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Anti Fuzzy BG-ideals in BG-algebra

Muhammad Uzair Khan1,2

Raees Khan1,2,*

Syed Inayat Ali Shah3

Muhammad Luqman3

<uzairqau@gmail.com>
<raeeskhan@bkuc.edu.pk>
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<luqmanqau94@gmail.com>

1Department of Mathematics & Statistics, Bacha Khan University Charsadda 24420, Pakistan
2Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
3Department of Mathematics, Islamia College University, Peshawar 25200, Pakistan

Abstaract − In this paper, we introduce the concept of anti fuzzy BG-ideals in BG-algebra and
we have discussed some of their properties. Relation between anti fuzzy BG-ideal and cartessian
product of anti fuzzy BG-ideals is developed.

Keywords − BG-algebra, sub BG-algebra, BG-ideals, anti fuzzy BG-ideals, anti fuzzy BG-bi-ideal.

1 Introduction

In 1965, Zadeh [20] introduced the notion of a fuzzy set and fuzzy subset of a set
as a method for representing uncertainty in real physical world. Since then its ap-
plication have been growing rapidly over many disciplines. As a generalization of
this, intuitionistic fuzzy subset was defined by K. T. Atanassov [3, 2, 4] in 1986.
In 1971, Rosenfield [17] introduced the concept of fuzzy subgroup. Motivated by
this, many mathematicians started to review various concepts and theorems of ab-
stract algebra in the broader frame work of fuzzy settings. K. Iseki and Jun et
al. introduced three classes of abstract algebras: BCI-algebras, BH-algebras and
BCK-algebras [8, 10, 13], respectively. It is known that the class of BCK-algebras is
a proper subclass of the class of BCI-algebras. Further, the notion of intutionistic
fuzzy ideals was introduced by Jun and Kim in BCK-algebras [9]. In [7, 6] Hu and Li
introduced a wide class of abstract algebras: BCH-algebras. They have shown that
the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Neg-
gers and HKim [15, 16] introduced the notion of B-algebras and d-algebras which is

*Corresponding Author.
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another generalization of BCK-algebras, and they also investigated several relations
between d-algebras and BCK-algebras as well as some other interesting relations be-
tween d-algebras and oriented digraphs. Ahn and Lee studied fuzzy subalgebra of
BG-algebra in [1]. The fuzzy ideals in BCI-algebras and MV-algebras was studied by
Hoo in [5]. The concept of anti fuzzy filters of pseudo-BL-algebras was introduced
by Rysiawa in [18].

In this paper we initiate the study of anti fuzzy BG-ideal in BG-algebra. This
paper comprises of four section. In section 2, we recall some basic definitions of
BG-algebras. In section 3, we define anti fuzzy subalgebras and also give example of
anti fuzzy subalgebras. In section 4, we define anti fuzzy BG-ideals and provided a
condition for a every anti fuzzy BG-bi-ideals is an anti fuzzy BG-ideal

2 Preliminary

In this section we site the basic definitions that will be used in the sequel.

Definition 2.1. A nonempty set X with a constant 0 and a binary operation ‘ ∗ ‘ is
called a BG-algebra if it satisfies the following axioms:

1. x ∗ x = 0,
2. x ∗ 0 = x,
3. (x ∗ y) ∗ (0 ∗ y) = x for all x, y ∈ X.

Example 2.2. Let X = {0, 1, 2} be the set with the following table.

∗ 0 1 2
0 0 1 2
1 1 0 1
2 2 2 0

Then (X, ∗, 0) is a BG-algebra.

Definition 2.3. [14] Let S be a non empty subset of a BG -algebra X then S is
called a subalgebra of X if x ∗ y ∈ S, for all x, y ∈ S.

Definition 2.4. [14] Let X be a BG-algebra and I be a subset of X, then I is called
a BG-ideal of Xif it satisfies following conditions:

1. 0 ∈ I
2. x ∗ y ∈ I and y ∈ I =⇒ x ∈ I,
3. x ∈ I and y ∈ X =⇒ x ∗ y ∈ I.

Definition 2.5. [14] A mapping f : X → Y of a BG-algebra is called a homomor-
phism if f(x ∗ y) = f(x) ∗ f(y) for allx, y ∈ X.

Remark 2.6. If f : X → Y is a homomorphism of BG-algebra, then f(0) = 0.

Definition 2.7. [14] Let X be a non-empty set. A fuzzy subset µ of the set X is a
mapping X → [0, 1].

Definition 2.8. [14] A fuzzy set µ in X is said to be a fuzzy BG-bi-ideal if

µ(x ∗ w ∗ y) ≥ min{µ(x), µ(y)} for all x, y, w ∈ X.
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3 Anti Fuzzy Subalgebras

Definition 3.1. Let µ be a fuzzy set in BG-algebra. Then µ is called an anti fuzzy
subalgebra of X if

µ(x ∗ y) ≤ max{µ(x), µ(y)} for all x, y ∈ X.

Example 3.2. Let X = {0, 1, 2, 3} be the set with the following table.

∗ 0 1 2 3
0 0 1 2 3
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

Then (X, ∗, 0) is a BG-algebra. Define a fuzzy set µ : X → [0, 1] by

µ(x) =

{
t0 if x ∈ {2, 3}
t1 if x ∈ {0, 1}

for t0, t1 ∈ [0, 1], with t0> t1. Then µ is an anti fuzzy subalgebra of X.

Definition 3.3. Let µ be a fuzzy set in a set X For t ∈ [0, 1], the set

µt = {x ∈ X : µ(x) ≤ t}
is called a lower level subset of µ.

4 Anti Fuzzy BG-ideals

Definition 4.1. A fuzzy set µ in X is called an anti fuzzy BG-ideals of X if it
satisfies the following inequalities:

1. µ(0) ≤ µ(x),
2. µ(x) ≤ max {µ(x ∗ y), µ(y)},
3. µ(x ∗ y) ≤ max{µ(x), µ(y)}for all x, y ∈ X.

Example 4.2. Let X = {0, 1, 2, 3}be the set with the following table.

∗ 0 1 2 3
0 0 1 2 3
1 1 0 1 1
2 2 2 0 2
3 3 3 3 0

Then (X, ∗, 0) is a BG-algebra. Define a fuzzy set µ : X → [0, 1] by

µ(x) =

{
α if x ∈ {2, 3}
β if x ∈ {0, 1}

for α,β ∈ [0, 1], with α > β. Then µ is an anti fuzzy BG-ideal of X.
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Example 4.3. Let X = {0, 1, 2}be the set with the following table:

∗ 0 1 2
0 0 1 2
1 1 0 1
2 2 2 0

Then (X, ∗, 0) is a BG-algebra. We define a fuzzy setµ : X → [0, 1] by

µ(x) =

{
0.2 if x = 0
0.8 otherwise.

Then µ is an anti fuzzy BG-ideal of X.

Definition 4.4. Let µ and λbe the fuzzy sets in a set X. The Cartesian product
λ×µ: X×X → [0, 1] is defined by (λ×µ)(x, y) = max {λ(x), µ(y)} for all x, y ∈ X.

Theorem 4.5. If λ and µ are anti fuzzy BG-ideal of a BG-algebra X, then λ× µ is
an anti fuzzy BG-ideal of X ×X.

Proof. For any (x, y) ∈ X ×X we have

(λ× µ)(0, 0) = max{λ(0), µ(0)}
≤ max{λ(x), µ(y)}
= (λ× µ)(x, y).

That is,
(λ× µ)(0, 0) ≤ (λ× µ)(x, y).

Let (x1, x2) and (y1, y2) ∈ X ×X.Then,

(λ× µ)(x1, x2) = max{λ(x1), µ(x2)}
≤ max{max{λ(x1 ∗ y1), λ(y1)}, max{µ(x2 ∗ y2), µ(y2)}}
= max{max{λ(x1 ∗ y1), µ(x2 ∗ y2)}, max{λ(y1), µ(y2)}}
= max{(λ× µ)((x1 ∗ y1, x2 ∗ y2)), (λ× µ)(y1, y2)}
= max{(λ× µ)((x1, x2) ∗ (y1, y2)), (λ× µ)(y1, y2)}

That is,

(λ× µ)(x1, x2) ≤ max{(λ× µ)((x1, x2) ∗ (y1, y2)), (λ× µ)(y1, y2)}
and

(λ× µ)((x1, x2) ∗ (y1, y2)) = (λ× µ)(x1 ∗ y1, x2 ∗ y2)

= max{λ(x1 ∗ y1), µ(x2 ∗ y2)}
≤ max{max{λ(x1), λ(y1)}, max{µ(x2), µ(y2)}}
= max{max{λ(x1), µ(x2)}, max{λ(y1), µ(y2)}}
= max{(λ× µ)((x1, x2)), (λ× µ)((y1, y2))}.

That is,

(λ× µ)((x1, x2) ∗ (y1, y2))

≤ max{(λ× µ)(x1, x2), (λ× µ)(y1, y2)}
Hence λ× µ is an anti fuzzy BG-ideal of X ×X.
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Theorem 4.6. Let λ and µ be fuzzy sets in a BG-algebra such that λ×µ is an anti
fuzzy BG-ideal of X ×X. Then

I. λ(0) ≤ λ(x) and µ(0) ≤ µ(x) for all x ∈ X.
II. If λ(0) ≤ λ(x) then µ(0) ≤ λ(x) and µ(0) ≤ µ(x) for all x ∈ X.
III. If µ(0) ≤ µ(x) then λ(0) ≤ λ(x) and λ(0) ≤ µ(x) for all x ∈ X.

Proof. I. Assume λ(x) < λ(0) or µ(y) < µ(0)for some x, y ∈ X. Then

(λ× µ)(x, y) = max {λ(x), µ(y)}
< max{λ(0), µ(0)}
= (λ× µ)(0, 0).

Thus (λ×µ)(x, y) < (λ×µ)(0, 0) for all x, y ∈ X Which is a contradiction to (λ×µ)
is an anti fuzzy BG-ideal of X ×X. Therefore, λ(0) ≤ λ(x) and µ(0) ≤ µ(y)for all
x, y ∈ X.

II. Assume either µ(0) > λ(x) or µ(0) > µ(y) for all x, y ∈ X. Then

(λ× µ)(0, 0) = max{λ(0), µ(0)}
= µ(0)

and

(λ× µ)(x, y) = max {λ(x), µ(y)} < µ(0)

= (λ× µ)(0, 0).

This implies
(λ× µ)(x, y) < (λ× µ)(0, 0).

Which is a contradiction to λ× µ is an anti fuzzy BG-ideal of X ×X. Hence if

λ(0) ≤ λ(x) for all x ∈ X,

then
µ(0) ≤ λ(x) and µ(0) ≤ µ(x)

III. The proof is quite similar to (ii).

Theorem 4.7. If λ × µ is an anti fuzzy BG-ideals of X × X , then λ and µ is an
anti fuzzy BG-ideals of X.

Proof. Firstly to prove that µ is an anti fuzzy BG-ideal of X. Given λ×µ is an anti
fuzzy BG-ideals of X ×X, then by Theorem 4.6 (i)

λ(0) ≤ λ(x) and µ(0) ≤ µ(x) for all x ∈ X.

Let µ(0) ≤ µ(x). By Theorem 4.6 (iii), then λ(0) ≤ λ(x) and λ(0) ≤ µ(x).Now

µ(x) = max{λ(0), µ(x)}
= (λ× µ)(0, x)

≤ max{(λ× µ)((0, x) ∗ (0, y)), (λ× µ)(0, y)}
= max{(λ× µ)(0 ∗ 0, x ∗ y), (λ× µ)(0, y)}
= max{(λ× µ)(0, x ∗ y), (λ× µ)(0, y)}
= max{(λ× µ)(0 ∗ 0, x ∗ y), (λ× µ)(0, y)}
= max{µ(x ∗ y), µ(y)}.
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That is,

µ(x) ≤ max{µ(x ∗ y), µ(y)}
µ(x ∗ y) = max{λ(0), µ(x ∗ y)}

= (λ× µ)(0, x ∗ y)

= (λ× µ)(0 ∗ 0, x ∗ y)

= (λ× µ)(0, x) ∗ (0, y)

µ(x ∗ y) ≤ max{(λ× µ)(0, x), (λ× µ)(0, y)}
= max{µ(x), µ(y)}.

That is,
µ(x ∗ y) ≤ max{µ(x), µ(y)}.

This proves that µ is an anti fuzzy BG-ideal of X. Secondly to prove that λ is
an anti fuzzy BG-ideal of X. Given λ× µ is an anti fuzzy BG-ideal of X ×X, then
by Theorem 4.6 (i), we have
Need tp correct

λ(0) ≤ λ(x) and µ(0) ≤ µ(x) for all x ∈ X.

Let λ(0) ≤ λ(x).By Theorem 4.6 (ii), then µ(0) ≤ λ(x) and µ(0) ≤ µ(x).Now

λ(x) = max{λ(x), µ(0)} = (λ× µ)(x, 0)

≤ max{(λ× µ)((x, 0) ∗ (y, 0)), (λ× µ)(0, y)}
= max{(λ× µ)(x ∗ y, 0 ∗ 0), (λ× µ)(0, y)}
= max{(λ× µ)(x ∗ y, 0), (λ× µ)(0, y)}
= max{λ(x ∗ y), λ(y)}

That is,

λ(x) ≤ max{λ(x ∗ y), λ(y)}.
λ(x ∗ y) = max{λ(x ∗ y), µ(0)}

= (λ× µ)(x ∗ y, 0)

= (λ× µ)(x ∗ y, 0 ∗ 0)

= (λ× µ) ((x, 0) ∗ (y, 0))

λ(x ∗ y) ≤ max{(λ× µ)(x, 0), (λ× µ)(y, 0)}
= max{λ(x), λ(y)}

That is
λ(x ∗ y) ≤ max{λ(x), λ(y)}.

This proves that λ is an anti fuzzy BG-ideal of X.
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Theorem 4.8. If µ is an anti fuzzy BG-ideal of X then µt is a BG-ideal of X for
all t ∈ [0, 1].

Proof. Let µbe anti fuzzy BG-ideal of X and x, y ∈ X. If x, y ∈ µt then

µ(0) ≤ µ(x) ≤ t implies 0 ∈ µt for all t ∈ [0, 1].

Let x ∗ y ∈ µt and y ∈ µt. Therefore, µ(x ∗ y) ≤ t and µ(y) ≤ t. Now

µ(x) ≤ max{µ(x ∗ y), µ(y)} ≤ max{t, t} ≤ t.

Hence µ(x) ≤ t. That is, x ∈ µt.
Let x ∈ µt, y ∈ X. Choose y in X such that µ(y) ≤ t. Since x ∈ µtimplies

µ(x) ≤ t. We know that

µ(x ∗ y) ≤ max{µ(x), µ(y)}
≤ max{t, t} ≤ t.

That is
µ(x ∗ y) ≤ t implies x ∗ y ∈ µt.

Hence µt is a BG-ideal of X.

Theorem 4.9. If X be a BG-algebra, t ∈ [0, 1],and µt is a BG-ideal of X, then µ is
an anti fuzzy BG-ideals of X.

Proof. Let µt be a BG-ideal of X. Let x, y ∈ µt. Then µ(x) ≤ t and µ(y) ≤ t. Let
µ(x) = t1 and µ(y) = t2, without loss of generality let t1 ≤ t2. Then x ∈ µt2 . Now
x ∈ µt2 and y ∈ X implies x ∗ y ∈ µt2 . That is,

µ(x ∗ y) ≤ t2

= max{t1, t2}
= max{µ(x), µ(y)}.

That is,
µ(x ∗ y) ≤ max{µ(x), µ(y)}.

Now let

µ(0) = µ(x ∗ x)

≤ max {µ(x), µ(x)}
= µ(x).

That is µ(0) ≤ µ(x) for all x ∈ X.
Further

µ(x) = (µ(x ∗ y) ∗ (0 ∗ y))

≤ max{µ(x ∗ y), µ(0 ∗ y)}
≤ max{µ(x ∗ y), max{µ(0), µ(y)}}
≤ max{µ(x ∗ y), µ(y)}.

Hence µ is an anti fuzzy BG-ideal of X.
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Definition 4.10. A fuzzy set µ in X is said to be an anti fuzzy BG-bi-ideal if
µ(x ∗ y ∗ w) ≤ max{µ(x), µ(y)} for all x, y, w ∈ X.

Theorem 4.11. Every anti fuzzy BG-bi-ideal is an anti fuzzy BG-ideal.

Proof. It is trivial.

Remark 4.12. The following example shows that the converse of Theorem 4.11 is
not true in general.

Example 4.13. Let X = {0, 1, 2} be the set with the following table:

∗ 0 1 2
0 0 1 2
1 1 0 1
2 2 2 0

Then (X, ∗, 0) is a BG-algebra. We define a fuzzy set µ : X → [0, 1] by

µ(x) =

{
0.3 if x = 0
0.8 otherwise.

Clearly µ is anti fuzzy BG-ideals of X. But is not an anti fuzzy BG-bi-ideal of X.
Now let x = 0, w = 1, y = 0.Then µ(x ∗ w ∗ y) = µ(0 ∗ 1 ∗ 0) = µ(0 ∗ 1)µ(1) =
0.8. max{µ(x), µ(y)} = max{µ(0), µ(0)} = µ(0) = 0.2. Hence µ(x ∗ w ∗ y) ≥
max{µ(x), µ(y)}. Hence µ is not an anti fuzzy BG-bi-ideal of X.

Definition 4.14. Let f : X → Y be a mapping of BG-algebra and µ be a fuzzy set
of Y then µf is the pre-image of µ under f if µf (x) = µ(f(x)) for all x ∈ X.

Theorem 4.15. Let f : X → Y be a homomorphism of BG-algebra. If µ is an anti
fuzzy BG-ideals of Y. Then µf is an anti fuzzy BG-ideal of X.

Proof. For any x ∈ X, we have

µf (x) = µ(f(x)) ≥ µ(0) = µ(f(0)) = µf (0).

Let x, y ∈ X, then

max{µf (x ∗ y), µf (y)} = max{µ(f(x ∗ y)), µ(f(y))}
= max{µ(f(x) ∗ f(y)), µ(f(y))}
≥ µ(f(x))

= µf (x).

That is,

µf (x) ≤ max{µf (x ∗ y), µf (y)}.
max{µf (x), µf (y)} = max{µ(f(x)), µ(f(y))}

≥ µ(f(x) ∗ f(y))

= µ(f(x ∗ y))

= µf (x ∗ y).

That is,
µf (x ∗ y) ≤ max{µf (x), µf (y)}.

Hence µf is an anti fuzzy BG-ideal of X.
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Theorem 4.16. Let f : X → Y be an epimorphism of BG-algebra. If µf is an anti
fuzzy BG-ideal of X, then µis an anti fuzzy BG-ideal of Y .

Proof. Let y ∈ Y. By hypothesis there exist x ∈ X such that f(x) = y, then

µ(y) = µ(f(x))

= µf (x)

≥ µf (0)

= µ(f(0)) = µ(0).

Let x, y ∈ Y . By hypothesis there exist a, b ∈ Xsuch that f(a) = x and f(b) = y. It
follows that

µ(x) = µ(f(a))

= µf (a)

≤ max{µf (a ∗ b), µf (b)}
= max{µ(f(a ∗ b)), µ(f(b))}
= max{µ(f(a) ∗ f(b)), µ(f(b)}
= max{µ(x ∗ y), µ(y)}.

That is, µ(x) ≤ max {µ(x ∗ y), µ(y)}.

µ(x ∗ y) = µ(f(a) ∗ f(b))

= µ(f(a ∗ b))

= µf (a ∗ b)

≤ max{µf (a), µf (b)}
= max{µ(f(a)), µ(f(b))}
= max{µ(x), µ(y)}.

Thus µ(x ∗ y) ≤ max {µ(x), µ(y)}. Hence µ is anti fuzzy BG-ideals of Y.
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Abstract – Existence and uniqueness of local classical solutions of the quasilinear evolution 

integrodifferential equation in Banach spaces are studied. The results are demonstrated by employing the 

fixed point technique on 0C -semigroup of bounded linear operator. At last, we deal an example to interpret 

the theory. 
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1 Introduction 
 

In this work, we examine the quasilinear evolution equation of the following form 

( ) ( ) ( ) ( ) ( )( )
( )

, ( ) , ( ) ,  ,+ = +
du t

A t u u t H u t f t u t G u t
dt

              (1) 

 0(0) , 0,u u t T J=  =                                                (2) 

where ( , )A t u  is  the  infinitesimal  generator of  a 0C -semigroup in a  Banach  space 

X . 0
  u X , :   →f J X X X  are functions and H  and G  are the nonlinear Volterra 

operators 

( ) ( ) ( ) ( )( )
0

,= −
t

H u t k t s h s u s ds  and ( ) ( ) ( ) ( )( )
0

,= −
t

G u t a t s g s u s ds  

where , :a k J J→  are real valued continuous functions and , :  →h g J X X  are 

functions. 
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A lot of researchers have investigated the existence of solutions of various types of abstract 

quasilinear evolution equations in Banach space [2, 3, 9, 14]. Pazy [11] considered the 

quasilinear equation of the form  

0( ) ( , ) ( ) 0, 0 , (0)u t A t u u t t T u u + =   =  

and studied the mild and classical solutions by applying fixed point theorem. Abbas et.al 

[1] considered a class of quasilinear functional differential equations in which the author 

investigated the existence of solutions for the same system by employing the thought of 

0C -semigroup of bounded linear operator. Results on the existence and uniqueness of 

solutions for problems of quasilinear differential equation with deviating arguments can be 

found in [8].  

 

Quasilinear integrodifferential systems in abstract form have got more notice because such 

equations appear in different domain of science e.g. mathematical physics, population 

dynamics etc. Different kinds of quasilinear integrodifferential equation in Banach space 

have been investigated by numerous authors [4- 7, 10, 12, 13]. 

 

The remaining work is ordered as follows. In segment 2, we state some prelude. In segment 

3, we give main result. Finally a concrete example is given in last segment 4 to show the 

relevance of abstract theory. 

 

 

2 Preliminaries 
 

Let X  and Y  be two Banach spaces such that Y  is densely and continuously embedded in 

X . The norm in any Banach space Z  is expressed by .  or .
Z

. Consider ( , )B X Y  be the 

set of all bounded linear operators from a Banach space X  to a Banach space Y . We write 

( , )B X X  by ( )B X .  

 

Let B X  and let ( ),A t b
 
be the infinitesimal generator of a 0C -semigroup ( ), 0,  ,t bS s s   

on .X  ( )  ( ), , ,  A t b t b J B  is the family of operators which is stable if there exist 

constants 1M   and   such that 

( )( )  , ,A t b          for ( ), ,t b J B   

where ( )( ), A t b
 
is the resolvent set of ( ),A t b

 
and 

( )( ) ( )
1

: ,  
−

=

 −
k

k

j j

j

R A t b M  

for    and every finite sequence 
1 2

0 , ,1 .      
k j

t t t T b B j k  

 

The stability of ( )  ( ), , ,  A t b t b J B
 
implies that  
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( ),
1 1

exp , 0
= =

  
  

  
 

j j j

kk

js jt b
j j

S M s s  

and any finite sequence 
1 2

0 , ,1 .      
k j

t t t T b B j k  

 

Suppose a linear operator S  in X  and let a subspace Y  of .X  The operator S  with 

domain ( ) ( ) :D S x D S Y Sx Y=  
 
and Sx Sx=  for ( )x D S

 
is remarked to be the 

part of S  in Y .    

 

Let ( ), , 0t bS s s   be the 0C -semigroup generated by ( )  ( ), , , .A t b t b J B   A subspace Y  

of X  is called ( ),A t b -admissible if Y  is an invariant subspace of operator ( ),
, 0

t b
S s s  

and the restriction of ( ),t bS s  to Y  is a 0C -semigroup in .Y  

 

For deep information of the above noticed notions, we refer the work of Pazy [11] in 

chapters 5 and 6. On the family of operators ( ) ( ) , : ,  A t b t b J B , we perform the same 

hypothesis ( ) ( )1 4−H H  given in section 6.6.4 in Pazy [11] for the homogenous quasilinear 

evolution equation, as recall below. 

 

( )1H The family ( ) ( ) , : ,A t b t b J B   is stable. 

 

( )2H Y  is ( ),A t b -admissible for ( ),t b J B 
 
and the family ( )  ( ), , ,  A t b t b J B  of 

parts of  ( ),A t b
 
of ( ),A t b

 
in Y , is stable in .Y  

 

( )3H
 
For ( ) ( )( ), , , ,t b J B D A t b Y     ( ),A t b

 
is a bounded linear operator from Y  to 

X  and the map ( ),t A t b
 
is continuous in the ( ),B Y X

 
norm .

Y X→
 for every .b B  

 

( )4H There is a constant L  such that  

( ) ( )1 2 1 2, ,
XY X

A t b A t b L b b
→

−  −  

holds for every 1 2,b b B
 
and 0 . t T  

 

Definition 2.1: A two parameter family of bounded linear operators ( ), ,0 ,  U t s s t T
 

on X  is called an evolution system if the following two conditions are satisfied: 

 

(i) ( ),U s s I= , ( ) ( ) ( ), , ,U t r U r s U t s= for 0 .   s r t T  

(ii)  ( ) ( ), ,→t s U t s  is strongly continuous for 0 .  s t T  
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Moreover,  let B X and let ( ) ,A t b , ( ),t b J B   be a family of operators fulfilling the 

above stated hypothesis ( ) ( )1 4H H− . If ( ),u C J X
 
has values in B  then there is a 

unique evolution system ( ), ,0   
u

U t s s t T , in X satisfying 

 

(i) ( ) ( ), exp −
u

U t s M t s                                                                                  (3) 

for 0   s t T , where M  and   are stability constants; 

(ii) ( ) ( )( ), ,
+

=


=


u

t s

U t s w A s u s w
t

                                                                         (4) 

for ,w Y and 0 ;s t T    

(iii) ( ) ( ) ( )( ), ; , ,


= −


u
U t s u w U t s A s u s w

s
                                                            (5)  

for ,w Y and 0 .  s t T   

 

Again, there is a constant 
1

C  such that for every ( ), ,u v C J X
 
with values in B  and for 

every ,w Y  we have 

                    ( ) ( ) ( ) ( )1
, , .  −  −

t

u v Y

s

U t s w U t s w C w u v d                                 (6) 

To find the above noticed outcomes in details, the Theorem 6.4.3 and Lemma 6.4.4 is given 

in Pazy [11]. 

 

 Further we consider that  

 

( )5H For every ( ),u C J X
 
satisfying ( )u t B

 
for ,t J  we have 

( ), ,0   
u

U t s Y Y s t T  

where ( ),U t s
 
is strongly continuous in Y  for , t s J  and .s t  

 

( )6H Every closed convex and bounded subset of Y  is also closed in .X  

 

( )7H The real-valued function a  and b  are continuous on I  and there exist positive 

constants T
k  and T

a
 
such that ( )  T

k t k
 
and ( )  T

a t a
 
for t J . 

 

 
( )8H

 
:  →h J X X  is continuous and there exist constants 0

L
H

 
and 0

0H  such that 

                                          ( ) ( ) ( ) ( )
0

, ,  −  − 
t

L
h s x h s y ds H x t y t  

and                           

( )0

0

max ,0 .= 
t

H h s ds  
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For the conditions ( )9
H  and ( )10

H , Z  be taken as both X  and .Y  

 

( )9H :   →f J Z Z Z  is continuous and there exist constants 0
L

F  and 
0

0F  such that 

 

( ) ( ) ( )1 1 2 2 1 1 2 1 2, , , ,
Z ZZ

f t u v f t u v F u u v v−  − + −
 

and    

( )0
max ,0,0 .


=

Zt J
F f t  

 

( )10H
 

:  →g J Z Z  is continuous and there exist constants 0
L

G  and 
0

0G  such that 

( ) ( ) ( ) ( )( )1 2 1 2

0

, ,−  − L

t

Z Z
g s u g s u G u t uds t  

and   

( )
0

0 max ,0 .

t

k s dsG
 

=  
 
  

Let ( )
( ) max , ,0 , .=    

u B Z
M U t s s t T u B  

 

( )11
H

  0 0 00 0
+ + + + + + 

L LT L T T L TY L
M u k rTH k TH F rT a F rT a F FG G T T r

 

 and
      

( ) ( ) 2

0 01 1 00
1.

 + + + + +
 
  

+
 = 

+ + +

T L L T LY

T L TL LL

T
T T k H r H F r a G r a G FC u C

MTk H M GF T MF a T  

 

We mentioned that condition ( )6H
 
is always satisfied if X  and Y  are reflexive Banach 

space. Next we prove the existence of local classical solution of the quasilinear problem 

(1)–(2). By a mild solution to (1) – (2) on  0, ,J T=
 
we signify a function ( ),u C J X

 
with values in B  satisfying the integral equation 

              ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0

0 0

,0 , , , , .   
  

= + + −  
   

 
t s

u u
u t U t u U t s Hu s f s u s a s g u d ds     (7)                

A function ( ),u C J X  such that ( ) u t Y B
 

for (0,t T
 

and (( )1 0, ,u C T X
 

satisfying the equation (1) – (2) in X  is called a classical solution of (1) – (2) on J , where 

( )1 ,C J X
 
space of all continuously differentiable functions from J  to X . 

 

 

3 Existence Result 
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Theorem 3.1: Let 0u Y
 

and let  : , 0.
Y

B u X u r r=     If the hypothesis 

( ) ( )1 10
−H H  are satisfied, then (1)–(2) has a unique classical solution 

 ( ) (( )10, : 0, : .u C T Y C T X  

 

Proof: Let S  be the nonempty closed subset of  ( )0, ,C T X
 
defined by 

 ( ) ( ) : 0, , ,  for t J .
Y

S u u C T X u t r=     

Suppose a mapping F  on S  defined by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0

0 0

,0 , , , , .   
  

= + + −  
   

 
t s

u u
Fu t U t u U t s H u s f s u s a s g u d ds  

We state that : →F S S . For ,u S  we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0

0 0 0

,0 , , , , ,       
  

= + − + −  
   

  
t s s

u uY
Fu t U t u U t s k s h u d f s u s a s g u d ds   

( ) ( )

( ) ( )( ) ( ) ( ) 

( ) ( ) ( )( ) ( ) ( )

0

0

0

0

, ,0 ,0

,0 ,

, , , ,0,0 ,0,0

     

   

 
− − + 

 
 +   

 + − − + 
   






s

t

u u s

k s h u h h d

U t u U t s ds

f s u s a s g u d f s f s  

using the hypothesis       

    

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

0 0

0

00

, ,0 ,0

, , , ,0,0 ,0,0

  

   

  
− − +  

  
 +  

    
+ − − +   

    

 



t s

Y st

k s h s u h s h s d ds

M u M

f s u s a s g u d f s f s ds

 

    

( )

( ) ( ) ( )( ) ( ) ( )( )

0

0

0

0

0

0

, ,0 ,0     

+
 

+ 


 
+ + − −




 
 
  

+ + 
 



 

t

T L T

t

Y

s

L

H u s ds H T

F u s a s g u

u k k

M

g g d ds F T

 

    
0 0 00

 + + + + +  + T L T L T L L T LY
rTH TH F rT a rTF G a TF G F TM u k k  

By using hypothesis ( )11
H , we get ( ) .

Y
Fu t r

 
Therefore F  maps S  into itself. 

Moreover, for , ,u v S  we have   
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( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

0 0

0 0

0

,0 ,0

, , , ,

, , , ,

u v

t s

u

s

v

Fu t Fv t U t u U t u

U t s H u s f s u s a s g u d

U t s H v s f s v s a s g v d ds

   

   

−  −

   
+ + −  

   

   
− + −  

   

 



 

                              

( ) ( )

( ) ( )( ) ( ) ( ) ( )( )

0 0

0 0

,0 ,0

, , , ,

u v

t s

u

U t u U t u

U t s H u s f s u s a s g u d   

 −

    
+ + −  
    
 

 

  ( ) ( )( ) ( ) ( ) ( )( )
0

, , , ,

s

vU t s H u s f s u s a s g u d   
   

− + −  
   

  

  

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )

0

0

, , , ,

, , , ,

s

v

s

v

U t s H u s f s u s a s g u d

U t s H v s f s v s a s g v d ds

   

   

   
+ + −  

   

   
− + −  
    





 

 

Using our hypothesis, we get 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 0

0 0

0

0

0

max

          , , , , ,

, , ,

          ,

, , ,

Y J

t s

u v

s

t

v
s

Fu t Fv t C u T u v

U t s U t s H u s f s u s a s g u d ds

f s u s a s g u d

U t s H u s H v s ds

f s v s a s g v d


 

   

   

   


−  −

   
+ − + −  

   

  
−  

  
+ − + 

  
− −  

  

 






  

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1 0 1

0

0

0

max max

, ,0 ,0

  

, , , ,0,0 ,0,0

Y J J

s

t

s

C u T u v C T u v

k s h u h h d

ds

f s u s a s g u d f s f s

 
   

     

   

 
 − + − 

 
− − + 

 
 

  
+ − − +  

  





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( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

0 0

0

0 0

, ,

, , , , , ,

       

       

 
− − − 

 
+  

    
+ − − −    

    

 


 

s s

t

s s

k s h u d k s h v d

M ds

f s u s a s g u d f s v s a s g v d

 

( ) ( ) ( ) ( ) ( ) ( ) 1 0 1 0 0 0

0

max max  
 

   
 

  − + − + + + + + 
t

T L L T L TY J J
C u T u v C T u v k H r H F r a G r a G F ds  

 

( ) ( )  
0

max


 


+ − + +
t

T L L T L L
J

M u v k H F a F G ds  

( ) ( ) ( ) ( )  ( ) ( )2

1 0 1 0 0 0
max max
 

   
 

  − + + + + + + − T L L T L TY J J
C u T u v C T k H r H F r a G r a G F u v

 

 
  ( ) ( )max


 


+ + + −

T L L T L L
J

MT k H F a F G u v  

( ) ( )( ) 
 

( ) ( )
2

1 0 1 0 0 0
max


 


 + + + + + + +
  −
 + + 

T L L T L TY

J

T L L T L L

C u T C T k H r H F r a G r a G F
u v

MT k H F a F G
 

 

This gives 

( ) ( ) ( ) ( )max ,


 


−   −
J

Fu t Fv t u v
 
by hypothesis ( )11

H  

 

where 0 1.  Thus F  is a contraction from S  to .S  By the contraction mapping 

theorem F  has a unique fixed point u S  which is the mild solution of  (1)–(2) on .J  

From ( )6
H , it leads that ( )u t

 
is in ( ),C J Y  (see [10] Lemma 7.4). Indeed, ( )u t

 
is weakly 

continuous as a Y -valued function. This means that ( )u t
 
is separably valued in ,Y  hence 

it is strongly measurable. Then, ( )
Y

u t
 

is bounded and measurable function in .t  

Therefore, ( )u t
 
is Bochner integrable (see e.g. [15], Chapter-V). Applying the relation 

( ) ( ) ,u t Fu t=
 
we conclude that ( )u t

 
is in ( ), .C J Y  

 

Now, consider the following evolution equation 

( ) ( ) ( ) ( ) ( )( )
( )

, ( ) , ( ) ,  ,+ = +
du t

A t u u t H u t f t u t G u t
dt

               

                         
 0(0) , 0,u u t T J=  = , 

The above equation can be noted as  

                           ( ) ( ) ( ) ( )' ,+ = v t A t v t h t t J                                                      (8) 

                           ( ) 0
0 =v u                                                               (9) 
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where ( ) ( )( ),=A t A t u t
 

and ( ) ( ) ( ) ( ) ( ) ( )( ), , ,= +h t H u t f t u t G u t t J  and u  is the 

unique fixed point of F  in .S  We note that ( )A t
 
satisfies ( ) ( )1 3H H−  of [11] (Section 

5.5.3) and ( ) ( ), .h t C J Y
 
By using theorem 5.5.2 in Pazy [11] we summarize that unique 

function ( ),v C J Y
 
exists such that (( )1 0, ,v C T X

 
satisfying (8)–(9) in X and hence 

v is given by 

                  ( ) ( ) ( ) ( )( ) ( ) ( )( )( )0

0

,0 , , , , ,

t

u uv t U t u U t s H u s f s u s G u s ds t J = + +    

where ( ), ,0   
u

U t s s t T
 
is  the evolution  system generated by the family ( )( ) ,A t u t , 

,t J  of linear operator in .X  The uniqueness of v  implies that v u  on J  and hence u  

is a unique classical solution of (1)–(2) and  ( ) (( )10, : 0, : .u C a Y C a X
 

This 

completes the proof. 

 

4 Example 
 

Consider Ω⸦ℝn
 be a bounded domain with smooth boundary  . Let the differential 

operator 

( ) ( )( ) ( )( )
, 1

, , ; , , , , , , ,


 
=

  
= − + 

   


n

ij

i j i j

A t x u D a t x u t x c t x u t x
x x

 

 

Consider the partial integrodifferential equation  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( 

,
, , ; , , , , , , , , , 0,


+ = +  



u t x
A t x u D u t x G u t x f t x u t x K u t x t x T

t
, (10)  

with the boundary condition 

( ), 0=u t x for ( ) ( , 0,t x T   

and initial condition  

( ) ( )0
0, =u x u x for x , 
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where  ( ) ( ) ( ) ( ) ( )( )
0

, , , , , ,= − 
t

G u t x a t x h s x u s x u s x ds  

and  ( ) ( ) ( ) ( ) ( )( )
0

, , , , , ,= − 
t

K u t x k t x g s x u s x u s x ds  

( )1 2
, ,..., ,


 = =


n i

i

D D D D
x

 

the function k  and a  are a real valued continuous function of bounded variation in ℝ and 

the function ( ), , ,f t x u v
 
is also a real valued continuous function defined on  J B B  

and there exist a constant 0L  such that  

  
( ) ( )1 1 2 2 1 2 1 2

, , , , , ,  −  − + − f t x u v f t x u v L u u v v
 

 

0M  and 0N  such that  

( ) ( ), , , , , ,    −  − + − h t x u h t x v M u v  

( ) ( ), , , , , ,    −  − + − g t x u g t x v N u v  

for x  and , , ,  u v B . 

Let 
2 1

  
−

n
p

l  
and ( )= pX L

 
with the usual norm  

1



 
=  
 


p
p

p
u u dx  

then integrodifferential equation (10) can be reformed as an abstract integrodifferential (1) 

in Banach space ,X  where ( ) ( ), , , ;=A t u v A t x u D v
 
with domain 

( )( ) ( ) ( ) ( ) (  2, , , 0, , 0,pD A t u v W v t x t x T=   =  
 

and  

( ) ( )( ) ( ) ( ) ( )( )
0

, , , , , , ,
 

− = 
 


t

f t u a t s g s u s ds f t x u t x K u t x   

( ) ( )( ) ( ) ( )
0

, , .− =
t

k t s h s u s ds G u t x  

We take note of that the assumption ( ) ( )1 10
−H H

 
are satisfied hence we may exert the 

finding of earlier part to assure the existence of unique classical solution of (10). 
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Abstract – In this paper, avian influenza epidemic model with drug resistance effect is investigated. The basic 

reproduction number 0R  find out using next generation method. The local and global stability of a disease free and 

endemic equilibrium of the system is studied and discussed. Numerical simulations are carried out to investigate the 

influence of the key parameters on the spread of the disease, to support the analytical conclusion and illustrate 

possible behavioral scenarios of the model.  

Keywords – Avian influenza, drug resistance, stability, basic reproduction. 

 

1. Introduction 

The year ended cost of affliction illness and the developing threat of evolution of a 

comprehensive strain make it all important to revisit of present accessible treatment options. 

Adamantane and neuraminidase inhibitors (NAIS), two divisions of drugs, are at present 

accessible treatment of influenza, although to treat influenza adequately combat to both divisions 

at drugs intimidate our ability. Underlying the appearance of day combat helps in letter consider 

at the mechanism. It will approve health authorization to make more adequate else of antiviral, 

over the cause of an influenza infection on a periodic basis, or in the content of a pandemic, 

preceding production on the appearance at drug combat in afflictions. A has been centralize 

largely an epidemiological model which represent the spreading of drug combat infection across 

a population. For developing approach to interrupt the diffusion of drug combat once it emerges, 
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such studies are important, they do not provide insight into how the drug combat break affair 

during the continuity at a single infection, and on what timescale the appearance of drug combat 

to NAIS has been examined by an early modeling study, during a single infection. In which, it is 

found that NAI combat could arrive in the absence at drug treatment, admitting at low level, even 

if the break is slightly less fit than the wild-type virus. To appraise the fitness difference which is 

caused by drug combat mutation has been studies and used several models. Alternative studies 

have used models to optimize treatment regimens to reduce the emergence of drug resistant 

mutants. However, some of the biological processes that might self or hinder the appearance of 

drug combat are yet not tried to examined by any study [2]. 

 

2. Mathematical Model 

Basic Model. Shuqinche [1] has proposed the model for the avian influenza 

( )

( )

1

1

(2.1)
1

1

dX wXY
c dX

dt Y

dY wXY
d m Y

dt Y

dS SY
b S

dt Y

dI SY
I

dt Y

dR
I R

dt











  



 

= − −
+

= − +
+

= − −
+

= − + +
+

= −

 

Modified Model. 

( )

( )

( )

1

1

(2.2)
1

1

ES
ES

ES

dX wXY
c dX

dt Y

dY wXY
d m Y

dt Y

dS SY
b S

dt Y

dI SY
I

dt Y

dR
I R

dt

dR
I R R

dt











   



  

  

= − −
+

= − +
+

= − −
+

= − + + +
+

= − +

= − +
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Parameter description. The human is divided into three compartments RIS ,, the number of 

susceptible, infected and recovered respectively, the birds are divided into susceptible poultry

( )X  and infected poultry ( )Y . 

Parameter  description  

C    natural birth rate of avian 

b    natural birth rate of human 

d    the natural mortality of poultry 

    the natural mortality of human 

m    due to the mortality illness of poultry 

    due to the mortality illness of human 

w    stands for infectious rate of susceptible poultry to infected poultry 

    stands for infected poultry of the infection    

rate of susceptible human individuals 

    the recovery rate that infects individuals through treatment 

    resistance rate to treatment 

    recovery rate after second line of resistance treatment 

 

3. Equilibria of the System 

( )

( )

( )

1

1

(3.1)
1

1

ES
ES

ES

dX wXY
c dX

dt Y

dY wXY
d m Y

dt Y

dS SY
b S

dt Y

dI SY
I

dt Y

dR
I R

dt

dR
I R R

dt











   



  

  

= − −
+

= − +
+

= − −
+

= − + + +
+

= − +

= − +

 

disease free equilibrium point 
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( ) 
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Theorem 3.1. if ,10 R the system (3.1) only exists the disease-free equilibrium 
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4. Local Stability of the Disease Free Equilibrium 

In this section we find the local stability of the disease free and endemic equilibrium. 

Theorem 4.1. The disease free equilibrium 0E  is locally asymptotically stable, if .10 R  

Proof. The Jacobian matrix of system (3.1) is
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 for ,10 R it is clear the matrix 
0EJ has negative real parts. So, 0E  is locally asymptotically 

stable. 

Theorem 4.2. The endemic equilibrium *E is locally asymptotically stable if .10 R  

Proof. The Jacobean matrix of system (3.1) is 
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The characteristic equation of jacobian matrix (4.2) at the endemic equilibrium point, 

( )* * * * *

* , , , , ESE X Y S I R= , is a fifth-degree polynomial given by
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Where , 1, 2, 3, 4, 5ia i = are the coefficients. It can be shown that all the coefficients ia are 

positive. The necessary and sufficient conditions for the local asymptotic stability of endemic 

equilibrium point 1E are that the Hurwitz determinants ,iH are all positive for the Routh-Hurwitz 

criteria. For a fifth degree polynomial [3] these criteria are given by 
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From which we can conclude whether the endemic equilibrium point is locally asymptotically 

stable or unstable.  

 

5. Global stability of the disease free and endemic equilibrium. 

Theorem 5.1. if ,10 R the disease free equilibrium 0E  is globally asymptotically stable, if 

,10 R the disease free equilibrium 0E  is unstable. 

Proof. Consider the lyapunov function 
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When ,10 R  we can get 0
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1 K and 0
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1 =K  has no other closed trajectory in addition to 0E  is 

globally asymptotically stable iff .10 R  

Theorem 5.2. The endemic equilibrium *E is globally asymptotically stable if .10 R  

Proof. Consider the Lyapunov function 
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By the relationship of arithmetic mean and geometric mean. 
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6.  Numerical Simulation 

   

Figure 1. 

 

Suppose the parameters are 3, 0.02, 0.04, 0.012,C d w= = = = 0.96, 1, 0.068,m b = = =  

0.62, 0.39, 0.05, 0.15, 0.0411,    = = = = = Let the initial value of the system as

, , , , ESX Y S I R are 30,20,15,10,5 respectively. Then we obtain 0 0.9 1,R = 

( )0 0 0 0 0

0 , , , ESE X Y S I R ( )75,0,29.41,0,0= Therefore by theorem 5.1, 0E
 

is globally 

asymptotically stable (see in figure 1) 



Journal of New Theory 27 (2019) 22-32                                                                                                                     31 

           

 

 

Figure 2. 

Again we take the parameter 2, 0.01, 0.03, 0.02,C d w= = = = 0.97, 1,m b= = 0.069, =

0.63, 0.301, 0.05, 0.15, 0.0411    = = = = =
 

and , , , , ESX Y S I R  are 30,20,15,10,5 

respectively. Then we obtain 0 1.33 1R =  , ( ) ( )31.0,23.0,72.10,8.2,86.41,,, *****

* =ESRISYXE  

Therefore, by theorem 5.2, *E
 
is globally asymptotically stable (see in figure 2) 

 

Figure 3. When  resistance rates to treatment increases then the steady state value I of the infective are decrease 
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If we change the value of  and keeping another parameter are fixed we can see that *I decreases 

as   increases. Choose the value of 0.01, 2, 7  = = =  we get 0.26, 0.13, 0.03I I I= = =  

respectively. 

 

7. Conclusion 

In this study, we formulate avian influenza epidemic model with saturated contact rate 

introduced by Shuqinche et al [1]. We have shown that if the basic reproduction number 10 R

then 0E globally asymptotically stable is disease out see Figure 2. If 10 R then +E exist i.e. 

disease persist. Numerical simulation indicates that when the disease is endemic, the steady state 

value I decrease as resistance rate to treatment increases See Figure 3. 
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Abstaract − Soft Set Theory, which has been considered as an adequate mathematical device,
was proposed by Molodtsov to deal with ambiguities and uncertainties. Several operations on soft
sets were defined in many soft set papers. This study is based on the paper ”On operations of Soft
Sets” by Sezgin and Atagün [Comput. Math. Appl. 61 (2011) 1457-1467]. In this paper, we define
a new operation on soft sets, called extended difference and investigate its relationship between
extended difference and restricted difference and some other operations of soft sets.

Keywords − Soft sets, Restricted union, Extended union, Restricted intersection, Extended inter-
section, Restricted difference, Extended difference.

1 Introduction

In different areas, Mathematicians and Scientists have been facing several ambi-
guities and uncertainties in the problems of computer science, statistics, different
branches of engineering, environmental sciences, economics, medical sciences, soci-
ology and many other different fields of sciences. In the past, many of the theories
were presented to overcome these uncertainties. But Molodtsov [10] has found that
these theories have their own built-in deadlocks. The main problem shared by those
theories is their conflict with the parametrization tools. So, to overcome these dead-
locks properly, in 1999, Molodtsov [10] suggested a fully new approach that is soft
set theory which acts as a breakthrough for those deadlocks. In this theory, a soft set
could be a parameterized group of subsets of the universal set and also the drawback
of setting the membership operation does not appear. It gives us a lot of choices in

*Corresponding Author.
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the problem to solve them easily. Now the development in the field of soft set theory
is increasing day by day.

In 2002, Maji et al. [9] applied the soft sets to decision creating problems using
rough mathematics and then in 2003, Maji and Biswas [8] introduced many opera-
tions of soft sets. And then, many authors [1, 2, 4, 5, 6, 7, 11, 13] also studied the
different soft operations.

In 2011, Sezgin and Atagün [12] discussed the fundamental theorems about op-
erations about soft sets i.e; union and intersection of soft sets and other operations.
In that paper, they defined union and intersection operation of soft sets both with
restricted and extended condition but defined the difference operation only with re-
stricted condition. They did not define difference operation with extended condition.
Here in this paper, we have defined a new operation on soft sets called extended
difference and also proved some of its properties. Moreover, we have also proved
the interesting result which shows the relationship between extended difference with
the restricted difference. The main objective of this paper is to make soft set theory
more effective and solid by enhancing the conceptual feature of operations on soft
sets.

2 Preliminary

In view this chapter, we review a few fundamental assumptions in soft set theory.
From now on, U is a basic universe set , E is set of all feasible parameters in the
below discussion with reference to U . We denote the power set on U (i.e; the set of
consisting all the subsets of U) by P (U), A is a subset of E. Generally parameters
are the numeric values, attributes of elements in U . Molodtsov [10], illustrated the
soft set in such a way as following:

Definition 2.1. ([10]) Let U be the fundamental universe, E is a set about para-
meters and D be a subset of E. The pair (L,D) is known to be a soft set over U ,
when L is mapping of D within set of every subsets of set U .
For e ∈ D , L(e) is may be regarded as a set of e-elements of soft set (L,D).

Definition 2.2. ([8]) Let (L, D) and (K, J) be two soft sets over the same universe
U , then (K, J) is soft subset on (L,D) if it satisfies:
(i) J ⊆ D
(ii) K(e) ⊆ L(e), ∀e ∈ J
and it is denoted by (K, J)⊂̃(L,D) and also if (L,D) is soft subset on (K, J) then
(K, J) is said to be a soft superset of (L,D) and it is denoted by (K, J)⊃̃(L,D).

Definition 2.3. ([8]) Let (L,D) and (K, J) be two soft sets over the identical uni-
verse U . (L,D) and (K, J) are called soft equal sets if (L,D) is soft subset of (K, J)
and (K, J) is soft subset of (L,D).

Definition 2.4. ([3]) The relative complement of a soft set (K,B) is shown by
(K,B)r and is illustrated as (K, B)r = (Kr, B), where Kr : B → P (U) is a mapping
assigned as Kr(e) = U \K(e) , ∀e ∈ B.

Definition 2.5. ([8]) A soft set (K, B) over U is known as a null soft set shown as
ΦB if for all e ∈ B, K(e) = ∅.
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Definition 2.6. ([8]) Let (L,D) be a soft set over a universe U . Then, (L,D) is
known as an absolute soft set if for all e ∈ D, L(e) = U and it is denoted by UD.

Definition 2.7. ([8]) Let (L,D) and (K,Z) be soft sets over an identical universe U ,
then “(L,D)AND(K, Z)′′ denoted by (L,D) ∧ (K, Z) and is expressed as (L,D) ∧
(K,Z) = (H, D × Z), where H(α, β) = Lα) ∩K(β), ∀(α, β) ∈ D × Z.

Definition 2.8. ([8]) Let (L,D) and (K, Z) be two soft sets over a common universe
U , then “(L,D)OR(K, Z)′′ shown as (L,D) ∨ (K,Z) and is expressed as (L,D) ∨
(K,Z) = (H, D × Z), where H(α, β) = L(α) ∪K(β), ∀(α, β) ∈ D × Z.

Definition 2.9. ([3]) Let (L,D) and (K,Z) be two soft sets over an identical universe
U , where D ∩ Z 6= φ. The restricted union of (L,D) and (K, Z) is shown by
(L,D)∪R (K, Z) and expressed as (L,D)∪R (K,Z) = (H, C), when C = D ∩Z and
for all e ∈ C, H(e) = L(e) ∪K(e).

Definition 2.10. ([8]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U . The extended union of (L, D) and (K,Z) is expressed as the soft set
(I, O) fulfilling the situations: (i)O = D ∪ Z; (ii)for all e ∈ O,

I(e) =





L(e) if e ∈ D \ Z,
K(e) if e ∈ Z \D,
L(e) ∪K(e) if e ∈ D ∩ Z.

This relation is shown by (L,D)∪̃(K, Z) = (I, O).

Definition 2.11. ([3]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted intersection of (L,D) and (K,Z)
shown by (L, D) ∩R (K, Z) and is expressed as (L,D) ∩R (K, Z) = (H,C), where
C = D ∩ Z and for all e ∈ C, H(e) = L(e) ∩K(e).

Definition 2.12. ([3]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U . The extended intersection of (L,D) and (K, Z) is expressed as the soft
set (I, O) fulfilling situations: (i)C = D ∪ Z; (ii)for all e ∈ O,

I(e) =





L(e) if e ∈ D \ Z,
K(e) if e ∈ Z \D,
L(e) ∩K(e) if e ∈ D ∩ Z.

This relation is shown by (L,D)∩̃(K, Z) = (I, O).

Definition 2.13. ([12]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted difference of (L,D) and (K, Z) is
shown by (L,D) ∼R (K,Z), and expressed as (L,D) ∼R (K, Z) = (H,C), where
C = D ∩ Z and for all e ∈ C, H(e) = L(e) \K(e).

Definition 2.14. ([12]) Let (L,D) and (K, Z) be two soft sets over an identical
universe U , where D ∩ Z 6= φ. The restricted symmetric difference of (L,D) and

(K,Z) is shown by (L,D)4̃(K, Z), and expressed as (L,D)4̃(K, Z) = ((L,D) ∪R

(K,Z)) ∼R ((L,D) ∩R (K,Z)) = (T, C), where C = D ∩ Z.



Journal of New Theory 27 (2019) 33-42 36

3 Properties of operations of soft sets and their

correlations with one another

As the fundamental properties and theorems related to operations of soft sets such
as restricted union, extended union, restricted intersection, extended intersection,
restricted difference we refer to the paper Sezgin and Atagün [12], Maji et al. [8], Ali
et al. [3] and Pei and Miao [11]. Now we are ready to give the definition of extended
difference of soft sets and its basic properties.

Definition 3.1. Let (X,D) and (P, E) be the two soft sets over an identical universe
U . The extended difference of (X, D) and (P, E) can be expressed as the soft set
(L,C) fulfilling the situations as under: (i)C = D ∪ E; (ii)for all e ∈ C,

L(e) =





X(e) if e ∈ D \ E,
P (e) if e ∈ E \D,
X(e) \ P (e) if e ∈ D ∩ E.

Thus, the relation is shown by (X,D) ∼E (P, E) = (L,C).

Example 3.2. Let E be the universe set of parameters, D, B be the subsets of E such
that E = {e1, e2, e3, e4, e5, e6}, D = {e1, e2, e3, e4} and B = {e3, e4, e5}. Assume that
(X, D) and (K, B) are two soft sets over common universe U = {h1, h2, h3, h4, h5, h6}
as following: (X, D) = {(e1, {h2, h4}), (e2, {h1, h3}), (e3, {h3, h5}), (e4, {h1, h6})}, (P,B) =
{(e3, {h4, h5}), (e4, {h1, h2}), (e5, {h2, h5})}, where C = D ∪B = {e1, e2, e3, e4, e5}.

Now let (X, D) ∼E (P,B) = (L,D ∪B), where

L(e) =





X(e) if e ∈ D \B,
P (e) if e ∈ B \D,
X(e) \ P (e) if e ∈ D ∩B.

and for all e ∈ D ∪ B = {e1, e2, e3, e4, e5}. Since D \ B = {e1, e2}, L(e1) = X(e1) =
{h2, h4}, L(e2) = X(e2) = {h1, h3}. Since B \ D = {e5}, L(e5) = P (e5) = {h2, h5}
and since D ∩ B = {e3, e4}, L(e3) = X(e3) \ P (e3) = {h3, h5} \ {h4, h5} = {h3},
L(e4) = X(e4) \ P (e4) = {h1, h6} \ {h1, h2} = {h6}. Hence, (X, D) ∼E (P,B) =
(L,D ∪B) = {(e1, {h2, h4}), (e2, {h1, h3}), (e3, {h3}), (e4, {h6}), (e5, {h2, h5}).
Theorem 3.3. Let (P, D), (P, V ), (R, J), (S, I), (X,Z) be two soft sets over a com-
mon universe U . Then, we have the following:

a) (P, D) ∼E ΦD = (P, D).

b) (P, D) ∼E (P, D) = ΦD.

c) UD ∼E (P, D) = (P, D)r.

d) Left distribution of restricted intersection over extended difference:
(P, V ) ∩R ((R, J)) ∼E (S, I)) = ((P, V ) ∩R (R, J)) ∼E ((P, V ) ∩R (S, I)).

e) Right distribution of restricted intersection over extended difference:
((X, Z) ∼E (R, J)) ∩R (S, I) = ((X, Z) ∩R (S, I)) ∼E ((R, J) ∩R (S, I)).



Journal of New Theory 27 (2019) 33-42 37

f) Right distribution of restricted difference over extended difference:
((P, Z) ∼E (R, J)) ∼R (W, I) = ((P,Z) ∼R (W, I)) ∼E ((R, J) ∼R (W, I)).

Proof. a) Let ΦD = (M,D) and (P, D) ∼E ΦD = (P, D) ∼E (M, D) = (H, D),
where

H(e) =





P (e) if e ∈ D \D,
M(e) if e ∈ D \D,
P (e) \M(e) if e ∈ D ∩D = D.

and for all e ∈ D ∪ D. Since M(e) = φ for all e ∈ D ∪ D, it follows that H(e) =
P (e) \ φ = P (e). This means that P and H are the same mappings. This completes
the proof.

b) Let (P, D) ∼E (P, D) = (H, D), where

H(e) =





P (e) if e ∈ D \D,
P (e) if e ∈ D \D,
P (e) \ P (e) if e ∈ D ∩D = D.

and for all e ∈ D ∪D. Hence, H(e) = P (e) \ P (e) = ∅. This completes the proof.
c) Let UD = (G,D) and UD ∼E (P,D) = (G,D) ∼E (P,D) = (W,D), where

W (e) =





G(e) if e ∈ D \D,
P (e) if e ∈ D \D,
G(e) \ P (e) if e ∈ D ∩D = D.

for all e ∈ D ∪ D. Since G(e) = U for all e ∈ D ∪ D, it follows that W (e) =
U \ P (e) = P r(e), which completes the proof.

d) For the left hand side of the property, let (R, J) ∼E (S, I) = (T, J ∪ I), where

T (e) =





R(e) if e ∈ J \ I,
S(e) if e ∈ I \ J,
R(e) \ S(e) if e ∈ J ∩ I.

for all e ∈ J ∪ I.
First let (P, V ) ∩R (T, J ∪ I) = (X, V ∩ (J ∪ I)), where X(e) = P (e) ∩ T (e) for

all e ∈ V ∩ (J ∪ I).
Due the main features of set theory and according to the expressions of X also

with T and suppose T is a piecewise function, we write the following equalities for
the mapping X:

X(e) =





P (e) ∩R(e) if e ∈ V ∩ (J \ I) = (V ∩ J) \ (V ∩ I),
P (e) ∩ S(e) if e ∈ V ∩ (I \ J) = (V ∩ I) \ (V ∩ J),
P (e) ∩ (R(e) \ S(e)) if e ∈ V ∩ (J ∩ I)

for all e ∈ V ∩ (J ∪ I).
For the right hand side of the property, let (P, V )∩R (R, J) = (D, V ∩ J), where

D(e) = P (e)∩R(e) for all e ∈ V ∩J 6= φ. Suppose that (P, V )∩R (S, I) = (O, V ∩I),
where O(e) = P (e) ∩ S(e) for all e ∈ V ∩ I 6= φ. Assume that (D,V ∩ J) ∼E

(O, V ∩ I) = (Z, (V ∩ J) ∪ (V ∩ I)), where
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Z(e) =





D(e) if e ∈ (V ∩ J) \ (V ∩ I),
O(e) if e ∈ (V ∩ I) \ (V ∩ J),
D(e) \O(e) if e ∈ (V ∩ J) ∩ (V ∩ I) = V ∩ (J ∩ I)

for all e ∈ (V ∩ J) ∪ (V ∩ I). Due to considering the expressions of D and O, we
write the mapping Z as below:

Z(e) =





P (e) ∩R(e) if e ∈ (V ∩ J) \ (V ∩ I),
P (e) ∩ S(e) if e ∈ (V ∩ I) \ (V ∩ J),
(P (e) ∩R(e)) \ (P (e) ∩ S(e)) if e ∈ V ∩ (J ∩ I).

It shows that X and Z are the identical mapping when we are assuming the attributes
of operations about set theory. Hence the proof is completed.

e) For the left hand side of the property, let (X, Z) ∼E (R, J) = (T, Z∪J), where

T (e) =





X(e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
X(e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J .
First let (T, Z ∪ J) ∩R (S, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) ∩ S(e)

for all e ∈ (Z ∪ J) ∩ I. Due the main features of set theory and according to the
expressions of Q also with T and suppose that T is a piecewise function, also we
write the following equalities for the mapping Q:

Q(e) =





X(e) ∩ S(e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) ∩ S(e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(X(e) \R(e)) ∩ S(e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I.
For the right hand side of the property, let (X,Z) ∩R (S, I) = (M, Z ∩ I), where

M(e) = X(e) ∩ S(e) for all e ∈ Z ∩ I. Assume (R, J) ∩R (S, I) = (O, J ∩ I),
where O(e) = R(e) ∩ S(e) for all e ∈ J ∩ I. Let (M, Z ∩ I) ∼E (O, J ∪ I) =
(W, (Z ∩ I) ∪ (J ∩ I)), where

W (e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I)∪ (J ∩ I). By assuming the main expressions of M and O, we can
rewrite the mapping W as below:

W (e) =





X(e) ∩ S(e) if e ∈ (Z ∩ I) \ (J ∩ I),
R(e) ∩ S(e) if e ∈ (J ∩ I) \ (Z ∩ I),
(X(e) ∩ S(e)) \ (R(e) ∩ S(e)) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ J) ∪ (Z ∩ I). This leads that Q and W are the identical mapping.
Hence this completes the proof.
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f) For the left hand side of the property, let (P,Z) ∼E (R, J) = (T, Z∪J), where

T (e) =





P (e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
P (e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J .

First let (T, Z ∪ J) ∼R (W, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) \ W (e)
for all e ∈ (Z ∪ J) ∩ I. Due the main features of set theory and according to the
expressions of Q also with T and suppose that T is a piecewise function, we can
write the following equalities for the mapping Q:

Q(e) =





P (e) \W (e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(P (e) \R(e)) \W (e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I.

For the right hand side of the property, let (P,Z) ∼R (W, I) = (M,Z ∩ I), where
M(e) = P (e) \ W (e) for all e ∈ Z ∩ I. Assume (R, J) ∼R (W, I) = (O, J ∩ I),
where O(e) = R(e) \ W (e) for all e ∈ J ∩ I. Let (M,Z ∩ I) ∼E (O, J ∪ I) =
(X, (Z ∩ I) ∪ (J ∩ I)), where

X(e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I)∪ (J ∩ I). By assuming the main expressions of M and O, we can
rewrite the mapping X as below:

X(e) =





P (e) \W (e) if e ∈ (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J ∩ I) \ (Z ∩ I),
(P (e) \W (e)) \ (R(e) \W (e)) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ J) ∪ (Z ∩ I). This leads that Q and X are the identical mapping.
Hence this completes the proof.

Now, we give a corresponding example of part (g) of above Theorem.

Example 3.4. Suppose that E is the universe set of parameters and Z,J and I
are the subsets of E such that E = {e1, e2, e3, e4, e5, e6, e7}, Z = {e1, e2, e3, e5},
J = {e4, e5, e6} and I = {e2, e5, e6, e7}.

Suppose that (P, Z), (R, J) and (W, I) be three soft sets over a common universe
U = {h1, h2, h3, h4, h5, h6, h7, h8, h9} such that

(P,Z) = {(e1, {h1, h2, h9}), (e2, {h4, h5, h6}), (e3, φ), (e5, {h7, h8, h9})},
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(R, J) = {(e4, {h3, h4, h7}), (e5, {h7, h8, h9}), (e6, {h7, h8})},
(W, I) = {(e2, {h4, h5}), (e5, {h3, h8}), (e6, {h1, h3, h5, h6}), (e7, {h4, h6, h8})}.
For the left hand side of the equality, let (P, Z) ∼E (R, J) = (T, Z ∪ J), where

T (e) =





P (e) if e ∈ Z \ J,
R(e) if e ∈ J \ Z,
P (e) \R(e) if e ∈ Z ∩ J

for all e ∈ Z ∪ J = {e1, e2, e3, e4, e5, e6}.

Since Z \ J = {e1, e2, e3}, T (e1) = P (e1) = {h1, h2, h9}, T (e2) = P (e2) =
{h4, h5, h6}, T (e3) = P (e3) = φ, since J \Z = {e4, e6}, T (e4) = R(e4) = {h3, h4, h7},
T (e6) = R(e6) = {h7, h8} and since Z ∩ J = {e5}, T (e5) = P (e5) \ R(e5) =
{h7, h8, h9} \ {h7, h8, h9} = φ. So,

(T, Z ∪ J) = {(e1, {h1, h2, h9}), (e2, {h4, h5, h6}), (e3, φ), (e4, {h3, h4, h7})(e5, φ),
(e6, {h7, h8})}.

Now let (T, Z ∪ J) ∼R (W, I) = (Q, (Z ∪ J) ∩ I), where Q(e) = T (e) \ W (e)
for all e ∈ (Z ∪ J) ∩ I. By the main features of set theory and the definitions of Q
along with T and considering that T is a piecewise function, we can write the below
equalities for Q:

Q(e) =





P (e) \W (e) if e ∈ (Z \ J) ∩ I = (Z ∩ I) \ (J ∩ I),
R(e) \W (e) if e ∈ (J \ Z) ∩ I = (J ∩ I) \ (Z ∩ I),
(P (e) \R(e)) \W (e) if e ∈ (Z ∩ J) ∩ I

for all e ∈ (Z ∪ J) ∩ I = {e2, e5, e6}.

Since (Z \J)∩I = (Z∩I)\(J∩I) = {e2}, Q(e2) = P (e2)\W (e2) = {h4, h5, h6}\
{h4, h5} = {h6}, since (J \Z)∩I = (J ∩I)\(Z∩I) = {e6}, Q(e6) = R(e6)\W (e6) =
{h7, h8} \ {h1, h3, h5, h6} = {h7, h8} and since (Z ∩ J) ∩ I = Z ∩ I ∩ J = {e5},
Q(e5) = (P (e5) \R(e5)) \W (e5) = φ \ {h3, h8} = φ. So,

(Q, (Z∪J)∩I) = ((P,Z) ∼E (R, J)) ∼R (W, I) = {(e2, {h6}), (e5, φ), (e6, {h7, h8}).

For the right hand side of the equality let (P, Z) ∼R (W, I) = (M, Z ∩ I), where
M(e) = P (e) \ W (e) for all e ∈ Z ∩ I = {e2, e5}, then M(e2) = P (e2) \ W (e2) =
{h4, h5, h6} \ {h4, h5} = {h6}, M(e5) = P (e5) \ W (e5) = {h7, h8, h9} \ {h3, h8} =
{h7, h9}.

Now let (R, J) ∼R (W, I) = (O, J ∩ I), where O(e) = R(e) \ W (e) for all e ∈
J ∩ I = {e5, e6}. Then, O(e5) = R(e5) \W (e5) = {h7, h8, h9} \ {h3, h8} = {h7, h9},
O(e6) = R(e6) \W (e6) = {h7, h8} \ {h1, h3, h5, h6} = {h7, h8}.

Now let (M, Z ∩ I) ∼E (O, J ∩ I) = (X, (Z ∩ I) ∪ (J ∩ I)), where
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X(e) =





M(e) if e ∈ (Z ∩ I) \ (J ∩ I),
O(e) if e ∈ (J ∩ I) \ (Z ∩ I),
M(e) \O(e) if e ∈ (Z ∩ I) ∩ (J ∩ I)

for all e ∈ (Z ∩ I) ∪ (J ∩ I) = {e2, e5, e6}. Since (Z ∩ I) \ (J ∩ I) = {e2}, X(e2) =
M(e2) = P (e2) \ W (e2) = {h6}, since (J ∩ I) \ (Z ∩ I) = {e6}, X(e6) = O(e6) =
R(e6)\W (e6) = {h7, h8} and since (Z∩I)∩(J∩I) = {e5}, X(e5) = M(e5)\O(e5) =
(P (e5) \ (W (e5)) \ (R(e5) \ W (e5)) = φ. So, (X, (Z ∩ I) ∪ (J ∩ I)) = ((P,Z) ∼R

(W, I)) ∼E ((R, J) ∼R (W, I)) = {(e2, {h6}), (e5, φ), (e6, {h7, h8}). Since Q and X
are the same mappings, ((P, Z) ∼E (R, J)) ∼R (W, I) = ((P, Z) ∼R (W, I)) ∼E

((R, J) ∼R (W, I)) is satisfied.

4 Conclusion and Future Work

Here in this work, we have illustrated a brief analytical review of operations of
soft sets. We have defined the extended difference of soft sets and also proved
some of its properties. Moreover, we have shown the relationship between extended
difference and the restricted difference and some other operations of soft sets. The
main objective of this paper is to make soft set theory more effective and solid by
enhancing the conceptual feature of operations on soft sets. One can may define
the extended symmetric difference and can also construct a property which shows a
relationship or connects of extended symmetric difference with restricted symmetric
difference.
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Abstaract − In this paper, we introduce and investigate the concepts of lightly nano ω-closed
sets and lightly nano ω-open sets in a nano topological spaces, which are weaker form of lightly
nano-closed sets and lightly nano-open sets and relationships among related ng-closed sets are
investigated.
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1 Introduction

Thivagar et al. [4] introduced the concept of nano topological spaces with respect
to a subset X of a universe U. We study the relationships between some near nano
open sets in nano topological spaces.

In this paper, we introduce and investigate the concepts of lightly nano ω-closed
sets and lightly nano ω-open sets in a nano topological spaces, which are weaker
form of lightly nano-closed sets and lightly nano-open sets and relationships among
related ng-closed sets are investigated.

2 Preliminaries

Definition 2.1. [7] Let U be a non-empty finite set of objects called the universe and
R be an equivalence relation on U named as the indiscernibility relation. Elements
belonging to the same equivalence class are said to be indiscernible with one another.
The pair (U, R) is said to be the approximation space. Let X ⊆ U .

*Corresponding Author.
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1. The lower approximation of X with respect to R is the set of all objects, which
can be for certain classified as X with respect to R and it is denoted by LR(X).
That is, LR(X) =

⋃
x∈U{R(x) : R(x) ⊆ X}, where τR(x) denotes the equiva-

lence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which
can be possibly classified as X with respect to R and it is denoted by UR(X).
That is, UR(X) =

⋃
x∈U{R(x) : R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can
be classified neither as X nor as not - X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Definition 2.2. [4] Let U be the universe, R be an equivalence relation on U and
τR(X) = {U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . Then τR(X) satisfies the
following axioms:

1. U and φ ∈ τR(X),

2. The union of the elements of any sub collection of τR(X) is in τR(X),

3. The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

Thus τR(X) is a topology on U called the nano topology with respect to X and
(U, τR(X)) is called the nano topological space. The elements of τR(X) are called
nano-open sets (briefly n-open sets). The complement of a n-open set is called n-
closed.

In the rest of the paper, we denote a nano topological space by (U,N ), where
N = τR(X). The nano-interior and nano-closure of a subset A of U are denoted by
n-int(A) and n-cl(A), respectively.

Definition 2.3. A subset H of a space (U,N ) is called

1. nano α-open set (briefly nα-open) [4] if H ⊆ n-int(n-cl(n-int(H))).

2. nano semi-open set [4] if H ⊆ n-cl(n-int(H)).

3. nano pre-open set [4] if H ⊆ n-int(n-cl(H)).

4. nano semi-preopen set [9] if H ⊆ n-cl(n-int(n-cl(H))).

5. nano regular-open set (briefly nr-open) [4] if H = n-int(n-cl(H)).

6. nano nowhere dense (briefly n-nowhere dense) [5] if n-int(n-cl(H)) = φ.

The complements of the above mentioned sets are called their respective closed sets.
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Definition 2.4. A subset H of a space (U,N ) is called

1. nano g-closed (briefly ng-closed) [2] if n-cl(H) ⊆ G, whenever H ⊆ G and G
is n-open.

2. nano sg-closed set (briefly nsg-closed) [3] if n-scl(H) ⊆ G, whenever H ⊆ G
and G is nano semi open.

3. nano αg-closed (briefly nαg-closed) [11] if n-αcl(H) ⊆ G whenever H ⊆ G
and G is n-open.

4. nano gα-closed (briefly ngα-closed) [11] if n-αcl(H) ⊆ G whenever H ⊆ G
and G is nα-open.

5. nano gsp-closed (briefly ngsp-closed) [9] if n-spcl(H) ⊆ G whenever H ⊆ G
and G is n-open.

3 On lightly nano closed sets

Definition 3.1. A subset R of a space (U,N ), is called

1. lightly nano closed (briefly L-n-closed) set if n-cl(R) ⊆ S whenever R ⊆ S and
S is nano semi-open.

The complement of a L-n-closed set is said to be L-n-open.

2. lightly nano ω-closed (briefly L-nω-closed) set if n-cl(n-int(R)) ⊆ S whenever
R ⊆ S and S is nano semi-open.

The complement of a L-nω-closed set is said to be L-nω-open.

Recall, we denote the class of L-n-closed sets in (U,N ) by K i.e., K = {R ⊆ U : R
is L-n-closed in (U,N )} .

Theorem 3.2. In a space (U,N ), the following relations are true for a subset R of
U .

1. R is n-closed ⇒ R is L-n-closed.

2. R is L-n-closed ⇒ R is ng-closed.

3. R is L-n-closed ⇒ R is nsg-closed.

4. R is L-n-closed ⇒ R is ngα-closed.

Proof. 1. Let R be every n-closed set and S be every nano semi-open set such
that R ⊆ S. Then n-cl(R) ⊆ S. Since n-cl(R) = R and hence R is L-n-closed.

2. Let R ∈ K and S be every n-open set such that R ⊆ S. Since every n-open
set is nano semi-open and R is L-n-closed set, we have n-cl(R) ⊆ S and hence
R is ng-closed.
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3. Let R ∈ K and S be every nano semi-open set containing R. Then n-scl(R) ⊆
n-cl(R) ⊆ S, since R is L-n-closed. Therefore R is nsg-closed.

4. Let R ∈ K and S be every nα-open set containing R. Since every nα-open
set is nano semi-open and since n-αcl(R) ⊆ n-cl(R), we have by hypothesis,
n-αcl(R) ⊆ n-cl(R) ⊆ S and so R is ngα-closed.

Proposition 3.3. In a space (U,N ), the following relations are true for a subset R
of U .

1. R is L-n-closed ⇒ R is L-nω-closed.

2. R is n-closed ⇒ R is L-nω-closed.

3. R is ng-closed ⇒ R is L-nω-closed.

Proof. 1. Let R ⊆ S where S is nano semi-open and R is L-n-closed. n-cl(n-int(R)) ⊆
n-cl(R) ⊆ S. This proves R is L-nω-closed.

2. Let R is n-closed. Also S is nano semi-open. Therefore R ⊆ n-cl(n-int(R)) ⊆ S
which shows that R is L-nω-closed.

3. Let R is ng-closed. Since S is nano semi-open. Therefore n-cl(n-int(R)) ⊆
R ⊆ S. Thus R is L-nω-closed.

Proposition 3.4. In a space (U,N ), the following relations are true for a subset R
of U .

1. R is nr-closed ⇒ R is L-nω-closed.

2. R is L-nω-closed ⇒ R is ngsp-closed.

Proof. 1. Let every nr-closed set can be as R and S be a nano semi-open set
containing R. Since R is nr-closed we have R = n-cl(n-int(R)) ⊆ S and hence
R is L-nω-closed.

2. Let every L-nω-closed set can be as R and S be a n-open set containing R.
Then S is a nano semi-open set containing R, so n-cl(n-int(R)) ⊆ S. Since
S is n-open we get n-int(n-cl(n-int(R))) ⊆ S which implies n-spcl(R) ⊆ S,
hence R is ngsp-closed.

Remark 3.5. These relations are shown in the diagram.

ngα-closed
↑

n-closed −→ L-n-closed −→ nsg-closed
↘ ↙ ↓

nr-closed −→ L-nω-closed ←− ng-closed
↓

ngsp-closed
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The converses of each statement in Theorem 3.2, Propositions 3.3 and 3.4 are
not true as shown in the following Example.

Example 3.6. Let U = {1a, 1b, 1c} with U/R = {{1a}, {1b, 1c}} and X = {1c}.
Then N = {φ, U, {1b, 1c}}. Let A = {1a, 1b} be L-n-closed but not n-closed.

Example 3.7. Let U = {1a, 1b, 1c, 1d} with U/R = {{1a}, {1b, 1c, 1d}} and X =
{1a}. Then N = {φ, U, {1a}}. Then

1. ng-closed 9 L-n-closed.

Let us consider B = {1b} is ng-closed. Then

R = n-cl(B) = n-cl({1b}) = {1b, 1c, 1d}

Therefore R * S, since S is nano semi open. Hence B is not L-n-closed.

2. ng-closed 9 L-nω-closed.

Let us consider C = {1a, 1b, 1c} is ng-closed. Then

R = n-cl(n-int(C)) = n-cl(n-int({1a, 1b, 1c})) = n-cl({1a}) = U

Therefore R * S, since S is nano semi open. Hence C is not L-nω-closed.

3. nsg-closed 9 L-n-closed.

Let us consider D = {1c} is nsg-closed. Then

R = n-cl(D) = n-cl({1c}) = {1b, 1c, 1d}

Therefore R * S, since S is nano semi open. Hence D not L-n-closed.

4. ngα-closed 9 L-n-closed.

Let us consider E = {1a, 1c} is ngα-closed. Then

R = n-cl(E) = n-cl({1a, 1c}) = U

Therefore R * S, since S is nano semi open. Hence E is not L-n-closed.

5. L-nω-closed 9 L-n-closed.

Let us consider F = {1c, 1d} is L-nω-closed. Then

R = n-cl(F ) = n-cl({1c, 1d}) = U

Therefore R * S, since S is nano semi open. Hence F is not L-n-closed.

6. L-nω-closed 9 n-closed.

Let us consider J = {1d} is L-nω-closed. Then J * N ′. Hence J is not
n-closed.
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7. L-nω-closed 9 nr-closed.

Let us consider K = {1b, 1c, 1d} is L-nω-closed. Then

R = n-cl(n-int({1b, 1c, 1d})) = φ

Therefore K 6= R. Hence K is not nr-closed.

8. ngsp-closed 9 L-nω-closed.

Let us consider I = {1a, 1d} is ngsp-closed. Then

R = n-cl(n-int({1a})) = U

Therefore R * S, since S is nano semi open. Hence I is not L-nω-closed.

Theorem 3.8. In a space (U,N ) is both n-closed and nαg-closed, then it is L-nω-
closed.

Proof. Let nαg-closed set can be as R and S be a n-open set containing R. Then S ⊇
n-αcl(R) = R∪n-cl(n-int(n-cl(R))). Since R is n-closed, we have S ⊇ n-cl(n-int(R))
and hence R is L-nω-closed.

Theorem 3.9. In a space (U,N ) is both n-open and L-nω-closed, then it is n-closed.

Proof. Since R is both n-open and L-nω-closed, R ⊇ n-cl(n-int(R)) = n-cl(R) and
hence R is n-closed.

Corollary 3.10. In a space (U,N ) is both n-open and L-nω-closed, then it is both
nr-open and nr-closed.

Theorem 3.11. A set R is L-nω-closed ⇐⇒ n-cl(n-int(R)) − R contains no
non-empty nano semi-closed set.

Proof. Necessity. Let M be a nano semi-closed set such that M ⊆ n-cl(n-int(R))−R.
Since M c is nano semi-open and R ⊆ M c, from the definition of L-nω-closed set it
follows that n-cl(n-int(R)) ⊆ M c. Hence M ⊆ (n-cl(n-int(R)))c. This implies that
M ⊆ (n-cl(n-int(R))) ∩ (n-cl(n-int(R)))c = φ.

Sufficiency. Let R ⊆ T , where T is nano semi-open set subset in U . If n-cl(n-int(R))
is not contained in T , then n-cl(n-int(R))∩T c is a non-empty nano semi-closed subset
of n-cl(n-int(R))−R, we obtain a contradiction.

Theorem 3.12. Let (U,N ) be a space and K ⊆ R ⊆ U . If K is L-nω-closed set
relative to R and R is and L-nω-closed subset of U then K is L-nω-closed set relative
to U .

Proof. Let K ⊆ S and S be a nano semi-open. Then K ⊆ R ∩ S. Since K is L-nω-
closed relative to R, we have n-clR(n-intR(K)) ⊆ R∩S. That is R∩n-cl(n-int(K)) ⊆
R∩S. We have R∩n-cl(n-int(K)) ⊆ S and then [R∩n-cl(n-int(K))]∪(n-cl(n-int(K)))c

⊆ S ∪ (n-cl(n-int(K)))c. Since R is L-nω-closed, we have n-cl(n-int(R)) ⊆ S ∪
(n-cl(n-int(K)))c. Since n-cl(n-int(K)) is not contained in (n-cl(n-int(K)))c we get
R ⊇ n-cl(n-int(K)). Thus K is L-nω-closed set relative to U .
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Corollary 3.13. If R is both n-open and L-nω-closed and P is n-closed in a space
(U,N ), then R ∩ P is L-nω-closed.

Proof. Since P is n-closed, we have R ∩ P is n-closed in R. Therefore n-clR(R ∩
P ) = R ∩ P in R. Let R ∩ P ⊆ S, where S is nano semi-open in R. Then
n-clR(n-intR(R ∩ P )) ⊆ S and hence R ∩ P is L-nω-closed in R. By Theorem 3.18,
R ∩ P is L-nω-closed.

Theorem 3.14. If R is L-nω-closed and R ⊆ K ⊆ n-cl(n-int(R)), then K is L-nω-
closed.

Proof. Since R ⊆ K we have n-cl(n-int(K)) − K ⊆ n-cl(n-int(R)) − R. By The-
orem 3.11, n-cl(n-int(R)) − R contains no non-empty nano semi-closed set and so
n-cl(n-int(K))−K contains no non-empty nano semi-closed, so K is L-nω-closed.

Theorem 3.15. If a subset R of a space (U,N ) is every n-nowhere dense, then it
is L-nω-closed.

Proof. Since n-int(R) ⊆ n-int(n-cl(R)) and R is n-nowhere dense, n-int(R) = φ.
Therefore n-cl(n-int(R)) = φ and hence R is L-nω-closed.

Remark 3.16. The converse of Theorem 3.15 are not true as shown in the following
Example.

Example 3.17. In Example 3.6, then J = {1a, 1b} is L-nω-closed but not n-nowhere
dense.

Proposition 3.18. In a space (U,N ), R is n-open ⇒ R is L-nω-open.

Proof. Let every n-open set can be as R in a space U . Then Rc is n-closed in U . By
Proposition 3.11(2) follows that Rc is L-nω-closed in U . Hence R is L-nω-open.

Remark 3.19. The converse of Proposition 3.18 are not true as shown in the fol-
lowing Example.

Example 3.20. In Example 3.7, then M = {1a, 1b, 1c} is L-nω-open but not n-open.

Proposition 3.21. A subset R of a space (U,N ), in the following results are true

1. If R is L-n-open then R is L-nω-open.

2. If R is ng-open then R is L-nω-open.

3. If R is L-nω-open then R is ngsp-open.

Remark 3.22. The converse of Proposition 3.21 are not true as shown in the fol-
lowing Example.

Example 3.23. In Example 3.6, then

1. {1a, 1b} is L-nω-open but not L-n-open.

2. {1a, 1c} is L-nω-open but not ng-open.
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Example 3.24. In Example 3.7, then {1c} is ngsp-open but not L-nω-open.

Theorem 3.25. A subset R be a space U is L-nω-open if Q ⊆ n-int(n-cl(R))
whenever Q ⊆ R and Q is nano semi-closed.

Proof. Let every L-nω-open can be as R. Then Rc is L-nω-closed. Let Q be a
nano semi-closed set contained in R. Then Qc is a nano semi-open set in U con-
taining Rc. Since Rc is L-nω-closed, we have n-cl(n-int(Rc)) ⊆ Qc. Therefore
Q ⊆ n-int(n-cl(R)).

Conversely, we suppose that Q ⊆ n-int(n-cl(R)) whenever Q ⊆ R and Q is nano
semi-closed. Then Qc is a nano semi-open set containing Rc and Qc ⊇ (n-int(n-cl(R)))c.
It follows that Qc ⊇ n-cl(n-int(Rc)). Hence Rc is L-nω-closed and so R is L-nω-open.

Acknowledgement

The authors thank the referees for their valuable comments and suggestions for
improvement of this paper.

References

[1] A. C. Upadhya, On quasi nano p-normal spaces, International Journal of Recent
Scientific Research, 8(6)(2017), 17748-17751.

[2] K. Bhuvaneshwari and K. Mythili Gnanapriya, Nano generalised closed sets,
International Journal of Scientific and Research Publications, 4(5)(2014),1-3.

[3] K. Bhuvaneshwari and K. Ezhilarasi, On nano semi generalized and nano gen-
eralized semi-closed sets, IJMCAR. 4(3)(2014), 117-124.

[4] M. L. Thivagar and Carmel Richard, On nano forms of weakly open sets, Inter-
national Journal of Mathematics and Statistics Invention,1(1)(2013), 31-37.

[5] M. L. Thivagar, Saeid Jafari and V. Sutha Devi, On new class of contra con-
tinuity in nano topology, Italian Journal of Pure and Applaied Mathematics,
2017, 1-10. .

[6] N. Nagaveni and M. Bhuvaneswari, On nano weakly generalized closed sets,
International Journal of Pure and Applied Mathematics, 106(7)(2016), 129-137.

[7] Z. Pawlak, Rough sets, International journal of computer and Information Sci-
ences, 11(5)(1982), 341-356.

[8] I. Rajasekaran and O. Nethaji, On some new subsets of nano topological spaces,
Journal of New Theory, 16(2017), 52-58.

[9] S. B. Shalini and K. Indirani, Nano generalized semi pre-closed sets and nano
semi pre-generalized closed sets in nano topological spaces, International Journal
of Physics and Mathematical, 5(3)(2015), 27-31.



Journal of New Theory 27 (2019) 43-51 51

[10] P. S. Devi and K. Bhuvaneswari , On nano regular generalized and nano gen-
eralized regular closed sets in nano topological spaces , International Journal of
Engineering Trends and Technology (IJETT), 8(13)(2014), 386-390.

[11] R. T. Nachiyar and K. Bhuvaneswari, On nano generalized A-closed sets &
nano A-generalized closed sets in nano topological spaces, International Journal
of Engineering Trends and Technology (IJETT), 6(13)(2014), 257-260.



http://www.newtheory.org ISSN: 2149-1402

Received : 03.09.2018 Year : 2019, Number : 27, Pages: 52-62
Published : 16.03.2019 Original Article

A Network Shortest Path Algorithm via Hesitancy Fuzzy
Digraph

Parimala Mani1,*

Said Broumi2

Karthika Muthusamy1

<rishwanthpari@gmail.com>
<broumisaid78@gmail.com>
<karthikamuthusamy1991@gmail.com>

1Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam-638401,
Tamil Nadu, India

2Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P
7955, Sidi Othman, Casablanca, Morocco

Abstaract − Many extension and generalization of fuzzy sets have been studied and introduced
in the literature. Hesitancy fuzzy digraph is a generalization of intuitionistic fuzzy set and fuzzy
graph. In this paper, we redefine some basic operations of hesitancy fuzzy graph and it is referred
as hesitancy fuzzy digraph (in short HFDG). We discuss some arithmetic operations and relations
among HFDG. We further proposed a method to solve a shortest path problem through score
function.

Keywords − Digraphs, Hesitancy fuzzy sets, Hesitancy fuzzy digraphs.

1 Introduction

Several extension of fuzzy set have been proposed, since 1965 [11]. Some of the works
among the generalization are remarkable in the history of literature such as intuition-
istic fuzzy set [1], type 2 fuzzy set, interval valued fuzzy set, neutrosophic sets [19]
and so on. Hesitant fuzzy sets are useful to deal with group decision making problems
when experts have a hesitation among several possible memberships for an element
to a set.The concept of hesitancy fuzzy set (HFS for short) proposed by Torra [4]. It
is a generalization of fuzzy sets and intuitionistic fuzzy sets, that permits us to rep-
resent the situation in which different membership functions are considered possible.
The concept of hesitancy fuzzy set is characterized by three dependent membership
degrees namely truth-membership degree (t), hesitancy membership degree (h), and
falsity-membership degree (f). HFSs are motivated to handle the common difficulty

*Corresponding Author.



Journal of New Theory 27 (2019) 52-62 53

that appears in fixing the membership degree of an element from some possible val-
ues. This situation is rather common in decision making problems too while an expert
is asked to assign different degrees of membership to a set of elements {x, y, z, ...}
in a set A. Often problems arise due to uncertain issues and situations hence one is
faced with hesitant moments. The researcher had to find ways and means to take
the problems and arrive at a solution. Therefore researchers have taken up the study
and application of HFS. HFSs have been extended in [2,3,5,6,13] and Zhu[12] from
different perspectives such as, both quantitatively and qualitatively. Since the con-
cept of the hesitant fuzzy set was established,it has gained increasing attention and
has been successfully applied to many uncertain decision making problems. hesi-
tancy fuzzy graphs (HFG for short) where introduced and studied by Pathinath and
Jon [14] in order to capture the common intricacy that occurs during a selection
of membership degree of an element from some possible values that makes one to
hesitate. The concept of hesitancy fuzzy graphs are generalizations of fuzzy graphs
[7], intuitionistic fuzzy graphs [8,9] and vague graphs [10]. The Table 1, presented a
comparative study between all of these kinds of graphs. The shortest path problem is
one of the most fundamental problems in graph theory which has many applications
diversified field such operation research, computer science, communication network
and so on. In a network, the shortest path problem concentrate at finding the path
from one source to destination node with minimum weight, where some weight is
attached to each edge connecting a pair of nodes. In the literature, many shortest
path problems [16-18] have been studied with different types of input data, including
fuzzy set, intuitionistic fuzzy sets, trapezoidal intuitionistic fuzzy sets, vague set.

In this paper a new method is proposed for solving shortest path problems in a
network which the edges length are characterized by hesitancy fuzzy numbers. We
consider a situation that a company wishes to assign a work to service center based
on the possible to clear the issue(t) and not possible to clear the issue (f). But if the
technician is on leave then the company or else the service center has to approach
the near by center. This category is called the hesitancy(h). The paper is organized
as follows: In Section 2, definition of Hesitancy fuzzy set is given. In Section 3,
we provide the definition of hesitancy fuzzy digraphs (HFDGs), some arithmetic
operation and score function of a hesitancy fuzzy number. Section 4 and 5, Network
terminology and Algorithm is proposed using the score function and example for the
proposed algorithm for network problems to find shortest path and distance from
the source node to the destination node. In Section 6, a comparative study between
the proposed approach and other existing approaches is summarized and Section 7
conclude the paper.

2 Preliminary

In this paper, we provide the basic definition of hesitancy fuzzy set. This is very
useful for the discussions.

Definition 2.1. Let X be a fixed set, a Hesitant fuzzy set (HFS) on X is in terms
of a function that when applied to X returns a subset of [0, 1]. The HFS is defined
by a mathematical symbol as: A = {< x, hA(x) >: x ∈ X}, where hA(x) is a set of
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Table 1: Comparative study between hesitancy fuzzy graph, fuzzy graphs, intuition-
istic fuzzy graphs and vague graphs.

some values in [0, 1], denoting the possible membership degrees of the element x ∈ X
to the set A and called h = hA(x) a hesitant fuzzy element (HFE) and Θ the set of
all HFEs.

Definition 2.2. Let V be a finite hesitancy fuzzy non-empty set, A = 〈V, ti, hi, fi〉
a hesitancy fuzzy set of V and B = 〈V × V, ti,j, hi,j, fi,j〉 a hesitancy fuzzy relation
on V. Then the ordered pair G = (A,B) is called hesitancy fuzzy directed graph or
hesitancy fuzzy digraph (HFDG).

Where ti : V → [0, 1], hi : V → [0, 1] and fi : V → [0, 1] denote the degree of
membership(t), hesitancy(h) and non-membership(f) of the element vi ∈ V respec-
tively and ti(vi) + hi(vi) + fi(vi) = 1 for every vi ∈ V ,∀i ∈ Z, hi = 1 − (ti + fi)
and B = E ⊆ V × V where ti,j : V × V → [0, 1], hi,j : V × V → [0, 1] and
fi,j : V × V → [0, 1] are the degrees of membership(t), hesitancy(h) and non-
membership(f) of the edge (vi, vj) respectively such that 0 ≤ ti,j + hi,j + fi,j ≤ 1
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and

ti,j ≤ min{vi, vj}
hi,j ≤ min{vi, vj}
fi,j ≤ max{vi, vj}

Note 1: In hesitancy fuzzy graph, the graph is symmetric relation on V but HFDG
is not symmetric relation on V

Notation

1. Hereafter, 〈t(vi), h(vi), f(vi)〉 or simply 〈ti, hi, fi〉 denotes the degrees of mem-
bership, hesitancy and non-membership of the vertex vi ∈ V , such that ti(vi)+
hi(vi) + fi(vi) = 1.

2. 〈t(vi,j), h(vi,j), f(vi,j)〉 or simply 〈ti,j, hi,j, fi,j〉 denotes the degrees of member-
ship, hesitancy and non-membership of the edge (vi, vj) ∈ V × V , such that
0 ≤ ti,j + hi,j + fi,j ≤ 1.

Note 2:

1. If ti,j = 0, for some i and j , then there is no edge between vi and vj and it is
indexed by 〈0, 1, 0〉 or 〈0, 0, 1〉 or 〈0, 0, 0〉. Otherwise there exists edge between
vi and vj.

2. In this paper, we are interested in hesitancy fuzzy zero, given by: 0 = 〈0, 0, 1〉
Example 2.3. Let G = (V,E) be a HFDG, where the vertex set is V = {v1, v2, v3, v4,
v5, v6} shown in Figure 1

The index matrix of G is G = {V, V, 〈ti,j, hi,j, fi,j〉}, where V = {v1, v2, v3, v4, v5, v6}
is given in the Table 2.

Table 2: Index matrix

v1 v2 v3 v4 v5 v6

v1 〈0, 0, 1〉 〈0.3, 0.2, 0.5〉 〈0, 0, 1〉 〈0.1, 0.2, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉
v2 〈0, 0, 1〉 〈0.6, 0.3, 0.1〉 〈0, 0, 1〉 〈0.5, 0.3, 0.2〉 〈0, 0, 1〉 〈0, 0, 1〉
v3 〈0, 0, 1〉 〈0, 0, 1〉 〈0.1, 0.2, 0.7〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0.1, 0.2, 0.6〉
v4 〈0, 0, 1〉 〈0, 0, 1〉 〈0.1, 0.2, 0.7〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉
v5 〈0.3, 0.1, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0.4, 0.1, 0.3〉
v6 〈0, 0, 1〉 〈0, 0, 1〉 〈0, 0, 1〉 〈0.3, 0.1, 0.5〉 〈0, 0, 1〉 〈0, 0, 1〉

Definition 2.4. Let A1 = 〈t1, h1, f1〉 and A2 = 〈t2, h2, f2〉 be two hesitancy fuzzy
numbers. Then, the operations for HFNs are defined as below;

1. A1 ⊕ A2 = 〈t1 + t2 − t1t2, h1 + h2 − h1h2, f1f2〉
2. A1 ⊗ A2 = 〈t1t2, h1h2, f1 + f2 − f1f2〉
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Figure 1: G: Hesitancy fuzzy digraph

3. λA1 = 〈(1− (1− t1)
λ), (1− (1− h1)

λ), fλ
1 〉

4. Aλ
1 = 〈tλ1 , hλ

1 , (1− (1− f1)
λ), 〉

Definition 2.5. Let A = 〈t, h, f〉 be a hesitancy fuzzy number. Then, the score

function s(A) is defined by s(A) = 1+(t+2h−f)(2−t−f)
2

Comparison of two hesitancy fuzzy numbers.

Let A1 = 〈t1, h1, f1〉 and A2 = 〈t2, h2, f2〉 be two hesitancy fuzzy numbers then

1. A1 ≺ A2 if s(A1) ≺ s(A2)

2. A1 Â A2 if s(A1) Â s(A2)

3. A1 = A2 if s(A1) = s(A2)
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3 Network Terminology and the Proposed

Algorithm

Consider a directed network G(V, E) consisting of a finite set of nodes V = {1, 2, ..., n}
and a set of m directed edges E ⊆ V × V . Each edge is denoted by an ordered pair
(i, j) where i, j ∈ V and i 6= j. In this network, we specify two nodes, denoted by 1
and n, which are the source node and the destination node, respectively. We define
a path pij = {i = i1, (i, j), i3, i4, .., il−1, (il−1, il), il} of alternating nodes and edges.
The existence of atleast one path P1i in G(V,E) is assumed for every i ∈ V − {1}.
dij denotes hesitancy fuzzy number associated with the edge (i, j), corresponding to
the length necessary to traverse (i, j) from i to j. The hesitancy fuzzy distance along
the path P is denoted as d(P ) is defined as d(P ) =

∑
{i,j∈P} dij

Remark: A node i is said to be predecessor node of node j if

1. Node i is directly connected to node j.

2. The direction of path connecting node i and j from i to j.

In this paper, the edge length in a network is considered to be a hesitancy fuzzy
number , also in this section, an algorithm is being proposed to find the hesitancy
fuzzy minimum arc length and the shortest distance in a network of each node from
source node. The algorithm is a labeling technique which can be applied for solving
shortest path problems occurring in real life problem.

Algorithm:

1. Assume d1 = 〈0, 0, 1〉 and label the source node as d1.

2. Find dj = min{di ⊕ dij}, where j = 2, 3, ..., n.

3. If minimum occurs corresponding to unique value of i i.e., i = p then label
node j as [dj, p]. If minimum occurs corresponding to more than one values of
i then it represents that there are more than one hesitancy fuzzy path between
source node i and node j but hesitancy fuzzy distance along the path is dj, so
choose any value of i.

4. Let the destination node (node n) be labeled as [dn, l], then the hesitancy fuzzy
shortest distance between source node is dn.

5. Since destination node is labeled as [dn, l], so, to find the hesitancy fuzzy short-
est path between source node and destination node, check the label of node
l. Let it be [dl, r], now check the label of node r and so on. Repeat the same
procedure until node l is attained.

6. Now the hesitancy fuzzy shortest path can be obtained by combining all the
nodes obtained by the step 5.
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4 Illustrative Network Example

A DTH company, say a wish to provide a best service to the customers. A cus-
tomer, say f have problem in the DTH. He approaches the customer care of the DTH
company to get recover from the issue. The company has private service center in
different cities. Those service centers are associated with the other service centers
because if the issue is big, they will approaches the other. Here the truth member-
ship represents that possibe to clear the issue by the service center, non-membership
represents that not possible to clear the issue and hesitancy represents technicians
availability. The company wish to find best service center through the proposed
algorithm.

Let us consider a hesitancy fuzzy digraph for the given network problem shown
in figure 2. b, c, d, e represents the private service centers and a, b, c, d, e, f are
called nodes.

Figure 2: Network with hesitancy fuzzy distance

Using the algorithm described in section 4, the following computational results
are obtained. Let us consider the source node = a and the destination node = f , so
n = f .

Let da = 〈0, 0, 1〉 and label the source node distance as da = [〈0, 0, 1〉, a], the
value of dj; j = b, c, d, e, f can be obtained as follows:

Iteration 1: Since a is the only one the predecessor node of node b , put
i = a and j = b in step 2 of the proposed algorithm, the value of db is db =
min{da ⊕ dab}=min{〈0, 0, 1〉 ⊕ 〈0.4, 0.2, 0.4〉}=〈0.4, 0.2, 0.4〉
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The minimum node value corresponds to the node i = a. Therefore label the
distance of node b as db = [〈0.4, 0.2, 0.4〉, a]

Iteration 2 : Nodes a and b are the two predecessor nodes of node c, put i = a, b
and j = c in step 2 of the proposed algorithm, the value of dc is

dc = min{da ⊕ dac, db ⊕ dbc}
= min{〈0, 0, 1〉 ⊕ 〈0.4, 0.2, 0.4〉, 〈0.4, 0.2, 0.4〉 ⊕ 〈0.1, 0.4, 0.4〉}
= 〈0.2, 0.3, 0.4〉, 〈0.46, 0.52, 0.16〉 s〈0.2, 0.3, 0.4〉
= 1+(t+2h−f)(2−t−f)

2

= 0.78 s〈0.46, 0.52, 0.16〉
= 1+(t+2h−f)(2−t−f)

2

= 1.4246
⇒ s〈0.2, 0.3, 0.4〉 ≤ s〈0.46, 0.52, 0.16〉.

The minimum node value corresponds to the node i = a. Therefore label the
distance of node c as dc = [〈0.2, 0.3, 0.4〉, a]

Iteration 3 : Node c is the predecessor node of node d , put i = c and j = d in
step 2 of the proposed algorithm, the value of dd is

d4 = min{dc ⊕ dcd} =min{〈0.2, 0.3, 0.4〉 ⊕ 〈0.5, 0.3, 0.1〉}=〈0.6, 0.51, 0.04〉

The minimum node value corresponds to the node i = c. Therefore label the
distance of node d as dd = [〈0.6, 0.51, 0.04〉, c]

Iteration 4: b and c are the two predecessor nodes of node e, put i = b, c and
j = e in step 2 of the proposed algorithm, the value of de is

de = min{db ⊕ dbe, dc ⊕ dce}
= min{〈0.4, 0.2, 0.4〉 ⊕ 〈0.3, 0.3, 0.3〉, 〈0.2, 0.3, 0.4〉 ⊕ 〈0.3, 0.3, 0.4〉}
= 〈0.58, 0.44, 0.12〉, 〈0.44, 0.51, 0.64〉 s〈0.58, 0.44, 0.12〉
= 1+(t+2h−f)(2−t−f)

2

= 1.371 s〈0.44, 0.51, 0.64〉
= 1+(t+2h−f)(2−t−f)

2
= 0.8772

⇒ s〈0.44, 0.51, 0.64〉 ≤ s〈0.58, 0.44, 0.12〉.

The minimum node value corresponds to the node i = c. Therefore label the
distance of node c as de = [〈0.44, 0.51, 0.64〉, c].

Iteration 5 :d and e are the two predecessor nodes of node f , put i = d, e and
j = f in step 2 of the proposed algorithm, the value of df is

de = min{dd ⊕ ddf , de ⊕ def}
= min{〈0.6, 0.51, 0.04〉 ⊕ 〈0.3, 0.1, 0.6〉, 〈0.44, 0.51, 0.64〉 ⊕ 〈0.3, 0.5, 0.2〉}
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= 〈0.72, 0.559, 0.24〉, 〈0.608, 0.755, 0.128〉 s〈0.72, 0.559, 0.24〉
= 1+(t+2h−f)(2−t−f)

2

= 1.33096 s〈0.608, 0.755, 0.128〉
= 1+(t+2h−f)(2−t−f)

2

= 1.75768
⇒ s〈0.72, 0.559, 0.24〉 ≤ s〈0.608, 0.755, 0.128〉.

The minimum node value corresponds to the node i = d. Therefore label the
distance of node d as df = [〈0.72, 0.559, 0.24〉, d].

Now the hesitancy fuzzy shortest path between node a and node f can be obtained
by using the following procedure: Since node f is labeled by df = [〈0.72, 0.559, 0.24〉, d],
which represents that we are coming from node d. Node d is labeled by dd =
[〈0.6, 0.51, 0.04〉, c] which represents that we are coming from node c. Node c is la-
beled by dc = [〈0.2, 0.3, 0.4〉, a], which represents that we are coming from node a.
Now the hesitancy fuzzy shortest path between the company a and customer f is
obtaining by joining all the obtained nodes. Hence the hesitancy fuzzy shortest path
is a → c → d → f with the hesitancy fuzzy value 〈0.72, 0.559, 0.24〉. In figure 3,
the dark lines indicate the shortest path from the source node (company) to the
destination node (customer).

The hesitancy fuzzy shortest distance and the hesitancy fuzzy shortest path of
all nodes from node a is shown in the table 2 and the labeling of each node is shown
in Figure 3.

Figure 3: Network with Hesitancy fuzzy shortest distance

Since there is no other work on shortest path problem using hesitancy fuzzy pa-
rameters for the edges (arcs), numerical comparison of this work with others work
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could not be done.

In this paper we find the shortest path from company to customer using the
hesitancy fuzzy shortest path algorithm. The idea of this algorithm is to carry
the distance function which works as a tool to identify the successor node from
company at the beginning till it reaches the customer with a shortest path. Hence
our hesitancy fuzzy shortest path algorithm is much efficient providing the fuzziness
between the intervals classified with true, hesitancy and false membership values.
This concept is ultimately differing with intuitionistic membership values as the case
of intuitionistic considers only the true and the false membership values. Hence in
hesitancy fuzzy, all the cases of fuzziness is discussed and so the algorithm is effective
in finding the shortest path.

5 Comparison table

In this section, a comparative study of various existing path problem such as crisp
shortest path problem, fuzzy shortest path problem, intuitionistic fuzzy shortest path
problem and hesitancy fuzzy shortest path problem is presented in Table 3.

Table 3: Comparison table
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6 Conclusion

In this paper we proposed an algorithm for finding shortest path and shortest arc
length for a real life problem. we found shortest path and shortest arc length from
company to customer on a network where the edges weights are assigned by hesi-
tancy fuzzy number. The procedure of finding shortest path has been well explained
and suitably discussed. Further, the implementation of the proposed algorithm is
successfully illustrated with the help of a network example. The algorithm is easy
to understand and can be used for all types of shortest path problems with arc
length as triangular hesitancy fuzzy, trapezoidal hesitancy fuzzy and interval valued
hesitancy fuzzy numbers. As a future work, we plan to implement this approach
practically in the area of soft computing such as neural networks, decision-making,
and geographical information systems.
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Abstract – The use of data collected on players, teams, and games for performance evaluation, player selection, 

score-outcome estimation, and strategy development using data mining tools and techniques are defined as sports 

data mining. Performance measures, unlike the common statistical methods, developed for each sport branch have 

an important role in sports data mining processes. Performance measures calculated for team sports can be used to 

predict the expectation of winning. The Pythagorean expectation developed for this objective was originally used 

in baseball games. The Pythagorean Expectation has also been adapted for other team sports with two results, such 

as basketball. However, the studies using Pythagorean Expectation for sports which have three possible outcomes 

are very limited. In this study, a suggestion for the calculation of Pythagorean Expectation for football is presented. 

In the application section, end-season rankings and points for the 2017/2018 season of  the selected fifteen 

European football leagues are predicted by using the suggested method. The data of the past five seasons of the 

selected European football leagues is used as the training dataset. All calculations are performed in R. 

 

Keywords – Sports data mining, Pythagorean Expectation, Point prediction, Soccer, Football 

 

 

1 Introduction 
 

Collecting and storing data have been easier and cost-effective in parallel with the progress in 

technology. Herewith, large amounts of data are generated in many different areas and used for 

different purposes. Sports data mining is defined as the use of data for performance evaluation, 

player selection, outcome-point prediction and strategy development by data mining tools and 

techniques. The decision makers of sports organizations can take more scientific and unbiased 

decisions by sports data mining compared to traditional methods. Sports data mining is rapidly 

spread and adopted due to clearly demonstrating team player performance and helping talent 

scouts to discover new talents. In addition, the popularity of sports data mining has increased 

due to the studies conducted on predicting the outcomes of sports events. 
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In sports data mining, it is necessary to define sabermetric first. Sabermetric depends on the 

idea of creating new statistics that better measure individual and team performances compared 

to the traditional statistical methods in baseball. Although the idea had been proposed earlier, 

it has been introduced by Bill James at the end of the Seventies in the annual “Baseball 

Abstracts” booklets published by himself. James rapidly pronounced his name and increased 

popularity with his unusual ranking methods and new statistical performance measurements 

called sabermetrics. The transition from traditional statistics to sabermetrics is the result of 

queries and solutions on the performance criteria introduced by Bill James. James [8] described 

the sabermetrics of which he developed in his later books. Pythagorean Expectation (PE), a 

performance measurement metric that predicts the game-winning rate of teams in baseball, was 

developed by James [7]. The PE has been widely used for baseball in the subsequent years. Lee 

[9] applied the PE for the 2005-2014 seasons of the Korean Baseball League and compared the 

expected and actual game winning numbers of clubs. Inconsistency between expected and 

actual winning numbers, assuming the conditions of the teams originated due to an unusual 

distribution, has been related to the coefficient of variation and standard deviation in the number 

of runs allowed. Tung [16] applied the PE to the data set of seasons from 1901 through 2009 

and produced a confidence interval for the number of games predicted to be won. Valero [17] 

predicted the outcomes of the American Baseball League by using sabermetrics, including PE 

to assess the predictive capabilities of data mining methods. Valero, following the statistical 

analysis, showed that classification methods resulted in better outcomes. The PE is given in 

detail in the second section. 

 

Performance measurements in basketball are performed as a team rather than individually since 

the performances of the players are relatively more dependent on each other compared to 

baseball. Dean Oliver is the pioneer of performance measurement in basketball. Oliver has 

developed new statistics for basketball in the Eighties [15]. In 2004, Oliver published the 

statistical methods for assessment in basketball and calculation tools to evaluate the teams [13]. 

 

The statistical techniques used in American football have not yet reached the levels reached in 

baseball and basketball. Schumaker et al. [15] attributed this to less number of games in 

American football compared to baseball and basketball and lack of some statistics about the 

players. A team in the American national football league plays 16 games in a season, while 162 

games in baseball and 82 games in basketball [15]. Leung and Joseph (2014) mentioned the 

Christodoulou algorithm that is used in the prediction of dual matchings and applied this 

algorithm to the American football data [10]. In the application section of their study, the 

distances of teams to each other in the American Football League were calculated and revealed 

similar teams by using the PE, Christodoulou algorithm and other sabermetrics. When the 

results of the future matches are predicted, according to the results of the matches between 

similar teams, points are assigned to the teams who have not played.  
 

The Christodoulou algorithm generates five statistics for the competing teams in a league based 

on the game outcomes. These are the number of points gained per game for a team (NPPG), the 

number of points scored by opponent per game (NPOPG), the number of points per games 

recorded in a league (NPRL), offensive strength (OS) and defensive strength (DS). The OS 

specifies the percentage of points scored by a team against their opponent to the number of 

points per game typically allowed by this opponent. For example, if NPRL is 40 in a league and 

a team can score 60 points per game, then the OS of the team would be 60/40. The DS indicates 

the ratio of points that a team allows to the opponent relative to the NPRL. For example, if the 

NPRL is 40 in a league, and an average team score per game is 20, then the DS of a team would 

be 20/40. The Christodoulou algorithm aims to predict the outcomes of games using these 
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statistics [10]. The aforementioned statistics which indicate the performance of a team are 

calculated for a team-A as follows. 

 

𝑂𝑆𝐴 =
𝑁𝑃𝑃𝐺𝐴

NPRL𝐿𝐸𝐴𝐺𝑈𝐸
 

 
(1) 

𝐷𝑆𝐴 =
NPOPG𝐴

NPRL𝐿𝐸𝐴𝐺𝑈𝐸
  

 

 

 

NPPG𝐴 =
𝑃𝑜𝑖𝑛𝑡𝑠 𝑆𝑐𝑜𝑟𝑒𝑑𝐴

𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑𝐴
 

 (2) 

NPOPG𝐴 =
𝑃𝑜𝑖𝑛𝑡𝑠 𝑆𝑐𝑜𝑟𝑒𝑑 𝑏𝑦 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 𝐴

𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑𝐴
 

 

The score of the game played by teams A and B can be predicted as follows using the above 

statistics. 

 

𝑆𝑐𝑜𝑟𝑒𝐴 = 𝑂𝑆𝐴 × NPOPG𝐵 + NPPG𝐴 × 𝐷𝑆𝐵 

(3) 
𝑆𝑐𝑜𝑟𝑒𝐵 = 𝑂𝑆𝐵 × NPOPG𝐴 + NPPG𝐵 × 𝐷𝑆𝐴 

 

Cricket is another sport field where performance measures are applied. Cricket sport is 

considered utterly rich in terms of statistics [3]. John Buchanan, the coach of the Australian 

national team, has pioneered many of sabermetrics involving in the cricket sport between 1999 

and 2007. The most well known is “Marginal Wins”. The performances of players are evaluated 

through these statistics according to their positions and can also be compared with the opponent 

players [15]. Vine [18] determined the “lucky” and “unlucky” teams by comparing the predicted 

and actual number of winnings of cricket teams. Vine who used the 4-season data set of the 

Australian Cricket League, assumed the coefficient of γ as 7.41 while adapting the PE to cricket 

sport. While determining these coefficients, the criterion was defined as the minimum root 

mean squared error (RMSE).  

 

Several attempts have been carried out to create statistical measures similar to sabermetric in 

football. However, analysis of game activity and game-based events in football are far better 

difficult than baseball. Because the performances of the players in football are much more 

dependent on each other compared to baseball. The roles of the players in baseball have been 

set sharply; the pitcher hits the ball, the batter meets the coming ball by his bat. In football, 

teams can attack and defend with various strategies and number of players. Therefore, 

sabermetric style performance measurement were not generally used in the data mining studies 

performed in football.  

 

In this study, an approach is presented for adaptation of PE, a sabermetric developed for 

baseball, to football using past season data. In the application, it is aimed to predict the points 

and the ranking of the teams with the proposed approach based on the scored and conceded 

goals at the end of the season. The use of PE in football and the proposed approach are presented 

in the second section. The application is given in the third section, and the results are shared in 

the final section. 
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2 Method 
 

In this section, the details of PE and the adaptations of PE in other sport branches including 

football are given. 

 

2.1 Pythagorean Expectation 

 

PE  has been proposed by Bill James [7] as a performance measurement metric that predicts 

the team winning rate of baseball teams using runs scored (RS), runs allowed (RA) obtained 

from past games and the league constant of γ. The PE can be used to determine the teams which 

performing above and below the expectations by comparing the actual winning rate. PE for 

baseball is calculated as in Equation 4. 

 

𝑃𝐸 =
𝑅𝑆γ

𝑅𝑆γ + 𝑅𝐴γ
  

(4) 

 

PE is typically used in the middle of a season to predict the standings for the end of a season. 

For example, if a team wins more than the predicted in the halfway through a season, analysts 

claim that the team will complete the remaining half of the season with fewer winnings than 

the predicted [12]. The value of constant γ in original formula has been set to 2.0 by James. 

Miller [12], however, has shown that the use of constant γ as 1.82 reduces the standard error. 

 

Various applications have been suggested for also baseball. Davenport and Woolner [4] argued 

that the γ value should be calculated separately for each team according to the balance of 

offensive and defensive power, and suggested that the γ coefficient in baseball should be 

calculated as in Equation 5 to obtain a smaller RMSE value. 

 

γ = 1.5 × log (
𝑅𝑆 + 𝑅𝐴

𝑁𝐺
) + 0.45 

(5) 

 

Where RS is the number of runs allowed, RA is the number of runs allowed and NG is the 

number of games played by the team. 

 

PE has attracted the attention in other sport branches due to its impact on baseball. Different γ 

values have been attained in the studies conducted using PE in sport branches such as American 

football, cricket, basketball and ice hockey. Some of these studies are summarized in Table 1. 

 

 
Table 1. Recommended γ Values for Different Sport Branches 

 

Sport  γ Source 

Baseball 1.82 [12] 

American Football 2.37 [14] 

Basketball 14 

13.91 

[13] 

[19] 

Ice Hockey 1.927 [2] 

Cricket 7.41 [18] 
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2.2 Pythagorean Expectation in Football 

 

PE in sports which have two possible outcomes (win - or - loss) which mentioned in the previous 

section have been applied only with the changes made in the γ coefficient. However,  the teams 

acquire points below the predicted if the original formula is applied directly without any 

arrangement in football which is a sport that can result in a tie [5, 6]. 

 

Hamilton [6], considering the possible tie outcome in football, predicted the points earned per 

game instead of predicting the winning ratios of teams using the extended Pythagorean method. 

Hamilton tried to overcome the problem that PB was only applicable to sports with two possible 

outcomes by calculating the probability of winning and draw for each team. Hamilton 

calculated the predicted point per game (PPPG) for team X by using Equation 6 where X 

representing a team playing in the league and Y representing the opponents. 

 

PPPG = 3 × P(X > Y) + P(X = Y) (6) 

 

Hamilton [6] used the least squares algorithm to express the scored and conceded goals 

distributions with a three-parameter Weibull distribution. However, Hamilton’s method has not 

widely used due to intensive mathematical and statistical procedures.  

 

Eastwood [5] took the draw possibility into account and adopted the original PE to a football 

game which has 3-point for a win, 1-point for a draw, 0-points for a loss. Eastwood, instead of 

calculating the winning possibility of the teams,  calculated the PPPG multiplying the average 

point per game (APPG) by the probability of gaining points. The equation developed by 

Eastwood to calculate the PPPG for each team is given below; 

 

𝑃𝑃𝑃𝐺 =
𝐺1.22777

𝐺1.072388 + 𝐶𝐺1.127248
× 2.499973 (7) 

 

In the Equation 7; G is the number of goals scored, CG is the number of goals conceded and 

the APPG is 2.499973.  

 

Hamilton [6] determined the γ value with a single season data and found RMSE value as 3.81. 

Eastwood [5] obtained lower RMSE values by using the data collected from ten seasons. The 

adaptation of Eastwood [5] seems like much straightforward and more practical than the 

adaptation formula of Hamilton [6]. However, Eastwood developed and implemented the 

formula only over the English Premier League data. 

 

2.3 Proposed Approach 

 

This section outlines the proposed approach to adapt PE to football. The proposed formula, 

unlike baseball, is aimed to predict the expected points per game of the teams instead of winning 

possibilities. In order to calculate the PE, the number of goals scored and conceded by the 

reference team in the league have to be known. In addition, the exponential coefficient γ and 

the average points distributed per game in the league (APDG) should also be determined. The 

most important difference between recommended approach and  Eastwood's formula is the 

usage of the γ coefficient. Eastwood’s formula uses three different γ coefficients.  The PE 

equation, which calculates the expected points per game for each team, is written as follows 

with the determination of the required coefficients γ and APDG: 
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PE =
𝐺𝑜𝑎𝑙𝑆

γ

𝐺𝑜𝑎𝑙𝑆
γ + 𝐺𝑜𝑎𝑙𝐶

γ × 𝐴𝑃𝑃𝐺 
(8) 

 

𝐺𝑜𝑎𝑙𝑆 represents the number of goals scored and 𝐺𝑜𝑎𝑙𝐶 is the number of goals conceded.  

 

Since football is not a sport with two possible outcomes, the APPG value cannot be taken as 3 

points. Considering that there are three possible outcomes in football, the ratios of the draw and 

win-loss in the leagues must be determined (Equation 9). The APPG is calculated by Equation 

10 using the statistics for the total game played in the league (TGP), total win (TW), total draw 

(TD) and total loss (TL). 

 

𝑅𝑎𝑡𝑖𝑜𝑤𝑖𝑛−𝑙𝑜𝑠𝑠: 
𝑇𝑊+𝑇𝐿

𝑇𝐺𝑃
 

(9) 
𝑅𝑎𝑡𝑖𝑜𝑑𝑟𝑎𝑤 : 

𝑇𝐷

TGP
 = 1−

𝑇𝑊+𝑇𝐿

TGP
 

 

𝐴𝑃𝑃𝐺 = 3 × (𝑅𝑎𝑡𝑖𝑜𝑤𝑖𝑛−𝑙𝑜𝑠𝑠) + 2 × (𝑅𝑎𝑡𝑖𝑜𝑑𝑟𝑎𝑤) (10) 

 

The γ coefficient in PE for football can be predicted by simple linear regression method (SLR). 

The SLR provides a linear function that models the relationship between the dependent and 

independent variables with the least squares (LS) algorithm.  

 

In the proposed approach, PB is calculated with the Equation 8 by using the various gamma 

values between 1 and 2 for all teams in the league then PB is multiplied by the number of 

matches played in order to predict end-season points. A regression model is created by using 

SLR where the predicted score as the explanatory variable and the actual score as the response 

variable. Consequently, the SLR models are generated as much as the number of γ tested. The 

optimum γ coefficient is determined by examining the RMSE obtained in the models and the 

coefficient of determination 𝑅2. 

 

3 Application  
 

The data of fifteen European football leagues belong to the six seasons between 2012-2013 and 

2017-2018 seasons used in the study were compiled from the mackolik.com website [11]. The 

leagues used in the application belong to countries of Turkey, Italy, Germany, Spain, France, 

Holland, England, Belgium, Austria, Croatia, Denmark, Czech Republic, Portugal, Romania, 

and Scotland. The league tables used in the study include the number of games played for each 

team (G), the number of wins (W), the number of draws (D), the number of losses (L), the goals 

scored (S), the goals conceded (C) and the end of season points (P). Play-offs, canceled games, 

and cup games have not been included in the data used. The league tables belong to past five 

years (2012 – 2017) of fifteen European football leagues were used as training data in the 

application. The data for 152 teams played during five seasons (2012-17) in the league (never 

dropped out) were used in the training data set. The data of 244 teams in the 2017-2018 season 

were separated as test data. All calculations are performed in R statistical programming 

language. A small excerpt of the data is shown in Table 2.  
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Table 2. An Example of a League Table 

 

Teams Country G W D L S C P 

Athletic Bilbao Spain 190 84 43 63 263 233 295 

Pandurii Targu Jiu Romania 154 64 38 52 222 192 224 

Nice France 190 83 46 61 252 220 295 

Zulte Waregem Belgium 150 68 40 42 241 209 244 

AZ Alkmaar Holland 170 72 40 58 299 265 256 

Schalke 04 Germany 170 74 40 56 259 222 262 

 

Firstly, the win-loss and draw ratios were calculated by using Equation 9:  

 

𝑅𝑎𝑡𝑖𝑜𝑤𝑖𝑛 =0.7471 
 
𝑅𝑎𝑡𝑖𝑜𝑑𝑟𝑎𝑤 =0.2528 
 

APPG was computed with Equation 10 as follows: 

 

𝐴𝑃𝑃𝐺 = 3 × (0.7471) + 2 × (0.2528) 
 
𝐴𝑃𝑃𝐺 = 2.7471  
 

The most successful results were obtained in the 1 ≤ γ ≤ 2 range in our preliminary study. 

Therefore, PE of each team was calculated with Equation 8 using 2.7471 as APPG for eleven 

different γ coefficients between 1.0 and 2.0. The calculated PE values are multiplied by the 

number of games played, and eleven distinct points are predicted for the total points of the 

teams for the five seasons. Eleven simple linear regression models were created to find the most 

appropriate γ value, where the predicted points were the independent variable (𝑥𝑖) and the actual 

points were the dependent variable (𝑦𝑖). The RMSE and coefficient of determination R2 values 

for the obtained models are shown in Table 3 and Figure-1: 

 

 
Table 3. RMSE  and R2 Values of Models Obtained with Different γ Coefficients 

 

γ RMSE 𝐑𝟐 
1.0 11.21613 0.974433 
1.1 10.55446 0.977361 
1.2 10.28528 0.978501 
1.3 10.31085 0.978394 
1.4 10.54836 0.977387 
1.5 10.93303 0.975708 
1.6 11.41728 0.973508 
1.7 11.96756 0.970893 
1.8 12.56064 0.967937 
1.9 13.18052 0.964694 
2.0 13.81608 0.961207 
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Figure 1.  RMSE  and R2 values of models obtained with different γ coefficients  

 

 

The results revealed that the lowest RMSE and the highest 𝑅2 values were obtained when γ=1.2.  

The recommended PE of European football leagues can be calculated by the Equation 11 using 

the specified value of the coefficient. The γ value was recommended as 1.3 in another study 

using twelve European leagues [1]. 

 

PE =
𝐺𝑜𝑎𝑙𝑆

1.2

𝐺𝑜𝑎𝑙𝑆
1.2+𝐺𝑜𝑎𝑙𝐶

1.2 × 2. 7471 (11) 

 

The SLR used with the LS algorithm is a parametric statistical method that requires some 

assumptions. Thus, initially, the required assumptions must be checked. For this purpose, 

normality, and independence of the residuals obtained by the model were examined. Secondly, 

variance homogeneity was investigated.  The results of the analyses showed that the 

assumptions were satisfied. Required tests for the validity of the model and coefficients were 

also performed. The significance level of all hypothesis tests was accepted as 0.05. 

 

The data of the 2017-2018 season were used for evaluation. In the first stage, the differences 

between the predicted and actual points were examined to measure the success of the proposed 

approach (Table 4). 

 

 
Table 4. An Example for End of Season Actual Points and PE Predictions  

 

Teams Actual Point Predicted Point Difference 

Milan 64 59.65 -4.35 

Saint-Etienne 55 50.58 -4.42 

CFR Cluj 59 54.54 -4.46 

RB Leipzig 53 48.40 -4.60 

Lazio 72 67.37 -4.63 

Real Madrid 76 71.10 -4.90 

Utrecht 54 48.80 -5.20 

 

 

In the evaluation, the margin of error was considered only a match. So, predictions with less 

than three-point difference from the actual point value were considered successful. The success 

rates calculated for 15 European leagues are presented in Table 5. The overall success rate for 

all leagues was 40%. 
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Table 5. Success Rates of Leagues Obtained in Point Prediction 

 

League Success Rate 

Germany 56% 

Czech Republic 56% 

Romania 56% 

Belgium 50% 

England 44% 

Denmark 33% 

France 33% 

Crotia 33% 

Spain 33% 

Italy 33% 

Turkey 33% 

Netherland 28% 

Austria 22% 

Scotland 22% 

Portugal 11% 

 

 

The points gained at the end of the season determine the team standings in the league. The 

predicted points by PE of the teams in 2017-2018 end-of-season were used to measure the 

success of the proposed approach based on the standings, and the teams were ranked based on 

the points predicted among the teams in their leagues. An additional evaluation was performed 

for the first four teams in the leagues. The first four rankings are considered important for the 

league success of a team and qualifying to the European cups. When calculating the ranking-

based success ratio, predictions that predict the season end ranking of a league exactly or predict 

the ranking by only one difference are accepted as successful. The ranking-based success ratios 

are given in Table 6. 
 

Table 6. Success Rates of Leagues by Ranking 

 

League Success Rate for 

ranking 

Success Rate for only 

First Four ranking 

Crotia 100% 100% 

Scotland 100% 100% 

Austria 90% 100% 

Romania 86% 100% 

Denmark 79% 100% 

England 75% 100% 

Netherland 72% 100% 

Portugal 72% 100% 

Italy 70% 100% 

France 65% 100% 

Spain 65% 100% 

Czech Republic 63% 100% 

Germany 61% 100% 

Belgium 44% 50% 

Turkey 39% 75% 
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The success ratios for the ranking were higher than 50%, except for two leagues. The rankings 

for Croatia and Scotland leagues were predicted exactly. 

 

4 Conclusion 
 

In this study, a PE calculation approach was proposed for European football leagues. The 2017-

2018 end-of-season points of 244 teams playing in European leagues were predicted in order to 

measure the success of the proposed approach.  The success of PE, which is proposed with two 

different approaches according to the ranking and score, was evaluated by using the points 

predicted. More successful results were obtained with ranking based prediction. In the study,  

relatively low success ratios were obtained for Turkey and Belgium leagues. However, high 

success ratios were obtained for Croatia, Scotland, Austria and Romania, where there are fewer 

teams in the league compared to the other countries. Another noteworthy outcome was the high 

accuracy rate in the rank-based evaluation. In this study, the γ value in PE formula for football 

was calculated as 1.2. Specific γ values must be calculated for different leagues in order to make 

successful predictions. Further studies are planned to determine the γ values for Asian and 

South American football leagues. 
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Abstaract − The main motivation behind this work is to introduce the notion of (2, L)-
double fuzzifying topology which is a generalization of the notion of (2, L)-fuzzifying topol-
ogy and classical topology. We define the notions of (2, L)-double fuzzifying preproximity
and (2, L)-fuzzifying syntopogenous structures. Some fundamental properties are also es-
tablished. These concepts will help in verifying the existing characterizations and also help
in achieving new and generalized results. Finally we study a model as an application of
fuzzifying topology in biology.

Keywords − (2, L)-double fuzzifying topology, (2, L)-doublefuzzifying preproximity, L-fuzzi-
fying dynamice topology, breast cancer.

1 Introduction

A lattice is a poset L = (L,≤) in which every finite subset has both join ∨ and a

meet ∧ with the smallest element ⊥L and the largest element ⊤L. We assume that

⊤L 6= ⊥L, i.e., L has at least two elements. A distibutive lattice is a lattice which

satisfies the distributive laws. A lattice is said to be complete if it has arbitrary joins

and meets, i.e., for every subset A ⊆ L the join
∨

A and the meet
∧

A are defined.

In particular,
∨
L = ⊤L and

∧
L = ⊥L. Throughout this work L always denote a

complete residuated lattice intoduced by [7,14] used L as a complete MV -algebra but

[17,18,19] used L as a complete residuated lattice, L0 = L − {⊥L} and I = [0, 1]. We

say a is a wedge below b, in a symbol, b ⊲ a, if for every subset D ⊆ L,
∨

D ≥ b implies

a ≤ d for some d ∈ D. The concept of (2, L)-fuzzifying topology appeared in [7] under

the name ,, (2, L)-fuzzy topology,, (cf. Definition 4.6, Proposition 4.11 in [8] where L

is a completely distributive complete lattice. In the case of L = [0, 1] this terminology

traces back to [18,19], where it was studied the fuzzifying topology and elementarily it
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was developed fuzzy topology from a new direction with semantic method of continuous

valued logic. Fuzzifying topology (resp. L-Fuzzifying topology) in the sense of M. S.

Ying (resp. U. Höhle) was introduced as a fuzzy subset (resp. an L-Fuzzy subset) of

the power set of an ordinary set. On the other hand, in topology a proximity space is

an axiomatization of notions of ”nearness” that hold set-to-set, as opposed to the better

known point-to-set notions that characterize topological spaces, in this regard. [3,4] gave

a new method for the foundation of general topology based on the theory of syntopoge-

nous structure to develop a unified approach to the three main structures of set-theoretic

topology: topologies, uniformities and proximities. This helped him to develop a theory

including the basis of the three classical theories of topological spaces, uniform spaces and

proximity spaces. In the case of the fuzzy structures there are at least two notions of fuzzy

syntopogenous structures Motivated by their works, we continue investigating the proper-

ties (2, L)−double fuzzifying preproximity. We show that each (2, L)-double fuzzifying

preproximity on X induces (2, L)-double fuzzifying topology on the same set.Also, we

define the notion of (2, L)-Double fuzzifying semi topogenous order and obtain a few re-

sults analogous to the ones that hold for (2, L)-double fuzzifying topology, he relation

between a L-double fuzzifying preproximity structures is also investigated (2, L)-Double

fuzzifying semi topogenous order, double fuzzifying topogenous order on X, double fuzzify-

ing topogenous continuous, (2, L)-double fuzzifying preproximity, double quasi proximity

spaces, double fuzzifying quasi uniform space. This work arranged by: In section 1

and 2 introduction and more survay results in the subject. In section 3, we give a new

notion of (2, L)-Double fuzzifying semi topogenous order, double fuzzifying topogenous

order on X,double fuzzifying topogenous continuous, (2, L)-double fuzzifying preproxim-

ity, double quasi proximity spaces, double fuzzifying quasi uniform space, we study the

relations between them and relations between (2, L)-double fuzzifying topology. In section

4 Mathematical models have been used in biology. In fact, dramatic developments in biol-

ogy and in pure mathematics together, may have led to the interpretation of many natural

phenomena in life, Also, it has been creatively described in the analysis and diagnosis of

multiple diseases dynamically. However, there are many phenomena that are still in the

interest of scientists. This work shows that using dynamic physiological topology we can

describe many natural phenomena dynamically and identify the appropriate times in which

scientists intervene to the subject of human solutions to the distortions of the situation.

We will shed light on breast cancer at the five-stage and determine the possibility of con-

formation and therapeutic intervention. We will show how the dynamical topologies [5].

can develop the diagnostic mechanism and time analysis of the situation and determine

the appropriate time to avoid distortions in the stages of the case. The present article

demonstrates an application of L-fuzzifying dynamice topology clarify a model describing

biological phenomena, This model allow to know all levels of development of an breast

cancer. from 0-level (infection outside cells) until 5-level (infection liver).

2 Preliminary

Definition 2.1. [16] Let (X, τ) be an L-fuzzifying topological space, and let Y ⊆ X.

Define the map τY : P (Y ) → L as follows: τY (U) =
∨

H∩Y=U

τ(H).

Definition 2.2. [9] The double negation law in a complete residuated lattice L is
given as follows: ∀a, b ∈ L, (a → ⊥) → ⊥ = a.
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Definition 2.3. [9] A structure ( L,∨,∧,∗,→,⊥,⊤) is called a strictly two-sided
commutative quantale iff

(1) ( L,∨,∧,⊥,⊤) is a complete lattice whose greatest and least element are ⊤,⊥
respectively,

(2) ( L,∗,⊤) is a commutative monoid,
(3)(a) ∗ is distributive over arbitrary joins, i.e.,
a ∗

∨
j∈J

bj =
∨
j∈J

(a ∗ bj) ∀a ∈ L, ∀{bj |j ∈ J} ⊆ L,

(b) → is a binary operation on L defined by: a → b =
∨

λ∗a≤b

λ ∀a, b ∈ L.

Definition 2.4. [8,9] Let X be a nonempty set and let P (X) be the family of all
ordinary subsets of X. An element T ∈ LP (X) is called an L-fuzzifying topology on
X iff it satisfies the following axioms:

(1) T (X) = T (φ) = ⊤,

(2) ∀A,B ∈ P (X), T (A ∩B) ≥ T (A) ∧ T (B),
(3) ∀{Aj |j ∈ J} ⊆ P (X), T (

⋃
j∈J

Aj) ≥
∧
j∈J

T (Aj).

The pair (X, T ) is called an L-fuzzifying topological space.

Definition 2.5. [11] Let X be a set and let δ ∈ LP (X)×P (X), i.e., δ : P (X)×P (X) →
L. Assume that for every A,B,C ∈ P (X), the following axioms are satisfied:

(LFP1) δ(X, φ) = ⊥,

(LFP2) δ(B,A) = δ(A,B),
(LFP3) δ(A,B ∪ C) = δ(A,B) ∨ δ(A,C),
(LFP4) For every A,B ∈ P (X), ∃C ∈ P (X) s.t. δ(A,B) ≥ δ(A,C)∨δ(B,X−C),
(LFP5) δ({x}, {y}) = CE({x}, {y}).

Then δ is called an L-fuzzifying proximity on X and (X, δ) is called an L-fuzzifying
proximity space.

Definition 2.6. [4] A uniform structure U on a set X is a family of subsets of
X ×X, called entourage, which satisfies the following properties:

(U1) If u ∈ U, then △ ⊆ u, where △ is the diagonal: △ = {(x, x) |x ∈ X }
(U2) If v ⊆ u, and v ∈ U then u ∈ U,

(U3) for every u, v ∈ U, u ∩ v ∈ U,

(U4) If u ∈ U, then u−1 ∈ U, where u−1 = {(x, y) |(y, x) ∈ u}.
(U5) for every u ∈ U, there exists v ⊆ U such that v ◦ v ⊆ u, where v ◦ v ⊆ u,

where v ◦ u is defined by:
v ◦ u = {(x, y)| ∃z ∈ X such that (x, z) ∈ u and (z, y) ∈ u}, ∀x, y ∈ X.

The pair (X,U) is said to be a uniform space.

3. (2, L)-Double Fuzzifying Semi Topogenous Order Spaces

Definition 3.1. Let X be a non-empty set. The pair (T , T ∗) of maps T , T ∗ :
2X × 2X → L is called an (2, L)-double fuzzifying semi topogenous order on X if it
satisfies the following conditions:

(LST1) T (A,B) ≤ T ∗(A,B) → ⊥, for each (A,B) ∈ 2X × 2X ,
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(LST2) T (X,X) = T (φ, φ) = ⊤ and T ∗(X,X) = T ∗(φ, φ) = ⊥,
(LST3) If T (A,B) 6= ⊥, T ∗(A,B) 6= ⊤, then A ⊆ B,

(LST4) If A1 ⊆ A, B1 ⊆ B, then T (A1, B1) ≤ T (A,B) and T ∗(A1, B1) ≥
T ∗(A,B).
The pair (X, T , T ∗) is called an (2, L)-double fuzzifying semi topogenous order on
X .

The complement of a double fuzzifying semi topogenous order (T , T ∗) is the dou-

ble fuzzifying semi topogenous order (T̂ , T̂ ∗) defined by T̂ (A,B) = T̂ (A−, B−) and

T̂ ∗(A,B) = T̂ ∗(A−, B−). such thatA−, B− are the complement of AandB respectively.
A double fuzzifying semi topogenous order (T , T ∗) is called:

(S) symmetrical if (T , T ∗) = (T̂ , T̂ ∗)
(T ) topogenous if T ((A1∪A2, B) ≥ T (A1, B)∧T (A1, B) and T ∗(A1∪A2, B) ≤

T ∗(A1, B) ∨ T ∗(A1, B), (PF ) perfect if T (
⋃

i∈Γ Ai, B) ≥
∧

i∈Γ T ((Ai, B)) and
T ∗((

⋃
i∈Γ Ai, B)) ≤

∨
i∈Γ T

∗((Ai, B), for each {(Ai, B) : i ∈ Γ} ⊆ 2X × 2X .
(BP ) biperfect if it is perfect and T (A,

⋂
i∈Γ

Bi) ≥
∧

i∈Γ T (A,Bi) and

T ∗(A,
⋂
i∈Γ

Bi) ≤
∧

i∈Γ T
∗(A,Bi).

Double fuzzifying semi topogenous order (T1, T
∗
1 ) is said to be finer than another one

(T2, T
∗
2 ) if T1(A,B) ≥ T2(A,B) and T ∗1 (A,B) ≤ T ∗2 (A,B) for each (A,B) ∈ 2X×2X .

Definition 3.2. Let X be a nonempty set. The pair (δ, δ∗) of maps δ, δ∗ : 2X → L is
called an (2, L)-double fuzzifying topology onX if it satisfies the following conditions:

(DO1) δ(A) ≤ δ∗(A) → ⊥, for each A ∈ 2X ,
(DO2) δ(X) = δ(∅) = ⊤ and δ∗(X) = δ∗(∅) = ⊥,
(DO3) δ(A∩B) ≥ δ(A)∧δ(B) and δ∗(A∩B) ≤ δ∗(A)∨δ∗(B), for each A,B ∈ 2X ,
(DO4) δ(

⋃
i∈Γ Ai) ≥

∧
i∈Γ δ(Ai) and δ∗(

⋃
i∈Γ Ai) ≤

∨
i∈Γ δ

∗(Ai), for each {Ai :
i ∈ Γ} ⊆ 2X .
The pair (X, δ, δ∗) is called an (2, L)-double fuzzifying topological space.

Definition 3.3. Let (X, δ1,δ
∗
1) and (Y, δ2,δ

∗
2) be two (2, L)-double fuzzifying

topological spaces. Then the map f : (X, T1,T
∗
1 ) → (Y, T2,T

∗
2 ) is called double

fuzzifying continuous, if δ2(B) ≤ δ1(f
−1(B)) and δ∗2(B) ≥ δ∗1(f

−1(B)), for each
B ∈ 2Y .

Theorem 3.1. Let (T1, T
∗
1 ) and (T2, T

∗
2 ) be perfect (resp. double fuzzifying topoge-

nous, biperfect) double fuzzifying semi topogenous order on X . Define the compo-
sitions T1 ◦T2 and T ∗1 ◦T ∗2 on X by T1 ◦T2(A,B) =

∨
h∈2X [T1(A, h) ∧ (T2(h,B)] and

T ∗1 ◦ T ∗2 (A,B) =
∧

h∈2X [T ∗1 (A, h) ∨ (T ∗2 (h,B)] . Then (T1 ◦ T2 , T ∗1 ◦ T ∗2 ) is perfect
(resp. double fuzzifying topogenous, biperfect ) double fuzzifying semi topogenous
order on X.

Proof Let (T1, T
∗
1 ) and (T2, T

∗
2 ) be perfect double fuzzifying semi topogenous order

on X. Then (LST3) If T1◦T2(A,B) 6= ⊥ and T ∗1 ◦T ∗2 (A,B) 6= ⊤. Then ∃ h ∈ 2X such
that T1 ◦ T2(A,B) ≥ T1(A, h) ∧ (T2(h,B)) 6= ⊥ and T ∗1 ◦ T ∗2 (A,B) ≤ T ∗1 (A, h) ∨
(T ∗2 (h,B)) 6= ⊤, It implies A ⊆ h ⊆ B. Easily only prove (PF ) from
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T1 ◦ T2(
⋃

i∈Γ Ai, B) =
∨

h∈2X

[
T1(

⋃
i∈Γ Ai, h) ∧ (T2(h,B)

]

≥
∧

i∈Γ

[∨
h∈2X [T1(Ai, h) ∧ (T2(h,B))]

]

=
∧

i∈Γ T1 ◦ T2(Ai, B)

and
T ∗1 ◦ T ∗2 ((

⋃
i∈Γ Ai, B)) =

∧
h∈2X

[
T ∗1 (

⋃
i∈Γ Ai, h) ∨ (T ∗2 (h,B)

]

≤
∨

i∈Γ

[∧
h∈2X [T ∗1 (Ai, h) ∨ (T ∗2 (h,B))]

]

=
∨

i∈Γ T
∗
1 ◦ T ∗2 (Ai, B).

Definition 3.4. A double fuzzifying syntopogenous structure on XΨ is a non-empty
family ΥXΨ of double fuzzifying topogenous orders on X . If it satisfies the following
conditions:
(LS1) ΥXΨ is directed, i.e. a two double fuzzifying topogenous orders
(T1, T

∗
1 ), (T2, T

∗
2 ) ∈ ΥX , ∃ double fuzzifying topogenous orders (T1, T

∗) ∈ ΥX such
that T ≥ T1, T2, and T ∗ ≤ T ∗1 , T

∗
2 ,

(LS2) For every (T , T ∗) ∈ ΥX , ∃ (T1, T
∗
1 ) ∈ ΥX such that T ≤ T1 ◦ T2,

and T ∗ ≥ T ∗1 ◦ T ∗2 .

Definition 3.5. (1) A double fuzzifying syntopogenous structure ΥXΨ is called
double fuzzifying topogenous orders If ΥXΨ cosists of a single element. denoted by
ΥXΨ = {(T , T ∗)}, and (X,ΥX) double fuzzifying topogenous space.

(2) A double fuzzifying syntopogenous structure ΥXΨ is called perfect (resp.
biperfect, symmetric) if each double fuzzifying topogenous order (T , T ∗) ∈ ΥX is
perfect (resp. biperfect, symmetric).

Theorem 3.2. Let (T , T ∗) be a double fuzzifying topogenous order on X. The
mapping f(T ,T ∗) : 2

X ×L0 ×L1 → 2X , is defined by f(T ,T ∗)(A, α, β) =
⋂

{B− ∈ 2X :
T (B,A−) > α, T ∗(B,A−) < β} for each A,A1, A2 ∈ 2X and α, α

′

∈ L0, β, β
′

∈ L1.

Then it has the following properties:

(i) f(T ,T ∗)(X,α, β) = X ,

(ii) A ⊆ f(T ,T ∗)(A, α, β),
(iii) If A1 ⊆ A2 then f(T ,T ∗)(A1, α, β) ⊆ f(T ,T ∗)(A2, α, β),
(iv) f(T ,T ∗)(A1 ∪ A2, α ∧ α

′

, β ∨ β
′

) ⊆ f(T ,T ∗)(A1, α, β) ∩ f(T ,T ∗)(A2, α
′

, β
′

).
(v) If α ≤ α

′

, β ≥ β
′

, then f(T ,T ∗)(A1, α, β) ⊆ f(T ,T ∗)(A2, α
′

, β
′

),

(vi)
If (T , T ∗) be a double fuzzifying topogenous order on X,
f(T ,T ∗)(f(T ,T ∗)(X,α, β)) ⊆ f(T ,T ∗)(X,α, β).

Proof (i) since T (X,X) = ⊤ and T ∗(X,X) = ⊥, f(T ,T ∗)(X,α, β) = X.

(ii) Since T (B,A−) 6= ⊥ and T ∗(B,A−) 6= ⊤, then B ⊆ A−. Then A ⊆
f(T ,T ∗)(A, α, β)

(iii) For A1 ⊆ A2, since T (B,A−2 ) ⊆ T (B,A−1 ) > α and T ∗(B,A−2 ) ≥ T ∗(B,A−1 ) <
β, we have f(T ,T ∗)(A2, α, β) ⊇ f(T ,T ∗)(A1, α, β),
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(iv) Suppose taht there exist A1, A2 ∈ 2X such that f(T ,T ∗)(A1∪A2, α∧α
′

, β∨β
′

)  
f(T ,T ∗)(A1, α, β) ∩ f(T ,T ∗)(A2, α

′

, β
′

), by the definition of f(T ,T ∗)(A, α, β) there exist
B1, B2 ∈ 2X with T (B1, A

−
1 ) > α, T ∗(B1, A

−
1 ) < β, T (B2, A

−
2 ) > α

′

, T ∗(B2, A
−
2 ) <

β
′

, such that f(T ,T ∗)(A1 ∪A2, α ∧ α
′

, β ∨ β
′

)  B−1 ∩ B−2 .

On the other hand, by (T ), and (LST4) T ((B1 ∩ B2, (A1 ∪ A2)
−) ≥ T ((B1 ∩

B2, A
−
1 )∧T (B1∩B2, A

−
2 ) ≥ T ((B1, A

−
1 )∧T (B2, A

−
2 ) > α∧α

′

and T ∗((B1∩B2, (A1∪
A2)

−) ≤ T ∗((B1 ∪B2, A
−
1 ) ∨ T ∗(B1 ∩B2, A

−
2 ) ≤ T ∗((B1, A

−
1 ) ∨ T (B2, A

−
2 ) < β ∧ β

′

.

It is implies f(T ,T ∗)(A1 ∪ A2, α ∧ α
′

, β ∨ β
′

) ⊆ (B1 ∩ B2)
− = B−1 ∪ B−2 . This is a

contradiction.

(v) and (vi) by the fashion.

Theorem 3.3. Let (T , T ∗) be a double fuzzifying topogenous order on X. The
mapping f(T ,T ∗) : 2

X × L0 × L1 → 2X , is defined by.

f(T ,T ∗)(A, α, β) =
⋃

{Q ∈ 2X : T (Q,A−) > α → ⊥, T ∗(Q,A−) < β → ⊥}.

Then it has the following properties:

(i) f(T ,T ∗)(X,α, β) = φ ,

(ii) f(T ,T ∗)(A, α, β) ⊆ A−,

(iii) If α ≥ α
′

and β ≤ β
′

, then f(T ,T ∗)(A, α
′

, β
′

) ⊆ f(T ,T ∗)(A, α, β),
(iv) f(T ,T ∗)(A1 ∩ A2, α ∧ α

′

, β ∨ β
′

) ⊇ f(T ,T ∗)(A1, α, β) ∩ f(T ,T ∗)(A2, α
′

, β
′

).

Proof (i) From (LST2) and since T (Q,A−) > α → ⊥ and
T ∗(Q,A−) < β → ⊥, f(T ,T ∗)(X,α, β) = φ.

(ii) From (LST3) and since T (Q,A−) < α → ⊥ and
T ∗(Q,A−) > β → ⊥ , then, Q ⊆ A−. Thus f(T ,T ∗)(A, α, β) ⊆ A−

(iii) For α ≥ α
′

, β ≤ β
′

, since T (Q,A−) > α
′

→ ⊥ > α → ⊥ and
T ∗(Q,A−) < β

′

→ ⊥ < β → ⊥, we have f(T ,T ∗)(A, α, β) ⊆ f(T ,T ∗)(A, α
′

, β
′

).

(iv) f(T ,T ∗)(A, α, β) ∩ f(T ,T ∗)(B, α
′

, β
′

) =
⋃
{Q1 ∈ 2X : T (Q1, A

−) > α → ⊥,
T ∗(Q1, A

−) < β → ⊥} ∩(
⋃
{Q2 ∈ 2X : T (Q2, B

−) > α
′

→ ⊥, T ∗(Q2, A
−) <

β
′

→ ⊥}) =
⋃
{Q1 ∩ Q2 ∈ 2X : T (Q1, A

−) > α → ⊥, T (Q2, B
−) > α

′

→
⊥, T ∗(Q1, A

−) < β → ⊥, T ∗(Q2, B
−) < β ′ → ⊥ }

⊆
⋃
{Q1 ∩Q2 ∈ 2X : T (Q1, A

−)∨ T (Q2, B
−) > (α → ⊥)∨ (α

′

→ ⊥), T ∗(Q1, A
−)∧

T ∗(Q2, B
−) < (β → ⊥) ∧ (β

′

→ ⊥) }
⊆

⋃
{Q1 ∩Q2 ∈ 2X : T (Q1 ∩Q2, A

− ∪ B−) < (α ∧ α
′

) → ⊥},
≥ T (Q1, A

−)∧ T (Q2, B
−) > (α → ⊥)∧(α

′

→ ⊥) = (α∨α
′

) → ⊥, T ∗(Q1∪Q2, A
−∪

B−) > (β ∨ β
′

) → ⊥ }
= T ∗(Q1, A

−) ∨ T ∗(Q2, B
−) < (β → ⊥) ∨ (β

′

→ ⊥) = (β ∨ β
′

) → ⊥}
= T ∗(Q1, A

−) ∨ T ∗(Q2, B
−) < (β → ⊥) ∨ (β

′

→ ⊥) = (β ∨ β
′

) → ⊥
=

⋃
{Q ∈ 2X : T (Q, (A∩B)−) > (α ∨α

′

) → ⊥, T ∗(Q, (A∩B)−) < (β∧β
′

) → ⊥ }
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= f(T ,T ∗)(A ∩B, α ∨ α
′

, β ∧ β
′

)

Theorem 3.4. Let (T , T ∗) be a double fuzzifying topogenous order on X, and L

be a chain The mapping δT , δ
∗
T ∗ : 2X → L, is defined by δT (A) =

∨
{α ∈ L0 :

f(T ,T ∗)(A, α, β) = A, α ≤ β → ⊥} and δ∗T ∗(A) =
∧

{β ∈ L1 : f(T ,T ∗)(A, α, β) =
A, α ≤ β → ⊥}. Then the pair (X, δ, δ

∗) is an (2, L)- double fuzzifying topology
on X.

Proof For each A ∈ 2X , we have

(DO1) δ∗T ∗(A) → ⊥ =
∧

{β ∈ L1 : f(T ,T ∗)(A, α, β) = A, α ≤ β → ⊥} → ⊥
=

∨
{β → ⊥ : f(T ,T ∗)(A, α, β) = A, α ≤ β → ⊥}

≥
∨
{α ∈ L0 : f(T ,T ∗)(A, α, β) = A, α ≤ β → ⊥}

= δT (A)

(DO2) It is clear.

(DO3) Suppose taht there exist A,B ∈ 2X such that δT (A∩B) � δT (A) ∧ δT (B)
and δ∗T ∗(A∩B) 
 δ∗T ∗(A)∨δ

∗
T ∗(B). since L is chain and by the defintion of δT (A) and

δ∗T ∗(A), there exist α1 ∈ L0, β1 ∈ L1 with α1 ≤ β1 → ⊥ and f(T ,T ∗)(A, α1, β1) = A

such that δT (A∩B) � α1 ∧ δT (B) and δ∗T ∗(A∩B) � β1∨ δ∗T ∗(B). Again, by the def-
inition of δT (B) and δ∗T ∗(A), there exist α2 ∈ L0, β1 ∈ L1 with α2 ≤ β2 → ⊥ and
f(T ,T ∗)(B, α2, β2) = B such that δT (A∩B) � α1 ∧ α2 and δ∗T ∗(A∩B) � β1∨β2. By
Theorem 3.2 (v) , we have f(T ,T ∗)(A ∩ B, α1∧α2 , β1∨β2) ⊇ f(T ,T ∗)(A, α1, β1) ∩
f(T ,T ∗)(B, α2, β2) = A ∩ B. Then, we have f(T ,T ∗)(A ∩ B, α1 ∧ α2 , β1∨β2) =
A∩B. Thus, δT (A∩B) ≥ α1∧α2 and δ∗T ∗(A)(A∩B) ≤ β1∨β2. This is a contradiction.
Hence δT (A∩B) ≥ δT (A) ∧ δT (B) and δ∗T ∗(A)(A∩B) ≤ δ∗T ∗(A) ∨ δ∗T ∗(A) ∀A,B ∈
2X .

(DO4) Suppose that there exist A =
⋃
i∈Γ

Ai ∈ 2X and α ∈ L0, β ∈ L1 with

α ≤ β → ⊥ such that δT (A) < α ≤
∧
i∈Γ

δT (Ai) and δ∗T ∗(A) > β ≥
∨
i∈Γ

δ∗T ∗(Ai). Then

δT (Ai) ≥ α and δ∗T ∗(Ai) ≤ β for each i ∈ Γ. This implies that f(T ,T ∗)(Ai, α, β) =
Ai ∀i ∈ Γ. Since Ai ⊆ A ∀i ∈ Γ. Then, f(T ,T ∗)(Ai, α, β) ⊆ f(T ,T ∗)(A, α, β). Then
Ai = f(T ,T ∗)(Ai, α, β) ⊆ f(T ,T ∗)(A, α, β). Therefore A =

⋃
i∈Γ

Ai ⊆ f(T ,T ∗)(A, α, β).

Then, f(T ,T ∗)(A, α, β) = A. Then δT (A) ≥ α and δ∗T ∗(B) ≤ β. It is a contradiction.
Hence, δT (

⋃
i∈Γ

Ai) ≥
∧
i∈Γ

δT (Ai) and δ∗T ∗(
⋃
i∈Γ

Ai) ≤
∨
i∈Γ

δ∗T ∗(Ai), for each {Ai : i ∈

Γ} ⊆ 2X .

Definition 3.6. Let (X, T1,T
∗
1 ) and (Y, T2,T

∗
2 ) be two double fuzzifying topoge-

nous order spaces. Then the map φL : (X, T1,T
∗
1 ) → (Y, T2,T

∗
2 ) is called double

fuzzifying topogenous continuous, if T2(A,B) ≤ T1(φ
←
L (A), φ←L (B)) and T ∗2 (A,B) ≥

T ∗1 (φ
←
L (A), φ←L (B)), for each A,B ∈ 2Y .

Theorem 3.5. Let (X, T1,T
∗
1 ) and (Y, T2,T

∗
2 ) be two double fuzzifying topogenous

order spaces, Let φL : (X, T1,T
∗
1 ) → (Y, T2, T

∗
2 ) be double fuzzifying topogenous
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continuous. Then:
(i) f(T ,T ∗)(φ

←
L (Q), α, β) ⊇ φ←L ( f(T2,T ∗2 )(Q,α, β)), for each Q ∈ 2Y , α ∈ L0, β ∈

L1.

(ii) φL : (X, δT1 , δ∗T ∗
1

) → (Y, δT2 , δ
∗
T ∗
2

) is double fuzzifying continuous.

Proof (i) From the definition of f(T ,T ∗) in Theorem 3.3 and since φL : (X, T1,T
∗
1 )

→ (Y, T2, T
∗
2 ) is double fuzzifying continuous, then

φ←L (f(T2,T ∗2 )((Q), α, β)

= φ←L
[⋃{

D ∈ 2Y : T2(D,Q−) > α → ⊥, T ∗2 (D,Q−) < β → ⊥
}]

⊆
⋃{

φ←L (D) ∈ 2X : T1(φ
←
L (D), φ←L (Q−)) > α → ⊥, T ∗1 (φ

←
L (D), φ←L (Q−)) < β → ⊥

}

⊆
⋃{

A ∈ 2X : T1(A, (φ
←
L (Q)−) > α → ⊥, T ∗1 (A, (φ

←
L (Q))−)) < β → ⊥

}

= f(T2,T ∗2 )(φ
←
L (Q), α, β).

(ii) For each A ∈ 2Y . If δT2(A) = ⊥ and δ∗T ∗
2

(A) = ⊤, the prove is trivial.

So let δT2(A) 6= ⊥ and δ∗T ∗
2

(A) 6= ⊤.

Since δT2(A) 6= ⊥, by the defintion of δT2(A) there exist α0 ∈ L0, β0 ∈ L1

with α0 ≤ β0 → ⊥ such that δT2(A) = α0 and f(T2,T ∗2 )(A, α0, β0) = A. Thus
φ←L (A) = φ←L (f(T2,T ∗2 )(A, α0, β0)) ⊆ f(T2,T ∗2 )(φ

←
L (A), α0, β0) (by (i))., we have φ←L (A) =

f(T2,T ∗2 )(φ
←
L (A), α0, β0) since α0 ≤ β0 → ⊥, δT1(φ

←
L (A)) ≥ α0 = δT2(A).

similarly, when T ∗δ∗
2

6= ⊤, δ∗T ∗
1

(φ←L (A)) ≤ δ∗T ∗
2

(A). Hence φL : (X, δT1 , δ∗T ∗
1

) →

(Y, δT2 , δ
∗
T ∗
2

) is double fuzzifying continuous.

Theorem 3.6. Let (X, T1,T
∗
1 ), (Y, T2,T

∗
2 ) and (Y, T3,T

∗
3 ) be double fuzzifying

topogenous order spaces, if φL : (X, T1,T
∗
1 ) → (Y, T2, T

∗
2 ), and ΨL : (X, T2,T

∗
2 )

→ (Y, T3, T
∗
3 ) are double fuzzifying topogenous continuous, then Ψ ◦ φ : (X, T1,T

∗
1 )

→ (Y, T3, T
∗
3 ) is double fuzzifying topogenous continuous

Proof For each A,B ∈ 2Z

T1((Ψ ◦ φ)←L (A), (Ψ ◦ φ)←L (B)) = T1((φ
←
L (Ψ←L (A)), (φ←L (Ψ←L (B))

≥ T2((Ψ
←
L (A)), (Ψ←L (B)))

≥ T3((A), (B))),
T ∗1 ((Ψ ◦ φ)←L (A), (Ψ ◦ φ)←L (B)) = T ∗1 ((φ

←
L (Ψ←L (A)), (φ←L (Ψ←L (B))

≤ T ∗2 ((Ψ
←
L (A)), (Ψ←L (B)))

≤ T ∗3 ((A), (B))).

Theorem 3.7. Let (X, T1,T
∗
1 ), (Y, T2,T

∗
2 ) be double fuzzifying topogenous order

spaces, if φL : (X, T1,T
∗
1 ) → (Y, T2, T

∗
2 ), is double fuzzifying topogenous continu-

ous.Then it has the following properties:
(1) φ→L (f(T1,T ∗1 )(A, α, β)) ≤ f(T2,T ∗2 )(φ

→
L (A), α, β)) for each A ∈ 2X , α ∈ L0, β ∈ L1

(2) f(T1,T ∗1 )(φ
←
L (B), α, β)) ≤ φ←L (f(T2,T ∗2 )(B, α, β)) for each B ∈ 2Y , α ∈ L0, β ∈ L1

(3) φL : (X, δT1 , δ∗T ∗
1

) → (Y, δT2, δ
∗
T ∗
2

) is double fuzzifying topogenous continuous.

Proof (2) for each B ∈ 2Y , α ∈ L0, β ∈ L1, Put A = φ←L (B), From (1), then

φ→L (f(T1,T ∗1 )(φ
←
L (B), α, β)) ≤ (f(T2,T ∗2 )(φ

→
L (φ←L (B)), α, β))

≤ f(T2,T ∗2 )(B, α, β)



Journal of New Theory 27 (2019) 74-89 82

It implies

f(T1,T ∗1 )(φ
←
L (B), α, β)) ≤ φ←L (φ→L (f(T1,T ∗1 )(φ

←
L (B), α, β)))

≤ φ←L ((f(T1,T ∗1 )(φ
→
L (φ←L (B), α, β)))

≤ φ←L (f(T ,T ∗)(B, α, β))

(3) It is easily from Theorem 3.5 and f(T2,T ∗2 )(B, α, β) = B implies
f(T1,T ∗1 )(φ

←
L (B), α, β)) = φ←L (B).

Definition 3.7. The pair (Ω,Ω∗) of maps Ω,Ω∗ : 2X × 2X → L is called (2, L)-
double fuzzifying preproximity. If it is satisfies the following conditions:

(DP1) Ω(A,B) ≥ Ω∗(A,B) → ⊥, ∀A,B ∈ 2X ,
(DP2) Ω(X, φ) = Ω(φ,X) = ⊥, Ω∗(X, φ) =Ω∗(φ,X) = ⊤,

(DP3) If Ω(A,B) 6= ⊤ and Ω∗(A,B) 6= ⊥, then A ⊆ B− ,

(DP4) If A1 ⊆ A2, then Ω(A1, C) ≤ Ω(A2, C), and Ω∗(A1, C) ≥ Ω∗(A2, C) ,
(DP5) Ω(A1∩A2, B1∪B2) ≤ Ω(A1, B1)∨Ω(A2, B2), and Ω∗(A1∩A2, B1∪B2) ≥

Ω∗(A1, B1) ∧ Ω∗(A2, B2) .
The pair (X, Ω,Ω∗) is said to be an (2, L)-double fuzzifying preproximity space.

(2, L) double fuzzifying preproximity space is called (2, L)-double fuzzifying quasi
proximity provided that

(DP6) Ω(A,B) ≥
∧

D∈2X
{Ω(A,D) ∨ Ω(Dc, B)} ,

and

Ω∗(A,B) ≤
∨

D∈2X
{Ω∗(A,D) ∧ Ω∗(Dc, B)}

(2, L) double fuzzifying quasi-proximity is called (2, L)-double fuzzifying proxim-
ity provided taht

(DP ) Ω(A,B) = Ω(B,A) and Ω∗(A,B) = Ω∗(B,A).

(2, L) double fuzzifying preproximity space is called (2, L)-double fuzzifying prinic-
ipal provided that:

(DP7) Ω(
⋃
i∈Γ

Ai, B) ≤
∨
i∈Γ

Ω(Ai, B), and Ω∗(
⋃
i∈Γ

Ai, B) ≥
∧
i∈Γ

Ω∗(Ai, B).

Let (Ω1,Ω
∗
1) and (Ω2,Ω

∗
2) be (2, L)-double fuzzifying proximities on X . (Ω1,Ω

∗
1) is

coarser than (Ω2,Ω
∗
2) if Ω1(A,B) ≤ Ω2(A,B) and Ω∗1(A,B) ≥ Ω∗2(A,B), for each

A,B ∈ 2X and we write (Ω1,Ω
∗
1) ≤ (Ω2,Ω

∗
2).

Theorem 3.8. (1) Let (X, T ,T ∗) be double fuzzifying (resp. symmetric) to-
pogenous order spaces, and let the map φL : ΩT , Ω∗T ∗ : 2X × 2X → L defined
by ΩT (A,B) = (T (A,B−)) → ⊥ and Ω∗T ∗(A,B) = (T ∗(A,B−)) → ⊥ ∀A,B ∈
2X . Then (ΩT ,Ω

∗
T ∗) is double fuzzifying quasi proximity space (resp. double fuzzi-

fying proximity space) on X.

(2) Let (Ω,Ω∗) be an (2, L)-double fuzzifying quasi proximity space (resp. (2, L)-
double fuzzifying quasi proximity space) on X. TΩ, T ∗Ω∗ : 2X × 2X → L defined
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by TΩ(A,B) = (Ω(A,B−)) → ⊥) and T ∗Ω∗(A,B) = (Ω∗(A,B−)) → ⊥ ∀A,B ∈
2X . Then (TΩ, T

∗
Ω∗) is double fuzzifying (resp. symmetric) topogenous order spaces.

(3) (Ω,Ω∗) = (ΩTΩ , Ω∗T ∗
Ω∗
) and (T , T ∗)(TΩT , T

∗
Ω∗
T ∗
)

Proof (1) Since T ◦ T ≥ T and T ∗◦T ∗ ≤ T ∗.

ΩT (A,B) = (T (A,B−)) → ⊥
≥ ((T ◦ T )(A,B−)) → ⊥
≥

[∨
h∈2X [T (A, h) ∧ (T (h,B−)]

]
→ ⊥

=
∧

h∈2X
[[[T (A, h)] → ⊥] ∨ [[T (h,B−)] → ⊥]]

=
∧

h∈2X
{ΩT (A, h

−) ∨ ΩT (h,B)} ,

Ω∗T ∗(A,B) = (T ∗(A,B−)) → ⊥
≤ ((T ∗◦T ∗)(A,B−)) → ⊥

≥

[
∧

h∈2X
[T ∗(A, h) ∨ (T ∗(h,B−)]

]
→ ⊥

=
∨

h∈2X [[[T ∗(A, h)] → ⊥] ∧ [[T ∗(h,B−)] → ⊥]]
=

∨
h∈2X {Ω∗T ∗(A, h

−) ∧ Ω∗T ∗(h,B)} ,

(2) and (3) are easily proved

Theorem 3.9. Let (Ω,Ω∗) be a double quasi proximity.The mapping f(Ω,Ω∗) : 2
X →

L, is defined by.

f(Ω,Ω∗)(A, α, β) =
⋂

{Q− ∈ 2X : Ω(Q,A) < α → ⊥, Ω∗(Q,A) > β → ⊥}.

Then it has the following properties:

(i) f(Ω,Ω∗)(φ, α, β) = φ ,

(ii) f(Ω,Ω∗)(A, α, β) ⊇ A,

(iii) If A ⊆ B, then f(Ω,Ω∗)(A, α, β) ⊆ f(Ω,Ω∗)(B, α, β),
(iv) f(Ω,Ω∗)(A ∨B, α ∧ α1, β ∨ β1) ⊆ f(Ω,Ω∗)(A, α, β) ∨ f(Ω,Ω∗)(B, α1, β1)
(v) If α ≤ α1 and β ≥ β1, then f(Ω,Ω∗)(A, α, β) ⊆ f(Ω,Ω∗)(A, α1, β1),
(v) f(Ω,Ω∗)(f(Ω,Ω∗)(A, α, β), α, β) ⊆ f(Ω,Ω∗)(A, α, β).

Theorem 3.10. Let (Ω,Ω∗) be a double quasi proximity.Define the mas δ⊗(A) =∨
{α ∈ L0 : f(Ω,Ω∗)(A, α, β) = A} and δ∗Ω∗(A) =

∧
{β ∈ L1 : f(T ,T ∗)(A

−, α, β) =
A−}. Then the pair (X,Ω,Ω∗) is an (2, L)- double fuzzifying topology induced by
(Ω,Ω∗).

Definition 3.8. Let (X,Ω1,Ω
∗
1) and (Y,Ω2,Ω

∗
2) be a double quasi proximity spaces.

A maps φL : (X,Ω1,Ω
∗
1) → (Y,Ω2,Ω

∗
2) is said to be quasi proximity continuous if

Ω2(A,B) ≥ Ω1(φ
←
L (A), φ←L (B)) and Ω∗2(A,B) ≤ Ω∗1(φ

←
L (A), φ←L (B)), for each

A,B ∈ 2Y .

Theorem 3.11. Let (X,Ω1,Ω
∗
1) and (Y,Ω2,Ω

∗
2) be a double quasi proximity spaces,

A map φL : (X,Ω1,Ω
∗
1) → (Y,Ω2,Ω

∗
2) is quasi proximity continuous iff φL :

(X, TΩ1
, T ∗Ω∗

1

) → (Y, TΩ2
, T ∗Ω∗

2

) is topogenous continuous.
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Proof For each A,B ∈ 2Y .

Ω2(A,B) ≥ Ω1(φ
←
L (A), φ←L (B))

⇔ TΩ2
((A,B−) → ⊥)

≥ TΩ1
((φ←L (A), φ←L (B−)))) → ⊥)

⇔ TΩ2
((A,B−))

≤ TΩ1
((φ←L (A), φ←L (B−)),

Ω∗2(A,B) ≤ Ω∗1(φ
←
L (A), φ←L (B))

⇔ T ∗Ω∗
2

((A,B−) → ⊥)

≤ T ∗Ω∗
1

((Ω1(φ
←
L (A), φ←L (B−)))) → ⊥)

⇔ T ∗Ω∗
2

(A,B−)

≥ T ∗Ω∗
1

((φ←L (A), φ←L (B−)).

Definition 3.9. Let X be a nonempty set and let , U ,U∗ ∈ LP (X×X). Assume that
the following statments are satisfied:

(LU1) U(A) ≤ (U∗(A)) → ⊥ for all A ∈ P (X ×X),
(LU2) U(A ∩B) ≥ U(A) ∧ U(A) and U∗(A ∩ B) ≤ U∗(A) ∨ U∗(B),
(LU3) There exists A ∈ P (X ×X) s.t. U(A ) = ⊤, and U∗(A ) = ⊥,

(LU4) For any A ∈ P (X × X), ∃ B ∈ P (X × X) s.t. B ◦ B ⊆ A and
U(B) ≥ U(A ) and U∗(B) ≤ U∗(A). where B◦A is defined by B◦A = {(x, y)| ∃z ∈ X

such that (x, z) ∈ A and (z, y) ∈ A}, ∀x, y ∈ X. Then (X , U ,U∗) is called an double
fuzzifying quasi uniform space.

An double fuzzifying quasi uniform space (X , U ,U∗) is said to be a double fuzzifying
uniform space if it satisfies.

(LU) For any A,B ∈ P (X×X), U(A ) ≤ U(B← ), and U∗(A) ≥ U∗(B←), where
B← = {(x, y) |(y, x) ∈ P (X ×X)}

Definition 3.10. Let X be a nonempty set and let ,Ξ,Ξ∗ ∈ LP (X×X). Assume that
the following statments are satisfied:

(LUB1) Ξ(A) ≤ (Ξ∗(A)) → ⊥ for all A ∈ P (X ×X),

(LUB2)
∨

B∈P (X×X)

Ξ(B) ≤ Ξ(A) ∧ Ξ(A) and
∗∧

B∈P (X×X)

Ξ(B) ≥ Ξ∗(A) ∨ Ξ∗(B),

(LUB3) There exists A ∈ P (X ×X) s.t. Ξ(A ) = ⊤, and Ξ∗(A ) = ⊥,

(LUB4) For any A ∈ P (X × X), ∃ B ∈ P (X × X) s.t. B ◦ B ⊆ A and
Ξ(B) ≥ Ξ(A ) and Ξ∗(B) ≤ Ξ∗(A).
Then (X ,Ξ,Ξ∗) is called an double fuzzifying quasi uniform base.A double fuzzifying
quasi uniform base (X ,Ξ,Ξ∗) is said to be a double fuzzifying uniform base if it
satisfies.

(LUB) For any A,B ∈ P (X ×X), Ξ(A ) ≤ Ξ(B← ), and Ξ∗(A) ≥ Ξ∗(B←).

Theorem 3.12. Let (Ξ,Ξ∗) ∈ LP (X×X). Define (UΞ,U
∗
Ξ∗) ∈ LP (X×X) as UΞ(A) =∨

B∈P (X×X)

{Ξ(B) : B ⊆ A} and U∗Ξ∗(A) =
∧

B∈P (X×X)

{Ξ∗(B) : B ⊆ A}. Then (UΞ,U
∗
Ξ∗)

is a double fuzzifying uniformity on X.
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Proof Because prove the cases are easily so only prove (LU). For any A,B ∈
P (X×X). Since A= (A←)←, we have UΞ(A

←) ≤ UΞ(A) and U∗Ξ∗(A
←) ≥ U∗Ξ∗(A). and

UΞ(A) =
∨

B∈P (X×X)

{Ξ(B) : B ⊆ A}

≤
∨

B⊆A

{∨
Ξ(Q) : Q ⊆ B←

}
by (LUB)

≤
∨

B⊆A

UΞ(B
←)

=
∨

B←⊆A←
UΞ(B

←),

≤ UΞ(A
←)

U∗Ξ∗(A) =
∧

B∈P (X×X)

{Ξ∗(B) : B ⊆ A}

≥
∧

B⊆A

{
∧

Ξ∗(Q) : Q ⊆ B←} by (LUB)

≥
∧

B⊆A

U∗Ξ∗(B
←)

=
∧

B←⊆A←
U∗Ξ∗(B

←),

≥ U∗Ξ∗(A
←).

4 Fuzzifying Topology and Dynamics of Breast Cancer

In this section we will show how the dynamical topologies [CsaszarA.(1978)]. can develop

the diagnostic mechanism and time analysis of the situation and determine the appropriate

time to avoid distortions in the stages of the case. The present article demonstrates an

application of L-fuzzifying dynamice topology clarify a model describing biological phe-

nomena, This model allow to know all levels of development of an breast cancer. from

0-level (infection outside cells) until 5-level (infection liver).

Definition 4.1. Let X be compact metric space, T is a time L is a chain, then
the function T : 2X × T → L is called an L-fuzzifying dynamice topology on
X (T -dynamic topologies) iff it satisfies the following axioms:

(1) T (X, t) = ⊤, T (φ, t) = ⊥
(2) ∀A,B ∈ 2X , T ((A ∩ B), t) ≥ T (A, t) ∧ T (B, t),
(3) ∀{Aj |j ∈ J} ⊆ 2X , T ((

⋃
j∈J

Aj), t) ≥
∧
j∈J

T ((Aj), t).

We also write T = T d(T ). such that and Td(T ) can be viewed as parametric or
dynamic sets of X, say that (X,L, Td(T )) is an L-fuzzifying T -dynamice topological
space. The inductive dimension of a fuzzifying dynamice topology X is either of
two values, the small inductive dimension ind(X) or the large inductive dimension
Ind(X). We want the dimension of a point to be ⊥, and a point has empty boundary,
so we start with ind(φ) = Ind(φ) = ⊥. If L = I = [0, 1] a fuzzifying dynamice topo-
logical space has dimension ≤ n. n ≥ 0 iff for any point p ∈ X , each neighborhood
of p contains a neighborhood of p whose boundary has dimension ≤ n− 1.

Definition 4.2. A riemannian manifold is a smooth manifold equipped with a
riemannian metric. A map f : (X, T ) → (Y, γ), where X and Y are riemannian
manifolds. is said to be a topological folding if and only if for any piecewise geodesic
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path, α, in X , the induced path, f ◦ α is a piecewise geodesic in Y . It is possible
f(X) = Y or f(X) 6= Y ; accordingly, a topological folding f of (X, τ) into itself
satisfies f(X) ⊆ X and for each β ∈ τ , we have f(β) ⊆ β. The contrary definition to
the folding of (X, τ) into itself is the unfolding: a map f : (X, T ) → (Y, γ) is called
unfolding iff f(β) ⊇ β for each β ∈ τ [4].

From these topological concepts we can form templates to form the biological struc-
tures of the course of breast cancer progression as follows:

Molding (I) : 0-level(infection outside cells normal cells) until 1 − level (very slow

growing cancer cells)

Molding (II) : 2-level (Slow grwoing cancer cells) , 3-level ( Moderately growing

cancer cells) , 4− level the arrival of cancer of the liver (Fast growing cancer cells)

Molding (III) : 5-level (Infection spreads to liver)

2 Main Results

when begins infection outside cells (0 − level), we suppose that an 0 − level at
time t0 = 0, after certain time and constant rate of differentiation of tumor is 2
cm in size and the lymph nodes under the armpit are intact from the cancer cells
(1− level), then (1− level) differentiate into The size of the tumor is 2 cm, and may
have moved under the control but not spread to the rest of the body (2 − level),
which differentiate into system, The tumor is adherent to the skin of the breast and
muscles and the size of the tumor is greater than 5 cm and has moved under the
armpit (3 − level), and (3 − level) differentiates to the arrival of cancer of the liver
(4 − level), and finally (4 − level) differentiates to infection liver and mastectomy
(5− level) at time t = 1. Thus

(0− level)t0=0⇒ (1− level) ⇒ (2− level) ⇒ (3− level)
⇒ (4− level) ⇒ (5− level)t=1

Now we can define a L-fuzzifying dynamice topology (T -dynamic topologies) as
follows:

T (A, t) =





0 A = (0− level)t0=0

α1 A = ( (1− level), (0 < t < t1))
α2 A = ((2− level), (t1 < t < t2))
α3 A = ( (3− level), (t2 < t < t3))
α4 A = ((4− level) , (t3 < t < t4))
1 A = (5− level)t=1

such taht (t0 = 0) < t1 < t2 < t3 < t4 < (t5 = 1), and α1 < α2 < α3 < α4 in L.

where, (0− level)t0=0 at t0 = 0 and (5− level) happens at t = 1. It is obvious
that ((5− level), T ) forms a L-fuzzifying dynamice topology (T -dynamic topologies)
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as the growth’s rate of breast cancer. from (0− level)t0=0(infection outside cells) until

(5− level) (infection liver) depends on time. Perhaps over time there is no differen-
tiation for example

(0− level)t01=0⇒ (0− level)
t02=0

⇒ (0− level)
t03=0

⇒ (1− level)
t11

⇒ (1− level)t12⇒ (1− level)t=2 ⇒ (2− level)t=3⇒ (3− level)t=4

⇒ (4− level)t=5⇒ (5− level)t= max imum

Here, from t01 = 0 up to t11 only the infection outside cells without a real
development and from t11 up to t12. constant rate of differentiation of tumor is 2
cm in size and the lymph nodes under the armpit are intact from the cancer cells
is without real expansion this is a topological invariant. In these fixed stages with
the passage of time may take the development of the disease different aspects of
the injury and may lead to injury in other areas. Using precise time scales such
as femtoseconds, we can identify the inaccurate stages of the disease as natural
time evolves treatment is therefore necessary. In fact, cognitive method depend on
synchronization of abnormality step during cells development. We assume that λ(t) is
the shape of cells as we reach a specific time, t. Then, a chain of T -dynamic topologies
can be given

((λ0(t0), µ0(t0)), ((λ1(t1), µ1(t1)), ((λ2(t2), µ2(t2)), ..., (max(λi(ti),maxµi(ti))

With the attributes

λ0(t0) ⊆ λ1(t1) ⊆ ... ⊆ max(λi(ti) and µ0(t0) ⊆ µ1(t1) ⊆ ... ⊆ maxµi(ti)

and fn(λn+1) = λn, n = 0, 1, ..., i− 1, where fn is a folding from λn+1 into λn.

It is also satisfying µn+1(tn) = fn(µn), n = 0, 1, ..., i− 1.

In the same path, λ = φ at t = 0 and after a limit of time the maximum of
measurement formation of cancer cells.

This gives us the increasing chain to determine a cancer at a limit time.

φ
t=1
⇒ λ1 ⊆.λ2 ⊆ ... with µ0 ⊆ µ1 ⊆ µ2 ⊆ ...

Or otherwise we get another decreasing chain can not determine a cancer at a
limit time.

λ1 ⊇ λ2 ⊇ ... ⊇ λ∞ with µ0 ⊇ µ1 ⊇ µ2 ⊇ ... ⊇ µi → φ

Some times in some steps fluctuation happens in the growth cancer , for example

λ1 ⊆ λ2 = λ3 ⊆ ... with µ0 ⊆ µ1 ⊆ µ2 = µ3 ⊆ ...

This causes a delay of the growth cancer at specific time. Giving the opportunity for

treatment at this time. Based on the properties of local topological subspaces for the

dynamical topology a demand for a medical treatment should be started to stop cognitive

anomalies at any step of growth, and a positive result may be achieved as we use a femto

second as a measurement unit.
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Abstaract − The object of the present paper is to derive the generating formulae for the Gegen-

bauer and modified Gegenbauer matrix polynomials by introducing a partial differential operator

and constructing the Lie algebra representation formalism of special linear algebra by using Weis-

ner’s group-theoretic approach. Application of our results is also pointed out.
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1 Introduction

The study of special matrix polynomials is an important due to their applications in
certain areas of statistics, physics, engineering, Lie group theory and number theory.
Group theoretic methods have played an important role in the modern theory of
special functions. Lie algebraic methods for computing eigenvalues and recurrence
relations have been developed and the methods developed in the present paper pro-
vide a more flexible and direct treatment than the standard Lie algebraic treatment
used recently in [1, 5, 14, 15, 21, 23, 24, 32, 34]. The reason of interest for this
family of Gegenbauer matrix polynomials (GMPs) and their associated operational
formalism is due to their intrinsic mathematical importance and the fact that these
polynomials have important applications in physics. Motivated and inspired by the
work of Jódar et. al. and his co-authors on Gegenbauer matrix polynomials, see for
example [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 25, 26, 33] and due
to make use of the Lie group-theoretic method (see [1, 23, 24, 27, 28, 29, 30, 31]).
In this paper, we introduce the differential operators for 2-variable Gegenbauer and
modified Gegenbauer matrix polynomials (MGMPs) and derive their many new and
known generating matrix relations by using Lie algebraic techniques.
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1.1 Preliminaries

For the sake of clarity in the presentation we recall some generating matrix rela-
tions for the Gegenbauer matrix polynomials and some notations which will be used
throughout the next section. Throughout this paper, we assume that A is a positive
stable matrix in CN×N ; that is, the matrix A satisfies the following condition

Re(µ) > 0 for all µ ∈ σ(A), σ(A) := spectrum of A. (1)

Definition 1.1. (Jódar et al. [16]) Let A be a matrix in C
N×N satisfying the

condition

(−z

2
) /∈ σ(A) for all z ∈ Z

+ ∪ {0}. (2)

The Gegenbauer matrix polynomials (GMPs) are defined by

CA
n (x) =

[ 1
2
n]

∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
(A)n−k, (3)

and the generating matrix functions

F (x, t, A) = (1− 2xt+ t2)−A =
∞
∑

n=0

CA
n (x)t

n. (4)

If r1 and r2 are the roots of the quadratic equation 1 − 2xt + yt2 = 0 and r is
the minimum of the set {r1, r2}, then the matrix function F (x, t, A) regarded as a
function of t, is analytic in the disk |t| < r for every real number in |x| ≤ 1.

We recall that the Gegenbauer’s matrix polynomials (GMPs) satisfy the pure and
differential matrix recurrence relations by each element of this set [22]:

nCA
n (x) = 2x(A + (n− 1)I)CA

n−1(x)− (2A+ (n− 2)I)CA
n−2(x);n ≥ 2, (5)

where I is the identity matrix in CN×N , and

(1− x2)
d

dx
CA

n (x) = (2A+ (n− 1)I)CA
n−1(x)− nxCA

n (x). (6)

From (5) and (6), we obtain the matrix differential recurrence relations:

(1− x2)
d

dx
CA

n (x) = (2A+ nI)xCA
n (x)− (n + 1)CA

n+1(x). (7)

Gegenbauer matrix polynomials CA
n (x) is a solution of the following matrix differen-

tial equation:

(1− x2)
d2

dx2
CA

n (x)− x(2A+ I)
d

dx
CA

n (x) + n(2A + nI)CA
n (x) = 0, n ≥ 0, (8)

where 0 is the null matrix in CN×N .

Theorem 1.2. [7] Let A, B and C are matrices in C
N×N such that C + nI is an

invertible matrix for all integers n ≥ 0. Suppose that C, C − A and C − B are
positive stable matrices with BC = CB, the relation

2F1

(

A,B;C; z

)

= (1− z)C−A−B
2F1

(

C −A,C − B;C; z

)

(9)

is valid for |z| < 1.
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2 Group-theoretic Method for Gegenbauer Ma-

trix Polynomials

From (8) we construct a partial differential equation, replacing d
dx

by ∂
∂x
, n by y ∂

∂y
,

and CA
n (x) by CA

n (x, y):

(1− x2)
∂2

∂x2
CA

n (x, y)− (2A+ I)x
∂

∂x
CA

n (x, y) + y
∂

∂y
(2A+ y

∂

∂y
I)CA

n (x, y) = 0. (10)

Therefore CA
n (x, y) = CA

n (x)y
n is a solution of the matrix partial differential equation

Eq. (10), since CA
n (x) is a solution of matrix differential equation Eq. (8). We may

rewrite (10) in the following form:

(1− x2)
∂2

∂ x2
CA

n (x, y) + y2
∂2

∂ y2
CA

n (x, y)− (2A+ I)x
∂

∂x
CA

n (x, y)

+ (2A+ I)y
∂

∂y
CA

n (x, y) = 0.

Let L represent the differential operators of (10), i.e.,

L = (1− x2)
∂2

∂x2
I + y2

∂2

∂y2
I − (2A+ I)x

∂

∂x
+ (2A+ I)y

∂

∂y
.

Next, using the matrix recurrence relations (6) and (7), we determine the first-
order linear partial differential operators with the aid of A, B and C the differential
operators A, B and C such that

B

[

CA
n (x)y

n

]

= −(2A + (n− 1)I)CA
n−1(x)y

n−1,

and

C

[

CA
n (x)y

n

]

= (n+ 1)CA
n+1(x)y

n+1,

where

A = y
∂

∂y
I,

B =
x2 − 1

y

∂

∂x
I − x

∂

∂y
I,

and

C = (x2 − 1)y
∂

∂x
I + xy2

∂

∂y
I + 2xyA,

where the linear differential operators I, A, B, and C satisfy the following commu-
tation relations

[A,B] = −B, [A,C] = C, [B,C] = −2A− 2AI,
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where the commutator notation is defined as [A,B] = AB − BA. Therefore, we will
show that these differential operators generate a three-parameter Lie group.

The second order differential operator L satisfies the differential operator identity

(1− x2)L = BC + A
2 + (2A− I)A.

By means of this identity and the commutator relations we prove that (1 − x2)L
commutes with each of the differential operators A, B, and C,

[(1− x2)L,A] = [(1− x2)L,B] = [(1− x2)L,C] = 0.

Then for arbitrary constants b and c the differential operator ecCebB will transform
solutions of L into solutions of L; in other words,

ecCebB(1− x2)LCA
n (x, y) = (1− x2)L

(

ecCebBCA
n (x, y)

)

= 0.

if and only if LCA
n (x, y) = 0.

To accomplish our task of obtaining the generating matrix relations, we search for
matrix function f(x, y, A) and extended forms of transformation groups generated
by differential operators B and C expressed as follows:

ebBf(x, y, A) = f

(

xy − b
√

y2 − 2bxy + b2
,
√

y2 − 2bxy + b2, A

)

,

and

ecCf(x, y, A) =

(

c2y2 − 2cxy + 1

)

−A

f

(

x− cy
√

c2y2 − 2cxy + 1
,

y
√

c2y2 − 2cxy + 1
, A

)

,

where b, c are arbitrary constants and f(x, y, A) is an arbitrary matrix function. We
know that B and C commute operators and we find

ecCebB[CA
n (x)y

n] =

(

c2y2 − 2cxy + 1

)

−A

CA
n (ξ)η

n, (11)

where

ξ =
(1 + 2bc)xy − c(1 + bc)y2 − b

√

c2y2 − 2cxy + 1
√

(1 + bc)2y2 − 2b(1 + bc)xy + b2
,

and

η =

√

(1 + bc)2y2 − 2b(1 + bc)xy + b2
√

c2y2 − 2cxy + 1
.

2.1 Generating Matrix Functions for Gegenbauer Matrix

Polynomials

In this subsection, some special cases of the generating matrix functions for Gegen-
bauer matrix polynomials are derived from the differential operator (A− AI).
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If we choose b = 1, c = 0 and CA
n (x, y) = CA

n (x)y
n in (11), we find

eB[CA
n (x)y

n] =

(

y2 − 2xy + 1

)
1

2
n

CA
n

(

xy − 1
√

y2 − 2xy + 1

)

.

By expanding this Ggegenbauer matrix polynomials, we get

(

y2 − 2xy + 1

)
1

2
n

CA
n

(

xy − 1
√

y2 − 2xy + 1

)

=

n
∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)y

n−k.

If we divide by yn and let t = 1
y
, we get

(

1− 2xt+ t2
)

1

2
n

CA
n

(

x− t√
1− 2xt + t2

)

=
n

∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)t

k. (12)

Secondly, if we choose b = 0 and c = 1, we get

eC[CA
n (x)y

n] = yn
(

y2 − 2xy + 1

)

−A−
1

2
nI

CA
n

(

x− y
√

y2 − 2xy + 1

)

.

If we expand this generating matrix function for Gegenbauer matrix polynomials
and divide by yn, we get the generating matrix relation

(

y2 − 2xy + 1

)

−A−
1

2
nI

CA
n

(

x− y
√

y2 − 2xy + 1

)

=

∞
∑

k=0

(n + k)!

k!n!
CA

n+k(x)y
k. (13)

Thirdly, for bc 6= 0 we choose b = −1 and c = 1, (this choice is suggested by the
frequency of occurrence in (11) of the factor 1 + bc), we have

ecCebB[CA
n (x)y

n] =

(

c2y2 − 2cxy + 1

)

−A

CA
n (ξ)η

n,

where ξ = 1−xy√
1−2xy+y2

and η = 1√
1−2xy+y2

.

We expand this generating matrix function for Gegenbauer matrix polynomials
as follows:

(

1− 2xy + y2
)

−A−
1

2
nI

CA
n

(

1− xy
√

1− 2xy + y2

)

=

∞
∑

k=0

(2A+ kI)n
k!

CA
k (x)y

k. (14)

If we let ρ =
√

1− 2xy + y2 we can rewrite (14) in the form

ρ−2A−nICA
n

(

1− xy

ρ

)

=

∞
∑

k=0

(2A+ kI)n
k!

CA
k (x)y

k.

In order to express the left member of (14) in hypergeometric matrix functions form
we use

CA
n (x) =

xn

n!
(2A)n 2F1

(

− 1

2
nI,

1

2
(1− n)I;A+

1

2
nI;

x2 − 1

x2

)

,

∣

∣

∣

∣

x2 − 1

x2

∣

∣

∣

∣

< 1.
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Then after some simplification, Eq. (14) yields

(1− 2xy + y2)−A−nI(1− xy)n 2F1

(

− 1

2
nI,

1

2
(1− n)I;A+

1

2
nI;

y2(x2 − 1)

(1− xy)2

)

=
∞
∑

k=0

(2A+ nI)k[(2A)k]
−1CA

k (x)y
k,

∣

∣

∣

∣

y2(x2 − 1)

(1− xy)2

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

xy

∣

∣

∣

∣

< 1.

(15)

By applying the Theorem 1.1 and letting B = 2A+ nI, in the left member of (15),
we obtain

(1− xy)−B
2F1

(

1

2
B,

1

2
(B + I);A+

1

2
nI;

y2(x2 − 1)

(1− xy)2

)

=
∞
∑

k=0

(B)k[(2A)k]
−1CA

k (x)y
k,

∣

∣

∣

∣

y2(x2 − 1)

(1− xy)2

∣

∣

∣

∣

< 1.

(16)

2.2 Generating Matrix Functions Annulled by not Conju-

gate of (A−AI)

In this subsection, the generating matrix functions for Gegenbauer matrix polyno-
mials are derived from the differential operators not conjugate to (A − AI). The
three generating matrix functions of (12), (13), and (14) have been obtained by
transforming CA

n (x)y
n which is a solution of the system

LCA
n (x, y) = 0 and (A− nI)CA

n (x, y) = 0.

If we wish to obtain additional generating matrix functions for the Gegenbauer ma-
trix polynomials, we need to find differential operators which are not conjugate to
(A − nI); i.e., we wish to find first order differential operators R such that for all
choices of b and c;

ecCebB(A− nI)e−bBe−cC 6= R.

We take the set of linear differential operators R = r1A + r2B + r3C + r4I, for all
combinations of zero and nonzero coefficients except for r1 = r2 = r3 = 0. We find
that

ecCebB(A− nI)e−bBe−cC = (1 + 2bc)A+ bB− c(1 + bc)C+ (2bcA− nI)I.

Then for r1 = 1 + 2bc, r2 = b, r3 = c(1 + bc), we have r2 + 4r2r3 = 1.
Therefore, A−nI is not conjugate to differential operators for which r21+4r2r3 = 0

in the following cases:
If r1 = 0, r2 = 1, and r3 = 0, we seek a solution of the system

Lu(x, y, A) = 0 and (B+ I)u(x, y, A) = 0.

A solution of this system is

u(x, y, A) = exy 0F1

(

−;A+
1

2
I;

y2(x2 − 1)

4

)

.
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If we expand this matrix function, we get

exy 0F1

(

−;A +
1

2
I;

y2(x2 − 1)

4

)

=

∞
∑

k=0

[(2A)k]
−1CA

k (x)y
k. (17)

For r1 = 0, r2 = 0, and r3 6= 0, we seek a solution of the system

Lu = 0 and (C+ λI)u = 0,

where λ is an arbitrary constant. We may avoid actually solving this system by
noting that

ebBecC(B+ I)e−cCe−bB = 2c(1 + bc)A+ (1 + bc)2I− c2C+ 2c(1 + bc)AI+ I.

If we choose b = 1 and c = −1, we get

eBe−C(B+ I)eCe−B = −C+ I.

Therefore, we can obtain a solution of the system Lu = 0 and (C − I)u = 0, by
transforming the generating matrix functions of (17) as follows:

eBe−Cexy 0F1

(

−;A+
1

2
I;

y2(x2 − 1)

4

)

= y−2A exp

(

y − x

y

)

0F1

(

−;A +
1

2
I;

x2 − 1

4y2

)

.

If we let t = − 1
y
, we get

e(−t)2Aext 0F1

(

−;A+
1

2
I;

t2(x2 − 1)

4

)

as our generating matrix function. But this matrix function differs only trivially
from (17).

As applications, we now obtained many new and known generating matrix rela-
tions for the Gegenbauer matrix polynomials in the following:

ρnCA
n

(

x− y

ρ

)

=

n
∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)y

k, (18)

ρ−2A−nICA
n

(

x− y

ρ

)

=

∞
∑

k=0

(k + n)!

k!n!
CA

n+k(x)y
k, (19)

which is given in [8].

ρ−2A−nICA
n

(

1− xy

ρ

)

=

∞
∑

k=0

(2A+ kI)n
n!

CA
k (x)y

k, (20)

and

exy 0F1

(

−;A +
1

2
I;

y2(x2 − 1)

4

)

=

∞
∑

k=0

[(2A)k]
−1CA

k (x)y
k. (21)
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3 Group-theoretic Method for Modified Gegen-

bauer Matrix Polynomials

Here, we consider the modified Gegenbauer matrix polynomials CA+nI
n (x) which

satisfy the following matrix differential equation:

(1− x2)
d2

dx2
CA+nI

n (x)− x(2A+ (2n+ 1)I)
d

dx
CA+nI

n (x)

+ n(2A + 3nI)CA+nI
n (x) = 0, n ≥ 0.

(22)

By using the following differential matrix recurrence relations

(1− x2)
d

dx
CA+nI

n (x) = (2A+ (3n− 1)I)CA+nI
n−1 (x) + nxCA+nI

n (x), (23)

and

(1− x2)
d

dx
CA+nI

n (x) = (2A+ 3nI)xCA+nI
n (x)− (n+ 1)CA+nI

n+1 (x). (24)

Replacing d
dx

by ∂
∂x
, n by y ∂

∂y
, and CA+nI

n (x) by CA+nI
n (x, y) in (22) we obtain the

following a matrix partial differential equation:

(1− x2)
∂2

∂x2
CA+nI

n (x, y)− (2A+ (2n+ 1)I)x
∂

∂x
CA+nI

n (x, y)

+ y
∂

∂y
(2A+ 3y

∂

∂y
I)CA+nI

n (x, y) = 0.
(25)

Thus we see that CA+nI
n (x, y) = CA+nI

n (x)yn is a solution of the matrix partial
differential equation Eq. (3.3), since CA+nI

n (x) is a solution of the matrix differential
equation Eq. (22). We can rewrite (24) in the following form:

(1− x2)
∂2

∂ x2
CA+nI

n (x, y) + 3y2
∂2

∂ y2
CA+nI

n (x, y)− (2A+ I)x
∂

∂x
CA+nI

n (x, y)

− 2xy
∂

∂y∂x
CA+nI

n (x, y) + (2A+ 3I)y
∂

∂y
CA+nI

n (x, y) = 0.

(26)

We define the differential operators I, A, B, and C as follows

A = y
∂

∂y
I,

B =
x2 − 1

y

∂

∂x
I − x

∂

∂y
I,

and

C = (x2 − 1)y
∂

∂x
I + 3xy2

∂

∂y
I + 2xyA.
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Next, we determine the following partial differential operators with the aid of A, B
and C the differential operators A, B and C such that

A

[

CA+nI
n (x)yn

]

= nCA+nI
n (x)yn,

B

[

CA+nI
n (x)yn

]

= −(2A + (3n− 1)I)CA+nI
n−1 (x)yn−1,

and

C

[

CA+nI
n (x)yn

]

= (n + 1)CA+nI
n+1 (x)yn+1,

where differential operators A, B, and C satisfy the commutator relations

[A,B] = −B, [A,C] = C, [B,C] = −2A− 2AI. (27)

Nota that: The set of linear combinations of the differential operators I, A, B and
C forms a Lie algebra.

It can be easily shown that the partial differential operators in (24) L given by

L = (1− x2)
∂2

∂x2
I + 3y2

∂2

∂y2
I − (2A+ I)x

∂

∂x
− 2xy

∂

∂y∂x
I + (2A+ 3I)y

∂

∂y
.

The second order differential operator L satisfies the differential operators identity
as follows

(1− x2)L = BC + (2A+ 3A)(A+ I). (28)

It can be easily verified that (1−x2)L commutes with each of the differential operators
A, B and C,

[(1− x2)L,A] = [(1− x2)L,B] = [(1− x2)L,C] = 0. (29)

The extended forms of transformation groups generated by differential operators A,
B and C are given by

eaAf(x, y, A) = f

(

x, eay, A

)

, (30)

ebBf(x, y, A) = f

(

xy − b
√

y2 − 2bxy + b2
,
√

y2 − 2bxy + b2, A

)

, (31)

and

ecCf(x, y, A) =

(

c2y2 − 2cxy + 1

)

−A

f

(

x− cy
√

c2y2 − 2cxy + 1
,

y
√

c2y2 − 2cxy + 1
, A

)

,(32)

where a, b and c are arbitrary constants and f(x, y, A) is an arbitrary matrix function.
From the above relations the A, B and C commute operators, we get

ecCebBeaAf(x, y, A) = f

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

, ea
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

(c2y2 − 2cxy + 1)
3

2

, A

)

.

(33)
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3.1 Generating Matrix Functions for Modified Gegenbauer

Matrix Polynomials

From (26), CA+nI
n (x, y) = CA+nI

n (x)yn is a solution of the system

LCA+nI
n (x, y) = 0 and (A− nI)CA+nI

n (x, y) = 0.

From (29) we easily get

ecCebBeaA(1− x2)L[CA+nI
n (x)yn] = (1− x2)LecCebBeaA[CA+nI

n (x)yn].

Therefore the transform ecCebBeaA[CA+nI
n (x)yn] is annulled by (1− x2)L.

If we choose a = 0 and CA+nI
n (x, y) = CA+nI

n (x)yn in (33), we get

ecCebB[CA+nI
n (x)yn]

=

(

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2
)

1

2
n(

c2y2 − 2cxy + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

)

.

(34)

On the other hand we get

ecCebB[CA+nI
n (x)yn] =

∞
∑

m=0

cm

m!

∞
∑

k=0

bk

k!
(n− k + 1)m((1− 3n)I − 2A)ky

n−k+mCA+nI
n−k+m(x).(35)

Equating (34) and (35), we get

(

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2
)

1

2
n(

c2y2 − 2cxy + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

)

=
∞
∑

m=0

n
∑

k=0

cmbk

m!k!
(n− k + 1)m((1− 3n)I − 2A)ky

n−k+mCA+nI
n−k+m(x).

(36)

Here, we obtain some interesting results as the particular case of generating matrix
relations (36).

Putting b = 1, c = 0 and writing y = t in (36) we get of generating matrix
relations

(

1− 2xt+ t2
)

1

2
n

CA+nI
n

(

xt− 1√
1− 2xt + t2

)

=

n
∑

k=0

1

k!
((1− 3n)I − 2A)kt

n−kCA+nI
n−k (x).

(37)

Letting b = 0, c = 1 and y = t in (36) we obtain

(

t2 − 2xt + 1

)

−(A+ 3

2
nI)

CA+nI
n

(

x− t√
t2 − 2xt+ 1

)

=
∞
∑

m=0

1

m!
(n+ 1)mt

mCA+nI
n+m (x).

(38)
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Putting b = −1
b
, c = 1 and substituting y = t in (36), we get

(

1

b2
(t2 − 2xt + 1) +

2

b
t(x− t) + t2

)
1

2
n(

t2 − 2xt + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

t(x− t) + 1
b
(t2 − 2xt+ 1)

√
t2 − 2xt+ 1

√

1
b2
(t2 − 2xt+ 1) + 2

b
t(x− t) + t2

)

=

∞
∑

m=0

∞
∑

k=0

cm(−1
b
)k

m!k!
(n− k + 1)m((1− 3n)I − 2A)kt

n−k+mCA+nI
n−k+m(x).

(39)

Now replacing A by A− nI and t = 1
t
in (37) we get

(

1− 2xt + t2
)

1

2
n

CA
n

(

x− t√
1− 2xt+ t2

)

=

n
∑

k=0

1

k!
((1− n)I − 2A)kt

kCA
n−k(x). (40)

Again on replacing A by A− nI in (38) we get
(

t2 − 2xt+ 1

)

−(A+nI)

CA
n

(

x− t√
t2 − 2xt + 1

)

=

∞
∑

m=0

1

m!
(n+ 1)mt

mCA
n+m(x). (41)

3.2 Generating Matrix Functions for Modified Gegenbauer

Matrix Polynomials CA−nI
n+r (x)

Here, we consider the following operator D :

D = (x2 − 1)y
∂

∂x
I − 2xy2

∂

∂y
I + xy(2A− I), (42)

such that

D[CA−nI
n+r (x)yn] =

1

2
(n + r + 1)((1 + n− r)I − 2A)((1 + n)I − A)−1C

A−(n+1)I
n+r+1 (x)yn+1.(43)

The extended form of group generated by D is given as follows:

edDf(x, y) =

(

d2y2(x2 − 1) + 2dxy + 1

)A−
1

2
I

× f

(

x+ dy(x2 − 1),
y

√

d2y2(x2 − 1) + 2dxy + 1

)

,

(44)

where d is an arbitrary constant. Using (44), we obtain

edD[CA−nI
n+r (x)yn] = yn

(

d2y2(x2 − 1) + 2dxy + 1

)A−(n+ 1

2
)I

CA−nI
n+r

(

x+ dy(x2 − 1)

)

.(45)

By using (43), we obtain

edD[CA−nI
n+r (x)yn] =

∞
∑

k=0

dk

k!
D

k[CA−nI
n+r (x)yn]

=
∞
∑

k=0

dk

k!

1

2k
(n+ r + 1)k((1 + n− r)I − 2A)k

(

((1 + n)I − A)k

)

−1

C
A−(n+k)I
n+r+k (x)yn+k.

(46)
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Equating (45) and (46) then putting t = 1
2
dy, we get

(

4t2(x2 − 1) + 4xt + 1

)A−(n+ 1

2
)I

CA−nI
n+r

(

x+ 2t(x2 − 1)

)

=
∞
∑

k=0

1

k!
(n+ r + 1)k((1 + n− r)I − 2A)k

(

((1 + n)I − A)k

)

−1

C
A−(n+k)I
n+r+k (x)tk.

(47)

Putting r = 0 in (47), we get

(

4t2(x2 − 1) + 4xt + 1

)A−(n+ 1

2
)I

CA−nI
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

1

k!
(n+ 1)k((1 + n)I − 2A)k

(

((1 + n)I −A)k

)

−1

C
A−(n+k)I
n+k (x)tk.

(48)

Putting r = 0 and replacing A by A+ nI in (47), we get

(

4t2(x2 − 1) + 4xt + 1

)A−
1

2
I

CA
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

1

k!
(n+ 1)k((1− n)I − 2A)k

(

(I − A)k

)

−1

CA−kI
n+k (x)tk.

(49)

Putting n = 0 in (49), we get

(

4t2(x2 − 1) + 4xt+ 1

)A−
1

2
I

CA
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

(I − 2A)k

(

(I − A)k

)

−1

CA−kI
k (x)tk.

(50)
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[19] L. Jódar, and J. C. Cortés, Closed form general solution of the hypergeometric

matrix differential equation, Mathematical and Computer Modelling, Vol. 32
(2000), 1017–1028.

[20] E. B. McBride, Obtaining Generating Functions, Springer, New York, 1971.

[21] W. J. R. Miller, Lie Theory and Special Functions, Academic Press, New York
and London, 1968.

[22] K. A. M. Sayyed, M. S. Metwally, and R. S. Batahan, Gegenbauer ma-

trix polynomials and second order matrix differential equations, Divulgaciones
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1 Number 27

We are happy to inform you that Number 27 of the Journal of New Theory (JNT)
is completed with 9 articles.

In [1], the authors introduced the concept of anti fuzzy BG-ideals in BG-algebra
and we have discussed some of their properties. Relation between anti fuzzy BG-ideal
and cartessian product of anti fuzzy BG-ideals is developed.

In [2], existence and uniqueness of local classical solutions of the quasilinear
evolution integrodifferential equation in Banach spaces are studied. The results are
demonstrated by employing the fixed point technique on C0-semigroup of bounded
linear operator. At last, we deal an example to interpret the theory.

In [3], avian influenza epidemic model with drug resistance effect is investigated.
The basic reproduction number R0 find out using next generation method. The local
and global stability of a disease free and endemic equilibrium of the system is studied
and discussed. Numerical simulations are carried out to investigate the influence of
the key parameters on the spread of the disease, to support the analytical conclusion
and illustrate possible behavioral scenarios of the model.

In [4], the authors defined a new operation on soft sets, called extended difference
and investigate its relationship between extended difference and restricted difference
and some other operations of soft sets. This study is based on the paper ”On
operations of Soft Sets” by Sezgin and Atagün [Comput. Math. Appl. 61 (2011)
1457-1467].

*Editor-in-Chief of the Journal of New Theory.
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In [5], the authors introduced and investigated the concepts of lightly nano ω-
closed sets and lightly nano ω-open sets in a nano topological spaces, which are
weaker form of lightly nano-closed sets and lightly nano-open sets and relationships
among related ng-closed sets are investigated.

In [6], the authors redefined some basic operations of hesitancy fuzzy graph and
it is referred as hesitancy fuzzy digraph (in short HFDG). They discussed some
arithmetic operations and relations among HFDG. They further proposed a method
to solve a shortest path problem through score function.

In [7], a suggestion for the calculation of Pythagorean Expectation for football
is presented. In the application section, end-season rankings and points for the
2017/2018 season of the selected fifteen European football leagues are predicted by
using the suggested method. The data of the past five seasons of the selected Euro-
pean football leagues is used as the training dataset. All calculations are performed
in R.

In [8], the authors introduced the notion of (2,L)-double fuzzifying topology which
is a generalization of the notion of (2,L)-fuzzifying topology and classical topology.
They defined the notions of (2,L)-double fuzzifying preproximity and (2,L)-fuzzifying
syntopogenous structures. Some fundamental properties are also established. These
concepts will help in verifying the existing characterizations and also help in achieving
new and generalized results. Finally they studied a model as an application of
fuzzifying topology in biology.

In [9], the authors derived the generating formulae for the Gegenbauer and mod-
ified Gegenbauer matrix polynomials by introducing a partial differential operator
and constructing the Lie algebra representation formalism of special linear algebra
by using Weisner’s group-theoretic approach. An application of this results is also
pointed out.
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