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Generalized Forms of Upper and Lower Continuous Fuzzy
Multifunctions

Ismail Ibedou1,*

Salah Abbas2

<ismail.ibedou@gmail.com>
<saahmed@jazanu.edu.sa>

1Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
2Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt

Abstract − In this paper, we introduce the concepts of upper and lower (α, β, θ, δ, `)-continuous
fuzzy multifunctions. It is in order to unify several characterizations and properties of some kinds of
modifications of fuzzy upper and fuzzy lower semi-continuous fuzzy multifunctions, and to deduce
a generalized form of these concepts, namely upper and lower ηη∗-continuous fuzzy multifunctions.

Keywords − General topology; fuzzy topology; multifunction; fuzzy multifunction.

1 Introduction

Fuzzy multifunctions or multi-valued mappings have many applications in mathemat-
ical programming, probability, statistics, different inclusions, fixed point theorems
and even in economics, and continuous fuzzy multifunctions have been generalized in
manu ways. Many Mathematicians, see [1 - 6], devoted a great part of their research
work on studying the generalized continuous fuzzy multifunctions, where their fuzzy
fuzzy multifunction maps each point in a classical topological space into an arbitrary
fuzzy set in a fuzzy topological space in the sense of Chang [7].

In this paper, we introduce the concepts of upper and lower (α, β, θ, δ, `)-continuous
fuzzy multifunctions and prove that if α, β are operators on the topological space
(X, T ) and θ, θ∗, δ are fuzzy operators on the fuzzy topological space (Y, τ) in Šostak
sense [8], and ` is a proper ideal on X, then a fuzzy multifunction F : X ( Y is
upper (resp. lower) (α, β, θuθ∗, δ, `)-continuous fuzzy multifunction iff F is both of
upper (resp. lower) (α, β, θ, δ, `)-continuous and upper (resp. lower) (α, β, θ∗, δ, `)-
continuous fuzzy multifunction. Also, we introduce new generalized notions that

*Corresponding Author.
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cover many of the generalized forms of upper (resp. lower) semi-continuous fuzzy
multifunctions.

2 Preliminaries

Throughout this paper, X refers to an initial universe, 2X denotes the power set
of X, IX denotes the set of all fuzzy sets of X, λc(x) = 1 − λ(x) ∀x ∈ X (where
I = [0, 1], I0 = (0, 1]).

As applications, α, β, idX : 2X → 2X are operators on X and θ, δ, idY : IY ×I0 →
IY are fuzzy operators on Y . Recall that an ideal ` on X [9], is a collection ` ⊆ 2X

that satisfies the following conditions:

(1) A ∈ ` and B ⊆ A implies that B ∈ `,

(2) A ∈ ` and B ∈ ` implies that A ∪B ∈ `.

` is proper if X 6∈ `. Let by (X, T ) and (Y, τ) be meant the classical and the
fuzzy topological spaces due to Šostak [8], respectively. The closure and the interior
of any set A in (X,T ) will be denoted by T -cl(A) and T -int(A) while the fuzzy
closure and the fuzzy interior of any fuzzy set µ ∈ IY will be denoted by clτ (µ, r)
and intτ (µ, r). The notion of quasi-coincidence is given for two fuzzy sets λ, µ ∈ IY ,
denoted by λ q µ, iff there exists a y ∈ Y such that λ(y) + µ(y) > 1. If they are
not quasi-coincidence, it will be denoted by λ q̂ µ. Any fuzzy set µ ∈ IY is called
r-fuzzy semi-closed [10] (resp. r-fuzzy preclosed [11]) iff µ ≥ intτ (clτ (µ, r), r) (resp.
µ ≥ clτ (intτ (µ, r), r)),
while

s clτ (λ, r) =
∧
{µ : λ ≤ µ and µ is r − fuzzy semi-closed}

and
pre clτ (λ, r) =

∧
{µ : λ ≤ µ and µ is r − fuzzy preclosed}.

Also, A ⊆ X is strongly semi-open [12] (resp. semi-preopen [12]) if

A ⊆ T − int(T − cl(T − int(A))) ( resp. A ⊆ T − cl(T − int(T − cl(A)))),

while

T − ss int(A) =
⋃
{B : B ⊆ A and B is strongly semi-open}

and
T − spre int(A) =

⋃
{B : B ⊆ A and B is semi-preopen}.

A mapping F : X ( Y is called a fuzzy multifunction [1] if for each x ∈ X,
F (x) is a fuzzy set in Y . The upper inverse F+(λ) and the lower inverse F−(λ) of
λ ∈ IY are defined as follows:

F+(λ) = {x ∈ X : F (x) ≤ λ} and F−(λ) = {x ∈ X : F (x) q λ}.
For A ⊆ X, F (A) =

∨{F (x) : x ∈ A}. Also, F−(λc) = X − F+(λ) for any
λ ∈ IY .
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3 Upper and Lower (α, β, θ, δ, `)-continuous Fuzzy

Multifunctions

Definition 3.1. A mapping F : (X, T ) ( (Y, τ) is said to be upper (resp. lower)
(α, β, θ, δ, `)-continuous fuzzy multifunction if for every µ ∈ IY , r ∈ I0, with τ(µ) ≥
r,

α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ ` (resp. α(F−(δ(µ, r)))− β(F−(θ(µ, r))) ∈ `).

We can see that the above definition generalizes the concept of upper (resp. lower)
semi-continuous fuzzy multifunction [13] when we choose α = identity operator, β =
interior operator, δ = r-fuzzy identity operator, θ = r-fuzzy identity operator and
` = {∅}.

Let us give a historical justification of the definition:

(1) In 2015, Ramadan and Abd El-Latif [13], defined the concept of upper (resp.
lower) almost continuous fuzzy multifunction as: For every µ ∈ IY , r ∈ I0

with τ(µ) ≥ r, then

F+(µ) ⊆ T -int(F+(intτ (clτ (µ, r), r))) (resp. F−(µ) ⊆ T -int(F−(intτ (clτ (µ, r), r)))).

Here, α = identity operator, β = interior operator, δ = r-fuzzy identity oper-
ator, θ = r-fuzzy interior closure operator and ` = {∅}.

(2) In 2015, Ramadan and Abd El-Latif [13], defined the concept of upper (resp.
lower) weakly continuous fuzzy multifunction as: For every µ ∈ IY , r ∈ I0

with τ(µ) ≥ r, then

F+(µ) ⊆ T − int(F+(clτ (µ, r))) (resp. F−(µ) ⊆ T − int(F−(clτ (µ, r)))).

Here, α = identity operator, β = interior operator, δ = r-fuzzy identity oper-
ator, θ = r-fuzzy closure operator and ` = {∅}.

(3) The concept of upper (resp. lower) almost weakly continuous fuzzy multifunc-
tion is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T -int(T -cl(F+(clτ (µ, r)))) (resp. F−(µ) ⊆ T -int(T -cl(F−(clτ (µ, r))))).

Here, α = identity operator, β = interior closure operator, δ = r-fuzzy identity
operator, θ = r-fuzzy closure operator and ` = {∅}.

(4) The concept of upper (resp. lower) strongly semi-continuous fuzzy multifunc-
tion is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T -int(T -cl(T -int(F+(µ)))) (resp. F−(µ) ⊆ T -int(T -cl(T -int(F−(µ))))).

Here, α = identity operator, β = interior closure interior operator, δ = r-fuzzy
identity operator, θ = r-fuzzy identity operator and ` = {∅}.
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(5) The concept of upper (resp. lower) almost strongly semi-continuous fuzzy
multifunction is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T -ss int(F+(s clτ (µ, r))) (resp. F−(µ) ⊆ T -ss int(F−(s clτ (µ, r)))).

Here, α = identity operator, β = strongly semi-interior operator, δ = r-fuzzy
identity operator, θ = r-fuzzy semi-closure operator and ` = {∅}.

(6) The concept of upper (resp. lower) weakly strongly semi-continuous fuzzy
multifunction is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T − int(T − cl(T − int(F+(clτ (µ, r)))))

(resp. F−(µ) ⊆ T − int(T − cl(T − int(F−(clτ (µ, r)))))).

Here, α = identity operator, β = interior closure interior operator, δ = r-fuzzy
identity operator, θ = r-fuzzy closure operator and ` = {∅}.

(7) The concept of upper (resp. lower) semi-precontinuous fuzzy multifunction is
defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T -cl(T -int(T -cl(F+(µ)))) (resp. F−(µ) ⊆ T -cl(T -int(T -cl(F−(µ))))).

Here, α = identity operator, β = closure interior closure operator, δ = r-fuzzy
identity operator, θ = r-fuzzy identity operator and ` = {∅}.

(8) The concept of upper (resp. lower) almost semi-precontinuous fuzzy multifunc-
tion is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T -spre int(F+(s clτ (µ, r))) (resp. F−(µ) ⊆ T -spr int(F−(s clτ (µ, r)))).

Here, α = identity operator, β = semi-preinterior operator, δ = r-fuzzy identity
operator, θ = r-fuzzy semi-closure operator and ` = {∅}.

(9) The concept of upper (resp. lower) weakly semi-precontinuous fuzzy multi-
function is defined as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T − cl(T − int(T − cl(F+(clτ (µ, r)))))

(resp. F−(µ) ⊆ T − cl(T − int(T − cl(F−(clτ (µ, r)))))).

Here, α = identity operator, β = closure interior closure operator, δ = r-fuzzy
identity operator, θ = r-fuzzy closure operator and ` = {∅}.

(10) The concept of upper (resp. lower) precontinuous fuzzy multifunction is defined
as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T − int(T − cl(F+(µ))) (resp. F−(µ) ⊆ T − int(T − cl(F−(µ)))).

Here, α = identity operator, β = interior closure operator, δ = r-fuzzy identity
operator, θ = r-fuzzy identity operator and ` = {∅}.
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(11) The concept of upper (resp. lower) strongly precontinuous fuzzy multifunction
as: For every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, then

F+(µ) ⊆ T−int(T−pre cl(F+(µ))) (resp. F−(µ) ⊆ T−int(T−pre cl(F−(µ)))).

Here, α = identity operator, β = interior preclosure operator, δ = r-fuzzy
identity operator, θ = r-fuzzy identity operator and ` = {∅}.

Definition 3.2. A mapping F : (X, T ) ( (Y, τ) is called upper (resp. lower)
P -continuous fuzzy multifunction iff F+(µ) ∈ T (resp. F−(µ) ∈ T ) for every
µ ∈ IY , r ∈ I0, with τ(µ) ≥ r, such that µ satisfies the property P .

Let θP : IY × I0 → IY be a fuzzy operator defined as:

θP (µ, r) =

{
µ if µ ∈ IY , r ∈ I0 with τ(µ) ≥ r and µ satisfies the property P,
1 otherwise

Theorem 3.3. A map F : (X,T ) ( (Y, τ) is upper (resp. lower) P -continuous
fuzzy multifunction iff it is upper (resp. lower) (idX , T -int, θP , idY , {∅})-continuous
fuzzy multifunction.

Proof. Suppose that F is an upper P -continuous fuzzy multifunction and let µ ∈
IY , r ∈ I0 with τ(µ) ≥ r.

Case 1. If µ satisfies the property P , θP (µ, r) = µ, and then by hypothesis
F+(µ) ∈ T and F+(µ) ⊆ T -int(F+(µ)) = T -int(F+(θP (µ, r))).

Case 2. µ does not satisfy the property P , then θP (µ, r) = 1, and thus
F+(µ) ⊆ X = T -int(F+(θP (µ, r))). That is, F is upper (idX , T -int, θP , idY , {∅})-
continuous fuzzy multifunction.

Conversely, suppose that F+(µ) ⊆ T -int(F+(θP (µ, r))) for each µ ∈ IY , r ∈ I0

with τ(µ) ≥ r. Take µ satisfying the property P , then θP (µ, r) = µ, and thus
F+(µ) ⊆ T -int(F+(θP (µ, r))) = T -int(F+(µ)). We conclude that F+(µ) ∈ T and
thus F is an upper P -continuous fuzzy multifunction.

For lower P -continuous fuzzy multifunction, the proof is similar.

Definition 3.4. If γ and γ∗ are fuzzy operators on X, then the operator γ u γ∗ is
defined as follows:

(γ u γ∗)(λ, r) = γ(λ, r) ∧ γ∗(λ, r) ∀λ ∈ IX , r ∈ I0.

The fuzzy operators γ and γ∗ are said to be mutually dual if γ u γ∗ is the identity
operator.

Theorem 3.5. Let (X, T ) be a topological space, (Y, τ) a fuzzy topological space
and ` a proper ideal on X. Let α, β, β∗ be operators on (X, T ) and δ, θ, θ∗ be fuzzy
operators on (Y, τ). Then F : X ( Y is:

(1) upper (resp. lower) (α, β, θ u θ∗, δ, `)-continuous fuzzy multifunction iff it
is both upper (resp. lower) (α, β, θ, δ, `)-continuous fuzzy multifunction and
upper (resp. lower) (α, β, θ∗, δ, `)-continuous fuzzy multifunction provided
that for all A,B ⊆ X, we have β(A ∩B) = β(A) ∩ β(B).
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(2) upper (resp. lower) (α, β u β∗, θ, δ, `)-continuous fuzzy multifunction iff it
is both upper (resp. lower) (α, β, θ, δ, `)-continuous fuzzy multifunction and
upper (resp. lower) (α, β∗, θ, δ, `)-continuous fuzzy multifunction.

Proof. (1) If F is both upper (α, β, θ, δ, `)-continuous fuzzy multifunction and upper
(α, β, θ∗, δ, `)-continuous fuzzy multifunction, then, for every µ ∈ IY , r ∈ I0, with
τ(µ) ≥ r, we have

α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ ` and α(F+(δ(µ, r)))− β(F+(θ∗(µ, r))) ∈ `

and then

(α(F+(δ(µ, r)))− β(F+(θ(µ, r)))) ∪ (α(F+(δ(µ, r)))− β(F+(θ∗(µ, r)))) ∈ `.

But

(α(F+(δ(µ, r)))− β(F+(θ(µ, r)))) ∪ (α(F+(δ(µ, r)))− β(F+(θ∗(µ, r))))



= α(F+(δ(µ, r)))− (β(F+(θ(µ, r))) ∩ β(F+(θ∗(µ, r))))
= α(F+(δ(µ, r)))− β(F+(θ(µ, r) ∧ θ∗(µ, r)))
= α(F+(δ(µ, r)))− β(F+(θ u θ∗(µ, r))).

That is, F is upper (α, β, θ u θ∗, δ, `)-continuous fuzzy multifunction.
Conversely; if F is upper (α, β, θ u θ∗, δ, `)-continuous fuzzy multifunction, then

α(F+(δ(µ, r)))− β(F+(θ u θ∗(µ, r))) ∈ `

Now, by the above equalities, we get that

(α(F+(δ(µ, r)))− β(F+(θ(µ, r)))) ∪ (α(F+(δ(µ, r)))− β(F+(θ∗(µ, r)))) ∈ `,

which implies that

α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ ` and α(F+(δ(µ, r)))− β(F+(θ∗(µ, r))) ∈ `

which means that F is both upper (α, β, θ, δ, `)-continuous fuzzy multifunction and
upper (α, β, θ∗, δ, `)-continuous fuzzy multifunction.

(2) Similar to the proof in (1).
The proof for lower continuity is typical.

Let Φ be the set of all operators on the topological space (X,T ). Then a partial
order could be defined by the relation:

α v β iff α(A) ⊆ β(A) for all A ∈ 2X [14].

Theorem 3.6. Let (X, T ) be a topological space, (Y, τ) a fuzzy topological space
and ` a proper ideal on X. Let α, α∗, β, β∗ : 2X → 2X be operators on (X, T ) and
δ, θ, θ∗ : IY × I0 → IY are fuzzy operators on (Y, τ) and F : X ( Y is a fuzzy
multifunction. Then,

(1) If β is a monotone, θ v θ∗ and F is upper (resp. lower) (α, β, θ, δ, `)-continuous
fuzzy multifunction, then F is upper (resp. lower) (α, β, θ∗, δ, `)-continuous
fuzzy multifunction,
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(2) If α∗ v α and F is upper (resp. lower) (α, β, θ, δ, `)-continuous fuzzy multi-
function, then F is upper (resp. lower) (α∗, β, θ, δ, `)-continuous fuzzy multi-
function,

(3) If β v β∗ and F is upper (resp. lower) (α, β, θ, δ, `)-continuous fuzzy multi-
function, then F is upper (resp. lower) (α, β∗, θ∗, δ, `)-continuous fuzzy multi-
function.

Proof. (1) Since F is upper (α, β, θ, δ, `)-continuous fuzzy multifunction, then for
every µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, it happens that

α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ `.

We know that θ v θ∗, and then, for every µ ∈ IY , r ∈ I0, θ(µ, r) ≤ θ∗(µ, r), and
thus F+(θ(µ, r)) ⊆ F+(θ∗(µ, r)) and β(F+(θ(µ, r))) ⊆ β(F+(θ∗(µ, r))). Therefore,

α(F+(δ(µ, r)))− β(F+(θ∗(µ, r))) ⊆ α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ `,

which means that F is upper (α, β, θ∗, δ, `)-continuous fuzzy multifunction.
(2) and (3) are similar.
The case of lower continuity is similar.

Definition 3.7. A fuzzy operator γ on a fuzzy topological space (X, τ) induces an-
other fuzzy operator (intτγ) defined as follows: (intτγ)(µ, r) = intτ (γ(µ, r), r). Note
that: intτγ v γ.

Theorem 3.8. Let α, β : 2X → 2X be operators on (X, T ) and δ, θ : IY × I0 → IY

are fuzzy operators on (Y, τ) and ` a proper ideal on X. If F : X ( Y is an upper
(resp. lower) (α, β, θ, δ, `)-continuous fuzzy multifunction and

β(F+(µ)) ⊆ β(F+(intτ (µ, r))) ( resp. β(F−(µ)) ⊆ β(F−(intτ (µ, r)))),

for every µ ∈ IY , r ∈ I0. Then F is upper (resp. lower) (α, β, intτθ, δ, `)-continuous
fuzzy multifunction.

Proof. Let µ ∈ IY , r ∈ I0 with τ(µ) ≥ r, we have that α(F+(δ(µ, r)))−β(F+(θ(µ, r))) ∈
`. Since β(F+(µ)) ⊆ β(F+(intτ (µ, r))), then β(F+(θ(µ, r))) ⊆ β(F+(intτθ(µ, r))).
Thus, α(F+(δ(µ, r)))− β(F+(intτθ(µ, r))) ⊆ α(F+(δ(µ, r)))− β(F+(θ(µ, r))) ∈ `,
and it follows that F is upper (α, β, intτθ, δ, `)-continuous fuzzy multifunction.

Definition 3.9. Let (X, τ) be a fuzzy topological space, θ is a fuzzy operator on
X and µ ∈ IX , r ∈ I0. Then µ is called fuzzy θ-compact if for each family
{λj ∈ IX : τ(λj) ≥ r, j ∈ J} with µ ≤ ∨

j∈J

(λj), there exists a finite subset J0 ⊆ J

such that µ ≤ ∨
j∈J0

(θ(λj, r)).

An ordinary subset A ∈ 2X is called fuzzy θ-compact if for each family {λj ∈
IX : τ(λj) ≥ r, j ∈ J} with χA ≤ ∨

j∈J

(λj), there exists a finite subset J0 ⊆ J such

that χA ≤ ∨
j∈J0

(θ(λj, r)).

In crisp case (X, T ); a fuzzy set K ∈ 2X is called θ-compact if for each family
{Bj ∈ 2X : Bj ∈ T} with K ⊆ ⋃

j∈J

(Bj), there exists a finite subset J0 ⊆ J such that

K ⊆ ⋃
j∈J0

(θ(Bj)).
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Theorem 3.10. Let (X,T ) be a topological space, (Y, τ) a fuzzy topological space,
α : 2X → 2X an operator on (X, T ) with A ⊆ α(A) ∀A ∈ 2X and δ, θ : IY × I0 → IY

with δ(λ, r) ≥ λ ∀λ ∈ IY , r ∈ I0 are fuzzy operators on (Y, τ). If F : X ( Y is
upper (resp. lower) (α, T -int, θ, δ, {∅})-continuous fuzzy multifunction and K is a
compact subset of X, then, F (K) is fuzzy θ-compact in IY .

Proof. Suppose that each family {µj : j ∈ J, r ∈ I0 with τ(µj) ≥ r} satisfies that
F (K) ≤ ∨

j∈J

µj. By F is upper (α, T -int, θ, δ, {∅})-continuous fuzzy multifunction,

then for each j ∈ J , we have α(F+(δ(µj, r))) ⊆ T -int(F+(θ(µj, r))) ⊆ F+(θ(µj, r)).
Then there exists Gj ∈ T such that α(F+(δ(µj, r))) ⊆ Gj ⊆ F+(θ(µj, r)). Also,
since F+(δ(µj, r)) ⊆ α(F+(δ(µj, r))) and µj ≤ δ(µj, r), then

K ⊆ F+(F (K)) ⊆
⋃
j∈J

F+(µj) ⊆
⋃
j∈J

Gj.

From the compactness of K, there exists a finite subset J0 of J such that K ⊆ ⋃
j∈J0

Gj.

Then
F (K) ≤

∨
j∈J0

F (Gj) ≤
∨
j∈J0

F (F+(θ(µj, r))) ≤
∨
j∈J0

θ(µj, r).

which means that F (K) is fuzzy θ-compact.

Corollary 3.11. Let (X, T ) be a topological space and (Y, τ) a fuzzy topological space.
Let F : X ( Y be an upper (resp. lower) weakly continuous fuzzy multifunction and
K a compact subset of X, then F (K) is a fuzzy almost compact set in IY .

Proof. Take α = identity operator on X, β = T -int, δ = r-fuzzy identity operator,
θ = r-fuzzy closure operator on Y and ` = {∅}. Then the result is fulfilled directly
from Theorem 2.5.

Corollary 3.12. Let (X, T ) be a topological space and (Y, τ) a fuzzy topological space.
Let F : X ( Y be an upper (resp. lower) almost continuous fuzzy multifunction and
K a compact subset of X, then F (K) is a fuzzy nearly compact set in IY .

Proof. Take α = identity operator on X, β = T -int, δ = r-fuzzy identity operator,
θ = r-fuzzy closure operator on Y and ` = {∅}. Then the result follows from
Theorem 2.5.

4 Upper and Lower ηη∗-continuous Fuzzy Multi-

functions

Let X and Y be nonempty sets and η ⊆ 2X be any collection of subsets of X and
η∗ : IY → I any function.

Definition 4.1. A function F : X ( Y is said to be upper (resp. lower) ηη∗-
continuous fuzzy multifunction if F+(µ) ∈ η (resp. F−(µ) ∈ η) whenever µ ∈
IY , r ∈ I0 with η∗(µ) ≥ r.
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Remark 4.2. A generalized topology on a set X ([15]) is a collection η of subsets
of X such that ∅ ∈ η and η is closed under arbitrary unions. Also, a generalized
fuzzy topology on a set Y ([15]) is a function η∗ : IY → I such that η∗(0) = 1
and η∗(

∨
j∈J

µj) ≥
∧
j∈J

(η∗(µj)) ∀µj ∈ IY . Observe that if Definition 3.1, η and η∗ are

generalized topology and generalized fuzzy topology on X and Y respectively, then we
just obtain the notion of upper (resp. lower) η, η∗-continuous fuzzy multifunctions.
In [16], Maki et al., introduced the notion of minimal structure on a set X, as the
collection mX of subsets of X such that ∅ ∈ mX and X ∈ mX . Also, in [17], Yoo
et al., introduced the notion of fuzzy minimal structure on a set Y , as mY : IY → I
such that mY (0) = mY (1) = 1. Now, if in Definition 3.1, η = mX and η∗ = mY , we
obtain the notion of upper (resp. lower) mX ,mY -continuous fuzzy multifunctions.

Any collection η of subsets of a set X and any function η∗ : IY → I determine
in a natural form an operator θη : 2X → 2X and a fuzzy operator θη∗ : IY × I0 → IY

respectively, so that

θη(A) =

{
A if A ∈ η
X otherwise

and

θη∗(µ, r) =

{
µ if µ ∈ IY , r ∈ I0 with η∗(µ) ≥ r
1 otherwise

In the case that η is a generalized topology on X and η∗ is a generalized fuzzy
topology on Y , we obtain other operations (see [15]) that are important for its ap-
plications:

η − int(A) =
⋃
{B : B ⊆ A and B ∈ η},

η − cl(A) =
⋂
{B : A ⊆ B and X −B ∈ η},

intη∗(λ, r) =
∨
{µ : µ ≤ λ and η∗(µ) ≥ r},

clη∗(λ, r) =
∧
{µ : λ ≤ µ and η∗(1− µ) ≥ r}.

Note that: η-int ⊆ idX ⊆ θη and intη∗ v idY v θη∗ . Similarly, in the case of a

minimal structure mX (see [18]) and a fuzzy minimal structure mY (see [17]), we have

mX − int(A) =
⋃
{B : B ⊆ A and B ∈ mX},

mX − cl(A) =
⋂
{B : A ⊆ B and X −B ∈ mX},

intmY
(µ, r) =

∨
{ν : ν ≤ µ and mY (ν) ≥ r},

clmY
(µ, r) =

∧
{ν : µ ≤ ν and mY (1− ν) ≥ r}.

Note that: mX-int ⊆ idX ⊆ θη and intmY
v idY v θη∗ . Also, mX-int(A) = A

if A ∈ mX while mX-int(A) ∈ mX whenever mX is a minimal structure with the
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Maki property [16]. intmY
(λ, r) = λ if mY (λ) ≥ r while mY (mY -int(λ, r)) ≥ r

whenever mY is a fuzzy minimal structure with the Yoo property [17].

The following results give the relationship between upper (resp. lower) ηη∗-
continuous fuzzy multifunctions and upper (resp. lower) (α, β, θ, δ, `)-continuous
fuzzy multifunctions. We obtain some interesting properties of upper (resp. lower)
ηη∗-continuous fuzzy multifunctions.

Theorem 4.3. Let X and Y be nonempty sets, η ⊆ 2X , η∗ : IY → I. If X ∈ η, then
F : X ( Y is upper (resp. lower) ηη∗-continuous fuzzy multifunction iff F : X ( Y
is upper (resp. lower) (θη, idX , θη∗ , idY , {∅})-continuous fuzzy multifunction.

Proof. Suppose that F : X ( Y is upper ηη∗-continuous fuzzy multifunction. Let
µ ∈ IY , r ∈ I0, we have two cases:
Case 1. If η∗(µ) ≥ r, then θη∗(µ, r) = µ and θη(F

+(µ)) = F+(µ). This follows that
θη(F

+(idY (µ, r))) = F+(µ) = idX(F+(θη∗(µ, r))), and consequently

θη(F
+(idY (µ, r))) ⊆ idX(F+(θη∗(µ, r))).

Case 2. If η∗(µ) = 0, θη∗(µ, r) = 1, then θη(F
+(idY (µ, r))) ⊆ X = F+(1) =

idX(F+(θη∗(µ, r))). Hence,

θη(F
+(idY (µ, r))) − idX(F+(θη∗(µ, r))) = ∅

for all µ ∈ IY , r ∈ I0. Thus, F is an upper (θη, idX , θη∗ , idY , {∅})-continuous fuzzy
multifunction.

Necessity; suppose that F is upper (θη, idX , θη∗ , idY , {∅})-continuous fuzzy mul-
tifunction, then θη(F

+(idY (µ, r))) − idX(F+(θη∗(µ, r))) = ∅ for all µ ∈ IY , r ∈ I0

with η∗(µ) ≥ r. This implies that θη(F
+(µ)) ⊆ F+(θη∗(µ, r))). Assume that

there is ν ∈ IY , r ∈ I0 such that η∗(ν) ≥ r and F+(ν) does not belong to η. Then
we obtain X ⊆ F+(ν). So, F+(ν) = X. Now, our hypothesis X ∈ η implies that
F+(ν) ∈ η, and a contradiction. Therefore, F+(µ) ∈ η whenever µ ∈ IY , r ∈ I0 with
η∗(µ) ≥ r, and thus F : X ( Y is an upper ηη∗-continuous fuzzy multifunction.

In the case that η is a generalized topology, then the following result is obtained.

Theorem 4.4. If η is a generalized topology such that X ∈ η and η∗ : IY → I is a
function. Then F : X ( Y is upper (resp. lower) ηη∗-continuous fuzzy multifunction
iff F : X ( Y is upper (resp. lower) (idX , η-int, θη∗ , idY , {∅})-continuous fuzzy
multifunction.

Proof. Suppose that F : X ( Y is upper ηη∗-continuous fuzzy multifunction. Let
µ ∈ IY , r ∈ I0. Then consider two cases:
Case 1. If η∗(µ) ≥ r, then θη∗(µ, r) = µ and idX(F+(µ)) = F+(µ) = η-int(F+(µ)).
This follows that idX(F+(idY (µ, r))) = F+(µ) = η-int(F+(θη∗(µ, r))), and conse-
quently

idX(F+(idY (µ, r))) ⊆ η − int(F+(θη∗(µ, r))).

Case 2. If η∗(µ) = 0, θη∗(µ, r) = 1, since X ∈ η, then

idX(F+(idY (µ, r))) ⊆ X = F+(1) = η − int(F+(θη∗(µ, r))).
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So,
idX(F+(idY (µ, r))) − η − int(F+(θη∗(µ, r))) = ∅

for every µ ∈ IY , r ∈ I0. Thus, F is an upper (idX , η-int, θη∗ , idY , {∅})-continuous
fuzzy multifunction.

Necessity; suppose that F is upper (idX , η-int, θη∗ , idY , {∅})-continuous fuzzy
multifunction. Then

idX(F+(idY (µ, r))) − η − int(F+(θη∗(µ, r))) = ∅
for every µ ∈ IY , r ∈ I0 with η∗(µ) ≥ r. This implies that

F+(µ) ⊆ η − int(F+(θη∗(µ, r))) = η − int(F+(µ)).

Assume that there is ν ∈ IY , r ∈ I0 such that η∗(ν) ≥ r and F+(ν) does not belong
to η. Then we obtain F+(ν) ⊆ η-int(F+(ν)), and thus F+(ν) = η-int(F+(ν)),
and F+(ν) ∈ η, and a contradiction. Therefore, F+(µ) ∈ η whenever µ ∈ IY , r ∈ I0

with η∗(µ) ≥ r, that is, F : X ( Y is an upper ηη∗-continuous fuzzy multifunction.

The following corollaries are direct results.

Corollary 4.5. Let F : X ( Y be a fuzzy fuzzy multifunction. If F is upper
(resp. lower) mXmY -continuous fuzzy multifunction, then F is upper (resp. lower)
(idX ,mX-int, θmY

, idY , `)-continuous fuzzy multifunction whenever mX has the Maki
property.

Corollary 4.6. Let η be a generalized topology on X and η∗ a generalized fuzzy topol-
ogy on Y such that X ∈ η. Then, F : X ( Y is upper (resp. lower) ηη∗-continuous
fuzzy multifunction iff F is upper (resp. lower) (idX , η-int, intη∗ , idY , {∅})-continuous
fuzzy multifunction.

5 Conclusions

In this article, we have introduced the notions of upper and lower continuous multi-
functions from an ordinary topological space into a fuzzy topological space in Šostak
sense.. We have investigated some of its properties. There are many other properties
of the introduced notions, those could be investigated and applied for investigations
in other branches of technology.
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1 Introduction

In mathematics and abstract algebra, group theory studies the algebraic structures
known as groups. The concept of a group is central to abstract algebra: other well-
known algebraic structures, such as rings, fields, and vector spaces, can all be seen
as groups endowed with additional operations and axioms. Groups recur throughout
mathematics, and the methods of group theory have influenced many parts of alge-
bra. Linear algebraic groups and Lie groups are two branches of group theory that
have experienced advances and have become subject areas in their own right. Various
physical systems, such as crystals and the hydrogen atom, may be modelled by sym-
metry groups. Thus group theory and the closely related representation theory have
many important applications in physics, chemistry, and materials science. Group
theory is also central to public key cryptography. Soft set theory is a generalization
of fuzzy set theory, that was proposed by Molodtsov in 1999 to deal with uncertainty
in a parametric manner [10]. A soft set is a parameterised family of sets - intuitively,
this is ”soft” because the boundary of the set depends on the parameters. Formally,
a soft set, over a universal set X and set of parameters E is a pair (f, A) where A is a
subset of E and f is a function from A to the power set of X. For each e in A, the set
f(e) is called the value set of e in (f,A). One of the most important steps for the new
theory of soft sets was to define mappings on soft sets, which was achieved in 2009
by the mathematicians Athar Kharal and Bashir Ahmad, with the results published
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in 2011 [7]. Soft sets have also been applied to the problem of medical diagnosis for
use in medical expert systems. In abstract algebra, a normal subgroup is a subgroup
which is invariant under conjugation by members of the group of which it is a part.
In other words, a subgroup H of a group G is normal in G if and only if gH = Hg for
all g in G. The definition of normal subgroup implies that the sets of left and right
cosets coincide. In fact, a seemingly weaker condition that the sets of left and right
cosets coincide also implies that the subgroup H of a group G is normal in G [6].
Normal subgroups (and only normal subgroups) can be used to construct quotient
groups from a given group. Then Maji et al. [8] introduced several operations on
soft sets. The works of the algebraic structure of soft sets was first started by Aktas
and Cagman [1]. They presented the notion of the soft group and derived its some
basic properties. For basic notions and the applications of soft sets, we incite to
read [1, 2, 3, 4, 8, 9, 10, 11]. A. Solairaju and R. Nagarajan [14] introduced the new
structures of Q-fuzzy groups. The author investigated soft Lie ideals and anti soft
Lie ideals and extension of Q-soft ideals in semigroups [13, 12]. In [5] the author
introduced the concept of Q-soft subgroups and discussed the characterisations Q-
soft subgroups under homomorphism and anti-homomorphism. The purpose of this
paper is to deal with the algebraic structure of Q-soft normal subgroups. The con-
cept of Q-soft normal subgroups is introduced, their characterization and algebraic
properties are investigated. The rest of this paper is organized as follows. In Section
2, we summarize some basic concepts which will be used throughout the paper. In
Section 3, we introduce the concept of Q-soft normal subgroups and investigate some
of their basic properties. Also we investigate Q-soft normal subgroups under homo-
morphism and anti-homomorphisms. Next we prove the analogue of the Lagrange,s
theorem.

2 Preliminary

In this section, we present basic definitions of soft sets and their operations. Through-
out this work, Q is a non-empty set, U refers to an initial universe set, E is a set of
parameters and P (U) is the power set of U.

Definition 2.1. ([8, 10]) For any subset A of E, a Q-soft subset fA×Q over U is a
set, defined by a function fA×Q, representing a mapping fA×Q : E×Q → P (U), such
that fA×Q(x, q) = ∅ if x /∈ A. A soft set over U can also be represented by the set
of ordered pairs fA×Q = {((x, q), fA×Q(x, q)) | (x, q) ∈ E × Q, fA×Q(x, q) ∈ P (U)}.
Note that the set of all Q-soft subsets over U will be denoted by QS(U). From here
on, soft set will be used without over U.

Definition 2.2. ([8, 10]) Let fA×Q, fB×Q ∈ QS(U). Then,
(1) fA×Q is called an empty Q-soft subset, denoted by ΦA×Q, if fA×Q(x, q) = ∅

for all (x, q) ∈ E ×Q,
(2) fA×Q is called a A×Q-universal soft set, denoted by fA×̃Q, if fA×Q(x, q) = U

for all (x, q) ∈ A×Q,
(3) fA×Q is called a universal Q-soft subset, denoted by fE×̃Q , if fA×Q(x, q) = U

for all (x, q) ∈ E ×Q,
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(4) the set Im(fA×Q) = {fA×Q(x, q) : (x, q) ∈ A×Q} is called image of fA×Q and
if A×Q = E ×Q, then Im(fE×Q) is called image of E ×Q under fA×Q.

(5) fA×Q is a Q-soft subset of fB×Q, denoted by fA×Q⊆̃fB×Q, if fA×Q(x, q) ⊆
fB×Q(x, q) for all (x, q) ∈ E ×Q,

(6) fA×Q and fB×Q are soft equal, denoted by fA×Q = fB×Q, if and only if
fA×Q(x, q) = fB×Q(x, q) for all (x, q) ∈ E ×Q,

(7) the set (fA×Q∪̃fB×Q)(x, q) = fA×Q(x, q) ∪ fB×Q(x, q) for all (x, q) ∈ E ×Q is
called union of fA×Q and fB×Q,

(8) the set (fA×Q∩̃fB×Q)(x, q) = fA×Q(x, q) ∩ fB×Q(x, q) for all (x, q) ∈ E ×Q is
called intersection of fA×Q and fB×Q.

Example 2.3. Let U = {u1, u2, u3, u4, u5} be an initial universe set and E =
{x1, x2, x3, x4, x5} be a set of parameters. Let Q = {q}, A = {x1, x2}, B = {x2, x3}, C =
{x4}, D = {x5}, F = {x1, x2, x3}. Define

fA×Q(x, q) =

{ {u1, u2, u3} if x = x1

{u1, u5} if x = x2

fB×Q(x, q) =

{ {u1, u2} if x = x2

{u2, u4} if x = x3

fF×Q(x, q) =




{u1, u2, u3, u4} if x = x1

{u1, u2, u5} if x = x2

{u2, u4} if x = x3

fC×Q(x4, q) = U and fD×Q(x5, q) = {∅}. Then we will have

(fA×Q∪̃fB×Q)(x, q) =




{u1, u2, u3} if x = x1

{u1, u2, u5} if x = x2

{u2, u4} if x = x3

(fA×Q∩̃fB×Q)(x, q) =

{ {u1} if x = x2

{} if x 6= x2

Also fC×Q = fC×̃Q and fD×Q = ΦD×Q. Note that the difinition of classical subset

is not valid for the soft subset. For example fA×Q⊆̃fF×Q does not imply that every
element of fA×Q is an element of fF×Q. Thus fA×Q⊆̃fF×Q but fA×Q * fF×Q as
classical subset.

Definition 2.4. ([5]) Let ϕ : A → B be a function and fA×Q, fB×Q ∈ QS(U). Then
soft image ϕ(fA×Q) of fA×Q under ϕ is defined by

ϕ(fA×Q)(y, q) =

{ ∪{fA×Q(x, q) | (x, q) ∈ A×Q,ϕ(x) = y} if ϕ−1(y) 6= ∅
∅ if ϕ−1(y) = ∅

and soft pre-image (or soft inverse image) of fB×Q under ϕ is ϕ−1(fB×Q)(x, q) =
fB×Q(ϕ(x), q) for all (x, q) ∈ A×Q.

Definition 2.5. ([5]) Let (G, .) be a group and fG×Q ∈ QS(U). Then, fG×Q is called
a Q-soft subgroup over U if fG×Q(xy, q) ⊇ fG×Q(x, q) ∩ fG×Q(y, q) and fG(x−1, q) =
fG×Q(x, q) for all x, y ∈ G, q ∈ Q.
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Throughout this paper, G denotes an arbitrary group with identity element eG and
the set of all Q-soft subgroup with parameter set G over U will be denoted by
SG×Q(U).

Definition 2.6. ([5]) Let (G, .), (H, .) be any two groups and fG×Q ∈ SG×Q(U), gH×Q ∈
SH×Q(U). The product of fG×Q and gH×Q, denoted by fG×Q×̃gH×Q : (G × H) ×
Q → P (U) , is defined as fG×Q×̃gH×Q((x, y), q) = fG×Q(x, q) ∩ gH×Q(y, q) for all
x ∈ G, y ∈ H, q ∈ Q. Throughout this paper, H denotes an arbitrary group with
identity element eH .

Theorem 2.7. (Lagrange) ([6]) Let G be a finite group. Let H be a subgroup of G.
Then the order of H divides the order of G.

Definition 2.8. ([6]) Let (G, .), (H, .) be any two groups. The function f : G →
H is called a homomorphism (anti-homomorphism) if f(xy) = f(x)f(y)(f(xy) =
f(y)f(x)), for all x, y ∈ G.

Definition 2.9. ([6]) We call a group G, Hamiltonian if G is non-abelian and every
subgroup of G is normal.

Definition 2.10. ([6]) A Dedekind group is one which is abelian or Hamiltonian.

3 Main Results

Definition 3.1. Let fG×Q ∈ SG×Q(U) then fG×Q is said to be a Q-soft normal
subgroup of G if fG×Q(xy, q) = fG×Q(yx, q), for all x, y ∈ G and q ∈ Q. Throughout
this paper, G denotes an arbitrary group with identity element eG and the set of all
Q-soft normal subgroup with parameter set G over U will be denoted by NSG×Q(U).

Example 3.2. Let U = {u1, u2, u3, u4, u5} be an initial universe set and (Z, +) be
an additive group. Define fZ×Q : Z×Q → P (U) as

fZ×Q(x, q) =

{ {u1, u2, u3} if x ∈ Z≥0

{u2, u4, u5} if x ∈ Z<0

then fZ×Q ∈ NSZ×Q(U).

Proposition 3.3. Let fG×Q, gG×Q ∈ NSG×Q(U). Then fG×Q∩̃gG×Q ∈ NSG×Q(U).

Proof. By [5, Proposition 2.16] we have that fG×Q∩̃gG×Q ∈ SG×Q(U). Let x, y ∈
G, q ∈ Q. Then

(fG×Q∩̃gG×Q)(xy, q) = fG×Q(xy, q) ∩ gG×Q(xy, q) = fG×Q(yx, q) ∩ gG×Q(yx, q)
= (fG×Q∩̃gG×Q)(yx, q)

and so fG×Q∩̃gG×Q ∈ NSG×Q(U).

Corollary 3.4. The intersection of a family of Q-soft normal subgroups of a group
G is a Q-soft subgroup of a group G.
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Proposition 3.5. Let fG×Q ∈ NSG×Q(U). Then fG×Q(yxy−1, q) = fG×Q(y−1xy, q)
for every x, y ∈ G and q ∈ Q.

Proof. Let x, y ∈ G and q ∈ Q. As fG×Q ∈ NSG×Q(U) so

fG×Q(yxy−1, q) = fG×Q(y−1yx, q) = fG×Q(ex, q) = fG×Q(x, q) = fG×Q(xyy−1, q)
= fG×Q(y−1xy, q).

Proposition 3.6. If every Q-soft subgroup of a group G is normal, then G is a
Dedekind group.

Proof. Suppose that every Q-soft subgroup of a group G is normal. We have, consider
a subgroup H of G. So H can be regarded as a Q-level subgroup of some Q-soft
subgroup fG×Q of G. By assumption, fG×Q is a Q-soft normal subgroup of G. Now, it
is easy to deduce that H is a normal subgroup of G. Thus G is a Dedekind group

Proposition 3.7. If fG×Q ∈ NSG×Q(U), gH×Q ∈ NSH×Q(U). Then fG×Q×̃gH×Q ∈
NS(G×H)×Q(U).

Proof. From [5, Proposition 2.22] we have that fG×Q×̃gH×Q ∈ S(G×H)×Q(U). Let
(x1, y1), (x2, y2) ∈ G×H, q ∈ Q. Then

fG×Q×̃gH×Q((x1, y1)(x2, y2), q) = fG×Q×̃gH×Q((x1x2, y1y2), q)
= fG×Q(x1x2, q) ∩ gH×Q(y1y2, q)
= fG×Q(x2x1, q) ∩ gH×Q(y2y1, q)
= fG×Q×̃gH×Q((x2x1, y2y1), q)
= fG×Q×̃gH×Q((x2, y2)(x1, y1), q).

Thus fG×Q×̃gH×Q ∈ NS(G×H)×Q(U).

Proposition 3.8. Let fG×Q, gH×Q ∈ QS(U), fG×Q×̃gH×Q ∈ NS(G×H)×Q(U). Then
at least one of the following two statements must hold.
(1) gH×Q(eH , q) ⊇ fG×Q(x, q), for all x ∈ G, q ∈ Q,
(2) fG×Q(eG, q) ⊇ gH×Q(y, q), for all y ∈ H, q ∈ Q.

Proof. Use [5, Proposition 2.23].

Proposition 3.9. Let fG×Q, gH×Q ∈ QS(U), fG×Q×̃gH×Q ∈ NS(G×H)×Q(U). Then
we have the following statements.
(1) If for all x ∈ G, q ∈ Q, fG×Q(x, q) ⊆ gH×Q(eH , q), then fG×Q ∈ NSG×Q(U).
(2) If for all x ∈ H, q ∈ Q, gH×Q(x, q) ⊆ fG×Q(eG, q), then gH×Q ∈ NSH×Q(U).
(3) Either fG×Q ∈ NSG×Q(U) or gH×Q ∈ SH×Q(U).

Proof. (1) Let x, y ∈ G, q ∈ Q. From [5, Proposition 2.24] we have that fG×Q ∈
SG×Q(U). As fG×Q(x, q) ⊆ gH×Q(eH , q) so

fG×Q(xy, q) = fG×Q(xy, q) ∩ gH×Q(eHeH , q)
= fG×Q×̃gH×Q((xy, eHeH), q)
= fG×Q×̃gH×Q((x, eH)(y, eH), q)
= fG×Q×̃gH×Q((y, eH)(x, eH), q)
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= fG×Q×̃gH×Q((yx, eHeH), q)
= fG×Q(yx, q) ∩ gH×Q(eHeH , q)
= fG×Q(yx, q).

Thus fG×Q ∈ NSG×Q(U).

(2) Let x, y ∈ H, q ∈ Q. By [5, Proposition 2.24] we get that gH×Q ∈ SH×Q(U).
Since gH×Q(x, q) ⊆ fG×Q(eG, q) so

gH×Q(xy, q) = fG×Q(eGeG, q) ∩ gH×Q(xy, q)
= fG×Q×̃gH×Q((eGeG, xy), q)
= fG×Q×̃gH×Q((eG, x)(eG, y), q)
= fG×Q×̃gH×Q((eG, y)(eG, x), q)
= fG×Q×̃gH×Q((eGeG, yx), q)
= fG×Q(eGeG, q) ∩ gH×Q(yx, q)
= gH×Q(yx, q).

Therefore gH×Q ∈ NSH×Q(U).

(3) Straight forward.

Recall that (x) = {y−1xy : y ∈ G} is called the conjugate class of x in G.

Proposition 3.10. fG×Q ∈ NSG×Q(U) if and only if fG×Q is constant on the con-
jugate classes of G.

Proof. Let x, y ∈ G and q ∈ Q. If fG×Q ∈ NSG×Q(U), then

fG×Q(y−1xy, q) = fG×Q(xyy−1, q) = fG×Q(x, q)

Therefore fG×Q is constant on the conjugate classes of G. Conversely, let fG×Q is
constant on the conjugate classes of G. Then

fG×Q(xy, q) = fG×Q(x−1(xy)x, q) = fG×Q((x−1x)yx, q) = fG×Q(yx, q)

and so fG×Q ∈ NSG×Q(U).

In the following propositions, we prove many results in homomorphism and anti-
homomorphism in normal Q-soft subgroups.

Proposition 3.11. Let ϕ be an epimorphism from group G into group H. If fG×Q ∈
NSG×Q(U), then ϕ(fG×Q) ∈ NSH×Q(U)

Proof. By [5, Proposition 4.3] we have that ϕ(fG×Q) ∈ SH×Q(U). Let h1, h2 ∈ H
and q ∈ Q then

ϕ(fG×Q)(h1h2, q) = ∪{fG×Q(g1g2, q) | g1, g2 ∈ G, ϕ(g1g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1)ϕ(g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1) = h1, ϕ(g2) = h2}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2) = h2, ϕ(g1) = h1}
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= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2)ϕ(g1) = h2h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2g1) = h2h1}
= ϕ(fG×Q)(h2h1, q).

Thus ϕ(fG×Q) ∈ NSH×Q(U).

Proposition 3.12. Let ϕ be a homorphism from group G into group H. If gH×Q ∈
NSH×Q(U), then ϕ−1(gH×Q) ∈ NSG×Q(U).

Proof. By [5, Proposition 4.5] we have that ϕ−1(gH×Q) ∈ SG×Q(U). Let g1, g2 ∈ G
and q ∈ Q. Then

ϕ−1(gH×Q)(g1g2, q) = gH×Q(ϕ(g1g2), q)
= gH×Q(ϕ(g1)ϕ(g2), q)
= gH×Q(ϕ(g2)ϕ(g1), q)
= gH×Q(ϕ(g2g1), q)
= ϕ−1(gH×Q)(g2g1, q).

Therefore ϕ−1(gH×Q) ∈ NSG×Q(U).

Proposition 3.13. Let ϕ be an anti-epimorphism from group G into group H. If
fG×Q ∈ NSG×Q(U), then ϕ(fG×Q) ∈ NSH×Q(U).

Proof. By [5, Proposition 4.3] we have that ϕ(fG×Q) ∈ SH×Q(U). Let h1, h2 ∈ H
and q ∈ Q then

ϕ(fG×Q)(h1h2, q) = ∪{fG×Q(g1g2, q) | g1, g2 ∈ G, ϕ(g1g2) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g2)ϕ(g1) = h1h2}
= ∪{fG×Q(g1g2, q) | g1, g2 ∈ G,ϕ(g1) = h1, ϕ(g2) = h2}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2) = h2, ϕ(g1) = h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g2)ϕ(g1) = h2h1}
= ∪{fG×Q(g2g1, q) | g2, g1 ∈ G,ϕ(g1g2) = h2h1}
= ϕ(fG×Q)(h2h1, q).

Thus ϕ(fG×Q) ∈ NSH×Q(U).

Proposition 3.14. Let ϕ be an anti-homorphism from group G into group H. If
gH×Q ∈ NSH×Q(U), then ϕ−1(gH×Q) ∈ NSG×Q(U).

Proof. By [5, Proposition 4.8] we have that ϕ−1(gH×Q) ∈ SG×Q(U). Let g1, g2 ∈ G
and q ∈ Q. Then

ϕ−1(gH×Q)(g1g2, q) = gH×Q(ϕ(g1g2), q)
= gH×Q(ϕ(g2)ϕ(g1), q)
= gH×Q(ϕ(g1)ϕ(g2), q)
= gH×Q(ϕ(g2g1), q)
= ϕ−1(gH×Q)(g2g1, q).

Therefore ϕ−1(gH×Q) ∈ NSG×Q(U).
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Remark 3.15. In what follows the symbol ◦ stands for the composition operation
of functions.

Proposition 3.16. Let ϕ be an isomorphism from group G into group H. If fH×Q ∈
SH×Q(U), then we have the following:
(1) fH×Q ◦ ϕ ∈ SG×Q(U).
(2) If fH×Q ∈ NSH×Q(U), then fH×Q ◦ ϕ ∈ NSG×Q(U).

Proof. (1) Let x, y ∈ G and q ∈ Q.

(fH×Q ◦ ϕ)(xy−1, q) = fH×Q(ϕ(xy−1), q)
= fH×Q(ϕ(x)ϕ(y−1)), q)
= fH×Q(ϕ(x)ϕ(y)−1, q)
⊇ fH×Q(ϕ(x), q) ∩ fH×Q(ϕ(y), q) (as fH×Q ∈ SH×Q(U))
= (fH×Q ◦ ϕ)(x, q) ∩ (fH×Q ◦ ϕ)(y, q)

and then fH×Q ◦ ϕ ∈ SG×Q(U).

(2) Let fH×Q ∈ NSH×Q(U) then

(fH×Q ◦ ϕ)(xy, q) = fH×Q(ϕ(x)ϕ(y), q)
= fH×Q(ϕ(y)ϕ(x), q)
= fH×Q(ϕ(yx), q)
= (fH×Q ◦ ϕ)(yx, q).

Therefore fH×Q ◦ ϕ ∈ NSG×Q(U).

Proposition 3.17. Let ϕ be an anti-isomorphism from group G into group H. If
fH×Q ∈ SH×Q(U), then we have the following:
(1) fH×Q ◦ ϕ ∈ SG×Q(U).
(2) If fH×Q ∈ NSH×Q(U), then fH×Q ◦ ϕ ∈ NSG×Q(U).

Proof. (1) Let x, y ∈ G and q ∈ Q.

(fH×Q ◦ ϕ)(xy−1, q) = fH×Q(ϕ(xy−1), q)
= fH×Q(ϕ(y−1)ϕ(x)), q)
= fH×Q(ϕ(y)−1ϕ(x), q)
⊇ fH×Q(ϕ(x), q) ∩ fH×Q(ϕ(y), q) (as fH×Q ∈ SH×Q(U))
= (fH×Q ◦ ϕ)(x, q) ∩ (fH×Q ◦ ϕ)(y, q)

and then (fH×Q ◦ ϕ ∈ SG×Q(U).

(2) Let fH×Q ∈ NSH×Q(U) then

fH×Q ◦ ϕ)(xy, q) = fH×Q(ϕ(y)ϕ(x), q) = fH×Q(ϕ(x)ϕ(y), q)
= fH×Q(ϕ(yx), q) = (fH×Q ◦ ϕ)(yx, q).

Therefore fH×Q ◦ ϕ ∈ NSG×Q(U).
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This motivated us to examine the results for Q-soft cosets. We have found out
that the results perfectly fit with Q-soft cosets.

Definition 3.18. Let fG×Q ∈ SG×Q(U) and H = {x ∈ G : fG×Q(x, q) = fG×Q(e, q)},
then O(fG×Q), the order of fG×Q is defined as O(fG×Q) = O(H).

Proposition 3.19. Let fG×Q be a Q-soft subgroup of a finite group G, then O(fG×Q) |
O(G).

Proof. Let fG×Q be a Q-soft subgroup of a finite group G with e as its identity
element. Clearly H = {x ∈ G : fG×Q(x, q) = fG×Q(e, q)} is a subgroup of G for H is
a Q-level subset of G. By Lagranges theorem O(H) | O(G). Hence by the definition
of the order of the Q-soft subgroup of G, we have O(fG×Q) | O(G).

Proposition 3.20. Let fG×Q and gG×Q be two Q-soft subgroups of normal group
G. Then O(fG×Q) = O(gG×Q).

Proof. Let fG×Q and gG×Q be conjugate Q-soft subgroups of G. Now

O(fG×Q) = order of {x ∈ G : fG×Q(x, q) = fG×Q(e, q)}
= order of {x ∈ G : gG×Q(y−1xy, q) = gG×Q((y−1ey, q)}
= order of {x ∈ G : gG×Q(x, q) = gG×Q((e, q)} = O(gG×Q).

Hence O(fG×Q) = O(gG×Q).
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Abstaract − Every year different type of topological spaces are introduced by many topologist.
Now a days available topologies are supra topology, ideal topology, bitopology, fuzzy topology,
Fine topology, nano topology and so on. Nano topology introduced by Thivagar, using this nano
topology we introduced micro topology and also study the concepts of micro-pre open sets and
micro-semi open sets and some of their properties are investigated.

Keywords − Micro Topology, Micro-pre open sets, Micro-semi open sets, Micro continuous, Micro
pre continuous, Micro semi continuous.

1 Introduction

In 1963 Kelly [4] introduced Bitopological spaces, In 1983, Mashhour [6] et al. in-
troduced the supra topological spaces. In 1965, Zadeh [9] introduced the concept of
fuzzy sets,the study of fuzzy topological spaces which had been introduced by Chang
[2] in 1968. The concept of ideal in topological space was first introduced by Kura-
towski. They also have defined local function in ideal topological space. Further in
1990 Hamlett and Jankovic [3] investigated further properties of topological space.

Powar and Rajak [7] introduced fine topological spaces in the year 2012. Nano
topology introduced by Thivagar [5] in the year 2013. Nano topology based on the
concept of lower approximation, upper approximation and boundary region. Nano
topology have maximum five nano open sets and minimum three nano open sets
including U, φ suppose we want add some more open sets, for that time we can use
Levine’s simple extension concept in nano topology we can extend some more open
sets that topology is called micro topology. Every nano topology is micro topology.
In this paper, introduce micro topology, micro pre open sets, micro semi open sets
and some of their properties are investigated.
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2 Preliminary

Let us recall the following definition, which are useful in the sequel.

Definition 2.1. Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Then U is
divided into disjoint equivalence classes. Elements belonging to the same equivalence
class are said to be indiscernible with one another. The pair (U,R) is said to be the
approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X)=

⋃
x∈U{R(x) : R(x) ⊆ X} where R(x) denotes the equivalence

class determined by x ∈ U .

2. The upper approximation of X with respect to R is the set of all objects,which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X)=

⋃
x∈U{R(x) : R(x) ∩X 6= φ}

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not-X with respect to R and it is denoted by
BR(X). That is, BR(X)=UR(X)-LR(X).

Definition 2.2. Let U be an universe, R be an equivalence relation on U
and τR(X)={U, φ, LR(X), UR(X), BR(X)} where X ⊆ U satisfies the following
axioms

1. U,φ ∈ τR(X)

2. The union of the elements of any sub-collection of τR(X) is in τR(X)

3. The intersection of the elements of any finite sub collection of τR(X) is in τR(X).

Then τR(X) is called the nano topology on U with respect to X. The space
(U,τR(X)) is the nano topological space.The elements of are called nano open sets.

3 Micro Topological Spaces

In this section, I introduce and study the properties of Micro topological spaces.

Definition 3.1. (U,τR(X)) is a nano topological space here µR(X) = {N∪(N
′∩µ)}:

N, N
′ ∈ τR(X) and called it Micro topology of τR(X) by µ where µ/∈ τR(X).

Definition 3.2. The Micro topology µR(X) satisfies the following axioms

1. U,φ ∈ µR(X)

2. The union of the elements of any sub-collection of µR(X) is in µR(X)
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3. The intersection of the elements of any finite sub collection of µR(X) is in
µR(X).

Then µR(X) is called the Micro topology on U with respect to X. The triplet
(U,τR(X),µR(X)) is called Micro topological spaces and The elements of µR(X) are
called Micro open sets and the complement of a Micro open set is called a Micro
closed set.

Example 3.3. U = {1, 2, 3, 4}, with U/R = {{1}, {3}, {2, 4}} and X= {1, 2} ⊆ U ,
τR(X)= {U, φ, {1}, {1, 2, 4}, {2, 4}} Then µ = {3}. Micro-O=µR(X)={U, φ, {1}, {3},
{1, 3}, {2, 4}, {2, 3, 4}, {1, 2, 4}}
Example 3.4. U = {a, b, c, d}, with U/R= {{a}, {c}, {b, d}}X={b, d} ⊆ U , τR(X) =
{U, φ, {b, d}} and then µ = {b}. Micro-O=µR(X)= {U, φ, {b}, {b, d}}
Example 3.5. Let U = {p, q , r, s, t}, U/R= {{p}, {q, r, s}, {t}}. Let X={p,q}⊆
U. Then τR(X)={U, φ, {p}, {p, q, r, s}, {q, r, s}}. Then µ = {t}. Then Micro-O
=µR(X)= {U, φ, {p}, {t}, {p, t}, {p, q, r, s}, {q, r, s}, {q, r, s, t}}
Definition 3.6. The Micro closure of a set A is denoted by Micro-cl(A) and is
defined as Mic-cl(A)=∩{B:B is Micro closed and A⊆ B}. The Micro interior of a
set A is denoted by Micro-int(A) and is defined as Mic-int(A)=∪{B:B is Micro open
and A⊇ B}.
Definition 3.7. For any two Micro sets A and B in a Micro topological space
(U,τR(X), µR(X)),

1. A is a Micro closed set if and only if Mic-cl(A)=A

2. A is a Micro open set if and only if Mic-int(A)=(A)

3. A ⊆ B implies Mic-int(A)⊆ Mic-int(B) and Mic-cl(A)⊆ Mic-cl(B)

4. Mic-cl( Mic-cl(A))=Mic-cl(A)and Mic-int( Mic-int(A))=Mic-int(A)

5. Mic-cl(A∪B)⊇Mic-cl(A)∪ Mic-cl(B)

6. Mic-cl(A∩B)⊆Mic-cl(A)∩Mic-cl(B)

7. Mic-int(A∪B)⊇ Mic-int(A) ∪Mic-int(B)

8. Mic-int(A∩B)⊆ Mic-int(A) ∩ Mic-int(B)

9. Mic-cl(AC)=[Mic-int(A)]C

10. Mic-int(AC)=[Mic-cl(A)]C
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4 Micro-Pre-Open Sets

In this section, I define and study about micro-pre-open sets some of their properties
are analogous to those for open sets.

Definition 4.1. Let (U,τR(X),µR(X)) be a micro topological space and A ⊂ U .
Then A is said to be micro-pre-open if A⊆ Mic-int(Mic-cl(A)) and micro-pre-closed
set if Mic-cl(Mic-int(A))⊆ A.

Example 4.2. Let U = {p, q , r, s, t}, U/R= {{p}, {q, r, s}, {t}}. Let X={p,q}⊆
U. Then τR(X)={U, φ, {p}, {p, q, r, s}, {q, r, s}}. Then µ = {t}. Micro-O=µR(X)=
{U, φ, {p}, {t}, {p, t}, {p, q, r, s}, {q, r, s}, {q, r, s, t}}. Clearly A={ q, r, s} is Micro-
pre open.

Theorem 4.3. Every Micro-open set is Micro-pre open.

Proof. Let A be Micro-open. Then A ⊆ Mic-int(Mic-intA). Since Mic-int(Mic-intA)
⊆ Mic-int(Mic-clA), it follows that A ⊆ Mic-int(Mic-cl A). Hence A is Micro-pre
open.Converse of the above Theorem need not be true.

Example 4.4. Let U = {i, j, k, l, m} U/R= {{i}, {j, k, l}, {m}}. Let X = {j, k} ⊆U.
Then τR(X) ={U, φ, {j, k, l}}. Then µ = {i}. Then Micro- O={U, φ, {i}, {i, j, k, l},
{j, k, l}}. Clearly A={i, j, k, m} is Micro-pre open but not Micro-open.

Theorem 4.5. 1. Arbitrary union of Micro-pre open sets is Micro-pre open.

2. Arbitrary intersection of Micro-pre closed sets is Micro-pre closed.

Proof. 1. Let {Aα|α ∈ I} be the family of Micro-pre open sets in X. By De-
finition 3.6, for each α ,Aα ⊆ Mic-int(Mic-cl( Aα)), this implies that ∪Aα

⊆∪(Mic-int(Mic-cl(Aα)).Since ∪(Mic-int(Mic-cl(Aα))⊆ Mic-int(∪Mic-cl(Aα))
and Mic-int(∪Mic-cl(Aα))= Mic-int(Mic-cl(∪Aα)), this implies that ∪Aα ⊆
Mic-int(Mic-cl(∪Aα)). Hence∪Aα is Micro-pre open.

2. Let {Bα|α ∈ I} be a family of Micro-pre closed sets in X. Let Aα = BC
α ,then

{Aα|α ∈ I} is a family of Micro-pre open sets. By (i),∪Aα=∪Bα)C is Micro-
pre open. Consequently (∩Bα)C is Micro-pre open.Hence (∩Bα) is Micro-pre
closed.

Remark 4.6. Finite intersection of Micro-pre open sets need not be Micro-pre open.

Example 4.7. In Example 4.4 {i, l} and {j, l} are Micro-pre open sets, but {i, l} ∩
{j, l} = {l} is not Micro-pre open.

Theorem 4.8. In a Micro topological space (U,τR(X),µR(X))the set of all Micro-pre
open sets form a generalized topology.

Proof. proof follows from Remark 4.6, Theorem 4.3 and Theorem 4.5.



Journal of New Theory 26 ( 2019) 23-31 27

Definition 4.9. Let (U,τR(X),µR(X)) be a Micro-topological space. An element
x ∈ A is called Micro-pre interior point of A, if there exist a Micro-pre open set H
such that x ∈ H ⊂ A.

Definition 4.10. The set of all Micro-pre interior points of A is called the Micro-pre
interior of A, and is denoted by Micro-pre-int(A).

Theorem 4.11. 1. Let A ⊂(U,τR(X),µR(X)) Then Micro-pre int A is equal to
the union of all Micro-pre open set contained in A.

2. If A is a Micro-pre open set then A=Micro-pre int A.

Proof. 1. We need to prove that, Micro-pre intA=∪{B|B ⊂ A, Bis Micro-pre
open set}. Let x∈ Micro-pre int A. Then there exist a Micro-pre open set
B such that x∈ B ⊂ A. Hence x ∈ ∪{B|B ⊂ A, B is Micro-pre open set}.
Conversely, suppose x ∈ ∪{B|B ⊂ A,B is Micro-pre open set}, then there
exist a set Bo ⊂ A such that x ∈ Bo, where Bo is Micro-pre open set. i.e., x ∈
Micro-pre int A. Hence ∪{B|B ⊂ A,B is Micro-pre open set} ⊂ Micro-pre int
A. So Micro-pre int A=∪{B|B ⊂ A, B is Micro-pre open set}.

2. Assume A is a Micro-pre open set then A ∈{B|B ⊂A, Micro-pre open set},
and every other element in this collection is subset of A. Hence by part (1)
Micro-preintA=A.

Theorem 4.12. 1. Micro-pre int (A ∪B) ⊃ Micro-pre int A∪Micro-pre int B.

2. Micro-pre int(A ∩B)=Micro-pre int A∩ Micro-pre int B.

Proof. 1. The fact that Micro-pre int A⊂ A and Micro-preint B⊂ B implies Micro-
pre int A∪ Micro-pre int B⊂ A∪B. Since Micro- Pre interior of a set is Micro-
Pre open, Micro-pre int A and Micro-pre int B are pre open. Hence by Theorem
4.5(1), Micro-pre int A∪ Micro-pre int B is Micro- Pre open and contained in
A∪ B. Since Micro-pre int(A ∪B) is the largest Micro-pre open set contained
in A ∪ B, it follows that Micro-pre int A∪ Micro-pre int B ⊂ Micro-pre int
(A ∪B).

2. Let x∈ Micro-pre int (A∩ B).Then there exist a Micro-pre open set H, such
that x∈H⊂ (A∩B).That is there exist a Micro-pre open set, such that x ∈ H ⊂
Aand x ∈ H ⊂ B. Hence x ∈ Micro-pre int A and x ∈ Micro-pre int B. That is
x ∈ Micro-pre int A∩ Micro-pre int B. Thus Micro-pre int (A∩B) ⊂ Micro-pre
int A∩ Micro-pre int B. Retracing the above steps, we get the converse.

Definition 4.13. (U,τR(X),µR(X)) be a Micro-topological space.Let A ⊂ X. The
intersection of all Micro-pre closed sets containing A is called Micro-pre closure of A
and it is denoted by Micro-pre cl(A). Micro-precl(A)=∩{B/B ⊃ A,B is Micro-pre
closed set}.
Remark 4.14. 1. Micro-precl(A) is also a Micro-pre closed set.
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2. Micro-precl(A) is smallest Micro-pre closed set containing A.

Theorem 4.15. Every Mic-closed set is Micro-pre closed.

Proof. Let A be Mic-closed, then by Theorem 4.5, we have Mic-cl(Mic-cl A) ⊆ A.
Since Mic-cl(Mic-intA)⊆Mic-cl(Mic-clA)⊆ A, A is Micro-pre closed. Converse of the
above Theorem need not be true.

Example 4.16. U={1, 2, 3, 4},with U/R = {{1}, {3}, {2, 4}} and X={1, 2} ⊆ U ,
τR(X)= {U, φ, {1}, {1, 2, 4}, {2, 4}}. Then µ = {3}. Micro-O={U, φ, {1}, {3}, {1, 3},
{2, 4}, {2, 3, 4}, {1, 2, 4}}. Then A = {1, 2, 3} is Micro-pre closed but not Micro-
closed.

Theorem 4.17. A is Micro-pre closed if and only if A=Micro-pre cl(A).

Proof. Micro-pre cl(A) =∩{B/B ⊃, B is Micro-pre closed set }. If A is a Micro-pre
closed set then A is a member of the above collection and each member contains
A. Hence their intersection is A and Micro-precl(A)=A. Conversely, if A= Micro-
precl(A), then A is Micro-pre closed by Remark 4.14.

5 Micro-Semi Open Sets

Definition 5.1. Let (U,τR(X),µR(X)) be a Micro-topological space and A ⊂ U
Then A is said to be Micro-semi open if A ⊆ Mic-cl(Mic-intA) Micro-semi closed. If
Mic-int(Mic-cl A)⊆ A.

Example 5.2. U = {a, b, c, d}, with U/R= {{a}, {c}, {b, d}}X={b, d} ⊆ U , τR(X) =
{U, φ, {b, d}} and then µ = {a}. Then Micro-O = {U, φ, {a}, {b, d}, {a, b, d}} Clearly
A = {b, d} is Micro-semi open.

Theorem 5.3. 1. Every Micro-open set is Micro-semi open.

2. Every Mic-closed set is Micro-semi closed.

Proof. 1. If A is Micro-open set then by then, A ⊆Mic-int(Mic-intA). Since Mic-
int(Mic-intA)⊆Mic-cl(Mic-intA), A⊆ Mic-cl(Mic-intA). Hence A is Micro-semi
open.

2. If A is Mic-closed set then by Theorem 4.5, we have Mic-cl(Mic-clA)⊆A. Since
Mic-int(Mic-cl A)⊆ Mic-cl(Mic-clA), Mic-int(Mic-cl A)⊆A. Hence A is Micro-
semi closed.

Remark 5.4. Converse of the above Theorem need not be true.

Example 5.5. In Example 5.2 clearly A={b, d} is Micro-semi open Clearly A={b, d}
is Micro-semi closed,but not Mic-closed.
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6 Continuous Functions in Micro-Top. Spaces

Definition 6.1. Let ((U,τR(X),µR(X)))and((V,τ
′
R(X),µ

′
R(X))) be two Micro-topolo-

gical spaces. A function f : U → V is called Micro-continuous function if f−1(H) is
Micro-open in U for every Micro-open set H in V.

Example 6.2. Let U ={p, q, r, s, t}, U/R = {{p}, {q, r, s}, {t}}. LetX={p, q} ⊆U.
The τR(X) = {U, φ{p}, {p, q, r, s}, {q, r, s}}. Then µ = {q}. Then Micro-O= µR(X)
= {U, φ, {p}, {q}, {p, q}, {p, q, r, s}, {q, r, s}} Let V = {1, 2 , 3, 4, 5}, V/R= {
{1,2,3},{4},{5}}. Let X ={1, 2}⊆ U . Then τ

′
R(X)={V, φ, {1, 2, 3}}. Then µ = {4}.

Then Micro-O=µ
′
R(X)={V, φ, {4}, {1, 2, 3, 4}, {1, 2, 3}}. f : U → V be a function

defined as f(p)=4, f(q)=2, f(r)=3, f(s)=1. Micro-open sets in U are {p}, {q}, {p,q},
{p,q,r,s}, {q,r,s} and Micro-open sets in V are {4}, {1, 2, 3, 4}, {1, 2, 3} .Therefore
for every Micro-open set H in V, f−1(H) is Micro-open set in U.Then f is Micro-
continuous function.

Definition 6.3. Let ((U,τR(X),µR(X)))and ((V,τ
′
R(X),µ

′
R(X))) be the two Micro-

topological space.A function f : U → V is called Micro-continuous at a point a ∈ U
if for every Micro-open set H containing f(a) in V, there exist a Micro-open set G
containing a in U, such that f(G) ⊂ H.

Theorem 6.4. f:U → V is Micro-continuous if and only if f is Micro-continuous at
each point of U.

Proof. Let f: U →V be Micro-continuous. Let a ∈ U , and H be a Micro-open set in
V containing f(a). Since f is Micro-continuous, f−1(V )is Micro-open in U containing
a. Let G = f−1(H), then f(G) ⊂ H, and f(a) ∈ G. Hence f is continuous at a.
Conversely, suppose f is Micro-continuous at each point of U. Let H be Micro-open
set in V. If f−1(H) = φthen it is Micro-open. So let f−1(H) 6= φ. Take any a f−1(H),
then f(a) ∈ H. Since f is Micro-continuous at each point there exist a Micro-open set
Gacontaining a such that f(Ga) ⊂ H. Let G = (Ga|a inf−1(H)). Claim: G=f−1(H)
If x ∈ f−1(H) then x ∈ Gx ⊂ G. Hence f−1(H) ⊂ G. On the other hand, suppose
y ∈ G then y ∈ Gxfor some x and y ∈ f−1(H).Hence U = f−1(H).Since Gxis Micro-
open, by definition 6.3 G is Micro-open and hence G=f−1(H) is Micro-open for every
Micro-open set H in V. Hence f is Micro-continuous.

Theorem 6.5. Let ((U,τR(X),µR(X))) and ((V,τ
′
R(X),µ

′
R(X)))be two Micro-topolo-

gical spaces. Then f:U → V is Micro-continuous function if and only if f−1(H) is
Micro-closed in U, whenever H is Micro-closed in V.

Proof. Let f: U → V is Micro-continuous function and H be Micro-closed in V. Then
HC is Micro-open inV. By hypothesisf−1(HC) is Micro-open in U, i.e., [f−1(H)]C is
Micro-open in U. Hence f−1(H) is Micro-closed in U whenever H-is Micro-closed in
V. Conversely, suppose f−1(H) is Micro-closed in U whenever H is Micro-closed in
V. Let U is Micro-open in V then GC is Micro-closed in V. By assumption f−1(GC)
is Micro-closed in U.i.e., [f−1(G)]C is Micro-closed in X. Then f−1(G) is Micro-open
in U. Hence f is Micro-continuous.



Journal of New Theory 26 ( 2019) 23-31 30

Theorem 6.6. Let ((U,τR(X),µR(X))) and ((V,τ
′
R(X),µ

′
R(X))) be two Micro-topolo-

gical space. Then f:U → V is Micro-continuous function if and only if f(Micro-clA)
⊂ Micro-cl[f(A)].

Proof. Suppose f: U → V is Micro-continuous and Micro-cl[f(A)] is Micro-closed in
V. Then by f−1 (Micro-cl[f(A)]) is Micro-closed in U. Consequently, Micro-cl[f−1(Micro-
cl [f(A)])]=f−1(Micro-cl[f(A)]). Since f(A)⊂ Micro-cl[f(A)],A ⊂ f−1(Micro-cl[f(A)])
and Micro-cl(A)⊂ Micro-cl(f−1 Micro-cl[f(A)]))=f−1(Micro-cl[f(A)]) Hence f (Micro-
cl (A)) ⊂ Micro-cl [f(A)]. Conversely, if f(Micro-cl(A))⊂ Micro-cl[f(A)] for all A
⊂ U. Let F be Micro-closed set in V, so that Micro-cl(F)=F ... (1) By hypothe-
sis, f(Micro-cl(f−1(F )) ⊂ Micro-cl [f(f−1(F ))] ⊂ Micro-cl(F), then by (1), Micro-cl
(f−1(F )) ⊂ F . It follows that Micro-cl (f−1(F )) ⊂ f−1(F ). But always f−1(F ) ⊂
Micro-cl (f−1(F )], so that Micro-cl (f−1(F )) = f−1(F ). Hence f−1(F ) is Micro-
closed in U and f is continuous by Theorem 6.4.

Theorem 6.7. Let((U,τR(X),µR(X))), ((V,τ
′
R(X),µ

′
R(X))) and ((W,τ

′′
R(X),µ

′′
R(X)))

be three Micro-topological spaces. If f:U→V and g:V→W are Micro-continuous map-
pings then g◦f: U→ W is also Micro-continuous.

Proof. Let G be a Micro-open set in W. Since by g is Micro-continuous, g−1(G) is
Micro-open set in V. Now,(g◦f)−1G=(f−1 ◦g−1)G= f−1 ◦ (g−1(G)). Take g−1(G)=H
which is Micro-open in V, then f−1(H)is Micro-open in U,since by f is Micro-
continuous. Hence g◦f: U → W is Micro-continuous function.

7 Micro-Pre Continuous and Micro-Semi Contin-

uous Functions

Definition 7.1. Let ((U,τR(X),µR(X))) and ((V,τ
′
R(X),µ

′
R(X))) be two Micro-

topological spaces,then f: U →V is Micro-pre continuous if f−1(V) is Micro-pre
closed in U whenever V is Micro-closed.

Theorem 7.2. Every Micro-continuous function is Micro-pre continuous

Proof. Let f:U → V be Micro-continuous. i.e., f−1(H)is Micro-closed in U, whenever
H is Micro-closed in V. By Theorem 4.11, every Micro-closed set is Micro-pre closed,
and hence f−1(V ) is Micro-pre closed in U whenever H is Micro-closed in V. Hence
f:U → V be Micro-pre continuous

Definition 7.3. Let((U,τR(X),µR(X))) and ((V,τ
′
R(X),µ

′
R(X))) be two Micro-topolo-

gical space,then f:U →V is Micro-semi continuous if f−1(H) is Micro- semi closed in
U whenever H is Micro-closed in V.

Theorem 7.4. Every Micro-continuous function is Micro-semi continuous.

Proof. Let f: U →V be Micro-continuous. i.e.,f−1(H) is Micro-closed in U, whenever
H is Micro-closed in V. By Theorem 5.3 (2), every Micro-closed set is Micro-semi
closed. This implies that f−1(H) is Micro-semi closed in U whenever H is closed in
Y.Hence f:U →V be Micro-semi continuous.
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8 Conclusion

Every year many topologist introduced diffrent type of topological spaces. In this
paper i introduced Micro topological spaces and discussed properies and applications
of Micro pre open sets,Micro semi open sets. This shall be extended in the future
Research with some applications
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Abstaract−Ordered semigroups (OSGs) is a significant algebraic structure having partial ordered
with associative binary operation. OSGs have broad applications in various fields such as coding
theory, automata theory, fuzzy finite state machines and computer science etc. In this manuscript
we investigate the notion of generalized roughness for fuzzy ideals in OSGs on the basis of isotone
and monotone mappings. Then the notion of approximation is boosted to the approximation of
fuzzy bi-ideals, approximations fuzzy interior ideals and approximations fuzzy quasi-ideals in OSGs
and investigate their related properties. Furthermore (∈,∈ ∨q)-fuzzy ideals are the generalization
of fuzzy ideals. Also the generalized roughness for (∈,∈ ∨q)-fuzzy ideals, fuzzy bi-ideals and fuzzy
interior ideals have been studied in OSGs and discuss the basic properties on the basis of isotone
and monotone mappings.

Keywords − Fuzzy sets, Rough sets, Approximations of fuzzy ideals, Approximations of (∈,∈ ∨q)-
fuzzy ideals.

1 Introduction

In real life, there exist some possible scenario in which the objects of a set are arrange
through a specific order. For example the cost of certain commodities in a market
can be debated by a terms such as very costly, costly, affordable, cheap and very
cheap. We see that exist an order among these items and commodities. So it is clear
that these commodities can be characterized through an order among their prices.
This can be study in an algebraic structure called ordered semigroups (OSGs). OSGs
is a set having partial ordered with associative binary operation. OSGs have broad
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applications in various fields such as coding theory, automata theory and computer
science etc.

The paradigm of fuzzy set was originally initiated by Zadeh [36]. This theory has
strong points of view to tackle with uncertainty. With the passage of time fuzzy set
become the rich research area among the scholars. The model of fuzzy set has been
generalized in several direction by different authors. The concept of fuzzy algebraic
model was initiated by Rosenfeld [27] and presented the study of fuzzy subgroups.
Kuroki [19] originated the theory of fuzzy semigroups. The theory of fuzzy ordered
groupoids and OSGs was investigated by Kehayopulu and Tsingelis in [14, 15] and
studied the concepts of fuzzy ideals and fuzzy filters in ordered groupoids. Bhakat
and Das in [3, 4, 5] investigated the concepts of (α, β)-fuzzy subgroups in his pioneer
work and the concept of (∈,∈ ∨q)-fuzzy subgroups attracted more attention of the
scholar towards the study of (α, β) structure. Concept of (∈,∈ ∨q)-fuzzy subgroup is
based on quasi-coincidence of fuzzy points. This notion is introduced in [24]. In alge-
braic structures the most significant topic fuzzy ideals (FIds) attract the attention of
many scholars. In semigroups Kuroki [18] presented the ideas of FIds, fuzzy bi-ideals
(FBIds) and study some of the fundamental properties of these ideals. Moreover in
semigroups Kuroki [20] explored the notion of fuzzy quasi-ideals (FQIds) and fuzzy
semiprime quasi-ideals and study some of the basic properties related to these ideals.
Jun et al. [9] initiated the standpoints of (∈,∈ ∨q)-FBIds of OSGs and given some
characterizations Theorems. In semigroups the concepts of FQIds was studied by
Ahsan [1]. The study of general form of fuzzy interior ideals (FIIds) and (α, β)-FIIds
is initiated by Jun and Song [8] in semigroups. In semigroups the generalization of
(α, β)-FIds of hemirings is presented by Jun et al. [10], and for more detail see
[28, 29, 30].

Pawlak [23] is the pioneer who for the first time investigated the rudimentary con-
cept of rough set. The fundamental concept of Pawlak rough set depend upon the
equivalence relation. So due to confined knowledge about the objects of a certain set,
it is too complicated to made the equivalence relation among the elements of a set.
Here the authors are restricted by the properties of equivalence relation and many
applications of Pawlak rough set have been reported. So different scholars studied
the different structures for rough set with less constraint. The prototypes of fuzzy
set and rough set are different but both of them have the ability to tackle with uncer-
tainty. Both of these theories are combine very successfully by Dubois and Prade in
[7]. The study of generalized rough sets was initiated by Davvaz [6]. In generalized
rough set a set valued function play a vital role to define the approximations rather
than equivalence relation of a set. Several authors presented the approximation of
a set in different algebraic structure, such as in semigroups and fuzzy semigroups
Kuroki [21] initiated the idea of roughness and in the same structure this idea is
extended to the prime ideals in [31]. In OSGs rough approximations as proposed
in [21] can be considered as a better idea. Rehman et al. initiated the concept
of roughness in LA-semigroups. Qurashi and Shabir [25] presented the generalized
roughness in quantales. The concepts of rough bipolar Γ-hyperideals was initiated
by Yaqoob et al. [35] and for the detail study of roughness also see [33, 34, 37].
The rough study of ternary semigroups was presented by Yaqoob et al. [32]. As
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OSGs is the relation of partial ordered and semigroups that is why to find the non-
trivial equivalence relations for such a structure are difficult. Therefore in OSGs
the study of generalized roughness was originated by Mahmood et al. [22] in fuzzy
filters and fuzzy ideals with thresholds by defining the set valued homomorphisms.
Furthermore they have studied the approximation of generalized structure of fuzzy
filters and fuzzy ideals with thresholds in OSGs. In OSGs Ali et al. [2] initiated the
rough study of (∈,∈ ∨qk)-fuzzy filters and they also studied the approximation of
generalization of fuzzy filters. Here in this manuscript we will originate the study of
generalized roughness of fuzzy ideals in OSGs. Instead of equivalence relation the
set valued maps will play a vital role to introduce this new concept of generalized
roughness in fuzzy ideals of OSGs and these mapping will be in the form of isotone
or monotone order. The order of the paper is as follows.

This paper is organized as, in Section 2, we will briefly recall some fundamental
concepts related to OSGs, fuzzy sets, rough sets, FIds and their generalization which
is the key for onward concepts. In Section 3, we will originate the approximations
of FIds, FBIds, FIIds and FQIds of OSGs on the basis of isotone and monotone
mapping. It is clear that these two mappings play a significant role for investigating
the approximation of FIds in OSGs. Moreover in Section 4, the idea of approximation
is generalized to (∈,∈ ∨q)-FIds, FBIds, FIIds and FQIds. The final Section 5, consist
of the conclusion of the proposed manuscript.

2 Preliminary

This section consist of brief and rudimentary standpoints about OSGs, fuzzy set,
and rough set which will provide the key for onward concepts.

Let S be a nonempty set. OSGs (S, ·,≤) is the relation of partial ordered and
semigroups in which S under multiplication is a semigroup and S under ≤ is a
partially ordered set (po-set) and holds the following

(∀z, z1, z2 ∈ S)(z1 ≤ z2 → z1z ≤ z2z and zz1 ≤ zz2).

An ordered subsemigroup S1 is a nonempty subset of S if it holds S2
1 ⊆ S1.

For S1 ⊆ S, we denote (S1] := {z1 ∈ S/z1 ≤ z2 for some z2 ∈ S1}. If S1 = {a},
then instead of ({a}] we write (a]. For subsets S1 6= φ and S2 6= φ of S, we represent
S1S2 = {z1z2/z1 ∈ S1, z2 ∈ S2} .

In onward work the symbol S stands for an OSGs.

Definition 2.1. [13] Consider a nonempty subset I of S is known as a left (resp.
right) ideal of S having the following conditions:

(I1) SI ⊆ I(resp. IS ⊆ I)
(I2) if z1 ∈ S and z2 ∈ I such that z1 ≤ z2, then z1 ∈ I.
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So the set I is known to be an ideal of S if it is both a left and a right ideal.

Next we are going to define the generalized structure of ideals that is interior
ideals, bi-ideals and quasi ideals in OSGs.

Definition 2.2. [16] A subset I 6= φ of S is known to be a bi-ideal of S if it satisfies
(I2) and

(I3) ISI ⊆ I
(I4) I2 ⊆ I.

Definition 2.3. [12] An interior ideal I is a nonempty subset of OSG S if it satisfies
(I2) , (I4) and

(I5) SIS ⊆ I.

Definition 2.4. [17] A quasi ideal Q 6= φ is a subset of S if it satisfy (I2) and

(I6) (QS] ∩ (SQ] ⊆ Q

The paradigm of fuzzy set was originally initiated by Zadeh [36] and become the
rich research area among the scholars. The model of fuzzy set has been generalized
in several direction by different authors. Here in onward work we will present the
combine study of fuzzy set with ideals that is FIds and their generalization.

Definition 2.5. [36] A fuzzy subset (FSS) µ is a mapping from S to [0, 1].

Consider two FSSs µ1 and µ2 of S. Then µ1 ⊆ µ2 ⇐⇒ µ1 (z) ≤ µ2 (z) ∀ z ∈ S.
Next (µ1 ∩ µ2) (z) = min {µ1(z), µ2(z)} and (µ1 ∪ µ2) (z) = max {µ1(z), µ2(z)} .

Definition 2.6. A FSS µ of S of the form and for any z1 ∈ S

µ(z) =

{
t(t 6= 0) if z = z1,

0 if z 6= z1.

then the fuzzy point is represented by (z1)t with value t support by z1. A fuzzy point
(z1)t ‘belong to’ FSS µ represented as (z1)t ∈ µ, if µ(z1) ≥ t, and a fuzzy point (z1)t

‘quasi-coincident’ to FSS µ represented by (z1)t qµ, if µ(z1) + t > 1.

Definition 2.7. [15] A FSS µ is called a fuzzy ordered subsemigroup of S if

(FI1) (∀z1, z2 ∈ S) (µ(z1z2) ≥ min {µ(z1), µ(z2)}) .

Definition 2.8. [15] A FSS µ is known to be a fuzzy left (resp. right) ideals of S if
it holds

(FI2) (∀z1, z2 ∈ S)(z1 ≤ z2 this implies µ(z1) ≥ µ(z2))
(FI3) (∀z1, z2 ∈ S)(µ(z1z2) ≥ µ(z2)(resp. µ(z1z2) ≥ µ(z1))).

A FSS µ of OSG S is said to be fuzzy ideal (FId), if µ is both sided ideal of S,
that is a fuzzy left ideal (FLId) and as well as a fuzzy right ideal (FRId).
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From this definition we can also conclude the following

Definition 2.9. A FSS µ is known to be FId of OSG S if it satisfy (FI2) and

(FI4) (∀z1, z2 ∈ S)(µ(z1z2) ≥ max {µ (z1) , µ(z2)}).
Proposition 2.10. Let µ1 and µ2 are the FLIds (resp. FRIds) of S. Then

i) (µ1 ∩ µ2) and

ii) (µ1 ∪ µ2) are FLIds (resp. FRIds) of S.

Proof. Proofs are straightforward.

Definition 2.11. [12] A FSS µ is known as fuzzy interior ideal (FIId) of OSG S if
it holds (FI1) , (FI2) and

(FI5) (∀z1, z2, z3 ∈ S) (µ (z1z3z2) ≥ µ (z3)) .

Definition 2.12. [16] A FSS µ is known as fuzzy bi-ideal (FBId) of OSG S if it
satisfies (FI1) , (FI2) and

(FI6) (∀z1, z2, z3 ∈ S)(µ(z1z2z3) ≥ min {µ(z1), µ(z3)}).
Definition 2.13. Let X 6= φ be a subset of S, then we define a set Xz1 by

Xz1 = {(z2, z3) ∈ S × S/z1 ≤ z2z3} .

Let us consider the two fuzzy subsets µ1 and µ2 of S. Then we define
µ1 ◦ µ2 : S → [0, 1] , as

z1 → µ1 ◦ µ2(z1) =

{
V(z2,z3)∈Xz1

min{µ1(z2), µ2(z3)} if Xz1 6= φ

0 if Xz1 = φ.
(1)

µ1 ≤ µ2 means µ1 (z) ≤ µ2 (z) .

Pawlak [23] is the pioneer who for the first time investigated the rudimentary
notion of rough set. The fundamental concept of Pawlak rough set depend upon the
equivalence relation.

Consider the equivalence relation ξ on the initial universal set U . Then (U, ξ) is
said to be the approximation space. Let φ 6= X ⊆ U, so in this case the set X is
called a definable subset of U if it is the collection of some equivalence classes of a
universal set U else it is called not definable. Then the set X is approximated in the
form of upper and lower approximations which are given as:

App (X) =
{

z1 ∈ U : [z1]ξ ∩X 6= φ
}

App (X) =
{

z1 ∈ U : [z1]ξ ⊆ X
}
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Then the rough set is a pair
(
AppX, AppX

)
, if AppX 6= AppX. The set X is a

definable set if AppX = AppX.

In the following we will further generalized the concepts of upper and lower
approximations to a FSS as well.

Definition 2.14. [11] Consider the approximation space (U, ξ), and for any z1 ∈ U,
the upper and lower approximations of a FSS µ is defined as

App (µ) (z1) = ∨
z2∈[z1]ξ

µ (z2) and App (µ) (z1) = ∧
z2∈[z1]ξ

µ (z2)

The pair
(
App (µ) , App (µ)

)
is said to be a rough fuzzy subset if App (µ) 6= App (µ) .

Definition 2.15. Consider the OSGs S1 and S2. Then the set-valued homomor-
phism (SV H)is a mapping F : S1 −→ P ∗(S2) if it satisfied:

(h1) F (z1)F (z2) = F (z1z2)

Where P ∗(S2) 6= φ represents the collection of all subsets of S2.

Definition 2.16. Let S1 and S2 be two OSGs. Then the set-valued monotone ho-
momorphism (SV MH) is a mapping F : S1 −→ P ∗(S2) if it satisfy the condition
(h1) of Definition 2.15, and

(h2) if z1 ≤ z2 this implies F (z1) ⊆ F (z2) for each z1, z2 ∈ S1.

Definition 2.17. Let S1 and S2 be two OSGs. Then the set-valued isotone homo-
morphism (SV IH) is a mapping F : S1 −→ P ∗(S2) if it satisfy condition (h1) of
Definition 2.15, and

(h3) z1 ≤ z2 then F (z2) ⊆ F (z1) for each z1, z2 ∈ S1.

Definition 2.18. Consider that a SV IH or SV MH is a function F : S −→ P ∗(S).
Then the generalized upper and lower approximations for any z1 ∈ S, of a FSS µ
with respect to the given mapping F is defined as

F (µ) (z1) = ∨
z2∈F (z1)

µ (z2) and F (µ) (z1) = ∧
z2∈F (z1)

µ (z2)

The rough fuzzy subset is a pair
(
F (µ) , F (µ)

)
if F (µ) 6= F (µ) .

3 Approximations of FIds in OSGs

In this section study of roughness of FIds in OSGs is being presented on the bases
of SV IH or SV MH. Thus we will start from the following.

Theorem 3.1. Suppose that F : S → P ∗ (S) be a SV IH or SV MH and a FSS
µ be a fuzzy ordered subsemigroup of S. Then the upper approximation F (µ) is a
fuzzy ordered subsemigroup of S.
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Proof. For any z1, z2 ∈ S. Consider

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

min
{

µ
(
z
′
2

)
, µ

(
z
′
3

)}

= min

{
∨

z
′
2∈F (z1)

µ
(
z
′
2

)
, ∨
z
′
3∈F (z2)

µ
(
z
′
3

)}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z1) , F (µ) (z2)

}

Therefore F (µ) is a fuzzy ordered subsemigroup of S.

Theorem 3.2. Suppose that a FSS µ be a fuzzy ordered subsemigroup of S and
F : S → P ∗ (S) be a SV IH or SV MH. Then F (µ) is a fuzzy ordered subsemigroup
of OSG S.

Proof. Similarly as above Theorem 3.1.

In onward discussion the study of roughness of FIds in OSGs is being presented.

Theorem 3.3. Consider the SV MH F : S → P ∗ (S) and a FSS µ be a FLId (resp.
FRId) of OSG S. Then F (µ) is a FLId (resp. FRId) of S.

Proof. For each z1, z2 ∈ S with z1 ≤ z2, then F (z1) ⊆ F (z2) . Now we may consider
the following

F (µ) (z1) = ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

≥ ∧
z
′
2∈F (z2)

µ
(
z
′
2

)

implies

F (µ) (z1) ≥ F (µ) (z2)
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Next

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∧
z
′
3∈F (z2)

µ
(
z
′
3

)

implies

F (µ) (z1z2) ≥ F (µ) (z2)

Hence F (µ) is a FLId of S. Analogously, we can prove that F (µ) is a FRId of S.

Here by counter example it is shown that upper approximation F (µ) does not
hold in general for a FId µ, when F is a SV MH.

Example 3.4. Let us suppose a set S = {ã1, ã2, ã3, ã4, ã5, ã6} with the following
multiplication table and order relation “≤”.

Multiplication table for S
· ã1 ã2 ã3 ã4 ã5 ã6

ã1 ã1 ã1 ã1 ã1 ã1 ã1

ã2 ã1 ã2 ã2 ã4 ã2 ã2

ã3 ã1 ã2 ã3 ã4 ã5 ã5

ã4 ã1 ã1 ã4 ã4 ã4 ã4

ã5 ã1 ã2 ã3 ã4 ã5 ã5

ã6 ã1 ã2 ã3 ã4 ã5 ã6

Table 1

and ≤:={(ã1, ã1), (ã2, ã2), (ã3, ã3), (ã4, ã4), (ã5, ã5), (ã6, ã6), (ã1, ã4) , (ã1, ã5) , (ã4, ã5) ,
(ã2, ã6) , (ã3, ã5) , (ã3, ã6) , (ã2, ã5) , (ã6, ã5)}. Then (S, ·,≤) is an OSG. Right ideals
of S are {ã1, ã4} , {ã1, ã2, ã4} and S. Left ideals of S are {ã1} , {ã1, ã2} , {ã1, ã4} ,
{ã1, ã2, ã4} , {ã1, ã2, ã3, ã4} , {ã1, ã2, ã4, ã5, ã6} and S. Define a FSS µ : S → [0, 1] by
µ(ã1) = 0.8, µ(ã2) = 0.5, µ(ã4) = 0.6 and µ(ã3) = µ(ã5) = µ(ã6) = 0.4. Then FSS µ
is a FId of S.

Next suppose that a SV MH F : S → P ∗ (S) i.e.

(i) F (ã1) F (ã2) = F (ã1ã2)
(ii) if ã1 ≤ ã2 → F (ã1) ⊆ F (ã2) .
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Where P ∗ (S) consist of all non-empty subset of S. Now if F (ã5) = {ã2, ã3, ã4, ã5, ã6}
and F (ã6) = {ã3, ã6} , as ã6 ≤ ã5 → F (ã6) ⊆ F (ã5) but F (µ) (ã6) � F (µ) (ã5) .
Hence in SV MH it is prove that F (µ) is not a FId of S.

Theorem 3.5. Suppose that a FSS µ be a FLId (resp. FRId) of S and F : S →
P ∗ (S) be a SV IH. Then F (µ) is a FLId (resp. FRId) of OSG S.

Proof. For each z1, z2 ∈ S such that z1 ≤ z2, then F (z2) ⊆ F (z1) . Now consider the
following

F (µ) (z1) = ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

≥ ∨
z
′
2∈F (z2)

µ
(
z
′
2

)

implies

F (µ) (z1) ≥ F (µ) (z2)

Next

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∨
z
′
3∈F (z2)

µ
(
z
′
3

)

implies

F (µ) (z1z2) ≥ F (µ) (z2)

Hence this prove that F (µ) is a FLId (resp. FRId) of S.

Here by counter example it is shown that upper approximation F (µ) does not
hold in general for a FId µ, when F is a SV IH.

Example 3.6. Suppose a FId µ of OSG S as shown in example 3.4. Now consider
a SV IH F : S → P ∗ (S) i.e.

(i) F (ã1) F (ã2) = F (ã1ã2)
(ii) if ã1 ≤ ã2 ⇒ F (ã2) ⊆ F (ã1) .

Now if F (ã6) = {ã1, ã2, ã4} and F (ã5) = {ã1, ã4} , as ã6 ≤ ã5 ⇒ F (ã5) ⊆ F (ã6)
but F (µ) (ã6) � F (µ) (ã5) . Hence in SV IH it is prove that F (µ) is not a FId of S.
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Theorem 3.7. Suppose that F : S → P ∗ (S) be SV MH and a FSS µ be a FIId of
OSG S. Then F (µ) is a FIId of S.

Proof. From Theorem 3.3, we have z1 ≤ z2, implies F (z1) ⊆ F (z2) , for each z1, z2 ∈
S, then F (µ) (z1) ≥ F (µ) (z2). Next consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3, where z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

min
{

µ
(
z
′
2

)
, µ

(
z
′
3

)}

= min

{
∧

z
′
2∈F (z1)

µ
(
z
′
2

)
, ∧
z
′
3∈F (z2)

µ
(
z
′
3

)}

implies

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2)}

Consider

F (µ) (z1z3z2) = ∧
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∧
tuv∈F (z1)F (z3)F (z2)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z3) and v ∈ F (z2)

)

= ∧
t∈F (z1)
u∈F (z3)
v∈F (z2)

µ (tuv)

≥ ∧
u∈F (z3)

µ (u)

implies

F (µ) (z1z3z2) ≥ F (µ) (z3)

Therefore, F (µ) satisfies all the conditions of FIId, so F (µ) is a FIId of OSG S.

Theorem 3.8. Consider a FSS µ be a FIId of OSG S and F : S → P ∗ (S) be a
SV IH. Then F (µ) is a FIId of OSG S.
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Proof. From Theorems 3.1 and 3.5, if z1 ≤ z2 implies F (z2) ⊆ F (z1) for each z1, z2 ∈
S, then F (µ) (z1) ≥ F (µ) (z2) and F (µ) (z1z2) ≥ min

{
F (µ) (z1) , F (µ) (z2)

}
. Next

we may consider the following

F (µ) (z1z3z2) = ∨
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∨
tuv∈F (z1)F (z3)F (z2)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z3) and v ∈ F (z2)

)

= ∨
t∈F (z1)
u∈F (z3)
v∈F (z2)

µ (tuv)

≥ ∨
u∈F (z3)

µ (u)

implies

F (µ) (z1z3z2) ≥ F (µ) (z3)

Therefore, it is prove that F (µ) is a FIId of S.

Theorem 3.9. Suppose that F : S → P ∗ (S) be a SV MH and a FSS µ be a FBId
of OSG S. Then F (µ) is a FBId of S.

Proof. From Theorem 3.7, we have for each z1, z2 ∈ S, such that z1 ≤ z2, implies
F (z1) ⊆ F (z2) , then F (µ) (z1) ≥ F (µ) (z2) , and also

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2)}
Next for each z1, z2, z3 ∈ S, consider the following

F (µ) (z1z2z3) = ∧
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∧
tuv∈F (z1)F (z2)F (z3)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z2) and v ∈ F (z3)

)

= ∧
t∈F (z1)
u∈F (z2)
v∈F (z3)

µ (tuv)

≥ ∧
t∈F (z1)
v∈F (z3)

min {µ (t) , µ (v)}

= min

{
∧

t∈F (z1)
µ (t) , ∧

v∈F (z3)
µ (v)

}

implies

F (µ) (z1z2z3) ≥ min {F (µ) (z1) , F (µ) (z3)}
Hence F (µ) satisfies all the conditions of a FBId of S, so F (µ) is a FBId of S.
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Theorem 3.10. Suppose that a FSS µ be a FBId of S and F : S → P ∗ (S) be a
SV IH. Then we have to prove that F (µ) is a FBId of OSG S.

Proof. From Theorem 3.8, for each z1, z2 ∈ S such that z1 ≤ z2, implies F (z2) ⊆
F (z1) , then F (µ) (z1) ≥ F (µ) (z2) and also F (µ) (z1z2) ≥ min

{
F (µ) (z1) , F (µ) (z2)

}
.

Next for each z1, z2, z3 ∈ S, we consider

F (µ) (z1z2z3) = ∨
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∨
tuv∈F (z1)F (z2)F (z3)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z2) and v ∈ F (z3)

)

= ∨
t∈F (z1)
u∈F (z2)
v∈F (z3)

µ (tuv)

≥ ∨
t∈F (z1)
v∈F (z3)

min {µ (t) , µ (v)}

= min

{
∨

t∈F (z1)
µ (t) , ∨

v∈F (z3)
µ (v)

}

implies

F (µ) (z1z2z3) ≥ min
{
F (µ) (z1) , F (µ) (z3)

}

Hence F (µ) satisfies all the conditions of a FBId, so F (µ) is a FBId of S.

Theorem 3.11. Let us suppose that F : S → P ∗ (S) be a SV MH and a FSS µ be
a FQId of S and . Then we have to prove that F (µ) is a FQId of S.

Proof. As F (µ) is a FLId (resp. FRId) of OSG S, therefore by Theorem 3.3, for each
z1, z2 ∈ S such that z1 ≤ z2, implies F (z1) ⊆ F (z2) , then F (µ) (z1) ≥ F (µ) (z2).
Next consider

F (µ) (z1) = ∧
ā∈F (z1)

µ (ā)

≥ ∧
ā∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ)) (ā)

= F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

implies

F (µ) (z1) ≥ F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

Hence from the proof it is clear that F (µ) is a FQId of OSG S.

Theorem 3.12. Suppose that a SV IH F : S → P ∗ (S) and a FSS µ be a FQId of
OSG S. Then F (µ) is a FQId of OSG S.
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Proof. As we know from Theorem 3.5 that F (µ) is a FLId (resp. FRId) of S,
therefore for each z1, z2 ∈ S such that z1 ≤ z2 implies F (z2) ⊆ F (z1) , then
F (µ) (z1) ≥ F (µ) (z2). Next consider

F (µ) (z1) = ∨
ā∈F (z1)

µ (ā)

≥ ∨
ā∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ)) (ā)

= F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

implies

F (µ) (z1) ≥ F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

Hence from the proof it is clear that F (µ) is a FQId of S.

4 Approximations of ( ∈,∈ ∨q)-FIds in OSGs

In this section, roughness of ( ∈,∈ ∨q)-FIds is being studied on the bases of SV IH
and SIMH.

Definition 4.1. A FSS µ of OSG S is known as an (∈,∈ ∨q)-fuzzy ordered sub-
semigroup of OSG S if:

(FI8) (for each z1, z2 ∈ S) (for all t1, t2 ∈ (0, 1])

(
(z1)t1

, (z2)t2
∈ µ implies

(z1z2)min{t1,t2} ∈ ∨qµ

)

Definition 4.2. A FSS µ is known as (∈,∈ ∨q)-FLId (resp. FRId) of S if the
following conditions are holds:

(FI9) (for all z1, z2 ∈ S) (for all t1 ∈ (0, 1])

(
z1 ≤ z2, then (z2)t1

∈ µ implies
(z1)t1

∈ ∨qµ

)

(FI10) (for all z1, z2 ∈ S) (for all t1 ∈ (0, 1])

(
(z2)t1

∈ µ implies (z1z2)t1
∈ ∨qµ(

resp. (z2z1)t1
∈ ∨qµ

)
)

A FSS µ is known as (∈,∈ ∨q)-FId of S, if it is both (∈,∈ ∨q)-FLId and (∈,∈ ∨q)-
FRId of S.

Definition 4.3. [12] A FSS µ is known to be an (∈,∈ ∨q)-FIId of OSG S if it holds
(FI8) , (FI9) and

(FI11) (for all z1, z2, z3 ∈ S) (for all t1 ∈ (0, 1])
(
(z3)t1

∈ µ implies (z1z3z2)t1
∈ ∨qµ

)

Definition 4.4. A FSS µ is said to be an (∈,∈ ∨q)-FBId of OSG S if holds
(FI8) , (FI9) and

(FI12) (for all z1, z2, z3 ∈ S) (for all t1, t2 ∈ (0, 1])

(
(z1)t1

, (z3)t2
∈ µ implies

(z1z2z3)min{t1,t2} ∈ ∨qµ

)

Definition 4.5. A FSS µ is known as (∈,∈ ∨q)-FQId of S if it holds (FI9) and

(FI13) (for all z1 ∈ S) (for all t1 ∈ (0, 1])
(
(z1)t1

∈ (µ ◦ 1) ∧ (1 ◦ µ) implies (z1)t1
∈ ∨qµ

)
.
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Lemma 4.6. [12] A FSS µ is known as (∈,∈ ∨q)-FLId (resp. FRId) of OSG S ⇔
it holds

(FI14) (for all z1, z2 ∈ S) (z1 ≤ z2, µ (z1) ≥ min {µ (z2) , 0.5}) ,
(FI15) (for all z1, z2 ∈ S) (µ (z1z2) ≥ min {µ (z2) , 0.5})

(resp. µ (z1z2) ≥ min {µ (z1) , 0.5}) .

Lemma 4.7. [12] A FSS µ is said to be an (∈,∈ ∨q)-FBId of OSG S ⇔ it holds
(FI14) of lemma 4.6 and

(FI16) (for all z1, z2 ∈ S) (µ (z1z2) ≥ min {µ (z1) , µ (z2) , 0.5})
(FI17) (for all z1, z2, z3 ∈ S) (µ (z1z2z3) ≥ min {µ (z1) , µ (z3) , 0.5})

Lemma 4.8. [12] µ is known as (∈,∈ ∨q)-FIId of S ⇔ it holds (FI14) , (FI16) of
lemmas 4.6 and 4.7 and

(FI18) (for all z1, z2 ∈ S) (µ (z1z3z2) ≥ min {µ (z3) , 0.5})
Lemma 4.9. A FSS µ is said to be an (∈,∈ ∨q)-FQId of OSG S ⇔ it holds (FI14)
of lemma 4.6 and

(FI19) (for all z1, z2 ∈ S) (µ (z1) ≥ min {((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5})
Theorem 4.10. Suppose that FSS µ be an (∈,∈ ∨q)-fuzzy ordered subsemigroup
of S and F : S → P ∗ (S) be a SV MH or SV IH. Then F (µ) is an (∈,∈ ∨q)-fuzzy
ordered subsemigroup of S.

Proof. To prove this theorem we have to see that, F (µ) satisfies (FI16) . If for each
z1, z2 ∈ S, now consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

and b ∈ F (z2)

)

= ∧
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∧
a∈F (z1)
b∈F (z2)

min {µ (a) , µ (b) , 0.5}

= min

{
∧

a∈F (z1)
µ (a) , ∧

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2) , 0.5}

Hence F (µ) is an (∈,∈ ∨q)-fuzzy ordered subsemigroup of OSG S.
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Theorem 4.11. Consider that a FSS µ be (∈,∈ ∨q)-fuzzy ordered subsemigroup of
S and F : S → P ∗ (S) be a SV MH or SV IH and. Then F (µ) is an (∈,∈ ∨q)-fuzzy
ordered subsemigroup of S.

Proof. Straightforward as Theorem 4.10.

Theorem 4.12. Consider that a FSS µ be (∈,∈ ∨q)-FLId (resp. FRId) of S and
F : S → P ∗ (S) be a SV MH. Then F (µ) is (∈,∈ ∨q)-FLId (resp. FRId) of S.

Proof. To prove this theorem, we have to see that F (µ) satisfies (FI14) and (FI15) .
If for each z1, z2 ∈ S with z1 ≤ z2, implies F (z1) ⊆ F (z2) . Now consider

min {F (µ) (z2) , 0.5} = min

{
∧

z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

= ∧
z
′
2∈F (z2)

min
{

µ
(
z
′
2

)
, 0.5

}

≤ ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min {F (µ) (z2) , 0.5} ≤ F (µ) (z1)

Next consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

b ∈ F (z2)

)

= ∧
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∧
b∈F (z2)

min {µ (b) , 0.5}

= min

{
∧

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min {F (µ) (z2) , 0.5}

Therefore it is clear that F (µ) is an (∈,∈ ∨q)-FLId (resp. FRId) ideal of S.

Theorem 4.13. Consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FLId (resp. FRId) of S. Then F (µ) is (∈,∈ ∨q)-FLId (resp. FRId) of
S.
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Proof. To prove this theorem, we have to see that F (µ) satisfies (FI14) and (FI15) . If
for each z1, z2 ∈ S with z1 ≤ z2, implies F (z2) ⊆ F (z1) . Next suppose the following

min
{
F (µ) (z2) , 0.5

}
= min

{
∨

z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

= ∨
z
′
2∈F (z2)

min
{

µ
(
z
′
2

)
, 0.5

}

≤ ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min
{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1)

Next consider

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

b ∈ F (z2)

)

= ∨
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∨
b∈F (z2)

min {µ (b) , 0.5}

= min

{
∨

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z2) , 0.5

}

Therefore F (µ) is an (∈,∈ ∨q)-FLId of S. Similarly, we can prove that F (µ) is an
(∈,∈ ∨q)-FRId of S.

Theorem 4.14. Suppose that a FSS µ be (∈,∈ ∨q)-FIId of S and F : S → P ∗ (S)
be a SV MH. Then F (µ) is (∈,∈ ∨q)-FIId of S.

Proof. From Theorems 4.10 and 4.12,we see that F (µ) satisfies (FI14) and (FI16) .
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Next we consider the following for each z1, z2, z3 ∈ S.

F (µ) (z1z3z2) = ∧
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∧
acb∈F (z1)F (z3)F (z2)

µ (acb)

(
as z

′
1 = acb such that a ∈ F (z1) ,
c ∈ F (z3) and b ∈ F (z2)

)

= ∧
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∧
c∈F (z3)

min {µ (c) , 0.5}

= min

{
∧

z
′
3∈F (z3)

µ
(
z
′
3

)
, 0.5

}

implies

F (µ) (z1z3z2) ≥ min {F (µ) (z3) , 0.5}

Hence it is proved that F (µ) is (∈,∈ ∨q)-FIId of S.

Theorem 4.15. Let us consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FIId of S. Then F (µ) is (∈,∈ ∨q)-FIId of S.

Proof. From Theorem 4.13, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , Next let for each z1, z2 ∈ S,

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab where a ∈ F (z1)

and b ∈ F (z2)

)

= ∨
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∨
z
′
1∈F (z1)

z
′
2∈F (z2)

min
{

µ
(
z
′
1

)
, µ

(
z
′
2

)
, 0.5

}

= min

{
∨

z
′
1∈F (z1)

µ
(
z
′
1

)
, ∨
z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z1) , F (µ) (z2) , 0.5

}
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Next consider

F (µ) (z1z3z2) = ∨
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∨
acb∈F (z1)F (z3)F (z2)

µ (acb)

(
as z

′
1 = acb where a ∈ F (z1) ,

c ∈ F (z3) and b ∈ F (z2)

)

= ∨
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∨
c∈F (z3)

min {µ (c) , 0.5}

= min

{
∨

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z3z2) ≥ min
{
F (µ) (z3) , 0.5

}

Therefore, it is prove that F (µ) is (∈,∈ ∨q)-FIId of S.

Theorem 4.16. Suppose that a FSS µ be (∈,∈ ∨q)-FBId of S and F : S → P ∗ (S)
be a SV MH. Then F (µ) is (∈,∈ ∨q)-FBId of S.

Proof. From Theorem 4.14, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z1) ⊆
F (z2) . Then min {F (µ) (z2) , 0.5} ≤ F (µ) (z1) , and also F (µ) (z1z2) ≥

min {F (µ) (z1) , F (µ) (z2) , 0.5} . Next let for each z1, z2, z3 ∈ S,

F (µ) (z1z2z3) = ∧
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∧
abc∈F (z1)F (z3)F (z2)

µ (abc)

(
as z

′
1 = abc where a ∈ F (z1) ,

b ∈ F (z2) and c ∈ F (z3)

)

= ∧
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∧
a∈F (z1)
c∈F (z3)

min {µ (a) , µ (c) , 0.5}

= min

{
∧

a∈F (z1)
µ (a) , ∧

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z2z3) ≥ min {F (µ) (z1) , F (µ) (z3) , 0.5}
Hence F (µ) satisfies all the conditions of (∈,∈ ∨q)-FBId of S. Therefore F (µ) is an
(∈,∈ ∨q)-FBId of S.
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Theorem 4.17. Let us consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FBId of OSG S. Then F (µ) is (∈,∈ ∨q)-FBId of S.

Proof. From Theorem 4.15, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , and also F (µ) (z1z2) ≥
min{F (µ) (z1) , F (µ) (z2) , 0.5}. Next we consider the following for each z1, z2, z3 ∈

S,

F (µ) (z1z2z3) = ∨
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∨
abc∈F (z1)F (z3)F (z2)

µ (abc)

(
as z

′
1 = abc where a ∈ F (z1) ,

b ∈ F (z2) and c ∈ F (z3)

)

= ∨
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∨
a∈F (z1)
c∈F (z3)

min {µ (a) , µ (c) , 0.5}

= min

{
∨

a∈F (z1)
µ (a) , ∨

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z2z3) ≥ min
{
F (µ) (z1) , F (µ) (z3) , 0.5

}

Hence F (µ) satisfies all the conditions of (∈,∈ ∨q)-FBId of S. Therefore F (µ) is
(∈,∈ ∨q)-FBId of S.

Theorem 4.18. Let us suppose that a FSS µ be (∈,∈ ∨q)-FQId of S and F : S →
P ∗ (S) be a SV MH. Then we have to prove that F (µ) is (∈,∈ ∨q)-FQId of S.

Proof. From Theorem 4.12, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z1) ⊆
F (z2) . Then min {F (µ) (z2) , 0.5} ≤ F (µ) (z1) , Next let for each z1 ∈ S,

min {F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5} = min

{
∧

z
′
1∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

= ∧
z
′
1∈F (z1)

min
(
((µ ◦ 1) ∧ (1 ◦ µ))

(
z
′
1

)
, 0.5

)

≤ ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min {F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5} ≤ F (µ) (z1)

Hence F (µ) is an (∈,∈ ∨q)-FQId of S.
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Theorem 4.19. Let a FSS µ be (∈,∈ ∨q)-FQId of S and consider that F : S →
P ∗ (S) be a SV IH. Then we have to prove that F (µ) is (∈,∈ ∨q)-FQId of S.

Proof. From Theorem 4.13, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , Next let for each z1 ∈ S,

min
{
F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5

}
= min

{
∨

z
′
1∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

= ∨
z
′
1∈F (z1)

min
{

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

≤ ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min
{
F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5

} ≤ F (µ) (z1)

Hence it is proved that F (µ) is an (∈,∈ ∨q)-FQId of S.

5 Conclusion

OSGs is a significant algebraic structure having partial ordered with associative
binary operations. OSGs have broad applications in various fields such as coding
theory, automata theory and computer science etc. In this manuscript we have
originated the approximations of FIds, FBIds, FIIds and FQIds of OSGs on the
basis of isotone and monotone mapping. It is clear that these two mappings play
a significant role for investigating the approximation of FIds in OSGs. Moreover in
the idea of approximation is generalized to (∈,∈ ∨q)-FIds, FBIds, FIIds and FQIds.
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Abstract – This Paper introduces the concept of matrix operators and establishes two new theorems on 

matrix summability of Fourier series and its derived series. the results obtained in the paper further extend 

several known results on linear operators. Various types of criteria, under varying conditions, for the matrix 

summability of the Fourier series, In this paper quite a different and general type of criterion for summability 

of the Fourier Series has been obtained, in the theorem function  is integrable in the sense of Lebesgue to the 

interval  and period with period . 
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1. Introduction 

Let  be a given infinite series with sequence of partial sum . Let  be 

an infinite triangular matrix of real constants, The sequence-to-sequence transformation 

[4]. 

 

 

Defines the sequence  of matrix means of the sequence  , generated by the sequence 

of coefficients . The series  is said to be summable to the sum  by We can 

write .  

 

The necessary and sufficient conditions for -transform to be regular 

 

 

 

are the well-known Silverman-Toeplitz conditions? [1][4] where the triangular matrix 

 and  for  is regular if  
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and  

. 

Examples: 

 

(1). Matrix Hankel [2] . Let  be a positive sequence of real constants let 

 

 

 

2). Matrix Toeplitz [4] )Thus from (1), We get [2] 

 

  

 

   

 

  

 

Proof (3): Now by (1) we have  

 

  

  

 

  

 

  

 

  

  

 

  

 



Journal of New Theory 26 (2019) 54-63                                                                                                        56 
 

 

Similarly 

  

 

2 Preliminaries  
 

Theorem 2.1. Let  be an infinite triangular matrix with 

then  Where  Space call to bounded linear operator on 

,  and   

 

Proof of Theorem 2.1. Let -denote the -term of the -transform, in terms of 

, that is   to prove the 

theorem, it will be sufficient to show that   Using Hölder’s inequality, 

we have 

 

 

Since  we obtain  

 

 

For , 

 

  

 

  

 

This completes the proof of the theorem (1). 

 

 

3 Particular Cases 

 
Several authors such as ([4]-[6]), (see also [7]) studied the matrix summability method and 

obtained many interesting results. 

 

The important particular cases of the triangular matrix means are: 

 

(i) Cesàro mean of order 1 or  mean if,  . 

 

(ii) Harmonic means when,  . 
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(iii) where  means when,  . 

 

(v) Nörlund means when, where  as . 

 

(vi) Riesz means when, where  as . 

 

 

4 Results and Discussion 
 

Let  be a periodic function with period , integrable in the sense of Lebesgue over 

. The Fourier series and derived Fourier series of  are given by [3][4][5] 

 

 

 

With partial sums  and  

 

 

 

We shall use following notations 

 

We use the following notations 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4.1. Let  be a real non-negative and non-increasing sequence of real 

constants such that  and  be an infinite 

triangular matrix with , If  

 

 

 

where  is a positive, monotonic and non-increasing function of  

 

. 
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and  

 

 

Then the Fourier series (1) is summable  to . 

 

Theorem 4.2. Let  be a real non-negative and non-decreasing sequence with 

respect to  such that  be an infinite triangular matrix with . If  

 

 

 

Then the derived Fourier Series (2) is sumable  to the sum , where  is the 

derivative of ,provided  is a positive monotonic decreasing function of  

such  increases monotonically as .  

 

For the proof of our theorems, following lemmas are required. 

 

Lemma 4.1. [5] If  is non-negative and non-decreasing with  then for 

 and for any , we have  

Where .  

 

Lemma 4.2. [5] If  is non-negative and non-decreasing with  then for 

 and for any , we have  

Where . 

 

Lemma 4.3. For , .  

 

Proof. For  

 

Since  

 

Thus  

 

Lemma 4.4. For ,  

 

Proof.    
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Lemma 4.5. For , . 

 

Proof. Now by (3) 

 

   

  

 

Lemma 4.6. For , . 

 

Proof of Theorem 4.1. Let  denote the  partial sum of the (1). Then we have 

 

  

  

  

  

  

  

  

 

By Lemma 4.3 
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By Lemma 4.4 

 

Integrating by parts 

 

  

  

 

  

  

Lastly, by the Riemann-Lebesgue theorem and the regularity condition of matrix 

summability, we obtain 

 

 

Next 

  

 

This completes the proof of the theorem. 

 

Proof of Theorem 4.2. Let  denote the partial sum of the (2). Then 

 

 

We have 

 

   

  

where 

 

Next 
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Thus 

  

  

 

Now 

 

Integrating by parts 

 

where 

 

   

 

and 

 

  

                                                            

 

Next 
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Lastly, by the Riemann-Lebesgue theorem and the regularity condition of matrix 

sumability, we obtain 

 

  

  

 

Integrating by parts, where . Therefore 

 

  

 

(Using condition) 

 

  

 

where 

  increases monotonically as . 

  

 

  

Integrating by parts, where  

 

  

  

 

Then 

  

 

where 

 

Next 

 

 

This completes the proof of the theorem. 
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5. Conclusions 
 

One of the most important outcomes of this study is that the product of any two matrix 

methods of the methods of summability is a matrix method and that this method is a 

bounded linear operator which transforms each sequence of a given space to a sequence of 

the space itself. And 

 

where 

 

 

 

The third characteristic of the matrix method showed that, no matter how different the 

method used to collect the studied series, we would obtain the same sum for that series. We 

have demonstrated two theorems. The first speaks of the sum of Fourier series using 

product matrix methods, and the second speaks of the sum of a Fourier series derivative 

using a matrix method only. 
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1. Introduction 

 
The concept of soft sets was first introduced by Molodtsov [3] in 1999 as a general 

mathematical technique for dealing with uncertain substances. In [3,4] Molodtsov 

magnificently applied the soft theory in numerous ways, such as smoothness of functions, game 

theory, operations research, Riemann integration, Perron integration, probability, theory of 

measurement, and so on. Point soft set topology deals with a non-empty set X to gether with a 

collection τ of sub set X under some set of parameters satisfying certain conditions. Such a 

collection τ is called a soft topological structure on X.  

 

In 2016 Acikgöz and Tas [1] introduced the notion of binary soft set theory on two master sets 

and studied some basic characteristics. In prolongation, Benchalli et al. [2] planned the idea of 

binary soft topology and linked fundamental properties which are defined over two master sets 

with appropriate parameters. Benchalli et al., [6] threw his detailed discussion on binary soft 

topological Kalaichelvi and Malini [7] beautifully discussed.  

                                                           
* Corresponding Author.  

 

http://www.newtheory.org/
mailto:mehdaniyal@gmail.com
mailto:ktk8@gmail.com
mailto:zamirburqi@ust.edu.pk
mailto:saleemabdullah81@yahoo.com


Journal of New Theory 26 (2019) 64-72                                                                                                              65 

 

 

Application of fuzzy soft sets to investment decision and also discussed some more results 

related to this particular field. Özgür and Taş [8] studied some more applications of fuzzy soft 

sets to investment decision making problem. Taş et al. [9] worked over an application of soft 

set and fuzzy soft set theories to stock management Alcantud et al. [10] carefully discussed 

valuation fuzzy soft sets: A Flexible fuzzy soft set-based decision-making procedure for the 

valuation of assets [11] Çağman and Enginoğlu attractively explored soft matrix theory and 

some very basic results related to it and its decision making. 

 

In continuation, in the present paper binary soft topological structures known as soft weak 

structures with respect to first coordinate as well as with respect to second coordinate are 

defined. Moreover, some basic results related to these structures are also planted in this paper. 

The same structures are defined over soft points of binary soft topological structure and related 

results are also reflected here with respect to ordinary and soft points. 

  

 

2. Preliminaries 
 

Definition 2.1. [5]. Let X be an initial universe and let E be a set of parameters. Let P(X) denote 

the power set of X and let A be a non-empty subset of E. A pair (F, A) iscalled a soft set overX, 

where F is a mapping given by∶  A → P(X) . In other words, a soft set over X is a parameterized 

family of subsets of the universe X. For ε ∈ A, F (ε ) may be considered as the set of ε-

approximate elements of the soft set (F, A). Clearly, a soft set is not a set. 

 

Let U1, U2 be two initial universe sets and E be a set of parameters.  

 

LetP(U1), P(U2) denote the power set of  U1, U2 respectively. Also, letA, B, C ⊆  E. 

 

Definition 2.2. [1]. A pair (F, A) is said to be a binary soft set over U1, U2 where F is defined 

as below:  

 

F: A → P(U1) × P(U2), F(e)  =  (X, Y) for each e ∈ A such thatX ⊆ U1, Y ⊆ U2 

 

Definition 2.3. [1]. A binary soft set (F, A) over U1, U2 is called a binary absolute soft set, 

denoted byÃ̃  if F (e) = (U1, U2) for eache ∈ A. 

 

Definition 2.4. [1]. The intersection of two binary soft sets of (F, A) and (G, B) over the 

common U1, U2 is the binary soft set (H, C), where C =  A ∩ B and for all e ∈ C  

 

H(e) = {

(X1, Y1) if e ∈ A − B 
(X2, Y2) if e ∈ B − A

(X1 ∪ X2, Y1 ∪ Y2) if e ∈ A ∩ B
 

 

Such that F(e) = (X1, Y1) for each e ∈ A and G(e) = (X2, Y2) for eache ∈ B. We denote it 

(F, A) ∪̃̃ (G, A) = (H, C).  
 

Definition 2.5. [1]. The intersection of two binary soft sets (F, A) and (G, B) over a common 

U1, U2 is the binary soft set (H, C), where C =  A ∩ B and H(e) = (X1 ∩ X2, Y1 ∩ Y2) ) for each 
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e ∈ C such that F(e )  =  (X1, Y1) for each e ∈ A and G(e) = (X2, Y2)for eache ∈ B. We denote 

it as (F, A) ∩̃̃ (G, B) = (H, C). 
 

Definition 2.6. [1]. [1] Let (F, A) and (G, B) be two binary soft sets over a common U1, U2.  

(F, A) is called a binary soft subset of (G, B) if 

 

(i)  A ⊆ B ,  

(ii) X1 ⊆ X2 and Y1 ⊆ Y2 Such that  F(e) = (X1, Y1) , G(e) = (X2, Y2) for eache ∈ A.  

 

We denote it as (F, A) ⊆̃̃ (G, B).  
 

Definition 2.7. [1]. A binary soft set (F, A) over U1, U2 is called a binary null soft set, denoted 

by if F(e)  =  (φ, φ ) for eache ∈ A. 

 

Definition 2.8. [1]. The difference of two binary soft sets (F, A) and (G, A) over the common 

U1, U2 is the binary soft set (H, A), where H(e) (X1 − X2, Y1 − Y2)  for each e ∈ A such 

that(F, A) = (X1, Y1) and (G, A) = (X2, Y2). 

 

Definition 2.9. [2]. Let τ△ be the collection of binary soft sets over U1, U2 then τ△ is said to 

be a binary soft topology on U1, U2 if 

 

(i) φ̃̃, X̃̃ ∈ τ△ 

(ii) The union of any member of binary soft sets in τ△ belongs to τ△. 

(iii) The intersection of any two binary soft sets in τ△ belongs to  τ△. 

 

Then (U1, U2, τ△, E) is called a binary soft topological space over  U1, U2 . 

 

 

3. Weak Soft Binary Separation Axioms 

 

This section id devoted to binary soft set and related results. Moreover, binary soft weak 

separation axioms in binary soft topological spaces are reflected. 

 

Definition 3.1.  Let (F, A) be any binary soft sub set of a binary soft topological space  

(X, Y, τ, E) then (F, A) is called  

 

1) Binary soft b-open set of (X, Y, τ, E) if  (F, A) ⊆ cl(int((F, A) ∪ in(cl((F, A) and 

2) Binary soft b-closed set of (X, Y, τ, E) if   (F, A) ⊇ cl(int(F, A))) ∩ in(cl(F, A)))) 

 

The set of all binary b-open soft sets is denoted by BSBO (U) and the set of all binary b-

closed sets is denoted by BSBO (U). 

 

Definition 3.2. A binary soft topological space   (X̃, Ỹ, ℳ, A) is called a binary soft b-T0 space 

if for any two binary soft points (x1, y1), (x2, y2)ℰ̃(X̃, Ỹ) such that  x1 > x2 , y1 > y2 there 

exists binary soft b-open sets (F1, A) and (F2, A)  which behaves 

as(x1, y1) ∈̃̃ (F1, A) , (x2, y2) ∉̃̃ (F1, A) or (x2, y2) ∈̃̃ (F2, A) and (x1, y1) ∉̃̃ (F2, A). 
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Definition 3.3. A binary soft topological space   (X̃, Ỹ, ℳ, A) is called a binary soft b- T1 space 

if for any two binary soft points (x1, y1), (x2, y2)ℰ̃(X̃, Ỹ) such that x1 > x2 , y1 > y2 If there 

exists binary soft b-open sets (F1, A) and (F2, A)  which behaves 

as(x1, y1) ∈̃̃ (F1, A) and  (x2, y2) ∉̃̃ (F1, A) and (x2, y2) ∈̃̃ (F2, A) and (x1, y1) ∉̃̃ (F2, A). 

Definition 3.4. Two binary soft b-open sets ((F, A), (G, A)) and (H, A), (I, A) are said to be 

disjoint if ((F, A) ⊓ (H, A), (G, A) ⊓ (I, A)) = (Φ, Φ). That is (F, A) ⊓ (H, A) = (Φ, Φ) and  

(G, A) ⊓ (I, A) = (Φ, Φ) . 

 

 Definition 3.5. A binary soft topological space   (X̃, Ỹ, ℳ, A) is called a binary soft b-T2 space 

if for any two binary soft points (x1, y1), (x2, y2)ℰ̃(X̃, Ỹ) such that x1 > x2 , y1 > y2  If there 

exists binary soft b-open sets (F1, A) and (F2, A)  which behaves as(x1, y1) ∈̃̃ (F1, A) and  

(x2, y2) ∈̃̃ (F2, A) and moreover (F1, A)and(F2, A) are disjoint that is (F1, A) ⊓ (F2, A) =
(Φ, Φ).  

 

Definition 3.6. A binary soft topological space (X̃, Ỹ, τ × σ, A) is called a binary soft b-T0 with 

respect to the first coordinate if for every pair of binary points (x1, α), (y1, α) there exists 

((F, A), (G, A))ℰ̃τ × σ withx1ℰ̃(F, A), y1 ∉̃ (F, A),αℰ̃(G, A).where b-open (F, A)`in τ and b- 

open (G, A)in σ. 

 

Definition 3.7. A binary soft topological space (X̃, Ỹ, τ × σ, A) is called a binary soft b-T0 with 

respect to the second coordinate if for every pair of binary points (β, x2), (β, y2) there exists 

((F, A), (G, A))ℰ̃τ × σ withβℰ̃(F, A), x2ℰ̃(G, A),y2 ∉̃ (G, A). where b- open (F, A)`in τ and b- 

`open (G, A)in σ. 

 

Definition 3.8. A binary soft topological space   (X̃, Ỹ, ℳ, A) is called a binary soft b- T0 space 

if for any two binary soft points (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃(XÃ, YÃ) such that  ℯ𝔾1
> ℯ𝔾2

, ℯℍ1
>

ℯℍ2
there exists binary soft b-open sets (F1, A) and (F2, A)  which behaves 

as(ℯ𝔾1
, ℯℍ1

) ∈̃̃ (F1, A) , (ℯ𝔾2
, ℯℍ2

) ∉̃̃ (F1, A) or (ℯ𝔾2
, ℯℍ2

) ∈̃̃ (F2, A) and (ℯ𝔾1
, ℯℍ1

) ∉̃̃ (F2, A). 

 

Definition 3.9. A binary soft topological space   (X̃, Ỹ, ℳ, 𝐴) is called a binary soft b-𝑇1 space 

if for any two binary soft points (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃(𝑋�̃�, 𝑌�̃�) such that ℯ𝔾1
> ℯ𝔾2

, ℯℍ1
>

ℯℍ2
 If there exists binary soft b-open sets (𝐹1, 𝐴) and (𝐹2, 𝐴)  which behaves as 

(ℯ𝔾1
, ℯℍ1

) ∈̃̃ (𝐹1, 𝐴) 𝑎𝑛𝑑  (ℯ𝔾2
, ℯℍ2

) ∉̃̃ (𝐹1, 𝐴) and (ℯ𝔾2
, ℯℍ2

) ∈̃̃ (𝐹2, 𝐴) and 

(ℯ𝔾1
, ℯℍ1

) ∉̃̃ (𝐹2, 𝐴). 

 

Definition 3.10. A binary soft topological space   (�̃�, �̃�, ℳ, 𝐴) is called a binary soft b-  𝑇2 

space if for any two binary soft points (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃(𝑋�̃�, 𝑌�̃�) such that ℯ𝔾1
>

ℯ𝔾2
, ℯℍ1

> ℯℍ2
 If there exists binary soft b-open sets (𝐹1, 𝐴) and (𝐹2, 𝐴)  which behaves as 

(ℯ𝔾1
, ℯℍ1

) ∈̃̃ (𝐹1, 𝐴) and  (ℯ𝔾2
, ℯℍ2

) ∈̃̃ (𝐹2, 𝐴) and moreover (𝐹1, 𝐴)𝑎𝑛𝑑(𝐹2, 𝐴) are disjoint. 

 

Definition 3.11. A binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is called a binary soft b- 𝑇0 

with respect to the first coordinate if for every pair of binary points (ℯ𝔾1
, 𝛼), (ℯℍ1

, 𝛼) there 

exists ((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜏 × 𝜎 with ℯ𝔾1
ℰ̃(𝐹, 𝐴), ℯℍ1

∉̃ (𝐹, 𝐴),αℰ̃(𝐺, 𝐴) where b-open (𝐹, 𝐴)`in 

𝜏 and b-open (𝐺, 𝐴)in 𝜎. 
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Definition 3.12. A binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is called a binary soft b- 𝑇0 

with respect to the second coordinate if for every pair of binary points (𝛽, ℯ𝔾2
), (𝛽, ℯℍ2

) there 

exists ((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜏 × 𝜎 with𝛽ℰ̃(𝐹, 𝐴), ℯ𝔾2
ℰ̃(𝐺, 𝐴),ℯℍ2

∉̃ (𝐺, 𝐴). where b- open (𝐹, 𝐴)`in 

𝜏 and b-open (𝐺, 𝐴)in 𝜎. 

 

 

4. Soft Binary Structures with Respect to Ordinary Points 
 

Theorem 4.1. If the binary soft topological space (�̃�, �̃�, 𝜌 × 𝜎, 𝐴) is a binary soft b- 𝑇0, then 

(�̃�, 𝜌, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b- 𝑇0. 

 

Proof. We suppose (�̃�, �̃�, 𝜌 × 𝜎, 𝐴) is a binary soft b- 𝑇0. Suppose 𝑥1, 𝑥2ℰ̃�̃� and 𝑦1, 𝑦2ℰ̃�̃� with 

such that  𝑥1 > 𝑥2 , 𝑦1 > 𝑦2. Since (�̃�, �̃�, 𝜌 × 𝜎, 𝐴) is a binary soft b- 𝑇0, accordingly there 

binary soft b-open set ((𝐹, 𝐴), (𝐺, 𝐴)) such that  

 

(𝑥1, 𝑦1)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) ; (𝑥2, 𝑦2)ℰ̃(𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴) 

or  

(𝑥1, 𝑦1)ℰ̃((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴))  ; (𝑥2, 𝑦2)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) 

 

This implies that either 𝑥1ℰ̃(𝐹, 𝐴); 𝑥2ℰ̃(𝐹𝐶 , 𝐴); 𝑦1ℰ̃(𝐺, 𝐴); 𝑦2ℰ̃(𝐺𝐶 , 𝐴); or 

𝑥1ℰ̃(𝐹𝐶 , 𝐴); 𝑦1ℰ̃(𝐺𝐶 , 𝐴); 𝑦2ℰ̃(𝐺, 𝐴). This implies either 𝑥1ℰ̃(𝐹, 𝐴) ; 𝑥2ℰ̃(𝐹𝐶 , 𝐴)or 

𝑥1ℰ̃(𝐹𝐶 , 𝐴); 𝑥1ℰ̃(𝐹, 𝐴) and either 𝑦1ℰ̃(𝐺, 𝐴); 𝑦2ℰ̃(𝐺𝐶 , 𝐴)or𝑦1ℰ̃(𝐺𝐶 , 𝐴);  𝑦2ℰ̃(𝐺, 𝐴). Since 

((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜌 × 𝜎, We have b-open (𝐹, 𝐴)ℰ̃𝜌 and b-open(𝐹, 𝐴)ℰ ̃𝜎. this proves that 

(�̃�, 𝜌, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇0. 

  

Theorem 4.2. A binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is binary soft b-𝑇0 space with 

respect to first and the second coordinates, then (�̃�, �̃�, 𝜏 × 𝜎, 𝐴)is binary soft b-𝑇0 space. 

 

Proof. Let (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is binary soft b-𝑇0 space with respect to first and the second 

coordinates. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2)ℰ̃𝑋 × 𝑌 with  𝑥1 > 𝑥2 , 𝑦1 > 𝑦2. Take 𝛼ℰ̃𝑌 and 𝛽ℰ̃𝑋.Then 

(𝑥1, 𝛼), (𝑥2, 𝛼)ℰ̃𝑋 × 𝑌.Since (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is a binary soft b-𝑇0space with respect to the first 

coordinate, by using definition, there exists b-open sets (𝐹, 𝐴)  such that  (𝐺, 𝐴) 

((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜏 × 𝜎 with 𝑥1ℰ̃(𝐹, 𝐴), 𝑥2 ∉̃ (𝐹, 𝐴), 𝛼ℰ̃(𝐺, 𝐴). Since(𝛽, 𝑦1), (𝛽, 𝑦2)ℰ̃𝑋 × 𝑌, 

by using the arguments and using definition there exists ((𝐻, 𝐴), (𝐾, 𝐴))ℰ̃𝜏 × 𝜎 with 

𝑦1ℰ̃(𝐾, 𝐴), 𝑦1 ∉̃ (𝐾, 𝐴), 𝛽ℰ̃(𝐻, 𝐴). Therefore, (𝑥1, 𝑦1) ℰ̃((𝐹, 𝐴), (𝐾, 𝐴)) and 

(𝑥2, 𝑦2) ℰ̃((𝐹𝐶 , 𝐴), (𝐾𝐶 , 𝐴)). Hence (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is called a binary soft b- 𝑇0. 

 

Theorem 4.3. A binary soft topological space (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇1spaces if and 

only if the binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. 

 

Proof. Suppose  (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇1 spaces. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2)ℰ̃𝑋 × 𝑌 with  

𝑥1 > 𝑥2 , 𝑦1 > 𝑦2. since (�̃�, 𝜏, 𝐴) is soft b-𝑇1 space, there exists soft b-open sets such that 

(𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏, 𝑥1ℰ(𝐹, 𝐴) and 𝑥2ℰ(𝐺, 𝐴) such that 𝑥1 ∉̃ (𝐺, 𝐴) and 𝑥2 ∉̃ (𝐹, 𝐴). Also, since 

(�̃�, 𝜎, 𝐴) is soft b-𝑇1space, there exists soft b-open sets such that  (𝐻, 𝐴), (𝐼, 𝐴)ℰ̃𝜎, 𝑦1ℰ(𝐻, 𝐴) 

and 𝑦2ℰ(𝐼, 𝐴) such that 𝑦1 ∉̃ (𝐼, 𝐴) and 𝑦2 ∉̃ (𝐻, 𝐴).thus (𝑥1, 𝑦1)ℰ((𝐹, 𝐴), (𝐻, 𝐴))and 

(𝑥2, 𝑦2)ℰ((𝐺, 𝐴), (𝐼, 𝐴)) with (𝑥1, 𝑦1)ℰ((𝐺𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) and 
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(𝑥1, 𝑦1)ℰ((𝐹𝐶 , 𝐴), (𝐻𝐶 , 𝐴)).This implies that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. Conversely 

assume that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. Let 𝑥1, 𝑥2ℰ𝑋 and 𝑦1, 𝑦2ℰ𝑌 such that 𝑥1 > 𝑥2, 

 𝑦1 > 𝑦2. Therefore (𝑥1, 𝑦1), (𝑥2, 𝑦2)ℰ̃𝑋 × 𝑌. Since (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1, there 

exists b-open sets (𝐹, 𝐴), (𝐺, 𝐴) and b-open sets  (𝐻, 𝐴), (𝐼, 𝐴)ℰ(𝜏 ×

𝜎), (𝑥1, 𝑦1)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) and (𝑥1, 𝑦1)ℰ̃((𝐻, 𝐴), (𝐼, 𝐴)) such that (𝑥1, 𝑦1)ℰ(𝐻𝐶 , 𝐴), (𝐼𝐶 , 𝐴)̃  

and (𝑥2, 𝑦2)ℰ̃((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)). Therefore, 𝑥1ℰ(𝐹, 𝐴), 𝑥2ℰ(𝐻, 𝐴) and 𝑥1ℰ(𝐻𝐶 , 𝐴) and 

𝑥2ℰ(𝐹𝐶 , 𝐴) and , 𝑦1ℰ(𝐺𝐶 , 𝐴) and 𝑦1ℰ(𝐼, 𝐴) and , 𝑦1ℰ(𝐼𝐶 , 𝐴) and 𝑦2ℰ(𝐺𝐶 , 𝐴). Since 

(𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏 × 𝜎, We have(𝐹, 𝐴), (𝐻, 𝐴)ℰ𝜏 and (𝐺, 𝐴), (𝐼, 𝐴)ℰ𝜎. This proves that (�̃�, 𝜏, 𝐴) 

and (�̃�, 𝜎, 𝐴) are soft b-𝑇1spaces. 
 

Theorem 4.4. A binary soft topological space   (�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space if and 

only if every binary soft point ℘(𝑋) × ℘(𝑌) is binary soft b-closed. 

 

Proof. Suppose that (�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space. Let (𝑥, 𝑦)ℰ̃𝑋 × 𝑌. Let 

({𝑥}, {𝑦})ℰ̃℘(𝑋) × ℘(𝑌).We shall show that ({𝑥}, {𝑦}) is binary soft b-closed.it is sufficient 

to show that (𝑋\{𝑥}, 𝑌\{𝑦}) is binary soft b-open. Let  (𝑎, 𝑏)ℇ(𝑋\{𝑥}, 𝑌\{𝑦}) . This implies 

that 𝑎ℰ̃𝑋\{𝑥} and 𝑏ℰ̃𝑌\{𝑦}. hence 𝑎 ≠ 𝑥 𝑎𝑛𝑑 𝑏 ≠ 𝑦 .That is, (𝑎, 𝑏) and (𝑥, 𝑦)are distinct 

binary soft points of 𝑋 × 𝑌. Since (�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space, there exists binary 

soft b-open sets ((𝐹, 𝐴), (𝐺, 𝐴)) and (𝐻, 𝐴), (𝐼, 𝐴) such that (𝑎, 𝑏)ℇ((𝐹, 𝐴), (𝐺, 𝐴))  and 

(𝑥, 𝑦)ℇ((𝐻, 𝐴), (𝐼, 𝐴))  such that (𝑎, 𝑏)ℇ((𝐻𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) and (𝑥, 𝑦)ℇ((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)). 

Therefore, ((𝐹, 𝐴), (𝐺, 𝐴)) ⊆ ({𝑥}𝑐, {𝑦}𝑐). Hence({𝑥}𝑐, {𝑦}𝑐) is a soft neighbourhood of 

(𝑎, 𝑏).This implies that ({𝑥}, {𝑦})is binary soft b- closed. Conversely, suppose that ({𝑥}, {𝑦})is 

binary soft b-closed for every (𝑥, 𝑦)ℇ𝑋 × 𝑌.Suppose (𝑥1, 𝑦1), (𝑥2, 𝑦2)ℰ̃𝑋 × 𝑌 with  𝑥1 > 𝑥2, 

 𝑦1 > 𝑦2.Therefore, (𝑥2, 𝑦2)ℰ({𝑥1}𝑐, {𝑦1}𝑐) ̃ and  ℰ` ({𝑥1}𝑐, {𝑦1}𝑐)is binary soft b-open. Also 

(𝑥1, 𝑦1)ℰ({𝑥2}𝑐, {𝑦2}𝑐) ̃ and ℰ({𝑥1}𝑐, {𝑦1}𝑐) ̃ is binary soft b-open set. Also 

(𝑥1, 𝑦1)ℰ({𝑥2}𝑐, {𝑦2}𝑐) ̃ and ℰ({𝑥2}𝑐, {𝑦2}𝑐) ̃ is binary soft b-open set. This shows that 

(�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space. 

 

Theorem 4.5. A binary soft topological space (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇2 spaces if and 

only if the binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. 

 

Proof. Suppose  (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇2 spaces. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2)ℰ̃𝑋 × 𝑌 with  

𝑥1 > 𝑥2 , 𝑦1 > 𝑦2. Since (�̃�, 𝜏, 𝐴) is soft b-𝑇2 space, there exists soft b-open sets such that 

(𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏, 𝑥1ℰ(𝐹, 𝐴) and 𝑥2ℰ(𝐺, 𝐴) such that 𝑥1 ∉̃ (𝐺, 𝐴) and 𝑥2 ∉̃ (𝐹, 𝐴). Also, since 

(�̃�, 𝜎, 𝐴) is soft b-𝑇2space, there exists distoint soft b-open sets such that 

(𝐻, 𝐴), (𝐼, 𝐴)ℰ̃𝜎, 𝑦1ℰ(𝐻, 𝐴) and 𝑦2ℰ(𝐼, 𝐴) such that 𝑦1 ∉̃ (𝐼, 𝐴) and 𝑦2 ∉̃ (𝐻, 𝐴). Thus 

(𝑥1, 𝑦1)ℰ((𝐹, 𝐴), (𝐻, 𝐴)) and (𝑥2, 𝑦2)ℰ((𝐺, 𝐴), (𝐼, 𝐴)) with (𝑥1, 𝑦1)ℰ((𝐺𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) and 

(𝑥1, 𝑦1)ℰ((𝐹𝐶 , 𝐴), (𝐻𝐶 , 𝐴)). Since (𝐹, 𝐴) 𝑎𝑛𝑑 (𝐺, 𝐴) are disjoint, (𝐹, 𝐴) ⊓ (𝐻, 𝐴) = (𝛷, 𝛷).  

Also, since (𝐻, 𝐴) ⊓ (𝐼, 𝐴) = (𝛷, 𝛷). Thus ((𝐹, 𝐴) ⊓ (𝐻, 𝐴), (𝐺, 𝐴) ⊓ (𝐼, 𝐴)) = (𝛷, 𝛷). This 

implies that    we have this implies that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. Conversely assume 

that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. Let 𝑥1, 𝑥2ℰ𝑋 and 𝑦1, 𝑦2ℰ𝑌 such that 𝑥1 > 𝑥2 , 𝑦1 > 𝑦2. 

Therefore (𝑥1, 𝑦1), (𝑥1, 𝑦1)ℰ̃𝑋 × 𝑌. Since (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2, there exists binary 

soft b-open sets (𝐹, 𝐴), (𝐺, 𝐴) and there exists binary soft b-open sets (𝐻, 𝐴), (𝐼, 𝐴)ℰ(𝜏 ×

𝜎), (𝑥1, 𝑦1)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) and (𝑥2, 𝑦2)ℰ̃((H, 𝐴), (𝐼, 𝐴)) such that  (𝑥1, 𝑦1)ℰ(𝐻𝐶 , 𝐴), (𝐼𝐶 , 𝐴)̃  

and (𝑥2, 𝑦2)ℰ̃((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)). Therefore, 𝑥1ℰ(𝐹, 𝐴), 𝑥2ℰ(𝐻, 𝐴) and 𝑥1ℰ(𝐻𝐶 , 𝐴) and 

𝑥2ℰ(𝐹𝐶 , 𝐴) and 𝑦1ℰ(𝐺𝐶 , 𝐴) and 𝑦2ℰ(𝐼, 𝐴) and , 𝑦1ℰ(𝐼𝐶 , 𝐴) and  𝑦2ℰ(𝐺𝐶 , 𝐴). Since 
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(𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏 × 𝜎, We have(𝐹, 𝐴), (𝐻, 𝐴)ℰ𝜏 and (𝐺, 𝐴), (𝐼, 𝐴)ℰ𝜎. This proves that (�̃�, 𝜏, 𝐴) 

and (�̃�, 𝜎, 𝐴) are soft b-𝑇2spaces. 

 

 

5. Soft Binary Structures with respect to Soft Points 

 

Theorem 5.1. If the binary soft topological space (�̃�, �̃�, 𝜌 × 𝜎, 𝐴) is a binary soft b-𝑇0, then 

(�̃�, 𝜌, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b- 𝑇0.  
 

Proof. We suppose (𝑋�̃�, 𝑌�̃�
̃ , 𝜌 × 𝜎, 𝐴) is a binary soft b-𝑇0. Suppose ℯ𝔾1

, ℯ𝔾2
ℰ̃𝑋�̃�and 

ℯℍ1
, ℯℍ2

ℰ̃𝑌�̃� with such that  ℯ𝔾1
> ℯ𝔾2

, ℯℍ1
> ℯℍ2

.Since (𝑋�̃�, 𝑌�̃�
̃ , 𝜌 × 𝜎, 𝐴) is a binary soft b- 

𝑇0,accordingly there binary soft b-open set ((𝐹, 𝐴), (𝐺, 𝐴)) such that  

 

(ℯ
𝔾1

, ℯℍ1
)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) ; (ℯ

𝔾2
, ℯℍ2

)ℰ̃(𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴) 

or  

(ℯ
𝔾1

, ℯℍ1
)ℰ̃((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)); (ℯ

𝔾2
, ℯℍ2

)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) 

 

This implies that either ℯ𝔾1
ℰ̃(𝐹, 𝐴); ℯ𝔾2

ℰ̃(𝐹𝐶 , 𝐴); ℯℍ1
ℰ̃(𝐺, 𝐴); ℯℍ2

ℰ̃(𝐺𝐶 , 𝐴) or 

ℯ𝔾1
ℰ̃(𝐹𝐶 , 𝐴); ℯℍ1

ℰ̃(𝐺𝐶 , 𝐴);  ℯℍ2
ℰ̃(𝐺, 𝐴). This implies either ℯ𝔾1

ℰ̃(𝐹, 𝐴) ; ℯ𝔾2
ℰ̃(𝐹𝐶 , 𝐴) or 

ℯ𝔾1
ℰ̃(𝐹𝐶 , 𝐴); 𝑥1ℰ̃(𝐹, 𝐴)and either ℯℍ1

ℰ̃(𝐺, 𝐴); ℯℍ2
ℰ̃(𝐺𝐶 , 𝐴)orℯℍ1

ℰ̃(𝐺𝐶 , 𝐴); ℯℍ2
ℰ̃(𝐺, 𝐴). 

Since ((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜌 × 𝜎, We have b-open (𝐹, 𝐴)ℰ̃𝜌 and b-open(𝐹, 𝐴)ℰ ̃𝜎. this proves that 

(�̃�, 𝜌, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b- 𝑇0.  

 

Theorem 5.2. A binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is binary soft b-𝑇0 space with 

respect to first and the second coordinates, then (�̃�, �̃�, 𝜏 × 𝜎, 𝐴)is binary soft b-𝑇0 space. 

 

Proof. Let (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is binary soft b-𝑇0 space with respect to first and the second 

coordinates. Let (ℯ
𝔾1

, ℯℍ1
), (ℯ

𝔾2
, ℯℍ2

)ℰ̃𝑋 × 𝑌 with   ℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

. Take 𝛼ℰ̃𝑌 and 

𝛽ℰ̃𝑋.Then (ℯ
𝔾1

, 𝛼), (ℯ𝔾2
, 𝛼)ℰ̃𝑋 × 𝑌.Since (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is a binary soft b-𝑇0space with 

respect to the first coordinate, by using definition, there exists b-open sets ((𝐹, 𝐴), (𝐺, 𝐴))ℰ̃𝜏 ×

𝜎 with ℯ𝔾1
ℰ̃(𝐹, 𝐴), ℯ𝔾2

∉̃ (𝐹, 𝐴), 𝛼ℰ̃(𝐺, 𝐴). Since(𝛽, ℯℍ1
), (𝛽, ℯℍ2

)ℰ̃𝑋 × 𝑌, by using the 

arguments and using definition there exists b-open sets ((𝐻, 𝐴), (𝐾, 𝐴))ℰ̃𝜏 × 𝜎 with 

ℯℍ1
ℰ̃(𝐾, 𝐴), ℯℍ1

∉̃ (𝐾, 𝐴), 𝛽ℰ̃(𝐻, 𝐴). Therefore, (ℯ𝔾1
, ℯℍ1

) ℰ̃((𝐹, 𝐴), (𝐾, 𝐴)) and 

(ℯ
𝔾2

, ℯℍ2
) ℰ̃((𝐹𝐶 , 𝐴), (𝐾𝐶 , 𝐴)). Hence (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is called a binary soft b-𝑇0. 

 

Theorem 5.3. A binary soft topological space (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇1spaces if and 

only if the binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. 

 

Proof. Suppose  (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇1spaces. Let (ℯ𝔾1
, ℯℍ1

) , (ℯ𝔾2
, ℯℍ2

) ℰ̃𝑋 × 𝑌 

with  ℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

. since (�̃�, 𝜏, 𝐴) is soft b-𝑇1space, there exists soft b-open sets such 

that (𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏, ℯ𝔾1
ℰ(𝐹, 𝐴) and ℯ𝔾2

ℰ(𝐺, 𝐴) such that ℯ𝔾1
∉̃ (𝐺, 𝐴) and ℯ𝔾2

∉̃ (𝐹, 𝐴). 

Also, since (�̃�, 𝜎, 𝐴) is soft b-𝑇1space, there exists soft b-open sets such that  

(𝐻, 𝐴), (𝐼, 𝐴)ℰ̃𝜎, ℯℍ1
ℰ(𝐻, 𝐴) and ℯℍ2

ℰ(𝐼, 𝐴) such that ℯℍ1
∉̃ (𝐼, 𝐴) and ℯℍ2

∉̃ (𝐻, 𝐴).thus 

(ℯ𝔾1
, ℯℍ1

)ℰ((𝐹, 𝐴), (𝐻, 𝐴))and (ℯ𝔾2
, ℯℍ2

)ℰ((𝐺, 𝐴), (𝐼, 𝐴)) with (ℯ𝔾1
, ℯℍ1

)ℰ((𝐺𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) 
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and (ℯ𝔾1
, ℯℍ1

)ℰ((𝐹𝐶 , 𝐴), (𝐻𝐶 , 𝐴)).This implies that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. 

Conversely assume that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇1. Let ℯ𝔾1
, ℯ𝔾2

ℰ𝑋 and ℯℍ1
, ℯℍ2

ℰ𝑌 

such that ℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

. Therefore (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃𝑋 × 𝑌. Since (�̃�, �̃�, 𝜏 ×

𝜎, 𝐴) is soft binary b-𝑇1, there exists b-open sets (𝐹, 𝐴), (𝐺, 𝐴) and b-open sets 

(𝐻, 𝐴), (𝐼, 𝐴)ℰ(𝜏 × 𝜎), (ℯ𝔾1
, ℯℍ1

)ℰ̃((𝐹, 𝐴), (𝐺, 𝐴)) and (ℯ𝔾2
, ℯℍ2

)ℰ̃((𝐻, 𝐴), (𝐼, 𝐴)) such that 

(ℯ
𝔾1

, ℯℍ1
)ℰ(𝐻𝐶 , 𝐴), (𝐼𝐶 , 𝐴)̃  and (ℯ𝔾2

, ℯℍ2
)ℰ̃((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)). Therefore, 

 ℯ𝔾1
ℰ(𝐹, 𝐴), ℯ𝔾2

ℰ(𝐻, 𝐴) and ℯ𝔾1
ℰ(𝐻𝐶 , 𝐴) and ℯ𝔾2

ℰ(𝐹𝐶 , 𝐴) and , 𝑦1ℰ(𝐺𝐶 , 𝐴) and ℯℍ1
ℰ(𝐼, 𝐴) 

and , ℯℍ1
ℰ(𝐼𝐶 , 𝐴) and , ℯℍ2

ℰ(𝐺𝐶 , 𝐴). Since (𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏 × 𝜎, We have(𝐹, 𝐴), (𝐻, 𝐴)ℰ𝜏 and 

(𝐺, 𝐴), (𝐼, 𝐴)ℰ𝜎. This proves that (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇1spaces. 
 

Theorem 5.4. A binary soft topological space   (�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space if and 

only if every binary soft point ℘(𝑋) × ℘(𝑌) is binary soft b-closed. 

 

Proof. Suppose that (�̃�, �̃�, ℳ, 𝐴) is binary soft b- 𝑇1 space. Let (𝑥, 𝑦)ℰ̃𝑋 × 𝑌. Let 

({𝑥}, {ℯℍ})ℰ̃℘(𝑋) × ℘(𝑌).We shall show that ({ℯ𝔾}, {ℯℍ}) is binary soft b-closed. It is 

sufficient to show that (𝑋\{ℯ𝔾}, 𝑌\{ℯℍ}) is binary soft b-open. Let  (𝑎, 𝑏)ℇ(𝑋\{ℯ𝔾}, 𝑌\{ℯℍ}). 

This implies that 𝑎ℰ̃𝑋\{ℯ𝔾} and 𝑏ℰ̃𝑌\{ℯℍ}. Hence 𝑎 ≠ ℯ𝔾 𝑎𝑛𝑑 𝑏 ≠ ℯℍ. That is, (𝑎, 𝑏) and 

(ℯ𝔾, ℯℍ) are distinct binary soft points of 𝑋 × 𝑌. Since (�̃�, �̃�, ℳ, 𝐴) is binary soft b- 𝑇1 space, 

there exists binary soft b-open sets ((𝐹, 𝐴), (𝐺, 𝐴)) and (𝐻, 𝐴), (𝐼, 𝐴) such that 

(𝑎, 𝑏)ℇ((𝐹, 𝐴), (𝐺, 𝐴))  and (𝑥, 𝑦)ℇ((𝐻, 𝐴), (𝐼, 𝐴))  such that (𝑎, 𝑏)ℇ((𝐻𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) and 

(ℯ𝔾, ℯℍ)ℇ((𝐹𝐶 , 𝐴), (𝐺𝐶 , 𝐴)). Therefore, ((𝐹, 𝐴), (𝐺, 𝐴)) ⊆ ({ℯ𝔾}𝑐, {ℯℍ}𝑐). Hence({ℯ𝔾}𝑐, {ℯℍ}𝑐) 

is a soft neighbourhood of (𝑎, 𝑏). This implies that ({ℯ𝔾}, {ℯℍ})is binary soft b-closed. 

Conversely, suppose that ({ℯ𝔾}, {ℯℍ}) is binary soft b-closed for every (ℯ𝔾, ℯℍ)ℇ𝑋 × 𝑌. 

Suppose (ℯ𝔾1
, ℯℍ1

) , (ℯ𝔾2
, ℯℍ2

)ℰ̃𝑋 × 𝑌withℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

 Therefore, 

(ℯ𝔾2
, ℯℍ2

)ℰ({ℯ𝔾1
}

𝑐
, {ℯℍ1

}
𝑐
) 

̃
 and  ({ℯ𝔾1

}
𝑐
, {ℯℍ1

}
𝑐
) is binary soft b-open. Also 

(ℯ𝔾1
, ℯℍ1

)ℰ({ℯ𝔾2
}

𝑐
, {ℯℍ2

}
𝑐
) 

̃
and ℰ({ℯ𝔾1

}
𝑐
, {ℯℍ1

}
𝑐
) 

̃
is binary soft b-open set. Also 

(ℯ𝔾1
, ℯℍ1

)ℰ({ℯ𝔾2
}

𝑐
, {ℯℍ2

}
𝑐
) 

̃
and ℰ({ℯ𝔾2

}
𝑐
, {ℯℍ2

}
𝑐
) 

̃
is binary soft b-open set. This shows that 

(�̃�, �̃�, ℳ, 𝐴) is binary soft b-𝑇1 space. 

 

Theorem 5.5. A binary soft topological space (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇2spaces if and 

only if the binary soft topological space (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. 

 

Proof. Suppose  (�̃�, 𝜏, 𝐴) and (�̃�, 𝜎, 𝐴) are soft b-𝑇2spaces. Let (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃𝑋 × 𝑌 

withℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

. Since (�̃�, 𝜏, 𝐴) is soft b-𝑇2space, there exists soft b-open sets such 

that (𝐹, 𝐴), (𝐺, 𝐴)ℰ̃𝜏, ℯ𝔾1
ℰ(𝐹, 𝐴) and ℯ𝔾2

ℰ(𝐺, 𝐴) such that ℯ𝔾1
∉̃ (𝐺, 𝐴) and ℯ𝔾2

∉̃ (𝐹, 𝐴). 

Also, since (�̃�, 𝜎, 𝐴) is soft b-𝑇2 space, there exists disjoint soft b-open sets such 

that(𝐻, 𝐴), (𝐼, 𝐴)ℰ̃𝜎, ℯℍ1
ℰ(𝐻, 𝐴) and ℯℍ2

ℰ(𝐼, 𝐴) such that ℯℍ1
∉̃ (𝐼, 𝐴) and ℯℍ2

∉̃ (𝐻, 𝐴).thus 

(ℯ𝔾1
, ℯℍ1

)ℰ((𝐹, 𝐴), (𝐻, 𝐴))and (ℯ𝔾2
, ℯℍ2

)ℰ((𝐺, 𝐴), (𝐼, 𝐴)) with (ℯ𝔾1
, ℯℍ1

)ℰ((𝐺𝐶 , 𝐴), (𝐼𝐶 , 𝐴)) 

and (ℯ𝔾1
, ℯℍ1

)ℰ((𝐹𝐶 , 𝐴), (𝐻𝐶 , 𝐴)).Snce(𝐹, 𝐴) 𝑎𝑛𝑑 (𝐺, 𝐴)are disjoint, (𝐹, 𝐴) ⊓ (𝐻, 𝐴) =

(𝛷, 𝛷). Also, since(𝐻, 𝐴) ⊓ (𝐼, 𝐴) = (𝛷, 𝛷). Thus((𝐹, 𝐴) ⊓ (𝐻, 𝐴), (𝐺, 𝐴) ⊓ (𝐼, 𝐴)) =

(𝛷, 𝛷). This implies that    we have this implies that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. 

Conversely assume that (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) is soft binary b-𝑇2. Let ℯ𝔾1
, ℯ𝔾2

ℰ𝑋 and ℯℍ1
, ℯℍ2

ℰ𝑌 

such that ℯ𝔾1
> ℯ𝔾2

 , ℯℍ1
> ℯℍ2

Therefore (ℯ𝔾1
, ℯℍ1

), (ℯ𝔾2
, ℯℍ2

)ℰ̃𝑋 × 𝑌. Since (�̃�, �̃�, 𝜏 × 𝜎, 𝐴) 

is soft binary b-𝑇2, there exists binary soft b-open sets (𝐹, 𝐴), (𝐺, A) and there exists binary 
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soft b-open sets (H, A), (I, A)ℰ(τ × σ), (ℯ𝔾1
, ℯℍ1

)ℰ̃((F, A), (G, A)) and 

(ℯ𝔾2
, ℯℍ2

)ℰ̃((H, A), (I, A)) such that  (ℯ𝔾1
, ℯℍ1

)ℰ(HC, A), (IC, A)̃  and 

(ℯ𝔾2
, ℯℍ2

)ℰ̃ ((FC, A), (GC, A)). Therefore, ℯ𝔾1
ℰ(F, A), ℯ𝔾2

ℰ(H, A) and ℯ𝔾1
ℰ(HC, A) and 

ℯ𝔾2
ℰ(FC, A) and , ℯℍ1

ℰ(GC, A) and ℯℍ2
ℰ(I, A) and , ℯℍ1

ℰ(IC, A) and , ℯℍ2
ℰ(GC, A). Since 

(F, A), (G, A)ℰ̃τ × σ, We have(F, A), (H, A)ℰτ and (G, A), (I, A)ℰσ. This proves that (X̃, τ, A) 

and (X̃, σ, A) are soft b-T2spaces. 

 

 

6. Conclusion 

 
The soft separation axioms namely b-To, b-T1 and b-T2 are extended to binary soft b-To, b-T1 

and b-T2 structures.  b-Tospace with respect to first and second co-ordinates are beautifully 

reflected. 
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1. Introduction 
 

Allah and Nawar [1] introduced the concept of *-closed sets. The notion of locally 

closed sets in a topological space was introduced by Bourbaki [2]. Ganster and Reilly 

[5] further studied the properties of locally closed sets and defined the LC-continuity and 

LC-irresoluteness. Gnanambal [6] introduced the concept of -locally closed sets and 

LC-continuous functions and investigated some of their properties.  In this paper, we 

introduce *LC-sets, *LC*-sets and *LC**-sets by using the notion of *-closed 

and *-open sets and study some of their properties. Finally, we also introduce and 

study different classes of weaker forms of continuity and irresoluteness and some of 

their properties in topological spaces.    

 

 

2. Preliminaries 
 

Throughout this paper (X, ), (Y, ) and (Z, ) represent non-empty topological spaces 

on which no separation axioms are assumed unless or otherwise mentioned. For a 

subset A of a space (X, ), cl(A) and int(A) denote the closure of A and the interior of 

A, respectively. 

 

http://www.newtheory.org/
mailto:ashrafnawar2020@yahoo.com


74                                                                                                83-37(2019)  Journal of New Theory 26 

 

Let us recall the following definitions, which are useful in the sequel. 

 

Definition 2.1 A subset A of a topological space (X, ) is called: 

(1) Generalized -closed [7] (briefly g-closed) if cl(A)  U whenever A  U and U 

is -open in (X, τ). The complement of g-closed set is called g-open. 

(2) *-closed [1] if cl(A)  U whenever A  U and U is g-open in (X, τ). The 

complement of *-closed set is called *-open. 

(3) Locally closed (briefly LC) set [5] if A = G ∩ F, where G is open and F is closed 

in (X, ).  

(5) -Locally closed (briefly LC) set [6] if A = G ∩ F, where G is -open and F is 

-closed in (X, ). 

 

Definition 2.2 A topological space (X, ) is called: 

(1) submaximal space [3] if every dense subset of (X, ) is open in (X, ). 

(2) -submaximal space [6] if every dense subset of (X, ) is -open in (X, ). 

(3) door space [4] if every subset of (X, ) is either open or closed in (X, ). 

(4) *

51


T

 
space [1] if every *-closed set is -closed. 

 

Definition 2.3 A function f : (X, ) → (Y, ) is called: 

(1) LC-continuous [5] if f-1(V) is locally closed set in (X, ) for each closed set V of  

(Y, ).  

(2) LC-continuous [6] if f-1(V) is -locally closed set in (X, ) for each closed set V 

of (Y, ).  

(3) LC-irresolute [5] if f-1(V) is locally closed set in (X, ) for each locally closed set V 

of (Y, ). 

(4) LC-irresolute [6] if f-1(V) is -locally closed set in (X, ) for each −locally 

closed set V of (Y, ).  

 

 

3. *-Locally Closed Sets 
 

In this section, we introduce three weak types of locally closed sets denoted by 

*LC(X, ), *LC*(X, ) and *LC**(X, ) each of which contains LC(X, ) and 

obtain some of their properties. Also, we introduce *-submaximal spaces and 

obtain some of their properties. 

 

Definition 3.1 A subset A of a topological space (X, ) is called an *-locally closed 

set (briefly, *LC-set) if A = G ∩ F, where G is *-open and F is *-closed in (X, ). 

The class of all *-locally closed subsets of (X, ) is denoted by *LC(X, ). 

 

Remark 3.1 The following are well known  

(i) A subset A of (X, ) is *LC-set if and only if it's complement X−A is the union of 

an *-open and an *-closed set. 

(ii) Every *-open (resp. *-closed) subset of (X, ) is an *LC-set. 

 

Theorem 3.1 Every locally closed set is an *LC-set but not conversely. 
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Proof. The proof follows from the fact that every closed (resp. open) set is an         

*-closed (resp. *-open). 

 

Example 3.1 Let X = {a, b, c, d} with  = {X, , {a}, {b}, {a, b}, {a, b, c}}. Then a 

subset B = {a, b, d}  LC(X) but B  *LC (X).  

 

Theorem 3.2 Every -locally closed set is an *LC-set but not conversely. 

 

Proof. The proof follows from the fact that every -closed (resp. -open) set is an 

*-closed (resp. *-open). 

 

Example 3.2 Let X = {a, b, c} with  = {X, , {a, b}}. Then a subset B = {a, c}  

LC(X) but B  *LC (X).  

 

Definition 3.2 A subset A of a topological space (X, ) is called an *LC*-set if         

A = G ∩ F, where G is *-open and F is closed in (X, ). 

 

The class of all *LC*-subsets of (X, ) is denoted by *LC*(X, ). 

 

Definition 3.3 A subset A of a topological space (X, ) is called an *LC**-set if         

A = G ∩ F, where G is open and F is *-closed in (X, ). 

 

The class of all *LC**-subsets of (X, ) is denoted by *LC**(X, ). 

 

Theorem 3.3 If a subset A of (X, ) is locally closed, then it is *LC(X, ),   

*LC*(X, ) and *LC**(X, ). 

 

Proof. Let A = G ∩ F, where G is open and F is closed in (X, ). Since every open set 

is *-open and every closed set is *-closed, it follows that A is *LC(X, ), 

*LC*(X, ) and *LC**(X, ). 

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.3 In Example 3.2, we have LC(X) = {X, , {c}, {a, b}}, *LC(X) = {X, , 

{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}, *LC*(X) = {X, , {a}, {b}, {c}, {a, b}} and 

*LC**(X) = {X, , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Here, {a} is *LC(X, ), 

*LC*(X, ) and *LC**(X, ) but not LC(X, ). 

 

Theorem 3.4 If a subset A of (X, ) is *LC*(X, ), then it is *LC(X, ). 

 

Proof. Let A be an *LC*-set and every closed set is *-closed in (X, ), we        

have A = G ∩ F, where G is *-open and F is *-closed in (X, ). Therefore,             

A  *LC (X, ). 

 

The converse of the above theorem need not be true as seen from the following 

example. 
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Example 3.4 In Example 3.2, we have {a, c}  *LC(X) but {a, c}  *LC*(X). 

 

Theorem 3.5 Every *LC**(X, ) is *LC(X, ). 

 

Proof. Let A be an *LC**-set and every open set is *-open in (X, ), we           

have A = G ∩ F, where G is *-open and F is *-closed in (X, ). Therefore,             

A  *LC (X, ). 

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.5 Let X = {a, b, c} with  = {X, , {b}}. Then a subset B = {b, c}  

*LC(X) but B  *LC**(X). 

 

Theorem 3.6 Every LC(X, ) (resp. LC*(X, ), LC**(X, )) is *LC(X, )    

(resp. *LC*(X, ), *LC**(X, )).  

 

Proof. Since every -open set is *-open and every -closed set is *-closed, the 

proof follows.  

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.6 In Example 3.2, we have LC(X) = LC*(X) = LC**(X) {X, , {c}, 

{a, b}}, *LC*(X) = {X, , {a}, {b}, {c}, {a, b}} and*LC(X) = *LC**(X) = P(X). 

Here, {a} is *LC(X, ) (resp. *LC*(X, ) and *LC**(X, )) but not an LC(X, ) 

(resp. LC*(X, ) and LC**(X, )). 

 

Theorem 3.7 If A  *LC(X, ) and B is *-open set in (X, ), then A ∩ B  

*LC(X, ).   

 

Proof. Since A  *LC (X, ), there exist an *-open G and an *-closed set F     

such that A = G ∩ F. Now, A ∩ B = (G ∩ B) ∩ F. Since G ∩ B is *-open and F is 

*-closed, it follows that A ∩ B  *LC (X, ). 

 

Remark 3.2 *LC- sets and *LC**-sets are independent of each other as seen from 

the examples. 

 

Example 3.7 In Example 3.1, the set A = {a, b, d} is *LC-set but not an *LC**-

set. 

 

Example 3.8 In Example 3.2, the set A = {a, c} is *LC**-set but not an *LC-set. 

 

Theorem 3.8 For a subset A of a topological space (X, ), the following are 

equivalent: 

(1) A  *LC*(X, ),  

(2) A = G ∩ cl(A) for some *-open set G, 

(3) cl(A) − A is *-closed, 
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(4) A ⋃ (X−cl(A)) is *-open.  

 

Proof: (1) → (2). Let A  *LC*(X, ). Then there exist an *-open set G and a 

closed set   F of (X, ) such that A = G ∩ F. Since A  G and A  cl(A). Therefore, 

we have A  G ∩ cl(A).  

 

Conversely, since cl(A)  F, G ∩ cl(A)  G ∩ F = A, which implies that               

A = G ∩ cl(A). 

 

(2) → (1). Since G is *-open and cl(A) is closed G ∩ cl(A)  *LC*(X, ), 

which implies that A   *LC*(X, ). 

 

(3) → (4). Let F = cl(A) − A. Then F is *-closed by the assumption and              

X−F = X ∩ (cl(A) − A)c = A ⋃ (X−cl(A)). But X−F is *-open. This shows that      

A ⋃ (X−cl(A)) is *-open. 

 

(4) → (3). Let U = A ⋃ (X−cl(A)). Since U is *-open set, X−U is *-closed.     

X−U = X−( A ⋃ (X−cl(A))) = cl(A) ∩ (X− A) = cl(A) − A. Thus, cl(A) − A is   

*-closed set. 

 

(4) → (2). Let G = A ⋃ (X−cl(A)). Thus, G is *-open. We prove that                      

A = G ∩ cl(A) for some *-open G. Since, G ∩ cl(A) = (A ⋃ (X−cl(A)) ∩ cl(A) 

= (cl(A) ∩ A) ⋃ (cl(A) ∩ (X−cl(A)) = A. Therefore, A = G ∩ cl(A). 

 

(2) → (4). Let A = G ∩ cl(A) for some *-open G. Then we prove that                     

A⋃(X−cl(A)) is *-open. Now, A ⋃ (X−cl(A)) = G ∩ (cl(A)) ∩ (X−cl(A)) =  G, 

which is *-open. Thus, A ⋃ (X−cl(A)) is *-open.   

 

Theorem 3.9 If A, B  *LC*(X, ), then A ∩ B  *LC*(X, ).  

 

Proof. From the assumption, there exist *-open sets G and H such that                      

A = G ∩ cl(A) and B = H ∩ cl(B). Then A ∩ B = (G ∩ H) ∩ (cl(A) ∩ cl(B)). 

Since G ∩ H is *-open set and cl(A) ∩ cl(B) is closed. Therefore, A ∩ B  

*LC*(X, ).  

 

Theorem 3.10 If A  *LC(X, ) and B is *-open set in (X, ), then A ∩ B  

*LC(X, ).   

 

Proof. Let A  *LC*(X, ). Then A = G ∩ F where G is *-open and F is *-closed 

So, A ∩ B = (G ∩ B) ∩ F. Since G ∩ B is *-open and F is *-closed, it follows that 

A ∩ B  *LC(X, ).   

 

Theorem 3.11 If A  *LC*(X, ) and B is *-open (or closed) set in (X, ), then     

A ∩ B  *LC*(X, ).   

 

Proof. Since A  *LC*(X, ), there exist an *-open G and a closed set F such that 

A = G ∩ F. Now, A ∩ B = (G ∩ B) ∩ F. Since G ∩ B is *-open and F is closed, it 
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follows that A ∩ B  *LC*(X, ).   

 

In this case, B being a closed set, we have A ∩ B = (G ∩ F) ∩ B = G ∩ (F ∩ B). Since 

G is *-open set and F ∩ B is closed, A ∩ B  *LC*(X, ). 

 

Theorem 3.12 If A  *LC**(X, ) and B is *-closed (or open) set in (X, ), then   

A ∩ B  *LC**(X, ).   

 

Proof. Since A  *LC**(X, ), there exist an open set G and an *-closed set          

F such that A = G ∩ F. Now, A ∩ B = G ∩ (F ∩ B). Since G is open and (F ∩ B) is 

*-closed, it follows that A ∩ B  *LC**(X, ).   

 

In this case, B being an open set, we have A ∩ B = (G ∩ F) ∩ B = (G ∩ B) ∩ F. Since 

G ∩ B is open set and F is *-closed, then A ∩ B  *LC**(X, ).   

 

Theorem 3.13 Let (X, ) and (Y, ) be two topological spaces  

(i) If A  *LC(X, ) and B  *LC(Y, ), then A  B  *LC(X  Y,   ).    

(ii) If A  *LC*(X, ) and B  *LC*(Y, ), then A  B  *LC*( X  Y,   ). 

(iii) If A*LC**(X, ) and B*LC**(Y, ), then A  B  *LC**( X  Y,   ),  

 

Proof. Let A  *LC(X, ) and B  *LC(Y, ). Then there exist *-open sets M 

and N of (X, ) and (Y, ) and *-closed sets F and K of X and Y respectively, such 

that A = M ∩ F and B = N ∩ K. Then A  B = (M  N) ∩ (F  K) holds. Hence, A  B 

 *LC(X  Y,   ). 

 

(ii) and (iii) The proofs are similar to (i). 

 

Definition 3.4 A topological space (X, ) is said to be *-submaximal if every dense 

subset in it is *-open. 

 

Theorem 3.14 Every submaximal space is *-submaximal. 

 

Proof. Let (X, ) be a submaximal space and A be a dense subset of (X, ). Then        

A is open. But every open set is *-open and so A is *-open. Therefore, (X, ) is  

*-submaximal.   

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 3.9 Let X = {a, b, c, d} with  = {X, , {a}, {b}, {a, b}, {a, b, c}}. Then the 

space (X, ) is *-submaximal but not submaximal. However, the set A = {a, b, d} is 

dense in (X, ), but it is not open in X. Therefore, (X, ) is not submaximal.   

 

Theorem 3.15 Every -submaximal space is *-submaximal. 

 

Proof. Let (X, ) be an -submaximal space and A be a dense subset of (X, ). Then A 

is -open. But every -open set is *-open and so A is *-open. Therefore, (X, ) is 

*-submaximal.   
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Theorem 3.16 A topological space (X, ) is *-submaximal if and only if     

*LC*(X, ) = P(X). 

 

Proof. Necessity: Let A  P(X) and U = A ⋃ (X−cl(A)). Then cl(U) = X. Since   

(X, ) is *-submaximal, U is *-open. By Theorem 3.8, A  *LC*(X, ) and so 

P(X) = *LC*(X, ). 

 

Sufficiency: Let A be a dense subset of (X, ). Then A ⋃ (X−cl(A)) = A. Since         

A  *LC*(X, ), by Theorem 3.8, A is *-open in (X, ). Hence, (X, ) is              

*-submaximal.   

 

 

4. *LC-Continuous Functions in Topological Spaces 
 

In this section, we introduce the concepts of *LC-continuous, *LC*-continuous 

and *LC**-continuous functions which are weaker than LC-continuous functions. 

 

Definition 4.1 A function f: (X, τ) → (Y, ) is called *LC-continuous (resp. *LC*-

continuous, *LC**-continuous) if f-1 (V)  *LC(X, ) (resp. f-1 (V)  *LC*(X, ), 

f-1 (V)  *LC**(X, )) for each closed set V of (Y, ). 

 

Theorem 4.1 Let f: (X, τ) → (Y, ) be a function. Then we have the following  

(i) If f is LC-continuous, then f is *LC-continuous, *LC*-continuous and *LC**-

continuous. 

(ii) If f is *LC*-continuous or *LC**-continuous, then f is *LC-continuous. 

 

Proof. (i) Let f be a LC-continuous and V be an open set of (Y, ). Then f-1 (V) is 

locally closed in (X, τ). Since every locally closed set is *LC-set, *LC*-set and 

*LC**-set, it follows that f is *LC-continuous, *LC*-continuous and *LC**-

continuous.   

 

(ii) Let f: (X, τ) → (Y, ) be an *LC*-continuous or *LC**-continuous function. 

Since every *LC*-set is *LC-set and every *LC**-set is *LC-set. Therefore, 

the proof follows. 

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 4.1 Let X = Y = {a, b, c} with  = {X, , {b}} and  = P(Y). Let                   

f: (X, τ) → (Y, )  be the identity function. Now, LC(X, ) = {X, , {b}, {a, c}}, 

*LC(X, ) = *LC*(X, ) = *LC**(X, ) = P(X) and LC(Y, ) = *LC(Y, ) = 

*LC*(Y, ) = *LC**(Y, ) = P(Y). Then f is not LC-continuous, since for the 

closed set {b, c}, f-1{b, c} = {b, c} is not locally closed in X, but it is *LC-

continuous, *LC*-continuous and *LC**-continuous.   

 

Example 4.2 Let X = Y = {a, b, c, d} with  = {X, , {a}, {b}, {a, b}, {a, b, c}}      

and  = {Y, , {c}}. Then the identity function f: (X, τ) → (Y, )  is *LC-continuous 
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but not *LC**-continuous, since for the closed set {a, b, d} of (Y, ),                       

f-1{a, b, d} = {a, b, d} is not *LC**-set in X but it is *LC- set in X. 

 

Theorem 4.2 Let f: (X, τ) → (Y, ) and g: (Y, ) → (Z, η) be any two functions. Then: 

(i) g o f is *LC-continuous if g is continuous and f is *LC-continuous, 

(ii) g o f is *LC*-continuous if g is continuous and f is *LC*-continuous, 

(iii g o f is *LC**-continuous if g is continuous and f is *LC**-continuous, 

 

Proof. Let V be a closed set in (Z, η) and g be a continuous function. Then        

g-1(V) is closed set in (Y, ) and since f is *LC-continuous, we get f-1(g-1(V)) is 

*LC- set in (X, τ). Thus, g o f is *LC-continuous.  

 

(ii) – (iii) Similarly. 
 

Definition 4.2 A function f: (X, τ) → (Y, ) is called *LC-irresolute (resp. *LC*- 

irresolute, *LC**-irresolute) if f-1 (V)  *LC(X, ) (resp. f-1 (V)  *LC*(X, ),    

f-1(V)  *LC**(X, )) for V  *LC(Y, ) (resp. V  *LC*(Y, ),                          

V  *LC**(Y, ). 

 

Example 4.3 Let X = Y = {a, b, c} with  = {X, , {a}} and  = {Y, , {a}, {b, c}}. 

Then the identity function f: (X, τ) → (Y, ) is *LC- irresolute, *LC*- irresolute 

and *LC**- irresolute. 

 

Theorem 4.3 If a function f: (X, τ) → (Y, ) is LC- irresolute, then f is *LC- 

irresolute, *LC*- irresolute and *LC**- irresolute.  

 

Proof. Let f be a LC- irresolute and V be a LC-set of (Y, ). Then f-1 (V) is LC(X, ). 

Since every LC-set is a *LC-set, *LC*-set and *LC**-set, it follows that f is 

*LC- irresolute, *LC*- irresolute and *LC**- irresolute.  

 

The converse of the above theorem need not be true as seen from the following 

example. 

 

Example 4.4 As in Example 4.1, the function f is not LC- irresolute, since for the 

locally closed set {b, c}, f-1{b, c} = {b, c} is not locally closed in X. However, f is 

*LC- irresolute, *LC- irresolute and *LC**- irresolute.   

 

Theorem 4.4 If a function f: (X, τ) → (Y, ) is *LC- irresolute (resp. *LC*- 

irresolute and *LC**- irresolute), then f is *LC-continuous, *LC*-continuous 

and *LC**- continuous.  

 

Proof. Since every LC-set is *LC-set, *LC*-set and *LC**-set, the proof 

follows. 

 

The converse of the above theorem need not be true as seen from the following 

example. 
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Example 4.5 Let X = Y = {a, b, c} with  = {X, , {a}, {b, c}} and  = {Y, , {b}}. 

Define a function f: (X, τ) → (Y, ) by f(a) = b, f(b) = a and f(c) = c. Then f is *LC- 

continuous, *LC*- continuous and *LC**- continuous but not *LC- irresolute, 

*LC*- irresolute and *LC**- irresolute, since for the *LC-set (resp. *LC*-set 

and *LC**-set) {a, b}, f-1{a, b} = {a, b} is not *LC-set (resp. *LC*-set and 

*LC**-set) in (X, τ). 

 

Theorem 4.5 Let f: (X, τ) → (Y, ) and g: (Y, ) → (Z, η) be any two functions. Then: 

(i) g o f is *LC-continuous if g is *LC-continuous and f is *LC-irresolute, 

(ii) g o f is *LC*-continuous if g is *LC*-continuous and f is *LC*- 

irresolute, 

(iii) g o f is *LC**-continuous if g is *LC**-continuous and f is *LC**- 

irresolute, 

(iv) g o f is *LC- irresolute if f and g are *LC-irresolute, 

(v) g o f is *LC*- irresolute if f and g are *LC*-irresolute, 

(vi) g o f is *LC**- irresolute if f and g are *LC**-irresolute. 

 

Proof. (i) Let V be a closed set in (Z, η) and g be an *LC-continuous function. 

Then g-1(V) is *LC- set in (Y, ) and since f is *LC-irresolute, we get              

f-1(g-1(V)) is *LC- set in (X, τ). Thus, g o f is *LC-continuous.  

 

(ii) – (iii) Similar to (i). 

 

(iv) Let V be an *LC-set in (Z, η) and g be an *LC- irresolute function. Then 

g-1(V) is *LC- set in (Y, ) and since f is *LC-irresolute, we get f-1(g-1(V)) is 

*LC- set in (X, τ). Thus, g o f is *LC-irresolute.  

 

(v) – (vi) Similar to (iv). 
 

Theorem 4.6 Let {Zi : i  τ} be a cover of X, where X is finite set and A be a subset  

of X. Suppose {Zi : i  τ} is *LC- set in X and the collection of *LC- set            

is closed under finite unions. If A ∩ Zi  *LC**( Zi, τ / Zi) for each i  τ, then    

A  *LC**(X, τ). 

 

Proof. Let i  τ and since A ∩ Zi  *LC**( Zi, τ / Zi). Then there exist an open set 

Ui of (X, τ) and *-closed set Fi of (Zi, τ / Zi) such that A ∩ Zi = (Ui ∩ Zi) ∩ Fi =       

Ui ∩(Zi ∩ Fi). Therefore, A = ⋃{A ∩ Zi : i  τ } = ⋃{ Ui: i  τ }∩(⋃{Zi ∩ Fi : i  τ }) 

and hence A  *LC**(X, τ). 

 

Theorem 4.7 Let f: (X, τ) → (Y, ) be an *-irresolute injective map. Then 

(i) If B  *LC(Y, ), then f-1 (B)  *LC(X, τ), 

(ii) If X is a *

51

T - space and B  *LC(Y, ), then f-1 (B)  αLC(X, τ.) 

 

Proof. (i) Let B  *LC(Y, ). Then there exist *-open set G and *-closed    

set F such that B = G ∩ F, f-1 (B) = f-1 (G) ∩ f-1(F). Since f is *-irresolute,            
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f-1(G) and f-1(F) are *-open and *-closed sets in X respectively. Hence,                

f-1 (B)  *LC(X, τ). 

 

(ii) Let B  *LC(Y, ). Then there exist *-open set G and *-closed set F such 

that B = G ∩ F, f-1 (B) = f-1 (G) ∩ f-1(F). Since f is *-irresolute, f-1 (G) and             

f-1(F) are *-open and *-closed sets in X respectively. From hypothesis f-1 (G) and        

f-1(F) are α-open and α-closed sets in X. Hence, f-1 (B)  αLC(X, τ). 

 

Theorem 4.8 Any function defined in a door space is *-continuous (resp.               

*-irresolute). 

 

Proof. Let f: (X, τ) → (Y, ) be a function where (X, τ) is  a door space and                 

A  (Y, ) (resp. A  *LC((Y, ). Then f-1(A) is either open or closed. Since      

every open or closed set is *-open or *-closed respectively and hence               

f-1(A)  *LC(X, τ). Therefore, f is *-continuous (resp. *-irresolute). 
 

Theorem 4.9 If X is a *

51

T - space, then *LC(X, τ) = αLC(X, τ). 

 

Proof. Let A  *LC(X, τ). Then there exist *-open set G and *-closed set F 

such that A = G ∩ F. Since X is a *

51

T -space, then G and F are α-open and α-closed 

sets respectively and hence A  αLC(X, τ). The above implies *LC(X, τ)  

αLC(X, τ). 

 

On the other hand, let A  αLC(X, τ). Then A = G ∩ F, G is α-open set and F is    

α-closed. But every α-open (resp. α-closed) is *-open (resp. *-closed) 

Hence, G is *-open set F is *-closed set. The above implies αLC(X, τ)  

*LC(X, τ). Therefore, *LC(X, τ) = αLC(X, τ). 

 

Theorem 4.10 Every αLC-continuous function is *LC-continuous. 

 

Proof. Obvious. 

 

The converse of the above theorem need not be true as shown in the following 

example. 

 

Example 4.6 Let X = Y = {a, b, c} with  = {X, , {a, b}} and  = {Y, , {b}}. Then 

the identity function f: (X, τ) → (Y, ) is not αLC-continuous since {a, c}  C(Y) but 

f-1 ({a, c}) = {a, c}  αLC(X). However, f is *LC-continuous. 

 

Theorem 4.11 If f: (X, τ) → (Y, ) is *LC-continuous and X is a *

51

T - space, then  

f is αLC-continuous. 

 

Proof. Let G be an open set of and f be an *LC-continuous. Then f-1(G)               

is *LC-set in X. Since X is a *

51

T - space, every *-open (resp. *-closed)        
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is α-open (resp. α-closed) in X. Then f-1(G) is *LC-set in Y and hence f is   

αLC-continuous.   
 

Theorem 4.12 If f: (X, τ) → (Y, ) is αLC-irresolute and g: (Y, ) → (Z, η)              

is *LC-continuous and Y is a *

51

T - space, then g o f : (X, τ) → (Z, η) is              

αLC- continuous. 

 

Proof. Let F be a closed set of Z and g be an *LC-continuous. Then g-1 (F)             

is *LC-set in Y. Since Y is a *

51

T - space, g-1 (F) is αLC-set in Y. Since               

f is αLC-irresolute, then f-1 (g-1 (F)) is αLC-set in X. Therefore, (g o f)-1(F) is 

αLC-set in X and g o f is αLC- continuous. 
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Abstract - The purpose of this paper is to introduce fuzzy soft locally closed and fuzzy soft b-locally closed sets 
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1. Introduction 
 

The notion of fuzzy sets for dealing with uncertainties was introduced by Zadeh [15]. Fuzzy 

topology was introduced by Chang [4].  To overcome difficulties in fuzzy set theory soft sets 

were introduced in 1999 [11]. The hybridisation of fuzzy set and soft set known as fuzzy soft 

set was introduced by Maji et.al. [10]. The notion of topological structure of Fuzzy soft sets 

was introduced by Tanay and Kandemir [13] and studied further by many authors [5,6,12,14]. 

The concept of fuzzy soft semi open set was introduced by Kandil et al. [8] whereas fuzzy 

soft pre-open and regular open sets was introduced by Hussain [7] and fuzzy soft b-open sets 

was introduced by Anil [1]. In this paper we introduce fuzzy soft locally closed and fuzzy 

soft b-locally closed sets and study their properties. Further we define fuzzy soft LC-

continuous and fuzzy soft b-LC-continuous functions and study few of the properties.  

 

 

2. Preliminaries 
 

Definition2.1 [10] Let X be an initial universal set, XI be set of all fuzzy sets on X and E  

be a set of parameters and let A E .  A pair ( ,  )f A denoted by Af is called fuzzy soft set 

over X , where f is a mapping given by : Xf A I→  i.e.  for each a A , ( ) :af a f X I= →
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is a fuzzy set on X  

 

Definition2.2 [12] Let  be a collection of all fuzzy soft sets over a universe X with a fixed 

parameter set E then ),,( EX   is called fuzzy soft topological space if  i. 0 ,  1E E  ii. Union 

of any members of  is a member of  , iii. Intersection of any two members of   is a 

member of  . Each member of  is called fuzzy soft open set i.e. A fuzzy soft set Af  over 

X is fuzzy soft open if and only if Af  . A fuzzy soft set Af over X is called fuzzy soft 

closed set if the complement of Af  is fuzzy soft open set. 

 

Definition2.3 [14] The fuzzy soft closure of Af , denoted by ( )AFscl f is defined as  

( )  { :         }A D D A DFscl f h h is fuzzy soft closed set and f h=   

 

Definition2.4 [14] The fuzzy soft interior of Bg  denoted by  ( )BFs int g is defined as  

 ( )  { :         }B D D D BFs int g h h is fuzzy soft open set and h g=   

 

Definition2.5 [7] Fuzzy soft set  Af  of a fuzzy soft topological space ),,( EX   is called 

fuzzy soft pre-open set if )(int AA fFsclFsf   and fuzzy soft pre-closed if 

AA ffFsclFs )int(  

 

Definition2.6 [7] Fuzzy soft set  Af  of a fuzzy soft topological space ),,( EX   is called 

fuzzy soft α-open set if )))int((int( AA fFsFsclFsf    

 

Definition 2.6 [1] A fuzzy soft set Af  in a fuzzy soft topological space ( , , )X E  is called 

fuzzy soft b-open set if )int()(int AAA fFsclFsfFsclFsf  and fuzzy soft b-closed set if 

)int()(int AAA fFsclFsfFsclFsf     

 

Definition 2.7 [1] Let Af  be a fuzzy soft set in a fuzzy soft topological space ( , , )X E   

then fuzzy soft b-closure of Af  and fuzzy soft b-interior of Af  are defined as 

 

(i) }&:{)( ABBBA fgsetclosedfsbaisggfclfsb −=−   

(ii) }&:{)(int ACccA fhsetopenfsbaishhffsb −=−   

 

 

3. Soft Locally Closed Sets 
 

Definition 3.1. A fuzzy soft set (F, E) is called fuzzy soft locally closed set in a fuzzy soft 

topological space ),,( EX  if (F, E) = (G, E)∩(H,E) where (G, E) is fuzzy soft open and      

(H, E) is fuzzy soft closed in X. 

 

The family of all fuzzy soft locally closed sets of a fuzzy soft topological space ( , , )X E is 

denoted by FSLCS ),,( EX  .  

Theorem 3.2. In a fuzzy soft topological space ),,( EX  , every fuzzy soft open set is fuzzy 

soft locally closed. 



Journal of New Theory 26 (2019) 84-89                                                                                                              86 

 

 
 

 

Proof. Let (F, E) be fuzzy soft open in X, then (F, E) is fuzzy soft locally closed in X, 

since (F, E)=(F, E) ∩ 1
~

. 

 

Theorem 3.3. Let ),,( EX  be a fuzzy soft topological space. If (F1, E) and (F2, E) are two 

fuzzy soft locally closed sets in X then (F1, E) ∩ (F2, E) is a fuzzy soft locally closed set 

in X.  

 

Proof. Let (F1, E) = (G1, E) ∩ (H1, E) and  (F2, E) = (G2, E) ∩ (H2, E) where (G1, E) and 

(G2, E) are fuzzy soft open and (H1, E) and (H2, E) are fuzzy soft closed in X. Then (F1, 

E) ∩ (F2, E) = ((G1, E) ∩ (H1, E)) ∩((G2, E) ∩ (H2, E)) = ((G1, E) ∩ (G2, E)) ∩((H1, E) ∩ 

(H2, E)), where (G1, E) ∩ (G2, E) is fuzzy soft open and (H1, E) ∩ (H2, E) is fuzzy soft 

closed and hence (F1, E) ∩ (F2, E) is a fuzzy soft locally closed set in X.  

 

Theorem 3.4. Let ),,( EX  be a fuzzy soft topological space. Then (F, E) is fuzzy soft 

locally closed if and only if (F, E) = (G, E)∩Fs-cl(F, E) for some fuzzy soft open set (G, E). 

 

Proof. Let (F, E) be fuzzy soft locally closed set in X. Hence (F, E) = (G, E)∩(H, E) where 

(G, E) is fuzzy soft open and (H, E) is fuzzy soft closed in X. Then Fs-cl(F,E) = Fs-cl((G, 

E)∩(H, E))  Fs-cl(G, E)∩ Fs-cl(H, E) = Fs-cl(G, E)∩ (H, E). We have Fs-cl(F,E)  (H, E) 

and hence (F, E) (G, E)∩Fs-cl(F, E) (G, E)∩(H, E) = (F, E). Therefore (F, E) =             

(G, E)∩Fs-cl(F, E). 

 

Conversely, if (F, E) = (G, E)∩Fs-cl(F, E) for some fuzzy soft open set (G, E) then (F, E) is 

fuzzy soft locally closed since Fs-cl(F, E) is fuzzy soft closed in X. 

 

Definition 3.5. Let (F, E) and (G, E) be any two fuzzy soft sets. Then (F, E) and (G, E) 

are said to be separated if (F, E)∩Fs-cl(G, E) = (G, E)∩Fs-cl(F, E) = 0
~

. 

 

Theorem 3.6. Let ),,( EX  be a fuzzy soft topological space and (F1, E) and (F2, E) are 

two fuzzy soft locally closed in X. If (F1, E) and (F2, E) are separated in X then (F1, E)
(F2, E) is a fuzzy soft locally closed in X. 

 

Proof. Since (F1, E) and (F2, E) are two fuzzy soft locally closed in X, we have (F1, E) = 

(G1, E)∩Fs-cl(F1, E) and (F2, E) = (G2, E)∩Fs-cl(F2, E), where (G1, E) and (G2, E) are 

fuzzy soft open in X. Since (F1, E) and (F2, E) are separated, we have (F1, E)∩Fs-cl(F2, 

E) = (F2, E)∩Fs-cl(F1, E) = 0
~

and which implies (F1, E) (F2, E) =(G1, E)  (G2, E) ∩ Fs-

cl((F1, E)  (F2, E)). Hence (F1, E) (F2, E) is fuzzy soft locally closed set in X.  

 

Theorem 3.7. Let ),,( EX  be a fuzzy soft topological space. For a fuzzy soft set (F, E) 

following are equivalent 

(i) (F, E) is fuzzy soft open in X 

(ii) (F, E) is fuzzy soft α-open and fuzzy soft locally closed 

(iii) (F, E) is fuzzy soft pre-open and fuzzy soft locally closed 

(iv) (F, E) is fuzzy soft b-open and fuzzy soft locally closed 

 

Proof. (i) implies(ii), (ii) implies (iii) and (iii) implies (iv) are obvious  
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(iv) Implies (i): Let (F, E) be fuzzy soft b-open and fuzzy soft locally closed set in X. We 

have (F, E)Fs-int(Fs-cl(F, E))   Fs-cl(Fs-int(F, E)) and (F, E) = (G, E)∩Fs-cl(F, E) where 

(G, E) is fuzzy soft open. Then (F, E) (G, E)∩(Fs-int(Fs-cl(F, E))   Fs-cl(Fs-int(F, E)))= 

((G, E)∩Fs-int(Fs-cl(F, E)))   ((G, E)∩Fs-cl(Fs-int(F, E))) = Fs-int((G, E)∩Fs-cl(F, E)) 
Fs-int(F, E) = Fs-int(F, E)   Fs-int(F, E) = Fs-int(F, E). Hence (F, E) is fuzzy soft open in X.  

 

Definition 3.8. A fuzzy soft set (F, E) is called fuzzy soft b-locally closed set in a fuzzy soft 

topological space ),,( EX   if (F, E) = (G, E)∩(H, E) where (G, E) is fuzzy soft b-open and 

(H, E) is fuzzy soft b-closed in X. 

 

The family of all fuzzy soft b-locally closed sets of a fuzzy soft topological space ( , , )X E is 

denoted by FSBLCS ),,( EX  . 

 

Remark 3.9. It is obvious that every fuzzy soft b-closed set is fuzzy soft b-locally closed set. 

 

Remark 3.10. Every fuzzy soft locally closed set is fuzzy soft b-locally closed set but 

converse need not be true. 

 

Example 3.11.  Let X = {a, b, c}, E = {e1},  ),(),,(,0
~

,1
~

21 EFEF=  where

















=
cba

EF
0

,
0

,
1

),( 1  and  
















=
cba

EF
1

,
0

,
1

),( 2 . Clearly the set 
















=
cba

EF
0

,
1

,
1

),( is 

fuzzy soft b-locally closed set but not fuzzy soft locally closed. 

 

Theorem 3.12. Let ),,( EX  be a fuzzy soft topological space. Then (F, E) is fuzzy soft b-

locally closed if and only if (F, E) = (G, E)∩Fsb-cl(F, E) for some fuzzy soft open set       

(G, E). 

 

Proof. Let (F, E) be fuzzy soft b-locally closed set in X. Hence (F, E) = (G, E)∩(H, E) 

where (G, E) is fuzzy soft b-open and (H, E) is fuzzy soft b-closed in X. Then Fsb-cl(F,E)  

  (H, E) and hence (F, E) = (F, E)∩Fsb-cl(F, E) = (G, E)∩(H, E)∩ Fsb-cl(F, E) = (G, 

E)∩Fsb-cl(F, E). 

 

Conversely, if (F, E) = (G, E)∩Fsb-cl(F, E) for some fuzzy soft b- open set (G, E)  and since 

Fsb-cl(F, E) is fuzzy soft closed, hence (F, E) is fuzzy soft b-locally closed in X. 

 

Definition 3.13. Let ),,( EX  and ),,( KY   be fuzzy soft topological spaces and 

YXf →:  be a function. Then f  is called a 

(i) fuzzy soft locally continuous (LC-continuous) if for each open set (G, K) in Y, 

),(1 KGf −  is a fuzzy soft locally closed set in X. 

(ii)  fuzzy soft b-locally continuous (b-LC-continuous) if for each open set (G, K) in Y, 

),(1 KGf −  is a fuzzy soft b-locally closed set in X.  

(iii) fuzzy soft locally irresolute (LC-irresolute) if for each fuzzy soft locally closed set (G, 

K) in Y, ),(1 KGf −  is a fuzzy soft locally closed set in X. 

(iv) fuzzy soft b-locally irresolute (b-LC-irresolute) if for each fuzzy soft b-locally closed 

set (G, K) in Y, ),(1 KGf −  is a fuzzy soft b-locally closed set in X. 

Theorem 3.14. Every fuzzy soft LC- continuous function is fuzzy soft b-LC- continuous. 
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Proof. Let ),,(),,(: KYEXf  → be fuzzy soft LC- continuous function. Then for any 

fuzzy soft open set (G, K) in Y, ),(1 KGf −  is fuzzy soft locally closed in X. We have 

),(1 KGf − = (G1, E)∩(H1, E) where (G1, E) is fuzzy soft open and (H1, E) is fuzzy soft 

closed in X. Since every fuzzy soft open (closed) set is fuzzy soft b-open (b-closed) set. 

Therefore ),,(),,(: KYEXf  → is b-LC- continuous. Converse of this theorem need 

not be true as seen from the following example. 

 

Example 3.15.  Let X = Y={a, b, c}, E = K = {e1},  ),(),,(,0
~

,1
~

21 EFEF=  and

 ),(,0
~

,1
~

EG=   where 
















=
cba

EF
0

,
0

,
1

),( 1 , 
















=
cba

EF
1

,
0

,
1

),( 2  and

















=
cba

EG
0

,
1

,
1

),( .  

Consider an identity function YXf →: ,  Clearly 
















=−

cba
EGf

0
,

1
,

1
),(1 is fuzzy soft b-

locally closed set but not fuzzy soft locally closed. 

 

 

4. Conclusions 
 

In this paper the concept of fuzzy soft locally closed set and fuzzy soft b-locally closed set is 

introduced in fuzzy soft topological space. Also fuzzy soft LC-continuous and fuzzy soft b-

LC-continuous functions were defined in fuzzy soft topological space. 
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1. Introduction 
 

Mathematical modeling through fractional-orders differential and integral operators has 

become increasingly common in recent years. In addition, that, the various types of 

fractional-order differential equations are proposed for most of the standard models. 

Fractional-order differential equations (FDEs) are, at least, as stable as their integer order 

counterpart, namely ordinary differential equation [1]. Therefore, the fractional-order 

calculus has a considerable amount of attention for many areas of science [2-7]. In particular, 

biology is a very rich resource for mathematical ideas. 

 

The behavior of most biological systems has memory or after-effects. The modeling of these 

systems by FDEs has more advantages than classical integer-order modeling, where such 

effects are neglected [2]. In this study, a continuous time mathematical model proposed in 

[8] is examined by using the system of FDEs. 

 

 

2. Preliminaries and Definitions 
 

In this section, the basic definitions and characteristics of fractional derivative operators is 

expressed. 

 

http://www.newtheory.org/
mailto:dasbasi_bahatdin@hotmail.com
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2.1. Fractional Differential Operators 

 

There are various descriptions of a fractional derivative with the order 𝛼 > 0. The definitions 

of Riemann-Liouville and Caputo are used most widely. The Riemann-Liouville fractional 

integral operator with order 𝛼 ≥ 0 for the function 𝑓(𝑡) is described as the following: 

𝐽𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏

𝑡

0

, 𝛼 > 0, 𝑡 > 0. (2.1) 

 

Some of properties of the operator 𝐽𝛼 are as follows: 

 

𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡)

𝐽𝛼𝑡𝛾 =
𝛤(𝛾 + 1)

𝛤(𝛼 + 𝛾 + 1)
𝑡𝛼+𝛾

(2.2) 

 

where 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1. The Caputo sense was used in this study. Taking into 

account the definition of Caputo sense, the fractional derivative of the function 𝑓(𝑡) is 

identified as 

𝐷α𝑓(𝑡) = 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑡) =
1

𝛤(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝜏)

(𝑡 − 𝜏)𝛼−𝑚+1
𝑑𝜏

𝑡

0

(2.3) 

 

for 𝑚− 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑡 > 0 [9]. 

 

 

3. Model Formulation  
 

The proposed model in this study is fractional-order form of model suggested in [8], which 

showed dynamics between antibiotics concentrations and bacteria in an individual receiving 

a cocktail of multi-drug treatment against bacteria. Bacteria in model have the competitive 

ability against each order for common host. That all bacteria have not resistance ability 

against to multiple antibiotics, has assumed in model. Let us denote by 𝐵1(𝑡) and 𝐵2(𝑡) the 

population sizes of first, and second bacteria to multiple antibiotics at time 𝑡, respectively; 

and by 𝐴𝑖(𝑡) the concentration of the 𝑖-th antibiotic for 𝑖 = 1,2, . . . , 𝑛.  

 

The parameters used in the model are as follows: It has supposed that bacteria follow a 

logistic growth with different carrying capacity 𝐾1 and 𝐾2, respectively. In this sense, 𝛽𝐵1 
and 𝛽𝐵2 are the birth rate of first and second bacteria, respectively. The first and second 

bacteria have per capita natural death rates 𝜇𝐵1 and 𝜇𝐵2, respectively. The first bacteria also 

die due to the action of the antibiotics, and it has assumed that the rate at which they are 

killed by the 𝑖-th antibiotic is equal to α𝑖𝐵1𝐴𝑖. In the same mind, it is  𝑞
𝑖
𝐵2𝐴𝑖 for other. The 

mutual competition between the species is dictated by 𝑀1, 𝑀2. Finally, the 𝑖-th antibiotic 

concentration is supplied at a constant rate 𝛿𝑖, and is taken up at a constant per capita rate ω𝑖 
(or the excretion rate from body) [10]. 

 

Under the assumptions aforementioned and proposed in [8], it is obtained the following 

system of (𝑛 + 2) fractional-order differential equation: 
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𝐷𝛼𝐵1 = 𝛽𝐵1𝐵1 (1 −
𝐵1
𝐾1
) − [∑𝛼𝑖

𝑛

𝑖=1

𝐴𝑖𝐵1] − 𝜇𝐵1𝐵1 −𝑀1𝐵2𝐵1

𝐷𝛼𝐵2 = 𝛽𝐵2𝐵2 (1 −
𝐵2
𝐾2
) − [∑𝑞𝑖

𝑛

𝑖=1

𝐴𝑖𝐵2] − 𝜇𝐵2𝐵2 −𝑀2𝐵1𝐵2

𝐷𝛼𝐴𝑖 = 𝛿𝑖 − 𝜔𝑖𝐴𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑛.

               (3.1)

 
 

where 𝑡 ≥ 0, 𝑛 ∊ ℕ+, 𝐷 =
𝑑

𝑑𝑡
 and 𝛼 ∈ (0,1], real number, is the orders of the derivatives in 

this system. Also, 𝐵1 ≡ 𝐵1(𝑡), 𝐵2 ≡ 𝐵2(𝑡), 𝐴1 ≡ 𝐴1(𝑡),…, 𝐴𝑛 ≡ 𝐴𝑛(𝑡), the parameters 

𝛽𝐵1 , 𝛽𝐵2 , 𝜇𝐵1 , 𝜇𝐵2 , 𝑀1, 𝑀2 and 𝛼𝑖, 𝑞𝑖 for 𝑖 = 1, . . . , 𝑛 are positive constants. Additionally, the 

system (3.1) has to be finished with positive initial conditions 𝐵1(𝑡0) = 𝐵10, 𝐵2(𝑡0) = 𝐵20, 

𝐴1(𝑡0) = 𝐴10,…, 𝐴𝑛(𝑡0) = 𝐴𝑛0. 

 

The above scenario related to the parameters used in the model (3.1) has been graphically 

described in Figure 3.1.  
 

 
Figure 3.1. Schematic demonstration of interaction among bacteria (first and second) and concentrations of 

multiple antibiotic in model (3.1). 

 

To reduce the number of parameters, it is used change of variables 𝑏1 =
𝐵1

𝐾1
,    𝑏2 =

𝐵2

𝐾2
,    𝑎𝑖 =

𝐴𝑖
δ𝑖
ω𝑖

.  In the new variables, system (3.1) transforms to 

𝐷𝛼𝑏1 = 𝛽𝐵1𝑏1(1 − 𝑏1) − [∑𝛼𝑖𝑎𝑖𝑏1

𝑛

𝑖=1

] − 𝜇𝐵1𝑏1 −𝑚1𝑏2𝑏1

𝐷𝛼𝑏2 = 𝛽𝐵2𝑏2(1 − 𝑏2) − [∑𝑞𝑖𝑎𝑖𝑏2

𝑛

𝑖=1

] − 𝜇𝐵2𝑏2 −𝑚2𝑏1𝑏2

𝐷𝛼𝑎𝑖 = 𝜔𝑖 − 𝜔𝑖𝑎𝑖, 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑛.

             (3.2) 
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where 𝑞𝑖 = 𝑞𝑖 (
𝛿𝑖

𝜔𝑖
),    𝛼𝑖 = 𝛼𝑖 (

𝛿𝑖

𝜔𝑖
),    𝑀1 =

𝑚1

𝐾2
 and 𝑀2 =

𝑚2

𝐾1
. 

 

Definition 3.1 The FDE model in (3.2) is rewritten the matrix form as the following: 

 
𝐷α𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻

𝑋(0) = 𝑋0
(3.3) 

where 

𝑋(𝑡) =

(

 
 

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
⋮

𝑥𝑛+2(𝑡))

 
 
=

(

 
 

𝑏1(𝑡)

𝑏2(𝑡)

𝑎1(𝑡)
⋮

𝑎𝑛(𝑡))

 
 

, 𝑋0 =

(

 
 

𝑥1(0)

𝑥2(0)

𝑥3(0)
⋮

𝑥𝑛+2(0))

 
 

, 𝐻 =

(

 
 

0
0
𝜔1
⋮
𝜔𝑛)

 
 

, 

 

𝐴 =

(

  
 

(𝛽𝐵1 − 𝜇𝐵1) 0 0 … 0

0 (𝛽𝐵2 − 𝜇𝐵2) 0 … 0

0 0 −𝜔1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜔𝑛)

  
 

, 

 

𝐵1 =

(

 
 

−𝛽𝐵1 −𝑚1 −𝛼1 … −𝛼𝑛
0 0 0 … 0
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0 )

 
 

 

and  

 

𝐵2 =

(

 
 

0 0 0 … 0
−𝑚2 −𝛽𝐵2 −𝑞1 … −𝑞𝑛
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0 )

 
 

. 

 

Definition 3.2 For 𝑋(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) … 𝑥𝑛+2(𝑡))
𝑇
, let 𝐶∗[0, 𝑇] be the set of 

continuous column vectors 𝑋(𝑡) on the interval [0, 𝑇]. The norm of 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇] definite 

in (3.3) is ‖𝑋(𝑡)‖ = ∑ 𝑠𝑢𝑝𝑡|𝑥𝑖(𝑡)|
𝑛+2
𝑖=1 . 

 

Proposition 3.1 Let considered Definition 3.1. Let ℝ+
𝑛+2 = {𝑋: 𝑋 ≥ 0} and 𝑋(𝑡) =

(𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)… 𝑥𝑛+2(𝑡))
𝑇
. Let 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1, 

and then, by the generalized mean value theorem, it is 

 

 𝑓(𝑥) = 𝑓(𝑎) +
1

𝛤(𝛼)
𝐷𝛼𝑓(𝜉)(𝑥 − 𝑎)𝛼 with 0 ≤ 𝜉 ≤ 𝑥, all 𝑥 ∈ [𝑎, 𝑏].  

 

According to this theorem,  

 

• the function 𝑓(𝑥) is increasing for each 𝑥 ∈ [𝑎, 𝑏], when 𝐷𝛼𝑓(𝑥) > 0, all 𝑥 ∈ [𝑎, 𝑏],  
• the function 𝑓(𝑥) is decreasing for each 𝑥 ∈ [𝑎, 𝑏], when 𝐷𝛼𝑓(𝑥) < 0, all 𝑥 ∈ [𝑎, 𝑏]. 
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Additionally, the vector field points into ℝ+
𝑛+2, since 𝐷𝛼𝑏1(𝑡)|𝑏1=𝑏2=𝑎𝑖=0 = 0, 

𝐷𝛼𝑏2(𝑡)|𝑏1=𝑏2=𝑎𝑖=0 = 0 and 𝐷𝛼𝑎𝑖|𝑏1=𝑏2=𝑎𝑖=0 = 𝜔𝑖 for 𝑖 = 1,2, . . . , 𝑛 on each hyperplane 

bounding the nonnegative octant. 

 

Proposition 3.2 Let 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇]. In this case, there is a unique solution of the system 

(3.2). 

 

Proof. If 𝐷α𝑋(𝑡) = 𝐹(𝑋(𝑡)) = 𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻, then         𝑋(𝑡) ∈

𝐶∗[0, 𝑇] implies 𝐹(𝑋(𝑡)) ∈ 𝐶∗[0, 𝑇]. Also, considering 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇] and 𝑋(𝑡) ≠

 𝑌(𝑡); it is obtained the following inequalities: 

 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ 

 

= ‖(𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻)
− (𝐴𝑌(𝑡) + 𝑦1(𝑡)𝐵1𝑌(𝑡) + 𝑦2(𝑡)𝐵2𝑌(𝑡) + 𝐻)‖ 

 

= ‖𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) − 𝐴𝑌(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡) − 𝑦2(𝑡)𝐵2𝑌(𝑡)‖ 

 

= ‖

𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡) − 𝑦2(𝑡)𝐵2𝑌(𝑡)

−(𝑥1(𝑡)𝐵1𝑌(𝑡) − 𝑥1(𝑡)𝐵1𝑌(𝑡)⏟                  
0

) − (𝑥2(𝑡)𝐵2𝑌(𝑡) − 𝑥2(𝑡)𝐵2𝑌(𝑡)⏟                  
0

)
‖ 

 

= ‖
𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡)) + (𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)

+(𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)
‖ 

 

≤ (
‖𝐴(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡))‖

+‖(𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)‖ + ‖(𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)‖
) 

 

≤ (
‖𝐴‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥1(𝑡)|‖𝐵1‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥2(𝑡)|‖𝐵2‖‖(𝑋(𝑡) − 𝑌(𝑡))‖

+‖𝐵1‖|(𝑥1(𝑡) − 𝑦1(𝑡))|‖𝑌(𝑡)‖ + ‖𝐵2‖|(𝑥2(𝑡) − 𝑦2(𝑡))|‖𝑌(𝑡)‖
) 

 

≤ (

(‖𝐴‖ + |𝑥1(𝑡)|‖𝐵1‖ + |𝑥2(𝑡)|‖𝐵2‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖

+‖𝐵1‖ |(𝑥1(𝑡) − 𝑦1(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖ + ‖𝐵2‖ |(𝑥2(𝑡) − 𝑦2(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖) 

 

≤ (‖𝐴‖ + ‖𝐵1‖|𝑥1(𝑡)| + ‖𝐵1‖‖𝑌(𝑡)‖ + ‖𝐵2‖|𝑥2(𝑡)| + ‖𝐵2‖‖𝑌(𝑡)‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

≤ (‖𝐴‖ + ‖𝐵1‖(|𝑥1(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖) + ‖𝐵2‖(|𝑥2(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

≤ (‖𝐴‖ + (‖𝐵1‖ + ‖𝐵2‖)(‖𝑋(𝑡)‖ + ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

and so, it is 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ ≤ 𝐿‖(𝑋(𝑡) − 𝑌(𝑡))‖                         (3.4) 
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where 𝐿 = ‖𝐴‖ + (‖𝐵1‖ + ‖𝐵2‖)(𝑊1 +𝑊2) > 0, and 𝑊1 and 𝑊2 are positive and meet the 

inequalities  ‖𝑋(𝑡)‖ ≤ 𝑊1, ‖𝑌(𝑡)‖ ≤ 𝑊2 due to 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇]. Therefore, the 

system (3.3) has a unique solution. 

 

Lemma 3.1. Consider the following fractional-order autonomous system 

 

𝐷α𝑋(𝑡) = 𝐹(𝑋(𝑡)), 𝐷 =
𝑑

𝑑𝑡
𝑋(0) = 𝑋0

                                           (3.5)  

 

where 𝛼 ∈ (0,1], 𝑋(𝑡) = (𝑥1 𝑥2 … 𝑥𝑛)𝑇 and 𝐹 = (𝑓1 𝑓2 … 𝑓𝑛)𝑇. To evaluate the 

equilibrium points, it has been presumed as 𝐷α𝑋(𝑡) = 0 ⇒ 𝑓𝑖(𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) = 0 for 𝑖 =
1,2, … , 𝑛. In this sense, the equilibrium point (𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) of this system is founded. To 

evaluate the asymptotic stability of equilibrium points, the Jacobian matrix,  

 

𝐽 =

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

…
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 
 
 
 

 

 

is used. It is assumed that the 𝐼 is identity matrix with 𝑛x𝑛. If all of the eigenvalues, 

𝜆1, 𝜆2, … , 𝜆𝑛, obtained from the equation  

 

𝐷𝑒𝑡( 𝐽(𝑥1,𝑥2,…,𝑥𝑛)=(𝑥1̅̅̅̅ ,𝑥2̅̅̅̅ ,…,𝑥𝑛̅̅ ̅̅ ) − 𝜆𝐼) = 0                                                  (3.6) 

 

satisfies either the Routh–Hurwitz stability conditions or the conditions 

 

(|𝑎𝑟𝑔(𝜆1)| >
𝛼𝜋

2
,    |𝑎𝑟𝑔(𝜆2)| >

𝛼𝜋

2
) ,                                                  (3.7) 

 

then (𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) is locally asymptotically stable (LAS) for system (3.5). In addition that, 

the characteristically equation obtained from (3.6) can be given by 

 

𝑃(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1+. . . +𝑎𝑛−1𝜆 + 𝑎𝑛, 

 

where the coefficients 𝑎𝑖 for 𝑖 = 1, . . . , 𝑛 are real constants. In this respect, Routh-Hurwitz 

stability conditions for polynomial of degree 𝑛 = 2, 3, 4 and 5 are summarized as 

following: 

 
𝑛 = 2: 𝑎1, 𝑎2 > 0,
𝑛 = 3: 𝑎1, 𝑎3 > 0 and 𝑎1𝑎2 > 𝑎3,

𝑛 = 4: 𝑎1, 𝑎3, 𝑎4 > 0 and 𝑎1𝑎2𝑎3 > 𝑎3
2 + 𝑎1

2𝑎4,

𝑛 = 5: 
𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 > 0, 𝑎1𝑎2𝑎3 > 𝑎3

2 + 𝑎1
2𝑎4 

and (𝑎1𝑎4 − 𝑎5)(𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1

2𝑎4) > 𝑎5(𝑎1𝑎2 − 𝑎3)
2 + 𝑎1𝑎5

2.

(3.8) 
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Additionally, the above mentioned criteria has provided the necessary and sufficient 

conditions for all roots of 𝑃(𝜆) to lie in the left half of the complex plane [11]. 

 

Conclusion 3.1. Let us consider Lemma 3.1. The following conclusion can be summarized 

from this lemma. If the eigenvalues are real numbers, it is enough to only check whether they 

provide the Routh-Hurwitz criteria for the stability of the equilibrium point obtained from 

system (3.5). 

 

Conclusion 3.2. It is assumed that the characteristically equation is 

 

𝑃(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎2
          = 𝜆2 + (−𝑇𝑟(𝐽))𝜆 + (𝐷𝑒𝑡𝐽) = 0

                               (3.9) 

 

for 𝑛 = 2 in system (3.5). In this sense, the stability conditions of the equilibrium point are: 

either Routh–Hurwitz conditions (𝑎1, 𝑎2 > 0) 
or:  

𝑎1 < 0, 4𝑎2 > (𝑎1)
2, |𝑡𝑎𝑛−1 (

√4𝑎2 − (𝑎1)2

𝑎1
)| >

𝛼𝜋

2
. (3.10) 

 

4. Qualitative Analysis of the System (3.2) 

 
Proposition 4.1.  The existence and stability of equilibria of the system (3.2) are analyzed in 

here. The equilibria of the system with the threshold parameters 

 
𝛽𝐵1 − [∑ 𝛼𝑖

𝑛
𝑖=1 ] − 𝜇𝐵1
𝛽𝐵1

= 𝐴,
𝛽𝐵2 − [∑ 𝑞𝑖

𝑛
𝑖=1 ] − 𝜇𝐵2
𝛽𝐵2

= 𝐵,
𝑚1
𝛽𝐵1

= 𝐶,
𝑚2

𝛽𝐵2
= 𝐷,

0 < 𝐶, 0 < 𝐷

(4.1) 

 

are as follows: The system (3.2) always has the infection-free equilibrium point 𝐸0 =
(0,0,1,1, . . . ,1). If 𝐴 > 0, then 𝐸1 = (𝐴, 0,1,1, . . . ,1)

 

reveals as another equilibrium point. 

Likewise, 𝐸2 = (0, 𝐵, 1,1, . . . ,1)
 

exists, when 𝐵 > 0.  When 𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 <

𝐶𝐷 and 
𝐵

𝐷
< 𝐴 < 𝐵𝐶, in addition to 𝐸0, 𝐸1, and 𝐸2, there exists a fourth the equilibrium 

point, 𝐸3 = (
𝐵𝐶−𝐴

𝐶𝐷−1
,
𝐷𝐴−𝐵

𝐶𝐷−1
, 1,1, . . . ,1) [8].  

 

Proposition 3.2. The equilibrium points of system (3.2) satisfy the followings: 

(i) If 𝐴 < 0 and 𝐵 < 0, then the infection-free equilibrium 𝐸0 is LAS. If either 𝐴 > 0 
or  𝐵 > 0, it

 
becomes an unstable point. 

(ii) Let 𝐴 > 0. If   𝐵 − 𝐷𝐴 < 0, the equilibrium point 𝐸1 is LAS, and if 𝐵 − 𝐷𝐴 > 0, 𝐸1 
becomes an unstable point. 

(iii) Let 𝐵 > 0. If 𝐴 − 𝐶𝐵 < 0, the equilibrium point 𝐸2 is LAS, and if 𝐴 − 𝐶𝐵 > 0, 𝐸2 
becomes an unstable point. 

(iv) Let 𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶. If 1 < 𝐶𝐷 and 

𝐵

𝐷
> 𝐴 > 𝐵𝐶,  

then 𝐸3 is LAS. 
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Proof. For the stability analysis, the functions of the right side of the system (3.2) are 

suggested as follows: 

 

𝑓(𝑏1, 𝑏2, 𝑎𝑖) = 𝛽𝐵1𝑏1(1 − 𝑏1) − 𝑏1 [∑𝛼𝑖𝑎𝑖

𝑛

𝑖=1

] − 𝜇𝐵1𝑏1 −𝑚1𝑏2𝑏1

𝑔(𝑏1, 𝑏2, 𝑎𝑖) = 𝛽𝐵2𝑏2(1 − 𝑏2) − [∑𝑞𝑖𝑎𝑖𝑏2

𝑛

𝑖=1

] − 𝜇𝐵2   𝑏2 −𝑚2𝑏1𝑏2

ℎ𝑖(𝑏1, 𝑏2, 𝑎𝑖) = 𝜔𝑖 − 𝜔𝑖𝑎𝑖,            𝑖 = 1,2, . . . , 𝑛.

                       (4.2)

 
 

That Jacobean matrix obtained from equations in (4.2) is  

 

𝐽 =

(

 
 
 
 
 
 
 
 
 (

𝛽𝐵1 − 2𝛽𝐵1𝑏1 −∑𝛼𝑖𝑎𝑖

𝑛

𝑖=1

−𝜇𝐵1 −𝑚1𝑏2

) −𝑚1𝑏1 −𝛼1𝑏1 … −𝛼𝑛𝑏1

−𝑚2𝑏2 (
𝛽𝐵2 − 2𝛽𝐵2𝑏2 −∑𝑞𝑖𝑎𝑖

𝑛

𝑖=1

−𝜇𝐵2 −𝑚2𝑏1

) −𝑞1𝑏2 … −𝑞𝑛𝑏2

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 
 

.    (4.3) 

 

In terms of ease of representation, the 𝜏-th eigenvalue of
 
equilibrium point 𝐸𝑘 is shown as 

λ(𝑘)τ for 𝑘 = 0,1,2,3 and 𝜏 = 1,2, . . . , 𝑛 + 2,    𝑛 ∈ 𝑁. 

 

(i) From (4.3), the Jacobean matrix evaluated at the equilibrium point 𝐸0 is given by 

 

𝐽(𝐸0) =

(

 
 
 
 
 
 
𝛽𝐵1 −∑𝛼𝑖

𝑛

𝑖=1

− 𝜇𝐵1 0 0 … 0

0 𝛽𝐵2 −∑𝑞𝑖

𝑛

𝑖=1

− 𝜇𝐵2 0 … 0

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛)

 
 
 
 
 
 

. (4.4) 

 

By taking into account (4.1), the eigenvalues obtained from (4.4) are 𝜆(0)1 = 𝛽𝐵1𝐴,  𝜆(0)2 =

𝛽𝐵2𝐵  and  𝜆(0)𝑖+2 = −𝜇𝑖 for 𝑖 = 1,2, . . . , 𝑛. It is explicit that all eigenvalues are real numbers 

and 𝜆(0)𝑖+2 = −𝜇𝑖 < 0, since parameters in the proposed model are positive real number. By 

Conclusion 3.1., it is enough to examine whether the eigenvalues provide the Routh-Hurwitz 

criteria for stability analysis of 𝐸0. Therefore, the others eigenvalues, 𝜆(0)1 and 𝜆(0)2, are 

negative real number, iff 𝐴 < 0 and 𝐵 < 0. In this case, 𝐸0 is LAS. 

 

(ii) Let 𝐴 > 0. The jacobian matrix for the equilibrium point 𝐸1 by taking into account 

(4.1) is given as 
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𝐽(𝐸1) =

(

 
 

−𝛽𝐵1𝐴 −𝑚1𝐴 −𝛼1𝐴 … −𝛼𝑛𝐴

0 𝛽𝐵2𝐵 −𝑚2𝐴 0 … 0

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
. (4.5) 

 

The eigenvalues are 𝜆(1)1 = −𝛽𝐵1𝐴, 𝜆(1)2 = 𝛽𝐵2(𝐵 − 𝐷𝐴) and 𝜆(1)𝑖+2 = −𝜇𝑖 < 0 for 𝑖 =

1,2, . . . , 𝑛. The eigenvalues are real numbers. From Conclusion 3.1., the eigenvalues are 

negative real number, iff 𝐴 > 0 and 𝐵 − 𝐷𝐴 < 0. Therefore, it is LAS. 

 

(iii) For 𝐵 > 0, there is the equilibrium point 𝐸2. The Jacobian matrix evaluated in this point 

is 

𝐽(𝐸2) =

(

 
 

𝛽𝐵1𝐴 −𝑚1𝐵 0 0 … 0

−𝑚2𝐵 −𝛽𝐵2𝐵 −𝑞1𝐵 … −𝑞𝑛𝐵

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 

                          (4.6) 

 

by (4.1). The eigenvalues of (4.6) are 𝜆(2)1 = 𝛽𝐵1𝐴 −𝑚1𝐵 = 𝛽𝐵1(𝐴 − 𝐶𝐵), 𝜆
(2)

2 = −𝛽𝐵2𝐵 

and 𝜆(2)𝑖+2 = −𝜇𝑖 < 0 for 𝑖 = 1,2, . . . , 𝑛. By the same mind in (ii), the eigenvalues are real 

numbers. We have Conclusion 3.1. 𝐸2 is LAS, iff 𝐵 > 0 and 𝐴 − 𝐶𝐵 < 0. 

 

(iv) Let 

𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶.                                 (4.7) 

 

In this case, the stability of 𝐸3 can be analyzed. Evaluating J for 𝐸3, we have 

 

𝐽(𝐸3) =

(

 
 
 
 
 
 
 
 
 𝛽𝐵1 (

𝐴 − 2
𝐵𝐶 − 𝐴

𝐶𝐷 − 1
−

𝐶
𝐷𝐴 − 𝐵

𝐶𝐷 − 1

) −𝑚1
𝐵𝐶 − 𝐴

𝐶𝐷 − 1
−𝛼1𝑏1 … −𝛼𝑛𝑏1

−𝑚2
𝐷𝐴 − 𝐵

𝐶𝐷 − 1
𝛽𝐵2 (

𝐵 − 2
𝐷𝐴 − 𝐵

𝐶𝐷 − 1
−

𝐷
𝐵𝐶 − 𝐴

𝐶𝐷 − 1

) −𝑞1𝑏2 … −𝑞𝑛𝑏2

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 
 

(4.8) 

 

That eigenvalues of Jacobean matrix evaluated at the equilibrium point 𝐸3 are 𝜆(3)𝑖+2 =
−𝜇𝑖 < 0 for 𝑖 = 1,2, . . . , 𝑛 and the others

 
are founded from following matrix; 

 

𝐽𝐵(𝐸3) = (
−𝛽𝐵1 (

𝐴 − 𝐵𝐶

1 − 𝐶𝐷
) −𝑚1 (

𝐴 − 𝐵𝐶

1 − 𝐶𝐷
)

−𝑚2 (
𝐵 − 𝐴𝐷

1 − 𝐶𝐷
) −𝛽𝐵2 (

𝐵 − 𝐴𝐷

1 − 𝐶𝐷
)

)                                                       (4.9) 
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where 𝐽𝐵(𝐸3) is the block matrix of 𝐽(𝐸3). It is clear that 𝜆(3)𝑖+2 = −𝜇𝑖 ∊ ℝ
− and so, it does 

not impair the stability of this point. From (4.9), it is 𝑇𝑟(𝐽𝐵(𝐸3)) = −[𝛽𝐵1𝑏1 + 𝛽𝐵2𝑏2] and 

𝐷𝑒𝑡(𝐽𝐵(𝐸3)) = 𝛽𝐵1𝛽𝐵2𝑏1𝑏2(1 − 𝐶𝐷). In this respect, it is 𝑇𝑟(𝐽𝐵(𝐸3)) < 0 due to equilibrium 

values in 𝐸3  and parameters in (3.1) are positive real number. Consider the parameter 𝑎1 in 

(3.9), it is 𝑎1 > 0, due to 𝑇𝑟(𝐽𝐵(𝐸3)) < 0. Thus, the stability conditions of the equilibrium 

point are Routh–Hurwitz conditions (𝑎1, 𝑎2 > 0), due to 𝑎1 > 0. 

 

In addition, that, if 𝐶𝐷 < 1, (4.10). Then 𝑎2 = 𝐷𝑒𝑡(𝐽
𝐵(𝐸3)) > 0. By (4.7) and (4.10), if 

1 < 𝐶𝐷 and 
𝐵

𝐷
< 𝐴 < 𝐵𝐶, (4.11) then the eigenvalues are negative real number or 

complex number with negative real parts, and so, it is LAS. 

 

As a result, the LAS conditions founded for equilibria of system (3.2) are summarized in the 

Table 4.1. 

 
Table 4.1. The LAS conditions of the equilibria of FDEs system in (3.2). 

 

Equilibrium Points Stability Conditions 

𝐸0 = (0,0,1, . . . ,1) 𝐴 < 0, 𝐵 < 0 

𝐸1 = (𝐴, 0,1, . . . ,1)   𝑚𝑎𝑥 {0,
𝐵

𝐷
} < 𝐴 

𝐸2 = (0, 𝐵, 1, . . . ,1) 𝑚𝑎𝑥{0, 𝐴} < 𝐵𝐶 

𝐸3 = (
𝐴 − 𝐵𝐶

1 − 𝐶𝐷
,
𝐵 − 𝐴𝐷

1 − 𝐶𝐷
, 1,1, . . . ,1) 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶 

 

 

5. Numerical Study 

 
In the following discussion, it is demonstrated some contributions of the proposed 

mathematical model to the study of complex problems in host-microbe interactions. In 

numerical study, datas of two different streams competing each others of bacteria including 

Acinetobacter baumannii (𝑏1) and E. coli (𝑏2)  in host were used and dynamics of multiple 

antibiotics against these bacteria causing infection were examined [8]. The parameters used 

in numerical study [12-18] are as the followings: 

 
𝛽𝐵1 = 1.2 day

−1,  𝛽𝐵2 = 0.6 day
−1, 𝐾1 = 10

8 cell, 𝐾2 = 10
7 cell, 𝜇𝐵1 = 0.312 day

−1,

𝜇𝐵2 = 0.179 day
−1,𝑀1 = 10

−7 cell−1day−1, 𝑀2 = 10
−7 cell−1day−1, 𝛼1 = 0.47 day

−1,

𝛼2 = 0.21 day
−1, 𝑞1 = 0.42 day

−1, 𝑞2 = 0.17 day
−1, 𝛿1 = 2 mg/kg/day,

𝛿2 = 1.2 mg/kg/day, 𝜔1 = 0.04 day
−1, 𝜔2 = 0.03 day

−1 and 𝛼 = 0.25,0.50,0.75,0.99.

(5.1) 

 

In the light of data obtained from (5.1), it is founded as following: the parameters 

 

∑𝛼𝑖

𝑛

𝑖=1

= 𝛼1 + 𝛼2 = 𝛼1
𝛿1
𝜔1
+ 𝛼2

𝛿2
𝜔2
= 0.47

2

0.04
+ 0.21

1.2

0.03
= 31.9 

 

∑𝑞𝑖

𝑛

𝑖=1

= 𝑞1 + 𝑞2 = 𝑞1
𝛿1
𝜔1
+ 𝑞

2

𝛿2
𝜔2
= 0.42

2

0.04
+ 0.17

1.2

0.03
= 27.8 
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𝑚1 = 𝑀1𝐾2 = 10
−7 ∗ 107 = 1 

𝑚2 = 𝑀2𝐾1 = 10
−7 ∗ 108 = 10 

 

the threshold parameters 

 

𝐴 =
𝛽𝐵1 − [∑ 𝛼𝑖

𝑛
𝑖=1 ] − 𝜇𝐵1
𝛽𝐵1

=
1.2 − 31.9 − 0.312

1.2
= −25.84 

 

𝐵 =
𝛽𝐵2 − [∑ 𝑞𝑖

𝑛
𝑖=1 ] − 𝜇𝐵2
𝛽𝐵2

=
0.6 − 27.8 − 0.179

0.6
= −45.63 

 

𝐶 =
𝑚1
𝛽𝐵1

=
1

1.2
= 0.83 

 

𝐷 =
𝑚2

𝛽𝐵2
=
10

0.6
= 16.66 

 

and so the equilibrium points 𝐸0(0,0,1,1), 𝐸1(−25.84,0,1,1), 𝐸2(0, −45.63,1,1) and  
𝐸3 = (−0.9376,−29.99972,1,1, . . . ,1). Because it is 𝐴, 𝐵 < 0, the equilibrium point 

𝐸0(0,0,1,1)  is LAS and this situation is clearly seen in following figures:  

 

 

 
Figure 5.1. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of population sizes of Acinetobacter 

baumannii, when 𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 

 



Journal of New Theory 26 (2019) 90-103                                                                                                  101 
 

 
Figure 5.2. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of population sizes of E. coli, when 

𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 

 

 

 
Figure 5.3. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of the imipenem concentration, when 

𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 
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Figure 5.4. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of the ciprofloxacin concentration, 

when 𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 

 

In compliance with literature datas [17], while E. coli is disappeared as a result of 90-day 

antibiotics use and Acinetobacter baumannii is disappeared as a result of 30-day antibiotics 

use. This case shows that our model is very useful to explain experimental results in 

literatures. 
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1 Number 26

We are happy to inform you that Number 26 of the Journal of New Theory (JNT)
is completed with 9 articles.

In [1], the authors introduced the concepts of upper and lower (α, β, θ, δ, `)-
continuous fuzzy multifunctions. It is in order to unify several characterizations
and properties of some kinds of modifications of fuzzy upper and fuzzy lower semi-
continuous fuzzy multifunctions, and to deduce a generalized form of these concepts,
namely upper and lower ηη∗-continuous fuzzy multifunctions.

In [2], the author given some definitions and results in Q-soft normal subgroup
theory and cosets. Also some results were introduced which have been used by
homomorphism and anti-homomorphism of Q-soft normal subgroups. Next they
proved the analogue of the Lagrange,s theorem.

In [3], the author, by using nano topology, introduced micro topology and also
study the concepts of micro-pre open sets and micro-semi open sets and some of
their properties are investigated.

In [4], the authors investigated the notion of generalized roughness for fuzzy
ideals in OSGs on the basis of isotone and monotone mappings. Then the notion
of approximation is boosted to the approximation of fuzzy bi-ideals, approximations
fuzzy interior ideals and approximations fuzzy quasi-ideals in OSGs and investigate
their related properties. Furthermore (∈,∈ ∨q)-fuzzy ideals are the generalization

*Editor-in-Chief of the Journal of New Theory.
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of fuzzy ideals. Also the generalized roughness for (∈,∈ ∨q)-fuzzy ideals, fuzzy bi-
ideals and fuzzy interior ideals studied in OSGs and discuss the basic properties on
the basis of isotone and monotone mappings.

In [5], the authors introduced the concept of matrix operators and establishes two
new theorems on matrix summability of Fourier series and its derived series. The
results obtained in the paper further extend several known results on linear operators.
Various types of criteria, under varying conditions, for the matrix summability of
the Fourier series. In this paper quite a different and general type of criterion for
summability of the Fourier Series has been obtained. In the theorem function is
integrable in the sense of Lebesgue to the interval [−π, π] and period with period 2π.

In [6], the authors introduced a single structure which carries the subsets of X as
well as the subsets of Y under the parameter E for studying the information about
the ordered pair of soft subsets of X and Y . Such a structure is called a binary soft
structure from X to Y . The purpose of this paper is to introduce certain binary soft
weak axioms that are analogous to the axioms of topology.

In [7], the author introduced Ψ∗-locally closed sets and different notions of gen-
eralizations of continuous functions in a topological space and study some of their
properties. Several examples are given to illustrate the behavior of these new classes
of functions. The author also defined Ψ∗-submaximal spaces.

In [8], the authors introduced fuzzy soft locally closed and fuzzy soft b-locally
closed sets and study their properties in fuzzy soft topological space. Further they
defined and studied fuzzy soft LC-continuous and fuzzy soft b-LC-continuous func-
tions.

In [9], the author suggested a mathematical model in form fractional-order dif-
ferential equations (FDEs) system identifying population dynamics in two species
bacteria struggling one another and exposed to multiple antibiotics simultaneously.
Stability analysis of the equilibrium points of the proposed model was also carried
out. Additionally, the results of the analysis have promoted by numerical simula-
tions.
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JNT publishes original research articles, reports, reviews and commentaries that
are based on a theory of mathematics. However, the topics are not limited to
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JNT are published free of charge.

Pleases, write any original idea. If it is true, it gives an opportunity to use. If
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it is incomplete, it gives an opportunity to complete. If it is incorrect, it gives an
opportunity to correct.

You can reach freely all full text papers at the journal home pages;

http://www.newtheory.org or http://dergipark.gov.tr/jnt

To receive further information and to send your recommendations and remarks, or
to submit articles for consideration, please e-mail us at jnt@newtheory.org.

We hope you will enjoy this issue of JNT. We are looking forward to hearing your
feedback and receiving your contributions.

Happy reading!
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