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Original Article

Abstract − In this paper, we define a new genuine Baskakov-Durrmeyer operators.
We give uniform convergence using the weighted modulus of continuity. Then we
study direct approximation of the operators in terms of the moduli of smoothness.
After that a Voronovskaya type result is studied.

Keywords − Genuine Baskakov Durrmeyer operators, weighted modulus of continuity, Voronovskaya theorem

1. Introduction

In the paper [1], the authors studied the sequences of linear Bernstein type operators defined for
f ∈ C[0, 1] by Bn(f ◦ σ−1) ◦ σ, Bn being the classical Bernstein operators and σ being any function
satisfying some certain conditions. By this way, the Korovkin set is {1, σ, σ2} instead of {1, e1, e2}.
It was shown that the Bσ

n actual a better degree of approximation. For this aim, have studied by a
number of authors. For more details in this direction we can refer the readers to [2–9].

In [10], the authors introduced a general sequences of linear Baskakov Durrmeyer type operators
by

Gσn(g;x) = (n− 1)
∞∑
l=0

P σn,k(x)

∫ ∞

0
(g ◦ σ−1)(u)

(
n+ k − 1

k

)
uk

(1 + u)n+k
du, (1)

where P σn,k(x) =
(
n+k−1

k

) (σ(x))k

(1+σ(x))n+k , σ is a continuous infinite times differentiable function satisfying

the condition σ(1) = 0, σ(0) = 0 and σ′(x) > 0 for x ∈ [0,∞).
In the present paper, we construct a genuine type modification of the operators in (1) which

preserve the function σ, defined as

Kσ
n (g;x) =

∞∑
k=1

P σn,k(x)
1

β(k, n+ 1)

∞∫
0

(
g ◦ σ−1

)
(t)

tk−1

(1 + t)n+k+1
dt

+P σn,0(x)
(
g ◦ σ−1

)
(0) (2)

1ulusoygulsum@hotmail.com (Corresponding Author)
1Department of Mathematics, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
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The operators defined in (2) are linear and positive. In case of σ(x) = x, the operators in (2)
reduce to the following operators introduced in [11]:

Tn (g;x) =

∞∑
k=1

Pn,k(x)
1

β(k, n+ 1)

∞∫
0

g (t)
tk−1

(1 + t)n+k+1
dt+ Pn,0(x)g (0)

2.Auxiliary lemmas

Lemma 2.1. We have
Kσ
n(1;x) = 1, Kσ

n(σ;x) = σ(x), (3)

Kσ
n(σ

2;x) =
σ2(x)(n+ 1) + 2σ(x)

n− 1
, (4)

Kσ
n(σ

3;x) =
σ3(x)(n+ 1)(n+ 2) + 6σ2(x)(n+ 1) + 6σ(x)

(n− 1)(n− 2)
(5)

Lemma 2.2. If we describe the central moment operator by

Mσ
n,m (x) = Kσ

n ((σ (t)− σ (x))m ;x)

then we get
Mσ
n,0(x) = 1, Mσ

n,1(x) = 0 (6)

Mσ
n,2(x) =

2σ(x)(σ(x) + 1)

n− 1
(7)

for all n,m ∈ N.

3.Weighted Convergence of Kσ
n (f)

We suppose that:

(p1) σ is a continuously differentiable function on [0,∞)

(p2) σ (0) = 0, infx∈[0,∞) σ
′ (x) ≥ 1.

Let ψ (x) = 1 + σ2 (x) and Bψ(R+) = {f : |f (x)| ≤ nfψ (x)} , where nf is constant which may
depend only on f. Cψ(R+) denote the subspace of all continuous functions in Bψ(R+). By C∗

ψ(R+),

we denote the subspace off all functions f ∈ Cψ(R+) for which limx→∞ f (x) /ψ (x) is finite. Also let
Uψ(R+) be the space of functions f ∈ Cψ(R+) such that f/ψ is uniformly continuous. Bψ(R+) is the
linear normed space with the norm ∥f∥ψ = supx∈R+ |f (x)| /ψ (x) .

The weighted modulus of continuity defined in [12] is as follows

ωσ (f ; δ) = sup
x,t∈R+

|σ(t)−σ(x)|≤δ

|f (t)− f (x)|
ψ (t) + ψ (x)

for each f ∈ Cψ (R+) and for every δ > 0. We observe that ωσ (f ; 0) = 0 for every f ∈ Cψ (R+) and
the function ωσ (f ; δ) is nonnegative and nondecreasing with respect to δ for f ∈ Cψ (R+) and also
limδ→0 ωσ (f ; δ) = 0 for every f ∈ Uψ (R+) .

Let δ > 0 and W 2
∞ = {g ∈ CB[0,∞); g′, g′′ ∈ CB[0,∞)}. The Peetre’s K functional is defined by

K2(f, δ) = inf
{
∥f − g∥+ δ ∥g∥W 2

∞
; g ∈W 2

∞

}
,

where
∥f∥W 2

∞
:= ∥f∥+

∥∥f ′∥∥+ ∥∥f ′′∥∥
It was shown in [13], there exists an absolute constant C > 0 such that



Journal of New Theory 30 (2020) 1-7 / Better Approximation of Functions... 3

K2(f, δ) ≤ C
{
w2

(
f ;

√
δ
)
+min(1, δ) ∥f∥

}
,

where the second order modulus of smoothness is defined by

w2(f,
√
δ) = sup

0≤h≤
√
δ

sup
x∈[0,∞)

|f(x+ 2h)− 2f(x+ h) + f(x)|

The usual modulus of continuity of f ∈ CB[0,∞) is defined by

w(f, δ) = sup
0≤h≤

√
δ

sup
x∈[0,∞)

|f(x+ h)− f(x)|

Lemma 3.1. [14] The positive linear operators Ln, n ≥ 1, act from Cψ (R+) to Bψ (R+) if and only
if the inequality

|Ln (ψ;x)| ≤ Pnψ (x) ,

holds, where Pn is a positive constant depending on n.

Theorem 3.2. [14] Let the sequence of linear positive operators (Ln), n ≥ 1, acting from Cψ (R+)
to Bψ (R+) satisfy the three conditions

lim
n→∞

∥Lnσν − σν∥ψ = 0, ν = 0, 1, 2.

Then for any function g ∈ C∗
ψ (R+),

lim
n→∞

∥Lng − g∥ψ = 0

Theorem 3.3. For each function g ∈ C∗
ψ (R+)

lim
n→∞

∥Kσ
ng − g∥ψ = 0

Proof. Using Theorem 3.2 we see that it is sufficient to verify the following three conditions

lim
n→∞

∥Kσ
n (σν)− σν∥ψ = 0, ν = 0, 1, 2. (8)

It is clear that from (3) and (4), ∥Kσ
n (1)− 1∥ψ = 0 and ∥Kσ

n (σ)− σ∥ψ = 0. Hence the conditions (8)
are fullfilled for ν = 0, 1. Also using the property (4) we have

∥∥Kσ
n

(
σ2
)
− σ2

∥∥
ψ

= sup
x∈R+

1

(1 + σ2(x))

(
σ2(x)(n+ 1) + 2σ(x)

(n− 1)
− σ2(x)

)
≤ 4

n− 1
(9)

This means that the condition (8) holds also for ν = 2 and by Theorem 3.2 the proof is completed.

Theorem 3.4. [12] Let Ln : Cψ (R+) → Bψ (R+) be a sequence of positive linear operators with∥∥Ln (σ0)− σ0
∥∥
ψ0 = an, (10)

∥Ln (σ)− σ∥
ψ

1
2
= bn,∥∥Ln (σ2)− σ2

∥∥
ψ
= cn,∥∥Ln (σ3)− σ3

∥∥
ψ

3
2
= dn, (11)

where an, bn, cn and dn tend to zero as n→ ∞. Then

∥Ln (g)− g∥
ψ

3
2
≤ (7 + 4an + 2cn)ωσ (g; δn) + ∥g∥ψ an (12)

for all g ∈ Cψ (R+) , where

δn = 2
√

(an + 2bn + cn) (1 + an) + an + 3bn + 3cn + dn
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Theorem 3.5. For all g ∈ Cψ (R+) we get

∥Kσ
n (g)− g∥

ψ
3
2
≤
(
7 +

2

(n− 1)

)
ωσ

(
g;

4√
(n− 1)

+
24n2 + 4n− 8

(n− 1)(n− 2)

)

Proof. On account of apply Theorem 3.4, we must calculate the sequences an, bn, cn and dn. Using
(3) and (4) we find ∥∥Kσ

n

(
σ0
)
− σ0

∥∥
ψ0 = an = 0

and
∥Kσ

n (σ)− σ∥
ψ

1
2
= bn = 0

Also from (9)

cn =
∥∥∥C̃σn (σ2)− σ2

∥∥∥
ψ
≤ 4

(n− 1)

Since

Kσ
n(σ

3;x) =
σ3(x)(n+ 1)(n+ 2) + 6σ2(x)(n+ 1) + 6σ(x)

(n− 1)(n− 2)
(13)

we can write

dn =
∥∥Kσ

n

(
σ3
)
− σ3

∥∥
ψ

3
2

= sup
x∈R+

1

(1 + σ2(x))
3
2

×σ
3(x)(n+ 1)(n+ 2) + 6σ2(x)(n+ 1) + 6σ(x)− σ3(x)(n− 1)(n− 2)

(n− 1)(n− 2)

≤ 24n2

(n− 1)(n− 2)

Thus the conditions (10-11) are satisfied. From Theorem 3.4 we have

∥Kσ
n (g)− g∥

ψ
3
2
≤
(
7 +

2

(n− 1)

)
ωσ

(
g;

4√
(n− 1)

+
24n2 + 4n− 8

(n− 1)(n− 2)

)

Remark 3.6. Using limδ→0 ωσ (f ; δ) = 0 and Theorem 3.5, we have

lim
n→∞

∥Kσ
n (g)− g∥

ψ
3
2
= 0

for f ∈ Uψ (R+) .

Theorem 3.7. Let σ be a function satisfying the conditions p1 and p2 and ∥σ′′∥ is finite. If f ∈
CB[0,∞), then we have

|Kσ
n (g;x)− g(x)| ≤ C

{
w2

(
f ;

√
2σ(x)(σ(x) + 1)

n− 1

)
+min

(
1,

2σ(x)(σ(x) + 1)

n− 1

)
∥g∥

}

Proof. The classic Taylor’s expansion of g ∈W 2
∞ yields for t ∈ [0,∞) that

g(t) = (g ◦ σ−1)(σ(t)) = (g ◦ σ−1)(σ(x)) +D(g ◦ σ−1)(σ(x))(σ(t)− σ(x))

+

∫ σ(x)

σ(x)
(σ(t)− u)D2(g ◦ σ−1)(u)du

Applying the operators Kσ
n to both sides of above equality and considering the fact (6) we obtain

Kσ
n (g;x)− g(x) = Kσ

n

(∫ σ(x)

σ(x)
(σ(t)− u)D2(g ◦ σ−1)(u)du;x

)
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On the other hand, with the change of variable u = σ(y) we get∫ σ(x)

σ(x)
(σ(t)− u)D2(g ◦ σ−1)(u)du =

∫ t

x
(σ(t)− σ(y))D2(g ◦ σ−1)σ(y)σ′(y)dy

Using the equality

D2(g ◦ σ−1)(σ(y)) =
1

σ′(y)

g′′(y)σ′(y)− g′(y)σ′′(y)

(σ′(y))2
,

we can write∫ σ(x)

σ(x)
(σ(t)− u)D2(g ◦ σ−1)(u)du =

∫ t

x
(σ(t)− σ(y))

(
1

σ′(y)

g′′(y)σ′(y)− g′(y)σ′′(y)

(σ′(y))2

)
dy

=

∫ σ(x)

σ(x)
(σ(t)− u)

g′′(σ−1(u))

(σ−1(σ−1(u)))3
du

−
∫ σ(x)

σ(x)
(σ(t)− u)

g′(σ−1(u))σ′′(σ−1(u))

(σ′(σ−1(u)))3
du

So we can write

Kσ
n (g;x)− g(x) = Kσ

n

(∫ σ(x)

σ(x)
(σ(t)− u)

g′′(σ−1(u))

(σ−1(σ−1(u)))3
du;x

)

−Kσ
n

(∫ σ(x)

σ(x)
(σ(t)− u)

g′(σ−1(u))σ′′(σ−1(u))

(σ′(σ−1(u)))3
du;x

)
Since σ is strictly increasing on [0,∞) and with the condition p2, we get

|Kσ
n (g;x)− g(x)| ≤ Mσ

n,2(x)
(∥∥g′′∥∥+ ∥∥g′∥∥ ∥∥σ′′∥∥)

≤ 2σ(x)(σ(x) + 1)

n− 1

(∥∥g′′∥∥+ ∥∥g′∥∥ ∥∥σ′′∥∥)
Also, it is clear that

∥Kσ
n∥ ≤ ∥f∥

Hence we have

|Kσ
n (g;x)− g(x)| ≤ |Kσ

n (g − f ;x)|+ |Kσ
n (f ;x)− f(x)|+ |−(g − f)(x)|

≤ 2 ∥f − g∥+ 2σ(x)(σ(x) + 1)

n− 1

(∥∥g′′∥∥+ ∥∥g′∥∥ ∥∥σ′′∥∥)
and choosing C := max{1, ∥σ′′∥} we have

|Kσ
n (g;x)− g(x)| ≤ C

{
∥f − g∥+ 2σ(x)(σ(x) + 1)

n− 1

(∥∥g′′∥∥+ ∥∥g′∥∥+ ∥g∥
)}

= C

{
∥f − g∥+ 2σ(x)(σ(x) + 1)

n− 1
∥g∥W 2

∞

}
Taking the infimum on the right hand side over all g ∈W 2

∞ we obtain

|Kσ
n (g;x)− g(x)| ≤ CK2

(
f ;

2σ(x)(σ(x) + 1)

n− 1

)
≤ C

{
w2

(
f ;

√
2σ(x)(σ(x) + 1)

n− 1

)
+min

(
1,

2σ(x)(σ(x) + 1)

n− 1

)
∥g∥

}

Lemma 3.8. [12] For every g ∈ Cψ (R+) , for δ > 0 and for all u, x ≥ 0,

|g(u)− g(x)| ≤ (ψ(u) + ψ(x))

(
2 +

|σ(u)− σ(x)|
δ

)
ωσ(g, δ) (14)

holds.
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Theorem 3.9. Let g ∈ Cψ (R+), x ∈ I and suppose that the first and second derivatives of g ◦ σ−1

exist at σ(x). If the second derivative of g ◦ σ−1 is bounded on R+ , then we have

lim
n→∞

n [Kσ
n (g;x)− g (x)] = σ(x)(σ(x) + 1)

(
g ◦ σ−1

)′′
(σ (x))

Proof. By the Taylor expansion of g ◦ σ−1 at the point σ(x) ∈ R+, there exists ξ lying between x
and t such that

g(t) =
(
g ◦ σ−1

)
(σ (t)) =

(
g ◦ σ−1

)
(σ (x))

+
(
g ◦ σ−1

)′
(σ (x)) (σ (t)− σ (x))

+

(
g ◦ σ−1

)′′
(σ (x)) (σ (t)− σ (x))2

2
+ γx (t) (σ (t)− σ (x))2 ,

where

γx (t) :=

(
g ◦ σ−1

)′′
(σ(ξ))−

(
g ◦ σ−1

)′′
(σ (x))

2
(15)

We get

Kσ
n (g;x)− g (x) =

(
g ◦ σ−1

)′
(σ (x))Kσ

n (σ (t)− σ (x) ;x)

+

(
g ◦ σ−1

)′′
(σ (x))Kσ

n((σ (t)− σ (x))2 ;x)

2
+Kσ

n

(
γx (t) (σ (t)− σ (x))2 ;x

)
Using (6) and (7), we have

lim
n→∞

nKσ
n(σ(t)− σ (x) ;x) = 0

lim
n→∞

nKσ
n(((σ(t)− σ (x))2 ;x) = 2σ(x)(σ(x) + 1)

and thus

lim
n→∞

n [Kσ
n (g;x)− g (x)] = σ(x)(σ(x) + 1)

(
g ◦ σ−1

)′′
(σ (x))

+ lim
n→∞

nKσ
n

(
γx (t) (σ (t)− σ (x))2 ;x

)
Let calculate the last term

∣∣∣nKσ
n

(
|γx (t)| (σ (t)− σ (x))2 ;x

)∣∣∣ . Since limt→x γx (t) = 0 for every ε > 0,

let δ > 0 such that |γx (t)| < ε for every t ≥ 0. Cauchy-Schwarz inequality applied we have

lim
n→∞

nKσ
n

(
|γx (t)| (σ (t)− σ (x))2 ;x

)
≤ ε lim

n→∞
nKσ

n

(
(σ (t)− σ (x))2 ;x

)
+
C

δ2
lim
n→∞

nKσ
n

(
(σ (t)− σ (x))4 ;x

)
Since

lim
n→∞

nKσ
n

(
(σ (t)− σ (x))4 ;x

)
= 0,

we get

lim
n→∞

nKσ
n

(
|γx (t)| (σ (t)− σ (x))2 ;x

)
= 0

Corollary 3.10. We have following particular case:

1. If we choose σ (x) = x, the operators (2) reduce to Tn operators defined in [11]. As a consequence
of Theorem 3.9, we refined the following result.

lim
n→∞

n [Tn (g;x)− g (x)] = x(x+ 1)g′′(x)
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Mathematica 40(1) (1995) 39–47.

[14] A. D. Gadz̆iev, The Convergence Problem for a Sequence of Positive Linear Operators on Un-
bounded Sets and Theorems Analogues to that of P. P. Korovkin, Doklady Akademii Nauk SSSR
218 (1974) 1001-1004, Also in Soviet Mathematics Doklady 15 (1974) 1433–1436.



 

 

 

30 (2020) 8-20 

Journal of New Theory 

http://www.newtheory.org 

Open Access 

 

 

Bipolar Pythagorean Fuzzy Subring of a Ring 

Rajan Jansi1, Krishnaswamy Mohana2 

 

Article History 

Received: 27.06.2019 

Accepted: 20.10.2019 

Published: 23.03.2020 

Original Article 

Abstract−In this paper, we study some of the properties of bipolar Pythagorean fuzzy subring 

of a ring and prove some results on these. We derive some important theorems and intersection 

and product are applied into the bipolar Pythagorean fuzzy subring of a ring. 
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1. Introduction 

Fuzzy sets were introduced by Zadeh [1], and he discussed only membership function. After the 

extensions of fuzzy set theory Atanassov [2] generalised this concept and introduced a new concept 

called intuitionistic fuzzy set (IFS). Yager [3] familiarised the model of Pythagorean fuzzy set. IFSs 

have its greatest use in practical multiple attribute decision making (MADM) problems, and academic 

research has achieved significant development [3-5]. However, in some practical problems, the sum of 

membership degree and non-membership degree to which an alternative satisfying attribute provided 

by the decision maker (DM) may be bigger than 1, but their square sum is less than or equal to 1. Jun 

and Song [6] introduced the notion of closed fuzzy ideals in BCI-algebras and discussed their properties. 

Bosc and Pivert [7] said that “Bipolarity refers to the propensity of the human mind to reason and 

make decisions based on positive and negative effects. Positive information states what is possible, 

satisfactory, permitted, desired, or considered as being acceptable. On the other hand, negative 

statements express what is impossible, rejected, or forbidden. Negative preferences correspond to 

constraints since they specify which values or objects have to be rejected (i.e., those that do not satisfy 

the constraints), while positive preferences correspond to wishes, as they specify which objects are more 

desirable than others (i.e., satisfy user wishes) without rejecting those that do not meet the wishes”. 

Therefore, Lee [8,9] introduced the concept of bipolar fuzzy sets which is a generalisation of the fuzzy 

sets. Many authors have studied recently bipolar fuzzy models on algebraic structures such as; Chen et 

al. [10] studied of m-polar fuzzy set. Then, they examined many results which are related to those 

concepts can be generalised to the case of m-polar fuzzy sets. They also proposed numerical examples 
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to show how to apply m-polar fuzzy sets in real-world problems. In 1982, Liu [11] introduced the 

concept of the fuzzy ring and fuzzy ideal. After the notion of intuitionistic fuzzy subring by Hur et al. 

[12], many researchers have tried to generalise the notion of the intuitionistic fuzzy subring. Marashdeh 

and Salleh [13] introduced the notion of intuitionistic fuzzy rings based on the notion of fuzzy space. 

The purpose of this paper is to introduce the concept of bipolar Pythagorean fuzzy subring and 

established some of their results. 

2. Preliminaries 

Definition 2.1. [1] Let 𝑋 be a nonempty set. A fuzzy set 𝐴 drawn from 𝑋 is defined as 𝐴 =

{(𝑥: 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}, where 𝜇𝐴: 𝑋 → [0,1] is the membership function of the set 𝐴. 

Definition 2.2. [8] Let 𝑋 be the universe. Then, a bipolar fuzzy set, 𝐴 on 𝑋 is defined by a positive 

membership function 𝜇𝐴
+, that is 𝜇𝐴

+: 𝑋 → [0,1], and a negative membership function 𝜇𝐴
−, that is 𝜇𝐴

−: 𝑋 →

[−1,0]. For the sake of simplicity, we shall use the symbol 𝐴 = {(𝑥, 𝜇𝐴
+(𝑥), 𝜇𝐴

−(𝑥)): 𝑥 ∈ 𝑋}. 

Definition 2.3. (Pythagorean Fuzzy Set) [3,4] Let 𝑋 be a non-empty set and 𝐼 the unit interval [0,1]. 

A PF set 𝑆 is an object having the form 𝑃 = {(𝑥, 𝜇𝑃(𝑥), 𝜈𝑃(𝑥)): 𝑥 ∈ 𝑋} where the function  𝜇𝑃: 𝑋 →

[0,1] and 𝜈𝑃: 𝑋 → [0,1] denote respectively the degree of membership and degree of non-membership 

of each element 𝑥 in 𝑋 to the set 𝑃, and 0 ≤ (𝜇𝑃(𝑥))
2

+ (𝜈𝑃(𝑥))
2

≤ 1 for all 𝑥 in 𝑋. 

Definition 2.4. (Bipolar Pythagorean Fuzzy Set) [14] Let 𝑋 be a non-empty set. A bipolar 

Pythagorean fuzzy set (BPFS) 𝐴 = {(𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁): 𝑥 ∈ 𝑋} where 𝑇𝐴
𝑃: 𝑋 → [0,1], 𝐹𝐴

𝑃: 𝑋 → [0,1],

𝑇𝐴
𝑁: 𝑋 → [−1,0], and 𝐹𝐴

𝑁: 𝑋 → [−1,0] are the mappings such that 0 ≤ (𝑇𝐴
𝑃)2 + (𝐹𝐴

𝑃)2 ≤ 1 and −1 ≤

−((𝑇𝐴
𝑁)2 + (𝐹𝐴

𝑁)2) ≤ 0 and 𝑇𝐴
𝑃(𝑥) denote the positive membership degree, 𝐹𝐴

𝑃(𝑥) denote the positive 

non-membership degree, 𝑇𝐴
𝑁(𝑥) denote the negative membership degree, 𝐹𝐴

𝑁(𝑥)denote the negative 

non-membership degree. 

Definition 2.5. [14] Let 𝐴 = {(𝑋, 𝑇𝐴
𝑃, 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁): 𝑥 ∈ 𝑋} and 𝐵 = {(𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁): 𝑥 ∈ 𝑋} be 

two BPFNs. Then, their operations are defined as follows: 

i. 𝐴 ∪ 𝐵 = {(𝑥, 𝑚𝑎𝑥(𝑇𝐴
𝑃 , 𝑇𝐵

𝑃), 𝑚𝑖𝑛(𝐹𝐴
𝑃 , 𝐹𝐵

𝑃), 𝑚𝑖𝑛(𝑇𝐴
𝑁, 𝑇𝐵

𝑁), 𝑚𝑎𝑥(𝐹𝐴
𝑁, 𝐹𝐵

𝑁)) : 𝑥 ∈ 𝑋} 

ii. 𝐴 ∩ 𝐵 = {(𝑥, 𝑚𝑖𝑛(𝑇𝐴
𝑃 , 𝑇𝐵

𝑃), 𝑚𝑎𝑥(𝐹𝐴
𝑃 , 𝐹𝐵

𝑃), 𝑚𝑎𝑥(𝑇𝐴
𝑁, 𝑇𝐵

𝑁), 𝑚𝑖𝑛(𝐹𝐴
𝑁 , 𝐹𝐵

𝑁)) : 𝑥 ∈ 𝑋} 

iii. 𝐴𝐶 = {(𝑥, 𝐹𝐴
𝑃 , 𝑇𝐴

𝑃 , 𝐹𝐴
𝑁, 𝑇𝐴

𝑁): 𝑥 ∈ 𝑋} 

Definition 2.6 [15] Let 𝑅 be a ring. An intuitionistic fuzzy subset A= {(𝑥, 𝑇𝐴(𝑥), 𝐹𝐴(𝑥))/𝑥 ∈ 𝑅} of 𝑅 

is said to be an intuitionistic fuzzy subring of 𝑅 if the following conditions are satisfied, 

i. 𝑇𝐴(𝑥 − 𝑦) ≥ 𝑚𝑖𝑛{𝑇𝐴(𝑥), 𝑇𝐴(𝑦)} 

ii. 𝑇𝐴(𝑥𝑦) ≥ 𝑚𝑖𝑛{𝑇𝐴(𝑥), 𝑇𝐴(𝑦)} 

iii. 𝐹𝐴(𝑥 − 𝑦) ≤ 𝑚𝑎𝑥{𝐹𝐴(𝑥), 𝐹𝐴(𝑦)} 

iv. 𝐹𝐴(𝑥𝑦) ≤ 𝑚𝑎𝑥{𝐹𝐴(𝑥), 𝐹𝐴(𝑦)} 

3. Properties 

Definition 3.1. Let 𝑅 be a ring. A bipolar Pythagorean fuzzy subset 𝐴 of 𝑅 is said to be a bipolar 

Pythagorean fuzzy subring of 𝑅 if the following conditions are satisfied, for all 𝑥 and 𝑦 in 𝑅, 

i. 𝑇𝐴
𝑃(𝑥 − 𝑦) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)} 
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ii. 𝑇𝐴
𝑃(𝑥𝑦) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)} 

iii. 𝐹𝐴
𝑃(𝑥 − 𝑦) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)} 

iv. 𝐹𝐴
𝑃(𝑥𝑦) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)} 

v. 𝑇𝐴
𝑁(𝑥 − 𝑦) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)} 

vi. 𝑇𝐴
𝑁(𝑥𝑦) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)} 

vii. 𝐹𝐴
𝑁(𝑥 − 𝑦) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)} 

viii. 𝐹𝐴
𝑁(𝑥𝑦) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)} 

Example 3.2. Let 𝑅 = {0,1} be a set of integers of modulo 2 with two binary operations as follows: 

 

 

+ 0 1 

0 0 1 

1 1 0 

and 

 

· 0 1 

0 0 0 

1 0 1 

 

Define bipolar Pythagorean fuzzy set 𝐴 = {(𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁): 𝑥 ∈ 𝑋} is given by 

𝑇𝐴
𝑃(0) = 0.2, 𝑇𝐴

𝑁(0) = −0.3, 𝐹𝐴
𝑃(0) = 0.6, 𝐹𝐴

𝑁(0) = −0.5, 

𝑇𝐴
𝑃(1) = 0.3, 𝑇𝐴

𝑁(1) = −0.6, 𝐹𝐴
𝑃(1) = 0.9, 𝐹𝐴

𝑁(1) = −0.4. 

Then, (𝑅, +,·) is a ring. 

Definition 3.3. Let 𝐴 = {(𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁): 𝑥 ∈ 𝑋} and 𝐵 = {(𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁): 𝑥 ∈ 𝑋} be any two 

bipolar Pythagorean fuzzy subsets of sets 𝐺 and 𝐻 respectively. The product of 𝐴 and 𝐵, denoted by 

𝐴 × 𝐵, is defined as  

𝐴 × 𝐵 = {((𝑥, 𝑦), 𝑇𝐴×𝐵
𝑃 (𝑥, 𝑦), 𝐹𝐴×𝐵

𝑃 (𝑥, 𝑦), 𝑇𝐴×𝐵
𝑁 (𝑥, 𝑦), 𝐹𝐴×𝐵

𝑁 (𝑥, 𝑦)) ∶   𝑥 ∈ 𝐺, 𝑦 ∈ 𝐻} 

where 𝑇𝐴×𝐵
𝑃 (𝑥, 𝑦) = min{𝑇𝐴

𝑃(𝑥), 𝑇𝐵
𝑃(𝑦)}, 𝐹𝐴×𝐵

𝑃 (𝑥, 𝑦) = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐵

𝑃(𝑦)}, 𝑇𝐴×𝐵
𝑁 (𝑥, 𝑦) =

max{𝑇𝐴
𝑁(𝑥), 𝑇𝐵

𝑁(𝑦)} and 𝐹𝐴×𝐵
𝑁 (𝑥, 𝑦) = min{𝐹𝐴

𝑁(𝑥), 𝐹𝐵
𝑁(𝑦)}, for all 𝑥 in 𝐺 and 𝑦 in 𝐻. 

Definition 3.4. Let 𝐴 = {(𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) ∶ 𝑥 ∈ 𝑋} be a bipolar Pythagorean fuzzy subset in a set 𝑆, 

the strongest bipolar Pythagorean fuzzy relation on 𝑆 that is a bipolar Pythagorean fuzzy relation on 𝐴 

is 

𝑉 = {((𝑥, 𝑦), 𝑇𝑉
𝑃(𝑥, 𝑦), 𝐹𝑉

𝑃(𝑥, 𝑦), 𝑇𝑉
𝑁(𝑥, 𝑦), 𝐹𝑉

𝑁(𝑥, 𝑦)) ∶  𝑥, 𝑦 ∈ 𝑆} 

given by 𝑇𝑉
𝑃(𝑥, 𝑦) = min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)}, 𝐹𝑉

𝑃(𝑥, 𝑦) = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦)}, 𝑇𝑉
𝑁(𝑥, 𝑦) =

max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦)}, and 𝐹𝑉
𝑁(𝑥, 𝑦) = min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}, for all 𝑥, 𝑦 in 𝑆. 

Theorem 3.5. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝑅. Then, 

for all 𝑥 in 𝑅 and the identity element 𝑒 in 𝑅  

i. 𝑇𝐴
𝑃(−𝑥) = 𝑇𝐴

𝑃(𝑥) 

ii. 𝐹𝐴
𝑃(−𝑥) = 𝐹𝐴

𝑃(𝑥) 

iii. 𝑇𝐴
𝑁(−𝑥) = 𝑇𝐴

𝑁(𝑥) 

iv. 𝐹𝐴
𝑁(−𝑥) = 𝐹𝐴

𝑁(𝑥) 

v. 𝑇𝐴
𝑃(𝑥) ≤ 𝑇𝐴

𝑃(𝑒) 

vi. 𝐹𝐴
𝑃(𝑥) ≥ 𝐹𝐴

𝑃(𝑒) 

vii. 𝑇𝐴
𝑁(𝑥) ≥ 𝑇𝐴

𝑁(𝑒) 



Journal of New Theory 30 (2020) 8-20/ Bipolar Pythagorean Fuzzy Subring of a Ring                    11 

 

 

viii. 𝐹𝐴
𝑁(𝑥) ≤ 𝐹𝐴

𝑁(𝑒) 

PROOF. For all 𝑥 in 𝑅, 

i. 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(−(−𝑥)) ≥ 𝑇𝐴
𝑃(−𝑥) ≥ 𝑇𝐴

𝑃(𝑥). Therefore, 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(−𝑥). 

ii. 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(−(−𝑥)) ≤ 𝐹𝐴
𝑃(−𝑥) ≤ 𝐹𝐴

𝑃(𝑥). Therefore, 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(−𝑥). 

iii. 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(−(−𝑥)) ≤ 𝑇𝐴
𝑁(−𝑥) ≤ 𝑇𝐴

𝑁(𝑥). Therefore, 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(−𝑥). 

iv. 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(−(−𝑥)) ≥ 𝐹𝐴
𝑁(−𝑥) ≥ 𝐹𝐴

𝑁(𝑥). Therefore, 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(−𝑥). 

v. 𝑇𝐴
𝑃(𝑒) = 𝑇𝐴

𝑃(𝑥 − 𝑥) ≥ min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑥)} = 𝑇𝐴
𝑃(𝑥). Therefore, 𝑇𝐴

𝑃(𝑒) ≥ 𝑇𝐴
𝑃(𝑥). 

vi. 𝐹𝐴
𝑃(𝑒) = 𝐹𝐴

𝑃(𝑥 − 𝑥) ≤ max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑥)} = 𝐹𝐴
𝑃(𝑥). Therefore, 𝐹𝐴

𝑃(𝑒) ≤ 𝐹𝐴
𝑃(𝑥). 

vii. 𝑇𝐴
𝑁(𝑒) = 𝑇𝐴

𝑁(𝑥 − 𝑥) ≤ max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑥)} = 𝑇𝐴
𝑁(𝑥). Therefore, 𝑇𝐴

𝑁(𝑒) ≤ 𝑇𝐴
𝑁(𝑥). 

viii. 𝐹𝐴
𝑁(𝑒) = 𝐹𝐴

𝑁(𝑥 − 𝑥) ≥ min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑥)} = 𝐹𝐴
𝑁(𝑥). Therefore, 𝐹𝐴

𝑁(𝑒) ≥ 𝐹𝐴
𝑁(𝑥). 

Theorem 3.6. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝑅. Then, 

for all 𝑥, 𝑦 ∈ 𝑅 

i. 𝑇𝐴
𝑃(𝑥 − 𝑦) = 𝑇𝐴

𝑃(𝑒) implies that 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑦)  

ii. 𝐹𝐴
𝑃(𝑥 − 𝑦) = 𝐹𝐴

𝑃(𝑒) implies that 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑦) 

iii. 𝑇𝐴
𝑁(𝑥 − 𝑦) = 𝑇𝐴

𝑁(𝑒) implies that 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑦) 

iv. 𝐹𝐴
𝑁(𝑥 − 𝑦) = 𝐹𝐴

𝑁(𝑒) implies that 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑦) 

PROOF. For all 𝑥 and 𝑦 in 𝑅, 

i. 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑥 − 𝑦 + 𝑦) ≥ min{𝑇𝐴
𝑃(𝑥 − 𝑦), 𝑇𝐴

𝑃(𝑦)} = min{𝑇𝐴
𝑃(𝑒), 𝑇𝐴

𝑃(𝑦)} = 𝑇𝐴
𝑃(𝑦). 𝑇𝐴

𝑃(𝑦) =

𝑇𝐴
𝑃(𝑦 − 𝑥 + 𝑥) ≥ min{𝑇𝐴

𝑃(𝑦 − 𝑥), 𝑇𝐴
𝑃(𝑥)} = min{𝑇𝐴

𝑃(𝑒), 𝑇𝐴
𝑃(𝑥)} = 𝑇𝐴

𝑃(𝑥). Therefore, 𝑇𝐴
𝑃(𝑥) =

𝑇𝐴
𝑃(𝑦).  

ii. 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑥 − 𝑦 + 𝑦) ≤ max{𝐹𝐴
𝑃(𝑥 − 𝑦), 𝐹𝐴

𝑃(𝑦)} = max{𝐹𝐴
𝑃(𝑒), 𝐹𝐴

𝑃(𝑦)} = 𝐹𝐴
𝑃(𝑦). 𝐹𝐴

𝑃(𝑦) =

𝐹𝐴
𝑃(𝑦 − 𝑥 + 𝑥) ≤ max{𝐹𝐴

𝑃(𝑦 − 𝑥), 𝐹𝐴
𝑃(𝑥)} = max{𝐹𝐴

𝑃(𝑒), 𝐹𝐴
𝑃(𝑥)} = 𝐹𝐴

𝑃(𝑥). Therefore, 𝐹𝐴
𝑃(𝑥) =

𝐹𝐴
𝑃(𝑦).  

iii. 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑥 − 𝑦 + 𝑦) ≤ max{𝑇𝐴
𝑁(𝑥 − 𝑦), 𝑇𝐴

𝑁(𝑦)} = max{𝑇𝐴
𝑁(𝑒), 𝑇𝐴

𝑁(𝑦)} = 𝑇𝐴
𝑁(𝑦).  

𝑇𝐴
𝑁(𝑦) = 𝑇𝐴

𝑁(𝑦 − 𝑥 + 𝑥) ≤ max{𝑇𝐴
𝑁(𝑦 − 𝑥), 𝑇𝐴

𝑁(𝑥)} = max{𝑇𝐴
𝑁(𝑒), 𝑇𝐴

𝑁(𝑥)} = 𝑇𝐴
𝑁(𝑥). Therefore, 

𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑦).  

iv. 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑥 − 𝑦 + 𝑦) ≥ min{𝐹𝐴
𝑁(𝑥 − 𝑦), 𝐹𝐴

𝑁(𝑦)} = min{𝐹𝐴
𝑁(𝑒), 𝐹𝐴

𝑁(𝑦)} = 𝐹𝐴
𝑁(𝑦).  𝐹𝐴

𝑁(𝑦) =

𝐹𝐴
𝑁(𝑦 − 𝑥 + 𝑥) ≥ min{𝐹𝐴

𝑁(𝑦 − 𝑥), 𝐹𝐴
𝑁(𝑥)} = min{𝐹𝐴

𝑁(𝑒), 𝐹𝐴
𝑁(𝑥)} = 𝐹𝐴

𝑁(𝑥). Therefore, 𝐹𝐴
𝑁(𝑥) =

𝐹𝐴
𝑁(𝑦). 

Theorem 3.7. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝑅. For all 

𝑥 and 𝑦 in 𝑅, 

i. If 𝑇𝐴
𝑃(𝑥 − 𝑦) = 1, then 𝑇𝐴

𝑃(𝑥) = 𝑇𝐴
𝑃(𝑦). 

ii. If 𝐹𝐴
𝑃(𝑥 − 𝑦) = 0, then 𝐹𝐴

𝑃(𝑥) = 𝐹𝐴
𝑃(𝑦). 

iii. If 𝑇𝐴
𝑁(𝑥 − 𝑦) = −1, then 𝑇𝐴

𝑁(𝑥) = 𝑇𝐴
𝑁(𝑦). 

iv. If 𝐹𝐴
𝑁(𝑥 − 𝑦) = 0, then 𝐹𝐴

𝑁(𝑥) = 𝐹𝐴
𝑁(𝑦). 

PROOF. For all 𝑥 and 𝑦 in 𝑅, 
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i.  𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑥 − 𝑦 + 𝑦) ≥ min{𝑇𝐴
𝑃(𝑥 − 𝑦), 𝑇𝐴

𝑃(𝑦)} = min{1, 𝑇𝐴
𝑃(𝑦)} = 𝑇𝐴

𝑃(𝑦) = 𝑇𝐴
𝑃(−𝑦) =

𝑇𝐴
𝑃(−𝑥 + 𝑥 − 𝑦) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑥 − 𝑦)} = min{𝑇𝐴

𝑃(𝑥), 1} = 𝑇𝐴
𝑃(𝑥). Therefore, 𝑇𝐴

𝑃(𝑥) =

𝑇𝐴
𝑃(𝑦).  

ii. 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑥 − 𝑦 + 𝑦) ≤ max{𝐹𝐴
𝑃(𝑥 − 𝑦), 𝐹𝐴

𝑃(𝑦)} = max{0, 𝐹𝐴
𝑃(𝑦)} = 𝐹𝐴

𝑃(𝑦) = 𝐹𝐴
𝑃(−𝑦) =

𝐹𝐴
𝑃(−𝑥 + 𝑥 − 𝑦) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑥 − 𝑦)} = max{𝐹𝐴

𝑃(𝑥), 0} = 𝐹𝐴
𝑃(𝑥). Therefore, 𝐹𝐴

𝑃(𝑥) =

𝐹𝐴
𝑃(𝑦).  

iii. 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑥 − 𝑦 + 𝑦) ≤ max{𝑇𝐴
𝑁(𝑥 − 𝑦), 𝑇𝐴

𝑁(𝑦)} = max{−1, 𝑇𝐴
𝑁(𝑦)} = 𝑇𝐴

𝑁(𝑦) =

𝑇𝐴
𝑁(−𝑦) = 𝑇𝐴

𝑁(−𝑥 + 𝑥 − 𝑦) ≤ max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑥 − 𝑦)} = max{𝑇𝐴
𝑁(𝑥), −1} = 𝑇𝐴

𝑁(𝑥). Therefore, 

𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑦).  

iv. 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑥 − 𝑦 + 𝑦) ≥ min{𝐹𝐴
𝑁(𝑥 − 𝑦), 𝐹𝐴

𝑁(𝑦)} = min{0, 𝐹𝐴
𝑁(𝑦)} = 𝐹𝐴

𝑁(𝑦) = 𝐹𝐴
𝑁(−𝑦) =

𝐹𝐴
𝑁(−𝑥 + 𝑥 − 𝑦) ≥ min{𝐹𝐴

𝑁(𝑥)𝐹𝐴
𝑁(𝑥 − 𝑦)} = min{𝐹𝐴

𝑁(𝑥), 0} = 𝐹𝐴
𝑁(𝑥). Therefore, 𝐹𝐴

𝑁(𝑥) =

𝐹𝐴
𝑁(𝑦).  

Theorem 3.8. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝐺. for 𝑥 

and 𝑦 in 𝐺, 

i. 𝑇𝐴
𝑃(𝑥𝑦−1) = 0, then either 𝑇𝐴

𝑃(𝑥) = 0 or 𝑇𝐴
𝑃(𝑦) = 0. 

ii. 𝐹𝐴
𝑃(𝑥𝑦−1) = 0, then either 𝐹𝐴

𝑃(𝑥) = 0 or 𝐹𝐴
𝑃(𝑦) = 0. 

iii. 𝑇𝐴
𝑁(𝑥𝑦−1) = 0, then either 𝑇𝐴

𝑁(𝑥) = 0 or 𝑇𝐴
𝑁(𝑦) = 0. 

iv. 𝐹𝐴
𝑁(𝑥𝑦−1) = 0, then either 𝐹𝐴

𝑁(𝑥) = 0 or 𝐹𝐴
𝑁(𝑦) = 0. 

PROOF. Let 𝑥 and 𝑦 in 𝐺. Then, by the definition 

i. 𝑇𝐴
𝑃(𝑥𝑦−1) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)}, which implies that 0 ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)}. Therefore, either 

𝑇𝐴
𝑃(𝑥) = 0 or 𝑇𝐴

𝑃(𝑦) = 0.  

ii. 𝐹𝐴
𝑃(𝑥𝑦−1) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)}, which implies that 0 ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)}. Therefore, either 

𝐹𝐴
𝑃(𝑥) = 0 or 𝐹𝐴

𝑃(𝑦) = 0.  

iii. 𝑇𝐴
𝑁(𝑥𝑦−1) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)}, which implies that 0 ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)}. Therefore, either 

𝑇𝐴
𝑁(𝑥) = 0 or 𝑇𝐴

𝑁(𝑦) = 0.  

iv. 𝐹𝐴
𝑁(𝑥𝑦−1) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}, which implies that 0 ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}. Therefore, either 

𝐹𝐴
𝑁(𝑥) = 0 or 𝐹𝐴

𝑁(𝑦) = 0. 

Theorem 3.9. If 𝐴 = (𝑋, 𝑇𝐴
𝑃, 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝐺, then, for 

𝑥 and 𝑦 in 𝐺 

i. 𝑇𝐴
𝑃(𝑥𝑦) = 𝑇𝐴

𝑃(𝑦𝑥) if and only if 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑦−1𝑥𝑦). 

ii. 𝐹𝐴
𝑃(𝑥𝑦) = 𝐹𝐴

𝑃(𝑦𝑥) if and only if  𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑦−1𝑥𝑦). 

iii. 𝑇𝐴
𝑁(𝑥𝑦) = 𝑇𝐴

𝑁(𝑦𝑥) if and only if  𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑦−1𝑥𝑦). 

iv. 𝐹𝐴
𝑁(𝑥𝑦) = 𝐹𝐴

𝑁(𝑦𝑥) if and only if  𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑦−1𝑥𝑦). 

PROOF. Let 𝑥 and 𝑦 in 𝐺.  

i. Assume that 𝑇𝐴
𝑃(𝑥𝑦) = 𝑇𝐴

𝑃(𝑦𝑥), so 𝑇𝐴
𝑃(𝑦−1𝑥𝑦) = 𝑇𝐴

𝑃(𝑦−1𝑦𝑥) = 𝑇𝐴
𝑃(𝑥). Therefore, 𝑇𝐴

𝑃(𝑥) =

𝑇𝐴
𝑃(𝑦−1𝑥𝑦), for 𝑥 and 𝑦 in G. Conversely, assume that 𝑇𝐴

𝑃(𝑥) = 𝑇𝐴
𝑃(𝑦−1𝑥𝑦), we get 𝑇𝐴

𝑃(𝑥𝑦) =

𝑇𝐴
𝑃(𝑥𝑦𝑥𝑥−1) = 𝑇𝐴

𝑃(𝑦𝑥). Therefore, 𝑇𝐴
𝑃(𝑥𝑦) = 𝑇𝐴

𝑃(𝑦𝑥).  
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ii. Assume that 𝐹𝐴
𝑃(𝑥𝑦) = 𝐹𝐴

𝑃(𝑦𝑥), so 𝐹𝐴
𝑃(𝑦−1𝑥𝑦) = 𝐹𝐴

𝑃(𝑦−1𝑦𝑥) = 𝐹𝐴
𝑃(𝑥). Therefore, 𝐹𝐴

𝑃(𝑥) =

𝐹𝐴
𝑃(𝑦−1𝑥𝑦). Conversely, assume that 𝐹𝐴

𝑃(𝑥) = 𝐹𝐴
𝑃(𝑦−1𝑥𝑦), we get 𝐹𝐴

𝑃(𝑥𝑦) = 𝐹𝐴
𝑃(𝑥𝑦𝑥𝑥−1) =

𝐹𝐴
𝑃(𝑦𝑥). Therefore, 𝐹𝐴

𝑃(𝑥𝑦) = 𝐹𝐴
𝑃(𝑦𝑥).  

iii. Assume that 𝑇𝐴
𝑁(𝑥𝑦) = 𝑇𝐴

𝑁(𝑦𝑥),  so 𝑇𝐴
𝑁(𝑦−1𝑥𝑦) = 𝑇𝐴

𝑁(𝑦−1𝑦𝑥) = 𝑇𝐴
𝑁(𝑥). Therefore, 𝑇𝐴

𝑁 =

𝑇𝐴
𝑁(𝑦−1𝑥𝑦). Conversely, assume that 𝑇𝐴

𝑁(𝑥) = 𝑇𝐴
𝑁(𝑦−1𝑥𝑦), we get 𝑇𝐴

𝑁(𝑥𝑦) = 𝑇𝐴
𝑁(𝑥𝑦𝑥𝑥−1) =

𝑇𝐴
𝑁(𝑦𝑥). Therefore, 𝑇𝐴

𝑁(𝑥𝑦) = 𝑇𝐴
𝑁(𝑦𝑥).  

iv. Assume that 𝐹𝐴
𝑁(𝑥𝑦) = 𝐹𝐴

𝑁(𝑦𝑥), so 𝐹𝐴
𝑁(𝑦−1𝑥𝑦) = 𝐹𝐴

𝑁(𝑦−1𝑦𝑥) = 𝐹𝐴
𝑁(𝑥). Therefore, 𝐹𝐴

𝑁(𝑥) =

𝐹𝐴
𝑁(𝑦−1𝑥𝑦). Conversely, assume that 𝐹𝐴

𝑁(𝑥) = 𝐹𝐴
𝑁(𝑦−1𝑥𝑦), we get 𝐹𝐴

𝑁(𝑥𝑦) = 𝐹𝐴
𝑁(𝑥𝑦𝑥𝑥−1) =

𝐹𝐴
𝑁(𝑦𝑥). Therefore, 𝐹𝐴

𝑁(𝑥𝑦) = 𝐹𝐴
𝑁(𝑦𝑥). 

Theorem 3.10. If 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁 , 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of a ring 𝐺, then 

𝐻 = {𝑥 ∈ 𝐺 ∶ 𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑒), 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑒), 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑒), 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑒)}  is a subring of 𝐺. 

PROOF. Here, 𝐻 = {𝑥 ∈ 𝐺 ∶  𝑇𝐴
𝑃(𝑥) = 𝑇𝐴

𝑃(𝑒), 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑒), 𝑇𝐴
𝑁(𝑥) = 𝑇𝐴

𝑁(𝑒), 𝐹𝐴
𝑁(𝑥) = 𝐹𝐴

𝑁(𝑒)}, by 

Theorem 3.1, 𝑇𝐴
𝑃(𝑥−1) = 𝑇𝐴

𝑃(𝑥) = 𝑇𝐴
𝑃(𝑒), 𝐹𝐴

𝑃(𝑥−1) = 𝐹𝐴
𝑃(𝑥) = 𝐹𝐴

𝑃(𝑒), 𝑇𝐴
𝑁(𝑥−1) = 𝑇𝐴

𝑁(𝑥) = 𝑇𝐴
𝑁(𝑒) 

and 𝐹𝐴
𝑁(𝑥−1) = 𝐹𝐴

𝑁(𝑥) = 𝐹𝐴
𝑁(𝑒). Therefore, 𝑥−1 ∈ 𝐻. Now, 𝑇𝐴

𝑃(𝑥𝑦−1) ≥ min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦)} =

min{𝑇𝐴
𝑃(𝑒), 𝑇𝐴

𝑃(𝑒)} = 𝑇𝐴
𝑃(𝑒), and 𝑇𝐴

𝑃(𝑒) = 𝑇𝐴
𝑃((𝑥𝑦−1)(𝑥𝑦−1)−1) ≥ min{𝑇𝐴

𝑃(𝑥𝑦−1), 𝑇𝐴
𝑃(𝑥𝑦−1)} =

𝑇𝐴
𝑃(𝑥𝑦−1). 

Hence, 𝑇𝐴
𝑃(𝑒) = 𝑇𝐴

𝑃(𝑥𝑦−1). 𝐹𝐴
𝑃(𝑥𝑦−1) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)} = max{𝐹𝐴

𝑃(𝑒), 𝐹𝐴
𝑃(𝑒)} = 𝐹𝐴

𝑃(𝑒), and 

𝐹𝐴
𝑃(𝑒) = 𝐹𝐴

𝑃((𝑥𝑦−1)(𝑥𝑦−1)−1) ≤ max{𝐹𝐴
𝑃(𝑥𝑦−1), 𝐹𝐴

𝑃(𝑥𝑦−1)} = 𝐹𝐴
𝑃(𝑥𝑦−1). 

Hence, 𝐹𝐴
𝑃(𝑒) = 𝐹𝐴

𝑃(𝑥𝑦−1). 𝑇𝐴
𝑁(𝑥𝑦−1) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)} = max{𝑇𝐴

𝑁(𝑒), 𝑇𝐴
𝑁(𝑒)} = 𝑇𝐴

𝑁(𝑒) and 

𝑇𝐴
𝑁(𝑒) = 𝑇𝐴

𝑁((𝑥𝑦−1)(𝑥𝑦−1)−1) ≤ max{𝑇𝐴
𝑁(𝑥𝑦−1), 𝑇𝐴

𝑁(𝑥𝑦−1)} = 𝑇𝐴
𝑁(𝑥𝑦−1). 

Hence, 𝑇𝐴
𝑁(𝑒) = 𝑇𝐴

𝑁(𝑥𝑦−1). 𝐹𝐴
𝑁(𝑥𝑦−1) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)} = min{𝐹𝐴

𝑁(𝑒), 𝐹𝐴
𝑁(𝑒)} = 𝐹𝐴

𝑁(𝑒), and 

𝐹𝐴
𝑁(𝑒) = 𝐹𝐴

𝑁((𝑥𝑦−1)(𝑥𝑦−1)−1) ≥ min{𝐹𝐴
𝑁(𝑥𝑦−1), 𝐹𝐴

𝑁(𝑥𝑦−1)} = 𝐹𝐴
𝑁(𝑥𝑦−1). 

Hence, 𝐹𝐴
𝑁(𝑒) = 𝐹𝐴

𝑁(𝑥𝑦−1). Therefore, 𝑥𝑦−1 ∈ 𝐻. Hence, 𝐻 is a subring of 𝐺. 

Theorem 3.11. Let 𝐺 be a ring. If 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subring of 

a ring 𝐺, then, for each 𝑥 and 𝑦 in 𝐺 with 𝑇𝐴
𝑃(𝑥) ≠ 𝑇𝐴

𝑃(𝑦),  𝐹𝐴
𝑃(𝑥) ≠ 𝐹𝐴

𝑃(𝑦), 𝑇𝐴
𝑁(𝑥) ≠ 𝑇𝐴

𝑁(𝑦) and 

𝐹𝐴
𝑁(𝑥) ≠ 𝐹𝐴

𝑁(𝑦), 

i. 𝑇𝐴
𝑃(𝑥𝑦) = min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)} 

ii. 𝐹𝐴
𝑃(𝑥𝑦) = max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)} 

iii. 𝑇𝐴
𝑁(𝑥𝑦) = max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)} 

iv. 𝐹𝐴
𝑁(𝑥𝑦) = min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)} 

PROOF. 

i. Assume that 𝑇𝐴
𝑃(𝑥) > 𝑇𝐴

𝑃(𝑦), 𝐹𝐴
𝑃(𝑥) > 𝐹𝐴

𝑃(𝑦), 𝑇𝐴
𝑁(𝑥) > 𝑇𝐴

𝑁(𝑦) and 𝐹𝐴
𝑁(𝑥) > 𝐹𝐴

𝑁(𝑦). Then, 

𝑇𝐴
𝑃(𝑦) = 𝑇𝐴

𝑃(𝑥−1𝑥𝑦) ≥ min{𝑇𝐴
𝑃(𝑥−1), 𝑇𝐴

𝑃(𝑥𝑦)} = min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑥𝑦)} = 𝑇𝐴
𝑃(𝑥𝑦) ≥

min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦)} = 𝑇𝐴
𝑃(𝑦). Therefore, 𝑇𝐴

𝑃(𝑥𝑦)    = 𝑇𝐴
𝑃(𝑦) = min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)}.  

ii. 𝐹𝐴
𝑃(𝑦) = 𝐹𝐴

𝑃(𝑥−1𝑥𝑦) ≤ max{𝐹𝐴
𝑃(𝑥−1), 𝐹𝐴

𝑃(𝑥𝑦)} = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑥𝑦)} = 𝐹𝐴
𝑃(𝑥𝑦) ≤

max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦)} = 𝐹𝐴
𝑃(𝑦). Therefore, 𝐹𝐴

𝑃(𝑥𝑦)  = 𝐹𝐴
𝑃(𝑦) = max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)}.   

iii. 𝑇𝐴
𝑁(𝑦) = 𝑇𝐴

𝑁(𝑥−1𝑥𝑦) ≤  max{𝑇𝐴
𝑁(𝑥−1), 𝑇𝐴

𝑁(𝑥𝑦)} = max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑥𝑦)} = 𝑇𝐴
𝑁(𝑥𝑦) ≤

max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦)} = 𝑇𝐴
𝑁(𝑦). Therefore, 𝑇𝐴

𝑁(𝑥𝑦)   = 𝑇𝐴
𝑁(𝑦) = max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)}. 

iv. 𝐹𝐴
𝑁(𝑦) = 𝐹𝐴

𝑁(𝑥−1𝑥𝑦)  ≥ min{𝐹𝐴
𝑁(𝑥−1), 𝐹𝐴

𝑁(𝑥𝑦)} = min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑥𝑦)} = 𝐹𝐴
𝑁(𝑥𝑦) ≥

min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑦)} = 𝐹𝐴
𝑁(𝑦). Therefore, 𝐹𝐴

𝑁(𝑥𝑦) = 𝐹𝐴
𝑁(𝑦) = min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}. 
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Theorem 3.12. If 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁 , 𝐹𝐴

𝑁) and 𝐵 = (𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁) are two both bipolar 

Pythagorean fuzzy subrings of a ring 𝐺, then their 𝐴 ∩ 𝐵 is a bipolar Pythagorean fuzzy subring of 𝐺. 

PROOF.  Let 𝐴 = {(𝑋, 𝑇𝐴
𝑃, 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁): 𝑥 ∈ 𝐺} and 𝐵 = {(𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁): 𝑥 ∈ 𝐺}. Let 𝐶 = 𝐴 ∩ 𝐵 and 

𝐶 = {(𝑋, 𝑇𝐶
𝑃 , 𝐹𝐶

𝑃 , 𝑇𝐶
𝑁, 𝐹𝐶

𝑁): 𝑥 ∈ 𝐺}. 

𝑇𝐶
𝑃(𝑥𝑦−1) = min{𝑇𝐴

𝑃(𝑥𝑦−1), 𝑇𝐵
𝑃(𝑥𝑦−1)} 

 ≥ min {min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦)}, min{𝑇𝐵
𝑃(𝑥), 𝑇𝐵

𝑃(𝑦)}} 

 ≥ min {min{𝑇𝐴
𝑃(𝑥), 𝑇𝐵

𝑃(𝑥)}, min{𝑇𝐴
𝑃(𝑦), 𝑇𝐵

𝑃(𝑦)}} 

 = min{𝑇𝐶
𝑃(𝑥), 𝑇𝐶

𝑃(𝑦)} 

Also, 

𝐹𝐶
𝑃(𝑥𝑦−1) = max{𝐹𝐴

𝑃(𝑥𝑦−1), 𝐹𝐵
𝑃(𝑥𝑦−1)} 

 ≤ max {max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦)}, max{𝐹𝐵
𝑃(𝑥), 𝐹𝐵

𝑃(𝑦)}} 

 ≤ max {max{𝐹𝐴
𝑃(𝑥), 𝐹𝐵

𝑃(𝑥)}, max{𝐹𝐴
𝑃(𝑦), 𝐹𝐵

𝑃(𝑦)}} 

 = max{𝐹𝐶
𝑃(𝑥), 𝐹𝐶

𝑃(𝑦)}, 

𝑇𝐶
𝑁(𝑥𝑦−1) = max{𝑇𝐴

𝑁(𝑥𝑦−1), 𝑇𝐵
𝑁(𝑥𝑦−1)} 

 ≤ max {𝑚𝑎𝑥{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦)}, 𝑚𝑎𝑥{𝑇𝐵
𝑁(𝑥), 𝑇𝐵

𝑁(𝑦)}} 

 ≤ max {max{𝑇𝐴
𝑁(𝑥), 𝑇𝐵

𝑁(𝑥)}, max{𝑇𝐴
𝑁(𝑦), 𝑇𝐵

𝑁(𝑦)}} 

 = max{𝑇𝐶
𝑁(𝑥), 𝑇𝐶

𝑁(𝑦)} 

 𝐹𝐶
𝑁(𝑥𝑦−1) = min{𝐹𝐴

𝑁(𝑥𝑦−1), 𝐹𝐵
𝑁(𝑥𝑦−1)} 

 ≥ min {min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑦)}, 𝑚𝑖𝑛{𝐹𝐵
𝑁(𝑥), 𝐹𝐵

𝑁(𝑦)}} 

 ≥ min {min{𝐹𝐴
𝑁(𝑥), 𝐹𝐵

𝑁(𝑥)}, 𝑚𝑖𝑛{𝐹𝐴
𝑁(𝑦), 𝐹𝐵

𝑁(𝑦)}} 

 = min{𝐹𝐶
𝑁(𝑥), 𝐹𝐶

𝑁(𝑦)} 

Hence, 𝐴 ∩ 𝐵 is a bipolar Pythagorean fuzzy subring of 𝐺. 

Theorem 3.13. The intersection of a family of bipolar Pythagorean fuzzy subrings of a ring 𝐺 is a 

bipolar Pythagorean fuzzy subring of 𝐺. 

PROOF.  Let {𝑉𝑖: 𝑖 ∈ 𝐼} be a family of bipolar Pythagorean fuzzy subrings of a ring G and let 𝐴 =∩𝑖∈𝐼 𝑉𝑖. 

Let 𝑥 and 𝑦 in 𝐺. Now, 

𝑇𝐴
𝑃(𝑥𝑦−1) = 𝑖𝑛𝑓𝑖∈𝐼𝑇𝑉𝑖

𝑃 (𝑥𝑦−1) ≥ inf𝑖∈𝐼min{𝑇𝑉𝑖

𝑃 (𝑥), 𝑇𝑉𝑖

𝑃 (𝑦)} 

 = min{inf𝑖∈𝐼𝑇𝑉𝑖

𝑃 (𝑥), inf𝑖∈𝐼𝑇𝑉𝑖

𝑃 (𝑦)} 

 = min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦)} 

Therefore, 𝑇𝐴
𝑃(𝑥𝑦−1) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)}, for all 𝑥 and 𝑦 in G, and 

𝐹𝐴
𝑃(𝑥𝑦−1) = 𝑠𝑢𝑝𝑖∈𝐼𝐹𝑉𝑖

𝑃 (𝑥𝑦−1) ≤ 𝑠𝑢𝑝𝑖∈𝐼max{𝐹𝑉𝑖

𝑃 (𝑥), 𝐹𝑉𝑖

𝑃 (𝑦)} 

 = max{𝑠𝑢𝑝𝑖∈𝐼𝐹𝑉𝑖

𝑃 (𝑥), sup𝑖∈𝐼𝐹𝑉𝑖

𝑃 (𝑦)} 

 = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦)} 

Therefore, 𝐹𝐴
𝑃(𝑥𝑦−1) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)}, for all 𝑥 and 𝑦 in G. 

 𝑇𝐴
𝑁(𝑥𝑦−1) = 𝑠𝑢𝑝𝑖∈𝐼𝑇𝑉𝑖

𝑁(𝑥𝑦−1) ≤ sup𝑖∈𝐼max{𝑇𝑉𝑖

𝑁(𝑥), 𝑇𝑉𝑖

𝑁(𝑦)} 

 = max{𝑠𝑢𝑝𝑖∈𝐼𝑇𝑉𝑖

𝑁(𝑥), sup𝑖∈𝐼𝑇𝑉𝑖

𝑁(𝑦)} 

 = max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦)} 
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Therefore, 𝑇𝐴
𝑁(𝑥𝑦−1) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)}, for all 𝑥 and 𝑦 in G. 

𝐹𝐴
𝑁(𝑥𝑦−1) = inf𝑖∈𝐼𝐹𝑉𝑖

𝑁(𝑥𝑦−1) ≥ inf𝑖∈𝐼min{𝐹𝑉𝑖

𝑁(𝑥), 𝐹𝑉𝑖

𝑁(𝑦)} 

 = min{inf𝑖∈𝐼𝐹𝑉𝑖

𝑁(𝑥), inf𝑖∈𝐼𝐹𝑉𝑖

𝑁(𝑦)} 

 = min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑦)} 

Therefore, 𝐹𝐴
𝑁(𝑥𝑦−1) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐺. Hence, the intersection of a family 

of bipolar Pythagorean fuzzy subrings of a ring 𝐺 is a bipolar Pythagorean fuzzy subring of 𝐺. 

Theorem 3.14. If 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁 , 𝐹𝐴

𝑁) and 𝐵 = (𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁) are any two bipolar 

Pythagorean fuzzy subrings of rings 𝐺1 and 𝐺2, respectively, then 𝐴 × 𝐵 = (𝑇𝐴×𝐵
𝑃 , 𝐹𝐴×𝐵

𝑃 , 𝑇𝐴×𝐵
𝑁 , 𝐹𝐴×𝐵

𝑁 ) is 

a bipolar Pythagorean fuzzy subring of  𝐺1 × 𝐺2. 

PROOF.  Let 𝐴 and 𝐵 be two bipolar Pythagorean fuzzy subrings of the ring 𝐺1 and 𝐺2, respectively. Let 

𝑥1 and 𝑥2 be in 𝐺1, 𝑦1 and 𝑦2 be in 𝐺2. Then, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are in 𝐺1 × 𝐺2. Now, 

𝑇𝐴×𝐵
𝑃 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] = 𝑇𝐴×𝐵

𝑃 (𝑥1𝑥2
−1, 𝑦1𝑦2

−1) 

 = 𝑚𝑖𝑛{𝑇𝐴
𝑃(𝑥1𝑥2

−1), 𝑇𝐵
𝑃(𝑦1𝑦2

−1)} 

 ≥ min {min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐴

𝑃(𝑥2)}, min{𝑇𝐵
𝑃(𝑦1), 𝑇𝐵

𝑃(𝑦2)}} 

 = min {min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐵

𝑃(𝑦1)}, min{𝑇𝐴
𝑃(𝑥2), 𝑇𝐵

𝑃(𝑦2)}} 

 = min{𝑇𝐴×𝐵
𝑃 (𝑥1, 𝑦1), 𝑇𝐴×𝐵

𝑃 (𝑥2, 𝑦2)} 

Therefore,   𝑇𝐴×𝐵
𝑃 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] ≥ min{𝑇𝐴×𝐵

𝑃 (𝑥1, 𝑦1), 𝑇𝐴×𝐵
𝑃 (𝑥2, 𝑦2)}. 

Also,  

𝐹𝐴×𝐵
𝑃 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] = 𝐹𝐴×𝐵

𝑃 (𝑥1𝑥2
−1, 𝑦1𝑦2

−1) 

 = max{𝐹𝐴
𝑃(𝑥1𝑥2

−1), 𝐹𝐵
𝑃(𝑦1𝑦2

−1)} 

 ≤ max {max{𝐹𝐴
𝑃(𝑥1), 𝐹𝐴

𝑃(𝑥2)}, max{𝐹𝐵
𝑃(𝑦1), 𝐹𝐵

𝑃(𝑦2)}} 

 = max {𝑚𝑎𝑥{𝐹𝐴
𝑃(𝑥1), 𝐹𝐵

𝑃(𝑦1)}, max{𝐹𝐴
𝑃(𝑥2), 𝐹𝐵

𝑃(𝑦2)}} 

 = max{𝐹𝐴×𝐵
𝑃 (𝑥1, 𝑦1), 𝐹𝐴×𝐵

𝑃 (𝑥2, 𝑦2)} 

Therefore, 𝐹𝐴×𝐵
𝑃 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] ≤ max{𝐹𝐴×𝐵

𝑃 (𝑥1, 𝑦1), 𝐹𝐴×𝐵
𝑃 (𝑥2, 𝑦2)}. 

𝑇𝐴×𝐵
𝑁 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] =  𝑇𝐴×𝐵

𝑁 (𝑥1𝑥2
−1, 𝑦1𝑦2

−1) 

 = max{𝑇𝐴
𝑁(𝑥1𝑥2

−1), 𝑇𝐵
𝑁(𝑦1𝑦2

−1)} 

 ≤ max {max{𝑇𝐴
𝑁(𝑥1), 𝑇𝐴

𝑁(𝑥2)}, max{𝑇𝐵
𝑁(𝑦1), 𝑇𝐵

𝑁(𝑦2)}} 

 = max {𝑚𝑎𝑥{𝑇𝐴
𝑁(𝑥1), 𝑇𝐵

𝑁(𝑦1)}, max{𝑇𝐴
𝑁(𝑥2), 𝑇𝐵

𝑁(𝑦2)}} 

 = max{𝑇𝐴×𝐵
𝑁 (𝑥1, 𝑦1), 𝑇𝐴×𝐵

𝑁 (𝑥2, 𝑦2)} 

Therefore, 𝑇𝐴×𝐵
𝑁 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] ≤ max{𝑇𝐴×𝐵

𝑁 (𝑥1, 𝑦1), 𝑇𝐴×𝐵
𝑁 (𝑥2, 𝑦2)}. 

𝐹𝐴×𝐵
𝑁 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] = 𝐹𝐴×𝐵

𝑁 (𝑥1𝑥2
−1, 𝑦1𝑦2

−1) 

 = min{𝐹𝐴
𝑁(𝑥1𝑥2

−1), 𝐹𝐵
𝑁(𝑦1𝑦2

−1)} 

 ≥ min {min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐴

𝑁(𝑥2)}, min{𝐹𝐵
𝑁(𝑦1), 𝐹𝐵

𝑁(𝑦2)}} 

 = min {min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐵

𝑁(𝑦1)}, min{𝐹𝐴
𝑁(𝑥2), 𝐹𝐵

𝑁(𝑦2)}} 

 = min{𝐹𝐴×𝐵
𝑁 (𝑥1, 𝑦1), 𝐹𝐴×𝐵

𝑁 (𝑥2, 𝑦2)} 

Therefore, 𝐹𝐴×𝐵
𝑁 [(𝑥1, 𝑦1)(𝑥2, 𝑦2)−1] ≥ min{𝐹𝐴×𝐵

𝑁 (𝑥1, 𝑦1), 𝐹𝐴×𝐵
𝑁 (𝑥2, 𝑦2)}. Hence, 𝐴 × 𝐵  is a bipolar 

Pythagorean fuzzy subring of 𝐺1 × 𝐺2. 

Theorem 3.15. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) and 𝐵 = (𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁) be any two bipolar 

Pythagorean fuzzy subsets of a ring 𝐺 and 𝐻 respectively. Suppose that 𝑒 and 𝑒′ are the identity 

elements of 𝐺 and 𝐻, respectively. If 𝐴 × 𝐵  is a bipolar Pythagorean fuzzy subring of 𝐺 × 𝐻, then at 

least one of the following two elements must hold. 
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i. 𝑇𝐵
𝑃(𝑒′) ≥ 𝑇𝐴

𝑃(𝑥), 𝐹𝐵
𝑃(𝑒′) ≤ 𝐹𝐴

𝑃(𝑥)for all 𝑥 in 𝐺 and 𝑇𝐵
𝑁(𝑒′) ≤ 𝑇𝐴

𝑁(𝑥), 𝐹𝐵
𝑁(𝑒′) ≥ 𝐹𝐴

𝑁(𝑥) for all 𝑥 in 

𝐺. 

ii. 𝑇𝐵
𝑃(𝑒) ≥ 𝑇𝐴

𝑃(𝑦), 𝐹𝐵
𝑃(𝑒) ≤ 𝐹𝐴

𝑃(𝑦)for all 𝑥 in 𝐺 and 𝑇𝐵
𝑁(𝑒) ≤ 𝑇𝐴

𝑁(𝑦), 𝐹𝐵
𝑁(𝑒) ≥ 𝐹𝐴

𝑁(𝑦) for all 𝑦 in 𝐻. 

PROOF. Let 𝐴 × 𝐵 be a bipolar Pythagorean fuzzy subring of 𝐺 × 𝐻. By contraposition, suppose that 

none of the statements (𝑖) and (𝑖𝑖) holds. Then, we can find 𝑎 in 𝐺 and 𝑏 in 𝐻 such that 𝑇𝐴
𝑃(𝑎) > 𝑇𝐵

𝑃(𝑒′), 

𝐹𝐴
𝑃(𝑎) < 𝐹𝐵

𝑃(𝑒′), 𝑇𝐴
𝑁(𝑎) < 𝑇𝐵

𝑁(𝑒′), 𝐹𝐴
𝑁(𝑎) > 𝐹𝐵

𝑁(𝑒′), and 𝑇𝐵
𝑃(𝑏) > 𝑇𝐴

𝑃(𝑒), 𝐹𝐵
𝑃(𝑏) < 𝐹𝐴

𝑃(𝑒), 𝑇𝐵
𝑁(𝑏) <

𝑇𝐴
𝑁(𝑒),  𝐹𝐵

𝑁(𝑏) > 𝐹𝐴
𝑁(𝑒). We have 𝑇𝐴×𝐵

𝑃 (𝑎, 𝑏) = min{𝑇𝐴
𝑃(𝑎), 𝑇𝐵

𝑃(𝑏)} > min{𝑇𝐴
𝑃(𝑒), 𝑇𝐵

𝑃(𝑒′)} =

𝑇𝐴×𝐵
𝑃 (𝑒, 𝑒′). Also, 

𝐹𝐴×𝐵
𝑃 (𝑎, 𝑏) = max{𝐹𝐴

𝑃(𝑎), 𝐹𝐵
𝑃(𝑏)} < max{𝐹𝐴

𝑃(𝑒), 𝐹𝐵
𝑃(𝑒′)} 

 = 𝐹𝐴×𝐵
𝑃 (𝑒, 𝑒′). 𝑇𝐴×𝐵

𝑁 (𝑎, 𝑏) 

 = max{𝑇𝐴
𝑁(𝑎), 𝑇𝐵

𝑁(𝑏)} 

 < max{𝑇𝐴
𝑁(𝑒), 𝑇𝐵

𝑁(𝑒′)} 

 = 𝑇𝐴×𝐵
𝑁 (𝑒, 𝑒′). 𝐹𝐴×𝐵

𝑁 (𝑎, 𝑏) 

 = min{𝐹𝐴
𝑁(𝑎), 𝐹𝐵

𝑁(𝑏)} 

 > min{𝐹𝐴
𝑁(𝑒), 𝐹𝐵

𝑁(𝑒′)} 

 = 𝐹𝐴×𝐵
𝑁 (𝑒, 𝑒′) 

Thus, 𝐴 × 𝐵 is not a bipolar Pythagorean fuzzy subring of 𝐺 × 𝐻. Hence, either, for all 𝑥 in 𝐺, 

𝑇𝐵
𝑃(𝑒′) ≥ 𝑇𝐴

𝑃(𝑥),  𝐹𝐵
𝑃(𝑒′) ≤ 𝐹𝐴

𝑃(𝑥), 𝑇𝐵
𝑁(𝑒′) ≤ 𝑇𝐴

𝑁(𝑥), and 𝐹𝐵
𝑁(𝑒′) ≥ 𝐹𝐴

𝑁(𝑥) 

or, for all 𝑦 in 𝐻, 

𝑇𝐵
𝑃(𝑒) ≥ 𝑇𝐴

𝑃(𝑦),  𝐹𝐵
𝑃(𝑒) ≤ 𝐹𝐴

𝑃(𝑦), 𝑇𝐵
𝑁(𝑒) ≤ 𝑇𝐴

𝑁(𝑦), and  𝐹𝐵
𝑁(𝑒) ≥ 𝐹𝐴

𝑁(𝑦) 

Theorem 3.16. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) and 𝐵 = (𝑋, 𝑇𝐵
𝑃 , 𝐹𝐵

𝑃 , 𝑇𝐵
𝑁, 𝐹𝐵

𝑁) be any two bipolar 

Pythagorean fuzzy subsets of a ring G and H, respectively and 𝐴 × 𝐵 be a bipolar Pythagorean fuzzy 

subring of 𝐺 × 𝐻. Then, the following are true 

i. If  𝑇𝐴
𝑃(𝑥) ≤ 𝑇𝐵

𝑃(𝑒′), 𝐹𝐴
𝑃(𝑥) ≥ 𝐹𝐵

𝑃(𝑒′), 𝑇𝐴
𝑁(𝑥) ≥ 𝑇𝐵

𝑁(𝑒′), and 𝐹𝐴
𝑁(𝑥) ≤ 𝐹𝐵

𝑁(𝑒′) for all 𝑥 in G, then 

A is a bipolar Pythagorean fuzzy subring of G, where 𝑒′ is the identity element of 𝐻. 

ii. If  𝑇𝐵
𝑃(𝑥) ≤ 𝑇𝐴

𝑃(𝑒), 𝐹𝐵
𝑃(𝑥) ≥ 𝐹𝐴

𝑃(𝑒), 𝑇𝐵
𝑁(𝑥) ≥ 𝑇𝐴

𝑁(𝑒), and 𝐹𝐵
𝑁(𝑥) ≤ 𝐹𝐴

𝑁(𝑒) for all 𝑥 in 𝐻, then 𝐵 is 

a bipolar Pythagorean fuzzy subring of 𝐻, where 𝑒 is the identity element of 𝐺. 

iii. Either 𝐴 is a bipolar Pythagorean fuzzy subring of 𝐺 or 𝐵 is a bipolar Pythagorean fuzzy subring 

of 𝐻, where 𝑒 and 𝑒′ is the identity element of 𝐺 and 𝐻, respectively. 

PROOF. Let 𝐴 × 𝐵  be a bipolar Pythagorean fuzzy subring of 𝐺 × 𝐻 and  𝑥 and 𝑦 in 𝐺. Then, (𝑥, 𝑒′) and 

(𝑦, 𝑒′) are in 𝐺 × 𝐻. Now, using the property if 𝑇𝐴
𝑃(𝑥) ≤ 𝑇𝐵

𝑃(𝑒′), 𝐹𝐴
𝑃(𝑥) ≥ 𝐹𝐵

𝑃(𝑒′), 𝑇𝐴
𝑁(𝑥) ≥ 𝑇𝐵

𝑁(𝑒′), 

and 𝐹𝐴
𝑁(𝑥) ≤ 𝐹𝐵

𝑁(𝑒′), for all 𝑥 in 𝐺, where 𝑒′ is the identity element of 𝐻, we get 

𝑇𝐴
𝑃(𝑥𝑦−1) = min{𝑇𝐴

𝑃(𝑥𝑦−1), 𝑇𝐵
𝑃(𝑒′𝑒′)} 

 = 𝑇𝐴×𝐵
𝑃 ((𝑥𝑦−1), (𝑒′𝑒′)) 

 = 𝑇𝐴×𝐵
𝑃 [(𝑥, 𝑒′)(𝑦−1, 𝑒′)] 

 ≥ min{𝑇𝐴×𝐵
𝑃 (𝑥, 𝑒′), 𝑇𝐴×𝐵

𝑃 (𝑦−1, 𝑒′)} 

 = min {min{𝑇𝐴
𝑃(𝑥), 𝑇𝐵

𝑃(𝑒′)}, min{𝑇𝐴
𝑃(𝑦−1), 𝑇𝐵

𝑃(𝑒′)}} 

 = min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦−1)} 

 = min{𝑇𝐴
𝑃(𝑥), 𝑇𝐴

𝑃(𝑦)} 

Therefore, 𝑇𝐴
𝑃(𝑥𝑦−1) ≥ min{𝑇𝐴

𝑃(𝑥), 𝑇𝐴
𝑃(𝑦)} for all 𝑥and 𝑦 in 𝐺. Also, 

𝐹𝐴
𝑃(𝑥𝑦−1) = max{𝐹𝐴

𝑃(𝑥𝑦−1), 𝐹𝐵
𝑃(𝑒′𝑒′)} 

 = 𝐹𝐴×𝐵
𝑃 ((𝑥𝑦−1), (𝑒′𝑒′)) 
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 = 𝐹𝐴×𝐵
𝑃 [(𝑥, 𝑒′)(𝑦−1, 𝑒′)] 

 ≤ max{𝐹𝐴×𝐵
𝑃 (𝑥, 𝑒′), 𝐹𝐴×𝐵

𝑃 (𝑦−1, 𝑒′)} 

 = max {max{𝐹𝐴
𝑃(𝑥), 𝐹𝐵

𝑃(𝑒′)}, max{𝐹𝐴
𝑃(𝑦−1), 𝐹𝐵

𝑃(𝑒′)}} 

 = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦−1)} 

 = max{𝐹𝐴
𝑃(𝑥), 𝐹𝐴

𝑃(𝑦)} 

Therefore, 𝐹𝐴
𝑃(𝑥𝑦−1) ≤ max{𝐹𝐴

𝑃(𝑥), 𝐹𝐴
𝑃(𝑦)} for all 𝑥 and 𝑦 in 𝐺. 

𝑇𝐴
𝑁(𝑥𝑦−1) = max{𝑇𝐴

𝑁(𝑥𝑦−1), 𝑇𝐵
𝑁(𝑒′𝑒′)} 

 = 𝑇𝐴×𝐵
𝑁 ((𝑥𝑦−1), (𝑒′𝑒′)) 

 = 𝑇𝐴×𝐵
𝑁 [(𝑥, 𝑒′)(𝑦−1, 𝑒′)] 

 ≤ max{𝑇𝐴×𝐵
𝑁 (𝑥, 𝑒′), 𝑇𝐴×𝐵

𝑁 (𝑦−1, 𝑒′)} 

 = max {max{𝑇𝐴
𝑁(𝑥), 𝑇𝐵

𝑁(𝑒′)}, max{𝑇𝐴
𝑁(𝑦−1), 𝑇𝐵

𝑁(𝑒′)}} 

 = max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦−1)} 

 = max{𝑇𝐴
𝑁(𝑥), 𝑇𝐴

𝑁(𝑦)} 

Therefore, 𝑇𝐴
𝑁(𝑥𝑦−1) ≤ max{𝑇𝐴

𝑁(𝑥), 𝑇𝐴
𝑁(𝑦)} for all 𝑥 and 𝑦 in 𝐺. 

𝐹𝐴
𝑁(𝑥𝑦−1) = min{𝐹𝐴

𝑁(𝑥𝑦−1), 𝐹𝐵
𝑁(𝑒′𝑒′)} 

 = 𝐹𝐴×𝐵
𝑁 ((𝑥𝑦−1), (𝑒′𝑒′)) 

 = 𝐹𝐴×𝐵
𝑁 [(𝑥, 𝑒′)(𝑦−1, 𝑒′)] 

 ≥ min{𝐹𝐴×𝐵
𝑁 (𝑥, 𝑒′), 𝐹𝐴×𝐵

𝑁 (𝑦−1, 𝑒′)} 

 = min {min{𝐹𝐴
𝑁(𝑥), 𝐹𝐵

𝑁(𝑒′)}, min{𝐹𝐴
𝑁(𝑦−1), 𝐹𝐵

𝑁(𝑒′)}} 

 = min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑦−1)} 

 = min{𝐹𝐴
𝑁(𝑥), 𝐹𝐴

𝑁(𝑦)} 

Therefore, 𝐹𝐴
𝑁(𝑥𝑦−1) ≥ min{𝐹𝐴

𝑁(𝑥), 𝐹𝐴
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐺. Hence, 𝐴 is a bipolar Pythagorean 

fuzzy subring of 𝐺. Thus, (𝑖) is proved.  

Now, using the property 𝑇𝐵
𝑃(𝑥) ≤ 𝑇𝐴

𝑃(𝑒), 𝐹𝐵
𝑃(𝑥) ≥ 𝐹𝐴

𝑃(𝑒), 𝑇𝐵
𝑁(𝑥) ≥ 𝑇𝐴

𝑁(𝑒), and 𝐹𝐵
𝑁(𝑥) ≤ 𝐹𝐴

𝑁(𝑒), for 

all 𝑥 in H, we get 

𝑇𝐵
𝑃(𝑥𝑦−1) = min{𝑇𝐵

𝑃(𝑥𝑦−1), 𝑇𝐴
𝑃(𝑒. 𝑒)} 

 = 𝑇𝐴×𝐵
𝑃 ((𝑒. 𝑒), (𝑥𝑦−1)) 

 = 𝑇𝐴×𝐵
𝑃 [(𝑒, 𝑥)(𝑒, 𝑦−1)] 

 ≥ min{𝑇𝐴×𝐵
𝑃 (𝑒, 𝑥), 𝑇𝐴×𝐵

𝑃 (𝑒, 𝑦−1)} 

 = min {min{𝑇𝐴
𝑃(𝑒), 𝑇𝐵

𝑃(𝑥)}, min{𝑇𝐴
𝑃(𝑒), 𝑇𝐵

𝑃(𝑦−1)}} 

 = min{𝑇𝐵
𝑃(𝑥), 𝑇𝐵

𝑃(𝑦−1)} 

 = min{𝑇𝐵
𝑃(𝑥), 𝑇𝐵

𝑃(𝑦)} 

Therefore, 𝑇𝐵
𝑃(𝑥𝑦−1) ≥ min{𝑇𝐵

𝑃(𝑥), 𝑇𝐵
𝑃(𝑦)} for all 𝑥 and 𝑦in 𝐻. Also, 

𝐹𝐵
𝑃(𝑥𝑦−1) = max{𝐹𝐵

𝑃(𝑥𝑦−1), 𝐹𝐴
𝑃(𝑒. 𝑒)} 

 = 𝐹𝐴×𝐵
𝑃 ((𝑒. 𝑒), (𝑥𝑦−1)) 

 = 𝐹𝐴×𝐵
𝑃 [(𝑒, 𝑥)(𝑒, 𝑦−1)] 

 ≤ max{𝐹𝐴×𝐵
𝑃 (𝑒, 𝑥), 𝐹𝐴×𝐵

𝑃 (𝑒, 𝑦−1)} 

 = max {max{𝐹𝐴
𝑃(𝑒), 𝐹𝐵

𝑃(𝑥)}, max{𝐹𝐴
𝑃(𝑒), 𝐹𝐵

𝑃(𝑦−1)}} 

 = max{𝐹𝐵
𝑃(𝑥), 𝐹𝐵

𝑃(𝑦−1)} 

 = max{𝐹𝐵
𝑃(𝑥), 𝐹𝐵

𝑃(𝑦)} 

Therefore, 𝐹𝐵
𝑃(𝑥𝑦−1) ≤ max{𝐹𝐵

𝑃(𝑥), 𝐹𝐵
𝑃(𝑦)} for all 𝑥 and 𝑦 in 𝐻. 
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𝑇𝐵
𝑁(𝑥𝑦−1) = max{𝑇𝐵

𝑁(𝑥𝑦−1), 𝑇𝐴
𝑁(𝑒. 𝑒)} 

 = 𝑇𝐴×𝐵
𝑁 ((𝑒. 𝑒), (𝑥𝑦−1)) 

 = 𝑇𝐴×𝐵
𝑁 [(𝑒, 𝑥)(𝑒, 𝑦−1)] 

 ≤ max{𝑇𝐴×𝐵
𝑁 (𝑒, 𝑥), 𝑇𝐴×𝐵

𝑁 (𝑒, 𝑦−1)} 

 = max {max{𝑇𝐴
𝑁(𝑒), 𝑇𝐵

𝑁(𝑥)}, max{𝑇𝐴
𝑁(𝑒), 𝑇𝐵

𝑁(𝑦−1)}} 

 = max{𝑇𝐵
𝑁(𝑥), 𝑇𝐵

𝑁(𝑦−1)} 

 = max{𝑇𝐵
𝑁(𝑥), 𝑇𝐵

𝑁(𝑦)} 

Therefore, 𝑇𝐵
𝑁(𝑥𝑦−1) ≤ max{𝑇𝐵

𝑁(𝑥), 𝑇𝐵
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐻. 

𝐹𝐵
𝑁(𝑥𝑦−1) = min{𝐹𝐵

𝑁(𝑥𝑦−1), 𝐹𝐴
𝑁(𝑒. 𝑒)} 

 = 𝐹𝐴×𝐵
𝑁 ((𝑒. 𝑒), (𝑥𝑦−1)) 

 = 𝐹𝐴×𝐵
𝑁 [(𝑒, 𝑥)(𝑒, 𝑦−1)] 

 ≥ min{𝐹𝐴×𝐵
𝑁 (𝑒, 𝑥), 𝐹𝐴×𝐵

𝑁 (𝑒, 𝑦−1)} 

 = min {max{𝐹𝐴
𝑁(𝑒), 𝐹𝐵

𝑁(𝑥)}, min{𝐹𝐴
𝑁(𝑒), 𝐹𝐵

𝑁(𝑦−1)}} 

 = min{𝐹𝐵
𝑁(𝑥), 𝐹𝐵

𝑁(𝑦−1)} 

 = min{𝐹𝐵
𝑁(𝑥), 𝐹𝐵

𝑁(𝑦)} 

Therefore, 𝐹𝐵
𝑁(𝑥𝑦−1) ≥ min{𝐹𝐵

𝑁(𝑥), 𝐹𝐵
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐻. Hence, 𝐵 is a bipolar Pythagorean 

fuzzy subring of 𝐻. Thus (𝑖𝑖) is proved. Hence (𝑖𝑖𝑖) is clear. 

Theorem 3.17. Let 𝐴 = (𝑋, 𝑇𝐴
𝑃 , 𝐹𝐴

𝑃 , 𝑇𝐴
𝑁, 𝐹𝐴

𝑁) be a bipolar Pythagorean fuzzy subset of a ring (𝐺, . ) and 

𝑉 = (𝑋, 𝑇𝑉
𝑃 , 𝐹𝑉

𝑃 , 𝑇𝑉
𝑁 , 𝐹𝑉

𝑁) be the strongest bipolar Pythagorean fuzzy relation of 𝐺. Then A is a bipolar 

Pythagorean fuzzy subring of 𝐺 if and only if 𝑉 is a bipolar Pythagorean fuzzy subring of 𝐺 × 𝐺. 

PROOF. Suppose that 𝐴 is a bipolar Pythagorean fuzzy subring of 𝐺. Then for any 𝑥 = (𝑥1, 𝑥2) and 𝑦 =

(𝑦1, 𝑦2) are in 𝐺 × 𝐺. We have,  

𝑇𝑉
𝑃(𝑥𝑦−1) = 𝑇𝑉

𝑃[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] = 𝑇𝑉
𝑃(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = min{𝑇𝐴
𝑃(𝑥1𝑦1

−1), 𝑇𝐴
𝑃(𝑥2𝑦2

−1)} 

 ≥ min {min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐴

𝑃(𝑦1)}, min{𝑇𝐴
𝑃(𝑥2), 𝑇𝐴

𝑃(𝑦2)}} 

 = min {min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐴

𝑃(𝑥2)}, min{𝑇𝐴
𝑃(𝑦1), 𝑇𝐴

𝑃(𝑦2)}} 

 = min{𝑇𝑉
𝑃(𝑥1, 𝑥2), 𝑇𝑉

𝑃(𝑦1, 𝑦2)} 

 = min{𝑇𝑉
𝑃(𝑥), 𝑇𝑉

𝑃(𝑦)} 

Therefore, 𝑇𝑉
𝑃(𝑥𝑦−1) ≥ 𝑚𝑖𝑛{𝑇𝑉

𝑃(𝑥), 𝑇𝑉
𝑃(𝑦)}, for all 𝑥 and 𝑦 in 𝐺 × 𝐺. Also, we have,  

𝐹𝑉
𝑃(𝑥𝑦−1) = 𝐹𝑉

𝑃[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] = 𝐹𝑉
𝑃(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = max{𝐹𝐴
𝑃(𝑥1𝑦1

−1), 𝐹𝐴
𝑃(𝑥2𝑦2

−1)} 

 ≤ max {max{𝐹𝐴
𝑃(𝑥1), 𝐹𝐴

𝑃(𝑦1)}, max{𝐹𝐴
𝑃(𝑥2), 𝐹𝐴

𝑃(𝑦2)}} 

 = max {max{𝐹𝐴
𝑃(𝑥1), 𝐹𝐴

𝑃(𝑥2)}, max{𝐹𝐴
𝑃(𝑦1), 𝐹𝐴

𝑃(𝑦2)}} 

 = max{𝐹𝑉
𝑃(𝑥1, 𝑥2), 𝐹𝑉

𝑃(𝑦1, 𝑦2)} 

 = max{𝐹𝑉
𝑃(𝑥), 𝐹𝑉

𝑃(𝑦)} 

Therefore, 𝐹𝑉
𝑃(𝑥𝑦−1) ≤ max{𝐹𝑉

𝑃(𝑥), 𝐹𝑉
𝑃(𝑦)}, for all 𝑥 and 𝑦 in 𝐺 × 𝐺. 

𝑇𝑉
𝑁(𝑥𝑦−1) = 𝑇𝑉

𝑁[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] = 𝑇𝑉
𝑁(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = max{𝑇𝐴
𝑁(𝑥1𝑦1

−1), 𝑇𝐴
𝑁(𝑥2𝑦2

−1)} 

 ≤ max {max{𝑇𝐴
𝑁(𝑥1), 𝑇𝐴

𝑁(𝑦1)}, max{𝑇𝐴
𝑁(𝑥2), 𝑇𝐴

𝑁(𝑦2)}} 

 = max {max{𝑇𝐴
𝑁(𝑥1), 𝑇𝐴

𝑁(𝑥2)}, max{𝑇𝐴
𝑁(𝑦1), 𝑇𝐴

𝑁(𝑦2)}} 
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 = max{𝑇𝑉
𝑁(𝑥1, 𝑥2), 𝑇𝑉

𝑁(𝑦1, 𝑦2)} 

 = max{𝑇𝑉
𝑁(𝑥), 𝑇𝑉

𝑁(𝑦)} 

Therefore, 𝑇𝑉
𝑁(𝑥𝑦−1) ≤ max{𝑇𝑉

𝑁(𝑥), 𝑇𝑉
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐺 × 𝐺. 

𝐹𝑉
𝑁(𝑥𝑦−1) = 𝐹𝑉

𝑁[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] = 𝐹𝑉
𝑁(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = min{𝐹𝐴
𝑁(𝑥1𝑦1

−1), 𝐹𝐴
𝑁(𝑥2𝑦2

−1)} 

 ≥ min {min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐴

𝑁(𝑦1)}, min{𝐹𝐴
𝑁(𝑥2), 𝐹𝐴

𝑁(𝑦2)}} 

 = min {min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐴

𝑁(𝑥2)}, min{𝐹𝐴
𝑁(𝑦1), 𝐹𝐴

𝑁(𝑦2)}} 

 = min{𝐹𝑉
𝑁(𝑥1, 𝑥2), 𝐹𝑉

𝑁(𝑦1, 𝑦2)} 

 = min{𝐹𝑉
𝑁(𝑥), 𝐹𝑉

𝑁(𝑦)} 

Therefore, 𝐹𝑉
𝑁(𝑥𝑦−1) ≥ min{𝐹𝑉

𝑁(𝑥), 𝐹𝑉
𝑁(𝑦)}, for all 𝑥 and 𝑦 in 𝐺 × 𝐺. This proves that 𝑉 is a bipolar 

Pythagorean fuzzy subring of 𝐺 × 𝐺. Conversely, assume that 𝑉 is a bipolar Pythagorean fuzzy subring 

of 𝐺 × 𝐺, then for any𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2) are in 𝐺 × 𝐺, we have 

min{𝑇𝐴
𝑃(𝑥1𝑦1

−1), 𝑇𝐴
𝑃(𝑥2𝑦2

−1)} = 𝑇𝑉
𝑃(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = 𝑇𝑉
𝑃[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] 

 = 𝑇𝑉
𝑃(𝑥𝑦−1) 

 ≥ min{𝑇𝑉
𝑃(𝑥), 𝑇𝑉

𝑃(𝑦)} 

 = min{𝑇𝑉
𝑃(𝑥1, 𝑥2), 𝑇𝑉

𝑃(𝑦1, 𝑦2)} 

 = min {min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐴

𝑃(𝑥2)}, min{𝑇𝐴
𝑃(𝑦1), 𝑇𝐴

𝑃(𝑦2)}} 

If we put 𝑥2 = 𝑦2 = 𝑒, we get, 𝑇𝐴
𝑃(𝑥1𝑦1

−1) ≥ min{𝑇𝐴
𝑃(𝑥1), 𝑇𝐴

𝑃(𝑦1)}, for all 𝑥1 and 𝑦1 in G. Also, we 

have 

max{𝐹𝐴
𝑃(𝑥1𝑦1

−1), 𝐹𝐴
𝑃(𝑥2𝑦2

−1)} = 𝐹𝑉
𝑃(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = 𝐹𝑉
𝑃[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] 

 = 𝐹𝑉
𝑃(𝑥𝑦−1) 

 ≤ max{𝐹𝑉
𝑃(𝑥), 𝐹𝑉

𝑃(𝑦)} 

 = 𝑚𝑎𝑥{𝐹𝑉
𝑃(𝑥1, 𝑥2), 𝐹𝑉

𝑃(𝑦1, 𝑦2)} 

 = max {max{𝐹𝐴
𝑃(𝑥1), 𝐹𝐴

𝑃(𝑥2)}, max{𝐹𝐴
𝑃(𝑦1), 𝐹𝐴

𝑃(𝑦2)}} 

If we put 𝑥2 = 𝑦2 = 𝑒, we get, 𝐹𝐴
𝑃(𝑥1𝑦1

−1) ≤ max{𝐹𝐴
𝑃(𝑥1), 𝐹𝐴

𝑃(𝑦1)}, for all 𝑥1 and 𝑦1 in G. 

max{𝑇𝐴
𝑁(𝑥1𝑦1

−1), 𝑇𝐴
𝑁(𝑥2𝑦2

−1)} = 𝑇𝑉
𝑁(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = 𝑇𝑉
𝑁[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] 

 = 𝑇𝑉
𝑁(𝑥𝑦−1) 

 ≤ max{𝑇𝑉
𝑁(𝑥), 𝑇𝑉

𝑁(𝑦)} 

 = max{𝑇𝑉
𝑁(𝑥1, 𝑥2), 𝑇𝑉

𝑁(𝑦1, 𝑦2)} 

 = max {max{𝑇𝐴
𝑁(𝑥1), 𝑇𝐴

𝑁(𝑥2)}, max{𝑇𝐴
𝑁(𝑦1), 𝑇𝐴

𝑁(𝑦2)}} 

If we put 𝑥2 = 𝑦2 = 𝑒, we get, 𝑇𝐴
𝑁(𝑥1𝑦1

−1) ≤ max{𝑇𝐴
𝑁(𝑥1), 𝑇𝐴

𝑁(𝑦1)}, for all 𝑥1 and 𝑦1 in G.  

min{𝐹𝐴
𝑁(𝑥1𝑦1

−1), 𝐹𝐴
𝑁(𝑥2𝑦2

−1)} = 𝐹𝑉
𝑁(𝑥1𝑦1

−1, 𝑥2𝑦2
−1) 

 = 𝐹𝑉
𝑁[(𝑥1, 𝑥2)(𝑦1, 𝑦2)−1] 

 = 𝐹𝑉
𝑁(𝑥𝑦−1) 

 ≥ min{𝐹𝑉
𝑁(𝑥), 𝐹𝑉

𝑁(𝑦)} 

 = min{𝐹𝑉
𝑁(𝑥1, 𝑥2), 𝐹𝑉

𝑁(𝑦1, 𝑦2)} 

 = min {min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐴

𝑁(𝑥2)}, min{𝐹𝐴
𝑁(𝑦1), 𝐹𝐴

𝑁(𝑦2)}} 

If we put 𝑥2 = 𝑦2 = 𝑒, we get, 𝐹𝐴
𝑁(𝑥1𝑦1

−1) ≥ min{𝐹𝐴
𝑁(𝑥1), 𝐹𝐴

𝑁(𝑦1)}, for all 𝑥1 and 𝑦1 in 𝐺. Hence, 𝐴 

is a bipolar Pythagorean fuzzy subring of 𝐺. 
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4. Conclusion 

In this paper, we define the bipolar Pythagorean fuzzy subring of a ring and investigate the relationship 

among these bipolar Pythagorean fuzzy subring of a ring. Some characterisation theorems of bipolar 

Pythagorean fuzzy subring of a ring are obtained. 
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Abstract − In this paper, we extended the notions of operations on soft sets
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1. Introduction

In 1999 D. Molodtsov [1] introduced the concept of soft sets as an additional mathematical tool
for modeling and dealing with uncertainties. Shabir and Naz [2] went further and introduced the
concept of soft topology. Indeed; the two concepts have received much attention. Researches on
properties and applications of soft sets and soft topology have attracted many scholars from various
fields. Topological structure of soft sets; concepts of soft open sets, soft closed sets, soft interior point
and soft neighborhood of a point have been studied by various authors, for example see [2–7]. Senel
and Cagman studied soft topological subspaces and Tantawy et al. [8] studied soft separation axioms.
The notions of basic operations on soft sets (soft union and soft intersection) have been defined and
studied [2, 3, 6, 9–20] and by several other authors, but the definitions were given in terms of only
two soft sets. Ali et al. [9] pointed out by counter example that, several assertions [ particularly,
Proposition 2.3 (iv)-(vi), Proposition 2.4 and Proposition 2.6(iii),(iv)] in Maji et al. [15] are not true
in general.

In this paper we extend the notions of these basic operations to arbitrary collection of soft sets.
In section 3 of this paper, we propose a modification of the definition of soft difference of two soft
sets [2,5,11–13,16,21–26]. We further introduce and define some terms relative to arbitrary collection
of soft sets in a soft topological space and study some of their properties.

2. Preliminary

Throughout this paper, all soft sets are defined over a common universe X and the collection of all
soft sets over X with a set of parameters E is denoted as SS(X)E . We begin with the following well
known definition found in the literature as cited in each case.

1aiguda.mth@buk.edu.ng (Corresponding Author)
1Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano, Nigeria
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Definition 2.1. [1] Let X be an initial universe and E be a set of parameters. Let ρ(X) denote the
power set of X. A pair (F,E) is called a soft set over X, where F : E → ρ(X) is a mapping. Thus
a soft set over a universe X is a parameterized family of ρ(X). For a given subset A of E, the soft
set (F,A) is defined to be F : A → ρ(X) such that (F,A) = {(e, F (e)) : e ∈ A}, where F (e) can be
regarded as the set of e-approximate elements of the soft set (F,A).

Definition 2.2. [27] A soft set (F1, A1) is said to be a soft subset of (F2, A2) denoted as (F1, A1)⊆̃
(F2, A2) if A1 ⊆ A2 and F1(α) ⊆ F2(α),∀α ∈ A1. Equivalently (F2, A2) is said to be a soft superset
of (F1, A1) denoted as (F2, A2)⊇̃(F1, A1).

Definition 2.3. [27] Two soft sets (F1, A1) and (F2, A2) are said to be equal (soft equal) denoted
as (F1, A1) = (F2, A2) if (F1, A1)⊆̃(F2, A2) and (F2, A2)⊆̃(F1, A1). Equivalently (F1, A1) = (F2, A2) if
F1(α) = F2(α),∀α ∈ A1 = A2.

Definition 2.4. [7] The soft compliment of a soft set (F,A) denoted as (F,A)c or (F c, A) is a mapping
F c : A → ρ(X) given by F c(α) = X \ F (α),∀α ∈ A. It is very clear that (F c, A)c = (F,A). The
mapping F c : A→ ρ(X) is called the soft compliment function of F .

Definition 2.5. [8] A soft set (F,E) is said to be a null soft set if F (α) = ∅, ∀α ∈ E and (F,E) is
said to be an absolute soft set if F (α) = X,∀α ∈ E. A null soft set is denoted as ∅̃ and absolute soft
set is denoted as X̃. It is clear that (X̃)c = ∅̃ and (∅̃)c = X̃

Definition 2.6. [28] Let (F,E) be a soft set and x ∈ X, then

i) x is said to belongs to (F,E) denoted as x ∈ (F,E) if ∀α ∈ E, x ∈ F (α).

ii) (F,E) is called singleton soft set denoted as (x,E) or xE if F (α) = {x},∀α ∈ E.

Definition 2.7. [7] A soft set (F,A) is called a soft point denoted as Fα if for some α ∈ A,F (α) 6= ∅
and F (β) = ∅,∀β ∈ (A \ {α}). The soft point Fα is said to belong to another soft set (G,A), denoted
as Fα∈̃(G,A) if F (α) ⊆ G(α).

Definition 2.8. [27] A soft set (F,A) is called a soft element if ∃α ∈ A and x ∈ X such that
F (α) = {x} and F (β) = ∅, ∀β ∈ (A \ {α}). A soft element is denoted as F xα . The soft element F xα is
said to be in a soft set (G,A) denoted as F xα ∈̃(G,A) if x ∈ G(α).

By definition, it is clear that a soft element is a soft point, but the converse may not be true.

Definition 2.9. [20] Let (F1, A1) and (F2, A2) be soft sets

i) The soft intersection of (F1, A1) and (F2, A2) denoted as (F1, A1)∩̃(F2, A2) is defined to be the
soft set (F3, A3) where A3 = A1 ∩A2 and ∀α ∈ A3, F3(α) = F1(α) ∩ F2(α);

ii) The soft union of (F1, A1) and (F2, A2) denoted as (F1, A)∪̃(F2, A2) is defined to be the soft set
(F3, A3) where A3 = A1 ∪A2 and ∀α ∈ A3

F3(α) =


F1(α) if α ∈ (A1 \A2)
F2(α) if α ∈ (A2 \A1)
F1(α) ∪ F2(α) if α ∈ (A1 ∩A2).

3. Basic Operations on Soft Sets

An arbitrary indexing set I was used by the authors [4,5,7,8,21–26] to define the soft intersection and
soft union over a collection {(Fi, A) : i ∈ I} of soft sets as (F,A) =

⋂̃
i∈I

(Fi, A) and (F,A) =
⋃̃
i∈I

(Fi, A)

respectively. We point out here that the two definitions are restrictive and incomplete. It is also worth
noting that in {(Fi, A) : i ∈ I}, A can also be indexed as well i.e., {(Fi, Ai) : i ∈ I}. The question is
what is

⋃̃
i∈I

(Fi, A)? Clearly the definition in [4,5,7,8,21–26] does not cater for this. In this section we

extend the notions of soft intersection and soft union to arbitrary collection of soft sets by the use of
(i) and (ii) of definition 2.9 as follows:
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Definition 3.1. Let L = {(Fδ, Aδ) : δ ∈ ∆} be a family of soft sets, then the

i) soft intersection over members of L is defined to be the soft set (F,A) =
⋂̃
δ∈∆

(Fδ, Aδ)

where A =
⋂
δ∈∆

Aδ and ∀α ∈ A,F (α) =
⋂̃
δ∈∆

Fδ(α), ∀α ∈ A;

ii) soft union over members of L is defined to be the soft set (F,A) =
⋃̃
δ∈∆

(Fδ, Aδ) where A =
⋃
δ∈∆

Aδ

and ∀α ∈ A and ∀Υ ⊆ ∆ and F (α) =


⋃
δ∈∆

Fδ(α) if α ∈
⋂
δ∈∆

Aδ⋃
δ∈Υ

Fδ(α) if α ∈ (
⋂
δ∈Υ

Aδ \
⋃

δ∈(∆\Υ)

Aδ).

Example 3.2. Let E = {e1, e2, e3, e4, e5} be a set of parameters and X = {x1, x2, x3, x4}. ρ(X) = {∅,
X, {x1}, {x2}, {x3}, {x4}, {x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}, {x1, x2, x3}, {x1, x2, x4},
{x1, x3, x4}, {x2, x3, x4}}, A1 = {e1, e3, e4}, A2 = {e3, e4} and A3 = {e1, e4, e5}.

E e1 e2 e3 e4 e5

F1 {x1, x2} {x2, x3, x4} {x1, x4} {x1, x2, x4} {x1, x2, x3}
F2 {x2, x3} {x2} {x1, x2} {x2, x4} {x2, x3, x4}
F3 {x1} {x3} {x4} {x2, x4} {x1, x3}
F4 {x3, x4} {x1} {x2, x3} {x3} {x4}
F5 {x3} {x3} {x3} {x3} {x3}
G ∅ ∅ {x3, x4} ∅ ∅
H ∅ {x2} ∅ ∅ ∅

.

Notice that A1 ∩A2 ∩A3 = {e4} and A1 ∪A2 ∪A3 = {e1, e3, e4, e5} and that

i) F1(e4) ∩ F2(e4) ∩ F3(e4) = {x1, x2, x4} ∩ {x2, x4} ∩ {x2, x4} = {x2, x4}. Therefore,

3⋂̃
i=1

(Fi, Ai) = {(e4, {x2, x4})}

ii) e1 ∈ (A1 ∩A3) \A2, e3 ∈ (A1 ∩A2) \A3, e4 ∈ (A1 ∩A2 ∩A3) and e5 ∈ A3 \ (A1 ∪A2)

F (e1) = F1(e1) ∪ F3(e1) = {x1, x2}, F (e3) = F1(e3) ∪ F2(e3) = {x1, x2, x4}

F (e4) = F1(e4) ∪ F2(e4) ∪ F3(e4) = {x1, x2, x4} and F (e5) = F3(e5) = {x1, x3}

Therefore,
3⋃̃
i=1

(Fi, Ai) = {(e1, {x1, x2}), (e3, {x1, x2, x4}), (e4, {x1, x2, x4}), (e5, {x1, x3})}.

It is worth noting that the definition of arbitrary soft union as given in [4, 5, 7, 8, 21–26] has no

provision for resolving the soft union
3⋃̃
i=1

(Fi, Ai).

The next result is indeed from the Demogan’s Laws in set theory.

Proposition 3.3. (Demogan’s) Let {(Fδ, Aδ) : δ ∈ ∆} be a family of soft sets, then

i) [
⋃̃
δ∈∆

(Fδ, Aδ)]
c =

⋂̃
δ∈∆

(Fδ, Aδ)
c

ii) [
⋂̃
δ∈∆

(Fδ, Aδ)]
c =

⋃̃
δ∈∆

(Fδ, Aδ)
c

Proof. Let F xα be any soft element, then

i) F xα ∈̃[
⋃̃
δ∈∆

(Fδ, Aδ)]
c ⇔ F xα /̃∈

⋃̃
δ∈∆

(Fδ, Aδ) ⇔ F xα /̃∈(Fδ, Aδ), ∀δ ∈ ∆ ⇔ F xα ∈̃(Fδ, Aδ)
c,∀δ ∈ ∆ ⇔

F xα ∈̃
⋂̃
δ∈∆

(Fδ, Aδ)
c;
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ii) F xα ∈̃[
⋂̃
δ∈∆

(Fδ, Aδ)]
c ⇔ F xα /̃∈

⋂̃
δ∈∆

(Fδ, Aδ)⇔ F xα /̃∈(Fδ, Aδ) for some δ ∈ ∆⇔ F xα ∈̃(Fδ, Aδ)
c for some

δ ∈ ∆⇔ F xα ∈̃
⋃̃
δ∈∆

(Fδ, Aδ)
c.

The definition of difference of two soft sets (F,E) and (G,E) over a common universe X was
given to be (F,E) \ (G,E) = (H,E) where for all e ∈ E, H(e) = F (e) \ G(e), [2, 5, 11–13, 16, 21–26].
This definition excludes the possibility of taking soft difference of soft sets of the form (F1, A1) and
(F2, A2) where A1, A2 ⊆ E. Hence, we propose a modification of the definition which follows by some
examples:

Definition 3.4. If (F1, A1) and (F2, A2) are any two soft sets, the soft difference of (F1, A1) and
(F2, A2) denoted as (F1, A1) \ (F2, A2) is defined to be the soft set (F3, A1) where

F3(α) =

{
F1(α) if α ∈ (A1 \A2)
F1(α) \ F2(α) if α ∈ (A1 ∩A2)

It is worth noting that in (F1, A1) \ (F2, A2) if A1 = A2 = E Definition 3.4 reduces to [2, 5, 11–13,
16,21–26].

Example 3.5. From Example 3.2, A1 = {e1, e3, e4}, A2 = {e3, e4}, (F1, A1) = {(e1, {x1, x2}),
(e3, {x1, x4}), (e4, {x1, x2, x4})}, and (F2, A2) = {(e3, {x1, x2}), (e4, {x2, x3, x4})}. Therefore,

i) (F1, A1) \ (F2, A2) = {(e1, {x1, x2}), (e3, {x4}), (e4, {x1})}

ii) (F2, A2) \ (F1, A1) = {(e3, {x2}), (e4, {x3)}

Definition 3.6. The soft symmetric difference of (F1, A1) and (F2, A2) denoted as (F1, A1)4̃(F2, A2)
is defined to be (F1, A1)4̃(F2, A2) = ((F1, A1) \ (F2, A2))∪̃((F2, A2) \ (F1, A1)). From Example 3.5,

(F1, A1)4̃(F2, A2) = {(e1, {x1, x2}), (e3, {x2, x4}), (e4, {x1, x3})}.

As a consequence of Definition 3.4 we have the following lemma

Lemma 3.7. Let {(Fδ, Aδ) : δ ∈ ∆} be a family of soft sets and (H,C) be any soft set, then

i) [(H,C) \
⋃̃
δ∈∆

(Fδ, Aδ)] =
⋂̃
δ∈∆

[(H,C) \ (Fδ, Aδ)]

ii) [(H,C) \
⋂̃
δ∈∆

(Fδ, Aδ)] =
⋃̃
δ∈∆

[(H,C) \ (Fδ, Aδ)]

Proof. Let F xα be any soft element, then

i) F xα ∈̃[(H,C)\
⋃̃
δ∈∆

(Fδ, Aδ)]⇔ F xα ∈̃(H,C) and F xα /̃∈
⋃̃
δ∈∆

(Fδ, Aδ)⇔ F xα ∈̃(H,C) and F xα /̃∈(Fδ, Aδ),∀δ ∈

∆⇔ F xα ∈̃(H,C) \ (Fδ, Aδ),∀α ∈ ∆⇔ F xα ∈̃
⋂̃
δ∈∆

[(H,C) \ (Fδ, Aδ)]

ii) F xα ∈̃[(H,C) \
⋂̃
δ∈∆

(Fδ, Aδ)] ⇔ F xα ∈̃(H,C) and F xα /̃∈
⋂̃
δ∈∆

(Fδ, Aδ) ⇔ F xα ∈̃(H,C) and F xα /̃∈(Fδ, Aδ)

for some δ ∈ ∆⇔ F xα ∈̃(H,C) \ (Fδ, Aδ) for some δ ∈ ∆⇔ F xα ∈̃
⋃̃
δ∈∆

[(H,C) \ (Fδ, Aδ)]

4. Soft Topological Notions

In this section, using examples we discuss basic notions of soft topology and show some important
results. We further introduced and defined some terms relative to arbitrary collection of soft sets in
a soft topological space and studied some of their properties. We begin our investigation with the
following definition.
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Definition 4.1. [2] A soft topology over the universe X is collection τ of members of SS(X)E
satisfying the following conditions:

1) X̃, ∅̃ ∈ τ i.e. ∃(F1, E), (F2, E) ∈ τ such that F1(α) = X,F2(α) = ∅, ∀α ∈ E.

2) If (F1, A1), (F2, A2) ∈ τ , then (F1, A1)∩̃(F2, A2) ∈ τ .

3) If {(Fδ, Aδ) : δ ∈ ∆} is any number of family of members of τ , then
⋃̃
δ∈∆

(Fδ, Aδ)∈̃τ .

The triplet (X, τ,E) is called a soft topological space. Members of τ are referred to as soft open sets
and (F,A) ∈ SS(X)E is said to be a soft closed in (X, τ,E) if (F c, A) ∈ τ . It is clear from the definition
that; inductively any finite intersection of members of τ is in τ . Thus if (Fδ, Aδ) ∈ τ(δ = 1, 2, . . . , n)

then
n⋂̃
δ=1

(Fδ, Aδ) ∈ τ and any number of union of members of τ is in τ . For brevity we will be using

the term XE for (X, τ,E). As a consequent of definition 4.1 we have the following lemma.

Lemma 4.2. Let XE be a soft topological space, then

i) X̃ and ∅̃ ∈ τ are closed in XE . i.e. (X̃)c = ∅̃ and (∅̃)c = X̃;

ii) If {(Fδ, Aδ) : δ ∈ ∆} is any number of family of soft closed sets in XE , then
(
⋂̃
δ∈∆

(Fδ, Aδ))
c =

⋃̃
δ∈∆

(Fδ, Aδ)
c =

⋃̃
δ∈∆

(F cδ , Aδ) = (F,A) ∈ τ ⇒
⋂̃
δ∈∆

(Fδ, Aδ) is closed in XE i.e.,

intersection of any number of soft closed sets is a soft closed;

iii) If {(Fi, Ai) : i = 1, 2, . . . , n} is a family of soft closed sets in XE , then

(
n⋃̃
i=1

(Fi, Ai))
c =

n⋂̃
i=1

(Fi, Ai)
c =

n⋂̃
i=1

(F ci , Ai) = (F,A) ∈ τ ⇒
n⋃̃
i=1

(Fi, Ai) is closed in XE i.e., finite

union of soft closed sets is soft closed.

Definition 4.3. (F,A) ∈ SS(X)E is said to be soft clopen in XE if (F,A) is both soft closed and soft
open in XE . i.e., X̃ and ∅̃ are soft clopen

Definition 4.4. [5] Let XE be a soft topological space, then (F,A) ∈ SS(X)E is said to be a soft
neighborhood (for brevity: soft nbd) of (H,C) ∈ SS(X)E if ∃(G,B) ∈ τ such that (H,C)⊆̃(G,B)⊆̃(F,A).
Similarly (F,A) ∈ SS(X)E is said to be a soft nbd of the soft element F xα if ∃(G,B) ∈ τ such that
F xα ∈̃(G,B)⊆̃(F,A). The family of all soft nbd of the soft element F xα is called a soft nbd system of F xα
denoted as UFxα .

We now have the following proposition.

Proposition 4.5. (F,A) ∈ SS(X)E is soft open in XE iff (F,A) is a soft nbd of each its soft subsets.

Proof. Let (F,A) be soft open and (G,B)⊆̃(F,A). Then (G,B)⊆̃(F,A)⊆̃(F,A). Hence by definition
(F,A) is a nbd of (G,B).
Conversely suppose (F,A) is a soft nbd of each of its soft subsets. This implies ∀(Gα, Bα)⊆̃(F,A) such
that α ∈ ∆ there exist a soft open set (Fα, Aα) such that (Gα, Bα)⊆̃(Fα, Aα)⊆̃(F,A).
Let (G,B) =

⋃̃
α∈∆

(Fα, Aα), then (G,B) is soft open and (G,B)⊆̃(F,A). By our hypothesis if (H,C)

is any soft open subset of (F,A),∃(Fα, Aα)⊆̃(F,A) such that (H,C)⊆̃(Fα, Aα).
This implies (H,C)⊆̃(Fα, Aα)⊆̃

⋃̃
α∈∆

(Fα, Aα) = (G,B). This implies (F,A)⊆̃(G,B).

Hence, (F,A) = (G,B) which is soft open.

As consequence of the above proposition, we have the following corollaries.

Corollary 4.6. [5] (F,A) ∈ SS(X)E is soft open in XE iff (F,A) is a nbd of each its soft elements.

Corollary 4.7. [2] (F,A) ∈ SS(X)E is soft open in XE iff (F,A) is a nbd of each its soft points.

Now we give the following propositions.
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Proposition 4.8. (F,A) ∈ SS(X)E is soft closed in XE iff given any soft element F xα such that
F xα /̃∈(F,A) there exists a soft nbd (G,B) of F xα such that (G,B)∩̃(F,A) = ∅̃.

Proof. (F,A) is soft closed and F xα /̃∈(F,A) ⇒ F xα ∈̃(F c, A). Now (F,A)∩̃(F c, A) = ∅̃ and (F c, A) is
soft open.
Conversely suppose ∀, F xα /̃∈(F,A),∃(Gδ, Bδ) soft open such that F xα ∈̃(Gδ, Bδ) and (Gδ, Bδ)∩̃(F,A) = ∅̃.
Let (G,B) =

⋃̃
δ∈∆

(Gδ, Bδ), then (G,B) is soft open and (Gc, B) = (F,A). Hence, (F,A) is soft

closed.

Proposition 4.9. Let (X, τ,E) be a soft topological space and UFxα be a soft nbd system of a soft
element F xα , then

i) ∀(G,A) ∈ UFxα , F
x
α ∈̃(G,A)

ii) If (G,A) ∈ UFxα and (G,A)⊆̃(H,B), then (H,B) ∈ UFxα

iii) If (Gi, Ai) ∈ UFxα , than
n⋂̃
i=1

(Gi, Ai) ∈ UFxα

iv) ∀(G,A) ∈ UFxα , ∃(H,B) ∈ UFxα such that (G,A) ∈ UHy
β
, ∀Hy

β ∈̃(H,B)

Conversely, if given a collection U of members of SS(X)E and for each F xα ∈ U , there exist a
nonempty family UFxα satisfying (i-iv), then there exists a unique soft topology on U such that UFxα is
precisely the soft nbd system of F xα for each F xα ∈ U.

Proof.

i) Obvious from definition of UFxα ;

ii) (G,A) ∈ UFxα and (G,A)⊆̃(H,B)⇒ F xα ∈̃(G,A)⊆̃(H,B)⇒ F xα ∈̃(H,B)⇒ (H,B) ∈ UFxα ;

iii) Let (Gi, Ai) ∈ UFxα , i = 1, 2, . . . , n. Then for each i, there exists an open soft set (Hi, Bi) such

that F xα ∈̃(HiBi)⊆̃(Gi, Ai). Hence, F xα ∈
n⋂̃
i=1

(Hi, Bi)⊆̃
n⋂̃
i=1

(Gi, Ai). Since,
n⋂̃
i=1

(Hi, Bi) is soft open,

then by definition
n⋂̃
i=1

(Gi, Ai) ∈ UFxα ;

iv) ∀(G,A) ∈ UFxα , ∃(H,B) soft open such F xα ∈̃(H,B)⊆̃(G,A). Since (H,B) is soft open, then
(H,B) ∈ UHy

β
,∀Hy

β ∈ (H,B). Also (H,B)⊆̃(G,A)⇒ (G,A) ∈ UHy
β
,∀Hy

β ∈ (H,B).

Conversely, suppose given a collection U of members of SS(X)E and for each F xα ∈ U , there exist
a nonempty family UFxα satisfying (i-iv). Let τ(U) = {(G,A) ∈ U : (G,A) ∈ UFxα} together with ∅̃

i) By definition of τ(U), ∅̃ ∈ τ(U) and F xα ∈ X̃ ⇒ X̃ ∈ τ(U);

ii) Let (Gi, Ai) ∈ UFxα , i = 1, 2, . . . , n be a family of members of τ(U), then by definition of τ(U),

(Gi, Ai) ∈ UFxα whenever F xα ∈ (Gi, Ai). By (iii)
n⋂̃
i=1

(Gi, Ai) ∈ UFxα . Hence,
n⋂̃
i=1

(Gi, Ai) ∈ τ(U);

iii) Let {(Gλ, Aλ) : λ ∈ Λ} be a family of members of τ(U), then ∀λ ∈ Λ, (Gλ, Aλ) ∈ UFxα whenever

F xα ∈ (Gλ, Aλ). Therefore, F xα ∈ (Gλ, Aλ)⊆̃
⋃̃
λ∈Λ

(Gλ, Aλ) ∈ τ(U).

Definition 4.10. [7] Let XE be a soft topological space and (F,A) ∈ SS(X)E . The soft closure of
(F,A) denoted as (F,A) or cl(F,A) is defined to be the soft intersection over all super soft closed sets
of (F,A). Thus (F,A) = cl(F,A) =

⋂̃
{(G,B) : (F,A)⊆̃(G,B) and (G,B) is soft closed}

Thus (F,A) = cl(F,A) =
⋂̃
α∈∆

(Fα, Aα) such that (Fα, Aα) is a soft closed, ∀α ∈ ∆. Where the soft

intersection is taken over all soft closed supersets (Fα, Aα) of (F,A).
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We next introduce the following definition

Definition 4.11. A soft element F xα is said to be a closure soft element of the soft set (F,A) if
F xα ∈̃(F,A), and a soft set (G,B) is said to be a soft closure subset of (F,A) if (G,B)⊆̃(F,A)

Thus, we have the following lemma.

Lemma 4.12. Let XE be a soft topological space and (F,A) ∈ SS(X)E , then

i) (F,A)⊆̃(F,A)

ii) (F,A) is the smallest soft closed superset of (F,A).

iii) (F,A) = (F,A) if and only if (F,A) is a soft closed.

Proof. (i),(ii) and (iii) are trivially obvious from Definition 4.10

Lemma 4.13. A soft element F xα is a closure soft element of the soft set (F,A) if and only if given
any soft open nbd (G,B) of F xα , (G,B)∩̃(F,A) 6= ∅̃

Proof. Let F xα ∈̃(F,A) and suppose by way of contradiction G,B)∩̃(F,A) = ∅̃ for some soft open
nbd (G,B) of F xα . This implies (F,A)⊆̃(Gc, B) where (Gc, B) is soft closed superset of (F,A).
Now (F,A)⊆̃(Gc, B) ⇒ F xα ∈̃(F,A)⊆̃(Gc, B) ⇒ F xα ∈̃Gc, B) ⇒ F xα /̃∈(G,B). This is a contradiction.
Conversely, suppose the condition holds and by way of contradiction F xα /̃∈(F,A). This implies that
F xα ∈̃((F,A))c. Since ((F,A))c is soft open, then by our hypothesis ((F,A))c∩̃(F,A) 6= ∅̃. This is a con-
tradiction, i.e., ((F,A))c⊆̃(F c, A) ⇒ [((F,A))c∩̃(F c, A)]⊆̃(F c, A)∩̃(F,A) = ∅̃ ⇒ ((F,A))c⊆̃(F c, A) =
∅̃.

We give the following example to demonstrate and make the notions discussed os far clearer.

Example 4.14. Let E = {e1, e2, e3, e4}, X = {x1, x2, x3, x4, x5}, A1 = E, A2 = {e1, e2, e3},
A3 = {e1, e2, e4}, A4 = {e1, e3, e4}, A5 = {e2, e3, e4}, A6 = {e1, e4}, A7 = {e2, e3}, A8 = {e1, e2},
A9 = {e3, e4}, A10 = {e1, e3}, A11 = {e2, e4}, A12 = {e1}, A13 = {e2}, A14 = {e3}, A15 = {e4} and

τ = {∅̃, X̃, (Fi, E), (Fi, Ai) : i = 1, 2, . . . , 15}. As indicated on the table below, all the soft closed sets

are ∅̃, X̃, (Hi, E), (Hi, Ai) : i = 1, 2, . . . , 15 where (F ci , E) = (Hi, E) and (F ci , Ai) = (Hi, Ai).

E e1 e2 e3 e4 E e1 e2 e3 e4
X̃ X X X X ∅̃ ∅ ∅ ∅ ∅̃
F1 {x1} {x3, x4} {x1, x3, x4} {x2, x3, x4, x5} H1 {x2, x3, x4, x5} {x1, x2, x5} {x2, x5} {x1}
F2 {x1} {x3, x4} {x1, x3, x4} ∅ H2 {x2, x3, x4, x5} {x1, x2, x5} {x2, x5} X
F3 {x1} {x3, x4} ∅ {x2, x3, x4, x5} H3 {x2, x3, x4, x5} {x1, x2, x5} X {x1}
F4 {x1} ∅ {x1, x3, x4} {x2, x3, x4, x5} H4 {x2, x3, x4, x5} X {x2, x5} {x1}
F5 ∅ {x3, x4} {x1, x3, x4} {x2, x3, x4, x5} H5 X {x1, x2, x5} {x2, x5} {x1}
F6 {x1} ∅ ∅ {x2, x3, x4, x5} H6 {x2, x3, x4, x5} X X {x1}
F7 ∅ {x3, x4} {x1, x3, x4} ∅ H7 X {x1, x2, x5} {x2, x5} X
F8 {x1} {x3, x4} ∅ ∅ H8 {x2, x3, x4, x5} {x1, x2, x5} X X
F9 ∅ ∅ {x1, x3, x4} {x2, x3, x4, x5} H9 X X {x2, x5} {x1}
F10 {x1} ∅ {x1, x3, x4} ∅ H10 {x2, x3, x4, x5} X {x2, x5} X
F11 ∅ {x3, x4} ∅ {x2, x3, x4, x5} H11 X {x1, x2, x5} X {x1}
F12 {x1} ∅ ∅ ∅ H12 {x2, x3, x4, x5} X X X
F13 ∅ {x3, x4} ∅ ∅ H13 X {x1, x2, x5} X X
F14 ∅ ∅ {x1, x3, x4} ∅ H14 X X {x2, x5} X
F15 ∅ ∅ ∅ {x2, x3, x4, x5} H15 X X X {x1}
∅̃ ∅ ∅ ∅ ∅ X̃ X X X X

.

i) If (G1, E) = {(e1, {x1, x3, x5}), (e2, {x1, x2, x3, x4}), (e3, ∅), (e4, X)} and
(G2, E) = {(e1, ∅), (e2, {x3, x4}), (e3, ∅), (e4, {x3})} then (G1, E) is a soft nbd of (G2, E)
i.e., (G2, E)⊆̃(F11, E)⊆̃(G1, E) where (F11, E) is soft open;

ii) If (G3, E) = {(e1, {x1}), (e2, {x2}), (e3, {x5), (e4, {x5})}, then (G3, E) = (H7, E)∩̃(H13, E)∩̃(H14, E)∩̃X̃
= {(e1, X}), (e2, {x1, x2, x5}), (e3, {x2, x5}), (e4, X)} = (H7, E) which is soft closed;
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iii) F x5e1 /̃∈(G3, E) but F x5e1 is a closure soft element of (G3, E) i.e., F x5e1 ∈̃(G3, E).

Definition 4.15. [7] Let XE be a soft topological space and (F,A) ∈ SS(X)E . The soft interior of
(F,A) denoted as int(F,A) is defined to be the soft union of all soft open subsets of (F,A).
int(F,A) =

⋃̃
{(G,B) : (G,B)⊆̃(F,A) and (G,B) is soft open }. Thus int(F,A) =

⋃̃
α∈∆

(Fα, Aα) such

that (Fα, Aα) is soft open,∀α ∈ ∆. Where the soft union is taken over all soft open subsets (Fα, Aα)
of (F,A).

Definition 4.16. A soft element F xα is said to be an interior soft element of the soft set (F,A) if
F xα ∈̃int(F,A).

Lemma 4.17. Let XE be a soft topological space and (F,A) ∈ SS(X)E , then

i) int(F,A) is soft open and int(F,A)⊆̃(F,A).

ii) int(F,A) = (F,A) if and only if (F,A) is soft open.

iii) For any soft open subset (G,B) of (F,A), (G,B)⊆̃int(F,A)⊆̃(F,A) i.e., int(F,A) is the largest
soft open subset of (F,A).

Proof. (i),(ii) and (iii) are trivially obvious from Definition 4.15

Example 4.18. In example 4.14. If (G4, E) = {(e1, {x1, x2}), (e2, {x4}), (e3, ∅), (e4, {x1, x2, x3})}.
Then, int(G4, A3) = {(e1, {x1}), (e2, ∅), (e3, ∅), (e4, ∅)} = (F12, E), which is soft open.

Definition 4.19. Let XE be a soft topological space and (F,A) ∈ SS(X)E . The soft exterior of
(F,A) denoted as ext(F,A) is defined to be the soft union over all soft open sets disjoint from (F,A).
That is ext(F,A) =

⋃̃
{(G,B) : (G,B) is soft open and (G,B)∩̃(F,A) = ∅̃}.

Thus ext(F,A) =
⋃̃
α∈∆

(Fα, Aα) such that (Fα, Aα), is soft open ∀α ∈ ∆ and the soft union is taken

over all soft open sets (Fα, Aα) such that (Fα, Aα)∩̃(F,A) = ∅̃.

Lemma 4.20. Let XE be a soft topological space and (F,A) ∈ SS(X)E , then

i) ext(F,A) is soft open and ext(F,A)∩̃int(F,A) = ∅̃.

ii) ext(F,A) = int(F c, A)⊆̃(F c, A)

iii) If (G,B) is soft open and (G,B)∩̃(F,A) = ∅̃, then (G,B)⊆̃ext(F,A) i.e. ext(F,A) is the largest
soft open set disjoint from (F,A).

Proof. (i),(ii) and (iii) are trivially obvious from Definition 2.4 and 4.19.

Example 4.21. In Example 4.14. If (G4, E) = {(e1, {x1, x2}), (e2, {x4}), (e3, ∅), (e4, {x1, x2, x3})}.
Then ext(G4, E) = {(e1, ∅), (e2, ∅), (e3, {x1, x3, x4}), (e4, ∅)} = (F14, E) which is soft open.
By (i) of lemma 4.20 ext(G4, E)∩̃int(G4, E) = (F14, E)∩̃(F12, E) = ∅̃.

We further introduce the following definition.

Definition 4.22. Let XE be a soft topological space. A soft element F xα in XE is said to be a boundary
soft element of (F,A) ∈ SS(X)E if F xα /̃∈int(F,A) and F xα /̃∈ext(F,A). The soft union over of all soft
boundary elements of (F,A) is called the soft boundary of (F,A) which we denote as Fr(F,A).

Now as consequence of Definitions 4.10, 4.15, ref5b and 4.22 we provide the following two lemmas.

Lemma 4.23. By Definition 4.22 int(F,A)∪̃Fr(F,A)∪̃(F,A) = X̃

Lemma 4.24. Let XE be a soft topological space and (F,A) ∈ SS(X)E , then

i) ((F,A))c = ext(F,A);

ii) (F,A) = int(F,A)∪̃Fr(F,A);

iii) (F,A) = (int[(F c, A)])c;
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iv) Fr(F,A) = (F,A)∩̃(F c, A);

v) Fr(F,A) = ((int(F,A)∪̃ext(F,A))c.

Proof.

i) F xα ∈̃((F,A))c ⇔ F xα /̃∈(F,A)⇔ there exists soft open nbd (G,B) of F xα such that (F,A)∩̃(G,B) =
∅̃ ⇔ F xα ∈̃ext(F,A). Lemma 4.13 and Definition 4.19;

ii) By Lemma 4.23 ext(F,A) = (int(F,A)∪̃Fr(F,A))c. By (i) ((F,A))c = (int(F,A)∪̃Fr(F,A))c.
Hence, (F,A) = int(F,A)∪̃Fr(F,A).

iii) F xα ∈̃(F,A) ⇔ F xα ∈̃(int(F,A)∪̃Fr(F,A)) ⇔ F xα ∈̃int(F,A) or F xα ∈̃Fr(F,A) ⇔ F xα /̃∈ext(F,A) ⇔
F xα /̃∈int(F c, A)⇔ F xα ∈̃(int[(F c, A)])c

iv) F xα ∈̃(F,A)∩̃(F c, A)⇔ F xα ∈̃(F,A) and F xα ∈̃(F c, A)
⇔ given any open nbd (G,B) of F xα , (G,B)∩̃(F,A) 6= ∅̃ and (G,B)∩̃(F c, A) 6= ∅̃
⇔ F xα /̃∈int(F,A) and F xα /̃∈int(F c, A)⇔ F xα /̃∈int(F,A) and F xα /̃∈ext(F,A)⇔ F xα ∈̃Fr(F,A)

v) F xα ∈̃Fr(F,A)⇔ F xα /̃∈int(F,A) and F xα /̃∈ext(F,A)⇔ F xα /̃∈(int(F,A)∪̃ext(F,A))
⇔ F xα ∈̃(int(F,A)∪̃ext(F,A))c

Remark 4.25. It is obvious from (iv) and (v) that, boundary of (F,A) is soft closed in XE

Example 4.26. In Example 4.14. If (G4, E) = {(e1, {x1, x2}), (e2, {x4}), (e3, ∅), (e4, {x1, x2, x3})}.

i) By Definition4.10, (G4, E) = X̃∩̃(H14, E) = (H14, E) = {(e1, X}), (e2, X), (e3, {x2, x5}), (e4, X)}
which is soft closed and (G4, E)⊆̃(H14, E).

ii) By (i) of Lemma 4.24, ((G4, E))c = {(e1, X), (e2, X), (e3, {x2, x5}), (e4, X)}c = {(e1, ∅), (e2, ∅),
(e3, {x1, x3, x4}), (e4, ∅)} = ext(G4, E)

iii) By (ii) of Lemma 4.24, (G4, E) = int(G4, E)∪̃Fr(G4, E) = (F12, E)∪̃(H10, E) = (H14, E).

iv) By (iii) of Lemma 4.24, (G,E) = (int[(Gc4, E)])c = (int[{(e1, {x3, x4, x5}), (e2, {x1, x2, x3, x5}),
(e3, X), (e4, {x4, x5})}])c = (F14, E)c = {(e1, X), (e2, X), (e3, {x2, x5}), (e4, {x4, X)} = (H14, E)
which is soft closed.

v) By (iv) of Lemma 4.24, Fr(G4, E) = (G4, E)∩̃(Gc4, E) = (H10, E) which is soft closed.

vi) By (v) Lemma of 4.24, Fr(G4, E) = ((int(G4, E)∪̃ext(G4, E))c = [(F12, E)∪̃(F14, E)]c = {(e1, {x2,
x3, x4, x5}), (e2, X), (e3, {x2, x5}), (e4, X)} = (H10, E).

vii) By Definition4.10, The soft elements

F x2e1 , F
x3
e1 , F

x4
e1 , F

x5
e1 , F

x1
e2 , F

x2
e2 , F

x3
e2 , F

x4
e2 , F

x5
e2 , F

x2
e3 , F

x5
e3 , F

x1
e4 , F

x2
e4 , F

x3
e4 , F

x4
e4 /̃∈Int(G4, E)

and

F x2e1 , F
x3
e1 , F

x4
e1 , F

x5
e1 , F

x1
e2 , F

x2
e2 , F

x3
e2 , F

x4
e2 , F

x5
e2 , F

x2
e3 , F

x5
e3 , F

x1
e4 , F

x2
e4 , F

x3
e4 , F

x4
e4 /̃∈ext(G4, E)

Fr(G4, E) = F x2e1 ∪̃F
x3
e1 ∪̃F

x4
e1 ∪̃F

x5
e1 ∪̃F

x1
e2 ∪̃F

x2
e2 ∪̃F

x3
e2 ∪̃F

x4
e2 ∪̃F

x5
e2 ∪̃F

x2
e3 ∪̃F

x5
e3 ∪̃F

x1
e4 ∪̃F

x2
e4 ∪̃F

x3
e4 ∪̃F

x4
e4

= {(e1, {x2, x3, x4, x5}), (e2, X), (e3, {x2, x5}), (e4, X)} = (H10, E)

The following definition which describe the derived soft set of a soft set is found in [19] and is
given as

Definition 4.27. [5] A soft element F xα in XE is said to be a limiting soft element of (F,A) if given
any soft open nbd (G,A) of F xα , ((G,B) \ F xα )∩̃(F,A) 6= ∅̃. The set of all limiting soft elements of
(F,A) denoted as (F,A)′ is called the derived soft set of (F,A).

Thus, we give the following lemmas and their proofs.
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Lemma 4.28. F xα is a limiting soft element of (F,A) ∈ SS(X)E if and only if F xα ∈̃((F,A) \ F xα ).

Proof. F xα ∈̃(F,A)′ ⇔ ∀soft open nbd (G,B) of F xα , ((G,B) \ F xα ))∩̃(F,A) 6= ∅̃
⇔ ∀soft open nbd (G,B) of F xα , (G,B)∩̃((F,A) \F xα )) 6= ∅̃. Applying Lemma 4.13 F xα ∈̃((F,A) \ F xα )).

Lemma 4.29. If {(Fδ, Aδ) : δ ∈ ∆} is a family of members of SS(X)E , then⋃̃
δ∈∆

(Fδ, Aδ)
′⊆̃(

⋃̃
δ∈∆

(Fδ, Aδ))
′

Proof. F xα ∈̃
⋃̃
δ∈∆

(Fδ, Aδ)
′ ⇒ for some δo ∈ ∆, F xα ∈̃(Fδo , Aδo)

′

⇒ given any soft open nbd (G,B) of F xα , ((G,B) \ F xα )∩̃(Fδo , Aδo) 6= ∅̃
⇒ given any soft open nbd (G,B) of F xα , ((G,B) \ F xα )∩̃[

⋃̃
δ∈∆

(Fδ, Aδ)] 6= ∅̃ ⇒ F xα ∈̃(
⋃̃
δ∈∆

(Fδ, Aδ))
′

Lemma 4.30.
⋃̃
δ∈∆

(Fδ, Aδ)⊆̃(
⋃̃
δ∈∆

(Fδ, Aδ)) for any family {(Fδ, Aδ) : δ ∈ ∆} of SS(X)E .

Proof. F xα ∈̃
⋃̃
δ∈∆

(Fδ, Aδ) ⇒ for some δo ∈ ∆, F xα ∈̃(Fδo , Aδo) ⇒ given any soft open nbd (G,B) of

F xα , (G,B)∩̃(Fδo , Aδo) 6= ∅̃ ⇒ given any soft open nbd (G,B) of

F xα , (G,B)∩̃[
⋃̃
δ∈∆

(Fδ, Aδ)] 6= ∅̃ ⇒ F xα ∈̃(
⋃̃
δ∈∆

(Fδ, Aδ))

Lemma 4.31. F xα is a boundary soft element of (F,A) if and only if given soft open nbd (G.B) of
F xα , (G,B)∩̃(F,A) 6= ∅̃. and (G,B)∩̃(F c, A) 6= ∅̃.

Proof. F xα ∈̃Fr(F,A) ⇔ F xα ∈̃(F,A)∩̃(F c, A) ⇔ F xα ∈̃(F,A) and F xα ∈̃(F c, A). Applying Lemma 4.13
given any soft open nbd (G.B) of F xα , (G,B)∩̃(F,A) 6= ∅̃ and (G,B)∩̃(F c, A) 6= ∅̃.

Definition 4.32. [29] Let XE be a soft topological space and (F,A), (G,B) ∈ SS(X)E , then (F,A)
is said to be soft dense in (G,B) if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A). A soft set (F,A) ∈ SS(X)E is
said to be soft dense in XE if (F,A) = X̃.
By (i) of Example 4.26 (G4, E) is soft dense in (H14, E).

We now introduce the following definitions.

Definition 4.33. Let XE be a soft topological space, (F,A) ∈ SS(X)E is said to be

i) boundary soft set in XE if int(F,A) = ∅̃;

ii) nowhere soft dense in XE if int(F,A) = ∅̃;

iii) relatively soft discrete in XE if for every soft element F xα in (F,A) there exist a soft nbd (G,B)
of F xα such that (G,B)∩̃(F,A) = F xα ;

iv) a soft closed domain ( or regularly soft closed) if (F,A) = int(F,A);

v) a soft open domain ( or regularly soft open) if (F,A) = int(F,A);

vi) soft perfect if (F,A) = (F,A) = (F,A)′.

As a consequence of definitions 4.32 and 4.33, we provide and prove the following proposition.

Proposition 4.34. Let XE be a soft topological space and (F,A) ∈ SS(X)E , then the following are
equivalent

i) (F,A) is soft dense in XE .
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ii) X̃ is the only soft closed superset of (F,A).

iii) for every non empty soft open set (G,B), (G,B)∩̃(F,A) 6= ∅̃.

iv) (F c, A) is a boundary soft set.

Proof.

i) (i ⇒ ii) (F,A) is soft dense in XE and (G,B) is soft closed superset of (F,A), implies X̃ =
(F,A)⊆̃(G,B)⊆̃X̃ = (F,A)⇒ (G,B) = X̃

ii) (ii⇒iii) Suppose (ii) holds and suppose by way of contradiction there exist a soft open set
(G,B) 6= ∅̃ such that (G,B)∩̃(F,A) = ∅̃. This implies (F,A)⊆̃(Gc, B) where (Gc, B) is soft
closed. Therefore, by our hypothesis we have (Gc, B) = X̃, and this implies (G,B) = ∅̃. This is
a contradiction.

iii) (iii ⇒ iv) Suppose (iii) holds and suppose by way of contradiction int(F c, A) 6= ∅̃. By our
hypothesis, int(F c, A)∩̃(F,A) 6= ∅̃. But int(F c, A)⊆̃(F c, A) and (F c, A)∩̃(F,A) = ∅̃ implies
int(F c, A)∩̃(F,A) = ∅̃. This is a contradiction.

iv) (iv ⇒ i) int(F c, A) = ∅̃ ⇒ every non null soft open set contains a soft element of (F,A). Hence,
given any soft element F xα , if (G,B) is soft open nbd of F xα , then (G,B)∩̃(F,A) 6= ∅̃. This implies
∀F xα ∈̃X̃, F xα ∈̃(F,A) ⇒ X̃⊆̃(F,A). Since (F,A)⊆̃X̃, then (F,A) = X̃. Therefore, (F,A) is soft
dense in XE .

4.1.Fσ− Soft Set , Gσ− Soft Set, σ− Soft Locally Finite and σ- soft Discrete Col-
lections

In this section we introduce the concepts of Fσ− Soft Set , Gσ− Soft Set, σ− Soft Locally Finite
and σ- soft Discrete Collections and prove some important results. We first introduce the following
definitions.

Definition 4.35. : Let XE be a soft topological space. The soft union of a countable number of soft
closed sets is called an Fσ− soft set and the soft intersection of a countable number of soft open sets
is called a Gσ− soft set. The soft compliment of an Fσ− soft set is a Gσ− soft set and conversely.

The soft intersection of two Fσ− soft sets is an Fσ− soft set. Thus, if (F,A) =
∞⋃̃
i=1

(Fi, Ai) and

(G,B) =
∞⋃̃
i=1

(Gi, Bi) where (Fi, Ai) and (Gi, Bi) are soft closed, then evidently the soft intersection of

(F,A) and (G,B) is given to be (F,A)∩̃(G,B) = (
∞⋃̃
i=1

(Fi, Ai))∩̃(
∞⋃̃
i=1

(Gi, Bi)) =
∞⋃̃
i=1

[(Fi, Ai∩̃(Gi, Bi)],

thus (F,A)∩̃(G,B) is an Fσ− soft set. Similarly the soft union of two Gσ− soft sets is a Gσ− soft set,

thus if (F,A) =
∞⋂̃
i=1

(Fi, Ai) and (G,B) =
∞⋂̃
i=1

(Gi, Bi) where (Fi, Ai) and (Gi, Bi) are soft open, then

(F,A)∪̃(G,B) = (
∞⋂̃
i=1

(Fi, Ai))∪̃(
∞⋂̃
i=1

(Gi, Bi)) =
∞⋂̃
i=1

[(Fi, Ai)∪̃(Gi, Bi)] thus (F,A)∪̃(G,B) is a Gσ− soft

set. The soft union of a countable number of Fσ− soft sets is an Fσ soft set and the soft intersection
of a countable number of (Gσ−) soft sets is a (Gσ− soft set.

Definition 4.36. [30] A collection F = {(Fλ, Aλ) : λ ∈ Λ} of members of SS(X)E in a soft topological
XE is said to be soft locally finite if and only f for every soft element F xα in XE there exists a soft
open nbd (F,A) of F xα such that (F,A) intersects only finitely many members of F .

Definition 4.37. A collection F = {(Fλ, Aλ) : λ ∈ Λ} of members of SS(X)E in a soft topological
XE is said to be soft:-

(i) soft discrete if and only if for every soft element F xα in XE there exists a soft open nbd (F,A)
of F xα such that (F,A) intersects at most one member of F ;
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(ii) σ− soft locally finite (σ- soft discrete) if and only if F =
∞⋃̃
i=1
Fi with each Fi soft locally finite

(soft discrete) collection;

(iii) soft point-finite if and only iff every soft element F xα in XE is contained only in finitely many
members of F ;

(v) soft closure preserving if and only if every subcollection B of F is soft closure preserving.

i.e.,
⋃̃
{B;B ∈ B} =

⋃̃
{B : B ∈ B};

(vi) σ- soft closure preserving if it is the soft union of a sequence of soft closure preserving subcol-
lection.

We now give and prove the following lemmas.

Lemma 4.38. If F = {(Fδ, Aδ) : δ ∈ ∆} is a soft locally finite (soft discrete) collection of members
of SS(X)E , then {(Fδ, Aδ) : δ ∈ ∆} is soft locally finite (soft discrete)

Proof. Pick a soft element F xα and soft open nbd (G,B) of F xα such that (G,B)∩̃(Fδ, Aδ) = ∅̃ except
for finitely (discretely) many δ. Then (G,B)∩̃(Fδ, Aδ) = ∅̃ except for these same δ.

Lemma 4.39. If F = {(Fδ, Aδ) : δ ∈ ∆} is a soft locally finite collection of members of SS(X)E ,

then
⋃̃

(Fδ, Aδ) =
⋃̃

(Fδ, Aδ). In particular, the union of a soft locally finite collection of soft closed
sets is soft closed.

Proof.
⋃̃

(Fδ, Aδ)⊆̃
⋃̃

(Fδ, Aδ) follows from Lemma 4.30. Suppose F xα ∈̃
⋃̃

(Fδ, Aδ). Now some soft nbd
(G,B) of F xα meets only finitely many members of F , say (Fδ1 , Aδ1), (Fδ2 , Aδ2) . . . , (Fδn , Aδn). Since

every soft nbd of F xα meets
⋃̃

(Fδ, Aδ), then every soft nbd of F xα must also meet
n⋃̃
i=1

(Fδi , Aδi).

Therefore, it follows that F xα ∈̃(Fδ1 , Aδ1)∪̃(Fδ2 , Aδ2)∪̃ . . . ∪̃(Fδn , Aδn) =
n⋃̃
i=1

(Fδi , Aδi) so that, for some

k, F xα ∈̃(Fδk , Aδk). Thus
⋃̃

(Fδ, Aδ)⊆̃
⋃̃

(Fδ, Aδ), and the result follows.

Lemma 4.40. Let F = {(Fδ, Aδ) : δ ∈ δ} be a soft locally finite collection of members of SS(X)E
and F =

⋃
δ∈δ

(Fδ, Aδ).

i) If all sets of the family F are soft closed, then F is soft closed;

ii) If the family F consists of soft clopen sets, then F is soft clopen.

Proof. i) If all the family of F are soft closed, then (Fδ, Aδ) = (Fδ, Aδ), ∀δ ∈ δ, Hence, by Lemma

4.39, F =
⋃̃
δ∈∆

(Fδ, Aδ) =
⋃̃
δ∈∆

(Fδ, Aδ) =
⋃̃
δ∈∆

(Fδ, Aδ) is soft closed;

ii) If the the family F consist of soft clopen sets, then (Fδ, Aδ) is soft closed ∀δ ∈ δ and (Fδ, Aδ) is
soft open ∀δ ∈ δ. Since, F =

⋃̃
δ∈∆

(Fδ, Aδ), then F is soft open (i.e. union of any number of soft

open sets is soft open) and by (i) F is soft closed. Hence F is soft clopen.

5. Conclusion

In this paper, we have extended the notions of operation on soft sets to arbitrary collection of soft sets
and introduced the concepts of Fσ− soft Set and Gσ− soft Set. Using examples, we have discussed
basic notions of soft topology and showed some important results. We have further introduced some
terms relative to arbitrary collection of soft sets in a soft topological space and studied some of their
properties.
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Abstract − In 2010, Torra introduced the notion of a hesitant fuzzy set, which is
a generalization of Zadeh’s fuzzy set. In the paper, we define two rough operators on
hesitant fuzzy group by means of a normal hesitant fuzzy subgroup, and investigate
some of their properties.
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1. Introduction

In 1965, Zadeh proposed the pioneering work of fuzzy subsets of a set [1], and in 1971, Rosenfeld intro-
duced the notion of fuzzy subgroups of a group [2] which led to the fuzzification of algebraic structures.
In 1982, Pawlak initiated the rough set theory to study incomplete and insufficient information [3].

Dubois, Prade first investigated fuzzy rough set and rough fuzzy set in [4], which attracting many
scholars attentions. From the view of the theory of groups, Davvaz, Kuroki, Biswas, Kuroki, Yaqoob,
Chen etc studied the notions of fuzzy groups, fuzzy subgroups, rough groups, rough subgroups, rough
fuzzy groups, rough fuzzy subgroups in [5–11].

On the other hand, Torra [12] introduced the notion of a hesitant fuzzy set. After that time, Pei,
Thakur et al. investigated some operators on hesitant fuzzy sets [13, 14]. Divakaran, John, et al.
studied hesitant fuzzy rough sets, hesitant fuzzy groups [15–18]. Jun and Ahn applied hesitant fuzzy
sets to BCK/BCI -algebras [19]. For more references,see [20–27].

In [28], Wang and Chen investigated the theory of rough subgroups by means of a normal subgroup,
and obtained some interesting results. In [6], we investigated two rough operators on L-groups. As
a generalization of [6, 9, 28], in the paper, we define the notion of rough hesitant fuzzy group, and
investigate some of their properties.

The above contents are arranged into three parts, Section 3: Hesitant fuzzy group, and Section 4:
Rough hesitant fuzzy group. In Section 2, we give an overview of hesitant fuzzy sets, group, rough
sets, which surveys Preliminaries.

2. Preliminaries

In the section, we introduce some main notions for each area, i.e., hesitant fuzzy sets [12–14], groups,
rough sets [3, 29,30].

1math-chen@qq.com (Corresponding Author)
1School of Mathematics, Shandong University of Technology, Zibo City, P.R.China
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2.1.Hesitant Fuzzy Sets

The seminal paper on fuzzy sets is [1]. As a generalization, the notion of a hesitant fuzzy set was
introduced in [12].

Definition 2.1. Suppose X is a reference set, and P [0, 1] the power set of [0, 1], then a mapping
h : X → P [0, 1] is called a hesitant fuzzy set on X.

For instance: h0 : X → P [0, 1], h1 : X → P [0, 1] are defined as: for all x ∈ X, h0(x) = ∅, h1(x) =
[0, 1], respectively.

We use the symbol HF (X) to denote the set of all hesitant fuzzy sets in X. For h1, h2 ∈ HF (X),
h1 � h2 is defined: if ∀x ∈ X, we have h1(x) ⊆ h2(x), and h1 ≈ h2, if h1 � h2, h2 � h1.

Definition 2.2. Suppose h1, h2 ∈ HF (X), then h1∩̃h2 and h1∪̃h2 are defined as follows

(h1∩̃h2)(x) = h1(x) ∩ h2(x), (h1∪̃h2)(x) = h1(x) ∪ h2(x) for every x ∈ X.

In special, a hesitant fuzzy point xλ is defined by

xλ(y) =

{
λ ⊆ [0, 1] if y = x
∅ if y 6= x

The collection of all hesitant fuzzy points is denoted by M . For more details, see [17,31].

2.2. Rough Sets

Pawlak proposed the rough set theory in [3]. Let (X,R) be an approximation space, and R ⊆ X ×X
be an equivalence relation, then for A ⊆ X, two subsets R(A) and R(A) of X are defined:

R(A) = {x ∈ X | [x]R ⊆ A}, R(A) = {x ∈ X | [x]R ∩A 6= ∅}

where [x]R = {y ∈ X | xRy}.

If R(A) = R(A), A is called a definable set; if R(A) 6= R(A), A is called an undefinable set, and
(R(A), R(A)) is referred to as a pair of rough set. Therefore, R and R are called two rough operators.

Furthermore, as generalizations, they also were defined by an arbitrary binary relation in [30,32],
a mapping in [29], and other methods. Dubois, Prade investigated fuzzy rough set and rough fuzzy
set in [4].

2.3.Group

We assume familiarity with the notion of a group as used in the intuitive set theory. Suppose G is a
multiplicative group with an identity e , and A is a subgroup of G, if ∀x, y ∈ A, we have xy ∈ A.

N is a normal subgroup of G, if ∀x ∈ G, and y ∈ N , we have xyx−1 ∈ N .

3.Hesitant Fuzzy Group

Suppose G is a group with an identity e, the main notions and propositions of the section are from [17].

Definition 3.1. h : G → P [0, 1] is called a hesitant fuzzy subgroup of G, if for every x, y ∈ G, we
have h(x) ∩ h(y) ⊆ h(xy), and h(x) ⊆ h(x−1).

Example 3.2. Suppose G = {e, x, y, z} with the operator as the following table,

· e x y z

e e x y z

x x e z y

y y z e x

z z y x e

Then h1 = {eλ, xµ, yµ, zµ} is a hesitant fuzzy subgroup of G, where λ ⊆ [0, 1], µ ⊆ [0, 1], and µ ⊆ λ.
For example, we choose λ = [0.3, 0.8], µ = [0.4, 0.6], h1 = {e[0.3,0.8], x[0.4,0.6], y[0.4,0.6], z[0.4,0.6]}.
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Let h2(e) = [0, 1], h2(x) = {15 ,
1
4 ,

1
2}, h2(y) = {17 ,

1
4 ,

1
3 ,

1
2}, h2(z) = { 1

10 ,
1
4 ,

1
2}, then h2 is also a

hesitant fuzzy subgroup of G.
In [17], Propositions 3.3, 3.4, 3.5 hold.

Proposition 3.3. h is a hesitant fuzzy subgroup of G if and only if h(x−1y) ⊇ h(x−1) ∩ h(y) for all
x, y ∈ G.

Proposition 3.4. Suppose h is a hesitant fuzzy subgroup of G, then for all x ∈ G
(1) h(e) ⊇ h(x)
(2) h(x) = h(x−1)
(3) h(xn) ⊇ h(x)

Proposition 3.5. Suppose h1, h2 are two hesitant fuzzy subgroups of G, then h1∩̃h2 is also a hesitant
fuzzy subgroup of G.

Definition 3.6. g is called a normal hesitant fuzzy subgroup of G, if for every x, y ∈ G, we have
g(y) ⊆ g(xyx−1).

Cleraly, h3(e) = {1, 13 ,
5
7}, h3(x) = {13 ,

5
7}, h3(y) = ∅, h3(z) = ∅ is a normal hesitant fuzzy subgroup

of G.
In [17], Propositions 3.7, 3.8 hold.

Proposition 3.7. Suppose g is a hesitant fuzzy subgroup of G, then the following conditions are
equivalence.

(1) g is normal.
(2) g(xy) = g(yx), for all x, y ∈ G
(3) g(xyx−1) = g(y), for all x, y ∈ G

Proposition 3.8. Suppose g1, g2 are two normal hesitant fuzzy subgroups of G, then g1∩̃g2 is also a
normal hesitant fuzzy subgroup of G.

In the classical case, for two subsets A,B of G, AB = {z | z = xy, x ∈ A, y ∈ B}, as a generaliza-
tion, we give the following definition.

Definition 3.9. For h1, h2 two hesitant fuzzy subgroups of G, we define h1h2, for every z ∈ G,

(h1h2)(z) =
⋃
z=xy

h1(x) ∩ h2(y)

In special, (xλh)(w) =
⋃
w=st
{xλ}(s) ∩ h(t) =

⋃
w=xt

λ ∩ h(t) = λ ∩ h(x−1w).

xλyµ = zν , where z = xy, ν = λ ∩ µ.

Example 3.10. Following Example 3.2, clearly h4 = {e[0.2,0.8], y[0.5,0.7]} is also a hesitant fuzzy sub-
group of G. Then h1h4 = {e[0.2,0.8], x[0.4,0.7], y[0.4,0.7], z[0.4,0.7]}.

4. Rough Hesitant Fuzzy Group

In the section, we introduce the notion of a rough hesitant fuzzy group defined by a normal hesitant
fuzzy subgroup, and investigate some of their properties.

First, we give the notion of a rough hesitant fuzzy group.

Definition 4.1. Suppose N is a hesitant fuzzy normal subgroup of G, for every hesitant fuzzy subset
h of G, we define N−(h) and N−(h), for every x ∈ G,

N−(h)(x) =
⋃

xλ∈M
{λ |

⋃
z∈G

(xλN)(z) ∩ h(z) 6= ∅}

=
⋃

xλ∈M
{λ |

⋃
z∈G

λ ∩N(x−1z) ∩ h(z) 6= ∅},

N−(h)(x) =
⋃

xλ∈M
{λ |

⋂
z∈G

(xλN)(z) ⊆ h(z)}

=
⋃

xλ∈M
{λ |

⋂
z∈G

λ ∩N(x−1z) ⊆ h(z)}
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where M = {xλ | x ∈ G,λ ⊆ [0, 1]} of all hesitant fuzzy singletons.

Then N−(h), N−(h) are called the upper approximation, the lower approximation of h with respect
to the hesitant fuzzy normal subgroup N , respectively.

Example 4.2. N = h3 be a normal hesitant fuzzy subgroup of G, then for h2, we have
N−(h2)(e) =

⋃
eλ∈M

{λ |
⋃
w∈G

λ ∩N(e−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(x) =
⋃

xλ∈M
{λ |

⋃
w∈G

λ ∩N(x−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(y) =
⋃

yλ∈M
{λ |

⋃
w∈G

λ ∩N(y−1w) ∩ h2(w) 6= ∅} = [0, 1],

N−(h2)(z) =
⋃

zλ∈M
{λ |

⋃
w∈G

λ ∩N(z−1w) ∩ h2(w) 6= ∅} = [0, 1].

and

N−(h2)(e) =
⋃

eλ∈M
{λ |

⋂
w∈G

λ ∩N(e−1w) ⊆ h2(w)} = [0, 1]− {13 ,
5
7},

N−(h2)(x) =
⋃

xλ∈M
{λ |

⋂
w∈G

λ ∩N(x−1w) ⊆ h2(w)} = [0, 1]− {13 ,
5
7},

N−(h2)(y) =
⋃

yλ∈M
{λ |

⋂
w∈G

λ ∩N(y−1w) ⊆ h2(w)} = [0, 1)− {13 ,
5
7},

N−(h2)(z) =
⋃

zλ∈M
{λ |

⋂
w∈G

λ ∩N(z−1w) ⊆ h2(w)} = [0, 1)− {13 ,
5
7}.

Where A−B denotes the difference set.

Next, we discuss the following properties.

Proposition 4.3. Suppose N is a normal hesitant fuzzy subgroup of G, and h ∈ HF (G), we have

(1) N−(h) � h

(2) N−(h) � Nh

(3) N−(h1) ≈ h1

(4) N−(h0) ≈ h0

Proof. (1) For every w ∈ G, we obtain h(w) ∩ h(w−1w) ⊆ h(w); but for z ∈ G, z 6= w, h(w) ∩
g(w−1z) ⊆ h(z) may be not holds.

N−(h)(w) =
⋃

xλ∈M
{λ |

⋂
z∈G

(xλN)(z) ⊆ h(z)}

=
⋃

xλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ⊆ h(z)}

⊆
⋃
{h(w) | h(w) ∩N(w−1w) ⊆ h(w)}

= h(w)

By the above proof, we have N−(h) � h.

(2) For every w ∈ G, if (Nh)(w) 6= ∅, we have

N−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ | λ ∩ [

⋃
z∈G

N(w−1z) ∩ h(z)] 6= ∅}

=
⋃

wλ∈M
{λ | λ ∩ (Nh)(zw−1z) 6= ∅}

⊇
⋃
{(Nh)(w) | (Nh(w) ∩ (Nh)(w) 6= ∅}

(Note: λ = (Nh)(w), z = w)

= (Nh)(w)

(3 )and (4) are clearly.
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Proposition 4.4. Suppose h1, h2 ∈ HF (G), and h1 � h2, N is a normal hesitant fuzzy subgroup,
then

(1) N−(h1) � N−(h2)
(2) N−(h1) � N−(h2)

Proof. By Definition 4.1

Proposition 4.5. Suppose N is a normal hesitant fuzzy subgroup of G, and h1, h2 ∈ HF (G), we
have

(1) N−(h1∪̃h2) ≈ N−(h1)∪̃N−(h2)
(2) N−(h1∩̃h2) � N−(h1)∩̃N−(h2)
(3) N−(h1∪̃h2) � N−(h1)∪̃N−(h2)
(4) N−(h1∩̃h2) ≈ N−(h1)∩̃N−(h2)

Proof. By Definition 4.1.

Proposition 4.6. Suppose N is a normal hesitant fuzzy subgroup of G, and h is a (normal) hesitant
fuzzy subgroup of G, we have N−(h) is a (normal) hesitant fuzzy subgroup of G.

Proof. For s, t ∈ G, we obtain

N−(h)(s) ∩N−(h)(t) =
⋃

sλ∈M
{λ |

⋃
x∈G

λ ∩N(s−1x) ∩ h(x) 6= ∅}

∩
⋃

tµ∈M
{µ |

⋃
y∈G

µ ∩N(t−1y) ∩ h(y) 6= ∅}

=
⋃

sλ∈M

⋃
tµ∈M

[{λ |
⋃
x∈G

λ ∩N(s−1x) ∩ h(x) 6= ∅}

∩{µ |
⋃
y∈G

µ ∩N(t−1y) ∩ h(y) 6= ∅}]

=
⋃

sλ∈M

⋃
tµ∈M

{λ ∩ µ |
⋃
x∈G

⋃
y∈G

λ ∩ µ ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z=xy∈G

ν ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

⊆
⋃

wν∈M
{ν |

⋃
z=xy∈G

ν ∩N(w−1z) ∩ h(z) 6= ∅}

= N−(h)(w) (Note w = st, z = xy)

So, N−(h) is a hesitant fuzzy subgroup of G.

Furthermore, if h is a normal hesitant fuzzy subgroup of G, then for s, t ∈ G, let w = s−1ts, we
have

N−(h)(s−1ts) = N−(h)(w)

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(w−1z) ∩ h(w) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N((s−1ts)−1z) ∩ h(s−1ts) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(st−1s−1z) ∩ h(t) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(st−1zs−1) ∩ h(t) 6= ∅}

=
⋃

wν∈M
{ν |

⋃
z∈G

ν ∩N(t−1z) ∩ h(t) 6= ∅}

=
⋃

tλ∈M
{λ |

⋃
z∈G

λ ∩N(t−1z) ∩ h(t) 6= ∅}

= N−(h)(t)

By the above proof, we obtain N−(h) is a normal hesitant fuzzy subgroup of G.



Journal of New Theory 30 (2020) 35-44 / Rough Hesitant Fuzzy Groups 40

In general, N−(h) is not a hesitant fuzzy subgroup of G. But if N−(h) is a hesitant fuzzy subgroup
of G, and h is a normal hesitant fuzzy subgroup of G, in the similar method, we can prove N−(h) is
also a normal hesitant fuzzy subgroup of G.

Proposition 4.7. Suppose N , H are two normal hesitant fuzzy subgroups of G, the corresponding
rough operators N−, N−;H−, H− respectively, and h, k ∈ HF (G), we have

(1) N−(h)N−(k) � N−(hk)
(2) N−(h)N−(k) � N−(hk)
(3) (N ∩̃H)−(h) � N−(h)∩̃H−(h)
(4) (N ∩̃H)−(h) � N−(h)∩̃H−(h)

where (N ∩̃H)−, (N ∩̃H)− are two rough operators induced by the normal hesitant fuzzy subgroup
N ∩̃H.

Proof. (1) For every w ∈ G,

N−(hk)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ (hk)(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ [
⋃
z=xy

h(x) ∩ k(y)] 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy

λ ∩N(w−1z) ∩ h(x) ∩ k(y) 6= ∅}

(N−(h)N−(k))(w) =
⋃
w=st

N−(h)(s) ∩N−(k)(t)

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}

∩
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩N(t−1y) ∩ k(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}

∩{ν |
⋃
y∈G

ν ∩N(t−1y) ∩ k(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

{µ ∩ ν |
⋃
x∈G

⋃
y∈G

µ ∩N(s−1x) ∩ h(x) ∩ ν ∩N(t−1y) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1x) ∩N(t−1y) ∩ h(x) ∩ k(y) 6= ∅}

(Note wλ = sµtν)

⊆
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1xt−1y) ∩ h(x) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1t−1xy) ∩ h(x) ∩ k(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(w−1z) ∩ h(x) ∩ k(y) 6= ∅}

= N−(hk)(w)

(2) For every w ∈ G,

N−(hk)(w) =
⋃

wλ∈M
{λ |

⋂
z∈G

(wλN)(z) ⊆ (hk)(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

(wλN)(z) ⊆
⋃
z=xy

h(x) ∩ k(y)}

=
⋃
z=xy

⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
z∈G

(sµN)(z) ⊆ k(x)}]

∩[
⋃

tν∈M
{ν |

⋂
z∈G

(tνN)(z) ⊆ k(y)}] (Note wλ = sµtν)

=
⋃
z=xy

⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
z∈G

µ ∩N(s−1z) ⊆ h(x)}]
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∩[
⋃

tν∈M
{ν |

⋂
z∈G

ν ∩N(t−1z) ⊆ k(y)}]

⊇
⋃
w=st

[
⋃

sµ∈M
{µ |

⋂
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[
⋃

tν∈M
{ν |

⋂
y∈G

ν ∩N(t−1y) ⊆ k(y)}]

=
⋃
w=st

N−(h)(s) ∩N−(k)(t)

= (N−(h)N−(k))(w)

Which implies that N−(h)N−(k) � N−(hk).

(3) For every w ∈ G, we have

(N ∩̃H)−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

(wλ(N ∩̃H))(z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (N ∩̃H)(w−1z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩H(w−1z) ∩ h(z) 6= ∅}

⊇ [
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩N(w−1z) ∩ h(z) 6= ∅}]

∩[
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩H(w−1z) ∩ h(z) 6= ∅}]

= N−(h)(w) ∩H−(h)(w)

= (N−(h)∩̃H−(h))(w)

(4) For every w ∈ G, we have

(N ∩H)−(h)(w) =
⋃

wλ∈M
{λ |

⋂
z∈G

(wλ(N ∩̃H))(z) ⊆ h(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩ (N ∩̃H)(w−1z) ⊆ h(z)}

=
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ∩H(w−1z) ⊆ h(z)}

⊆
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩N(w−1z) ⊆ h(z)}

∩
⋃

wλ∈M
{λ |

⋂
z∈G

λ ∩H(w−1z) ⊆ h(z)}

= N−(h)(w) ∩H−(h)(w)

= (N−(h)∩̃H−(h))(w)

Proposition 4.8. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every hesitant
fuzzy subgroup h of G, we have N−(h)H−(h) � (NH)−(h).

Proof. For every w ∈ G, we have

(NH)−(h)(w) =
⋃

wλ∈M
{λ |

⋃
z∈G

(wλ(NH))(z) ∩ h(z) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

(N−(h)H−(h))(w) =
⋃
w=st

N−(h)(s) ∧H−(h)(t)

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

(sµN)(x) ∩ h(x) 6= ∅}]

∩[
⋃

tν∈M
{ν |

⋃
y∈G

(tνH)(y) ∩ h(y) 6= ∅}]

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]
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∩[
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

{µ ∧ ν |
⋃
x∈G

⋃
y∈G

µ ∩ ν ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
x∈G

⋃
y∈G

λ ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩N(s−1x) ∩H(t−1y) ∩ h(x) ∩ h(y) 6= ∅}

=
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ∩ h(x) ∩ h(y) 6= ∅} (w = st)

⊆
⋃

wλ∈M
{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

= (NH)−(h)(w)

Proposition 4.9. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every hesitant
fuzzy subgroup h of G, we have (NH)−(h) � (N−(h))H∩̃(H−(h))N .

Proof. For every w ∈ G, we have

((N−(h))H∩̃(H−(h))N)(w) = ((N−(h))H)(w) ∩ ((H−(h))N)(w)

= [
⋃
w=st

(N−(h)(s) ∩H(t)] ∩ [
⋃
w=st

H−(h)(t) ∩N(s)]

= [
⋃
w=st

⋃
sµ∈M

{µ |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅} ∩H(t)]

∩[
⋃
w=st

⋃
tν∈M

{ν |
⋃
y∈G

ν ∩H(t−1y) ∩ ν(y) 6= ∅} ∩N(s)]

= [
⋃
w=st

⋃
sµ∈M

{µ ∩H(t) |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]

∩[
⋃
w=st

⋃
tν∈M

{ν ∩N(s) |
⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ ∩H(t) |
⋃
x∈G

µ ∩N(s−1x) ∩ h(x) 6= ∅}]

∩[{ν ∩N(s) |
⋃
y∈G

ν ∩H(t−1y) ∩ h(y) 6= ∅}]

=
⋃
w=st

⋃
sµ∈M

∨
tν∈M

{µ ∩H(t) ∩ ν ∩N(s) |

⋃
x∈G

⋃
y∈G

µ ∩N(s−1x) ∩ h(x) ∩ ν ∩H(t−1y) ∩ h(y) 6= ∅}

=
⋃
w=st

⋃
wλ∈M

{λ ∩H(t) ∩N(s) |
⋃
z=xy

|

λ ∩N(s−1x) ∩ h(x) ∩H(t−1y) ∩ h(y) 6= ∅}

⊆
⋃
w=st

⋃
wλ∈M

{λ |
⋃
z=xy

λ ∩N(s−1x) ∩H(t−1y) ∩ h(z) 6= ∅}

(h(x) ∧ h(y) ⊆ h(z))

=
⋃

wλ∈M
{λ |

⋃
z∈G

λ ∩ (NH)(w−1z) ∩ h(z) 6= ∅}

= (NH)−(h)(w)

Proposition 4.10. Suppose N , H are two normal hesitant fuzzy subgroups of G, and for every
hesitant fuzzy subgroup h of G, we have N−(h)H−(h) � (NH)−(h).

Proof. For every w ∈ G,

(N−(h)H−(h))(w) =
⋃
w=st

N−(h)(s) ∩H−(h)(t)



Journal of New Theory 30 (2020) 35-44 / Rough Hesitant Fuzzy Groups 43

=
⋃
w=st

[
⋃

sµ∈M
{µ |

⋃
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[
⋃

tν∈M
{ν |

⋃
y∈G

ν ∩H(t−1y) ⊆ h(y)}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ |
⋃
x∈G

µ ∩N(s−1x) ⊆ h(x)}]

∩[{ν |
⋃
y∈G

ν ∩H(t−1y) ⊆ h(y)}]

=
⋃
w=st

⋃
sµ∈M

⋃
tν∈M

[{µ ∩ ν |
⋃
x∈G

⋃
y∈G

µ ∩ ν ∩N(s−1x) ∩H(t−1y) ⊆ h(x) ∩ h(y)}]

=
⋃
w=st

⋃
wλ∈M

[{λ |
⋃

z=xy∈G
λ ∩N(s−1x) ∩H(t−1y) ⊆ h(x) ∩ h(y)}]

=
⋃
w=st

⋃
wλ∈M

[{λ |
⋃

z=xy∈G
λ ∩ (NH)(w−1z) ⊆ h(x) ∩ h(y)}]

⊆
⋃

wλ∈M
[{λ |

⋃
z=xy∈G

λ ∩ (NH)(w−1z) ⊆ h(z)}]

= (NH)−(h)(w)

5. Conclusion

In [31], the set of all hesitant fuzzy sets forms a Boolean algebra. As a generalization, we defined two
rough operators on a hesitant fuzzy group, and discussed some of their properties.
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Abstract − The aim of this paper is to introduce a new class
∗∑
p

(α, β, σ) of mero-

morphically starlike functions defined by certain integral operator in the unit disc
E = {z | 0 < |z| < 1} and investigate coefficients, distortion properties and radius of

convexity for the class. Furthermore it is shown that the class
∗∑
p

(α, β, σ) is closed

under convex linear combinations and integral transforms.

Keywords − Meromorphic, distortion, radius of convexity, integral transforms

1. Introduction

Let Σ be denote the class of all functions f(z) of the form

f(z) =
1

z
+
∞∑
n=1

anz
n (1)

which are regular in E = {z : 0 < |z| < 1}, with a simple pole at the origin. Let
∑
s
,
∗∑

(α) and∑
k

(α), (0 ≤ α < 1) denote the subclasses of
∑

that are univalent, moromorphically starlike of order

α and meromorphically convex of order α respectively. Analytically f(z) of the form (1) is in
∗∑

(α)
if and only if

Re

{
−zf

′(z)

f(z)

}
> α, (z ∈ E) (2)

Similarly, f ∈
∑
k

(α) if and only if f(z) is of the form (1) and satisfies

Re

{
−
(

1 +
zf ′′(z)

f ′(z)

)}
> α, (z ∈ E) (3)

It being understood that if α = 1 then f(z) = 1
z is the only function which is

∗∑
(1) and

∑
k

(1).

1bvlmaths@gmail.com (Corresponding Author); 2reddypt2@gmail.com; 3madhuri.4073@gmail.com
1,3 Department of Mathematics, GSS, GITAM University, Doddaballapur- 562 163, Bengaluru Rural, India
2Department of Mathematics, Kakatiya Univeristy, Warangal- 506 009, Telangana, India
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The classes
∗∑

(α) and
∑
k

(α) have been extensively studied by Pommerenke [1], Clunie [2], Royster

[3] and others. Recently the integral operator of f(z) in
∑
s

for σ > 0 is denoted by Iσ and defined as

following

Iσf(z) =
1

z2Γ(σ)

z∫
0

(
log

z

t

)σ−1
tf(t)dt (4)

That is defined by Jung et al. [4]. It is easy to verify that if f(z) is of the form (1), then

Iσf(z) =
1

z
+
∞∑
n=1

(
1

n+ 2

)σ
anz

n (5)

The aim of the present paper is to introduce the class of meromorphically starlike functions which

we denote by
∗∑

(α, β, σ) for some α(0 ≤ α < 1), β(0 < β ≤ 1) and σ > 0. We then consider the

class
∗∑
p

(α, β, σ) =
∑
p
∩
∗∑

(α, β, σ) and extend some of the results of Juneja et al. [5] to this class. We

obtain coefficient estimates, distortion properties and radius of convexity for the class. Furthermore it

is shown that the class
∗∑
p

(α, β, σ) is closed under convex linear combinations and integral transforms.

Definition 1.1. Let the function f(z) be defined by (1). Then f(z) ∈
∗∑

(α, β, σ) if and only if∣∣∣∣z[Iσf(z)]′

Iσf(z)
+ 1

∣∣∣∣ < β

∣∣∣∣z[Iσf(z)]′

Iσf(z)
+ 2α− 1

∣∣∣∣ ,
for some α(0 ≤ α < 1), β(0 < β ≤ 1), σ > 0 and for all z ∈ E.

2. Coefficient estimates

In this section we obtain a sufficient condition for a function to be in
∗∑

(α, β, σ).

Theorem 2.1. Let f(z) = 1
z +

∞∑
n=1

anz
n be regular in E. If

∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]

[
1

n+ 2

]σ
|an| ≤ 2β(1− α) (6)

for some 0 ≤ α < 1, 0 < β ≤ 1 and σ > 0 then f(z) ∈
∗∑

(α, β, σ).

Proof. Suppose (6) holds for all admissible values of α and β. Consider the expression

H(f, f ′) =
∣∣z[Iσf(z)]′ + [Iσf(z)]

∣∣− β ∣∣z[Iσf(z)]′ + (2α− 1)[Iσf(z)]
∣∣ (7)

The we have

H(f, f ′) ≤

∣∣∣∣∣
∞∑
n=1

(n+ 1)

[
1

n+ 2

]σ
anz

n

∣∣∣∣∣− β
∣∣∣∣∣2( α− 1)

1

z
+
∞∑
n=1

(n+ 2α− 1)

[
1

n+ 2

]σ
anz

n

∣∣∣∣∣
⇒ rH(f, f ′) =

∞∑
n=1

(n+ 1)

[
1

n+ 2

]σ
|an|rn+1 − β

{
2(α− 1)−

∞∑
n=1

(n+ 2α− 1)

[
1

n+ 2

]σ
|an|rn+1

}

=
∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]

[
1

n+ 2

]σ
|an|rn+1 − 2β(1− α).

Since the above inequality holds for all r, 0 < r < 1, letting r → 1, we have

H(f, f ′) ≤
∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]

[
1

n+ 2

]σ
|an| − 2β(1− α)

≤ 0, by (6).
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Hence it follows that
∣∣∣ z[Iσf(z)]′Iσf(z) + 1

∣∣∣ < β
∣∣∣ z[Iσf(z)]′Iσf(z) + 2α− 1

∣∣∣ .
So that f(z) ∈

∗∑
(α, β, σ). Hence the theorem.

Theorem 2.2. Let the function f(z) = 1
z +

∞∑
n=1

anz
n, an ≥ 0 be regular in E. Then f(z) ∈

∗∑
p

(α, β, σ)

if and only if (6) is satisfied.

Proof. In view of Theorem 2.1, it is sufficient to show that only if part.

Let us assume that f(z) = 1
z +

∞∑
n=1

anz
n, an ≥ 0 is in

∗∑
p

(α, β, σ).

Then

∣∣∣∣∣ z[Iσf(z)]′
Iσf(z)

+1

z[Iσf(z)]′
Iσf(z)

+2α−1

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
n=1

(n+1)[ 1
n+2 ]

σ
anzn

2(1−α) 1
z
−
∞∑
n=1

(n+2α−1)[ 1
n+2 ]

σ
anzn

∣∣∣∣∣∣ < β, for all z ∈ E.

Using the fact that Re(z) ≤ |z|, if follows that

Re


∞∑
n=1

(n+ 1)
[

1
n+2

]σ
anz

n

2(1− α)1z −
∞∑
n=1

(n+ 2α− 1)
[

1
n+2

]σ
anzn

 < β, z ∈ E (8)

Now choose the values of z on the real axis so that z[Iσf(z)]′

Iσf(z) is real.

Upon clearing the denominator in (8) and letting z → 1 through positive values,

we obtain
∞∑
n=1

(n+ 1)
[

1
n+2

]σ
an ≤ β

{
2(1− α)−

∞∑
n=1

(n+ 2α− 1)
[

1
n+2

]σ
an

}
⇒

∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]
[

1
n+2

]σ
|an| ≤ 2β(1− α).

Hence the theorem.

Corollary 2.3. If f(z) = 1
z +

∞∑
n=1

anz
n, an ≥ 0 is in

∗∑
p

(α, β, σ) then

an ≤
2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1
, n = 1, 2, · · · (9)

with equality for each n, for function of the form

fn(z) =
1

z
+

2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1
zn, n = 1, 2, · · · (10)

If β = 1 in the above theorem, we get the following result of Atshan et al. [6].

Corollary 2.4. If f(z) ∈
∗∑
p

(α, β, σ) then

an ≤
(1− α)(n+ 2)σ

n+ α
, n = 1, 2, · · ·

The result is sharp for the functions fn(z) is given by

fn(z) =
1

z
+

(1− α)(n+ 2)σ

n+ α
zn, n = 1, 2, · · ·

3. Distortion properties and radius of convexity estimates

In this section we prove the Distortion Theorem and radius of convexity estimates for the class
∗∑
p

(α, β, σ).
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Theorem 3.1. Let f(z) ∈
∗∑
p

(α, β, σ). Then for 0 < |z| = r < 1,

1

r
− 3σβ(1− α)

1 + αβ
r ≤ |f(z)| ≤ 1

r
+

3σβ(1− α)

1 + αβ
r (11)

with equality for the function

f(z) =
1

z
+

3σβ(1− α)

1 + αβ
z, at z = r, ir (12)

Proof. Suppose f(z) ∈
∗∑
p

(α, β, σ). In view of Theorem 2.2, we have

∞∑
n=1

an ≤
3σβ(1− α)

1 + αβ
(13)

Thus for 0 < |z| = r < 1,

|f(z)| =

∣∣∣∣∣1z +
∞∑
n=1

anz
n

∣∣∣∣∣
≤ 1

|z|
+

∞∑
n=1

an|z|n

≤ 1

r
+ r

∞∑
n=1

an

≤ 1

r
+

3σβ(1− α)

1 + αβ
, by (13)

This gives the right hand side of (11). Also,

|f(z)| =

∣∣∣∣∣1z −
∞∑
n=1

anz
n

∣∣∣∣∣
≥ 1

|z|
−
∞∑
n=1

an|z|n

≥ 1

r
− r

∞∑
n=1

an

≥ 1

r
− 3σβ(1− α)

1 + αβ

which gives the left hand side of (11) .

Theorem 3.2. Let the function f(z) be in
∗∑
p

(α, β, σ). Then for f(z) is meromorphically convex of

order δ(0 ≤ δ < 1) in |z| < r = r(α, β, σ, δ), where

r(α, β, σ, δ) = inf
n

{
(1− δ)[(1 + β)n+ (2α− 1)β + 1

2β(1− α)n(n+ 2− δ)(n+ 2)σ

} 1
n+1

, n = 1, 2, · · · (14)

The bound for |z| is sharp for each n with the extremal function being of the form (10).

Proof. Let f(z) ∈
∗∑
p

(α, β, σ). Then by Theorem 2.2

∞∑
n=1

(1 + β)n+ (2α− 1)β + 1

2β(1− α)(n+ 2)σ
an ≤ 1 (15)
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In view of (3) , it is sufficient to show that∣∣∣∣2 +
zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1− δ, for |z| < r(α, β, σ, δ)

or equivalently to show that∣∣∣∣f ′(z) + (zf ′(z))′

f ′(z)

∣∣∣∣ ≤ 1− δ, for |z| < r(α, β, σ, δ) (16)

Substituting the series expansions for f ′(z) and (zf ′(z))′ in the left hand side of (16) then we get∣∣∣∣∣∣∣∣
∞∑
n=1

n(n+ 1)anz
n−1

− 1
z2

+
∞∑
n=1

nanzn−1

∣∣∣∣∣∣∣∣ ≤
∞∑
n=1

n(n+ 1)an|z|n+1

1−
∞∑
n=1

nan|z|n+1

This will be bounded by (1− δ) if

∞∑
n=1

n(n+ 2− δ)
1− δ

an|z|n+1 ≤ 1 (17)

In view of (15), it follows that (17) is true if

n(n+ 2− δ)
1− δ

|z|n+1 ≤ (1 + β)n+ (2α− 1)β + 1

2β(1− α)(n+ 2)σ
, n = 1, 2, · · ·

⇒ |z| ≤
{

(1− δ)[(1 + β)n+ (2α− 1)β + 1]

2β(1− α)n(n+ 2− δ)(n+ 2)σ

} 1
n+1

, n = 1, 2, · · · (18)

Setting |z| = r(α, β, σ, δ) in (18), the result follows.
The result is sharp, the extremal function being of the form

fn(z) =
1

z
+

2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1
zn, n = 1, 2, · · ·

4. Convex linear combinations

In this section we prove that the class
∗∑
p

(α, β, σ) is closed under convex linear combinations.

Theorem 4.1. Let f0(z) = 1
z and fn(z) = 1

z + + 2β(1−α)(n+2)σ

(1+β)n+(2α−1)β+1z
n, n = 1, 2, · · · . Then f(z) ∈

∗∑
p

(α, β, σ) if and only if it can be expressed in the form f(z) =
∞∑
n=0

λnfn(z), where λn ≥ 0 and

∞∑
n=0

λn = 1.
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Proof. Let f(z) =
∞∑
n=0

λnfn(z), where λn ≥ 0 and
∞∑
n=0

λn = 1. Then

f(z) =
∞∑
n=0

λnfn(z) = λ0f0(z) +
∞∑
n=1

λnfn(z)

=

[
1−

∞∑
n=1

λn

]
f0(z) +

∞∑
n=1

λnfn(z)

=

[
1−

∞∑
n=1

λn

]
1

z
+
∞∑
n=1

λn

[
1

z
+

2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1
zn
]

=
1

z
+

∞∑
n=1

λn
2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1
zn

Since
∞∑
n=1

{
(1 + β)n+ (2α− 1)β + 1

2β(1− α)(n+ 2)σ

}
λn

2β(1− α)(n+ 2)σ

(1 + β)n+ (2α− 1)β + 1

=
∞∑
n=1

λn = 1− λ0 ≤ 1

Therefore f(z) ∈
∗∑
p

(α, β, σ).

Conversely suppose that f(z) ∈
∗∑
p

(α, β, σ).

Since an ≤ 2β(1−α)(n+2)σ

(1+β)n+(2α−1)β+1 , n = 1, 2, · · · .

Setting λn = (1+β)n+(2α−1)β+1
2β(1−α)(n+2)σ an, n = 1, 2, · · · and λ0 = 1−

∞∑
n=0

λn.

It follows that f(z) =
∞∑
n=0

λnfn(z). This completes the proof of the theorem.

Theorem 4.2. The class
∗∑
p

(α, β, σ) is closed under convex linear combination.

Proof. Let the function Fk(z) be given by

Fk(z) = 1
z +

∞∑
n=1

fn,kz
n, k = 1, 2 · · · ,m be in the class

∗∑
p

(α, β, σ).

Then it is enough to show that the function

H(z) = λF1(z) + (1− λ)F2(z), (0 ≤ λ ≤ 1)

tt is also in the class
∗∑
p

(α, β, σ). Since for 0 ≤ λ ≤ 1,

H(z) =
1

z
+

∞∑
n=1

[λfn,1 + (1− λ)fn,2] z
n

We observe that
∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]
1

(n+ 2)σ
[λfn,1 + (1− λ)fn,2]

= λ

∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]
1

(n+ 2)σ
fn,1

+ (1− λ)

∞∑
n=1

[(1 + β)n+ (2α− 1)β + 1]
1

(n+ 2)σ
fn,2

≤ 2βλ(1− α) + (1− λ)2β(1− α) = 2β(1− α)

By Theorem 2.2, we have H(z) ∈
∗∑
p

(α, β, σ).
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5. Integral transforms

In this section, we consider integral transforms of functions in
∗∑
p

(α, β, σ).

Theorem 5.1. If f(z) is in
∗∑
p

(α, β, σ) then the integral transforms

Fc(z) = c

1∫
0

ucf(uz)du, 0 < c <∞ (19)

are in
∗∑
p

(δ) ,where δ = δ(α, β, σ, c) =
(1 + αβ)(c+ 2)− 3σβc(1− α)

(1 + αβ)(c+ 2) + 3σβc(1− α)
(20)

The result is best possible for the function f(z) = 1
z + 3σβ(1−α)

(1+αβ) z.

Proof. Suppose f(z) ∈
∗∑
p

(α, β, σ). We have

Fc(z) = c

1∫
0

ucf(uz)du =
1

z
+
∞∑
n=1

can
n+ c+ 1

zn

It is sufficient to show that
∞∑
n=1

(n+ δ)

(1− δ)
can

(n+ c+ 1)
≤ 1 (21)

Since f(z) ∈
∗∑
p

(α, β, σ), we have

∞∑
n=1

(1 + β)n+ (2α− 1)β + 1

2β(1− α)(n+ 2)σ
an ≤ 1 (22)

Thus (21) will be satisfied if (n+δ)
(1−δ)

c
(n+c+1) ≤

(1+β)n+(2α−1)β+1
2β(1−α)(n+2)σ , for each n

⇒ δ ≤ [(1 + β)n+ (2α− 1)β + 1][n+ c+ 1]− 2β(1− α)nc(n+ 2)σ

[(1 + β)n+ (2α− 1)β + 1][n+ c+ 1] + 2β(1− α)nc(n+ 2)σ
(23)

Since the right hand side of (23) is an increasing function of n, putting n = 1 in (23), we get

δ ≤ (1 + αβ)(c+ 2)− 3σβ(1− α)c

(1 + αβ)(c+ 2) + 3σβ(1− α)c

Hence the theorem.
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Abstract − An Abel-Grassmann’s groupoid (briefly AG-groupoid) is a groupoid S
satisfying the left invertive law: (xy)z = (zy)x ∀ x, y, z ∈ S. In the present paper, we
discuss the left and right cancellative property of elements of the finite AG-groupoid
S. For an AG-groupoid with left identity it is known that every left cancellative ele-
ment is right cancellative. We prove a problem (for finite AG-groupoids) that every
left cancellative element of an AG-groupoid (with out left identity) is right cancella-
tive. Moreover, we generalize various results of finite AG-groupoids by removing the
condition of existence of left identity.

Keywords − AG-groupoid, AG-subgroupoid, Cancellative elements, non-cancellative elements

1. Introduction

An AG-groupoid S is a groupoid which satisfies the left invertive law (xy)z = (zy)x ∀ x, y, z ∈ S, this
is non-associative in general. In literature, different authors used different names for this structure,
e.g. left invertive groupoid in [1], Left Almost Semigroup (briefly LA-semigroup) in [2, 3], while right
modular groupoid in [4, Line 35]. Cho et al. [4] proved that, an AG-groupoid S always satisfies the
medial law: (wx)(yz) = (wy)(xz) ∀ w, x, y, z ∈ S, while an AG-groupoid S with left identity always
satisfies the paramedial law: (wx)(yz) = (zx)(yw) ∀ w, x, y, z ∈ S. An AG-groupoid S with left
identity is called a left almost group (briefly LA-group) or an AG-group, if each element of S has its
inverse element [5]. For more study we refer [6,7]. A non-empty subset H of an AG-groupoid is called
an AG-subgroupoid if it is closed with respect to the binary operation. A left ideal I (respectively,
right) of an AG-groupoid S is a subset of S which satisfies the property SI ⊂ I (respectively, IS ⊂ I).
A two sided ideal of S is an ideal which is both left and right ideal. An element c ∈ S is called left
cancellative if cx = cy =⇒ x = y ∀ x, y ∈ S. Similarly, c ∈ S is said to be right cancellative if
xc = yc =⇒ x = y ∀ x, y ∈ S. An element c of the AG-groupoid S is said to be cancellative if it is
both left and right cancellative. From now onward, we will use LC for left cancellative, RC for right
cancellative, TC for two sided cancellative and NC for non-cancellative elements. An AG-groupoid
S is called LC (respectively, RC) if all element of S is LC (respectively, RC). LC, RC and TC play
an important role in the theory of quasigroups and many results occur in this structure due to these
properties. Every AG-groupoid is not necessarily TC but some or all of its elements may be TC and
hence can enjoy some special properties that a general AG-groupoid cannot possess.

In this paper, we study the LC and RC property of a finite AG-groupoids. Moreover, we solve a
problem proposed by Shah et al. [8], that every LC element of an AG-groupoid is also RC. We also
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generalize several results of [8] and remove the condition of existence of left identity. We prove that
TC and NC elements of a finite AG-groupoid (not necessarily have left identity) S partition S and the
two sub-classes of S are AG-subgroupoids. If a finite AG-groupoid S have at least one NC element
then set of NC elements form a maximal ideal.

2. Characterization of AG-groupoid due to Cancellativity

In this section, we show that every LC element of a finite AG-groupoid is TC. The following lemma
will be useful.

Lemma 2.1. If a finite AG-groupoid S has LC (respectively, RC) element then SS = S.

Proof. Let S be a finite AG-groupoid. Then clearly SS ⊆ S. On the other hand, let S =
{s1, s2, . . . , sn} be a finite AG-groupoid and a ∈ S be a LC (respectively ,RC) element. Then
aS = {as1, as2, . . . , asn} (respectively, Sa = {s1a, s2a, . . . , sna}). We have to show that aS has n
distinct elements. Let on the contrary there exist ai and aj of S such that aai = aaj . Then since a is
LC. This gives ai = aj , which implies that all elements of aS are distinct. Let x ∈ S be any arbitrary
element. Then there exist ai ∈ S such that x = aai ∈ SS. This gives S ⊆ SS. Hence SS = S.

Remark 2.2. Lemma 2.1 does not hold for infinite AG-groupoid as (N,+) is an infinite AG-groupoid
but N +N 6= N .

The following theorems will be useful.

Theorem 2.3 (Shah et al. [8]). In AG-groupoid, if an element is RC then it is TC.

Theorem 2.4 (Shah et al. [8]). Let x, y ∈ S, where S is an AG-groupoid. We define a relation ∼ on
S as

x ∼ y, x and y are both TC or NC.

Then the relation ∼ is an equivalence relation.

Theorem 2.5. Let S be a finite AG-groupoid and c ∈ S such that c = c1c2. Then c is LC if and only
if c1 and c2 are TC.

Proof. Let c ∈ S be any LC element of the finite AG-groupoid S. Then ∀ x, y ∈ S, we have

cx = cy =⇒ x = y

Let c = c1c2, we have to show that both c1 and c2 are TC. For this it is enough to show that they are
RC. Let xc2 = yc2 for any x, y ∈ S. Then by repeated use of left invertive law, we get

cx = (c1c2)x = (xc2)c1

= (yc2)c1 = (c1c2)y

= cy

This gives x = y. This implies that c2 is RC and hence TC. Next we have to show that c1 is RC, for
this let xc1 = yc1 for any x, y ∈ S. Since we have proved that c2 is RC, thus there exist x1, y1 ∈ S
such that x = x1c2 and y = y1c2. Now as

xc1 = yc1

(x1c2)c1 = (y1c2)c1

(c1c2)x1 = (c1c2)y1 by left invertive law

This implies that cx1 = cy1 which further implies that x1 = y1 and hence x = y. Hence c1 is RC.
Thus c is the product of two TC elements.
Conversely, let c1, c2 ∈ S be two TC elements, we have to show that their product c1c2 is LC. For this
consider

(c1c2)x = (c1c2)y

(xc2)c1 = (yc2)c1 by left invertive law

As c1 and c2 are RC, so we get x = y.
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Theorem 2.6. Every RC element in a finite AG-groupoid is the product of two TC elements.

Proof. Let c ∈ S be any arbitrary RC element of the finite AG-groupoid S. Then ∀ x, y ∈ S, we
have

xc = yc =⇒ x = y

Let c = c1c2. We have xc1 = yc1 and consider

(xc)c = (xc)(c1c2) = (xc1)(cc2) by medial law

= (yc1)(cc2) = (yc)(c1c2) again by medial law

= (yc)c

By repeated use of RC property of c, we get x = y.
Next we show that c2 is RC. For this let xc2 = yc2. Then consider

(c1x)c = (c1x)(c1c2) = (c1c1)(xc2) by medial law

= (c1x)(c1c2) = (c1c1)(yc2) again by medial law

= (c1y)c

By use of TC property of c and c1, we get x = y. This implies that c2 is RC.

Theorem 2.7. Every LC element in a finite AG-groupoid is RC element.

Proof. The proof follows from Theorem 2.5 and Theorem 2.6.

Corollary 2.8. For a finite AG-groupoid S, the following two conditions are equivalent for any c ∈ S.

(1) c is RC

(2) c is LC

Theorem 2.9. The set of all TC elements of a finite AG-groupoid S is either an AG-subgroupoid of
S or an empty set.

Proof. Let S be a finite AG-groupoid and H be the set of all TC elements of S. If H is empty then
there is nothing to prove and if H is non-empty then let c1, c2 ∈ H. Let on the contrary c = c1c2 is
NC then this implies that one of c1 or c2 or both are NC, which is a contradiction. Hence H is an
AG-subgroupoid.

Corollary 2.10. If S is a finite AG-groupoid then the product of one TC element and one NC element
or product of two NC elements is always NC.

Lemma 2.11. If S is a finite AG-groupoid then the set of all NC elements of S is either an AG-
subgroupoid of S or an empty set.

Proof. Given that S is a finite AG-groupoid. Let K be the set of all NC elements. Clearly, K is
empty if S is TC. So let us suppose S is not TC and let c1, c2 ∈ K and on contrary that c = c1c2
is TC then by Theorem 2.5 both c1 and c2 are LC, which by Theorem 2.7 c1 and c2 are TC. Hence
c = c1c2 is NC. Thus K is an AG-subgroupoid.

Theorem 2.12. TC elements and NC elements of a finite AG-groupoid S partition S into two AG-
subgroupoid of S.

Corollary 2.13. If S is a finite AG-groupoid then a proper right (respectively, left) ideal of S cannot
be a subset of H.

Proof. Proof follows from Theorem 2.9.

Corollary 2.14. For a finite AG-groupoid S having at least one NC element, K is always a maximal
ideal.

Proof. Proof follows from Lemma 2.11.
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In the following theorem, we construct TC AG-groupoids from abelian group.

Theorem 2.15. Let (G,+) be an abelian group under addition and let α, β ∈ Auto(G) satisfying
α2 = β. Then define new binary operation on G by x · y = α(x) + β(y) ∀ x, y ∈ G. Then Gα,β is an
AG-groupoid.

Proof. Let x, y and z be any three arbitrary elements of the abelian group G. Then consider

(x · y) · z = (α(x) + β(y)) · z
= α2(x) + αβ(y) + β(z) (1)

On the other hand

(z · y) · x = (α(z) + β(y)) · x
= α2(z) + αβ(y) + β(x)

= α2(x) + αβ(y) + β(z), α2 = β (2)

From (1) and (2) (x · y) · z = (z · y) · x. This implies that Gα,β = (G, ·) is an AG-groupoid. It is easy
to see that Gα,β is TC.
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Abstract − In this paper, we introduce some results on divisor cordial graphs where
we find some upper bound for the labeling of any simple graph and r−regular graph
and describe the divisor cordial labeling for some families of graphs such the jellyfish
graph, shell graph and the bow and butterfly graphs.
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Introduction

In this paper by a simple graph, we mean a finite, undirected graph without loops and multiple edges,
for terms not defined here, we refer to Harary [1]. Graph labeling, mean that the vertices and edges
are assigned real values or subsets of a set, subject to certain conditions. For a dynamic survey on
various graph labeling problems we refer to Gallian [2]. The concept of cordial labeling was introduced
by Cahit [3], in [4], Varatharajan et al. introduce the concept of divisor cordial labeling of graph.
The divisor cordial labeling of various types of graphs are presented in [4–12]. The brief summaries
of definitions which are necessary for the present investigation are provided below. For standard
terminology and notations related to number theory we refer to Burton [13].

Definition 1.1. [4] Let G = (V (G), E(G)) be a simple graph and f : V (G) −→ {1, 2, ..., |V (G)|} be
a bijection. For each edge uv, assign the label 1 if f(u)|f(v) or f(v)|f(u) and the label 0 otherwise.
The function f is called a divisor cordial labeling if |ef (0)− ef (1)| ≤ 1. A graph with a divisor cordial
labeling is called a divisor cordial graph.

Definition 1.2. [1] The neighborhood of a vertex u is the set Nu(G) consisting of all vertices v which
are adjacent with u. The closed neighborhood is Nu[G] = Nu(G)

⋃
{u}.

Definition 1.3. [1] The number δ(G) = min {d(v) | v ∈ V } is the minimum degree of the vertices in
the graph G, the number ∆(G) = max {d(v) | v ∈ V } is the maximum degree of the vertices in the
graph G, the number d(G) = 1

|V |
∑
v∈V

d(v) is the average degree of the vertices in the graph G.

Definition 1.4. [14] The Jelly fish graph J(m,n) is obtained from a 4− cycle v1, v2, v3, v4 by joining
v1 and v3 with an edge and appending m pendent edges to v2 and n pendent edges to v4.
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Definition 1.5. [15] A shell graph is defined as a cycle Cn with (n − 3) chords sharing a common
end point called the apex, shell graphs are denoted as C(n, n− 3).

Definition 1.6. [16] A bow graph is defined to be a double shell in which each shell has any order.

Definition 1.7. [15] Define a Butterfly graph as a bow graph with exactly two pendent edges at the
apex.

The Results

Proposition 2.1. For any simple graph G(p, q), the maximum value of ef (1) is

min

4(G) +
b p2c∑
i=2

(
⌊p
i

⌋
− 1), q

, where p ≥ 4 .

Proof. Let G(p, q) be a simple connected graph and let the vertex vk be of maximum degree 4(G),
if we labeled this vertex by 1 then we will achieve 4(G) edges labeled 1, and from division algorithm
the maximum numbers of the multiples of labels of vertices are:
for 2 is bp2c − 1,
for 3 is bp3c − 1,
for 4 is bp4c − 1,
.
.
.
for bp2c is b p

b p
2
cc − 1 which must equal 1

hence the maximum value for ef (1) equals 4(G) +
b p2c∑
i=2

(
⌊p
i

⌋
− 1) in any graph G(p, q).

Corollary 2.2. For each r−regular graph the maximum value of ef (1) is kr+
b p2c∑

i=k+1

(
⌊p
i

⌋
−1); where

k = b p
r+1c and p ≥ 4 .

Proof. Let G(p, q) be an r − regular graph then 4(G) = r, and for each vertex v in graph G the
maximum number of edges that label 1 in Nv(G) is r, hence for all i in which bpi c − 1 ≥ r we reduced
it to r.

But from Proposition 2.1 the maximum value of ef (1) is 4(G) +
b p2c∑
i=2

(
⌊p
i

⌋
− 1), then the maximum

value in an r − regular graph is:

= r +
k∑

i=2

(r) +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

= r + (k − 1)r +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

= kr +

b p2c∑
i=k+1

(
⌊p
i

⌋
− 1)

Proposition 2.3. For any divisor cordial graph G(p, q), q ≤ 2(4(G) +
b p2c∑
i=3

⌊p
i

⌋
) + 3, where p ≥ 6 .

Proof. Let G(p, q) be a divisor cordial graph, then |ef (0) − ef (1)| ≤ 1, means ef (0) = ef (1) − 1 or
ef (0) = ef (1) or ef (0) = ef (1) + 1,
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by Proposition 2.1,

q ≤ 2ef (1) + 1

q ≤ 2(M G+

b p2c∑
i=2

(
⌊p
i

⌋
− 1)) + 1

q ≤ 2(M G+

b p2c∑
i=3

(
⌊p
i

⌋
)) + 3

Divisor Cordial Labeling for Some Families of Graphs

In this section we introduce the divisor cordial labeling for some types of graphs.

The Jelly Fish Graph

Proposition 3.1. For m,n ≥ 1, Jelly fish graph J(m,n) is a divisor cordial graph.

Proof. Let G(V,E) = J(m,n). Then G has (m+ n+ 4) vertices and (m+ n+ 5) edges.
Without losing of generality, let m ≤ n. Let V (G) = V1 ∪ V2 where V1 = {x, u, y, v},
V2 = {ui, vj ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E = E1 ∪ E2, where E1 = {xu, uy, yv, vx, xy},
E2 = {uui, vvj ; 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Define f : V → {1, 2, ..., (m+ n+ 4)} as follows:

f(u) = 1, f(v) = 2, f(x) = m+ n+ 4, f(y) = m+ n+ 3 and
f(ui) = 2(i+ 1); i = 1, 2, ...,m ,

f(vi) =

{
2i+ 1 , i = 1, 2, ...,m

i+m+ 2 , i = m+ 1,m+ 2, ..., n

From the function f there are m + 2 edges labeled 1 sice f(u) = 1, and since f(v) = 2, then
there are exactly b12(n −m)c of pendent edges from v labeled 1 and only one from vx or vy. means
ef (1) = m+ 3 + b12(n−m)c and

ef (0) = m+ n+ 5− (m+ 3 + b1
2

(n−m)c)

= n+ 2− b1
2

(n−m)c,

Case 1: m,n are odd
The |E| is odd and bn−mc are even, hence, |ef (0)− ef (1)| = 1

Case 2: m,n are even
The |E| is odd and bn−mc is even, hence, |ef (0)− ef (1)| = 1

Case 3: m is odd and n is even
The |E| is even and bn−mc is odd, hence, |ef (0)− ef (1)| = 0

Case 4: m is even and n is odd
The |E| is even and bn−mc is odd, hence, |ef (0)− ef (1)| = 0

Then from Case 1, Case 2, Case 3 and Case 4 the jelly fish graph is divisor cordial.

Example 3.2. The jelly fish graph j(6, 11) and its divisor cordial labeling are shown in Fig.1
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Fig. 1. A Jelly fish graph j(6, 11) and its divisor cordial labeling

The shell and The Bow Graph

Proposition 3.3. Every shell graph is divisor cordial.

Proof. Let G = (V,E) be a C(n, n− 3) graph with |V | = n, then |E| = 2n− 3 means |E| is an odd
number, and let v0 be the apex and v1, v2, ..., vn−1 other its vertices.
Define the labeling f : V −→ {1, 2, ..., n} as:

f(v0) = 2, f(v1) = 1 and other vertices by the following:

2 · 2, 2 · 22, · · · , 2 · 2k1 ,
3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,
5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,
· · · · · · · · · · · · · · · · · · ,
· · · · · · · · · · · · · · · · · · ,

where (2m−1)·2km ≤ n andm ≥ 1, km ≥ 0. We observe that (2m−1)·2a divides (2m−1)·2b; (a < b)
and (2m− 1) · 2ki does not divide 2m+ 1.
In this labeling, there are dn−12 e edges label 1 passing through v0, but other edges not passing through
the apex make a path, hence there are also bn−22 c edges are labeled 1. Hence, ef (1) = dn−12 e+ bn−22 c

Case 1: n is odd, then ef (1) = n−1
2 + bn−22 c and ef (0) = n−1

2 + dn−22 e

Case 2: n is even, then ef (1) = dn−12 e+ n−2
2 and ef (0) = bn−12 c+ n−2

2

In the two cases Case 1 and Case 2, the difference between ef (1) and ef (0) is 1 which means the shell
graph is divisor cordial.

Notice another divisor labeling for shell graphs can found with fan graphs [4]

Example 3.4. The shell graph C(13, 10) and its divisor cordial labeling are shown in Fig. 2

Proposition 3.5. All bow graphs are divisor cordial.

Proof. Let G be a bow graph with two shells of order m and n excluding the apex. Then the number
of vertices in G is p = m+n+1 and the edges q = 2(m+n−1). The apex of the bow graph is denoted
by v0, denote the vertices in the right wing of the bow graph from bottom to top by v1, v2, ..., vm, and
the vertices in the left wing of the bow graph are denoted from top to bottom by vm+1, vm+2, ..., vm+n.
Without losing of generality, suppose m ≤ n.
Define the labeling f : V −→ {1, 2, ...,m+ n+ 1} by:
f(v0) = 2, f(v1) = 1 and label the vertices of the wings by the following:

2 · 2, 2 · 22, · · · , 2 · 2k1 ,
3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,
5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
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Fig. 2. A shell graph C(13, 10) and its divisor cordial labeling

where (2m−1)·2km ≤ p and m ≥ 1, km ≥ 0. We observe that (2m−1)·2a divides (2m−1)·2b(a < b)
and (2m− 1) · 2ki does not divide 2m+ 1.

Let G′ be a graph obtained from the bow graph G by adding the edge vmvm+1.
The graph G′ has an odd number of edges and it is a shell graph, then by Proposition 3.3 the graph
G′ is divisor cordial. The graph G = G′ − vmvm+1 with even edges, then G is divisor cordial since:

Case 1: If m+ n is even, then ef (0) = ef (1) + 1 hence the deleted edge vmvm+1 must be labeled 0.

Subcase i: If f(vm) = (2t− 1) · 2ki for some i, then the deleted edge vmvm+1 is labeled 0.

Subcase ii: If f(vm) 6= (2t−1) ·2ki for some i, then we will shift the labels of vertices v2, v3, ..., vm+n−l
in the wings, by l where l is the smallest integer satisfying f(vm+1) = (2t− 1) · 2ki for some
i, and shift the labels of the vertices vm+n−l+1, vm+n−l+2, ..., vm+n , by l + 1 and take it
modulo (m+ n+ 1).

Case 2: If m+ n is odd, then ef (1) = ef (0) + 1 hence the deleted edge vmvm+1 must be labeled 1.

Subcase i: If f(vm) = (2t−1) ·2ki for some i, then we will shift the labels of vertices v2, v3, ..., vm+n−1
in the wings, by one step and shift the label of vertex vm+n by two and take it modulo
(m+ n+ 1).

Subcase ii: If f(vm) 6= (2t− 1) · 2ki for some i, then the edge vmvm+1 is labeled 1.

Then the bow graph G with two wings of m and n vertices is a divisor cordial graph for each m and
n.

Example 3.6. The bow graph with two wings of 13 and 16 vertices respectively and its divisor cordial
labeling are shown in Fig. 3

Butterfly Graphs

Proposition 3.7. The butterfly graphs are divisor cordial.

Proof. Let G be a butterfly graph with shells of orders m and n excluding the apex then the number
of vertices in G is p = m + n + 3 and the edges q = 2(m + n). The apex of the butterfly graph
is denoted as v0,denote the vertices in the right wing of the butterfly graph from bottom to top as
v1, v2, ..., vm, the vertices in the left wing of the butterfly graph are denoted from top to bottom as
vm+1, vm+2, ..., vm+n, and the vertices in the pendant edges are vm+n+1, vm+n+2.
Since the butterfly defined as a bow graph with exactly two pendent edges at the apex,then we define
the labeling f : V −→ {1, 2, ...,m+ n+ 3} by:
f(v0) = 2, f(v1) = 1, f(vm+n+1) = m+ n+ 2, f(vm+n+2) = m+ n+ 3 and labeled the vertices of the
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Fig. 3. A bow graph with m = 13, n = 16 and its divisor cordial labeling.

wings by the following:
2 · 2, 2 · 22, · · · , 2 · 2k1 ,

3, 3 · 2, 3 · 22, · · · , 3 · 2k2 ,
5, 5 · 2, 5 · 22, · · · , 5 · 2k3 ,
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

where (2m−1)·2km ≤ p and m ≥ 1, km ≥ 0. We observe that (2m−1)·2a divides (2m−1)·2b(a < b)
and (2m− 1) · 2ki does not divide 2m+ 1.
And we make the shift as in Proposition 3.5, for labeling of the vertices in the wings.
Since the only one of the numbers m+ n+ 2 or m+ n+ 3 must be even then the pendent edges will
be labeled 1 and 0, hence the graph G is divisor cordial.

Example 3.8. The butterfly graph G with two wings having m = 9, n = 15 vertices respectively, and
its divisor cordial labeling is shown in Fig. 4.

Fig. 4. A divisor cordial labeling for the butterfly with 27 vertices
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1. Introduction

The path matrix is a popular matrix in graph theory, recently and it had started to develop in 2016.
The path matrix of a graph G is defined as a real and symmetric matrix whose (i,j)-entry is the
maximum number of internally disjoint paths between the vertices vi and vj when i 6= j and is zero
when i = j. Its eigenvalues are real and they are called path eigenvalues of G. The spectral radius of
P (G) is represented by ρ = ρ(G). The concept of path matrix deals with vertices whose mathematical
properties are reported in [1].

The path energy is described as the sum of the absolute values of path eigenvalues and it is denoted
by PE = PE(G). For several positive eigenvalues of order n, PE(G) ≥ 2(n−1). If G is a k-connected
tree graph then ρ(G) ≥ k(n−1) ≥ k2. Also, PE(G) ≥ 2ρ(G) for the spectral radius ρ(G). The survey
of properties of path energy is given in [2], [3].

The purpose of this paper is to examine different bounds for path energy in terms of defining
relations. These bounds are important for they can be used in many areas of graph theory. Considering
these cases, known and related results are given in second section. Then, main bounds are obtained
using the vertices, the edges and the eigenvalues for path energy in the third section. These bounds
are sharp.

2. Preliminaries

In order to prove the main results, some lemmas are needed:

Lemma 2.1. [4] If a1, a2, ..., an ∈ R and 0 < m ≤ ai ≤M then,

(
1

n

n∑
i=1

ai)(
n∑

i=1

1

ai
) ≤ M + n

4Mn

1gulistankayagok@hakkari.edu.tr (Corresponding Author)
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Lemma 2.2. [5] Let p = (pi) and a = (ai), i = 1, 2, ..., n be real sequences with p1 + p2 + ...+ pn = 1
and r ≤ ai ≤ R. For such sequences,

0 ≤
n∑

i=1

pi(ai)
2 − (

n∑
i=1

piai)
2 ≤ 1

2
(R− r)

n∑
i=1

pi|ai −
n∑

j=1

pjaj |

See [6], [7] for details.

3.MAIN RESULTS

In this section, some relations and bounds for energy of path matrix are established. These sharp re-
sults are surveyed with some fixed parameters. In addition, a relation is determined for tree connected
graphs under the assumption of Lemma 2.2.

Theorem 3.1. Let G be a connected graph with eigenvalues of path matix; λP1 , λ
P
2 , ..., λ

P
n . Then,

PE(G) ≤

√
n2

4(n− 1)
(ρ− η)

where η = η(G) = |λPn |.

Proof. Let ai = |λPi |, bi = 1. Assume that all the path eigenvalues of G are non-zero. A classical
lemma (the Ozeki’s inequality) refered in the article [8] implies that

n
n∑

i=1

|λPi |2 − (
n∑

i=1

|λPi |)2 ≤
n2

4
(ρ− η)

That is;

(
n∑

i=1

|λPi |)2 ≤
n

4
(ρ− η) +

(PE(G))2

n

By the arrangements, the above ineguality transforms into

(n− 1)

n
(PE(G))2 ≤ n

4
(ρ− η)

Consequently,

PE(G) ≤

√
n2(ρ− η)

4(n− 1)

Theorem 3.2. Let G be a connected graph consisting n vertices. Then,

PE(G) ≤

√
n(ρ+ η)

4ρη

where η = η(G) = |λPn |.

Proof. Let ai = |λPi |, m = η, M = ρ. By the Lemma 2.1, the following inequality gives that

(
1

n

n∑
i=1

|λPi |)(
n∑

i=1

1

|λPi |
) ≤ 1

n
(

n∑
i=1

|λPi |)2

=
1

n
(PE(G))2
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On the other hand,

1

n
(PE(G))2 ≤ ρ+ η

4ρη

Thus, the proof is completed with

PE(G) ≤

√
n(ρ+ η)

4ρη

Theorem 3.3. If G is a connected graph and G has n vertices, then

PE(G) ≥
√

4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

where |[P (G)]| is the determinant of [P (G)].

Proof. By the Arithmetic-Geometric Mean inequality, the definition of path energy turns into

(PE(G))2 =

n∑
i=1

|λPi |2 + 2
∑

1≤i<j≤n

|λPi ||λPj |

≥
n∑

i=1

|λPi |2 + n(n− 1)(

n∏
i=1

|λPi |)
2
n

Since
∑n

i=1 |λPi |2 ≥ (PE(G))2, then
∑n

i=1 |λPi |2 ≥ (PE(G))2 ≥ 4(ρ(G))2. Hence, the inequality
gives that

(PE(G))2 ≥ 4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

Thus,

PE(G) ≥
√

4(ρ(G))2 + n(n− 1)|[P (G)]|
2
n

Corollary 3.4. Let G be a k-connected tree graph with n vertices. Then,

PE(G) ≥
√

(n− 1)[4k2(n− 1) + n|[P (G)]|
2
n ]

Proof. As noted in [1], ρ(G) ≥ k(n− 1) in this case. Therefore the corollary is clear.

Corollary 3.5. Let G be a k-connected tree graph of order n. Then
i)

PE(GC) ≥
√

(n− 1)[4k2(n− 1) + n|[P (G)]|
2
n ]

where GC is the complement of G.
ii)

ρ(G
′
) ≥

√
(n− 2)[4k2(n− 2) + (n− 1)|[P (G)]|

2
n−1 ]

where G
′

is formed from G by deleting edge ij.
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Theorem 3.6. Let G be a connected graph of order n then,

PE(G) ≤ m+
√

2mn

Proof. Minkowski inequality gives that

(
n∑

i=1

(|λPi |+ 1)2)
1
2 ≤ (

n∑
i=1

|λPi |2)
1
2 + (

n∑
i=1

1)
1
2

By the help of Bernoulli inequality, it is stated that

(n+ 2PE(G))
1
2 ≤ (

n∑
i=1

|λPi |2)
1
2 + n

1
2

Since
∑n

i=1(λ
P
i )2 = 2m, then

n+ 2PE(G) ≤ (
√

2m+
√
n)2

Hence,

PE(G) ≤ m+
√

2mn

Corollary 3.7. Let G be a connected graph with n vertices and m edges. Then, PE(GC) ≤
n(n− 1)− 2m

2
+
√

(n(n− 1)− 2m)n where GC is the complement of G.

Proof. By the Theorem 3.6, PE(GC) ≤ mC+
√

2mCn. Since 2(m+mC = n(n−1)), then PE(GC) ≤
n(n− 1)

2
−m+

√
2(
n(n− 1)

2
−m)n. Hence, PE(GC) ≤ n(n− 1)− 2m

2
+
√

(n(n− 1)− 2m)n.

Theorem 3.8. Let G be a connected tree graph of order n. Then,

PE(G) ≥ 4mn− 8(n− 1)2

n(ρ− η)
+ 2ρ

where η = η(G) = |λPn |.

Proof. Let pi = 1
n , ai = |λPi |, r = η, R = ρ. Lemma 2.2 implies that

1

n

n∑
i=1

|λPi |2 − (

n∑
i=1

1

n
|λPi |)2 ≤

1

2
(ρ− η)(

n∑
i=1

1

n
||λPi | −

1

n

n∑
j=1

|λPj ||)

This requires

2m

n
− 1

n2
(PE(G))2 ≤ 1

2
(ρ− η)(

1

n
PE(G)− 2n

1

n2
ρ)

Since PE(G) ≥ 2(n− 1), we have

2m

n
− 4(n− 1)2

n2
≤ (ρ− η)

2n
(PE(G))− ρ(ρ− η)

n

Hence,

PE(G) ≥ 4mn− 8(n− 1)2

n(ρ− η)
+ 2ρ
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4. Conclusion

In this paper, the path energy is studied using the path matrix. Different bounds are obtained for the
path energy with some fixed parameters.
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Abstract − In this paper we define and study the product of tritopological spaces (which we 

named it δ∗-product). Moreover, to motivate our definition, we show that the product 

properties for tritopological spaces are not preserved. Further, we provide some necessary 

and sufficient conditions for these spaces to be preserved under a finite product. 
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1. Introduction 

In mathematics, the Cartesian product of a collection of sets is one of the most important and widely used 

ideas. The theory of product spaces constitutes a very interesting and complex part of set-theoretic topology. 

The Cartesian product of arbitrarily topological spaces was defined by Tychonoff in 1930 [1].  

 

Then almost 33 years later in 1963, the idea of bitopological spaces was initiated by Kelly [2], and after that, 

a large number of papers have been produced in order to generalize the topological concepts to bitopological 

setting. In 1972, Datta [3] defined the Cartesian product of arbitrarily bitopological spaces. It is also well-

known that the Tychonoff Product Theorem plays an important role in a general product. 

 

A tritopological space is simply a set 𝑋 which is associated with three arbitrary topologies, was initiated by 

Kovar [4]. In 2004, Hassan introduced the definition of δ∗-open set in tritopological spaces as follows, a subset 

𝐴 of 𝑋 is said to be 𝛿∗-open set iff A ⊆ 𝒯 int(𝒫 cl(𝒬 int(A))) [5]. And in [6] she defined the 𝛿∗-connectedness 

in tritopological spaces, also Hassan et al. [7] defined the δ∗-base in tritopological spaces. In [8] and [9] the 

reader can find a relationship among separation axioms, and relationships among some types of continuous 

and open functions in topological, bitopological and tritopological spaces, and in 2017, Hassan introduced the 

new definitions of countability and separability in tritopological spaces namely δ∗-countability and δ∗-

separability [10]. In 2017, Hassan presented the concept of soft tritopological spaces [11]. However, no concept 

of tritopologization in product spaces has been given until now. 

 

In the present paper, the concept of product topological spaces has been generalized to initiate the definition 

and study of product tritopological spaces. Besides, we introduce and characterize new definitions and 

theorems in tritopological spaces, and we provide some necessary and sufficient conditions for these spaces to 

be preserved under the  δ∗-product.  
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In section 2, some preliminary concepts about tritopological spaces are given. The main section of the 

manuscript is third which the definition of 𝛿∗-product tritopology of two tritopological spaces with examples 

and some theorems are given. Section 4 is devoted to the generalization to theorems for tritopological product 

of spaces. In section 5 the definition of 𝛿∗-Tychonoff tritopology and some theorems are introduced. Finally, 

in section 6 the conclusions and some future work is suggested 

2. Preliminaries 

In the following, we will mention some basic definitions and notations in tritopological space which we need 

in this work. 

Definition 2.1. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, a subset 𝐴 of X is said to be δ∗-open set iff 𝐴 ⊆

𝒯 int(𝒫 cl(𝒬 int(𝐴))), and the family of all δ∗-open sets is denoted by δ∗. O(𝑋). (δ∗. O(𝑋) not always 

represent a topology). The complement of δ∗-open set is called a δ∗-closed set.  

Definition 2.2. [5] (X, 𝒯, 𝒫, 𝒬)  is called a discrete tritopological space with respect to δ∗-open if δ∗. O(𝑋) 

contains all subsets on 𝑋. And (X, 𝒯, 𝒫, 𝒬) is called an indiscrete tritopological space with respect to δ∗-open 

if δ∗. O(𝑋) = {𝑋, ∅}. 

Definition 2.3. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let 𝑥 ∈ 𝑋, a subset 𝑁 of 𝑋 is said to be a δ∗-

nhd of a point x iff  there exists a δ∗-open set U such that 𝑥 ∈ 𝑈 ⊂ 𝑁. The set of all δ∗-nhds of a point x  is 

denoted by δ∗ − 𝑁(𝑥). 

Definition 2.4. [7] A collection δ∗-β of a subset of X is said to form a δ∗-base for the tritopology (𝒯, 𝒫, 𝒬)  iff:  

δ∗-β  ⊂ δ∗. O(X). for each point x ∈ X and each  δ∗-neighbourhood 𝒩 of x  there exists some ℬ ∈ δ∗-β such 

that x ∈ ℬ ⊂ 𝒩.  

Definition 2.5. [5] The function 𝑓: (𝑋, 𝒯, 𝒫, 𝒬) →  (𝑌, 𝒯 ′, 𝒫′, 𝒬′)  is said to be δ∗-continuous at 𝓍 ∈ X  iff for 

every δ∗-open set V in Y containing 𝑓(𝑥) there exists δ∗-open set U in X containing 𝓍 such that 𝑓(𝑈) ⊂ 𝑉. We 

say f is δ∗-continuous on X  iff  𝑓 is δ∗-continuous at each 𝓍 ∈ X.  

Definition 2.6. [5] The function 𝑓: (𝑋, 𝒯, 𝒫, 𝒬) →  (𝑌, 𝒯 ′, 𝒫′, 𝒬′) is said to be δ∗-open  iff  𝑓 (𝐺) is δ∗-open 

in  𝑌 for every δ∗-open set 𝐺 in 𝑋. 

Definition 2.7. [5] Let (X, 𝒯, 𝒫, 𝒬) and (Y, 𝒯 ′, 𝒫′, 𝒬′) are two tritopological spaces and 𝑓: (X, 𝒯, 𝒫, 𝒬) → 

(Y, 𝒯 ′, 𝒫′, 𝒬′)  be a function, then 𝑓 is δ∗-homeomorphism if and only if:   

i. 𝑓 is bijective (one to one, onto). 

ii. 𝑓 and  𝑓−1 are δ∗-continuous (or 𝑓 is δ∗-continuous and δ∗-open).  

Definition 2.8. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, a point 𝑥 is called δ∗-limit point of a subset 𝐴 of  

𝑋   iff   for each δ∗-open set  𝐺  containing another point different from 𝑥 in 𝐴; that is  ( 𝐺  {𝑥}⁄  ) ∩ 𝐴 ≠ ∅, and 

the set of all δ∗-limit points of 𝐴 is denoted by δ∗ − 𝑙𝑚(𝐴). 

Definition 2.9. [5] A tritopological space (X, 𝒯, 𝒫, 𝒬) is called δ∗-𝑇2-space (δ∗-Hausdorff) if and only if for 

each pair of distinct points  𝑥, 𝑦 of 𝑋, there exists two  δ∗-open sets 𝐺, 𝐻 such that  𝑥  𝐺,  𝑦  𝐻,  𝐺 ∩ 𝐻 = ∅. 

Definition 2.10. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let  𝐴  be any subset of  X, then the collection 

C = {Gλ   : λ ∈  Λ }  is called δ∗-open cover to 𝐴 if C is a cover to 𝐴and C  δ∗. O(X).    

Definition 2.11. [5] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space, and let  𝐴 be any subset of  𝑋, then 𝐴 is called 

δ∗-compact set iff every δ∗-open cover of 𝐴 has a finite sub-cover, i.e. for each {𝐺𝜆: 𝜆 ∈  𝛬 }  of  δ∗-open sets 

for which  𝐴 ⊂ ∪ {𝐺𝜆: 𝜆 ∈  𝛬 }, there exist finitely many sets Gλ1, … , Gλn   among the Gλ’s such that 𝐴 ⊂ 𝐺𝜆1 ∪

… ∪ 𝐺𝜆𝑛.  
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In particular, the space X is called δ∗-compact iff for each collection {𝐺𝜆 : 𝜆 ∈ 𝛬 } of δ∗-open sets for which  

𝑋 =∪ {𝐺𝜆: 𝜆 ∈ 𝛬 }, there exist finitely many sets Gλ1, … , Gλn   among the   Gλ ′s  such that  𝑋 = 𝐺𝜆1 ∪ … ∪

𝐺𝜆𝑛  . 

Definition 2.12. [10] Let (X, 𝒯, 𝒫, 𝒬) be a tritopological space. Space is said to be a δ∗-second countable (or 

to satisfy the second axiom of δ∗-countability in tritopology) iff there exists a δ∗-countable base for a 

tritopology. 

Definition 2.13. [12] Let {Xλ: λ ∈ Λ} is an arbitrary collection of sets indexed by Λ, then the Cartesian product 

of this collection is the set of all mappings x defined by x: Λ → ∪ {Xλ: λ ∈ Λ} such that x(λ) ∈ Xλ for all λ ∈ Λ 

and is denoted by π{Xλ: λ ∈ Λ} or by × {Xλ: λ ∈ Λ}. The set 𝑋𝜆is called the 𝜆𝑡ℎcoordinate set of the product. 

Definition 2.14. [12] Let 𝑋 =× {𝑋𝜆: 𝜆 ∈ Λ}, then the mapping 𝜋𝜆: 𝑋 →  𝑋𝜆 defined by 𝜋𝜆(𝑥) = 𝑥𝜆 for all 𝑥 ∈

X is called the 𝜆𝑡ℎ projection. 

3. Product space of two tritopological spaces 

In this section, we shall describe the technique for constructing a tritopology for the Cartesian product 𝑋 × 𝑌 

of two tritopological spaces 𝑋 and 𝑌 with the help of the families of all δ∗-open sets 𝛿∗. O(X)  and 𝛿∗. O(Y) of 

the two spaces (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) shall examine the properties of the tritopology thus obtained in 

minute details. Subsequent sections will be devoted to the way of tritopologizing the Cartesian product of an 

arbitrary collection of tritopological spaces. 

Because the families of all δ∗-open sets 𝛿∗. O(X)  and  𝛿∗. O(Y) does not always represent a topology [5]. We 

provide some necessary conditions for these theorems to be valid under a finite product. 

Theorem 3.1. Let  (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological space and if 𝛿∗. O(X) and 𝛿∗. O(Y) 

represent a topology. Then the collection 𝐸 = {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(X) and 𝐻 ∈ 𝛿∗. O(Y)} is a δ∗-base for some 

tritopology for 𝑋 × 𝑌. 

PROOF. Assume that δ∗. O(X) and δ∗. O(Y) represent a topology. We shall show that E satisfies the conditions 

[B1] and [B2] of  Theorem [7], Since  𝑋 × 𝑌 ∈ 𝐸, we have X × Y =∪ {G × H: G ∈ δ∗. O(X) and H ∈

δ∗. O(Y) }. Thus, [B1] is satisfied. 

Now let G1 × H1 and G2 × H2 be any two members of  E. We then have 

(G1 × H1) ∩ ( G2 × H2) = (G1 ∩ G2) × (H1 ∩ H2) (1) [see (2.18) (iii), ch. 1] 

Since we assume that δ∗. O(X) and δ∗. O(Y) represent a topology, we have  

𝐺1 ∈ 𝛿∗. O(X),   𝐺2 ∈ 𝛿∗. O(X) → 𝐺1 ∩ 𝐺2 ∈ 𝛿∗. O(X) 

And  𝐻1 ∈ δ∗. O(Y),   𝐻2 ∈ δ∗. O(Y) → 𝐻1 ∩ 𝐻2 ∈ δ∗. O(Y). 

Hence it follows from (1) that  (𝐺1 × 𝐻1) ∩ ( 𝐺2 × 𝐻2) ∈ 𝐸. Thus, we have shown that the intersection of any 

two members of 𝐸 is again a member of 𝐸 and so [𝐵2] is also satisfied. Therefore 𝐸 is a 𝛿∗-base for some 

tritopology for 𝑋 × 𝑌. 

Remark 3.2. If  𝛿∗. O(X) and 𝛿∗. O(Y) does not represent a topology; the above theorem is not achieved. 

Because the intersection of any two members of 𝐸 is not always a member of 𝐸 and so [𝐵2] is not satisfied. 

Therefore 𝐸 is not a 𝛿∗-base for some tritopology for 𝑋 × 𝑌. (see example 1.1.4 in [5]). 

Definition 3.3. Let (X, 𝒯, 𝒫, 𝒬) and  (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological space. Then the tritopology (𝑈, 𝑉, 𝑊) 

whose 𝛿∗-base is 𝐸 = {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(X) 𝑎𝑛𝑑 𝐻 ∈ 𝛿∗. O(Y)} is called the 𝛿∗-product tritopology for 𝑋 × 𝑌 

and (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) is called the 𝛿∗-product space of  𝑋 and 𝑌.          
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Observe that in view of theorem (3.1), 𝐸 is a 𝛿∗-base for some tritopology for 𝑋 × 𝑌. This is the tritopology 

(𝑈, 𝑉, 𝑊) of the above definition. 

Theorem 3.4. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. And  β  is a 𝛿∗-base for (𝒯, 𝒫, 𝒬) 

and ∁  is a 𝛿∗-base for (𝒯,́ 𝒫,́ �́�). Then ℘ = {𝐵 × 𝐶: 𝐵 ∈ β 𝑎𝑛𝑑 𝐶 ∈ ∁ } is a 𝛿∗-base for the 𝛿∗-product 

tritopology (𝑈, 𝑉, 𝑊) for 𝑋 × 𝑌.  

PROOF. Let (𝑥, 𝑦) be any point of 𝑋 × 𝑌 and let 𝑁 be a 𝛿∗-nhd of  (𝑥, 𝑦) in 𝑋 × 𝑌. Since 𝐸 = {𝐺 × 𝐻: 𝐺 ∈

𝛿∗. O(X) 𝑎𝑛𝑑 𝐻 ∈ 𝛿∗. O(Y)} is a 𝛿∗-base for (𝑈, 𝑉, 𝑊), there exists a member 𝐺 × 𝐻 of 𝐸 such that (𝑥, 𝑦) ∈

𝐺 × 𝐻 ⊂ 𝑁.                              … (1) 

Since 𝐺 is 𝛿∗-open and β is a 𝛿∗-base for (𝒯, 𝒫, 𝒬), there exists some 𝐵 ∈ β such that 𝑥 ∈ 𝐵 ⊂ 𝐺.  Similarly, 

there exists some 𝐶 ∈ ∁  such that 𝑦 ∈ 𝐶 ⊂ 𝐻. It follows that   

(𝑥, 𝑦) ∈ 𝐵 × 𝐶 ⊂ 𝐺 × 𝐻.                      …  (2) 

Hence from (1) and (2), we get (𝑥, 𝑦) ∈ 𝐵 × 𝐶 ⊂ 𝑁. This implies that ℘ is a 𝛿∗-base for (U, V, W). 

Example 3.5. Let          𝑋 = {𝑎, 𝑏, 𝑐},      𝒯 = {X, Ø, {b}, {c}, {b, c}}  

                                                               ,     𝒫 = {X, Ø, {a}, {b}, {a, b}}  

                                                               ,     𝒬 = {X, Ø, {a}, {c}, {a, c}}  

 (X, 𝒯), (X, 𝒫) and  (X, 𝒬) are three topological space, then (X, 𝒯, 𝒫, 𝒬) is a tritopological space, the family of 

all 𝛿∗-open set of X is:   𝛿∗. O(X) = {X, Ø, {c}} 

And let                      𝑌 = {𝑝, 𝑞, 𝑟, 𝑠},      �́� = {Y, Ø}  

                                                              ,     �́� = {Y, Ø}  

                                                              ,     �́� = {Y, Ø, {p}, {q}, {p, q}, {r, s}, {p, r, s}, {q, r, s}}  

 (𝑌, �́�), (𝑌, �́�)  and  (𝑌, �́�)  are three topological space, then (𝑌, 𝒯,́ 𝒫,́ �́�)  is a tritopological space, the family 

of all 𝛿∗-open set of Y is:   

𝛿∗. 𝑂(𝑌) = {𝑌, Ø, {𝑝}, {𝑞}, {𝑝, 𝑞}, {𝑟, 𝑠}, {𝑝, 𝑟, 𝑠}, {𝑞, 𝑟, 𝑠}} 

Now we will find a 𝛿∗-base for the 𝛿∗-product tritopology of  𝑋 × 𝑌. 

It is easy to see that  β = {{𝑐}, 𝑋} is a 𝛿∗-base for (𝒯, 𝒫, 𝒬) and  ∁= {{𝑝}, {𝑞}, {𝑟, 𝑠}} is a 𝛿∗-base for (𝒯,́ 𝒫,́ �́�). 

Hence by theorem (3.4) above, a 𝛿∗-base for the 𝛿∗-product tritopology is given by 

℘ = {{𝑐} × {𝑝}, {𝑐} × {𝑞}, {𝑐} × {𝑟, 𝑠}}, 𝑋 × {𝑝}, 𝑋 × {𝑞}, 𝑋 × {𝑟, 𝑠}}

= {{(𝑐, 𝑝)}, {(𝑐, 𝑞)}, {(𝑐, 𝑟), (𝑐, 𝑠)}, {(𝑎, 𝑝), (𝑏, 𝑝), (𝑐, 𝑝)}, {(𝑎, 𝑞), (𝑏, 𝑞), (𝑐, 𝑞)}, 

{(𝑎, 𝑟), (𝑎, 𝑠), (𝑏, 𝑟), (𝑏, 𝑠), (𝑐, 𝑟), (𝑐, 𝑠)} } 

Definition 3.6. A tritopology (𝒯, 𝒫, 𝒬)  on a set  X  is said to be δ∗-weaker ( or δ∗-coarser or δ∗-smaller) than 

another Tritopology (𝒯,́ 𝒫,́ �́�) on X. Or we can say that (𝒯,́ 𝒫,́ �́�) is said  to be δ∗-stronger (or δ∗-finer or δ∗-

larger) than (𝒯, 𝒫, 𝒬) ) iff  𝛿∗. O(X) ⊂ 𝛿∗. O(X)́ , (where 𝛿∗. O(X) is the family of all δ∗-open sets in(X, 𝒯, 𝒫, 𝒬) 

and 𝛿∗. O(X)́   is the family of all δ∗-open sets in (X, 𝒯,́ 𝒫,́ �́�)).  

According to this definition, indiscrete tritopology on any set 𝑋 with respect to δ∗-open set is the δ∗-weakest 

whereas the discrete tritopology on any set 𝑋 with respect to δ∗-open set is the δ∗-strongest. It is easy to see 

that the collection  𝐶 off all tritopologies on a set 𝑋  is a δ∗-partially ordered set with respect to the relation ≤ 

defined by setting (𝒯, 𝒫, 𝒬) ≤ (𝒯,́ 𝒫,́ �́�)  iff (𝒯, 𝒫, 𝒬) is δ∗-weaker than (𝒯,́ 𝒫,́ �́�), where 

(𝒯, 𝒫, 𝒬) 𝑎𝑛𝑑 (𝒯,́ 𝒫,́ �́�) are members of 𝐶. The indiscrete tritopology on 𝑋 w.r.t. δ∗-open set is the δ∗-infimum 

and the discrete tritopology on 𝑋 w.r.t. δ∗-open set is the δ∗-supremum of (𝐶, ≤).  
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Theorem 3.7. The 𝛿∗-product tritopology on a non-empty set 𝑋 × 𝑌 is the 𝛿∗-weak tritopology for  𝑋 × 𝑌 

determined by the projection maps 𝜋𝑥 and 𝜋𝑦 from the tritopologies on 𝑋 𝑎𝑛𝑑 𝑌.  ( This theorem is valid when 

𝛿∗. O(𝑋) and 𝛿∗. O(𝑌) are satisfied a topology) 

PROOF. The 𝛿∗-weak tritopology has a 𝛿∗-subbase {𝐺𝜆: Gλ = 𝜋𝑥
−1[𝐴𝜆]  𝑜𝑟  𝐺𝜆 = 𝜋𝑦

−1[𝐵𝜆], for some 𝐴𝜆 𝛿∗-

open in 𝛿∗. O(𝑋) or 𝐵𝜆 𝛿∗-open in 𝛿∗. O(𝑌) } 

The intersection   𝜋𝑥
−1[𝐴1] ∩ … .∩ 𝜋𝑥

−1[𝐴𝑚] ∩ 𝜋𝑦
−1[𝐵1] ∩ … ∩ 𝜋𝑦[𝐵𝑛

−1] 

= (𝐴1 × 𝑌) ∩ … ∩ (𝐴𝑚 × 𝑌) ∩ (𝑋 × 𝐵1) … ∩ (𝑋 × 𝐵𝑛) 

[since (𝐴 × 𝐵) ∩ (𝑆 × 𝑇) = (𝐴 ∩ 𝑆) × (𝐵 ∩ 𝑇)]. Of a finite number of such sets has the form  

(𝐴1 ∩ 𝐴2 ∩ … 𝐴𝑚) × (𝐵1 ∩ 𝐵2 ∩ … ∩ 𝐵𝑛) = 𝐴⋆ × 𝐵⋆     

Where 𝐴⋆ is 𝛿∗-open in 𝛿∗. O(𝑋) and 𝐵⋆ is 𝛿∗-open in 𝛿∗. O(𝑌). Hence the 𝛿∗-weak tritopology has the same 

𝛿∗-base as the 𝛿∗-product tritopology, and so the two tritopologies are the same. 

[Note that  𝜋𝑥
−1[𝐴1] = 𝐴1 × 𝑌, 𝜋𝑦

−1[𝐵1] = 𝑋 × 𝐵1   𝑒𝑡𝑐. ] 

Definition 3.8. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. Then the mappings 

𝜋𝑥: 𝑋 × 𝑌 → 𝑋 ∶  𝜋𝑥((𝑥, 𝑦)) = 𝑥      ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌     and  

𝜋𝑦: 𝑋 × 𝑌 → 𝑌 ∶  𝜋𝑦((𝑥, 𝑦)) = 𝑦      ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌  

are called the projections of the 𝛿∗-product 𝑋 × 𝑌 on tritopological spaces 𝑋 and 𝑌 respectively. 

Theorem 3.9. Let (X, 𝒯, 𝒫, 𝒬) and (𝑌, 𝒯,́ 𝒫,́ �́�) be two tritopological spaces. And let (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) be the 

𝛿∗-product space of the two spaces. then the projections 𝜋𝑥 and 𝜋𝑦 are 𝛿∗-continuous and 𝛿∗-open mappings. 

further the 𝛿∗-product tritopology (𝑈, 𝑉, 𝑊) is the 𝛿∗-coarsest tritopology for which the projections are 𝛿∗-

continuous. 

PROOF. Recall that 𝜋𝑥 is a mapping of  𝑋 × 𝑌 onto 𝑋 defined by 𝜋𝑥 ((𝑥, 𝑦)) = 𝑥 for every (𝑥, 𝑦) ∈ 𝑋 × 𝑌. Let 

𝐺 be any 𝛿∗-open set. Then it is evident from the definition of  𝜋𝑥 that  𝜋𝑥
−1[𝐺] = 𝐺 × 𝑌 which is a basic 𝛿∗-

open subset of  𝑋 × 𝑌.  

[ ∵ 𝐺 ∈ 𝛿∗. O(𝑋), 𝑌 ∈ 𝛿∗. O(𝑌) → 𝐺 × 𝑌 ∈ 𝐸 where 𝐸 is the 𝛿∗-base for (𝑈, 𝑉, 𝑊) ].  

Hence 𝜋𝑥 is a 𝛿∗-continuous mapping from (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) to (X, 𝒯, 𝒫, 𝒬). Similarly, 𝜋𝑦 is a 𝛿∗-continuous 

mapping from (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊) to (𝑌, 𝒯,́ 𝒫,́ �́�). Now let 𝐴 be any 𝛿∗-open subset of  𝑋 × 𝑌. Then by the 

definition of the 𝛿∗-base  𝐸  for  (𝑈, 𝑉, 𝑊), we have 𝐴 =∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈

𝐸′ ⊂ 𝐸}. 

Hence  𝜋𝑥[𝐴] = 𝜋𝑥[∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

                       = ∪ {𝜋𝑥[𝐺 × 𝐻]: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} 

                       =∪ {𝐺: 𝐺 ∈ 𝛿∗. O(𝑋) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}       [By the definition of 𝜋𝑥] 

                           ∈ 𝛿∗. O(𝑋) 

It follows that 𝜋𝑥 is an 𝛿∗-open mapping. Finally, let (𝑈∗, 𝑉∗, 𝑊∗) be any tritopology for 𝑋 × 𝑌 for which the 

projections are 𝛿∗-continuous and let 𝐴 be any 𝛿∗-open set of 𝑋 × 𝑌. Then,  

𝐴 =∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} where 𝐸′ ⊂ 𝐸  

=∪ {(𝐺 ∩ 𝑋) × (𝑌 ∩ 𝐻): 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}  

=∪ {(𝐺 × 𝑌) ∩ (𝑋 × 𝐻): 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌)  𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}  
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=∪ {𝜋𝑥
−1[𝐺] ∩ 𝜋𝑦

−1[𝐻]: 𝐺 ∈ 𝛿∗. O(𝑋), 𝐻 ∈ 𝛿∗. O(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} ∈  𝛿∗. O(𝑋 × 𝑌)∗    

[ Where 𝛿∗. O(𝑋 × 𝑌)∗ is the family of all 𝛿∗-open sets of the space(𝑋 × 𝑌, 𝑈∗, 𝑉∗, 𝑊∗) ] 

∵ 𝜋𝑥 𝑖𝑠   𝛿∗-continuous ⇒ 𝜋𝑥
−1[𝐺] ∈ 𝛿∗. O(𝑋 × 𝑌)∗ and 

    𝜋𝑦 𝑖𝑠   𝛿∗-continuous ⇒ 𝜋𝑦
−1[𝐻] ∈ 𝛿∗. O(𝑋 × 𝑌)∗ etc. 

Thus every 𝛿∗-open set in 𝛿∗. O(𝑋 × 𝑌) is 𝛿∗-open in 𝛿∗. O(𝑋 × 𝑌)∗ and so (𝑈, 𝑉, 𝑊) is 𝛿∗-coarser than 

(𝑈∗, 𝑉∗, 𝑊∗) is any tritopology for 𝑋 × 𝑌 for which the projections are 𝛿∗-continuous, it follows that (𝑈, 𝑉, 𝑊) 

is the 𝛿∗-coarsets tritopology for which the projections are 𝛿∗-continuous. 

Theorem 3.10. Let 𝑦𝑜 be a fixed element of  𝑌 and let 𝐴 = 𝑋 × {𝑦𝑜}. Then the restriction of  𝜋𝑥 to 𝐴 is a 𝛿∗-

homeomorphism of the subspace 𝐴 of 𝑋 × 𝑌 onto 𝑋. Similarly, the restriction of  𝜋𝑦 to 𝐵 = {𝑥𝑜} × 𝑌, 𝑥𝑜 ∈ 𝑋, 

is a 𝛿∗-homeomorphism. 

PROOF. Let 𝑔𝑥 denote the restriction of 𝜋𝑥 to 𝐴, that is, let 𝑔𝑥: 𝐴 → 𝑋: 𝑔𝑥((𝑥, 𝑦𝑜)) = 𝑥    ∀(𝑥, 𝑦𝑜) ∈ 𝐴. Then    

𝑔𝑥((𝑥1, 𝑦𝑜)) = 𝑔𝑥((𝑥2, 𝑦𝑜)) ⟹ 𝑥1 = 𝑥2 ⟹ ((𝑥1, 𝑦𝑜)) = ((𝑥2, 𝑦𝑜)) ⟹ 𝑔𝑥 is one − one, 

𝑔𝑥 is evidently onto. Since by the preceding theorem 𝜋𝑥 is 𝛿∗-continuous, it follows that 𝑔𝑥 is also 𝛿∗-

continuous [5]. We now show that 𝑔𝑥 is 𝛿∗-open. Let 𝐶 be any 𝛿∗-open subset of  𝐴. Then  𝐶 = 𝐴 ∩ 𝐵 for 

some 𝛿∗-open subset 𝐵 of  𝑋 × 𝑌. But  

𝐵 =∪ {𝐺 × 𝐻 ∶ 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝑋 × 𝐻 ∈ 𝐸′} 

Where 𝐸′ ⊂ 𝐸. We then have  

 𝑔𝑥[𝐶] = 𝑔𝑥[𝐴 ∩ 𝐵] = 𝑔𝑥[𝐴 ∩ [∪ {𝐺 × 𝐻: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′}]  

= 𝑔𝑥[∪ {𝐴 ∩ (𝐺 × 𝐻): 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑  𝐺 × 𝐻 ∈ 𝐸′] [Distributive law] 

=∪ {𝑔𝑥[(𝑋 × {𝑦𝑜}) ∩ (𝐺 × 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

 =∪ {𝑔𝑥[(𝑋 ∩ 𝐺) × ({𝑦𝑜}) ∩ 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

=∪ {𝑔𝑥[𝐺 × {𝑦𝑜} ∩ 𝐻)]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′]   … (1)  

If  𝑦𝑜 ∉ 𝐻, then it is easy to see from (1) that 𝑔𝑥[𝐶] = ∅. If  𝑦𝑜 ∈ 𝐻, then (1) gives 

𝑔𝑥[𝐶] =∪ {𝑔𝑥[𝐺 × {𝑦𝑜}]: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝐻 ∈ 𝛿∗. 𝑂(𝑌) 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′] 

𝑔𝑥[𝐶] =∪ {𝐺: 𝐺 ∈ 𝛿∗. 𝑂(𝑋), 𝑎𝑛𝑑 𝐺 × 𝐻 ∈ 𝐸′} ∈ 𝛿∗. 𝑂(𝑋). 

This implies that 𝑔𝑥 is an 𝛿∗-open mapping as well. Thus, we have shown that 𝑔𝑥 is one-one, onto, 𝛿∗-

continuous and 𝛿∗-open mapping and consequently it is a 𝛿∗-homeomorphism. 

4. 𝜹∗-Product invariant properties for finite 𝜹∗-products 

We are going to generalize theorems for tritopological product of spaces. 

Theorem 4.1. The  𝛿∗-product space  𝑋 × 𝑌 is 𝛿∗-connected if and only if the tritopological spaces 𝑋 and 𝑌 

are 𝛿∗-connected. 

PROOF. Assume that 𝑋 × 𝑌 is 𝛿∗-connected. Since the projections 𝜋𝑥 and 𝜋𝑦 are 𝛿∗-continuous and onto 

mappings, it follows from Theorem in [6] that 𝑋 and 𝑌 are also 𝛿∗-connected spaces. Conversely, let  𝑋 and 𝑌 

be 𝛿∗-connected spaces. To show that  𝑋 × 𝑌 is also 𝛿∗-connected. Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be any two points 

of 𝛿∗. 𝑂(𝑋 × 𝑌). Then by theorem (3.10),  {𝑥1} × 𝑌 is 𝛿∗-homeomorphic to 𝑌 and  𝑋 × {𝑦2} is 𝛿∗-

homeomorphic to 𝑋. Hence {𝑥1} × 𝑌 and 𝑋 × {𝑦2} are 𝛿∗-connected by theorem in [6] They intersect in the 

points (𝑥1, 𝑦2) and hence there union is a δ∗-connected set by theorem in [6].Since this union contains (𝑥1, 𝑦1) 

and (𝑥2, 𝑦2), it follows from Theorem in [6] that 𝑋 × 𝑌 is 𝛿∗-connected. 
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Theorem 4.2. The 𝛿∗-product space 𝑋 × 𝑌 is 𝛿∗-compact if and only if each of the tritopological spaces 

𝑋 and 𝑌 is 𝛿∗-compact.             

PROOF. Let 𝑋 × 𝑌 be 𝛿∗-compact. Since the projection maps  𝜋𝑥: 𝑋 × 𝑌 → 𝑋 and  𝜋𝑦: 𝑋 × 𝑌 → 𝑌  are 𝛿∗-

continuous and onto, it follows from Theorem in [5] that 𝑋 and 𝑌 are also 𝛿∗-compact. Conversely, let 𝑋 and 

𝑌 be 𝛿∗-compact spaces. We want to show that 𝑋 × 𝑌 is 𝛿∗-compact. In view of Theorem in [5], it suffices to 

show that every basic 𝛿∗-open cover of  𝑋 × 𝑌 has a finite subcover. Since a basic 𝛿∗-open set in  𝑋 × 𝑌 is of 

the form 𝐺 × 𝐻 where 𝐺 is 𝛿∗-open in  𝑋 and  𝐻  is 𝛿∗-open in  𝑌, we may denote a basic 𝛿∗-open cover by              

𝐶 = {𝐺𝜆 × 𝐻𝜆: 𝜆 ∈ 𝛬} where 𝐺𝜆 is 𝛿∗-open in 𝑋 and 𝐻𝜆 is 𝛿∗-open in 𝑌. For a given point  𝑥 ∈ 𝑋, the set 

{𝑥} × 𝑌 is 𝛿∗-homeomorphic to 𝑌 by theorem (3.10), and is, therefore, 𝛿∗-compact by theorem in [5]. Since  

{𝑥} × 𝑌, being a subset of  𝑋 × 𝑌, is covered by 𝐶 and  {𝑥} × 𝑌 is 𝛿∗-compact, there exists a finite sub-family 

of C, say {Gλi × Hλi: i = 1,2, … , n}, which covers {𝑥} × 𝑌. Let  ∩ 𝐺𝜆𝑖 = 𝐺(𝑥). Then 𝐺(𝑥) is 𝛿∗-open in 𝑋 and 

contains 𝑥 since each 𝐺𝜆𝑖 contains 𝑥. Hence {𝐺(𝑥) × 𝐻𝜆𝑖: 𝑖 = 1,2, … , 𝑛} is still a finite 𝛿∗-open cover of 

{𝑥} × 𝑌.  Proceeding in this manner for each 𝑥 ∈ 𝑋, we construct the collection {𝐺(𝑥): 𝑥 ∈ 𝑋} of 𝛿∗-open sets 

in 𝑋 which covers 𝑋. By 𝛿∗-compactness of 𝑋, there exists a finite subcover {𝐺(𝑥𝑗): 𝑗 = 1,2, … , 𝑚} of this 

cover for 𝑋. Since each 𝐺(𝑥𝑗) is an intersection of 𝛿∗-open sets in 𝑋 which were used to form 𝐶, we may select 

an 𝛿∗-open set  𝐺𝜆𝑥𝑗
∈ 𝐶 such that 𝐺(𝑥𝑗) ⊂ 𝐺𝜆𝑥𝑗

 for  𝑗 = 1,2, … , 𝑚, Therefore  {𝐺𝜆𝑥𝑗
: 𝑗 = 1,2, … , 𝑚} is a finite 

𝛿∗-open cover of 𝑋, and for each 𝑗, 1 ≤ 𝑗 ≤ 𝑚, {𝐺𝜆𝑥𝑗
× 𝐻𝜆𝑖

: 𝑖 = 1,2, … , 𝑛} covers the subset 𝐺(𝑥𝑗) × 𝑌 of  

𝑋 × 𝑌. By its construction the collection  {𝐺𝜆𝑥𝑗
× 𝐻𝜆𝑖

: 𝑖 = 1,2, … , 𝑛 ;  𝑗 = 1,2, … , 𝑚}  is then a finite subcover 

of 𝐶 for 𝑋 × 𝑌 and therefore  𝑋 × 𝑌 is 𝛿∗-compact by theorem in [5]. 

Theorem 4.3. The 𝛿∗-product space of two δ∗-second countable tritopological spaces is 𝛿∗-second countable.   

PROOF. Let 𝑋 and 𝑌 be two 𝛿∗-second countable tritopological spaces. To show that 𝑋 × 𝑌 is also 𝛿∗-second 

countable. Let 𝐵 and 𝐶 be 𝛿∗-countable bases for 𝑋 and 𝑌 respectively. Consider the collection 𝐷 =

{𝐵 × 𝐶: 𝐵 ∈ 𝛿∗ − 𝛽, 𝐶 ∈ 𝛿∗ − ∁ }. Then 𝐷 is surely a countable collection [12]. It follows from theorem (3.4), 

that 𝐷 is a 𝛿∗-countable bases for 𝑋 × 𝑌. 

Theorem 4.4. The 𝛿∗-product space of two 𝛿∗-Hausdorff tritopological spaces is 𝛿∗-Hausdorff. 

PROOF. Let 𝑋 and 𝑌 be two 𝛿∗-Hausdorff tritopological spaces. To show that 𝑋 × 𝑌 is also a 𝛿∗-Hausdorff 

space. Let (𝑥1, 𝑦1) and (𝑥2, 𝑦2) be any two distinct points in 𝛿∗. 𝑂(𝑋 × 𝑌). Then either 𝑥1 ≠ 𝑥2 or 𝑦1 ≠ 𝑦2. 

Take 𝑥1 ≠ 𝑥2. Since 𝑋 is 𝛿∗-Hausdorff, there exist 𝛿∗-open sets 𝐺1 and 𝐺2 in 𝛿∗. 𝑂(𝑋) such that 𝑥1 ∈ 𝐺1, 𝑥2 ∈

𝐺2  and 𝐺1 ∩  𝐺2 = ∅ [5]. Then 𝐺1 × 𝑌 and 𝐺2 × 𝑌 are 𝛿∗-open subset of 𝛿∗. 𝑂(𝑋 × 𝑌) such that (𝑥1, 𝑦1) ∈

𝐺1 × 𝑌, (𝑥2, 𝑦2) ∈ 𝐺2 × 𝑌 and  (𝐺1 × 𝑌) ∩ (𝐺2 × 𝑌) = (𝐺1 ∩ 𝐺2) × 𝑌 = ∅ × 𝑌 = ∅. It follows that the 

tritopological space  (𝑋 × 𝑌, 𝑈, 𝑉, 𝑊)  is 𝛿∗-Hausdorff. 

5. 𝛅∗- Product tritopology (or 𝛅∗-Tychonoff tritopology) 

Definition 5.1. For each 𝜆 in an arbitrary index set Λ, let (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆) be a tritopological space and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. Then tritopology (𝒯, 𝒫, 𝒬)  for X which has a 𝛿∗-sub bases the collection 𝐵∗  = {𝜋𝜆
−1[𝐺𝜆]: 𝜆 ∈

𝛬, 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆}  is called the 𝛿∗-product tritopology (or the 𝛿∗-Tychonoff tritopology) for 𝑋, and 

(𝑋, 𝒯, 𝒫, 𝒬) is called the 𝛿∗-product space of the given spaces.  

Note that here 𝜋𝜆 denotes as usual the 𝜆𝑡ℎ projection. The collection 𝐵∗ is called the defining 𝛿∗-subbase for 

(𝒯, 𝒫, 𝒬). the collection 𝛽 of all finite intersections of elements of 𝐵∗ would then form a 𝛿∗-base for (𝒯, 𝒫, 𝒬). 

Remark 5.2. Since 𝜋𝜆
−1[𝐺𝜆] are 𝛿∗-open sets with respect to the 𝛿∗-product tritopology where Gλ is any 𝛿∗-

open set in  𝑋𝜆 it follows that the projection 𝜋𝜆 is a 𝛿∗-continuous map for each 𝜆 ∈ 𝛬. 



 

76 

 

Journal of New Theory 30 (2020) 69 -78 / Tritopological Views in Product Spaces 

Theorem 5.3. Let {(𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆): 𝜆 ∈ 𝛬}. Be an arbitrary collection of tritopological spaces and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. Let (𝒯, 𝒫, 𝒬) be a tritopology for 𝑋. Then the following statements are equivalent: (when all 

the families of 𝛿∗-open sets of tritopological spaces represent a topology, this theorem is satisfied) 

(a) (𝒯, 𝒫, 𝒬) is the 𝛿∗-product tritopology for X. 

(b) (𝒯, 𝒫, 𝒬) is the 𝛿∗-smallest tritopology for X for which the projections are 𝛿∗-continuous. 

PROOF. (a) ⟹ (b): Let πλ be the λthprojection map and let Gλ be any 𝛿∗
𝜆-open subset of  Xλ. Then by (a), 

πλ
−1[Gλ] must be δ∗

λ-open. It follows that πλ is  𝛿∗-continuous from (𝑋, 𝒯, 𝒫, 𝒬) to (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆). Now let 

(𝒯,́ 𝒫,́ �́�) be any tritopology on  X  such that  πλ is  δ∗-continuous from (𝑋,  𝒯,́ 𝒫,́ �́�) to (𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆). for 

each 𝜆 ∈ 𝛬. Then 𝜋𝜆
−1[𝐺𝜆] is 𝛿∗-open in (𝒯,́ 𝒫,́ �́�) for every 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆. Since (𝒯,́ 𝒫,́ �́�)  is a tritopology 

for 𝑋, (𝒯,́ 𝒫,́ �́�) contains all the unions of finite intersections of members of the collection 

{πλ
−1[Gλ]: λ ∈ Λ and Gλ ∈ δ∗. O(X)λ}.      

This implies that 𝛿∗. 𝑂(𝑋)́  contains 𝛿∗. 𝑂(𝑋)(𝛿∗. 𝑂(𝑋) ⊂ 𝛿∗. 𝑂(𝑋))́ , that is (𝒯, 𝒫, 𝒬) is 𝛿∗-coarser than 

(𝒯,́ 𝒫,́ �́�). It follows (𝒯, 𝒫, 𝒬) is the 𝛿∗-smallest tritopology for X such that πλ is  δ∗-continuous for each λ ∈

Λ. 

(𝑏) ⟹ (𝑎) : Let 𝐵∗ be the collections of all sets of the form 𝜋𝜆
−1[𝐺𝜆] where Gλ is an δ∗-open subset of Xλ for 

λ ∈ Λ. Then by theorem in [5], a tritopology (𝒯,́ 𝒫,́ �́�)  for X will make all the projections 𝜋𝜆 𝛿∗-continuous iff  

𝐵∗ ⊂ 𝛿∗. 𝑂(𝑋)́ . Hence in view of [7], the δ∗-smallest tritopology for X which makes all the projections δ∗-

continuous is the tritopology determined by 𝐵∗ as a 𝛿∗-subbase, that is, it is the δ∗-product tritopology for 𝑋 

[see (5.1)]. 

Theorem 5.4. Let {(𝑋𝜆,  𝒯𝜆, 𝒫𝜆 , 𝒬𝜆): 𝜆 ∈ 𝛬}, an arbitrary collection of tritopological spaces and let 𝑋 =

× {𝑋𝜆: 𝜆 ∈ 𝛬}. The collection C of all sets of the form × {𝐺𝜆: 𝜆 ∈ 𝛬}. Where 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 for each 𝜆 ∈ 𝛬, 

is a 𝛿∗-base for some tritopology for 𝑋. (if 𝛿∗. 𝑂(𝑋)𝜆 satisfy the topology this theorem is valid)  

PROOF. We shall show that 𝐶 satisfies the conditions [B1] and [B2] of Theorem in [7].  

[B1]: Let 𝑥 ∈ 𝑋 so that 𝑥 = {𝑥𝜆: 𝜆 ∈ 𝛬} where 𝑥𝜆 ∈ 𝑋𝜆. Then there exists a 𝛿∗
𝜆-open set 𝐺𝜆 (which may be 

𝑋𝜆) such that 𝑥𝜆 ∈ 𝐺𝜆. Hence x is an element of a set of the form × {𝐺𝜆: 𝜆 ∈ 𝛬} = 𝐺 say. Thus, to each 𝑥 ∈ 𝑋, 

there exists a member 𝐺 of 𝐶 such that 𝑥 ∈ 𝐺. It follows that 𝑋 =∪ {𝐺: 𝐺 ∈ 𝐶}. 

[B2] Let 𝐺 ∈ 𝐶 and 𝐺′ ∈ 𝐶. Then × {𝐺𝜆: 𝜆 ∈ 𝛬} = 𝐺  And  × {𝐺′
𝜆: 𝜆 ∈ 𝛬} = 𝐺′ 

Where 𝐺𝜆 ∈  𝛿∗. 𝑂(𝑋)𝜆  and  𝐺′
𝜆 ∈  𝛿∗. 𝑂(𝑋)𝜆 for every 𝜆 ∈ 𝛬. Now  

                   𝐺 ∩ 𝐺′ = ( × {𝐺𝜆: 𝜆 ∈ 𝛬})  ∩   × {𝐺𝜆
′: 𝜆 ∈ 𝛬}) 

                                =× {𝐺 ∩ 𝐺′: 𝜆 ∈ 𝛬}                                       … (1) 

Since ( 𝒯𝜆, 𝒫𝜆 , 𝒬𝜆) is a tritopology for 𝑋𝜆, we have 𝐺𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 and 𝐺′
𝜆 ∈ 𝛿∗. 𝑂(𝑋)𝜆 →  𝐺 ∩ 𝐺′ ∈

𝛿∗. 𝑂(𝑋)𝜆. (that is if 𝛿∗. 𝑂(𝑋)𝜆 represent a topology) 

It follows from (1) that  𝐺 ∩ 𝐺′ ∈ 𝐶.  Thus [B2] is also satisfied.  

Theorem 5.5 Let 𝑓 be a mapping of a tritopological space 𝑌 into a 𝛿∗-product space 𝑋 =× {𝑋𝜆: 𝜆 ∈ 𝛬}. Then 

f is δ∗-continuous iff the composition 𝜋𝜆 𝑜  𝑓 ∶ 𝑌 → 𝑋𝜆 is 𝛿∗-continuous. 

PROOF. Let 𝑓 be 𝛿∗-continuous. Since all projection is 𝛿∗-continuous, it follows from Theorem in [5], that 𝜋𝜆 

of is also 𝛿∗-continuous. 

Conversely, let each composition map 𝜋𝜆 of be 𝛿∗-continuous and let 𝑈 be any member of the defining  𝛿∗-

subbase 𝐵∗ of the 𝛿∗-product space 𝑋. then 𝜋𝜆
−1[𝐺] = 𝑈 for some 𝜆 ∈ 𝛬 and some 𝐺 ∈ 𝛿∗. 𝑂(𝑋)𝜆 . Also  

𝑓−1[𝑈] = 𝑓−1[𝜋𝜆
−1[𝐺]] = (𝜋𝜆𝑜𝑓)−1[𝐺]. 
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Since 𝜋𝜆𝑜𝑓 is 𝛿∗-continuous, it follows that (𝜋𝜆𝑜𝑓)−1[𝐺] = 𝑓−1[𝑈] is 𝛿∗-open in 𝑌. Thus, we have shown 

that the inverse image under f of every sub basic 𝛿∗-open set in the 𝛿∗-product space 𝑋 is 𝛿∗-open in 𝑌. It 

follows from Theorem in [5] that f is 𝛿∗-continuous. 

Theorem 5.6. Each projection map is an 𝛿∗-open map. 

PROOF. The proof left to the reader. 

Theorem 5.7. Let 𝑋 be the non-empty 𝛿∗-product space × {𝑋𝜆: 𝜆 ∈ 𝛬}. Then a non-empty 𝛿∗-product subset 

𝐹 =× {𝐹𝜆: 𝜆 ∈ 𝛬} is 𝛿∗-closed in 𝑋 if and only if each 𝐹𝜆  is 𝛿∗-closed in 𝑋𝜆. 

PROOF. Let 𝐹𝜆  is 𝛿∗-closed in 𝑋𝜆 for every 𝜆 ∈ 𝛬 Since the projection 𝜋𝜆is 𝛿∗-continuous, for each 𝜆 ∈ 𝛬. 

𝜋𝜆
−1[𝐹𝜆]  is 𝛿∗-closed in 𝑋, it easy to see that  𝐹 =∩ {𝜋𝜆

−1[𝐹𝜆]: 𝜆 ∈ 𝛬}. 

It follows that F  is δ∗-closed in 𝑋, being an intersection of 𝛿∗-closed sets [5]. 

Conversely, let 𝐹 =× {𝐹𝜆: 𝜆 ∈ 𝛬} be 𝛿∗-closed in 𝑋. To show that each 𝐹𝜆 is 𝛿∗-closed in 𝑋𝜆. Let 𝜇 ∈ 𝛬 be 

arbitrary. we shall show that 𝐹𝜇 is 𝛿∗-closed in 𝑋𝜆. Let 𝜇 be any 𝛿∗-limit point 𝐹𝜇  in 𝑋𝜇. Consider the point 𝑧 

where 𝜋𝜆(𝑧) = 𝑧𝜇 and 𝜋𝜆(𝑧) is an element of 𝐹𝜇 for 𝜆 ≠ 𝜇 Let 𝐺 be any basic 𝛿∗-open set for the 𝛿∗-product 

topology containing 𝑧. Then 𝜋𝜇(𝐺) is 𝛿∗-open by theorem (5.6) and contains 𝑧𝜇. Since 𝑧𝜇 is a 𝛿∗-limit point 

of 𝜋𝜇(𝐺) must contain a point 𝑥𝜇 of  𝐹𝜇 different from 𝑧𝜇 Therefore 𝐺 contains the point x where πλ(x) =

πλ(z) for 𝜆 ≠ 𝜇 and 𝜋𝜆(𝑥) = 𝑥𝜇. Evidently, 𝑥 ∈ 𝐹, Also since 𝑥 and 𝑧 differ in 𝜇𝑡ℎ coordinate, we have 𝑥 ≠ 𝑧 

Thus we have shown that every basic 𝛿∗-open set containing 𝑧 contains a point of 𝐹 different from 𝑧. Hence z 

is a 𝛿∗-limit point of  𝐹. Since  𝐹 is 𝛿∗-closed in  𝑋, 𝑧 ∈ 𝐹 which implies that 𝜋𝜇(𝑧) ∈ 𝜋𝜇(𝐹). Thus 𝐹𝜇 contains 

all its 𝛿∗-limit points and so 𝐹𝜇 is 𝛿∗-closed. Since 𝜇 was arbitrary, we see that 𝐹𝜇 is 𝛿∗-closed for every 𝜆 ∈ 𝛬.  

6. 𝐂𝐨𝐧𝐜𝐥𝐮𝐬𝐢𝐨𝐧 

The purpose of this article is to introduce the concept of the product in tritopological spaces namely δ∗-product 

spaces. Several properties of 𝛿∗- product spaces concept is established. Moreover, we obtain a characterization 

and preserving theorems with the help of some necessary conditions and interesting examples. And we 

generalise theorems in 𝛿∗-connectedness, 𝛿∗-compactness, 𝛿∗-second countability and 𝛿∗-Hausdorff for 

tritopological product of spaces. Furthermore, the uses of tritopological results in this paper and some other 

papers are worthy for possible applications in areas of science and social science for the future. 
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1. Introduction and Preliminaries

Tong [1] introduced the notions of A-sets and A-continuity in topological spaces and established a
decomposition of continuity. In [2], he also introduced the notions of B-sets and B-continuity and
used them to obtain a new decomposition of continuity and Ganster and Reill [3] improved Tong’s
decomposition result. Moreover, Noiri and Sayed [4] introduced the notions of η-sets and obtained some
decompositions of continuity. Quite recently, Veera kumar [5] introduced and studied the notions of µp-
sets in topological spaces. Quite recently, Ganesan [6] introduced and studied the notions of µα-closed
sets in topological spaces. In this paper, we introduce the notions of *η-sets, **η-sets, *η-continuity
and **η-continuity and obtain decomposition of α-continuity and µα-continuity. Throughout this
paper (X, τ) and (Y, σ) (or X and Y)represent topological spaces on which no separation axioms are
assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and AC denote
the closure of A, the interior of A and complement of A respectively.
We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called:

1. a regular open [7] if A = int(cl(A)).

2. an α-open set [8] if A⊆ int(cl(int(A))).

3. a semi-open set [9] if A⊆ cl(int(A)).

4. a pre-open set [10] if A⊆ int(cl(A)).

The complements of the above mentioned open sets are called their respective closed sets.
The α-closure [8](resp. semi-closure [11],pre-closure [12]) of a subset A of X, denoted by αcl(A)

1sgsgsgsgsg77@gmail.com (Corresponding Author)
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(resp.scl(A), pcl(A)) is defined to be the intersection of all α-closed (resp. semi-closed, pre-closed)
sets of (X, τ) containing A. For any subset A of an arbitrarily chosen topological space, the α-interior [8]
(resp. semi-interior [11],pre-interior [12]) of a subset A of X, denoted by αint(A) (resp.sint(A), pint(A))
is defined to be the union of all α-open (resp. semi-open, pre-open) sets of (X, τ) contained A.

Definition 1.2. A subset A of a space X is called:

1. a t-set [2] if int(cl(A))=int(A).

2. an α∗-set [13] if int(A) = int(cl(int(A))).

3. an A-set [1] if A = V ∩ T where V is open and T is a regular closed set.

4. a B-set [2, 14] if A = V ∩ T where V is open and T is a t-set.

5. an αB-set [15] if A = V ∩ T where V is α-open and T is a t-set.

6. an η-set [4] if A = V ∩ T where V is open and T is an α-closed set.

7. a locally closed set [16] if A = V ∩ T where V is open and T is closed.

The collection of A-sets (resp. B-sets, αB-sets, η-sets, locally closed sets) in X is denoted by A(X)
(resp. B(X), αB(X), η(X), LC(X)).

Definition 1.3. A subset A of a space (X, τ) is called:

1. a gα*-closed set [17, 18] if αcl(A) ⊆ int(U) whenever A ⊆ U and U is α-open in (X, τ). The
complement of gα*-closed set is called gα*-open set.

2. a µ-preclosed (briefly µp-closed) set [5] if pcl(A) ⊆ U whenever A ⊆ U and U is gα*-open in (X,
τ). The complement of µp-closed set is called µp-open set.

3. a µα-closed set [6] if αcl(A) ⊆ U whenever A⊆U and U is gα*-open in (X, τ). The complement
of µα-closed set is called µα-open set.

The collection of all µα-open (resp. µp-open) sets in X will be denoted by µαO(X)(resp. µpO(X)).

Remark 1.4. In a space X, the followings hold:

1. Every open set is gα*-open but not conversely [6].

2. Every α-open set is µα-open but not conversely [6].

3. Every µα-closed set is µp-closed but not conversely [6].

4. Every µα-continuous map is µp-continuous but not conversely [6].

5. The intersection of two t-sets is a t-set [2].

Remark 1.5. In a space X,the followings hold:

1. A is α-closed set if and only if A = αcl(A).

2. Every regular closed set is closed but not conversely.

3. Every regular closed set is semi-closed ( = t-set) but not conversely.

4. Every closed set is α-closed but not conversely.

5. Every α-closed set is semi-closed ( = t-set) but not conversely.
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2. ∗η-sets and ∗∗η-sets

In this section we introduce and study the notions of ∗η-sets and∗∗η-sets in topological spaces.

Definition 2.1. A subset A of a space X is called:

1. an ∗η-set if A = U ∩ T where U is gα*-open and T is α-closed in X.

2. an ∗∗η-set if A = U ∩ T where U is µα-open and T is a t-set in X.

The collection of all ∗eta-sets (resp.∗∗η-sets) in X will be denoted by∗η(X) (resp. ∗∗η(X))

Theorem 2.2. For a subset A of a space X, the following are equivalent.

1. A is an ∗η-set.

2. A = U ∩ αcl(A) for some gα*-open set U.

Proof. (1)→ (2) Since A is an∗η-set, then A = U ∩ T, where U is gα*-open and T is α-closed. So,
A ⊂ U and A ⊂ T. Hence αcl(A) ⊂ αcl(T). Therefore A ⊂ U ∩ αcl(A) ⊂ U ∩ αcl(T) = U ∩ T = A.
Thus, A = U ∩ αcl(A).
(2)→ (1) It is obvious because αcl(A) is α-closed by Remark 1.5(1).

Remark 2.3. In a space X, the intersection of two∗∗η-sets is an∗∗η-set.

Remark 2.4. Union of two∗∗η-sets need not be an∗∗η-set as seen from the following example.

Example 2.5. Let X = {a, b, c} with τ = {ϕ, {a, b}, X}. The sets {a}, {c} are ∗∗η-sets in (X, τ) but
their union {a, c} is not an ∗∗η-set in (X, τ).

Remark 2.6. We have the following implications.

-A(X) LC-continuity

?
B(X) -

?
η(X)

?
αB(X)

-

- **η(X)

*η(X)

6

µαO(X) -µpO(X)

where none of these implications is reversible as shown by [4] and the following examples.

Example 2.7. 1. In Example 2.5, the set {b} is an *η-set but not an η-set in (X, τ).

2. Let X = {a, b, c} with τ = {ϕ, {a, c}, X}. Clearly the set {b} is an **η-set but not an µα-open
set in (X, τ).

3. In Example 2.5, the set {a} is an **η-set but not an αB-set in (X, τ).

Remark 2.8. 1. The notions of *η-sets and µα-closed sets are independent.

2. The notions of **η-sets and µp-closed sets are independent.

Example 2.9. In Example 2.5, the set {a, c} is µα-closed but not an *η-set and also the set {a, b}
is an *η-set but not a µα-closed in (X, τ).

Example 2.10. In Example 2.7(2), the set {b} is an **η-set but not a µp-open set and also the set
{a, b} is an µp-open set but not a **η-set in (X, τ).
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Theorem 2.11. For a subset A of a space X, the following are equivalent:

1. A is α-closed.

2. A is an *η-set and µα-closed.

Proof. (1)→ (2) It follows from Remark 1.4(1) and Definition 2.1(1).
(2) → (1) Since A is an *η-set, then by Theorem 2.2, A = U ∩ αcl(A) where U is gα*-open in X. So,
A ⊂ U and since A is µα-closed, then αcl(A) ⊂ U. Therefore, αcl(A) ⊂ U ∩ αcl(A) = A. But A ⊂
αcl(A) always. Hence by Remark 1.5(1), A is α-closed.

Proposition 2.12. [19] Let A and B be subsets of a space X. If B is an α∗-set, then αint(A ∩ B) =
αint(A) ∩ int(B)

Theorem 2.13. For a subset S of a space X, the following are equivalent.

1. S is µα-open.

2. S is an **η-set and µp-open.

Proof. Necessity: It follows from Remark 1.4(3) and Definition 2.1(2).
Sufficiency: Assume that S is µp-open and an **η-set in X. Then S = A ∩ B where A is µα-open and
B is a t-set in X. Let F ⊂ S, where F is gα*-closed in X. Since S is µp-open in X, F ⊂ pint(S) = S
∩ int(cl(S)) = (A ∩ B) ∩ int[cl(A ∩ B)] ⊂ A ∩ B ∩ int(cl(A)) ∩ int(cl(B)) = A ∩ B ∩ int(cl(A)) ∩
int(B), since B is a t-set. This implies, F ⊂ int(B). Note that A is µα-open and that F⊂ A. So, F ⊂
αint(A). Therefore, F ⊂ αint(A) ∩ int(B) = αint(S) by Proposition 2.12. Hence S is µα-open.

3. *η-continuity and **η-continuity

Definition 3.1. A function f : X → Y is said to be *η-continuous (resp. **η-continuous) if f−1(V) is
an *η-set (resp. an **η-set) in X for every open subset V of Y.

Definition 3.2. A function f : X → Y is said to be C*η-continuous if f−1(V) is an *η-set in X for
every closed subset V of Y.

We shall recall the definitions of some functions used in the sequel.

Definition 3.3. A function f : X → Y is said to be

1. A-continuous [1] if f−1(V) is an A-set in X for every open set V of Y.

2. B-continuous [2, 14] if f−1(V) is an B-set in X for every opens set V of Y.

3. α-continuous [20] if f−1(V) is an α-open set in X for every open set V of Y.

4. LC-continuous [16] (resp. αB-continuous [15] if f−1(V) is an locally closed set (resp. αB-set) in
X for every open set V of Y,

5. η-continuous [4] if f−1(V) is an η-set in X for every open set V of Y.

6. µα-continuous [6] (resp. µp-continuous [5]) if f−1(V) is an µα-open set (resp. µp-open set) in X
for every open set V of Y.

Remark 3.4. It is clear that, a function f : X → Y is α-continuous if and only if f−1(V) is an α-closed
set in X for every closed set V of Y.
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From the definitions stated above, we obtain the following diagram

-A-continuity LC-continuity

?

B-continuity -

?
η -continuity

?

αB-continuity

-

- **η-continuity

*η-continuity

6

µα-continuity - µp-continuity

Remark 3.5. None of the implications is reversible as shown by the following examples.

Example 3.6. Let X = Y = {a, b, c} with τ = {ϕ, {b, c}, X} and σ = {ϕ, {b}, {b, c}, Y}. Let f :
X → Y be the identity function on X. Then f is *η-continuous but not η-continuous.

Example 3.7. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with σ = {ϕ, {c}, {b, c}, Y}.
Then f is **η-continuous but not αB-continuous.

Example 3.8. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with σ = {ϕ, {a}, {b, c}, Y}.
Then f is **η-continuous but not µα-continuous.

Remark 3.9. The following examples show that the concepts of

1. µα-continuity and *η-continuity are independent.

2. µα-continuity and C*η-continuity are independent.

3. *η-continuity and C*η-continuity are independent.

Example 3.10. Let X = Y = {a, b, c} with τ = {ϕ, {a}, X} and σ = {ϕ, {a}, {a, b}, {a, c}, Y}.
Let f : X → Y be the identity function on X. Then f is µα-continuous but not *η-continuous.

Example 3.11. Let X, τ and f be as in Example 3.10. Let Y = {a, b, c} with σ = {ϕ, {b}, {c}, {b,
c}, Y}. Then f is *η-continuous but not µα-continuous.

Example 3.12. Let X = Y = {a, b, c} with τ = {ϕ, {b}, X} and σ = {ϕ, {a}, {a, b}, Y}. Let f : X
→ Y be the identity function on X. Then f is µα-continuous but not C*η-continuous.

Example 3.13. Let X, τ and f be as in Example 3.12. Let Y = {a, b, c} with σ = {ϕ, {b}, {a, c},
Y}. Then f is C*η-continuous but not µα-continuous.

Example 3.14. Let X, τ and f be as in Example 2.5. Let Y = {a, b, c}with σ = {ϕ, {c}, {a, c}, Y}.
Then f is C*η-continuous but not *η-continuous.

Example 3.15. Let X, τ and f be as in Example 2.5. Let Y = {a, b, c} with σ = {ϕ, {b}, Y}. Then
f is *η-continuous but not C*η-continuous.

Remark 3.16. The following examples show that the concept of µp-continuity and **η-continuity
are independent.
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Example 3.17. Let X and τ be as in Example 2.7(2). Let Y = {a, b, c} with σ = {ϕ, {a}, {a, b}, {a,
c}, Y}. Let f : X → Y be the identity function on X. Then f is µp-continuous but not **η-continuous.

Example 3.18. Let X, τ and f be as in Example 3.6. Let Y = {a, b, c} with σ = {ϕ, {a}, Y}. Then
f is **η-continuous but not µp-continuous.

Theorem 3.19. For a function f : X → Y, the following are equivalent.

1. f is α-continuous.

2. f is C*η-continuous and µα-continuous.

Proof. The proof follows from Definitions 3.2 and 3.3(6), Remark 3.4 and Theorem 2.11.

Theorem 3.20. For a function f : X → Y, the following are equivalent.

1. f is µα-continuous.

2. f is **η-continuous and µp-continuous.

Proof. The proof follows from Theorem 2.13.
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Abstract   In this paper, axiomatic characterizations of quadripartitioned single-valued neutrosophic 

rough sets have been studied and also studied some properties of quadripartitioned single-valued 

neutrosophic rough sets. A numerical example in medical diagnosis is given, which is based on the 

similarity measure of quadripartitioned single-valued neutrosophic rough sets. 

Keywords   Quadripartitioned single valued neutrosophic rough sets, similarity measure, axiomatic characterization, 

quadripartitioned single-valued neutrosophic number 

1. Introduction 

Zadeh [1] proposed the concept of fuzzy sets which is very useful to deal the concept of imprecision, 

uncertainty, and degrees of the truthfulness of values and is represented by membership functions which lie 

in a unit interval [0,1]. Atanassov [2] developed the concept of intuitionistic fuzzy sets in 1983 which is a 

generalization of fuzzy sets and is dealing with the concept of vagueness. This concept consists of both 

membership and non-membership functions. In 1998, Smarandache presented Neutrosophic sets with three 

components called truth membership function, indeterminacy membership function, and falsity membership 

function [3,4]. 

In 1982, Pawlak [5] introduced the concept of rough sets which expresses vagueness in the notions of 

lower and upper approximations of a set and it employs boundary region of a set. A hybrid structure of rough 

neutrosophic sets was introduced by Broumi and Smarandache in 2014 [6]. Smarandache [7] and later Wang 

et al. [8] studied the concept of single-valued neutrosophic sets which is very useful in real scientific and 

engineering applications. Broumi et al. [9-11] solved the shortest path problem using Bellman algorithm 

under neutrosophic environment. Then, a new hybrid model of single-valued neutrosophic rough sets was 

introduced by Hai Long Yang [12]. 

Smarandache [7] firstly presented the refinement of the neutrosophic set and logic, i.e. the truth value T is 

refined into types of sub-truths such as T1, T2, etc.; similarly indeterminacy I is split/refined into types of 

sub-indeterminacies I1, I2, etc., and the sub-falsehood F is split into F1, F2, etc. Based on Belnap’s [13] four-

valued logic that is (Truth-T, Falsity-F, Unknown-U, Contradiction-C) Smarandache proposed the concept of 

four numerical valued neutrosophic logic that is quadripartitioned single valued neutrosophic sets. In this set, 

the indeterminacy is split into two parts known as unknown (neither true nor false) and contradiction (both 
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true and false). Mohana
 
and Mohanasundari [14] studied the concept of quadripartitioned single-valued 

neutrosophic relations (QSVNR) and also studied some properties of a quadripartitioned single-valued 

neutrosophic rough sets. Chatterjee et al. [15] studied the concept of some similarity measures and entropy 

on quadripartitioned single-valued neutrosophic sets. 

This paper is structured in the following ways. Section 1 provides a brief introduction. Section 2 delivered 

the basic definitions which we need to prove the results in further. Section 3 defined the concepts of empty 

quadripartitioned single-valued neutrosophic sets (QSVNS), full QSVNS and also singleton and its 

complement of QSVNS. And also, we have studied some properties of quadripartitioned single-valued 

neutrosophic rough sets. Section 4 deals the concept of axiomatic characterizations of quadripartitioned 

single-valued neutrosophic rough sets in detail. Section 5 illustrates an example for quadripartitioned single-

valued neutrosophic rough sets in medical diagnosis. Section 6 concludes the paper. 

2. Preliminaries 

In this section, we recall the basic definitions of rough sets, Neutrosophic sets, QSVNS, and QSVNR, which 

will be used in proving the rest of the paper. 

Definition 2.1. [5] Let   be any non-empty set. Suppose   is an equivalence relation over  . For any non-

null subset X of U, the sets                  and                    are called the lower 

approximation and upper approximation respectively of   where the pair         is called an 

approximation space. This equivalence relation   is called indiscernibility relation. The pair      

              is called the rough set of   in  . Here      denotes the equivalence class of   containing  . 

Definition 2.2. [4] Let   be a universe of discourse, with a generic element in X denoted by  , a 

neutrosophic set      is an object having the form, 

                              

where the functions                  define the degree of membership ( or truth) respectively, the 

degree of indeterminacy, and the degree of non-membership ( or falsehood ) of the element     to the set 

A with the condition,                        . 

Definition 2.3. [15] Let   be a non-empty set. A quadripartitioned single-valued neutrosophic set (QSVNS) 

  over   characterizes each element   in   by a truth-membership function    , a contradiction membership 

function   , an ignorance membership function    and a falsity membership function    such that for each, 

                      and                             when   is discrete,   is 

represented as,   ∑ ⟨                           ⟩
 
           . However, when the universe of 

discourse is continuous,   is represented as,   ∫ ⟨                       ⟩
 

       

Definition 2.4. [14] A QSVNS   in     is called a quadripartitioned single-valued neutrosophic relation 

(QSVNR) in  , denoted by, 

   ⟨                                     ⟩            

where                                         and              denote the truth 

membership function, a contradiction membership function, an ignorance membership function and a falsity 

membership function of   respectively. 

Definition 2.5. [14] Let   be a QSVNR in  , the tuple       is called a quadripartitioned single-valued 

neutrosophic approximation space               the lower and upper approximations of   with respect 

to       denoted by  
 
    and  

 
    are two QSVNS’s whose membership functions are defined as        
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               ,                 
   

                

                  
   

               ,                 
   

                

                   
   

               ,                 
   

                 

                   
   

               ,                  
   

                           

The pair             is called the quadripartitioned single-valued neutrosophic rough set of   with respect 

to      .   and   are referred to as the quadripartitioned single-valued neutrosophic lower and upper 

approximation operators, respectively. 

Theorem 2.1. [14] Let       be a quadripartitioned single-valued neutrosophic approximation space. The 

quadripartitioned single-valued neutrosophic lower and upper approximation operators defined in 3.4 have 

the following properties.              , 

i. ( ) ,R X X        

ii. If     then           and           

iii.                                   

iv.                                   

v.                             

3. The Properties of Quadripartitioned Single-Valued Neutrosophic Rough Sets 

In this paper, QSVNS(X) will denote the family of all QSVNSs in  .  

Definition 3.1. Let   be a QSVNS in  . If                      and                then   

is called an empty QSVNS, denoted by  . If                      and                 then 

  is called a full QSVNS, denoted by  . 

                              ̂  denotes a constant QSVNS satisfying,  

            ̂                    ̂                    ̂          and             ̂        

Definition 3.2. For any    , a quadripartitioned single-valued neutrosophic singleton set    and its 

complement        are defined as       

   
       

    {
     
     

 

   
       

    {
     
     

 

       
           

    {
     
     

 

and 

       
           

    {
     
     

 

Definition 3.3. If                   ,              ,                 and             

 , then   is called a serial QSVNR where     and     denote maximum and minimum respectively. 

Theorem 3.1. Let       be a quadripartitioned single-valued neutrosophic approximation space. The 

quadripartitioned single-valued neutrosophic lower and upper approximation operators defined in 2.5 have 

the following properties.                                 , 
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     (             ̂ )                  ̂   and                 ̂                   ̂   

     (           ̂ )             ̂           and              ̂              ̂         

PROOF. By definition 2.5,     , we have 

                ̂        
   

                       ̂      

   
   

                            ̂      

   
   

                   

 
 (  

   
               )     

              

 

                ̂        
   

                       ̂      

   
   

                            ̂      

   
   

                   

 
 (  

   
               )     

              

 

                ̂        
   

                       ̂      

   
   

(                           ̂     ) 

   
   

                   

  (  
   

               )     

              

 

                ̂        
   

                       ̂      

   
   

(                           ̂     ) 

   
   

                  

  (  
   

               )     

              

So,                ̂                   ̂ . 

Similarly, we can show that                ̂                   ̂ . 

(2) If       , then we have, 

             ̂                  ̂                   ̂             ̂  by (1) 

Conversely, if             ̂         

             ̂              ̂                        

                ̂                     

Similarly, we can show              ̂              ̂          
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Theorem 3.2. Let       be a quadripartitioned single-valued neutrosophic approximation space.      and 

     are the lower and upper approximation in Definition 2.5 then we have, 

(1)   is serial               ̂              ̂                     

                          

                                ̂              ̂                     

                        

                                         

(2)   is reflexive                      

                                          

(3)   is symmetric   (      )     (      )           

                                          (  )           

      is transitive                           

                                                       

PROOF. Since quadripartitioned single-valued neutrosophic approximation operators satisfy the duality 

property, it is enough to show us the properties for upper quadripartitioned single-valued neutrosophic 

approximation operator. 

Based on Theorem 2.1(1), 3.1(2) we only need to show 

  is serial               ̂              ̂                      

                        

(I) We first prove  

  is serial               ̂              ̂                    . 

First assume that          , then     , 

                             and                                               

By Definition 2.5,     , 

              ̂        
   

                     ̂      

   
   

             

      
   

                

 

              ̂        
   

                     ̂      

   
   

             

      
   

                

 

              ̂        
   

                     ̂      
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              ̂        
   

                     ̂      

   
   

             

      
   

                 

Therefore,                   ,              ̂              ̂ . 

Conversely, assume that                   ,             ̂              ̂ . 

Take         and        , then by Definition 2.5,     , 

            ̂       
   

                 ̂       
   

             
   

        

            ̂       
   

                 ̂       
   

             
   

        

            ̂       
   

                 ̂       
   

             
   

        

            ̂       
   

                 ̂       
   

             
   

        

Then, R is serial. 

Hence,   is serial               ̂              ̂                      

(i) Next, we prove that   is serial                       . 

First, assume that R is serial. Since X is finite, there exists     such that                   and 

                   Then by Definition 2.5,     , 

          
   

                  
       

                                

   
       

                            

 

          
   

                  
       

                                

   
       

                            

Then,                    

Similarly, we can prove that                                      and                  . 

Therefore          . 

Conversely, assume that                      . Take    , then by Theorem 2.1(1) and 

Definition 2.5, then we have  

                                                         

which means              . Similarly, we can prove that 

                             and               

Hence, R is serial. 

(1)     is reflexive, then       we have  

                                      

By Definition 2.5,            ,       
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So,       . 

    Now assume that            ,       . 

       take         , then we have 

         
                  =                    

     

                  
                             

     

                                      

 

         
                                       

     

                  
                             

     

                                       

 

         
                                       

     

                  
                             

     

                                       

 

         
                                       

     

                  
                             

     

                                       

Thus,   is reflexive. So,   is reflexive                      

(2) By Definition 2.5,        
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  is symmetric iff, 

        

                                

                                

Then,   is symmetric iff, 

        

                                                        

                                                        

which implies that   is symmetric iff                                   

(3) Assume that   is transitive, then  

          

                                                            

                                                            

By Definition 2.5,     , we have 

                                    

                                     

                                    

      (                             ) 
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      (                             ) 

                      

           

 

                                    

                                     

                                    

      (                             ) 

                      

           

Hence,               

Conversely, assume that            ,               

          take           we have 

                                        

                              

                        

 

                                        

                              

                        

 

                                        

                              

                        

 

                                        

                              

                        

So,   is transitive. 

4. Axiomatic Characterizations of Quadripartitioned Single-Valued Neutrosophic 

Rough Sets 

This section will provide the axiomatic characterizations of quadripartitioned single-valued neutrosophic 

rough sets by defining a pair of abstract operators. Consider a system of quadripartitioned single-valued 

neutrosophic rough sets                      where                       are two operators 

from          to          Let                    denote truth, contradiction, ignorance and falsity 

membership function respectively. 

Define                            and                 where, 
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For                                                which implies that, 

                                                    

                                   which implies that, 

                                        and             . 

Definition 4.1. Let                       be two quadripartitioned single-valued neutrosophic set 

operators. Then,     ⟨                         ⟩                  and   are known as dual 

operators if they satisfy the following axioms. 

                       i.e.,       

i.                     

ii.                     

iii.                     

iv.                     

                       i.e.,       

i.                     

ii.                     

iii.                     

iv.                     

Theorem 4.1 Let                       be two dual operators. Then, there exists a QSVNR   in   

such that,           and           for all            iff L satisfies the following axioms 

(QSVNSL2) and (QSVNSL3), or equivalently,   satisfies axioms (QSVNSU2) and (QSVNSU3):  

                                  

                                            i.e.,       

i.        ̄                   

ii.        ̄                   

iii.        ̄                   

iv.        ̄                   

where  ̄  is a constant fuzzy set in   satisfying,  

      ̄                   

                                      

i.                                              

ii.                                              

iii.                                              

iv.                                              

                                           i.e.,       

i.        ̄                   

ii.        ̄                   

iii.        ̄                   

iv.        ̄                   

where  ̄  is a constant fuzzy set in   satisfying       ̄                   

                          i.e.,       

i.                                              
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ii.                                              

iii.                                              

iv.                                              

Proof:     It follows immediately from Theorem 2.1,3.1.     Suppose that the operator H satisfies 

axioms (QSVNSU2) and (QSVNSU3). By using  , we can define a QSVNR 

   ⟨                                     ⟩        as follows 

                                                                 and         

            

Clearly,              we have, 

   ⋃     

   

          ⋃     

   

          ⋂     

   

          ⋂     

   

        

By definition 2.5, (QSVNSU2) and (QSVNSU3) we have 

  ̄        
   

                  
   

                   

   
   

                 

 

   (⋃           

   

)     

                     

 

  ̄        
   

                  
   

                   

   
   

                 

 

   (⋃           

   

)    

                      

 

  ̄        
   

                  
   

                   

   
   

                 

 

   (⋂           

   

)     

                     

 

  ̄        
   

                  
   

                   

   
   

                 

 

   (⋂           

   

)     

                     

           Since   and   are dual operators and            we can easily show that            
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From Theorem 4.1, it follows that axioms (QSVNSU1), (QSVNSL1) – (QSVNSL3), or equivalently, 

axioms (QSVNSL1), (QSVNSU1) – (QSVNSU3) are the basic axioms of quadripartitioned single-valued 

neutrosophic approximation operators. Then we have the following definition. 

Definition 4.2. Let                       be two dual operators. If   satisfies axioms (QSVNSL2) 

and (QSVNSL3) or equivalently   satisfies axioms (QSVNSU2) and (QSVNSU3), then the system 

                     is known as quadripartitioned single-valued neutrosophic rough set algebra, and   

and   are called quadripartitioned single-valued neutrosophic lower and upper approximation operators 

respectively. 

Next, we study axiomatic characterizations of some special classes of quadripartitioned single-valued 

neutrosophic approximation operators. 

Theorem 4.2. Let                       be two dual operators, then there exists a serial QSVNR   

in   such that            ,                     if and only if   satisfies axioms (QSVNSL2), 

(QSVNSL3) and one of the following equivalent axioms, or equivalently   satisfies axioms (QSVNSU2), 

(QSVNSU3) and one of the following equivalent axioms: 

i.                 

ii.                 

iii.                       ̂              ̂  

iv.                       ̂              ̂  

v.                                 

PROOF. It follows from Theorem 3.2(1) and 4.1. 

Theorem 4.3. Let                       be two dual operators, then there exists a reflexive 

QSVNR R in X such that            ,                     if and only if L satisfies axioms 

(QSVNSL2), (QSVNSL3) and one of the following equivalent axioms, or equivalently H satisfies axioms 

(QSVNSU2), (QSVNSU3) and one of the following equivalent axioms: 

i.                             

ii.                             

PROOF.  It follows from Theorem 3.2(2) and 4.1 

Theorem 4.4 Let                       be two dual operators, then there exists a symmetric 

QSVNR   in   such that            ,                     if and only if   satisfies axioms 

(QSVNSL2), (QSVNSL3) and one of the following equivalent axioms, or equivalently   satisfies axioms 

(QSVNSU2), (QSVNSU3) and one of the following equivalent axioms: 

i.                                            

ii.                                    

PROOF.  It follows from Theorem 3.2(3) and 4.1 

Theorem 4.5. Let                       be two dual operators, then there exists a transitive 

QSVNR R in X such that            ,           and           if and only if   satisfies 

axioms (QSVNSL2), (QSVNSL3) and one of the following equivalent axioms, or equivalently   satisfies 

axioms (QSVNSU2), (QSVNSU3) and one of the following equivalent axioms: 

i.                                   

ii.                                   

PROOF. It follows from Theorem 3.2(4) and 4.1 
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5. An application of Quadripartitioned Single-Valued Neutrosophic Rough Sets 

Definition 5.1. Let                 be a quadripartitioned single-valued neutrosophic number,    

                            be an ideal quadripartitioned single-valued neutrosophic number, then the 

cosine similarity measure between   and    is defined as follows. 

        
                       

√  
    

    
    

 √                           
 

Definition 5.2. Let   and   be two QSVNSs in  . We define the sum of   and   as 

     ⟨               ⟩ ; i.e. 

    ⟨
                                              
                                             

⟩ 

Example 5.2. Consider the medical diagnosis decision procedure based on quadripartitioned single-valued 

neutrosophic rough sets on two universes. Let us consider the two universes.              which denotes 

the set of diseases viral fever, common cold and stomach problem and              be the set of 

symptoms tired, dry cough and stomach pain respectively. Let              be a QSVNR from   to 

 , where                       denotes the degree that the disease          has the symptom 

        . According to medical knowledge statistic data, we can obtain the relation  . 

Table 1. QSVNR   

           

                                                     

                                                     

                                                   

Let                                                                       . By the Definition 2.5 

the lower and upper approximations are calculated and hence given in detail below, 

                                                      

                                                      

                                                      

By Definition 5.2, 

          ⟨                      ⟩ ⟨                      ⟩ ⟨                      ⟩  

By Definition 5.1, 

        
                       

√  
    

    
    

 √                           
 

     
     

         

√                       √     
       

Similarly, we can obtain,  

     
     =0.665,       

     =0.636 

Here      
          

          
    . So, the optimal decision is to select   . That is the patient   is 

suffering from viral fever   . 
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6. Conclusion 

In this paper, we studied the framework of quadripartitioned single-valued neutrosophic rough sets through 

its axiomatic characterizations. And also, we have studied the properties of quadripartitioned single-valued 

neutrosophic rough sets. We also illustrate a numerical example in medical diagnosis to show the usefulness 

of quadripartitioned single-valued neutrosophic rough sets on two-universes.  
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