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Fuzzy Sub Implicative Ideals of KU-Algebras

Samy Mohammed Mostafa”  <dr_samymostafa46 @ yahoo.com>
Ola Wageeh Abd El- Baseer <olawageeh@ yahoo.com>

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Abstract — We consider the fuzzification of sub-implicative (sub-commutative) ideals in KU-algebras, and
investigate some related properties. We give conditions for a fuzzy ideal to be a fuzzy sub-implicative (sub-
commutative) ideal. We show that any fuzzy sub-implicative (sub-commutative) ideal 1is a fuzzy ideal, but
the converse is not true. Using a level set of a fuzzy set in a KU-algebra; we give a characterization of a fuzzy
sub-implicative (sub-commutative) ideal.

Keywords — KU-algebras - fuzzy sub implicative ideals- fuzzy sub-commutative

1. Introduction

BCK-algebras form an important class of logical algebras introduced by Iseki [2] and was
extensively investigated by several researchers. It is an important way to research the
algebras by its ideals. The notions of ideals in BCK-algebras and positive implicative ideals
in BCK-algebras (i.e Isekis implicative ideals) were introduced by Iseki [2]. The notions of
commutative (sub-commutative) ideals in BCK-algebras, positive implicative and
implicative (Sub-implmicative), ideals in BCK-algebras were introduced by [4,5]. Zadeh
[15] introduced the notion of fuzzy sets. At present this concept has been applied to many
mathematical branches, such as group, functional analysis, probability theory, topology,
and so on. In 1991, Xi [14] applied this concept to BCK-algebras, and he introduced the
notion of fuzzy sub - algebras (ideals) of the BCK-algebras. Prabpayak and Leerawat
[12,13] introduced a new algebraic structure which is called KU-algebra. They gave the
concept of homomorphisms of KU-algebras and investigated some related properties.
Mostata et al. [8] introduced the notion of fuzzy KU-ideals of KU-algebras and then they
investigated several basic properties which are related to fuzzy KU-ideals. Senapati et al.
[6,7] introduced the notion of fuzzy KU-subalgebras (fuzzy KU-ideals) of KU-algebras
with respect to a given f-norm, intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra
and obtained some of their properties. Mostafa et al. [10] introduced the notion of sub
implicative (sub-commutative) ideals of KU-algebras and investigated of their properties.

*Corresponding Author.
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In this paper, the notion of fuzzy sub implicative (sub commutative) ideals of KU-algebras
are introduced and then the several basic properties are investigated.

2. Preliminaries

Now we will recall some known concepts related to KU-algebra from the literature which
will be helpful in further study of this article.

Definition 2.1. [12,13] Algebra(X, *, 0) of type (2, 0) is said to be a KU -algebra, if it
satisfies the following axioms:

(ku) (x*xy)*[(y*z))*(x*2)]=0,

(k) x*0=0,

(kuy) O*x=x,

(ku,) x*y=0 and y*x=0 impliesx=y,
(kug) x*x=0, forallx,y,ze X .

On a KU-algebra (X ,*,0) we can define a binary relation < on X by putting:
xSy yxx=0.
Thus a KU - algebra X satisfies the conditions:

(ku,): (y*z)*(x*z) S (x*y)
(kuz\): 0<x

(kuS\): x<y,y<x implies x=y,
(kuy,): y*x<x.

Remark 2.2. Substituting z*x for x and z* y for y in ku, ,we get

[(z#x)*(z* y)]*[(z*y)*2)) *[(2*x) ¥ )] <[(z*x) *(z* y)] *[(z* x) *(z* y)]=0 by
(ku,) Jhence (x*y)*[(z*x)*(z*y)]=0 that mean the condition ( ku, ) and
(x#y)*[(z*x)*(z*y)]=0 are equivalent.

ntimes

f—%
For any elements x and y of a KU-algebra, y*x" denotes by (y#*x)*x)......%x

Theorem 2.3. [8] In a KU-algebra X , the following axioms are satisfied:
Forallx,y,ze X,

(1) x<yimplyy*z<x%*z,

(2) x*x(y*z)=y*(x*xz),forall x,y,ze X,
(3) (y*x)*x)<y.

4) (y*x*)=(y*x)
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We will refer to X is a KU-algebra unless otherwise indicated.

Definition 2.4. [12,13] Let / be a non empty subset of a KU-algebra X . Then [/ is said to
be an ideal of X , if

(1)) O0el
(I,) Vy,ze X,if (y*z)e Il and ye I, implyze .

Definition 2.5. [8] Let / be a non empty subset of a KU-algebra X . Then I is said to be
an KU- ideal of X, if
(1)) O0el

(I;) Vx,y,ze X,if x*(y*z)el and ye I, implyx*zel.

Definition 2.6. [11] KU- algebra X is said to be implicative if it satisfies
(x#y*)=(xxy)*(y*x’)

Definition 2.7. [11] KU- algebra X is said to be commutative
if it satisfies x <y implies(x* y*)=x

Lemma 2.8. [10] Let X be a KU-algebra. X is KU-implicative iff X is KU-positive
implicative and KU-commutative.

Definition 2.9. [10 ] A non empty subset A of a KU-algebra X is called a sub implicative
ideal of X , if Vx,y,z€ X,

1) 0eA
(2) z#((x* y)*((y*x*))e A and z€ A, imply (x*y*)e A.

Definition 2.10. [10] Let (X ,*,0) be a KU-algebra, a nonempty subset A of X is said to be
a ku - positive implicative ideal if it satisfies, for all x,y,z in X,

(1) 0e A,
(2) z#(x*y)e Aand z*xe Aimplyz*ye A.

Definition 2.11. [10] A non empty subset A of a KU-algebra X is called a ku — sub
commutative ideal of X , if

1) 0e A
@ z#{((y*x*)*y’)}e A and z€ A, imply(y*x*)e A.

Definition 2.12. [10] A nonempty subset A of a KU-algebra X is called a kp-ideal of X if
it satisfies

1) 0e A,
2)(zxy)*(zxx)e A, ye A=>xe A
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Definition 2.13. [8] A fuzzy set x# in a KU-algebra X is called a fuzzy sub -algebra of X
if  u(x* y)>min{u(x), u(y)} Vx,yeX.

Definition 2.14. [8] Let X be a KU-algebra, a fuzzy set gin X is called a fuzzy ideal of
X if it satisfies the following conditions:

(F)) u(0)2 u(x)forall xe X .
(F,) Vx,ye X, pu(y)2min{u(x*y),u(x)}.

3. Fuzzy Sub-Implicative Ideals

Definition 3.1. [15] Let X be a non-empty set, a fuzzy subset & in X is a function
f:X —[0]1].

Definition 3.2. [1.15] Let u be a fuzzy set in a set X . For t € [0, 1], the set
1o={x €Xlpx =1

is called upper level cut (level subset) of u and the set L(u, t) = {x € X | u(x) <t} is called
lower level cut of .

Definition 3.3._A non empty subset x# of a KU-algebra X is called a fuzzy sub implicative
ideal (briefly FSI - ideal ) of X , if Vx,y,z€ X,

(F) u0)= u(x)
(FSI,) u(x*y*) = minfu(z# ((x % y)* ((y*x°)), 4(2) }

Example 3.4. Let X ={0,1,2,3,4}in which the operation * is given by the table

(=] o) fer) e} fen) fa)

(B EEN SN N RSN BN

AW =[O]|*
(=) o) el fal Ey
() el Faol [N [ \OF [} (O]
(=] KoY (OS] EOSY [SVY ROV)

Then (X ,*,0)1s a KU-Algebra. Define a fuzzy set p: X— [0,1] by w(0) =to, p (1) = u(2)
=t;, n(3)=p (4)=t,, where tp, t;, t, € [0,1] with tp>t; > t, . Routine calculation gives
that p is FSI- ideal of KU- algebra X.

Proposition 3.5. Every FSI- ideal of a KU-algebra X is order reversing.
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Proof. Let ube FSI -ideal of X and let x, y, z € X be such that x <z, then z*x = 0 and
by (F) p(xy*) 2 minfu(z# (e y) (v x2), (2} . Lety = x,

pa(e# x*) = minfu(z # (o x) (0 x2)), 1(2) |
£(x) = min{u(z * x), g£(z) }= min{u(0), 1(2) }= 1(2)

Lemma 3.6. Let p be a fuzzy FSI - ideal of KU - algebra X , if the inequality y«x <z
hold in X, Then p (x) >min {u (y),u (z)} .

Proof. Let xbe FSI -ideal of X and let x, y, z € X be such that y*x <z, then z* (y*x)= 0
or y*¥(z*¥x)= 0 i.e z¥x<y we get

M(zxx) = u(y) (a)
By (FSI,): pu(x* y*) 2 minfu(z * ((x y)# (v x*)), i)} . Let y = x
0 X
H(x s x™) 2 ming gz (ot x) # (e x7)), 4(z) b =minfu(z *x), 4(2)} ie
p(x) = minfu(z * x), 41(2) 1= min{u(y), 4(2)} by (a).
Definition 2.7. [9,10] KU- algebra X is said to be implicative if it satisfies
(xxy?)=(x*y)*(y*x?)

Lemma 3.8. If X is implicative KU-algebra, then every fuzzy ideal of X is an FSI-ideal of
X.

Proof. Let ube an fuzzy ideal of X, then by (F,)
Vy,ze X, u(y)2min{u(z*y),u(z)}.

Substituting x*y* for y in (F,) p(x=* y*) = min{u(z ®(x ¥ yz)),,u(z)}, but KU- algebra

is implicative i.e (x* y*)=(x*y)*(y*x), hence
puCex y?) = minfu(z = (e y)), (o) b= minfu(z = (e y)  (y #x?), w2)}
Which shows that g is FSI-ideal of X.

Theorem 3.9. Let i be a fuzzy set in X satisfying the condition (FSI,) , then
M satisfies the following inequality:

MO y?) 2 p((xx y) #(y #x7) (FSI,)
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Proof. Let 4 satisfying (FSI,) i.e u(x*y?)>minfu(z#((x * y)*(y *x))), ()}, then
by taking z=01in (FSI,) and using (F,)and ( ku,) we get

pCc y?) 2 minfu(0 ((us y) = (y#2%), O f= pu((x y)#(y %))
Theorem 3.10. Every FSl-ideal is a fuzzy ideal, but the converse does not hold.

Proof. Let u be FSl-ideal FSI-ideal of X; put x=y in (FSI,), we get

X

—

(o x?) = minfu(z # ((ox x) # ((ox x2)), 1(2) } then

TR S
f(x) 2 mind (2% (Coex) (o)), a(2) | = mindua(z 0, u(2)}

Hence u is afuzzy ideal of X .
The following example shows that the converse of Theorem 3.10 may not be true.

Example 3.11. Let X ={0,1,2,3,4}in which the operation * is given by the table

O[>

(ev) {an) LUV ROVE RUSY OS]

(=) k) el Il B ) I ]

(=) fo) (o] ol fo) fe]
oo

IS HUSY I o R IEY Fan) (RS

Then (X ,*,0)is a KU-Algebra. Define a fuzzy set u: X— [0,1] by u (0)=0.7, u (1) =
“2)=pu 3)=pu (4)=02, we get for z=0, x=1 and y=2. L.H.S of (FI,)

u((1%2)*2)=u1)=0.2 R.H.S of (FI,) min{,u(o * (('ld*a) * ((m) * 1)’,U(0)} =u(0)=0.7
i.ein this case g(x*y?) 2 minfu(z *((x* y)*((y*x2)), 4(2)}.

We now give a condition for a fuzzy ideal to be a FSI-ideal.

Theorem 3.12. Every fuzzy ideal u of X satisfying the condition (FS1,)1s a FSI-ideal
ideal of X .

Proof. Let 1 be fuzzy ideal of X satisfying the condition (FSI,). We get

(e y? )2 {u(((x y) * (y#x>)f and (e y®) = minfu(z* (e y) = ((y * x2)), 1(2)

by (Definition of fuzzy ideal (F,) ), hence
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pOee )= p((Cor y) (v a®)) 2 minfu(z s (e y) = (y #27), ()}

(Definition of fuzzy ideal (F,) ) ,which proves the condition (FSI,) . This completes the
proof.

Theorem 3.13. Let u be a fuzzy ideal of X. Then the following are equivalent

(1) wis an FSl-ideal of X,
(i) p(xxy®) > p(z((x*y)=((y*x?))
(iii) a(x*y*)=p(z*((x*y)*((y*x*)).

Proof. (1)) = (i1) Suppose that g is an FSI-ideal of X. By (FSI,) and (F;) we have
puCex y?) = minfu(0x (o y) = ((y #20), mO) = (0 * (% y) ((y x°) e
p(xx y?) 2 u(((x# y) # ((y *x7))

(ii) = (iii) Since (x* y)*((y *x*) < x* y*, by Lemma 3.5 we obtain ,
U(xxy*)> pu((x* y)*((y*x>)) Combining (ii) we have u(x* y*)=u((x* y)*((y*x>)).

(iii)) = (1) Since

[(z#((x*y)*((y*x)F[(xx ) ((y*x2) ] =[(xx y)# (2 ((y D] F[(xx y) = (y*x7)]
<[(z#((y*x*) I*[(y*x?)]
=[(z#(y*x) I*[0*(y*x7)]
<0%xz=¢z,

by Lemma 3.6. we obtain z((x* y)*((y*x*) =min{ 4, ((x* y)*((y*x>),4(z)} . From
(iif), we have z(x* y) = minfu(z#((x* y)* ((y #x>)), 4(z) }. Hence g is an FSI-ideal of
X The proof is complete.

Theorem 3.14. A fuzzy set u of a KU-algebra X is a sub-implicative fuzzy ideal of X if
and only if x4, #® 1is a sub-implicative ideal of X.

Proof: Suppose that x is a fuzzy sub-implicative ideal of X and 1, # ® for anyze (0,1],
there exists xe 4, so that g(x)>t¢. It follows from (F,) that #(0) = x(x) =t so thatOe g, .
Let x,y,z€ X be such that z#((x*y)*((y*x°)e & and ze 4, . Using (FI,) , we know
that

p(xx y?) 2 minfu(z (o y) #(( *2%), 4(2) = minfr,r} =1

thus x*y® e g . Hence 4, is a sub-implicative ideal of X.

Conversely, suppose that ¢, # ® is a sub-implicative ideal of X ,for everyze (0,1]. and
anyx€ X ,letu(x)=t.Thenxe y,. SinceOe g, , it follows that #(0) =1 = u(x) so that
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M1(0) 2 p(x)for all xe X . Now, we need to show that g satisfies (FI,) . If not, then there
exista,b,c € X such that

pi(ab*) < minfu(c # ((a#b) (b *a*)), u(e)}
Taking

1 2 2
ty = a0y + e (@rby = (bea ). )

then we have

p(a*b>) <ty <{u(c* (a*b)*(b*a*)), u(c)}

Hence c*((a*b)*(b*a’))e p,and ce i, but a*b* ¢ i which means that g, is not a sub-

implicative ideal of X.this is contradiction. Therefore u is a fuzzy sub-implicative ideal of
X.

4. Fuzzy Sub-Commutative Ideals

Definition4.1. A non empty subset A of a KU-algebra X is called a sub commutative ideal
of X, if

(1) 0e A
@ z#{(y*x*)*y*)}e A and ze A, imply(y*x*)e A.

Lemmad .2. Every fuzzy FSC ideal of a KU-algebra X is order reversing.

Proof. Let ube FSC -ideal of X and let x, y, z € X be such that x < z, then z* x = 0 and
by (FSCI,) pu(y*x*) = minfu(z * (v #x2)) * y), 1(2)} . Let y = x ,then

p2(x) = minfuu(z * ((x# x2)) # x°), 2(z) }= minful (z * )], 4(z) }= minfu(0), 1(2)}= u(z)

Lemma 4.3. let p be a fuzzy FSCk - ideal of KU - algebra X, if the inequality y « x <z
hold in X, Then pu (x) >min {u (y), u (z)} .

Proof. Let xbe FSC -ideal of X and let x, y, z € X be such that z*x <y, then z* (y*x)=0
ory*(z*x)= 0 i.e zxx<y [ u(z*x)=u(y) 1. By(FSCI,):

(y *x*) 2 minfu(z (3 * x7) * y), 1(2) )
Put x =y

p(x) > minfue(z # ((x  x2)) # x7), p2(2) J= minful(z # )], 1(z) }2 minfu(y), u(2)}

Lemma 4.4. If X is commutative KU-algebra, then every fuzzy ideal of X is an FSC-ideal
of X.

Proof. Let ube an fuzzy ideal of X, then by (F,) Vy,ze X,
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H(y) Zminfu(z*y), u(z)} .
Substituting y* x> for y in (F,)

p(y *x*) 2 minfu(z # (y # x*), 1u(2) ).

but KU- algebra is commutative i.e  (y*x)*x=(x*y)*y, hence

w1y *x*) = minfuu(z # (y * x)), 1(2) = minfu(z # (y * x7)), ()}
since
(yxx?)xy> =((y*x)*x)* y)xy=((y*x)*x)*y)*(0% y) < (y*x)*x)

Then z#[(y*x*)*y*]2z*(y*x)*x)by ie ulz*((y*x*)*y*)|< pu{z*(y*x*)} by
theorem 4.2. Therefore

p(y #x*) = minfu(z # (y # x°)), 4(2) }2 minfu(z = ((y * x7) % y2)), 1(2) }.
Which shows that g is FSIk-ideal of X.

Theorem 4.5. Let u be a fuzzy set in X satisfying the condition (FSCI,) , then u
satisfies the following inequality

My #x?) 2 p((y#x) * y?) (FSCI,)

Proof. Let u satisfying (FSCI,) i.e pu(y* x%) > min{u(z #((yxx))*y? ),,u(z)} , then by
taking z=01n (FI,) and using (F,)and ( ku,) we get

p(yx ) = minfu(0# (3 #x2) * 32), (O}
Hence u(y*x*) > u((y*x?))*y?)
Theorem 4.6. Every fuzzy SCI is a fuzzy ideal, but the converse does not hold.
Proof . Let u be fuzzy fuzzy SCI of X; put x=y in (FSCI,), we get
pCx x%) 2 minfu(z # (o)) # 2%), u(2) b= minfu(z# x), u(2)}
forall x,z [1 X . Hence u is afuzzy ideal of X .
The following example shows that the converse of Theorem 4.6 may not be true.

Example 4.7. Let X ={0,1,2,3,4}in which the operation * is given by the table
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(e} fawl LUV Y ROVE RUSY JOS]
S|~

(=) el el Y RSN [ O

(=) e} fer) Reol T o

ARO[ —=[OD| %
=] o) fer) e} fen) fa)

Then (X ,*,0)is aKU-Algebra. . Define a fuzzy set p: X— [0,1] by @ (0)=0.7, u (1) =
“2)=pu 3)=pu (4)=0.2, we get for z=0, x=1 and y=3, L.H.S of (FSCI,)
H(Bx1)*1) = (1) =0.2

0

R.H.S of (FSCI)) min{,u(o o (((;ﬁ) 1) % 3) * 3),;1(0)} = 1(0)=0.7, i.e in this case
ply#x*) 2 minfu(zs(y*2")* y), u(2)}
We now give a condition for a fuzzy ideal to be a fuzzy sub- commutative ideal.

Theorem 4.8. Every fuzzy ideal u of X satisfying the condition (FSCI,)1is a fuzzy
FSCof X .

Proof. Let 1 be fuzzy ideal of X satisfying the condition (FSCI,). We get
My x?) 2 p((y*x*)) % y?)
and by (Definition (F,) fuzzy ideal ), hence
Oy )2 p(y )= y7) = minfuz e (%) + ), 1(2)}
by F, which proves the condition (FSCI ,) . This completes the proof.
Theorem 4.9. Let u be a fuzzy ideal of X. Then the following are equivalent

(1) wis an FSC-ideal of X,
(i) u(y*x*)2 p((y*x*)*xy?)
(i) u(y*x*)= u((y*x*)*y*).

Proof. (1) = (i1) Suppose that g is an FSC-ideal of X. By (FSCI,) and (F;) we have
pu(y x?) > minfu(z  ((y 2 * y?), u(2) = minfu(0 # ((y # x7)) # y),u(0) =
p((y#=x?))#y?)

(i) = (iii) Since (y *x*)* y* < y*x”> , we have u(y*x>) > u((y*x>)*y*)
Combining (ii) we have u(y *x>) = u((y * x*) * y*).
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(iii) = (i) Since [(z*((y*x*)* y*))[*[0#((y*x*)* y*] 0*z =z, by Lemma 4.3 we
obtain u((y#*x*)*y*)> min{U(Z*((y*Xz)*yz),ﬂ(Z)}

Hence u is an FSC-ideal of X The proof is complete.

Theorem 4.10. A fuzzy set u of a KU-algebra X is a fuzzy sub- commutative ideal of X
if and only if 4, #® is a sub- commutative ideal of X.

Proof: Suppose that 4 is a fuzzy sub- commutative ideal of X and 4, # ® for anyze (0,1],
there exists xe g, so that gu(x)2>t. It follows from (F;) that #(0) = u(x) =t so thatOe 4, .
Let x,y,z€ X be such that z*((y*x*)*y’)e u, andze g, . Using(FSCI,), we know

that p(y#*x*)> min{u(z #((y*x®)*y? )),,u(z)}z min{t,t}=1, thus y=*x’e M. . Hence u,
is a sub- commutative ideal of X.

Conversely, suppose that i, # ® is a sub- commutative ideal of X ,for everyre (0,1]. and
anyxe X, letg(x)=¢t. Then xe u, . SinceOe 4, , it follows that u(0)=¢= u(x)so that
H1(0) > p(x)for allxe X . Now, we need to show thatu satisfies (FSCI,). If not, then
there exista,b,ce X such that u(b*a*) < min{u(c x((bxa®)*b* ),,u(c)}. Taking

t :%(ﬂ(b*az)+{/1(C*((b*az)*b2)’ﬂ(c)})

then we have u(b*a®)<t, <{u(c*((b*a*)*b*),u(c)} . Hence c#*((b*a>)#b*)e u and
ce 1, but b*x*¢ u which means that g, is not a sub- commutative ideal of X, this is

contradiction. Therefore g is a fuzzy sub- commutative ideal of X .
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1 Introduction

Smarandache introduces neutrosophy. He has laid the foundation of new mathematical
theories generalizing their fuzzy counterparts, [8,9,10]. Many introduced the introduction
of the Neutrosophic set concepts in many of their works [11,12,13,14,15,16, 5, 6,7]. In [12,
17] provides a natural foundation for treating mathematically the neutrosophic phenomena
which exist pervasively in our real world and for building new branches of neutrosophic
mathematics. Smarandache introduces the concept of neutrosophic sete as generalization of
the concept of fuzzy sets [1] and intuitionistic fuzzy sets [2,3]. Lupianez has developed and
modified many of papers about neutrosophic in his papers in [21, 22,23,24,25]. Hamido
introduces neutrosophic crisp Bi-topological space [1].

In this paper we will introduce the concept of neutrosophic crisp Tri-topological as
generalization of the concept of neutrosophic crisp Bi-topological [1]. Then, we will
introduce new types of open and closed sets as neutrosophic crisp Tri-open sets,
neutrosophic crisp Tri-closed sets, neutrosophic crisp TriS-open sets and neutrosophic crisp
TriS-closed sets. We investigated the properties of these new four types of neutrosophic
crisp sets.

* Corresponding Author.
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2 Preliminaries

In this section, we recollect some basic preliminaries, and in particular, the work of
Smarandache in [8,9,10], and Salama in [11, 12,13,14, 15,16, 5, 4,7]. Smarandache in his
work introduced the neutrosophic components 7T, I, F which represent the membership,

indeterminacy, and non-membership values respectively, where 1=0,1* is a non-standard
unit interval. Hanafy and Salama et al. [7,15] considered some possible definitions for
basic concepts of the neutrosophic crisp set and its operations.

Definition 2.1. [19] Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is
an object having the form A ={A1, A, As}, where A1, Ay, and A3 are subsets of X
satisfying A1 N Az = ¢, A1 N Az =¢,and A N A1 = ¢.

Definition 2.2. [19] Types of NCSs ¢n and Xx [20] in X as follows:

1- ¢y may be defined in many ways as a N CS, as follows

1. on = (0,0, X) or

2. @nv=(¢,X,X)or

3. on=(0, X, 0)or

4. on=1(9,0,0)

2- Xy may be defined in many ways as a NCS, asfollows

1. Xnv=(X0,0) or
2. Xy = (X, X, 0) or
3. Xn=(X,XX).

Definition 2.3. [19] Let X is a non-empty set, and the NCSs A and B in the form

A={ A1, Ay, A3}, B = {Bj1, By, B3}. Then we may consider two possible definitions
for subsets AcB, may defined in two ways:

1.A€B <A1EB1, A>EB>5, and A32B3 or
2. AcB<=A1EB1, A>2B5, and A3 2 Bs

Definition 2.4. [19] Let X is a non-empty set, and the NCSs A and B in the form
A ={Ai1, Az, A3}, B = {B1, B2, B3}. Then:

1. A N B may be defined in two ways as a N CS, as follows:

i)AﬂB:(AlﬂBl,AzﬂBz,A3UB3)
ii)AﬂB:(AlﬂBl,AzUBz,A3UB3)
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2. A UB may be defined in two ways as a N CS, as follows:

i) AUB =(A1 UB1,A> N By, A3 N B3)
ii)) AUB =(A; UBy,A> UBj, A3 N B3)

Definition 2.5. [19] A neutrosophic crisp topology (NCT) on a non-empty set X is a
family I" of neutrosophic crisp subsets in X satisfying the following axioms.

1. oOn, Xn €T
2. AinAzer, forany Aj and Ape T
3. UA el V{Aj:jedlcrT.

The pair (X,I) is said to be a neutrosophic crisp topological space (NCTS) in X. Moreover,
the elements in I are said to be neutrosophic crisp open sets (NCOS), A neutrosophic crisp
set F is closed (NCCS) if and only if its complement F¢ is an open neutrosophic crisp set.

Definition 2.6. [19] Let X is a non-empty set, and the NCSs A in the form
A={A1,A2,A3}. Then A may be defined in three ways as a N CS, as follows:

)A° =< Al,Aj,A; >or

ii)A° =< A;,A,, A >or

i) A° =< A, A;, A >.

Definition 2.7. [/] Let I';, I’ be two neutrosophic crisp topology (NCT ) on a
nonempty set X then (X,I';,I2) neutrosophic crisp Bi-topological space (Bi-NCTS for
short ).In this case:

- The elements in I';UI, are said to be neutrosophic crisp Bi-open sets (Bi-NCOS for
short). A neutrosophic crisp set F is closed (Bi-NCCS for short) if and only if its
complement F¢ is an neutrosophic crisp Bi-open set.

- the family of all neutrosophic crisp Bi-open sets is denoted by (Bi-NCOS(X)).

- the family of all neutrosophic crisp Bi-closed sets is denoted by (Bi-NCCS(X)).

3 Neutrosophic Crisp Tri-Topological Spaces
In this section, We will introduce Neutrosophic Tri-topological crisp Spaces .

Moreover we will introduce new types of open and closed sets in Neutrosophic Tri-
topological crisp Spaces.

Definition 3.1. Let I';,I; and I'5 be three neutrosophic crisp topology (NCT ) on a
nonempty set X then (X,I"1,I2,I'3) neutrosophic crisp Tri-topological space (Tri-NCTS
for short).
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Example 3.2. Let X={1,2,3,4}, I;-{ Dy Xy ,D,C}, I2-{ Dy Xy ,A }, [3-{Py Xy ,B },
A =<{1},{2,4},{3} >=C,B =<{1},{2},{3,4} >, D =<{1},{2},{3}>.Then (X,I'}), (X,I%)
and (X,I'3) are neutrosophic crisp spaces therefore (X,I';,I;,I3) is neutrosophic crisp Tri-
topological space (Tri-NCTS).

Definition 3.3. Let (X,I"},I5,I'3) be neutrosophic crisp Tri-topological space (Tri-NCTS)
then:

-The elements in I';UI>UI; are said to be neutrosophic crisp Tri-open sets (Tri-NCOS
for short). A neutrosophic crisp set F is closed (Tri-NCCS for short) if and only if its
complement F¢ is an neutrosophic crisp Tri-open set.

- the family of all neutrosophic crisp Tri-open sets is denoted by (Tri-NCOS(X)).
- the family of all neutrosophic crisp Tri-closed sets is denoted by (Tri-NCCS(X)).

Example 3.4. In Example 2 the neutrosophic crisp Tri-open sets (Tri-NCOS) are: Tri-
NCOS(X) = I''ulul's={A,B,C,D} the neutrosophic crisp Tri-closed sets (Tri-NCCS)
are : Tri-NCCS(X) = I'' UI', UT, ={¢, ., X , ,A,,B,,C,,D,}, where:

A, =<{2,3,4},{1,3},{1,2,4} >=C,, B, =<{2,3,4},{1,3,4},{1,2} >,
D, =<{2,3,4},{1,3,4},{1,2,4} >.

Remark 3.5.
1) Every neutrosophic crisp open sets in (X,/;) or (X,13) or(X,/3) is neutrosophic crisp
Tri-open set.

2) Every neutrosophic crisp closed sets in (X,/;) or (X,/3) or(X,/3) is neutrosophic crisp
Tri-closed set.

Remark 3.6. Every neutrosophic crisp Tri-topological space (X,I'},I,I3) induces three
neutrosophic crisp topological spaces as (X,I'1), (X,I%) and(X,I).

Remark 3.7. If (X,I") neutrosophic crisp topological space then (X,I',I',I") neutrosophic
crisp Tri-topological space.

Theorem 3.8. Let (X,I'},I2,I'3) be neutrosophic crisp Tri-topological space (Tri-NCTS)
then: The union of two neutrosophic crisp Tri-open (Tri-closed) sets is not neutrosophic
crisp Tri-open (Tri-closed) set as the following example:

Example 3.9. X={1,2,3,4},I'|.{Pn . Xn ,A}, Ioo{Pn . Xn ,D }, [ {Pn . Xn ,C }. It is
clear that (X,I'y), (X,I2) and (X,I3) are neutrosophic crisp topological spaces therefore
is (X,I'1,I'2,1'3) neutrosophic crisp Tri-topological space A, D are two neutrosophic crisp
Tri-open sets but A UD =<{1,3},{2,4}, >is not neutrosophic crisp Tri-open set.
A =<{1,2,4},{1,3},{2,3,4} >,D° =<{2,3,4},{1,3,4},{1,2,4} > are two neutrosophic crisp
Tri-closed sets but A UD“ =< X ,{1,3},{2,4} > is not neutrosophic crisp Tri-closed set.
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Theorem 3.10. Let (X,I';,I5,I3) be neutrosophic crisp Tri-topological space (Tri-
NCTS) then: The intersection of two neutrosophic crisp Tri-open (Tri-closed) sets is
neutrosophic crisp Tri-open (Tri-closed) set as the following example:

Example 3.11. In example 3.9 A, D are two neutrosophic crisp Tri-open sets but
A ND =<J,{2},{1,3} >is not neutrosophic crisp Tri-open set.

A® =<{1,2,4},{1,3},{2,3,4} >, D =<{2,3,4},{1,3,4},{1,2,4} >

are two neutrosophic crisp Tri-closed sets but A°ND‘ =<{2,4},{1,3},X >is not
neutrosophic crisp Tri-closed set.

4 The Closure and the Interior via Neutrosophic Crisp Tri-Open Sets
(Tri-NCOS) and Neutrosophic Crisp Tri-closed (Tri-NCCS)

In this section we use this new concept of open and closed sets in the definition of closure
and interior Neutrosophic crisp set, where we defined the closure and interior Neutrosophic
crisp set based on these new varieties of open and closed Neutrosophic crisp sets.Also we
introduced the basic properties of closure and the interior.

Definition 4.1. Let (X,I';,I2,I'3) be neutrosophic crisp Tri-topological space (Tri-
NCTS), and A is neutrosophic crisp set then: The union of any neutrosophic crisp Tri-
open sets ,contain in A is called neutrosophic crisp Tri-interior of A ( NC™Int(A) for
short ). NC™Int(A) = \{B :BCA ; B is neutrosophic crisp tri-open set}.

Theorem 42. Let (X,I'},I,I3)be neutrosophic crisp Tri-topological space (Tri-NCTYS),
A is neutrosophic crisp set then:

1. NC™Int(A) C A.
2. NC™Int(A) is not neutrosophic crisp Tri-open set .

Proof:
1. Follow from the defintion of NC™™Int(A) as a union of any neutrosophic crisp Tri-open
sets ,contains in A.

2. Follow from Theorem 8 in section 3.

Theorem 43. Let (X,I'},I,I'3) be neutrosophic crisp Tri-topological space (Tri-NCTYS),
A, B are neutrosophic crisp sets then:

AcB = NC™nt(A) € NC™Int(B).
Proof: Obvious.

Definition 44. Let (X,I';,I2,I'3) be neutrosophic crisp Tri-topological space (Tri-
NCTS), A is neutrosophic crisp set then: The intersection of any neutrosophic crisp Tri-
open sets ,contained A is called neutrosophic crisp Tri-closure of A ( NC™-CI(A) for
short). NCT”—CZ(A )= N{B :BDA ; B is an neutrosophic Tri-closed set}.
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Theorem 4.5. Let (X,I'1,I,I3) be neutrosophic crisp Tri-topological space (Tri-NCTYS),
A is neutrosophic crisp set then:

1. AcNC™-Cl(A) .
2. NC™-CI(A) is not neutrosophic crisp Tri-closed set.

Proof:
1. Follow from the defintion of NC™-CI(A) as a intersection of any neutrosophic crisp
Tri-closed set,contained in A.

2. Follow from Theorem 3.10.

5 The Neutrosophic crisp TriS-open Sets (TriS-NCOS) and Neutrosophic
Crisp TriS-closed sets (TriS-NCOS)

We introduced new concept of open and closed sets in neutrosophic crisp Tri-topological
space in this section, as neutrosophic crisp TriS-open sets (TriS-NCOS) and neutrosophic
crisp TriS-closed sets (S-NCCS). Also we introduced the basic properties of this new
concept of open and closed sets in Tri-NCTS , and their relationship with neutrosophic
crisp Tri-open sets and neutrosophic crisp Tri-closed sets.

Definition 5.1. Let (X,I";,I;,I'3)be neutrosophic crisp Tri-topological space (Tri-NCTS)
then: The neutrosophic crisp open set only in one of the three neutrosophic crisp
topological space (X,I'7), (X,I'2) and (X,I'3) are called neutrosophic crisp TriS-open set
(TriS-NCOS for short).

- The complement of neutrosophic crisp S-open set is called neutrosophic crisp TriS-closed
set (Tri-NCCS for short ).

- the family of all neutrosophic crisp triS-open sets is denoted by (TriS-NCOS(X) ).
- the family of all neutrosophic crisp TriS-closed sets is denoted by (TriS-NCCS(X) ).
Example 5.2. In example 3.2: B, D are two neutrosophic crisp S-open sets.

Theorem 53. Let (X,I'1,I'5,I'5) be neutrosophic crisp Tri-topological space (Tri-NCTS)
then:

1. Every neutrosophic crisp TriS-open sets (TriS-NCOS) is neutrosophic crisp Tri-open
set (Tri-NCOS).

2. Every neutrosophic crisp TriS-closed sets (TriS-NCCS) is neutrosophic crisp Tri-closed
set (Tri-NCCS).

Proof:

1. Let A neutrosophic crisp TriS-open set therefore A neutrosophic crisp open set in one
of the three neutrosophic crisp topological spaces (X,I'}), (X,I;) and (X,I'3) therefore A
neutrosophic crisp Tri-open set.
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2. Let A neutrosophic crisp TriS-closed set therefore A neutrosophic crisp closed set in
one of the three neutrosophic crisp topological spaces (X,I'1), (X,I) and (X,I3) therefore
A neutrosophic crisp Tri- closed set.

Remark 54. The converse of Theorem 3 is not true , as the following example.

Example 5.5. In any neutrosophic crisp Tri-topological space, @y, Xn are two neutrosophic
crisp Tri-open sets, but &x Xy are not neutrosophic crisp TriS-open sets .

Also &y, Xy are two neutrosophic crisp Tri-closed sets, but @y Xy are not neutrosophic
crisp TriS-closed sets.

Theorem 5.6. Let (X,I'},I,I'3) be neutrosophic crisp Tri-topological space (Tri-NCTS)
then: The union of two neutrosophic crisp TriS-open (TriS-closed) sets is neutrosophic
crisp TriS-open (TriS-closed) set as the following example.

Example 5.7. In example 3.9. It is clear that (X,I'}), (X,I;) and (X,I'3) are neutrosophic
crisp topological spaces therefore (X,I';,I,I'3) is neutrosophic crisp Tri-topological
space. A,D are two neutrosophic crisp TriS-open sets but A UD =<{1,3},{2,4},J >is
not neutrosophic crisp TriS-open set.

A" =<{1,2,4},{1,3},{2,3,4} >, D" =<{2,3,4},{1,3,4},{1,2,4} >

are two neutrosophic crisp TriS-closed sets but A UD“ =<X ,{1,3},{2,4} > is not
neutrosophic crisp TriS-closed set.

Theorem 5.8. Let (X,I'1,I2,I'3) be neutrosophic crisp Tri-topological space (Tri-NCTS)
then: The intersection of two neutrosophic crisp TriS-open (TriS-closed) sets is
neutrosophic crisp TriS-open (TriS-closed) set as the following example.

Example 5.9. In example 3.9. A, D are two neutrosophic crisp TriS-open sets
but A ND =<,{2},{1,3} >is not neutrosophic crisp TriS-open set.

A° =<{1,2,4},{1,3},{2,3,4} >, D =<{2,3,4},{1,3,4},{L,2,4} >

are two neutrosophic crisp TriS-closed sets but A° "D =<{2,4},{1,3},X >is not
neutrosophic crisp TriS-closed set.

Conclusions

In this paper we have introduced neutrosophic crisp Tri-Topological space. Then we have
introduced neutrosophic crisp Tri-open, neutrosophic crisp Tri-closed, neutrosophic crisp
TriS-open, neutrosophic crisp TriS-open set’s. Also we studied some of their basic
properties and their relationship with each other. Finally, these new concepts are going to
pave the way for new types of open and closed sets as neutrosophic Crisp Tri-a-open sets,
neutrosophic crisp Tri-B-open sets, neutrosophic crisp Tri-pre-open sets, neutrosophic crisp
Tri-semi-open sets.
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Abstract — Let k>0 an integer. F, 1, N, N, N]((Z) and A denote, respectively, the classes of finite, torsion,
nilpotent, nilpotent of class at most k, group in which every two generator subgroup is in Ny and abelian
groups. The main results of this paper is, firstly, to prove that in the class of finitely generated FN-group, the
property FC is closed under finite extension. Secondly, we prove that a finitely generated tN-group in the

class ((tNy)t,0) ( respectively ((tNy)T,0)*) is a rN]((z)-group (respectively TN, for certain integer c=c(k) ) and
deduce that a finitely generated FN-group in the class ((FNy)F,) (respectively ((FNy)F,0)*) is FN]((Z)-group
(respectively FN. for certain integer c=c(k)). Thirdly we prove that a finitely generated NF-group in the class
((FNF, ) ( respectively ((FNy)F,0)*) is N]((Z)F-group (respectively N.F for certain integer c=c(k)). Finally
and particularly, we deduce that a finitely generated FN-group in the class ((FA)F,0) (respectively
((FC)F,0)*, ((FN,)F,0)*) is in the class FA (respectively FN,, FN5?).

Keywords — FC-group, (FC)F-group, (tN)t-group, (FN;)F-group, ((FN)F,»)-group, ((FN;)F,®)*-group,
finitely generated group.

1 Introduction

Definition 1.1. A group G is said to be with finite contumacy classes (or shortly FC-
group) if and only if every element of G has a finite contumacy class in G.

It is known that FIZCFACFC, where FIZ denotes the class of center-by-finite groups, and
that for finitely generated equalities FIZ=FA=FC hold. These results and other have been
studied and developed by Baer, Neumann, Erdos and Tomkinson and others in [5, 8, 13,
15, 22]. FC-groups have many similar properties with abelian groups and finite groups.

*Corresponding Author.
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On the one hand, several authors have studied the class of (y,00)-groups, where y is a given
property of groups, with some conditions on these groups. The question that interests
mathematicians is the following: If G is a group in the class (y,0), where y is a given
property, and then does G have a property in relation to the property y? For example is that
G has the property yy or vy, where y is another group property, or in particular is it in the
same class . For example, in 1976, B.H Neumann in [14], has shown that a group is in the
class (A, ), if and only if, it is FIZ-group, where A is the class of abelian groups. In 1981,
Lennox and Wiegold in [12] proved that a finitely generated solvable group is in the class
(N, o) (resp. (P, »), (Co, )) if and only if, it is FN, (resp. P, Co), where P, N, Co and F
designates respectively polycyclic, nilpotent, coherent and finite class of groups. Other
results of this type of this class can be found in section 2.

On the other hand, some authors give another extension of the problem of Paul Erdos and
noted it (y, )*. For example in 2005, Trabelsi in [21] proved that a finitely generated
soluble group in the class (CN, o0)*, where C is the class of cernikov group. Other results
these types are given in section 2.

2 Preliminary

Before giving proof to the results in next section, we need some definitions and basic
known facts from the theory of isolators in nilpotent groups, which has been developed in
[11] (see also [6]).

Definition 2.1. A group G is said to be with finite contumacy classes (or shortly FC-
group) if and only if every element of G has a finite contumacy class in G.

Nishigoryin [15] showed that every extension of a finite group by an FC-group is likewise
an FC-group; in other words F(FC)=FC. As we mentioned in introduction the property FC
is not closed under finite extension that means (FC)F is not always FC.

Therefore, we add some conditions on these groups so that it is. We prove in Theorem 1.
that, in the class of finitely generated finite-by-nilpotent-group, the property FC is closed
under taking finite extension.

Definition 2.2. If H is a subgroup of a group G. The isolator of H in G noted Ic(H) is the
set of elements x € G such that, for some integer r > 0, we have x'e H.

To prove the Theorem1 below in the next section, we begin by giving the next Lemma.

Lemma 2.1. Let G be a group and H a subgroup of G.

(i) If G is atN-group, then the set of elements of finite order is a characteristic subgroup
T(G) of G and the group quotient G/T(G) is torsion-free.

(i1) If G is a finitely generated FN-group, then t(G) is finite.

(iii) If G is locally nilpotent torsion-free group, then the isolator Ig(H) = {x € G /3
ne N:x"e H} is a subgroup of G containing H . If H is nilpotent of class k then Ig(H) is
nilpotent of class k as well. In particular, if H is abelian then Ig(H) is abelian as well.
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Definition 2.3. Let  is a given property of groups. A group G is said to be in the class
(x,20) (respectively (y, o0)*) if and only if every infinite subset X of G contains two distinct
elements x, y such that the subgroup <x, y> (respectively<x, x’>) is a x-group.

Note that if  is a subgroup closed class, then yC (y, ©) € (y, ©)*.

In addition to the first results mentioned in the introduction concerning category (, ), we
recall other results. In 2000, 2002 and 2005, Abdollahi and Trabelsi, proved in [1, 19, 21]
that a finitely generated solvable group is in the class (FNg, o) (resp. (FN, o), (NF, ),

(TN, o)) if and only if it is FNI((Z), (resp. FN, NF, tN). Other results of this type have been
obtained, for example in [3, 4, 7, 9, 10, 20].

In this note we prove that a finitely generated tN-group G is in the class ((tNy)t, ) is in
the class er((z) and deduce that a finitely generated FN-group ( respectively NF-group) G in
the class of ((FNy)F, o0)-groups, is in the class of FNI((Z)—groups ( respectively in the class of

Nl((z)F—groups) and In particular a finitely generated FN-group G is in the class ((FC)F, o),
if and only if, it is FA-group.

About other results on the class (y, «)*. In 2007, Rouabehi and Trabelsi proved in [18] that
a finitely generated soluble group in the class (CN, o0)* where C is the class of cernikov
group ( respectively in the class (TN, ©)*) is FN-group (respectively tN-group).In 2007 too,
Guerbi and Rouabhi proved in [9] that a finitely generated Hyper (abelian-by-finite) group
in the class (€2, o0)* is FN-group, where Q the class of groups of finite depth, i.e. GEQ, if
and only if, there exists KEN:yy,1(G)= y(G) where (y;(G)) is the lower central series of G.

In this paper we prove that a finitely generated TN-group in the class ((tNy)t, o0)* is in the
class (tN.)t for certain integer c=c(k) and deduce that a finitely generated FN-group
(respectively NF-group) G in the class ((FNy)F, )*) is in the class FN, (respectively N.F ).
Finally, if G is a finitely generated FN-group in the class ((FC)F, «0)* (respectively ((FN,)F,

o0)*) then G is in the class of FN,-groups (respectively in the class of FNgz)—groups) .

3 Main results

3.1. Stability by finite extension

As we know, the property FC is not closed under the formation of extension. The following
example shows that even, a finite extension of a FC-group is not always a FC-group.

Example 3.1. Let G = D.. =< a; b/ a> = | and aba = b™'> the infinite dihedral group, which
is a finitely generated soluble group, generated by the involutions a, b. We have
K=C., =<b> which is a infinite cyclic group isomorphic to Z therefore it is a FC-group and
the quotient group G/K is isomorphic to C, =< a > which is finite of order 2, thus G is a
finite extension of a FC-group, but as the center of the infinite dihedral group is trivial then
it is not a FC-group.

This example shows also that, in the class of finitely generated soluble groups, the property
FC is not closed under the formation of finite extension. So we consider the class of finitely
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generated finite-by-nilpotent groups. We prove that, in this class, the property FC is closed
under taking finite extension. Precisely we prove the following Theorem.

Theorem 3.1. Let G a finitely generated finite-by-nilpotent group. G is FC-by-finite group,
if and only if, G is FC-group.

Proof. If G is FC-group, it is clear that, G is FC-by-finite. Conversely, since G is finitely
generated finite-by-nilpotent group, there exists a finite normal subgroup F of G such that
the quotient group G/F is nilpotent group. As the property FC-by-finite is closed under
quotient, it is enough to show that G/F is a FC-group. For this it is sufficient to show that
every FC-by-finite group G in the class of finitely generated nilpotent groups is a FC-group
too. Assume that G is (FC)F, so there exists a normal FC-subgroup N with of finite index in
the group G. Since G is finitely generated and nilpotent, it checks the maximal condition on
subgroups. So N is finitely generated FC-subgroup. According to ([5], Theorem 6.2) N is
center-by-finite which means that Z(N) is of finite index in N. Or N is of finite index in G.
It follows that Z(N) is of finite index in G. Let T = ©(G), the torsion subgroup of G, by
Lemma 2.1, (ii) above T is finite. Note that, since F(FC) = FC as pointed out above in [15],
it is enough to prove the statement for G=T, that is we may assume T = 1, that is G is
nilpotent torsion-free group. Since Z(N) is of finite index in G then Ig(H) = G. So by using
Lemma 2.1, (iii) with H = Z(N) we deduce that G is abelian group. This completes the
proof.

Remark 3.1. The example below shows that Theorem 1. is falls when the condition
"finitely generated" is omitted.

Example 3.2 Let A = F,[X] algebra of polynoms on the field F, and the isomorphism
P:AXA — AXA, (P,Q) — (P+Q,Q). We put H=A x A and K =<@> such that ¢* = Idaxa
the identity application on AXA. Since H is an abelian group, it is a FC-group. K is a finite
group of order 2 and so it is FC too. We consider G = H ©K, the semi-direct product of H
by K. G is a non finitely generated nilpotent group, which is a finite extension of the FC-
group H. But G is not a FC-group.

3.2 1Nk and FNk-groups and conditions on infinite subsets
Our first elementary propositions below follows from lemmas below.

Lemma 3.1. ([1], Corollary 1.8. (1)) If G a finitely generated soluble group in the class

(FNg,o0), then G is in the class of FNIEZ) -groups and there exists an integer t, depending
only on k, such G=Z(G) is finite.

Lemma 3.2. ([4], Theorem) Let G be a finitely generated soluble group. Then G has the
property (Ny,oo) if and only if G is a FNI((Z)—group.

Proposition 3.1. If G is a finitely generated finite-by-soluble group in the class (FN,oo);
then G is in the class of FNl((z)—groups.

Proof. Suppose that G is finite-by-soluble, there exists finite normal subgroup N such that
G/N is soluble. As the class of (FNg,c0)-group, is closed under taking quotient, then the
quotient group G/N is a finitely generated soluble group in the class of (FN,o0)-group. By
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Lemma 3.2 above, the quotient group G/N is in the class of FNl(f)—groups. Therefore G is
finite-by- FNI((Z)—groupand this gives that G is FNIEZ)—group. This completes the proof.

Proposition 3.2. If G is a finitely generated torsion-by-soluble group in the class (TNy,o0);
then G is in the class of TNI((Z)—groups.

Proof. Suppose that G is torsion-by-soluble, there exists a torsion and normal subgroup N
such that G/N is soluble. As the class of (TN,o0)-group, is closed under taking quotient,
then the quotient group G/N is a finitely generated soluble group in the class of
(TNk,e0)which is included in (TN, 0).By a result in [21], G/N is in the class of TN-groups.
Using Lemma 2.1, (i), G/N admits a torsion group T(G/N) = T/N such that the quotient G/T
is torsion-free in the class (TNk,o0). So G/T is a finitely generated soluble group in the class

(TNk,00). It results by Lemma 3.2 above that G/T is in the class FNI((Z), therefore G is
torsion—by—FNl((z), and this gives that G is TNI((Z)—group. This completes the proof.

Theorem 3.2 Let G a finitely generated TN-group. If G is in the class ((TNk)T,0), then,
Gis TNI((Z)—group.

Proof. Assume that G is finitely generated TN- group in the class ((TNk)T,o0). There exists a
normal and torsion subgroup H of G such that G/H is nilpotent quotient group. Since G/H
is finitely generated nilpotent group, it has a torsion subgroup T/H of finite order and as H
is torsion group then T is torsion group too. So G/T is torsion-free nilpotent group in the
class ((TNg)T,00) which gives that G/T is in the class (NgT,0). We deduce by ([16], Lemma
6.33) that G/T is in the class (NxT,o0) and so G/T is a finitely generated soluble group in the
class (Ng,o0). It follows by ([4] Theorem) that G/T belongs in the class of FNﬁz)—groups and

as T is torsion, it gives that G is in the class of TNI((Z)—groups. This completes the proof.

If we replace the property TN by the property FN, we obtain the result in the lemma below.

Lemma 3.3. Let G a finitely generated FN-group.
(1) If G is in the class ((FNy)F,), then G is in the class of FNl((z)—groups.
(i1) G is in the class ((FC)F,e0), if and only if, G is FC-group.

Proof. (i) Assume that G is finitely generated FN-group in the class ((FNy)F,eo)which is in
the class((TNk)T,0). As G is FN-group, there exists a normal and finite subgroup H of G
such that G/H is nilpotent. As in the above theorem, we found that the torsion subgroup
T/Hof G/H is finite and so T is finite too. As the property ((TNy)T,o0) is closed under
quotient then the quotient group G/T a torsion-free nilpotent group which verifies the
conditions of the above theorem. It follows that G/T belongs in the class of FN1(<2)-

groups,which gives that G/Tis in the classNy@ and hence G is in the class FN1(<2).

(i1) As finitely generated FN-group verifies maximal condition on subgroups, then, FC =
FA =FN, = FNiZ) and ((FC)F,e) = ((FN;)F,e). This completes the proof.
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The Example 1 above shows that nilpotency is necessary for the results of the above
theorem to remain true.

Remark 3.2. (i) As (FNy)F is a subgroup closed class, then(FNy)Fc((FNy)F,), we deduce
that a finitely generated FN-group in the class (FNy)F , is in the class FNI((Z).

(i1) Theorem 1 can be proved by using (ii) in the lemma above and by seeing that (FC)F is a
subgroup closed class so (FC)Fc((FC)F, ).

(i) In (1) of the above lemma, as G is in the class FN1(<2) and as nilpotent groups of class at
most k are k-Engel then G is finite-by-(k-Engel, torsion-free and soluble of derived
length an integer d). So by a result of Gruenberg [16, Theorem 7.36 (i)] G is in the
class ofFNy4-1and by P. Hall [10] there exists an integer c=c(k, 1) depending on k, d
such that G/Z.(G).

Recall that FN-groups are NF-groups (see[9]).

Theorem 3.3. Let G a finitely generated NF-group.
(i) If G is in the class ((ENy)F,00), then G is in the class of N*'F-groups.
(i1) In particular, if G is in the class ((FC)F,e0), then G is in the class of AF-group.

Proof. () Assume that G is finitely generated NF-group in the class ((FNg)F,o). As the
group G is NF- group, and then it contains a normal nilpotent subgroup N such that G/N is
finite. As the subgroup N is finitely generated and nilpotent of finite index then N is
polycyclic so by ([14], Theorem 5.4.15) there exists a subgroup M normal in N and poly-
infinite cyclic hence torsion-free and of finite index in N. Let K=Mg the core of the
subgroup M, so K is nilpotent torsion-free of finite index in G. Since the class ((FNy)F,oo)
is closed under taking subgroups, then K is nilpotent subgroup in the class ((FNy)F,o) and
according to (i) in the above lemma we deduce that K is torsion-free subgroup in the class

of FNl(f)—groups which gives that K is Nl((z)—group and so G is Nl((Z)F—group. In particular,

for k=1 (FC)F=(FA)F=(FN,)F and N\’ F=AF.This completes the proof.

If we replace the property ((tNk)t, ) by the property ((tNy)t, )* in the above Theorem,
we obtain the next result.

Theorem 3.4. Let G a finitely generated tN-group. G is in the class ((tNy)t, ©)*, then there
exists an integer c=c(k) such that G is in the class of TN.-group.

Proof. Assume that G is finitely generated TN- group in the class ((tNy)t, «0)*. Let T=t(G)
the torsion group of G. So by Lemma 2.1. (i) G/T is torsion-free nilpotent group and as
((tNy)1, 0)*is quotient closed class then G/T belongs in ((tNk)t, ©)* and hence G/T is in
the class (N1, ©0)*. We deduce by ([16], Lemma 6.33) that G/T is in the class (N, o)*.
Note that the class (N, ©)*is included in the class &x41(0), where gg.1(0) is the class of
groups whose every infinite subset X contain two distinct elements x, y such that
[x,k+1Y]=1. We deduce that G/T belongs in gg4;(o0). Since G/T is nilpotent so soluble then
by ([2], Theorem 3) there exists an integer c=c(k) depending only on k such that
(G/T)/Z(G/T) is finite. By a result in ([10], Theorem 1) y¢41(G/T)= y¢+1(G)T/T is finite and
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so is torsion, and since T is torsion group , we deduce that y.,1(G) is torsion group too.
Therefore G is in the class of TN -group. This completes the proof.

Lemma 3.4. Let G a finitely generated FN-group.

(i) If G is in the class ((FNy)F,o0)*, then there exists an integer c=c(k) depending only on k
such that G is in the class of FN.-group.

(i1) G is in the class ((FC)F,e0)*, then, G/Z,(G) is finite and G is in the class of FN,-groups.

(ii1) If G is in the class ((FN3)F, «)*, then, G is in the class of FNgz)—groups.

Proof. (i) Assume that G is finitely generated FN- group in the class ((FNg)F,o)*. Let
T=1(G) the torsion subgroup of G. So by Lemma 2.1. (ii) T is a characteristic (so normal)
and finite subgroup in G and as the same way in the above theorem, we deduce by ([16],
Lemma 6.33) that G/T is in the class (N, o)*which is included in the class &g (0)and
according to ([2], Theorem 3) we found that there exists an integer c=c(k) depending only
on k such that (G/T)/Z.(G/T) is finite. By a result in ([10], Theorem 1) y..1(G/T)=
Ye+1(G)T/T 1is finite and since T is finite, y.+1(G) is finite too. Therefore G is in the class of
FNc-groups.

(i) As the same way in (i) and the above Theorem we found that G/T is in the class
(A,0)*which is included in the class g;(0), where €,() is the class of groups whose every
infinite subset X contain two distinct elements x, y such that [x,,y]=1. we deduce by ([7],
Theorem) that (G/T)/Z,(G/T) is finite and as T is finite then G/Z,(G) is finite equivalently
v3(G) is finite. It follows that G is in the class of FN,-groups.

(ii1) For k=2, as the same way in the above theorem we found that G/T is in the class
(N2,00)*which is included in the class €3(o0), where g3() is the class of groups whose every
infinite subset X contain two distinct elements X, y such that [X,3y]=1.we deduce by ([2],

Theorem 1) that G/T is in the class FN;Z) and as the torsion subgroup T is finite, then G is
F(FNgz))—group. It follows that G is FN;Z)—group. This completes the proof.

Theorem 3.5. Let G a finitely generated NF-group.

(1) If G is in the class ((FNg)F,)*, then there exists an integer c=c(k) depending only on
such that G is in the class of N.F-groups.

(i1) If G is in the class of ((FC)F, «)*-groups, then, G is in the class of N,F-group.

(ii1) If G is in the class ((FN3)F, «)*, then, G is in the class of N;Z)F—groups.

Proof. As the group G is NF- group, and then it contains a normal nilpotent subgroup N
such that G/N is finite. As the subgroup N is finitely generated and nilpotent of finite index
then N is polycyclic so by ([14], Theorem 5.4.15) there exists a normal subgroup M in N
and poly-infinite cyclic hence torsion-free and of finite index in N. Let K=Mg the core of
the subgroup M, so K is nilpotent torsion-free of finite index in G. Since the class
((FNy)F,)*is closed under taking subgroups, then K is in this class too, so by (i) in the
above lemma, we obtains that there exists an integer c=c(k) depending only on k such that
K is FN¢-group and as K is torsion-free, it is N.-group and so G is N.F-group

(i) Particulary for k=1, we have ((FC)F, «)*=((FN,)F, «)*, in this case the subgroup K s a
finitely generated torsion-free nilpotent group in the class ((FN;)F, o)* and according to



Journal of New Theory 23 (2018) 22-30 29

(i1) in the above lemma, we deduce that K is in the class FN,-groups and as K is torsion-
free, it is Np-group of finite index in G, this gives that G is N F-group.

(iii) In particular for k=2, we have the subgroup K in (i) is a finitely generated torsion-free
nilpotent group in the class ((FN,)F, o)* and according to (iii) in the above lemma, we

deduce that K is in the class FN3@-groups and as K is torsion-free it is the class Ngz)—group
and as G/K if finite this gives that G is in the class of N;Z)F—groups.
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1 Introduction

The real world is too complex for our immediate and direct understanding. We create
models of reality that are simplifications of aspects of the real word. Unfortunately
these mathematical models are too complicated and we cannot find the exact solu-
tions. The uncertainty of data while modeling the problems in engineering, physics,
computer sciences, economics, social sciences, medical sciences and many other di-
verse fields makes it unsuccessful to use the traditional classical methods, such as
fuzzy set theory [21], intuitionistic set theory [22], and probability theory are use-
ful approaches to describe uncertainty, but each of these theories has its inherent
difficulties. To overcome these problems, Molodtsov [7], introduced the concept of

* Corresponding Author.
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soft set that is free from the difficulties that have troubled the usual theoretical ap-
proaches. Molodtsov pointed out several directions for the applications of soft sets.
Maji et al. [23], gave the operations of soft sets and their properties; furthermore,
in [24], they introduced fuzzy soft sets which combine the strengths of both soft sets
and fuzzy sets. As a generalization of the soft set theory, the fuzzy soft set theory
makes description of the objective world more realistic, practical, and precise in some
cases, making it very promising. Since its introduction, the concept of soft sets has
gained considerable attention in many directions and has found applications in a
wide variety of fields such as the theory of soft sets [3, 4] and soft decision making
[25, 26]. Since the notion of soft groups was proposed by Aktas and Cagman [1],
then the soft set theory is used as a new tool to discuss algebraic structures Feng et
al. soft semirings [2], Jun et al. [5] ordered semigroups. Soft sets were also applied
to structure of hemirings [6, 8]. Song et al. [10], introduced the notions of int-soft
semigroups and int-soft left (resp. right) ideals. Khan et al. [19], applied soft set
theory to ordered semihypergroups and introduced the notions of (M, N)-int-soft
hyperideals and (M, N)-int-soft interior hyperideals.

Algebraic hyperstructures represent a natural extension of classical algebraic
structures and they were originally proposed in 1934 by a French mathematician
Marty [9], at the 8" Congress of Scandinavian Mathematicians. One of the main
reason which attracts researches towards hyperstructures is its unique property that
in hyperstructures composition of two elements is a set, while in classical algebraic
structures the composition of two elements is an element. Thus algebraic hyper-
structures are natural extension of classical algebraic structures. Since then, hyper-
structures are widely investigated from the theoretical point of view and for their
applications to many branches of pure and applied mathematics. Especially, semihy-
pergroups are the simplest algebraic hyperstructures which possess the properties of
closure and associativity. Nowadays many researchers have studied different aspects
of semihypergroups (see [12, 13, 14, 15, 16, 17, 18]).

In this paper, we study the notion of (M, N)-int-soft generalized bi-hyperideals
of ordered semihypergroups and give some related examples of this notion. We
show that every int-soft generalized bi-hyperideals is an (M, N)-int-soft generalized
bi-hyperideals but the converse is not true in general. We characterize ordered
semihypergroups in terms of (M, N)-int-soft generalized bi-hyperideals.

2 Preliminaries

By an ordered semihypergroup we mean a structure (S, o, <) in which the following
conditions are satisfied:

(i) (S,0) is a semihypergroup.

(ii) (S, <) is a poset.

(iii)) (Va,b,x € S) a <bimplieszoa <xoband aox < box.

For A C S,we denote (A] := {t € S :t < h for some h € A}.

For A,B C S, we have Ao B := U{aob:aEA, b € B}.

A nonempty subset A of an ordered semihypergroup S is called a subsemihyper-

group of S'if Ao A C A.
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A nonempty subset A of S is called a left (resp. right) hyperideal of S if it
satisfies the following conditions:

(i) So AC A (resp. Ao S C A).

(ii) If a € A,b € S and b < a, implying b € A.

By a two sided hyperideal or simply a hyperideal of S we mean a nonempty
subset of S which is both a left hyperideal and a right hyperideal of S.

A nonempty B of S is called a generalized bi-hyperideal of S if it satisfies the
following conditions:

(i) BoSoBC B.

(ii) If a € B, b€ S and b < a, implying b € B.

For z € S, we define A, = {(y,2) € Sx S|z <yoz}.

3 Soft Sets

In what follows, we take F = S as the set of parameters, which is an ordered
semihypergroup, unless otherwise specified.

From now on, U is an initial universe set, £ is a set of parameters, P(U) is the
power set of U and A, B,C... C E.

Definition 3.1. (see [7, 20]). A soft set f4 over U is defined as
fa: E— P(U) such that fa(zx) =0if x ¢ A.

Hence f4 is also called an approximation function.
A soft set f4 over U can be represented by the set of ordered pairs

fa=A(x, fa(x))|z € E, fa(z) € P(U)}.

It is clear that a soft set is a parameterized family of subsets of U. Note that the set
of all soft sets over U will be denoted by S(U).

Definition 3.2. (see [20]). Let fa, fg € S(U). Then f, is called a soft subset of fg,
denoted by faCfp if fa(z) C fp(x) for all z € E.

Definition 3.3. (see [20]). Two soft sets fa and fp are said to be equal soft sets if
faCfp and fpCfa and is denoted by fa=/f5.

Definition 3.4. (see [20]). Let fa, fp € S(U). Then the soft union of f4 and fp,
denoted by faUfp = faup, is defined by (faUfg) (z) = fa(z) U fp(z) for all z € E.

Definition 3.5. (see [20]). Let fa, fg € S(U). Then the soft intersection of f4 and

fB, denoted by faNfp = fanp, is defined by (faNfp) (z) = fa(z) N fp(z) for all
r e L.

Definition 3.6. (see [11]). Let f4 and gp be two soft sets of an ordered semihyper-
group S over U. Then, the intersectional soft product, denoted by fa®gg, is defined
_ _ U {falw) nga(2)}, if A, #0,
by fa®gp : S — P(U),x +— (fa®gr) () =1 (@)
0, if A, =0,
for all z € S.
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Definition 3.7. (see [11]). For a nonempty subset A of S the characteristic soft set
is defined to be the soft set S4 of A over U in which S4 is given by

U, if xreA
Sa:§r— PU). wr— { 0, otherwise

For an ordered semihypergroup S, the soft set Ss of S over U is defined as follows:
Ss:S— P(U),x+—— Ss(x)=U forall z € S.

The soft set Ss of an ordered semihypergroup S over U is called the whole soft
set of S over U.

Definition 3.8. (see [11]). Let fa be a soft set of an ordered semihypergroup S over
U a subset § such that 6 € P (U). The é-inclusive set of f4 is denoted by i4(fa,?)
and defined to be the set

ia(fa,0) ={x € S[0C falx)}.

Definition 3.9. (see [11]). A soft set f4 of an ordered semihypergroup S over U is
called an int-soft subsemihypergroup of S over U if:

(Vz,y € S) ﬂ fala) D fa(z) N faly).

aExoy

Definition 3.10. (see [11]). Let f4 be a soft set of an ordered semihypergroup S
over U. Then f, is called an int-soft left (resp. right) hyperideal of S over U if it
satisfies the following conditions:

(1) Yo,y € S) () fala) 2 faly) (vesp. [ fal@) 2 fa(z)).

aexoy aczroy

(2) (Va,y € S) v <y = falx) 2 faly).

A soft set f4 of an ordered semihypergroup S over U is called an int-soft hyperideal
(or int-soft two-sided hyperideal) of S over U if it is both an int-soft left hyperideal
and an int-soft right hyperideal of S over U.

Definition 3.11. (see [17]). A soft set f4 of an ordered semihypergroup S over U
is called an int-soft generalized bi-hyperideal of S over U if it satisfies the following
conditions:

(1) (Va,y,2 € 5) ﬂ fala) D fa(z) N fa(z).

aExroyoz

(2) (Va,y € S) v <y = falx) 2 faly).

4 (M,N)-Int-Soft Generalized Bi-Hyperideals

In this section, we introduce the notion of (M, N)-int-soft generalized bi-hyperideals
of ordered semihypergroups and investigate some related properties. From now on,
) CMcNCU.

Definition 4.1. (see [19]). A soft set fa of an ordered semihypergroup S over U is
called an (M, N)-int-soft subsemihypergroup of S over U if:

(Vz,y € S) ([ fa(@) UM D fa(z) N faly) N N.

acxoy
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Definition 4.2. (see [19]). A soft set f4 of an ordered semihypergroup S over U is
called an (M, N)-int-soft left (resp. right) hyperideal of S over U if it satisfies the
following conditions:
(1) (Vz,y € S) ([ fal@) UM 2 faly) NN
a€xoy
(resp. ( (1) fa(@)) UM 2 fa(z) N N).

aExoy

(2) (Vo,y € S) x <y = falx) UM 2 fa(y) N N.

A soft set f4 of an ordered semihypergroup S over U is called an (M, N)-int-
soft hyperideal of S over U, if it is both an (M, N)-int-soft left hyperideal and an
(M, N)-int-soft right hyperideal of S over U.

Definition 4.3. A soft set f4 of an ordered semihypergroup S over U is called
an (M, N)-int-soft generalized bi-hyperideal of S over U if it satisfies the following
conditions:

(1) (Va,y.z € 8) () fal@)UM 2 fa(z)N fa(z) NN.

acroyoz

(2) (Vo,y€S) 2 <y= fa(x) UM D fa(y) N N.

Example 4.4. Let (S, o, <) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

ol a b c d
a|{a} | {a} | {a} |{a}
b | {a} | {a} | {a} | {a}
d

{a} | {a} | {a,b} | {a}
{a} | {a} | {a, 0} | {a,b}
<i= {(CL, a)? (b7 b>> (C, C)? (d7 d)? (CL, b>}
Suppose U = {p,q,r,s}, A = {a,c,d}, M = {p,q} and N = {p,q,s}. Let us

define fA (a’) = {p7Q7T78}7 fA (b) = ®7 fA (C) = {Q7T73} and fA (d) = {p78}' Then
fa is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Remark 4.5. Every int-soft generalized bi-hyperideal is an (M, N)-int-soft gener-
alized bi-hyperideal of S over U. But the converse is not true. We can illustrate it
by the following example.

Example 4.6. Let (S, o, <) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

(e} €1 €9 €3 €4 €5

€1 {61} {61, €2, 64} {61} {61, €2, 64} {617 €9, 64}

ez | {e1} | {ea} {ei} {ei, ez, ea} | {er, e, 64}

ez | {e1} | {e1,e2,ea} | {er,es} | {e1,e2,ea} | {€1,€2,€3,€4,65}
es | {e1} | {e1,e2,eq4} | {e1} {e1,ea,eq} | {e1, €2, €4}

es | {e1} | {e1,ea,ea} | {er,es} | {er ez, ea} | {e1,€2,e3, 64,65}

<:={(e1,e1), (€a,€3), (e3,€3), (es, €4), (€5,€5) , (e1,€3), (e1,e4), (e1,€5), (€2, €4) , (€2, €5) ,
(es,€5), (€a,€5)}
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Suppose U = {1,2,3}, A ={e1,e,e4}, M = {2} and N = {2,3}. Let us define

faler) ={1,2,3}, fale2) ={1,2}, fa(es) =0, fa(es) = {2} and fa (e5) = 0. Then
fa is an (M, N)-int-soft generalized bi-hyperideal of S over U. This is not int-soft

generalized bi-hyperideal of S over U, as ﬂ fa(a)= faler)Nfa(e2)N
a€ejoejoep={e1,e2,64}

fales) ={2} 2{1,2} = fa(er) N fa(ea).

Theorem 4.7. A non-empty subset A of an ordered semihypergroup (5,0,<) is a
generalized bi-hyperideal of S if and only if the soft set f4 is defined by

po={ 1S4

is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Proof. Suppose A is a generalized bi-hyperideal of S. If there exist z,y € S such
that = < y. If y € A, then z € A. Hence f4 (x) = N. Therefore fa (x) UM O N =
falyy NN. If y ¢ A, then fa(y) NN = M. Thus fa(x) UM DO M = fs(y) N N.
Let x,y,z € S, such that z,z € A. Then f4(x) = N and f4(z) = N. Hence for any

a€xoyoz, ﬂ fa(@)UMDN=fa(x)Nfa(z)NN.Ifx ¢ Aor z ¢ A then

fa(x) N fa(z)NN =M. Thus ( [ fa(e)UM 2 M = fa(x)N fa(z)NN. Hence
( ﬂ fa(a)) UM 2 fa(x)N fa(z) N N. Consequently, fu is an (M, N)-int-soft

azoyoz

generalized bi-hyperideal of S over U.

Theorem 4.8. If { f4, | i € I} is a family of (M, N)-int-soft generalized bi-hyperideal

of an ordered semihypergroup S over U. Then f, = ﬂ fa, is an (M, N)-int-soft
el
generalized bi-hyperideal of S over U.

(M, N)-int-soft generalized bi-hyperideal of
S over U. Let z,y,z € S and ( ﬂ fa, (B)) UM D fa, (z) N fa, (2) N N. Since

B€xoyoz

each fa, (1 € I) is an (M, N)-int-soft generalized bi-hyperideal of S over U. Thus
for any 8 € xoyoz, fa. (B)UM D fa, (x)N fa,(z) N N. Then f4(B) UM =

(ﬂf&) (BYUM = ((Vfa, (B)) UM D () (fa, (®) N fa, (2 (ﬂfA) z)

el el el el

(ﬂfA> )N = fa(z)Nfa(2)AN. Thus ( (1) fa(B8)UM D fa(z)Nfa (y)NN.

el BExoyoz
Furthermore, if < y, then f () UM D fa(y) N N. Indeed: Since every fa, (i € I)
is an (M, N)-int-soft generalized bi-hyperideal of S over U, it can be obtained that

fa, (@) UM D fa,(y) NN for all i € I. Thus fa(x (ﬂfA) YUM =
(ﬂ(fAi(x)))UMQ(ﬂ(fA (ﬂfA) JAN = fa(y) N N. Thus fy4
icl icl icl

is is an (M, N)-int-soft generalized bi-hyperideal of S over U.
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Theorem 4.9. Let (5,0, <) be an ordered semihypergroup and A be a nonempty
subset of S. Then A is a generalized bi-hyperideal of S if and only if the characteristic
function S4 of A is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Proof. Suppose that A is a generalized bi-hyperideal of S. Let x,y and z be any
elements of S. Then ( ﬂ Sa())UM D S4(x)NSa(2)NN. Indeed, If 2,2 € A,

aExroyoz

then Sy (x) = U and S4(z) = U. Since A is a generalized bi-hyperideal of S, we
have « € zoyoz C AoSoAC A wehave Sy(a)=U and ) C M C N C U. Thus
() Sal@)UM=UD284(x)NSa(z)NN.Ifx ¢ Aor z ¢ A then Sq(x) =0
aExroyoz

or S4(z) = 0. Since S4(p) 2 0 for all p € S. Thus ( ﬂ Sa()UM D0 =

aEcroyoz

Sa(x)NS4(2)NN. Let 2,y € S with < y. Then Sy (x) UM D Sy (y)NN. Indeed,
ify¢ Athen Sy(y) =0and D C M C NCUsoSs(x)UM DD =8,4(y)NN.If
y € Athen S4(y) = U. Since x < y and A is a generalized bi-hyperideal of S, we
have x € A and thus Sy () UM =U 2 S4(y) N N.

Conversely, let ) # A C S such that S4 is an (M, N)-int-soft generalized hy-
perideal of S over U. Let a« € Ao S o A, then there exist x,z € A and y € S
such that @ € z oy o z. Since ( ﬂ Sa(@) UM 2O Sx(z)NSa(z) NN, and

aExroyoz

r,z € A we have Sy (z) = U and Sy (z) = U. Hence for each @« € Ao S o A,

we have ( (] Sa(a))UM 2 UNUNN = N. Thusby ) C M C N C T,
aExroyoz

ﬂ Sa(a) 2 N D 0. On the other hand Sy (x) C U for all x € S. Thus for any

aExoyoz

a€xoyoz, Sy(a)="U implies that &« € A. Thus Ao S oA C A. Furthermore, let
r €A S>3y <z Then y € A. Indeed, it is enough to prove that S (y) = U. By
x € A we have Sy () = U. Since Sy is an (M, N)-int-soft generalized-hyperideal of
S over U and y < z, we have Sy (y) UM O Sp(x) NN =U NN = N. Notice that
) C M C N CU, we conclude that S4 (y) 2 0. Thus Sa (y) = U. Therefore A is a
generalized bi-hyperideal of S.

Theorem 4.10. Let f4 be a soft set of an ordered semihypergroup S over U and
d € P(U). Then fuisan (M, N)-int-soft generalized bi-hyperideal of S over U if and
only if each nonempty d-inclusive set i4(fa,d) of f4 is a generalized bi-hyperideal of
S where M C § C N.

Proof. Assume that f4 is an (M, N)-int-soft generalized bi-hyperideal of S over U,
and i4(fa,0) # 0. Let z,y,2 € S and x,2 € i4(fa,0) where M C § C N. Then
fa(x) 20 and fa(z) D 6. Since fu is an (M, N)-int-soft generalized bi-hyperideal
of S over U. Thus ( ﬂ fa(w)UM D fa(x)N fa(z) NN DdNdNN = 4. Since
wExToYoz
) CMcCdC N CU, we can write as ﬂ fa(w) 2. Hence fa(w) O § for any
WETOYOoZ
w € zoyo zimplies that w € is(fa,0). Thus is(fa,0) 0 S o0is(fa,d) C ia(fa,0).
Furthermore, let € i4(fa,9), S 2 y < x. Then y € is(fa,0). Indeed, since x €
ia(fa,0), fa(z) D6 and fuis an (M, N)-int-soft generalized bi-hyperideal of S over



Journal of New Theory 23 (2018) 31-47 38

U, we have fa(y) UM D fa(x) NN D 6NN =4. By M C §, we have fa (y) D 6,
e, y €ea(fa,0). Therefore is(fa,d) is a generalized bi-hyperideal of S.
Conversely, suppose that i4(f4,0) # 0 is a generalized bi-hyperideal of S for all

M C 6§ C N. Now let z,y,z € S. We will prove that ( m fa(@) UMD fa(x)n
aExroyoz

fa(z)NN forall x,y, z € S. If there exist x1,yi, 21 such that ( ﬂ fa(a))UM C

aExr10Y1021

fa(x)) N fa(z) NN, and M C 6 C N such that ([ fa(a)) UM C 4 C

aE€xr10Y102]

fa(z)) N fa(z1) NN, so fa(z1) 26, fa(n) 2 6 and (] fa(e) C & then

QEX10Y1021
21,21 € 1a(fa,0) and xy0y;021 € ia(fa,0). This is a contradiction that i4(fa,d) is a
generalized bi-hyperideal of S. Moreover if z < y then fa (x)UM 2 f4 (y)NN. Indeed,
if there exist x1,y; € S such that x; < y; and fa (21)UM C fa(y1)AN, M C 6 C N
such that f4 (z1) UM C 6 C fa(y1) NN and we have fa (y1) 2 6 and fa (x1) C 0.
Then y; € i4(fa,0) and x; ¢ i4(fa,d). This is a contradiction that is(f4,d) is a
generalized bi-hyperideal of S. Thus if 2 <y then fa(x) UM DO fa(y) N N.

Theorem 4.11. Every (M, N)-int-soft right (resp. left) hyperideal of S over U is
an (M, N)-int-soft generalized bi-hyperideal of S over U.

Proof. Let fa is an (M, N)-int-soft right hyperideal of S over U. Let z,y,z € S.
Then ( () fal@)UM = ( (] fa(@) UM 2 fa(@) AN 2 fa(2) 0 f4 () (1N,

a€zoyoz a€xof3
Beyoz
Thus f4 is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Let gp is an (M, N)-int-soft left hyperideal of S over U. Then ( ﬂ gp (@) U

aEcroyoz
M= ( ﬂ g (@))UM D gp(2) NN D gp(x)Ngs(z) N N. Thus gp is an (M, N)-
aEyoz
YETOY

int-soft generalized bi-hyperideal of S over U.

Definition 4.12. Let (5,0, <) be an ordered semihypergroup. Let f4 be a soft set
of S over U. We define the the soft set f} of S as follows:

fal@)=fa(x)NNUM

forall z € S.

Definition 4.13. Let (5,0, <) be an ordered semihypergroup. Let f4 and gp be
soft set of S over U. We define faN*gp, faU*gp and f4®*gp of S as follows:

(fAﬁv*gB> (z) = ((faNgs) (x) " N) UM
(£40°95) (2) = ((f20s) () N N) UM
(fA§QB> (z) = ((fa®gp) (x) N N)UM

for all z € S.
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Lemma 4.14. Let f4 and gp be soft sets of an ordered semihypergroup S over U.
Then the following conditions hold:

(1) falgs = filgp.

(2) faUrgs = fiUg5.

(3) fa©* g2 [1OGE.

Proof. (1) Let x € S. Then

<fAh\;gB> (z) = ((faNgg) (x) NN) UM

((
= ((fa(x)Ngp (x)) NN)UM
((fa (@) N N)A(gs () NN)) UM
(((fa (=) N N))UM)A (g5 (x) N N))UM)

(2) Proof is similar to the proof of (1).
(3) If A, = 0. Then (fa®gp) () = 0. Thus

<fA§gB> (z) = ((fa®gp) (x) N N)UM
=0NN)uM
=M=NNM

(£4%5) () 2 M = f15g3.
If A, # (. So there exist y, z € S such that < yo z. Then (y,z) € A,. Thus

<fA6;QB> (z) = ((fa®gs) (x)NN) UM

(( U {fA(y)ﬂgB(z)}) mN) UM
(y,2)€Ax

= ( U {(fA(y)ﬂN)ﬂ(gB(Z)mN)}) UM

(y,z)EAz

= U (a0 M) UM (g5 () nN)UM)

(y9z)€AI

= J nwngs2)}

(y,z)GAI
= (fA©gp) (2).
Thus f4©*952 [1Ok-
Definition 4.15. If S, is the characteristic soft function of A. Then S is defined

over U in which &7 is given by

. | Nifzec A
SA(Q:)_{ Mifz¢ A
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Lemma 4.16. Let A and B be the nonempty subsets of an ordered semihypergroup
S. Then the following holds:

(1) SAOV*SB = S5

(2) SAL;JiSB = S.ZUB'

(3) SA0*Sp = SE“AoB}.

Proof. (1) and (2) are obvious.

(3) Let « € (Ao B]. Then S(aop) (z) = U. Hence (S(aop) N N)UM = (UNN)U
M =NUM = N. Thus 84,4 () = N. Since z € (Ao B], we have x < aob for
some a € A and b € B. Then (a,b) € A, and A, # (). Thus

(S45°S8) (2) = ((S4BSs) () N N) UM

(R
(

Y,2)EA

2 [{Sa(a)nSp(b)} N NJU M.

UM

Since a € A and b € B, we have S4 (a) = U and Sg (b) = U and so

(SAES*SB) () 2 [{Sa(a) NS (h)}y N NJUM

—{UNU}NNJUM
=NUM=N.

Thus,
(S45°S8) (2) = Sty (x).
Let « ¢ (Ao B], then S5 (z) = 0 and hence,

{Siao (&) "NN}UM ={dNN}UM = M.

S0 S{4op (#) = M. Let (y, 2) € A;. Then

(S45°S5) (2) = ((S4BSs) () N N) UM
N U swnsefar| v
(y,2)€As

Since (y,2) € Ay, thenz <yoz Ify€ Aand z € B, then yoz C Ao B and so
x € (Ao B]. This is a contradiction. If y ¢ A and z € B, then

[{ U (SA(y)ﬂSB(z))} HN} UM = [{ U ((sz)} NN
(y,2)€A (y,2)EAx

Hence (8,4&83) (@) = M =S40 (x) . Similarly, for y € A and z ¢ B, we have
(S4T°S8) (2) = M = S{4up (2).

UM = M.
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Theorem 4.17. If f4 is an (M, N)-int-soft subsemihypergroup of S over U. Then
fiis an (M, N)-int-soft subsemihypergroup of S over U.

Proof. Suppose that f4 is an (M, N)-int-soft subsemihypergroup of S over U. Let
xz,y € S. Then

N fi@ud=| O (Uit ﬂNUM}]UM

acxoy LaExoy

= ﬂ (fA(Oé)UM)ﬂ(NUM)] UM

LaEcxoy

=1 (fA(a)UM)ﬂN] UM

Lacxoy

2{(fa@)Nfaly) NN)NN}UM
={(fa@)nN)N(faly) NN)NN}UM
={(fa(@)NN)UM}N{(fa(y) "N)UM}N(NUM)
= falx)N faly) NN.

Thus f3 is an (M, N)-int-soft subsemihypergroup of S over U.
Theorem 4.18. A soft set f4 Is an (M, N)-int-soft subsemihypergroup of S over U
it and only if fAa©*faCf}.

Proof. Assume that f4 is an (M, N)-int-soft subsemihypergroup of S over U. Let
z € S.1f A, = 0. Then (fa®fa) (z) = 0. Thus

(fAQ*fA> ={(fa®fa) (x) NN} UM
=(0NN)UM

=

(fA@fA) (x) D M = f4 ().
If A, # (. Then

(1487 £4) (@) = {(JaBfa) (2) AN} UM

( U {fA(a)ﬂfA(b)}) ﬂN}UM

(a,b)EAs

I
,—/h\,—/h\r—’H

U (fA(a)ﬂfA(b)uM)ﬂN}UM
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Thus f40" fACf5. o
Conversely, assume that f4a©*faCf}. Let z,y € S. Then for each oo € z oy, we
have,

(fa (@) NN)UM = fi (@) 2 (£a5a) ()
= {(faOfa) () NN} UM

= U (a@nfa@)pnNjuM
(a,b)EAN

(fa(@)Nfaly)NNUM

(fa(@)Nfa(y)) NN},

Thus ﬂ fal@) UM O fa(xz)N fa(y) N N. Hence f is an (M, N)-int-soft
a€Exoy

subsemihypergroup of S over U.

2 {
2 {

Theorem 4.19. The characteristic function S} of A isan (M, N)-int-soft generalized
bi-hyperideal of S over U, if and only if A is a generalized bi-hyperideal of S.

Proof. Suppose that A is a generalized bi-hyperideal of S. Then by Theorem 4.9, §%
is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Conversely, assume that 8% is an (M, N)-int-soft generalized bi-hyperideal of S
over U. Let z,y € S, x <y be such that y € A. It implies that S% (y) = N. Since S}
is an (M, N)-int-soft generalized bi-hyperideal of S over U. Therefore S} (z) UM D
Si(yyNN =NNN = N. Since M C N. Hence S} (y) = N. Implies that = € A.
Now if there exist x,y, z € S such that z,z € A. Then &} () = N and S} (z) = N.
Since S} is an (M, N)-int-soft generalized bi-hyperideal of S over U. We have

(] Si(@)UM2S;(z)NSi(2)NN
aEroyoz

=NNNNON
= N.

Since M C N. Hence S (o) = N. Thus a € z oy o z C A. Consequently, A is a
generalized bi-hyperideal of S.

Proposition 4.20. If f4 is an (M, N)-int-soft generalized bi-hyperideal of S over
U. Then f} is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Proof. Assume that f4 is an (M, N)-int-soft generalized bi-hyperideal of S over U.
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Let x,y,z € S, then

f fZ(a)UM={< N fA(oz)ﬂN>uM}UM
={ N fA(a)ﬂN>UM

aExroyoz

= N fA(a)UM> N (N UM)

aEXoYyoz

={ N fA(a)UM> NN

aExroyoz

{<ﬂ o) arf o

)N fa(z)NNYUM}NN
{( ()mfA(z)mNmN)uMuM}mN
=[{(fa@)NN)UMIN{(fa(z) NN)UM} NN
=[fa@)Nfiz)]NN
= fa(@)Nfi(z)NN.

fa@) UM ={(fa(zx)NN)UM}UM
={(fa(@)NN)U M}
={(fa(@)uM)n(NUM)}
={(fa(@)UM)N N}
={(fa(@)UM)UM}NN
D {(falyy NN)UM}NN
= fi(y)NN.

Hence f} is an (M, N)-int-soft generalized bi-hyperideal of S over U.

Corollary 4.21. If {f4, | i € I} is afamily of (M, N)-int-soft generalized bi-hyperideal

of an ordered semihypergroup S over U. Then f} = ﬂ f4, is an (M, N )-int-soft gen-
il
eralized bi-hyperideal of S over U.

Theorem 4.22. A soft set f4 satisfies condition (2) of Definition 4.3 is an (M, N)-
int-soft generalized bi-hyperideal of S over U if and only if f4©*Ss©*faCf}.

Proof. Suppose that f4 is an (M, N)-int-soft generalized bi-hyperideal of S over U.
Let z € S. If A, = (. Then (fA@SSED\;fA> (z) Cf% (x). Let A, # 0, then there
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exist a,b € S such that x < aob. So (a,b) € A,. Thus
(£A5 S5 14 ) (2)
= {(fA@ (536;fA>) (z)N N} UM

_ (U {fA(a)ﬂ<SS§*fA>(b)})ﬂN)UM

(a,b)eAs

= U {fA(a)ﬂ (( U {Ss(e)n fal )})QN)UM }mN)uM
(a,b)eAs | (c,d)eAy

- U {fA(a)m (( U fad ) )UM]}HN)UM
(a,b)eAs | (c,d)EA

— ( U { U [fA(a)ﬂfA(d)]ﬂN}UM)ﬁN)UM
(a,b)eAs | (c,d)eA,

B (U { U [fA(a)ﬂfA(d)uM]mN})mN)UM
(a,b)€As | (c,d)EA
= U { U [fA(a)ﬂfA(d)uM]mN})
(

(a,b)eA, ¢, d)EAp

C ( U {fA(x)ﬂN}UM>

z<aob<aocod
=(fa(x)NN)UM
= fa(z).
Thus f4®*Ss®* faC f5.

Conversely, assume that fjléfA@;Sg@fA and z,y,z € S. Then for every 3 €
x oy oz, we have

(f(B)NN)UM = f3(8)
> (145785 f4) (9)

(((LJ {ncwm(&ﬁﬁn)@ﬂJrWN)UAf

:C,p)EAg
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(because there exist p € y o z such that § < z o p)

U

((fA ()N <SS§fA> (p)> ﬂN) UM

U

( fa(z)n U {Ss(y)Nfa(z)} NN UM | NN]JUM
(y,2)€4p

((fa(z) N ([fa(z)NN]JUM))NN)UM

(fa@)Nfa(z))UM)NN)UM

(fa(x)N fa(z)NN)NN)

)N fa(z) N N.

v v 1y

I
=

Thus ﬂ fa(B)UM D fa(x)N fa(z) N N. Thus fa is an (M, N)-int-soft

B€xoyoz

generalized bi-hyperideal of S over U.

5 Conclusion

In this paper, we have presented a detail theoretical study of intersectional soft sets.
We introduced the notion of (M, N)-int-soft generalized bi-hyperideals of ordered
semihypergroups and studied them. When M = () and N = U, we meet intersec-
tional soft generalized bi-hyperideals. From this analysis, we say that (M, N)-int-soft
generalized bi-hyperideals are more general concept than usual intersectional soft
ones. We characterized ordered semihypergroups in the framework of (M, N)-int-
soft generalized bi-hyperideals. Hopefully that the obtained new characterizations
will be very useful for future study of ordered semihypergroups. In future we will
define other (M, N)-int-soft hyperideals of ordered semihypergroups and study their
applications.
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Abstract — In this article, we introduce binary soft pre-separation axioms in binary soft topological space
along with several properties of binary soft pret,, , 1 = 0; 1; 2, binary soft pre regular, binary soft preta,
binary soft pre normal and binary soft T, axiom using binary soft points. We also mention some binary soft
invariance properties namely binary soft topological property and binary soft hereditary property. We hope
that these results will be useful for the future study on binary soft topology to carry out general background
for the practical applications and to solve the thorny problems containing doubts in different grounds.
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separation axioms.

1 Introduction

The concept of soft sets was first introduced by Molodtsov [3] in 1999 as a general
mathematical technique for dealing with uncertain substances. In [3,4] Molodtsov
magnificently applied the soft theory in numerous ways, such as smoothness of functions,
game theory, operations research, Riemann integration, Perron integration, probability,
theory of measurement, and so on. Point soft set topology deals with a non-empty set X

*Corresponding author.



Journal of New Theory 23 (2018) 48-62 49

together with a collection T of sub set X under some set of parameters satisfying certain
conditions. Such a collection T is called a soft topological structure on X. General soft
topology studied the characteristics of sub set of Xby using the members of. Therefore the
study of point soft topology can be thought of the study of information. But in the real
world situation there may be two or more universal sets. Our attempt is to introduce a
single structure which carries the sub sets of X and Y for studying the information about
ordered pair of sub sets of X and Y. Such a structure is called a binary soft structure from X
toY.

In 2016 Ac¢ikgdz andTas [1] introduced the notion of binary soft set theory on two master
sets and studied some basic characteristics. In prolongation, Benchalli et al. [2] planned the
idea of binary soft topology and linked fundamental properties which are defined over two
master sets with appropriate parameters. Benchalli et al. [6] threw his detailed discussion
on Binary Soft Topological. Kalaichelvi and Malini [7] beautifully discussed Application
of Fuzzy Soft Sets to Investment Decision and also discussed some more results related to
this particular field. Ozgiir and Tas, [8] studied some more Application of Fuzzy Soft Sets
to Investment Decision Making Problem. Tas et al. [9] worked over An Application of Soft
Set and Fuzzy Soft Set Theories to Stock Management Alcantud et al. [10] carefully
discussed Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision Making
Procedure for the Valuation of Assets. Cagman and Enginoglu [11] attractively explored
Soft Matrix Theory and some very basic results related to it and its Decision Making.

In continuation, in the present paper we have defined and explored several properties of
binary soft b-t5,,i = 0; 1; 2 binary soft b-regular, binary soft b-t,,, binary soft b-
normal and binary soft b-t,, axioms using binary soft points. Also, we have talked over
some binary soft invariance properties i.e. binary soft topological property and binary soft
hereditary property in binary soft topological spaces.

The arrangement of this paper is as follows: Section 1 briefly reviews some basic concepts
about soft sets, binary soft sets and their related properties; Section 2 some hereditary
properties are discussed in a beautiful way. Section 3 is devoted to Binary Soft b-
Separation Axioms. Section 4 is devoted to Binary Soft b-Regular, Binary Soft b-Normal
and Binary b-Soft Ty, (i=4, 3) Spaces.

2. Preliminaries

Definition 2.1. [5] Let X be an initial universe and let E be a set of parameters. Let P(X)
denote the power set of X and let A be a nonempty subset ofE. A pair (F, A) iscalled a soft
set over X, where F is a mapping given by F: A = P(X) . In other words, a soft set over X is
a parameterized family of subsets of the universe X. For € A,F (¢ ) may be considered as
the set of e-approximate elements of the soft set (F, A). Clearly, a soft set is not a set.

Let U;, U,be two initial universe sets and E be a set of parameters.
LetP(U,), P(U,) denote the power set of Uy, U, respectively. Also, let A,B,C € E.

Definition 2.2. [1] A pair (F, A) is said to be a binary soft set over U;, U,where F is
defined as below:
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F:A - P(U;) X P(U,), F(e) = (X,Y) foreache € Asuchthat X € U;,Y € U,.

Definition 2.3. [1] A binary soft set (G, A) over Uy, U, is called a binary absolute soft set,
denoted byAif F (e) =(U;, U,) for eache € A.

Definition 2.4. [1] The intersection of two binary soft sets of (F, A) and (G, B) over the
common Uy, U, is the binary soft set (H, C), where C = AN Bandforalle € C

(X, Y,)ife€ A—B
H(e) = (X5,Y,)ifee B—A
(X, UX,, Y, UY,)ife EANB

Such that F(e) = (X4,Y;) for each e € A and G(e) = (X,,Y,) for eache € B. We denote it
(F,A) U (G A) = (H,0)

Definition 2.5. [1] The intersection of two binary soft sets (F, A) and (G, B) over a
common Uy, U, is the binary soft set (H, C), where

C=An B, and H(e) = (Xl ] XZ’Yl nYz)

for each e € C such that F(e) = (X;,Y;) for each e € A and G(e) = (X,,Y,) for each
e € B. We denote it as (F,A) N (G,B) = (H, C)

Definition 2.6. [1] Let (F, A) and (G, B) be two binary soft sets over a commonU,, U,.
(F, A) is called a binary soft subset of (G, B) if

(i) ACB,
(ii) X; € X, and Y; € Y, Such that F(e) = (X4,Y;), G(e) = X,, Y, for eache € A.

We denote it as (F,A) g (G, B).

Definition 2.7. [1] A binary soft set (F, A) over U, U, is called a binary null soft set,
denoted by if F(e) = (¢, ) foreach e € A.

Definition 2.8. [1] The difference of two binary soft sets (F, A) and (G, A) over the
Common Uy, U, is the binary soft set (H, A), where H(e) (X; —X,,Y; —Y,) foreache € A
such that (F,A) = (X4,Y;) and (G,A) = (X3, Y2).

Definition 2.9. [2] Let T, be the collection of binary soft sets over U, U, then T4 issaid to
be a binary soft topology on Uy, U, if

(i) §,X € 14
(i1) The union of any member of binary soft sets in T, belongs to TA
(ii1) The intersection of any two binary soft sets in T, belongs tota

Then (Uq, Uy, TA, E) is called a binary soft topological space over Uy, U,.
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Definition 2.10. [2] Let (U;,U,, T, E) be a binary soft topological spaces on X over
U; X U, and Y be non empty binary soft subset of X. Then Tay = {Y(F,E)/(F,E) €A is
said to be the binary soft relative topology on Yand (\7, Ty, E) is called a binary soft
subspace of (Uy, U, Ta, E). We can easily verify that T, is a binary soft topology on Y.

Example 2.1. [2] Any binary soft subspace of a binary soft indiscrete topological space is
binary soft indiscrete topological space.

Definition 2.11. Let (F, A) be any binary soft sub set of a binary soft topological space
(Uy, Uy, T, E)then (F, A) is called

1) Binary soft b-open set of (U1, U,, T, E) if(F,A) € cl(int((F,A) U in(cl((F,A)
2) Binary soft b-closed set of (U, U,, Ta, E) if(F,A) 2 cl(int(F, A)))in(cl(F,A))) )

The set of all binary b-open soft sets is denoted by BSBO(U) and the set of
all binary b-closed sets is denoted by BSBO(U).

Proposition 2.1.Let (U;,U,, T4, E) be a binary soft topological spaces on X over U; X U,
and Y be a non-empty binary soft subset of X. Then (U1, Uz, Tay, @) is subspace of
(Uy, Uz, Tay, E) for each a €E.

Proof. Let (Uj, Uy, ta,, @) is a binary soft topological space for eacha € E. Now by
definition for any o € E

Tay = {(YF(a)/(F,E)is binary soft b — open set}
= {7 N F(a)/(F,E) isbinary soft b — open set}
= {7 N F(a)/(F, E)isbinary soft b — open set
= (Y nF(a)/F(«) € Tp}

Thus (Uy, Uz, T, ) is a subspace of (Uy, Uz, Tp, ).

Proposition 2.2. Let (U, Uz, T, E) be a binary soft subspace of a binary softTopological
space (U, U,, Ty, E) and (G, E) be a binary soft b-open in Y. If Y € t,, Then (G, E) € T1,.

Proof. Let (G E) be a binary soft b-open set 1n Y then there ex1sts a binary soft b-open set

(H, E) in X over U; X U, such that (G,E) = Yn (H,E). Now, if Ye Ta, then Yn (HE) e
Tp by the third axiom of the definition of binary soft topological space and hence (G,
E) € Ty

Proposition 2.3.Let (U, Uy, Ta, E) be a binary soft subspace of a binary soft topological
space (U, U,, Ty, E) and (G, E) be a binary soft b-open set of X over U; X U,, then

(1) (G, E) is binary soft b-open in Vif and only if (G, E) = YA (H E) for some (H,E) € 1,.
(i1) (G, E) is binary soft b- closed in Y if and only if (G,E) = YA (H,E) for some binary
soft b-closed set in (H,E) € X over U; X U,.
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Proof. (i) Follows from the definition of binary soft subspace.

~

(i) If (G E) is binary soft b-closed in Y then we have (G,E) =Y, then we have
(GE) = Y- (H, E), for some binary soft b-open (H, E) € T, now (H,E) = YA (H,E) for
some binary soft b-open (K, E) € t, forany § € E,

G(B) = Y(B) — H(B)

|

- Y- H(p)
=T [T®) K@)
=T = [T KP)]
=T-k®

= ¥A X - K@)
= YA KP)]
=Y(B) N [K(B)]

Thus (G,E) = ?(B) A [K(B)]€ Where (K, E)C is binary soft b-closed set in X over U, xU,
as (K, E) € 1,.

Conversely, assume that (G, E) = ? N (H, E) for some binary soft b-closed set (H, E) in §
over U; x U, which means that(H, E) € t,. Now if (H,E) = X — (K,E) where (K,E) € T,
then for any B € E,

Since(K,E) € 1, , s0 [? A (K,E)] € tay, and hence (G, E) is binary soft b- closed set in Y.
This finishes the proof.

Let (Uy,U,, Ta, E) be a binary soft topologlcal space. Let (Uj, UZ,TAY, E) be a binary soft

subspace of (U, Uy, Ty, E). Let (F,E) E¥bea binary soft subset of Y. Thenwe can find

the binary soft b-closure of (F, E) in the space (Uy, Uz, Ty, E). The binary soft b-closure of
—y
(F, E) in (Uy, Uy, Tay, E) is denoted by (F,E) .

Proposition 2.4. Let (U, Uy, Tay, E) be a binary soft subspace of binary soft topological

space (U;,U,, T4, E). Let (F,E) EY be a binary soft subset of Y. Thenwe have the
following results as follows.

~ o~

@) (F, E) ’Yj (F,E).
(ii) (F,E)Y = YA (F,E)*
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(ii) (F.E) EYA (FE)

—y L= —v
Proof. (i) To prove, let (F,E) =YN (FE). We have (F E) =the binary soft

intersection of all thebinary soft b-closed sets containing (F, E) = n{(G, E)y: (G, E)yis
Tay-binary soft b-closed set and (G, E) y’_E’J(F, E)} = ﬁ{? A (G, E): (G, E) is -binary soft b-
closed set and YA (G, E)g (F,E)} = ﬁ{? A (G, E): (G, E) is tp-binary soft b-closed set
and (G, E)D (F,E)}= Y n{n (G, E): (G, E) is 1, -binary soft b-closed set and (G, E)D (F,

E)} =Y A (F, E). Thus (F, E) =YA(FE).

(ii) To prove that (F, E) *= ' (F,E)* ,we know that, (F,E) The binary soft union of all the
Tp-binary soft b-open Sets contained in (F.E)= U {(H, E): (H, E) ist5-binary soft b-open
and (H, E)% (F, B)}= U {(H, E) Y& (K, E): (K E) is Ta-binary soft b-open set and
YA (KE) 5 (F, E)}. Also we know that (F, E) © = YA [U(L E)y ]: (L, E) is tp-binary soft
b-open set and (L, E)y € (F E)} Now let (M E) EYR (F,E)* which implies (M, E) Y
and (M,E) € (F, E) (M,E) & Yand (M E) EU(L, E)y (L,LE) y is T, -binary soft b-open
set and (L, E) YE g (F,E) = (M, E) € Yand(M E) € (L,E) v, where (L,E)y,, is T -b-open
and (L, E),, € (F,E) = (M,E) € YA (L,E)y,. Where (L,E),, istp-b-open and
(L.E)y, € (F,E) thatiﬁ'ﬁ(L E),, E?ﬁ(F E) = (M,E) €0 {Y A (K, E): (K, E) is t,- b-

~ ~ o~
=S5 =<

open YA (K,E) g (F,E)} = (M E) € (F E)Y. Thus (M,E) € Y N (F,E)* which implies
(M,E) € (F,E)*. Therefore YA (F,E)* = (F,E)".

(iii)) To prove, (F,E), € Y A (F, E). Now consider (F,E), = (F,E) Y- (F,E) =

—(

YA (FE)]AYNA[Y— (FE)]. Since using the result () [Y A (F,E)] A Y A [Y — (F,E)].
(since Y EX). EYA (FE)]A[X - (FE)]=Y N (F.E). Thus (FE) EYA (FE
This finishes the proof.

3. Binary Soft b-Separation Axioms

In this section binary soft b-separation axioms in Binary Soft Topological Spaces are
reflected.

Definition 3.1. Let (U;, U,, T4, A) be a binary soft topological space of X over (U; x U,)

and Fg, G € §A such that F, = Ge. Then the binary soft topological space is said to be a
binary soft b-t, space denoted as b-T, .If there exists at least one binary soft b-open set

(Fy,A) or (F,, A) such that F, € (F;,A), G, € (F,A) or F € (F,,A), Ge € (F,, A).

Definition 3.2. Let (U;,U,, T4, A) be a binary soft topological space of X over (U; x U,)
and Fq, G € X, such that F, # G,. Then the binary soft topological space is said to be a
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binary soft b-t; space denoted as b-T,, . If there exists at least one binary soft b-open set
(Fy,A) or (F,, A) such that F, € (F1,A),Ge & (F1,A) or Fe € (F,A) , Ge & (Fy, A).

Definition 3.3. Let (U, U,, T4, A) be a binary soft topological space of X over (Uy x Uy)

and Fe, G € iA such that F, z Ge. Then the binary soft topological space is said to be a
binary soft b-t, space denoted as b-T,,. If there exists at least one binary soft b-open set

(Fy,A) or (F,, A) such that F, € (F;,A) ,H, € (F,,A) and(Fy,E) A (F,, E) = $a.

Proposition 3.1. (i) Every b-T, -space is b-Ty space.
(ii) Every b-T,,-space is b-T, -space.

Proof. (i) is obvious. (i) If (U, Uy, Ty A) is a Tp,-space then by definition for
Fe, Ge € §A, Fe Z G. there exists at least one binary soft b-open set (F;,A) and (F;,A)
such that F, € (F;,A),H, € (F,,A) and (F,E) A (F,,E) = $,. Since (Fy,E) A (F,,E) =
B : Fe & (Fp, A) and G, & (Fy, A). Thus it follows that (Uy, Uy, Ta, A) is b-Ty, space.

Note that every b-T,, space is b-T, space. Every b-T,,space is b-Ty space.

Proposition 3.2. Let (Uy, U,, T5, E) be a binary soft topological space of X over (Uy x Uy)
and Y be a non-empty subset of X. If (U;,U,, T4 E) is a binary soft b-Ty,Space then
(U, Uy, Tays E) is a binary soft b-T,  space.

Proof. Let (U, U,, Ty, E) be a binary soft topological space of X over (U; x U,) Now let
Fo, G, € Y such that Fo # G,. If there exist a binary soft b-open set (Fy, E) in X such that
F. € (F,,E)andG, & (Fy,E). Now if F, & Yimplies thatF, € Y. So F, & YandF, & (Fy, E).
Hence F, EYA (F,E) = [Y(F,E)], where,(F;,E) is binary soft b-open set. That
is(F1, E) € 1a. LetGe é (F1,E), this means that G, ¢ F(B) for some 3 €E.
Ge eyn (F1, E)q = Yg(Fy, E)q. Therefore, G, eyn (F1,E) = [Y(F., E)]. Similarly, it can
prove that if G, & (F,,E) and F, ¢ (F,,E) then G € [Y(F, E)] and F, € [Y(F,, E)]. Thus
(U, Uy, Tays E) is a binary soft b-T, space.

Example 3.1. Let U; = {cq,c3,¢c3}, U, = {my,m,} E ={ey,e,}and

13 = (X3, {(e1 ({2} myD).(eo (e Hmy D),
{(ex (eatmy D), (e2lea}me D)} (e Cetomad)) (e (R} {RY)) - (eatenom )

where

(FL,E) = {(el({cz}{mz}) ) (ez({cl}{m1}))} )
(F2,E) = (e1({C1}{m1}) ) (ez({cz}{m1}))},
(F3,E) = {(e;({c; Hmy 1))}

B = (e (JHF))). Ccottenstmmy
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Clearly (Uy, Uy, Ty, E) is binary sot topological space of X over (Uy x Uy).

Note that

= X & {(e: (e} tmi )}, (1 (e} (mo )}
X, 3, {(e2(fcs Hmy D)}, (e2({e2Hm, D)3

are binary soft topological spaces on X over (Uy X Uy). There are two pairs of distinct
binary soft points namely

Fe, ={(eg ({czHm, D3, Ge, = {(e1({c;}{m,})} and
Fe, = {(e2({c1}{m1 1)}, Ge, = {(e2({c.Hm, D}

Then for binary soft pair Fe, # Ge, of points there are binary soft open sets (F-1, E) and
(F,, E) such thatF,, € (Fy,E), Ge, € (Fy,E) and Ge, € (Fy,E), F,, & (Fy,E). Similarly for
the pair F, # Ge,, there are binary soft b-open sets (F-,E) and (F,E) such that
Fe, & (F5,E) , G, € (F,,E) and G, & (Fy,E) , Fe, € (F,E). This shows that
(U1, Uy, T, E) is binary soft space b-T,,-space and hence a binary soft b-T, space. Note
that (Uy, Uy, Ty, E) is binary soft b-T,, space.

Proposition 3.3. Let (Uy, U,, 15, E) is binary soft topological space on X over (U; X Uy).
Then each binary soft point is binary soft b-closed if and only if (Uy,U,, T, E) is binary
soft b-T,, space.

Proof. Let (U, U,, 1), E) is binary soft topological space on X over (U X Uz).~Now to
prove let(Uy, Uy, Tp, E) is binary soft b-T,, space, suppose binary soft pointsFe, = (F, E),
, = (G E) are binary soft b-closed andFe, # Ge,. Then (F,E)° and (G, E)© are binary
soft b-open in(Uq, Uy, Tp, E). Then by defll’llthl’l (F E)¢ = (F¢ E) where Fc(el) =X-
F(e;) and(G,E)° = (G%E) , whereG’. = =X- G(e,). Since F(e;) A G(e;) = &. This
implies F(e;) = X - G(e;) =G, Ve. Th1s implies F(e;) = (F,E)€ (G,E)°. Similarly
G(e,;) = (G E)E (F,E)*. Thus we have(e;) € (GE), G(ey) & (GE) and
F(ey) ¢ (F,E)S, G (e,) € (F,E)°. This proves that (U, Uy, Ty, E) is binary soft b-T; space.

Conversely, let (U, Uy, Ta, E) is binary soft b-T,, space, to prove that F(e;) = (F, E)& X is
binary soft pre-closed, we show that (F,E)€ is binary soft b-open in(Uy,U,, Ty, E). Let
Ge, = (G, E)E (F,E)€ is binary soft b-closed. ThenF,, # Ge,, since (Uy, Uy, Ty, E) is binary
soft b-Ty, space, there exists binary soft b-open set (L, E) such that G(e,) € (LE) g (F,E)¢
and hence Ug o, (L E), Ge, € (F,E)¢}. This proves that (F,E)€ is binary soft b-open in
(U1, Uy, T, E) that is Fe, = (F, E)is binary soft b-closed in(Uy, Uy, Ta, E). Which completes
the proof.
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Proposition 3.4. Let (U, U,, T,, E) be a binary soft topological space of X over Uy X Uy)
and F, G € X such that Fe # G, . If there exist binary soft b-open sets (F;,E), (Fy, E)
such that F, € (F1,E) and G, € (F2,E)€, then (Uy, Uy, Ty, E) is a binary soft b-Ty space
and (Uy, Uy, Ty, E) is a binary soft b-T, space for each e EE.

Proof. Clearly G, € (F;,E) = (F,%E) implies Ge, & (Fy, E)similarly F & (F,,E)¢ =
(F,%,E) implies F, & (F,,E). Thus we have F, & (Fy,E) , G & (Fy,E) or G, & (F,E),
Fe é (F,,E). This proves (Uy, Uy, Ta E) is a binary soft b- TAospace Now for anyE E,
(Ul, Uz, Ta,E) is a binary soft topologlcal space and Fe € (F,, E) and G, € (Fl,E)Cor

Ge € (F,,E) and F, ¢ (F,,E)so that F, € F,(e), G, ¢ F,(e), G, € Fy(e), G ¢ F,(e).
Thus (Uy, Uy, Ty, E) is a binary soft b-T, space.

Proposition 3.5. Let (U, Uy, Ty, E) be a binary soft topological space of X over (U; x Uy)
and F,, G, € X such that Fe # Ge . If there exist binary soft b-open sets (Fl,E) (F,, E)
such that F, = (F,E) and G, g (F,E)°or F, € (F,,E) and G, € (F,,E), then
(U1, Uy, T, E) is a binary soft b-T, space and (Uy, Uy, Ty, E) is a binary soft b-T, space for

each e € E.

Proof. Clearly G, & (Fl,E)C = (F,%E) implies G, ¢ (FZ,E) similarly F, € (F,,E)¢ =
(F,¢ ,E) implies  Fe GE(FZ,E) Thus we haveF, € (F,,E), G, E(Fl,E) or
G, € (FZ,E) Fe ¢ (F2, E). This proves (Uy, Uy, Ty, E) is a binary soft b-T, space. Now, for
any €E, (Ul,UZ,rA, E) is a binary soft topological space and F, E(Fl,E) and
Ge E(Fl,E)C or Ge E(FZ,E) and F, %(FZ,E)C So that F, EFl(e) Ge €F1(e) or
Ge € F,(e), Fe e_f Fi(e). Thus (U, Uy, Ty, E) is a binary soft b-T space.

Proposition 3.6. Let (U;,U,, T,, E) be a binary soft topological space of X over Uy X Uy)
and Fo, G, € X such that Fe # G,. If there exist binary soft b-open sets (F, E), (F;, E) such
that F, € (Fy,E) and G, € (Fy, E)°or G, € (F,,E) and F, € (F,,E)¢, then (Uy, Uy, T, E) is
a binary soft b-T space and (Uy, Uy, Ty, E) is a binary soft b-T, space and (Uq, Uy, Ty, E) is

a binary soft b-Ty, space for each e €E.
Proof. The proof is similar to the proof 9.

Now we shill discuss some of the binary soft hereditary properties of b-Tp, (i = 0,1)
spaces.

Proposition 3.7. Let (U1, U,, Ty, E) be a binary soft topological space of X over Uy X Uy)
and Y € X. Then if (U;, Uy, Ty, E) is a binary soft b-Ty space then (Uq, Uy, Tays E) is binary
soft b-Ty  space.

Proof. F,, G, € ¥ such that Fo # Ge,ThenF,, G, € X. Since (U4, Uy, tp, E) is a binary soft b-
Taspace, thus there exists binary soft b-open sets (F,E) and (G, E) in (Uy, Uy, Ty, E) such
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that F, € (F,E) and G, ¢ (F,E) or G, € (GE) and F, é (G, E). Therefore
Fe EYA (F,E) =Y (F,E). Similarly I can be shown that if G, g (G,E) and F, A (G, E),
then G, €Y (G,E) and F,, &€ (G,E) and F, &Y (G,E). Thus (Uq, Uy, Tay» E) is binary soft b-
Ta,Space.

Proposition 3.8. Let (U, U,, T,, E) be a binary soft topological space of X over Uy X Uy)
and Y € X. Then if (U, Uy, T, E) is a binary soft b-Ty,space then (Uy, Uy, Tay» E) is binary
soft b-Ty space.

Proof. The proof is similar to the proof 11.

Proposition 3.9. Let (U, Uy, Ty, E) be a binary soft topological space on X over (Uy x Uy).
If (Uy, Uy, Ty, E) is a binary soft bty,space on Xover (U; x U,) then (U, Uz, Tae E)
binary soft b-T,,space for each e EE.

Proof. Let (Uy,U,, 1), E) be a binary soft topological space on X over (U; X U,). For
anye €E, Tp, = {F(e): (F,E) € 1,} is a binary soft topology on X over (U; x Uy). Let
X,y € X such that x # y, since (Uy, Uy, Ty, E) is a binary soft b-T,,space, therefore binary
soft points Fg, G € X such that Fo # Ge and X € F(e), y € G(e) , there exists binary soft b—
open sets (Fy,E) , (FZ,E) such that Fe g (Fl,E) Ge € (F,,E) and (Fl, E)N (FZ,E) =

Which implies that € F(e) c Fi(e) , vy € G(e) c F,(e) and F,(e) A F,(e) = &. Thrs
proves that (Uy, Uy, T, E) is binary soft b-T,,space.

Proposition 3.10. Let (U, U,, Ty, E) be a binary soft topological space on X over (U; x Uy)
and Y € X. Then if (U, U,, Ty, E) is a binary soft b-t,space then (Ul, U,, Tags E) is binary
soft b-Ty,space and (Ul, Uy, Tag E) is binary soft b-Ty,space for each e =

Proof. Let Fe, G, € Ysuch that F, # G, . ThenF,, G, € X. Since (Uy,U,, Ty, E) is a binary
soft b-Ty,space, thus there exists binary soft b-open sets (F;,E) and (Fy, E) such that
Fe € (F,E) and Ge € GE) and (F,E) A (F,,E) = §. Therefore
F, EYA (F,,E) =Y (F,,E) and Y(F,E)AY(F,,E)=&. Thus it proves that
(U, Uy, Tays E) is binary soft b-Ty ,space.

Proposition 3.11. Let (U, U,, 1), E) be a binary soft topological space of X over (U x
U,). If (Ul, Uy, Tp, E) is a binary soft b-T,,space and for any two binary soft points
Fo, Ge € X such that Fo # Ge Then there exist binary soft b-closed sets (F, E) and (Fy, E)
such that F, € (F,,E) and G, é (Fy,E)or G, € (F5,E) and (F,,E) 0 (F,,E) =

Proof. Let (U, U,, 1), E) be a binary soft topological space of X over (U; X Uy). Since
(U, Uz, Ty, E) is a binary soft b-t,,space and F, G € X such that F, # G, there exists
binary soft b-open sets (H,E) and (L,E) such that FeE(H, E) and Geg (L,LE) and
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(H,E) A (LE) = &. Clearly (H,E) € (L,E)° and (L,E) € (H, E)°. Hence F, & (L, E)¢, put
(L,E)¢ = (F,,E) which gives F, &€ (Fy,E) and G, & (F;,E). Also G, € (F;,E)¢, then put
(H,E)¢ = (F,,E). Therefore F, € (F,,E) and G, € (F,, E). Moreover, (F4,E) 0 (F,,E) =
(L,E)¢ U (H,E)¢ = X. Which completes the proof.

4. Binary Soft b-T,, (i=4,3) Spaces

In this section binary soft b-separation axioms in Binary Soft Topological Spaces are
discussed.

In this section, we define binary soft b-regular and binary soft b-T,;- spaces using binary
soft points. We also characterize binary soft b-regular and binary soft b-normal spaces.
Moreover, we prove that binary soft b-regular and binary soft b-Ty, properties are binary

soft hereditary, whereas binary soft b- normal and binary soft b-T, , are binary soft b-closed
hereditary properties.

Now we define binary soft b-regular space as follows:

Definition 4.1. Let (U, U,, Ty, E) be a binary soft topological space of X over (Uy x Uy).
Let (F,E) be a binary soft b-closed set in (U;, U,, Ty, E)andF, ¢ (F,E). If there exists
binary soft b-open sets (G,E) and (H,E) such that F, € (GE), (FE) = (H,E) and
(F,E) A (H,E) = & , then (U;, Uy, Ty, E) is called a binary soft b- regular space.

Proposition 4.1.Let (U;, U,, Ty, E) be a binary soft topological space of X over
(U; X U,). Then the following statements are equivalent:

(1)  (Uq,U,, ta, E) is binary soft b-regular.

(ii) For any binary soft b- open set (F,E) in (U, U,, Ts, E)andG, € (F,E), there is binary
soft b-open set (G, E) containing G, such thatG, € (G E) c (F,E).

(iii) Each binary soft point in (U, U,, T, E) has a binary soft neighborhood base
consisting of binary soft b-closed sets.

Proof. ()= (ii)

Let (F,E) be a binary soft b-open set in (Uy,U,,T,, E)andG, € (F,E). Then (F,E)¢ is

binary soft b-closed set such that G, & (F,E)°. By he binary soft regularity of
(U3, Uy, ta, E)  there  are  binary  soft  b-open sets  (Fy,E),(F,,E)  such

thatG, & (Fy,E),(F,E)¢ g (F,,E) and (Fy,E) A (F,, E) = §. Clearly (F,, E)¢ is a binary
soft set contained in (F,E). Thus (F;,E) € (F,E)C (F,E). This gives

(F,E) € (F,,E) € (F,E), put (F,E)=(GE). Consequently G,& (GE) and
(GE) & (F,E). This proves (ii).

(ii)= (iii)
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Let G, € X, for binary soft b-open set (F,E) in (U, U,, Ty, E) there is a binary soft b-open
set (G, E) containing G, such that G, g (G E), (GE) c (F,E). Thus for each G, €X , the

sets (G, E) from a binary soft neighborhood base consisting of binary soft b-closed sets of
(U4, Uy, ta, E) which proves (iii).

(iii) = (i)

Let (F, E) be a binary soft b-closed set such that G, ¢ (F,E). Then (F, E)€is a binary soft b-
open neighborhood of G,. By (iii) there is a binary soft b-closed set (F;, E) which contains

Ge and is a binary soft neighborhood of G, with (Fy,E) = (F1,E)¢ . ThenG, ¢ (F,E)¢,
(F,E) € (F,E)¢ = (F,,E) and (Fy,E) A (F,,E) = & . Therefore (U;,U,, Ty, E) is binary
soft b-regular.

Proposition 4.2. Let (U;,U,, Ty, E) be a binary soft b-regular space on X over (U; x Uy).
Then every binary soft subspace of (Uy, Uy, Ty, E) is binary soft b- regular.

Proof. Let (U;,U,, Ty, E) be a binary soft subspace of a binary soft pre-regular space
(U, Uy, ta, E). Suppose (F,E) is a binary soft b-closed set in (Uq, UZ,TAy, E) and F, €Y

such that F, A (F,E).Then(F,E) = (G,E) A ?; Where(G, E) is binary soft b-closed set in

(U3, U,, T, E). Then F, € (F,E), since (Uy,U,, Ty, E) be a binary soft subspace of a binary
soft b-regular, there exists soft disjoint binary b-open sets (Fy, E), (Fy, E) in (U1, Uy, Ty, E).
Then F, é (G,E), Since (Uy,U,, 1p, E) is binary soft pre- regular, there exist binary soft
disjoint binary b-open sets (Fl, E) , (Fz, E) in (U;,Uy, 1Ty, E) such that F € (F,,E),
(G,E) € (FZ,E) Clearly F, € (F1, E) 8Y =Y (F,,E) and (F,E) € (F,,E)NY =Y (F,, E)
such that Y(F,, E) AY(F,, E) = . Therefore it proves that (U;, U,, Tay» E) is a binary soft b-
regular subspace of (Uy, Uy, Ty, E).

Proposition 4.3. Let (U, U,, T5, E) be a binary soft regular space on X over (U; xUy). A
binary space (Uq,U,, Ty, E) is binary soft b-regular if and _only if for each F, € Xand a
binary soft b-closed set (F, E)in (Uy, U,, Ts, E)such that F, 65 (F,E) there ex1st binary soft
b-open sets (F1,E) , (F,, E)in (Uy, Uy, Ty, E) such that F, € (FLE), (F1,E) = (F,,E) and

(Fle) n (FZIE) = (-P

Proof. For each F, €X and a binary soft b-closed set (G,E) such that F, ¢ (F,E) by

theorem 16there is a binary soft b-open set (G, E) such that F, g (GE), (GE) g (F1, E)€.
Again by theoreml6 there is a binary soft b-open (F;,E) containing F, such that

(F.,E) € (G,E). Let(F,,E) = ((G E))¢, then (Fy,E) & (G,E) € (G E) € (F,E)° Implies
(F,E) € ((G, E))¢ = (F,, E) or(F,E) € (F,,E). Also

|ul|

(FL,E) A (F5,E) = (FL,E) N ((G, E))C € (G,E) A (@)C € (G E)A (@)C =
= 0.



Journal of New Theory 23 (2018) 48-62 60

Thus (F4,E), (F5, E) are the required binary soft b-open sets in(Uy, U,, Ty, E). This proves
the necessity. The sufficiency is immediate.

Definition 4.2. Let (U;,U,, 1), E) be a binary soft regular space on X over (Uy x Uy).
(F,E), (G, E) are binary soft b-closed sets over (U; X U,) such that (F,E) A (GE)=o .If
there  exist binary soft b-open sets (F{,E), and (F,,E) such that
(F,E) € (F,E), (G, E) € (F,E) and (F,,E) A (F,,E) = @, then (U, Uy, Ty, E) is called a
binary soft b-normal space.

Definition 4.3. Let (Uy, U,, Ty, E) be a binary soft regular space on X over (U; X Uy). Then
(U1, Uy, ta, E) is said to be a binary soft b-ty,space if it is binary soft b-regular and a
binary soft b-t,, space.

Proposition 4.4. Let (U;,U,, T), E) be a binary soft regular space on X over (U; x U,) and
Y € X. If (U;,U,, Ty, E) is a binary softb-ta,space then (Uy, Uy, Tay, E) is a binary soft b-
Tp,Space.

Proof. Straightforward

Definition 4.4. A binary soft topological space (U, U,, Ty, E) on X over (Uy x Uy) is said
to be a binary soft b-ty,space if it is binary soft b- normal and binary soft b-t,, space.

Proposition 4.5. A binary soft topological space (U;, U,, Ty, E) is binary soft b-normal if
and only if for soft b-closed set (F,E) and a binary soft b-open set (G, E), such that

(F,E) = (G, E) these exist at least one binary soft b-open set (H, E) containing (F, E) such
that (F,E) € (H,E) € (H,E) € (G,E).

Proof. Let us suppose that (U, U,, Ty, E) is a binary soft normal space and (F,E) is any
binary soft b- closed subset of (U;, U,, Ty, E) and (G, E)is a binary soft b-open set such that
(F,E) € (G,E). Then (G,E)¢ is binary soft b-closed and(F,E) A (G,E)¢ = ¢. So by
supposition, there are binary soft b-open sets (H,E) and (K, E) such that
(F,E) € (H,E), (G E)° € (K,E) and A (K,E) = &.

Since (H, E) A (K,E) = §, (H,E) c (K, E)€. But (K, E)€is binary soft b-closed, so that
(F,E) € (H,E) € (H,E) € (K,E) € (G,E).
Hence

(F,E) € (H,E) € (H,E) € (K,E) € (G,E).

Conversely, suppose that for every binary soft b-closed set (F,E) and a binary soft b-open
set (G,E) such that (F,E) € (H,E), there is a binary soft b-open set (H,E) such that

(F,E) g (H,E) = (H,E) = (G,E) . Let(F,E) , (F5, E) be any two soft disjoint b-closed
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sets, then (F1, E) c (F, E)¢ where (F,, E)“binary soft b-open. Hence there is a binary soft
b-open set (H,E) such that (FE) g (H,E) g (H,E) g (F,,E)¢.  But then

(F,,E) € ((H,E))and (H,E) A ((LE) # ¢ .

Hence (F,E) € (H,E) and (F,,E) € ((H, E))¢ with (H,E) A ((H,E))¢ = ¢.

Hence (U, U,, T, E) is binary soft b- normal space.

5. Conclusion

A soft topology between two sets other than the product soft topology has been touched
through proper channel. A soft set with single specific topological structure is unable to
shoulder up the responsibility to build the whole theory. So to make the theory strong,
some additional structures on soft set has to be introduced. It makes, it more bouncy to
grow the soft topological spaces with its infinite applications. In this regards we
familiarized soft topological structure known as binary soft b-separation axioms in binary
soft topological structure with respect to soft b-open sets.

Topology is the most important branch of pure mathematics which deals with mathematical
structures by one way or the others. Recently, many scholars have studied the soft set
theory which is coined by Molodtsov [3] and carefully applied to many difficulties which
contain uncertainties in our social life. Shabir and Naz familiarized and profoundly studied
the foundation of soft topological spaces. They also studied topological structures and
displayed their several properties with respect to ordinary points.

In the present work, we constantly study the behavior of binary soft b-separation axioms in
binary soft topological spaces with respect to soft points as well as ordinary points. We
introduce (b- Ty, pre- Ty, b- Ty,,b- To, and b- Ty, ) structures with respect to soft points.
In future we will plant these structures in different results. We also planted these axioms to
different results. These binary soft b-separation structure would be valuable for the
development of the theory of soft in binary soft topology to solve complicated problems,
comprising doubts in economics, engineering, medical etc. We also attractively discussed
some soft transmissible properties with respect to ordinary as well as soft points. I have
fastidiously studied numerous homes on the behalf of Soft Topology. And lastly I
determined that soft Topology is totally linked or in other sense we can correctly say that
Soft Topology (Separation Axioms) are connected with structure. Provided if it is related
with structures then it gives the idea of non-linearity beautifully. In other ways we can
rightly say Soft Topology is somewhat directly proportional to non-linearity. Although we
use non-linearity in Applied Math. So it is not wrong to say that Soft Topology is applied
Math in itself. It means that Soft Topology has the taste of both of pure and applied math.
In future I will discuss Separation Axioms in Soft Topology with respect to soft points. We
expect that these results in this article will do help the researchers for strengthening the
toolbox of soft topological structures. Soft topology provides less information on the behalf
of a few choices. The reason for this is that we use a single set in soft topology and in
binary soft topology we use double sets .It means that binary soft topology exceeds soft
topology in all respect. In the light of above mentioned discussion I can literary say that
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number of sets is directly proportional to choices. Therefore all mathematicians are kindly
informed to emphasize upon it.
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1 Introduction

Thivagar and Richard [3] introduced a nano topological space with respect to a
subset X of an universe which is defined in terms of lower approximation and upper
approximation and boundary region. The classical nano topological space is based
on an equivalence relation on a set, but in some situation, equivalence relations are
nor suitable for coping with granularity, instead the classical nano topology is extend
to general binary relation based covering nano topological space

Bhuvaneshwari and Gnanapriya [1] introduced and investigated nano g-closed
sets in nano topological spaces. Recently, Devi and Bhuvaneswari [6] introduced the
notions of nano rg-closed sets. In this paper we introduce the notions of nano R-set,
nano R,-set, nano R;-set and study some of their properties.

2 Preliminaries

Definition 2.1. [4] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X C U.

1. The lower approximation of X with respect to R is the set of all objects,
which can be for certain classified as X with respect to R and it is denoted by
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Lp(X). That is, Lr(X) = U,cy{R(z) : R(z) € X}, where R(x) denotes the
equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by Ug(X).
That is, Up(X) = U,cp 1 R(2) : R(x) N X # ¢}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR<X) That iS, BR<X) = UR<X) - LR(X)

Definition 2.2. [3] Let U be the universe, R be an equivalence relation on U and
TrR(X) = {U, ¢, Lr(X),Ur(X), Br(X)} where X C U. Then R(X) satisfies the

following axioms:
1. Uand ¢ € T(X),
2. The union of the elements of any sub collection of 7x(X) is in 7(X),
3. The intersection of the elements of any finite subcollection of 75(X) is in Tx(X).

Thus 7r(X) is a topology on U called the nano topology with respect to X and
(U, r(X)) is called the nano topological space. The elements of 7r(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called n-
closed.

In the rest of the paper, we denote a nano topological space by (U, N'), where
N = 7r(X). The nano-interior and nano-closure of a subset A of U are denoted by
n-int(A) and n-cl(A), respectively.

Definition 2.3. A subset H of a space (U,N) is called nano regular-pen set [3] if
H = n-int(n-cl(H)).
The complement of the above mentioned set is called their respective closed set.

Definition 2.4. [2] A subset H of a space (U, N) is called:
1. nano t-set (briefly, nt-set) if n-int(H) = n-int(n-cl(H)).
2. nano B-set (briefly, nB-set) if H = P N @, where P is n-open and Q is nt-set.

Definition 2.5. [5] A subset H of a space (U,N) is called a nano a*-set (briefly,
na*-set) if n-int(n-cl(n-int(H))) = n-int(H).

Definition 2.6. A subset H of a space (U,N) is called;

1. nano g-closed (briefly, ng-closed) [1] if n-cl(H) C G, whenever H C G and G
is m-open.

2. nano rg-closed set (briefly, nrg-closed) [6] if n-cl(H) C G whenever H C G
and G is nano regular-open.
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3 Properties of Some Nano R-Sets

Definition 3.1. A subset H of a space (U, N) is called;
1. nano R-set (briefly, nR-set) if H = PN K where P is ng-open and K is nt-set.

2. nano R,-set (briefly, nR,-set) if H = P N K where P is nrg-open and K is
nt-set.

3. nano Ry-set (briefly, nRr-set) if H = P N K where P is nrg-open and K is
na*-set.

Example 3.2. Let U = {a,b,c,d} with U/R = {{a},{b,c},{d}} and X = {b,d}.
Then the nano topology N = {¢, {d}, {b, c},{b,c,d},U}.

1. then {a} is nR-set.
2. then {a,b} is nR,-set.
3. then {a,b,c} is nR}-set.
Theorem 3.3. In a space (U, N), for a subset H, the following relations hold.
1. H is nB-set = H is nR-set.
2. H is nt-set = H is nR,-set.
3. H is nrg-open set = H is nR,-set.
4. H is no*-set = H is nR}-set
5. H is nrg-open set = H is n'R7-set.
6. H is nt-set = H is nR;-set.
7. H is nR,-set = H is nR}-set.
Proof. 1. Since every n-open set is ng-open, every nB-set is a n’R-set.

2. Let H be a nt-set in U. Then H = U N H where U is clearly nrg-open in U.
Therefore, H is nR,-set in U.

3. Let H be a nrg-open set in U. Then H = H NU where U is clearly a nt-set in
U. Therefore, H is nR,-set in U.

4. Let H be a na*-set in U. Then H = U N H where U is clearly nrg-open in U.
Therefore, H is a nR;-set in U.

5. Let H be a nrg-open set in U. Then H = H NU where U is clearly a na*-set
in U. Therefore, H is a nR;-set in U.

6. Let H be a nt-set in U. Since every nt-set is na*-set in U. So, H is na*-set in
U. By (4), U is anR-set in U.
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7. Let H be a nR,-set in U. Then H = P N () where P is nrg-open in U and @)
is a nt-set in U. Since every nt-set in U is a na*-set in U, Q) is a na*-set in U.
Therefore, H is a nR}-set in U.

Remark 3.4. These relations are shown in the diagram.

nR-set «—— nbB-set

!
nt-set —  nR,-set
! e 7

no*-set — nRj-set «— nrg-open

The converses of each statement in Theorem 3.3 are not true as shown in the
following Example.

Example 3.5. Let U = {p, ¢, r} with U/R = {{p, ¢}, {r}} and X = {p}. Then the
nano topology N' = {¢,{p,q},U}. Then H = {p} is nR-set but not n3-set.

Example 3.6. In Example 3.2,

1. {b} is nR,-set but not nt-set.

[\)

. {a,d} is nR,-set but not nrg-open.

w

. {b, c,d} is nR}-set but not na*-set.

=~

. {a,d} is na*-set, so nRi-set. But {a,d} is not nrg-open.

ot

. {a,b} is nR-set but not nt-set.

(o))

. {a,b,d} is nR}-set but not nR,-set.
Remark 3.7. In a space (U,N),
1. the intersection of two nR-sets are n’R-set.
2. the intersection of two nR,-sets are n'R,-set.
3. the intersection of two nR}-sets are nR;-set.
4. the union of two nR-sets but not nR-set.
5. the union of two nR,-sets but not nR,-set.
Example 3.8. In Example 3.2,

1. then H = {a,d} and Q = {b,d} is nR-sets, nR,-sets and nR}-sets. But
HN@Q = {d} is nR-set, nR,-set and nR}-set.

2. then H = {a} and @ = {b} is nR-sets. But H U Q = {a, b} is not nR-set.

3. then H = {a,b} and Q = {d} is nR,-sets. But H U Q = {a,b,d} is not
nR,-sets.
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1 Introduction and Preliminaries

Recently, Behera and Panda [1] introduced balancing numbers neZ, as solutions of the
Diophantine equation

1+2+..+(n=-) =+ +(N+2)+...+(n+r). (1.1)

for some positive integer r which is called balancer or cobalancing number. For example
6;35;204;1189 and 6930 are balancing numbers with balancers 2;14;84;492 and 2870,

respectively. If n is a balancing number with balancer r, then from (1.1) one has

nn+1) _ na r(r+1) |

and so

F_—(2n +1)++/8n% +1 and o 2F +1++/8r2 +8r+1

2 2

Let B, denote the n" balancing number and let b, denote the n™ cobalancing
number. Then
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and
b,,=6b,-b, ,+2, n>2
b =0,b=2 '

Definition 1.1. [14] The Lucas-balancing {Cn} is defined recurrently by

neN”

{CM ~6C,—C, ,, n>1

The main purpose of this paper is to present some results involving the balancing number
and Lucas-balancing number using define a new useful operator denoted by &, for

which we can formulate, extend and prove new results based on our previous ones [3, 4, 5].
In order to determine generating functions of the product of balancing number, Lucas-
balancing number and Chebychev polynomials of first and second kind, we combine
between our indicated past techniques and these presented polishing approaches.

In order to render the work self-contained we give the necessary preliminaries tools; we
recall some definitions and results.

Definition 1.2. [5] Let k and n be tow positive integer and {ai,az,...,an} are set of

given variables the k-th elementary symmetric function e, (al, a, ..., an) is defined by

e(a.a,..a,)= > aay.a;, 0<ks<n,

I +ip+..+i =k

with i, i,,...,i, =0 or 1.

Definition 1.3. [5] Let k and n be tow positive integer and {a,,a,,...a,} are set of

given variables the k-th complete homogeneous symmetric function hk(ai,a,...,an) is
defined by

h(a.a,..a,)= > aa;.ar, 0<ks<n,
k

iy iy i =

with i,,i,,....i, >0.

Remark 1.1. We set ¢)(a,a,...a,)=1 and h(a,a,..,a,)=1 (by convention). For
k>n or k<0, weset ¢,(a,a,..a,)=0 and h(a.a,..a,)=0.

Definition 1.4. [7] Let B and P be any two alphabets. We define S (B—P) by the
following form

E(-2)H(z) = iSH(B— P)z",

with H(z) =11,,,(1-bz)™, E(-2) =11, (1- p2).
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Remark 1.2. S (B—P)=0 for n<0.

Definition 1.5. [5] Given a function f on R", the divided difference operator is defined
as follows
fOPL P Pigs Pr) = £ (P Py Prag Pis Pisz o Py)

Pi — Pia .

aPi i ( f ) -
Definition 1.6. The symmetrizing operator &, , is defined by

Prg(p) - P 9(p,) for all k e N.
pl_pz

Opp, (@)=

Proposition 1.1. [6] Let P={p,p,} an alphabet, we define the operator 5;1p2 as
follows
55, 9(P) =S4 (P +P)A(P) + P;0,,,9 (py), forall keN.

2 Main Results

In our main results, we will combine all these results in a unified way such that they can be
considered as a special case of the following Theorem.

Theorem 2.1. Let A and P be two alphabets, respectively, {a,,a,} and {b,b,}, then
we have

- hit (P1,P2) + P1P2 (@1 + a2 )ica (1, P2)Z - @182P1P26p,p, (PE™L)Z2
Zh 1,801 (b1, P2 )2 = k1(P1 Pz)ao P1P2(a1 + a2 )2 (P1,P2)z — a182P1P20p.p, (P7 ) |
1-0 (Zen(3-1,3-2 —p12) )(Zen a1,82)(-P22) )

n=0

(2.1)
forall keN.

Proof. By applying the operator 0, to the series f(pz)= Z h, (a1 a,z) k" we

have

n+k nj ihn(apaz) n+k n Zh ( )p;+k n

p1p2 (Z hn

n=0 p p2
pn+k pn+kj r
=2 M (2,8, )| H———
( 2)( P.— P,

Me 2D

hn (ai’aZ)hn+k—l( pl’ pZ)Zn

>
I
o

On the other hand,
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k k

Pi _ P2
" (ien(al,az)(—plz)“) (ien(al,az)(—pﬂ)“)
pl _ n=0 n=0
aPlpz 0 - P1— P2
(Zen(alyaz)(—plz)n)
n=0
PE(i en(al,az)(—pzz)") - pj (ien(alvaZ)(_plz)n>
_ n=0 n=0
(p1 - pz)(Zen(al,az)(—plz)“) (Zen(al,az)(—pzz)”>
n=0 n=0

_ iP5 (a1 +a2)(pip2 — Sp1 )z - asaz (psp} - pip3 )7
(p1 - pz)(Z en(al,az)(—plz)”>(Zen(al,az)(—pzz)")
n=0

n=0

k Ak k-1 k-1 k-1 k-1
p1-p3 p1 P2 p1py "—P2p; 2
5, — (@1 +a2)p1p2( IER )2—611612p1pz<—p1p2 )Z

(ien<a1,az)(—p1z)“>(ien<a1,az>(—pzz)")
n=0

n=0

N (P, P2) +P1P2(@s + 82)Nua (Pr,P2)2 — B182P1P20psp, (5 )7

(i en(al,az)(—plz)n) (i en(ay, az)(—pzz)”)
n=0

n=0

Thus, this completes the proof.

3 Generating Functions of Some Well-known Numbers

We now derive new generating functions of the products of some well-known numbers.
Indeed, we consider Theorem 2.1 in order to derive balancing numbers, Lucas balancing
numbers and Tchebychev polynomials of second kind and the symmetric functions.

If k=01 and A={1,0}, we deduce the following lemmas
Lemma 3.1. [2] Given an alphabet P={p,, p,}, we have

, o
2P P = ¢4

Lemma 3.2. [3] Given an alphabet P={p,, p,}, we have

Z
(- pz)d-pz)

ihn_l(pl, p,)2" (3.2)
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Replacing p, by (-p,) in(3.1)and (3.2), we obtain

. .
2 (b P D = G oy 43

w . 7
nzzt;hnfl(py[_ pz])z - (1_ plz)(1+ pzz)- (3-4)

Choosing p, and p, such that
{ PP, =-1
P— P, = 6,

and substituting in (3.3) and (3.4) we end up with

c 1
h, (P, |~ =, 3.5
2Py [P )" =1 (35)
z .
Zh —1(pl' p2 )Z _mwnh p1,2 :3i 2‘\/5, (36)

Which represents a generating function for balancing numbers, such that

Soa (P +[—P.)).
Multiplying the equation (3.6) by (-3) and added to (3.5), we obtain

Z(h (pl’ pz) 3h —1(p1’[ pZ]))Zn:izz '

1-6z+2

which represents a generating function for Lucas-balancing numbers.

Corollary 3.1. Forall neN , we have

C, =h,(p.[-p, ] 30, (P, [P, ). with p,, =3+2V2.

Theorem 3.1. For neN, the generating function of the cobalancing numbers numbers is
given by

ib L 27°
" (1-6z+72°)(1-2)

Proof. The ordinary generating function associated is defined by G(b,,z)= X b, z".

Using the initial conditions, we get
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dhz"=bz+b,z*+> D 2"
n=1 n=3
=22°+) (6b, b, +2)z".
n=3
Consider that j=n—2 and p=n-1. Then can be written by

ibnzn =27° +62ibnz" —~ zzibnzn + 223512",
n=1 n=1 n=3 n=0

which is equivalent to
27°

Therefore

o0 . 222

dh "= - :

_rd (1-6z+2°)(1-2)
This completes the proof.

If k=0, k=1 and A={a,a,}, we deduce the following theorems

Theorem 3.2. [8] Given two alphabets A={a,,a,} and P={p,p,} we have

- +a,)z—aa,(p,+p,)z’
2 M (@na)h (P p,)2" = (@ +a;)2-an, fp P:) : 3.7)
(Ze@a-p2 | Saal-pay)
Theorem 3.3. [9] Given two alphabets A={a,,a,} and P={p,p,} we have
© 2
> h, (22,0, (P, p,) 2" = L . (38
(Ee@arcrar | Sa@arrna)
From (3.8) we can deduce
o _ 3
Z )N (P p2)2" = L L . (39)

(Se@arcrar | Ze@ar-par |

Case 1: Replacing p, by (-p,) and a, by (-a,) in(3.7) and (3.9) yields
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) - — n— (al_az)z—i_alaz(pl_pz)z2
LD D = ) (apa)ans) O

N — _ n_ Z—aaq plpzz3
;hn,l(ai,[ a,)h, (.. [-p.])z (o) (Lrap) L+ aup2) (=aupia) (3.11)

This case consists of four related parts.

Firstly, the substitutions of
{ai_az =1 and {pl_ P, =6,
a,a, =1 PP, =-1
in (3.10) give

i z7+62°
h (a,[- h - "= ,
; L@, [-a,Dh, (p,[-p,])z 1 67235246002

which represents a new generating function for product of Fibonacci numbers with
balancing numbers, such that F.B,=h,(a,[-a,)h, ,(p,[-p,]) with

a, :&fv Pi2 ZBiZ‘E-

Secondly, the substitution of

{a1_a2 =6, and {pl_ p, =6,
8,3, =—1, PP, =-1
in (3.11) give

3

= Z—1
h, 1 (a.[-2,Dh, . (p.[-p,])z" = ,
3@ (P2 =

which represents a new generating function for balancing numbers of second order, such
that Br? =h(a.[-a,Dh, (P, [-p,]) with &, =P :3i2‘/§-

Thirdly, the substitution of
{a1_a2 =1, and {pl_ p, =6,
aa, =2, PP, =-1,
in (3.11) give

i 7+27°
h J-a,h J- 2" = ,
; n—l(ai [ 2]) n—1(p1 [ pz]) 1—62—1322 +1223+4Z4

which represents a new generating function for product of Jacobsthal numbers with
balancing numbers, such that J B, =h ,(a,[-a,]h,,(p.[-p,]) with a =2 a,=-1

and p,,=3+22.

Finally, the substitution of
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{ai_a?:z’ and {p1_p2:6,
aa, =1, PP, =-1
in (3.11) give

i z+72°
h J[-a,h J- 72" = .
; n—l(ai [ 2]) n—1(p1 [ pz]) 1—122+3822 +1223 +Z4

which represents a new generating function for product of Pell numbers with balancing
numbers, such that P.B,=h_(a.[-aDh,,(p.[-p,]) with a =1+42  and

P, =3+242.
Case 2: Replacing p, by (-p,) and a by 2a and a, by (-2a,) in(3.10) yields

2(a1—a2)z+4a1a2(pl— pz)zz
(1-2a,p,z)(1+2a,p,z)(1+2a,p,z)(1-2a,p,z) (3.12)

Sh, (28, [-23, ), 4 (py, [-p,])2" =

The substitution of

P.— P, —6’
PP, = 1,
a1a2=‘71,

in (3.12) and set for ease on notations x=a, —a,, we reach

Sh,(2a,[-23Dh, . (u[-P:)2" = Y B, (02"

B 2xz2 —62°
1-12xz+2(17 +2x)2* —-12x2* + z*’

which corresponds to a new generating function for the combined balancing numbers and
Tchebychev polynomials of the second kind.

Theorem 3.4. For neN, the new generating function of the product of balancing
numbers B, and Tchebychev polynomials of first kind is given by

xz® —62° +2xz — X
1-12xz + 217 +2X)2° —=12x2° + z*

iBnTn x)z" =
n=0

Proof . We see that
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ZBnTn (X) 2" = hn—l( Prs [_ pz])(hn (Zai’ [_23-2]) - th—l (231’ [—28.2])) z"

o0

hn—l( P1s [_ P, ]) hn (231’ [—2&2 ]) 2" - thn—l ( Prs [_ P, ]) hn—l (2a17 [—2a2 ]) 2"

n=0

BU, (02" -——— 35 (p+[-p.])(28)" ~(~23,)")2"

Il
M+ 200 E0-

n=0 2(a1 + az) n=0

- « Zhn_l(pl,[—pz])(Zaiz) -
:ZBnUn(x)z”—Z( o) e

B S ([ (-2a2)

On the other hand, we know that

- n - n Z
nZ:;,hn_l(pl,[— pz])z = ;an = 1-67+2

from which it follows

) _ 2
ZBnTn(X)Zn = 2XZ 622 3 4
= 1-12xz2+2(17 +2x)z° -12x2° + 2z

B X 2a,7 N 2a,7
2(a, +a,)\ 1-12a,z+4a’z* 1+12a,z+4a’z* )
therefore

. Xz® —62% +2xz — X
ZBHT (X)Z =1 2 _ 3 4
s 1-12xz2+2(17+2X)z2° —12x2° + 2

This completes the proof.
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1 Introduction

An ideal I [8] on a topological space (X, 7) is a non-empty collection of subsets of
X which satisfies the following conditions.

1. Ael and B C Aimply B € [ and
2. A€l and Be Il imply AUB € [.

Given a topological space (X, 7) with an ideal I on X. If p(X) is the family of
all subsets of X, a set operator (.)* : p(X) — p(X), called a local function of A with
respect to 7 and [ is defined as follows: for A C X, A*([,7) ={x € X :UNA¢]I
for every U € 7(x)} where 7(x) = {U € 7: x € U} [1]. The closure operator defined
by cl*(A) = AU A*(I,7) [7] is a Kuratowski closure operator which generates a
topology 7*(1,7) called the x-topology finer than 7. The topological space together
with an ideal on X is called an ideal topological space or an ideal space denoted by
(X, 7,I). We will simply write A* for A*(,7) and 7* for 7*(I, 7).

* Corresponding Author.
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Some new notions in the concept of ideal nano topological spaces were introduced
by Parimala et al. [3, 4].

In this paper, we introduce the notions of t-nl-set, R-nl-set, t,-nl-set and R-
nl-set are investigate and deal with an ideal nano topological spaces.

2 Preliminaries

Definition 2.1. [5] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X C U.

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by Lr(X).
That is, Lr(X) = U,cpiR(x) : R(x) € X}, where R(z) denotes the equiva-
lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by Ur(X).
That is, Up(X) = g {R(%) : R(z) N X # ¢}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR<X) That ’iS, BR(X) = UR(X) — LR(X)

Definition 2.2. [2] Let U be the universe, R be an equivalence relation on U and
TrR(X) = {U, ¢, Lr(X),Ur(X), Br(X)} where X C U. Then R(X) satisfies the
following axioms:

1. Uand ¢ € Tr(X),
2. The union of the elements of any sub collection of Tr(X) is in Tr(X),

3. The intersection of the elements of any finite subcollection of Tr(X) is in
TR(X).

Thus Tr(X) is a topology on U called the nano topology with respect to X and
(U, mr(X)) is called the nano topological space. The elements of Tr(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called n-
closed.

In the rest of the paper, we denote a nano topological space by (U,N'), where
N = 715(X). The nano-interior and nano-closure of a subset A of U are denoted by
n-int(A) and n-cl(A), respectively.

A nano topological space (U, N') with an ideal I on U is called [3] an ideal nano
topological space and is denoted by (U,N,I). G,(z) = {G, |z € G,,G, € N},
denotes [3] the family of nano open sets containing x.

In future an ideal nano topological spaces (U, N, I) is referred as a space.



Journal of New Theory 23 (2018) 78-84 80

Definition 2.3. [3] Let (U,N,I) be a space with an ideal I on U. Let (.)% be a
set operator from o(U) to p(U) (p(U) is the set of all subsets of U). For a subset
ACU, AAUIN)={2 €U :G,NA¢&I, for every G, € G,(x)} is called the
nano local function (briefly, n-local function) of A with respect to I and N'. We will
simply write A% for AX(I,N).

Theorem 2.4. [3] Let (U,N,I) be a space and A and B be subsets of U. Then
1. ACB= A% C B,

Ar =n-cl(Ar) Cn-cl(A) (A} is a n-closed subset of n-cl(A)),

(A% < A%

(AUB)} = AX U Bz,

VeN=VNA=VNVNA:C(VNA)?,

S ot e

JET= (AUJ)E =A% = (A—J).

Theorem 2.5. [3] Let (U,N,I) be a space with an ideal I and A C A%, then
Ar =n-cl(A) = n-cl(A).

Definition 2.6. [3] Let (U,N,I) be a space. The set operator n-cl* called a nano
*-closure is defined by n-cl*(A) = AU A% for AC X.
It can be easily observed that n-cl*(A) C n-cl(A).

Theorem 2.7. [4] In a space (U,N,I), if A and B are subsets of U, then the
following results are true for the set operator n-cl*.

1. A Cn-cl*(A),
2. n-cl*(¢) = ¢ and n-cl*(U) = U,
3. IfA C B, then n-cl*(A) C n-cl*(B),
4. n-cl*(A) Un-cl*(B) = n-cl* (AU B).
5. n-cl*(n-cl*(A)) = n-cl*(A).
Definition 2.8. [6] A subset A of space (U,N,I) is said to be
1. nano a-I-open (briefly, a-nl-open) if A C n-int(n-cl*(n-int(A))),

2. nano pre-I1-open (briefly, pre-nl-open) if A C n-int(n-cl*(A)).
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3 On nano t-I-set, nano t,-/-set, nano R-/-set and
nano R,-I-sets
Definition 3.1. A subset A of a space (U,N, ) is called
1. nano t-I-set (briefly, t-nl-set) if n-int(A) = n-int(n-cl*(A)),
2. nano t,-I-set (briefly, t,-nl-set) if n-int(A) = n-int(n-cl*(n-int(A))),

3. nano R-I-set (briefly, R-nl-set) if A = PN Q, where P is n-open and Q 1is
t-nl-set,

4. nano Ry-I-set (briefly, Ro-nl-set) if A= PNQ, where P is n-open and Q is
t,-nl-set.

Example 3.2. Let U = {ay, as, a3, as} with U/R = {{az2},{as},{a1,a3}} and X =
{ag,as}. Then N = {¢,{as},{a1,a3},{a1,as,as},U}. Let the ideal be I = {p,{as}}.

1. A={as} is t-nl-set.

2. B ={a4} is ty-nl-set.

3. C ={ag, a3} is R-nl-set

4. D ={ay,a3} is Ro-nl-set
Remark 3.3. In a space (U,N, 1),

1. each n-open set is R-nl-set.

2. each t-nl-set is R-nl-set.

Proposition 3.4. Let A and B be subsets of a space (U,N,I). If A and B are
t-nl-sets, then AN B is t-nl-set.

Proof. Let A and B be t-nl-sets. Then we have

n-int(AN B) C n-int(n-cl*(AN B))
C n-int(n-cl*(A) N n-cl*(B))
= n-int(n-cl*(A)) N n-int(n-cl*(B))
= n-int(A) N n-int(B)
= n-int(AN B).

Then n-int(A N B) = n-int(n-cl*(AN B)) and hence AN B is a t-nl-set.

Example 3.5. In Ezample 3.2, H = {ai,a3} and K = {as, a4} is t-nl-set. But
HNK ={as} is t-nl-set.

Proposition 3.6. For a subset A of a space (U,N,I), the following properties are
equivalent:

1. A is n-open,
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2. A is pre-nl-open and R-nl-set.

Proof. (1) = (2): Let A be n-open. Then
A = n-int(A) C n-int(n-cl*(A))

and A is pre-nl-open. Also by Remark 3.3 A is R-nl-set.

(2) = (1): Given A is R-nl-set. So A = PN where P is n-open and

n-int(Q) = n-int(n-cl(Q))
Then A C P = n-int(P). Also, A is pre-nl-open implies
A C n-int(n-cl(A)) C n-int(n-cl*(Q)) = n-int(Q)
by assumption. Thus
A C n-int(P) Nn-int(Q) = n-int(P N Q) = n-int(A)

and hence A is n-open.

Remark 3.7. In a space the family of pre-nl-open sets and the family of R-nl-sets
are independent.

Example 3.8. In Example 3.2,
1. A ={ay, a4} is pre-nl-open but not R-nl-set.
2. B ={as} is R-nl-set but not pre-nl-open.
Remark 3.9. In a space (U,N, 1),
1. each n-open set is R,-nl-set.
2. each t,-nl-set is R,-nl-set.

These relations are shown in the diagram.

t-nl-set t~-nl-set

! !

R-nl-set «— n-open — R,-nl-set

The converses of diagram is not true as shown in the following Example.

Example 3.10. In Example 3.2,
1. A={as} is R-nl-set but not n-open set.
2. B ={ay,as,a4} is R-nl-set but not t-nl-set.
3. A={a1} is Ro-nl-set but not n-open set.

4. B ={ay,as,a4} is Ro-nl-set but not t,-nl-set.
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Proposition 3.11. IfA and B are to-nl-sets of a space (U, N, I), then AN B is a
t,-nl-set.

Proof. Let A and B be t,-nl-sets. Then we have

n-int(A N B) C n-int(n-cl*(n-int(AN B)))
C n-int[n-cl*(n-int(A)) N n-cl*(n-int(B))]
= n-int(n-cl*(n-int(A))) N n-int(n-cl*(n-int(B)))
= n-int(A) N n-int(B)
= n-int(AN B).

Then n-int(A N B) = n-int(n-cl*(n-int(AN B))) and hence AN B is a t,-nl-set.

Example 3.12. In Ezample 3.2, H = {as,a3} and K = {ay,as} is to-nl-set. But
HNK ={as} is to-nl-set.

Proposition 3.13. For a subset A of a space (U,N, ), the following properties are
equivalent:

1. A is n-open;
2. A is a-nl-open and a R,-nl-set.
Proof. (1) = (2): Let A be n-open. Then
A = n-int(A) C n-cl*(n-int(A))

and
A = n-int(A) C n-int(n-cl*(n-int(A)))

Therefore A is a-nl-open. Also by (1) of Remark 3.9, A is a R,-nl-set.
(2) = (1): Given A is a Ro-nl-set. So A = PN where P is n-open and
n-int(Q) = n-int(n-cl*(n-int(Q)))
Then A C P = n-int(P). Also A is a-nl-open implies
A C n-int(n-cl*(n-int(H))) C n-int(n-cl*(n-int(Q))) = n-int(Q)
by assumption. Thus
A C n-int(P) Nn-int(Q) = n-int(P N Q) = n-int(A)

and A is n-open.
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Abstract - In this paper, we introduce a new type of grill set namely; Gsy,-open sets, which is analogous to the
G-semiopen sets in a grill topological space (X, 7, G). Further, we define Gsy-continuous and Gs,-open functions
by using a Gs,-open set and we investigate some of their important properties.
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1. Introduction and Preliminaries

Choquet [2] introduced the concept of grill on a topological space and the idea of grills has
shown to be a essential tool for studying some topological concepts. A collection G of nonempty
subsets of a topological space (X, 7) is called a grill on X if (i) A € G and A < B implies that
BeG, and (ii) A, Bc X and AU B € G implies that A € Gor B € G. A triple (X, 7, G) is called
a grill topological space.

Roy and Mukherjee [17] defined a unique topology by a grill and they studied topological
concepts. For any point x of a topological space (X, t), T(x) denotes the collection of all open
neighborhoods of x. A mapping ¢ : P(X) — P(X) is defined as p(4A)={xe X : AN U e G for
all U € 7 (x)} for each A € P(X). A mapping Y : P(X) — P(X) is defined as (4) = AU ¢(4)
forall A € P(X). The map v satisfies Kuratowski closure axioms:

(1) YD) =0,
(i) if A c B, then Y(A) c Y(B),
(iii) if A X, then Y(P(A)) = Y(A), and

*Corresponding Author.
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(iv) if A, B c X, then Y(A U B) = ¥(4) U Y(B).

Corresponding to a grill G on a topological space (X, ), there exists a unique topology 7g (say)
on X givenby t¢={U c X :¢YX - U)=X - U}, where for any A c X, Y(A) = AU ¢p(4) =
17g-cl(4) and T C 1.

The concept of decompositions of continuity on a grill topological space and some classes of sets
were defined with respect to grill (see [3, 7, 10] for details). A subset A in X is said to be

@) @-open if A c int(p(4)),

(ii) G-a.open if A c int(y(int(4))),
(iii))  G-preopen if A c int(y(4)),
(iv)  G-semiopen if A c P (int(4)),
v) G-f.open if A c cl(int(y(A))).

The family of all G-a.open (resp. G-preopen, G-semiopen, G-f.open) sets in a grill topological
space (X,7,G) is denoted by GaO(X) (rep. GPO(X), GSO(X), GBO(X)). A function f: (X,7,G) —
(Y, o) is said to be G-semicontinuous if f_l(V) e GS0O(X) foreach Ve o.

Mashhour et al. [14] introduced a class of preopen sets and he defined pre interior and pre
closure in a topological space. A subset 4 in X is said to be preopen if A < int(cl(4)) and PO(X)
denotes the family of preopen sets. For any subset A of X, (i) pint(4) = U{U : U € PO(X) and U
cA}; (i) pcl(A)=n{F: X —F e PO(X)and AC F}.

In this paper, we define a Gs,-open set in a grill topological space (X, 7, G) and we study some
of its basic properties. Moreover, we define Gs,-continuous, Gsy-open, Gs,-closed and Gs{;-

continuous functions on a grill topological space (X, 7, G) and we discuss some of their essential
properties.

Proposition 1.1. [17] Let (X, 7,G) be a grill topological space. Then for all A, B < X:
(i) A < B implies that ¢(A) < ¢@(B);

(i) (AU B ) =¢(A) VU ¢(B);

(i) p(p(A4)) € p(A) = cl(p(4)) < cl(A).

2. Gsp-Open Sets

Definition 2.1. Let (X,7,G) be a grill topological space and let A be a subset A of X. Then 4 is
said to be Gsy-open if and only if there exist a U € PO(X) such that U ¢ A < Y(U). A set A
of X is Gs,-closed if its complement X —A is Gsy-open. The family of all Gsy,-open
(resp. Gsp-closed) sets is denoted by Gs, 0(X) (resp. Gsp, C(X)).

Example 2.1. Let X = {a, b, ¢, d}, 1= {0, X, {a, b}, {c,d}, {a,b,c}, {a,b,d}} and G = {{d},
{a, d}, {b, d}, {c, d}, {a,b,d}, {a,c,d}, {b,c,d}, X}. Then Gs,0(X) = {@, X, {a}, {b}, {a,
b}, {a,c}, {a,d}, {b,c},{b,d}, {c,d}, {a,b,c}, {a b,d}, {acd}, {b,cd}}.
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Theorem 2.1. Let (X,7,G) be a grill topological space and let A € X. Then A € Gs,0(X) if and
only if A < P (pint(4)).

Proof. If A € Gs,0(X), then there exist a U € PO(X) such that U ¢ A < Y(U). But U c A
implies that U < pint(4). Hence Y(U) < yY(pint(A)). Therefore A < yP(pint(4)).
Conversely, let A < P(pint(A4)). To prove that A € Gs,0(X), take U = pint(A), then U € A
Y(U). Hence A € Gs,0(X).

Corollary 2.1. If A € X, then A € Gs,0(X) if and only if {(A4) = P (pint(A4)).

Proof. Let A € Gs,0(X). Then as ¥ is monotonic and idempotent, P(A) < PP (pint(4))) =
Y(pint(A4)) < P(A) implies that P(A) = P(pint(A)). The converse is obvious.

Theorem 2.2. Let (X,7,G) be a grill topological space. If A € Gs,0(X) and B < X such that
A ¢ B < Y(pint(A)), then B € Gs,0(X).

Proof. Given A € Gs,0(X). Then by Theorem 2.1, A < Y (pint(A4)). But A < B implies that
pint(A) < pint(B) and hence by Theorem 2.4[17], Y(pint(A)) < yY(pint(B)). Therefore
B < Y(pint(4)) < Y (pint(B)). Hence B € Gs,0(X).

Corollary 2.2. If A € Gs,0(X) and B € X such that A € B < {(4), then B € Gs,0(X).

Proof. Follows from the Theorem 2.2 and Corollary 2.1.

Proposition 2.1. If U € PO(X), then U € Gs,0(X).

Proof. Let U € PO(X), it implies that U = pint(U) Y (pint(U)). Hence U € Gs,0(X).

Note that the converse of the above proposition need not be true. Let X = {a, b, ¢, d}, T = {®, X,
{b}, {c}, {a, b}, {b, c}, {a, b, c}} and G = {{a}, {b}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b,
d}, {c,d}, {a, b, c}, {a,b,d}, {a,c, d}, {b,c,d}, X} Then PO(X) = {0, X, {b}, {c}, {a, b},
{b, c}, {a, b, c}, {b, c, d}} and Gs,0(X) = {@, X, {b}, {c}, {a, b}, {D, c}, {D, d}, {a, b, c},
{a,b,d}, {b,c,d}}. Here {b, d} and {a, b, d} are Gsy,-open sets but not preopen.

Theorem 2.3. Let (X,7,G) be a grill topological space. If A € GSO(X), then A € Gs,0(X).

Proof. Given A € GSO(X). Then A < (int(A4)). Since int(4) < pint(4), we have that Y (int(4)) <
Y (pint(A)) (by Theorem 2.4[17]). Hence A < (pint(4)) and thus A € Gs,0(X).

Note that the converse of the above theorem need not be true. By Example 2.1, we have that
GSO(X)={9, X, {a, b}, {c,d}, {a,b,c}, {a,b,d}}. Therefore {a}, {b}, {a, c}, {a, d}, {b, c},
{b,d}, {a,c,d} and {b, c,d} are Gs,-open sets but not G-semiopen.
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Proposition 2.2. If PO(X) = 7, then Gs,0(X) = GSO(X).

Proof. By Theorem 2.3, GSO(X) < Gs,0(X). Let A € Gs,0(X). Then by Theorem 2.1,
A < Y(pint(4)). Since PO(X) = 7, we have that pint(4) = int(4) implies that A < P(pint(4)) =
Y(int(A)) and hence A € GSO(X). Thus Gs,0(X) € GSO(X).

Theorem 2.4. Let (X,7,G) be a grill topological space.
(1) If A; € Gs,0(X) for each i € ], then Ujej4; € Gs,0(X);
(i) If A € Gs,0(X) and U € PO(X), then AN U € Gs,0(X).

Proof. (i) Since 4; € Gs,0(X), we have that A; < Y(pint(4;)) for each i € J. Thus, we obtain 4;
c Y(pint(4;)) < Y(pint(UicyA;)) and hence UicjA; < Y (pint(Uics4;)). This shows that Uicj4; €
Gs, 0(X).

p

(i1) Let A € Gs,0(X) and U € PO(X). Then A < Y(pint(A4)) and pint(U) = U. Now, ANU <
Y(pint(4)) N U = (pint(4) U @(pint(4))) N U = (pint(4A) N U) U (¢(pint(4)) N U) < pint(A N U)
U @(pint(A) N U) (by Theorem 2.10[17]) = pint(A N U) U @(pint(A N U)) = P(pint(A N U)).
Therefore A N U € Gs,0(X).

Remark 2.1. The following example shows that if A, B € Gs,0(X), then AN B ¢ Gs,0(X).

From Example 2.1, take A = {b, c} and B = {c, d}, then A, B € Gs,0(X) but ANB = {c}¢
Gs,0(X).

Theorem 2.5. Let (X,7,G) be a grill topological space and A < X. If A € Gs,C(X), then
pint((A)) C 4.

Proof. Suppose A € Gs,C(X). Then X —A € Gs,0(X) and hence X — A < P(pint(X — A)) €
pcl(pint(X — A)) = X — pint(pcl(4)) < X — pint(p(A4)), implies that pint(p(4)) C A.

Theorem 2.6. Let (X,7,G) be a grill topological space and A < X such that X — pint(yp(4)) =
Y(pint(X — A)). Then A € Gs,C(X) if and only if pint(}p(4)) c A.

Proof. Necessary part is proved by Theorem 2.5. Conversely, suppose that pint(y)(A)) < A. Then
X — A c X — pint(yp(4)) = Y(pint(X — A)), implies that X — A € Gs,0(X). Hence A € Gs,C(X).

Definition 2.2. Let (X,7,G) be a grill topological space and A c X. Then

(i) Gsp-interior of A is defined as union of all Gs,-open sets contained in A.
Thus Gspint(A) = U{U : U € Gs,0(X) and U C A};

(i) Gsy-closure of A is defined as intersection of all Gsy-closed sets containing A.
Thus Gspcl(A) = N{F : X -F € Gs,0(X)and A C F}.
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Theorem 2.7. Let (X,7,G) be a grill topological space and A < X. Then
(i) Gspint(A) is a Gs,-open set contained in A;

(i) Gspcl(A) is a Gsy,-closed set containing 4;

(iii) A is Gsp-closed if and only if Gs,cl(4) = 4;

(iv) A is Gsp-open if and only if Gspint(4) = 4;

(v) Gspint(A) = X — Gspcl(X — A);

(vi) Gspcl(A4) = X — Gspint(X — A).

Proof. Follows form the Definition 2.15 and Theorem 2.4(i).

Theorem 2.8. Let (X,7,G) be a grill topological space and A, B < X. Then the following are
hold: (i) If A ¢ B, then Gs,int(A4) < Gs,int(B);

(ii) Gs,int(A U B) 2 Gs,int(4) U Gs,int(B);

(ii1) Gspint(A N B) = Gspint(A) N Gsyint(B).

Proof. Follows from the Theorem 2.8.

Definition 2.3. A function f: (X,7,G) — (¥, o) is said to be Gs,-continuous if f‘l(V) €
Gsp0(X) for each Ve PO(Y).

Example 2.2. Let X = {a, b,c,d}, Y ={1,2,3,4},t={0, X, {a, b}, {c,d}}, 0 = {0, Y, {1, 2},
{3,4},{1,2,3}, {1,2,4}}and G = {{a,b, c}, X}. Then Gs,0(X) = P(X) and PO(Y) = {0, Y,
{1}, {2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,4}, {1, 2,3}, {1, 2,4}, {1, 3,4}, {2, 3, 4}}.
Define f: (X, 7,G) > (Y, 0) by f(a) =2, f(b) =1, f(c) =4 and f(d) = 3. Then inverse image of
every preopen sets in Y is Gsp,-open in X. Hence f is Gsp,-continuous.

Remark 2.2. The concepts of G-semicontinuous and Gs,-continuous are independent.

(i) From Example 2.2, we have that GSO(X) = {@, X, {a,b}, {c,d}} and the function f is Gs,,-
continuous. Also f_l({l, 2,3}) ={a, b, d} is not G-semiopen in X for the open set {1, 2, 3} of
Y. Hence f is not G-semicontinuous.

(i) LetX={a,b,c,d},Y={1,2,3,4},t={0, X, {a}, {a,b}, {c,d}, {a,c,d}, {b,c,d}}, o=
{@,Y,{1,2},{3,4}} and G = {{b}, {a, b}, {b, c}, {b,d}, {c,d}, {a, b, c}, {a, b, d}, {a, c,
d}, {b, c,d}, X}. Then GSO(X) = 7, Gs,0(X) = {@, X, {a}, {a, b}, {a, c}, {a, d}, {b, c}, {b,
d}, {c,d}, {a, b, c}, {a, b,d}, {a, c,d}, {b,c,d}} and PO(Y) = P(Y). Define f: (X, 7,G) >
(Y,o) by f(a)=4, f(b) =3, f(c) =2 and f(d) = 1. Then the function f is G-semicontinuous.
Also the inverse image f‘l({3}) = {b} is not Gsy-open in X for the preopen set {3} of Y. Hence
f is not Gs,,-continuous.

From (i) and (ii), we got the concepts of G-semicontinuous and Gs,-continuous are independent.
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Theorem 2.9. For a function f: (X,7,G) — (Y, o), the following are equivalent:

() f is Gsp-continuous;

(i1) For each F € PC(Y), f‘l(F) € Gs,C(X);

(iii) Foreach x € X and each V € PO(Y) containing f(x), there exists a U € Gs,0(X)
containing x such that f(U) c V.

Proof. (i) © (ii): It is obvious.

(i) = (iii): Let V e PO(Y) and f(x) € V(x € X). Then by (i), f_l(V) € Gs,0(X) containing x.
Taking f_l(V) =U,wehavethatx € Uand f(U)cC V.

(iii) = (1): Let V. € PO(Y) and x € f_l(V). Then f(x) € V € PO(Y) and hence by (iii), there
exists a U € Gs,0(X) containing x such that f(U) < V. Thus, we obtain x € U < ¢ (pint(U)) <
Y(pint(f~'(V))). This shows that £~ (V) < ¥(pint(f~(V))). Hence f is Gs,-continuous.

Theorem 2.10. A function f: (X,7,G) — (Y, o) is Gs,-continuous if and only if the graph
function g : X — X XY, defined by g(x) = (x, f(x)) for each x € X, is Gs,-continuous.

Proof. Suppose that f is Gsy,-continuous. Let x € X and W € PO(X X Y) containing g(x). Then
there exist a U € PO(X) and V € PO(Y) such that g(x) =(x, f(x)) € U xV < W. Since f is
Gs,-continuous, there exists a G € Gs,0(X) containing x such that f (G) c V. By Theorem
2.4(b), 6 NU € Gs,0(X) and g(G NU) c U XV < W. This shows that g is Gs,-continuous.
Conversely, suppose that g is Gsy,-continuous. Let x € X and V € a(Y) containing f(x). Then
X XV € PO(X XY) and by Gs,-continuity of g, there exists a U € Gs,0(X) containing x such
that g(U) € X X V. Thus we have that f(U) c V and hence f is G-s,.continuous.

Definition 2.3. Let (X, 7) be a topological space and (Y,0,G) a grill topological space. A function
f: (X, 1) > (Y,0,G) is said to be Gsp-open (resp. Gsp-closed ) if for each U € PO(X) (resp. for
each U € PC(X)), f(U) is Gsy-open (resp. Gs,-closed) in (Y, 0,G).

Theorem 2.11. A function f: (X, 7) — (Y,0,G) is Gsp,-open if and only if for each x € X and
each pre-neighbourhood U of x, there exists a V € Gs,O0(Y) such that f(x) e V < f(U).

Proof. Suppose that f is a G-s,.open function and let x € X. Also let U be any
pre-neighbourhood of x. Then there exists G € PO(X) such that x € G < U. Since f is Gs,-
open, f(G) =V (say) € Gs,0(Y) and f (x) € V < f(U). Conversely, suppose that U € PO(X).
Then for each x € U, there exists a V, € Gs,0(X) such that f(x) € V, € f(U). Thus f(U) =
U{Vy : x € U} and hence by Theorem 2.4(a), f(U) € Gs,0(Y). This shows that f is Gsp-open.

Theorem 2.12. Let f: (X, 7) — (Y,0,G) be a G-s,.open function. If V < ¥V and F € PC(X)
containing f_l(V), then there exists a H € Gs,0(Y) containing V' such that f‘l(H )C F.
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Proof. Suppose that f is G-s,.open. LetV Y and F € PC(X) containing f'(V). ThenX — F €
PO(X) and by Gsp-openness of f, f(X — F) € Gs,0(X). Thus H=Y — f(X — F) € Gs,C(Y)
consequently f'(V)c F implies that V < H. Further, we obtain that f~'(H) C F.

Theorem 2.13. For any bijection f: (X, t) — (Y,0,G), the following are equivalent:
@) f‘lz (Y,0,G) — (X, 1) is Gs,-continuous;

(i) f is Gs,-open;

(iii) f is Gsp-closed.

Proof. It is obvious.

Definition 2.4. Let (X,7,G) be a grill topological space. A subset A of X is said to be a Gsp-set if
A=UnNV, where U € PO(X) and Y (pint(V)) = pint(V).

Theorem 2.14. Let (X,7,G) be a grill topological space and let A < X. Then A € PO(X) if and
only if A € Gs,0(X) and A is Gsp,-setin (X,7,G).

Proof. Let A € PO(X). Then A € Gs,0(X), implies that A < (pint(4)). Also A can be
expressed as A = AN X, where A € PO(X) and y(pint(X)) = pint(X). Thus A is a Gsp-set.
Conversely, Let A € Gs,0(X) and A be a Gsp-set. Thus A < P(pint(4)) = Y(pint(U NV)),
where U € PO(X) and Y(pint(V)) = pint(V). Now A c UNA < Un yY(pint(UNV)) =
UnyU npint(V)) c U N yPU) Nnyp(pint(V)) = U N pint(V) = pint(4). Hence A € PO(X).

Definition 2.5. A function f: (X,7,G) — (Y, 0) is Gsp-continuous if for each V € PO(Y),
f'(V)is a Gs;-setin (X, 7,G).

Theorem 2.15. Let (X,7,G) be a grill topological space. Then for a function f: (X,7,G) — (Y, 0),
the following are equivalent:

(i) f is precontinuous;

(i) f is Gs,-continuous and Gs,-continuous.

Proof. Straightforward.
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Abstaract — In the present paper, we introduce one class of soft mappings,namely soft almost
b-continuous mappings and investigate several properties of these mappings.This notion is stronger
than soft almost B-continuous mappings and is weaker than both soft almost pre-continuous map-
pings and soft almost semi-continuous mappings.The diagrams of implications among these soft
classes of mappings and some known classes of mappings have been established.
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1 Introduction

In 1999, Molodtsov [14] introduced the concept of soft sets to deal with uncertainties
while modelling the problems with incomplete information. In 2011 Shabir and Naz
[15] initiated the study of soft topological spaces.Theoretical study of soft sets and
soft topological spaces have been by some authors in [6, 8, 9, 10, 11, 14, 15, 23, 25, 26].
Soft regular-open sets[5], soft semi-open sets[12],soft preopen sets [2], soft a-open sets
[4],s0ft B-open sets [3], soft b-open sets [1] play an important part in the researches
of generalizations of continuity in soft topological spaces. The aim of this paper is to
introduce one class of soft mappings, namely soft almost b-continuous mappings by
utilizing the notions of soft b-open sets due to [1]. We investigate several properties
of this class. The class of soft almost b-continuous mappings is a generalization of
soft almost pre-continuous mappings and soft almost semi-continuous mappings. At
the same time, the class of soft almost (-continuous mappings is a generalization of
soft almost b-continuous mappings.

* Corresponding Author.
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2 Preliminary

Let U is an initial universe set, E be a set of parameters, P(U) be the power set of
Uand A C E.

Definition 2.1. [14] A pair (F, A) is called a soft set over U, where F is a mapping
given by F: A — P(U). In other words, a soft set over U is a parameterized family
of subsets of the universe U. For all e € A, F(e) may be considered as the set of
e-approximate elements of the soft set (F, A).

Let X and Y be an initial universe sets and E and K be the non empty sets of
parameters, S(X, E) denotes the family of all soft sets over X and S(Y, K) denotes
the family of all soft sets over Y.

Definition 2.2. [15] A subfamily 7 of S(X , E) is called a soft topology on X if:
1. 5, X belong to 7.
2. The union of any number of soft sets in 7 belongs to 7.
3. The intersection of any two soft sets in 7 belongs to 7.

The triplet (X, 7, E) is called a soft topological space over X. The members of 7 are
called soft open sets in X and their complements called soft closed sets in X.

Definition 2.3. [25] The soft set (F, E)e S(X, E) is called a soft point if there exist
x € X and e € E such that F(e) = {x} and F(e’) = ¢ for each €’ € E — {e}, and the
soft point (F, E) is denoted by (z.)g.

Definition 2.4. [23,4, 7,5, 1, 3] A soft set (F,E) in a soft topological space (X,7,E)
is said to be :

(a) Soft regular open if (F,E)= Int(Cl(F,E)).

(b) Soft a-open if (F,E) C Int(Cl(Int(F,E))).

(¢) Soft semi-open if (F,E) C Cl(Int(F,E)).

(d) Soft pre-open if (F,E) C Int(Cl(F.E)).

(e) Soft b-open if (A, E) C Int(Cl(A, E)) U Cl(Int (A, E)).

(f) Soft F-open if (A, E) C Cl(Int(Cl(A, E))).

The complement of soft a-open set (resp. soft semi-open set, soft pre-open,soft
b-open, soft (-open) set is called Soft a-closed(resp. soft semi-closed ,soft pre-
closed,soft b-closed, soft (3-closed) set.

Definition 2.5. [17]A soft point (x.)g in a soft topological space (X,7,E) is called
d-cluster point of a soft set (AE) of X if Int(CL(V,E)) N (A,E) # ¢ for each soft
open set (V,E) containing (z.)g.The union of all §-cluster points of (A, E) is called
d-closure of (A,E) and is denoted by dCI(A, E).

Remark 2.6. [4, 23, 1]

(a) Every soft regular open (resp. soft regular closed) set is soft open (resp.
closed), every soft open (resp. soft closed) set is soft a-open (resp. soft a-closed),
every soft a-open (resp. soft a-closed) set is soft pre-open (resp. pre-closed) and
soft semi-open (resp. semi-closed) but the converses may not be true.
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(b) The concepts of soft semi-open (resp. soft semi-closed) and soft pre-open
(resp.soft pre-closed)sets are independent to each other.

(c) Every soft pre-open (resp. pre-closed) and soft semi-open (resp. semi-closed)
is soft b-open(resp. soft b-closed) set and every soft b-open(resp. soft b-closed) set
is soft F-open((resp. soft [-closed) set but the converses may not be true.

Definition 2.7. [1] Let (F E) be a soft set in a soft topological space (X ,7,E).

(a) The soft b-closure of (F, E) is defined as the smallest soft b-closed set over
which contains (F, E) and it is denoted by bCI(F,E).

(b) The soft b-interior of (F, E) is defined as the largest soft b-open set over
which is contained in (F, E) and is denoted by blnt(F,E).

Definition 2.8. [23, 4, 7, 5, 1, 3] Let (X,7,E) and (Y,v,K) be a soft topological
spaces. A soft mapping f,, @ (X,7,E)— (Y,v,K) is said to be soft continuous (resp.
soft a-continuous,soft semi-continuous ,soft pre-continuous,soft b-continuous,soft (-
continuous) mapping if fp_ul(G, K) is soft open(resp. soft a-open ,soft semi-open,soft
pre-open,soft b-open,soft S-open) over X | for all soft open set(G,K) over Y.

Definition 2.9. [1] A soft mapping f,, : (X,7,E)— (Y,v,K) is said to be soft b-
irresolute if f;,'(G, K) is soft b-open over X , for all soft b-open set (G, K) over
Y.

Definition 2.10. [23, 4, 7, 5, 1, 3] Let (X,7,E) and (Y,v,K) be a soft topological
spaces. A soft mapping f,, : (X,7,E)— (Y,v,K) is said to be soft open(resp. soft
a-open,soft semi-open,soft pre-open,soft b-open,soft S-open) mapping if f,, (F, E)
is soft open(resp. soft a-open ,soft semi-open,soft pre-open,soft b-open,soft S-open)
over Y, for all soft open set (F, E) over X.

Remark 2.11. [4, 3, 1]

(a) Every soft continuous (resp. soft open) mapping is soft a-continuous(resp.
soft a-open) mapping ,every soft a-continuous (resp. soft a-open) mapping is soft
pre-continuous (resp. soft pre-open) and soft semi-continuous (resp. soft semi-open)
mapping but the converse may not be true.

(b) The concepts of soft semi-continuous and soft pre-continuous (resp. soft
semi-open and soft pre-open) mappings are independent.

(c) Every soft pre-continuous (resp. soft pre-open) and soft semi-continuous (resp.
soft semi-open) mappings are soft b-continuous and every soft b-continuous mapping
is soft B-continuous mapping but the converse may not be true.

Definition 2.12. [18, 19, 20, 21, 22] A soft mapping f,, : (X ,7,E) — (Y,9,K) is said
to be soft almost(resp. a-continuous,semi-continuous,pre-continuous,3-continuous)
mapping if the inverse image of every soft regular open set over Y is soft open(soft
a-open,soft semi-open,soft pre-open,soft 3-open) over X.

In this paper ,we use the abbreviations of soft almost continuous mapping , soft
almost a-continuous mapping, soft almost semi-continuous mapping, soft almost pre-
continuous mapping, soft almost (-continuous mapping by s.a.c., s.a.a.c., s.a.s.c.,
s.a.p.c., s.a.(3.c. respectively.
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Remark 2.13. [18, 19, 20, 21, 22]

(a) Every soft continuous mapping is soft almost continuous but the converse
may not be true.

(b) Every soft a-continuous mapping is soft almost a-continuous but the converse
may not be true.

(c) Every soft almost continuous(resp. soft almost-open) mapping is soft almost
a-continuous(resp. soft almost a-open) but the converse may not be true.

(d) Every soft almost a-continuous(resp. soft almost a-open) mapping is almost
pre-continuous(resp. soft almost pre-open) and almost semi-continuous(resp. soft
almost semi-open) but the converse may not be true.

(e) Every soft semi-continuous mapping (resp. soft semi-open) is soft almost
semi-continuous(resp. soft almost semi-open) but the converse may not be true.

(f) Every soft pre-continuous(resp. soft pre-open) mapping is soft almost pre-
continuous(resp. soft almost pre-open) but the converse may not be true.

(g) The concepts of soft almost semi-continuous and soft almost pre-continuous
(resp. soft almost semi-open and soft almost pre-open) mappings are independent.

(h) Every soft [-continuous(resp. soft [-open) mapping is soft almost (-
continuous(resp. soft almost $-open) but the converse may not be true.

(i) Every soft almost pre-continuous(resp. soft almost pre-open) and soft al-
most semi-continuous(resp.  soft almost semi-open) mapping is soft almost (-
continuous(resp. soft almost S-open) but the converse may not be true.

Definition 2.14. [20] A soft topological space (X ,7,E) is said to be soft semiregular
if for each soft open set (F,E) and each soft point (z.)g € (F,E), there exists a soft
open set (G,E) such that (z.)g € (G,E) and (G,E) C Int(Cl(G,E)) C (F,E).

Definition 2.15. [16] Let f,, : (X ,7, E) — (Y, ¥, K) be a soft mapping. Then a
soft mapping Gyg,g, : (X, 7,E) = (X x Y, 7 x 9, E x K ) is said to be soft graph
mapping of f,, where g, and g, are respectively defined by g,(x) = ( x , u(x) ) for
all x € X and g,(e) = (e, p(e)) for all e € E.

3 Soft Almost b-Continuous Mappings

Definition 3.1. A soft mapping f,, : (X ,7,E) — (Y,9,K) soft almost b-continuous
(brie?y s.a.b.c.) for each soft point (z.)g over X and each soft regular open set (V,K)
over Y containing f,,((z¢)g), there exists soft b-open set(U,E) over X containing
(z¢) g such that f,,(U,E) C (V,K).

Theorem 3.2. Let f,, : (X ,7,E) — (Y,9,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu soft almost b-continuous.

(b) For each soft point (x.)g over X and each soft open set (V,K) over Y con-
taining f,.((ze)E), there exists soft b-open set (U,E) over X containing (z.)g such
that f,.(U,E) C Int(CI(V,K)).

(¢) fru' (V.K) be a soft b-open set over X, for every soft regular open set (V,K)
over Y.

Proof: It is obvious.



Journal of New Theory 23 (2018) 93-104 97

Remark 3.3. Every soft b-continuous mapping is soft almost b-continuous but the
converse may not be true.

Example 3.4. Let X = {x1, 22}, E = {ey, ex } and Y = {y1, 1o}, K = {ky, k2 }.
The soft sets (F.E), (G,K) are defined as follows :

F(e1) = {2}, F(e2) = {1}

Glky) = {ur}, Glks) = {us) N

Let 7 = {¢ ,(F.E), X } , and v = {¢ ,(G,K), Y } are topologies on X and Y
respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K) defined by u(z;) =
, u(z2) = yo and p(e;)= k1, p(ez) = ko is soft almost b-continuous but not soft
b-continuous.

Remark 3.5. Every soft almost semi-continuous is soft almost b-continuous but the
converse may not be true.

Example 3.6. Let X = {5(71, ) }7 E = {61, €9 } and Y = {yl, yg}, K= {k?l, kg }
The soft sets (F1,E), (F5,E), (G,K) are defined as follows :

G1(/€1) = {?/1}, Gl(kQ) = {y2}7

Go(ky) = {yz}J Ga(k2) = {y1}, .

Let 7 = {¢, X }, and v = {9, (G1,K), (G3,K), Y } are topologies on X and Y
respectively. Then soft mapping f, : (X,7,E) — (Y,v,K) defined by u(z1) = v,
u(zy)= y2 and p(e; )= k1, p(es ) = ko is soft almost b-continuous mapping but not
soft almost semi-continuous.

Remark 3.7. Every soft almost pre-continuous is soft almost b-continuous but the
converse may not be true.

Example 3.8. Let X = {1’1, ) }, E = {61, €9 } and Y = {yl, yg}, K= {kl, k?g }
The soft sets (F1,E), (F5,E), (G,K) are defined as follows :

Fi(e1) = ¢, Fi(ez) = {931}

Fy(er) = {x1}, Fale) =

Fy(er) = {z1}, Fs(ez) = {56’1}

Gi(k1) = {n}, Gi(k2) = {92},

Ga(k1) = {y2}, Ga(k2) = {m1}. i i

Let 7 = {¢, (F1,E) ,(F2,E),(F3,E), X } , and v = {¢ ,(G1,K),(G2,K), Y } are
topologies on X and Y respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K)
defined by u(zi) = 1 , u(xe)= yo and p(e; )= k; , p(ea ) = ko is soft almost
b-continuous mapping but not soft almost pre-continuous.

Remark 3.9. Every soft almost b-continuous mapping is soft almost §-continuous
but the converse may not be true.

Example 3.10. Let X = {2y , 29,23,04 } , E={e1,ex } and Y = {1 , ¥2,¥3,Y4}
K = {ky , k2 }. The soft sets (F1,E) ,(F»,E),(F3,E),(G1,K),(Gs,K) and (G3,K) are
defined as follows :
Fi(er) = {3}, Fi(e2) = 9,
EFy(er) = {z1,24}, Fale2) =
Fs(ey) = {x1,x3,24}, Fs(e
Gi(k1) = {ys}, Gi(ke) =

9,
)) = ¢
o
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Gao(k1) = {y1,ua}, Ga(ka) = ¢,
Gs3(k1) = {y1,y3,94}, Gs(ks) =0,
Let

T = {Qb (Flu ) <F2>E)7(F37E>7 X } and v = {(ba (GlaK)J (G27K)7 (G37K>7 Y/ }
are topologies on X and Y respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K)
defined by u(x;) = u(xa)= y1, u(rs) = y3, u(xrsg) = y4 and p(e; )= ky, p(ea ) = ko is
soft almost (-continuous mapping but not soft almost b-continuous.

Thus we reach at the following diagram of implications.

soft almost

/ semi-continuous
soft almost \I soft almost —3  soft almost

g-continuous b-continuous p-continuous
soft almost /'
pre-continuous

) soft almost
continuous

soft continuous

—

Theorem 3.11. Let f,, : (X ,7,E) — (Y,9,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu is soft almost b-continuous.

(b) fri' (GK) is soft b-closed set in X for every soft regular closed set (G,K) over
Y.

() fou (AK) C bInt(f,,' (Int(CI(A,K)))) for every soft open set (A,K) over Y.

(d) bCl( H(Cl(Int (G, K)))) C fpu (G,K) for every soft closed set (G,K) over Y.

(e) For each soft point (z.)g over X and each soft regular open set (G,K) over Y
containing f,, ((x.)r),there exists a soft b-open set (F,E) over X such that (z.)g €
(F.E) and (F.E) C f,}(G.K).

(f) For each soft point (x.)r over X and each soft regular open set (G,K) over Y
containing f,,((x.)r),there exists a soft b-open set (F,E) over X such that (z.)g €
(F,E) and f,,(F.E) C (G,K).

Proof: (a)<(b) Since f,.! ( (G, K)°) = (f,,/(G,K))¢ for every soft set (G,K)

over Y.
(a) =(c) Since (A,K) is soft open set over Y, (A,K) C Int(Cl(A,K)) and hence,
w (AK) C £, (Int(CI(AK))).Now Int (CI(A,K)) is a soft regular open set over
Y By ( ), fpu (Int(CI(A, K))) is soft b-open set over X. Thus, f,.,} (AK) C f,;}
(Int(CI(AK) )) = bInt(f,,' (Int(Cl(AK)))).

(¢) =(a) Let (AK) be a soft regular open set over Y, then we have f, ! (AK)
C blnt(f,,!(Int(Cl(AK)))) = bInt(f,,'(AK)).Thus, f,.! (AK) = bInt(f '(AK))
shows that foud (A, K) is a soft b-open set over X.

(b) =>(d) Since (G,K) is soft closed set over Y, Cl(Int(G,K)) C (G,K) and
foid (Cl(Int (G,K))) C f;L (G,K). Cl(Int(G,K)) is soft regular closed set over Y.
Hence fou (Cl(Int(G,K) is soft b-closed set over X.Thus, bCI(f,,!(Cl(Int(G,K)))) =
FACUMGK) C £ (GK).

(d) (b) Let (G,K) be a soft regular closed set over Y, then we have bC1(f,,'(G,K))
= ﬁCl(f '(Cl(Int(G,K)))) € £} (GK) .Thus, bCI(f,,'(G,K)) C f,.} (G, K) shows
that f,.' (G,K) is soft b-closed set over X.
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(a) =(e) Let (z.)g be a soft point over X and (G, K) be a soft regular open set
over Y such that fo.((zc)e) € (GK), Put (F.E) = f,.}(G,K) .Then by (a), (F,E) is
soft b-open set, (z.)g€ (F,E) and (F.E) C f,.}(G, K)

(e) =(f) Let (z.)g be a soft point over X and (G,K) be a soft regular open set
over Y such that f,,((z.)g). By (e) there exists a soft b-open set (F,E) such that
(zo)p € (F.E), (F.E) C fZ;}(G,K). And so , we have (z.)g € (F.E), fpu(F.E) C
Fonl £71(G)) € (GK).

(f) =(a) Let (G,K) be a soft regular open set over Y and (z.)g be a soft point
over X such that (z.)g€ f,;'(G,K). Then fou((zc)r) € ful [, (GK)) C(G.K). By
(f) ,there exists a soft b-open set (F,E) such that (z.)g € (F,E) and f,,(F.E) C(G,K)
‘This shows that (z.)p € (F,E) C f,,/(G,K). it follows that f,,'(G,K) is soft b-open
set and hence fp’u1 is soft almost b-continuous.

Definition 3.12. Let (X ,7,E) be soft topological space and (A,E) be a soft set over
X is called soft d-open if for each soft point (z.)g € (A,E),there exists a soft regular
open set (F.E) such that (z.)p € (F,E) C (A,E) and its complement is called soft
0-closed.

Definition 3.13. Let (X ,7,E) be soft topological space and (A,E) be a soft set over
X,

The intersection of all soft J-closed sets containing a soft set (A,E) is called the
d-closure of (A,E) and is denoted by dCl(A,E).

Theorem 3.14. Let f,, : (X ,7,E) — (Y,9,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu is soft almost b-continuous.

(b) fpu(bCl(A E)) € dCI(f,u(AE)), for every soft set (A,E) over X.

(c) bCl( L (BK)) C £, (6CI(B,K)), for every soft set (B,K) over Y.

(d) f, (F K) is soft b-closed set over X, for every soft §-closed set (F,K) over Y.

(e) fou (V,K) is soft b-open set over X, for every soft d-open set (V,K) over Y.

Proof: (a) — (b)Let (A,E) be a soft set over X.Since, dCI(f,u(AE)) is a soft
d-closed set over Y.By theorem 3.11,we have (AE) C f,'( 6CI(fmu(A,E))) which
is soft b-closed set over X.Hence,bCl(A,E) C f;.'( 0CI(fpu(A,E))).Hence,we obtain
Fyu(BCI(AE)) © 6C1(fu(AE)).

(b) — ( ) Let (B,K) be a soft set over Y . We have f,,(bCl(f,,"(B,K))) C
OCI fpu(fpa (B.K)) C 0CI(B,K) and hence, bCI(f,,'(B,K)) C f..! (5CI(B K))

(¢c) — (d) Let (F,K) be a soft d-closed set over Y We have bC(f,,!(F.K)) C
[l (0CUF K)) = £,/ (F.K) and f,,!(F,K) is soft b-closed over X.

(d) — (e) Let (V,K) be a soft 5—open set over Y. By (d), we have f, '(V,K)¢ =
(fou (V, K))®, which is soft b-closed over X and so f,,'(V,K) is soft b-open set in X.

(e)— (a) Let (V,K) be a soft regular open set over Y.Since (V,K) is soft J-open
set over Y, fp_u1 (V,K) is soft b-open over X and hence by theorem 3.11,f,, is soft
almost b-continuous.

Theorem 3.15. Let f,, : (X, 7, E) — (Y, ¢, K) be a soft mapping and
Gopg. - (X, 7E) = (X x Y, 7 x 9, E x K) be the soft graph mapping of f,,. Then
Gpu, 1s soft almost b-continuous mapping if and only if f,, is soft almost b-continuous.

Proof: Necessity : Let (z.)g € be a soft point over X and (V,K) be a soft regular

open set over Y containing fy,((z.)g). Then, we have Gy 4, = ((ze)p,fou((ze)E)) €
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(X xY, 7 x ¢, E x K) which is soft regular open over (X x Y, 7 x 9, E x K).
Since Gy, g, is soft almost b-continuous,there exists a soft b-open set (U,E) over X
containing (z.)g such that Gy, (UE) C (X x Y, 7 x ¥, E x K). Therefore, we
obtain f,,(U,E) C Y and hence, f,, is soft almost b-continuous.

Sufficiency: Let (x.)g be a soft point over X and (W, E x K ) be a soft regular
open set over (X x Y, 7 x ¥, E x K) containing G, 4, ((2c)g). There exist (Uy,E)
be a soft regular open set Over X and (V,K) be a soft regular open set over Y such
that ((ze) g, fou((ze)E)) € (U,E) x (V.K) C (W, E x K ).Since f,, is soft almost
b-continuous ,there exists (Usz,E) be a soft b-open set Over X such that (z.)g) €
(Us,E) and f,,(U2,E) C (V.K). Put (UE) = (U,E) N (Uz,E).we obtain (z.)g) €
(U,E) which is soft b-open set over X and G4, (UE) C (U;,E) x (V.K) C (W, E
x K ).This shows that G, is soft almost b-continuous.

Theorem 3.16. Let f,, : (X ,7,E) — (Y,0,K) be a soft mapping from a soft
topological space (X ,7,E) to a soft semiregular space (Y,J,K).Then f,, is soft almost
b-continuous if and only if f,, is soft b-continuous.

Proof: Necessity: Let (z.)r be a soft point over X and (F,K) be a soft open set
over Y such that f,,( (z.)r) € (F,K) .Since (Y,9,K) is soft semiregular there exists a
soft open set (G,K) over Y such that f,,((z.)r) € (G,K) and (G,K) C Int(Cl(G,K)
C (F,K). Since Int(Cl(G,K)) is soft regular open over Y and f,, is soft almost b-
continuous,by theorem 3.11 (f) there exists a soft b-open set (A,E) over X such that
(ze)r € (ALE) and f,,(AE) C Int(Cl(G,K)).Thus, (A,E) is soft b-open set such that
(ze)p € (AE) and f,,(AE) C (F,K). Hence, f,, is soft b-continuous.

Sufficiency : Obvious.

Lemma 3.17. If f,, : (X ,7,E) — (Y,0,K) be a soft mapping and f,, is a soft open
and soft continuous mapping then fI;}(G,K) is soft b-open over X for every (G,K)
is soft b-open over Y.

Proof: Let (G,K) is soft b-open over Y. Then, (G,K) C Int(Cl(Int(G,K))). Since
fpu is soft continuous we have,

LHGK) © £ (Inb(CHInt(G,K)))) € Int(f (CIt (G K)))).
By the openness of f,,, we have

[ (Cl(Int(G.K))) C CI(f,,} (Int(G,K))).
Again f,, is soft continuous

foa (Int(G,K)) C Int(f,,'(G.K)).
Thus,

fou (GK)C Int(Cl(Int(f,,' (G,K)))).
Consequently, fp_ul(G,K) is soft b-open over X.

Theorem 3.18. If soft mapping f,., : (X ,7,E) — (Y,9,K) is soft open soft con-
tinuous and soft mapping gp,u, :(Y,9,K) — (Z,1,T) is soft almost b-continuous, then
Gpous Ofpruy © (X ,7,E) — (Z,n,T) is soft almost b-continuous.

Proof : Suppose (U,T) is a soft regular open set over Z. Then gp*;uQ(U,T) is a
soft b-open set over Y because gp,,, is soft almost b-continuous. Since f,,,, being
soft open and continuous.By lemma 3.17 (f, 1 (ngQhQ(U,T)) is soft b-open over X.

piul

Consequently, gpyus 0fpiuy @ (X ,7,E) — (Z,1,T) is soft almost b-continuous.

Lemma 3.19. If (A E) be a soft b-open set over X and (Y,E) is soft open in a soft
topological space (X ,7,E). Then (A,E) N (Y,E) is soft b-open in (Y,E).
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Proof: Obvious.

Theorem 3.20. Let f,, : (X,7,E) — (Y,9,K) be a soft almost b-continuous mapping
and (A,E) is soft open set over X, Then f,,/ (A,E) is soft almost b-continuous.
Proof : Let (G,K) be a soft regular open set in Y then f, /! (G,K) is soft b-open in
X. Since (A,E) is soft open in X, By lemma 3.19 (A,E) N f,.! (G.K) = [fpu/(A, E)] ™!
(G,K) is soft b-open in (A,E). Therefore, f,,/ (A,E) is soft almost b-continuous.

4 Soft Almost b-Open Mappings

Definition 4.1. A soft mapping f,, : (X ,7,E) — (Y,9,K) is said to be soft almost
b-open if for each soft regular open set (F,E) over X, f,,(F,E) is soft b-open in Y.

Remark 4.2. Every soft b-open mapping is soft almost b-open but the converse
may not be true.

Example 4.3. Let X = {x1, 22}, E = {ey, ex } and Y = {y1, 1o}, K = {ky, k2 }.
The soft sets (F,E), (G,K) are defined as follows :

F(er) = {z1}, F(e2) = {2},

G(k1) = {ya}, G(k2) = {y: }- .

Let 7 = {¢ ,(F.E), X } , and v = {¢ ,(G,K), Y } are topologies on X and Y
respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K) defined by u(z1) = y; ,
u(z2) = yo and p(ey)= ki, p(ez) = ko is soft almost b-open but not soft b-open.

Remark 4.4. Every soft almost semi-open is soft almost b-open but the converse
may not be true.

Example 4.5. Let X = {21, 22 }, E={e1, e2 } and Y = {y1, v}, K = {k1, ko }.
The soft sets (F1,E), (F5,E) are defined as follows :

Fi(er) = {x1}, Fie2) = {a2},

Fy(e1) = {22}, Fa(ea) = {an}. 3

Let 7 = {¢ ,(F1,E) ,(F3,E), X } ,and v = {¢ , Y } are topologies on X and Y
respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K) defined by u(z1) = 1 ,
u(z2)= yo and p(e; )= k1 , p(e2 ) = ko is soft almost b-open mapping but not soft
almost semi-open.

Remark 4.6. Every soft almost pre-open is soft almost b-open but the converse
may not be true.

Example 4.7. Let X = {ZL’l, i) }7 E = {61, €9 } and Y = {yl s yg}, K= {k’l, ]{72 }
The soft sets (F1,E), (F5,E), (G1,K), (G2,K) and (G5,K) are defined as follows :
Fi(e) = {1}, Fi(e2) = {22},
(

Fy(er) = {za}, Fa(e2) = {71},
Fs(er) = ¢, Fy(ea) = {u1},
Gl(kl) = {yl}a Gl(kQ) = 9,
Ga(k1) = {yi}, Ga(ke) = {y1}.

Let 7 = {¢, (F.E), (FR.E), X }, and v = {9, (G1.K),(G2K), (G3,K).Y } are
topologies on X and Y respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K)
defined by u(zq) = y1 , u(z2)= y2 and p(e; )= k1 , p(e2 ) = ko is soft almost b-open
but not soft almost pre-open.
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Remark 4.8. Every soft almost b-open mapping is soft almost (-open but the
converse may not be true.

Example 4.9. Let X = {21, z2,23,24 }, E = {e1 , e2 } and Y = {y1, y2,y3,04}, K =
{k1, ko }. The soft sets (F},E),(Fy,E),(F3,E),(G1,K),(G2,K) and (G3,K) are defined
as follows :
Fi(er) = {as}, Fi(e2) = 9,
Fy(er) = {z1,24}, Fa(ea) = &,
Fi(e1) = {z1,23,24}, F3(e2) =
Gi(k1) = {ys}, Gi(k2) = ¢,
Go(k1) = {y1,ya}, Ga(k2) = ¢,
G3(k1) = {y1,y3,y1}, Ga(ko) =0. N
Let 7 = {¢, (F1.E), (F3.,E), (F3,E), X }, and v = {¢ ,(G1,K),(G2,K),(G5.K), Y }
are topologies on X and Y respectively. Then soft mapping f,, : (X,7,E) — (Y,v,K)
defined by u(x;) = u(z2)= y1 ,u(xs) = ys,u(rs) = ys and p(es )= k1, p(ez ) = ka is
soft almost B-open mapping but not soft almost b-open.

¢,

Thus we reach at the following diagram of implications.

soft almost

semi-open
softopen — soft almost — soft almost /' \I soft almost —  soft almost

open o- open b-open - open
\| soft almost /' Frop

pre- open

Theorem 4.10. Let f,,,, : (X ,7,E) — (Y,9.K) and g¢p,u, :(Y,0,K) — (Z,n,T) be
two soft mappings, If f, ., is soft almost open and g,,,, is soft b-open. Then the
soft mapping gp,u, 0fpiuy @ (X ,7,E) — (Z,n,T) is soft almost b-open.

Proof : Let (F,E) be soft regular open in X. Then f,,,, (F,E) is soft open over Y
because fp,4, is soft almost open.Therefore, gpu, ( fous )(F,E) is soft b-open over
Z. Because gp,u, is soft b-open. Since (gpyuy 0fpruy )(FSE) = (9pous (frrwn (FLE)), it
follows that the soft mapping (gp,u, 0fpiu, ) i soft almost b-open.

Theorem 4.11. Let f,.,, : (X ,7.E) — (Y,0.K) and gpu, (Y, 9, K) — (Z,n,T) be
two soft mappings, such that g,,u, 0fpu, @ (X ,7,E) — (Z,7,T) is soft almost b-open
and gp,q, is soft b-irresolute and injective then f,,,, is soft almost b-open.

Proof : Suppose (F,E) is soft regular open set over X. Then gp,u, 0fpu (F,E) is
soft b-open over Z because gp,u, 0fp,u, 1S soft almost b-open. Since g, is injective,
we have (g%, (9psus 0fprun)(FE)) = fpru, (F,E). Therefore f,,., (F, E) is soft b-open
over Y, because gp,q, is soft b-irresolute. This implies f, ., is soft almost b-open.

Theorem 4.12. Let soft mapping f,, : (X ,7,E) — (Y,0,K) be soft almost b-
open mapping. If (G,K) is soft set over Y and (F,E) is soft regular closed set of X
containing f,.! (G,K) then there is a soft b-closed set (A,K) over Y containing (G,K)
such that f ' (AK) C (F.E).

Proof: Let (A, K) = (fpu(F, E)°)¢ . Since f,,! (G,K) C (F,E) we have f,,(F, E)¢
C (G.,K). Since fp, is soft almost b-open then (A K) is soft b-closed set of Y and f, !
(A7K) = ( f;ﬁ} (fpu(F7 E>C)C - ((F> E)C)C = (FwE) Thus, f;;l (A7K) C (F’E)
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