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PROPERTIES AND APPLICATIONS OF θg*α-CLOSED
SETS IN TOPOLOGICAL SPACES
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Velusamy Banupriya2

Jeyaraman Suresh Kumar3
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1Department of Mathematics, Arignar Anna Government Arts College, Namakkal (DT),
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2Department of Mathematics, RMK College of Engineering and Technology, Puduvoyal,
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3Department of Mathematics,Muthayammal Engineering College,Rasipuram, Namakkal (DT),
Tamil Nadu, India

Abstaract − In this paper we discussed properties and applications of θg*α-closed sets. θg*α-
closed sets is introduced by Chandrasekar et al. Moreover we analyze some basic properties and
applications of neighbourhoods, limit points, border, frontier and exterior of θg*α-closed sets.

Keywords − θg*α-closed sets, θg*α-neighbourhoods, θg*α-limit points, θg*α-border, θg*α-frontier,
θg*α-exterior.

1 Introduction

The concepts of θ-closed set, δ-closed set, first introduced by Velicko [16]. θ-closed
set have been studied intensively by many authors. Since the advent of these notions,
several researches have been done which produced interesting results. θg-closed set
introduced by Dontchev and Maki [7] in 1999. In 1965 Njastad [9] introduced α-
open sets. In [3], θg*α closed set introduced by Chandrasekar et al. In this paper,
we discussed properies and applications of θg*α-neighbourhoods, θg*α-limit points,
θg*α- border, θg*α-frontier and θg*α-exterior.

2 Preliminary

Let us recall the following definition, which are useful in the sequel.

*Corresponding Author.
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Definition 2.1. A subset A of a space (X, τ) is called:

1. α- closed set [9] if cl(int(cl(A))) ⊆ A

2. θ-closed [16] if A = clθ(A), where clθ(A) = {x∈X : cl(G) ∩ A6=φ,G∈τ and
x∈G}

3. a generalized closed (briefly, g-closed) set [8] if cl(A) ⊆ G whenever A ⊆ Gand
G is open in (X, τ).

4. a θ-generalized closed (briefly, θg-closed) set [6] if clθ(A) ⊆ G whenever A ⊆ G
and G is open in (X, τ).

5. θg*α-closed set if αcl(A) ⊆ G whenever A ⊆ G and G is θg-open in (X, τ).

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2. The union (respectively intersection) of all θg*α-open (respectively
θg*α-closed) sets, each contained in (respectively containing) a set A of X is called
the θg*α-interior (respectively θg*α-closure) of A, which is denoted by θg*α-int(A)
(respectively θg*α-cl(A)).

Proposition 2.3. If A and B are subsets of X, then

1. A is θg*α-open if and only if θg*α-int(A)=A.

2. θg*α-int(A) is θg*α-open.

3. A is θg*α-closed if and only if θg*α-cl(A)=A.

4. θg*α-cl(A) is θg*α-closed.

5. θg*α-cl(X∩ A)=X∩ θg*α-int(A).

6. θg*α-int(X∩ A)=X∩ θg*α-cl(A).

7. If A is θg*α-open in X and B is open in X, then A B is θg*α-open in X.

8. A point x ∈ θg*α-cl(A) if and only if every θg*α-open set in X containing x
intersects A.

9. Arbitrary intersection of θg*α-closed sets in X is also θg*α-closed in X.

3 θg*α-Neighbourhoods

In this section, we define and study about θg*α-neighbourhood, and some of their
properties are analogous to those for open sets.

Definition 3.1. Let (X, τ) be a topological space and let x∈ X. A subset N of X
is said to be θg*α-neighbourhood of a point x∈ X if there exists a θg*α-open set G
such that x∈G⊂ N



Journal of New Theory 18 ( 2017) 1-11 3

Definition 3.2. Let(X, τ) be a topological space and A be a subset of X .A subset
N of X is said to be θg*α-neighbourhood of A if there exists a θg*α-open set G such
that A∈G⊂ N.

The collection of all θg*α-neighbourhood of x∈X is called the θg*α-neighbourhood
system at x and shall be denoted by θg*α-N(x).

It is evident from the above definition that a θg*α-open set is a θg*α-neighbourhood
of each of its points. But a θg*α-neighbourhood of a point need not be a θg*α-open
set. Also every θg*α-open set containing x is a θg*α-neighbourhood of x.

Theorem 3.3. A subset of a topological space is θg*α-open if it is a θg*α-neighbourhood
of each of its points.

Proof: Let a subset G of a topological space be θg*α-open. Then for every
x∈G,x∈G⊂ N and therefore G is a θg*α-neighbourhood of each of its points. anal-
ogous to those for open sets. The converse of the above Theorem need not be true
as seen from the following example.

Example 3.4. Let (X, τ) be topological space and X={a,b,c,d} with topology

τ ={X,φ ,{a},{b},{a, b},{b,c},{a,b,c}}.
θg*α-Cl(X) = {X, φ ,{c},{d},{a, d},{b, d},{c, d},{a, c, d},{a ,b ,d},{b, c, d}}
θg*α-O(X) = {X,φ ,{a},{b},{c},{a, b},{b, c},{a ,c},{a, b ,c},{a, b, d}}

the set{a, c, d} is the neighbourhood of {a, c}, since a, c ∈{a, c}⊂ {a, c, d},
and {a, c, d} is the θg*α-neighbourhood of each of its points.

Theorem 3.5. Let (X, τ) be a topological space. If A is a θg*α-closed subset of X
and x∈ X\ A, then there exists a θg*α-neighbourhood N of x such that N ∩A=φ

Proof: Since A is θg*α-closed, then X\ A is θg*α-open set in (X, τ) . By the
above Theorem 3.3, X\ A contains a θg*α-neighbourhood of each of its points. Hence
there exists a θg*α-neighbourhood N of x, such that N⊂ X\ A.That is, no point of
N belongs to A and hence N∩A=φ .

Theorem 3.6. Let (X, τ) be a topological space and A⊆X. Then x∈ θg*α-cl(A) if
and only if for any θg*α-neighbourhood N of x in (X, τ),A∩ N 6=φ.

Proof: Suppose x∈ θg*α-cl(A). Let us assume that there is aθg*α-neighbourhood
N of the point x in (X, τ) such that N ∩ A=φ . Since N is a θg*α-neighbourhood
of x in (X, τ) by definition of θg*α-neighbourhood there exists an θg*α-open set G
of x such that x∈G⊂ N. Therefore we have G ∩ A=φ and so A ⊆ Hc. Since X\G is
an θg*α-closed set containing A.We have by definition of θg*α-closure, θg*α-cl(A)⊆
X\G and therefore x/∈θg*α-cl(A), which is a contradiction to hypothesis x∈ θg*α-
cl(A). Therefore A∩ N6=φ . Conversely, Suppose for each θg*α-neighbourhood N of
x in (X, τ) .A ∩ N6=φ . Suppose that x ∈ θg*α-cl(A). Then by definition of θg*α-
cl(A), there exists a θg*α-closed set G of (X, τ) such that A⊆ G and x/∈G. Thus x∈
X\G and X\ G is θg*α-open in (X, τ) and hence X\G is a θg*α-neighbourhood of
x in (X, τ) .But A∩ (X\ G)= φ which a contradiction.Hence x∈ θg*α-cl(A).
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Theorem 3.7. Let (X, τ) be a topological space and p∈ X. Let θg*α-N(p) be the
collection of all θg*α-neighbourhoods of p. Then

1. θg*α-N(p) 6=φ and p each member of θg*α-N(p).

2. The intersection of any two members of θg*α-N(p) is again a member of θg*α-
N(p).

3. If N ∈ θg*α-N(p) and M⊆N, then M ∈θg*α-N(p).

4. Each member N∈ θg*α -N(p) is a superset of a member G∈ θg*α-N(p) where G
is a θg*α-open set.

Proof:

1. Since X is a θg*α-open set containing p, it is a θg*α-neighbourhood of every p∈
X. Hence there exists at least one θg*α-neighbourhood namely X for each p ∈X.
Here θg*α-N(p) 6=φ. Let N ∈θg*α-N(p), N is a θg*α-neighbourhood of p.Then
there exists a θg*α-open set G such that p∈ G ⊆N.So p∈ N.Therefore p ∈ every
member N of θg*α-N(p).

2. Let N ∈ θg*α-N(p) and M∈θg*α-N(p). Then by definition of θg*α-neighbourhood,
there exists θg*α-open sets G and F such that p∈ N and p∈ F ⊆ M. Hence p∈
G∩F⊆ M ∩N, Note that G ∩ F is a θg*α-open set since intersection of θg*α-open
sets is θg*α-open.Therefore it follows that N ∩ M is a θg*α - neighbourhood of
p. Hence N∩ M θg*α-N(p).

3. If N∈ θg*α-N(p) then there is an θg*α-open set G such that p∈ G⊆ N.Since M
∩ N, M is a θg*α- neighbourhood of p. Hence M ∈ θg*α-N(p).

4. Let N ∈ θg*α-N(p).Then there exist an θg*α-open set G such that p∈ G⊆ N.Since
G is θg*α-open and p ∈ G, G is θg*α-neighbourhood of p. Therefore G ∈ θg*α-
N(p) and also G⊆ N.

4 θg*α-limit Points

In this section, we define and study about θg*α-limit point and θg*α-derived set of
a set and show that some of their properties.

Definition 4.1. Let(X, τ) be a topological space and A be a subset of X.Then a
point x∈ X is called a θg*α-limit point of A if and only if every θg*α-neighbourhood
of x contains a point of A distinct from x. That is [N\x]∩ A 6=φ for each θg*α-
neighbourhood N of x.

Also equivalently if and only if every θg*α-open set G containing x contains a
point of A other than x.

In a topological space (X, τ) the set of all θg*α-limit points of a given subset A
of X is called a θg*α-derived set of A and it is denoted by θg*α-d(A).
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Theorem 4.2. Let A and B be subsets of a topological space(X, τ). Then

1. θg*α-D(φ) = φ

2. θg*α-D(A) ⊂ D(A) where D(A) is the derived set of A.

3. If A\B, then a θg*α-D (A)⊆ θg*α-D(B),

4. If x∈θg*α-D(A), then x∈ θg*α-D[A\{x}],
5. θg*α-D(A∪ B)⊃ θg*α-D(A)∪ θg*α-D(B),

6. θg*α-D(A∩ B)⊆θg*α-D(A) ∩ θg*α-D(B).

Proof:

1. For all θg*α open set U and for all x∈X, U∩ {φ\x} =φ . Hence θg*α-D(φ) = φ.

2. Since every open set is θg*α-open, the proof follows.

3. If X∈θg*α-D(A), that is if x is θg*α-limit point of A, then by Definition 4.1[G\{x}]A∩
φ . for every θg*α-open set G containing x. Since A⊆ B implies [G\{x}]∩ A ⊆
[G\{x}]∩ B. Thus if x is a θg*α-limit point of A it is also a θg*α-limit point of
B, that is x ∈ θg*α-D(B). Hence θg*α-D(A)⊆ θg*α-D(B).

4. If x∈ θg*α-D(A), that is x is a θg*α-limit point of A. Then by Definition 4.1
every θg*α- open set G containing x contains at least one point other than x of
A \ {x}. That is G∩(A \{x})6= φ Hence x is a θg*α-limit point of A\{x} and
as such it belongs to θg*α-D[A\{x}].Therefore x∈ θg*α-D(A) ⇒ x∈ θg*α-D[A\
{x}].

5. Since A⊆ A∪B and B ⊆ A∪ B,it follows from (2)θg*α-D(A)⊆ θg*α-D(A∪ B)
and θg*α-D(B)⊆ θg*α-D(A∪ B) and hence θg*α-D(A) ∪ θg*α-D(B)⊆ θg*α-(A∪
B).To prove the other way that is θg*α-D(A∪B)⊆ θg*α-d(A) ∪ θg*α-d(B).If x∈
θg*α-d(A)∪ θg*α-d(B),then x∈ θg*α-d(A) and x∈ θg*α-d(B),that is x is neither
a θg*α-limit point of A nor a θg*α-limit point of B. Hence there exist θg*α-
neighbourhoods G1 and G2 of x such that G1 ∩ (A\{x}) = φ and G2∩ (B\x)=φ
Since G1∩ G2 is a θg*α-neighbourhood of x,we have (G1∩ G2)∩ [(A∪B)\{x}] =φ .
Therefore x∈ θg*α-D(A∪ B).Thus θg*α-D(A∪ B) ⊆ θg*α-D(A) θg*α-(B). Hence
θg*α-D(A∪ B) = θg*α-D(A)∪ θg*α-D(B).

6. Since A ⊆ B∪ A and A ⊆ B ∪ A, by (2)θg*α-D(A∩ B) ⊆ θg*α-D(A) and θg*α-
D(A∩ B) ⊆ θg*α-D(B). Consequently θg*α-D(A∩ B) ⊆ θg*α-D(A)∩ θg*α-D(B).

Example 4.3. Let X = {a, b, c,d} and τ ={φ, {a, b}, X}. Then β ∗O( τ )=( P(X)
\ {a}, {b}, {a, b}). Let A={a, b, d} and B ={c}. Then Dβ ∗ (A∪ B) = {a, b} and
Dβ∗(A)=φ, Dβ ∗(B)=φ.

Theorem 4.4. Let (X, τ) be a topological space and A be subset of X. If A is
θg*α-closed, then θg*α-D(A)⊆A.
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Proof: Let A be to θg*α-closed, Now we will show that θg*α-D(A) ⊆ A. Since A is
θg*α-closed, X \A is θg*α-open. To each x∈ X\ A there exists θg*α-neighbourhood
G of x such that G⊂ X\A. Since A ∩ (X\A) =φ , the θg*α-neighbourhood G
contains no point of A and so x is not a θg*α-limit point of A. Thus no point of X
\ A can be θg*α-limit point of A that is, A contains all its θg*α-limit points. That
is θg*α-D(A)⊆ A.

5 θg*α-Border of a Set

Definition 5.1. For any subset A of X,The border of A is defined by Bd(A)=A
\int(A).

Definition 5.2. For any subset A of X, θg*α-border of A is defined by θg*α-
Bd(A)=A \ θg*α-int(A).

Theorem 5.3. In a topological space (X, τ), for any subset A of X, the following
statements hold.

1. θg*α-Bd(φ ) = θg*α-Bd(X) =φ .

2. θg*α-Bd(A) ⊆ Bd(A).

3. A=θg*α-int(A)∪ θg*α-Bd(A).

4. θg*α-int(A)∩θg*α-Bd(A) = φ .

5. θg*α-int(A) = A \θg*α-Bd(A).

6. θg*α-int(θg*α-Bd(A)) =φ .

7. A is θg*α-open if and only if θg*α-Bd(A) =φ .

8. θg*α-Bd(θg*α-int(A)) = φ .

9. θg*α-Bd(θg*α-Bd(A)) = θg*α-Bd(A).

10. θg*α-Bd(A) = A∩ θg*α-cl(X\A).

Proof: (1) , straight forward. (2) , (3) , (4) and (5) follows From the Definition 5.2
To prove(6) if possible let x∈θg*α-int(θg*α-Bd(A)).Then x∈ θg*α-Bd(A),since θg*α-
Bd(A)⊆A, x∈θg*α-int(θg*α-Bd(A))⊆ θg*α-int(A). Therefore x∈ θg*α-int(A)∩ θg*α-
Bd(A) which is a contradiction to (4). Thus (6)is proved. A is θg*α-open if and
only if θg*α-int(A)=A . But θg*α-Bd(A)= A\ θg*α-int(A) implies θg*α-Bd(A)=
φ . This proves (7) and (8).When A = θg*α-Bd(A),Definition 5.2 becomes θg*α-
Bd(θg*α-Bd(A))= θg*α-Bd(A)\θg*α-int(θg*α-Bd(A)). Using (8), we get (9). To
prove (10).θg*α-Bd(A)=A\θg*α-int(A)= A∩ (X\ θg*α-int(A))= A∩ θg*α-cl(X\A).
Hence (10)is proved.

Example 5.4. Let X={a,b,c,d} with topology τ ={X,φ ,{a},{b},{c},{a,b},{a,c},{b,c},
{a,b,c}}. In this topological space(X, τ), θg*α-O(X) = {X, φ ,{a},{b},{c},{a, b},{b,
c},{a ,c}{a, b ,c}} Let A = {a, c}, then θg*α-Bd(A) = {a, c} -{a, c} = φ and Bd-(A)
= {a, c}\{a} = {c}. Therefore Bd-(A) * θg*α-Bd(A)
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6 θg*α- Frontier of a Set

Definition 6.1. For any subset A of X,The frontier of A is defined by Fr(A)=cl(A)
\ int(A).

Definition 6.2. For any subset A of X, its θg*α-Frontier is defined by θg*α-Fr(A)=
θg*α-cl(A) \ θg*α-int(A).

Theorem 6.3. For any subset A of X, in a topological space(X, τ),the following
statements hold.

(1). θg*α-Fr( φ )= θg*α-Fr(X)= φ .

(2). θg*α-cl(A)= θg*α-int(A) ∩ θg*α-Fr(A).

(3). θg*α-int(A) ∩ θg*α-Fr(A)=φ .

(4). θg*α-bd(A) ⊆ θg*α-Fr(A) ⊆ θg*α-cl(A).

(5). If A is θg*α-closed, then A=θg*α-int(A) ∪ θg*α-Fr(A).

(6). θg*α-Fr(A)= θg*α-cl(A)∩θg*α-cl(X\A).

(7). A point x∈θg*α-Fr(A), if and only if every θg*α-open set containing x intersects
both A and its complement X\A.

(8). θg*α-cl(θg*α-Fr(A))= θg*α-Fr(A), i.e, θg*α-Fr(A) is θg*α-closed.

(9). θg*α-Fr(A) = θg*α-Fr(X\A).

(10). A is θg*α-closed if and only if θg*α-Fr(A) = θg*α-bd(A), i.e, A is θg*α-closed
if and only if A contains its θg*α-frontier.

(11). θg*α-Fr(θg*α-int(A))⊆ θg*α-Fr(A).

(12). θg*α-Fr(θg*α-cl(A))⊆ θg*α-Fr(A).

(13). θg*α-Fr(θg*α-Fr(A))⊆ θg*α-Fr(A).

(14). X=θg*α-int(A)∪ θg*α-int(X\A)∪ θg*α-Fr(A).

(15). θg*α-int(A) = A\θg*α-Fr(A).

(16). If A is θg*α-open, then A ∩ θg*α-Fr(A) =φ , i.e, θg*α-Fr(A) ⊆ X\A.

Proof: (1), (2), (3) and (4) follows from Definition 6.2 (5) follows from (2) and
Proposition2.3 (2). (6) follows from Proposition2.3 (5). (7) can be proved using
(6)and Proposition2.3 (8). From (6), we can prove (8) by applying the results of
Proposition2.3 (3) and (9). Proof of (9)is similar. To prove (10): If A is θg*α-closed,
then A = θg*α-cl(A).Hence Definition 6.2 reduces to θg*α-Fr(A)= A\ θg*α-int(A)
= θg*α-bd(A). Conversely, suppose that θg*α-Fr(A) = θg*α-bd(A),using Definition
6.2 and 6.1, we get θg*α-cl(A) = A, which proves the sufficient part.
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(11) and (12) Since θg*α-int(A) is θg*α-open, (11) holds. Similarly (12) can also
be proved. Since θg*α-Fr(A) is θg*α-closed, invoking (10), (13) can be proved. since
X=θg*α-cl(A) (X\θg*α-cl(A)), but from (2) θg*α-cl(A) = θg*α-int(A) θg*α-Fr(A).
Also X\θg*α-cl(A)=θg*α-int(X\A). Hence X = θg*α-int(A) θg*α-Fr(A) θg*α-int(X\
A). Thus (14) is proved. Proof of (15) is obvious. If A is θg*α-open, A= θg*α-int(A).
(16) follows from (3).

Theorem 6.4. If a subset A of X is θg*α-open or θg*α-closed in (X, τ), then θg*α-
Fr(θg*α-Fr(A))=θg*α-Fr(A).

Proof: By Theorem 6.3 (6), we have θg*α-Fr(θg*α-Fr(A))= θg*α-cl(θg*α-
Fr(A)) ∩ θg*α-cl(X \ θg*α-Fr(A))= θg*α-Fr(A)∩θg*α-cl(X\θg*α-Fr(A))= θg*α-
cl(A)\θg*α-cl(X∩ A)∩ θg*α-cl(X∩ θg*α-Fr(A)).If A is θg*α-open in X, by Theorem
6.3 (16), we have θg*α-Fr(A) ∩A =φ . Therefore A⊆ X ∩ θg*α-Fr(A). Hence θg*α-
cl(A) θg*α-cl(X∩ θg*α-Fr(A)).i.e,θg*α-cl(A)\ θg*α-cl(X∩ θg*α-Fr(A))=θg*α-cl(A).
If A is θg*α-closed in X,then X ∩ A is θg*α-open and hence From the above case, we
have θg*α-cl(X\A)\ θg*α-cl(X∩θg*α-Fr(X\A))= θg*α-cl(X\A). In both the cases
using Theorem 6.3(6), we get θg*α-Fr(θg*α-Fr(A))=θg*α-cl(A)/∈θg*α-cl(X \A)=
θg*α-Fr(A).

Theorem 6.5. If A is any subset of X, then θg*α-Fr(θg*α-Fr(θg*α-Fr(A)))= θg*α-
Fr(θg*α-Fr(A)).

Proof: It follows From Theorem 6.3 (8) and Theorem 6.4.

Theorem 6.6. If A and B are subsets of X such that A∩B=φ, where A is θg*α-open
in X, then A∩θg*α cl(B)=φ.

Proof: If possible, let x∈A∩θg*α-cl(B). Then A is a θg*α-open set containing
x and also x∈ θg*α-cl(B).By Proposition2.3 (8)A∩B =φ, which is a contradiction.
Thus A∩θg*α-cl(B)=φ.

Theorem 6.7. If A and B are subsets of X such that A B and B is θg*α-closed in
X, then θg*α-Fr(A)⊆ B.

Proof: θg*α-Fr(A)= θg*α-cl(A) /∈ θg*α-int(A) θg*α-cl(B)\θg*α-int(A)= B \θg*α-
int(A) ⊆ B.

Theorem 6.8. If A and B are subsets of X such that A ∩ B=φ, where A is θg*α-open
in X, then A /∈θg*α-Fr(B)=φ.

Proof: Since θg*α-Fr(B) ⊆ θg*α-cl(B), proof is obvious From Theorem 6.6.

Theorem 6.9. If A , B⊆ X such that θg*α-Fr(A)∩Fr(B) =φ and Fr(A)∩θg*α-Fr(B)
=φ, then θg*α-int(A ∪ B)=θg*α-int(A) ∪θg*α-int(B).

Proof: We know that θg*α-int(A) ∪θg*α-int(B) ⊆ θg*α-(A ∪ B). Let x∈θg*α-
int(A ∪ B). i.e, x∈ U⊆ A ∪ B, U is a θg*α-open set. Thus either x∈θg*α-Fr(A)
/∈Fr(B), since θg*α-Fr(A) ∩ Fr(B) = φ. Hence x∈int(B). i.e, x/∈cl(B). Since x∈ int(B)
⊆ θg*α-int(B), x⊆ θg*α-int(B). Moreover since x /∈cl(B), there exists an open set
V containing x which is disjoint From B, i.e, V ⊆ X \B. So x∈ U∩V⊆ A. Hence
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U∩V is a θg*α-open subset of A containing x.(By Proposition2.3 (7)). i.e, x∈θg*α-
int(A). Thus x∈θg*α-int(A) ∪θg*α-int(B). If x/∈ θg*α-Fr(A), x∈θg*α-int(A) or x /∈
θg*α-cl(A). If x /∈ θg*α-cl(A), there exists a θg*α-open set W containing x which is
disjoint From A, i.e, W⊆ X\A. i.e, x∈ U∩W⊆ B θg*α-cl(B). i.e, x∈θg*α-Fr(B).Hence
From the above case, we get x∈θg*α-int(A) ∪θg*α-int(B). So θg*α-int(A∪B)⊆ θg*α-
int(A) ∪θg*α-int(B). Thus θg*α-int(A ∪ B)=θg*α-int(A)∪θg*α-int(B).

7 θg*α -Exterior of a Set

Definition 7.1. For any subset A of X,The exterior of A is defined by Ext(A)=int(X\A).

Definition 7.2. For any subset A of X, its θg*α-Exterior is defined by θg*α-Ext(A)=
θg*α-int(X\A).

Theorem 7.3. For any subset A of X, in a topological space(X, τ),the following
statements hold.

(1). θg*α-Extφ) = θg*α-Ext(X)=φ.

(2). Ext(A) ⊂ θg*α-Ext(A) where Ext(A) denote the exterior of A.

(3). If A ⊆ B, then θg*α-Ext(B)⊆ θg*α-Ext(A).

(4). θg*α-Ext(A) is θg*α-open.

(5). A is θg*α-closed if and only if θg*α-Ext(A)= X\ A.

(6). θg*α-Ext(A) = X\θg*α-cl(A).

(7). θg*α-Ext(θg*α-Ext(A))=θg*α-int(θg*α-cl(A)).

(8). Ext(A) ⊆ θg*α-Ext(A) where Ext(A) denote the exterior of A.

(9). θg*α-Ext(A)= θg*α-Ext(X\θg*α-Ext(A)).

(10). θg*α-int(A) θg*α-Ext(θg*α-Ext(A)).

(11). X=θg*α-int(A) ∪θg*α-Ext(A) ∪ θg*α-Fr(A).

(12). θg*α-Ext(A ∪B)⊆ θg*α-Ext(A)∩θg*α-Ext(B)

(13). θg*α-Ext(A ∪B) ⊆ θg*α-Ext(A) ∪θg*α-Ext(B)r(A) ⊆X\A.

Proof: (1) ,(2)and (3)can be proved From Definition 7.2. Since θg*α-int(A) is
θg*α-open, Proof of (4) is obvious. Since θg*α-int(X\A)= X\θg*α-cl(A),(5) follows
From Definition 7.2.Similarly (6) and (7)can be proved.

To Prove (8), θg*α-Ext(X\ θg*α-Ext(A))=θg*α-Ext(X\ θg*α-int(X\A))= θg*α-
int(X\(X\ θg*α- int(X\A)))=θg*α-int(θg*α-int(X\A))=θg*α- int(X\A)= θg*α-Ext(A).
Hence (8)is proved. Since A ⊆ θg*α-cl(A), using (6), (9)can be proved. (10).follows
From Theorem 6.3 (14) and Definition 7.2. Proof of (11),(12)and (13)are obvious.
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Example 7.4. LetX={a,b,c,d}with topology τ ={X,φ ,{a},{b},{a,b}, {a,b,c}}. In
this topological space(X, τ), θg*α-O(X) ={X,φ ,{a},{b},{c},{a, b},{b, c}, {a ,c},{a,
b ,c},{a,b,d}} Let A = {a,b.d}, then θg*α-Ext (A) = {c} and Ext-(A)=φ. Therefore
θg*α-Ext-(A) * Ext (A)

8 Conclusion

Every year many topologist introduced diffrent type of closed sets.we introduced
θg*α-closed sets in topological spaces. In this paper, we discussed properies and
applications of θg*α-neighbourhoods,θg*α-limit points, θg*α- border, θg*α-frontier
and θg*α-exterior.This shall be extended in the future Research with some applica-
tions
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Abstract – In this paper, newly defined four level operators over generalized intuitionistic fuzzy sets 
(GIFSBs) are proposed. Some of the basic properties of the new operators are discussed. Geometric 
interpretation of operators over generalized intuitionistic fuzzy sets is given. 
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1 Introduction 
 
The theory of intuitionistic fuzzy sets (IFSs), proposed by Atanassov [1], and has earned 
successful applications in various fields. Modal operators, topological operators, level 
operators, negation operators and aggregation operators are different groups of operators 
over the IFSs due to Atanassov[1]. Atanassov [2] defined level operators	P஑,ஒ and Q஑,ஒ over 
the IFSs. Lupianez [3] show relations between topological operators and intuitionistic 
fuzzy topology. In 2008, Atanassov [4] studied some relations between intuitionistic fuzzy 
negations and intuitionistic fuzzy level operators	P஑,ஒ and Q஑,ஒ. Atanassov [5] introduced 
extended level operators over intuitionistic fuzzy sets. In 2009, Parvathi and Geetha [6] 
defined some level operators, max-min implication operators and	P஑,ஒ and Q஑,ஒ operators 
on temporal intuitionistic fuzzy sets. Atanassov [7] introduced two new operators that 
partially extend the intuitionistic fuzzy operators from modal type. Yilmaz and Cuvalcioglu 
[8] introduced level operators of temporal intuitionistic fuzzy sets. Sheik Dhavudh and 
Srinivasan [9] proposed level operators on intuitionistic L-fuzzy sets and establish some of 
their properties. The intuitionistic fuzzy operators are important from the point of view 
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application. The intuitionistic fuzzy operators applied in contracting a classifier recognizing 
imbalanced classes, image recognition, image processing, multi-criteria decision making, 
deriving the similarity measure, sales analysis, new product marketing, medical diagnosis, 
financial services, solving optimization problems etc.. Baloui Jamkhaneh and Nadarajah 
[10] considered a new generalized intuitionistic fuzzy sets (GIFS୆ݏ) and introduced some 
operators over		GIFS୆. Baloui Jamkhaneh and Garg [11] considered some new operations 
over the generalized intuitionistic fuzzy sets and their application to decision making 
process. In 2017 Baloui Jamkhnaeh [12] defined level operators	P஑,ஒ and Q஑,ஒ over the 
GIFS୆s. In this paper we shall introduce the sum of level operators over GIFS୆ and we will 
discuss their properties. 
 
 
2 Preliminaries 
 
In this section we will briefly remind some of the basic definition and notions of IFS which 
will be helpful in further study of the paper. Let X be a non-empty set. 
 
Definition 2.1. [1] An intuitionistic fuzzy setsA in X is defined as an object of the form 
ܣ = ,ݔ〉} ,(ݔ)஺ߤ 〈(ݔ)஺ߥ ∶ ݔ ∈ ܺ} where the functions ߤ஺	: ܺ → [0,1] and	ߥ஺:	ܺ → [0,1] 
denote the degree of membership and non-membership functions of A respectively 
and	0 ≤ (ݔ)஺ߤ + (ݔ)஺ߥ ≤ 1for each	ݔ ∈ ܺ. 
 
Definition 2.2. [10] A generalized intuitionistic fuzzy set (GIFSB) A in	X, is defined as an 
object of the form A = {〈x, μ୅(x), ν୅(x)〉 ∶ x ∈ X} where the functions μ୅	: X → [0,1]  
and	ν୅: X → [0,1], denote the degree of membership and degree of non-membership 
functions of A respectively, and 0 ≤ μ୅(x)ஔ +	 	v୅(x)ஔ ≤ 1 for each x ∈ X where δ =
n	or	 ଵ

୬
, n = 1,2,… ,N. The collection of all generalized intuitionistic fuzzy sets is denoted 

by GIFS୆(δ, X). Let X is a universal set and F is a subset in the Euclidean plane with the 
Cartesian coordinates. For a	GIFS୆	A, a function f୅ from X to F can be constructed, such 
that if x ∈ X then 
 

,(ݔ)஺ݒ) μ஺(ݔ)) = f୅(x) ∈ F,   	0 ≤ ,(ݔ)஺ݒ 	μ஺(ݔ) ≤ 1 
 
 

 
Figure 1.A geometrical interpretation of GIFS୆ with	δ = 0.5 

 
 
Definition2.3. Let A and B be two GIFS୆s such that 
 

ܣ = {〈x, μ୅(x), ν୅(x)〉 ∶ x ∈ X}		,		ܤ = {〈x, μ୆(x), ν୆(x)〉 ∶ x ∈ X},	
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define the following relations and operations on A and B 
 

i. A⊂B if and only if ߤ஺(x)≤ ≤஺(x)ߥ஻(x) andߤ  ,஺(x) ,  ∀x߳ܺߥ
ii. A=B if and only if μ஺(x) =μ஻(x) and ߥ஺(x)=ߥ஻(x) ,  ∀x߳ܺ, 
iii. A∪B =൛〈ݔ,max൫ߤ஺(ݔ), ,൯(ݔ)஻ߤ min(ߥ஺(ݔ), :〈((ݔ)஻ߥ  ,ൟܺ߳ݔ
iv. A∩B =൛〈ݔ,min൫ߤ஺(ݔ), ,(ݔ)஺ߥ)൯,max(ݔ)஻ߤ :〈((ݔ)஻ߥ  ,ൟܺ߳ݔ
v. ̅ܣ = ,	ݔ〉} ,(ݔ)஺ߥ 〈(ݔ)஺ߤ ∶ ݔ ∈ ܺ}. 

 
Let X is a non-empty finite set, and A ∈ GIFS୆,	as	A = 	 {〈x	, μ୅(x), ν୅(x)〉 ∶ x ∈ X}.  Baloui 
Jamkhaneh and Nadarajah [10] and Baloui Jamkhaneh [12] introduced following operators 
of GIFS୆ and investigated some their properties. 
 

i. □ܣ = ቄ〈	ݔ, ,(ݔ)஺ߤ (1 (ఋ(ݔ)஺ߤ	−
భ
ഃ〉 ∶  ,ቅ,(modal logic: the necessity measure)ܺ	߳ݔ

ii. ◊ ܣ = ቄ〈ݔ, (1 (ఋ(ݔ)஺ߥ	−
భ
ഃ	, 〈(ݔ)஺ߥ ∶  ,ቅ,(modal logic: the possibility measure)ܺ	߳ݔ

iii. ܲఈ,ఉ(ܣ) = ቄ〈ݔ,max	(ߙ
భ
ഃ, ,	((ݔ)஺ߤ min	(ߚ

భ
ഃ, 〈((ݔ)஺ߥ ∶ ߙ ቅ, whereܺ	߳ݔ + 	ߚ ≤ 1, 

iv. ܳఈ,ఉ(ܣ) = ቄ〈ݔ,min	(ߙ
భ
ഃ, ߚ)	max,	((ݔ)஺ߤ

భ
ഃ, 〈((ݔ)஺ߥ ∶ ߙ ቅ, whereܺ	߳ݔ + 	ߚ ≤ 1. 

 
The geometrical interpretations of operators of GIFS୆ are shown on Fig. 2-4. 
 
 

 
 

Figure 2.A geometrical interpretation of ◊ δ	with ܣ□ and ܣ = 0.5	 
 
 

 
 

Figure 3.A geometrical interpretation of ఈܲ,ఉ(ܣ) with	δ = 0.5 
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Figure 4. A geometrical interpretation of ܳఈ,ఉ(ܣ) with	δ = 0.5 
 
3 Main Results 
 
Here, we will introduce new operators over the	GIFS୆, which extend some operators in the 
research literature related to IFSs. Let X is a non-empty finite set. 
 
Definition 3.1. Letting α, β ∈ [0,1],	where α + β	 ≤ 1. For every GIFS୆ as 	A =
	{〈x	, μ୅(x), ν୅(x)〉 ∶ x ∈ X}, we define the level operators as follows: 

i. ఈܲ,ఉ
(ଵ)(ܣ) = ൜〈ݔ,min	(max	(ߙ

భ
ഃ, ,((ݔ)஺ߤ ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ)	, min	(ߚ

భ
ഃ, 〈((ݔ)஺ߥ ∶  ,ൠܺ	߳ݔ

ii. ఈܲ,ఉ
(ଶ)(ܣ) = ൜〈ݔ,max	(max	(ߙ

భ
ഃ, ,((ݔ)஺ߤ ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ)	,min	(ߚ

భ
ഃ, 〈((ݔ)஺ߥ ∶  ,ൠܺ	߳ݔ

iii. ܳఈ,ఉ
(ଵ) (ܣ) = ൜〈ݔ,min	(ߙ

భ
ഃ, ߚ)	(max	min,	((ݔ)஺ߤ

భ
ഃ, ,((ݔ)஺ߥ ൫1 − ఋ൯(ݔ)஺ߤ

భ
ഃ), 〉 ∶  ,ൠܺ	߳ݔ

iv. ܳఈ,ఉ
(ଶ) (ܣ) = ൜〈ݔ,min	(ߙ

భ
ഃ, ߚ)	(max	max,	((ݔ)஺ߤ

భ
ഃ, ,((ݔ)஺ߥ ൫1 − ఋ൯(ݔ)஺ߤ

భ
ഃ), 〉 ∶  .ൠܺ	߳ݔ

 
The geometrical interpretations of new operators of GIFS୆ are shown on Fig. 5-8. 
 

 
 

Figure 5.A geometrical interpretation of ఈܲ,ఉ
(ଵ)(ܣ) with	δ = 0.5 

 

 
 

Figure 6.A geometrical interpretation of ఈܲ,ఉ
(ଶ)(ܣ) with	δ = 0.5 
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Figure 7.A geometrical interpretation of ܳఈ,ఉ
(ଵ)(ܣ) with	δ = 0.5 

 
 

 
 

Figure 8.A geometrical interpretation of ܳఈ,ఉ
(ଶ)(ܣ) with	δ = 0.5 

 
Corollary 3.2. According to definition of new operators and geometrical interpretations of 
them, we have 

i. If A =	 {〈x	, 1, 0〉 ∶ x ∈ X}, thenP஑,ஒ(A) = P஑,ஒ
(ଵ)(A) = P஑,ஒ

(ଶ)(A) = {〈x	, 1, 0〉 ∶ x ∈ X}, 

ii. If A =	 {〈x	, 0, 1〉 ∶ x ∈ X}, then Q஑,ஒ(A) = Q஑,ஒ
(ଵ) (A) = Q஑,ஒ

(ଶ) (A) = {〈x	, 0, 1〉 ∶ x ∈ X}. 

Remark 3.3. If μ୅(x) ≥ α
భ
ಌ and ν୅(x) ≤ β

భ
ಌ then P஑,ஒ

(ଵ)(A) = A, P஑,ஒ
(ଶ)(A) =◊ A  and if 

μ୅(x) ≤ α
భ
ಌ and ν୅(x) ≥ β

భ
ಌ then Q஑,ஒ

(ଵ) (A) = A , Q஑,ஒ
(ଶ) (A) = □A. 

 
Remark 3.4. If αଵ ≤ αଶthenP஑భ,ஒ

(୧) (A) ⊆ P஑మ,ஒ
(୧) (A)and Q஑భ,ஒ

(୧) (A) ⊆ Q஑మ,ஒ
(୧) (A), also if βଵ ≤

βଶthen P஑,ஒమ
(୧) (A) ⊆ P஑,ஒభ

(୧) (A) and Q஑,ஒమ
(୧) (A) ⊆ Q஑,ஒభ

(୧) (A), i=1,2. 
 
Theorem 3.5. For every A ∈ GIFS୆ and	α, β ∈ [0,1], where α + β	 ≤ 1, we have 

i. ఈܲ,ఉ
(௜) (ܣ) ∈ GIFS୆, i=1,2, 

ii. ܳఈ,ఉ
(௜) (ܣ) ∈ GIFS୆, i=1,2, 

iii. ఈܲ,ఉ
(ప) തതതതതതതതതത(ܣ̅) = ܳఉ,ఈ

(௜)  .i=1,2 ,(ܣ)

Proof. (i) Let i=1 
 
μ୔ಉ,ಊ(౟) (୅)

(x)ஔ + ν୔ಉ,ಊ(౟) (୅)
(x)ஔ =

(min	(max	(α
భ
ಌ, μ୅(x)), ൫1 − ν୅(x)ஔ൯

భ
ಌ)	)ஔ +	(min	(β

భ
ಌ, ν୅(x)))ஔ =

min	(max൫α, μ୅(x)ஔ൯ , ൫1 − ν୅(x)ஔ൯) +	(min	(β, ν୅(x)ஔ) = I. 
If max൫α, μ୅(x)ஔ൯ ≤ ൫1 − ν୅(x)ஔ൯ then 
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(1) If max൫α, μ୅(x)ஔ൯ = α and min	(β, ν୅(x)ஔ) = β then 
 

I = α + β ≤ 1. 
 
(2) If max൫α, μ୅(x)ஔ൯ = α and min	(β, ν୅(x)ஔ) = ν୅(x)ஔ then  
 

I = α + ν୅(x)ஔ ≤ α + β ≤ 1, 
 
(3) If max൫α, μ୅(x)ஔ൯ = μ୅(x)ஔ and min	(β, ν୅(x)ஔ) = β then 
 

I = μ୅(x)ஔ + β ≤ μ୅(x)ஔ + ν୅(x)ஔ ≤ 1, 
 
(4) If max൫α, μ୅(x)ஔ൯ = μ୅(x)ஔ and min	(β, ν୅(x)ஔ) = ν୅(x)ஔ then 
 

I = μ୅(x)ஔ + ν୅(x)ஔ ≤ 1. 
 
If max൫α, μ୅(x)ஔ൯ ≥ ൫1 − ν୅(x)ஔ൯ then 
 
(1) If min	(β, ν୅(x)ஔ) = β then I = 1 − ν୅(x)ஔ + β ≤ 1 − ν୅(x)ஔ + ν୅(x)ஔ = 1, 
 
(2) If min	(β, ν୅(x)ஔ) = ν୅(x)ஔ then I = 1 − ν୅(x)ஔ + ν୅(x)ஔ = 1. 
 
The proof is completed. Proof of (ii) is similar to that of (i). 
 
(iii) Let i=1 
 
Aഥ = {〈x	, ν୅(x), μ୅(x)〉 ∶ x ∈ X}. 
 

P஑,ஒ
(ଵ)(Aഥ) = ൜〈x, min	(max	(α

భ
ಌ, ν୅(x)), ൫1 − μ୅(x)ஔ൯

భ
ಌ)	,min	(β

భ
ಌ, μ୅(x))〉 ∶ xϵ	Xൠ, 

 

P஑,ஒ
(ଵ)(Aഥ)തതതതതതതതത = ൜〈x, min	(β

భ
ಌ, μ୅(x))	,min	(max	(α

భ
ಌ, ν୅(x)), ൫1 − μ୅(x)ஔ൯

భ
ಌ)〉 ∶ xϵ	Xൠ=Qஒ,஑

(ଵ) (A). 
 
The proof is completed. 
 
Theorem 3.6. For every A ∈ GIFS୆, we have 

i. ଴ܲ,ଵ
(ଵ)(ܣ) =  ,ܣ

ii. ଴ܲ,ଵ
(ଶ)(ܣ) = ଵܲ,ଵ

(ଵ)(ܣ) =◊  ,ܣ

iii. ܳଵ,଴
(ଵ)(ܣ) =  ,ܣ

iv. ܳଵ,଴
(ଶ)(ܣ) = ܳଵ,ଵ

(ଵ)(ܣ) =  .ܣ□

Proof. Proofs are obvious. 
 
Theorem 3.7. For every A ∈ GIFS୆ and	α, β ∈ [0,1], where α + β	 ≤ 1, we have 

i. ఈܲ,ఉ
(ଵ)(ܣ) ⊂ ܲఈ,ఉ(ܣ) ⊂ ఈܲ,ఉ

(ଶ)(ܣ), 

ii. ܳఈ,ఉ
(ଶ) (ܣ) ⊂ ܳఈ,ఉ(ܣ) ⊂ ܳఈ,ఉ

(ଵ)  ,(ܣ)
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iii. ܳఈ,ఉ
(ଵ) (ܣ) ⊂ ఈܲ,ఉ

(ଵ)(ܣ), 

iv. ܳఈ,ఉ
(௜) (ܣ) ⊂  ,i=1,2 ,ܣ

v. ܣ ⊂ ఈܲ,ఉ
(௜)  .i=1,2 ,(ܣ)

Proof. (i) Since 
 

min	(max	(ߙ
భ
ഃ, ,((ݔ)஺ߤ ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ) ≤ 	max	(ߙ

భ
ഃ, then ఈܲ,ఉ((ݔ)஺ߤ

(ଵ)(ܣ) ⊂ ఈܲ,ఉ(ܣ), 
 
and 
 

max	(max	(ߙ
భ
ഃ, ,((ݔ)஺ߤ ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ) ≥ 	max	(ߙ

భ
ഃ, (ܣ)then ఈܲ,ఉ ((ݔ)஺ߤ ⊂ ఈܲ,ఉ

(ଶ)(ܣ),  
 
therefore, we have ఈܲ,ఉ

(ଵ)(ܣ) ⊂ ఈܲ,ఉ(ܣ) ⊂ ఈܲ,ఉ
(ଶ)(ܣ). 

 
The proof is completed. (ii)-(v) are proved analogically. 
 
Corollary 3.8. According to definition of new operators and Theorem3.7 (iv)-(v), the 
operators of P஑,ஒ

(୧)(A), i = 1,2, increases the membership degree of A and reduces non-
membership degree of A, the operators of Q஑,ஒ

(୧) (A), i = 1,2,  reduces the membership degree 
of A and increases non-membership degree of A. 
 
Theorem 3.9. For every A, B ∈ GIFS୆, we have 

i. ఈܲ,ఉ
(௜) ܣ) ∪ (ܤ = ఈܲ,ఉ

(௜)(ܣ) ∪ ఈܲ,ఉ
(௜)(ܤ), i=1,2, 

ii. ఈܲ,ఉ
(௜) ܣ) ∩ (ܤ = ఈܲ,ఉ

(௜)(ܣ) ∩ ఈܲ,ఉ
(௜)(ܤ), i=1,2, 

iii. ܳఈ,ఉ
(௜) ܣ) ∪ (ܤ = ܳఈ,ఉ

(௜) (ܣ) ∪ ܳఈ,ఉ
(௜)  ,i=1,2 ,(ܤ)

iv. ܳఈ,ఉ
(௜) ܣ) ∩ (ܤ = ܳఈ,ఉ

(௜) (ܣ) ∩ ܳఈ,ఉ
(௜)  .i=1,2 .(ܤ)

Proof. (i) Let i=1 
 

ఈܲ,ఉ
(ଵ)(A ∪ B) = ቄ〈ݔ,min	(max	(ߙ

భ
ഃ,max൫ߤ஺(ݔ), ,൯(ݔ)஻ߤ (1

−min(ߥ஺(ݔ), (ఋ((ݔ)஻ߥ
భ
ഃ	,min	(ߚ

భ
ഃ , min(ߥ஺(ݔ), 〈((ݔ)஻ߥ ∶  ,ቅܺ	߳ݔ

= ቊ〈ݔ,min(max(maxቆߙ
భ
ഃ, ቇ(ݔ)஺ߤ ,max ቆߙ

భ
ഃ, ݔܽ݉,(ቇ(ݔ)஻ߤ ൬൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ, ൫1 −

(ఋ(ݔ)஻ߥ
భ
ഃቁ ),min(min	(ߚ

భ
ഃ , ߚ)	min,((ݔ)஺ߥ

భ
ഃ , 〈((ݔ)஻ߥ ∶  ,ቋܺ	߳ݔ

= ቊ〈ݔ,min(maxቆߙ
భ
ഃ, ቇ(ݔ)஺ߤ , ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ) ,min	(ߚ

భ
ഃ , 〈,((ݔ)஺ߥ ∶ ቋܺ	߳ݔ ∪ 

ቊ〈ݔ,min(maxቆߙ
భ
ഃ, ቇ(ݔ)஻ߤ , ൫1 − ఋ൯(ݔ)஻ߥ

భ
ഃ),min	(ߚ

భ
ഃ , 〈,((ݔ)஻ߥ ∶  ,ቋܺ	߳ݔ

= ఈܲ,ఉ
(ଵ)(ܣ) ∪ ఈܲ,ఉ

(ଵ)(ܤ). 
 
(ii) Let i=1 
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ఈܲ,ఉ
(ଵ)(A ∩ B) =

ቄ〈ݔ,min	(max	(ߙ
భ
ഃ,݉݅݊൫ߤ஺(ݔ), ,൯(ݔ)஻ߤ (1 −

max(ߥ஺(ݔ), (ఋ((ݔ)஻ߥ
భ
ഃ	,min	(ߚ

భ
ഃ ,max(ߥ஺(ݔ), 〈((ݔ)஻ߥ ∶  ,ቅܺ	߳ݔ

 

= ቊ〈ݔ,min(min(maxቆߙ
భ
ഃ, ቇ(ݔ)஺ߤ ,maxቆߙ

భ
ഃ, ݊݅݉,(ቇ(ݔ)஻ߤ ൬൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ, ൫1 −

(ఋ(ݔ)஻ߥ
భ
ഃቁ ),max(min	(ߚ

భ
ഃ , ߚ)	min,((ݔ)஺ߥ

భ
ഃ , 〈((ݔ)஻ߥ ∶  ,ቋܺ	߳ݔ

= ቊ〈ݔ,min(maxቆߙ
భ
ഃ, ቇ(ݔ)஺ߤ , ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ) ,min	(ߚ

భ
ഃ , 〈,((ݔ)஺ߥ ∶ ቋܺ	߳ݔ ∩ 

ቊ〈ݔ,min(maxቆߙ
భ
ഃ, ቇ(ݔ)஻ߤ ,min	(ߚ

భ
ഃ , ߚ)	min,(((ݔ)஻ߥ

భ
ഃ , 〈,((ݔ)஻ߥ ∶  ,ቋܺ	߳ݔ

 
= ఈܲ,ఉ

(ଵ)(ܣ) ∩ ఈܲ,ఉ
(ଵ)(ܤ), 

 
 
The proof is completed. Proofs of (iii) and (iv) are similar to that of (i) and (ii). 
 
Corollary 3.10. For every A୨ ∈ GIFS୆	, j = 1,… n, we have 

i. ఈܲ,ఉ
(௜) ൫⋃ ௝௡ܣ

௝ୀଵ ൯ = ⋃ ఈܲ,ఉ
(௜)൫ܣ௝൯௡

௝ୀଵ , i=1,2, 

ii. ఈܲ,ఉ
(௜) ൫⋂ ௝௡ܣ

௝ୀଵ ൯ = ⋂ ఈܲ,ఉ
(௜)൫ܣ௝൯௡

௝ୀଵ , i=1,2, 

iii. ܳఈ,ఉ
(௜) ൫⋃ ௝௡ܣ

௝ୀଵ ൯ = ⋃ ܳఈ,ఉ
(௜) ൫ܣ௝൯௡

௝ୀଵ , i=1,2, 

iv. ܳఈ,ఉ
(௜) ൫⋂ ௝௡ܣ

௝ୀଵ ൯ = ⋂ ܳఈ,ఉ
(௜) ൫ܣ௝൯௡

௝ୀଵ , i=1,2. 

Theorem 3.11. For every A, B ∈ GIFS୆, where A ⊆ B we have 
i. ఈܲ,ఉ

(௜) (ܣ) ⊆ ఈܲ,ఉ
(௜)(ܤ), 

ii. ܳఈ,ఉ
(௜) (ܣ) ⊆ ܳఈ,ఉ

(௜)  .(ܤ)

Proof. (i) Let i=1, since A ⊆ B then 	μ୅(x) ≤ μ୆(x)	and	ν୅(x) ≥ ν୆(x)	 therefore 
 

max	(ߙ
భ
ഃ, (ݔ)஺ߤ ≤ max	(ߙ

భ
ഃ, ൫1 , ((ݔ)஻ߤ − ఋ൯(ݔ)஻ߥ

భ
ഃ ≥ ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ 

 
and 
 
min	(ߚ

భ
ഃ, ((ݔ)஺ߥ ≥ min	(ߚ

భ
ഃ,   .((ݔ)஻ߥ

 
Finally 
 

௉ഀߤ ,ഁ
(భ)(஺)

(ݔ) = min(maxቆߙ
భ
ഃ, ቇ(ݔ)஺ߤ , ൫1 − ఋ൯(ݔ)஺ߥ

భ
ഃ), 

≤ ௉ഀߤ ,ഁ
(భ)(஻)

(ݔ) = min(maxቆߙ
భ
ഃ, ቇ(ݔ)஻ߤ ,min	(ߚ

భ
ഃ ,  ,(((ݔ)஻ߥ
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and similarly, we haveߥ௉ഀ ,ഁ

(భ)(஻)
(ݔ) ≤ ௉ഀߥ ,ഁ

(భ)(஺)
 .(ݔ)

 
Proof is complete. Proof of (ii) is similar to that of (i). 
 
Example 3.12. Let	A = 	 {〈x	, 0.36,0.09〉},δ = 0.5, then 

 

(ݔ)௉ഀ,ഁ(஺)ߤ = ൜0.36		,				ߙ ≤ 0.6	
ߙ				,					ଶߙ > 0.6

�,߭௉ഀ,ഁ(஺)(ݔ) = ൜
ߚ						,				0.09 ≥ 0.3	
ߚ							,							ଶߚ < 0.3		,

� 

 

(ݔ)ொഀ,ഁ(஺)ߤ = ൜0.36			,				ߙ > 0.6	
ߙ			,				ଶߙ ≤ 0.6

�,߭ொഀ,ഁ(஺)(ݔ) = ൜
ߚ							,		0.09 < 0.3	
ߚ							,						ଶߚ ≥ 0.3		,

� 

 

௉ഀߤ ,ഁ
(భ)(஺)

(ݔ) = ൝
ߙ				,					0.36 ≤ 0.6	
0.6			,	ଶߙ < ߙ < 0.7
		0.49				,							0.7 ≤ ߙ

�, ߭௉ഀ ,ഁ
(భ)(஺)

(ݔ) = ൜
ߚ						,					0.09 ≥ 0.3	
ߚ						,							ଶߚ < 0.3

�, 

 

௉ഀߤ ,ഁ
(మ)(஺)

(ݔ) = ൜0.49		,			ߙ < 0.7	
ߙ				,					ଶߙ ≥ 0.7

�, ߭௉ഀ ,ഁ
(మ)(஺)

(ݔ) = ൜
ߚ						,					0.09 ≥ 0.3	
ߚ						,							ଶߚ < 0.3

�, 

 

ொഀ,ഁ(భ)ߤ (஺)
(ݔ) = ൜0.36		,				ߙ > 0.6	

ߙ				,				ଶߙ ≤ 0.6
�,߭ொഀ,ഁ(భ) (஺)

(ݔ) = ቐ
ߚ																	,				0.09 < 0.3	
0.3						,								ଶߚ < ߚ ≤ 0.4,
0.16				,																		0.4 < ߚ

� 

 

ொഀ,ഁ(మ)ߤ (஺)
(ݔ) = ൜0.36		,				ߙ > 0.6	

ߙ			,				ଶߙ ≤ 0.6
�,߭ொഀ,ഁ(మ) (஺)

(ݔ) = ൜
ߚ				,				0.16 < 0.4	
ߚ			,					ଶߚ ≥ 0.4

�, 

 
where ߙ + 	ߚ ≤ 1. 
 
 
4 Conclusions 
 
We have introduced four level operators over 	GIFS୆s and showed geometrical 
interpretation of new operators in the generalized intuitionistic fuzzy sets. Also we proved 
their relationships and showed that these operators are GIFSB. These operators are well 
defined since, if δ = 1, the results agree with IFS. 
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After presentation of the operations of soft sets [6], the properties and applications of the 

soft set theory have been studied increasingly [7,8,6]. Xiao et al. [9] and Pei and Maio [10] 

discussed the linkage between soft sets and information systems. They showed that soft 

sets are class of special information system. In the recent year, many attention-grabbing 

applications of soft sets theory have been extended by embedding the ideas of fuzzy sets  

[11,12,13,14,15,16,17,18,20,21,22] industrialized soft set theory, the operations of the soft 

sets are redefined and indecision making method was constructed by using their new 

operations [23].  

 

Recently, in 2011, Shabir and Naz [23] launched the study of soft Topological spaces; they 

beautiful defined soft Topology as a collection of � of soft sets over X. They also defined 

the basic conceptionof soft topological spaces such as open set and closed soft sets, soft 

nbd of a point, soft separation axiom, soft regular and soft normal spaces and published 

their several behaviors. Min in [25] scrutinized some belongings of these soft separation 

axioms. Kandil et al. [26] introduced some soft operations such as semi open soft, pre-open 

soft, �-open soft and �-open soft and examined their properties in detail. Kandil et al. [27] 

introduced the concept of soft semi – separation axioms, in particular soft semi- regular 

spaces. The concept of soft ideal was discussed for the first time by Kandil et al. [28] .They 

also introduced the concept of soft local function. These ideas are discussed with a view to 

find new soft topological from the original one, called soft topological spaces with soft 

ideal��, �, �, ��.  

 

Applications of different zone were further discussed by Kandil et al. [28,29,30,32,33, 

34,35]. The notion of super soft topological spaces was initiated for the first time by El-

Sheikh and Abd-e-Latif  [36]. They also introduced new different types of sub-sets of supra 

soft topological spaces and study the dealings between them in great detail. Bin Chen [41] 

introduced the concept of semi open soft sets and studied their related properties, Hussain  

[42] discussed soft separation axioms. Mahanta [39] introduced semi open and semi closed 

soft sets. Lancy and Arockiarani [40], On Soft β-Separation Axioms, Arockiarani and 

Arokialancy in [43] generalized soft g β closed and soft gs β closed sets in soft topology 

are exposed. Analogous to [44] and based on the concept of b-open sets in topological 

spaces, the notion of quasi-b-open set in bi topological spaces is introduced and discovered.  

[43] discussedbi topological strong  separation axioms, pair wise intersection property and 

pair wise strong ly regular property is also studied. 

 

In this present paper we introduce the soft strong separation axioms, soft strong  pair wise 

regularity and soft strong  pair wise normal. Concept of soft strong ��, soft strong  �� and 

soft strong  �� spaces in Soft bi topological spaces is introduced with respect to soft points. 

Many mathematicians discussed soft separation axioms in soft topological spaces at full 

length with respect to soft  open set, soft  b-open set, soft semi-open set, soft  α-open set 

and soft β-open set. They also worked over the hereditary properties of different soft 

topological structures in soft topology. In this present work hand is tried and work is 

encouraged over the gap that exists in soft bi-topology. Related to soft strong ��, soft 

strong  �� and soft strong  �� spaces, some Proposition in soft bi topological spaces are 

discussed with respect to ordinary points as well as with respect to soft points. When we 

talk about the distance between the points in soft topology then the concept of soft 

separation axioms will automatically come in play. That is why these structures are 

catching our attention. We hope that these results will be valuable for the future study on 

soft bi topological spaces to accomplish general framework for the practical applications 
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and to solve the most intricate problems containing scruple in economics, engineering, 

medical, atmosphere and in general mechanic systems of various kinds. 

 

 

2. Preliminaries  
 

The following Definitions which are pre-requisites for present study.  

 

Definition 1 [4]. Let X  be an initial universe of discourse and E be a set of parameters. 

Let P(X) denotes the power set of X  and A be a non-empty sub-set of E. A pair ),( AF is 

called a soft set over U, where F is a mapping given by  �: � → ���� 

 

In other words, a set over X is a parameterized family of sub set of universe of discourse X  

For � ∈ �, �(�) may be considered as the set of e-approximate elements of the soft set (�, �)and if� ∉ � then�(�) = �, that is�� {�(�): � ∈ � ⊆ �, �: � → �(�)}   the family of 

all these soft sets over X denoted by$$(�)�. 

 

Definition 2 [4]. Let��,%& ∈ $$(�)'  then AF is a soft subset of  BG  denoted by�� ⊆( %&, if 

1.  � ⊆ ) and 

2. �(�) ⊆ %(�), ∀∈ � 

 

In this case �� is said to be a soft subset of %& and  %&  is said to be a soft super 

set��, %& ⊇( ��. 

 

Definition 3 [6].Two soft subsets ��  and %& over a common universe of discourse set X 

are said to be equal if �� is a soft subset of %&  and %&  is a soft subset of ��. 

 

Definition 4 [6].The complement of soft subset(�, �)ddenoted by (�, �), is defined by  (�, �), = (�, , �)�, → �(�)is a mapping given by   �,(�) = - − �(�)∀� ∈ � and �,is 

called the soft complement function of F .  Clearly   (�,), is the same as F and ((�, �),), = (�, �). 

 

Definition 5 [7]. The difference between two soft subset (%, �) and (%, �) over common 

of universe discourse X  denoted by (�, �) − (%, �) is the soft set(/, �) where for all � ∈ �. ∅(23 ∅�if  ∀� ∈ �, �(�) = ∅. 

 

Definition 6 [7]. Let (%, �) be a soft set over� and  4 ∈ �  We say that 4 ∈ (�, �) and read   

as  x belong to the soft set(�, �) whenever  4 ∈ �(�)∀� ∈ � The soft set(�, �) over�such 

that  �(�) = {4}∀� ∈ �  is called singleton soft point and denoted by  4' , 23 (4, �). 

 

Definition 7 [6]. A soft set  (�, �)  over X is said to be Null soft set denoted by ∅ (  23 ∅� if ∀� ∈ �, �(�) = ∅. 

 

Definition 8 [6]. A soft set(�, �) over X is said to be an absolute soft denoted by �̅ 23 �� 

if ∀� ∈ �, �(�) = �. 
 

Clearly, we have.   ��, = ∅� 678 ∅�, = ��. 
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Definition 9 [42]. Let(%, �) be a soft set over�and�9 ∈ ��, we say that �9 ∈ (�, �) and 

read   as  �9 belong to the soft set(�, �)whenever �9 ∈ �(�)∀� ∈ �.  the soft set(�, �) 

over�such that  �(�) = {�9}, ∀� ∈ �  is called singleton soft point and denoted by�9 ,23 (�9 , �). 

 

A soft point is an element of a soft set ��. the class of all soft sets over - is denoted 

by$(-). 

 

For example, - = {:�, :�, :;}, � = {4�, 4�, 4;}, � = {4�, 4�} and �� = {(4�, {:�, :�})}, 

{(4�, {:�, :;})} . 

 

Then 

 ��� = {(41, {:1})}, ��� = {(41, {:2})}, ��; = {(41, {:�, :2})}, ��< = {(42, {:2})},��= = {(42, {:3})}, ��? = {(42, {:�, :3})}, ��@ = AB41, {:2}, (4�,{:�}CD,  ��E = {(41, {:1}, (4�, {:;})},  ��F = {(41, {:1})}, (4�, {:2, :3})}, ���� = {(41, {:2})}, (4�, {:�})}, ���� = A(41, {:2}), (4�,{:;})D, ���� = A(41, {:2}), (4�,{:�, :;D, ���; ={(41, {:�, :2}), (4�, {:�})}, ���< = {(41, {:�, :2}), (4�, :;}, ���= = ��, ���? = �∅,  

 

are all soft sub sets of �� 
  

Definition 10 [42].The soft set (�, �) ∈ $$��is called a soft point in��, denoted by �G, if 

for the element � ∈ �, �(�) ≠ {4} and �(�/) = � if for all �/ ∈ � − {�} 

 

Definition 11 [42]. The soft point �G is said to be in the soft set(%, �), denoted by �G  ∈(%, �) if for the element � ∈ �, �(�) ⊆ %(�). 

 

Definition 12 [42].Two soft sets (%, �), (/, �) in $$�� are said to be soft disjoint, written (%, �) ∩ (/, �) = ∅�If %(�) ∩ /(�) = ∅∀ � ∈ �. 

 

Definition 13 [42]. The soft point �9 , �K ∈ �� are disjoint, written  �9 ≠ �K, if their 

corresponding soft sets (%, �) and (/, �) are disjoint.  

 

Definition 14 [6]. The union of two soft sets(�, �) and (G, )) over the common universe 

of discourse X is the soft set(/, L), where,  L = �-)∀� ∈ L 

 

/(�) = M �(�)         �N � ∈ � − )    %(�)           �N � ∈ () − � )�(�),   �N � ∈ � ∩ ) O 

 

Written as (�, �) ∪ (%, )) = (/, L) 
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Definition 15 [6]. The intersection(/. L)of two soft sets(�, �)and (%, ))over common 

universe X, denoted (�, �) ∩( (G, B) is defined as L = � ∩ )and /(�) = �(�) ∩%(�), ∀� ∈ L. 

 

Definition 16 [2]. Let(�, �) be a soft set over � and Y be a non-empty sub set of �. Then 

the sub soft set of (�, �)over Y  denoted by (SG, �),is defined as followSG(T) = S ∩�(�), ∀∈ � in other words ( SG, �) = S ∩ (�, �). 
 

Definition 17 [2]. Let τ  be the collection of soft sets over X , then τ is said to be a soft 

topology on X, if  

 

1. ∅, � U� 

2.  The union of any number of soft sets in τ  belongs to τ  

3.  The intersection of any two soft sets in τ  belong to τ  

The triplet (�, �, �) is called a soft topological space.  

 

Definition 18 [1]. Let (�, �, �) be a soft topological space over � then the member of τ are 

said to be soft open sets in .X  

 

Definition 19 [1]. Let(�, �, �) be a soft topological space over�.A soft set(�, �) over X  

is said to be a soft closed set in X , if its relative complement (�, �), belong to .τ  

 

Definition 20 [3]. Let(�, ��, �)  and (�, ��, �) be two different soft topologies on X. Let ��V��be the smallest soft topology on � that contains�� ∪ ��. 
 

Example: Suppose there are three Houses in the universe - = {ℎ�, ℎ�, ℎ;} under 

observation, and that � = {��, ��} is a decision parameters which stands for “beautiful”, 

and “in green surrounding”. In this case to define a soft set means to point out beautiful 

house and in green surrounding house. 

 

Let�� = A∅, �, (X ��, �C, (��, �)} and A�� =∅, �, (X %�, �), (%�, �), (%;, �), (%<, �)} where(��, �), (��, �), (%�, �), (%�, �), (%;, �), (%<, �) are soft sets over�, defined as follow: 

 ��(��) = {ℎ�}, ��(��) = {ℎ�, ℎ�}, ��(��) = {ℎ�, ℎ;}, ��(��) = �, %�(��) = {ℎ�}, %�(��) ={ℎ�}, %�(��) = {ℎ�, ℎ�}, %�(��) = {ℎ�}, %;(��) = {ℎ�}, %;(��) = {ℎ�}, %<(��) ={ }, %<(��) = {ℎ�}.  

 

Then �� and �� are soft topology on �.Now, 

  ��V�� = {∅, �, (��, �), (��, �), (%�, �), (%�, �), (%;, �), (%<, �), (/�, �)}. 

 

Where, /�(��) = {ℎ�, ℎ�}, /�(��) = {ℎ�, ℎ�}. Thus (�, ��V��, �) is the smallest soft 

topological space over � that contains �� ∪ ��. 
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3. Separation Axioms of Soft Topological Spaces With Respect to 

Ordinary Points as Well as Soft Points 
 

Definition 21 [1].Let (�, �, �) be a soft topological space over X and 4, Y ∈ �   such that 4 ≠ Y if there exist at least one soft open set (��, �) OR  (��, �) such that 4 ∈ (��, �), Y ∉(��, �)orY ∈ (��, �), 4 ∉ ((��, �)then  (�, �, �) is called a soft �� Z[6\�. 

 

Definition 22 [1]. Let  (�, �, �) be a soft topological spaces over X and 4, Y ∈ �   such that 4 ≠ Y if there exist soft open sets (��, �) and (��, �) such that 4 ∈ (��, �), Y ∉ (��, �)  and   Y ∈ (��, �), 4 ∉ ((��, �) then  (�, �, �) is called a soft �� Z[6\�. 

 

Definition 23 [1]. Let (�, �, �) b e a soft Topological space over X and 4, Y ∈ �  such that 4 ≠ Y if there exist soft open set (��, �)and (��, �) such that 4 ∈ (��, �), and   Y ∈ (��, �) 

and �� ∩ �� = ] 

 

Then   (�, �, �) is called soft  �� spaces. 

 

Definition 24 [42].Let (�, �, �) be a soft topological space over X and �9 , �K ∈ ��   such 

that �9 ≠ �K if we can search at least one soft open set (��, �) or  (��, �) such that �9 ∈ (��, �), �K ∉ (��, �)or  �K ∈ (��, �), �9 ∉ ((��, �)then  (�, �, �) is called a soft �� 

space. 

 

Definition 25 [42]. Let  (�, �, �) be a soft topological spaces over X and �9 , �K ∈ ��   such 

that �9 ≠ �K if we can search soft open sets (��, �)and (��, �) such that �9 ∈ (��, �), �K ∉(��, �)  and   �K ∈ (��, �), �9 ∉ ((��, �) then  (�, �, �) is calleda soft �� Z[6\�. 

 

Definition 26 [42]. Let (�, �, �) b e a soft topological space over X and �9 , �K ∈ ��  such 

that �9 ≠ �K if we can search soft open set (��, �)and (��, �) such that �9 ∈ (��, �), and   �K ∈ (��, �) 
 (��, �) ∩ (��, �) = �� Then   (�, �, �) is called soft  �� space. 

 

 

4. Soft Strong Separation Axioms of Soft Bi Topological Spaces 
 

Let � is an initial set and � be the non-empty set of parameter. In [1] soft bi topological 

space over the soft set � is introduced. Soft separation axioms in soft bi topological spaces 

were introduced by Basavaraj and Ittanagi [1]. In this section we introduced the concept of 

soft b �; and b�< spaces in soft bi topological spaces with respect to ordinary as well as soft 

points and some of its basic properties are studied and applied to different results in this 

section. 

 

Definition 27 [1]. Let(�, ��, �)  and (�, ��, �) be two different soft topologies on X. Then (�, ��, ��, �) is called a soft bi topological space. The two soft topologies (�, ��, �) and (�, ��, �) are independently satisfy the axioms of soft topology. The members of�� are 

called ��soft open. And complement of��. Soft open set is called ��soft closed set.  

 

Similarly, the member of �� are called �� soft open sets and the complement of �� soft open 

sets are called ��soft closed set.  
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Definition 28 [1]. Let (�, ��, ��, �)be a soft topological space over X and Y be a non-

empty subset of X. Then��^ = {(S' , �): (�, �) ∈ ��)} and ��^ = {(%' , �): (%, �) ∈ ��)} 

are said to be the relative topological on Y. Then (S, ��^, ��^, �) is called relative soft bi-

topological space of (�, ��, ��, �). 

 

 

4.1 Soft Strong Separation Axioms of Soft Bi Topological Spaces with Respect to 

Ordinary Points. 
 

In this section we introduced soft strong separation axioms in soft bi topological space with 

respect to ordinary points and discussed some results with respect to these points in detail. 

 

Definition 29. In a soft bi topological space (�, ��, ��, �) 

 1) �� said to be soft strong  �� space with respect to �� if for each pair of distinct points  4, Y ∈ � there exists �� soft  open set (�, �) and a �� soft  open set (%, �) such that 4 ∈ ���7_(�, �) and Y ∉ ���7_(�, �)  or Y ∈ ���7_(%, �) and 4 ∉ ���7_(%, �) similarly  �� 

is said to be soft strong  �� space with respect to �� if for each pair of distinct points 4, Y ∈ � there exists ��soft  open set(�, �) and a ��soft  open set (%, �) such that 4 ∈�� �7_(�, �) and Y ∉ ���7_(�, �) or Y ∈ ���7_(%, �) and 4 ∉ ���7_(%, �). Soft bi 

topological spaces(�, ��, ��, �)   is said to be pair wise soft strong  �� space if �� is soft 

strong  �� space with respect to �� and �� is soft strong   �� space with respect to ��. 
 2)  �� is said to be soft strong �� space with respect to �� if for each pair of distinct points 4, Y ∈ � there exists �� soft open set (�, �) and �� soft open set (%, �) such that 4 ∈��int (�, �) and  Y ∉ ��int (�, �) and Y ∈ ���7_(%, �) and  4 ∉ ���7_(%, �). Similarly,�� 

is said to be soft strong �� space with respect to �� if for each pair of distinct points 4, Y ∈ �there exist a �� soft open set (�, �)  and a �� soft open set (%, �) such that 4 ∈ ���7_(�, �) and  Y ∉ ���7_(�, �) and Y ∈ ���7_(%, �) and  4 ∉ ���7_(%, �). Soft bi 

topological spaces (�, ��, ��, �)   is said to be pair wise soft strong �� space if �� is soft 

strong �� spacewith respect to ��and �� is soft strong ��space with respect to ��. 
 3)   �� said to be soft strong �� space with respect to ��if for each pair of distinct points 4, Y ∈ � there exists a �� soft open set (�, �) and a �� soft open set (%, �) such that 4 ∈ ���7_(�, �)and Y ∈ ��int (%, �) and(�, �) ∩ (%, �) = �. Similarly,�� is said to be soft 

strong ��space with respect to �� if for each pair of distinct points 4, Y ∈ � there exists a ��soft open set (�, �) and a ��soft openset(%, �) such that 4 ∈ ���7_(�, �) and Y ∈���7_(%, �) and (�, �) ∩ (%, �) = �. The soft bi topological space (�, ��, ��, �) is said to 

be pair wise soft strong �� space if �� is soft strong �� space with respect to �� and ��  is 

soft strong �� space with respect to��. 

 

Proposition 1. Let (�, ��, ��, �)  be a bi soft topological space over X . If (�, ��, ��, �) is a 

pair wise soft strong �� space then (�, ��V��, �) is a soft strong �� space.  

 

Proof. A soft bi topological space (�, ��, ��, �) is called pair wise soft strong �� space if �� 

is a soft strong ��  space with respect to �� and �� is soft strong �� space with respect to��. 

If 4, Y ∈ � , 4 ≠ Y. Then, since ��is soft strong �� space  with respect to �� so there exists �� soft  open set (�, �) and �� soft  open set (%, �) such that 4 ∈ ��int(�, �) and Y ∉���7_(�, �) or  Y ∈ ���7_(%, �) and 4 ∉ ���7_(%, �) and since ��is soft �� space with 
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respect to �� so there exists�� soft open set(%, �)and τ�soft openset(�, �) such that and 4 ∈ ���7_(�, �) and Y ∉ ���7_(�, �) or Y ∈ ���7_(%, �) and 4 ∉ ���7_(%, �). In either 

case (�, �), (%, �) ∈ (�, ��V��, �). Hence (�, ��V��, �) is a soft strong �� space.     

 

Proposition 2. Let (�, ��, ��, �) be a soft bi topological space over � and Y be a non-

empty subset of X. if (�, ��, ��, �) is pair wise soft strong ��   space. Then(�, ��^, ��^, �) is 

pair wise soft strong �� space.  

 

Proof. Let  (�, ��, ��, �) be a soft bi topological space over X 4, Y ∈ �   such that4 ≠ Y. 

If(�, ��, ��, �)  is pair wise soft strong  ��  space. Then there exist �� soft open set (�, �) 

and �� soft open set (%, �). Such that 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) or  Y ∈��int (%, �) and4 ∉ ���7_(%, �). Now, 4 ∈ S and 4 ∈ ��int (�, �). Hence,  where    4 ∈ S ∩ (�, �) = (SG, �) where (�, �) ∈ ��. Consider Y ∉ ��int(�, �) , this means that � ∈ �  for some � ∈ �. Y ∉ S ∩ (�, �) = (S' , �) There fore ��^ is soft strong  �� space 

with respect ��^. Similarly, can proved that��^  is soft strong ��  space with respect to ��^, 

that is Y ∈ ��int(%, �) and 4 ∉ ��int(%, �) then Y ∈ (S9,�) and 4 ∉ BS9,�C. Thus  (S, ��^, ��^, �)  is pair wise soft strong ��  space. 

 

Proposition 3. Let(�, ��, ��, �) be a soft bi topological space over X . Then  (�, ��, ��, �) 

is a pair wise soft strong �� space ⇔  then(�, ��, �) and (�, ��, �) are soft strong �� space.  

 

Proof. Suppose (�, ��, �) and (�, ��, �) are soft strong �� spaces. Let 4, Y ∈ �, 4 ≠ Y  then  

 

1). ��is a soft strong � � space with respect to ��. So there exists �� soft open set (�, �) and �� soft open set (%, �) Such that  4 ∈ ��int(�, �) , Y ∉ ��int(�, �) and   Y ∈ ��int(%, �),  4 ∉ ��int(%, �). 

 

2). ��is a soft strong �� space with respect to ��So there exists ��soft open set (%, �) and ��soft  open set (�, �) such that 4 ∈ ��int(%, �) and Y ∉ ��int(%, �) and Y ∈ ��int(�, �) 

and 4 ∉ ��int(�, �) . In either case we obtained the requirement and so (�, ��, ��, �) is a 

pair wise soft strong ��space. Conversely, we suppose that (�, ��, ��, �) is a pair wise soft 

strong  ��  space. Then  

 

1). There exists some soft open set (�, �) ∈ �� with respect to soft open set (%, �) ∈  �� 

such 4 ∈ ��int(�, �) ,  Y ∉ ��int(�, �) and Y ∈ ��int(%, �), 4 ∉ ��int(%, �). 

 

2). There exists some soft open set(%, �) ∈ ��with respect to soft open set (�, �) ∈ ��such 

that 4 ∈ ��int(%, �) and Y ∉ ��int(%, �) and Y ∈ ��int(�, �) and 4 ∉ �� int(�, �) 

Thus(�, ��, �) and (�, ��, �) are soft strong  �� Spaces. 

 

Proposition 4. Let (�, ��, ��, �) be a soft bi topological space over X. if (�, ��, ��, �) is 

pair wise soft strong  ��  space then (�, ��V ��, �) is also soft strong  �� space. 

 

Proof. Let4, Y ∈ �  such that 4 ≠ Y.then exists soft open set (�, �) ∈ ��with respect to soft 

open (%, �) ∈ �� such that  4 ∈ ��int(�, �) , Y ∉ ��int(�, �) and   Y ∈ ��int(%, �) 

and 4 ∉ ��int(%, �).Similarly ,There exists soft open set(%, �) ∈ �� with respect to 1τ soft 

open set(�, �) ∈ �� such that 4 ∈ ��int(%, �) and Y ∉ ��int(%, �) and Y ∈ ��int(�, �) 

and4 ∉ ��int(�, �) So (�, �), (%, �) ∈ ��V��  and thus (�, ��V ��, �) is soft strong  �� 

space.   
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Proposition 5. Let(�, ��, ��, �) be a soft bi topological space over X and Y be non-empty 

sub set of X . If (�, ��, ��, �) is pair wise soft strong  ��   space then  (�, ��^, ��^, �) is pair 

wise soft strong  �� space.  

 

Proof. Let (�, ��, ��, �) be a soft bi topological space over X and 4, Y ∈ S, 4 ≠ Y. If (�, ��, ��, �) is pair wise soft  ��  then there exists 1τ soft open set(�, �) and 2τ soft open 

set (%, �) such that 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �) and 4 ∉��int(%, �). Now 4 ∈ Sand 4 ∈ (�, �). Hence4 ∈ S ∩ (�, �) = (SG , �). Then  Y ∉ S ∩�(�) for some � ∈ �. This means that � ∈ � then Y ∉ S ∩ �(�) for some � ∈ �. 

Therefore Y ∉ S ∩ (�, �) = (SG , �) Now Y ∈ S and Y ∈ (%, �).  

 

Hence Y ∈ S ∩ (%, �) = (S9 , �) where (%, �) ∈ ��. Consider4 ∉ (%, �) this means that � ∈ � then4 ∉ S ∩ %(�) for some � ∈ �. Therefore.  4 ∉ S ∩ (%, �) = (S9 , �) hence ��^ 

is b�� space with respect (S9 , �) to ��^. Similarly it can be provide that 
Y2τ   is soft strong �� space with respect to ��^, that is Y ∈ ��int(%, �) and 4 ∉ ��int(%, �). Then  Y ∈ (S9 , �) 

and 4 ∉ (S9 , �) .Thus (�, ��^, ��^, �) is pair wise  soft strong ��space.  

 

Proposition 6. Every pair wise soft strong  �� space is pair wise sot strong  �� space.  

 

Proof. Let (�, ��, ��, �)  be a soft bi topological space over X and  4, Y ∈ � such that 4 ≠ Y  If (�, ��, ��, �) is pair wise soft strong  �� space. That is, (�, ��, ��, �) is pair wise 

soft strong  �� space with respect to�� and �� is soft strong  �� space with respect to �� .If �� is soft strong  �� space  with respect to �� then there exists a ��soft  open set (�, �) and a �� soft open set (%, �) such that 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �) 

and 4 ∉ ��int(%, �). 

 

Obviously 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) or Y ∈ ��int(%, �) and 4 ∉ ��int(%, �). 

Therefore �� is soft strong  �� space with respect to ��. Similarly, if�� is a soft strong �� 

space with respect to �� then, there exists ��soft open set (�, �)and ��soft open set (%, �) 

such that 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �)  and4 ∉ ��int(%, �). 

Obviously 4 ∈ �� int(�, �) and Y ∉ ��int(�, �) or Y ∈ (%, �) and 4 ∉ ��int(%, �). 

Therefore�� soft strong  �� space with respect to ��. Thus (�, ��, ��, �) is a pair wise soft 

strong  �� space. 

 

Proposition 7. Let (�, ��, ��, �) be a soft bi topological space over X. if (�, ��, ��, �) is a 

pair wise soft strong  �� space over X then (�, ��d , ��d , �) is a pair wise soft strong  �� 

space for each� ∈ �. 

 

Proof. Suppose that (�, ��, ��, �) is a pair wise soft strong  �� space over �. For any � ∈ �. 

 ��d = {�(�), (�, �) ∈ �� ��d = {%(�), (%, �) ∈ �� 
 

Let  4, Y ∈ � such that 4 ≠ Y  then there exists soft open set (�, �) ∈ �� and soft open set (%, �) ∈ �� such that 4 ∈ ��int(�, �), Y ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅. This 

implies that 4 ∈ �(�) ∈ ��d , Y ∈ %(�) ∈ ��dfor each � ∈ �. Similarly, for the other case. 

Thus (�, ��d , ��d , �) is a pair wise strong  �� space for each � ∈ �. 
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Proposition 8. Let (�, ��, ��, �) be a soft bi topological space over�.  If  (�, ��, ��, �) is  

Pair wise soft strong   �� space. Then (�, ��e��, �) also a soft strong  �� space.  

 

Proof. Let  4, Y ∈ � such that4 ≠ Y. Since (�, ��, ��, �)  be a soft bi topological space over �(�, ��, ��, �) is a pair wise soft strong  ��space if �� is soft strong   ��space with respect  �� and  �� is soft strong  �� space with respect to ��. If  ��  be soft strong  �� space with 

respect to �� then there exists a   �� soft open set (�, �)and  ��soft open set(%, �) such that 4 ∈ ��int(�, �), Y ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅ . Obviously  4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �) and 4 ∉ ��int(%, �). Therefore  �� is soft strong �� space with respect to ��. 

 

Similarly,  �� is soft strong  ��  space with respect to  �� then there exists a �� soft open set (�, �) and  �� 

 

Soft open set (%, �) such that 4 ∈ ��int(�, �), Y ∈ ��int(%, �) and(�, �) ∩ (%, �) = ∅. 

 

Obviously 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �) and 4 ∉ ��int(%, �). 

Therefore �� soft strong  �� space with respect to  �� thus in either case (�, �), (%, �) ∈��e��. Hence (�, ��V��, �) is soft strong  �� space over X.  

 

Proposition 9. Let (�, ��, ��, �) be a soft bi topological space over X and Y be a non-

empty sub set of X. if (�, ��, ��, �) is pairwise soft strong  �� space then (S, ��^, ��^, �) is 

pair wise soft strong   �� space. 

 

Proof. Let  (�, ��, ��, �) be soft bi topological space over � 4, Y ∈ � such that 4 ≠ Y such 

that (�, ��, ��, �)  is pair wise soft strong  �� space. Then there exists a  �� soft open 

set(�, �) and a  �� soft open (%, �) such that 4 ∈ �� int(�, �), Y ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅. So for each � ∈ �, 4 ∈ �(�), Y ∈ %(�) and �(�) ∩ %(�) = ∅. This 

implies that 4 ∈ S ∩ �(�), Y ∈ S ∩ %(�) and   �(�) ∩ %(�) = ∅. Hence

),(),,( EYyEYx GF ∈∈  (SG, �) ∩ (S9 , �) = ∅.  Where (SG, �) is soft open set in ��^, and (S9 , �) is soft open set in ��^ therefore  ��^ is soft  �� space with respect to ��^. Similarly, it 

can be proved that  ��^ is soft �� space with respect to ��^. Thus (S, ��^, ��^, �)   is pair 

wise soft strong  ��   space. 

 

Proposition 10. Every pair wise soft strong  ��  space is pair wise soft strong �� space. 

 

Proof. Let (�, ��, ��, �)  be a soft bi topological space over X and 4, Y ∈ � such that 4 ≠ Y 

If (�, ��, ��, �) is pair wise soft strong �� space. That is (�, ��, ��, �) is pair wise soft 

strong  �� space if  �� is soft  ��   space with respect �� then there exists a  �� soft open set (�, �) and  �� soft open set(%, �) such that 4 ∈ ��int(�, �), Y ∈ ��int(%, �) and (�, �) ∩(%, �) = ∅. Obviously,  4 ∈ ��in(�, �) and Y ∉ ��in(�, �) and Y ∈ ��in(%, �) and 4 ∉ ��in((%, �). Therefore  �� is soft Z_327f �� space with respect to ��. Similarly, if  �� is 

soft strong  ��  space with respect to  �� then there exists a  �� soft open set (�, �) and  �� 

soft open set(%, �) such that 4 ∈ ��int(�, �), Y ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅. 
Obviously, 4 ∈ ��int(�, �) and Y ∉ ��int(�, �) and Y ∈ ��int(%, �) and 4 ∉ ��int(%, �). 

Therefore  �� is soft strong ��space with respect to  �� thus (�, ��, ��, �)is pair wise soft 

strong  �� space.  
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4.2 Soft Strong Separation Axioms of Soft Bi Topological Spaces with Respect to Soft 

Points 
 

In this section, we introduced soft strong separation axioms in soft topology and in soft bi 

topology with respect to soft points. With the application of these soft strong separation 

axioms different results are discussed. Soft point is beautifully defined in Definition 9 [42].  

 

Definition 30. In a soft bi topological space (�, ��, ��, �)  
 1)  �� said to be  soft strong �� space with respect to �� if for each pair of distinct points �9 , �K ∈ �� there happens �� soft open set (�, �) and a �� soft  open set (%, �) such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �)or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �), 

Similarly, �� is said to be  soft strong �� space with respect to �� if for each pair of distinct 

points �9 , �K ∈ �� there happens �� soft  open set(�, �) and a ��soft  open set (%, �) such 

that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �) . Soft 

bi topological spaces (�, ��, ��, �)   is said to be pair wise soft strong �� space if �� is soft 

strong �� space with respect to ��  and�� is soft strong �� space with respect to ��. 

 2)  �� is said to be soft strong �� space with respect to �� if for each pair of distinct points �9 , �K ∈ �� there happens  a ��soft open set (�, �) and �� soft open set (%, �) such that �9 ∈ ��int(�, �) and  �K ∉ ��int(�, �) and �K ∈ ��int(%, �) and  �9 ∉ ��int(%, �). 

Similarly, �� is said to be soft strong �� space with respect to �� if for each pair of distinct 

points �9 , �K ∈ �� there exist a �� soft open set (�, �)  and a �� soft open set (%, �) such 

that �9 ∈ ��int(�, �) and  �K ∉ ��int(�, �) and �K ∈ ��int(%, �) and  �9 ∉ ��int(%, �). 

Soft bi topological spaces (�, ��, ��, �) is said to be pair wise soft strong �� space if �� is 

soft strong �� space with respect to ��  and �� is soft strong �� spaces with respect to ��. 

 3)  �� is said to be soft strong �� space with respect to ��, if for each pair of distinct points �9 , �K ∈ �� there happens a �� softopen set (�, �) and a ��  soft open set (%, �) such that �9 ∈ ��int(�, �) and �K ∈ ��int(%, �) and (�, �) ∩ (%, �) = �. Similarly,  �� is aid to be  

soft strong �� space with respect to �� if  for each pair of distinct points �9 , �9 ∈ ��there 

happens a �� soft open set (�, �) and a �� soft  open set(%, �) such that �9 ∈ ��int(�, �) 

and �K ∈ ��int(%, �) and (�, �) ∩ (%, �) = �. The soft bi topological space (�, ��, ��, �) 

is said to be pairwise soft strong �� space if �� is soft strong �� space with respect to ��  

and �� is soft strong �� space with respect to ��. 

 

Proposition 11. Let (�, ��, ��, �) be a soft bi topological space over X . If (�, ��, �) and (�, ��, �) is a Soft strong ��space. Then   (�, ��, ��, �) is a pair wise soft strong �� space.   

 

Proof. Let�9 , �K ∈ � , �9 ≠ �Kand suppose that (�, ��, �)is a soft strong  �� space with 

respect to (�, ��, �). Then, according to definition, there exists �� softopen set (�, �)and �� 

soft open set(%, �)such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or�K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Similarly, let �9 , �K ∈ � , �9 ≠ �K and suppose that (�, ��, �) is a soft 

strong ��   space with respect to (�, ��, �)then, according to definition there exists �� soft 

open set (%, �) and �� soft open set (�, �) such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) 

or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Hence (�, ��, ��, �)  is a pair wise soft strong �� 

space.  

 

Proposition 12. Let (�, ��, ��, �)  be a soft bi topological space over X . If (�, ��, ��, �) is 

a pair wise soft strong �� space then (�, ��V, ��, �) is a soft strong �� space.  
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Proof. A soft bi topological space (�, ��, ��, �) is called pair wise soft strong �� space if �� 

is a soft strong ��  space with respect to �� and �� is soft strong  �� space with respect to��. 

If�9 , �K ∈ � , �9 ≠ �K then since ��is soft strong �� space  with respect to �� so there exists �� soft open set (�, �) and �� soft open set (%, �) such that �9 ∈ ��int(�, �) and �K ∉��int(�, �) or�K ∈ ��int(%, �) and �9 ∉ ��int(%, �) and since ��is soft strong �� space 

with respect to �� so there exists�� soft open set(%, �)and τ�soft open set(�, �) such that 

and �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). In 

either case (�, �), (%, �) ∈ (�, ��V, ��, �).  Hence (�, ��V, ��, �) is a soft strong �� space.     

 

Proposition 13. Let (�, ��, ��, �) be a soft bi topological space over X and Y be a non-

empty subset of X. If (�, ��, ��, �) is pair wise soft strong ��   space. Then (S, ��^, ��^, �) is 

pair wise soft strong �� space.  

 

Proof. Let  (�, ��, ��, �) be a soft bi topological space over X, �9 , �K ∈ �  such that�9 ≠�K. If (�, ��, ��, �)  is pair wise soft strong ��   space. Then there exist �� soft open set (�, �) and �� Soft open set(%, �) such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or �K ∈ ��int(%, �) and�9 ∉ ��int(%, �). Now, �9 ∈ S and �9 ∈ ��int(�, �). Hence  where    �9 ∈ S ∩ ��int((�, �) = (SG, �) where (�, �) ∈ ��. Consider�K ∉ ��int(�, �) this means 

that � ∈ �  for some � ∈ �. Y ∉ S ∩ ��int(�, �) = (S' , �) There fore ��^ is soft strong   �� 

space with respect ��^. Similarly, can proved that ��^  is soft strong ��  space with respect 

to ��^, that is �K ∈ ��int(%, �) and �9 ∉ ��int(%, �) then �K ∈ (S9,�) and �9 ∉ BS9,�C. 
Thus  (�, ��^, ��^, �)  is pair wise soft strong  ��    space. 

 

Proposition 14. Let (�, ��, ��, �) be a soft bi topological space over X . Then  (�, ��, ��, �) 

is a pair wise soft strong �� space if and only if (�, ��, �) and (�, ��, �) are soft strong �� 

space.  

 

Proof. Suppose (�, ��, �) and (�, ��, �) are soft strong �� spaces. Let �9 , �K ∈ �, �9 ≠ �K  

then  

 

1) ��is a soft strong �� space with respect to ��. So there exists �� soft open set (�, �) and �� soft open set (%, �) Such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) and �K ∈��int(%, �) and �9 ∉ ��int(%, �). 

 

2) ��is a soft strong �� space with respect to ��So there exists ��softopen set (%, �) and �� 

soft open set (�, �) such that �9 ∈ ��int(%, �) and �K ∉ ��int(%, �) and �K ∈ ��int(�, �) 

and �9 ∉ ��int(�, �). In either case we obtained the requirement and so (�, ��, ��, �) is a 

pair wise soft strong �� space. Conversely, we suppose that (�, ��, ��, �) is a pair wise soft 

strong  ��  space. Then  

 

1) There exists some soft open set (�, �) ∈ �� with respect to soft open set (%, �) ∈  ��such �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) and �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). 

 

2) There exists some soft open set(%, �) ∈ ��with respect to soft open set (�, �) ∈ ��such 

that �9 ∈ ��int(%, �) and �K ∉ ��int(%, �) and �K ∈ ��int(�, �) and �9 ∉ ��int(�, �) 

Thus(�, ��, �) and (�, ��, �)  are soft strong   �� Space. 
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Proposition 15. Let (�, ��, ��, �) be a soft bi topological space over X. If (�, ��, ��, �) is 

pair wise soft strong  ��  space then (�, ��V ��, �) is also a soft strong  ��  space. 

 

Proof. Let�9 , �K ∈ � , �9 ≠ �K. Then exists soft open set(�, �) ∈ ��with respect to soft 

open (%, �) ∈ �� such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) and �K ∈ ��int(%, �) 

and �9 ∉ ��int(%, �). Similarly, There exists soft open set(%, �) ∈ �� with respect to 1τ  
soft open set(�, �) ∈ �� such that �9 ∈ ��int(%, �) and �K ∉ ��int(%, �) and �K ∈��int(�, �) and �9 ∉ ��int(�, �) so (�, �), (%, �) ∈ ��V��  and thus (�, ��V ��, �) is soft 

strong  �� space.   

 

Proposition 16. Let (�, ��, ��, �) be a soft bi topological space over X  and Y  be non-

empty sub set of X . If(�, ��, ��, �) is pair wise soft strong  ��   space then  (�, ��^, ��^, �) 

is pair wise soft strong  �� space.  

 

Proof. Let (�, ��, ��, �) be a soft bi topological space over X , �9 , �K ∈ S, �9 ≠ �K, If (�, ��, ��, �) is pair wise soft strong  ��  then there exists 1τ  soft open set(�, �) and 2τ soft 

open set (%, �) such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �)and�K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Now�9 ∈ Sand �9 ∈ ��int(�, �). Hence �9 ∈ S ∩ ��int(�, �) = (SG, �) 

Then �K ∉ S ∩ �(�) for some � ∈ �. This means that � ∈ � then �K ∉ S ∩ �(�) for 

some � ∈ �. Therefore, �K ∉ S ∩ ��int(�, �) = (SG , �). Now �K ∈ S and �K ∈ (%, �). 

Hence �K ∈ S ∩ ��int(%, �) = (S9 , �) where (%, �) ∈ ��. Consider �9 ∉ (%, �) this means 

that � ∈ � then �9 ∉ S%(�) for some � ∈ �. Therefore, �9 ∉ S ∩ ��int(%, �) = (S9 , �) 

hence ��^ is soft strong  �� space with respect (S9 , �) to ��^. Similarly, it can be provide 

that 
Y2τ   is soft strong  �� space with respect to ��^, that is �K ∈ ��int(%, �) and �9 ∉��int(%, �). Then  �K ∈ (S9 , �) and �9 ∉ (S9 , �) thus (�, ��^, ��^, �) is pair wise  soft 

strong  �� space.  

 

Proposition 17. Every pair wise soft strong  �� space is pair wise soft strong  �� space.  

 

Proof. Let (�, ��, ��, �) be a soft bi topological space over X and  �9 , �K ∈ � such that �9 ≠ �K. If (�, ��, ��, �) is pair wise soft strong  �� space, that is (�, ��, ��, �) is pair wise 

soft strong  �� space with respect to�� and �� is soft strong  �� space with respect to  �� . If �� is soft strong  �� space  with respect to �� then there exists a �� soft open set (�, �) and a �� soft open set(%, �) such that �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) and �K ∈��int(%, �) and �9 ∉ ��int(%, �) Obviously �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Therefore �� is soft strong  �� space with respect to ��. Similarly if �� is a soft strong �� space with respect to �� then their exists �� soft open 

set (�, �) and ��soft open set(%, �) such that such that �9 ∈ ��int(�, �) and �K ∉��int(�, �) and �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Obviously �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) or �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Therefore �� soft strong    �� 

space with respect to ��. Thus (�, ��, ��, �) is a pair wise soft strong   ��. 

 

Proposition 18. Let (�, ��, ��, �) be soft bi topological space over X. If (�, ��, ��, �) is a 

pair wise soft strong   �� space over X then (�, ��d , ��d , �) is a pair wise soft strong  �� 

space for each  � ∈ � 

 

Proof. Suppose that (�, ��, ��, �) is a pair wise soft strong   �� space over �. For any� ∈ � 
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��d = {�(�), (�, �) ∈ �� ��d = {%(�), (%, �) ∈ �� 
 

Let�9 , �K ∈ � such that �9 ≠ �K 

 

Case 1) then there exists open set  (�, �) ∈ �� and soft open set (%, �) ∈ �� such that �9 ∈ ��int(�, �), �K ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅. This implies that �9 ∈ �(�) ∈��d , �K ∈ %(�) ∈ ��d for each ∈ � and �(�) ∩ %(�) = ∅.  Similarly, 

 

Case 2) then there exists open set  (�, �) ∈ �� and soft open set (%, �) ∈ �� such that �9 ∈ ��int(�, �), �K ∈ ��int(%, �)and(�, �) ∩ (%, �) = ∅. This implies that �9 ∈ �(�) ∈��d , �K ∈ %(�) ∈ ��d for each ∈ �and�(�) ∩ %(�) = ∅. This implies that �9 ∈ �(�) ∈��d , �K ∈ %(�) ∈ ��d for each ∈ � and �(�) ∩ %(�) = ∅ thus (�, ��d , ��d , �) is a pair wise 

soft strong   �� space for each� ∈ �. 

 

Proposition 19. Let (�, ��, ��, �) be a soft bi topological space over�. If (�, ��, ��, �) is 

pair wise soft strong  ��space. Then(�, ��e��, �) also a soft strong  �� space.  

 

Proof. Let  �9 , �K ∈ � such that�9 ≠ �K. Since (�, ��, ��, �)  be a soft bi topological space 

over �. (�, ��, ��, �) is a pair wise soft strong  �� space if �� is soft strong �� space with 

respect  �� and  �� is soft strong �� space with respect to ��. If  �� be soft strong  �� space 

with respect to ��, then there exists a ��soft open set (�, �) and  �� soft open set (%, �) 

such that �9 ∈ ��int(�, �), �K ∈ ��int(%, �) and (�, �) ∩ (%, �) = ∅ . Obviously �9 ∈��int(�, �) and �K ∉ ��int((�, �) and �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Therefore  �� is soft strong �� space with respect to ��. 

 

Similarly,  �� is soft strong  ��  space with respect to  �� then there exists a �� soft open set (�, �) and  �� soft open set (%, �) such that 

 �9 ∈ ��int(�, �), �K ∈ ��int(%, �) 678  (�, �) ∩ (%, �) = ∅. 

 

Obviously �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) , �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). 

Therefore �� soft strong  �� space with respect to  ��. Thus in either case (�, �), (%, �) ∈��e��. Hence (�, ��V��, �) is soft strong  �� space over X.  

 

Proposition 20. Let (�, ��, ��, �) be a soft bi topological space over X and Y be a non-

empty sub set of X. if (�, ��, ��, �)is pair wise soft strong  �� space. Then(S, ��^, ��^, �) is 

pair wise soft strong   �� space �9 , �K ∈ � and �9 ≠ �K. 
 

Proof. Let (�, ��, ��, �) be  soft  bi topological space over� �9 , �K ∈ � such that  �9 ≠�K is pair wise soft strong    �� space then there exist a  �� soft open set (�, �) and a  �� soft 

open(%, �) such that  �9 ∈ ��int(�, �), �K ∈ ��int(%, �), (�, �) ∩ (%, �) = ∅ so for each � ∈ ��9 ∈ �(�), �K ∈ %(�) and �(�) ∩ (%(�) = ∅. This implies that �9 ∈ S ∩�(�), �K ∈ S ∩ %(�) and � ∈ (�) ∩ %(�) = ∅. Hence (SG, �) ∩ (S9 , �) = ∅. Where (SG, �) is soft open set in ��^, and (S9 , �) is soft open set in ��^. Therefore,  ��^ is soft 

strong  �� space with respect to ��^. Similarly, it can be proved that  ��^is soft strong    ��   
space with respect to ��^. Thus (S, ��^, ��^, �)   is pair wise soft strong   ��  space. 

 

Proposition 21. Every pair wise soft strong  ��  space is pair wise soft strong �� space.  
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Proof. Let (�, ��, ��, �) be a soft bi topological space over X and �9 , �K ∈ � such that �9 ≠ �K. If (�, ��, ��, �) is pair wise soft strong  �� space. That is (�, ��, ��, �) is pair wise 

soft strong   �� space. If  �� is soft strong    ��   space with respect  �� then there exists a  ��soft open set (�, �) and  ��soft open set(%, �)such that �9 ∈ ��int(�, �), �K ∈��int(%, �) and (�, �) ∩ (%, �) = ∅. Obviously, �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) 

and �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Therefore  �� is soft strong �� space with 

respect to ��. Similarly, if  �� is soft strong   ��  space with respect to  �� then there exists a  ��soft open set (�, �)and  ��soft open set (%, �)such that�9 ∈ ��int(�, �), �K ∈��int(%, �) and (�, �) ∩ (%, �) = ∅. Obviously �9 ∈ ��int(�, �) and �K ∉ ��int(�, �) 

and �K ∈ ��int(%, �) and �9 ∉ ��int(%, �). Therefore  �� is soft strong �� space with 

respect to  �� thus (�, ��, ��, �) is pair wise soft strong  �� space.  

 

 

5. Conclusions 
  

Topology is the most important and major area of mathematics and it can make a marriage 

between other scientific area and mathematical structures beautifully. Recently, many 

researchers have studied the soft set theory which is initiated by Molodtsov  [4] and safely 

applied to many problems which contain uncertainties in our social life. Shabir and Naz in  

[23] introduced and deeply studied the concept of soft topological spaces. They also 

studied topological structures and exhibited their several properties with respect to ordinary 

points. 

 

In the present work, we have continued to study the properties of soft separation axioms in 

soft bi topological spaces with respect to soft points as well as ordinary points of a soft 

topological space. We defined soft strong ��, ��, �� and spaces with respect to soft points 

and studied their behaviors in soft bi topological spaces. We also extended these axioms to 

different results. These soft separation axioms would be useful for the growth of the theory 

of soft topology to solve complex problems, comprising doubts in economics, engineering, 

medical etc. We also beautifully discussed some soft transmissible properties with respect 

to ordinary as well as soft points. We hope that these results in this paper will help the 

researchers for strengthening the toolbox of soft topology. In the next study, we extend the 

concept of soft semi open, α- open, Pre-open and k∗∗open soft sets in soft bi topological 

spaces with respect to ordinary as well as soft points. 
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Abstaract − In this paper, we introduce the notion of intuitionistic fuzzy subsemirings, level
subsets of of intuitionistic fuzzy subsemirings, intersection and direct sum of intuitionistic fuzzy
subsemirings under norms and investigate many properties of them. We also made an attempt to
study the characterizations of them under homomorphism and anti-homomorphism.
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1 Introduction

In abstract algebra, a semiring is an algebraic structure similar to a ring, but with-
out the requirement that each element must have an additive inverse. After the
introduction of fuzzy sets by Zadeh [26], a number of generalizations of this funda-
mental concept have come up. Algebraic structures play a vital role in Mathematics
and numerous applications of these structures are seen in many disciplines such as
computersciences, information sciences, theoretical physics, control engineering and
so on. This inspires researchers to study and carry out research in various concepts
of abstract algebra in fuzzy setting. There are natural ways to fuzzify various al-
gebraic structures and it has been done successfully by many mathematicians. For
instance, Rosenfeld [23] is the father of fuzzy abstract algebra and the reader may
consult the papers [12] or [13] about fuzzy semigroups; [11], [10], [15], [24] or [27]
about fuzzy ideals and fuzzy rings; [14] or [17] about fuzzy modules; [16] about fuzyy
vector spaces; [7] about fuzzy coalgebras over a field; [25] about Lie algebras, and
so on. In 1993, Ahsan et al. [1] introduced the notion of fuzzy semirings. In1994,
Dutta and Biswas [8] characterized fuzzy prime ideals of a semiring. Recently, many
results of semiring theory are investigated by many researchers in fuzzy context. The
notion of intuitionistic fuzzy sets introduced by Atanassov [3] (also see [4], [5]) is one
among them. Biswas [6] applied the concept of intuitionistic fuzzy sets to the theory
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of groups and studied intuitionistic fuzzy subgroups of a group. Norms originated
from the studies of probabilistic metric spaces in which triangular inequalities were
extended using the theory of norms. Later, Hohle [9], Alsina et al. [2] introduced the
norms into fuzzy set theory and suggested that norms be used for the intersection of
fuzzy sets. The author by using norms, investigated some properties of fuzzy sub-
modules, fuzzy subrings, fuzzy ideals of subtraction semigroups, intuitionistic fuzzy
subrings and ideals of a ring, fuzzy Lie algebra (See [18, 19, 20, 21, 22]).

In this paper, we introduce the notions of intuitionistic fuzzy subsemirings of
a semiring with respect to norms and establish necessary and sufficient conditions
for them. We also investigate the algebraic nature of such type of them under
intersection, direct some, homomorphism and anti-homomorphism.

2 Preliminary

Definition 2.1. A semiring is a set R equipped with two binary operations ” + ”
and ”.” called addition and multiplication, such that:

(1) (R, +) is a commutative monoid with identity element 0:
(a) (a + b) + c = a + (b + c),
(b) 0 + a = a + 0 = a,
(c) a + b = b + a.
(2) (R, .) is a monoid with identity element 1:
(a) (a.b).c = a.(b.c),
(b) 1.a = a.1 = a.
(3) Multiplication left and right distributes over addition:
(a) a.(b + c) = (a.b) + (a.c),
(b) (a + b).c = (a.c) + (b.c).
(4) Multiplication by 0 annihilates R: 0.a = a.0 = 0.

This last axiom is omitted from the definition of a ring: it follows from the
other ring axioms. Here it does not, and it is necessary to state it in the defini-
tion. The difference between rings and semirings, then, is that addition yields only a
commutative monoid, not necessarily a commutative group. Specifically, elements in
semirings do not necessarily have an inverse for the addition. The symbol . is usually
omitted from the notation; that is, a.b is just written ab. Similarly, an order of op-
erations is accepted, according to which . is applied before +; that is, a+bc is a+(bc).

A commutative semiring is one whose multiplication is commutative. An idem-
potent semiring is one whose addition is idempotent: a + a = a, that is, (R, +, 0) is
a join-semilattice with zero.

Example 2.2. (1) By definition, any ring is also a semiring. A motivating exam-
ple of a semiring is the set of natural numbers N (including zero) under ordinary
addition and multiplication. Likewise, the non-negative rational numbers and the
non-negative real numbers form semirings. All these semirings are commutative.
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(2) The set of all ideals of a given ring form a semiring under addition and mul-
tiplication of ideals.

(3) Any unital quantale is an idempotent semiring.

(4) Any bounded, distributive lattice is a commutative, idempotent semiring
under join and meet.

Definition 2.3. Let R be a semiring. A nonempty subset S of R is a subsemiring
of R if and only if x + y ∈ S and xy ∈ S for all x, y ∈ S.

Definition 2.4. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the
following four properties: For all x, y, z ∈ [0, 1];

(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.5. (1) Standard intersection T -norm Tm(x, y) = min{x, y}.

(2) Bounded sum T -norm Tb(x, y) = max{0, x + y − 1}.

(3) algebraic product T -norm Tp(x, y) = xy.

(4) Drastic T -norm

TD(x, y) =





y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum T -norm

TnM(x, y) =

{
min{x, y} if x + y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the
pointwise largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].
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Definition 2.6. A t-conorm C is a function C : [0, 1] × [0, 1] → [0, 1] having the
following four properties: For all x, y, z ∈ [0, 1];

(C1) C(x, 0) = x ,
(C2) C(x, y) ≤ C(x, z) if y ≤ z ,
(C3) C(x, y) = C(y, x) ,
(C4) C(x,C(y, z)) = C(C(x, y), z) ,

Example 2.7. (1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x + y}.
(3) Algebraic sum t-conorm Cp(x, y) = x + y − xy.
(4) Drastic T -conorm

CD(x, y) =





y if x = 0
x if y = 0
1 otherwise,

dual to the drastic T -norm.
(5) Nilpotent maximum T -conorm , dual to the nilpotent minimum T -norm:

CnM(x, y) =

{
max{x, y} if x + y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity)

CH2(x, y) =
x + y

1 + xy
is a dual to one of the Hamacher t-norms. Note that all t-

conorms are bounded by the maximum and the drastic t-conorm: Cmax(x, y) ≤
C(x, y) ≤ CD(x, y) for any t-conorm C and all x, y ∈ [0, 1].

Recall that t-norm T ( t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) =
x(C(x, x) = x).

Definition 2.8. For sets X,Y and Z, f = (f1, f2) : X → Y ×Z is called a complex
mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.9. Let Let ϕ be a function from set X into set Y such that A = (µA, νA)
and B = (µB, νB) be two intuitionistic fuzzy sets in X and Y respectively.
For all x ∈ X, y ∈ Y, we define

ϕ(A)(y) = (ϕ(µA)(y), ϕ(νA)(y)) =

=

{
(sup{µA(x) | x ∈ R,ϕ(x) = y}, inf{νA(x) | x ∈ R,ϕ(x) = y}), if ϕ−1(y) 6= ∅
(0, 1), if ϕ−1(y) = ∅

Also ϕ−1(B)(x) = (ϕ−1(µB)(x), ϕ−1(νB)(x)) = (µB(ϕ(x)), νB(ϕ(x))).

Lemma 2.10. Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].



Journal of New Theory 18 ( 2017) 39-52 43

Lemma 2.11. Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z))

for all x, y, w, z ∈ [0, 1]

Definition 2.12. Let X be a nonempty set. A complex mapping A = (µA, νA) :
X → [0, 1] × [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X if
µA + νA ≤ 1 where the mappings µA : X → [0, 1] and νA : X → [0, 1] denote the
degree of membership (namely µA(x)) and the degree of non-membership (namely
νA(x)) for each x ∈ X to A, respectively. In particular 0∼ and 1∼ denote the
intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by
0∼(x) = (0, 1) and 1∼(x) = (1, 0), respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.13. Let X be a nonempty set and let A = (µA, νA) and B = (µB, νB)
be IFSs in X. Then

(1) A ⊂ B iff µA ≤ µB and νA ≥ νB.
(2) A = B iff A ⊂ B and B ⊂ A.

Definition 2.14. If A is intuitionistic fuzzy subset of R, then the sets {< x, µA(x) >
| x ∈ R} and {< x, νA(x) > | x ∈ R}, are called fuzzy subset and anti-fuzzy subset of
R with respect to intuitionistic fuzzy set A. For α, β ∈ [0, 1], we define the following
sets

(1) U1(A,α) = {x ∈ R | µA(x) ≥ α},
(2) U2(A,α) = {x ∈ R | νA(x) ≥ α},
(3) L1(A, β) = {x ∈ R | µA(x) ≤ β},
(4) L2(A, β) = {x ∈ R | νA(x) ≤ β}
(5) Cα,β = {x ∈ R | µA(x) ≥ α, νA(x) ≤ β}.

The sets U1(A,α) and L1(A, β) are respectively called the upper α-level cut and
lower β-level cut of the fuzzy subset of R w.r.t. IFSA and the sets U2(A,α) and
L2(A, β) are respectively called the upper α-level cut and lower β-level cut of the
anti-fuzzy subset of R w.r.t. IFSA.

Definition 2.15. Let R and S be any two semirings and f : R → S be a function:

(1) f is called a homomorphism if f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for
all x, y ∈ R.

(2) f is called an anti-homomorphism if f(x+y) = f(x)+f(y) and f(xy) = f(y)f(x)
for all x, y ∈ R.
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3 Level Subsets of Intuitionistic Fuzzy Subsemir-

ing af a Semiring with Respect to Norms

Definition 3.1. Let R be a semiring. An A = (µA, νA) is said to be intuitionistic
fuzzy subsemiring with respect to norms(a t-norm T and a t-conorm C) (in short,
IFSN(R)) of R if

(1) µA(x + y) ≥ T (µA(x), µA(y))
(2) µA(xy) ≥ T (µA(x), µA(y))
(3) νA(x + y) ≤ C(νA(x), νA(y))
(4) νA(xy) ≤ C(νA(x), νA(y)),

for all x, y ∈ R.

Example 3.2. Let R = (Z, +, .) be a semiring of integer. For all x ∈ R we define a
fuzzy subset µA and νA of R as

µA(x) =

{
0.75 if x ∈ {0,±2,±4, ...}
0.60 if x ∈ {±1,±3, ...}

νA(x) =

{
0.35 if x ∈ {0,±2,±4, ...}
0.55 if x ∈ {±1,±3, ...}

Let T (x, y) = Tp(x, y) = xy and C(x, y) = Cp(x, y) = x + y − xy for all x, y ∈ R,
then A = (µA, νA) ∈ IFSN(R).

Proposition 3.3. Let A ∈ IFSN(R) and T, C be idempotent. If α, β ∈ [0, 1], then
Cα,β is a subsemiring of R.

Proof. If x, y ∈ Cα,β, then µA(x), µA(y) ≥ α and νA(x), νA(y) ≤ β. Now

(1) µA(x + y) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α.
(2) µA(xy) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α.
(3) νA(x + y) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β.
(4) νA(xy) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β.

Thus x + y, xy ∈ Cα,β and therefore Cα,β is a subsemiring of R.

Proposition 3.4. Let R be a semiring and A ∈ IFS(R). If T, C be idempotent and
Cα,β be a subsemiring of R for all α, β ∈ [0, 1], then A ∈ IFSN(R).

Proof. Let x, y ∈ R and for Cαi,βi
with i = 1, 2 we have µA(x) = α1, µA(y) = α2,

νA(x) = β1 and νA(y) = β2 such that α1, α2, β1, β2 ∈ [0, 1]. Since x, y ∈ Cαi,βi
and

Cαi,βi
is a subsemiring of R so x + y, xy ∈ Cαi,βi

. Now we prove that A ∈ IFSN(R)
in the following conditions.

(a) Let α1 > α2 and β1 < β2 such that x, y ∈ Cα1,β1 . Then

(1) µA(x + y) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).
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(2) µA(xy) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(b) Let α1 < α2 and β1 < β2 such that x, y ∈ Cα2,β1 . Then

(1) µA(x + y) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(c) Let α1 > α2 and β1 > β2 such that x, y ∈ Cα1,β2 . Then

(1) µA(x + y) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(d) Let α1 < α2 and β1 > β2 such that x, y ∈ Cα2,β2 . Then

(1) µA(x + y) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

Thus from (a) to (d) we get that A ∈ IFSN(R).

Proposition 3.5. Let R be a semiring and A ∈ IFS(R) defined by

µA(x) =

{
1 if x ∈ H
0 if x /∈ H

and

νA(x) =

{
0 if x ∈ H
1 if x /∈ H.
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If H is a subsemiring of R and T, C be idempotent, then A ∈ IFSN(R).

Proof. Let x, y ∈ R and H is a subsemiring of R. Then

(a) If x, y ∈ H, then x + y, xy ∈ H and we have:

(1) µA(x + y) = 1 ≥ 1 = T (1, 1) = T (µA(x), µA(y)).

(2) µA(xy) = 1 ≥ 1 = T (1, 1) = T (µA(x), µA(y)).

(3) νA(x + y) = 0 ≤= 0 = C(0, 0) = C(νA(x), νA(y)).

(4) νA(xy) = 0 ≤ 0 = C(0, 0) = C(νA(x), νA(y)).

(b) If x ∈ H and y /∈ H, then x + y, xy /∈ H and then:

(1) µA(x + y) = 0 ≥ 0 = T (1, 0) = T (µA(x), µA(y)).

(2) µA(xy) = 0 ≥ 0 = T (1, 0) = T (µA(x), µA(y)).

(3) νA(x + y) = 1 ≤ 1 = C(0, 1) = C(νA(x), νA(y)).

(4) νA(xy) = 1 ≤ 1 = C(0, 1) = C(νA(x), νA(y)).

(c) If x, y /∈ H, then x + y, xy /∈ H and so:

(1) µA(x + y) = 0 ≥ 0 = T (0, 0) = T (µA(x), µA(y)).

(2) µA(xy) = 0 ≥ 0 = T (0, 0) = T (µA(x), µA(y)).

(3) νA(x + y) = 1 ≤ 1 = C(1, 1) = C(νA(x), νA(y)).

(4) νA(xy) = 1 ≤ 1 = C(1, 1) = C(νA(x), νA(y)).

Now fram (a) to (c) we obtain that A ∈ IFSN(R).

Definition 3.6. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy sets
in semiring R. Define A ∩ B = (µA∩B, νA∩B) as µA∩B(x) = T (µA(x), µB(x)) and
νA∩B(x) = C(νA(x), νB(y)) for all x ∈ R.

Proposition 3.7. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy
sets in semiring R. If A,B ∈ IFSN(R), then (A ∩B) ∈ IFSN(R).

Proof. Let x, y ∈ R. Then

(1) µA∩B(x + y) = T (µA(x + y), µB(x + y))
≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= T (T (µA(x), µB(x)), T (µA(y), µB(y)))
= T (µA∩B(x), µA∩B(y))
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(2) µA∩B(xy) = T (µA(xy), µB(xy))
≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= T (T (µA(x), µB(x)), T (µA(y), µB(y)))
= T (µA∩B(x), µA∩B(y))

(3) νA∩B(x + y) = C(νA(x + y), νB(x + y))
≤ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= C(C(νA(x), νA(y)), C(νB(x), νB(y)))
= C(νA∩B(x), νA∩B(y))

(4) νA∩B(xy) = C(νA(xy), νB(xy))
≤ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= C(C(νA(x), νA(y)), C(νB(x), νB(y)))
= C(νA∩B(x), νA∩B(y))

Therefore (A ∩B) ∈ IFSN(R).

Corollary 3.8. Let {Ai = (µAi
, νAi

) | i = 1, 2, 3, ..., n} ⊆ IFSN(R). Then so does
∩Ai

= (µ∩Ai
, ν∩Ai

).

Proposition 3.9. Let A ∈ IFSN(R) and T, C be idempotent.

(1) For all α ∈ [0, 1], the µ-level α-cut U(µA, α) = {x ∈ R | µA ≥ α} is a subsemiring
of R.

(2) For all β ∈ [0, 1], the ν-level β-cut L(νA, β) = {x ∈ R | νA ≤ β} is a subsemiring
of R.

Proof. (1) Let x, y ∈ U(µA, α). Since A ∈ IFSN(R) so µA(x+y) ≥ T (µA(x), µA(y)) ≥
T (α, α) = α and µA(xy) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α. Thus x + y, xy ∈
U(µA, α) and then U(µA, α) is a subsemiring of R.

(2) Let x, y ∈ L(νA, β). As A ∈ IFSN(R) then νA(x + y) ≤ C(νA(x), νA(y)) ≤
C(β, β) = β and νA(xy) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β. Therefore x + y, xy ∈
L(νA, β) and L(νA, β) is a subsemiring of R.

Definition 3.10. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy
sets in R and S, respectively. The direct som of A and B, denoted by A ⊕ B =
(µA⊕µB, νA⊕νB), is an intuitionistic fuzzy set in R⊕S such that for all x in R and
y in S,(µA ⊕ µB)(x, y) = T (µA(x), µB(y)) and (νA ⊕ νB)(x, y) = C(νA(x), νB(y))

Proposition 3.11. If Ai = (µAi
, νAi

) ∈ IFSN(Ri) for i = 1, 2, then A1 ⊕ A2 ∈
IFSN(R1 ⊕R2).

Proof. Let (x1, y1), (x2, y2) ∈ R1 ⊕R2. Then
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(1) (µA1 ⊕ µA2)((x1, y1) + (x2, y2)) = (µA1 ⊕ µA2)(x1 + x2, y1 + y2)
= T (µA1(x1 + x2), µA2(y1 + y2))
≥ T (T (µA1(x1), µA1(x2)), T (µA2(y1), µA2(y2)))
= T (T (µA1(x1), µA2(y1)), T (µA1(x2), µA2(y2)))
= T ((µA1 ⊕ µA2)(x1, y1), (µA1 ⊕ µA2)(x2, y2))

(2) (µA1 ⊕ µA2)((x1, y1)(x2, y2)) = (µA1 ⊕ µA2)(x1x2, y1y2)
= T (µA1(x1x2), µA2(y1y2))
≥ T (T (µA1(x1), µA1(x2)), T (µA2(y1), µA2(y2)))
= T (T (µA1(x1), µA2(y1)), T (µA1(x2), µA2(y2)))
= T ((µA1 ⊕ µA2)(x1, y1), (µA1 ⊕ µA2)(x2, y2))

(3) (νA1 ⊕ µA2)((x1, y1) + (x2, y2)) = (νA1 ⊕ νA2)(x1 + x2, y1 + y2)
= C(νA1(x1 + x2), νA2(y1 + y2))
≤ C(C(νA1(x1), νA1(x2)), C(νA2(y1), νA2(y2)))
= C(C(νA1(x1), νA2(y1)), C(νA1(x2), νA2(y2)))
= C((νA1 ⊕ νA2)(x1, y1), (νA1 ⊕ νA2)(x2, y2))

(4) (νA1 ⊕ µA2)((x1, y1)(x2, y2)) = (νA1 ⊕ νA2)(x1x2, y1y2)
= C(νA1(x1x2), νA2(y1y2))
≤ C(C(νA1(x1), νA1(x2)), C(νA2(y1), νA2(y2)))
= C(C(νA1(x1), νA2(y1)), C(νA1(x2), νA2(y2)))
= C((νA1 ⊕ νA2)(x1, y1), (νA1 ⊕ νA2)(x2, y2))

Corollary 3.12. Let Ai = (µAi
, νAi

) ∈ IFSN(Ri) for i = 1, 2, ..., n. Then

A1 ⊕ A2 ⊕ ...⊕ An ∈ IFSN(R1 ⊕R2 ⊕ ...⊕Rn).

4 Homomorphisms and Anti-Homomorphisms of

Intuitionistic Fuzzy Subsemirings of Semirings

Under Norms

Proposition 4.1. Let ϕ be an epihomomorphism from semiring R into semiring S.
If A = (µA, νA) ∈ IFSN(R), then ϕ(A) = (ϕ(µA), ϕ(νA)) ∈ IFSN(S).

Proof. Let y1, y2 ∈ S. Then

(1) ϕ(µA)(y1 + y2)
= sup{µA(x1 + x2) | x1, x2 ∈ R,ϕ(x1)y1, ϕ(x2) = y2}
≥ sup{T (µA(x1), µA(x2)) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
= T (sup{µA(x1) | x1 ∈ R, ϕ(x1) = y1}, sup{µA(x2) | x2 ∈ R, ϕ(x2))y2})
= T (ϕ(µA)(y1), ϕ(µA)(y2))
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(2) ϕ(µA)(y1y2)
= sup{µA(x1x2) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
≥ sup{T (µA(x1), µA(x2)) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
= T (sup{µA(x1) | x1 ∈ R, ϕ(x1) = y1}, sup{µA(x2) | x2 ∈ R, ϕ(x2) = y2})
= T (ϕ(µA)(y1), ϕ(µA)(y2))

(3) ϕ(νA)(y1 + y2)
= inf{νA(x1 + x2) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
≤ inf{C(νA(x1), νA(x2)) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
= C(inf{νA(x1) | x1 ∈ R, ϕ(x1) = y1}, inf{νA(x2) | x2 ∈ R,ϕ(x2) = y2})
= C(ϕ(νA)(y1), ϕ(νA)(y2))

(4) ϕ(νA)(y1y2)
= inf{νA(x1x2) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
≤ inf{C(νA(x1), νA(x2)) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
= C(inf{νA(x1) | x1 ∈ R, ϕ(x1) = y1}, inf{νA(x2) | x2 ∈ R,ϕ(x2) = y2})
= C(ϕ(νA)(y1), ϕ(νA)(y2))

Hence ϕ(A) ∈ IFSN(S).

Corollary 4.2. Let ϕ be an anti-epihomomorphism from semiring R into semiring
S. If A = (µA, νA) ∈ IFSN(R), then ϕ(A) ∈ IFSN(S).

Proposition 4.3. Let Let ϕ be a homorphism from semiring R into semiring S. If
B = (µB, νB) ∈ IFSN(S), then ϕ−1(B) = (ϕ−1(µB), ϕ−1(νB)) ∈ IFSN(R).

Proof. Let x1, x2 ∈ R.

(1) ϕ−1(µB)(x1 + x2) = µB(ϕ(x1 + x2))
= µB(ϕ(x1) + ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(2) ϕ−1(µB)(x1x2) = µB(ϕ(x1x2))
= µB(ϕ(x1)ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(3) ϕ−1(νB)(x1 + x2) = νB(ϕ(x1 + x2))
= νB(ϕ(x1) + ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

(4) ϕ−1(νB)(x1x2) = νB(ϕ(x1x2))
= νB(ϕ(x1)ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))
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Then ϕ−1(B) ∈ IFSN(R).

Proposition 4.4. Let Let ϕ be a anti-homorphism from semiring R into semiring
S. If B = (µB, νB) ∈ IFSN(S), then ϕ−1(B) ∈ IFSN(R).

Proof. Let x1, x2 ∈ R.

(1) ϕ−1(µB)(x1 + x2) = µB(ϕ(x1 + x2))
= µB(ϕ(x1) + ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(2) ϕ−1(µB)(x1x2) = µB(ϕ(x1x2))
= µB(ϕ(x2)ϕ(x1))
≥ T (µB(ϕ(x2)), µB(ϕ(x1)))
= T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(3) ϕ−1(νB)(x1 + x2) = νB(ϕ(x1 + x2))
= νB(ϕ(x1) + ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

(4) ϕ−1(νB)(x1x2) = νB(ϕ(x1x2))
= νB(ϕ(x2)ϕ(x1))
≤ C(νB(ϕ(x2)), νB(ϕ(x1)))
= C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

Therefore ϕ−1(B) ∈ IFSN(R).

Proposition 4.5. Let ϕ be an epihomomorphism from semiring R into semiring
S and T, C be idempotent. If A = (µA, νA) ∈ IFSN(R) and Cα,β = {x ∈
R | µA(x) ≥ α, νA(x) ≤ β} be subsemiring of A, then ϕ(Cα,β) = Cά,β́ = {ϕ(x) = y ∈
S | µϕ(A)(y) ≥ ά, νϕ(A)(y) ≤ β́} will be a subsemiring of ϕ(A).

Proof. Since A = (µA, νA) ∈ IFSN(R) so from Proposition 4.1 ϕ(A) = (µϕ(A), νϕ(A)) ∈
IFSN(S). Let y1, y2 ∈ Cά,β́. Then

(1) µϕ(A)(y1 + y2) ≥ T (µϕ(A)(y1), µϕ(A)(y2)) ≥ T (ά, ά) = ά.
(2) µϕ(A)(y1y2) ≥ T (µϕ(A)(y1), µϕ(A)(y2)) ≥ T (ά, ά) = ά.

(3) νϕ(A)(y1 + y2) ≤ C(νϕ(A)(y1), νϕ(A)(y2)) ≤ C(β́, β́) = β́.

(4) νϕ(A)(y1y2) ≤ C(νϕ(A)(y1), νϕ(A)(y2)) ≤ C(β́, β́) = β́.

Then y1 + y2, y1y2 ∈ Cά,β́ and ϕ(Cα,β) = Cά,β́ is a subsemiring of ϕ(A).
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Proposition 4.6. Let ϕ be a homorphism from semiring R into semiring S and
T,C be idempotent. If B = (µB, νB) ∈ IFSN(S) and Cα,β = {y ∈ S | µB(y) ≥
α, νB(y) ≤ β} be a subsemiring of B, then ϕ−1(Cα,β) = Cά,β́ = {ϕ−1(y) = x ∈
R | µϕ−1(B)(x) ≥ ά, νϕ−1(B)(x) ≤ β́} be a subsemiring of ϕ−1(B).

Proof. Let x1, x2 ∈ Cά,β́. As Proposition 4.3 ϕ−1(B) ∈ IFSN(R) and then

(1) µϕ−1(B)(x1 + x2) ≥ T (µϕ−1(B)(x1), µϕ−1(B)(x2)) ≥ T (ά, ά) = ά.
(2) µϕ−1(B)(x1x2) ≥ T (µϕ−1(B)(x1), µϕ−1(B)(x2)) ≥ T (ά, ά) = ά.

(3) νϕ−1(B)(x1 + x2) ≤ C(νϕ−1(B)(x1), νϕ−1(B)(x2)) ≤ C(β́, β́) = β́.

(4) νϕ−1(B)(x1x2) ≤ C(νϕ−1(B)(x1), νϕ−1(B)(x2)) ≤ C(β́, β́) = β́.

Thus x1 + x2, x1x2 ∈ Cά,β́ and so ϕ−1(Cα,β) = Cά,β́ is a subsemiring of ϕ−1(B).
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Abstract – The purpose of this paper is to investigate the effect of Green Supply Chain Management practice 

on firm reputation.   To investigate this, data were collected from executives and managers of production 

companies of reputed industries. A descriptive, correlational methodology was adopted and data were 

analyzed using structural equation modeling by using exploratory analysis and linear multiple regression 

analysis. The results revealed that the green purchasing, green manufacturing/material management, green 

distribution/marketing of production companies have a positive and significant impact on firm reputation. 

Finally, the results suggest that strengthening green supply chain management practice in production sectors 

improves firm reputation, which in turn increases firm revenue. 

 

Keywords – Green Supply Chain Management, Green Purchasing, Green Manufacturing/Material 

Management, Green Distribution/Marketing, Firm Reputation.  

 

 

1 Introduction 
 

In the last couple of decades, researchers have shown great interest on to investigate the 

effect of implementation of green supply chain management in firms. But the 

implementation of green supply chain in firms plays a significant role impact in the 

environmental and financial performances of any firm. Many firms are now showing more 

willingness to implement environmental-friendly practices in their businesses. This is 

mainly because of two factors. One factor is customer’s pressure to implement green 

manufacturing and green distribution or marketing. Other factor is pressure from 

government using strict laws regarding environment to force enterprises to adopt green 

practices.  Also there are some motivating factors to some firms to implement green 

practice to go towards sustainable development. Some firms believe that implementing 

green practice they can increase financial gains and reduce cost using recycling, reuse, and 

remanufacturing. On the other hand, some firms believe that green practices have 

negatively impact on overall firm performance and execution of green practices can be a 

waste of their resources. The proposal of Bansal (2005) supported the claim of these firms. 

A similar result was studied by Zhang and Yang ( 2016), where they found that show that 
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environmental-friendly practices have no positive effects on business' economic 

performance. Also in a survey with hundreds CEOs from around the world exposed that 

about more than half of them feel  that implementing green sustainability programs may be 

critical to their businesses.  But several researchers found that adapting green or ecological 

practices in the business would lead to overall improvement of company's performance and 

execution of green practices not only improves the environment but also creates 

competitive advantages(Christmann (2000) & Porter and Van der Linde (1995)). 

Freeman(1984) explained the stakeholder approach and according to him pressure  on a 

company to implement to force something has a negative effect on manufacturing and 

business activities. Several researchers found that pressurization to implement green 

practices may have negative impact on the overall firm performance and heavy investment 

in green technology may reduce the overall profit. According to Christman(2000),  

company’s  lack of basic green capabilities may lead a financial burden on the firm. 

Hart(1995)  suggested that incorporating green practice in an enterprise's strategic planning 

will improve its ability to overcome uncertainties and firm operations and  help the 

enterprise to develop firm competitive advantage and consequently,  increase its financial 

performance. Klassen and McLaughlin(1996) and Jacobs et al.(2010) also suggested that  

proper implementation of green practices in supply chain can enhance operational, 

environmental and financial performances. They also suggested that green practices will 

reduce the cost and create good image and reputation in the market. Many researchers 

conducted similar studies to investigate the relationship between enterprise green practice 

with economic performance of the firms and firm reputation. Although, their investigations 

found a mixed results on firm economic performance but they all agreed that 

implementation of green practice have a positive and significant impact on firm reputation.  

Our investigation in the proposed paper is to find the impacts of implementation of green 

supply chain management in firm on firm reputation. This study will find the impacts 

(positive or negative) of green purchasing, green manufacturing and green 

distribution/marketing on firm reputation. 

 

The pressure to implement green practice in firms by the customers and the governmental 

laws are the driving forces of green purchasing, green manufacturing, green distribution 

and marketing. International companies always try to satisfy their customers by providing 

proper service and better quality products through the innovation and research carried out 

by the research and development(R&D) section of the companies. Sometimes this takes the 

form of improving green performance by observing environmental laws and standards, 

increasing customer knowledge in this area, and reducing the negative environmental 

effects of their products and services (Koplin, Seuring, & Mesterharm, 2007). Green 

performance involves assessing the relationship between trade and the environment 

(Olsthoorn, Tyteca, Wehrmeyer, & Wagner, 2001). Sustainable development is key to 

ensuring a company’s survival and requires the commitment and participation of all 

employees and managers. Many industries are facing competitive pressure to coordinate 

and cooperate through the supply chain management practice to improve agility, flexibility 

and proper functioning of their product. On the other hand implementation of green supply 

chain management practice has a positive impact on firm reputation. Sigala (2008) 

suggested that concern about environmental issues and governmental policies drive the 

industries to adopt green supply chain management practice to maintain competitiveness.  

 

Many researchers found several studies that the green practice of the organizations for 

environment-friendly business operations have a significant and positive impact on firm 

reputation. From a macro perspective, attention to green issues is important in relation to 
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both the design of new green products and the creation of markets for products that are 

compatible with the environment. The creation of a green supply chain requires the 

development of opportunities for companies to invest in the design and manufacture of 

greener products and to meet the requirements of sustainability. It involves not only the 

production of green consumer goods, but also the involvement of suppliers in the creation 

of green markets (Sheu, Chou, & Hu, 2005). 

 

This study sought to investigate the role of green purchasing, green manufacturing, green 

distribution/marketing of the firm on its reputation. Internal green practice of the company 

recognizes that different administrative areas within the company need to be integrated for 

optimum performance (Flynn, Huo, & Zhao, 2010). External green collaboration to use 

green distribution and marketing involves mutual understanding of environmental 

responsibilities and risks and shared decision-making to solve environmental problems and 

allocate resources, skills and knowledge between suppliers, partners and customers in the 

supply chain to achieve common environmental goals (Vachon, S., & Klassen, R. D. 2008). 

Our investigation is significantly different from the existing investigations. No statistical 

investigation has been carried out to investigate the impact of green supply chain 

management practices i.e. green purchasing, green manufacturing, green 

distribution/marketing on firm reputation.  The rest of the paper is structured as follows. 

Section 2 covers hypothesis, Section 3 describes the methodology, Section 4 descries 

analysis and results and section 5 describes conclusion, managerial implications and future 

research directives.    

 

 

2 Hypothesis 
 

The study of the proposed conceptual model is shown in  Figure 1, in which green supply 

chain management is understood as comprising green purchasing, green 

manufacturing/material management, green distribution/marketing and firm reputation. In 

the present study, green purchasing is identified as green raw materials, green shipping 

practices and green accumulation. Green manufacturing/material management is comprised  

 

 
Figure 1: Research conceptual model. 
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as green processing, green packaging. Green distribution/marketing comprises of reduction 

in cost of transportation, reduction in pollutants.  Firm reputation is identified by  quality of 

services,  productivity, and corporate Profit. Firm reputation may be assessed by the 

accelerated sales of goods which in turns increased profits. 

 

The Figure 1 shows six testable hypotheses in which all of the direct associations indicated 

are hypothesised as positive. The theoretical  structural model incorporates green 

manufacturing  as the focal construct with green purchasing and green 

distribution/marketing as antecedents and firm reputation as a consequence. The above 

model is designed to assess the impact of green supply chain indicators on firm reputation. 

Our proposed investigation claims that the combination of green purchasing, green 

manufacturing and green distribution/marketing will enhance firm reputation which 

ultimately leads to increased revenues of the firm.  

 

Some researchers found that green purchasing (GP) create significant improvement in the 

overall firm reputation. In studying the relationship between green practices in supply chain 

and firm reputation, it is found that there is a positive and significant impact of green 

purchasing and firm reputation. According to Allenby(1991) and Zailani et al.(2012) 

implementation of green purchasing  practices improved the firm reputation and brand 

image. According to Mitra and Datta (2014) and Zhu and  Sarkis(2004) also found that 

implementing green purchasing of the firm have a significant  impact on firm reputation.  

According to Min and Galle(2001), green purchasing practices reduce the sources of waste 

and encourage recycling and reuse activities without any hindrance to the firm  

performance which in turns increases firm reputation. Zhu et al. (2008) found that there is a 

relationship between green  procurement and company's financial performance. The result 

also shows that purchasing activities are connected with firm performance. In addition, 

they suggest that firms need to implement green purchasing to maximize resource 

utilization and reduce the harmful effect of manufacturing activities.  Therefore, we suggest 

the following hypotheses for testing: 

 

H1: Green purchasing of raw materials have a positive and significant impact on firm 

reputations.  

 

It is expected that a firm can manufacture green product only if it purchases green raw 

materials. Many researchers investigated this phenomenon. Therefore the firm should be 

careful to buy only green raw materials to manufacture green products. Green procurement 

activities have viable environmental properties such as reusability and recyclability. Rao 

and  Holt (2005) found green purchasing practices has a positive and significant impact on 

firm performance  in the context of firm internal management and supplier selection which 

ultimately leads to firm reputation. These results also indicate that adoption of green 

purchasing not only reduces pollution and waste but also improves overall firm brand 

image and reputation. Therefore we propose the following hypothesis for testing: 

 

H2: Green purchases of raw materials have a positive and significant impact in green 

manufacturing. 

 

Min and Galle(2001) found that green purchasing practices reduce the sources of waste and 

encourage recycling and reuse activities without any hindrance to the firm  distribution and 

marketing. Zhu et al. (2008) found that there is a relationship between green  procurement 

and company's financial performance. The result also shows that green purchasing 
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activities are connected with firm internal and external distribution policies. The green 

procurement or green purchase of raw products also influences green marketing of the firm.  

In addition, researchers also suggest that firms need to implement green purchasing to 

maximize resource utilization and reduce the harmful effect of manufacturing activities.  

Therefore, we suggest the following hypotheses for testing: 

 

H3: Green purchases of raw materials have a positive and significant impact in green 

distribution/marketing. 

 

Porter and Van der Linde (1995) proposed that green manufacturing (GM) and green 

process can reduce the resource wastage and play a vital role in energy reduction, 

optimizing manufacturing steps, and to improve overall firm green distribution/marketing. 

Therefore, Green manufacturing has a positive and significant impact on green distribution 

and marketing. Therefore, we suggest the following hypotheses for testing: 

H4: Green manufacturing has a positive and significant impact on a green distribution/ 

marketing. 

 

Several researchers like Droge, Jayaram, & Vickery (2004), O’Leary-Kelly & Flores 

(2002), Rosenzweig, Roth, & Dean Jr, (2003),  Swink & Nair (2007), Zailani & Rajagopal 

(2005)  investigated the impact green distribution and green marketing  on firm reputation. 

They also derived that there is a positive relationship between internal performance and 

operational performance. Stank, Keller & Daugherty (2001) and Ellinger et al. (2007) 

investigated that collaboration between marketing and logistics had a positive effect on 

distribution services performance. Zhu and Sarkis (2004) proposed that companies with 

high levels of adaptation of green activity achieve improved environmental performance. 

Hence there is considerable evidence to support the hypothesis that the implementation of i 

green distribution/marketing practices will lead to improved firm reputation. Based on 

these investigations we hypothesize that: 

 

H5: Green distribution/marketing has a positive and significant impact on firm reputation.  

 

The Increasing environmental concern from customers, buyers, communities, and 

government regulations force companies to implement Green Supply Chain Management 

(GSCM) and green innovation. Zhu, Sarkis, & Lai, 2008 suggested that  GSCM and green 

innovation have strategic interconnection in developing new green product and this 

ultimately has a positive impact on firm reputation. Vachon and Klassen (2008) proposed 

that green cooperation between the organization and the members of its green supply chain 

enables the company to implement GSCM which ultimately have a very high impact on 

firm reputation. Rao & Holt (2005) claimed that green supply chain management using 

green manufacturing practice ultimately improves firm reputation and consequently, the 

following hypothesis follows: 

 

H6: Green manufacturing has a positive and significant impact on firm reputation.  

 

 

3  Methodology 
 

Our aim is to investigate the impact of green supply chain management practice on firm 

reputation. This research paper is based on quantitative research approach since the 

objective of this paper is to compute the research variables namely green purchasing (GP), 
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green manufacturing(GM), green distribution/marketing and firm reputation(FR).  After 

analyzing the content validity of the questionnaire by industrial  experts, the final 

questionnaire was sent to 100 manufacturing firms. There were totally 30 questions in the 

questionnaire related to three variables such as GP, GM, GD/M and FR.  The questionnaire 

is based on five point Likert scale (1: strongly disagree to 5: strong agree). A total of 78 

questionnaire responses were received, in which 11 responses were excluded due to not 

being properly filled or unusable. Thus, the total sample size included for analysis is 67. 

We use the hierarchical multiple regression method on SPSS (version 22) to test the 

hypotheses. The research model is shown in Fig. 1. 

 

 

4  Analysis and Results 
 

We study the reliability analysis, exploratory factor analysis, and multiple regressions for 

dataset. The exploratory analysis was conducted to determine the underlying structure for 

the 30 items of the enterprise performance questionnaire. Based on the hypotheses and 

model shown before, three factors were requested. This is due to the fact that the items 

were designed to index four constructs: firm reputation is a dependent variable, while green 

purchasing, green manufacturing and green distribution/marketing were predictors. The 

value of KMO measure of sampling adequacy (0.743) indicates that the sample has 

fulfilled the requirement to run factor analysis. Moreover, a significant result of Bartlett's 

test (p < 0:05) shows that the matrix is not an identify matrix. In other words, these four 

components do relate enough to one another to further run a substantial factor analysis. 

Table 2 illustrates the results of KMO and Bartlett's test. 

 

Also, the initial solution of exploratory factor analysis was rotated by using the orthogonal 

(varimax) rotation approach with Kaiser normalization which extracted the six required 

uncorrelated factors. We accounted for the variances of 19.725%, 18.276%, 17.753% and  

27.348% respectively. However, these four components explained the cumulative 83.102% 

of the total variance. For the internal consistency of measuring scale, Cronbach's alpha of 

every variable also was calculated. The overall reliability of scale of the 30 items was 0.824 

because, to enhance clarity, values less than 0.30 were omitted. Table 3 indicates the items 

and factor loading for the rotated factors. Since all of these 24 items were loaded onto their 

own components in the rotated solution, there were no cross-loadings as well, while both 

the discriminant and construct validity were ensured already. 

 

 

 4.1. Hypotheses testing 

 

After satisfying the basic parametric assumptions, linear multiple regression was used to 

determine: the size of the association among variables of green purchasing (independent) 

and firm reputation (dependent variable); and to what extent every independent variable 

(i.e. green manufacturing and green design/marketing ) individually contributed to 

predicting firm reputation. Table 3 illustrates the values of mean, standard deviation of 

enterprise performance, and its predictors. Table 4 illustrates the results of hypotheses 

testing through simultaneous multiple regression for predicting enterprise performance. 

The combination of variances significantly predicted 33.6% of the total variance in 

predicting enterprise performance.  
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Table 1. Results of KMO and Bartlett's test. 

_________________________________________________________________________ 

Kaiser–Meyer–Olkin measure of sampling adequacy                            0.743 

Bartlett's test of sphericity Approx. chi-square                                      4321.621 

Degrees of freedom                                                                                    263 

Significance                                                                                            0.000 
 

 

 

 
Table 2. Rotated components matrix (extraction method: principal component  

         analysis and rotation method: varimax with Kaiser normalization). 

_________________________________________________________________________ 

                                                                                                     Component 

                                                                              --------------------------------------------------- 

                                                                                 Alpha        1            2           3              4      

Green Purchasing                                                     0.811      0.782 
 

Green manufacturing                                                                        0.930                 0.837 

Green Distribution/Marketing                                                  0.814                               0.852 

Firm Reputation                                                       0.924                                               0.872                                    
 

Eigenvalues                                                                            3.531      3.051     2.553    1.978   

% of variance explained                                                        13.221   12. 217   10.753   8.348  

Cumulative % of variance explained                                    21.72     41.89     57.65    78.05 

 

 

 
Table 3. Descriptive statistics 

_________________________________________________________________________ 

                                                                           N                  Mean                  Std. deviation 

 

Firm Reputation                                                67                   29.47                       3.93 

Green Purchasing                                              67                   17.42                       4.13  

Green Manufacturing                                        67                   21.33                       4.21 

Green Distribution/Marketing                           67                   18.91                       3.42 

 

 

The results of hypotheses testing through simultaneous multiple regression for predicting 

enterprise performance is shown in Table 4. . The combination of variances significantly 

predicted 32.7% of the total variance in predicting firm reputation (F =23.7, p < 0:001), 

with three independent variables that significantly predicted firm reputation. Moreover, the 

issue of multicollinearity is not found among independent variables because the variance 

\VIF" value for each independent variable is less than 10. The coefficients of parameter 

estimates suggest the green purchasing (0.217, p < 0.05), green manufacturing (0.237, p < 

0.05) and green distribution/marketing (0.232, p < 0.05) reflect a statistically significant 

and positive impact on firm reputation.  
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Table 4. Hypotheses testing for firm reputation through standard  

    regression analysis. Unstandardized coefficients 

 

Hypothesis B  Standard 

Error  

VIT T-Statistics Significance Accept or 

Reject the 

Hypothesis 

Constant 8.273 1.432 5.231 0.00  

Green Purchasing 

� Firm Reputation 

(H1) 

0.217 0.053 1.432 2.33 Sig<0.05 Not  

rejected 

Green Purchasing  

� Green 

Manufacturing (H2) 

0.227 0.042 1.263 2.19 Sig<0.05 Not  

rejected 

Green Purchasing  

� Green 

Distribution/Marketing 

(H3) 

0.206 0.039 1.124 2.11 Sig<0.05 Not  

rejected 

Green Manufacturing 

� Green 

Distribution/Marketing 

(H4) 

0.219 0.032 1.137 2.14 Sig<0.05 Not  

rejected 

Green 

Distribution/Marketing  

� Firm Reputation 

(H5) 

0.232 0.051 1.411 2.28 Sig<0.05 Not  

rejected 

Green Manufacturing 

� Firm Reputation 

(H6) 

0.237 0.054 1.672 2.44 Sig<0.05 Not  

rejected 

 

When dependent variable: Firm Reputation (F = 23.7, p < 0:001, and adjusted R
2
 = 32.7%). 

 

 

5. Conclusions 
 

The simultaneous multiple regression analysis prove that green purchasing, green 

manufacturing and green distribution/marketing  have a significant and positive impact 

with firm reputation. The statistical results found that green manufacturing is the most 

important predictor of firm reputation. This result is also supported by previous empirical 

studies. Then comes the green distribution/marketing next important predictor and then 

comes to green purchasing. All have a positive and significant impact on firm reputation. 

Green purchasing, green manufacturing and green distribution/marketing all reduces the 

resources and cost in terms of recycling, reuse, and remanufacturing and also improves the 

firm reputation. The following equation shows the regression equation to predict firm 

reputation M= 8.273+0.217 X Green Purchasing +0.232 X Green Distribution/Marketing 

+0.237 X Green Manufacturing.  

 

This research examined the impact of green purchasing, green manufacturing and green 

distribution/marketing on firm reputation. Three dimensions  of green purchasing, green 

manufacturing, green distribution/marketing  were assessed and the result suggest that all 

these have a positive and significant impact on firm reputation. Therefore, it is 

recommended that the senior management of  manufacturing firms should implement green 

practices to improve the overall environmental performance and also enhance the 
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operational and reputational performance which in turns leads to overall economic 

performances along with firm positive brand image. The main objective of senior 

management of having an optimum enterprise performance can also be reinforced by a 

\green awareness and training program" to their employees and distributors. 

 

 

5.1.  Managerial Implications 

 

In terms of managerial implications, this research has verified the significance of green 

purchasing, green manufacturing, green distribution/marketing to firm reputation. Hence, 

when it comes to managing their respective manufacturing firms, the management should 

pay attention to these three aspects of green supply chain management practices to enhance 

firm reputation. In addition, this study has put forward some valuable insights to senior 

management of manufacturing firms in practice, to identify problematic areas in their own 

firms and devise corrective actions. 

 

Another valuable result is that although green purchasing, green manufacturing green 

distribution/marketing has a significant and positive impact on firm reputation, this requires 

a long-term infrastructural requirements.  There is no doubt that green manufacturing 

processes are long-term investments of firms in favor of the environment, firm's  brand 

image, and firm's financial performance. The green manufacturing is very crucial for 

continuous improvement (CI) of enterprise in the long run. The green manufacturing 

processes will also help firms to achieve their financial targets through reduction of cost. 

The research results suggested that senior management should review firm's green 

practices, initiatives, and relevant policies, and conduct them in a way that supports high 

level of enterprise performance. Therefore, senior management should not ignore the 

importance of green purchasing, green manufacturing and green distribution/marketing for 

making a brand image and reputation of the enterprise.   

 

Future research should include the additional measure of performance, such as the 

operational performance of the firm and the overall performance of the green supply chain. 

This study is limited to only the manufacturing firms, however, future researches may 

concentrate on comparative studies between manufacturing industry and other industries. 

Future researches can be conducted with other predictors, including green logistics, co-

operation with customers and suppliers, and internal environmental management.  

 
 

References  
 

[1] P. Bansal,  Evolving sustainably: A longitudinal study of corporate sustainable 

development, Strateg. Manage. J. 26(3) (2005) 197–218. 

[2] H. Zhang, and F. Yang, On the drivers and performance outcomes of green practices 

adoption: an empirical study in China, Ind. Manage. Data Syst. 116(9) (2016) 2011–

2034. 

[3] P. Christmann, Effects of best practices of environmental management on cost 

advantage: The role of complementary assets, Acad. Manage. J. 43(4) (2000) 663–

680. 

[4] M. Porter and C. Van der Linde, Green and competitive: Ending the stalemate, Harv. 

Bus. Rev. 73(5) (1995) 120–124.  



Journal of New Theory 18 (2017) 53-63                                                                                                         62 
 

[5] R. E. Freeman, Strategic Management: A Stakeholder Approach (Pitman, Boston, 

1984). 

[6] S. L. Hart, A natural-resource-based view of the firm, Acad. Manage. Rev. 20(4) (1995) 

986–1014. 

[7] R. D. Klassen  and  C.P. McLaughlin, The impact of environmental management on 

firm performance, Manage. Sci. 42(8) (1996) 1199–1214. 

[8] B. W. Jacobs, V.R. Singhal, and R. Subramanian, An empirical investigation of 

environmental performance and the market value of the firm, J. Oper. Manage. 28(5) 

(2010) 430–441. 

[9] J. Koplin, S. Seuring and M. Mesterharm, Incorporating sustainability into supply 

management in the automotive industry – the case of the Volkswagen AG. Journal of 

Cleaner Production,  15(11–12) (2007) 1053-1062. 

[10] X. Olsthoorn, D. Tyteca, W. Wehrmeyer, , & M.  Wagner Environmental indicators 

for business: a review of the literature and standardisation methods. Journal of 

Cleaner Production,  9(5) (2001) 453-463. 

[11] M. Sigala, A supply chain management approach for investigating the role of tour 

operators on sustainable tourism: the case of TUI. Journal of Cleaner Production, 

16(15) (2008) 1589-1599. 

[12] J. B. Sheu, Y.H. Chou and C. C. Hu, An integrated logistics operational model for 

green-supply chain management. Transportation Research Part E: Logistics and 

Transportation Review, 41(4), (2005) 287-313. 

[13] B. B. Flynn, B. Huo and X. Zhao, The impact of supply chain integration on 

performance: A contingency and configuration approach. Journal of Operations 

Management, 28(1) (2010) 58-71. 

[14] S. Vachon and R. D. Klassen, Extending green practices across the supply chain: The 

impact of upstream and downstream integration. International Journal of Operations & 

Production Management, 26(7) (2006) 795-821. 

[15] S. Vachon and R.D. Klassen,  Environmental management and manufacturing 

performance: The role of collaboration in the supply chain. International Journal of 

Production Economics, 111(2), (2008), 299-315. 

[16] B. Allenby, Design for environment: A tool whose time has come, SSA J. 5(3) (1991) 

6–9. 

[17] S. H. M. Zailani, T. K. Eltayeb, C. C. Hsu, and K. C. Tan,  The impact of external 

institutional drivers and internal strategy on environmental performance, Int. J. Oper. 

Prod. Manage. 32(6) (2012) 721–745. 

[18] S. Mitra  and P. P. Datta, Adoption of green supply chain management practices and 

their impact on performance: An exploratory study of Indian manufacturing rms, Int. J. 

Prod. Res. 52(7) (2014) 2085–2107. 

[19] Q. Zhu and J. Sarkis,  Relationships between operational practices and performance 

among early adopters of green supply chain management practices in Chinese 

manufacturing enterprises. Journal of Operations Management, 22(3), (2004) 265-289. 

[20] H. Min, H. and  W. P. Galle, Green purchasing practices of US firms, Int. J. Oper. 

Prod. Manage. 21(9) (2001) 1222–1238. 

[21] Q. Zhu  J. Sarkis, and K. Lai, Confirmation of a measurement model for green supply 

chain management practices implementation, Int. J. Prod. Econ. 111(2) (2008) 261–

273. 

[22] P. Rao and D. Holt, Do green supply chains lead to competitiveness and economic 

performance? International Journal of Operations & Production Management, 25(9), 

(2005) 898-916. 



Journal of New Theory 18 (2017) 53-63                                                                                                         63 
 

[23] C. Droge, J. Jayaram and S.K. Vickery The effects of internal versus external 

integration practices on time-based performance and overall firm performance. 

Journal of Operations Management, 22(6), (2004) 557-573. 

[24] S. W. O’Leary-Kelly and B. E. Flores, The integration of manufacturing and 

marketing/sales decisions: impact on organizational performance. Journal of 

Operations Management, 20(3), (2002) 221-240. 

[25] E. D. Rosenzweig, A.V. Roth and Jr J. Dean The influence of an integration strategy 

on competitive capabilities and business performance: An exploratory study of 

consumer products manufacturers, Journal of Operations Management, 21(4), (2003) 

437-456. 

[26] M. Swink and A. Nair, Capturing the competitive advantages of AMT: Design-

manufacturing integration as a complementary asset. Journal of Operations 

Management, 25(3), (2007) 736-754. 

[27] S. Zailani and P. Rajagopal, Supply chain integration and performance: US versus 

East Asian companies. Supply Chain Management: An International Journal, 10(5), 

(2005) 379-393. 

[28] T.P. Stank, S.B. Keller and P.J. Daugherty, Supply Chain Collaboration and 

Logistical Service Performance. Journal of Business Logistics, 22(1), (2001) 29-48. 

[29] A. D. Ellinger, A.E. Ellinger, B. Yang  and S. W. Howton, The relationship between 

the learning organization concept and firms' financial performance: An empirical 

assessment. Human Resource Development Quarterly 13 (1), (2002) 5-22. 

 



http://www.newtheory.org ISSN: 2149-1402

Received : 05.11.2017 Year : 2017, Number : 18, Pages: 64-73
Published : 26.11.2017 Original Article

C∞ SOFT MANIFOLDS

Marziyeh Mostafavi <mmostafavi14279@gmail.com>

Faculty of Science, Department of Mathematics, University of Qom, Qom, Iran

Abstaract − In this paper, we briefly recall several basic notions of soft sets and soft topological
spaces and we continue investigating the properties of soft mappings, soft continuous mappings and
soft homeomorphisms. We introduce and discuss the properties of the soft topological manifolds of
dimension n and define C∞ soft manifolds which will strengthen the foundations of the theory of
soft geometry. We study restriction of a soft mapping and then define submanifolds.
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1 Introduction

The concept of soft sets is introduced by Molodtsov [7] which is a completely new
mathematical tool to deal with uncertainties while modeling problems in engineering
physics, computer science, economics, social sciences and medical sciences.

Soft sets are convenient to be applied in practice and this theory has potential
application in many different fields such as smoothness of functions, game theory,
Riemann integration, Perron integration, probability theory and measure theory.

Shabir and Naz [10], defined soft topology and studied many properties. Zorlu-
tuna et al. [14] studied some concepts in soft topological spaces such as interior point,
interior, neighborhood, continuity, and compactness. In [4], Maji et al. combined
fuzzy sets and soft sets and introduced fuzzy soft sets. They described an applica-
tion of soft set theory to a decision-making problem [5]. Tanay et al. [11] introduced
the fuzzy soft topology. Later, Roy et al. [9] and Varol et al. [12] independently
modified the definition of fuzzy soft sets and redefined fuzzy soft topology. Research
on the soft set theory has been accelerated [1, 2, 3, 6]. In this paper, we introduce
the soft topological manifolds of dimension n. Also we define C∞ soft manifolds and
C∞ soft submanifolds.

2 Preliminary

Definition 2.1. [7] Let X be an initial universe and E be a set of parameters. Let
A be a non-empty subset of E. A pair (F,A) is called a soft set over X, where F is
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a mapping given by F : A → P (X).

The set of all of soft sets over X, is denoted by S(X, E).

Example 2.2. [4] Zadeh’s fuzzy sets [13] may be concidered as a special case of the
soft set.

Let D : X → [0, 1] be a fuzzy set. Let us concider the family of α-level sets for
D given by:

F (α) = {x ∈ X : D(x) = α}, α ∈ [0, 1].

Then we can write

D(x) = sup{α : α ∈ [0, 1], x ∈ F (α)}.

Thus the fuzzy set D may be considered as a soft set (F, [0, 1]).

Definition 2.3. [5] Let (F, A) ∈ S(X, E).

i. The complement of a soft set (F,A) is denoted by (F, A)c and is defined by
(F, A)c = (F c, A) where, F c : A → P (U) is a mapping given by F c(a) =
U − F (a), for all a ∈ A.

ii. Let E = {e1, e2, ..., en} be a set of parameters. The NOT set of E denoted by
eE is defined by eE = {ee1, ee2, ..., een} where, eei = notei for all i.

Definition 2.4. [5] Let (F, A), (G,B) ∈ S(X, E).

i. (F,A) is a soft subset of (G,B), denoted by (F, A)⊂̃(G,B), if F (e) ⊂ G(e) for
each e ∈ E.

ii. (F,A) and (G,B) are said to be soft equal, denoted by (F, A) = (G,B) if
(F, A)⊂̃(G,B) and (G,B)⊂̃(F, A).

iii. Union of (F,A) and (G,B) is a soft set (H,C), where C = A ∪ B and H(e) =
F (e) ∪ G(e) for each e ∈ E. This relationship is written as (F, A)∪̃(G,B) =
(H, C).

iv. Intersection of (F,A) and (G, B) is a soft set (H, C), where C = A ∩ B and
H(e) = F (e) ∩G(e) for each e ∈ E. This relationship is written as:
(F, A)∩̃(G,B) = (H,C).

v. The difference (H,E) of (F, E) and (G,E), denoted by (F, E)\(G,E), is defined
as H(e) = F (e)\G(e) for all e ∈ E.

Definition 2.5. [10]

i. Let (F, E) be a soft set over X and x ∈ X. We say that x ∈ (F,E) and read as
x belongs to the soft set (F,E) whenever x ∈ F (a) for all a ∈ E.

ii. Let x ∈ X, then (x, E) denotes the soft set over X for which x(a) = x, for all
a ∈ E.
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Definition 2.6. [10] Let (F, E) be a soft set overX and Y be a non-empty subset of
X. Then the sub soft set of (F, E) over Y denoted by (Y F, E), is defined as follows:
Y F(a) = Y ∩ F (a), for all a ∈ E. In other words (Y F, E) = Ỹ ∩̃(F, E).

Definition 2.7. [3] Let S(X,E) and S(Y,K) be families of soft sets. Let u : X → Y
and p : E → K be mappings. Then fpu : S(X, E) → S(Y,K) is defined as:

i. Let (F, A) ∈ S(X, E). The image of (F,A) under fpu written as fpu (F,A) =
(fpu (F ) , p (A)) is a soft set in S(Y, K) such that:

fpu (F ) (k) =

{ ⋃
e∈p−1(k)∩A u(F (e)) p−1(k) ∩ A 6= φ,

φ otherwise

ii. Let (G,B) ∈ S(Y, K). The invers image of (G,B) under fpu written as
f−1

pu (G,B) =
(
f−1

pu (G) , p−1 (B)
)

is a soft set in S(X, E) such that:

f−1
pu (G) (e) =

{
u−1 (G (p (e))) p (e) ∈ B,
φ otherwise

The soft function fpu is called surjective if p and u are surjective, also is said to
be injective if p and u are injective.

Theorem 2.8. [1] Let S(X,E) and S(Y,K) be families of soft sets. For the soft
function
fpu : S(X,E) → S(Y, K), the following statements hold:

i. f−1
pu ((G,B)c)=

(
f−1

pu (G,B)
)c

, for all (G,B) ∈ S(Y, K).

ii. fpu

(
f−1

pu (G,B)
) ⊂̃(G,B) for all (G,B) ∈ S(Y, K). If fpu is surjective, then the

equality holds.

iii. (F, A)⊂̃f−1
pu (fpu(F, A)) for all (F,A) ∈ S(X, E). If fpu is injective, then the

equality holds.

Theorem 2.9. [3] Let {(Fi, E)}i∈I ⊆ S (X,E) and {(Gi, k)}i∈I ⊆ S (Y, K). Then
for a soft mapping fpu : S(X,E) → S(Y, K), the following are true.

i. If (F1, E) ⊆̃ (F2, E), then fpu (F1, E) ⊆̃fpu (F2, E)

ii. (G1, K) ⊆̃ (G2, K) then f−1
pu (G1, K) ⊆̃f−1

pu (G2, K)

iii. fpu (∪̃i (Fi, E)) = ∪̃ifpu (Fi, E)

iv. f−1
pu ((G1, K) ∩̃ (G2, K)) = f−1

pu (G1, K) ∩̃f−1
pu (G2, K) .

v. f−1
pu ((G1, K) ∪̃ (G2, K)) = f−1

pu (G1, K) ∪̃f−1
pu (G2, K) .

Definition 2.10. [10] Let τ be the collection of soft sets over X, then τ is said to
be a soft topology on X if

i. φ,X belong to τ
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ii. the union of any number of soft sets in τ belongs to τ

iii. the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

The members of τ are said to be soft open sets in X.

Definition 2.11. [14]

i. The soft set (F, A) ∈ (X, τ, E) is called a soft point in X, denoted by eF , if for
the element e ∈ A,F (e) 6= φ and F (e′) = φ for all e ∈ A{e}.

ii. The soft point eF is said to be in the soft set (G,A), denoted by eF ∈̃(G,A), if
for the element e ∈ A, F (e) ⊆ G(e).

Definition 2.12. Let (X, τ, E) be a soft topological space and (F,E) ∈ S(X,E).

i. [10] The soft closure of (F,E), denoted by (F, E) is the intersection of all closed
soft supersets of (F,E) is the smallest closed soft set over X which contains
(F, E), i.e.

(F, E) = ∩̃{(H, E) : (H, E) ∈ τ ′, (F,E)⊆̃(H,E)}.
ii. [14] The soft interior of (F, E), denoted by (F, E)◦ is the union of all open soft

subsets of (F,E). Clearly (F,E) is the largest open soft set over X which contained
in (F,E), i.e.

(F, E)◦ = ∪̃{(H, E) : (H, E) ∈ τ and (H, E)⊂̃(F, E)}.

iii. [2] The soft boundary of (F,E) is the soft set

∂ (F,E) = (F,E)∩̃(F,E)c

Theorem 2.13. [14] Let fpu : (X, τ, E) → (Y, υ,K) be a soft mapping. Then the
following statements are equivalent:

i. fpu is soft continuous;

ii. f−1
pu

(G,K) ∈ τ ′,∀ (G,K) ∈ υ′;

iii. f−1
pu

(G,K)⊆̃f−1
pu

(G, K), ∀ (G,K) ∈ S (Y, K) ;

iv. ∂
(
f−1

pu (G,K)
) ⊆̃f−1

pu (∂ (G,K)) ,∀ (G,K) ∈ S (Y,K) ;

v. fpu (∂ (F,E)) ⊆̃∂ (fpu (F,E)) ,∀ (F, E) ∈ S (X,E)

vi. fpu

(
(F, E)

)
⊆̃fpu (F, E),∀ (F, E) ∈ S (X,E)

vii. f−1
pu ((G,K)◦) ⊆̃(

f−1
pu (G,K)

)◦
,∀ (G, K) ∈ S (Y,K)

Definition 2.14. A family β of members of τ is called a basis of soft topological
space (X, τ), if each element of τ is a union of members of β .
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Example 2.15. Let (Rn, τεn) be the fuzzy topology induced by β = {B(p, ε, r) | p ∈
Rn, ε ∈ R+, r ∈ [0, 1]} which B(p, ε, r) is a fuzzy subset that equals to zero outside
the sphere B(p, ε) and equals to r inside B(p, ε). Since by 1.2 each fuzzy subset
B(p, ε, r) can be considered as a soft set over Rn then β can be considered as a basis
of a soft topology called soft Euqleadian space denoted by (Rn, τεn, [0, 1]).

Example 2.16. Let β = {B(p, q, r) | p ∈ Rn, q ∈ Q+, r ∈ Q+ ∩ [0, 1]} which
B(p, q, r) is a fuzzy subset that equals to zero outside the sphere B(p, q) and equals
to r inside B(p, q). Since Q is dence in R, we can easily prove that the soft topology
induced by β equels to (Rn, τεn, [0, 1]).

Example 2.17. Let E be a set of parameters and

β = {A | A : E →
n∏

i=1

(ai, bi) is surjective and ∀i ∈ I, ai, bi ∈ R}.

We call the soft topology τ induced by β, the natural soft topology over Rn. So we
have the natural soft topological space (Rn, τ, E).

Example 2.18. Let E = {1}. Then {1} is the single nonempty subset of E. We
can consider

β = {(F, {1}) |F : {1} → B(p, ε) is surjective and p ∈ Rn, ε ∈ R+}
as a basis of soft Euqleadian space denoted by (Rn, τε, {1}). As in ordinary topology,
this space is equel to the natural soft topological space.

3 Soft Topological Manifolds

Definition 3.1. A soft topological space (X, τ, E) is a soft topological space of
dimention n if for any x ∈ X there exists a soft open set (F,A) over X containing
x and soft homeomorphic to a soft open set (G,B) of natural soft topology over
(Rn, τε, K).

Remark 3.2. When we write fpu : (F,A) → (G,B), is a soft homeomorphism, it
means that there is a soft homeomorphism fpu : (Z, τZ , E) → (Y, τεY

, K) where
Z = F (A), Y = G(B). So there is a homeomorphism u : Z → Y and a bijective
map p : E → K.
The triple (F,A, fup) is called a soft local coordinate neighborhood of each q ∈ (F, A)
and we assign to q the n soft coordinates x1(q), ..., xn(q), of its image u(q) in Rn.

Proposition 3.3. With the above notations and soft local coordinate neighborhood
(F, A, fup), we have fup (A) (k) = u (A(e)) where p−1(k) = {e}.
Proof. Let (H, D) ∈ τZ , then by definition 1.6 we have fpu(H,D) = (fpu(H), p(D)).

fpu (H) (k) =

{ ⋃
e∈p−1(k)∩H u(H(e)) p−1(k) ∩H 6= φ

φ otherwise

for each k ∈ D. Since p is bijective, there is exactly one element of A such that
p−1(k) = {e}. So we have fup (H) (k) = u (H(e)). If we set H = A then we have
fup (A) (k) = u (A(e)) where p−1(k) = {e}.
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Definition 3.4. A soft topological space (X, τ, E) is called a soft topologica manifold
of dimension n if satisfies the following axoims:

i. X is a a soft topological space of dimention n,

ii. X is a T2-space,

iii. X has a countable soft basis of soft open sets.

Definition 3.5. Let B = {(Fi, Ai, fuipi
) : i ∈ I} be a countable collection of soft

local coordinate neighborhoods such that X̃ =
⋃̃

i∈I(Fi, Ai). Since fuipi
is a soft

homeomorphism for all i ∈ I, then

fuipi
f−1

ujpj
: fujpj

((Fi, Ai)∩̃(Fj, Aj)) → fuipi
((Fi, Ai)∩̃(Fj, Aj))

is a soft homeomorphism for all i, j ∈ I whenever (Fi, Ai)∩̃(Fj, Aj) 6= φ that is
called a soft transition function.

Let fuipi
: (Fi, Ai) → (Gi, Bi), be a soft homeomorphism for each i ∈ I, then

fui,pi
: (Zi, τZi

, E) → (Yi, σYi
, K)

is a soft homeomorphism where Yi = Gi(Bi), Zi = Fi(Ai).
Now for each (H, D) ∈ τZi∩ Zj

and k ∈ D, we have fujpj
(H) (k) = uj (H(e))

where p−1
j (k) = e. Therefore

fuipi
f−1

ujpj

(
fujpj

(H)(k)
)

= fuipi
f−1

ujpj
(uj(H(e))) = ui(H(e))

Since ui : Zi → Yi is a homeomorphism for each i ∈ I, hence for all q ∈ H(e),

ui u−1
j (uj(q)) = ui u−1

j (xj
1, x

j
2, ..., xj

n) = (xi
1, x

i
2, ..., xi

n) = ui(q)

Proposition 3.6. With the above notations and soft local coordinate neighborhood
(F, A, fup), we have fup (A) (k) = u (A(e)) where p−1(k) = {e}.
Proof. Let (H, D) ∈ τZ , then by definition 1.6 we have fpu(H,D) = (fpu(H), p(D)).

fpu (H) (k) =

{ ⋃
e∈p−1(k)∩H u(H(e)) p−1(k) ∩H 6= φ

φ otherwise.

for each k ∈ D. Since p is bijective, there is exactly one element of A such that
p−1(k) = {e}. So we have fup (H) (k) = u (H(e)). If we set H = A then we have
fup (A) (k) = u (A(e)) where p−1(k) = {e}.
Definition 3.7. A soft topological space (X, τ, E) is called a soft topologica manifold
of dimension n if satisfies the following axoims:

i. X is a a soft topological space of dimention n,

ii. X is a T2-space,

iii. X has a countable soft basis of soft open sets.
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Definition 3.8. Let B = {(Fi, Ai, fuipi
) : i ∈ I} be a countable collection of soft

local coordinate neighborhoods such that X̃ =
⋃̃

i∈I(Fi, Ai). Since fuipi
is a soft

homeomorphism for all i ∈ I, then

fuipi
f−1

ujpj
: fujpj

((Fi, Ai)∩̃(Fj, Aj)) → fuipi
((Fi, Ai)∩̃(Fj, Aj))

is a soft homeomorphism for all i, j ∈ I whenever (Fi, Ai)∩̃(Fj, Aj) 6= φ that is
called a soft transition function.

Let fuipi
: (Fi, Ai) → (Gi, Bi), be a soft homeomorphism for each i ∈ I, then

fui,pi
: (Zi, τZi

, E) → (Yi, σYi
, K)

is a soft homeomorphism where Yi = Gi(Bi), Zi = Fi(Ai).
Now for each (H, D) ∈ τZi∩ Zj

and k ∈ D, we have fujpj
(H) (k) = uj (H(e))

where p−1
j (k) = e. Hence

fuipi
f−1

ujpj

(
fujpj

(H)(k)
)

= fuipi
f−1

ujpj
(uj(H(e))) = ui(H(e))

Since ui : Zi → Yi is a homeomorphism for each i ∈ I, hence for all q ∈ H(e),

ui u−1
j (uj(q)) = ui u−1

j (xj
1, x

j
2, ..., xj

n) = (xi
1, x

i
2, ..., xi

n) = ui(q)

4 C∞ Soft Manifolds

Definition 4.1. With the above notations, we shall say that ((Fi, Ai), fuipi
) is

C∞-compatible with ((Fj, Aj), fujpj
) when (Fi, Ai)∩̃(Fj, Aj) 6= φ if ui u−1

j and

uj u−1
i changing the soft coordinates are C∞ functions or we say that fuipi

f−1
ujpj

is a
soft deffeomorphism of soft open subsets (Gj, Bj) and (Gi, Bi) of Rn.

Definition 4.2. A soft differetiable or C∞ structure on a soft topological manifold
(X, τ, E) is a family A = {(Fi, Ai, fuipi

), i ∈ I} of soft coordinate neighborhoods s.t.

i. X̃ =
⋃̃

i∈I(Fi, Ai);

ii. Each triple ((Fi, Ai, fuipi
) and ((Fj, Aj, fujpj

) are C∞ soft compatible for all
i, j ∈ I.

iii. Any soft coordinate neighborhood ((H, D, hup) that is fuzzy compatible with
every (Fi, Ai, fuipi

), ; i ∈ I, is itself in A.

A C∞ soft manifold is a soft topological manifold with a soft C∞ structure on it.

Example 4.3. Let E = {1}. Then {1} is the single nonempty subset of E. We
can consider the soft Euqleadian space (Rn, τε, {1}). Now let X = Mm×n(R). Since
there is a bijection ψ : X → Rmn:

ψ(aij) = (a11, ..., a1n; ...; am1, ..., amn),

we can define a natural soft topology τ on X as follows:

τ = {φ,X} ∪ {(F, {1}) : F ({1}) is an ordinary open set of X}.
Also we can cover (X, τ, {1}) by a single soft coodinate neighborhood (F, {1}, fup)
whereF ({1}) = X, u = ψ, p = id. Hence (X, τ, {1}) is a C∞ soft manifold of
dimention mn.
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Definition 4.4. (Soft open submanifolds) Let (X, τ, E) be an C∞ soft manifold and
Z be a soft open subset of X. If A = {(Fi, Ai, fuipi

), i ∈ I} is a C∞ structure on
X, then (Z, τZ , E) is a C∞ soft manifold with soft differentiable structure consisting
of the soft coordinate neighborhoods (Fi|Ai∩Z , Ai ∩ Z, f(ui|F (Ai∩Z))pi

).

Example 4.5. Since Z = Gl(n,R) is an open subset of X = Mn×n(R), then
(Z, τZ , E) is an C∞ soft submanifold of (X, τ, E).

Example 4.6. Let X = S2, the unit sphere and E = 1. As in example 3.3 we
have a natural soft topology τ on X. We prove that (X, τ, {1}) is a C∞ soft man-
ifold of dimention 2. Let I = {1, 2, 3}. We define six soft open subsets covering
X, F±

i : {1} → R3, i ∈ I by:

F±
i ({1}) = {(x1, x2, x3)| ‖x‖ = 1, ±xi > 1}.

Then we show that all soft sets (F±
i , {1}) are homeomorphic to the soft open subset

(G, {1}) which G{1} = {(y1, y2) |‖y‖ < 1}, with six soft homeomorphisms fui
±p

where p = id, u±i (F±
i ({1})) → G({1}), ∀i ∈ I is defined by:

u±1 (x1, x2, x3) = (x2, x3) , (u±1 )−1(y1, y2) = (±
√

1− y2
1 − y2

2 , y1, y2)

u±2 (x1, x2, x3) = (x1, x3) , (u±2 )−1(y1, y2) = (y1,±
√

1− y2
1 − y2

2, y2)

u±3 (x1, x2, x3) = (x1, x2) , (u±3 )−1(y1, y2) = (y1, y2, ±
√

1− y2
1 − y2

2)

Also it is seen that u±j ◦ (u±i )−1 is infinitly differentiable for all i, j ∈ I. For example:

u±2 ◦ (u±1 )−1(y1, y2) = u±2 (±
√

1− y2
1 − y2

2, y1, y2) = (±
√

1− y2
1 − y2

2, y2)

Therefor each triple (F±
i , {1}, fu±i p) and (F±

j , {1}, fu±j p) are C∞ soft compatible for

all i, j ∈ I.

Example 4.7. Let E = Rn and X = TRn =
⋃

p∈Rn TpRn. We define the soft
topology τ as follows:

τ = {(F,U) | F (U) =
⋃
p∈U

TpRn, U is an open subset of Rn}.

We define soft homeomorphism fup : (F,E) → (G,E), where F (E) = X, G(E) =
R2n, p = id and u(vp) = (x1, ..., xn, v1, ..., vn), ∀p = (x1, ..., xn) ∈ Rn, v =
(v1, ..., vn) ∈ TpRn. Thus (X, τ, E) is an C∞ soft manifold of dimension 2n with
single soft coordinate neighborhood (F,E, fup)

Theorem 4.8. Let (M, σ) be an C∞ topological manifold of dimension n and E =
Rn. Let X = TM =

⋃
p∈M TpM and B = {(Ui, ψi, ), i ∈ I} be an C∞ structure

on M . We define the soft topology τ = {(F, U) | F (U) =
⋃

p∈U TpM, U ∈ σ}. Then
(X, τ, E) is an C∞ soft manifold of dimension 2n.
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Proof. One can easily prove that τ is an soft topology on X. If ψi(p) = (xi
1, x

i
2, ..., xi

n), ∀p ∈
Ui, then we define soft homeomorphisms:

fuip : (Fi, Ui) → (G,Ui), Fi(Ui) =
⋃

p∈Ui

TpM, G(Ui) = Ui × Rn, p = id

ui(vp) = (xi
1, ..., xi

n, vi
1, ..., vi

n), ∀p ∈ Ui, ∀vp ∈ TpM

Note that vp =
∑n

k=1 vi
k Eip where Eip = ψ−1

i∗ (
∂

∂xi
k

). Since ψi ◦ ψ−1
j is C∞ for all

i, j ∈ I, then uiu
−1
j and then fuip ◦ f−1

ujp are C∞ for all i, j ∈ I. Therefore we have
C∞ soft structure:

A = {(Fi, Ui, fuip), i ∈ I}.

5 Conclusion

In the present study, we have continued to study the properties of soft continuous,
soft open and soft closed mappings between soft topological spaces.We obtain new
characterizations of these mappings and investigate preservation properties. We
expect that results in this paper will be basis for further applications of soft manifolds
in soft sets theory.
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1. Introduction  
 

Prabpayak and Leerawat [18,19] introduced a new algebraic structure which is called KU–

algebras. They studied ideals and congruences in KU-algebras. Also, they introduced the 

concept of homomorphism of KU–algebra and investigated some related properties. 

Moreover, they derived some straightforward consequences of the relations between 

quotient KU–algebras and isomorphism. Mostafa et al. [ 15] introduced the notion of fuzzy 

KU–ideals of KU-algebras and then they investigated several basic properties which are 

related to fuzzy KU-ideals. The hyper structure theory (called also multi–algebras) is 

introduced in 1934 by Marty [14] at the 8th congress of Scandinvian Mathematiciens. 

Around the 40's, several authors worked on hyper groups, especially in France and in the 

United States, but also in Italy, Russia and Japan. Hyper structures have many applications 

to several sectors of both pure and applied sciences. Since then numerous mathematical 

papers [2,3,4,5,6,14,16,17,21] have been written investigating the algebraic properties of 

the hyper BCK/BCI–KU–algebras. Jun and Xin [6] considered the fuzzification of the 

notion of a (weak, strong, reflexive) hyper BCK–ideal, and investigated the relations among 

them. Mostafa et al. [16], applied the hyper structures to KU–algebras and introduced the 

concept of a hyper KU–algebra which is a generalization of a KU–algebra, and investigated 

some related properties. They also introduced the notion of a hyper KU–ideal, a weak hyper 

KU–ideal and gave relations between hyper KU–ideals and weak hyper KU–ideals.  

 

On the other hand, triangular norm is a powerful tool in the theory research and application 

development of fuzzy sets. On the basis of the definition of the intuitionistic fuzzy groups, 

Li et al . [13],  generalized the operators “ ^” and “ ˅ ” to T-norm and S-norm and defined 
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the intuitionistic fuzzy groups of  (T,S)–norms. as a generalization of the notion of fuzzy set 

Kim [12] Using t–norm T and s–norm S, they introduced the notion of intuitionistic (T,S) –

normed fuzzy subalgebra in BCK/BCI-algebra, and some related properties are 

investigated. Based on the (interval-valued) fuzzy sets, Jun et al. [7-11] introduced the 

notion of cubic sub–algebras/ideals in BCK/BCI–algebras, and then they investigated 

several properties. There are several authors who applied the theory of cubic sets to 

different algebraic structures for instance, Jun et al. [7-11], Yaqoob et al. [20].  

 

In this paper, we studied the idea of ),
~

( ST –cubic set theory to the ( s–weak–strong) hyper 

KU–ideals in hyper KU–algebras and investigated some of related properties . 

 

2. Preliminaries 
  

Let H  be a nonempty set and }{\)()( φHPHP =∗   the family of the nonempty subsets of 

H . A multi valued operation (said also hyper operation) " o " on H  is a function, which 

associates with every pair  2),( HHHyx =×∈  a non empty subset of H  denoted yx o .An 

algebraic hyper structure or simply a hyper structure is a non empty set H  endowed with 

one or more hyper operations. 

 

We shall use the yx o  instead of }{yx o , yx o}{  or }{}{ yx o . 

 

Definition 2.1 [16]  Let H  be a nonempty set and " o " a hyper operation on H , such that 

)(: HPHH ∗→×o . Then H  is called a hyper KU-algebra if it contains a constant "0" and 

satisfies the following axioms: for all Hzyx ∈,,  

 

 yxzxzyHKU oooo <<)]()[()( 1  

{ }00)( 2 =oxHKU  

{ }xxHKU =o0)( 3  

yximpliesxyyxifHKU =<<<< ,)( 4 .   

 

where x << y is defined by xy o∈0  and for every HBA ⊆,  , BA <<  is defined by 

bathatsuchBbAa <<∈∃∈∀ , . In such case, we call “<<” the hyper order in H . 

 

Note that if  HBA ⊆, , then by BA o   we mean the subset Hofba
BbAa

U o
∈∈ ,

. 

 

Example 2.2. [16] Let }3,2,1,0{=H be a set. Define hyper operation o  on H  as follows: 

 

 

 

 

 

 

 

 

Then  )0,,( oH is a hyper KU-algebra. 

 

o  0 1 2 3 

0 {0} {1} {2} {3} 

1 {0} {0} {1} {3} 

2 {0} {0} {0} {0,3} 

3 {0} {0} {1} {0,3} 
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Proposition 2.3. [16 ] Let H  be a hyper KU-algebra. Then for all Hzyx ∈,, , the 

following statements hold: 

 

( 1P ) A ⊆  B implies BA << , for all nonempty subsets A, B of H. 

( 2P ) }0{00 =o . 

( 3P ) x<<0 . 

( 4P ) zz << . 

( 5P ) zzx <<o  

( 6P ) }0{0 =oA . 

( 7P ) AA =o0 .   

( 8P ) }{)00( xx =oo  and }0{))0(( =xx oo . 

( 9P ) { } 0=⇔= xxxx o  

 

Lemma 2.4. [ 16] In hyper   KU-algebra )0,,( oX , the following hold: 

 

yx <<    imply   zxzy oo <<  for all Xzyx ∈,,  

 

Lemma 2.5. [ 16] In hyper KU-algebra )0,,( oX  , we have   

 

)()( xzyxyz oooo =  for all Xzyx ∈,, . 

 

Lemma 2.6. [16] For all Hzyx ∈,, , the following statements hold: 

 

(i) xyzzyx <<⇔<< oo  ,   

(ii) AA ∈⇒<< 00 , 

(iii) xyxy <<⇒∈ )0( o . 

 

Definition 2.7. [ 16]  Let A  be a non-empty subset of a hyper KU-algebra X . Then A  is 

said to be a hyper ideal of X  if 

 

( 1HI ) A∈0 , 

( 2HI ) Axy <<o and Ay ∈  imply Ax ∈  for all Xyx ∈, .                                                     

  

Definition 2.8. [ 16] Let I  be a non-empty subset of a hyper KU-algebra H  and I∈0 . 

Then, 

 

(1) I  is called a weak hyper ideal of H  if Ixy ⊆o and Iy ∈  imply that Ix ∈ ,  for all 

Hyx ∈, . 

( 2) I is called  a strong  hyper  ideal  of H   if φ≠Ixy Io )(  and Iy ∈  imply that Ix ∈ ,  

for all Hyx ∈, . 

 

Definition 2.9. [16 ] For a hyper KU-algebras H , a non-empty subset HI ⊆ , containing 0 

are : 

 

1- A weak hyper KU-ideal of H  if Icba ⊆)( oo and Ib ∈  imply Ica ∈o . 
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2- A hyper KU-ideal of H  if Icba <<)( oo and Ib ∈  imply Ica ∈o . 

3- A strong hyper KU-ideal of H  if ( Hyx ∈∀ , )( φ≠Icba Ioo )(( ) and Ib ∈  imply 

Ica ∈o .  

 

Example 2.10. [ 16]  Let },,,0{ cbaH = be a set with the following Cayley table 

 
 
 
 

 

 

 

 

Then H is a hyper KU-algebra. Take { }bI ,0= , then I is a weak hyper ideal, however, not a 

weak hyper KU-ideal of H  as IacbbutIbIcbb ∉=∈⊆ ooo ,,)( . 

 

Example 2.11.[16 ]. Let },,0{ baH = be a set with the following Cayley table: 

 

 
 

 

Then H is a hyper KU-algebra. Take { }bI ,0= . Then I is a hyper ideal, but not a hyper 

KU-ideal, since Iab <<)(0 oo   and Ib ∈ but Ia ∉  

 

Here { }bI ,0= is also a strong hyper ideal but it is not a strong hyper KU-ideal of H , since 

φ≠∩= Ibab }{)(0 oo IabutIband ∉∈ . 

 

Definition 3.12. [12,13] An interval number is ],[~
UL aaa = , where 10 ≤≤≤ UL aa . Let 

D[0, 1] denote the family of all closed subintervals of [0, 1], i.e., 

 

                         { }IaaforaaaaaD ULULUL ∈≤== ,:],[~]1,0[ . 

 

We define the operations =≥≤ ,, ,rmin and rmax in case of two elements in D[0, 1]. We 

consider two elements  ],[~
UL aaa = and  ],[

~
UL bbb = in D[0, 1]. Then 

 

1- UULL babaiffba ≤≤≤ ,
~~ ; 

2- UULL babaiffba ≥≥≥ ,
~~ ; 

3- UULL babaiffba === ,
~~ ; 

4- { } { } { }[ ]UULL bababarmim ,min,,min
~

,~ =    ; 

5- { } { } { }[ ]UULL bababar ,max,,max
~

,~max =  

Here we consider that [ ]0,00
~

=  as least element and [ ]1,11
~

= as greatest element. Let 

[ ]1,0~ Dai ∈ ,where Λ∈i .We define 

o  0 a b c 

0 {0} {a} {b} {c} 

a {0} {0,a} {0,b} {b,c} 

b {0} {0,b} {0 } {a} 

c {0} {0,b} {0 } {0,a} 

o  0 a b 

0 { }0  { }a  { }b  

a { }0  { }a,0  { }b  

b { }0  }{b  { }b,0  
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












=

Λ∈ Λ∈Λ∈ i i
UiLi

i

aa
iar )inf(,)inf(~inf  and  














=

Λ∈ Λ∈Λ∈ i i
UiLi

i

aa
iar )sup(,)sup(~sup  

 

An interval valued fuzzy set (briefly, i-v-f-set) µ~  on a set X is defined as 

 

[ ]{ }Xxxxx UL ∈= ,)(),(,~ µµµ  

 

where [ ]1,0:~ DX →µ  and )()( xx UL µµ ≤ , for all Xx ∈ . Jun et al. [7-11 ], introduced the 

concept of cubic sets defined on a non-empty set X as  objects having the form:  

 

{ },:)(),(~, XxxxxA AA ∈= λµ  

 

which is briefly denoted by ,,~
AAA λµ=  where the functions ]1,0[:~ DXA →µ  and 

].1,0[: →XAλ  

 
Definition 2.12. [12,13]  A triangular norm (t-norm) is a function ]1,0[]1,0[]1,0[: →×T  

that satisfies following conditions: 

 

(T1)  boundary condition :T(x, 1) = x, 

(T2)  commutativity condition: T(x, y) = T(y, x), 

(T3)  associativity condition :T(x, T(y, z)) = T(T(x, y), z), 

(T4)  monotonicity:T(x, y) ≤ T(x, z) ,whenever y ≤ z for all x, y, z ∈[0, 1]. 

 

A simple example of such defined t-norm is a function T (α, β) = min{α, β}. In the general 

case T (α, β) ≤ min{α, β} and T (α, 0) = 0 for all α, β ∈ [0, 1]. 

 

Definition 2.13 [12,13] A triangular conorm (t-conorm S) is a mapping 

]1,0[]1,0[]1,0[: →×S  that satisfies following conditions: 

 

(S1) S(x, 0) = x, 

(S2) S(x, y) = S(y, x), 

(S3) S(x, S(y, z)) = S(S(x, y), z), 

(S4) S(x, y) ≤ S(x, z) , whenever y ≤ z for all x, y, z ∈[0, 1]. 

 

A simple example of such definition s-norm S is a function S(x, y) = max{x, y}.  Every S- 

conorm S has a useful property:  max{α, β}≤ S (α, β) for all α, β ∈ [0, 1]. 

 
Definition 2.14. [1] An interval valued triangular norm (interval valued t-norm) is a 

function ]1,0[]1,0[]1,0[:
~

DDDT →×  that satisfies following conditions: 

 

(T1)  interval valued boundary condition : xxT ~)1
~

,~(
~

= , 

(T2) ) interval valued commutativity condition: )~,~(
~

)~,~(
~

xyTyxT = , 
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(T3) interval valued associativity condition :   )~),~,~(
~

(
~

))~,~(
~

,~(
~

zyxTTzyTxT =  , 

(T4) interval valued monotonicity: )~,~(
~

)~,~(
~

zyTyxT ≤ ,whenever zy ~~ ≤ for all 

]1,0[~,~,~ Dzyx ∈ . 

 

A simple example of such defined interval valued t-norm is a function 

{ }βαβα
~

,~min)
~

,~(
~

rT = .  

 

In the general case { }βαβα
~

,~min)
~

,~(
~

rT ≤  and ]1,0[
~

,~,0
~

)0
~

,~(
~

DT ∈∀= βαα . 

 

Definition 2.15.3 [1 ] An interval valued triangular conorm (interval valued t-conorm S
~

) 

is a mapping ]1,0[]1,0[]1,0[:
~

DDDS →× that satisfies following conditions: 

 

(S1) xxS ~)0
~

,~(
~

= , 

(S2) )~,~(
~

)~,~(
~

xySyxS = , 

(S3) )~),~,~(
~

(
~

))~,~(
~

,~(
~

zyxSSzySxS =   

(S4) interval valued monotonicity : )~,~(
~

)~,~(
~

zySyxS ≤ ,whenever zy ~~ ≤ for all 

]1,0[~,~,~ Dzyx ∈ . 

 

A simple example of such definition interval valued s-norm S is a function  

{ }βαβα
~

,~max)
~

,~(
~

rS = .  

 

In the general case { }βαβα
~

,~max)
~

,~(
~

rS ≤   and ]1,0[
~

,~,1
~

)1
~

,~(
~

DS ∈∀= βαα  

 

Example.2.16. Here the set  H = {0, 1, 2, 3,4} in which o  is defined by the following table  

 

 
 

 

 

 

Then )0,,( ∗H  is a hyper KU-algebra . The function mT
~

 defined by  

 

{ } ]1,0[
~

,~,0
~

,1
~~~max)

~
,~(

~
DrTm ∈∀−+= βαβαβα  

 

By routine calculations, we known that a fuzzy set µ~ in H defined by µ~  (1) =[ 0.3,0.5] and 

µ~ (0) = µ~  (2) = µ~  (3) = µ~  (4) =   [0.3 0.9] is interval valued mT
~

 -fuzzy KU-ideal of H, 

which is interval valued mT
~

-fuzzy KU-ideal because )}(~),((~{
~

)(~ zyxyzTx AAA ∗∗∗≥ µµµ . 

 

o  0 1 2 3 4 

0 {0} {1} {2} {3} {4} 

1 {0} {0} {2} {3} {4} 

2 {0} {1} {0} {3} {3} 

3 {0} {0} {2} {0} {2} 

4 {0} {0} {0} {0} {0} 
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3. ),
~

( ST - Cubic hyper KU–ideals 

  

Now some fuzzy logic concepts are reviewed .A fuzzy set µ  in a set H  is a function 

]1,0[: →Hµ .  A fuzzy set µ  in a set H  is said to satisfy the inf (resp. sup) property if for 

any subset T  of H there exists Tx ∈0 such that )(inf)( 0 xx
Tx

µµ
∈

= (resp. )(sup)( 0 xx
Tx

µµ
∈

= ). 

For a fuzzy set µ  in X and a ∈  [0, 1]  the set  U( µ ; a):={x ∈ H , µ  (x) ≥ a}, which is 

called a level set of µ . 

 

Definition 3.1. A fuzzy set µ in H is said to be a fuzzy hyper KU-subalgebra of H if it 

satisfies the inequality:  

 

{ })(),(min)(inf yxz
yxz

µµµ ≥
∈ o

 Hyx ∈∀ , . 

 

Proposition 3.2. Let µ be a fuzzy hyper KU-sub-algebra of H. Then  )()0( xµµ ≥   for all 

x ∈ H .  

 

Proof. Using Proposition 2.3 ( 9P ), we see that 0 ∈ x ◦ x for all x ∈H . Hence 

 

{ } )()(),(min)0(inf
0

xxx
xx

µµµµ =≥
∈ o

 for all x ∈H . 

 

Example 3.3.  Let },,0{ baH = be a set. Define hyper operation o  on H  as follows: 

 

 

 

 

 

 

 

 

Then  )0,,( oH is a hyper KU-algebra.  Define  a fuzzy set µ : H →[0, 1] by µ(0) = 

µ(a)=α1>α2= µ(b). Then µ is a fuzzy hyper  sub-algebra of H  . 

 

A fuzzy set ν :  H →[0, 1]  defined  by ν(0) = 0.7, ν(a)=0.5 and ν(b)=0.2 is also a fuzzy 

Hyper sub-algebra of H . 

 

Definition3.4[17] Let H be nonempty set .A cubic set A in H is Structure 

{ }XxxxxA AA ∈= ,)(),(~, λµ  which is briefly denoted by )(),(~ xxA AA λµ= , where 

],[)(~
A

UL

AA x µµµ = is  an interval value fuzzy set in H and Aλ  is  an fuzzy set in X. 

Definition3.5 . A cubic set )(),(~ xxA AA λµ= in H is called a ),
~

( ST  -cubic hyper ideal of 

H,  if it satisfies the following conditions: 

 

)(~)(~:1 yximpliesyxK µµ ≥<<  and )()( yx AA λλ ≤  

 

o  0 a b 

0 { }0  { }a  { }b  

a { }0  { }a,0  { }ba,  

b { }0  { }a,0  },,0{ ba  
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{ })(~),(~inf
~

)(~:
)((

2 yuTzK
zyu

µµµ
o∈

≥ ,   








≤
∈

)(,)(sup)(
)(

yaSx
xya

A µµλ
o

  

 

Definition3.6. For a hyper KU-algebra H  , a cubic )(),(~ xxA AA λµ= ” in H  is called:  

 

(I) ),
~

( ST -Cubic  hyper KU-ideal of H , if   

 

)(~)(~:1 yximpliesyxK µµ ≥<< , )()( yx AA λλ ≤  

 

{ })(~,)(~inf
~

)(~
)((

yuTzx AA
zyxu

A µµµ
oo

o
∈

≥  and 








≤
∈

)(,)(sup)(
)(

yaSzx
zyxa

A µµλ
oo

o  

 

(II) ),
~

( ST - Cubic weak hyper KU-ideal of H” if, for any x; y; z ∈  H  

    

{ })(~),(~inf
~

)(~)0(~
)((

yuTzx AA
zyxu

AA µµµµ
oo

o
∈

≥≥









≤≤
∈

)(,)(sup)()0(
)(

yaSzx AA
zyxa

AA λλλλ
oo

o  

 

(III) ),
~

( ST -Cubic hyper KU-ideal of H ” if, x << y implies  

 

)(~)(~:1 yximpliesyxK µµ ≥<<  and )()( yx AA λλ ≤  for any x; y; z ∈  H  

 

{ })(~),(~inf
~

)(~
))((

yuTzx AA
zyxu

A µµµ
oo

o
∈

≥ , 








≤≤
∈

)(,)(sup)()0(
)(

yaSzx
zyxa

AA µµλλ
oo

o  

 

(IV) ),
~

( ST -Cubic strong  hyper KU-ideal of H ” if, for any x; y; z ∈  H  

 

{ })(~),(~inf
~

)(~)(~inf
)()(

yuTzu AA
zyxu

AA
zyxu

µµµµ
oooo ∈∈

≥≥ , 

 









≤≤
∈∈

)(),(sup)()(sup
)()(

yuSzu AA
zyxu

AA
zyxu

λλλλ
oooo

. 

 

Ending the proof. 
 

Example 3.7.  Let }3,2,1,0{=H be a set. The hyper operations o on H  are defined as 

follows.  

 

 

 

 

 

 

 

1o  0 1 2 3 

0 {0} {1} {2} {3} 

1 {0} {0} {1} {3} 

2 {0} {0} {0} {0,3} 

3 {0} {0} {1} {0,3} 
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Then )0,,( oH  is hyper  KU-algebras.Define    )(~ xAµ  , as follows: 

 

)(~ xAµ = 


 =

otherwise

xif

]4.0,1.0[

}1,0{]9.0,2.0[
 

 

 

 

 

 

 

The function mT
~

 defined by { } ]1,0[
~

,~,0
~

,1
~~~max)

~
,~(

~
DrTm ∈∀−+= βαβαβα , 

]1,0[]1,0[]1,0[: →×mS  be a function defined by  { }1),(1min),( βαβα +−=mS . It is easy to 

check that  

 

{ })(~,)(~inf
~

)(~
)((

yuTzx AA
zyxu

A µµµ
oo

o
∈

≥   and








≤
∈

)(,)(sup)(
)(

yaSzx
zyxa

A µµλ
oo

o  

 

Then )(),(~ xxA AA λµ=  is ),
~

( ST -cubic  hyper KU-ideal of H . 

 

Theorem 3.8. Any ),
~

( ST - cubic (weak, strong) hyper KU-ideal is ),
~

( ST -cubic (weak, 

strong) hyper ideal. 

 

Proof. Let )(),(~ xxA AA λµ= be ),
~

( ST - cubic hyper KU-ideal of H, we get for any  

 

x; y; z ∈  H , { })(~),(~inf
~

)(~
)(

yuTzx AA
zyxu

A µµµ
oo

o
∈

≥   Put  x = 0 , we get 

 

{ })(~,)(~inf
~

)0(~
)(0

yuTz AA
zyu

A µµµ
oo

o
∈

≥  

 

which gives, 

 

{ })(~,)(~inf
~

)(~
)(

yuTz AA
zyu

A µµµ
o∈

≥  and 








≤
∈

)(),(sup)(
)(

yuSzx AA
zyxu

A λλλ
oo

o  

 

Take   x = 0 , we  get   








≤
∈

)(,)(sup)0(
)(0

yuSz AA
zyu

A λλλ
oo

o  , which gives,  









≤
∈

)(,)(sup)(
)(

yuSz AA
zyu

A λλλ
o

. Ending the proof.  

 

Definition 3.9. A cubic set )(),(~ xxA AA λµ= in H is called a ),
~

( ST - cubic s-weak hyper 

KU-ideal of H if 

 

(i) Hxxx aAAA ∈∀≤≥ )()0(,)(~)0(~ λλµµ ,  

(ii) for every Hzyx ∈,,   there exists )( zyxa oo∈   such that { })(~),(~~
)(~ yaTzx AAA µµµ ≥o . 

H 0 1 2 3 

)(xAλ  
0.2 0.2 0.6 0.7 
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(iii) 








≤
∈

)(,)(sup)(
)(

yaSzx AA
zyxa

A λλλ
oo

o . 

 

Proposition 3.10.  Let )(),(~ xxA AA λµ=  be a ),
~

( ST -cubic  weak hyper KU-ideal of H. If 

)(),(~ xxA AA λµ=  satisfies the inf-sup property, then )(),(~ xxA AA λµ= is a ),
~

( ST -cubic 

fuzzy s-weak hyper KU -ideal of H. 

 

Proof. Since )(),(~ xxA AA λµ=  satisfies the inf property, there exists )(0 zyxa oo∈ , such 

that )(~inf)(~
0

)(
0

0

aa A
zyxa

A µµ
oo∈

= . It follows that    

 

{ })(~,)(~inf
~

)(~
)(

yaTzx AA
zyxa

A µµµ
oo

o
∈

≥  

 

And since )(),(~ xxA AA λµ=  satisfies the sup property, there exists )(0 zyxb oo∈ , such 

that )(sup)( 0
)(

0

0

ab A
zyxb

A λλ
oo∈

=  It follows that    

 









≤
∈

)(,)(sup)(
)(

ybSzx AA
zyxb

A λλλ
oo

o . 

 

Ending the proof.  

 

Note that, in a finite hyper KU-algebra, every ),
~

( ST - cubic set satisfies (inf -sup) property. 

Hence the concept of ),
~

( ST -cubic weak hyper KU -ideals and ),
~

( ST -cubic s-weak hyper 

KU-ideals coincide in a finite hyper  KU -algebra. 

 

Proposition 3.11. Let )(),(~ xxA AA λµ=  be a ),
~

( ST -cubic strong hyper KU-ideal of H 

and let x; y; z ∈  H. Then 

 

(i) )(~)0(~ xAA µµ ≥ , )()0( xAA λλ ≤  

(ii) x << y  implies  )(~)(~ yx AA µµ ≥  . 

(iii) { } )(,)(~),(~~
)(~ zyxayaTzx AAA ooo ∈∀≥ µµµ  

(v) x << y  implies  )()( yx AA λλ ≤  

(iv)  








≤
∈

)(,)(sup)(
)(

ybSzx AA
zyxb

A λλλ
oo

o  

 

Proof. (i) Since Hxxx ∈∀∈ o0   ,we have )()(inf)0( xa
xxa

µµµ ≥≥
∈ o

, 

)()(sup)0( xb
xxb

λλλ ≤≤
∈ o

, which  proves  (i). 

 

(ii) Let x; y ∈  H be such that x << y. Then  Hyxxy ∈∀∈ ,0 o  and so 

)0(~)(~inf
)(

AA
xyb

b µµ ≤
∈ o

, it follows from (i)  that ,  
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{ } { } )(~)(~),0(~~
)(~,)(~inf

~
)(~

)(
yyTyaTx AAAAA

xya
A µµµµµµ =≥≥

∈ o
, 

{ } )()(),0()(,)(sup)(
)(

yySybSx AAAAA
xyb

A λλλλλλ =≤








≤
∈ o

. 

 

(iii)  { } { } )(,)(~),(~~
)(~),(~inf

~
)(~

)(
zyxayaTyaTzx AAAA

zyxa
A ooo

oo
∈∀≥≥

∈
µµµµµ ,  

 

{ } )(,)(),()(),(sup)(
)(

zyxbybSybSzx
zyxb

ooo
oo

∈∀≤








≤
∈

µµλλλ  

 

we conclude that (iii), (v), (iv) are true. Ending the proof.  

 

Corollary 3.12. Every ),
~

( ST -cubic strong hyper KU-ideal is both a ),
~

( ST -cubic s-weak 

hyper KU-ideal and a ),
~

( ST -cubic hyper  KU -ideal. 

 

Proof. Straight forward.  

 

Proposition 3.13. Let )(),(~ xxA AA λµ=  be ),
~

( ST - cubic hyper KU -ideal of H and 

let Hzyx ∈,, . Then, (i) )(~)0(~ xAA µµ ≥ , )()0( xAA λλ ≤  

 

 (ii) if )(),(~ xxA AA λµ=  satisfies the  inf -sup property, then  

 

{ } )(,)(~),(~~
)(~ zyxayaTzx AAA ooo ∈∀≥ µµµ ,









≤
∈

)(,)(sup)(
)(

ybSzx AA
zyxb

A λλλ
oo

o  

 

Proof. (i) Since 0 << x for each Hx ∈ ; we have )(~)0(~ xAA µµ ≥ , )()0( xAA λλ ≤ by 

Definition 3.6(I) and hence (i) holds. 

 

(ii) Since )(),(~ xxA AA λµ=  satisfies the inf property, there is )(0 zyxa oo∈ ,such that 

)(~inf)(~
)(

0 aa A
zyxa

µµ
oo∈

= .Hence { } { })(~,)(~~
)(~,)(~inf

~
)(~

0
)(

yaTyaTzx AAAA
zyxa

A µµµµµ =≥
∈ oo

o   

Since )(),(~ xxA AA λµ=  satisfies the sup- property, there is )(0 zyxb oo∈ ,such that 

)(sup)(
)(

0 bb A
zyxb

λλ
oo∈

= ,Hence { })(,)()(,)(sup)( 0
)(

ybSybSzx AAAA
zyxb

A λλλλλ =








≤
∈ oo

o   

 

which implies that (ii) is true. The proof is complete. 

 

Corollary 3.13.  (i) Every ),
~

( ST - cubic hyper KU -ideal of H is a ),
~

( ST -cubic weak hyper 

KU –ideal of H. 

(ii) If )(),(~ xxA AA λµ= is a ),
~

( ST -cubic hyper KU -ideal of H satisfying inf-sup property, 

then )(),(~ xxA AA λµ=  is a ),
~

( ST -cubic s-weak Hyper  KU -ideal of H. 

 

Proof.  Straightforward.  
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Theorem 3.15 . If )(),(~ xxA AA λµ= is a ),
~

( ST -cubic strong hyper KU-ideal of H , then 

the set { }sxtxHx AAst ≤≥∈= )(,
~

)(~,, λµµ   is a ),
~

( ST -strong hyper KU-ideal of H ,when 

]1,0[],1,0[
~

,, ∈∈Φ≠ sDtforstµ . 

 

Proof. Let )(),(~ xxA AA λµ=  be a ),
~

( ST -cubic strong hyper KU-ideal of H  and 

]1,0[],1,0[
~

,, ∈∈Φ≠ sDtforstµ  .Then there sta ,µ∈   and so sata AA ≤≥ )(,
~

)(~ λµ . By 

Proposition 3.13 (i), sataAA ≤≥≥≥ )()0(,
~

)(~)0(~ λλµµ    and so st ,0 µ∈ .  Let Hzyx ∈,,   

such that stst yandzyx ,,)( µµ ∈Φ≠∩oo , Then there exist   

satahenceandzyxa AAst ≤≥∩∈ )(,
~

)(~)( 00,0 λµµoo . By Definition 3.6 (iv), we have 

{ } { } { } tttTyaTyaTzx AAAA
zyxa

A

~~
,

~~
)(~),(~~

)(~),(~inf
~

)(~
)(

=≥≥≥
∈

µµµµµ
oo

o , and 

 

{ } { } sssSyaSyaSzx AAAA
zyxa

A ===








≤
∈

),)(,)()(,)(sup)( 0
)(

λλλλλ
oo

o . 

 

So stzx ,)( µ∈o .  It follows that st ,µ   is a strong hyper KU -ideal of H . 

 

Ending the proof. 
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Conclusion 
 

In this paper concepts ),
~

( ST -cubic theory of the ( s-weak – strong) hyper KU-ideals in 

hyper KU-algebras  are applied and the relations among them are obtained .Example is 

given in support of the definition of ),
~

( ST -cubic fuzzy ideals.  Some theorems are proved. 

And also introduced ),
~

( ST -cubic fuzzy ideal extension. The main purpose of our future 

work is to investigate the following: 

 

• Folding theory applied to some types of ),
~

( ST -cubic positive implicative hyper KU-

ideals in hyper KU-algebras 

 

• Homomorphism and quotient of ),
~

( ST -cubic fuzzy KU-hyper-ideals. 

• On implicative ),
~

( ST -cubic hyper ku-ideals of hyper KU-algebras. 

• Intuitionistic fuzziness of ),
~

( ST -cubic strong hyperKU-ideals. 

• Filter theory on ),
~

( ST -cubic hyper KU-algebras. 
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• On ),
~

( ST -cubic intuitionistic Fuzzy Implicative Hyper KU-Ideals of Hyper KU-

algebras. 

• On ),
~

( ST -cubic intuitionistic fuzzy commutative hyper KU-ideals. 

• On ),
~

( ST - interval-valued intuitionistic fuzzy Hyper KU-ideals of hyper KU- 

algebras. 

• ),( ST  Bipolar fuzzy implicative hyper KU-ideals in hyper KU-algebras. 

 

Algorithm for hyper KU-algebras 

 

Input ( :X set, o hyper operation) 

Output (“ X is a hyper KU-algebra or not”) 

Begin 

If φ=X  then go to (1.); 

End If 

If X∉0  then go to (1.); 

End If 

Stop: =false; 

1:=i ; 

While Xi ≤  and not (Stop) do 

If ii xx o∉0  then 

Stop: = true; 

End If 

1:=j  

While Xj ≤  and not (Stop) do 

If )(0 iji xyx oo∉ or  andyx ji o∈0 )(0 ij xy o∈ and ji yx ≠ ,then 

Stop: = true; 

End If 

End If 

1:=k  

While Xk ≤  and not (Stop) do 

If ))()(()(0 kikjji zxzyyx ∗∗∗∉ oo  then  

Stop: = true; 

     End If 

   End While 

 End While 

End While 

If Stop then  

(1.) Output (“ X is not hyper KU-algebra”) 

Else  

   Output (“ X is hyper KU-algebra”) 

     End If 

End. 
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ON NANO α?-SETS AND NANO Rα?-SETS
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Abstaract − In this paper, nano α?-set and nano Rα?-set are introduced and investigated.
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1 Introduction

Lellis Thivagar et al [2] introduced a nano topological space with respect to a subset
X of an universe which is defined in terms of lower approximation and upper ap-
proximation and boundary region. The classical nano topological space is based on
an equivalence relation on a set, but in some situation, equivalence relations are nor
suitable for coping with granularity, instead the classical nano topology is extend to
general binary relation based covering nano topological space.

In this paper, nano α?-set and nano Rα?-set in nano topological spaces and
investigate some of their properties.

2 Preliminaries

Throughout this paper (U, τR(X)) (or X) represent nano topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset H of a
space (U, τR(X)), Ncl(H) and Nint(H) denote the nano closure of H and the nano
interior of H respectively. We recall the following definitions which are useful in the
sequel.

Definition 2.1. [3] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .
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1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the equiva-

lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Property 2.2. [2] If (U,R) is an approximation space and X, Y ⊆ U ; then

1. LR(X) ⊆ X ⊆ UR(X);

2. LR(φ) = UR(φ) = φ and LR(U) = UR(U) = U ;

3. UR(X ∪ Y ) = UR(X) ∪ UR(Y );

4. UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y );

5. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y );

6. LR(X ∩ Y ) ⊆ LR(X) ∩ LR(Y );

7. LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ) whenever X ⊆ Y ;

8. UR(Xc) = [LR(X)]c and LR(Xc) = [UR(X)]c;

9. URUR(X) = LRUR(X) = UR(X);

10. LRLR(X) = URLR(X) = LR(X).

Definition 2.3. [2] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then by the Property 2.2,
R(X) satisfies the following axioms:

1. U and φ ∈ τR(X),

2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

That is, τR(X) is a topology on U called the nano topology on U with respect to X.
We call (U, τR(X)) as the nano topological space. The elements of τR(X) are called
as nano open sets and [τR(X)]c is called as the dual nano topology of [τR(X)].

Remark 2.4. [2] If [τR(X)] is the nano topology on U with respect to X, then the
set B = {U, φ, LR(X), BR(X)} is the basis for τR(X).
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Definition 2.5. [2] If (U, τR(X)) is a nano topological space with respect to X and if
H ⊆ U , then the nano interior of H is defined as the union of all nano open subsets
of H and it is denoted by Nint(H).

That is, Nint(H) is the largest nano open subset of H. The nano closure of H is
defined as the intersection of all nano closed sets containing H and it is denoted by
Ncl(H).

That is, Ncl(H) is the smallest nano closed set containing H.

Definition 2.6. [2] A subset H of a nano topological space (U, τR(X)) is called

1. nano semi-open if H ⊆ Ncl(Nint(H)).

2. nano regular-open if H = Nint(Ncl(H)).

3. nano α-open if H ⊆ Nint(Ncl(Nint(H))).

4. nano semi pre-open if H ⊆ Ncl(Nint(Ncl(H))).

The complements of the above mentioned sets is called their respective closed sets.

Definition 2.7. [1] A subset H of a space (U, τR(X)) is called nano t-set if

Nint(H) = Nint(Ncl(H))

3 Nano α?-sets and Nano Rα?-sets

Definition 3.1. A subset H of a space (U, τR(X)) is called;

1. an nano α?-set if Nint(Ncl(Nint(H))) = Nint(H).

2. nano Rα?-set if H = P ∩Q, where P is nano open and Q is nano α?-set.

The family of all nano α?-sets (resp. nano Rα?-sets) of a space (U, τR(X)) will be
denoted by Nα?(U, τR(X)) (resp. NRα?(U, τR(X)).

Example 3.2. Let U = {1, 2, 3} with U/R = {{1}, {2, 3}} and X = {1}. Then the
nano topology τR(X) = {φ, {1}, U}.

1. then {2} is nano α?-set.

2. then {1} is nano Rα?-set.

Proposition 3.3. For a subset H of a space (U, τR(X)), the following are equivalent:

1. H ∈ Nα?(U, τR(X)).

2. H is nano semi-pre closed.

3. Nint(H) is nano regular open.

Proof. The proof is obvious.



Journal of New Theory 18 ( 2017) 88-93 91

Proposition 3.4. In a space (U, τR(X)).

1. If H is a nano t-set, then H ∈ Nα?(U, τR(X)).

2. nano semi-open set H is a nano t-set ⇐⇒ H ∈ Nα?(U, τR(X)).

3. H is an nano α-open set and H ∈ Nα?(U, τR(X)) ⇐⇒ H is nano regular-
open.

Proof. (1) Let H be a nano t-set, then

Nint(H) = Nint(Ncl(H))

and
Nint(Ncl(Nint(H))) = Nint(Ncl(H)) = Nint(H)

Therefor H is an nano α?-set.

(2). Let H be nano semi-open and H ∈ Nα?(U, τR(X)). Since H is nano semi-
open,

Ncl(Nint(H)) = Ncl(H)

and hence
Nint(Ncl(H)) = Nint(Ncl(Nint(H))) = Nint(H)

Therefore, H is a nano t-set.

(3). Let H be an nano α-open set and H ∈ Nα?(U, τR(X)). By Proposition 3.3
and the Definition of an nano α-open set, we have

Nint(Ncl(Nint(H))) = H

and hence
Nint(Ncl(H)) = Nint(Ncl(Nint(H))) = H

The converse is obvious.

Remark 3.5. In a space (U, τR(X)), the union of two nano α?-sets but not nano
α?-set.

Example 3.6. Let U = {a, b, c, d} with U/R = {{a}, {c}, {b, d}} and X = {a, b}.
Then the nano topology τR(X) = {φ, {a}, {b, d}, {a, b, d}, U}. Then H = {a, b} and
Q = {d} is nano α?-sets. Clearly H ∪Q = {a, b, d} is but not nano α?-set.

Remark 3.7. In a space (U, τR(X)), the union of two nano α?-sets is nano α?-set.

Example 3.8. In Example 3.6, then H = {a} and Q = {b} is nano α?-sets. Clearly
H ∪Q = {a, b} is nano α?-set.

Remark 3.9. In a space (U, τR(X)), the intersection of two nano α?-sets are nano
α?-set.

Example 3.10. In Example 3.6, then H = {a, b} and Q = {b, c} is nano α?-sets.
Clearly H ∩Q = {b} is nano α?-set.
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Proposition 3.11. In a space (U, τR(X)), then Nα?(U, τR(X)) ⊆ NRα?(U, τR(X))
and τR(X) ⊆ NRα?(U, τR(X)).

Proof. Since U ∈ τR(X) ∩Nα?(U, τR(X)), the inclusions are obvious.

Example 3.12. In Example 3.2, then {1} is a nano Rα?-set but not a nano α?-set
and {2, 3} is a nano Rα?-set but not nano open.

Lemma 3.13. In a space (U, τR(X)). If either H, P is nano semi-open, then

Nint(Ncl(H ∩ P )) = Nint(Ncl(H)) ∩Nint(Ncl(P ))

Proof. For any subset H,P ⊆ U , we generally have

Nint(Ncl(H ∩ P )) ⊆ Nint(Ncl(H)) ∩Nint(Ncl(P ))

Assume that H is nano semi-open. Then we have Ncl(H) = Ncl(Nint(H)). There-
fore

Nint(Ncl(H)) ∩Nint(Ncl(P )) = Nint(Ncl(Nint(Ncl(H)) ∩Nint(Ncl(P ))))
⊆ Nint(Ncl(Ncl(H) ∩Nint(Ncl(P ))))
= Nint(Ncl(Ncl(Nint(H)) ∩Nint(Ncl(P ))))
⊆ Nint(Ncl(Nint(H) ∩Ncl(P )))
⊆ Nint(Ncl(Nint(H) ∩ P ))
⊆ Nint(Ncl(H ∩ P )

Proposition 3.14. A subset H is nano open in a space (U, τR(X)) ⇐⇒ it is a
nano α-open set and a nano Rα?-set.

Proof. It is obvious that every nano open set is a nano α-open set and a nano Rα?-
set. let H be a nano α-open set and a nano Rα?-set. Since H is a nano Rα?-set,
there exist G ∈ τR(X) and Q ∈ Nα?(U, τR(X)) such that H = G ∩Q. Since H is a
nano α-open set, by using Lemma 3.13, we have

H ⊆ Nint(Ncl(Nint(H))) = Nint(Ncl(Nint(G ∩Q)))
= Nint(Ncl(G)) ∩Nint(Ncl(Nint(Q)))
= Nint(Ncl(G)) ∩Nint(Q)

and hence
H = G ∩H

⊆ G ∩ (Nint(Ncl(G)) ∩Nint(Q))
= G ∩Nint(Q)
⊆ H

Consequently, we obtain H = G ∩Nint(H) and H is nano open.

Remark 3.15. The following example shows that the concepts of nano α-open set
and nano Rα?-set are independent of each other.

Example 3.16. In a Example 3.2,

1. then {1, 2} is nano α-open set but not nano Rα?-set.

2. then {2, 3} is nano Rα?-set but not nano α-open set.
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Abstract – In this paper, the concept of soft singletons is defined. Consequently, we introduce the soft 

principal left (right) ideals over a semigroup S. The smallest soft right (left) ideals over S generated by a soft 

set over S are studied. Some illustrative examples are given. 

 

Keywords – Soft sets, soft semigroups, soft ideals, soft singleton. 

 

 

1. Introduction and Preliminaries  
 

The concept of a soft set was first introduced by Molodtsov in [6]. Aktas and Cagman [1] 

adapted this concept to define soft groups. In [2], the authors introduced the concept of soft 

semigroups as a collection of subsemigroups of a semigroupand defined soft (left, right, 

quasi, bi) ideals of a semigroup. Shabir and Ahmad applied soft sets theory of ternary 

semigroups [7]. Jun and et al introduced concepts of soft ideals over ordered semigroups 

[5]. Properties of soft ℾ-semigroups and soft ideals over a ℾ-semigroup were studied in [3]. 

In Section 2 we introduce the definition of soft singletons andsome basic propositions. In 

Section 3 we define the soft left (right) ideal generated by a soft set over a semigroup and 

the soft ideal generated by a softset over a semigroup, and find, as special cases, those soft 

ideals generated by soft sets over monoids.  

 

Let  be a semigroup. A nonempty subset  of  is called a subsemigroup of if  , a 

left (right) ideal of  if ( ) and a two-sided ideal (or simply ideal) of  if  it is 

both a left and a right ideal of .  

 

                                                 
*
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Definition 2.1 [1]. Let  be a universal set and let  be a set of parameters. Let  

denote the power set of  and let . A pair  is called a soft set over  if  is a 

mapping  

 

Definition 2.2 [5]. Let  and  be soft sets over , then  is called a soft 

subset of , denoted by If  and  for all . 

 

Definition 2.3 [2]. Let  be an initial universe set, be the universe set of parameters and 

. 

 

a) is called a relative null soft set (with respect to the parameter set ), denoted 

by if , for all . 

b) We shall denote by   the unique soft set over with an empty parameter set 

which is called the empty soft set over . 

 

Definition 2.4 [2]. Let  be an initial universe set,  be the universe set of parameters and  

. Then   is said to be an absolute soft set over if , for all . 

 

Definition 2.3 [2]. Let  and  be two soft sets over a common universe , then 

 

1) The extended intersection of  and  denoted by , is 

defined as soft set  where  

 

 
 

2) The restricted intersection of and , denoted by , is 

defined as soft set  where and  for all 

. 

 

Definition 2.4 [2]. Let  and  be two soft sets over a common universe , then 

 

1) The extended union of  and  denoted by , is defined as 

soft set  where  

 

 
 

2) The restricted union of  and , denoted by , is defined as 

soft set  where  and  for all . 
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2. Principle Soft Ideals 
 

In the rest of this paper, S is a semigroup and  denotes the monoid generated by S. 

 

Definition 2.1. [2]. Let  and  be two soft sets over a semigroup . The 

restricted product of  and  denoted by  is defined as the soft set 

 where  and  for all . 

 

Definition 2.2. [2]. A soft set  over a semigroup  is called a soft semigroup if by 

 and  

 

It is shown that     is a soft semigroup over  if and only if  is a 

subsemigroup of  [2]. 

 

Definition 3.3. [2]. A soft set  over a semigroup  is called a soft 

left (right) ideal over , if  ( ) Where 

 is an absolute soft set over S. A soft set over  is a soft ideal if it is both a soft left 

and a soft right ideal over . 

 

It is shown that a soft set  over  is a soft ideal over  ifand only if  is an 

ideal of  [2]. 

 

Definition 2.3. Let  A soft set  over a semigroup  is called a soft singleton if 

 for all . 

 

Definition 2.3. For a soft singleton  and a soft set  over  we say  

belongs to , denoted by  if , for all . 

 

Example 2.4. Let  be the semigroup of natural numbers. Define 

 by } and 

  It is obvious that   because  for all  while 

 does not belong to  for all  

 

Proposition 2.5. Let  be a soft set over a semigroup . If  is a soft semigroup, 

then  for any  

 

Proof. Assume that   is a soft semigroup, then for all is a subsemigroup of 

. Let  because  for 

all .    □ 

 

Proposition 2.6. If  is a soft left (right) ideal over a semigroup , then 

 ( ) for all  

 

Proof. Suppose that  is a soft left (right) ideal over, then for all  is a left 

(right) ideal of . Let  for all  then  ( ) for all   

Thus ( ) for all .    □ 
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Generally, the opposite direction of the above proposition is not true. Also, it is not 

necessary that a soft set  equals union of all soft singletons belonging to it. This fact 

is depicted in the following example. 

 

Example 2.7. Let  be a semigroup defined by the following table  

 
. 1 2 3 4 5 

1 1 2 3 4 5 

2 2 2 2 2 2 

3 3 2 3 3 2 

4 4 2 4 4 2 

5 5 5 5 5 5 

 

For , define the soft set by  and . Clearly, 

 is the only soft singleton belonging to . Moreover,   but 

 is not a soft semigroup over  because  is not subsemigroup of . It is 

obvious that  is not the union of its soft singletons. Let  be a soft set over  

defined as  and . The soft singletons belonging to  are 

 and . Easily, one can show that  for all  

but  is not a soft right ideal over  because  is not an ideal of . 

 

Definition 2.8. The smallest soft right (left) ideal over  containing  is called the 

principal soft right (left) ideal generated by . The smallest soft ideal over  

containing   is called the principal soft ideal generated by . 

 

By definition,  such that . That is, 

 is a soft set over  with a constant value equals the principal right ideal of  

generated by . 

 

Lemma2.9.  is the principal soft right ideal over generated by . 

 

Proof. Clearly,  is a soft right ideal over  and . 

Let  be a soft right ideal over  containing , then  

 

 
 

hence  Then  is the principal soft right ideal over 

generated by .  □ 

 

Similarly, we get the dual result. 

 

Lemma2.9.  is the principal soft left  ideal over  generated by . 

 

Lemma2.10.  is the principal soft ideal over  generated by 

. 
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Proof. Since  then  Obviously, 

 is a soft ideal over . Suppose that  be a soft ideal over  

containing , then 

 

 
 

thus  Then  is the principal soft 

ideal over  generated by .  □ 

 

Lemma 2.12. (Principle soft left Ideal Lemma). Let  then the following statements 

are equivalent; 

 

1)  

2) , 

3) or   for some . 

 

Proof. Straightforward. 

 

Lemma 2.13. (Principle Soft Right Ideal Lemma). Let  then the following 

statements are equivalent; 

 

1)  

2) , 

3)  or   for some . 

 

Proof. Straightforward. 

 

Theorem  2.14. Let  be relations on a semigroup  defined by  

 

1)  if and only if  

2)  if and only if  

 

Then  [  is aright [left] congruence relation. 

 

Proof.  because  It is clear that  and are symmetric 

and transitive relations. Then  and  are equivalence relations. To show that  [  is a 

right [left] congruence, assume ] and  then 

 

 

 

that is,  

 

. 

 

Hence  
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This implies that  ]. Thus   [   is a right [left] congruence.  □ 

 

Corollary 2.15. For  we have  

 

• 
⇔

 such that  and  

• 
⇔

 such that  and  

 

Proof. Let 
⇔

if  
⇔

  

and 
⇔

  and   for some  

⇔

 and  by lemma 3.7. For , the 

result comes directly by a similar argument.□ 

 

Definition 2.16. We define the equivalence relation  . For   we define 

 to be the -class of ;  to be the -class of  and  is the -class of . 

 

Example 2.17. Let , then 

 

⇔ ⇔ ⇔

 

 

Thus  and then  for all  

 

 

3. Soft Ideals Generated by Soft Sets 

 
Authors in [2], showed that  for any soft ideals  and  over  is 

a soft ideal. Hence the restricted intersection of all soft ideals over  containing the soft set 

 is the soft ideal over  generated by . 

 

Definition 3.1. The smallest soft right (left) ideal over  containing  is called the  soft 

right (left) ideal generated by  denoted by . The smallest soft ideal 

over  containing   is called the soft ideal generated by  denoted by  

 

Theorem 3.2.Let  be a soft set over , then 

 

 
 

Proof. Let  the family of all soft left ideals over  containing , then 

 is a left ideal of  for all  Since  for each  

 then  

 

 

As a result, . We notice that  is a soft left 

ideal over  because  is the left ideal of  generated by  for all  This 

follows that we have  By definition, we get  

 

 

 

Similarly, we prove the following result. 
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Theorem 3.3.Let  be a soft set over , then 

 

 
 

Theorem 3.4.Let  be a soft set over , then 

 

 
 

Proof. Since for all  then  The soft set 

 is a soft left ideal over  .  Indeed, by definition  

where  

 

 
 

 

Thus  for all  As a result,  is a soft left ideal over . Let 

 be a soft left ideal over  containing , then  

 

 
 

Hence  By definition, we conclude that . This ends the 

proof.  □ 

 

Similarly, we prove the following result. 

 

Theorem 3.5. Let  be a soft set over , then 

 

 
 

Example 3.6.Consider the non-commutative semigroup  

 

. 1            a  b c 

1 1 a b c 

a a a a a 

b b b b b 

c c b a c 

 

For ,  define a soft set  over by . By definition, 

 such that . Then  
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. 

 

That is,   is a soft left ideal over  containing . Let 

be a soft left ideal over  containing . Then  or 

. For all cases, . Therefore,  is the soft left ideal 

over  containing . 

 

Let  be a soft set over defined by . By definition, 

 such that . Then  

 

. 

 

That is,   is a soft right ideal over  containing . 

Let  be a soft right ideal over containing . Then 

 is the only right ideal of  that contains . Thus 

. Therefore,  is the soft right ideal over containing .  □ 

 

Theorem 3.7. Let  be a soft set over , then 

 

 
 

Proof. Let   the family of all soft ideals over  containing , then  

is an ideal of  for all  By the same way as in theorem, we  show that  

 

, 

 
and 

 
 

for each  . Hence . Because 

 

 
 

is the ideal of  generated by  for all . Thus we have . 

By definition, we get □ 

 

Theorem 3.8. Let  be a soft set over , then 

 

 
 

Proof. By definition,  is a soft right ideal over . Also   is a soft left 

ideal over . Indeed, we have 
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So  is a soft ideal over  containing . Let  be a soft ideal over  

containing , then  and . This means  is 

a soft ideal over  generated by , hence  . Similarly, we can 

show that . This completes the proof.  □ 
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