

                                                               Soft e-continuous 

                                                                      
                                                                      Figure-2 

 

 

Example 4.9. Let X={x1, x2, x3, x4}, Y={y1, y2, y3, y4}, E ={e1, e2, e3}, K={k1, k2, k3}and 

(X,τ,E) and (Y,ν,K) be soft topological spaces. Let 
up

f : (X,τ,E) → (Y,ν,K) be a soft 

mapping. Define u : X → Y and P : E → K as u(x1) = y2, u(x2) = y3, u(x3) = y4, u(x4) = y1, 

and p(e1) = k2, p(e2) = k1, p(e3) = k3; 

 

Let us consider the soft topology τ in X given in Example 3.23; that is,τ ={ϕ% , X% , (F1,E), 

(F2, E), (F3,E), (F4,E), (F5,E), (F6,E), (F7,E), (F8,E), (F9,E), (F10,E), (F11,E), (F12,E), (F13,E)} 

and soft topology ν ={ϕ% ,Y% , (G,K) = { (k1,{ y1,y2}),(k2,{ y2, y3}),(k3,{y1, y3})}} in Y. Then 

(G,K) is a soft open in Y and 1

upf
− (G,K) = {(e1,{x1,x2}), (e2,{x2, x3}),(e3,{ x1, x3})} is soft e-

open but not soft δ-pre open in X. Therefore, upf  is a soft e-continuous but not soft δ-pre 

continuous function. 

 

Example 4.10. Let X={x1, x2, x3, x4}, Y={y1, y2, y3, y4}, E ={e1, e2, e3}, K={k1, k2, k3}and 

(X,τ,E) and (Y,ν,K) be soft topological spaces. Let upf : (X,τ,E) → (Y,ν,K) be a soft 

mapping. Define u : X → Y and P : E → K as u(x1) = y3, u(x2) = y1, u(x3) = y4, u(x4) = y2, 

and p(e1) = k2, p(e2) = k1, p(e3) = k3; 

 

Let us consider the soft topology τ in X given in Example 3.23; that is,τ ={ϕ% , X% , (F1,E), 

(F2,E), (F3,E), (F4,E), (F5,E), (F6,E), (F7,E), (F8,E), (F9,E), (F10,E), (F11,E), (F12,E), (F13,E)} 

and soft topology ν={ϕ% ,Y% , (H,K) = {(k1,{ y3,y4}),(k2,{ y2}), (k3,{ y1,y3})}} in Y. Then 

(H,K) is a soft open in Y and 1

upf
− (H,K)= {(e1,{ x4}),(e2,{ x1, x3}),(e3,{ x1, x2})} is soft e-

open but not soft δ-semi open in X. Therefore, upf  is a soft e-continuous but not soft δ-semi 

continuous function. 

 

Theorem 4.11. For a mapping f :(X,τ1,E) → (Y,τ2,K), the following statements are 

equivalent 

(i) f is a soft e-continuous. 
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(ii) For every soft singleton F
Pλ ∈ X and every soft open set (F,A) in Y such that f( F

Pλ )      

⊆% (F,A), ∃ a soft e-open set (G,A) in X such that F
Pλ ∈(G,A) and f((G,A)) ⊆%  (F,A). 

(iii) ƒ-1
(F,A) = Int(Clδ(ƒ

-1
(F,A))) ∪% Cl(Intδ(ƒ

-1
(F,A))) for each soft open set (F,A) in Y. 

(iv) The inverse image of each soft closed set in Y is soft e-closed. 

(v) Int(Clδ(ƒ
-1

(F,A))) ∩% Cl(Intδ(ƒ
-1

(F,A))) ⊆%  ƒ-1
((Cl(F,A))) for each soft set (F,A) ⊆% Y. 

(vi) ƒ[Cl(Intδ(G,A)) ∩% Int(Clδ(G,A))] ⊆% Cl(ƒ(G,A)) for every soft set (G,A) in X. 

 

Proof. (i)⇒⇒⇒⇒(ii): Let the singleton set F
Pλ in X and every soft open set (F,A)  in Y such 

that f( F
Pλ )∈ (F,A). Since f is soft e-continuous. Then F

Pλ ∈ƒ-1
(f( F

Pλ )) ⊆%  ƒ-1
(F,A) . 

Let (G,A) = ƒ-1
(F,A) which is a soft e-open set in X. So, we have F

Pλ ∈ (G,A). Now 

f(G,A) = f(ƒ-1
(F,A)) ⊆%  (F,A).  

 

(ii)⇒⇒⇒⇒(iii): Let (F,A) be any soft open set in Y. Let F
Pλ  be any soft point in X such that 

f( F
Pλ ) ⊆% (F,A). Then F

Pλ ∈ƒ-1
(F,A). By(ii), there exists a soft e-open set (G,A) in X such 

that F
Pλ ∈ (G,A) and f((G,A)) ⊆%  (F,A). Therefore, F

Pλ ∈(G,A) ⊆%  ƒ-1
(f((G,A))) ⊆% ƒ-1

(F,A) 

⊆%  Int(Clδ(ƒ
-1

(F,A)) ∪%  Cl(Intδ(ƒ
-1

(F,A)). 

 

(iii)⇒⇒⇒⇒(iv): Let (F,A) be any soft closed set in Y. Then Y% -(F,A) be a soft open set 

in Y. By (iii), (ƒ-1
(Y% - (F,A))) ⊆%  Int(Clδ(ƒ

-1
(Y% - (F,A)))) ∪%  Cl(Intδ(ƒ

-1
(Y% -(F,A)))).This 

implies X% -(ƒ-1
(F,A)) ⊆%  Int(Clδ( X% -ƒ-1

(F,A))) ∪% Cl(Intδ( X% -ƒ-1
(F,A))) ⊆%  Int( X% - Clδ(ƒ

-

1
(F,A))) ∪%  Cl( X% -Intδ(ƒ

-1
(F,A))) ⊆%  [ X% -Int(Clδ(ƒ

-1
(F,A))] ∪%  [ X% -Cl(Intδ(ƒ

-1
(F,A))] and 

hence X% -(ƒ-1
(F,A)) ⊆% X% -[Int(Clδ(ƒ

-1
(F,A)) ∩% Cl(Intδ(ƒ

-1
(F,A))].Hence (ƒ-1

(F,A)) ⊃% [Int 

(Clδ(ƒ
-1

(F,A)) ∩% Cl(Intδ(ƒ
-1

(F,A))] and this implies that ƒ-1
(F,A)  is soft e-closed in X. 

 

(iv)⇒⇒⇒⇒(v): Let (F,A) ⊆% Y. Then ƒ-1
(Cl(F,A)) is soft e-closed in X. Now, [Int(Clδ(ƒ

-1 

(F,A))) ∩% Cl(Intδ(ƒ
-1

(F,A)))] ⊆% [Int(Clδ(ƒ
-1

(Cl(F,A)))) ∩% Cl(Intδ(ƒ
-1

(Cl(F,A))))] ⊆% ƒ-1
(Cl 

(F,A)). 

 

(v)⇒⇒⇒⇒(vi): Let (G,A) ⊆%  X. Put (F,A) = f(G,A) in (v). Then, [Int(Clδ(ƒ
-1

(f(G,A)))) ∩%  Cl 

(Intδ(ƒ
-1

(f(G,A))))] ⊆% ƒ-1
(Cl(f(G,A))).This implies that [Int(Clδ(G,A)) ∩% Cl(Intδ(G,A))] ⊆%  ƒ-

1
 (Cl(f((G,A)))) ⇒ f[Int(Clδ(G,A)) ∩% Cl(Intδ(G,A))] ⊆%  Cl(f(G,A)). 

 

(vi)⇒⇒⇒⇒(i): Let (G,A) ⊆%  Y be soft open set. Put (G,A) = ƒ-1
(F,A) and (F,A) =Y% -(G,A) then 

f[Int(Clδ(ƒ
-1

(F,A))) ∩% Cl(Intδ(ƒ
-1

(F,A)))] ⊆%  Cl(f(ƒ-1
(F,A))) ⊆%  Cl(F,A) = (F,A). That is, ƒ-

1
(F,A) is soft e-closed in X, so f is soft e-continuous. 

 

Theorem 4.12. Every soft e-irresolute mapping is soft e-continuous mapping. 

 

Proof. Let f :(X,τ1,E) → (Y,τ2,K) is soft e-irresolute mapping. Let (F,K) be a soft closed set 

in Y, then (F,K) is soft e-closed set in Y. Since f is soft e-irresolute mapping, f
-1

(F,K)  is a 

soft e-closed set in X. Hence, f is soft e-continuous mapping. 
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Theorem 4.13. If f : (X,τ1,E) → (Y,τ2,K) be soft e-continuous function and g : (Y,τ2,K) → 

(Z,τ3,L) be soft continuous function. Then gof: (X,τ1,E) → (Z,τ3,L) is also soft e-

continuous function. 

 

Proof. Let (F,A) be a soft open set in Z. Now, (gof)
-1

(F,A) = (f
-1

og
-1

)(F,A) = (f
-1

(g
-

1
(F,A)).Since g is soft continuous, g

-1
(F,A) is soft open & then (gof)

-1
(F,A) = f

-1
(soft open 

in Y). But f being soft e-continuous (gof)
-1

(F,A) is soft e-open set in X. Thus gof is soft e-

continuous function. 

 

Theorem 4.14. If f :(X,τ1,E) → (Y,τ2,K) be soft e-irresolute function and g : (Y,τ2,K) → 

(Z,τ3,L) be soft e-continuous function. Then gof: (X,τ1,E) → (Z,τ3,L) is also soft e-

continuous function. 

 

Proof. Let (F,A) be a soft open set in Z. Now, (gof)
-1

(F,A) = (f
-1

og
-1

)(F,A) = (f
-1

(g
-

1
(F,A)).Since g is soft e-continuous, g

-1
(F,A) is soft e-open & then (gof)

-1
(F,A) = f

-1
(soft e-

open in Y). But f being e-irresolute, (gof)
-1

(F,A) is soft e-open set in X. Thus gof is soft e-

continuous function. 

 

Theorem 4.15. Composition of two soft e-irresolute function is again a soft e-irresolute 

function. 

 

Proof.  Straight forward. 

 

Definition 4.16. A mapping f : X →Y is said to be soft e-open (briefly se-open) map if the 

image of every soft open set in X is soft e-open set in Y. 

 

Definition 4.17. A mapping f : X →Y is said to be soft e-closed (briefly se-closed) map if 

the image of every soft closed set in X is soft e-closed set in Y. 

 

Theorem 4.18. If f : X →Y is soft closed function and g : Y →Z is soft e-closed function, 

then gof  is soft e-closed function. 

 

Proof. For a soft closed set (F,A) in X, f (F,A) is soft closed set in Y. Since g : Y → Z is 

soft e-closed function, g(f (F,A)) is soft e-closed set in Z. g(f (F,A)) = (gof ) (F,A) is soft e-

closed set in Z. Therefore, gof is soft e-closed function. 

 

Theorem 4.19. A map f : X → Y is soft e-closed if and only if for each soft set (H,K) of Y 

and for each soft open set (F,A) such that f
-1

(H,K) ⊆% (F,A), there is a soft e-open set 

(G,K) of Y such that (H,K) ⊆% (G,K) and f
-1

(G,K) ⊆% (F,A). 

 

Proof. Suppose f  is soft e-closed map. Let (H,K) be a soft set of Y, and (F,A) be a soft 

open set of X, such that f
-1

(H,K) ⊆% (F,A). Then (G,K) = (f ((F,A)
c
))

c
 is a soft e-open set in Y 

such that (H,K) ⊆% (G,K) and f
-1

(G,K) ⊆% (F,A). 

    

Conversely, suppose that (F,B) is a soft closed set of X.Then f
-1

(f ((F,B))
c
) ⊆% (F,B)

c
, and 

(F,B)
c
 is soft open set. By hypothesis, there is a soft e-open set (G,K)  of Y such that (f 

((F,A)
c
))

c
 ⊆% (G,K) and f

-1
(G,K) ⊆% (F,B), Thus (F,B) ⊆%  f

-1
(G,K). Hence (G,K)

c ⊆% f (G,K) ⊆%  f 

(f
-1

(G,K))
c
) ⊆% (G,K) which implies f (F,B)= (G,K)

c
. Since (G,K)

c
 is soft e-closed set,  f 

(F,B) is sb-closed set. So, f is a soft e-closed map. 
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Theorem 4.20. Let f : X → Y, g : Y → Z be two maps such that gof : X →Z is sb-closed 

map. 

(i) If f is soft continuous and surjective, then g is soft e-closed map. 

(ii) If g is soft e-irresolute and injective, then f is soft e-closed map. 

 

Proof. (i) Let (H,K) be a soft closed set of Y. Then, f
-1

(H,K) is soft closed set in X as f is 

soft continuous. Since gof  is soft e-closed map, (gof ) (f
-1

(H,K))= g(H,K) is soft e-closed 

set in Z. Hence g : Y →Z soft e-closed map. 

 

(ii) Let (F,A) be a soft closed set in X. Then, (gof ) (F,A) is soft e-closed set in Z, and so               

g
-1

(gof ) (F,A) = f(F,A) is soft e-closed set in Y. Since g is soft e-irresolute and injective. 

Hence, f is a soft e-closed map. 

 

5. Applications in Separation Axioms and in Soft Group Theory 
 

In this section e-separation axioms has been introduced and investigated with the help of 

soft e-open sets. Finally, we have shown that the collection Ser-h(X,τ,E) form a soft group. 

 

Definition 5.1. A soft topological space (X,τ,E) is said to be soft e-T1 if for each pair of 

distinct soft points F
Pλ  and G

Pµ  of X, there exists soft e-open sets (U,A) and (V,B) such that 

F
Pλ ∈(U,A)   and G

Pµ ∈(V,B)   , 
F

Pλ ∉(V,B)  and G
Pµ ∉(U,A) . 

 

Theorem 5.2. If f : X → Y is soft e-continuous injective function and Y is soft T1, then X 

is soft e-T1. 

 

Proof. Suppose that Y is soft T1. For any two distinct soft points F
Pλ  and G

Pµ  of X, there 

exists soft open sets (U,A) and (V,A) in Y such that f( F
Pλ )∈(U,A), f( G

Pµ )∈(V,A), 

f( F
Pλ )∉(V,A) and f( G

Pµ )∉(U,A). Since f is injective soft e-continuous function, we have f
-

1
(U,A) and f

-1
(V,A) are soft e-open sets in X. Hence by definition X is soft e-T1. 

 

Definition 5.3. A soft topological space (X,τ,E) is said to be soft e-T2 (i.e., soft e-

Hausdorff) if for each pair of distinct soft points F
Pλ  and G

Pµ  of X, there exists disjoint 

soft e-open sets (U,A)  and (V,B)  such that F
Pλ ∈(U,A)  and G

Pµ ∈(V,B). 

 

Theorem 5.4. If  f : (X,τ1, E) → (Y,τ2, E) is soft e-continuous injective function and Y is 

soft T2 then X is soft e-T2. 

 

Proof. Suppose that Y is soft T2 space. For any two distinct soft points F
Pλ  and G

Pµ  of X, 

there exists disjoint soft open sets (U,A) and (V,B) in Y such that f( F
Pλ )∈(U,A) , 

f( G
Pµ )∈(V,B), f( F

Pλ ) ∉(V,B) and f( G
Pµ ) ∉(U,A). Since f is injective soft e-continuous 

function, we have f
-1

(U,A) and f
-1

(V,B)  are disjoint soft e-open sets in X. Hence by 

definition, X is soft e-T2. 
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Definition 5.5. A soft topological space (X,τ,E) is said to be soft e-normal if for every two 

disjoint soft closed sets (F,A) and (H,B) of X, there exist two disjoint soft e-open sets 

(U,A) and (V,B) such that (F,A) ⊆% (U,A) and (H,B) ⊆% (V,B) and (U,A) ∩% (H,B)  = ϕ% . 

 

Theorem 5.6. If f : (X,τ1, E) → (Y,τ2, E) is soft e-continuous closed injective function and 

Y is soft normal then X is soft e-normal. 

 

Proof. Suppose that Y is soft normal. Let (F,A)  and (H,B) be soft closed sets in X such that 

(F,A) ∩% (H,B) =ϕ% . Since f is soft closed injection f(F,A) and f(H,B) are soft closed in Y and 

f(F,A) ∩%  f(H,B) =ϕ% . Since Y is normal, there exists soft open sets (U,A) and (V,B)  in Y 

such that f(F,A) ⊆% U, f(H,B) ⊆% V and U ∩% V = ϕ% . Therefore we obtain, (F,A) ⊆%  f
-1 

(U) and 

(H,B) ⊆%  f
-1

(V) and f
-1

(U ∩% V) =ϕ% . Since f is soft e-continuous, f
-1

(U) and f
-1

(V) are soft e-

open sets. Hence by definition X is soft e-normal. 

 

Definition 5.7. A space X is said to be soft e-regular if for each soft closed set (F, A) of X 

and each soft point F
Pλ ∈X- (F,A), there exist disjoint soft e-open sets (U,A) and (V,B) 

such that F
Pλ ∈(U,A) and (F,A) ⊆% (V,B). 

 

Theorem 5.8. If f :(X,τ1,E) → (Y,τ2, E) is soft e-continuous closed injective function and Y 

is soft regular then X is soft e-regular. 

 

Proof. Let (F,A) be soft closed set in Y with a soft point  G
Pµ ∉(F,A) Take G

Pµ = f ( F
Pλ ). 

Since Y is soft regular, there exists disjoint soft open sets (U,A) and (V,B) such that 
F

Pλ ∈(U,A) and G
Pµ =f ( F

Pλ )∈f(U,A) and (F,A) ⊆%  f(V,B ) such that f(U,A) and f(V,B) are 

disjoint soft open sets. Therefore, we obtain that,f
-1

(F,A) ⊆% (V,B). Since f is soft e-

continuous, f
-1

(F,A) is soft e-closed set in X and F
Pλ ∉f

-1
(F,A). Hence by definition X is 

soft e-regular. 

 

Theorem 5.9. If (F,A) is soft e-closed set in X and f : X →Y is bijective, soft continuous 

and soft e-closed , then f(F,A) is soft e-closed set in Y. 

 

Proof. Let f(F,A) ⊆% (G,B) where (G,B) is a soft open set in Y. Since f is soft continuous, f
-

1
(G,B) is a soft open set containing (F,A). Hence, Se-Cl(F,A) ⊆%  f

-1
(G,B)  as (F,A) is soft e-

closed set. Since f  is soft e-closed, f(Se-Cl(F,A)) is soft e-closed set contained in the soft 

open set (G,B), which implies Se-Cl f(Se-Cl(F,A)) ⊆% (G,B) and hence Se-Cl f(F,A)) 

⊆% (G,B). So f(F,A)) is soft e-closed set in Y. 

 

Definition 5.10. A soft subset (F,A) of a soft topological space (X,τ,E) is soft e-connected 

iff (F,A) can’t be expressed as the union of two non empty disjoint soft e-open sets. 

 

Theorem 5.11. Let f: X → Y is soft e-continuous and surjection map. If (H,A) is soft e-

connected, then f(H,A)  is soft connected. 

 

Proof. Suppose that f(H,A) is not soft connected space. Then, ∃ non empty soft open sets 

(F,K) and (G,K) in Y such that f(H,A) = (F,A) ∪% (G,A). Since f is soft e-continuous,                 

f
-1

(F,A) and f
-1

(G,A) are soft e-open set in X and (H,A) = f
-1

[(F,A) ∪% (G,A)] = f
-1

(F,A) ∪%  f
-
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1
(µ). It is clear that f

-1
(F,A) and f

-1
(G,A) are soft e-open set in X. Therefore, (H,A) is not 

soft e-connected, which is a contradiction to the given hypothesis. Hence, f(H,A) is soft 

connected.  

 

Definition 5.12. A function f : (X,τ1, E) → (Y,τ2, E) is called soft e-homeomorphism (resp. 

soft er-homeomorphism) if f  is a soft e-continuous bijection (resp. soft e-irresolute 

bijection) and f
−1

: (Y,τ2, E) → (X, τ1, E) is a soft e-continuous (resp.soft e-irresolute). 

Now we can give the following definition by taking the soft space (X,τ,E) instead of the 

soft space (Y,τ2, E). 

 

Definition 5.13. For a soft topological space (X,τ,E), we define the following two 

collections of functions: 

(a) Se-h(X,τ,E) ={f | f : (X,τ,E) → (X,τ,E) is a soft e-continuous bijection, f
−1

: (X,τ,E) 

→ (X,τ,E) is soft e-continuous}. 

(b) Ser-h(X,τ,E) ={ f | f : (X,τ,E) → (X,τ,E) is a soft e-irresolute bijection, f
−1

: (X,τ,E) 

→ (X,τ,E) is soft e-irresolute}. 

 

Theorem 5.14. For a soft topological space (X,τ,E), S-h(X,τ,E) ⊆%  Ser-h(X,τ,E) ⊆%  Se-

h(X,τ,E), where, S-h(X,τ,E) ={ f | f : (X,τ,E) → (X,τ,E) is a soft continuous bijection,  f
−1

: 

(X,τ,E) → (X,τ,E) is soft continuous i.e. f  is soft homeomorphisms}. 

 

Proof. First we show that every soft-homeomorphism f : (X,τ1, E) → (Y,τ2, E) is a soft e-r-

homeomorphism. Let (G,A)∈Se-OS(Y), then (G,A) ⊆% Int(Clδ(G,A)) ∪% Cl(Intδ(G,A)). 

Hence, f
−1

(G,A) ⊆% f
−1

[Int(Clδ(G,A)) ∪% Cl(Intδ(G,A))] = Int(Clδ(ƒ
-1

(G,A)) ∪%  Cl(Intδ(ƒ
-1

( 

G,A)) and so f
−1

(G,A)∈Se-OS(X). Thus, f is soft e-irresolute. In a similar way, it can be 

shown that f
−1 

is soft e-irresolute. Hence, we have, S-h(X,τ,E) ⊆% Ser-h(X,τ,E). 

Finally, it is obvious that Ser-h(X,τ,E) ⊆% Se-h(X,τ,E), because every soft e-irresolute 

function is soft e-continuous. 

 

Theorem 5.15. For a soft topological space (X,τ,E), the collection Ser-h(X,τ,E) forms a 

group under the composition of functions. 

 

Proof. If f :(X,τ1,E) → (Y,τ2,E) and g : (Y,τ2,E) → (Z,τ3,E) are soft er-homeomorphism, 

then their composition gof : (X,τ1,E) → (Z,τ3,E) is a soft er-homeomorphism.It is obvious 

that for a bijective soft er-homeomorphism f : (X,τ1,E) → (Y,τ2,E),  f
−1

: (Y,τ2,E) → 

(X,τ1,E) is also a soft er-homeomorphism and the identity function I : (X,τ1,E) → (X,τ1,E) 

is a soft er-homeomorphism. A binary operation α : Ser-h(X,τ,E)×Ser-h(X,τ,E) → Ser-

h(X,τ,E) is well defined by α(a,b) = boa, where  a,b∈Ser-h(X,τ,E) and boa is the 

composition of a and b. By using the above properties, the set Ser-h(X,τ,E) forms a group 

under composition of function. 

 

Theorem 5.16. The group S-h(X,τ,E) of all soft homeomorphisms on (X,τ,E) is a subgroup 

of Ser-h(X,τ,E). 

 

Proof. For any a,b∈S-h(X,τ,E), we have, α(a,b
−1

) = b
−1

oa∈S-h(X,τ,E) and IX ∈S-h (X,τ,E) 

≠ ϕ. Thus, using (Theorem 4.14) and (Theorem 4.15), it is obvious that the group S-

h(X,τ,E) is a subgroup of Ser-h(X,τ,E).  
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For a soft topological space (X,τ,E), we can construct a new group Ser-h(X,τ,E) satisfying 

the property: If there exists a homeomorphism (X,τ,E) ≅ (Y,τ,E), then there exists a group 

isomorphism Ser-h(X,τ,E) ≅ Ser-h(X,τ,E). 

 

Corollary 5.17. Let f : (X,τ1,E) → (Y,τ2,E) and g : (Y,τ2,E) → (Z,τ3,E) be two functions 

between soft topological spaces. 

(i) For a soft er-homeomorphism f : (X,τ1,E) → (Y,τ2,E), there exists an isomorphism, say, 

f∗ : Ser-h(X,τ,E) → Ser-h(X,τ,E), defined f∗ (a) = f o a o f
−1

, for any element a ∈ Ser-

h(X,τ,E). 

(ii) For two soft er-homeomorphisms f : (X,τ1,E) → (Y,τ2,E) and g : (Y,τ2,E) → (Z,τ3,E), 

(gof)∗ = g∗o f∗ : Ser-h(X,τ1,E) → Ser-h(Z,τ3,E) holds. 

(iii) For the identity function IX : (X,τ,E) → (X,τ,E), (IX)∗ = I : Ser-h(X,τ,E) → Ser-

h(X,τ,E) holds where I denotes the identity isomorphism. 

 

Proof. Straightforward. 

 

6. Conclusion 
 

In this work we introduced the concept of soft e-open set and investigated some properties 

of them. Then focused the relationships among soft δ-pre open sets, soft δ-semi open sets, 

soft pre-open sets and soft e-open sets. We also investigated the concepts of soft e-open 

functions, soft e-continuous, soft e-irresolute and soft e-homomorphism on soft topological 

space and discussed their relations with existing soft continuous and other weaker forms of 

soft continuous functions. Further soft e-separation axioms have been introduced and 

investigated with the help of soft e-open sets. Finally, we observed that the collection Ser-

h(X,τ,E) form a soft group. We hope that the findings in this work will help researcher 

enhance and promote the further study on soft topological spaces to carry out a general 

framework for their applications in separation axioms, connectedness, compactness etc. and 

also in practical life. 

 

Acknowledgements 
 

The author wishes to thank the learned referee for his valuable suggestions which improved 

the paper to a great extent. 

 

References  
 

[1] Molodtsov,D.: Soft set theory-First results. Comput. Math. Appl, 37(4-5), 19-

31(1999). 

[2] Shabir, M., Naz, M.: On soft topological spaces. Comput. Math. Appl. 61, 1786–

1799 (2011). 

[3] Zorlutuna, I., Akdag, M., Min, W.K., Atmaca, S.: Remarks on soft topological 

spaces. Ann. Fuzzy Math. Inf. 3(2), 171–185 (2012). 

[4] Aygunoglu, A., Aygun, H: Some notes on soft topological spaces. Neural Comput. 

Appl. doi:10.1007/s00521-011-0722-3. 

[5] Chen, B.: Soft semi-open sets and related properties in soft topological spaces. Appl. 

Math. Inf. Sci. 7(1), 287–294 (2013). 

[6] Akdag, M., Ozkan, A: Soft b-open sets and soft b-continuous functions. Math. Sci. 

8:124, DOI 10.1007/s40096-014-0124-71-7 (2014). 



Journal of New Theory 15 (2017) 01-18                                                                                                          18 
 

[7] Akdag, M., Ozkan, A: Soft α-open sets and soft α-continuous functions. Abstr. Appl. 

Anal. Art ID 891341, 1-7 (2014). 

[8] A.S. Mashour and et al: On Supra Topological space, Indian J. Pure and Appl. Math., 

4(4), 502-510 (1983). 

[9] Kandil and et al: Supra Generalised Closed Sets with respect to an soft ideal in  supra 

soft topological spaces, Appl. Math. Infor. Science,8(4),17311740(2014). 

[10] Yumak,Y., Kaymakcı, A.K: Soft β-open sets and their aplications. http://arxiv.org 

/abs/1312.6964V1[Math.GN] 25 Dec 2013. 

[11] Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45, 555–562 

(2003). 

[12] Ali, M.I., Feng, F., Liu, X., Min, W.K., Shabir, M.: On some new operations in soft 

set theory. Comput. Math. Appl. 57, 1547–1553 (2009). 

[13]  Arockiarani, I., Arokialancy, A.: Generalized soft gβ-closed sets and soft gsβ-closed 

sets in soft topological spaces. Int. J. Math.  Arch. 4(2), 1–7 (2013). 

[14] Kharal, A., Ahmad, B.: Mappings on soft classes. New Math. Nat. Comput. 7(3), 

471–481 (2011). 

[15] Zorlutana, I.,Akdag M.,Min W.K., Atmaca S.: Remarks on Soft Topological Spaces. 

Annals of Fuzzy Mathematics and Informatics. 3(2),171-185(2012). 

 



http://www.newtheory.org ISSN: 2149-1402

Received : 02.06.2016 Year : 2017, Number : 15, Pages: 19-25

Published : 17.09.2017 Original Article*

A NEW TYPE OF CONVERGENCE IN
INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Pradip Debnath <debnath.pradip@yahoo.com>

Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli,
Arunachal Pradesh - 791109, India

Abstaract − In the present paper, we introduce a new type of convergence, called standard
convergence (or std-convergence), in an intuitionistic fuzzy normed linear space (IFNLS). We have
also introduced the concept of std-Cauchyness and proved that these notions are stronger than usual
convergence and usual Cauchyness in an IFNLS. Further, we have shown that these two notions
are not directly compatible with each other and hence, defined the notion of strong std-convergence
which is compatible with std-Cauchy sequences.

Keywords − Intuitionistic fuzzy normed linear space; std-convergence; strong std-convergence;
std-Cauchy sequence.

1 Introduction

The concepts of convergence and Cauchyness of sequences lay the foundation of
structure of any metric space and as such, the study of these concepts are of greatest
importance in analysis. Therefore, the study of both weaker and stronger concepts
than the usual convergence has always been a well motivated area of research. Some
very important work in this direction in connection with fuzzy metric spaces may be
found in [9, 11, 14, 17].

Recently, Ricarte and Romaguera [23] have established relationships between the
theory of complete fuzzy metric spaces and domain theory by introducing a stronger
notion than Cauchy sequence called standard Cauchy sequence. They proved that
the famous result due to Edalat and Heckmann [8] which gives a characterization of
complete metric spaces with the help of continuous domains could be obtained from
their results in fuzzy metrics and in fact, could not be obtained from classical metric.
More recently, answer to two well posed questions by Morillas and Sapena [18] was

*Edited by Naim Çağman (Editor-in-Chief).
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given by Gregori and Minana [12] by establishing what conditions must be included
in the definition of standard convergence in fuzzy metric spaces so that it remains
compatible with the concept of Cauchyness.

The theory of intuitionistic fuzzy sets was introduced by Atanassov [2] which has
been extensively used in decision making problems [1] and in E-infinity theory of high
energy physics [21]. The concept of intuitionistic fuzzy metric space was introduced
by Park [22]. Furthermore, Saadati and Park [24] gave the notion of intuitionistic
fuzzy normed space. Some works related to the convergence of sequences in several
normed linear spaces in fuzzy setting can be found in [3, 4, 5, 6, 7, 10, 13, 15, 16,
19, 20, 25, 26, 27].

Due to its successful application in connection with fuzzy metric spaces and
domain theory [23], in the current paper, we introduce and generalize the notions of
standard (std-) convergence and standard (std-) Cauchy sequences in an IFNLS.

2 Preliminary

Throughout the paper N will denote the set of all natural numbers and R will denote
the set of real numbers. First we collect some preliminary existing definitions in
literature.

Definition 2.1. [24] The 5-tuple (X,µ, ν, ∗, ◦) is said to be an IFNLS if X is a linear
space, ∗ is a continuous t-norm, ◦ is a continuous t-conorm, and µ, ν fuzzy sets on
X × (0,∞) satisfying the following conditions for every x, y ∈ X and s, t > 0:

(a) µ(x, t) + ν(x, t) ≤ 1,

(b) µ(x, t) > 0,

(c) µ(x, t) = 1 if and only if x = 0,

(d) µ(αx, t) = µ(x, t
|α|) for each α 6= 0,

(e) µ(x, t) ∗ µ(y, s) ≤ µ(x+ y, t+ s),

(f) µ(x, t) : (0,∞)→ [0, 1] is continuous in t,

(g) limt→∞ µ(x, t) = 1 and limt→0 µ(x, t) = 0,

(h) ν(x, t) < 1,

(i) ν(x, t) = 0 if and only if x = 0,

(j) ν(αx, t) = ν(x, t
|α|) for each α 6= 0,

(k) ν(x, t) ◦ ν(y, s) ≥ ν(x+ y, t+ s),

(l) ν(x, t) : (0,∞)→ [0, 1] is continuous in t,

(m) limt→∞ ν(x, t) = 0 and limt→0 ν(x, t) = 1.
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In this case (µ, ν) is called an intuitionistic fuzzy norm (IFN). When no confusion
arises, an IFNLS will be denoted simply by X.

Example 2.2. Let (V, || · ||) be a normed linear space. Let a ∗ b = ab and a ◦ b =
min{a + b, 1} for all a, b ∈ [0, 1] and µ0, ν0 be fuzzy sets on X × (0,∞) defined

as µ0(x, t) = t
t+||x|| , ν0(x, t) = ||x||

t+||x|| for all t ∈ (0,∞). Then (X,µ0, ν0, ∗, ◦) is an
IFNLS.

Remark 2.3. Let (X,µ0, ν0, ∗, ◦) be an IFNLS. For t > 0, the open ball Bt
r(x) with

center x and radius r ∈ (0, 1) is defined as

Bt
r(x) = {y ∈ V : µ(x− y, t) > 1− r, ν(x− y, t) < r}.

Considering these open balls as base, the IFN (µ, ν) induces a topology τ(µ,ν) on X.

Definition 2.4. [24] Let X be an IFNLS. A sequence x = {xk} in X is said to
be convergent to ξ ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if, for
every ε ∈ (0, 1) and t > 0, there exists k0 ∈ N such that µ(xk − ξ, t) > 1 − ε and
ν(xk − ξ, t) < ε for all k ≥ k0. It is denoted by (µ, ν)− limx = ξ.

Definition 2.5. [24] Let X be an IFNLS. A sequence x = {xk} in X is said to be
a Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν) if, for every
ε ∈ (0, 1) and t > 0, there exists k0 ∈ N such that µ(xk − xm, t) > 1 − ε and
ν(xk − xm, t) < ε for all k,m ≥ k0.

3 std-Convergence and std-Cauchy Sequences in

IFNLS

Now we are ready to introduce the notions of std-Convergence and std-Cauchy se-
quences in IFNLS.

Definition 3.1. Let X be an IFNLS. A sequence x = {xk} in X is said to be std-
convergent to ξ ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if, for every
ε ∈ (0, 1), there exists kε ∈ N such that µ(xk − ξ, t) > t

t+ε
and ν(xk − ξ, t) < ε

t+ε
for

all k ≥ kε and for all t > 0. We denote it by (µ, ν)
std
− limx = ξ.

Definition 3.2. Let X be an IFNLS. A sequence x = {xk} in X is said to be std-
Cauchy with respect to the intuitionistic fuzzy norm (µ, ν) if, for every ε ∈ (0, 1),
there exists kε ∈ N such that µ(xk − xm, t) >

t
t+ε

and ν(xk − xm, t) <
ε
t+ε

for all
k,m ≥ kε and for all t > 0. We call X std-complete if every std-Cauchy sequence is
std-convergent in X.

Our first two results show that the notions of std-convergence and std-Cauchy are
both stronger than usual convergence and usual Cauchy respectively in an IFNLS.

Theorem 3.3. Let X be an IFNLS and the sequence x = {xk} in X be std-
convergent to ξ ∈ X. Then {xk} converges to ξ with respect to the IFN (µ, ν).
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Proof. Let (µ, ν)
std
− limx = ξ. Then for given ε > 0, there exists kε ∈ N such that

µ(xk − ξ, t) > t
t+ε

and ν(xk − ξ, t) < ε
t+ε

for all k ≥ kε and all t > 0.

Now since ε
t+ε

< ε for all t > 0, we have that t
t+ε

= 1− ε
t+ε

> 1− ε. Consequently,

µ(xk − ξ, t) > t
t+ε

> 1− ε. In a similar way it can be proved that ν(xk − ξ, t) < ε for
all k ≥ kε. This proves that (µ, ν)− limx = ξ.

The following can be proved using techniques in 3.3.

Theorem 3.4. Let X be an IFNLS and the sequence x = {xk} in X be std-Cauchy.
Then {xk} is Cauchy with respect to the IFN (µ, ν).

Next we give an example of a sequence in an IFNLS which is std-convergent but
not std-Cauchy.

Example 3.5. Consider the usual norm | · | on R restricted to [0,∞) and the IFN
(µ0, ν0) as defined in Example 2.2. Let X = [0,∞) and define on X × (0,∞) the
functions µ, ν as

µ(x− y, t) =

{
1, if x = y
µ0(x− 0, t)µ0(0− y, t), if x 6= y,

and ν(x − y, t) = 1 − µ(x − y, t). Then it is a routine verification to check that
(X,µ, ν, ∗, ◦) is an IFNLS.

Consider the sequence {xk} in X where xk = 1
k

for all k ∈ N. Let ε ∈ (0, 1). We
can choose kε ∈ N such that kε >

1
ε

and hence µ(xk− 0, t) = t
t+ 1

k

> t
t+ε

for all k ≥ kε

and all t > 0. In a similar fashion it can be proved that µ(xk − 0, t) < ε
t+ε

. So, {xk}
is std-convergent to 0 in X.

Now if we assume {xk} to be std-Cauchy, then for each ε ∈ (0, 1), there exists
kε ∈ N such that µ(xk − xm, t) = t

t+ 1
k

· t
t+ 1

m

> t
t+ 1

ε

for all k,m ≥ kε and all t > 0.

Thus we have t
(t+ 1

kε
)(t+ 1

kε
)
> 1

t+ε
for all t > 0. But then we have limt→0

t
(t+ 1

kε
)(t+ 1

kε
)
>

limt→0
1
t+ε

. This implies that 0 > 1
ε
, which is a contradiction. This proves that {xk}

can not be std-Cauchy.

From Example 3.5 we observe that the concept of std-convergence and std-Cauchy
are not compatible with each other. To settle this, we define the notion of strong
std-convergence so that every strong std-convergent sequence is std-Cauchy as well.

Definition 3.6. A sequence {xk} in an IFNLS (X,µ, ν, ∗, ◦) is said to be strong std-
convergent if it is both convergent and std-Cauchy with respect to the IFN (µ, ν).

A question naturally arises, whether every strong std-convergent sequence is std-
convergent or not. An affirmative answer to this question is given by our next result.

Theorem 3.7. Let (X,µ, ν, ∗, ◦) be an IFNLS and {xk} be a strong std-convergent
sequence in X. Then {xk} is std-convergent with respect to the IFN (µ, ν).
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Proof. Let ε ∈ (0, 1) and t > 0. We assume that {xk} converges to ξ ∈ X with respect
to (µ, ν). Since µ(x, ) is continuous for all x ∈ X, we have that limm→∞ µ(xk −
xm, t) = µ(xk − ξ, t) for all k ∈ N.

Again since {xk} is std-Cauchy, we have that for δ ∈ (0, ε), there exists kδ ∈ N
such that µ(xk − xm, t) >

t
t+δ

> t
t+ε

for all k,m ≥ kδ and all t > 0. This again

implies that µ(xk − ξ, t) = limm→∞ µ(xk − xm, t) ≥ t
t+δ

> t
t+ε

for all k ≥ kδ and all
t > 0.

In a similar fashion, it can be proved that ν(xk − ξ, t) < ε
t+ε

for all k ≥ kδ and
all t > 0. Hence {xk} is std-convergent.

Next we show that the notion of strong std-convergence is free from any ambiguity
by showing that strong std-convergent sequences have unique limit. To show this, it
is sufficient to prove that a std-convergent sequence has a unique limit, which is the
aim of our next result.

Theorem 3.8. Let (X,µ, ν, ∗, ◦) be an IFNLS. If a sequence {xk} in X is std-

convergent with respect to the IFN (µ, ν), then (µ, ν)
std
− limxk is unique.

Proof. Let (µ, ν)
std
− limxk = ξ1 and (µ, ν)

std
− limxk = ξ2. Given ε > 0 and t > 0

choose γ ∈ (0, 1) such that ( t
t+γ

) ∗ ( t
t+γ

) > t
t+ε

.

Since (µ, ν)
std
− limxk = ξ1, there exists k1 ∈ N such that µ(xk − ξ1, t2) > t

t+γ
for

all k ≥ k1 and all t > 0. Also since (µ, ν)
std
− limxk = ξ2, there exists k2 ∈ N such

that µ(xk − ξ2, t2) > t
t+γ

for all k ≥ k2 and all t > 0.

Let k0 = max{k1, k2}. Then both of the above two conditions hold together for
all k ≥ k0 and all t > 0.

Now we have, for all k ≥ k0 and all t > 0,

µ(ξ1 − ξ2, t) ≥ µ(xk − ξ1,
t

2
) ∗ µ(xk − ξ2,

t

2
)

> (
t

t+ γ
) ∗ (

t

t+ γ
)

>
t

t+ ε
.

Since ε was chosen arbitrarily, we must have µ(ξ1− ξ2, t) = 1 for all t > 0. Hence we
must have ξ1 − ξ2 = 0, i.e., ξ1 = ξ2.

4 Conclusion

In this paper, the concept of std-convergence and std-Cauchy sequences have been
introduced. Another concept, called strong std-convergence has also been introduced
which is directly compatible with std-Cauchy sequences. These new concepts are
stronger than their usual counterparts and as such, they constitute a well motivated
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area of research. The study of std-statistical convergence, std-ideal convergence, std-
lacunary statistical convergence may be suggested as some important future work in
this new setting.
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1 Introduction

After the initiation of the two classes of abstract algebras: BCK-algebras and BCI-
algebras by Y. Imai and K. Iseki [2] , B. L. Meng[4][5], introduced the notion of a CI-
algebra . K. H. Kim [3] also dealt about some concepts on CI-algebras. Zadeh. L.
A. [9], introduced Fuzzy Sets for classifying the uncertainty. Then many researches
used the notion of fuzzy in various algebraic structures. Samy. M. Mostafa [8] dealt
fuzzification of ideals in CI-algebra and Intuitionistic (T, S)-fuzzy CI-algebras were
discussed by A. Borumand Saeid et. al [1]. Also in [6] and [7] the authors introduced
N -ideals of a BF -algebras and N -filters of CI-algebras. Motivated by these, this
paper, intends to discuss Ω−N -structured filter of a CI-algebra and establish some
simple, elegant and interesting results.

2 Preliminaries

This section deals with the basic definition of N -function,Ω − N -function, CI-
algebra, subalgebra and Filter of a CI-algebra.

**Edited by Naim Çağman (Editor-in-Chief).
*Corresponding Author.
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Definition.2.1. [6][7] N -structure and N -function
Consider a non-empty Set S. Denote the collection of functions from S to [−1, 0] by
F(S, [−1, 0]). It is said that a member of F(S, [−1, 0]) is a negative valued function
from S to [−1, 0], briefly N -function and by an N -structure on S, it means that
an ordered pair (S, η) of S and N -function η on S.

Definition.2.2. Ω−N -function:
A Ω−N -function η in a non-empty set S is a function η : S ×Ω → [−1, 0], where
Ω is any non-empty set. The set of all Ω −N -functions from S × Ω to [−1, 0] is
denoted by F(S × Ω, [−1, 0]) and by the term Ω − N -Structure(Ω-NS) on S, it
means that an ordered pair (S × Ω, η) of S × Ω and Ω−N -function η on S × Ω.

Definition.2.2. Consider the Ω−N -structure (S × Ω, η) on a non-empty S. The
negative Ω-Level subset ηt of η is defined as follows:
For some t ∈ [−1, 0], ηt = {x ∈ S : η(x, q) ≥ t ∀q ∈ Ω} .

Definition 2.3. [3][4] A CI-algebra is a non-empty set X with a consonant 1 and
a single binary operation ∗ satisfying the following axioms:
(i)x ∗ x = 1
(ii)1 ∗ x = x
(iii)x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y ∈ X

Example 2.4.[3][4][5] Let X = {1, a, b, c} and Y = {1, a, b, c, d} be a set with the
following tables

* 1 a b c
1 1 a b c
a 1 1 a c
b 1 1 1 c
c 1 a b 1

* 1 2 3 4 5
1 1 2 3 4 5
2 1 1 1 4 4
3 1 1 1 4 4
4 4 5 1 1 2
5 4 4 4 1 1

Then {X, ∗, 1} and {Y, ∗, 1} are CI-algebra.

Example 2.5.[5] Let X be the set of all positive real numbers. Then X becomes a
CI-algebra by defining x ∗ y = y

x
for all x, y ∈ X.

Definition 2.6.[3][4] A partial ordering ≤ on a CI-algebra (X, ∗, 1) can be defined
as x ≤ y if, and only if, x ∗ y = 1.

Definition 2.7. [3][4] A non-empty subset S of a CI-algebra X is said to be a
subalgebra if x ∗ y ∈ S for all x, y ∈ S.
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Definition 2.8. [3] A non-empty subset F of a CI-algebra X is said to be a Filter
of X if (i) 1 ∈ F and (ii) x ∗ y ∈ F and x ∈ F then y ∈ F for all x, y ∈ X.

Definition 2.9. An Filter F of X is called closed if x ∗ 1 ∈ F for all x ∈ F.

3 Ω − N -Subalgebra and Ω − N -Filter on a CI-

algebra

This section introduces, the notion of Ω −N -subalgebra and Ω −N -Filter on a
CI-algebra and discuss some of its results. In the rest of the paper, X represents
a CI-algebra, Ω is any non-empty set and η is a Ω −N function from X × Ω to
[−1, 0] unless otherwise specified.

Definition 3.1. An Ω −N -structure (X × Ω, η), on a CI-algebra X is called an
Ω−N -subalgebra on X if η((x∗y), q) ≤ η(x, q)∨η(y, q) for all x, y ∈ X and q ∈ Ω.

Example 3.2. Consider the CI-algebra X = ({1, a, b, c, d}, ∗, 1) given below.

* 1 a b c d
1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d d d d d 1

The Ω−N -structure (X × Ω, η) defined by, ∀ q ∈ Ω

η(x, q) =


−0.8 ; x = 1
−0.7 ; x = a
−0.5 ; x = b
−0.3 ; x = c
−0.3 ; x = d

is an Ω−N -subalgebra on X.

Proposition 3.3. If (X, η) is an Ω−N -subalgebra on X then
η(1, q) ≤ η(x ∗ 1, q) ≤ η(x, q) for all x ∈ X and q ∈ Ω.
Proof. Let x ∈ X.
Then η(1, q) = η((x ∗ 1) ∗ (x ∗ 1), q) ≤ η(x ∗ 1, q) ∨ η(x ∗ 1, q) = η(x ∗ 1, q) and
η(x ∗ 1, q) ≤ η(x, q) ∨ η(1, q) = η(x, q) ∨ η(x ∗ x, q) = η(x, q).

Proposition 3.4. If (X, η) is an N -subalgebra of X then negative Level subset ηt
of X is either empty or subalgebra of X, for all t ∈ [−1, 0].
Proof. Let t ∈ [−1, 0] and ηt be nonempty.
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Take x, y ∈ ηt ⇒ η(x, q) ≤ t and η(y, q) ≤ t.
Then η(x ∗ y, q) ≤ η(x, q) ∨ η(y, q) ≤ t ∨ t = t⇒ x ∗ y ∈ ηt.

Definition.3.5. An Ω-NS on a CI-algebra X is said to be Ω−N -structured filter
(Ω−N -filter) on X if (i) η(1, q) ≤ η(x, q) and
(ii) η(y, q) ≤ η(x ∗ y, q) ∨ η(x, q) for all x, y ∈ X and q ∈ Ω

Definition.3.6. An Ω-NS on a CI-algebra X is said to be Ω−N -structured closed
filter (Ω−N c-filter) on X if (i) η(y, q) ≤ η(x ∗ y, q) ∨ η(x, q) and (ii) η(x ∗ 1, q) ≤
η(1, q) for all x, y ∈ X and q ∈ Ω.

Example.3.7. The Ω − N -structure (X, η) on the CI-algebra in Example.2.5
defined by, ∀ q ∈ Ω

η(x, q) =


−0.8 ; x = 1
−0.7 ; x = 2n ;n ∈ N
−0.5 ; otherwise

is an Ω−N -filter but not Ω−N c-filter on X.

Example.3.8. The Ω − N -structure (X, η) on the CI-algebra in Example.2.5
defined by ∀ q ∈ Ω

η(x, q) =


−0.8 ; x = 1
−0.7 ; x = 2n ;n ∈ Z+

−0.5 ; otherwise

is an Ω−N c-filter on X.

Proposition.3.9. If (X, η) is an Ω −N -filter on X with x ≤ y for all x, y ∈ X,
and q ∈ Ω then η(x, q) ≥ η(y, q) that is η is order-reversing.

Proof. Let x, y ∈ X and q ∈ Ω such that x ≤ y.
Then by the partial ordering ≤ defined in X, we have x ∗ y = 1. Thus η(y, q) ≤
η(x ∗ y, q) ∨ η(x, q) = η(1, q) ∨ η(x, q) ≤ η(x, q). This completes the proof.

Proposition.3.10. If (X, η) is an Ω−N -filter on X with x ≤ y∗z for all x, y, z ∈ X,
and q ∈ Ω then η(z, q) ≤ η(x, q) ∨ η(y, q).

Proof. Let x, y, z ∈ X such that x ≤ y ∗ z.
Then by the partial ordering ≤ defined in X, we have x ∗ (y ∗ z) = 1.
Then η(z, q) ≤ η(y ∗ z, q) ∨ η(y, q)
≤ (η((x ∗ (y ∗ z), q)) ∨ η(x, q)) ∨ η(y, q)
= (η(1, q) ∨ η(x, q)) ∨ η(y, q)
= η(x, q) ∨ η(y, q).
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Remark.3.11. The terms Ω−N -subalgebra and Ω−N -filter onX are independent
to each other. The following examples give the illustration.

Example.3.12. Consider the Ω−N -filter in Example 3.7.
Here

η
((

24 ∗ 22
)
, q
)

= η

(
1

4
, q

)
= −0.5 > −0.7 = η

(
24, q

)
∨ η
(
22, q

)
, which is not an Ω−N -subalgebra.

Example.3.13. Consider the Ω−N -subalgebra in Example 3.2.
Here

η(c, q) = −0.3 > −0.5 = −0.7 ∨ −0.5 = η(b ∗ c, q) ∨ η(b, q),

which is not an Ω−N -filter.

The following gives a sufficient condition for an Ω−N -subalgebra to be an Ω−N -
filter.

Theorem.3.14. In a Ω−N -subalgebra (X, η), If η(x ∗ y, q) ≤ η(y ∗ x, q)
∀ x, y ∈ X and q ∈ Ω then (X, η) is an Ω−N -filter of X.

Proof. Let (X, η) be a Ω−N -subalgebra of X with
η(x ∗ y, q) ≤ η(y ∗ x, q) ∀ x, y ∈ X and q ∈ Ω.
Then η(y, q) = η(1 ∗ y, q) ≤ η(y ∗ 1, q)

= η((y ∗ (x ∗ x), q))
≤ η((x ∗ (y ∗ x), q))
≤ η(x, q) ∨ η(y ∗ x, q).

Hence (X, η) is an Ω−N -filter of X.

Theorem.3.15. If the Ω−N -structure (X, η) of X is a Ω−N c-filter of X, then
the set K = {x ∈ X; η(x, q) = η(1, q)∀ q ∈ Ω} is a filter of X.

Proof. Clearly, K is nonempty (since 1 ∈ K). Let x, x ∗ y ∈ K.
Then η(x ∗ y, q) = η(x, q) = η(1, q)
⇒ η(y, q) ≤ η(x ∗ y, q) ∨ η(x, q)

= η(1, q) ∨ η(1, q)
= η(1, q).

But η(1, q) ≤ η(y, q)⇒ η(y, q) = η(1, q).
Thus y ∈ K. Hence K is a filter of X.

The following theorem shows the arbitrary union of family of Ω−N c-filters of
X is also an Ω−N c-filter of X.

Theorem.3.16. Let {ηi : i ∈ I} be the family of Ω−N c-filter of X. Then
⋃

i ηi is
also Ω−N c-filter of X.
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Proof. Let x ∗ y ∈ X.
Since {ηi : i ∈ I} is the family of Ω−N c-filter of X, for any i ∈ I we have,

(i) ηi(y, q) ≤ ηi(x ∗ y, q) ∨ ηi(x, q) and (ii) ηi(x ∗ 1, q) ≤ ηi(x, q).

Now
⋃

i ηi(y, q) = sup{ηi : i ∈ I}
≤ sup{ηi(x ∗ y, q) ∨ ηi(x, q) : i ∈ I}
= sup{ηi(x ∗ y, q) : i ∈ I} ∨ sup{ηi(x, q) : i ∈ I}
=
⋃

i ηi(x ∗ y, q) ∨
⋃

i ηi(x, q)
and

⋃
i ηi(x ∗ 1, q) = sup{ηi(x ∗ 1, q) : i ∈ I} ≤ sup{ηi(x, q) : i ∈ I} =

⋃
i ηi(x, q)

Hence
⋃

i ηi is an Ω−N c-filter of X.

Conclusion

In this paper, the notion of Ω −N -subalgebra and Ω −N -filter on a CI-algebra
are introduced and some of the results have been discussed. In future it is planned
to extend these ideas to homomorphism on Ω − N -filters,Cartesian products on
Ω−N -filters and translation on Ω−N -filters.

References

[1] Borumand Saeid.A., Rezaei.A., Intuitionistic (T, S)-fuzzy CI-algebras, Com-
puters and Mathematics with Applications, 63 (2012), 158-166.

[2] Imai.Y. and Iseki.K., On Axiom Systems of Propositional Calculi, XIV Proc.
Japan Academy, 42 (1966), 19-22.

[3] Kim.K.H, A Note on CI-Algebras, International Mathematical Forum, 6(1)
(2011), 1-5.

[4] Meng.B. L., CI-algebras, Sci. Math. Japo. Online, (2009), 695-701.

[5] Meng.B. L., Closed filters in CI-algebras,Sci. Math. Japo., 71(3) (2010), 265-
270.

[6] Muralikrishna.P and Chandramouleeswaran.M, Study on N-ideals of BF -
Algebras, International Journal of Pure and Applied Mathematics, 83(4)
(2013), 607-612.

[7] Muralikrishna.P , Srinivasan.S and Chandramouleeswaran.M, On N-Filters
of CI-Algebra, Afrika Matematika, 26(3-4) (2015), 545-549.

[8] Samy.M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy, Fuzzy
Ideals in CI-algebras, Journal of American Science, 7(8) (2011), 485-488.

[9] Zadeh.L. A., Fuzzy Sets, Inform. Control, Vol 8 (1965) 338-353.



http://www.newtheory.org ISSN: 2149-1402

Received : 06.06.2016 Year : 2017, Number : 15, Pages: 32-38

Published : 08.09.2017 Original Article*

NORMS OVER FUZZY LIE ALGEBRA

Rasul Rasuli <rasulirasul@yahoo.com>

1Department of Mathematics, Payame Noor University (PNU), Tehran, Iran.

Abstaract − In this paper we introduce the concept of fuzzy Lie ideal and anti fuzzy Lie ideal by
using a t-norm T and a t-conorm C, respectively. Next we introduce the concept of quotient fuzzy
Lie ideal with respect to t-norm T. We investigate some their properties and obtain new results.

Keywords − Lie algebra, ideals, fuzzy set theory, t-norm.

1 Introduction

Lie algebras were first discovered by Sophus Lie (1842-1899) when he attempted to
classify certain ”smooth” subgroups of general linear groups. Lie algebra is applied
in different domains of physics and mathematics, such as spectroscopy of molecules,
atoms, nuclei, hadrons, hyperbolic and stochastic differential equations. The notion
of fuzzy sets was first introduced by Zadeh[4]. Fuzzy and anti fuzzy Lie ideals in Lie
algebras have been studied in[1, 2, 3]. In this paper we have tried apply the concepts
of norms to fuzzy Lie algebras and fuzzy Lie ideals.

2 Preliminary

In this section, we first review some elementary aspects that are necessary for this
paper.
A Lie algebra is a vector space L over a field F (equal to R or C) on which L×L→ L
denoted by (x, y)→ [x, y] is defined satisfying the following axioms:
(1) [x, y] is bilinear,
(2) [x, x] = 0 for all x ∈ L,
(3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity),
for all x, y, z ∈ L.

*Edited by Naim Çağman (Editor-in-Chief).
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In this paper by L will be denoted a Lie algebra. We note that the multiplication in
a Lie algebra is not associative, i.e., it is not true in general that [[x, y], z] = [x, [y, z]].
But it is anti commutative, i.e., [x, y] = −[y, x]. A subspace H of L closed under [, ]
will be called a Lie subalgebra. A subspace I of L with the property [I, L] ⊆ I will
be called a Lie ideal of L. Obviously, any Lie ideal is a subalgebra.
A t-norm T is a function T : [0, 1]×[0, 1]→ [0, 1] having the following four properties:
(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),
for all x, y, z ∈ [0, 1]. Replacing 1 by 0 in condition (T1), we obtain the concept of
t-conorm C. If T be a t-norm, then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1] and we can replace t-conorm C by t-norm T. Recall that
T (C) is idempotent if for all x ∈ [0, 1], T (x, x) = x(C(x, x) = x).
Let L1 and L2 be Lie algebras over a field F. A linear transformation f : L1 → L2 is
called a Lie homomorphism if f([x, y]) = [f(x), f(y)] for all x, y ∈ L1.
Let T and C be t-norm and t-conorm, respectively. For all x, y ∈ [0, 1], we say T
and C are dual when

T (x, y) = 1− C(1− x, 1− y),

C(x, y) = 1− T (1− x, 1− y).

Let µ : L → [0, 1]. The complement of µ, denoted by µc is the fuzzy set in L given
by µc(x) = 1− µ(x) for all x ∈ L.

3 Fuzzy Lie Subalgebra with Respect to a t-norm

In this section, we define the notion of fuzzy Lie subalgebra of L with respect to a
t-norm T and investigate some related properties.

Definition 3.1. Let µ be a fuzzy set on L, i.e., a map µ : L → [0, 1]. A fuzzy set
µ : L→ [0, 1] is called a fuzzy Lie subalgebra of L with respect to a t-norm T if
(1) µ(x+ y) ≥ T (µ(x), µ(y)),
(2) µ(αx) ≥ µ(x),
(3) µ([x, y]) ≥ T (µ(x), µ(y))
hold for all x, y ∈ L and α ∈ F.
A fuzzy subset µ : L→ [0, 1] satisfying (1), (2) and
(4) µ([x, y]) ≥ µ(x)
is called a fuzzy Lie ideal of L with respect to a t-norm T.

Example 3.2. Let L = R3 and [x, y] = x × y, where × is cross product, for all
x, y ∈ L. By routine calculations, it is clear that L is a Lie algebra over a field R.
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Define µ : L→ [0, 1] by

µ(x1, x2, x3) =


1 if x1 = x2 = x3 = 0

0.50 if x1 = x2 = 0 and x3 6= 0
0 otherwise

if T (a, b) = min{a, b} for all a, b ∈ [0, 1], then µ is a fuzzy Lie subalgebra of L with
respect to a t-norm T.

Lemma 3.3. Let µ be a fuzzy Lie subalgebra of L with respect to a t-norm T.
(1) If T be idempotent, then for all x ∈ L we have that µ(0) ≥ µ(x).
(2) µ([x, y]) = µ([y, x]).

Proof. (1) Let µ be a fuzzy Lie subalgebra of L with respect to a t-norm T and
x ∈ L. Then µ(0) = µ(x+ (−x)) ≥ T (µ(x), µ(−x)) ≥ T (µ(x), µ(x)) = µ(x).
(2) µ([x, y]) = µ(−[y, x]) ≥ µ([y, x]) = µ(−[x, y]) ≥ µ([x, y]).

Proposition 3.4. Let µ be a fuzzy Lie ideal in a Lie algebra L with respect to a
t-norm T such that T be idempotent. Then for all t ∈ [0, 1] the set L(µ, t) = {x ∈
L | µ(x) ≥ t} is a Lie ideal of L.

Proof. Let x, y ∈ L(µ, t) and α ∈ F. Then µ(x+ y) ≥ T (µ(x), µ(y) ≥ T (t, t) = t and
µ(αx) ≥ µ(x) ≥ t. Therefore x+ y, αx ∈ L(µ, t). Also if x ∈ L(µ, t) and y ∈ L, then
from µ([x, y]) ≥ µ(x) ≥ t we have that [x, y] ∈ L(µ, t). This completes the proof.

Definition 3.5. Let f : L1 → L2 be an epimorphism of Lie algebras. Let µ : L1 →
[0, 1] and ν : L2 → [0, 1] be two fuzzy sets of L1 and L2 respectively. For all x ∈ L1

and y ∈ L2 define

f(µ)(y) =

{
sup{µ(x) | x ∈ L1, f(x) = y} if f−1(y) 6= ∅

0 if f−1(y) = ∅
and f−1(ν)(x) = ν(f(x)).

Proposition 3.6. Let f : L1 → L2 be an epimorphism of Lie algebras. If µ is a
fuzzy Lie ideal of L1 with respect to a t-norm T, then f(µ) is a fuzzy Lie ideal of L2

with respect to a t-norm T.

Proof. Let x1, x2 ∈ L1 and y1, y2 ∈ L2. If y1 = f(x1) and y2 = f(x2), then
(1)

f(µ)(y1 + y2) = sup{µ(x1 + x2) | y1 = f(x1), y2 = f(x2)}
≥ sup{T (µ(x1), µ(x2)) | y1 = f(x1), y2 = f(x2)}

= T (sup{µ(x1) | y1 = f(x1)}, sup{µ(x2) | y2 = f(x2)})
= T (f(µ)(y1), f(µ)(y2)).

(2) f(µ)(αy1) = sup{µ(αx1) | αy1 = f(αx1) = αf(x1)} ≥ sup{µ(x1) | x1 = f(y1)} =
f(µ)(y1).
(3) f(µ)([y1, y2]) = sup{µ([x1, x2]) | y1 = f(x1), y2 = f(x2)} ≥ sup{µ(x1) | y1 =
f(x1)} = f(µ)(y1).
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Proposition 3.7. Let f : L1 → L2 be an epimorphism of Lie algebras. If ν is a
fuzzy Lie ideal of L2 with respect to a t-norm T, then f−1(ν) is a fuzzy Lie ideal of
L1 with respect to a t-norm T.

Proof. Let x, y ∈ L1 and α ∈ F. Then

f−1(ν)(x+ y) = ν(f(x+ y)) = ν(f(x) + f(y))

≥ T (ν(f(x)), ν(f(y))) = T (f−1(ν)(x), f−1(ν)(y)),

f−1(ν)(αx) = ν(f(αx)) = ν(αf(x)) ≥ ν(f(x)) = f−1(ν)(x), and
f−1(ν)([x, y]) = ν(f([x, y]) = ν([f(x), f(y)]) ≥ ν(f(x)) = f−1(ν)(x).
Thus f−1(ν) is a fuzzy Lie ideal of L1 with respect to a t-norm T.

Definition 3.8. let µ and ν be fuzzy Lie ideals of a Lie algebra L with respect to
a t-norm T. Define the intersection of µ and ν the function µ ∩ ν : L → [0, 1] such
that (µ ∩ ν)(x) = T (µ(x), ν(x)) for all x ∈ L.

Proposition 3.9. let µ and ν be two fuzzy Lie ideals of a Lie algebra L with respect
to a t-norm T such that T be idempotent. Then µ ∩ ν be a fuzzy Lie ideal in a Lie
algebra L with respect to a t-norm T.

Proof. Let x, y ∈ L and α ∈ F. Then
(1)

(µ ∩ ν)(x+ y) = T (µ(x+ y), ν(x+ y)) ≥ T (T (µ(x), µ(y)), T (ν(x), ν(y)))

= T (T (µ(x), ν(x)), T (µ(y), ν(y))) = T ((µ ∩ ν)(x), (µ ∩ ν)(y)).

(2) (µ ∩ ν)(αx) = T (µ(αx), ν(αx)) ≥ T (µ(x), ν(x)) = (µ ∩ ν)(x).
(3) (µ ∩ ν)([x, y]) = T (µ([x, y]), ν([x, y])) ≥ T (µ(x), ν(x)) = (µ ∩ ν)(x).
Hence µ ∩ ν be a fuzzy Lie ideal in a Lie algebra L with respect to a t-norm T.

Next we will introduce the concept of quotient fuzzy Lie ideal.

Definition 3.10. Let L be a Lie algebra, µ : L→ [0, 1] and I be an ideal of L.
Define µL/I : L/I → [0, 1] by

µL/I(x+ I) =

{
T (µ(x), µ(i)) if x 6= i

1 if x = i

for all x ∈ L and i ∈ I.

Proposition 3.11. Let µ be a fuzzy Lie ideal of L with respect to a t-norm T. If T
be idempotent, then µL/I will be a fuzzy Lie ideal of L/I with respect to a t-norm
T.
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Proof. Let x+ I, y + I ∈ L/I and i ∈ I such that x 6= i 6= y.
(1)

µL/I((x+ I) + (y + I)) = µL/I((x+ y) + I) = T (µ(x+ y), µ(i))

≥ T (T (µ(x), µ(y)), µ(i)) = T (T (µ(x), µ(y)), T (µ(i), µ(i)))

= T (T (µ(x), µ(i)), T (µ(y), µ(i))) = T (µL/I(x+ I), µL/I(y + I)).

(2) µL/I(α(x+ I)) = µL/I(αx+ I) = T (µ(αx), µ(i)) ≥ T (µ(x), µ(i)) = µL/I(x+ I).
(3) µL/I([x, y] + I) = T (µ([x, y]), µ(i)) ≥ T (µ(x), µ(i)) = µL/I(x+ I).

4 Anti Fuzzy Lie Subalgebra with Respect to a

t-conorm

Definition 4.1. A fuzzy set µ : L → [0, 1] is called an anti fuzzy Lie subalgebra of
L with respect to a t-conorm C if
(1) µ(x+ y) ≤ C(µ(x), µ(y)),
(2) µ(αx) ≤ µ(x),
(3) µ([x, y]) ≤ T (µ(x), µ(y))
hold for all x, y ∈ L and α ∈ F.
A fuzzy subset µ : L→ [0, 1] satisfying (1), (2) and
(4) µ([x, y]) ≤ µ(x)
is called an anti fuzzy Lie ideal of L with respect to a t-conorm C.

Proposition 4.2. Let µ be an anti fuzzy Lie ideal in a Lie algebra L with respect
to a t-conorm C such that C be idempotent. Then for all t ∈ [0, 1] the set L(µ, t) =
{x ∈ L | µ(x) ≤ t} is a Lie ideal of L.

Proof. Let x, y ∈ L(µ, t) and α ∈ F. Then µ(x + y) ≤ C(µ(x), µ(y) ≤ C(t, t) = t
and µ(αx) ≤ µ(x) = t. Therefore x + y, αx ∈ L(µ, t). Also if x ∈ L(µ, t) and y ∈ L,
then from µ([x, y]) ≤ µ(x) ≤ t we have that [x, y] ∈ L(µ, t). Thus L(µ, t) will be a
Lie ideal of L.

Definition 4.3. let µ and ν be anti fuzzy Lie ideals of a Lie algebra L with respect
to a t-conorm C. Define the union of µ and ν the function µ ∪ ν : L → [0, 1] such
that (µ ∪ ν)(x) = C(µ(x), ν(x)) for all x ∈ L.

Proposition 4.4. let µ and ν be two anti fuzzy Lie ideals of a Lie algebra L with
respect to a t-conorm C such that C be idempotent. Then µ ∪ ν be an anti fuzzy
Lie ideal in a Lie algebra L with respect to a t-conorm C.

Proof. Let x, y ∈ L and α ∈ F. Then
(1)

(µ ∪ ν)(x+ y) = C(µ(x+ y), ν(x+ y)) ≤ C(C(µ(x), µ(y)), C(ν(x), ν(y)))

= C(C(µ(x), ν(x)), C(µ(y), ν(y))) = C((µ ∪ ν)(x), (µ ∪ ν)(y)).
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(2) (µ ∪ ν)(αx) = C(µ(αx), ν(αx)) ≤ C(µ(x), ν(x)) = (µ ∪ ν)(x).
(3) (µ ∪ ν)([x, y]) = C(µ([x, y]), ν([x, y])) ≤ C(µ(x), ν(x)) = (µ ∪ ν)(x).
Hence µ∪ ν be an anti fuzzy Lie ideal in a Lie algebra L with respect to a t-conorm
C.

Proposition 4.5. Let f : L1 → L2 be an epimorphism of Lie algebras. If ν be an
anti fuzzy Lie ideal of L2 with respect to a t-conorm C, then f−1(ν) will be an anti
fuzzy Lie ideal of L1 with respect to a t-conorm C.

Proof. Let x, y ∈ L1 and α ∈ F. Then

f−1(ν)(x+ y) = ν(f(x+ y)) = ν(f(x) + f(y))

≤ C(ν(f(x)), ν(f(y))) = C(f−1(ν)(x), f−1(ν)(y)),

f−1(ν)(αx) = ν(f(αx)) = ν(αf(x)) ≤ ν(f(x)) = f−1(ν)(x), and
f−1(ν)([x, y]) = ν(f([x, y]) = ν([f(x), f(y)]) ≤ ν(f(x)) = f−1(ν)(x).
Therefore f−1(ν) is an anti fuzzy Lie ideal of L1 with respect to a t-conorm C.

Proposition 4.6. Let L be a Lie algebra and µ : L→ [0, 1]. Then µ be a fuzzy Lie
ideal of L with respect to a t-norm T if and only if µc be an anti fuzzy Lie ideal of
L with respect to a t-conorm C.

Proof. Let µ be a fuzzy Lie ideal of L with respect to a t-norm T and x, y ∈ L and
α ∈ F.
(1) From µ(x+ y) ≥ T (µ(x), µ(y)) we have

1− µc(x+ y) ≥ T (1− µc(x), 1− µc(y)),

which implies that

µc(x+ y) ≤ 1− T (1− µc(x), 1− µc(y))

= C(µc(x), µc(y)).

(2) µc(αx) = 1− µ(αx) ≤ 1− µ(x) = µc(x).
(3) µc([x, y]) = 1− µ([x, y]) ≤ 1− µ(x) = µc(x).
Hence µc will be an anti fuzzy Lie ideal of L with respect to a t-conorm C.
Converse also can be proved similarly.
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Abstaract − The branch of integral transform attract many researcher in this field and hence
various types of integral transforms are introduced. Natural transform is one of the newly defined
transform which has wide range of applications in science and engineering field. In this paper we
derived the Natural transform of some special functions.

Keywords − Bessel’s function, Hermite Polynomial, Hypergeometric function, Legendre Polyno-
mials, Leguerre Polynomial,Natural Transform.

1 Introduction

The Natural transform was established by Khan and Khan[1] as N - transform who
studied its properties and application as unsteady fluid flow problem over a plane
wall.Later on Belgacem [2, 3] defined the inverse Natural transform and studied some
properties and applications of Natural transforms.In the literature survey we can see
the further applications of Natural transform.[4, 5, 6, 7] The specialty of Natural
transform is that it can converges to Laplace transform and Sumudo transform [8]
just by changing the parameter.Natural transform is the theoretical dual of Laplace
transform.We can derive Laplace, Sumudu, Fourier and Mellin transform from Nat-
ural transform.[9] Natural transform plays as a source for other transform and hence
can be used to solve many complicated problems in engineering, fluid mechanics and
other scientific discipline like Physics, Chemistry and Dynamics etc.

1.1 Preliminary Definition of Natural Transform

The Natural transform of the function f(t) ∈ <2 is given by the following integral
equation [3]

*Corresponding Author.
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N[f(t)] = R(s, u) =

∫ ∞
0

e−stf(ut)dt (1)

where Re(s) > 0 , u ∈ (τ1, τ2) provided the function f(t)∈<2 is defined in the set

A=[f(t)/∃ M,τ1, τ2 > 0 ,|f(t)| < M e
|t|
τj , if t ∈(−1)j × [0,∞) ]

The inverse Natural transform related with Bromwich contour integral[2, 3] is
defined by

N−1[R(s, u)] = f(t) = lim
T→∞

1

2Πi

∫ γ+iT

γ−iT
e
st
uR(s, u)ds (2)

1.2 Some Standard Result of Natural Transform

In this section we assume that all the considered functions are such that their Natural
tranform exists.[1],[3]

1. N[1] = 1
s

2. N[t] = u
s2

3. N[tn]= un

sn+1n!

4. N[eat] = 1
s−au

5. N[ sin(at)
a

] = u
s2+s2u2

6. N[cos(at)] = s
s2+s2u2

7. N[ t
n−1eat

(n−1)! ] = un−1

(s−au)2

8. N[f (n)(t)] = sn

un
.R(s, u)−

∑∞
n=0

sn−(k+1)

un−k
.u(k)(0)

where f (n)(t) = dnf
dtn

9. The Convolution Theorem

If F(s,u) and G(s,u) are the Natural transforms of respective functions f(t)
and g(t) both defined in set A then ,
N[(f ∗ g)]=u.F (s, u)G(s, u)

1.3 Pochhamber Symbol

The pochhamber symbol denoted by (α)n is defined by[10] the equation

(α)n = α(α + 1)(α + 2)....(α + n+ 1)

=
n∏

m=1

(α +m+ 1) for n ≥ 1
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In particular (α)0 = 1 for α 6= 0 , (1)n = n!

1.4 Some Standard Results

1. if n is positive integer, then

Γn

Γn+ 1
= (α)n

where α is neither zero nor a negative integer.

2. If α is not an integer,
Γ1− α− n

Γ1− α
=

(−1)n

(α)n

3.

(1− Z)−α =
∞∑
n=0

(α)nZ
n

n!

4.

(α)n−k =
(α)n(−1)k

(1− α− n)k
0 ≤ k ≤ n

5. If α = 1, then

(−1)n−k = (n− k)! =
n!(−1)k

(−n)k
0 ≤ k ≤ n

6.

(α)2n = 22n(
α

2
)n(

α + 1

2
)n

7. The function f(a, b, c;Z) is written as F

[
a, b ;
c ;

| Z
]

and is defined as

f(a, b; c; z) =
∞∑
n=0

(a)n(b)nz
n

(c)nn!

8. The Hypergeometric function pFq is defined by

pFq

[
a1, a2, ......., ap :
a1, a2, ......., ap :

| Z
]

=
∞∑
n=0

∏p
k=1(ak)nz

n∏q
m=1(bm)nn!



Journal of New Theory 15 (2017) 39-47 42

2 Well known special functions

1. The Bessel’s Function is defined by

Jn(t) =
∞∑
n=0

(−1)kt2k+1

22k+nk!Γ1 + n− k
(3)

2 The Legendre polynomial is defined by

Pn(t) =

bn
2
c∑

k=0

(−1)k(1
2
)n−k(2t)

n−2k

(n− 2k)!k!
(4)

3 The Hermite polynomial is defined by

Hn(t) =

bn
2
c∑

k=0

(−1)kn!(2t)n−2k

(n− 2k)!k!
(5)

4 The Leguerre polynomial is defined by

Ln(α)t =
∞∑
k=0

(−1)k(1 + α)nt
k

(n− k)!k!(1 + α)k
(6)

3 Main Result

3.1 The Natural transform of Hypergeometric function

N{pFq
[
a1, a2, ......., ap ;
a1, a2, ......., aq ;

| t
]
} =

∫ ∞
0

e−st
∞∑
n=0

∏p
k=1(ak)n(ut)n∏q
m=1(bm)nn!

dt

=
∞∑
n=0

∏p
k=1(ak)n∏q

m=1(bm)nn!

∫ ∞
0

e−st(ut)ndt

=
∞∑
n=0

∏p
k=1(ak)n∏q

m=1(bm)nn!
N{tn}

=
∞∑
n=0

∏p
k=1(ak)n∏q

m=1(bm)nn!

un

sn+1
n!

N{pFq
[
a1, a2, ......., ap ;
a1, a2, ......., aq ;

| t
]
} =

n!

s
pFq

[
a1, a2, ......., ap ;
a1, a2, ......., aq ;

| u
s

]
In particular,
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N{2F1

[
a, b ;
1 ;

| t
]
} = N{

∞∑
n=0

(a)n(b)nt
n

(1)nn!
}

=

∫ ∞
0

e−st
∞∑
n=0

(a)n(b)n(ut)n

(1)nn!
dt

=
∞∑
n=0

(a)n(b)n
(1)nn!

∫ ∞
0

e−st(ut)ndt

=
∞∑
n=0

(a)n(b)n
(1)nn!

N{tn}

=
∞∑
n=0

(a)n(b)n
(1)nn!

un

sn+1
n!

= 2F0

[
a, b ;
− ;

| u
s

]
1

s

3.2 The Natural transform of Bessel’s function

N{Jn(t)} = N{
∞∑
n=0

(−1)kt2k+1

22k+nk!Γ1 + n− k
}

=

∫ ∞
0

e−st
∞∑
n=0

(−1)k(ut)2k+n

22k+nk!Γ1 + n− k
dt

=
∞∑
n=0

(−1)k

22k+nk!Γ1 + n− k

∫ ∞
0

e−st(ut)2k+ndt

=
∞∑
n=0

(−1)k

22k+nk!Γ1 + n− k
N{t2k+n}

=
∞∑
n=0

(−1)k

22k+nk!Γ1 + n− k
u2k+n

s2k+n+1
(2k + n)!

= {
∞∑
n=0

(−1)kΓn+ 1

22kk!Γ1 + n− kΓn+ 1

u2k

s2k
(2k + n)!} un

2nsn+1

= {
∞∑
n=0

(−1)k(1 + n)2k
22kk!(1 + n)k

u2k

s2k
} un

2nsn+1

= {
∞∑
n=0

(−1)k(1+n
2

)k(1 + n
2
)k

k!(1 + n)k

u2k

s2k
} un

2nsn+1

∴ N{Jn(t)} = 2F1

[
n+1
2
, 1 + n

2
;

1 + n ;
| −u

2

s2

]
un

2nsn+1
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3.3 The Natural transform of Legendre Polynomial

N{Pn(t)} = N{
bn
2
c∑

k=0

(−1)k(1
2
)n−k(2t)

n−2k

(n− 2k)!k!
}

=

∫ ∞
0

e−st
bn
2
c∑

k=0

(−1)k(1
2
)n−k(2ut)

n−2k

(n− 2k)!k!
dt

= 2n
bn
2
c∑

k=0

(−1)k(1
2
)n(−n)2k

k!(1− 1/2− n)k(−1)2kn!22k

∫ ∞
0

e−st(ut)n−2kdt

= 2n
bn
2
c∑

k=0

(−1)k(1
2
)n(−n)2k

k!(1− 1/2− n)k(−1)2kn!22k
N{tn−2k}

= 2n
(1
2
)n

n!
{
bn
2
c∑

k=0

(−n)2k
(1/2− n)kk!22k

un−2k

sn−2k+1
Γn− 2k + 1}

= 2n
(1
2
)nu

n

sn+1n!
{
bn
2
c∑

k=0

(−n)2k
(1/2− n)kk!22k

s2k

u2k
Γn− 2k + 1}

= 2nΓn+ 1
(1
2
)nu

n

sn+1n!
{
bn
2
c∑

k=0

(−n
2
)k(
−n+1

2
)k2

2k

(1/2− n)k22kk!

s2k

u2k
Γ1− (−n)− 2k

Γ1− (−n)
}

= 2n
(1
2
)nu

n

sn+1
{
bn
2
c∑

k=0

(−n
2
)k(
−n+1

2
)k(−1)2k

(1/2− n)k(−n)2kk!

s2k

u2k
}

= 2n
(1
2
)nu

n

sn+1
{
bn
2
c∑

k=0

(−n
2
)k(
−n+1

2
)k(−1)2k

(1/2− n)k(−n
2
)k(
−n+1

2
)kk!22k

s2k

u2k
}

= 2n
(1
2
)nu

n

sn+1
{
bn
2
c∑

k=0

(−1)2k

(1/2− n)kk!

(
s2

4u2

)k
}

∴ N{Pn(t)} = 0F1

[
− ;

(1
2
− n) ;

| s
2

2u2

]
2n

(1
2
)nu

n

sn+1
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3.4 The Natural transform of Hermite Polynomial

N{Hn(t)} = N{
bn
2
c∑

k=0

(−1)kn!(2t)n−2k

(n− 2k)!k!
}

=

∫ ∞
0

e−st
bn
2
c∑

k=0

(−1)kn!(2ut)n−2k

(n− 2k)!k!
dt

=

bn
2
c∑

k=0

(−1)kn!(2)n

(n− 2k)!k!22k

∫ ∞
0

e−st(ut)n−2kdt

=

bn
2
c∑

k=0

(−1)kn!(2)n

(n− 2k)!k!22k
N{tn−2k}

=

bn
2
c∑

k=0

(−1)kn!(2)n

(n− 2k)!k!22k

un−2k

sn−2k+1
Γn− 2k + 1

= 2n
un

sn+1

bn
2
c∑

k=0

(−1)kn!(−n)2k
(−1)2kk!22k

s2k

u2k
Γn− 2k + 1

= 2n
un

sn+1
Γn+ 1

bn
2
c∑

k=0

(−1)k(−n)2k
(−1)2kk!

(
s2

4u2

)k
Γn− 2k + 1

Γn+ 1

= 2n
un

sn+1
n!

bn
2
c∑

k=0

(−1)k

k!

(
s2

4u2

)k
∴ N{Hn(t)} = 0F0

[
− ;
− ;

| − s2

4u2

]
2n

un

sn+1
n!
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3.5 The Natural transform of Leguerre Polynomial

N{Ln(α)t} = N{
∞∑
k=0

(−1)k(1 + α)nt
k

(n− k)!k!(1 + α)k
}

=

∫ ∞
0

e−st
∞∑
k=0

(−1)k(1 + α)nt
k

(n− k)!k!(1 + α)k
dt

= (1 + α)n

∞∑
k=0

(−1)k

(n− k)!k!(1 + α)k

∫ ∞
0

e−st(ut)kdt

= (1 + α)n

∞∑
k=0

(−1)k

(n− k)!k!(1 + α)k
N{tk}

= (1 + α)n

∞∑
k=0

(−1)k

(n− k)!k!(1 + α)k

uk

sk+1
Γk + 1

= (1 + α)n

∞∑
k=0

(−1)k(−n)k
(−1)kk!(1 + α)kn!

uk

sk+1
Γk + 1

= {
∞∑
k=0

(1)k(−n)k
k!(1 + α)k

(
uk

sk

)k
}(1 + α)n

sn!

∴ N{Ln(α)t} = 2F1

[
(−n), 1 ;
(1 + α) ;

| u
s

]
(1 + α)n
sn!

Note that throughout the discussion, we assume that the validity of inte-
gration term by term in the summation.

4 Conclusion

In this paper we have find the Natural transform of some special well known functions
in terms of Hypergeometric function.These special functions are useful in solving
differential equations.
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Abstaract − Many author studied coupled Fibonacci sequences and multiplicative coupled Fi-
bonacci sequences of lower order two, three and four etc. In this paper we defined multiplicative
coupled Fibonacci Sequences of rth order under 2r different schemes. Some new identities for these
sequences are established under one specific scheme.

Keywords − Fibonacci Sequence, Coupled Fibonacci Sequence, Recurrence Relation.

1 Introduction

The Fibonacci sequence is a source of intresting identities. Many identities have
been documented in [14], [15], [16], [17], [21]. A similar interpretation exists for k
Fibonacci and k Lucas numbers, many of these identities have been documented in
the work of Falcon and Plaza [3], [6], [7], [11], [12], [13]. Many authors defined cou-
pled and multiplicative coupled Fibonacci sequences by varying initial conditions and
recurrence relation. Properties of these sequences are documented in[1], [2], [9], [4],
[5]. Many authors defined coupled and multiplicative coupled Fibonacci sequences
by varying initial conditions and recurrence relation. Properties of these sequences
are documented in[1], [2], [9], [4], [5]. In this paper we defined multiplicative coupled
Fibonacci sequences of rth order by varying recurrence relation and some identities
for these mentioned sequences are also obtained under 2r−1th scheme.
Coupled Fibonacci sequences involve two sequences of integers in which the ele-
ments of one sequence are part of the generalization of the other and vice versa. K.
T. Atanassov [1] was first introduced coupled Fibonacci sequences of second order

*Corresponding Author.
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in additive form and also discussed many curious properties and new direction of
generalization of Fibonacci sequence in his series of papers on coupled Fibonacci
sequences. He defined and studied about four different ways to generate coupled
sequences and called them coupled Fibonacci sequences (or 2-F sequences). The
multiplicative Fibonacci Sequences studied by singh-shikwal [?]. K. T. Atanassov
[2] notifies four different schemes in multiplicative form for coupled Fibonacci se-
quences. The analogue of the standard Fibonacci sequence in this form is x0 = a,
x1 = b, xn+2 = xn+1 · xn (n ≥ 0).
Attanasov [1] introduced a new view of generalized Fibonacci sequences by taking
a pair of sequences {Xi}i=∞i=0 and {Yi}i=∞i=0 and which can be generated by famous
Fibonacci formula and gave various identities involving Fibonacci sequence called
the coupled Fibonacci sequences.
In this paper we defined multiplicative coupled Fibonacci sequences of rth order by
varying recurrence relation and some identities for these mentioned sequences are
also obtained under 2r−1th scheme.

2 Preliminary and Notations

Definition 2.1. Multiplicative Coupled Fibonacci sequences of third order:
Let {Xi}i=∞i=0 and {Yi}i=∞i=0 be two infinite sequences and six arbitrary real numbers
x0, x1, x2, y0, y1, y2 are given. The Multiplicative coupled Fibonacci sequences of
3rd order are generated by the following eight different ways:
First scheme

Xn+3 = Yn+2 · Yn+1 · Yn, n ≥ 0

Yn+3 = Xn+2 ·Xn+1 ·Xn, n ≥ 0

Second scheme

Xn+3 = Xn+2 ·Xn+1 ·Xn, n ≥ 0

Yn+3 = Yn+2 · Yn+1 · Yn, n ≥ 0

Third scheme

Xn+3 = Yn+2 · Yn+1 ·Xn, n ≥ 0

Yn+3 = Xn+2 ·Xn+1 · Yn, n ≥ 0

Fourth scheme

Xn+3 = Yn+2 ·Xn+1 · Yn, n ≥ 0

Yn+3 = Xn+2 · Yn+1 ·Xn, n ≥ 0

Fifth scheme

Xn+3 = Yn+2 ·Xn+1 ·Xn, n ≥ 0

Yn+3 = Xn+2 · Yn+1 · Yn, n ≥ 0
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Sixth scheme

Xn+3 = Xn+2 ·Xn+1 · Yn, n ≥ 0

Yn+3 = Yn+2 · Yn+1 ·Xn, n ≥ 0

Seventh scheme

Xn+3 = Xn+2 · Yn+1 · Yn, n ≥ 0

Yn+3 = Yn+2 ·Xn+1 ·Xn, n ≥ 0

Eighth scheme

Xn+3 = Xn+2 · Yn+1 ·Xn, n ≥ 0

Yn+3 = Yn+2 ·Xn+1 · Yn, n ≥ 0

Definition 2.2. Multiplicative Coupled Fibonacci sequences of rth order:
Let {Xi}i=∞i=0 and {Yi}i=∞i=0 be two infinite sequences and 2r arbitrary real numbers x0,
x1, x2, x3, ..., xr−1 and y0, y1, y2, y3, ..., yr−1 are given. The Multiplicative coupled
Fibonacci sequences of rth order are generated by the following 2r different ways:
First scheme

Xn+r = Yn+r−1 · Yn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0

Yn+r = Xn+r−1 ·Xn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

Second scheme

Xn+r = Xn+r−1 · Yn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

...

(2r−1)th scheme
(a) If r is even,

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0

(b) If r is odd,

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0

...

(2r)th scheme

Xn+r = Xn+r−1 ·Xn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

Yn+r = Yn+r−1 · Yn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0
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n Yn+r Xn+r

0 y0y1y2y3...... yr−1 x0x1x2x3...... xr−1

1 x0x1x2x3...... xr−1y1y2y3...... yr−1 x1x2x3...... xr−1y0y1y2y3...... yr−1

2 x0x
2
1x

2
2x

2
3...... x2

r−1y0y1y
2
2y

2
3...... y2r−1 x0x1x

2
2x

2
3...... x2

r−1y0y
2
1y

2
2y

2
3...... y2r−1

3 x2
0x

3
1x

4
2x

4
3...... x4

r−1y
2
0y

3
1y

3
2y

4
3...... y4r−1 x2

0x
3
1x

3
2x

4
3...... x4

r−1y
2
0y

3
1y

4
2y

4
3...... y4r−1

4 x4
0x

5
1x

7
2x

8
3...... x8

r−1y
4
0y

6
1y

7
2y

7
3y

8
4...... y8r−1 x4

0x
5
1x

7
2x

7
3x

8
4...... x8

r−1y
4
0y

6
1y

7
2y

8
3...... y8r−1

Table 1. First few terms of these sequences under (2r−1)th(a) scheme

n Xn+r Yn+r

0 y0y1y2y3...... yr−1 x0x1x2x3...... xr−1

1 x0x1x2x3...... xr−1y1y2y3...... yr−1 x1x2x3...... xr−1y0y1y2y3...... yr−1

2 x0x
2
1x

2
2x

2
3...... x2

r−1y0y1y
2
2y

2
3...... y2r−1 x0x1x

2
2x

2
3...... x2

r−1y0y
2
1y

2
2y

2
3...... y2r−1

3 x2
0x

3
1x

4
2x

4
3...... x4

r−1y
2
0y

3
1y

3
2y

4
3...... y4r−1 x2

0x
3
1x

3
2x

4
3...... x4

r−1y
2
0y

3
1y

4
2y

4
3...... y4r−1

4 x4
0x

5
1x

7
2x

8
3...... x8

r−1y
4
0y

6
1y

7
2y

7
3y

8
4...... y8r−1 x4

0x
5
1x

7
2x

7
3x

8
4...... x8

r−1y
4
0y

6
1y

7
2y

8
3...... y8r−1

Table 2. First few terms of these sequences under (2r−1)th(b) scheme

Godase-Dhakne [8] obtained many interesting properties of multiplicative coupled
Fibonacci sequences of rth order under (2r)th scheme, some of these are listed below,
for every integer n ≥ 0 and r ≥ 0

Xn(r+1) · Y0 = Yn(r+1) ·X0 (1)

Xn(r+1)+1 · Y1 = Yn(r+1)+1 ·X1 (2)

Xn(r+1)+2 · Y2 = Yn(r+1)+2 ·X2 (3)

Xn(r+1)+3 · Y3 = Yn(r+1)+3 ·X3 (4)

Xn(r+1)+m · Ym = Yn(r+1)+m ·Xm (5)
i=n∏
i=1

Xri+1 =
i=rn∏
i=1

Yi (6)

i=n∏
i=1

Yri+1 =
i=rn∏
i=1

Xi (7)
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3 Methodology

For this research it was decided to consider multiplicative coupled Fibonacci se-
quences of rth order. When investigating the properties of the mentioned sequences,
it is necessary to take into consideration that reader will need special skills and abili-
ties of recurrence relations, master the method of mathematical induction, knowledge
on a Fibonacci sequence. All results in this research are proved only using methods
of mathematical induction.

4 Main Results

In this section identities for multiplicative coupled Fibonacci sequences of rth order
under (2r−1)th scheme are established.

Theorem 4.1. For every integer n ≥ 0, r ≥ 0

X2n(r+1) · Y0 = Y2n(r+1) ·X0 (8)

Proof. : Case:(a)
If r is an even, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0

Using Induction Method, For n = 0, the result is true because

Xo · Y0 = Y0 ·X0

Now assume that the result is true for some integer n ≥ 1

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0 (9)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0 (10)
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Now we prove for n + 1

X2n(r+1)+2r+2 · Y0 =
[
X2n(r+1)+2r+1 · Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
Y2n(r+1)+r ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · · Y2n(r+1)+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · Y2n(r+1)+r−3 · · · · Y2n(r+1)

]
·
[
X2n(r+1)+r−1Y2n(r+1)+r−1X2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2rX2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
Y0

= [X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2]

·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · Y2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
X2n(r+1)+r−1Y2n(r+1)+r−1X2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2rX2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

] [
Y0X2n(r+1)

]
Using induction hypothesis 9,10.

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · Y2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
X2n(r+1)+r−1Y2n(r+1)+r−1X2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2rX2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

] [
X0Y2n(r+1)

]
=
[
X2n(r+1)+2rY2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · Y2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
X2n(r+1)+r−1 · Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · · · ·X2n(r+1)+1 · Y2n(r+1)

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
·X0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
X2n(r+1)+r · Y2n(r+1)+r−1 ·X2n(r+1)+r−2 · Y2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
·X0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2 ·X2n(r+1)+r+1

]
·X0

=
[
Y2n(r+1)+2r+1 ·X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·X0

= Y2n(r+1)+2r+2 ·X0

Case:(b)
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If r is an odd, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0

Using Induction Method,for n = 0, the result is true because

Xo · Y0 = Y0 ·X0

Assume that the result is true for some integer n ≥ 1

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0 (11)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0 (12)

Now we prove for, n + 1

X2n(r+1)+2r+2 · Y0 =
[
X2n(r+1)+2r+1 · Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · ·X2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · ·X2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
X2n(r+1)+r ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · ·X2n(r+1)+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · ·X2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · ·X2n(r+1)+r+2

]
·
[
X2n(r+1)+r−1 · Y2n(r+1)+r−2 ·X2n(r+1)+r−3 · · · ·X2n(r+1)

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · ·X2n(r+1)+r+2

]
· Y0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
X2n(r+1)+r−1 · Y2n(r+1)+r−2 ·X2n(r+1)+r−3 · · · ·X2n(r+1)+1

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · ·X2n(r+1)+r+2

]
·
[
Y0 ·X2n(r+1)

]
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Using induction hypothesis 11,12

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
X2n(r+1)+r−1 · Y2n(r+1)+r−2 ·X2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · ·X2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
·
[
X0 · Y2n(r+1)

]
=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
X2n(r+1)+r−1 · Y2n(r+1)+r−2 ·X2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
Y2n(r+1)+r−1 ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 · · · ·X2n(r+1)+1 · Y2n(r+1)

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
·X0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·
[
Y2n(r+1)+r ·X2n(r+1)+r−1 · Y2n(r+1)+r−2 ·X2n(r+1)+r−3 · · · · Y2n(r+1)+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2

]
·X0

=
[
X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+1

]
·
[
Y2n(r+1)+2r ·X2n(r+1)+2r−1 · · · · Y2n(r+1)+r+2 ·X2n(r+1)+r+1

]
·X0

=
[
Y2n(r+1)+2r+1 ·X2n(r+1)+2r · Y2n(r+1)+2r−1 ·X2n(r+1)+2r−2 · · · · Y2n(r+1)+r+2

]
·X0

= Y2n(r+1)+2r+2 ·X0

Hence proof.

Theorem 4.2. For every integer n ≥ 0, r ≥ 0

X2n(r+1)+1 · Y1 = Y2n(r+1)+1 ·X1 (13)

X2n(r+1)+2 · Y2 = Y2n(r+1)+2 ·X2 (14)

X2n(r+1)+3 · Y3 = Y2n(r+1)+3 ·X3 (15)

Proof. Proof is similar to theorem 4.1

Theorem 4.3. For every integer n ≥ 0, r ≥ 0 and m ≥ 0

X2n(r+1)+m · Ym = Y2n(r+1)+m ·Xm (16)

Proof. Case:(a)
If r is an even, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0

Using induction method, for n = 0 the result is true because

Xm · Ym = Ym ·Xm
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Assume that the result is true for some integer n ≥ 1

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0 (17)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0 (18)

Now, we prove for n + 1

X2n(r+1)+m+2r+2 · Ym =
[
X2n(r+1)+m+2r+1 · Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · · Y2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · Y2n(r+1)+m+r−3 · · · · Y2n(r+1)+m

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · Y2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·
[
Ym ·X2n(r+1)+m

]
Using induction hypothesis 17, 18

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · Y2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·
[
Xm · Y2n(r+1) + m

]
=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · Y2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+1 · Y2n(r+1)+m

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·Xm

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r · Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−2 · Y2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·Xm

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2 ·X2n(r+1)+m+r+1

]
·Xm

=
[
Y2n(r+1)+m+2r+1 ·X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·Xm

= Y2n(r+1)+m+2r+2 ·Xm
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Case:(b)
If r is odd, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0

Using induction method, if n = 0, the result is true because

Xm · Ym = Ym ·Xm

Assume that the result is true for some integer n ≥ 1

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0 (19)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0 (20)

Now, we prove for n + 1

X2n(r+1)+m+2r+2 · Ym =
[
X2n(r+1)+m+2r+1 · Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · ·X2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · ·X2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · ·X2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · ·X2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 ·X2n(r+1)+m+r−3 · · · ·X2n(r+1)+m

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · ·X2n(r+1)+m+r+2

]
· Ym

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 ·X2n(r+1)+m+r−3 · · · ·X2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · ·X2n(r+1)+m+r+2

]
·
[
Ym ·X2n(r+1)+m

]
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Using induction hypothesis 19 20

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 ·X2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·
[
Xm · Y2n(r+1)+m

]
=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 ·X2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+r−1 ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 · · · ·X2n(r+1)+m+1 · Y2n(r+1)+m

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·Xm

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·
[
Y2n(r+1)+m+r ·X2n(r+1)+m+r−1 · Y2n(r+1)+m+r−2 ·X2n(r+1)+m+r−3 · · · · Y2n(r+1)+m+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2

]
·Xm

=
[
X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+1

]
·
[
Y2n(r+1)+m+2r ·X2n(r+1)+m+2r−1 · · · · Y2n(r+1)+m+r+2 ·X2n(r+1)+m+r+1

]
·Xm

=
[
Y2n(r+1)+m+2r+1 ·X2n(r+1)+m+2r · Y2n(r+1)+m+2r−1 ·X2n(r+1)+m+2r−2 · · · · Y2n(r+1)+m+r+2

]
·Xm

= Y2n(r+1)+m+2r+2 ·Xm

Hence proof.

Theorem 4.4. For every integer n ≥ 0, r ≥ 0

i=n∏
i=1

Xri+1 · Yri+1 =
i=rn∏
i=1

Yi ·Xi

Proof. Using induction method, for n = 1, the result is true because

Xr+1 · Yr+1 = [Yr · Yr−1 · Yr−2 · · · · Y1] · [Xr ·Xr−1 ·Xr−2 · · · ·X1]

= [Yr ·Xr] · [Yr−1 ·Xr−1] · [Yr−2 ·Xr−2] · · · · [Y1 ·X1]

=
i=r∏
i=1

Yi ·Xi

Assume that the result is true for some integer n ≥ 1 (a) If r is an even, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · · Yn, n ≥ 0 (21)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · ·Xn, n ≥ 0 (22)

(b) If r is an odd, then

Xn+r = Xn+r−1 · Yn+r−2 ·Xn+r−3 · · · ·Xn, n ≥ 0 (23)

Yn+r = Yn+r−1 ·Xn+r−2 · Yn+r−3 · · · · Yn, n ≥ 0 (24)
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Now, we prove for n + 1

i=n+1∏
i=1

Xri+1 · Yri+1 =
i=n∏
i=1

[Xri+1 · Yri+1] ·
[
Xr(n+1)+1 ·Xr(n+1)+1

]

Using induction hypothesis 21 22 23 24

=
i=rn∏
i=1

[Xi · Yi] · [Xrn+r+1 · Yrn+r+1]

=
i=rn∏
i=1

[Xi · Yi] · [Yrn+r ·Xrn+r] · [Yrn+r−1 ·Xrn+r−1] · [Yrn+r−2 ·Xrn+r−2] · · · · [Yrn+1 ·Xrn+1]

=
i=rn+r∏
i=1

[Yi ·Xi]

Hence proof.

5 Conclusion

Identities of multiplicative coupled Fibonacci sequences of rth order under 2r−1th

scheme are described in this paper, this idea can be extended for other schemes and
multiplicative coupled Fibonacci sequences of rth order with negative integers.
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1 Introduction

Rough set theory, proposed by Pawlak [25] is a new mathematical tool that supports
uncertainty reasoning.The basic assumption of rough set theory is every knowledge
in universe depends upon their capability of its classification. So that equivalennce
relations are considered to define rough sets. It may be seen as an extension of
classical set theory and has been successfully applied to machine learning, intelligent
systems, inductive reasoning, pattern recognition, image processing, signal analysis,
knowledge discovery, decision analysis, expert systems and many other fields. In
1965, Zadeh[32] initiated the novel concept of fuzzy set theory. There have been
attempts to fuzzify various mathematical structures like topological spaces, groups,
rings, etc., also concepts like relations measure, probability and automata etc. Biswas
and Nanda[6] in 1994 introduced the concept of rough ideal in semi group. Based
on an equivalence relation in 1990, Dubois and Prade[12] introduced the lower and
upper approximations of fuzzy sets in Pawlak approximation space to obtain an
extended notion called rough fuzzy sets. In 2008, Kazanci and Davaaz[16] introduced
rough prime ideals and rough fuzzy prime ideals in commutative rings. Recently

*Corresponding Author.
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Jayanta Ghosh and T.K. Samantha[15] introduced rough intuitionistic fuzzy sets in
semigroups.Yong Ho Yon et.al[29] introduced the concept of intuitionistic fuzzy R-
subgroups of near-rings. In this paper we define rough intuitionistic fuzzy ideals of a
near-ring based on its lower and upper approximation. Some interesting properties
are established.

2 Preliminary

Definition 2.1. [22] By a near-ring we mean a nonempty set R with two binary
operations ” + ” and ”.” satisfying the following axioms:

(i) (R,+) is a group.

(ii) (R, .) is a semigroup.

(iii) x.(y + z) = x.y + x.z for all x, y, z ∈ R.

Definition 2.2. [22] An ideal of a near-ring R is a subset I of R such that

(i) (I,+) is a normal subgroup of (R,+).

(ii) RI ⊆ I.

(iii) (x+ i)y − xy ∈ I for all i ∈ I andx, y ∈ R.

Definition 2.3. [3] An intuitionistic fuzzy set (IFS in short) A in X is an object
having the form A = {〈x, µA(x), νA(x)/x ∈ X〉} where the function µ : X → [0, 1]
and ν : X → [0, 1] denote the degree of membership (namely µA(x)) and the degree
of non membership (namely νA(x)) of each element x ∈ X to the set A, respectively
and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X. Denote by IFS(X) the set of all
intuitionistic fuzzy set in X.

Definition 2.4. [3] Let A and B be IFS’s of the form A = {〈x, µA(x), νA(x)/x ∈ X〉}
and B = {〈x, µB(x), νB(x)/x ∈ X〉}. Then

1. A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X.

2. A = B if and only if A ⊆ B and B ⊆ A.

3. A = {〈x, νA(x), µA(x)/x ∈ X〉} .(Complement of A)

4. A ∩B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)/x ∈ X〉} .

5. A ∪B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)/x ∈ X〉} .

For the sake of simplicity we use the notionA = 〈x, µA, νA〉 instead ofA = {〈x, µA(x), νA(x)/x ∈ X〉} .
The intuitionistic fuzzy set 0 ∼= {〈x, 0 ∼, 1 ∼〉 /x ∈ X} and 1 ∼= {〈x, 1 ∼, 0 ∼〉 /x ∈ X}
are respectively the empty set and the whole set of X.
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Definition 2.5. [33] An intuitionistic fuzzy set A = (µA, νA) is called an intuition-
istic fuzzy ideal of near-ring of R if for all x,y,i ∈ R.

(IF1) µA(x− y) ≥ µA(x) ∧ µA(y) and νA(x− y) ≤ νA(x) ∨ νA(y)

(IF2) µA(y + x− y) ≥ µA(x) and νA(y + x− y) ≤ νA(x)

(IF3) µA(xy) ≥ µA(y) and νA(xy) ≤ νA(y)

(IF4) µA(i(x+ y)− ix) ≥ µA(y) and νA(i(x+ z)− ix) ≤ νA(y)

Definition 2.6. [29] An IFS A = (µA, νA) in R is called an intuitionistic fuzzy
subnear ring of R if for all x, y ∈ R

(i) µA(x− y) ≥ µA(x) ∧ µA(y) and νA(x− y) ≤ νA(x) ∨ νA(y)

(ii) µA(xy) ≥ µA(y) and νA(xy) ≤ νA(y).

Definition 2.7. [16] An equivalence relation θ on R is a reflexive, symmetric and
transitive binary relation on R. If θ is an equivalence relation on R then the equiva-
lence class of x ∈ R is the set {y ∈ R|(x, y) ∈ θ.We write it as [x]θ.

Definition 2.8. [16] Let θ be an equivalence relation on R, then θ is called a full
congruence relation if (a, b) ∈ θ implies (a + x, b + x), (ax, bx) and (xa, xb) ∈ θ for
all x ∈ R

Theorem 2.9. [16] Let θ be a full congruence relation on R, then (a, b) ∈ θ and
(c, d) ∈ θ imply (a+ c, b+ d) ∈ θ, (ca, bd) ∈ θ and (−a,−b) ∈ θ for all a, b, c, d ∈ R

Definition 2.10. [15] Let us consider θ to be a congruence relation of S. If X is
a nonempty subset of S then the sets θ∗(X) = {x ∈ S|[x]θ ⊆ X} and θ∗(X) =
{x ∈ S|[x]θ ∩X 6= φ} are respectively called the θ-lower and θ-upper approximation
of the set X and θ(X) = (θ∗(X), θ∗(X)) is called rough set with respect to θ if
θ∗(X) 6= θ∗(X). If A = (µA, νA) be IFS of S. Then the IFS θ∗(A) = (θ∗(µA, θ∗νA)) and
θ∗(A) = (θ∗(µA, θ

∗νA)) are respectively called θ−lower and θ−upper approximation
of the IFS A = (µA, νA) where for all x ∈ S

θ∗(µA)(x) = ∧a∈[x]θµA(a), θ∗(νA)(x) = ∨a∈[x]θνA(a)

θ∗(µA)(x) = ∨a∈[x]θµA(a), θ∗(νA)(x) = ∧a∈[x]θνA(a)

For an IFS A = (µA, νA) of S, θ(A) = (θ∗(A), θ∗(A)) is called rough intuitionistic
fuzzy set with respect to θ if θ∗(A) 6= θ∗(A)

Definition 2.11. [29] An IFS A = (µA, νA) in R is called an intuitionistic fuzzy
N-subgroup of R if for all x, y, n ∈ R

(i) µA(x− y) ≥ µA(x) ∧ µA(y) and νA(x− y) ≤ νA(x) ∨ νA(y).

ii µA(nx) ≥ µA(x) and νA(nx) ≤ νA(x).

iii µA(xn) ≥ µA(x) and νA(xn) ≤ νA(x).
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3 ROUGH INTUITIONISTIC FUZZY IDEALS

IN NEAR-RINGS

Throughout N denotes an abelian near ring and R denotes a near ring.

Lemma 3.1. If an IFS A = (µA, νA) in R satisfies the condition (IF1) of definition
[2.5], then

(i) µA(0) ≥ µA(x) and νA(0) ≤ νA(x),

(ii) µA(−x) = µA(x)and νA(−x) = νA(x).

for all x ∈ R.

Lemma 3.2. If an IFS A = (µA, νA) in R satisfies the condition (IF1) of definition
[2.5], then

(i) µA(x− y) = µA(0)⇒ µA(x) = µA(y),

(ii) νA(x− y) = νA(0)⇒ νA(x) = νA(y).

for all x, y ∈ R.
The proof of 3.1 and 3.2 are immediate.

Theorem 3.3. Let θ be a full congruence relation on R. If A = (µA, νA) is an
intuitionistic fuzzy subnear-ring of R then so is θ∗(A) = (θ∗(µA), θ∗(νA)).
Proof: Since θ is a congruence relation of R. Then for all x, y ∈ R,

(i) a) θ∗(µA)(x− y) =
∨

z∈[x−y]θ
µA(z)

=
∨

z∈[x]θ−[y]θ
µA(z)

=
∨

a−b∈[x]θ−[y]θ
µA(a− b)

≥
∨

a∈[x]θ,b∈[y]θ
[µA(a) ∧ µA(b)]

= [
∨

a∈[x]θ
µA(a)] ∨ [

∨
b∈[y]θ

µA(b)] = θ∗(µA)(x) ∧ θ∗(µA)(y)

b) θ∗(νA)(x− y) =
∧

z∈[x−y]θ
νA(z)

=
∧

z∈[x]θ−[y]θ
νA(z)

=
∧

a−b∈[x]θ−[y]θ
νA(a− b)

≤
∧

a∈[x]θ,b∈[y]θ
[νA(a) ∨ νA(b)]

= [
∧

a∈[x]θ
νA(a)] ∨ [

∧
b∈[y]θ

νA(b)] = θ∗(νA)(x) ∨ θ∗(νA)(y)
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(ii) a) θ∗(µA)(xy) =
∨

z∈[xy]θ
µA(z)

≥
∨

z∈[x]θ[y]θ
µA(z)

=
∨

ab∈[x]θ[y]θ
µA(ab)

≥
∨

a∈[x]θb∈[y]θ
µA(ab)

≥
∨

b∈[y]θ
µA(b) = θ∗(µA)(y)

b) θ∗(νA)(xy) =
∧

z∈[yx]θ
νA(z)

≤
∧

z∈[x]θ[y]θ
νA(z)

=
∧

ab∈[x]θ[y]θ
νA(ab)

≤
∧

a∈[x]θb∈[y]θ
νA(ab)

≤
∧

b∈[y]θ
νA(b) = θ∗(νA)(y) This shows that θ∗(A) is an intuitionistic fuzzy

subnear-ring of R. Therefore A is an upper rough intuitonistic fuzzy subnear-
ring of R.

Theorem 3.4. Let θ be a full congruence relation on R. If A = (µA, νA) is an
intuitionistic fuzzy subnear-ring of R then so is (θ)∗(A) = (θ∗(µA), θ∗(νA)).

Proof. Since θ is a congruence relation of R. Then for all x, y ∈ R

(i) a) θ∗(µA)(x− y) =
∧

z∈[x−y]θ
µA(z)

=
∧

z∈[x]θ−[y]θ
µA(z)

≥
∧

z∈[x]θ[y]θ
µA(z)

=
∧

a−b∈[x]θ−[y]θ
µA(a− b)

≥
∧

a∈[x]θ,b∈[y]θ
[µA(a) ∧ µA(b)]

= [
∧

a∈[x]θ
µA(a)] ∧ [

∧
b∈[y]θ

µA(b)] = θ∗(µA)(x) ∧ θ∗(µA)(y)

b) θ∗(νA)(x− y) =
∨

z∈[x−y]θ
νA(z)

=
∨

z∈[x]θ−[y]θ
νA(z)

=
∨

a−b∈[x]θ−[y]θ
νA(a− b)

≤
∨

a∈[x]θ,b∈[y]θ
[νA(a) ∨ νA(b)]

= [
∨

a∈[x]θ
νA(a)] ∨ [

∨
b∈[y]θ

νA(b)] = θ∗(νA)(x) ∨ θ∗(νA)(y)

(ii) a) θ∗(µA)(xy) =
∧

z∈[xy]θ
µA(z)
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=
∧

z∈[x]θ[y]θ
µA(z)

=
∧

ab∈[x]θ[y]θ
µA(ab)

≥
∧

a∈[x]θb∈[y]θ
µA(ab)

=
∨

b∈[y]θ
µA(b) = θ∗(µA)(y)

b) θ∗(νA)(xy) =
∨

z∈[yx]θ
νA(z)

=
∨

z∈[x]θ[y]θ
νA(z)

=
∨

ab∈[x]θ[y]θ
νA(ab)

≤
∨

a∈[x]θb∈[y]θ
νA(ab)

≤
∨

b∈[y]θ
νA(b) = θ∗(νA)(y) This shows that θ∗(A) is an intuitionistic fuzzy

subnear-ring of R. Therefore A is an lower rough intuitonistic fuzzy subnear-
ring of R.

Corollary 3.5. If A = (µA, νA) is an intuitionistic fuzzy subnear-ring of R then
θ(A) = (θ∗(A), θ∗(A)) is a rough intuitionistic fuzzy subnear-ring of R.

Example 3.6. Let R = {0, a, b, c} be a set with two binary operations as follows

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Then (R,+, .) is a near-ring. Let θ be a congruence relation on R such that the θ-
congruence classes are the subsets {0}, {c}, {a, b}. Let A = {〈x, µA(x), νA(x)〉|x ∈ R}
be an intuitionistic fuzzy subset of R defined by

A = {〈0, 0.4, 0.4〉, 〈a, 0.1, 0.5〉, 〈b, 0.4, 0.6〉, 〈c, 0.4, 0.4〉}

Since for every x ∈ R, θ∗(µA)(x) =
∨

α∈[x]θ
µA(α) and θ∗(νA)(x) =

∧
α∈[x]θ

νA(α), so the

upper approximation θ∗(A) = {〈x, θ∗(µA(x)), θ∗(νA(x))〉|x ∈ T} is given by

θ∗(A) = {〈0, 0.4, 0.4〉, 〈a, 0.4, 0.5〉, 〈b, 0.4, 0.5〉, 〈c, 0.4, 0.4〉}

then it can be easily verified that

θ∗(µA)(x− y) ≥ θ∗(µA)(x) ∧ θ∗(µA)(y)

θ∗(νA)(x− y) ≤ θ∗(νA)(x) ∨ θ∗(νA)(y)
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and

θ∗(µA)(x.y) ≥ θ∗(µA)(y)

θ∗(νA)(x.y) ≤ θ∗(νA)(y)

for all x, y ∈ R. Therefore θ∗(A) is an intuitionistic fuzzy subnear-ring of R. Hence
A is an upper rough intuitionistic fuzzy subnear-ring of R.

Theorem 3.7. Let θ be a congruence relation on R then, if A is an intuitionistic
fuzzy N-subgroup of R, then A is an upper rough intuitionistic fuzzy N-subgroup of
R.

Proof. Since θ is a congruence relation on R [a]θ[b]θ ⊆ [ab]θ∀a, b ∈ R.
Let A = (µA, νA) be an intuitionistic fuzzy N-subgroup of N and x ∈ N . Now
θ∗(A) = (θ∗(µA), θ∗(νA)). Thus

(i) a) θ∗(µA)(x− y) ≥ θ∗(µA)(x) ∧ θ∗(µA)(y)
b) θ∗(νA)(x− y) ≤ θ∗(νA)(x) ∨ θ∗(νA)(y)

(ii) a) θ∗(µA)(nx) =
∨

z∈[nx]θ
µA(z)

≥
∨

z∈[n]θ[x]θ
µA(z)

=
∨

ab∈[n]θ[x]θ
µA(ab)

≥
∨

a∈[n]θb∈[x]θ
µA(ab)

≥
∨

b∈[x]θ
µA(b) = θ∗(µA)(x)

b) θ∗(νA)(nx) =
∧

z∈[nx]θ
νA(z)

≤
∧

z∈[n]θ[x]θ
νA(z)

=
∧

ab∈[n]θ[x]θ
νA(ab)

≤
∧

a∈[n]θb∈[x]θ
νA(ab)

≤
∧

b∈[x]θ
νA(b) = θ∗(νA)(x)

(iii) a) θ∗(µA)(xn) ≥ θ∗(νA)(x)
b) θ∗(νA)(xn) ≤ θ∗(νA)(x)
Proof is analogs to (ii).

Theorem 3.8. Let θ be a complete congruence relation on R then, if A is an in-
tuitionistic fuzzy N-subgroup of R, then A is an lower rough intuitionistic fuzzy
N-subgroup of R.

Proof. Since θ is a congruence relation on R [a]θ[b]θ = [ab]θ∀a, b ∈ R.
Let A = (µA, νA) be an intuitionistic fuzzy N-subgroup of N and x,∈ N . Now
θ∗(A) = (θ∗(µA), θ∗(νA)). Thus
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(i) a) θ∗(µA)(x− y) ≥ θ∗(µA)(x) ∨ θ∗(µA)(y)
b) θ∗(νA)(x− y) ≤ θ∗(νA)(x) ∧ θ∗(νA)(y)
Proof of (i) is similar to subnear-rings.

(ii) a) θ∗(µA)(nx) =
∧

z∈[nx]θ
µA(z)

=
∧

z∈[n]θ[x]θ
µA(z)

=
∧

ab∈[n]θ[x]θ
µA(ab)

≥
∧

a∈[n]θb∈[x]θ
µA(ab)

=
∧

b∈[x]θ
µA(b) = θ∗(µA)(x)

b) θ∗(νA)(nx) =
∨

z∈[nx]θ
νA(z)

=
∨

z∈[n]θ[x]θ
νA(z)

=
∨

ab∈[n]θ[x]θ
νA(ab)

≤
∨

a∈[n]θb∈[x]θ
νA(ab)

=
∨

b∈[x]θ
νA(b) = θ∗(νA)(x)

(iii) a) θ∗(µA)(xn) ≥ θ∗(νA)(x)
b) θ∗(νA)(xn) ≤ θ∗(νA)(x)
Proof is analogous to (ii).

Theorem 3.9. Let θ be a congruence relation of R, then if A is an intuitionistic
fuzzy ideal of R then A is an upper rough intuitionistic fuzzy ideal of R.

Proof. (i) a. θ∗(µA(x− y)) ≥ θ∗(µA)(x) ∧ θ∗(µA)(y).
b. θ∗(νA(x− y)) ≤ θ∗(νA)(x) ∨ θ∗(νA)(y).

(ii) a. θ∗(µA(xn)) ≥ θ∗(µA)(x)
b. θ∗(νA(xn)) ≤ θ∗(νA)(x)

(iii) a. θ∗(µA)(y + x− y) =
∨

z∈[y+x−y]θ
µA(z)

=
∨

z∈[y+x]θ−[y]θ
µA(z)

=
∨

a−d∈[y+x]θ−[y]θ
µA(a− d)

=
∨

a∈[y+x]θ,d∈[y]θ
µA(a− d)

=
∨

d+c∈[y+x]θ,d∈[y]θ
µA(d+ c− d)

=
∨

c∈[x]θ,d∈[y]θ
µA(d+ c− d)

=
∨

c∈[x]θ,d∈[y]θ
µA(c)
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=
∨

c∈[x]θ
µA(c) = θ∗(µA)(x).

b. θ∗(νA)(y + x− y) =
∧

z∈[y+x−y]θ
µA(z)

=
∧

z∈[y+x]θ−[y]θ
νA(z)

=
∧

a−d∈[y+x]θ−[y]θ
νA(a− d)

=
∧

a∈[y+x]θ,d∈[y]θ
νA(a− d)

=
∧

d+c∈[y+x]θ,d∈[y]θ
νA(d+ c− d)

=
∧

c∈[x]θ,d∈[y]θ
νA(d+ c− d)

=
∧

c∈[x]θ,d∈[y]θ
νA(c)

=
∧

c∈[x]θ
νA(c) = θ∗(νA)(x).

Theorem 3.10. Let θ be a complete congruence relation of R, then if A is an
intuitionistic fuzzy ideal of R then A is an lower rough intuitionistic fuzzy ideal of
R.

Proof. (i) a. θ∗(µA(x− y)) ≥ θ∗(µA)(x) ∨ θ∗(µA)(y).
b. θ∗(νA(x− y)) ≤ θ∗(νA)(x) ∧ θ∗(νA)(y.)

(ii) a. θ∗(µA(xn)) ≥ θ∗(µA)(x)
b. θ∗(νA(xn)) ≤ θ∗(νA)(x).

(iii) a. θ∗(µA)(y + x− y) =
∧

z∈[y+x−y]θ
µA(z)

=
∧

z∈[y+x]θ−[y]θ
µA(z)

=
∧

a−d∈[y+x]θ−[y]θ
µA(a− d)

=
∧

a∈[y+x]θ,d∈[y]θ
µA(a− d)

=
∧

d+c∈[y+x]θ,d∈[y]θ
µA(d+ c− d)

=
∧

c∈[x]θ,d∈[y]θ
µA(d+ c− d)

=
∧

c∈[x]θ,d∈[y]θ
µA(c)

=
∧

c∈[x]θ
µA(c) = θ∗(µA)(x). b. θ∗(νA)(y + x− y) =

∨
z∈[y+x−y]θ

µA(z)

=
∨

z∈[y+x]θ−[y]θ
νA(z)

=
∨

a−d∈[y+x]θ−[y]θ
νA(a− d)

=
∨

a∈[y+x]θ,d∈[y]θ
νA(a− d)

=
∨

d+c∈[y+x]θ,d∈[y]θ
νA(d+ c− d)
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=
∨

c∈[x]θ,d∈[y]θ
νA(d+ c− d)

=
∨

c∈[x]θ,d∈[y]θ
νA(c)

=
∨

c∈[x]θ
νA(c) = θ∗(νA)(x).

Let N denote an abelian near-ring.

Definition 3.11. Let A be an intuitionistic fuzzy ideal of R. For each α, β ∈ [0, 1]
with α+ β ≤ 1, the set Aβα = {(a, b) ∈ R×R|µA(a− b) ≤ α, νA(a− b) ≥ β} is called
a (α, β)level relation of A.

Proposition 3.12. If A and B be two intuitionistic fuzzy sets of an universal set X,
then the following holds

(i) Aβα ⊆ Aδγ if α ≥ γ and β ≤ δ.

(ii) Aβ1−β ⊆ Aβα ⊆ A1−α
α .

(iii) A ⊆ B ⇒ Aβα ⊆ Bβ
α.

(iv) (A ∩B)βα = Aβα ∩Bβ
α.

(v) (A ∪B)βα ⊇ Aβα ∪Bβ
α.

Proof. (i) Let (x, y) ∈ Aβα ⇒ µA(x− y) ≥ α and νA(x− y) ≤ β. Since γ ≤ α and
δ ≥ β ⇒ µA(x − y) ≥ α ≥ γ and νA(x − y) ≤ β ≤ δ ⇒ µA(x − y) ≥ γ and
νA(x− y) ≤ δ. Hence (x, y) ∈ Aδγ.

(ii) Since α + β ≤ 1 ⇒ 1 − β ≥ α and β ≤ β. Thus Aβ1−β ⊆ Aβα. Also α ≥ α and

β ≤ 1− α. Thus Aβα ⊆ A1−α
α .

(iii) Let (x, y) ∈ Aβα ⇒ µA(x−y) ≥ α and νA(x−y) ≤ β. As A ⊆ B ⇒ µB(x−y) ≥
α and νB(x− y) ≤ β and so (x, y) ∈ Bβ

α.

(iv) Since A ∩ B ⊆ A and A ∩ B ⊆ B. Thus (A ∩ B)βα ⊆ Aβα and (A ∩ B)βα ⊆ Bβ
α.

Thus (A∩B)βα ⊆ Aβα∩Bβ
α. Let (x, y) ∈ Aβα∩Bβ

α ⇒ (x, y) ∈ Aβα and (x, y) ∈ Bβ
α

⇒ µA(x− y) ≥ α and νA(x− y) ≤ β and µB(x− y) ≥ α and νB(x− y) ≤ β
⇒ µA(x− y) ≥ α and µB(x− y) ≥ α and νA(x− y) ≤ β and νB(x− y) ≤ β
⇒ µA(x− y) ∧ µB(x− y) ≥ α and νA(x− y) ∨ νB(x− y) ≤ β,
⇒ (µA ∩ µB)(x− y) ≥ α and (νA ∪ νB)(x− y) ≤ β,
⇒ (x, y) ∈ (A ∩B)βα.

(iv) Since A ⊆ A ∪ B and B ⊆ A ∪ B ⇒ Aβα ⊆ (A ∪ B)βα and Bβ
α ⊆ (A ∪ B)βα.

Thus Aβα ∪ Bβ
α ⊆ (A ∪ B)βα Now if α + β = 1 then (A ∪ B)βα ⊆ Aβα ∪ Bβ

α. Let
(x, y) ∈ (A ∪ B)βα ⇒ (µA ∪ µB)(x − y) ≥ α and (νA ∪ νB)(x − y) ≤ β ⇒
µA(x− y) ∨ µB(x− y) ≥ α and νA(x− y) ∨ νB(x− y)) ≤ β. If µA(x− y) ≥ α,
then νA(x − y) ≤ 1 − µA(x − y) ≤ 1 − α = β ⇒ (x, y) ∈ Aαβ ⊆ Aβα ∪ Bβ

α.
Similarly if µB(x − y) ≥ α, then νB(x − y) ≤ 1 − µB(x − y) ≤ 1 − α = β ⇒
(x, y) ∈ Bαβ ⊆ Aβα ∪Bβ

α. Thus (A ∪B) = Aβα ∪Bβ
α.
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Remark 3.13. Every rough ring is a rough near-ring.

Lemma 3.14. Let A be an intuitionistic fuzzy ideal of an abelian near-ring N, and
let α, β ∈ [0, 1] with α + β ≤ 1. Then Aβα is a congruence relation on N.

Proof. For any element a ∈ N , µA(a − a) = µA(0) ≥ α and so (a, a) ∈ Aβα. If
(a, b) ∈ Aβα, then µA(a − b) ≥ α and νA(a − b) ≤ β. Since A is an ideal of abelian
near-ring N, µA(b− a) = µA(−(a− b)) = µA(a− b) ≥ α, νA(b− a) = νA(−(a− b)) =
νA(a − b) ≤ β ⇒ (b, a) ∈ Aβα. If (a, b) ∈ Aβα and (b, c) ∈ Aβα, then since A is a
fuzzy ideal of N, µA(a − c) = µA((a − b) + (b − c)) ≥ min{µA(a − b), µA(b − c)} ≥
min{α, α} = α, and so (a, c) ∈ Aβα. Therefore Aβα is an equivalence relation on N.
Now, let (a, b) ∈ Aβα and x be any element of N. Then since µA(a − b) ≥ α and
νA(a− b) ≤ β µA((a+x)− (b+x)) = µA((a+x) + (−x− b)) = µA(a+ (x−x)− b) =
µA(a + 0 − b), µA(a − b) ≥ α, νA((A + x) − (b + x)) = νA((a + x) + (−x − b)) =
νA(a+(x−x)− b) = νA(a+0− b)νA(a− b) ≤ β ⇒ (a+x, b+x) ∈ Aα,β. Since (N,+)
is an abelian group, we have (x + a, x + b) ∈ Aα,β. Therefore Aα,β is a congruence
relation on R.

Definition 3.15. Let A be an intuitionisic fuzzy ideal of an abelian near-ring N and
α, β ∈ [0, 1] with α+β ≤ 1. We know that Aβα is an equivalence relation(congruence
relation) on N. Therefore when the universe is an abelian near-ring then (N,Aβα) can
be used instead of the approximation space (U, θ).

Let A be an intuitionistic fuzzy ideal of N and Aβα be an (α, β)-level congruence
relation of A on N. Let X be a non-empty subset of N. Then the sets

R(Aβα, X) = {x ∈ N |[x]Aβ
α
⊆ X}

R(Aβα, X) = {x ∈ N |[x]Aβ
α
∩ 6= φ}.

Proposition 3.16. Let A be an intuitionistic fuzzy ideal of an abelian near-ring N.
Then for any α, β ∈ [0, 1] with α+ β ≤ 1. If B is an ideal of an abelian near-ring R,
then A is an upper rough left ideal of N.

Proof. Proof: Let a, b ∈ R(Aβα, B). Then [a]Aβ
α
⊆ B and [b]Aβ

α
⊆ B. Since Aβα is a

congruence relation

[a+ b]Aβ
α

= [a]Aβ
α

+ [b]Aβ
α

⊆ B +B ⊆ B

⇒ a+ b ∈ R(Aβα, B).

Let a be any element of R(Aβα, B). Then [a]Aβ
α
⊆ B . Let x be any element of [−a]Aβ

α
.

Then (x,−a) ∈ Aβα and so (−x, a) ∈ Aβα. Thus −x ∈ [a]Aβ
α
⊆ B.. Since A is an

intuitionistic fuzzy ideal of N it is a subgroup of N, thus x ∈ A and so [−a]Aβ
α
⊆ A.

Thus −a ∈ R(Aβα, B). Let a and x be any element of R(Aβα, B). Then [a]Aβ
α
⊆ B.

Let z be any element of [x + a − x]Aβ
α
. Then (z, (x + a − x)) ∈ Aβα. Since Aβα is a

congruence relation on N, (−x+ z+ x, a) ∈ Aβα and so −x+ z+ x ∈ [a]Aβ
α
⊆ B.Thus
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−x + z + x = b for some b ∈ B. Since B is normal z = x + b − x ∈ x + B − x ∈ B
and so we have [x + b − x]Aβ

α
∈ B. Therefore x + b − x ∈ R(Aβα, B), which means

R(Aβα, B) is normal subgroup of N.
Let r ∈ R and a ∈ R(Aβα, B), then [a]Aβ

α
⊆ B. Let a be any element of [x]Aβ

α
. Then

(x, a) ∈ Aβα

⇒ (rx, ra) ∈ Aβα
⇒ rx ∈ [ra]Aβ

α
⊆ B

⇒ ra ∈ R(Aβα, B).

Lemma 3.17. Let A be an intuitionistic fuzzy ideal of an abelian near-ring N and
α, β ∈ [0, 1] where α + β ≤ 1. If R(Aβα, X) is a non-empty set then [0]Aβ

α
⊆ A.

Proposition 3.18. Let A be an intuitionistic fuzzy ideal of an abelian near-ring N
and α, β ∈ [0, 1] where α+β ≤ 1. Let B be an ideal of N. If R(Aβα, X) is a non-empty
set then it is equal to A.

Corollary 3.19. If A is an intuitionistic fuzzy ideal of an abelian near-ring then
(R(Aβα, X), R(Aβα, X)) is a rough left ideal of N.

4 Conclusion

The idea of rough intuitionistic fuzzy ideals of a near-ring based on its lower and
upper approximation is discussed. Some interesting properties are established which
hold directly for a ring.We hope that by the extension of this work further we would
get new results satisfing more properties for a ring.
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1 Introduction

Functions and of course open functions stand among the most important notions in
the whole of mathematical science. Many different forms of open functions have been
introduced over the years. Various interesting problems arise when one considers
openness. Its importance is significant in various areas of mathematics and related
sciences.

Recently, as a generalization of closed sets, the notion of µs-closed sets were
introduced and studied by Veera Kumar [7]. In this paper, we will continue the
study of related functions by involving µs-open sets. We introduce and characterize
the concept of quasi µs-open functions.

2 Preliminaries

Throughout this paper (X, τ),(Y, σ)and (Z, η) (or X, Y and Z)represent topological
spaces on which no separation axioms are assumed unless otherwise mentioned. For
a subset A of a space (X,τ), cl(A), int(A) and AC denote the closure of A, the
interior of A and complement of A respectively.

We recall the following definitions which are useful in the sequel.

*Corresponding Author.
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Definition 2.1. A subset A of a space (X, τ) is called:

1. α-open set [4] if A⊆ int(cl(int(A))).

2. semi-open set [2] if A⊆ cl(int(A)).

The complements of the above mentioned open sets are called their respective
closed sets.

The α-closure [4](resp.semi-closure [1]) of a subset A of X, denoted by αcl(A)
(resp.scl(A)) is defined to be the intersection of all α-closed (resp. semi-closed) sets
of (X, τ) containing A.

Definition 2.2. A subset A of a space (X, τ) is called:

1. a gα*-closed set [3, 5] if αcl(A)⊆int(U) whenever A⊆U and U is α-open in
(X, τ). The complement of gα*-closed set is called gα*-open set.

2. a µ-closed set [6] if cl(A)⊆U whenever A⊆U and U is gα*-open in (X, τ). The
complement of µ-closed set is called µ-open set.

3. a µs-closed set [7] if scl(A)⊆U whenever A⊆U and U is gα*-open in (X, τ).
The complement of µs-closed set is called µs-open set.

The union (resp. intersection) of all µs-open (resp. µs-closed) sets, each contained
in (resp. containing) a set A in a space X is called the µs-interior(resp. µs-closure)
of A and is denoted by µs-int(A)(resp. µs-cl(A)).

Definition 2.3. [7] A function f : (X, τ)→(Y, σ) is called a µs-irresolute (resp.
µs-continuous )if f−1(V) is is µs-closed in X for every µs-closed (resp. closed) subset
V of Y.

Definition 2.4. A function f : (X, τ)→(Y, σ) is called a µs-open (resp. µs-closed)
if f(V) is µs-open (resp. µs-closed) in Y for every open (resp. closed) subset V of X.

3 Quasi µs-open Functions

We introduce a new definitions as follows.

Definition 3.1. A function f : X → Y is said to be quasi µs-open if the image of
every µs-open set in X is open in Y.
It is evident that, the concepts quasi µs-openness and µs-continuity coincide if the
function is a bijection.

Theorem 3.2. A function f : X → Y is quasi µs-open if and only if for every subset
U of X, f(µs-int(U))⊂ int(f(U)).

Proof: Let f be a quasi µs-open function. Now, we have int(U)⊂ U and µs-int(U)
is a µs-open set. Hence, we obtain that f(µs-int(U))⊂ f(U ). As f (µs-int(U)) is open,
f (µs-int(U))⊂ int(f(U)).

Conversely, assume that U is a µs-open set in X. Then, f(U) = f(µs-int(U)) ⊂
int(f(U)) but int(f(U))⊂ f(U). Consequently, f(U) = int(f(U)) and hence f is quasi
µs-open.
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Lemma 3.3. If a function f : X → Y is quasi µs-open, then µs-int(f−1(G)) ⊂
f−1(int(G)) for every subset G of Y.

Proof: Let G be any arbitrary subset of Y. Then, µs-int(f−1(G)) is a µs-open set
in X and f is quasi µs-open, then f( µs-int(f−1(G)))⊂ int(f(f−1(G))) ⊂ int(G). Thus,
µs-int(f−1(G)) ⊂ f−1(int(G)).

Definition 3.4. A subset S of a space (X, τ) is called a µs-neighbourhood of a point
x of X if there exists a µs-open set U such that x ∈ U ⊂ S.

Theorem 3.5. For a function f : X → Y, the following are equivalent: (i) f is quasi
µs-open; (ii) For each subset U of X, f(µs-int(U))⊂ int(f(U)); (iii) For each x ∈ X
and each µs-neighbourhood U of x in X, there exists a neighbourhood f(U) of f(x) in
Y such that f(V) ⊂ f(U).

(i) ⇒ (ii): It follows from Theorem 3.2.
(ii) ⇒(iii): Let x ∈ X and U be an arbitrary µs-neighbourhood of x in X. Then

there exists a µs-open set V in X such that x ∈ V ⊂ U. Then by (ii), we have f (V) =
f(µs-int(V)) ⊂ int(f(V)) and hence f(V) = int(f(V)). Therefore, it follows that f(V)
is open in Y such that f(x)∈ f (V)⊂ f (U).

(iii)⇒ (i): Let U be an arbitrary µs-open set in X. Then for each y ∈ f (U), by
(iii) there exists a neighbourhood Vy of y in Y such that Vy ⊂ f (U). As Vy is a
neighbourhood of y, there exists an open set Wy in Y such that y ∈ Wy ⊂ Vy .
Thus f (U) = ∪ {Wy : y ∈ f (U)} which is an open set in Y. This implies that f is
quasi µs-open function.

Theorem 3.6. A function f : X → Y is quasi µs-open if and only if for any subset
B of Y and for any µs-closed set F of X containing f−1(B), there exists a closed set
G of Y containing B such that f−1(G) ⊂ F.

Proof: Suppose f is quasi µs-open. Let B ⊂ Y and F be a µs-closed set of X
containing f−1(B). Now, put G = Y - f (X - F). It is clear that f−1(B) ⊂ F implies B
⊂ G. Since f is quasi µs-open, we obtain G as a closed set of Y. Moreover, we have
f−1(G)⊂ F.

Conversely, let U be a µs-open set of X and put B = Y \f (U). Then X \U is a
µs-closed set in X containing f−1(B). By hypothesis, there exists a closed set F of Y
such that B ⊂ F and f−1(F) ⊂ X \U. Hence, we obtain f(U) ⊂ Y \F. On the other
hand, it follows that B ⊂ F, Y \F ⊂ Y \B = f(U). Thus, we obtain f(U) = Y \F
which is open and hence f is a quasi µs-open function.

Theorem 3.7. A function f : X → Y is quasi µs-open if and only if f−1(cl(B)) ⊂
µs-cl(f−1(B)) for every subset B of Y.

Proof: Suppose that f is quasi µs-open. For any subset B of Y , f−1(B)⊂ µs-
cl(f−1(B)). Therefore by Theorem 3.6, there exists a closed set F in Y such that
B ⊂ F and f−1(F)⊂ µs-cl(f−1(B)). Therefore, we obtain f−1(cl(B)) ⊂ f−1(F)⊂ µs-
cl(f−1(B)).

Conversely, let B ⊂ Y and F be a µs-closed set of X containing f−1(B). Put W =
clY (B), then we have B ⊂ W and W is closed and f−1(W)⊂ µs-cl(f−1(B))⊂ F. Then
by Theorem 3.6, f is quasi µs-open.
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Lemma 3.8. Let f : X → Y and g : Y → Z be two functions. Given that g o f : X
→ Z is quasi µs-open. If g is continuous injective, then f is quasi µs-open.

Proof: Let U be a µs-open set in X. Then (g o f )(U) is open in Z since g o f is
quasi µs-open. Again g is an injective continuous function, f (U) = g−1(g o f (U)) is
open in Y . This shows that f is quasi µs-open.

4 Quasi µs-Closed Functions

Definition 4.1. A function f : X → Y is said to be quasi µs-closed if the image of
each µs-closed set in X is closed in Y.

Clearly, every quasi µs-closed function is closed as well as µs-closed.

Remark 4.2. Every µs-closed (resp. closed) function need not be quasi µs-closed as
shown by the following example.

Example 4.3. Let X = Y = {a, b, c} with τ = {φ, {a, b}, X} and σ = {φ,{a},
{b, c}, Y}. Let f : (X, τ)→(Y, σ) by f(a)=b, f(b)=c and f(c)=a. Then clearly f is
µs-closed as well as closed but not quasi µs-closed.

Lemma 4.4. If a function f : X → Y is quasi µs-closed, then f−1(int(B)) ⊂ µs-
int(f−1(B)) for every subset B of Y.

Proof: This proof is similar to the proof of Lemma 3.3.

Theorem 4.5. A function f : X → Y is quasi µs-closed if and only if for any subset
B of Y and for any µs-open set G of X containing f−1(B), there exists an open set
U of Y containing B such that f−1(U) ⊂ G.

Proof: This proof is similar to that of Theorem 3.6.

Definition 4.6. A function f : X → Y is called µs*-closed if the image of every
µs-closed subset of X is µs-closed in Y.

Theorem 4.7. If f : X → Y and g : Y → Z are two quasi µs-closed functions, then
g o f: X → Z is a quasi µs-closed function.

Proof. Obvious.
Furthermore, we have the following theorem

Theorem 4.8. Let f : X → Y and g : Y → Z be any two functions. Then: (i) if f
is µs-closed and g is quasi µs-closed, then g o f is closed; (ii) if f is quasi µs-closed
and g is µs-closed, then g o f is µs* -closed; (iii) if f is µs* -closed and g is quasi
µs-closed, then g o f is quasi µs-closed.

Proof. Obvious.

Theorem 4.9. Let f : X → Y and g : Y → Z be two functions such that g o f :
X → Z is quasi µs-closed. Then: (i) if f is µs-irresolute surjective, then g is closed.
(ii) if g is µs-continuous injective, then f is µs*-closed.
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Proof: (i) Suppose that F is an arbitrary closed set in Y. As f is µs-irresolute,
f−1(F) is µs-closed in X. Since g o f is quasi µs-closed and f is surjective, (g o f(f−1(F)))
= g(F), which is closed in Z. This implies that g is a closed function. (ii) Suppose F
is any µs-closed set in X. Since g o f is quasi µs-closed, (g o f)(F) is closed in Z. Again
g is a µs-continuous injective function, g−1(g o f(F)) = f (F), which is µs-closed in
Y. This shows that f is µs*-closed.

Theorem 4.10. Let X and Y be topological spaces. Then the function g : X → Y
is a quasi µs-closed if and only if g(X) is closed in Y and g(V) \g(X \V) is open in
g(X) whenever V is µs-open in X.

Proof: Necessity: Suppose g : X → Y is a quasi µs-closed function. Since X is
µs-closed, g(X) is closed in Y and g(V) \g(X \V) = g(V) ∩ g(X) \g(X \V) is open
in g(X) when V is µs-open in X.
Sufficiency: Suppose g(X) is closed in Y, g(V) \g(X \V) is open in g(X) when V
is µs-open in X, and let C be closed in X. Then g(C) = g(X) \(g(X \C) \g(C)) is
closed in g(X) and hence, closed in Y.

Corollary 4.11. Let X and Y be topological spaces. Then a surjective function g :
X → Y is quasi µs-closed if and only if g(V) \g(X \V) is open in Y whenever V is
µs-open in X.

Proof: Obvious.

Corollary 4.12. Let X and Y be topological spaces and let g : X → Y be a µs-
continuous quasi µs-closed surjective function. Then the topology on Y is {g(V)
\g(X \V) : V is µs-open in X}.

Proof: Let W be open in Y. Then g−1(W) is µs-open in X, and g(g−1(W)) \g(X
\g−1(W)) = W. Hence, all open sets in Y are of the form g(V) \g(X \V), V is µs-open
in X. On the other hand, all sets of the form g(V) \g(X \V), V is µs-open in X, are
open in Y from Corollary 4.11.

Definition 4.13. A topological space (X, τ) is said to be µs*-normal if for any pair
of disjoint µs-closed subsets F1 and F2 of X, there exist disjoint open sets U and
V such that F1 ⊂ U and F2 ⊂ V.

Theorem 4.14. Let X and Y be topological spaces with X is µs*-normal. If g : X
→ Y is a µs-continuous quasi µs-closed surjective function, then Y is normal.

Proof: Let K and M be disjoint closed subsets of Y . Then g−1(K), g−1(M) are
disjoint µs-closed subsets of X. Since X is µs*-normal, there exist disjoint open sets
V and W such that g−1(K) ⊂ V and g−1(M) ⊂ W. Then K ⊂ g(V) \g (X \V) and
M ⊂ g(W) \g(X \W). Further by Corollary 4.11, g(V) \g(X \V) and g(W) \g(X
\W) are open sets in Y and clearly (g(V) \g(X \V)) ∩ (g(W) \g(X \W)) = φ. This
shows that Y is normal.
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1. Introduction  
    

Prabpayak and Leerawat [13,14] introduced a new algebraic structure which is called KU-

algebras. They studied ideals and congruences in KU-algebras. Also, they introduced the 

concept of homomorphism of KU-algebra and investigated some related properties. 

Moreover, they derived some straightforward consequences of the relations between 

quotient KU-algebras and isomorphism. Mostafa et. al. [10] introduced the notion of fuzzy 

KU-ideals of KU-algebras and then they investigated several basic properties which are 

related to fuzzy KU-ideals. The hyper structure theory (called also multi-algebras) is 

introduced in 1934 by Marty [9] at the 8th congress of Scandinvian Mathematiciens. 

Around the 40's, several authors worked on hyper groups, especially in France and in the 

United States, but also in Italy, Russia and Japan. Hyper structures have many applications 

to several sectors of both pure and applied sciences.  Jun and Xin [3,6] considered the 

fuzzification of the notion of a (weak, strong, reflexive) hyper BCK-ideal, and investigated 

the relations among them. Mostafa et. al.  [11] applied the hyper structures to KU- algebras 

and introduced the concept of a hyper KU-algebra which is a generalization of a KU-

algebra, and investigated some related properties. They also introduced the notion of a 
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hyper KU-ideal, a weak hyper KU-ideal and gave relations between hyper KU-ideals and 

weak hyper KU-ideals. In 1956, Zadeh [10] introduced the notion of fuzzy sets. At present 

this concept has been applied to many mathematical branches. There are several kinds of 

fuzzy sets extensions in the fuzzy set theory, for example, intuitionistic fuzzy sets, interval 

valued fuzzy sets, vague sets etc.[see 1,3.5,6,12]. Mostafa et al.[12 ] , stated and proved 

more several theorems of hyper KU-algebras and studied fuzzy set theory to the hyper KU-

sub algebras (ideals). Lee [8] introduced an extension of fuzzy sets named bipolar-valued 

fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership 

degree range is enlarged from the interval [0, 1] to [-1, 1]. The authors in [1, 2, 6 and 9], 

introduced bipolar-valued fuzzy set on different algebraic structures. In this paper, the 

bipolar fuzzy set theory to the ( s-weak-strong) hyper KU-ideals in hyper KU-algebras  are 

applied and discussed.  

 

 

2. Preliminaries 
 

Let H  be a nonempty set and }{\)()( φHPHP =∗   the family of the nonempty subsets of 

H . A multi valued operation (said also hyper operation) " o " on H  is a function, which 

associates with every pair  2),( HHHyx =×∈  a non empty subset of H  denoted yx o .An 

algebraic hyper structure or simply a hyper structure is a non empty set H  endowed with 

one or more hyper operations. 
 

Definition 2.1 [11,12]  Let H  be a nonempty set and " o " a hyper operation on H , such that 

)(: HPHH ∗→×o . Then H  is called a hyper KU-algebra if it contains a constant "0 " and 

satisfies the following axioms: for all Hzyx ∈,,  

 

yxzxzyHKU oooo <<)]()[()( 1  

{ }00)( 2 =oxHKU  

{ }xxHKU =o0)( 3  

yximpliesxyyxifHKU =<<<< ,)( 4  

 

where x << y is defined by xy o∈0  and for every HBA ⊆,  , BA <<  is defined by 

bathatsuchBbAa <<∈∃∈∀ , . In such case, we call “<<” the hyper order in H . 

 

We shall use the yx o  instead of }{yx o , yx o}{  or }{}{ yx o . Note if  HBA ⊆, , then by 

BA o   we mean the subset  Hofba
BbAa

U o
∈∈ ,

. 

 

Example 2.2. (A) Let }2,1,0{=H be a set. Define hyper operation o  on H  as follows: 

 

 

 

 

 

 

 
 

Then  )0,,( oH is a hyper KU-algebra. 

o  0 1 2 

0 { }0  { }1  { }2  

1 { }0  { }1,0  { }2,1  

2 { }0  { }1,0  }2,1,0{  
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In what follows, H denotes a hyper KU-algebra unless otherwise specified. 

 

Lemma   2.3. [11,12] For all HAandHyx ⊆∈,    

 

(i)   )()( xAyxyA oooo =   

(ii)   { }0)0( =xx oo  

 

Proposition 2.4. [12] In any hyper KU-algebra H,  { } Hxxx ∈∀=o0  
 

Theorem   2.5. [12] For all HCBAandHzyx ⊆∈ ,,,,  

 

      (i) xyzzyx <<⇒<< oo  

      (ii) yyx <<o  

      (iii) xx o0<<  

      (iv) CACBBA <<⇒<<<< ,  

      (v)  AAx <<o  

      (vi)  AxzzxA <<⇔<< oo . 

      (vii) CACBandBCACBA oooo <<<<⇒<<  

      (viii) AA o0<<  

      (ix)  xx o0∈  

      (x) 000 =⇔∈ xx o  

      (xi) { } 0=⇔= xxxx o  
 

Lemma 2.6. [11]  In hyper KU-algebra )0,,( oH  , we have   

 

                          )()( xzyxyz oooo =  for all Hzyx ∈,, . 
 

Definition2.7. [12]  Let S  be a non-empty subset of a hyper KU-algebra H . Then S  is 

said to be a hyper sub-algebra of H  if  2S : SyxSyx ∈∀⊆ ,,o  
 

Proposition 2.8. [12]    Let  S be a  non-empty  subset  of a  hyper  KU-algebra )0,,( oH . If y 

◦ x ⊆ S for all x, y ∈S, then 0 ∈S. 
 

Theorem 2.9. [12]  Let S be a non-empty  subset of a hyper KU-algebra  )0,,( oH . Then  S 

is a hyper subalgebra of H if and only if y ◦ x ⊆ S for all x, y ∈S. 
 

Definition 2.10 [11]. Let I  be a non-empty subset of a hyper KU-algebra H and I∈0 . 

Then 

 

 (1)  I  is said to be a weak hyper KU- ideal of H  if Izyx ⊆)( oo and Ix ∈   

       imply Izy ∈o , for all Hzyx ∈,, , 

(2) I  is said to be hyper KU-ideal of H if  Izyx <<)( oo  and Ix ∈ imply Izy ∈o ,  

      for all Hzyx ∈,,  

(3) I  is said a strong hyper KU-ideal of H if Φ≠∩ Izyx )( oo  and Ix ∈ imply 

      Izy ∈o  , for all Hzyx ∈,, . 

(4) I is said to be reflexive if Ixx ⊆o  for all Hx ∈ . 
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Definition 2.11. [11]. Let A  be a non-empty subset of a hyper KU-algebra H . Then A  is 

said to be a hyper ideal of H  if 

 

( 1HI ) A∈0 , 

( 2HI ) Axy <<o and Ay ∈  imply Ax ∈  for all Hyx ∈, . 

 
Definition 2.12. [11] A non-empty set A  of a hyper KU-algebra H  is called a distributive 

hyper ideal if it satisfies ( 1HI ) and 

 

 ( 3HI )  Axzzyz <<))(()( oooo  and Ay ∈  imply Ax ∈ . 
 

Definition 2.13. [11,12] Let I  be a non-empty subset of a hyper KU-algebra H  and I∈0 . 

Then, 

 

(1) I  is called a weak hyper ideal of H  if Ixy ⊆o and Iy ∈  imply that Ix ∈ ,   

      for all Hyx ∈, . 

( 2) I is called  a strong  hyper  ideal  of H   if φ≠Ixy Io )(  and Iy ∈  imply that  

      Ix ∈ , for all Hyx ∈, . 
 

Lemma 2.14. [12] Let A be a subset of a hyper  KU -algebra H . If I is a hyper  ideal  of H  

such that A ≪ I then A ⊆ I . 
 

Lemma 2.15. [12]  In hyper KU-algebra )0,,( oH  , we have  : 

 

(i) Any strong hyper KU- ideal of H is a hyper ideal of H. 

(ii) Any weak hyper KU-ideal of H is a weak ideal of H. 
 

Definition2.7. [8] A bipolar valued fuzzy subset Β  in a nonempty set X  is an object 

having the form ),,(
NP

H ΦΦ= µµφ where ]0,1[: −→XNµ and ]1,0[: →XPµ are 

mappings. The positive membership degree )(xPµ denotes the satisfaction degree of an 

element x to the property corresponding to a bipolar-valued fuzzy set ),,(
NP

H ΦΦ= µµφ , 

and the negative membership degree )(xNµ denotes the satisfaction degree of x to some 

implicit counter-property of a bipolar-valued fuzzy set ),,(
NP

H ΦΦ= µµφ . For simplicity, 

we shall use the symbol ),(
NP

ΦΦ= µµφ  for bipolar fuzzy set ),,(
NP

H ΦΦ= µµφ , and 

use the notion of bipolar fuzzy sets instead of the notion of bipolar-valued fuzzy sets. 

 

 

3. Bipolar Fuzzy hyper KU – subalgebras (ideals) 
 

Now some fuzzy logic concepts are reviewed .A fuzzy set µ  in a set H  is a function 

]1,0[: →Hµ .  A fuzzy set µ  in a set H  is said to satisfy the inf (resp. sup) property if for 

any subset T  of H there exists Tx ∈0 such that )(inf)( 0 xx
Tx

µµ
∈

= (resp. )(sup)( 0 xx
Tx

µµ
∈

= ).  

Definition 3.1. A fuzzy set ),,(
NP

H ΦΦ= µµφ  in H is said to be bipolar fuzzy hyper KU-

subalgebra of H if it satisfies the following inequalities: 
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(1) { })(),(min)(inf yxz
PPP

yxz
ΦΦΦ

∈
≥ µµµ

o
. 

(2) { })(),(max)(sup yxw
NNN

yxw
ΦΦΦ

∈

≤ µµµ
o

Hyx ∈∀ , . 

  

Proposition 3.2. Let ),,(
NP

H ΦΦ= µµφ  be a bipolar fuzzy hyper  KU-sub-algebra of H. 

Then   )()0()()0( xandx
NNPP

ΦΦΦΦ ≤≥ µµµµ    for all Hx ∈∀  

 

Proof. Using Proposition 2.5  (xi)  , we see that 0 ∈ x ◦ x for all x ∈H . Hence 

 

 

{ } )()(),(min)0(inf
0

xxx
PPPP

xx
ΦΦΦΦ

∈
=≥ µµµµ

o
 

 

and 

   

{ } )()(),(max)0(sup
0

xxx
NNNN

xx
ΦΦΦΦ

∈

=≤ µµµµ
o

  for all x ∈H . 

 

 

Example 3.3 .Let }3,2,1,0{=H be a set. The hyper operations oon H  are defined as 

follows. 

 

 

 

 

 

         

 

 

 

Then  )0,,( oH is a hyper KU-algebra. Define   ]0,1[: −→XNµ and ]1,0[: →XPµ  by 

 
 

 0 1 2 3 
Nµ  -0.7 -0.7 0.6 0.4 

Pµ  0.6 0.5 0.3 0.3 

 

By routine calculations, we know that ),,( PNH µµ=Φ is bipolar fuzzy hyper  sub-algebra 

of H . 
 

Definition 3.4. For a “hyper KU-algebra” H , a “a bipolar fuzzy set” ),,(
NP

H ΦΦ= µµφ  

in H is called: 

 

• BHFI:  Bipolar fuzzy hyper ideal of H  ,if   

            

)()(),()(:1 yxyximpliesyxF
NNPP

ΦΦΦΦ ≤≥<< µµµµ  

 

and 

2o  0 1 2 3 

0 {0} {1} {2} {3} 

1 {0} {0} {1} {3} 

2 {0} {0} {0,1} {0,3} 

3 {0} {0} {1} {0,3} 
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{ })(),(infmin)(:
)((

2 yuzF
PP

zyu

P

ΦΦ
∈

Φ ≥ µµµµ
o

 

 









≤ ΦΦ
∈

Φ )(),(supmax)(:
)((

3 ywwF
NN

zyw

N
µµµ

o

 

 

• B FWH :Bipolar fuzzy weak hyper ideal of H if, for any  y; z ∈  H   

 

 

{ })(),(infmin)()0(
)(

yuz
PP

zyu

PP

ΦΦ
∈

ΦΦ ≥≥ µµµµ
o

 

 

and 

 









≤≤ ΦΦ
∈

ΦΦ )(),(supmax)()0(
)(

yww
NN

zyw

NN
µµµµ

o

 

 

 

• B FS H : Bipolar fuzzy strong  hyper ideal of H if, for any y; z ∈  H    

 

 

          








≥≥ ΦΦ
∈

ΦΦ
∈

)(),(supmin)()(inf
)()(

yuzu
PP

zyu

PP

zyu
µµµµ

oo
  

 

and 

       

{ })(),(infmax)()(sup
)()(

ywzw
NN

zyw

NN

zyw
ΦΦ

∈
ΦΦ

∈

≤≤ µµµµ
oo

 

 

 

Definition 3.5.  For a “hyper KU-algebra” H  , a “bipolar fuzzy set” ),,(
NP

H ΦΦ= µµφ  in 

H  is called : 

 

(I)  Bipolar fuzzy hyper KU-ideal of H  ,if      

 

)()(),()( yxyximpliesyx
NNPP

ΦΦΦΦ ≤≥<< µµµµ , 

{ })(,)(infmin)(
)((

yuzx
PP

zyxu

P

ΦΦ
∈

Φ ≥ µµµ
oo

o  

and 









≤ ΦΦ
∈

Φ )(,)(supmax)(
)((

ywzx
NN

zyxw

N
µµµ

oo

o  

 

 

(II) Bipolar fuzzy weak hyper KU-ideal of H , if for any x; y; z ∈  H  

 

 

{ })(),(infmin)()0(
)((

yuzx
PP

zyxu

PP

ΦΦ
∈

ΦΦ ≥≥ µµµµ
oo

o  
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and  

 









≤≤ ΦΦ
∈

ΦΦ )(),(supmax)()0(
)((

ywzx
NN

zyxw

NN
µµµµ

oo

o  

 

(III) Bipolar fuzzy strong  hyper KU-ideal of H  if, for any x; y; z ∈  H  

 









≥≥ ΦΦ
∈

ΦΦ
∈

)(),(supmin)()(inf
)()(

yuzxu
PP

zyxu

PP

zyxu
µµµµ

oooo
o  

 

and 

 

{ })(),(infmax)()(sup
)()(

ywzxw
NN

zyxw

NN

zyxw
ΦΦ

∈
ΦΦ

∈

≤≤ µµµµ
oooo

o  

 

 
Example 3.6. (1) Consider the hyper KU -algebra in Example 2.2. Define  bipolar fuzzy set 

),,(
NP

H ΦΦ= µµφ  in H by 

 

 

 0 1 2 
Nµ  - 0.7 - 0.7 - 0.6 

Pµ  1 0.5 0 

 

 

Then we can see that ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy( bipolar fuzzy weak) hyper KU  

-ideal of H.  

 
Example 3.7.  Consider the hyper KU -algebra H  

 

 

 

 

 

Define bipolar fuzzy set ),,(
NP

H ΦΦ= µµφ  in H by 

 

 

 0 1 2 
Nµ  - 0.8 - 0.6 - 0.2 

Pµ  0.9 0.5 0.3 

 

o  0 1 2 

0 { }0  { }1  { }2  

1 { }0  { }0  { }2  

2 { }0  { }1  { }2,0  
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It is easily verified that ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy strong  hyper KU -ideal of H . 
 

Theorem 3.8. Any bipolar fuzzy (weak, strong) hyper KU-ideal is a bipolar fuzzy (weak, 

strong) hyper ideal. 

 

Proof. Let ),,(
NP

H ΦΦ= µµφ be a bipolar fuzzy weak hyper KU-ideal of H, we get for 

any x; y; z ∈  H 

 

  { })(),(infmin)()0(
)(

yuzx
PP

zyxu

PP

ΦΦ
∈

ΦΦ ≥≥ µµµµ
oo

o            (a) 

 









≤≤ ΦΦ
∈

ΦΦ )(,)(supmax)()0(
)((

ywzx
NN

zyxw

NN
µµµµ

oo

o  (b)  

 

Put  x = 0 in (a) and (b) , we get 

 

{ }⇒≥≥ ΦΦ
∈

ΦΦ )(,)(infmin)0()0(
)(0

yuz
PP

zyu

PP
µµµµ

oo
o  

{ })(,)(infmin)()0(
)(

yuz
PP

zyu

PP

ΦΦ
∈

ΦΦ ≥≥ µµµµ
o

 

 

and 

⇒








≤≤ ΦΦ
∈

ΦΦ )(,)(supmax)0()0(
)(0

ywz
NN

zyw

NN
µµµµ

oo

o









≤≤ ΦΦ
∈

ΦΦ )(,)(supmax)()0(
)(

ywz
NN

zyw

NN
µµµµ

o

. 

 

Similarly we can prove  that , every bipolar fuzzy strong hyper KU-ideal of H is bipolar 

fuzzy strong hyper ideal of H. Ending the proof.  

 

Definition 3.9. A bipolar fuzzy set ),,(
NP

H ΦΦ= µµφ  in H is called bipolar fuzzy s-weak 

hyper KU-ideal of H if 

 

(i) )()0(),()0( xx
NNPP

ΦΦΦΦ ≤≥ µµµµ  , Hx ∈∀  

(ii) for every Hzyx ∈,,   there exists )(, zyxba oo∈ such that  

 

{ })(),(min)( yazx
PPP

ΦΦΦ ≥ µµµ o  and { })(),(max)( ybzx
NNN

ΦΦΦ ≤ µµµ o  

 

Theorem 3.10. Every bipolar fuzzy s- weak hyper KU-ideal of H is  bipolar fuzzy weak 

hyper KU-ideal of H.   

 

Proof. Let ),,(
NP

H ΦΦ= µµφ be a bipolar fuzzy s-weak hyper KU-ideal of H, and let x; y; 

z ∈  H ,then there exist )(, zyxba oo∈  such that 

 

{ })(),(min)( yazx
PPP

ΦΦΦ ≥ µµµ o  and { })(),(max)( ybzx
NNN

ΦΦΦ ≤ µµµ o  
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Since )(inf)0(
)(

c
P

zyc

P

Φ
∈

Φ ≥ µµ
o

and   )(sup)0(
)(

d
N

zyd

N

Φ
∈

Φ ≤ µµ
o

 , it follows that    

 

{ })(,)(infmin)(
)(

yczx
PP

zyxc

P

ΦΦ
∈

Φ ≥ µµµ
oo

o  

 

and      

                                                            









≤ ΦΦ
∈

Φ )(,)(supmax)(
)(

ydzx
NN

zyxd

N
µµµ

oo

o . 

 

Hence ),,(
NP

H ΦΦ= µµφ is a bipolar fuzzy weak hyper KU-ideal of H 

 

Proposition 3.11. If ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy weak hyper KU-ideal of H. 

satisfying the inf-sup property, then ),,(
NP

H ΦΦ= µµφ  is a bipolar fuzzy s-weak hyper 

KU -ideal of H. 

 

Proof. Since ),,(
NP

H ΦΦ= µµφ satisfies the inf-sup property, there exists  

)(, 00 zyxba oo∈ , such that )(inf)(
)(

0 aa
P

zyxa

P

Φ
∈

Φ = µµ
oo

and )(sup)(
)(

0 bb
N

zyxb

N

Φ
∈

Φ = µµ
oo

. i.e  

 

)(inf)(
)(

aa
P

zyxa

P

Φ
∈

Φ ≥ µµ
oo

 and  )(sup)(
)(

bb
N

zyxb

N

Φ
∈

Φ ≤ µµ
oo

 

 

It follows that    

 

 

{ } { })(,)(min)(,)(infmin)(
)(

yayazx
PPPP

zyxa

P

ΦΦΦΦ
∈

Φ ≥≥ µµµµµ
oo

o  

 

and 

 

{ })(,)(max)(,)(supmax)(
)(

ybybzx
NNNN

zyxb

N

ΦΦΦΦ
∈

Φ ≤








≤ µµµµµ
oo

o . 

 

For every )(, zyxba oo∈ .Hence ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy s-weak hyper KU -

ideal of H. Ending the proof.  
 

Proposition 3.12. Let ),,(
NP

H ΦΦ= µµφ  be bipolar fuzzy strong hyper KU-ideal of H and 

let x; y; z ∈  H .Then 

 

(i) )()0(),()0( xx
NNPP

ΦΦΦΦ ≤≥ µµµµ  , Hx ∈∀   

(ii) )()()()( yxandyxyx
NNPP

ΦΦΦΦ ≤≥⇒<< µµµµ  . 

(iii) { } )(,)(),(min)( zyxayazx
PPP

ooo ∈∀≥ ΦΦΦ µµµ , 
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       { } )(,)(),(max)( zyxbybzx
NNN

ooo ∈∀≤ ΦΦΦ µµµ  

 

Proof.  (i) Since Hxxx ∈∀∈ o0   ,we have  

 

)()(inf)0( xa
PP

xxa

P

ΦΦ
∈

Φ ≥≥ µµµ
o

, )()(sup)0( xa
NN

xxa

N

ΦΦ
∈

Φ ≤≤ µµµ
o

. 

 

Which  proves  (i). 

  

(ii) Let x; y∈  H be such that yx <<  . Then  Hyxxy ∈∀∈ ,0 o  and so  

 

)0()(sup
)(

PP

xyb

b ΦΦ
∈

≥ µµ
o

, )0()(inf
)(

NN

xyw
w ΦΦ

∈
≤ µµ

o
 

 

It follows from (i) that   

 

{ } )()(),0(min)(,)(supmin)()0( yyyaxx
PPPPP

xya

PP

ΦΦΦΦΦ
∈

ΦΦ =≥








≥= µµµµµµµ
o

o  

 

and 

 

{ } { } )()(),0(max)(,)(infmax)()0( yyyaxx
PPPPP

xya

PN

ΦΦΦΦΦ
∈

ΦΦ =≤≤= µµµµµµµ
o

o  

 

(iii)  { } )(,)(),(min)(),(supmin)(
)(

zyxayayazx
PPPP

zyxa

P
ooo

oo

∈∀≥








≥ ΦΦΦΦ
∈

Φ µµµµµ   

 

and 

 

{ } { } )(,)(),(max)(),(infmax)(
)(

zyxbybybzx
NNNN

zyxb

N
ooo

oo
∈∀≤≤ ΦΦΦΦ

∈
Φ µµµµµ  

 

we conclude that (iii) is true. Ending the proof.  

 

Note that, in a finite hyper KU-algebra, every bipolar fuzzy set satisfies inf -sup 

property.Hence the concept of bipolar fuzzy weak hyper KU -ideals and bipolar fuzzy s-

weak hyper KU-ideals coincide in a finite hyper  KU -algebra. 

 

Proposition 3.13 . Let ),,(
NP

H ΦΦ= µµφ be a bipolar fuzzy hyper KU-ideal of H, then: 

 

)()0(),()0( xx
NNPP

ΦΦΦΦ ≤≥ µµµµ , If  ),,(
NP

H ΦΦ= µµφ  

 

satisfies the inf-sup property , then 

 

{ })(,)(min)( yazx
PPP

ΦΦΦ ≥ µµµ o  and { })(,)(max)( ybzx
NNN

ΦΦΦ ≤ µµµ o  

  

for every )(, zyxba oo∈ . 
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Proof. Since x<<0   Hx ∈∀  , it follows from Definition 3.5. (I) 

that )()0()()0( xandx
NNPP

ΦΦΦΦ ≤≥ µµµµ  

 

Since ),,(
NP

H ΦΦ= µµφ satisfies the inf-sup property there exists  )(, 00 zyxba oo∈ , such 

that )(inf)(
)(

0 aa
P

zyxa

P

Φ
∈

Φ = µµ
oo

and )(sup)(
)(

0 bb
N

zyxb

N

Φ
∈

Φ = µµ
oo

. Hence 

 

 

{ } { })(,)(min)(,)(infmin)( 0
)(

yayazx
PPPP

zyxa

P

ΦΦΦΦ
∈

Φ ≥≥ µµµµµ
oo

o  

 

 

{ })(,)(max)(,)(supmax)( 0
)(

ybybzx
NNNN

zyxb

N

ΦΦΦΦ
∈

Φ ≤








≤ µµµµµ
oo

o  

 
Corollary 3.14. (1) Every bipolar fuzzy hyper KU-ideal is a bipolar fuzzy weak hyper KU-

ideal. 

(2) If  ),,(
NP

H ΦΦ= µµφ  bipolar fuzzy hyper KU-ideal satisfies the inf-sup property , 

then ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy s-weak hyper KU -ideal of H.  
  

Theorem3.15. Let ),,(
NP

H ΦΦ= µµφ be bipolar fuzzy set ,then ),,(
NP

H ΦΦ= µµφ                                     

is bipolar fuzzy weak hyper KU -ideal of H   if and only if  the  positive level set P

tΦ  and 

negative level set N

sΦ  for every ]0,1[]1,0[),( −×∈βα , are weak hyper KU -ideal of H, 

where the sets })(:{ sxHx
NN

s ≤∈=Φ µ and })(:{ txHx
P

t ≥∈=Φ +µ  are called the 

negative level set and the positive level set of ),,(
NP

H ΦΦ= µµφ , respectively. 

 

Proof. Assume that ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy weak hyper KU -ideal of H and 
N

s

P

t Φ≠Φ≠Φ  for every ]0,1[]1,0[),( −×∈βα . It clear from   

 

 { })(),(infmin)()0(
)(

yuzx
PP

zyxu

PP

ΦΦ
∈

ΦΦ ≥≥ µµµµ
oo

o                                          (a) 

 









≤≤ ΦΦ
∈

ΦΦ )(,)(supmax)()0(
)((

ywzx
NN

zyxw

NN
µµµµ

oo

o                                (b) 

 

That N

s

P

t ΦΦ∈ I0 . Let x; y; z ∈  H be such that P

tzyx Φ⊆)( oo and P

ty Φ∈ . 

   

Then for any P

tazyxa Φ∈∈ ),( oo .It follows that αµ ≥Φ )(a
P

 so  that αµ ≥Φ
∈

)(inf
)(

a
P

zyxa oo
, 

thus { } αµµµ ≥≥ ΦΦ
∈

Φ )(),(infmin)(
)(

yazx
PP

zyxa

P

oo
o and so P

tzx Φ⊆o , there for P

tΦ  is 

weak hyper KU -ideal of H.  

 

Now let x; y; z ∈  H be such that N

szyx Φ⊆)( oo and N

sy Φ∈ . Then for any 

N

tsbzyxb Φ∈∈ ),( oo .It follows that βµ ≤Φ )(b
N

, so that βµ ≤Φ
∈

)(sup
)(

b
N

zyxb oo

. Using  
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αµµµ ≤








≤ ΦΦ
∈

Φ )(,)(supmax)(
)((

ywzx
NN

zyxw

N

oo

o , which implies that N

szx Φ⊆o . 

Consequently N

sΦ  is weak hyper KU -ideal of H. 
 

Theorem 3.16 . Let ),,(
NP

H ΦΦ= µµφ be bipolar fuzzy set ,then ),,(
NP

H ΦΦ= µµφ                                     

is bipolar fuzzy  hyper KU -ideal of H   if and only if  the  positive level set P

tΦ  and 

negative level set N

sΦ  for every ]0,1[]1,0[),( −×∈βα , are hyper KU -ideal of H  .  

 

Proof. Assume that ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy hyper KU -ideal of H and 
N

s

P

t Φ≠Φ≠Φ  for every ]0,1[]1,0[),( −×∈βα . It clear that N

s

P

t ΦΦ∈ I0 . Let x; y; z ∈  H be 

such that P

tzyx Φ⊆)( oo and P

ty Φ∈ . 

 

Then for any P

tazyxa Φ∈∈ ),( oo .It follows that αµ ≥Φ )(a
P

 so that αµ ≥Φ
∈

)(inf
)(

a
P

zyxa oo
, 

thus { } αµµµ ≥≥ ΦΦ
∈

Φ )(),(infmin)(
)(

yazx
PP

zyxa

P

oo
o and so P

tzx Φ⊆o , there for P

tΦ  is 

hyper KU -ideal of H  .  

 

Now let x; y; z ∈  H be such that N

szyx Φ⊆)( oo and N

sy Φ∈ . Then for any 

N

tsbzyxb Φ∈∈ ),( oo .It follows that βµ ≤Φ )(b
N

, so that βµ ≤Φ
∈

)(sup
)(

b
N

zyxb oo

. Using  

βµµµ ≤








≤ ΦΦ
∈

Φ )(,)(supmax)(
)((

ywzx
NN

zyxw

N

oo

o , which implies that N

szx Φ⊆o .  

 

Consequently N

sΦ  is  hyper KU -ideal of H. 

 

Conversely, suppose that the nonempty positive and negative level sets P

tΦ , N

sΦ are is  

hyper KU -ideals of H for every ]0,1[]1,0[),( −×∈βα . Let 

 

αµ =Φ )(x
P

,  βµ =Φ )(x
N

for  Hx ∈ , then by  P

tΦ∈0   , N

sΦ∈0 , It follows that. 

αµ ≥Φ )0(
P

, βµ ≤Φ )0(
N

and so )()0()()0( xandx
NNPP

ΦΦΦΦ ≤≥ µµµµ . Now let 

 

{ } αµµ =ΦΦ
∈

)(),(infmin
)(

ya
PP

zyxa oo
 and βµµ =









ΦΦ
∈

)(,)(supmax
)((

yw
NN

zyxw oo

 

 

Note that, in a finite hyper KU-algebra, every bipolar fuzzy set satisfies inf -sup property. 

Hence the concept of bipolar fuzzy weak hyper KU -ideals and bipolar fuzzy s-weak hyper 

KU-ideals coincide in a finite hyper  KU -algebra. 
 

Corollary e 3.17. Every bipolar fuzzy strong hyper KU-ideal is both a bipolar fuzzy s-weak 

hyper KU-ideal (a bipolar fuzzy weak hyper ideal) and bipolar fuzzy hyper  KU -ideal. 

 

Proof. Straight forward.  
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Proposition 3.18. Let Let ),,(
NP

H ΦΦ= µµφ  be bipolar fuzzy hyper KU -ideal of H and 

let Hzyx ∈,, . Then 

 

(i) )()0(),()0( xx
NNPP

ΦΦΦΦ ≤≥ µµµµ  

(ii) if ),,(
NP

H ΦΦ= µµφ  satisfies the  inf - sup property, then  

 

{ } )(,)(,)(min)( zyxasomeforyazx
PPP

ooo ∈≥ ΦΦΦ µµµ  

 

and 

 

{ } )(,)(,)(max)( zyxwsomeforywzx
NNN

ooo ∈≤ ΦΦΦ µµµ  

 

 

Proof.  (i)  Since 0 << x for each Hx ∈ ; we have )()0(),()0( xx
NNPP

ΦΦΦΦ ≤≥ µµµµ  

by Definition 3.11(i) and hence (i) holds. 

 

(ii) Since ),,(
NP

H ΦΦ= µµφ  satisfies the inf-sup property, there is 

)(, 00 zyxwa oo∈ ,such that )(inf)(
)(

0 aa
zyxa

µµ
oo∈

=  and )(sup)(
)(

0 ww
zyxw

µµ
oo∈

= . Hence 

 

{ } { })(,)(min)(,)(infmin)( 0
)(

yayazx
PPPP

zyxa

P

ΦΦΦΦ
∈

Φ =≥ µµµµµ
oo

o  

 

{ })(,)(min)(,)(supmax)( 0
)(

ywywzx
NNNN

zyxw

N

ΦΦΦΦ
∈

Φ =








≤ µµµµµ
oo

o  

 

which implies that (ii) is true. The proof is complete. 

  

Corollary 3.19. (i) Every bipolar fuzzy hyper KU -ideal of H is bipolar fuzzy weak hyper 

KU -idealof H. 

(ii) If ),,(
NP

H ΦΦ= µµφ is bipolar fuzzy hyper KU -ideal of H satisfying inf –sup 

property, then ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy s-weak Hyper  KU -ideal of H. 

 

Proof. Straightforward.  

 

The following example shows that the converse of Corollary 3.17   and 3.19 (i) may not be 

true. 
 

Example 3.20. (1) Consider the hyper KU -algebra H  

 

 

 

Define bipolar fuzzy set µ  in H by 

o  0 1 2 

0 { }0  { }1  { }2  

1 { }0  { }1,0  { }2,1  

2 { }0  { }1,0  { }2,1,0  
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 0 1 2 
Nµ  - 0.7 - 0.7 - 0.6 

Pµ  1 0.5 0 

 

Then we can see that ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy hyper KU -ideal of H. and hence 

it is also bipolar fuzzy weak hyper  KU -ideal of H. But ),,(
NP

H ΦΦ= µµφ  is not bipolar 

fuzzy strong hyper  KU -ideal of H since 

 

{ } )21(0),2(0
2

1)1(),1(min)(),(supmin
)21(0

oo
oo

∈∀=≥=≥








ΦΦΦΦΦ
∈

aya
PPPPP

a

µµµµµ  

 

(2) Consider the hyper KU-algebra H in Example 3.14. Define bipolar fuzzy set 

),,(
NP

H ΦΦ= µµφ  in H by 

 

  

 

 

              

 

Then ),,(
NP

H ΦΦ= µµφ   is bipolar fuzzy weak hyper  KU-ideal of H but it is not a 

bipolar fuzzy hyper KU-ideal of H  since 1 << 2 but   )2(/)1(
PP

ΦΦ ≥ µµ  .  
  

Theorem 3.21. If  ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy strong hyper KU-ideal of H , then 

the set { }sxtxHx
NP

st ≤≥∈= Φ )(,)(,, µµµ   is a strong hyper KU-ideal of H ,when 

]1,0[,, ∈Φ≠ tforstµ , ]0,1[−∈s . 

 

Proof. Let ),,(
NP

H ΦΦ= µµφ  be a fuzzy strong hyper KU-ideal of H  and 

]1,0[,, ∈Φ≠ tforstµ . ]0,1[−∈s .Then there stba ,, µ∈   and so sbta NP
≤≥Φ )(,)( µµ  .   By 

Proposition 3.12 (i), sbta
NNPP

≤≤≥≥ ΦΦΦΦ )()0(,)()0( µµµµ  and so st ,0 µ∈ .  

 

Let Hzyx ∈,,   such that stst yandzyx ,,)( µµ ∈Φ≠∩oo . Then there exist   

henceandzyxba st ,00 )(, µ∩∈ oo sbta
NP

≤≥Φ )(,)( 00 µµ . By definition 3.5 (iii), we have  

 

{ } { } tttyayazx
PPP

zyxa

P
=≥≥









≥ ΦΦΦ
∈

Φ ,min)(),(min)(),(supmin)( 0
)(

µµµµµ
oo

o  

 

and  

 

{ } { } { } sssybyazx
NNNN

zyxa

N
=≤≤≤ ΦΦΦΦ

∈
Φ ,max)(),(max)(),(infmax)( 0

)(
µµµµµ

oo
o  

 

So stzx ,)( µ∈o .  It follows that st ,µ   is a strong hyper KU -ideal of H . 

 0 1 2 
N

Φµ  - 0.7 - 0.7 - 0.6 

P

Φµ  1 0 0.5 
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Theorem 3.22. Let  ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy in H  satisfying the inf- sup 

property,. If the set { } Φ≠≤≥∈= Φ sxtxHx
NP

st )(,)(,, µµµ is a strong hyper KU -ideal of 

H for all ]1,0[∈t . ]0,1[−∈s  , then ),,(
NP

H ΦΦ= µµφ  is bipolar fuzzy strong hyper 

KU-ideal of H . 

 

Proof. Assume that Φ≠st ,µ is a strong hyper KU-ideal of H for all ]1,0[∈t . ]0,1[−∈s . 

Then there is stx ,µ∈  such that stxxx ,µ∈<<o .Using Proposition 2.8, we have 

stxx ,µ⊆o . Thus for stbahavewexxba ,,,, µ∈∈ o and hence sbta NP
≤≥Φ )(,)( µµ . 

It follows that )()(inf
)(

xta
PP

zyxa
ΦΦ

∈
=≥ µµ

oo
 and )()(sup

)(

xsb
NN

zyxb
ΦΦ

∈

=≤ µµ
oo

. Moreover let 

Hzyx ∈,, and βαµ ′′, , where   

 









=′
ΦΦ

∈

)(),(supmin
)(

ya
PP

zyxa

µµα
oo

 , { }})(),(infmax
)(

yb
NN

zyxb
ΦΦ

∈
=′ µµβ

oo
 

 

By hypothesis βαµ ′′,  is a strong hyper KU-ideal of H. 

 

Since  ),,(
NP

H ΦΦ= µµφ  satisfies the inf-sup property there is )(, 00 zyxba oo∈ ,such 

that )(sup)(
)(

0 aa
P

zyxa

P

Φ
∈

Φ = µµ
oo

, )(inf)(
)(

0 bb
P

zyxb

N

Φ
∈

Φ = µµ
oo

. Thus  

 

αµµµµ ′=








≥= ΦΦ
∈

Φ
∈

Φ )(),(supmin)(sup)(
)()(

0 yaaa
PP

zyxa

P

zyxa

P

oooo

 

 

and  

{ } βµµµµ ′=≤= ΦΦ
∈

Φ
∈

Φ )(),(infmax)(inf)(
)()(

0 ybbb
NN

zyxb

N

zyxb

N

oooo
 

 

 

This shows that βαµ ′′∈ ,00 ,ba , βαµ ′′∩∈ ,00 )(, zyxba oo  and hence  Φ≠∩ ′′ βαµ ,)( zyx oo . 

Combining βαµ ′′∈ ,y  and  noticing that any bipolar fuzzy (weak, strong) hyper KU-ideal is 

a bipolar fuzzy (weak, strong) hyper ideal., we get βαµ ′′∈ ,zx o . Hence  

 









≥ ΦΦ
∈

Φ )(),(supmin)(
)(

yazx
PP

zyxa

P
µµµ

oo

o , { })(),(infmax)(
)(

ybzx
NN

zyxb

N

ΦΦ
∈

Φ ≤ µµµ
oo

o  

 

Therefore ),,(
NP

H ΦΦ= µµφ  is bipolar  fuzzy strong hyper K U-ideal of H. 
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4. Conclusion 

 

In the present work the bipolar fuzzy hyper structure in KU-algebras is introduced .The 

concepts of bipolar fuzzy weakly ( s-weakly  strong) hyper KU-ideals and bipolar fuzzy 

hyper weakly ( s-weakly  strong) hyper KU-ideals are studied and their properties are 

characterized.  

 

The main purpose of our future work is to investigate the following: 

 

• bipolar fuzzy folding theory applied to some types of positive implicative hyper 

KU-ideals in hyper KU-algebras 

• On bipolar fuzzy strong implicative hyper ku-ideals of hyper KU-algebras. 

• On bipolar fuzzy positive implicative hyper KU-ideals. 

• Super Implicative hyper KU-Algebras. 

• bipolar Intuitionistic fuzziness of strong hyperKU-ideals. 

• bipolar fuzzy filter theory on hyper KU-algebras. 

• On Intuitionistic Fuzzy Implicative Hyper KU-Ideals of Hyper KU-algebras. 

• On intuitionistic fuzzy commutative hyper KU-ideals. 

• On interval-valued intuitionistic fuzzy Hyper KU-ideals of hyper KU- algebras. 

• On cubic Implicative Hyper KU-Ideals of Hyper KU-algebras . 
 

 

Algorithm for hyper KU-algebras  
 

Input ( :X set, ohyper operation) 

Output (“ X is a hyper KU-algebra or not”) 

Begin 

If φ=X  then go to (1.); 

End If 

If X∉0  then go to (1.); 

End If 

Stop: =false; 

1:=i ; 

While Xi ≤  and not (Stop) do 

If ii xx o∉0  then 

Stop: = true; 

End If 

1:=j  



Journal of New Theory 15 (2017) 81-98                                                                                                                  
 

97

While Xj ≤  and not (Stop) do 

If )(0 iji xyx oo∉ or  andyx ji o∈0 )(0 ij xy o∈ and ji yx ≠ ,then 

Stop: = true; 

End If 

End If 

1:=k  

While Xk ≤  and not (Stop) do 

If ))()(()(0 kikjji zxzyyx ∗∗∗∉ oo  then  

Stop: = true; 

     End If 

   End While 

 End While 

End While 

If Stop then  

    Output (“ X is not hyper KU-algebra”) 

Else  

   Output (“ X is hyper KU-algebra”) 

     End If 

End. 
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