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Fuzzy Sub Implicative Ideals of KU-Algebras 
 

Samy Mohammed Mostafa
*
 

Ola  Wageeh Abd El- Baseer 
<dr_samymostafa46@yahoo.com> 

<olawageeh@yahoo.com> 

 
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt 

 

 

Abstract – We consider the fuzzification of sub-implicative (sub-commutative) ideals in KU-algebras, and 

investigate some related properties. We give conditions for a fuzzy ideal to be a fuzzy sub-implicative (sub-

commutative) ideal. We show that any fuzzy   sub-implicative (sub-commutative) ideal   is a fuzzy   ideal, but 

the converse is not true. Using a level set of a fuzzy set in a KU-algebra; we give a characterization of a fuzzy 

sub-implicative (sub-commutative) ideal. 

 

Keywords – KU-algebras - fuzzy sub implicative ideals- fuzzy sub-commutative 
 

 

1. Introduction 
 

BCK-algebras form an important class of logical algebras introduced by Iseki [2] and was 

extensively investigated by several researchers. It is an important way to research the 

algebras by its ideals. The notions of ideals in BCK-algebras and positive implicative ideals 

in BCK-algebras (i.e Isekis implicative ideals) were introduced by Iseki [2]. The notions of 

commutative (sub-commutative) ideals in BCK-algebras, positive implicative and 

implicative (Sub-implmicative), ideals in BCK-algebras were introduced by [4,5]. Zadeh 

[15] introduced the notion of fuzzy sets. At present this concept has been applied to many 

mathematical branches, such as group, functional analysis, probability theory, topology, 

and so on. In 1991, Xi [14] applied this concept to BCK-algebras, and he introduced the 

notion of fuzzy sub - algebras (ideals) of the BCK-algebras. Prabpayak and Leerawat 

[12,13] introduced a new algebraic structure which is called KU-algebra. They gave the 

concept of homomorphisms of KU-algebras and investigated some related properties. 

Mostafa et al. [8] introduced the notion of fuzzy KU-ideals of KU-algebras and then they 

investigated several basic properties which are related to fuzzy KU-ideals. Senapati et al. 

[6,7] introduced the notion of fuzzy KU-subalgebras (fuzzy KU-ideals) of KU-algebras 

with respect to a given t-norm, intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra 

and obtained some of their properties. Mostafa et al. [10] introduced the notion of sub 

implicative (sub-commutative) ideals of KU-algebras and investigated of their properties. 

                                                 
*
Corresponding Author. 
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In this paper, the notion of fuzzy sub implicative (sub commutative) ideals of KU-algebras 

are introduced and then the several basic properties are investigated.  

 

 

2. Preliminaries 
 

Now we will recall some known concepts related to KU-algebra from the literature which 

will be helpful in further study of this article. 

 
Definition 2.1. [12,13] Algebra(X, ∗ , 0) of type (2, 0) is said to be a KU -algebra, if it 

satisfies the following axioms: 

 

( 1ku )  0)]())[()( =∗∗∗∗∗ zxzyyx , 

 ( 2ku )  00 =∗x , 

( 3ku )  xx =∗0 , 

( 4ku ) 0====∗∗∗∗ yx  and 0=∗ xy  implies yx ==== , 

( 5ku ) 0====∗∗∗∗ xx , for all Xzyx ∈∈∈∈,, . 

 

On a KU-algebra )0,,( ∗∗∗∗X we can define a binary relation ≤  on X  by putting: 

 

0=∗⇔≤ xyyx . 

 

Thus a KU - algebra X   satisfies the conditions: 

 

 ( \1
ku ): )()()( yxzxzy ∗∗∗∗≤≤≤≤∗∗∗∗∗∗∗∗∗∗∗∗    

 ( \2
ku ): x≤0    

 ( \3
ku ): xyyx ≤≤ ,  implies yx = , 

( \4
ku ):   xxy ≤∗ . 

 

Remark 2.2. Substituting  xz ∗ for x and yz ∗ for y in 1ku ,we get  

 

)]()[()]()[()])[()))[()]()[( yzxzyzxzzxzzyzyzxz ∗∗∗∗∗∗∗≤∗∗∗∗∗∗∗∗∗ =0  by 

( 1ku ) ,hence   0)]()[()( =∗∗∗∗∗ yzxzyx  that mean  the condition ( 1ku ) and 

0)]()[()( =∗∗∗∗∗ yzxzyx  are equivalent. 

For any elements  x and y of a KU-algebra, nxy ∗  denotes by 
4484476 timesn

xxxy ∗∗∗ )......)(  

 
Theorem 2.3. [8] In a KU-algebra X  , the following axioms are satisfied: 

For all Xzyx ∈,, , 

 

 (1)  yx ≤ imply zxzy ∗≤∗ , 

 (2)  )()( zxyzyx ∗∗=∗∗ , for all Xzyx ∈,, , 

 (3)  yxxy ≤≤≤≤∗∗∗∗∗∗∗∗ ))(( . 

 (4)  )()( 3 xyxy ∗=∗  
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We will refer to X  is a KU-algebra unless otherwise indicated. 

 
Definition 2.4. [12,13] Let I  be a non empty subset of a KU-algebra X . Then I  is said to 

be an ideal of X , if  

 

)( 1I  I∈0  

)( 2I ,, Xzy ∈∀ if Izy ∈∗ )(  and ,Iy ∈∈∈∈  imply Iz ∈ . 

 
Definition 2.5. [8] Let I  be a non empty subset of a KU-algebra X . Then I  is said to be 

an KU- ideal of X , if  

)( 1I  I∈0  

)( 3I ,,, Xzyx ∈∀ if Izyx ∈∗∗ )(  and ,Iy ∈∈∈∈  imply Izx ∈∗ . 

 
Definition 2.6. [11]  KU- algebra X is said to be implicative if it satisfies     

)()()( 22 xyyxyx ∗∗∗=∗   

 
Definition 2.7. [11] KU- algebra X is said to be commutative 

if it satisfies  xyximpliesyx =∗≤ )( 2    

 
Lemma 2.8. [10] Let X be a KU-algebra. X is  KU-implicative iff X is KU-positive 

implicative and KU-commutative. 

 
Definition 2.9. [10 ] A non empty subset A  of a KU-algebra X  is called a sub implicative 

ideal of X , if ,,, Xzyx ∈∈∈∈∀∀∀∀  

 

)1(  A∈∈∈∈0  

)2( Axyyxz ∈∗∗∗∗ ))(()(( 2  and ,Az ∈∈∈∈  imply Ayx ∈∗ )( 2 . 

 

Definition 2.10. [10] Let )0,,( ∗X be a KU-algebra, a nonempty subset A of X is said to be 

a ku - positive implicative ideal if it satisfies, for all zyx ,,  in X , 

 

(1) A∈0 , 

(2) Ayxz ∈∗∗ )( and Axz ∈∗ imply Ayz ∈∈∈∈∗∗∗∗ . 

 
Definition 2.11. [10] A non empty subset A  of a KU-algebra X  is called a ku – sub 

commutative ideal of X , if  

 

)1(  A∈∈∈∈0  

)2(    Ayxyz ∈∗∗∗ )})){(( 22  and ,Az ∈  imply Axy ∈∗ )( 2 . 

 
Definition 2.12. [10] A nonempty subset A  of a KU-algebra X is called a kp-ideal of X if 

it satisfies  

 

)1(  A∈∈∈∈0  , 

(2) Axzyz ∈∗∗∗ )()(  , AxAy ∈∈  
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Definition 2.13. [8] A fuzzy set µ  in a KU-algebra X  is called a fuzzy sub -algebra of X  

if    { } .,)(),(min)( Xyxyxyx ∈∀≥∗ µµµ  

 

Definition 2.14. [8] Let X be a KU-algebra, a fuzzy set µµµµ in X is called a fuzzy ideal of 

X if it satisfies the following conditions: 

 

)( 1F  )()0( xµµµµµµµµ ≥≥≥≥ for all Xx ∈∈∈∈ . 

)( 2F ,, Xyx ∈∀  )}(),(min{)( xyxy µµµ ∗≥ . 

 

 

3. Fuzzy Sub-Implicative Ideals 
 

Definition 3.1. [15] Let X be a non-empty set, a fuzzy subset µ in X is a function 

].1,0[: →Xf  

 

Definition 3.2. [1.15]  Let µ be a fuzzy set in a set X . For t ∈ [0, 1], the set  

 

tµ  = {x ∈ X | µ(x) ≥ t} 

 

is called upper level cut (level  subset) of µ and the set L(µ, t) = {x ∈ X | µ(x) ≤ t} is called 

lower level cut of µ. 

 

Definition 3.3. A non empty subset µ  of a KU-algebra X  is called a fuzzy sub implicative 

ideal (briefly FSI - ideal  ) of X , if ,,, Xzyx ∈∈∈∈∀∀∀∀  

 

)( 1F  )()0( xµµ ≥  

)( 1FSI { })()),(()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗  

 

Example  3.4. Let }4,3,2,1,0{====X in which the operation ∗∗∗∗  is given by the table  

 

 

 

 

 

 

 

 

 

Then )0,,( ∗∗∗∗X is a KU-Algebra. Define a fuzzy set μ : X→ [0,1] by    μ(0) = t0 , μ (1) = μ(2) 

= t1 ,  μ (3) = μ  (4) = t2 , where t0 , t1 , t2 ∈  [0,1] with t0 > t1 > t2  .  Routine calculation gives 

that  μ is FSI- ideal of  KU- algebra X.  

 
Proposition 3.5. Every  FSI- ideal of a KU-algebra X is order reversing. 

 

∗∗∗∗  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 0 0 4 

4 0 0 0 0 0 
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Proof.  Let µ be FSI -ideal of X and let x, y, z ∈X be such that x ≤ z, then z∗ x = 0 and 

by )( 1F  { })()),(()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗  . Let y = x, 

 

{ }
{ } { } )()(),0(min)(),(min)(

)()),(()(((min)( 22

zzzxzx

zxxxxzxx

µµµµµµ

µµµ

==∗≥

∗∗∗∗≥∗

 
 

Lemma 3.6. Let µ  be a fuzzy FSI - ideal of KU - algebra X , if the inequality  y * x ≤ z 

hold in X , Then  µ (x) ≥ min {µ ( y) , µ (z)} . 

  

Proof.  Let µ be FSI -ideal of X and let x, y, z ∈X be such that y*x ≤ z, then z∗ (y*x)=  0 

or y∗ (z*x)=  0  i.e yxz ≤∗  we get  

 

)()( yxz µµ ≥∗             (a)  

 

By )( 1FSI : { })()),(()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗  . Let y = x 














∗∗∗∗≥∗ )()),(()(((min)( 2

0

2
zxxxxzxx

x

µµµ

876876
 = { })(),(min zxz µµ ∗ ,i.e 

{ } { })(),(min)(),(min)( zyzxzx µµµµµ ≥∗≥  by  (a) .  

 
Definition 2.7. [9,10]  KU- algebra X is said to be implicative if it satisfies  

 

)()()( 22 xyyxyx ∗∗∗=∗  

 

Lemma 3.8. If X is implicative KU-algebra, then every fuzzy ideal of X is an FSI-ideal of 

X. 

 

Proof.   Let µ be an fuzzy ideal of X, then by )( 2F  

 

,, Xzy ∈∀  )}(),(min{)( zyzy µµµ ∗≥ . 

 

Substituting 2yx ∗  for  y   in )( 2F { })()),((min)( 22 zyxzyx µµµ ∗∗≥∗ , but KU- algebra 

is implicative i.e )()()( 22 xyyxyx ∗∗∗=∗ , hence   

 

{ } { })()),()((min)()),((min)( 222 zxyyxzzyxzyx µµµµµ ∗∗∗∗=∗∗≥∗  

 

Which shows that µ  is FSI-ideal of X. 

 

Theorem 3.9. Let µ  be a fuzzy  set  in X satisfying  the  condition )( 1FSI  ,  then   

µ  satisfies  the following inequality: 

 

))()(()( 22 xyyxyx ∗∗∗≥∗ µµ        )( 2FSI  
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Proof. Let µ  satisfying )( 1FSI  i.e { })())),()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗ , then  

by taking  z = 0 in )( 1FSI  and using )( 1F and ( 3ku ) we get 

 

{ }=∗∗∗∗≥∗ )0()),(()((0(min)( 22 µµµ xyyxyx  ))()(( 2xyyx ∗∗∗µ  

 

Theorem 3.10.   Every  FSI-ideal is a fuzzy  ideal, but the converse does not hold.  

 

Proof. Let µ be FSI-ideal FSI-ideal of X; put x=y in )( 1FSI , we get 

 

{ }
}

{ })(),(min)()),(()(((min)(

,)()),(()(((min)(

2

0

22

zxzzxxxxzx

thenzxxxxzxx

x

x

µµµµµ

µµµ

∗=














∗∗∗∗≥

∗∗∗∗≥∗

876

876

 

 

Hence µ  is a fuzzy ideal of X .                                        

 

The following example  shows that the  converse of Theorem  3.10 may not be true. 

 

Example 3.11. Let }4,3,2,1,0{====X in which the operation ∗∗∗∗  is given by the table  

 

 

Then )0,,( ∗∗∗∗X is a KU-Algebra. Define a fuzzy set μ : X→ [0,1] by  µ  (0) = 0.7 , µ  (1) = 

µ  (2) = µ  (3) = µ   (4) = 0.2 , we get for z=0 , x=1 and y=2.  L.H.S  of )( 1FI  

2.0)1()2)21(( ==∗∗ µµ
} }

7.0)0()0(),1)12(()21((0(min)(..

01

1 ==












∗∗∗∗∗ µµµFIofSHR

i.e in this case { })()),(()(((min/)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗ . 

 

We now give a condition for a fuzzy ideal to be a FSI-ideal. 

 

Theorem 3.12.   Every  fuzzy  ideal µ of X satisfying  the  condition )( 2FSI is a FSI-ideal 

ideal of X . 

 

 Proof. Let µ be fuzzy ideal of X satisfying  the  condition )( 2FSI . We get  

 

≥∗ )( 2yxµ { }))(()((( 2xyyx ∗∗∗µ  and { })()),(()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗  

 

by (Definition of fuzzy ideal )( 2F ), hence 

∗∗∗∗  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 0 0 4 

4 0 0 0 0 0 
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≥∗ )( 2yxµ  ))(()((( 2xyyx ∗∗∗µ  { })()),(()(((min 2 zxyyxz µµ ∗∗∗∗≥  

 

(Definition of fuzzy ideal )( 2F ) ,which proves the condition )( 1FSI . This completes the 

proof. 

 

Theorem 3.13. Let µ be a fuzzy ideal of X. Then the following are equivalent 

 

(i)   µ is an FSI-ideal of X, 

(ii)  ))(()((()( 22 xyyxzyx ∗∗∗∗≥∗ µµ  

(iii) ))(()((()( 22 xyyxzyx ∗∗∗∗=∗ µµ . 

 

Proof. (i)) (ii) Suppose that µ is an FSI-ideal of X. By )( 1FSI and )( 1F  we have  

{ }
))(()((()(

.)(()((0()0()),(()((0(min)(

22

222

xyyxyx

eixyyxxyyxyx

∗∗∗≥∗

∗∗∗∗=∗∗∗∗≥∗

µµ

µµµµ
 

 

(ii)   (iii) Since 22 )(()( yxxyyx ∗≤∗∗∗ , by Lemma 3.5 we obtain , 

))(()(()( 22 xyyxyx ∗∗∗≥∗ µµ  Combining (ii) we have  ))(()(()( 22 xyyxyx ∗∗∗=∗ µµ . 

 

(iii)   (i) Since  

 

[( )(()(( 2xyyxz ∗∗∗∗ )]*[ )(()( 2xyyx ∗∗∗ ] = ))]((()[( 2xyzyx ∗∗∗∗ *[ )(()( 2xyyx ∗∗∗ ] 

  ≤ [ ))((( 2xyz ∗∗ ] )][( 2xy ∗∗  

  = [ ))((( 2xyz ∗∗ ] )](0[ 2xy ∗∗∗  

 zz =∗≤ 0 , 

 

by Lemma 3.6. we obtain ≥∗∗∗ )(()(( 2xyyxµ min{ )}(),(()((, 2 zxyyx µµ ∗∗∗ . From 

(iii), we have { })()),(()(((min)( 22 zxyyxzyx µµµ ∗∗∗∗≥∗ . Hence µ  is an FSI-ideal of 

X The proof is complete. 
 
Theorem 3.14. A fuzzy set  µ  of a KU-algebra X is a sub-implicative fuzzy ideal of X if 

and only if  Φ≠tµ   is a sub-implicative ideal of X. 

 

Proof: Suppose that µ  is a fuzzy sub-implicative ideal of X and Φ≠tµ for any ]1,0(∈t , 

there exists tx µ∈  so that tx ≥≥≥≥)(µµµµ . It follows from )( 1F that tx ≥≥≥≥≥≥≥≥ )()0( µµµµµµµµ  so that tµ∈0 . 

Let Xzyx ∈∈∈∈,,  be such that txyyxz µ∈∗∗∗∗ )(()(( 2  and tz µ∈ . Using )( 1FI , we know 

that    

{ } { } tttzxyyxzyx ==∗∗∗∗≥∗ ,min)()),(()(((min)( 22 µµµ  

 

thus tyx µ∈∗
2 . Hence tµ  is a sub-implicative ideal of X. 

 

Conversely, suppose that Φ≠tµ  is a sub-implicative ideal of X ,for every ]1,0(∈t . and 

any Xx ∈∈∈∈ , let tx ====)(µµµµ . Then tx µ∈ . Since tµ∈0 , it follows that )()0( xt µµµµµµµµ ====≥≥≥≥ so that 
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)()0( xµµµµµµµµ ≥≥≥≥ for all Xx ∈∈∈∈ . Now, we need to show that µµµµ  satisfies )( 1FI . If not, then there 

exist Xcba ∈∈∈∈,, such that  

{ })()),(()(((min)( 22 cabbacba µµµ ∗∗∗∗≤∗  

Taking  

{ }))()),(()((()((
2

1 22

0 cabbacbat µµµ ∗∗∗∗+∗=  

then we have  

{ })()),(()((()( 2

0

2
cabbactba µµµ ∗∗∗∗<<∗  

 

Hence tabbac µ∈∗∗∗∗ ))()(( 2 and tc µ∈ , but tba µ∉∗
2 which means that tµ is not a sub-

implicative ideal of X.this is contradiction. Therefore µµµµ  is a fuzzy sub-implicative ideal of 

X . 

 

 

4. Fuzzy Sub-Commutative Ideals 
 
Definition4.1. A non empty subset A  of a KU-algebra X  is called a sub commutative ideal 

of X , if  

 

)1(  A∈∈∈∈0  

)2(   Ayxyz ∈∗∗∗ )})){(( 22  and ,Az ∈  imply Axy ∈∗ )( 2 . 

 
Lemma4 .2. Every fuzzy FSC ideal of a KU-algebra X is order reversing. 

 

Proof.  Let µ be FSC -ideal of X and let x, y, z ∈X be such that x ≤ z, then z∗ x = 0 and 

by )( 1FSCI { })(),))(((min)( 222 zyxyzxy µµµ ∗∗∗≥∗  . Let y = x ,then 

 

{ } { }=∗=∗∗∗≥ )()],[(min)(),))(((min)( 22 zxzzxxxzx µµµµµ { } )()(),0(min zz µµµ =  

 
Lemma 4.3. let µ  be a fuzzy FSCk - ideal of KU - algebra X , if the inequality y * x ≤ z 

hold in X , Then  µ (x) ≥ min {µ ( y) , µ (z)} .  

 

Proof.  Let µ be FSC -ideal of X and let x, y, z ∈X be such that z*x ≤ y, then z∗ (y*x)= 0 

or y∗ (z*x)=  0  i.e yxz ≤∗  [ )()( yxz µµ ≥∗  ]. By )( 1FSCI :  

 

{ })(),))(((min)( 222 zyxyzxy µµµ ∗∗∗≥∗   

 

Put x =y 

 

{ } { }≥∗=∗∗∗≥ )()],[(min)(),))(((min)( 22 zxzzxxxzx µµµµµ { })(),(min zy µµ  

 
Lemma 4.4. If X is commutative KU-algebra, then every fuzzy ideal of X is an FSC-ideal 

of X. 

 

Proof.   Let µ be an fuzzy ideal of X, then by )( 2F ,, Xzy ∈∀     
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)}(),(min{)( zyzy µµµ ∗≥ . 

 

Substituting 2xy ∗  for  y   in )( 2F  

 

{ })()),((min)( 22 zxyzxy µµµ ∗∗≥∗ , 

 

 but KU- algebra is commutative i.e    yyxxxy ∗∗=∗∗ )()( , hence   

 

{ } { })()),((min)()),((min)( 222 zxyzzxyzxy µµµµµ ∗∗=∗∗≥∗  

since 

))()0()))(()))(()( 22 xxyyyxxyyyxxyyxy ∗∗≤∗∗∗∗∗=∗∗∗∗=∗∗  

 

Then ))(])[( 22 xxyzyxyz ∗∗∗≥∗∗∗ by  i.e  )}({)])(([ 222 xyzyxyz ∗∗≤∗∗∗ µµ  by 

theorem 4.2.  Therefore  

 

{ } { })()),)(((min)()),((min)( 2222 zyxyzzxyzxy µµµµµ ∗∗∗≥∗∗≥∗ . 

  

Which shows that µ  is FSIk-ideal of X. 

 

Theorem 4.5. Let µ  be a fuzzy  set  in X satisfying  the  condition )( 1FSCI  ,  then  µ  

satisfies  the following inequality 

 

         )))(()( 222 yxyxy ∗∗≥∗ µµ        )( 2FSCI  

 

Proof. Let µ  satisfying )( 1FSCI  i.e { })(),))(((min)( 222 zyxyzxy µµµ ∗∗∗≥∗  , then  by 

taking  z = 0 in )( 1FI  and using )( 1F and ( 3ku ) we get  

 

{ })0(),))((0(min)( 222 µµµ yxyxy ∗∗∗≥∗  . 

 

Hence )))(()( 222 yxyxy ∗∗≥∗ µµ  

 

Theorem 4.6.   Every  fuzzy SCI  is a fuzzy  ideal, but the converse does not hold. 

  

Proof . Let µ be fuzzy fuzzy SCI  of X; put x=y in )( 1FSCI , we get 

 

{ } { })(),(min)(),))(((min)( 222 zxzzxxxzxx µµµµµ ∗=∗∗∗≥∗   

 

for all x, z ∈ X . Hence µ  is a fuzzy ideal of X .                                        

 

The following example  shows that the  converse of Theorem 4.6 may not be true. 

 

Example 4.7. Let }4,3,2,1,0{====X in which the operation ∗∗∗∗  is given by the table  
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Then )0,,( ∗∗∗∗X is aKU-Algebra. . Define a fuzzy set μ : X→ [0,1] by µ  (0) = 0.7 , µ  (1) = 

µ  (2) = µ  (3) = µ   (4) = 0.2 , we get for z=0 , x=1 and y=3, L.H.S  of )( 1FSCI  

2.0)1()1)13(( ==∗∗ µµ   

}
7.0)0()0(),3)3)1)13(((0(min)(..

0

1 ==












∗∗∗∗∗ µµµFSCIofSHR , i.e in this case 

{ })(),)(((min/)( 222 zyxyzxy µµµ ∗∗∗≥∗  

 

We now give a condition for a fuzzy ideal to be a fuzzy sub- commutative ideal. 

 

Theorem 4.8.   Every  fuzzy  ideal µ of X satisfying  the  condition )( 2FSCI is a fuzzy  

FSC of X . 

 

Proof. Let µ be fuzzy ideal of X satisfying  the  condition )( 2FSCI . We get     

 

)))(()( 222 yxyxy ∗∗≥∗ µµ  

 

and  by (Definition  )( 2F  fuzzy ideal ), hence  

 

≥∗ )( 2xyµ ))(( 22 yxy ∗∗µ { })(),)(((min 22 zyxyz µµ ∗∗∗≥  

 

by 2F  which proves the condition )( 1FSCI . This completes the proof. 

 

Theorem 4.9. Let µ be a fuzzy ideal of X. Then the following are equivalent 

 

(i)  µ is an FSC-ideal of X, 

(ii) ≥∗ )( 2xyµ ))(( 22 yxy ∗∗µ  

(iii) =∗ )( 2xyµ ))(( 22 yxy ∗∗µ . 

 

Proof. (i) (ii) Suppose that µ is an FSC-ideal of X. By )( 1FSCI and )( 1F  we have  

{ } { }
)))((

)0(),))((0(min)(),))(((min)(

22

22222

yxy

yxyzyxyzxy

∗∗

=∗∗∗=∗∗∗≥∗

µ

µµµµµ
 

 

(ii)   (iii) Since 222 )( xyyxy ∗≤∗∗  , we have ))(()( 222 yxyxy ∗∗≥∗ µµ  

 Combining (ii) we have ))(()( 222 yxyxy ∗∗=∗ µµ . 

 

∗∗∗∗  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 0 0 0 4 

4 0 0 0 0 0 
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(iii)   (i) Since [( ))(( 22 yxyz ∗∗∗ )]* ])((0[ 22 yxy ∗∗∗ zz =∗≤ 0 , by Lemma 4.3 we 

obtain  ≥∗∗ ))(( 22 yxyµ { })(),)(((min 22 zyxyz µµ ∗∗∗         

 

Hence µ  is an FSC-ideal of X The proof is complete. 

 

Theorem 4.10. A fuzzy set  µ  of a KU-algebra X is a fuzzy sub- commutative ideal of X 

if and only if  Φ≠tµ   is a sub- commutative ideal of X.   

 

Proof: Suppose that µ  is a fuzzy sub- commutative ideal of X and Φ≠tµ for any ]1,0(∈t , 

there exists tx µ∈  so that tx ≥≥≥≥)(µµµµ . It follows from )( 1F that tx ≥≥≥≥≥≥≥≥ )()0( µµµµµµµµ  so that tµ∈0 . 

Let Xzyx ∈∈∈∈,,  be such that tyxyz µ∈∗∗∗ ))(( 22  and tz µ∈ . Using )( 1FSCI , we know 

that { } { } tttzyxyzxy ==∗∗∗≥∗ ,min)()),)(((min)( 222 µµµ , thus txy µ∈∗
2 . Hence tµ  

is a sub- commutative ideal of X. 

 

Conversely, suppose that Φ≠tµ  is a sub- commutative ideal of X ,for every ]1,0(∈t . and 

any Xx ∈∈∈∈ , let tx ====)(µµµµ . Then tx µ∈ . Since tµ∈0 , it follows that )()0( xt µµµµµµµµ ====≥≥≥≥ so that 

)()0( xµµµµµµµµ ≥≥≥≥ for all Xx ∈∈∈∈ . Now, we need to show that µµµµ  satisfies )( 1FSCI . If not, then 

there exist Xcba ∈∈∈∈,, such that { })(),)(((min)( 222 cbabcab µµµ ∗∗∗≤∗ . Taking  

 

{ }))(),)((()((
2

1 222

0 cbabcabt µµµ ∗∗∗+∗=  

 

then we have { })(),)((()( 22

0

2
cbabctab µµµ ∗∗∗<<∗  . Hence tbabc µ∈∗∗∗ ))(( 22 and 

tc µ∈ , but txb µ∉∗
2 which means that tµ is not a sub- commutative ideal of X, this is 

contradiction. Therefore µµµµ  is a fuzzy sub- commutative ideal of X . 
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Abstract – In this paper we will introduce neutrosophic crisp Tri-topological spaces, and we will introduce 

four new types of open and closed sets in neutrosophic crisp Tri-topological spaces. Then, the closure and 

interior neutrosophic crisp set will be defined via this new concept of open and closed sets. Finally, we will 

introduce the basic properties of these types of open and closed sets and the properties of   new concept of 

closure and the interior.  

 

Keywords – Neutrosophic crisp Tri-topological spaces, neutrosophic crisp Tri-open set, neutrosophic crisp 

Tri-closed set, neutrosophic crisp S-open sets and neutrosophic crisp S-closed. 

 

 

1 Introduction 
 

Smarandache introduces neutrosophy. He has laid the foundation of new mathematical 

theories generalizing their fuzzy counterparts, [8,9,10]. Many introduced the introduction 

of the Neutrosophic set concepts in many of their works [11,12,13,14,15,16, 5, 6,7]. In [12, 

17] provides a natural foundation for treating mathematically the neutrosophic phenomena 

which exist pervasively in our real world and for building new branches of neutrosophic 

mathematics. Smarandache introduces the concept of neutrosophic sete as generalization of 

the concept of fuzzy sets [1] and intuitionistic fuzzy sets [2,3]. Lupianez has developed and 

modified many of papers about neutrosophic in his papers in [21, 22,23,24,25]. Hamido 

introduces neutrosophic crisp Bi-topological space [1].   

 

In this paper we will introduce the concept of neutrosophic crisp Tri-topological as 

generalization of the concept of neutrosophic crisp Bi-topological [1]. Then, we will 

introduce new types of open and closed sets as neutrosophic crisp Tri-open sets, 

neutrosophic crisp Tri-closed sets, neutrosophic crisp TriS-open sets and neutrosophic crisp 

TriS-closed sets. We investigated the properties of these new four types of neutrosophic 

crisp sets. 

                                                 
* Corresponding Author.  
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2 Preliminaries 
 

In this section, we recollect some basic preliminaries, and in particular,  the work of 

Smarandache in [8,9,10],  and Salama in [11, 12,13,14, 15,16, 5, 4,7].  Smarandache  in his 

work introduced the neutrosophic components T, I, F which represent the membership, 

indeterminacy, and non-membership values respectively, where −0,1+ is a non-standard 

unit interval. Hanafy  and Salama et al. [7,15] considered some possible definitions for 

basic concepts of the neutrosophic crisp set and its operations. 

 

Definition 2.1. [19] Let X be a non-empty fixed set. A neutrosophic crisp set (NCS) A is 

an object having the form A ={A1, A2, A3}, where A1, A2, and A3 are subsets of X 

satisfying A1 ∩ A2 = φ, A1 ∩ A3 = φ, and A2 ∩ A1 = φ. 

 

Definition 2.2. [19] Types of NCSs φN and XN [20] in X as follows: 

 

1- φN may be defined in many ways as a N CS, as follows  

 

1. φN = (φ,φ, X) or 

2. φN = (φ, X, X) or 

3. φN = (φ, X, φ) or 

4. φN = (φ,φ,φ) 

 

2- XN may be defined in many ways as a NCS, as follows 

 

1. XN = (X, φ, φ) or 

2. XN = (X, X, φ) or 

3. XN = (X, X, X). 

 

Definition 2.3. [19] Let X is a non-empty set, and the NCSs A and B in the form         

A={ A1, A2, A3}, B =  {B1, B2, B3}. Then we may consider two possible definitions 

for subsets A⊆B, may defined in two ways: 

 

1. A⊆B ⇔A1⊆B1, A2⊆B2, and A3⊇B3 or  

2. A⊆B⇔A1⊆B1, A2⊇B2, and A3 ⊇ B3 
 

Definition 2.4. [19] Let X is a non-empty set, and the NCSs A and B in the form           

A = {A1, A2, A3}, B = {B1, B2, B3}. Then: 

 

1. A ∩ B may be defined in two ways as a N CS, as follows: 

 

i) A ∩ B = (A1 ∩ B1, A2 ∩ B2, A3 ∪ B3) 

ii) A ∩ B = (A1 ∩ B1, A2 ∪ B2, A3 ∪ B3) 
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2. A ∪ B may be defined in two ways as a N CS, as follows: 

 

i) A ∪ B = (A1 ∪ B1, A2 ∩ B2, A3 ∩ B3) 

ii) A ∪ B = (A1 ∪ B1, A2 ∪ B2, A3 ∩ B3) 

 

Definition 2.5. [19] A neutrosophic crisp topology (NCT) on a non-empty set X is a 

family Γ of neutrosophic crisp subsets in X satisfying the following axioms. 

1. φN,  XN ∈ Γ. 

2. A1∩A2∈Γ, for any A1 and A2∈ Γ.  

3. ∪Aj ∈ Γ, ∀{Aj : j ∈ J } ⊆ Γ. 

  

The pair (X,Γ) is said to be a neutrosophic crisp topological space (NCTS) in X. Moreover, 

the elements in Γ are said to be neutrosophic crisp open sets (NCOS), A neutrosophic crisp 

set F is closed (NCCS) if and only if its complement Fc is an open neutrosophic crisp set. 

 

Definition 2.6. [19] Let X is a non-empty set, and the NCSs A in the form 

A={A1,A2,A3}. Then cA  may be defined in three ways as a N CS, as follows: 

 

1 2 3

3 2 1

3 2 1

) , , or

) , , or

) , , .

c c c c

c

c c

i A A A A

ii A A A A

iii A A A A

=< >

=< >

=< >

 

 

Definition 2.7. [1] Let Γ1, Γ2 be two neutrosophic crisp topology (NCT ) on a 

nonempty set X then (X,Γ1,Γ2)  neutrosophic crisp Bi-topological space (Bi-NCTS for 

short ).In this case: 
 

- The elements in Γ1∪Γ2 are said to be neutrosophic crisp Bi-open sets (Bi-NCOS for 

short). A neutrosophic crisp set F is closed (Bi-NCCS for short) if and only if its 

complement Fc is an neutrosophic crisp Bi-open set. 

 

- the family of all neutrosophic crisp Bi-open sets is denoted  by (Bi-NCOS(X)). 
 

- the family of all neutrosophic crisp Bi-closed sets is denoted  by (Bi-NCCS(X)). 
 

 

3 Neutrosophic Crisp Tri-Topological Spaces 
 

In this section, We will introduce Neutrosophic Tri-topological crisp Spaces . 

 

Moreover we will introduce new types of open and closed sets in Neutrosophic Tri-

topological crisp Spaces. 

 

Definition 3.1. Let Γ1,Γ2 and Γ3 be three neutrosophic crisp topology (NCT ) on a 

nonempty set X then (X,Γ1,Γ2,Γ3) neutrosophic crisp Tri-topological space (Tri-NCTS 

for short). 
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Example 3.2. Let X={1,2,3,4}, Γ1={ΦN , XN  ,D,C}, Γ2={ΦN , XN  ,A }, Γ3={ΦN , XN  ,B }, 

A {1},{2, 4},{3} , {1},{2},{3,4} ,C B=< >= =< > {1},{2},{3} .D =< > Then (X,Γ1), (X,Γ2) 

and (X,Γ3) are neutrosophic crisp spaces therefore (X,Γ1,Γ2,Γ3) is neutrosophic crisp Tri-

topological space (Tri-NCTS).  

 

Definition 3.3. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS) 
then:  

 

-The elements in Γ1∪Γ2∪Γ3 are said to be neutrosophic crisp Tri-open sets (Tri-NCOS 

for short). A neutrosophic crisp set F is closed (Tri-NCCS for short) if and only if its 

complement Fc is an neutrosophic crisp Tri-open set. 

 

- the family of all neutrosophic crisp Tri-open sets is denoted  by (Tri-NCOS(X)). 
 

- the family of all neutrosophic crisp Tri-closed sets is denoted  by (Tri-NCCS(X)). 
 

Example 3.4.  In Example  2 the neutrosophic crisp Tri-open sets (Tri-NCOS) are: Tri-

NCOS(X) = Γ1∪Γ2∪Γ3={A,B,C,D} the neutrosophic crisp Tri-closed sets (Tri-NCCS) 

are : 1 2 3 1 1 1 1Tri-NCCS(X)  { , , , , , }
N N

X A B C Dφ= Γ Γ Γ =U U , where: 

 

1 1 {2,3, 4},{1,3},{1, 2, 4}A C=< >= ,
1 {2,3, 4},{1,3, 4},{1, 2} ,B =< >

1 {2,3, 4},{1,3, 4},{1, 2, 4}D =< > . 

 

Remark 3.5. 

1) Every neutrosophic crisp open sets in (X,Γ1)  or  (X,Γ2)  or (X,Γ3)  is neutrosophic crisp 

Tri-open set. 

 

2) Every neutrosophic crisp closed sets in (X,Γ1) or (X,Γ2)  or (X,Γ3)  is neutrosophic crisp 

Tri-closed set. 

 

Remark 3.6. Every neutrosophic crisp Tri-topological space  (X,Γ1,Γ2,Γ3) induces three 

neutrosophic crisp topological spaces as (X,Γ1) ,  (X,Γ2)  and (X,Γ3). 

 

Remark 3.7. If (X,Γ)  neutrosophic crisp topological space then (X,Γ,Γ,Γ) neutrosophic 

crisp Tri-topological space. 

 

Theorem 3.8. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS) 

then: The union of two neutrosophic crisp Tri-open (Tri-closed) sets is not neutrosophic 

crisp Tri-open (Tri-closed) set as the following example: 

 

Example 3.9. X={1,2,3,4},Γ1={ΦN , XN  ,A}, Γ2={ΦN , XN  ,D }, Γ3={ΦN , XN  ,C }. It  is 

clear that (X,Γ1), (X,Γ2)  and (X,Γ3)  are neutrosophic crisp topological spaces therefore  

is (X,Γ1,Γ2,Γ3) neutrosophic crisp Tri-topological space A, D are two neutrosophic crisp 

Tri-open sets but  {1,3},{2,4},A D∪ =< ∅ > is not neutrosophic crisp Tri-open set.  

 {1,2,4},{1,3},{2,3,4} , {2,3,4},{1,3,4},{1,2,4}c cA D=< > =< >  are two neutrosophic crisp 

Tri-closed sets but  ,{1,3},{2, 4}c cA D X∪ =< >  is not neutrosophic crisp Tri-closed set. 
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Theorem 3.10. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-

NCTS) then: The intersection of two neutrosophic crisp Tri-open (Tri-closed) sets is 
neutrosophic crisp Tri-open (Tri-closed)  set as the following example: 

 

Example 3.11. In example 3.9 A, D are two neutrosophic crisp Tri-open sets but 

 ,{2},{1,3}A D∩ =< ∅ > is not neutrosophic crisp Tri-open set. 

 

  {1,2,4},{1,3},{2,3,4} , {2,3,4},{1,3,4},{1,2,4}c cA D=< > =< >  

 

are two neutrosophic crisp Tri-closed sets but  {2,4},{1,3},c cA D X∩ =< > is not 

neutrosophic crisp Tri-closed set. 

 

4 The Closure and the Interior via Neutrosophic Crisp Tri-Open Sets 

(Tri-NCOS) and Neutrosophic Crisp Tri-closed (Tri-NCCS) 
 

In this section we use this new concept of open and closed sets in the definition of closure 

and interior Neutrosophic crisp set, where we defined the closure and interior Neutrosophic 

crisp set based on these new varieties of open and closed Neutrosophic crisp sets.Also we 

introduced the basic properties of closure and the interior.  

 

Definition 4.1. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-

NCTS), and A is neutrosophic crisp set then: The union of any neutrosophic crisp Tri-

open sets ,contain in A is called neutrosophic crisp Tri-interior of A ( NC
Tri

Int(A) for 

short ). NC
Tri

Int(A)  = ∪{B :B⊆A ; B is neutrosophic crisp tri-open set}. 

 

 

Theorem 4.2. Let  (X,Γ1,Γ2,Γ3)be  neutrosophic crisp Tri-topological space (Tri-NCTS), 
A is neutrosophic crisp set then: 

 

1. NC
Tri

Int(A) ⊆ A. 

2. NC
Tri

Int(A) is not neutrosophic crisp Tri-open set . 

 

Proof: 

1. Follow from the defintion of NC
Tri

Int(A) as a union of any neutrosophic crisp Tri-open 

sets ,contains  in A. 

 

2. Follow from Theorem 8 in section 3. 

 

Theorem 4.3. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS), 
A, B are neutrosophic crisp sets then: 

 

A⊂B  NC
Tri

Int(A) ⊂ NC
Tri

Int(B). 

Proof: Obvious. 

Definition 4.4. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-

NCTS), A is neutrosophic crisp set then: The intersection of any neutrosophic crisp Tri-

open sets ,contained A is called neutrosophic crisp Tri-closure of A ( NC
Tri

-Cl(A) for 

short).  NC
Tri

-Cl(A)= ∩{B :B⊇A ; B is an neutrosophic Tri-closed set}. 
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Theorem 4.5. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS), 
A is neutrosophic crisp set then: 

 

1. A⊆ NC
Tri

-Cl(A)  . 

2.  NC
Tri

-Cl(A) is not neutrosophic crisp Tri-closed set. 

 

Proof: 

1. Follow from the defintion of NC
Tri

-Cl(A) as a intersection of any neutrosophic crisp 

Tri-closed set,contained  in A. 

 

2. Follow from Theorem 3.10. 

 

 

5 The Neutrosophic crisp TriS-open Sets (TriS-NCOS) and Neutrosophic 

Crisp TriS-closed sets (TriS-NCOS)  
 

We introduced new concept of open and closed sets in neutrosophic crisp Tri-topological 

space in this section, as  neutrosophic crisp TriS-open sets (TriS-NCOS) and neutrosophic 

crisp TriS-closed sets (S-NCCS). Also we introduced the basic properties of this new 

concept of open and closed sets in Tri-NCTS , and their relationship with neutrosophic 

crisp Tri-open sets and  neutrosophic crisp Tri-closed sets.  

 

Definition 5.1. Let  (X,Γ1,Γ2,Γ3)be  neutrosophic crisp Tri-topological space (Tri-NCTS) 

then: The neutrosophic crisp open set only in one of the three neutrosophic crisp 

topological space (X,Γ1), (X,Γ2)  and (X,Γ3) are called neutrosophic crisp TriS-open set 

(TriS-NCOS for short). 

 

- The complement of neutrosophic crisp S-open set is called neutrosophic crisp TriS-closed 

set (Tri-NCCS for short ). 

 

- the family of all neutrosophic crisp triS-open sets is denoted  by (TriS-NCOS(X) ). 
 

- the family of all neutrosophic crisp TriS-closed sets is denoted  by (TriS-NCCS(X) ). 

 

Example 5.2. In example 3.2: B, D are two neutrosophic crisp S-open sets. 

 

Theorem 5.3. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS) 

then: 

 

1. Every neutrosophic crisp TriS-open sets (TriS-NCOS) is  neutrosophic crisp Tri-open 

set (Tri-NCOS). 

 

2. Every neutrosophic crisp TriS-closed sets (TriS-NCCS) is  neutrosophic crisp Tri-closed 

set (Tri-NCCS). 

 

Proof: 

1. Let A neutrosophic crisp TriS-open set therefore A neutrosophic crisp open set in  one 

of the three neutrosophic crisp topological spaces (X,Γ1), (X,Γ2)  and (X,Γ3) therefore A  

neutrosophic crisp Tri-open set. 
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2. Let A neutrosophic crisp TriS-closed set therefore A  neutrosophic crisp closed set in  

one of the three neutrosophic crisp topological spaces (X,Γ1), (X,Γ2)  and (X,Γ3) therefore 

A neutrosophic crisp Tri- closed set. 

 

Remark 5.4. The converse of  Theorem 3 is not true , as the following example.  

 

Example 5.5. In any neutrosophic crisp Tri-topological space, ΦN, XN are two neutrosophic 

crisp Tri-open sets, but ΦN , XN  are not neutrosophic crisp TriS-open sets . 

 

Also ΦN, XN   are two neutrosophic crisp Tri-closed sets, but ΦN, XN  are not neutrosophic 

crisp TriS-closed sets. 

 

Theorem 5.6. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS) 
then: The union of two neutrosophic crisp TriS-open (TriS-closed) sets is neutrosophic 

crisp TriS-open (TriS-closed)  set as the following example.  

 

Example 5.7. In example 3.9. It  is clear that (X,Γ1), (X,Γ2)  and (X,Γ3)  are neutrosophic 

crisp topological spaces therefore (X,Γ1,Γ2,Γ3) is neutrosophic crisp Tri-topological 

space. A,D are two neutrosophic crisp TriS-open sets but  {1,3},{2,4},A D∪ =< ∅ > is 

not neutrosophic crisp TriS-open set.  

 

 {1,2,4},{1,3},{2,3,4} , {2,3,4},{1,3,4},{1,2,4}c cA D=< > =< >  

 

are two neutrosophic crisp TriS-closed sets but  ,{1,3},{2, 4}c cA D X∪ =< >  is not 

neutrosophic crisp TriS-closed set. 

 

Theorem 5.8. Let (X,Γ1,Γ2,Γ3) be  neutrosophic crisp Tri-topological space (Tri-NCTS) 
then: The intersection of two neutrosophic crisp TriS-open (TriS-closed) sets is 
neutrosophic crisp TriS-open (TriS-closed) set as the following example.  

 

Example 5.9. In example 3.9. A, D are two neutrosophic crisp TriS-open sets 

but  ,{2},{1,3}A D∩ =< ∅ > is not neutrosophic crisp TriS-open set.  

 

 {1,2,4},{1,3},{2,3,4} , {2,3,4},{1,3,4},{1,2,4}c cA D=< > =< >   

 

are two neutrosophic crisp TriS-closed sets but  {2,4},{1,3},c cA D X∩ =< > is not 

neutrosophic crisp TriS-closed set. 

 

Conclusions  
 

In this paper we have introduced neutrosophic crisp Tri-Topological space. Then we have 

introduced neutrosophic crisp Tri-open, neutrosophic crisp Tri-closed, neutrosophic crisp 

TriS-open, neutrosophic crisp TriS-open set’s. Also we studied some of their basic 

properties and their relationship with each other. Finally, these new concepts are going to 

pave the way for new types of open and closed sets as neutrosophic Crisp Tri-α-open sets, 

neutrosophic crisp Tri-β-open sets, neutrosophic crisp Tri-pre-open sets, neutrosophic crisp 

Tri-semi-open sets. 
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On the one hand, several authors have studied the class of (χ,∞)-groups, where χ is a given 

property of groups, with some conditions on these groups. The question that interests 

mathematicians is the following: If G is a group in the class (χ,∞), where χ is a given 

property, and then does G have a property in relation to the property χ? For example is that 

G has the property χγ or γχ, where γ is another group property, or in particular is it in the 

same class χ. For example, in 1976, B.H Neumann in [14], has shown that a group is in the 

class (A, ∞), if and only if, it is FIZ-group, where A is the class of abelian groups. In 1981, 

Lennox and Wiegold in [12] proved that a finitely generated solvable group is in the class 

(N, ∞) (resp. (P, ∞), (Co, ∞)) if and only if, it is FN, (resp. P, Co), where P, N, Co and F 

designates respectively polycyclic, nilpotent, coherent and finite class of groups. Other 

results of this type of this class can be found in section 2. 

 

On the other hand, some authors give another extension of the problem of Paul Erdos and 

noted it (χ, ∞)∗. For example in 2005, Trabelsi in [21] proved that a finitely generated 

soluble group in the class (CN, ∞)∗, where C is the class of cernikov group. Other results 

these types are given in section 2.  

 

 

2 Preliminary 
 

Before giving proof to the results in next section, we need some definitions and basic 

known facts from the theory of isolators in nilpotent groups, which has been developed in 

[11] (see also [6]). 

 

Definition 2.1.  A group G is said to be with finite contumacy classes (or shortly FC-

group) if and only if every element of G has a finite contumacy class in G. 

 

Nishigoryin [15] showed that every extension of a finite group by an FC-group is likewise 

an FC-group; in other words F(FC)=FC. As we mentioned in introduction the property FC 

is not closed under finite extension that means (FC)F is not always FC. 

 

Therefore, we add some conditions on these groups so that it is. We prove in Theorem 1. 

that, in the class of finitely generated finite-by-nilpotent-group, the property FC is closed 

under taking finite extension. 

 

Definition 2.2. If H is a subgroup of a group G. The isolator of H in G noted IG(H) is the 

set of elements x ∈ G such that, for some integer r > 0, we have x
r
∈ H. 

 

To prove the Theorem1 below in the next section, we begin by giving the next Lemma. 

 

Lemma 2.1. Let G be a group and H a subgroup of G. 

(i) If G is aτN-group, then the set of elements of finite order is a characteristic subgroup 

τ(G) of G and the group quotient G/τ(G) is torsion-free. 

(ii) If G is a finitely generated FN-group, then τ(G) is finite. 

(iii) If G is locally nilpotent torsion-free group, then the isolator IG(H) = {x ∈ G /∃ 

n∈ ℕ:x
n
∈ H} is a subgroup of G containing H . If H is nilpotent of class k then IG(H) is 

nilpotent of class k as well. In particular, if H is abelian then IG(H) is abelian as well. 
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Definition 2.3. Let χ is a given property of groups.  A group G is said to be in the class 

(χ,∞) (respectively (χ, ∞)∗) if and only if every infinite subset X of G contains two distinct 

elements x, y such that the subgroup <x, y> (respectively<x, x
y
>)  is a χ-group.  

 

Note that if χ is a subgroup closed class, then χ⊂ (χ, ∞) ⊂ (χ, ∞)∗. 

 

In addition to the first results mentioned in the introduction concerning category (χ, ∞), we 

recall other results. In 2000, 2002 and 2005, Abdollahi and Trabelsi, proved in [1, 19, 21] 

that a finitely generated solvable group is in the class (FNk, ∞) (resp. (FN, ∞), (NF, ∞), 

(τN, ∞)) if and only if it is FN�
(�)

, (resp. FN, NF, τN). Other results of this type have been 

obtained, for example in [3, 4, 7, 9, 10, 20].  

 

In this note we prove that a finitely generated τN-group G is in the class ((τNk)τ, ∞) is in 

the class τN�
(�)

 and deduce that a finitely generated FN-group ( respectively NF-group) G in 

the class of ((FNk)F, ∞)-groups, is in the class of FN�
(�)

-groups ( respectively in the class of 

N�
(�)

F-groups) and In particular  a finitely generated FN-group G is in the class ((FC)F, ∞), 

if and only if, it is FA-group. 

 

About other results on the class (χ, ∞)∗. In 2007, Rouabehi and Trabelsi proved in [18] that 

a finitely generated soluble group in the class (CN, ∞)∗ where C is the class of cernikov 

group ( respectively in the class (τN, ∞)∗) is FN-group (respectively τN-group).In 2007 too, 

Guerbi and Rouabhi proved in [9] that a finitely generated Hyper (abelian-by-finite) group 

in the class (Ω, ∞)∗ is FN-group, where Ω the class of groups of finite depth, i.e. G∈Ω, if 

and only if, there exists k∈ℕ:γk+1(G)= γk(G) where (γi(G)) is the lower central series of G. 

In this paper we prove that a finitely generated τN-group in the class ((τNk)τ, ∞)∗ is in the 

class (τNc)τ for certain integer c=c(k) and deduce that a finitely generated FN-group 

(respectively NF-group) G in the class ((FNk)F, ∞)∗) is in the class FNc (respectively NcF ). 

Finally, if G is a finitely generated FN-group in the class ((FC)F, ∞)∗ (respectively ((FN₂)F, 

∞)∗) then G is in the class of FN₂-groups (respectively in the class of  FN�
(�)

-groups) . 

 

 

3 Main results 

 
3.1. Stability by finite extension 
 

As we know, the property FC is not closed under the formation of extension. The following 

example shows that even, a finite extension of a FC-group is not always a FC-group. 

 

Example 3.1. Let G = D∞ =< a; b/ a
2
 = 1 and aba = b

-1
> the infinite dihedral group, which 

is a finitely generated soluble group, generated by the involutions a, b. We have          

K=C∞ =<b> which is a infinite cyclic group isomorphic to Ζ therefore it is a FC-group and 

the quotient group G/K is isomorphic to C2 =< a > which is finite of order 2, thus G is a 

finite extension of a FC-group, but as the center of the infinite dihedral group is trivial then 

it is not a FC-group. 

 

This example shows also that, in the class of finitely generated soluble groups, the property 

FC is not closed under the formation of finite extension. So we consider the class of finitely 
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generated finite-by-nilpotent groups. We prove that, in this class, the property FC is closed 

under taking finite extension. Precisely we prove the following Theorem. 

 

Theorem 3.1. Let G a finitely generated finite-by-nilpotent group. G is FC-by-finite group, 

if and only if, G is FC-group. 

 

Proof. If G is FC-group, it is clear that, G is FC-by-finite. Conversely, since G is finitely 

generated finite-by-nilpotent group, there exists a finite normal subgroup F of G such that 

the quotient group G/F is nilpotent group. As the property FC-by-finite is closed under 

quotient, it is enough to show that G/F is a FC-group. For this it is sufficient to show that 

every FC-by-finite group G in the class of finitely generated nilpotent groups is a FC-group 

too. Assume that G is (FC)F, so there exists a normal FC-subgroup N with of finite index in 

the group G. Since G is finitely generated and nilpotent, it checks the maximal condition on 

subgroups. So N is finitely generated FC-subgroup. According to ([5], Theorem 6.2) N is 

center-by-finite which means that Z(N) is of finite index in N. Or N is of finite index in G. 

It follows that Z(N) is of finite index in G. Let T = τ(G), the torsion subgroup of G, by 

Lemma 2.1, (ii) above T is finite. Note that, since F(FC) = FC as pointed out above in [15], 

it is enough to prove the statement for G=T, that is we may assume T = 1, that is G is 

nilpotent torsion-free group. Since Z(N) is of finite index in G then IG(H) = G. So by using 

Lemma 2.1, (iii) with H = Z(N) we deduce that G is abelian group. This completes the 

proof. 

 

Remark 3.1. The example below shows that Theorem 1. is falls when the condition 

"finitely generated" is omitted. 

 

Example 3.2 Let A = F2[X] algebra of polynoms on the field F2 and the isomorphism    

ϕ:A × A → A ×A, (P,Q) → (P + Q,Q). We put H = A × A and K =<ϕ> such that ϕ
2
 = IdA×A 

the identity application on A×A. Since H is an abelian group, it is a FC-group. K is a finite 

group of order 2 and so it is FC too. We consider G = H K, the semi-direct product of H 

by K. G is a non finitely generated nilpotent group, which is a finite extension of the FC-

group H. But G is not a FC-group. 

 

3.2 ττττNk and FNk-groups and conditions on infinite subsets 
 

Our first elementary propositions below follows from lemmas below. 

 

Lemma 3.1. ([1], Corollary 1.8. (i)) If G a finitely generated soluble group in the class 

(FNk,∞), then G is in the class of FN�
(�)

 -groups and there exists an integer t, depending 

only on k, such G=Zt(G) is finite. 

 

Lemma 3.2. ([4], Theorem) Let G be a finitely generated soluble group. Then G has the 

property (Nk,∞) if and only if G is a FN�
(�)

-group. 

 

Proposition 3.1. If G is a finitely generated finite-by-soluble group in the class (FNk,∞); 

then G is in the class of FN�
(�)

-groups. 

 

Proof. Suppose that G is finite-by-soluble, there exists finite normal subgroup N such that 

G/N is soluble. As the class of (FNk,∞)-group, is closed under taking quotient, then the 

quotient group G/N is a finitely generated soluble group in the class of (FNk,∞)-group. By 
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Lemma 3.2 above, the quotient group G/N is in the class of FN�
(�)

-groups. Therefore G is 

finite-by- FN�
(�)

-groupand this gives that G is FN�
(�)

-group. This completes the proof. 

 

Proposition 3.2. If G is a finitely generated torsion-by-soluble group in the class (τNk,∞); 

then G is in the class of τN�
(�)

-groups. 
 

Proof.  Suppose that G is torsion-by-soluble, there exists a torsion and normal subgroup N 

such that G/N is soluble. As the class of (τNk,∞)-group, is closed under taking quotient, 

then the quotient group G/N is a finitely generated soluble group in the class of 

(τNk,∞)which is included in (τN, ∞).By a result in [21], G/N is in the class of τN-groups. 

Using Lemma 2.1, (i), G/N admits a torsion group τ(G/N) = T/N such that the quotient G/T 

is torsion-free in the class (τNk,∞). So G/T is a finitely generated soluble group in the class 

(τNk,∞). It results by Lemma 3.2 above that G/T is in the class FN�
(�)

, therefore G is 

torsion-by-FN�
(�)

, and this gives that G is τN�
(�)

-group. This completes the proof. 

 

Theorem 3.2 Let G a finitely generated τN-group. If G is in the class ((τNk)τ,∞), then, 

G is τN�
(�)

-group. 

 

Proof. Assume that G is finitely generated τN- group in the class ((τNk)τ,∞). There exists a 

normal and torsion subgroup H of G such that G/H is nilpotent quotient group. Since G/H 

is finitely generated nilpotent group, it has a torsion subgroup T/H of finite order and as H 

is torsion group then T is torsion group too. So G/T is torsion-free nilpotent group in the 

class ((τNk)τ,∞) which gives that G/T is in the class (Nkτ,∞). We deduce by ([16], Lemma 

6.33) that G/T is in the class (Nkτ,∞) and so G/T is a finitely generated soluble group in the 

class (Nk,∞). It follows by ([4] Theorem) that G/T belongs in the class of FN�
(�)

-groups and 

as T is torsion, it gives that G is in the class of τN�
(�)

-groups. This completes the proof.  

 

If we replace the property τN by the property FN, we obtain the result in the lemma below. 

 

Lemma 3.3. Let G a finitely generated FN-group. 

(i) If G is in the class ((FNk)F,∞), then G is in the class of FN�
(�)

-groups. 

(ii) G is in the class ((FC)F,∞), if and only if, G is FC-group. 

 

Proof.  (i) Assume that G is finitely generated FN-group in the class ((FNk)F,∞)which is in 

the class((τNk)τ,∞). As G is FN-group, there exists a normal and finite subgroup H of G 

such that G/H is nilpotent. As in the above theorem, we found that the torsion subgroup 

T/Hof G/H is finite and so T is finite too. As the property ((τNk)τ,∞) is closed under 

quotient then the quotient group G/T a torsion-free nilpotent group which verifies the 

conditions of the above theorem. It follows that G/T belongs in the class of FN�
(�)

-

groups,which gives that G/Tis in the classNk⁽²⁾ and hence G is in the class FN�
(�)

. 

 

(ii) As finitely generated FN-group verifies maximal condition on subgroups, then, FC = 

FA = FN1 = FN�
(�)

 and ((FC)F,∞) = ((FN1)F,∞). This completes the proof.  
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The Example 1 above shows that nilpotency is necessary for the results of the above 

theorem to remain true. 

 

Remark 3.2. (i) As (FNk)F is a subgroup closed class, then(FNk)F⊂((FNk)F,∞), we deduce 

that a finitely generated FN-group in the class (FNk)F , is in the class FN�
(�)

. 

 

(ii) Theorem 1 can be proved by using (ii) in the lemma above and by seeing that (FC)F is a 

subgroup closed class so (FC)F⊂((FC)F, ∞). 

 

(iii) In (i) of the above lemma, as G is in the class FN�
(�)

 and as nilpotent groups of class at 

most k are k-Engel then G is finite-by-(k-Engel, torsion-free and soluble of derived 

length an integer d). So by a result of Gruenberg [16, Theorem 7.36 (i)] G is in the 

class ofFN����and by P. Hall [10] there exists an integer c=c(k, l) depending on k, d 

such that G/Zc(G). 

 

Recall that FN-groups are NF-groups (see[9]). 

 

Theorem 3.3. Let G a finitely generated NF-group. 

(i) If G is in the class ((FNk)F,∞), then G is in the class of N�
(�)

F-groups. 

(ii) In particular, if G is in the class ((FC)F,∞), then G is in the class of AF-group. 

 

Proof. (i) Assume that G is finitely generated NF-group in the class ((FNk)F,∞).  As the 

group G is NF- group, and then it contains a normal nilpotent subgroup N such that G/N is 

finite. As the subgroup N is finitely generated and nilpotent of finite index then N is 

polycyclic so by ([14], Theorem 5.4.15) there exists a subgroup M normal in N and poly-

infinite cyclic hence torsion-free and of finite index in N. Let K=MG the core of the 

subgroup M, so K is nilpotent torsion-free of finite index in G. Since the class ((FNk)F,∞) 

is closed under taking subgroups, then K is nilpotent subgroup in the class ((FNk)F,∞) and 

according to (i) in the above lemma we deduce that K is torsion-free subgroup in the class 

of FN�
(�)

-groups which gives that K is N�
(�)

-group and so G is N�
(�)

F-group. In particular, 

for k=1 (FC)F=(FA)F=(FN₁)F and N�
(�)

F=AF.This completes the proof. 

 

If we replace the property ((τNk)τ, ∞) by the property ((τNk)τ, ∞)∗ in the above Theorem, 

we obtain the next result. 

 

Theorem 3.4. Let G a finitely generated τN-group. G is in the class ((τNk)τ, ∞)∗, then there 

exists an integer c=c(k) such that G is in the class of τNc-group. 

 

Proof. Assume that G is finitely generated τN- group in the class ((τNk)τ, ∞)∗. Let T=τ(G) 

the torsion group of G. So by Lemma 2.1. (i) G/T is torsion-free nilpotent group and as 

((τNk)τ, ∞)∗is quotient closed class then G/T belongs in ((τNk)τ, ∞)∗ and hence G/T is in 

the class (Nkτ, ∞)∗. We deduce by ([16], Lemma 6.33) that G/T is in the class (Nk, ∞)∗. 

Note that the class (Nk, ∞)∗is included in the class εk+1(∞), where εk+1(∞) is the class of 

groups whose every infinite subset X contain two distinct elements x, y such that  

[x,k+1y]=1. We deduce that G/T belongs in εk+1(∞). Since G/T is nilpotent so soluble then 

by ([2], Theorem 3) there exists an integer c=c(k) depending only on k such that 

(G/T)/Zc(G/T) is finite. By a result in ([10], Theorem 1) γc+1(G/T)= γc+1(G)T/T is finite and 
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so is torsion, and since T is torsion group , we deduce that γc+1(G) is torsion group too. 

Therefore G is in the class of τNc-group. This completes the proof. 

 

Lemma 3.4. Let G a finitely generated FN-group. 

(i) If G is in the class ((FNk)F,∞)∗, then there exists  an integer c=c(k) depending only on k 

such that G is in the class ofFNc-group. 

(ii) G is in the class ((FC)F,∞)∗, then, G/Z₂(G) is finite and G is in the class of FN₂-groups. 

(iii) If G is in the class ((FN₂)F, ∞)∗, then, G is in the class of FN�
(�)

-groups. 

 

Proof. (i) Assume that G is finitely generated FN- group in the class ((FNk)F,∞)∗. Let 

T=τ(G) the torsion subgroup of G. So by Lemma 2.1. (ii) T is a characteristic (so normal) 

and finite subgroup in G and as the same way in the above theorem, we deduce by ([16], 

Lemma 6.33) that G/T is in the class (Nk, ∞)∗which is included in the class εk+1(∞)and 

according to ([2], Theorem 3) we found that there exists  an integer c=c(k) depending only 

on k such that (G/T)/Zc(G/T) is finite. By a result in ([10], Theorem 1) γc+1(G/T)= 

γc+1(G)T/T is finite and since T is finite, γc+1(G) is finite too. Therefore G is in the class of 

FNc-groups. 

 

(ii) As the same way in (i) and the above Theorem we found that G/T is in the class 

(A,∞)∗which is included in the class ε₂(∞), where ε₂(∞) is the class of groups whose every 

infinite subset X contain two distinct elements x, y such that [x,₂y]=1. we deduce by ([7], 

Theorem) that (G/T)/Z₂(G/T) is finite and as T is finite then G/Z₂(G) is finite equivalently 

γ₃(G) is finite. It follows that G is in the class of FN₂-groups. 

 

(iii) For k=2, as the same way in the above theorem we found that G/T is in the class 

(N₂,∞)∗which is included in the class ε₃(∞), where ε₃(∞) is the class of groups whose every 

infinite subset X contain two distinct elements x, y such that [x,₃y]=1.we deduce by ([2], 

Theorem 1) that G/T is in the class FN�
(�)

 and as the torsion subgroup T is finite, then G is 

F(FN�
(�)

)-group. It follows that G is FN�
(�)

-group. This completes the proof. 

 

 

Theorem 3.5. Let G a finitely generated NF-group. 

(i) If G is in the class ((FNk)F,∞)∗, then there exists  an integer c=c(k) depending only on 

such that G is in the class of NcF-groups. 

(ii) If G is in the class of ((FC)F, ∞)∗-groups, then, G is in the class of N₂F-group. 

(iii) If G is in the class ((FN₂)F, ∞)∗, then, G is in the class of N�
(�)

F-groups. 

 

Proof. As the group G is NF- group, and then it contains a normal nilpotent subgroup N 

such that G/N is finite. As the subgroup N is finitely generated and nilpotent of finite index 

then N is polycyclic so by ([14], Theorem 5.4.15) there exists a normal subgroup M in N 

and poly-infinite cyclic hence torsion-free and of finite index in N. Let K=MG the core of 

the subgroup M, so K is nilpotent torsion-free of finite index in G. Since the class 

((FNk)F,∞)∗is closed under taking subgroups, then K is in this class too, so by (i) in the 

above lemma, we obtains that there exists  an integer c=c(k) depending only on k such that 

K is FNc-group and as K is torsion-free, it is Nc-group and so G is NcF-group 

 

(ii) Particulary for k=1, we have ((FC)F, ∞)∗=((FN₁)F, ∞)∗, in this case the subgroup  K is a 

finitely generated torsion-free nilpotent group in the class ((FN₁)F, ∞)∗ and according to  
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(ii) in the above lemma, we deduce that K is in the class FN₂-groups and as K is torsion-

free, it is N₂-group of finite index in G, this gives that  G is N₂F-group. 

 

(iii) In particular for k=2, we have the subgroup K in (i) is a finitely generated torsion-free 

nilpotent group in the class ((FN₂)F, ∞)∗ and according to (iii) in the above lemma, we 

deduce that K is in the class FN₃⁽²⁾-groups and as K is torsion-free it is the class N�
(�)

-group 

and as G/K if finite this gives that G is in the class of N�
(�)

F-groups. 
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Abstaract − Molodtsov introduced the concept of soft set as a new mathematical tool for
dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical
approaches. In this paper, we apply the notion of soft sets to the ordered semihypergroups and intro-
duce the notion of (M ,N )-int-soft generalized bi-hyperideals of ordered semihypergroups. Moreover
their related properties are investigated. We prove that every int-soft generalized bi-hyperideal is
an (M ,N )-int-soft generalized bi-hyperideals of S over U but the converse is not true which is
shown with help of an example. We present new characterization of ordered semihypergroups in
terms of (M ,N )-int-soft generalized bi-hyperideals.

Keywords − Ordered semihypergroup, int-soft hyperideal, int-soft generalized bi-hyperideal,
(M ,N )-int-soft hyperideal, (M ,N )-int-soft generalized bi-hyperideal.

1 Introduction

The real world is too complex for our immediate and direct understanding. We create
models of reality that are simplifications of aspects of the real word. Unfortunately
these mathematical models are too complicated and we cannot find the exact solu-
tions. The uncertainty of data while modeling the problems in engineering, physics,
computer sciences, economics, social sciences, medical sciences and many other di-
verse fields makes it unsuccessful to use the traditional classical methods, such as
fuzzy set theory [21], intuitionistic set theory [22], and probability theory are use-
ful approaches to describe uncertainty, but each of these theories has its inherent
difficulties. To overcome these problems, Molodtsov [7], introduced the concept of

*Corresponding Author.
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soft set that is free from the difficulties that have troubled the usual theoretical ap-
proaches. Molodtsov pointed out several directions for the applications of soft sets.
Maji et al. [23], gave the operations of soft sets and their properties; furthermore,
in [24], they introduced fuzzy soft sets which combine the strengths of both soft sets
and fuzzy sets. As a generalization of the soft set theory, the fuzzy soft set theory
makes description of the objective world more realistic, practical, and precise in some
cases, making it very promising. Since its introduction, the concept of soft sets has
gained considerable attention in many directions and has found applications in a
wide variety of fields such as the theory of soft sets [3, 4] and soft decision making
[25, 26]. Since the notion of soft groups was proposed by Aktas and Cagman [1],
then the soft set theory is used as a new tool to discuss algebraic structures Feng et
al. soft semirings [2], Jun et al. [5] ordered semigroups. Soft sets were also applied
to structure of hemirings [6, 8]. Song et al. [10], introduced the notions of int-soft
semigroups and int-soft left (resp. right) ideals. Khan et al. [19], applied soft set
theory to ordered semihypergroups and introduced the notions of (M ,N )-int-soft
hyperideals and (M ,N )-int-soft interior hyperideals.

Algebraic hyperstructures represent a natural extension of classical algebraic
structures and they were originally proposed in 1934 by a French mathematician
Marty [9], at the 8th Congress of Scandinavian Mathematicians. One of the main
reason which attracts researches towards hyperstructures is its unique property that
in hyperstructures composition of two elements is a set, while in classical algebraic
structures the composition of two elements is an element. Thus algebraic hyper-
structures are natural extension of classical algebraic structures. Since then, hyper-
structures are widely investigated from the theoretical point of view and for their
applications to many branches of pure and applied mathematics. Especially, semihy-
pergroups are the simplest algebraic hyperstructures which possess the properties of
closure and associativity. Nowadays many researchers have studied different aspects
of semihypergroups (see [12, 13, 14, 15, 16, 17, 18]).

In this paper, we study the notion of (M ,N )-int-soft generalized bi-hyperideals
of ordered semihypergroups and give some related examples of this notion. We
show that every int-soft generalized bi-hyperideals is an (M ,N )-int-soft generalized
bi-hyperideals but the converse is not true in general. We characterize ordered
semihypergroups in terms of (M ,N )-int-soft generalized bi-hyperideals.

2 Preliminaries

By an ordered semihypergroup we mean a structure (S, ◦,≤) in which the following
conditions are satisfied:

(i) (S, ◦) is a semihypergroup.
(ii) (S,≤) is a poset.
(iii) (∀a, b, x ∈ S) a ≤ b implies x ◦ a ≤ x ◦ b and a ◦ x ≤ b ◦ x.
For A ⊆ S,we denote (A] := {t ∈ S : t ≤ h for some h ∈ A}.
For A, B ⊆ S, we have A ◦B :=

⋃
{a ◦ b : a ∈ A, b ∈ B}.

A nonempty subset A of an ordered semihypergroup S is called a subsemihyper-
group of S if A ◦ A ⊆ A.
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A nonempty subset A of S is called a left (resp. right) hyperideal of S if it
satisfies the following conditions:

(i) S ◦ A ⊆ A (resp. A ◦ S ⊆ A).
(ii) If a ∈ A, b ∈ S and b ≤ a, implying b ∈ A.
By a two sided hyperideal or simply a hyperideal of S we mean a nonempty

subset of S which is both a left hyperideal and a right hyperideal of S.
A nonempty B of S is called a generalized bi-hyperideal of S if it satisfies the

following conditions:
(i) B ◦ S ◦B ⊆ B.
(ii) If a ∈ B, b ∈ S and b ≤ a, implying b ∈ B.
For x ∈ S, we define Ax = {(y, z) ∈ S × S | x ≤ y ◦ z}.

3 Soft Sets

In what follows, we take E = S as the set of parameters, which is an ordered
semihypergroup, unless otherwise specified.

From now on, U is an initial universe set, E is a set of parameters, P (U) is the
power set of U and A,B, C... ⊆ E.

Definition 3.1. (see [7, 20]). A soft set fA over U is defined as

fA : E −→ P (U) such that fA(x) = ∅ if x /∈ A.

Hence fA is also called an approximation function.
A soft set fA over U can be represented by the set of ordered pairs

fA = {(x, fA(x))|x ∈ E, fA(x) ∈ P (U)} .

It is clear that a soft set is a parameterized family of subsets of U . Note that the set
of all soft sets over U will be denoted by S(U).

Definition 3.2. (see [20]). Let fA, fB ∈ S(U). Then fA is called a soft subset of fB,
denoted by fA⊆̃fB if fA(x) ⊆ fB(x) for all x ∈ E.

Definition 3.3. (see [20]). Two soft sets fA and fB are said to be equal soft sets if
fA⊆̃fB and fB⊆̃fA and is denoted by fA=̃fB.

Definition 3.4. (see [20]). Let fA, fB ∈ S(U). Then the soft union of fA and fB,
denoted by fA∪̃fB = fA∪B, is defined by

(
fA∪̃fB

)
(x) = fA(x)∪ fB(x) for all x ∈ E.

Definition 3.5. (see [20]). Let fA, fB ∈ S(U). Then the soft intersection of fA and
fB, denoted by fA∩̃fB = fA∩B, is defined by

(
fA∩̃fB

)
(x) = fA(x) ∩ fB(x) for all

x ∈ E.

Definition 3.6. (see [11]). Let fA and gB be two soft sets of an ordered semihyper-
group S over U . Then, the intersectional soft product, denoted by fA ˜̄gB, is defined

by fA ˜̄gB : S −→ P (U), x 7−→ (
fA ˜̄gB

)
(x) =





⋃

(y,z)∈Ax

{fA(y) ∩ gB(z)} , if Ax 6= ∅,

∅, if Ax = ∅,
for all x ∈ S.
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Definition 3.7. (see [11]). For a nonempty subset A of S the characteristic soft set
is defined to be the soft set SA of A over U in which SA is given by

SA : S 7−→ P (U). x 7−→
{

U, if x ∈ A
∅, otherwise

For an ordered semihypergroup S, the soft set SS of S over U is defined as follows:

SS : S −→ P (U), x 7−→ SS(x) = U for all x ∈ S.

The soft set SS of an ordered semihypergroup S over U is called the whole soft
set of S over U.

Definition 3.8. (see [11]). Let fA be a soft set of an ordered semihypergroup S over
U a subset δ such that δ ∈ P (U). The δ-inclusive set of fA is denoted by iA(fA, δ)
and defined to be the set

iA(fA, δ) = {x ∈ S | δ ⊆ fA (x)} .

Definition 3.9. (see [11]). A soft set fA of an ordered semihypergroup S over U is
called an int-soft subsemihypergroup of S over U if:

(∀x, y ∈ S)
⋂

α∈x◦y
fA(α) ⊇ fA(x) ∩ fA(y).

Definition 3.10. (see [11]). Let fA be a soft set of an ordered semihypergroup S
over U. Then fA is called an int-soft left (resp. right) hyperideal of S over U if it
satisfies the following conditions:

(1) (∀x, y ∈ S)
⋂

α∈x◦y
fA(α) ⊇ fA(y) (resp.

⋂
α∈x◦y

fA(α) ⊇ fA(x)).

(2) (∀x, y ∈ S) x ≤ y =⇒ fA(x) ⊇ fA(y).

A soft set fA of an ordered semihypergroup S over U is called an int-soft hyperideal
( or int-soft two-sided hyperideal) of S over U if it is both an int-soft left hyperideal
and an int-soft right hyperideal of S over U.

Definition 3.11. (see [17]). A soft set fA of an ordered semihypergroup S over U
is called an int-soft generalized bi-hyperideal of S over U if it satisfies the following
conditions:

(1) (∀x, y, z ∈ S)
⋂

α∈x◦y◦z
fA(α) ⊇ fA(x) ∩ fA(z).

(2) (∀x, y ∈ S) x ≤ y =⇒ fA(x) ⊇ fA(y).

4 (M,N)-Int-Soft Generalized Bi-Hyperideals

In this section, we introduce the notion of (M ,N )-int-soft generalized bi-hyperideals
of ordered semihypergroups and investigate some related properties. From now on,
∅ ⊆ M ⊂ N ⊆ U.

Definition 4.1. (see [19]). A soft set fA of an ordered semihypergroup S over U is
called an (M ,N )-int-soft subsemihypergroup of S over U if:

(∀x, y ∈ S) (
⋂

α∈x◦y
fA(α)) ∪M ⊇ fA(x) ∩ fA(y) ∩N .
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Definition 4.2. (see [19]). A soft set fA of an ordered semihypergroup S over U is
called an (M ,N )-int-soft left (resp. right) hyperideal of S over U if it satisfies the
following conditions:

(1) (∀x, y ∈ S) (
⋂

α∈x◦y
fA(α)) ∪M ⊇ fA(y) ∩N

(resp. (
⋂

α∈x◦y
fA(α)) ∪M ⊇ fA(x) ∩N).

(2) (∀x, y ∈ S) x ≤ y =⇒ fA(x) ∪M ⊇ fA(y) ∩N.

A soft set fA of an ordered semihypergroup S over U is called an (M ,N )-int-
soft hyperideal of S over U, if it is both an (M ,N )-int-soft left hyperideal and an
(M ,N )-int-soft right hyperideal of S over U.

Definition 4.3. A soft set fA of an ordered semihypergroup S over U is called
an (M ,N )-int-soft generalized bi-hyperideal of S over U if it satisfies the following
conditions:

(1) (∀x, y, z ∈ S) (
⋂

α∈x◦y◦z
fA(α)) ∪M ⊇ fA(x) ∩ fA(z) ∩N .

(2) (∀x, y ∈ S) x ≤ y =⇒ fA(x) ∪M ⊇ fA(y) ∩N.

Example 4.4. Let (S, ◦,≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ a b c d
a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a, b} {a}
d {a} {a} {a, b} {a, b}

≤:= {(a, a), (b, b), (c, c), (d, d), (a, b)}.
Suppose U = {p, q, r, s} , A = {a, c, d} , M = {p, q} and N = {p, q, s} . Let us

define fA (a) = {p, q, r, s} , fA (b) = ∅, fA (c) = {q, r, s} and fA (d) = {p, s} . Then
fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Remark 4.5. Every int-soft generalized bi-hyperideal is an (M ,N )-int-soft gener-
alized bi-hyperideal of S over U. But the converse is not true. We can illustrate it
by the following example.

Example 4.6. Let (S, ◦,≤) be an ordered semihypergroup where the hyperoperation
and the order relation are defined by:

◦ e1 e2 e3 e4 e5

e1 {e1} {e1, e2, e4} {e1} {e1, e2, e4} {e1, e2, e4}
e2 {e1} {e2} {e1} {e1, e2, e4} {e1, e2, e4}
e3 {e1} {e1, e2, e4} {e1, e3} {e1, e2, e4} {e1, e2, e3, e4, e5}
e4 {e1} {e1, e2, e4} {e1} {e1, e2, e4} {e1, e2, e4}
e5 {e1} {e1, e2, e4} {e1, e3} {e1, e2, e4} {e1, e2, e3, e4, e5}

≤:= {(e1, e1), (e2, e2), (e3, e3), (e4, e4), (e5, e5) , (e1, e3), (e1, e4) , (e1, e5) , (e2, e4) , (e2, e5) ,
(e3, e5) , (e4, e5)}.
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Suppose U = {1, 2, 3}, A = {e1, e2, e4} , M = {2} and N = {2, 3} . Let us define
fA (e1) = {1, 2, 3} , fA (e2) = {1, 2} , fA (e3) = ∅, fA (e4) = {2} and fA (e5) = ∅. Then
fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U. This is not int-soft

generalized bi-hyperideal of S over U , as
⋂

α∈e1◦e1◦e2={e1,e2,e4}
fA (α) = fA (e1)∩fA (e2)∩

fA (e4) = {2} + {1, 2} = fA (e1) ∩ fA (e2) .

Theorem 4.7. A non-empty subset A of an ordered semihypergroup (S, ◦,≤) is a
generalized bi-hyperideal of S if and only if the soft set fA is defined by

fA (x) =

{
N if x ∈ A
M if x /∈ A

is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Proof. Suppose A is a generalized bi-hyperideal of S. If there exist x, y ∈ S such
that x ≤ y. If y ∈ A, then x ∈ A. Hence fA (x) = N. Therefore fA (x) ∪M ⊇ N =
fA (y) ∩ N. If y /∈ A, then fA (y) ∩ N = M. Thus fA (x) ∪ M ⊇ M = fA (y) ∩ N.
Let x, y, z ∈ S, such that x, z ∈ A. Then fA (x) = N and fA (z) = N. Hence for any

α ∈ x ◦ y ◦ z, (
⋂

αx◦y◦z
fA (α)) ∪M ⊇ N = fA (x) ∩ fA (z) ∩N. If x /∈ A or z /∈ A then

fA (x)∩ fA (z)∩N = M. Thus (
⋂

αx◦y◦z
fA (α))∪M ⊇ M = fA (x)∩ fA (z)∩N. Hence

(
⋂

αx◦y◦z
fA (α)) ∪ M ⊇ fA (x) ∩ fA (z) ∩ N. Consequently, fA is an (M ,N )-int-soft

generalized bi-hyperideal of S over U.

Theorem 4.8. If {fAi
| i ∈ I} is a family of (M ,N )-int-soft generalized bi-hyperideal

of an ordered semihypergroup S over U. Then fA =
⋂
i∈I

fAi
is an (M ,N )-int-soft

generalized bi-hyperideal of S over U.

Proof. Let {fAi
| i ∈ I} be a family of (M ,N )-int-soft generalized bi-hyperideal of

S over U. Let x, y, z ∈ S and (
⋂

β∈x◦y◦z
fAi

(β)) ∪ M ⊇ fAi
(x) ∩ fAi

(z) ∩ N. Since

each fAi
(i ∈ I) is an (M ,N )-int-soft generalized bi-hyperideal of S over U. Thus

for any β ∈ x ◦ y ◦ z, fAi
(β) ∪ M ⊇ fAi

(x) ∩ fAi
(z) ∩ N. Then fA (β) ∪ M =(⋂

i∈I

fAi

)
(β) ∪M = (

⋂
i∈I

fAi
(β)) ∪M ⊇

⋂
i∈I

(fAi
(x) ∩ fAi

(z) ∩N) =

(⋂
i∈I

fAi

)
(x) ∩

(⋂
i∈I

fAi

)
(z)∩N = fA (x)∩fA (z)∩N. Thus (

⋂

β∈x◦y◦z
fA (β))∪M ⊇ fA (x)∩fA (y)∩N .

Furthermore, if x ≤ y, then fA (x)∪M ⊇ fA (y)∩N. Indeed: Since every fAi
(i ∈ I)

is an (M ,N )-int-soft generalized bi-hyperideal of S over U, it can be obtained that

fAi
(x) ∪ M ⊇ fAi

(y) ∩ N for all i ∈ I. Thus fA (x) ∪ M =

(⋂
i∈I

fAi

)
(x) ∪ M =

(
⋂
i∈I

(fAi
(x))) ∪M ⊇ (

⋂
i∈I

(fAi
(y))) ∩ N =

(⋂
i∈I

fAi

)
(y) ∩ N = fA (y) ∩ N. Thus fA

is is an (M ,N )-int-soft generalized bi-hyperideal of S over U.
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Theorem 4.9. Let (S, ◦,≤) be an ordered semihypergroup and A be a nonempty
subset of S. Then A is a generalized bi-hyperideal of S if and only if the characteristic
function SA of A is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Proof. Suppose that A is a generalized bi-hyperideal of S. Let x, y and z be any

elements of S. Then (
⋂

α∈x◦y◦z
SA (α)) ∪M ⊇ SA (x) ∩ SA (z) ∩N. Indeed, If x, z ∈ A,

then SA (x) = U and SA (z) = U. Since A is a generalized bi-hyperideal of S, we
have α ∈ x ◦ y ◦ z ⊆ A ◦ S ◦A ⊆ A we have SA (α) = U and ∅ ⊆ M ⊂ N ⊆ U. Thus

(
⋂

α∈x◦y◦z
SA (α)) ∪M = U ⊇ SA (x) ∩ SA (z) ∩N. If x /∈ A or z /∈ A then SA (x) = ∅

or SA (z) = ∅. Since SA (p) ⊇ ∅ for all p ∈ S. Thus (
⋂

α∈x◦y◦z
SA (α)) ∪ M ⊇ ∅ =

SA (x)∩SA (z)∩N. Let x, y ∈ S with x ≤ y. Then SA (x)∪M ⊇ SA (y)∩N. Indeed,
if y /∈ A then SA (y) = ∅ and ∅ ⊆ M ⊂ N ⊆ U so SA (x) ∪M ⊇ ∅ = SA (y) ∩N. If
y ∈ A then SA (y) = U. Since x ≤ y and A is a generalized bi-hyperideal of S, we
have x ∈ A and thus SA (x) ∪M = U ⊇ SA (y) ∩N.

Conversely, let ∅ 6= A ⊆ S such that SA is an (M ,N )-int-soft generalized hy-
perideal of S over U. Let α ∈ A ◦ S ◦ A, then there exist x, z ∈ A and y ∈ S

such that α ∈ x ◦ y ◦ z. Since (
⋂

α∈x◦y◦z
SA (α)) ∪ M ⊇ SA (x) ∩ SA (z) ∩ N, and

x, z ∈ A we have SA (x) = U and SA (z) = U. Hence for each α ∈ A ◦ S ◦ A,

we have (
⋂

α∈x◦y◦z
SA (α)) ∪ M ⊇ U ∩ U ∩ N = N. Thus by ∅ ⊆ M ⊂ N ⊆ U,

⋂
α∈x◦y◦z

SA (α) ⊇ N ⊃ ∅. On the other hand SA (x) ⊆ U for all x ∈ S. Thus for any

α ∈ x ◦ y ◦ z, SA (α) = U implies that α ∈ A. Thus A ◦ S ◦A ⊆ A. Furthermore, let
x ∈ A, S 3 y ≤ x. Then y ∈ A. Indeed, it is enough to prove that SA (y) = U. By
x ∈ A we have SA (x) = U. Since SA is an (M ,N )-int-soft generalized-hyperideal of
S over U and y ≤ x, we have SA (y) ∪M ⊇ SA (x) ∩ N = U ∩ N = N. Notice that
∅ ⊆ M ⊂ N ⊆ U, we conclude that SA (y) ⊇ ∅. Thus SA (y) = U. Therefore A is a
generalized bi-hyperideal of S.

Theorem 4.10. Let fA be a soft set of an ordered semihypergroup S over U and
δ ∈ P (U) . Then fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U if and
only if each nonempty δ-inclusive set iA(fA, δ) of fA is a generalized bi-hyperideal of
S where M ⊂ δ ⊆ N.

Proof. Assume that fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U,
and iA(fA, δ) 6= ∅. Let x, y, z ∈ S and x, z ∈ iA(fA, δ) where M ⊂ δ ⊆ N. Then
fA (x) ⊇ δ and fA (z) ⊇ δ. Since fA is an (M ,N )-int-soft generalized bi-hyperideal

of S over U. Thus (
⋂

w∈x◦y◦z
fA (w)) ∪M ⊇ fA (x) ∩ fA (z) ∩N ⊇ δ ∩ δ ∩N = δ. Since

∅ ⊆ M ⊂ δ ⊆ N ⊆ U, we can write as
⋂

w∈x◦y◦z
fA (w) ⊇ δ. Hence fA (w) ⊇ δ for any

w ∈ x ◦ y ◦ z implies that w ∈ iA(fA, δ). Thus iA(fA, δ) ◦ S ◦ iA(fA, δ) ⊆ iA(fA, δ).
Furthermore, let x ∈ iA(fA, δ), S 3 y ≤ x. Then y ∈ iA(fA, δ). Indeed, since x ∈
iA(fA, δ), fA (x) ⊇ δ and fA is an (M ,N )-int-soft generalized bi-hyperideal of S over
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U, we have fA (y) ∪M ⊇ fA (x) ∩ N ⊇ δ ∩ N = δ. By M ⊂ δ, we have fA (y) ⊇ δ,
i.e., y ∈ eA(fA, δ). Therefore iA(fA, δ) is a generalized bi-hyperideal of S.

Conversely, suppose that iA(fA, δ) 6= ∅ is a generalized bi-hyperideal of S for all

M ⊂ δ ⊆ N . Now let x, y, z ∈ S. We will prove that (
⋂

α∈x◦y◦z
fA (α)) ∪M ⊇ fA (x) ∩

fA (z)∩N for all x, y, z ∈ S. If there exist x1, y1, z1 such that (
⋂

α∈x1◦y1◦z1

fA (α))∪M ⊂

fA (x1) ∩ fA (z1) ∩ N, and M ⊂ δ ⊆ N such that (
⋂

α∈x1◦y1◦z1

fA (α)) ∪ M ⊂ δ ⊆

fA (x1) ∩ fA (z1) ∩ N, so fA (x1) ⊇ δ, fA (z1) ⊇ δ and
⋂

α∈x1◦y1◦z1

fA (α) ⊂ δ then

x1, z1 ∈ iA(fA, δ) and x1◦y1◦z1 * iA(fA, δ). This is a contradiction that iA(fA, δ) is a
generalized bi-hyperideal of S. Moreover if x ≤ y then fA (x)∪M ⊇ fA (y)∩N. Indeed,
if there exist x1, y1 ∈ S such that x1 ≤ y1 and fA (x1)∪M ⊂ fA (y1)∩N , M ⊂ δ ⊆ N
such that fA (x1) ∪M ⊂ δ ⊆ fA (y1) ∩ N and we have fA (y1) ⊇ δ and fA (x1) ⊂ δ.
Then y1 ∈ iA(fA, δ) and x1 /∈ iA(fA, δ). This is a contradiction that iA(fA, δ) is a
generalized bi-hyperideal of S. Thus if x ≤ y then fA (x) ∪M ⊇ fA (y) ∩N.

Theorem 4.11. Every (M ,N )-int-soft right (resp. left) hyperideal of S over U is
an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Proof. Let fA is an (M ,N )-int-soft right hyperideal of S over U. Let x, y, z ∈ S.

Then (
⋂

α∈x◦y◦z
fA (α)) ∪M = (

⋂

α∈x◦β
β∈y◦z

fA (α)) ∪M ⊇ fA (x) ∩ N ⊇ fA (x) ∩ fA (z) ∩ N.

Thus fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Let gB is an (M ,N )-int-soft left hyperideal of S over U. Then (
⋂

α∈x◦y◦z
gB (α)) ∪

M = (
⋂

α∈γ◦z
γ∈x◦y

gB (α)) ∪M ⊇ gB (z) ∩N ⊇ gB (x) ∩ gB (z) ∩N. Thus gB is an (M ,N )-

int-soft generalized bi-hyperideal of S over U.

Definition 4.12. Let (S, ◦,≤) be an ordered semihypergroup. Let fA be a soft set
of S over U. We define the the soft set f ∗A of S as follows:

f ∗A (x) = fA (x) ∩N ∪M

for all x ∈ S.

Definition 4.13. Let (S, ◦,≤) be an ordered semihypergroup. Let fA and gB be
soft set of S over U. We define fA∩̃∗gB, fA∪̃∗gB and fA˜̄∗gB of S as follows:

(
fA∩̃∗gB

)
(x) =

((
fA∩̃gB

)
(x) ∩N

) ∪M
(
fA∪̃∗gB

)
(x) =

((
fA∪̃gB

)
(x) ∩N

) ∪M
(
fA˜̄∗gB

)
(x) =

((
fA ˜̄gB

)
(x) ∩N

) ∪M

for all x ∈ S.
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Lemma 4.14. Let fA and gB be soft sets of an ordered semihypergroup S over U.
Then the following conditions hold:

(1) fA∩̃∗gB = f ∗A∩̃g∗B.
(2) fA∪̃∗gB = f ∗A∪̃g∗B.
(3) fA˜̄∗gB⊇̃f ∗A ˜̄g∗B.

Proof. (1) Let x ∈ S. Then

(
fA∩̃∗gB

)
(x) =

((
fA∩̃gB

)
(x) ∩N

) ∪M

=
((

fA (x) ∩̃gB (x)
) ∩N

) ∪M

=
(
(fA (x) ∩N) ∩̃ (gB (x) ∩N)

) ∪M

= (((fA (x) ∩N)) ∪M) ∩̃ (((gB (x) ∩N)) ∪M)

= f ∗A∩̃g∗B.

(2) Proof is similar to the proof of (1) .
(3) If Ax = ∅. Then

(
fA ˜̄gB

)
(x) = ∅. Thus

(
fA˜̄∗gB

)
(x) =

((
fA ˜̄gB

)
(x) ∩N

) ∪M

= (∅ ∩N) ∪M

= M = N ∩M(
fA˜̄∗gB

)
(x) ⊇ M = f ∗A ˜̄g∗B.

If Ax 6= ∅. So there exist y, z ∈ S such that x ≤ y ◦ z. Then (y, z) ∈ Ax. Thus

(
fA˜̄∗gB

)
(x) =

((
fA ˜̄gB

)
(x) ∩N

) ∪M

=





 ⋃

(y,z)∈Ax

{fA (y) ∩ gB (z)}

 ∩N


 ∪M

=


 ⋃

(y,z)∈Ax

{(fA (y) ∩N) ∩ (gB (z) ∩N)}

 ∪M

=
⋃

(y,z)∈Ax

{((fA (y) ∩N) ∪M) ∩ (gB (z) ∩N) ∪M}

=
⋃

(y,z)∈Ax

{f ∗A (y) ∩ g∗B (z)}

= (f ∗A ¯ g∗B) (x) .

Thus fA˜̄∗gB⊇̃f ∗A ˜̄g∗B.

Definition 4.15. If SA is the characteristic soft function of A. Then S∗A is defined
over U in which S∗A is given by

S∗A (x) =

{
N if x ∈ A
M if x /∈ A
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Lemma 4.16. Let A and B be the nonempty subsets of an ordered semihypergroup
S. Then the following holds:

(1) SA∩̃∗SB = S∗A∩B.
(2) SA∪̃∗SB = S∗A∪B.
(3) SA˜̄∗SB = S∗(A◦B].

Proof. (1) and (2) are obvious.
(3) Let x ∈ (A ◦B] . Then S(A◦B] (x) = U . Hence

(S(A◦B] ∩N
)∪M = (U ∩N)∪

M = N ∪M = N. Thus S∗(A◦B] (x) = N. Since x ∈ (A ◦B] , we have x ≤ a ◦ b for

some a ∈ A and b ∈ B. Then (a, b) ∈ Ax and Ax 6= ∅. Thus

(
SA˜̄∗SB

)
(x) =

((SA ˜̄SB
)
(x) ∩N

) ∪M

=








⋃

(y,z)∈Ax

(SA (y) ∩ SB (z))



 ∩N


 ∪M

⊇ [{SA (a) ∩ SB (b)} ∩N ] ∪M.

Since a ∈ A and b ∈ B, we have SA (a) = U and SB (b) = U and so

(
SA˜̄∗SB

)
(x) ⊇ [{SA (a) ∩ SB (b)} ∩N ] ∪M

= [{U ∩ U} ∩N ] ∪M

= N ∪M = N.

Thus, (
SA˜̄∗SB

)
(x) = S∗(A◦B] (x) .

Let x /∈ (A ◦B] , then S(A◦B] (x) = ∅ and hence,

{S(A◦B] (x) ∩N
} ∪M = {∅ ∩N} ∪M = M.

So S∗(A◦B] (x) = M. Let (y, z) ∈ Ax. Then

(
SA˜̄∗SB

)
(x) =

((SA ˜̄SB
)
(x) ∩N

) ∪M

=








⋃

(y,z)∈Ax

(SA (y) ∩ SB (z))



 ∩N


 ∪M.

Since (y, z) ∈ Ax, then x ≤ y ◦ z. If y ∈ A and z ∈ B, then y ◦ z ⊆ A ◦B and so
x ∈ (A ◦B] . This is a contradiction. If y /∈ A and z ∈ B, then








⋃

(y,z)∈Ax

(SA (y) ∩ SB (z))



 ∩N


 ∪M =








⋃

(y,z)∈Ax

(∅ ∩ U)



 ∩N


 ∪M = M.

Hence
(
SA˜̄∗SB

)
(x) = M = S∗(A◦B] (x) . Similarly, for y ∈ A and z /∈ B, we have(

SA˜̄∗SB
)

(x) = M = S∗(A◦B] (x) .
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Theorem 4.17. If fA is an (M ,N )-int-soft subsemihypergroup of S over U. Then
f ∗A is an (M ,N )-int-soft subsemihypergroup of S over U.

Proof. Suppose that fA is an (M ,N )-int-soft subsemihypergroup of S over U. Let
x, y ∈ S. Then

⋂
α∈x◦y

f ∗A (α) ∪M =

[ ⋂
α∈x◦y

{(fA (α) ∩N) ∪M}
]
∪M

=

[ ⋂
α∈x◦y

(fA (α) ∪M) ∩ (N ∪M)

]
∪M

=

[ ⋂
α∈x◦y

(fA (α) ∪M) ∩N

]
∪M

⊇ {(fA (x) ∩ fA (y) ∩N) ∩N} ∪M

= {(fA (x) ∩N) ∩ (fA (y) ∩N) ∩N} ∪M

= {(fA (x) ∩N) ∪M} ∩ {(fA (y) ∩N) ∪M} ∩ (N ∪M)

= f ∗A (x) ∩ f ∗A (y) ∩N.

Thus f ∗A is an (M ,N )-int-soft subsemihypergroup of S over U.

Theorem 4.18. A soft set fA is an (M ,N )-int-soft subsemihypergroup of S over U
if and only if fA˜̄∗fA⊆̃f ∗A.

Proof. Assume that fA is an (M ,N )-int-soft subsemihypergroup of S over U. Let
x ∈ S. If Ax = ∅. Then

(
fA ˜̄fA

)
(x) = ∅. Thus

(
fA˜̄∗fA

)
(x) =

{(
fA ˜̄fA

)
(x) ∩N

} ∪M

= (∅ ∩N) ∪M

= M
(
fA˜̄∗fA

)
(x) ⊇ M = f ∗A (x) .

If Ax 6= ∅. Then
(
fA˜̄∗fA

)
(x) =

{(
fA ˜̄fA

)
(x) ∩N

} ∪M

=






 ⋃

(a,b)∈Ax

{fA (a) ∩ fA (b)}

 ∩N



 ∪M

=





⋃

(a,b)∈Ax

(fA (a) ∩ fA (b) ∪M) ∩N



 ∪M

⊆




⋃

(a,b)∈Ax

(fA (x) ∩N) ∪M



 ∪M

= (fA (x) ∩N) ∪M

= f ∗A (x) .
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Thus fA˜̄∗fA⊆̃f ∗A.
Conversely, assume that fA˜̄∗fA⊆̃f ∗A. Let x, y ∈ S. Then for each α ∈ x ◦ y, we

have,

(fA (α) ∩N) ∪M = f ∗A (α) ⊇
(
fA˜̄∗fA

)
(α)

=
{(

fA ˜̄fA

)
(α) ∩N

} ∪M

=








⋃

(a,b)∈Aα

(fA (a) ∩ fA (b))



 ∩N


 ∪M

⊇ {(fA (x) ∩ fA (y)) ∩N} ∪M

⊇ {(fA (x) ∩ fA (y)) ∩N} .

Thus
⋂

α∈x◦y
fA (α) ∪ M ⊇ fA (x) ∩ fA (y) ∩ N. Hence fA is an (M ,N )-int-soft

subsemihypergroup of S over U.

Theorem 4.19. The characteristic function S∗A of A is an (M ,N )-int-soft generalized
bi-hyperideal of S over U, if and only if A is a generalized bi-hyperideal of S.

Proof. Suppose that A is a generalized bi-hyperideal of S. Then by Theorem 4.9, S∗A
is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Conversely, assume that S∗A is an (M ,N )-int-soft generalized bi-hyperideal of S
over U. Let x, y ∈ S, x ≤ y be such that y ∈ A. It implies that S∗A (y) = N. Since S∗A
is an (M ,N )-int-soft generalized bi-hyperideal of S over U. Therefore S∗A (x) ∪M ⊇
S∗A (y) ∩ N = N ∩ N = N. Since M ⊂ N. Hence S∗A (y) = N. Implies that x ∈ A.
Now if there exist x, y, z ∈ S such that x, z ∈ A. Then S∗A (x) = N and S∗A (z) = N.
Since S∗A is an (M ,N )-int-soft generalized bi-hyperideal of S over U. We have

⋂
α∈x◦y◦z

S∗A (α) ∪M ⊇ S∗A (x) ∩ S∗A (z) ∩N

= N ∩N ∩N

= N.

Since M ⊂ N. Hence S∗A (α) = N. Thus α ∈ x ◦ y ◦ z ⊆ A. Consequently, A is a
generalized bi-hyperideal of S.

Proposition 4.20. If fA is an (M ,N )-int-soft generalized bi-hyperideal of S over
U. Then f ∗A is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Proof. Assume that fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U.
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Let x, y, z ∈ S, then

⋂
α∈x◦y◦z

f ∗A (α) ∪M =

{( ⋂
α∈x◦y◦z

fA (α) ∩N

)
∪M

}
∪M

=

( ⋂
α∈x◦y◦z

fA (α) ∩N

)
∪M

=

( ⋂
α∈x◦y◦z

fA (α) ∪M

)
∩ (N ∪M)

=

( ⋂
α∈x◦y◦z

fA (α) ∪M

)
∩N

=

{( ⋂
α∈x◦y◦z

fA (α) ∪M

)
∪M

}
∩N

⊇ {(fA (x) ∩ fA (z) ∩N) ∪M} ∩N

= {(fA (x) ∩ fA (z) ∩N ∩N) ∪M ∪M} ∩N

= [{(fA (x) ∩N) ∪M} ∩ {(fA (z) ∩N) ∪M}] ∩N

= [f ∗A (x) ∩ f ∗A (z)] ∩N

= f ∗A (x) ∩ f ∗A (z) ∩N.

Let x, y ∈ S such that x ≤ y. Then f ∗A (x) ∪M ⊇ f ∗A (y) ∩N. Indeed. Thus

f ∗A (x) ∪M = {(fA (x) ∩N) ∪M} ∪M

= {(fA (x) ∩N) ∪M}
= {(fA (x) ∪M) ∩ (N ∪M)}
= {(fA (x) ∪M) ∩N}
= {(fA (x) ∪M) ∪M} ∩N

⊇ {(fA (y) ∩N) ∪M} ∩N

= f ∗A (y) ∩N.

Hence f ∗A is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Corollary 4.21. If {fAi
| i ∈ I} is a family of (M ,N )-int-soft generalized bi-hyperideal

of an ordered semihypergroup S over U. Then f ∗A =
⋂
i∈I

f ∗Ai
is an (M ,N )-int-soft gen-

eralized bi-hyperideal of S over U.

Theorem 4.22. A soft set fA satisfies condition (2) of Definition 4.3 is an (M ,N )-
int-soft generalized bi-hyperideal of S over U if and only if fA˜̄∗SS ˜̄∗fA⊆̃f ∗A.

Proof. Suppose that fA is an (M ,N )-int-soft generalized bi-hyperideal of S over U.

Let x ∈ S. If Ax = ∅. Then
(
fA˜̄∗SS ˜̄∗fA

)
(x) ⊆̃f ∗A (x) . Let Ax 6= ∅, then there
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exist a, b ∈ S such that x ≤ a ◦ b. So (a, b) ∈ Ax. Thus

(
fA˜̄∗SS ˜̄∗fA

)
(x)

=
{(

fA ˜̄
(
SS ˜̄∗fA

))
(x) ∩N

}
∪M

=





 ⋃

(a,b)∈Ax

{
fA (a) ∩

(
SS ˜̄∗fA

)
(b)

}

 ∩N


 ∪M

=


 ⋃

(a,b)∈Ax



fA (a) ∩








 ⋃

(c,d)∈Ab

{SS (c) ∩ fA (d)}

 ∩N


 ∪M






 ∩N


 ∪M

=


 ⋃

(a,b)∈Ax



fA (a) ∩








 ⋃

(c,d)∈Ab

fA (d)


 ∩N


 ∪M






 ∩N


 ∪M

=





 ⋃

(a,b)∈Ax





⋃

(c,d)∈Ab

[fA (a) ∩ fA (d)] ∩N



 ∪M


 ∩N


 ∪M

=





 ⋃

(a,b)∈Ax





⋃

(c,d)∈Ab

[fA (a) ∩ fA (d) ∪M ] ∩N






 ∩N


 ∪M

=


 ⋃

(a,b)∈Ax





⋃

(c,d)∈Ab

[fA (a) ∩ fA (d) ∪M ] ∩N








⊆
( ⋃

x≤a◦b≤a◦c◦d
{fA (x) ∩N} ∪M

)

= (fA (x) ∩N) ∪M

= f ∗A (x) .

Thus fA˜̄∗SS ˜̄∗fA⊆̃f ∗A.
Conversely, assume that f ∗A⊇̃fA˜̄∗SS ˜̄∗fA and x, y, z ∈ S. Then for every β ∈

x ◦ y ◦ z, we have

(fA (β) ∩N) ∪M = f ∗A (β)

⊇̃
(
fA˜̄∗SS ˜̄∗fA

)
(β)

=





 ⋃

(x,p)∈Aβ

{
fA (x) ∩

(
SS ˜̄∗fA

)
(p)

}

 ∩N


 ∪M
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(because there exist p ∈ y ◦ z such that β ≤ x ◦ p)

⊇
((

fA (x) ∩
(
SS ˜̄∗fA

)
(p)

)
∩N

)
∪M

⊇




fA (x) ∩





 ⋃

(y,z)∈Ap

{SS (y) ∩ fA (z)} ∩N





 ∪M


 ∩N


 ∪M

⊇ ((fA (x) ∩ ([fA (z) ∩N ] ∪M)) ∩N) ∪M

⊇ (((fA (x) ∩ fA (z)) ∪M) ∩N) ∪M

⊇ ((fA (x) ∩ fA (z) ∩N) ∩N)

= fA (x) ∩ fA (z) ∩N.

Thus
⋂

β∈x◦y◦z
fA (β) ∪ M ⊇ fA (x) ∩ fA (z) ∩ N. Thus fA is an (M ,N )-int-soft

generalized bi-hyperideal of S over U.

5 Conclusion

In this paper, we have presented a detail theoretical study of intersectional soft sets.
We introduced the notion of (M ,N )-int-soft generalized bi-hyperideals of ordered
semihypergroups and studied them. When M = ∅ and N = U, we meet intersec-
tional soft generalized bi-hyperideals. From this analysis, we say that (M ,N )-int-soft
generalized bi-hyperideals are more general concept than usual intersectional soft
ones. We characterized ordered semihypergroups in the framework of (M ,N )-int-
soft generalized bi-hyperideals. Hopefully that the obtained new characterizations
will be very useful for future study of ordered semihypergroups. In future we will
define other (M ,N )-int-soft hyperideals of ordered semihypergroups and study their
applications.
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[20] N. Çağman and S. Enginoğlu, Soft set theory and uni-int decision making, Eu-
ropean Journal of Operational Research, 207(2) (2010) 848-855.

[21] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965) 338-353.

[22] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986)
87–96 .

[23] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computers and Mathe-
matics with Applications 45(5) (2003) 555–562.

[24] P.K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, The Journal of Fuzzy
Mathematics 9(3) (2001) 589–602.
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for the practical applications and to solve the thorny problems containing doubts in different grounds. 
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together with a collection τ of sub set X under some set of parameters satisfying certain 
conditions. Such a collection τ is called a soft topological structure on X. General soft 
topology studied the characteristics of sub set of Xby using the members of. Therefore the 
study of point soft topology can be thought of the study of information. But in the real 
world situation there may be two or more universal sets. Our attempt is to introduce a 
single structure which carries the sub sets of  X and  Y for studying the information about 
ordered pair of sub sets of X and Y. Such a structure is called a binary soft structure from X 
to Y. 
 
In 2016 Açıkgöz andTas [1] introduced the notion of binary soft set theory on two master 
sets and studied some basic characteristics. In prolongation, Benchalli et al. [2] planned the 
idea of binary soft topology and linked fundamental properties which are defined over two 
master sets with appropriate parameters. Benchalli et al. [6] threw his detailed discussion 
on Binary Soft Topological. Kalaichelvi and Malini [7] beautifully discussed Application 
of Fuzzy Soft Sets to Investment Decision and also discussed some more results related to 
this particular field. Özgür and Taş, [8] studied some more Application of Fuzzy Soft Sets 
to Investment Decision Making Problem. Taş et al. [9] worked over An Application of Soft 
Set and Fuzzy Soft Set Theories to Stock Management Alcantud et al. [10] carefully 
discussed Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision Making 
Procedure for the Valuation of Assets. Çağman and Enginoğlu [11] attractively explored 
Soft Matrix Theory and some very basic results related to it and its Decision Making. 
 
In continuation, in the present paper we have defined and explored several properties of 
binary soft b-τ△�, i =  0 ;  1;  2 binary soft b-regular, binary soft b-τ△� , binary soft b-
normal and binary soft b-τ△�  axioms using binary soft points. Also, we have talked over 
some binary soft invariance properties i.e. binary soft topological property and binary soft 
hereditary property in binary soft topological spaces. 
 
The arrangement of this paper is as follows: Section 1 briefly reviews some basic concepts 
about soft sets, binary soft sets and their related properties; Section 2 some hereditary 
properties are discussed in a beautiful way. Section 3 is devoted to Binary Soft b-
Separation Axioms. Section 4 is devoted to Binary Soft b-Regular, Binary Soft b-Normal 
and Binary b-Soft �∆� (i=4, 3) Spaces. 
 

 

2. Preliminaries 

 
Definition 2.1. [5] Let X be an initial universe and let E be a set of parameters. Let P(X) 
denote the power set of X and let A be a nonempty subset ofE. A pair (F, A) iscalled a soft 
set over X, where F is a mapping given by F: A → P(X) . In other words, a soft set over X is 
a parameterized family of subsets of the universe X. For ∈ A,F (ε ) may be considered as 
the set of ε-approximate elements of the soft set (F, A). Clearly, a soft set is not a set. 
 
Let U�, U�be two initial universe sets and E be a set of parameters.  
 
LetP(U�), P(U�) denote the power set of U�, U� respectively. Also, let A, B, C ⊆  E. 
 

Definition 2.2. [1] A pair (F, A) is said to be a binary soft set over U�, U�where F is 
defined as below:  
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 F: A → P(U�) × P(U�), F(e)  =  (X, Y) for each e ∈ A such that X ⊆ U�, Y ⊆ U�. 
 

Definition 2.3. [1] A binary soft set (G, A) over U�, U� is called a binary absolute soft set, 

denoted byA%%if F (e) =(U�, U�) for eache ∈ A. 
 

Definition 2.4. [1] The intersection of two binary soft sets of (F, A) and (G, B) over the 
common U�, U� is the binary soft set (H, C), where C =  A ∩ B and for all e ∈ C 
 

H(e) = ( (X�, Y�) if e ∈ A − B (X�, Y�) if e ∈ B − A(X� ∪ X�, Y� ∪ Y�) if e ∈ A ∩ B, 
 
Such that F(e) = (X�, Y�) for each e ∈ A and G(e) = (X�, Y�) for eache ∈ B. We denote it (F, A) ∪.% (G, A) = (H, C) 
 

Definition 2.5. [1] The intersection of two binary soft sets (F, A) and (G, B) over a 
common U�, U� is the binary soft set (H, C), where  
 C =  A ∩ B, and H(e) = (X� ∩ X�, Y� ∩ Y�) 
 
for each e ∈ C such that F(e ) = (X�, Y�) for each e ∈ A and G(e) = (X�, Y�) for each  e ∈ B. We denote it as (F, A) ∩.% (G, B) = (H, C) 
 

 Definition 2.6. [1] Let (F, A) and (G, B) be two binary soft sets over a commonU�, U�.   
(F, A) is called a binary soft subset of (G, B) if 
 
(i)    A ⊆ B , 
(ii) X� ⊆ X� and Y� ⊆ Y� Such that F(e) = (X�, Y�), G(e) = X�, Y� for eache ∈ A.  
 

We denote it as (F, A) ⊆.% (G, B). 
 

Definition 2.7. [1] A binary soft set (F, A) over U�, U� is called a binary null soft set, 
denoted by if F(e)  =  (φ, φ ) for each e ∈ A. 
 

Definition 2.8. [1] The difference of two binary soft sets (F, A) and (G, A) over the 
Common U�, U� is the binary soft set (H, A), where H(e) (X� − X�, Y� − Y�) for each e ∈ A 
such that (F, A) = (X�, Y�) and (G, A) = (X�, Y�). 
 

Definition 2.9. [2] Let τ△ be the collection of binary soft sets over U�, U� then τ△ issaid to 
be a binary soft topology on U�, U� if 
 

(i) φ.%, X%% ∈ τ△ 
(ii) The union of any member of binary soft sets in τ△ belongs to τ△   
(iii) The intersection of any two binary soft sets in τ△ belongs toτ△  
 
Then (U�, U�, τ△, E) is called a binary soft topological space over U�, U�. 
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Definition 2.10. [2] Let (U�, U�, τ△, E) be a binary soft topological spaces on X% over U� × U� and Y% be non empty binary soft subset of X%%. Then τ△4 = {6 (F, E)/(F, E) ∈ ∆  is 

said to be the binary soft relative topology on Y%%and (Y,%% τ△4 , E) is called a binary soft 

subspace of (U�, U�, τ∆, E). We can easily verify that τ△4  is a binary soft topology on Y%%. 
 
 Example 2.1. [2] Any binary soft subspace of a binary soft indiscrete topological space is 
binary soft indiscrete topological space. 
    

Definition 2.11. Let (8, 9) be any binary soft sub set of a binary soft topological space  (:�, :�, ;△, <)then (8, 9) is called  
 
1) Binary soft b-open set of (U�, U�, τ△, E)  if(F, A) ⊆ cl(int((F, A) ∪ in(cl((F, A)  
2) Binary soft b-closed set of (U�, U�, τ△, E) if(F, A) ⊇ cl(int(F, A)))in(cl(F, A))) ) 
 
The set of all binary b-open soft sets is denoted by BSBO(U) and the set of 
all binary b-closed sets is denoted by BSBO(U). 
 

Proposition 2.1.Let (U�, U�, τ∆, E) be a binary soft topological spaces on X% over U� × U� 

and Y% be a non-empty binary soft subset of X%%. Then (U�, U�, τ△4 , α) is subspace of  (U�, U�, τ△4 , E) for each α ∈.% E. 
 
Proof. Let (U�, U�, τ△4 , α) is a binary soft topological space for eachα ∈ E. Now by 
definition for any α ∈ E 
 τ△4 = {6F(α)/(F, E)is  binary soft b − open set} = {Y%% ∩ F(α)/(F, E) isbinary soft b − open set} = {Y%% ∩ F(α)/(F, E)isbinary soft b − open set = {Y%% ∩ F(α)/F(α) ∈ τ△I} 
 
Thus (U�, U�, τ△4 , α) is a subspace of(U�, U�, τ∆, α). 
 
Proposition 2.2. Let (U�, U�, τ△4 , E) be a binary soft subspace of a binary softTopological 

space (U�, U�, τ∆, E) and (G, E) be a binary soft b-open in Y%. If Y%% ∈ τ∆, Then (G, E) ∈ τ∆. 
 

Proof. Let (G, E) be a binary soft b-open set in Y%%, then there exists a binary soft b-open set 

(H, E) in X%% over U� × U� such that (G,E) = Y%% ∩ (H, E). Now, if Y%% ∈ τ∆, then Y%% ∩ (H, E) ∈τ∆ by the third axiom of the definition of binary soft topological space and hence (G, 
E) ∈ τ∆. 
 
Proposition 2.3.Let (U�, U�, τ△4 , E) be a binary soft subspace of a binary soft topological 

space (U�, U�, τ∆, E) and (G, E) be a binary soft b-open set of  X%% over U� × U�, then 
 

(i) (G, E) is binary soft b-open in Y%% if and only if (G, E) = Y%% ∩.% (H, E) for some (H, E) ∈ τ∆.  

(ii) (G, E) is binary soft b-closed in Y%% if and only if (G, E) = Y%% ∩.% (H, E) for some binary 

soft b-closed set in (H, E) ∈ X%% over U� × U�. 
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Proof. (i) Follows from the definition of binary soft subspace. 
 

(ii) If (G, E) is binary soft b-closed in Y% % then we have (G, E) = Y%%, then we have       (G, E) = Y%% − (H, E), for some binary soft b-open (H, E) ∈ τ△4, now (H, E) = Y%% ∩.% (H, E) for 
some binary soft b-open (K, E) ∈ τ∆ for any β ∈ E,  
 

      G(β) = Y%%(β) − H(β) = Y%% − H(β)                   = Y%% − [ Y%%(β) ∩ K(β)] = Y%% − [ Y%% ∩ K(β)] = Y%% − K(β) = Y%% ∩.% (X%% − K(β))]   = Y%% ∩.% [K(β)] = Y%%(β) ∩.% [K(β)]N 
 

Thus (G, E) = Y%%(β) ∩.% [K(β)]N Where (K, E)N is binary soft b-closed set in X%% over U� × U� 
as (K, E) ∈ τ∆.   
 

Conversely, assume that (G, E) = Y%% ∩ (H, E) for some binary soft b-closed set (H, E) in X%% 

over U� × U� which means that(H, E) ∈ τ∆. Now if (H, E) = X%% − (K, E) where (K, E) ∈.% τ∆ 

then for any β ∈.% E,  G(β) = Y%%(β) ∩.% H(β) = Y%% ∩.% H(β)                 = Y%% ∩.% [X%% − K(β)]                 = Y%% − [Y%% ∩.% K(β)]                              = Y%%(β) − [Y%%(β) ∩.% K(β)] 
                                                                  = Y%% − [Y%% ∩.% (K, E)].  
 

Since(K, E) ∈ τ∆ , so [Y%% ∩.% (K, E)] ∈ τ∆6 and hence (G, E) is binary soft b- closed set in Y%%. 
This finishes the proof. 
 
Let (U�, U�, τ∆, E) be a binary soft topological space. Let (U�, U�, τ∆6, E) be a binary soft 

subspace of (U�, U�, τ∆, E). Let (F, E) ⊆.% Y%% be a binary soft subset of  Y%%. Thenwe can find 
the binary soft b-closure of (F, E) in the space (U�, U�, τ∆6, E). The binary soft b-closure of    

(F, E) in (U�, U�, τ∆6, E) is denoted by (F, E)O
. 

 
Proposition 2.4. Let (U�, U�, τ∆6, E) be a binary soft subspace of binary soft topological 

space (U�, U�, τ∆, E). Let (F, E) ⊆.% Y%% be a binary soft subset of Y%%. Thenwe have the 
following results as follows. 

(i) (F, E) O = Y%% ∩.% (F, E). 
(ii) (F, E)∗O = Y%% ∩.% (F, E)∗ 
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(iii) (F, E) O ⊆.% Y%% ∩.% (F, E) 

 

Proof. (i) To prove, let (F, E) O = Y%% ∩.% (F, E).  We have (F, E) O =the binary soft 

intersection of all thebinary soft b-closed sets containing (F, E) = ∩.%{(G, E) y: (G, E) y is τ∆6-binary soft b-closed set and (G, E) y⊃.%(F, E)} = ∩.%{Y%% ∩.% (G, E): (G, E) is -binary soft b-

closed set and Y%% ∩.% (G, E)⊃.%  (F, E)}  = ∩.%{Y%% ∩.% (G, E): (G, E) is τ∆6-binary soft b-closed set 

and (G, E)⊃.%  (F, E)}= Y%% ∩.%{∩.% (G, E): (G, E) is τ∆ -binary soft b-closed set and (G, E)⊃.%  (F, 

E)} =Y%% ∩.% (F, E). Thus (F, E) O = Y%% ∩.% (F, E) . 
 

(ii) To prove that (F, E) y= Y%% ∩.% (F, E)∗ ,we know that, (F,E) The binary soft union of all the τ∆6-binary soft b-open Sets contained in (F,E)= ∪.% {(H, E): (H, E) isτ∆6-binary soft b-open 

and (H, E)⊃.%  (F, E)}= ∪.% {(H, E) =Y%% ∩.% (K, E): (K, E) is τ∆-binary soft b-open set and Y%% ∩.% (K, E) ⊃.%  (F, E)}. Also we know that (F, E) e = Y%% ∩.% [∪.%(L, E) γ ]: (L, E) is τ∆-binary soft 

b-open set and (L, E)γ ⊆.%  (F, E)}. Now let (M, E) ∈.% Y%% ∩.% (F, E)∗ which implies (M, E) ∈.% Y%% 

and (M, E) ∈.% (F, E)∗(M, E) ∈.% Y%%and (M, E) ∈.%∪.%(L,E) γ ∶ (L, E) γ is  τ∆ -binary soft b-open 

set and (L, E) γ ⊆.% (F, E) ⟹ (M, E) ∈.% Y%%and(M, E) ∈.% (L, E) γ, where (L, E)W�, is τ∆ -b-open 

and (L, E)W� ⊆.% (F, E) ⟹ (M, E) ∈.% Y%% ∩.% (L, E)W�. Where (L, E)W� isτ∆-b-open and (L, E)W� ⊆.% (F, E) that is Y%% ∩.% (L, E)W� ⊆.% Y%% ∩.% (F, E) ⟹ (M, E) ∈.%∪.% {Y%% ∩.% (K, E): (K, E) is τ∆- b-

open Y%% ∩.% (K, E) ⊆.% (F, E)} ⟹ (M, E) ∈.% (F, E)∗O. Thus (M, E) ∈.% Y%% ∩.% (F, E)∗ which implies  (M, E) ∈.% (F, E)∗. Therefore Y%% ∩.% (F, E)∗ ⊆.% (F, E)∗. 
 

(iii) To prove, (F, E) O ⊆.% Y%% ∩.% (F, E). Now consider (F, E) O =  (F, E) O ∩.% Y%% − (F, E)O ⟹
[Y%% ∩.% (F, E)] ∩.% Y%% ∩.% [Y%% − (F, E)].   Since using the result (i) [Y%% ∩.% (F, E)] ∩.% Y%% ∩.% [Y%% − (F, E)]. 
(since Y%% ⊆.% X%%). ⊆.% Y%% ∩.% (F, E)] ∩.% [X%% − (F, E)]=Y%% ∩.% (F, E). Thus (F, E) O ⊆.% Y%% ∩.% (F, E) 

 
This finishes the proof. 
 
  

3. Binary Soft b-Separation Axioms 
 
In this section binary soft b-separation axioms in Binary Soft Topological Spaces are 
reflected. 

  

Definition 3.1. Let (U�, U�, τ∆, A) be a binary soft topological space of X% over (U� × U�) 

and FX, GX ∈.% X%%Y such that FX ≠.% GX. Then the binary soft topological space is said to be a 
binary soft b-τ[ space denoted as b-T∆] .If there exists at least one binary soft b-open set (F�, A) or (F�, A) such that FX ∈.% (F�, A) , GX ∈.% (F�, A) or FX ∈.% (F�, A) , GX ∈.% (F�, A). 
 
Definition 3.2. Let (U�, U�, τ∆, A) be a binary soft topological space of X% over (U� × U�) 

and FX, GX ∈.% X%%Y such that FX ≠.% GX. Then the binary soft topological space is said to be a 
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binary soft b-τ� space denoted as b-T∆^ . If there exists at least one binary soft b-open set (F�, A) or (F�, A) such that FX ∈.% (F�, A) , GX ∉%% (F�, A) or FX ∈.% (F�, A) , GX ∉%% (F�, A). 
 

Definition 3.3. Let (U�, U�, τ∆, A) be a binary soft topological space of X%% over (U� × U�) 

and FX, GX ∈.% X%%Y such that FX ≠.% GX. Then the binary soft topological space is said to be a 
binary soft b-τ� space denoted as b-T∆` . If there exists at least one binary soft b-open set (F�, A) or (F�, A) such that FX ∈.% (F�, A) , HX ∈.% (F�, A) and(F�, E) ∩.% (F�, E) = φ.%Y. 
 
Proposition 3.1. (i) Every b-T∆�-space is b-T∆[space. 
                           (ii) Every b-T∆�-space is b-T∆�-space. 
 
Proof. (i) is obvious. (ii) If (U�, U�, τ∆, A) is a T∆�-space then by definition for FX, GX ∈.% X%%Y, FX ≠.% GX there exists at least one binary soft b-open set (F�, A) and (F�, A) 

such that FX ∈.% (F�, A) , HX ∈.% (F�, A) and (F�, E) ∩.% (F�, E) = φ.%Y. Since (F�, E) ∩.% (F�, E) =φ.%Y ; FX ∉%% (F�, A) and GX ∉%% (F�, A). Thus it follows that (U�, U�, τ∆, A) is b-T∆�space. 
 
Note that every b-T∆�space is b-T∆[space. Every b-T∆�space is b-T∆�space. 
 

Proposition 3.2. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and Y%% be a non-empty subset of X%%. If (U�, U�, τ∆, E) is a binary soft b-T∆[Space then (U�, U�, τ∆O, E) is a binary soft b-T∆[space.   

 

Proof. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) Now let FX, GX ∈.% Y%% such that FX ≠.% GX. If there exist a binary soft b-open set (F�, E) in X%% such that FX ∈.% (F�, E)andGX ∉%% (F�, E). Now if FX ∈.% Y%%implies thatFX ∈.% Y%%. So FX ∈.% Y%%andFX ∈.% (F�, E). 

Hence FX ∈.% Y%% ∩.% (F�, E) = [6(F�, E)], where,(F�, E) is binary soft b-open set. That 

is(F�, E) ∈ τ∆. LetGX ∉%% (F�, E), this means that GX ∉%% F(β) for some β ∈.% E. GX ∉%% Y%% ∩.% (F�, E)a = Yb(F�, E)a. Therefore, GX ∉%% Y%% ∩.% (F�, E) = [6(F�, E)]. Similarly, it can 

prove that if GX ∈.% (F�, E) and FX ∉%% (F�, E) then GX ∈.% [6(F�, E)] and FX ∈.% [6(F�, E)]. Thus (U�, U�, τ∆O, E) is a binary soft b-T∆[space. 

 

Example 3.1. Let U� = {c�, c�, cc}, U� = {m�, m�}   E = {e�, e�} and  
 τ∆ = {X%%, φ.%, {ee�({c�}{m�})f,(e�({c�}{m�}))}, gee�({c�}{m�})f , ee�({c�}{m�})fh , gee�({c�}{m�})fh, {ie� jkX%%l kX%%lmn , ee�({c�}{m�})f}}   
 
where 
 (F�, E) = {ee�({c�}{m�}) , ee�({c�}{m�})fh , (F�, E) = ee�({c�}{m�}) , ee�({c�}{m�})fh,  (Fc, E) = {(e�({c�}{m�}))} (Fo, E) = {ie� jkX%%l kX%%lmn , (e�({c�}{m�}))} 
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Clearly (U�, U�, τ∆, E) is binary sot topological space of X%% over (U� × U�). 
 
Note that  
 τ∆� = {X%%, φ.%, gee�({c�}{m�})fh, ee�({c�}{m�})f} T∆� = {X%%, φ.%, gee�({c�}{m�})fh, ee�({c�}{m�})f}  
 

are binary soft topological spaces on X%% over (U� × U�). There are two pairs of distinct 
binary soft points namely    
 FX� = {(e�({c�}{m�})}, GX� = {(e�({c�}{m�})} and  FX� = {(e�({c�}{m�})}, GX� = {(e�({c�}{m�})}.  
 
Then for binary soft pair FX� ≠ GX� of points there are binary soft open sets (F`�, E) and (F�, E) such thatFX� ∈.% (F�, E), GX� ∉%% (F�, E) and GX� ∈.% (F�, E), FX� ∉%% (F�, E). Similarly for 
the pair FX� ≠ GX�, there are binary soft b-open sets (F`�, E) and (F�, E) such that FX� ∉%% (F�, E) , GX� ∈.% (F�, E) and GX� ∉%% (F�, E) , FX� ∈.% (F�, E). This shows that (U�, U�, τ∆, E) is binary soft space b-T∆�-space and hence a binary soft b-T∆[space. Note 

that (U�, U�, τ∆, E) is binary soft b-T∆�space. 
 

Proposition 3.3. Let (U�, U�, τ∆, E) is binary soft topological space on X%% over (U� × U�). 
Then each binary soft point is binary soft b-closed if and only if (U�, U�, τ∆, E) is binary 
soft b-T∆�space. 
 

Proof. Let (U�, U�, τ∆, E) is binary soft topological space on X%% over (U� × U�). Now to 
prove let(U�, U�, τ∆, E) is binary soft b-T∆�space, suppose binary soft pointsFX� ≡.% (F, E), GX� ≡.% (G, E) are binary soft b-closed andFX� ≠ GX�. Then (F, E)r and (G, E)r are binary 

soft b-open in(U�, U�, τ∆, E). Then by definition (F, E)r = (Fr, E) where Fr(e�) = X%% −F(e�) and(G, E)r = (Gr, E) , whereGrX^ = X%% − G(e�). Since F(e�) ∩.% G(e�) = φ.%. This 

implies F(e�) = X%% − G(e�) = GrX^∀ e. This implies F(e�) = (F, E)∈.% (G, E)r. Similarly G(e�) = (G, E)∈.% (F, E)r. Thus we have(e�) ∈.% (G, E)r, G(e�) ∉%% (G, E)r and F(e�) ∉%% (F, E)r,  G (e�) ∈.% (F, E)r. This proves that (U�, U�, τ∆, E) is binary soft b-T�space. 
 

Conversely, let (U�, U�, τ∆, E) is binary soft b-T∆�space, to prove that F(e�) = (F, E)∈.% X%% is 
binary soft pre-closed, we show that (F, E)r is binary soft b-open in(U�, U�, τ∆, E). Let GX^ = (G, E)∈.% (F, E)r is binary soft b-closed. ThenFX� ≠ GX�, since (U�, U�, τ∆, E) is binary 

soft b-T∆�space, there exists binary soft b-open set (L, E) such that G(e�) ∈.% (L, E) ⊆.% (F, E)r 

and hence ∪.%t u^ {(L, E), GX^ ∈.% (F, E)r }. This proves that (F, E)r is binary soft b-open in (U�, U�, τ∆, E) that is FX^ = (F, E)is binary soft b-closed in(U�, U�, τ∆, E). Which completes 
the proof.  
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Proposition 3.4. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and FX, GX ∈.% X%% such that FX ≠ GX . If there exist binary soft b-open sets (F�, E), (F�, E) 

such that FX ∈.% (F�, E) and GX ∈.% (F�, E)r, then (U�, U�, τ∆, E) is a binary soft b-T∆[space 

and (U�, U�, τ∆, E) is a binary soft b-T∆[space for each e ∈.% E. 
 

Proof. Clearly GX^ ∈.% (F�, E)r = (F�r, E) implies GX^ ∉%% (F�, E)similarly FX ∈.% (F�, E)r =(F�r, E) implies FX ∉%% (F�, E) . Thus we have FX ∈.% (F�, E) , GX ∉%% (F�, E) or GX ∈.% (F�, E), FX ∉%% (F�, E). This proves (U�, U�, τ∆, E) is a binary soft b-T∆[space. Now for any∈.% E, (U�, U�, τ∆, E) is a binary soft topological space and FX ∈.% (F�, E) and GX ∈.% (F�, E)ror GX ∈.% (F�, E) and FX ∉%% (F�, E)rso that FX ∈.% F�(e), GX ∉%% F�(e), GX ∈.% F�(e), GX ∉%% F�(e). 
Thus (U�, U�, τ∆, E) is a binary soft b-T∆[space. 
 

Proposition 3.5. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and FX, GX ∈.% X%% such that FX ≠ GX . If there exist binary soft b-open sets (F�, E), (F�, E) 

such that FX ∈.% (F�, E) and GX ∈.% (F�, E)ror FX ∈.% (F�, E) and GX ∈.% (F�, E), then (U�, U�, τ∆, E) is a binary soft b-T∆[space and (U�, U�, τ∆, E) is a binary soft b-T∆[space for 

each e ∈.% E.  
 

Proof. Clearly GX ∈.% (F�, E)r = (F�r, E) implies GX ∉%% (F�, E) similarly FX ∈.% (F�, E)r =(F�r, E) implies FX ∉%% (F�, E) . Thus we haveFX ∈.% (F�, E), GX ∉%% (F�, E) or GX ∈.% (F�, E),  FX ∉%% (F�, E). This proves (U�, U�, τ∆, E) is a binary soft b-T∆[space. Now, for 

any ∈.% E, (U�, U�, τ∆, E) is a binary soft topological space and FX ∈.% (F�, E) and GX ∈.% (F�, E)r or GX ∈.% (F�, E) and FX ∉%% (F�, E)r. So that FX ∈.% F�(e), GX ∉%% F�(e) or GX ∈.% F�(e), FX ∉%% F�(e). Thus (U�, U�, τ∆, E) is a binary soft b-T∆[space. 
 

Proposition 3.6. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and FX, GX ∈.% X%% such that FX ≠ GX. If there exist binary soft b-open sets (F�, E), (F�, E) such 

that FX ∈.% (F�, E) and GX ∈.% (F�, E)ror GX ∈.% (F�, E) and FX ∈.% (F�, E)r , then (U�, U�, τ∆, E) is 
a binary soft b-T∆[space and (U�, U�, τ∆, E) is a binary soft b-T∆�space and (U�, U�, τ∆, E) is 

a binary soft b-T∆�space for each e ∈.% E. 
 
Proof. The proof is similar to the proof 9. 

 
Now we shill discuss some of the binary soft hereditary properties of b-T∆v (i = 0, 1) 
spaces.  
 

Proposition 3.7. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and Y%% ⊆.% X%%. Then if (U�, U�, τ∆, E) is a binary soft b-T∆[space then  (U�, U�, τ∆O, E) is binary 

soft b-T∆[space.  
 

Proof. FX, GX ∈.% Y%% such that FX ≠ GX,ThenFX, GX ∈.% X%%. Since (U�, U�, τ∆, E) is a binary soft b-T∆[space, thus there exists binary soft b-open sets (F, E) and (G, E) in (U�, U�, τ∆, E) such 
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that FX ∈.% (F, E) and GX ∉%% (F, E) or GX ∈.% (G, E) and FX ∉%% (G, E). Therefore FX ∈.% Y%% ∩.% (F, E) =6 (F, E). Similarly I can be shown that if  GX ∈.% (G, E) and FX ∉%% (G, E), 

then GX ∈.%6 (G, E) and FX ∈.%6 (G, E) and FX ∉%%6 (G, E). Thus (U�, U�, τ∆O, E) is binary soft b-T∆[space. 
 

Proposition 3.8. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�) 

and Y%% ⊆.% X%%. Then if (U�, U�, τ∆, E) is a binary soft b-T∆�space then  (U�, U�, τ∆O, E) is binary 

soft b-T∆�space. 
 
Proof. The proof is similar to the proof 11. 
 

Proposition 3.9. Let (U�, U�, τ∆, E) be a binary soft topological space on X%% over (U� × U�). 

If (U�, U�, τ∆, E) is a binary soft bτ∆�space on X%%over (U� × U�) then (U�, U�, τ∆X, E)  is 

binary soft b-T∆�space for each e ∈.% E. 
 

Proof. Let (U�, U�, τ∆, E) be a binary soft topological space on X%% over (U� × U�). For 

anye ∈.% E, τ∆X = {F(e): (F, E) ∈.% τ∆} is a binary soft topology on X%% over (U� × U�). Let x, y ∈.% X%% such that x ≠ y, since (U�, U�, τ∆, E) is a binary soft b-T∆�space, therefore binary 

soft points FX, GX ∈.% X%% such that FX ≠ GX and x ∈.% F(e) , y ∈.% G(e) , there exists binary soft b-

open sets (F�, E) , (F�, E) such that FX ∈.% (F�, E) ,GX ∈.% (F�, E) and (F�, E) ∩.% (F�, E) = φ.% . 

Which implies that ∈.% F(e) ⊆.% F�(e) , y ∈.% G(e) ⊆.% F�(e) and F�(e) ∩.% F�(e) = φ.%. This 
proves that (U�, U�, τ∆X, E)  is binary soft b-T∆�space. 
 

Proposition 3.10. Let (U�, U�, τ∆, E) be a binary soft topological space on X%% over (U� × U�) 

and Y%% ⊆.% X%%. Then if (U�, U�, τ∆, E) is a binary soft b-τ∆�space then  jU�, U�, τ∆O, Em is binary 

soft b-T∆�space and  eU�, U�, τ∆X, Ef is binary soft b-T∆�space for each e ∈.% E. 
 

Proof. Let FX, GX ∈.% Y%%such that FX ≠ GX . ThenFX, GX ∈.% X%%. Since (U�, U�, τ∆, E) is a binary 
soft b-T∆�space, thus there exists binary soft b-open sets (F�, E) and (F�, E) such that FX ∈.% (F�, E) and GX ∈.% (, E) and (F�, E) ∩.% (F�, E) = φ.% . Therefore FX ∈.% Y%% ∩.% (F�, E) =6 (F�, E) and Y(F�, E) ∩.%Y(F�, E) = φ.% .. Thus it proves that (U�, U�, τ∆O, E) is binary soft b-T∆�space. 

 

Proposition 3.11. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� ×U�). If (U�, U�, τ∆, E) is a binary soft b-T∆�space and for any two binary soft points FX, GX ∈.% X%% such that FX ≠ GX . Then there exist binary soft b-closed sets (F�, E) and (F�, E) 

such that FX ∈.% (F�, E) and GX ∉%% (F�, E)or GX ∈.% (F�, E) and (F�, E) ∪.% (F�, E) = X%%. 
 

Proof. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�). Since (U�, U�, τ∆, E) is a binary soft b-τ∆�space and FX, GX ∈.% X%% such that FX ≠ GX  there exists 

binary soft b-open sets (H, E) and (L, E) such that FX ∈.% (H, E) and GX ∈.% (L, E) and 
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(H, E) ∩.% (L, E) = φ.%. Clearly (H, E) ⊆.% (L, E)r and (L, E) ⊆.% (H, E)r. Hence FX ∈.% (L, E)r , put (L, E)r = (F�, E) which gives FX ∈.% (F�, E) and GX ∉ (F�, E). Also GX ∈.% (F�, E)r, then put (H, E)r = (F�, E). Therefore FX ∈.% (F�, E) and GX ∈.% (F�, E). Moreover, (F�, E) ∪.% (F�, E) =(L, E)r ∪.% (H, E)r = X%%. Which completes the proof. 
 

 

4. Binary Soft b-x∆� (i=4,3) Spaces  

 
In this section binary soft b-separation axioms in Binary Soft Topological Spaces are 
discussed. 

 
In this section, we define binary soft b-regular and binary soft b-T∆v- spaces using binary 
soft points. We also characterize binary soft b-regular and binary soft b-normal spaces. 
Moreover, we prove that binary soft b-regular and binary soft b-T∆c properties are binary 

soft hereditary, whereas binary soft b- normal and binary soft b-T∆o are binary soft b-closed 
hereditary properties. 
 
Now we define binary soft b-regular space as follows: 
 

Definition 4.1. Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over (U� × U�). 

Let (F, E) be a binary soft b-closed set in (U�, U�, τ∆, E)andFX ∉%% (F, E). If there exists 

binary soft b-open sets (G, E) and (H, E) such that FX ∈.% (G, E), (F, E) ⊆.% (H, E) and (F, E) ∩.% (H, E) = φ.% , then (U�, U�, τ∆, E) is called a binary soft b- regular space. 
 

Proposition 4.1.Let (U�, U�, τ∆, E) be a binary soft topological space of X%% over  
(U� × U�). Then the following statements are equivalent: 
 
(i) (U�, U�, τ∆, E) is binary soft b-regular. 

(ii) For any binary soft b- open set (F, E) in (U�, U�, τ∆, E)andGX ∈.% (F, E), there is binary 

soft b-open set (G, E) containing GX such thatGX ∈.% (G, E) ⊆.% (F, E). 
(iii) Each binary soft point in (U�, U�, τ∆, E) has a binary soft neighborhood base 

consisting of binary soft b-closed sets. 
 

Proof. (i)⇒ (ii) 
 

Let (F, E) be a binary soft b-open set in (U�, U�, τ∆, E)andGX ∈.% (F, E). Then (F, E)r is 

binary soft b-closed set such that GX ∉%% (F, E)r. By he binary soft regularity of (U�, U�, τ∆, E) there are binary soft b-open sets (F�, E), (F�, E) such 

thatGX ∉%% (F�, E),(F, E)r ⊆.% (F�, E) and (F�, E) ∩.% (F�, E) = φ.%. Clearly (F�, E)r is a binary 

soft set contained in (F, E). Thus (F�, E) ⊆.% (F�, E)r ⊆.% (F, E). This gives (F�, E) ⊆.% (F�, E)r ⊆.% (F, E), put (F�, E) = (G, E). Consequently GX ∈.% (G, E) and (G, E) ⊆.% (F, E). This proves (ii). 
 
(ii)⇒ (iii) 
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Let GX ∈.% X%%, for binary soft b-open set (F, E) in (U�, U�, τ∆, E) there is a binary soft b-open 

set (G, E) containing GX such that GX ∈.% (G, E) , (G, E) ⊆.% (F, E). Thus for each GX ∈.% X%% , the 

sets (G, E) from a binary soft neighborhood base consisting of binary soft b-closed sets of (U�, U�, τ∆, E) which proves (iii). 
 (iii) ⇒ (i) 
 

Let (F, E) be a binary soft b-closed set such that GX ∉%% (F, E). Then (F, E)ris a binary soft b-
open neighborhood of GX. By (iii) there is a binary soft b-closed set (F�, E) which contains GX and is a binary soft neighborhood of GX with (F�, E) ⊆.% (F�, E)r . ThenGX ∉%% (F, E)r, (F, E)  ⊆.% (F�, E)r = (F�, E) and  (F�, E) ∩.% (F�, E) = φ.%  . Therefore (U�, U�, τ∆, E) is binary 
soft b-regular. 
 

Proposition 4.2. Let (U�, U�, τ∆, E) be a binary soft b-regular space on X%% over (U� × U�). 
Then every binary soft subspace of (U�, U�, τ∆, E) is binary soft b- regular. 
 

Proof. Let (U�, U�, τ∆, E) be a binary soft subspace of a binary soft pre-regular space (U�, U�, τ∆, E). Suppose (F, E) is a binary soft b-closed set in (U�, U�, τ∆O, E) and FX ∈.% Y%% 

such that FX ∉%% (F, E).Then(F, E) = (G, E) ∩.% Y%%; Where(G, E) is binary soft b-closed set in (U�, U�, τ∆, E). Then FX ∉%% (F, E), since   (U�, U�, τ∆, E) be a binary soft subspace of a binary 
soft b-regular, there exists soft disjoint binary b-open sets (F�, E), (F�, E) in (U�, U�, τ∆, E).   

Then FX ∉%% (G, E), Since (U�, U�, τ∆, E) is binary soft pre- regular, there exist binary soft 

disjoint binary b-open sets (F�, E) , (F�, E) in (U�, U�, τ∆, E) such that FX ∈.% (F�, E), (G, E) ∈.% (F�, E). Clearly FX ∈.% (F�, E) ∩.% Y%% =6 (F�, E) and (F, E) ⊆.% (F�, E) ∩.% Y%% =6 (F�, E) 

such that Y(F�, E) ∩.%Y(F�, E) = φ.%. Therefore it proves that (U�, U�, τ∆O, E) is a binary soft b- 

regular subspace of (U�, U�, τ∆, E). 
 

Proposition 4.3. Let (U�, U�, τ∆, E) be a binary soft regular space on X%% over (U� × U�). A 

binary space (U�, U�, τ∆, E) is binary soft b-regular if and only if for each FX ∈.% X%%and a 

binary soft b-closed set (F, E)in (U�, U�, τ∆, E)such that FX ∉%% (F, E) there exist binary soft 

b-open sets (F�, E) , (F�, E)in (U�, U�, τ∆, E) such that FX ∈.% (F�, E) , (F�, E) ⊆.% (F�, E) and (F�, E) ∩.% (F�, E) = φ.%. 
 

Proof. For each FX ∈.% X%% and a binary soft b-closed set (G, E) such that FX ∉%% (F, E) by 

theorem 16there is a binary soft b-open set (G, E) such that FX ∈.% (G, E) , (G, E) ⊆.% (F�, E)r. 
Again by theorem16 there is a binary soft b-open (F�, E) containing FX such that (F�, E) ⊆.% (G, E). Let(F�, E) = ((G, E))r, then (F�, E) ⊆.% (G, E) ⊆.% (G, E) ⊆.% (F, E)r Implies (F�, E) ⊆.% ((G, E))r = (F�, E) or(F, E) ⊆.% (F�, E). Also  

(F�, E) ∩.% (F�, E) = (F�, E) ∩.% i(G, E)nr ⊆.% (G, E) ∩.% i(G, E)nr ⊆.% (G, E) ∩.% i(G, E)nr = φ.%= φ . 
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Thus (F�, E) , (F�, E) are the required binary soft b-open sets in(U�, U�, τ∆, E). This proves 
the necessity. The sufficiency is immediate. 
 

Definition 4.2. Let (U�, U�, τ∆, E) be a binary soft regular space on X%% over (U� × U�). (F, E) , (G, E) are binary soft b-closed sets over (U� × U�) such that (F, E) ∩.% (G, E) = φ.% . If 
there exist binary soft b-open sets (F�, E), and (F�, E) such that (F, E) ⊆.% (F�, E) , (G, E) ⊆.% (F�, E) and (F�, E) ∩.% (F�, E) = φ , then (U�, U�, τ∆, E) is called a 
binary soft b-normal space. 
 

Definition 4.3. Let (U�, U�, τ∆, E) be a binary soft regular space on X%% over (U� × U�). Then (U�, U�, τ∆, E) is said to be a binary soft b-τ∆cspace if it is binary soft b-regular and a 

binary soft b-τ∆� space. 
 

Proposition 4.4. Let (U�, U�, τ∆, E) be a binary soft regular space on X%% over (U� × U�) and Y%% ⊆.% X%%. If (U�, U�, τ∆, E) is a binary softb-τ∆cspace then (U�, U�, τ∆6, E) is a binary soft b-τ∆cspace. 
 

Proof.  Straightforward 
 

Definition 4.4. A binary soft topological space (U�, U�, τ∆, E) on X%% over (U� × U�) is said 
to be a binary soft b-τ∆ospace if it is binary soft b- normal and binary soft b-τ∆�space. 
 
Proposition 4.5. A binary soft topological space (U�, U�, τ∆, E) is binary soft b-normal if 
and only if for soft b-closed set (F, E) and a binary soft b-open set (G, E), such that (F, E) ⊆.% (G, E) these exist at least one binary soft b-open set (H, E) containing (F, E) such 

that (F, E) ⊆.% (H, E) ⊆.% (H, E) ⊆.% (G, E). 
 
Proof. Let us suppose that (U�, U�, τ∆, E) is a binary soft normal space and (F, E) is any 
binary soft b- closed subset of (U�, U�, τ∆, E) and (G, E)is a binary soft b-open set such that (F, E) ⊆.% (G, E). Then (G, E)r is binary soft b-closed and(F, E) ∩.% (G, E)r = φ. So by 
supposition, there are binary soft b-open sets (H, E) and (K, E) such that (F, E) ⊆.% (H, E) , (G, E)r ⊆.% (K, E) and ∩.% (K, E) = φ.%.  
 

Since (H, E) ∩.% (K, E) = φ.%, (H, E) ⊆.%  (K, E)r. But (K, E)ris binary soft b-closed, so that  
 (F, E) ⊆.% (H, E) ⊆.% (H, E) ⊆.% (K, E)r ⊆.% (G, E). 
 
Hence  
 (F, E) ⊆.% (H, E) ⊆.% (H, E) ⊆.% (K, E)r ⊆.% (G, E). 
 
Conversely, suppose that for every binary soft b-closed set (F, E) and a binary soft b-open 

set (G, E) such that (F, E) ⊆.% (H, E), there is a binary soft b-open set (H, E) such that (F, E) ⊆.% (H, E) ⊆.% (H, E) ⊆.% (G, E) . Let(F�, E) , (F�, E) be any two soft disjoint b-closed 
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sets, then (F�, E) ⊆.% (F�, E)r where (F�, E)rbinary soft b-open. Hence there is a binary soft 

b-open set (H, E) such that (F, E) ⊆.% (H, E) ⊆.% (H, E) ⊆.% (F�, E)r. But then (F�, E) ⊆.% ((H, E))r and (H, E) ∩.% ((H, E))r ≠ φ . 
 

Hence (F�, E) ⊆.% (H, E) and (F�, E) ⊆.% ((H, E))r with (H, E) ∩.% ((H, E))r = φ . 
 
Hence (U�, U�, τ∆, E) is binary soft b- normal space. 
 

 

5. Conclusion 
 
A soft topology between two sets other than the product soft topology has been touched 
through proper channel. A soft set with single specific topological structure is unable to 
shoulder up the responsibility to build the whole theory. So to make the theory strong, 
some additional structures on soft set has to be introduced. It makes, it more bouncy to 
grow the soft topological spaces with its infinite applications. In this regards we 
familiarized soft topological structure known as binary soft b-separation axioms in binary 
soft topological structure with respect to soft b-open sets. 
 
Topology is the most important branch of pure mathematics which deals with mathematical 
structures by one way or the others. Recently, many scholars have studied the soft set 
theory which is coined by Molodtsov [3] and carefully applied to many difficulties which 
contain uncertainties in our social life. Shabir and Naz familiarized and profoundly studied 
the foundation of soft topological spaces. They also studied topological structures and 
displayed their several properties with respect to ordinary points.  
 
In the present work, we constantly study the behavior of binary soft b-separation axioms in 
binary soft topological spaces with respect to soft points as well as ordinary points. We 
introduce (b- τ∆] ,  pre- τ∆^ , b- τ∆` ,b- τ∆�  and b- τ∆�  ) structures with respect to soft points. 
In future we will plant these structures in different results. We also planted these axioms to 
different results. These binary soft b-separation structure would be valuable for the 
development of the theory of soft in binary soft topology to solve complicated problems, 
comprising doubts in economics, engineering, medical etc. We also attractively discussed 
some soft transmissible properties with respect to ordinary as well as soft points. I have 
fastidiously studied numerous homes on the behalf of Soft Topology. And lastly I 
determined that soft Topology is totally linked or in other sense we can correctly say that 
Soft Topology (Separation Axioms) are connected with structure. Provided if it is related 
with structures then it gives the idea of non-linearity beautifully. In other ways we can 
rightly say Soft Topology is somewhat directly proportional to non-linearity. Although we 
use non-linearity in Applied Math. So it is not wrong to say that Soft Topology is applied 
Math in itself. It means that Soft Topology has the taste of both of pure and applied math. 
In future I will discuss Separation Axioms in Soft Topology with respect to soft points.  We 
expect that these results in this article will do help the researchers for strengthening the 
toolbox of soft topological structures. Soft topology provides less information on the behalf 
of a few choices. The reason for this is that we use a single set in soft topology and in 
binary soft topology we use double sets .It means that binary soft topology exceeds soft 
topology in all respect. In the light of above mentioned discussion I can literary say that 
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number of sets is directly proportional to choices. Therefore all mathematicians are kindly 
informed to emphasize upon it. 
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1 Introduction

Thivagar and Richard [3] introduced a nano topological space with respect to a
subset X of an universe which is defined in terms of lower approximation and upper
approximation and boundary region. The classical nano topological space is based
on an equivalence relation on a set, but in some situation, equivalence relations are
nor suitable for coping with granularity, instead the classical nano topology is extend
to general binary relation based covering nano topological space

Bhuvaneshwari and Gnanapriya [1] introduced and investigated nano g-closed
sets in nano topological spaces. Recently, Devi and Bhuvaneswari [6] introduced the
notions of nano rg-closed sets. In this paper we introduce the notions of nano R-set,
nano Rr-set, nano R?

r-set and study some of their properties.

2 Preliminaries

Definition 2.1. [4] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects,
which can be for certain classified as X with respect to R and it is denoted by
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LR(X). That is, LR(X) =
⋃

x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the
equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Definition 2.2. [3] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then R(X) satisfies the
following axioms:

1. U and φ ∈ τR(X),

2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in τR(X).

Thus τR(X) is a topology on U called the nano topology with respect to X and
(U, τR(X)) is called the nano topological space. The elements of τR(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called n-
closed.

In the rest of the paper, we denote a nano topological space by (U,N ), where
N = τR(X). The nano-interior and nano-closure of a subset A of U are denoted by
n-int(A) and n-cl(A), respectively.

Definition 2.3. A subset H of a space (U,N ) is called nano regular-pen set [3] if
H = n-int(n-cl(H)).

The complement of the above mentioned set is called their respective closed set.

Definition 2.4. [2] A subset H of a space (U,N ) is called:

1. nano t-set (briefly, nt-set) if n-int(H) = n-int(n-cl(H)).

2. nano B-set (briefly, nB-set) if H = P ∩Q, where P is n-open and Q is nt-set.

Definition 2.5. [5] A subset H of a space (U,N ) is called a nano α?-set (briefly,
nα?-set) if n-int(n-cl(n-int(H))) = n-int(H).

Definition 2.6. A subset H of a space (U,N ) is called;

1. nano g-closed (briefly, ng-closed) [1] if n-cl(H) ⊆ G, whenever H ⊆ G and G
is n-open.

2. nano rg-closed set (briefly, nrg-closed) [6] if n-cl(H) ⊆ G whenever H ⊆ G
and G is nano regular-open.
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3 Properties of Some Nano R-Sets

Definition 3.1. A subset H of a space (U,N ) is called;

1. nano R-set (briefly, nR-set) if H = P ∩K where P is ng-open and K is nt-set.

2. nano Rr-set (briefly, nRr-set) if H = P ∩ K where P is nrg-open and K is
nt-set.

3. nano R?
r-set (briefly, nR?

r-set) if H = P ∩ K where P is nrg-open and K is
nα?-set.

Example 3.2. Let U = {a, b, c, d} with U/R = {{a}, {b, c}, {d}} and X = {b, d}.
Then the nano topology N = {φ, {d}, {b, c}, {b, c, d}, U}.

1. then {a} is nR-set.

2. then {a, b} is nRr-set.

3. then {a, b, c} is nR?
r-set.

Theorem 3.3. In a space (U,N ), for a subset H, the following relations hold.

1. H is nB-set ⇒ H is nR-set.

2. H is nt-set ⇒ H is nRr-set.

3. H is nrg-open set ⇒ H is nRr-set.

4. H is nα?-set ⇒ H is nR?
r-set

5. H is nrg-open set ⇒ H is nR?
r-set.

6. H is nt-set ⇒ H is nR?
r-set.

7. H is nRr-set ⇒ H is nR?
r-set.

Proof. 1. Since every n-open set is ng-open, every nB-set is a nR-set.

2. Let H be a nt-set in U . Then H = U ∩H where U is clearly nrg-open in U .
Therefore, H is nRr-set in U .

3. Let H be a nrg-open set in U . Then H = H ∩U where U is clearly a nt-set in
U . Therefore, H is nRr-set in U .

4. Let H be a nα?-set in U . Then H = U ∩H where U is clearly nrg-open in U .
Therefore, H is a nR?

r-set in U .

5. Let H be a nrg-open set in U . Then H = H ∩ U where U is clearly a nα?-set
in U . Therefore, H is a nR?

r-set in U .

6. Let H be a nt-set in U . Since every nt-set is nα?-set in U . So, H is nα?-set in
U . By (4), U is a nR?

r-set in U .
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7. Let H be a nRr-set in U . Then H = P ∩Q where P is nrg-open in U and Q
is a nt-set in U . Since every nt-set in U is a nα?-set in U , Q is a nα?-set in U .
Therefore, H is a nR?

r-set in U .

Remark 3.4. These relations are shown in the diagram.

nR-set ←− nB-set
↓

nt-set −→ nRr-set
↓ ↙ ↑

nα?-set −→ nR?
r-set ←− nrg-open

The converses of each statement in Theorem 3.3 are not true as shown in the
following Example.

Example 3.5. Let U = {p, q, r} with U/R = {{p, q}, {r}} and X = {p}. Then the
nano topology N = {φ, {p, q}, U}. Then H = {p} is nR-set but not nB-set.

Example 3.6. In Example 3.2,

1. {b} is nRr-set but not nt-set.

2. {a, d} is nRr-set but not nrg-open.

3. {b, c, d} is nR?
r-set but not nα?-set.

4. {a, d} is nα?-set, so nR?
r-set. But {a,d} is not nrg-open.

5. {a, b} is nR?
r-set but not nt-set.

6. {a, b, d} is nR?
r-set but not nRr-set.

Remark 3.7. In a space (U,N ),

1. the intersection of two nR-sets are nR-set.

2. the intersection of two nRr-sets are nRr-set.

3. the intersection of two nR?
r-sets are nR?

r-set.

4. the union of two nR-sets but not nR-set.

5. the union of two nRr-sets but not nRr-set.

Example 3.8. In Example 3.2,

1. then H = {a, d} and Q = {b, d} is nR-sets, nRr-sets and nR?
r-sets. But

H ∩Q = {d} is nR-set, nRr-set and nR?
r-set.

2. then H = {a} and Q = {b} is nR-sets. But H ∪Q = {a, b} is not nR-set.

3. then H = {a, b} and Q = {d} is nRr-sets. But H ∪ Q = {a, b, d} is not
nRr-sets.



Journal of New Theory 23 (2018) 63-67 67

References

[1] K. Bhuvaneshwari and K. M. Gnanapriya, Nano Generalizesd closed sets, In-
ternational Journal of Scientific and Research Publications, 4/5 (2014) 1-3.

[2] A. Jayalakshmi and C. Janaki, A new form of nano locally closed sets in
nano topological spaces, Global Journal of Pure and Applied Mathematics, 13/9
(2017) 5997-6006.

[3] M. L. Thivagar and C. Richard, On Nano forms of weakly open sets, Interna-
tional Journal of Mathematics and Statistics Invention, 1/1 (2013) 31-37.

[4] Z. Pawlak, Rough sets, International journal of computer and Information Sci-
ences, 11 (1982) 341-356.

[5] I. Rajasekaran, On nano α?-sets and nano Rα?-sets, Journal of New Theory, 18
(2017) 88-93.

[6] P. S. Devi and K. Bhuvaneswari, On Nano Regular Generalized and Nano Gen-
eralized Regular Closed Sets in Nano Topological Spaces , International Journal
of Engineering Trends and Technology (IJETT), 8 (13) (2014) 386-390.



http://www.newtheory.org                                      ISSN: 2149-1402 

 
Received:  26.04.2018 

Published: 12.07.2018 
Year: 2018, Number: 23, Pages: 68-77 

                    Original Article 

 

 

On Some Identities and Symmetric Functions for Balancing Numbers 
 

 

Ali Boussayoud <aboussayoud@yahoo.fr> 
 

LMAM Laboratory and Department of Mathematics, University of MSB Jijel, Algeria. 

 

 
Abstract - In this paper, we derive new generating functions of the product of balancing numbers, Lucas 

balancing numbers and the Chebychev polynomials of the second kind by making use of useful properties of 

the symmetric functions mentioned in the paper. 

 

Keywords - Balancing numbers, Lucas balancing number, Chebychev polynomials. 

 

1 Introduction and Preliminaries 
 

Recently, Behera and Panda [1] introduced balancing numbers  Zn    as solutions of the 

Diophantine equation 

 

                                   1 2 ... ( 1) ( 1) ( 2) ... ( ).n n n n r                                     (1.1) 

 

for some positive integer r  which is called balancer or cobalancing number. For example 

6;35;204;1189 and 6930 are balancing numbers with balancers 2;14;84;492  and 2870, 

respectively. If  n   is a balancing number with balancer r , then from  (1.1)   one has  

 

( 1) ( 1)
,

2 2

n n r r
rn

 
   

and so  

 
2 2(2 1) 8 1 2 1 8 8 1

and .
2 2

n n r r r
r n

       
   

 

Let  nB   denote the  thn   balancing number and let  nb   denote the  thn   cobalancing 

number. Then 

 

1 1

0 1

6 , 1
,

0, 1

n n nB B B n

B B

   


 
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and 

1 1

1 2

6 2, 2
.

0, 2

n n nb b b n

b b

    


 
 

 

 Definition 1.1. [14] The Lucas-balancing   
Nn n

C 
  is defined recurrently by  

 

1 1

0 1

6 , 1
.

1, 3

n n nC C C n

C C

   


 
 

 

The main purpose of this paper is to present some results involving the balancing number 

and Lucas-balancing number using define a new useful operator denoted by  
1 2p p   for 

which we can formulate, extend and prove new results based on our previous ones [3, 4, 5].    

In order to determine generating functions of the product of balancing number, Lucas-

balancing number and Chebychev polynomials of first and second kind, we combine 

between our indicated past techniques and these presented polishing approaches. 

 

In order to render the work self-contained we give the necessary preliminaries tools; we 

recall some definitions and results. 

 

Definition 1.2. [5] Let  k   and  n   be tow positive integer and   1 2, ,..., na a a   are set of 

given variables the k-th elementary symmetric function   1 2,, ...,k ne a a a   is defined by 

 

  1 2

1 2

1 2, 1 2

...

, ..., ... ,     0 ,n

n

ii i

k n n

i i i k

e a a a a a a k n
   

    

with  1 2, ,..., 0ni i i    or  1.   

 

Definition 1.3. [5] Let  k   and  n   be tow positive integer and   1 2, ,..., na a a   are set of 

given variables the k-th complete homogeneous symmetric function   1, ,...,k nh a a a   is 

defined by 

  1 2

1 2

1 2, 1 2

...

, ..., ... ,     0 ,n

n

ii i

k n n

i i i k

h a a a a a a k n
   

    

with  1 2, ,..., 0.ni i i      

 

Remark 1.1.  We set   0 1 2,, ..., 1ne a a a    and   1 2,, ..., 1k nh a a a    (by convention). For  

k n   or  0,k    we set   0 1 2,, ..., 0ne a a a    and   1 2,, ..., 0.k nh a a a   

 

Definition 1.4. [7] Let  B   and  P   be any two alphabets. We define  ( )nS B P   by the 

following form 

0

( ) ( ) ( ) ,n

n

n

E z H z S B P z




    

 

with  1( ) (1 ) , ( ) (1 ).b B p PH z bz E z pz 

       
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 Remark 1.2.  ( ) 0nS B P   for  0.n    

 

Definition 1.5. [5] Given a function  f   on  n , the divided difference operator is defined 

as follows 

1

1 1 1 1 1, 2

1

( , , , , ) ( , , , )
( ) .

i i

i i n i i i i n

p p

i i

f p p p p f p p p p p p
f

p p

   




 


 

 

Definition 1.6. The symmetrizing operator  
1 2

k

p p   is defined by  

 

1 2

1 1 2 2

1 2

( ) ( )
( ) for all .k

k k

p p

p g p p g p
g k

p p



 


 

 

Proposition 1.1. [6] Let  1 2{ , }P p p   an alphabet, we define the operator  
1 2

k

p p  as 

follows 

1 2 1 21 1 1 2 1 2 1( ) ( ) ( ) ( ),   .k k

p p k p pg p S p p g p p g p for all k       

 

 

2 Main Results  
 

In our main results, we will combine all these results in a unified way such that they can be 

considered as a special case of the following Theorem. 

 

Theorem 2.1. Let  A   and  P   be two alphabets, respectively,  1 2,a a   and   1 2, ,b b   then 

we have 

n0



 hna1 ,a2 hnk1p1 ,p2 zn 
hk1p1 ,p2  p1p2a1  a2 hk2p1 ,p2z  a1a2p1p2p 1p 2p2

k1z2


n0


ena1 ,a2p1zn 

n0


ena1 ,a2p2zn

,     2.1

(2.1) 

for all  .k   

 

Proof.  By applying the operator  
1 2p p  to the series   1 1 2 1

0

( ) , n k n

n
n

f p z h a a p z






   , we 

have 

 
   

 

   

1 2

1 2 1 1 2 2
0 0

1 2 1

0 1 2

1 2
1 2

0 1 2

1 2 1 1 2

0

, ,
,

,

, , .

n k n n k n

n n
n k n n n

p p n

n

n k n k
n

n

n

n

n n k

n

h a a p z h a a p z
h a a p z

p p

p p
h a a z

p p

h a a h p p z

 
 


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

 





 



  
  

 

 
  

 









 

 

On the other hand, 
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p 1p 2

p1
k


n0


ena1 ,a2p1zn



p 1
k


n0


ena 1,a 2p 1zn

 p 2
k


n0


ena 1,a 2p 2zn

p1  p2



p1
k 

n0


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k 
n0
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k p2
2 z2
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n0


ena1 ,a2p2zn


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k
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p 1
k1p 2
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p 1p 2
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.

 
Thus, this completes the proof. 

 

 

3 Generating Functions of Some Well-known Numbers 

 
We now derive new generating functions of the products of some well-known numbers. 

Indeed, we consider Theorem 2.1 in order to derive balancing numbers, Lucas balancing 

numbers and Tchebychev polynomials of second kind and the symmetric functions. 

 

If  0,1k    and   1,0 ,A    we deduce the following lemmas 

 

 Lemma 3.1. [2] Given an alphabet   1 2, ,P p p   we have 

 

                                       1 2

0 1 2

1
( , ) .

(1 )(1 )

n

n

n

h p p z
p z p z






 

                                          (3.1) 

 

Lemma 3.2. [3] Given an alphabet   1 2, ,P p p   we have 

 

                                             1 1 2

0 1 2

( , ) .
(1 )(1 )

n

n

n

z
h p p z

p z p z








 

                                   (3.2) 
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Replacing  2p   by  2( )p   in (3.1) and (3.2), we obtain 

 

                                1 2

0 1 2

1
( , ) ,

(1 )(1 )

n

n

n

h p p z
p z p z




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                                               (3.3) 

 

                                 1 1 2

0 1 2

( , ) .
(1 )(1 )

n

n

n

z
h p p z

p z p z






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                                             (3.4) 

 

Choosing  1p   and  2p   such that  

1 2

1 2

1,

6,

p p

p p

 


 
 

 

and substituting in (3.3) and (3.4) we end up with 

 

                              1 2 2
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1
( , ) ,

1 6

n

n

n

h p p z
z z




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                                                          (3.5) 

 

                          1 1 2 1,22
0

( , ) with 3 2 2,
1 6

n

n

n
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h p p z p

z z






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 

                               (3.6) 

 

Which represents a generating function for balancing numbers, such that  

 1 1 2( ).n nB S p p     

 

Multiplying the equation (3.6) by (-3) and added to (3.5), we obtain  

 

   1 2 1 1 2 2
0

1 3
( ( , ) 3 ( , ))  ,

1 6

n

n n

n

z
h p p h p p z

z z








   

 
  

 

which represents a generating function for Lucas-balancing numbers. 

 

Corollary 3.1.  For all   n  , we have    

 

   1 2 1 1 2 1,2( , ) 3 ( , ),with 3 2 2.n n nC h p p h p p p       

 

Theorem 3.1. For   n , the generating function of the cobalancing numbers numbers is 

given by  

 

2

2
0

2
.

(1 6 ) 1

n

n

n

z
b z

z z z






  

  

 

 Proof.  The ordinary generating function associated is defined by  ( , )nG b z     
1

.n

n
n

b z




   

Using the initial conditions, we get  
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2

1 2

1 3

2

1

3

2 (6 2) .

n n

n n

n n

n

n n

n

b z b z b z b z

z b b z

 

 







  

   

 



 

 

Consider that  2j n    and  1.p n    Then can be written by  

 

2 2 3

1 1 3 0

2 6 2 ,n n n n

n n n

n n n n

b z z z b z z b z z z
   

   

        

 

which is equivalent to  
3

2 2

1

2
(1 6 ) 2 ,

1

n

n

n

z
z z b z z

z





   


  

 

Therefore  

 

2

2
0

2
.

(1 6 ) 1

n

n

n

z
b z

z z z






  

  

 

This completes the proof. 

 

If  0, 1k k    and   1 2, ,A a a   we deduce the following theorems 

 

Theorem 3.2. [8] Given two alphabets   1 2,A a a   and   1 2,P p p  we have 

 

          
    2

1 2 1 2 1 2

1 2 1 1 2

0
1 2 1 1 2 2

0 0

, , .

( , )( ) ( , )( )

n

n n
n nn

n n
n n

a a z a a p p z
h a a h p p z

e a a p z e a a p z



  


 

  

  
     

  

            (3.7) 

  

Theorem 3.3. [9] Given two alphabets   1 2,A a a   and   1 2,P p p   we have 

 

              
2

1 2 1 2
1 2 1 2

0
1 2 1 1 2 2

0 0

1
, , .

( , )( ) ( , )( )

n

n n
n nn

n n
n n

a a p p z
h a a h p p z

e a a p z e a a p z



 


 



  
     

  

           (3.8) 

 

From (3.8) we can deduce 

 

           
3

1 2 1 2
1 1 2 1 1 2

0
1 2 1 1 2 2

0 0

, , .

( , )( ) ( , )( )

n

n n
n nn

n n
n n

z a a p p z
h a a h p p z

e a a p z e a a p z



   


 



  
     

  

         (3.9) 

 

Case 1: Replacing  2p   by  2( )p   and  2a   by 2( )a   in (3.7) and (3.9) yields  
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   

    

2

1 2 1 2 1 2

1 2 1 1 2

0 1 1 2 1 1 2 2 2

( ,[ ]) ( ,[ ]) ,
1 1 1 1

n

n n

n

a a z a a p p z
h a a h p p z

a p z a p z a p z a p z







  
  

   
       (3.10) 

 

     
    

3

1 2 1 2
1 1 2 1 1 2

0 1 1 2 1 1 2 2 2

( ,[ ]) ( ,[ ]) .
1 1 1 1

n

n n

n

z a a p p z
h a a h p p z

a p z a p z a p z a p z



 




  

   
       (3.11) 

 

This case consists of four related parts. 

 

Firstly, the substitutions of  

1 2 1 2

1 2 1 2

1, 6,
 and  

1, 1,

a a p p

a a p p

    
 

   
 

in (3.10) give  
2

1 2 1 1 2 2 3 4
0

6
( ,[ ]) ( ,[ ]) ,

1 6 35 6

n

n n

n

z z
h a a h p p z

z z z z








  

   
  

 

which represents a new generating function for product of Fibonacci numbers with 

balancing numbers, such that 1 2 1 1 2( ,[ ]) ( ,[ ])n n n nF B h a a h p p    with  

1 5
1,2 1,22

, 3 2 2.a p     

 

Secondly, the substitution of  

1 2 1 2

1 2 1 2

6, 6,
 and 

1, 1,

a a p p

a a p p

    
 

    
 

in (3.11) give  
3

1 1 2 1 1 2 2 3 4
0

( ,[ ]) ( ,[ ]) ,
1 36 2 36

n

n n

n

z z
h a a h p p z

z z z z



 




  

   
  

 

which represents a new generating function for balancing numbers of second order, such 

that  2

1 1 2 1 1 2( ,[ ]) ( ,[ ])n n nB h a a h p p      with  1,2 1,2 3 2 2.a p     

 

Thirdly, the substitution of  

1 2 1 2

1 2 1 2

1, 6,
 and  

2, 1,

a a p p

a a p p

    
 

   
 

in (3.11) give  
3

1 1 2 1 1 2 2 3 4
0

2
( ,[ ]) ( ,[ ]) ,

1 6 13 12 4

n

n n

n

z z
h a a h p p z

z z z z



 




  

   
  

 

which represents a new generating function for product of Jacobsthal numbers with 

balancing numbers, such that  1 1 2 1 1 2( ,[ ]) ( ,[ ])n n n nJ B h a a h p p      with  1 22, 1a a     

and  1,2 3 2 2.p     

 

Finally, the substitution of  
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1 2 1 2

1 2 1 2

2, 6,
 and  

1, 1,

a a p p

a a p p

    
 

   
 

in (3.11) give  
3

1 1 2 1 1 2 2 3 4
0

( ,[ ]) ( ,[ ]) .
1 12 38 12

n

n n

n

z z
h a a h p p z

z z z z



 




  

   
  

 

which represents a new generating function for product of Pell numbers with balancing 

numbers, such that  1 1 2 1 1 2( ,[ ]) ( ,[ ])n n n nP B h a a h p p     with  1 1 2a    and  

1,2 3 2 2.p     

 

Case 2: Replacing  2p   by  2( )p   and  1a  by  12a   and  2a   by  2( 2 )a   in (3.10) yields  

 

   

    

2

1 2 1 2 1 2

1 2 1 1 2

0 1 1 2 1 1 2 2 2

2 4
(2 ,[ 2 ]) ( ,[ ]) ,

1 2 1 2 1 2 1 2

n

n n

n

a a z a a p p z
h a a h p p z

a p z a p z a p z a p z







  
  

   
 (3.12) 

The substitution of  

1 2

1 2

1
1 2 4

6,

1,

,

p p

p p

a a 

 


 
 

 

 

in (3.12) and set for ease on notations  1 2 ,x a a    we reach  

 

1 2 1 1 2

0 0

2

2 3 4

(2 ,[ 2 ]) ( ,[ ]) ( )

2 6
,

1 12 2(17 2 ) 12

n n

n n n n

n n

h a a h p p z B U x z

xz z

xz x z xz z

 



 

  




    

 
 

 

which corresponds to a new generating function for the combined balancing numbers and 

Tchebychev polynomials of the second kind. 

 

Theorem 3.4. For  ,n   the new generating function of the product of balancing 

numbers  nB   and Tchebychev polynomials of first kind is given by 

 
3 2

2 3 4
0

6 2
( ) .

1 12 2(17 2 ) 12

n

n n

n

xz z xz x
B T x z

xz x z xz z





  


    
  

  

Proof . We see that  
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           

           

      

1 1 2 1 2 1 1 2

0 0

1 1 2 1 2 1 1 2 1 1 2

0 0

1 1 2 1 2

0 01 2

0

0 1 2

, 2 , 2 2 , 2

, 2 , 2 , 2 , 2

( ) ( 2 2 )
2( )

( )
2( )

n n

n n n n n

n n

n n

n n n n

n n

n nn n

n n n

n n

n

nn

n n

n

B T x z h p p h a a xh a a z

h p p h a a z x h p p h a a z

x
B U x z S p p a a z

a a

h
x

B U x z
a a

 

 

 

 

  

 

 



 








    

     

     


 


 

 

 




   

   

1 1 2 1

1 1 2 2

0

, 2

.

2

n

n

n

n

p p a z

h p p a z






 
  

 
 

   
 


 

 

On the other hand, we know that  

 

 1 1 2 2
0 0

( , ) ,
1 6

n n

n n

n n

z
h p p z B z

z z

 



 

  
 

   

 

from which it follows  

 

 
2

2 3 4
0

1 2

2 2 2 2

1 2 1 1 2 2

2 6

1 12 2(17 2 ) 12

2 2
,

2( ) 1 12 4 1 12 4

n

n n

n

xz z
B T x z

xz x z xz z

a z a zx

a a a z a z a z a z








    

 
  

     


 

therefore 

 
3 2

2 3 4
0

6 2
.

1 12 2(17 2 ) 12

n

n n

n

xz z xz x
B T x z

xz x z xz z





  


    
  

 

This completes the proof. 
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Abstaract − In this paper, we introduce the concepts of t-nI-set and R-nI-set are investigate
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1 Introduction

An ideal I [8] on a topological space (X, τ) is a non-empty collection of subsets of
X which satisfies the following conditions.

1. A ∈ I and B ⊂ A imply B ∈ I and

2. A ∈ I and B ∈ I imply A ∪B ∈ I.

Given a topological space (X, τ) with an ideal I on X. If ℘(X) is the family of
all subsets of X, a set operator (.)? : ℘(X) → ℘(X), called a local function of A with
respect to τ and I is defined as follows: for A ⊂ X, A?(I, τ) = {x ∈ X : U ∩ A /∈ I
for every U ∈ τ(x)} where τ(x) = {U ∈ τ : x ∈ U} [1]. The closure operator defined
by cl?(A) = A ∪ A?(I, τ) [7] is a Kuratowski closure operator which generates a
topology τ ?(I, τ) called the ?-topology finer than τ . The topological space together
with an ideal on X is called an ideal topological space or an ideal space denoted by
(X, τ, I). We will simply write A? for A?(I, τ) and τ ? for τ ?(I, τ).

*Corresponding Author.
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Some new notions in the concept of ideal nano topological spaces were introduced
by Parimala et al. [3, 4].

In this paper, we introduce the notions of t-nI-set, R-nI-set, tα-nI-set and Rα-
nI-set are investigate and deal with an ideal nano topological spaces.

2 Preliminaries

Definition 2.1. [5] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X}, where R(x) denotes the equiva-

lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Definition 2.2. [2] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then R(X) satisfies the
following axioms:

1. U and φ ∈ τR(X),

2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

Thus τR(X) is a topology on U called the nano topology with respect to X and
(U, τR(X)) is called the nano topological space. The elements of τR(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called n-
closed.

In the rest of the paper, we denote a nano topological space by (U,N ), where
N = τR(X). The nano-interior and nano-closure of a subset A of U are denoted by
n-int(A) and n-cl(A), respectively.

A nano topological space (U,N ) with an ideal I on U is called [3] an ideal nano
topological space and is denoted by (U,N , I). Gn(x) = {Gn |x ∈ Gn, Gn ∈ N},
denotes [3] the family of nano open sets containing x.

In future an ideal nano topological spaces (U,N , I) is referred as a space.
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Definition 2.3. [3] Let (U,N , I) be a space with an ideal I on U . Let (.)?
n be a

set operator from ℘(U) to ℘(U) (℘(U) is the set of all subsets of U). For a subset
A ⊆ U , A?

n(I,N ) = {x ∈ U : Gn ∩ A /∈ I, for every Gn ∈ Gn(x)} is called the
nano local function (briefly, n-local function) of A with respect to I and N . We will
simply write A?

n for A?
n(I,N ).

Theorem 2.4. [3] Let (U,N , I) be a space and A and B be subsets of U . Then

1. A ⊆ B ⇒ A?
n ⊆ B?

n,

2. A?
n = n-cl(A?

n) ⊆ n-cl(A) (A?
n is a n-closed subset of n-cl(A)),

3. (A?
n)?

n ⊆ A?
n,

4. (A ∪B)?
n = A?

n ∪B?
n,

5. V ∈ N ⇒ V ∩ A?
n = V ∩ (V ∩ A)?

n ⊆ (V ∩ A)?
n,

6. J ∈ I ⇒ (A ∪ J)?
n = A?

n = (A− J)?
n.

Theorem 2.5. [3] Let (U,N , I) be a space with an ideal I and A ⊆ A?
n, then

A?
n = n-cl(A?

n) = n-cl(A).

Definition 2.6. [3] Let (U,N , I) be a space. The set operator n-cl? called a nano
?-closure is defined by n-cl?(A) = A ∪ A?

n for A ⊆ X.
It can be easily observed that n-cl?(A) ⊆ n-cl(A).

Theorem 2.7. [4] In a space (U,N , I), if A and B are subsets of U , then the
following results are true for the set operator n-cl?.

1. A ⊆ n-cl?(A),

2. n-cl?(φ) = φ and n-cl?(U) = U ,

3. IfA ⊂ B, then n-cl?(A) ⊆ n-cl?(B),

4. n-cl?(A) ∪ n-cl?(B) = n-cl?(A ∪B).

5. n-cl?(n-cl?(A)) = n-cl?(A).

Definition 2.8. [6] A subset A of space (U,N , I) is said to be

1. nano α-I-open (briefly, α-nI-open) if A ⊂ n-int(n-cl?(n-int(A))),

2. nano pre-I-open (briefly, pre-nI-open) if A ⊂ n-int(n-cl?(A)).
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3 On nano t-I-set, nano tα-I-set, nano R-I-set and

nano Rα-I-sets

Definition 3.1. A subset A of a space (U,N , I) is called

1. nano t-I-set (briefly, t-nI-set) if n-int(A) = n-int(n-cl?(A)),

2. nano tα-I-set (briefly, tα-nI-set) if n-int(A) = n-int(n-cl?(n-int(A))),

3. nano R-I-set (briefly, R-nI-set) if A = P ∩ Q, where P is n-open and Q is
t-nI-set,

4. nano Rα-I-set (briefly, Rα-nI-set) if A = P ∩Q, where P is n-open and Q is
tα-nI-set.

Example 3.2. Let U = {a1, a2, a3, a4} with U/R = {{a2}, {a4}, {a1, a3}} and X =
{a3, a4}. Then N = {φ, {a4}, {a1, a3}, {a1, a3, a4}, U}. Let the ideal be I = {φ, {a3}}.

1. A = {a2} is t-nI-set.

2. B = {a4} is tα-nI-set.

3. C = {a2, a3} is R-nI-set

4. D = {a1, a3} is Rα-nI-set

Remark 3.3. In a space (U,N , I),

1. each n-open set is R-nI-set.

2. each t-nI-set is R-nI-set.

Proposition 3.4. Let A and B be subsets of a space (U,N , I). If A and B are
t-nI-sets, then A ∩B is t-nI-set.

Proof. Let A and B be t-nI-sets. Then we have

n-int(A ∩B) ⊂ n-int(n-cl?(A ∩B))
⊂ n-int(n-cl?(A) ∩ n-cl?(B))
= n-int(n-cl?(A)) ∩ n-int(n-cl?(B))
= n-int(A) ∩ n-int(B)
= n-int(A ∩B).

Then n-int(A ∩B) = n-int(n-cl?(A ∩B)) and hence A ∩B is a t-nI-set.

Example 3.5. In Example 3.2, H = {a1, a3} and K = {a3, a4} is t-nI-set. But
H ∩K = {a3} is t-nI-set.

Proposition 3.6. For a subset A of a space (U,N , I), the following properties are
equivalent:

1. A is n-open,
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2. A is pre-nI-open and R-nI-set.

Proof. (1) ⇒ (2): Let A be n-open. Then

A = n-int(A) ⊂ n-int(n-cl?(A))

and A is pre-nI-open. Also by Remark 3.3 A is R-nI-set.

(2) ⇒ (1): Given A is R-nI-set. So A = P ∩Q where P is n-open and

n-int(Q) = n-int(n-cl(Q))

Then A ⊂ P = n-int(P ). Also, A is pre-nI-open implies

A ⊂ n-int(n-cl(A)) ⊂ n-int(n-cl?(Q)) = n-int(Q)

by assumption. Thus

A ⊂ n-int(P ) ∩ n-int(Q) = n-int(P ∩Q) = n-int(A)

and hence A is n-open.

Remark 3.7. In a space the family of pre-nI-open sets and the family of R-nI-sets
are independent.

Example 3.8. In Example 3.2,

1. A = {a1, a4} is pre-nI-open but not R-nI-set.

2. B = {a2} is R-nI-set but not pre-nI-open.

Remark 3.9. In a space (U,N , I),

1. each n-open set is Rα-nI-set.

2. each tα-nI-set is Rα-nI-set.

These relations are shown in the diagram.

t-nI-set tα-nI-set
↓ ↓

R-nI-set ←− n-open −→ Rα-nI-set

The converses of diagram is not true as shown in the following Example.

Example 3.10. In Example 3.2,

1. A = {a2} is R-nI-set but not n-open set.

2. B = {a1, a3, a4} is R-nI-set but not t-nI-set.

3. A = {a1} is Rα-nI-set but not n-open set.

4. B = {a1, a3, a4} is Rα-nI-set but not tα-nI-set.
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Proposition 3.11. IfA and B are tα-nI-sets of a space (U,N , I), then A ∩B is a
tα-nI-set.

Proof. Let A and B be tα-nI-sets. Then we have

n-int(A ∩B) ⊂ n-int(n-cl?(n-int(A ∩B)))
⊂ n-int[n-cl?(n-int(A)) ∩ n-cl?(n-int(B))]
= n-int(n-cl?(n-int(A))) ∩ n-int(n-cl?(n-int(B)))
= n-int(A) ∩ n-int(B)
= n-int(A ∩B).

Then n-int(A ∩B) = n-int(n-cl?(n-int(A ∩B))) and hence A ∩B is a tα-nI-set.

Example 3.12. In Example 3.2, H = {a2, a3} and K = {a1, a2} is tα-nI-set. But
H ∩K = {a2} is tα-nI-set.

Proposition 3.13. For a subset A of a space (U,N , I), the following properties are
equivalent:

1. A is n-open;

2. A is α-nI-open and a Rα-nI-set.

Proof. (1) ⇒ (2): Let A be n-open. Then

A = n-int(A) ⊂ n-cl?(n-int(A))

and
A = n-int(A) ⊂ n-int(n-cl?(n-int(A)))

Therefore A is α-nI-open. Also by (1) of Remark 3.9, A is a Rα-nI-set.

(2) ⇒ (1): Given A is a Rα-nI-set. So A = P ∩Q where P is n-open and

n-int(Q) = n-int(n-cl?(n-int(Q)))

Then A ⊂ P = n-int(P ). Also A is α-nI-open implies

A ⊂ n-int(n-cl?(n-int(H))) ⊂ n-int(n-cl?(n-int(Q))) = n-int(Q)

by assumption. Thus

A ⊂ n-int(P ) ∩ n-int(Q) = n-int(P ∩Q) = n-int(A)

and A is n-open.
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1. Introduction and Preliminaries
 

Choquet [2] introduced the concept of grill on a topological space and the

shown to be a essential tool for studying some topological concepts.

subsets of a topological space 

�∈G, and (ii) �, � ⊆ � and �
a grill topological space. 

 

Roy and Mukherjee [17] defined

concepts. For any point � of a topological space (

neighborhoods of �. A mapping 

all 	 ∈ 
 (�)} for each � ∈ �

for all � ∈ �(�). The map � satisfies Kuratowski closure axio

 

(i) �(∅) = ∅,  

(ii) if � ⊆ �, then �(�

(iii) if � ⊆ �, then �(�
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introduced the concept of grill on a topological space and the idea of grills has 

A collection G of nonempty 

and � ⊆ � implies that      

. A triple (�, �, G) is  called 

a unique topology by a grill and they studied topological 

) denotes the collection of all open 

� ∈ � : � ∩ 	 ∈ G for 

) is defined as �(�) = � ∪ �(�) 



Journal of New Theory 23 (2018) 85-92                                                                                                                    86 

 

 

 

(iv) if �, � ⊆ �, then �(� ∪ �) = �(�) ∪ �(�).  

 

Corresponding to a grill G on a topological space (�, 
), there exists a unique topology 
G (say) 

on � given by  
G = {	 ⊆ � : �(� – 	) = � – 	}, where for any � ⊆ �, �(�) = � ∪ �(�) =     


G-cl(�) and 
 ⊆ 
G. 

 

The concept of decompositions of continuity on a grill topological space and some classes of sets 

were defined with respect to grill (see [3, 7, 10] for details). A subset � in � is said to be  

 

(i) �-open if � ⊆ int(�(�)),  

(ii) G-�.open if � ⊆ int(�(int(�))),  

(iii) G-preopen if � ⊆ int(�(�)),  

(iv) G-semiopen if � ⊆ �(int(�)),  

(v) G-�.open if � ⊆ cl(int(�(�))).  

 

The family of all G-�.open (resp. G-preopen, G-semiopen, G-�.open) sets in a grill topological 

space (�,
,G) is denoted by G��(�) (rep. G��(�), G��(�), G��(�)). A function �: (�,
,G) → 

(�, �) is said to be G-semicontinuous if �–1
(�) ∈ G��(�) for each �∈ �.  

 

Mashhour et al. [14] introduced a class of preopen sets and he defined pre interior and pre 

closure in a topological space. A subset � in � is said to be preopen if � ⊆ int(cl(�)) and ��(�) 

denotes the family of preopen sets. For any subset � of �, (i) pint(�) = ∪{	 : 	 ∈ ��(�) and 	 

⊆ �}; (ii) pcl(�) = ∩{� : � − � ∈ ��(�) and � ⊆ �}.  

 

In this paper, we define a G��-open set in a grill topological space (�, �, G) and we study some 

of its basic properties. Moreover, we define G��-continuous, G��-open, G��-closed and G��
∗-

continuous functions on a grill topological space (�, �, G) and we discuss some of their essential 

properties. 

 

Proposition 1.1. [17] Let (�, 
,G) be a grill topological space. Then for all �, � ⊆ �:                                                    

(i) � ⊆ � implies that �(�) ⊆ �(�);                                                                                                                                                          

(ii) �(� ∪ � ) = �(�) ∪ �(�);                                                                                                                                                                   

(iii) �(�(�)) ⊆ �(�) = cl(�(�)) ⊆ cl(�).  

 

 

2. G��-Open Sets  

 

Definition 2.1. Let (�,
,G) be a grill topological space and let � be a subset � of �. Then � is 

said to be G��-open if and only if there exist a 	 ∈ ��(�) such that 	 ⊆ � ⊆ �(	). A set �                      

of � is G��-closed if its complement � − � is G��-open. The family of all G��-open                  

(resp. G��-closed) sets is denoted by G���(�) (resp. G���(�)).  

 

Example 2.1. Let � = {�,  , !, "}, 
 = {∅, �, {�,  }, {!, "}, {�,  , !}, {�,  , "}} and G = {{"}, 

{�, "}, { , "}, {!, "}, {�,  , "}, {�, !, "}, { , !, "}, �}. Then G���(�) = {∅, �, {�}, { }, {�, 

 }, {�, !}, {�, "}, { , !}, { , "}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}}.   
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Theorem 2.1. Let (�,
,G) be a grill topological space and let � ⊆ �. Then � ∈ G���(�) if and 

only if � ⊆ �(pint(�)).  

 

Proof. If � ∈ G���(�), then there exist a 	 ∈ ��(�) such that 	 ⊆ � ⊆ �(	). But 	 ⊆ �          

implies that 	 ⊆ pint(�). Hence �(	) ⊆ �(pint(�)). Therefore � ⊆ �(pint(�)).                       

Conversely, let � ⊆ �(pint(�)). To prove that � ∈ G���(�), take 	 = pint(�), then 	 ⊆ � ⊆ 

�(	). Hence � ∈ G���(�).  

 

Corollary 2.1.  If � ⊆ �, then � ∈ G���(�) if and only if �(�) = �(pint(�)). 

 

Proof. Let A ∈ G���(�). Then as � is monotonic and idempotent, �(�) ⊆ �(�(pint(�))) = 

�(pint(�)) ⊆ �(�) implies that �(�) = �(pint(�)). The converse is obvious. 

 

Theorem 2.2. Let (�,
,G) be a grill topological space. If A ∈ G���(�) and � ⊆ � such that                 

� ⊆ � ⊆ �(pint(�)), then � ∈ G���(�).   

                                                 

Proof. Given � ∈ G���(�). Then by Theorem 2.1, � ⊆ �(pint(�)). But � ⊆ � implies that 

pint(�) ⊆ pint(�) and hence by Theorem 2.4[17], �(pint(�)) ⊆ �(pint(�)). Therefore                 

� ⊆ �(pint(�)) ⊆ �(pint(�)). Hence � ∈ G���(�).  

 

Corollary 2.2. If A ∈ G���(�) and � ⊆ � such that � ⊆ � ⊆ �(�), then � ∈ G�%�(�). 

 

Proof. Follows from the Theorem 2.2 and Corollary 2.1. 

 

Proposition 2.1. If  	 ∈ ��(�), then 	 ∈ G���(�).  

 

Proof. Let 	 ∈ ��(�), it implies that 	 = pint(	) ⊆ �(pint(	)). Hence 	 ∈ G���(�). 

 

Note that the converse of the above proposition need not be true. Let � = {�,  , !, "}, 
 = {∅, �, 

{ }, {!}, {�,  }, { , !}, {�,  , !}} and G = {{�}, { }, {"}, {�,  }, {�, !}, {�, "}, { , !}, { , 

"}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}, �}. Then ��(�) = {∅, �, { }, {!}, {�,  }, 

{ , !}, {�,  , !}, { , !, "}} and G���(�) = {∅, �, { }, {!}, {�,  }, { , !}, { , "}, {�,  , !}, 

{�,  , "}, { , !, "}}. Here { , "} and {�,  , "} are G��-open sets but not preopen.                                                                                                 

 

Theorem 2.3. Let (�,
,G) be a grill topological space. If � ∈ G��(�), then � ∈ G���(�). 

                                                                                                                             

Proof. Given � ∈ G��(�). Then � ⊆ �(int(�)). Since int(�) ⊆ pint(�), we have that �(int(�)) ⊆ 

�(pint(�)) (by Theorem 2.4[17]). Hence � ⊆ �(pint(�)) and thus � ∈ G���(�).  

 

Note that the converse of the above theorem need not be true. By Example 2.1, we have that 

G��(�) = {∅, �, {�,  }, {!, "}, {�,  , !}, {�,  , "}}. Therefore {�}, { }, {�, !}, {�, "}, { , !}, 

{ , "}, {�, !, "} and { , !, "} are G��-open sets but not G-semiopen.                                                                                                                      
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Proposition 2.2. If ��(�) = 
, then G���(�) = G��(�). 

 

Proof. By Theorem 2.3, G��(�) ⊆ G���(�). Let � ∈ G���(�). Then by Theorem 2.1,                          

� ⊆ �(pint(�)). Since ��(�) = 
, we have that pint(�) = int(�) implies that � ⊆ �(pint(�)) = 

�(int(�)) and hence � ∈ G��(�). Thus G���(�) ⊆ G��(�).    

 

Theorem 2.4.  Let (�,
,G) be a grill topological space. 

(i) If �& ∈ G���(�) for each ' ∈ (, then ∪i∈J�& ∈ G���(�);    

(ii) If � ∈ G���(�) and 	 ∈ ��(�), then � ∩ 	 ∈ G���(�). 

 

Proof. (i) Since �& ∈ G���(�), we have that �& ⊆ �(pint(�&)) for each ' ∈ (. Thus, we obtain �& 

⊆ �(pint(�&)) ⊆ �(pint(∪i∈J�&)) and hence ∪i∈J�& ⊆ �(pint(∪i∈J�&)). This shows that ∪i∈J�& ∈ 

G���(�).  

       

(ii) Let � ∈ G���(�) and 	 ∈ ��(�). Then � ⊆ �(pint(�)) and pint(	) = 	. Now, � ∩ 	 ⊆ 

�(pint(�)) ∩ 	 =  (pint(�) ∪ �(pint(�))) ∩ 	 = (pint(�) ∩ 	) ∪ (�(pint(�)) ∩ 	) ⊆ pint(� ∩ 	) 

∪ �(pint(�) ∩ 	) (by Theorem 2.10[17]) = pint(� ∩ 	) ∪ �(pint(� ∩ 	)) = �(pint(� ∩ 	)). 

Therefore � ∩ 	 ∈ G���(�). 

 

Remark 2.1. The following example shows that if �, � ∈ G���(�), then � ∩ � ∉ G���(�).  

 

From Example 2.1, take � = { , !} and � = {!, "}, then �, � ∈ G���(�) but � ∩ � = {!}∉ 

G���(�).  

 

Theorem 2.5. Let (�,
,G) be a grill topological space and � ⊆ �. If � ∈ G���(�), then 

pint(�(�)) ⊆ �.  

 

Proof. Suppose � ∈ G���(�). Then � − �  ∈ G���(�) and hence � − � ⊆ �(pint(� − �)) ⊆ 

pcl(pint(� − �)) = � − pint(pcl(�)) ⊆ � − pint(�(�)), implies that pint(�(�)) ⊆ �.  

 

Theorem 2.6. Let (�,
,G) be a grill topological space and � ⊆ � such that � − pint(�(�)) = 

�(pint(� − �)). Then � ∈ G���(�) if and only if pint(�(�)) ⊆ �.  

 

Proof. Necessary part is proved by Theorem 2.5. Conversely, suppose that pint(�(�)) ⊆ �. Then 

� − � ⊆ � − pint(�(�)) = �(pint(� − �)), implies that � − � ∈ G���(�). Hence � ∈ G���(�).  

 

Definition 2.2. Let (�,
,G) be a grill topological space and � ⊆ �. Then  

(i) G��-interior of � is defined as union of all G��-open sets contained in �.   

     Thus G��int(�) = ∪{	 : 	 ∈ G���(�) and 	 ⊆ �};  

(ii) G��-closure of � is defined as intersection of all G��-closed sets containing �. 

      Thus G��cl(�) =  ∩{� : � – � ∈ G���(�) and � ⊆ �}. 
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Theorem 2.7. Let (�,
,G) be a grill topological space and � ⊆ �. Then  

(i) G��int(�) is a G��-open set contained in �; 

(ii) G��cl(�) is a G��-closed set containing �;  

(iii) � is G��-closed if and only if G��cl(�) = �; 

(iv) � is G��-open if and only if G��int(�) = �; 

(v) G��int(�) = � – G��cl(� − �); 

(vi) G��cl(�) = � – G��int(� − �).  

   

Proof. Follows form the Definition 2.15 and Theorem 2.4(i). 

 

Theorem 2.8. Let (�,
,G) be a grill topological space and �, � ⊆ �.  Then the following are 

hold: (i) If � ⊆ �, then G��int(�) ⊆ G��int(�);   

(ii) G��int(� ∪ �) ⊇ G��int(�) ∪ G��int(�); 

(iii) G��int(� ∩ �)  = G��int(�) ∩ G��int(�).  

 

Proof. Follows from the Theorem 2.8. 

 

Definition 2.3. A function �: (�,
,G) → (�, �) is said to be G��-continuous if �–1
(�) ∈ 

G���(�) for each �∈ ��(�).  

 

Example 2.2. Let � = {�,  , !, "}, � = {1, 2, 3, 4}, 
 = {∅, �, {�,  }, {!, "}}, � = {∅, �, {1, 2}, 

{3, 4}, {1, 2, 3}, {1, 2, 4}}and G = {{�,  , !}, �}. Then G���(�) = �(�) and ��(�) = {∅, �, 

{1}, {2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. 

Define �: (�, 
,G) → (�, �) by �(�) = 2, �( ) = 1, �(!) = 4 and �(") = 3. Then inverse image of 

every preopen sets in � is G��-open in �. Hence � is G��-continuous.  

 

Remark 2.2. The concepts of G-semicontinuous and G��-continuous are independent. 

 

(i) From Example 2.2, we have that G��(�) = {∅, �, {�,  }, {!, "}} and the function � is G��-

continuous. Also �–1
({1, 2, 3}) = {�,  , "} is not G-semiopen in � for the open set {1, 2, 3} of 

�. Hence � is not G-semicontinuous. 

 

(ii) Let � = {�,  , !, "}, � = {1, 2, 3, 4}, 
 = {∅, �, {a}, {�,  }, {!, "}, {�, ! , "}, { , !, "}}, � = 

{∅, �, {1, 2}, {3, 4}} and G = {{ }, {�,  }, { , !}, { , "}, {!, "}, {�,  , !}, {�,  , "}, {�, !, 

"}, { , !, "}, �}. Then G��(�) = 
, G���(�) = {∅, �, {�}, {�,  }, {�, !}, {�, "}, { , !}, { , 

"}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}} and ��(�) = �(�). Define �: (�, 
,G) → 

(�, �) by �(�) = 4, �( ) = 3, �(!) = 2 and �(") = 1. Then the function � is G-semicontinuous. 

Also the inverse image �–1({3}) = { } is not G��-open in � for the preopen set {3} of �. Hence 

� is not G��-continuous.   

 

From (i) and (ii), we got the concepts of G-semicontinuous and G��-continuous are independent. 
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Theorem 2.9. For a function �: (�,
,G) → (�, �), the following are equivalent:                                   

(i) �  is G��-continuous;                                                                                                                           

(ii) For each F ∈ ��(�), �–1
(�) ∈ G���(�);  

(iii)  For each � ∈ � and each � ∈ ��(�) containing �(�), there exists a 	 ∈ G���(�)  

        containing � such that �(	) ⊆ �. 

  

Proof. (i) ⇔ (ii): It is obvious. 

 

(i)  (iii): Let  � ∈ ��(�) and �(�) ∈ �(� ∈ �). Then by (i), �–1
(�) ∈ G���(�) containing �. 

Taking �–1(�) = 	, we have that � ∈ 	 and �(	) ⊆ �. 

 

(iii)  (i): Let � ∈ ��(�) and � ∈ �–1
(�). Then �(�) ∈ � ∈ ��(�) and hence by (iii), there 

exists a 	 ∈ G���(�) containing � such that �(	) ⊆ �. Thus, we obtain � ∈ 	 ⊆ � (pint(	)) ⊆ 

�(pint(�–1
(�))). This shows that �–1

(�) ⊆ �(pint(�–1
(�))). Hence � is G��-continuous.    

 

Theorem 2.10. A function �: (�,
,G) → (�, �) is G��-continuous if and only if  the graph 

function , : � → � × �, defined by ,(�) = (�, �(�)) for each � ∈ �, is G��-continuous.  

 

Proof. Suppose that � is G��-continuous. Let � ∈ � and  -    ∈∈∈∈ ��(� × �) containing ,(�). Then 

there exist a 	 ∈ ��(�) and � ∈ ��(�) such that ,(�) = (�, �(�)) ∈ 	 × � ⊆ -. Since � is 

G��-continuous, there exists a / ∈ G���(�) containing � such that �(/) ⊆ �. By Theorem 

2.4(b), / ∩ 	 ∈ G���(�) and ,(/ ∩ 	) ⊆ 	 × � ⊆ -. This shows that , is G��-continuous. 

Conversely, suppose that  , is G��-continuous. Let � ∈ � and � ∈ �(�) containing �(�). Then  

� × �     ∈∈∈∈ ��(� × �) and by G��-continuity of ,, there exists a 	 ∈ G���(�) containing � such 

that ,(	) ⊆ � × �. Thus we have that �(	) ⊆ � and hence � is G-��.continuous.         

    

Definition 2.3. Let (�, 
) be a topological space and (�,�,G) a grill topological space. A function 

�: (�, 
) → (�,�,G) is said to be G��-open (resp. G��-closed ) if for each 	 ∈ ��(�) (resp. for 

each 	 ∈ ��(�)), �(	) is G��-open (resp. G��-closed) in (�, �,G). 

 

Theorem 2.11. A function �: (�, 
) → (�,�,G) is G��-open if and only if  for each  � ∈ � and 

each pre-neighbourhood 	 of �, there exists a � ∈ G���(�) such that �(�) ∈ � ⊆ �(	).    

  

Proof. Suppose that � is a G-��.open function and let � ∈ �.  Also let 	 be any                                   

pre-neighbourhood of �.  Then there exists / ∈ ��(�) such that � ∈ / ⊆ 	. Since � is G��-

open, �(/) = � (say) ∈ G���(�) and � (�) ∈ � ⊆ �(	). Conversely, suppose that 	 ∈ ��(�). 

Then for each � ∈ 	, there exists a �0 ∈ G���(�) such that �(�) ∈ �0 ⊆ �(	). Thus �(	) = 

∪{�0  : � ∈ 	} and hence by Theorem 2.4(a), �(	) ∈ G���(�).  This shows that � is G��-open.  

 

Theorem 2.12. Let �: (�, 
) → (�,�,G) be a G-��.open function. If � ⊆ � and � ∈ ��(�) 

containing �–1(�), then there exists a 1 ∈ G���(�) containing � such that �–1(1) ⊆ �. 
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Proof. Suppose that � is G-��.open.  Let � ⊆ � and � ∈ ��(�) containing �–1(�). Then � − � ∈ 

��(�) and by G��-openness of �, �(� − �) ∈ G���(�). Thus H = � −  �(� − �) ∈ G���(�) 

consequently 
 
�–1

(�) ⊆ � implies that � ⊆ 1. Further, we obtain that �–1
(1) ⊆ �.  

 

Theorem 2.13. For any bijection  �: (�, 
) → (�,�,G), the following are equivalent: 

(i) �–1
: (�,�,G) → (�, 
) is G��-continuous; 

(ii) � is G��-open; 

(iii) � is G��-closed.  

 

Proof. It is obvious. 

 

Definition 2.4. Let (�,
,G) be a grill topological space. A subset � of � is said to be a G��
∗-set if 

� = 	 ∩ �,  where 	 ∈ ��(�) and �(pint(�)) = pint(�).  
      

Theorem 2.14. Let (�,
,G) be a grill topological space and let � ⊆ �. Then � ∈ ��(�) if and 

only if � ∈ G���(�) and � is G��
∗-set in (�,
,G). 

 

Proof. Let � ∈ ��(�). Then � ∈ G���(�), implies that � ⊆ �(pint(�)).  Also � can be 

expressed as � = � ∩ �, where � ∈ ��(�) and �(pint(�)) = pint(�). Thus � is a G��
∗-set. 

Conversely, Let � ∈ G���(�) and � be a G��
∗-set.  Thus � ⊆ �(pint(�)) = �(pint(	 ∩ �)), 

where 	 ∈ ��(�) and �(pint(�)) = pint(�).  Now � ⊆ 	 ∩ � ⊆ 	 ∩ �(pint(	 ∩ �)) =                         

	 ∩ �(	 ∩ pint(�)) ⊆ 	 ∩ �(	) ∩ �(pint(�)) = 	 ∩ pint(�) = pint(�). Hence � ∈ ��(�). 

 

Definition 2.5. A function �: (�,
,G) → (�, �) is G��
∗-continuous if for each � ∈ ��(�),                         

�–1(�) is a G��
∗-set in (�, 
,G). 

 

Theorem 2.15. Let (�,
,G) be a grill topological space. Then for a function �: (�,
,G) → (�, �), 

the following are equivalent: 

(i) � is precontinuous; 

(ii) � is G��-continuous and G��
∗-continuous.   

 

Proof. Straightforward. 
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Abstaract − In the present paper, we introduce one class of soft mappings,namely soft almost
b-continuous mappings and investigate several properties of these mappings.This notion is stronger
than soft almost β-continuous mappings and is weaker than both soft almost pre-continuous map-
pings and soft almost semi-continuous mappings.The diagrams of implications among these soft
classes of mappings and some known classes of mappings have been established.

Keywords − Soft regular open set, Soft b-open set, Soft δ-open set, Soft almost continuous map-
pings, Soft b-continuous mappings.

1 Introduction

In 1999, Molodtsov [14] introduced the concept of soft sets to deal with uncertainties
while modelling the problems with incomplete information. In 2011 Shabir and Naz
[15] initiated the study of soft topological spaces.Theoretical study of soft sets and
soft topological spaces have been by some authors in [6, 8, 9, 10, 11, 14, 15, 23, 25, 26].
Soft regular-open sets[5], soft semi-open sets[12],soft preopen sets [2], soft α-open sets
[4],soft β-open sets [3], soft b-open sets [1] play an important part in the researches
of generalizations of continuity in soft topological spaces. The aim of this paper is to
introduce one class of soft mappings, namely soft almost b-continuous mappings by
utilizing the notions of soft b-open sets due to [1]. We investigate several properties
of this class. The class of soft almost b-continuous mappings is a generalization of
soft almost pre-continuous mappings and soft almost semi-continuous mappings. At
the same time, the class of soft almost β-continuous mappings is a generalization of
soft almost b-continuous mappings.

*Corresponding Author.
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2 Preliminary

Let U is an initial universe set, E be a set of parameters, P(U) be the power set of
U and A ⊆ E.

Definition 2.1. [14] A pair (F, A) is called a soft set over U, where F is a mapping
given by F: A → P(U). In other words, a soft set over U is a parameterized family
of subsets of the universe U. For all e ∈ A, F(e) may be considered as the set of
e-approximate elements of the soft set (F, A).

Let X and Y be an initial universe sets and E and K be the non empty sets of
parameters, S(X, E) denotes the family of all soft sets over X and S(Y, K) denotes
the family of all soft sets over Y.

Definition 2.2. [15] A subfamily τ of S(X , E) is called a soft topology on X if:

1. φ̃, X̃ belong to τ .

2. The union of any number of soft sets in τ belongs to τ .

3. The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ , E) is called a soft topological space over X. The members of τ are
called soft open sets in X and their complements called soft closed sets in X.

Definition 2.3. [25] The soft set (F, E)∈ S(X, E) is called a soft point if there exist
x ∈ X and e ∈ E such that F(e) = {x} and F(e’) = φ for each e’ ∈ E – {e}, and the
soft point (F, E) is denoted by (xe)E.

Definition 2.4. [23, 4, 7, 5, 1, 3] A soft set (F,E) in a soft topological space (X,τ ,E)
is said to be :

(a) Soft regular open if (F,E)= Int(Cl(F,E)).
(b) Soft α-open if (F,E) ⊆ Int(Cl(Int(F,E))).
(c) Soft semi-open if (F,E) ⊆ Cl(Int(F,E)).
(d) Soft pre-open if (F,E) ⊆ Int(Cl(F,E)).
(e) Soft b-open if (A, E) ⊂ Int(Cl(A, E)) ∪ Cl(Int (A, E)).
(f) Soft β-open if (A, E) ⊂ Cl(Int(Cl(A, E))).
The complement of soft α-open set (resp. soft semi-open set, soft pre-open,soft

b-open, soft β-open) set is called Soft α-closed(resp. soft semi-closed ,soft pre-
closed,soft b-closed, soft β-closed) set.

Definition 2.5. [17]A soft point (xe)E in a soft topological space (X,τ ,E) is called
δ-cluster point of a soft set (A,E) of X if Int(Cl(V,E)) ∩ (A,E) 6= φ for each soft
open set (V,E) containing (xe)E.The union of all δ-cluster points of (A, E) is called
δ-closure of (A,E) and is denoted by δCl(A, E).

Remark 2.6. [4, 23, 1]
(a) Every soft regular open (resp. soft regular closed) set is soft open (resp.

closed), every soft open (resp. soft closed) set is soft α-open (resp. soft α-closed),
every soft α-open (resp. soft α-closed) set is soft pre-open (resp. pre-closed) and
soft semi-open (resp. semi-closed) but the converses may not be true.



Journal of New Theory 23 (2018) 93-104 95

(b) The concepts of soft semi-open (resp. soft semi-closed) and soft pre-open
(resp.soft pre-closed)sets are independent to each other.

(c) Every soft pre-open (resp. pre-closed) and soft semi-open (resp. semi-closed)
is soft b-open(resp. soft b-closed) set and every soft b-open(resp. soft b-closed) set
is soft β-open((resp. soft β-closed) set but the converses may not be true.

Definition 2.7. [1] Let (F,E) be a soft set in a soft topological space (X ,τ ,E).
(a) The soft b-closure of (F, E) is defined as the smallest soft b-closed set over

which contains (F, E) and it is denoted by bCl(F,E).
(b) The soft b-interior of (F, E) is defined as the largest soft b-open set over

which is contained in (F, E) and is denoted by bInt(F,E).

Definition 2.8. [23, 4, 7, 5, 1, 3] Let (X,τ ,E) and (Y,υ,K) be a soft topological
spaces. A soft mapping fpu : (X,τ ,E)→ (Y,υ,K) is said to be soft continuous (resp.
soft α-continuous,soft semi-continuous ,soft pre-continuous,soft b-continuous,soft β-
continuous) mapping if f−1

pu (G, K) is soft open(resp. soft α-open ,soft semi-open,soft
pre-open,soft b-open,soft β-open) over X , for all soft open set(G,K) over Y.

Definition 2.9. [1] A soft mapping fpu : (X,τ ,E)→ (Y,υ,K) is said to be soft b-
irresolute if f−1

pu (G, K) is soft b-open over X , for all soft b-open set (G, K) over
Y.

Definition 2.10. [23, 4, 7, 5, 1, 3] Let (X,τ ,E) and (Y,υ,K) be a soft topological
spaces. A soft mapping fpu : (X,τ ,E)→ (Y,υ,K) is said to be soft open(resp. soft
α-open,soft semi-open,soft pre-open,soft b-open,soft β-open) mapping if fpu (F, E)
is soft open(resp. soft α-open ,soft semi-open,soft pre-open,soft b-open,soft β-open)
over Y, for all soft open set (F, E) over X.

Remark 2.11. [4, 3, 1]
(a) Every soft continuous (resp. soft open) mapping is soft α-continuous(resp.

soft α-open) mapping ,every soft α-continuous (resp. soft α-open) mapping is soft
pre-continuous (resp. soft pre-open) and soft semi-continuous (resp. soft semi-open)
mapping but the converse may not be true.

(b) The concepts of soft semi-continuous and soft pre-continuous (resp. soft
semi-open and soft pre-open) mappings are independent.

(c) Every soft pre-continuous (resp. soft pre-open) and soft semi-continuous (resp.
soft semi-open) mappings are soft b-continuous and every soft b-continuous mapping
is soft β-continuous mapping but the converse may not be true.

Definition 2.12. [18, 19, 20, 21, 22] A soft mapping fpu : (X ,τ ,E)→ (Y,ϑ,K) is said
to be soft almost(resp. α-continuous,semi-continuous,pre-continuous,β-continuous)
mapping if the inverse image of every soft regular open set over Y is soft open(soft
α-open,soft semi-open,soft pre-open,soft β-open) over X.

In this paper ,we use the abbreviations of soft almost continuous mapping , soft
almost α-continuous mapping, soft almost semi-continuous mapping, soft almost pre-
continuous mapping, soft almost β-continuous mapping by s.a.c., s.a.α.c., s.a.s.c.,
s.a.p.c., s.a.β.c. respectively.
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Remark 2.13. [18, 19, 20, 21, 22]
(a) Every soft continuous mapping is soft almost continuous but the converse

may not be true.
(b) Every soft α-continuous mapping is soft almost α-continuous but the converse

may not be true.
(c) Every soft almost continuous(resp. soft almost-open) mapping is soft almost

α-continuous(resp. soft almost α-open) but the converse may not be true.
(d) Every soft almost α-continuous(resp. soft almost α-open) mapping is almost

pre-continuous(resp. soft almost pre-open) and almost semi-continuous(resp. soft
almost semi-open) but the converse may not be true.

(e) Every soft semi-continuous mapping (resp. soft semi-open) is soft almost
semi-continuous(resp. soft almost semi-open) but the converse may not be true.

(f) Every soft pre-continuous(resp. soft pre-open) mapping is soft almost pre-
continuous(resp. soft almost pre-open) but the converse may not be true.

(g) The concepts of soft almost semi-continuous and soft almost pre-continuous
(resp. soft almost semi-open and soft almost pre-open) mappings are independent.

(h) Every soft β-continuous(resp. soft β-open) mapping is soft almost β-
continuous(resp. soft almost β-open) but the converse may not be true.

(i) Every soft almost pre-continuous(resp. soft almost pre-open) and soft al-
most semi-continuous(resp. soft almost semi-open) mapping is soft almost β-
continuous(resp. soft almost β-open) but the converse may not be true.

Definition 2.14. [20] A soft topological space (X ,τ ,E) is said to be soft semiregular
if for each soft open set (F,E) and each soft point (xe)E ∈ (F,E), there exists a soft
open set (G,E) such that (xe)E ∈ (G,E) and (G,E) ⊂ Int(Cl(G,E)) ⊂ (F,E).

Definition 2.15. [16] Let fpu : (X ,τ , E) → (Y , ϑ , K) be a soft mapping. Then a
soft mapping Ggpgu : (X ,τ ,E) → (X × Y, τ × ϑ , E × K ) is said to be soft graph
mapping of fpu where gu and gp are respectively defined by gu(x) = ( x , u(x) ) for
all x ∈ X and gp(e) = ( e , p(e )) for all e ∈ E.

3 Soft Almost b-Continuous Mappings

Definition 3.1. A soft mapping fpu : (X ,τ ,E) → (Y,ϑ,K) soft almost b-continuous
(brie?y s.a.b.c.) for each soft point (xe)E over X and each soft regular open set (V,K)
over Y containing fpu((xe)E), there exists soft b-open set(U,E) over X containing
(xe)E such that fpu(U,E) ⊂ (V,K).

Theorem 3.2. Let fpu : (X ,τ ,E) → (Y,ϑ,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu soft almost b-continuous.
(b) For each soft point (xe)E over X and each soft open set (V,K) over Y con-

taining fpu((xe)E), there exists soft b-open set (U,E) over X containing (xe)E such
that fpu(U,E) ⊂ Int(Cl(V,K)).

(c) f−1
pu (V,K) be a soft b-open set over X, for every soft regular open set (V,K)

over Y.
Proof: It is obvious.
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Remark 3.3. Every soft b-continuous mapping is soft almost b-continuous but the
converse may not be true.

Example 3.4. Let X = {x1, x2}, E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }.
The soft sets (F,E), (G,K) are defined as follows :

F(e1) = {x2}, F(e2) = {x1}
G(k1) = {y1}, G(k2) = {y2}
Let τ = {φ ,(F,E), X̃ } , and υ = {φ ,(G,K), Ỹ } are topologies on X and Y

respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K) defined by u(x1) = y1

, u(x2) = y2 and p(e1)= k1, p(e2) = k2 is soft almost b-continuous but not soft
b-continuous.

Remark 3.5. Every soft almost semi-continuous is soft almost b-continuous but the
converse may not be true.

Example 3.6. Let X = {x1, x2 }, E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }.
The soft sets (F1,E), (F2,E), (G,K) are defined as follows :

G1(k1) = {y1}, G1(k2) = {y2},
G2(k1) = {y2}, G2(k2) = {y1},
Let τ = {φ, X̃ }, and υ = {φ, (G1,K), (G2,K), Ỹ } are topologies on X and Y

respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K) defined by u(x1) = y1,
u(x2)= y2 and p(e1 )= k1, p(e2 ) = k2 is soft almost b-continuous mapping but not
soft almost semi-continuous.

Remark 3.7. Every soft almost pre-continuous is soft almost b-continuous but the
converse may not be true.

Example 3.8. Let X = {x1, x2 }, E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }.
The soft sets (F1,E), (F2,E), (G,K) are defined as follows :

F1(e1) = φ, F1(e2) = {x1},
F2(e1) = {x1}, F2(e2) = φ,
F3(e1) = {x1}, F3(e2) = {x1},
G1(k1) = {y1}, G1(k2) = {y2},
G2(k1) = {y2}, G2(k2) = {y1}.
Let τ = {φ , (F1,E) ,(F2,E),(F3,E), X̃ } , and υ = {φ ,(G1,K),(G2,K), Ỹ } are

topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K)
defined by u(x1) = y1 , u(x2)= y2 and p(e1 )= k1 , p(e2 ) = k2 is soft almost
b-continuous mapping but not soft almost pre-continuous.

Remark 3.9. Every soft almost b-continuous mapping is soft almost β-continuous
but the converse may not be true.

Example 3.10. Let X = {x1 , x2,x3,x4 } , E = {e1 , e2 } and Y = {y1 , y2,y3,y4}
, K = {k1 , k2 }. The soft sets (F1,E) ,(F2,E),(F3,E),(G1,K),(G2,K) and (G3,K) are
defined as follows :

F1(e1) = {x3}, F1(e2) = φ,
F2(e1) = {x1,x4}, F2(e2) = φ,
F3(e1) = {x1,x3,x4}, F3(e2) = φ ,
G1(k1) = {y3}, G1(k2) = φ,



Journal of New Theory 23 (2018) 93-104 98

G2(k1) = {y1,y4}, G2(k2) = φ,
G3(k1) = {y1,y3,y4}, G3(k2) =φ,
Let
τ = {φ, (F1,E), (F2,E),(F3,E), X̃ } and υ = {φ, (G1,K), (G2,K), (G3,K), Ỹ }

are topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K)
defined by u(x1) = u(x2)= y1, u(x3) = y3, u(x4) = y4 and p(e1 )= k1, p(e2 ) = k2 is
soft almost β-continuous mapping but not soft almost b-continuous.

Thus we reach at the following diagram of implications.

Theorem 3.11. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu is soft almost b-continuous.
(b) f−1

pu (G,K) is soft b-closed set in X for every soft regular closed set (G,K) over
Y.

(c) f−1
pu (A,K) ⊂ bInt(f−1

pu (Int(Cl(A,K)))) for every soft open set (A,K) over Y.
(d) bCl(f−1

pu (Cl(Int(G,K)))) ⊂ f−1
pu (G,K) for every soft closed set (G,K) over Y.

(e) For each soft point (xe)E over X and each soft regular open set (G,K) over Y
containing fpu ((xe)E),there exists a soft b-open set (F,E) over X such that (xe)E ∈
(F,E) and (F,E) ⊂ f−1

pu (G,K).
(f) For each soft point (xe)E over X and each soft regular open set (G,K) over Y

containing fpu((xe)E),there exists a soft b-open set (F,E) over X such that (xe)E ∈
(F,E) and fpu(F,E) ⊂ (G,K).

Proof: (a)⇔(b) Since f−1
pu ( (G,K)C) = (f−1

pu (G,K))C for every soft set (G,K)
over Y.

(a) ⇒(c) Since (A,K) is soft open set over Y, (A,K) ⊂ Int(Cl(A,K)) and hence,
f−1

pu (A,K) ⊂ f−1
pu (Int(Cl(A,K))).Now Int (Cl(A,K)) is a soft regular open set over

Y. By (a), f−1
pu (Int(Cl(A,K))) is soft b-open set over X. Thus, f−1

pu (A,K) ⊂ f−1
pu

(Int(Cl(A,K) )) = bInt(f−1
pu (Int(Cl(A,K)))).

(c) ⇒(a) Let (A,K) be a soft regular open set over Y, then we have f−1
pu (A,K)

⊂ bInt(f−1
pu (Int(Cl(A,K)))) = bInt(f−1

pu (A,K)).Thus, f−1
pu (A,K) = bInt(f−1

pu (A,K))
shows that f−1

pu (A,K) is a soft b-open set over X.
(b) ⇒(d) Since (G,K) is soft closed set over Y, Cl(Int(G,K)) ⊂ (G,K) and

f−1
pu (Cl(Int (G,K))) ⊂ f−1

pu (G,K). Cl(Int(G,K)) is soft regular closed set over Y.
Hence, f−1

pu (Cl(Int(G,K) is soft b-closed set over X.Thus, bCl(f−1
pu (Cl(Int(G,K)))) =

f−1
pu (Cl(Int(G,K))) ⊂ f−1

pu (G,K).
(d)⇒(b) Let (G,K) be a soft regular closed set over Y,then we have bCl(f−1

pu (G,K))
= βCl(f−1

pu (Cl(Int(G,K)))) ⊂ f−1
pu (G,K) .Thus, bCl(f−1

pu (G,K)) ⊂ f−1
pu (G,K), shows

that f−1
pu (G,K) is soft b-closed set over X.
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(a) ⇒(e) Let (xe)E be a soft point over X and (G,K) be a soft regular open set
over Y such that fpu((xe)E) ∈ (G,K), Put (F,E) = f−1

pu (G,K) .Then by (a), (F,E) is
soft b-open set, (xe)E∈ (F,E) and (F,E) ⊂ f−1

pu (G,K).
(e) ⇒(f) Let (xe)E be a soft point over X and (G,K) be a soft regular open set

over Y such that fpu((xe)E). By (e) there exists a soft b-open set (F,E) such that
(xe)E ∈ (F,E), (F,E) ⊂ f−1

pu (G,K). And so , we have (xe)E ∈ (F,E), fpu(F,E) ⊂
fpu(f

−1
pu (G,K)) ⊂ (G,K).

(f) ⇒(a) Let (G,K) be a soft regular open set over Y and (xe)E be a soft point
over X such that (xe)E∈ f−1

pu (G,K). Then fpu((xe)E) ∈ fpu( f−1
pu (G,K)) ⊂(G,K). By

(f) ,there exists a soft b-open set (F,E) such that (xe)E ∈ (F,E) and fpu(F,E) ⊂(G,K)
.This shows that (xe)E ∈ (F,E) ⊂ f−1

pu (G,K). it follows that f−1
pu (G,K) is soft b-open

set and hence f−1
pu is soft almost b-continuous.

Definition 3.12. Let (X ,τ ,E) be soft topological space and (A,E) be a soft set over
X is called soft δ-open if for each soft point (xe)E ∈ (A,E),there exists a soft regular
open set (F,E) such that (xe)E ∈ (F,E) ⊂ (A,E) and its complement is called soft
δ-closed.

Definition 3.13. Let (X ,τ ,E) be soft topological space and (A,E) be a soft set over
X,

The intersection of all soft δ-closed sets containing a soft set (A,E) is called the
δ-closure of (A,E) and is denoted by δCl(A,E).

Theorem 3.14. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft mapping. Then the following
conditions are equivalent:

(a) fpu is soft almost b-continuous.
(b) fpu(bCl(A,E)) ⊂ δCl(fpu(A,E)), for every soft set (A,E) over X.
(c) bCl(f−1

pu (B,K)) ⊂ f−1
pu (δCl(B,K)), for every soft set (B,K) over Y.

(d) f−1
pu (F,K) is soft b-closed set over X, for every soft δ-closed set (F,K) over Y.

(e) f−1
pu (V,K) is soft b-open set over X, for every soft δ-open set (V,K) over Y.

Proof: (a) → (b)Let (A,E) be a soft set over X.Since, δCl(fpu(A,E)) is a soft
δ-closed set over Y.By theorem 3.11,we have (A,E) ⊂ f−1

pu ( δCl(fpu(A,E))) which
is soft b-closed set over X.Hence,bCl(A,E) ⊂ f−1

pu ( δCl(fpu(A,E))).Hence,we obtain
fpu(bCl(A,E)) ⊂ δCl(fpu(A,E)).

(b) → (c) Let (B,K) be a soft set over Y . We have fpu(bCl(f−1
pu (B,K))) ⊂

δCl(fpu(f
−1
pu (B,K)) ⊂ δCl(B,K) and hence, bCl(f−1

pu (B,K)) ⊂ f−1
pu (δCl(B,K)).

(c) → (d) Let (F,K) be a soft δ-closed set over Y. We have bCl(f−1
pu (F,K)) ⊂

f−1
pu (δCl(F,K)) = f−1

pu (F,K) and f−1
pu (F,K) is soft b-closed over X.

(d) → (e) Let (V,K) be a soft δ-open set over Y. By (d), we have f−1
pu (V,K)c =

(f−1
pu (V,K))c, which is soft b-closed over X and so f−1

pu (V,K) is soft b-open set in X.
(e)→ (a) Let (V,K) be a soft regular open set over Y.Since (V,K) is soft δ-open

set over Y, f−1
pu (V,K) is soft b-open over X and hence by theorem 3.11,fpu is soft

almost b-continuous.

Theorem 3.15. Let fpu : (X, τ , E) → (Y, ϑ, K) be a soft mapping and
Ggpgu : (X ,τ ,E) → (X × Y, τ × ϑ, E × K) be the soft graph mapping of fpu. Then
gpu is soft almost b-continuous mapping if and only if fpu is soft almost b-continuous.

Proof: Necessity : Let (xe)E ∈ be a soft point over X and (V,K) be a soft regular
open set over Y containing fpu((xe)E). Then, we have Ggpgu = ((xe)E,fpu((xe)E)) ∈
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(X × Y, τ × ϑ, E × K ) which is soft regular open over (X × Y, τ × ϑ, E × K).
Since Ggpgu is soft almost b-continuous,there exists a soft b-open set (U,E) over X
containing (xe)E such that Ggpgu (U,E) ⊂ (X × Y, τ × ϑ , E × K). Therefore, we

obtain fpu(U,E) ⊂ Ỹ and hence, fpu is soft almost b-continuous.
Sufficiency: Let (xe)E be a soft point over X and (W, E × K ) be a soft regular

open set over (X × Y, τ × ϑ , E × K) containing Ggpgu ((xe)E). There exist (U1,E)
be a soft regular open set Over X and (V,K) be a soft regular open set over Y such
that ((xe)E,fpu((xe)E)) ∈ (U1,E) × (V,K) ⊂ (W, E × K ).Since fpu is soft almost
b-continuous ,there exists (U2,E) be a soft b-open set Over X such that (xe)E) ∈
(U2,E) and fpu(U2,E) ⊂ (V,K). Put (U,E) = (U1,E) ∩ (U2,E).we obtain (xe)E) ∈
(U,E) which is soft b-open set over X and Ggpgu (U,E) ⊂ (U1,E) × (V,K) ⊂ (W, E
× K ).This shows that Ggpgu is soft almost b-continuous.

Theorem 3.16. Let fpu : (X ,τ ,E) → (Y,ϑ,K) be a soft mapping from a soft
topological space (X ,τ ,E) to a soft semiregular space (Y,ϑ,K).Then fpu is soft almost
b-continuous if and only if fpu is soft b-continuous.

Proof: Necessity: Let (xe)E be a soft point over X and (F,K) be a soft open set
over Y such that fpu( (xe)E) ∈ (F,K) .Since (Y,ϑ,K) is soft semiregular there exists a
soft open set (G,K) over Y such that fpu((xe)E) ∈ (G,K) and (G,K) ⊂ Int(Cl(G,K)
⊂ (F,K). Since Int(Cl(G,K)) is soft regular open over Y and fpu is soft almost b-
continuous,by theorem 3.11 (f) there exists a soft b-open set (A,E) over X such that
(xe)E ∈ (A,E) and fpu(A,E) ⊂ Int(Cl(G,K)).Thus, (A,E) is soft b-open set such that
(xe)E ∈ (A,E) and fpu(A,E) ⊂ (F,K). Hence, fpu is soft b-continuous.

Sufficiency : Obvious.

Lemma 3.17. If fpu : (X ,τ ,E) → (Y,ϑ,K) be a soft mapping and fpu is a soft open
and soft continuous mapping then f−1

pu (G,K) is soft b-open over X for every (G,K)
is soft b-open over Y.

Proof: Let (G,K) is soft b-open over Y. Then, (G,K) ⊆ Int(Cl(Int(G,K))). Since
fpu is soft continuous we have,

f−1
pu (G,K) ⊆ f−1

pu (Int(Cl(Int(G,K)))) ⊆ Int(f−1
pu (Cl(Int(G,K)))).

By the openness of fpu, we have
f−1

pu (Cl(Int(G,K))) ⊆ Cl(f−1
pu (Int(G,K))).

Again fpu is soft continuous
f−1

pu (Int(G,K)) ⊆ Int(f−1
pu (G,K)).

Thus,
f−1

pu (G,K)⊆ Int(Cl(Int(f−1
pu (G,K)))).

Consequently, f−1
pu (G,K) is soft b-open over X.

Theorem 3.18. If soft mapping fp1u1 : (X ,τ ,E) → (Y,ϑ,K) is soft open soft con-
tinuous and soft mapping gp2u2 :(Y,ϑ,K) → (Z,η,T) is soft almost b-continuous, then
gp2u2 ofp1u1 : (X ,τ ,E) → (Z,η,T) is soft almost b-continuous.

Proof : Suppose (U,T) is a soft regular open set over Z. Then g−1
p2u2

(U,T) is a
soft b-open set over Y because gp2u2 is soft almost b-continuous. Since fp1u1 being
soft open and continuous.By lemma 3.17 (f−1

p1u1
(g−1

p2u2
(U,T)) is soft b-open over X.

Consequently, gp2u2 ofp1u1 : (X ,τ ,E) → (Z,η,T) is soft almost b-continuous.

Lemma 3.19. If (A,E) be a soft b-open set over X and (Y,E) is soft open in a soft
topological space (X ,τ ,E). Then (A,E) ∩ (Y,E) is soft b-open in (Y,E).
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Proof: Obvious.

Theorem 3.20. Let fpu : (X ,τ ,E)→ (Y,ϑ,K) be a soft almost b-continuous mapping
and (A,E) is soft open set over X, Then fpu/ (A,E) is soft almost b-continuous.

Proof : Let (G,K) be a soft regular open set in Y then f−1
pu (G,K) is soft b-open in

X. Since (A,E) is soft open in X, By lemma 3.19 (A,E) ∩ f−1
pu (G,K) = [fpu/(A,E)]−1

(G,K) is soft b-open in (A,E). Therefore, fpu/ (A,E) is soft almost b-continuous.

4 Soft Almost b-Open Mappings

Definition 4.1. A soft mapping fpu : (X ,τ ,E) → (Y,ϑ,K) is said to be soft almost
b-open if for each soft regular open set (F,E) over X, fpu(F,E) is soft b-open in Y.

Remark 4.2. Every soft b-open mapping is soft almost b-open but the converse
may not be true.

Example 4.3. Let X = {x1, x2}, E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }.
The soft sets (F,E), (G,K) are defined as follows :

F(e1) = {x1}, F(e2) = {x2},
G(k1) = {y2}, G(k2) = {y1}.
Let τ = {φ ,(F,E), X̃ } , and υ = {φ ,(G,K), Ỹ } are topologies on X and Y

respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K) defined by u(x1) = y1 ,
u(x2) = y2 and p(e1)= k1, p(e2) = k2 is soft almost b-open but not soft b-open.

Remark 4.4. Every soft almost semi-open is soft almost b-open but the converse
may not be true.

Example 4.5. Let X = {x1, x2 }, E = {e1, e2 } and Y = {y1, y2}, K = {k1, k2 }.
The soft sets (F1,E), (F2,E) are defined as follows :

F1(e1) = {x1}, F1(e2) = {x2},
F2(e1) = {x2}, F2(e2) = {x1}.
Let τ = {φ ,(F1,E) ,(F2,E), X̃ } , and υ = {φ , Ỹ } are topologies on X and Y

respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K) defined by u(x1) = y1 ,
u(x2)= y2 and p(e1 )= k1 , p(e2 ) = k2 is soft almost b-open mapping but not soft
almost semi-open.

Remark 4.6. Every soft almost pre-open is soft almost b-open but the converse
may not be true.

Example 4.7. Let X = {x1, x2 }, E = {e1, e2 } and Y = {y1 , y2}, K = {k1, k2 }.
The soft sets (F1,E), (F2,E), (G1,K), (G2,K) and (G3,K) are defined as follows :

F1(e1) = {x1}, F1(e2) = {x2},
F2(e1) = {x2}, F2(e2) = {x1},
F3(e1) = φ , F3(e2) = {y1},
G1(k1) = {y1}, G1(k2) = φ,
G2(k1) = {y1}, G2(k2) = {y1}.
Let τ = {φ, (F1,E), (F2,E), X̃ }, and υ = {φ, (G1,K),(G2,K), (G3,K),Ỹ } are

topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K)
defined by u(x1) = y1 , u(x2)= y2 and p(e1 )= k1 , p(e2 ) = k2 is soft almost b-open
but not soft almost pre-open.
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Remark 4.8. Every soft almost b-open mapping is soft almost β-open but the
converse may not be true.

Example 4.9. Let X = {x1, x2,x3,x4 }, E = {e1 , e2 } and Y = {y1, y2,y3,y4}, K =
{k1, k2 }. The soft sets (F1,E),(F2,E),(F3,E),(G1,K),(G2,K) and (G3,K) are defined
as follows :

F1(e1) = {x3}, F1(e2) = φ,
F2(e1) = {x1,x4}, F2(e2) = φ,
F3(e1) = {x1,x3,x4}, F3(e2) = φ ,
G1(k1) = {y3}, G1(k2) = φ,
G2(k1) = {y1,y4}, G2(k2) = φ,
G3(k1) = {y1,y3,y4}, G3(k2) =φ.
Let τ = {φ, (F1,E), (F2,E), (F3,E), X̃ }, and υ = {φ ,(G1,K),(G2,K),(G3,K), Ỹ }

are topologies on X and Y respectively. Then soft mapping fpu : (X,τ ,E) → (Y,υ,K)
defined by u(x1) = u(x2)= y1 ,u(x3) = y3,u(x4) = y4 and p(e1 )= k1 , p(e2 ) = k2 is
soft almost β-open mapping but not soft almost b-open.

Thus we reach at the following diagram of implications.

Theorem 4.10. Let fp1u1 : (X ,τ ,E) → (Y,ϑ,K) and gp2u2 :(Y,ϑ,K) → (Z,η,T) be
two soft mappings, If fp1u1 is soft almost open and gp2u2 is soft b-open. Then the
soft mapping gp2u2 ofp1u1 : (X ,τ ,E) → (Z,η,T) is soft almost b-open.

Proof : Let (F,E) be soft regular open in X. Then fp1u1(F,E) is soft open over Y
because fp1u1 is soft almost open.Therefore, gp2u2 ( fp1u1 )(F,E) is soft b-open over
Z. Because gp2u2 is soft b-open. Since (gp2u2 ofp1u1 )(F,E) = (gp2u2(fp1u1 (F,E)), it
follows that the soft mapping (gp2u2 ofp1u1 ) is soft almost b-open.

Theorem 4.11. Let fp1u1 : (X ,τ ,E) → (Y,ϑ,K) and gp2u2 :(Y,ϑ,K) → (Z,η,T) be
two soft mappings, such that gp2u2 ofp1u1 : (X ,τ ,E) → (Z,η,T) is soft almost b-open
and gp2u2 is soft b-irresolute and injective then fp1u1 is soft almost b-open.

Proof : Suppose (F,E) is soft regular open set over X. Then gp2u2 ofp1u1(F,E) is
soft b-open over Z because gp2u2 ofp1u1 is soft almost b-open. Since gp2u2 is injective,
we have (g−1

p2u2
(gp2u2 ofp1u1)(F,E)) = fp1u1 (F,E). Therefore fp1u1 (F, E) is soft b-open

over Y, because gp2u2 is soft b-irresolute. This implies fp1u1 is soft almost b-open.

Theorem 4.12. Let soft mapping fpu : (X ,τ ,E) → (Y,ϑ,K) be soft almost b-
open mapping. If (G,K) is soft set over Y and (F,E) is soft regular closed set of X
containing f−1

pu (G,K) then there is a soft b-closed set (A,K) over Y containing (G,K)
such that f−1

pu (A,K) ⊂ (F,E).
Proof: Let (A, K) = (fpu(F, E)C)C . Since f−1

pu (G,K) ⊂ (F,E) we have fpu(F, E)C

⊂ (G,K). Since fpu is soft almost b-open then (A,K) is soft b-closed set of Y and f−1
pu

(A,K) = ( f−1
pu (fpu(F, E)C)C ⊂ ((F, E)C)C = (F,E). Thus, f−1

pu (A,K) ⊂ (F,E).



Journal of New Theory 23 (2018) 93-104 103

References

[1] M. Akdag , A. Ozkan, soft b-open sets and soft b-continuous functions, Math
Sci 8:124 DOI 10.1007/s40096-014-0124-7 (2014).

[2] M. Akdag, A. Ozkan, On Soft Preopen Sets and Soft Pre Separation Axioms,
Gazi University Journal of Science, 27 (4), (2014) 1077–1083.

[3] M. Akdag, A. Ozkan, On Soft β−Open Sets and Soft β−continuous Functions,
The Scientific World Journal, Article ID 843456, 6 pages(2014).

[4] M. Akdag, A. Ozkan, On soft α-open sets and soft α-continuous functions, Ab-
stract and Applied Analysis http//dx.doi.org/101155/2014/891341 2014 Arti-
cle ID 891341,(2014), 7 pages.

[5] I. Arockiarani and A. A. Lancy, Generalized soft gβ- closed sets and soft gsβ-
closed sets in soft topological spaces. International Journal Of Mathematical
Archive, 4(2) (2013), 1-7.

[6] M. Irfan Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new opera-
tions in soft set theory, Comput. Math. Appl., 57( 2009), 1547-1553.

[7] B. Chen , Soft semi-open sets and related properties in soft topological spaces,
Appl. Math. Inf. Sci., 7, (1) (2013), 287–294.

[8] S. Hussain and B. Ahmad, Some properties of soft topological spaces, Comput.
Math. Appl., 62 (2011), 4058-4067.

[9] A. Kharral and B. Ahmad, Mappings on soft classes, New Math. Nat. Comput.,
7(3)(2011), 471-481.

[10] P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45
(2003), 555-562.

[11] P. Majumdar and S. K. Samanta, Similarity measure of soft sets, New Math.
Nat. Comput., 4(1) (2008) 1-12.

[12] J. Mahanta and P. K. Das , On soft topological space via semi open and semi
closed soft sets, Kyungpook Math. J., 54(2014), 221–236.

[13] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011),
3524-3528.

[14] D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19-
31. Gnanambal Ilango and Mrudula Ravindran, On Soft Preopen Sets in Soft
Topological Spaces.International Journal of Mathematics Research, 5(4)(2013),
399-499.

[15] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl., 61
(2011), 1786-1799.



Journal of New Theory 23 (2018) 93-104 104

[16] S. S. Thakur, Alpa Singh Rajput,Connectedness Between Soft Sets, New Math-
ematics and Natural Computation, 14( 1)(2018),1–19.

[17] S. S. Thakur and Alpa Singh Rajput, Extremally Disconnectedness in Soft
Topological Spaces,(Submitted).

[18] S. S. Thakur and Alpa Singh Rajput, Soft Almost Continuous Mappings, In-
ternational Journal of Advances in Mathematics, 2017 (1), (2017), 22-29.

[19] S. S. Thakur and Alpa Singh Rajput, Soft Almost α-Continuous Map-
pings,(Submitted).

[20] S. S. Thakur, Alpa Singh Rajput and M. R. Dhakad, Soft Almost Semi-
Continuous Mappings, Malaya J. Mat., 5(2)(2017), 395-400.

[21] S. S. Thakur and Alpa Singh Rajput, Soft Almost Pre-Continuous Mappings,
The Journal of Fuzzy Mathematics, 26 (2)( 2018), 439–449.

[22] S. S. Thakur and Alpa Singh Rajput, Soft Almost β-Continuous Mappings,
(Submitted).

[23] S. Yuksel., Soft Regular Generalized Closed Sets in Soft Topological Spaces,
Int. Journal of Math. Analysis, 8 (8) (2014), 355-367.

[24] Y. Yumak, A. K. Kayamakci, Soft β-open sets and their application,
arXiv:1312.6964(2013).

[25] I. Zorlutana, N. Akdag and W. K. Min, Remarks on soft topological spaces,
Ann. Fuzzy Math. Inf., 3(2) (2012), 171–185.

[26] I. Zorlutuna, H. Cakir, On Continuity of Soft Mappings, Appl. Math. Inf. Sci.,
9(1)( 2015), 403-409.



http://www.newtheory.org                                      ISSN: 2149-1402 

 

 Year: 2018, Number: 23, Page: 105 

 

EDITORIAL 
 

We are happy to inform you that Number 23 of the Journal of New Theory (JNT) is 

completed with 10 articles.   

JNT publishes original research articles, reports, reviews and commentaries that are based on 

a theory of mathematics. However, the topics are not limited to only mathematics, but 

also include statistics, computer science, physics, engineering, chemistry, biology, economics 

or social sciences that use a theory of mathematics. 

We would like to express our deepest thanks to all of the members of the editorial board and 

reviewers of the papers in this issue who are  T. Senapati, Q. H. Imran, S. Araci, N. Tas, A. A. 

Azzam, F. Smarandache, M. A. Noor, J. Zhan, S. Broumi, S. Pramanik, M. A. Ali, P. M. 

Maji, O. Muhtaroğlu, A. A. Ramadan, I. Deli, S. Enginoğlu, S. S. John, M. Ali, A. Sezgin,  A. 

M. A. El-latif, M. Sarı, J. Ye, D. Mohamad, I. Zorlutuna, K. Aydemir, F. Karaaslan, S. 

Demiriz, A. Boussayoud, E. H. Hamouda, K. Mondal, A. A. Nasef, A. Abderrezzak, T. A. 

Hawary. 

 

JNT is a refereed, electronic, open access and international journal.  

 

Papers in JNT are published free of charge.  

 

Pleases, write any original idea. If it is true, it gives an opportunity to use. If it is incomplete, 

it gives an opportunity to complete. If it is incorrect, it gives an opportunity to correct. 

 

You can reach freely all full text papers at the journal home pages; http://www.newtheory.org 

or http://dergipark.gov.tr/jnt. To receive further information and to send your 

recommendations and remarks, or to submit articles for consideration, please e-mail us at 

jnt@newtheory.org. 

 

We hope you will enjoy this issue of JNT. We are looking forward to hearing your feedback 

and receiving your contributions. 

 

Happy reading! 

11 August 2018 

 

 

Prof. Dr. Naim Çağman  

Editor-in-Chief  

Journal of New Theory  

http://www.newtheory.org 


