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Stability of Waste Paper Recycling through Graph Theory 
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Abstract - The process in which waste paper is collected and then reprocessed for reuse is called paper 

recycling. Paper recycling is very often routine of human life. Paper recycling is very important to reduce 

deforestation and pollution. It has been analyzed that scrap dealer plays a vital role in this cycle that collects 

waste paper from distributor and customer and then sent it to the paper industry, so the effect of scrap dealers 

is observed here. This waste paper recycling model is divided into four compartments namely paper industry, 

distributor, customer and scrap dealer. The model is proposed as a system of non-linear differential equation. 

The basic reproduction number is computed to see the impact of scrap dealer. 

 

Keywords - Dynamical model, System of non-linear ordinary differential equation, Basic reproduction 

number, Local stability, Global stability, Weighted graphs, Paper. 

 

1 Introduction 
 

Recycling is one of the best ways for us to have an optimistic impact on the world in which 

we want to live healthily. Paper is one of the best materials that we can recycle easily. 

Recycled paper made from paper and paper products that has already been used. The paper 

recycling starts with us. It can be learnt at schools, colleges, home, offices, and local 

communities and even at drop off centers. Recycling of paper helps us in many ways. As 

the pulp of tree is an only source for producing paper, the recycled fibres from waste paper 

provides a better alternative. Creating recycled paper pulp, compare to manufacturing pulp 

from trees to make paper products, and devours less energy and water. By recycling one 

ton of paper, we save 17 trees, 7000 gallons of water, 463 gallons of oil and more than 3.3 

cubic yards of landfill space.  

 

In the case of recycling, many researchers have studied the process of recycling 

wastepaper. Kleineidam et al. [14] obtained optimizing product recycling chains by control 

theory in 2000. Clement and Marie [4] in 1988 considered method for producing pulp from 

printed unselected waste paper. In 1994, Nadeau and Allan [18] have studied integrated 

                                                 
*
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waste paper treatment process. In 1996, production of soft paper products from old 

newspaper was deliberated by Back and Sangho [1]. Denem and Dennis [5] learned waste 

paper minimizing paper dispenser in 2004. Kinney and Roland [15] in 1994 wrote book on 

technology of paper recycling. Bleakley et al. [2] in 2000 examined waste paper treatment 

process. Some of the researchers have analyzed the impact of recycling waste paper on the 

environment. In 1997, Bystrom et al. [3] observed paper recycling: environmental and 

economic impact.  Miranda [17] et al. investigated environmental awareness and paper 

recycling in 2010. Environment impacts of waste paper recycling were deliberated by 

Virtanen et al. [23] in 2013. Different model for the awareness of recycling for waste paper 

was developed by many researchers. Kara et al. [13] studied a stochastic optimization 

approach for paper recycling reverse logistics network design under uncertainty in 2010. 

Merrild et al. [16] generated life cycle assessment of waste paper management: the 

importance of technology data and system boundaries in assessing recycling and 

incineration in 2008. A different model ‘A goal programming model for paper recycling 

system’ was formulated in 2008 by Pati et al. [19]. Some environment related models like 

forest model [22] and green belt model [21] was also developed by some researchers to 

revive the natural resources.  

 

Mathematical modeling of paper recycling is developed in Section 2. Using weighted 

graph, the stability analysis is carried out in Section 3. In Section 4, sensitivity analysis is 

analyzed. Numerical analysis is calculated in Section 5 and validated data is given. 

 

2 Mathematical Modeling 
 

We live in the society where deforestation and pollution has taken place. The process of 

recycled paper from paper industries can reduce it. Paper industries ( )P  are those which 

manufacture the paper and even recycle the waste paper. Distributors ( )D  are those who 

collect produced paper sold by paper industry. Customer ( )C  are those who buy paper 

from distributors. Scrap dealers are those who gather water paper from distributor and 

customer and give it to the paper industry. Thus, it becomes a cycle. And this process of 

recycling of paper helps us to save energy, water and resources. Here, scrap dealer works 

as a control for waste paper recycling model.  

 

Parameters and their notations along with parametric values used to formulate waste paper 

recycling model are as given in the Table 1. 

 
Table 1. Notation and parametric values 

 

Notation  

Parametric 

value 

B  Recruitment rate from wood 0.7 

δ  The rate at which distributor buys paper 0.9 
η  The rate at which customer buys paper 0.75 

α  The rate at which distributor gives paper to scrap dealers 0.02 

β  The rate at which customer gives paper to scrap dealers 0.7 

γ  The rate at which scrap dealer transports waste paper to paper 

industry 

0.6 

µ  Natural waste of paper from each compartment 0.28 
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To formulate a mathematical model of waste water recycling we have used above notation 

and necessary assumptions whose transmission diagram is as given in Figure 1. 

 

 

 
 

            Figure 1. Transmission diagram of waste paper recycling model 

 

The system of non-linear differential equation of transmission of waste paper is as given 

below: 

 

dP
B PD S P

dt
δ γ µ= − + −  

dD
PD D DS D

dt
δ η δα µ= − − −         (1) 

dC
D CS C

dt
η β µ= − −  

dS
DS CS S S

dt
δα β γ µ= + − −   

 

where P D C S N+ + + = . Also, 0; , , 0P D C S> ≥ . 

 

Adding above system of differential equations, we get  

 

( )

( ) 0

d
P D C S B PD S P PD D DS D D CS C

dt

DS CS S S

B P D C S

δ γ µ δ η δα µ η β µ

δα β γ µ

µ

+ + + = − + − + − − − + − −

+ + − −

= − + + + ≥

 

 

which implies that ( )limsup
t

B
P D C S

µ→∞
+ + + ≤ . 

 

Therefore, the feasible region of the waste paper recycling model is 
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( ) , 0; , , 0
B

P D C S P D C S P D C S
µ

 
Λ = + + + + + + ≤ > ≥ 

 
. 

 

Now, solving system of differential equations, we get four equilibrium points: 

 

1) * ,0,0,0
P

B
E

µ

 
=  
 

  

2) * ,0, ,
PCS

B
E

µγ β γ µ µ

µβ β β

 − + + −
=  
 

 

3) 
( )

( )
( )( )

( )
* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

  

4) * , , ,
PDCS

Y Y Y Y Y
E X

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

  

 

where  

 

( ) ( )2 2 2 2 2 2 2

2 2

(

)

Y RootOf x B xβ µ βδαµ µβγ µ α δ µηβ µ β βδα δαµ µ αβ

µαγη µ η γηµ µ αη

= − + + − − + − − +

+ + + +
 

(2) 

 

Next, we compute basic reproduction number 0R  for each equilibrium point 
*E , using 

next generation matrix method. 

 

Let us consider ( )' , , , 'X P D C S= , where derivative is denoted by dash. So, 

 

( ) ( )'
dX

X F X V X
dt

= = −  

 

where ( )F X  is the rate of presence of new individual in compartment and ( )V X  is the 

rate of transfer of culture. They are given by  

 

0

0

PD

DS CS
F

δ

δα β

 
 + =
 
 
 

 and 

D DS D

S S
V

B PD S P

D CS C

η δα µ

γ µ

δ γ µ

η β µ

+ + 
 + =
 − + − +
 

− + + 

 

 

Now, ( )*
0

0 0

f
DF E

 
=  
 

 and ( )*

1 2

0v
DV E

J J

 
=  
 

  

 

where f  and v  are 4 4×  matrices defined as 
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( )*

i

j

F E
f

X

 ∂
 =

∂  

 and 
( )*

i

j

V E
v

X

 ∂
 =

∂  

. 

 

1) Finding f  and v  for the equilibrium * ,0,0,0
P

B
E

µ

 
 
 

, we get 

 

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

P

B

f

δ

µ

 
 
 

=  
 
 
  

 and 

0 0 0

0 0 0

0 0

0 0

P
v B

η µ

γ µ

δ
γ

µ

η µ

+ 
 + 

=  
− 

 
 − 

 

 

Here, 
P

v  is non-singular. 

 

Therefore, the expression of basic reproduction number 0P
R  is as below: 

 

     0P
R =  spectral radius of 1

P P
f v

−   

( )0P

B
R

δ

µ η µ
 =

+
 

 

After putting parametric values given in the Table 1, we get 0 2.1840
PCS

R =  which is grater 

that 1 that makes model unstable. 

 

2) Finding f  and v  for the equilibrium * ,0, ,
PCS

B
E

µγ β γ µ µ

µβ β β

 − + + −
=  
 

, we get 

 

( )

( )

0 0 0

0 0

0 0 0 0

0 0 0 0

PCS

B

f

δ µγ β

µβ

β γ µδαµ

β µ

− + 
 
 
 +

= − 
 
 
 
  

 and 
( )

0 0 0

0 0 0

0

0 0 0

PCS
v

B

δαµ
η µ

β

γ µ

δ µγ β
γ µ

µβ

η

 
− + 

 
+ 

=  
− + −

 
 

− 

 

 

Here, 
PCS

v  is non-singular. 

 

Therefore, the expression of basic reproduction number 0PCS
R  is as below: 

 

     0PCS
R =  spectral radius of 1

PCS PCS
f v

−   

( )
( )0PCS

B
R

δ µγ β

µ ηβ δαµ µβ

− +
 =

− +
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After putting parametric values given in the Table 1, we get 0 2.5000
PCS

R =  which is grater 

that 1 that makes model unstable. 

 

3) Finding f  and v  for the equilibrium 

 

( )
( )

( )( )
( )

* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

 

 

 we get 

 

( ) ( )
( )

2

2 2

0 0

0 0 0

0 0 0 0

0 0 0 0

PDC

B

B B
f

δ µη µ
η µ

η µ

β δ µη µ βη δ µη µ

η µ δµ η µ

 − −
+ 

+ 
 − − − −
 = +

+ + 
 
 
  

 

 

 and  

 

( )

( )
( )

2

2

2

0 0

0 0 0

0

0

PDC

B

v B

B

α δ µη µ
η µ

η µ

γ µ

δ µη µ
η µ γ µ

η µ

βη δ µη µ
η µ

δµ η µ

 − −
 +

+ 
 +
 
 = − −

+ − + 
+ 

 − −
 −
 + 

 

 

Here, 
PDC

v  is non-singular. 

 

Therefore, the expression of basic reproduction number 0PDC
R  is as below: 

 

     0PDC
R =  spectral radius of 1

PDC PDC
f v

−   

( )( )( )
( )( )0PDC

B
R

δ µ η µ αδµ βη

δµ η µ γ µ

− + +
 =

+ +
 

 

After putting parametric values given in the Table 1, we get 0 0.6456
PDC

R = . 
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4) Finding f  and v  for the equilibrium 

 

* , , ,
PDCS

Y Y Y Y Y
E Y

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

  

 

 

where Y  is as equation (2) and taking  

 

*Y Y
P

Y

δα µ γη µη µβ

δ β

− + + +
= , *Y

D
β γ µ

δα

− + +
= , *

Y C=  

and  

 

*Y Y
S

Y

δα µ β η γη µη

δα β

− − + +
=  

 

we get 

 
* *

* * * *

0 0

0

0 0 0 0

0 0 0 0

PDCS

P D

S D C S
f

δ δ

δα δα β β

 
 

+ =
 
 
 

 

 

 and  

 
* *

* *

* *

0 0

0 0 0

0

0

PDCS

S D

v
P D

C S

η δα µ δα

γ µ

δ γ δ µ

η β β µ

 + +
 

+ =
 − +
 

− + 

 

 

Here, 
PDCS

v  is non-singular. 

 

Therefore, the expression of basic reproduction number 0PDCS
R  is as below: 

 

     0PDCS
R =  spectral radius of 1

PDCS PDCS
f v

−   

( )( )
( )
( )( )( )

* * * * * *2 2 * * * *

0 * * *PDCS

S C C S C DS D D C
R

S S S

β βη βδα βµ ηδαδ α δα β

γ µγ µ η δα µ η δα µ γ µ β µ

+ + ++
 = + −

++ + + + + + +

 

After putting parametric values given in the Table 1, we get 0 0.7346
PDCS

R = . 

 

Above four basic reproduction numbers for distinct equilibrium point of waste paper 

recycling model shows that equilibrium point *

PDCS
E  is more appropriate than *

PDC
E which 

indicate that scrap dealers are the most significant factor for the process of waste paper 
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recycling. Therefore, in the further section, we will discuss stability only at two equilibrium 

point *

PDC
E  and *

PDCS
E . 

 

3  Equilibrium 
 

In the current section, we will establish local stability and global stability for the waste 

water recycling model for two equilibrium points. 

 

3.1  Local Stability 

 

The local stability for waste paper recycling model will be discovered here. 

 

First, we will begin with the equilibrium point  

 

( )
( )

( )( )
( )

* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

 

 

using Jacobian matrix 
PDC

J . The Jacobian matrix 
PDC

J  of the waste paper recycling model 

is as follows: 

 

( )

( )
( )

( ) ( )
( )

2

22

2

2 2

0

0 0

0

0 0 0

PDC

B

BB

J
B B

B B B

δ µη µ
µ η µ γ

η µ

α δ µη µδ µη µ

η µ η µ

η δ µη µ
η µ

δµ η µ

α δ µη µ η δ µη µ
γ µ

η µ δµ η µ

 − −
− − − − 

+ 
 − −− − −

+ + 
 =

− − 
− − +

 
 − − − −
 + − −
 + + 

 

Above Jacobian matrix 
PDC

J  has four distinct Eigenvalues:  

 

( )
( )

1

2 2 2 3 2 2 3 2 2

2

2 2 2 3 2 2 3 2 2

3

2 2 3 2 2 2 3

4

,

4 4 12 8 12 4 41
,

2

4 4 12 8 12 4 41
,

2

B B B B B

B B B B B

B B

ω µ

δ δ η δ η µ η µ µη δ µ η η δ µ
ω

η µ

δ δ η δ η µ η µ µη δ µ η η δ µ
ω

η µ

αδ µ αδµ η αδµ βη δ µη µ γδµη γδµ δµ η δµ
ω

δµ η µ

= −

 + − + + − + − +
 = −
 + 

 + − + + − + − +
 = −
 + 

− − + − − − − − −
=

+
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One can easily see that 1 2,ω ω  and 3ω  have negative value. And if 4 0ω <  then one can 

write 

 

     
( )

( )

2 2 3 2 2 2 3

0
B Bαδ µ αδµ η αδµ βη δ µη µ γδµη γδµ δµ η δµ

δµ η µ

− − + − − − − − −
<

+
  

( ) ( ) ( )
( )

( )( ) ( ) ( )( )

( )( ) ( )( )

( )( )

( )( )

2 2 2

2

2

2

0

0

0

0

0

1 0

1 0

1

B B

B

B

B

R

R

αδµ δ µη µ βη δ µη µ δµ γη γµ µη µ

δµ η µ

δ µη µ αδµ βη δµ γ η µ µ η µ

δ µη µ αδµ βη δµ η µ γ µ

δ µη µ αδµ βη

δµ η µ γ µ

− − + − − − + + +
 <

+

 − − + − + + + <

 − − + − + + <

− − +
 − <

+ +

 − <

 <

 

 

So, if 0 1R <  then 4ω  has negative value. 

 

Further, we will also discuss the behaviour of the equilibrium point  

 

* , , ,
PDCS

Y Y Y Y Y
E Y

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

 

 

using Jacobian matrix 
PDCS

J . The Jacobian matrix 
PDCS

J  of the waste paper recycling 

model is as follows: 

 
* *

* * * *

* *

* * * *

0

0

0

0

PDCS

D P

D P S D
J

S C

S S D C

δ µ δ γ

δ δ η δα µ δα

η β µ β

δα β δα β γ µ

 − − −
 

− − − − =
 − − −
 

+ − − 

  

 

where   

 

* Y Y
P

Y

δα µ γη µη µβ

δ β

− + + +
= , * Y

D
β γ µ

δα

− + +
= , 

*
C Y= , * Y Y

S
Y

δα µ β η γη µη

δα β

− − + +
=   

 

and the value of Y  is as in the Equation 2. The characteristics equation of the Jacobian 

matrix 
PDCS

J  about the equilibrium point *

PDCS
E  is as given below 

 
3 2

1 2 3 4 0A A A Aλ λ λ+ + + =  

where  
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( ) ( ) ( )

* * * * * *

1

* * * * * *

4

4 0

A D C S P S D

S D S C D P

δα β γ µ β δ η δα δ

δα β δ γ µ

= − − + + + − + + +

= − + − + − + + >
  

 
22 * * * * * * * * * 2 *

2

2* * * * * * * 2 * *

* *

3 3

3 3 3 3

A SD S S P S S D D D P D

P D D S S D C D C

S P

δ α δα µ β δ β δα β δ δα η αδ µ δ α

δ µ ηδ µδ β η β µ γδ β µ δ α β η

γβ γδ

= + − + + − − +

− + + + + + − − −

+ −

         

( ) ( )( )( )

( ) ( )( )( )

2 2 * * * * * * *

* * * * * * * *

S D S D C S S

S C C S C D S S

δ α β µ δα β η δα µ β µ

β β η β δα β µ ηδα η δα µ γ µ β µ

> + − + + + +

+ + + + + + + + +
         

( )( ) ( )

( )
( )( ) ( )

* * * * * *2 2 * * * *

* * *
1

S C C S C DS D D C

S S S

β β η β δα β µ ηδαδ α δα β

γ µη δα µ γ µ η δα µ γ µ β µ

+ + ++
> + − +

++ + + + + + +

 01 0R> − >     

0 1R <  

 
* 2 * * * * * * * * 2 * * 2 * *

3

2* * 2 2 2 * 2 * 2 *

22 * * * * 2 * * * *

22 * * * * * *

2 2 2 2

2 2 3 3 3 3 2

2 2 3 2 2 2

2 2

A D D S P D S C S C S D P D

D C D D D

D C S S D S S P

D S C P C D

δ γµ δ α β δα β µ β δα µ β δ α µδ α

ηδα µ γηµ β µ γµ ηµ δα µ ηγδ δ α µ

δ α η β ηµ µβ η δα µ µηδ γβ η γβ µ γδ µ

δ α β β δ µ β µδ

= + − − − +

− + − + + − + −

− − + + + + + −

− + − −
2* * * * *

2 2* * 2 * * * * * 2 * * * *

* * * 3 * * 2 2 *

2 2

2 2

2 4 3 3 3

C D S P S

S D S D S D S D S P S

S D S S P D

β ηδ µβ δ µβ δα

µβ δ µδ α β ηδ β δ α γβ δ γβ δα

γβ δ γδα µ µ β µ δ µ µ δ

− +

+ + + + − +

+ + + + − +

  

2 2 * * * * * * *

* * * * * * * *

( ( ) ( )( )( )

( )) ( )( )( )

S D S D C S S

S C C S C D S S

µ δ α β µ δα β η δα µ β µ

β β η β δα β µ ηδα η δα µ γ µ β µ

> + − + + + +

+ + + + + + + + +

( )( ) ( )

( )
( )( ) ( )

* * * * * *2 2 * * * *

* * *
1

S C C S C DS D D C

S S S

β β η β δα β µ ηδαδ α δα β

γ µη δα µ γ µ η δα µ γ µ β µ

+ + ++
> + − +

++ + + + + + +

01 0R> − >     

0 1R <    

 

Similarly, one can prove,  

 
22 * * * * 2 * * 3 3 2 * 2 * 3 * 2

4

* 2 2 * 3 * * 2 2 * 2 * 2 * 2 *

2 22 * * 2 * 2 * * 2 * * 2 * * 2

* 2 * 2 2 * * * * 2

A D S P C S D D D C

S D S S P D D P

D D C P C D S P S

S D S D S D

δ α β µ β µδ α µ η γµ δ α µ δα µ β µ η

β µ η µ ηδ µ δα γβ µ γµ δ γµ δ δ α µ

δ α µη δα µ η β µ δ β µ δ β µ δ β µ δα

β µ δ µ δ α γβ ηµ γµηδ γµ δ

= − + + − − −

+ + + + − + +

− − + − − +

+ + + + + * * 3 * 3

3 * 3 * 2 *

S C S

P D

α β µ β µ

µ δ µ δ γµ η

− +

− + +

01 0R> − >    

0 1R <  
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It follows that 1 2 3 40, 0, 0, 0A A A A> > > >  and also 2 2

1 2 3 3 1 4A A A A A A> + .  

 

Theorem 1. Using Routh-Hurwitz criterion [20], the equilibrium points  

 

( )
( )

( )( )
( )

* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

 

 

and  

 

* , , ,
PDCS

Y Y Y Y Y
E Y

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

 

 

of the waste water recycling model are locally asymptotically stable with the condition 

0 1R < .  

 

 

3.2  Global Stability 

 

The global stability will be conversed in this section using some graph theoretical results 

[6, 24] given as below:  

 

⸙ Any graph will consist of the set of vertices and the set of edges. 

⸙ ( ),i j  is called an edge from initial vertex i  to terminal vertex j . 

⸙ A directed graph G  is the set of vertices and the set of edges where all the edges are 

directed from one vertex to another [7]. 

⸙ The out-degree of a vertex i  is the number of edges whose initial vertex is i  denoted as 

( )d i
+ . 

⸙ The in-degree of a vertex i  is the number of edges whose terminal vertex is i  denoted 

as ( )d i
− . 

⸙ A directed graph G  is called a weighted directed graph if each edge is assigned a 

positive weight. 

⸙ The weight ( )w H  of sub-directed graph H  is the product of weights on all its edges.  

⸙ A path in a graph is a finite or infinite sequence of edged which connect the sequence of 

vertices where all are distinct from others [10]. 

⸙ A directed path in a directed graph is a sequence of edges which connect a sequence of 

edges which connect a sequence of vertices where all the edges should be directed in the 

same direction. 

⸙ A cycle graph is a graph where some number of vertices connected in a closed chain [8]. 

⸙ A directed cycle graph is a directed version of a cycle graph with all the edges being 

oriented in the same direction. 

⸙ A loop (or buckle) is an edge that connects a vertex i  to itself [9]. 

⸙ A tree is any acyclic connected graph [12]. 

⸙ If tree is directed then it is called directed tree. 

⸙ A spanning tree is a subgraph of a graph G  which includes all the vertices of G  with 

minimum number of edges [11]. 
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⸙ If G  is a weighted directed graph with n  vertices then the weight matrix has order 

n n×  denoted as ijA a =    with entries 0
ij

a >  which is equal to the weight of edge if it 

exists otherwise it is 0. This kind of weighted directed graph is noted by ( ), .G A  

⸙ G  is called strongly connected directed graph if for any pair of discrete vertices there 

exists a directed path. 

⸙ ( ),G A  is called a strongly connected weighted directed graph if and only if the 

weighted matrix A  is irreducible. 

⸙ The Laplacian matrix ijL l =    of ( ),G A  is defined as 
;

.;

ij

ij
ik

k i

a i j
l a i j

≠

− ≠
=  =

   

 

Proposition 2 (Kirchhoff’s matrix tree theorem). Assume 2n ≥  and let i
c  be the 

cofactor of ii
l  in L . Then ( ), 1,2,...,

i

i

c w i n
τ

τ
∈Τ

= =  where 
i

T  is the set of all spanning trees 

τ  of weighted directed graph ( ),G A  which makes tree at vertex i  and ( )w τ  is the weight 

of τ . If the weighted graph ( ),G A  is strongly connected then 0
i

c >  for 1 .i n≤ ≤  

 

Theorem 3. Let i
c  be as given in the Kirchhoff’s matrix tree theorem. If 0

ij
a >  and 

( ) 1d j
+ =  for some ,i j  then 

1

n

i ij j jk

k

c a c a
=

= . 

 

Theorem 4. Let i
c  be as given in the Kirchhoff’s matrix tree theorem. If 0

ij
a >  and 

( ) 1d i
− =  for some ,i j  then 

1

n

i ij k ki

k

c a c a
=

= . 

 

Theorem 5. Suppose that the following assumptions are satisfied: 

(1) There exists function : , :
i ij

V U G U→ →� �  and constants 0
ij

a ≥  such that for every 

( )
1

1 , '
n

i ij

j

i n V G z
=

≤ ≤ ≤  for .z U∈   

(2) For ijA a =   , each directed cycle C  of ( ),G A  has ( )
( ) ( ),

0
rs

s r C

G z
ε∈

≤  for z U∈ , 

where ( )Cε  denotes the arc set of the directed cycle .C   

Then, the function ( ) ( )
1

n

i i

i

V z cV z
=

= , with constant 0
i

c ≥  as given in the proposition of 

Kirchhoff’s matrix tree theorem, satisfies ' 0V ≤  then V  is a Lyapunov function for the 

system. First, we will discuss about the global stability for the equilibrium point  

 

( )
( )

( )( )
( )

* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

  

 

using graph theory. 
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Let ( ) ( )
2 2

* * * * * *

1 2 3*

1 1
, ln ,

2 2PDC PDC PDC

D
V P P D D C C V D D D V C C

D
= − + − + − = − − = −   

 

Differentiation of 1 2 , 3,
PDC PDC PDC

V V V , gives us 

 

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

* * * * * *

1

* * * *

12 12 23 23

2 2

PDC
V P P C C D D P P C C D D

P P D D C C D D

a G a G

µ µ

µ µ

′ = − + − + − − + − + −

≤ − − + − −

= +

  

 

( )( )* *

2

21 21

PDC
V P P D D

a G

β′ = − −

=
  

 

( )( )

( )( )

* * *

3

* *

31 31

PDC
V C C D D C C

D D C C

a G

η η µ µ

η

′ = − − + −

≤ − −

=

  

 

Using above results and the set of three vertices, the weighted graph is created as shown in 

Figure 2. 

 

1 2 3

12a 23a

21a

31a

 
 

Figure 2. The weighted graph of waste paper model without scrap dealer 

 

 

With 12 23 21 312 , ,a a a aµ β η= = = =  and others 0
ij

a = . 

 

The related weighted graph has three vertices and two cycles where each cycle 

12 21 0G G+ =  and 12 31 23 0G G G+ + = . Then, as assumptions taken in theorem 5, there 

exists ,1 3
i

c i≤ ≤  such that 
3

1

PDC i iPDC
i

V cV
=

=  is Lyapunov function. Using theorem 3, 

 

( ) 2 23 3 31
3 1d c a c a

+ =  =  

 

Now, taking 2c k=  and putting the values of 23a  and 31a , we get 

 

3

2 k
c

µ

η
=  

Also, ( ) 1 12 2 21 2 23
2 1d c a c a c a

+ =  = +   
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( )

1

2

2

k
c

β µ

µ

+
 =  

Therefore,  

( )

3

1

1 1 2 2 3 3

1 2 3

2 2

2

PDC i iPDC
i

PDC PDC PDC

PDC PDC PDC

V cV

cV c V c V

k k
V kV V

β µ µ

µ η

=

=

= + +

+
= + +



 

 

where t  is an arbitrary constant. 

 

This verifies that 
*

PDCE  is the only invariant set in ( )int Λ , where 0.
PDC

V ′ =  Hence, *

PDC
E  is 

globally asymptotically stable in ( )int Λ .  

 

Next, we will deliberate the global stability for the equilibrium point  

 

* , , ,
PDCS

Y Y Y Y Y
E Y

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

  

 

using graph theory. Consider, 
*

1 *
ln

PDCS

P
V P P

P
= − , 

*

2 *
ln

PDCS

D
V D D

D
= − , 

*

3 *
ln

PDCS

C
V C C

C
= − , 

*

4 *
ln

PDCS

S
V S S

S
= −   

 

Differentiate 1PDCS
V  and we get, 

 
*

1 1
PDCS

P
V P

P

 
′ ′= − 

 
 

     ( )
*

1
P

B PD S P
P

δ γ µ
 

= − − + − 
 

  

     ( )
*

* * * *1
P

P D PD S S P P
P

δ δ γ γ µ µ
 

= − − − + + − 
 

 

     ( ) ( )
* * *

* * * *

*
1 1 1 1

P P S P
P D PD S P P

P P S P
δ γ µ
      

= − − + − − + − −      
      

  

     
( )

2
** *

* * *

* * *
1 1 1 1

P PP PD P S
P D S

P P D P S P
δ γ µ

−      
= − − − + − − +      

      
     

     
*

*

*
1 1

P S
S

P S
γ

  
≤ − −  

  
 

    
14 14

a G=    
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Similarly, differentiating 
2 3

,
PDCS PDCS

V V  and 
4PDCS

V , we get 

 

( )

*

2

*

* * *
* * * * *

* * * * *

*
*

*

*
* *

* *

21 21

1

1

1 1 1 1 1 1

1 1

1 1

PDCS

D
V D

D

D
PD D DS D

D

D PD D D D DS
P D D D S

D D DP D D D S

D D
D

D D

D PD
P D

D P D

a G

δ η δα µ

δ η δα

µ

δ

 
′ ′= − 

 

 
= − − − − 
 

          
= − − − − − − − −          

          

  
− − −  

  

  
≤ − −  

  

=

 

( )

*

3

*

* **
* * **

* * **

*
*

*

32 32

1

1

1 1 1 11 1

1 1
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V C
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D CS C

C

C CS C CC D
C S CD

C CC S CC D

C D
D

C D

a G

η β µ

β µη

η

 
′ ′= − 

 

 
= − − − 
 

         
− − − − − −= − −         

         

  
≤ − −  

  
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 
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= − − + − − − − −          

          
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− −  
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Using above results and the set of four vertices, the weighted graph is created as shown in 

Figure 3. 

 

1 2 3

4

21
a

32
a

42
a

43
a

14
a

 
 

Figure 3. The weighted graph of waste paper model 

 

 

with * * * * * * * *

14 21 32 42 43, , , ,a S a P D a D a D S a C Sγ δ η δα β= = = = =  and others 0
ij

a = . 

 

The related weighted graph has three vertices and two cycles where each cycle 

14 21 42 0G G G+ + =  and 14 21 32 43 0G G G G+ + + = . Then, as assumptions taken in theorem 5, 

there exists ,1 4
i

c i≤ ≤  such that 
4

1

PDCS i iPDCS
i

V cV
=

=  is Lyapunov function. Using theorem 

3, 

( )1 1d
+ =

2 21 1 14c a c a =  

 

Now, taking 1c t=  and putting the values of 21a  and 14a , we get 

 
*

2 * *

t S
c

P D

γ

δ
=  

Also, ( )4 1d
+ =

1 14 4 42 4 43c a c a c a = +   

 

   
*

4 * * * *

t S
c

D S C S

γ

δα β
 =

+
 

and  

 

( )3 1d
+ =

4 43 3 32c a c a =  

            
*

* * *

3* * * *

t S
C S c D

D S C S

γ
β η

δα β
 =

+
 

            
( )

2* *

3 * * * * *

t C S
c

D S C S D

βγ

δα β η
 =

+
   

 

Therefore,  
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( )

4

1

1 1 2 2 3 3 4 4

2* * * *

1 2 3 4* * * * * ** * * * *

PDCS i iPDCS
i

PDCS PDCS PDCS PDCS

PDCS PDCS PDCS PDCS

V cV

cV c V c V c V

t S t C S t S
tV V V V

P D D S C SD S C S D

γ βγ γ

δ δα βδα β η

=

=

= + + +

= + + +
++



 

 

where t  is an arbitrary constant. 

 

This confirms that 
*

PDCSE  is the only invariant set in ( )int Λ , where 0.
PDCS

V ′ =  Hence, 

*

PDCS
E  is globally asymptotically stable in ( )int Λ .  

 

Theorem 6. The positive equilibrium points  

 

( )
( )

( )( )
( )

* , , ,0
PDC

BB
E

η δ µ η µδ µ η µη µ

δ δ η µ δµ η µ

 − +− ++
=  
 + + 

 

and 

* , , ,
PDCS

Y Y Y Y Y
E X

Y Y

δα µ γη µη µβ β γ µ δα µ β η γη µη

δ β δα δα β

 − + + + − + + − − + +
=  
 

 

 

of the waste water recycling model are globally asymptotically stable in ( )int .Λ  

 

4 Sensitivity Analyses 

 
In this section, we will confer about the sensitivity for each parameter used to formulate 

waste paper recycling model shown in Table 2. 

 

The normalised sensitivity index of the parameters is calculated by using the following 

formula: 00

0

R R

R
α

α

α

∂
ϒ = ⋅

∂
 where α  is the model parameter.  

The rate at which distributor buys paper, the rate at which distributor gives paper to scrap 

dealers and the rate at which customer gives paper to scrap dealers have positive impact on 

0R  which means they are factors which help us to recycle more waste paper. And others 

have negative effect for the waste paper recycling model and we should not increase them. 

 
Table 2. Sensitivity analysis 

 

Parameter Value 

δ   + 
η   - 

α   + 

β   + 

γ   - 
µ   - 
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5 Numerical Simulations 
 

In the current section, some numerical simulation has been done using the parametric 

values given in the Table 1. 

 

 
 

Figure 4. Transmission of waste paper recycling model 

 

Figure 4 depicts that initially paper industry supplies to distributors and which gets 

maximum at 2 weeks. After buying it from the distributor, the customer runs away with the 

sticks in almost 6 weeks. When the used papers from the distributor, paper industry and 

customer increases pile up for scrap dealer and this result recycling of paper again to the 

paper industry. 

 

Figure 5-7 shows the effect of recycling of waste paper due to scarp dealers. From all 

figures we can state that as the rate increases the recycling of waste paper is also increases. 

Which also mean that all the rates mentioned in following three figures have helpful 

influence on the model?  

 

 
 

Figure 5. Effect of the rate at which distributor buys paper on the scrap dealer 
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From Figure 5, it can be determined that as the rate at which distributor buys paper ( )δ  is 

varied from 70% to 90%, the recycling of waste paper is increased from 170 to 178. This 

expressed that we can recycle more waste paper by 4.70% when δ  is increased by 20%. 

 

 
 

Figure 6. Effect of the rate at which distributor gives paper to scrap dealers on the scrap dealer 

 

From Figure 6 as the rate at which distributor gives paper to scrap dealers ( )α  is varied 

from 1% to 3%, the recycling of waste paper is increased from 164 to 189. This shows that 

when α  is increased by 2% there will be an increment of 15.24% in the recycled waste 

paper.  

 

 
 

Figure 7. Effect of the rate at which customer gives paper to scrap dealers on the scrap dealer 

 

In Figure 7, the rate at which customer gives paper to scrap dealers ( )β  is varied from 

70% to 90% then the recycling of waste paper is increased from 188 to 189. It indicates 

that as 20% β  is increased only 1% more waste paper is recycled.  

 

Hence, from above three figures it can be concluded that α is more effective factor than δ  

and β  in the recycling of waste paper which directs that distributors should have better 

awareness than customer and they should not waste leftover paper inappropriately. In fact, 

they should give as much as waste paper to scrap dealers. 
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6 Conclusions 

 
In the proposed paper, a mathematical model of the waste paper recycling is formulated to 

examine the importance of scrap dealers in the process of waste paper recycling. Recycling 

paper reduces the need for raw material, it also requires much less energy, so it could 

preserve natural resources like trees, forest, water, fuel, etc. for the future and also 

condenses greenhouse gases. For that we all need to show our interest in recycling to make 

it successful. We need to take our time and save the paper products so that it can be 

recycled. We can minimize our use of paper, too. We can use electronic storage rather than 

paper storage. If we really need to buy paper, we just could buy a recycled one. Also, we 

can go digital for the further step in a right direction to protect the environment. 

 

In the section 2, we have found the basic reproduction numbers for all the equilibrium 

points. From that it can be determined that when only paper industry exists and when 

distributor doesn’t exist, the system will not physically stable. Also, we can conclude that if 

scrap dealers are not there, the paper recycling increases only by 64.56% but with the 

existence of scrap dealers, paper recycling will be increased by 73.46%. So, scrap dealers 

are noteworthy for the waste paper recycling. 
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Recently, in 2011, Shabir and Naz [7]opened the idea of soft  topological space and discussed 

different results with respect to ordinary points. They beautifully defined soft  topology as a 

collection of 
 of soft  sets over X. they also defined the basic idea of soft  topological spaces  

such as open set and closed soft  sets, soft  nbd of a point, soft  separation axioms, soft  

regular and soft  normal spaces  and published their several performances. Soft  separation 

axioms are also discussed at detail. Aktas and Cagman [9] discussed Soft  sets and soft  

groups. Chen [10] discovered the parameterization reduction of soft  sets and its applications. 

Feng et al. [11]. Studied Soft  semi rings and its applications. In the recent years, many 

interesting applications of soft  sets theory and soft  topology have been discussed at great 

depth [12,13,14,,15,16,17,18,19,20,21,22]. Kandil at al. [25] explained Soft  connectedness 

via soft  ideal developed soft  set theory. Kandil et al. [27] launched Soft  regularity and 

normality based on semi open soft  sets and soft  ideals. 

 

In [28,29,30,31,32,33,34,35,36] discussion is launched soft  semi hausdorff spaces  via soft  

ideals, semi open and semi closed sets, separation axioms ,decomposition of some type supra 

soft  sets and soft  continuity are discussed.  Hussain and Ahmad [51] defined soft  points, 

soft  separation axioms in soft  topological spaces  with respect to soft  points and used it in 

different results, Kandil et al. [52] studied Soft  semi separation axioms and some types of 

soft  functions and their characteristics. 

 

In this present paper, concept of soft  β-separation axioms in Soft  quad topological spaces  is 

introduced with respect to ordinary and soft  points. 

 

Many mathematicians threw light on  soft  separation axioms in soft  topological spaces  at 

full length with respect to soft   open set, soft   b-open set,  soft  semi-open, soft  α-open set 

and soft  β-open set. They also worked over the hereditary properties of different soft  

topological structures in soft  topology. In this present article bridge is built over the gap that 

exists in soft  quad-topology related to soft     � ���, soft  ����, soft      ����, soft  ����  and 

soft  ���	 structures. Some propositions in soft  quid topological spaces  are discussed with 

respect to ordinary points and soft  points. When we talk about distances between the points 

in soft  topology then the concept of soft  separation axioms is automatically taking birth. 

That is why these structures are catching our attentions. It is hoped that these results will be 

the driving force for the future study on soft  quad topological spaces  to achieve general 

framework for the practical applications and to solve the most complicated problems 

containing doubts in economics, engineering, medical, environment and in general mechanic 

systems of various varieties. In future these beautiful soft  topological structures may be 

extended to soft  n-topological spaces  provided n is even. 

 

 

2. Preliminaries  
 

The following Definition s which are pre-requisites for present study 

 

Definition 1 [4]. Let X  be an initial universe of discourse and E be a set of parameters. Let 

P(X) denotes the power set of X  and A be a non-empty sub-set of E. A pair ),( AF is called 

a soft  set over U, where F is a mapping given by  �: � → �(�) 

 

In other words, a set over X is a parameterized family of sub set of universe of discourse X . 

For � ∈ �, �(�) may be considered as the set of e-approximate elements of the soft  set (�, �) 
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and if � ∉ � then �(�) = � that is ���{�(�): � ∈ � ⊆ �, �: � → �(�)}   the family of all 

these soft  sets over X denoted by    (�)� 

 

Definition 2 [4]. Let��,!" ∈   (�)#  then
AF , is a soft  subset of  

BG  denoted by �� ⊆$ !", if 

1. � ⊆ % and 

2.�(�) ⊆ !(�), ∀∈ � 

 

In this case �� is said to be a soft  subset of !" and  !"  is said to be a soft  super set  ��, !" ⊇$ �� 

 

Definition 3 [6]. Two soft  subsets ��  and !" over a common universe of discourse set X are 

said to be equal if �� is a soft  subset of !"  and !"  is a soft  subset of �� 

 

Definition 4 [6]. The complement of soft  subset (�, �) denoted by (�, �)( is defined by  (�, �)( = (�( , �)�( → �(�) is a mapping given by   �((�) = ) − �(�)∀� ∈ � and �( is 

called the soft  complement function of F .  Clearly   (�()( is the same as F  and  ((�, �)()( = (�, �) 

 

Definition 5 [7]. The difference between two soft  subset (!, �) and (!, �) over common of 

universe discourse �  denoted by (�, �)\(!, �) is defined as �(�)\G(�) for all � ∈ � 

 

Definition 6 [7]. Let(!, �) be a soft  set over X   and  - ∈ �  We say that - ∈ (�, �) and read   

as  x belong to the soft  set(�, �) whenever  - ∈ �(�)∀� ∈ �The soft  set (�, �) over X

such that  �(�) = {-}, ∀� ∈ �  is called singleton soft  point  and denoted by  -, ./ (-, �) 

 

Definition 7 [6]. A soft  set  (�, �)  over X is said to be Null soft  set denoted by ∅ $  ./ ∅�if ∀� ∈ �, �(�) = ∅ 

 

Definition 8 [6]. A soft  set (�, �) over X is said to be an absolute soft  denoted by �̅ ./ �� if ∀� ∈ �, �(�) = � 
 

Clearly, we have, ��( = ∅� 234 ∅�( = �� 

 

Definition 9 [51]. The soft  point �5 is said to be in the soft  set(!, �) , denoted by �5  ∈(!, �) if for the element� ∈ �, �(�) ⊆ !(�). 

 

Definition 10 [44]. Two soft  sets (!, �), (6, �) in   (�)� are said to be soft  disjoint, 

written (!, �) ∩ (6, �) = ∅� If !(�) ∩ 6(�) = ∅ for all � ∈ �. 

 

Definition 11 [51]. The soft  point �8 , �9 in �� are disjoint, written  �8 ≠ �9 if their 

corresponding soft  sets (!, �) and (6, �) are disjoint.  

 

Definition 12 [6]. The union of two soft  sets (�, �)  and (G, %)  over the common universe 

of discourse X is the soft  set (6, ;), where,  ; = �)%, ∀� ∈ ; 

 

6(�) = < �(�)         => � ∈ � − %    !(�)           => � ∈ (% − � )�(�))!(�),   => � ∈ � ∩ %? 
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Written as (�, �) ∪ (!, %) = (6, ;) 

 

Definition 13 [6]. The intersection (6. ;) of two soft  sets(�, �) and (!, %)over common 

universe X, denoted (�, �) ∩$ (G, B) is defined as 

 ; = � ∩ % and 6(�) = �(�) ∩ !(�), ∀� ∈ ; 

 

Definition 14 [2]. Let (�, �) be a soft  set over � and Y be a non-empty sub set of �. Then 

the sub soft  set of (�, �)over Y  denoted by (C5, �), is defined as follow C5(D) = C ∩�(E), ∀∈ � in other words ( C5, �) = C ∩ (�, �). 
 

Definition 16 [3]. Let 
be the collection of soft  sets over �F then 
 is said to be a soft  

topology on�F if  

1. ∅, �FG
 

2.  The union of any number of soft  sets in 
belongs to 
 

3.  The intersection of any two soft  sets in 
 belong to 
 

The triplet (�F, 
, �) is called a soft  topological space. 

 

Definition 17 [1]. Let (�F, �, �) be a soft  topological space over X, then the member of τ are 

said to be soft  open sets in �. 

 

Definition 18 [1]. Let  (�, 
, �) be a soft  topological space over �. A soft  set (�, �) over �F 

is said to be a soft  closed set in � if its relative complement (�, �)( belong toτ. 

 

Definition 20 [51]. Let H�F, 
, �I be a soft  topological space and (�, �) ⊆   (�F)� then (�, �) is called β-open soft  set if   ((�, �) ⊆ ;J(=3KH;J(�, �)I). The set of all β-open soft  

set is denoted by  �L(�, 
, �) or  �L(�F) and the set of all β-closed soft  set is denoted 

by  �;H�F, 
, �I or  �;(�F). 

 

Proposition 1. Let (�, 
, �) be a soft topological space over �.If (�, 
, �) is soft  β��-space, 

then for all   - ∈ �, -# = (-, �) is β-closed soft  set. 

 

Proposition 2. Let (C, 
M,�) be a soft sub space of a soft topological space (�, 
, �)  and (�, �) ∈   (�) then  

1. If (�, �) is soft  β open set in Y and C ∈ 
, then (�, �) ∈ 
 

2. (�, �) is soft  β open soft  set in Y if and only if (�, �) = C ∩ (!, �) for some (!, �) ∈ 
. 

3. (�, �) is soft  β closed soft  set  in Y if and only if (�, �) = C ∩ (6, �) for some (6, �) =N 
   soft  β closed. 

 

 

4. Soft β-Separation Axioms in Soft  Quad Topological Spaces  
 

In this section we inaugurated soft  β separation axioms in soft  quad topological space with 

respect to ordinary points and discussed some results with respect to these points in detail. 
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Definition 27. Let (�, 
�, �), (�, 
�, �),(�, 
�, �)  and (�, 
	, �) be four different soft  

topologies on X. Then (�, 
�, 
�, 
�, 
	, �) is called a soft  quad topological space. The soft  

four topologies (�, 
�, �), (�, 
�, �), (�, 
�, �) and (�, 
	, �) are independently satisfying the 

axioms of soft  topology. The members of
� are called 
�soft  open set. And complement 

of
�Soft  open set is called 
� soft  closed set. Similarly, the member of 
� are called 
� soft  

open sets and the complement of 
� soft  open sets are called 
� soft  closed set. The members 

of 
� are called 
� soft  open set. And complement of 
�  Soft  open set is called 
� soft  

closed set and the members of 
	 are called 
	 soft  open set. And complement of 
	  Soft  

open set is called 
	 soft  closed set.  

 

Definition 28. Let (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X and Y be a 

non-empty subset of X. Then 
�M = {(C5, �): (�, �) ∈ 
�)},
�M = {(C8 , �): (!, �) ∈
�)},
�M = {(C9, �): (6, �) ∈ 
�)} and 
	M = {(O# , �): (O, �) ∈ 
�)} are said to be the relative 

topological on Y. Then (C, 
�M, 
�M, 
�M, 
	M, �) is called relative soft  quad-topological space 

of (�, 
�, 
�, 
�, 
	, �). 
 

Let (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X, where (�, 
�, �), (�, 
�, �),(�, 
�, �)  and (�, 
	, �) be four different soft  topologies on X. Then a 

sub set (�, �)is said to be quad-open (in short hand q-open) if (�, �) ⊆ 
� ∪ 
� ∪ 
� ∪ 
	 and 

its complement is said to be soft  q-closed. 

 

4.1 Soft  β-Separation Axioms of Soft  Quad Topological Spaces  with Respect to 

Ordinary Points. 

 

In this section inauguration of soft  β separation axioms in soft  quad topological space with 

respect to ordinary points is launched and discussed some eye-catching results with respect to 

these points in detail. 

 

Definition 29. Let (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X and -, P ∈ � 

such that - ≠ P. If we can find soft  q-open sets (�, �) and (!, �) such that - ∈ (�, �) 

andP ∉ (�, �) or P ∈ (!, �) and - ∉ (!, �) Kℎ�3 (�, 
�, 
�, 
�, 
	, �) is called soft    ��� 

space. 

 

Definition 30. Let (�, 
�, 
�, 
�, 
	, �)be a soft  quad topological space over X and -, P ∈ � 

such that   - ≠ P If   we can find two soft  q-open sets (�, �)   and (!, �) such that - ∈(�, �) and P ∉ (�, �) and P ∈ (!, �) and - ∉ (!, �) then (�, 
�, 
�, 
�, 
	, �) is called soft  

q�� space. 

 

Definition 31. Let (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X and -, P ∈ �  

such that - ≠ P. If we can find two q- open soft  sets such that - ∈ (�, �) and P ∈ (!, �) 

moreover (�, �) ∩ (!, �) = �. Then (�, 
�, 
�, 
�, 
	, �)is called a soft   ���  space. 

 

Definition 32. Let (�, 
�, 
�, 
�, 
	, �) be a soft  topological space  (!, �)   be q-closed soft  

set in X and - ∈ ��  such that - ∉ (!, �). If there occurs soft  q-open sets  (��, �) and  (��, �) such that - ∈ (��, �), (!, �) ⊆  (��, �) and  (��, �) ∩ (��, �) = R. Then (�, 
�, 
�, 
�, 
	, �) is called soft  q-regular spaces . A soft  q-regular ���  S2T� is called soft  ���space. 
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Then (�, 
�, 
�, 
�, 
	, �)is called a soft  q-regular spaces . A soft  q-regular ��  S2T� is 

called soft  ���space. 

 

Definition 33. (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space (��, �), (!, �) be closed 

soft  sets in � such that (�, �) ∩ (!, �) = R If there exists q- open soft  sets (��, �) and (��, �) such that (�, �) ⊆  (��, �), (!, �) ⊆ (��, �) and (��, �) ∩ (��, �) = R. Then (�, 
�, 
�, 
�, 
	, �) is called a q-soft  normal space.  A soft  q-normal ���  S2T� is called soft    ��	  S2T�. 

 

Definition 34. Let (�, 
, �) be a soft  Topological space over X and �8 , �9 ∈ ��   such that �8 ≠ �9 if there can happen at least one soft  semi open set (��, �) or  (��, �) such that �8 ∈ (��, �), �9 ∉ (��, �) or  �9 ∈ (��, �), �8 ∉ ((��, �) then  (�, 
�, 
�, 
�, 
	, �) is called a 

soft   ��� space. 

 

Definition 35.Let (�, 
�, 
�, 
�, 
	, �)be a soft  Topological spaces  over X and �8 , �9 ∈ ��   

such that �8 ≠ �9 if there can happen soft  q-open sets (��, �) and (��, �) such that �8 ∈(��, �), �9 ∉ (��, �)  and   �9 ∈ (��, �), �8 ∉ ((��, �) then  (�, 
�, 
�, 
�, 
	, �) is called soft  ��� NS2T�. 

 

Definition 36. Let (�, 
�, 
�, 
�, 
	, �) be a soft  Topological space over X and �8 , �9 ∈ ��  

such that �8 ≠ �9 if there can happen soft  q-open sets  (��, �)and (��, �) such that �8 ∈(��, �), and   �9 ∈ (��, �), (��, �) ∩ (��, �) = ��. Then (�, 
�, 
�, 
�, 
	, �) is called soft   ��� NS2T� 

 

Definition 37. Let (�, 
�, 
�, 
�, 
	, �) be a soft  topological space  (!, �)   be q-closed soft  

set in X and �8 ∈ ��  such that�8 ∉ (!, �). If there occurs soft  q-open sets  (��, �) and  (��, �) such that �8 ∈ (��, �), (!, �) ⊆  (��, �) and  (��, �) ∩ (��, �) = R. Then (�, 
�, 
�, 
�, 
	, �) is called soft  q-regular spaces . A soft  q- regular ���  S2T� is called soft  ���space. 

 

Definition 38. In a soft  quad topological space (�, 
�, 
�, 
�, 
	, �) 

 1) 
� ∪ 
�is said to be soft  ��� space with respect to 
� ∪ 
	 if for each pair of  points  -, P ∈ � such that - ≠ P there exists 
� ∪ 
� soft  β-open set (�, �) and a 
� ∪ 
	 soft  β-open 

set (!, �) such that - ∈ (�, �) and P ∉ (!, �)  or P ∈ (!, �) and - ∉ (!, �). Similarly, 
� ∪ 
	is said to be soft  ��� space with respect to 
� ∪ 
� if for each pair of points -, P ∈�such that - ≠ P there exists 
� ∪ 
	soft  βopen set(�, �) and 
� ∪ 
�soft  β open set (!, �) 

such that - ∈ (�, �) and P ∉ (�, �) or P ∈ (!, �) and - ∉ (!, �). Soft  quad topological 

spaces  (�, 
�, 
�, 
�, 
	, �)   is said to be pair wise soft ��� space if 
� ∪ 
� is soft  ��� space 

with respect to 
� ∪ 
	 and to 
� ∪ 
	 and is soft  β��space with respect to
� ∪ 
�. 
 2)
� ∪ 
� is said to be soft  ��� space with respect to 
� ∪ 
	 if for each pair of  points -, P ∈ �such that - ≠ P there exists  
� ∪ 
� soft  β open set (�, �) and to 
� ∪ 
	 soft  β 

open set (!, �) such that - ∈ (�, �) and  P ∉ (!, �) and P ∈ (!, �) and  - ∉ (!, �). 

Similarly, 
� ∪ 
	is said to be soft  ��� space with respect to 
� ∪ 
� if for each pair of 

distinct points -, P ∈ � such that - ≠ P  there exists 
� ∪ 
	 soft  β open set (�, �)  and a to 
� ∪ 
� soft  β open set (!, �) such that - ∈ (�, �) and  P ∉ (�, �) and P ∈ (!, �) and  - ∉ (!, �) . Soft  quad topological spaces  (�, 
�, 
�, 
�, 
	, �)   is said to be pair wise soft  
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 ��� space if 
� ∪ 
� is soft  ��� spacewith respect to 
� ∪ 
	and to 
� ∪ 
	is soft  ���space 

with respect to 
� ∪ 
�. 
 3)
� ∪ 
�is said to be soft  ��� space with respect to  
� ∪ 
� if for each pair of points -, P ∈ � such that - ≠ P there exists a 
� ∪ 
� soft  β open set (�, �) and a 
� ∪ 
	 soft  β 

open set (!, �) such that - ∈ (�, �) and P ∈ (!, �) , (�, �) ∩ (!, �) = �. Similarly, 
� ∪
	is said to be soft  ���space with respect to 
� ∪ 
� if for each pair of  points -, P ∈ �  such 

that - ≠ Pthere exists a 
� ∪ 
	soft  β open set (�, �) and a 
� ∪ 
�soft  β open set (!, �) 

such that - ∈ (�, �) ,P ∈ (!, �) and (�, �) ∩ (!, �) = �. The soft  quad topological space (�, 
�, 
�, 
�, 
	, �) is said to be pair wise soft  ��� space if 
� ∪ 
� is soft  ��� space with 

respect to 
� ∪ 
	 and 
� ∪ 
	 is soft  ��� space with respect to
� ∪ 
�. 

 

Definition 39. In a soft  quad topological space (�, 
�, 
�, 
�, 
	, �) 

 1) 
� ∪ 
�is said to be soft  ��� space with respect to a 
� ∪ 
	if 
� ∪ 
� is soft  ���  space 

with respect to  
� ∪ 
	 and for each pair of points -, P ∈ � such that - ≠ P there exists 
� ∪ 
� Soft  β closed set (!, �) such that - ∉ (!, �), a
� ∪ 
�soft  β open set  (��, �) and 
� ∪ 
	  soft  β open set (��, �) such that - ∈ (��, �), (!, �) ⊆ (��, �)and(��, �) ∩ (��, �) =∅. Similarly, 
� ∪ 
	is said to be  soft  ��� space with respect to  
� ∪ 
� if  
� ∪ 
	 is soft  ���  space with respect to 
� ∪ 
� and for each pair of points -, P ∈ � such that - ≠ P there 

exists a 
� ∪ 
	  soft   β closed set (!, �) such that - ∉ (!, �),  
� ∪ 
	 soft  β open set (��, �)  and
� ∪ 
� soft  β open set (��, �) such that - ∈ (��, �), (!, �) ⊆ (��, �)  and (��, �) ∩ (��, �) = �. (�, 
�, 
�, 
�, 
	, �)is said to be pair wise soft  ��� space if   
� ∪ 
� is 

soft  ���  space with respect to 
� ∪ 
	 and 
� ∪ 
	is   soft  ��� space with respect to
� ∪ 
�.  

 2) 
� ∪ 
�is said to be soft  ��	  space with respect to  
� ∪ 
	if  
� ∪ 
� is soft  ���  space 

with respect to 
� ∪ 
	 , there exists  a 
� ∪ 
�  soft  β closed set (��, �) and 
� ∪ 
	  soft  β 

closed set (��, �) such that (��, �) ∩ (��, �) = ∅. Also there exists (��, �) and (!�, �) such 

that (��, �) is  soft  
� ∪ 
�  β open set,  (!�, �) is  soft   
� ∪ 
	  β open set such that (��, �) ⊆ (��, �),  (��, �) ⊆ (!�, �). Similarly,
� ∪ 
	is said to be  soft  ��	 space with 

respect to 
� ∪ 
� if 
� ∪ 
	  is soft  β��  space with respect to
� ∪ 
�, there exists 
� ∪ 
	 

soft  β closed set (��, �) and 
� ∪ 
� soft  β closed set (��, �) such that (��, �) ∩ (��, �) =�. Also   there exist(��, �) and (!�, �) such that (��, �) is soft  
� ∪ 
	  β open set, (!�, �) is 

soft  
� ∪ 
� β open set such that (��, �) ⊆ (��, �), (��, �) ⊆ (!�, �) and (��, �) ∩ (!�, �) =�.  Thus, (�, 
�, 
�, �) is said to be pair wise soft  ��	  space if 
� ∪ 
�is soft  ��	  space 

with respect to
� ∪ 
	 and  
� ∪ 
	 is soft  ��	 space with respect to
� ∪ 
�. 

 

Proposition 3. Let (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X. Then, if (�, 
�, 
�, �) and (�, 
�, 
	, �) are soft  ��� space then (�, 
�, 
�, 
�, 
	, �) is a pair wise soft  ��� space.  

 

Proof: Suppose (�, 
�, 
�, �)is a soft  ��� space with respect to (�, 
�, 
	, �) then according 

to definition for -, P ∈ �, which distinct, by using Proposition 1, (Y, E) is soft  β closed set 

in 
� ∪ 
	 and  - ∉ (C, �) there exists a 
� ∪ 
� soft  β open set (�, �) and a 
� ∪ 
	 soft  β 

open set (!, �) such that - ∈ (�, �), P ∈ (C, �) ⊆ (!, �) and  (��, �) ∩ (��, �) = �. Hence 
� ∪ 
�  is soft   ��� space with respect to
� ∪ 
	. Similarly, if (�, 
�, 
	, �) is a soft  ��� 

space with respect to (�, 
�, 
�, �) then according to definition for -, P ∈ �, - ≠ P , by using 

Theorem 2, (x, E) is  β closed soft  set in 
� ∪ 
�and P ∉ (-, �) there exists a 
� ∪ 
	 soft  β 

open set (�, �) and a 
� ∪ 
� soft  β open set (!, �) such that P ∈ (�, �)  ,  - ∈ (-, �) ⊆
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 (!, �) and  (��, �) ∩ (��, �) = � .Hence 
� ∪ 
	is soft  ���space. This implies that  (�, 
�, 
�, 
�, 
	, �) is a pair wise soft  ��� space. 

 

Proposition 4. Let (�, 
�, 
�, 
�, 
	, �)  be a soft  quad topological space over X. if (�, 
�, 
�, �) and (�, 
�, 
	, �) are soft  ��� space then (�, 
�, 
�, 
�, 
	, �) is a pair wise soft  ��� space.  

 

Proof: Suppose (�, 
�, 
�, �) is a soft  ��� space with respect to  (�, 
�, 
	, �) then according 

to definition for -, P ∈ �, - ≠ P there exists a (�, 
�, 
�, �) soft  β open set (�, �) and a (�, 
�, 
	, �) soft  β open set (!, �) such that - ∈ (�, �) and  P ∉ (�, �)  or  P ∈ (!, �) and  - ∉ (!, �) and for each point - ∈ � and each (�, 
�, 
�, �) β closed soft  set (!�, �) such that - ∉ (!�, �)  there exists a (�, 
�, 
�, �) soft  β open set (��, �) and (�, 
�, 
	, �) soft  β open 

set (��, �) such that - ∈ (��, �), (!�, �) ⊆ (��, �) and (��, �) ∩ (��, �) = �. Similarly, to  (�, 
�, 
	, �) is a soft  ��� space with respect to (�, 
�, 
�, �). So according to definition 

for -, P ∈ �, - ≠ P  there exists a (�, 
�, 
	, �) soft  β open set (�, �) and a (�, 
�, 
�, �) soft  

β open set (!, �) such that - ∈ (�, �) and  P ∉ (�, �)  or  P ∈ (!, �) and  - ∉ (!, �) and for 

each point - ∈ � and each (�, 
�, 
	, �) β closed soft  set (!�, �) such that - ∉ (!�, �)  there 

exists (�, 
�, 
	, �) soft  β open set (��, �)and (�, 
�, 
�, �) soft  β open set (��, �) such that - ∈ (��, �), (!�, �) ⊆ (��, �) and (��, �) ∩ (��, �) = �. Hence (�, 
�, 
�, 
�, 
	, �) is pair 

wise soft  ��� space. 

 

Proposition 5. If (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X. if(�, 
�, 
�, �) 

and (�, 
�, 
	, �)are soft  ��	 space then (�, 
�, 
�, 
�, 
	, �) is pair wise soft  ��	 space.  

 

Proof: Suppose (�, 
�, 
�, �)is soft  ��	 space with respect to (�, 
�, 
	, �). So according to 

definition for -, P ∈ �, - ≠ P there exist a (�, 
�, 
�, �) soft  βopen set (�, �) and 

a (�, 
�, 
	, �) soft  β open set (!, �) such that - ∈ (�, �) and  P ∉ (�, �)  or  P ∈ (!, �) and  - ∉ (!, �) each (�, 
�, 
�, �) soft  β closed set (��, �) and a (�, 
�, 
	, �) soft  β closed set (��, �) such that (��, �) ∩ (��, �) = �. There exist (��, �) and (!�, �) such that (��, �)  is 

soft  (�, 
�, 
	, �) and soft  β open set (!�, �) is soft  (�, 
�, 
�, �) β open set (��, �) ⊆(��, �), (��, �) ⊆ (!�, �) and (��, �) ∩ (!�, �) = �. Similarly, (�, 
�, 
	, �)is soft  ��	 

space with respect to (�, 
�, 
�, �) is so according to definition for -, P ∈ �, - ≠ P there 

exists a (�, 
�, 
	, �) soft   semi open set (�, �)  and a  (�, 
�, 
�, �)soft  β open set (!, �) 

such that - ∈ (�, �) and  P ∉ (�, �)  or  P ∈ (!, �) and  - ∉ (!, �) and for each (�, 
�, 
	, �)soft  β closed set (��, �) and (�, 
�, 
�, �) soft  β closed set (��, �) such that (��, �) ∩ (��, �) = �.there exists soft  β open sets (��, �) and (!�, �) such that (��, �) is 

soft  (�, 
�, 
	, �) β open set (!�, �) is soft  (�, 
�, 
�, �) β open set such that (��, �) ⊆(��, �), (��, �) ⊆ (!�, �) and (��, �) ∩ (!�, �) = �. Hence (�, 
�, 
�, 
�, 
	, �)is pair wise 

soft  ��	 space. 

 

Proposition 6. Let  (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X and Y be a 

non-empty subset of X. if (�, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft ���  space. Then (C, 
�M, 
�M, 
�M, 
	M, �)is pair wise soft  ��� space.  

 

Proof: First we prove that (�, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft  ��� space. Let -, P ∈�, - ≠ P if (�, 
�, 
�, 
�, 
	, �)is pair wise space then this implies that (�, 
�, 
�, 
�, 
	, �)is 

pair wise soft  space. So there exists (�, 
�, 
�, �) soft  β open (�, �)   and (�, 
�, 
	, �) soft  

β open set  (!, �) such that - ∈ (�, �) and  P ∉ (�, �)  or  P ∈ (!, �) and  - ∉ (!, �) now   
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 - ∈ C 234 - ∉ (!, �). Hence - ∈ C ∩ (�, �) = (C5 , �) then P ∉ C ∩ (E) for some E ∈ �. 
this means that E ∈ � then P ∉ C ∩ �(E) for some E ∈ �. 
 

Therefore, P ∉ C ∩ (�, �) = (C5, �). Now P ∈ CandP ∈ (!, �). Hence P ∈ C ∩ (!, �) =(!M, �) where (!, �) ∈ (�, 
�, 
	, �). Consider - ∉ (!, �) this means that E ∈ � then - ∉ C ∩ !(E) for some α∈ �. There fore - ∉ C ∩ (!, �) = (!M, �) thus (C, 
�M, 
�M, 
�M, 
	M, �)is pair wise soft  ��� space.  

 

Now we prove that (C, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft  ��� space then (C, 
�M, 
�M, 
�M, 
	M, �)is pair wise soft  β regular space.  

 

Let P ∈ C and (!, �) be a soft  β closed set in Y such that P ∉ (!, �) where (!, �) ∈(�, 
�, 
�, 
�, 
	, �) then (!, �) = (C, �) ∩ (�, �) for some soft  β closed set 

in(�, 
�M, 
�M, 
�M, 
	M, �).   Hence  P ∉ (C, �) ∩ (�, �)  but  P ∈ (C, �) , so P ∉ (�, �) since (�, 
�, 
�, 
�, 
	, �)is soft  ���   space (�, 
�, 
�, 
�, 
	, �) is soft  β regular space so there 

exists (�, 
�, 
�, �)soft  β open set (��, �) and (�, 
�, 
	, �) soft  β open set (��, �) such that P ∈ (��, �), (!, �) ⊆ (��, �),  (��, �)(��, �) = � 

 

Take (!�, �) = (C, �) ∩ (��, �) then  (!�, �), (!�, �) are soft  β open set in Y such that  P ∈ (!�, �), (!, �) ⊆ (C, �) ∩ (��, �) = (!�, �) (!�, �) ∩ (!�, �) ⊆ (��, �) ∩ (��, �) = � (!�, �) ∩ (!�, �) = � 
 

There fore 
�M ∪ 
�Mis soft  β regular space with respect to
�M ∪ 
	M. Similarly, Let P ∈ C and (!, �) be a soft  β closed sub set in Y such that P ∉ (!, �) , where (!, �) ∈ (�, 
�, 
	, �) then (!, �) = (C, �) ∩ (�, �) where (�, �)  is some soft  β closed set in(�, 
�, 
	, �). P ∉(C, �) ∩ (�, �) But  P ∈ (C, �) so P ∉ (�, �) since (�, 
�, 
�, �) is soft  β regular space so 

there exists (�, 
�, 
	, �)soft  β open set (��, �) and (�, 
�, 
�, �) soft  β open set (��, �). 

Such that  P ∈ (��, �), (!, �) ⊆ (��, �) (��, �) ∩ (��, �) = � 
 

Take   (!�, �) = (C, �) ∩ (��, �) 

   (!�, �) = (C, �) ∩ (��, �) 
 

Then (!�, �) and (!�, �) are soft  β open set in Y such that  

 

   P ∈ (!�, �), (!, �) ⊆ (C, �) ∩ (��, �) = (!�, �) 

   (!�, �) ∩ (!�, �) ⊆ (��, �) ∩ (��, �) = � 
 

There for e
�M ∪ 
	M is soft  β regular space with respect 
�M ∪ 
�M ⇒ (C, 
�M, 
�M, 
�M, 
	M, �) 

is pair wise soft  ��� space.  

 

Proposition 7. Let  (�, 
�, 
�, 
�, 
	, �) be a soft  quad topological space over X and Y be a 

soft  β closed sub space of X. if (�, 
�, 
�, 
�, 
	, �) is pair wise soft  ��	 space then (C, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft  ��	 space.  

 

Proof: Since (�, 
�, 
�, 
�, 
	, �) is pair wise soft  ��	 space so this implies that (�, 
�, 
�, 
�, 
	, �) is pair wise soft  ��� space as proved above.  
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We prove (�, 
�, 
�, 
�, 
	, �)is pair wise soft  β normal space.  

 

Let (!�, �), (!�, �) be soft  β closed sets in Y such that 

   (!�, �) ∩ (!�, �) = � 

Then    (!�, �) = (C, �) ∩ (��, �) 

And    (!�, �) = (C, �) ∩ (��, �) 

For some soft  β closed sets such that (��, �) is soft  β closed set in 
� ∪ 
�  soft  β closed 

set(��, �) in   
� ∪ 
	.  

And    (��, �) ∩ (��, �) = � 

From Proposition 2. Since, Y is soft  β closed sub set of X then (!�, �), (!�, �) are soft  β 

closed sets in X such that  

   (!�, �) ∩ (!�, �) = � 

Since (�, 
�, 
�, 
�, 
	, �) is pair wise soft  β normal space. So there exists soft  β open sets (6�, �) and (6�, �) such that  (6�, �)is soft  β open set in 
� ∪ 
�and (6�, �) is soft  β open set in 
� ∪ 
	such that  

   (!�, �) ⊆ (6�, �) 

   (!�, �) ⊆ (6�, �) 

   (6�, �) ∩ (6�, �) = � 

Since   (!�, �), (!�, �) ⊆ (C, �) 

Then    (!�, �) ⊆ (C, �) ∩ (6�, �) 

   (!�, �) ⊆ (C, �) ∩ (6�, �) 

And   _(C, �) ∩ (6�, �)` ∩ _(C, �) ∩ (6�, �)` = � 

Where (C, �) ∩ (6�, �) and (C, �) ∩ (6�, �) are soft  β open sets in Y there fore 
�M ∪ 
�M is 

soft  β normal space with respect to
�M ∪ 
	M. Similarly, let (!�, �), (!�, �) be soft  β closed 

sub set in Y such that  

   (!�, �) ∩ (!�, �) = � 

Then    (!�, �) = (C, �) ∩ (��, �) 

And    (!�, �) = (C, �) ∩ (��, �) 

For some soft  β closed sets such that (��, �) is soft  βclosed set in 
� ∪ 
	234 (��, �)  soft  β 

closed set in 
� ∪ 
�and  

   (��, �)(��, �) = � 

From Proposition 2. Since, Y is soft  β closed sub set in X then (!�, �), (!�, �) are soft  β 

closed sets in X such that  

   (!�, �) ∩ (!�, �) = � 

Since (�, 
�, 
�, 
�, 
�, �) is pair wise soft  β normal space so there exists soft  β open sets (6�, �) and (6�, �) 

Such that (6�, �) is soft  β open set is 
� ∪ 
	 and (6�, �) is soft  β open set in 
� ∪ 
� such 

that  

   (!�, �) ⊆ (6�, �) 

   (!�, �) ⊆ (6�, �) 

   (6�, �) ∩ (6�, �) = � 

Since   (!�, �), (!�, �) ⊆ (C, �) 

Then    (!�, �) ⊆ (C, �) ∩ (6�, �) 

   (!�, �) ⊆ (C, �) ∩ (6�, �) 

And   _(C, �) ∩ (6�, �)` ∩ _(C, �) ∩ (6�, �)` = � 

Where (C, �) ∩ (6�, �) and (C, �) ∩ (6�, �) are soft  β open sets in Y there fore 
�M ∪ 
	M is 

soft  β normal space with respect to
�M ∪ 
�M ⇒ (C, 
�M, 
�M, 
�M, 
	M�)is pair wise soft ��	 space. 
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4.2 Soft  β-Separation Axioms in Soft  Quad Topological Spaces  with Respect to Soft  

Points. 

 

In this section, we brought out soft  topological structures known as β separation axioms in 

soft  quad topology with respect to soft  points. With the applications of this soft  β separation 

axioms different result are brought under examination.  

 

Definition 40.  In a soft  quad topological space (�, 
�, 
�, 
�, 
�, �) 

 1) 
� ∪ 
� said to be  soft ��� space with respect to 
� ∪ 
	if for each pair of distinct points �8 , �9 ∈ ��there happens 
� ∪ 
� soft  β open set (�, �) and a 
� ∪ 
	soft  β open set (!, �) 

such that �8 ∈ (�, �) and �9 ∉ (!, �) , Similarly, 
� ∪ 
	is said to be  soft ��� space with 

respect to 
� ∪ 
�if for each pair of distinct points �8 , �9 ∈ ��there happens 
� ∪ 
	soft  

βopen set(�, �) and a 
� ∪ 
�β soft  open set (!, �) such that �8 ∈ (�, �) and �9 ∉ (�, �) or �9 ∈ (!, �) and �8 ∉ (!, �).Soft  quad topological spaces (�, 
�, 
�, 
�, 
�, �)is said to be 

pair wise soft ��� space if 
� ∪ 
� is soft   ��� space with respect to 
� ∪ 
	 and
� ∪ 
	 is 

soft ��� spaces  with respect to
� ∪ 
�. 

 2)  
� ∪ 
�is said to be soft   ��� space with respect to 
� ∪ 
	 if for each pair of distinct 

points �8 , �9 ∈ ��there happens  a
� ∪ 
�soft  β open set (�. �)and 
� ∪ 
	 soft  β open set (!, �) such that �8 ∈ (�, �) and  �9 ∉ (!, �) and �9 ∈ (!, �) and  �8 ∉ (!, �).Similarly, 
� ∪ 
	is said to be soft ��� space with respect to 
� ∪ 
� if for each pair of distinct points �8 , �9 ∈ ��there exist a 
� ∪ 
	soft  β open set (�, �)  and a 
� ∪ 
�  soft  β open set (!, �) 

such that �8 ∈ (�, �) and�9 ∉ (!, �) and �9 ∈ (!, �) and  �8 ∉ (!, �). Soft  quad 

topological space(�, 
�, 
�, 
�, 
�, �)is said to be pair wise soft ��� space if 
� ∪ 
� is soft ��� space with respect to 
� ∪ 
	 and
� ∪ 
	is soft ��� spaces  with respect to
� ∪ 
�. 

 3)  
� ∪ 
� is said to be soft ��� space with respect to
� ∪ 
	 ,  if for each pair of distinct 

points �8 , �9 ∈ ��there happens a 
� ∪ 
� soft  β open set (�, �) and a 
� ∪ 
	 soft  β open 

set (!, �) such that �8 ∈ (�, �) and  �9 ∉ (!, �) and �9 ∈ (!, �) and  �8 ∉ (!, �) and (�, �) ∩ (!, �) = �. Similarly, 
� ∪ 
	is aid to besoft ���space with respect to 
� ∪ 
� if  for 

each pair of distinct points�8 , �8 ∈ ��there happens a 
� ∪ 
	soft  βopen set (�, �) and a 
� ∪ 
�soft  βopen set (!, �) such that �8 ∈ (�, �) and �8 ∈ (!, �) and (�, �) ∩ (!, �) = �. 

The soft  quad topological space (�, 
�, 
�, 
�, 
�, �)is said to be pair wise soft ��� space if 
� ∪ 
� is soft ��� space with respect to 
� ∪ 
	 and 
� ∪ 
	 is soft   ��� space with respect 

to
� ∪ 
�. 

 

Definition 41. In a soft  quad topological space (�, 
�, 
�, 
�, 
�, �) 

 1) 
� ∪ 
� is said to be soft ��� space with respect to 
� ∪ 
	 if  
� ∪ 
� is soft ��� space 

with respect to 
� ∪ 
	 and for each pair of distinct points�8 , �9 ∈ �� , there exists a 
� ∪ 
� 

β closed soft  set (!, �) such that�8 ∉ (!, �), 
� ∪ 
�soft  β open set  (��, �) and 
� ∪ 
	 soft  

β open set (��, �) such that �8 ∈ (��, �), (!, �) ⊆ (��, �) and (��, �) ∩ (��, �) = ∅. 

Similarly, 
� ∪ 
	is said to be  soft ��� space with respect to  
� ∪ 
� if  
� ∪ 
	 is soft ���  

space with respect to 
� ∪ 
� and for each pair of distinct points �8 , �9 ∈ �� there exists a 
� ∪ 
	  soft  β closed set (!, �) such that �8 ∉ (!, �),  
� ∪ 
	soft  β open set (��, �) amd 
� ∪ 
�soft  β open set (��, �) such that �8 ∈ (��, �), (!, �) ⊆ (��, �)  and (��, �) ∩(��, �) = �.  (�, 
�, 
�, 
�, 
�, �)is said to be pair wise soft ��� space if   
� ∪ 
� is soft ���  

space with respect to 
� ∪ 
	 and 
� ∪ 
	 is   soft ��� space with respect to
� ∪ 
�.  
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2)  
� ∪ 
�is said to be soft   ��	  space with respect to  
� ∪ 
	 if  
� ∪ 
� is soft ���  space 

with respect to 
� ∪ 
	, there exists  a 
� ∪ 
� soft  β closed set (��, �) and 
� ∪ 
	  soft  β 

closed set (��, �) such that (��, �) ∩ (��, �) = ∅ ,also,  there exists (��, �) and (!�, �) such 

that (��, �) is  soft  
� ∪ 
� βopen set,  (!�, �) is  soft  
� ∪ 
	 βopen set such that (��, �) ⊆(��, �),  (��, �) ⊆ (!�, �). Similarly, 
� ∪ 
	is said to be  soft ��	 space with respect to 
� ∪ 
� if 
� ∪ 
	 is soft  ���  space with respect to
� ∪ 
�there exists 
� ∪ 
	 soft  β closed 

set (��, �) and 
� ∪ 
� soft  β closed set (��, �) such that (��, �) ∩ (��, �) = � . Also there 

exists (��, �) and (!�, �) such that (��, �) is soft  
� ∪ 
	   β open set, (!�, �) is soft  
� ∪ 
� 

β soft set such that (��, �) ⊆ (��, �), (��, �) ⊆ (!�, �) and (��, �) ∩ (!�, �) = �.  Thus,(�, 
�, 
�, 
�, 
�, �) is said to be pair wise soft  ��	  space if 
� ∪ 
� is soft � �	  space with 

respect to 
� ∪ 
	and 
� ∪ 
	 is soft   ��	 space with respect to 
� ∪ 
�. 

 

Proposition 8. Let (�, 
�, 
�, 
�, 
	, �) be a soft  topological space over �.  (�, 
�, 
�, 
�, 
	, �) is soft  ��� space, then for all �8 ∈ �#�8 = (�8 , �) is soft  β-closed 

set. 

 

Proof:  We want to prove that �8is βclosed soft  set, which is sufficient to prove that �8a  is 

βopen soft  set for all �9 ∈ {�8}a. Since  (�, 
�, 
�, 
�, 
	, �)is soft ��� space, then there 

exists soft  β sets( �, �)bc and  (!, �) such that �9# ⊆ ( �, �)bc and �8# ∩ (�, �)bc = �  

and �8# ⊆ (!, �)  and  �9# ∩ (!, �) = �. It follows that, ∪bc∈(bd)e(5,#)fc⊆bdge Now, we want 

to prove that �8#a ⊆∪bc∈(bd)e (�, �)bc. Let ∪bc∈(bd)e (�, �)bc = (6, �). Where 6(�) =∪bc∈(bd)e(5(b)fc for all    � ∈ �. Since �8#a (�) = (�8)afor all � ∈ � from Definition 9, so, for 

all �9 ∈ {�8}a and  � ∈ ��8#a (�) = {�8}a =∪bc∈(bd)e {�9} =∪bc∈(bd)e5(b)fc�9(b). Thus, �8#a ⊆∪bc∈(bd)e (�, �)bc from Definition 2, and so,  �8#a =∪bc∈(bd)e (�, �)bc. 

 

This means that, �8#a  is soft  β open set for all �9 ∈ {�8}a. Therefore, �8#is βclosed soft  set. 

 

Proposition 9. Let (�, 
�, 
�,
�, 
	, �) be a soft  quad topological space over X. Then, if (�, 
�, 
�, �) and (�, 
�, 
	, �) are soft ��� space, then (�, 
�, 
�,
�, 
	, �) is a pair wise soft ��� space.  

 

Proof: Suppose if (�, 
�, 
�, �) is a soft  ��� space with respect to (�, 
�, 
	, �), then 

according to definition for, �8 ≠ �9 ,�8 , �9 ∈ ��, by using Theorem 8, (�9, E) is soft  β 

closed set in (�, 
�, 
	, �) and  �8 ∉ (�9, �) there exist a (�, 
�, 
�, �)soft  β open set (�, �) 

and a (�, 
�, 
	, �) soft  β open set (!, �) such that �8 ∈ (�, �), �9 ∈ (P, �) ⊆ (!, �) and  (��, �) ∩ (��, �) = �. Hence, (�, 
�, 
�, �)is soft  ��� space with respect to (�, 
�, 
	, �) 

Similarly, if (�, 
�, 
	, �)is a soft  ��� space with respect to  (�, 
�, 
�, �), then according to 

definition for , �8 ≠ �9 ,�8 , �9 ∈ ��, by using Theorem 8, (�8, E) is β closed soft  set in (�, 
�, 
�, �)is and P ∉ (-, �) there exists a (�, 
�, 
	, �)soft  β open set (�, �) and a (�, 
�, 
�, �)soft  β open set (!, �) such that �9 ∈ (�, �),  �8 ∈ (-, �) ⊆ (!, �) and (��, �) ∩(��, �) = �. Hence, (�, 
�, 
	, �)is a soft  ��� space. Thus (�, 
�, 
�,
�, 
	, �)is a pair wise 

soft  ��� space. 

  

Proposition 10. Let  (�, 
�, 
�,
�, 
	, �)be a soft  quad topological space over X. If if (�, 
�, 
�, �) and (�, 
�, 
	, �) are soft   ��� space then (�, 
�, 
�,
�, 
	, �) is a pair wise 

soft  ��� space.  
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Proof: Suppose (�, 
�, 
�, �)is a soft ��� space with respect to  (�, 
�, 
	, �) then according 

to definition for �8 , �9 ∈ ���8 ≠ �9 there happens 
� ∪ 
�soft  β open set (�, �) and a 
� ∪ 
	soft  β open set (!, �) such that �8 ∈ (�, �) and  �9 ∉ (�, �)  or  �9 ∈ (!, �) and  �8 ∉ (!, �) and for each point �8 ∈ ��and each 
� ∪ 
� βclosed soft  set (!�, �) such that �8 ∉ (!�, �)  there happens a 
� ∪ 
�soft  β open set (��, �) and 
� ∪ 
	soft  β open set (��, �) such that �8 ∈ (��, �), (!�, �) ⊆ (��, �) and (��, �) ∩ (��, �) = �. Similarly (�, 
�, 
	, �)is a soft  ��� space with respect to (�, 
�, �). So according to definition 

for�8 , �9 ∈ ��, �8 ≠ �9 there exists a  
� ∪ 
	soft  β open set (�, �) and 
� ∪ 
�  soft  β open 

set (!, �) such that �9 ∈ (�, �) and  �9 ∉ (�, �)  or  �9 ∈ (!, �) and  �8 ∉ (!, �) and for 

each point �8 ∈ �� and each 
� ∪ 
	βclosed soft  set (!�, �) such that �8 ∉ (!�, �)  there 

exists 
� ∪ 
	  soft  β open set (��, �) and 
� ∪ 
�soft  β open set (��, �) such that �8 ∈(��, �), (!�, �) ⊆ (��, �) and (��, �) ∩ (��, �) = �. Hence (�, 
�, 
�,
�, 
	, �)is pair wise 

soft  ��� space. 

 

Proposition 11. If (�, 
�, 
�,
�, 
	, �) be a soft quad topological space over X. (�, 
�, 
�, �) 

and (�, 
�, 
	, �) are soft ��	 space then (�, 
�, 
�,
�, 
	, �)is pair wise soft ��	 space.  

 

Proof: Suppose ((�, 
�, 
�, �)) is soft ��	 space with respect to(�, 
�, 
	, �). So according to 

definition for �8 , �9 ∈ ��, �8 ≠ �9 there happens a 
� ∪ 
�soft  β open set (�, �) and a 
� ∪ 
	soft  β open set (!, �) such that�8 ∈ (�, �) and  �9 ∉ (�, �)  or  �9 ∈ (!, �) and  �8 ∉ (!, �) each 
� ∪ 
�soft  β closed set (��, �) and a 
� ∪ 
	soft  β closed set (��, �) such 

that (��, �) ∩ (��, �) = �. There occurs (��, �) and (!�, �) such that (��, �)  is soft   
� ∪
	β open set (!�, �) is   soft  a 
� ∪ 
�β open set (��, �) ⊆ (��, �), (��, �) ⊆ (!�, �) 

and(��, �) ∩ (!�, �) = �. Similarly, 
� ∪ 
	 is  soft  ��	 space with respect to 
� ∪ 
�so 

according to definition for �8 , �9 ∈ ��, �8 ≠ �9there happens a 
� ∪ 
	soft  β open set (�, �)  

and a  
� ∪ 
�soft  β open set (!, �) such that �8 ∈ (�, �) and  �9 ∉ (�, �)  or  �9 ∈ (!, �) 

and  �8 ∉ (!, �) and for each 
� ∪ 
	soft  β closed set (��, �) and 
� ∪ 
�soft  β closed set (��, �) such that (��, �) ∩ (��, �) = �. there occurs (��, �) and (!�, �) such that (��, �) is  

soft  
� ∪ 
	 β open set (!�, �) is soft  
� ∪ 
� βopen set such that (��, �) ⊆ (��, �), (��, �) ⊆ (!�, �) and (��, �) ∩ (!�, �) = � hence (�, 
�, 
�,
�, 
	, �) is 

pair wise  soft ��	 space. 

 

Proposition 12. Let (�, 
�, 
�,
�, 
	, �) be a soft  quad topological space over X and Y be a 

non-empty subset of X. if (C, 
�M, 
�M, 
�M, 
	M, �)  is pair wise soft   ��� space. Then (C, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft ��� space.  

 

Proof: First we prove that (C, 
�M, 
�M, 
�M, 
	M, �)is pair wise soft   ��� space.  

 

Let �8 , �9 ∈ ��, �8 ≠ �9if (�, 
�, 
�,
�, 
	, �) is pair wise soft  space then this implies that (�, 
�, 
�,
�, 
	, �)is pair wise soft  
� ∪ 
�space. So there exists 
� ∪ 
�soft  β open set (!, �) such that �8 ∈ (�, �) and  �9 ∉ (�, �)  or �9 ∈ (!, �) and �8 ∉ (!, �) now�8 ∈C 234 �8 ∉ (!, �). Hence  �8 ∈ C ∩ (�, �) = (C5, �) then �9 ∉ C ∩ �(α) for some α ∈ �. 
this means that α ∈ � then �9 ∉ C ∩ �(E) for some E ∈ �. 
 

There fore, �9 ∉ C ∩ (�, �) = (C5, �). Now �9 ∈ C and �9 ∈ (!, �). Hence, �9 ∈ C ∩(!, �) = (!M, �) where (!, �) ∈ 
� ∪ 
	.  Consider - ∉ (!, �). this means that E ∈ � then - ∉ C ∩ !(E) for some α ∈ �. There fore �8 ∉ C ∩ (!, �) = (!M, �) thus (C, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft ��� space.  
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Now, we prove that (C, 
�M, 
�M, 
�M, 
	M, �) is pair wise soft ��� space.  

 

Let �9 ∈ C and (!, �) be soft  β closed set in Y such that �9 ∉ (!, �) where (!, �) ∈ 
� ∪ 
� 

then (!, �) = (C, �) ∩ (�, �) for some soft  β closed set in 
� ∪ 
�hence �9 ∉ (C, �) ∩(�, �)  but  �9 ∈ (C, �) , so �9 ∉ (�, �) since (�, 
�, 
�,
�, 
	, �) is soft  ��� space H�, 
�, 
�,
�, 
	, �I is soft  β regular space so there happens 
� ∪ 
�soft  β open set (��, �) and 
� ∪ 
	 soft  β open set (��, �) such that �9 ∈ (��, �), (!, �) ⊆ (��, �), (��, �)(��, �) = � 

 

Take (!�, �) = (C, �) ∩ (��, �) then  (!�, �), (!�, �) are soft  β open sets in Y such that  �9 ∈ (!�, �), (!, �) ⊆ (C, �) ∩ (��, �) = (!�, �) (!�, �) ∩ (!�, �) ⊆ (��, �) ∩ (��, �) = � (!�, �) ∩ (!�, �) = � 
 

Therefore, (
�M, 
�M)is  soft  β regular space with respect to (
�M, 
	M)Similarly,  Let �9 ∈C and (!, �) be a  soft  β closed sub set in Y such that �9 ∉ (!, �), Where (!, �) ∈ 
� ∪ 
	 

then (!, �) = (C, �) ∩ (�, �) where (�, �) is some soft  β closed set in
� ∪ 
	. �9 ∉(C, �) ∩ (�, �)But�9 ∈ (C, �) so �9 ∉ (�, �) since H�, 
�, 
�,
�, 
	, �I is soft  β regular 

space so there happens 
� ∪ 
	 soft  β open set (��, �) and 
� ∪ 
� soft  β open set (��, �). 

Such that  �9 ∈ (��, �), (!, �) ⊆ (��, �) (��, �) ∩ (��, �) = � 

Take   (!�, �) = (C, �) ∩ (��, �) 

   (!�, �) = (C, �) ∩ (��, �) 

Then (!�, �)and (!�, �) are soft  β open set in Y such that  

   �9 ∈ (!�, �), (!, �) ⊆ (C, �) ∩ (��, �) = (!�, �) 

   (!�, �) ∩ (!�, �) ⊆ (��, �) ∩ (��, �) = �. 

Therefore(
�M, 
	M)is soft  β regular space. 

 

4. Conclusion 
 

A soft set with single specific topological structure is unable to shoulder up the responsibility 

to construct the whole theory. So to make the theory healthy, some additional structures on 

soft set has to be introduced. It makes, it more springy to develop the soft topological spaces 

with its infinite applications. In this regard we introduce strong topological structure known 

as soft quad topological structure in this paper.  

 

Topology is the supreme branch of pure mathematics which deals with mathematical 

structures. Freshly, many scholars have studied the soft  set theory which is coined by 

Molodtsov [4] and carefully applied to many difficulties which contain uncertainties in our 

social life. Shabir and Naz [7] familiarized and deeply studied the origin of soft topological 

spaces. They also studied topological structures and exhibited their several properties with 

respect to ordinary points. 

 

In the present work, we constantly study the behavior of soft  semi separation axioms in soft  

quad topological spaces  with respect to soft  points as well as ordinary points of a soft  

topological space. We introduce soft  β ��� structure, soft  β��� structure, soft  β��� 

structure, Soft  β��� and soft  β��	 structure with respect to soft  and ordinary points. In 

future we will plant these structures in different results. More over defined soft  β�� structure 
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w.r.t. soft  β��structure and vice versa, soft  β��structure w.r.t soft  β��structure and vice 

versa and soft  β��space w.r.t soft  β�	 and vice versa with respect to ordinary and soft  points 

in soft  quad topological spaces  and studied their activities in different results with respect to 

ordinary and soft  points . We also planted these axioms to different results. These soft  semi 

separation axioms in quad structure would be valuable for the development of the theory of 

soft  topology to solve complicated problems, comprising doubts in economics, engineering, 

medical etc. We also attractively discussed some soft  transmissible properties with respect to 

ordinary as well as soft  points. We expect that these results in this article will do help the 

researchers for strengthening the toolbox of soft  topological structures. In the forthcoming, 

we spread the idea of soft  α- open, and soft  �∗∗open sets in soft  quad topological structure 

with respect to ordinary and soft  points. 
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Abstaract − In this paper, partial constant hesitant fuzzy sets on UP-algebras are introduced
and proved some results. Further, we discuss the relation between partial constant hesitant fuzzy
sets and UP-subalgebras (resp. UP-filters, UP-ideals and strongly UP-ideals).

Keywords − UP-algebra, hesitant fuzzy set, partial constant hesitant fuzzy set.

1 Introduction and Preliminaries

Among many algebraic structures, algebras of logic form important class of alge-
bras. Examples of these are BCK-algebras [5], BCI-algebras [6], BCH-algebras [3],
KU-algebras [15], SU-algebras [12], UP-algebras [4] and others. They are strongly
connected with logic. For example, BCI-algebras introduced by Iséki [6] in 1966
have connections with BCI-logic being the BCI-system in combinatory logic which
has application in the language of functional programming. BCK and BCI-algebras
are two classes of logical algebras. They were introduced by Imai and Iséki [5, 6] in
1966 and have been extensively investigated by many researchers. It is known that
the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

A fuzzy subset f of a set S is a function from S to a closed interval [0, 1]. The
concept of a fuzzy subset of a set was first considered by Zadeh [21] in 1965. The
fuzzy set theories developed by Zadeh and others have found many applications in
the domain of mathematics and elsewhere.

In 2009 - 2010, Torra and Narukawa [20, 19] introduced the notion of hesitant
fuzzy sets, that is a function from a reference set to a power set of the unit interval.
The notion of hesitant fuzzy sets is the other generalization of the notion fuzzy sets.

*Corresponding Author.
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The hesitant fuzzy set theories developed by Torra and others have found many
applications in the domain of mathematics and elsewhere.

After the introduction of the notion of hesitant fuzzy sets by Torra and Narukawa
[20, 19], several researches were conducted on the generalizations of the notion of hes-
itant fuzzy sets and application to many logical algebras such as: In 2012, Rodŕıguez
et al. [16] introduced the notion of hesitant fuzzy linguistic term sets and several
basic properties and operations to carry out the processes of computing with words.
Zhu et al. [22] introduced the notion of dual hesitant fuzzy sets, which is a new
extension of fuzzy sets. In 2014, Jun et al. [8] introduced the notions of hesitant
fuzzy soft subalgebras and (closed) hesitant fuzzy soft ideals in BCK/BCI-algebras,
and investigated related properties. Jun and Song [10] introduced the notions of
(Boolean, prime, ultra, good) hesitant fuzzy filters and hesitant fuzzy MV-filters of
MTL-algebras, and investigated their relations. In 2015, Ali et al. [1] introduced the
notions of hesitant fuzzy products, characteristic hesitant fuzzy sets, hesitant fuzzy
AG-groupoids, hesitant fuzzy left (resp. right, twosided) ideals, hesitant fuzzy bi-
ideals, hesitant fuzzy interior ideals and hesitant fuzzy quasi-ideals on AG-groupoids,
and investigated several properties. They also characterized regular, completely reg-
ular, weakly regular and quasi-regular AG-groupoids in term of hesitant fuzzy ideals.
Jun and Song [11] introduced the notions of hesitant fuzzy prefilters (resp. filters)
and positive implicative hesitant fuzzy prefilters (resp. filters) of EQ-algebras, and
investigated several properties. Jun et al. [9] introduced the notions of hesitant fuzzy
(generalized) bi-ideals, and investigated related properties. In 2016, Jun and Ahn
[7] introduced the notions of hesitant fuzzy subalgebras and hesitant fuzzy ideals
of BCK/BCI-algebras, and investigated their relations and properties. Muhiuddin
[14] introduced the notion of hesitant fuzzy filters of residuated lattices. In 2017,
Mosrijai et al. [13] introduced the notion of hesitant fuzzy sets which is a new exten-
sion of fuzzy sets on UP-algebras and the notions of hesitant fuzzy UP-subalgebras,
hesitant fuzzy UP-filters, hesitant fuzzy UP-ideals and hesitant fuzzy strongly UP-
ideals of UP-algebras and investigated some of its essential properties. Satirad et
al. [17] characterized the relationships among (prime, weakly prime) hesitant fuzzy
UP-subalgebras (resp. hesitant fuzzy UP-filters, hesitant fuzzy UP-ideals and hes-
itant fuzzy strongly UP-ideals) and some level subsets of a hesitant fuzzy set on
UP-algebras.

The notions of hesitant fuzzy subalgebras, hesitant fuzzy filters and hesitant
fuzzy ideals play an important role in studying the many logical algebras. In this
paper, partial constant hesitant fuzzy sets are introduced and proved some results.
Further, we discuss the relation between partial constant hesitant fuzzy sets and
UP-subalgebras (resp. UP-filters, UP-ideals and strongly UP-ideals), and study the
concept of prime and weakly prime of subsets and of hesitant fuzzy sets of a UP-
algebra.

Before we begin our study, we will introduce the definition of a UP-algebra.

Definition 1.1. [4] An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra,
where A is a nonempty set, · is a binary operation on A, and 0 is a fixed element of
A (i.e., a nullary operation) if it satisfies the following axioms: for any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,
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(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = y · x = 0 implies x = y.

From [4], we know that the notion of UP-algebras is a generalization of KU-
algebras.

Example 1.2. [4] Let X be a universal set. Define a binary operation · on the
power set of X by putting A ·B = A′ ∩B for all A,B ∈ P(X). Then (P(X), ·, ∅) is
a UP-algebra and we shall call it the power UP-algebra of type 1.

Example 1.3. [4] Let X be a universal set. Define a binary operation ∗ on the
power set of X by putting A ∗B = A′ ∪B for all A,B ∈ P(X). Then (P(X), ∗, X)
is a UP-algebra and we shall call it the power UP-algebra of type 2.

Example 1.4. [4] Let A = {0, 1, 2, 3} be a set with a binary operation · defined by
the following Cayley table:

· 0 1 2 3
0 0 1 2 3
1 0 0 0 0
2 0 1 0 3
3 0 1 2 0

Then (A, ·, 0) is a UP-algebra.

In what follows, let A and B denote UP-algebras unless otherwise specified. The
following proposition is very important for the study of UP-algebras.

Proposition 1.5. [4] In a UP-algebra A, the following properties hold: for any
x, y, z ∈ A,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.

Definition 1.6. [4] A subset S of A is called a UP-subalgebra of A if the constant
0 of A is in S, and (S, ·, 0) itself forms a UP-algebra.

Proposition 1.7. [4] A nonempty subset S of a UP-algebra A = (A, ·, 0) is a UP-
subalgebra of A if and only if S is closed under the · multiplication on A.
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Definition 1.8. [4] A subset B of A is called a UP-ideal of A if it satisfies the
following properties:

(1) the constant 0 of A is in B, and

(2) for any x, y, z ∈ A, x · (y · z) ∈ B and y ∈ B imply x · z ∈ B.

Definition 1.9. [18] A subset F of A is called a UP-filter of A if it satisfies the
following properties:

(1) the constant 0 of A is in F , and

(2) for any x, y ∈ A, x · y ∈ F and x ∈ F imply y ∈ F .

Definition 1.10. [2] A subset C of A is called a strongly UP-ideal of A if it satisfies
the following properties:

(1) the constant 0 of A is in C, and

(2) for any x, y, z ∈ A, (z · y) · (z · x) ∈ C and y ∈ C imply x ∈ C.

From [2], we know that the notion of fuzzy UP-subalgebras is a generalization of
fuzzy UP-filters, the notion of fuzzy UP-filters is a generalization of fuzzy UP-ideals,
and the notion of fuzzy UP-ideals is a generalization of fuzzy strongly UP-ideals.

Definition 1.11. [18] A nonempty subset B of A is called a prime subset of A if it
satisfies the following property: for any x, y ∈ A,

x · y ∈ B implies x ∈ B or y ∈ B.

Definition 1.12. [18] A UP-subalgebra (resp. UP-filter, UP-ideal, strongly UP-
ideal) B of A is called a prime UP-subalgebra (resp. prime UP-filter, prime UP-ideal,
prime strongly UP-ideal) of A if B is a prime subset of A.

Theorem 1.13. [2] Let S be a subset of A. Then the following statements are
equivalent:

(1) S is a prime UP-subalgebra (resp. prime UP-filter, prime UP-ideal, prime
strongly UP-ideal) of A,

(2) S = A, and

(3) S is a strongly UP-ideal of A.

Definition 1.14. [2] A nonempty subset B of A is called a weakly prime subset of
A if it satisfies the following property: for any x, y ∈ A and x 6= y,

x · y ∈ B implies x ∈ B or y ∈ B.

Definition 1.15. [2] A UP-subalgebra (resp. UP-filter, UP-ideal, strongly UP-ideal)
B of A is called a weakly prime UP-subalgebra (resp. weakly prime UP-filter, weakly
prime UP-ideal, weakly prime strongly UP-ideal) of A if B is a weakly prime subset
of A.
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Definition 1.16. [19] Let X be a reference set. A hesitant fuzzy set on X is defined
in term of a function h that when applied to X return a subset of [0, 1], that is,
h : X → P([0, 1]).

If Y ⊆ X, the characteristic hesitant fuzzy set hY on X is a function of X into
P([0, 1]) defined as follows:

hY (x) =

{
[0, 1] if x ∈ Y,
∅ if x /∈ Y.

By the definition of characteristic hesitant fuzzy sets, hY is a function of X into
{∅, [0, 1]} ⊂ P([0, 1]). Hence, hY is a hesitant fuzzy set on X.

If Y ⊆ X and ε ∈ P([0, 1]), the partial constant hesitant fuzzy set PY,ε on X is a
function of X into P([0, 1]) defined as follows:

PY,ε(x) =

{
[0, 1] if x ∈ Y,
ε if x /∈ Y.

By the definition of partial constant hesitant fuzzy sets, PY,ε is a function of X
into {ε, [0, 1]} ⊂ P([0, 1]). Hence, PY,ε is a hesitant fuzzy set on X. We note that
PY,∅ = hY .

Definition 1.17. [13] Let h be a hesitant fuzzy set on A. The hesitant fuzzy set h
defined by h(x) = [0, 1]− h(x) for all x ∈ A is said to be the complement of h on A.

Remark 1.18. For all hesitant fuzzy set h on A, we have h = h.

Definition 1.19. [13] A hesitant fuzzy set h on A is called a hesitant fuzzy UP-
subalgebra (HFUPS) of A if it satisfies the following property: for any x, y ∈ A,

h(x · y) ⊇ h(x) ∩ h(y).

By Proposition 1.5 (1), we have h(0) = h(x · x) ⊇ h(x) ∩ h(x) = h(x) for all
x ∈ A.

Definition 1.20. [13] A hesitant fuzzy set h on A is called a hesitant fuzzy UP-filter
(HFUPF) of A if it satisfies the following properties: for any x, y ∈ A,

(1) h(0) ⊇ h(x), and

(2) h(y) ⊇ h(x · y) ∩ h(x).

Definition 1.21. [13] A hesitant fuzzy set h on A is called a hesitant fuzzy UP-ideal
(HFUPI) of A if it satisfies the following properties: for any x, y, z ∈ A,

(1) h(0) ⊇ h(x), and

(2) h(x · z) ⊇ h(x · (y · z)) ∩ h(y).

Definition 1.22. [13] A hesitant fuzzy set h on A is called a hesitant fuzzy strongly
UP-ideal (HFSUPS) of A if it satisfies the following properties: for any x, y, z ∈ A,

(1) h(0) ⊇ h(x), and
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(2) h(x) ⊇ h((z · y) · (z · x)) ∩ h(y).

From [13], we know that the notion of hesitant fuzzy UP-ideals of UP-algebras is
the generalization of the notion of hesitant fuzzy strongly UP-ideals, the notion of
hesitant fuzzy UP-filters of UP-algebras is the generalization of the notion of hesitant
fuzzy UP-ideals, and the notion of hesitant fuzzy UP-subalgebras of UP-algebras is
the generalization of the notion of hesitant fuzzy UP-filters.

2 Main Results

In this section, we discuss the relation between partial constant hesitant fuzzy sets
and UP-subalgebras (resp. UP-filters, UP-ideals and strongly UP-ideals), and study
the concept of prime and weakly prime of subsets and of hesitant fuzzy sets of a
UP-algebra.

Theorem 2.1. Let S be a nonempty subset of A. Then the following statements
hold:

(1) if S is a UP-subalgebra of A, then the partial constant hesitant fuzzy set PS,ε

is a hesitant fuzzy UP-subalgebra of A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) such that the partial constant hesitant fuzzy set
PS,ε is a hesitant fuzzy UP-subalgebra of A, then S is a UP-subalgebra of A.

Proof. (1) Assume that S is a UP-subalgebra of A. For any ε ∈ P([0, 1]) and let
x, y ∈ A.

Case 1 : x ∈ S and y ∈ S. Then PS,ε(x) = [0, 1] and PS,ε(y) = [0, 1]. Thus
PS,ε(x) ∩ PS,ε(y) = [0, 1]. Since S is a UP-subalgebra of A, we have x · y ∈ S and so
PS,ε(x · y) = [0, 1]. Therefore, PS,ε(x · y) = [0, 1] ⊇ [0, 1] = PS,ε(x) ∩ PS,ε(y).

Case 2 : x ∈ S and y /∈ S. Then PS,ε(x) = [0, 1] and PS,ε(y) = ε. Thus
PS,ε(x)∩PS,ε(y) = ε. If x · y ∈ S, then PS,ε(x · y) = [0, 1] and so PS,ε(x · y) = [0, 1] ⊇
ε = PS,ε(x) ∩ PS,ε(y). If x · y /∈ S, then PS,ε(x · y) = ε and so PS,ε(x · y) = ε ⊇ ε =
PS,ε(x) ∩ PS,ε(y). Therefore, PS,ε(x · y) ⊇ PS,ε(x) ∩ PS,ε(y).

Case 3 : x /∈ S and y ∈ S. Then PS,ε(x) = ε and PS,ε(y) = [0, 1]. Thus
PS,ε(x)∩PS,ε(y) = ε. If x · y ∈ S, then PS,ε(x · y) = [0, 1] and so PS,ε(x · y) = [0, 1] ⊇
ε = PS,ε(x) ∩ PS,ε(y). If x · y /∈ S, then PS,ε(x · y) = ε and so PS,ε(x · y) = ε ⊇ ε =
PS,ε(x) ∩ PS,ε(y). Therefore, PS,ε(x · y) ⊇ PS,ε(x) ∩ PS,ε(y).

Case 4 : x /∈ S and y /∈ S. Then PS,ε(x) = ε and PS,ε(y) = ε. Thus PS,ε(x) ∩
PS,ε(y) = ε. If x · y ∈ S, then PS,ε(x · y) = [0, 1] and so PS,ε(x · y) = [0, 1] ⊇ ε =
PS,ε(x) ∩ PS,ε(y). If x · y /∈ S, then PS,ε(x · y) = ε and so PS,ε(x · y) = ε ⊇ ε =
PS,ε(x) ∩ PS,ε(y). Therefore, hS(x · y) ⊇ hS(x) ∩ hS(y).
Hence, PS,ε is a hesitant fuzzy UP-subalgebra of A.

(2) Assume that PS,ε is a hesitant fuzzy UP-subalgebra of A for some ε ∈ P([0, 1]).
Let x, y ∈ S. Then PS,ε(x) = [0, 1] and PS,ε(y) = [0, 1]. Thus PS,ε(x · y) ⊇ PS,ε(x) ∩
PS,ε(y) = [0, 1], so PS,ε(x · y) = [0, 1]. Since ε 6= [0, 1], we have x · y ∈ S. Hence, S is
a UP-subalgebra of A.

Lemma 2.2. Let B be a nonempty subset of A. Then the following statements
hold:
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(1) if the constant 0 of A is in B, then PB,ε(0) ⊇ PB,ε(x) for all ε ∈ P([0, 1]) and
for all x ∈ A, and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that PB,ε(0) ⊇ PB,ε(x) for all
x ∈ A, then the constant 0 of A is in B.

Proof. (1) If 0 ∈ B, then PB,ε(0) = [0, 1] for all ε ∈ P([0, 1]). Thus PB,ε(0) = [0, 1] ⊇
PB,ε(x) for all ε ∈ P([0, 1]) and for all x ∈ A.

(2) Assume that there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that PB,ε(0) ⊇
PB,ε(x) for all x ∈ A. Since B is a nonempty subset of A, we have a ∈ B for some
a ∈ A. Then PB,ε(0) ⊇ PB,ε(a) = [0, 1], so PB,ε(0) = [0, 1]. Since ε 6= [0, 1], we have
0 ∈ B.

Theorem 2.3. Let F be a nonempty subset of A. Then the following statements
hold:

(1) if F is a UP-filter of A, then the partial constant hesitant fuzzy set PF,ε is a
hesitant fuzzy UP-filter of A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PF,ε is a hesitant fuzzy UP-filter of A, then F is a UP-filter of A.

Proof. (1) Assume that F is a UP-filter of A. Let ε ∈ P([0, 1]). Since 0 ∈ F , it
follows from Lemma 2.2 (1) that PF,ε(0) ⊇ PF,ε(x) for all x ∈ A. Next, let x, y ∈ A.

Case 1 : x ∈ F and y ∈ F . Then PF,ε(x) = [0, 1] and PF,ε(y) = [0, 1]. Therefore,
PF,ε(y) = [0, 1] ⊇ PF,ε(x · y) = PF,ε(x) ∩ PF,ε(x · y).

Case 2 : x /∈ F and y ∈ F . Then PF,ε(x) = ε and PF,ε(y) = [0, 1]. Thus
PF,ε(y) = [0, 1] ⊇ ε = PF,ε(x) ∩ PF,ε(x · y).

Case 3 : x ∈ F and y /∈ F . Then PF,ε(x) = [0, 1] and PF,ε(y) = ε. Since F is
a UP-filter of A, we have x · y /∈ F or x /∈ F . But x ∈ F , so x · y /∈ F . Then
PF,ε(x · y) = ε. Thus PF,ε(y) = ε ⊇ ε = PF,ε(x) ∩ PF,ε(x · y).

Case 4 : x /∈ F and y /∈ F . Then PF,ε(x) = ε and PF,ε(y) = ε. Thus PF,ε(y) =
ε ⊇ ε = PF,ε(x) ∩ PF,ε(x · y).
Hence, PF,ε is a hesitant fuzzy UP-filter of A.

(2) Assume that PF,ε is a hesitant fuzzy UP-filter of A for some ε ∈ P([0, 1]) and
ε 6= [0, 1]. Since PF,ε(0) ⊇ PF,ε(x) for all x ∈ A, it follows from Lemma 2.2 (2) that
0 ∈ F . Next, let x, y ∈ A be such that x · y ∈ F and x ∈ F . Then PF,ε(x · y) = [0, 1]
and PF,ε(x) = [0, 1]. Thus PF,ε(y) ⊇ PF,ε(x) ∩ PF,ε(x · y) = [0, 1], so PF,ε(y) = [0, 1].
Since ε 6= [0, 1], we have y ∈ F and so F is a UP-filter of A.

Theorem 2.4. Let B be a nonempty subset of A. Then the following statements
hold:

(1) if B is a UP-ideal of A, then the partial constant hesitant fuzzy set PB,ε is a
hesitant fuzzy UP-ideal of A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PB,ε is a hesitant fuzzy UP-ideal of A, then B is a UP-ideal of A.
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Proof. (1) Assume that B is a UP-ideal of A. Let ε ∈ P([0, 1]). Since 0 ∈ B,
it follows from Lemma 2.2 (1) that PB,ε(0) ⊇ PB,ε(x) for all x ∈ A. Next, let
x, y, z ∈ A.

Case 1 : x·(y ·z) ∈ B and y ∈ B. Then PB,ε(x·(y ·z)) = [0, 1] and PB,ε(y) = [0, 1].
Thus PB,ε(x·(y·z))∩PB,ε(y) = [0, 1]. Since B is a UP-ideal of A, we have x·z ∈ B and
so PB,ε(x ·z) = [0, 1]. Therefore, PB,ε(x ·z) = [0, 1] ⊇ [0, 1] = PB,ε(x ·(y ·z))∩PB,ε(y).

Case 2 : x · (y · z) ∈ B and y /∈ B. Then PB,ε(x · (y · z)) = [0, 1] and PB,ε(y) = ε.
Thus PB,ε(x·(y·z))∩PB,ε(y) = ε. Therefore, PB,ε(x·z) ⊇ ε = PB,ε(x·(y·z))∩PB,ε(y).

Case 3 : x · (y · z) /∈ B and y ∈ B. Then PB,ε(x · (y · z)) = ε and PB,ε(y) = [0, 1].
Thus PB,ε(x·(y·z))∩PB,ε(y) = ε. Therefore, PB,ε(x·z) ⊇ ε = PB,ε(x·(y·z))∩PB,ε(y).

Case 4 : x ·(y ·z) /∈ B and y /∈ B. Then PB,ε(x ·(y ·z)) = ε and PB,ε(y) = ε. Thus
PB,ε(x · (y · z)) ∩ PB,ε(y) = ε. Therefore, PB,ε(x · z) ⊇ ε = PB,ε(x · (y · z)) ∩ PB,ε(y).
Hence, PB,ε is a hesitant fuzzy UP-ideal of A.

(2) Assume that PB,ε is a hesitant fuzzy UP-ideal of A for some ε ∈ P([0, 1])
and ε 6= [0, 1]. Since PB,ε(0) ⊇ PB,ε(x) for all x ∈ A, it follows from Lemma 2.2 (2)
that 0 ∈ B. Next, let x, y, z ∈ A be such that x · (y · z) ∈ B and y ∈ B. Then
PB,ε(x·(y·z)) = [0, 1] and PB,ε(y) = [0, 1]. Thus PB,ε(x·z) ⊇ PB,ε(x·(y·z))∩PB,ε(y) =
[0, 1], so PB,ε(x · z) = [0, 1]. Since ε 6= [0, 1], we have x · z ∈ B and so B is a UP-ideal
of A.

Theorem 2.5. Let C be a nonempty subset of A. Then the following statements
hold:

(1) if C is a strongly UP-ideal of A, then the partial constant hesitant fuzzy set
PC,ε is a hesitant fuzzy strongly UP-ideal of A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PC,ε is a hesitant fuzzy strongly UP-ideal of A, then C is a strongly
UP-ideal of A.

Proof. (1) Assume that C is a strongly UP-ideal of A. Let ε ∈ P([0, 1]). Since
0 ∈ C, it follows form Lemma 2.2 (1) that PC,ε(0) ⊇ PC,ε(x) for all x ∈ A. Next, let
x, y, z ∈ A.

Case 1 : (z · y) · (z · x) ∈ C and y ∈ C. Then PC,ε((z · y) · (z · x)) = [0, 1] and
PC,ε(y) = [0, 1]. Thus PC,ε((z · y) · (z · x)) ∩ PC,ε(y) = [0, 1]. Since C is a strongly
UP-ideal of A, we have x ∈ C and so PC,ε(x) = [0, 1]. Therefore, PC,ε(x) = [0, 1] ⊇
[0, 1] = PC,ε((z · y) · (z · x)) ∩ PC,ε(y).

Case 2 : (z · y) · (z · x) ∈ C and y /∈ C. Then PC,ε((z · y) · (z · x)) = [0, 1] and
PC,ε(y) = ε. Thus PC,ε((z · y) · (z · x)) ∩ PC,ε(y) = ε. Therefore, PC,ε(x) ⊇ ε =
PC,ε((z · y) · (z · x)) ∩ PC,ε(y).

Case 3 : (z · y) · (z · x) /∈ C and y ∈ C. Then PC,ε((z · y) · (z · x)) = ε and
PC,ε(y) = [0, 1]. Thus PC,ε((z · y) · (z · x)) ∩ PC,ε(y) = ε. Therefore, PC,ε(x) ⊇ ε =
PC,ε((z · y) · (z · x)) ∩ PC,ε(y).

Case 4 : (z · y) · (z · x) /∈ C and y /∈ C. Then PC,ε((z · y) · (z · x)) = ε and
PC,ε(y) = ε. Thus PC,ε((z · y) · (z · x)) ∩ PC,ε(y) = ε. Therefore, PC,ε(x) ⊇ ε =
PC,ε((z · y) · (z · x)) ∩ PC,ε(y).
Hence, PC,ε is a hesitant fuzzy strongly UP-ideal of A.

(2) Assume that PC,ε is a hesitant fuzzy strongly UP-ideal of A for some ε ∈
P([0, 1]) and ε 6= [0, 1]. Since PC,ε(0) ⊇ PC,ε(x) for all x ∈ A, it follows from Lemma
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2.2 (2) that 0 ∈ C. Next, let x, y, z ∈ A be such that (z · y) · (z · x) ∈ C and
y ∈ C. Then PC,ε((z · y) · (z · x)) = [0, 1] and PC,ε(y) = [0, 1]. Thus PC,ε(x) ⊇
PC,ε((z · y) · (z · x)) ∩ PC,ε(y) = [0, 1], so PC,ε(x) = [0, 1]. Since ε 6= [0, 1], we have
x ∈ C and so C is a strongly UP-ideal of A.

Definition 2.6. [13] A hesitant fuzzy set h on A is called a prime hesitant fuzzy set
on A if it satisfies the following property: for any x, y ∈ A,

h(x · y) ⊆ h(x) ∪ h(y).

Theorem 2.7. Let B be a nonempty subset of A. Then the following statements
hold:

(1) if B is a prime subset of A, then the partial constant hesitant fuzzy set PB,ε is
a prime hesitant fuzzy set on A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PB,ε is a prime hesitant fuzzy set on A, then B is a prime subset of
A.

Proof. (1) Assume that B is a prime subset of A. For any ε ∈ P([0, 1]) and let
x, y ∈ A.

Case 1 : x·y ∈ B. Then PB,ε(x·y) = [0, 1]. Since B is a prime subset of A, we have
x ∈ B or y ∈ B. Then PB,ε(x) = [0, 1] or PB,ε(y) = [0, 1], so PB,ε(x)∪PB,ε(y) = [0, 1].
Therefore, PB,ε(x · y) = [0, 1] ⊆ [0, 1] = PB,ε(x) ∪ PB,ε(y).

Case 2 : x · y /∈ B. Then PB,ε(x · y) = ε ⊆ PB,ε(x) ∪ PB,ε(y).
Therefore, PB,ε is a prime hesitant fuzzy set on A.

(2) Assume that PB,ε is a prime hesitant fuzzy set on A for some ε ∈ P([0, 1])
and ε 6= [0, 1]. Let x, y ∈ A be such that x · y ∈ B. Then PB,ε(x · y) = [0, 1],
so [0, 1] = PB,ε(x · y) ⊆ PB,ε(x) ∪ PB,ε(y). Thus PB,ε(x) ∪ PB,ε(y) = [0, 1], so
PB,ε(x) = [0, 1] or PB,ε(y) = [0, 1]. Since ε 6= [0, 1], we have x ∈ B or y ∈ B and so
B is a prime subset of A.

Definition 2.8. [13] A hesitant fuzzy UP-subalgebra (resp. hesitant fuzzy UP-filter,
hesitant fuzzy UP-ideal, hesitant fuzzy strongly UP-ideal) h of A is called a prime
hesitant fuzzy UP-subalgebra (resp. prime hesitant fuzzy UP-filter, prime hesitant
fuzzy UP-ideal, prime hesitant fuzzy strongly UP-ideal) if h is a prime hesitant fuzzy
set on A.

Definition 2.9. [13] A hesitant fuzzy set h on A is called a weakly prime hesitant
fuzzy set on A if it satisfies the following property: for any x, y ∈ A and x 6= y,

h(x · y) ⊆ h(x) ∪ h(y).

Definition 2.10. [13] A hesitant fuzzy UP-subalgebra (resp. hesitant fuzzy UP-
filter, hesitant fuzzy UP-ideal, hesitant fuzzy strongly UP-ideal) h of A is called a
weakly prime hesitant fuzzy UP-subalgebra (resp. weakly prime hesitant fuzzy UP-
filter, weakly prime hesitant fuzzy UP-ideal, weakly prime hesitant fuzzy strongly
UP-ideal) if h is a weakly prime hesitant fuzzy set on A.
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From [13], we know that the notion of weakly prime hesitant fuzzy UP-subalgebras
(resp. weakly prime hesitant fuzzy UP-filters, weakly hesitant fuzzy UP-ideals) is a
generalization of prime hesitant fuzzy UP-subalgebras (resp. prime hesitant fuzzy
UP-filters, prime hesitant fuzzy UP-ideals), and the notions of weakly prime hesitant
fuzzy strongly UP-ideals and prime hesitant fuzzy strongly UP-ideals coincide.

Theorem 2.11. Let B be a nonempty subset of A. Then the following statements
hold:

(1) if B is a weakly prime subset of A, then the partial constant hesitant fuzzy set
PB,ε is a weakly prime hesitant fuzzy set on A for all ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PB,ε is a weakly prime hesitant fuzzy set on A, then B is a weakly
prime subset of A.

Proof. (1) Assume that B is a weakly prime subset of A and let x, y ∈ A be such
that x 6= y and ε ∈ P([0, 1]).

Case 1 : x · y ∈ B. Then PB,ε(x · y) = [0, 1]. Since B is a weakly prime subset
of A, we have x ∈ B or y ∈ B. Then PB,ε(x) = [0, 1] or PB,ε(y) = [0, 1], so
PB,ε(x) ∪ PB,ε(y) = [0, 1]. Therefore, PB,ε(x · y) = [0, 1] ⊆ [0, 1] = PB,ε(x) ∪ PB,ε(y).

Case 2 : x · y /∈ B. Therefore, PB,ε(x · y) = ε ⊆ PB,ε(x) ∪ PB,ε(y).
Hence, PB,ε is a weakly prime hesitant fuzzy set on A.

(2) Assume that PB,ε is a weakly prime hesitant fuzzy set on A for some ε ∈
P([0, 1]) and ε 6= [0, 1]. Let x, y ∈ A be such that x 6= y and x · y ∈ B. Then
PB,ε(x·y) = [0, 1], so [0, 1] = PB,ε(x·y) ⊆ PB,ε(x)∪PB,ε(y). Thus PB,ε(x)∪PB,ε(y) =
[0, 1], so PB,ε(x) = [0, 1] or PB,ε(y) = [0, 1]. Since ε 6= [0, 1], we have x ∈ B or y ∈ B
and so B is a weakly prime subset of A.

Theorem 2.12. Let S be a nonempty subset of A. Then the following statements
hold:

(1) if S is a weakly prime UP-subalgebra of A, then the partial constant hesitant
fuzzy set PS,ε is a weakly prime hesitant fuzzy UP-subalgebra of A for all
ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PS,ε is a weakly prime hesitant fuzzy UP-subalgebra of A, then S is
a weakly prime UP-subalgebra of A.

Proof. (1) It is straightforward by Theorem 2.1 (1) and 2.11 (1).
(2) It is straightforward by Theorem 2.1 (2) and 2.11 (2).

Theorem 2.13. Let F be a nonempty subset of A. Then the following statements
hold:

(1) if F is a weakly prime UP-filter of A, then the partial constant hesitant fuzzy
set PF,ε is a weakly prime hesitant fuzzy UP-filter of A for all ε ∈ P([0, 1]),
and
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(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PF,ε is a weakly prime hesitant fuzzy UP-filter of A, then F is a weakly
prime UP-filter of A.

Proof. (1) It is straightforward by Theorem 2.3 (1) and 2.11 (1).
(2) It is straightforward by Theorem 2.3 (2) and 2.11 (2).

Theorem 2.14. Let B be a nonempty subset of A. Then the following statements
hold:

(1) if B is a weakly prime UP-ideal of A, then the partial constant hesitant fuzzy
set PB,ε is a weakly prime hesitant fuzzy UP-ideal of A for all ε ∈ P([0, 1]),
and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PB,ε is a weakly prime hesitant fuzzy UP-ideal of A, then B is a weakly
prime UP-ideal of A.

Proof. (1) It is straightforward by Theorem 2.4 (1) and 2.11 (1).
(2) It is straightforward by Theorem 2.4 (2) and 2.11 (2).

Theorem 2.15. Let C be a nonempty subset of A. Then the following statements
hold:

(1) if C is a weakly prime strongly UP-ideal of A, then the partial constant hesitant
fuzzy set PC,ε is a weakly prime hesitant fuzzy strongly UP-ideal of A for all
ε ∈ P([0, 1]), and

(2) if there exists ε ∈ P([0, 1]) and ε 6= [0, 1] such that the partial constant hesitant
fuzzy set PC,ε is a weakly prime hesitant fuzzy strongly UP-ideal of A, then C
is a weakly prime strongly UP-ideal of A.

Proof. (1) It is straightforward by Theorem 2.5 (1) and 2.11 (1).
(2) It is straightforward by Theorem 2.5 (2) and 2.11 (2).
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Abstract – In this paper, we define trapezoidal cubic fuzzy numbers and their operational laws. Started on 

these operational laws, each collection operators, with trapezoidal cubic fuzzy weighted arithmetic averaging 

operator and weighted geometric averaging operator are purposed. Expected values, score function, and 

accuracy function of trapezoidal cubic fuzzy numbers are defined. Overcoming on these, mindful of 

trapezoidal cubic fuzzy multi-criteria decision making program is proposed. A delineation illustration 

example is given to exhibit the sound judgment and openness of the procedure. 

 

Keywords – Trapezoidal cubic fuzzy number, aggregation operators, multi-criteria decision making 

 

 

1 Introduction 
 

Their get at a considerable lot of multi-criteria decision-making (MCDM) issues in 

indicating sociology. Different a period past the point of no return the fuzzy set 

institutionalization was offered and passed down to illuminate MCDM issues by Zadeh 

[14]. Therefor in [1], Atanassov presented the concept of intuitionistic fuzzy set (IFS) and 

discussed the degree of membership as well as the degree of non-membership function. Li 

reachable by theories and uses of fuzzy multi-criteria decision-making [9]. Wang displayed 

reading on multi-criteria decision-making drawing near with divided undoubting data [11]. 

There are differentiating preparing on the instrument of multi-criteria decision-making 

issues, in which the measures' weight coefficients are obvious and the criteria's principles 

are changed or are fuzzy numbers in [5,7,12], and here are likewise efficient readings on 

multi-criteria decision making or multi-criteria group decision making in [10,13], in which 

the weight sizes are tight and the standards' morals are fuzzy numbers. 

                                                 
*
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Cubic set appeared by Jun in [8]. Cubic sets are the speculations of fuzzy sets and 

intuitionistic fuzzy sets, in which there are two portrayals, one is utilized for the degree of 

membership and other is utilized for the degree of non-membership. The membership 

function is hold as interim while non-membership is inside and out seen as the constant 

fuzzy set. 

 

Aliya et al., [4] defined the triangular cubic fuzzy number and operational laws. We 

developed the triangular cubic fuzzy hybrid aggregation (TCFHA) administrator to total all 

individual fuzzy choice structure provide by the decision makers into the aggregate cubic 

fuzzy decision matrix. Aliya et al., [3] proposed the cubic TOPSIS method and cubic gray 

relation analysis (GRA) method. Finally, the proposed method is used for selection in sol--

gel synthesis of titanium carbide Nano powders. Aliya et al., [2] defined weighted average 

operator of triangular cubic fuzzy numbers and hamming distance of the TCFN. We 

develop an MCDM method approach based on an extended VIKOR method using 

triangular cubic fuzzy numbers (TCFNS) and multi-criteria decision-making (MCDM) 

method using triangular cubic fuzzy numbers (TCFNs) are developed. Aliya et al., [5] 

defined the generalized triangular cubic linguistic hesitant fuzzy weighted geometric 

(GTCHFWG) operator, generalized triangular cubic linguistic hesitant fuzzy ordered 

weighted average (GTCLHFOWA) operator, generalized triangular cubic linguistic 

hesitant fuzzy ordered weighted geometric (GTCLHFOWG) operator, generalized 

triangular cubic linguistic hesitant fuzzy hybrid averag-ing (GTCLHFHA) operator and 

generalized triangular cubic linguistic hesitant fuzzy hybrid geometric (GTCLHFHG) 

operator. Aliya et al., [6] developed Trapezoidal linguistic cubic hesitant fuzzy TOPSIS 

method to solve the MCDM method based on trapezoidal linguistic cubic hesitant fuzzy 

TOPSIS method. 

 

Thus, it is very necessary to introduce a new extension of cubic set to address this issue. 

The aim of this paper is to present the notion of Trapezoidal cubic fuzzy set, which extends 

the cubic set to Trapezoidal cubic fuzzy environments and permits the membership of an 

element to be a set of several possible Trapezoidal cubic fuzzy numbers. Thus, Trapezoidal 

cubic fuzzy set is a very useful tool to deal with the situations in which the experts hesitate 

between several possible Trapezoidal cubic fuzzy numbers to assess the degree to which an 

alternative satisfies an attribute. In the current example, the degree to which the alternative 

satisfies the attribute can be represented by the Trapezoidal cubic fuzzy set. Moreover, in 

many multiple attribute group decision-making (MAGDM) problems, considering that the 

estimations of the attribute values are Trapezoidal cubic fuzzy sets, it therefore is very 

necessary to give some aggregation techniques to aggregate the Trapezoidal cubic fuzzy 

information. However, we are aware that the present aggregation techniques have difficulty 

in coping with group decision-making problems with Trapezoidal cubic fuzzy information. 

Therefore, we in the current paper propose a series of aggregation operators for aggregating 

the Trapezoidal cubic fuzzy information and investigate some properties of these operators. 

Then, based on these aggregation operators, we develop an approach to MAGDM with 

Trapezoidal cubic fuzzy information. Moreover, we use a numerical example to show the 

application of the developed approach. 

 

The rest parts of this paper are organized as follows: Section 2, we define the definotion of 

fuzzy set and cubic set. Section 3, we exhibit trapezoidal cubic fuzzy set and operational 

laws. Section 4, we exhibit Aggregation operators on trapezoidal cubic fuzzy numbers. 

Section 5, we define Expected values of trapezoidal cubic fuzzy numbers and comparison 
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between them. Section 6, we define Multi-criteria decision making method based on 

trapezoidal cubic fuzzy numbers. Section 7, the application of the developed approach in 

group decision-making problems is shown by an illustrative example. Results and 

discussion are given in section 8. Finally, we give the conclusions in Section 9. 

 

 

2. Preliminaries 
 

Definition.2.1. [14]  Give  p   a chance to be a nature of talk. The possibility of fuzzy set 

was speak to by Zadeh, and characterized as taking after: { , ( ) |jj p p     }p P  . A fuzzy 

set in a set  p   is defined  : ,j p I    is a membership function,  ( )j p   denoted the 

degree of membership of the element  p   to the set  P  , where  [0,1]I   . The accumulation 

of every single fuzzy subset of  p   is meant by  Ip
 . Characterize a connection on  Ip

  as 

takes after: ( , )( ( )( ( ) ( ))).pI p P p p            

 

Definition.2.2. [8] Give  P   a chance to be a nonempty set. By a cubic set in  P   we mean 

a structure  { , ( ), ( ) : }F q q q q P     in which     is an IVF set in  q   and     is a fuzzy 

set in  .P   A cubic set  { , ( ), ( ) : }F q q q q P     is simply denoted by  , .F      

Denote by  PC   the collection of all cubic sets in  .p   A cubic set  ,F      in which  

( ) 0q    and  ( ) 1q   (resp. ( ) 1q    And  ( ) 0q    for all  q P   is denoted by  0   

(resp.  1 ). A cubic set  ,D       in which  ( ) 0q    and  ( ) 0q    (resp. ( ) 1q    and  

( ) 1q   ) for all  q P    is denoted by  0   (resp.  1 ). 

 

Definition.2.3.[8] Let  P    be a non empty set. A cubic set  ( , )F     in  P   is said to be 

an internal cubic set if  ( ) ( ) ( )p p p       for all  .p P   

 

 Definition.2.4.[8] Let  P    be a non empty set. A cubic set  ( , )F     on  P   is said to be 

an external cubic set if  ( ) ( ( ), ( ))p p p      for all  .p P   

 

 

3. Trapezoidal Cubic Fuzzy Numbers 
 

Definition.3.1. Let     be trapezoidal cubic fuzzy number in the set of real numbers, its  

 

membership function is defined as 

( )                        

                            
( )

( )                       

0,                                 otherwise

L

R

f q q

q
q

f q q



 












   


  
 

  


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Its non-membership function is defined as

1 1

1 1

1 1

( )                   

                       
( )

( )                  

0,                                 otherwise

L

R

g q q

q
q

g q q



 












   


  
 

  



 

 

The trapezoidal cubic fuzzy number is denoted as  
1 1

1 1

1 1

1

[ , ,

, ];
,

[ ,

],

[ , ,

, ];

[ , ],







 





 







 

 
 

 
 
 
 

   
 

 
 
 
 
 

 . Generally from  

 

fuzzy numbers, trapezoidal cubic fuzzy numbers have another parameter: non-membership 

function, which is utilized to unequivocal the admeasurements to which the decision 

making that the component does not have a place with  (( , , , ); )      . When  

( ) 1,q

     ( ) 1,q

     0    , a is called normal trapezoidal cubic fuzzy number, by 

method for detail, conventional fuzzy number.   

 
1 1 1 1

1 1 1 1

( ) ( )
( ) [ , ], ( ) [ , ], ( ) , ( ) ,

x x x xL R L Rx xf q f q g q g q
   

  
              

          
     

 

the cubic fuzzy number is called trapezoidal cubic fuzzy number. 

 

Definition.3.2. Let  
1 1 1 1

1

1 1 1

[ , , , ];

[ , )],
h

   

   
   and  

2 2 2 2

2

2 2 2

[ , , , ];

[ , )],
h

   

   
   be two trapezoidal  

 

cubic fuzzy numbers; then, 

 

(1): 
1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2

[ , , , ],
,

[ , ],
h h

       

               

   
 

   
  

 

(2): 
1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2

[ , , , ],
,

[ , ],
h h

       

               

   
 

   
  

 

(3): 1 1 1 1 1 1 1 1[ , , , ];[1 (1 ) ),1 (1 ) ], ( )h                  , 

 

(4): 
1 1 11 1 1 1 1[( ) , ( ) , ( ) , ( ) ];[( ) , ( ) ],1 (1 )h       

              
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Example.3.3. Let  
1

[0.4,0.8,0.12,0.16];

[0.7,0.9],0.8
h    and  

2

[0.3,0.5,0.7,0.11];

[0.1,0.5],0.3
h    be two  

 

trapezoidal cubic fuzzy numbers; then, 

 

(1): 1 2

[0.4 0.3,0.8 0.5,0.12 0.7,0.16 0.11]

[0.7 0.1 (0.7)(0.1)), (0.9 0.5 (0.9)(0.5))],

((0.8)(0.3)) [0.7,1.3,0.82,0.27][0.73,0.95],0.24

h h

   

     



 , 

 

(2): 1 2

[0.4 0.3,0.8 0.5,0.12 0.7,0.16 0.11],

[0.7 0.1 (0.7)(0.1)),
.

(0.9 0.5 (0.9)(0.5))], ((0.8)(0.3))

[0.1,0.3,0.58,0.05][0.67,0.85],0.24

h h

   

 
 

 



  

 

 

4. Aggregation Operators on Trapezoidal Cubic Fuzzy Numbers 
 

Definition.4.1. Let  ( 1,..., )j j n    be a set of trapezoidal cubic fuzzy numbers, and TrC -

WAA : n   ; if TrC -WAA 1 2

1

( , ,..., )
n

n j j

j

w    


   where     is the set of all 

trapezoidal cubic fuzzy numbers, and  
1 2( , ,..., )T

n      is the weight vector of  

1

( 1,..., ), [0,1], 1,
n

j j j

j

j n w 


    then, TrC-WAA is called the weighted arithmetic 

average operator on trapezoidal cubic fuzzy numbers. 

 

Specially, if        1 1 1, , .... )T
n n n

 . TrC-WAA is the arithmetic average operator (TrC-WA) 

on trapezoidal cubic fuzzy numbers. 

 

Theorem.4.2. Let  [(( , , , ); , )], )h             be a set of trapezoidal cubic fuzzy 

numbers; then, the results aggregated from Definition 4.1 are still trapezoidal cubic fuzzy 

numbers, and even 

 

1 1 1 1

1 2

1

1 1 1

[ ( ) , ( ) , ( ) , ( ) ];

( , ,..., )

[1 (1 ) ,1 (1 ) ], ( )

j j j j

j j j

n n n n

n
j j j j

n j j n n n
j

j j j

TrC WAA h h h h

   


  

 



  

   

  

  

 

  

   

   


  

    

 

where  1 2( , ,..., )T

n      is the weight vector of  
1

( 1,..., ), [0,1], 1.
n

j j j

j

h j n  


     
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Example.4.3. Let  

[0.5,0.6,0.7,0.8] [0.9,0.15],0.13

[0.1,0.2,0.3,0.4] [0.23,0.27],0.25

[0.4,0.6,0.8,0.10] [0.6,0.10],0.8

[0.5,0.6,0.7,0.8] [0.9,0.15],0.13

[0.8,0.10,0.12,0.14] [0.22,0.28],0.24

[0.25,0.26,0.27,0.28] [0.

 

 

 

 

 

 39,0.45],0.40

[0.002,0.0012,0.0039,0.0010], [0.9985,

0.8121],0.0003



 



 

 Definition.4.4. Let  ( 1,..., )jh j n   be a set of trapezoidal cubic fuzzy numbers, and TrC -

WGA : n   ; if TrC -WGA 1 2

1

( , ,..., ) j

n

n j

j

h h h h






   where     is the set of all 

trapezoidal cubic fuzzy numbers, and  
1 2( , ,..., )T

n      is the weight vector of  

1

( 1,..., ), [0,1], 1,
n

j j j

j

h j n  


    then, TrC-WAA is called the weighted arithmetic 

average operator on trapezoidal cubic fuzzy numbers. Specially, if       1 1 1( , , . . . . )T

n n n
 . 

TrC-WAA is the arithmetic average operator (TrC-WA) on trapezoidal cubic fuzzy 

numbers. 

 

Theorem.4.5. Let  [( , , , );[ , )], )h            be a set of trapezoidal cubic fuzzy 

numbers; then, the results aggregated from Definition 4.4  are still trapezoidal cubic fuzzy 

numbers, and even   

 

1 2

1

( , ,..., )
n

n j j

j

TrC WGA h h h h 


     
1 1 1 1

1 1 1

[ ( ) , ( ) , ( ) , ( ) ];

[ ( ) , ( ) ],1 (1 )

j j j j

j j j

n n n n

j j j j

n n n

j j j

   

  

 

   

  

   

 

  

 

   

  

  

 

 where  1 2( , ,..., )T

n      is the weight vector of  
1

( 1,..., ), [0,1], 1.
n

j j j

j

h j n  


     

Example.4.6. Let 

1

2

3

4

5

6

table

[0.3,0.5,0.7,0.9] [0.29,0.35],0.33

[0.21,0.22,0.23,0.24] [0.2,0.7],0.5

[0.44,0.46,0.48,0.50] [0.12,0.18],0.16

[0.1,0.3,0.7,0.9] [0.21,0.26],0.23

[0.3,0.4,0.5,0.6] [0.2,0.8],0.4

[0.5,0

h

h

h

h

h

h

 

 

 

 

 

.6,0.7,0.8] [0.9,0.15],0.13

[0.0004,0.0036,0.0189,0.0466], [0.0002,0.0005],0.8868

 

  

 

 

5. Expected Values of Trapezoidal Cubic Fuzzy Numbers and 

Comparison between them 
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For trapezoidal cubic fuzzy numbers,  ( )Lf p  , are strictly linear increasing function, and  

( )Rf p   is strictly linear decreasing function in Definition 3.1. There in lay functions are 

respectively, 

 

[ , ] [ , ]
( ) ( ), ( ) ( ),

y yL Rp p p
   

    
                 

 

The assurance degree of trapezoidal cubic fuzzy number  a   is between  [ , ],1 ) .          

 

Definition.5.1.  

 
[ , ] 1

0 0

1
( ) (1 ) ( ) ( )]} (1 ) ( ) ( )]}

3

L R L RI g p g p dy g p g p dy
    

        

  

            

 

is called the expected value of trapezoidal cubic fuzzy number  ã.   

  

Theorem.5.2. The trapezoidal cubic fuzzy number  [(( , , , ); , )], ) ,a              

1
12

( ) [(( ) [1 ) (1 )I                        

 

Example.5.3.  

table

h1 0.25,0.26,0.27,0.280.29,0.35, 0.33

h2 0.41,0.42,0.43,0.440.53,0.57, 0.55

h3 0.44,0.46,0.48,0.500.56,0.60, 0.58

h4 0.55,0.56,0.57,0.580.59,0.65, 0.63

h5 0.88,0.91,0.92,0.940.92,0.98, 0.94

h6 0.25,0.26,0.27,0.280.39,0.45, 0.40

I1  1
12

1.06  0.96  1.02

 0.0864,

I2  1
12

1.7  0.98  1.02

 0.1416,

I3  1
12

1.88  0.98  1.02

 0.1566,

I4  1
12

2.26  0.96  1.02

 0.1844,

I5  1
12

3.65  0.98  1.04

 0.3100,

I6  1
12

1.06  0.99  1.05

 0.0918.
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The score function and accuracy function of trapezoidal cubic fuzzy numbers. 

 Definitio.5.4. Let  [(( , , , ); , )], )a             be the trapezoidal cubic fuzzy number; 

then,  ( ) [( , ) (1 )]h h h hS h I          is called the score function of   a  , where  
hI   is the 

expected value of trapezoidal cubic fuzzy number  h  . 

 

Example.5.5. Let  

1

2

3

4

5

6

table

[0.5,0.6,0.7,0.8] [0.9,0.15],0.13

[0.1,0.2,0.3,0.4] [0.9,0.15],0.13

[0.4,0.6,0.8,0.10] [0.6,0.10],0.8

[0.15,0.16,0.17,0.18] [0.9,0.15],0.13

[0.8,0.10,0.12,0.14] [0.9,0.28],0.14

[0.25,

h

h

h

h

h

h

 

 

 

 

 

1

2

3

4

0.26,0.27,0.28] [0.39,0.45],0.40

1
( ) [2.6 1.77 1.02] [1.05 0.87) 0.3911 0.18

12

0.0703,

1
( ) [1 1.77 1.02] [1.05 0.87) 0.1504 0.18

12

0.0270,

1
( ) [1.9 0.8 0.3] [0.7 0.2) 0.038 0.5

12

0.019,

1
( )

1

S h

S h

S h

S h

 

      



      



      





5

6

[0.66 1.77 1.02] [1.05 0.87) 1.1915 0.18
2

0.2144,

1
( ) [1.16 1.76 1.14][1.18 0.86) 0.1939 0.32

12

0.0620,

1
( ) [1.06 0.99 1.05][0.84 0.6) 0.0918 0.24

12

0.0220

S h

S h

     



     



     


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Definition.5.6. Let  [( , , , );[ , )], )a             be the trapezoidal cubic fuzzy number; 

then,  ( ) [( , ) (1 )]p h I          is called the accuracy function of   a  , where  I   is 

the expected value of trapezoidal cubic fuzzy number    . 

 

 

Example.5.7. Let  1
12

( ) [(( ) [1 ) (1 )I                            

1

2

3

4

5

Table

[0.15,0.16,0.17,0.18] [0.9,0.15],0.13

[0.21,0.22,0.23,0.24] [0.23,0.27],0.25

[0.44,0.46,0.48,0.50] [0.6,0.10],0.8

[0.55,0.56,0.57,0.58] [0.9,0.15],0.13

[0.88,0.90,0.92,0.94] [0.22,0.28]

h

h

h

h

h

 

 

 

 



6

1

2

3

,0.24

[0.35,0.36,0.37,0.38] [0.39,0.45],0.40

1
( ) [0.66 1.77 1.02] [1.05 0.87]

12

[0.0992] 1.92 0.1904,

1
( ) [0.9 0.98 1.02] [0.5 0.75]

12

[0.0749] [1.25] 0.0936,

1
( ) [1.88 0.8 0.3] [0.7 0.2]

12

[

h

p h

p h

p h



 

    

  

    

  

    



4

5

6

0.0376] 0.9 0.0338,

1
( ) [2.26 1.77 1.02] [1.05 0.87]

12

[0.3400] 1.92 0.6528,

1
( ) [3.64 0.98 1.04] [0.5 0.76]

12

[0.3091] 1.26 0.3894,

1
( ) [1.46 0.99 1.05] [0.84 0.6]

12

0.1264 1.44 0.1820.

p h

p h

p h

 

    

  

    

  

    

  
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6. Multi-Criteria Decision Making Method Based on Trapezoidal Cubic 

Fuzzy Numbers 
 

For a brief fuzzy multi-criteria decision making issue, guess that there are m choices  

1 2{ , ,..., },nA h h h l   decision criteria  1 2{ , ,..., }nC      , and the relating weight 

coefficients are  1 2 1 2{ , ,..., }, [0,1], ... 1l j l              . The value of alternative  

ih   on the criteria  j   is trapezoidal cubic fuzzy number   

 

1 2 3 4([ ( ), ( ), ( ), ( )];[ ( ), ( )], ( )ij j i j i j i j i j i j i j ih m h m h m h m h h h h       

 

The local sorts of criteria are benefit and cost in multi criteria decision making problems. 

To dispense with the impact from various physical measurements to choice outcomes, the 

matrix   

 

( ) ,ij m nT t    
1 2 3 4( ) ([ ( ), ( ), ( ), ( )];[ ( ), ( )], ( )ij m n j i j i j i j i j i j i j it m h m h m h m h h h h   

     

 

created by trapezoidal fuzzy numbers of fuzzy decision matrix  ( )ij n lD h    is revamp into 

homogenized matrix 1 2 3 4( ) , [ , , , ]ij n l ij ij ij ij ijR r r r r r r     using formulas to homogenize the 

fuzzy decision matrix. 

 

For cost criteria: 

 

Decision steps: 

 

(1) homogenize decision matrix 

 

(2) Using weighted arithmetic average operator 

 1 2( ( ), ( ),..., ( )), 1,2,...,i i i l ih TrC WAA h h h i n        

or using weighted geometric average operator 

 1 2( ( ), ( ),..., ( )), 1,2,...,i i i l ih TrC WGA h h h i n        

Aggregate criteria's weights and qualities to land at the mixed trapezoidal cubic fuzzy 

numbers  ih  ,  1,2,...,i n   of alternative  ih  . 
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(3) Enumerate the score value and the accuracy, respectively. 

 

(4) Reeking the alternatives by Definition 5.4. 

 

7. Example.  There are 4 options  1 2 4, ,...,h h h   and 4 criteria  1 2 4, ,...,     in a multi-

criteria decision making problem; the weight vector of criteria is  

(0.20,0.30,0.40,0.10)    , and and the choice data is given as Table 1 by chiefs, extreme 

to impact positioning of the 4 options. 

 

Steps applying the ways and means in this unit are as continue from 

 

(1) homogenize material in Table 1; 

  

1 2 3 4

A1

0.2,0.4,

0.6,0.8,

0.2,0.6,

0.4

0.4,0.8,

0.10,0.18,

0.8,12,

0.10

0.12,0.14,

0.16,0.18,

0.1,9,

0.6

0.12,0.14,

0.16,0.18

0.52,60,

0.56

A2

0.4,0.6,

0.8,0.10,

0.14,0.22,

0.19

0.21,0.41,

0.61,0.81,

0.22,28,

0.25

0.11,0.14,

0.19,0.28,

0.2,0.7,

0.5

0.9,0.14,

0.19,0.28,

0.42,0.50,

0.45

A3

0.12,0.14,

0.16,0.18,

0.2,0.6,

0.4

0.14,0.17,

0.20,0.28,

0.8,0.12,

0. 10

0.21,0.31,

0.41,0.51,

0.1,0.9,

0.6

0.4,0.8,

0.16,0.18,

0.52,0.60,

0.56

A4

0.22,0.24,

0.26,0.28,

0.14,0.22,

0.19

0.42,0.44,

0.46,0.48,

0.22,0.28,

0.25

0.10,0.14,

0.16,0.18,

0.2,0.7,

0.5

0.20,0.22,

0.26,0.29,

0.42,0.50,

0.45

  

 

(2) Total every one of the components  ija    ( 1,..., 4)j    in the ith row of decision matrix  

D   using TrC-WAA; then, the coordinated trapezoidal cubic fuzzy numbers   

 

, 1,2,..., 4ih i    of alternative  i   are achieved. 

 1 [(0.22,0.39,0.23,0.304),[0.4742,0.7089],0.3209h      

 2 [0.324,0.447,0.716,0.147)[0.2199,0.5029],0.3311h      

 3 [0.19,0.219,0.272,0.342]),[0.4742,0.7089],0.3209h      

 4 [(0.23,0.258,0.28,0.298),[0.2199,0.5029],0.3311h      

 

(3) Calculate the score values  ( )iS h   of  ih   
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 1 20.0769, 0.0076,S S    

 3 40.0687, 0.0049.S S    

 

Step 4 : Rank the score value  1 3 2 4S S S S     

 

 

 1 20.2841, 0.1974,H H   3 40.5975, 0.1287.H H    

 

  

1 2 3 4

A1

0.2,0.4,

0.6,0.8,

0.2,0.6,

0.4

0.4,0.8,

0.10,0.18,

0.8,12,

0.10

0.12,0.14,

0.16,0.18,

0.1,9,

0.6

0.12,0.14,

0.16,0.18

0.52,60,

0.56

A2

0.4,0.6,

0.8,0.10,

0.2,0.6,

0.4

0.21,0.41,

0.61,0.81,

0.8,12,

0.10

0.11,0.14,

0.19,0.28,

0.1,0.9,

0.6

0.9,0.14,

0.19,0.28

0.52,0.60,

0. 56

A3

0.12,0.14,

0.16,0.18,

0.2,0.6,

0.4

0.14,0.17,

0.20,0.28,

0.8,0.12,

0.10

0.21,0.31,

0.41,0.51,

0.1,0.9,

0. 6

0.4,0.8,

0.16,0.18,

0.52,0.60,

0.56

A4

0.22,0.24,

0.26,0.28,

0.2,0.6,

0.4

0.42,0.44,

0.46,0.48,

0.8,0.12,

0.10

0.10,0.14,

0.16,0.18

0.1,0.9,

0. 6

0.20,0.22,

0.26,0.29,

0.52,0.60,

0.56
  

 



Journal of New Theory 22 (2018) 51-65                                                                                                         63 
 

In the event that all components  
ijh    ( 1,..., 4)j    in the  i  th row of decision matrix  D   

are aggregated using  TC WGA  , the  coordinated trapezoidal cubic fuzzy numbers  ,i    

1,2,..., 4i    of alternative  ih   are as per the following 

 

(2) Total every one of the components  
ijh    ( 1,..., 4)j    in the ith row of decision matrix  

D   using TrC-WGA; then, the coordinated trapezoidal cubic fuzzy numbers  

, 1,2,..., 4ih i    of alternative  ih   are accomplished. 

 

 1 [(0.2583,0.2183,0.0749,0.5846),[0.2527,0.4354],0.4414h      

 2 [0.2134,0.2585,0.3594,0.3134),[0.2527,0.4354],0.4414h      

 3 [0.1773,0.2427,0.2492,0.3117]),[0.2527,0.4354],0.4414h      

 4 [(0.1930,0.2300,0.2540,0.2767),[0.2527,0.4354],0.4414h      

 

(3) Calculate the score values  ( )iS    of 

 1 20.0098, 0.0099,S S    

 3 40.0085, 0.0082.S S    

 

Step 4: Rank the alternatives by  2 1 3 4S S S S     

 

 1 20.0951, 0.0958,H H   3 40.0821, 0.0797.H H    
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8. Comparison Analyses 
 

The result of the score value 1 and score vaue 2 of the numerical examples are tabulated 

below 

 

 Score function Ranking 1  Score function ranking 2 Final ranking 

 S1    0.0769    1    S1    0.0098    2    1   

 S2    0.0076    3    S2    0.0099    1    3   

 S3    0.0687    2    S3    0.0085    3    2   

 S4    0.0049    4    S4    0.0082    4    4   
 

 

 
 

 

 Accuracy 

function 

Ranking 1  Accuracy 

function 

ranking 2 Final ranking 

 H1    0.1241    4    H1    0.0951    2    4   

 H2    0.1974    2    H2    0.0958    1    2   

 H3    0.5975    1    H3    0.0821    3    1   

 H4    0.1287    3    H4    0.0797    4    3   
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9. Conclusion 
 

In this paper, we define trapezoidal cubic fuzzy numbers and their operational laws. Started 

on these operational laws, each collection operators, with trapezoidal cubic fuzzyy 

weighted arithmetic averaging operator and weighted geometric averaging operator are 

purposed. Expected values, score function, and accuracy function of trapezoidal cubic 

fuzzy numbers are defined. 
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Abstaract − In this paper, we define and study the properties of a nano πgα-closed set which is
a weaker form of a nano πg-closed set but strong than a nano πgp-closed sets and we define a new
class of sets called nano πgα-closed sets and some of their properties.

Keywords − Nano π-closed set, nano πg-closed set, nano αg-closed set, nano πgp-closed set,
nano gpr-closed set and nano πgα-closed set

1 Introduction

Thivagar et al. [4] introduced a nano topological space with respect to a subset X
of an universe which is defined in terms of lower approximation and upper approx-
imation and boundary region. The classical nano topological space is based on an
equivalence relation on a set, but in some situation, equivalence relations are nor
suitable for coping with granularity, instead the classical nano topology is extend to
general binary relation based covering nano topological space

Bhuvaneswari et al. [3] introduced and investigated nano g-closed sets in nano
topological spaces. Recently, Parvathy and Bhuvaneswari the notions of nano gpr-
closed sets which are implied both that of nano rg-closed sets. In 2017, Rajasekaran
et al. [7] introduced the notion of nano πgp-closed sets in nano topological spaces.
In this paper, we define and study the properties of a nano πgα-closed set which is a
weaker form of a nano πg-closed set but strong than a nano πgp-closed sets and we
define a new class of sets called nano πgα-closed sets and some of their properties.

*Corresponding Author.
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2 Preliminaries

Throughout this paper (U, τR(X)) (or X) represent nano topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset H of a
space (U, τR(X)), n-cl(H) and n-int(H) denote the nano closure of H and the nano
interior of H respectively. We recall the following definitions which are useful in the
sequel.

Definition 2.1. [6] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the equiva-

lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Property 2.2. [4] If (U,R) is an approximation space and X, Y ⊆ U ; then

1. LR(X) ⊆ X ⊆ UR(X);

2. LR(φ) = UR(φ) = φ and LR(U) = UR(U) = U ;

3. UR(X ∪ Y ) = UR(X) ∪ UR(Y );

4. UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y );

5. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y );

6. LR(X ∩ Y ) ⊆ LR(X) ∩ LR(Y );

7. LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ) whenever X ⊆ Y ;

8. UR(Xc) = [LR(X)]c and LR(Xc) = [UR(X)]c;

9. URUR(X) = LRUR(X) = UR(X);

10. LRLR(X) = URLR(X) = LR(X).

Definition 2.3. [4] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then by the Property 2.2,
R(X) satisfies the following axioms:

1. U and φ ∈ τR(X),
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2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

This means that τR(X) is a topology on U called the nano topology on U with
respect to X and (U, τR(X)) as a nano topological space. The elements of τR(X) are
called nano open sets (briefly n-open sets).

In the rest of the paper, we denote a nano topological space by (U,N ), where
N = τR(X). The nano-interior and nano-closure of a subset A of U are denoted by
n--int(A) and n--cl(A), respectively.

Remark 2.4. [4] If [τR(X)] is the nano topology on U with respect to X, then the
set B = {U, φ, LR(X), BR(X)} is the basis for τR(X).

Definition 2.5. A subset H of a space (U,N ) is called

1. nano regular-open [4] if H = n-int(n-cl(H)).

2. nano pre-open [4] if H ⊆ n-int(n-cl(H)).

3. nano α-open [4] if H ⊆ n-int(n-cl(n-int(H))).

4. nano π-open [1] if the finite union of nano regular-open sets.

The complements of the above mentioned sets is called their respective closed sets.

Definition 2.6. A subset H of a space (U,N ) is called;

1. nano g-closed [2] if n-cl(H) ⊆ G, whenever H ⊆ G and G is n-open.

2. nano gα-closed [9] if n-αcl(H) ⊆ G whenever H ⊆ G and G is nano α-open.

3. nano αg-closed set [9] if n-αcl(H) ⊆ G whenever H ⊆ G and G is n-open.

4. nano πg-closed [7] if n-cl(H) ⊆ G, whenever H ⊆ G and G is nano π-open.

5. nano gp-closed [3] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is n-open.

6. nano gpr-closed [5] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is nano regular
open.

7. nano πgp-closed [8] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is nano π-open.

3 On Nano πgα-Closed Sets

Definition 3.1. A subset H of a space (U,N ) is nano πgα-closed if n-αcl(H) ⊆ G
whenever H ⊆ G and G is nano π-open.

The complement of nano πgα-open if Hc = U −H is nano πgα-closed.

Example 3.2. Let U = {a, b, c, d} with U/R = {{a}, {c}, {b, d}} and X = {c, d}.
Then the nano topology N = {φ, {c}, {b, d}, {b, c, d}, U}.
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1. then {a} is nano πgα-closed set.

2. then {b} is not nano πgα-closed set.

Remark 3.3. For a subset of a space (U,N ), we have the following implications:

n-closed ⇒ nano g-closed
⇓ ⇓

nano π-closed ⇒ nano πg-closed
⇓

nano regular-closed

None of the above implications are reversible.

Theorem 3.4. In a space (U,N ), every n-closed, every nano g-closed, every nano
πg-closed, every nano αg-closed and every nano gα-closed is nano πgα-closed.

Proof. Let H ⊆ G where G is nano π-open. By hypothesis. n-cl(H) = H ⊆ G.
Since every n-closed set is nano α-closed, n-αcl(H) ⊆ n-cl(H) ⊆ G. Therefore H is
nano πgα-closed.

Let H be nano g-closed and H ⊆ G where G is nano π-open. Since every nano
π-open set is n-open and H is nano g-closed, n-cl(H) ⊆ G. Hence n-αcl(H) ⊆
n-cl(H) ⊆ G implies H is nano πgα-closed.

Let H be a nano πg-closed set and H ⊆ G where G is nano π-open. By assump-
tion, n-cl(H) ⊆ G. Hence n-αcl(H) ⊆ n-cl(H) ⊆ G implies H is nano πgα-closed.

Let H be a nano αg-closed set and H ⊆ G where G is nano π-open. By Remark
3.3 and by assumption, it follows that n-αcl(H) ⊆ G and hence H is nano πgα-closed.

Obvious every nano π-open is nano α-open.

Remark 3.5. The converses of statements in Theorem 3.4 are not necessarily true
as seen from the following Examples.

Example 3.6. In Example 3.3, then {a, b} is nano πgα-closed set but not n-closed.

Example 3.7.

Let U = {a, b, c} with U/R = {{c}, {a, b}} and X = {c}. Then the nano topology
N = {φ, {c}, U}.

1. then {c} is nano πgα-closed set but not nano g-closed.

2. then {c} is nano πgα-closed set but not nano αg-closed.

3. then {a, c} is nano πgα-closed set but not nano gα-closed.

Theorem 3.8. In a space (U,N ), every nano πgα-closed is nano gpr-closed and
nano πgp-closed.

Proof. Let H be a nano πgα-closed set and H ⊆ G where G is nano regular open.
By Remark 3.3 and since H is nano πgα-closed set, we have n-αcl(H) ⊆ G. Every
nano α-closed set is nano pre-closed implies n-pcl(H) ⊆ G and hence H is nano
gpr-closed.

Let H be a nano πgα-closed set and H ⊆ G where G is nano π-open. By
hypothesis, n-αcl(H) ⊆ G. Now n-pcl(H) ⊆ n-αcl(H) ⊆ G implies that H is nano
πgp-closed.
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Theorem 3.9. In a space (U,N ), every nano gp-closed set is nano πgα-closed.

Proof. Obvious.

Remark 3.10. The converses of statements in Theorem 3.9 are not necessarily true
as seen from the following Examples.

Example 3.11. In Example 3.7, then {c} is nano πgα-closed but not nano gp-closed.

Theorem 3.12. In a space (U,N ), if H is nano regular open and nano πgα-closed,
then H is nano α-closed and hence n-clopen.

Proof. If H is nano regular open and nano πgα-closed, then n-αcl(H) ⊆ H. This
implies H is a nano α-closed. Since every nano α-closed and nano regular open set
is n-closed, H is n-clopen .

Theorem 3.13. In a space (U,N ), for x ∈ U , its complement U − {x} is nano
πgα-closed or nano π-open.

Proof. Suppose U − {x} is not nano π-open. Then U is the only nano π-open set
containing U − {x}. This implies n-αcl(U − {x}) ⊆ U . Hence U − {x} is nano
πgα-closed.

Theorem 3.14. In a space (U,N ), if H is nano πgα-closed and H ⊆ K ⊆ n-αcl(H),
then K is nano πgα-closed.

Proof. Let K ⊆ G where G is nano π-open. Then H ⊆ K implies H ⊆ G. Since H
is nano πgα-closed we have n-αcl(H) ⊆ G. Also K ⊆ n-αcl(H) implies n-αcl(K) ⊆
n-αcl(H). Thus n-αcl(K) ⊆ G and so K is nano πgα-closed.

Theorem 3.15. In a space (U,N ), let H be a nano πgα-closed set in U . Then
n-αcl(H)−H does not contain any non-empty nano π-closed set.

Proof. Let P be a non-empty nano π-closed set such that P ⊆ n-αcl(H)−H. Then
P ⊆ n-αcl(H) ∩ (U −H) ⊆ U −H implies H ⊆ U − P . H is nano πgα-closed and
U−P is nano π-open implies that nano n-αcl(H) ⊆ U−P . That is P ⊆ (n-αcl(H))c.
Now P ⊆ n-αcl(H) ∩ (n-αcl(H))c implies P is empty.

Theorem 3.16. In a space (U,N ), if H is a nano πgα-closed set, then n-πcl(x) ∩
H 6= φ holds for each x ∈ n-αcl(H).

Proof. Let H be a nano πgα-closed set. Suppose n-πcl(x) ∩ H = φ, for some x ∈
n-αcl(H). We have H ⊆ U − n-πcl(x). Since H is nano πgα-closed set, n-αcl(H) ⊆
U−n-πcl(x) implies x /∈ n-αcl(H) which is a contradiction. Hence n-πcl(x)∩H 6= φ
holds for each x ∈ n-αcl(H).

Corollary 3.17. Let H be nano πgα- closed in (U,N ). Then H is nano α-closed
⇐⇒ n-αcl(H)−H is nano π-closed.

Lemma 3.18. Let (U,N ) be a space and H is subset of U . Then the following
properties are equivalent.

1. H is n-clopen.

2. H is nano regular open and nano πgα-closed.
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3. H is nano π-open and nano πgα-closed.

Proof. Follows from Theorem 3.12 and Remark 3.3.

Proposition 3.19. In a space (U,N ), the union of two nano πgα-closed sets is nano
πgα-closed.

Proof. Let H∪K ⊆ G where G is nano π-open. Since H and K are nano πgα-closed
sets, n-αcl(H) ⊆ G and n-αcl(K) ⊆ G. Now n-αcl(H∪K) = n-αcl(H)∪n-αcl(K) ⊆
G. Hence H ∪K is nano πgα-closed.

Example 3.20. In Example 3.7, then H = {a} and K = {b} is nano πgα-closed
sets. Clearly H ∪K = {a, b} is nano πgα-closed.

Remark 3.21. In sa space (U,N ),

1. n-αcl(U −H) = U − n-int(H)

2. for any H ⊆ U , n-αint(n-αcl(H)−H) = φ.

Theorem 3.22. A subset H of a space (U,N ) is nano πgα-open⇐⇒ P ⊆ n-αint(H)
whenever P is nano π-closed and P ⊆ H.

Proof. Necessity. Let H be nano πgα-open. Let P be a nano π-closed set such that
P ⊆ H. Then U −H ⊆ U − P where U − P is nano π-open. Then U −H is nano
πgα-closed implies n-αcl(U−H) ⊆ U−P . By Remark 3.21. U−n-αint(H) ⊆ U−P .
That is P ⊆ n-αint(H).

Sufficiency. Suppose P is a nano π-closed set and P ⊆ H implies P ⊆ n-αint(H).
Let U − H ⊆ G where G is nano π-open. Then U − G ⊆ H and U − G is nano
π-closed. By hypothesis, U − G ⊆ n-αint(H). That is U − n-αint(H) ⊆ G implies
n-αcl(U−H) ⊆ G. This implies U−H is nano πgα-closed and H is nano πgα-open.

Remark 3.23. From the above Propositions, Examples and Remarks, we obtain the
following diagram, where A −→ B represents A implies B but not conversely.

nano π-closed
↓

nano g-closed ← nano closed → nano α-closed
↓ ↓ ↓

nano gp-closed ← nano gα-closed → nano αg-closed

↓ nano gpr-closed ↓
↗ ↖

nano πgp-closed ← nano πgα-closed
↖ ↗

nano πg-closed

None of the above implications are reversible
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Abstract – The telegraph equations are a pair of linear differential equations which describe the voltage and 

current on an electrical transmission line with distance and time. In this paper the authors give a brief 

overview of fractional calculus and extend its application to space-time fractional telegraph equation by using 

Adomian decomposition method. The time- space derivates are considered as Caputo fractional derivate. The 

solutions are obtained in the series form. 
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1 Introduction 
 

Fractional Calculus is a field of mathematical study that grows out of the traditional 

definition of the calculus of integral and derivative operators in much the same way as 

fractional exponents grew from exponents with integer value. It was originated from the L-

hospital and Leibnitz’s inquisition about considering the result if n was taken as half in the 

n
th

 derivative of a function. Fractional calculus is of great importance in the field of Science 

and Technology as it is the generalization of ordinary differentiation and integration to 

arbitrary order [1]. Telegraph equations are a pair of linear differential equations that are 

very important due to their vast applications in high frequency transmission lines, 

optimization of guided communication system, propagation of electrical signals and many 

other physical and chemical phenomena. The theoretical background on transmission and 

transmission lines including open wire lines was given by Tomasi [2]. The fractional 

Telegraph equation has been studied extensively in literature. Cascaval [3] studied the time 

fractional Telegraph equation with applications to suspension flows using the Riemann-

Liouville approach and presented asymptotic concepts. Orsingher and Beghin [4] obtained 

the fundamental solutions of time-fractional Telegraph equations of order . Chen [5] 
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discussed and derived the solution of the time-fractional telegraph equation with three 

kinds of non-homogenous boundary conditions making use of the separation of variables 

method. Momani [6] discussed the analytic and approximate solutions of the space and 

time fractional Telegraph differential equations by means of the Adomian decomposition 

method. 

 

The Adomian decomposition method is a semi-analytical method for solving ordinary and 

partial non-linear differential equations. This method has been introduced and developed 

by Adomian [7,8]. This method has been used to obtain approximate solutions of a large 

class of linear and non-linear differential equations [8,9]. This method provides solutions in 

the form of power series with easily computed terms. It has many advantages over some 

classical techniques. After Adomian, this method has been further modified by Wazwaz 

[10] and more recently by Luo [11] and zhang and Luo [12]. Recently a lot of work has 

been done to apply this method to a large number of linear and non-linear ordinary 

differential equations, partial differential equations and integro-differential equations. 

 

 

2 Mathematical Preliminaries 

 

The Caputo fractional derivative of order  is defined as [13] 

 

 (1) 

 

Here  and  is called the Riemann-Liouville integral operator of order . 

According to this definition, 

 

 
Constant 

 

That is Caputo’s fractional derivative of a constant is zero. 

 

Furthermore the relation between Riemann-Liouville fractional integral and Caputo 

fractional derivative is given by the following relation, 

 

 

                                                                                   (2) 

 

The Laplace transform of Caputo’s fractional derivative gives an interesting formula 

 

                                                                (3)    
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The Weyl fractional integral and the Mellin transform 

 

The Weyl fractional integral  can be regarded as the convolution of  

with  so that, 

 

                                       (4)   

                                

                                                                                                       (5) 

 

We next calculate the Mellin transform of the Riemann-Liouville fractional integrals and 

derivatives. 

                                             (6)       

                                                

                                             (7)                                    

Let                                              

 

 

 
Where 

 

 

 

is the Heaviside unit step function. 

 

 
 

Using the properties of the Mellin Transform of we obtain 

 

                                                                   (9) 

 

Now Mellin transform of  is given by 

  

                                                                                     (10) 

 

The Mellin transform of  is given by 

 

                                                                                    (11) 

 

We next find the Mellin transform of the Weyl fractional integral 

 

                                     (12)          
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                                                                                   (13) 

or  

                                                                           (14) 

 

Similarly the Mellin transform of Weyl fractional derivative is given by 

 

 

                                                                    (15)                                     

 

 

Adomian decomposition method 

 

To illustrate the method consider the following differential equation of the form 

 

                                                                                                 (16) 

 

In order to solve the problem, we put the highest degree differential operator  on the left  

side in the following way, 

 

                                                              (17) 

 

Where the differential operator  is given as  

 
Operate  on both sides of equation (17) and use the initial condition , we get, 

 

                                                                                                  (18) 

 

The solution through Adomian decomposition method is obtained in an infinite series form 

as 

                                                                                                           (19) 

 

where the components  are determined recursively. Moreover the non linear function 

 is defined by the infinite series of the form 

 

                                                                                                            (20) 

 

by using equations (19), (20) in  (18) we get 

 

                                                                                      (21) 
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To determine the component  the zeroth component  is identified by the term 

that arises from the initial condition. The remaining components are obtained by using the 

preceding component. 

 

 

3 Solution of the Space Time Fractional Telegraph Equation by Using 

Adomian Decomposition Method 
 

In this section, we have obtained a solution of following time and space fractional telegraph 

equation using Adomian decomposition method. The space time telegraph equation is 

given by 

 

                             (22) 

 

subject to the boundary and initial conditions  

 

                                                                                                     (23) 

 

we write (22) in an operator form as, 

 

                                           (24)                        

 

where  and the fractional differential operational  is defined in the 

Caputo’s sense as follows, 

 

     

                                       (25) 

 

Operating with  on both sides of equation (24) and using initial conditions, 

equation (23) yields 

 

                                                  (26) 

 

The Adomian’s decomposition method assumes a series solution for  given by 

 

                                                                                                     (27) 

 

Following Adomian method analysis, equation (26) is transformed into a set of recursive 

relations given by 

 

                                                                                                        (28) 
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                                                                                      (29)                                                 

 

Using the above recursive relationship and mathematics the first three terms of the 

decomposition series are given by 

 

                                                (30)      

                       

                                                                                                     (31) 

 

                                                                                       (32) 

 

                                                                                    (33)      

 

                                  (34)       

 

   (35)       

   

                          (36)       

                     

   (37)       

                                                                                                                                

    (38) 

 

       (39) 

 

             (40)     

                

                                                                                        (41)     

                                                                                

                                                                                    (42)    

                                  

        (43) 
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   (44)         

 

Which on simplification gives 

 

       (45)   

                                                        

         (46) 

 

   (47) 

 

(48)                                              

 

and so on. In this manner the rest of components of the decomposition series can be 

obtained. the solution in series form is given by 

 

                                                                 (49)      

                                   

    (50)                             
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Special case 

 
Setting  and  in equation (50) we obtain the solution of classical telegraph 

equation by 

 

     (51) 

 

 

4 Conclusions 
 

Clear conclusion can be drawn from the analytical results in equation (50) and equation 

(51) that the Adomian method provides highly accurate numerical solutions without spatial 

discretization for the problem. It is evident that the overall errors can be made smaller by 

adding new terms of the decomposition series. 
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Abstract – In this paper, we consider KU-implicative ideal (briefly implicative ideal) in KU-algebras. The 

notion of fuzzy implicative ideals in KU-algebras are introduced, several appropriate examples are provided 

and their some properties are investigated. The image and the inverse image of fuzzy implicative ideals in 

KU-algebras are defined and how the image and the inverse image of fuzzy implicative ideals in KU-algebras 

become fuzzy implicative ideals are studied. Moreover, the Cartesian product of fuzzy implicative ideals in 

Cartesian product of KU-algebras are given. 

 

Keywords – Fuzzy implicative ideal ,image (inverse image ) of fuzzy implicative ideals, Cartesian product of 

fuzzy implicative ideals. 

 

 

1. Introduction 

 
BCK-algebras form an important class of logical algebras introduced by Iseki [11,12,13] 

and was extensively investigated by several researchers. It is an important way to research 

the algebras by its ideals. The notions of ideals in BCK-algebras and positive implicative 

ideals in BCK-algebras (i.e. Iseki’s implicative ideals) were introduced by Iseki [11,12,13]. 

The notions of commutative ideals in BCK-algebras and implicative ideals in BCK-

algebras were introduced by [18-24]. Zadeh [33] introduced the notion of fuzzy sets. At 

present this concept has been applied to many mathematical branches, such as group, 

functional analysis, probability theory, topology, and so on. In 1991, Xi [32] applied this 

concept to BCK-algebras, and he introduced the notion of fuzzy sub-algebras (ideals) of the 

BCK-algebras with respect to minimum, and since then Y.B. Jun et al studied fuzzy ideals 

(cf.[10], [14], [15] ), and moreover several fuzzy structures in BCC-algebras are considered 

(cf [2-9]). Prabpayak and Leerawat [29,30] introduced a new algebraic structure which is 

called KU-algebra. They gave the concept of homomorphisms of KU-algebras and 

investigated some related properties. Mostafa et al. [25 - 28] introduced the notion of fuzzy 

KU-ideals of KU-algebras and then they investigated several basic properties which are 

related to fuzzy KU-ideals. The idea of implicative ideal was introduced by Meng et al. 

                                                 
*
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[22,23], they established the concepts of implicative ideals and commutative ideals in BCI-

algebras and investigated some of their properties. Mostafa et al. [26,27] introduced the 

notion of implicative ideals and commutative ideals of KU-algebras and investigated of 

their properties. 

 

In this paper, the notion of fuzzy implicative ideals of KU - algebras is introduced and then 

the several basic properties are investigated. How the image and the pre-image of fuzzy 

implicative ideal under homomorphism of KU-algebras become fuzzy of implicative ideal 

are studied. Moreover, the product of fuzzy implicative ideal to product fuzzy implicative 

ideal is established.  

 

 

2.  Preliminaries 
 

Definition 2.1. [29,30] Algebra (X,*,0) of type (2,0) is said to be a KU-algebra, if it 

satisfies the following conditions: 

( 1ku )  0)]())[()( =∗∗∗∗∗ zxzyyx , 

(ku2 )  00 =∗x , 

( 3ku )  xx =∗0 , 

( 4ku ) 0=∗ yx  and 0=∗ xy  implies yx = , 

( 5ku ) 0=∗ xx ,  For all Xzyx ∈,, . 

 

On a KU-algebra )0,,( ∗X we can define a binary relation ≤  on X  by putting 

 

0=∗⇔≤ xyyx  

 

Thus a KU-algebra X   satisfies the conditions: 

 

 ( \1
ku ) )()()( yxzxzy ∗≤∗∗∗    

 ( \2
ku ) x≤0    

 ( \3
ku ) xyyx ≤≤ ,  implies yx = , 

( \4
ku )  xxy ≤∗ . 

 
Theorem 2.2. [25] In a KU-algebra X , the following axioms are satisfied: 

For all Xzyx ∈,, , 

 (1)  yx ≤ imply zxzy ∗≤∗ , 

 (2) )()( zxyzyx ∗∗=∗∗ ,for all Xzyx ∈,, , 

 (3) yxxy ≤∗∗ ))(( . 

 (4) )())))(( xyxxxy ∗=∗∗∗  

Proof.  No. (4)  Since 
4444 84444 76 1

)()()(

UK

yxzxzy

′

∗≤∗∗∗ implies )())(( yxzzyx ∗≤∗∗∗ , put x=0, we   

have      

1
~

)))(()(,)()0())((0

)1(

−∗∗∗≤∗≤∗∗∗≤∗∗∗
4444 84444 76 by

xxxyxyhaveweyxxyyzzy  
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But, 0)])[()])[()]))[(()( =∗∗∗∗∗=∗∗∗∗∗ xxyxxyxxxyxy   

2
~

)()))((. −−−−−−−−−∗≤∗∗∗ xyxxxyei  

 

From 1
~

, 2
~

,we have )())))(( xyxxxy ∗=∗∗∗ .  

 

We will refer to X  is a KU-algebra unless otherwise indicated. 

 

Definition 2.3. [29,30] Let I  be a non empty subset of a KU-algebra X . Then I  is said to 

be an ideal of X , if  

)( 0I  I∈0  

)( 1I ,, Xzy ∈∀ if Izy ∈∗ )(  and ,Iy ∈  imply Iz ∈ . 

 

Definition 2.4. [25] Let I  be a non empty subset of a KU-algebra X . Then I  is said to be 

an KU- ideal of X , if  

)( 0F  I∈0  

)( KUF ,,, Xzyx ∈∀ if Izyx ∈∗∗ )(  and ,Iy ∈  imply Izx ∈∗ . 

 

Definition 2.5 [27 ] A KU-algebra X  is said to be implicative if it satisfies the identity  

 

x = (x * y) * x for all x, y  ∈X. 

 

For the properties of KU-algebras, we refer the reader to [12 - 16 ]. 

 

 

3. Fuzzy Implicative Ideals 
 

We now review some fuzzy logic concepts 

 

Definition 3.1. [33] Let X be a non-empty set, a fuzzy subset µ in X is a function  

 

].1,0[: →Xf  
 

Definition 2.11. [25 ] Let X be a KU-algebra, a fuzzy set µ in X is called a fuzzy ideal of 

X if it satisfies the following conditions: 

)( 0F  )()0( xµµ ≥ for all Xx ∈ . 

)(FI ,, Xyx ∈∀  )}(),(min{)( xyxy µµµ ∗≥ . 

 

Definition 3.2. [25 ] Let µ be a fuzzy set in a set X. For t ∈   [0, 1], the set  

 

µ t= {x ∈  X | µ(x) ≥ t} 

 

is called upper level cut (level  subset) of µ. 

 

Definition 3.3. A non empty subset µ  of a KU-algebra X  is called a fuzzy implicative 

ideal  of X , if ,,, Xzyx ∈∀  



Journal of New Theory 22 (2018) 82-91                                                                                                          85 
 

)( 0F
 )()0( xµµ ≥  

)( 1F { })()),)(((min))(( zxyxzxyx µµµ ∗∗∗≥∗∗ . 

 

Example 3.4. Let }4,3,2,1,0{=X in which the operation ∗  is given by the table  

 

 

 

 

 

 

 

 

 

Then )0,,( ∗X is a KU-Algebra. Define a fuzzy set μ : X→ [0,1] by     

 

μ(0) = t0, μ (1) = μ (2) = t1,  μ (3) = t2, μ (4) = t3 

 

where t0, t1, t2,t3∈  [0,1] with t0 > t1 > t2 > t3 .  

 

Routine calculation gives that  μ is a fuzzy implicative ideal of  KU-algebra X.  

 

Lemma 3.5. If  µ is a fuzzy implicative ideal of KU - algebra X and if x ≤ z, then                    

 µ (x) ≥ µ (z). 

 

Proof.  if x ≤ z, then z * x = 0, this together with 0 *  x = x , x *  x = x *  0 = 0 and  

µ(0) ≥ µ (z). Put y = 0  in )( 1F , we get 

 

{ })()),)0(((min))0(( zxxzxx µµµ ∗∗∗≥∗∗      

{ } { })(),(min)()),0((min)0( zxzzxzx µµµµµ ∗=∗∗≥∗  

{ } )()(),0(min)( zzx µµµµ =≥  

 
Lemma 3.6. Let µ  be a fuzzy implicative ideal of KU-algebra X, if the inequality  

 

                         z * x ≤ y hold in X, Then  µ (x) ≥ min {µ (y), µ (z)}.  

                       

Proof. Assume that the inequality y * x ≤ z holds in X, then  

 

)()( yxz µµ ≥∗  
 

by (Lemma 3.5).  Put x =y in (F2), we have { })()),)(((min))(( zxxxzxxx µµµ ∗∗∗≥∗∗  

i.e. { })(),(min)( zxzx µµµ ∗≥ , but )()( yxz µµ ≥∗ , then { })(),(min)( zyx µµµ ≥ , this 

completes the proof. 

                      

Proposition 3.7. The intersection of any set of fuzzy implicative ideals of KU-algebra X is 

also fuzzy implicative ideal.  

 

* 0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 0 0 4 

4 0 0 0 0 0 
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Proof. Let {µ i}  be a family of fuzzy implicative-ideals of KU-algebra X, then for any 

Xzyx ∈,, ,  

 

(∩µ i ) (0) = inf (µ i (0)) ≥ inf (µ i (x)) = (∩µi)(x) 

and  

 

 (∩µ i) ((x * y)*x ) = inf (µ i((x * y)*x)) ≥ inf (min {µ i (z*((x * y)*x)), µ i (z)}) 

                             = min {inf (µ i (z*((x * y)*x)), inf (µ i (z)}  

                             = min {(∩µ i) (z*((x * y)*x)), (∩µ i(z)}. 

 

This completes the proof. 

 

Theorem 3.8. A fuzzy subset µ of KU - algebra X is a fuzzy implicative-ideal of X  if and 

only if, for every t ∈  [0,1],  µ t is either empty or an  implicative  ideal of X.  

 

Proof.  Assume that µ is a fuzzy implicative - ideal of X, by (F1), we have µ (0) ≥ µ (x) for 

all x ∈  X therefore µ (0)  ≥ µ (x) ≥  t for x ∈  µt and so  0 ∈  µ t.  

 

Let z* ((x * y) * x)∈  µt and z ∈  µt, then  µ( z*((x * y) * x)) ≥ t and µ (z) ≥ t, since µ is a 

fuzzy implicative - ideal   it follows that µ( (x * y)*x) ≥ min {µ(z* ((x * y) * x)), µ (z)} ≥ t  

and therefore (x * y)*x ∈  µ t. Hence µ t is an KU-ideal  of  X.  

  

Conversely, we only need to show that (F1) and (F2) are true. If (F1) is false then there exist 

x`∈  X such that µ (0) < µ(x`). If we take t`= (µ (x`) µ (0))/2, then µ(0) < t` and 0 ≤ t` < µ 

(x`)   ≤ 1, thus x`∈  µ and µ ≠ φ  As µ is an KU–implicative ideal of X, we have 0 ∈  µ t`  

and so µ (0) ≥ t`. This is a contradiction.   

 

Now, assume (F2) is not true,then there exist x`, y` and z`  such that, 

 

µ ((x`* y`)* x`) < min {µ (z` *(x`* y`)* x`), µ (z`)} 

 

Putting t`={ µ ((x`* y`)* x`)+min{µ (z` *(x`* y`)* x`), µ (z`)}} /2, then  µ ((x`* y`)* x`) < t`    

and 0 ≤  t` < min {µ (z` *(x`* y`)* x`), µ (z`)}} /2 ≤1 , hence µ (z` *(x`* y`)* x`) > t` and µ 

(z`) > t`,which imply that (x`* y`)* x`) ∈µ (t`) and z`∈µ t`, since µ t is an implicative-ideal, it 

follows that (x`* y`)* x`) ∈  µ t` and that µ (x`* y`)* x`) ≥ t`, this is also a contradiction. 

Hence µ is a fuzzy implicative ideal of X.  

 

Corollary 3.9. If a fuzzy subset µ of  KU-algebra X is a fuzzy implicative-ideal, then for 

every t ∈  Im (µ), µ t  is an implicative-ideal of X.  

 

Definition 3. 10. [32] Let f be a mapping from the set X to a set Y. If µ  is a fuzzy subset of 

X, then the fuzzy subset B of Y defined by  

 





 ≠=∈=

==

−

∈ −

otherwise                                              0

})(,{)( if  ),(sup
)())((

1

)(1

φµ
µ

yxfXxyfx
yByf yfx  

 

is said to be the image of µ  under f. 
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Similarly if β is a fuzzy subset of Y, then the fuzzy subset µ = β о f  in X ( i.e the fuzzy 

subset defined by µ (x) = β (f (x)) for  all x ∈  X) is called the primage of β under f.  

 

Theorem 3.11. An onto homomorphic  preimage of a fuzzy implicative-ideal is also a 

fuzzy implicative-ideal.  

 

Proof. Let f : X → X` be an into homomorphism of KU-algebras, β a fuzzy implicative-

ideal of X` and µ the preimage of β under f, then  β (f (x)) = µ (x), for all  x ∈  X.  

 

Let x ∈  X, then µ (0) = β (f (0)) ≥ β (f (x)) = µ (x). Now let x, y, z ∈  X  then  

 

µ ((x * y)*x) = β (f (x * y)*x))= β((f (x) *` f (y))* f (x))   

                     ≥   min {β (f(z) *(f (x) *` f (y))* f (x))),β(f (z))}  

                     = min {β (f (z* ((x * y) * x)), β (f (z))}  

                     = min {µ(z* ((x * y) * x)), µ (z)}. 

  

The proof  is completed. 

 

Definition 3.12. [31] A fuzzy subset μ of X has sup property if for any subset T of X, there 

exist  t0 ∈T such that  
Tt

tt
∈

= )(sup)( 0 µµ . 

Theorem 3.13. Let X → Y be a homomorphism between KU-algebras X  and Y. For every 

fuzzy implicative  ideal μ in X, f (μ) is a fuzzy implicative-ideal of Y.  

 

Proof. By definition 

 

)(sup))(()(
)(1

xyfyB
yfx

µµ
′∈ −

=′=′  for all Yy ∈′  and 0sup =φ  

 

We have to prove that )},(),)((min{))(( zBxyxzBxyxB ′′∗′∗′∗′≥′∗′∗′ ∀  x`, y`, z`∈Y.  

 

Let f : X →  Y be an onto  a  homomorphism of KU - algebras, μ a fuzzy implicative - ideal 

of X with sup property and β the image of μ under f, since μ is a fuzzy implicative - ideal of 

X, we have μ(0) ≥  μ(x)  for all x∈X. Note that  0 ∈  f 1− (0`), where 0, 0` are the zero of X 

and Y respectively. Thus, ),()0()(sup)0(
)0(1

xtB
ft

µµµ ≥==′
′∈ −

for all Xx ∈ , which implies 

that  ),()(sup)0(
)(1

xBtB
xft

′=≥′
′∈ −

µ for any Yx ∈′ .   For any Yzyx ∈′′′ ,, ,  let     

 

)(,)(,)( 1

0

1

0

1

0 zfzyfyxfx ′∈′∈′∈ −−−  

 

be such that  

 

 )(sup)(  ,)(sup)))(((
)(

0
)))(((

0000
1

0000
1

tztxyxz
zftxyxzft

µµµµ
′∈∗∗∗∈ −−

==∗∗∗  

 

and  

    

)))((()})((({)))((( 00000000 xyxzBxyxzfBxyxz ′∗′∗′∗′=∗∗∗=∗∗∗µ  
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                        )))(((sup 0000
))(())(( 1

0000

xyxz
xyxzfxyxz

∗∗∗=
′∗′∗′∗′∈∗∗∗ −

µ = ).(sup
))(((1

t
xyxzft

µ
′∗′∗′∗′∈ −

  

 

Then  

 

=′∗∗′ ))(( xyxB ))(()(sup 000
))(1

xyxt
xyxft

∗∗=
′∗∗′∈ −

µµ )}()),)((min{ 00000 zxyxz µµ ∗∗∗≥ =  

 , )(supmin
)))(((1




′∗′∗′∗′∈ −

t
xyxzft

µ




−∈

)(sup
)( \1

t
zft

µ  = )}(,)))(((min{ zBxyxzB ′′∗′∗′∗′ .  

 

Hence B is a fuzzy implicative -ideal of Y.  

 

 

4. Cartesian Product of Fuzzy Implicative-ideal  
 

Definition 4.1. [1] A fuzzy µ is called  a fuzzy relation on any set S, if µ is a fuzzy subset  

  

µ : S × S →  [0,1] 

 

Definition 4.2. [1] If µ is a fuzzy relation a set S and β is a fuzzy subset of S, then µ is 

fuzzy  relation on β if µ (x, y) ≤ min {β (x), β (y)},  ∀  x, y ∈  S.  

 

Definition 4.3. [1] Let µ and β be fuzzy subset of a set S, the Cartesian product of µ and β 

is define by (µ × β) (x, y) = min {µ (x), β (y)},  ∀  x, y ∈  S. 

 

Lemma 4.4. [1] let µ and β be fuzzy subset of a set S then,  

(i)  µ × β is a fuzzy relation on S. 

(ii) (µ × β)t= µ t× βt for all t ∈  [0,1]. 

 

Definition 4.5. [1]  If β is a fuzzy subset of a set S, the strongest fuzzy relation  on S, that 

is, a fuzzy relation on β is µβ given by µβ (x, y) = min {β (x), β (y)},  ∀  x, y ∈  S.  

 

Lemma 4.6. [1] For a given fuzzy subset S, let µβ be the strongest fuzzy relation on S the  

for t ∈  [0,1], we have (µβ)t= βt × βt  . 

 

Proposition 4.7. For a given fuzzy subset β of KU- algebra X, let µβ be the strongest  fuzzy 

relation on X. If µβ is a fuzzy implicative ideal of X × X,   then β (x) ≤ β (0) for all x ∈X. 

 

Proof. Since µβ is a fuzzy  implicative  ideal of X × X, it follows from (F1) that  

 

µβ (x, x)= min {β (x), β (x)} ≤ (0, 0) = min {β (0), β (0)} 

 

where (0, 0) ∈  X × X, then  β (x) ≤ β (0).  

 

Remark 4.8. Let X and Y be KU-algebras, we define * on X × Y for every (x, y), (u, v)∈X 

x Y, (x, y ) * (u, v) = ( x * u, y * v), then clearly (x * y, *, (0, 0) ) is a KU-algebra.   

 

Theorem 4.9. let µ and β be a fuzzy implicative-ideals of KU - algebra X, µ × β is a fuzzy 

implicative-ideal of  X × X.  
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Proof. for any (x, y) ∈X × X, we have,   

 

(µ × β) (0, 0) = min {µ (0), β (0)} ≥ min {µ (x), β (x)} = (µ x β) (x, y). 

 

Now let (x1, x2), (y1, y2), (z1, z2) ∈X × X, then, 

 

    (µ x β) ((x1 * y1) * x1), ((x2 * y2) * x2))  

=  min {µ ((x1 * y1) * x1)), β ((x2 * y2) * x2))}  

≥  min {min {µ (z1* (x1 * y1) * x1))), µ(z1) }},  min {β ((x2 * y2) * x2)), β (z2)}} 

=  min {min {µ (z1* (x1 * y1) * x1)), β (z2 * (x2 * y2) * x2))}, min { µ(z1), β(z2)}} 

=  min {(µ × β) (z1* (x1 * y1) * x1), z2 * (x2 * y2) * x2)),( µ × β)(z1, z2)}. 

 

Hence µ × β is a fuzzy implicative ideal of X × X.  

 

Analogous to [28], we have a similar results for implicative-ideal, which can be proved in 

similar  manner, we state the results without proof.  

 

Theorem 4.10. let µ and β be a fuzzy subset of KU-algebra X,such that µ × β is fuzzy  

implicative -ideal of X × X, then  

 (i)   either µ (x) ≤ µ (0) or β (x) ≤ β (0) for all x ∈X,  

 (ii)  if µ (x) ≤ µ (0) for all x ∈X, then either µ (x) ≤ β (0) or β (x) ≤  β(0),  

 (iii) if β (x) ≤ β (0) for all x ∈X, then either µ (x) ≤ µ (0) or β (x) ≤  µ(0), 

 (v)  either µ or β is a fuzzy implicative - ideal of X.  

 

Theorem 4.11. let β be a fuzzy subset of KU-algebra X and let µβ  be the strongest fuzzy 

relation on X, then β is a fuzzy implicative  ideal of X if and only if µβ is a fuzzy 

implicative-ideal of X × X.  

 

Proof. Assume that β is a fuzzy implicative-ideal X, we note from (F1) that 

 

µβ (0, 0) = min {β (0), β (0)} ≥ min {β (x), β (y) } = µβ (x, y) 

 

Now, for any (x1,x2), (y1,y2),(z1,z2) ∈X x X, we have from (F2) 

 

    µβ ((x1 * y1) * x1,  (x2 * y2) * x2 )  

=  min {β ((x1 * y1) * x1), β ((x2 * y2) * x2)}  

≥  min {min{β (z1* ((x1 * y1) * x1)), β (z1)},  min {β (z2 * ((x2 * y2) * x2)), β(z2)}}  

=  min{min{ β(z1* ((x1 * y1) * x1)), β (z2 * ((x2 * y2) * x2))}, min { β(z1), β(z2)}} 

=  min {µβ (z1* ((x1 * y1) * x1), z2 * ((x2 * y2) * x2)), µβ (z1, z2)}. 

 

Hence µβ  is  a   fuzzy implicative-ideal of X ×  X. 

 

Conversely: for all (x, y) ∈X × X, we haveMin {β (0), β (0) } = µβ (x, y) =  min {β (x), β 

(y)} It follows that β (0) ≥ β (x) for all x ∈X, which prove (F1). 

 

Now, let (x1, x2), (y1, y2), (z1, z2) ∈X × X, then  

 

   min {β (((x1 * y1) * x1), β ((x2 * y2) * x2)} = µβ ((x1 * y1) * x1),  (x2 * y2) * x2))  

≥ min {µβ ((z1, z2) * ((x1, x2) * (y1, y2)) * (x1, x2) ), µβ (z1,z2))} 
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= min {µβ (z1* ((x1 * y1) * x1), z2 * ((x2 * y2) * x2)), µβ (z1, z2)}  

= min {min {β (z1* ((x1*y1) * x1)), β (z2 * ((x2 * y2) * x2))}, min {β (z1), β (z2)}}  

= min {min {β (z1* ((x1 * y1) * x1)), β (z1)}, min {β(z2 * ((x2 * y2) * x2)), β (z2)}} 

 

In particular, if we take x2 = y2 = z2 =0, then, β ((x1 * y1) * x1) ≥ min { β (z1* ((x1 * y1) * x1)), 

β (z1)}.  

 

This prove (F1) and completes the proof.   

 

5. Conclusion 
 

we have studied the fuzzy of implicative ideal in KU-algebras.  Also we discussed few 

results of fuzzy of implicative ideal in KU-algebras under homomorphism, the image and 

the pre- image of fuzzy implicative ideal under homomorphism of KU-algebras are 

defined. How the image and the pre-image of fuzzy implicative ideal under homomorphism 

of KU-algebras become fuzzy of  implicative ideal are studied. Moreover, the product of 

fuzzy implicative ideal to product fuzzy implicative ideal is established. Furthermore, the 

main purpose of our future work is to investigate the foldedness of other types of fuzzy 

ideals with special properties such as a bipolar intuitionistic (interval value) fuzzy n-fold of 

implicative ideals in some algebras. 
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Abstaract − In this paper, we introduce the concept of T -fuzzy submodule of R ×M and give
new results on this subject. Next we study the concept of the extension of T -fuzzy submodule of
R ×M and prove some results on these. Also we investigate T -fuzzy submodule of R ×M under
homomorphisms or R-modules.
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1 Introduction

In algebra, ring theory is the study of rings algebraic structures in which addition
and multiplication are defined and have similar properties to those operations defined
for the integers. Ring theory studies the structure of rings, their representations, or,
in different language, modules, special classes of rings (group rings, division rings,
universal enveloping algebras), as well as an array of properties that proved to be
of interest both within the theory itself and for its applications, such as homological
properties and polynomial identities. In mathematics, a module is one of the fun-
damental algebraic structures used in abstract algebra. A module over a ring is a
generalization of the notion of vector space over a field, wherein the corresponding
scalars are the elements of an arbitrary given ring (with identity) and a multiplica-
tion (on the left and/or on the right) is defined between elements of the ring and
elements of the module. Thus, a module, like a vector space, is an additive abelian
group; a product is defined between elements of the ring and elements of the module
that is distributive over the addition operation of each parameter and is compatible
with the ring multiplication. Modules are very closely related to the representation
theory of groups. They are also one of the central notions of commutative algebra
and homological algebra, and are used widely in algebraic geometry and algebraic
topology. In 1965, Zadeh [17] introduced the notion of a fuzzy subset of a set as
a method for representing uncertainty. It provoked, at first (and as expected), a
strong negative reaction from some influential scientists and mathematicians many
of whom turned openly hostile. However, despite the controversy, the subject also
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attracted the attention of other mathematicians and in the following years, the field
grew enormously, finding applications in areas as diverse as washing machines to
handwriting recognition. In its trajectory of stupendous growth, it has also come to
include the theory of fuzzy algebra and for the past five decades, several researchers
have been working on concepts like fuzzy semigroup, fuzzy groups, fuzzy rings, fuzzy
ideals, fuzzy semirings, fuzzy near-rings and so on. Solairaju and Nagarajan [5,6]
have introduced and defined a new algebraic structure called Q-fuzzy subgroups.
The triangular norm, T -norm, originated from the studies of probabilistic metric
spaces in which triangular inequalities were extended using the theory of T -norm.
Later, Hohle [4], Alsina et al. [1] introduced the T -norm into fuzzy set theory and
suggested that the T -norm be used for the intersection of fuzzy sets. Since then,
many other researchers have presented various types of T -norms for particular pur-
poses [3, 16]. Anthony and Sherwood [2] gave the definition of fuzzy subgroup based
on t-norm. The author by using norms, investigated some properties of fuzzy sub-
modules, fuzzy subrings, fuzzy ideals of subtraction semigroups, intuitionistic fuzzy
subrings and ideals of a ring, fuzzy Lie algebra, fuzzy subgroups on direct product of
groups, characterizations of intuitionistic fuzzy subsemirings of semirings and their
homomorphisms, characterization of Q-fuzzy subrings (anti Q-fuzzy subrings) ([7,
8, 9, 10, 11, 12, 13, 14, 15]). In this work, by using a t-norm T , we introduce the
notion of T -fuzzy submodule of R × M , and investigate some of their properties.
Also we use a t-norm to construct the concept of the extension of T -fuzzy submod-
ule of R ×M and prove some results on these. Finally we obtain some new results
of T -fuzzy submodule of R×M with respect to t-norm T under homomorphisms of
R-modules

2 Preliminary

Definition 2.1. A ring < R, +, . > consists of a nonempty set R and two binary
operations + and . that satisfy the axioms:
(1) < R, +, . > is an abelian group;
(2) (ab)c = a(bc) (associative multiplication) for all a, b, c ∈ R;
(3) a(b + c) = ab + ac, (b + c)a = ba + ca (distributive laws) for all a, b, c ∈ R

Moreover, the ring R is a commutative ring if ab = ba and ring with identity if
R contains an element 1R such that 1Ra = a1R = a for all a ∈ R.

Example 2.2. (1) The ring Z of integers is a commutative ring with identity. So
are Q, R, C, Zn, R[x], etc.
(2) 3Z is a commutative ring with no identity.
(3) The ring Z2×2 of 2× 2 matrices with integer coe?cients is anoncommutative ring
with identity.
(4) (3Z)2×2 is a noncommutative ring with no identity.

Definition 2.3. Let R be a ring. A commutative group (M, +) is called a left
R-module or a left module over R with respect to a mapping

. : R×M → M
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if for all r, s ∈ R and m,n ∈ M ,
(1) r.(m + n) = r.m + r.n,
(2) r.(s.m) = (rs).m,
(3) (r + s).m = r.m + s.m.

If R has an identity 1 and if 1.m = m for all m ∈ M , then M is called a unitary
or unital left R-module.

A right R-module can be defined in a similar fashion.

Definition 2.4. Let X a non-empty sets. A fuzzy subset µ of X is a function
µ : X → [0, 1]. Denote by [0, 1]X , the set of all fuzzy subset of X.

Definition 2.5. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the fol-
lowing four properties:
(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),
for all x, y, z ∈ [0, 1].

We say that T be idempotent if T (x, x) = x for all x ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.6. (1) Standard intersection T -norm Tm(x, y) = min{x, y}.
(2) Bounded sum T -norm Tb(x, y) = max{0, x + y − 1}.
(3) algebraic product T -norm Tp(x, y) = xy.
(4) Drastic T -norm

TD(x, y) =





y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum T -norm

TnM(x, y) =

{
min{x, y} if x + y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the
pointwise largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Lemma 2.7. Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].
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3 T−Fuzzy Submodules of R×M

Definition 3.1. Let M be an R-module. A M -fuzzy subset µ of R is a function
µ : R×M → [0, 1]. Denote by [0, 1]R×M , the set of all M -fuzzy subset of R.

Definition 3.2. Let S ⊆ R and a ∈ [0, 1]. Define a{S×M} ∈ [0, 1]R×M as follows;

a{S×M}(r,m) =

{
a if r ∈ S,m ∈ M
0 if r ∈ R− S, m ∈ M

Definition 3.3. Let µ ∈ [0, 1]R×M and T be a t-norm. We say that µ is a T -fuzzy
submodule of R×M if for all r, s ∈ R and x, y ∈ M
(1) µ(r, 0M) = 1,
(2) µ(r, sx) ≥ µ(r, x),
(3) µ(r, x + y) ≥ T (µ(r, x), µ(r, y)).

We denote the set of all fuzzy submodules of R×M by TF (R×M).
Since −1x = −x , condition (2) implies that µ(r,−x) ≥ µ(r, x).

Example 3.4. Let R = (Z, +, .) be a ring of integer. If M = Z, then M is an
R-module. For all x ∈ R we define a fuzzy subset µ of Z× Z as

µ(r, x) =





1 if (r, x) ∈ Z× {0Z}
0.90 if (r, x) ∈ Z× (2Z− {0Z})
0.80 if (r, x) ∈ Z× (2Z+ 1)

Let T (x, y) = Tp(x, y) = xy for all x, y ∈ Z, then µ ∈ TF (Z× Z).

Definition 3.5. Let µ, ν ∈ TF (R×M) and r ∈ R and x ∈ M. Define µ+ν, µ∪ν, µ∩ν,
and −µ as follows:
(µ + ν)(r, x) = sup{T (µ(r, y), ν(r, z)) | y, z ∈ M, y + z = x},
(µ ∪ ν)(r, x) = sup {µ(r, x), ν(r, x)} ,
(µ ∩ ν)(r, x) = T (µ(r, x), ν(r, x)),
(−µ)(r, x) = µ(r,−x).

Then µ + ν, µ∪ ν, µ∩ ν are called the sum, union, intersection of µ and ν respec-
tively, and −µ the negative of µ.

Let µi ∈ TF (R × M). The least upper bound ∪i∈Iµi of the x,
is is given by

(∪i∈Iµi)(r, x) = sup{µi(r, x) | i ∈ I} for all i ∈ I, r ∈ R, x ∈ M.

Definition 3.6. Let µi ∈ TF (R ×M), 1 ≤ i ≤ n and n ∈ N. Since + is associative
and commutative, we can consider µ1 + µ2 + ... + µn and write it as Σn

i=1µi.

If µi ∈ TF (R×M) for each i ∈ I, then Σi∈Iµi is defined by

(Σi∈Iµi)(r, x) = sup{Ti∈I(µi(r, xi)) | xi ∈ M, i ∈ I, Σxi = x}

such that Σxi = Σi∈Ixi and there are at most finitely many x,
is not equal to 0M .
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Definition 3.7. Let r, s ∈ R, x ∈ M and µ ∈ TF (R×M). Define sµ as follow:
sµ(r, x) = sup{µ(r, y) | y ∈ M, sy = x} which is called the product of s and µ.

Proposition 3.8. Let r, s, t ∈ R and µ, ν, ξ, µi ∈ TF (R × M), i ∈ I. Then for all
x, y ∈ M
(1) 1µ = µ, (−1)µ = (−µ).
(2) s1{R×0M} = 1{R×0M}.
(3) If µ ≤ ν, then sµ ≤ sν.
(4) (ts)µ = t(sµ).
(5) s(µ + ν) = sµ + sν.
(6) s(∪i∈Iµi) = ∪i∈Isµi.
(7) (sµ)(r, sx) ≥ µ(r, x).
(8) ξ(r, sx) ≥ µ(r, x) if and only if sµ ≤ ξ.
(9) (sµ + tν)(r, sx + ty) ≥ T (µ(r, x), ν(r, y)).
(10) ξ(r, sx + ty) ≥ T (µ(r, x), ν(r, y)) if and only if sµ + tν ≤ ξ.

Proof. Let r, s, t ∈ R and x, y, z ∈ M. Then

(1) 1µ(r, x) = sup{µ(r, y) | y ∈ M, 1y = x} = µ(r, x). Also
(−1)µ(r, x) = sup{µ(r, y) | y ∈ M,−1y = x} = µ(r,−x) = (−µ)(r, x).

(2) It is clear.

(3) sµ(r, x) = sup{µ(r, y) | y ∈ M, sy = x} ≤ sup{ν(r, y) | y ∈ M, sy = x}
= sν(r, x).

(4) (ts)µ(r, x) = sup{µ(r, y) | y ∈ M, (ts)y = x} = sup{µ(r, y) | y ∈ M, t(sy) =
x} = t(sµ)(r, x).

(5) (sµ + sν)(r, x) = sup {T (sµ(r, y), sν(r, z)) | y, z ∈ M, y + z = x}
= sup{T (sup{µ(r, y1) | y1 ∈ M, sy1 = y}, sup{ν(r, z1) | z1 ∈ M, sz1 = z})}
| y, z ∈ M, s(y1 + z1) = sy1 + sz1 = x = s(µ + ν)(r, x)}

(6) s(∪i∈Iµi)(r, x) = sup{(∪i∈Iµi)(r, y) | y ∈ M, sy = x}
= sup{supi∈I µi(r, y) | y ∈ M, sy = x} = supi∈I{sup µi(r, y) | y ∈ M, sy = x}
= ∪i∈Isµi(r, x).

(7) sµ(r, sx) = sup{µ(r, y) | y ∈ M, sy = sx} ≥ µ(r, x).

(8) Let ξ(r, sx) ≥ µ(r, x). Then sµ(r, x) = sup{µ(r, y) | y ∈ M, sy = x}
≤ sup{ξ(r, sy) | y ∈ M, sy = x} = ξ(r, x).

(9) By Definition 3.5 and (part 7) we obtain that
(sµ + tν)(r, sx + ty) = sup{T ((sµ)(r, sx), (tν)(r, ty))} ≥ sup{Tµ(r, x), ν(r, y))}
≥ T (µ(r, x), ν(r, y)).

(10) Let ξ(r, sx + ty) ≥ T (µ(r, x), ν(r, y)). Then (sµ + tν)(r, z)
= sup{T (sµ(r, z1), tν(r, z2) | z1, z2 ∈ M, z1 + z2 = z}
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= sup{T (sup{µ(r, x) | x ∈ M, sx = z1}, sup{ν(r, y) | y ∈ M, ty = z2}) | z1, z2 ∈
M, sx + ty = z}

= sup{T (µ(r, x), ν(r, y)) | x, y ∈ M, sx + ty = z} ≤ sup{ξ(r, sx + ty) | x, y ∈
M, sx + ty = z} = ξ(r, z).

Conversely, suppose that sµ+ tν ≤ ξ. Then ξ(r, sx+ ty) ≥ (sµ+ tν)(r, sx+ ty) ≥
T (sµ(r, sx), tν(r, ty)) ≥ T (µ(r, x), ν(r, y)) (by(7)).

Corollary 3.9. Let r, s, t ∈ R and µ ∈ TF (R×M). Then
(1) sµ ≤ µ if and only if µ(r, sx) ≥ µ(r, x),
(2) sµ + tµ ≤ µ if and only if µ(r, sx + ty) ≥ T (µ(r, x), µ(r, y)).

Proof. (1) In Proposision 3.8 part(8), put µ = ξ.

(2) In Proposision 3.8 part(10), put µ = ν = ξ.

Corollary 3.10. Let s ∈ R and µ ∈ [0, 1]R×M . Then µ ∈ TF (R×M) if and only if
µ satisfies the following conditions:
(1) 1{R×0M} ≤ µ,
(2) sµ ≤ µ,
(3) µ + µ ≤ µ.

Proof. Let µ ∈ TF (R×M). Then

(1) µ(r, 0M) = 1 ≥ 1 = 1{R×0M}(r,0M ) and so 1{R×0M} ≤ µ.

(2) For all r, s ∈ R and x ∈ M we have that µ(r, sx) ≥ µ(r, x), and by Corollary
3.9 (part 1) we get sµ ≤ µ.

(3) Let r, s, t ∈ R and x, y ∈ M. Then from µ(r, x + y) ≥ T (µ(r, x), µ(r, y)) and
Corollary 3.9 (part 2 with s = 1 = t) we obtain that µ + µ ≤ µ.

Conversely, we prove that µ ∈ TF (R×M).

From condition (1) we have µ(r, 0M) ≥ 1{R×0M}(r,0M ) and so µ(r, 0M) = 1.

By condition (2) and Corollary 3.9 (part 1) we get µ(r, sx) ≥ µ(r, x).

Also as condition (3) and Corollary 3.9 (part 2) we have µ(r, x+y) ≥ T (µ(r, x), µ(r, y)).
Therefore µ ∈ TF (R×M).

Proposition 3.11. Let r, s, t ∈ R and x, y ∈ M. If µ ∈ [0, 1]R×M , then µ ∈ TF (R×
M) if and only if µ satisfies condition (1) from Definition 3.3 and the following
condition:
(4) µ(r, sx + ty) ≥ T (µ(r, x), µ(r, y)).

Proof. Suppose µ ∈ TF (R×M). By Definition 3.3, µ satisfies condition (1). Since µ
also satisfies conditions (2) and (3), it follows that µ(r, sx+ty) ≥ T (µ(r, sx), µ(r, ty)) ≥
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T (µ(r, x), µ(r, y)).

Conversely, assume that µ satisfies conditions (1) and (4). Then µ(r, sx) =
µ(r, sx + s0M) ≥ T (µ(r, x), µ(r, 0M)) = T (µ(r, x), 1) = µ(r, x).

Also µ(r, x + y) = µ(r, 1x + 1y) ≥ T (µ(r, x), µ(r, y)). Hence µ satisfies conditions
(2) and (3) and so µ ∈ TF (R×M).

Corollary 3.12. Let r, s ∈ R and µ ∈ [0, 1]R×M . Then µ ∈ TF (R×M) if and only
if µ satisfies the following conditions:
(1) 1{R×0M} ≤ µ,
(2) rµ + sµ ≤ µ.

Proof. Let µ ∈ TF (R × M). Then from Corollary 3.10 we get that 1{R×0M} ≤ µ
and rµ + sµ ≤ µ. Conversely, we show that µ ∈ TF (R × M). As 1{R×0M} ≤ µ so
µ(r, 0M) = 1. By rµ + sµ ≤ µ and Proposision 3.8(part 10) and Proposion 3.11 we
obtain that µ ∈ TF (R×M).

Proposition 3.13. Let µ, ν ∈ TF (R×M). Then µ ∩ ν ∈ TF (R×M).

Proof. Let r, s ∈ R and x, y ∈ M. If µ, ν ∈ TF (R×M), then

(1) (µ ∩ ν)(r, 0M) = T (µ(r, 0M), ν(r, 0M)) = T (1, 1) = 1.

(2) (µ ∩ ν)(r, sx) = T (µ(r, sx), ν(r, sx)) ≥ T (µ(r, x), ν(r, x)) = (µ ∩ ν)(r, x).

(3) (µ∩ν)(r, x+y) = T (µ(r, x+y), ν(r, x+y)) ≥ T (T (µ(r, x), µ(r, y)), T (ν(r, x), ν(r, y)))
= T (T (µ(r, x), ν(r, x)), T (µ(r, y), ν(r, y)))(by Lemma 2.7) = T ((µ∩ν)(r, x), (µ∩ν)(r, y)).

Thus µ ∩ ν ∈ TF (R×M).

Corollary 3.14. If {µi | i = 1, 2, ...} ⊆ TF (R×M), then ∩iµi ∈ TF (R×M).

Proposition 3.15. Let µ, ν ∈ TF (R × M) abd T be idempotent. Then µ + ν ∈
TF (R×M).

Proof. Let µ, ν ∈ TF (R×M).

(1) Let r ∈ R, x ∈ M. Then
(µ + ν)(r, x) = sup{T (µ(r, x1), ν(r, x2)) | x1, x2 ∈ M,x1 + x2 = x}
≥ sup{T (1{R×0M}(r, x1), 1{R×0M}(r, x2)) | x1, x2 ∈ M, x1 + x2 = x}
= sup{T (1, 1) | x1, x2 ∈ M,x1 + x2 = x} = 1 = 1{R×0M}(r, x).

(2) Let s ∈ R. Then s(µ + ν) = sµ + sν ⊆ µ + ν.

(3) (µ + ν) + (µ + ν) = (µ + µ) + (ν + ν) ⊆ (µ + ν).

Hence from Corollary 3.10 we have µ + ν ∈ TF (R×M).

Corollary 3.16. If {µi | i = 1, 2, ...} ⊆ TF (R×M), then Σiµi ∈ TF (R×M).
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Definition 3.17. Let µ ∈ [0, 1]R×M and s ∈ R. For all (r, y) ∈ R×M the fuzzy subset
< s, µ >∈ [0, 1]R×M defined by < s, µ > (r, y) = µ(r, sy) is called the extension of µ
by s.
Also we define Suppµ = {(r, x) ∈ R×M | µ(r, x) > 0}.
Proposition 3.18. Let µ ∈ TF (R×M) and s ∈ R. Then < s, µ >∈ TF (R×M).

Proof. Let r, s, t ∈ R and x, y ∈ M. If µ ∈ TF (R×M), then
(1) < s, µ > (r, 0M) = µ(r, 0M) = 1.
(2) < s, µ > (r, tx) = µ(r, stx) = µ(r, tsx) ≥ µ(r, sx) =< s, µ > (r, x).
(3) < s, µ > (r, x + y) = µ(r, s(x + y)) = µ(r, sx + sy) ≥ T (µ(r, sx), µ(r, sy)) = T (<
s, µ > (r, x), < s, µ > (r, y)).
Hence < s, µ >∈ TF (R×M).

Corollary 3.19. If s ∈ R and {µi | i = 1, 2, ...} ⊆ TF (R ×M), then < s,∩iµi >∈
TF (R×M).

Proposition 3.20. Let µ ∈ TF (R×M) and s ∈ R. Then we have the following:
(1) µ ⊆< s, µ >,
(2) < sn, µ >⊆< sn+1, µ > for every n ∈ N,
(3) If x ∈ M and µ(r, x) > 0, then Supp < s, µ >= R×M.

Proof. (1) If (r, x) ∈ R×M, then < s, µ > (r, x) = µ(r, sx) ≥ µ(r, x).

(2) From every n ∈ N and (r, x) ∈ R × M we have that < sn+1, µ > (r, x) =
µ(r, sn+1x) = µ(r, ssnx) ≥ µ(r, snx) =< sn, µ > (r, x).

(3) By Definition 3.17, Supp < s, µ >⊆ R × M. Now if (r, x) ∈ R × M, then
< s, µ > (r, x) = µ(r, sx) ≥ µ(r, x) > 0 and so Supp < s, µ >= R×M.

4 Homomorphisms Over T -Fuzzy Submodules of

R×M

Definition 4.1. Let f be a mapping from R-module M into R-module N. Let
µ ∈ TF (R×M) and ν ∈ TF (R×N). Define f(µ) ∈ [0, 1]R×N and f−1(ν) ∈ [0, 1]R×M

as ∀y ∈ N, ∀r ∈ R, f(µ)(r, y) = sup{µ(r, x) | x ∈ M, f(x) = y} if f−1(y) 6= ∅ and
f(µ)(r, y) = 0 if f−1(y) = ∅. Also ∀x ∈ M , ∀r ∈ R f−1(ν)(r, x) = ν(r, f(x)).

Proposition 4.2. Let f be a mapping from R-module M into R-module N. Let
µ, µ1, µ2 ∈ TF (R×M) and ν, ν1, ν2 ∈ TF (R×N).
(1) Let µ1 ≤ µ2. Then f(µ1) ≤ f(µ2).
(2) Let ν1 ≤ ν2. Then f−1(ν1) ≤ f−2(ν2).
(3) µ ≤ f−1(f(µ)). Inparticular, if f is an injection, then µ = f−1(f(µ)).
(4) ν ≥ f(f−1(ν)). Inparticular, if f is a surjection,, then ν = f(f−1(ν)).
(5) f(µ) ≤ ν if and only if µ ≤ f−1(ν).

Proof. Clearly, assertions (1) and (2) hold.
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(3) f−1(f(µ))(r, x) = f(µ)(r, f(x)) = sup{µ(r, z) | z ∈ M, f(z) = f(x)} ≥
µ(r, x).
If f is an injection, then f−1(f(µ))(r, x) = sup{µ(r, z) | z ∈ M, f(z) = f(x)} =
µ(r, x).

(4) f(f−1(ν))(r, y) = sup{f−1(ν)(r, x) | x ∈ M, f(x) = y} = sup{ν(r, f(x)) | x ∈
M, f(x) = y} = {ν(r, y) | y ∈ f(M)} ≤ ν(y).

Assertion (5) is an immediate consequence of the four preceding assertions.

Proposition 4.3. Suppose that f be an epiomorphism from R-module M into R-
module N. Let r, s, t ∈ R and µ, ν ∈ TF (R×M). Then
(1) f(µ + ν) = f(µ) + f(ν),
(2) f(sµ) = sf(µ),
(3) f(sµ + tν) = sf(µ) + tf(ν).

Proof. (1) If y1, y2 ∈ N, then we have x1, x2 ∈ M such that y1 = f(x1) and y2 =
f(x2). Now f(µ + ν)(r, y) = sup{(µ + ν)(r, x) | x ∈ M, f(x) = y}

= sup{sup{T (µ(r, x1), ν(r, x2)) | x1, x2 ∈ M, x1 + x2 = x} | y = f(x) = f(x1) +
f(x2) = y1 + y2}

= sup{T (sup{µ(r, x1) | x1 ∈ M, f(x1) = y1}, sup{µ(r, x2) | x2 ∈ M, f(x2) = y2})
| y = y1 + y2} = (f(µ) + f(ν))(r, y).

(2) f(sµ)(r, y) = sup{(sµ)(r, x1) | x1 ∈ M, f(x1) = y}
= sup{sup{µ(r, x2) | x2 ∈ M, x1 = sx2} | x1 ∈ M, f(x1) = y}
= sup{sup{µ(r, x2) | x2 ∈ M, x1 = sx2} | x1 ∈ M, sf(x2) = y} = sf(µ)(r, y).

(3) This assertion follows from (1) and (2).

Proposition 4.4. Let µ ∈ TF (R ×M) and N be an R-module. Suppose that f is
an isomorphism of M onto N . Then f(µ) ∈ TF (R×N).

Proof. (1) f(µ)(r, 0N) = sup{µ(r, x) | f(x) = 0N} = sup{µ(r, x) | x ∈ kerf = 0} =
sup{µ(r, 0M)} = 1.

(2) f(µ)(r, sy) = sup{µ(r, z) | f(z) = sy = sf(x) = f(sx)} = sup{µ(r, sx) | f(x) =
y} ≥ sup{µ(r, x) | f(x) = y} = f(µ)(r, y).

(3) f(µ)(r, y1 + y2) = sup{µ(r, z) | f(z) = y1 + y2 = f(x1) + f(x2) = f(x1 + x2)}
= sup{µ(r, x1 + x2) | y1 = f(x1), y2 = f(x2)}
≥ sup{T (µ(r, x1), µ(r, x2)) | y1 = f(x1), y2 = f(x2)}
≥ T (sup{µ(r, x1) | f(x1) = y1}, sup{µ(r, x2) | f(x2) = y2})
= T (f(µ)(r, y1), f(µ)(r, y2)).

Proposition 4.5. Let ν ∈ TF (R ×N) and M be an R-module. Suppose that f is
a homomorphism of M onto N . Then f−1(ν) ∈ TF (R×M).

Proof. Let r, s ∈ R and x1, x2 ∈ M. Then
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(1) f−1(ν)(r, 0M) = ν(r, f(0M)) = ν(r, 0N) = 1.

(2) f−1(ν)(r, sx) = ν(r, f(sx)) = ν(r, sf(x)) ≥ ν(r, f(x)) = f−1(ν)(r, x).

(3) f−1(ν)(r, x1 + x2) = ν(r, f(x1 + x2)) = ν(r, f(x1) + f(x2))
≥ T (ν(r, f(x1)), ν(r, f(x2))) = T (f−1(ν)(r, x1), f

−1(ν)(r, x2)).
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