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Generalized Cubic Aggregation Operators with Application in Decision
Making Problem

Muhammad Shakeel'” <shakeel maths @hu.edu.pk>
Saleem Abdullah? < saleemabdullah81@yahoo.com>
Aliya Fahmi® <aliyafahmi@gmail.com>

'Hazara University, Mathematics Department, Mansehera, Kpk, Pakistan.
ZAbdul Wali Khan University, Mathematics Department, Mardan, Pakistan.

Abstract - There are many aggregation operators and their applications have been developed up to date, but
in this paper we introduced the idea of generalized aggregation operator. The main idea of this paper is to
study the generalized aggregation operators with cubic numbers. In this paper, we introduced three types of

cubic aggregation operators called generalized cubic weighted averaging (GCWA) operator, generalized

cubic ordered weighted averaging (GCOWA) operator and generalized cubic hybrid averaging (GCHA)

operator. We extend the theory of cubic numbers to generalized ordered weighted averaging operators that are
characterized by interval membership and exact membership. In last section we provide an application of
these aggregation operators to multiple attribute group decision making problem.

Keywords - Cubic sets, GCWA Operator, GCOWA Operator, GCHA operator.

1. Introduction

In 1965, Zadeh generalized the classical set theory to fuzzy set theory. Fuzzy set (Fs) has
been studied in many fields such that decision making theory, information science, medical
diagnosis, pattern recognition, fuzzy algebra and fuzzy topology. Fuzzy set has not
explained every concept due to not available of non- membership. In [2] . Atanassov
introduced the concept of intuitionistic fuzzy set (IFs) , Intuitionistic fuzzy set is
generalized structure of fuzzy set. Intuitionistic fuzzy set characterized by membership and
non-membership of an element in a set. The application of intuitionistic fuzzy set has been
studied in many fields, logic program, algebra, topology, medical diagnosis and decision
making theory. IFS aggregation operator has been studied [3,4,5,6,7] i.e., intuitionistic
fuzzy ordered weighted (IFOW) operator, intuitionistic fuzzy ordered weighted

“Corresponding Author.
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geometric (IFOWG) operator, intuitionistic fuzzy hybrid averaging (IFHA) operator.
The intuitionistic fuzzy set does not explain the problem when arise uncertainty. Therefore
Jun et al defined the new concept so called cubic set (CS) . In [8] Jun introduced a new
theory which is called cubic (CS) set theory. They introduced many concepts of cubic set

cubic to deal with uncertainty problem. Cubic set explain all the satisfied, unsatisfied and
uncertain information, while fuzzy and intuitionistic fuzzy set fail to explain these terms. In
classical fuzzy set, to explain i.e., the experts degree of certainty in various statement, the

value of interval [0,1] is used. It is often more difficult for a decision maker's to exactly
quantify his certainty. Therefore instead of real number, it is more adequate to explain this

degree of certainty by an interval or even by a fuzzy set. In case of cubic set (CS) the

membership is represented by interval-valued fuzzy set and non-membership in fuzzy set.
Interval - valued fuzzy set has applied to real life application i.e., Sambuc applied it to
medical diagnosis in thyroidian pathology. Kohout also applied it to medical, in a system
CLINAID [9]. Turlesen [10,11] used interval-valued logic to preference modeling. Cubic
set theory applied many areas in BCK/BCI algebra and other structures [12,13,14].

The weighted aggregation (WA) operator and ordered weighted aggregation (OWA)

operator are rich area for research and the generalized aggregation operators are new class
of aggregation operator. Thus an advantage of the above mentioned aggregation operators.
In this paper, we introduced three types of cubic aggregation operators so-called
generalized cubic weighted averaging (GCWA) operator, generalized cubic ordered

weighted averaging (GCOWA) operator and generalized cubic hybrid averaging
(GCHA) operator.

This paper is organized as follows: In section 2, we give some basic definitions and laws
of cubic numbers which will be used in our later sections. In section 3, we develop the

concept of generalized cubic weighted averaging (GCWA) operator, generalized cubic
ordered weighted averaging (GCOWA) operator and generalized cubic hybrid averaging

(GCHA) operator. In section 4, we provide an applications of these aggregation

operators to multi-criteria decision making. For this purpose we develop a general
algorithm for these cubic aggregation operators. In section 5, numerical an application to
decision making problems. In section 6, we discuss and compare the proposed operator

with GIFA operator. Concluding remarks are made in section 7 .

2. Preliminaries

Atanassov generalized the concept of fuzzy set (FS) and defined the concept of IFS as
follows [2] .Let X beafixedset. An IFS A in X isan object having the form:

A={{x 1, (x),v, () x e X}, O

where the functions x, : X >[01]] and v : X —[0,1] define the degree of

membership and the degree of non-membership of the element xeX to A,
respectively, and for every x e X,

0< yA(X)+VA (x) <1. (2
Foreach IFS A in X, if
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7o (X) =1— g1, (X) —v,(x), forall x e X. (3)

Then, ma(X) is called the degree of indeterminacy of X to A.
Definition 2.1 [8] Let X be a fixed non empty set. A cubic set is an object of the form:

C ={(a,A(@),A(a)) : ae X},

where A is an interval-valued fuzzy set (IVFS) and A isafuzzysetin X. A cubic
set C= <a, A(a),ﬂ(a)) is simply denoted by C= <f5\, /I>, the collection of cubic sets is
denoted by C(X) .

@ if A€ Z(x) forall xe X soitis called interval cubic set .

2 If 1¢ ;&(x) forall xe X soitis called external cubic set .

(3) If AeA(X) or 1eA(x) itscalled cubic set forall xe X.

Definition 2.2 [8] Let A= (A,2) and B = (B, 1) aretwo cubic setsin X , such that,
(1) (Equality) A=B<A=B and A=y,

(2) (P—order) Ac,B< AcB and A<y,

(3) (R—order) Ac,B< AcB and A

Definition 2.3 [8] The complement of ,&:<A, }L> is defined to be the cubic set as
follows:

A ={{x, A°(x),1- A(x)}| xe X}

Cubic Numbers Score and Accuracy Function

In this section, we define some operational laws of cubic numbers. We define score
function and accuracy function of a cubic set which will be used in our later sections.

Definition 2.4 Let C= (Ac,me), C, = <Aq,77q>, and C, = <Ac2,7702> be any

three cubic values (CV) . Then, the following operational laws hold:

)

= & /| 8gtae—ag ac,,
CO®C,=(| ™ ™ T, ),
a, +a, —a a,

~

1 ®C2 = <|:é'cl écz, agl a;z }1 77(;1 +77c2 _770177c2>'
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()
&’:’:<{1—(1—éc)5 ,(1—(1—a§)5}, nj>, 5>0,
(4)
c’ =<{(éc)5 : (ac*)‘s}l—(l—nc)5>, 5>0.

Example 25 Let C,=([05,06}04), C,=([04,05]07), C,=([0.6,08]03), be
any three cubic numbers, and let 6 = 2. Then, we verify the above results as follows:

@)C, ®C,
0.4+0.6—0.4x0.6,
=(|05+0.8-0.5%0.8 | ),
,0.3x0.7

([1.0-0.24,1.3-0.40],0.21),
= ([0.76-0.90],0.21).

([0.4x0.6,0.5%0.8],0.7 +0.3-0.7x0.3)
([0.24,0.40] 1.0 - 0.21)
([0.24-0.40],0.79).

(-(-05,1-@-06) ] (0.4))
(- 05 .1-(0.47 }0.16)
{[0.75-0.84]0.16).

<[(0-5)2 , (0.6)2 11_ (1_ 0.4)2>
([0.25,0.36}1-(0.6) )
= ([0.25-0.36],0.64).

Theorem 2.6 Let C = <Ac,nc>, 61= <Acl,7701>, and C, = <Acz,ncz>, be any

three cubic values. Then, the following operational laws hold:
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C,=C,®C,,C,=C,®C,,C,=%,C,=C*,5>0
then all 6{ (1=1,2,3,4) are cubic values.
Theorem 2.7 Let C = <Ac,nc>, 61= <Acl,7701>, 52= <Acz,ncz> and C~3:

<Ac3,7763> be any four (CVs), and &, o,, o, areany sclar numbers grater then zero

such that,
@)
5C®5,C =(5,+6,)C,
(2)
(C,®C,)®C,=C, ®(C, ®C,),
(3)

(©")" = (©€)**.

Example 2.8 Let
C = ([0.3,0.4],0.5),C, =([0.4,0.6],0.3),
C, =([05,0.7],0.8),C, = ([0.6,0.3],0.4)

be any four cubic numbers, and let 8, = 2 and oJ,= 3. Then, we verify the above
results as follows;

1) 5C@®5,C=(5,+5,)C . In this case first we take 5,C@5,C and then we take
(0, + 52)5 . We apply cubic laws to verify the result such that,

5€ = (1~ (-0.3F,1-(1-0.4F | (0.5F)
= (1-0.49,1- 084]025>
= ([0.51,0.64] 0. 25) and

5,C = (-@-03),1-@-04)} (05))
=([1-0.343,1-0. 216] 0.125)

= ([0.675,0.784],0.125).

By using 515 and 526 such that,
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0.51+0.657 —O.51><0.657,} >

(6,+6,)C = (| 0.64+0.784—0.64x0.784
0.25x0.125

= ([0.8319-0.9224],0.0312).

Similarly we can find (5, +5,)C ifweuse §=5 such that,
& = (fL-(1-03F,1-(1-0.4F | (0.5F)
= ([1-0.1680,1-0.0776},0.0312)
= ([0.8319,0.9224],0.0312).
(2) (C,®C,) ® C,= C,®C, ® C,). Inthis case first we take (C,®C,)
® Cs and then we take 61 @(62 S 53) , we apply cubic laws to verify the result

such that,
Let

([0.4,0.6],0.3),
([0.5,0.7],0.9).

([0.4,0.6],0.5)
([0.6,0.7}0.4)

C .C,
C .C

2

Then,

~ 0.4+0.6-0.4x%0.6,
C,)= ,0.3x0.7),
0.5+0.8-0.5%0.8

C, ®
([1.0-0.24,1.3-0.40} 0.22),
([0.76,0.90] 0.22)
(C,®C,)®C, = ([0.76,0.90],0.21) & ([0.5,0.7],0.9)
<
<

0.90+0.7-0.90x 0.7
[1.26-0.38,1.6 - 0.63],0.18)
= ([0.88,0.97],0.18).

0.76 +0.5-0.76x 0.5,
= ,0.21x0.9

Similarly we find C,®(C, ® C,)
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~ = <06+0.5—0.6><o.51 >
(C,®C,) = ,0.4x0.9),
0.7+0.7-0.7x0.7
= ([1.1-0.3,1.4-0.49],0.36),
= ([0.80,0.91],0.36)
C,®(C,®C,) = ([0.4,0.6],0.3) ®([0.80,0.91}, 0.36)

0 4+0.80-0.4x0.80,
,0.3x0.36
0 6+0.91-0.6x0.91

(1.2-0.32,1.51-0.54] 0.18)
= ([0.88,0.97],0.18).

(3) ((C)*)% =(C)»* . Let C={([0.3,0.4,0.6) be any cubic number and let &, =
0.3 and §,= 0.2 in this case first we find ((C)*)% thenwe find C* ® such that,
(lo3r*. (0.4 ]1-@-0.6)7)
([0.69,0.83],0.24)
) = ([0.69y (0.83f 2|1~ (1-0.24))
<[0 93,0.94],0.0.05) and

(l03r™ 0.4y J1-@-0.6)™)

= ([0.93,0.94],0.0.05).

Based on the cubic value (CVs) sets . We introduced a score function 5(5) such that,

Let C = <Ac,7yc> be an cubic value, where

A. €[0,1], n, €[0,1]. (4)
The score of C can be evaluated by the score function s shown as follows:

-n, a+a' -p
sC— £ = , 5
©) 3 3 ®)

where 3(6) e[-11]. The function s is used to measure the score of a (CV) . Now an

accuracy function to evaluate the degree of accuracy of the cubic value C-= <Ac,7]c> as

follows;

1+Ac-7n, l+a+a’ -p

h(C) = ;

(6)

where h(C) <[0,1].
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Definition 2.9 Let C = <Ac,7]c> and D= <AD,77D> be any two cubic set such that,

5(5): Ac—1, _at 28" —n
3 3

8(6): Ab—-1, _at 28" —n

3 3

be the scores function of C and D, respectively, and be the accuracy degrees of C and
D , respectively, then

Remarks:

1. 1f SC) <s(D), then C <D,
2. 1f S(C) =s(D), then,

i. If h(C)=h(D), then C =D,

i. |If h(5)<h(5), then C issmaller than D , denoted by C<D.

3. The GCWA, GCOWA, And GCHA Operators

Definition 3.1 [15] A generalized weighted averaging (GWA) operator of dimension n

is a mapping GWA : (R*)" - R" (Rdenotestheset of reahumbe) which has the
following form:

GWA(al,aZ,...,an):(Zn:wjaf]ﬁ (7)

where § >0, and w=(w,Ww,,.,w )" be the weighting vector of the arguments
a;(j=12..,n) with j>0, j=12..,n and X w;=1 R" is the set of all non-

negative real numbers. Another aggregation operator called the GOWA operators is the
generalization of the OWA operator.

Definition 3.2 [15] A generalized ordered weighted averaging (GOWA) operator of
dimension N isamapping GOWA : R" — R which has the following form:

1
5

GOWA(ai,az,...,an):EZn:ijfJ (8)

where §>0, and w=(w,W,,.,w,)" be the weighting vector of (a,,a,,..,a,),
w; >0, j=12..n, and X} ,w, =1 b, is jth largestof a;, 1=[01].
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The GCWA Operator

In this section, we define  GCWA operator and study different results relevant to GCWA
operator. For our convenience, let C denotes all of cubic set.

Definition 3.3 Let C, :<ch,77€]> (j=12,..,n) be a collection of cubic value set and
GCWA : C" - C, if

GCWA, (6..C,,,....5,) = (w,c’ ®w,cl ®...ow,c’)’, 9)
then the function GCWA is called a GCWA operator, where &6>0, and

w=(W,,W,,...,w, )" is the weighting vector associated with the GCWA operator, with

w; >0, j=12..,n, and Z?lej =1. By using the operation laws of cubic numbers we
will prove the following theorems.

~

Theorem 3.4 Let C, :<ch ,77cj> (j=12,..,n) be a collection of cubic value set.

Then, their aggregated value by using the GCWA operator is also cubic value such that,
GCWA, (c,,c,,,....C,)

1 S
5

e [ feer |

- | (10)

1

1—(1—f[(1—(1—m,.)5)w’)

j=1

where 6>0, and w=(w,Ww,,.,w,)" be the weighting vector associated with the
- n —

GCWA operator, with Wj 20, j=1,2,...,n, and 2 Wi =1

Proof The first result follows quickly from Definition 6 and Theorem 1 . In the
following, we first prove

w,c, ®w,co ®...&w,c’

n

{@-fﬁa-ig“}@-fja-qp“ﬂ,
(Ha—(l—mj)b‘)“}

By using mathematically induction on n,

1)

1. For n=2. Aswe know that

C’ = <{(éc,)5,(a;j)5}1—<1—ncj)5>.

Then
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C; = <{(5c1)5,(aél)d},l—(l—ncl)5>,

CJ= <{(écz)5,(agz)"}1—(1—77c2)5>,

Therefore

W,C) @ w,C)

[[1—13[(1— &) j,(l—f[(l— a;’)" ]]
(H(l—(l—nc,)ﬁ)"”]

j=L

2. IfEqg. 11 holds for n=k, then

wW,e, @ W, @...&wc)

{(1—1&[(1— )" ],(1—f[(1—agj)w’ ﬂ
(H(l—(l—mi)ﬁ)"”]

when n=k+1, by the operational laws 1, 2 and 4 such that,

5 5 5
w,c; ®w,c; ©..®w, ,C.,

Hl—f[a—é; )" j,(l—ﬁa—agj)”” ﬂ

[H(l—a—nc,.)ﬁ)“j

(1_ (1_ é'ckﬂ )Wk+l )
S)

L—@—ay )™

Ci41

@-Q@=n, )" )™

l:(l—ﬁ(l— é:j )" J,{l—ﬁ(l—agf)wj H
(ﬁ(l—(l—nc,)(’)“}

i.e. Eq. 11 holds for n=k+1 . Thus, Eq. 11 holds forall n such that,
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Example 3.5 Let
C, =([0.3,0.4}0.5),C, =([0.2,0.5],0.3),C, = ([0.4,0.6],0.3)

be any three cubic numbers, and w=(0.2,0.3,0.5" be weighting vector of

C;(j=123), and 5=2. Then we have calculated the GCWA by applying E.q 10
such that,

GCWA, (C,,C,,C,) = ([0.3342,0.5260],0.3297).

On the basis of Theorem 2, we have the following properties of the GCWA operators.

Theorem 3.6 Let éj :<ch ,770J> (j=12,..,n) be a collection of cubic value set

where &5>0, and w=(w,W,,.,w,)" is the weighting vector associated with the
GCWA operator, with w; >0, j=1,2..,n, and ¥j,w, =1. Ifall C;(j=12,..,n) are
equal suchthat C; =C, forall j, then GCWA, (C,C,.....C )=C.
Proof By Theorem 2, we have
GCWA, (C,,C,....C,) = (W,C} ®w,C. ®..®w,C’)’
= (WC’ ®W,C’®...ow,C’)’
= (W, +W, +...+W,)C?)’
- (C%)" =C.
Theorem 3.7 Let 5]. = <ch ’77c,> (j=12,..,n) be a collection of cubic value set where

5>0, and w=(w,W,,.,w,)" be the weighting vector associated with the GCWA
operator with w; >0, j=12,..,n, and Xi,w; =1,

Let
C = (mjin(ch ), m;_ch(UCj )jy C'= (mja'X(ACj )! mjin (7701- )J
Then,

C <GCWA,(C,,C,,..,C,)<C".

Proof Since
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min(Ac,) < (A, ) < max (A, ) and
J J

min(z, ) < 7, <max(y, ),V j,. Then,
j J J ] J

= min(a,,) <ac, <max(ac,)and
J J
min(a; ) <a; <max(a; )
J J
n

I1

=

andH(l—agj“)W' > H(l—(m?x(agj)) j =1—(mjax(a;j)‘5
j=1 j=1

(l_éij)wj 2 ll[(l—(m?x(é;)J | :1—(m?x(écj)5

S5

< max(ac, ) and
]

@—fja—i)my

fl—H(l—a;j‘)Wj] < max(a;)
j=1

n s

1-T]a-ac

_(
[

< max(ac
]

Similarly

n

[L— a—é;)

i

n

j-1
n
1-11
j=1
5

a+¢)‘

i .
] CJ

S
5

|

1
5

(-a;

> min(a,)
J

1

5
"]
j )
1
5
o‘)Wj
i

5

d 1_ 1_ +5\Wj > +5
and| 1-[ [ -2, J max(a;)

=

|

n

1-T]a-a

j=1

(kf{(l—aﬁ)“}

S5

> max (ac,, a;’
J

(13)

1

ot

1
5

5

(14)
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n n

[16-a-n,)")" < TT(1-@-max(a, )7 )

= =t

=1- (1— m?x(ﬂc,. ))5

{1-1?(1— (L-7,)")" ] = (1— max )T

[1—f[(1—(1—ncj)5)w‘} > 1-max(r)

1

1-|1- (1—(1—770.)5)%] < max (7, ) (15)
i j j j
Similarly

1
5

1—(1—1ﬁ(1—(1—mj)5)““] >min(,). (6

Let GCWAW (c,,C,,,..., cn)=6=<ch,77Cj>, where <Ac1770>=<{5c,a§}77c>- Then,

a+2at—n
3

JORR <max(A,)-min(z, ) =S(C")

S(€)= 22" > min(A, ) - max(n, ) = S(©),

If S(C~:)£S(C~:+) and S(E)ZS(C), then by Definition 5, we have

C <GCWA,(C,,C,,..,.C,)<C". 17)

S(C)=S(C").ieA —n, =max(A,)-min(y, ).
Then, by Eq. 13 and Eq. 16 such that,
A =max(A, ), 7. =min (i, ).

Hence,

h(é): 1+ A -1, :1+a+2a -n
4 4
= max(A; ) +min(y. ) =h(C").
i ! i )
Then, by Definition 5, we have

GCWA,(C,.C,,...C.)=C*.  (18)

13



Journal of New Theory 21 (2018) 1-30 14

If S(C)=S(C) such that,

A =1 =min(A, ) —max (7, ).
Then by Eq. 14 and Eq. 15 we have

A =min(A, ), 7. =max (i, ).

Therefore,

h(C) = 1+AZ—77C :1+é+ja* -7
h(C) = min(A, ) +max(z,,) = h(C).

Thus, from Definition 5, we have

GCWA,(C,,C,....C.)=C (19)
From Egs. 17-19, Eg. 12, always hold.

Theorem 3.8 Let 5J.=<ch,ncj> (j=12,...,n) and 5;‘=<ch,770,_(> (j=12,...,n)

be a collection of any two cubic value setand w=(w,,w,,...,w.)" be the weighting vector
related to the GCWA operator, with w; >0, j=12..,n, and >j,w; =1 and o

>0. 1f A, < Agand 5, >7,, forall ], suchthat,

GCWA, (c,,C,,,...,C,) <GCWA, (c,,C;,,..,C,)- (20)

Proof As we know that

-l i)
CT = <ACT’UCT> = <|:acjf , a;j:l,ﬂcj>

Therefor A, < Ag and 7, 27, forall j,such that,
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{ll[(l—a;)"“,f!(1-a;;)““}

{H(l ac;) ,]_l[(l—a;]f)w‘}
H(l a,) 1- H(l a; )‘}
{1 ﬁ(l ac)” 1- H(l ac)i
|

{1 ﬁ(l ac,) ’1_11[(1_3(;)'

j=1

<{1 lll(l—aC 1- H(l aci)]

and

[Ja-6-n))" 2 []a-a-n,)"

(1_1_1[(1‘(1"7%)5)Wj ] ) (1_1_11(1_(1—770;)5)ij
1—(1—f[(1—(1—ncj)5)Wj] 21—(1—f[(1—(1—nc,;)5)w,}
Hence
{1‘11[(1—51;)“ ] +(1—f[(1—agf)"” ]
{1@]1[(1(1%,)‘5)%] }
3

S
JJ

[ H(l(ln))w .

3

(1‘11[(1—5;)} ( H(l ar

j,

(S

Let

Sl

15
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C =GCWA,(c,,C,,,...C,),C* =GCWA, (C;,C;,,....C.).

Then byEqg. 21, we have 8(5)£S(6*). If 8(5)<S(6*), then by Definition
5, we have

GCWA, (E,,S,......,), <GCWA, (& .} ,....T) (22)If S(C)=S(C"), such that,

fl—f[a—ai,fj I{l—f{a—as:)“]

1
B

s

3

1 1

[1— (1—éc;)”“J +(1—H(1—a;f)w’]
j=1 j=1 !

ffeean |

3

1
5

Since A, < Aq and 7, 27, forall j,suchthat,

{(1—ﬁ(1—az,)w’ ja,(l—f[(l—agf)wj j]
- Hl‘ﬁ(l—azj)m jﬁ’(l‘f[(l—ac?)w" j]

1- <l—H(1—(1—nc,)5)W’>
j=1

=1- <1H(1<1nc;)5>w'> :
j=1

and

=

S

Hence

16
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1+[1-]1[(1—é;1)wj J +(1—f[(1— agj)wj]
= j=1

- 1—{1—1_”1(1—(1—776,)5)“}

4

1{1—11[(1—5;)””} +(1—f[(1— 52»;)“”’]‘

h(C) =

it =t
1
5

- 1—(1—]_1[(1—(1—77@)"‘)”“"]

4

h(C") =

By Definition 5, such that,
GCWA, (c,,C,,,...,C,) =GCWA, (¢,",C, ,,....C.).  (23)
From Eq. 22 and Eg. 23, we know that Eq. 20 always holds.

Now we have some special cases which obtained by using choices of the parameters w
and J.

Theorem 3.9 Let C, :<Acj ,ncj> (j=212,..,n) be a collection of cubic value set
5>0, and w=(w,Ww,,.,w )" be the weighting vector related to the GCWA operator,
with w, >0 (j=12..,n), and >j,w;=1.
1. If 6=1, thenthe GCWA operator (9) isreduced to the following:

CWA, (C,,C,,,...,C,) =W, ®W,C, ®...&W,.C,,
which is called cubic weighted average operator.
2. 6 —0, thenthe GCWA operator (9) is reduced to the following:

CWG, (¢,,C,,,....C,) =" ®C)* ®..®c," ,

which is called cubic weighted geometric operator.
3. & — +oo, thenthe GCWA operator (9) is reduced to the following:

CMAX,, (§,,C,,,C,) =max(C)),
J

which is called cubic maximum operator.

4. 1f w=(,%,.,4)" and 5=1 thenthe GCWA operator (9) is reduced to the
following:

CAWE1, &2,y E0) = L1 B ¢ ®...@CH),
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which is called cubic average operator.

5. If w=(,%,.,2)" and 50, thenthe GCWA operator (9) is reduced to the
following:
CG,(c,,C,,,...C,)=(c,®c, ®..®¢, ),

which is called cubic geometric operator.
The GCOWA Operator

In this section we shall define  GCOWA operator and study different results relevant to
GCOWA operator.

Definition 3.10 Let Ej = <ch ,770]_> (j=12,...,n) be a collection of cubic value set

and GCOWA : C" —»C, if

GCOWA, (8,8, &) = (WiC], ®W,C, @...@W,c: ), (24)

9(2)
where §>0, and w=(w,Ww,,.,w,)" be the weighting vector such that w; >0,
ji=12..n, and Y|, w, =1, C isthe jth largest of Ej, then the function GCOWA
is calleda GCOWA operator.
The GCOWA operator has some properties similar to those of the GCWA operator.

Theorem 3.11 Let éj :<ch "7c1> (j=L12,..,n) be a collection of cubic value set

then their aggregated value by using the GCOWA operator is also a cubic value such that,
GCOWA, (¢,,C,,,..,C,)

1
5 <

(1—11[(1—&%(”)“J ,[1—]1[(1—5;”“,)“] |

i-1 j=L

= . (25)

1

1_£1_1£[(1_ (1_77%(1))5)Wj J

j=1
where 6>0, and w=(w,W,,..,w )" be weighting vector associated with the GCOWA

operator, with w; >0, j=12..,n and Xj,w,; =1 C, isthe jth largestof C,.

Example 3.12 Let
C, = ([0.2,0.4]0.3), C, =([0.3,0.4]0.5), C, =([0.3,0.6,0.2),
C, = ([0.4,0.6],0.6), and C, = ([0.6,0.8],0.4),

be any five cubic numbers and w=(0.2,0.3,0.12,0.16,0.22)" be the weighting vector of
Ej (j=12,3,4,5). Let 6=2. We calculate the scores of éj (J=21,2,3,4,5).
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S(C,) = 0.2333, S(C,) =0.20, S(C,) =0.4333,
S(C,)=10.3333, and S(C.) =0.60

Since
S(C,)>S(C,)>S(C,) >S(C,) >S(C,).

then

C,, =([06,08]0.4), C, =([0.306]02),
C,, =([0.4,06]06), C, =([0.2,0.4]03),

C,. =([0.3,0.4]05).

9(s)

and thus, by Eq. 25, we have
GCOWA, (C,,C,,C,,C,,C,) =([0.3910,0.6063],0.3332).

Theorem 3.13 Let 5]. = <ch e, > (j=12,..,n) be acollection of cubic value set and

w=(W,,W,,...,w,)" be the weighting vector related to the G COW operator, with
w; >0, j=12..,n, and Xj,w; =1 Ifall Ej(jzl,z,...,n) are equal, i.e. 6j =C,

forall j, then GCOWA,(C,,C,.....C,)=C.

Theorem 3.14 Let éj = <ch e, > (j=12,..,n) be acollection of cubic value set and

w=(W,W,,..,w,)" be the weighting vector related to the GCOWA operator, with
w; >0, j=12..,n, and 2iaWw; =1,
Let

€ = (min(A, ), max(y, )), C* = (max(As,), min(, ).

Then,
C <GCOWA,(¢,,C,,,..,C,)<C".

Theorem 3.15 Let Cj=<ch,ncj> (j=12,...,n) and C}‘=<Acg,77q> (j=12,...,n)

be a collection of two cubic value set and w=(w,,w,,...,w,)" be the weighting vector
related to the GCWA  operator, with w; >0, j=12..n, and Yj,w, =1 if

A, < Ag and 7, >7., forall j,such that,

~% ~x

GCOWA, (,,&,,....C,) <GCOWA, (& ,E; ,,...C.).
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- _ ) ~ /- )
Theorem 3.16 Let C, =<ch,770]_> (j=12,...,n) and C; =<Ac/j,nc,j> (j=12,...,n)

be a collection of two cubic value set , 6 >0 and w=(w,w,,..,w,)" be the weighting
vector related to the GCOWA operator, with w; >0,  j=12..,n, and >j,w;=1
such that,

GCOWA, (¢,,G,,,...C,) =GCOWA, (¢/,c,,....c.). (26)

/
n

where (c/,c},,..,c.)" isany permutation of (C,,C,,,....C,)".

1

GCOWA, (G,,C,,,....C,) = (chj(l) DW,Cp D...0OW,C, )

n~a(n)

1
5

GCOWA, (C!,Chy e €1) = (W (CL ) )? @ W, (CL)” @ ®W, (L))’

Since (c],ChypensCl)T is any permutation of (C,,Cpyseen )T Then,
Coli) :cg(j), ]=12,...,n. From E.q 26, we now take a look at some the GCOWA

operator has commutativity property that we desire. It is worth noting that the GCWA
operator does not have this property. We now take a look at some special cases obtained by

using different choices of the parameter W and ©.

Theorem 3.17 Let éj = <ch ,77C1> (j=12,..,n) be a collection of cubic value set ,

6>0 and w=(w,W,,.,w )" be the weighted vector related to the GCOWA operator,
with w; >0 (j=12..,n), Xi4w; =1 then

1. If 6§=1, thenthe GCOWA operator (24) is reduced to the following:
COWAN (61,62,,...,6n) =W1Co_(1) ®W2CO'(2)) @...@Wnco_(n),

which is called cubic ordered weighted average operator.
2. 6—0, thenthe GCOWA operator (24) is reduced to the following:

COWG,, (€;,C,, .-, C,) =Coiyy ®Cotyy ®...QCH,

which is called cubic ordered weighted geometric operator.
3. & —+oo, thenthe GCOWA operator (24) is reduced to the following:

CMAX,, (€,,&,,-+E,) =max(C,),
J

which is called cubic maximum operator.

4. 1f w=(%,1,.,1)" and 5=1, thenthe GCOWA operator (24) is reduced to the
following:

CA,(c,C,,,...,C,) =%(c1 @c,d..dc,),

which is calld cubic averaging operator.
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5 If w=(,2,...,4)" and 5 —0, thenthe GCOWA operator (24) is reduced to the
following:
CG, (€, ,Cy) = (¢, ®C, ®...®C, )",

which is called cubic geometric operator.
The GCHA Operator

Consider that the GCWA operator weights only the cubic value set whereas the GCOWA
operator weights only the ordered positions of the CVs instead of the weighting the cubic
value set themselves. To overcome this limitation, motivated by the idea of combining the
WA and OWA operators, in what follows, we developed a generalized cubic hybrid

aggregation (GCHA) operator, which weights both the given cubic value and its ordered
position.

Definition 3.18 GCHA operator of dimension n is a mapping GCHA : C" —»C,
which has an associated vector w=(w,w,,..,w,)" , with w; >0, j=12..,n, and
>i4  w; =1 such that,

GCHA,, (&G, E)) = W(c,, ) ®wy(c, )’ ®..0w,(c, )' .  (27)

where 6>0, Cors) is the jth largest of the weighted CVs c;(c; =nwc;,
j=@2,..,n), and w=(W,Ww,,.,w )" isthe weighting vector of ¢,( 1=L2..n)
with w; >0, and >f, Wj= 1, and n is balancing coefficient, which plays a role of

balance if the vector w=(w,,w,,..,w,)" approaches (i,%,..,2)". Then, the vector
(nw,C,,NW,C, ,...,nw,c,)"  approaches (c;,c,,....c,)". Let C. =<Ac~cm,77%m>, then,
similar to Theorem 3, such that,

GCHA, ,(6;,Cy1-C,)

1 1
5

[1—1‘[(1—5%))““] ,[1—H(1—a;jm)w"] ,
=1 j=1

_ (28)
1—[1—1_1[(1—(1—77%))5)“”’)

and the aggregated value derived by using the GCHA operator is also CVs . Especially,
if 6=1, then (28) isreduced to the following form:

S
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CHA, ,(c,c,,....C,)

Hl—ﬁ(l—é;m)w‘} ,[1—11[(1—5;(,))”” ]]

=l j=1
{H () J

which is called cubic hybrid averaging (CHA) operator.
Theorem 3.19 The GCOWA operator is a special case of the GCHA operator.

Proof Let w=(%,1,..,4)", then C,-:Cj(jzl,Z,...,n), so we have

1
o

GCHA, ,(c,.C,,,....C,) = (Wl(c;,(l))‘j DW,(C,,) ©...0wW, (c;,(n))‘s)
= (W () ®W, (0 )) . O W, (2))°
= GCOWA, (c,,c,,...,C,).
which completes the proof of Theorem.
Example 3.20 Let C,=([0.2,0.3}05), C,=([0.4,06}02), C,=([050.7]03), and
C, =([0.6,0.7],0.1), be any four cubic numbers and let w=(0.1,0.3,0.2,0.4)" be the
weighting vector of 5J. (j=12,3,4), and &=2, then by applying operational law 3,
and Definition 4 we get
C; = ([0.0853,0.1329],0.7578), C, =([0.4582,0.6669],0.1449),
C; = ([0.4256,0.6183],0.3816), C, = ([0.7691,0.8543],0.0251).

By using Eq. 5, we calculate the scores of éj (1=12,34)

S(C;) =-0.1355,5(C;) = 0.5490, S(C;) = 0.4268,S(C;) = 0.8275,
S(C;)>S(C;)>S(C;)>S(C,).
Then,
o = ([0.7691,0.8543],0.0251), C; , =([0.4582,0.6669] 0.1449),
) = ([0.4256,0.6183] 0.3816), C; ,, = ([0.0853,0.1329},0.7578).

Now we find the weighting vector of GCHA operator by means of the normal distribution
based method such that, w=(0.1550,0.3450,0.3450,0.1550)". Then, by Eq. 28 it

follows that,

o

¢
C,

GCHA, ,.(C,,C,,C,,C,) =([0.5020,0.6612] 0.1842).
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4. Applications in Decision Making Problem

In this section, we provide an application of proposed score function, accuracy function and
aggregation operators. We develop a general algorithm frame work of proposed
aggregation operators and their application. In decision support system (DSS) the group

decision making problem under consideration is explained as follows;
Algorithm 1. Let X ={A,A,,.,A} Dbe the set of n alternatives, and
c={C,C,....C,} be set of criteria of the each alternative with weighting vector of m

criteria w=(w,w,..w, )" suchthat Wj € [0,1] and ¥ w, =1.Let D, :<Aij,77ij> be

cubic matrices, where (Aii '”ii> is an evaluation in term of cubic sets provided by
decision maker related to the alternative A € A based on the criterion C; € C. The main
goal of decision maker is finding the best alternative or ranking the alternative given
information. In decision making process it depends on the weights of criteria of the
alternatives. In this method we proposed an algorithm to rank the alternative or find out the
best one of alternatives. our method is based on more knowledge about the criteria of each
alternative. Then decision making method consists of the following steps.

Step 1. The decision makers give their opinions related to each alternative with respect to
each criterion. The evaluation of each alternative with respect to each given criterion is
listed in decision matrices .

Cubic Decision M atrix
C, C, ... C,

(R TN e

p, () o) e

An <A“1!77n1> <A”2’77n2> o <A“m'77nm>

Step 2. Applying generalized cubic weighted aggregation (GCWA) operator to cubic
decision matrices, the aggregated information of each alternative with respect the criteria.

Step 3. In this step, we calculate the scores to aggregate the value of each alternative. If
there is no difference between two or more than two scores then we have must to find out
the accuracy degrees of the aggregated values of each alternative.

Step 4. In this step, we arrange all the score values of the alternatives in the form of
descending order and select the best alternative which has the highest degree of the score
value.

Algorithm 2. Let X ={A,A,,..,A } bethesetof n alternativesand C={C,,C,,...,.C,}
be set of criteria of the each alternative with weighting vector of M  criteria
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W= (W,W,...Wwn)" suchthat w, €[0,1] and ¥7,w, =1.Let D, :<Aij,77ij> be cubic

matrices, where </_A\ij,7]ij> is an evaluation in term of cubic sets provided by decision

maker related to the alternative A € A based on the criterion C; €C. The main goal of

decision maker is finding the best alternative or ranking the alternative given information.
In decision making process it depends on the weights of criteria of the alternative. In this
method we proposed an algorithm to rank the alternative or find out the best one of
alternatives. Our method is based on more knowledge about the criteria of each alternative.
Then decision making method consists of the following steps.

Step 1. The decision makers give their opinions related to each alternative with respect to
each criterion. The evaluation of each alternative with respect to each given criterion is
listed in decision matrices

Cubic Decision Matrix
C, C, N O

<A11,7711> <A12,7712> e <A1m,771m>

|l o) e

An <A”1'77n1> <A”2’77n2> L <A”m'77nm>

Step 2. In this step, we apply the known weightted vector by using operational law 3 in
Definition 4, and score function to order the cubic values in cubic decision matrix.

Step 3. Applying generalized cubic hybrid aggregation (GCHA) operator to cubic
decision matrix the aggregated information of each alternative with respect the criteria.

Step 4. In this step, we calculate the scores of the aggregated values of each alternative. If
there is no difference between two or more than two scores then we have to find out the
accuracy degrees of the aggregated values of each alternative.

Step 5. In this step, we arrange all the score values of the alternatives in the form of
descending order and select the best alternative which has the highest degree of the score
value.

Step 6. End

5. Hlustrative Example

In this section, we are going to present an illustrative example of the new approach in a
decision-making problem. We analyze a company that operates in Europe and North
America that wants to invest some money in a new market. They consider four possible
alternatives
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Aq
Az
Az
Ay

Invest in the Asian market.

Invest in the African market.

Invest in all three markets.

Invest in the South American market.
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To evaluate these alternatives, the investor has brought together a group of three
alternatives. After analyzing the information, this group considers that the key factor is the
economic situation of the world economy for the next period. They consider five main
possible states of nature that could happen in the future:

Let C,,C,,C;,C,,C. be criteria for these four markets, In the process of choosing one of
the market, five factor are considered;

Suppose
w=(0.2,0.3,0.13,0.17,0.20,)",

C =

that

the

Very bad economic situation.
Bad economic situation.
Regular economic situation.
Good economic situation.

Very good economic situation.

weighting

vector
S=

of
21

C;(j

=1,2,...,5)
the cubic values of the alternatives

is and

A(=1234) are represented by the cubic decision matrix  a;(i=1234,;
j=12,3,4,5) listed in Table 1.
Step 1. The decision makers give their opinions in Table 1.
Table 1. Cubic decision matrix
A <[0607] 09) <[O405] 02> <[0406] 07) <[0607] 03) <[0506] 06)
Di=| A <[0508] 07> <[0607] 08> <[040705> <[0608] 02> <[0204] 01)
A, <[0304] 05) <[0608] 03) <[07 0.8], 09) <[0406] 05) <[0307] 04)
A, <[07 0.9], 06) <[O406] 02> <[0506] 08) <[0406] 03) <[0408] 06)

Step 2. Now we normalized the decision making matrices by using normalized procedure.

Table 2. Normalized cubic decision matrix R; =

C, C, C, Cs
A | ([0.3,0.4],0.1) | ([0.5,0.6],0.8) <[0406]o3> (10.3,0.4],0.7) | ([0.4,0.5],0.4)
A, | ([0.2,051,0.3) | ([0.3,0.4],0.2) | ([0.3,0.6],0.5) | ([0.2,0.4],0.8) | ([0.6,0.8],0.9)
A, | ([0.6,0.71,0.5) | ([0.2,0.4],0.7) | ([0.2,0.3],0.1) | ([0.4,0.6],0.5) | ([0.3,0.7],0.6)
A, | ([0.,0.3],0.4) | ([0.4,0.6],0.8) | ([0.4,0.5],0.2) | ([0.4,0.6],0.7) | ([0.2,0.6],0.4)
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Step 2. Now using generalized cubic weighted aggregation operator by using Eq. 10, we
have the aggregated values of the normalized cubic decision matrix is given in Table 3.

Table 3. Aggregated values

A | ([0.4511,0.5641],0.2361)
A, | ([0.4608,0.6398],0.2938)
A, | ([0.4919,0.6965],0.3227)
A, | ([0.3637,0.6127],0.2983)

Step 3. In this step, we calculate the scores to aggregate the value of each alternative. If
there is no difference between two or more than two scores then we have to find out the
accuracy degrees of the aggregated values of each alternative.

S(A) | S(A) | S(A) | S(A)
0.4477 | 0.4822 | 0.5207 | 0.4302

Step 4. In this step we arrange all the score values of the alternatives in the form of
descending order and select the best alternative which has the highest degree of the score
value. Here A, > A, > A > A, . Thus most wanted alternative is A,.

Figure 1

Graphical representation of score function

7 I I I | P
1"" :""
S{L
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a. [lllustrative Example

A computer center in a university desires to select an information system to improve the
product, for this purpose suppose A, A,,A;, A, are four alternatives Ai(i =123, 4) have
remained the list of candidate. There are four experts from a committee to act the decision
makers having weighting vector A = (0.3,0.2,0.4,0.1)" . Consider there are four
attributes C,,C,,C;,C, suchthat C;(j=1234) ,
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(i) C, iscost for software investment,

(i) C, iscontribution for organization performance,
(ili) C, is effort to transformation current system,
(iv) C, is for out sourcing software reliability.

Consider that the weighting vector of C;(j=12,..,4) is w=(0.1,0.3,0.2,0.4,)",
6 =2, and the cubic values of the alternatives A (i=1,2,3,4) are represented by the
cubic decision matrix a;(i=1,2,3,4 ; j=1234) listedin Table 1. (Cubic decision
matrix), to rank the given four projects, we first weight all the (CVs) a;(i=12,3,4 ;
j=1,2,34) by the weighting vector ~ w=(0.1,0.3,0.2,0.4)" of the attribute
C;(j=12,..,4) and multiply these values by the balancing coefficient n=4, and we get
(CVs) 4w;a;, listed in Table 2. Then, we utilize the GCHA  operator
w = (0.1550,0.3450,0.3450,0.1550)"  be the weighting vector derived by the normal
distribution based method to get the overall values.

Step 1. The decision makers give their opinions in table 1.
Tablel. Cubic Decision Matrix
C, C, C, C,
<[O.2,0.3],0.5> <[0.4,0.6],0.2> <[0.5,0.7],O.3> <[0.6,0.7],O.1>
<[O.1,0.2],O.3> <[0.3,0.5],0.4> <[0.6,0.8],O.6> <[0.3,0.5],0.3>
< ) | ) |
< )

[0.4,05],0.9) | ([0.8,0.9],0.3) | ([0.5,0.6],0.3) | ([0.5,0.7],0.2)
(10.3,0.8],0.2) | {[0.6,0.7],0.5) | ([0.6,0.8],0.2) | ([0.3,0.4],0.3)

o
Il
F| & F >

Step 2. Using known weighting vector by applying Definition 4 and operational law 3 in
Table 2.

Table 2. Order cubic decision matrix R;; =

C, C, Cs Cs
A | ([0.76,0.85],0.02) | ([0.45,0.66],0.14) | ([0.42,0.61],0.38) | ([0.08,0.13
A, | ([0.66,0.85],0.54) | ([0.34,0.56],0.23) | ([0.34,0.56],0.33)  ([0.11,0.23
As | ([0.72,0.84],0.38) | ([0.42,0.61],0.27)  ([0.42,0.51],0.38) | ([0.33,0.42
A4 | ([0.76,0.92],0.07) | ([0.76,0.85],0.32) | ([0.43,0.92],0.07) ([0.43,0.55

,0.75)
,0.23)
,0.94)
,0.14)

—_ | | | =
—_ | | — | =
—_ | | |
—_ | | | =

Step 3. Now using generalized cubic hybrid aggregation (GCHA) operator by using Eq.
28, we have the aggregated values of the cubic decision matrix is given in Table 3.
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Table 3. Aggregated values

A, | ([0.5020,0.6612],0.1842)
A, | ([0.4084,0.6161],0.2982)
A, | ([0.4878,0.6256],0.3736)
A, | ([0.6516,0.8774],0.2812)

Step 4. In this step, we calculate the scores of the aggregated values of each alternative. If
there is no difference between two or more than two scores then we have to find out the
accuracy degrees of the aggregated values of each alternative.

S(A) [ S(A) | S(A) | S(A)
0.5467 | 0.4462 | 0.4551 | 0.7084

Step 5. In this step, we arrange all the score values of the alternatives in the form of
descending order and select the best alternative which has the highest degree of the score

value. Here S(A,)>S(A)>S(A;)>S(A,) . Thus most wanted alternative is (A,).

Step 6. End,
Figure 2

Graphical Representation of Score Function

111 |

Sal S Sia3 Siaedy

6. Further Discussion

In order to show the validity of the proposed methods, we utilize intuitionistic fuzzy (IFs)

sets to solve the same problem described above. We apply the proposed aggregation
operators developed in this paper. After simplification we obtained the ranking result as

A, >A >A >A, ,and we find that A, is best alternative. In the above example, if we
use IFS sets to express the decision maker's evaluations then the decision matrix D; can
be written as decision matrix Di(jl) by applying intuitionistic fuzzy numbers. In [16] the

proposed GIFW  operators to deal with multiple attribute decision making with
intuitionistic fuzzy information respectively;
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Tablel. Cubic Decision M atrix

G C,
A, |(0.2,05) | (0.4,0.2) <0 5,0.3) <o 6,0.1)
D\ =| A, | (0.1,0.3) | (0.3,0.4) | (0.6,0.6) | (0.3,0.3)
A, | (0.4,0.9) | (0.8,0.3) | (0.5,0.3) | (0.5,0.2)
A, | (0.3,0.2) | (0.6,0.5) | (0.6,0.2) | (0.3,0.3)
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We further explain to find the best alternative of IFs , after the computation process of the
aggregated values of each alternative Di(jl) as follows. By applying score function of such
that,

S(A)
0.3178

S(A;)
0.1102

S(A)
0.1142

S(A)
0.3704

Now we find the ranking as A, > A > A, > A, . Inthiscase A, is the best alternative.

It is noted that the ranking orders obtained by this paper and by [16] are very different.
Therefore, CFNs may better reflect the decision information than IFNs , hence our
proposed approach is more better than IFNs

7. Conclusion

In this paper, we constructed new kinds of aggregation operators, consists of the GCWA
operator, the  GCOWA operator and the GCH/ operator which extend the GOWA
operator. We also discussed some basic properties of these operators, the weighting vector
of GCOWA operator and GCHA operator can be determined by the normal distribution
based method. At the end of this paper we have developed two numerical example by

applying these operators to multiple attribute group decision making (MAGD) problem
based on cubic sets. We can extend this to various field.
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Abstract — The concept of this paper to study some IOWA operator to aggregating the individual cubic
preference relations (CPR). This paper deal further the study of their properties of group decision problems
with the help of CPR, we have proved that the collective preference relation obtained by IOWA operator,
then we applied the aggregation operator of individual judgment by using IOWA operators as aggregation
procedure by (RAMM) method. Additionally, the result of group Consistency IOWA (C-IOWA) operator is
greater than the arithmetic mean of all the individual consistency degree. The numerical application verified
the result of this paper.
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1. Introduction

The theory of fuzzy sets is developed in 1965 [15] which has been generally used in many
area of our present society. Atanassov [1] generalized fuzzy set to intuitionistic fuzzy set
(IFS) [2] The IFS categorized by membership and as a non-membership. Atanassov

and Gargov further extend the concept of IFS to interval value intuitionistic fuzzy set. IFS
the membership and non-membership are the fuzzy number while IVIFS are interval
valued intuitionistic fuzzy numbers.

The [FS does not explain the problem when there is some uncertainty. Therefore Jun,
defined the new concept so called cubic set [3] In 2012, Jun introduced a new theory
which is called cubic set theory. They introduced many concept of cubic set. Cubic deal
with uncertainty problem. Jun cubic set explain all the satisfied, unsatisfied and uncertain
information, while fuzzy and intuitionistic fuzzy set fail to explain these term. Szmidt and

“Corresponding Author.
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Kacprzyk [4] proposed the concept of intuitionistic preference relation (PR) and Xu [5]

defined the consistency of intuitionistic fuzzy relation by extending the notion of consistent
reciprocal preference relation. Since it is often more difficult for a decision maker to
exactly quantify his certainty properties of these /OWA operators.

The application of PR applied to DM [6,7,8,9,10]. Therefore the verification of such
preference relation (PR) is some significant to construct worthy DM method. Where the

consistency property is most benefit property, in these properties the non existence of
consistency in DM must be inconsistent in the conclusions. Therefore this show the
important conditions. Its plays a vital role to study the conditions under which consistency
is satisfied [11.10]. The obtaing of perfect consistency practice is challenging mostly, when
calculting the preference on a classical set with big numbers of choices. There are two
problems of consistency

(1) The individually consideration of an expert is called consistent.
(2) when the consideration of consistent in the group.

We define the method of computing consistency in CPR. By using this consistency
measure, we verified that if different judgement matrix (C — IOW) have a adequate, then
combined judgement matrix (C—IOWACJM) also is of acceptable consistency.
Moreover, our result guarantees that the consistency of (C—IOWACJM) is smaller than
the arithmetic mean of all the individual consistency. The (/—IOWA) operator also has
similar properties.

The paper is consists of the following sections, such that. In Section 2 we review some
fundamental concepts such that the [IOWA,(C —IOWA) and (I —-IOWA) operators. We

also defines the concept of consistency degree of (CPR) in Section 3 . In Section 4 ,
we study the preferred properties of these (/OWA) operators in cubic (GDM) . In
Section 5 we provides illustrative examples. This paper is concluded in Section 6 .

2. Preliminaries

(1ow4),(C—10w4) and (I —IOWA) Operators

In this section we generalized the concept of induced ordered weighted average (/IOWA),
consistency IOWA (C—-I1I0W4 and individual (I —IOWA) operators, which will be
used throughout this paper. [15] Yager and Filev defined an induced OWA (IOWA
operator in which the ordering of the a,(i en) 1s induced by other variables u,(i € n)

called the order inducing variables, where a, and u, are the factor of OWA set

<ul.,ai>(i en) .

Definition 2.1 [15] An (IOWA)  operator of dimension »n is a mapping,

»¢ : R — R" to which a set of weights or a weighting vector is related,
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W= (wl,wz,...,wn)r,wj € [O,I]andzwj =1,

j=1

and lt ls deﬁned tO aggregate the Set Of Zl’ld arguments Of hSt Of tWO pairs {<IZI 3a1 >>->~>} s
un 2 an

given on the basis of a positive ratio scale, define as following:
fWG :(<u1,a1>,...,<un,an>):zwjbj’ Q)
Al

where w= (wl,wz,...,wn)r is a weighting vector, i.e. 27w, =1,w; €[0,1],5, isthe g,
value of the JOWA pair having the jth largest u, ,and Ui in <ui,ai> is referred to as

the order inducing variable and a, as the argument variable.

Definition 2.2 [12] Ifaset of (DMs) D={d,,d,,..,d,6} provides preference about a
set of alternatives X = {x,,x,,...,x,} by meansof (CPR) {M®,. . .M?,. M™%}, and
each have an importance degree u(d,)<[0,1] , related to him or her, then an (/ —IOWA)

operator is an (/OWA) operator in which its order-inducing values is the set of
importance degree.

Definition 2.3 If a set of (DMs) D={d,.d,,....d,} provides preference about a set of
alternatives X ={x,,x,,..,x,} by means of (CPR) | (M® . .M?P .. — M™},

M®P eM ,thena (C—-IOWA) operator is an (IOWA) operator in which its order-
inducing values is the set of consistency index values such that,
{CIM®P),...,CI(M™"),...,CI(M™)}

Definition 2.4 [3] Let X be a fixed non empty set. A cubic set is an object of the form:
C= {<a, A(a), /”L(a)> D ae Xy,

where 4 isan (IVFS) and A isafuzzysetin X. A cubicset C =/(a, A(a),A(a)) is
simply denoted by C= <Z, /1>. The collection of all cubic set is denoted by C(X) .
(a) If A€ Z(x) Vv xeX soitis called interval cubic set.

(b) If A¢ A(x) YV xeX soitis called external cubic set.
(c) If A€ Z(x) or ¢ Z(x) its called cubic set for all x € X.

Definition 2.5 [3] Let A= <A, l) and B= <B, ,u> be cubic setin X , then we define
(a) (Equality) A=B ifandonlyif A=B and A=
(b)) (P— order) Ac, B ifandonlyif AcB and A<
(c) (R— order) Ac, B ifandonlyif AcB and 1>

Definition 2.6 [3] The complement of A = <A, /1> is defined to be the cubic set
A7 = {{x, 4°(x),1 - A(x)) | x € X}
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3. The Measure of Consistency Index of CPR
In GD atmosphere, the problem of consistency itself consist of two problems

(1) The individually consideration of an expert is called consistent.
(2) when the consideration of consistent in the group.

First problem is emphasis in this section. First of all we define the idea's of the additive
transitive CPR . Then we define the CI of CPR . In the following section, we will
emphasis on the 2nd problem.

Definition 3.1 Suppose X ={x,x,,....,x,} be a finite set of alternatives. If the DM gives

his’/her PR information on X by means of a preference relation M =(C,),,,, where

~

aj = <A.‘ ﬂ,ij> and we have,

ij
A, +4,=1 4,=05and A, + 4, =1, 4, =0.5Vi,jeN.
Where C, denotes the preference degree or intensity of the alternative X, over X, ,
then M iscalleda CPR.

~

Definition 3.2 Suppose M =(C,),,, where 54.].:<A ,/”LA.> bea CPR ,then M is

nxn ij (]

called an additive transitive CPR , if the following additive transitivity is satisfied:
A=A, —A, +05 and A, =4, — A, +0.5Vi,j,k e N.

Definition 3.3 If we utilize the row arithmetic mean method (RAMM ) , then can get the

priority vector w" =", wi’,.. . w)" ofthe CPR, MY, where

w! = lZC.@ i=1,2,..m0=12,.,m.

ij b
n Jj=1

Definition 3.4 Suppose 4=(q;),,€M and b=(b,),,€ M , then the distance

nxn

between 4 and B define as follows:

d(A,B) =

1 n n _ _ N N
EZZ[\%—%H%—@ |+ 4, =4, 1] )
i=l j=l
Clearly, the smaller the value of distance degree d(A4,B), the nearer of the CPR , A
and B .

Theorem 3.5 Let A=(qa;)
(1) d(4,B)=0;
(2) d(4,B)=0 < A4 and B are perfectly consistent.

eM and b=(b),,€ M ,then

nxn nxn

Proof. (1)

1 n n _ _ N N
d(A’B)=§ZZ[\%—by\+\%—bg | +14; = 4; 120 (€)

=l j=l
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(2) Necessity. If d(4,8)=0 ,then a,=b; forall i,jeN. Hence, 4 and B are

perfectly consistent.
(3) Sufficiency. If 4 and B are perfectly consistent, then a, =5, V i,jeN.

Thus, we have a;,-b, =0 V i, jeN. Therefore, d(4,B)=0 .

ij

In (GD) problems based on (CPR ) , the study of consistency is related to the transitivity
property. And gave a categorization of the consistency property defined by the additive
transitivity property of a cubic preference relation

33\ ..
M5 =(Cp): Cy+Cy+Cy =<5,5>,v1,1,ze{1,...,n}.

Applying this categorization technique, a method to construct a consistent reciprocal
(CPR) M on X={x.X,.,x,, n>2} from n-1 preference values {C,,

CyyponrC

n—ln

> define as followes:

1) M=(C)) ie

G, fi<j<i+],
Cij = (Cint +Crtin + Ci+2i+3""7cj—lj) _# if i+1</,
1-C; if j<i.

But the matrix M could have entries not in the interval [0,1], but in an interval
[-x,1+x], being x= [min{Cl.j; C,eM }j For this case. [13] the alteration function which
reserves reciprocity and additive consistency, that is a function [—x,1+x]—[0,1]
satisfying

(@) f(=x)=0.

@ fA+x)=1.

@) f(a)+ fA-a)=1, V ae[-x]1+x].

@) f@+fB)+f(c)=2, V a,b,ce[—x1+x]. ie. a+b+c=3.

(2) The consistent (CPR) , N is obtained as N = f(M). This (CI ) has a certain
physical consequence and reflects the deviance degree b/w the (CPR) MY and its

equivalent consistent matrix N . The distance b/w M and its equivalent consistent
matrix N define as follows.

Definition 3.6 Let M. MY . M be the (CPR) provided by m decision
maker's and N©,...N?,...N" be their equivalent consistent matrix, then we define a
measure of (CI) ofthe (CPR) M as follows:

CIMY=1—d(M?P,N). (4)
Clearly, the nearer CI(M ") isto 1 the ultimate consistent the information provided by
the (DM) d'”, and thus more importance should be placed on that information. By
using this (CI ) , we obtain some preferred properties of (C —IOWA) operator.
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4. The Properties Of /0w4 Operators In Cubic Group Decision Making

We appliance the (C—IOWA) operator and the (7 —IOWA) operator to aggregate
individual (CPR) in group decision making problems, and then study their desired
properties. in this section.

The Consistency /OWA (C—-10WA) Operator

In a standardized group decision making problem, the decision maker's have identical
importance. Therefore, every decision maker's continuously can have a (CI) value related
with them, which measures the level of consent b/w group preferences and individual
preference. Therefore, the (DM ) provided further consistency information, the greater

weighting value should be placed on that information. We discuss the reciprocity and
consistency properties of the (C —IOWACJM), which is found by applying (C —IOWA)

operator, in this section.

Definition 4.1 If M©, . M . M™ arethe (CPR) providedby m (DMs) , then
the (C—-IOWACIM) M =(C,),,, is difined as follows:

M=C—I0OWA <CI(M“)),M(“>,<CI(M(2)),M(2)>,]

...,<CI(M(””),M('”’>

=C-10WA

<CI(M(a(1)))’M(a(l))>,<C](M(a(2)))’M(a(2))>’
(I ), D J

_ (M(a(l)) x 5({1(”)) + (M(a(Z)) X §<a(2)))+J (5)

(m)
e (M XS o

(e (1) (ar(2)
C _ Clj X 5(11(1)) ) + (Cz] X 5((1(2))) +
/ (a(m))
...+(Cl.j "X O uimy

m
(@)
= (a[j X Oy ) (6)

=1

where (a(1),a(2),..., a(n) is apermutation of (1,2,...,n) such that

CI(M“"™My>Ccr(M“yand 6, ) 28,0, V1=2,....m;

(Cr ™), M) is two tuplewith CI(M “)

the [th largest value in the set {CI(M™"),...,CI(M"™)};

8= (8,1y» G2y reer Oiy) 15 @ weighting vectori.e.

m

> 8,4 =1and 5, €[0,1].
1=l
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Yager [14] provided a method to define the weighting vector related to an (IOWA)
operator. In this case, each remark in the aggregation contains of a triple ( p;”,u,,v,): p;”

is the argument value to aggregate, %; is the significance weight value related to p;” ,

and V: is the order inducing value. Therefore, the aggregation is
1ow4, (p ...,p;/.’")) = ZWlp;’([), with
=1

_ ol 3D _ [ SU=D
S ETNIETE R

where S(/)=Y"_ U, and «a is permutation i.e. u,, In (p;(”,ua(,),vam) is the Ith
largest value in the set of {v,..,v,} . O is a function :[0,1]—[0,1] ie. Q(0)=0,
O()=1 andif x>y then Q(x)>(y) . In this case, we suggest to use the consistency
values related to each one of the (DM) both as a weight related to the argument and as
the order inducing values #; =v, =CI(M") . Therefore the ordering of the preference
values is first induced by the ordering of the (DMs) from greatest to smallest consistency

one, and the weights of the (C—IOWA) operator is obtained by using the above, E.q.
(7) , with decreases to

(S S(al 1))
5““"Q£S(a(n))j Q( S(e(n)) j ®

where S(a()))= X', CI(M“™)  and « isthe permutation such that

(e (D)) (a(l)

CI(M“yin (C* ' ,CI(M ™ ),CI(M "))
is the Ith largest value in the set {CI(M o )y CL(M W)))} . In an aggregation process,
we consider that the weighting value of (DMs) should be implemented in such a way that
the effect from those (DMs) who are less consistency is reduced, and therefore the above
is obtained if the linguistic quantifier Q verifiers that the most the consistency of an

(DM) the higher the weighting value of that (DM) in the aggregation, i.e.:

(a(2)) (a(n))

CI(M"“DY> CI(M >..,CI(IM )=0
> 68, peeer= 0,0 20,

=0 (2) 3+ .-

al) =

Theorem 4.2 Let the parameterized family of RIM quantifiers Q(A)=A",a¢ >0, if
a €[0,1] and

!
S(a) =Y CIM “ ), then, 2 8,1, V1 =1,2,0..om

k=1
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Proof If «a<[0,1], then the function Q(1)=A" is concave and, we have

A7) -OT,) 2 AT,,)~T))- Suppose

7 = 3@D) o S(a(y) = zl: CI(M“*"), then

" S(a(n)

_ o Sta®)) [ S@d=)))_ .
%—Q[ S(a(n))j Q( S(a(n))] O(T))-O(7,_,) and

_ S+ | S@®))_ -
5a(z+1)—Q[—S(a(n))J Q{—S(a(n))j o(T,,)-O(T)

Thus, we can obtain 6, >3, -

In group decision making models with (CP) assessments, it is frequently supposed that
the (CPR) , to express the judgments are reciprocal. The (C—IOWA) operator is able to
maintain both the reciprocity and the consistency properties in the collective (CPR) . In
order to study these properties, we construct the next theorem.

Theorem 4.3 Let M®, M® . M"™ be (CPR) provided by m decision maker's
where MY =(C}") s 1=12,..m; i,j=12,.,n then their (CI—-IOWACJIM)

nxn

M =(C}"),,, isalsoa(CPR), where
<CI(M(" C(”)> <C1(M(2)) C(2)>
C, = CI-10WA o
| - (CI ™), C)
@)y (@) @)y (@)
el oA (Cr ™), cyr ™), (Cr(m“®),cy @)
s <CI(M(“(’”)’ ), C,;E-a(m»>
= (" % 81000) + (CJ*® X 8 2)) + 00+ (C* " X 1))
and

C,20, 4,+4,=1, 4,=0.5and
A+ A, =1, 4,=05Vi,jeN.

Also M is also consistent, subject to {M ", M® .. M} are consistent.

Proof Since MV, M@ .. M are (CPR) , we have then
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(a(1)) (a(2))
C. = (Cg,'a X (a(l)))"'(cg,'a Xé‘(a(zn)
i (a(m))
+o (G X S i)
> (0% uy) + (0% 0y) +.. (0% D uiyy) = 0.
(a(1)) (a(l) (a(2) (a(2)
CoiC = (C +CN0 iy +(CF + C )00y
ij Ji T + (C(a(m)) + C(a('n)))é‘
ij Ji (a(m))
=0, + 0w+t 0, =1,

1 2
C, = (Cl.(l.“( DX )+ (Cl.(l.“( DX Y i) F ot (Cl.(l.“(m)) X ¥ am))

I 1 ! !
= (Eé‘am)+ (E Oucy )+t (55a<m>) -

Thus, M =(C,),,, isalsoa (CPR).

y

(ii) Since all the MV M@ ,..,M" are consistent, i.e., then

4 =4, +4,,~05and

kj’
/IIJ = /151{ +/Iig —O.SVI :1’2’,..,”” l’.] EN'
Thus

m m

_ (a(D) (ae(1))

Cik + ij - Zcik 5(u(1)> +chj 5<au>)

=1 =1
m

_ (a(l) (a(l)

= > (CE +CE M
I=1

=2 +(0.5,05))5 0
=1
= ¢, +(05,05)
and thus, M is also consistent.

Definition 4.4 Denote M" e M be the cubic judgement matrix provided by the /th
(DM) when comparing n alternatives, w" =(w", wi’,...,w!")" asits priority vector,
o_ P : . - - .
PV = ij /mn as the equivalent consistent matrix; w=(w,,w,,...,w,)" as the priority
vector of (C—IOWACJM) M ,and N =( D) as the equivalent consistent matrix of

M.

Theorem 4.5 Applying the (C—-IOWACJM) as the aggregation method, the weighting
vector

m
T
5:(§a<1)95a<2) +---+5a(m)) D 5a<1—1> 25a(/>a 25"(” =1,

=1
and the (RAMM) as the prioritization method, such that the (  47J) and the (A4IP)
offers the same priorities of alternatives.
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Proof Let w" =", wi,.. ., w")" be the priority of the individual judgement matrix

M and w=(w,w,,....,w,)" be the group priorities, so we define as following,
(cram®™), w<”>,<C1(M<2>),w<”>J

w.(AIP)= C—-10WA
z( ) ,,_.,<CI(M(m)),W(m)>

=C-10WA

<C](M(a(1)) ), W(Ot(l)) >’ <CI(M(a(2)) )’ W(a(z» >
eues <CI(M(“<'”>>), W(a(m»> J

1 2
= (WS, Y+ WD, )t (WS,

a a

w,(AIP) = > w" x5,

=1

1 n 1 n m
w,(ALT) = ;Z; C, = ;ZZ C %6,
J=

==
m n 1 m

— (a(l) | _ a(l)

- zga(l) Z_Cij =2 X§a(1)‘
I=1 = n I=1

Thus w,(AIP) =w,(AL)).

Definition 4.6 Let CI(M) be a measure of the consistency of the collective matrix M,

and CI(M") be a measure of the consistency of matrix M .

Theorem 4.7 Suppose M© MP . M™ be the (CPR) provided by m decision

maker's when comparing 7 alternatives with the corresponding weighting vector
5 = (60!(1) s 5:1(2) +..+ 60!%) )T9 é‘0((171) Z 50,(,) s 250{(1) = 1
=1

Using the (C—IOWACJM) as the aggregation procedure and the row arithmetic mean
method as the prioritization method i.e.

/ l N )
CI(M) > ” ;CI(M ) 9)

Proof By Definition 16 and E.g. (4), we have
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CI(M) = 1—d(M,7v)=1—lzz C,—p;
i=l j=1
= 1——2}1:2 > IC(W» X Oqq)
i1 jol = 1p,5a(l)) ><§a(l)

- 1__22 Z(C;’a(l» P80
I=1

11]1

m
- (@) _ (@)
Since |3 (C;"" = pi )3, )| <
=1

m

(@() )
Z‘(Cﬁa -p,"")3, (1)‘
=1

Then CI(M)>1——ZZZ‘(C(A“”” PO am‘

noca =

=1- Zéa(l)( Zzn:‘(C(.“(”)—p;i““»)‘

11]1

T

I=1 =l j=1

Z 8, CL(M )

CI(M"“ ) > CI(M(“”“») and 8, > 6,)...2 6,

a(m)

Then we have,

$ 50002 Lo L e,
= m-5 mas
Thus CI(M) > lZCI(M“)).
m-Z

The importance /OWA (I -10WA) operator

In a heterogeneous group decision making problem every expert has an importance degree
related with the (/—IOWA) operator, which used this importance degree variable as the

order-inducing variable to induce the ordering of the argument values before their
aggregation. In this section, we study the reciprocity and consistency properties of the
(I —IOWACJM) , which is obtained by using (/ —IOWA) operator.

Definition 4.8 If a set of (DMs) D={d,.d,,....d,} provides preference about a set of
alternatives X = {x,,x,,...,x,} by means of (CPR) {M® ,M*P, .  M"} , whose
associated importance degree  p = (L4, th,...s ), Z H#,=1,0< <1, then the

=1

(I-IOWACIJM) M = (Cy) e 18 defined as follows:

nxn
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M = 1= I0WA( 11, M), (11, MP).....(11,,,M ™))
= MY xpu)+(M? <)+ (M + ) (10)

C, = ZM(” X 1, (11

In group decision making models with (CP) calculations, it usually is supposed that the

(CPR) to express the judgments are reciprocal. The (/—ILOWA) operator also is able to
maintain both the reciprocity and consistency properties in the collective (CPR). therefore
we define the following theorems.

Theorem 4.9 Consider {MY,M® . M™} be (CPR) provided by m  (DMs),
where M =(C}") (I=12,..m; i J=1,2,.,n), then their (I —IOWACJIM)

nxn

M =(C,),,, isalsoa (CPR),
Gy Z((CU))XM

where C; > 0, A!/' + A_ﬂ. =1,4,=05and 4, + 1, =1,4, =0.5

nxn

Also M is also consistent, subjectto {M", M, .. M} are consistent.

Proof (i). Since {M©, M? ., M} are (CPR), we have
C,20, 4, +A, =1, 4,=05and 4, + 4, =1, 4, =0.5Vi,jeN.

Gy = () > 30% 1) =0,
=1 I=1
C"f + C-/'l' - Z(Cé(/'l))xlul + Z(C}z{))xﬂl
=1 I=1
= Z(C;l) +C§5))X/,ll = z/'ll =1.
I=1 I=1

=1 =

Xy =

N | —

Thus, M =(C}),,, isalsoa (CPR) .

nxn

(ii) Since the (M, M@ ..., M} are consistent such that,

Zlﬁ = Z,ic + Z,é.,— 0.5and

A=A+ A, —05VI1=12,.,mijeN.
Then

Cu+C, = ;(Ci‘k’) +CPYx gty = ;(C;” +(03,05)), = C,;+(0.5,0.5)
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Hence, M is also consistent.
Definition 4.10 Denote M € M be the cubic judgement matrix provided by the [ —th

DM when comparing n alternatives, w'” =(w",w",..,w")" as its priority vector,

PP = (P"),, as equivalent consistent matrix; w=(w;,W,,..,w,)" as the priority

nxn

vector of (I —IOWACJM) M ,and N =(p,)
M.

as the equavelent consistent matrix of

nxn

Theorem 4.11 Applying the (I —IOWACJM) as the aggregation technique, the
weighting vector

A=ty fysn ) Z/vﬁ =1,

/=1
The row arithmetic mean method as the prioritization method, such that the (A/P) and the

(ALJ) provides the same priorities of alternatives.

Proof. Let w'” =W, wl",...,w")" be the priority of the individual judgement matrix

M and w=(w,w,,..,w )" be the group priorities, then we get, ..
w,(AIP) =1 — IOWA(<ul, w(”>, <,uz, w(2)>,..., <,um, w(’”)>)

m
— (1)
= Zwi Hy
=1

w,(AIP) = > w" x g1, and

=1

wi(ALT) = — Zc ——ZZ X

nio =

=2 m(E =
I=1

=1 jln

Thus w,(AIP) = w,(ALJ).

Theorem 4.12 Suppose MY M® ... M bethe (CPR) provided by m decision
maker's when comparing 7 alternatives with the corresponding weighting vector
5 ( a(l)? a(2)’ i a(m)) > a(l-1) 2 a(l)’ Z a(l)

Applying the (I—IOWACJM) as the aggregation procedure and the (RAMM) as the
prioritization procedure, it holds that:

CI(M) > i 1,CI(M") (11)

I=1

Proof. Definition 22 and Eq. (4), we have
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CIM)=1-d(M, N)—l——zz

lljl

_ 1__22 Z}'f;Cl;l) X Hy

)
o T 2 Dy X My

SN ICTEN

11]1

Since < Z ‘(C ;) P,,l))ﬂl‘

2<c<” P

Then CI(M) > 1——222\(0’) P

tl/lll

—1——2/11( D (D

11/1

—Zﬂl(l——ZZ\(C(“ )

11/1

= ZMCI(MU))-
=1
Corollary If the individual cubic judegements {M™ MP . M} are of acceptable
consistency, then the (I —IOWACJM) M is also acceptable consistency, that is to say,

CIM®P)>z, foralll=1,..m= CI(M)=>T, (12)

where 7 is for acceptable consistency.

Corollary The consistency degree of M is more than the minimum of the consistency
degree between M | i.e.

CI(M)> Min,,  {CI(M™")} (13)

,,,,,

4. Numerical Example

Consider there are the set of four alternatives X = {x,,x,,x;,x,}, and four (DMs) , D=
{d,,d,.,d,,d,} . Suppose that these decision maker's provide the following (CPR) on the
set of alternative.

([0.5,0.5],0.5)([0.3,0.4] 0.6){[0.6,0.7],0.3){[0.7,0.8] 0.3)

o _|([0:6,0.710.4)([0.5,0.5L0.5)([0.6,0.7] 0.8)([0.3,0.5] 0.4)
M ([0.3,0.4],0.7)([0.3,0.4] 0.2)([0.5,0.5],0.5){[0.6,0.7],0.5)
{[0.2,0.3],0.7)([0.5,0.7],0.6)([0.3,0.4] 0.5)([0.5,0.5] 0.5)
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[{[0.5,0.5],0.5
[0.6,0.7],0.8
[0.5,0.6],0.6

[0.7,0.8] 0.4

[0.3,0.4]0.2)([0.4,0.5] 0.
[0.5,0.5],0.5)([0.4,0.5]
)
)

| (
2[0.5,0.6],0.4 2[0.5,0.5]
< (

[0.2,0.3]0.6)
[0.5,0.6]0.4)
[0.3,0.5],0.6)

0.5)

[0.4,0.5]0.6)([0.5,0.7] 0.4)([0.5,0.5],

(
M = 2
{

~ — =

4)
6)
0.5)
4)

o~~~

[([0.5,0.5]0.5)
[0.6,0.7],0.4)
[0.3,0.4] 0.8)
| ([0.5.0.6]0.7)

[0.3,0.4],0.6)([0.6,0.7],0.2)([0.4,0.5].0.3) |
[0.5,0.5],0.5)([0.5,0.6].0.1)([0.7,0.8] 0.2)
[0.4,0.5],0.9)([0.5,0.5],0.5)([0.3,0.6].0.5)
[0.2,0.310.8)([0.4,0.7].0.5)([0.5,0.5].0.5)

OO

<
MO = 2
<

N~ T~

([0.5,0.5],0.5)([0.4,0.5],0.6)([0.6,0.7],0.2){[0.6,0.7],0.3)
({[0.5,0.6]0.4)([0.5,0.5].0.5)([0.3,0.4],0.5)([0.4,0.5] 0.4)
([0.3,0.4]0.8)([0.6,0.7],0.5)([0.5,0.5] 0.5){[0.3,0.4] 0.8)
([0.3,0.41,0.7)([0.5,0.6],0.6){[0.6,0.7] 0.2){[0.5,0.5].0.5)

By using the above procedure, we can obtain four consistent matrices as follows:

M@ =

([0.5000,0.5000],0.5000)

(10.3753,0.44441,0.5357) ||

[0.5556,0.6251],0.4643)

[0.5000,0.5000],0.5000)

[0.4445,0.5630],0.358 1>

[0.3889,0.4375],0.3929)

[0.3334,0.5000],0.3929)

[0.2778,0.3751],0.3929

[0.5625,0.6111],0.6071)

[0.5000,0.5000],0.5000)

)
)
[0.6253,0.7222],0.6071)
[0.5625,0.6111],0.5000)

{
{
{
([0.4371,0.5505],0.4221)
{
{
{

[0.3889,0.4375],0.5000)

<
<
<
([0.5000,0.6666],0.6071
<
<
<

[0.5000,0.5000],0.5000)

[0.5000,0.5000],0.5000

[0.3571,0.4375],0.3750

~

[0.5625,0.6429],0.6250

[0.5000,0.5000],0.5000

~

[0.5625,0.7143],0.5417

[0.4375,0.5000],0.5417

[0.5625,0.5872],0.5417

[0.2857,0.4375],0.6166

[0.4128,0.4375],0.4583

[0.5000,0.5625],0.4583

[0.2857,0.4375],0.5833

[0.5000,0.5000],0.5000

~ |~~~ ~—

[0.3571,0.5000],0.5416

o~ | | || |~ —~—| —~—

[0.5000,0.6429],0.5484

|~ |||~~~ |

[0.5000,0.5000],0.5000

<
5
([0.5625,0.7143],0.4167
<
<
<
<

~
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([0.5000,0.5000],0.5000) | {[0.3333,0.4444],0.5416)
([0.5555,0.6667],0.4584) | ([0.5000,0.5000],0.5000)
([0.5000,0.6667],0.6253) | ([0.4445,0.5000],0.6667)

VO _ ([0.4445,0.3344],0.4167) | ([0.3889,0.6667],0.6667)
- ([0.3333,0.5000],0.3750) | ([0.1666,0.5555],0.5833)
([0.5000,0.5555],0.3333) | ([0.3333,0.6111],0.3330)
([0.5000,0.5000],0.5000) | ([0.3333,0.5555],0.5000)
([0.4445,0.6667],0.5000) | ([0.5000,0.5000],0.5000)

| ([0.5000,0.5000],0.5000) | ([0.4164,0.5000],0.5384) |

([0.5000,0.5834],0.4616) | ([0.5000,0.5000],0.5000)
([0.5625,0.7510],0.4616) | ([0.6251,0.7500],0.5000)

N _ ([0.6235,0.8334],0.3834) | ([0.6253,0.3847],0.3847)
- ([0.2502,0.7375],0.5384) | ([0.1666,0.3750],0.6153)
([0.2500,0.3750],0.5000) | ([0.1666,0.3759],0.6153)
([0.5000,0.5000],0.5000) | ([0.3333,0.4375],0.6135)
([0.5625,0.6667],0.6667) | ([0.5000,0.5000],0.5000)

According to E.q.(4), we can calculate the consistency degree CI(M'), [=1,2,3,4 :
CI(M')=0.5481, CI(M*)=0.6701, CI(M*)=0.5984, CI(M*)=0.499

1 2 3 4
M(),M( ),M(),M()

matrices N, N ,N® N“ are reordered as follows respectively:

and the judgment matrices and having equivalent consistent

M(a(l)) — M(Z). M(a(Z)) :M(3); M(a(3)) :M(l); M(a(4)) :M(4);
1 2 2 3). 3 1). 4 4).
N(!l( ) _ N( ). N(O!( ) _ N( ), N(Ot( ) :N( )’ N(!l( ) :N( )’

Using E.q. (8) with O(r) = r%, we obtain the weight as followes:

18}

() — 0.51; 5a(2) =0.19; 5@,(3) =0.23; 50,(4) =0.07.

Then, the (C—IOWACJM) M, and its equivalent consistent matrix P, are calculated
as;
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[0.5000,0.5000],0.5000)
[0.3937,0.6939],0.5696)
[0.4014,0.5121],0.6421)
[0.5604,0.6713],0.5262

)
[0.5081,0.6107],0.3126)
[0.4664,0.5684],0.4503)
[0.5000,0.5000],0.5000)
[0.4494,0.6481],0.5000)

[0.3075,0.4077],0.3426
[0.5000,0.5000],0.5000
[0.4494,0.5510],0.4041
[0.4001,0.5334],0.6336
[0.4242,0.5361],0.4227
[0.5035,0.6225],0.3507
[0.3845,0.5684],0.5670
[0.5000,0.5000],0.5000

~~

~

~ | ~——

Il
P P P P | e P e e
P P e P | P P e P

~ |~~~

[0.5000,0.5000],0.5000)
[0.5554,0.6369],0.5388)
[0.5259,0.6786],0.5197)
[0.5011,0.5567],0.4673)
[0.3257,0.4764],0.3126)
[0.5012,0.5021],0.4630)
[0.5000,0.5000],0.5000)

)

[0.3675,0.4449],0.4479)
[0.5000,0.5000],0.5000)
[0.4441,0.5106],0.5204)
[0.4825,0.6608],0.4470

)
[0.4874,0.5137],0.5216)
[0.3855,0.5509],0.5312)
)
)

[0.4059,0.5347],0.5284
[0.5000,0.5000],0.5000

[0.4708,0.8024],0.5146

I
P e e P | P P P

|| | | ] | | —~—

A/to Definition 16 and, E.q. (4) we get such that

4
CI(]Wl) _ 0.7487 >iZCI(M,) _ O.5481+0.6701: 0.5984 +0.499 05789,
I=1

This result is in accordance with Theorem 5.
5. Conclusion

We have discussed the properties of [IOWA operators in the aggregation of CPR in
group decision making problems in this paper. We have also defined that the collective
preference get by these cases of [OWA operators which shown the reciprocity and
consistency conditions. Then, it is verified that the aggregation of individual judgments and
the aggregation of individual properties define the same properties of the alternatives by
applying RAMM  as prioritization technique and [OWA operators as aggregation
technique. By using the distance between M O and its corresponding consistent matrix N

O we present the consistency index of CPR . Using this consistency measure, we proved
that the C—-IOWA and the I—-IOWA operator can improve consistency degree in the
collective CPR . In a future we plan that we will extend this work.
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Abstaract — In this paper we introduce and study the notions of upper and lower §;;-continuous
multifunctions. Several characterizations and properties concerning upper and lower d;;-continuous
multifunctions and other known forms of multifunctions introduced previously are investigated.
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1 Introduction

A multifunction or a multivalued function is set valued function. In last thirty years
the theory of multifunctions has advanced in variety of ways. Applications of this
theory can be found in economic theory, viability theory, noncooperative games, de-
cision theory, artificial intelligence, medicine and existence of solutions for differential
equations. In topology there has been recently significant interest in characterizing
and investigating the properties of several weak and strong forms of continuity of
multifuctions. The development of such a theory is in fact very well motivated in [1,
4, 5,6, 7,12, 14, 15, 17]. Kucuk [10] and Cao and Reilly [3] independently defined
and investigated upper(lower)d;;-continuous multifunction. The invariance of some
separating properties of the bitoplogical spaces by multifunctions was studied by
Smithson [18]. The notions of continuous (resp. upper semicontinuous, lower semi-
continuous) multifunctions between bitopological spaces wear defined and studied by
Popa [15] and Ganguly [13] introduced and studied the concept of upper (lower) al-
most multifunction between bitopological spaces. Several characterizations of these

* Corresponding Author.
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concepts were given by Kucuk and Kucuk in [11]. In this paper we introduce and
study the notions of upper and lower 9;;-continuous multifunctions between bitopo-
logical spaces. As a consequence, some characterizations and several proprties con-
cerning upper (lower) d;;-continuous multifunctions are obtained. The relationship
between upper (lower) ¢;;-continuous multifunctions and with other known forms of
multifuctions introduced previously are established.

2 Preliminary

Let (X, 7, 72) be a bitopological space. The closure and interior of a subset A of
X with respect to 7; are denoted by 7;.cl(A) and 7;.int(A), respectively. The set
N(A,7;) denotes the family of all 7;-open set containing A. In particular, N(z,T)
is the family of all 7;-open neighborhood (7;-nbds, for short) of x. The set of all ;-
closed sets will be denoted by 7;. A subset A of a bts (X, 1, 7) is called ij—regular
closed (resp. ij—regular open) if A = 7,.cl(7;.int(A))(resp.A = 7,.int(7;.cl(A))). The
set of all ij—regular closed (resp. ij—regular open) sets of (X, 71, 7) is denoted by
ijRC(X) (resp. ijRO(X)). By a multifunction F': X — Y, we mean a point-to-set
correspondence from X into Y, and we always assume that F'(z) # ¢ for all z € X.
For a multifunction F': X — Y, we shall denote the upper and lower inverse of a set
BofY by F~(B) and F_(B) [2], respectively, that is F~(B) = {x € X : F(X) C B}
and F. = {z € X : F(x) N B # ¢}. In particular, F(y) = {z € X : y € F(z2)},
for each y € Y. For A C X, F(A) = UgeaF(z). Then F is said to be a surjection
if F(x) =Y, or equivalently if for each y € Y, there exists an z € X such that
y € F(x). Also, F is said to be injective if for any 1,2z € X, x; ¢ x5, we have
F(x1) N F(x3) = ¢. The reader can find undefined notions of some generalizing
continuities for multifunctions from the references.

Definition 2.1. Let (X, 7, 72) be a bts.[8, 13, 16]. A point z in X will be called
an d;;-adherent (resp. 6;;-adherent) point of a subset A of X if and only if AN
7;.4nt(1;.cl(U)) # ¢ (vesp. AN Tj..cl(U)) # ¢ for each 7,—open nbd U of z. The
set of all §;;-adherent (resp. 6;;-adherent) points of A is called d;;-closure (resp. 0;;-
closure) of A and it is denoted by d;;.cl(A) (resp. 6;.cl(A)). If A = §;;.cl(A) (resp.
A = 0;;.cl(A)), then A is called 6;;-closed ( resp. §;;-closed). The complement of a
d;j-closed ( resp. 6;;-closed) set is called a d;;-open( resp. 6;;-open) set. The family of
all 0;;-closed ( resp. d;j-open , 6;;-closed, 0;;-open) sets of X is denoted by 4,;.C'(X)
(resp. 0,;.0(X),0;;.C(X),0;;.0(X)). It is clear that in any bts (X, 7y, 72), we have
0,;.0(X) C 6;;.0(X) C 1; and ij RC(X) C 0;;.C(X).

Definition 2.2. Let (X, 7y, 72) be a bts.[8, 13]. A point = in X will be called an §,;-
interior (resp. ¢;;-interior) point of a subset A of X if and only if there exists 7;-open
nbd U of z such that 7;.int7;.cl(U)) C A (resp. 7;.cl(U)) C A) equivalently, if there
exists ij—regular open (resp. ij—regular closed) nbd U of x such that U C A. The
family of all §;;-interior (resp. 6;;-interior) points of A will be denoted by d;; —int(A)
(resp. 6;; —int(A)). A subset A of a bts (X, 7y, 72) is d;;-open (resp. 6;j-open) if and
only if 6;; —int(A) = A (resp. 0;; — int(A) = A).

Definition 2.3. A bts (X, 7, 72) [8, 9, 15] is called:
(a) PRy if and only if Vo € X, F € #;st.x ¢ F 3U € N(x,1;),V € N(F,7;)s.t.U N
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V=6
(b)PSRy if and only if Vo € X,U € N(z,7;) 3V € N(x,7;), 7; — int(1;.cl(V)) C U
(¢)PAR; if and only if Vo € X, U € N(z,ijRO(X)) IV € N(z,7;), 7;.cl(V) C U.

Theorem 2.4. Let (X, 7y, 72) be a bts.[8, 15].

(a) For each A C X, then 7;,.cl(A) C 6;;.cl(A) C 6;;.cl(A).
(b) If A € 7;, then 7,.cl(A) = d;;.cl(A).

(c) If (X, 71, 72) is PSRa-space, then 7;,.cl(A) = 0;;.cl(A).

(d) If (X, 7, 7) is PARy-space, then §;;.cl(A) = 6;;.cl(A).

3 Upper and Lower ¢;;-Continuous Multifunctions

In this section we define and study the concept of upper and lower ¢;;-continuous
multifunctions.some of their properties are obtained.

Definition 3.1. A multifunction F': (X, 7, 7) — (Y, A1, Q) is called:

(a) Lower §;;-continuous at a point « in X if and only if for every increasing A;-open
set V in Y with F(x) NV # ¢, there exists increasing A\;-open nbd U of z such that
F(xo) N Agint(A.cl(V)) # ¢, for each zy € 7.int(7;.cl(U)).

(b) Upper §;;-continuous at a point x in X if and only if for every decreasing A\;-open
set V in Y with F(x) C V, there exists decreasing 7-open nbd U of x such that
F(1;int(r;.cl(U)) C Aint(A;.cl(V)).

(c) Lower (resp. upper) d;;-continuous if it has this property at each point x € X.
The following theorem give us some characterizations of lower 9;;-continuity of F'.

Theorem 3.2. For a multifunction F : (X, 1, 7) — (Y, A1, Ay) the following state-
ments are equivalent:

(a) F' is lower ¢;;-continuous,

(b) For every increasing ij—regular open set V' C Y and for each x € X with
F(z) NV # ¢, there exists increasing ij—regular open nbd U of x such that
F(xo) NV # ¢, for each o € U.

) For every increasing ij—regular open set V' C Y, F_ (V) is d;;-open set in X.

) For every increasing ¢;;-open set V C Y, F__(V) is ¢;;-open set in X.

) For every increasing ¢;;-closed set K C Y, F~(K) is ¢;;-closed set in X.

) For every increasing ij—regular closed set K C Y, F'~(K) is d;;-closed set in X.
For each B CY, F~(d;5.int(B)) C 0;;.int(F~(B)).

(
(
(
!
(h) For each A C X, F(6;;.cl(A)) C 6;;.cl(F(A)).

¢
d
e
f
g
h

Proof. (a)— (b): Let z in X and let V by an ij—regular open set in Y with
F(z)NV # ¢. Then V is A;—open set in Y. By (a), there exists W € N(z,7;) such
that F(zo)NA;.int(D;.cl(V)) # ¢, for each xy € 7;.int(7;.cl(W)). But V is ij-regular
open set, so F'(xg) NV # ¢, for each zy € 7;.int(7;.cl(W)). Put U = 7.int(r;.cl(W)).
Then U is ij-regular open set in X. So F(zo) NV # ¢ for zq € U.

(b)— (c): Let V C Y be an ij-regular open set and let = in X with z € F~(V).
Then F(x) NV # ¢. By (b), there exists ij-regular open nbd U of x such that
F(zo) NV # ¢, for each zq € U. Which implies that U C F_(V). Consequently
F_(V) is 6;;-open set in X.

(c)— (d): Let V. C Y be a d;;-open set and let x in X with x € F_(V). So,
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F(z) NV # ¢ and so there exists y € Y such that y € F(z) N V. Hence, y € F(x)
and y € V. Since V is §;;-open set, then there exist ¢j-regular open set W C Y such
that y € W C V. Thus F(x) "W # ¢ and so x € F_(W). Since W is ij-regular
open set, by (c), F_(W) is a §;;-open set of X and from x € F_ (W), there exists an
ij-regular open set U C X such that z € U C F_ (W) C F_(V). Thus F_(V) is a
d;j-open set in X.

(d)— (e): Let K C Y be any J;j-closed set. Then T\ K is a d;;-open set. By (d),
F_(Y\K) is a d;;-open set. As we can write F~(K) = X\F_(Y\K) so F~(K) is a
d;j-closed set in X.

(e)— (f): Let K C Y be any d;;-regular closed set. Then K is a d,;-closed set. By
(e), F7(K) is a §;5-closed set in X.

(f)— (c): Let V C Y be an ij-regular open set. Then Y\V is an ij-regular closed
set of Y. By (f), F~(Y'\V) is §;5-closed set in X. Thus F_ (V) is §;;-open set in X.
(¢c)— (a): Let zin X and let V' C Y be any A\;-open set with F'(z)NV # ¢. Since V' C
Aint(A;.cl(V)), then F(z)NAint(D;.cl(V)) # ¢. So, xis F~(Azint(Dj.cl(V))).
By (c), there exists ij—regular open nbd U of z such that U C F~(A;.int(AD;.cl(V))).
Thus F(xo) NA.int(A;.cl(V)) # ¢ for each 2y in U. Thus F is lower §;;-continuous.
(d)— (g): Let B C Y. Since d;;.int(B) C B, then F_(d;;.int(B)) C F_(B). Since
d;j.int(B) is d;;-open set of Y, then by (d), F_(d;;.int(B)) = 0;jint(F_(d;;.int(B))) C
dij.int(F_(B)). Thus F_(d;;.int(B))) C d;j.int(F_(B)).

(g)— (d): Let V be d;5-open set of Y. By (g), we have F_(V) = F_(d;;.int(V)) C
0;j.int(F_(V)). Thus F_(V) is d;j-open set of X.

(d)— (h): Under the assumption (e) suppose that (h) is not true, i.e. for some
A C X, we have F(0;5.cl(A)) € 6;j.cl(F(A)). Then there exists y in Y such that
y € F(éw cl(A)), but y ¢ 6;;.cl(F(A)). So, Y\(6;;.cl(F(A))) is d;;-open set con-
taining y. By (d), we have F_(Y\(d;;.cl(F(A)))) is d;;-open set in X and F_(Y) C

F_(Y\(d;5.cl(F(A)))). Since Y'\(6;;.cl(F(A))) N F(A) = ¢ and A C F~(F(A)) we
have F_(V\(35.cl(F(A)))NF~(F(A)) = ¢ and F_(Y\(5,.cl(F(4))))NA = 6. Since
F_(Y'\(0;;.cl(F(A)))) is 0;;-open set in X, then F_(Y'\(d;;.cl(F(A))))Nd;j.cl(A) = ¢.
On the other hand, because of y € F'(;;. cl(A)) we have F_(Y)NJ;;.cl(A) # ¢, which
is contradiction with F_(Y'\(d;;.cl(F(A)))) N d;;.cl(A) = ¢. Thus y € F(0;5.cl(A))
implies y € d;;.cl(F(A)). Consequently, F(d;;.cl(A)) C 0;;.cl(F(A)).
(h)— (e): Let K CY be any ¢;;-closed set. Since we have always FF~(K) C K,
then we obtain §;;.cl(FF~(K)) C §;.cl(K) = K. By (h), F(6;.cl(F~(K))) C
3ij.cl(FF~(K)). Thus F(0;;.cl(F~(K))) C K and so
8i5.cl(F~(K)) C F~F(6;;.cl(F~(K))) € F~(K). Hence F~(K) is d;;-closed set
in X. [l

Theorem 3.3. For multifunction F': (X, 7, 7) — (Y, A1, As) the following state-
ments are equivalent:

(a) F is upper J;j-continuous,

(b) For every ij-regular open set V C Y for each x € X with F(z) C V| there exists
ij-regular open nbd U of x such that F(U) C V.

(c) For each ij-regular open set V C Y, F~ (V) is §;;-open set in X.

(d) For each ij-open set V C Y, F~(A;.int(Aj.cl(V))) is 6;;-closed set in X.

(e) For each d;j-closed set K C Y, F_(A;.cl(A;.int(K))) is d;;-closed set in X.

(f) For each 0;;-regular closed set K C Y, F_(K) is §;;-open set in X.
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Proof. 1t is quite similar to that of Theorem 3.2 and so it is omitted. O]

Definition 3.4. A multifunction F' : (X, 7,7) — (Y, A1, 4,) is called pairwise
point compact if the induced multifunctions F': (X, 7;) — (Y, 2;),i = 1,2 are point
compact.

Theorem 3.5. Let F': (X, 7, 72) — (Y, Ay, As) be a pairwise point compact multi-
function and (Y, Ay, Az) be PARy-space. Then the following statements are equiv-
alent:

(a) F is upper J;;-continuous,

(b) For each d;;-open set V C Y, F~ (V) is 6;;-open set in X.

(c) For each §;j-closed set K C Y, F_(K) is ;;-closed set in X.

(d) For each B Q Y, (SUCZ(F_(B)) Q F_((SUCZ(B))

Proof. (a)— (b): Let V be a §;j-open set in Y and let z in X with x € F'~ (V). Then
F(x) C V. Since V is §;;-open, then for each y € F(x), there exists ij-regular open
set W, such that y € W, C V. Since (Y, Ay, A\y) is PARs-space. Then there exists
an A\;-open set 7, such that y € 7, C A;.cl(r,) C Ajint(D;cl(W,)) = W,. Hence we
have Fi(x) CU{T, :y € F(x)} CU{A;.cl(ry) :y € F(z)} CU{W,:y € F(z)} CV.
Since F'(z) is a A;compact set, there exists points y1,ys, ..., yn € F(z) such that
F(z) € UWr, :ys € F(z),s = 1,2,...,n} C U{D;.cl(ry,) : ys € F(x),s =
L,2,.,n} € U{W,, vy, € F(z),s = 1,2,...,n} C V. Therefore, we obtain
F(x) € Ajint(U{r,, : ys € F(z),s = 1,2,...n} = U{r, : ys € F(z),s =
L,2,..,n} C Ajint(Dj.cl(U{r,,) @ ys € F(z),s = 1,2,...,n}) C V. Put H =
Aint((U{Aj.cl{r,,) : ys € F(z),s = 1,2,...,n})). Then H is ij-regular open set
of Y with F(z) C H. By (a), there exists ij-regular open nbd U of = such that
UC F(H) C F~ (V). Therefore, t C U C F~(V) and this mean that F~ (V) is
d;;-open set in X.

(b)— (c): Let K CY be ¢;j-closed set. Then Y\K is d;-open set in Y. By (b) we
conclude that F'~(Y'\K) is a ¢;;-open set in X, so F'~(K) is ¢;;-closed set in X.
(¢c)— (a): Let z in X and let V' C Y be ij-regular open set of Y such that F(x) C V.
So, Y\V is a d;;-closed set in Y. By (c¢) F~(Y\V) is a d;;-closed set in X. Thus
F~(V)=X\F_(Y\V) is 0;;-open set in X. Since x € F"~(V), there exists ij-regular
open nbd U of x such that z € U € F~ (V). Thus F is upper J;;-continuous.

(c)— (d): Let B C Y. Since B C §;;.cl(B), then F_(B) C F_(d;j.cl(B)). Since
d;j.cl(B) is a d;5-closed set of Y, then by (c), F_(0;;.cl(B)) is d;5-closed set of
X. Hence, we have 0;;.cl(F_(B)) C 6&;;.cl(F_(6;;.cl(B))) = F_(d;5.cl(B)) and so
3ij.cl(F_(B)) C F_(d;;.cl(B)).

(d)— (c): Let B a d;;-closed set in Y. Then F_(B) = F_(d;;.cl(B)). By (d), we
have 6;;.cl(F_(B)) C F_(6;;.cl(B)) = F_(B) and F_(DB) is d;j-closed set in X. O

Theorem 3.6. Let Fl . (X, 7'1,7'2) — (K Al, AQ) and FQ . (Y, Ah AQ) — (Z, Fl,FQ)
are lower 0;;-continuous function then Fy o Fy : (X, 7, 7) — (Z,T4,T) is lower
d;j-continuous function.

Proof. Let K be d;;-closed set in Z. From lower ¢;;-continuity of F5, we have F, (K)
is d;5-closed set in Y. Since F} is lower d,;-continuous, then Fy (F, (K)) is §;;-closed
set in Y. But (FroFy)™ (K) = Fy (Fy (K)). Therefore I, o0 Fy is lower §,;-continuous
function.

]
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Proposition 3.7. Let (X, 7, 7) be a bts, A C X be 7,—open set and U C X be
ij-regular open set. Then W = ANU is ij-regular open set in (A, 714, T24).

Proof. 1t is very similar to that of Proposition 2.6 in[10].
]

Theorem 3.8. For a multifunction Fy : (X, 7, 7) — (Y,2A1,4,) , the following
statement are true:

(a) If F'is lower(resp. upper) d;;-continuous and A is an 7;-open set in X, then
Fla: (A, 11y, To14) — (Y, A1, Ay) is lower (resp. upper) d;;-continuous.

(b) Let U = {U, : « € Q} be ij-regular open cover of X. Then a p—multifunction
F:(X,n,m7) — (Y,A,\s) is lower (resp. upper) d;;-continuous if and only if the
restrictions F, = F | Uy : (Ua, T, Tou.) — (Y, A1, Ay) are lower (resp. upper)
d;j-continuous, for each o € €.

Proof. (a): Let x € A and V be any ij-regular open set in Y with F' |4 (z) N
V # ¢. Hence F(z) NV # ¢. Since F is lower d;;-continuous, then there exists
U € N(x,ijRO(z)) such that F(xzy) NV # ¢, for each xy € U. Then U C F_. Put
W =UnNA. Then W is ij-regular open set in A with W C ANF_ = F |4 (V).
Hence F' |4 (o) NV # ¢, for each o € W. Thus F' |4 is lower §;;-continuous. The
proof is the upper 9;;-continuous of F' is similar.

(b): Let F' be lower §;;-continuous and o € Q be such that z € U, and let V be
any ij-regular open set in Y such that F,(x) NV # ¢. Since F(z) = F,(z) and F
is lower ¢;;-continuous, then there exists an ij-regular open nbd Uy of x such that
F(zo)NV # ¢, for each xy € Uy. Hence Uy € V. Put U = U,NUy, thus U is ij-regular
open subset of U, and = € U. Therefore U = U, NUy C U, NF_(V) = F_,(V).
Thus F, is lower d;;-continuous at x. Conversely, suppose that Fi, is lower 9;;-
continuous, for each a € ). Let x € X and V be an ij-regular open set in Y such
that F'(z) NV # ¢. Then there exists a € {2 such that x € U,. Hence F(z) = F,(x)
and so F,(x) NV # ¢. Since F, is lower d;;-continuous, there exists ij-regular
open set U in U, with x € U such that F,(xq) NV # ¢, for each g € U. Then
UCF,(V)=F.(V)NnU, C F_(V). Thus F,(U)NV # ¢ implies U C F_,, but
F_ (V)= F_(V)NU,. Take ij-regular open set W in X such that U = U, N W.
Thus U is ij-regular open set W in X. Hence F' is lower d;;-continuous.

The proof of the upper 9;;-continuous of F' is similar. O]

4 Mutual Relationships

This section explain some of types of multifunction with some examples.

Definition 4.1. A multifunction F': (X, 7, 7) — (Y, Ay, Ag) is called [15]:

(a) pairwise lower semicontinuous (p. 1. s. ¢, for short) at a point x € X if the
induced multifuctions F : (X, ;) — (Y,A;),i = 1,2 are lower semicontinuous at a
point x € X.

(b) pairwise upper semicontinuous (p. u. s. ¢, for short) at a point z € X if the
induced multifuctions F': (X, 7;) — (Y, 4;),i = 1,2 are upper semicontinuous at a
point x € X.

(c) pairwise lower (resp. pairwise upper ) semicontinuous if it has this property at
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each point = € X.

Now we give two examples in order to show that the concepts of upper (resp. lower)
d;j-continuity and pairwise upper (resp. pairwise lower) semicontinuous are indepen-
dent.

Example 4.2. Let X = {a,b,c}, 71 ={X,¢,{a,b}},» ={X,0,{b,c}},Y ={1,2,3},
ANy = {Y,¢,{2}} and Ay = {Y,¢,{3}}. Define a multifunction F' : (X, 7, 7) —
(Y, A1, A\y) as follows: F(a) = {1,2}, F(b) = {2,3} and F(c) = {1,3}. Then F is
pairwise lower semicontinuous multifunction but it is not lower 4;;-continuous mul-
tifunction, since {2} € 12RO(Y) and {3} € 21RO(Y), but F_({2}) = {a,b} ¢
0120(X) and F_({3}) = {a, b} ¢ 0510(X).

Example 4.3. Let X = {a,b,c}, 71 = {X,¢,{a,b}},» ={X,0,{b,c}},Y ={1,2,3},
ANy = {Y,¢,{2}} and Ay = {Y,¢,{3}}. Define a multifunction F' : (X, 7, 7) —

(Y, Ay, A\y) as follows: F(a) = {2}, F(b) = {3} and F(c) = {1,2}. Then F is pair-

wise upper semicontinuous multifunction but it is not upper 9;;-continuous multifunc-

tion. Indeed, {2} € 12RO(Y) and {3} € 21RO(Y), but F~({2}) = {a} ¢ 6120(X)

and F~({3}) = {b} ¢ 0210(X).

Theorem 4.4. Ever upper (resp. lower) ¢;;-continuous multifunction from any bts
to a PSRa-space is p-upper (resp. p-lower) semicontinuous.

Proof. Let F : (X, 1,72) — (Y, A1, A\y) be upper (resp. lower) §;;-continuous mul-
tifunction and (Y, A1, As) is PSRy-space. Let V' C Y be A;-open set. Since
(Y, Ay, Ag) is PSRy-space, then V' is ij-regular open. By upper (resp. lower) 0;;-
continuity of F', F~ (V) (resp. F_(V) is §;;-open set in X, then F~ (V) (resp. F_(V))
is 7;-open set in X. So F is p-upper (resp. p-lower) semicontinuous.

]

Theorem 4.5. Ever p-upper (resp. p-lower) semicontinuous multifunction from a
PSRy-space to any bts-space is upper (resp. lower) d;;-continuous.

Proof. Let F : (X, 7,7) — (Y,A1,/) be p-upper (resp. p-lower) continuous
multifunction and (X, 7y, 72) is PSRe-space. Let V' C Y be ij-regular open, then V
is A;-open set. By p-upper (resp. p-lower) continuity of F', F~ (V) (resp. F_(V)
is 7;-open set in X. Since (X, 7y, 7) is PSRs-space, then F'~ (V) (resp. F_(V)) is
ij-regular open set in X. So F' is upper (resp. lower) J;;-continuous. ]

Definition 4.6. A p-multifunction F' : (X, 7, 72) — (Y, A1, Ay) is called:

(a) lower strongly 6;;-continuous at a point x in X if and only if for every A;-open set
VinY with F(x) NV # ¢, there exists 7;,—open nbd U of  such that F(zo)NV # ¢
for each xy € 7.cl(U).

(b) upper strongly 6,;-continuous at a point = in X if and only if for every A;-open
set Vin'Y with F\(x) C Y, there exists 7;-open nbd U of « such that F(7;.c[(U)) C V.
(c) lower (resp. upper) strongly 6,;-continuous if it has this property at each point
reX.

Theorem 4.7. Every upper (resp. lower) strongly 6;;-continuous multifunction is
upper (resp. lower) d;;-continuous.
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Proof. Let F': (X, 11, 72) — (Y, A1, AA2) be upper (resp. lower) strongly 6;;-continuous
multifunction and V' C Y be ij-regular open set, then V' is /A;-open. By upper (resp.
lower) strongly 6,;-continuity of F', F'~ (V') (resp. F_(V)) is #;;-open set in X. Hence
F~=(V) (resp. F_(V))1is d;j-open set in X. So F is upper (resp. lower) d;;-continuous.
The following example shows the converse of Theorem 4.7 is not true in general. [J

Example 4.8. Let X = {a,b,c} with 7 = {¢, X, {a}}, o = {6, X,{b,c}},Y =
{1,2,3}, Ay ={Y, ¢,{1}} and Ay = {Y, ¢}. Define a multifunction F : (X, 7, 72) —
(Y, A1, A\y) as follows: F(a) = {1}, F(b) = {2} and F(c) = {2,3}. Then F is upper
(resp. lower) d;;-continuous multifunction but it is not upper (resp. lower) strongly
g;;-continuous multifunction. Indeed, {1} € Ay but F_({1}) = {a} ¢ 6120(X) and

Fo({1}) = {a} € 61,0(X).

The following theorem give us the condition for converse.

Theorem 4.9. Every upper (resp.lower) d;;-continuous multifunction from a PAR,-
space is upper (resp. lower) strongly d;;-continuous.

Proof. Let F : (X, 71,73) — (Y, A1, Ay) be upper (resp. lower) 6,;-continuous mul-
tifunction, (X, 1, 72) be a PARy-space and (Y, A1, A\s) be a PRy-space. Let V C Y
be A;-open set. Since (Y, /A1, /A\y) is PRy-space, then V' is ij-regular open set. By
upper (resp. lower) d,;-continuity of F', F~(V) (resp. F_(V)) is d;;-open set in X.
Since (X, 7y, 72) is a PARy-space. Then F~ (V) (resp. F_(V))is 6;;-open set in X.
Thus F' is upper (resp. lower) strongly 6;;-continuous. O

Definition 4.10. A multifunction F : (X, 71, 72) — (Y, A1, Q) is called:

(a) pairwise lower almost continuous at a point z in X if and only if for every A;-
open set V in Y with F(x) NV # ¢, there exists 7-open nbd U of x such that
F(xo) N Aint(Aj.cl(v)) # ¢, for each xy € 7.int(7;.cl(U)).

(b) Pairwise upper almost at a point x in X if and only if for every A;-open set V'
in Y with F'(z) C V, there exists A;-open nbd U of x such that F(7;.int(7;.cl(U)) C
ANant(A.cl(V)).

(c) pairwise lower(resp. pairwise upper) continuous if it has this property at each
point x € X.

Theorem 4.11. Every upper (resp.lower) d;;-continuous multifunction is P- upper
(resp. P-lower) almost continuous.

Proof. Let F': (X, 1, 72) — (Y, A1, Ag) be upper (resp. lower) §;;-continuous multi-
function and let V' C Y be ij-regular open set. By upper (resp. lower) d;;-continuity
of F', F~(V) (resp. F_(V)) is d;-open set in X. Thus F~ (V) (resp. F_(V))is 7;-
open set in X. So F'is P—upper (resp. P—lower) almost continuous.

The following examples show the converse of Theorem 4.11 is not true in general. [J

Example 4.12. Let X = {a,b,c}, 1 = {¢, X, {a,b}}, o = {0, X,{b},{a,b}},Y =
{1,2,3}, &y = {V,6,{1},{2,3}} and A, = 2¥ . Define a multifunction F :
(X, 11,72) — (Y, A1, Ag) as follows: F(a) = {1,2}, F(b) = {1,3} and F(c) = {2,3}.
Then F'is P-lower almost continuous multifunction but it is not lower 4;;-continuous

multifunction. Indeed, {1} € ijRO(Y) but F_({1}) = {a,b} ¢ 6,;0(X).
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Example 4.13. Let F' : (X,7,7) — (Y,A1,43) as in Example 4.12. Define
a multifunction F' : (X, 7,7) — (Y, A1, As) as follows: F(a) = F(b) = {1} and
F(c) =Y. Then F'is P-upper almost continuous multifunction but it is not upper §;;-
continuous multifunction. Indeed, {1} € ijRO(Y'), but F_({1}) = {a, b} ¢ §,;0(X).
The following theorem gives us the condition for converse.

Theorem 4.14. Every P—upper (resp.P—lower) almost continuous multifunction
from a PSR,- space to any bts-space is P—upper (resp. P-lower) §;;-continuous.

Proof. Let F': (X, 11,72) — (Y, A1, As) be P—upper (resp. P—lower) almost con-
tinuous multifunction and (X, 71, 72) is PSR- space . Let V' C Y be ij-regular open
set. By P—upper (resp. P—lower) almost continuity of F', F'~(V) (resp. F_(V))
is m;-open set in X. Since (X, 7y, 72) is PSR- space, then F~ (V) (resp. F_(V))is
ij-regular open set in X. So F is upper (resp. lower) J;;-continuous.

The applications of multifunctions with closed graphs, cluster (inverse cluster) set of
functions, separation axioms and weak and strong forms of compactness in bitopolog-
ical spaces are now under consideration and will e the subject of the next paper. [J

5 Conclusion

The filed of mathematical science which goes under the name of topology is con-
cerned with all questions directly or indirectly related to continuity. Therefore,
generalization of continuity is one of the most important subject in topology. On
the other hand, topology plays a significant role in quantum physics, high energy
physics and supersting theory [5, 6]. Thus we studies upper and lower ¢,;-continuous
multifunctions which are some generalized continuity may have possible applications
in quantum physics, high energy physics and supersting theory.
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1 Introduction and Preliminaries

The concept of b-metric space obtained by modifying the triangle inequality has
been introduced by many authors.

Definition 1.1 ([3, 14, 8, 4, 13]). An ordered triple (X, D, K) is called b-metric
(metric type) space and D is called b-metric on X if X is a nonempty set, K > 1 is
a given real number and D:X x X — [0, 00) satisfies the following conditions for all
x,y,z € X

1) D(x,y) = 0 if and only if z =y,

2) D(z,y) = D(y, ),

3) D(z,2) < K[D(x,y) + D(y, 2)].

For a b-metric space (X, D, K), the b-metric D need not be continuous, an open
ball is not necessarily open and a closed ball is not necessarily closed where B(x,r) =
{y : D(z,y) < r}is an open ball, B[z,r] = {y : D(z,y) < r} is a closed ball and A
is an open set if for any = € A there exists an open ball B(x,r) such B(x,r) C A
[15, 16, 11].

This fact suggests a strengthening of the notion of b-metric spaces.
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Definition 1.2 ([16]). An ordered triple (X, D, K) is called strong b-metric space
and D is called strong b-metric on X if X is a nonempty set, K > 1 is a given real
number and D:X x X — [0, 00) satisfies the following conditions for all z,y,z € X
1) D(z,y) = 0 if and only if z =y,

2) D(z,y) = D(y,z),

3) D(z,z) < D(z,y) + KD(y, 2).

Remark 1.3 ([16]). Let (X, D, K) be a strong b-metric space.
(1) The strong b-metric D is continuous.
(2) Every open ball B (x,r) is open.

After Zadeh [6] introduced the theory of fuzzy sets, many authors have introduced
and studied several notions of metric fuzziness [1, 9, 17, 7, 10] from different points
of view.

Fuzzy metric type spaces, which is a generalization of fuzzy metric space in sense
of George and Veeramani [1] have been introduced and studied in [12] as a fuzzy
analogy of b-metric spaces.

Definition 1.4 ([2]). A binary operation * : [0, 1] x [0, 1] — [0, 1] is a continuous
t-norm if x satisfies the following conditions;

1) * is associative and commutative,

2) * is continuous,

3)ax1=aforall a€l0,1],

4) a*xb < cxdwhenever a < cand b<d, a,b,c,d € [0,1].

Definition 1.5 ([12]). A 4-tuple (X, M, x, K) is called a fuzzy metric type (fuzzy
b-metric) space and M is called fuzzy metric type (fuzzy b-metric) on X if X is
an arbitrary (non-empty) set, * is a continuous t-norm, and M is a fuzzy set on
X x X x (0,00), satisfying the following conditions for each z,y,z € X and t,s > 0,
1) M (x y,t) >0,
M (z,y,t) = 1if and only if z = y,
v y,t) = M(y,2,1),
)y« M(y,z,s) < M(x,z, K(t + s)) for some constant K > 1,
) : (0,00) — [0, 1] is continuous.

In a similar manner, in this study, we introduce a new concept, fuzzy strong
b-metric space, as a fuzzy analogy of strong b-metric spaces and present some ele-
mentary results.

Remark 1.6 ([1]). For any r; > 7o, we can find a r3 such that ry * r3 > 75 and for
any r4 we can find a r5 such that rs % r5 > ry (r1,r2,73,74,75 € (0,1)).

2 Fuzzy strong b-metric space

Definition 2.1. Let X be a non-empty set, K > 1, * is a continuous ¢-norm and M
be a fuzzy set on X x X X (0,00) such that for all z,y,z € X and ¢,s > 0,

1) M(z,y,t) >0,

2) M(z,y,t) =1 if and only if x =y,
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3) M(x,y,t) = M(y,z,t),

4) M(x,y,t)« M(y,z,s) < M(z,z,t+ Ks),

5) M(z,y,.): (0,00) — [0,1] is continuous.

Then M is called a fuzzy strong b-metric on X and (X, M, , K) is called a fuzzy
strong b-metric space.

Example 2.2. Let (X, D, K) be a strong b-metric space. Define

Mp(z,y,t) = T+ DY)

fort > 0 and z,y € X. Then (X, Mp, -, K) is a fuzzy strong b-metric space and is
called standard fuzzy strong b-metric space induced by D. Here (1)-(3) and (5) are
obvious and we show (4).

t S
MD($,2,t) : MD(z,y,s) = t—l—D(l’ z) ' s—I—D(Z y)
1+ D(f,z) 14+ D(zay)
< ! !
= D(z,2) ' KD(zy)
1 + t+Ks 1 + t—‘,—KSy
1
<
— D(I,Z)+KD(27 )
L+ ==
< 1
= 1 D@z
1 + t+Ks
t+ Ks

t+ Ks+ D(x,2)
== MD(may7t+K8)

Proposition 2.3. Let (X, M, %, K) be a fuzzy strong b-metric space. Then M (x,y, ) :
(0,00) — [0, 1] is nondecreasing for all z,y € X.

Proof. Assume that M (x,y,t) > M (x,y,s), for s >t > 0. We have M (z,y,t) *
M (y,y, %t) < M (z,y,s) < M (z,y,t). Since M (y,y,s —t) = 1, we have M (z,y,t) <
M (x,y,t) that is a contradiction. O

Definition 2.4. Let (X, M, x, K) be a fuzzy strong b-metric space. For ¢ > 0, the
open ball B(x,r,t) with center x € X and radius 0 < r < 1 is defined by

B(z,rt)={ye X : M(z,y,t) >1—r}.

A subset A C X is called open if for any x € A, there exist r € (0,1) and ¢ > 0 such
that B(z,r,t) C A.

Proposition 2.5. Let (X, M, %, K) be a fuzzy strong b-metric space and 7y, be the
family of all open sets in X. Then 7, is a topology on X.
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Proof. 1. Clearly 0, X € 7.

2. Let A\ Be€myyandx € ANB. Then x € A and = € B, so there exist t1,ty > 0
and r1, 75 € (0,1) such that B(x,ry,t;) C A and B(z,7q,t2) C B. Let t = min{ty,t5}
and r = min{ry,7}. Then B(z,r,t) C B(z,r,t1) N B(x,re,t2) C AN B. Thus
AN B € 7y.

3. Let A; € 7y for each i € I and x € J;o; Ai- Then there exists ig € I such
that x € A;,. So, there exist ¢t > 0 and r € (0,1) such that B(z,t,r) C A;,. Since
Aiy CUser Aiy B(x,r,t) C U,e; Ai- Thus (J,.; Ai € Tar. Hence, 7/ is a topology on
X. ]

Proposition 2.6. Let (X, M, *, K) be a fuzzy strong b-metric space. Then an open
ball is an open set.

Proof. We will show that an open ball B(z,r,t) is an open set. Let y € B(z,r,t).
Then we have M(x,y,t) > 1 —r. Since M(x,y, ) is nondecreasing and continuous,
there exists to € (0,t) such that M (z,y,t9) > 1 —r. Let ro = M (z,y,ty). Therefore
ro > 1 —r and we can find a 5,0 < s < 1 such that ro >1—s>1—1r. For ry and
s such that rg > 1 — s we can ﬁnd r1,0 < r; < 1 such that ro xr; > 1 —s. Now
we will show that B(y,1 —ry, ) C B(z,r,t). z € B(y,1 —ry,52) implies that
M(y, z,52) > r. Hence we have

t—t

> roxrp2>21l—s>1—r.

Therefore z € B(x,r,t) and B(y,1 —r,52) C B(z,r,t). O

Proposition 2.7. Let (X, M, *, K) be a fuzzy strong b-metric space. Then (X, )
is Hausdorff.

Proof. Let x, y € X such that x # y. From the definition of fuzzy strong b-metric
space, 1 > M (z,y,t) > 0 say M(x,y,t) = r. For all ry such that 1 > o > r we can
find r; € (0,1) such that ry %7, > ro. Now consider, the sets B(z,1 —ry, %) and
B(y,1—r1,5%). Clearly B(z,1—r,£)NB(y,1 —r1, 5=) = @.

Otherwise, if there exists z € B(z,1 —ry,5) N B(y,1 — 1, 5%). Then

o

t

> rikry>2rg>r
which is a contradiction. O

Proposition 2.8. Let (X, M, x, K) be a fuzzy strong b-metric space. Then (X, 75/)
is first countable.

11

Proof. Let x € X. We need to show that B, = {B(z,—,—) : n € N} is a local
n'n

basis for x € X. Let U € 73 such that € U. Since U is open, then there exists

1
€ (0,1) and ¢ > 0 such that B(z,r,t) C U. Choose n € N such that — < r and
n

1 11 11
— < t. Now we need to show B(x,—,—) C B(x,r,t). Let z € B(z,—,—). Then
n n’'n n’'n
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1 1 1
M(z,z,—) > 1—%> 1 —r. Since — < t, we have 1 —r < M(x,z,—) < M(x, z,t).
n n n

11

Hence z € B(x,r,t) which implies B(z, —, —) C B(z,r,t) C U. Consequently, B, is
n'n

countable local basis for . Hence (X, 7)) is first countable topological space. Il

Definition 2.9. Let (X, M, %, K) be a fuzzy strong b-metric space, x € X and {z,}
be a sequence in X. Then

i) {z,} is said to converge to x if for any ¢ > 0 and any r € (0,1) there exists a
natural number ng such that M (z,,x,t) > 1 —r for all n > ng. We denote this by
lim, .oz, = or x,, — x as n — o0.

ii) {z,} is said to be a Cauchy sequence if for any r € (0,1) and any ¢ > 0 there
exists a natural number ng such that M (z,, z,,t) > 1 —r for all n,m > ny.

iii) (X, M, x, K) is said to be a complete fuzzy strong b-metric space if every Cauchy
sequence is convergent.

Theorem 2.10. Let (X, M, , K) be a fuzzy strong b-metric space, x € X and {z,}
be a sequence in X. {z,} converges to z if and only if M (z,,z,t) — 1 as n — oo,
for each ¢t > 0.

Proof. (=:) Suppose that, x, — x. Then, for each t > 0 and r € (0,1), there
exists a natural number ng such that M(x,,z,t) > 1 —r for all n > ny. We have
1 — M(zp,z,t) <r. Hence M(x,,x,t) — 1 as n — oc.

(«<:) Now, suppose that M(z,,x,t) — 1 as n — oo. Then, for each ¢ > 0 and
r € (0,1), there exists a natural number ng such that 1 — M(x,,z,t) < r for all
n > ng. In that case, M (z,,z,t) > 1 —r. Hence z,, — = as n — oo. O

Let X be a first countable space. Then X is Hausdorff if and only if sequential

limits in X are unique [5]. Then the following is obvious.

Proposition 2.11. Let (X, M, %, K) be a fuzzy strong b-metric space and {x,,} C X.
If {x,} is convergent, then the limit point of {x,} is unique.

Proposition 2.12. Let (X, M, %, K) be a fuzzy strong b-metric space and {x,} C X.
If {x,} is convergent, then {z,} is Cauchy.

Proof. Let r and ¢ be arbitrary real number such that r € (0,1),¢ > 0 and lim z,, = z
for x € X. Since r € (0,1), there exists r¢ € (0,1) such that

(1—rg)*x(L—1rg) >1—r.

Since lim x,, = z, for 5% > 0 and o € (0,1) there exists ng € N such that

n—oo

t
nZnoﬁM(xn,x,ﬁ) > 1—ry.

Therefore we have

t
K

t
2K

t
M(zp, xp,t) > M(x,, x, 5) x M(x, 2,

t
Z M(CCn,l’, ﬁ) * M(LU,I'W“

>(1—=rg)x(l—rg)>1—r
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for m,n > ny which means {z,} is Cauchy. O

Definition 2.13. Let (X, M, %) be a fuzzy strong b-metric space. For ¢t > 0, the
closed ball B[z, r,t] with center z and radius r € (0, 1) is defined by Blx,r,t] = {y €
X :M(x,y,t) >1—r}.

Proposition 2.14. Let (X, M, %, K) be a fuzzy strong b-metric space. Then a closed
ball is a closed set.

Proof. Let y € Blz,r,t]. We need to show that y € B[z, t]. Since X is first
countable space, there exists a sequence {y,} in B[z, r,t] such that y, — y. Hence
M (yn,y,t) — 1 for all £ > 0. For a given € > 0

M(z,y,t +€) > M(x,yn,t) * M(Yyn,y, 1)
Hence

n—oo

> (I—=r)x1=1-r.

(If M(x,y,,t) is bounded, the sequence {y,} has a subsequence, which we again
denote by {y,} for which lim M (z,y,,t) exists.) In particular for n € N, take

t
€ = —. Then we have
n
t
M(l’,y,t—l- _) = (1 —7”)
n

and ;
M(z,y,t) > lim M(z,y,t+—)>1—r.
n

n—oo

Therefore y € Blx, .. O

Proposition 2.15. Let (X, D, K) be a strong b-metric space and (X, Mp, -, K)
be the standard fuzzy strong b-metric space induced by D. Then the topology mp
induced by D and the topology 7, induced by Mp are the same.

Proof. (=) Let A € 1p. For every = € A, there exists € > 0 such that B(z,¢e) C A.
For a fixed t > 0, we have
t t

M t) = > )
p(7,y,1) t+ D(x,y) ~ t+e

If we write 1 —r = HLE, then we have Mp(z,y,t) > 1 —r which means B(x,r,t) C A
and A € T,

(<). Let A € 1,. For every z € A, there exists 0 < r < 1 and ¢ > 0 such that
B(z,r,t) C A. We have

t
Mp(z,y,t) = ————>1—r
p(@:y,t) t+ D(z,vy)
t > 1—=r)t+(1—7r)D(z,y)
rt
D <
(x’y) 1 —r
If we write ¢ = ;- where 0 < € < 1, then we have D(x,y) < e which means

B(z,e) C A and A € 1p. Therefore 7 = 7p. O
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Theorem 2.16. Let (X, M, *, K) be a fuzzy strong b-metric space. If (X, 7)) is
separable then (X, 7)) is second countable.

Proof. Let A = {a, : n € N} be a countable dense subset of X. Consider
11

—{Bla,. —. =
We will show that B is a countable base for 7,,. Clearly B is countable. Let U be an
open set in X. For any « € U, there exists r € (0,1) and ¢t > 0 such that B (x,r,t) C

U. For r € (0,1), we can find an s € (O 1) such that (1 —s)* (1 —s) > (1 —7r). Let
m € N such that 1 <s and — < z=. Since A is dense in X, there exists a; € A

11
If EB —,—) th
) 1ty (aj,m,m> en,

: 4,k € N}

1
such that a; € B(z, —, —
m

m’
t
M(:E y?) > M(x7aj7§)*M(y>aja

t
> o)
1 1
Z M(x7ajaa)*M(y7aj7E)
1 1
> (1— —)%(1— —
> (1))
> (1—s)x(1—ys)
> (1—r).
Hence y € B (z,7,t) and B is a basis. O

Definition 2.17. Let X be a topological space, (Y, M, *, K) be a fuzzy strong b-
metric space and f, : X — Y be a sequence of functions. Then {f,} is said to
converge uniformly to a function f from X to Y if for given r € (0,1) and ¢ > 0,
there exists ng € N such that M (f,(x), f(x),t) > 1 —r for all n > ny and for all
reX.

Theorem 2.18. Let X be a topological space, (Y, M, x, K) be a fuzzy strong b-
metric space and f, : X — Y be a sequence of continuous functions. If {f,}
converges uniformly to f then f is continuous.

Proof. Let V be an open set in Y, zg € f~1(V) and let yo = f(z0). Then there exist
r € (0,1) and t > 0 such that B(yo,r,t) C V. Forr € (0,1), we can find an s € (0, 1)
such that (1 —s)*(1—s)*(1—s)>1—r. Since {f,} converges uniformly to f, for
given s € (0,1) and ¢ > 0, there exists ng € N such that M(f,(z), f(z), 7z) > 1 —s
for all n > ny which also implies M (f,(z), f(x),5) > 1 —s. Since f, is continuous
for all n € N, we can find a neighborhood U of zq, for a fixed n > ng, such that
fa(U) C B(fn(20), 5, 1=). Therefore M(f,(x), fu(xo), 1z) > 1 — s for all z in U an

we have

M(f(@), f(zo),t) = M(f(2), ful@), 5) * M(fu(@), fal20), 5%)
* M (fn(20), (%)aﬁ)
> 1—95)*x(1—s)*x(1—29)
> 1—r.

Hence, f(x) € B(f(xq),r,t) C V for all z € U which means f(U) C V and f is

continuous. O
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1 introduction

Mappings plays an important role in the study of modern mathematics, especially in
Topology and Functional Analysis. Closed and open mappings are one such mappings
which are studied for different types of closed sets by various mathematicians for the past
many years. Levine [16] introduced the notion of generalized closed sets. After him
different mathematicians worked and studied on different versions of generalized closed
sets and related topological properties.

Generalized Homeomorphisms, wgra-homeomorphisms, rgo-homeomorphisms, rps-
homeomorphisms and gs and sg homeomorphisms have been introduced and studied by
Maki et al. [19], Sakthivel and Uma [25], Vadivel and Vairamanickam [30], Mary and
Thangavelu [27], Devi et al. [9] respectively.

We give the definitions of some of them which are used in our present study. In this paper,
we introduce the concept of arm-homeomorphism and study the relationship between
homeomorphisms, wgra-homeomorphisms, rgo-homeomorphisms, rps-homeomorphisms,
w-homeomorphisms, g-homeomorphisms and rwg-homeomorphisms. Also we introduce

“Corresponding Author.
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new class of maps awc-homeomorphisms which form a subclass of arw-homeomorphisms.
This class of maps is closed under composition of maps. We prove that the set of all arwc-
homeomorphisms forms a group under the operation composition of maps.

2. Preliminaries

Throughout this paper (X,t) and (Y,o) (or simply X and Y) always denote topological
spaces on which no separation axioms are assumed unless otherwise mentioned. For a
subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A
respectively. X\A or A° denotes the complement of A in X.

We recall the following definitions and results.

Definition 2.1 A subset A of a topological space (X, 1) is called

(i) semi-open set [17] if A < cl(int(A)) and semi-closed set if int(cl(A)) < A.

(ii) pre-open set [21] if A c int(cl(A)) and pre-closed set if cl(int(A)) < A.

(iii) o-open set [13] if A c int(cl(int(A))) and o -closed set if cl(int(cl(A)))c A.

(iv) semi-pre open set [2] (=p-open[1] if Accl(int(cl(A)))) and a semi-pre closed set (=[3-
closed ) if int(cl(int(A)))cA.

(v) regular open set [28] if A =int(clA)) and a regular closed set if A = cl(int(A)).

(vi) Regular semi open set [8] if there is a regular open set U such that U ¢ A < cl(U).

(vii) Regular a-open set[31] (briefly,ra-open) if there is a regular open set U such that U
cA coacl(U).

Definition 2.2 A subset A of a topological space (X, t) is called

(i) regular generalized a-closed set (briefly, rga-closed)[31] if acl (A)cU whenever
Ac U and U isregular o-open in X.

(ii) generalized closed set(briefly g-closed) [16] if cl(A)cU whenever AcCU and U is
open in X.

(iii)  generalized semi-closed set(briefly gs-closed)[4] if scl(A) < U whenever AcU and
U is open in X.

(iv)  generalized semi pre regular closed (briefly gspr-closed) set[24] if spcl(A )cU
whenever ACU and U is regular open in X.

) strongly generalized closed set [24]](briefly,g*-closed) if cl(A)cU whenever AcU
and U is g-open in X.

(vi)  o-generalized closed set(briefly ag-closed)[20] if acl(A)cU whenever AcU and U
is open in X.

(vii)  o-closed set[ 29] if cl(A)cU whenever ACU and U is semi-open in X.

(viii) weakely generalized closed set(briefly, wg-closed)[23] if cl(int(A))cU whenever
AcU and U is open in X.

(ix) regular weakly generalized closed set (briefly, rwg-closed)[23] if cl(int(A))cU
whenever ACU and U is regular open in X.

(x) semi weakly generalized closed set (briefly, swg-closed)[23] if cl(int(A))cU
whenever AcU and U is semi open in X.

(xi)  generalized pre closed (briefly gp-closed) set [18] if pcl(A) cU whenever AcU
and U is open in X.
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(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)
(xviii)
(xix)

(xx)
(xxi)
(xxii)
(xxiii)

regular o-closed (briefly ro -closed) set [5] if cl(A) < U whenever AcU and U is
regular semi-open in X.

g*-pre closed (briefly g*p-closed) [32] if pcl(A) < U whenever Ac U and U is g-
open in X

generalized regular closed (briefly gr—closed)set[7] if rcl(A)c U whenever Ac U
and U is open in X.

regular generalized weak (briefly rgw-closed) set[22] if cl(int(A))cU whenever
AcU and U is regular semi open in X.

weak generalized regular—a closed (briefly wgra-closed) set[14]if cl(int(A)cU
whenever Ac Uand U is regular a-open in X.

regular pre semi—closed (briefly rps-closed) set [26]if spcl(A)cU whenever AcU
and Uis rg- open in X.

generalized pre regular weakly closed (briefly gprw-closed) set [15] if pcl(A)cU
whenever AC U and U is regular semi- open in X.

a-generalized regular closed (briefly agr-closed) set [33] if acl(A)cU whenever
AcU and U is regular open in X.

R*-closed set [12] if rcl(A)cU whenever ACU and U is regular semi- open in X.
generalized pre regular closed set(briefly gpr-closed)[11] if pcl(A)cU whenever
AcU and U is regular open in X.

oa- closed set [6] if acl(A)cU whenever Ac U and U is w-open in X.

a regular o- closed (briefly arm -closed) set[37] if acl(A) < U whenever AcU and
Uis rw-open in X.

The compliment of the above mentioned closed sets are their open sets respectively.

Definition 2.3 A map f: (X,1)—(Y,0) is said to be

(i)
(ii)
(iii)

(iv)
(v)

(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)
(xviii)
(xix)

regular-continuous(r-continuous) [3] if f 1(V) is r-closed in X for every closed
subset V of Y.

Completely-continuous [3]if 1(V) is regular closed in X for every closed subset V
of Y.

strongly a-continuous [38 ] if (V) is a-closed in X for every semi-closed subset V
of Y.

orm-continuous [35] if 1(V) is arm —losed in X for every closed subset V of Y
Strongly-continuous[28] if (V) is Clopen (both open and closed) in X for every
subset V of Y.

o-continuous[13 ] if 1(V) is a—closed in X for every closed subset V of Y.
ag-continuous[20] if 1(V) is ag—closed in X for every closed subset V of Y.
wg-continuous[23] if £(V) is wg—closed in X for every closed subset V of Y.
rwg-continuous[23] if f 1(V) is rwg—closed in X for every closed subset V of Y.
gs-continuous [4] if £'(V)is gs—closed in X for every closed subset V of Y.
gp-continuous [18] if (V) is gp—closed in X for every closed subset V of Y.
gpr-continuous [11] if £'(V) is gpr—closed in X for every closed subset V of Y.
agr-continuous [33] if f 1(V) is agr—closed in X for every closed subset V of Y.
wo-continuous [6 ] if f 1(V) is wo—closed in X for every closed subset V of Y.
gspr-continuous [24] if £'(V) is gspr—closed in X for every closed subset V of Y.
g-continuous [6] if £(V) is g—closed in X for every closed subset V of Y
o-continuous [29] if 1(V) is m—closed in X for every closed subset V of 'Y
rga-continuous [31] if 1(V) is rga—closed in X for every closed subset V of Y.
gr-continuous [7] if (V) is gr—closed in X for every closed subset V of Y.
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(xx) g*p-continuous [32 ] if f "WV is g*p—closed in X for every closed subset V of Y.
(xxi) rps-continuous [26] if £'(V) is rps—closed in X for every closed subset V of Y.
(xxii) R*-continuous [12] if {~ 1(V) is R*—closed in X for every closed subset V of Y.
(xxiii) gprw-continuous [15] if (V) is gprw—closed in X for every closed subset V of Y.
(xxiv) wgra-continuous [14] if { 1(V) is wgro—closed in X for every closed subset V of Y.
(xxv) swg-continuous [23] if £'(V) is swg—closed in X for every closed subset V of Y.
(xxvi) rw-continuous [5] if f 1(V) is rw—closed in X for every closed subset V of Y.
(xxvii) rgw-continuous [22] if (V) is rgw—closed in X for every closed subset V of Y.

Definition 2.4 A map f: (X,1)—(Y,0) is said to be

(i) o-irresolute [13] if f 1(V) is a-closed in X for every a-closed subset V of Y.

(ii) irresolute [6] if 1(V) is semi-closed in X for every semi-closed subset V of Y.

(iii) contra w-irresolute [29] if 1(V) is w-open in X for every m-closed subset V of Y.

(iv) contra irresolute [13] if 1(V) is semi-open in X for every semi-closed subset V of Y.

(v) contra r-irresolute [3] if £~ 1(V) is regular-open in X for every regular-closed subset V
of Y

(vi) rw*-open(resp rw*-closed) [5] map if f(U) is rw-open (resp. rw-closed) in Y for
every rw-open (resp. rw-closed) subset U of X.

(vii)contra continuous [10] if f 1(V) is open in X for every closed subset V of Y .

Lemma 2.5 [37]

i) Every closed (resp. regular-closed, a-closed) set is arw-closed set in X.

ii) Every arm-closed set is ag-closed set

iii) Every orm-closed set is agr-closed (resp. a-closed, gs-closed, gspr-closed, wg-
closed, rwg-closed, gp-closed, gpr-closed) set in X

Lemma 2.6 [37] If a subset A of a topological space X and

i) If A isregular open and arm-closed then A is a-closed set in X
ii) If Aisopen and ag-closed then A is arw-closed set in X

iii) If Aisopenand gp-closed then A is arm-closed set in X

iv) If Ais regular open and gpr-closed then A is arm-closed set in X
v) If Aisopen and wg-closed then A is arm-closed set in X

vi) If Aisregular open and rwg-closed then A is arm-closed set in X
vii) If A isregular open and agr-closed then A is arm-closed set in X
viii) If A is w-open and wa-closed then A is arw-closed set in X

Lemma 2.7 [37] If asubset A of a topological space X and

i) If Aissemi-open and sg-closed then itis arwm-closed.

ii) If A is semi-open and w-closed then itis arw-closed.

iii) A is arm-open iff UCaint(A), whenever U is rw-closed and U € A.

Definition 2.8 A topological space (X,1) is called an a-space if every a-closed subset of X
is closed in X.

Definition 2.9 A map f: (X,1)—(Y,0) is said to be

(i) g-closed [29] if f(F)is g-closed in (Y, o) for every closed set F of (X, 1),

(ii)) w-closed [22] if f(F) is w-closed in (Y, o) for every closed set F of (X, 1),

(iii) wg-closed [23] if f(F)is wg-closed in (Y, o) for every closed set F of (X, 1),
(iv) rwg-closed [23] if f(F)is rwg-closed in (Y, o) for every closed set F of (X, 1),
(v) rg-closed [19] if f(F)is rg-closed in (Y, o) for every closed set F of (X, 1) ,



Journal of New Theory 21 (2018) 68-77 72

(vi) gpr-closed [11] if f(F) is gpr-closed in (Y, o) for every closed set F of (X, 1),
(vii) regular closed [31] if f(F) is closed in (Y, o) for every regular closed set F of (X, 7).

Definition 2.10 A map f : (X, 1) — (Y, o) is said to be

(i) g-open [15]if f(U) is g-open in (Y, o) for every open set U of (X, 1),

(ii) w-open [22] if f(U) is w-open in (Y, o) for every open set U of (X, 1),

(iii) wg-open [23] if f(U) is wg-open in (Y, o) for every open set U of (X, 1),

(iv) rwg-open [23] if f(U) is rwg-open in (Y, o) for every open set U of (X, 1),

(v) rg-open [19]if f(U) is rg-open in (Y, o) for every open set U of (X, 1),

(vi) gpr-open [11]if f(U) is gpr-open in (Y, o) for every open set U of (X, 1),

(vii) regular open [31]if f(U) is open in (Y, o) for every regular open set U of (X, 1).

Definition 2.11 A bijective function f : (X, 1) — (Y, o) is called

(i) generalized homeomorphism (g-homeomorphism) [2]if both f and f' are g-
continuous,

(ii) gc-homeomorphism [2] if both fand f' are gc-irresolute,

(iii) rwg-homeomorphism [16] if both fand f "are rwg-continuous,

(iv) wx-homeomorphism [20] if both fand ! are w-irresolute,

(v)  w-homeomorphism [20] if both fand f~ ! are w-contiuous.

(vi) rps-homeomorphism [27] if both fand ™' are rps-contiuous.

(vii) rga-homeomorphism [30] if both f and f~ ! are rgo-contiuous.

(viii) wgro-homeomorphism [25] if both f and f' are wgra-contiuous

3 aro-Homeomorphisms in Topological Spaces
We introduce the following definition.

Definition 3.1 A bijection f : (X, 1) — (Y, o) is called o regular ®-homeomorphism
(briefly, arm-homeomorphism) if fand f' are arm-continuous.

We denote the family of all arw-homeomorphisms of a topological space (X, t) onto itself
by arm-h(X, 7).

Example 3.2 Consider X =Y = {a, b, ¢, d} with topologies 1 = ¢ ={X, 0, {a},{b}, {a, b},
{a, b, c}} Let f:(X,1)—(Y,0) by f(a)=c, f(b)=a, f(c)= b, f(d)=d. Then f is aro-continuous
and f~' is ar@-continuous. Therefore f is arm-homeomorphisms.

Theorem 3.3 Every homeomorphism is an ar®w-homeomorphism, but not conversely.
Proof: Let f :(X,71)—(Y,0) be a homeomorphism. Then f and f~ ! are continuous and f is
bijection. As every continuous function is ar®-continuous, we have f and f' are aro-
continuous. Therefore f is arm-homeomorphism.

The converse of the above theorem need not be true, as seen from the following example.

Example 3.4 Consider X =Y ={a, b, ¢, d} with topologies T = ¢ ={X, ¢, {a},{b},{a, b},
{a, b, c}} and Define a map f :(X, 1)—(Y, o) by f(a)=c, f(b)=a, f(c)=b, f(d)=d. Then f is
ar®-homeomorphism but it is not homeomorphism, since the inverse image of closed F =
{c,d}inY then f'(F)= {a, d} which is not closed set in X .
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Theorem 3.5 Every a-homeomorphism is an ar@-homeomorphism but not conversely.

Proof: Let f : (X, 1) — (Y, o) be a a-homeomorphism. Then f and f~ ! are a-continuous
and f is bijection. As every a-continuous function is are-continuous, we have f and '
are aro-continuous. Therefore fis aro-homeomorphism.

The converse of the above theorem is not true in general as seen from the following
example.

Example 3.6 Consider X =Y = {a, b, ¢, d} with topologies 1 =0 = {X, ¢, {a}, {b},{a, b},
{a, b, c}} and define a map f : (X, 1) — (Y, o) by f(a)=c, f(b)=a ,f(c)=b, f(d)=d. Then f is
ar®-homeomorphism but it is not a-homeomorphism, since the inverse image of closed
F={c,d} in Y then f'(F)= {a, d} which is not a-closed set in X .

Theorem 3.7 i) Every aro-homeomorphism is an ag-homeomorphism.

ii) Every arm-homeomorphism is an wg-homeomorphism (resp. gs-homeomorphism, rwg-
homeomorphism, gp-homeomorphism, gspr-homeomorphism, gpr-homeomorphism, wa-
homeomorphism, agr-homeomorphism )

Proof: i) Let f:(X,1)—(Y,0) be a aro-homeomorphism. Then f and f~ ! are aro-continuous
and f is bijection. As every arm-continuous function is ag-continuous, we have f and ™’
are ag-continuous. Therefore f is ag-homeomorphism.

Similarly we can prove ii)

The converse of the above theorem is not true in general as seen from the following
example.

Example 3.8 Consider X =Y = {a, b, ¢} with topologies T = {X, ¢, {a} ,{b ,c}} and 6 =
{Y, ¢ ,{a}}. Let f :(X,1)—(Y,0) by f(a)=b, f(b)=a, f(c)=c. Then this function is og-
homeomorphism, (resp. wg-homeomorphism, gs-homeomorphism, rwg-homeomorphism,
gp-homeomorphism, gspr-homeomorphism, gpr-homeomorphism, ®o-homeomorphism,
agr—homeomorphism) but it is not arow-homeomorphism, since the closed set F={b, c} in
Y, f 1(F)= {a, ¢} which is not arm-closed setin X .

Remark 3.9 The following examples shows that ar®w-homeomorphism are independent of
pre-homeomorphism,  p-homeomorphism, g-homeomorphism, ®-homeomorphism,
rw-homeomorphism, swg-homeomorphism, rgw-homeomorphism, wgra-homeomorphism,
rga-homeomorphism, gprw-homeomorphism, g*p-homeomorphism, gr-homeomorphism,
R*- homeomorphism, rps-homeomorphism, semi-homeomorphism .

Example 3.10 Let X=Y={a, b, c}, 1= {X, ¢, {a}, {b,c}} o={Y, 0, {a}, {b,c}}, Let map
f: X—Y defined by f(a)=b f(b)=a f(c)=c. Then pre-homeomorphism, -homeomorphism,
g-homeomorphism, ®-homeomorphism, rw-homeomorphism, swg-homeomorphism, rgw-
homeomorphism, wgro-homeomorphism, rga-homeomorphism, gprw-homeomorphism,
g*p-homeomorphism, gr-homeomorphism, R*-homeomorphism , rps-homeomorphism but
it is not arm-homeomorphism, since the inverse image of the closed set {b,c} in Y is {a, c}
which is not aro-closed set in X .
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Example 3.11 X=Y={ab,cd}, t = {X, ¢ ,{a},{b},{ab},{ab,c}} c ={Y, ¢,
{a},{b},{a,b},{a,b,c}} Let map f: X—Y defined by f(a)=b, f(b)=a , f(c)=d, f(d)=c then
aro-homeomorphism  but  not, g-homeomorphism, ®-homeomorphism, rw-
homeomorphism, gprw-homeomorphism, g*p-homeomorphism, gr-homeomorphism, R*-
homeomorphism as closed set F={d} in X, then f(F)={c} in Y, which is not gr-closed
(resp. g-closed, g*p-closed, m-closed, rw-closed, gprw-closed, gr-closed, R*-closed ) set in
Y.

Theorem 3.12 Let f:(X,1)—(Y,0) be a bijective arm-continuous map. Then the following
are equivalent.

(i) f isa arw-open map,

(ii) f is aro-homeomorphism,

(iii) f is a aro-closed map.

Proof: Proof follows from theorem 3.39 in [36].

Remark 3.13 The composition of two ar®-homeomorphism need not be a arm-
homeomorphism in general as seen from the following example.

Example 3.14 Consider X =Y =Z= {a, b, ¢, d} with topologies 1=0=u = {X, ¢, {a},
{b}, {a, b}, {a, b, c}} and define a map f: (X, 1)—(Y, o) by f(a)=c, f(b)=a, f(c)=b, f(d)=d.
and g :Y—Z defined by g(a) =b, g(b) = a, g(c) =d, g(d) = c then both f and g are arw-
homeomorphisms but their composition go f: (X, 1)—(Z, W) is not aro-homeomorphism
because for the open set {a, b} of (X,1), gof ({a,b}) =g(f({a, b}) = g(a,,c}) = {a, d}, which
is not arm-open in (z, W). Therefore g o f is not arw-open and so g ° f is not arow-
homeomorphism.

Definition 3.15 A bijection f :(X,1)—(Y,0) is said to be ar®mc-homeomorphism if both f
and f! are arw-irresolute. We say that spaces (X, 1) and (Y, o) are aroc-homeomorphic if
there exists a arowc-homeomorphism from (X, 1) onto (Y, o).

We denote the family of all aroc-homeomorphisms of a topological space (X,t) onto itself
by aroc-h(X, 1).

Theorem 3.16: Every oarmc-homeomorphism is an aro-homeomorphism but not
conversely.

Proof: Let f :(X,1)—(Y,0) be an aroc-homeomorphism. Then f and f~ !are aro-irresolute
and f is bijection. By theorem 3.20 in [35] f and f ' are ar@-continuous. Therefore f is
arcm-homeomorphism.

The converse of the above Theorem is not true in general as seen from the following
example.

Example 3.17 Consider X =Y =Z= {a, b, ¢, d} with topologies 1 =06 =u = {X, ¢, {a},
{b}, {a,b}, {a,b,c}} and define a map f: (X, 1) — (Y, o) by f(a)=c, f(b)=a, f(c)=b, f(d)=d.
Then f is ar®w-homeomorphism but it is not arwc-homeomorphism, since f is not aro-
irresolute.
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Theorem 3.18 Every oaroc-homeomorphism is wg-homeomorphism (resp. og-
homeomorphism, gs-homeomorphism, rwg-homeomorphism, gp-homeomorphism, gspr-
homeomorphism, gpr-homeomorphism, wo-homeomorphism, agr-homeomorphism) but
not conversely.

Proof: Proof follows from lemma 2.5 and 2.6.

Remark 3.19 From the above discussions and known results we have the following
implications.

d
<«

A
A |

B means A & B are independent of each other
B means A implies B but not conversely

vy

regular—homeomorphism

R*—homeomorphism
g*—homeomorphism rps—homecomorphism

/ rec—homecmorphism

swo—homeomorphism

homeomorphism ——» w-homeomorphism g-homeomorphism
rw—homeomorphism
roew—homeomornphism
gr-homeomorphism
g*p—homeomorphism

" W

o—homeomaorphism
o—homeomorphism 4h| arw-homeomorplism

@;—h omeomorphism
/ os—homeomorphism
o—homeomorphism

pre-homeomorphi$m
ogr—homeomorphism
gg—homeomorphism  gspr—homeomorphism

T

ism gp—homeomorphism wg—homeomorphism

v
Semi—homeomorphism

P—homeomorp

gpr—homeomorphism  rwg—homeomorphism

Theorem 3.20 Let f :(X,1)—(Y,0) and g :(Y,0)—(Z,n) are arcoc-homeomorphisms, then
their composition g o f: (X, 1) — (Z, n) is also aroc-homeomorphism.

Proof: Let U be a arm-open set in (Z, n). Since g is aro-irresolute, g~'(U) is ar@-open in
(Y,o0). Since f is orm-irresolute, f 1(g_l(U)) = (go f)_l(U) is ar® open set in (X, 7).
Therefore g o f is arw-irresolute. Also for a arm-open set G in (X,1), we have (g o f)(G) =
g(f(G)) = g(W), where W =f(G). By hypothesis, f(G) is arm-open in (Y, 6) and so again by
hypothesis, g(f(G)) is a arm-open set in (Z, 1). That is (g o f)(G) is a arw-open set in (Z, 1)
and therefore (g o ' is orw-irresolute. Also g o f is a bijection. Hence go f is aroc-
homeomorphism.

Theorem 3.21: The set arwc-h(X, 1) is a group under the composition of maps.
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Proof: Define a binary operation * : aroc-h(X,t) X aroc-h(X,t)—arwc-h(X,t) by f * g =
gof forall f,gearwc-h(X,r) and o is the usual operation of composition of maps. Then
by Lemma 2.8, g o fearwc-h(X, 1). We know that the composition of maps is associative
and the identity map I:(X,1)—(X,t) belonging to armc-h(X,t) serves as the identity
element. If fearwmc-h(X,1), then f le oroc-h(X,t) such that fo f "'=flof=1 and so
inverse exists for each element of arwc-h(X,t). Therefore (arwc-h(X,t), ©) is a group under
the operation of composition of maps.

Theorem 3.22 Let f : (X, 1)—(Y, o) be a aroc-homeomorphism. Then f induces an
isomorphism from the group armc-h(X, 1) onto the group arwc-h(Y, ).

Proof: Using the map f, we define a map Wf : aroc-h(X,1)—arwc-h(Y, o) by ¥f (h)=foh
of! for every h earoc-h(X,t). Then Wf is a bijection. Further, for all h;, hy € armc-
h(X,t), ¥f (hjohy) = fo(h ohy)of!' = (fohjof e(fohyof') = Pf (h)) o¥f (hy).
Therefore Wf is a homeomorphism and so it is an isomorphism induced by f.
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Abstaract — In this paper we introduce a new class of functions called Bdg-continuous functions.
We obtain several characterizations and some their properties. Also we investigate its relationship
with other types of functions. Further we introduce and study a new class of functions namely
Bdg-irresolute.
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1 Introduction

Levine [6], Noiri [10], Balachandran et al [2] and Dontchev and Ganster [3] intro-
duced generalized closed sets, J-continuity, generalized continuity and d-generalized
continuity (beiefly dg - continuity) & d-generalized irresolute functions respectively.
Devi et al [2] and Veerakumar [12] introduced semi-generalized continuity and g-
continuity in topological spaces. The purpose of this present paper is to define a
new class of generalized continuous functions called Bdg-continuous functions and
investigate their relationships to other generalized continuous functions. We further
introduce and study a new class of functions namely Bdg-irresolute.

2 Preliminaries

Throughout this paper (X, 7) and, (Y, 0) and (Z, n) represent non-empty topological
spaces on which no separation axioms are assumed unless or otherwise mentioned.

* Corresponding Author.
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For a subset A of X, cl(A), int(A) and A° denote the closure of A, the interior of A
and the complement of A respectively.
Let us recall the following definitions, which are useful in the sequel.
Definition 2.1. A subset A of a space (X,7) is called a
(i) semi-open set [5] if A C cl(int(A)).
(i) pre-open set [7] if AC int(cl(A)).
(iii) a-open set [9] if AC int(cl(int(A))).

The complement of a semi-open (resp. pre-open, a-open) set is called semi-closed
(resp. semi-closed, a-closed).

Definition 2.2. The d-interior [11] of a subset A of X is the union of all regular
open sets of X contained in A and is denoted by ints(A). The subset A is called
d-open [11] if A =ints(A), i.e. a set is d-open if it is the union of regular open sets.
The complement of a d-open set is called d-closed. Alternatively, a set AC (X,7) is
called o0-closed [11] if A = cls(A), where cls(A) ={z € X rint(cl(U))NA# o, U €T
and z € U}.

Definition 2.3. [11] A subset A of a space (X, 7) is called a

(i) t-set if int(A) = int(cl(A)).

(ii) B-set if A= G N F where G is open and F'is a t-set in X .
Definition 2.4. A subset A of (X,7) is called

(i) generalized closed (briefly g-closed) set [6] if cl(A)CU whenever A CU and U
is open in (X,7).

(ii) generalized semi-closed (briefly gs-closed) set [1] if scl(A)CU whenever A CU
and U is open in (X,7).

(iii) a- generalized closed (briefly ag-closed) set [2] if acl(A)CU whenever A CU
and U is open in (X,7).

(iv) d-generalized closed (briefly dg-closed) set [3] if cls(A) CU whenever A CU and
U is open in (X,7).

(v) g-closed set [12] if cl(A)CU whenever A CU and U is semi-open in (X, 7).

(vi) 0-g-closed (briefly dg-closed) set [4] if ¢ls(A) € U whenever A CU and U is
g-open in (X,7).

(vii) Bd-generalized closed (briefly Bdg-closed) set [8] if cls(A) C U whenever A
CU and U is B-set in (X,7).

The complement of a g-closed (resp. gs-closed, ag-closed, dg-closed, g-closed, dg-
closed, Bdg-closed) set is called g-open (resp. gs-open, ag-open, dg-open, g-open,
dg-open, Bdg-open).
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Definition 2.5. A function f: (X,7) — (Y, 0) is called

(i) semi-continuous [5] if f~1(V) is semi-closed in (X, 7) for every closed set V of
(Y,0).

(ii) g-continuous [2] if f~1(V) is g-closed in (X, 7) for every closed set V of (Y, o).
(iii) gs-continuous [2] if f71(V) is gs-closed in (X, 7) for every closed set V of (Y, ).

(iv) ag-continuous [2] if f~1(V) is ag-closed in (X,7) for every closed set V of
(Y, o).

(v) super continuous [10] if f~*(V) is d-open in (X,7) for every open set V of
(Y,0).

(vi) g-continuous [12] if f~1(V) is g-closed in (X, 7) for every g-closed set V of
(Y,0).

(vii) d-continuous [10] if f~1(V) is d-open in (X, ) for every d-open set V of (Y, o).

(viii) d-closed [10] if f(V') is d-closed in (Y, o) for every d-closed set V of (X, 7).
(ix) dg-continuous [3] if f~1(V) is dg-closed in (X, T) for every closed set V of (Y, o).
(x) dg-continuous [4] if f~1(V) is dg-closed in (X, 7) for every closed set V of (Y, o).

Proposition 2.6. [8] If A and B are Bdg-closed sets, then AU B is Bdg-closed.

3 Bdg-Continuous and Bdg-Irresolute Functions

In this section we introduce the following definitions.

Definition 3.1. A function f : (X,7) — (Y,0) is called Bdg-continuous if f~1(V)
is Bdg-closed in (X, 7) for every closed set V of (Y, o).

Example 3.2. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {a}, {b},
{a,b}, X} and o = {¢,{q},{p.q},Y}. Define f : (X,7) — (Y,0) by f(a) = p,
f(b) = q and f(c) =r. Clearly f is Bdg-continuous.

Definition 3.3. A function f : (X,7) — (Y, 0) is called Bdg-irresolute if f~1(V) is
Bdg-closed in (X, 7) for every Bdg-closed set V of (Y, o).

Example 3.4. Let X = {a,b,c} =Y = {p, q,r} with the topologies 7 = {¢, {a}, X}

and o = {¢,{q},{q,r},Y}. Define f : (X,7) — (Y,0) by f(a) = p, f(b) = r and
f(c) = q. Clearly f is Bdg-irresolute.

Proposition 3.5. If f: (X,7) — (Y,0) is Bdg-continuous then f is g-continuous,
ag-continuous, gs-continuous and dg-continuous maps.

Proof. 1t is true that every Bdg-closed set is g-closed, ag-closed, gs-closed and dg-
closed. []
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Remark 3.6. The converses of the above proposition are not true in general as seen
from the following examples.

Example 3.7. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {a}, X'}
and o = {¢, {p}, {p,r},Y}. Define the map f : (X,7) — (Y,0) by f(a) = p, f(b) = ¢
and f(c) = r. Clearly f is not Bdg-continuous because {¢, 7} is closed in (Y, o) but
f*{q,7}) = {b,c} is not Bdg-closed in (X, 7). However f is g-continuous.

Example 3.8. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {c}, X'}
and o = {¢, {p}, {p,q¢}. {p,7},Y}. Let f: (X,7) — (Y,0) be a function defined by
fla) =1, f(b) = qand f(c) = p. Then f is ag-continuous and sg-continuous. But
f is not Bdg-continuous, for the closed set {q} of (Y,o), f~1({q}) = {b} is not
Bdg-closed in (X, 7).

Example 3.9. Let X = {a,b,c}and Y = {p, ¢, r} with the topologies 7 = {¢, {a},
{a,ch, X} and o = {6, {p}, {a}, {p.a}, Y'}. Define f = (X,7) — (¥,0) by f(a) = q.
f(b) = r and f(c) = p. Then f is not Bdg-continuous, for {r} is closed in (Y, o),
f7Y{r}) = {b} is not Bdg-closed in (X, 7). However f is dg-continuous function.

Theorem 3.10. Every super continuous function is Bdg-continuous.
Proof. Tt is true that every d-closed set is Bdg-closed. m

Remark 3.11. The converse of Theorem 3.10 need not be true as shown in the
following example.

Example 3.12. Let X = {a,b,c¢} and Y = {p,q,r} with the topologies 7 =
{6,{a},{a,b}, X} and 0 = {¢p, {r},Y}. Let f: (X,7) — (Y, 0) be a function defined
by f(a) = p, f(b) =r and f(c) = q. Then f is Bdg-continuous. But f is not super
continuous, for {r} is open in (Y,o), f~1({r}) = {b} is not §-open in (X, 7).

Remark 3.13. The following examples show that Bdg-continuity is independent of
semi-continuity, g-continuity and dg-continuity.

Example 3.14. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {a},
{a,b},{a,c}, X} and 0 = {¢,{p,q},Y}. Let f : (X,7) — (Y,0) be a function
defined by f(a) = ¢, f(b) = r and f(c) = p. Then f is semi-continuous but not
Bdg-continuous.

Example 3.15. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {a},
X} and 0 = {¢, {q},Y}. Define a function f : (X,7) — (Y,0) by f(a) =q, f(b) =p
and f(c) =r. Then f is g-continuous and dg-continuous but not Bdg-continuous.

Example 3.16. Let X = {a,b,cland Y = {p, ¢, r} with the topologies 7 = {¢, {a},
{a,c}, X} and 0 = {¢,{p},Y}. Define a function f : (X,7) — (Y,0) by f(a) = ¢,
f(b) =rand f(c) = p. Then f is neither semi-continuous nor g-continuous. Moreover
it is not dg-continuous. However f is Bdg-continuous function.

Remark 3.17. All the above discussions of this section can be represented by the
following diagram. A — B(A < B) represents A implies B but not conversely (A
and B are independent of each other).
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4 Characterizations

Theorem 4.1. A function f : (X,7) — (Y, 0) is Bdg-continuous iff f~1(U) is Bdg-
open in (X, 1) for every open set U in (Y, o).

Proof. Let f:(X,7) — (Y,0) be an Bdg-continuous function and U be an open set
in (Y,0). Then f~1(U®) is Bdg-closed set in (X, 7). But f~1(U¢) = [f~(U)]° and
hence f~1(U) is Bdg-open in (X, 7). Conversely f~1(U) is Bdg-open in (X, ) for
every open set U in (Y, o). Then U¢ is closed set in (Y, o) and [f~1(U)]¢ is Bdg-closed
in (X,7). But [f~1(U)]c = f~Y(U°), so f~H(U*®) is Bdg-closed set in (X, 7). Hence f

is Bdg-continuous. m

Theorem 4.2. Let f: (X,7) — (Y,0) be a Bog-irresolute and g : (Y,0) — (Z,n) a
Bég-irresolute. Then their composition is g o f : (X, 7) — (Z,n) is Bdg-irresolute.

Proof. Let F be Bdg-closed set in (Z,n). Then g~!(F) is Bdg-closed in (Y, o). Since
f is Bdg-irresolute, (go f)"Y(F) = f~1(g ' (F)) is Bdg-closed set of (X, 7) and so
go f is Bdg-irresolute function. O]

Remark 4.3. The composition of two Bdg-continuous functions need not be Bdg-
continuous as the following examples shows.

Example 4.4. Let X = {a,b,c} =Y = Z with the topologies 7 = {¢, {b}, {c}, {a, b},
{b,c}, X} and 0 = {¢, {b},{a,c}, Y} and n = {¢, {a}, {b}, {a, b}, Z}. Define a func-
tion f: (X, 7) — (Y,0) by f(a) = a, f(b) =cand f(c) =bandlet g: (Y,0) — (Z,n)
be the identity function. Clearly f and g are Bdg-continuous. But go f: (X,7) —
(Z,n) is not an Bdg-continuous function because (go f)~*({c}) = g7 ({c})) =
F71({c}) = {b} is not an Bdg-closed in (X, 7) where as {c} is a closed set of (Z,n).

Theorem 4.5. Let f : (X,7) — (Y,0) and g : (Y,0) — (Z,n) be two functions.
Then

(i) go f : (X,7) — (Z,n) is Bdg-continuous, if ¢ is continuous and f is Bdg-
continuous.
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(ii)) go f : (X,7) — (Z,n) is Bdg-continuous, if ¢g is Bdg-continuous and f is
Bdg-irresolute.

Proof. (i) Let F be any closed set in (Z, 7). Since g is continuous, g~ !(F') is closed in
(Y,0). But f is Bdg-continuous, (go f) ' (F) = f~'(¢7'(F)) is Bdg-closed of (X, 1)
and hence g o f is Bdg-continuous function.

(ii) Let G be any closed set in (Z,7n). Then g~ (G) is Bdg-closed in (Y, o). Since f
is Bdg-irresolute, (go f)™(G) = f~1(¢7*(Q)) is Bdg-closed of (X,7) and so go f is

Bdg-continuous functions. m

Theorem 4.6. Let f : (X,7) — (Y, 0) be continuous and d-closed map. Then for
every Bdg-closed subset A of (X, 1), f(A) is Bdg-closed in (Y, o).

Proof. Let A be Bdg-closed in (X, 7). Let f(A) € O where O is open in (Y,0).
Since AC f~! ( ) is open in (X, 1), f71(O) is B-set in (X, 7). Since A is Bdg-closed
and since f~1(0) is B-set in (X, 1), then cls(A) C f~1(O). Thus f(cls(A)) C O.
Hence cls(f(A)) C els(f(cls(A)) = f(cls(A)) C O, since f is d-closed. Hence f(A) is
Bog-closed in (Y, o). O

Remark 4.7. Bdg-continuity and Bdg-irresoluteness are independent notions as
seen in the following examples.

Example 4.8. Let X = {a,b,c}, Y = {p, ¢, r} with the topologies T = {¢, {a}, {qa, ¢},
X} and 0 = {¢, {r},Y}. Define a function f : (X,7) — (Y,0) by f(a) =p, f(b) =q¢
and f(c) = r. Then f is Bdg-continuous but it is not Bdg-irresolute function because

“t({q,r}) = {b,c} is not Bdg-closed in (X, ), where {q,r} is Bdg-closed in (Y, o).

Example 4.9. Let X = {a,b,c}, Y = {p, q,r} with the topologies 7 = {9, {a}, {b},
{a,b},{a,c}, X} and o0 = {¢,{r},{q,7},Y}. Define a function f : (X,7) — (Y,0) by
f(a) =p, f(b) = qand f(c) = r. Then f is Bdg-irresolute but it is not Bdg-continuity

function because f~'({p}) = {a} is not Bdg-closed in (X, 7), when {p} is closed in
(¥, 0).

Proposition 4.10. The product of two Bdg-open sets of two spaces is Bdg-open
set in the product space.

Proof. Let A and B be two Bdg-open sets of two spaces (X, 7) and (Y, o) respectively
and V = Ax B C X xY. Let FC V be a complement of B-set in X x Y, then
there exists two complement of B-sets F; C A and F» C B. So, F; C ints(A) and
F, Cints(B). Hence Fy x Fy C Ax B and Fy x Fy C ints(A) xints(B) = ints(Ax B).
Therefore A x B is Bdg-open subset of the space X x Y. O

Theorem 4.11. Let f; : X; — Y; be Bdg-continuous functions for each i € {1,2}
and let f: X7 x Xy — Y] X Y, be defined by f((x1,22)) = (f(z1), f(x2)). Then f is
Bdg-continuous.

Proof. Let V; and V5 be two open sets in Y; and Y5 respectively. Since f; : X; — Y;
are Bdg-continuous functions, for each i€ {1,2}, f; (V1) and f, '(V5) are Bég-open
sets in X, and X, respectively. By the Proposition 4.10, f; *(V1) x f, '(V3) is Bdg-
open set in X; x X,. Therefore f is Bdg-continuous. m
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Theorem 4.12. Let f : (X,7) — (Y,0) be a function. Then the following state-
ments are equivalent.

(i) fis Bdg-irresolute.

(ii) For z € (X, 7) and any Bdg-closed set V' of (Y, o) containing f(x) there exists
an Bdg-closed set U such that x € U and f(U) C V.

(iii) Inverse image of every Bdg-open set of (Y, o) is Bdg-open in (X, 7).

Proof. (i) = (ii). Let V be an Bdg-closed set of (Y,0) and f(x) € V. Since f is
Bdg-irresolute, f~1(V) is Bdg-closed in (X,7) and z € f~1(V). Put U = f~1(V).
Then z € U and f(U) C V.

(ii) = (7). Let V be an Bdg-closed set of (Y,o) and z € f~1(V). Then f(z) € V.
Therefore by (i7) there exists an Bdg-closed set U, such that x € U, and f(U,) C V.
Hence x € U, C f~1(V). This implies that f~*(V) is a union of Bdg-closed sets of
(X, 7). By Proposition 2.6, f~1(V) is Bdg-closed set. This shows that f is Bdg-
irresolute.

(i) < (ii7). It is true that f~1(Y — V) = X—f~1(V). O

5 Applications

Definition 5.1. [8] A space (X, 7) is called a gTj,-space if every Bdg-closed set in
it is o-closed.

Theorem 5.2. Let f: (X,7) — (Y,0) be Bdg-irresolute. Then f is -continuous if
(X, 7) is pTs4-space.

Proof. Let V be a d-closed subset of (Y, o). Every d-closed is Bdg-closed and hence
V is Bdg-closed in (Y, o). Since f is Bdg-irresolute, f~1(V') is Bdg-closed in (X, o).
Since X is pTs,-space, f~1(V) is §-closed in (X, 7). Thus f is d-continuous. O

Theorem 5.3. Let f: (X,7) — (Y,0) and g : (Y,0) — (Z,n) be two functions. Let
(Y, o) be gTs,-space. Then go f is Bdg-continuous if ¢ is Bdg-continuous and f is
Bdg-continuous.

Proof. Let G be any closed set in (Z,n). Then g~ '(G) is Bdg-closed in (Y,0).
Since (Y, o) is pTs,-space, g '(G) is closed in (Y,0). Since f is Bdg-continuous,
(go /) MG) = f (g7 (Q@)) is Bdg-closed in (X, 7). Hence g o f is Bdg-continuous
function. ]

Theorem 5.4. Let f : (X,7) — (Y,0) be onto, Bdg-irresolute and d-closed. If
(X, 7) is a gT.-space, then (Y, o) is also a gTj,-space.

Proof. Let B be a Bdg-closed subset of (Y, o). Since f is Bdg-irresolute, then f~1(B)
is Bdg-closed set in (X, 7). Since (X,7) is gTs,-space, f~(B) is d-closed in (X, 7).
Also since f is surjective, B is d-closed in (Y, o). Hence (Y, 0) is gT5,-space. O

Theorem 5.5. If f: (X,7) — (Y, 0) is bijection, open and Bdg-continuous, then f
is Bdg-irresolute.
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Proof. Let V be Bdg-closed in (Y, o) and let f~*(V) C U where U is open in (X, 7).
Since f is open, f(U) is open in (Y, o). Every open set is B-set and hence f(U) is
B-set. Clearly V C f(U). Then cls(V) C f(U) and hence f~!(cls(V)) C U. Since f
is Bdg-continuous and since cls(V') is a closed subset of (Y, o), then cls(f~1(V)) C
cs(f~(cls(V)) = f~Hcls(V)) C U. U is open and hence B-set in (X, 7). Thus we
have cls(f~1(V)) C U whenever f~'(V) C U and U is B-set in (X, 7). This shows
that f~1(V) is Bdg-closed in (X, 7). Hence f is Bdg-irresolute. O]
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1 Introduction

Thivagar et al. [4] introduced a nano topological space with respect to a subset X
of an universe which is defined in terms of lower approximation and upper approx-
imation and boundary region. The classical nano topological space is based on an
equivalence relation on a set, but in some situation, equivalence relations are nor
suitable for coping with granularity, instead the classical nano topology is extend to
general binary relation based covering nano topological space.

In 2017, Rajasekaran et al. [7, 8] introduced nano A-sets and nano Ag-sets in
nano topological spaces and we introduced the notion of nano A-closed set and nano
A-open sets. In this paper, we introduce and study nano topological properties of
nano Ags-closed sets and nano Ag.-open sets and its relationships with other nano
generalized closed sets are investigated.

2 Preliminaries

Throughout this paper (U, 7z(X)) (or X) represent nano topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset H of a

* Corresponding Author.
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space (U, Tr(X)), Ncl(H) and Nint(H) denote the nano closure of H and the nano
interior of H respectively. We recall the following definitions which are useful in the
sequel.

Definition 2.1. /6] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X C U.

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by Lr(X).
That is, Lr(X) = U,cp{R(x) : R(x) C X}, where R(x) denotes the equiva-

lence class determined by .

2. The upper approzimation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by Ur(X).

That is, Up(X) = U,cp {R(7) : R(z) N X # ¢}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
Bgr(X). That is, BR(X) = Ugr(X) — Lr(X).

Property 2.2. [4] If (U, R) is an approzimation space and X,Y C U; then
1. Lr(X) € X C Ur(X);

Lr(¢) =Ur(¢) = ¢ and Lr(U) = Ur(U) = U;
Ur(X UY) = Ur(X) UUR(Y);
Ur(XNY) CUR(X)NUR(Y);
Lr(XUY) D Lg(X)ULg(Y);
Lr(XNY) C Lp(X) N Lp(Y);

Lr(X) C Lr(Y) and Ur(X) C Ur(Y) whenever X C Y,

Ur(X®) = [Lr(X)]® and Lp(X*) = [Ur(X)]*;

.Q.OO.\?.%F"‘?\.%N

URUR(X) = LRUR(X) = UR(X),
10. LrLp(X) = UrLg(X) = Lg(X).

Definition 2.3. [}/ Let U be the universe, R be an equivalence relation on U and
TrR(X) = {U, ¢, Lr(X),Ur(X), BR(X)} where X C U. Then by the Property 2.2,
R(X) satisfies the following axioms:

1. Uand ¢ € Tp(X),

2. The union of the elements of any sub collection of Tr(X) is in Tr(X),
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3. The intersection of the elements of any finite subcollection of Tr(X) is in

TR(X).

That is, Tr(X) is a topology on U called the nano topology on U with respect to X.
We call (U, mr(X)) as the nano topological space. The elements of Tr(X) are called
as nano open sets and [Tr(X)|¢ is called as the dual nano topology of [Tr(X)].

Remark 2.4. [4] If [Tr(X)] is the nano topology on U with respect to X, then the
set B ={U,¢, Lr(X), Br(X)} is the basis for Tr(X).

Definition 2.5. [/] If (U, (X)) is a nano topological space with respect to X and if
H C U, then the nano interior of H is defined as the union of all nano open subsets
of H and it is denoted by Nint(H).

That is, Nint(H) is the largest nano open subset of H. The nano closure of H is
defined as the intersection of all nano closed sets containing H and it is denoted by
Ncl(H).

That is, Ncl(H) is the smallest nano closed set containing H.
Definition 2.6. [/] A subset H of a nano topological space (U, Tr(X)) is called;

1. nano pre-open set if H C Nint(Ncl(H)).

2. nano semi-open set if H C Nel(Nint(H)).
The complements of the above mentioned sets are called their respective closed sets.
Definition 2.7. A subset H of a nano topological space (U, Tr(X)) is called;

1. nano g-closed [1] if Ncl(H) C G, whenever H C G and G is nano open.

2. nano gs-closed set [2] if Nscl(H) C G whenever H C G, G is nano open.

3. nano gp-closed set [3] if Npcl(H) C G, whenever H C G and G is nano open.

Definition 2.8. [5] Let (U,7r(X)) be a nano topological spaces and H C U. The
nano Ker(H) = ({U : H C U,U € 1r(X)} is called the nano kernal of H and is
denoted by N'Ker(H).

Definition 2.9. [7] A subset H of a space (U, (X)) is called;
1. nano N-set if H=NKer(H).
2. nano A-closed if H =L N F where L is a nano NA-set and F' is nano closed.
Definition 2.10. [8/ A subset H of a space (U, Tr(X)) is called;
1. nano N,-closed set if Ncl(H) C G, whenever H C G and G is nano \-open.
2. a nano jA-closed set if NAcl(H) C G, whenever H C G and G is nano open.

3. a nano N-g-closed set if NAcl(H) C G, whenever H C G and G is nano
A-open.
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The complement of the above mentioned sets are called their respective open sets.

Lemma 2.11. [7] For a subset H of a space (U, Tr(X)), the following conditions are
equivalent.

1. H is nano A-closed.
2. H= LN Ncl(H) where L is a nano N-set.
3. H=NKer(H)NNcl(H).
Lemma 2.12. [7]
1. Every nano N-set is nano A-closed.
2. Every nano open set is nano A-closed.

3. FEvery nano closed set is nano A-closed.

3 Nano Ay -Closed Sets

Definition 3.1. A subset H of a space (U,7r(X)) is called a nano Ag-closed if
NXcl(H) C G, whenever H C G and G is nano g-open.
The complement of nano Ng-open if H® =U — H is nano Ag-closed.

Example 3.2. Let U = {a,b,c,d} with U/R = {{a,b},{c},{d}} and X = {a,d}.
Then the nano topology Tr(X) = {¢,{d}, {a,b},{a,b,d},U}.

1. Then {a,b} is nano Ag-closed.
2. Then {a,d} is not nano Ny -closed.
Theorem 3.3. In a space (U, (X)), every nano A-closed is nano Ny-closed.

Proof. Let H C (G, where GG is nano g-open. Since H is nano A-closed, we have
Acl(H) = H C G. Hence H is nano Ag«-closed.

Remark 3.4. The converse of statements in Theorem 3.3 are not necessarily true
as seen from the following Example.

Example 3.5. In Ezxample 3.2, then {a,c,d} is nano Ny -closed but not nano -
closed.

Theorem 3.6. In a space (U, Tr(X)), every nano closed is nano Ny -closed.

Proof. Proof follows from Lemma 2.12 and Theorem 3.3.

Remark 3.7. The converse of statements in Theorem 3.6 are not necessarily true
as seen from the following FExample.

Example 3.8. In Example 3.2, then {d} is nano Ag-closed but not nano closed.

Theorem 3.9. In a space (U, (X)), every nano open is nano Ag«-closed.
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Proof. Obvious by the Definitions.

Remark 3.10. The converse of statements in Theorem 3.9 are not necessarily true
as seen from the following Example.

Example 3.11. In Ezample 3.2, then {c} is nano Ag-closed but not nano open.

Theorem 3.12. Let H be a nano g-open. Then H is nano A-closed if H is nano
Ng+-closed.

Proof. Let H is nano Ag«-closed and nano g-open. Since as H C H, NAcl(H) C H.
Hence H is nano A-closed.

Theorem 3.13. In a space (U, 7r(X)), every nano Ny -closed is nano jA-closed.

Proof. Let H is nano Ag-closed and H C G, with G is nano open. Since every nano
open is nano g-open and H is nano Ag-closed, we have A\cl(H) C G. Hence H is
nano 4A-closed.

Remark 3.14. The converse of statements in Theorem 3.13 are not necessarily true
as seen from the following Example.

Example 3.15. In Ezample 3.2, then {a} is nano 4\-closed but not nano Ny -closed.

Theorem 3.16. In a space (U, Tr(X)), every nano Ny-closed is nano N-g-closed.

Proof. Obvious.

Remark 3.17. The converse of statements in Theorem 3.16 are not necessarily true
as seen from the following Example.

Example 3.18. In Ezample 3.2, then {a} is nano A-g-closed but not nano Ngs-
closed.

Theorem 3.19. In a space (U, Tr(X)), every nano g-closed is nano Ag-closed.

Proof. Obvious.

Remark 3.20. The converse of statements in Theorem 3.19 are not necessarily true
as seen from the following Example.

Example 3.21. In Ezample 3.2, then {a,b,d} is nano Ag-closed but not nano g-
closed.

Remark 3.22. In a space (U, 7r(X)), every nano Ng-closed is nano Ag«-closed.

Example 3.23. In Ezample 3.2, then {a,b,d} is nano Ag-closed but not nano A,-
closed.

Remark 3.24. The concepts of nano Ng-closed and being nano gs-closed, nano

gp-closed are independent.

Example 3.25. 1. Let U = {a,b,c} with U/R = {{b},{a,c}} and X = {c}.
Then the nano topology Tr(X) = {¢,{a,c},U}. Then {a,c} is nano Ny -closed
but not nano gp-closed.

2. In Example 3.2, then {a} is nano gp-closed but not nano Ny -closed.
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Example 3.26. In Example 3.2,
1. then {a,b,d} is nano Ny-closed but not nano gs-closed.
2. then {a} is nano gs-closed but not nano Ng-closed.
Remark 3.27. In a space (U, (X)),
1. the intersection of two nano NAg-open sets but not nano Ng~-open.
2. the union of two nano Ag-closed sets but not nano Ag«-closed.
Example 3.28. In Example 3.2,

1. then P = {b} and Q = {c} is nano Ny-open sets. Hence PUQ = {b, ¢} is not
nano Ng--open.

2. then P ={a,b} and Q = {a,c} is nano Ay -closed sets. Hence PNQ = {a} is
not nano Ag-closed.

4 Properties of Aj-Closed Sets

Theorem 4.1. If a subset H is nano Ny~ closed set, then nano NAcl(H) — H does
not contain any non empty nano closed in U.

Proof. Let H be nano Ag«-closed, suppose K is a non empty nano closed contained
in NAcl(H) — H, which clearly implies H C K¢, where K¢ is nano open. Since H
is nano Ag-closed and as every nano open is nano g-open, we have NAcl(H) C K°.
Hence K C U — NAcl(H). Also we have K C NAcl(H). Therefore K C (U —
NXcl(H)) N NXcl(H) = ¢. Hence NAcl(H) — H does not contain any non empty
nano closed.

Theorem 4.2. If a subset H is nano Ny closed, then NAcl(H)—H does not contain
any non empty nano g-closed.

Proof. Let H be nano Ag.-closed. Suppose K is a nano g-closed contained in
NAcl(H) — H, which clearly implies H C K¢ where K¢ is nano g-open. Since
H is nano Ag-closed and NAcl(H) C K¢. Hence K C U — NAcl(H). Also we have
K C NXcl(H). Therefore K C (U—NXcl(H))NNXcl(H) = ¢. Hence NAcl(H)—H
does not contain a non empty nano g-closed.

Theorem 4.3. In a space (U, (X)), for each x € U, {x} is nano g-closed or nano
Ng=-0pen.

Proof. Suppose {x} is not nano g-closed then U — {z} is not nano g-open, then the
only nano g-open containing U —{z} is U. Thatis U—{z} C U. So NAcl(U—{z}) C
U. Hence U — {x} is nano Ay -closed set. Hence {z} is nano Ag-open.

Theorem 4.4. Let H be nano Ny-closed. Then H is nano A-closed <= NAcl(H)—
H is nano closed.
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Proof. Necessity : Suppose H be nano Ag-closed and nano A-closed. H is nano
A-closed implies NAcl(H) = H. Hence NAcl(H) — H = ¢ is nano closed.

Sufficiency : Suppose H is nano Ag«-closed and NAcl(H) — H is nano closed.
Then by Theorem 4.1. NAcl(H) — H contains no non empty nano closed. Hence we
should have NAcl(H) — H = ¢, which in turn implies NAcl(H) = H. Therefore H
is nano A-closed.

Theorem 4.5. If every nano Ny-closed is nano \-closed then {x} is nano g-closed
or nano A-open.

Proof. Suppose {z} is not a nano g-closed, then U —{x} is not a nano g-open. Hence
we have U is the only nano g-open containing U—{z}. Obviously NAcl(U—{z}) C U.
Therefore U — {z} is nano Ag-closed. By hypothesis U — {z} is nano A-closed set.
Hence {x} is nano A-open.

Theorem 4.6. Let H is nano g-open set and nano Ng«-closed. If K is nano A-closed
then H N K is nano Ag-closed.

Proof. By Theorem 3.12 if a set H is both nano g-open and nano Ag-closed then H
is nano A-closed. Hence if K is nano A-closed then H N K is nano A-closed as the
intersection of nano A-closed sets is a nano A-closed. Hence by Theorem 3.3 H N K
is nano Ags-closed set.

Theorem 4.7. For a subset H of a space (U, Tr(X)), the following are equivalent:
1. every nano g-open set is nano A-closed.

2. every subset is a nano Ng«- closed.

Proof. (1) = (2). Let H be any subset of (U, 7r(X)) such that H C G where G is
nano g-open. Hence we get NAcl(H) C NAcl(G). By hypothesis G is nano A-closed
set. Then we get NAcl(H) € NAcl(G) = G. Hence H is nano Ag-closed.

(1) = (2). Let H be a nano g-open. By hypothesis H is nano Ag-closed. Then
we have NAcl(H) C H. Therefore H is nano A-closed. Hence every nano g-open is
nano A-closed.
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Abstract - This study proposed a mathematical model of tuberculosis with drug resistance to a first and second
line of treatment. The basic reproduction number for the model using next generation method is obtained. The
equilibrium point of the model was investigated and also found the global stability of the disease free
equilibrium and endemic equilibrium for the model. This study shows the effect of resistance rate of the first and
second line of treatment to the infected and resistant population. If basic reproduction number is less than one,
the disease free equilibrium is globally asymptotically stable and if basic reproduction number is greater than
one, then the endemic equilibrium is a globally asymptotically stable.
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1. Introduction

Tuberculosis is an airborne disease caused by Mycobacterium tuberculosis bacteria (Mtb).
Ullah et al. [8] discuss a general SIR epidemic model which represents the direct
transmission of infectious disease. It is an ancient disease with evidence of its existence being
found in relics from ancient Egypt, India and China [1]. Today, this disease ranks as the
second leading cause of morbidity and mortality in the world from a single infectious agent,
after the human immunodeficiency virus (HIV) according to Daniel. [10] Interestingly, about
one third of the world’s population is infected with Mycobacterium tuberculosis bacteria with
approximately nine million people developing active tuberculosis and up to nearly two
million people worldwide die from the disease every year. Approximately 480,000 people
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developed multidrug resistant (MDR) tuberculosis globally with 210,000 of those who
developed MDR tuberculosis succumbing to it. In addition to posing a, major health concern
to low and middle income countries, tuberculosis affect economic growth negatively. [3]
Psycho-social distress that communities go through is enormous. This involves thinking
about the loss of their loved ones and the economic impact of taking care of sick ones
especially among the low income individuals. This impacts not only the individuals, but also
the economic progress of the country. Zaman [7] gives, another category of people largely at
risk of contracting tuberculosis are those who work closely or live close to a person with
active tuberculosis and they could include health care workers, people living in crowded
living spaces or confined places such as schools or prisons. According to Semenza et al. [5]
over the last twenty five years, the mortality rate of tuberculosis has greatly decreased by
45% since and this is largely due to effective diagnosis and treatment. However, the world is
still far from defeating the disease. About 8 billion US dollars per year is needed for a full
response to the global tuberculosis epidemic in low and middle income countries by the year
2015 with a funding gap of 2 billion US dollars per year. This amount excluded resources
required for research and development, which was estimated to be about 2 billion US dollars
yearly. Clearly, this reveals that the current investment in tuberculosis falls below the low and
middle income country’s needs.

Tuberculosis is responsible for more deaths worldwide than any other infectious agent.
Waaler and Anderson [4] developed a first tuberculosis model for the transmission dynamics
of tuberculosis. The enormous progress in prevention and treatment, tuberculosis disease
remains a leading cause of death worldwide and one of the major sources of concern is the
drug resistant strain, MDR-TB (multidrug resistant tuberculosis) and XDR-TB (extensively
drug resistant tuberculosis). Young et al. [2] studies, tuberculosis is curable provided an early
diagnosis is made and one follows the proper treatment regimen which would take six months
upto two years for the active tuberculosis to clear. Sharma et al. [9] given that the infected
population is similar on the sociological and psychological effect rate. Cohen and Murray
[11] modelled epidemics of multi-drug resistant tuberculosis of heterogeneous fitness.

2. Model Analysis

This study will first extend the standard SEIRS mathematical model for the transmission of
tuberculosis which will demonstrate the transmission of the Mycobacterium tuberculosis in
human hosts taking into account the multidrug resistant (MDR) tuberculosis.

2.1. The Model Equations

This study presents a simple model that can easily be analysed so as to properly understand
the dynamics of this disease. Humans can contract MTB tuberculosis through contact with
individuals who are infected with the disease after which they enter the exposed phase where
a proportion of this class develop active tuberculosis thus moving into the infectious class. If
treatment is administered promptly, those who recover from the disease will move to the
recovered class and those who delay treatment and develop MDR tuberculosis will move to
the resistant class. Those who recover from MDR tuberculosis will move to the recovered
class. Given that there is no permanent immunity to tuberculosis, the recovered can lose their
immunity and become susceptible again. Figure represent the flow of individuals into the
different compartments and it has been constructed with these assumptions: recruitment is by
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birth only, a variable population, a constant mortality rate, no permanent immunity to
tuberculosis, no immediate infectively.

p
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The human population is categorized into six cl ich that at time 7>0 there are S,

susceptible humans, E, exposed humans to tuberculosis, I, infected humans with active
tuberculosis, R;, resistant humans to the first line of treatment , R,, resistant humans to the
second line of treatment, R, recovered humans. Thus the size of the human population is
givenas N =S + E + I + Rgg + R. In our model, the recruitment into the susceptible human
population is by birth A. The size of the human population is further increased by the partial
immune humans in R after they lose their immunity at the rate p. The size of human
population is decreased by natural deaths (u) and exposure to Mtb. The exposed susceptible
to Mtb move to the exposed classes E with the force of infection being f resulting in an
increase in the exposed class. The exposed class is further decreased by natural death(u) and
the proportion who move to the infected class I after developing active tuberculosis. The
infected class I is also reduced by natural deaths (u), disease induced death (a,), those who
recover (§) and also by those resistance rate to the first and second line of treatment r;and
1, respectively. Thus the infected class (I), and the resistant classes (R;and R,) gain partial
immunity at the rates (&) and (1) respectively thus moving to the recovered class R thus
reducing their respective classes and also increasing the recovered class. The resistant classes

R, R,also reduced by natural deaths (u) and disease induced deaths while the recovered class
is reduced by natural deaths () and those who lose their partial immunity at the rate p.

Following Table (1) and (2) gives the description of variables and parameters

Table 1
Description of variables
S(t) = Susceptible humans
E(t) = exposed humans
I(t) = infected humans
R;(t) = resistant to the first line of treatment
R,(t) = resistant to the second line of treatment
R(t) = Recovered humans
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Table 2

Description of Parameters
B = Rate at which the susceptible become exposed to Mtb
y = Infection rate
a, = Disease induced death rate
u = Rate of natural death
r; = Resistance rate of first line treatment
1, = Resistance rate of second line treatment
6 = Recovery after first line of treatment
1P = Recovery after second line of treatment
p = Rate at which recovered loss their immunity
o, a3 = Disease induced death rate after first and second resistance respectively

2.2. Differential Equations

From the above discussion, we get the following system of ordinary differential equations

S =N — S —BSI+pR, )

dE

= = BSI = (u+Yy)E,

%=yE—(u+oc1+r1+r2)I,
> (1

% = T'11 - (ll, + a, + 6)R1,
dRr
d_tz =1l — (u+az +P)R,,
dr

2.3. Equilibrium Points

To obtain the equilibrium points for the system of differential equation (1) by equating each
of the equations to 0 as shown in below

S = AN —yuS—pBSI+pR=0, )

= BSI—(u+y)E=0,
%=yE—(u+a1+r1+r2)I=O,
’ (2)

%=T‘11—(u+0(2+5)R1=0,
%27‘21—(#-}-6{3-}-1/))1?2:0,
%:5R1+¢R2_(#+P)RZO, ),

Solving system (2), to get two equilibrium points, one being the diseases free equilibrium
while the other being the endemic equilibrium. Disease free equilibrium

Point (S, E,I, Ry, R, R) is expressed as follows: X = (S,E,I, Ry, Ry, R) = (%N 0,0,0,0,0)
and endemic equilibrium point (S, E*,I*, Ri, R; R™) is expressed as follows:

S* = (u+y)(u+a,+r1+13) * Bx(u+p)(AN —pux)
By ’ (u+y)(Bx(u+p)-p)
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I = (u+p)(AN—px) R = 71 (U+p) (AN —px) 3)
Bx(u+p)-p ’ L7 (utaz+8)(Bx(u+p)-p)
« _  (AN—px)p

R = 72 (1+p) (AN —px)
27 (utas+)(Bx(u+p)-p)

_ . _ 6r1 Tl)rz
where x = §* and p=p (IH'D»’Z"'S + y,+a’3+1/)).

~ (Bx(u+p)-p)p

2.4. Condition of Existence/Positivity of Equilibrium

The system will remain positive provided this condition holds:
AN — ux

Bx(u+p)—p
S AN —ux >0
& AN > ux

Substituting for x

+ +a;+nr+r
(:>/1N>/1(M Y)(u ﬁyl 1 2)

S ANBy > u(p+y)(u+a, +1+13)

ANy -1
pp+y)(u+a; +1 +13)

This expression is the condition of existence.

2.5. The Basic Reproduction Number R,

Let us look at the following system of differential equations.

dE
= BSI — (u+7v)E,

at

ﬂ—yE—(u+a1+r1+r2)1,

dat

de Tll - (IJ. + az + 5)R1,

dt

e 2l — (u+ az +P)R,,

dt

Let X = (E,I,Ry, R,)T then above system can be represented in matrix form as shown below:
ax =F(X)-V(X)

where
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B -yE+(u+a +n+rn)l
(u+nE
F(X)=| 0 |, V(X)=
0 -+ (U+a,+0)R,
0 n—(U+a,+T)R,

The Jacobian matrix of F(X)and V(X) at the disease free equilibrium X , are,

F 0 v, 0 |
DF(X )= 0 0o , DV(X )= 0 respectively,

0
where
AN
0 ’B— 0 0
u
F=l0 0 00
0 0 0 0
0 0 0 0
and
HtYy 0 0 0
v -V Mo thtr 0 0
1:
0 —r U+a,+6 0
0 h 0 —(U+a,+7)
Now
1
0 0 0
Hty
1
4 o o .
V—l (H+u+a+n+n) (U+a+1+1))
to 1
m ] .
U+ u+og+q+n)p+ay +8) (p+op+n+n)u+tay+0) u+ay+46
1
D) ry o )
(ﬂ+7)(ﬂ+0!1+r1+r2)(,u+a3+7r) (ﬂ+al+rl+r2)(/u+a3+ﬂ-) ,u+a3+7r

The next generation matrix of the system is given by

BYAN BAN 0 0
uu+y(u+oy+n+rn) pp+o+n+n)

EV, " = 0 0 00

0 0 00

0 0 00
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Now, to obtain the spectral radius of FV,”' , which is defined as the largest eigen value of

FV,”" and the spectral radius for the above system is the basic reproduction number and its
expression is given by

BN
RO =
HU+pypu+o+n+r)

2.6. Stability Analysis

In this section this study will determine the stability of the diseases free equilibrium point.
This study can easily establish the local stability of the equilibriums by Routh Hurwitz
criteria, so left it. This study will discuss only on the global stability of the disease free and
endemic equilibrium.

Global Stability of the Disease Free Equilibrium

The local dynamics of a general SEIRS model is determined by the reproduction number R, .

If R, < I, then each infected individual in its entire period of infectiousness will produce less

than one infected individual on average. This means that the disease will be wiped out of the
population. If R;> I, then each infected individual in its entire infectious period having

contact with susceptible individuals will produce more than one infected individual implying
that the disease persist in the population. If R,= / and this is defined as the disease

threshold, then one individual infects one more individual. For R, < I, the disease free

equilibrium 1is locally asymptotically stable while for R,> I the disease free equilibrium

becomes unstable. The disease free equilibrium point is (S, E, I, R;,R,, R) = (%N, 0,0,0,0).

Theorem 1. If R < I, then the disease free equilibrium is of the system (S, E,I,R,R,, R) =
(%N, 0,0,0,0,0) of the system is globally asymptotically stable on Q.

Proof. Construct the following Lasalle-Lyapunov function V(S,E,I,R;,R,, R) on the
positively invariant compact set €2.

Define
V(S,E,I,R,,R,,R) =yE + (u+y)l. 4

Differentiate (4) and using the second and third equations of the system (1), we get

dv dE dl
=Vt w+y) -
av

— = [BYS— M+ e+ + )]l
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av
P (u+y)(u+a, +r +r)R, — DI,

which is strictly decreasing when R < /.

Define the set Define the set E = {(E,I,R{,R;) € Q / (E,I,R{,R, = 0).The largest invariant
set is contained in the set E for which E =0 or [ = 0 or R; = 0, R, = 0 Thus by Lasalle
invariant principal the disease free equilibrium is globally asymptotically stable on Q.

Global Stability of The Endemic Equilibrium Theorem 2. The endemic equilibrium
® = (E* I*,R,",R,") given by equation (3) is globally asymptotically stable on Q.

Proof. To establish the global stability of the endemic equilibrium @, so construct the
Lyapunov function V;:Q — R where Q= {(E(t),I(t),R1(t),R,(t)/E(t) > 0,I(t) >
0,R; > 0,R, > 0} as described by Ullah, Zaman and Islam' and it is given as

Vi(E, LRy, Ry) = Ly |[E = E*In(£)| + Ly [T = 1" In ()] + Ly [Ry — Ry In (52)] +

1

L4[R; — R*;In (

)] ®)

Ry
R*,

Where L, L,, L3 L, are positive constant to be later considered.

Taking the derivative of the Lyapunov function V;as given in equation (5) yields

av: _
ac
N I
Ll[E—E*<@—(u+y))]+L2[1—1*<E—(u+a1+r1+r2))]+L3 R-R |-
E I Ry
(#+a2+5)> + Ly[Ry — Ry (G = (u + a3 + )] (6)

Choosing L =L, =L3=L4=1, equation (6) becomes

=E-E)u+y)WiRy— D+ U -1+ a; + 1 +12)(WaRy — 1)

r 1 1 R.R*; AU 2)( R,R", )
Thus% <0iff Ry <land R*;I < R{I" and R*,I < R,I"

To have that <> = 0 iff E = E*,1 = I"
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Ry < R*;
R; =R%;
R, = R%,
Or when Ry = 1 and R*{I = R I"
R*;1 = R,I”*

avy

Define the set @ = {E*,I",R";,R",} € O/ —

=0}

Therefore the largest compact invariant set is singletone set @ which is the endemic

equilibrium. By Lasalle invariant principle @ is globally asymptotically stable on Q.

3. Numerical Simulation

Explain  this  result through  graphically. Consider the  parameters  as:
A=0.001, N =1,000,3=0.398, y=1,1, =0.4,1, =0.5,4=0.7, , =0.8,, =0.4,, = 0.3,

6=1L7=12,p=04. Then this study give o =0.1395<1 and if the initial values of
susceptible, exposed, infected, resistant of first and second line treatment population are 1, 2,
I, 1, 1 and 1 respectively. The susceptible population goes to its steady state value while
exposed, infected, resistant of first and second line treatment population approach to zero as
time increase as shown in Figure 1. So that the disease free equilibrium is globally
asymptotically stable.

2

Population Individuals

0.5+ ‘\:\\\ 7

05 ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20

Time t

Figure 1. When R, =0.1395<1.
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Again if, we take the parameters of the system as: A=0.015,N=1,000,4=0.398,y=1,

r=04,1r,=05u=070a=08a=04a=03 6=1,7=12,p=04. Then

E'(S".E".I',R,R, ,R")=(10254.82,.38,.45.84) 4 R, =2.091>1.1f the initial values
of susceptible, exposed, infected, resistant of first and second line treatment population are 1,

2,1, 1, 1 and 1 respectively. Therefore by theorem (2), the endemic equilibrium is a global
asymptotically stable as shown in Figure 2.

15

Population Individuals

| | | | |
0 2 4 6 8 10 12 14 16 18 20
Time t

Figure 2. When R, =2.091>1.

Let us take all the parameters are fixed except the resistance rate of the first and second line
of treatments, found that the infected population decreases as the resistance rate of the first
and second line of treatment increases which is shown in figure 3(a) and (b). Therefore
infected population moves to resistant population of the first line of treatment and to the
resistant population of the second line of treatment, as resistant rate increases respectively.

221

— Resistance rate of the first line treatment = 0.4
2r Resistance rate of the first line treatment = 0.6 [—
— Resistance rate of the first line treatment = 0.8

Infected |

Time t

Figure.3(a) Changes in the infected population with respect to resistance rate of the first line treatment, keeping
all other parameters are fixed.
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221
Resistance rate of the second line treatment = 0.5
2F Resistance rate of the second line treatment =0.8 |
Resistance rate of the second line treatment = 1.1
18
16

-
kN
T

Infected Population
o o =
(2] [o°] - N

o
'S
T

0'2 1 1 1 1 1 1 1 1 1 ]
0 2 4 6 8 10 12 14 16 18 20

Time t
Figure.3(b) Changes in the infected population with respect to resistance rate of the second line treatment,
keeping all other parameters are fixed.

Similarly again we take all parameters are fixed except the resistance rate of the first line and
the second line of treatment, found that the resistant population of the first line treatment
decreases when resistance rate of the first line treatment increases i.e. resistant population

/1 moves to recovered population while the resistant population of the second line treatment
increases when the resistance rate of the second line of treatment increases i.e. after the
second line treatment, the infected population comes into resistant population which shown
in figure 4(a) and 4(b) respectively.

Resistance rate of the first line treatment = 0.4
09 [ Resistance rate of the first line treatment = 0.6
Resistance rate of the first line treatment = 0.8

Resistant population of the first line of treatment

01 L 1 1 L 1 L 1 1 L 1
0 2 4 6 8 10 12 14 16 18 20

Time t
Figure. 4(a) Changes in the resistant population with respect to resistance rate of the first line of treatment,
keeping all the other parameters are fixed.
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1r

Resistance rate of the second line treatment = 0.5
0.9 Resistance rate of the second line treatment = 0.8
Resistance rate of the second line treatment = 1.1

0.8

0.7

06

0.5

04

0.3

02

Resistant population of the second line of treatment

o1 0 2 4 6 8 10 12 14 16 18 20
Time t
Figure. 4(b) Changes in the resistant population with respect to resistance rate of the second line of treatment,
keeping all the other parameters are fixed.

4. Conclusion

This study analyzed the local and global stability of the equilibrium points, found that when
the basic reproduction number R <1, then disease dies out and when the basic reproduction

number R >1,then disease persists.
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EDITORIAL

We are happy to inform you that Number 21 of the Journal of New Theory (JNT) is
completed with 8 articles.

JNT publishes original research articles, reports, reviews and commentaries that are based on
a theory of mathematics. However, the topics are not limited to only mathematics, but
also include statistics, computer science, physics, engineering, chemistry, biology, economics
or social sciences that use a theory of mathematics.

We would like to express our deepest thanks to all of the members of the editorial board and reviewers
of the papers in this issue who are H. Giinal, F. Smarandache, M. A. Noor, J. Zhan, S. Pramanik,
M. L. Ali, P. K. Maji, S. Broumi, O. Muhtaroglu, A. A. Ramadan, S. Enginoglu, S. J. John, M.
Ali, A. S. Sezer, A. A. El-latif, J. Ye,D. Mohamad, B. Mehmetoglu, I. Zorlutuna, B. H.
Cadirci, C. Kaya, C. Ceki¢, H. M. Dogan, H. Kizilaslan, . Gokee, 1. Tiirkekul, R. Yayar, A.
Yildirim, Y. Budak, N. Saglam, N. Yesilayer, N. Kizilaslan, S. Karaman, S. Demiriz, S.
Oztiirk, S. Egri, S. Sozen, E. H. Hamouda, K. Mondal, Z. Xu, H. X. Li, R. Rohen, P. G. Patil,
B. M. Ittanagi, M. B. Devi, P. Baghel, A. A. Wani, A. Aslam.

JNT is a refereed, electronic, open access and international journal.

Papers in JNT are published free of charge.

Pleases, write any original idea. If it is true, it gives an opportunity to use. If it is incomplete,
it gives an opportunity to complete. If it is incorrect, it gives an opportunity to correct.

You can reach us from journal homepage at http://www.newtheory.org. To receive further information
and to send your recommendations and remarks, or to submit articles for consideration, please e-mail
us at jnt@newtheory.org

We hope you will enjoy this issue of INT. We are looking forward to hearing your feedback and
receiving your contributions.

Happy reading!
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Editor-in-Chief
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