
New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief
Naim Çağman

Number 29 Year 2019

www.dergipark.org.tr/en/pub/jnt



Journal of New Theory (abbreviated by J. New Theory or JNT) is a mathematical journal focusing 

on new mathematical theories or the applications of a mathematical theory to science. 

JNT founded on 18 November 2014 and its first issue published on 27 January 2015. 

ISSN: 2149-1402 

Editor-in-Chief: Naim Çaǧman  

Email: journalofnewtheory@gmail.com 

Language: English only. 

Article Processing Charges: It has no processing charges. 

Publication Frequency: Quarterly 

Publication Ethics: The governance structure of J. New Theory and its acceptance procedures are 

transparent and designed to ensure the highest quality of published material. Journal of New Theory 

adheres to the international standards developed by the Committee on Publication Ethics (COPE). 

Aim: The aim of the Journal of New Theory is to share new ideas in pure or applied mathematics 

with the world of science. 

Scope: Journal of New Theory is an international, online, open access, and peer-reviewed journal. 

Journal of New Theory publishes original research articles, reports, reviews, editorial, letters to the 

editor, technical notes etc. from all branches of science that use the theories of mathematics. 

Journal of New Theory concerns the studies in the areas of, but not limited to: 

· Fuzzy Sets, 

· Soft Sets, 

· Neutrosophic Sets, 

· Decision-Making 

· Algebra 

· Number Theory 

· Analysis 

· Theory of Functions 

· Geometry 

· Applied Mathematics 

· Topology 

· Fundamental of Mathematics 

· Mathematical Logic 

· Mathematical Physics 

http://www.newtheory.org/editor-in-chief/


You can submit your manuscript in any style or JNT style as pdf. However, you should send your 

paper in JNT style if it would be accepted. The manuscript preparation rules, article template (LaTeX) 

and article template (Microsoft Word) can be accessed from the following links. 

• Manuscript Preparation Rules 

• Article Template (Microsoft Word.DOC) (Version 2019) 

• Article Template (LaTeX) (Version 2019) 

Editor-in-Chief 

Naim Çağman 

Mathematics Department, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey.  

email: naim.cagman@gop.edu.tr 

Associate Editor-in-Chief 

Serdar Enginoğlu  

Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 

email: serdarenginoglu@comu.edu.tr 

İrfan Deli  

M. R. Faculty of Education, Kilis 7 Aralık University, Kilis, Turkey  

email: irfandeli@kilis.edu.tr 

Faruk Karaaslan  

Department of Mathematics, Çankırı Karatekin University, Çankırı, Turkey  

email: fkaraaslan@karatekin.edu.tr 

Area Editors 

Hari Mohan Srivastava  

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 

3R4, Canada  

email: harimsri@math.uvic.ca 

Muhammad Aslam Noor  

COMSATS Institute of Information Technology, Islamabad, Pakistan  

email: noormaslam@hotmail.com 

Florentin Smarandache  

Mathematics and Science Department, University of New Mexico, New Mexico 87301, USA 

email: fsmarandache@gmail.com 

Bijan Davvaz  

Department of Mathematics, Yazd University, Yazd, Iran  

email: davvaz@yazd.ac.ir 

http://www.newtheory.org/forms/Manuscript%20Preparation%20Rules%20for%20jNT.pdf
http://www.newtheory.org/forms/Article_Template(DOC).docx
http://www.newtheory.org/forms/Article_Template(LaTeX).rar
https://scholar.google.com/citations?user=XwJxGAEAAAAJ&hl=en
https://scholar.google.com/citations?user=Pq74XgwAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=Y2rIHOUAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=QedZ_p0AAAAJ&hl=en
https://scholar.google.com.tr/citations?hl=tr&user=cdRbfo8AAAAJ
https://scholar.google.com/citations?user=pMW66zIAAAAJ&hl=en
https://scholar.google.com/citations?user=tmrQsSwAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=9kbPxX0AAAAJ&hl=en


Pabitra Kumar Maji  

Department of Mathematics, Bidhan Chandra College, Asansol 713301, Burdwan (W), West 

Bengal, India.  

email: pabitra_maji@yahoo.com 

Harish Garg  

School of Mathematics, Thapar Institute of Engineering & Technology, Deemed University, 

Patiala-147004, Punjab, India  

email: harish.garg@thapar.edu 

Jianming Zhan  

Department of Mathematics, Hubei University for Nationalities, Hubei Province, 445000, P. R. C.  

email: zhanjianming@hotmail.com 

Surapati Pramanik  

Department of Mathematics, Nandalal Ghosh B.T. College, Narayanpur, Dist- North 24 Parganas, 

West Bengal 743126, India  

email: sura_pati@yaho.co.in 

Muhammad Irfan Ali  

Department of Mathematics, COMSATS Institute of Information Technology Attock, Attock 

43600, Pakistan  

email: mirfanali13@yahoo.com 

Said Broumi  

Department of Mathematics, Hassan II Mohammedia-Casablanca University, Kasablanka 20000, 

Morocco  

email: broumisaid78@gmail.com 

Mumtaz Ali  

University of Southern Queensland, Darling Heights QLD 4350, Australia  

email: Mumtaz.Ali@usq.edu.au 

Oktay Muhtaroğlu  

Department of Mathematics, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey  

email: oktay.muhtaroglu@gop.edu.tr 

Ahmed A. Ramadan  

Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt  

email: aramadan58@gmail.com 

Sunil Jacob John  

Department of Mathematics, National Institute of Technology Calicut, Calicut 673 601 Kerala, 

India  

email: sunil@nitc.ac.in 

Aslıhan Sezgin  

Department of Statistics, Amasya University, Amasya, Turkey  

email: aslihan.sezgin@amasya.edu.tr 

https://scholar.google.com/citations?user=1W16L50AAAAJ&hl=en
https://scholar.google.com.tr/citations?user=fmJuRScAAAAJ&hl=tr
https://scholar.google.com/citations?user=XmJAmNIAAAAJ&hl=en
https://scholar.google.com/citations?user=vLGVDYgAAAAJ&hl=en
https://scholar.google.com/citations?user=aTpWTSMAAAAJ&hl=en
https://scholar.google.com/citations?user=1sfB1r4AAAAJ&hl=en
https://scholar.google.com/citations?user=6ad2IcAAAAAJ&hl=en
https://scholar.google.com/citations?user=UmZ50O8AAAAJ&hl=en
https://scholar.google.com/citations?user=DFbE3bAAAAAJ&hl=en
https://scholar.google.com/citations?user=pDYK_5EAAAAJ&hl=en
https://scholar.google.com/citations?user=cn1nAKoAAAAJ&hl=en


Alaa Mohamed Abd El-latif  

Department of Mathematics, Faculty of Arts and Science, Northern Border University, Rafha, 

Saudi Arabia  

email: alaa_8560@yahoo.com 

Kalyan Mondal  

Department of Mathematics, Jadavpur University, Kolkata, West Bengal 700032, India  

email: kalyanmathematic@gmail.com 

Jun Ye  

Department of Electrical and Information Engineering, Shaoxing University, Shaoxing, Zhejiang, 

P.R. China  

email: yehjun@aliyun.com 

Ayman Shehata  

Department of Mathematics, Faculty of Science, Assiut University, 71516-Assiut, Egypt  

email: drshehata2009@gmail.com 

İdris Zorlutuna  

Department of Mathematics, Cumhuriyet University, Sivas, Turkey  

email: izorlu@cumhuriyet.edu.tr 

Murat Sarı  

Department of Mathematics, Yıldız Technical University, İstanbul, Turkey  

email: sarim@yildiz.edu.tr 

Daud Mohamad  

Faculty of Computer and Mathematical Sciences, University Teknologi Mara, 40450 Shah Alam, 

Malaysia  

email: daud@tmsk.uitm.edu.my 

Tanmay Biswas  

Research Scientist, Rajbari, Rabindrapalli, R. N. Tagore Road, P.O.- Krishnagar Dist-Nadia, PIN- 

741101, West Bengal, India  

email: tanmaybiswas_math@rediffmail.com 

Kadriye Aydemir  

Department of Mathematics, Amasya University, Amasya, Turkey  

email: kadriye.aydemir@amasya.edu.tr 

Ali Boussayoud  

LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, 

Algeria  

email: alboussayoud@gmail.com 

Muhammad Riaz  

Department of Mathematics, Punjab University, Quaid-e-Azam Campus, Lahore-54590, Pakistan  

email: mriaz.math@pu.edu.pk 

https://scholar.google.com/citations?hl=en&user=4V2S3KQAAAAJ&view_op=list_works
https://scholar.google.com/citations?user=hLKZwCEAAAAJ&hl=en
https://www.researchgate.net/profile/Jun_Ye3
https://scholar.google.com.tr/citations?user=yvoSgFkAAAAJ&hl=en
https://scholar.google.com/citations?user=KjI40v4AAAAJ&hl=en
https://scholar.google.com.tr/citations?user=t5Q8UOcAAAAJ&hl=en
https://scholar.google.com/citations?user=mMPyPSoAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=e4jIk7gAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=29xGnFYAAAAJ&hl=en
https://scholar.google.fr/citations?user=X8LOwvkAAAAJ&hl=en
https://scholar.google.com.tr/citations?hl=tr&user=-veaI1IAAAAJ


Serkan Demiriz  

Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, Turkey  

email: serkan.demiriz@gop.edu.tr 

Hayati Olğar  

Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, Turkey  

email: hayati.olgar@gop.edu.tr 

Essam Hamed Hamouda  

Department of Basic Sciences, Faculty of Industrial Education, Beni-Suef University, Beni-Suef, 

Egypt  

email: ehamouda70@gmail.com 

Layout Editors 

Tuğçe Aydın 

Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 

email: aydinttugce@gmail.com 

 

Fatih Karamaz 

Department of Mathematics, Çankırı Karatekin University, Çankırı, Turkey 

email: karamaz@karamaz.com 

Contact 
 

Editor-in-Chief 

Name: Prof. Dr. Naim Çağman 

Email: journalofnewtheory@gmail.com 

Phone: +905354092136 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa 

University, Tokat, Turkey 

 

Editors 

Name: Assoc. Prof. Dr. Faruk Karaaslan 

Email: karaaslan.faruk@gmail.com 

Phone: +905058314380 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Çankırı Karatekin 

University, 18200, Çankırı, Turkey 

 

Name: Assoc. Prof. Dr. İrfan Deli 

Email: irfandeli@kilis.edu.tr 

Phone: +905426732708 

Address: M.R. Faculty of Education, Kilis 7 Aralık University, Kilis, Turkey 

 

Name: Asst. Prof. Dr. Serdar Enginoğlu 

Email: serdarenginoglu@gmail.com 

Phone: +905052241254 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart 

University, 17100, Çanakkale, Turkey 

https://scholar.google.com/citations?user=VxTvdZYAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=SkbTA4AAAAAJ&hl=en
https://scholar.google.com/citations?user=bBhs6HQAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=woBomhoAAAAJ&hl=en
https://www.researchgate.net/profile/Fatih_Karamaz


CONTENT 

1.  Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, Inconsistent Intuitionistic 

Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), Pythagorean Fuzzy Set, Spherical Fuzzy Set, 

and q-Rung Orthopair Fuzzy Set, while Neutrosophication is a Generalization of Regret 

Theory, Grey System Theory, and Three-Ways Decision (revisited) / Pages: 1-31 

Florentin SMARANDACHE 

2.  A Note on Rhotrices Ring / Pages: 32-41 

Ummahan Merdinaz ACAR, Betül COŞGUN, Emre ÇİFTLİKLİ 

3.  On Some Hyperideals in Ordered Semihypergroups / Pages: 42-48 

Abul BASAR, Shahnawaz ALİ, Mohammad Yahya ABBASİ, Bhavanari SATYANARAYANA, 

Poonam Kumar SHARMA 

4.  New Topologies via Weak N-Topological Open Sets and Mappings / Pages: 49-57 

M.lellis THIVAGAR, Arockia DASAN 

5.  Some Results on Lattice (Anti-Lattice) Ordered Double Framed Soft Sets / Pages: 58-70 

Muhammad KHAN, Tahir BAKHAT, Muhammad IFTİKHAR 

6.  Bipolar Fuzzy k-Ideals in KU-Semigroups / Pages: 71-78 

Fatema KAREEM, Elaf Raad HASAN 

7.  Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets and Their Application to a Performance-

Based Value Assignment Problem / Pages: 79-88 

Emre SULUKAN, Naim ÇAĞMAN, Tuğçe AYDIN 

8.  Energy Decay of Solutions for a System of Higher-Order Kirchhoff Type Equations / Pages: 

89-100 

Erhan PİŞKİN, Ezgi HARMAN 

9.  Convex and Concave Sets Based on Soft Sets and Fuzzy Soft Sets / Pages: 101-110 

İrfan DELİ 

10.  On µsp-Continuous Maps in Topological Spaces / Pages: 111-119 

Selvaraj GANESAN, Rajamanickam Selva VİNAYAGAM, Balakrishnan SARATHKUMAR 

 

https://dergipark.org.tr/en/user/favorite/article/666629
https://dergipark.org.tr/en/pub/jnt/issue/51172/666629
https://dergipark.org.tr/en/pub/jnt/issue/51172/666629
https://dergipark.org.tr/en/pub/jnt/issue/51172/666629
https://dergipark.org.tr/en/pub/jnt/issue/51172/666629
https://dergipark.org.tr/en/user/favorite/article/546482
https://dergipark.org.tr/en/pub/jnt/issue/51172/546482
https://dergipark.org.tr/en/user/favorite/article/544777
https://dergipark.org.tr/en/pub/jnt/issue/51172/544777
https://dergipark.org.tr/en/user/favorite/article/666701
https://dergipark.org.tr/en/pub/jnt/issue/51172/666701
https://dergipark.org.tr/en/user/favorite/article/666707
https://dergipark.org.tr/en/pub/jnt/issue/51172/666707
https://dergipark.org.tr/en/pub/jnt/issue/51172/666717
https://dergipark.org.tr/en/user/favorite/article/666719
https://dergipark.org.tr/en/pub/jnt/issue/51172/666719
https://dergipark.org.tr/en/pub/jnt/issue/51172/666719
https://dergipark.org.tr/en/user/favorite/article/632945
https://dergipark.org.tr/en/pub/jnt/issue/51172/632945
https://dergipark.org.tr/en/user/favorite/article/510563
https://dergipark.org.tr/en/pub/jnt/issue/51172/510563
https://dergipark.org.tr/en/user/favorite/article/666740
https://dergipark.org.tr/en/pub/jnt/issue/51172/666740


 

29 (2019) 01-31 

Journal of New Theory 

http://www.newtheory.org 

Open Access 

 

Neutrosophic Set is a Generalization of Intuitionistic Fuzzy Set, 

Inconsistent Intuitionistic Fuzzy Set (Picture Fuzzy Set, Ternary Fuzzy Set), 

Pythagorean Fuzzy Set, Spherical Fuzzy Set, and q-Rung Orthopair Fuzzy 

Set, while Neutrosophication is a Generalization of Regret Theory, Grey 

System Theory, and Three-Ways Decision (revisited) 
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Original Article 

Abstract − In this paper, we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy 

Set (IFS) no matter if the sum of neutrosophic components is < 1, or > 1, or = 1. For the case when 

the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators, one gets 

a different result than applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators 

ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the 

indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is 

also more flexible and effective because it handles, besides independent components, also partially 

independent and partially dependent components, while IFS cannot deal with these. Since there are 

many types of indeterminacies in our world, we can construct different approaches to various 

neutrosophic concepts. Neutrosophic Set (NS) is a generalisation of Inconsistent Intuitionistic Fuzzy 

Set (IIFS) - which is equivalent to the Picture Fuzzy Set (PFS) and Ternary Fuzzy Set (TFS) -, 

Pythagorean Fuzzy Set (PyFS), Spherical Fuzzy Set (SFS), and q-Rung Orthopair Fuzzy Set (q-ROFS). 

Moreover, all these sets are more general than Intuitionistic Fuzzy Set. We prove that Atanassov’s 

Intuitionistic Fuzzy Set of the second type (IFS2), and Spherical Fuzzy Sets (SFS) do not have 

independent components. Furthermore, we show that Spherical Neutrosophic Set (SNS) and n-Hyper 

Spherical Neutrosophic Set (n-HSNS) are generalisations of IFS2 and SFS. The main distinction 

between Neutrosophic Set (NS) and all previous set theories are  a) the independence of all three 

neutrosophic components - truth-membership (𝑇), indeterminacy-membership (𝐼), falsehood-

nonmembership (𝐹) - concerning each other in NS – while in the previous set theories their components 

are dependent on each other, and b) the importance of indeterminacy in NS - while in previous set 

theories indeterminacy is entirely or partially ignored. Also, Regret Theory, Grey System Theory, and 

Three-Ways Decision are particular cases of Neutrosophication and Neutrosophic Probability. We now 

extend the Three-Ways Decision to n-Ways Decision. 

Keywords − Neutrosophic set, intuitionistic fuzzy set, Pythagorean fuzzy set, spherical fuzzy set, q-rung orthopair fuzzy set  

1. Introduction 

This paper recalls ideas about the distinctions between neutrosophic set and intuitionistic fuzzy set presented 

in previous versions of this paper [1-5]. Mostly, in this paper, we respond to Atanassov and Vassiliev’s paper 

[6] about the fact that neutrosophic set is a generalisation of intuitionistic fuzzy set. 

We use the notations employed in the neutrosophic environment [1-5] since they are better descriptive than 

the Greek letters used in an intuitionistic fuzzy environment, i.e., truth-membership (𝑇), indeterminacy-

membership (𝐼), and falsehood-nonmembership (𝐹). 

 
1smarand@unm.edu (Corresponding Author) 
1Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, New Mexico 87301, USA  

http://www.newtheory.org/
mailto:smarand@unm.edu
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We also use the triplet components in this order: (𝑇, 𝐼, 𝐹). 

Neutrosophic “Fuzzy” Set (as named by Atanassov and Vassiliev [6]) is commonly called “Single-Valued” 

Neutrosophic Set (i.e. the neutrosophic components are single-valued numbers) by the neutrosophic 

community that now riches about 1,000 researchers, from 56 countries around the world, which have produced 

about 2,000 publications (papers, conference presentations, books, MSc theses and PhD dissertations).  

The NS is more complex and more general than previous (crisp/fuzzy/intuitionistic fuzzy/picture fuzzy/ternary 

fuzzy set/Pythagorean fuzzy/spherical fuzzy/q-Rung orthopair fuzzy) sets, because:  

i. A new branch of philosophy was born, called Neutrosophy [7], which is a generalisation of Dialectics 

(and of YinYang Chinese philosophy), where not only the dynamics of opposites are studied, but the 

dynamics of opposites together with their neutrals as well, i.e. (< 𝐴 >,< 𝑛𝑒𝑢𝑡𝐴 >,< 𝑎𝑛𝑡𝑖𝐴 >), 

where < 𝐴 > is an item, < 𝑎𝑛𝑡𝑖𝐴 > its opposite, and < 𝑛𝑒𝑢𝑡𝐴 > their neutral (indeterminacy between 

them).  

ii. Neutrosophy show the significance of neutrality/indeterminacy (< 𝑛𝑒𝑢𝑡𝐴 >) that gave birth to 

neutrosophic set/logic/probability/statistics/measure/integral and so on, that have many practical 

applications in various fields. 

iii. The sum of the Single-Valued Neutrosophic Set/Logic components was allowed to be up to 3 (showing 

the importance of independence of the neutrosophic components among themselves), which permitted 

the characterisation of paraconsistent/conflictual sets/propositions (by letting the sum of components 

> 1), and of paradoxical sets/propositions, represented by the neutrosophic triplet (1, 1, 1). 

iv. NS can distinguish between absolute truth/indeterminacy/falsehood and relative 

truth/indeterminacy/falsehood using nonstandard analysis, which generated the Nonstandard 

Neutrosophic Set (NNS). 

v. Each neutrosophic component was allowed to take values outside of the interval [0,1], that culminated 

with the introduction of the neutrosophic overset/underset/offset [8]. 

vi. NS was enlarged by Smarandache to Refined Neutrosophic Set (RNS), where each neutrosophic 

component was refined / split into sub-components [9]., i.e. 𝑇 was refined/split into 𝑇1, 𝑇2, … , 𝑇𝑝; 𝐼 

was refined / split into 𝐼1, 𝐼2, … , 𝐼𝑟; and 𝐹 was refined split into 𝐹1, 𝐹2, … , 𝐹𝑠; where 𝑝, 𝑟, 𝑠 ≥  1 are 

integers and 𝑝 +  𝑟 +  𝑠 ≥  4; all 𝑇𝑗, 𝐼𝑘, 𝐹𝑙 are subsets of [0,1] with no other restriction. 

vii. RNS permitted the extension of the Law of Included Middle to the neutrosophic Law of Included 

Multiple-Middle [10]. 

viii. Classical Probability and Imprecise Probability were extended to Neutrosophic Probability [11], where 

for each event 𝐸 one has: the chance that event 𝐸 occurs (𝑐ℎ(𝐸)), indeterminate-chance that event 𝐸 

occurs or not (𝑐ℎ(𝑛𝑒𝑢𝑡𝐸)), and the chance that the event 𝐸 does not occur (𝑐ℎ(𝑎𝑛𝑡𝑖𝐸)), with: 0 ≤

𝑠𝑢𝑝{𝑐ℎ(𝐸)} + 𝑠𝑢𝑝{𝑐ℎ(𝑛𝑒𝑢𝑡𝐸)} + 𝑠𝑢𝑝{𝑐ℎ(𝑎𝑛𝑡𝑖𝐸)} ≤ 3. 

ix. Classical Statistics was extended to Neutrosophic Statistics [12] that deals with indeterminate/ 

incomplete/inconsistent/vague data regarding samples and populations. 

And so on (see below more details). Several definitions are recalled for paper’s self-containment.  

2. Definition of Single-Valued Neutrosophic Set (NS) 

Introduced by Smarandache [13-15] in 1998. Let 𝑈 be a universe of discourse and a set 𝐴𝑁𝑆  ⊆  𝑈. 

Then,  𝐴𝑁𝑆  =  {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∊  𝑈}, where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∶ 𝑈 →  [0, 1] represent the degree 

of truth-membership, degree of indeterminacy-membership, and degree of false-nonmembership respectively, 

with 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3.  

The neutrosophic components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) are independent concerning each other. 
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3. Definition of Single-Valued Refined Neutrosophic Set (RNS) 

Introduced by Smarandache [9] in 2013. Let 𝑈 be a universe of discourse and a set 𝐴𝑅𝑁𝑆  ⊆  𝑈.  Then,  

𝐴𝑅𝑁𝑆 = {〈𝑥, 𝑇1𝐴(𝑥), 𝑇2𝐴(𝑥),… , 𝑇𝑝𝐴(𝑥); 𝐼1𝐴(𝑥), 𝐼2𝐴(𝑥),… , 𝐼𝑟𝐴(𝑥); 𝐹1𝐴(𝑥), 𝐹2𝐴(𝑥),… , 𝐹𝑠𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where all 𝑇𝑗𝐴(𝑥), 1 ≤ 𝑗 ≤ 𝑝, 𝐼𝑘𝐴(𝑥), 1 ≤ 𝑘 ≤ 𝑟, 𝐹𝑙𝐴(𝑥), 1 ≤ 𝑙 ≤ 𝑠 : 𝑈 → [0, 1], and 

i. 𝑇𝑗𝐴(𝑥) represents the 𝑗𝑡ℎ sub-membership degree, 

ii. 𝐼𝑘𝐴(𝑥) represents the 𝑘𝑡ℎ sub-indeterminacy degree, 

iii. 𝐹𝑙𝐴(𝑥) represents the 𝑙𝑡ℎ sub-nonmembership degree, 

with 𝑝, 𝑟, 𝑠 ≥ 1 integers, where 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 4, and: 

0 ≤ ∑ 𝑇𝑗𝐴(𝑥) + ∑ 𝐼𝑘𝐴(𝑥) + ∑ 𝑇𝑗𝐴(𝑥) ≤ 𝑛𝑠
𝑙=1

𝑟
𝑘=1

𝑝
𝑗=1 . 

All neutrosophic sub-components 𝑇𝑗𝐴(𝑥), 𝐼𝑘𝐴(𝑥), 𝐹𝑙𝐴(𝑥) are independent concerning each other.  

4. Definition of Single-Valued Intuitionistic Fuzzy Set (IFS) 

Introduced by Atanassov [16-18] in 1983. Let 𝑈 be a universe of discourse and a set 𝐴𝐼𝐹𝑆 ⊆ 𝑈.  Then, 

𝐴𝐼𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) ∶ 𝑈 → [0, 1] represent the degree of membership and degree of nonmembership 

respectively, with 𝑇𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 1, and 𝐼𝐴(𝑥) = 1 − 𝑇𝐴(𝑥) − 𝐹𝐴(𝑥) represents degree of indeterminacy (in 

previous publications it was called degree of hesitancy). 

The intuitionistic fuzzy components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) are dependent concerning each other. 

5. Definition of Single-Valued Inconsistent Intuitionistic Fuzzy Set (Equivalent to 

Single-Valued Picture Fuzzy Set, and with Single-Valued Ternary Fuzzy Set) 

The single-valued Inconsistent Intuitionistic Fuzzy Set (IIFS), introduced by Hindde and Patching [19] in 2008, 

and the single-valued Picture Fuzzy Set (PFS), introduced by Cuong [20] in 2013, indeed coincide, as 

Atanassov and Vassiliev have observed; also we add that single-valued Ternary Fuzzy Set, introduced by 

Wang, Ha and Liu [21] in 2015 also coincided with them. All these three notions are defined as follows. 

Let 𝒰 be a universe of discourse, and let us consider a subset 𝐴 ⊆ 𝒰. Then,  

𝐴𝐼𝐼𝐹𝑆 = 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝒰}, 

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], and the sum 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 1, for all 𝑥 ∈ 𝒰. 

In these sets, the denominations are: 

i. 𝑇𝐴(𝑥) is called degree of membership (or validity, or positive membership); 

ii. 𝐼𝐴(𝑥) is called degree of neutral membership; 

iii. 𝐹𝐴(𝑥) is called degree of nonmembership (or nonvalidity, or negative membership). 

The refusal degree is: 𝑅𝐴(𝑥) = 1 − 𝑇𝐴(𝑥) − 𝐼𝐴(𝑥) − 𝐹𝐴(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝒰. 

The IIFS (PFS, TFS) components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥), 𝑅𝐴(𝑥) are dependent concerning each other. 

Wang, Ha and Liu’s [21] assertion that “neutrosophic set theory is difficult to handle the voting problem, as 

the sum of the three components is greater than 1” is not true, since the sum of the three neutrosophic 

components is not necessarily greater than 1, but it can be less than or equal to any number between 0 and 3, 

i.e. 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3, so, for example, the sum of the three neutrosophic components can be 

less than 1, or equal to 1, or greater than 1 depending on each application. 
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6. Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set are Particular Cases 

of the Neutrosophic Set  

The Inconsistent Intuitionistic Fuzzy Set and the Picture Fuzzy Set and Ternary Fuzzy Set are particular cases 

of the Neutrosophic Set (NS). Because, in neutrosophic set, similarly taking single-valued components 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], one has the sum 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) ≤ 3, which means that 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +

 𝐹𝐴(𝑥) can be equal to or less than any number between 0 and 3. 

Therefore, in the particular case when choosing the sum equal to 1 ∈ [0, 3] and getting 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +

 𝐹𝐴(𝑥) ≤ 1, one obtains IIFS and PFS and TFS. 

7. Single-Valued Intuitionistic Fuzzy Set is a Particular Case of Single-Valued 

Neutrosophic Set 

Single-valued Intuitionistic Fuzzy Set is a particular case of single-valued Neutrosophic Set because we can 

choose the sum to be equal to 1: 

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +  𝐹𝐴(𝑥) = 1. 

8. Inconsistent Intuitionistic Fuzzy Set and Picture Fuzzy Set are Also Particular Cases 

of Single-Valued Refined Neutrosophic Set  

The Inconsistent Intuitionistic Fuzzy Set (IIFS), Picture Fuzzy Set (PFS), and Ternary Fuzzy Set (TFS) that 

coincide with each other are besides particular case(s) of Single-Valued Refined Neutrosophic Set (RNS). 

We may define: 

𝐴𝐼𝐼𝐹𝑆 ≡ 𝐴𝑃𝐹𝑆 = 𝐴𝑇𝐹𝑆 = {𝑥, 𝑇𝐴(𝑥), 𝐼1𝐴
(𝑥), 𝐼2𝐴

(𝑥), 𝐹𝐴(𝑥)|𝑥 ∈ 𝒰}, 

with 𝑇𝐴(𝑥), 𝐼1𝐴
(𝑥), 𝐼2𝐴

(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], and the sum 𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) = 1, for all 𝑥 ∈ 𝒰; 

where: 

i. 𝑇𝐴(𝑥) is the degree of positive membership (validity, etc.); 

ii. 𝐼1𝐴
(𝑥) is the degree of neutral membership; 

iii. 𝐼2𝐴
(𝑥) is the refusal degree; 

iv. 𝐹𝐴(𝑥) is the degree of negative membership (non-validity, etc.). 

𝑛 = 4, and as a particular case of the sum 𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) ≤ 4, where the sum can be any 

positive number up to 4, we take the positive number 1 for the sum: 

𝑇𝐴(𝑥) + 𝐼1𝐴
(𝑥) + 𝐼2𝐴

(𝑥) + 𝐹𝐴(𝑥) = 1. 

9. Independence of Neutrosophic Components vs Dependence of Intuitionistic Fuzzy 

Components  

Section 4, equations (46) - (51) in Atanassov’s and Vassiliev’s paper [6], is reproduced below: 

“4. Interval-valued intuitionistic fuzzy sets, intuitionistic fuzzy sets, and neutrosophic fuzzy sets 

(…) the concept of a Neutrosophic Fuzzy Set (NFS) is introduced, as follows: 

𝐴𝑛 = {𝑥, 𝜇𝐴
𝑛(𝑥), 𝜈𝐴

𝑛(𝑥), 𝜋𝐴
𝑛(𝑥)|𝑥 ∈ 𝐸} (1) 

where 𝜇𝐴
𝑛(𝑥), 𝜈𝐴

𝑛(𝑥), 𝜋𝐴
𝑛(𝑥) ∈ [0,1], and have the same sense as IFS. 

Let  
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sup
𝑦∈𝐸

𝜇𝐴
𝑛(𝑦) + sup

𝑦∈𝐸
𝜈𝐴

𝑛(𝑦) + sup
𝑦∈𝐸

𝜋𝐴
𝑛(𝑦) ≠ 0 (2) 

Then, we define: 

𝜇𝐴
𝑖 (𝑥) =

𝜇𝐴
𝑛(𝑥)

sup
𝑦∈𝐸

𝜇𝐴
𝑛(𝑦) + sup

𝑦∈𝐸
𝜈𝐴

𝑛(𝑦) + sup
𝑦∈𝐸

𝜋𝐴
𝑛(𝑦)

 (3) 

𝜈𝐴
𝑖 (𝑥) =

𝜈𝐴
𝑛(𝑥)

sup
𝑦∈𝐸

𝜇𝐴
𝑛(𝑦) + sup

𝑦∈𝐸
𝜈𝐴

𝑛(𝑦) + sup
𝑦∈𝐸

𝜋𝐴
𝑛(𝑦)

 (4) 

𝜋𝐴
𝑖 (𝑥) =

𝜋𝐴
𝑛(𝑥)

sup
𝑦∈𝐸

𝜇𝐴
𝑛(𝑦) + sup

𝑦∈𝐸
𝜈𝐴

𝑛(𝑦) + sup
𝑦∈𝐸

𝜋𝐴
𝑛(𝑦)

 (5) 

𝚤𝐴
𝑖 (𝑥) = 1 − 𝜇𝐴

𝑖 (𝑥) − 𝜈𝐴
𝑖 (𝑥) − 𝜋𝐴

𝑖 (𝑥) (6) 

Using the neutrosophic component common notations, 𝑇𝐴(𝑥) ≡ 𝜇𝐴
𝑛(𝑥), 𝐼𝐴(𝑥) ≡ 𝜋𝐴

𝑛(𝑥), and 𝐹𝐴(𝑥) ≡ 𝜈𝐴
𝑛(𝑥), 

the refusal degree 𝑅𝐴(𝑥), and 𝐴𝑁 ≡ 𝐴𝑛 for the neutrosophic set, and considering the triplet’s order (𝑇, 𝐼, 𝐹), 

with the universe of discourse 𝒰 ≡ 𝐸, we can re-write the above formulas as follows: 

𝐴𝑁 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝒰} (7) 

where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], for all 𝑥 ∈ 𝒰. 

Neutrosophic Fuzzy Set is commonly named Single-Valued Neutrosophic Set (SVNS), i.e. the components are 

single-valued numbers. 

The authors, Atanassov and Vassiliev, assert that 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) “have the same sense as IFS” 

(Intuitionistic Fuzzy Set). 

But this is untrue since in IFS one has 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 1, therefore the IFS components 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝑇𝐴(𝑥) are dependent, while in SVNS (Single-Valued Neutrosophic Set), one has 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +

𝐹𝐴(𝑥) ≤ 3, what the authors omit to mention, therefore the SVNS components 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) are 

independent, and this makes a big difference, as we will see below. 

In general, for the dependent components, if one component’s value changes, the other components values also 

change (in order for their total sum to keep being up to 1). While for the independent components, if one 

component changes, the other components do not need to change since their total sum is always up to 3. 

Let us re-write the equations (2) - (6) from authors’ paper: 

Assume 

sup
𝑦∈𝒰

𝑇𝐴 (𝑦) + sup
𝑦∈𝒰

𝐼𝐴 (𝑦) + sup
𝑦∈𝒰

𝐹𝐴 (𝑦) ≠ 0 (8) 

The authors have defined: 

𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥) =

𝑇𝐴(𝑥)

sup
𝑦∈𝒰

𝑇𝐴 (𝑦) + sup
𝑦∈𝒰

𝐼𝐴 (𝑦) + sup
𝑦∈𝒰

𝐹𝐴 (𝑦)
 (9) 

𝐹𝐴
𝐼𝐼𝐹𝑆(𝑥) =

𝐹𝐴(𝑥)

sup
𝑦∈𝒰

𝑇𝐴 (𝑦) + sup
𝑦∈𝒰

𝐼𝐴 (𝑦) + sup
𝑦∈𝒰

𝐹𝐴 (𝑦)
 (10) 
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𝐼𝐴
𝐼𝐼𝐹𝑆(𝑥) =

𝐼𝐴(𝑥)

sup
𝑦∈𝒰

𝑇𝐴 (𝑦) + sup
𝑦∈𝒰

𝐼𝐴 (𝑦) + sup
𝑦∈𝒰

𝐹𝐴 (𝑦)
 (11) 

These mathematical transfigurations, which transform [change in form] the neutrosophic components 

𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], whose sum 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, into inconsistent intuitionistic fuzzy 

components: 𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥), 𝐼𝐴

𝐼𝐼𝐹𝑆(𝑥), 𝐹𝐴
𝐼𝐼𝐹𝑆(𝑥) ∈ [0, 1], whose sum 𝑇𝐴

𝐼𝐼𝐹𝑆(𝑥) + 𝐼𝐴
𝐼𝐼𝐹𝑆(𝑥) + 𝐹𝐴

𝐼𝐼𝐹𝑆(𝑥) ≤ 1, and the 

refusal degree 

𝑅𝐴
𝐼𝐼𝐹𝑆(𝑥) = 1 − 𝑇𝐴

𝐼𝐼𝐹𝑆(𝑥) − 𝐼𝐴
𝐼𝐼𝐹𝑆(𝑥) − 𝐹𝐴

𝐼𝐼𝐹𝑆(𝑥) ∈ [0,1] (12) 

distort the original application, i.e. the original neutrosophic application and its intuitionistic fuzzy transformed 

application are not equivalent, see below. 

This is because, in this case, the change in form brings a change in content. 

10. By Transforming the Neutrosophic Components into Intuitionistic Fuzzy 

Components the Independence of the Neutrosophic Components is Lost  

In reference paper [6], Section 4, Atanassov and Vassilev, convert the neutrosophic components into 

intuitionistic fuzzy components. 

But, converting a single-valued neutrosophic triplet (𝑇1, 𝐼1, 𝐹1), with 𝑇1, 𝐼1, 𝐹1 ∈ [0,1] and  

𝑇1 + 𝐼1+𝐹1 ≤ 3 that occurs into a neutrosophic application 𝛼𝑁, to a single-valued intuitionistic triplet (𝑇2, 𝐼2, 

𝐹2),  with 𝑇2, 𝐼2, 𝐹2 ∈ [0,1] and 𝑇2 + 𝐹2 ≤ 1 (or 𝑇2 + 𝐼2 + 𝐹2 = 1) that would occur into an intuitionistic fuzzy 

application 𝛼𝐼𝐹, is just a mathematical artefact, and there could be constructed many such mathematical 

operators [the authors present four of them], even more: it is possible to convert from the sum 𝑇1 + 𝐼1+𝐹1 ≤ 3 

to the sum  

𝑇2 + 𝐼2 + 𝐹2 equals to any positive number – but they are just abstract transformations.  

The neutrosophic application 𝛼𝑁  will not be equivalent to the resulting intuitionistic fuzzy application 𝛼𝐼𝐹, 

since while in 𝛼𝑁 the neutrosophic components 𝑇1, 𝐼1, 𝐹1 are independent (because their sum is up to 3), in 

𝛼𝐼𝐹 the intuitionistic fuzzy components 𝑇2, 𝐼2, 𝐹2 are dependent (because their sum is 1). Therefore, the 

independence of components is lost. 

Moreover, the independence of the neutrosophic components is the main distinction between neutrosophic set 

vs intuitionistic fuzzy set. 

Therefore, the resulted in the intuitionistic fuzzy application 𝛼𝐼𝐹 after the mathematical transformation is just 

a sub-application (particular case) of the original neutrosophic application 𝛼𝑁. 

11. Degree of Dependence/Independence between the Components  

The degree of dependence/independence between components was introduced by Smarandache [22] in 2006. 

In general, the sum of two components 𝑥 and 𝑦 that vary in the unitary interval [0,1] is: 

0 ≤ 𝑥 + 𝑦 ≤ 2 − 𝑑(𝑥, 𝑦), 

where 𝑑(𝑥, 𝑦) is the degree of dependence between 𝑥 and 𝑦, while 1 − 𝑑(𝑥, 𝑦) is the degree of independence 

between 𝑥 and 𝑦. 

NS is also flexible because it handles, besides independent components, also partially independent and partially 

dependent components, while IFS cannot deal with these. 
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For example, if 𝑇 and 𝐹 are dependent, then 0 ≤ 𝑇 + 𝐹 ≤ 1, while if component 𝐼 is independent of them, 

thus 0 ≤ 𝐼 ≤ 1, then 0 ≤ 𝑇 + 𝐼 + 𝐹 ≤ 2. Therefore, the components 𝑇, 𝐼, 𝐹, in general, are partially dependent 

and partially independent. 

12. Intuitionistic Fuzzy Operators Ignore the Indeterminacy, while Neutrosophic 

Operators Give Indeterminacy the Same Weight as to Truth-Membership and 

Falsehood-Nonmembership  

Indeterminacy in intuitionistic fuzzy set is ignored by the intuitionistic fuzzy aggregation operators, while the 

neutrosophic aggregation operators treat the indeterminacy at the same weight as the other two neutrosophic 

components (truth-membership and falsehood-membership). 

Thus, even if we have two single-valued triplets, with the sum of each three components equal to 1 {therefore 

triplet that may be treated both as intuitionistic fuzzy triplet, and neutrosophic triplet in the same time (since 

in neutrosophic environment the sum of the neutrosophic components can be any number between 0 and 3, 

whence, in particular, we may take the sum 1)}, after applying the intuitionistic fuzzy aggregation operators 

we get a different result from that obtained after applying the neutrosophic aggregation operators. 

13. Intuitionistic Fuzzy Operators and Neutrosophic Operators  

Let the intuitionistic fuzzy operators be denoted as negation (¬𝐼𝐹), intersection (∧𝐼𝐹), union (∨𝐼𝐹), and 

implication (→𝐼𝐹), and the neutrosophic operators [complement, intersection, union, and implication 

respectively] be denoted as negation (¬𝑁), intersection (∧𝑁), union (∨𝑁), and implication (→𝑁). 

Let 𝐴1 = (𝑎1, 𝑏1, 𝑐1) and 𝐴2 = (𝑎2, 𝑏2, 𝑐2) be two triplets such that 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 ∈ [0,1] and  

𝑎1 + 𝑏1 + 𝑐1 = 𝑎2 + 𝑏2 + 𝑐2 = 1. 

The intuitionistic fuzzy operators and neutrosophic operators are based on fuzzy t-norm (∧𝐹) and fuzzy t-conorm 

(∨𝐹). We will take for this article the simplest ones:  

𝑎1 ∧𝐹 𝑎2 = 𝑚𝑖𝑛{𝑎1, 𝑎2} and 𝑎1 ∨𝐹 𝑎2 = 𝑚𝑎𝑥{𝑎1, 𝑎2}, 

where ∧𝐹 is the fuzzy intersection (t-norm) and ∨𝐹 is the fuzzy union (t-conorm). 

For the intuitionistic fuzzy implication and neutrosophic implication, we extend the classical implication:  

𝐴1 → 𝐴2 that is classically equivalent to  ¬𝐴1 ∨ 𝐴2, 

where → is the classical implication, ¬ the classical negation (complement), and ∨ the classical union, to the 

intuitionistic fuzzy environment and respectively to the neutrosophic environment. 

However, taking other fuzzy t-norm and fuzzy t-conorm, the conclusion will be the same, i.e. the results of 

intuitionistic fuzzy aggregation operators are different from the results of neutrosophic aggregation operators 

applied on the same triplets. 

Intuitionistic Fuzzy Aggregation Operators {the simplest used intuitionistic fuzzy operations}: 

Intuitionistic Fuzzy Negation: 

¬𝐼𝐹(𝑎1, 𝑏1, 𝑐1) = (𝑐1, 𝑏1, 𝑎1) 

Intuitionistic Fuzzy Intersection: 

(𝑎1, 𝑏1, 𝑐1) ∧𝐼𝐹 (𝑎2, 𝑏2, 𝑐2) = (min{𝑎1, 𝑎2} , 1 − min{𝑎1, 𝑎2} − max{𝑐1, 𝑐2} ,max{𝑐1, 𝑐2}) 

Intuitionistic Fuzzy Union: 

(𝑎1, 𝑏1, 𝑐1) ∨𝐼𝐹 (𝑎2, 𝑏2, 𝑐2) = (max{𝑎1, 𝑎2}, 1 − max{𝑎1, 𝑎2} − min{𝑐1, 𝑐2} ,min{𝑐1, 𝑐2}) 

Intuitionistic Fuzzy Implication: 
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(𝑎1, 𝑏1, 𝑐1) →𝐼𝐹 (𝑎2, 𝑏2, 𝑐2) is intuitionistically fuzzy equivalent to ¬𝐼𝐹(𝑎1, 𝑏1, 𝑐1) ∨𝐼𝐹 (𝑎2, 𝑏2, 𝑐2) 

Neutrosophic Aggregation Operators {the simplest used neutrosophic operations}: 

Neutrosophic Negation: 

¬𝑁(𝑎1, 𝑏1, 𝑐1) = (𝑐1, 1 − 𝑏1, 𝑎1) 

Neutrosophic Intersection: 

(𝑎1, 𝑏1, 𝑐1) ∧𝑁 (𝑎2, 𝑏2, 𝑐2) = (min{𝑎1, 𝑎2} , max{𝑏1, 𝑏2} ,max{𝑐1, 𝑐2}) 

Neutrosophic Union: 

(𝑎1, 𝑏1, 𝑐1) ∨𝑁 (𝑎2, 𝑏2, 𝑐2) = (max{𝑎1, 𝑎2} ,min{𝑏1, 𝑏2} ,min{𝑐1, 𝑐2}) 

Neutrosophic Implication: 

(𝑎1, 𝑏1, 𝑐1) →𝑁 (𝑎2, 𝑏2, 𝑐2) is neutrosophically equivalent to ¬𝑁(𝑎1, 𝑏1, 𝑐1) ∨𝑁 (𝑎2, 𝑏2, 𝑐2). 

14. Numerical Example of Triplet Components whose Summation is 1  

Let 𝐴1 = (0.3, 0.6, 0.1) and 𝐴2 = (0.4, 0.1, 0.5) be two triplets, each having the sum:   

0.3 +  0.6 +  0.1 =  0.4 +  0.1 +  0.5 =  1. 

Therefore, they can both be treated as neutrosophic triplets and as intuitionistic fuzzy triplets simultaneously. 

We apply both, the intuitionistic fuzzy operators and then the neutrosophic operators and we prove that we get 

different results, especially with respect with Indeterminacy component that is ignored by the intuitionistic 

fuzzy operators. 

14.1 Complement/Negation 

Intuitionistic Fuzzy: 

¬𝐼𝐹(0.3, 0.6, 0.1) = (0.1, 0.6, 0.3), and ¬𝐼𝐹(0.4, 0.1, 0.5) = (0.5, 0.1, 0.4). 

Neutrosophic: 

¬𝑁(0.3, 0.6, 0.1) = (0.1,1 − 0.6,0.3) = (0.1,0.4,0.3) ≠ (0.1,0.6,0.3), and 

¬𝑁(0.4, 0.1, 0.5) = (0.5,1 − 0.1,0.4) = (0.5,0.9,0.4) ≠ (0.5,0.1,0.4). 

14.2 Intersection 

Intuitionistic Fuzzy 

(0.3,0.6,0.1) ∧𝐼𝐹 (0.4,0.1,0.5) = (min{0.3,0.4} , 1 − min{0.3,0.4} − max{0.1,0.5} ,max{0.1,0.5}) = (0.3,0.2,0.5) 

As we see, the indeterminacies 0.6 of 𝐴1 and 0.1 of 𝐴2 were completely ignored into the above calculations, 

which is unfair. Herein, the resulting indeterminacy from the intersection is just what is left from truth-

membership and falsehood-nonmembership (1 − 0.3 − 0.5 = 0.2). 

Neutrosophic 

(0.3,0.6,0.1) ∧𝑁 (0.4,0.1,0.5) = (min{0.3,0.4} ,max{0.6,0.1} ,max{0.1,0.5}) = (0.3,0.6,0.5) ≠ (0.3,0.2,0.5). 

In the neutrosophic environment the indeterminacies 0.6 of 𝐴1 and 0.1 of 𝐴2 are given full consideration in 

calculating the resulting intersection’s indeterminacy:  max{0.6, 0.1} = 0.6. 

14.3 Union 

Intuitionistic Fuzzy: 

(0.3,0.6,0.1) ∨𝐼𝐹 (0.4,0.1,0.5) = (max{0.3,0.4} , 1 − max{0.3,0.4} − min{0.1,0.5} ,max{0.1,0.5}) = (0.4,0.5,0.1) 
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Again, the indeterminacies 0.6 of 𝐴1 and 0.1 of 𝐴2 were completely ignored into the above calculations, which 

is not fair. Herein, the resulting indeterminacy from the union is just what is left from truth-membership and 

falsehood-nonmembership (1 − 0.4 − 0.1 = 0.5). 

Neutrosophic: 

(0.3,0.6,0.1) ∨𝑁 (0.4,0.1,0.5) = (max{0.3,0.4} ,min{0.6,0.1} ,min{0.1,0.5}) = (0.4,0.1,0.1) ≠ (0.4,0.5,0.1) 

Similarly, in the neutrosophic environment the indeterminacies 0.6 of 𝐴1 and 0.1 of 𝐴2 are given full 

consideration in calculating the resulting union’s indeterminacy: min{0.6, 0.1} = 0.1. 

14.4 Implication 

Intuitionistic Fuzzy  

(0.3,0.6,0.1) →𝐼𝐹 (0.4,0.1,0.5) = ¬𝐼𝐹(0.3,0.6,0.1) ∨𝐼𝐹 (0.4,0.1,0.5) = (0.1,0.6,0.3) ∨𝐼𝐹 (0.4,0.1,0.5) = (0.4,0.3,0.3) 

Similarly, indeterminacies of 𝐴1 and 𝐴2 are completely ignored. 

Neutrosophic 

(0.3,0.6,0.1) →𝑁 (0.4,0.1,0.5) = ¬𝑁(0.3,0.6,0.1) ∨𝑁 (0.4,0.1,0.5) = (0.1,0.4,0.3) ∨𝑁 (0.4,0.1,0.5) = (0.4,0.1,0.3) ≠ (0.4,0.3,0.3) 

While in the neutrosophic environment the indeterminacies of 𝐴1 and 𝐴2 are taken into calculations. 

14.5 Remark 

We have proven that even when the sum of the triplet components is equal to 1, as demanded by the 

intuitionistic fuzzy environment, the results of the intuitionistic fuzzy operators are different from those of the 

neutrosophic operators – because the indeterminacy is ignored into the intuitionistic fuzzy operators. 

15. Simple Counterexample 𝟏, Showing Different Results between Neutrosophic 

Operators and Intuitionistic Fuzzy Operators Applied on the Same Sets (with 

component sums > 𝟏 or < 𝟏)  

Let the universe of discourse 𝒰 = {𝑥1, 𝑥2} and two neutrosophic sets included in 𝒰: 

𝐴𝑁 = {𝑥1(0.8, 0.3, 0.5), 𝑥2(0.9, 0.2, 0.6)}, and 𝐵𝑁 = {𝑥1(0.2, 0.1, 0.3), 𝑥2(0.6, 0.2, 0.1)} 

Whence, for 𝐴𝑁 one has, after using Atanassov and Vassiliev’s transformations (9) - (12): 

𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥1) =

0.8

0.9+0.3+0.6
=

0.8

1.8
≈ 0.44, 𝐼𝐴

𝐼𝐼𝐹𝑆(𝑥1) =
0.3

1.8
≈ 0.17, and 𝐹𝐴

𝐼𝐼𝐹𝑆(𝑥1) =
0.5

1.8
≈ 0.28 

The refusal degree for 𝑥1 concerning 𝐴𝑁 is 𝑅𝐴
𝐼𝐼𝐹𝑆(𝑥1) = 1 − 0.44 − 0.17 − 0.28 = 0.11. Then, 

𝑇𝐴
𝐼𝐼𝐹𝑆(𝑥2) =

0.9

1.8
= 0.50, 𝐼𝐴

𝐼𝐼𝐹𝑆(𝑥2) =
0.2

1.8
≈ 0.11, and 𝐹𝐴

𝐼𝐼𝐹𝑆(𝑥2) =
0.6

1.8
≈ 0.33 

The refusal degree for 𝑥2 concerning 𝐴𝑁 is 𝑅𝐴
𝐼𝐼𝐹𝑆(𝑥2) = 1 − 0.50 − 0.11 − 0.33 = 0.06. Then, 

𝐴𝐼𝐼𝐹𝑆 = {𝑥1(0.44, 0.17, 0.28), 𝑥2(0.50, 0.11, 0.33)} 

For 𝐵𝑁 one has: 

𝑇𝐵
𝐼𝐼𝐹𝑆(𝑥1) = 𝜇𝐵

𝑖 (𝑥1) =
0.2

0.6+0.2+0.3
=

0.2

1.1
≈ 0.18, 𝐼𝐵

𝐼𝐼𝐹𝑆(𝑥1) = 𝜈𝐵
𝑖 (𝑥1) =

0.1

1.1
≈ 0.09, and 

𝐹𝐵
𝐼𝐼𝐹𝑆(𝑥1) = 𝜋𝐵

𝑖 (𝑥1) =
0.3

1.1
≈ 0.27 

The refusal degree for 𝑥1 concerning 𝐵𝑁 is 𝑅𝐵
𝐼𝐼𝐹𝑆(𝑥1) = 1 − 0.18 − 0.09 − 0.27 = 0.46. 

𝑇𝐵
𝐼𝐼𝐹𝑆(𝑥2) =

0.6

1.1
≈ 0.55, and 𝐼𝐵

𝐼𝐼𝐹𝑆(𝑥2) =
0.2

1.1
≈ 0.18, and 𝐹𝐵

𝐼𝐼𝐹𝑆(𝑥2) =
0.1

1.1
≈ 0.09 

The refusal degree for 𝑥2 concerning the set 𝐵𝑁 is 𝑅𝐵
𝐼𝐼𝐹𝑆(𝑥2) = 1 − 0.55 − 0.18 − 0.09 = 0.18. Therefore: 
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𝐵𝐼𝐼𝐹𝑆 = {𝑥1, (0.18, 0.09, 0.27), 𝑥2(0.55, 0.18, 0.09)} 

Therefore, the neutrosophic sets: 

𝐴𝑁 = {𝑥1(0.8, 0.3, 0.5), 𝑥2(0.9, 0.2, 0.6)} and 𝐵𝑁 = {𝑥1(0.2, 0.1, 0.3), 𝑥2(0.6, 0.2, 0.1)}, 

where transformed (restricted), using Atanassov and Vassiliev’s transformations (3)-(6), into inconsistent 

intuitionistic fuzzy sets respectively as follows: 

𝐴𝐼𝐼𝐹𝑆
(𝑡)

= {𝑥1(0.44, 0.17, 0.28), 𝑥2(0.50, 0.11, 0.33)} and 𝐵𝐼𝐼𝐹𝑆
(𝑡)

= {𝑥1(0.18, 0.09, 0.27), 𝑥2(0.55, 0.18, 0.09)} 

where the upper script (t) means “after Atanassov and Vassiliev’s transformations”. 

We shall remark that the set 𝐵𝑁, as neutrosophic set (where the sum of the components is also allowed to be 

strictly less than 1 as well), happens to be in the same time an inconsistent intuitionistic fuzzy set, or 𝐵𝑁 ≡

𝐵𝐼𝐼𝐹𝑆. 

Therefore, 𝐵𝑁 transformed into 𝐵𝐼𝐼𝐹𝑆
(𝑡)

 was a distortion of 𝐵𝑁, since we got different IIFS components: 

𝑥1
𝐵𝑁(0.2,0.1,0.3) ≡ 𝑥1

𝐵𝐼𝐼𝐹𝑆(0.2,0.1,0.3) ≠ 𝑥1

𝐵𝐼𝐼𝐹𝑆
(𝑡)

(0.18,0.09,0.27) 

Similarly: 

𝑥2
𝐵𝑁(0.6,0.2,0.1) ≡ 𝑥2

𝐵𝐼𝐼𝐹𝑆(0.6,0.2,0.1) ≠ 𝑥2

𝐵𝐼𝐼𝐹𝑆
(𝑡)

(0.55,0.18,0.09) 

Further on, we show that the NS operators and IIFS operators, applied on these sets, give different results. For 

each individual set operation (intersection, union, complement/negation, inclusion/implication, and 

equality/equivalence) there exist classes of operators, not a single one. We choose the simplest one in each 

case, which is based on min/max (fuzzy t-norm / fuzzy t-conorm). 

15.1 Intersection 

Neutrosophic Sets (min/max/max) 

𝑥1
𝐴 ∧𝑁 𝑥1

𝐵 = (0.8,0.3,0.5) ∧𝑁 (0.2, 0.1, 0.3) = (min{0.8, 0.2},max{0.3, 0.1},max{0.5, 0.3}) = (0.2, 0.3, 0.5) 

𝑥2
𝐴 ∧𝑁 𝑥2

𝐵 = (0.9,0.2,0.6) ∧𝑁 (0.6, 0.2, 0.1) = (0.6, 0.2, 0.6) 

Therefore:  

𝐴𝑁 ∧𝑁 𝐵𝑁 = {𝑥1(0.2, 0.3, 0.5), 𝑥2(0.6, 0.2, 0.6)} ≝ 𝐶𝑁 

Inconsistent Intuitionistic Fuzzy Set (min / max / max) 

𝑥1
𝐴 ∧𝐼𝐼𝐹𝑆 𝑥1

𝐵 = (0.44,0.17,0.28) ∧𝐼𝐼𝐹𝑆 (0.18, 0.09, 0.27) = (min{0.44, 0.18},max{0.17, 0.09},max{0.28, 0.27}) = (0.18, 0.17, 0.28) 

𝑥2
𝐴 ∧𝐼𝐼𝐹𝑆 𝑥2

𝐵 = (0.50,0.11,0.33) ∧𝐼𝐼𝐹𝑆 (0.55, 0.18, 0.09) = (0.50, 0.18, 0.33) 

Since in IIFS the sum of components is not allowed to surpass 1, we normalise: 

(
0.50

1.01
,
0.11

1.01
,
0.33

1.01
) ≈ (0.495, 0.109, 0.326) 

Therefore: 

𝐴𝐼𝐼𝐹𝑆 ∧ 𝐵𝐼𝐼𝐹𝑆 = {𝑥1(0.18, 0.17, 0.28), 𝑥2(0.495, 0.109, 0.326)} ≝ 𝐶𝐼𝐼𝐹𝑆 

Also: 𝑇𝐴𝑁∧𝑁𝐵𝑁
(𝑥1) = 0.2 < 0.3 = 𝐼𝐴𝑁∧𝑁𝐵𝑁

(𝑥1), 

while 𝑇𝐴𝐼𝐼𝐹𝑆∧𝐼𝐼𝐹𝑆𝐵𝐼𝐼𝐹𝑆
(𝑥1) = 0.18 > 0.17 = 𝐼𝐴𝐼𝐼𝐹𝑆∧𝐼𝐼𝐹𝑆𝐵𝐼𝐼𝐹𝑆

(𝑥1), 

and other discrepancies can be seen. 
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Inconsistent Intuitionistic Fuzzy Set (with min/min/max, as used by Cuong [20] in order to avoid the sum of 

components surpassing 1; but this is in discrepancy with the IIFS/PFS union that uses max/min/min, not 

max/max/min): 

𝑥1
𝐴 ∧𝐼𝐼𝐹𝑆2 𝑥1

𝐵 = (0.44, 0.17, 0.28) ∧𝐼𝐼𝐹𝑆2 (0.18, 0.09, 0.27) = (min{0.44, 0.18},min{0.17, 0.09},max{0.28, 0.27}) = (0.18, 0.09, 0.28) 

𝑥2
𝐴 ∧𝐼𝐼𝐹𝑆2 𝑥2

𝐵 = (0.50, 0.11, 0.33) ∧𝐼𝐼𝐹𝑆2 (0.55, 0.18, 0.09) = (0.50, 0.11, 0.33) 

Therefore: 

𝐴𝐼𝐼𝐹𝑆 ∧𝐼𝐼𝐹𝑆2 𝐵𝐼𝐼𝐹𝑆 = {𝑥1(0.18, 0.09, 0.28), 𝑥2(0.50, 0.11, 0.33)} ≝ 𝐶𝐼𝐼𝐹𝑆2 

We see that: 

𝐴𝑁 ∧𝑁 𝐵𝑁 ≠ 𝐴𝐼𝐼𝐹𝑆 ∧𝐼𝐼𝐹𝑆 𝐵𝐼𝐼𝐹𝑆, or 𝐶𝑁 ≠ 𝐶𝐼𝐼𝐹𝑆 

and  𝐴𝑁 ∧𝑁 𝐵𝑁 ≠ 𝐴𝐼𝐼𝐹𝑆 ∧𝐼𝐼𝐹𝑆2 𝐵𝐼𝐼𝐹𝑆, 𝐶𝑁 ≠ 𝐶𝐼𝐼𝐹𝑆2. Also 𝐶𝐼𝐼𝐹𝑆 ≠ 𝐶𝐼𝐼𝐹𝑆2. 

Let us transform the above neutrosophic set 𝐶𝑁, resulting from the application of the neutrosophic intersection 

operator, 

𝐶𝑁 = {𝑥1(0.2, 0.3, 0.5), 𝑥2(0.6, 0.2, 0.6)}, 

into an inconsistent intuitionistic fuzzy set, employing the same equations (3)-(5) of transformations [denoted 

by (𝑡)], provided by Atanassov and Vassiliev, which are equivalent {using (𝑇, 𝐼, 𝐹)-notations} to (9)-(11) 

(𝑡)𝑇𝐶
𝐼𝐼𝐹𝑆(𝑥1) =

0.2

0.6+0.3+0.6
=

0.2

1.5
≃ 0.13, (𝑡)𝐼𝐶

𝐼𝐼𝐹𝑆(𝑥1) =
0.3

1.5
= 0.20, (𝑡)𝐹𝐶

𝐼𝐼𝐹𝑆(𝑥1) =
0.5

1.5
≃ 0.33, 

(𝑡)𝑇𝐶
𝐼𝐼𝐹𝑆(𝑥2) =

0.6

1.5
≃ 0.40, (𝑡)𝐼𝐶

𝐼𝐼𝐹𝑆(𝑥2) =
0.2

1.5
≃ 0.13, and (𝑡)𝐹𝐶

𝐼𝐼𝐹𝑆(𝑥2) =
0.6

1.5
≃ 0.40 

Whence the results of neutrosophic and IIFS/PFS are different: 

𝐶𝐼𝐼𝐹𝑆
(𝑡) = {𝑥1(0.13, 0.20, 0.33), 𝑥2(0.40, 0.13, 0.40)} ≠ {𝑥1(0.18, 0.17, 0.28), 𝑥2(0.495, 0.109, 0.326)} ≡ 𝐶𝐼𝐼𝐹𝑆 

and  

𝐶𝐼𝐼𝐹𝑆
(𝑡)

≠ {𝑥1(0.18, 0.09, 0.28), 𝑥2(0.50, 0.11, 0.33)} = 𝐶𝐼𝐼𝐹𝑆2 

15.2 Union 

Neutrosophic Sets (max / min / min) 

𝑥1
𝐴 ∨𝑁 𝑥1

𝐵 = (0.8, 0.3, 0.5) ∨𝑁 (0.2, 0.1, 0.3) = (max{0.8, 0.2},min{0.3, 0.1},min{0.5, 0.3}) = (0.8, 0.1, 0.3) 

𝑥2
𝐴 ∨𝑁 𝑥2

𝐵 = (0.9, 0.2, 0.6) ∨𝑁 (0.6, 0.2, 0.1) = (0.9, 0.2, 0.1) 

Therefore: 

𝐴𝑁 ∨𝑁 𝐵𝑁 = {𝑥1(0.8, 0.1, 0.3), 𝑥2(0.9, 0.2, 0.1)} ≝ 𝐷𝑁 

Inconsistent Intuitionistic Fuzzy Sets (max / min / min [3]) 

𝑥1
𝐴 ∨𝐼𝐼𝐹𝑆 𝑥1

𝐵 = (0.44, 0.17, 0.28) ∨𝐼𝐼𝐹𝑆 (0.18, 0.09, 0.27) = (max{0.44, 0.18},min{0.17, 0.09},min{0.28, 0.27}) = (0.44, 0.09, 0.27) 

𝑥2
𝐴 ∨𝐼𝐼𝐹𝑆 𝑥2

𝐵 = (0.50, 0.11, 0.33) ∨𝐼𝐼𝐹𝑆 (0.55, 0.18, 0.09) = (0.55, 0.11, 0.09) 

Therefore: 

𝐴𝐼𝐼𝐹𝑆 ∨𝐼𝐼𝐹𝑆 𝐵𝐼𝐼𝐹𝑆 = {𝑥1(0.44, 0.09, 0.27), 𝑥2(0.55, 0.11, 0.09)} ≝ 𝐷𝐼𝐼𝐹𝑆 

a) We see that the results are different: 𝐴𝑁 ∨𝑁 𝐵𝑁 ≠ 𝐴𝐼𝐼𝐹𝑆 ∨𝐼𝐼𝐹𝑆 𝐵𝐼𝐼𝐹𝑆, or 𝐷𝑁 ≠ 𝐷𝐼𝐼𝐹𝑆. 

b) Let us transform the above neutrosophic set, 𝐷𝑁, resulting from the application of neutrosophic union 

operator, 𝐷𝑁 = {𝑥1(0.8, 0.1, 0.3), 𝑥2(0.9, 0.2, 0.1)}, into an inconsistent intuitionistic fuzzy set, employing the 

same equations (3)-(5) of transformation [denoted by (𝑡)], provided by Atanassov and Vassiliev, which are 

equivalent [using (𝑇, 𝐼, 𝐹) notations] to (9)-(11): 
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(𝑡)𝑇𝐷
𝐼𝐼𝐹𝑆(𝑥1) =

0.8

0.9+0.2+0.3
=

0.8

1.4
≃ 0.57, (𝑡)𝐼𝐷

𝐼𝐼𝐹𝑆(𝑥1) =
0.1

1.4
≃ 0.07, (𝑡)𝐹𝐷

𝐼𝐼𝐹𝑆(𝑥1) =
0.3

1.4
≃ 0.21 

(𝑡)𝑇𝐷
𝐼𝐼𝐹𝑆(𝑥2) =

0.9

1.4
≃ 0.64, (𝑡)𝐼𝐷

𝐼𝐼𝐹𝑆(𝑥2) =
0.2

1.4
≃ 0.14, and (𝑡)𝐹𝐷

𝐼𝐼𝐹𝑆(𝑥2) =
0.1

1.4
≃ 0.07 

Whence: 

𝐷𝐼𝐼𝐹𝑆
(𝑡)

= {𝑥1(0.57, 0.07, 0.21), 𝑥2(0.64, 0.14, 0.07)} ≠ {𝑥1(0.44, 0.09, 0.27), 𝑥2(0.55, 0.11, 0.09)} ≡ 𝐷𝐼𝐼𝐹𝑆 

The results again are different. 

15.3 Corollary 

Therefore, no matter if we first transform the neutrosophic components into inconsistent intuitionistic fuzzy 

components (as suggested by Atanassov and Vassiliev) and then apply the IIFS operators, or we first apply the 

neutrosophic operators on neutrosophic components, and then later transform the result into IIFS components, 

in both ways the obtained results in the neutrosophic environment are different from the results obtained in the 

IIFS environment.  

16. Normalisation 

Further on, the authors propose the normalisation of the neutrosophic components, where Atanassov and 

Vassiliev’s [6] equations (57)-(59) are equivalent, using neutrosophic notations, to the following. 

Let 𝒰 be a universe of discourse, a set 𝐴 ⊆ 𝒰, and a generic element 𝑥 ∈ 𝒰, with the neutrosophic components: 

𝑥(𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)), where 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0,1], and 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3, for all 𝑥 ∈ 𝑈. 

Suppose 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≠ 0, for all 𝑥 ∈ 𝑈. Then, by the below normalisation of neutrosophic 

components, Atanassov and Vassiliev obtain the following intuitionistic fuzzy components (𝑇𝐴
𝐼𝐹𝑆, 𝐼𝐴

𝐼𝐹𝑆 , 𝐹𝐴
𝐼𝐹𝑆): 

𝑇𝐴
𝐼𝐹𝑆(𝑥) =

𝑇𝐴(𝑥)

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)
∈ [0,1] (13) 

𝐼𝐴
𝐼𝐹𝑆(𝑥) =

𝐼𝐴(𝑥)

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)
∈ [0,1] (14) 

𝐹𝐴
𝐼𝐹𝑆(𝑥) =

𝐹𝐴(𝑥)

𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥)
∈ [0,1] (15) 

and 𝑇𝐴
𝐼𝐹𝑆(𝑥) + 𝐼𝐴

𝐼𝐹𝑆(𝑥) + 𝐹𝐴
𝐼𝐹𝑆(𝑥) = 1, for all x ∊ U. 

16.1 Counterexample 2 

Let us come back to the previous Counterexample 1. 

𝒰 = {𝑥1, 𝑥2} be a universe of discourse, and let two neutrosophic sets included in 𝒰: 

𝐴𝑁 = {𝑥1(0.8, 0.3, 0.5), 𝑥2(0.9, 0.2, 0.6)} and 𝐵𝑁 = {𝑥1(0.2, 0.1, 0.3), 𝑥2(0.6, 0.2, 0.1)}. 

Let us normalise their neutrosophic components, as proposed by Atanassov and Vassiliev, in order to restrain 

them to intuitionistic fuzzy components: 

𝐴𝐼𝐹𝑆 = {𝑥1 (
0.8

0.8 + 0.3 + 0.5
,
0.3

1.6
,
0.5

1.6
) , 𝑥2 (

0.9

1.7
,
0.2

1.7
,
0.6

1.7
)} ≈ {𝑥1(0.50, 0.19, 0.31), 𝑥2(0.53, 0.12, 0.35)} ≡ {𝑥1(0.50, 0.31), 𝑥2(0.53, 0.35)} 

since the indeterminacy (called hesitant degree in IFS) is neglected. 

𝐵𝐼𝐹𝑆 = {𝑥1 (
0.2

0.6
,
0.1

0.6
,
0.3

0.6
) , 𝑥2 (

0.6

0.9
,
0.2

0.9
,
0.1

0.9
)} ≈ {𝑥1(0.33, 0.17, 0.50), 𝑥2(0.67, 0.22, 0.11)} ≡ {𝑥1(0.33, 0.50), 𝑥2(0.67, 0.11)} 

since the indeterminacy (hesitance degree) is again neglected. 
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The intuitionistic fuzzy operators are applied only on truth-membership and false-nonmembership (but not on 

indeterminacy). 

16.1.1 Intersection 

Intuitionistic Fuzzy Intersection (min / max) 

𝑥1
𝐴 ∧𝐼𝐹𝑆 𝑥1

𝐵 = (0.50, 0.31) ∧𝐼𝐹𝑆 (0.33, 0.50) = (min{0.50, 0.33} , max{0.31, 0.50}) = (0.33, 0.50) = (0.33, 0.17, 0.50) 

after adding the indeterminacy which is what is left up to 1, i.e. 1 − 0.33 − 0.50 = 0.17. 

𝑥2
𝐴 ∧𝐼𝐹𝑆 𝑥2

𝐵 = (0.53, 0.35) ∧𝐼𝐹𝑆 (0.67, 0.11) = (min{0.53, 0.63} , max{0.35, 0.11}) = (0.53, 0.35) = (0.53, 0.12, 0.35) 

after adding the indeterminacy. 

The results of NS and IFS intersections are very different: 

𝐴𝑁 ∧𝑁 𝐵𝑁 = {𝑥1(0.2, 0.3, 0.5), 𝑥2(0.6, 0.2, 0.6)} ≠ {𝑥1(0.33, 0.17, 0.50), 𝑥2(0.53, 0.12, 0.35)} = 𝐴𝐼𝐹𝑆 ∧𝐼𝐹𝑆 𝐵𝐼𝐹𝑆 

Even more distinction, between the NS intersection and IFS intersection of the same elements (whose sums of 

components equal 1) 𝑥1
𝐴 = (0.50, 0.19, 0.31) and 𝑥1

𝐵 = (0.33, 0.17, 0.50) one obtains unequal results, using 

the (min / max / max) operator:  

𝑥1
𝐴 ∧𝑁 𝑥1

𝐵 = (0.50, 0.19, 0.31) ∧𝑁 (0.33, 0.17, 0.50) = (0.33, 0.19, 0.50) 

while 

𝑥1
𝐴 ∧𝐼𝐹𝑆 𝑥1

𝐵 = (0.50, 0.19, 0.31) ∧𝐼𝐹𝑆 (0.33, 0.17, 0.50) 

 ≡ (0.50, 0.31) ∧𝐼𝐹𝑆 (0.33, 0.50) {after ignoring the indeterminacy in IFS} 

 = (0.33, 0.50) ≡ (0.33, 0.17, 0.50) ≠ (0.33, 0.19, 0.50)  

16.1.2 Union 

Intuitionistic Fuzzy Union (max/min/min) 

𝑥1
𝐴 ∨𝐼𝐹𝑆 𝑥1

𝐵 = (0.50, 0.31) ∨𝐼𝐹𝑆 (0.33, 0.50) = (max{0.50, 0.33},min{0.31, 0.50}) = (0.50, 0.31) ≡ (0.50, 0.19, 0.31) 

after adding the indeterminacy. 

𝑥2
𝐴 ∨𝐼𝐹𝑆 𝑥2

𝐵 = (0.53, 0.35) ∨𝐼𝐹𝑆 (0.67, 0.11) = (max{0.53, 0.67},min{0.35, 0.11}) = (0.67, 0.11) ≡ (0.67, 0.22, 0.11) 

after adding the indeterminacy. 

The results of NS and IFS unions are very different: 

𝐴𝑁 ∨𝑁 𝐵𝑁 = {𝑥1(0.8, 0.1, 0.3), 𝑥2(0.9, 0.2, 0.1)} ≠ {𝑥1(0.50, 0.19, 0.31), 𝑥2(0.67, 0.22, 0.11)} = 𝐴𝐼𝐹𝑆 ∨𝐼𝐹𝑆 𝐵𝐼𝐹𝑆 

Even more distinction, for the NS and IFS union of the same elements: 

𝑥1
𝐴 ∨𝑁 𝑥1

𝐵 = (0.50, 0.19, 0.31) ∨𝑁 (0.33, 0.17, 0.50) = (0.50, 0.17, 0.31) 

While 

𝑥1
𝐴 ∨𝐼𝐹𝑆 𝑥1

𝐵 = (0.50, 0.19, 0.31) ∨𝐼𝐹𝑆 (0.33, 0.17, 0.50) 

 ≡ (0.50, 0.31) ∨𝐼𝐹𝑆 (0.33, 0.50)  

 = (0.50, 0.31) ≡ (0.50, 0.19, 0.31) {after adding indeterminacy}  

 ≠ (0.50, 0.17, 0.31)  
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17. Indeterminacy Makes a Big Difference between NS and IFS   

The authors [6] assert that “Therefore, the NFS can be represented by an IFS” (page 5), but this is not correct 

since it should be: 

The NFS (neutrosophic fuzzy set ≡ single-valued neutrosophic set) can be restrained (degraded) to an IFS 

(intuitionistic fuzzy set), yet the independence of components is lost, and the results of the aggregation 

operators are different between the neutrosophic environment and intuitionistic fuzzy environment since IFS 

operators ignore indeterminacy. 

Since in single-valued neutrosophic set the neutrosophic components are independent (their sum can be up to 

3, and if a component increases or decreases, it does not change the others), while in intuitionistic fuzzy set 

the components are dependent (in general if one changes, one or both the other components change in order to 

keep their sum equal to 1). Also, applying the neutrosophic operators is a better aggregation since the 

indeterminacy (𝐼) is involved into all neutrosophic (complement/negation, intersection, union, 

inclusion/inequality/implication, equality/equivalence) operators while all intuitionistic fuzzy operators ignore 

(do not take into the calculation) the indeterminacy. 

That is why the results after applying the neutrosophic operators and intuitionistic fuzzy operators on the same 

sets are different as proven above). 

18. The Intuitionistic Fuzzy Logic Cannot Represent Paradoxes   

No previous set/logic theories, including IFS or Intuitionistic Fuzzy Logic (IFL), since the sum of components 

were not allowed above 1, could characterise a paradox, which is a true proposition (𝑇 = 1) and false (𝐹 = 1) 

simultaneously; therefore the paradox is 100% indeterminate (𝐼 = 1). In Neutrosophic Logic (NL), a 

paradoxical proposition PNL is represented as PNL(1, 1, 1). 

If one uses Atanassov and Vassiliev’s transformations (for example the normalisation) [1], we get PIFL(
1

3
,
1

3
,
1

3
), 

however, this one cannot represent a paradox, since a paradox is 100% true and 100% false, not 33% true 

and 33% false. 

19. Atanassov’s Intuitionistic Fuzzy Set of Second Type, Also Called Pythagorean Fuzzy 

Set   

Single-Valued Atanassov’s Intuitionistic Fuzzy Sets of the second type (IFS2) [23], also called Single-Valued 

Pythagorean Fuzzy Set (PyFS) [24], is defined as follows (using 𝑇, 𝐼, 𝐹 notations for the components):  

Definition of IFS2 (PyFS). 

It is a set 𝐴𝐼𝐹𝑆2 ≡ 𝐴𝑃𝑦𝐹𝑆 from the universe of discourse 𝑈 such that: 

𝐴𝐼𝐹𝑆2 ≡ 𝐴𝑃𝑦𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where, for all 𝑥 ∈ 𝑈, the functions 𝑇𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0, 1], represent the degree of membership (truth) and 

degree on nonmembership (falsity) respectively, that satisfy the conditions: 

0 ≤ 𝑇𝐴
2(𝑥) + 𝐹𝐴

2(𝑥) ≤ 1, 

whence the hesitancy degree is: 

𝐼𝐴(𝑥) = √1 − 𝑇𝐴
2(𝑥) − 𝐹𝐴

2(𝑥) ∈ [0,1]. 
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20. The Components of Atanassov’s Intuitionistic Fuzzy Set of Second Type 

(Pythagorean Fuzzy Set) are not Independent   

Princy R and Mohana K assert in [23] that: “The truth and falsity values and hesitancy value can be 

independently considered as membership and non-membership and hesitancy degrees respectively”. However, 

this is untrue, since in IFS2 (PyFS) the components are not independent, because they are connected 

(dependent on each other) through this inequality:  

𝑇𝐴
2(𝑥) + 𝐹𝐴

2(𝑥) ≤ 1. 

21. Counterexample 3 

If 𝑇 = 0.9, then 𝑇2 = 0.92 = 0.81, whence 𝐹2 ≤ 1 − 𝑇2 = 1 − 0.81 = 0.19, or 𝐹 ≤ √0.19 ≈ 0.44.  

Therefore, if 𝑇 = 0.9, then 𝐹 is restricted to be less than equal to √0.19. 

While in NS if 𝑇 = 0.9, 𝐹 can be equal to any number in [0, 1], 𝐹 can be even equal to 1. 

Also, hesitancy degree depends on 𝑇 and 𝐹, because the formula of hesitancy degree is an equation depending 

on 𝑇 and 𝐹, as below: 

𝐼𝐴(𝑥) = √1 − 𝑇𝐴
2(𝑥) − 𝐹𝐴

2(𝑥) ∈ [0,1]. 

If 𝑇 = 0.9 and 𝐹 = 0.2, then hesitancy  

𝐼 = √1 − 0. 92 − 0. 22 = √0.15 ≈ 0.39. 

Again, in NS if 𝑇 = 0.9 and 𝐹 = 0.2, 𝐼 can be equal to any number in [0, 1], not only to √0.15. 

22. Neutrosophic Set is a Generalization of Pythagorean Fuzzy Set   

In the definition of PyFS, one has 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], which involves that 𝑇𝐴
2(𝑥), 𝐹𝐴

2(𝑥) ∈ [0, 1] too; we 

denote 𝑇𝐴
𝑁𝑆(𝑥) = 𝑇𝐴

2(𝑥), 𝐹𝐴
𝑁𝑆(𝑥) = 𝐹𝐴

2(𝑥), and 𝐼𝐴
𝑁𝑆(𝑥) = 𝐼𝐴

2(𝑥) = 1 − 𝑇𝐴
2(𝑥) − 𝐹𝐴

2(𝑥) ∈ [0,1], where “NS” 

stands for Neutrosophic Set. 

Therefore, one gets:  

𝑇𝐴
𝑁𝑆(𝑥) + 𝐼𝐴

𝑁𝑆(𝑥) + 𝐹𝐴
𝑁𝑆(𝑥) = 1, 

which is a particular case of the neutrosophic set, since in NS the sum of the components can be any number 

between 0 and 3, hence into PyFS has been chosen the sum of the components be equal to 1. 

23. Spherical Fuzzy Set (SFS)   

Definition of Spherical Fuzzy Set. 

A Single-Valued Spherical Fuzzy Set (SFS) [25-26], of the universe of discourse U, is defined as follows: 

𝐴𝑆𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where, for all 𝑥 ∈ 𝑈, the functions 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0, 1], represent the degree of membership (truth), 

the degree of hesitancy, and degree on nonmembership (falsity) respectively, that satisfy the conditions: 

0 ≤ 𝑇𝐴
2(𝑥) + 𝐼𝐴

2(𝑥) + 𝐹𝐴
2(𝑥) ≤ 1, 

whence the refusal degree is: 

𝑅𝐴(𝑥) = √1 − 𝑇𝐴
2(𝑥) − 𝐼𝐴

2(𝑥) − 𝐹𝐴
2(𝑥) ∈ [0,1]. 

24. The Components of the Spherical Fuzzy Set are not Independent   

Princy R and Mohana K assert in [23] that: 

“In spherical fuzzy sets, while the squared sum of membership, non-membership and hesitancy parameters can 

be between 0 and 1, each of them can be defined between 0 and 1 independently.” 
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However, this is again, untrue. 

25. Counterexample 4   

If 𝑇 = 0.9 then 𝐹 cannot be for example equal to 0.8, since 0.92 + 0.82 = 1.45 > 1, but the sum of the squares 

of components is not allowed to be greater than 1. 

So 𝐹 depends on 𝑇 in this example. 

Two components are independent if no matter what value gets one component will not affect the other 

component’s value. 

26. Neutrosophic Set is a Generalization of the Spherical Fuzzy Set 

In [25], Gündoğdu and Kahraman assert about: 

“superiority of SFS [i.e. Spherical Fuzzy Set] concerning Pythagorean, intuitionistic fuzzy and neutrosophic 

sets”; 

also: 

“SFSs are a generalisation of Pythagorean Fuzzy Sets (PFS) and neutrosophic sets”. 

While it is true that the spherical fuzzy set is a generalisation of Pythagorean fuzzy set and intuitionistic fuzzy 

set, it is false that spherical fuzzy set is a generalisation of the neutrosophic set.  

It is the opposite: neutrosophic set is a generalisation of spherical fuzzy set. We prove it bellow. 

In the definition of the spherical fuzzy set, one has: 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], which involves that 

𝑇𝐴
2(𝑥), 𝐼𝐴

2(𝑥), 𝐹𝐴
2(𝑥) ∈ [0, 1] too.  

Let us denote: 𝑇𝐴
𝑁𝑆(𝑥) = 𝑇𝐴

2(𝑥), 𝐼𝐴
𝑁𝑆(𝑥) = 𝐼𝐴

2(𝑥), 𝐹𝐴
𝑁𝑆(𝑥) = 𝐹𝐴

2(𝑥), where “NS” stands for neutrosophic set, 

whence we obtain, using SFS definition: 

0 ≤ 𝑇𝐴
𝑁𝑆(𝑥) + 𝐼𝐴

𝑁𝑆(𝑥) + 𝐹𝐴
𝑁𝑆(𝑥) ≤ 1, 

which is a particular case of the single-valued neutrosophic set, where the sum of the components 𝑇, 𝐼, 𝐹 can 

be any number between 0 and 3. So now we can choose the sum up to 1. 

As a counterexample, if we choose 𝑇𝐴(𝑥) = 0.9, 𝐼𝐴(𝑥) = 0.4, 𝐹𝐴(𝑥) = 0.5, for some given element 𝑥, which 

are neutrosophic components, they are not spherical fuzzy set components because 0.92 + 0.42 + 0.52 =

1.22 > 1. 

The elements of a spherical fuzzy set form a 1/8 of a sphere of radius 1, centred into the origin 𝑂 = (0,0,0) of 

the Cartesian system of coordinates, on the positive 𝑜𝑥(𝑇), 𝑜𝑦(𝐼), 𝑜𝑧(𝐹) axes. While the standard 

neutrosophic set is a cube of side 1, that has the vertexes: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), 

(0,1,1), (1,1,1). 

The neutrosophic cube strictly includes the 1/8 fuzzy sphere. 

27. Spherical Neutrosophic Set is Also a Generalization of Spherical Fuzzy Set   

Spherical Neutrosophic Set (SNS) was introduced by Smarandache [27] in 2017. 

Definition of Spherical Neutrosophic Set. 

A Single-Valued Spherical Neutrosophic Set (SNS), of the universe of discourse 𝑈, is defined as follows: 

𝐴𝑆𝑁𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 
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where, for all 𝑥 ∈ 𝑈, the functions 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0,√3], represent the degree of membership 

(truth), the degree of indeterminacy, and degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 

0 ≤ 𝑇𝐴
2(𝑥) + 𝐼𝐴

2(𝑥) + 𝐹𝐴
2(𝑥) ≤ 3. 

The Spherical Neutrosophic Set is a generalisation of Spherical Fuzzy Set, because we may restrain the SNS’s 

components to the unit interval 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], and the sum of the squared components to 1, i.e. 

0 ≤ 𝑇𝐴
2(𝑥) + 𝐼𝐴

2(𝑥) + 𝐹𝐴
2(𝑥) ≤ 1. 

Further on, if replacing 𝐼𝐴(𝑥) = 0 into the Spherical Fuzzy Set; we obtain as a particular case the Pythagorean 

Fuzzy Set. 

28. n-Hyper Spherical Neutrosophic Set   

Definition of n-Hyper Spherical Neutrosophic Set. 

We introduce now for the first time the Single-Valued n-Hyper Spherical Neutrosophic Set (n-HSNS), which 

is a generalisation of the Spherical Neutrosophic Set, of the universe of discourse 𝑈, for 𝑛 ≥ 1, is defined as 

follows: 

𝐴𝑛−𝐻𝑁𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where, for all 𝑥 ∈ 𝑈, the functions 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0, √3
𝑛

], represent the degree of membership 

(truth), the degree of indeterminacy, and degree on nonmembership (falsity) respectively, that satisfy the 

conditions: 

0 ≤ 𝑇𝐴
𝑛(𝑥) + 𝐼𝐴

𝑛(𝑥) + 𝐹𝐴
𝑛(𝑥) ≤ 3. 

29. Neutrosophic Set is a Generalization of q-Rung Orthopair Fuzzy Set (q-ROFS) 

Definition of q-Rung Orthopair Fuzzy Set. 

Using the same 𝑇, 𝐼, 𝐹 notations, one has as follows. 

A Single-Valued q-Rung Orthopair Fuzzy Set (q-ROFS) [28], of the universe of discourse 𝑈, for a given 

real number 𝑞 ≥ 1, is defined as follows: 

𝐴𝑞−𝑅𝑂𝐹𝑆 = {〈𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥)〉|𝑥 ∈ 𝑈}, 

where, for all 𝑥 ∈ 𝑈, the functions 𝑇𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0, 1], represent the degree of membership (truth), and 

degree on nonmembership (falsity) respectively, that satisfy the conditions: 

0 ≤ 𝑇𝐴(𝑥)𝑞 + 𝐹𝐴(𝑥)𝑞 ≤ 1. 

Since 𝑇𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1], then for any real number, 𝑞 ≥ 1 one has 𝑇𝐴(𝑥)𝑞 , 𝐹𝐴(𝑥)𝑞 ∈ [0,1] too. 

Let us denote: 𝑇𝐴
𝑁𝑆(𝑥) = 𝑇𝐴(𝑥)𝑞 , 𝐹𝐴

𝑁𝑆(𝑥) = 𝐹𝐴(𝑥)𝑞, whence it results in that: 0 ≤ 𝑇𝐴
𝑁𝑆(𝑥) + 𝐹𝐴

𝑁𝑆(𝑥) ≤ 1, 

where what is left may be Indeterminacy. 

However, this is a particular case of the neutrosophic set, where the sum of components 𝑇, 𝐼, 𝐹 can be any 

number between 0 and 3, and for q-ROFS is it taken to be up to 1. Therefore, any Single-Valued q-Rung 

Orthopair Fuzzy Set is also a Neutrosophic Set, but the reciprocal is not true. See next counterexample. 

30. Counterexample 5 

Let us consider a real number 1 ≤ 𝑞 < ∞, and a set of single-valued triplets of the form (𝑇, 𝐼, 𝐹), with 𝑇, 𝐼, 

𝐹 ∈ [0, 1] that represent the components of the elements of a given set. The components of the form (1, 𝐹), 

with 𝐹 > 0, and of the form (𝑇, 1), with 𝑇 > 0, constitute NS components as follows: (1, 𝐼, 𝐹), with 𝐹 > 0 

and any 𝐼 ∈ [0, 1], and respectively (𝑇, 𝐼, 1), with 𝑇 > 0 and any 𝐼 ∈ [0, 1], since the sum of the components 

is allowed to be greater than 1, i.e. 1 + 𝐼 + 𝐹 > 1 and respectively 𝑇 + 𝐼 + 1 > 1. 
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However, they cannot be components of the elements of a q-ROFS set, since: 1𝑞 + 𝐹𝑞 = 1 + 𝐹𝑞 > 1, because 

𝐹 > 0 and 1 ≤ 𝑞 < ∞; but in q-ROFS the sum has to be ≤ 1. 

Similarly, 𝑇𝑞 + 1𝑞 = 𝑇𝑞 + 1 > 1, because 𝑇 > 0 and 1 ≤ 𝑞 < ∞;  but in q-ROFS the sum has to be ≤ 1. 

31. Regret Theory is a Neutrosophication Model 

Regret Theory (2010) [29] is a Neutrosophication (1998) Model when the decision-making area is split into 

three parts, the opposite ones (upper approximation area, and lower approximation area) and the neutral one 

(border area, in between the upper and lower area). 

32. Grey System Theory as a Neutrosophication 

A Grey System [30] is referring to a grey area (as < 𝑛𝑒𝑢𝑡𝐴 > in neutrosophy), between extremes (as < 𝐴 > 

and < 𝑎𝑛𝑡𝑖𝐴 > in neutrosophy). According to the Grey System Theory, a system with perfect information (<

𝐴 >) may have a unique solution, while a system with no information (< 𝑎𝑛𝑡𝑖𝐴 >) has no solution. In the 

middle (< 𝑛𝑒𝑢𝑡𝐴 >), or a grey area, of these opposite systems, there may be many available solutions (with 

partial information known and partial information unknown) from which an approximate solution can be 

extracted. 

33. Three-Ways Decision as Particular Cases of Neutrosophication and of Neutrosophic 

Probability [31-36] 

33.1 Neutrosophication 

Let < 𝐴 > be an attribute value, < 𝑎𝑛𝑡𝑖𝐴 > the opposite of this attribute value, and < 𝑛𝑒𝑢𝑡𝐴 > the neutral 

(or indeterminate) attribute value between the opposites < 𝐴 > and < 𝑎𝑛𝑡𝑖𝐴 >. 

For examples: < 𝐴 >=big, then < 𝑎𝑛𝑡𝑖𝐴 >=small, and < 𝑛𝑒𝑢𝑡𝐴 >=medium; we may rewrite: 

i. (< 𝐴 >, < 𝑛𝑒𝑢𝑡𝐴 >, < 𝑎𝑛𝑡𝑖𝐴 >) = (big, medium, small); 

ii. or (< 𝐴 >, < 𝑛𝑒𝑢𝑡𝐴 >, < 𝑎𝑛𝑡𝑖𝐴 >) = (truth (denoted as 𝑇), indeterminacy (denoted as 𝐼), falsehood 

(denoted as 𝐹)) as in Neutrosophic Logic, 

iii. or (< 𝐴 >, < 𝑛𝑒𝑢𝑡𝐴 >, < 𝑎𝑛𝑡𝑖𝐴 >) = (membership, indeterminate-membership, nonmembership) as 

in Neutrosophic Set, 

iv. or (< 𝐴 >, < 𝑛𝑒𝑢𝑡𝐴 >, < 𝑎𝑛𝑡𝑖𝐴 >) = (chance that an event occurs, indeterminate-chance that the 

event occurs or not, chance that the event does not occur) as in Neutrosophic Probability, 

and so on. 

Moreover, let us by “Concept” to mean: an item, object, idea, theory, region, universe, set, notion etc. this 

attribute characterises that. 

The process of neutrosophication means: 

a) converting a Classical Concept  

{denoted as (1<𝐴>, 0<𝑛𝑒𝑢𝑡𝐴>, 0<𝑎𝑛𝑡𝑖𝐴>)-Classical Concept, or Classical Concept (1<𝐴>, 0<𝑛𝑒𝑢𝑡𝐴>, 

0<𝑎𝑛𝑡𝑖𝐴>)}, which means that the concept is, concerning the above attribute,  

100% < 𝐴 >, 0% < 𝑛𝑒𝑢𝑡𝐴 >, and 0% < 𝑎𝑛𝑡𝑖𝐴 >, 

into a Neutrosophic Concept  

{denoted as (𝑇<𝐴>, 𝐼<𝑛𝑒𝑢𝑡𝐴>, 𝐹<𝑎𝑛𝑡𝑖𝐴>)-Neutrosophic Concept, or Neutrosophic Concept (𝑇<𝐴>, 𝐼<𝑛𝑒𝑢𝑡𝐴>, 

𝑭<𝒂𝒏𝒕𝒊𝑨>)}, which means that the concept is, concerning the above attribute, 

𝑇% < 𝐴 >, 𝐼% < 𝑛𝑒𝑢𝑡𝐴 >, and 𝐹% < 𝑎𝑛𝑡𝑖𝐴 >, 
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which more accurately reflects our imperfect, non-idealistic reality,  

where all 𝑇, 𝐼, 𝐹 are subsets of [0, 1] with no other restriction; 

b) or converting a Fuzzy Concept, or Intuitionistic Fuzzy Concept into a Neutrosophic Concept; 

c) or converting other Concepts such as Inconsistent Intuitionistic Fuzzy (Picture Fuzzy) Concept, or 

Pythagorean Fuzzy Concept, or Spherical Fuzzy Concept, or q-Rung Orthopair Fuzzy etc. into a 

Neutrosophic Concept or a Refined Neutrosophic Concept (i.e. 𝑇1% < 𝐴1 >, 𝑇2% < 𝐴2 >, …; 𝐼1% <

𝑛𝑒𝑢𝑡𝐴1 >, 𝐼2% < 𝑛𝑒𝑢𝑡𝐴2 >, …; and 𝐹1% < 𝑎𝑛𝑡𝑖𝐴1 >, 𝐹2% < 𝑎𝑛𝑡𝑖𝐴2 >, …), where all 𝑇1, 𝑇2, …; 𝐼1, 

𝐼2, …; 𝐹1, 𝐹2, … are subsets of [0, 1] with no other restriction. 

d) or converting a crisp real number (𝑟) into a neutrosophic real number of the form 𝑟 = 𝑎 + 𝑏𝐼, where “𝐼” 

means (literal or numerical) indeterminacy, 𝑎 and 𝑏 are real numbers, and “𝑎” represents the determinate 

part of the crisp real number 𝑟, while 𝑏𝐼 the indeterminate part of 𝑟; 

e) or converting a crisp, complex number (𝑐) into a neutrosophic complex number of the form 𝑐 = 𝑎1 + 𝑏1𝑖 

+(𝑎2 + 𝑏2𝑖)𝐼=𝑎1 + 𝑎2𝐼 + (𝑏1 + 𝑏2𝐼)𝑖, where “𝐼” means (literal or numerical) indeterminacy, 𝑖 = √−1, 

with 𝑎1, 𝑎2, 𝑏1, 𝑏2 real numbers, and “𝑎1 + 𝑏1𝑖” represents the determinate part of the complex real 

number 𝑐, while 𝑎2 + 𝑏2𝑖 the indeterminate part of 𝑐; 

(we may also interpret that as:  𝑎1 is the determinate part of the real-part of 𝑐, and 𝑏1 is the determinate part of 

the imaginary-part of 𝑐; while 𝑎2 is the indeterminate part of the real-part of 𝑐, and 𝑏2 is the indeterminate part 

of the imaginary-part of 𝑐); 

f) converting a crisp, fuzzy, or intuitionistic fuzzy, or inconsistent intuitionistic fuzzy (picture fuzzy), or 

Pythagorean fuzzy, or spherical fuzzy, or q-rung orthopair fuzzy number and other numbers into a 

quadruple neutrosophic number of the form 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, where 𝑎, 𝑏, 𝑐, 𝑑 are real or complex 

numbers, while 𝑇, 𝐼, 𝐹 are the neutrosophic components. 

While the process of deneutrosophication means going backwards concerning any of the above processes of 

neutrosophication. 

Example 1. 

Let the attribute < 𝐴 >=cold temperature, then < 𝑎𝑛𝑡𝑖𝐴 >=hot temperature, and < 𝑛𝑒𝑢𝑡𝐴 >=medium 

temperature. 

Let the concept be a country 𝑀, such that its northern part (30% of country’s territory) is cold, its southern 

part is hot (50%), and in the middle, there is a buffer zone with medium temperature (20%). We write: 

𝑀(0.3𝑐𝑜𝑙𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , 0.2𝑚𝑒𝑑𝑖𝑢𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 , 0.5ℎ𝑜𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)  

where we took single-valued numbers for the neutrosophic components 𝑇𝑀 = 0.3, 𝐼𝑀 = 0.2, 𝐹𝑀 = 0.5 and the 

neutrosophic components are considered dependent, so their sum is equal to 1. 

33.2 Three-Ways Decision is a Particular Case of Neutrosophication  

Neutrosophy (based on < 𝐴 >, < 𝑛𝑒𝑢𝑡𝐴 >, < 𝑎𝑛𝑡𝑖𝐴 >) was proposed by Smarandache [1] in 1998, and 

Three-Ways Decision by Yao [31] in 2009. 

In Three-Ways Decision, the universe set is split into three different distinct areas, regarding the decision 

process, representing: 

Acceptance, Noncommitment, and Rejection, respectively. 

In this case, the decision attribute value < 𝐴 >=Acceptance, whence < 𝑛𝑒𝑢𝑡𝐴 >= Noncommitment, and <

𝑎𝑛𝑡𝑖𝐴 >= Rejection. 

The classical concept=UniverseSet. 

Therefore, we got the NeutrosophicConcept (𝑇<𝐴>, 𝐼<𝑛𝑒𝑢𝑡𝐴>, 𝐹<𝑎𝑛𝑡𝑖𝐴>), denoted as:  
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UniverseSet(𝑇𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 , 𝐼𝑁𝑜𝑛𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 , 𝐹𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛), 

where 𝑇𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 =universe set’s zone of acceptance, 𝐼𝑁𝑜𝑛𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 =universe set’s zone of noncomitment 

(indeterminacy),  𝐹𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =universe set’s zone of rejection. 

33.3 Three-Ways Decision as a Particular Case of Neutrosophic Probability 

Let us consider the event, deciding on a universe set.  

According to Neutrosophic Probability (NP) [1, 11] one has: 

NP(decision) = (the universe set’s elements for which the chance of the decision may be accepted; the universe 

set’s elements for which there may be an indeterminate-chance of the decision;  the universe set’s elements for 

which the chance of the decision may be rejected). 

33.4 Refined Neutrosophy  

Refined Neutrosophy was introduced by Smarandache [9] in 2013, and it is described as follows:  

i. < 𝐴 > is refined (split) into subcomponents < 𝐴1 >, < 𝐴2 >, …, < 𝐴𝑝 >; 

ii. < 𝑛𝑒𝑢𝑡𝐴 > is refined (split) into subcomponents < 𝑛𝑒𝑢𝑡𝐴1 >, < 𝑛𝑒𝑢𝑡𝐴2 >, …, < 𝑛𝑒𝑢𝑡𝐴𝑟 >;  

iii. and < 𝑎𝑛𝑡𝑖𝐴 > is refined (split) into subcomponents < 𝑎𝑛𝑡𝑖𝐴1 >, < 𝑎𝑛𝑡𝑖𝐴2 >, …, < 𝑎𝑛𝑡𝑖𝐴𝑠 >; 

where 𝑝, 𝑟, 𝑠 ≥ 1 are integers, and 𝑝 + 𝑟 + 𝑠 ≥ 4. 

Example 2. 

If < 𝐴 > = voting in-country 𝑀, them < 𝐴1 > = voting in Region 1 of country 𝑀 for a given candidate, <

𝐴2 > = voting in Region 2 of country 𝑀 for a given candidate, and so on. 

Similarly, < 𝑛𝑒𝑢𝑡𝐴1 >= not voting (or casting a white or a black vote) in Region 1 of country 𝑀, < 𝐴2 >= 

not voting in Region 2 of country M, and so on. 

And < 𝑎𝑛𝑡𝑖𝐴1 > = voting in Region 1 of country 𝑀 against the given candidate, < 𝐴2 > = voting in Region 

2 of country 𝑀 against the given candidate, and so on. 

33.5 Extension of Three-Ways Decision to n-Ways Decision 

n-Way Decision was introduced by Smarandache in 2019. 

In n-Ways Decision, the universe set is split into 𝑛 ≥ 4 different distinct areas, regarding the decision process, 

representing: 

Levels of Acceptance, Levels of Noncommitment, and Levels of Rejection, respectively. 

Levels of Acceptance may be: Very High Level of Acceptance (< 𝐴1 >), High Level of Acceptance (< 𝐴2 >), 

Medium Level of Acceptance (< 𝐴3 >), etc. 

Similarly, Levels of Noncommitment may be: Very High Level of Noncommitment (< 𝑛𝑒𝑢𝑡𝐴1 >), High 

Level of Noncommitment (< 𝑛𝑒𝑢𝑡𝐴2 >), Medium Level of Noncommitment (< 𝑛𝑒𝑢𝑡𝐴3 >), etc. 

And Levels of Rejection may be: Very High Level of Rejection (< 𝑎𝑛𝑡𝑖𝐴1 >), High Level of Rejection (<

𝑎𝑛𝑡𝑖𝐴2 >), Medium Level of Rejection (< 𝑎𝑛𝑡𝑖𝐴3 >), etc. 

Then, the Refined Neutrosophic Concept  

{denoted as (𝑻𝟏<𝑨𝟏>, 𝑻𝟐<𝑨𝟐>, …, 𝑻𝒑<𝑨𝒑>;  𝑰𝟏<𝒏𝒆𝒖𝒕𝑨𝟏>, 𝑰𝟐<𝒏𝒆𝒖𝒕𝑨𝟐>, …, 𝑰𝒓<𝒏𝒆𝒖𝒕𝑨𝒓>; 𝑭𝟏<𝒂𝒏𝒕𝒊𝑨𝟏>, 

𝑭𝟐<𝒂𝒏𝒕𝒊𝑨𝟐>, …, 𝑭𝒔<𝒂𝒏𝒕𝒊𝑨𝒔>)-RefinedNeutrosophicConcept, or RefinedNeutrosophicConcept (𝑻𝟏<𝑨𝟏>, 

𝑻𝟐<𝑨𝟐>, …, 𝑻𝒑<𝑨𝒑>;  𝑰𝟏<𝒏𝒆𝒖𝒕𝑨𝟏>, 𝑰𝟐<𝒏𝒆𝒖𝒕𝑨𝟐>, …, 𝑰𝒓<𝒏𝒆𝒖𝒕𝑨𝒓>; 𝑭𝟏<𝒂𝒏𝒕𝒊𝑨𝟏>, 𝑭𝟐<𝒂𝒏𝒕𝒊𝑨𝟐>, …, 𝑭𝒔<𝒂𝒏𝒕𝒊𝑨𝒔>)},  

which means that the concept is, concerning the above attribute value levels, 
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𝑇1% < 𝐴1 >, 𝑇2% < 𝐴2 >, …, 𝑇𝑝% < 𝐴𝑝 >;  

𝐼1% < 𝑛𝑒𝑢𝑡𝐴1 >, 𝐼2% < 𝑛𝑒𝑢𝑡𝐴2 >, …, 𝐼𝑟% < 𝑛𝑒𝑢𝑡𝐴𝑟 >;   

𝐹1% < 𝑎𝑛𝑡𝑖𝐴1 >, 𝐹2% < 𝑎𝑛𝑡𝑖𝐴2 >, …, 𝐹𝑠% < 𝑎𝑛𝑡𝑖𝐴𝑠 >; 

which more accurately reflects our imperfect, non-idealistic reality,  

with where 𝑝, 𝑟, 𝑠 ≥ 1 are integers, and 𝑝 + 𝑟 + 𝑠 ≥ 4, 

where all 𝑇1, 𝑇2, …, 𝑇𝑝, 𝐼1, 𝐼2, …, Ir, F1, F2, …, Fs are subsets of [0, 1] with no other restriction. 

34. Many More Distinctions between Neutrosophic Set (NS) and Intuitionistic Fuzzy Set 

(IFS) and other Type Sets [37] 

34.1 Neutrosophic Set can distinguish between absolute and relative  

i. absolute membership (i.e. membership in all possible worlds; we have extended Leibniz’s absolute 

truth to absolute membership), and  

ii. relative membership (membership in at least one world, but not in all), because NS (absolute 

membership element)= 1+, while 

iii. NS (relative membership element)= 1.  

This has application in philosophy (see the neutrosophy). That is why the unitary standard interval [0, 1] used 

in IFS has been extended to the unitary non-standard interval ]−0, 1+[ in NS.  

Similar distinctions for absolute or relative non-membership and absolute or relative indeterminate 

appurtenance are allowed in NS. 

While IFS cannot distinguish the absoluteness from relativeness of the components. 

34.2 In NS, there is no restriction on 𝑇, 𝐼, 𝐹 other than they are subsets of ]−0, 1+[. Thus: 0− ≤ inf T + inf I +

inf F ≤ supT + sup I + supF ≤ 3+. 

The inequalities (2.1) and (2.4) [17] of IFS are relaxed in NS. 

This non-restriction allows paraconsistent, dialetheist, and incomplete information to be characterised in NS 

{i.e. the sum of all three components, if they are defined as points, or sum of superior limits of all three 

components if they are defined as subsets, can be > 1 (for paraconsistent information coming from different 

sources), or < 1 for incomplete information}, while that information cannot be described in IFS because in 

IFS the components 𝑇 (membership), 𝐼 (indeterminacy), 𝐹 (non-membership) are restricted either to 𝑡 + 𝑖 +

𝑓 = 1 or to 𝑡2 + 𝑓2 ≤ 1, if 𝑇, 𝐼, 𝐹 are all reduced to the points (single-valued numbers) 𝑡, 𝑖, 𝑓 respectively, 

or 𝑠𝑢𝑝𝑇 + 𝑠𝑢𝑝𝐼 + 𝑠𝑢𝑝𝐹 = 1 if 𝑇, 𝐼, 𝐹 are subsets of [0, 1]. Of course, there are cases when paraconsistent 

and incomplete information can be normalised to 1, but this procedure is not always suitable. 

In IFS paraconsistent, dialetheist, and incomplete information cannot be characterised. 

This most important distinction between IFS and NS is showed in the below Neutrosophic Cube 

A’B’C’D’E’F’G’H’ introduced by Dezert [38] in 2002. 

Because in technical applications only the classical interval [0,1] is used as range for the neutrosophic 

parameters 𝑡, 𝑖, 𝑓, we call the cube 𝐴𝐵𝐶𝐷𝐸𝐷𝐺𝐻 the technical neutrosophic cube and its extension 

𝐴′𝐵′𝐶′𝐷′𝐸′𝐷′𝐺′𝐻′ the neutrosophic cube (or nonstandard neutrosophic cube), used in the fields where we 

need to differentiate between absolute and relative (as in philosophy) notions. 
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Fig.  1. Neutrosophic Cube 

Let us consider a 3D Cartesian system of coordinates, where 𝑡 is the truth axis with value range in ]−0, 1+[, 𝑓 

is the false axis with value range in ]−0, 1+[, and similarly, 𝑖  is the indeterminate axis with value range in 

]−0, 1+[. 

We now divide the technical neutrosophic cube 𝐴𝐵𝐶𝐷𝐸𝐷𝐺𝐻 into three disjoint regions: 

a) The shaded equilateral triangle 𝐵𝐷𝐸, whose sides are equal to √2, which represents the 

geometrical locus of the points whose sum of the coordinates is 1. 

If a point 𝑄 is situated on the sides or inside of the triangle 𝐵𝐷𝐸, then 𝑡𝑄 + 𝑖𝑄 + 𝑓𝑄 = 1 as in Atanassov-

intuitionistic fuzzy set (𝐴 − 𝐼𝐹𝑆). 

IFS triangle is a restriction of (strictly included in) the NS cube. 

b) The pyramid 𝐸𝐴𝐵𝐷 {situated in the right side of the 𝛥𝐸𝐵𝐷, including its faces 𝛥𝐴𝐵𝐷 (base), 

𝛥𝐸𝐵𝐴, and 𝛥𝐸𝐷𝐴 (lateral faces), but excluding its face 𝛥𝐵𝐷𝐸} is the locus of the points whose 

sum of coordinates is less than 1. 

If 𝑃 ∈ 𝐸𝐴𝐵𝐷 then 𝑡𝑃 + 𝑖𝑃 + 𝑓𝑃 < 1 as in inconsistent intuitionistic fuzzy set (with incomplete information). 

c) In the left side of 𝛥𝐵𝐷𝐸 in the cube, there is the solid 𝐸𝐹𝐺𝐶𝐷𝐸𝐵𝐷 (excluding 𝛥𝐵𝐷𝐸) which is 

the locus of points whose sum of their coordinates is greater than 1 as in the paraconsistent set. 

If a point 𝑅 ∈ 𝐸𝐹𝐺𝐶𝐷𝐸𝐵𝐷, then 𝑡𝑅 + 𝑖𝑅 + 𝑓𝑅 > 1. 

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than 1. For example, having 

three independent sources of information: 

- We have a source which is capable of finding only the degree of membership of an element, but it is 

unable to find the degree of non-membership; 

- Another source which is capable of finding only the degree of non-membership of an element; 

- Or a source which only computes the indeterminacy. 

Thus, when we put the results together of these sources, it is possible that their sum is not 1, but smaller or 

greater.  

Also, in information fusion, when dealing with indeterminate models (i.e. elements of the fusion space which 

are indeterminate/unknown, such as intersections we do not know if they are empty or not since we do not 

have enough information, similarly for complements of indeterminate elements, etc.): if we compute the 

believe in that element (truth), the disbelieve in that element (falsehood), and the indeterminacy part of that 

element, then the sum of these three components is strictly less than 1 (the difference to 1 is the missing 

information). 
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34.3 Relation (2.3) from interval-valued intuitionistic fuzzy set is relaxed in NS, i.e. the intervals do not 

necessarily belong to 𝐼𝑛𝑡[0,1] but to [0,1], even more, general to ]−0, 1+[. 

34.4 In NS the components 𝑇, 𝐼, 𝐹 can also be nonstandard subsets included in the unitary non-standard 

interval ]−0, 1+[, not only standard subsets included in the unitary standard interval [0, 1] as in IFS.  

34.5 NS, like dialetheism, can describe paradoxist elements, NS (paradoxist element) = (1, 1, 1), while IFL 

cannot describe a paradox because the sum of components should be 1 in IFS.  

34.6 The connectors/operators in IFS are defined concerning 𝑇 and 𝐹 only, i.e. membership and 

nonmembership only (hence the Indeterminacy is what is left from 1), while in NS they can be defined 

concerning any of them (no restriction).  

However, for interval-valued intuitionistic fuzzy set, one cannot find any left indeterminacy. 

34.7 Component “𝐼”, indeterminacy, can be split into more subcomponents in order to better catch the vague 

information we work with, and such, for example, one can get more accurate answers to the Question-

Answering Systems initiated by Zadeh (2003).   

{In Belnap’s four-valued logic (1977) indeterminacy is split into Uncertainty (𝑈) and Contradiction (𝐶), but 

they were interrelated.} 

Even more, one can split “𝐼” into Contradiction, Uncertainty, and Unknown, and we get a five-valued logic. 

In a general Refined Neutrosophic Logic, 𝑇 can be split into subcomponents 𝑇1, 𝑇2, ..., 𝑇𝑝, and 𝐼 into 𝐼1, 𝐼2, ..., 

𝐼𝑟, and 𝐹 into 𝐹1, 𝐹2, ..., 𝐹𝑠, where 𝑝, 𝑟, 𝑠 ≥ 1 and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 3.  Even more:  𝑇, 𝐼, and/or 𝐹 (or any of 

their subcomponents 𝑇𝑗, 𝐼𝑘, and/or 𝐹𝑙) can be countable or uncountable infinite sets.  

34.8 Indeterminacy is independent of membership/truth and non-membership/falsehood in NS/Nl, while in 

IFS/IFL it is not. 

In neutrosophics there are two types of indeterminacies: 

a) Numerical Indeterminacy (or Degree of Indeterminacy), which has the form (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0), where 𝑡, 𝑖, 

𝑓 are numbers, intervals, or subsets included in the unit interval [0, 1], and it is the base for the (𝑡, 𝑖, 𝑓)-

Neutrosophic Structures.  

b) Non-numerical Indeterminacy (or Literal Indeterminacy), which is the letter “𝐼” standing for unknown (non-

determinate), such that 𝐼2 = 𝐼, and used in the composition of the neutrosophic number 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎 

and 𝑏 are real or complex numbers, and 𝑎 is the determinate part of number 𝑁, while 𝑏𝐼 is the indeterminate 

part of 𝑁. The neutrosophic numbers are the base for the 𝐼-Neutrosophic Structures. 

34.9 NS has a better and clear terminology (name) as "neutrosophic" (which means the neutral part: i.e. neither 

true/membership nor false/nonmembership), while IFS's name "intuitionistic" produces confusion with 

Intuitionistic Logic, which is something different (see the article by Didier Dubois et al. [39], 2005).  

34.10 The Neutrosophic Set was extended [8] to Neutrosophic Overset (when some neutrosophic component 

is > 1), and to Neutrosophic Underset (when some neutrosophic component is < 0), and to and to 

Neutrosophic Offset (when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic 

component > 1 and some neutrosophic component < 0). In IFS the degree of a component is not allowed to 

be outside of the classical interval [0, 1]. 

This is no surprise concerning the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical and 

imprecise probability where the values are not allowed outside the interval [0, 1], since our real-world has 

numerous examples and applications of over/under/off neutrosophic components. 

Example: In a given company, a full-time employer works 40 hours per week. Let us consider the last week 

period. Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, 

her membership degree was 
30

40
= 0.75 < 1. 
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John worked full-time, 40 hours, so he had the membership degree 
40

40
= 1, concerning this company. But 

George worked 5 hours overtime, so his membership degree was 
40+5

40
=

45

40
= 1.125 > 1. Thus, we need to 

make a distinction between employees who work overtime and those who work full-time or part-time. That is 

why we need to associate a degree of membership greater than 1 to the overtime workers. 

Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 
0

40
= 0. 

However, Richard, who was also hired as a full-time, not only did not come to work last week at all (0 worked 

hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was 

estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours). Therefore, his 

membership degree has to be less than Jane’s (since Jane produced no damage). Whence, Richard’s degree of 

membership concerning this company was −
20

40
= −0.50 < 0. 

Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to consider them. 

Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively 

Neutrosophic Over/Under/Off Logic, Measure, Probability, Statistics etc. [8]. 

34.11 Neutrosophic Tripolar (and in general Multipolar) Set and Logic [8] of the form: 

(< 𝑇1
+, 𝑇2

+, …, 𝑇𝑛
+; 𝑇0; 𝑇−𝑛

− , …, 𝑇−2
− , 𝑇−1

− >, < 𝐼1
+, 𝐼2

+, …, 𝐼𝑛
+; 𝐼0; 𝐼−𝑛

− , …, 𝐼−2
− , 𝐼−1

− >, 

< 𝐹1
+, 𝐹2

+, …, 𝐹𝑛
+; 𝐹0; 𝐹−𝑛

− , …, 𝐹−2
− , 𝐹−1

− >) 

where we have multiple positive/neutral/negative degrees of 𝑇, 𝐼, and 𝐹, respectively. 

34.12 The Neutrosophic Numbers have been introduced by W.B. Vasantha Kandasamy and F. Smarandache 

[40] in 2003, which are numbers of the form 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎, 𝑏 are real or complex numbers, while “𝐼” 

is the indeterminacy part of the neutrosophic number 𝑁, such that 𝐼2 = 𝐼 and 𝛼𝐼 + 𝛽𝐼 = (𝛼 + 𝛽)𝐼. 

Of course, indeterminacy “𝐼” is different from the imaginary unit 𝑖 = √−1. 

In general, one has 𝐼𝑛 = 𝐼 if 𝑛 > 0, and it is undefined if 𝑛 ≤ 0 

34.13 Also, Neutrosophic Refined Numbers were introduced [41] as: 

𝑎 + 𝑏1𝐼1 + 𝑏2𝐼2 + ⋯+ 𝑏𝑚𝐼𝑚, where 𝑎, 𝑏1, 𝑏2, … , 𝑏𝑚 are real or complex numbers, while the 𝐼1, 𝐼2, … , 𝐼𝑚 are 

types of sub-indeterminacies, for 𝑚 ≥ 1. 

34.14 The algebraic structures using neutrosophic numbers gave birth to the 𝑰-Neutrosophic Algebraic 

Structures [see for example “neutrosophic groups”, “neutrosophic rings”, “neutrosophic vector space”, 

“neutrosophic matrices, bimatrices, …, n-matrices”, etc.], introduced by W.B. Vasantha Kandasamy, F. 

Smarandache [40] et al. since 2003. 

Example of Neutrosophic Matrix: [
1 2 + 𝐼 −5
0 1/3 𝐼

−1 + 4𝐼 6 5𝐼
]. 

Example of Neutrosophic Ring: ({𝑎 + 𝑏𝐼, with 𝑎, 𝑏 ∈ ℝ}, +, ·), where of course (𝑎 + 𝑏𝐼) + (𝑐 + 𝑑𝐼) =

(𝑎 + 𝑐) + (𝑏 + 𝑑)𝐼, and (𝑎 + 𝑏𝐼) · (𝑐 + 𝑑𝐼) = (𝑎𝑐) + (𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑)𝐼. 

34.15 Also, to Refined I-Neutrosophic Algebraic Structures, which are structures using sets of refined 

neutrosophic numbers [41]. 

34.16 Types of Neutrosophic Graphs (and Trees): 

a-c) Indeterminacy “𝐼” led to the definition of the Neutrosophic Graphs (graphs which have: either at least 

one indeterminate edge, or at least one indeterminate vertex, or both some indeterminate edge and some 

indeterminate vertex), and Neutrosophic Trees (trees which have: either at least one indeterminate edge, or 
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at least one indeterminate vertex, or both some indeterminate edge and some indeterminate vertex), which 

have many applications in social sciences.  

Another type of neutrosophic graph is when at least one edge has a neutrosophic (𝑡, 𝑖, 𝑓) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps [40] and Neutrosophic Relational Maps [40] are 

generalisations of fuzzy cognitive maps and respectively fuzzy relational maps, Neutrosophic Relational 

Equations [40], Neutrosophic Relational Data [42], etc. 

A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts like policies, events etc. as 

vertices, and causalities or indeterminates as edges. It represents the causal relationship between concepts. 

An edge is said indeterminate if we do not know if it is any relationship between the vertices it connects, or 

for a directed graph we do not know if it is a directly or inversely proportional relationship. We may write for 

such edge that (𝑡, 𝑖, 𝑓) = (0, 1, 0). 

A vertex is indeterminate if we do not know what kind of vertex it is since we have incomplete information. 

We may write for such vertex that (𝑡, 𝑖, 𝑓) = (0, 1, 0). 

Example of Neutrosophic Graph (edges 𝑉1𝑉3, 𝑉1𝑉5, 𝑉2𝑉3 are indeterminate, and they are drawn as dotted): 

 

Fig.  2. Neutrosophic Graph {with 𝐼 (indeterminate) edges} 

Moreover, its neutrosophic adjacency matrix is: 

[
 
 
 
 
0 1 𝐼 0 𝐼
1 0 𝐼 0 0
𝐼 𝐼 0 1 1
0 0 1 0 1
𝐼 0 1 1 0]

 
 
 
 

 

Fig.  3. Neutrosophic Adjacency Matrix of the Neutrosophic Graph  

The edges mean 0 = no connection between vertices, 1 = connection between vertices, 𝐼 = indeterminate 

connection (not known if it is, or if it is not). 

Such notions are not used in the fuzzy theory. 

Example of Neutrosophic Cognitive Map (NCM), which is a generalisation of the Fuzzy Cognitive Maps. 

Let us have the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practising/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 
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Fig.  4. Neutrosophic Cognitive Map 

The corresponding neutrosophic adjacency matrix related to this neutrosophic cognitive map is: 

[
 
 
 
 
 
 

0 𝐼 −1 1 1 0 0
𝐼 0 𝐼 0 0 0 0

−1 𝐼 0 0 𝐼 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 𝐼 0 −1

−1 0 0 0 0 0 0 ]
 
 
 
 
 
 

 

Fig.  5. Neutrosophic Adjacency Matrix of the Neutrosophic Cognitive Map 

The edges mean: 0 = no connection between vertices, 1 = directly proportional connection, −1 = inversely 

proportionally connection, and 𝐼 = indeterminate connection (not knowing what kind of relationship is 

between the vertices that the edge connects). 

Such literal indeterminacy (letter 𝑰) does not occur in previous set theories, including intuitionistic fuzzy set; 

they had only numerical indeterminacy. 

d)  Another type of neutrosophic graphs (and trees) [41]: 

An edge of a graph, let us say from 𝐴 to 𝐵 (i.e. how 𝐴 influences 𝐵), may have a neutrosophic value (𝑡, 𝑖, 𝑓), 

where 𝑡 means the positive influence of 𝐴 on 𝐵, 

           𝑖 means the indeterminate influence of 𝐴 on 𝐵, and 

          𝑓 means the negative influence of 𝐴 on 𝐵.  

Then, if we have, let us say: A->B->C such that A->B has the neutrosophic value (𝑡1, 𝑖1, 𝑓1) 

and B->C has the neutrosophic value (𝑡2, 𝑖2, 𝑓2), then A->C has the neutrosophic value (𝑡1, 𝑖1, 𝑓1) ∧ (𝑡2, 𝑖2. 𝑓2), 

where ∧ is the AND neutrosophic operator. 

e)  Also, again a different type of graph: we can consider a vertex 𝐴 as 𝑡% belonging/membership to the graph, 

𝑖% indeterminate membership to the graph, and 𝑓% nonmembership to the graph. 

f)  Any of the previous types of graphs (or trees) put together. 

g) Tripolar (and Multipolar) Graph, which is a graph whose vertexes or edges have the form (<

𝑇+, 𝑇0, 𝑇− >, < 𝐼+, 𝐼0, 𝐼− >, < 𝐹+, 𝐹0, 𝐹− >) and respectively: (< 𝑇𝑗
+, 𝑇0, 𝑇𝑗

− >, < 𝐼𝑗
+, 𝐼0, 𝐼𝑗

− >, <

𝐹𝑗
+, 𝐹0, 𝐹𝑗

− >). 

34.17 The Neutrosophic Probability (NP), introduced in 1995, was extended and developed as a 

generalisation of the classical and imprecise probabilities [11].  NP of an event 𝐸 is the chance that event 𝐸 

occurs, the chance that event 𝐸 does not occur, and the chance of indeterminacy (not knowing if the event 𝐸 

occurs or not). 

In classical probability 𝑛𝑠𝑢𝑝  ≤ 1, while in neutrosophic probability 𝑛𝑠𝑢𝑝 ≤ 3+. 
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In imprecise probability: the probability of an event is a subset 𝑇 in [0, 1], not a number 𝑝 in [0, 1], what is 

left is supposed to be the opposite, subset 𝐹 (also from the unit interval [0, 1]); there is no indeterminate subset 

𝐼 in imprecise probability. 

In neutrosophic probability, one has, besides randomness, indeterminacy due to construction materials and 

shapes of the probability elements and space. 

In consequence, neutrosophic probability deals with two types of variables: random variables and 

indeterminacy variables, and two types of processes: stochastic process and respectively indeterminate process. 

34.18 And consequently the Neutrosophic Statistics, introduced in 1995 and developed in [12], which is the 

analysis of the neutrosophic events. 

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, 

ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be 

exactly determinate because of some individuals that partially belong to the population or sample, and partially 

they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or 

sample individuals whose data could be indeterminate. It is possible to define the neutrosophic statistics in 

many ways, because there are various types of indeterminacies, depending on the problem to solve.  

Neutrosophic statistics deals with neutrosophic numbers, neutrosophic probability distribution, neutrosophic 

estimation, neutrosophic regression. The function that models the neutrosophic probability of a random 

variable 𝑥 is called neutrosophic distribution: 𝑁𝑃(𝑥) = (𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)), where 𝑇(𝑥) represents the 

probability that value 𝑥 occurs, 𝐹(𝑥) represents the probability that value 𝑥 does not occur, and 𝐼(𝑥) represents 

the indeterminate/unknown probability of value 𝑥. 

34.19 Also, Neutrosophic Measure and Neutrosophic Integral were introduced [11]. 

34.20 Neutrosophy {Smarandache, since 1995 [7, 13, 14]} opened a new field in philosophy. 

Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as 

their interactions with different ideational spectra. 

This theory considers every notion or idea < 𝐴 > together with its opposite or negation < 𝐴𝑛𝑡𝑖 − 𝐴 > and the 

spectrum of “neutralities” < 𝑁𝑒𝑢𝑡 − 𝐴 > (i.e. notions or ideas located between the two extremes, supporting 

neither < 𝐴 > nor < 𝐴𝑛𝑡𝑖 − 𝐴 >). The < 𝑁𝑒𝑢𝑡 − 𝐴 > and < 𝐴𝑛𝑡𝑖 − 𝐴 > ideas together are referred to as <

𝑁𝑜𝑛 − 𝐴 >. 

According to this theory, every idea < 𝐴 > tends to be neutralised and balanced by < 𝐴𝑛𝑡𝑖 − 𝐴 > and <

𝑁𝑜𝑛 − 𝐴 > ideas - as a state of equilibrium. Classically < 𝐴 >, < 𝑁𝑒𝑢𝑡 − 𝐴 >, < 𝐴𝑛𝑡𝑖 − 𝐴 > are disjoint 

two by two. 

However, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that <

𝐴 >, < 𝑁𝑒𝑢𝑡 − 𝐴 >, < 𝐴𝑛𝑡𝑖 − 𝐴 > (and < 𝑁𝑜𝑛 − 𝐴 > of course) have common parts two by two as well. 

Neutrosophy is the base of neutrosophic logic, neutrosophic set, neutrosophic probability and statistics used in 

engineering applications (especially for software and information fusion), medicine, military, cybernetics, 

physics. 

We have extended dialectics (based on the opposites < 𝐴 > and < 𝑎𝑛𝑡𝑖𝐴 >) to neutrosophy (based on < 𝐴 >, 

< 𝑎𝑛𝑡𝑖𝐴 > and < 𝑛𝑒𝑢𝑡𝐴 >. 

34.21 In consequence, we extended the thesis-antithesis-synthesis to thesis-antithesis-neutrothesis-neutron 

synthesis [41]. 

34.22 Neutrosophy extended the Law of Included Middle to the Law of Included Multiple-Middle [10] in 

accordance with the n-valued refined neutrosophic logic. 

34.23 Smarandache [41] introduced the Neutrosophic Axiomatic System and Neutrosophic Deducibility. 
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34.24 He then introduced the (𝒕, 𝒊, 𝒇)-Neutrosophic Structure [41], which is a structure whose space, or at 

least one of its axioms (laws), has some indeterminacy of the form (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

Also, we defined the combined (𝑡, 𝑖, 𝑓)-𝐼-Neutrosophic Algebraic Structures, i.e. algebraic structures based on 

neutrosophic numbers of the form 𝑎 + 𝑏𝐼, but also having some indeterminacy [of the form (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0)] 

related to the structure space (i.e. elements which only partially belong to the space or elements we know 

nothing if they belong to the space or not) or indeterminacy [of the form (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0)] related to at least 

one axiom (or law) acting on the structure space). 

Even more, we generalised them to Refined (𝑡, 𝑖, 𝑓)-Refined I-Neutrosophic Algebraic Structures, or 

(𝑡𝑗, 𝑖𝑘 , 𝑓𝑙)-𝑖𝑠-Neutrosophic Algebraic Structures; where 𝑡𝑗 means that 𝑡 has been refined to 𝑗 subcomponents 

𝑡1, 𝑡2, …, 𝑡𝑗; similarly for 𝑖𝑘, 𝑓𝑙 and respectively 𝑖𝑠.   

34.25 Smarandache and Ali, in 2014-2016 [43, 44, 45], introduced the Neutrosophic Triplet Structures. 

A Neutrosophic Triplet is a triplet of the form:  

< 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) >, 

where 𝑛𝑒𝑢𝑡(𝑎) is the neutral of 𝑎, i.e. an element (different from the identity element of the operation ∗) such 

that 𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎) = 𝑛𝑒𝑢𝑡(𝑎) ∗ 𝑎 = 𝑎, while 𝑎𝑛𝑡𝑖(𝑎) is the opposite of 𝑎, i.e. an element such that 𝑎 ∗

𝑎𝑛𝑡𝑖(𝑎) = 𝑎𝑛𝑡𝑖(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡(𝑎). Neutrosophy means not only indeterminacy but also neutral (i.e. neither 

true nor false). For example, we can have neutrosophic triplet semigroups, neutrosophic triplet loops, etc. 

Further on Smarandache extended the neutrosophic triplet < 𝑎, 𝑛𝑒𝑢𝑡(𝑎), 𝑎𝑛𝑡𝑖(𝑎) > to a m-valued refined 

neutrosophic triplet, in a similar way as it was done for 𝑇1, 𝑇2, ...; 𝐼1, 𝐼2, ...; 𝐹1, 𝐹2, ... (i.e. the refinement of 

neutrosophic components). It will work in some cases, depending on the composition law ∗. It depends on each 

∗ how many neutrals, and anti's there is for each element “𝑎”. 

We may have an m-tuple concerning the element “𝑎” in the following way: 

(𝑎;  𝑛𝑒𝑢𝑡1(𝑎), 𝑛𝑒𝑢𝑡2(𝑎), … , 𝑛𝑒𝑢𝑡𝑝(𝑎);  𝑎𝑛𝑡𝑖1(𝑎), 𝑎𝑛𝑡𝑖2(𝑎), … , 𝑎𝑛𝑡𝑖𝑝(𝑎)), 

where 𝑚 = 1 + 2𝑝, such that: 

- all 𝑛𝑒𝑢𝑡1(𝑎), 𝑛𝑒𝑢𝑡2(𝑎), …, 𝑛𝑒𝑢𝑡𝑝(𝑎) are distinct two by two, and each one is different from the unitary 

element concerning the composition law ∗; 

- also: 

𝑎 ∗ 𝑛𝑒𝑢𝑡1(𝑎) = 𝑛𝑒𝑢𝑡1(𝑎) ∗ 𝑎 = 𝑎  

𝑎 ∗ 𝑛𝑒𝑢𝑡2(𝑎) = 𝑛𝑒𝑢𝑡2(𝑎) ∗ 𝑎 = 𝑎  

⋮  

𝑎 ∗ 𝑛𝑒𝑢𝑡𝑝(𝑎) = 𝑛𝑒𝑢𝑡𝑝(𝑎) ∗ 𝑎 = 𝑎; and 

𝑎 ∗ 𝑎𝑛𝑡𝑖1(𝑎) = 𝑎𝑛𝑡𝑖1(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡1(𝑎)  

𝑎 ∗ 𝑎𝑛𝑡𝑖2(𝑎) = 𝑎𝑛𝑡𝑖2(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡2(𝑎)  

⋮  

𝑎 ∗ 𝑎𝑛𝑡𝑖𝑝(𝑎) = 𝑎𝑛𝑡𝑖𝑝(𝑎) ∗ 𝑎 = 𝑛𝑒𝑢𝑡𝑝(𝑎); 

- where all 𝑎𝑛𝑡𝑖1(𝑎), 𝑎𝑛𝑡𝑖2(𝑎), …, 𝑎𝑛𝑡𝑖𝑝(𝑎) are distinct two by two, and in a case when there are duplicates, 

the duplicates are discarded. 

34.26 As latest minute development, the crisp, fuzzy, intuitionistic fuzzy, picture fuzzy, and neutrosophic sets 

were extended by Smarandache [46] in 2017 to plithogenic set, which is:  

A set 𝑃 whose elements are characterised by many attributes’ values. An attribute value 𝑣 has a corresponding 

(fuzzy, intuitionistic fuzzy, picture fuzzy, or neutrosophic) degree of appurtenance 𝑑(𝑥, 𝑣) of the element 𝑥, 

to the set 𝑃, concerning some given criteria. In order to obtain a better accuracy for the plithogenic aggregation 

operators in the plithogenic set, and for a more exact inclusion (partial order), a (fuzzy, intuitionistic fuzzy, 

picture fuzzy, or neutrosophic) contradiction (dissimilarity) degree is defined between each attribute value and 
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the dominant (most important) attribute value. The plithogenic intersection and union are linear combinations 

of the fuzzy operators t-norm and t-conorm, while the plithogenic complement (negation), inclusion 

(inequality), equality (equivalence) are influenced by the attribute values contradiction (dissimilarity) degrees. 

35. Conclusion 

In this paper, we proved that neutrosophic set is a generalisation of intuitionistic fuzzy set and inconsistent 

intuitionistic fuzzy set (picture fuzzy set).  

By transforming (restraining) the neutrosophic components into intuitionistic fuzzy components, as Atanassov 

and Vassiliev proposed, the independence of the components is lost, and the intuitionistic fuzzy aggregation 

operators ignore the indeterminacy. Also, the result after applying the neutrosophic operators is different from 

the result obtained after applying the intuitionistic fuzzy operators (concerning the same problem to solve). 

We presented many distinctions between neutrosophic set and intuitionistic fuzzy set, and we showed that 

neutrosophic set is more general and more flexible than previous set theories. Neutrosophy’s applications in 

various fields such as neutrosophic probability, neutrosophic statistics, neutrosophic algebraic structures, and 

so on were also listed. 
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Abstract − In this paper, we define algebraic operations on 3-dimensional rhotrices
over an arbitrary ring R and show that the set of 3-dimensional rhotrices over an
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1. Introduction

The concept of the rhotrix is a mathematical structure in the rhombodial form of real numbers defined
by Atanasov and Shannon [1], inspired by the concepts of matrix tertion and matrix netrion. In 2003,
Ajibade [2] defined an object that lies between 2 × 2 dimensional matrices and 3 × 3 dimensional
matrices called rhotrix as follows:

Definition 1.1. [2] Let a, b, c, d, e be real numbers. Then a mathematical rhombodial form

R =

〈 a
b c d

e

〉

is called 3 − dimensional rhotrix over real numbers. The entry c in rhotrix R is called the heart of
R denoted by h(R).

The set of all 3− dimensional rhotrices is denoted by R.

R =





〈 a
b c d

e

〉∣∣∣∣∣a, b, c, d, e ∈ R





On operations over R are as follows:

Let R =

〈 a
b c d

e

〉
and Q =

〈 f
g h j

k

〉
be in R. Then,

R = Q ⇔ a = f, b = g, c = h, d = j, e = k

1betulcosgun93@gmail.com; 2emreciftlikli7@gmail.com; 3uacar@mu.edu.tr (Corresponding Author)
1,3Department of Mathematics, Muğla Sıtkı Koçman University, Muğla, Turkey
2Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey
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The addition of two rhotrices R and Q was defined as

R+Q =

〈 a+ f
b+ g c+ h d+ j

e+ k

〉

It is reported in [3] that the set of all 3-dimensional rhotrices is a commutative group w.r.t ′+′.
This group is denoted by 〈R,+〉. The notion (−R) was given as additional inverse of rhotrix R and
was defined as follows:

−R =

〈 −a
−b −c −d

−e

〉

eR =

〈 0R
0R 0R 0R

0R

〉
was given identity element of rhotrices group R3. Let α ∈ R and R ∈ R. The

scalar multiplication of α and R was defined by

αR =

〈 αa
αb αc αd

αe

〉

Definition 1.2. Let R =

〈 a
b h(R) d

e

〉
and Q =

〈 f
g h(Q) j

k

〉
be in R. The multiplication

of R and Q is as follows:

RQ =

〈 ah(Q) + fh(R)
bh(Q) + gh(R) h(R)h(Q) dh(Q) + jh(R)

eh(Q) + kh(R)

〉

In [3] it has been shown that the set of all three-dimensional real rhotrices together with the

operations addition (+) and multiplication () is a commutative ring with identity I =

〈 0
0 1 0

0

〉
.

Definition 1.3. Let R =

〈 a
b h(R) d

e

〉
be in R. If RQ = I such that there exists Q ∈ R then

Q is called the inverse of R, denoted by R−1, and

Q = R−1 =
−1

h(R)2

〈 a
b −h(R) d

e

〉
where h(R) 6= 0.

Other multiplication of rhotrices called row-column multiplication was proposed by Sani [4]. This
multiplication is as follows:

Definition 1.4. Let R =

〈 a
b h(R) d

e

〉
and Q =

〈 f
g h(Q) j

k

〉
be in R.

R •Q =

〈 af + dg
bf + eg h(R)h(Q) aj + dk

bf + ek

〉

Studies on this subject has progressed quickly after the rhotrix definition. Several authors have
obtained interesting results on 3-dimensional rhotrices. See [5] for a comprehensive survey of the
literature on these developments.
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2.Rhotrices Ring on Arbitrary Ring R

The definition of n-dimensional rhotrix over an arbitrary ring was firstly given by Mohammed in [6]
and he gave the set of all rhotrices over an arbitrary ring is a ring together with the operations of
rhotrix addition and row-cloum rhotrix multiplication.

In this section, it has been shown that the set of 3-dimensional rhotrices over an arbitrary ring is
a ring with the operations rhotrix addition and “hearty multiplication” as different from multipli-
cation in Mohammed’s work [6]. Also we investigate the basic properties of the rhotrices ring.

Definition 2.1. Let (R,+, .) be a ring with identity. By a 3− dimensional rhotrix over the ring R,
we mean a rhomboidal array defined by

A =

〈 a
b c d

e

〉

where a, b, c, d, e are in the ring R. The entry c of A is called heart of A denoted by h(A).

The set of all 3-dimensional rhotrices over the ring R denoted by R3(R),

R3(R) =

{〈 a
b c d

e

〉∣∣∣∣∣a, b, c, d, e ∈ R

}

.
We define two binary operations addition ( +̂) and multiplication( ⊙) on R3(R) by

〈 a
b c d

e

〉
+̂

〈 a
′

b
′

c
′

d
′

e
′

〉
=

〈 a+ a
′

b+ b
′

c+ c
′

d+ d
′

e+ e
′

〉
(1)

〈 a
b c d

e

〉
⊙

〈 a
′

b
′

c
′

d
′

e
′

〉
=

〈 a.c
′

+ c.a
′

b.c
′

+ c.b
′

c.c
′

d.c
′

+ c.d
′

e.c
′

+ c.e
′

〉
(2)

for all

〈 a
b c d

e

〉
,

〈 a
′

b
′

c
′

d
′

e
′

〉
∈ R3(R). It is easy to check that these operations are well defined,

since ” + ” and ”.” in R are well-defined.

Theorem 2.2. The set of all 3− dimensional rhotrices R3(R) over the ring R is a ring with respect
to operations ”+̂” and ”⊙ ”.

Proof. It’s easy to see that (R3(R), +̂) is a commutative group. Now let’s show that the triple
(R3(R), +̂,⊙) is a ring.

For all P =

〈 a
b c d

e

〉
,Q =

〈 a′

b′ c′ d′

e′

〉
, S =

〈 x
y z t

u

〉
∈ R3(R)

(P ⊙Q)⊙ S =

〈 a.c
′

+ c.a
′

b.c
′

+ c.b
′

c.c
′

d.c
′

+ c.d
′

e.c
′

+ c.e
′

〉
⊙

〈 x
y z t

u

〉

=

〈 a.c
′

.z + c.a
′

.z + c.c
′

.x

b.c
′

.z + c.b
′

.z + c.c
′

.y c.c
′

.z d.c
′

.z + c.d
′

.z + c.c
′

.t

e.c
′

.z + c.e
′

.z + c.c
′

.u

〉

= P ⊙ (Q⊙ S)

The operation ”⊙ ” is an associative in R3(R).
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(P +̂Q)⊙ S =

〈 a+ a
′

b+ b
′

c+ c
′

d+ d
′

e+ e
′

〉
⊙

〈 x
y z t

u

〉

=

〈 (a+ a
′

).z + (c+ c
′

).x

(b+ b
′

).z + (c+ c
′

).y (c+ c
′

).z (d+ d
′

).z + (c+ c
′

).t

(e+ e
′

).z + (c+ c
′

).u

〉

=

〈 a.z + a
′

.z + c.x+ c
′

.x

b.z + b
′

.z + c.y + c
′

.y c.z + c
′

.z d.z + d
′

.z + c.t+ c
′

.t

e.z + e
′

.z + c.u+ c
′

.u

〉

=

〈 a.z + c.x
b.z + c.y c.z d.z + c.t

e.z + c.u

〉
+̂

〈 a
′

.z + c
′

.x

b
′

.z + c
′

.y c
′

.z d
′

.z + c
′

.t

e
′

.z + c
′

.u

〉

= (P ⊙ S)+̂(Q⊙ S)

and similarly it is easy to check that P ⊙ (S+̂Q) = (P ⊙ S)+̂(P ⊙Q)
Thus < R3(R), +̂,⊙ > is a ring.
Furthermore if R is a commutative ring, then R3(R) is a commutative ring and if R is a ring with

identity 1R, then R3(R) to be a ring with identity 1R3(R) =

〈 0R
0R 1R 0R

0R

〉
.

Example 2.3. Let R = Z2. R3(R) is a rhotrix ring and since Z2 is a commutative ring, R3(Z2) is a
commutative ring.

The following theorem give us the characteristic of the ring R3(R) depends on the characteristic
of the ring R.

Theorem 2.4. The characteristic of the ring R3(R) is equal to characteristic of the ring R.

Proof. Let R be a ring with CharR = k. Then the characteristic of the ring R3(R) is k. Let
CharR3(R) = t, we show that k = t.

CharR3(R) = t ⇒ t.

〈 a
b c d

e

〉
= 0R3(R), for all

〈 a
b c d

e

〉
∈ R3(R)

⇒ t.a = t.b = t.c = t.d = t.e = 0R, for all a, b, c, d, e ∈ R

⇒ k|t

CharR = k ⇒ k.a = 0R, for all a ∈ R

⇒

〈 k.a
k.b k.c k.d

k.e

〉
=

〈 0R
0R 0R 0R

0R

〉
, for all

〈 a
b c d

e

〉
∈ R3(R)

⇒ k.

〈 a
b c d

e

〉
= 0R3(R), for all

〈 a
b c d

e

〉
∈ R3(R)

⇒ t|k

thus k = t.
Note: In the ring R3(R), the multiplication of nonzero rhotrices A and B is equal to zero. Hence

R3(R) has zero divisors and R3(R) is not integral domain.
The following theorem characterize idempotent elements and nilpotent elements in a ring R3(R).

Firstly we recall that definitions of idempotent and nilpotent elements in any ring. Let (R,+, .) be a
ring. An element a ∈ R is called idempotent if a2 = a and nilpotent if an = 0 for some positive integer
n.
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Theorem 2.5. Let R be a ring with identity 1R and c be an idempotent element in R. Then〈 0R
0R c 0R

0R

〉
is an idempotent element in R3(R).

Proof.

〈 0R
0R c 0R

0R

〉2

=

〈 0R
0R c2 0R

0R

〉
=

〈 0R
0R c 0R

0R

〉
. But all idempotents elements

in the ring R3(R) is not this form. For example; let R be a ring LK(E), where LK(E) is a Leavitt
Path Algebra [7] and

E:
v1

v2

e1

e2

Let A =

〈 e2
0 v1 0

0

〉
be in R3(LK(E)). Since in a ring LK(E), v1.v1 = v1, v1.v2 = v2.v1 = 0,

e2.v1 = v2.e2 = 0, v1.e2 = e2.v2 = e2, v1.e1 = e1.v1 = e1, v2.e1 = e1.v2 = 0. Therefore,

A2 =

〈 e2.v1 + v1.e2
0 v1.v1 0

0

〉
=

〈 e2
0 v1 0

0

〉
= A

Theorem 2.6. Let R be a ring with identity 1R and c be a nilpotent element in the ring R. Then〈 a
b c d

e

〉
is a nilpotent element in a ring R3(R).

Proof. We give any A =

〈 a
b c d

e

〉
∈ R3(R) and let be c a nilpotent element in a ring R.

Since c is a nilpotent element, there exits n ∈ Z+ such that cn = 0R. Then, h(An) = cn = 0R and
A2n = An.An = 0R3(R).

In particularly; If R is a commutative ring. Then cn = 0R implies that An+1 = 0R3(R).

3. Ideal of Rhotrix Ring

In this section, ideals of rhotrices ring have been investigated. Furthermore characterizations of
maximal ideals and prime ideals have been given.

Theorem 3.1. Let R be a ring and I be an ideal of R. Then, M =





〈
a

b c d
e

〉
: c ∈ I



 is an

ideal in R3(R).

Proof. Since I is an ideal of R,M is a subset ofR3(R) andM 6= ∅. We give anyA =

〈
a

b c d
e

〉
,

B =

〈
a1

b1 c1 d1
e1

〉
∈ M , and C =

〈
x

y z t
u

〉
∈ R3(R). Then c, c1 ∈ I and z ∈ R,

c+(−c1), z.c, c.z ∈ I . Hence A+̂(−B) ∈ M and A⊙C, C ⊙A ∈ M . Thus, M is an ideal in R3(R).

Theorem 3.2. Let R be a ring and R3(R) be a ring of rhotrices.

I is an ideal of R ⇔ R3(I) is an ideal of R3(R)
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Proof. (⇒) Let I be an ideal of R. Then I ⊆ R and I 6= ∅. Thus R3(I) ⊆ R3(R) and R3(I) 6= ∅.
For any A ∈ R3(I), since h(A) ∈ I, R3(I) is an ideal in R3(R) from Theorem 3.1.

(⇐) Let R3(I) be an ideal of R3(R). It is easy check that I 6= ∅, I ⊆ R.
We give any a, b ∈ I and r ∈ R .

i. a ∈ I ⇒ A =

〈
0R

0R a 0R
0R

〉
∈ R3(I) and b ∈ I ⇒ B =

〈
0R

0R b 0R
0R

〉
∈ R3(I). Since

R3(I) is an ideal of R3(R), A+̂(−B) =

〈
0R

0R a− b 0R
0R

〉
∈ R3(I) and a− b ∈ I

ii. r ∈ R ⇒ C =

〈
r

0R 0R 0R
0R

〉
∈ R3(R). Since R3(I) is a ideal of R3(R),

A⊙ C =

〈
a.r

0R 0R 0R
0R

〉
∈ R3(I) and a.r ∈ I

Similarly,

C ⊙A =

〈
r.a

0R 0R 0R
0R

〉
∈ R3(I) and r.a ∈ I

Consequently, I is an ideal of R.

Corollary 3.3. Let K be a subset of R3(R). K is an ideal in R3(R) if and only if there exists an
ideal I in R such that h(A) ∈ I, for all A ∈ K.

Proof. Let I = {a ∈ R : a = h(A) for all A ∈ K} ⊆ R.
Since 0 ∈ I for 0R3(R) ∈ K, I 6= ∅. We will show that a− b, a.r, r.a ∈ I for all a, b ∈ I and r ∈ R.

a ∈ I ⇒ A =

〈
0R

0R a 0R
0R

〉
∈ K, b ∈ I ⇒ B =

〈
0R

0R b 0R
0R

〉
∈ K, and A+̂(−B) ∈

K because K is an ideal in R3(R) and so h(A+̂(−B)) = a− b ∈ I.

C =

〈
0R

0R r 0R
0R

〉
∈ R3(R) for r ∈ R and since K is an ideal in R3(R), A⊙C, C ⊙A ∈ K

and so h(A⊙ C) = a.r, h(C ⊙A) = r.a ∈ I. Thus I is an ideal in R.
Conversely, let K = {A ∈ R3(R) : h(A) ∈ I} ⊆ R3(R).
I 6= ∅ then there exists a ∈ I and so A ∈ K such that h(A) = a and K 6= ∅. We give any A,B ∈ K

and C ∈ R. Then h(A), h(B) ∈ I and since I is an ideal inR, h(A)−h(B) = h(A+̂(−B)), h(A).h(C) =
h(A ⊙ C), h(C).h(A) = h(C ⊙ A) ∈ I and so A+̂(−B), A ⊙ C, C ⊙ A ∈ K. Thus K is an ideal in
R3(R).

Theorem 3.4. Let R be a commutative ring with identity and I be an ideal of R. Then

I is a principal ideal of R ⇔ R3(I) is a principal ideal of R3(R)

Proof. Let I be a principal ideal of R. Then there exists a ∈ R such that I = (a).

Let P ∈ R3(R). Since I = (a), P =

〈
a.r1

a.r2 a.r3 a.r4
a.r5

〉
. Then,

P =

〈
0R

0R a 0R
0R

〉
⊙

〈
r1

r2 r3 r4
r5

〉
∈ (A)

where A =

〈
0R

0R a 0R
0R

〉
.
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Conversely, let R3(I) be a principal ideal in R3(R). Then there exist P ∈ R3(R) such that
R3(I) = (P ). We will show that I = (h(P )).

a ∈ I ⇒

〈
0R

0R a 0R
0R

〉
∈ R3(I) = (P )

⇒ a = h(P ).x , x ∈ R ⇒ a ∈ (h(P )). Thus I ⊆ (h(P )). Since R3(I) = (P ) , h(P ) ∈ I. Then
(h(P )) ⊆ I. Thus I = (h(P )).

Theorem 3.5. Let R be a ring and I be an ideal of R. Then,

R3(R/I) =





〈
a+ I

b+ I c+ I d+ I
e+ I

〉
: a+ I, b+ I, c+ I, d+ I, e+ I ∈ R/I





is a ring with as known operations ”+̂” and ”⊙ ” and R3(R)/R3(I) isomorphic to ring R3(R/I).

Proof. Since R/I is a ring, R3(R/I) is a ring. We will show that R3(R/I) ∼= R3(R)/R3(I) . We
define f : R3(R) → R3(R/I) by

f

(〈 a
b c d

e

〉)
=

〈
a+ I

b+ I c+ I d+ I
e+ I

〉
, for any

〈
a

b c d
e

〉
∈ R3(R)

It is easy to see that f is a well-defined. We give any A =

〈
a

b c d
e

〉
andB =

〈
x

y z t
u

〉
∈

R3(R)

i.

f(A+̂B) =

〈
(a+ x) + I

(b+ y) + I (c+ z) + I (d+ t) + I
(e+ u) + I

〉

=

〈
a+ I

b+ I c+ I d+ I
e+ I

〉
+̂

〈
x+ I

y + I z + I t+ I
u+ I

〉

= f(A)+̂f(B)

and

f(A⊙B) = f

(〈 a.z + c.x
b.z + c.y c.z d.z + c.t

e.z + c.u

〉)

=

〈
(a.z + c.x) + I

(b.z + c.y) + I (c.z) + I (d.z + c.t) + I
(e.z + c.u) + I

〉

= f(A)⊙ f(B)

Thus, f is a ring homomorphism.

ii.

Kerf =





〈
a

b c d
e

〉
∈ R3(R) : f

(〈 a
b c d

e

〉)
= 0R3(R/I)





=





〈
a

b c d
e

〉
: a, b, c, d, e ∈ I





= R3(I)
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iii.

Imf =



f

(〈 a
b c d

e

〉)
:

〈
a

b c d
e

〉
∈ R3(R)





=





〈
a+ I

b+ I c+ I d+ I
e+ I

〉
: a, b, c, d, e ∈ R





= R3(R/I)

Thus, f is a surjective.

Consequently R3(R)/R3(I) is isomorphic to R3(R/I) by the first isomorphism theorem.

Theorem 3.6. Let R be any ring, R3(R) be a ring of 3-dimensional rhotrices over R. If R3(M) is a
maximal ideal of R3(R), then M is a maximal ideal of R.

Proof. By Theorem 3.2, M is an ideal of R. Let J be an ideal of R such that M ⊆ J ⊆ R. We will
show that M = J or J = R. M ⊆ J ⊆ R implies that R3(M) ⊆ R3(J) ⊆ R3(R). Since R3(M) is a
maximal ideal in R3(R), R3(M) = R3(J) or R3(J) = R3(R). Hence M = J or J = R. Thus M is a
maximal ideal in R.

The converse of the above theorem is not true, as shown by the following example.

Example 3.7. Let R be a ring and M be an maximal ideal of R and

K =

{〈 a
b c d

e

〉∣∣∣∣∣a, b, d, e ∈ R and c ∈ M

}

K is an ideal of R3(R) and R3(M) ⊆ K ⊆ R3(R). Thus M is a maximal ideal in R but R3(M)
is not a maximal ideal in R3(R).

Theorem 3.8. Let K be an ideal in R3(R) and M = {a ∈ R : a = h(A), A ∈ K} be a subset of R.
If M is a maximal ideal in R then K is a maximal ideal in R3(R).

Proof. Suppose that K is not a maximal ideal in R3(R). Then there exists an ideal J in R3(R)
such that K ⊆ J ⊆ R3(R).

Since J is an ideal, there exists an ideal I in R such that h(A) ∈ I for arbitrary A ∈ J and since
K ⊆ J , M ⊆ I but I  M because for every A ∈ J , h(A) /∈ M . Therefore there exists an ideal I in
R. However, this gives a contradiction since M is a maximal ideal of R.

Theorem 3.9. Let R be a ring and R3(P ) be a prime ideal of ring R3(R). Then P is a prime ideal
of R.

Proof. Since R3(P ) is an ideal in R3(R) , P is an ideal in R by Theorem 3.2.
We give any a, b ∈ R and let aRb ⊆ P . Then for any x ∈ R , axb ∈ P . Hence,〈

axb
0R 0R 0R

0R

〉
= A⊙X⊙B ∈ R3(P ), whereA =

〈
a

0R 0R 0R
0R

〉
,X =

〈
0R

0R x 0R
0R

〉
,

and B =

〈
b

0R 0R 0R
0R

〉
. Since, R3(P ) is a prime ideal, either

〈
a

0R 0R 0R
0R

〉
∈ R3(P ) or

〈
b

0R 0R 0R
0R

〉
∈ R3(P ). Hence either a ∈ P or b ∈ P . Therefore P is a prime ideal in R.

The converse of the above theorem is not true, as shown by the following example.
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Example 3.10. Although 3Z is a prime ideal in the ring Z, R3(3Z) is not a prime ideal in the ring
R3(Z). Indeed,

A⊙B =

〈
−2

5 3 1
2

〉
⊙

〈
4

1 6 −1
2

〉

=

〈
0

33 18 3
18

〉
∈ R3(3Z)

but A /∈ R3(3Z) and B /∈ R3(3Z).

Corollary 3.11. Let K be an ideal in R3(R). K is a prime ideal in R3(R) if and only if there exists
a prime ideal P in R such that h(A) ∈ P , for all A ∈ K.

Proof. Let K be a prime ideal in R3(R). Then by Corollary 3.3, P is an ideal in R. We will show
that P is a prime.

a.R.b ⊆ P , for all a, b ∈ R. Then a.c.b ∈ P , for all c ∈ R . By hypothesis, there exists A ∈ K
such that h(A) = a.c.b ∈ P . There exists X, Y, Z rhotrices such that A = X ⊙ Y ⊙ Z and
h(X) = a, h(Y ) = b, h(Z) = c. Since K is a prime ideal in R3(R) and A ∈ K, either X ∈ K or
Z ∈ K. Hence either a ∈ P or c ∈ P . Thus P is a prime ideal in R.

Conversely, let P be a prime ideal in R. Then by Corollary 3.3 , K is a ideal in R3(R). Let
X ⊙ R3(R) ⊙ Y ⊆ K, for any X,Y ∈ R3(R). Then X ⊙ C ⊙ Y ∈ K, for all C ∈ R3(R). Hence
h(X⊙C⊙Y ) = h(X).h(C).h(Y ) ∈ P and since P is a prime ideal in R, either h(X) ∈ P or h(Y ) ∈ P .
Thus either X ∈ K or Y ∈ K and so K is a prime ideal in R3(R).

Example 3.12. Let R = Z6 = {0, 1, 2, 3, 4, 5}. Then, A = (0), B = (2), C = (3), D = Z6 are
ideals in Z6. Hence, K = R3(R) , K1 = 0R3(R) , K2 = R3(B) , K3 = R3(C) ,

K4 =

〈
R

R A R
R

〉
, K5 =

〈
R

R B R
R

〉
, and K6 =

〈
R

R C R
R

〉

are ideals in R3(Z6). Furthermore since B and C are prime ideals in Z6, K5 ve K6 are prime ideals
in R3(Z6). It is easy to see that K5 ve K6 are prime ideals in R3(Z6).

K
==

④④
④④
④④
④④

aa

❈❈
❈❈

❈❈
❈❈

K6
OO

K5
OO

K3
aa

❈❈
❈❈

❈❈
❈❈

K2
==

④④
④④
④④
④④

K1

Furthermore since B and C are maximal ideals in Z6, K5 ve K6 are maximal ideals in R3(Z6).
From above graphic, it is easy to see that K5 ve K6 are prime ideals in R3(Z6).
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Abstract − In this paper, we study ordered hyperideals in ordered semihyper-
groups. Also, we study (m,n)-regular ordered semihypergroups in terms of ordered
(m,n)-hyperideals. Furthermore, we obtain some ideal theoretic results in ordered
semihypergroups.
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1. Introduction and Basic Definitions

The concept of the hypergroup introduced by the French Mathematician Marty at the 8th Congress
of Scandinavian Mathematicians [1]. The concept of a semihypergroup is a generalization of the
concept of a semigroup. Algebraic hyperstructures are a standard generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element, while in
an algebraic hyperstructure, the composition of two elements is a set. Many authors studied different
aspects of semihypergroups, for instance, Davvaz [2], De Salvo et al. [3], Fasino and Freni [4], Gutan [5].
The monograph on application of hyperstructures to various area of study has been written by Corsini
and Leoreanu [6]. Heideri and Davvaz studied ordered hyperstructures [7]. For semihypergroups,
we refer [2, 8, 9]. Hila et al. studied quasi-hyperideals of ordered semihypergroups [10]. Corsini also
studied hypergroup theory [11], [12]. Changphas and Davvaz [13] studied properties of hyperideals in
ordered semihypergroups. Most recently, Basar et al. [14–16] investigated different types of hyperideals
in ordered hypersemigroups, ordered LA-Γ-semigroups and LA-Γ-semihypergroups.

Let H be a nonempty set, then the mapping ◦ : H × H → H is called hyperoperation or join
operation on H, where P ⋆(H) = P (H) \ {0} is the set of all nonempty subsets of H. Let A and B be
two nonempty sets. Then, a hypergroupoid (S, ◦) is called a semihypergroups if for every x, y, z ∈ S,

x ◦ (y ◦ z) = (x ◦ y) ◦ z

i.e., ⋃

u∈y◦z

x ◦ u =
⋃

v∈x◦y

v ◦ z
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A semihypergroup (S, ◦) together with a partial order ” ≤ ” on S that is compatible with semihyper-
group operation such that for all x, y, z ∈ S, we have

x ≤ y ⇒ z ◦ x ≤ z ◦ y

and
x ◦ z ≤ y ◦ z

is called an ordered semihypergroup. For subsets A,B of an ordered semihypergroup S, the product
set A ◦B of the pair (A,B) relative to S is defined as below:

A ◦B = {a ◦ b : a ∈ A, b ∈ B}

and for A ⊆ S, the product set A ◦A relative to S is defined as A2 = A ◦A. For M ⊆ S, (M ] = {s ∈
S | s ≤ m for some m ∈ M}. Also, we write (s] instead of ({s}] for s ∈ S. Let A ⊆ S. Then for a
non-negative integer m, the power of A is defined by Am = A ◦A ◦A ◦A · · · , where A occurs m times.
Note that the power vanishes if m = 0. So, A0 ◦ S = S = S ◦ A0. In what follows we denote ordered
semihypergroup (S,≤) by S unless otherwise specified.

Suppose S is an ordered semihypergroup and I is a nonempty subset of S. Then, I is called an
ordered right (resp. left) hyperideal of S if

(i) I ◦ S ⊆ I(resp. S ◦ I ⊆ I)

(ii) a ∈ I, b ≤ a for b ∈ S ⇒ b ∈ I

Definition 1.1. Suppose B is a sub-semihypergroup (resp. nonempty subset) of an ordered semihy-
pergroup S. Then B is called an (resp. generalized) (m,n)-hyperideal of S if (i) Bm ◦ S ◦ Bn ⊆ B,
and (ii) for b ∈ B, s ∈ S, s ≤ b ⇒ s ∈ B.

Note that in the above Definition 1.1, if we setm = n = 1, then B is called a (generalized) bi-hyperideal
of S.

Definition 1.2. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are nonnegative integers.
Then S is called (m,n)-regular if for any s ∈ S, there exists x ∈ S such that s ≤ sm ◦ x ◦ sn.
Equivalently: (S, ◦,≤) is (m,n)-regular if s ∈ (sm ◦ S ◦ sn] for all s ∈ S.

2. Preliminary

We begin with the following:

Lemma 2.1. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Let m,n be non-negative
integers. Then, the intersection of all ordered (generalized) (m,n)-hyperideals of S containing s, de-
noted by [s]m,n, is an ordered (generalized) (m,n)-hyperideal of S containing s.

Proof. Let {Ai : i ∈ I} be the set of all ordered (generalized) (m,n)-hyperideals of S containing
s. Obviously,

⋂
i∈I Ai is a sub-semihypergroup of S containing s. Let j ∈ I. As,

⋂
i∈I Ai ⊆ Aj , we

have

(
⋂

i∈I

Ai)
m ◦ S ◦ (

⋂

i∈I

Ai)
n ⊆ Am

j ◦ S ◦ An
j

⊆ Aj

Therefore, (
⋂

i∈I Ai)
m ◦ S ◦ (

⋂
i∈I Ai)

n ⊆
⋂

i∈I Ai as
⋂

i∈I Ai is a sub-semihypergroup of S containing
s. Let a ∈

⋂
i∈I Ai and b ∈ S so that b ≤ a. Therefore, b ∈

⋂
i∈I Ai. Hence,

⋂
i∈I Ai is an ordered

(generalized) (m,n)-hyperideal of S containing s.

Theorem 2.2. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Then, we have the
following:

(i) [s]m,n = (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] for any positive integers m,n
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(ii) [s]m,0 = (
⋃m

i=1 s
i ∪ sm ◦ S] for any positive integer m

(iii) [s]0,n = (
⋃n

i=1 s
i ∪ sn] for any positive integer n

Proof. (i) (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] 6= ∅. Let a, b ∈ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] be such that a ≤ x and
b ≤ y for some x, y ∈ (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn]. If x, y ∈ sm ◦ S ◦ sn or x ∈

⋃m+n
i=1 si, y ∈ sm ◦ S ◦ sn or

x ∈ sm ◦ S ◦ sn, y ∈
⋃m+n

i=1 si, then
x ◦ y ⊆ sm ◦ S ◦ sn

and therefore,

x ◦ y ⊆
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn

It follows that a ◦ b ⊆ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. Let x, y ∈
⋃m+n

i=1 si. Then, x = sp, y = sq for some
1 ≤ p, q ≤ m+ n.
Now two cases arise: If 1 ≤ p+ q ≤ m+ n, then x ◦ y ⊆

⋃m+n
i=1 si.

If m + n < p + q, then x ◦ y ⊆ sm ◦ S ◦ sn. So, x ◦ y ⊆ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. This implies that
(
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] is a sub-semihypergroup of S. Moreover, we have

(

m+n⋃

i=1

si ∪ sm ◦ S]m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ S

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (s ◦ S]

= (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ (s ◦ S]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ (s ◦ S]]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (s2 ◦ S]

...

⊆ (sm ◦ S]

In a similar fashion, we have

S ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]n ⊆ (S ◦ sn]

Therefore,

(
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m ◦ S ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]n ⊆ (sm ◦ S ◦ sn]

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]

So, (
⋃m+n

i=1 si∪sm◦S◦sn] is an (m,n)-hyperideal of S containing s; hence, [s]m,n ⊆ (
⋃m+n

i=1 si∪sm◦S◦sn].
For the reverse inclusion, suppose a ∈ (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn] is such that a ≤ t for some t ∈

(
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. If t = sj for some 1 ≤ j ≤ m + n, then t ∈ [s]m,n, therefore, a ∈ [s]m,n. If
t ∈ sm ◦ S ◦ sn, by

sm ◦ S ◦ sn ⊆ ([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ [s]m,n

then t ∈ [s]m,n; hence, a ∈ [s]m,n. This implies that (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] ⊆ [s]m,n. Hence,
[s]m,n = (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn].

(ii) and (iii) can be proved in a similar fashion.
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Lemma 2.3. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Suppose m,n are positive
integers. Then, we have the following:

(i) ([s]m,0)
m ◦ S ⊆ (sm ◦ S]

(ii) S ◦ ([s]0,n)
n ⊆ (S ◦ sn]

(iii) ([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ (sm ◦ S ◦ sn]

Proof. (i)Using Theorem 2.2, we have

([s]m,0)
m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S]m ◦ S

= (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ S

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ S]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (s ◦ S]

...

⊆ (sm ◦ S]

Hence, ([s]m,0)
m ◦ S ⊆ (sm ◦ S]. (ii) can be proved similarly as (i).

(iii) Applying Theorem 2.2, we have

([s]m,n)
m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m ◦ S

= (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn] ◦ S

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ sn ◦ S]

= (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (s ◦ S]

...

= (sm ◦ S]

Therefore, ([s]m,n)
m ◦ S ⊆ (sm ◦ S]. In a similar way, S ◦ ([s]m,n)

n ⊆ (S ◦ sn]. Therefore,

([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ (sm ◦ S] ◦ ([s]m,n)
n

⊆ (sm ◦ (S ◦ ([s]m,n)
n)]

⊆ (sm ◦ (S ◦ sn]]

⊆ (sm ◦ S ◦ sn]

Hence, (iii) holds.

Theorem 2.4. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are positive integers. Let
R(m,0) and L(0,n) be the set of all ordered (m, 0)-hyperideals and the set of all ordered (0, n)-hyperideals
of S, respectively. Then:

(i) S is (m, 0)-regular if and only if for all R ∈ R(m,0), R = (Rm ◦ S]
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(ii) S is (0, n)-regular if and only if for all L ∈ L(0,n), L = (S ◦ Ln]

Proof. (i) Suppose S is (m, 0)-regular. Then,

∀s ∈ S, s ∈ (sm ◦ S]. (1)

Suppose R ∈ R(m,0). As, R
m ◦S ⊆ R and R = (R], we have (Rm ◦S] ⊆ R. If s ∈ R, by (1), we obtain

s ∈ (sm ◦ S] ⊆ (Rm ◦ S], therefore, R ⊆ (Rm ◦ S]. So, (Rm ◦ S] = R.
Conversely, suppose

∀R ∈ R(m,0), R = (Rm ◦ S] (2)

Suppose s ∈ S. Therefore, [s]m,0 ∈ R(m,0). By (2), we obtain

[s]m,o = (([s]m,0)
m ◦ S]

Applying Lemma 2.3, we obtain
[s]m,o ⊆ (sm ◦ S]

Therefore, s ∈ (sm ◦ S]. Hence, S is (m, 0)-regular.
(ii) It can be proved analogously.

Theorem 2.5. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are non-negative integers.
Suppose A(m,n) is the set of all ordered (m,n)-hyperideals of S. Then,

S is (m,n)− regular ⇐⇒ ∀A ∈ A(m,n), A = (Am ◦ S ◦ An] (3)

Proof. Consider the following four conditions:
Case(i): m = 0 and n = 0. Then (3) implies
S is (0, 0)-regular ⇐⇒ ∀A ∈ A(0,0), A = S because A(0,0) = {S} and S is (0, 0)-regular.
Case (ii): m = 0 and n 6= 0. Therefore, (3) implies
S is (0, n)-regular⇐⇒ ∀A ∈ A(0,n), A = (S ◦ An]. This follows by Theorem 2.4(ii).
Case (iii): m 6= 0 and n = 0. This can be proved applying Theorem 2.4(i).
Case (iv): m 6= 0 and n 6= 0. Suppose S is (m, n)-regular. Therefore,

∀s ∈ S, s ∈ (sm ◦ S ◦ sn] (4)

Let A ∈ A(m,n). As Am ◦ S ◦ An ⊆ A and A = (A], we obtain (Am ◦ S ◦ An] ⊆ A. Suppose s ∈ A.
Applying (4), s ∈ (sm◦S ◦sn] ⊆ (Am◦S ◦An]. Therefore, A ⊆ (Am◦S ◦An]. Hence, A = (Am◦S ◦An].
Conversely, suppose A = (Am ◦S ◦An] for all A ∈ A(m,n). Suppose s ∈ S. As [s]m,n ∈ A(m,n), we have

[s]m,n = (([s]m,n)
m ◦ S ◦ ([s]m,n)

n]

Applying Lemma 2.3(iii), we obtain [s]m,n ⊆ (sm ◦ S ◦ sn], therefore, s ∈ (sm ◦ S ◦ sn]. Hence, S is
(m,n)-regular.

Theorem 2.6. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are nonnegative integers.
Suppose R(m,0) and L(0,n) is the set of all (m, 0)-hyperideals and (0, n)-hyperideals of S, respectively.
Then,

S is (m,n)−regular ordered semihypergroup ⇐⇒ ∀R ∈ R(m,0)∀L ∈ L(0,n),

R ∩ L = (Rm ◦ L ∩R ◦ Ln]
(5)

Proof. Consider the following four cases:
Case (i): m = 0 and n = 0. Therefore, (5) implies
S is (0, 0)-regular ⇐⇒ ∀R ∈ R(0,0)∀L ∈ L(0,0), R ∩ L = (L ∩R] because R(0,0) = L(0,0) = {S} and S

is (0, 0)-regular.
Case (ii): m = 0 and n 6= 0. Therefore, (5) implies S is (0, n)-regular ⇐⇒ ∀R ∈ R(0,n)∀L ∈
L(0,n), R ∩ L = (L ∩ R ◦ Ln]. Suppose S is (0, n)-regular. Suppose R ∈ R(0,0) and L ∈ L(0,n). By
Theorem 2.4(ii), L = (S ◦ Ln]. As R ∈ R(0,0), we have R = S, therefore, R ∩ L = L. Therefore,

(L ∩R ◦ Ln] = (L ∩ S ◦ Ln] = ((S ◦ Ln] ∩ S ◦ Ln] = (S ◦ Ln] = L = R ∩ L
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Conversely, suppose
∀R ∈ R(0,0)∀L ∈ L(0,n), R ∩ L = (L ∩R ◦ Ln]. (6)

If R ∈ R(0,0), then R = S. If L ∈ L(0,n), S ◦ Ln ⊆ L and L = (L]. Therefore, (6) implies

∀L ∈ L(0,n), L = (S ◦ Ln]

Applying Theorem 2.4(ii), S is (0, n)-regular.
Case (iii): m 6= 0 and n = 0. This can be proved as before.
Case (iv): m 6= 0 and n 6= 0. Suppose that S is (m,n)-regular. Suppose R ∈ R(m,0) and L ∈ L(0,n).
To prove that R ∩ L ⊆ (Rm ◦ L] ∩ (R ◦ Ln], suppose s ∈ R ∩ L. We have

s ∈ (sm ◦ S ◦ sn] ⊆ (sm ◦ L] ⊆ (Rm ◦ L]

and
s ∈ (sm ◦ S ◦ sn] ⊆ (R ◦ sn] ⊆ (R ◦ Ln]

Hence, R ∩ L ⊆ (Rm ◦ L] ∩ (R ◦ Ln]. As

(Rm ◦ L] ⊆ (Rm ◦ S] ⊆ (R] = R

and
(R ◦ Ln] ⊆ (S ◦ Ln] ⊆ (L] = L

This implies that (Rm ◦ L] ∩ (R ◦ Ln] ⊆ R ∩ L, therefore, R ∩ L = (Rm ◦ L] ∩ (R ◦ Ln].
Conversely, suppose

∀R ∈ R(m,0)∀L ∈ L(0,n), R ∩ L = (Rm ◦ L ∩R ◦ Ln] (7)

Suppose R = [s]m,0 and L = S. Applying (7), we obtain [s]m,0 ⊆ (([s]m,0)
m ◦ S]. Applying Lemma

2.3, we obtain
[s]m,0 ⊆ (sm ◦ S] (8)

In a similar fashion, we obtain
[s]0,n ⊆ (S ◦ sn] (9)

As Rm ⊆ R and Ln ⊆ L, by (7), we have

∀R ∈ R(m,0)∀L ∈ L(0,n), R ∩ L ⊆ (R ◦ L]

As (sm ◦ S] ∈ R(m,0) and (S ◦ sn] ∈ L(0,n), we obtain

(sm ◦ S] ∩ (S ◦ sn] ⊆ ((sm ◦ S] ◦ (S ◦ sn]] ⊆ (sm ◦ S ◦ sn]

Applying (8) and (9), we obtain

[s]m,0 ∩ [s]0,n ⊆ (sm ◦ S ◦ sn]

Hence, S is (m,n)-regular.

3. Conclusion

In this article, we investigated ordered hyperideals in ordered semihypergroups. Also, we studied
(m,n)-regular ordered semihypergroups in terms of ordered (m,n)-hyperideals. Moreover, we charac-
terized ordered semihypergroups by some results based on ideal theory.
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Abstract − One of the objectives of this paper is to introduce some weak N-
topological open sets. We characterize N-topological continuous, N∗-quotient, N∗-
α quotient and N∗-semi quotient mappings and derive some new topologies with
suitable examples.
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1. Introduction

In 1963 Norman Levine [1] initiated the concept of semi open sets and its continuous functions. In
1965 O.Njastad [2] developed the α-open set and its properties in classical topology. Mashhour et
al. [3] investigated the properties of pre open sets. Andrijevic [4] discussed the behaviour of β-open
sets in classical topology. The general form of classical topology called N -topology and Nτ -open sets
were initiated by Lellis Thivagar et al. [5]. In this paper we introduce Nτα-open set, Nτ semi-open
set, Nτ pre-open set and Nτβ-open set in N -topological space. We also establish that the set of all
Nτα-open sets forms a topology. Apart from this we investigate the properties of some N -topological
continuous and quotient mappings. In this section we discuss some basic properties of N -topological
spaces which are useful in sequel. Here by a space (X,Nτ), we mean a N -topological space with
N -topology Nτ defined on X in which no separation axioms are assumed unless otherwise explicitly
stated.

Definition 1.1. [5] Let X be a non empty set, τ1, τ2, ... , τN be N -arbitrary topologies defined
on X and let the collection Nτ = {S ⊆ X : S = (

⋃N
i=1

Ai) ∪ (
⋂N

i=1
Bi), Ai, Bi ∈ τi}, is said to be

N -topology on X if it satisfies the following axioms:

(i) X, ∅ ∈ Nτ

(ii)
⋃

∞

i=1
Si ∈ Nτ for all {Si}

∞

i=1
∈ Nτ

(iii)
⋂n

i=1
Si ∈ Nτ for all {Si}

n
i=1

∈ Nτ

Then the pair (X,Nτ) is called a N -topological space on X. The elements of Nτ are known as
Nτ -open set and the complement of Nτ -open set is called Nτ -closed.

1mlthivagar@yahoo.co.in; 2dassfredy@gmail.com (Corresponding Author)
1School of Mathematics, Madurai Kamaraj University, Madurai-625 021, India
2Department of Mathematics, St. Jude’s College, Thoothoor, Kanyakumari-629176, India. (Manonmaniam Sundara-

nar University, Tirunelveli)



Journal of New Theory 29 (2019) 49-57 / New Topologies via Weak N-Topological Open Sets and Mappings 50

Definition 1.2. [5] Let A be a subset of N -topological space (X,Nτ). Then

(i) Nτ -int(A) = ∪{G : G ⊆ A and G is Nτ -open}

(ii) Nτ -cl(A) = ∩{F : A ⊆ F and F is Nτ -closed}

Theorem 1.3. [5] Let (X,Nτ) be a topological space on X and A ⊆ X. Then x ∈ Nτ -cl(A) if and
only if G ∩A 6= ∅ for every open set G containing x.

Definition 1.4. A subset A of a topological space (X, τ) is called

(i) α-open [2] if A ⊆ int(cl(int(A)))

(ii) semi-open [1] if A ⊆ cl(int(A))

(iii) pre-open [3] if A ⊆ int(cl(A))

(iv) β-open [4] if A ⊆ cl(int(cl(A)))

The complement of α-open (resp. semi-open, pre-open and β-open) set is called α-closed (resp.
semi-closed, pre-closed and β-closed).

2.Weak Forms of Open Sets in N-Topological Space

In this section we investigate some classes of open sets in N -topological space and discuss the rela-
tionship between them.

Definition 2.1. A subset A of a N -topological space (X,Nτ) is called

(i) Nτα-open set if A ⊆ Nτ -int(Nτ -cl(Nτ -int(A)))

(ii) Nτ semi-open set if A ⊆ Nτ -cl(Nτ -int(A))

(iii) Nτ pre-open set if A ⊆ Nτ -int(Nτ -cl(A))

(iv) Nτβ-open set if A ⊆ Nτ -cl(Nτ -int(Nτ -cl(A)))

The complement of Nτα-open (resp. Nτ semi-open, Nτ pre-open and Nτβ-open) set is
called Nτα-closed (resp. Nτ semi-closed, Nτ pre-closed and Nτβ-closed). The set of all Nτα-
open (resp. Nτ semi-open, Nτ pre-open and Nτβ-open) sets of (X,Nτ) is denoted by NταO(X)
(resp. NτSO(X), NτPO(X) and NτβO(X) and the set of all Nτα-closed (resp. Nτ semi-closed, Nτ

pre-closed and Nτβ-closed) sets of (X,Nτ) is denoted by NταC(X) (resp. NτSC(X), NτPC(X)
and NτβC(X).

Particularly if N = 1, then the 1τα-open, 1τ semi-open, 1τ pre-open and 1τβ-open set of (X, 1τ)
respectively become α-open, semi-open, pre-open and β-open set of (X, τ) which are defined in defi-
nition 2.4.

Theorem 2.2. Let A be a subset of N -topological space (X,Nτ). Then

(i) every Nτ -open set is Nτα-open.

(ii) every Nτα-open set is Nτ semi-open.

(iii) every Nτα-open set is Nτ pre-open.

(iv) every Nτ semi-open set is Nτβ-open.

(v) every Nτ pre-open set is Nτβ-open.

The converse of the above theorem need not be true as shown in the following examples.

Example 2.3. If we take N = 3, X = {a, b, c}, τ1 = {∅,X, {a}}, τ2 = {∅,X} and τ3 = {∅,X, {a, b}}.
Then 3τO(X) = {∅,X, {a}, {a, b}} and 3ταO(X) = {∅,X, {a}, {a, b}, {a, c}}. Here the set A = {a, c}
is 3τα-open but not 3τ -open.



Journal of New Theory 29 (2019) 49-57 / New Topologies via Weak N-Topological Open Sets and Mappings 51

Example 2.4. If N = 5, X = {a, b, c, d}, τ1 = {∅,X, {a}}, τ2 = {∅,X, {b, c}}, τ3 = {∅,X, {a, b, c}},
τ4 = {∅,X, {a}, {a, b, c}} and τ5 = {∅,X, {b, c}, {a, b, c}}. Then, 5τO(X) = {∅,X, {a}, {b, c}, {a, b, c}}
= 5ταO(X), 5τSO(X) = {∅,X, {a}, {a, d}, {b, c}, {a, b, c}, {b, c, d}}, 5τPO(X) = {∅,X, {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}} and 5τβO(X) = {∅,X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d},
{b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}}. Here the set {a, d} is 5τ semi-open and 5τβ-
open but not 5τα-open as well as not 5τ pre-open. Also the set {a, c} is 5τ pre-open and 5τβ-open
but not 5τα-open as well as 5τ semi-open.

We observe that the following theorem is analogous to the 1985 topological space result of Reilly
and Vamanamurthy [6].

Theorem 2.5. Let (X,Nτ) be aN -topological space. Then every Nτα-open set is bothNτ semi-open
and Nτ pre-open and conversely.

Lemma 2.6. The arbitrary union of Nτα-open ( resp. Nτ semi-open, Nτ pre-open, Nτβ-open) sets
is Nτα-open ( resp. Nτ semi-open, Nτ pre-open, Nτβ-open).

Remark 2.7. Intersection of any two Nτ semi-open (resp. Nτ pre-open, Nτβ-open) sets need not
be a Nτ semi-open (resp. Nτ pre-open, Nτβ-open) set. Consider example 3.4, the sets {a, d} and
{b, c, d} are 5τ semi-open, but {d} is not 5τ semi-open. The sets {a, c, d} and {a, b, d} are 5τ pre-open,
but {a, d} is not 5τ semi-open. Also the sets {a, d} and {c, d} are 5τβ-open, but {d} is not 5τβ-open.

Theorem 2.8. Let (X,Nτ) be a N -topological space. Then NταO(X) = {A ⊆ X : A ∩ B ∈
NτSO(X)∀B ∈ NτSO(X)}.
Proof: Proof follows as similar as the Proposition 1 of [2].

Theorem 2.9. Let (X,Nτ) be a N -topological space. Then NταO(X) is a topology finer than
NτO(X).
Proof: Clearly ∅ ∈ NταO(X) and

⋃
i∈ΛAi ∈ NταO(X) for every {Ai}i∈Λ ∈ NταO(X) by lemma

3.6. By theorem 3.8 we have NταO(X) is a topology and clearly NτO(X) ⊆ NταO(X).

Definition 2.10. Let (X,Nτ) be a N -topological space. A subset A of X is said to be Nτ -nowhere
dense set if Nτ -int(Nτ -cl(A)) = ∅.

Lemma 2.11. Let (X,Nτ) be a N -topological space. A subset A of X is Nτα-open set, then it can
be written as a difference of Nτ -open set and Nτ -nowhere dense set.

Remark 2.12. NτO(X) = NταO(X) if and only if all Nτ -nowhere dense sets are Nτ -closed.

Definition 2.13. An N -topological space (X,Nτ) is said to be extremely disconnected if Nτ -cl(A)
is Nτ -open for all Nτ -open sets A.

Lemma 2.14. NτSO(X) is a topology if and only if (X,Nτ) is extremely disconnected.

3.Weak Closure and Interior Operators
in N-Topology

In this section, we introduce some weak closure and interior operators in N -topological space and
investigate their properties.

Definition 3.1. Let (X,Nτ) be a N -topological space and A be a subset of X.

(i) The Nτ -α closure of A, denoted by Nτ -αcl(A), and defined by

Nτ -αcl(A) = ∩{F : A ⊆ F and F is Nτα-closed set}

(ii) The Nτ -semi closure of A, denoted by Nτ -scl(A), and defined by

Nτ -scl(A) = ∩{F : A ⊆ F and F is Nτ semi-closed set}

(iii) The Nτ -pre closure of A, denoted by Nτ -pcl(A), and defined by



Journal of New Theory 29 (2019) 49-57 / New Topologies via Weak N-Topological Open Sets and Mappings 52

Nτ -pcl(A) = ∩{F : A ⊆ F and F is Nτ pre-closed set}

(iv) The Nτ -β closure of A, denoted by Nτβcl(A), and defined by

Nτ -βcl(A) = ∩{F : A ⊆ F and F is Nτβ-closed set}

Definition 3.2. Let (X,Nτ) be a N -topological space and A be a subset of X.

(i) The Nτ -α interior of A, denoted by Nταint(A), and is defined by

Nτ -αint(A) = ∪{G : G ⊆ A and G is Nτα-open set}

(ii) The Nτ -semi interior of A, denoted by Nτ -sint(A), and is defined by

Nτ -sint(A) = ∪{G : G ⊆ A and G is Nτ semi-open set}

(iii) The Nτ -pre interior of A, denoted by Nτ -pint(A), and is defined by

Nτ -pint(A) = ∪{G : G ⊆ A and G is Nτ pre-open set}

(iv) The Nτ -β interior of A, denoted by Nτ -βint(A), and is defined by

Nτ -βint(A) = ∪{G : G ⊆ A and G is Nτβ-open set}

Theorem 3.3. Let (X,Nτ) be a N -topological space on X and let A,B ⊆ X. Then

(i) Nτ -αcl(A) is the smallest Nτα-closed set which containing A.

(ii) A is Nτα-closed iff Nτ -αcl(A) = A. In particular, Nτ -αcl(∅) = ∅ and Nτ -αcl(X) = X.

(iii) A ⊆ B ⇒ Nτ -αcl(A) ⊆ Nτ -αcl(B)

(iv) Nτ -αcl(A ∪B) = Nτ -αcl(A) ∪Nτ -αcl(B)

(v) Nτ -αcl(A ∩B) ⊆ Nτ -αcl(A) ∩Nτ -αcl(B)

(vi) Nτ -αcl(Nτ -αcl(A)) = Nτ -αcl(A)

Proof:

(i) Since the intersection of any collection of Nτα-closed sets is also Nτα-closed, then Nτ -αcl(A)
is a Nτα-closed set. By definition 4.1, A ⊆ Nτ -αcl(A). Now let B be any Nτα-closed set
containing A. Then Nτ -αcl(A) = ∩{F : A ⊆ F and F is Nτα-closed}⊆ B. Therefore, A is the
smallest Nτα-closed set containing A.

(ii) Assume A is Nτα-closed, then A is the only smallest Nτα-closed set containing itself and
therefore, Nτ -αcl(A) = A. Conversely, assume Nτ -αcl(A) = A. Then A is the smallest Nτα-
closed set containing itself. Therefore, A is Nτα-closed. In particular, since ∅ and X are
Nτα-closed sets, then Nτ -αcl(∅) = ∅ and Nτ -αcl(X) = X.

(iii) Assume A ⊆ B, and since B ⊆ Nτ -αcl(B), then A ⊆ Nτ -αcl(B). Since
Nτ -αcl(A) is the smallest Nτα-closed set containing A. Therefore, Nτ -αcl(A) ⊆ Nτ -αcl(B).

(iv) Since A ⊆ A ∪ B and B ⊆ A ∪ B. Then by (iii), we have Nτ -αcl(A) ∪
Nτ -αcl(B) ⊆ Nτ -αcl(A ∪ B). On the other hand, by(i), A ∪ B ⊆
Nτ -αcl(A)∪Nτ -αcl(B). Since Nτ -αcl(A∪B) is the smallest Nτα-closed set containing A∪B.
Then Nτ -αcl(A∪B) ⊆ Nτ -αcl(A)∪Nτ -αcl(B). Therefore, Nτ -αcl(A∪B) = Nτ -αcl(A)∪Nτ -
αcl(B).

(v) Since A ∩B ⊆ A and A ∩B ⊆ B, then Nτ -αcl(A ∩B) ⊆ Nτ -αcl(A) ∩Nτ -αcl(B).

(vi) Since Nτ -αcl(A) is a Nτα-closed set, then Nτ -αcl(Nτ -αcl(A)) = Nτ -αcl(A).
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Remark 3.4. From the above theorem, we can observe that the closure operator Nτ -αcl satisfies the
Kuratowski’s closure axioms. The following theorem can be proved as the above theorem.

Theorem 3.5. Let (X,Nτ) be a N -topological space on X and let A,B ⊆ X. Let Nτ -kcl(A) is the
intersection of all k-closed sets containing A (where k-closed set is can be any one of the following Nτ

semi-closed set, Nτ pre-closed set and Nτβ-closed set). Then

(i) Nτ -kcl(A) is the smallest k-closed set containing A.

(ii) A is k-closed iff Nτ -kcl(A) = A. In particular, Nτ -kcl(∅) = ∅ and Nτ -kcl(X) = X.

(iii) A ⊆ B ⇒ Nτ -kcl(A) ⊆ Nτ -kcl(B)

(iv) Nτ -kcl(A ∪B) ⊇ Nτ -kcl(A) ∪Nτ -kcl(B)

(v) Nτ -kcl(A ∩B) ⊆ Nτ -kcl(A) ∩Nτ -kcl(B)

(vi) Nτ -kcl(Nτ -kcl(A)) = Nτ -kcl(A).

Example 3.6. LetX = {a, b, c, d}. ForN = 3, consider τ1O(X) = {X, ∅, {a}}, τ2O(X) = {X, ∅, {b, c}}
and τ3O(X) = {X, ∅, {a, b, c}}. Then, we have 3τO(X) = {X, ∅, {a}, {b, c}, {a, b, c}} = NταO(X),
3τC(X) = {X, ∅, {d}, {a, d}, {b, c, d}}. Also 3τSO(X) = {∅,X, {a}, {a, d}, {b, c}, {a, b, c}, {b, c, d}},
3τPO(X) = {∅,X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}} and 3τβO(X) = {∅,X,

{a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}}. Let A = {a}
and B = {b}. Then 3τ -scl(A)∪3τ -scl(B) = {a}∪{b, d} = {a, b, d} 6= X = 3τ -scl(A∪B). Let A = {a}
and B = {b}. Then 3τ -pcl(A) ∪ 3τ -pcl(B) = {a} ∪ {b} = {a, b} 6= {a, b, d} = 3τ -pcl(A ∪ B). Also let
A = {a} and B = {b, c}, then 3τ -βcl(A) ∪ 3τ -βcl(B) = {a} ∪ {b, c} = {a, b, c} 6= X = 3τ -βcl(A ∪B).

Theorem 3.7. Let (X,Nτ) be a N -topological space on X and A ⊆ X. Let Nτ -kcl(A) is the
intersection of all k-closed sets containing A (where k-closed set is can be any one of the following
Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set). Then x ∈ Nτ -kcl(A) if
and only if G ∩A 6= ∅ for every k-open set G containing x.

Theorem 3.8. Let (X,Nτ) be a N -topological space X and A,B ⊆ X. Then

(i) Nτ -αint(A) is the largest Nτα-open set contained in A.

(ii) A is Nτα-open set iff Nτ -αint(A) = A. In particular, Nτ -αint(∅) = ∅ and Nτ -αint(X) = X.

(iii) A ⊆ B, then Nτ -αint(A) ⊆ Nτ -αint(B)

(iv) Nτ -αint(A ∪B) ⊇ Nτ -αint(A) ∪Nτ -αint(B)

(v) Nτ -αint(A ∩B) = Nτ -αint(A) ∩Nτ -αint(B)

(vi) Nτ -αint(Nτ -αint(A)) = Nτ -αint(A)

Proof: The proof is obvious from the fact that a set is Nτα-open if and only if its complement is
Nτα-closed.

The proof of the following theorem can be proved as similar as the above theorem.

Theorem 3.9. Let (X,Nτ) be a N -topological space X and A,B ⊆ X. Let Nτ -kint(A) is the union
of all k-open sets contained in A (where k-open set can be any one of Nτ semi-open set, Nτ pre-open
set and Nτβ-open set). Then

(i) Nτ -kint(A) is the largest k-open set contained in A.

(ii) A is k-open set iff Nτ -kint(A) = A. In particular, Nτ -kint(∅) = ∅ and Nτ -kint(X) = X.

(iii) A ⊆ B, then Nτ -kint(A) ⊆ Nτ -kint(B)

(iv) Nτ -kint(A ∪B) ⊇ Nτ -kint(A) ∪Nτ -kint(B)

(v) Nτ -kint(A ∩B) ⊆ Nτ -kint(A) ∩Nτ -kint(B)
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(vi) Nτ -kint(Nτ -kint(A)) = Nτ -kint(A)

Theorem 3.10. Let (X,Nτ) be a N -topological space X and A ⊆ X. Let Nτ -kint(A) and Nτ -
kcl(A) are the weak interior and closure operator in N -topological space. By k-closed set, we mean
any one of the following Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set.
Then

(i) Nτ -kint(X −A) = X −Nτ -kcl(A)

(ii) Nτ -kcl(X −A) = X −Nτ -kint(A)

Remark 3.11. Let (X,Nτ) be a N -topological space X and A ⊆ X. Let Nτ -kint(A) and Nτ -kcl(A)
are the weak interior and closure operator in N -topological space. By k-closed set, we mean any one
of the following Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set. If we take
the complement of either side of part(i) and part(ii) of previous theorems, we get

(i) Nτ -kcl(A) = X −Nτ -kint(X −A)

(ii) Nτ -kint(A) = X −Nτ -kcl(X −A)

4. Some Weak Continuous Functions in N-topology

In this section, we introduce some weak form of continuous functions in N -topological space and
investigate the relationship between them. By the spaces X and Y , we means the N -topological
spaces (X,Nτ) and (Y,Nσ) respectively.

Definition 4.1. Let X and Y be two N -Topological spaces. A function f : X → Y is said to be
N∗-α continuous (resp. N∗-semi continuous, N∗-pre continuous, N∗-β continuous) on X if the inverse
image of every Nσ-open set in Y is a Nτα-open set (resp. Nτ semi-open, Nτ pre-open, Nτβ-open)
in X.

Theorem 4.2. A function f : X → Y is N∗-α continuous (resp. N∗-semi continuous, N∗-pre
continuous, N∗-β continuous) on X if and only if the inverse image of every Nσ-closed set in Y is a
Nτα-closed set (resp. Nτ semi-closed, Nτ pre-closed, Nτβ-closed) in X.

Theorem 4.3. A function f : X → Y is N∗-continuous on X, then it is N∗-α continuous function
on X.
Proof: Assume f : X → Y be a N∗-continuous function on X and let A ⊆ Y be a Nσ-open set.
Then f−1(A) ⊆ X is Nτ -open set in X. Since every Nτ -open set is Nτα-open set, then f is N∗-α
continuous on X.

The converse of the above theorem need not be true as shown in the following example.

Example 4.4. For N = 2, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅}, τ2O(X) =
{X, ∅, {a}} and σ1O(Y ) = {Y, ∅, {x}} and σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) = {X, ∅, {a}} and
2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x, f(b) = y and f(c) = z. Therefore, f is
2∗-α continuous function on X but not 2∗-continuous.

Theorem 4.5. A function f : X → Y is N∗-α continuous on X if and only if it is N∗-semi continuous
and N∗-pre continuous.
Proof: The proof follows from the theorem 3.5.

Theorem 4.6. A function f : X → Y is N∗-semi continuous on X, then it is N∗-β continuous.

Theorem 4.7. A function f : X → Y is N∗-pre continuous on X, then it is N∗-β continuous.

The converse of the above theorems need not be true as shown in the following example.

Example 4.8. If N = 2, X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}},
τ2O(X) = {X, ∅, {b, c}} and also σ1O(Y ) = {Y, ∅, {x}} , σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) =
{X, ∅, {a}, {b, c}}, 2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x, f(b) = z and
f(c) = y. Then f is 2∗-pre continuous and 2∗-β continuous function on X but it is not 2∗-semi
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continuous and not 2∗-α continuous function. Also if N = 3, X = {a, b, c} and Y = {x, y, z}. Con-
sider τ1O(X) = {X, ∅, {a}, {a, b}}, τ2O(X) = {X, ∅, {b}, {a, b}}, τ3O(X) = {X, ∅, {a, b}} and also
σ1O(Y ) = {Y, ∅, {x}}, σ2O(Y ) = {Y, ∅, {y, z}}, σ3O(Y ) = {Y, ∅}. Then 3τO(X) = {X, ∅, {a}, {b},
{a, b}}, 3σO(Y ) = {Y, ∅, {x}, {y, z}}. Define f : X → Y by f(a) = x, f(b) = y and f(c) = z.
Then f is 3∗-semi continuous and 3∗-β continuous on X but it is not 3∗-pre continuous and not 3∗-α
continuous.

5.Quotient Mappings in N-Topology

In this section, we introduce and establish the properties of some new types of quotient mappings in
N -topological spaces.

Definition 5.1. Let X and Y be N -topological spaces, then a surjective map f : X → Y is said to
be

(i) N∗-quotient map if f is N∗-continuous and for each subset G of Y , f−1(G) is Nτ -open (or
Nτ -closed) in X implies G is Nσ-open (or Nσ-closed) in Y .

(ii) N∗-α quotient map if f is N∗-α continuous and for each subset G of Y , f−1(G) is Nτ -open (or
Nτ -closed) in X implies G is Nσα-open (or Nσα-closed) in Y .

(iii) N∗-semi quotient map if f is N∗-semi continuous and for each subset G of Y , f−1(G) is Nτ -open
(or Nτ -closed) in X implies G is Nσ semi-open (or Nσ semi-closed) in Y .

Proposition 5.2. Let X, Y be two N -topological spaces and f : X → Y be a surjective map. Then

(i) every N∗-quotient map is N∗-α quotient.

(ii) every N∗-quotient map is N∗-semi quotient.

(iii) every N∗-α quotient map is N∗-semi quotient.

Proof: The proof is straightforward from the definition.

The following examples show that the converse of the above proposition need not be true.

Example 5.3. For N = 2, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}},
τ2O(X) = {X, ∅} and σ1O(Y ) = {Y, ∅, {x}} and σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) = {X, ∅, {a}}
and 2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x , f(b) = y and f(c) = z. Therefore,
f is 2∗-α quotient and 2∗-semi quotient map but not 2∗-quotient.

Example 5.4. For N = 3, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}, {a, b}},
τ2O(X) = {X, ∅, {b}, {a, b}}, τ3O(X) = {X, ∅, {b}} and σ1O(Y ) = {Y, ∅, {x}, {x, z}}, σ2O(Y ) =
{Y, ∅, {y}, {x, y}} and σ3O(Y ) = {Y, ∅, {x}, {x, y}, {x, z}}. Then 3τO(X) = {X, ∅, {a}, {b}, {a, b}}
and 3σO(Y ) = {Y, ∅, {x}, {y}, {x, y}, {x, z}}. Define f : X → Y by f(a) = y, f(b) = x and f(c) = z.
Therefore, f is 3∗-semi quotient map but not 3∗-α quotient and not 3∗-quotient.

Definition 5.5. Let X and Y be two N -topological spaces, then a map f : X → Y is said to be

(i) N∗-open (or N∗-closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσ-open (or
Nσ-closed) in Y .

(ii) N∗-α open (or N∗-α closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσα-open
(or Nσα-closed) in Y .

(iii) N∗-semi open (or N∗-semi closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσ

semi-open (or Nσ semi-closed) in Y .

Theorem 5.6. (i) Every surjective N∗-continuous map f : X → Y which is either N∗-open or
N∗-closed is N∗-quotient map.

(ii) Every surjective N∗-α continuous map f : X → Y which is either N∗-α open or N∗-α closed is
N∗-α quotient map.



Journal of New Theory 29 (2019) 49-57 / New Topologies via Weak N-Topological Open Sets and Mappings 56

(iii) Every surjective N∗-semi continuous map f : X → Y which is either N∗-semi open or N∗-semi
closed is N∗-semi quotient map.

Proof: The proof is trivial from the definition.

Lemma 5.7. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define Nτf = {G ⊆ Y : f−1(G) ∈ NτO(X)} is a topology on Y relative to which f is a N∗-quotient
map. It is called N∗-quotient topology on Y induced by f .
Proof: The proof follows from the facts that f−1(∅) = ∅, f−1(Y ) = X, f−1(∪∞

i=1
Gi)

= ∪∞

i=1
f−1(Gi) and f−1(∩n

i=1
Gi) = ∩n

i=1
f−1(Gi).

The following lemmas can be proved similarly as the above lemma.

Lemma 5.8. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define Nταf = {G ⊆ Y : f−1(G) ∈ NταO(X)} is a topology on Y relative to which f is a N∗-α
quotient map. It is called N∗-α quotient topology on Y induced by f .

Lemma 5.9. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define NτSf = {G ⊆ Y : f−1(G) ∈ NτSO(X)} is a generalized topology on Y relative to which f

is a N∗-semi quotient map but it need not be a topology. It is called N∗-semi quotient generalized
topology on Y induced by f . If X is an extremally disconnected N -topological space, the intersection
of two Nτ semi-open sets in X is Nτ semi-open and hence NτSf becomes a topology on Y .

Example 5.10. For N = 2, let X = {a, b, c} = Y . Consider τ1O(X) = {X, ∅, {a}} = σ1O(Y ) and
τ2O(X) = {X, ∅} = σ2O(Y ). Then 2τO(X) = {X, ∅, {a}} = 2σO(Y ) and 2ταO(X) = 2τSO(X) =
2σαO(Y ) = 2σSO(Y ) = {X, ∅, {a}, {a, b}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = b and f(c) =
c. Clearly f is 2∗-quotient, 2∗-α quotient and 2∗-semi quotient map. Therefore, 2τf = {Y, ∅, {a}} and
2ταf = 2τSf = {Y, ∅, {a}, {a, b}, {a, c}}.

Example 5.11. In example 6.4, f is 3∗-semi quotient map and therefore, 3τSf = {Y, ∅, {x}, {y}, {x, y},
{x, z}, {y, z}} is not a topology on Y .

Theorem 5.12. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-quotient map and
h : X → Z be a map that is constant on each set f−1({y}), for y ∈ Y . Then h induces a map
g : Y → Z such that g ◦ f = h. Then the induced map g is N∗-continuous if and only if h is N∗-
continuous; g is N∗-quotient map if and only if h is N∗-quotient map.
Proof: Since h is constant on each set f−1({y}), for each y ∈ Y , the set h(f−1({y})) is a one-point set
in Z. Let us take this point as g(y), then the map g : Y → Z such that for each x ∈ X, g(f(x)) = h(x).
If g is N∗-continuous, then h = g ◦ f is N∗-continuous. Conversely, assume h is N∗-continuous, for
each Nη-open set G of Z, h−1(G) = f−1(g−1(G)) is Nτ -open in X. Since f is N∗-quotient, g−1(G)
is Nσ-open in Y and hence g is N∗-continuous.

If g is N∗-quotient map, then h is the composite of two N∗-quotient map and so is a N∗-quotient
map. Conversely, assume h is a N∗-quotient map and since h is surjective, then g is surjective. Let
g−1(G) be a Nσ-open set in Y and since f is N∗-continuous, then the set f−1(g−1(G)) = h−1(G) is
Nτ -open in X. Since h is a N∗-quotient map, G is Nη-open in Z.

The following theorems can be proved similarly as the above theorem.

Theorem 5.13. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-α quotient map and
h : X → Z be a N∗-continuous map that is constant on each set f−1({y}), for y ∈ Y . Then h induces
a N∗-α continuous map g : Y → Z such that g ◦ f = h.

Theorem 5.14. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-semi quotient map and
h : X → Z be a N∗-continuous map that is constant on each set f−1({y}), for y ∈ Y . Then h induces
a N∗-semi continuous map g : Y → Z such that g ◦ f = h.

6. Conclusion

In this paper we established some weak form of open sets and its respective continuous and quotient
mappings in our N -topological spaces. These concepts can be extended to other applicable research
areas of topology such as Nano topology, Fuzzy topology, Supra topology and so on.
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Abstract − In this article, we generalised the notion of the lattice (anti-lattice) ordered soft 

sets and introduced the notion of the lattice (anti-lattice) ordered double framed soft sets and 

proved some results by applying the basic operations like union, intersection, union-product 

and intersection-product, etc. Further, by applying the operations of restricted union and 

restricted intersection, we elaborated the applications of lattice ordered double framed soft 

sets in algebraic structure. 

Keywords − Soft set, double framed soft set, lattice ordered double framed soft set, lattice ordered Boolean-algebra 

1. Introduction 

In daily life there exists certain difficulties which deal with uncertainty, vague and precise like in 

environmental sciences, economics and engineering etc. To face such types of difficulties, there are 

many theories developed like probability theory, interval mathematical theory and theory of fuzzy 

set. These theories are classical mathematical tools. Due to the limitations of these theories, we felt 

hesitation in giving a comfortable solution to solve these problems, which are known as uncertainty, 

vague and precise. May be dealt with using a wide range existing theory such as the theory of fuzzy 

(intuitionistic fuzzy) set [1, 2, 3], the theory of interval mathematics [4], theory of probability, theory 

of vague set [5] and theory of rough set [6]. However, due to limitations and difficulties of these 

theories, Molodtsov [7] pointed out these problems and solved by introducing a new theory which is 

known as soft set theory. Maji et al. [8] introduced the applications of soft set theory in decision-

making problems. Also, Maji et al. [9] studied the theoretical work on soft set theory to polish this 

concept so that readers could easily understand and contributed their role to extend the scope of this 

theory in different fields of life. After theoretical discussion, now we discussed the contributions of 

those researchers whose applied this concept in different fields of algebras like Aktaş and Çağman 

[10] studied the notion of soft sets and soft groups and introduced the notion of soft groups. They 

also defined the relation between fuzzy set, rough set and soft set and discussed its properties. Ali et 

al. [11] initiated the concept of lattice ordered soft sets and discussed some of its properties. Lattice 

ordered soft sets are very helpful in particular types of decision-making problems when there is some 

order between the elements of the parameter set. Mahmood et al. [12] initiated the concept of lattice 

ordered intuitionistic fuzzy soft sets. Mahmood et al. [13] worked on lattice ordered soft near rings. 

Jun and Ahn [14] initiated the notion of double framed soft set. For further information, we mention 

the readers to the papers [15-27] regarding soft algebras and properties of soft sets. Inspiring from 

the above literature and especially, the concept of lattice ordered soft sets [11]. This paper courage 

us to extend this concept into lattice ordered double framed soft sets because in this paper mentioned 

that sometimes we define particular order between linguistic terms, for example, the selections of the 
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brilliant student based on percentage (80% to 90%) of marks in any educational institute of PhD 

Mathematics class. 

This paper distributed in three sections, in 2nd section, some basic concepts of soft sets, properties of 

soft sets, lattice (anti-lattice) ordered soft set and double framed soft sets are discussed and introduced 

their notations. In the 3rd Section, we initiated the concept of the lattice (anti-lattice) ordered double 

framed soft sets and discussed their properties by using examples and results. Also, by using the 

notion of the lattice (anti-lattice) ordered double framed soft set we introduced the algebraic structures 

of the lattice (anti-lattice) ordered double framed soft set like bounded lattice, complemented lattice 

and distributed lattices etc. Note that for further study, we use “S-set” instead of soft set. 

 

2. Preliminaries 
 

In this section, we discussed some basic notions and properties related to S-set, lattice (anti-lattice) 

ordered S-set and double framed S-set. 

 

Definition 2.1. [7] Let 𝐸 be a parameter set, 𝑈 be a universal set and let 𝑃(𝑈) denotes the power 

set of 𝑈 and 𝐴 ⊆ 𝐸. Then, a set-valued function 𝛼 from 𝐴 to 𝑃(𝑈) is called an S-set over 𝑈 and is 

denoted as (𝛼, 𝐴). 

 

Definition 2.2. [9] A S-set (𝛼, 𝐴) is called a soft subset of (𝛽, 𝐵), over 𝑈 if  

1) 𝐴 ⊆ 𝐵. 

2) 𝛼(𝑥) ⊆ 𝛽(𝑥) for all 𝑥 ∊ 𝐴. 

It is denoted as (𝛼, 𝐴) ⊂̃ (𝛽, 𝐵). In this case (𝛽, 𝐵) is called a soft superset of (𝛼, 𝐴). 

 

Definition 2.3. [9] Let (𝛼, 𝐴) and (𝛽, 𝐵) be S-sets over 𝑈. Then, (𝛼, 𝐴) and (𝛽, 𝐵) are called soft 

equal if (𝛼, 𝐴) ⊂̃ (𝛽, 𝐵) and (𝛽, 𝐵) ⊂̃ (𝛼, 𝐴).  

 

Definition 2.4. Let 𝐿 be a non-empty poset. Then, 𝐿 is called a lattice if for each {𝑥, 𝑦} ⊆ 𝐿 there 

exist 𝑠𝑢𝑝{𝑥, 𝑦} ∊ 𝐿 and 𝑖𝑛𝑓{𝑥, 𝑦} ∊ 𝐿. 

 

Definition 2.5. A lattice having both first and last element is called bounded lattice. 

 

Definition 2.6. A distributive lattice with the least and the greatest element is called Boolean algebra 

if and only if every element has a complement in it. 

 

Definition 2.7. A bounded distributive lattice 𝐿 along with a unary operation “𝑐” which satisfies 

(𝑥 ∧ 𝑦)𝑐 = 𝑥𝑐 ∨ 𝑦𝑐 and (𝑥𝑐)𝑐 = 𝑥 is called De ‘Morgan’s algebra. 

 

Definition 2.8. A De ‘Morgan’s algebra which satisfies 𝑥 ∧ 𝑥𝑐 ≤ 𝑦 ∨ 𝑦𝑐 for all 𝑥, 𝑦 is called Kleene 

algebra. 

 

Definition 2.9. [11] A S-set (𝛼, 𝐴) is said to be lattice (anti-lattice) ordered S-set if 𝑥1 ≤ 𝑥2 implies 

𝛼(𝑥1) ⊆ 𝛼(𝑥2) (𝛼(𝑥2) ⊆ 𝛼(𝑥1)) for all 𝑥1, 𝑥2 ∊ 𝐴. 

 

Definition 2.10. [14] A set ((𝛼, 𝛽), 𝐴) is said to be double framed soft set (DFS-set), where 𝛼 and 

𝛽 both are S-sets over 𝑈 and 𝐴 is a subset of 𝐸 (𝐸 is the set of parameters). 

 

Definition 2.11. [14] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be double framed soft sets (DFS-sets) over 𝑈. 

Then, ((𝛼, 𝛽), 𝐴) is called a double framed soft subset (DFS-subset) of ((𝜆, 𝜇), 𝐵) if 

1) 𝐴 ⊆ 𝐵,  

2) 𝛼(𝑥) ⊆ 𝜆(𝑥), 𝛽(𝑥) ⊇ 𝜇(𝑥) for all 𝑥 ∊ 𝐴. 
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We write ((𝛼, 𝛽), 𝐴) ⊂̃ ((𝜆, 𝜇), 𝐵). In this case ((𝜆, 𝜇), 𝐵) is called a DFS-superset of ((𝛼, 𝛽), 𝐴). 

 

Definition 2.12. [14] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be DFS-sets over 𝑈. Then, their uni-int product 

is defined as a DFS-set ((𝐻1, 𝐻2), 𝐷) = ((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵), where 𝐷 = 𝐴 × 𝐵, 𝐻1 = 𝛼 ∨ 𝜆, 

𝐻2 = 𝛽 ∧ 𝜇 and 𝐻1(𝑥1, 𝑦1) = 𝛼(𝑥1) ∪ 𝜆(𝑦1), 𝐻2(𝑥1, 𝑦1) = 𝜆(𝑥1) ∩ 𝜇(𝑦1) for all (𝑥1, 𝑦1) ∈ 𝐴 × 𝐵, 

where 𝑥1 ∊ 𝐴 and 𝑦1 ∊ 𝐵. We shall call this uni-int product of DFS-set as union-product of DFS-set. 

 

Definition 2.13. [14] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be DFS-sets over 𝑈. Then, their int-uni product 

is defined as a DFS-set ((𝐻1, 𝐻2), 𝐷) = ((𝛼, 𝛽), 𝐴) ∧ ((𝜆, 𝜇), 𝐵), where 𝐷 = 𝐴 × 𝐵 and 

𝐻1(𝑥1, 𝑦1) = 𝛼(𝑥1) ∩ 𝜆(𝑦2), 𝐻2(𝑥1, 𝑦1) = 𝜆(𝑥1) ∪ 𝜇(𝑦1) for all (𝑥1, 𝑦1) ∈ 𝐴 × 𝐵, 𝐻1 = 𝛼 ∧ 𝜆, 

𝐻2 = 𝛽 ∨ 𝜇 where 𝑥1 ∊ 𝐴 and 𝑦1 ∊ 𝐵. We shall call this int-uni product of DFS-set as intersection-

product of DFS-set. 

 

Definition 2.14. [16] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be DFS-sets over 𝑈. Then, their extended uni-

int is defined as a DFS-set ((𝐻1, 𝐻2), 𝐴 ∪ 𝐵), where 𝐻1 = 𝛼 ∪̃ 𝜆 ∶ (𝐴 ∪ 𝐵) ⟶ 𝑃(𝑈) defined as  

 

 𝑒 ⟶ {

𝛼(𝑒)                  𝑖𝑓 𝑒 ∈ 𝐴\𝐵

𝜆(𝑒)                  𝑖𝑓 𝑒 ∈ 𝐵\𝐴

𝛼(𝑒) ∪ 𝜆(𝑒)       𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

 

and 𝐻2 = 𝛽 ∩̃ 𝜇: (𝐴 ∪ 𝐵) ⟶ 𝑃(𝑈) defined as 

 

𝑒 ⟶ {

𝛽(𝑒)                  𝑖𝑓 𝑒 ∈ 𝐴\𝐵

𝜇(𝑒)                  𝑖𝑓 𝑒 ∈ 𝐵\𝐴

𝛽(𝑒) ∩ 𝜇(𝑒)       𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

  

 

It is denoted as ((𝛼, 𝛽), 𝐴) ⊔ℰ ((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2), 𝐴 ∪ 𝐵). We shall call this extended uni-int of 

DFS-set as union of DFS-set. 

 

Definition 2.15. [16] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) are two DFS-sets over 𝑈. Then, their extended 

int-uni is defined as a DFS-set ((𝐻1, 𝐻2), 𝐴 ∪ 𝐵), where 𝐻1 = 𝛼 ∩̃ 𝜆 ∶ (𝐴 ∪ 𝐵) ⟶ 𝑃(𝑈) defined as  

 

 𝑒 ⟶ {

𝛼(𝑒)                  𝑖𝑓 𝑒 ∈ 𝐴\𝐵

𝜆(𝑒)                   𝑖𝑓 𝑒 ∈ 𝐵\𝐴

𝛼(𝑒) ∩ 𝜆(𝑒)        𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

 

 

and 𝐻2 = 𝛽 ∪̃ 𝜇: (𝐴 ∪ 𝐵) ⟶ 𝑃(𝑈) defined as 

 

𝑒 ⟶ {

𝛽(𝑒)                   𝑖𝑓 𝑒 ∈ 𝐴\𝐵

𝜇(𝑒)                    𝑖𝑓 𝑒 ∈ 𝐵\𝐴

𝛽(𝑒) ∪ 𝜇(𝑒)         𝑖𝑓 𝑒 ∈ 𝐴 ∩ 𝐵

  

 

It is denoted as ((𝛼, 𝛽), 𝐴) ⊓ℰ ((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2), 𝐴 ∪ 𝐵). We shall call this extended int-uni of 

DFS-set as intersection of DFS-set. 

 

Definition 2.16. [16] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be DFS-sets over 𝑈 such that 𝐴 ∩ 𝐵 ≠ ∅. Then, 

their restricted uni-int is denoted as ((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵) and defined as ((𝛼, 𝛽), 𝐴) ⊔

((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2), 𝐷) where 𝐷 = 𝐴 ∩ 𝐵 and for every 𝑥 ∈ 𝐷, 𝐻1(𝑥) = 𝛼(𝑥) ∪ 𝜆(𝑥), 𝐻2(𝑥) =

𝜆(𝑥) ∩ 𝜇(𝑥). We shall call this restricted uni-int of DFS-set as restricted union of DFS-set. 
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Definition 2.17. [16] Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be DFS-set over 𝑈 such that 𝐴 ∩ 𝐵 ≠ ∅. Then, 

their restricted int-uni is denoted as ((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝐵) and defined as ((𝛼, 𝛽), 𝐴) ⊓

((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2), 𝐷), where 𝐷 = 𝐴 ∩ 𝐵 and for all 𝑥 ∈ 𝐷, 𝐻1(𝑥) = 𝛼(𝑥) ∩ 𝜆(𝑥), 𝐻2(𝑥) =

𝜆(𝑥) ∪ 𝜇(𝑥). We shall call this restricted int-uni of DFS-set as restricted intersection of DFS-set. 

 

Definition 2.18. [16] A DFS-set ((𝛼, 𝛽), 𝐴) over 𝑈 is called relative whole DFS-set, if 𝛼: 𝐴 ⟶

𝑃(𝑈) and 𝛽: 𝐴 ⟶ 𝑃(𝑈) are defined as 

𝛼(𝑥) = 𝑈 and 𝛽(𝑥) = ∅ for all 𝑥 ∊ 𝐴. 

It is denoted as 𝐴(𝔄,∅). 

 

Definition 2.19. [16] A DFS-set ((𝛼, 𝛽), 𝐴) over 𝑈 is called relative null DFS-set, if 𝛼 ∶ 𝐴 ⟶ 𝑃(𝑈) 

and 𝛽 ∶ 𝐴 ⟶ 𝑃(𝑈) are defined as 

  𝛼(𝑥) = ∅ and 𝛽(𝑥) = 𝑈 for all 𝑥 ∊ 𝐴. 
It is denoted as 𝐴(∅,𝔄). 

 

Definition 2.20. [16] For a DFS-set ((𝛼, 𝛽), 𝐴), the complement of ((𝛼, 𝛽), 𝐴) is defined as a DFS-

set ((𝛼𝑐 , 𝛽𝑐), 𝐴), where 𝛼𝑐 ∶ 𝐴 ⟶ 𝑃(𝑈) and 𝛽𝑐 ∶ 𝐴 ⟶ 𝑃(𝑈) are defined as 

𝛼𝑐(𝑥) = (𝛼(𝑥))
𝑐
 and 𝛽𝑐(𝑥) = (𝛽(𝑥))

𝑐
 for all 𝑥 ∊ 𝐴. 

It is denoted as ((𝛼, 𝛽), 𝐴)
𝑐

=̃ ((𝛼𝑐 , 𝛽𝑐), 𝐴). 

 

Proposition 2.21. (De Morgan’s Laws) 
 

Let (𝛼, 𝐴) and (𝛽, 𝐵) be LOS-sets (ALOS-sets) over 𝑈. Then, 

(1)  ((𝛼, 𝐴) ⊔ℰ (𝛽, 𝐵))
𝑐

= (𝛼, 𝐴)𝑐 ⊓ℰ (𝛽, 𝐵)𝑐, if  𝐴 = 𝐵.  

(2)  ((𝛼, 𝐴) ⊓ℰ (𝛽, 𝐵))
𝑐

= (𝛼, 𝐴)𝑐 ⊔ℰ (𝛽, 𝐵)𝑐, if  𝐴 = 𝐵. 

(3)  ((𝛼, 𝐴) ∨ (𝛽, 𝐵))
𝑐

= (𝛼, 𝐴)𝑐 ∧ (𝛽, 𝐵)𝑐. 

(4)  ((𝛼, 𝐴) ∧ (𝛽, 𝐵))
𝑐

= (𝛼, 𝐴)𝑐 ∨ (𝛽, 𝐵)𝑐 . 

Proposition 2.22 If (𝛼, 𝐴), (𝛽, 𝐵) and (𝛾, 𝐶) be any LOS-sets (ALOS-sets) over 𝑈. Then, 

followings are LOS-sets (ALOS-sets), 

(1)  (𝛼, 𝐴) ∨ ((𝛽, 𝐵) ⊔ℰ (𝛾, 𝐶)) 

(2)  (𝛼, 𝐴) ∨ ((𝛽, 𝐵) ⊓ℰ (𝛾, 𝐶)) 

(3)  (𝛼, 𝐴) ∧ ((𝛽, 𝐵) ⊔ℰ (𝛾, 𝐶)) 

(4)  (𝛼, 𝐴) ∧ ((𝛽, 𝐵) ⊓ℰ (𝛾, 𝐶)) 

(5)  (𝛼, 𝐴) ∨ ((𝛽, 𝐵) ⊓ (𝛾, 𝐶)) 

(6)  (𝛼, 𝐴) ∧ ((𝛽, 𝐵) ⊔ (𝛾, 𝐶)) 

If ⊔ℰ and ⊓ℰ are LOS-set (ALOS-set). 

 

Theorem 2.23. (𝐷𝐹𝑆𝑆(𝑈)𝐴,⊔, ᶜ, 𝐴(∅,𝔄)) is an MV-algebra. 

 

Proof. (1) (𝐷𝐹𝑆𝑆(𝑈)𝐴,⊔, ᶜ, 𝐴(∅,𝔄)) is a commutative monoid. 

(2) (𝐴
(𝛼1,𝛽1)

𝑐)
𝑐

= 𝐴(𝛼1,𝛽1) 

The other conditions satisfied trivially. Hence, (𝐷𝐹𝑆𝑆(𝑈)𝐴,⊔, ᶜ, 𝐴(∅,𝔄)) is MV-algebra. 

 

Theorem 2.24. (𝐷𝐹𝑆𝑆(𝑈)𝐴, ⊓, ᶜ, 𝐴(𝔄,∅)) is an MV-algebra. 

 

Proof. It follows from the above theorem. 
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3. Lattice (Anti-Lattice) Ordered Double Framed Soft Sets 
 

In this section, our primary purpose is to define lattice (anti-lattice) ordered double framed S-set and 

discuss their properties and results with the help of examples. Note that we write LODFS-set and 

ALODFS-set for lattice ordered double framed soft set, and anti-lattice ordered double framed soft 

set respectively unless otherwise specified. 

 

Definition 3.1. A DFS-set ((𝛼, 𝛽), 𝐴) is called LODFS-set (ALODFS-set) if 𝑥1 ≤ 𝑥2 implies 

𝛼(𝑥1) ⊆ 𝛼(𝑥2) and 𝛽(𝑥1) ⊇  𝛽(𝑥2) (𝛼(𝑥1) ⊇ 𝛼(𝑥2) 𝑎𝑛𝑑  𝛽(𝑥1) ⊆ 𝛽(𝑥2)) for all 𝑥1, 𝑥2 ∊ 𝐴. 

 

Example 3.2. Let a company prepare a different design of cars in different colours like, 𝐴 =
{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} be the set of parameters which represent different types of colours of cars, 

where 𝑒7 = 𝑤ℎ𝑖𝑡𝑒, 𝑒6 = 𝑏𝑙𝑎𝑐𝑘, 𝑒5 = 𝐺𝑟𝑒𝑦, 𝑒4 = 𝑟𝑒𝑑, 𝑒3 = 𝑏𝑙𝑢𝑒, 𝑒2 = 𝑔𝑟𝑒𝑒𝑛, 𝑒1 = 𝑦𝑒𝑙𝑙𝑜𝑤 and  

𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8} be the set of new designs of cars in different colours. To sell these 

cars, the company define lattice order between the parameters which depend upon the demand of 

people under the supervision of two experts say 𝛼 and 𝛽. The order between the elements of 𝐴 is 

shown in Fig. 1. 𝛼, 𝛽: 𝐴 ⟶ 𝑃(𝑈) are two set-valued mappings representing high-cost and low-cost 

of cars. Therefore, DFS-set ((𝛼, 𝛽), 𝐴) showing high-cost and low-cost for design in colours may be 

considered as 

 

{𝛼(𝑒1) = {𝑢1 }, 𝛼(𝑒2) = {𝑢1, 𝑢2 }, 𝛼(𝑒3) = {𝑢1, 𝑢3 },  𝛼(𝑒4) = {𝑢1, 𝑢2, 𝑢3, 𝑢4},  𝛼(𝑒5) = {𝑢1, 𝑢3, 𝑢5 }, 

 𝛼(𝑒6) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6}, 𝛼(𝑒7) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7}, 𝛽(𝑒7) = {𝑢1, 𝑢8}, 

𝛽(𝑒6) = {𝑢1, 𝑢3, 𝑢8 }, 𝛽(𝑒5) = {𝑢1, 𝑢3, 𝑢8 }, 𝛽(𝑒4) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢8}, 𝛽(𝑒3) = {𝑢1, 𝑢3, 𝑢5, 𝑢8 }, 

𝛽(𝑒2) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢8}, 𝛽(𝑒1) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8}} 

 

It is more appropriate to characterise DFS-set in the form of a table, for computer application. 

 

The tabular form of DFS-set ((𝛼, 𝛽), 𝐴) is defined in Table 1. If a car having a different colour in a 

set 𝑈 has high cost or low cast we write 1, otherwise we write 0. 

From Table 1, we can easily see that 

 

𝛼(𝑒1) ⊆ 𝛼(𝑒2) ⊆ 𝛼(𝑒4) ⊆ 𝛼(𝑒6) ⊆ 𝛼(𝑒7), 𝛼(𝑒1) ⊆ 𝛼(𝑒3) ⊆ 𝛼(𝑒5) ⊆ 𝛼(𝑒6) ⊆ 𝛼(𝑒7), 𝛼(𝑒1) ⊆
𝛼(𝑒3) ⊆ 𝛼(𝑒4) ⊆ 𝛼(𝑒6) ⊆ 𝛼(𝑒7) and 𝛽(𝑒1) ⊇ 𝛽(𝑒2) ⊇ 𝛽(𝑒4) ⊇ 𝛽(𝑒6) ⊇ 𝛽(𝑒7), 𝛽(𝑒1) ⊇ 𝛽(𝑒3) ⊇
𝛽(𝑒4) ⊇ 𝛽(𝑒6) ⊇ 𝛽(𝑒7), 𝛽(𝑒1) ⊇ 𝛽(𝑒3) ⊇ 𝛽(𝑒5) ⊇ 𝛽(𝑒6) ⊇ 𝛽(𝑒7). 

 

Example 3.3. Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7} (universe set) be the set of seven buildings and 

𝐵 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} be a set of parameters, where 

  

𝑒1; one-floor building. 

𝑒2; two-floor building. 

𝑒3; three-floor building. 

𝑒4; four-floor building. 

 

There is an order between the elements of 𝐵. This order can be nominated as 𝑒1 ≤ 𝑒2 ≤ 𝑒3 ≤ 𝑒4. 

Now the DFS-set ((𝜆, 𝜇), 𝐵) defined as {𝜆(𝑒1) = {𝑢1, 𝑢3}, 𝜆(𝑒2) = {𝑢1, 𝑢3, 𝑢5 }, 𝜆(𝑒3) =
{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}, 𝜆(𝑒4) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6}, 𝜇(𝑒4) = {𝑢1, 𝑢5}, 𝜇(𝑒3) = {𝑢1, 𝑢2, 𝑢5}, 𝜇(𝑒2) =
{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}, 𝜇(𝑒1) = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7}}. 

 

Then, 𝜆(𝑒4) ⊇ 𝜆(𝑒3) ⊇ 𝜆(𝑒2) ⊇ 𝜆(𝑒1) and 𝜇(𝑒4) ⊆ 𝜇(𝑒3) ⊆ 𝜇(𝑒2) ⊆ 𝜇(𝑒1). Thus, ((𝜆, 𝜇), 𝐵) is 

ALODFS-set. The tabular form of ALODFS-set ((𝜆, 𝜇), 𝐵) is defined in Table 2. 
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Table 1 LODFS-set ((𝛼, 𝛽), 𝐴) 

 𝒖𝟏            𝒖𝟐            𝒖𝟑            𝒖𝟒            𝒖𝟓            𝒖𝟔            𝒖𝟕            𝒖𝟖            

𝒆𝟏 (1, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) 

𝒆𝟐 (1, 1) (1, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 1) 

𝒆𝟑 (1, 1) (0, 0) (1, 1) (0, 0) (0, 1) (0, 0) (0, 0) (0, 1) 

𝒆𝟒 (1, 1) (1, 1) (1, 1) (1, 1) (1, 0) (0, 0) (0, 0) (0, 1) 

𝒆𝟓 (1, 1) (0, 0) (1, 1) (0, 0) (1, 0) (0, 0) (0, 0) (0, 1) 

𝒆𝟔 (1, 1) (1, 0) (1, 1) (1, 0) (1, 0) (1, 0) (0, 0) (0, 1) 

𝒆𝟕 (1, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)   (0, 1) 

 

Table 2 ALODFS-set ((𝜆, 𝜇), 𝐵) 

𝒖𝟏              𝒖𝟐             𝒖𝟑                𝒖𝟒                𝒖𝟓               𝒖𝟔               𝒖𝟕 

𝒆𝟏   (1, 1)         (0, 1)         (1, 1)          (0, 1)            (0, 1)          (0, 1)          (0, 1) 

𝒆𝟐   (1, 1)         (0, 1)         (1, 1)          (0, 1)            (1, 1)          (0, 0)          (0, 0) 

𝒆𝟑   (1, 1)         (1, 1)         (1, 0)          (1, 0)            (1, 1)          (0, 0)          (0, 0) 

𝒆𝟒   (1, 1)         (1, 0)         (1, 0)          (1, 0)            (1, 1)          (1, 0)          (0, 0) 

 

Note that, we can easily understand LODFS-set and ALODFS-set from Table 1. and 2.  

 

Proposition 3.4. Restricted union of two LODFS-set (ALODFS-set) ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) is 

a LODFS-set (ALODFS-set). 

 

Proof. Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) are two LODFS-set. Then, their restricted union is defined as 

such that ((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2 ), 𝐶) where 𝐻1 = 𝛼 ∪̃ 𝜆, 𝐻2 = 𝛽 ∩̃  𝜇 and 𝐶 = 𝐴 ∩ 𝐵. 

If 𝐴 ∩ 𝐵 = ∅, then the result is trivial. Now assume that 𝐴 ∩ 𝐵 ≠ ∅, since 𝐴, 𝐵 ⊆ 𝐸, then both 𝐴 and 

𝐵 inherit partial order from 𝐸. So, if 𝑥1 ≤𝐴 𝑥2 for all 𝑥1, 𝑥2 ∊ 𝐴, then 𝛼(𝑥1) ⊆ 𝛼(𝑥2) and 𝛽(𝑥1) ⊇
𝛽(𝑥2). Similarly, if 𝑦1 ≤𝐵 𝑦2 for all 𝑦1, 𝑦2 ∊ 𝐵, then 𝜆(𝑦1) ⊆ 𝜆(𝑦2) and  𝜇(𝑦1) ⊇  𝜇(𝑦2). Therefore, 

for any 𝑧1, 𝑧2 ∊ 𝐶 such that 𝛼(𝑧1) ⊆ 𝛼(𝑧2), 𝛽(𝑧1) ⊇ 𝛽(𝑧2) and 𝜆(𝑧1) ⊆ 𝜆(𝑧2), 𝜇(𝑧1) ⊇ 𝜇(𝑧2). 

Then, 𝛼(𝑧1) ∪ 𝜆(𝑧1) ⊆ 𝛼(𝑧2) ∪ 𝜆(𝑧2) and 𝛽(𝑧1) ∩ 𝜇(𝑧1) ⊇ 𝛽(𝑧2) ∩ 𝜇(𝑧2) implies that 𝐻1(𝑧1) ⊆

Lattice of parameters 
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𝐻1(𝑧2) and 𝐻2(𝑧1) ⊇ 𝐻2(𝑧2) for (𝑧1, 𝑧2) ∊≤𝐶. Thus, we conclude that the restricted union of two 

DFS-set is also double framed soft set. 

 

Proposition 3.5. The restricted intersection of two LODFS-set (ALODFS-set) ((𝛼, 𝛽), 𝐴) and 

((𝜆, 𝜇), 𝐵) is a LODFS-set (ALODFS-set). 

 

Proof. The proof is like to Proposition 3.4, by using the definition of the restricted intersection. 

The following example illustrates that in general, the union and intersection of LODFS-set 

(ALODFS-set) may not be a LODFS-set (ALODFS-set). 

From now to onward, we use a table to understand LODFS-set and ALODFS-set. 

 

Example 3.6. Let 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5} be a lattice ordered set which is defined in fig. 4. Let 𝐴 =
{𝑒1, 𝑒2, 𝑒4, 𝑒5} and 𝐵 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Consider two LODFS-set ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) over an 

initial universal set 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} are defined as shown in Table 3 and 4 respectively such 

that 𝛼(𝑒1) ⊆ 𝛼(𝑒2) ⊆ 𝛼(𝑒4) ⊆ 𝛼(𝑒5)  and 𝛽(𝑒1) ⊇ 𝛽(𝑒2) ⊇ 𝛽(𝑒4) ⊇ 𝛽(𝑒5).  

 

Table 3 LODFS-set ((𝛼, 𝛽), 𝐴) 

              𝒖𝟏              𝒖𝟐               𝒖𝟑                𝒖𝟒                  𝒖𝟓  
 

 𝒆𝟏      (1, 1)          (0, 1)          (0, 1)           (0, 0)             (0, 1)  

 𝒆𝟐      (1, 1)          (0, 1)          (0, 1)           (1, 0)             (0, 0)  

 𝒆𝟒      (1, 1)          (0, 0)          (0, 1)           (1, 0)             (1, 0)  

 𝒆𝟓      (1, 1)          (1, 0)          (0, 0)           (1, 0)             (1, 0) 
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Fig. 3 Lattice of parameters 
         

Table 4. LODFS-set ((𝜆, 𝜇), 𝐵) 

              𝒖𝟏              𝒖𝟐               𝒖𝟑                𝒖𝟒                  𝒖𝟓  
 

 𝒆𝟏      (0, 1)          (0, 1)          (0, 1)           (0, 1)             (0, 1)  

 𝒆𝟐      (0, 0)          (0, 1)          (0, 1)           (1, 0)             (1, 0)  

 𝒆𝟑      (0, 0)          (1, 1)          (1, 0)           (1, 1)             (0, 0)  

 𝒆𝟒      (0, 0)          (1, 1)          (1, 0)           (1, 0)             (1, 0) 
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Now by definition of union, we have ((𝛼, 𝛽), 𝐴) ⊔ℰ ((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2 ), 𝐶), where 𝐻1 = 𝛼 ∪̃ 𝜆, 

𝐻2 = 𝛽 ∩̃  𝜇 and 𝐶 = 𝐴 ∪ 𝐵, so we have the following table for the union. 

 

Table 5. The union of the LODFS-sets 

              𝒖𝟏              𝒖𝟐               𝒖𝟑                𝒖𝟒                  𝒖𝟓  
 

 𝒆𝟏      (1, 1)          (0, 1)          (0, 1)           (0, 0)             (0, 1)  

 𝒆𝟐      (1, 0)          (0, 1)          (0, 1)           (1, 0)             (1, 0)  

 𝒆𝟑      (0, 0)          (1, 1)          (1, 0)           (1, 1)             (0, 0)  

 𝒆𝟒      (1, 0)          (1, 0)          (1, 0)           (1, 0)             (1, 0) 

 𝒆𝟓      (1, 1)          (1, 0)          (0, 0)           (1, 0)             (1, 0) 

 

From Table 5, we note that the union of ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) is not LODFS-set because 

𝐻1(𝑒4) ⊈ 𝐻1(𝑒5), 𝐻2(𝑒1) ⊉ 𝐻2(𝑒3) and 𝐻2(𝑒4) ⊉ 𝐻2(𝑒5) so ((𝐻1, 𝐻2 ), 𝐶) is not a LODFS-set. 

 

Now by definition of intersection, we have ((𝛼, 𝛽), 𝐴) ⊓ℰ ((𝜆, 𝜇), 𝐵) = ((𝐻3, 𝐻4), 𝐷) where  𝐻3 =

𝛼 ∩̃ 𝜆 , 𝐻4 = 𝛽 ∪̃ 𝜇 and 𝐶 = 𝐴 ∪ 𝐵, so we have the following table for the intersection. 

 

Table. 6 The intersection of the LODFS-sets 

              𝒖𝟏              𝒖𝟐               𝒖𝟑                𝒖𝟒                  𝒖𝟓  
 

 𝒆𝟏      (0, 1)          (0, 1)          (0, 1)           (0, 1)             (0, 1)  

 𝒆𝟐      (0, 1)          (0, 1)          (0, 1)           (1, 0)             (0, 0)  

 𝒆𝟑      (0, 0)          (1, 1)          (1, 0)           (1, 1)             (0, 0)  

 𝒆𝟒      (0, 1)          (0, 1)          (0, 1)           (1, 0)             (1, 0) 

 𝒆𝟓      (1, 1)          (1, 0)          (0, 0)           (1, 0)             (1, 0) 

 

From Table. 6, we note that intersection of two LODFS-set ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) is not LODFS-

set because 𝐻3(𝑒3) ⊈ 𝐻3(𝑒4) and 𝐻4(𝑒3) ⊉ 𝐻4(𝑒5) implies ((𝐻3, 𝐻4), 𝐷) is not a LODFS-set. 

 

Notice that from the above example, in general union and intersection of two LODFS-set may not a 

LODFS-set. Similarly, in general union and intersection of two ALODFS-set may not be an 

ALODFS-set. However, we can define the following. 

 

Proposition 3.7. The intersection of two LODFS-set (ALODFS-set) ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) is 

LODFS-set (ALODFS-set) if ((𝛼, 𝛽), 𝐴) ⊆ ((𝜆, 𝜇), 𝐵) or ((𝜆, 𝜇), 𝐵) ⊆ ((𝛼, 𝛽), 𝐴). 

 

Proof. Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-set, then by definition of intersection we have 

((𝛼, 𝛽), 𝐴) ⊓ℰ ((𝜆, 𝜇), 𝐵) = (𝐻, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵, 𝐻 = (𝐻1, 𝐻2) and 𝐻1 = 𝛼 ∩̃ 𝜆, 𝐻2 = 𝛽 ∪̃  𝜇. 

Now without any loss of generality, we say that ((𝛼, 𝛽), 𝐴) ⊆ ((𝜆, 𝜇), 𝐵). Since 𝐴 ⊆ 𝐵, then 𝐴 ∪

𝐵 = 𝐵 implies 𝐵 = 𝐶. As 𝐵 = 𝐶 so  𝐻(𝑧) = (𝐻1, 𝐻2)(𝑧) for all 𝑧 ∊ 𝐶 implies that (𝐻, 𝐶) is LODFS-

set. Hence the intersection of two LODFS-set is also LODFS-set if one of them is contained into 

other. 

 

Similarly, we can prove for ALODFS-set. 

 

Proposition 3.8. Union of two LODFS-set (ALODFS-set) ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) is LODFS-

set (ALODFS-set) if  ((𝛼, 𝛽), 𝐴) ⊆ ((𝜆, 𝜇), 𝐵) or ((𝜆, 𝜇), 𝐵) ⊆ ((𝛼, 𝛽), 𝐴). 

 

Proof. Like the above Proposition using the definition of the union of LODFS-set (ALODFS-set). 

The complement of LODFS-set ((𝛼, 𝛽), 𝐴) is denoted as ((𝛼, 𝛽), 𝐴)
𝑐
 and defined as ((𝛼, 𝛽), 𝐴)

𝑐
=
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((𝛼, 𝛽)𝑐 , 𝐴) = ((𝛼𝑐 , 𝛽𝑐) , 𝐴), where (𝛼, 𝛽 )𝑐 = (𝛼𝑐 , 𝛽𝑐) and 𝛼𝑐 , 𝛽𝑐: 𝐴 ⟶ 𝑃(𝑈) are defined as 

𝛼𝑐(𝑎) = 𝑈\𝛼(𝑎) and 𝛽𝑐(𝑎) = 𝑈\𝛽(𝑎) for all 𝑎 ∊ 𝐴 is called ALODFS-set. 

 

Similarly, the complement of ALODFS-set is LODFS-set. 

 

Proposition 3.9. (De Morgan Laws) 
 

Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-sets (ALODFS-sets) over 𝑈. Then, 

1)  (((𝛼, 𝛽), 𝐴) ⊔ℰ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

⊓ℰ ((𝜆, 𝜇), 𝐵)
𝑐
, if 𝐴 = 𝐵.  

2)  (((𝛼, 𝛽), 𝐴) ⊓ℰ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

⊔ℰ ((𝜆, 𝜇), 𝐵)
𝑐
, if 𝐴 = 𝐵. 

3)  (((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

⊓ ((𝜆, 𝜇), 𝐵)
𝑐
 

4)  (((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

⊔ ((𝜆, 𝜇), 𝐵)
𝑐
 

Proposition 3.10. (Distributive Laws) 
 

If ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐵) and ((𝛾, 𝛿), 𝐶) be any LODFS-sets (ALODFS-sets) over 𝑈, then the 

following conditions hold 

1)  ((𝛼, 𝛽), 𝐴) ⊔ (((𝜆, 𝜇), 𝐵) ⊔ℰ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵)) ⊔ℰ (((𝛼, 𝛽), 𝐴) ⊔ ((𝛾, 𝛿), 𝐶)) if 𝐴 ⊆ 𝐶. 

2)  ((𝛼, 𝛽), 𝐴) ⊔ (((𝜆, 𝜇), 𝐵) ⊓ℰ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵)) ⊓ℰ (((𝛼, 𝛽), 𝐴) ⊔ ((𝛾, 𝛿), 𝐶)) if  𝐴 ⊆ 𝐶. 

3)  ((𝛼, 𝛽), 𝐴) ⊓ (((𝜆, 𝜇), 𝐵) ⊔ℰ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝐵)) ⊔ℰ (((𝛼, 𝛽), 𝐴) ⊓ ((𝛾, 𝛿), 𝐶)) if  𝐴 ⊆ 𝐶. 

4)  ((𝛼, 𝛽), 𝐴) ⊓ (((𝜆, 𝜇), 𝐵) ⊓ℰ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝐵)) ⊓ℰ (((𝛼, 𝛽), 𝐴) ⊓ ((𝛾, 𝛿), 𝐶)) if 𝐴 ⊆ 𝐶. 

5)  ((𝛼, 𝛽), 𝐴) ⊔ (((𝜆, 𝜇), 𝐵) ⊓ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵)) ⊓ (((𝛼, 𝛽), 𝐴) ⊔ ((𝛾, 𝛿), 𝐶))  

6)  ((𝛼, 𝛽), 𝐴) ⊓ (((𝜆, 𝜇), 𝐵) ⊔ ((𝛾, 𝛿), 𝐶)) = (((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝐵)) ⊔ (((𝛼, 𝛽), 𝐴) ⊓ ((𝛾, 𝛿), 𝐶))  

Let 𝐴 and 𝐵 be ordered sets, then 𝜎 be a partial order on 𝐴 × 𝐵 defined in such a way that, for (𝑥, 𝑦), 
( 𝑥 ,, 𝑦 ,)  ∊ 𝐴 × 𝐵 such that (𝑥, 𝑦) ≤ ( 𝑥 ,, 𝑦 ,) if and only if 𝑥 ≤𝐴 𝑥 , and 𝑦 ≤𝐵 𝑦 ,. From now to onward 

we will use 𝜎 for partial order relation on 𝐴 × 𝐵.  

 

Proposition 3.11. Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-sets (ALODFS-sets), then their union-

product is also a LODFS-set (ALODFS-set). 

 

Proof. Since ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) are LODFS-sets so we must prove ((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵) 

is LODFS-set. Now by definition of union-product we have ((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵) = ((𝐻1, 𝐻2), 𝐷) 

where 𝐷 = 𝐴 × 𝐵, is a poset. Now 𝐴, 𝐵 ⊆ 𝐸, so both 𝐴 and 𝐵 have taken some partial ordered from  

𝐸. Then, for all 𝑥1, 𝑥2 ∈ 𝐴 such that 𝑥1 ≤𝐴 𝑥2 implies 𝛼(𝑥1) ⊆ 𝛼(𝑥2) , 𝛽(𝑥1) ⊇ 𝛽(𝑥2) and for all 

𝑦1, 𝑦2 ∈ 𝐵 such that 𝑦1 ≤𝐵 𝑦2 implies 𝜆(𝑦1) ⊆ 𝜆(𝑦2), 𝜇(𝑦1) ⊇ 𝜇(𝑦2). Now 𝜎 be a porelation 

between the element of 𝐷 = 𝐴 × 𝐵 in such a way (𝑥1, 𝑦1)σ𝐷(𝑥2, 𝑦2), where (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈
𝐴 × 𝐵, we note that this order induced by order of 𝐴 and 𝐵. Since (𝑥1, 𝑦1)σ(𝑥2, 𝑦2) and 𝛼(𝑥1) ⊆
𝛼(𝑥2), 𝛽(𝑥1) ⊇ 𝛽(𝑥2) and 𝜆(𝑦1) ⊆ 𝜆(𝑦2), 𝜇(𝑦1) ⊇ 𝜇(𝑦2), then 𝛼(𝑥1) ∪ 𝜆(𝑦1) ⊆ 𝛼(𝑥2) ∪ 𝜆(𝑦2) 

and 𝛽(𝑥1) ∩ 𝜇(𝑦1) ⊇ 𝛽(𝑥2) ∩ 𝜇(𝑦2) implies that 𝐻1(𝑥1, 𝑦1) ⊆ 𝐻1(𝑥2, 𝑦2) and 𝐻2(𝑥1, 𝑦1) ⊇
𝐻2(𝑥2, 𝑦2) implies ((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵) is LODFS-set. 

 

Similarly, we can prove for ALODFS-set. 

 

Proposition 3.12. Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-sets (ALODFS-sets), then their 

intersection-product is also a LODFS-set (ALODFS-set). 

 

Proof. By using the definition of intersection-product, we can prove like Proposition 3.11. 
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Proposition 3.13. (De Morgan Laws) Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-set (ALODFS-

set) over 𝑈. Then, 

(1)  (((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

∧ ((𝜆, 𝜇), 𝐵)
𝑐
 

(2)  (((𝛼, 𝛽), 𝐴) ∧ ((𝜆, 𝜇), 𝐵))
𝑐

= ((𝛼, 𝛽), 𝐴)
𝑐

∨ ((𝜆, 𝜇), 𝐵)
𝑐
. 

Proposition 3.14. (Distributive Laws) 
 

If ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐵) and ((𝛾, 𝛿), 𝐶) be any LODFS-sets (ALODFS-sets) over 𝑈. Then, the 

following conditions hold 

(1)  ((𝛼, 𝛽), 𝐴) ∨ (((𝜆, 𝜇), 𝐵) ∧ ((𝛾, 𝛿), 𝐶)) 

= (((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵)) ∧ (((𝛼, 𝛽), 𝐴) ∨ ((𝛾, 𝛿), 𝐶)). 

(2)  ((𝛼, 𝛽), 𝐴) ∧ (((𝜆, 𝜇), 𝐵) ∨ ((𝛾, 𝛿), 𝐶)) 

= (((𝛼, 𝛽), 𝐴) ∧ ((𝜆, 𝜇), 𝐵)) ∨ (((𝛼, 𝛽), 𝐴) ∧ ((𝛾, 𝛿), 𝐶)). 

Proposition 3.15. If ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐵) and ((𝛾, 𝛿), 𝐶) be any two LODFS-sets (ALODFS-

sets) over 𝑈. Then, followings are LODFS-set (ALODFS-set), 

(1)  ((𝛼, 𝛽), 𝐴) ∨ (((𝜆, 𝜇), 𝐵) ⊔ℰ ((𝛾, 𝛿), 𝐶)). 

(2)  ((𝛼, 𝛽), 𝐴) ∨ (((𝜆, 𝜇), 𝐵) ⊓ℰ ((𝛾, 𝛿), 𝐶)). 

(3)  ((𝛼, 𝛽), 𝐴) ∧ (((𝜆, 𝜇), 𝐵) ⊔ℰ ((𝛾, 𝛿), 𝐶)). 

(4)  ((𝛼, 𝛽), 𝐴) ∧ (((𝜆, 𝜇), 𝐵) ⊓ℰ ((𝛾, 𝛿), 𝐶)). 

(5)  ((𝛼, 𝛽), 𝐴) ∨ (((𝜆, 𝜇), 𝐵) ⊓ ((𝛾, 𝛿), 𝐶)). 

(6)  ((𝛼, 𝛽), 𝐴) ∧ (((𝜆, 𝜇), 𝐵) ⊔ ((𝛾, 𝛿), 𝐶)). 

If ⊔ℰ and ⊓ℰ is LODFS-set (ALODFS-set). 

 

4. Algebraic Structure Associated with LODFS-Set (ALODFS-Set) 
 

In this section, we proposed the concept of algebraic structures of LODFS-set (ALODFS-set) which 

will help solve daily life problems. We also discussed the algebraic properties of LODFS-set 

(ALODFS-set).  

 

Proposition 4.1. If ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐵) and ((𝛾, 𝛿), 𝐶) are any LODFS-sets (ALODFS-sets), 

then following axioms hold 

(1)  (((𝛼, 𝛽), 𝐴) ⋄ ((𝜆, 𝜇), 𝐵)) ⋄ ((𝛾, 𝛿), 𝐶) = ((𝛼, 𝛽), 𝐴) ⋄ (((𝜆, 𝜇), 𝐵) ⋄ ((𝛾, 𝛿), 𝐶))  

(2) ((𝛼, 𝛽), 𝐴) ⋄ ((𝜆, 𝜇), 𝐵) = ((𝜆, 𝜇), 𝐵) ⋄ ((𝛼, 𝛽), 𝐴) (Commutative property) 

For all ⋄∈ {⊔,⊓,∨,∧}. 
 

Proof. (1) Since ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐵) and ((𝛾, 𝛿), 𝐶) are LODFS-sets, so we have for 𝑒 ∈ (𝐴 ∩

𝐵) ∩ 𝐶 such that 

(((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵)) ⊔ ((𝛾, 𝛿), 𝐶) = (((𝛼 ∪̃ 𝜆) ∪̃ 𝛾, (𝛽 ∩̃ 𝜇) ∩̃ 𝛿), (𝐴 ∩ 𝐵) ∩ 𝐶 ) 

as  

𝑒 ∈ (𝐴 ∩ 𝐵) ∩ 𝐶, so 𝑒 ⟶ (𝛼(𝑒) ∪ 𝜆(𝑒)) ∪ 𝛾(𝑒) and 𝑒 ⟶ (𝛽(𝑒) ∩ 𝜇(𝑒)) ∩ 𝛿(𝑒), 

implies  

𝑒 ⟶ 𝛼(𝑒) ∪ (𝜆(𝑒) ∪ 𝛾(𝑒)) and 𝑒 ⟶ 𝛽(𝑒) ∩ (𝜇(𝑒) ∩ 𝛿(𝑒)) 

(Assoc. 

property) 
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Hence,  

(((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝐵)) ⊔ ((𝛾, 𝛿), 𝐶) = (((𝛼 ∪̃ (𝜆 ∪̃ 𝛾), 𝛽 ∩̃ (𝜇 ∩̃ 𝛿), 𝐴 ∩ (𝐵 ∩ 𝐶)) 

Similarly, we can prove for ALODFS-set. 

 

(2) Straightforward. 

Throughout this paper, the collection of all LODFS-sets of 𝐸 over 𝑈 is represented as 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸, 

and the collection of all LODFS-sets over 𝑈 with any fixed set of parameters 𝐴 is represented as 

𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴. 

 

Note that, 

1) (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,∨) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,∧) are monoids. 

2) (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,∨,∧) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,∧,∨) are hemirings. 

3) (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,⊔) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,⊓) are monoids. 

4) (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,⊔,⊓) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐸 ,⊓,⊔) are hemirings. 

Similarly, we can define for ALODFS-set. 

 

Proposition 4.2. (Absorption Laws) 
 

Let ((𝛼, 𝛽), 𝐴) and ((𝜆, 𝜇), 𝐵) be LODFS-sets (ALODFS-sets), then 

1) (((𝛼, 𝛽), 𝐴) ∧ ((𝜆, 𝜇), 𝐵)) ∨ ((𝜆, 𝜇), 𝐵) = ((𝜆, 𝜇), 𝐵). 

2) (((𝛼, 𝛽), 𝐴) ∨ ((𝜆, 𝜇), 𝐵)) ∧ ((𝜆, 𝜇), 𝐵) = ((𝜆, 𝜇), 𝐵). 

3) (((𝛼, 𝛽), 𝐴) ⊓ ((𝜆, 𝜇), 𝑩)) ⊔ ((𝜆, 𝜇), 𝑩) = ((𝜆, 𝜇), 𝑩). 

4) (((𝛼, 𝛽), 𝐴) ⊔ ((𝜆, 𝜇), 𝑩)) ⊓ ((𝜆, 𝜇), 𝑩) = ((𝜆, 𝜇), 𝑩). 

Theorem 4.3. (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔, ᶜ, 𝐴(∅,𝔄)) is an MV-algebra. 

 

Proof. (1-MV) (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔, ᶜ, 𝐴(∅,𝔄)) is a commutative monoid. 

(2-MV) (𝐴
(𝛼1,𝛽1)

𝑐)
𝑐

= 𝐴(𝛼1,𝛽1). 

(3-MV) 𝐴(∅,𝔄)𝑐 ⊔ 𝐴(𝛼1,𝛽1) = 𝐴(𝔄,∅) ⊔ 𝐴(𝛼1,𝛽1) = 𝐴(𝔄,∅) = 𝐴(∅,𝔄)𝑐 . 

(4-MV) 

(𝐴
(𝛼1,𝛽1)

𝑐 ⊔ 𝐴(𝛼2,𝛽2))
𝑐

⊔ 𝐴(𝛼2,𝛽2) = (𝐴
(𝛼1

𝑐,𝛽1
𝑐

)
𝑐 ⊓ 𝐴

(𝛼2,𝛽2)
𝑐) ⊔ 𝐴(𝛼2,𝛽2)  

 = (𝐴(𝛼1,𝛽1) ⊔ 𝐴(𝛼2,𝛽2)) ⊓ (𝐴(𝛼2
𝑐,𝛽2

𝑐
) ⊔ 𝐴(𝛼2,𝛽2))  

 = (𝐴(𝛼1,𝛽1) ⊔ 𝐴(𝛼2,𝛽2)) ⊓ 𝐴(𝔄,∅)  

 = (𝐴(𝛼1,𝛽1) ⊔ 𝐴(𝛼2,𝛽2)) ⊓ (𝐴
(𝛼1,𝛽1)

𝑐 ⊔ 𝐴(𝛼1,𝛽1))  

 = (𝐴(𝛼2,𝛽2) ⊓ 𝐴
(𝛼1,𝛽1)

𝑐) ⊔ 𝐴(𝛼1,𝛽1) 

 = ((𝐴
(𝛼2,𝛽2)

𝑐 ⊔ 𝐴(𝛼1,𝛽1))
𝑐
) ⊔ 𝐴(𝛼1,𝛽1) 

 

Theorem 4.4. (𝐿𝑂𝐷𝐹𝑆(𝑈, )𝐴,⊓, ᶜ, 𝐴(𝔄,∅)) is an MV-algebra. 

 

Proof. Similarly, we can prove like Theorem 4.3. 

 

Theorem 4.5. (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊓,⊔, 𝐴(∅,𝔄), 𝐴(𝔄,∅)) are bounded 

lattices. 
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Proof. Since (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) is a hemiring and the absorption laws hold in 

hemiring, so (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴, ⊔, ⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) is a bounded lattice with 𝐴(𝔄,∅) and  𝐴(∅,𝔄) as 

maximal and minimal elements respectively. Using the same steps, we can prove that 

(𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊓,⊔, 𝐴(∅,𝔄), 𝐴(𝔄,∅)) is a bounded lattice. 

 

Theorem 4.6. (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) and (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊓,⊔, 𝐴(∅,𝔄), 𝐴(𝔄,∅)) are Boolean 

algebras. 
 

Proof. Consider ((𝜆, 𝜇), 𝐴) ∈ 𝐿𝐷𝐹𝑆(𝑈)𝐴, then  

((𝜆, 𝜇), 𝐴) ⊓ ((𝜆, 𝜇), 𝐴)
𝑐

=  𝐴(∅,𝔄) and ((𝜆, 𝜇), 𝐴) ⊔ ((𝜆, 𝜇), 𝐴)
𝑐

= 𝐴(𝔄,∅) 

holds imply (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) is a Boolean algebra. Using the same steps, we can 

prove that (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊓,⊔, 𝐴(∅,𝔄), 𝐴(𝔄,∅)) is a Boolean algebra. 

 

Now by the previous discussion, we note that De Morgan’s laws hold in (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓,

𝐴(𝔄,∅), 𝐴(∅,𝔄)) so 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴 is a De Morgan’s algebra.  

 

Now for any ((𝛼, 𝛽), 𝐴), ((𝜆, 𝜇), 𝐴) ∈ 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴 such that  

((𝛼, 𝛽), 𝐴) ⊓ ((𝛼, 𝛽), 𝐴)
𝑐

⊂̃ ((𝜆, 𝜇), 𝐴) ⊔ ((𝜆, 𝜇), 𝐴)
𝑐
 

is hold in 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴. Then, we can say that 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴 is a Kleene algebra. 

 

By the previous discussion, we note that ((𝜆, 𝜇), 𝐴) ⊓ ((𝜆, 𝜇), 𝐴)
𝑐

= 𝐴(∅,𝔄) and if ((𝛼, 𝛽), 𝐴) ⊓

((𝜆, 𝜇), 𝐴) = 𝐴(∅,𝔄), then ((𝛼, 𝛽), 𝐴) ⊂̃ ((𝜆, 𝜇), 𝐴)
𝑐
 and we can say that ((𝜆, 𝜇), 𝐴)

𝑐
 is the pseudo 

complement of  ((𝜆, 𝜇), 𝐴). 

 

If ((𝜆, 𝜇), 𝐴)
𝑐

⊔ (((𝜆, 𝜇), 𝐴)
𝑐
)

𝑐
= 𝐴(𝔄,∅) (Stone identity) is hold in 𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴, then 

(𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊔,⊓, 𝐴(𝔄,∅), 𝐴(∅,𝔄)) is called Stone algebra. 

 

Similarly, we can also prove that (𝐿𝑂𝐷𝐹𝑆(𝑈)𝐴,⊓,⊔, 𝐴(∅,𝔄), 𝐴(𝔄,∅)) is Stone algebra. 
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Abstract− We have studied some types of ideals in a KU-semigroup by using the concept 

of a bipolar fuzzy set.  Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and 

some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and 

k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the 

product of two bipolar fuzzy k-ideals are studied.  
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1. Introduction 

In 1956, Zadeh [1] introduced the notion of fuzzy sets. This concept has been applied to many mathematical 

branches. In [2, 3], Mostafa et al. studied the fuzzy KU-ideals and investigated some basic properties.  

Intuitionistic fuzzy sets, interval-valued fuzzy sets and Bipolar-valued fuzzy sets are extension fuzzy sets 

theory. In 2000, Lee [4] introduced bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of 

fuzzy sets whose membership degree from [0, 1] to [−1, 1]. In bipolar-valued fuzzy set, the membership 

degree 0 means that elements are irrelevant to the corresponding property, while the membership degree 

[−1, 0) indicates that elements satisfy the implicit counter property. In [5-8], the authors introduced a bipolar-

valued fuzzy set on different structures.  In this work, we study the bipolar-valued fuzzy set theory to k-ideal 

of a KU-semigroup and discuss some relations between a bipolar fuzzy k-ideal and k-ideal. Also, a bipolar 

fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied. 

2. Preliminaries 

In this part, we review some concepts related to KU-semigroup and a bipolar fuzzy logic. 

Definition 2.1 [9] Algebra (ℵ,∗ ,0)
 
is a KU-algebra if, for all 𝜒, 𝛾, 𝜏 ∈ ℵ, 

(𝑘𝑢1) (𝜒 ∗ 𝛾) ∗ ((𝛾 ∗ 𝜏) ∗ (𝜒 ∗ 𝜏)) = 0 

(𝑘𝑢2)  χ ∗ 0 = 0 

(𝑘𝑢3)  0 ∗ 𝜒 = 𝜒 

(𝑘𝑢4)  𝜒 ∗ 𝛾 = 0 and 𝛾 ∗ 𝜒 = 0 implies 𝜒 = 𝛾 

(𝑘𝑢5)  𝜒 ∗ 𝜒 = 0 
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On a KU-algebra ℵ, a relation ≤ is defined by ≤ 𝛾 ⇔ 𝛾 ∗ 𝜒 = 0. Therefore (ℵ, ≤) is a partially ordered set.  It 

follows that 0 is the smallest element in ℵ. 

Thus (ℵ,∗ ,0)
 
satisfies the following. For all 𝜒, 𝛾, 𝜏 ∈ ℵ,  

(𝑘𝑢1) (𝛾 ∗ 𝜏) ∗ (𝜒 ∗ 𝜏) ≤ (𝜒 ∗ 𝛾)   

(𝑘𝑢2)  0 ≤ 𝜒   

(𝑘𝑢3)  𝜒 ≤ 𝛾, 𝛾 ≤ 𝜒 implies 𝜒 = 𝛾  

(𝑘𝑢4)  𝛾 ∗ 𝜒 ≤ 𝜒 

Theorem 2.2. [9] In a KU-algebra ℵ. The following axioms hold.  For all 𝜒, 𝛾, 𝜏 ∈ ℵ, 

i. 𝜒 ≤ 𝛾 imply 𝛾 ∗ 𝜏 ≤ 𝜒 ∗ 𝜏 

ii. 𝜒 ∗ (𝛾 ∗ 𝜏) = 𝛾 ∗ (𝜒 ∗ 𝜏) 

iii. ((𝛾 ∗ 𝜒) ∗ 𝜒) ≤ 𝛾 

Definition 2.3. [10] A non-empty subset 𝐸 of a KU-algebra (ℵ,∗ ,0)
 
 is calledˑKU-subalgebra of ℵ if 𝜒 ∗ 𝛾 ∈

𝐸 whenever 𝜒, 𝛾 ∈ 𝐸. 

Definition 2.4. [10] A non-empty subset Ґ of a KU-algebra (ℵ,∗ ,0)
 
is said to be an ideal of ℵ if it satisfies, for 

any 𝜒, 𝛾 ∈ ℵ  

i. 0 ∈ Ґ and 

ii. ∗ 𝛾 ∈ Ґ, 𝜒 ∈ Ґ imply that 𝛾 ∈ Ґ 

Definition 2.5. [3] Let Ґ be a nonempty subset of a KU-algebra ℵ. Then, Ґ is said to be a KU-ideal of ℵ, if  

 0 ∈ Ґ and 

 ∀𝜒, 𝛾, 𝜏 ∈ ℵ, 𝜒 ∗ (𝛾 ∗ 𝜏) ∈ Ґ
 
 and 𝛾 ∈ Ґ imply that  𝜒 ∗ 𝜏 ∈ Ґ 

Definition 2.6. [11] A KU-semigroup is a non-empty set ℵ with two binary operations ∗,∘ and constant 0 

satisfying the following axioms  

i. (ℵ,∗ ,0)
 
is a KU-algebra 

ii. (ℵ, ) is a semigroup 

iii. The operation ∘ is distributiveˑ (on both sides) over the operation *, i.e., 

𝜒 (𝛾 ∗ 𝜏) = (𝜒 𝛾) ∗ (𝜒  𝜏)
 
 and (𝜒 ∗ 𝛾)  𝜏 = (𝜒  𝜏) ∗ (𝛾  𝜏), ∀𝜒, 𝛾, 𝜏 ∈ ℵ 

Example 2.7. [11] Let ℵ = {0,1,2,3}ˑ. Defineˑ*-operation and °-operation by the following tables  

 

Then, (ℵ,∗, , 0)
 
 is aˑKU-semigroup. " 

Definition 2.8. [11] A nonempty subset 𝑅 of ℵ is called a sub-KU-semigroup of ℵ, if  𝜒 ∗ 𝛾, 𝜒 𝛾 ∈ 𝑅, for 

all 𝜒, 𝛾 ∈ 𝑅. 

Definition 2.9. [11] A non-empty subset 𝑅 of a KU-semigroupℵ is an S-ideal of ℵ, if   

i. 𝑅 is an ideal of ℵ 

ii. For all 𝜒 ∈ ℵ, and 𝑎 ∈ 𝑅, we have 𝜒 𝑎 ∈ 𝑅  and 𝑎 𝜒 ∈ 𝑅 

)( 1I

)( 2I
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Definition 2.10. [11] A subset 𝑅 of a KU-semigroup ℵ is a k-ideal of ℵ, if   

i. 𝑅 is a KU-ideal of ℵ 

ii. For all 𝜒 ∈ ℵ, and 𝑎 ∈ 𝑅, we have 𝜒 ∘ 𝑎 ∈ 𝑅    and 𝑎 𝜒 ∈ 𝑅 

Definition 2.11. [11] Letˑℵ and ℵ′ be two KU-semigroups. A mapping ˑ𝑓: ℵ →  ℵ′
  

is called a KU-semigroup 

homomorphism if 𝑓(𝜒 ∗ 𝛾) = 𝑓(𝜒) ∗ 𝑓(𝛾) and 𝑓(𝜒 𝛾) = 𝑓(𝜒) 𝑓(𝛾) for all 𝜒, 𝛾 ∈ ℵ. The set {𝜒 ∈ ℵ: 𝑓(𝜒) =

0}
 
is called the kernel of 𝑓 and denote by 𝑘𝑒𝑟 𝑓 Moreover, the set { 𝑓(𝜒) ∈ ℵ′ ∶ 𝜒 ∈ ℵ} is called the image of 

𝑓 and denote by 𝑖𝑚𝑓. 

We review some concepts of fuzzy logic. 

Let ℵ be the collection of objects, then a fuzzy set
 
𝜇(𝜒) in ℵ is defined as 𝜇: ℵ → [0,1], where 𝜇(𝜒) is called 

the membership value of 𝜒 in ℵ and 0 ≤ 𝜇(𝜒) ≤ 1. The set 𝑈(𝜇, 𝑡) = {𝜒 ∈ ℵ ∶ 𝜇(𝜒) ≥ 𝑡}, where 0 ≤ 𝑡 ≤ 1 is 

said to be a level set of 𝜇(𝜒). 

Definition 2.12. [12] Let 𝜇(𝜒) be a fuzzy setˑ in ℵ, then 𝜇(𝜒) is called a fuzzy sub KU-semigroupˑof  if it 

satisfies the following conditionˑ: for all 𝜒, 𝛾 ∈ ℵ  

i. ˑ 𝜇(𝜒 ∗ 𝛾) ≥ min{𝜇(𝜒), 𝜇(𝛾)} 

ii. 𝜇(𝜒 ∘ 𝛾) ≥ min{𝜇(𝜒), 𝜇(𝛾)} 

Definition 2.13. [12] Aˑfuzzyˑset 𝜇(𝜒) in
ˑ

ˑis called a fuzzyˑS-ideal of if, for all 𝜒, 𝛾 ∈ ℵ 

i. 𝜇(0) ≥ 𝜇(𝜒) 

ii. 𝜇(𝛾) ≥ min{𝜇(𝜒 ∗ 𝛾), 𝜇(𝜒)}  

iii. 𝜇(𝜒 ∘ 𝛾) ≥ min{𝜇(𝜒), 𝜇(𝛾)} 

Definition 2.14. [12] A fuzzy set 𝜇(𝜒) in ℵˑis calledˑaˑfuzzyˑk-ideal, if it satisfies the following condition: for 

all 𝜒, 𝛾 ∈ ℵ
ˑ
 

(k1) 𝜇(0) ≥ 𝜇(𝜒) 

(k2) 𝜇(𝜒 ∗ 𝜏) ≥ min{𝜇(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇(𝛾)} 

(k3) 𝜇(𝜒 ∘ 𝛾) ≥ min{𝜇(𝜒), 𝜇(𝛾)} 

Example 2.15. [12] Let ℵ = {0, 𝑎, 𝑏, 𝑐, 𝑑}ˑbe a set. Define *-operation and ∘-operation by the following 

tablesˑ~ 

 

Then, (ℵ,∗,∘ ,0) is a~ KU-semigroup. Define a fuzzy set 𝜇: ℵ → [0,1] by 𝜇(0) = 𝜇(𝑎) = 0.4,𝜇(𝑏) = 𝜇(𝑐) =

0.2, 𝜇(𝑑) = 0.1. Then, it is easy to see 𝜇(𝜒), ∀𝜒 ∈ ℵ is a fuzzy k-ideal. 

We will refer to ℵ is a KU-semigroup unless otherwise indicated. 

3. Bipolar fuzzy k-ideals of a KU-semigroup 

In this section, we give the definition and properties of bipolar fuzzy ideals of ℵ. Now, A bipolar valued fuzzy 

subset 𝐵 in a nonempty set ℵ is an object having the form 𝐵 = {(𝜒, 𝜇−(𝜒), 𝜇+(𝜒)|𝜒 ∈ ℵ} where 𝜇−: ℵ →

[−1,0] and 𝜇+: ℵ → [0,1] are two mappings. The membership degree 𝜇+(𝜒) denotes the satisfaction degree of 
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𝜒 to the property corresponding of 𝐵, and the membership degree  𝜇−(𝜒) denotes the satisfaction degree of 𝜒 

to some implicit counter-property of 𝐵. We shall use the symbol 𝐵 = (𝜒, 𝜇−, 𝜇+), for 𝐵 =

{(𝜒, 𝜇−(𝜒), 𝜇+(𝜒)) ∶  𝜒 ∈ ℵ}, and use the concept of a bipolar fuzzy set instead of the concept of bipolar-

valued fuzzy set.  

Now, let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy set and (𝑠, 𝑡) ∈ [−1,0] × [0,1].  

The set 𝐵𝑠
− = {𝜒 ∈ ℵ: 𝜇−(𝜒) ≤ 𝑠} and 𝐵𝑡

+ = {𝜒 ∈ ℵ: 𝜇+(𝜒) ≥ 𝑡}  which are called the negative s-cut and the 

positive t-cut of 𝐵 = (𝜒, 𝜇−, 𝜇+), respectively. 

Definition 3.1. A fuzzy setˑ  in ˑℵ isˑcalled a bipolar fuzzy sub-KU-semigroupˑof ˑℵ ifˑit satisfiesˑthe 

following conditionˑ: for allˑ 𝜒, 𝛾 ∈ ℵ 

i. 𝜇−(𝜒 ∗ 𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝛾)} and 𝜇+(𝜒 ∗ 𝛾) ≥ min {𝜇+(𝜒), 𝜇+(𝛾)} 

ii. ˑ𝜇−(𝜒 𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝛾)} and 𝜇+(𝜒 𝛾) ≥ min {𝜇+(𝜒), 𝜇+(𝛾)} 

Proposition 3.2. Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy sub-KU-semigroup. Then, 𝜇−(0) ≤ 𝜇−(𝜒) and 

𝜇+(0) ≥ 𝜇+(𝜒), for all 𝜒 ∈ ℵ.   

PROOF. Clear. 

Example 3.3. Let ℵ = {0, 𝑎, 𝑏, 𝑐}ˑˑbe a set. Define ∗-operation and -operation by the following tables 

 

Then,
ˑ
(ℵ,∗,  , 0) is a KU-semigroup. Define 𝐵 = (𝑥, 𝜇−, 𝜇+) by 𝐵 = {(0, −0.6,0.7), (𝑎, −0.5,0.5), 

(𝑏, −0.3,0.4), (𝑐, −0.2,0.1)}. Then, we can prove that 𝐵 ˑis a bipolar fuzzy sub-KU-semigroup of ℵ. 

Definition 3.4. A bipolar fuzzy set 𝐵 = (𝜒, 𝜇−, 𝜇+)in is called a bipolar fuzzy S-ideal of ℵ if it satisfies, 

for all 𝜒, 𝛾 ∈ ℵ  

(Bf1) 𝜇−(0) ≤ 𝜇−(𝜒) and 𝜇+(0) ≥ 𝜇+(𝜒) 

(Bf2) 𝜇−(𝛾) ≤ max {𝜇−(𝜒 ∗ 𝛾), 𝜇−(𝜒)}
 
 and 𝜇+(𝛾) ≥ min { 𝜇+(𝜒 ∗ 𝛾), 𝜇+(𝜒)} 

(Bf3) 𝜇−(𝜒 𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝛾)} , 𝜇+(𝜒 𝛾) ≥ min{𝜇+(𝜒), 𝜇+(𝛾)} 

Definition 3.5. A bipolar fuzzy set 𝐵 = (𝜒, 𝜇−, 𝜇+) in ℵ is called a bipolar fuzzy k-ideal of ℵ if it satisfies: for 

all 𝜒, 𝛾, 𝜏 ∈ ℵ   

(BF1) 𝜇−(0) ≤ 𝜇−(𝜒) and  𝜇+(0) ≥ 𝜇+(𝜒) 

(BF2) 𝜇−(𝜒 ∗ 𝜏) ≤ max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)} and 𝜇+(𝜒 ∗ 𝜏) ≥ min{𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇+(𝛾)} 

(BF3) 𝜇−(𝜒 𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝛾)} , 𝜇+(𝜒 𝛾) ≥ min{𝜇+(𝜒), 𝜇+(𝛾)} 

Example 3.6. Let ℵ = {0, 𝑎, 𝑏, 𝑐} with  defined as in Example (3.3), and 𝐵 = (𝑥, 𝜇−, 𝜇+)   be a bipolar fuzzy 

set in  ℵ  given by the following 𝐵 = {(0, −0.7,0.6), (𝑎, −0.4,0.2), (𝑏, −0.4,0.2), (𝑐, −0.3,0.1)}. Then, 𝐵 =

(𝜒, 𝜇−, 𝜇+)  is a bipolar fuzzy k-ideal of ℵ. 

Theorem 3.7. Let ℵ be a KU-semigroup, a bipolar fuzzy set 𝐵 = (𝜒, 𝜇−, 𝜇+) of ℵ is a bipolar fuzzy k-ideal of 

ℵ if and only if 𝐵 is a bipolar fuzzy S-ideal of ℵ. 

PROOF.  
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() Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy k-ideal of ℵ. If we put 𝜒 = 0 in (BF2), then 𝜇−(𝜏) ≤

max {𝜇−(𝛾 ∗ 𝜏), 𝜇−(𝛾)} and 

 𝜇+(𝜏) ≥ min {𝜇+(𝛾 ∗ 𝜏), 𝜇+(𝛾)}. Also, since 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of KU-semigroup, 

then (BF3) is true. Hence, 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy S-ideal of ℵ. 

() Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy S-ideal of ℵ, then   𝜇−( ∗ 𝜏) ≤ max {𝜇−(𝛾 ∗ ( ∗ 𝜏), 𝜇−(𝛾)} and 

𝜇+( ∗ 𝜏) ≥ min {𝜇+(𝛾 ∗ ( ∗ 𝜏), 𝜇+(𝛾)}. And by Theorem (2.2)(2), we get  𝜇−( ∗ 𝜏) ≤ max {𝜇−( ∗ (𝛾 ∗

𝜏), 𝜇−(𝛾)} and    𝜇+( ∗ 𝜏) ≥ min {𝜇+( ∗ (𝛾 ∗ 𝜏), 𝜇+(𝛾)}. Also, since 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy S-

ideal of KU-semigroup, then (Bf3) is true. Hence,  𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ. 

Proposition 3.8. Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy k-ideal of ℵ. If the inequality 𝜒 ∗ 𝛾 ≤ 𝜏
 
 holds in ℵ, 

then  𝜇−(𝛾) ≤ max {𝜇−(𝜒), 𝜇−(𝜏)} and 𝜇+(𝛾) ≥ min {𝜇+(𝜒), 𝜇+(𝜏)}, for all 𝜒, 𝛾, 𝜏 ∈ ℵ. 

PROOF.  

Assume that the inequality 𝜒 ∗ 𝛾 ≤ 𝜏
 
holds in ℵ, then 𝜏 ∗ (𝜒 ∗ 𝛾) = 0 and by (BF2) 

 𝜇−(𝜒 ∗ 𝛾) ≤ max{𝜇−(𝜒 ∗ (𝜏 ∗ 𝛾)), 𝜇−(𝜏)} 

                  = max {μ−(𝜏 ∗ (𝜒 ∗ 𝛾)}, 𝜇−(𝜏)} 

                    = max{𝜇−(0), 𝜇−(𝜏)} = 𝜇−(𝜏) … … (1) 

Now, 𝜇−(0 ∗ 𝛾) = 𝜇−(𝛾) ≤ 𝑚𝑎𝑥{𝜇−(0 ∗ (𝜒 ∗ 𝛾)), 𝜇−(𝜒)} = max {𝜇−(𝜒 ∗ 𝛾), 𝜇−(𝜒)} ≤ max {𝜇−(𝜏), 𝜇−(𝜒)} (by 

using (1)) i.e.  𝜇−(𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝜏)}. Similarly,  

𝜇+(𝜒 ∗ 𝛾) ≥ min{𝜇+(𝜒 ∗ (𝜏 ∗ 𝛾)), 𝜇+(𝜏)} = min{𝜇+(𝜏 ∗ (𝜒 ∗ 𝛾)}, 𝜇+(𝜏)} = min{𝜇+(0), 𝜇+(𝜏)} = 𝜇+(𝜏) … (2) 

Now, 𝜇+(0 ∗ 𝛾) = 𝜇+(𝛾) ≥ 𝑚𝑖𝑛{𝜇+(0 ∗ (𝜒 ∗ 𝛾)), 𝜇+(𝜒)} = min {𝜇+(𝜒 ∗ 𝛾), 𝜇+(𝜒)} ≥ min {𝜇+(𝜏), 𝜇+(𝜒)}   

(by using (2)) i.e. 𝜇+(𝛾) ≥ min{𝜇+(𝜒), 𝜇+(𝜏)}. 

Theorem 3.9. Let ℵ be a KU-semigroup, a bipolar fuzzy set 𝐵 = (𝜒, 𝜇−, 𝜇+) of ℵ is a bipolar fuzzy k-ideal of 

ℵ if and only if 𝐵 is a bipolar fuzzy sub-KU-semigroup of ℵ. 

PROOF. () Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzy k-ideal of ℵ. By Theorem (3.7), 𝐵 is a bipolar fuzzy S-ideal 

of ℵ. For any 𝜒, 𝛾 ∈ ℵ, from ( ) we have 𝜒 ∗ 𝛾 ≤ 𝛾, then by Proposition (3.2) 𝜇−(𝜒 ∗ 𝛾) ≤ 𝜇−(𝛾) and 

 𝜇+(𝜒 ∗ 𝛾) ≥ 𝜇+(𝛾). And by Proposition (3.8)  𝜇−(𝛾) ≤ max {𝜇−(𝜒), 𝜇−(𝜏)} and  𝜇+(𝛾) ≥

min {𝜇+(𝜒), 𝜇+(𝜏)}, Hence, 𝜇−(𝜒 ∗ 𝛾) ≤ max {𝜇−(𝜒), 𝜇−(𝜏)} and  𝜇+(𝜒 ∗ 𝛾) ≥ min {𝜇+(𝜒), 𝜇+(𝜏)}. 

Then, 𝐵 is a bipolar fuzzy sub-KU-semigroup of ℵ.  

() Let 𝐵 = (𝜒, 𝜇−, 𝜇+) be a bipolar fuzzyˑ sub-KU-semigroup. We have 

(i) 𝜇−(0) ≤ 𝜇−(𝜒) and  𝜇+(0) ≥ 𝜇+(𝜒), for all 𝜒 ∈ ℵ.   

(ii) By Theorem (2.2) (2) and (3), we have  (𝛾 ∗ (𝜒 ∗ 𝜏)) ∗ (𝜒 ∗ 𝜏) = (𝜒 ∗ (𝛾 ∗ 𝜏)) ∗ (𝜒 ∗ 𝜏) ≤ 𝛾, for all 

𝜒, 𝛾, 𝜏 ∈ ℵ.  It follows from Proposition (3.3.7) that  𝜇−(𝜒 ∗ 𝜏) ≤ max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)} and  

𝜇+(𝜒 ∗ 𝜏) ≥ min{𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇+(𝛾)}, for all 𝛾, 𝜏 ∈ ℵ. Also, since  𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzyˑ sub-

KU-semigroup, then (BF3) is true. Therefore, 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ. 

Proposition 3.10. If 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ, then the sets 𝐽 = {𝜒 ∈ ℵ: 𝜇+(𝜒) = 𝜇+(0)} 

and 𝐾 = {𝜒 ∈ ℵ: 𝜇−(𝜒) = 𝜇−(0)} are k-ideals of ℵ. 

PROOF. Since 0 ∈ ℵ, 𝜇+(0) = 𝜇+(0)  and 𝜇−(0) = 𝜇−(0)  implies 0 ∈ 𝐽 and 0 ∈ 𝐾, so 𝐽 ≠ ∅, 𝐾 ≠ ∅. Let (𝜒 ∗

(𝛾 ∗ 𝜏)) ∈ 𝐽 and 𝛾 ∈ 𝐽 implies  𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)) = 𝜇+(0)  and 𝜇+(𝛾) = 𝜇+(0). Since 𝜇+(𝜒 ∗ 𝜏) ≥

min{𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇+(𝛾)} = 𝜇+(0) ⇒ 𝜇+(𝜒 ∗ 𝜏) ≥ 𝜇+(0)  but 𝜇+(0) = 𝜇+(𝜒 ∗ 𝜏). It follows that (𝜒 ∗

𝜏) ∈ 𝐽, for all 𝜒, 𝛾, 𝜏 ∈ ℵ.  

\
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Also, let 𝜒 ∈ 𝐽 and 𝛾 ∈ 𝐽 implies 𝜇+(𝜒) = 𝜇+(0) and 𝜇+(𝛾) = 𝜇+(0). Since, 𝜇+(𝜒 𝛾) ≥

min{𝜇+(𝜒), 𝜇+(𝛾)} = 𝜇+(0), then 𝜇+(𝜒 𝛾) = 𝜇+(0). It follows that 𝜒 𝛾 ∈ 𝐽, similarly  𝛾 𝜒 ∈ 𝐽. Hence, 𝐽 

is k-ideal of ℵ. Similarly, we can prove 𝐾 is k-ideal of ℵ. 

Theorem 3.11. For a bipolar fuzzy set 𝐵 = (𝜒, 𝜇−, 𝜇+) in ℵ, the following are equivalent:  

(1) 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ. 

(2) 𝐵 = (𝜒, 𝜇−, 𝜇+) is satisfies the following:  

i. ∀𝑠 ∈ [−1,0], (𝐵𝑠
− ≠ ∅ ⇒ 𝐵𝑠

−) is a k-ideal of ℵ. 

ii. ∀𝑡 ∈ [0,1], (𝐵𝑡
+ ≠ ∅ ⇒ 𝐵𝑡

+) is a k-ideal of ℵ. 

PROOF. (1) (2) (i) Let 𝑠 ∈ [−1,0] be such that 𝐵𝑠
− ≠ ∅. Then, there exists  𝛾 ∈ 𝐵𝑠

− and so 𝜇−(𝛾) ≤ 𝑠. It 

follows from (BF1) that 𝜇−(0) ≤ 𝜇−(𝛾) ≤ 𝑠, then 0 ∈ 𝐵𝑠
−. Let,𝛾, 𝜏 ∈ 𝐵𝑠

−, such that (𝜒 ∗ (𝛾 ∗ 𝜏)) ∈ 𝐵𝑠
− and 

𝛾 ∈ 𝐵𝑠
−. Then, 𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)) ≤ 𝑠  and  𝜇−(𝛾) ≤ 𝑠. By using (BF2), we have 𝜇−(𝜒 ∗ 𝜏) ≤ max{𝜇−(𝜒 ∗ (𝛾 ∗

𝜏)), 𝜇−(𝛾)} = max{𝑠, 𝑠} = 𝑠, which implies that (𝜒 ∗ 𝜏) ∈ 𝐵𝑠
−. By using (BF3), we have  𝜇−(𝜒 𝛾) ≤

max{𝜇−(𝜒), 𝜇−(𝛾)} = max{𝑠, 𝑠} = 𝑠, which implies that  (𝜒 𝛾) ∈ 𝐵𝑠
−  (res.

 
(𝛾 𝜒) ∈ 𝐵𝑠

−). Therefore, 𝐵𝑠
− is 

a k-ideal of ℵ. 

 (ii) Assume that 𝐵𝑡
+ ≠ ∅, for 𝑡 ∈ [0,1] and let 𝑎 ∈ 𝐵𝑡

+. Then, 𝜇+(𝑎) ≥ 𝑡 and  𝜇+(0) ≥ 𝜇+(𝑎) ≥ 𝑡  by (BF1), 

thus
 
0 ∈ 𝐵𝑡

+. Let 𝜒, 𝛾, 𝜏 ∈ ℵ  be such that (𝜒 ∗ (𝛾 ∗ 𝜏)) ∈ 𝐵𝑡
+ and 𝛾 ∈ 𝐵𝑡

+. Then,  𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)) ≥ 𝑡 and 

𝜇+(𝛾) ≥ 𝑡.  

It follows from (BF2) that 𝜇+(𝜒 ∗ 𝜏) ≥ min{𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇+(𝛾)} = min{𝑡, 𝑡} = 𝑡, so that (𝜒 ∗ 𝜏) ∈ 𝐵𝑡
+. 

Also, by (BF3),  𝜇+(𝜒 𝛾) ≥ min{𝜇+(𝜒), 𝜇+(𝛾)} = min{𝑡, 𝑡} = 𝑡, then (𝜒 𝛾) ∈ 𝐵𝑡
+(res. (𝛾 𝜒) ∈ 𝐵𝑡

+). 

Hence,  𝐵𝑡
+ is a k-ideal of ℵ. 

(2) (1) Assume that there exists 𝑎 ∈ ℵ such that  𝜇−(0) ≥ 𝜇−(𝑎). Taking 𝑠0 =
1

2
( 𝜇−(0) + 𝜇−(𝑎)), for 

some 𝑠0 ∈ [−1,0]  implies that 𝜇−(𝑎) < 𝑠0 <  𝜇−(0). This is a contradiction, and thus  𝜇−(0) ≤ 𝜇−(𝛾), for 

all 𝛾 ∈ ℵ. Suppose that 𝜇−(𝜒 ∗ 𝜏) ≤ max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)}, for some 𝜒, 𝛾, 𝜏 ∈ ℵ, and let  𝑠1 =
1

2
( 𝜇−(𝜒 ∗ 𝜏) + max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)}). Then, max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)} < 𝑠1 <  𝜇−(𝜒 ∗ 𝜏), 

which is a contradiction. Therefore,  𝜇−(𝜒 ∗ 𝜏) ≤ max{𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)}, for all 𝜒, 𝛾, 𝜏 ∈ ℵ. Suppose 

that  𝜇−(𝜒 𝛾) ≤ max{𝜇−(𝜒), 𝜇−(𝛾)}, for some 𝜒, 𝛾 ∈ ℵ,   and let 𝑠2 =
1

2
( 𝜇−(𝜒 𝛾) + max{𝜇−(𝜒), 𝜇−(𝛾)}. 

Then,  max{𝜇−(𝜒), 𝜇−(𝛾)} < 𝑠2 <  𝜇−(𝜒 𝛾), which is a contradiction. Therefore,  𝜇−(𝜒 𝛾) ≤

max{𝜇−(𝜒), 𝜇−(𝛾)}, for all 𝜒, 𝛾 ∈ ℵ.  

Now, if  𝜇+(0) <  𝜇+(𝛾), for some 𝛾 ∈ ℵ, then  𝜇+(0) < 𝑡0 <  𝜇+(𝛾), for some 𝑡0 ∈ (0,1]. This is a 

contradiction. Thus  𝜇+(0) ≥  𝜇+(𝛾), for all 𝛾 ∈ ℵ.  

If  𝜇+(𝜒 ∗ 𝜏) ≤ min{ 𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)),  𝜇+(𝛾)}, for some 𝜒, 𝛾, 𝜏 ∈ ℵ. Then, there exists 𝑡1 ∈ (0,1], such that  

𝜇+(𝜒 ∗ 𝜏) < 𝑡1 ≤ min{ 𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)),  𝜇+(𝛾)}.  We get  𝜒 ∗ (𝛾 ∗ 𝜏) ∈ 𝐵𝑡1

+  and 𝛾 ∈ 𝐵𝑡1

+  but 𝜒 ∗ 𝜏 ∉ 𝐵𝑡1

+ . This 

is a contradiction. Consequently,   𝜇+(𝜒 ∗ 𝜏) ≥ min{ 𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)),  𝜇+(𝛾)}, for all 𝜒, 𝛾, 𝜏 ∈ ℵ. And if 

𝜇+(𝜒 𝛾) ≤ min{ 𝜇+(𝜒),  𝜇+(𝛾)}, for some, 𝛾 ∈ ℵ.  

Then, there exists 𝑡2 ∈ (0,1] such that  𝜇+(𝜒 𝛾) < 𝑡2 ≤ min{ 𝜇+(𝜒),  𝜇+(𝛾)}. It follows that  𝜒 ∈ 𝐵𝑡2

+  and 

𝛾 ∈ 𝐵𝑡2

+  but (𝜒 𝛾) ∉ 𝐵𝑡2

+ , which is a contradiction. Hence,  𝜇+(𝜒 𝛾) ≥ min{ 𝜇+(𝜒),  𝜇+(𝛾)}, for all 𝜒, 𝛾 ∈

ℵ.  

Therefore 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ. 

4. Bipolar fuzzy k-ideals under homomorphism 

Definition 4.1. For any 𝜒 ∈ ℵ. We define a new bipolar fuzzy set 𝐵𝑓 = (𝜒, 𝜇𝑓
−, 𝜇𝑓

+)
 
in ℵ by 𝜇𝑓

−(𝜒) = 𝜇−(𝑓(𝜒)) 

and
 
𝜇𝑓

+(𝜒) = 𝜇+(𝑓(𝜒)), where 𝑓: ℵ → ℵ′ is a KU-semigroup homomorphism.  
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Theorem 4.2. Let 𝑓: ℵ → ℵ′ be a KU-semigroup homomorphism and onto mapping. Then,  𝐵 = (𝜒′, 𝜇−, 𝜇+) 

is a bipolar fuzzy k-ideal of ℵ′ if and only if 𝐵𝑓 = (𝜒, 𝜇𝑓
−, 𝜇𝑓

+) is a bipolar fuzzy k-ideal of ℵ. 

PROOF: For any 𝜒′ ∈ ℵ′ there exists 𝜒 ∈ ℵ such that 𝑓(𝜒) = 𝜒′, we have 

𝜇𝑓
+(0) = 𝜇+(𝑓(0)) = 𝜇+(0′) ≥ 𝜇+(𝜒′) = 𝜇+(𝑓(𝜒)) = 𝜇𝑓

+(𝜒) 

and 

𝜇𝑓
−(0) = 𝜇−(𝑓(0)) = 𝜇−(0′) ≤ 𝜇−(𝜒′) = 𝜇−(𝑓(𝜒)) = 𝜇𝑓

−(𝜒). 

Let 𝜒, 𝜏 ∈ ℵ, 𝛾′ ∈ ℵ′ then there exists 𝛾 ∈ ℵ  such that 𝑓(𝛾) = 𝛾′. We have 

𝜇𝑓
+(𝜒 ∗ 𝜏) = 𝜇+(𝑓(𝜒 ∗ 𝜏)) = 𝜇+(𝑓(𝜒) ∗ 𝑓(𝜏)) ≥ min {𝜇+(𝑓(𝜒) ∗ (𝛾′ ∗ 𝑓(𝜏)), 𝜇+(𝛾′)}

= min {𝜇+(𝑓(𝜒) ∗ (𝑓(𝛾) ∗ 𝑓(𝜏))}, 𝜇+(𝑓(𝛾)} = min {𝜇𝑓
+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇𝑓

+(𝛾)} 

and  

𝜇𝑓
−(𝜒 ∗ 𝜏) = 𝜇−(𝑓(𝜒 ∗ 𝜏)) = 𝜇−(𝑓(𝜒) ∗ 𝑓(𝜏)) ≤ max {𝜇−(𝑓(𝜒) ∗ (𝛾′ ∗ 𝑓(𝜏)), 𝜇−(𝛾′)}

= max {𝜇−(𝑓(𝜒) ∗ (𝑓(𝛾) ∗ 𝑓(𝜏))}, 𝜇−(𝑓(𝛾)} = max {𝜇𝑓
−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇𝑓

−(𝛾)} 

Hence,  𝐵𝑓 = (𝜒, 𝜇𝑓
−, 𝜇𝑓

+) is a bipolar fuzzy k-ideal of ℵ. 

Conversely, since 𝑓: ℵ → ℵ′ is an onto mapping, then for any 𝜒, 𝛾, 𝜏 ∈ ℵ′.  

It follows that there exists 𝑎, 𝑏, 𝑐 ∈ ℵ such that 𝑓(𝑎) = 𝜒, 𝑓(𝑏) = 𝛾 and 𝑓(𝑐) = 𝜏. We have 

𝜇+(𝜒 ∗ 𝜏) = 𝜇+(𝑓(𝑎) ∗ 𝑓(𝑐))) = 𝜇+(𝑓(𝑎 ∗ 𝑐)) = 𝜇𝑓
+(𝑎 ∗ 𝑐) ≥ min {𝜇𝑓

+(𝑎 ∗ (𝑏 ∗ 𝑐)), 𝜇𝑓
+(𝑏)}

= min {𝜇+(𝑓(𝑎) ∗ (𝑓(𝑏) ∗ 𝑓(𝑐))}, 𝜇+(𝑓(𝑏)} = min {𝜇+(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇+(𝛾)}. 

and 

𝜇−(𝜒 ∗ 𝜏) = 𝜇−(𝑓(𝑎) ∗ 𝑓(𝑐))) = 𝜇−(𝑓(𝑎 ∗ 𝑐)) = 𝜇𝑓
−(𝑎 ∗ 𝑐) ≤ max {𝜇𝑓

−(𝑎 ∗ (𝑏 ∗ 𝑐)), 𝜇𝑓
−(𝑏)}

= max {𝜇−(𝑓(𝑎) ∗ (𝑓(𝑏) ∗ 𝑓(𝑐))}, 𝜇−(𝑓(𝑏)} = max {𝜇−(𝜒 ∗ (𝛾 ∗ 𝜏)), 𝜇−(𝛾)} 

Therefore, 𝐵 = (𝜒, 𝜇−, 𝜇+) is a bipolar fuzzy k-ideal of ℵ′. 

Now, we introduce the product of bipolar fuzzy k-ideals in a KU-semigroup, and we study some results.  

 Definition 4.3. Let 𝐵1 = (𝜒, 𝜇1
−, 𝜇1

+) and 𝐵2 = (𝛾, 𝜇2
−, 𝜇2

+) be two bipolar fuzzy sets of ℵ. The product 

𝐵1 × 𝐵2 = (( 𝜒, 𝛾), 𝜇1
− × 𝜇2

−, 𝜇1
+ × 𝜇2

+) is defined by the following:  (𝜇1
− × 𝜇2

−)( 𝜒, 𝛾) = max {𝜇1
−(𝜒), 𝜇2

−(𝛾)} 

and  (𝜇1
+ × 𝜇2

+)( 𝜒, 𝛾) = min {𝜇1
+(𝜒), 𝜇2

+(𝛾)}, where  𝜇1
− × 𝜇2

−: ℵ × ℵ → [−1,0] and 𝜇1
+ × 𝜇2

+: ℵ × ℵ → [0,1], 

for all 𝜒, 𝛾 ∈ ℵ. 

Theorem 4.4. Let 𝐵1 = (𝜒, 𝜇1
−, 𝜇1

+) and 𝐵2 = (𝛾, 𝜇2
−, 𝜇2

+) be two bipolar fuzzy k-ideals of KU-semigroup ℵ, 

then 𝐵1 × 𝐵2 is a bipolar fuzzy k-ideal of ℵ × ℵ. 

PROOF. For any ( 𝜒, 𝛾) ∈ ℵ × ℵ, we have 

(𝜇1
+ × 𝜇2

+)( 0, 0) = min{𝜇1
+(0), 𝜇2

+(0)} ≥ min{𝜇1
+(𝜒), 𝜇2

+(𝛾)} = (𝜇1
+ × 𝜇2

+)( 𝜒, 𝛾)   

and 

(𝜇1
− × 𝜇2

−)( 0, 0) = max{𝜇1
−(0), 𝜇2

−(0)} ≤ max{𝜇1
−(𝜒), 𝜇2

−(𝛾)} = (𝜇1
− × 𝜇2

−)( 𝜒, 𝛾) 

 Let (𝜒1, 𝜒2), (𝛾1, 𝛾2) and (𝜏1, 𝜏2) ∈ ℵ × ℵ, then 

(𝜇1
+ × 𝜇2

+)(𝜒1 ∗ 𝜏1, 𝜒2 ∗ 𝜏2 ) = min{𝜇1
+(𝜒1 ∗ 𝜏1), 𝜇2

+(𝜒2 ∗ 𝜏2)}

≥ min{min {𝜇1
+(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), 𝜇1

+(𝛾1)} , min{𝜇2
+(𝜒2 ∗ (𝛾2 ∗ 𝜏2)), 𝜇2

+(𝛾2)}}

= min{min {𝜇1
+(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), 𝜇2

+(𝜒2 ∗ (𝛾2 ∗ 𝜏2)}, min {𝜇1
+(𝛾1), 𝜇2

+(𝛾2)}

= min {min(𝜇1
+ × 𝜇2

+) {(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), (𝜒2 ∗ (𝛾2 ∗ 𝜏2))} , {(𝜇1
+ × 𝜇2

+)(𝛾1, 𝛾2)}} 

and  
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(𝜇1
− × 𝜇2

−)(𝜒1 ∗ 𝜏1, 𝜒2 ∗ 𝜏2 ) = max{𝜇1
−(𝜒1 ∗ 𝜏1), 𝜇2

−(𝜒2 ∗ 𝜏2)}

≤  max{max {𝜇1
−(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), 𝜇1

−(𝛾1)} , max {𝜇2
−(𝜒2 ∗ (𝛾2 ∗ 𝜏2), 𝜇2

−(𝛾2)}

= max{max {𝜇1
−(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), 𝜇2

−(𝜒2 ∗ (𝛾2 ∗ 𝜏2)}, max {𝜇1
−(𝛾1), 𝜇2

−(𝛾2)}

= max {(𝜇1
− × 𝜇2

−) {(𝜒1 ∗ (𝛾1 ∗ 𝜏1)), (𝜒2 ∗ (𝛾2 ∗ 𝜏2))} , {(𝜇1
− × 𝜇2

−)(𝛾1, 𝛾2)}} 

and  

(𝜇1
+ × 𝜇2

+)(𝜒1 𝛾1, 𝜒2 𝛾2 ) = min{𝜇1
+(𝜒1 𝛾1), 𝜇2

+(𝜒2 𝛾2)}

≥  min{min {𝜇1
+(𝜒1), 𝜇1

+(𝛾1)} , min {𝜇2
+(𝜒2), 𝜇2

+(𝛾2)}

= min{min {𝜇1
+(𝜒1), 𝜇2

+(𝜒2)}, min {𝜇1
+(𝛾1), 𝜇2

+(𝛾2)}

= min{{(𝜇1
+ × 𝜇2

+)(𝜒1, 𝜒2)}, {(𝜇1
+ × 𝜇2

+)(𝛾1, 𝛾2)}} 

and  

(𝜇1
− × 𝜇2

−)(𝜒1 𝛾1, 𝜒2 𝛾2 ) = max{𝜇1
−(𝜒1 𝛾1), 𝜇2

−(𝜒2 𝛾2)}

≤ max{max{𝜇1
−(𝜒1), 𝜇1

−(𝛾1)} , max{𝜇2
−(𝜒2), 𝜇2

−(𝛾2)}

= max{max {𝜇1
−(𝜒1), 𝜇2

−(𝜒2)}, max {𝜇1
−(𝛾1), 𝜇2

−(𝛾2)}

= max{{(𝜇1
− × 𝜇2

−)(𝜒1, 𝜒2)}, {(𝜇1
− × 𝜇2

−)(𝛾1, 𝛾2)}} 

Therefore 𝐵1 × 𝐵2 is a bipolar fuzzy k-ideal of ℵ × ℵ. 
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Abstract − Soft sets have been successfully applied to many different fields to
cope with uncertainties. Recently, to increase the success of the applications, these
sets have been combined with other theories, such as fuzzy sets and intuitionistic
fuzzy sets. In this study, we propose the concept of fuzzy parameterized intuitionistic
fuzzy soft sets (fpifs-sets). We then apply these sets to a performance-based value
assignment (PVA) problem. Finally, we give suggestions for further research.
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1. Introduction

Researchers in many scientific fields make an effort to model problems containing uncertain data.
However, the classical methods are not always successful in describing uncertainties. In 1965, therefore,
fuzzy sets were developed by Zadeh [1] to overcome the uncertainties. In 1986, these sets have been
generalised to intuitionistic fuzzy sets (if -sets) by Atanassov [2]. In 1999, Molodtsov [3] proposed the
concept of soft sets as a general mathematical tool to model the problems with uncertainties.

So far, many novel concepts based on the soft sets, fuzzy sets, and if -sets have been propounded.
These concepts can be classified as follows:

- Fuzzy soft sets [4],
- Intuitionistic fuzzy soft sets [5],
- Fuzzy parameterized soft sets [6],
- Fuzzy parameterized fuzzy soft set [7],
- Fuzzy parameterized intuitionistic fuzzy soft sets [In this study],
- Intuitionistic fuzzy parameterized soft sets [8],
- Intuitionistic fuzzy parameterized fuzzy soft sets [9],
- Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets [10],

In the present paper, as it is pointed out above, we define parameterized intuitionistic fuzzy soft
sets (fpifs-sets) by using fuzzy sets and if -sets. We then apply this concept to a decision-making
problem. Finally, we discuss fpifs-sets and give suggestions for their further research.

1esulukan60@gmail.com (Corresponding Author); 2naim.cagman@gop.edu.tr; 3aydinttugce@gmail.com
1,2Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Turkey
3Department of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
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2. Preliminaries

This section presents some of the basic definitions of soft sets [3], fuzzy sets [1], and if -sets [2].

2.1. Soft Sets

In this subsection, we introduce some of the basic definitions and properties of soft sets provided
in [3, 11, 12].

Definition 2.1. Let U be a universal set, P (U) be the power set of U , and X be a set of parameters.
Then, a soft set S over U is defined as a set of ordered pairs

S = {(x, s(x)) : x ∈ X} where s : X → P (U)

Here, s is called approximate function of the soft set S and the elements (x, ∅) is not displayed in S.

Hereafter, the soft sets are denoted by S, S1, S2, . . . and their approximate functions by s, s1, s2, . . . ,
respectively. The set of all soft sets over U is denoted by S.

Definition 2.2. Let S ∈ S. Then,
S is called empty soft set, denoted by S∅, if s(x) = ∅ for all x ∈ X, and
S is called universal soft set, denoted by SU , if s(x) = U for all x ∈ X.

Example 2.3. Let U = {u1, u2, u3, u4, u5, u6} be a universal set and X = {x1, x2, x3, x4} be a set of
parameters. If s(x1) = {u1, u2, u4, u6}, s(x2) = ∅, s(x3) = {u1, u3, u5}, and s(x4) = U , then the soft
set S is written by

S = {(x1, {u1, u2, u4, u6}), (x3, {u1, u3, u5}), (x4, U)}

Definition 2.4. Let S1, S2 ∈ S. Then,
S1 and S2 are called equal, denoted by S1 = S2, if s1(x) = s2(x) for all x ∈ X, and
S1 is called soft subset of soft set S2, denoted by S1 ⊆ S2, if s1(x) ⊆ s2(x) for all x ∈ X.

Definition 2.5. Let S, S1, S2 ∈ S. Then,
the complement of S is defined by Sc = {(x,U \ s(x)) : x ∈ X},
the union of S1 and S2 is defined by S1 ∪ S2 = {(x, s1(x) ∪ s2(x)) : x ∈ X}, and
the intersection of S1 and S2 is defined by S1 ∩ S2 = {(x, s1(x) ∩ s2(x)) : x ∈ X}.

Proposition 2.6. If S ∈ S, then

i) S ∪ S = S

ii) S ∩ S = S

iii) S ∪ S∅ = S

iv) S ∩ S∅ = S∅

v) S ∪ SU = SU

vi) S ∩ SU = S

Proposition 2.7. If S1, S2, S3 ∈ S, then

i) S1 ∪ S2 = S2 ∪ S1

ii) S1 ∩ S2 = S2 ∩ S1

iii) (S1 ∪ S2)
c = Sc

1 ∩ Sc
2

iv) (S1 ∩ S2)
c = Sc

1 ∪ Sc
2

v) S1 ∪ (S2 ∪ S3) = (S1 ∪ S2) ∪ S3

vi) S1 ∩ (S2 ∩ S3) = (S1 ∩ S2) ∩ S3

vii) S1 ∪ (S2 ∩ S3) = (S1 ∪ S2) ∩ (S1 ∪ S3)

viii) S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3)

2.2. Fuzzy Sets

This subsection provides some of the basic definitions and properties of fuzzy sets presented in [1]. For
more details, see [13–15].

Definition 2.8. Let X be a universal set. Then, a fuzzy set F over X is defined by

F = {xf(x) : x ∈ X} where f : X → [0, 1]

Here f is called the membership function of F , the elements x0 is not displayed in F , and the elements
x1 is displayed as x in F . Moreover, the value f(x) is called the degree of membership of x ∈ X and
represents the degree of belonging of x to the fuzzy set F .
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From now on, the fuzzy sets are denoted by F,F1, F2, . . . and their membership functions by
f, f1, f2, . . . respectively. The set of all fuzzy sets over X is denoted by F.

Definition 2.9. Let F ∈ F. Then,
F is called empty fuzzy set, denoted by F∅, if f(x) = 0 for all x ∈ X.
F is called universal fuzzy set, denoted by FX , if f(x) = 1 for all x ∈ X.

Example 2.10. Let U = {x1, x2, x3, x4, x5, x6}, f(x1) = 0.7, f(x2) = 0.5, f(x3) = 0.2, f(x4) = 0,
f(x5) = 0.7, and f(x6) = 1, then the fuzzy set F is as follows:

F =
{

x0.71 , x0.52 , x0.23 , x0.75 , x6
}

Definition 2.11. Let F1, F2 ∈ F. Then,
F1 and F2 are called equal, denoted by F1 = F2, if f1(x) = f2(x) for all x ∈ X, and
F1 is called fuzzy subset of F2, denoted by F1 ⊆ F2, if f1(x) ≤ f2(x) for all x ∈ X.

Definition 2.12. Let F,F1, F2 ∈ F. Then,
the complement of F is defined by F c = {x1−f(x) : x ∈ X},
the union of F1 and F2 is defined by F1 ∪ F2 = {xmax{f1(x),f2(x)} : x ∈ X}, and
the intersection of F1 and F2 is defined by F1 ∩ F2 = {xmin{f1(x),f2(x)} : x ∈ X}.

Proposition 2.13. If F ∈ F, then

i) F ∪ F = F

ii) F ∩ F = F

iii) F ∪ F∅ = F

iv) F ∩ F∅ = F∅

v) F ∪ FX = FX

vi) F ∩ FX = F

Proposition 2.14. If F1, F2, F3 ∈ F, then

i) F1 ∪ F2 = F2 ∪ F1

ii) F1 ∩ F2 = F2 ∩ F1

iii) (F1 ∪ F2)
c = F c

1 ∩ F c
2

iv) (F1 ∩ F2)
c = F c

1 ∪ F c
2

v) F1 ∪ (F2 ∪ F3) = (F1 ∪ F2) ∪ F3

vi) F1 ∩ (F2 ∩ F3) = (F1 ∩ F2) ∩ F3

vii) F1 ∪ (F2 ∩ F3) = (F1 ∪ F2) ∩ (F1 ∪ F3)

viii) F1 ∩ (F2 ∪ F3) = (F1 ∩ F2) ∪ (F1 ∩ F3)

2.3. Intuitionistic Fuzzy Sets

This subsection features some of the basic definitions and properties of if -sets provided in [2]. For
more details, see [16, 17].

Definition 2.15. Let U be a universal set. An intuitionistic fuzzy set (if -set) I over U is defined by

I =
{

uµ(u);ν(u) : u ∈ U
}

where µ : U → [0, 1] and ν : U → [0, 1] such that 0 ≤ µ(u) + ν(u) ≤ 1 for all u ∈ U . Here, µ and ν

are called membership and non-membership function of I and the elements u0;1 is not displayed in I.
Moreover, the values µ(u) and ν(u) denote the membership degree and non-membership degree of the
u ∈ U , respectively.

Hereafter, the if -sets are denoted by I, I1, I2, . . . and their membership and non-membership func-
tions by µ, µ1, µ2, . . . and ν, ν1, ν2, . . . , respectively. The set of all if -sets over U is denoted by I.

Definition 2.16. Let I ∈ I. Then,
I is called empty if -set, denoted by I∅, if µ(u) = 0 and ν(u) = 1 for all u ∈ U , and
I is called universal if -set, denoted by IU , if µ(u) = 1 and ν(u) = 0 for all u ∈ U .

Example 2.17. Let U = {u1, u2, u3, u4} be a universal set, µ(u1) = 0.7, ν(u1) = 0.2, µ(u2) = 0,
ν(u2) = 1, µ(u3) = 0.2, ν(u3) = 0.6, µ(u4) = 0.3, and ν(u4) = 0.7. Then, the if -set I is written by

I =
{

u
0.7;0.2
1 , u

0.2;0.6
3 , u

0.3;0.7
4

}
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Definition 2.18. Let I1, I2 ∈ I. Then,
I1 and I2 is called equal, denoted by I1 = I2, if µ1(u) = µ2(u) and ν1(u) = ν2(u) for all u ∈ U , and
I1 is called if -subset of I2, denoted by I1 ⊆ I2, if µ1(u) ≤ µ2(u) and ν2(u) ≤ ν1(u) for all u ∈ U .

Definition 2.19. Let I, I1, I2 ∈ I. Then,
the complement of I is defined by Ic = {uν(u);µ(u) : u ∈ U},
the union of I1 and I2 is defined by I1 ∪ I2 = {umax{µ1(u),µ2(u)};min{ν1(u),ν2(u)} : u ∈ U}, and
the intersection of I1 and I2 is defined by I1 ∩ I2 = {umin{µ1(u),µ2(u)};max{ν1(u),ν2(u)} : u ∈ U}.

Proposition 2.20. If I ∈ I, then

i) I ∪ I = I

ii) I ∩ I = I

iii) I ∪ I∅ = I

iv) I ∩ I∅ = I∅

v) I ∪ IU = IU

vi) I ∩ IU = I

Proposition 2.21. If I1, I2, I3 ∈ I, then

i) I1 ∪ I2 = I2 ∪ I1

ii) I1 ∩ I2 = I2 ∩ I1

iii) (I1 ∪ I2)
c = Ic1 ∩ Ic2

iv) (I1 ∩ I2)
c = Ic1 ∪ Ic2

v) I1 ∪ (I2 ∪ I3) = (I1 ∪ I2) ∪ I3

vi) I1 ∩ (I2 ∩ I3) = (I1 ∩ I2) ∩ I3

vii) I1 ∪ (I2 ∩ I3) = (I1 ∪ I2) ∩ (I1 ∪ I3)

viii) I1 ∩ (I2 ∪ I3) = (I1 ∩ I2) ∪ (I1 ∩ I3)

3. Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets

In this section, we define fuzzy parameterized intuitionistic fuzzy soft sets (fpifs-sets) as a new concept
of the soft sets. We then present some of their basic properties.

Definition 3.1. Let U be a universal set and X be a set of parameters. If F =
{

xf(x) : x ∈ X
}

is a
fuzzy set over X and p : X → I, p(x) =

{

uµx(u);νx(u) : u ∈ U
}

is an if -set over U for x ∈ X, then

P =
{(

xf(x), p(x)
)

: x ∈ X
}

is called an fpifs-set over U . Here, p is called approximate function of P and the elements (x0, I∅) is
not displayed in P .

Throughout this paper, the fpifs-sets are denoted by P,P1, P2, . . . and their approximate functions
by p, p1, p2, . . . , respectively. The set of all fpifs-sets over U is denoted by P.

Definition 3.2. Let P ∈ P. Then,
P is called empty fpifs-sets, denoted by P∅, if f(x) = 0 and p(x) = I∅ for all x ∈ X, and
P is called universal if -set, denoted by PU , if f(x) = 1 and p(x) = IU for all x ∈ X.

Example 3.3. Let U = {u1, u2, u3}, X = {x1, x2, x3, x4}, F =
{

x0.71 , x0.42 , x0.54

}

, and

p(x1) =
{

u
0.7;0.2
1 , u

0.5;0.2
3

}

,

p(x2) =
{

u
0.5;0.3
2 , u

0.8;0.1
3

}

,

p(x3) = I∅,

p(x4) =
{

u
0.6;0.2
1 , u

0.5;0.3
2 , u

0.8;0.1
3

}

.

Then,

P =
{

(x0.71 , p(x1)), (x
0.4
2 , p(x2)), (x

0.5
4 , p(x4))

}

=
{(

x0.71 ,
{

u
0.7;0.2
1 , u

0.5;0.2
3

})

,
(

x0.42 ,
{

u
0.5;0.3
2 , u

0.8;0.1
3

})

,
(

x0.54 ,
{

u
0.6;0.2
1 , u

0.5;0.3
2 , u

0.8;0.1
3

})}

is an fpifs-set over U .
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Definition 3.4. Let P1, P2 ∈ P. Then, P1 and P2 are called equal, denoted by P1 = P2, if f1(x) =
f2(x) and p1(x) = p2(x) for all x ∈ X.

Definition 3.5. Let P1, P2 ∈ P. Then, P1 is called fpifs-subset of P2, denoted by P1 ⊆ P2, if
f1(x) ≤ f2(x) and p1(x) ⊆ p2(x) for all x ∈ X.

Definition 3.6. Let P1, P2 ∈ P. Then, the union of P1 and P2 is defined by

P1 ∪ P2 :=
{

(xmax{f1(x),f2(x)}, p1(x) ∪ p2(x)) : x ∈ X
}

Definition 3.7. Let P1, P2 ∈ P. Then, the intersection of P1 and P2 is defined by

P1 ∩ P2 :=
{

(xmin{f1(x),f2(x)}, p1(x) ∩ p2(x)) : x ∈ X
}

Definition 3.8. Let P ∈ P. Then, the complement of P is defined by

P c :=
{

(x1−f(x), pc(x)) : x ∈ X
}

Proposition 3.9. If P ∈ P, then

i) P ∪ P = P

ii) P ∩ P = P

iii) P ∪ P∅ = P

iv) P ∩ P∅ = P∅

v) P ∪ PU = PU

vi) P ∩ PU = P

Proof. Let P = {(xf(x), p(x)) : x ∈ X} be an fpifs-set over U . Then,

i) P ∪ P = {(xmax{f(x),f(x)}, p(x) ∪ p(x)) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

ii) P ∩ P = {(xmin{f(x),f(x)}, p(x) ∩ p(x)) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

iii) P ∪ P∅ = {(xmax{f(x),0}, p(x) ∪ I∅) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

iv) P ∩ P∅ = {(xmin{f(x),0}, p(x) ∩ I∅) : x ∈ X} = {(x0, I∅) : x ∈ X} = P∅

v) P ∪ PU = {(xmax{f(x),1}, p(x) ∪ IU ) : x ∈ X} = {(x1, IU ) : x ∈ X} = PU

vi) P ∩ PU = {(xmin{f(x),1}, p(x) ∩ IU ) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

Proposition 3.10. If P1, P2, P3 ∈ P, then

i) P1 ∪ P2 = P2 ∪ P1

ii) P1 ∩ P2 = P2 ∩ P1

iii) (P1 ∪ P2)
c = P c

1 ∩ P c
2

iv) (P1 ∩ P2)
c = P c

1 ∪ P c
2

v) P1 ∪ (P2 ∪ P3) = (P1 ∪ P2) ∪ P3

vi) P1 ∩ (P2 ∩ P3) = (P1 ∩ P2) ∩ P3

vii) P1 ∪ (P2 ∩ P3) = (P1 ∪ P2) ∩ (P1 ∪ P3)

viii) P1 ∩ (P2 ∪ P3) = (P1 ∩ P2) ∪ (P1 ∩ P3)

Proof. Let P1 = {(xf1(x), p1(x)) : x ∈ X}, P2 = {(xf2(x), p2(x)) : x ∈ X} and
P3 = {(xf3(x), p3(x)) : x ∈ X} be three fpifs-sets over U . Then,

i) P1 ∪ P2 = {(xmax{f1(x),f2(x)}, p1(x) ∪ p2(x)) : x ∈ X},
= {(xmax{f2(x),f1(x)}, p2(x) ∪ p1(x)) : x ∈ X},
= P2 ∪ P1

ii) P1 ∩ P2 = {(xmin{f1(x),f2(x)}, p1(x) ∩ p2(x)) : x ∈ X},
= {(xmin{f2(x),f1(x)}, p2(x) ∩ p1(x)) : x ∈ X},
= P2 ∩ P1
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iii) (P1 ∪ P2)
c = {(x1−max{f1(x),f2(x)}, (p1(x) ∪ p1(x))

c) : x ∈ X},
= {(xmin{1−f1(x),1−f2(x)}, pc1(x) ∩ pc2(x)) : x ∈ X},
= P c

1 ∩ P c
2

iv) (P1 ∩ P2)
c = {(x1−min{f1(x),f2(x)}, (p1(x) ∩ p2(x))

c) : x ∈ X},
= {(xmax{1−f1(x),1−f2(x)}, pc1(x) ∪ pc2(x)) : x ∈ X},
= P c

1 ∪ P c
2

v) P1 ∪ (P2 ∪ P3) = {(xmax{f1(x),max{f2(x),f3(x)}}, p1(x) ∪ (p2(x) ∪ p3(x))) : x ∈ X}
= {(xmax{max{f1(x),f2(x)},f3(x)}, (p1(x) ∪ p2(x)) ∪ p3(x)) : x ∈ X}
= (P1 ∪ P2) ∪ P3

vi) P1 ∩ (P2 ∩ P3) = {(xmin{f1(x),min{f2(x),f3(x)}}, p1(x) ∩ (p2(x) ∩ p3(x))) : x ∈ X}
= {(xmin{min{f1(x),f2(x)},f3(x)}, (p1(x) ∩ p2(x)) ∩ p3(x)) : x ∈ X}
= (P1 ∩ P2) ∩ P3

vii) P1 ∪ (P2 ∩ P3) = {(xmax{f1(x),min{f2(x),f3(x)}}, p1(x) ∪ (p2(x) ∩ p3(x))) : x ∈ X}

= {(xmin{max{f1(x),f2(x)},max{f1(x),f3(x)}}, (p1(x) ∪ p2(x)) ∩ (p1(x) ∪ p3(x))) : x ∈ X}
= (P1 ∪ P2) ∩ (P1 ∪ P3)

viii) P1 ∩ (P2 ∪ P3) = {(xmin{f1(x),max{f2(x),f3(x)}}, p1(x) ∩ (p2(x) ∪ p2(x))) : x ∈ X}

= {(xmax{min{f1(x),f2(x)},min{f1(x),f3(x)}}, (p1(x) ∩ p2(x)) ∪ (p1(x) ∩ p3(x))) : x ∈ X}
= (P1 ∩ P2) ∪ (P1 ∩ P3)

4. A Soft Decision-Making Method Proposed on fpifs-sets

In this section, we suggest a soft decision-making method that assigns a performance-based value to
the alternatives via fpifs-sets. Thus, we can choose the optimal elements among the alternatives.

The Proposed Algorithm Steps

Step 1. Construct an fpifs-set P such that P =
{(

xf(x),
{

uµx(u);νx(u) : u ∈ U
})

: x ∈ X
}

Step 2. Obtain the values ω(u) = 1
|E|

∑

x∈X
f(x)(µx(u)− νx(u)), for all u ∈ U

Step 3. Obtain the decision set {u
d(uk)
k |uk ∈ U} such that d(uk) =

ω(uk)+|min
i

ω(ui)|

max
i

ω(ui)+|min
i

ω(ui)|

5. An Application of the Proposed Method to a Performance-Based Value Assign-
ment Problem

In this section, we apply the proposed method to the performance-based value assignment (PVA)
problem for seven filters used in image denoising, namely Decision Based Algorithm (DBA) [18],
Modified Decision Based Unsymmetrical Trimmed Median Filter (MDBUTMF) [19], Based on Pixel
Density Filter (BPDF) [20], Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [21], A New
Adaptive Weighted Mean Filter (AWMF) [22], Different Applied Median Filter (DAMF) [23], and
Adaptive Riesz Mean Filter (ARmF) [24]. Hereafter, let U = {u1, u2, u3, u4, u5, u6, u7} be the set of
the alternatives such that

u1 = “DBA”, u2 = “MDBUTMF”, u3 = “BPDF”, u4 = “NAFSMF”, u5 = “AWMF”, u6 = “DAMF”,
and u7 = “ARmF”

Moreover, let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be a parameter set determined by a decision-maker
such that

x1 = “noise density 10%”, x2 = “noise density 20%”, x3 = “noise density 30%”,
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x4 = “noise density 40%”, x5 = “noise density 50%”, x6 = “noise density 60%”,
x7 = “noise density 70%”, x8 = “noise density 80%”, and x9 = “noise density 90%”.

Further, let bold numbers in a table point out the best scores therein.

We first present the results of the filters in [24] by Structural Similarity (SSIM) [25] for the im-
age Cameraman in Table 1. Hereinafter, let µx(u) corresponds to the SSIM/MSSIM results of the
image/images for filter u and noise density x. Moreover, let νx(u) = 1 − µx(u), for all x ∈ X and
u ∈ U .

Table 1. The SSIM results of the filters for the Cameraman image.

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.9938 0.9847 0.9710 0.9520 0.9222 0.8843 0.8283 0.7584 0.6645

MDBUTMF 0.9897 0.9278 0.7945 0.7964 0.8844 0.9158 0.8962 0.8056 0.4451

BPDF 0.9910 0.9783 0.9588 0.9306 0.8934 0.8406 0.7700 0.6665 0.4990

NAFSMF 0.9798 0.9636 0.9484 0.9329 0.9164 0.8954 0.8696 0.8335 0.7288

AWMF 0.9872 0.9839 0.9798 0.9748 0.9667 0.9541 0.9345 0.9015 0.8346

DAMF 0.9960 0.9906 0.9833 0.9749 0.9638 0.9492 0.9293 0.8973 0.8294

ARmF 0.9969 0.9933 0.9885 0.9824 0.9735 0.9600 0.9395 0.9059 0.8376

The application of the soft decision-making method proposed in Section 4 is as follows:

Step 1. Suppose that the success at high noise densities is more important than in the presence
of other densities. In this case, the values in Table 1 can be represented with fpifs-set as
follows:

P1 =
{(

x1
0.1,

{

u1
0.9938;0.0062, u2

0.9897;0.0103, u3
0.9910;0.0090, u4

0.9798;0.0202, u5
0.9872;0.0128, u6

0.9960;0.0040,

u7
0.9969;0.0031

})

,
(

x2
0.2,

{

u1
0.9847;0.0153, u2

0.9278;0.0722, u3
0.9783;0.0217, u4

0.9636;0.0364, u5
0.9839;0.0161,

u6
0.9906;0.0094, u7

0.9933;0.0067
})

,
(

x3
0.3,

{

u1
0.9710;0.0290, u2

0.7945;0.2055, u3
0.9588;0.0412, u4

0.9484;0.0516,

u5
0.9798;0.0202, u6

0.9833;0.0167, u7
0.9885;0.0115

})

,
(

x4
0.4,

{

u1
0.9520;0.0480, u2

0.7964;0.2036, u3
0.9306;0.0694,

u4
0.9329;0.0671, u5

0.9748;0.0252, u6
0.9749;0.0251, u7

0.9824;0.0176
})

,
(

x5
0.5,

{

u1
0.9222;0.0778, u2

0.8844;0.1156,

u3
0.8934;0.1066, u4

0.9164;0.0836, u5
0.9667;0.0333, u6

0.9638;0.0362, u7
0.9735;0.0265

})

,
(

x6
0.6,

{

u1
0.8843;0.1157,

u2
0.9158;0.0842, u3

0.8406;0.1594, u4
0.8954;0.1046, u5

0.9541;0.0459, u6
0.9492;0.0508, u7

0.9600;0.0400
})

,
(

x7
0.7,

{

u1
0.8283;0.1717, u2

0.8962;0.1038, u3
0.7700;0.2300, u4

0.8696;0.1304, u5
0.9345;0.0655, u6

0.9293;0.0707, u7
0.9395;0.0605

})

,

(

x8
0.8,

{

u1
0.7584;0.2416, u2

0.8056;0.1944, u3
0.6665;0.3335, u4

0.8335;0.1665, u5
0.9015;0.0985, u6

0.8973;0.1027,

u7
0.9059;0.0941

})

,
(

x9
0.9,

{

u1
0.6645;0.3355, u2

0.4451;0.5549, u3
0.4990;0.5010, u4

0.7288;0.2712, u5
0.8346;0.1654,

u6
0.8294;0.1706, u7

0.8376;0.1624
})}

Step 2. The values ω(u) are as follows:

ω(u1) = 0.3322, ω(u2) = 0.2790, ω(u3) = 0.2616, ω(u4) = 0.3612, ω(u5) = 0.4248, ω(u6) = 0.4220, andω(u7) = 0.4304

Step 3. The decision set is as follows:

{

DBA0.8580,MDBUTMF0.7812,BPDF0.7560,NAFSMF0.8999,AWMF0.9919,DAMF0.9878,ARmF1
}

The results show that ARmF outperforms the others and the ranking order BPDF ≺ MDBUTMF ≺
DBA ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF is valid. Moreover, the results confirm the expert’s
view.
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The visual performances of the filters are provided in Fig. 1. The performances of the filters can
not be discriminated in consideration of Fig. 1. Moreover, when a large number of data come into
question, it is impossible to do so. Therefore, the proposed method has an essential role in dealing
with PVA problems.

Fig. 1. [24] SSIM results for “Cameraman” of 512 × 512 with a SPN ratio of 30. (a) Noisy image
0.0550, (b) DBA 0.9710, (c) MDBUTMF 0.7945, (d) BPDF 0.9588, (e) NAFSMF 0.9484, (f) AWMF
0.9798, (g) DAMF 0.9833, and (h) ARmF 0.9885

Secondly, to better establish the success of the proposed method, we present the results of the
filters in [24] by Mean Structural Similarity (MSSIM) for the 20 traditional images in Table 2.

Table 2. The MSSIM results of the filters for the 20 traditional images.

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056

Similarly, the values in Table 2 can be represented with fpifs-set as follows:

P2 =
{(

x1
0.1,

{

u1
0.9796;0.0204, u2

0.9774;0.0226, u3
0.9783;0.0217, u4

0.9748;0.0252, u5
0.9728;0.0272, u6

0.9854;0.0146,

u7
0.9868;0.0132

})

,
(

x2
0.2,

{

u1
0.9584;0.0416, u2

0.9197;0.0803, u3
0.9536;0.0464, u4

0.9504;0.0496, u5
0.9622;0.0378,

u6
0.9699;0.0301, u7

0.9735;0.0265
})

,
(

x3
0.3,

{

u1
0.9315;0.0685, u2

0.8117;0.1183, u3
0.9229;0.0771, u4

0.9248;0.0752,

u5
0.9484;0.0516, u6

0.9516;0.0484, u7
0.9581;0.0419

})

,
(

x4
0.4,

{

u1
0.8968;0.1032, u2

0.7973;0.2027, u3
0.8838;0.1162,

u4
0.8973;0.1027, u5

0.9315;0.0685, u6
0.9303;0.0697, u7

0.9400;0.0600
})

,

(

x5
0.5,

{

u1
0.8520;0.1480, u

0.8399;0.1601
2 ,
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u3
0.8323;0.1677, u4

0.8666;0.1334, u5
0.9098;0.0902, u6

0.9051;0.0949, u7
0.9173;0.0827

})

,
(

x6
0.6,

{

u1
0.7949;0.02051,

u2
0.8410;0.1590, u3

0.7634;0.2366, u4
0.8320;0.1680, u5

0.8816;0.1184, u6
0.8748;0.1252, u7

0.8880;0.1120
})

,
(

x7
0.7,

{

u1
0.7213;0.2787, u2

0.8025;0.1975, u3
0.6680;0.3320, u4

0.7910;0.2090, u5
0.8437;0.1563, u6

0.8368;0.1632, u7
0.8491;0.1509

})

,

(

x8
0.8,

{

u1
0.6265;0.3735, u2

0.7023;0.2977, u3
0.5096;0.4904, u4

0.7357;0.2643, u5
0.7904;0.2096, u6

0.7846;0.2154

u7
0.7947;0.2053

})

,
(

x9
0.9,

{

u1
0.4966;0.5034, u2

0.3566;0.6434, u3
0.2585;0.7415, u4

0.6190;0.3810, u5
0.7028;0.2972,

u6
0.6964;0.3036, u7

0.7056;0.2944
})}

If we apply the proposed method to the fpifs-set P2, then the decision set is as follows:
{

DBA0.7608,MDBUTMF0.7289,BPDF0.5880,NAFSMF0.8837,AWMF0.9877,DAMF0.9794,ARmF1
}

The results show that ARmF outperforms the others and the following ranking order is valid.

BPDF ≺ MDBUTMF ≺ DBA ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

Moreover, performance ranking order of filters obtained with the SSIM results of the filters only for the
Cameraman image is the same therein. Therefore, the proposed method has been successfully applied
to the PVA problem.

6. Conclusion

To deal with uncertainties, the soft set theory has been applied to many theoretical and practical
fields. Recently, soft sets, using other theories, have been prominent. In this work, we defined fuzzy
parameterized intuitionistic fuzzy soft sets (fpifs-sets) by using fuzzy sets, intuitionistic fuzzy sets, and
soft sets. We then proposed a soft decision-making method and successfully applied it to a decision-
making problem. We think that this study will be beneficial for future studies on soft sets and their
applications, particularly in decision-making.
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1. Introduction

The Kirchhoff equation is the famous wave equations model which describe the small-amplitude vi-
brations of elastic strings introduced by Kirchhoff [1]. In one dimensional space it take th following
form

ρh
∂2u

∂t2
+ δ

∂u

∂t
−

{

ρ0 +
Eh

2L

∫ L

0

(

∂u

∂x

)2

dx

}

∂2u

∂x2
= 0, (0 < x < L, t ≥ 0)

where u (x, t) is the vertical displacement, E the Young modulus, ρ the mass density, h the cross-
section area, L the length, ρ0 the initial axial tension, δ the resistance modulus, and f and g the
external forces.

In this work, we consider the following nonlinear wave equations of Kirchhoff type







































utt +M

(

∥

∥

∥
A

1
2u

∥

∥

∥

2
+

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)

Au+
∫ t

0 g(t− s)Au(s)ds+ |ut|
p−1 ut = f1, (x, t) ∈ Ω× [0,∞)

vtt +M

(

∥

∥

∥
A

1
2u

∥

∥

∥

2
+

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)

Av +
∫ t

0 h(t− s)Av(s)ds + |vt|
q−1 vt = f2, (x, t) ∈ Ω× [0,∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω
∂iu
∂vi

= ∂iv
∂vi

= 0, i = 0, 1, 2, ...,m − 1, x ∈ ∂Ω× (0,∞)

(1)

where Ω is a bounded domain in Rn (n = 1, 2, 3) with a smooth boundary ∂Ω, and g, h : R+ →
R+, fi(., .) : R

2 → R (i = 1, 2) are given functions which will be specified later. Also, A = (−∆)m ,
m ≥ 1 is a positive integer and p, q ≥ 1 are real numbers.
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1,2Department of Mathematics and Science Education, Faculty of Education, Dicle University, Diyarbakır, Turkey
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When m = 1, the system






utt −M
(

‖∇u‖2 + ‖∇v‖2
)

∆u+
∫ t

0 g(t− s)∆u(s)ds+ |ut|
p−1 ut = f1(u, v)

vtt −M
(

‖∇u‖2 + ‖∇v‖2
)

∆v +
∫ t

0 h(t− s)∆v(s)ds + |vt|
q−1 vt = f2(u, v)

(2)

was investigated by Wu [2], here the author proved a decay and blow-up of solutions.
When M (s) ≡ 1, (2) become the following system

{

utt −∆u+
∫ t

0 g(t− s)∆u(s)ds+ |ut|
p−1 ut = f1(u, v)

vtt −∆v +
∫ t

0 h(t− s)∆v(s)ds+ |vt|
q−1 vt = f2(u, v)

(3)

Many authors studied the existence, blow up, lower bound for the blow up time and decay of solutions
of (3) (see [3–7]).

Ye [8] considered the following system

{

utt −M(‖∇u‖2 + ‖∇v‖2)∆u+ |ut|
p−1 ut = f1 (u, v)

vtt −M(‖∇u‖2 + ‖∇v‖2)∆v + |vt|
q−1 vt = f2 (u, v)

with initial-boundary conditions. The author proved the global existence and energy decay results.
Primarily, many authors studied the higher-order wave equation (m > 1) (see [9–18]).

Motivated by the above paper, in this work, we prove the global existence and energy decay of
solutions of the system (1). This work generalises earlier results in the literature which about the
higher order wave equation (m > 1).

The present work is organised as follows: In the next section, we give some assumptions and
lemmas. Section 3 is devoted to proving the global existence and energy decay of solutions.

2. Preliminaries

We use the standard Lebesque space Lp(Ω) and Sobolev space Hm
0 (Ω). Also we will use the embedding

Hm
0 →֒ Lp(Ω), for 2 ≤ p ≤ 2(n−m)

n−2m (n > 2m) or 2 ≤ p (n ≤ 2m),

‖u‖p ≤ C∗

∥

∥

∥
A

1
2u

∥

∥

∥

(see [19,20], for details about Sobolev spaces).
Now, we make the following assumptions:
(A1) M(s) is a non-negative function for s ≥ 0 satisfying

{

m0, α ≥ 0, γ > 0
M(s) = m0 + αsγ

(4)

(A2) If g and h are defined in C1, for s ≥ 0

{

g(s) ≥ 0, m0 −
∫∞
0 g(s)ds = ℓ > 0, g

′
(s) ≤ 0

h(s) ≥ 0, m0 −
∫∞
0 h(s)ds = k > 0, h

′
(s) ≤ 0

concerning the function f1(u, v) and f2(u, v) with a, b > 0,∀(u, v) ∈ R2,
{

f1(u, v) = (r + 1)(a |u+ v|r−1 (u+ v) + b |u|
r−3
2 |v|

r+1
2 u

f2(u, v) = (r + 1)(a |u+ v|r−1 (u+ v) + b |v|
r−3
2 |u|

r+1
2 v

(5)

We can easily verify that
uf1 (u, v) + vf2(u, v) = (r + 1)F (u, v)

where
F (u, v) = a |u+ v|r+1 + 2b |uv|

r+1
2 (6)

(A3) r satisfies the following requirements:

{

If r > 1 then n = 1, 2
If 1 < r ≤ 3 then n = 3

(7)
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Lemma 1.1 [4]. There exist two positive constants c0 and c1 such that

C0(|u|
r+1 + |v|r+1) ≤ F (u, v) ≤ C1(|u|

r+1 + |v|r+1)

Lemma 1.2 [4]. Assume that (7) holds. Then there exists τ > 0 such that

‖u+ v‖r+1
r+1 + 2 ‖uv‖

r+1
2

r+1
2

≤ τ

(

ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)

r+1
2

Lemma 1.3 [4]. For g ∈ C1 and φ ∈ H1
0 (0, T ), we have

−2

∫ t

0

∫

Ω
g(t− s)φφtdxds =

d

dt
((g ⋄ φ)(t)−

∫ t

0
g(s)ds ‖φ‖2) + g(t) ‖φ‖2 − (g

′
⋄ φ)(t)

where

(g ⋄ φ)(t) =

∫ t

0
g(t− s)

∫

Ω
|φ(s)− φ(t)|2 dxds

Lemma 1.4 [21] (Nakao inequality). Let φ (t) be nonincreasing and nonnegative function defined on
[0, T ] , T > 1, satisfying

φ1+α (t) ≤ w0 (φ (t)− φ (t+ 1)) , t ∈ [0, T ]

for w0 > 0 and α ≥ 0. Then we have, for each t ∈ [0, T ] ,
{

φ (t) ≤ φ (0) e−w1[t−1]+, α = 0

φ (t) ≤
(

φ (0)−α + w−1
0 α [t− 1]+

)− 1
α , α > 0

where [t− 1]+ = max {t− 1, 0} and w1 = ln
(

w0
w0−1

)

.

3.Global Existence and Energy Decay

In this part, we state and prove the existence and energy decay of the solution for the problem (1).
We define the following functionals

I1(t) ≡ I1(u(t), v(t)) = (m0 −

∫ t

0
g(s)ds)

∥

∥

∥
A

1
2u

∥

∥

∥

2
(8)

+(m0 −

∫ t

0
h(s)ds)

∥

∥

∥
A

1
2 v

∥

∥

∥

2
+ (g ⋄A

1
2u)(t)

+(h ⋄ A
1
2 v)(t)− (r + 1)

∫

Ω
F (u, v) dx

I2(t) ≡ I2(u(t), v(t)) = (m0 −

∫ t

0
g(s)ds)
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2u
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2 v
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2
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1
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∫
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F (u, v) dx (9)
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F (u, v) dx (10)
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and

E(t) ≡ E(u(t), v(t)) =
1

2
(‖ut‖

2 + ‖vt‖
2) + J(t) (11)

Lemma 2.1. Suppose that (A1), (A2) and (A3) hold. For ∀t ≥ 0

E′(t) = −‖ut(t)‖
p+1
p+1 − ‖vt(t)‖

q+1
q+1 +

∫ t

0

∫

Ω
g(t− s)A

1
2u(s)A

1
2utdxds

+

∫ t

0

∫

Ω
h(t− s)Av(s)

1
2Av

1
2
t dxds ≤ 0 (12)

Proof. Multiplying the first equation (1) by ut and the second equation (1) by vt, respectively,
integrating over Ω, summing up and then using integration by parts, we obtain (12).

Lemma 2.2. Suppose that (A1), (A2) and (A3) hold. Assume further that I1(0) > 0 and

α1 = (r + 1)η

(

2(r + 1)

r − 1
E(0)

)
m−1

2

< 1 (13)

then
I1(t) > 0 (14)

Proof. Since I1(0) > 0, then by continuity there exists a maximal time tmax > 0,(possible tmax = T )
such that I1(0) > 0, for t ∈ [0, tmax], which implies that, for t ∈ [0, tmax]

J(t) ≥
r − 1

2(r + 1)

[

(m0 −

∫ t

0
g(s)ds)

∥
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∥
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1
2u

∥

∥

∥

2
+ (m0 −

∫ t

0
h(s)ds)

∥

∥

∥
A

1
2 v

∥
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∥

2
]

+
r − 1

2(r + 1)

(

((g ⋄A
1
2u)(t) + (h ⋄ A

1
2 v)(t)

)

+
1

r + 1
I1(t)

≥
r − 1

2(r + 1)

[

(m0 −

∫ t

0
g(s)ds)

∥
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1
2u
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∥
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+ (m0 −

∫ t

0
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2(r + 1)

(

((g ⋄A
1
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1
2 v)(t)

)

≥
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2(r + 1)

(
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A

1
2u
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2
+ k

∥

∥

∥
A

1
2 v
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2
)

(15)

where
{

ℓ = m0 −
∫ t

0 g(s)ds

k = m0 −
∫ t

0 h(s)ds

Using (15), (11), and (12), we have

ℓ
∥

∥

∥
A

1
2u

∥
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∥

2
+ k

∥
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∥
A

1
2 v

∥
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2
≤

2 (r + 1)

(r − 1)
J(t)

≤
2 (r + 1)

(r − 1)
E(t)

≤
2 (r + 1)

(r − 1)
E(0) (16)

By (4), (16), (13), and from the (A2), we get
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Thus,

I1(t) =

(

m0 −

∫ t

0
g(s)ds

)

∥

∥

∥
A

1
2u

∥

∥

∥

2
+

(

m0 −

∫ t

0
h(s)ds

)

∥

∥

∥
A

1
2 v

∥

∥

∥

2

+(g ⋄ A
1
2u)(t) + (h ⋄A

1
2 v)(t)− (r + 1)

∫

Ω
F (u, v) dx

> 0

By repeating these steps and using the fact that

lim
t→tmax

(r + 1)η

(

2(r + 1)

r − 1
E(t)

)
m−1

2

≤ α1 < 1

This implies that we can take tmax = T .

Lemma 2.3. Under the conditions of Lemma 2.2. Then there exists 0 < η1 < 1 such that

(r + 1)

∫

Ω
F (u, v) dx ≤ (1− η1)

[(

m0 −

∫ t

0
g(s)ds

)

∥
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∥
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1
2u

∥
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+

(

m0 −

∫ t
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h(s)ds

)

∥

∥

∥
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1
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∥

∥

∥

2
]

(18)

where η1 = 1− α1.

Proof. Thanks to (17), we obtain

(r + 1)

∫

Ω
F (u, v) dx ≤ α1

[

ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
]

Let α1 = 1− η1 and using (A2), we obtain (18).

We are now ready to state and prove our main result.
Teorem 2.1. Assume that (A1), (A2) and (A3) hold. Let u0, v0 ∈ Hm

0 (Ω) ∩ H2m(Ω) and u1, v1 ∈
Hm

0 (Ω) be given which satisfy I1(0) > 0 and (13). Then the solution of problem (1) is global and
bounded. Also, if

m0 >
5 + 2η1
2η1

max

{
∫ ∞

0
g(s)ds,

∫ ∞

0
h(s)ds

}

(19)

then we have the following decay estimates for ∀t ≥ 0,
(i) if p = q = 1

E(t) ≤ E(0)e−̺1t

(ii) if max {p, q} > 1

E(t) ≤

[

E(0)−max{p−1
2

,
q−1
2 } + ̺2 max{

p − 1

2
,
q − 1

2
}[t− 1]+

]− 2
max{p,q)−1

where ̺1=̺1(m0, α, γ) and ̺2=̺2(m0, α, γ,E(0)) are positive constants.
Proof. (Global existence) Firstly, we prove T = ∞, it is sufficient to show that

‖ut‖
2 + ‖vt‖

2 + ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2

is bounded independently of t. We use (11) and (15), we obtain
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2) + J(t)

≥
1

2
(‖ut‖

2 + ‖vt‖
2) +

r − 1

2(r + 1)

(

ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)

Therefore

‖ut‖
2 + ‖vt‖

2 + ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
≤ α2E(0)
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where α2 =
{

2, 2(r+1)
r−1

}

. Therefore, we have the global existence result.

(Energy decay) We will derive the energy decay of the problem (1), by the Lemma 2.1, we get

d

dt
E(t) = −‖ut(t)‖

p+1
p+1 +

1

2
(g′ ⋄ A

1
2u)(t)−

1

2
g(t)

∥

∥

∥
A

1
2u

∥

∥

∥

2

−‖vt(t)‖
q+1
q+1 +

1

2
(h′ ⋄ A

1
2u)(t)−

1

2
h(t)

∥

∥

∥
A

1
2 v

∥

∥

∥

2

< 0

By integrating over [t, t+ 1], we obtain

E(t)− E(t+ 1) =

∫ t+1

t

‖ut(t)‖
p+1
p+1 ds−

1

2

∫ t+1

t

(g′ ⋄ A
1
2u)(s)ds

+
1

2

∫ t+1

t

g(s)
∥

∥

∥
A

1
2u

∥

∥

∥

2
ds+

∫ t+1

t

‖vt(t)‖
q+1
q+1 ds

−
1

2

∫ t+1

t

(h′ ⋄ A
1
2 v)(s)ds +

1

2

∫ t+1

t

h(s)
∥

∥

∥
A

1
2 v

∥

∥

∥

2
ds

= D
p+1
1 (t) +D

q+1
2 (t) (20)

where







D
p+1
1 (t) =

∫ t+1
t

‖ut(t)‖
p+1
p+1 ds−

1
2

∫ t+1
t

(g′ ⋄ A
1
2u)(s)ds+ 1

2

∫ t+1
t

g(s)
∥

∥

∥
A

1
2u

∥

∥

∥

2
ds

D
q+1
2 (t) =

∫ t+1
t

‖vt(t)‖
q+1
q+1 ds−

1
2

∫ t+1
t

(h′ ⋄A
1
2 v)(s)ds + 1

2

∫ t+1
t

h(s)
∥

∥

∥
A

1
2 v

∥

∥

∥

2
ds

(21)

By virtue of (21) and Hölder inequality, we observe that

∫ t+1

t

∫

Ω
|ut|

2 dxdt+

∫ t+1

t

∫

Ω
|vt|

2 dxdt ≤ c1(Ω)D1(t)
2 + c2(Ω)D2(t)

2 (22)

where c1(Ω) = vol(Ω)
p−1
p+1 and c2(Ω) = vol(Ω)

q−1
q+1 . By the mean value theorem, there exist t1 ∈

[

t, t+ 1
4

]

and t2 ∈
[

t+ 3
4 , t+ 1

]

such that

‖ut(ti)‖
2 + ‖vt(ti)‖

2 ≤ 4c1(Ω)D1(t)
2 + c2(Ω)D2(t)

2 (23)

Now, multiplying the first equation (1) by u and the second equation (1) by v,respectively, and
integrating over Ω × [t1, t2],using integration by parts, Hölder inequality and adding them together,
we have

∫ t2

t1

I2(t) ≤

2
∑

i=1

‖ut(ti)‖ ‖u(ti)‖+

2
∑

i=1

‖vt(ti)‖ ‖v(ti)‖+

∫ t2

t1

(‖ut‖
2 + ‖vt‖

2)dt

−

∫ t2

t1

∫

Ω
(|ut|

p−1 utu+ |vt|
q−1 vtv)dxdt

+

∫ t2

t1

(g ⋄A
1
2u)(t) + (h ⋄ A

1
2 v)(t)dt

+

∫ t2

t1

∫

Ω

∫ t

0
g(t− s)A

1
2u)(t)[A

1
2u(s)−A

1
2u(t)]dsdxdt

+

∫ t2

t1

∫

Ω

∫ t

0
h(t− s)A

1
2 v)(t)[A

1
2 v(s)−A

1
2 v(t)]dsdxdt (24)
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Since

∫

Ω

∫ t

0
g(t− s)A

1
2u(t)[A

1
2u(s)−A

1
2u(t)]dsdx =

1

2

∫ t

0
g (t− s)

(

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
+

∥

∥

∥
A

1
2u(s)

∥

∥

∥

2
)

ds

−
1

2

∫ t

0
g(t− s)

(

∥

∥

∥
A

1
2u(t)−A

1
2u(s)

∥

∥

∥

2
)

ds

−

∫

Ω

∫ t

0
g(s)

∣

∣

∣
A

1
2u(t)

∣

∣

∣

2
dsdx

= −
1

2

∫

Ω

∫ t

0
g(s)

∣

∣

∣
A

1
2u(t)

∣

∣

∣

2
dsdx

+
1

2

∫ t

0
g(t− s)(

∥

∥

∥
A

1
2u(s)

∥

∥

∥

2
)ds

−
1

2
(g ⋄ A

1
2u)(t)

and

∫

Ω

∫ t

0
h(t− s)A

1
2 v)(t)[A

1
2 v(s)−A

1
2 v(t)]dsdx = −

1

2

∫

Ω

∫ t

0
h(s)

∣

∣

∣
A

1
2 v(s)

∣

∣

∣

2
dsdx

+
1

2

∫ t

0
h(t− s)(

∥

∥

∥
A

1
2 v(s)

∥

∥

∥

2
)ds

−
1

2
(h ⋄A

1
2 v)(t)

hence (24) takes the form

∫ t2

t1

I2(t) ≤

2
∑

i=1

‖ut(ti)‖ ‖u(ti)‖+

2
∑

i=1

‖vt(ti)‖ ‖v(ti)‖+

∫ t2

t1

(‖ut‖
2 + ‖vt‖

2)dt

−

∫ t2

t1

∫

Ω
(|ut|

p−1 utu+ |vt|
q−1 vtv)dxdt

+
1

2

∫ t2

t1

(g ⋄ A
1
2u)(t) + (h ⋄ A

1
2 v)(t)dt

+
1

2

∫ t2

t1

∫ t

0
g(t− s)

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
dsdt

+
1

2

∫ t2

t1

∫ t

0
h(t− s)

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
dsdt. (25)

Let’s estimate for the first two terms on the right side of the equation (25). By Young inequality, (23)
and (16)

‖ut(ti)‖ ‖u(ti)‖ ≤ C∗

√

4c1D1(t)2 + 4c2D2(t)2 sup
t1≤s≤t2

∥

∥

∥
A

1
2u(s)

∥

∥

∥

≤ C∗

(

2(r + 1)

ℓ(r − 1)

)
1
2 √

4c1D1(t)2 + 4c2D2(t)2 sup
t1≤s≤t2

E(s)
1
2

≤ C∗

(

2(r + 1)

β(r − 1)

)
1
2 √

4c1D1(t)2 + 4c2D2(t)2E(t)
1
2 (26)

and

‖vt(ti)‖ ‖v(ti)‖ ≤ C∗

(

2(r + 1)

β(r − 1)

)
1
2 √

4c1D1(t)2 + 4c2D2(t)2E(t)
1
2 (27)



Journal of New Theory 29 (2019) 89-100 / Energy decay of solutions for a system of higher-order Kirchhoff ... 96

where β = min {ℓ, k}. Also from the Hölder inequality (16)
∣

∣

∣

∣

∫ t2

t1

∫

Ω
(|ut|

p−1 utudxdt

∣

∣

∣

∣

≤

∫ t2

t1

‖ut(t)‖
p
p+1 ‖u‖p+1 dt

≤ C∗

∫ t2

t1

‖ut(t)‖
p
p+1

∥

∥

∥
A

1
2u

∥

∥

∥
dt

≤ C∗

(

2(r + 1)

ℓ(r − 1)

)
1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

‖ut(t)‖
p
p+1 dt

≤ C∗

(

2(r + 1)

ℓ(r − 1)

)
1
2

E(t)
1
2D1(t)

p (28)

and similarly
∣

∣

∣

∣

∫ t2

t1

∫

Ω
(|vt|

q−1 vtvdxdt

∣

∣

∣

∣

≤ C∗

(

2(r + 1)

β(r − 1)

)
1
2

E(t)
1
2D2(t)

q (29)

Employing Young’s inequality for convolution (‖φ ∗ ψ‖q ≤ ‖φ‖r ‖ψ‖s with
1
q
= 1

r
+ 1

s
−1, 1 ≤ q, r, s),

(25) the last two terms of inequality
∫ t2

t1

∫ t

0
g(t− s)

∥

∥

∥
A

1
2u(s)

∥

∥

∥

2
dsdt ≤

∫ t2

t1

g(t)dt

∫ t2

t1

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
dt

≤ (m0 − ℓ)

∫ t2

t1

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
dt

≤ (m0 − β)

∫ t2

t1

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
dt (30)

and
∫ t2

t1

∫ t

0
h(t− s)

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
dsdt ≤

∫ t2

t1

h(t)dt

∫ t2

t1

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
dt

≤ (m0 − β)

∫ t2

t1

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
dt (31)

Adding (29) and (30) together and nothing that, we see

ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
≤

1

η1
I2(t) (32)

From (9) and the definition of I2(t) and also by (18), we have

1

2

∫ t2

t1

∫ t

0
g(t− s)(

∥

∥

∥
A

1
2u(s)

∥

∥

∥

2
dsdt+

1

2

∫ t2

t1

∫ t

0
h(t− s)(

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
dsdt

≤
m0 − β

2β

∫ t2

t1

(ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)dt ≤

m0 − β

2βη1

∫ t2

t1

I2(t)dt (33)

We use (30)-(32) to estimate the last two terms on the right-hand side of (25), we get

1

2

∫ t2

t1

(g ⋄ A
1
2u)(t) + (h ⋄A

1
2u)(t)dt =

1

2

∫ t2

t1

∫ t

0
g(t− s)

∥

∥

∥
A

1
2u(s)−A

1
2u(t)

∥

∥

∥

2
dsdt

+
1

2

∫ t2

t1

∫ t

0
h(t− s)

∥

∥

∥
A

1
2 v(t)−A

1
2 v(t)

∥

∥

∥

2
dsdt

≤

∫ t2

t1

∫ t

0
g(t− s)(

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
+

∥

∥

∥
A

1
2u(t)

∥

∥

∥

2
)dsdt

+

∫ t2

t1

∫ t

0
h(t− s)(

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
+

∥

∥

∥
A

1
2 v(t)

∥

∥

∥

2
)dsdt

≤
2(m0 − β)

β

∫ t2

t1

(ℓ
∥

∥

∥
A

1
2u

∥

∥

∥

2
+ k

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)dt

≤
2(m0 − β)

β

∫ t2

t1

I2(t)dt. (34)
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By (25) and the above inequalities
∫ t2

t1

I2(t)dt ≤ c1(Ω)D1(t)
2 + c2(Ω)D2(t)

2

+4c3
√

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2

+c3E(t)
1
2 (D1(t)

p +D2(t)
q) + c4

∫ t2

t1

I2(t)dt (35)

where c3 = C∗(
2(r+1)
β(r−1))

1
2 and c4 =

5(m0−β)
2βη1

. Then, rewriting (35)

β2

∫ t2

t1

I2(t)dt ≤ c1(Ω)D1(t)
2 + c2(Ω)D2(t)

2

+4c3
√

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2

+c3E(t)
1
2 (D1(t)

p +D2(t)
q)

where β2 = 1− 5(m0−β)
2βη1

and m0 >
5+2η1
2η1

.max
{∫∞

0 g(s)ds,
∫∞
0 h(s)ds

}

. So β2 > 0, thus

∫ t2

t1

I2(t)dt ≤ c5[
√

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2

+D1(t)
2 +D2(t)

2 + E(t)
1
2 (D1(t)

p +D2(t)
q)] (36)

where c5 = max{c1(Ω),c2(Ω),4c3}
β2

. On the other hand, by E(t) function in the definition of the equation
(11), (8) and (9), we obtain

I2(t) = I1(t) + α
∥

∥

∥
A

1
2u

∥

∥

∥

2
+

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)γ+1

E(t) =
1

2
(‖ut‖

2 + ‖vt‖
2) +

r − 1

2(r + 1)

[(

m0 −

∫ t

0
g(s)ds)

∥

∥

∥
A

1
2u

∥

∥

∥

2
+ (m0 −

∫ t

0
h(s)ds

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)]

+
r − 1

2(r + 1)
(g ⋄A

1
2u)(t) + (h ⋄ A

1
2u)(t) +

α

2(γ + 1)
(
∥

∥

∥
A

1
2u

∥

∥

∥

2
+

∥

∥

∥
A

1
2 v

∥

∥

∥

2
)γ+1 +

1

r + 1
I1(t)

≤
1

2
(‖ut‖

2 + ‖vt‖
2) +

r − 1

2(r + 1)

[(

m0 −

∫ t

0
g(s)ds)

∥

∥

∥
A

1
2u

∥

∥

∥

2
+ (m0 −

∫ t

0
h(s)ds

∥

∥

∥
Av

1
2

∥

∥

∥

2
)]

+
r − 1

2(r + 1)

(

(g ⋄ A
1
2u)(t) + (h ⋄ A

1
2u)(t)

)

+

(

1

r + 1
+

1

2(γ + 1)

)

I2(t)

The (37) is integrated over (t1, t2) and then using (22), (32), (34), (36), we obtain
∫ t2

t1

E(t)dt ≤
1

2

∫ t2

t1

(‖ut‖
2 + ‖vt‖

2)dt+
r − 1

2(r + 1)

∫ t2

t1

(

m0 −

∫ t

0
g(s)ds

)

∥

∥

∥
A

1
2u

∥

∥

∥

2
dt

+
r − 1

2(r + 1)

∫ t2

t1

(

m0 −

∫ t

0
h(s)ds

)

∥

∥

∥
A

1
2 v

∥

∥

∥

2
dt

+
r − 1

2(r + 1)

∫ t2

t1

(

(g ⋄A
1
2u)(t) + (h ⋄ A

1
2u)(t)

)

dt

+

(

1

r + 1
+

1

2(γ + 1)

)
∫ t

t1

I2(t)dt

≤ c1(Ω)D1(t)
2 + 4c2(Ω)D2(t)

2 + c6

∫ t

t1

I2(t)dt

≤ c7[
√

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2

+D1(t)
2 +D2(t)

2 + E(t)
1
2 (D1(t)

p +D2(t)
q)] (37)

where c6 =
1

r+1+
1

2(γ+1)
r−1

2(r+1)η1
+ 2(r−1)(m0−β)

(r+1)βη1
and c7 = max {c1(Ω), c2(Ω), c6c5}. Moreover, integrating

(12) over (t1, t2), we obtain

E(t2) ≤ 2

∫ t2

t1

E(t)dt,
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due to t2 − t1 ≥
1
2 , we get

E(t) = E(t2) +

∫ t2

t

‖ut‖
p+1
p+1 ds−

1

2

∫ t2

t

(g′ ⋄ A
1
2u)(s)ds

+
1

2

∫ t2

t

g(s)
∥

∥

∥
A

1
2u

∥

∥

∥

2
ds+

∫ t2

t

‖vt‖
q+1
q+1 ds

−
1

2

∫ t2

t

(h′ ⋄ A
1
2 v)(s)ds +

1

2

∫ t+1

t

h(s)
∥

∥

∥
A

1
2 v

∥

∥

∥

2
ds

≤ 2

∫ t2

t

E(t)dt+D1(t)
p+1 +D2(t)

q+1 (38)

As a result, by (37) and (38), we obtain

E(t) ≤ c8
√

4c1(Ω)D1(t)2 + 4c2(Ω)D2(t)2E(t)
1
2 +D1(t)

2 +D2(t)
2

+E(t)
1
2D1(t)

p + E(t)
1
2D2(t)

q +D1(t)
p+1 +D2(t)

q+1

Hence, by Young inequality, we have

E(t) ≤ c9
[

D1(t)
2 +D2(t)

2 +D1(t)
2p +D2(t)

2q +D1(t)
p+1 +D1(t)

q+1
]

(39)

where c8 and c9 are positive constants.
(i) if p = q = 1. By (20) and (39), we have

E(t) ≤ c10 [E(t)− E(t+ 1) ]

where c10 > 1. Using Nakao’s inequality, we get

E(t) ≤ E(0)e−̺1t

where ̺1 = ln( w0
w0−1).

(ii) if max {p, q} > 1. From (39), we get

E(t) ≤ c9
[

D1(t)
2(1 +D1(t)

2p−2 +D1(t)
p−1) +D2(t)

2(1 +D2(t)
2q−2 +D2(t)

q−1)
]

Then since
{

D1(t) ≤ E(t)
1

p+1 ≤ E(0)
1

p+1

D2(t) ≤ E(t)
1

q+1 ≤ E(0)
1

q+1

we see from (20)

E(t) ≤ c9

[

D1(t)
2
(

1 + E(0)
P−1
P+1 + E(0)

2p−2
p+1

)

+D2(t)
2
(

1 + E(0)
q−1
q+1 + E(0)

2q−2
q+1

)]

≤ c9
(

D1(t)
2 +D2(t)

2
)

(1 + E(0)
p−1
p+1 + E(0)

2p−2
p+1 + E(0)

q−1
q+1 + E(0)

2q−2
q+1

= c10E(0)
(

D1(t)
2 +D2(t)

2
)

where limE(0)→0 c10(E(0)) = c9 and ρ = max
{

p−1
2 , q−1

2

}

. Then, we get

E(t)1+ρ ≤
[

c10
(

D1(t)
2 +D2(t)

2
)]

1+ρ

≤ c11E(0)
(

D1(t)
2ρ+2 +D2(t)

2ρ+2
)

= c11E(0)
(

D1(t)
p+1D1(t)

2ρ+2−p−1 +D2(t)
q+1D2(t)

2ρ+2−q−1
)

= c11E(0)
(

D1(t)
p+1D1(t)

2ρ−p+1 +D2(t)
q+1D2(t)

2ρ−q+1
)

≤ c11E(0)

(

D1(t)
p+1E(0)

2ρ−p+1

P+1 +D2(t)
q+1E(0)

2ρ−q+1
q+1

)

≤ c12E(0)
(

D1(t)
p+1 +D2(t)

q+1
)

≤ c12E(0) (E(t)− E(t+ 1)) (40)
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where
c11 (E(0)) = 2ρ (c10 (E(0))1+ρ

and

c12 (E(0)) = c11 (E(0))max

{

E(0)
2ρ−p+1

P+1 , E(0)
2ρ−q+1

q+1

}

Thus, from (40) and Nakao inequality, we get

E(t) ≤
(

E(0)−ρ + ̺2ρ [t− 1]+
)− 1

ρ

where ̺2 = c−1
12 (E(0)) . Thus, the proof of theorem is completed.

4. Conclusion

In this work, we obtained the existence of global solutions and energy decay for a system of higher-order
Kirchhoff type equations. This improves and extends many results in the literature.
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Abstract − In this study, after given some basic definitions of soft sets and fuzzy soft
sets we firstly define convex-concave soft sets. Then, we investigate their properties
and give some relations between convex and concave soft sets. Furthermore, we define
fuzzy convex-concave soft sets and give some properties for the sets.

Keywords − Fuzzy set, soft sets, convex sets, concave sets, strictly convex, strongly convex

1. Introduction

In 1999, Molodtsov [1] proposed a completely new approach so-called soft set theory for modeling
vagueness and uncertainty which may not be successfully modeled by the classical mathematics, prob-
ability theory, fuzzy sets [2], rough sets [3], and other mathematical tools. In the last decade, properties
and applications on the soft set theory solidly enriched (e.g. [4–12]), including the extension of soft
set theory (e.g. [13–25]). Along with them, many interesting applications of soft set theory have
been expanded by embedding the ideas of fuzzy sets, rough sets, intuitionistic fuzzy sets, vague sets,
interval-valued fuzzy sets (e.g. [26–32]). Then, A method with unknown data in soft sets and in fuzzy
soft sets is introduced by Deng and Wang [33], Gong et al. [34] gave two parameters reduction algo-
rithms, Yang et al. [35] proposed the concept of multi-fuzzy soft sets with a few operations, Mao et
al. [36] gave multi-experts group decision making problems by using intuitionistic fuzzy soft matrices,
Feng and Lie [37] studied subsets and various relations deal with soft set theory, Wang et al. [38] built
a new decision-making method by introducing the concept of fuzzy soft sets for the virtual machine
startup problems, Agarwal et al. [39] introduced a new score function, similarity measure, relations
with applications for generalized intuitionistic fuzzy sets.

Different definitions of convex fuzzy and concave fuzzy sets have defined but the first definition of
convex fuzzy sets introduced by Zadeh [2] and then concave fuzzy sets introduced by Chaudhuri [40].
After Zadeh [2], concavoconvex fuzzy sets proposed by Sarkar [41], with some properties. Moreover,
works on convex (concave )fuzzy sets in theories and applications has been progressing rapidly by
many autor, for example, [42–47].

Convex and concave fuzzy sets play important roles in optimization theory. A significant definition
of convex fuzzy sets introduced by Zadeh [2] and concave fuzzy sets introduced by Chaudhuri [40].
The concavoconvex fuzzy sets proposed by Sarkar [41] which is convex and concave fuzzy sets together
conceived by combining. The works on convex and concave fuzzy sets, in theories and applications,
have been progressing rapidly (e.g. [42, 46,47]).

1irfandeli@kilis.edu.tr (Corresponding Author)
1Muallim Rıfat Faculty of Education, 7 Aralık University, Kilis, Turkey
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The present expository paper is a condensation of part/extension of the dissertation [48]. In
this work, we introduce the soft and fuzzy soft version of fuzzy convex and concave sets and also
investigate their some properties. The plan of the paper is as follows. In Section 2, we give some
notations, definitions used throughout the paper In section 3, after we give convex soft sets, we define
strictly convex soft sets and strongly convex soft sets and then give desired some properties. In Section
4, we define fuzzy soft convex sets and fuzzy soft concave sets and then we show some properties.

2. Preliminary

In this section, we present the basic definitions and some operations of fuzzy sets [2], soft set theory
[1] and fuzzy soft set [26]. More detailed explanations related to this subsection may be found in
[1, 2, 7, 26,30].

Throughout this paper E will denote the n-dimensional Euclidean space Rn. U denotes the arbi-
trary set, I denotes the interval [0, 1], and I◦ denotes (0, 1).

Definition 2.1. [2] Let U be the universe. Then, a fuzzy set X over U is defined by a set of ordered
pair

X = {(µX(x)/x) : x ∈ U}

where
µX : U → [0, 1]

is called membership function of X. The value µX(x) is called the membership value or the grade of
membership of x ∈ U . The membership value represents the degree of x belonging to the fuzzy set X.

Definition 2.2. [41] A fuzzy set in Rn is defined to be convex if for all p, q ∈ Rn and all r on the
line segment pq the following condition with respect to its characteristic function µ is satisfied:

µ(r) ≥ min{µ(p), µ(q)}

Conversely, a fuzzy set in Rn is defined to be concave if for p, q ∈ Rn and all r on the line segment pq
the following condition with respect to its characteristic function µ is satisfied:

µ(r) ≤ max{µ(p), µ(q)}

Definition 2.3. [1] Let U be a universe, P (U) be the power set of U and E be a set of parameters
that are describe the elements of U . A soft set S over U is a set defined by a set valued function fS
representing a mapping

fS : E → P (U)

It is noting that the soft set is a parametrized family of subsets of the set U , and therefore it can
be written a set of ordered pairs

S = {(x, fS(x)) : x ∈ E}

Here, fS is called approximate function of the soft set S and fS(x) is called x-approximate value
of x ∈ E. The subscript S in the fS indicates that fS is the approximate function of S.

Generally, fS, fT , fV , ... will be used as an approximate functions of S, T , V , ..., respectively.
Note that if fS(x) = ∅, then the element (x, fS(x)) is not appeared in S.

Definition 2.4. [7] Let S and T be two soft sets. Then,

1. If fS(x) = ∅ for all x ∈ E, then S is called a empty soft set, denoted by SΦ.

2. If fS(x) ⊆ fT (x) for all x ∈ E, then S is a soft subset of T , denoted by S⊆̃T .

3. Complement of S is denoted by S c̃. Its approximate function fSc̃ is defined by

fSc̃(x) = U \ fS(x) for all x ∈ E

4. Union of S and T is denoted by S∪̃T . Its approximate function fS∪̃T is defined by

fS∪̃T (x) = fS(x) ∪ fT (x) for all x ∈ E
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5. Intersection of S and T is denoted by S∩̃T . Its approximate function fS∩̃T is defined by

fS∩̃T (x) = fS(x) ∩ fT (x) for all x ∈ E

Definition 2.5. [8] Let S be a soft set over U and α be a subset of U. Then, α-inclusion of the soft
set S, denoted by Sα, is defined as

Sα = {x ∈ E : fS(x) ⊇ α}

Definition 2.6. [26] Let U be an initial universe, F (U) be all fuzzy sets over U . E be the set of all
parameters and A ⊆ E. An fuzzy soft set ΓA on the universe U is defined by the set of ordered pairs
as follows,

ΓA = {(x, γA(x)) : x ∈ E, γA(x) ∈ F (U)}

where γA : E → F (U) such that γA(x) = ∅ if x /∈ A, and for all x ∈ E

γA(x) = {µγA(x)
(u)/u : u ∈ U, µγA(x)

(u) ∈ [0, 1]}

is a fuzzy set over U .

The subscript A in the γA indicates that γA is the approximate function of ΓA.
Note that if γA(x) = ∅, then the element (x, γA(x)) is not appeared in ΓA.

Definition 2.7. [26] Let ΓA and ΓB be two fuzzy soft sets. Then,

1. If γA(x) = ∅ for all x ∈ E, then Γ is called a empty fuzzy soft set, denoted by ΓΦ.

2. Complement of ΓA is denoted by Γc̃
A. Its approximate function γAc̃ is defined by

γAc̃(x) = γcA(x), for all x ∈ E

3. Union of ΓA and ΓB is denoted by ΓA∪̃ΓB. Its fuzzy approximate function γA∪̃B is defined by

γA∪̃B(x) = γA(x) ∪ γB(x) for all x ∈ E

4. Intersection of ΓA and ΓB is denoted by ΓA∩̃ΓB. Its fuzzy approximate function γA∩̃B(x) is
defined by

γA∩̃B(x) = γA(x) ∩ γB(x) for all x ∈ E

5. ΓA is an fuzzy soft subset of ΓB, denoted by ΓA⊆̃ΓB , if γA(x) ⊆ γB(x) for all x ∈ E.

3. Convex Soft sets

In this section, after we give convex soft sets, we define strictly convex soft sets and strongly convex
soft sets and then give desired some properties. Some of it is quoted from [2,40–42,46–48].

Definition 3.1. The soft set S on E is called a convex soft set, is shown in Figure 1, if

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y)

for every x, y ∈ E and a ∈ I.

Definition 3.2. The soft set S on E is called a concave soft set if

fS(ax+ (1− a)y) ⊆ fS(x) ∪ fS(y)

for every x, y ∈ E and a ∈ I.

Definition 3.3. The soft set S on E is called a strongly convex soft set if

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y)

for every x, y ∈ E, x 6= y and a ∈ I◦.
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Fig. 1. The convex soft set

Definition 3.4. The soft set S on E is called a strictly convex soft set if

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y)

for every x, y ∈ E, fS(x) 6= fS(y) and a ∈ I◦.

Note 3.5. A convex soft set is not necessarily a strongly convex soft set and a strictly convex soft set
is not necessarily a strongly convex soft set.

Theorem 3.6. If {Si : i ∈ {1, 2, ...}} is any family of convex soft sets, then,

1. the intersection ∩̃i∈ISi is a convex soft set but union of any family {Si : i ∈ I = {1, 2, ...}} of
convex soft sets is not necessarily a convex soft set.

2. the union ∪̃i∈ISi is a concave soft set and the intersection of any family {Si : i ∈ I = {1, 2, ...}}
of concave soft sets is concave soft set.

Theorem 3.7. S is a convex soft set ⇔ S c̃ is a concave soft sets.

Proof. ⇒ Suppose that there exist x, y ∈ E, a ∈ I and S be a convex soft set.
Then, since S is convex,

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (1)

or
U \ fS(ax+ (1− a)y) ⊆ U \ {fS(x) ∩ fS(y)} (2)

we have
U \ fS(ax+ (1− a)y) ⊆ {U \ fS(x) ∪ U \ fS(y)} (3)

So, S c̃ is a concave fuzzy soft set.
⇐ S c̃ be a concave soft set.
Since S c̃ is concave, we have

U \ fS(ax+ (1− a)y) ⊆ {U \ fS(x) ∪ U \ fS(y)} (4)

Then,
U \ fS(ax+ (1− a)y) ⊆ U \ {fS(x) ∩ fS(y)} (5)

or

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (6)

So, S is a convex soft set.
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Theorem 3.8. S∩̃T is a strictly convex soft set when both S and T are strictly convex soft sets.

Proof. Suppose that there exist x, y ∈ E and a ∈ I◦ and W = S∩̃T . Then,

fW (ax+ (1− a)y) = fS(ax+ (1− a)y) ∩ fT (ax+ (1− a)y) (7)

Now, since S and T strictly convex sets,

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) such that fS(x) 6= fS(y) (8)

fT (ax+ (1− a)y) ⊃ fT (x) ∩ fT (y) such that fS(x) 6= fS(y) (9)

and hence,

fW (ax+ (1− a)y) ⊃ (fS(x) ∩ fS(y)) ∩ (fT (x) ∩ fT (y))) such that fS(x) 6= fS(y) (10)

and thus
fW (ax+ (1− a)y) ⊃ fW (x) ∩ fW (y)) such that fS(x) 6= fS(y) (11)

Theorem 3.9. If {Si : i ∈ {1, 2, ...}} is any family of strictly convex soft sets, then the intersection
∩̃i∈ISi is a strictly convex soft set.

Remark 3.10. The union of any family {Si : i ∈ I = {1, 2, ...}} of strictly convex soft sets is not
necessarily a strictly convex soft set.

Theorem 3.11. Let S be a strictly convex soft set on E.

1. If there exists a ∈ I◦, for every x, y ∈ E such that

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (12)

Then S is a convex soft set on E.

2. If there exists a ∈ I, such that for every pair of distinct points x ∈ E, y ∈ E, we have

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (13)

Then S is a strongly convex soft set on E.

Proof. The proof is straightforward.

Theorem 3.12. Let S be a convex soft set on E.

1. If there exists a ∈ I, for every pair of distinct points x ∈ E, y ∈ E implies that

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (14)

Then S is a strongly convex soft set on E.

2. If there exists a ∈ I, for every x ∈ E, y ∈ E, fS(x) 6= fS(y) implies,

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (15)

Then S is a strictly convex soft set on E.

Definition 3.13. The fuzzy soft set ΓA on E is called a convex fuzzy soft set, is shown in Figure 2, if

γA(ax+ (1− a)y) ⊇ γA(x) ∩ γA(y)

for every x, y ∈ E and a ∈ I.

Theorem 3.14. ΓA∩̃ΓB is a fuzzy convex soft set when both ΓA and ΓB are fuzzy convex soft sets.
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Fig. 2. The fuzzy convex soft set

Proof. Suppose that there exist x, y ∈ E and a ∈ I and C = S ∩ T . Then,

γC(ax+ (1− a)y) = γS(ax+ (1− a)y) ∩ γT (ax+ (1− a)y) (16)

Now, since S and T convex,
γS(ax+ (1− a)y) ⊇ γS(x) ∩ γS(y) (17)

γT (ax+ (1− a)y) ⊇ γT (x) ∩ γT (y) (18)

and hence,
γC(ax+ (1− a)y) ⊇ (γS(x) ∩ γS(y)) ∩ (γT (x) ∩ γT (y)) (19)

and thus
γC(ax+ (1− a)y) ⊇ γC(x) ∩ γC(y) (20)

Definition 3.15. The soft set ΓA on E is called a concave fuzzy soft set if

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y)

for every x, y ∈ E and a ∈ I.

Theorem 3.16. ΓA∪̃ΓB is a concave fuzzy soft set when both ΓA and ΓB are concave fuzzy soft sets.

Proof. Suppose that there exist x, y ∈ E and a ∈ I and ΓC = ΓA∪̃ΓB . Then,

γC(ax+ (1− a)y) = γA(ax+ (1− a)y) ∪ γB(ax+ (1− a)y) (21)

Now, since S and T concave,

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y) (22)

γB(ax+ (1− a)y) ⊆ γB(x) ∪ γB(y) (23)

and hence,
γC(ax+ (1− a)y) ⊆ (γA(x) ∪ γA(y)) ∪ (γB(x) ∪ γB(y)) (24)

and thus
γC(ax+ (1− a)y) ⊆ γC(x) ∪ γC(y) (25)

Theorem 3.17. If {ΓAi
: i ∈ {1, 2, ...}} is any family of concave fuzzy soft sets, then the union

∪̃i∈IΓAi
is a concave fuzzy soft set.
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Theorem 3.18. ΓA is a convex fuzzy soft set when Γc̃
A is a concave fuzzy soft sets.

Proof. Suppose that there exist x, y ∈ E, a ∈ I and ΓA be a convex fuzzy soft set.
Then, since ΓA is convex,

γA(ax+ (1− a)y) ⊇ γA(x) ∩ γA(y) (26)

or
U \ γA(ax+ (1− a)y) ⊆ U \ {γA(x) ∩ γA(y)} (27)

we have
U \ γA(ax+ (1− a)y) ⊆ {U \ γA(x) ∪ U \ γA(y)} (28)

So, Γc̃
A is a concave fuzzy soft set.

Theorem 3.19. If {ΓAi
: i ∈ {1, 2, ...}} is any family of convex fuzzy soft sets, then the intersection

∩̃i∈IΓAi
is a convex fuzzy soft set.

Remark 3.20. The union of any family {ΓAi
: i ∈ I = {1, 2, ...}} of convex fuzzy soft sets is not

necessarily a convex fuzzy soft set.

Theorem 3.21. ΓA is a concave fuzzy soft set when Γc̃
A is a convex fuzzy soft sets. sets.

Proof. Suppose that there exist x, y ∈ E, a ∈ I and S be a concave fuzzy soft set.
Then, since S is concave,

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y) (29)

or
U \ γA(ax+ (1− a)y) ⊇ U \ {γA(x) ∪ γA(y)} (30)

we have
U \ γA(ax+ (1− a)y) ⊇ {U \ γA(x) ∩ U \ γA(y)} (31)

So, Γc̃
A is a convex fuzzy soft set.

Theorem 3.22. S is a concave fuzzy soft set on E iff for every β ∈ [0, 1] and α ∈ P (U), Sα is a
concave set on E.

Proof. ⇒ Assume that S is a concave fuzzy soft set. If x1, x2 ∈ E and α ∈ P (U), then γA(x1) ⊇ α
and γA(x2) ⊇ α. It follows from the concavity of S that

γA(βx1 + (1− β)x2) ⊆ γA(x1) ∪ γA(x2)

and thus Sα is a concave set.
⇐ Assume that Sα is a concave set for every β ∈ [0, 1]. Especially, for x1, x2 ∈ E, Sα is concave

for α = γA(x1) ∪ γA(x2).
Since γA(x1) ⊇ α and γA(x2) ⊇ α, we have x1 ∈ Sα and x2 ∈ Sα, whence βx1 + (1 − β)x2 ∈ Sα.

Therefore, γA(βx1 + (1 − β)x2) ⊆ α = γA(x1) ∪ γA(x2), which indicates S is a concave fuzzy soft set
on X.

4. Conclusion

In the literature, convex fuzzy sets has been introduced widely by many researchers. In this paper, we
defined convex soft sets, concave soft sets, convex fuzzy soft sets and concave fuzzy soft sets and give
some properties. Also we will try to explore characterizations of convex fuzzy soft sets to optimization
in the future. The theory may be applied to many fields and more comprehensive in the future to solve
the related problems, such as; pattern classification, operation research, decision making, optimization
problem, and so on.
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[25] İ. Deli, N. C. ağman, Similarity Measure of IFS-Sets and Its Application in Medical Diagnosis,
Annals of Fuzzy Mathematics and Informatics 11(5) (2016) 841–854.
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[48] İ. Deli, Convex and Concave Soft Sets and Some Properties, arXiv:1307.4960v1 [math.GM] 17
July 2013.



New Theory
Journal of

ISSN: 2149-1402 

29 (2019) 111-119

Journal of New Theory

http://www.newtheory.org

Open Access

New Theory
Journal of

www.newtheory.org

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Tokat Gaziosmanpaşa University

Number 28 Year 2019

On µsp-Continuous Maps in Topological Spaces

Selvaraj Ganesan1, Rajamanickam Selva Vinayagam2, Balakrishnan Sarathkumar3

Article History

Received : 20.01.2019

Accepted : 25.12.2019

Published : 30.12.2019

Original Article

Abstract − In this paper, we introduce a new class of continuous maps called
µsp-continuous maps and study their properties in topological spaces.
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1. Introduction and Preliminaries

Several authors [1–7] working in the field of general topology have shown more interest in studying the
concepts of generalizations of continuous maps. A weak form of continuous maps called g-continuous
maps were introduced by Balachandran et al. [8]. As generalizations of closed sets, µsp-closed sets were
introduced and studied by the same author [9]. In this paper, we first introduce µsp-continuous maps
and study their relations with various generalized continuous maps. We also discuss some properties
of µsp-continuous maps. We introduce µsp-irresolute maps in topological spaces and discuss some of
their properties. Various properties and characterizations of such maps are discussed by using µsp-
closure and µsp-interior under certain conditions. Throughout this paper, (X, τ), (Y, σ), and (Z, η)
(or X, Y , and Z) represent topological spaces on which no separation axioms are assumed unless
otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A), and AC denote the closure of
A, the interior of A, and complement of A, respectively.
We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called:

1. α-open set [10] if A ⊆ int(cl(int(A))).

2. semi-open set [11] if A ⊆ cl(int(A)).

3. pre-open set [5] if A ⊆ int(cl(A)).

4. β-open set [1] (= semi-pre-open set [12]) if A ⊆ cl(int(cl(A))).
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The complements of the above mentioned open sets are called their respective closed sets.
The α-closure [10](resp. semi-closure [13], pre-closure [14], semi-pre-closure [12]) of a subset A of X,
denoted by αcl(A) (resp. scl(A), pcl(A), spcl(A)) is defined to be the intersection of all α-closed (resp.
semi-closed, pre-closed, semi-pre-closed) sets of (X, τ) containing A.

Definition 1.2. A subset A of a space (X, τ) is called:

1. a generalized closed (briefy g-closed) set [15] if cl(A) ⊆ U whenever A ⊆ U and U is open in
(X, τ). The complement of g-closed set is called g-open set.

2. a generalized semi-closed (briefly gs-closed) set [16] if scl(A) ⊆ U whenever A ⊆ U and U is
open in (X, τ). The complement of gs-closed set is called gs-open set.

3. an α-generalized closed (briefly αg-closed) set [17] if αcl(A) ⊆ U whenever A ⊆ U and U is open
in (X, τ). The complement of αg-closed set is called αg-open set.

4. a generalized α-closed (briefly gα-closed) set [18] if αcl(A) ⊆ U whenever A ⊆ U and U is α-open
in (X, τ). The complement of gα-closed set is called gα-open set.

5. a g#-closed set [19] if cl(A) ⊆ U whenever A ⊆ U and U is αg-open in (X, τ). The complement
of g#-closed set is called g#-open set.

6. a generalized semi-preclosed (briefly gsp-closed) set [20] if spcl(A) ⊆ U whenever A ⊆ U and U
is open in (X, τ). The complement of gsp-closed set is called gsp-open set.

7. a ĝ-closed set [7] (= ω-closed set [6]) if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).
The complement of ĝ-closed set is called ĝ-open set.

8. a *g-closed set [21] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ). The complement
of *g-closed set is called *g-open set.

9. a #g-semi-closed(briefly #gs-closed) set [22] if scl(A) ⊆ U whenever A ⊆ U and U is ∗g-open
in (X, τ). The complement of #gs-closed set is called #gs-open set.

10. a gα*-closed set [18, 23] if αcl(A) ⊆ int(U) whenever A ⊆ U and U is α-open in (X, τ). The
complement of gα*-closed set is called gα*-open set.

11. a µ-closed set [24] if cl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ). The complement
of µ-closed set is called µ-open set.

12. a µp-closed set [25] if pcl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ). The complement
of µp-closed set is called µp-open set.

13. a µs-closed set [26] if scl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ). The complement
of µs-closed set is called µs-open set.

14. a µsp-closed set [9] if spcl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X, τ). The complement
of µsp-closed set is called µsp-open set.

Remark 1.3. The collection of all g-closed (resp. gs-closed, αg-closed, gα-closed, g#-closed, gsp-
closed, ĝ-closed, *g-closed, #gs-closed, gα*-closed, µ-closed, µp-closed, µs-closed, µsp-closed) sets is
denoted by gc(τ) (resp. gsc(τ), αgc(τ), gαc(τ), g#c(τ), gspc(τ), ĝc(τ), *gc(τ), #gsc(τ), gα*c(τ),
µc(τ), µpc(τ), µsc(τ),µspc(τ)).

We denote the power set of X by P (X).

Definition 1.4. A map f : (X, τ) → (Y, σ) is called:

1. α-continuous [27] if f−1(V ) is a α-closed set of (X, τ) for every closed set V of (Y, σ).

2. semi-continuous [11] if f−1(V ) is a semi-closed set of (X, τ) for every closed set V of (Y, σ).

3. pre-continuous [5] if f−1(V ) is a pre-closed set of (X, τ) for every closed set V of (Y, σ).
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4. β-continuous [1] if f−1(V ) is a β-closed set of (X, τ) for every closed set V of (Y, σ).

5. g-continuous [8] if f−1(V ) is a g-closed set of (X, τ) for every closed set V of (Y, σ).

6. gs-continuous [2] if f−1(V ) is a gs-closed set of (X, τ) for every closed set V of (Y, σ).

7. αg-continuous [28] if f−1(V ) is a αg-closed set of (X, τ) for every closed set V of (Y, σ).

8. gα-continuous [28] if f−1(V ) is a gα-closed set of (X, τ) for every closed set V of (Y, σ).

9. g#-continuous [19] if f−1(V ) is a g#-closed set of (X, τ) for every closed set V of (Y, σ).

10. gsp-continuous [20] if f−1(V ) is a gsp-closed set of (X, τ) for every closed set V of (Y, σ).

11. ĝ-continuous [7] if f−1(V ) is a ĝ-closed set of (X, τ) for every closed set V of (Y, σ).

12. *g-continuous [21] if f−1(V ) is a *g-closed set of (X, τ) for every closed set V of (Y, σ).

13. #g-semi-continuous [22] if f−1(V ) is a #g-semi-closed set of (X, τ) for every closed set V of
(Y, σ).

14. µ-continuous [24] if f−1(V ) is a µ-closed set of (X, τ) for every closed set V of (Y, σ).

15. µp-continuous [25] if f−1(V ) is a µp-closed set of (X, τ) for every closed set V of (Y, σ).

16. µs-continuous [26] if f−1(V ) is a µs-closed set of (X, τ) for every closed set V of (Y, σ).

Definition 1.5. [9] For a space (X, τ), the following hold:

1. Tµsp-space if every µsp-closed set is closed.

2. µTµsp-space if every µsp-closed set is µ-closed.

3. pTµsp-space if every µsp-closed set is pre-closed.

4. spTµsp-space if every µsp-closed set is semi-preclosed.

5. αTµsp-space if every µsp-closed set is α-closed.

6. gαTµsp-space if every µsp-closed set is gα-closed.

Result 1.6. 1. Every closed set (resp. pre-closed set, α-closed set, semi-closed set, β-closed set)
is µsp-closed but not conversely [9].

2. Every µ-closed set (resp. µp-closed set, µs-closed set) is µsp-closed but not conversely [9].

3. Every gα-closed set (resp. g#-closed set, ĝ-closed set) is µsp-closed but not conversely [9].

4. Every open set is µsp-open set but not conversely.

2. µsp-Continuous Maps and Irresolute Maps

We introduce the following definition.

Definition 2.1. A map f : (X, τ) → (Y, σ) is called µsp-continuous if f−1(V ) is a µsp-closed set of
(X, τ) for every closed set V of (Y, σ).

Proposition 2.2. Every continuous (resp. prec-continuous, α-continuous, semi-continuous, β-continuous)
is µsp-continuous but not conversely.

Proof. The proof follows from Result 1.6 (1).

Example 2.3. Let X = Y = {a, b, c}, τ = {φ, {a}, {a, c},X}, and σ = {φ, {b},X}. Then, µspc(τ) =
{φ, {b}, {c}, {a, c}, {b, c}, X} and pc(τ) = αc(τ) = sc(τ) = spc(τ) = {φ, {b}, {c}, {b, c},X}. De-
fine f : (X, τ) → (Y, σ) be the identity map. Then, f is µsp-continuous but not continuous (resp.
prec-continuous, α-continuous, semi-continuous, semi-precontinuous), since f−1({a, c}) = {a, c} is not
closed (resp. preclosed, α-closed, semi-closed, semi-preclosed).
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Proposition 2.4. Every µ-continuous (resp. µp-continuous, µs-continuous) is µsp-continuous but
not conversely.

Proof. The proof follows from Result 1.6 (2).

Example 2.5. Let X = Y = {a, b, c}, τ = {φ, {a}, {b}, {a, b},X}, and σ = {φ, {a, c},X}. Then,
µspc(τ) = {φ, {a}, {b}, {c}, {a, c}, {b, c}, X} and µc(τ) = µpc(τ) = {φ, {c}, {a, c}, {b, c}, X}. Define
f : (X, τ) → (Y, σ) be the identity map. Then, f is µsp-continuous but not µ-continuous (resp.
µp-continuous), since f−1({b}) = {b} is not µ-closed (resp. µp-closed).

Example 2.6. Let X = Y = {a, b, c}, τ = {φ, {a}, {b, c},X}, and σ = {φ, {b},X}. Then, µspc(τ) =
P (X) and µsc(τ) = {φ, {a}, {b, c},X}. Define f : (X, τ) → (Y, σ) be the identity map. Then, f is
µsp-continuous but not µs-continuous, since f−1({a, c}) = {a, c} is not µs-closed.

Proposition 2.7. Every gα-continuous (resp. g#-continuous, ĝ-continuous) is µsp-continuous but
not conversely.

Proof. The proof follows from Result 1.6 (3).

Example 2.8. Let X,Y, τ, σ, and f be as in the Example 2.5. Then, gαc(τ) = g#c(τ) = ĝc(τ) =
{φ, {c}, {a, c}, {b, c},X}. Then, f is µsp-continuous but not gα-continuous (resp. g#-continuous,
ĝ-continuous), since f−1({b}) = {b} is not gα-closed (resp. g#-closed, ĝ-closed).

Theorem 2.9. µsp-continuity is independent of g-continuity, αg-continuity, gs-continuity, gsp-continuity,
*g-continuity, and #gs-continuity.

Proof. It follows from the following Example.

Example 2.10.

1. Let X = Y = {a, b, c}, τ = {φ, {a}, {a, b},X}, and σ = {φ, {c}, Y }. Then, µspc(τ) =
{φ, {b}, {c}, {a, b}, {b, c}, X}, gc(τ) =*gc(τ) = {φ, {c}, {a, c}, {b, c}, X}, and αgc(τ) = gsc(τ) =
gspc(τ) = #gsc(τ) = {φ, {b}, {c}, {a, c}, {b, c}, X}. Define f : (X, τ) → (Y, σ) be the identity
map. Then, f is µsp-continuous but not g-continuous (resp. αg-continuous, gs-continuous, gsp-
continuous, *g-continuous, and #gs-continuous), since f−1({a, b}) = {a, b} is not g-closed (resp.
αg-closed, gs-closed, gsp-closed, *g-closed, and #gs-closed).

2. Let X and τ be defined as an Example 2.10 (1). Let Y = {a, b, c} and σ = {φ, {b}, {a, b}, Y }.
Define f : (X, τ) → (Y, σ) be the identity map. Then, f is g-continuous (resp. αg-continuous, gs-
continuous, gsp-continuous, *g-continuous and #gs-continuous) but not µsp-continuous, since
f−1({a, c}) = {a, c} is not µsp-closed.

Remark 2.11. The composition of two µsp-continuous maps need not be µsp-continuous and this is
shown from the following example.

Example 2.12. Let X and τ be as in Example 2.3. Let Y = Z = {a, b, c}, σ = {φ, {a}, Y },
and η = {φ, {a, b}, Z}. Define f : (X, τ) → (Y, σ) by f(a) = b, f(b) = a, and f(c) = c. Define
g : (Y, σ) → (Z, η) by g(a) = b, g(b) = c, and g(c) = a. Clearly, f and g are µsp-continuous
but their g ◦ f : (X, τ) → (Z, η) is not µsp-continuous, because V = {c} is closed in (Z, η) but
(g ◦ f−1({c}) = f−1(g−1({c})) = f−1({b}) = {a}, which is not µsp-closed in (X, τ).

Theorem 2.13. If f : (X, τ) → (Y, σ) is µsp-continuous and g : (Y, σ) → (Z, η) is continuous, then
g ◦ f : (X, τ) → (Z, η) is µsp-continuous.

Proof. Clearly follows from definitions.

Proposition 2.14. A map f : (X, τ) → (Y, σ) is µsp-continuous if and only if f−1(U) is µsp-open in
(X, τ) for every open set U in (Y, σ).
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Proof. Let f : (X, τ) → (Y, σ) be µsp-continuous and U be an open set in (Y, σ). Then, U c is closed
in (Y, σ) and since f is µsp-continuous, f−1(U c) is µsp-closed in (X, τ). But f−1(U c) = f−1((U))c

and so f−1(U) is µsp-open in (X, τ).
Conversely, assume that f−1(U) is µsp-open in (X, τ) for each open set U in (Y, σ). Let F be a closed
set in (Y, σ). Then, F c is open in (Y, σ) and by assumption, f−1(F c) is µsp-open in (X, τ). Since
f−1(F c) = f−1((F ))c , we have f−1(F ) is closed in (X, τ) and so f is µsp-continuous.
We introduce the following definition

Definition 2.15. A map f : (X, τ) → (Y, σ) is called µsp-irresolute if f−1(V ) is a µsp-closed set of
(X, τ) for every µsp-closed set V of (Y, σ).

Theorem 2.16. Every µsp-irresolute map is µsp-continuous but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be a µsp-irresolute map. Let V be a closed set of (Y, σ). Then, by
the Result 1.6 (1), V is µsp-closed. Since f is µsp-irresolute, then f−1(V ) is a µsp-closed set of (X, τ).
Therefore, f is µsp-continuous.

Example 2.17. Let X,Y, τ, σ, and f be as in the Example 2.12. {b} is µsp-closed set of (Y, σ) but
f−1({b}) = {a} is not a µsp-closed set of (X, τ). Thus, f is not µsp-irresolute map. However, f is
µsp-continuous map.

Theorem 2.18. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two maps. Then,

1. g ◦ f is µsp-continuous if g is continuous and f is µsp-continuous.

2. g ◦ f is µsp-irresolute if both f and g are µsp-irresolute.

3. g ◦ f is µsp-continuous if g is µsp-continuous and f is µsp-irresolute.

Proof. Omitted.

Theorem 2.19. Let f : (X, τ) → (Y, σ) be an µsp-continuous map. If (X, τ), the domain of f is an
Tµsp-space, then f is continuous.

Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an Tµsp-space, then f−1(V ) is a closed set of (X, τ). Therefore, f is
continuous.

Theorem 2.20. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
αTµsp-space, then f is α-continuous.

Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an αTµsp-space, then f−1(V ) is a α-closed set of (X, τ). Therefore, f is
α-continuous.

Theorem 2.21. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
pTµsp-space, then f is pre-continuous.

Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an pTµsp-space, then f−1(V ) is a pre-closed set of (X, τ). Therefore, f is
pre-continuous.

Theorem 2.22. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
µTµsp-space, then f is µ-continuous.

Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an µTµsp-space, then f−1(V ) is a µ-closed set of (X, τ). Therefore, f is
µ-continuous.

Theorem 2.23. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
µpTµsp-space, then f is µp-continuous.
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Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an µpTµsp-space, then f−1(V ) is a µp-closed set of (X, τ). Therefore, f is
µp-continuous.

Theorem 2.24. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
spTµsp-space, then f is β-continuous.

Proof. Let V be a closed set of (Y, σ). Then f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an spTµsp-space, then f−1(V ) is a β-closed set of (X, τ). Therefore, f is
β-continuous.

Theorem 2.25. Let f : (X, τ) → (Y, σ) be a µsp-continuous map. If (X, τ), the domain of f is an
gαTµsp-space, then f is gα-continuous.

Proof. Let V be a closed set of (Y, σ). Then, f−1(V ) is a µsp-closed set of (X, τ), since f is µsp-
continuous. Since (X, τ) is an gαTµsp-space, then f−1(V ) is a gα-closed set of (X, τ). Therefore, f is
gα-continuous.

3. Characterization of µsp-Continuous Maps

In this section we introduce µsp-interior and µsp-closure of a set and obtain the characterization
theorem for µsp-continuous maps under certain conditions.

Definition 3.1. For any A ⊆ X, µsp-int(A) is defined as the union of all µsp-open sets contained in
A, i.e., µsp-int(A) = ∪{G : G ⊆ A and G is µsp-open}.

Lemma 3.2. For any A ⊆ X, int(A) ⊆ µsp-int(A) ⊆ A.

Proof. The proof follows from Result 1.6 (4).
The following two Propositions are easy consequences from definitions.

Proposition 3.3. For any A ⊆ X, the following holds.

1. µsp-int(A) is the largest µsp-open set contained in A.

2. A is µsp-open if and only if µsp-int(A) = A.

Proposition 3.4. For any subsets A and B of (X, τ), the following holds.

1. µsp-int(A ∩B) = µsp-int(A) ∩ µsp-int(B).

2. µsp-int(A ∪B) ⊇ µsp-int(A) ∪ µsp-int(B).

3. If A ⊆ B, then µsp-int(A) ⊆ µsp-int(B).

4. µsp-int(X) = X and µsp-int(φ) = φ.

Definition 3.5. For every set A ⊆ X, we define the µsp-closure of A to be the intersection of all
µsp-closed sets containing A, i.e., µsp-cl(A) = ∩{F : A ⊆ F ∈ µspc(τ)}.

Lemma 3.6. For any A ⊆ X, A ⊆ µsp-cl(A) ⊆ cl(A).

Proof. The proof follows from Result 1.6 (1).

Remark 3.7. Both containment relations in Lemma 3.6 may be proper as seen from the following
example.

Example 3.8. LetX = {a, b, c}, τ = {φ, {a}, {a, b},X}. Here µspc(τ) = {φ, {b}, {c}, {a, b}, {b, c},X}.
Let A = {a}. Then, µsp-cl({a}) = {a, b} and so A ⊆ µsp-cl(A) ⊆ cl(A).

The following two Propositions are easy consequences from definitions.

Proposition 3.9. For any A ⊆ X, the following holds.

1. µsp-cl(A) is the smallest µsp-closed set containing A.
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2. A is µsp-closed if and only if µsp-cl(A) = A.

Proposition 3.10. For any two subsets A and B of (X, τ), the following holds.

1. If A ⊆ B, then µsp-cl(A) ⊆ µsp-cl(B).

2. µsp-cl(A ∩B) ⊆ µsp-cl(A) ∩ µsp-cl(B).

Proposition 3.11. Let A be a subset of a space X, then the following are true.

1. (µsp-int(A))c = µsp-cl(Ac).

2. µsp-int(A) = (µsp-cl(Ac))c.

3. µsp-cl(A) = (µsp-int(Ac))c.

Proof. 1. Clearly follows from definitions.

2. Follows by taking complements in (1).

3. Follows by replacing A by Ac in (1).

Definition 3.12. Let (X, τ) be a topological space. Let x be a point of X and G be a subset of X.
Then, G is called an µsp-neighbourhood of x (briefly, µsp-nbhd of x) in X if there exists an µsp-open
set U of X such that x ∈ U ⊆ G.

Proposition 3.13. Let A be a subset of (X, τ). Then, x ∈ µsp-cl(A) if and only if for any µsp-nbhd
Gx of x in (X, τ), A ∩Gx 6= φ.

Proof. Necessity. Assume x ∈ µsp-cl(A). Suppose that there is an µsp-nbhd G of the point x in
(X, τ) such that G ∩ A = φ. Since G is µsp-nbhd of x in (X, τ), by Definition 3.12, there exists an
µsp-open set Ux such that x ∈ Ux ⊆ G. Therefore, we have Ux ∩ A = φ and so A ⊆ (Ux)

c. Since
(Ux)

c is an µsp-closed set containing A, we have by Definition 3.5, µsp-cl(A) ⊆ (Ux)
c and therefore

x /∈ µsp-cl(A), which is a contradiction. Sufficiency. Assume for each µsp-nbhd Gx of x in (X, τ),
A ∩ Gx 6= φ. Suppose that x /∈ µsp-cl(A). Then, by Definition 3.5, there exists an µsp-closed set F
of (X, τ) such that A ⊆ F and x /∈ F . Thus, x ∈ F c and F c is µsp-open in (X, τ) and hence F c is a
µsp-nbhd of x in (X, τ). But A ∩ F c = φ, which is a contradiction.

In the next theorem we explore certain characterizations of µsp-continuous functions.

Theorem 3.14. Let f : (X, τ) → (Y, σ) be a map from a topological space (X, τ) into a topological
space (Y, σ). Then the following statements are equivalent.

1. The function f is µsp-continuous.

2. The inverse of each open set is µsp-open.

3. For each point x in (X, τ) and each open set V in (Y, σ) with f(x) ∈ V , there is an µsp-open
set U in (X, τ) such that x ∈ U , f(U) ⊆ V .

4. The inverse of each closed set is µsp-closed.

5. For each x in (X, τ), the inverse of every neighbourhood of f(x) is an µsp-nbhd of x.

6. For each x in (X, τ) and each neighbourhood N of f(x), there is an µsp-nbhd G of x such that
f(G) ⊆ N .

7. For each subset A of (X, τ), f(µsp-cl(A)) ⊆ cl(f(A)).

8. For each subset B of (Y, σ), µsp-cl(f−1(B)) ⊆ f−1(cl(B)).
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Proof. (1) ⇔ (2). This follows from Proposition 2.14.
(1) ⇔ (3). Suppose that (3) holds and let V be an open set in (Y, σ) and let x ∈ f−1(V ).

Then, f(x) ∈ V and thus there exists an µsp-open set Ux such that x ∈ Ux and f(Ux) ⊆ V . Now,
x ∈ Ux ⊆ f−1(V ) and f−1(V ) = ∪x∈f−1(V )Ux. By assumption, f−1(V ) is µsp-open in (X, τ) and
therefore f is µsp-continuous.

Conversely, Suppose that (1) holds and let f(x) ∈ V . Then, x ∈ f−1(V ) ∈ µsp(τ), since f is
µsp-continuous. Let U = f−1(V ). Then, x ∈ U and f(U) ⊆ V .

(2) ⇔ (4). This result follows from the fact if A is a subset of (Y, σ), then f−1(Ac) = (f−1(A))c.
(2) ⇔ (5). For x in (X, τ), let N be a neighbourhood of f(x). Then, there exists an open

set U in (Y, σ) such that f(x) ∈ U ⊆ N . Consequently, f−1(U) is an µsp-open set in (X, τ) and
x ∈ f−1(U) ⊆ f−1(N). Thus, f−1(N) is an µsp-nbhd of x.

(5) ⇔ (6). Let x ∈ X and let N be a neighbourhood of f(x). Then, by assumption, G = f−1(N)
is an µsp-nbhd of x and f(G) = f(f−1(N)) ⊆ N .

(6) ⇔ (3). For x in (X, τ), let V be an open set containing f(x). Then, V is a neighborhood of
f(x). So by assumption, there exists an µsp-nbhd G of x such that f(G) ⊆ V . Hence, there exists an
µsp-open set U in (X, τ) such that x ∈ U ⊆ G and so f(U) ⊆ f(G) ⊆ V .

(7)⇔ (4). Suppose that (4) holds and let A be a subset of (X, τ). Since A ⊆ f−1(A), we
have A ⊆ f−1(cl(f(A))). Since cl(f(A)) is a closed set in (Y, σ), by assumption f−1(cl(f(A))) is
an µsp-closed set containing A. Consequently, µsp-cl(A) ⊆ f−1(cl(f(A))). Thus, f(µsp-cl(A)) ⊆
f(f−1(cl(f(A)))) ⊆ cl(f(A)).

Conversely, suppose that (7) holds for any subset A of (X, τ). Let F be a closed subset of (Y, σ).
Then, by assumption, f(µsp-cl(f−1(F ))) ⊆ cl(f(f−1(F ))) ⊆ cl(F ) = F , i.e., µsp-cl(f−1(F )) ⊆
f−1(F ) and so f−1(F ) is µsp-closed.

(7) ⇔ (8). Suppose that (7) holds and B be any subset of (Y, σ). Then, replacing A by f−1(B) in
(7), we obtain f(µsp-cl(f−1(B))) ⊆ cl(f(f−1(B))) ⊆ cl(B), i.e., µsp-cl(f−1(B)) ⊆ f−1cl(B).

Conversely, suppose that (8) holds. Let B = f(A) where A is a subset of (X, τ). Then, we have,
µsp-cl(A) ⊆ µsp-cl(f−1(B)) ⊆ f−1(cl(f(A)) and so f(µsp-cl(A)) ⊆ cl(f(A)).

This completes the proof of the theorem.
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