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Original Article

Abstract − The S
∗-invariant subspaces of the Hardy-Hilbert space H

2(E) (where
E is finite dimensional Hilbert space of dimension greater than 1) on the unit disc is
well known. In this study, we examine that, if Ω is a conjugation on E, and Θ an inner
function, then there exist model spaces which are not invariant for the conjugation
CΩ : L2(E) −→ L

2(E). Under what necessary condition the model spaces is mapped
onto itself is under consideration.

Keywords − Inner function, model spaces, conjugation.

1. Introduction and Preliminaries

Let D denote the open unit disc and T the unit circle in the complex plane C. Throughout the
paper E will denote a fixed Hilbert space, of finite dimension d, and L(E) the algebra of bounded
linear operators on E, which may be identified with d × d matrices. L(E) is Hilbert space endowed
with Hilbert-Schmidt norm. H2(E) is the Hardy-Hilbert of E-valued analytic functions on D whose
coefficients are square summable, which is a closed subspace of L2(E).

The space L2(E) is defined, as usual, by

L2(E) =

{

f : T −→ E : f(eit) =
∞
∑

−∞

ane
int, an ∈ E ,

∞
∑

−∞

‖an‖
2
E
< ∞

}

.

The inner product on L2(E) is defined by

〈f, g〉 =
1

2π

∫ 2π

0
〈f(eit), g(eit)〉Edt, (1)

and L2(E) can be orthogonally decompose as

L2(E) = H2
−(E)⊕H2(E),

where H2
−(E) is the orthogonal complement of H2(E) in L2(E) with inner product defined in (1). For

f ∈ H2(E), f(z) and f(eit) determine each other.
It is important to note that, if dimE = 1 (i.e E = C) then L2(E) consists of the scalar valued

functions and is denoted by L2(T), and all the results become trivial in that case.
By viewing L(E) as Hilbert space (endowed with the Hilbert Schmidt norm), one can also con-

sider the space L2(L(E)), which may be identified with the matrices whose entries are from L2(T).

1rewayat.khan@gmail.com (Corresponding Author); 2jamroz.khan73@gmail.com
1Abdus Salam School of Mathematical Sciences Government College University, Lahore, Pakistan.
2Government College of Management Sciences 2, Peshawar, Pakistan.



Journal of New Theory 28 (2019) 01-04 / Necessary Condition for Vector-Valued Model Spaces to be ... 2

Alternately, we may view L2(L(E)) also as a space of square summable Fourier series with coefficients
in L(E).

The space H2(L(E)) is a closed subspace of L2(L(E)) whose Fourier coefficients corresponding to
negative indices vanishes. We have an orthogonal decomposition

L2(L(E)) = [zH2(L(E))]∗ ⊕H2(L(E)).

The unilateral shift (see [6]) S : H2(E) −→ H2(E) is defined by Sf = zf , and its adjoint S∗

(backward shift) is given by the formula;

S∗f =
f − f(0)

z
.

After gathering the facts in preliminaries, we will present main results in the next section. An
effort has been made to make the paper self-contained.

2. Formulation and Basic Results

Definition 2.1. An inner function is an element Θ ∈ H2(L(E)) whose boundary values are almost
everywhere unitary operators in L(E).

Definition 2.2. A conjugation is a conjugate-linear operator C : H −→ H that satisfies the conditions

1. C is isometric: 〈Cf,Cg〉 = 〈g, f〉 ∀f, g ∈ H,

2. C is involutive: C2 = I.

Model space associated to an inner function Θ, is denoted by KΘ, and is defined by

KΘ = H2(E) ⊖ΘH2(E).

Just like the Beurling-type subspace ΘH2(E) constitute nontrivial invariant subspace for the unilateral
shift S, the subspace KΘ plays an analogous role for the backward shift S∗.

For a given inner function Θ, and Ω a conjugation on E, the map CΩ : L2(E) −→ L2(E), defined
by

(Cf)(eit) = Θ(eit)eitΩf(eit)

is a conjugation. It is worth noting that CΩ does not preserve the model spaces in general. However
this is true for dimE = 1 (see [6]) . Under what condition the model spaces is invariant under the
conjugation CΩ, this we will study in the next section.

3.Main Results

Example 3.1. If Θ(eit)∗ 6= ΩΘ(eit)Ω then CΩKΘ * KΘ.
Let E = C2 and

Θ(z) =

(

z 0
0 z2

)

∈ H2(L(C2)),

then

ΘH2(C2) =

{(

zf
z2g

)

: f, g ∈ H2

}

,

and the model space associated to Θ is

KΘ = [ΘH2(C2)]⊥ =

{(

f0
g0 + g1z

)

: f0, g0, g1 ∈ C

}

.

Let Ω : C2 −→ C2 be defined by

Ω

(

a1
a2

)

=

(

a2
a1

)

is a conjugation.
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Now consider

Θ(eit)∗
(

a1
a2

)

=

(

z 0
0 z2

)(

a1
a2

)

=

(

a1z
a2z

2

)

(2)

and

ΩΘΩ

(

a1
a2

)

= Ω

(

z 0
0 z2

)(

a2
a1

)

= Ω

(

a2z
a1z

2

)

=

(

a1z
2

a2z

)

6= Θ(eit)∗
(

a1
a2

)

. (3)

Now

CΩ

(

0
z

)

= z

(

z 0
0 z2

)

Ω

(

0
z

)

=

(

1 0
0 z

)(

z
0

)

=

(

z
0

)

/∈ KΘ.

Theorem 3.2. If Ω is a conjugation on E. Suppose that for the inner function Θ, we have Θ(eit)∗ =
ΩΘ(eit)Ω. Then CΩKΘ = KΘ.

Proof. Let f ∈ KΘ and h ∈ H2(E), then

〈

CΩf,Ω(zh)
〉

=
1

2π

2π
∫

0

〈

Θ(eit)e−itΩf(eit), e−itΩh(eit)
〉

dt =
1

2π

2π
∫

0

〈

ΩΘ(eit)∗Ωf(eit),Ωh(eit)
〉

dt

=
1

2π

2π
∫

0

〈

ΩΘ(eit)∗f(eit),Ωh(eit)
〉

dt =
1

2π

2π
∫

0

〈

h(eit),Θ(eit)∗f(eit)
〉

dt

=
1

2π

2π
∫

0

〈

Θ(eit)h(eit), f(eit)
〉

dt =
〈

Θh, f
〉

= 0.

This proves that CΩf ⊥ H2
−(E). Next we will prove that CΩf ⊥ ΘH2(E). For this consider

〈

CΩf,Θznx
〉

=
1

2π

2π
∫

0

〈

Θ(eit)e−itΩf(eit),Θ(eit)eintx
〉

dt

=
1

2π

2π
∫

0

〈

e−itΩf(eit), eintx
〉

dt =
1

2π

2π
∫

0

〈

Ωf(eit), ei(n+1)tx
〉

dt

=
1

2π

2π
∫

0

〈

Ωei(n+1)tx, f(eit)
〉

dt =
〈

Ωzn+1x, f
〉

= 0.

Here we have used the fact that Ωzn+1x ∈ H2
−(E). This shows that CΩKΘ ⊂ KΘ and this combined

with C2
Ω = I follows that CΩKΘ = KΘ.
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Abstract − Picture linguistic fuzzy set is the generalize structure over existing
structures of fuzzy linguistic sets to arrange uncertainty and imprecise information
in decision making problems. Viewing the effectiveness of the picture linguistic fuzzy
set, we developed a decision-making approach for the multi-criteria decision-making
problems. We also proposed the GRA technique using Choquet integral deal- ing
uncertainty in decision making problems under picture linguistic fuzzy information.
Lastly, we illustrate an example to shows the effectiveness and reliability of the de-
veloped method.

Keywords − Picture linguistic fuzzy set, Picture linguistic fuzzy Choquet integral weighted averaging (PLF-
CIWA) operator, GRA method.

1. Introduction

Fuzzy set theory concept was first time defined by Zadeh [1]. Fuzzy set are only defined membership
function, but more times, it difficult to express more fuzzy information. To deal successfully with
something difficult, Attanssov [2] defined the intuitionistic fuzzy set, the development of FS, which
included the non-membership degree. After that Attanssov defined interval valued IFS by approach-
ing the positive degree and negative degree to interval number [3–5], and the operational laws and
comparison rules for the IvIFSs are defined. The IvIFS illustrate the fuzzy information and is more
descriptive than the FS and IFS. Wang and Liu defined some geometric and averaging aggregation op-
erators for different IFNs. Latterly, some multi-criteria decision making problems have also proposed
which depend on IFS [6,7].

Murofushi and Sugeno [8] proposed the notion of Choquet integral with respect to a fuzzy measure.
It was defined by Choquet [9] in potential theory with the notion of capacity. The generalization of
the classical Lebesgue integral are Choquet integral and has been tested to many other field. Choquet
integral are used in many areas like as image processing, pattern recognition, information fusion and
data mining [10, 11], and also utilized in economic theory [12, 13], in the context of fuzzy measure
theory [14, 15]. Sugeno integral is the other important kind of fuzzy integral, and are introduced
by Sugeno [16]. Sugeno integral on the fuzzy sets are generalized by Wang and Qiao [17, 18]. Yu et
al. [19] proposed the Choquet integral operator to aggregate the hesitant fuzzy information for MCDM
problems. Zhou [20] extended intuitionistic fuzzy Choquet integral correlation coefficient on the base
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of Shapley index. Li et al. [21] proposed the Generalized Interval Neutrosophic Choquet Aggregation
Operators.

The concepts of picture fuzzy set was proposed by Coung and investigated basic operators and
properties of (PFS) [22]. Picture fuzzy set are basically development of Atanassoves intuitionistic
fuzzy set, which represent a membership, neutral membership and a nonmembership degree, is a very
strong tool to represent vague and an uncertain information in the process of clustering analysis.
When we looksome issue, which have more answers like as: yes, abstain, no, and refusal, in this case
we used picture fuzzy numbers. To deal with clustering problems under the picture fuzzy environment
Son [23] give the concept of generalized picture fuzzy distance measure. The decision making art are
proposed by Wei [24], which is depended on the picture fuzzy weight cross-entropy. Ashraf et al. [25]
proposed the series of aggregation opertors for picture fuzzy information. Zeng et al. [26] proposed
the liguistic picture fuzzy TOPSIS method for picture fuzzy information. For more study, we refer
to [27–32,53–56].

Moreover, in decision position assessment are given by linguistic terms which is a linguistic values
of a linguistic variable. The great deal of qualitative information arise in real decision making problem.
Which is simply convert by linguistic terms, like as “very good”,“good”, “fair”,“bad” and “very bad”,
etc. In some earlier application, linguistic terms were described for triangular fuzzy numbers [33,34],
trapezoidal fuzzy numbers [35, 36]. The notion of Intuitionistic linguistic set are given by Wang and
Li [37], and also derived some decision making methods with ILNs. Pei et al. [38] proposed linguistic
weighted aggregation operator for fuzzy risk analysis. Based on dependent operator Liu [39] derived the
intuitionistic linguistic generalized dependent ordered weighted averaging operator and intuitionistic
linguistic generalized dependent hybrid weighted aggregation operator. Wang et al. [40] defined the
comparison rules, score function and accuracy function between two intuitionistic linguistic numbers.
Wang [41] developed an ILPGWA operator and ILPGOWA operator based on power operator, and
explain some individual cases of these operators with respect to the generalized criterion. Chen et
al. [42] introduced the new notion of linguistic intuitionistic fuzzy number. Liu et al. [43] introduced a
new linguistic term transformation tecnique in linguistic decision making. Based on Einstein T-norm
and T-conorm Liu and You [44] proposed some linguistic intuitionistic fuzzy Heronian mean operators.
Due to the motivation and inspiration of the above study in this article, we defined picture linguistic
fuzzy set (PLFS), which is generalized form of intuitionistic linguistic fuzzy set. The application of
this paper is to introduced the notion of GRA methodology for solving MADM problems under picture
linguistic fuzzy information, in which the data about criteria weights are completely unknown, and
the criteria values occur in the form of picture linguistic fuzzy numbers.

In preliminaries, we shortly review basic definitions and results about Choquet integral, intuition-
istic linguistic fuzzy sets and picture linguistic fuzzy sets. In Section 3, we proposed the concept of
picture linguistic fuzzy sets, and also introduce the GRA method for picture linguistic fuzzy MAGDM
problems with incomplete weight information in Section 4. In Section 5, we illustrate our introduced
algorithm with an example. In Section 6 are conclusion.

2. Preliminary

Some basic definition and notations of IFSs, ILFSs, PFS, PLFS and their operations are discussed.
The concept of fuzzy measure and Choquet integral are aslo studied.

Definition 2.1. [45,46] Let Ĺ = {£p|p = 0, 1, ..., ℓ− 1} be the linguistic set, where as the cardinality
of this set is considered as odd number, i.e. a five linguistic terms set Ĺ can be designate as;

Ĺ = (£0,£1,£2,£3,£4)

= {poor, slightly poor, fair, slightly good, good}.

Definition 2.2. The negation operator: neg (Ĺp) = Ĺq, where q = ℓ− 1;
(1) Be ordered: £p ≤ £q ⇐⇒ p ≤ q;
(2)Maximum operator: max(£p,£q) = £p if £p ≥ £q;
(3) Minimum operator: min(£p,£q) = £p if £p ≤ £q.

£[0,ℓ] = {£p|£0 ≤ £p ≤ £ℓ}, whose elements also get all the characteristics above, and if £p ∈ Ĺ,it
is known as the actual term, otherwise, virtual term.
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To make something stay the same, Herrera et al. [47] suggest that the distinct linguistic term set
Ĺ = (£0 ,£1, ...,£ℓ−1) is expended to a continuous linguistic term set Ĺ = (£θ|θ ∈ (0, G), where G
sufficiently large positive number which satisfies the upper characteristics. For any linguistic variables
£p,£q ∈ Ĺ, the following condition ae satisfied.

1. ϖ ⊗£p = £ϖ·p

2. £p ⊕£q = £p+q

3. £p/£q = £p/q

4. (£p)
q = £kq

Definition 2.3. [2] An IFS Eŭ on the universal set R ̸= ϕ is defined as;

Eŭ = {⟨Pěŭ(r), Iěŭ(r)| r ∈ R⟩} ,

where Pěŭ(r) : R → [0, 1] and Iěŭ(r) : R → [0, 1] are the membership and non-membership degree
of each r ∈ R, respectively. Moreover Pěŭ(r) and Iěŭ(r) satisfy this condition 0 ≤ Pěŭ(r) + Iěŭ(r) ≤
1∀r ∈ R.

Definition 2.4. [48] Let R ̸= ϕ be the universe of discourse. Then Eŭ is defined as;

Eŭ = {⟨£ěŭ(r), Pěŭ(r), Iěŭ(r)| r ∈ R⟩} ,

an ILFS in a set R is denoted by £ěŭ(r) ∈ L are the linguistic term, Pěŭ(r) and Iěŭ(r) : R → [0, 1] be
the membership and non-membership of each r ∈ R, respectively. Moreover Pěŭ(r) and Iěŭ(r) satisfy
this condition0 ≤ Pěŭ(r) + Iěŭ(r) ≤ 1 for all r ∈ R.

Definition 2.5. [22] A PFS Eŭ on the universal set R ̸= ϕ is defined as;

Eŭ = {⟨Pěŭ(r), Iěŭ(r), Něŭ(r)| r ∈ R⟩} .

where Pěŭ(r) : R → [0, 1] , Iěŭ(r) : R → [0, 1] and Něŭ(r) : R → [0, 1] are the positive membership,
neutral membership and negative membership of each r ∈ R, respectively. Furthermore, Pěŭ(r), Iěŭ(r)
and Něŭ(r) satisfy this condition 0 ≤ Pěŭ(r) + Iěŭ(r) +Něŭ(r) ≤ 1∀r ∈ R.

2.1. Fuzzy measure and Choquet integral

Definition 2.6. [9] Let R = {r1, r2, ..., rn} ̸= ϕ be the universe of discourse and p(R) denotes the
power set of R. Then, a fuzzy measure Pěŭ on R is a mapping Pěŭ : p(R) → [0, 1], satisfying the
subsequent conditions;

1) Pěŭ(ϕ) = 0, Pěŭ(R) = 1.

2) If Eŭ1 , Eŭ2 ∈ p(R) and Eŭ1 ⊆ Eŭ2 then Pěŭ(Eŭ1) ≤ Pěŭ(Eŭ2).

Where Pěŭ({r1, r2, ..., rn}) can be considered as the grade of subjective importance of decision
criteria set {r1, r2, ..., rn}. Thus, with the separate weights of criterias can also be defined. Naturally,
we could say the following about any pair of criterias sets Eŭ1 , Eŭ2 ∈ p(R), Eŭ1 ∩ Eŭ2 = ϕ; Eŭ1and
Eŭ2 are considered to be without interaction if

Pěŭ(Eŭ1 ∪ Eŭ2) = Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (1)

which is known as additive measure. Eŭ1and Eŭ2 exhibit a positive synergetic interaction between
them (or are complementary) if

Pěŭ(Eŭ1 ∪ Eŭ2) > Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (2)

which is called a superadditive measure. Eŭ1and Eŭ2 exhibit a negative synergetic interaction between
them (or redundant or substitutive) if

Pěŭ(Eŭ1 ∪ Eŭ2) < Pěŭ(Eŭ1) + Pěŭ(Eŭ2) (3)
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known as sub-additive measure.
Since it is difficult to find the fuzzy measure according to Definition 2.6, therefore, to confirm a

fuzzy measure in MAGDM problems, Sugeno [16] given below, λ-fuzzy measure:

Pěŭ(Eŭ1 ∪ Eŭ2) = Pěŭ(Eŭ1) + Pěŭ(Eŭ2) + λPěŭ(Eŭ1)Pěŭ(Eŭ2) (4)

λ ∈ [−1,∞), Eŭ1 ∩ Eŭ2 = ϕ. The interaction between the criterias are determines the parameter λ .
If we put λ = 0, in Equation 4, then, λ-fuzzy measure become an additive measure. And for negative
and positive λ, the λ-fuzzy measure reduces to subadditive and superadditive measures, respectively.
Meantime, if all the elements in R are independent, and we have

Pěŭ(Eŭ) =

n∑
p=1

Pěŭ({rp}) (5)

If we consider R is a finite set, then ∪np=1rp = R, and λ-fuzzy measure Pěŭ satisfies following
Equation 6

Pěŭ (R) = Pěŭ
(
∪np=1ri

)
=


1
λ

(
n∏
p=1

[1 + λPěŭ (rp)]− 1

)
if λ ̸= 0

n∑
p=1

Pěŭ (rp) if λ = 0

(6)

where rp ∩ rď = ϕ for all p,ď= 1, 2, ..., n and p ̸=ď. A fuzzy density Pěŭ(rp) for a subset with a
single element rp is denoted as Pěŭp = Pěŭ(rp).

Especially for every subset Eŭ1 ∈ p(R), we have

Pěŭ (Eŭ1) =


1
λ

(
n∏
p=1

[1 + λPěŭ (rp)]− 1

)
if λ ̸= 0

n∑
p=1

Pěŭ (rp) if λ = 0

(7)

Based on Equation 2, we determined the value of λ from Pěŭ(R) = 1, and is equal to solved this
equation;

λ+ 1 =
n∏
p=1

[
1 + λPěŭp

]
(8)

It should be recognized that the value of λ can be uniquely determined by Pěŭ(R) = 1.

Definition 2.7. [16] Assume that f and Pěŭ be a positive real-valued function and fuzzy measure
on R, respectivily. The discrete Choquet integral of f with respect to Pěŭ is defined by

Cµ(f) =

n∑
p=1

fρ(p)[Pěŭ(Aρ(p))− Pěŭ(Aρ(p-1))] (9)

ρ(p) indicates a permutation on R, where fρ(1) ≥ fρ(2) ≥ ... ≥ fρ(n), Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ.

3. Linguistic Picture Fuzzy Set and their Operations

We discussed in this section linguistic picture fuzzy set concept and their operationals laws.

Definition 3.1. [50] Let R ̸= ϕ be a universal set. Then, Eŭ is called a picture linguistic set, and
defined as;

Eŭ = {⟨£ěŭ(r), Pěŭ(r), Iěŭ(r), Něŭ(r)| r ∈ R⟩} ,

where £ěŭ(r) ∈ L, Pěŭ(r) : R → [0, 1] , Iěŭ(r) : R → [0, 1] and Něŭ(r) : R → [0, 1] are the linguistic
term, the positive, neutral and negative membership degrees of each r ∈ R, respectively. Furthermore
Pěŭ(r), Iěŭ(r) and Něŭ(r) satisfy that 0 ≤ Pěŭ(r) + Iěŭ(r) +Něŭ(r) ≤ 1 ∀ r ∈ R.
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Definition 3.2. Let Eŭ1 =
⟨
£ěŭ1

, Pěŭ1 , Iěŭ1 , Něŭ1

⟩
and Eŭ2 =

⟨
£ěŭ2

, Pěŭ2 , Iěŭ2 , Něŭ2

⟩
are two PLFNs

define on the universe of discourse R ̸= ϕ, some operations on PLFNs are defined as follows with ψ ≥ 0.

1. Eŭ1 ⊕ Eŭ2 =
{
£ěŭ1+ěŭ2

, Pěŭ1 + Pěŭ2 − Pěŭ1 · Pěŭ2 , Iěŭ1 · Iěŭ2 , Něŭ1
·Něŭ2

}
2. ψ · Eŭ =

{
£ψ.ěŭ , 1− (1− Pěŭ1 )

ψ, (Iěŭ)
ψ, (Něŭ)

ψ
}

3. Eŭ1 ⊗ Eŭ2 =
{
£ěŭ1×ěŭ2 , Pěŭ1 · Pěŭ2 , Iěŭ1 · Iěŭ2 , Něŭ1

+Něŭ2
−Něŭ1

·Něŭ2

}
4. (Eŭ)

ψ =
{
£(ěŭ)

ψ , (Pěŭ)
ψ, (Iěŭ)

ψ, 1− (1−Něŭ)
ψ
}

3.1. Comparison Rules for PLFNs

To rank the PLFNs, we defined some function in this section, which are the following.

Definition 3.3. Let Eŭ = ⟨£ěŭ , Pěŭ , Iěŭ , Něŭ⟩ be any PLFNs. Then

1. sc(Eŭ) =
£ěŭ×(Pěŭ−Iěŭ−Něŭ)

3 (score function).

2. ac(Eŭ) =
£ěŭ
2 (Pěŭ +Něŭ) (accuracy function).

3. cr(Eŭ) =
£ěŭ
2 (Pěŭ) (certainty function).

Definition 3.4. Let Eŭ1 =
⟨
£ěŭ1

, Pěŭ1 , Iěŭ1 , Něŭ1

⟩
and Eŭ2 =

⟨
£ěŭ2

, Pěŭ2 , Iěŭ2 , Něŭ2

⟩
are two PLFNs

define on the universe of discourse R ̸= ϕ. With the help of Definition 3.3, we defined the following
rules,

1. If sc(Eŭ1) ≻ sc(Eŭ2),then Eŭ1 ≻ Eŭ2 .

2. If sc(Eŭ1) ≈ sc(Eŭ2),and ac(Eŭ1) ≻ ac(Eŭ2),then Eŭ1 ≻ Eŭ2 .

3. If sc(Eŭ1) ≈ sc(Eŭ2), ac(Eŭ1) ≈ ac(Eŭ2) and cr(Eŭ1) ≻ cr(Eŭ2), then Eŭ1 ≻ Eŭ2 .

4. If sc(Eŭ1) ≈ sc(Eŭ2), ac(Eŭ1) ≈ ac(Eŭ2) and cr(Eŭ1) ≈ cr(Eŭ2), then Eŭ1 ≈ Eŭ2 .

Definition 3.5. Let any collections Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the PLFNs and

PLFWA : PLFNn → PLFN, then PLFWA describe as,

PLFWA (Eŭ1 , Eŭ2 , ..., Eŭn) =

n∑
p=1

ψpEŭp , (10)

such that ψ = {ψ1, ψ2, ..., ψn}T be the weight vector of Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N , with

ψp ≥ 0 and
∑n

p=1 ψp = 1.

Theorem 3.6. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collection of PLFNs.

Then by using the Definition 3.5 and operational properties of PLFNs, we can obtained the following
outcome.

PLFWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


£ n∑
p=1

ψp·ěŭp
, 1−Πnp=1(1− Pěŭp )

ψp ,

Πnp=1(Iěŭp )
ψp ,

Πnp=1(Něŭp
)ψp

 (11)
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Definition 3.7. Let any collections Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the PLFNs and

PLFOWA : PLFNn → PLFN, then PLFOWA describe as,

PLFOWA (Eŭ1 , Eŭ2 , ..., Eŭn) =

n∑
p=1

ψpEŭρ(p) , (12)

In which ψ = {ψ1, ψ2, ..., ψn} be the weight vector of Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N , with

ψp ≥ 0 and
∑n

p=1 ψp = 1 and ρ(p) indicates a permutation on R.

Theorem 3.8. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collections of PLFNs.

Then, by using the Definition 3.7 and operational properties of PLFNs, the following equation is
obtained.

PLFOWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


£ n∑
p=1

ψp·ěŭρ(p)
, 1−Πnp=1(1− Pěŭρ(p)

)ψp ,

Πnp=1(Iěŭρ(p)
)ψp ,

Πnp=1(Něŭρ(p)
)ψp

 (13)

Theorem 3.9. Suppose that Eŭp =
⟨
£ěŭp

, Pěŭp , Iěŭp , Něŭp

⟩
, p ∈ N be the collections of PLFNs and λ

be a fuzzy measure on R. Based on fuzzy measure, a Picture linguistic fuzzy Choquet integral weighted
averaging (PLFCIWA) operator of dimension n is a mapping PLFCIWA : PLFNn → PLFN such
that

PLFCIWA (Eŭ1 , Eŭ2 , ..., Eŭn) (14)

=


£ n∑
p=1

λ(Aρ(p))−λ(Aρ(p-1))·ěŭρ(p)
, 1−Πnp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1))


where ρ(p) indicates a permutation on R and Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ.

Definition 3.10. Let R ̸= ϕ be the universal set, and Ej , El be the any two picture linguistic fuzzy
sets. Then, normalized Hamming distance dNHD(Ej , El) is given as for all r ∈ R,

dNHD(Eŭj , Eŭl) =
1

2 (l − 1)

n∑
p=1

∣∣∣∣∣∣
(
Pěŭj

(rp)− Iěŭj (rp)−Něŭj
(rp)

)
£ěŭj

−(
Pěŭl (rp)− Iěŭl (rp)−Něŭl

(rp)
)
£ěŭl

∣∣∣∣∣∣ (15)

4.Approach for Multiple criteria Decision Making with Incomplete Weight Infor-
mation Using GRA Method under the Picture Linguistic Fuzzy Enviourment

Assume that A = (a1, ..., am) be the m alternatives and C = {c1, c2, ..., cn}, denoted n criteria, and
weight criteria is ϖ = (ϖ1, ϖ2, ..., ϖn)

T , where ϖk ≥ 0 (k = 1, 2, ..., n), Σnk=1ϖk = 1. Let assume that
DM deliver information about weights of criteria may be denotes in the following form [51], for j ̸= k,

(a) If {ϖj ≥ ϖk} , then, the ranking is weak.
(b) If {ϖj −ϖk ≥ λj(> 0)} , then, the ranking is strict.
(c) If {ϖj ≥ λjϖk} , 0 ≤ λj ≤ 1,then, the ranking is multiple ranking.
(d) If {λj ≤ ϖj ≤ λj + δj} , 0 ≤ λj ≤ λj + δj ≤ 1, then, the ranking is an interval ranking.
For facility, ∆ stand for the set of the known information about criteria weights contribute by the

experts.

Let Rk =
[
E
(k)
ŭpq

]
m×n

be an picture linguistic fuzzy decision matrix, provided by decision maker
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dk(k = 1, 2, ..., l), as the following form:

Rk =
[
E

(k)
ŭpq

]
m×n

=

c1 c2 · · · cn

a1 E
(k)
ŭ11

E
(k)
ŭ12

· · · E
(k)
ŭ1n

a2 E
(k)
ŭ21

E
(k)
ŭ22

· · · E
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·
am E

(k)
ŭm1

E
(k)
ŭm2

· · · E
(k)
ŭmn

(16)

where E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
, I(k)
ŭpq
, N (k)

ŭpq

)
is an PLFN representing the performance rating of the

alternative ap ∈ A with respect to the criteria cp ∈ C provided by the decision makers dk.
To extend GRA method in the process of group decision making, we first need to fuse all individual

decision matrices into a collective matrix by using PLFCIWA operator.

Step 1 Suppose that for every A = {a1, a2, ..., am}, m alternative, each expert dk (k = 1, 2, ..., r) is
invited to express their individual evaluation or preference according to each criterias Cq(q =

1, 2, ..., n) by an picture liguistic fuzzy numbers E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
, I(k)
ŭpq
, N (k)

ŭpq

)
(p = 1, 2, ...,m; q =

1, 2, ..., n, k = 1, 2, ..., r) expressed by the exparts dk. In this step we construct the picture ligu-

istic fuzzy decision making matrices, Ds =
[
E

(s)
ip

]
m×n

(s = 1, 2, ..., k) for decision. If the criteria

have two types, such as benefit criteria and cost criteria, then the picture liguistic fuzzy decision

matrices, Ds =
[
Esip

]
m×n

can be converted into the normalized linguistic picture fuzzy decision

matrices, Rk =
[
E
(k)
ŭpq

]
m×n

, where E
(k)
ŭpq

=

 E
(k)
ŭpq
, for benefit criteria Ap

E
(k)
ŭpq
, for cost criteria Ap,

j = 1, 2, ..., n, and

E
(k)
ŭpq

is the complement of E
(k)
ŭpq
.The normalization are not requrid, if all the criteria have the

same type. Then, we obtain the decision making matrix as follow:

Rk =
[
E

(k)
ŭpq

]
m×n

=

c1 c2 · · · cn

a1 E
(k)
ŭ11

E
(k)
ŭ12

· · · E
(k)
ŭ1n

a2 E
(k)
ŭ21

E
(k)
ŭ22

· · · E
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·
am E

(k)
ŭm1

E
(k)
ŭm2

· · · E
(k)
ŭmn

Step 2 Confirm the fuzzy density Pěŭp = Pěŭ(ap) of each expert. According to Eq.(8), parameter λ1
of expert can be determined.

Step 3 By Definition 2.7, E
(k)
ŭpq

is reordered such that E
(k)
ŭpq

≥ E
(k−1)
ŭpq

. Utilize the picture liguistic
fuzzy Choquet integral average operator;

PFCIWA
(
E

(1)
ŭpq
, E

(2)
ŭpq
, ..., E

(r)
ŭpq

)
(17)

=


£ r∑
p=1

λ(Aρ(p))−λ(Aρ(p−1))·ěŭρ(p)
, 1−Πrp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πrp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p−1)),

Πrp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p−1))


to aggregate all the picture linguistic fuzzy decision matrices Rk =

[
E
(k)
ŭpq

]
m×n

(k = 1, 2, ..., r) into

a collective picture linguistic fuzzy decision matrix R =
[
E
(k)
ŭpq

]
m×n

where E
(k)
ŭpq

=
(
£

(k)
ěŭpq

, P (k)
ŭpq
,

I(k)
ŭpq
, N (k)

ŭpq

)
(p = 1, 2, ...,m; q = 1, 2, ..., n, k = 1, 2, ..., r), where ρ(p) indicates a permutation on

R and Aρ(n) = {1, 2, ..., p}, Aρ(0) = ϕ and Pěŭ(ap) are find by Equation (9).
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Step 4 The picture linguistic fuzzy positive-ideal solution (PLFPIS), stand for P+ =
{
P+
1 , P

+
2 , ..., P

+
m

}
and the picture linguistic fuzzy negative-ideal solution (PLFNIS), stand for P− =

{
P−
1 , P

−
2 , ..., P

−
m

}
are defined as

P+
p = max

q
scpq, (18)

and
P−
p = min

q
scpq, (19)

where P+ =
(
£+
ŭp
, P+

ŭp
, I+
ŭp
, N+

ŭp

)
and P− =

(
£−
ŭp
, P−

ŭp
, I−
ŭp
, N−

ŭp

)
p = 1, 2, ..,m.

Step 5 According to linguistic picture fuzzy distance, find the distance between the alternative ap
and the PLFPIS P+ and the PLFNIS P−, respectively;

d(Eŭj , Eŭl) =
1

2 (l − 1)

n∑
p=1

∣∣∣∣∣∣
(
Pěŭj

(rp)− Iěŭj (rp)−Něŭj
(rp)

)
£ěŭj

−(
Pěŭl (rp)− Iěŭl (rp)−Něŭl

(rp)
)
£ěŭl

∣∣∣∣∣∣ (20)

The above defined distance is called the Normalized Hamming distance [22] d(ej , ek), and form a
linguistic picture fuzzy positive-ideal separation matrix D+ and linguistic picture fuzzy negative-
ideal separation matrix D− as follows;

D+ = (D+
pq)m×n =



d
(
Eŭ11 , P

+
1

)
d
(
Eŭ12 , P

+
2

)
... d (Eŭ1n , P

+
n )

d
(
Eŭ21 , P

+
1

)
d
(
Eŭ22 , P

+
2

)
... d (Eŭ1n , P

+
n )

.

.

.

.

.

.
...

.

.

.
d
(
Eŭm1 , P

+
1

)
d
(
Eŭm2 , P

+
2

)
... d (Eŭmn , P

+
n )

 (21)

and

D− = (D−
q)m×n =



d
(
Eŭ11 , P

−
1

)
d
(
Eŭ12 , P

−
2

)
... d (Eŭ1n , P

−
n )

d
(
Eŭ21 , P

−
1

)
d
(
Eŭ22 , P

−
2

)
... d (Eŭ1n , P

−
n )

.

.

.

.

.

.
...

.

.

.
d
(
Eŭm1 , P

−
1

)
d
(
Eŭm2 , P

−
2

)
... d (Eŭmn , P

−
n )

 (22)

Step 6 Grey coefficient for every alternative is calculated from PIS and NIS by using the following
equation. The grey coefficient for each alternative calculated from PIS is provided as

ξ+pq =
min1≤p≤mmin1≤q≤nd

(
Eŭpq , P

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

+
p

)
d
(
Eŭpq , P

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

+
p

) (23)

Where p = 1, ...,m and q = 1, ..., n. Correspondingly, the grey coefficient of each alternative
calculated from NIS is given as

ξ−pq =
min1≤p≤mmin1≤q≤nd

(
Eŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

−
k

)
d
(
Eŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
Eŭpq , P

−
k

) (24)

Where p = 1, ...,m and q = 1, ..., n and the identification coefficient ρ = 0.5.

Step 7 Using these equation, to find the grey coefficient degree for each alternative from PIS and
NIS, respectively,

ξ+p =
n∑
q=1

ϖqξ
+
pq (25)

ξ−p =
n∑
q=1

ϖqξ
−
pq
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Basic principle of the Grey method are “the chosen alternative should have the largest degree of
grey relation from the PIS and the smallest degree of grey relation from the NIS”. Obviously,
the weights are known, the smaller ξ−p and the larger ξ+p , the finest alternative ap as. But
incomplete information about weights of alternatives is known. So, in this case the ξ−p and ξ+p
information about weight are determined initially. So, we provide the following optimization
models or multiple objective to determined the information about weight,

(OM1)

{
min ξ−p =

∑n
q=1ϖqξ

−
pq p = 1, 2, ...,m

max ξ+p =
∑n

q=1ϖqξ
+
pq p = 1, 2, ...,m

(26)

Since it given that each alternative is non-inferior, then all the alternatives have no preference
relation. The above optimization models are aggregated with equal weights, into single objective
optimization model,

(OM2)

min ξp =

m∑
p=1

n∑
q=1

(
ξ−pq − ξ+pq

)
ϖq (27)

To finding solution of OM2, we obtain optimal solution ϖ = (ϖ1, ϖ2, ..., ϖm)
T , which utilized

as weights information alternatives. Then, we obtain ξ+p (p = 1, 2, ...,m) and ξ−p (p = 1, 2, ...,m)
as using the above formula, respectively.

Step 8 To find the relative closeness degree for each alternative, using the following equation;

ξp =
ξ+p

ξ−p + ξ+p
(28)

Step 9 According to the ξp value, give ranking to the alternatives ap and select the finest ones.

5.Discriptive Example

We shall present a numerical examples, in this section with linguistic picture fuzzy information to
explain the developed approach of the paper.

Example 5.1. Let us assume that a board with four possible develop technology enterprises Zi
(i = 1, ..., 4). There are four experts, and also choose four criteria to classify the four possible develop
technology enterprises:

1. (Ă1), the industrial development;

2. (Ă2), the feasible market risk;

3. (Ă3), the industrialization infrastructure, human resources and financial conditions;

4. (Ă4), the job production and the development of science and technology.

Step 1 Three decision maker offering their own opinions regarding the results obtained with each
emerging technology enterprise are given from the table 1-3.

Table 1. Linguistic picture fuzzy information D1

Ă1 Ă2 Ă3 Ă4

Z1 (£5, 0.2, 0.1, 0.6) (£4, 0.5, 0.3, 0.1) (£2, 0.3, 0.1, 0.5) (£3, 0.4, 0.3, 0.2)
Z2 (£2, 0.1, 0.4, 0.4) (£3, 0.6, 0.2, 0.1) (£1, 0.2, 0.2, 0.5) (£5, 0.2, 0.1, 0.6)
Z3 (£4, 0.2, 0.3, 0.3) (£2, 0.4, 0.3, 0.2) (£5, 0.3, 0.1, 0.4) (£1, 0.3, 0.2, 0.4)
Z4 (£1, 0.3, 0.1, 0.6) (£5, 0.3, 0.2, 0.4) (£3, 0.1, 0.3, 0.5) (£2, 0.2, 0.3, 0.3)

Table 2. Linguistic picture fuzzy information D2

Ă1 Ă2 Ă3 Ă4

Z1 (£2, 0.1, 0.3, 0.5) (£5, 0.4, 0.3, 0.2) (£3, 0.1, 0.1, 0.6) (£4, 0.2, 0.3, 0.4)
Z2 (£5, 0.2, 0.2, 0.4) (£3, 0.4, 0.3, 0.2) (£4, 0.3, 0.2, 0.4) (£2, 0.4, 0.1, 0.4)
Z3 (£3, 0.1, 0.2, 0.6) (£4, 0.6, 0.1, 0.1) (£2, 0.2, 0.2, 0.4) (£5, 0.5, 0.2, 0.2)
Z4 (£1, 0.4, 0.1, 0.5) (£2, 0.5, 0.1, 0.3) (£5, 0.3, 0.3, 0.3) (£3, 0.6, 0.2, 0.1)
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Table 3. Linguistic picture fuzzy information D3

Ă1 Ă2 Ă3 Ă4

Z1 (£1, 0.3, 0.1, 0.3) (£3, 0.4, 0.2, 0.1) (£5, 0.2, 0.3, 0.4) (£4, 0.5, 0.2, 0.1)
Z2 (£4, 0.1, 0.5, 0.3) (£5, 0.6, 0.1, 0.2) (£1, 0.1, 0.1, 0.7) (£3, 0.3, 0.1, 0.3)
Z3 (£5, 0.4, 0.2, 0.3) (£2, 0.4, 0.2, 0.2) (£4, 0.2, 0.2, 0.5) (£1, 0.6, 0.2, 0.1)
Z4 (£3, 0.1, 0.2, 0.6) (£4, 0.6, 0.2, 0.1) (£2, 0.3, 0.1, 0.4) (£2, 0.7, 0.1, 0.1)

Since Ă1, Ă2 are cost-type criteria and Ă3, Ă4 are benefit-type criteria. First of all we normalize
linguistic picture fuzzy information, which are shown in table 4,5,6.:

Table 4. Normalized linguistic picture fuzzy information R1

Ă1 Ă2 Ă3 Ă4

Z1 (£5, 0.6, 0.1, 0.2) (£4, 0.5, 0.3, 0.1) (£2, 0.5, 0.1, 0.3) (£3, 0.4, 0.3, 0.2)
Z2 (£2, 0.4, 0.4, 0.1) (£3, 0.6, 0.2, 0.1) (£1, 0.5, 0.2, 0.2) (£5, 0.2, 0.1, 0.6)
Z3 (£4, 0.3, 0.3, 0.2) (£2, 0.4, 0.3, 0.2) (£5, 0.4, 0.1, 0.3) (£1, 0.3, 0.2, 0.4)
Z4 (£1, 0.6, 0.1, 0.3) (£5, 0.3, 0.2, 0.4) (£3, 0.5, 0.3, 0.1) (£2, 0.2, 0.3, 0.3)

Table 5. Normalized linguistic picture fuzzy information R2

Ă1 Ă2 Ă3 Ă4

Z1 (£2, 0.5, 0.3, 0.1) (£5, 0.4, 0.3, 0.2) (£3, 0.6, 0.1, 0.1) (£4, 0.2, 0.3, 0.4)
Z2 (£5, 0.4, 0.2, 0.2) (£3, 0.4, 0.3, 0.2) (£4, 0.4, 0.2, 0.3) (£2, 0.4, 0.1, 0.4)
Z3 (£3, 0.6, 0.2, 0.1) (£4, 0.6, 0.1, 0.1) (£2, 0.4, 0.2, 0.2) (£5, 0.5, 0.2, 0.2)
Z4 (£1, 0.5, 0.1, 0.4) (£2, 0.5, 0.1, 0.3) (£5, 0.3, 0.3, 0.3) (£3, 0.6, 0.2, 0.1)

Table 6. Normalized linguistic picture fuzzy information R3

Ă1 Ă2 Ă3 Ă4

Z1 (£1, 0.3, 0.1, 0.3) (£3, 0.4, 0.2, 0.1) (£5, 0.4, 0.3, 0.2) (£4, 0.5, 0.2, 0.1)
Z2 (£4, 0.3, 0.5, 0.1) (£5, 0.6, 0.1, 0.2) (£1, 0.7, 0.1, 0.1) (£3, 0.3, 0.1, 0.3)
Z3 (£5, 0.3, 0.2, 0.4) (£2, 0.4, 0.2, 0.2) (£4, 0.5, 0.2, 0.2) (£1, 0.6, 0.2, 0.1)
Z4 (£3, 0.6, 0.2, 0.1) (£4, 0.6, 0.2, 0.1) (£2, 0.4, 0.1, 0.3) (£2, 0.7, 0.1, 0.1)

Let us assume that the criteria weights information given by experts, are partly known;

∆ =


0.2 ≤ w1 ≤ 0.25,
0.15 ≤ w2 ≤ 0.2,
0.28 ≤ w3 ≤ 0.32,
0.35 ≤ w4 ≤ 0.4

 , wp ≥ 0, p = 1, 2, 3, 4,
4∑
p=1

wp = 1

Then, we utilize the developed approach to get the most desirable alternative(s).

Step 2 Firstly, find fuzzy density of each decision maker, and its λ parameter. Assume that Pěŭ(A1) =
0.30, Pěŭ(A2) = 0.40, Pěŭ(A3) = 0.50. Then λ of adept can be obtained: λ = −0.45. By Eq.(6),
we have Pěŭ(A1, A2) = 0.65, Pěŭ(A1, A3) = 0.73, Pěŭ(A2, A3) = 0.81, Pěŭ(A1, A2, A3) = 1.

Step 3 According to Definition 3.4, E
(k)
ŭpq

is reordered such that E
(k)
ŭpq

≥ E
(k−1)
ŭpq

. Then, utilized the
picture fuzzy Choquet integral weighted operator

PFCIWA (Eŭ1 , Eŭ2 , ..., Eŭn) =


1−Πnp=1(1− Pěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Iěŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1)),

Πnp=1(Něŭρ(p)
)λ(Aρ(p))−λ(Aρ(p-1))


Table 7. Collective picture fuzzy information

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨£2.55, 0.696, 0.417, 0.225⟩ ⟨£4.00, 0.625, 0.361, 0.331⟩ ⟨£3.40, 0.633, 0.545, 0.391⟩ ⟨£3.70, 0.488, 0.204, 0.313⟩
Ž2 ⟨£3.75, 0.739, 0.488, 0.254⟩ ⟨£3.70, 0.488, 0.670, 0.162⟩ ⟨£2.05, 0.739, 0.311, 0.335⟩ ⟨£3.25, 0.613, 0.193, 0.374⟩
Ž3 ⟨£4.00, 0.405, 0.654, 0.361⟩ ⟨£2.70, 0.732, 0.274, 0.200⟩ ⟨£3.60, 0.739, 0.260, 0.265⟩ ⟨£2.40, 0.600, 0.278, 0.304⟩
Ž4 ⟨£1.70, 0.769, 0.331, 0.418⟩ ⟨£3.60, 0.638, 0.562, 0.311⟩ ⟨£3.35, 0.613, 0.354, 0.311⟩ ⟨£2.35, 0.511, 0.265, 0.358⟩
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Step 4 Utilize eq.(18 and eq.(19) we obtain the positive-ideal and negative-ideal solution respectively,
are:

P+ =

{
⟨£2.55, 0.696, 0.417, 0.225⟩ , ⟨£2.70, 0.732, 0.274, 0.200⟩ ,
⟨£3.60, 0.739, 0.260, 0.265⟩ , ⟨£3.25, 0.613, 0.193, 0.374⟩

}
P− =

{
⟨£4.00, 0.405, 0.654, 0.361⟩ , ⟨£3.70, 0.488, 0.670, 0.162⟩ ,
⟨£3.40, 0.633, 0.545, 0.391⟩ , ⟨£2.35, 0.511, 0.265, 0.358⟩

}
Step 5 Utilize equation (21) and (22) to get the positive ideal and negative ideal separation matrix,

respectively as follow;

Table 8. Positive-ideal separation matrix

D+ =

Ă1 Ă2 Ă3 Ă4

Ž1 0.0000 0.0808 0.1500 0.0214

Ž2 0.0123 0.1645 0.0482 0.0000

Ž3 0.2145 0.0000 0.0000 0.0088

Ž4 0.0084 0.1289 0.0787 0.0344

Table 9. Negative-ideal separation matrix

D− =

Ă1 Ă2 Ă3 Ă4

Ž1 0.2145 0.0837 0.0000 0.0129

Ž2 0.2021 0.0000 0.1017 0.0344

Ž3 0.0000 0.1645 0.1500 0.0256

Ž4 0.2060 0.0356 0.0712 0.000

Step 6 Utilize equations (23) and (24) to get the grey relational coefficient matrices in which every
alternative is obtained from PIS and NIS as follow:

[
ζ+ij

]
=


0.6518 0.5721 0.8295 0.4711

0.3667 1.0000 1.0000 0.3333

0.5254 0.7829 0.6383 0.6744

1.0000 0.6875 0.5562 1.0000


[
ζ−ij

]
=


0.4560 1.0000 0.5937 0.4039

1.0000 0.5721 0.5562 1.0000

0.5483 0.6689 0.7699 0.3745

0.3667 0.5372 0.5184 0.3333


Step 7 To developed the single-objective programming model, using the model (M2):

min ξ (w) = −0.0709w1 + 0.4283w2 − 0.2594w3 − 1.5440w4

We gain the weight vector of criterias, to solved this model:

w = (0.330, 0.144, 0.366, 0.157)

Now from the PIS and NIS, we get the degree of grey relational coefficient of every alternative:

ξ+1 = 0.6001, ξ+2 = 0.5439, ξ+3 = 0.6331, ξ+4 = 0.8823,

ξ−1 = 0.5355, ξ−2 = 0.8657, ξ−3 = 0.5352, ξ−4 = 0.4016.

Step 8 To find the relative relational degree of the alternative, we utilize Equation 28, and PIS and
NIS:

ξ1 =
ξ+1

ξ−1 + ξ+1
=

0.6001

0.5355 + 0.6001
= 0.5284

ξ2 =
ξ+2

ξ−2 + ξ+2
=

0.5439

0.8657 + 0.5439
= 0.3858

ξ3 =
ξ+3

ξ−3 + ξ+3
=

0.6331

0.5352 + 0.6331
= 0.5418

ξ4 =
ξ+4

ξ−4 + ξ+4
=

0.8823

0.4016 + 0.8823
= 0.6872
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Step 9 With the help of relative relational degree, ranking of the alternatives are the following:

Z4 > Z3 > Z1 > Z2,

and thus the most desirable alternative is Z4.

5.1. Comparative Analysis

To justify the effectivity and efficiency of the advised procedure, we conducted a comparative analysis
for comparison of our suggest approach with the GRA method for intuitionistic fuzzy set [52].

5.1.1. Comparison between intuitionistic fuzzy and picture fuzzy GRA relation Approache

In the ntuitionistic fuzzy numbers, we have only study the uncertain things from positive and negative
membership degrees. They bring an effictive execution to imply the vagueness of DM. On the other
hand, as stated already, in IFN the things from good and bad appearance of these two collection of
fuzzy numbers, can throw away the thinking of DM perfectly. After all, dissimilar the PFNs, in some
conditions the IFNs are not serviceable. The IFNs must satisfy the condition that the membership
and non-membership degree sume belongs to [0, 1]. Thus, in some cases, there exists some problems
which cannot handle by IFNs. For example, the peoples requried their opinions contain more type of
answer like as: “yes”, “abstain”, “No” and “Refusal”, in that situations picture fuzzy set are more
suitable. Thus, in summary, in decision making theory, PFNs have suitable capacity to process these
information.

6. Conclusion

The classical grey relational analysis method are normally applicable for tackle the MAGDM problems,
in which the data occur in the form of numerical values, and still they will flop when MAGDM problems
contains picture linguistic fuzzy information. In the developed approach we use the picture linguistic
fuzzy Choquet integral weighted averaging (PLFCIWA) operator to marge all the individual matrices.
Then, based on the traditional GRA method, an approach are given to deal with picture linguistic
fuzzy MAGDM problems in which the information are incomplete. Lastly, a decision problem are
developed based on the defined operators, to rank more alternatives. Thus, the proposed operations
gives clear track to catch the inexact data all over the decision problem procedure.
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1. Introduction

One of the main convergence types in a Riesz space 1 is order convergence . Recall that a net
(xα)α∈A in a Riesz space E is said to be order convergent to x ∈ E (briefly; xα

o−→ x or xα o-converges
to x) if there exists another net (yβ)β∈B in E such that

i) yβ ↓ 0, that is, (yβ)β∈B is decreasing to 0 and ;
ii) For each β ∈ B there exists α0 ∈ A such that |xα − x| ≤ yβ for each α ≥ α0.
Unbounded order convergence in a Riesz space was defined and studied in [1, 2]. Recently, many

authors have started to work on this topic in [3–5]. Namely, a net (xα)
2 in a Riesz space E is said to

be unbounded order convergent if the net (|xα−x|∧u) is order convergent to zero for each u ∈ E+

(briefly; xα
uo−→ x or xα uo-converges to x). In general, every order convergent net is unbounded order

convergent but the converse is not true (For example, consider c0 as a Riesz space under pointwise
order, the standard unit vectors (en) are uo-convergent but not o-convergent). It is obvious that order
convergence and unbounded order convergence coincide for order bounded nets. Although in general,
unbounded order convergence is not topological (see [3]), but in an atomic Riesz space, it is topological
(see Theorem 2 in [6]).

Let E be a normed Riesz space. A net (xα) in E is said to be unbounded norm convergent to
x ∈ E if the net (|xα − x| ∧ u) is norm convergent to zero for each u ∈ E+ (briefly; xα

un−→ x or xα
un-converges to x). The notion of unbounded norm convergence was defined in [7] and many results
were obtained in [8,9]. These notions were extended to the locally solid Riesz spaces (see [10]). In [9],
it is noticed that unbounded norm convergence defines a topology, that is, there exists a new topology
on the normed Riesz space E so that the unbounded norm convergence and topological convergence
agree. This new topology is called un-topology . See [9] for more details on this topic. In the paper,
it is also proved that in Banach lattices, the norm topology and unbounded norm topology coincide if
and only if the space has a strong order unit (Theorem 2.3).

1mvural@mku.edu.tr
2Department of Mathematics, University of Hatay Mustafa Kemal, 31060 Hatay, Turkey
1In this paper all Riesz spaces will be assumed Archimedean
2The index is not written unless it is necessary
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2.An observation

Let (E, ||.||) be a normed Riesz space. For each u ∈ E+, define Pu : E → R by

Pu(x) = |||x| ∧ u||.

We will show that for each u ∈ E+, Pu is a Riesz pseudonorm. Recall that a real-valued map p on E
is called a Riesz pseudonorm if the following conditions are satisfied:

1. p(x) ≥ 0 ∀x ∈ X;

2. If x = 0, then p(x) = 0;

3. p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X;

4. If limn→∞ λn = 0 in R, then p(λnx);→ 0 in R ∀x ∈ X;

5. If |x| ≤ |y|, then p(x) ≤ p(y).

Theorem 2.1. Let (E, ||.||) be a normed Riesz space. For each u ∈ E+, the map Pu : E −→ R+

defined by Pu(x) = |||x| ∧ u||, is a Riesz pseudonorm. Moreover, the un-topology and the topology
generated by the family (Pu)u∈E+ coincide.

Proof. Let u ∈ E+ be given. Obviously, the conditions (1),(2) and (5) hold. For condition (3): Let
x, y ∈ E be given. Since |x+ y| ≤ |x|+ |y|, we have |x+ y| ∧ u ≤ (|x|+ |y|)∧ u ≤ |x| ∧ u+ |y| ∧ u and
since ||.|| is a lattice norm, we get the inequality Pu(x+ y) ≤ Pu(x) + Pu(y) by monotonicity and the
triangle inequality property of lattice norm. For condition(4): Let {λn} ⊂ R be a sequence such that
limn→∞ λn = 0 and x ∈ E, the inequality

Pu(λnx) = |||λnx| ∧ u|| ≤ ||λnx|| = |λn|||x||

implies that limn→∞ Pu(λnx) = 0. Hence Pu is a Riesz pseudonorm.
Let (xα) be a net converging to x in un-topology, that is, || |xα − x| ∧ u || → 0 for each u ∈ E+.

By definition, Pu(xα − x) converges to zero for each u ∈ E+, so it converges to x in the topology
generated by the family (Pu)u∈E+ . Converse direction is also true. This completes the proof.

Note that in a Riesz space, we have the following.

Theorem 2.2. Let E be a Riesz space and p : E → R be a map. The followings are equivalent:

i. p is a Riesz pseudonorm;

ii. p(x) = p(|x|) for all x ∈ E and for each u ∈ E+, the map pu : E → R, defined by pu(x) =
p(|x| ∧ u), is a Riesz pseudonorm.

Proof. If (i) holds, following the proof of Theorem 2.1, we can get (ii). Suppose that (ii) holds.
Since p(x) = p(|x|) = p|x|(x) ≥ 0, it is obvious that p(x) = p(|x|) = p|x|(x) = 0 whenever x = 0. Let
x, y ∈ E be given. Then

p(x+ y) =p(|x+ y| ∧ (|x|+ |y|)
=p|x|+|y|(|x+ y|)
≤p|x|+|y|(|x|) + p|x|+|y|(|y|)
=p(|x| ∧ (|x|+ |y|)) + p(|x| ∧ (|x|+ |y|)
=p(|x|) + p(|y|)

so that p satisfies the triangle inequality. Let x ∈ E be given. Then

limn→∞ p(λnx) = limn→∞ p(|λnx|) = limn→∞ p|x|(|λn||x|) = 0.

If |x| ≤ |y| then

p(x) = p(|x|) = p(|x| ∧ |y|) = p|y|(|x|) = p|y|(x) ≤ p|y|(y) = p(|y|) = p(y).

This completes the proof.
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3. Some notations and terminolgy

Let E be a Riesz space. A subset A ⊂ E is called solid if y ∈ A whenever |y| ≤ |x| in E for some
x ∈ A. A linear topology τ on E is called locally solid if it has a neighborhood system at zero
consisting of solid sets. One can easily show that a given set P of Riesz pseudonorms has a solid
topology with a subbase of zero as the set {p−1(−ϵ, ϵ) : p ∈ P, ϵ > 0}. This topology is denoted by
< P >, and it is called locally solid topology generated by P . Conversely, Fremlins Theorem says
that every locally solid topology is generated by a family of Riesz pseudonorms. That is, a linear
topology τ is locally solid if and only if τ =< P > for some set P of Riesz pseudonorms.(see [11]) .

Let p be a Riesz pseudonorm on E. For each u ∈ E+, the map pu : E → R is also a Riesz
pseudonorm defined by pu(x) = p(|x| ∧ u). Let (E, τ) be a locally solid Riesz space. So there exists
a family of Riesz pseudonorms (pi)i∈I such that τ =< (pi)i∈I >. For any A ⊂ E+, there exists a
different family of Riesz pseudonorms (pi,a)i∈I,a∈A where pi,a(x) = p(|x| ∧ a) for each i ∈ I and a ∈ A.
This related family defines a locally solid topology. This fact coincides with the Mitchell A. Taylor’s
definition of ”unbounded τ−convergence with respect to A” in [12]. Here is the Mitchell A. Taylor’s
definition.

Definition 3.1. Let X be a vector lattice, A ⊆ X be an ideal and τ be a locally solid topology on A.
Let (xα) be a net in X and x ∈ X. We say that (xα) unbounded τ -converges to x with respect to A
if |(xα)− x| ∧ |a| τ−→ for all a ∈ A+.

In [12], the convergence in the above definition is denoted by uAτ

Observation:

Let E be a Riesz space, and p : E → R be a Riesz pseudonorm. For a given nonempty set A ⊂ E+,
consider the map pA : E → R defined by

pA(x) = supa∈A p(|x| ∧ a)

It is obvious that the map pA satisfies the conditions (1)− (3) and (5), we must check condition (4):
Let {λn} ⊂ R be any sequence converging to zero. Then

pA(λnx) = sup
a∈A

p(|λnx| ∧ a) = sup
a∈A

p(|λn||x| ∧ a)

≤ sup
a∈A

p(|λn||x|)

= p(|λn||x|) −→ 0

so that pA is a Riesz pseudonorm.
Let P = (pi)i∈I be a family of Riesz pseudonorms and A ⊂ P(E+) that does not contain the

empty set. This family generates a topology, say τ . The locally solid topology generated by the family
{pi,A : i ∈ I, A ∈ A } will be denoted by u < τ,A >. Actually, if A contains the empty set, then
u < τ,A > is discrete topology.

Some remarks:

Let (E, τ) be a locally solid Riesz space, (pi)i∈I be the family of Riesz pseudonorms, and τ =<
(pi)i∈I >. Then

(1) For any A ⊂ P(E+), u < τ,A >⊂ τ holds.
Proof: xα

τ−→ x ⇐⇒ pi(xα − x) → 0 ⇐⇒ pi(|xα − x|) → 0, and for each a ∈ E+ we have
pi(|xα − x| ∧ a) ≤ pi(|xα − x|), hence

supa∈A pi(|xα − x| ∧ a) ≤ pi(|xα − x|) for each A ∈ A .

So xα
u<τ,A >−−−−−→ x.

(2) If A = {{E+}}, then u < τ, {{E+}} >= τ .
Proof: It is clear that supa∈E+

pi(|x| ∧ a) = pi(|x|) = pi(x).
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(3) If A ⊂ B then u < τ,A >⊂ u < τ,B > for all A ⊂ B ⊂ P(E+).

Proof: xα
u<τ,B>−−−−−→ x ⇐⇒ supb∈B pi(|xα − x| ∧ a) B ∈ B

=⇒ supa∈A pi(|xα − x| ∧ a) for each A ∈ A ⊂ B.

Hence, xα
u<τ,A >−−−−−→ x.

(4) For each A ⊂ P(E+) u < τ,
∪

A >⊂ u < τ,A > holds.

Proof: Let xα
u<τ,A >−−−−−→ x. So for a fixed i ∈ I and A ∈ A , pi,A(xα−x) → 0 ⇐⇒ supa∈A pi(|xα−

x| ∧ a) → 0, and it is obvious that

pi(|xα − x| ∧ a) ≤ supa∈A pi(|xα − x| ∧ a) for each a ∈ A.

Hence, pi,{a}(xα − x) = pi,{a}(|xα − x|) = supa∈{a} pi(|xα − x| ∧ a) = pi(|xα − x| ∧ a) → 0.

(5) For each A ⊂ P(E+) u < τ,
∪

A >= u < τ, I(
∪

A ) > holds where I(
∪

A ) is the ideal gener-
ated by

∪
A .

Proof: Since
∪

A ⊂ I(
∪

A ), we have u < τ,
∪

A >⊂ u < τ, I(
∪

A ) > from (3). Let

xα
u<τ,A >−−−−−→ x and b ∈ I(

∪
A )+ be given, there exists a1, ..., an ∈

∪
A and k ≥ 0 such that

0 ≤ b ≤ k(a1 + ...+ an). Then

|xα − x| ∧ b ≤ |xα − x| ∧ k(a1 + ...+ an) ≤
n∑

i=1

|xα − x| ∧ kai

= k
n∑

i=1

1

k
|xα − x| ∧ ai

≤ km
n∑

i=1

|xα − x| ∧ ai

where m is the smallest positive integer greater than 1
k . Then by the monotonicity of pi,

pi(|xα − x| ∧ b) ≤ pi(km
∑n

i=1 |xα − x| ∧ ai) → 0.

Hence, pi(|xα − x| ∧ b) = supb∈{b} pi(|xα − x| ∧ b). This completes the proof.

(6) For each A ⊂ P(E+) u < τ,
∪

A >= u < τ,
∪

A > holds.

Proof: Suppose that xα
u<τ,A >−−−−−→ x and b ∈

∪
A be given. Choose a net (bβ) ∈

∪
A with

bβ
u<τ,A >−−−−−→ b. Let i ∈ I be fixed and ϵ ≥ 0 be given. Choose β0 such that pi(bβ0 − b) < ϵ

2 . Then

|xα − x| ∧ b = |xα − x| ∧ (b− bβ0 + bβ0)

≤ |xα − x| ∧ (|b− bβ0 |+ |bβ0 |)
≤ |xα − x| ∧ |b− bβ0 |+ |xα − x| ∧ |bβ0 |

Applying pi to this inequality, one can show the existence of α0 such that pi,{b}(xα − x) < ϵ.
This completes the proof.

(7) If 0 ≤ a ≤ b, then u < τ, {a} > u < τ, {b} >.
Proof: It is clear that; supa∈{a} pi(|xα − x| ∧ a) = pi(|xα − x| ∧ a)

≤ pi(|xα − x| ∧ b)

= supb∈{b} pi(|xα − x| ∧ b).

(8) If e ∈ E is a strong order unit, then u < τ, {{e}} >= u < τ,
∪
E+ >. But the converse of this

statement is not true in general. For example, consider c0 as a Banach lattice with supremum
norm, with norm topology τ and e = ( 1n). Then u < τ, {{e}} >= u < τ,

∪
E+ >, but e is not

an order unit.
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(9) If e is a quasi-interior point, then u < τ, {{e}} >= u < τ,
∪
E+ > from (5) and (6).

(10) For any A ⊂ P(E+), u < τ,A >= u < u < τ,A >,A > holds.

(11) For any {A} ∈ P(E+), u < τ, {A} ≯= uAτ , but u < τ,
∪
A >= uAτ holds. Moreover,

uAτ ⊂ u < τ, {A} >.

4.Unbounded locally solid Riesz space

From the motiviation of the above observation, we give the following definition.

Definition 4.1. A real valued map q on a Riesz space E is said to be unbounded Riesz pseudonorm
if there exists a Riesz pseudonorm p on E and A ⊂ E+ satisfying q(x) = supa∈A p(|x| ∧ a). In this
case, we say that q is generated by p and the subset A.

It is obvious that every unbounded Riesz pseudonorm is a Riesz pseudonorm. So the topology
generated by unbounded Riesz pseudonorm is a locally solid topology. If unbounded Riesz pseudonorm
q is generated by Riesz pseudonorm p and A ⊂ E+, then the topology generated by q is weaker than
the topology generated by p. Remind that every family of Riesz pseudonorms defines a locally solid
topology. Conversely, every locally solid topology is determined by a family of Riesz pseudonorms.

Definition 4.2. Let (E, τ) be a locally solid Riesz space generated by the family (pi)i∈I of Riesz
pseudonorms . The locally solid Riesz space on E generated by the family of unbounded Riesz
pseudonorm on E is called unbounded locally solid Riesz space generated by τ , and denoted by
τ

′

Proposition 4.3. Let (E, τ) be a locally solid Riesz space. If τ is a Hausdorff locally solid topology,
then the unbounded locally solid topology is also Hausdorff.

Proof. Let x ̸= 0 be given, then there exists some i0 ∈ I such that pi0(x) > 0 where τ =<
(pi)i∈I >.Then

qi0,{|x|} := pi0(|x| ∧ |x|) = pi0(|x|) = pi0(x) > 0.

It is obvious that qi0,{|x|} is an unbounded Riesz pseudonorm, so τ
′
is a Hausdorff topology.

Definition 4.4. A net (xα) in a locally solid Riesz space (E, τ) is unbounded topological conver-
gent if it is convergent in unbounded locally solid Riesz space (E, τ

′
).

Theorem 4.5. Let (E, τ) be a Hausdorff locally solid Riesz space and (xα) be an increasing net.
Then the followings are equivalent:

1. (xα)
τ−→ x in (E, τ);

2. (xα)
τ
′

−→ x in (E, τ
′
).

Proof. Since τ
′ ⊂ τ , it is easy to see that (1) implies (2). Now suppose (2) holds. Since τ

′
is a

Hausdorff locally solid Riesz space by the Proposition 4.3, we have xα ↑ x. Thus |x| is an upper bound
for the net (xα) and 2|x| is an upper bound for the net (|xα − x|). Now suppose that (pi)i∈I is the
family of Riesz pseudonorms such that τ =< (pi)i∈I >. Let i ∈ I be arbitrary. Then

pi(xα − x) = pi(|xα − x|) = pi(|xα − x| ∧ 2|x|) =: qi,{2|x|}(xα − x) → 0.

This completes the proof.

Theorem 4.6. Let (E, τ) be a Hausdorff locally solid Riesz space, and τ
′
be the unbounded locally

solid topology generated by τ . Then τ has Lebesgue property if and only if τ
′
has Lebesgue property.

Proof. One side of the implication is clear. Let us assume that xα ↓ 0 implies xα
τ
′

−→ 0. Then , it is
easy to see that xα

τ−→ 0 by using the Theorem 4.5. This completes the proof.
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4.1. Product of unbounded locally solid Riesz spaces

Theorem 4.7. Let (Ei, τi)i∈I be a family of locally solid Riesz spaces. Then the product space∏
i∈I Ei is unbounded locally solid Riesz space if and only if for each i, Ei is an unbounded locally

solid Riesz space.

Proof. Suppose that for each i ∈ I, (Ei, τi) is an unbounded locally solid Riesz space, and τi is
generated by a family Qi of the Riesz pseudonorms on Ei. So for each q ∈ Qi, there exists a Riesz
pseudonorm p on Ei and A ⊂ E+

i , depending on q, such that

q(x) = supa∈A p(|x| ∧ a) for all x ∈ Ei.

Let j ∈ I and q ∈ Qj be given. Choose p and A as above. Let Pj be the projection from E =
∏

iEi

into Ej and fj be vector space embedding of Ej into E, that is, fj sends x ∈ Ej to (xi) where xj = x
and xi = 0 for all i ̸= j. One can show that for each Riesz pseudonorm on Ej , p ◦ Pj is a Riesz
pseudonorm on E. We note that for each q ∈ Qj ,

q ◦ Pj((xi)) = q(Pj(xi)) = q(xj) = supa∈A p(|xj | ∧ a) = supa∈A p ◦ Pj(|(xi)| ∧ fj(a)).

Thus, q ◦Pj is an unbounded Riesz pseudonorm on E. And the the topology of
∏

iEi is the topology
generated by {q ◦ Pj : j ∈ I, q ∈ Qj}. Hence, the locally solid Riesz space

∏
iEi is an unbounded

locally solid Riesz space.
Now suppose that E =

∏
iEi is an unbounded locally solid Riesz space, and i0 is given. Suppose

that the topology of E is generated by the family Q of unbounded Riesz pseudonorm on E. Let q ∈ Q
be given. Choose A = (Ai) ∈ E and Riesz pseudonorm p on E such that q(x) = supa∈A p(|x| ∧ a) for
all x ∈ E. It is obvious that for each i0, p ◦ fi0 is a Riesz pseudonorm on Ei0 and

q ◦ fi0(x) = supa∈Ai0
p ◦ fi0(|x| ∧ a).

Hence qi0 is an unbounded Riesz pseudonorm on Ei0 . Now one can show that the topology of Ei0 is
generated by {q ◦ fi0 : q ∈ Q}. Hence, Ei0 is an unbounded locally solid Riesz space. This completes
the proof.

Let X be a product space of topological spaces (Xi)i∈I . A net (xα) converges to x in X if and
only if xiα → xi in Xi for each i ∈ I, where xα = (xiα)i∈I and x = (xi). By using this fact, the proof
of the following theorem is easy.

Theorem 4.8. Let (Ei, τi)i∈I be a family of locally solid Riesz spaces. For each Ai ⊂ P(E+
i ), we

have

u <
∏

iτi,
∏

iAi >=
∏

iu < τi,Ai >.

4.2.Unbounded absolute weakly locally solid Riesz space

The concept of unbounded absolute weak convergence (briefly uaw-convergence) was considered and
studied in [13]. Let E and F be vector spaces. If there exists a bilenear map T : E×F → R satisfying

T (x, F ) = 0 =⇒ x = 0,
T (E, y) = 0 =⇒ x = 0, then the pair (E,F ) is called a dual pair. In this case, E can be considered

as a vector supspace of RF , by embedding x → x∗, x∗(y) = T (x, y). We can consider RF as a
topological space with product topology

∏
y∈F R and restriction of this topology on E is the topology

generated by the family (py)y∈F ) of seminorms, where py : E → R defined by py(x) = |T (x, y)|. This
topology is independent of T and is denoted by σ(E,F ). Similarly, σ(F,E) can be defined. One of
the main results is that the topological dual of E with respect to σ(E,F ) is a vector space which is
isomorphic to F , this is denoted by (E, σ(E,F ))

′ ∼= F .

Definition 4.9. If (E,F ) is a dual pair of Riesz spaces with respect to a positive linear map T :
E × F → R, then we call that as a positive dual pair (with respect to T ).

We note that if (E,F ) is a positive dual pair with bilinear map T , then one can show that the
embedding x → x∗, x∗(y) = T (x, y) is bipositive.

The order dual of a Riesz space E is the vector space of order bounded functionals from E into
R and denoted by E∼, which is a Dedekind complete Riesz space. Throughout the paper we suppose
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that E separates its order dual, that is, for each nonzero x ∈ E, there exists f ∈ E∼ with f(x) ̸= 0.
So, (E,E∼) is a positive dual pair via the map (x, f) → f(x). If τ is a Hausdorff locally solid topology
on E, then the topological dual E

′
is an ideal of E∼. Let A ⊂ E∼ be given. For each f ∈ A, the map

p|f | : E → R. p|f |(x) = |f |(|x|) is a Riesz seminorm. The locally convex-solid topology generated by
(p|f |)f∈E∼ is called absolute weak topology and denoted by |σ|(E,A).

Now we are going to define an unbounded absolute locally solid topology. For this, first we need
the following Lemma.

Lemma 4.10. Let (E,F ) be a positive dual pair with respect to T . For each a ∈ E and y ∈ F , the
map p : E → R defined by

p(x) = T (|x| ∧ |a|, |y|)

is a Riesz pseudonorm on E.

Proof. Without loss of the generality, we can suppose that a and y are positive. Obviously the
conditions (1), (2) and (5) are satisfied . For the condition (3): for a given pair x, y ∈ E,

p(x+ y) = T (|x+ y| ∧ a, y)

≤ T (|x|+ |y| ∧ a, y) by positivity

≤ T (|x| ∧ a, y) + T (|y| ∧ a, y) by bilinearity and positivity

= p(x) + p(y),

hence, the condition (3) holds. For the condition (4), let {λn} ⊂ R be a sequence such that
limn→∞ λn = 0 and x ∈ E, we have

p(λnx) = T (|λnx| ∧ a, y) = T (|λn||x| ∧ a, y)

= T (|λn|(|x| ∧
1

|λn|
a), y)

= |λn|T (|x| ∧
1

|λn|
a), y)

≤ |λn|T (|x|, y).

So, T (|x|, y)is a real number,|λn|T (|x|, y) → 0,thus the condition (4)also holds.

By using the same motivation, for a given A ⊂ E+, e0 ∈ E and f0 ∈ F , the map supa∈A T (|x| ∧
a ∧ |e0|, |f0|) is also a Riesz pseudonorm, and it will be denoted by pA,e0,f0

Definition 4.11. Let (E,F ) be a positive dual pair. Let E0 ⊂ E,F0 ⊂ F and A ⊂ P(E+) be
nonempty sets. Then the topology generated by (pA,e0,f0)A∈A ,e0∈E0,f0∈F0 is called unbounded locally
solid Riesz space on the positive pair (E,F ) with respect to E0, F0 and A . This topology is denoted
by u|σ|(E,F ), E0, F0,A ).

By using some routine arguments, the proof of the above theorem can be given.

Theorem 4.12. Let (E,F ) be a positive dual pair. Let Let E0 ⊂ E,F0 ⊂ F and A ⊂ P(E+) be
nonempty sets. Then

u|σ|(E,F ), E0, F0,A ) = u|σ|(E,F ), I(E0), I(F0),A ).

Remark 4.13. These observations and results can be extended into locally solid lattice-ordered groups
studied in [14].

References

[1] H. Nakano, Ergodic theorem in semiordered linear spaces, Ann. of. Math.(2) 49 (1948) 538-556.

[2] A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math.
Soc. ser. A 24(3) (1977) 312-319.



Journal of New Theory 28 (2019) 20–27 / Towards a Theory of Unbounded Locally Solid Riesz Spaces 27

[3] N. Gao, V. G. Troitsky,F.Xhantos, uo-convergence and its applications to Cesaro means in Banach
lattices, Israel J. Math., to appear. arXiiv:1509.07914[math.FA]

[4] N.Gao, F. Xanthos, Unbounded order convergence and application to martingales without proba-
bility, J. Math. Anal. Appl. 415 (2014) 931-947.

[5] N.Gao, Unbounded order convergence in Dual spaces, J. Math. Anal. Appl. 419 (2014) 347-354.

[6] Y.A.Dabboorasad, E.Y.Emelyanov, M.A.A.Marabeh, Order convergence in infinite-dimensional
vector lattices is not topological, to appear. arXiv:1705.09883[math.FA]

[7] V. G. Troitsky, Measures of non-compactness of operators on Banach lattices, Positivity. 8(2)
(2004) 165-178.

[8] L. Deng, M. O’Brein and V. G. Troitsky, Unbounded norm convergence in Banach lattices, Ar-
civum Mathmematicum (BRNO) 51 (2015) 107-128.

[9] M.Kandic, M. Marabeh V. G. Troitsky, Unbounded Norm Topology in Banach Lattices, J. Math.
Anal. Appl. 451(1) (2017) 259-279.

[10] Y.A.Dabboorasad, E.Y.Emelyanov, M.A.A.Marabeh, uτ -convergence in locally solid vector lat-
tices, to appear. arXiv:1706.02006[math.FA]

[11] D.H. Fremlin, Topological Riesz spaces and Measure theory, Cambridge univ. Press, London and
New York, 1974

[12] M. A. Taylor, Unbounded topologies and uo-convergence in locally solid vector lattice,to appear.
arXiv:1706.01575 [math.FA].

[13] O.Zabeti, Unbounded absolute weak convergence in Banach lattices, to appear.
arXiv:1608.02151[math.FA]

[14] L. Hong, Locally Solid Topological Lattice Ordered Groups, Arcivum Mathmematicum (BRNO),
51 (2015) 107-128.



New Theory
Journal of

ISSN: 2149-1402 

28 (2019) 28-32

Journal of New Theory

http://www.newtheory.org

Open Access

New Theory
Journal of

www.newtheory.org

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Tokat Gaziosmanpaşa University

Number 28 Year 2019

On The Reformulated Zagreb Coindex
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1. Introduction

Let G be a simple connected graph on the vertex set V (G) and the edge set E(G). Also, let the degree
of vi denoted by di. The Reformulated Zagreb matrix of G is described with [RZ(G)] = [rz]ij where
[rz]ij = (di + dj − 2)2 if the vertices i is adjacent to j and [rz]ij = 0 if otherwise.

The Reformulated Zagreb index RZ(G) of G [7] is a general sum-connectivity index where

RZ(G) =
∑

i,j∈E(G)

(dG(i) + dG(j)− 2)2. (1)

The Zagreb coindex of G is described in [3],

Z̄1(G) =
∑

vi,vj /∈E(G)

(dG(i) + dG(j)). (2)

In this study, different bounds are set using the degrees, the edges and the vertices. Also, some relations
deal with the complement of eigenvalues of [RZ]ij are obtained. In Section 2, the reformulated Zagreb
coindex is defined and different inequalities for this index are found.

2. Preliminaries

In this section, some back-ground material that is needed for later sections will be given.

Lemma 2.1. [4] Let λ1(M) be the spectral radius and M = (mij) be an nxn irreducible nonnegative
matrix. Let Ri(M) =

∑m
j=1mij . [8] Then,

(minRi(M) : 1 ≤ i ≤ n) ≤ λ1(M) ≤ (maxRi(M) : 1 ≤ i ≤ n) (3)

1gulistankayagok@hakkari.edu.tr (Corresponding Author)
1Department of Mathematics Education, Hakkari University, Hakkari,Turkey
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Lemma 2.2. [2] Let V be the vertex set, vi ∈ V , mi be the average degree of the vertices adjacent
to vi. Then [2]

λ1(G) ≤ max(
√
mimj : 1 ≤ i, j ≤ n, vi, vj ∈ E) (4)

Lemma 2.3. [6] If G is a regular graph then,

Z1(G) ≥ 4m2

n
.

Lemma 2.4. [5] If G is a regular graph then,

Z̄1(G) ≤ −4m2

n
+ 2m(n− 1).

See [1] and [8] for details.

3.MAIN SERULTS

3.1.On eigenvalues

Some inequalities deal with the first eigenvalue of [RZ(G)] are given in this subsection. In addition,
a bound for the complement of this eigenvalue is outlined.

Theorem 3.1. If G is a simple, connected graph then

λRZ
1 (G) ≤

√
(F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

where λRZ
1 (G) is the first eigenvalue of [RZ(G)], F1 = (nd2i + 4m2) and F2 = ((nd2j + 4m2).

Proof. Let D(G)−1RZ(G)D(G) = F+(G) and X = (x1, x2, ..., xn)
T be an eigenvector of RZ+(G).

Also, xi = 1 and 0 < xk ≤ 1 for every k. Let xj = maxk(xk : vivk ∈ E) where i is adjacent to k. Let
RZ+(G)X = λRZ

1 (G)X. If i− th equation from above equation is get, then

λRZ
1 (G)xi =

∑
k

(di + dk − 2)2xk

≤ (nd2i + 4di(m− n) + 4n− 8m+ 4m2)xk.

Using Lemma 2.1, it is known that

λRZ
1 (G)xi ≤ (nd2i + 4di(m− n) + 4n− 8m+ 4m2)xk.

The j − th equation of the same equation,

λRZ
1 (G)xj ≤ (nd2j + 4dj(m− n) + 4n− 8m+ 4m2)xk.

From Lemma 2.2, the inequality holds that

λRZ
1 (G) ≤

√
(F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

Corollary 3.2. Let G be a graph on n vertices and m edges. Then,

λ̄1
RZ

(G) ≤
√
K − (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

where K = (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m) + (F̄1 + 2(n2 − 3n− 2m)(n−
1− di) + 8(n−m)− 4n2)(F̄2 + 2(n2 − 3n− 2m)(n− 1− dj) + 8(n−m)− 4n2).
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Proof. Cauchy-Schwarz inequality and Theorem 3.1 gives that

(λRZ
1 (G) + λ̄1

RZ
(G))2 ≤ (λF

1 (G))2 + (λ̄1
F
(G))2

≤ (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m)

+(F̄1 + 2(n2 − 3n− 2m)(n− 1− di) + 8(n−m)− 4n2)

(F̄2 + 2(n2 − 3n− 2m)(n− 1− dj) + 8(n−m)− 4n2).

Since m̄+m =
n2 − n

2
then F̄1 = n(n− 1−di)

2+2(n(n− 1)− 2m) and F̄2 = n(n− 1−dj)
2+2(n(n−

1)− 2m). It is implies that

λ̄1
RZ

(G) ≤
√
K − (F1 + 4(m− n)di + 4n− 8m)(F2 + 4(m− n)dj + 4n− 8m).

3.2. Reformulated Zagreb Coindex

In this subsection, the reformulated Zagreb coindex is concerned with. Thus, some bounds concepting
this indices are obtained.

Definition 3.3. The Reformulated Zagreb coindex R̄Z(G) defined as

R̄Z(G) =
∑

vi,vj /∈E(G)

(dG(i) + dG(j)− 2)2. (5)

Theorem 3.4. Let G be a graph on n vertices and m edges. Then,

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)Z1(Ḡ) + (Z1(Ḡ))2.

Proof. It is known that, RZ(Ḡ) =
∑

vi,vj∈E(Ḡ)(dḠ(i) + dḠ(j)− 2)2. Since dḠ(i) = (n− 1− di) and

dḠ(j) = (n− 1− dj) then,

RZ(Ḡ) =
∑

vi,vj∈E(Ḡ)

((n− 1− di) + (n− 1− dj)− 2)2

=
∑

vi,vj∈E(Ḡ)

4(n2 − 2n+ 1)− (4n− 4)
∑

vi,vj∈E(Ḡ)

(di + dj + 2) +
∑

vi,vj∈E(Ḡ)

(di + dj + 2)2

Since G has
(
n
2

)
−m =

n2 − n− 2m

2
edges, then

RZ(Ḡ) = 4(n2 − 2n+ 1)(
n2 − n− 2m

2
)− 4(n− 1)(Z1(Ḡ) + 2(

n2 − n− 2m

2
))

+
∑

vi,vj∈E(Ḡ)

(di + dj)
2 + 4Z1(Ḡ) + 4(

n2 − n− 2m

2
)

≥ 2(n2 − n− 2m)(n− 2)2 + 4(n− 2)Z1(Ḡ) + (Z1(Ḡ))2.

Corollary 3.5. If G is a regular graph on n vertices and m edges. Then,

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)(
−4m2

n
+ 2m(n− 1))

+(
−4m2

n
+ 2m(n− 1))2.
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Proof. Since Z1(Ḡ) = Z̄1(G) then

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)Z̄1(G) + (Z̄1(G))2

Using Lemma 2.4, it is concluded that

RZ(Ḡ) ≥ 2(n2 − n− 2m)(n− 2)2 − 4(n− 2)(
−4m2

n
+ 2m(n− 1))

+(
−4m2

n
+ 2m(n− 1))2.

Theorem 3.6. Let G be a graph on n vertices and m edges. Then,

RZ(G) + R̄Z(G) = (n− 2)Z1(G) + 2m(2m− 4n+ 5)− 2n.

Proof.

RZ(G) + R̄Z(G) =
∑

vi,vj∈E(G)

(di + dj − 2)2 +
∑

vi,vj /∈E(G)

(di + dj − 2)2

=
1

2
(

∑
vi∈V (G)

∑
vj∈V (G)

(di + dj − 2)2 −
∑

vj∈V (G)

(dj + dj − 2)2)

=
1

2
(

∑
vi∈V (G)

∑
j∈V (G)

(d2i + d2j + 2didj − 4di − 4dj + 4)− 4
∑

vj∈V (G)

(d2j − 2dj + 1)

=
1

2
(n

∑
vi∈V (G)

d2i +
∑

vj∈V (G)

d2j + 2
∑

vi∈V (G)

di
∑

vj∈V (G)

dj − 4n
∑

vi∈V (G)

di

−4n
∑

vj∈V (G)

dj +
∑

vi∈V (G)

∑
vj∈V (G)

4− 4
∑

vj∈V (G)

d2j + 8
∑

vj∈V (G)

dj −
∑

vj∈V (G)

4)

=
1

2
[nZ1(G) + nZ1(G) + 2(2m)(2m)− 4n.2m− 4n.2m+ 4m− 4Z1(G) + 16m− 4n]

=(n− 2)Z1(G) + 2m(2m− 4n+ 5)− 2n.

Corollary 3.7. If G is a regular graph on n vertices and m edges. Then,

R̄Z(G) ≥ 2m(
4m(n− 1)

n
− 4n+ 5)− 2n−RZ(G).

Proof. By Lemma 2.3, it is seen that

RZ(G) + R̄Z(G) ≥ (n− 2)(
4m2

n
) + 2m(2m− 4n+ 5)− 2n

=8m2n− 1

n
− 8mn+ 10m− 2n.

Hence,

R̄Z(G) ≥ 2m(
4m(n− 1)

n
− 4n+ 5)− 2n−RZ(G).

Corollary 3.8. Let G be a regular graph on n vertices and m edges. Then,

R̄Z(Ḡ) ≤ (n2 − n− 2m)(−n2 + 3n− 2m− 3)− 2n

+(5n− 10)(
−4m2

n
+ 2m(n− 1))− (

−4m2

n
+ 2m(n− 1))2.
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Proof. By Theorem 3.7,

R̄Z(Ḡ) = (n− 2)Z1(Ḡ) + 2m̄(2m̄− 4n+ 5)− 2n−RZ(Ḡ).

Since m̄ =
n2 − n− 2m

2
then,

R̄Z(Ḡ) = (n− 2)Z1(Ḡ) + (n2 − n− 2m)(n2 − 5n− 2m+ 5)− 2n−RZ(Ḡ).

By Lemma 2.4 and Corollary 2.3,

R̄Z(Ḡ) ≤ (n2 − n− 2m)(−n2 + 3n− 2m− 3)− 2n

+(5n− 10)(
−4m2

n
+ 2m(n− 1))− (

−4m2

n
+ 2m(n− 1))2.

4. Conclusion

In this paper, Reformulated Zagreb index which is one of the topological indices in graph theory is
studied. New inequalities are formed for this index in terms of the degrees, edges and vertices. Indeed,
Reformulated Zagreb coindex is defined and some bounds are obtained by the help of other Zagreb
indices.

References
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[7] A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Diversity 8 (2004)
393–399.

[8] S. Sorgun and S. Buyukkose, The new upper bounds on the spectral radius of weighted graphs,
Applied Mathematics and Computation 218 (2012) 5231–5238.



New Theory
Journal of

ISSN: 2149-1402 

28 (2019) 33-43

Journal of New Theory

http://www.newtheory.org

Open Access

New Theory
Journal of

www.newtheory.org

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Tokat Gaziosmanpaşa University

Number 28 Year 2019

The New Exact and Approximate Solution for the Nonlinear
Fractional Diffusive Predator-Prey System

Ali Kurt1, Mostafa Eslami2, Hadi Rezazadeh3, Orkun Tasbozan4, Ozan Ozkan5

Article History

Received : 27.02.2019

Accepted : 07.07.2019

Published : 13.07.2019

Original Article

Abstract − In this article two methods, q-Homotopy analysis Method (q-HAM) and
Sine-Gordon expansion method are proposed for solving fractional Diffusive Predator-
Prey system. The fractional derivative is considered in the conformable sense. The
obtained solutions using the suggested methods are in good agreement with the exist-
ing ones and show that these approaches can be used for solving various conformable
time fractional partial differential equations arising in different branches of science.
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Method, Conformable Fractional Derivative.

1. Introduction

Fractional calculus has a very long history. However, this field lagged behind classic analysis.
There is an increasing interest to study of the fractional differential equations because of their various
applications such as in viscoelasticity, anomalous diffusion, mechanics, biology, chemistry, acoustics,
control theory, etc. A great deal of effort has also been expanded in attempting to find robust and
stable numerical and analytical methods for solving fractional differential equations of physical interest.
In this paper, we have applied a numerical method called Homotopy analysis method and an analytical
method called Sine-Gordon expansion method to obtain solutions of Fractional Diffusive Predator-Prey
system. The homotopy analysis method (HAM) was first introduced by Liao [1], who employed the
basic ideas of the homotopy in topology to propose a general analytic method for nonlinear problems.
El-Tawil and Huseen [2] proposed a modified namely q-homotopy analysis method (q-HAM) which is
a more general method of HAM. This method is applied to solve many nonlinear problems [3, 4, 5, 6].

The Sine-Gordon expansion method is an efficient and powerful technique for solving differential
equations. This method is firstly proposed by the Chinese mathematician Yan [7]. The Sine-Gordon
expansion method is based on the explicit linearization of differential equations for traveling waves
which leads to a second-order differential equation with constant coefficients. Moreover, the solutions
obtained by this method are of general nature and a number of specific solutions can be deduced by
putting conditions on arbitrary constants present in the general solutions [8, 9, 10].

In this paper, we applied q-homotopy analysis and Sine-Gordon expansion methods for solving
fractional Diffusive Predator-Prey system. This work is organized as follows: In section 2 we provide
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some preliminaries of conformable fractional derivative. Section 3 introduces the concept of Sine-
Gordon expansion method, while section 4 gives to solutions of fractional Diffusive Predator-Prey
system. The q-Homotopy analysis method (q-HAM) is analyzed in section 5. Graphics of the numerical
examples are provided in section 6. The conclusions are given in section 7.

2.Governing equations

One of the most popular fractional predator-prey system in nonlinear fractional evolution equations
can be expressed as follows (for α = 1, see [11, 12])

∂αu

∂tα
=

∂2u

∂x2
− βu+ (1 + β)u2 − u3 − uv, (1)

∂αv

∂tα
=

∂2v

∂x2
+ κuv −mv − δv3, (2)

where κ, δ and β are positive parameters, and where ∂α

∂tα is conformable deravative operator of order
α ∈ (0, 1) in the t > 0 can be defined as follows [14]

∂αu

∂tα
= lim

ε→0

u(t+ εt1−α)− u(t)

ε
.

Later on, many useful methods for obtaining exact solutions of several nonlinear fractional evolution
equations by using this fractional derivative have been reported [15-33].
In this paper, we investigate a fractional order prey-predator interaction with following relations
between the parameters

m = β, κ+
1√
δ
= β + 1.

Based on these assumptions, Eqs. (2.1) and (2.2) are established by the following

∂αu

∂tα
=

∂2u

∂x2
− βu+

(
κ+

1√
δ

)
u2 − u3 − uv (3)

∂αv

∂tα
=

∂2v

∂x2
+ κuv − βv − δv3. (4)

The fractional prey-predator system incorporating diffusion is of profound interest because it involves
the heterogeneity of both the populations the environment. Formation of the spatial distribution
pattern with the diffusion models even in the absence of environmental heterogeneity is another in-
teresting event [13]. For better understand about the processes involved, existences of exact solutions
are needed.

3. Sine-Gordon expansion method

In this section we describe the first step of the Sine-Gordon expansion method for finding exact
solutions of nonlinear conformable fractional partial differential equations (PDEs).
We consider the following time conformable fractional nonlinear partial differential equation in two
variables and a dependent variable u

F

(
u,

∂αu

∂tα
,
∂u

∂x
,
∂2αu

∂t2α
,
∂2u

∂x2
, . . .

)
= 0, (5)

where F is a polynomial in u and its various partial derivatives, in which the highest order derivatives
and nonlinear terms are involved and ∂2αu

∂t2α
means two times conformable fractional derivative of

function u(x, t) . To solve Eq.(5), we take the traveling wave transformation

u(x, t) = U(ξ), ξ = x− c
tα

α
, (6)

where c ̸= 0 is a constant to be determined later. This enables us to use the following changes
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∂α(.)

∂tα
= −c

d(.)

dξ
,

∂(.)

∂x
=

d(.)

dξ
,

∂2α(.)

∂t2α
= −c

d2(.)

dξ2
, . . . .

Substituting Eq.(6) in Eq. (5) yields a nonlinear ordinary differential equation as following

G(U,U ′, U ′′, U ′′′, . . .) = 0, (7)

where U = U(ξ), U ′ = dU
dξ , U

′′ = d2U
dξ2

, . . . and so on.

Now lets describe the procedure of Sine-Gordon expansion method.This method established on the
Sine-Gordon equation and wave transform. The Sine-Gordon equation which is presented as a model
field theory;

uxx − utt = τ2sin(u), (8)

where τ is a real constant and u = u(x, t). Considering the wave transformation ξ = µ(x−ct) over the
Eqn. (8) the function u = u(x, t), turns into U(ξ), then we have the following nonlinear differential
equation,

U ′′ =
τ2

µ2(1− c2)
sin(U). (9)

By simplifying the Eq. (9), [(
U

2

)′]2
=

τ2

µ2(1− c2)
sin2

(
U

2

)
+K, (10)

where K is integration constant. Supposing K = 0, Φ(ξ) = U
2 , ϱ

2 = τ2

µ2(1−c2)
and subrogating into

Eqn. (10),

Φ′ = ϱ sin(Φ), (11)

regarding ϱ = 1 in Eqn. (11), led to

Φ′ = sin(Φ). (12)

Evaluating the solution of (12) by using separation of variables method, we attain the following
equations,

sin(Φ) = sin(Φ(ξ)) =
2ζeξ

ζ2e2ξ + 1
|ζ=1 = sech(ξ), (13)

cos(Φ) = sin(Φ(ξ)) =
ζ2e2ξ − 1

ζ2e2ξ + 1
|ζ=1 = tanh(ξ), (14)

where ζ is integration constant. To obtain the solution of nonlinear conformable PDE (5);

G(u,Dα
t u,Dxu,Dxxu,D

α
t D

α
t u, ...), (15)

we design,

U(ξ) =

n∑
i=1

tanhi−1(ξ) [Bi sech(ξ) +Ai tanh(ξ)] +A0, (16)

due to to Eqns. (13) and (14), Eqn. (16) can be regulated as

U(Φ) =

n∑
i=1

cosi−1(Φ) [Bi sin(Φ) +Ai cos(Φ)] +A0. (17)

The parameter n can be determined balancing the degrees between the highest order linear term and
nonlinear term in Eq.(7). Next equating all the coefficients of cosi(Φ) and sini(Φ) to be zero yields an
equation system. Solving system using an computer software such as Maple the values of Ai, Bi, µ
and c can be derived. Lastly subrogating the values of Ai, Bi, µ and c in Eqn. (16), we can express
the traveling wave solutions.
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4.Application of the Sine-Gordon expansion method to Fractional Diffusive Predator-

Prey system

We suppose that

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x+ ν
tα

α
, (18)

where ν is constant. Using the conformable chain rule and on substituting these into Eq.(3), we
have

U ′′ − νU ′ − βU +

(
κ+

1√
δ

)
U2 − U3 − UV = 0, (19)

V ′′ − νV + κUV − βUV − δV 3 = 0.

In order to solve system (19), let us consider the following transformation

V =
U√
δ
. (20)

Substituting the transformation (20) into (19),we get

U ′′ − νU ′ − βU + κ+ U2 − U3 = 0. (21)

Due to procedure of Sine-Gordon expansion method, assume that U can be written in the form

U(Φ) =

n∑
i=1

cosi−1(Φ) [Bi sin(Φ) +Ai cos(Φ)] +A0. (22)

Balancing the terms U ′′ and U3 led to n = 1, thus

U = B sinΦ +A cosΦ + C, (23)

and
U ′′ = −B(sinΦ)3 +B(cosΦ)2 sinΦ− 2A(sinΦ)2 cosΦ. (24)

Replacing the equations (23) and (24) into (21), using some trigonometric identities and setting all
the coefficients of cosiΦ and siniΦ produces the following algebraic equation system

A3 + 3B2A+ 2A = 0,

2B +B3 − 3BA2 = 0,

κA2 + 3B2C − 3A2C − κB2 + νA = 0,

νB + 2κBA− 6BAC = 0, (25)

2κAC − βA− 3B2A− 3AC2 − 2A = 0,

−βB + 2κBC −B −B3 − 3BC2 = 0,

κB2 − 3B2C − βC + κC2 − C3 − νA = 0.

Solving the system with the aid of Maple, we obtain the following solution sets,

A = ∓
√
2, B = 0, C = ∓ ν√

2
, β = −2 +

ν2

2
, κ = ∓

√
2ν,

A = ±
√
2, B = 0, C = ∓

√
2, β = 4 + 2ν, κ = ∓

√
2(6 + ν)

2
,

A = ∓
√
2, B = 0, C = ∓

√
2, β = 4− 2ν, κ = ±

√
2(ν − 6)

2
,

A = ±
√
2

2
, B = ∓ i

√
2

2
, C = ∓

√
2

2
, β = ν + 1, κ = ∓

√
2(3 + ν)

2
,

A = ∓
√
2

2
, B = ∓ i

√
2

2
, C = ∓

√
2

2
, β = 1− ν, κ = ±

√
2(−3 + ν)

2
,

A = ∓
√
2

2
, B = ∓ i

√
2

2
, C = ∓ν

√
2

2
, β =

ν2 − 1

2
, κ = ∓

√
2ν.
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Using the above values of A,B,C, β, κ and (20), the solutions of u(x, t) and v(x, t) can be obtained as

u1(x, t) = ∓ ν√
2
∓

√
2 tanh

[
x+

tαν

α

]
,

u2(x, t) = ∓
(√

2−
√
2 tanh

[
x+

tαν

α

])
,

u3(x, t) = ∓
(√

2 +
√
2 tanh

[
x+

tαν

α

])
,

u4(x, t) = ±

(
− 1√

2
−

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2

)
,

u5(x, t) = ±

(
− 1√

2
−

isech
[
x+ tαν

α

]
√
2

−
tanh

[
x+ tαν

α

]
√
2

)
,

u6(x, t) = ∓

(
ν√
2
+

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2

)
,

v1(x, t) =
∓ ν√

2
∓

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v2(x, t) =

√
2−

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v3(x, t) =
−
√
2 +

√
2 tanh

[
x+ tαν

α

]
√
δ

,

v4(x, t) = ±

− 1√
2
−

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2√

δ

 ,

v5(x, t) = ±

− 1√
2
−

isech
[
x+ tαν

α

]
√
2

−
tanh

[
x+ tαν

α

]
√
2√

δ

 ,

v6(x, t) = ∓

 ν√
2
+

isech
[
x+ tαν

α

]
√
2

+
tanh

[
x+ tαν

α

]
√
2√

δ

 .

5.Numerical Solution of Fractional Diffusive Predator-Prey system

In this section, we implement q-homotopy analysis method (q-HAM) which is generalized version of
homotopy analysis method (HAM) [34] to obtain the numerical solution of diffusive predator-prey
system. q-HAM involves the parameter h which is used for adjusting and controlling the convergence
of solution series.(See [35, 36]) Regard the nonlinear system of equations in with the following initial
conditions

u(x, 0) = 1 +
√
2 tanh[x], (26)

v(x, 0) = 2 + 2
√
2 tanh[x].

We consider the coefficients ν =
√
2, δ = 1

4 , κ = 2, β = 2 for both calculations in the rest of article. We
can chose the linear operators To obtain the series solutions of system of equations in (3) with initial
conditions 26) as follows

L1 [φ1(x, t; q)] = Dα
t φ1(x, t; q),

L2 [φ2(x, t; q)] = Dα
t φ2(x, t; q),
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where the linear operators satisfies the condition Lj [m] = 0 for each j ∈ {1, 2}, where m is constant.
The non-linear operators can be defined from the system (3) such as

N1 [φ1(x, t; q)] =
∂αφ1(x, t; q)

∂tα
− ∂2φ1(x, t; q)

∂x2
+ βφ1(x, t; q),

−
(
κ+

1√
δ

)
φ1(x, t; q)

2 − φ1(x, t; q)
3 + φ1(x, t; q)φ2(x, t; q),

N2 [φ(x, t; q)] =
∂αφ2(x, t; q)

∂tα
− ∂2φ2(x, t; q)

∂x2
− κφ1(x, t; q)φ2(x, t; q) + βφ2(x, t; q) + δφ2(x, t; q)

3.

So the zero-order deformation equations can be constituted as:

(1− nq)L1 [φ1(x, t; q)− u0(x, t)] = qh1N [φ1(x, t; q)] ,

(1− nq)L2 [φ2(x, t; q)− v0(x, t)] = qh2N [φ2(x, t; q)] .

When Hj(x, t) = 1 chosen properly [35], for each j ∈ {1, 2}, the mth-order deformation equation is

um(x, t) = χ∗
mum−1(x, t) + h1L−1

1 [R1,m (um−1)] , (27)

vm(x, t) = χ∗
mvm−1(x, t) + h2L−1

2 [R2,m (vm−1)] , (28)

where χ∗
m

χ∗
m =


0 m 6 1,

n otherwise.
(29)

Finally using using Equations (27) and (28) with initial conditions given by (26), we respectively
obtain the approximate analytical solutions

u0(x, t) = 1 +
√
2 tanh[x],

v0(x, t) = 2 + 2
√
2 tanh[x],

u1(x, t) =
htαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
2α

,

v1(x, t) =
htαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
α

,

u2(x, t) =
h2tαsech[x]3 ((−45tα + 2α) cosh[x] + (33tα + 6α) cosh[3x])

8α2

+
2
√
2
(
12αcosh[x]2 + tα(−5 + 27cosh[2x])

)
sinh[x]

8α2

+
hntαsech[x]2

(
−1 + 3cosh[2x] + 3

√
2sinh[2x]

)
2α

,

v2(x, t) =
h2tαSech[x]3

(
2
√
2
(
12αCosh[x]2 + tα(−5 + 27Cosh[2x])

)
Sinh[x]

)
4α2

h2tαSech[x]3
(
(−45tα + 2α)Cosh[x] + (33tα + 6α)Cosh[3x] + 2

√
2
(
12αCosh[x]2

))
4α2

+
h2t2αSinh[x]Sech[x]3(−5 + 27Cosh[2x])

4α2

+
hntαSech[x]2

(
−1 + 3Cosh[2x] + 3

√
2Sinh[2x]

)
α

,

...

We can obtain um(x, t), vm(x, t), for m = 3, 4, 5, · · · , following the same approach, using Mathematica,
Maple or MATLAB.
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As a result series solution expression by q-HAM can be written in the form

u(x, t, n, h) = 1 +
√
2 tanh[x] +

∞∑
i=1

ui(x, t;n;h)

(
1

n

)i

, (30)

v(x, t, n, h) = 2 + 2
√
2 tanh[x] +

∞∑
i=1

vi(x, t;n;h)

(
1

n

)i

. (31)

6.Graphical Comparisons
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Fig. 1. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.7 respectively.
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Fig. 2. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.8 respectively.
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Fig. 3. The h-curves of u(x, t) and v(x, t) for x = 0.1, t = 0.01, α = 0.9 respectively.

Figures 1, 2, 3 show the convergence region of the obtained approximate solutions. By the help of
this graphics we can adjust and control the convergence of approximate analytical solution to the exact
solution. These graphics helps us for choosing appropriate value of h which is involved in the series
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solutions (30) and (31). As a consequence of this choice of h the following graphics appears. Both of
these graphics shows the obtained numerical solutions are converges properly to exact solutions for
different values of α.

Fig. 4. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.7 respectively.

Fig. 5. The graphics of the numerical and exact solutions of v(x, t) for h = −1, α = 0.7 respectively.

Fig. 6. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.8 respectively.

To be more satisfying lets give the numerical comparisons of both exact and approximate analytical
solutions over Figures 4,5,6,7 and 8.

7. Conclusion

In this work, we successfully apply the q-homotopy analysis method and Sine-Gordon expansion
method to obtain solutions of Fractional Diffusive Predator-Prey system. It may be concluded that
the two methods are powerful and efficient techniques for finding exact as well as approximate solutions
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Fig. 7. The graphics of the numerical and exact solutions of u(x, t) for h = −1, α = 0.9 respectively.














             














             

1 2 3 4 5

x

1.2

1.4

1.6

1.8

2.0

2.2

2.4

u

 Exact

 Numerical














             














             

1 2 3 4 5

x

2.5

3.0

3.5

4.0

4.5

u

 Exact

 Numerical

Fig. 8. Comparisons of solutions for t = 0.001, α = 0.8, h = −2.7.

ofhomogeneous fractional partial differential equations. The results reveal that these methods are very
effective, convenient and quite accurate to systems of fractional nonlinear equations.
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Abstract − The aim of the present paper is to introduce the class of strong
pre∗ − I − open sets which is strictly placed between the class of all pre− I − open
and the class of all pre∗ − I − open subsets of X. Relationships with some other
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1. Introduction and Preliminaries

Kuratowski [1] defined the concept of ideals in topological spaces. Jankovic and Hamlett [2] introduced
the notion of I-open sets in topological spaces. Several kinds of I − openness have been initiated.
Abd El-Monsef et al. [3] investigated further properties of I− open sets and I− continuous functions.
Dontchev [4] introduced the notion of pre−I−open sets and obtained a decomposition of I−continuity.
In 2002, Hatir and Noiri [5] presented the concept of semi− I − open sets in ideal topological spaces.
Recently, Ekici tntrodused the notions of pre∗ − I − open [6]. In this paper, we define the notions of
strong pre∗−I−open sets and strong pre∗−I−closed sets. Several characteristics and properties are
studied. Throughout the present paper, (X, τ) will denote topological spaces on which no separation
property is assumed unless explicity stated. In topological space (X, τ), the closure and the interior
of any subset A of X will be denoted by cl(A) and int(A), respectively. An ideal I on X is defined
as a nonempty collection of subsets of X satisfying the following two conditions: (1) If A ∈ I and
B ⊂ A, then B ∈ I. (2) If A ∈ I and B ∈ I, then A ∪B ∈ I. Let (X, τ) be a topological space and
I an ideal on X. An ideal topological space is a topological space (X, τ) with an ideal I on X and
denoted by (X, τ, I). For a subset A ⊂ X, A∗(I, τ) = x ∈ X|U ∩A /∈ IforeachneighborhoodUofx is
called the local function of A with respect to I and τ [2]. It is obvious that (.)∗ : (X) → (X) is a set
operator. Throughout this paper, we use A∗ instead of A∗(I, τ). Besides, in [7], authors introduced a
new Kuratowski closure operator cl∗(.) defined by cl∗(A) = A ∪ A∗ and obtained a new topology on
X which is called *-topology. This topology is denoted by τ∗ which is finer than τ . We start with
recalling some lemmas and definitions which are necessary for this study in the sequel.

Lemma 1.1. [2] Let (X, τ) be a topological space and I an ideal on X. For every subset A of X,
the following property holds: A∗ ⊂ cl(A).

Definition 1.2. A subset A of an ideal topological space (X, τ, I) is called:
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1. pre− open, if A ⊂ int(cl(A)) [8];

2. pre− I − open, if A ⊂ int(cl∗(A)) [4];

3. pre∗ − I − open, if A ⊂ itn∗(cl(A)) [6];

4. α− I − open, if A ⊂ int(cl∗(int(A))) [5];

5. semi− I − open, if A ⊂ cl∗(int(A)) [5];

6. pre− I − regular, if A is pre− I − open and pre− I − closed [9];

7. strong semi∗ − I − open, if A ⊂ cl∗(int∗(A)) [10];

8. β∗ − I − open, if A ⊂ cl(int∗(cl(A))) [6] ;

9. strongβ − I − open, if A ⊂ cl∗(int(cl∗(A))) [11];

10. β − I − open, if A ⊂ cl(int(cl∗(A))) [5] ;

11. β − open, if A ⊂ cl(int(cl(A))) [12] ;

12. weakly semi− I − open, if A ⊂ cl∗(int(cl(A))) [13];

13. I − open, if A ⊂ int(A∗) [3];

14. almost strong − I − open, if A ⊂ cl∗(int(A∗)) [14];

15. ∗ − perfect, if A = A∗ [15];

16. C∗ − I − set, if A = L ∩M , where L ∈ τ and M is pre− I − regular [9];

17. S − I − set, if int(A) = cl∗(int(A)) [13].

Definition 1.3. [16] In ideal topological space (X, τ, I), I is said to be codence if τ ∩ I = ϕ.

Lemma 1.4. ( [17]) Let (X, τ, I) be an ideal space, where I is codence, then the following hold:

1. cl(A) = cl∗(A), for every ∗ − open set A;

2. int(A) = in∗(A), for every ∗ − closed set A.

Lemma 1.5. [18] For a subset A of an ideal topological space (X, τ, I), the following are hold:

1. pIcl(A) = A ∪ cl(int∗(A)) ;

2. pIint(A) = A ∩ int(cl∗(A)) ;

3. sIcl(A) = A ∪ int∗(cl(A)) ;

4. sIint(A) = A ∩ cl∗(int(A)).

Lemma 1.6. [2] For two subsets, A and B of a space (X, τ, I), the following are hold:

1. If A ⊂ B, then A∗ ⊂ B∗;

2. If U ∈ τ , then (U ∩A∗) ⊂ (U ∩A)∗.

Lemma 1.7. [14] Let A be a subset of an ideal topological space (X, τ, I) and U be an open set.
Then, U ∩ cl∗(A) ⊂ cl∗(U ∩A).

Lemma 1.8. [17] Let (X, τ, I) be an ideal space and A be a ∗ − dense in itself subset of X. Then
A∗ = cl(A∗) = cl(A) = cl∗(A).

Definition 1.9. [7] An ideal topological space (X, τ, I) is said to be I-extremally disconnected if
cl∗(A) ∈ τ for each A ∈ τ .

Lemma 1.10. [19] A subset A of an ideal topological space (X, τ, I) is weakly I-local closed if and
only if there exists an open set U such that A = U ∩ cl∗A.

Lemma 1.11. [20] An ideal topological space (X, τ, I) is I-extremally disconnected if and only if
cl∗(int(A)) ⊂ int(cl∗(A)), for every subset A of X.
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2. Strong Pre*-I-Open Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is said to be strong pre∗− I−open
(briefly S.P ∗− I− open) if A ⊂ int∗(cl∗(A)). We denote that all S.P ∗− I− open by S.P ∗− I−O(X).

Lemma 2.2. Let (X, τ, I) be an ideal topological space, the followings hold, for any subset A of X:

1. Every pre− I − open set is a S.P ∗ − I − open.

2. Every S.P ∗ − I − open set is a pre∗ − I − open.

The following diagram holds for any subset A of an ideal topological space (X, τ, I).

S.P ∗ − I − open

++VVV
VVVV

VVVV
VVVV

VVV

Pre− I − open //

33hhhhhhhhhhhhhhhhhh

++VVV
VVVV

VVVV
VVVV

VVV
b− I − open pre∗ − I − open

��

open

OO

Pre− open

33hhhhhhhhhhhhhhhhhhh
β∗ − I − open

Figure 1. The implication between some generalizations of open sets

Remark 2.3. The converses of these implications in Diagram 1 are not true in general as shown in
the following examples:

Example 2.4. LetX = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}} and I = {ϕ, {a}, {d}, {a, d}}. Then
A = {c, d} is a S.P ∗ − I − open, but it is not pre− I − open.

Example 2.5. Let X = {a, b, c, d}, τ = {ϕ,X, {c}, {a, b, d}} and I = {ϕ, {a}}. Then A = {a} is a
pre∗ − I − open set, but it is not S.P ∗ − I − open.

Remark 2.6. The strong pre∗− I−open sets and b− I−open sets are independent notions, we show
that from the next examples:

Example 2.7. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}} and I = {ϕ, {a}, {d}, {a, d}}, if we
take A = {b, d}, then we get A is not b− I − open but it is S.P ∗ − I − open.

Example 2.8. Let X = {a, b, c}, τ = {ϕ,X, {a}, {c}, {a, c}} and I = {ϕ, {b}}. Then A = {a, b} is a
b− I − open but it is not S.P ∗ − I − open.

Example 2.9. LetX = {a, b, c, d}, τ = {ϕ,X, {d}, {a, c}, {a, c, d}} and I = {ϕ, {c}, {d}, {c, d}}. Then
A = {c} is pre− open but it is not S.P ∗ − I − open.

Example 2.10. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b}, {a, b}} and I = {ϕ, {b}, {c}, {b, c}}. Then
A = {a, c} is an S.P ∗ − I − open set, but it is not pre− open.

From Examples 2.6 and 2.5, we conclude that the concepts of pre− open sets and S.P ∗− I − open
sets are independent notions.

Theorem 2.11. Let (X, τ, I) be an ideal topological space then, A is an S.P ∗ − I − open set if and
only if there exists an S.P ∗ − I − open B such that A ⊂ B ⊂ cl∗(A).

Proof. Let A be a S.P ∗ − I − open, then A ⊂ int∗(cl∗(A)). We put B = int∗(cl∗(A)), which
is a ∗ − open set. Therefore B = int∗(B) ⊂ int∗(cl∗(B)) be an S.P ∗ − I − open set Such that
A ⊂ B = int∗(cl∗(B)) ⊂ cl∗(A).
Conversely, if B is an S.P ∗ − I − open set such that A ⊂ B ⊂ cl∗(A), taking ∗ − closure, then
cl∗(A) ⊂ cl∗(B). On the other hand A ⊂ B ⊂ int∗(cl∗(B)) ⊂ int∗(cl∗(A)). Which shows that A is
S.P ∗ − I − open.

Corollary 2.12. Let (X, τ, I) be an ideal topological space, then A is a S.P ∗ − I − open set if and
only if there exists an open set A ⊂ B ⊂ cl∗(A).
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Proof. Obvious.

Corollary 2.13. Let (X, τ, I) be an ideal topological space. If A is an S.P ∗ − I − open set, then
cl∗(A) is a strong semi∗ − I − open set.

Proof. Let A be S.P ∗ − I − open. Then A ⊂ int∗(cl∗(A)) and cl∗(A) ⊂ cl∗(int∗(cl∗(A))). This
implies cl∗(A) is a strong semi∗ − I − open.

Corollary 2.14. Let (X, τ, I) be an ideal topological space. If A is a strong semi∗ − I − open, then
int∗(A) is an S.P ∗ − I − open set.

Proof. Let A be strong semi∗ − I − open, then A ⊂ cl∗(int∗(A)) ⇒ int∗(A) ⊂ int∗(cl∗(int∗(A))).
This implies int∗(A) is an S.P ∗ − I − open.

Theorem 2.15. Let (X, τ, I) be an ideal topological space, A and B are subsets of X. the following
are hold:

1. If U ∈ SP ∗IO(X, τ), for each α ∈ ∆, then
∪
{Uα : α ∈ ∆} ∈ SP ∗IO(X, τ)

2. If A ∈ SP ∗IO(X, τ), and B ∈ τ , then A ∩B ∈ SP ∗IO(X, τ).

Proof. (1) Since Uα ∈ SP ∗IO(X, τ), we have Uα ⊂ itn∗(cl∗(Uα)), for each α ∈ ∆. Then we obtain:∪
α∈∆ Uα ⊂

∪
α∈∆ int∗(cl∗(Uα))

⊂ int∗(
∪

α∈∆ cl∗(Uα))
= int∗(

∪
α∈∆ (U∗

α ∪ Uα))
= int∗(

∪
α∈∆ U∗

α ∪
∪

α∈∆ Uα)
⊂ int∗((

∪
α∈∆ Uα)

∗ ∪
∪

α∈∆ Uα)
= int∗(cl∗(

∪
α∈∆ Uα))

This shows that
∪

α∈∆ Uα ∈ SP ∗IO(X, τ).

(2) Let A ∈ SP ∗IO(X, τ) and B ∈ τ . Then A ⊂ int∗(cl∗(A)) and B = int(B) ⊂ int∗(B). Thus,
we obtain

A ∩B ⊂ int∗(cl∗(A)) ∩ int∗(B)
= int∗(cl∗(A) ∩B)
= int∗((A∗ ∪A) ∩B)
= int∗((A∗ ∩B) ∪ (A ∩B))
⊂ int∗((A ∩B)∗ ∪ (A ∩B))
= int∗(cl∗(A ∩B))

Remark 2.16. In general, a finite intersection of the S.P ∗−I−open sets need not be S.P ∗−I−open,
as shown by the following example:

Example 2.17. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}} and I = {ϕ, {a}, {d}, {a, d}}. We
can easily conclude that A = {c, d} and B = {b, d} are S.P ∗ − I − open sets, but A ∩B = {d} is not
S.P ∗ − I − open.

Theorem 2.18. Let (X, τ, I) be an ideal topological space, where I is codense then the following
hold:

1. Every S.P ∗ − I − open set is a strong β − I − open set.

2. Every S.P ∗ − I − open set is a β − open set.

3. Every S.P ∗ − I − open set is a weakly semi− I − open set.

4. Every S.P ∗ − I − open set is a pre− open set.

Proof. It is obvious.
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Remark 2.19. The reverse of the above theorem is not true in general as shown in the following
examples:

Example 2.20. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b}, {a, b}} and I = {ϕ}. Then we obtain:

1. A = {a, c} is strong β − I − open set, but it is not S.P ∗ − I − open.

2. A = {b, c} is β − open set, but it is not S.P ∗ − I − open.

3. A = {a, d} is weakly semi− I − open set, but it is not S.P ∗ − I − open

Example 2.21. Let X = {a, b, c, d}, τ = {ϕ,X, {a, b}} and I = {ϕ, {b}, {c}, {b, c}}. If we take
A = {b}, then we get A is a pre− open set, but it is not S.P ∗ − I − open.

Theorem 2.22. Let (X, τ, I) be an ideal topological space, such that every open set is ∗ − closed,
then every strong β − I − open set is S.P ∗ − I − open.

Proof. Let A is a strong β − I − open, then A ⊂ cl∗(int(cl∗(A))). Since int(cl∗(A)) is open, by
hypothesis int(cl∗(A)) = cl∗(int(cl∗(A))). So A ⊂ cl∗(int(cl∗(A))) = int(cl∗(A) ⊂ int∗(cl∗(A)).
Which shows that A is S.P ∗ − I − open.

Theorem 2.23. Let (X, τ, I) be an ideal topological space. If A is ∗ − perfect, then the following
hold:

1. Every S.P ∗ − I − open set is almost strong − I − open.

2. A is a S.P ∗ − I − open set if and only if it is I − open set.

Proof. (1) Let A is an S.P ∗ − I − open , then A ⊂ int∗(cl∗(A)) = int(cl∗(A)) ⊂ cl∗(int(cl∗(A))) =
cl∗(int(A∗)). This implies A is almost strong − I − open.
(2) Let A is a S.P ∗ − I − open, then A ⊂ int∗(cl∗(A)) ⊂ int∗(cl(A)) = int(A∗). Hence A is I − open.
Conversely, if A is I − open, then A ⊂ int(A∗) ⊂ int(∗)(A∗) = int∗(cl∗(A)). Hence A is S.P ∗ − I −
open.

Corollary 2.24. Let (X, τ, I) be an ideal topological space, If A is ∗− perfect, then every pre∗− I−
open set is S.P ∗ − I − open.

Proof. Let A is pre∗ − I − open set, since it is ∗ − perfect, then A ⊂ int∗(cl(A)) = int∗(cl∗(A)).
Hence A is S.P ∗ − I − open.

Corollary 2.25. Every I − open set is S.P ∗ − I − open.

Proof. If A is I − open, then A ⊂ int(A∗) ⊂ int(A∗ ∪A) ⊂ int∗(cl∗(A)). Hence A is S.P ∗ − I −
open.

Theorem 2.26. Let (X, τ, I) be an ideal topological space, Where I is codense, then the following
are equivalent:

1. A is pre∗ − I − open.

2. A is S.P ∗ − I − open.

Proof. It is obvious.

Theorem 2.27. Let (X, τ, I) be an ideal topological space and A ⊂ X be a pre− open and semi−
closed. Then A is S.P ∗ − I − open.

Proof. Let A is pre− open, then A ⊂ int(cl(A)). Since A is semi− closed then int(cl(A)) = int(A),
now A ⊂ int(A) ⊂ int∗(cl∗(A)). Which shows A is S.P ∗ − I − open.

Theorem 2.28. Let (X, τ, I) be an ideal topological space and A ⊂ X be an S.P ∗ − I − open and
∗ − closed. Then A is S.S∗ − I − open.

Proof. Let A is S.P ∗ − I − open, then A ⊂ int∗(cl∗(A)). Since A is ∗ − closed then int∗(cl∗(A)) =
int∗(A). Now A ⊂ int∗(A) ⊂ cl∗(int∗(A)). Which shows A is S.S∗ − I − open.
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Theorem 2.29. Let (X, τ, I) be an ideal topological space, and A ⊂ X, then the followings hold:

1. A is S.P ∗ − I − open set, if it is both weakly semi− I − open and strong S − I − set.

2. A is S.P ∗ − I − open set, if it is both semi− I − open set and S − I − set.

Proof. (1) Let A is weakly semi−I−open set, then A ⊂ cl∗(int(cl(A))). Since A is strong S−I−set
then, int(A) = cl∗(int(cl(A))). Now A ⊂ int(A) ⊂ int∗(cl∗(A)). Hence A is S.P ∗ − I − open.
(2) Let A is semi−I−open set, then A ⊂ cl∗(int(A)). Since A is S−I−set then, int(A) = cl∗(int(A)).
Now A ⊂ int(A) ⊂ int∗(cl∗(A)). Hence A is S.P ∗ − I − open.

Theorem 2.30. Let (X, τ, I) be an ideal topological space. A is an S.P ∗ − I − open set if it is both
Pre∗ − I − open and closed.

Proof. Let A is pre∗ − I − open set, then A ⊂ int∗(cl(A)). Since A is closed set, then A ⊂
int∗(cl(A)) = int∗(A) ⊂ int∗(cl∗(A)). Hence A is S.P ∗ − I − open.

Theorem 2.31. Let (X, τ, I) be an I − extremally disconnected space and A ⊂ X. Then every
semi− I − open set is an S.P ∗ − I − open set.

Proof. Let A is semi− I − open, then Acl∗(int(A)). By Lemma 1.11, we obtain A ⊂ int(cl∗(A)) ⊂
int∗(cl∗(A)). Which shows A is S.P ∗ − I − open.

Lemma 2.32. An ideal topological space (X, τ, I) is I − extremally disconnected if and only if
cl∗(int∗(A)) ⊂ int∗(cl∗(A)), for every subset A of X.

Proof. From Definition 1.9., we obtain cl∗(A) is open. Thus cl∗(int∗(A)) ⊂ cl∗(A) = int(cl∗(A)) ⊂
int∗(cl∗(A)). Hence cl∗(int∗(A)) ⊂ int∗(cl∗(A)). Conversely, since cl∗(int(A)) ⊂ cl∗(int∗(A)) ⊂
int∗(cl∗(A)) ⊂ int∗(cl(A)). Then X is I − extremally disconnected.

Corollary 2.33. Let (X, τ, I) be an I − extremally disconnected space and A ⊂ X. Then every
strong semi∗ − I − open set is S.P ∗ − I − open.

Proof. It is obvious by Lemma 2.32.

Theorem 2.34. Let (X, τ, I) be an ideal topological space, A and B are subsets of X. If A is an
S.P ∗ − I − open set and B is a pre− open set, then A ∪B is pre∗ − I − open.

Proof. Let A is S.P ∗ − I − open then A ⊂ int∗(cl∗(A)), and B is a pre− open then B ⊂ int(cl(B)).
Now:

A ∪B ⊂ int∗(cl∗(A)) ∪ int(cl(B))
⊂ int∗(cl(A)) ∪ int∗(cl(B))
⊂ int∗(cl(A ∪B)).

Hence A ∪B is a pre∗ − I − open set.

Theorem 2.35. Let (X, τ, I) be an ideal topological space, A and B are subsets of X. If A is an
S.P ∗ − I − open set and B is a weakly semi− I − open set, then A ∪B is β∗ − I − open.

Proof. Let A is S.P ∗ − I − open, then A ⊂ int∗(cl∗(A)), B is weakly semi − I − open then B ⊂
cl∗(int(cl(B))) Now :

A ∪B ⊂ int∗(cl∗(A)) ∪ cl∗(int(cl(B)))
⊂ cl(int∗(cl(A))) ∪ cl(int∗(cl(B)))
= cl(int∗(cl(A)) ∪ int∗(cl(B)))
⊂ cl(int∗(cl(A ∪B))).

Hence A ∪B is a β∗ − I − open set.

Theorem 2.36. Let (X, τ, I) be an ideal topological space, where I is codense then A is α− I− open
if and only if it is an S.S∗ − I − open and S.P ∗ − I − open.
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Proof. Necessity, this is obvious.
Sufficiency, Let A is an S.S∗ − I − open and S.P ∗ − I − open, we have:

A ⊂ int∗(cl∗(A))
⊂ int∗(cl∗(cl∗(int∗(A))))
= int∗(cl∗(int∗(A)))
= int(cl∗(int(A))).

Hence A is α− I − open.

3. Strong Pre*-I-Closed Sets

Definition 3.1. A subset A of an ideal topological space (X, τ, I) is said to be strong pre∗−I−closed
(briefly S.P ∗ − I − closed) if its complement is S.P ∗ − I − open. We denote that all S.P ∗ − I − closed
by S.P ∗ − I − C(X).

Lemma 3.2. Let (X, τ, I) be an ideal topological space, the followings hold, for any subset A of X:

1. Every pre− I − closed set is a S.P ∗ − I − closed.

2. Every S.P ∗ − I − closed set is a pre∗ − I − closed.

The following diagram holds for any subset A of an ideal topological space (X, τ, I).

S.P ∗ − I − closed

++WWWW
WWWWW

WWWWW
WWWWW

W

Pre− I − closed //

33gggggggggggggggggggg

++VVVV
VVVVV

VVVVV
VVVVV

V b− I − closed pre∗ − I − closed

��

closed

OO

Pre− closed

33hhhhhhhhhhhhhhhhhhh
β∗ − I − closed

Figure 2. The implication between some generalizations of closed sets

Theorem 3.3. A subset A of a space (X, τ, I) is said to be an S.P ∗ − I − closed if and only
ifcl∗(int∗(A)) ⊂ A.

Proof. Let A be an S.P ∗ − I − closed of (X, τ, I), then (X − A) is an S.P ∗ − I − open and hence
(X −A) ⊂ int∗(cl∗(X −A)) = X − cl∗(int∗(A)). Therefore, we obtain cl∗(int∗(A)) ⊂ A.
Conversely, let cl∗(int∗(A)) ⊂ A, then (X−A) ⊂ int∗(cl∗(X −A)) and hence (X−A) is S.P ∗−I−open.
Therefore, A is an S.P ∗ − I − closed.

Theorem 3.4. Let (X, τ, I) be an ideal topological space, if I is codense, then A is an S.P ∗−I−closed
if and only if cl∗(int(A)) ⊂ A.

Proof. Let A be a S.P ∗ − I − closed set of X, then A ⊃ cl∗(int∗(A)) = cl∗(int(A)).
Conversely, let A be any subset of X, such that A ⊃ cl∗(int(A)). This implies that A ⊃ cl∗(int∗(A)),
i.e., A is an S.P ∗ − I − closed

Theorem 3.5. Let (X, τ, I) be an ideal topological space, and A ⊂ X, then the followings hold:

1. If A is an S.P ∗ − I − open set, then SIcl(A) = int∗(cl(A)).

2. If A is an S.P ∗ − I − closed set, then SIint(A) = cl∗(int(A)).
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Proof. (1) Let A be an S.P ∗ − I − open set in X. Then we have A ⊂ int∗(cl∗(A)) ⊂ int∗(cl(A)).
Thus we have SIcl(A) = int∗(cl(A)).
(2) Let A be an S.P ∗ − I − closed set in X ,then we have A ⊃ cl∗(int∗(A)) ⊃ cl∗(int(A)). Hence
SIint(A) = cl∗(int(A)).

Remark 3.6. 1The reverse of the above theorem is not true in general as shown in the following
examples:

Example 3.7. Let X = {a, b, c, d}, τ = {ϕ,X, {a}, {b, c}, {a, b, c}}, I = {ϕ, {a}, {d}, {a, d}}, and
A = {c}. Then we obtain:

1. SIcl(A) = int∗(cl(A)), but A is not S.P ∗ − I − open.

2. SIint(A) = cl∗(int(A)), but it is not S.P ∗ − I − closed

Theorem 3.8. A subset A of a space (X, τ, I) is said to be S.P ∗ − I − closed if and only if there
exists an S.P ∗ − I − closed set B such that int∗(A) ⊂ B ⊂ A.

Proof. Let A be an S.P ∗ − I − closed set of a space (X, τ, I), then cl∗(int∗(A)) ⊂ A. We put
B = cl∗(int∗(A)) be a ∗−closed set. i.e, B is S.P ∗−I−closed. And int∗(A) ⊂ cl∗(int∗(A)) = B ⊂ A.
Conversely, if B is an S.P ∗−I−closed set such that int∗(A) ⊂ B ⊂ A, then int∗(A) = int∗(B). On the
other hand, cl∗(int∗(B) ⊂ B and hence A ⊃ B ⊃ cl∗(int∗(B)) = cl∗(int∗(A). Thus A ⊃ cl∗(int∗(A)).
Hence A is S.P ∗ − I − closed.

Corollary 3.9. a subset A of a space (X, τ, I) is an S.P ∗ − I − closed set if and only if there exists
a ∗ − closed set B such that int∗(A) ⊂ B ⊂ A.

Remark 3.10. The union of strong pre∗ − I − closed sets need not be an S.P ∗ − I − closed set. This
can be shown by the following example:

Example 3.11. Let X = {a, b, c, d}, τ = {ϕ, {a}, {b, c}, {a, b, c}, X} and I = {ϕ, {a}, {d}, {a, d}},
then A = {b} and B = {c} are S.P ∗ − I − closed sets but A ∪B = {b, c} is not S.P ∗ − I − closed.

Theorem 3.12. Let (X, τ, I) be an ideal topological space, A and B are subsets of X. Then A ∩ B
is a pre∗ − I − closed set, if A is S.P ∗ − I − closed and B is pre− closed set.

Proof. It is proved similarly by Theorem 2.34.

Theorem 3.13. Let (X, τ, I) be an ideal topological space, A and B are subsets of X. Then A ∩ B
is a B∗ − I − closed set, if A is S.P ∗ − I − closed and B is weakly semi− I − closed.

Proof. It is proved similarly by Theorem 2.35.

Theorem 3.14. Let (X, τ, I) be an ideal topological space, then each pre − I − regular set in X is
S.P ∗ − I − open and S.P ∗ − I − closed set.

Proof. It follows from the fact that every pre−I−regular set is pre−I−open and pre−I−closed.
This implies that it is S.P ∗ − I − open and S.P ∗ − I − closed.
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Abstract − In this paper, some representation formulas for the generalized Gamma
and Beta functions are obtained. Also, certain integral transforms for the generalized
Beta function associated with the Wright hypergeometric function are derived.
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1. Introduction

Motivated mainly by a variety of applications of Euler’s Beta, hypergeometric, and confluent hyperge-
ometric functions together with their extensions in a wide range of research fields such as engineering,
chemical, and physical problems, very recently, Al-Gonah and Mohammed [1] introduced and studied

a new form of the generalized Gamma and Beta functions denoted by Γ
(α,β,γ)
p (x) and B

(α,β,γ)
p (x, y) re-

spectively by talking further advantage from the various existing forms of the Mittag-Leffler function.
The generalized Gamma and Beta functions are defined by:

Γ(α,β,γ)
p (x) =

∫ ∞

0
tx−1Eγ

α,β

(
−t− p

t

)
dt, (1)

(Re(p) ≥ 0, Re(α) > 0, Re(β) > 0, Re(γ) > 0, Re(x) > 0),

and

B(α,β,γ)
p (x, y) =

∫ 1

0
tx−1(1− t)y−1Eγ

α,β

(
−p

t(1− t)

)
dt, (2)

(Re(p) ≥ 0, Re(α) > 0, Re(β) > 0, Re(γ) > 0, Re(x) > 0, Re(y) > 0),

where Eγ
α,β(z) denotes the generalized Mittag-Leffler function defined by [2,p.7(1.3)]:

Eγ
α,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (3)

(z, α, β, γ ∈ C;Re(α) > 0, Re(β) > 0, Re(γ) > 0),

1gonah1977@yahoomail.com (Corresponding Author)
1Department of Mathematics, Faculty of Science, University of Aden, Aden, Yemen
2Department of Mathematics, Faculty of Education-Yafie, University of Aden, Aden, Yemen
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which is clearly that
Γ(β)Eγ

1,β(z) = 1F1(γ;β; z), (4)

E1
1,1(z) = ez. (5)

Note that by using relations (4) and (5), we get the following special cases:

Γ(1,β,γ)
p (x) =

1

Γ(β)
Γ(γ,β)
p (x), (6)

B(1,β,γ)
p (x, y) =

1

Γ(β)
B(γ,β)

p (x, y), (7)

Γ(1,1,1)
p (x) = Γp(x), (8)

B(1,1,1)
p (x, y) = Bp(x, y), (9)

where Γ
(γ,β)
p (x), B

(γ,β)
p (x, y) and Γp(x), Bp(x, y) denoted the generalized Gamma and Beta functions

given in [3] and [4,5].

Also, we not that
B(α,1,1)

p (x, y) = Bp
α(x, y), (10)

Γ
(α,1,1)
0 (x) = Γα(x), (11)

where Bp
α(x, y) and Γα(x) denoted the new extended Beta and Gamma functions given recently in [6]

and [7] respectively.

In [8], Agrawal gave some interesting integral transforms for the generalized hypergeometric func-
tion. This paper is a further attempt in this direction for deriving some integral transforms and
representation formulas for the generalized Beta function defined in [1]. For this aim, we recall that
the Wright generalized hypergeometric function denoted by pΨq is defined by [9]:

pΨq

 (α1, A1), . . . , (αp, Ap);
z

(β1, B1), . . . , (βq, Bq);

 =
∞∑
n=0

∏p
l=1 Γ(αl +Aln)∏q
j=1 Γ(βj +Bjn)

zn

n!
, (12)

where the parameters αl, βj ∈ C, and Al, Bj ∈ Z (l = 1, 2, . . . , p; j = 1, 2, . . . , q), such that 1 +∑q
j=1Bj −

∑p
l=1Al > 0. Also, we note that

pΨq

 (α1, A1), . . . , (αp, Ap);
z

(β1, B1), . . . , (βq, Bq);



= H1,p
p,q+1

−z
(1− α1, A1), . . . , (1− αp, Ap)

(0, 1), (1− β1, B1), . . . , (1− βq, Bq)

 , (13)

where Hm,n
p,q [.] denotes the H-function given in [9] (see also [10]).

2.Hypergeometric representations

Here, we establish some representation formulas for the generalized Gamma and Beta functions in
form of the following theorems:

Theorem 2.1. For the new extended Beta function, we have the following hypergeometric represen-
tation:

B(α,β,γ)
p (x, y) =

1

Γ(γ)
3Ψ2

 (γ, 1), (x,−1), (y,−1);
−p

(β, α), (x+ y,−2);

 , (14)

(α ∈ Z+;β, γ, x, y ∈ C;Re(β), Re(γ), Re(x), Re(y) > 0).
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Proof. Using definition (3) in relation (2), we get

B(α,β,γ)
p (x, y) =

∫ 1

0
tx−1 (1− t)y−1

∞∑
n=0

(γ)n
Γ(αn+ β)n!

(−p)n

tn(1− t)n
dt. (15)

Interchanging the order of integration and summation in the R.H.S. of equation (15), we get

B(α,β,γ)
p (x, y) =

1

Γ(γ)

∞∑
n=0

Γ(γ + n) (−p)n

Γ(β + αn)n!

∫ 1

0
tx−n−1 (1− t)y−n−1 dt, (16)

which on using the following relation [9]:∫ 1

0
tx−1 (1− t)y−1 dt =

Γ(x) Γ(y)

Γ(x+ y)
,

= B(x, y), (17)

gives

B(α,β,γ)
p (x, y) =

1

Γ(γ)

∞∑
n=0

Γ(γ + n) Γ(x− n) Γ(y − n)

Γ(β + αn) Γ(x+ y − 2n)

(−p)n

n!
. (18)

Now, in view of definition (12), we get the desired result.

Remark 2.2. Using relation (13) in assertion (14) of Theorem 2.1, we get the following relation:

Corollary 2.3. For the new extended Beta function, we have the following hypergeometric represen-
tation:

B(α,β,γ)
p (x, y) =

1

Γ(γ)
H1,3

3,3

p (1− γ, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, α), (1− x− y,−2)

 . (19)

.

Theorem 2.4. For the new extended Gamma function, we have the following representation:

Γ(α,β,γ)
p (x) =

1

Γ(γ)

∫ ∞

0
tx−1

1Ψ1

 (γ, 1);
−t− p

t
(β, α);

 dt, (20)

(
α ∈ Z+;β, γ ∈ C;Re(β) > 0, Re(γ) > 0

)
.

Proof. Using the following relation [11,p.810(6.3.2)]:

Eγ
α,β(z) =

1

Γ(γ)
1Ψ1

 (γ, 1);
z

(β, α);

 , (21)

in definition (1), we get the desired result.

Remark 2.5. Using relation (13) in assertion (20) of Theorem 2.4, we get the following relation:

Corollary 2.6. For the new extended Gamma function, we have the following representation:

Γ(α,β,γ)
p (x) =

1

Γ(γ)

∫ ∞

0
tx−1H1,1

1,2

t+ p

t

(1− γ, 1)

(0, 1), (1− β, α)

 dt. (22)
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3. Integral transforms

In this section, we derive some integral transforms for the generalized Beta function by applying
certain integral transforms (like Beta transform, Laplace transform and Whittaker transform).

Theorem 3.1. The following Beta transform formula holds true:

B
{
B(α,β,γ)

p (x, y) : l,m
}
=

Γ(m)

Γ(γ)
4Ψ3

 (γ, 1), (l, 1), (x,−1), (y,−1);
−1

(β, α), (l +m, 1), (x+ y,−2);

 , (23)

(α ∈ Z+;β, γ, x, y, l,m ∈ C;Re(m), Re(β), Re(γ), Re(x), Re(y), Re(l) > 0).

Proof. We know that the Beta transform is defined as (see [12]):

B{f(p) : a, b} =

∫ 1

0
pa−1(1− p)b−1f(p) dp. (24)

Using equation (24) and applying definition (2), we get

B
{
B(α,β,γ)

p (x, y) : l,m
}

=

∫ 1

0
pl−1(1− p)m−1

∫ 1

0
tx−1(1− t)y−1Eγ

α,β

(
−p

t(1− t)

)
dt dp,

=

∫ 1

0
pl−1(1− p)m−1

∫ 1

0
tx−1(1− t)y−1

∞∑
n=0

(γ)n (−1)n

Γ(αn+ β)n!

pn

tn(1− t)n
dt dp. (25)

Interchanging the order of integration and summation and using relation (17) in the R.H.S. of
equation (25), we obtain

B
{
B(α,β,γ)

p (x, y) : l,m
}
=

Γ(m)

Γ(γ)

∞∑
n=0

Γ(γ + n) Γ(l + n) Γ(x− n) Γ(y − n)

Γ(β + αn) Γ(l +m+ n) Γ(x+ y − 2n)

(−1)n

n!
, (26)

which on using definition (12), yields the desired result.

Remark 3.2. Using relation (13) in assertion (23) of Theorem 3.1, we get the following relation:

Corollary 3.3. The following Beta transform formula holds true:

B
{
B(α,β,γ)

p (x, y) : l,m
}

=
Γ(m)

Γ(γ)
H1,4

4,4

1 (1− γ, 1), (1− l, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, α), (1− l −m, 1), (1− x− y,−2)

 . (27)

Theorem 3.4. The following Laplace transform formula holds true:

L
{
pl−1B(α,β,γ)

p (x, y); s
}
=

s−l

Γ(γ)
4Ψ2

 (γ, 1), (l, 1), (x,−1), (y,−1);
−1

s
(β, α), (x+ y,−2);

 , (28)

(α ∈ Z+;β, γ, x, y, l, s ∈ C;Re(s) >,Re(β), Re(γ), Re(x), Re(y), Re(l) > 0;
∣∣−1

s

∣∣ < 1).

Proof. We know that the Laplace transform of f(p) is defined as [12]:

L{f(p); s} =

∫ ∞

0
e−spf(p) dp, (Re(s) > 0). (29)

Using relation (29) and applying definition (2), we get

L
{
pl−1B(α,β,γ)

p (x, y); s
}
=

∫ ∞

0
pl−1e−sp

∫ 1

0
tx−1(1− t)y−1Eγ

α,β

(
−p

t(1− t)

)
dt dp,
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=

∫ ∞

0
pl−1e−sp

∫ 1

0
tx−1(1− t)y−1

∞∑
n=0

(γ)n (−1)n

Γ(αn+ β)n!

pn

tn(1− t)n
dt dp. (30)

Interchanging the order of integration and summation and using the following integral formula
[9,p.218(3)]: ∫ ∞

0
tλ−1e−st dt =

Γ(λ)

sλ
, (min {Re(λ), Re(s)} > 0), (31)

and relation (17) in the R.H.S. of equation (30), we obtain

L
{
pl−1B(α,β,γ)

p (x, y); s
}
=

s−l

Γ(γ)

∞∑
n=0

Γ(γ + n) Γ(l + n) Γ(x− n) Γ(y − n)

Γ(β + αn) Γ(x+ y − 2n)

(
−1

s

)n
n!

, (32)

which on using definition (12), yields the desired result.

Remark 3.5. Using relation (13) in assertion (28) of Theorem 3.4, we get the following relation:

Corollary 3.6. The following Laplace transform formula holds true:

L
{
pl−1B(α,β,γ)

p (x, y); s
}
=

s−l

Γ(γ)
H1,4

4,3

1

s

(1− γ, 1), (1− l, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, α), (1− x− y,−2)

 . (33)

Theorem 3.7. The following Whittaker transform formula holds true:∫ ∞

0
pq−1e

−δp
2 Wλ,µ(δp)B

(α,β,γ)
p (x, y) dp

=
δ−q

Γ(γ)
5Ψ3

 (γ, 1), (x,−1), (y,−1),
(
1
2 + µ+ q, 1

)
,
(
1
2 − µ+ q, 1

)
;

−1
δ

(β, α), (x+ y,−2), (1− λ+ q, 1);

 , (34)

(α ∈ Z+;β, γ, x, y, q, λ, µ, δ ∈
C;Re(δ), Re(q), Re(β), Re(γ), Re(x), Re(y), Re

(
1
2 ± µ+ q

)
, Re(1− λ+ q) > 0).

Proof. Denoting the L.H.S. of equation (34) by ∆ and setting δp = v, we get

∆ = δ−q

∫ ∞

0
B

(α,β,γ)
( v
δ
) (x, y) vq−1 e−

v
2 Wλ,µ(v) dv, (35)

which on using definition (2), gives

∆ = δ−q

∫ ∞

0

∫ 1

0
tx−1 (1−t)y−1Eγ

α,β

( −v
δ

t(1− t)

)
vq−1 e−

v
2 Wλ,µ(v) dt dv,

= δ−q

∫ ∞

0

∫ 1

0
tx−1 (1− t)y−1

∞∑
n=0

(γ)n (−1)n vn

Γ(β + αn)n! δn tn (1− t)n
vq−1 e−

v
2 Wλ,µ(v) dt dv. (36)

Interchanging the order of integration and summation in the R.H.S. of equation (36), we obtain

∆ =
δ−q

Γ(γ)

∞∑
n=0

Γ(γ + n)
(
−1

δ

)n
Γ(β + αn)n!

∫ 1

0
tx−n−1 (1− t)y−n−1 dt

∫ ∞

0
vq+n−1 e−

v
2 Wλ,µ(v) dv. (37)

Now using relation (17) and the following integral formula involving the Whittaker function
[13,p.9(2.24)]:∫ ∞

0
zv−1e

−z
2 Wλ,µ(z) dz =

Γ
(
1
2 + µ+ v

)
Γ
(
1
2 − µ+ v

)
Γ(1− λ+ v)

,

(
Re(v ± µ) > −1

2

)
, (38)

in the R.H.S. of equation (37) and after little simplification, we get

∆ =
δ−q

Γ(γ)

∞∑
n=0

Γ(γ + n) Γ(x− n) Γ(y − n) Γ
(
1
2 + µ+ q + n

)
Γ
(
1
2 − µ+ q + n

)
Γ(β + αn) Γ(x+ y − 2n) Γ(1− λ+ q + n)

(−1
δ )

n

n!
, (39)

which on using definition (12), yields the R.H.S. of equation (34), then the proof of Theorem 3.7 is
completed.
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Remark 3.8. Using relation (13) in assertion (34) of Theorem 3.7, we get the following relation:

Corollary 3.9. The following Whittaker transform formula holds true:∫ ∞

0
pq−1 e

−δp
2 Wλ,µ(δp)B

(α,β,γ)
p (x, y) dp

=
δ−q

Γ(γ)
H1,5

5,4

1

δ

(1− γ, 1), (1− x,−1), (1− y,−1),
(
1
2 − µ− q, 1

)
,
(
1
2 + µ− q, 1

)
(0, 1), (1− β, α), (1− x− y,−2), (λ− q, 1)

 . (40)

4. Special cases

In this section, we derive some results for various forms of the extended Gamma and Beta functions
as special cases of the main results derived in the previous sections.

I. Putting α = 1 in relations (14) and (19) and using relation (7), we get the following hypergeo-

metric representations for the generalized Beta function B
(γ,β)
p (x, y) :

B(γ,β)
p (x, y) =

Γ(β)

Γ(γ)
3Ψ2

 (γ, 1), (x,−1), (y,−1);
−p

(β, 1), (x+ y,−2);

 , (41)

B(γ,β)
p (x, y) =

Γ(β)

Γ(γ)
H1,3

3,3

p (1− γ, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, 1), (1− x− y,−2)

 . (42)

Further, putting α = 1 in relations (20) and (22) and using relation (6), we get the following

representations for the generalized Gamma function Γ
(γ,β)
p (x) :

Γ(γ,β)
p (x) =

Γ(β)

Γ(γ)

∫ ∞

0
tx−1

1Ψ1

 (γ, 1);
−t− p

t
(β, 1);

 dt, (43)

Γ(γ,β)
p (x) =

Γ(β)

Γ(γ)

∫ ∞

0
tx−1H1,1

1,2

t+ p

t

(1− γ, 1)

(0, 1), (1− β, 1)

 dt. (44)

Again, putting β = γ = 1 in relations (14) and (19) and using relation (10), we get the following
hypergeometric representations for Bp

α(x, y) :

Bp
α(x, y) = 3Ψ2

 (1, 1), (x,−1), (y,−1);
−p

(1, α), (x+ y,−2);

 , (45)

Bp
α(x, y) = H1,3

3,3

p (0, 1), (1− x,−1), (1− y,−1)

(0, 1), (0, α), (1− x− y,−2)

 . (46)

Next, putting β = γ = 1 and p = 0 in relations (20) and (22) and using relation (11), we get the
following representations for Γα(x) :

Γα(x) =

∫ ∞

0
tx−1

1Ψ1

 (1, 1);
−t

(1, α);

 dt, (47)

Γα(x) =

∫ ∞

0
tx−1H1,1

1,2

t (0, 1)

(0, 1), (0, α)

 dt. (48)



Journal of New Theory 28 (2019) 53-61 / Integral transforms for the new generalized Beta function 59

II. Putting α = 1 in relations (23), (28) and (34) and using relation (7), we get the following integral

transforms for the generalized Beta function B
(γ,β)
p (x, y) :

B
{
B(γ,β)

p (x, y) : l,m
}
=

Γ(m)Γ(β)

Γ(γ)
4Ψ3

 (γ, 1), (l, 1), (x,−1), (y,−1);
−1

(β, 1), (l +m, 1), (x+ y,−2);

 , (49)

L
{
pl−1B(γ,β)

p (x, y); s
}
=

s−l Γ(β)

Γ(γ)
4Ψ2

 (γ, 1), (l, 1), (x,−1), (y,−1);
−1

s
(β, 1), (x+ y,−2);

 , (50)

∫ ∞

0
pq−1 e

−δp
2 Wλ,µ(δp)B

(γ,β)
p (x, y) dp

=
δ−q Γ(β)

Γ(γ)
5Ψ3

 (γ, 1), (x,−1), (y,−1),
(
1
2 + µ+ q, 1

)
,
(
1
2 − µ+ q, 1

)
;

−1
δ

(β, 1), (x+ y,−2), (1− λ+ q, 1);

 . (51)

Further, putting α = 1 in relations (27), (33) and (40) and using relation (7), we get the following

second form of the integral transforms for the generalized Beta function B
(γ,β)
p (x, y) :

B
{
B(γ,β)

p (x, y) : l,m
}

=
Γ(m)Γ(β)

Γ(γ)
H1,4

4,4

1 (1− γ, 1), (1− l, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, 1), (1− l −m, 1), (1− x− y,−2)

 , (52)

L
{
pl−1B(γ,β)

p (x, y); s
}
=

s−l Γ(β)

Γ(γ)
H1,4

4,3

1

s

(1− γ, 1), (1− l, 1), (1− x,−1), (1− y,−1)

(0, 1), (1− β, 1), (1− x− y,−2)

 , (53)

∫ ∞

0
pq−1 e

−δp
2 Wλ,µ(δp)B

(γ,β)
p (x, y) dp

=
δ−q Γ(β)

Γ(γ)
H1,5

5,4

1

δ

(1− γ, 1), (1− x,−1), (1− y,−1),
(
1
2 − µ− q, 1

)
,
(
1
2 + µ− q, 1

)
(0, 1), (1− β, 1), (1− x− y,−2), (λ− q, 1)

 . (54)

Again, putting β = γ = 1 in relations (23), (28) and (34) and using relation (10), we get the
following integral transforms for the generalized Beta function Bp

α(x, y) :

B {Bp
α(x, y) : l,m} = Γ(m)4Ψ3

 (1, 1), (l, 1), (x,−1), (y,−1);
−1

(1, α), (l +m, 1), (x+ y,−2);

 , (55)

L
{
pl−1Bp

α(x, y); s
}
= s−l

4Ψ2

 (1, 1), (l, 1), (x,−1), (y,−1);
−1

s
(1, α), (x+ y,−2);

 , (56)

∫ ∞

0
pq−1 e

−δp
2 Wλ,µ(δp)B

p
α(x, y) dp

= δ−q
5Ψ3

 (1, 1), (x,−1), (y,−1),
(
1
2 + µ+ q, 1

)
,
(
1
2 − µ+ q, 1

)
;

1
δ

(1, α), (x+ y,−2), (1− λ+ q, 1);

 . (57)
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Next, putting β = γ = 1 in relations (27), (33) and (40) and using relation (10), we get the
following second form of the integral transforms for the generalized Beta function Bp

α(x, y) :

B {Bp
α(x, y) : l,m}

= Γ(m)H1,4
4,4

1 (0, 1), (1− l, 1), (1− x,−1), (1− y,−1)

(0, 1), (0, α), (1− l −m, 1), (1− x− y,−2)

 , (58)

L
{
pl−1Bp

α(x, y); s
}

= s−lH1,4
4,3

1

s

(0, 1), (1− l, 1), (1− x,−1), (1− y,−2)

(0, 1), (0, α), (1− x− y,−1)

 , (59)

∫ ∞

0
pq−1 e

−δp
2 Wλ,µ(δp)B

p
α(x, y) dp

= δ−qH1,5
5,4

1

δ

(0, 1), (1− x,−1), (1− y,−1),
(
1
2 − µ− q, 1

)
,
(
1
2 + µ− q, 1

)
(0, 1), (0, α), (1− x− y,−2), (λ− q, 1)

 . (60)

In a forthcoming investigation, the new extension of Beta function given in equation (2) will be used
to introduce other extensions of the extended Gauss hypergeometric and the confluent hypergeometric
functions. For each of these new extensions we will obtain various properties.
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Abstract − The paper introduces direct product in fuzzy multigroup setting as an
extension of direct product of fuzzy subgroups. Some properties of direct product of
fuzzy multigroups are explicated. It is established that the direct product of fuzzy
multigroups is a fuzzy multigroup. The notion of homomorphism and some of its
properties in the context of direct product of fuzzy multigroups are introduced.
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1. Introduction

The concept of set theory put forward by a German mathematician George Cantor (1845-1918) is a
linchpin for the whole of mathematics. Notwithstanding, an element of a set must be distinct and
definite in a collection, which is not consistent with real-life issues. The ”famous” fuzzy set proposed
by Zadeh [1] is a veritable tool for handling uncertainty and/or imprecision in real-life problems. Fuzzy
set theory posited that there are cases where an element would not be definite in a collection. The
theory of fuzzy set has grown tremendously over time giving birth to some algebraic structures like
fuzzy group introduced by Rosenfeld [2]. Some properties of the fuzzy groups have been discussed in
details in [3,4], etc. In the same vein, multiset theory [5–7] violated the rule that an element must be
distinct in a collection, i.e., the idea of multisets allows repetition of elements.

Motivated by Zadeh [1], fuzzy multiset was proposed by Yager [8] as a generalization of fuzzy set.
The idea of fuzzy multisets allows the repetition of membership function of an element in multiset
framework, unlike the case in fuzzy set where membership function of an element does not allow to
repeat. Some details of the notion of fuzzy multisets can be found in [9–11]. Subsequently, Shinoj et al.
[12] followed the footsteps of Rosenfeld [2] and introduced a non-classical group called fuzzy multigroup,
which constitutes an application of fuzzy multiset to the theory of group. The idea of abelian fuzzy
multigroups was proposed and studied in [13, 14]. Ejegwa [15] introduced fuzzy multigroupoids, the
ideas of center and centralizer in fuzzy multigroup context with some related results. The notions
of fuzzy submultigroups and normal fuzzy submultigroups were explicated in [15, 16] with a number
of results. Also, the concept of homomorphism of fuzzy multigroups and its properties have been
explored with some results [17].

This paper is motivated by the work of Ray [18] on product of fuzzy subgroups, which was extended
from group theory but presented in the light of fuzzy groups. In the same vein, we are spurred to
propose direct product in fuzzy multigroup structure as an extension of the work in [18], and explicate

1ocholohi@gmail.com, ejegwa.augustine@uam.edu.ng (Corresponding Author)
1Department of Mathematics/Statistics/Computer Science, College of Science, University of Agriculture, P.M.B. 2373,

Makurdi, Nigeria
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some of it properties in details. The rest of the paper are thus outline: Section 2 provides some
preliminaries while Section 3 proposes direct product in fuzzy multigroup setting, discusses some
of its properties and outline some related results. Finally, Section 4 contains the conclusion and
recommendations for future studies.

2. Preliminaries

This section presents some foundational concepts which are germane to the subject under considera-
tion.

Definition 2.1. [8] Suppose X is a nonempty set. Then, a fuzzy bag/multiset A drawn from X can
be characterized by a count membership function CMA where

CMA : X → Q

and Q is the set of all crisp bags or multisets from the unit interval I = [0, 1].
A fuzzy multiset can also be characterized by a high-order function. In particular, a fuzzy multiset

A can be characterized by a function

CMA : X → N I or CMA : X → [0, 1] → N,

where I = [0, 1] and N = N ∪ {0}.
By [19], it follows that CMA(x) for x ∈ X is given as

CMA(x) = {µ1
A(x), µ

2
A(x), ..., µ

n
A(x), ...},

where µ1
A(x), µ

2
A(x), ..., µ

n
A(x), ... ∈ [0, 1] where µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µn

A(x) ≥ ..., whereas in a finite
case, we write

CMA(x) = {µ1
A(x), µ

2
A(x), ..., µ

n
A(x)},

for µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µn
A(x).

A fuzzy multiset A can be represented by

A = {⟨CMA(x)

x
⟩ | x ∈ X} orA = {⟨x,CMA(x)⟩ | x ∈ X}.

In short, a fuzzy multiset A of X is characterized by the count membership function CMA(x) for
x ∈ X, that takes the value of a multiset of a unit interval I = [0, 1] [20,21].

We denote the set of all fuzzy multisets by FMS(X).

Definition 2.2. [10] Suppose A,B ∈ FMS(X). Then, A is called a fuzzy submultiset of B denoted
by A ⊆ B if CMA(x) ≤ CMB(x)∀x ∈ X. Also, if A ⊆ B and A ̸= B, then A is called a proper fuzzy
submultiset of B and denoted as A ⊂ B.

Definition 2.3. [11] Suppose A and B are fuzzy multisets of a set X. Then, the intersection and
union of A and B, denoted by A ∩ B and A ∪ B, respectively, are defined by the rules that for any
object x ∈ X,

(i) CMA∩B(x) = CMA(x) ∧ CMB(x),

(ii) CMA∪B(x) = CMA(x) ∨ CMB(x),

where ∧ and ∨ denote minimum and maximum respectively.

Definition 2.4. [10] Let A,B ∈ FMS(X). Then, A and B are comparable to each other if and only
if A ⊆ B or B ⊆ A, and A = B ⇔ CMA(x) = CMB(x)∀x ∈ X.

Definition 2.5. [12] Suppose X is a group. Then, a fuzzy multiset A of X is a fuzzy multigroup of
X if

(i) CMA(xy) ≥ CMA(x) ∧ CMA(y)∀x, y ∈ X,

(ii) CMA(x
−1) ≥ CMA(x)∀x ∈ X.
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It follows immediately that,
CMA(x

−1) = CMA(x),∀x ∈ X

since
CMA(x) = CMA((x

−1)−1) ≥ CMA(x
−1).

Also,
CMA(e) ≥ CMA(x)∀x ∈ X

because
CMA(e) = CMA(xx

−1) ≥ CMA(x) ∧ CMA(x) = CMA(x)

and
CMA(x

n) ≥ CMA(x)∀x ∈ X

since

CMA(x
n) = CMA(x

n−1x) ≥ CMA(x
n−1) ∧ CMA(x)

≥ CMA(x) ∧ ... ∧ CMA(x)

= CMA(x).

Every fuzzy multigroup is a fuzzy multiset but the converse is not true. We denote the set of all fuzzy
multigroups of X by FMG(X).

Definition 2.6. [15] Suppose A ∈ FMG(X). Then, a fuzzy submultiset B of A is a fuzzy submulti-
group of A denoted by B ⊑ A if B a fuzzy multigroup. A fuzzy submultigroup B of A is a proper
denoted by B < A, if B ⊑ A and A ̸= B.

Remark 2.7. [15] If A ∈ FMG(X) and B ⊑ A, then B ∈ FMG(X). Again, suppose C ∈ FMS(X)
and C ⊆ B. Then C ⊑ A ⇔ C ⊑ B.

Definition 2.8. [13] A fuzzy multiset A of a set X is commutative if CMA(xy) = CMA(yx) for all
x, y ∈ X.

Definition 2.9. [12,15] Suppose A ∈ FMG(X). Then, A∗ and A∗ are defined by

(i) A∗ = {x ∈ X | CMA(x) > 0} and

(ii) A∗ = {x ∈ X | CMA(x) = CMA(e)}, where e is the identity element of X.

Proposition 2.10. [12, 15] Suppose A ∈ FMG(X), then A∗ and A∗ are subgroups of X.

Definition 2.11. [16] Let A,B ∈ FMG(X) such that A ⊆ B. Then, A is a normal fuzzy submulti-
group of B if for all x, y ∈ X,

CMA(xyx
−1) ≥ CMA(y).

Proposition 2.12. [16] Let A,B ∈ FMG(X). Then, the following statements are equivalent.

(i) A is a normal fuzzy submultigroup of B.

(ii) CMA(xyx
−1) = CMA(y)∀x, y ∈ X.

(iii) CMA(xy) = CMA(yx)∀x, y ∈ X.

Definition 2.13. [16] Let A,B ∈ FMG(X). We say A and B are conjugate to each other if for all
x, y ∈ X,

CMA(x) = CMB(yxy
−1) and CMB(y) = CMA(xyx

−1).

Definition 2.14. Suppose A ∈ FMG(X). Then, A[α] and A(α) defined by

(i) A[α] = {x ∈ X | CMA(x) ≥ α} and

(ii) A(α) = {x ∈ X | CMA(x) > α}

are called strong upper alpha-cut and weak upper alpha-cut of A, where α ∈ [0, 1].
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Definition 2.15. Let A ∈ FMG(X). Then, A[α] and A(α) defined by

(i) A[α] = {x ∈ X | CMA(x) ≤ α} and

(ii) A(α) = {x ∈ X | CMA(x) < α}

are called strong lower alpha-cut and weak lower alpha-cut of A, where α ∈ [0, 1].

Theorem 2.16. Suppose A ∈ FMG(X). Then A[α] is a subgroup of X if α ≤ CMA(e) and A[α] is a
subgroup of X if α ≥ CMA(e), where e is the identity element of X and α ∈ [0, 1].

Definition 2.17. Suppose A,B ∈ FMG(X) such that A ⊆ B. Then, A is a characteristic (fully
invariant) fuzzy submultigroup of B if

CMAθ(x) = CMA(x) ∀x ∈ X

for every automorphism, θ of X. That is, θ(A) ⊆ A for every θ ∈ Aut(X).

Proposition 2.18. Suppose X is a group. Every characteristic fuzzy submultigroup of a fuzzy
multigroup B of X is normal.

Definition 2.19. [17] Suppose X and Y are groups and let f : X → Y be a homomorphism. Suppose
A and B are fuzzy multigroups of X and Y respectively, then f induces a homomorphism from A to
B which satisfies

(i) CMA(f
−1(y1y2)) ≥ CMA(f

−1(y1)) ∧ CMA(f
−1(y2)) ∀y1, y2 ∈ Y ,

(ii) CMB(f(x1x2)) ≥ CMB(f(x1)) ∧ CMB(f(x2)) ∀x1, x2 ∈ X,

where

(i) the image of A under f , denoted by f(A), is a fuzzy multiset over Y defined by

CMf(A)(y) =

{ ∨
x∈f−1(y)CMA(x), f−1(y) ̸= ∅

0, otherwise

for each y ∈ Y .

(ii) the inverse image of B under f , denoted by f−1(B), is a fuzzy multiset over X defined by

CMf−1(B)(x) = CMB(f(x))∀x ∈ X.

Theorem 2.20. [17] Suppose X and Y are groups and f : X → Y is an isomorphism. Then

(i) A ∈ FMG(X) ⇔ f(A) ∈ FMG(Y ).

(ii) B ∈ FMG(Y ) ⇔ f−1(B) ∈ FMG(X).

3.Main results

Suppose X and Y are two groups. Then, the direct product, X × Y is the Cartesian product of
ordered pair (x, y) such that x ∈ X and y ∈ Y , and the group operation is component-wise, so
(x1, y1) × (x2, y2) = (x1x2, y1y2). The resulting algebraic structure satisfies the axioms for a group.
Since the ordered pair (x, y) such that x ∈ X and y ∈ Y is an element of X × Y , we simply write
(x, y) ∈ X × Y . In this section, we discuss the notion of direct product of two fuzzy multigroups
defined over X and Y , respectively.

Definition 3.1. Suppose A ∈ FMG(X) and B ∈ FMG(Y ) where X and Y are groups. The direct
product of A and B depicted by A×B is a function

CMA×B : X × Y → Q

defined by
CMA×B((x, y)) = CMA(x) ∧ CMB(y)∀x ∈ X, ∀y ∈ Y,

where Q is the set of all multisets from the unit interval I = [0, 1].
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Example 3.2. Let X = {1, x} be a group, where x2 = 1 and Y = {e, a, b, c} be a Klein 4-group,
where a2 = b2 = c2 = e. Suppose

A = {⟨1, 0.8
1

⟩, ⟨0.8, 0.5
x

⟩}

and

B = {⟨1, 0.9
e

⟩, ⟨0.6, 0.5
a

⟩, ⟨0.7, 0.6
b

⟩, ⟨0.6, 0.5
c

⟩}

are fuzzy multigroups of X and Y by Definition 2.5. Now

X × Y = {(1, e), (1, a), (1, b), (1, c), (x, e), (x, a), (x, b), (x, c)}

is a group from the classical sense. By Definition 3.1, we get

A×B = {⟨1, 0.8
(1, e)

⟩, ⟨0.6, 0.5
(1, a)

⟩, ⟨0.7, 0.6
(1, b)

⟩, ⟨0.6, 0.5
(1, c)

⟩, ⟨0.8, 0.5
(x, e)

⟩, ⟨0.6, 0.5
(x, a)

⟩, ⟨0.7, 0.5
(x, b)

⟩, ⟨0.6, 0.5
(x, c)

⟩}.

Certainly, A×B is a fuzzy multigroup of X × Y in accordance to Definition 2.5.

Next, we consider an example to investigate what happens of the direct product of a fuzzy multi-
group of a group X and a fuzzy multiset of a group Y .

Example 3.3. Let X and Y be groups as in Example 3.2. Suppose we have a fuzzy multigroup of X
given as

A = {⟨1, 0.5
1

⟩, ⟨0.7, 0.4
x

⟩},

and a fuzzy multiset of Y as

B = {⟨0.7, 0.5
e

⟩, ⟨0.6, 0.4
a

⟩, ⟨0.7, 0.6
b

⟩, ⟨0.6, 0.4
c

⟩}.

Synthesizing Definitions 2.5 and 3.1, we get

A×B = {⟨0.7, 0.5
(1, e)

⟩, ⟨0.6, 0.4
(1, a)

⟩, ⟨0.7, 0.5
(1, b)

⟩, ⟨0.6, 0.4
(1, c)

⟩, ⟨0.7, 0.4
(x, e)

⟩, ⟨0.6, 0.4
(x, a)

⟩, ⟨0.7, 0.4
(x, b)

⟩, ⟨0.6, 0.4
(x, c)

⟩},

and it follows that A×B is a fuzzy multigroup of X × Y although B is not a fuzzy multigroup of Y .

Theorem 3.4. Let A ∈ FMG(X) and B ∈ FMG(Y ), respectively. Then for all α ∈ [0, 1],

(i) A×B)[α] = A[α] ×B[α].

(ii) (A×B)[α] = A[α] ×B[α].

Proof. (i) Let (x, y) ∈ (A×B)[α]. Using Definition 2.14, we have

CMA×B((x, y)) = (CMA(x) ∧ CMB(y)) ≥ α.

This implies that CMA(x) ≥ α and CMB(y) ≥ α, then x ∈ A[α] and y ∈ B[α]. Thus,

(x, y) ∈ A[α] ×B[α].

Also, let (x, y) ∈ A[α] ×B[α]. Then CMA(x) ≥ α and CMB(y) ≥ α. That is,

(CMA(x) ∧ CMB(y)) ≥ α.

This yields us (x, y) ∈ (A×B)[α]. Therefore, (A×B)[α] = A[α] ×B[α] ∀α ∈ [0, 1].

(ii) Similar to (i).

Corollary 3.5. Suppose A ∈ FMG(X) and B ∈ FMG(Y ), then

(i) (A×B)∗ = A∗ ×B∗,

(ii) (A×B)∗ = A∗ ×B∗.

Proof. Similar to Theorem 3.4.
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Theorem 3.6. Suppose A ∈ FMG(X) and B ∈ FMG(Y ). Then A × B is a fuzzy multigroup of
X × Y .

Proof. Let (x, y) ∈ X × Y and let x = (x1, x2) and y = (y1, y2). We have

CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B((x1y1, x2y2))

= CMA(x1y1) ∧ CMB(x2y2)

≥ ∧(CMA(x1) ∧ CMA(y1), CMB(x2) ∧ CMB(y2))

= ∧(CMA(x1) ∧ CMB(x2), CMA(y1) ∧ CMB(y2))

= CMA×B((x1, x2)) ∧ CMA×B((y1, y2))

= CMA×B(x) ∧ CMA×B(y).

Also,

CMA×B(x
−1) = CMA×B((x1, x2)

−1) = CMA×B((x
−1
1 , x−1

2 ))

= CMA(x
−1
1 ) ∧ CMB(x

−1
2 ) = CMA(x1) ∧ CMB(x2)

= CMA×B((x1, x2)) = CMA×B(x).

Hence, A×B ∈ FMG(X × Y ).

Corollary 3.7. Let A1, B1 ∈ FMG(X1) and A2, B2 ∈ FMG(X2), respectively such that A1 ⊆ B1

and A2 ⊆ B2. If A1 and A2 are normal fuzzy submultigroups of B1 and B2, then A1 ×A2 is a normal
fuzzy submultigroup of B1 ×B2.

Proof. By Theorem 3.6, A1×A2 is a fuzzy multigroup ofX1×X2. Also, B1×B2 is a fuzzy multigroup
of X1×X2. We show that A1×A2 is a normal fuzzy submultigroup of B1×B2. Let (x, y) ∈ X1×X2

such that x = (x1, x2) and y = (y1, y2). Then we get

CMA1×A2(xy) = CMA1×A2((x1, x2)(y1, y2))

= CMA1×A2((x1y1, x2y2))

= CMA1(x1y1) ∧ CMA2(x2y2)

= CMA1(y1x1) ∧ CMA2(y2x2)

= CMA1×A2((y1x1, y2x2))

= CMA1×A2((y1, y2)(x1, x2))

= CMA1×A2(yx).

Hence, the result follows by Proposition 2.12.

Theorem 3.8. Suppose A and B are fuzzy multigroups of X and Y , respectively. Then

(i) (A×B)∗ is a subgroup of X × Y ,

(ii) (A×B)∗ is a subgroup of X × Y ,

(iii) (A×B)[α] is a subgroup of X × Y , ∀ α ≤ CMA×B(e, e
′) and α ∈ [0, 1],

(iv) (A×B)[α] is a subgroup of X × Y , ∀ α ≥ CMA×B(e, e
′) and α ∈ [0, 1].

Proof. Combining Proposition 2.10, Theorems 2.16 and 3.6, the results follow.

Corollary 3.9. Suppose A,C ∈ FMG(X) such that A ⊆ C and B,D ∈ FMG(Y ) such that B ⊆ D,
respectively. If A and B are normal, then

(i) (A×B)∗ is a normal subgroup of (C ×D)∗,

(ii) (A×B)∗ is a normal subgroup of (C ×D)∗,

(iii) (A×B)[α] is a normal subgroup of (C ×D)[α], ∀ α ≤ CMA×B(e, e
′) and α ∈ [0, 1],
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(iv) (A×B)[α] is a normal subgroup of (C ×D)[α], ∀ α ≥ CMA×B(e, e
′) and α ∈ [0, 1].

Proof. Combining Proposition 2.10, Theorems 2.16, 3.6 and Corollary 3.7, the results follow.

Proposition 3.10. Let A ∈ FMG(X) and B ∈ FMG(Y ), respectively. Then ∀(x, y) ∈ X × Y , we
have

(i) CMA×B((x
−1, y−1)) = CMA×B((x, y)),

(ii) CMA×B((e, e
′)) ≥ CMA×B((x, y)),

(iii) CMA×B((x, y)
n) ≥ CMA×B((x, y)),

where e and e′ are the identity elements of X and Y , respectively and n ∈ N.

Proof. Let x ∈ X, y ∈ Y and (x, y) ∈ X×Y . By Theorem 3.6, it follows that A×B ∈ FMG(X×Y ).
Now,
(i)

CMA×B((x
−1, y−1)) = CMA(x

−1) ∧ CMB(y
−1)

= CMA(x) ∧ CMB(y)

= CMA×B((x, y)).

Clearly, CMA×B((x
−1, y−1)) = CMA×B((x, y)) ∀(x, y) ∈ X × Y .

(ii)

CMA×B((e, e
′)) = CMA×B((x, y)(x

−1, y−1))

≥ CMA×B((x, y)) ∧ CMA×B((x
−1, y−1))

= CMA×B((x, y)) ∧ CMA×B((x, y))

= CMA×B((x, y)) ∀(x, y) ∈ X × Y.

Hence, CMA×B((e, e
′)) ≥ CMA×B((x, y)).

(iii)

CMA×B((x, y)
n) = CMA×B((x

n, yn))

= CMA×B((x
n−1, yn−1)(x, y))

≥ CMA×B((x
n−1, yn−1)) ∧ CMA×B((x, y))

≥ CMA×B((x
n−2, yn−2)) ∧ CMA×B((x, y)) ∧ CMA×B((x, y))

≥ CMA×B((x, y)) ∧ CMA×B((x, y)) ∧ ... ∧ CMA×B((x, y))

= CMA×B((x, y)),

⇒ CMA×B((x, y)
n) = CMA×B((x

n, yn)) ≥ CMA×B((x, y)) ∀(x, y) ∈ X × Y .

Theorem 3.11. Let A and B be fuzzy multisets of groups X and Y , respectively. Suppose that e
and e′ are the identity elements of X and Y , respectively. If A × B is a fuzzy multigroup of X × Y ,
then at least one of the following statements hold.

(i) CMB(e
′) ≥ CMA(x) ∀x ∈ X,

(ii) CMA(e) ≥ CMB(y) ∀y ∈ Y .

Proof. Let A× B ∈ FMG(X × Y ). By contrapositive, suppose that none of the statements holds.
Then suppose we can find a in X and b in Y such that

CMA(a) > CMB(e
′) and CMB(b) > CMA(e).
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From these we have

CMA×B((a, b)) = CMA(a) ∧ CMB(b)

> CMA(e) ∧ CMB(e
′)

= CMA×B((e, e
′)).

Thus, A × B is not a fuzzy multigroup of X × Y by Proposition 3.10. Hence, either CMB(e
′) ≥

CMA(x) ∀x ∈ X or CMA(e) ≥ CMB(y) ∀y ∈ Y . This completes the proof.

Theorem 3.12. Let A and B be fuzzy multisets of groupsX and Y , respectively, such that CMA(x) ≤
CMB(e

′) ∀x ∈ X, e′ being the identity element of Y . If A × B is a fuzzy multigroup of X × Y, then
A is a fuzzy multigroup of X.

Proof. Let A×B be a fuzzy multigroup of X × Y and x, y ∈ X. Then (x, e′), (y, e′) ∈ X × Y . Now,
using the property CMA(x) ≤ CMB(e

′) ∀x ∈ X, we get

CMA(xy) = CMA(xy) ∧ CMB(e
′e′)

= CMA×B((xy, e
′e′))

= CMA×B((x, e
′)(y, e′))

≥ CMA×B((x, e
′)) ∧ CMA×B((y, e

′))

= ∧(CMA(x) ∧ CMB(e
′), CMA(y) ∧ CMB(e

′))

= CMA(x) ∧ CMA(y).

Also,

CMA(x
−1) = CMA(x

−1) ∧ CMB(e
′−1) = CMA×B((x

−1, e′−1))

= CMA×B((x, e
′)−1) = CMA×B((x, e

′))

= CMA(x) ∧ CMB(e
′) = CMA(x).

Hence, A is a fuzzy multigroup of X. This completes the proof.

Theorem 3.13. Let A and B be fuzzy multisets of groupsX and Y , respectively, such that CMB(x) ≤
CMA(e) ∀x ∈ Y , e being the identity element of X. If A×B is a fuzzy multigroup of X × Y, then B
is a fuzzy multigroup of Y .

Proof. Similar to Theorem 3.12.

Corollary 3.14. Let A and B be fuzzy multisets of groups X and Y , respectively. If A×B is a fuzzy
multigroup of X × Y , then either A is a fuzzy multigroup of X or B is a fuzzy multigroup of Y .

Proof. Combining Theorems 3.11, 3.12 and 3.13, the result follows.

Theorem 3.15. If A and C are conjugate fuzzy multigroups of a group X, and B and D are conjugate
fuzzy multigroups of a group Y . Then A×B is a conjugate of C ×D.

Proof. Since A and C are conjugate, it implies that for g1 ∈ X, we have

CMA(x) = CMC(g
−1
1 xg1) ∀x ∈ X.

Also, since B and D are conjugate, for g2 ∈ Y , we get

CMB(y) = CMD(g
−1
2 yg2) ∀y ∈ Y.

Now,

CMA×B((x, y)) = CMA(x) ∧ CMB(y) = CMC(g
−1
1 xg1) ∧ CMD(g

−1
2 yg2)

= CMC×D((g
−1
1 xg1), (g

−1
2 yg2))

= CMC×D((g
−1
1 , g−1

2 )(x, y)(g1, g2))

= CMC×D((g1, g2)
−1(x, y)(g1, g2)).

This completes the proof.
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Theorem 3.16. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submultisets
of A and B, respectively. Then C ×D is a fuzzy submultigroup of A × B if and only if both C and
D are fuzzy submultigroups of A and B, respectively.

Proof. Suppose C andD are two fuzzy submultigroups ofA andB, respectively. Then C ∈ FMG(X)
and D ∈ FMG(Y ) by Remark 2.7. It then follows that C × D ∈ FMG(X × Y ) by Theorem 3.6.
Since A×B is a fuzzy multigroup of X × Y by the same reason, and C ⊑ A and D ⊑ B, thus, C ×D
is a fuzzy submultigroup of A×B.

Conversely, If C ×D is a fuzzy submultigroup of A×B. Then, it follows that C ⊑ A and D ⊑ B.
These complete the proof.

Corollary 3.17. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submulti-
groups of A and B, respectively. Then C ×D is a normal fuzzy submultigroup of A× B if and only
if both C and D are normal fuzzy submultigroups of A and B, respectively.

Proof. Combining both Definition 2.11, Theorems 3.6 and 3.16, the proof follows.

Corollary 3.18. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submulti-
groups of A and B, respectively. Then C ×D is a characteristic fuzzy submultigroup of A×B if and
only if both C and D are characteristic fuzzy submultigroups of A and B, respectively.

Proof. Combining both Theorems 3.6 and 3.16, the proof follows.

Remark 3.19. With the same hypothesis as in Corollary 3.18, it follows that C × D is a normal
fuzzy submultigroup of A × B if both C and D are characteristic fuzzy submultigroups of A and B,
respectively.

Corollary 3.20. Let A ∈ FMG(X) and C be a fuzzy submultiset of A. Then C × C is a fuzzy
submultigroup of A×A if and only if C is a fuzzy submultigroup of A.

Proof. The proof is straightforward from Theorem 3.16.

Remark 3.21. Let A ∈ FMG(X) and C be a fuzzy submultigroup of A. Then

(i) C×C is a normal fuzzy submultigroup of A×A if and only if C is a normal fuzzy submultigroup
of A.

(ii) C ×C is a characteristic fuzzy submultigroup of A×A if and only if C is a characteristic fuzzy
submultigroup of A.

(iii) C ×C is a normal fuzzy submultigroup of A×A if C is a characteristic fuzzy submultigroup of
A.

Theorem 3.22. Let A and B be fuzzy multigroups of groups X and Y , respectively. Then A and B
are commutative if and only if A×B is a commutative fuzzy multigroup of X × Y .

Proof. Suppose A and B are commutative. We show that A×B is a commutative fuzzy multigroup
of X × Y . It is a known fact that A×B ∈ FMG(X × Y ) by Theorem 3.6. Let (x, y) ∈ X1 ×X2 such
that x = (x1, x2) and y = (y1, y2). Then we get

CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B(x1y1, x2y2)

= CMA(x1y1) ∧ CMB(x2y2)

= CMA(y1x1) ∧ CMB(y2x2)

= CMA×B(y1x1, y2x2)

= CMA×B((y1, y2)(x1, x2))

= CMA×B(yx).

Hence, A×B is a commutative fuzzy multigroup of X × Y by Definition 2.8.
Conversely, suppose A × B is a commutative fuzzy multigroup of X × Y . Then, it is clear that

both A and B are commutative fuzzy multigroups of groups X and Y , respectively.



Journal of New Theory 28 (2019) 62-73 / Direct Product of Fuzzy Multigroups 71

Now, we present some homomorphic properties of direct product of fuzzy multigroups. This is an
extension of the notion of homomorphism in fuzzy multigroup setting (cf. Definition 2.19) to direct
product of fuzzy multigroups.

Definition 3.23. Let W ×X and Y ×Z be groups and let f : W ×X → Y ×Z be a homomorphism.
Suppose A×B ∈ FMS(W ×X) and C ×D ∈ FMS(Y × Z), respectively. Then

(i) the image of A×B under f , denoted by f(A×B), is a fuzzy multiset of Y × Z defined by

CMf(A×B)((y, z)) =

{ ∨
(w,x)∈f−1((y,z))CMA×B((w, x)), f−1((y, z)) ̸= ∅

0, otherwise,

for each (y, z) ∈ Y × Z.

(ii) the inverse image of C × D under f , denoted by f−1(C × D), is a fuzzy multiset of W × X
defined by

CMf−1(C×D)((w, x)) = CMC×D(f((w, x))) ∀(w, x) ∈ W ×X.

Theorem 3.24. Let W,X, Y, Z be groups, A ∈ FMS(W ), B ∈ FMS(X), C ∈ FMS(Y ) and D ∈
FMS(Z). If f : W ×X → Y × Z is an isomorphism, then

(i) f(A×B) = f(A)× f(B),

(ii) f−1(C ×D) = f−1(C)× f−1(D).

Proof. (i) Let (w, x) ∈ W ×X. Suppose ∃ (y, z) ∈ Y × Z such that

f((w, x)) = (f(w), f(x)) = (y, z).

Then we get

CMf(A×B)((y, z)) = CMA×B(f
−1((y, z)))

= CMA×B((f
−1(y), f−1(z)))

= CMA(f
−1(y)) ∧ CMB(f

−1(z))

= CMf(A)(y) ∧ CMf(B)(z)

= CMf(A)×f(B)((y, z))

Thus, f(A×B) ⊆ f(A)× f(B). Hence, the result follows by symmetry.
(ii) For (w, x) ∈ W ×X, we have

CMf−1(C×D)((w, x)) = CMC×D(f((w, x)))

= CMC×D((f(w), f(x)))

= CMC(f(w)) ∧ CMD(f(x))

= CMf−1(C)(w) ∧ CMf−1(D)(x)

= CMf−1(C)×f−1(D)((w, x)).

Hence, f−1(C ×D) ⊆ f−1(C)× f−1(D).

Similarly,

CMf−1(C)×f−1(D)((w, x)) = CMf−1(C)(w) ∧ CMf−1(D)(x)

= CMC(f(w)) ∧ CMD(f(x))

= CMC×D((f(w), f(x)))

= CMC×D(f((w, x)))

= CMf−1(C×D)((w, x)).

Again, f−1(C)× f−1(D) ⊆ f−1(C ×D). Therefore, the result follows.
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Theorem 3.25. Suppose f : W ×X → Y ×Z is an isomorphism, A,B,C and D be fuzzy multigroups
of W,X, Y and Z, respectively. Then, the following statements hold.

(i) f(A×B) ∈ FMG(Y × Z).

(ii) f−1(C)× f−1(D) ∈ FMG(W ×X).

Proof. (i) Since A ∈ FMG(W ) and B ∈ FMG(X), then A×B ∈ FMG(W ×X) by Theorem 3.6.
From Theorem 2.20 and Definition 3.23, it follows that, f(A×B) ∈ FMG(Y × Z).

(ii) Combining Theorems 2.20, 3.6, Definition 3.23 and Theorem 3.24, the result follows.

Corollary 3.26. Suppose X and Y are groups, A ∈ FMG(X) and B ∈ FMG(Y ), respectively. If

f : X ×X → Y × Y

be homomorphism, then

(i) f(A×A) ∈ FMG(Y × Y ),

(ii) f−1(B ×B) ∈ FMG(X ×X).

Proof. Similar to Theorem 3.25.

4. Conclusion

The idea of direct product in fuzzy multigroup setting have been successfully established and lucidly
exemplified. Some related results were obtained and proved accordingly. Homomorphism and some
of its properties were proposed in the context of direct product of fuzzy multigroups. The idea of
generalized direct product of fuzzy multigroups could be exploited.
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Abstract − Since linguistic neutrosophic numbers (LNNs) are depicted independently by the truth, 

indeterminacy, and falsity linguistic variables in indeterminate and inconsistent linguistic environment, 

they are very fit for human thinking and expressing habits to judgments of complex objects in real life 

world. Then the correlation coefficient is a critical mathematical tool in pattern recognition and 

decision making science, but the related research was rarely involved in LNN setting. Hence, this work 

first proposes two new correlation coefficients of LNNs based on the correlation and information 

energy of LNNs as the complement/extension of our previous work, and then develops a multiple 

criteria group decision making (MCGDM) method based on the proposed correlation coefficients in 

LNN setting. Lastly, a decision making example is provided to illustrate the applicability of the 

developed method. By comparison with the MCGDM methods regarding the existing correlation 

coefficients based on the maximum and minimum operations of LNNs, the decision results indicate the 

effectiveness of the developed MCGDM approach. Hence, the proposed approach provides another 

new way for linguistic neutrosophic decision making problems. 

Keywords − Linguistic neutrosophic number, correlation coefficient, multiple criteria group decision making 

1. Introduction 

The decision making problems usually imply inconsistent, incomplete, and indeterminate information, along 

with truth, falsity, indeterminacy information in assessment process. Then, neutrosophic theory [1] is a 

powerful mathematical tool for expressing truth, falsity, indeterminacy information effectively. Hence, it has 

been used for various problems, such as medical image processing [2-4], medical diagnosis [5-7], fault 

diagnosis [8-10], and decision making [11-23]. However, when human thinking complicated objects usually 

contain subjectivity and vagueness, it is difficult to give accurate assessment values of complicated/ill-

defined problems regarding the expression of qualitative information by numerical values, but linguistic 

variables/term values can effectively represent qualitative information and customarily accord with human 

thinking and expressing habits. Hence, some single-valued and interval neutrosophic linguistic numbers [24-

26] and single-valued neutrosophic trapezoid linguistic numbers [27], and interval neutrosophic uncertain 

linguistic numbers [28] were proposed based on the combination of both linguistic variables and 

neutrosophic numbers and applied to decision making. On the one hand, there also exists the difficulty of 

qualitative information expressed by using the neutrosophic numbers. On the other hand, they cannot also 

express the truth, falsity, indeterminacy linguistic values in inconsistent and indeterminate linguistic setting. 
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To solve these issues, linguistic neutrosophic numbers (LNNs) [29] were presented for describing the truth, 

falsity, indeterminacy linguistic information in inconsistent, incomplete, and indeterminate linguistic setting, 

and then some aggregation operators were introduced and applied in linguistic neutrosophic MCGDM 

problems [29, 30]. Furthermore, cosine measures based on the vector space and the distance of LNNs [31], 

correlation coefficients based on the minimum and minimum operations of LNNs [32], and bidirectional 

project measures based on the project models of LNNs [33] were presented respectively and applied to 

MCGDM problems in LNN setting.  

However, the correlation coefficient is a critical mathematical tool in pattern recognition and decision 

making science, but the related research was rarely involved in LNN setting. Therefore, this study proposes 

two new correlation coefficients of LNNs as the complement/extension of our previous work [32], and then 

develops their MCGDM approach for solving the indeterminate and inconsistent linguistic decision making 

problems in LNN setting. To do so, this study is constructed as the following work framework. Section 2 

introduces some preliminaries of LNNs. The correlation coefficients of LNNs are proposed based on the 

correlation and information energy of LNNs in Section 3. Section 4 presents a MCGDM approach based the 

proposed correlation coefficients in LNN setting. Section 5 presents a decision making example to show the 

applicability of the proposed MCGDM approach in LNN setting. Section 6 gives the comparison of the 

proposed approach with decision making approaches based on existing correlation coefficients of LNNs to 

indicate the effectiveness of the proposed approach. Section 7 contains conclusions and further research. 

2. Some preliminaries of LNNs 

Fang and Ye [29] proposed a LNN concept regarding the truth, indeterminacy, and falsity linguistic term 

variables va, vb, vc, and then the values of the linguistic term variables can be obtained from a given linguistic 

term set V = {v0, v1, …, vq} with odd cardinality q+1. Thus, a LNN is expressed as , ,a b cs v v v  for s  V 

and a, b, c  [0, q].  

For three LNNs , ,a b cs v v v , 
1 1 11 , ,a b cs v v v , and 

2 2 22 , ,a b cs v v v  in V, their operational laws are 

introduced as follows [29]: 

(i) 
1 1 1 2 2 2 1 2 1 2 1 2

1 2

1 2 , , , , , ,a b c a b c a a b b c c
a a

q q q

s s v v v v v v v v v
 

    ; 

(ii) 
1 1 1 2 2 2 1 2 1 2 1 2

1 2 1 2

1 2 , , , , , ,a b c a b c a a b b c c
b b c c

q q q

s s v v v v v v v v v
   

    ; 

(iii) 
1

, , , ,p p pa b c
a b c

q q q q
q q q

ps p v v v v v v
     

      
     

   for p > 0; 

(iv) 
1 1

, , , ,p p p

pp

a b c
a b c

q q q q q
q q q

s v v v v v v
     

        
     

   for p > 0. 

Let , ,
k k kk a b cs v v v  (k = 1, 2, …, n) be a group of LNNs in V, then the LNN weighted arithmetic 

averaging operator is introduced as follows [29]: 

1 1 1

1 2
11

( , ,..., ) , ,
n n nk k k

k k k

k k k

n

n k k a b c
q q q qk

q q q

LNNWAA s s s s v v v  

  

     
       

     

 
  

 ,             (1) 

where k  [0, 1] is the weight of sk (k =1, 2, …, n) with 
1

1
n

kk



 . 
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Assume two linguistic neutrosophic sets (LNSs) are S1 = {s11, s12, …, s1n} and S2 = {s21, s22, …, s2n}, where 

1 1 11 , ,
k k kk a b cs v v v  and 

2 2 22 , ,
k k kk a b cs v v v  (k = 1, 2, …, n) are two groups of LNNs in V = {v0, v1, …, 

vq}. Let f(vy) = y be a linguistic scale function. Then, based the minimum and maximum operations of LNNs, 

Shi and Ye [32] proposed three weighted correlation coefficients between S1 and S2: 

     
1 2 1 2 1 2

1 2 1 2 1 2

1 1 2

1

1 2 1 2 1 2

1
1 2 1 2 1 2

min ( ), ( ) min ( ), ( ) min ( ), ( )
( , )

( ) ( ) ( ) ( ) ( ) ( )

min( , ) min( , ) min( , )
,

k k k k k k

k k k k k k

n
a a b b c c

k

k a a b b c c

n
k k k k k k

k

k
k k k k k k

f v f v f v f v f v f v
M S S

f v f v f v f v f v f v

a a b b c c

a a b b c c









 


 

 


 





  (2) 

     

     

1 2 1 2 1 2

1 2 1 2 1 2

2 1 2 2 2 2
1

1 2 1 2 1 2

2 2 2
1

1 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )
( , )

max( ( ), ( )) max( ( ), ( )) max( ( ), ( ))

,
max( , ) max( , ) max( , )

k k k k k k

k k k k k k

n
a a b b c c
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k k k k k k
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f v f v f v f v f v f v
M S S

f v f v f v f v f v f v
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 (3) 

     
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M S S
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





 


 

 


 



1 1 2

,
, )

n

k k kb a



   (4) 

where k  [0, 1] is the weight of sjk (j =1, 2; k =1, 2, …, n) with 
1

1
n

kk



 . 

3. Correlation coefficients between LNNs 

As the complement/extension of existing correlation coefficients of LNNs [32], this section proposes two 

new correlation coefficients between two LNNs based on the correlation and information energy of LNNs. 

Definition 1. Set two linguistic neutrosophic sets (LNSs) as S1 = {s11, s12, …, s1n} and S2 = {s21, s22, …, s2n}, 

where 
1 1 11 , ,
k k kk a b cs v v v  and 

2 2 22 , ,
k k kk a b cs v v v  (k = 1, 2, …, n) are two groups of LNNs in V = {v0, 

v1, …, vq}. Let f(vy) = y be a linguistic scale function. Then we can define the correlation of LNSs S1 and S2 

as follows: 

 
1 2 1 2 1 21 2 1 2 1 2 1 2

1 1

, ( ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k k k k k

n n

a a b b c c k k k k k k

k k

L S S f v f v f v f v f v f v a a b b c c
 

      
.   (5) 

Based on Eq. (5), it is obvious that the correlations between S1 and S1 and between S2 and S2 yield the 

following forms: 

 
1 1 1 1 1 1

2 2 2

1 1 1 1 1

1 1

, ( ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k k k k k

n n

a a b b c c k k k

k k

L S S f v f v f v f v f v f v a b c
 

      
,    (6) 

 
2 2 2 2 2 2

2 2 2

2 2 2 2 2

1 1

, ( ( ) ( ) ( ) ( ) ( ) ( ) ( )
k k k k k k

n n

a a b b c c k k k

k k

L S S f v f v f v f v f v f v a b c
 

      
,   (7) 

which are also named the information energy of LNSs S1 and S2. 

Thus, the two correlation coefficients of LNSs S1 and S2 are given by 
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1 1 1 2 2 2
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

2 2 2 2 2 2

1 1 1 2 2 2

1 1

.
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n n

k k k k k k

k k

a b c a b c
 
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 

       (9) 

Then, it is obvious that Eqs. (8) and (9) satisfies the following conditions: 

(a) Q1(S1, S2) = Q1(S2, S1) and Q2(S1, S2) = Q2(S2, S1); 

(b) Q1(S1, S2) = Q2(S1, S2) = 1 for S1 = S2; 

(c) Q1(S1, S2), Q2(S1, S2)  [0, 1]. 

PROOF.  

It is clear that the conditions (a) and (b) are true. Hence, we only verify the condition (c) below. 

For the proof of Q1(S1, S2), if k = 1, Eq. (8) is reduced to the following cosine measure of LNNs [31]: 

1 2 1 2 1 2

1 1 1 2 2 2

1 1 2 1 2
2 2 2 2 2 2

1 2 1 2 1 2

2 2 2 2 2 2

1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( )
( , ) ( , )

( ) ( ) ( ) ( ( ) ( ) ( )
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k k k k k k

k k k k k k

a a b b c c

a b c a b c

k k k k k k

k k k k k k

f v f v f v f v f v f v
Q S S Cos S S

f v f v f v f v f v f v

a a b b c c

a b c a b c

 
 

   

 


   

 (10) 

Obviously, the cosine measure of LNNs introduced by Shi and Ye [31] is a special case of the correlation 

coefficient Q1(S1, S2) when k = 1. 

Since there exists Cos(S1, S2)  [0, 1] regarding the property of the cosine measure between LNNs [31], there 

is also Q1(S1, S2)  [0, 1] if k = 1. Thus, it is obvious that Q1(S1, S2)  [0, 1] is true if k = n. 

For the proof of Q2(S1, S2), since 
2 2 2 2 2 2

1 1 1 2 2 2

1 1

max ( ), ( )
n n

k k k k k k

k k

a b c a b c
 

 
    

 
    

1 2 1 2 1 2k k k k k ka a b b c c   can holds for ajk, bjk, cjk  [0, q] (j = 1, 2; k = 1, 2, …, n) in V = {v0, v1, …, vq}, it is 

clear that there exists Q2(S1, S2)  [0, 1]. 
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Hence, this proof is finished.  

If the importance of each LNN sjk (j = 1, 2; k = 1, 2, …, n) in S1 and S2 is indicated by the weight value k for 

k  [0, 1] and 
1

1
n

kk



 , the weighted correlation coefficients of LNSs S1 and S2 can be expressed by 
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Obviously, the weighted correlation coefficients of Eqs. (11) and (12) also satisfy these conditions: 

(a) W1(S1, S2) = W1(S2, S1) and W2(S1, S2) = W2(S2, S1); 

(b) W1(S1, S2) = W2(S1, S2) = 1 for S1 = S2; 

(c) W1(S1, S2), W2(S1, S2)  [0, 1]. 

4. MCGDM approach based on weighted correlation coefficients of LNNs 

This section proposes a MCGDM approach based on the weighted correlation coefficients of LNNs. 

Regarding a MCGDM problem in LNN setting, there are the set of m alternatives represented by S = {S1, S2, 

…, Sm} and the set of n criteria represented by E = {E1, E2, …, En}. Then, the set of d decision makers is 

denoted by D = {D1, D2, …, Dd}. Thus, when the j-th decision maker Dj give the fit evaluations of each 

alternative Si (i = 1, 2, …, m) over criteria Ek (k = 1, 2, …, n), his/her evaluation values are expressed by a 

LNS 
1 2{ , ,..., }j j j j

i i i inS s s s , where , ,
ik ik ik

j j j j

ik a b cs v v v   is a LNN obtained from the given linguistic term set 

V = {v0, v1, …, vq} for 0, , [ , ]
ik ik ik

j j j

a b c qv v v v v  (i = 1, 2, …, m; j = 1, 2, …, d; k = 1, 2, …, n). Thus, the j-th 

decision matrix of LNNs  j j

ik m n
R s


  (j = 1, 2, …, d) can be constructed in LNN setting.  

Suppose the weight vector of criteria is  = (1, 2, …, n) for k  [0, 1] and 
1

1
n

kk



 , and then the 

weight vector of decision makers is  = (1, 2, …, d) for j  [0, 1] and 
1

1
d

jj



 . In this decision 

making problem, we can propose a MCGDM approach based on the weighted correlation coefficients in 

LNN setting, which is depicted by the following steps: 

Step 1: Based on Eq. (1), the aggregated LNN , ,
ik ik ikik a b cv v v v   is obtained by the following weighted 

aggregation operator: 
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Then, the aggregated matrix of LNNs is constructed as follows: 

11 12 1

21 22 2

1 2

n

n

m m mn
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s s s
R

s s s

 
 
 
 
 
  

. 

Step2: Regarding the concept of the ideal solution (alternative), we can determine the ideal solution 
* * * *

1 2{ , ,..., }nS s s s  from the aggregated matrix R, where 

* * *

* , , max( ),min( ),min( )
ik ik ikk k k

k a b ca b c i ii
s v v v v v v   is the ideal LNN (k = 1, 2, …, n; i = 1, 2, …, m). 

Step 3: Based on Eq. (11) or Eq. (12), the weighted correlation coefficient between Si (i = 1, 2, …, m) and S
*
 

is given by 

 

* * *

* 1
1

2 2 2 * 2 * 2 * 2
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or 

 
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2
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

 
.              (15) 

 

Step 4: The ranking order of all alternatives and the best one are given corresponding to the values of the 

weighted correlation coefficient. 

Step 5: End. 

5. Decision making example with LNN information 

This section presents a decision making example regarding the MCGDM problem to illustrate the 

applicability of the proposed MCGDM method in LNN setting. 

A hospital requires the human resources department to recruit a nurse. When the five candidates (the five 

alternatives) S1, S2, S3, S4, and S5 are selected preliminarily from all applicants by the human resources 

department, a group of three experts/decision makers D = {D1, D2, D3} is invited to assess the five candidates 

corresponding to the three requirements (criteria): (a) E1 is nursing skill; (b) E2 is past nursing experience; (c) 

E3 is self-confidence. The weight vector of the three criteria is provided by  = (0.4, 0.3, 0.3) and the weight 

vector of the three experts is given by  = (0.35, 0.35, 0.3). 

Then, the three experts are requested to suitably evaluate the five candidates from the predefined linguistic 

term set V = {v0 = extremely poor, v1 = very poor, v2 = poor, v3 = slightly poor, v4 = fair, v5 = slightly good, 

v6 = good, v7 = very good, v8 = extremely good} for q = 8 in LNN setting, and then they give the following 

three LNN matrices:  
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. 

Thus, the proposed MCGDM approach can be applied to the decision making example, which is depicted by 

the following steps: 

Step 1: By using Eq. (13), the aggregated matrix of LNNs is yielded as follows: 

5.6478 1.5157 2.5508 5.4492 2.7808 2.7808 6.0000 1.6245 3.000

6.7689 1.6245 2.2587 6.7689 2.2587 2.2587 7.0000 2.3522 1.3195
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, , , , , , 

, , , , , ,

, , , ,

v v v v v v v v v

v v v v v v v v v

R v v v v v v

     

     

    3 7.0000 1.0000 2.6564

6.1654 1.6245 2.6564 6.0000 2.0000 2.1435 6.0000 2.0000 2.6564

4.6341 3.0000 4.0000 6.0000 3.0000 2.9804 6.0000 3.3659 3.3659

, ,

, , , , , ,

, , , , , ,

v v v

v v v v v v v v v

v v v v v v v v v

 
 
 
   
 
      
       

. 

Step 2: Corresponding to the ideal LNN * * *

* , , max( ),min( ),min( )
ik ik ikk k k

k a b ca b c i ii
s v v v v v v    (k = 1, 2, 3; 

i = 1, 2, 3, 4, 5), the ideal solution is yielded from the aggregated matrix R as follows: 

* * * *

1 2 3 6.7689 1.2311 1.3195 6.7689 1.6245 2.1435 7.0000 1.0000 1.3195{ , , } { , , , , , , , , }S s s s v v v v v v v v v        . 

Step 3: By using Eq. (14) or Eq. (15), we can obtain the following weighted correlation coefficient values: 

W1(S1, S
*
) = 0.9661, W1(S2, S

*
) = 0.9908, W1(S3, S

*
) = 0.9790, W1(S4, S

*
) = 0.9787, and W1(S5, S

*
) = 0.9082; 

or W2(S1, S
*
) = 0.8985, W2(S2, S

*
) = 0.9545, W2(S3, S

*
) = 0.9334, W2(S4, S

*
) = 0.9313, and W2(S5, S

*
) = 

0.8956. 

Step 4: Based on the above values, all the alternatives are ranked as S2 > S3 > S4> S1 > S5, and then the best 

candidate with the biggest value is S2. 

Clearly, the ranking orders of the candidates/alternatives and the best one corresponding to the proposed two 

correlation coefficients of LNNs are the same in this MCGDM example. 



Journal of New Theory 28 (2019) 74-83/New Correlation Coefficients of LNNs for MCGDM                                          81 

 

6. Comparison with MCGDM methods based on existing correlation coefficients of 

LNNs 

To demonstrate the effectiveness of the proposed method in LNN setting, this section indicates the 

comparison of the proposed approach with the ones based on existing correlation coefficients of LNNs [32] 

by the above MCGDM example. 

Thus, the correlation coefficient values between Si and S
*
 are obtained by applying Eqs. (2)-(4), and then all 

the decision results based on various correlation coefficients of LNNs are tabulated in Table 1. 

Table 1. Decision results based on various correlation coefficients of LNNs 

Correlation coefficient Correlation coefficient value Ranking order The best one 

M1(Si, S
*) [32] 0.8651, 0.9517, 0.9239, 0.8998, 0.8033 S2 > S3 > S4> S1 > S5 S2 

M2(Si, S
*) [32] 0.2466, 0.2967, 0.2938, 0.2499, 0.2180 S2 > S3 > S4> S1 > S5 S2 

M3(Si, S
*) [32] 0.7412, 0.8950, 0.8462, 0.8035, 0.6326 S2 > S3 > S4> S1 > S5 S2 

W1(Si, S
*) 0.9661, 0.9908, 0.9790, 0.9787, 0.9082 S2 > S3 > S4> S1 > S5 S2 

W2(Si, S
*) 0.8985, 0.9545, 0.9334, 0.9313, 0.8956 S2 > S3 > S4> S1 > S5 S2 

 

From Table 1, we can see that all the ranking orders and the best one are identical regarding the decision 

results based on various correlation coefficients of LNNs. Obviously, the proposed approach indicates its 

effectiveness. Thus, the proposed MCGDM approach provides another new effective way for the linguistic 

neutrosophic decision making problems in LNN setting. 

7. Conclusion 

As the complement/extension of our previous work [32], this study first presented two correlation 

coefficients of LNNs based on the correlation and information energy of LNNs. Then we presented a 

MCGDM approach using the weighted correlation coefficients in LNN setting. A decision making example 

regarding the MCGDM problem was presented to demonstrate the applicability of the proposed MCGDM 

approach in LNN setting. By comparison with the MCGDM approaches based on the existing correlation 

coefficients of LNNs, the decision results demonstrated the developed new approach is effective. Hence, the 

proposed MCGDM approach provides another new effective way for linguistic neutrosophic decision 

making problems. In the next work, we shall extend the proposed correlation coefficients to develop the 

refined linguistic neutrosophic correlation coefficients based on the refined neutrosophic concept [34] and to 

use them for decision making, pattern recognition, and medical diagnosis problems in refined linguistic 

neutrosophic setting.  

Acknowledgement 

This work was supported by the National Natural Science Foundation of China, Grant number: 61703280. 

References 

[1] F. Smarandache, Neutrosophy: Neutrosophic probability, set, and logic. American Research Press, 

Rehoboth, USA, 1998. 

[2] Y. H. Guo, C. Zhou, H. P. Chan, A. Chughtai, J. Wei, L. M. Hadjiiski, E. A. Kazerooni, Automated 

iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography. Medical 

Physics 40 (2013) 081912. 

[3] Y. H. Guo, A. Sengur, J. W. Tian, A novel breast ultrasound image segmentation algorithm based on 



Journal of New Theory 28 (2019) 74-83/New Correlation Coefficients of LNNs for MCGDM                                          82 

 

neutrosophic similarity score and level set. Computer Methods and Programs in Biomedicine 123 (2016) 

43–53. 

[4] K. M. Amin, A. I. Shahin, Y. H. Guo, A novel breast tumor classification algorithm using neutrosophic 

score features. Measurement 81 (2016) 210–220. 

[5] J. Ye, Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. 

Artificial Intelligence in Medicine 63(3) (2015) 171–179. 

[6] J. Ye, J. Fu, Multi-period medical diagnosis method using a single valued neutrosophic similarity 

measure based on tangent function, Computer Methods and Programs in Biomedicine 123 (2016) 142-

149. 

[7] J. Fu, J. Ye, Simplified neutrosophic exponential similarity measures for the initial evaluation/diagnosis 

of benign prostatic hyperplasia symptom, Symmetry 9(8) (2017) 154. 

[8] J. Ye, Fault diagnoses of steam turbine using the exponential similarity measure of neutrosophic 

numbers, Journal of Intelligent & Fuzzy Systems 30 (2016) 1927–1934. 

[9] J. Ye, Single valued neutrosophic similarity measures based on cotangent function and their application 

in the fault diagnosis of steam turbine, Soft Computing 21(3) (2017) 817-825. 

[10] J. Ye, Fault diagnoses of hydraulic turbine using the dimension root similarity measure of single-valued 

neutrosophic sets. Intelligent Automation & Soft Computing 24(1) (2018) 1-8. 

[11] J. Ye, Multicriteria decision-making method using the correlation coefficient under single-valued 

neutrosophic environment. International Journal of General Systems 42 (2013) 386–394. 

[12] J. Ye, Vector similarity measures of simplified neutrosophic sets and their application in multicriteria 

decision making, Journal of Intelligent & Fuzzy Systems 16 (2014) 204–211. 

[13] P. D. Liu, Y. M. Wang, Multiple attribute decision making method based on single-valued neutrosophic 

normalized weighted Bonferroni mean, Neural Computing & Applications 25 (2014) 2001–2010. 

[14] P. D. Liu, Y. C. Chu, Y. W. Li, Y. B. Chen, Some generalized neutrosophic number Hamacher 

aggregation operators and their application to group decision making, Journal of Intelligent & Fuzzy 

Systems 16 (2014) 242–255. 

[15] A. W. Zhao, J. G. Du, H. J. Guan, Interval valued neutrosophic sets and multi-attribute decision-making 

based on generalized weighted aggregation operator, Journal of Intelligent & Fuzzy Systems 29 (2015) 

2697–2706. 

[16] H. X. Sun, H. X. Yang, J. Z. Wu, O. Y. Yao, Interval neutrosophic numbers Choquet integral operator 

for multi-criteria decision making, Journal of Intelligent & Fuzzy Systems 28 (2015) 2443–2455. 

[17] J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, X. H. Chen, Simplified neutrosophic sets and their 

applications in multi-criteria group decision-making problems. International Journal of Systems Science 

47 (2016) 2342–2358. 

[18] P. D. Liu, Y. M. Wang, Interval neutrosophic prioritized OWA operator and its application to multiple 

attribute decision making. Journal of Systems Science and Complexity 29 (2016) 681–697.  

[19] P. Biswas, S. Pramanik, B. C. Giri, TOPSIS method for multi-attribute group decision-making under 

single-valued neutrosophic environment. Neural Computing & Applications 27 (2016) 727–737. 

[20] J. Ye, Simplified neutrosophic harmonic averaging projection-based method for multiple attribute 

decision making problems. International Journal of Machine Learning and Cybernetics 8 (2017) 981–

987.  

[21] A. Tu, J. Ye, B. Wang, Symmetry measures of simplified neutrosophic sets for multiple attribute 

decision-making problems. Symmetry 10 (2018) 144. 

[22] W. H. Cui, J. Ye, Improved symmetry measures of simplified neutrosophic sets and their decision-

making method based on a sine entropy weight model. Symmetry 10(6) (2018) 225. 

[23] Y. X. Ma, J. Q. Wang, J. Wang, X. H. Wu, An interval neutrosophic linguistic multi-criteria group 

decision-making method and its application in selecting medical treatment options. Neural Computing 

& Applications 28(9) (2017) 2745–2765. 

[24] J. Ye, An extended TOPSIS method for multiple attribute group decision making based on single valued 

neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems 28(1) (2015) 247–255. 

[25] J. Ye, Some aggregation operators of interval neutrosophic linguistic numbers for multiple attribute 

decision making. Journal of Intelligent & Fuzzy Systems 27(5) (2014) 2231–2241. 

[26] J. Ye, Hesitant interval neutrosophic linguistic set and its application in multiple attribute decision 

making. International Journal of Machine Learning and Cybernetics 10(4) (2017) 667-678. 

[27] S. Broumi, F. Smarandache, Single valued neutrosophic trapezoid linguistic aggregation operators based 

multi-attribute decision making. Bull Pure Applied Sciences-Mathematics & Statistics 33(2) (2014) 

135–155. 

[28] S. Broumi, J. Ye, F. Smarandache, An extended TOPSIS method for multiple attribute decision making 

based on interval neutrosophic uncertain linguistic variables. Neutrosophic Sets and Systems 8 (2015) 



Journal of New Theory 28 (2019) 74-83/New Correlation Coefficients of LNNs for MCGDM                                          83 

 

23–32. 

[29] Z. B. Fang, J. Ye, Multiple attribute group decision-making method based on linguistic neutrosophic 

numbers. Symmetry 9(7) (2017) 111. 

[30] C. X. Fan, J. Ye, K. L. Hu, E. Fan, Bonferroni mean operators of linguistic neutrosophic numbers and 

their multiple attribute group decision-making methods. Information 8(3) (2017) 107. 

[31] L. L. Shi, J. Ye, Cosine measures of linguistic neutrosophic numbers and their application in multiple 

attribute group decision-making. Information 8(4) (2017) 117. 

[32] L. L. Shi, J. Ye, Multiple attribute group decision-making method using correlation coefficients between 

linguistic neutrosophic numbers, Journal of Intelligent & Fuzzy Systems 35(1) (2018) 917-925. 

[33] P. D. Liu, X. L. You, Bidirectional projection measure of linguistic neutrosophic numbers and their 

application to multi-criteria group decision making, Computers & Industrial Engineering 128 (2019) 

447-457. 

[34] F. Smarandache, n-Valued refined neutrosophic logic and its applications in physics, Progress in 

Physics 4 (2013) 143-146. 

 



New Theory
Journal of

ISSN: 2149-1402 

28 (2019) 84-97

Journal of New Theory

http://www.newtheory.org

Open Access

New Theory
Journal of

www.newtheory.org

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Tokat Gaziosmanpaşa University

Number 28 Year 2019

The Application of GRA Method Base on Choquet Integral Using
Spherical Fuzzy Information in Decision Making Problems

Shahzaib Ashraf1, Saleem Abdullah2, Muhammad Qiyas3, Aziz Khan 4

Article History

Received : 07.07.2019

Accepted : 11.10.2019

Published : 17.10.2019

Original Article

Abstract − Spherical fuzzy set is the generalized structure over existing structures
of fuzzy sets to deals with uncertainty and imprecise information in decision mak-
ing problems. Viewing the effectiveness of the spherical fuzzy set, we developed a
decision-making algorithm to deal with multi-criteria decision-making problems. In
this paper, we extend operational laws to propose spherical fuzzy Choquet integral
weighted averaging (SFCIWA) operator based on spherical fuzzy numbers. Further,
the proposed SFCIWA operator is applied to multi-attribute group decision-making
problems. Also, we propose the GRA method to aggregate the spherical fuzzy infor-
mation. To implement the proposed models, we provide some numerical applications
of group decision-making problems. Also compared with the previous model, we
conclude that the proposed technique is more effective and reliable.

Keywords − Choquet integral, Spherical fuzzy Choquet integral weighted averaging (SFCIWA) operator, GRA
method, Spherical fuzzy sets, Decision making technique.

1. Introduction

Multi-criteria group decision making problems have importance in most kinds of fields such as eco-
nomics, engineering and management. Generally, it has been assumed that the information which
accesses the alternatives in term of criteria and weight are expressed in real numbers. But due to the
complexity of the system day-by-day, it is difficult for the decision makers to make a perfect decision,
as most of the preferred value during the decision-making process imbued with uncertainty. In order
to handle the uncertainties and fuzziness, intuitionistic fuzzy set [11] theory is one of the prosperous
extensions of the fuzzy set theory [45], which is characterized by the degree of membership and degree
of non-membership has been presented. Fuzzy set theory is extended in many ways by different au-
thors but to modelling imprecision IFS theory is much impressive. IFS theory attracts many authors
because of its important in handling uncertainty and different aggregation operators are defined to
aggregate information. For study the aggregation operators for IFSs, we refer to [25,28,41,42].

But there are several cases where the decision maker may provide the degree of membership and
nonmembership of a particular attribute in such a way that their sum is greater than one. For example,
suppose a man expresses his preferences towards the alternative in such a way that degree of their
satisfaction is 0.6 and degree of rejection is 0.8. Clearly its sum is greater than one. Therefore, Yager
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[43, 44] introduced the concept of another set called Pythagorean fuzzy set. Pythagorean fuzzy set is
more powerful tool to solve uncertain problems. Like intuitionistic fuzzy operators, Pythagorean fuzzy
operators also become an interesting and important area for research, after the advent of Pythagorean
fuzzy sets theory. Yager and Abbasov [43] introduced many aggregation operators to tackle MADM
tangle in PyFS environment. The superiority and inferiority ranking (SIR) MABAC technique to
tackle MADM problems in Pythagorean fuzzy environment is discussed by Peng and Yang [31]. Zhang
[48] proposed an approach for multi-criteria Pythagorean fuzzy decision analysis based on the closeness
index-ranking methods. Khan et al. [23] proposed the Pythagorean fuzzy Dombi aggregation operators
and discussed their applications in decision making problems.

As for human nature only, satisfaction and dissatisfaction degree is quite insufficient and needs
abstain and refusal degree too but Yager Pythagorean concept not covers this problem. This problem
is solved by Coung [15] defining a new structure called picture fuzzy set (PFS) which also includes
degree of neutral membership with a condition that the sum of triplet should remain with in unit
interval and covers all aspects of human nature and quite applicable in real life problems and very
near to the human nature. Cuong [17] in 2014 introduced the concept of picture soft sets, the relation
of compositions and the distance between picture fuzzy numbers. Singh [38] in 2015, proposed the idea
related to correlation coefficients for picture fuzzy sets. The concepts like convex combination of PFNs,
alpha-cuts of PFS, picture fuzzy relations are introducing by Cuong [16] in 2015. Generalized picture
fuzzy distance measure are developed by Son [39] in 2016, and discussed their applications. Ashraf et
al. [1] proposed the geometric aggregation operators for picture fuzzy information and in [2] proposed
the concept of picture fuzzy linguistic set. Khan et al. [24] proposed the concept of generalized picture
fuzzy soft set (GPFSSs) and illustrate the applications of GPFSSs in decision making problems. For
more study about decision making techniques we refer to [3, 4, 26,27,32–35]

Ashraf et al. [5] proposed the novel concept of spherical fuzzy set by applying extra condition on
sum of their memberships as square sum of the membership degrees oscillate from 0 to 1. Ashraf
and Abdullah [6] proposed the series of aggregation operators for spherical fuzzy environment and
in [7] proposed the notion of spherical linguistic fuzzy set and developed their applications using GRA
technique. For more study about spherical fuzzy sets, we refer to [8–10,21,22,36,47]

In this paper, our aim to develop the GRA technique with unknown weight information using
spherical fuzzy information to deal with uncertainty in decision making problems. To do this, the
article structured is follows as:

Basic definitions and result about Choquet integral, Pythagorean fuzzy sets and picture fuzzy sets
are present in Sec. 2. In Sec. 3, we introduced the notion of Spherical fuzzy sets. In Sec. 4 we
proposed the GRA method for spherical fuzzy MAGDM problems with incomplete weight data. In
Section 5, we strengthen our proposed algorithmic method with a descriptive example. Last Sections
contains the conclusion of the work.

2. Preliminary

This section consists of some basic concepts of Pythagorean fuzzy set (PyFS), picture fuzzy set (PFS)
and also give some discussion related to fuzzy measure and Choquet integral.

Definition 2.1. [44]A PyFS ℑŭ on the universe of discourse Z ̸= ϕ is defined as;

ℑŭ = {⟨Lěŭ(k),Měŭ(k)| k ∈ Z⟩} .

A PyFS in a set Z is defined by Lěŭ(k) : Z → Θ and Měŭ(k) : Z → Θ are the positive and negative
membership grades of each k ∈ Z, respectively. Furthermore Lěŭ(k) and Měŭ(k) satisfy 0 ≤ L2

ěŭ
(k) +

M2
ěŭ
(k) ≤ 1 for all k ∈ Z.

Definition 2.2. [15]A PFS ℑŭ on the universe of discourse Z ̸= ϕ is defined as;

ℑŭ = {⟨Lěŭ(k),Měŭ(k), Oěŭ(k)| k ∈ Z⟩} .

A PFS in a set Z is defined by Lěŭ(k) : Z → Θ , Měŭ(k) : Z → Θ and Oěŭ(k) : Z → Θ are the positive
grade, neutral grade and negative grade of each k ∈ Z, respectively. Furthermore Lěŭ(k), Měŭ(k) and
Oěŭ(k) satisfy 0 ≤ Lěŭ(k) +Měŭ(k) +Oěŭ(k) ≤ 1 for all k ∈ Z.
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2.1. Fuzzy measure and Choquet integral

The concept of fuzzy measure are developed by Sugeno in 1974 [48] which instead of additivity property
only make a monotonicity . It is a powerful tool for modeling interaction phenomena in decision making
for MADM problems, it does not required assumption that criteria or preferences are free from one
another. Criteria can be dependent in the Choquet integral model [14,31], where on each combination
of criteria a fuzzy measure is used to define a weight, thus making it possible to model the interaction
existing among criteria. Concept of fuzzy measure, discrete Choquet integral, λ-fuzzy measure and
Pythagorean fuzzy Choquet integral operators are presented in this subsection as follows;

Definition 2.3. [14] Let the universe of discourse Z = {k1, ..., kn} ̸= ϕ and p(Z) denote the power
set of Z. Then, a function Lěŭ : p(Z) → Θ is called a fuzzy measure Lěŭ on Z, if satisfy the following
conditions;

1) Lěŭ(ϕ) = 0, Lěŭ(Z) = 1.

2) If ℑŭ1 ,ℑŭ2 ∈ p(Z) and ℑŭ1 ⊆ ℑŭ2 then Lěŭ(ℑŭ1) ≤ Lěŭ(ℑŭ2).

It is mandatory to consider the adage of continuity when Z is infinite, it is enough to assume a finite
universe of discourse in genuine exercise. For decision attribute set {k1, k2, ..., kn}, Lěŭ({k1, k2, ..., kn})
can be deem as the degree of subjective importance. Thus, weights of any set of attributes can also
be obtained with the separate weights of attributes. Instinctively, we say that the following about any
pair of criteria sets ℑŭ1 ,ℑŭ2 ∈ p(Z), ℑŭ1 ∩ℑŭ2 = ϕ; ℑŭ1and ℑŭ2 are assumed to be without interaction
(or to be independent) and called it additive measure if

Lěŭ(ℑŭ1 ∪ ℑŭ2) = Lěŭ(ℑŭ1) + Lěŭ(ℑŭ2). (1)

ℑŭ1and ℑŭ2 reveals a positive synergetic interaction among them (or are complementary) and called
a super additive measure if

Lěŭ(ℑŭ1 ∪ ℑŭ2) > Lěŭ(ℑŭ1) + Lěŭ(ℑŭ2). (2)

ℑŭ1and ℑŭ2 reveals a negative synergetic interaction among them (or are redundant or substitutive)
and said to be a sub-additive measure if

Lěŭ(ℑŭ1 ∪ ℑŭ2) < Lěŭ(ℑŭ1) + Lěŭ(ℑŭ2). (3)

From the Definition 2.3 it is hard to find the fuzzy measure, therefore, Sageno defined the following
measure to confirm a fuzzy measure in MAGDM problems:

Lěŭ(ℑŭ1 ∪ ℑŭ2) = Lěŭ(ℑŭ1) + Lěŭ(ℑŭ2) + λLěŭ(ℑŭ1)Lěŭ(ℑŭ2) (4)

λ ∈ [−1,∞), ℑŭ1 ∩ℑŭ2 = ϕ. The interaction between the attributes is determine by the parameter λ.
Simply an additive measure is obtained when λ = 0 in Equation 4. Sub additive and super additive
measures is obtained, respectively for negative and positive λ. Meanwhile, if all the elements in Z are
independent, and we have

Lěŭ(ℑŭ) =
n∑

p=1

Lěŭ({kp}) (5)

If Z is a finite set, then ∪n
p=1kp = Z. The λ-fuzzy measure Lěŭ satisfies following Equation6

Lěŭ (Z) = Lěŭ

(
∪n
p=1ki

)
=


1
λ

(
n∏

p=1
[1 + λLěŭ (kp)]− 1

)
if λ ̸= 0

n∑
p=1

Lěŭ (kp) if λ = 0

(6)

where kp ∩ rď = ϕ for all p,ď= 1, ..., n and p ̸=ď. It should be noted that Lěŭ(kp) for a subset with
a single member kp is called a fuzzy density, and can be signified as Lěŭ = Lěŭ(kp).
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Particularly for every subset ℑŭ1 ∈ p(Z), we have

Lěŭ (ℑŭ1) =


1
λ

(
n∏

p=1
[1 + λLěŭ (kp)]− 1

)
if λ ̸= 0

n∑
p=1

Lěŭ (kp) if λ = 0

(7)

A uniquely value of λ is determined from Lěŭ(Z) = 1, based on Equation2 which is equivalent to
solving

λ+ 1 =

n∏
p=1

[1 + λLěŭ ] (8)

It can be seen that λ are uniquely obtained by Lěŭ(Z) = 1.

Definition 2.4. [14] Let g and Lěŭ be a positive real-valued function on the fuzzy measure Z,
respectively. Then, the discrete Choquet integral of g with respect to Lěŭ is defined by

Cµ(g) =

n∑
p=1

gρ(p)[Lěŭ(Aρ(p))− Lěŭ(Aρ(p-1))] (9)

where ρ(p) shows a permutation on Z such that gρ(1) ≥ gρ(2) ≥ ... ≥ gρ(n), Aρ(n) = {1, 2, ..., p},
Aρ(0) = ϕ.

Up to a reordering of the elements it can be noticed that the discrete Choquet integral is a linear
expression. Moreover, when the fuzzy measure is additive it identifies with the weighted mean (discrete
Lebesgue integral). And OWA operator the Choquet integral operator coincides in some conditions.

3. Some Operations on Spherical Fuzzy Set

The notion of SFS and their operational laws are defined in this section.

Definition 3.1. [5]A SFS ℑŭ on the universe of discourse Z ̸= ϕ is defined as;

ℑŭ = {⟨Lěŭ(k),Měŭ(k), Oěŭ(k)| k ∈ Z⟩} . (10)

Where Lěŭ(k) : Z → Θ , Měŭ(k) : Z → Θ and Oěŭ(k) : Z → Θ are the positive grade, neutral
grade and negative grade of each k ∈ Z, respectively. Furthermore Lěŭ(k), Měŭ(k) and Oěŭ(k) satisfy

0 ≤ L2
ěŭ
(k) + M2

ěŭ
(k) + O2

ěŭ
(k) ≤ 1 for all k ∈ Z. χℑŭ

(k) =
√

1−
(
L2
ěŭ
(k) +M2

ěŭ
(k) +O2

ěŭ
(k)
)
is

called refusal degree of k in Z, for SFS {⟨Lěŭ(k),Měŭ(k), Oěŭ(k)| k ∈ Z⟩}, which is triple components
⟨Lěŭ ,Měŭ , Oěŭ⟩ is called SF number and each SF number can be presented as E = ⟨Le,Me, Oe⟩, where
Le,Me and Oe ∈ Θ, under the condition 0 ≤ L2

e +M2
e +O2

e ≤ 1.

Definition 3.2. Let ℑŭ1 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ and ℑŭ2 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ are two SFNs define on the
universe of discourse Z ̸= ϕ, some operations on SFNs are defined as follows:
(a) ℑŭ1 ⊆ ℑŭ2 iff ∀r ∈ R,

Lěŭ ≤ ℑŭ2 ,Měŭ ≤ Měŭ and Oěŭ ≥ Oěŭ (11)

(b) ℑŭ1 = ℑŭ2 iff
ℑŭ1 ⊆ ℑŭ2 and ℑŭ2 ⊆ ℑŭ1 (12)

(c) Union
ℑŭ1 ∪ ℑŭ2 = ⟨max (Lěŭ , Lěŭ) , min (Měŭ ,Měŭ) , min (Oěŭ , Oěŭ)⟩ ; (13)

(d) Intersection

ℑŭ1 ∩ ℑŭ2 = ⟨min (Lěŭ , Lěŭ) , min (Měŭ ,Měŭ) , max (Oěŭ , Oěŭ)⟩ ; (14)

(e) Compliment
ℑc
ŭ = ⟨Oěŭ ,Měŭ , Lěŭ⟩ . (15)

Definition 3.3. Let ℑŭ1 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ and ℑŭ2 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ are two SFNs define on the
universe of discourse Z ̸= ϕ, some operations on SFNs are defined as follows with τ ≥ 0.

(1) ℑŭ1 ⊕ℑŭ2 =
{√

L2
ěŭ

+ L2
ěŭ

− L2
ěŭ

· L2
ěŭ
, Měŭ ·Měŭ , Oěŭ ·Oěŭ

}
.

(2) τ · ℑŭ =
{√

1− (1− L2
ěŭ
)τ , (Měŭ)

τ , (Oěŭ)
τ
}
.
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3.1. Comparison Rules for SFNs

For ranking the SFNs, different functions are introduced in this section described as.

Definition 3.4. Let ℑŭ = ⟨Lěŭ ,Měŭ , Oěŭ⟩ be any SFNs. Then

(1) Score function is defined as sc(ℑŭ) =
(Lěŭ

+1−Měŭ
+1−Oěŭ)

3 = 1
3(2 + Lěŭ −Měŭ −Oěŭ).

(2) Accuracy function is defined as acu(ℑŭ) = Lěŭ −Oěŭ .
(3) Certainty function is defined as cr(ℑŭ) = Lěŭ .

Ranking of SFNs described from Definition 3.4 .

Definition 3.5. Let ℑŭ1 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ and ℑŭ2 = ⟨Lěŭ ,Měŭ , Oěŭ⟩ are two SFNs define on the
universe of discourse Z ̸= ϕ. Then Ranking of SFNs described from Definition 3.4 ,
(1) If sc(ℑŭ1) ≻ sc(ℑŭ2),then ℑŭ1 ≻ ℑŭ2 .
(2) If sc(ℑŭ1) ≈ sc(ℑŭ2),and acu(ℑŭ1) ≻ acu(ℑŭ2),then ℑŭ1 ≻ ℑŭ2 .
(3) If sc(ℑŭ1) ≈ sc(ℑŭ2), acu(ℑŭ1) ≈ acu(ℑŭ2) and cr(ℑŭ1) ≻ cr(ℑŭ2), then ℑŭ1 ≻ ℑŭ2 .
(4) If sc(ℑŭ1) ≈ sc(ℑŭ2), acu(ℑŭ1) ≈ acu(ℑŭ2) and cr(ℑŭ1) ≈ cr(ℑŭ2), then ℑŭ1 ≈ ℑŭ2 .

Definition 3.6. Let any collections ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N be the SFNs and SFWA :
SFNn × SFNn → SFN, then SFWA describe as,

SFWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =
n∑

p=1

τpℑŭp , (16)

In which τ = {τ1, ..., τn}T be the weight vector of ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N , with τp ≥ 0 and∑n
p=1 τp = 1.

Theorem 3.7. Let any collections ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N be the SFNs. Then operational
properties of SFNs can obtained by utilizing the Definition 3.6 as.

SFWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =
{√

1−Πn
p=1(1− L2

ěŭ
)τp ,Πn

p=1(Měŭ)
τp ,Πn

p=1(Oěŭ)
τp
}
. (17)

Definition 3.8. Let any collections ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N be the SFNs and SFOWA :
SFNn × SFNn → SFN, then SFOWA describe as,

SFOWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =
n∑

p=1

τpℑŭρ(p)
, (18)

In which τ = {τ1, τ2, ..., τn} be the weight vector of ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N , with τp ≥ 0 and∑n
p=1 τp = 1 and ρ(p) indicates a permutation on Z.

Theorem 3.9. Let any collections ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N be the SFNs. Then operational
properties of SFNs can obtained by utilizing the Definition 3.8 as,

SFOWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =
{√

1−Πn
p=1(1− L2

ěŭ
)τp ,Πn

p=1(Měŭ)
τp ,Πn

p=1(Oěŭ)
τp
}
. (19)

Theorem 3.10. Let any collections ℑŭp = ⟨Lěŭ ,Měŭ , Oěŭ⟩ , p ∈ N be the SFNs and λ be a fuzzy mea-
sure on Z. Based on fuzzy measure, a spherical fuzzy Choquet integral weighted averaging (SFCIWA)
operator of dimension n is a mapping SFCIWA : SFNn × SFNn → SFN such that

SFCIWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =


√

1−Πn
p=1(1− L2

ěŭ
)λ(Aρ(p))−λ(Aρ(p-1)),

Πn
p=1(Měŭ)

λ(Aρ(p))−λ(Aρ(p-1)),

Πn
p=1(Oěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1))


where ρ(p) indicates a permutation on Z and Aρ(n) = {1, ..., p}, Aρ(0) = ϕ.

Definition 3.11. Let Z ̸= ϕ be the universe of discourse and any two spherical fuzzy sets ℑj , ℑl.
Then normalized Hamming distance fNHD(ℑj ,ℑl) is given as for all k ∈ Z,

fNHD(ℑj ,ℑl) =
1

n

n∑
p=1

( ∣∣Lℑj
(kp)− Lℑl

(kp)
∣∣+ ∣∣Mℑj

(kp)−Mℑl
(kp)

∣∣+∣∣Oℑj
(kp)−Oℑl

(kp)
∣∣ )

. (20)
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Definition 3.12. Let Z ̸= ϕ be the universe of discourse and any two spherical fuzzy sets ℑj , ℑl.
Then normalized Euclidean distance fNED(ℑj ,ℑl) is given as for all k ∈ Z,

fNED(ℑj ,ℑl) =

√√√√ 1

n

n∑
p=1

(
(Lℑj

(kp)− Lℑl
(kp))

2 + (Mℑj
(kp)−Mℑl

(kp))
2+

(Oℑj
(kp)−Oℑl

(kp))
2

)
. (21)

4.GRA method for multiple attribute decision making with incomplete weight
information in Spherical fuzzy setting

Suppose that A = {b1, ..., bn}, n alternatives and C = {d1, ..., cm}, m alternatives,weight vector for
parameter is ν = (ν1, ..., νm), where νk ≥ 0 (k = 1, ...,m), Σn

k=1νk = 1. Assume that the DM give
information about weights of criteria may be denotes in the following form, for j ̸= k,

(1) If {νj ≥ νk} (weak ranking).
(2) If {νj − νk ≥ λj(> 0)} , (strict ranking).
(3) If {νj ≥ λjνk} , 0 ≤ λj ≤ 1,(multiple ranking).
(4) If {λj ≤ νj ≤ λj + δj} , 0 ≤ λj ≤ λj + δj ≤ 1, (interval ranking).
∆ denoted the set of the known information about the attribute weights provided by the experts.
The decision maker fk(k = 1, ..., l) give the following decision matrix;

Rk =
[
ℑ(k)
ŭpq

]
m×n

=

b1
b2
...
bm


d1 d2 · · · dn

ℑ(k)
u11 ℑ(k)

u12 · · · ℑ(k)
u1n

ℑ(k)
u21 ℑ(k)

u22 · · · ℑ(k)
u2N

...
...

. . .
...

ℑ(k)
um1 ℑ(k)

um2 · · · ℑ(k)
umn


where ℑ(k)

ŭpq
=
(
L(k)

ŭpq
,M (k)

ŭpq
, O(k)

ŭpq

)
is an SFN representing the performance rating of the alternative

ap ∈ A with respect to the attribute cp ∈ C provided by the decision makers dk. To extend GRA
method in the process of group decision making, we first need to fuse all individual decision matrices
into a collective matrix by using SFCIW operator.

Step:1 Suppose that we have m alternative, A = {b1, b2, ..., bm},and n attributes Cq(q = 1, 2, ..., n),
now we invited each expert dk (k = 1, 2, ..., r) to express their individual preference accord-

ing to each by an spherical fuzzy numbers ℑ(k)
ŭpq

=
(
L(k)

ŭpq
,M (k)

ŭpq
, O(k)

ŭpq

)
(p = 1, 2, ...,m; q =

1, 2, ..., n, r = 1, 2, ..., k) expressed by the experts fr. Then, we obtain a decision making

matrices, Ds =
[
E

(s)
ip

]
m×n

(s = 1, 2, ..., r) for decision. But there are two types of criteria,

such as benefit and cost criteria, then we convert the decision matrices, Ds =
[
Es

ip

]
m×n

into

the normalized spherical fuzzy decision matrices, Rr =
[
ℑ(r)
ŭpq

]
m×n

, by the following rules;

ℑ(r)
ŭpq

=

{
ℑr
ŭpq

, for benefit criteria Ap

ℑ(r)
ŭpq

, for cost criteria Ap,
j = 1, 2, ..., n, and ℑ(r)

ŭpq
is the complement of ℑ(r)

ŭpq
.

If all the criteria have the same type, then there is no need of normalization.

Step:2 Confirm the fuzzy density Lěŭ = Lěŭ(ap) of each expert. According to Eq.(8), parameter λ1

of expert can be determined.

Step:3 ℑ(r)
ŭpq

is reordered such that ℑ(r)
ŭpq

≥ ℑ(r−1)
ŭpq

. Using the SF Choquet integral average operator;

SFCIWA
(
ℑ(1)
ŭpq

,ℑ(2)
ŭpq

, ...,ℑ(r)
ŭpq

)
=


√

1−Πr
p=1(1− Lěŭ)

λ(Aρ(p))−λ(Aρ(p-1)),

Πr
p=1(Měŭ)

λ(Aρ(p))−λ(Aρ(p-1)),

Πr
p=1(Oěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1))


to aggregate all the spherical fuzzy decision matrices Rr =

[
ℑ(r)
ŭpq

]
m×n

(r = 1, ..., k) into a col-

lective spherical fuzzy decision matrix R =
[
ℑ(r)
ŭpq

]
m×n

where ℑ(r)
ŭpq

=
(
L(r)

ŭpq
,M (r)

ŭpq
, O(r)

ŭpq

)
(p =
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1, ...,m; q = 1, ..., n, r = 1, ..., k), where ρ(p) indicates a permutation on Z and Aρ(n) = {1, ..., p},
Aρ(0) = ϕ and Lěŭ(ap) can be calculated by Eq. (9).

Step:4 L+ =
{
L+
1 , L

+
2 , ..., L

+
m

}
and P− =

{
P−
1 , P−

2 , ..., P−
m

}
are the SFPIS and SFNIS, respectively.

L+
p = max

q
scpq (22)

and
P−
p = min

q
scpq, (23)

where L+ =
(
L+

ŭp
, I+

ŭp
, N+

ŭp

)
and P− =

(
P−

ŭp
, I−

ŭp
, N−

ŭp

)
p = 1, ..,m.

Step:5 Calculate the distance between the alternative ap and the SFPIS L+, and SFNIS P−, respec-
tively;

f(ej , ek) =
1

n

n∑
p=1

(∣∣Pej (ap)− Pek (ap)
∣∣+ ∣∣Iej (ap)− Iek (ap)

∣∣+ ∣∣Nej (ap)−Nek (ap)
∣∣) . (24)

This distance is known to be Normalized Hamming distance [1] d(ej , ek), and construct an
spherical fuzzy positive-ideal separation matrixD+ and Spherical fuzzy negative-ideal separation
matrix D− as follows;

f
(
ℑu11 , L

+
1

)
f
(
ℑu12 , L

+
2

)
. . . f (ℑu1n , L

+
n )

f
(
ℑu21 , L

+
1

)
f
(
ℑu22 , L

+
2

)
. . . f (ℑu1n , L

+
n )

. . . .

. . . .

. . . .
f
(
ℑum1 , L

+
1

)
f
(
ℑum2 , L

+
2

)
. . . f (ℑumn , L

+
n )

(25)

and
f
(
ℑu11 , P

−
1

)
f
(
ℑu12 , P

−
2

)
. . . f (ℑu1n , P

−
n )

f
(
ℑu21 , L

+
1

)
f
(
ℑu22 , P

−
2

)
. . . f (ℑu1n , P

−
n )

. . . .

. . . .

. . . .
f
(
ℑum1 , P

−
1

)
f
(
ℑum2 , P

−
2

)
. . . f (ℑumn , P

−
n )

(26)

Step:6 Grey coefficient for each alternative calculated from PIS and NIS by utilizing following below
equation. The grey coefficient for each alternative calculated from PIS is provided as

ξ+pq =
min1≤p≤mmin1≤q≤nd

(
ℑŭpq , L

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
ℑŭpq , L

+
p

)
d
(
ℑŭpq , L

+
p

)
+ ρmax1≤p≤mmax1≤q≤nd

(
ℑŭpq , L

+
p

) . (27)

Where p = 1, 2, 3, ...,m and q = 1, 2, 3, ..., n.Similarly, the grey coefficient of each alternative
calculated from NIS is provided as

ξ−pq =
min1≤p≤mmin1≤q≤nd

(
ℑŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
ℑŭpq , P

−
k

)
d
(
ℑŭpq , P

−
k

)
+ ρmax1≤p≤mmax1≤q≤nd

(
ℑŭpq , P

−
k

) . (28)

Where p = 1, 2, 3, ...,m and q = 1, 2, 3, ..., n and the identification coefficient ρ = 0.5.

Step:7 Calculating the grey coefficient degree for each alternative from PIS and NIS by utilizing
following below equation, respectively,

ξ+p =
n∑

q=1

νqξ
+
pq (29)

ξ−p =

n∑
q=1

νqξ
−
pq



Journal of New Theory 28 (2019) 84-97 / The Application of GRA Method Base on Choquet integral... 91

The basic principle of the Grey method is that the chosen alternative should have the “largest
degree of grey relation” from the PIS and the “smallest degree of grey relation” from the NIS.
Obviously, for the weights are known, the smaller ξ−p and the larger ξ+p , the finest alternative ap is.
But incomplete information about weights of alternatives is known. So, in this circumstances the
ξ−p and ξ+p , information about weight calculated initially. So we provide following optimization
models for multiple objective to calculate the information about weight,

(OM1)

{
min ξ−p =

∑n
q=1 νqξ

−
pq p = 1, 2, ...,m

max ξ+p =
∑n

q=1 νqξ
+
pq p = 1, 2, ...,m

(30)

Since each alternative is non-inferior, so there exists no preference relation on the all the alterna-
tives. Then, we aggregate the above optimization models with equal weights into the following
optimization model of single objective,

(OM2)

min ξp =

m∑
p=1

n∑
q=1

(
ξ−pq − ξ+pq

)
νq (31)

To finding solution of OM2, we obtain optimal solution ν = (ν1, ν2, ..., νm), which utilized as
weights informations of provided alternatives. Then, we obtain ξ+p (p = 1, 2, ...,m) and ξ−p (p = 1, 2, ...,m)
as utilizing above formula, respectively.

Step:8 Relative degree calculated for each alternative utilizing the following equation from PIS and
NIS,

ξp =
ξ+p

ξ−p + ξ+p
(p = 1, 2, ...,m) . (32)

Step:9 Ranking all the alternatives ap(p = 1, 2, ...,m) and select finest one(s) in accordance with ξp
(p = 1, 2, ...,m). If any alternative has the highest ξp value, then it is finest alternative according
to the criteria.

Step:10 End.

5.Descriptive Example

The technique proposed in this paper is illustrated by a numerical examples with Spherical fuzzy
information in this section. Suppose a panel of three experts is arranged for selection from four
possible emerging technology enterprises Ži (i = 1, 2, 3, 4). So panel select optimal alternative from
given four alternatives,
(1) Technical advancement is denoted by B1;
(2) Potential market risk is denoted by B2;
(3) Industrialization infrastructure, human resources and financial condition is denoted by B3;
(4) Employment creation and the development of science and technology is denoted by B4.

Step:1 From the results obtained with each emerging technology enterprise, the three experts offering
their own opinions which are shown in tables 1-3.

Table-1.: Spherical fuzzy information D1

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.3, 0.8, 0.5⟩ ⟨0.8, 0.4, 0.3⟩ ⟨0.4, 0.5, 0.7⟩ ⟨0.3, 0.3, 0.4⟩
Ž2 ⟨0.2, 0.6, 0.7⟩ ⟨0.3, 0.9, 0.1⟩ ⟨0.5, 0.3, 0.7⟩ ⟨0.5, 0.4, 0.2⟩
Ž3 ⟨0.4, 0.8, 0.4⟩ ⟨0.5, 0.8, 0.2⟩ ⟨0.2, 0.3, 0.7⟩ ⟨0.6, 0.6, 0.1⟩
Ž4 ⟨0.5, 0.3, 0.8⟩ ⟨0.6, 0.6, 0.3⟩ ⟨0.3, 0.6, 0.5⟩ ⟨0.4, 0.2, 0.3⟩

Table-2.: Spherical fuzzy information D2

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.1, 0.5, 0.7⟩ ⟨0.6, 0.3, 0.4⟩ ⟨0.3, 0.8, 0.6⟩ ⟨0.6, 0.3, 0.2⟩
Ž2 ⟨0.4, 0.4, 0.8⟩ ⟨0.5, 0.7, 0.1⟩ ⟨0.4, 0.2, 0.7⟩ ⟨0.6, 0.1, 0.6⟩
Ž3 ⟨0.2, 0.9, 0.3⟩ ⟨0.7, 0.1, 0.4⟩ ⟨0.3, 0.6, 0.4⟩ ⟨0.6, 0.2, 0.4⟩
Ž4 ⟨0.3, 0.4, 0.8⟩ ⟨0.4, 0.6, 0.5⟩ ⟨0.4, 0.1, 0.8⟩ ⟨0.6, 0.3, 0.3⟩
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Table-3.: Spherical fuzzy information D3

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.4, 0.2, 0.8⟩ ⟨0.4, 0.4, 0.3⟩ ⟨0.5, 0.4, 0.6⟩ ⟨0.5, 0.1, 0.4⟩
Ž2 ⟨0.2, 0.5, 0.7⟩ ⟨0.6, 0.5, 0.4⟩ ⟨0.2, 0.5, 0.8⟩ ⟨0.7, 0.2, 0.4⟩
Ž3 ⟨0.6, 0.4, 0.5⟩ ⟨0.9, 0.3, 0.1⟩ ⟨0.3, 0.1, 0.9⟩ ⟨0.6, 0.2, 0.6⟩
Ž4 ⟨0.5, 0.3, 0.7⟩ ⟨0.8, 0.5, 0.2⟩ ⟨0.3, 0.8, 0.4⟩ ⟨0.5, 0.3, 0.5⟩

Since C1, C3 are cost-type criteria and C2, C4 are benefit-type criteria. So we have need to
normalized the Spherical fuzzy information. Normalized Spherical fuzzy information are shown
in table-4,5,6.:

Table-4.: Normalized Spherical fuzzy information R1

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.5, 0.8, 0.3⟩ ⟨0.8, 0.4, 0.3⟩ ⟨0.7, 0.5, 0.4⟩ ⟨0.3, 0.3, 0.4⟩
Ž2 ⟨0.7, 0.6, 0.2⟩ ⟨0.3, 0.9, 0.1⟩ ⟨0.7, 0.3, 0.5⟩ ⟨0.5, 0.4, 0.2⟩
Ž3 ⟨0.4, 0.8, 0.4⟩ ⟨0.5, 0.8, 0.2⟩ ⟨0.7, 0.3, 0.2⟩ ⟨0.6, 0.6, 0.1⟩
Ž4 ⟨0.8, 0.3, 0.5⟩ ⟨0.6, 0.6, 0.3⟩ ⟨0.5, 0.6, 0.3⟩ ⟨0.4, 0.2, 0.3⟩

Table-5.: Normalized Spherical fuzzy information R2

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.7, 0.5, 0.1⟩ ⟨0.6, 0.3, 0.4⟩ ⟨0.6, 0.8, 0.3⟩ ⟨0.6, 0.3, 0.2⟩
Ž2 ⟨0.8, 0.4, 0.4⟩ ⟨0.5, 0.7, 0.1⟩ ⟨0.7, 0.2, 0.4⟩ ⟨0.6, 0.1, 0.6⟩
Ž3 ⟨0.3, 0.9, 0.2⟩ ⟨0.7, 0.1, 0.4⟩ ⟨0.4, 0.6, 0.3⟩ ⟨0.6, 0.2, 0.4⟩
Ž4 ⟨0.8, 0.4, 0.3⟩ ⟨0.4, 0.6, 0.5⟩ ⟨0.8, 0.1, 0.4⟩ ⟨0.6, 0.3, 0.3⟩

Table-6.: Normalized dSpherical fuzzy information R3

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.8, 0.2, 0.4⟩ ⟨0.4, 0.4, 0.3⟩ ⟨0.6, 0.4, 0.5⟩ ⟨0.5, 0.1, 0.4⟩
Ž2 ⟨0.7, 0.5, 0.2⟩ ⟨0.6, 0.5, 0.4⟩ ⟨0.8, 0.5, 0.2⟩ ⟨0.7, 0.2, 0.4⟩
Ž3 ⟨0.5, 0.4, 0.6⟩ ⟨0.9, 0.3, 0.1⟩ ⟨0.9, 0.1, 0.3⟩ ⟨0.6, 0.2, 0.6⟩
Ž4 ⟨0.7, 0.3, 0.5⟩ ⟨0.8, 0.5, 0.2⟩ ⟨0.4, 0.8, 0.2⟩ ⟨0.5, 0.3, 0.5⟩

Assume that the information about attribute weights, given by experts, is partly known; ∆ =
0.2 ≤ w1 ≤ 0.25,
0.15 ≤ w2 ≤ 0.2,
0.28 ≤ w3 ≤ 0.32,
0.35 ≤ w4 ≤ 0.4

 , wp ≥ 0, p = 1, 2, 3, 4,
4∑

p=1
wp = 1 Then, we utilize the developed approach to

get the most desirable alternative(s).

Step:2 We firstly determine fuzzy density of each decision maker, and its λ parameter. Suppose
that Lěŭ(b1) = 0.30, Lěŭ(b2) = 0.40, Lěŭ(A3) = 0.50. Then λ of expert can be determined:
λ = −0.45. By Eq.(6), we have Lěŭ(b1, b2) = 0.65, Lěŭ(b1, A3) = 0.73, Lěŭ(b2, A3) = 0.81,
Lěŭ(b1, b2, A3) = 1.

Step:3 According to Definition 3.5, ℑ(k)
ŭpq

is reordered such that ℑ(k)
ŭpq

≥ ℑ(k−1)
ŭpq

. Then Utilize the
Spherical fuzzy Choquet integral weighted operator

SFCIWA (ℑŭ1 ,ℑŭ2 , ...,ℑŭn) =


√
1−Πn

p=1(1− Lěŭ)
λ(Aρ(p))−λ(Aρ(p-1)),

Πn
p=1(Měŭ)

λ(Aρ(p))−λ(Aρ(p-1)),

Πn
p=1(Oěŭρ(p)

)λ(Aρ(p))−λ(Aρ(p-1))


to aggregate all the Spherical fuzzy decision matrices Rk =

[
ℑ(k)
ŭpq

]
m×n

into a collective Spherical
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fuzzy decision matrix as follows:

Table-7.: Collective Spherical fuzzy information

Ă1 Ă2 Ă3 Ă4

Ž1 ⟨0.702, 0.417, 0.225⟩ ⟨0.638, 0.361, 0.331⟩ ⟨0.634, 0.545, 0.391⟩ ⟨0.498, 0.204, 0.313⟩
Ž2 ⟨0.740, 0.488, 0.254⟩ ⟨0.498, 0.670, 0.162⟩ ⟨0.740, 0.311, 0.335⟩ ⟨0.616, 0.193, 0.374⟩
Ž3 ⟨0.411, 0.654, 0.361⟩ ⟨0.748, 0.274, 0.200⟩ ⟨0.755, 0.260, 0.265⟩ ⟨0.600, 0.278, 0.304⟩
Ž4 ⟨0.770, 0.331, 0.418⟩ ⟨0.651, 0.562, 0.311⟩ ⟨0.629, 0.354, 0.311⟩ ⟨0.515, 0.265, 0.358⟩

Step:4 Utilize Equations 22 and 23 we get the positive-ideal and negative-ideal solution respectively
are:

L+ = {⟨0.702, 0.417, 0.225⟩ , ⟨0.748, 0.274, 0.200⟩ , ⟨0.755, 0.260, 0.265⟩ , ⟨0.616, 0.193, 0.374⟩}

L− = {⟨0.411, 0.654, 0.361⟩ , ⟨0.498, 0.670, 0.162⟩ , ⟨0.634, 0.545, 0.391⟩ , ⟨0.515, 0.265, 0.358⟩}

Step:5 Utilize equation (25) and (26) to get the positive-ideal separation matrix and negative-ideal
separation matrix respectively as follow;

Table-8.:
Positive-ideal separation matrix

D+ =

Ă1 Ă2 Ă3 Ă4

Ž1 0.0000 0.0822 0.1327 0.0475

Ž2 0.0345 0.1710 0.0338 0.0000

Ž3 0.1656 0.0000 0.0000 0.0429

Ž4 0.0865 0.1241 0.0662 0.0472

Table-9.: Negative-ideal separation matrix

D− =

Ă1 Ă2 Ă3 Ă4

Ž1 0.1656 0.1547 0.0000 0.0309

Ž2 0.1502 0.0000 0.0989 0.0472

Ž3 0.0000 0.1710 0.1327 0.0378

Ž4 0.1842 0.1025 0.0687 0.0000

Step:6 Utilize equations (27) and (28) we get the grey relational coefficient matrices in which each
alternative is calculated from PIS and NIS as follow:

[
ζ+ij

]
=


1.0000 0.5098 0.3918 0.6428

0.7125 0.3333 0.7166 1.0000

0.3405 1.0000 1.0000 0.6658

0.4970 0.4079 0.5636 0.6443


[
ζ−ij

]
=


0.3573 0.3731 1.0000 0.7487

0.3801 1.0000 0.4821 0.6611

1.0000 0.3500 0.4096 0.7090

0.3333 0.4732 0.5151 1.0000


Step:7 We used the model (M2) to establish the single-objective programming model:

min ξ (w) = −0.0659w1 − 0.2392w2 − 0.5377w3 + 0.2088w4

After their solution, the weight vector of attributes are:

w = (0.273, 0.368, 0.227, 0.1300)

From the PIS and NIS, we obtain grey relational coefficient of each alternative:

ξ+1 = 0.6331, ξ+2 = 0.6098, ξ+3 = 0.7745, ξ+4 = 0.4974,

ξ−1 = 0.5590, ξ−2 = 0.6671, ξ−3 = 0.5869, ξ−4 = 0.5120.
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Step:8 Utilize equation 32, we obtain the relative relational degree of each alternative from PIS and
NIS as follows:

ξ1 =
ξ+1

ξ−1 + ξ+1
=

0.6331

0.5590 + 0.6331
= 0.5310

ξ2 =
ξ+2

ξ−2 + ξ+2
=

0.6098

0.6671 + 0.6098
= 0.4775

ξ3 =
ξ+3

ξ−3 + ξ+3
=

0.7745

0.5869 + 0.7745
= 0.5688

ξ4 =
ξ+4

ξ−4 + ξ+4
=

0.4974

0.5120 + 0.4974
= 0.4927

Step:9 The ranking order, according to the relative relational degree are:

Ž3 > Ž1 > Ž4 > Ž2,

and best alternative is Ž3.

6. Conclusion

In this paper, we proposed decision making approach to deal with spherical fuzzy information. As
spherical fuzzy set is the generalization of all the existing structure of fuzzy sets, so an algorithm based
on GRA approach to deal with uncertainty and inaccurate information in decision making problems
using spherical fuzzy environments. Final, a numerical application is illustrated to shows the how
our proposed technique is effective and reliable to deal with uncertainty. In future, we use TOPSIS,
VIKOR, TODAM approaches to deal with uncertainty using spherical fuzzy information. .
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