
New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief
Naim Çağman

Number 31 Year 2020

www.dergipark.org.tr/en/pub/jnt



Journal of New Theory (abbreviated by J. New Theory or JNT) is a mathematical journal focusing 

on new mathematical theories or the applications of a mathematical theory to science. 

JNT founded on 18 November 2014 and its first issue published on 27 January 2015. 

ISSN: 2149-1402 

Editor-in-Chief: Naim Çaǧman  

Email: journalofnewtheory@gmail.com 

Language: English only. 

Article Processing Charges: It has no processing charges. 

Publication Frequency: Quarterly 

Publication Ethics: The governance structure of J. New Theory and its acceptance procedures are 

transparent and designed to ensure the highest quality of published material. Journal of New Theory 

adheres to the international standards developed by the Committee on Publication Ethics (COPE). 

Aim: The aim of the Journal of New Theory is to share new ideas in pure or applied mathematics 

with the world of science. 

Scope: Journal of New Theory is an international, online, open access, and peer-reviewed journal. 

Journal of New Theory publishes original research articles, reports, reviews, editorial, letters to the 

editor, technical notes etc. from all branches of science that use the theories of mathematics. 

Journal of New Theory concerns the studies in the areas of, but not limited to: 

· Fuzzy Sets, 

· Soft Sets, 

· Neutrosophic Sets, 

· Decision-Making 

· Algebra 

· Number Theory 

· Analysis 

· Theory of Functions 

· Geometry 

· Applied Mathematics 

· Topology 

· Fundamental of Mathematics 

· Mathematical Logic 

· Mathematical Physics 

http://www.newtheory.org/editor-in-chief/


You can submit your manuscript in any style or JNT style as pdf. However, you should send your 

paper in JNT style if it would be accepted. The manuscript preparation rules, article template (LaTeX) 

and article template (Microsoft Word) can be accessed from the following links. 

• Manuscript Preparation Rules 

• Article Template (Microsoft Word.DOC) (Version 2019) 

• Article Template (LaTeX) (Version 2019) 

Editor-in-Chief 

Naim Çağman 

Mathematics Department, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey.  

email: naim.cagman@gop.edu.tr 

Associate Editor-in-Chief 

Serdar Enginoğlu  

Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 

email: serdarenginoglu@comu.edu.tr 

İrfan Deli  

M. R. Faculty of Education, Kilis 7 Aralık University, Kilis, Turkey  

email: irfandeli@kilis.edu.tr 

Faruk Karaaslan  

Department of Mathematics, Çankırı Karatekin University, Çankırı, Turkey  

email: fkaraaslan@karatekin.edu.tr 

Area Editors 

Hari Mohan Srivastava  

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 

3R4, Canada  

email: harimsri@math.uvic.ca 

Muhammad Aslam Noor  

COMSATS Institute of Information Technology, Islamabad, Pakistan  

email: noormaslam@hotmail.com 

Florentin Smarandache  

Mathematics and Science Department, University of New Mexico, New Mexico 87301, USA 

email: fsmarandache@gmail.com 

Bijan Davvaz  

Department of Mathematics, Yazd University, Yazd, Iran  

email: davvaz@yazd.ac.ir 

http://www.newtheory.org/forms/Manuscript%20Preparation%20Rules%20for%20jNT.pdf
http://www.newtheory.org/forms/Article_Template(DOC).docx
http://www.newtheory.org/forms/Article_Template(LaTeX).rar
https://scholar.google.com/citations?user=XwJxGAEAAAAJ&hl=en
https://scholar.google.com/citations?user=Pq74XgwAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=Y2rIHOUAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=QedZ_p0AAAAJ&hl=en
https://scholar.google.com.tr/citations?hl=tr&user=cdRbfo8AAAAJ
https://scholar.google.com/citations?user=pMW66zIAAAAJ&hl=en
https://scholar.google.com/citations?user=tmrQsSwAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=9kbPxX0AAAAJ&hl=en


Pabitra Kumar Maji  

Department of Mathematics, Bidhan Chandra College, Asansol 713301, Burdwan (W), West 

Bengal, India.  

email: pabitra_maji@yahoo.com 

Harish Garg  

School of Mathematics, Thapar Institute of Engineering & Technology, Deemed University, 

Patiala-147004, Punjab, India  

email: harish.garg@thapar.edu 

Jianming Zhan  

Department of Mathematics, Hubei University for Nationalities, Hubei Province, 445000, P. R. C.  

email: zhanjianming@hotmail.com 

Surapati Pramanik  

Department of Mathematics, Nandalal Ghosh B.T. College, Narayanpur, Dist- North 24 Parganas, 

West Bengal 743126, India  

email: sura_pati@yaho.co.in 

Muhammad Irfan Ali  

Department of Mathematics, COMSATS Institute of Information Technology Attock, Attock 

43600, Pakistan  

email: mirfanali13@yahoo.com 

Said Broumi  

Department of Mathematics, Hassan II Mohammedia-Casablanca University, Kasablanka 20000, 

Morocco  

email: broumisaid78@gmail.com 

Mumtaz Ali  

University of Southern Queensland, Darling Heights QLD 4350, Australia  

email: Mumtaz.Ali@usq.edu.au 

Oktay Muhtaroğlu  

Department of Mathematics, Tokat Gaziosmanpaşa University, 60250 Tokat, Turkey  

email: oktay.muhtaroglu@gop.edu.tr 

Ahmed A. Ramadan  

Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt  

email: aramadan58@gmail.com 

Sunil Jacob John  

Department of Mathematics, National Institute of Technology Calicut, Calicut 673 601 Kerala, 

India  

email: sunil@nitc.ac.in 

Aslıhan Sezgin  

Department of Statistics, Amasya University, Amasya, Turkey  

email: aslihan.sezgin@amasya.edu.tr 

https://scholar.google.com/citations?user=1W16L50AAAAJ&hl=en
https://scholar.google.com.tr/citations?user=fmJuRScAAAAJ&hl=tr
https://scholar.google.com/citations?user=XmJAmNIAAAAJ&hl=en
https://scholar.google.com/citations?user=vLGVDYgAAAAJ&hl=en
https://scholar.google.com/citations?user=aTpWTSMAAAAJ&hl=en
https://scholar.google.com/citations?user=1sfB1r4AAAAJ&hl=en
https://scholar.google.com/citations?user=6ad2IcAAAAAJ&hl=en
https://scholar.google.com/citations?user=UmZ50O8AAAAJ&hl=en
https://scholar.google.com/citations?user=DFbE3bAAAAAJ&hl=en
https://scholar.google.com/citations?user=pDYK_5EAAAAJ&hl=en
https://scholar.google.com/citations?user=cn1nAKoAAAAJ&hl=en


Alaa Mohamed Abd El-latif  

Department of Mathematics, Faculty of Arts and Science, Northern Border University, Rafha, 

Saudi Arabia  

email: alaa_8560@yahoo.com 

Kalyan Mondal  

Department of Mathematics, Jadavpur University, Kolkata, West Bengal 700032, India  

email: kalyanmathematic@gmail.com 

Jun Ye  

Department of Electrical and Information Engineering, Shaoxing University, Shaoxing, Zhejiang, 

P.R. China  

email: yehjun@aliyun.com 

Ayman Shehata  

Department of Mathematics, Faculty of Science, Assiut University, 71516-Assiut, Egypt  

email: drshehata2009@gmail.com 

İdris Zorlutuna  

Department of Mathematics, Cumhuriyet University, Sivas, Turkey  

email: izorlu@cumhuriyet.edu.tr 

Murat Sarı  

Department of Mathematics, Yıldız Technical University, İstanbul, Turkey  

email: sarim@yildiz.edu.tr 

Daud Mohamad  

Faculty of Computer and Mathematical Sciences, University Teknologi Mara, 40450 Shah Alam, 

Malaysia  

email: daud@tmsk.uitm.edu.my 

Tanmay Biswas  

Research Scientist, Rajbari, Rabindrapalli, R. N. Tagore Road, P.O.- Krishnagar Dist-Nadia, PIN- 

741101, West Bengal, India  

email: tanmaybiswas_math@rediffmail.com 

Kadriye Aydemir  

Department of Mathematics, Amasya University, Amasya, Turkey  

email: kadriye.aydemir@amasya.edu.tr 

Ali Boussayoud  

LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, 

Algeria  

email: alboussayoud@gmail.com 

Muhammad Riaz  

Department of Mathematics, Punjab University, Quaid-e-Azam Campus, Lahore-54590, Pakistan  

email: mriaz.math@pu.edu.pk 

https://scholar.google.com/citations?hl=en&user=4V2S3KQAAAAJ&view_op=list_works
https://scholar.google.com/citations?user=hLKZwCEAAAAJ&hl=en
https://www.researchgate.net/profile/Jun_Ye3
https://scholar.google.com.tr/citations?user=yvoSgFkAAAAJ&hl=en
https://scholar.google.com/citations?user=KjI40v4AAAAJ&hl=en
https://scholar.google.com.tr/citations?user=t5Q8UOcAAAAJ&hl=en
https://scholar.google.com/citations?user=mMPyPSoAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=e4jIk7gAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=29xGnFYAAAAJ&hl=en
https://scholar.google.fr/citations?user=X8LOwvkAAAAJ&hl=en
https://scholar.google.com.tr/citations?hl=tr&user=-veaI1IAAAAJ


Serkan Demiriz  

Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, Turkey  

email: serkan.demiriz@gop.edu.tr 

Hayati Olğar  

Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, Turkey  

email: hayati.olgar@gop.edu.tr 

Essam Hamed Hamouda  

Department of Basic Sciences, Faculty of Industrial Education, Beni-Suef University, Beni-Suef, 

Egypt  

email: ehamouda70@gmail.com 

Layout Editors 

Tuğçe Aydın 

Department of Mathematics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 

email: aydinttugce@gmail.com 

 

Fatih Karamaz 

Department of Mathematics, Çankırı Karatekin University, Çankırı, Turkey 

email: karamaz@karamaz.com 

Contact 
 

Editor-in-Chief 

Name: Prof. Dr. Naim Çağman 

Email: journalofnewtheory@gmail.com 

Phone: +905354092136 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa 

University, Tokat, Turkey 

 

Editors 

Name: Assoc. Prof. Dr. Faruk Karaaslan 

Email: karaaslan.faruk@gmail.com 

Phone: +905058314380 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Çankırı Karatekin 

University, 18200, Çankırı, Turkey 

 

Name: Assoc. Prof. Dr. İrfan Deli 

Email: irfandeli@kilis.edu.tr 

Phone: +905426732708 

Address: M.R. Faculty of Education, Kilis 7 Aralık University, Kilis, Turkey 

 

Name: Asst. Prof. Dr. Serdar Enginoğlu 

Email: serdarenginoglu@gmail.com 

Phone: +905052241254 

Address: Departments of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart 

University, 17100, Çanakkale, Turkey 

https://scholar.google.com/citations?user=VxTvdZYAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=SkbTA4AAAAAJ&hl=en
https://scholar.google.com/citations?user=bBhs6HQAAAAJ&hl=en
https://scholar.google.com.tr/citations?user=woBomhoAAAAJ&hl=en
https://www.researchgate.net/profile/Fatih_Karamaz


CONTENT 

1. Roughness and Fuzziness Associated with Soft Multisets and Their Application to 

MADM / Pages: 1-19 

Muhammed RIAZ, Filiz ÇITAK, Nabeela WALI, Amna MUSHTAQ 

2. Some Variations of Janowski Functions Associated with Srivastava-Attiya Operator / Pages: 

20-31 

Nasir KHAN, Bakhtiar AHMAD, Bilal KHAN, Muhammad NISAR 

3. TOPSIS for Multi Criteria Decision Making in Octagonal Intuitionistic Fuzzy Environment by 

Using Accuracy Function / Pages: 32-40 

Madiha IMTIAZ, Muhammad SAQLAIN, Muhammad SAEED 

4. Fuzzy Orbit Irresolute Mappings / Pages: 41-47 

Rasha Naser MAJEED 

5. Hesitant Fuzzy h-ideals of Γ-hemirings / Pages: 48-55 

Debabrata MANDAL 

6. Novel Methods for Solving the Conformable Wave Equation / Pages: 56-85 

Mohammed KAABAR 

7. Decompositions of Soft 𝛼-continuity and Soft A-continuity / Pages: 86-94 

Naime DEMİRTAŞ, Orhan DALKILIÇ 

8. On Generalized Contraction Principles over S-metric Spaces with Application to 

Homotopy / Pages: 95-103 

Debashis DEY, Kushal ROY, Mantu SAHA 

9. Another Decomposition of Nano Continuity Using Ng*-Closed Sets / Pages: 104-107 

Selvaraj GANESAN 

10. A New Class of Closed Set in Digital Topology / Pages: 108-113 

Pallavi S. MIRAJAKAR, Prakashgouda G. PATIL 

https://dergipark.org.tr/en/pub/jnt/issue/55563/668831
https://dergipark.org.tr/en/pub/jnt/issue/55563/668831
https://dergipark.org.tr/en/pub/jnt/issue/55563/760821
https://dergipark.org.tr/en/pub/jnt/issue/55563/761017
https://dergipark.org.tr/en/pub/jnt/issue/55563/761017
https://dergipark.org.tr/en/pub/jnt/issue/55563/761050
https://dergipark.org.tr/en/pub/jnt/issue/55563/761099
https://dergipark.org.tr/en/pub/jnt/issue/55563/761201
https://dergipark.org.tr/en/pub/jnt/issue/55563/761266
https://dergipark.org.tr/en/pub/jnt/issue/55563/761273
https://dergipark.org.tr/en/pub/jnt/issue/55563/761273
https://dergipark.org.tr/en/pub/jnt/issue/55563/761284
https://dergipark.org.tr/en/pub/jnt/issue/55563/761332


 

31 (2020) 01-19 

Journal of New Theory 

http://www.newtheory.org 

Open Access 

 

Roughness and Fuzziness Associated with Soft Multisets and Their 

Application to MADM  

Muhammad Riaz
1
, Filiz Çıtak

2
, Nabeele Wali

3
 Amna Mushtaq

4 

Article History 

Received: 01.01.2020 

Accepted: 05.14.2020 

Published: 30.06.2020 

Original Article 

Abstract – In this paper, we tried to hybrid soft sets with multisets. We define some basic properties 

of soft multiset and present some important results. We define some binary relations, equivalence 

relations and an indiscernibility relation on soft multiset with examples. The concept of an 

approximation space associated with each parameter in a soft multiset is discussed and an 

approximation space associated with the soft multiset is defined. We introduce the novel concepts of 

roughness and fuzziness associated with soft multiset. We use soft multiset in multi-valued information 

system. Furthermore, we present an algorithm to cope with uncertainties in multi-attribute decision 

making (MADM) problems by utilizing soft multisets and related concepts. The efficiency of the 

algorithm is verified by a case study to find the optimal choice of the real-world problems having 

uncertainties.  

Keywords   Soft multiset, roughness and fuzziness of soft multiset, multi-valued information system, multi-attribute decision-

making. 

1. Introduction 

The rapid development of science has led to an urgent need for the development of modern sets theory. 

Blizard [1] introduced the multiset theory as a generalization of crisp set theory. Keeping in view the 

uncertainty element Zadeh [2], in 1965, initiated the idea of fuzzy sets where a membership degree is 

assigned to each member of the universe of discourse. Molodtsov [3] initiated a novel concept of soft set as a 

new arithmetical tool for handling uncertainties which traditional arithmetical tools cannot manipulate. Soft 

set theory and multiset theory has many applications in artificial intelligence, multiple-valued logic, multi-

process information fusion, social science, economics, medical science, engineering etc. The advancement in 

the field of soft set theory has been taking place in a rapid pace due to general nature of parametrization 

expressed by a soft set, in recent years. Similarly, multiset theory, by assuming that for a given set   an 

element   occurs a finite number of times, has natural applications in artificial intelligence, multiple-valued 

logic and decision making problems of the real world problems. Abbas et al. [4] established some 

generalized operations in soft set theory via relaxed conditions on parameters. Ali et al. [5] introduced some 

new operations on soft sets. Ali [6] presented some interesting results on on soft sets, rough soft sets and 

fuzzy soft sets. Ali et al. [7] developed representation of graphs based on neighborhoods and soft sets. Feng 

et al. [8-13] introduced several interesting results on soft relations applied to semigroups, attribute analysis of 

information systems, soft sets combined with fuzzy sets, fuzzy soft set, rough set and generalized 
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intuitionistic fuzzy soft sets and their applications to multi-attribute decision making. Hayat et al. [14] 

introduced some new results on type-2 soft sets. Further Maji et al. [15,16] studied the soft set theory and 

applied this theory to resolve decision-making issues. They also initiated the notion of fuzzy soft set. Aktaş 

and Çağman [17] presented the concept of soft group. Kong et al. [18] used the soft set hypothetic approach 

in decision-making issues. Babitha and Sunil [19] introduced the some results on soft set relations, 

equivalence relations and partitions on soft sets, and soft set function.  Babitha and John [20] introduced the 

idea of soft multiset which is the hybrid structure of multiset and soft set. They shown a relationship between 

soft multisets and multi-valued information system. They also presented an application of soft multiset in 

decision-making. Alkhazaleh et al. [21] also introduced some results of soft multiset Applications of soft 

multiset theory in other fields and real life issues are now capturing momentum. Many researchers have 

contributed their research work in the field of multiset theory and soft set theory (See [1,5,15,17,18,20-29]). 

Liu et al. [30] introduced hesitant IF linguistic operators and presented its application to multi-attribute 

group decision making (MAGDM) problem. Hashmi et al. [31] introduced the notion of  -polar 

neutrosophic set and  -polar neutrosophic topology and their applications to multi-criteria decision-making 

(MCDM) in medical diagnosis and clustering analysis. Hashmi and Riaz [32] introduced a novel approach to 

censuses process by using Pythagorean  -polar fuzzy Dombi’s aggregation operators. Naeem et al. [33] 

introduced Pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. 

Naeem et al. [34] introduced Pythagorean  -polar Fuzzy Sets and TOPSIS method for the Selection of 

Advertisement Mode. Riaz et al. [35] introduced N-soft topology and its applications to multi-criteria group 

decision making (MCGDM). Riaz et al. [36,37] introduced soft rough topology with multi-attribute group 

decision making problems (MAGDM). Riaz and Hashmi [38] introduced the concept of cubic  -polar fuzzy 

set and presented multi-attribute group decision making (MAGDM) method for agribusiness in the 

environment of various cubic  -polar fuzzy averaging aggregation operators. Riaz and Hashmi [39] 

introduced the notion of linear Diophantine fuzzy Set (LDFS) and its Applications towards multi-attribute 

decision making problems. Linear Diophantine fuzzy Set (LDFS) is superior than IFSs, PFSs and  -ROFSs. 

Riaz and Hashmi [40] introduced novel concepts of soft rough Pythagorean  -Polar fuzzy sets and 

Pythagorean  -polar fuzzy soft rough sets with application to decision-making. Riaz and Tehrim [41-43] 

established the idea of cubic bipolar fuzzy set and cubic bipolar fuzzy ordered weighted geometric 

aggregation operators with applications to multi-criteria group decision making (MCGDM). They introduced 

bipolar fuzzy soft mappings with application to bipolar disorders. Roy and Maji [44] presented a new fuzzy 

soft set theoretic approach to decision making problems. Şenel [45,46] introduced the relation between soft 

topological space and soft ditopological space and characterization of soft sets by delta-soft operations. 

Sezgin and Atagün [47] introduced some new operations of soft sets. Sezgin et al. [48] introduced the idea of 

soft intersection near-rings with applications. Shabir and Ali [29] established some properties of soft ideals 

and generalized fuzzy ideals in semigroups. Shabir and Naz [49] introduced the concept of soft topological 

spaces. Tehrim and Tehrim [50] presented a novel extension of TOPSIS to MCGDM with bipolar 

neutrosophic soft topology. Wei et al. [51] established hesitant triangular fuzzy operators in MADGDM 

problems. Xueling et al. [52] introduced decision-making methods based on various hybrid soft sets.  Xu and 

Zhang [53] introduced hesitant fuzzy multi-attribute decision-making based on TOPSIS with incomplete 

weight information. Xu [54] introduced the concept of intuitionistic fuzzy aggregation operators. Xu and Cai, 

in their book [55], presented the theory and applications of intuitionistic fuzzy information aggregation. Xu, 

in his book [56], presented hesitant fuzzy sets theory and various types of hesitant fuzzy aggregation 

operators. Zhan et al. [57-58] presented the concepts of rough soft hemirings, soft rough covering and its 

applications to multi-criteria group decision-making (MCGDM) problems. Zhang and Xu [59] presented an 

extension of TOPSIS in multiple criteria decision making with the help of Pythagorean Fuzzy Sets. 

This paper is organized as follows: In Section 2, we present some basic concepts of multiset theory. In 

Section 3, we discuss some results of soft set theory and soft multiset theory. We also present some new 

operations on soft multisets. In Section 4, we present some binary relations, equivalence relations and an 

indiscernibility relations on soft multiset with the help of examples. We also present an application of soft 
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multiset in information system. In Section 5, we present an algorithm to cope with multi-attribute decision 

making (MADM) problems by utilizing soft multisets and related concepts. This algorithm is also 

summarized by the flow chart. The efficiency of the algorithm is verified by a case study to find the optimal 

choice to the various real world problems having uncertainties, imprecisions and vagueness. 

2. Preliminaries 

In this section, we recall some rudiments of multiset theory. 

Definition 2.1. [20] "A multiset over   is just a pair      , where       is a function,   is a crisp set 

and   is a set of whole numbers.  

In order to avoid any confusion we will use square brackets for multisets and braces for sets. Let   be a 

multiset over crisp set   with   occurring   times in  . It is denoted by     . Multi-set   is given by 

        *
  

  
 
  

  
     

  

  
+  where    occurring    times,    occurring    times and so on.  

Definition 2.2. [60] Let         and         be two multisets. Then   is a sub-multiset of  , 

denoted by     if for all    ,             

Definition 2.3. [20] A sub-multiset         of         is a whole sub-multiset of   with each 

element in   having full multiplicity as in  . i.e.            for every   in     

Definition 2.4. [60] Suppose that         and         are two multisets. Then their union, 

denoted by    , is a multiset        , where for all     such that                    .  

Definition 2.5. [60] Suppose that         and         are two multisets. Then their intersection, 

denoted by    , is a multiset        , where for all     such that                    .  

Definition 2.6. [20] Suppose that         and         are two multisets. Then their sum denoted 

by    , is a multiset        , where for all     such that               . 

Definition 2.7. [60] Suppose that         and         are two multisets. Then the removal of 

multiset   from  , denoted by    , is a multiset        , where for all     such that      

                . 

Definition 2.8. [20] Let         be a multiset and          be a sub-multiset of  . Then the 

relative compliment of    is given by   
         

Definition 2.9. [20] Let      denotes the set of all multisets whose elements are in   such that no element in 

a multiset appears more than   times. Let        be a multiset. The power whole multiset of   denoted by 

      is defined as the set of all whole sub-multisets of    The cardinality of       is     where   is the 

cardinality of the support set (root set) of  ".  

Example 2.10. Let   *
 

 
 
 

 
 
 

 
+ be a multiset. Then, by using Definition 2.2, Definition 2.3 and Definition 

2.9, the set of all sub-multisets of   is 

       {   [
 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]  

    [
 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]     [

 

 
 
 

 
 
 

 
]      [

 

 
 
 

 
 
 

 
]      [

 

 
 
 

 
 
 

 
]      [

 

 
 
 

 
 
 

 
]} 

and                                

Furthermore, the power whole multiset is given by                                    and its 

cardinality is given by                 . 
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3. Some Results on Soft Multi-Sets 

In this section, we present some basic notions of soft set and soft multiset along with related properties. We 

present binary relation, equivalence relation and indiscernibility relation on soft multiset with examples and 

study important results. We also present an application of soft multiset in information system. 

In the sequel, the multiset   represents the initial universe,   is a set of parameters or attributes,       

is a power whole multiset of   and      

Definition 3.1. [3] Let   be the universal set,   be a set of attributes,      be a power set of   and    . A 

pair       is called a soft set over  , where          is a set-valued function.  

Definition 3.2. [20] A soft multiset    on the universal multiset   is defined by the set of all ordered pairs 

                              , where            such that         if    .  

Consider a soft multiset   , where   *
  

  
 
  

  
     

  

  
+,                  and    . Tabular 

illustration of a soft multiset is most helpful for storing soft multiset in a computer. Here, 

    {
                 

           
 

Tabular representation of a soft multiset can be written as: 

                    

                      

                      

             

                      

Hereafter,       denotes the family of all soft multisets over   with attributes from  . Now, we 

elaborate the definition of soft multiset by the succeeding example.  

Example 3.3. Let   *
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
+ be the universal multiset consist of perfumes under 

consideration, where     azzaro,     coco,     eternity,     poison,     rogue,     tresor and    

denotes the multiplicity of perfume                . 

Let                                                                   be the set of all attribues. Let 

                                                 Then, the soft multiset    or       defined below 

describe the attractiveness of perfumes under consideration,  

          ,(          *
  

  
 
  

  
+)  (           *

  

  
 
  

  
+)  (                     *

  

  
 
  

  
+)- 

Here the approximation set is multiset. In tabular form, the soft multiset    can be represented as:  

      expensive   affordable   long lasting 

fragrance  

     0        0  

          0   0  

          0   0  

     0        0  

     0   0       

     0   0       

Definition 3.4. [20] "Let         . If         for all    , then    is called an empty or null soft 

multiset, denoted by      
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Definition 3.5. [20] Let            . Then,    is a soft multi subset of   , denoted by    ̃   , if 

           , for all    ".  

Example 3.6. Let   *
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
+ be a universal multiset. Let                 be the set of 

attributes. Let                          and    . Consider soft multisets    and    defined on   

given as,    ,(   *
  

  
 
  

  
+)  (   *

  

  
 
  

  
+)  (   *

  

  
 
  

  
+)-,    ,(   *

  

  
+)  (   *

  

  
 
  

  
+)-. Then,    is soft 

multi subset of      

Definition 3.7. [20] "Let         . If         for all    , then    is called  -universal soft multiset, 

denoted by   ̃  If    , then  -universal soft multiset is called a universal or absolute soft multiset, denoted 

by   ̃.  

Definition 3.8. [20] Let            . Then,    and    are equal soft multisets, denoted by    ̃   , if 

and only if            , for all       

Definition 3.9. [20] Let            . Then, the union    ̃    and the intersection    ̃    of    and    

is defined by the approximate functions    ̃                 and    ̃                 

respectively,     ".  

Example 3.10. Let   *
 

  
 

 

  
 

 

  
 

 

  
 
  

  
 
  

  
+ be a universal multiset consist of smart phones under 

consideration, where     Samsung Galaxy Note,     Nokia lumina(930),     Huawei Nexus 6p,    

 iphone 6,     Motorola V3i,     Sony Xperia Z5 Premium, and let                 be the set of 

attributes defined as     long battery timing,     expensive,     durable glass screen, and     metallic 

body. Let              and           be subsets of  . Then, we we can write two multisets as follows: 

   ,(   *
 

  
 

 

  
+)  (   *

 

  
 

 

  
+)  (   *

  

  
 
  

  
+)- and    ,(   *

  

  
+)  (   *

 

  
 

 

  
 

 

  
+)- 

Then, their intersection is given by  

    ̃    ,              (   *
  

  
+)        - 

and their union is given by  

    ̃    ,(   *
 

  
 

 

  
+)  (   *

 

  
 

 

  
+)  (   *

  

  
 
  

  
+)  (   *

 

  
 

 

  
 

 

  
+)- 

Definition 3.11. [20] "Let                  be a set of parameters. The NOT set of   denoted by    is 

defined by                     , where                          

Definition 3.12. [20] Let         . The complement of    over a multiset   is denoted by   
  and is 

defined by approximate function   
              for all      ".  

Here we point out that the law of excluded middle do not hold with respect to complement for soft 

multiset given in Definition 3.12 defined by Babitha and John [20]. We give the following counter example 

to explain it more effectively.  

Counter Example 3.13. Suppose that   *
 

  
 

 

  
 

 

  
 

 

  
 

 

  
+ is a universal multiset of bags under 

consideration. Let                                be the set of attributes and 

                          . Let         . That is,  

    ,(    *
 

  
 

 

  
+)  (      *

 

  
 

 

  
+)  (      *

 

  
 

 

  
+)- 

The NOT set of   is given by                                      . Then,  

   
  ,(       *

 

  
 

 

  
 

 

  
+)  (         *

 

  
 

 

  
 

 

  
+)  (         *

 

  
 

 

  
 

 

  
+)- 
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Therefore, 

   ̃   
   {(    [

 

  
 
 

  
])  (      [

 

  
 
 

  
])  (      [

 

  
 
 

  
])  (       [

 

  
 
 

  
 
 

  
])   

 
(         [

 

  
 
 

  
 
 

  
])          [

 

  
 
 

  
 
 

  
]} 

    ̃   
    ̃ 

Now to solve this problem, we modify the definition of complement of soft multiset as given below.  

Definition 3.14. Let         . Then, the complement   
  of    is defined by the approximate function 

  
            , for all      Note that    

       and   
    ̃    

We see that the law of excluded middle and law of contradiction hold with respect to complement for soft 

multiset given in Definition 3.14.  

Proposition 3.15. Let         . Then, 

i. Law of excluded middle:  

       ̃   
    ̃ 

ii. Law of contradiction:  

       ̃   
     

PROOF. The proof is straightforward.  

Definition 3.16. Let            . Then, the difference    ̃   of    and    is defined by the 

approximate function    ̃                ,     .  

Definition 3.17. Let            . Then, the symmetric difference or disjunctive union    ̃   of    and 

   is defined by    ̃       ̃     ̃    ̃     or    ̃       ̃   
   ̃    

  ̃         ̃    ̃     ̃   . 

Example 3.18. Let   *
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
+ be a universal multiset of universities of the world under 

consideration, and    denotes the multiplicity of campuses of university                . The set of 

facilities which may be provided by these universities is given by                    where     library, 

    hostels,     computer and internet facility,     international standard course work, and     best 

security system. Let             ,              and assume that  

   ,(   *
  

  
 
  

  
+)  (   *

  

  
 
  

  
+)  (   *

  

  
 
  

  
+)- and    ,(   *

  

  
 
  

  
+)         (   *

  

  
 
  

  
 
  

  
 
  

  
+)- 

Then,  

  
  {(   [

  

  
 
  

  
 
  

  
 
  

  
])  (   [

  

  
 
  

  
 
  

  
 
  

  
])  (   [

  

  
 
  

  
 
  

  
 
  

  
])               } 

  
  {              (   [

  

  
 
  

  
 
  

  
 
  

  
 ])        (   [

  

  
 
  

  
])} 

Now, we observe that  

   ̃      *
  

  
 
  

  
+,    ̃      *

  

  
 
  

  
+,    ̃       ,    ̃       , and    ̃        

Thus we have  

   ̃   {(   [
  

  
 
  

  
])  (   [

  

  
 
  

  
])                      } 

Now, we examine that 
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   ̃       ,    ̃       ,    ̃       ,    ̃       , and    ̃      *
  

  
 
  

  
 
  

  
 
  

  
+ 

Thus we obtain 

   ̃   {                            (   [
  

  
 
  

  
 
  

  
 
  

  
])} 

Therefore, 

   ̃       ̃    ̃     ̃    

   ̃   {(   [
  

  
 
  

  
])  (   [

  

  
 
  

  
 ])               (   [

  

  
 
  

  
 
  

  
 
  

  
])} 

We observe that De-Morgan’s laws also hold in soft multiset case.  

Proposition 3.19. Let            . Then, 

i.     ̃        
  ̃   

  

ii.     ̃        
  ̃   

   

PROOF. 

i. Let    ̃       where,                  ,     . Then, 

  
                                       

    
       

     

    
       

          

Thus   
    

  ̃   
 , i.e.     ̃        

  ̃   
   

ii. Let    ̃       where,                  ,     . Then, 

  
                                       

    
       

     

    
       

          

Thus   
    

  ̃   
 , i.e.     ̃        

  ̃   
 . 

Proposition 3.20. Let         . Then, 

i.    ̃   ̃     and    ̃   ̃    ̃ 

ii.     ̃       and    ̃       

iii.    ̃       and    ̃       

PROOF. The proof is obvious.  

We examine that commutative, associative and distributive laws hold in soft multisets.  

Proposition 3.21. Let               . Then, 

i.    ̃       ̃    

ii.    ̃       ̃    

iii.     ̃     ̃       ̃     ̃     

iv.     ̃     ̃       ̃     ̃     

v.    ̃     ̃         ̃     ̃     ̃     

vi.    ̃     ̃         ̃     ̃     ̃     

PROOF. The proof is obvious.  
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4. Roughness and Fuzziness Associated with Soft Multi-sets 

In [6], Ali has defined soft binary relation, soft equivalence relation and soft indiscernibility relation over 

soft set. He introduced the idea of approximation space associated with each parameter in a soft set. He also 

proved that for each soft set over a universe   there is a fuzzy soft set over      which induces a soft 

equivalence relation over     . We extend these ideas to the hybrid soft set with multiset.  

Definition 4.1. Let   be a universal multiset and    be a soft multiset over    . Then    is called a soft 

multiset binary relation over    In fact,    is a parameterized family of binary relations on  , i.e for each 

parameter or attribute   , we have a binary relation       on   for each parameter     .  

Definition 4.2. Let    be a soft multiset binary relation over  . If          is an equivalence relation on   

for all     , then    is called a soft multiset equivalence relation over  . 

It is well known that each equivalence relation   on a set partitions the set say   into disjoint classes. 

Similarly each partition of the set   provides us an equivalence relation  . Therefore a soft multiset 

equivalence relation over  , provides us a parameterized collection of partitions of  . The following 

example elaborates this concept more effectively. 

Example 4.3.  Let   *
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
+ and                    and              be a subset of 

 . Consider a soft multiset given by  

   {(   [
  

  
 
  

  
])  (   [

  

  
 
  

  
])  (   [

  

  
])} 

In tabular form, the soft multiset    is written in Table 1.  

Table  1. Tabular representation of soft multiset    

                    

          0   0  

          0   0  

     0        0  

     0        0  

     0   0       

     0   0   0  

Now we see from the table that each attribute            generates an equivalence relation on  . 

Therefore, we get a soft multiset equivalence relation    over  . For each of the equivalence relation, we 

have the following equivalence classes. 

The equivalence classes for        are *
  

  
 
  

  
+  *

  

  
 
  

  
 
  

  
 
  

  
+  

The equivalence classes for        are *
  

  
 
  

  
+  *

  

  
 
  

  
 
  

  
 
  

  
+. 

The equivalence classes for        are *
  

  
+  *

  

  
 
  

  
 
  

  
 
  

  
 
  

  
+. 

We observe that soft multiset    defines an indiscernibility relation. Now we define an indiscernibility 

relation in the next definition.  

Definition 4.4. Let    be a soft multiset. An indiscernibility relation defined by    is attained by the 

intersection of all the equivalence relations generated by attributes    and is denoted by IND    . i.e  
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Example 4.5. Consider Example 4.3 then the partition obtained by the indiscernibility relation         is  

 *
  

  
 
  

  
+  *

  

  
 
  

  
+  *

  

  
+  *

  

  
+ 

It is evident that for each attribute   , where        , the soft muli-set           give us an 

approximation spaces in Pawlak’s sense [61]. Also       is an approximation space.  

In the following definition we extend the idea of approximation space for multiset as an extension of 

approximation space for crisp set given by Chakrabarty et al. in [25]. 

Definition 4.6. Let   be a multiset called universe and let   be an equivalence relation on  , called 

indiscernibility relation. The pair       is called an approximation space.  

Definition 4.7. Consider a soft multi set         over the universe of multiset   and   be a set of 

parameters, where     and   is a function given as          . Then the pair         is called a 

soft multi approximation space. Following the soft multi approximation space  , we get two approximations 

to every subset     given by 

         ,
 

 
         *

 

 
        +-  

         ,
 

 
         *

 

 
          +-  

which we call soft multi P-lower approximation and soft multi P-upper approximation of  . Generally, 

        and         are called SMR-approximations of   w.r.t  . If                 then   is said to be 

soft multi P-rough set or soft multi rough set (SMR-set) otherwise soft multi P-definable. Also, Soft multi P-

positive region set, Soft multi P-negative region set and Soft multi P-boundary region set are defined as 

follows 

                 

                  

                         

Example 4.8.  Suppose that   *
  

  
 
  

  
 
  

  
+ be universial multiset of dresses under consideration, where 

         are the multiplicity of dress       and    respectively. Let                      

                                                                            and   

             . Let         be soft multiset over  , where the           mapping describes the 

attractiveness of dresses under consideration as follows:  

               [
  
  

] 

                   [
  
  

] 

               [
  
  

 
  
  

] 

           [
  
  

 
  
  

 
  
  

] 

                     [
  
  

] 

Thus the soft multiset can be written as 

           {(   [
  
  

])  (   [
  
  

])  (   [
  
  

 
  
  

])           (   [
  
  

])} 

The tabular form of soft multi set         is given in Table 2.  
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Table  2: Soft multi set       

      
  
  

 
  
  

 
  
  

 

            1 0 0 

                0 1 0 

            1 1 0 

        1 1 1 

                  1 0 0 

The soft multiset       induces soft multi approximation space        . 

Equivalence classes for       are *
  

  
+, *

  

  
 
  

  
+. 

Equivalence classes for       are *
  

  
+, *

  

  
 
  

  
+. 

Equivalence classes for       are *
  

  
 
  

  
+, *

  

  
+. 

Equivalence classes for       are *
  

  
 
  

  
 
  

  
+,  . 

Equivalence classes for       are *
  

  
+, *

  

  
 
  

  
+. 

If we consider   *
  

  
 
  

  
+   , we obtain soft multi P-lower approximation and soft multi P-upper 

approximation respectively given by 

         *
  

  
+ 

         *
  

  
 
  

  
 
  

  
+ 

Since                 and   *
  

  
 
  

  
+ is a soft multi P-rough set or soft multi rough set (SMR-set).  

Here          *
  

  
+ ,           and         *

  

  
 
  

  
+. 

Note that in the case                , then   is said to be a soft multi P-definable set.  

Remark: 

It is clear from above example that the approximations of soft multi rough set are multi sets. So the 

operations used in soft multi rough set are multiset operations.  

Definition 4.9. Let    be a soft multiset over a multiset  . Then            is a mapping. Define a 

map               , for all     such that  

       {

         

       
                

               
 

where           Obviously for each    ,    is a fuzzy multiset over      . Hence    generates a 

fuzzy soft multiset over      . 

Proposition 4.10.  Let    be a soft multiset over a multiset  . Then            , for any     if and 

only if                      where             

From Proposition 4.10, it is easy to see that soft multiset    generates a soft multiset binary relation over 

     . This soft multiset binary relation is denoted by    and is defined as             if and only if 

             where              .  
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Theorem 4.11. The soft multiset binary relation    over       is a soft multiset equivalence relation and 

each partition             preserves a strict order between its equivalence classes for all    .  

PROOF. We know that for each    ,       is an equivalence relation by using the definition of soft multiset 

binary relation   . Hence    over       is a soft multiset equivalence relation. So             is a 

partition of      , for each    . If for any    , a class in             including some element 

        is denoted by         , then for each            we get            , by definition. This 

means that a unique real number belonging to       can be assigned to each class in            . Let this 

number be  , for the class          and say it characteristic of         . Hence there is a strict order between 

the classes because each class in             has a unique characteristic from      . Therefore this order 

is defined as                   if and only if    , where class          has   characteristic belonging 

to      .  

Example 4.12.  By using Example 4.8, we cosider   *
  

  
 
  

  
 
  

  
+ and soft multiset given by 

           {(   [
  
  

])  (   [
  
  

])  (   [
  
  

 
  
  

])           (   [
  
  

])} 

Let   *
  

  
 
  

  
+ The power whole sub multisets (sub msets) are 

  *
 

  
 

 

  
 

 

  
+, *

  

  
+, *

  

  
+, *

  

  
+, *

  

  
 
  

  
+, *

  

  
 
  

  
+, and *

  

  
 
  

  
+,   *

  

  
 
  

  
 
  

  
+ 

As *
  

  
+        and    

    
         

      
 

|*
  
  

+|

|*
  
  

+|
 

  

  
  , so    

(*
  

  
+)   . 

As *
  

  
+       , so    

(*
  

  
+)   . Similarly *

  

  
+       , so    

(*
  

  
+)   . 

Thus the fuzzy multiset    associated to the parameter    is given by 

    {
 

 
 

 

*
  
  

+
 

 

*
  
  

+
 

 

*
  
  

+
 

  
     

*
  
  

 
  
  

+

 

*
  
  

 
  
  

+

  
     

*
  
  

 
  
  

+

  
        

*
  
  

 
  
  

 
  
  

+
} 

Similarly we can find fuzzy multiset    associated to each parameter   ,          . 

It is obvious that degree of membership or rough belongingness is a number from the interval      .  

Babitha and John [20] presented the idea of multi-valued information system as given by the following 

definition.  

Definition 4.13. [20] "A multi-valued information system is a quadruple             where   is a non-

empty finite set of objects,   is a non-empty finite set of parameters,   ⋃       , where   is the domain 

set (value set) of attribute   which has multi-value          and         is a total function such that 

          for each          ".  

Proposition 4.14. [20] If    is a soft multiset over  , then    is a multi-valued information system.  

Example 4.15. Let   ,
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 
   

   
 
   

   
 
   

   
 
   

   
 
   

   
 
   

   
- be a multiset of some brands of 

shoes under consideration,  where                  . Let                                    be the 

set of attributes defined as     leather,     comfortable,     stylish,     perfect fine quality,     

relaxable for feet,     softer sole,     better grip,     longer life shoe,     discount, and      cheap. 

Then, the soft multiset    describes attractiveness of shoes under consideration as given below: 
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where  

       [
  

  
 
  

  
 
  

  
]         [

  

  
 
  

  
 
  

  
 
  

  
 
   

   
 
   

   
 
   

   
]         [

  

  
 
  

  
 
  

  
 
   

   
 
   

   
]  

       [
  

  
 
  

  
 
   

   
]         [

  

  
 
   

   
 
   

   
]         [

  

  
 
   

   
]         [

  

  
 
   

   
]  

       *
  

  
 
  

  
+         *

  

  
 
  

  
+ and         *

  

  
 
  

  
 
  

  
+ 

Then the quadruple             corresponding to the soft multiset given above is a multi-valued 

information system. Here     and   is the same set of parameters as in soft multiset and    
 

               
                               

                     For the pair          we have 

           . Similarly we obtain the value of other pairs. Now we construct an information table 

representing soft multiset    given as:  

Table  3.  Multi-valued information systems 

                                                   

          0   0   0   0   0   0                 

               0   0   0   0   0   0          

     0   0        0   0   0   0   0  0      

               0        0   0   0   0   0  0 

     0   0   0   0        0   0   0   0   0  

     0             0   0        0   0   0   0  

     0   0   0   0   0   0        0   0   0  

     0        0        0   0   0        0   0  

     0   0        0   0   0   0   0   0   0  

      0         0   0         0   0   0   0  0 

      0   0   0   0   0   0   0   0   0   0  

      0                     0         0   0   0   0  

      0   0   0   0   0   0   0   0   0   0  

      0         0   0   0   0         0   0   0  

      0   0         0         0   0   0   0   0  

Thus according to Proposition 4.14, it is seen that soft multisets are multi-valued information systems. 

However, it is clear that multi-valued information systems are not necessarily soft multisets.  

5. A Soft Multi-Set Approach to Multi-Attribute Decision-Making  

In this section, we discuss the fuzzy whole sub-multisets of      , affiliated with each attribute of a soft 

multiset    over  . These fuzzy sub-multisets of       generate equivalence relations. These fuzzy sub-

multisets and equivalence relations perform a vital job in decision making. We extend some results and 

algorithm which as used for soft set given in [6] to soft multiset. Thus we deduce that a soft multiset over a 

multiset   induces a fuzzy soft multiset over       which yields a soft multiset equivalence relation on 

     . First we present an algorithm to the multi-attribute decision-making (MADM) for the selection of a 

best fertilizer. 
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Algorithm: 

Step 1. Input suitable parameter set   and universal multiset  . 

Step 2. Input a soft multiset    over  . 

Step 3. Compute fuzzy multiset    
 over       corresponding to parameter   ,      . 

Step 4. Construct equivalence relation       ,       such that an equivalence class        of       

contains those submultisets of       that have same degree of membership. 

Step 5. Arrange equivalence classes        of       ,       in order. 

Step 6. Choose the equivalence class represented by       that has highest order. 

Step 7. Compute the disjunctive union       such that  

      {
                      
                     

 

where            . 

Step 8. Find   
 

 
      

 

 
       . 

Step 10. Choose that 
 

 
 that has        

 

 
   . 

Numerical Example 5.1. Let us suppose that a farmer wants to buy a particular type of fertilizer for his 

fields satisfying his demand. Let                         be the universal multiset of fertilizers under 

consideration, where   denotes "Ammonium Phosphate",   denotes "Urea",   denotes "Calcium Nitrate",   

denotes "Ammonium Nitrate" and multiplicity of fertilizer denotes the number of sacks of fertilizer that are 

required to fertilize the fields. Let                    be the set of attributes defined as     rapid plant 

growth,     maintain green color in plants,     improve alkaline soils,     bacteria killer,     activator 

for enzymes in plants. Consider a soft multiset describing the different types of fertilizers under 

consideration and is given by 

    ,(   *
  

 
+)  (   *

  

 
 
  

 
+)  (   *

  

 
+)  (   *

  

 
 
  

 
 
  

 
 
  

 
+)  (   *

  

 
 
  

 
 
  

 
+)- 

For the attribute   , we have a fuzzy submultiset of       given as: 

   
  {

 

*
 
 +

 
 

*
  
 +

 
 

*
  
 +

 
 

*
  
 +

 
 

*
  
 +

 
 

*
  
  

  
 +

 
 

*
  
  

  
 +

 
 

*
  
  

  
 +

 
 

*
  
  

  
 +

 
 

*
  
  

  
 +

 
 

*
  
  

  
 +

  

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
  

  
 +

} 

The equivalence classes of the equivalence relation        generated by    
 are 

       {  [
  

 
]  [

  

 
]  [

  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
 
  

 
]} 

       {[
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
]  [

  

 
 
  

 
 
  

 
]  [

  

 
 
  

 
 
  

 
]  [

  

 
 
  

 
 
  

 
]  [

  

 
 
  

 
 
  

 
 
  

 
]} 

Order among these classes is given by              . 

Since        has highest order, hence             . 
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Then,                               
 , where            .  

      *
  

 
 
  

 
 
  

 
 
  

 
+  *

  

 
+
 
. 

      *
  

 
 
  

 
 
  

 
+. 

For the attribute   , we have a fuzzy submultiset of       given as: 

   
  {

 

 
 

 

*
  
 +

 
 

*
  
 +

 
   

*
  
 +

 
   

*
  
 +

 
 

*
  
 

 
  
 +

 
   

*
  
 

 
  
 +

 
   

*
  
 

 
  
 +

 
   

*
  
 

 
  
 +

 
   

*
  
 

 
  
 +

 
 

*
  
 

 
  
 +

  

 
   

*
  
  

  
  

  
 +

 
   

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
 +

 
 

*
  
  

  
  

  
  

  
 +

} 

The equivalence classes of the equivalence relation        generated by    
 are 

       ,  *
  

 
+  *

  

 
+  *

  

 
 
  

 
+-,       ,*

  

 
+  *
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       ,*
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+-,       ,*

  

 
 
  

 
+  *

  

 
 
  

 
 
  

 
+  *

  

 
 
  

 
 
  

 
+  *

  

 
 
  

 
 
  

 
 
  

 
+- 

Order among these classes is given by                            . 

Since        has highest order, hence             . 

Then,                               
 , where            .  

      *
  

 
 
  

 
 
  

 
 
  

 
+  *

  

 
 
  

 
+
 
. 

      *
  

 
 
  

 
+. 

For the attribute   , we have a fuzzy submultiset of       given as: 

   
   {
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Then,                               
 , where            .  
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Thus    sacks of "Urea" are selected to fertilize the fields because "Urea" fertilizer has maximum qualities. 

6. Conclusion 

We introduced some fundamental properties of soft multisets and related results. We defined binary relation, 

equivalence relation and indiscernibility relation on soft multisets with the help of illustrations. We 

introduced the concept of an approximation space associated with each parameter in a soft multiset and an 

approximation space associated with the soft multiset. We presented the novel concepts of roughness and 

fuzziness associated with soft multiset with the help of illustrations. We studied soft multisets in multi-

valued information system. Furthermore, We presented an Algorithm to cope with uncertainties in the multi-

attribute decision making problems by utilizing soft multiset theory. The proposed Algorithm is also 

summarized by the flow chart. The effectiveness of the Algorithm has verified by a case study to make the 

best selection of fertilizer. 
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1. Introduction

Let A be the class of all functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U, where

U = {z : z ∈ C and |z| < 1} .

For two functions F (z) and G(z) analytic in U , we say that F (z) is subordinate to G(z), denoted
by

F ≺ G or F (z) ≺ G(z),

if there exists an analytic function w(z) with

|w(z)| ≤ |z| such that F (z) = G (w(z)) .

Furthermore if the function G(z) is univalent in U then we have the following equivalence [1–3]

F (z) ≺ G(z) ⇐⇒ F (0) = G (0) and F (U) ⊂ G (U) .
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For two analytic functions f(z) given by (1) and g(z)

g(z) = z +

∞∑
n=2

enz
n, (z ∈ U) ,

their Convolution or Hadamard product is given by

(f ∗ g)(z) = z +
∞∑
n=2

anenz
n, (z ∈ U) .

For arbitrary fixed numbers A, B, α and β satisfying −1 ≤ B < A ≤ 1, 0 ≤ α < 1 and 0 < β ≤ 1,
let Pβ [A,B, α] denote the family of functions

h(z) = 1 + h1z + h2z
2 + · · · ,

regular in U and such that h(z) is in Pβ [A,B, α] if and only if

h(z) ≺ (1− α)

(
1 +Az

1 +Bz

)β
+ α. (2)

Therefore, h(z) is in Pβ [A,B, α] if and only if

h(z) =
(1− α) (1 +Aw(z))β + α (1 +Bw(z))β

(1 +Bw(z))β
, (3)

for some w(z) with |w(z)| ≤ |z|. By taking β = 1, then the class Pβ [A,B, α], reduces to P [A,B, α],
defined by Polatoglu in [4], if we take α = 0, β = 1, then the class Pβ [A,B, α], reduces to the well
known class P [A,B], defined and studied by Janowski in [5] and setting α = 0, β = 1, A = 1, B = −1,
the class Pβ [A,B, α], reduces to the class P of functions with positive real part. For more details
see [6–15].

One can easily verify that p ∈ Pβ [A,B, α], if and only if, there exists g ∈ P [A,B], such that

p(z) = (1− α) g(z) + α.

The Herglotz representation of the functions of the class Pβ [A,B, α], is given by

h(z) = α+
1− α

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ),

where µ is non decreasing function in [0, 2π] such that
∫ 2π
0 dµ(θ) = 2.

For A = 1, B = −1, the class Pβ [A,B, α], reduces to the class Pβ (α), presented by Dziok recently
[16, Th.3] and further by setting α = 0, β = 1, A = 1, B = −1, we obtain the class P of analytic
functions with real part greater than zero.

Now we define the subclass Pm,β [A,B, α], of analytic functions as follows;

Definition 1.1. A function p(z) analytic in U belongs to the class Pm,β [A,B, α], if and only if

p(z) = α+
1− α

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ), (4)

where µ(θ) is non decreasing function in [0, 2π] with∫ 2π

0
dµ(θ) = 2 and

∫ 2π

0
|dµ(θ)| ≤ m,

where, m ≥ 2, −1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1.
Now using Horglotz-Stieltjes formula for the functions in the class Pm,β [A,B, α], given in (4), we

obtain

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z),
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where p1, p2 ∈ Pβ [A,B, α] see ( [16], Theorem 3).
For β = 1, the class Pm,β [A,B, α] = Pm [A,B, α] [33] and for α = 0, β = 1, A = 1, B =

−1, Pm,1 [1,−1, 0] = Pm [17].
We consider the function

ϕ (z; s, b) =
∞∑
n=0

zn

(b+ n)s
, (5)

where b ∈ C \ Z−
0 and s ∈ C. The function ϕ (z; s, b) contain many well known functions as a special

case such as Riemann and Hurwitz Zeta functions for more details, see [18,19].
Using the technique of convolution and the function ϕ (z; s, b) Srivastava and Attiya given in [20].

In addition see also ( [21,22]) introduced and studied the linear operator

Js,bf : A→ A,

defined, in terms of the Hadamard product (or convolution), by

Js,b(f)(z) = ϕ(z; s, b) ∗ f(z), f ∈ A, (z ∈ U) , (6)

where ∗ denotes the convolution and

ψ (z; s, b) = (1 + b)s
(
ϕ(z; s, b)− b−s

)
= z +

∞∑
n=2

(
b+ 1

b+ n

)s
zn, (z ∈ U) . (7)

Therefore, using (6) and (7), we have

Js,b(f)(z) = z +
∞∑
n=2

(
b+ 1

b+ n

)s
anz

n, (z ∈ U) .

For special values of b and s the operator contain many known operators, see [23,24].
With the help of the class Pm,β [A,B, α], along with generalized Srivastava and Attiya operator

given in [20] , we now define the following subclass of analytic functions;

Definition 1.2. A function f ∈ A, is in the class Rs,bm,β [A,B, α], if and only if

z (Js,bf(z))
′

Js,bf(z)
∈ Pm,β [A,B, α] , (z ∈ U) .

Definition 1.3. A function f ∈ A, is in the class V s,b
m,β [A,B, α], if and only if

1 +
z (Js,bf(z))

′′

(Js,bf(z))
′ ∈ Pm,β [A,B, α] , (z ∈ U) .

where m ≥ 2, b ∈ C \
(
Z−
0 = {0,−1,−2, . . .}

)
, s ∈ C, −1 ≤ B < A ≤ 1, 0 ≤ α < 1 , 0 < β ≤ 1. We

also note that
f(z) ∈ V s,b

m [A,B, α, β] ⇔ zf(z)′ ∈ Rs,bm,β [A,B, α] . (8)

Remarks:
(i) R0,b

m,1 [A,B, 0] = Rm [A,B] , V 0,b
m,1 [A,B, 0] = Vm [A,B], the well known classes presented and

studied in [25] and [26].

(ii) R0,b
m,1 [1,−1, 0] = Rm, V

0,b
m,1 [A,B, 0] = Vm, we have the well known class introduced and studied

in [17] and [27].

(iii) R0,b
m,1 [2ζ − 1,−1, 0] , V 0,b

m,1 [2ζ − 1,−1, 0], were presented and studied in [28].

To avoid repetition, it is admitted once that m ≥ 2, b ∈ C \
(
Z−
0 = {0,−1,−2, . . .}

)
, s ∈ C,

−1 ≤ B < A ≤ 1, 0 ≤ α < 1, 0 < β ≤ 1.
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2. Preliminary Lemma

We need the following Lemma which will be used in our main results.

Lemma 2.1. [29] Let f(z) be subordinate to g(z), with

f(z) = 1 +

∞∑
n=1

anz
n, g(z) = 1 +

∞∑
n=1

bnz
n.

If g(z) is univalent in U and g(U) is convex, then |an| ≤ |b1|.

Lemma 2.2. Let p(z) ∈ Pm,β [A,B, α], be of the form (1). Then

|qn| ≤ β (A−B) |1− α| .

The proof is immediate by using Lemma 2.1.

Lemma 2.3. Let p(z) ∈ Pm,β [A,B, α] , be of the form (1). Then

|qn| ≤
m

2
β (A−B) |1− α| .

The proof is immediate by using Lemma 2.2.

Lemma 2.4. Let p(z) ∈ Pm,β [A,B, α] , be of the form (1). Then

(1− α)

4

[
(m+ 2)

(
1−Ar

1−Br

)β
− (m− 2)

(
1 +Ar

1 +Br

)β]
+ α

≤ Rep(z) ≤ |p(z)| ≤ (1− α)

4

[
(m+ 2)

(
1 +Ar

1 +Br

)β
− (m− 2)

(
1−Ar

1−Br

)β]
+ α.

This results is sharp.
The proof is immediate by using Lemma 2.3.

Lemma 2.5. [30] Let ψ be convex and let g be starlike in U . Then for F analytic in U with F (0) = 1,
ψ∗Fg
ψ∗g is contained in the convex hull of F (U).

3.Main Results

Theorem 3.1. Let p(z) ∈ Pm,β [A,B, α], with m ≥ 2. Then, for |z| = r < 1,

∣∣zp′(z)∣∣ ≤ (A−B)βr
[
(m+ 2) (1+Ar)β−1

(1+Br)β+1 + (m− 2) (1−Ar)β−1

(1−Br)β+1

]
Rep(z)[

(m+ 2)
(
1+Ar
1+Br

)β
− (m− 2)

(
1−Ar
1−Br

)β]
+ 4α

1−α

.

Proof. The proof is immediate by using Lemma 2.4.

Putting α = 0, β = 1 in Theorem 3.1, we can obtain Corollary 3.2, below which is comparable to
the result obtained by Noor and Malik [31].

Corollary 3.2. Let p(z) ∈ Pm,β [A,B, α], with m ≥ 2. Then, for |z| = r < 1,

∣∣zp′(z)∣∣ ≤ (A−B) r
{
m− 4Br +mB2r2

}
Rep(z)

(1−Br2) (2 +mr (A−B)− 2ABr2)
.

Theorem 3.3. Let f(z) ∈ Rs,bm,β [A,B, α]. Then

|an| ≤
(b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(b+ 1)s (n− 1)!
. (9)

This result is sharp.
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Proof. Let
z (Js,bf(z))

′

Js,bf(z)
= p(z), (z ∈ U) , (10)

where p(z) ∈ Pm,β [A,B, α] and p(z) = 1 +
∞∑
n=1

qnz
n.

Then from the definition we have

Js,bf(z) = z +

∞∑
n=2

bnz
n, (11)

where

bn =

(
b+ 1

b+ n

)s
an. (12)

From (10) and (11), we have

z +
∞∑
n=2

nbnz
n =

(
z +

∞∑
n=2

bnz
n

)(
1 +

∞∑
n=1

qnz
n

)

=

( ∞∑
n=1

bnz
n

)(
1 +

∞∑
n=1

qnz
n

)
, b1 = 1

=

∞∑
n=1

bnz
n +

( ∞∑
n=1

bnz
n

)( ∞∑
n=1

qnz
n

)
.

By using the Cauchy,s product formula [32], for the power series we have

z +
∞∑
n=2

nbnz
n =

∞∑
n=1

bnz
n +

∞∑
n=1

n−1∑
j=1

bjqn−j

 zn.

Equating the coefficient of zn, we have

nbn = bn +

n−1∑
j=1

bjqn−j .

By using induction on n, and Lemma 2.3, we obtain

bn =

(
m
2 β (A−B) |1− α|

)
n−1

(n− 1)!
.

Using the value of bn, we obtain (9).
Sharpness is given for the functions f1 ∈ A such that

z (Js,bf1(z))
′

Js,bf1(z)
=

(
m

2
+

1

2

)(
(1− α)

(
1 +Az

1 +Bz

)β
+ α

)

−
(
m

2
− 1

2

)(
(1− α)

(
1 +Az

1 +Bz

)β
+ α

)
.

This complete the proof of Theorem 3.3.

Putting s = 0, β = 1 in Theorem 3.3, we can obtained the following Corollary.

Corollary 3.4. Let f(z) ∈ R0,b
m,1 [A,B, α]. Then

|an| ≤
(
m
2 (A−B) |1− α|

)
n−1

(n− 1)!
.

This result is sharp.
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Putting s = 0, β = 1, A = 1, B = −1 in Theorem 3.3, we can obtain Corollary 3.5, below which is
comparable to the result obtained by Noor [33].

Corollary 3.5. Let f(z) ∈ R0,b
m,1 [1,−1, α] = Rm (α). Then

|an| ≤
(m |1− α|)n−1

(n− 1)!
, for all n ≥ 2.

This result is sharp.

Theorem 3.6. Let f(z) ∈ V s,b
m,β [A,B, α]. Then

|an| ≤
(b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(b+ 1)s n!
. (13)

This result is sharp.

Proof. The proof of Theorem 3.6 is similar to that of Theorem 3.3, so the details are omitted.

For an analytic functions f(z), we consider the operator

F (z) = Ic (f(z)) =
1 + c

zc

∫ z

0
tc−1f (t) dt, c > −1. (14)

The operator Ic, when c ∈ N, was introduced by Bernardi [24]. The operator I1, was studied by
Libera [34] and Livingston [35].

Theorem 3.7. If f(z) is of the form of (1) , belongs to Rs,am,β [A,B, α] and F (z) = z+
∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14). Then

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s (n− 1)!
.

Proof. From (14), we can easily write

(1 + c) f(z) = cF (z) + zF ′(z),

or equivalently,

(1 + c) z +
∞∑
n=2

(1 + c) anz
n = cz +

∞∑
n=2

cdnz
n + z +

∞∑
n=2

ndnz
n.

Thus we have,
(n+ c) dn = (1 + c) an,

using the estimate from Theorem 3.3, we have

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s (n− 1)!
.

we obtain the required result.

Putting s = 0, β = 1, in Theorem 3.7, we can obtained the following Corollary.

Corollary 3.8. If f(z) is of the form of (1), belongs to R0,a
m,1 [1,−1, α] and F (z) = z+

∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c)

(
m
2 (A−B) |1− α|

)
n−1

(n+ c)n!
.

Putting s = 0, β = 1, A = 1, B = −1, in Theorem 3.7, we can obtained the following Corollary.
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Corollary 3.9. If f(z) is of the form of (1), belongs to Rs,am,β [A,B, α] and F (z) = z+
∞∑
n=2

dnz
n, where

F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c) (m |1− α|)n−1

(n+ c)n!
.

Theorem 3.10. If f(z) is of the form of (1) , belongs to Rs,am,β [A,B, α] and F (z) = z +
∞∑
n=2

dnz
n,

where F (z), is an integral operator given by (14), then

|dn| ≤
(1 + c) (b+ n)s

(
m
2 β (A−B) |1− α|

)
n−1

(n+ c) (b+ 1)s n!
.

Proof. The proof of Theorem 3.10 is similar to that of Theorem 3.7 so the details are omitted.

Theorem 3.11. If f(z) is of the form of (1) , belongs to Rs,b2,β [A,B, α] if and only if

1

z

f ∗


(
z +

∞∑
n=2

nbnz
n

)(
1 +B(eiθ)

)β − (z + ∞∑
n=2

bnz
n

)

×
(
(1− α)

(
1 +A(eiθ)

)β − α
(
1 +B(eiθ)

)β)

 ̸= 0, (15)

where bn is given by (12) and 0 ≤ θ < 2π.

Proof. Assume that f(z) ∈ Rs,b2,β [A,B, α], then, we have

z (Js,bf(z))
′

Js,bf(z)
≺ (1− α)

(
1 +Az

1 +Bz

)β
+ α,

if and only if

z (Js,bf(z))
′

Js,bf(z)
̸= (1− α)

(
1 +A(eiθ)

1 +B(eiθ)

)β
+ α, (16)

for all z ∈ U , and 0 ≤ θ < 2π. The condition (16) can be written as

z (Js,bf(z))
′
(
1 +B(eiθ)

)β
− Js,bf(z)

(
(1− α)

(
1 +A(eiθ)

)β
− α

(
1 +B(eiθ)

)β)
̸= 0. (17)

On the other hand we know that

z (Js,bf(z))
′ = z +

∞∑
n=2

nbnz
n. (18)

Combining (5), (6), (18) and (17) we get the convolution property (15) asserted by Theorem 3.11.

Putting s = 0, α = 0,m = 2 and β = 1 in Theorem 3.11, we can obtain Corollary 3.12, below
which is comparable to the result obtained by Silverman and Silvia [36].

Corollary 3.12. A function f defined by (1) is in the class S [A,B], if and only if

1

z

{
f(z) ∗ z − Lz2

(1− z)2

}
̸= 0, (z ∈ U) , (19)

for all L = Lθ =
e−iθ+A
A−B and also L = 1.

Putting s = 0, α = 0,m = 2, β = 1, A = 1 − 2σ and B = −1 in Theorem 3.11, we can obtain
Corollary 3.13, below which is comparable to the result obtained by Silverman and Silvia [37].
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Corollary 3.13. A function f defined by (1) is in the class S∗ (α), if and only if

1

z

{
f(z) ∗ z −Mz2

(1− z)2

}
̸= 0, (z ∈ U) , (20)

for all M =Mθ =
e−iθ+1−2σ

2(1−σ) , (0 ≤ σ < 1) and also M = 1.

Theorem 3.14. A function f(z) ∈ V s,b
2,β [A,B, α] if and only if

1

z

f ∗


(
1 +

∞∑
n=2

n2bnz
n−1

)(
1 +B

(
eiθ
))β − (1 + ∞∑

n=2
nbnz

n−1

)

×
(
(1− α)

(
1 +A(eiθ)

)β − α
(
1 +B(eiθ)

)β)

 ̸= 0. (21)

for all bn =
(

1+b
n+b

)s
an and 0 ≤ θ < 2π.

Proof. The proof of Theorem 3.14 is similar to that of Theorem 3.11 so the details are omitted.

Theorem 3.15. Let f(z) ∈ Rs,b2,β [A,B, α]. Then

f(z) =

z · exp
(1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 ∗

( ∞∑
n=0

(b+ n)s zn

)
, (22)

where ω(z) is analytic in U , with ω (0) = 0 and |ω(z)| < 1.

Proof. For f(z) ∈ Rs,b2,β [A,B, α], then from definition of subordination we can have

z (Js,bf(z))
′

Js,bf(z)
= (1− α)

(
1 +Aw(z)

1 +Bw(z)

)β
+ α, (23)

where w(z) analytic in U , with w(0) = 0 and |w(z)| < 1.

(Js,bf(z))
′

Js,bf(z)
− 1

z
=

(1− α)
(
(1 +Aw(z))β − (1 +Bw(z))β

)
z (1 +Bw(z))β

, (24)

which, upon integration, yield

log
Js,bf(z)

z
= (1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt. (25)

From (5) and (6), we obtain

f(z) ∗

( ∞∑
n=0

zn

(b+ n)s

)
= z · exp

(1− α)

∫ z

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 , (26)

and our assertion follows immediately.

Putting α = 0, β = 1 and m = 2 in Theorem 3.15, we can obtain the following Corollary

Corollary 3.16. Let f(z) ∈ Rs,b2,1 [A,B, 0]. Then

f(z) =

(
z · exp

(
(A−B)

∫ z

0

w(t)

t (1 +Bw(t))
dt

))
∗

( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.
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Putting s = 0, α = 0, β = 1, A = 1 and B = −1 in Theorem 3.15, we can obtain the following
Corollary.

Corollary 3.17. Let f(z) ∈ Rs,b2,1 [1,−1, 0]. Then

f(z) = z · exp
(
2

∫ z

0

w(t)

t (1− w(t))
dt

)( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Putting α = 0, β = 1, A = 1, B = −1 and m = 2 in Theorem 3.15, we can obtain the following
Corollary.

Corollary 3.18. Let f(z) ∈ Rs,b2,1 [1,−1, 0]. Then

f(z) = z · exp
(
2

∫ z

0

w(t)

t (1− w(t))
dt

)( ∞∑
n=0

zn

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Theorem 3.19. Let f(z) ∈ V s,b
2,β [A,B, α]. Then

f(z) =

∫ z

0
exp

(1− α)

∫ ζ

0

(
(1 +Aw(t))β − (1 +Bw(t))β

)
t (1 +Bw(t))β

dt

 dζ


∗

( ∞∑
n=0

(n+ b)s anz
n

)
,

where ω(z) is analytic in U , ω (0) = 0 and |ω(z)| < 1.

Proof. The proof of Theorem 3.19 is similar to that of Theorem 3.15 so the details are omitted.

Theorem 3.20. Let ψ ∈ C and f(z) ∈ Rs,b2,β [A,B, α]. Then ψ ∗ f ∈ Rs,b2,β [A,B, α].

Proof. Let F (z) = ψ ∗ f . Then by using some properties of convolution we have

z (Js,bF (z))
′

Js,bF (z)
=

ψ ∗ z (Js,bf(z))′

ψ ∗ Js,bf(z)

=
ψ ∗ z(Js,bf(z))

′

Js,bf(z)
Js,bf(z)

ψ ∗ Js,bf(z)

=
ψ ∗ p(z)Js,bf(z)
ψ ∗ Js,bf(z)

,

where p(z) =
z(Js,bf(z))

′

Js,bf(z)
. Since f(z) ∈ Rs,b2,β [A,B, α], therefore

z(Js,bf(z))
′

Js,bf(z)
∈ Pβ [A,B, α] ⊂ P [A,B, α] ⊂

P [38] and hence.Js,bf(z) ∈ S∗. Then by Lemma 2.5, F (z), lies in the convex hull of p(z) and conse-

quently, F ∈ Rs,b2,β [A,B, α].

Theorem 3.21. Let f ∈ V s,b
m,β [A,B, α] and h ∈ Rs,bm,β [A,B, α]. Let H(z) be defined as

Js,bH(z) =

∫ z

0

[
(Js,bf (t))

′]λ1 [Js,bh (t)
z

]λ2
dt, (27)

where λ1 and λ2 are positive real numbers with λ1 + λ2 = 1. Then H ∈ V s,b
m,β [A,B, α].



Journal of New Theory 31 (2020) 20-31 / Some variations of Janowski functions associated with ... 29

Proof. Suppose f(z) ∈ V s,b
m,β [A,B, α], and h(z) ∈ Rs,bm,β [A,B, α].

From (27), we have

Js,bH(z) =
[
(Js,bf(z))

′]λ1 [Js,bh(z)
z

]λ2
. (28)

Logarithmic differentiation implies that

z (Js,bH(z))′

Js,bH(z)
=

(
z (Js,bf)

′)′
(Js,bf)

′ +
z (Js,bh)

′

Js,bh
(29)

= λ1p1(z) + λ2p2(z), (30)

for all p1, p2 ∈ Pm,β [A,B, α]. Using the fact that the class Pm,β [A,B, α], is convex set. Therefore
λ1p1(z) + λ2p2(z) ∈ Pm,β [A,B, α]. Hence

z (Js,bH(z))′

Js,bH(z)
∈ Pm,β [A,B, α] ,

and consequently H ∈ V s,b
m,β [A,B, α].
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Abstract   Multi Criteria Decision Making (MCDM) enables a strong valid platform in domains 

where choosing the best of the best among various attributes is quite complicated.  This paper provides 

a suitable methodology for solving MCDM problems in Intuitionistic Fuzzy region. In this paper we 

shall be dealing with the environment of octagonal intuitionistic fuzzy numbers. These numbers are 

more suitable to deal with uncertainties than other generalized form of fuzzy numbers. There are ways 

to solve MCDM in IF environment. Many have used  -cuts of numbers which are complicated 

calculations usually ending up with deviation from the results. Despite of solving the problem using  -

cuts, we propose a new ranking technique in the procedure. This ranking technique is called an 

accuracy function for octagonal intuitionistic fuzzy numbers. Octagonal Intuitionistic fuzzy numbers 

are introduced along with its membership and non-membership values. For application, a numerical 

example is solved at the end of this paper. 

Keywords   Fuzzy Numbers (FN’s), Intuitionistic Fuzzy Numbers (IFN’s), Octagonal Intuitionistic Fuzzy Number (OIFN’s), 

Accuracy Function (AF), TOPSIS 

1. Introduction 

Multi Criteria Decision Making is based upon formation and designing decision and outlining problems 

composed of complex multi pattern. The whole purpose is to give decision makers a feasible solution to such 

problems. Predictably, there does not exist an exclusive optimal answer for such matter and it is mandatory 

to utilize the choice maker's performance to evaluate and characterize between solutions. MCDM is a 

dynamic region of research since the 1960's. Different approach has been proposed by distinct scholars to 

solve the MCDM problems. 

The TOPSIS (Technique for order of preference by Similarity to Ideal Solution) is a Multi- Criteria 

Decision analysis method proposed by [1] which was further extended by [2]. TOPSIS is set upon the 

concept that the selected alternative should have the minimum distance from Positive Ideal Solution (PIS) 

and maximum distance from Negative Ideal Solution (NIS).  

Fuzzy set theory was proposed by [3] to represent non exact information into a better form. Later, [4-5] 

gave the idea of Intuitionistic fuzzy set (IFS) as more compact and precise form of fuzzy set. Different types 

of fuzzy numbers and various actions on them were researched by many researchers. They investigated on 

various properties and fluctuations of intuitionistic fuzzy numbers and the first property of correlation 

between these numbers. Intuitionistic fuzzy sets are already proven to be commodious deal with vagueness 
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and perplexity. Both the degree of membership and non-membership functions in IFS combined by the sum 

is less than one. Many researchers used fuzzy numbers in decision making by considering new parameters 

and present their précised application in MCGDM, consisting of medical and smart phone selections [6-7]. 

Prediction of games is very curious topic and fuzzy numbers can be used to predict sports is proposed by [8-

9]. Soft sets are considered more precise in vague and hesitate environment. Many researchers discussed the 

applications, considering MCDM problems but in recent, using accuracy function in uncertain and vague 

environment a generalized TOPSIS is proposed [10]. But still there are some problems which are solved by 

fuzzy numbers due to their graphical representations. Ranking of optimal solution using octagonal numbers, 

is also proposed by [11-12]. Fuzzy numbers are used in the problems having fluctuations. Triangular, 

Trapezoidal, pentagonal numbers are used in uncertain environment to deal with the fluctuations [13-18]. 

Development of fuzzy to intuitionistic and into neutrosophic and then further divisions of numbers are done 

by [19-23]. Ye. Worked in intuitionistic environment and developed a new theory to tackle the problems 

having uncertain environment [24-26]. Nowadays researchers are also focused on the development of new 

theories to solve MCDM problems. Recently many researches are done in the field of fuzzy numbers but still 

there was a gap of octagonal numbers [27-31].   

Here in this paper, we shall be working on octagonal intuitionistic fuzzy numbers and its Accuracy 

Function to solve the TOPSIS. Initially the rating of choice is represented as octagonal intuitionistic fuzzy 

numbers. The Accuracy Function is developed for the decision making applied to TOPSIS method with 

octagonal intuitionistic fuzzy numbers. 

2. Preliminaries 

Definition 2.1: Fuzzy Number [FN] 

A fuzzy number is generalized form of a real number. It doesn't represent a single value, instead a group of 

values, where each entity has its membership value between ,   -. Fuzzy number  ̅  is a fuzzy set in   if it 

satisfies the given conditions. 

   relatively one      with   ̅( )   . 

   ̅( ) is piecewise continuous. 

  ̅ should be convex and normal. 

Definition 2.2: Triangular Fuzzy Number [TFN] 

A Triangle fuzzy number   ̅  is denoted by tuples,   ̅( )  (        ), where    ,   , and    are real 

numbers and          with membership function defined as,  

  ̅ ( )  

{
 
 

 
 

    

     
         

    

     
         

             

 

Definition 2.3: Octagonal Fuzzy Number [OFN] 

A fuzzy  number   is an octagonal fuzzy number  denoted by  ̅  (                           ) where  

   ,    ,    ,    ,   ,   ,   , and    are real numbers and                         

with membership function defined as, 
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3. Material and Method 

Fuzzy numbers are very helpful in problem solving like MCDM and MCGDM. These numbers are proposed 

here along with accuracy function (AF). An Intuitionistic fuzzy set  ̅ ( ) of   is defined as set of ordered 

triples as, 

 ̅ ( )  {      ̅  ( )    ̅  ( )       } 

Where,    ̅ ( ),     ̅ ( ) are considered as MF’s non- MF’s such that    ̅ ( )    ̅ ( )    ,   -, and 0 

     ̅  ( )     ̅  ( )        . 

For every IF set  ̂ in  , if   ̂( )      ̂( )    ̂( ), then    ̂( ) is called the indeterminacy degree ,   -, 
or hesitancy degree of   to  ̂. 

4. Calculations 

Definition 4.1: Octagonal Intuitionistic Fuzzy Number [OIFN]  

A Fuzzy Number denoted by:  

  ̅  *(                       ) (                             )+ where   ,   ,   ,   ,   ,   , 

  ,   ,    ,    ,    ,    ,        ,    , and     are real numbers with                       

           and                                        . Its membership and non-

membership functions are given by; 

  ̅ ( )  
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where      . 

Definition 4.2: Accuracy Function 

Let ƺ  (     ) be an intuitionistic fuzzy number, then H(ƺ) is the Accuracy Function of ƺ given by 

H(ƺ)                    

4.2.1. Accuracy Function of an Octagonal Intuitionistic Fuzzy Number 

 Let     *(                       ) (                             )+ be an octagonal 

intuitionistic fuzzy number. Then its Accuracy Function  (  ) is given by, 

  (  )  
                        

 
 

                             
 

 

6. TOPSIS Algorithm 

Step 1.  Construction of Decision Matrix 

First of all, a decision matrix    [   ]   
 ,where              and             comprising of 

“ ” alternatives and “ ” criterions is designed as     

    [

              

   
 

          
 

   
 

               

] ( ) 

[   ]   
 represents score of the     alternative regarding the      criteria. Our environment is intuitionistic 

fuzzy, so the initial decision matrix would be in IFN. 

Whatever the intuitionistic fuzzy score, it can be reduced to crisp value using the accuracy formula for 

intuitionistic fuzzy number. The final decision matrix obtained in this step would now be in crisp 

environment after the application of Accuracy Function formula. 

Step 2. Normalization 

Decision Matrix is then normalized to form a normalized decision matrix   [   ]   
 by 

    
   

√∑    
  

   

 
( ) 
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where                 “R” is the normalized score of decision matrix. 

Normalized Decision Matrix thus obtained is of the form 

  [

       

   
       

] ( ) 

Step 3. Computation of Weight Matrix 

The weights accredited by the decision makers to the criteria are taken as a weight matrix, W. These weights 

are then used in step 4 for the calculation of WNDM. 

  ,          -  ( ) 

where, ∑    . 

Step 4. Computation of Weighted Normalized Decision Matrix 

In this step, WNDM    [    ]   
 is calculated by substituting the values of     from matrix 3 and the 

weights from weight matrix 4 in below equation 

   [  
  ]   

         ( ) 

Hence, WNDM is given by 

   [

       

   
       

] [

  

 
  

]  [

             

   
             

] ( ) 

Step 5. Calculation of PIS and NIS 

Positive Ideal Solution: 

  
    

    
    

      
   

where    
 = {max (   );     ,  min(   ); j      } 

Negative Ideal Solution: 

  
    

    
      

  

where    
  {min (   );     , max(   ); j      } 

Here, 

    *                  linked with benefit criteria} 

    *                  linked with cost criteria} 

Step 6. Determination of separation measure for each Alternative 

Separation Measure of each alternative is to be measured from PIS and NIS respectively. 
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           ( ) 

Step 7. Computation of Relative Closeness to Ideal Solution    

For each alternative, Closeness coefficient is calculated by 

   
  

  

  
      

  
 ( ) 

Where                      

Step 8. Result 

Alternatives get ranked depending upon the closeness coefficient from most beneficial to least value. The 

alternative possessing highest value of closeness coefficient is then taken into account. 

7. Numerical Analysis 

Statemen 7.1: The problem is to exalt safety by mitigating liabilities and focusing on enhancing the safety 

of system. Here we have to inspect the use and application of MCDM in Safety Assessment. We have three 

companies (        ). Four Criterions are     Detailed information about crew members and their 

behavior;    planning, preview and scenarios of risk management;     Comparison with industry and 

    Cost Control. The following data form 7.1 is constructed. 

Table1. Initial decision matrix in octagonal intuitionistic fuzzy environment 

             

   
{(1,2,3,4,6,8,9,10); 

(0,2,3,4,6,7,11,13)} 

{(4,6,8,10,11,12,14,15); 

(2,3,4,10,11,13,14,16)} 

{(7,8,10,11,13,14,16,18); 

(5,6,8,11,13,15,17,19)} 

{(6,8,10,14,16,17,19,20); 

(5,7,9,10,14,16,18,19)} 

   
{(3,4,6,8,10,12,14,16); 

(2,5,7,8,10,11,13,15)} 

{(5,6,9,12,15,17,18,20); 

(3,7,10,12,15,16,19,20) 

{(8,10,12,14,16,18,19,20); 

(6,7,9,14,16,17,18,19)} 

{(9,10,12,13,15,16,18,19); 

(7,9,11,13,15,16,17,18)} 

   
{(2,6,7,8,9,10,11,12); 

(1,2,6,8,9,13,14,15)} 

{(6,7,9,10,12,13,15,17); 

(4,5,6,10,12,14,16,18)} 

{(1,2,3,4,5,6,7,8); 

(0,1,2,4,5,6,7,8)} 
{(4,7,10,13,16,18,19,20); 

(3,6,9,13,16,17,18,20)} 

Step1. By the use of Accuracy Function, we defuzzified the above values into crisp notation given by Table 

1. 

Table 2. Defuzzified decision matrix 

              

                           

                        

                              

Step2. Normalized Decision Matrix is given by Table 3. 

Table 3.  Normalized decision matrix 

              

                           

                           

               0.229       

                  

Step 3. Weights assigned by DM’s to the criteria are given by the matrix; 
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  (

    
    
    
    

)

 

 (  ) 

 

Step 4. Weighted Normalized Decision Matrix is given by Table 4. 

Table 4.  Weighted normalized decision matrix 

              

                            

                           

                           

Step 5. Calculation of PIS (Positive Ideal Solution) and NIS (Negative Ideal Solution): 

A+ = {0.201, 0.272, 0.074, 0.113} and A- = {0.124, 0.204, 0.023, 0.119} 

Step 6. Determination of Separation Measure is given by Table 5 and Table 6. 

Table 5. Separation measure   
  

 

 

 

 

Table 6. Separation Measure   
  

 

 

 

Step 7. Determination of RCC to ideal solution   
  

           

            

            

Result:             

Hence it is concluded that the second company is the best choice. 

8. Result Discussion  

The proposed method and algorithm are applied on MCDM type problem. The problem is to exalt safety by 

mitigating liabilities and focusing on enhancing the safety of system. Here we have the inspected results as 

shown below,  

    
  

   0.1033 

   0.006 

   0.08 

     
  

    0.04 

    0.114 

    0.061 
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Hence it is concluded that the second company is the best choice. 

9. Conclusion 

This research focuses on Multi Criteria Decision Making issues in intuitionistic fuzzy region in which the 

assessment of choices is represented as Octagonal intuitionistic fuzzy numbers. The Accuracy Function is 

made for Multi Criteria Decision Making as an alternate to alpha cuts of intuitionistic fuzzy numbers which 

sum up to complicated calculations. Accuracy Function is applied to TOPSIS technique with OIFNs which 

reduces the complexity of the environment from complex intuitionistic fuzzy to crisp. The derived results 

help us conclude that customer can have the safety measures by using their various choice factors.  
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Abstract − Fuzzy orbit  topological space is a new structure very recently given by [1]. This new space 

is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open 

fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. 
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1. Introduction 

The fuzzy set theory introduced by Zadeh [2] provides natural bases for building new branches of fuzzy 

mathematics. As a generalization of topological space in fuzzy setting, the concept of fuzzy topological space 

introduced by Chang [3] and studied further by many topologists (cf. [4, 5, 6, 7, 8, 9]). Malathi and Uma [10] 

in 2017 introduced the notions of the orbit of a fuzzy set under a mapping  ℐ: 𝒫 ⟶ 𝒫 and an open fuzzy orbit 

set in a fuzzy topological space(𝒫, 𝜎). Very recently, Majeed and El-Sheikh [1] studied the behavior of the 

collection of open fuzzy orbit sets and discussed the conditions on the mapping ℐ: 𝒫 ⟶ 𝒫 to obtain a fixed 

orbit of these fuzzy sets. Majeed and El-Sheikh proved that the collection of all open fuzzy orbit sets under the 

mapping ℐ: 𝒫 ⟶ 𝒫 construct a fuzzy topology, denoted by 𝜎𝐹𝑂, which is coarser than 𝜎.Our purpose, in 

this work, is to define a new class of mappings between fuzzy topological spaces by using open fuzzy orbit 

sets. That is, we define the class of fuzzy orbit irresolute mappings on fuzzy topological spaces. This notion is 

independent from the notion of fuzzy continuous in the sense of Chang (see Examples 4.1 and 4.2). Also, we 

define and study fuzzy orbit open (resp. irresolute open) mappings. 

2. Preliminaries 

Throughout this paper, 𝒫 will refer to the initial universe, 𝐼 = [0,1], 𝐼0 = (0,1], and 𝐼𝒫 is the family of all 

fuzzy sets of 𝒫. For 𝑥 ∈ 𝒫 and 𝑡 ∈  𝐼0, a fuzzy point (ℱ-point, for short) 𝑥𝑡 is defined as 𝑡 if 𝑥 =  𝑦 and 0 

otherwise, ∀ 𝑦 ∈ 𝒫. A ℱ -point 𝑥𝑡 is said to be belongs to a fuzzy set 𝜔, denoted 𝑥𝑡 ∈ 𝜔, if and only if 

𝜔(𝑥) ≥ 𝑡. For 𝛿, 𝜔 ∈ 𝐼𝒫, 𝛿 is called quasi-coincident with 𝜔, denoted by 𝛿 𝑞ω if 𝛿(𝑥) + 𝜔(𝑥) > 1 for 

some 𝑥 ∈ 𝒫, otherwise we write 𝛿 �̅� 𝜔. And 𝛿𝑞𝜔 if and only if ∃𝑥𝑡;  𝑥𝑡  ∈  𝛿,  𝑥𝑡  𝑞 𝜔.  

Next, we list some definitions and basic properties about the notions of the orbit of fuzzy set and fuzzy 

orbit topological spaces and other related concepts. 
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Definition 2.1. [10] Let ℐ: 𝒫 ⟶ 𝒫 be a mapping and 𝜔 ∈  𝐼𝒫. Then, 

i. The fuzzy orbit (𝑓𝑜., for short) of ω under ℐ, denoted by 𝑂ℐ(𝜔) is defined as Oℐ(ω) = {ω, ℐ(ω),

ℐ2(ω), . . . }. 

ii. The Fuzzy orbit set (fo.s, for short) of ω under ℐ is defined as 𝐹𝑂ℐ(𝜔) =  𝜔 ∧ ℐ(𝜔)  ∧  ℐ2(𝜔) ∧ . .. the 

intersection of all members of Oℐ(ω). 

iii. If (𝒫, 𝜎) is a fuzzy topological space (fts, for short) and ℐ: 𝒫 ⟶ 𝒫, then the fo.s under ℐ which belongs 

to σ is called an open fuzzy orbit set under ℐ (open-fo.s, for short). The complement of an open-fo.s is 

called a closed fuzzy orbit set under ℐ (closed-fo.s, for short). 

Definition 2.2. [10] Let (𝒫, σ)and (𝒬, σ∗) be two fts’s. Let ℐ: 𝒫 ⟶ 𝒫. A mapping 𝜓: (𝒫, σ) ⟶ (𝒬, σ∗) is 

called fo.continuous, if the inverse image of every open fuzzy set (open-fs, for short) in 𝒬 is an open-fo.s in 

𝒫. 

Definition 2.3. [3] Let (𝒫, σ) and (𝒬, σ∗) be two fts’s. A mapping 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is called a fuzzy 

continuous (f.continuous, for short) if and only if the inverse image of each open-fs in 𝒬 is an open-fs in 

𝒫. 

Majeed and El-Sheikh studied the collection of open-fo.s’s and introduced some properties of these sets. 

They determined the cases on the mapping ℐ: 𝒫 ⟶ 𝒫 becomes fixed open-fo.s (i.e., 𝐼(𝛿) = 𝛿)  for each 

open-fo.s 𝛿, where 𝒫 is a nonempty countable set. The following theorem explains that. 

Theorem 2.1. [1] Let (𝒫, σ)be a fts and δ be an open-fo.s under the mapping ℐ: 𝒫 ⟶ 𝒫. Then, ℐ(δ) = δ 

whenever ℐ is either bijective or constant mapping. 

Remark 2.1. From now on, any mapping ℐ: 𝒫 ⟶ 𝒫 will be considered as a bijective or constant mapping 

on a nonempty countable set 𝒫. 

Theorem 2.2. [1] Let (𝒫, σ) be a fts and let 𝜎𝐹𝑂  denotes the set of all open-fo.s’s under the mapping 

ℐ: 𝒫 ⟶ 𝒫. Then,𝜎𝐹𝑂 constructs a fuzzy topology on 𝒫 coarser than 𝜎. The pair (𝒫, 𝜎𝐹𝑂) is called fuzzy 

orbit topological space (fo.ts, for short) associated with (𝒫, σ). 

Definition 2.4. [1] Let (𝒫, 𝜎𝐹𝑂) be a fo.ts and 𝜔 ∈ 𝐼𝒫. Then, 

i. The fo.closure of ω, denoted by 𝑐𝑙𝐹𝑂(𝜔), is defined as, 

𝑐𝑙𝐹𝑂(𝜔) = ⋀{𝛿 ∈ 𝐼𝒫: 𝛿 𝑖𝑠 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 − 𝑓𝑜. 𝑠 𝑎𝑛𝑑 𝜔 ≤  𝛿}  

ii. The fo.interior of ω, denoted by 𝐼𝑛𝑡𝐹𝑂(𝜔), is defined as, 

𝐼𝑛𝑡𝐹𝑂(𝜔) = ⋁{𝛿 ∈ 𝐼𝒫: 𝛿 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 − 𝑓𝑜. 𝑠 𝑎𝑛𝑑 𝛿 ≤  𝜔} 

Proposition 2.1. [1] Let (𝒫, 𝜎𝐹𝑂) be a fo.ts and 𝜔 ∈ 𝐼𝒫. Then, 

𝐼𝑛𝑡𝐹𝑂(𝜔)  ≤  𝐼𝑛𝑡(𝜔) ≤  𝜔 ≤  𝑐𝑙(𝜔) ≤  𝑐𝑙𝐹𝑂(𝜔). 

Proposition 2.2. [1] Let (𝒫, 𝜎𝐹𝑂) be a fo.ts and 𝜔, 𝛿 ∈ 𝐼𝒫. Then, 

i. 𝑐𝑙𝐹𝑂(0̅) = 0̅ (resp. 𝐼𝑛𝑡𝐹𝑂(0̅) = 0̅) and 𝑐𝑙𝐹𝑂(1̅) = 1̅ (resp. 𝐼𝑛𝑡𝐹𝑂(1̅) = 1̅). 

ii.  𝜔 ≤  𝑐𝑙𝐹𝑂(𝜔) (𝑟𝑒𝑠𝑝. 𝐼𝑛𝑡𝐹𝑂(𝜔)  ≤  𝜔). 

iii.  𝑐𝑙𝐹𝑂(𝜔 ∨  𝛿)  =  𝑐𝑙𝐹𝑂(𝜔)  ∨  𝑐𝑙𝐹𝑂(𝛿) (𝑟𝑒𝑠𝑝. 𝐼𝑛𝑡𝐹𝑂(𝜔 ∧  𝛿)  =  𝐼𝑛𝑡𝐹𝑂(𝜔)  ∧  𝐼𝑛𝑡𝐹𝑂(𝛿)). 

iv.  𝐼𝑓 𝜔 ≤  𝛿, 𝑡ℎ𝑒𝑛 𝑐𝑙𝐹𝑂(𝜔)  ≤  𝑐𝑙𝐹𝑂(𝛿) (𝑟𝑒𝑠𝑝. 𝐼𝑛𝑡𝐹𝑂(𝜔)  ≤ 𝐼𝑛𝑡𝐹𝑂(𝛿)). 

v.  𝑐𝑙𝐹𝑂(𝑐𝑙𝐹𝑂(𝜔))  = 𝑐𝑙𝐹𝑂(𝜔) (𝑟𝑒𝑠𝑝. 𝐼𝑛𝑡𝐹𝑂(𝐼𝑛𝑡𝐹𝑂(𝜔))  = 𝐼𝑛𝑡𝐹𝑂(𝜔)). 

vi.  𝜔 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 − 𝑓𝑜. (𝑟𝑒𝑠𝑝. 𝑜𝑝𝑒𝑛)𝑖𝑓𝑓 𝜔 = 𝑐𝑙𝐹𝑂(𝜔)(𝑟𝑒𝑠𝑝. 𝜔 =  𝐼𝑛𝑡𝐹𝑂(𝜔)). 

 



 

43 

 

Journal of New Theory 31 (2020) 41-47 / Fuzzy Orbit Irresolute Mappings 

Theorem 2.3. [1] Let (𝒫, 𝜎𝐹𝑂) be a fo.ts and 𝜔  𝐼𝒫.Then, 

i. 1̅ − 𝐼𝑛𝑡𝐹𝑂(𝜔) = 𝑐𝑙𝐹𝑂(1̅ − 𝜔). 

ii. 1̅ − 𝑐𝑙𝐹𝑂(𝜔) = 𝐼𝑛𝑡𝐹𝑂(1̅ − 𝜔). 

3. Fuzzy Orbit Neighbourhood 

Definition 3.1. A fuzzy set ω in a fts (𝒫, σ)is said to be a fuzzy orbit neighbourhood (fo.nbhd, for short) of a 

ℱ-point 𝑥𝑡 if and only if  there exists an open-fo.s δ such that 𝑥𝑡 ∈ 𝛿 ≤ 𝜔. 

Theorem 3.1. Let (𝒫, σ) be a fts and 𝜔 ∈ 𝐼𝒫. Then, 𝜔 is an open-fo.s if and only if 𝜔 is a fo.nbhd for any 

ℱ-point 𝑥𝑡 ∈ ω. 

PROOF. Suppose ω is an open-fo.s and let 𝑥𝑡 ∈ ω. Since ω ≤  ω and ω is an open-fo.s, then ω is a fo.nbhd 

of 𝑥𝑡.  

Conversely, since for all 𝑥𝑡 ∈ ω, there exists an open-fo.s 𝛿𝑘 such that 𝑥𝑡 ∈ 𝛿𝑘  ≤  𝜔. Then, ⋁𝑥𝑡 ≤

⋁ 𝛿𝑘 ≤𝑘∈𝜔 𝜔. Since every fuzzy set can be represented by the union of its ℱ-points, then ⋁𝑥𝑡 = 𝜔. Also, by 

Theorem 2.2, ⋁ 𝛿𝑘𝑘∈𝜔  is an open-fo.s. Thus, ω is an open-fo.s. 

Definition 3.2. A fuzzy set 𝜔 in a fts (𝒫, 𝜎)is said to be a fuzzy orbit Q-neighbourhood (fo.Q-nbhd, for short) 

of a ℱ-point 𝑥𝑡 if ∃ an open-fo.s δ such that 𝑥𝑡𝑞𝛿 ≤ 𝜔. 

Definition 3.3. Let (𝒫, 𝜎) and (𝒬, 𝜎′) be any two fts’s. Let ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 be any two 

mappings. A mapping 𝜓: (𝒫, 𝜎𝐹𝑂) ⟶ (𝒬, 𝜎′
𝐹𝑂) is said to be f.continuous, if the inverse image of any open-

fo.s under the mapping ℐ2 in (𝒬, 𝜎′) is an open-fo.s under the mapping ℐ1 in (𝒫, 𝜎). 

Theorem 3.2. Let 𝜓: (𝒫, 𝜎𝐹𝑂) ⟶ (𝒬, 𝜎′
𝐹𝑂) and 𝑔: (𝒬, 𝜎′

𝐹𝑂) ⟶ (𝑍, 𝜎′′
𝐹𝑂) be two mappings. Then, 𝑔ο𝜓 is 

f. continuous mapping if 𝜓 and 𝑔 are f.continuous.  

PROOF. The proof is straightforward.  

4. Fuzzy Orbit Irresolute (Irresolute Open) Mappings 

Our goal here is to introduce and study the concept of irresolute (resp. irresolute open) mappings in fst’s 

by using the concepts of open-fo.s’s. 

 

Definition 4.1. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. Let ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 be any two 

mappings. A mapping 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is said to be fuzzy orbit irresolute (fo.irresolute, for short), if 

the inverse image of every open-fo.s under the mapping ℐ2 in (𝒬, 𝜎∗) is an open-fo.s under the mapping ℐ1 

in (𝒫, 𝜎). 

The concept of f.continuous in the sense of Chang and fo.irresolute are independent. The next two 

examples explain that. 

Example 4.1. Let 𝒫 = {𝑘1, 𝑘2, 𝑘3} and 𝒬 = {𝑠1, 𝑠2, 𝑠3}. Define 𝜎 = {0̅, 1̅, 𝜔} and 𝜎∗ = {0̅, 1̅, 𝛿1, 𝛿2} where 

𝜔 ∈ 𝐼𝒫and 𝛿1, 𝛿2 ∈ 𝐼𝒬  such that 𝜔 = {(𝑘1, 0.2), (𝑘2, 0.3), (𝑘3, 0.3)}, 𝛿1 = {(𝑠1, 0.2), (𝑠2, 0.3), (𝑠3, 0.3)} and 

𝛿2 = {(𝑠1, 0.6), (𝑠2, 0.5), (𝑠3, 0.7)}. Clearly, (𝒫, 𝜎) and (𝒬, 𝜎∗) are fts’s.  

Define 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗), ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 as 𝜓(𝑘1) = 𝑠1, 𝜓(𝑘2) = 𝑠3, 𝜓(𝑘3) = 𝑠2, ℐ1(𝑘1) =

𝑘1, ℐ1(𝑘2) = 𝑘3, ℐ1(𝑘3) = 𝑘2and ℐ2(𝑠1) = 𝑠1, ℐ2(𝑠2) = 𝑠3, ℐ2(𝑠3) = 𝑠2. Then, 𝜓 is fo.irresolute but not 

f.continuous mapping, since 𝛿2 is an open-fs in 𝒬, however 𝜓−1(𝛿2) ∉ 𝜎. 
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Example 4.2. Let 𝒫 = {𝑘1, 𝑘2, 𝑘3} and 𝒬 = {𝑠1, 𝑠2, 𝑠3}. Define 𝜎 = {0̅, 1̅, 𝜔} and 𝜎∗ = {0̅, 1̅, 𝛿} where 𝜔 ∈

𝐼𝒫 a n d  𝛿 ∈ 𝐼𝒬   such that 𝜔 = {(𝑘1, 0.4), (𝑘2, 0.4), (𝑘3, 0.7)}, 𝛿 = {(𝑠1, 0.7), (𝑠2, 0.4), (𝑠3, 0.4)}. Clearly, 

(𝒫, 𝜎) and (𝒬, 𝜎∗) are fts’s.  

Define 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗), ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 as 𝜓(𝑘1) = 𝑠2, 𝜓(𝑘2) = 𝑠3, 𝜓(𝑘3) = 𝑠1, 

ℐ1(𝑘1) = 𝑘1, ℐ1(𝑘2) = 𝑘3, ℐ1(𝑘3) = 𝑘2 and ℐ2(𝑠1) = 𝑠1, ℐ2(𝑠2) = 𝑠3, ℐ2(𝑠3) = 𝑠2. Then, 𝜓 is f.continuous 

but not fo.irresolute mapping, since 𝛿 is an open-fo.s under ℐ2 in 𝒬, however 𝜓−1(𝛿) = 𝜔 is not an open-fo.s 

under ℐ1 in 𝒫. 

Theorem 4.1. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s, let (𝒫, 𝜎𝐹𝑂) and (𝒬, 𝜎𝐹𝑂
∗ ) be its associative fo.ts’s 

with (𝒫, 𝜎) and (𝒬, 𝜎∗) respectively. Let ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 be any two mappings. Then 

𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is 𝑓𝑜.irresolute mapping iff 𝜓: (𝒫, 𝜎𝐹𝑂) ⟶ (𝒬, 𝜎𝐹𝑂
∗ ) is f.continuous mapping. 

PROOF. Straightforward. 

Theorem 4.2. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. Let 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) be any mapping. If 𝜓 is 

fo.continuous mapping, then 𝜓 is fo.irresolute mapping. 

PROOF. The proof is straightforward by Definition 4.1 and Definition 2.2. 

The inverse direction of Theorem 4.2 may not be held, In Example 4.1, 𝜓 is fo.irresolute mapping, 

however, it is not fo.continuous since 𝛿2 is an open-fs in 𝒬, but its inverse image is not open-fo.s in 𝒫. 

Some characterizations of fo.irresolute mapping are given next. 

Theorem 4.3. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. Let 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) be any mapping. Then, the 

following statements are equivalent: 

(a) 𝜓 is fo.irresolute mapping, 

(b) For every ℱ-point 𝑥𝑡 of 𝒫 and every open-fo.s 𝛿 in 𝑄 such that 𝜓(𝑥𝑡) ∈ 𝛿, there is an open-fo.s 

𝜔 in 𝒫 such that 𝑥𝑡 ∈ 𝜔 and 𝜓(𝜔) ≤ 𝛿, 

(c) For every closed-fo. 𝜈 in 𝒬, 𝜓−1(𝜈) is closed-fo.s in 𝒫, 

(d) For every ℱ-point 𝑥𝑡 of 𝒫 and every fo.nbhd 𝛿 in 𝒬 of 𝜓(𝑥𝑡), 𝜓−1(𝛿) is a fo.nbhd of 𝑥𝑡 in 𝒫, 

(e) For every ℱ-point 𝑥𝑡 of 𝒫 and every fo.nbhd 𝛿 in 𝒬 of 𝜓(𝑥𝑡), there is a fo.nbhd 𝜔 in 𝒫 of 𝑥𝑡 such 

that 𝜓(𝜔) ≤ 𝛿, 

(f) For every ℱ-point 𝑥𝑡 of 𝒫 and every open-fo.s 𝛿 in 𝒬 such that 𝜓(𝑥𝑡)𝑞 𝛿, there is an open-fo.s 

ω in 𝒫 such that 𝑥𝑡𝑞𝜔 and 𝜓(𝜔) ≤ 𝛿, 

(g) For every ℱ-point 𝑥𝑡 of 𝒫 and every fo.Q-nbhd 𝛿 in 𝒬 of 𝜓(𝑥𝑡), 𝜓−1(𝛿) is fo.Q-nbhd of 𝑥𝑡 in 

𝒫, 

(h) For every ℱ-point 𝑥𝑡 of 𝒫 and every fo.Q-nbhd 𝛿 in 𝒬 of 𝜓(𝑥𝑡), there is a fo.Q-nbhd 𝜔 of 𝑥𝑡 such 

that 𝜓(𝜔) ≤ 𝛿, 

(i) 𝜓(𝑐𝑙𝐹𝑂(𝜔)) ≤ 𝑐𝑙𝐹𝑂(𝜓(𝜔)), for every fuzzy set 𝜔 of 𝒫, 

(j) 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)) ≤ 𝜓−1(𝑐𝑙𝐹𝑂(𝛿)), for every fuzzy set 𝛿 of 𝒬, 

(k) 𝜓−1(𝐼𝑛𝑡𝐹𝑂(𝛿)) ≤ 𝐼𝑛𝑡𝐹𝑂(𝜓−1(𝛿)), for every fuzzy set 𝛿 of 𝒬. 
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PROOF.  

(a)⟹(b) Let 𝑥𝑡 be a ℱ-point of 𝒫 and 𝛿 be an open-fo.s in 𝒬 under the mapping ℐ2 such that 𝜓(𝑥𝑡) ∈ 𝛿. 

Put 𝜔 = 𝜓−1(𝛿). Then, by (a) 𝜔 is an open-fo.s in 𝒫 under the mapping ℐ1 such that 𝑥𝑡 ∈ 𝜔 and 

𝜓(𝜔) = 𝜓(𝜓−1(𝛿)) ≤ 𝛿. Hence, 𝜓(𝜔) ≤ 𝛿. 

(b)⟹(a) Let δ be an open-fo.s in 𝒬. Let 𝑥𝑡 ∈ 𝜓−1(𝛿). Then, 𝜓(𝑥𝑡) ∈ δ. Now by (b) there is an open-

fo.s ω in 𝒫 such that 𝑥𝑡 ∈ 𝜔 and 𝜓(𝜔) ≤ δ. Then, 𝑥𝑡 ∈ ω ≤ 𝜓−1(𝛿). Hence by Theorem 3.1 𝜓−1(𝛿) is 

an open-fo.s in 𝒫. Thus, 𝜓 is fo.irresolute mapping. 

(a)⇔(c) Obvious. 

(a)⟹(d) Let 𝑥𝑡 be a ℱ-point of 𝒫 and let 𝛿 be a fo.nbhd of 𝜓(𝑥𝑡). Then, there is an open-fo.s 𝜈 in 𝒬 such 

that 𝜓(𝑥𝑡) ∈ 𝜈 ≤ 𝛿. Now 𝜓−1(𝜈) is an open-fo.s in 𝒫, because 𝜓 is a fo.irresolute mapping and 𝑥𝑡 ∈

𝜓−1(𝜈) ≤ 𝜓−1(𝛿). Thus, 𝜓−1(𝛿) is a fo.nbhd of 𝑥𝑡 in 𝒫. 

(d)⟹(e) Let 𝑥𝑡 be a ℱ-point of 𝒫 and let 𝛿 be a fo.nbhd of 𝜓(𝑥𝑡). Then, by hypothesis 𝜔 = 𝜓−1(𝛿) is a 

fo.nbhd of 𝑥𝑡 and 𝜓(𝜔) =  𝜓(𝜓−1(𝛿)) ≤ 𝛿. Hence, 𝜓(𝜔) ≤ 𝛿. 

(e) ⟹(b) Let 𝑥𝑡 be a ℱ-point of 𝒫 and let 𝛿 be an open-fo.s in 𝒬 containing 𝜓(𝑥𝑡). Then, 𝛿 is a fo.nbhd 

of 𝜓(𝑥𝑡), so there is a fo.nbhd 𝜔 of 𝑥𝑡 of 𝒫 such that 𝑥𝑡 ∈ 𝜔 and 𝜓(𝜔) ≤ 𝛿. Therefore, there exists an open-

fo.s 𝜔′ in 𝒫 such that 𝑥𝑡 ∈ 𝜔′ ≤ 𝜔. Clearly, 𝜓(𝜔′) ≤ 𝜓(𝜔) ≤ 𝛿. 

(a)⟹(f) Let 𝑥𝑡 be a ℱ-point of 𝒫 and 𝛿 be an open-fo.s in 𝒬 such that 𝜓(𝑥𝑡)𝑞𝛿. Let 𝜔 = 𝜓−1(𝛿), then 𝜔 

is an open-fo.s in P and 𝑥𝑡q 𝜔 and 𝜓(𝜔) = 𝜓(𝜓−1(𝛿)) ≤ 𝛿. 

(f)⟹(g) Let 𝑥𝑡 be a ℱ-point of 𝒫 and 𝛿 be a fo.Q-nbhd of 𝜓(𝑥𝑡) in 𝒬. Then, there exists an open-fo.s 𝜈 

in 𝒬 such that 𝜓(𝑥𝑡)𝑞𝜈 ≤ 𝛿. By hypothesis there is an open-fo. 𝜔 in 𝒫 such that 𝑥𝑡𝑞𝜔 and 𝜓(𝜔) ≤ 𝜈. 

Thus 𝑥𝑡𝑞𝜔 ≤ 𝜓−1(𝜈) ≤ 𝜓−1(𝛿). Hence, 𝜓−1(𝛿) is a fo.Q-nbhd of 𝑥𝑡.  

(g)⟹(h) Let 𝑥𝑡 be a ℱ-point of 𝒫 and 𝛿 be a  fo.Q-nbhd of 𝜓(𝑥𝑡) in 𝒬. Then, 𝜔 = 𝜓−1(𝛿) is a fo.Q-

nbhd of 𝑥𝑡 and 𝜓(𝜔) ≤ 𝜓(𝜓−1(𝛿)) ≤ 𝛿. 

(h)⟹(f) Let 𝑥𝑡 be a ℱ-point of 𝒫 and 𝛿 be an open-fo.s in 𝒬 such that 𝜓(𝑥𝑡)𝑞𝛿. Then, 𝛿 is a fo.Q-nbhd 

of 𝜓(𝑥𝑡). So, there is a fo.Q-nbhd 𝜔 of 𝑥𝑡 such that 𝜓(𝜔) ≤ 𝛿. Therefore, there exists an open-fo.s 𝜈 in 𝒫 

such that 𝑥𝑡𝑞𝜈 ≤ 𝜔. Hence, 𝑥𝑡𝑞𝜈 and 𝜓(𝜈) ≤  𝜓(𝜔) ≤ 𝛿. 

(f)⟹(a) Let 𝜂 be an open-fo.s in 𝒬 and 𝑥𝑡 ∈ 𝜓−1(𝜂). Clearly, 𝜓(𝑥𝑡) ∈ 𝜂. Choose the ℱ-point 1̅ − 𝑥𝑡.  

Then,  𝜓(1̅ − 𝑥𝑡)𝑞𝜂. And so by (f) there exists an open-fo.s 𝜔 such that 1̅ − 𝑥𝑡𝑞𝜔 and  𝜓(𝜔) ≤ 𝜂. Now, 

1̅ − 𝑥𝑡𝑞𝜔 this  implies 𝑥𝑡 ∈ 𝜔. Thus, 𝑥𝑡 ∈ 𝜔 ≤ 𝜓−1(𝜂). Hence, by Theorem 3.1,  𝜓−1(𝜂) is an open-

fo.s in 𝒫. 

(i)⟹(c) Let 𝛿 be any closed-fo.s in 𝒬. Then, from (i), 𝜓(𝑐𝑙𝐹𝑂(𝜓−1(𝛿))) ≤ 𝑐𝑙𝐹𝑂(𝜓(𝜓−1(𝛿)) ≤  𝑐𝑙𝐹𝑂(𝛿) =

𝛿. By taking the inverse of the equality we get 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)) ≤ 𝜓−1(𝛿). Since 𝜓−1(𝛿) ≤ 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)). 

Then, we have 𝜓−1(𝛿) = 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)). Hence, 𝜓−1(𝛿) is a closed- fo.s in 𝒫. 

(c)⟹(i) Suppose that (c) holds. Let 𝜔 be a fuzzy set of 𝒫. Since 𝜔 ≤ 𝜓−1(𝜓(𝜔)), then 𝜔 ≤

𝜓−1(𝜓(𝑐𝑙𝐹𝑂(𝜔))). Now, 𝑐𝑙𝐹𝑂(𝜓(𝜔)) is a closed-fo.s contains 𝜔. Consequently, 𝑐𝑙𝐹𝑂(𝜔) ≤

 𝑐𝑙𝐹𝑂(𝜓−1(𝑐𝑙𝐹𝑂(𝜓(𝜔)))) = 𝜓−1(𝑐𝑙𝐹𝑂(𝜓(𝜔))) and so 𝜓(𝑐𝑙𝐹𝑂(𝜔)) ≤ 𝑐𝑙𝐹𝑂(𝜓(𝜔)). 

(i)⟹(j) Let 𝛿 be a fuzzy set of Q. Then, 𝜓−1(𝛿) is a fuzzy set of 𝒫. Therefore by (i), 𝜓(𝑐𝑙𝐹𝑂(𝜓−1(𝛿))) ≤

 𝑐𝑙𝐹𝑂(𝜓(𝜓−1(𝛿))) ≤ 𝑐𝑙𝐹𝑂(𝛿). Hence, 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)) ≤ 𝜓−1(𝑐𝑙𝐹𝑂(𝛿)). 

(j)⟹(i) Let 𝛿 = 𝜓(𝜔) where 𝜔 is a fuzzy set of 𝒫, and we know that ω≤𝜓−1(𝛿) which implies 

𝑐𝑙𝐹𝑂(ω) ≤ 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)). Thus, 𝑐𝑙𝐹𝑂(ω) ≤ 𝑐𝑙𝐹𝑂(𝜓−1(𝛿)) ≤ 𝜓−1(𝑐𝑙𝐹𝑂(𝛿)) ≤ 𝜓−1(𝑐𝑙𝐹𝑂(𝜓(𝜔))). 

Therefore, 𝜓(𝑐𝑙𝐹𝑂(𝜔)) ≤ 𝑐𝑙𝐹𝑂(𝜓(𝜔)). 
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(a)⟹(k) Let 𝛿 be an open-fo.s in 𝒬. Clearly 𝜓−1(𝐼𝑛𝑡𝐹𝑂 (𝛿)) is an open-fo.s in 𝒫 and we have 

𝜓−1(𝐼𝑛𝑡𝐹𝑂(𝛿)) ≤ 𝐼𝑛𝑡𝐹𝑂(𝜓−1 (𝐼𝑛𝑡𝐹𝑂 (𝛿))) ≤ 𝐼𝑛𝑡𝐹𝑂(𝜓−1(𝛿)). 

(k)⟹(a) Let 𝛿 be an open-fo.s in 𝒬. Then, 𝐼𝑛𝑡𝐹𝑂(𝛿) = 𝛿 and 𝜓−1(𝛿) = 𝜓−1(𝐼𝑛𝑡𝐹𝑂(𝛿)) ≤

𝐼𝑛𝑡𝐹𝑂(𝜓−1 (𝛿)). Hence, we have 𝜓−1(𝛿) = 𝐼𝑛𝑡𝐹𝑂(𝜓−1(𝛿)). This means that 𝜓−1(𝛿) is an open-fo.s in 

𝒫. Hence, the proof is complete. 

Theorem 4.4. Let (𝒫, 𝜎), (𝒬, 𝜎∗) and (𝑍, 𝜎∗∗) be fts’s. Let 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) and 𝑔: (𝒬, 𝜎∗) ⟶ (𝑍, 𝜎∗∗) 

be two mappings. Then, 𝑔𝜊𝜓 is 

i. fo.irresolute mapping if 𝜓 and g are fo.irresolute, 

ii. fo.continuous if 𝜓 is fo.irresolute and g is fo.continuous.  

PROOF. From Definition 4.1 and Definition 2.2 we can obtain the result. 

Definition 4.2 Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. Let ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 be any two 

mappings. A mapping 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is said to be 

i. fuzzy orbit open (resp. closed) mapping (fo.open (resp. closed)) mapping, if the image of every open-(resp. 

closed-)fs in 𝒫 is an open-(resp. closed-) fo.s in Q. 

ii. fuzzy orbit irresolute open (resp. closed) mapping (fo.irresolute open (resp. irresolute closed), for short) 

mapping, if the image of every open-(resp. closed-) fo.s in 𝒫 is an open-(resp. closed-) fo.s in Q. 

The relationship between fo.open mappings and fo.irresolute open mappings is given in the following 

theorem. 

Theorem 4.5. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. If 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is fo.open mapping, then 𝜓 is 

fo.irresolute open mapping.  

PROOF. The proof uses only the fact every open-fo.s is an open-fs and the hypothesis.  

The converse of Theorem 4.5 does not hold. We show that in the following example. 

Example 4.3. Let 𝒫 = {𝑘1, 𝑘2, 𝑘3} and 𝒬 = {𝑠1, 𝑠2, 𝑠3}. Define 𝜎 = {0̅, 1̅, 𝜔1, 𝜔2} and 𝜎∗ =

{0̅, 1̅, 𝛿1, 𝛿2} where 𝜔1, 𝜔2 ∈ 𝐼𝒫 a n d  𝛿1, 𝛿2 ∈ 𝐼𝒬   such that  

𝜔1 = {(𝑘1, 0.9), (𝑘2, 0.5), (𝑘3, 0.6)}, 𝜔2 = {(𝑘1, 0.2), (𝑘2, 0.2), (𝑘3, 0.2)},  

𝛿1 = {(𝑠1, 0.5), (𝑠2, 0.6), (𝑠3, 0.9)}, 𝛿2 = {(𝑠1, 0.2), (𝑠2, 0.2), (𝑠3, 0.2)} 

Clearly, (𝒫, 𝜎) and (𝒬, 𝜎∗) are fts’s. Define 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗), ℐ1: 𝒫 ⟶ 𝒫 and ℐ2: 𝒬 ⟶ 𝒬 as 𝜓(𝑘1) =

𝑠3, 𝜓(𝑘2) = 𝑠1, 𝜓(𝑘3) = 𝑠2, ℐ1(𝑘1) = 𝑘3, ℐ1(𝑘2) = 𝑘2, ℐ1(𝑘3) = 𝑘1 and ℐ2(𝑠1) = 𝑠1, ℐ2(𝑠2) = 𝑠2, ℐ2(𝑠3) =

𝑠3. Then, 𝜔2 is an open-fo.s in 𝒫 and 𝜓(𝜔2) = 𝛿2 which is also open-fo.s in Q, so 𝜓 is fo.irresolute open.But 

𝜓 does not fo.open mapping, since there is an open-fs 𝜔1 in 𝒫 and 𝜓(𝜔1) =  𝛿1 is not open-fo.s in Q. 

Theorem 4.6. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s and let 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is fo.irresolute open. If 𝛿 

is a fuzzy set of Q and 𝜔 is a closed-fo.s in 𝒫 containing 𝜓−1(𝛿), then there exists a closed-fo.s 𝜂 of Q 

containing 𝛿 such that 𝜓−1(𝜂) ≤ 𝜔. 

PROOF. Let 𝛿 be a fuzzy set of Q and ω be a closed-fo.s in 𝒫 such that 𝜓−1(𝛿) ≤ 𝜔. Then, 1̅ − 𝜔 is an 

open-fo.s in 𝒫. By hypothesis 𝜓(1̅ − 𝜔) is an open-fo.s in Q. Let 𝜂 = 1̅ − 𝜓(1̅ − 𝜔) (i.e., 𝜂 is a 

closed-fo.s in Q). Since 𝜓−1(𝛿) ≤ 𝜔, we have 1̅ − 𝜔 ≤ 1̅ − 𝜓−1(𝛿), implies 𝜓(1̅ − 𝜔) ≤ 𝜓(1̅ −

𝜓−1(𝛿)) =  1̅ − 𝜓(𝜓−1(𝛿)) ≤  1̅ − 𝛿. Hence, 𝛿 ≤ 1̅ − 𝜓(1̅ − 𝜔) = 𝜂. Since 𝜓 is fo.irresolute open, then 

𝜂 is a closed-fo.in Q and 𝜓−1(𝜂) = 𝜓−1(1̅ − 𝜓(1̅ −  𝜔)) = 1̅ − 𝜓−1(𝜓(1̅ − 𝜔)) ≤ 𝜔. Consequently, 

𝜓−1(𝜂) ≤ 𝜔. 
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Theorem 4.7. Let (𝒫, 𝜎) and (𝒬, 𝜎∗) be any two fts’s. A mapping 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) is fo.irresolute open 

iff 𝜓(𝐼𝑛𝑡𝐹𝑂(𝜔)) ≤  𝐼𝑛𝑡𝐹𝑂(𝜓(𝜔)), for every fuzzy set 𝜔 of 𝒫. 

PROOF. Suppose 𝜓 is fo.irresolute open. Then, 𝜓(𝐼𝑛𝑡𝐹𝑂(𝜔)) is an open-fo.s in Q. Hence, 𝜓(𝐼𝑛𝑡𝐹𝑂(𝜔)) =

 𝐼𝑛𝑡𝐹𝑂(𝜓(𝐼𝑛𝑡𝐹𝑂(𝜔))) ≤  𝐼𝑛𝑡𝐹𝑂(𝜓(𝜔)). 

Sufficiency, let 𝜔 be an open-fo.s in  𝒫, then by hypothesis 𝜓(𝐼𝑛𝑡𝐹𝑂(𝜔)) ≤  𝐼𝑛𝑡𝐹𝑂(𝜓(𝜔)). Hence, 

𝜓(𝜔)  is an open-fo.s in Q. 

Theorem 4.8. Let (𝒫, 𝜎), (𝒬, 𝜎∗) and (𝑍, 𝜎∗∗) be fts’s. Let 𝜓: (𝒫, 𝜎) ⟶ (𝒬, 𝜎∗) and 𝑔: (𝒬, 𝜎∗) ⟶ (𝑍, 𝜎∗∗) 

be fo.irresolute open mappings. Then, 𝑔𝜊𝜓 is fo.irresolute open. 

PROOF. Straightforward from Definition 4.2. 
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Abstract − The purpose of this paper is to introduce and study hesitant fuzzy h-
ideals ( h-bi-ideals, h-quasi-ideals) of a Γ-hemiring. We investigate several properties
these ideals. We show that hesitant fuzzy ideals are closed under intersection, carte-
sian product and composition. We also obtain some inter-relations between these
ideals and characterizations of h-regular Γ-hemiring.
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1. Introduction

Semiring, introduced by Vandiver [1] in 1934 with two associative binary operations where one dis-
tributes over the other. In structure, semirings lie between semigroups and rings. The results which
hold in rings but not in semigroups may hold in semirings, since semiring is a generalization of ring.
Also, semirings has some applications to the theory of automata, formal languages, optimization the-
ory and other branches of applied mathematics. Ideals of semiring play a central role in the structure
theory and useful for many purposes. However they do not in general coincide with the usual ring
ideals and for this reason, their use is somewhat limited in trying to obtain analogues of ring theorems
for semiring. To ammend this gap Henriksen [2] defined a more restricted class of ideals, which are
called k -ideals. A still more restricted class of ideals in hemirings are given by Iizuka [3], which are
called h-ideals. Torre [4], investigated h-ideals and k -ideals in hemirings in an effort to obtain ana-
logues of ring theorems for hemiring and to amend the gap between ring ideals and semiring ideals.
The notion of Γ-semiring was introduced by Rao [5] as a generalization of Γ-ring as well as of semiring.
Γ-semirings also includes ternary semirings and provide algebraic home to nonpositives cones of totally
ordered rings.

The theory of fuzzy sets, proposed by Zadeh [6], has provided a useful mathematical tool for
describing the behavior of the systems that are too complex or illdefined to admit precise mathematical
analysis by classical methods and tools. Since then several extensions and generalizations of fuzzy
sets have been introduced in the literature, for example, intuitionistic fuzzy sets [7], interval valued
fuzzy sets [8], fuzzy multisets [9] etc.. As an important generalization of these notions, in 2010,
Torra [10] introduced the hesitant fuzzy set which permits the membership degree of an element to
a set to be represented by a set of possible values between 0 and 1. The hesitant fuzzy set therefore
provides a more accurate representation of peoples hesitancy in stating their preferences over objects
than the fuzzy set or its classical extensions. Hesitant fuzzy set theory has been applied to several
practical problems, see [11–18]. Jun et al. [19] applied notion of hesitant fuzzy sets to semigroups and

1dmandaljumath@gmail.com
1Department of Mathematics, Raja Peary Mohan College, Uttarpara, India-712258
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investigated several properties. Since then many researchers developed this ideas.
The main aim of this paper is to study some properties of ideals of Γ-hemiring using hesitant fuzzy
set. We also obtain some characterizations.

2. Preliminaries

We recall the following preliminaries for subsequent use.

Definition 2.1. Let S and Γ be two additive commutative semigroups with zero. Then S is called a
Γ-hemiring if there exists a mapping
S × Γ× S → S ( (a,α,b) 7→ aαb) satisfying the following conditions:
(i) (a+ b)αc = aαc+ bαc,
(ii) aα(b+ c) = aαb+ aαc,
(iii) a(α+ β)b = aαb+ aβb,
(iv) aα(bβc) = (aαb)βc.
(v) 0Sαa = 0S = aα0S ,
(vi)a0Γb = 0S = b0Γa
for all a, b, c ∈ S and for all α, β ∈ Γ.
For simplification we write 0 instead of 0S and 0Γ.

A subset A of a Γ-hemiring S is called a left(resp. right) ideal of S if A is closed under addition
and SΓA ⊆ A (resp. AΓS ⊆ A). A subset A of a Γ-hemiring S is called an ideal if it is both left and
right ideal of S.
A subset A of a Γ-hemiring S is called a quasi-ideal of S if A is closed under addition and SΓA∩AΓS ⊆
A.
A subset A of a Γ-hemiring S is called a bi-ideal if A is closed under addition and AΓSΓA ⊆ A.
A left ideal A of S is called a left h-ideal if x, z ∈ S, a, b ∈ A and x+ a+ z = b+ z implies x ∈ A. A
right h-ideal is defined analogously.

Definition 2.2. A fuzzy subset of a non-empty set S is defined as a function µ : S → [0, 1].

Definition 2.3. Hesitant fuzzy set on S in terms of a function H that when applied to S returns a
subset of [0, 1].

Throughout this paper unless otherwise mentioned S denotes the Γ-hemiring and for any two set
P and Q, we use the following notation:

∩(P,Q) = P ∩Q and ∪ (P,Q) = P ∪Q.

3.Hesitant fuzzy h-ideals

In this section, the notions of hesitant fuzzy ideals in Γ-hemiring are introduced and some of their
basic properties are investigated.

Definition 3.1. Let H be a non empty hesitant fuzzy subset of a Γ-hemiring S. Then H is called a
hesitant fuzzy left ideal [ hesitant fuzzy right ideal] of S if

(i) H(x+ y) ⊇ ∩{H(x),H(y)}

(ii) H(xγy) ⊇ H(y) [respectively H(xγy) ⊇ H(x)].

for all x, y ∈ S and γ ∈ Γ.
A hesitant fuzzy ideal of a Γ-hemiring S is a non empty hesitant fuzzy subset of S which is a hesitant
fuzzy left ideal as well as a hesitant fuzzy right ideal of S.
Note that if H is a hesitant fuzzy left or right ideal of a Γ-hemiring S, then H(0) ⊇ H(x) for all x ∈ S.

Definition 3.2. A hesitant fuzzy left ideal H of a Γ-hemiring S is called a hesitant fuzzy left h-ideal
if for all a, b, x, z ∈ S, x+ a+ z = b+ z ⇒ H(x) ⊇ ∩{H(a),H(b)}.

A hesitant fuzzy right h-ideal is defined similarly.
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Example 3.3. Let S = Γ =the set of non-positive integers. Then S forms a Γ-hemiring with usual
addition and multiplication of integers. Define H be a hesitant fuzzy subset of S as follows

H(x) = [0, 1] if x = 0
= 0.2 ∪ (0.3, 0.8] if x is even
= [0.5, 0.7) if x is odd

The hesitant fuzzy subset H of S is a hesitant fuzzy ideal S.

Throughout this section, we prove results only for hesitant fuzzy left ideals. Similar results can be
obtained for hesitant fuzzy right ideals and hesitant fuzzy ideals.

Definition 3.4. The characteristic hesitant fuzzy set of H of a set A is defined as

HχA(x) =

{
[0, 1], if x ∈ A;
ϕ, if x ̸∈ A.

Definition 3.5. Let H1 and H2 be any two hesitant fuzzy sets of a Γ-hemiring S. Define intersection
of H1 and H2 by

(H1 ∩H2)(x) = ∩(H1(x),H2(x))

for all x ∈ S.

Proposition 3.6. Intersection of a non-empty collection of hesitant fuzzy left h-ideals is a hesitant
fuzzy left h-ideal of S.

Proof. Let {Hi : i ∈ I} be a non-empty family of ideals of S. Let x, y ∈ S and γ ∈ Γ.
Then

( ∩
i∈I

Hi)(x+ y) = ∩
i∈I

{Hi(x+ y)} ⊇ ∩
i∈I

{∩{Hi(x),Hi(y)}}
= ∩{ ∩

i∈I
Hi(x), ∩

i∈I
Hi(y)} = ∩{( ∩

i∈I
Hi)(x), ( ∩

i∈I
Hi)(y)}.

Again
( ∩
i∈I

Hi)(xγy) = ∩
i∈I

{Hi(xγy)} ⊇ ∩
i∈I

{Hi(y)} = ( ∩
i∈I

Hi)(y).

Hence ∩
i∈I

Hi is a hesitant fuzzy left ideal of S.

Suppose x ∈ S be such that x+ a+ z = b+ z, for z, a, b ∈ S. Then

( ∩
i∈I

Hi)(x) = ∩
x∈I

{µi(x)} ⊇ ∩
i∈I

{∩{Hi(a),Hi(b)}}
= ∩{ ∩

i∈I
Hi(a), ∩

i∈I
Hi(b)} = ∩{( ∩

i∈I
Hi)(a), ( ∩

i∈I
Hi)(b)}.

Therefore ∩
i∈I

Hi is a hesitant fuzzy left h-ideal of S.

Proposition 3.7. Let f : R → S be a morphism of Γ-hemirings ( see, [20])and H be a hesitant fuzzy
left h-ideal of S, then f−1(H) is a hesitant fuzzy left h-ideal of R where f−1(H)(x) = H(f(x)) for
x ∈ S.

Proof. Let f : R → S be a morphism of Γ-hemirings.
Let H be a hesitant fuzzy left ideal of S and r, s ∈ R and γ ∈ Γ. Then

f−1(H)(r + s) = H(f(r + s)) = H(f(r) + f(s))
⊇ ∩{H(f(r)), H(f(s))} = ∩{f−1(H)(r), f−1(H)(s)}

Again (f−1(H))(rγs) = H(f(rγs)) = H(f(r)γf(s)) ⊇ H(f(s)) = (f−1(H))(s).
Thus f−1(H) is a hesitant fuzzy left ideal of R.

Suppose x, a, b, z ∈ R be such that x+ a+ z = b+ z. Then f(x) + f(a) + f(z) = f(b) + f(z).
(f−1(H))(x) = H(f(x)) ⊇ ∩{H(f(a)),H(f(b))} = ∩{f−1(H)(a), f−1(H)(b)}.
Therefore f−1(H)(x) is a hesitant fuzzy left h-ideal of R.
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Definition 3.8. Let H1 and H2 be hesitant fuzzy subsets of X. The cartesian product of H1 and H2

is defined by
(H1 ×H2)(x, y) = ∩(H1(x), H2(y))

for all x, y ∈ X.

Theorem 3.9. Let H1 and H2 be two hesitant fuzzy left h-ideals of a Γ-hemiring S. Then H1 ×H2

is a hesitant fuzzy left h-ideal of the Γ-hemiring S × S.

Proof. Let (x1, x2), (y1, y2) ∈ S × S and γ ∈ Γ. Then

(H1 ×H2)((x1, x2) + (y1, y2)) = (H1 ×H2)(x1 + y1, x2 + y2)
= ∩{H1(x1 + y1),H2(x2 + y2)}
⊇ ∩{∩{H1(x1),H1(y1)},∩{H2(x2),H2(y2)}}
= ∩{∩{H1(x1),H2(x2)},∩{H1(y1),H2(y2)}}
= ∩{(H1 ×H2)(x1, x2), (H1 ×H2)(y1, y2)}

and

(H1 ×H2)((x1, x2)γ(y1, y2)) = (H1 ×H2)(x1γy1, x2γy2) = ∩{H1(x1γy1),H2(x2γy2)}
⊇ ∩{H1(y1),H2(y2)} = (H1 ×H2)(y1, y2).

Hence H1 ×H2 is a hesitant fuzzy left ideal of S × S.
Now, let (a1, a2), (b1, b2), (x1, x2), (z1, z2) ∈ S×S be such that (x1, x2)+ (a1, a2)+ (z1, z2) = (b1, b2)+
(z1, z2) i.e., (x1 + a1 + z1, x2 + a2 + z2) = (b1 + z1, b2 + z2). Then x1 + a1 + z1 = b1 + z1 and
x2 + a2 + z2 = b2 + z2 so that

(H1 ×H2)(x1, x2) = ∩{H1(x1),H2(x2)}
⊇ ∩{∩{H1(a1),H1(b1)},∩{H2(a2),H2(b2)}}
= ∩{∩{H1(a1),H2(a2)},∩{H1(b1),H2(b2)}}
= ∩{(H1 ×H2)(a1, a2), (H1 ×H2)(b1, b2)}.

Therefore H1 ×H2 is a hesitant fuzzy left h-ideal of S × S.

4.Hesitant fuzzy h-bi-ideals and h-quasi-ideals

Definition 4.1. Let H1 and H2 be two hesitant fuzzy sets of a Γ-hemiring S. Define composition of
H1 and H2 by

H1oH2(x) = ∪[∩
i
{∩{H1(ai),H1(ci),H2(bi),

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

H2(di)}}]

= ϕ, if x cannot be expressed as above

where x, z, ai, bi, ci, di ∈ S, γi, δi ∈ Γ and i=1,...,n.

Lemma 4.2. Let H1 and H2 be two hesitant fuzzy h-ideal of a Γ-hemiring S. Then H1oH2 ⊆
H1 ∩H2 ⊆ H1,H2.

Proof. Suppose H1 and H2 be two hesitant fuzzy h-ideal of a Γ-hemiring S. Then

(H1oH2)(x) = ∪{∩
i
{∩{H1(ai),H1(ci),H2(bi),

x+

n∑
i=1

aiγibi + z =

n∑
i=1

ciδidi + z

H2(di)}}}

where x, ai, bi, ci, di ∈ S, γi, δi ∈ Γ and i = 1, ..., n.
⊆ ∪{∩

i
{H1(ai),H1(ci)}}

⊆ ∪{∩{H1(

n∑
i=1

aiγibi),H1(

n∑
i=1

ciδidi)

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

}} = H1(x)
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Since this is true for every representation of x, H1oH2 ⊆ H1.
Similarly we can prove that H1oH2 ⊆ H2.
Therefore H1oH2 ⊆ H1 ∩H2 ⊆ H1,H2.
Hence the lemma.

Definition 4.3. A hesitant fuzzy subset H of a Γ-hemiring S is called hesitant fuzzy h-bi-ideal if for
all a, b, x, y, z ∈ S and α, β ∈ Γ we have
(i) H(x+ y) ⊇ ∩{H(x),H(y)}
(ii) H(xαy) ⊇ ∩{H(x), H(y)}
(iii) H(xαyβz) ⊇ ∩{H(x), H(z)}
(iv) x+ a+ z = b+ z ⇒ H(x) ⊇ ∩{H(a),H(b)}

Definition 4.4. A hesitant fuzzy subset H of a Γ-hemiring S is called hesitant fuzzy h-quasi-ideal if
for all a, b, x, y, z ∈ S we have
(i) H(x+ y) ⊇ ∩{H(x),H(y)}
(ii) (HoHχS ) ∩ (HχSoH) ⊆ H
(iii) x+ a+ z = b+ z ⇒ H(x) ⊇ ∩{H(a),H(b)}

Theorem 4.5. A hesitant fuzzy subset H of a Γ-hemiring S is a hesitant fuzzy left h-ideal of S if
and only if for all a, b, x, y, z ∈ S, we have
(i) H(x+ y) ⊇ ∩{H(x),H(y)}
(ii) HχSoH ⊆ H.
(iii) x+ a+ z = b+ z ⇒ H(x) ⊇ ∩{H(a),H(b)}.

Proof. Assume that H is a hesitant fuzzy left h-ideal of S. Then it is sufficient to show that the

condition (ii) is satisfied. Let x ∈ S. If x can be expressed as x +

n∑
i=1

aiγibi + z =

n∑
i=1

ciδidi + z, for

ai, bi, ci, di ∈ S, γi, δi ∈ Γ and i=1,...,n, then we have

(HχSoH)(x) = ∪[∩
i
{∩{HχS (ai),HχS (ci),H(bi),

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

H(di)}}]

⊆ ∪[∩
i
{∩{H(aiγibi), H(ciδidi)}}]

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

⊆ ∪[∩{H(

n∑
i=1

aiγibi),H(

n∑
i=1

ciδidi)}]

x+

n∑
i=1

aiγibi + z =

n∑
i=1

ciδidi + z

= H(x).

This implies that HχSoH ⊆ H.
Conversely, assume that the given conditions hold. Then it is sufficient to show the second condition
of the definition of hesitant fuzzy left h-ideal. Let x, y ∈ S and γ ∈ Γ. Then we have

H(xγy) ⊇ (HχSoH)(xγy) = ∪[∩
i
{∩{HχS (ai),HχS (ci),H(bi),

xγy+

n∑
i=1

aiγibi + z =

n∑
i=1

ciδidi + z

H(di)}}]

⊇ H(y)(since xγy + 0 + 0 = xγy + 0).

Hence H is a hesitant fuzzy left h-ideal of S.

Theorem 4.6. Let H1 and H2 be a hesitant fuzzy right h-ideal and a hesitant fuzzy left h-ideal of a
Γ-hemiring S, respectively. Then H1 ∩H2 is a hesitant fuzzy h-quasi-ideal of S.
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Proof. Let x, y be any two elements of S. Then

(H1 ∩H2)(x+ y) = ∩{H1(x+ y),H2(x+ y)}
⊇ ∩{∩{H1(x),H1(y)},∩{H2(x), H2(y)}}
= ∩{∩{H1(x),H2(x)},∩{H1(y), H2(y)}}
= ∩{(H1 ∩H2)(x), (H1 ∩H2)(y)}.

On the other hand, we have

((H1 ∩H2)oHχS ) ∩ (HχSo(H1 ∩H2)) ⊆ (H1oHχS ) ∩ (HχSoH2) ⊆ (H1 ∩H2).

Now let a, b, x, z ∈ S such that x+ a+ z = b+ z. Then

(H1 ∩H2)(x) = ∩(H1(x),H2(x))
⊇ ∩(∩(H1(a), H1(b)),∩(H2(a),H2(b)))
= ∩(∩(H1(a), H2(a)),∩(H1(b),H2(b)))
= ∩((H1 ∩H2)(a), (H1 ∩H2)(b))

This completes the proof.

Lemma 4.7. Any hesitant fuzzy h-quasi-ideal of S is a hesitant fuzzy h-bi-ideal of S.

Proof. Let H be any hesitant fuzzy h-quasi-ideal of S. It is sufficient to show that H(xαyβz) ⊇
∩{H(x), H(z)} and H(xαy) ⊇ ∩{H(x),H(y)} for all x, y, z ∈ S and α, β ∈ Γ.
In fact, by the assumption, we have

H(xαyβz) ⊇ ((HoHχS ) ∩ (HχSoH))(xαyβz)
= ∩{(HoHχS )(xαyβz), (HχSoH)(xαyβz)}
= ∩{ ∪(∩(H(ai),H(ci)),∪(∩(H(bi),

xαyβz+

n∑
i=1

aiγibi + p =

n∑
i=1

ciδidi + p

H(di))}

⊇ ∩{H(x),H(z)} since xαyβz + 0 + 0 = xαyβz + 0.

Similarly, we can show that H(xαy) ⊇ ∩{H(x),H(y)} for all x, y ∈ S and α ∈ Γ.

Definition 4.8. A Γ-hemiring S is said to be h-hemiregular if for each x ∈ S, there exist a, b ∈ S
and α, β, γ, δ ∈ Γ such that x+ xαaβx+ z = xγbδx+ z.

Theorem 4.9. Let S be a h-hemiregular Γ-hemiring. Then for any hesitant fuzzy right h-ideal H1

and any hesitant fuzzy left h-ideal H2 of S we have H1oH2 = H1 ∩H2.

Proof. Let S be a h-hemiregular Γ-hemiring. By Lemma 4.2, we have H1oH2 ⊆ H1 ∩H2.
For any a ∈ S, there exist x, y, z ∈ S and α, β, γ, δ ∈ Γ such that a+ aαxβa+ z = aγyδa+ z.
Then

(H1oH2)(a) = ∪{∩{H1(ai), H1(ci),H2(bi),

a+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

H2(di)}}

⊇ ∩{H1(aαx),H1(aγy), H2(a)}
⊇ ∩{H1(a),H2(a)} = (H1 ∩H2)(a).

Therefore (H1 ∩H2) ⊆ (H1oH2).
Hence H1oH2 = H1 ∩H2.

Theorem 4.10. Let S be a h-hemiregular Γ-hemiring. Then

(i) H ⊆ HoHχSoH for every hesitant fuzzy h-bi-ideal H of S.

(ii) H ⊆ HoHχSoH for every hesitant fuzzy h-quasi-ideal H of S.
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Proof. (i) Suppose that H be any hesitant fuzzy h-bi-ideal of S and x be any element of S. Since S
is h-hemiregular there exist a, b, z ∈ S and α, β, γ, δ ∈ Γ such that x+ xαaβx+ z = xγbδx+ z. Now

(HoHχSoH)(x) = ∪(∩{(HoHχS )(ai), (HoHχS )(ci),H(bi)

x+

n∑
i=1

aiγibi + z =
n∑

i=1

ciδidi + z

,H(di)})

⊇ ∩{(HoHχS )(xαa), (HoHχS )(xγb)H(x)}
⊇ ∩{H(x),H(x)}

(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa,
xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb).

= H(x)

This implies that H ⊆ HoHχSoH.
(ii) This is straight forward from Lemma 4.7

Theorem 4.11. Let S be a h-hemiregular Γ-hemiring. Then

(i) H1∩H2 ⊆ H1oH2oH1 for every hesitant fuzzy h-bi-ideal H1 and every hesitant fuzzy h-ideal H2

of S.

(ii) H1 ∩H2 ⊆ H1oH2oH1 for every hesitant fuzzy h-quasi-ideal H1 and every hesitant fuzzy h-ideal
H2 of S.

Proof. (i) Suppose S is a h-hemiregular Γ-hemiring and H1, H2 be any hesitant fuzzy h-bi-ideal and
hesitant fuzzy h-ideal of S, respectively and x be any element of S. Since S is h-hemiregular, there
exist a, b, z ∈ S and α, β, γ, δ ∈ Γ such that x+ xαaβx+ z = xγbδx+ z.

(H1oH2oH1)(x) = ∪(∩{(H1oH2)(ai), (H1oH2)(ci),

x+

n∑
i=1

aiγibi + z =

n∑
i=1

ciδidi + z

H1(bi),H1(di)})

⊇ ∩{(H1oH2)(xa),H1oH2)(xb),H1(x)}
⊇ ∩{∩{H1(x),H2(aβxαa),H2(bδxαa),H2(aβxγb),H2(bδxγb),H1(x)}
(since xαa+ xαaβxαa+ zαa = xγbδxαa+ zαa,

xγb+ xαaβxγb+ zγb = xγbδxγb+ zγb)
⊇ ∩{H1(x),H2(x)} = (H1 ∩H2)(x).

(ii) follows from Lemma 4.7.
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Abstract − In this paper, a two-dimensional conformable fractional wave equation
describing a circular membrane undergoing axisymmetric vibrations is formulated. It
was found that the analytical solutions of the fractional wave equation using the con-
formable fractional formulation can be easily and efficiently obtained using separation
of variables and double Laplace transform methods. These solutions are compared
with the approximate solution obtained using the differential transform method for
certain cases.
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1. Introduction

The fractional formulation of differential equations is an extension of the fractional calculus that was
first introduced in 1695 when L’Hôpital and Leibniz discussed the extension of the integer order deriva-
tive to the derivative of order 1/2. Both Euler and Lacroix studied the fractional order derivative and
defined the fractional derivative using the expression for the nth derivative of the power function [1].
Several physical and mechanical systems can be modeled more accurately using fractional derivative
formulations due to the fact that many systems contain internal damping, which implies that it is
impossible to derive equations describing the physical behavior of a non-conservative system using the
classical energy based approach. The fractional derivative formulations can be successfully obtained
in non-conservative systems by minimizing certain functionals with fractional derivative terms using
some techniques from calculus of variations [2]. Several fractional formulations for derivatives and
integrals such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and Grünwald-Letnikov have been
introduced with applications in science and engineering (refer to [1–6]).

While the classical definitions of fractional derivatives such as Riemann-Liouville and Caputo try to
satisfy the fundamental properties of standard derivatives such as the derivatives of constant, product
rule, quotient rule, and chain rule. None of the definitions are successful in their attempts other than
the shared linear property between all the definitions of fractional derivatives [7]. Khalil et al. [8] put
forward a new definition of fractional derivative named conformable fractional derivative as follows:

Definition 1.1. For 0 < β ≤ 1, given a function f : [0,∞)→ < such that for all t > 0 and β ∈ (0, 1),
the βth order conformable fractional derivative (CFD) of f , denoted by Gβ(f)(t), can be written as:

Gβ(f)(t) = f (β)(t) = lim
ε→0

f(t+ εt1−β)− f(t)

ε
. (1)
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If f is β-differentiable in some (0, b), b > 0, and the limit of f (β)(t) exists as t approaches 0+, then by
CFD definition:

f (β)(0) = lim
t→0+

f (β)(t). (2)

The CFD definition is an extension of the classical derivative that happens naturally and satisfies
the properties of standard derivative. The conformable derivative of constant, the product rule, the
quotient rule, and the chain rule all satisfy the standard formula of standard limit-based derivative [9].
Various conformable fractional forms have been introduced to many mathematical notions such as
Norther’s symmetry theorem and Action Principle for particles under frictional forces and have been
shown to be much simpler than the ones with classical fractional derivative formulations such as
Riemann-Liouville and Caputo [9]. For more applications of conformable fractional derivative, see
also [10,11]. Gβ satisfies all the standard derivative properties in the following theorem [7,8]:

Theorem 1.2. Assume that 0 < β ≤ 1, and f , h be β-differentiable at a point t, then:

(i) Gβ(mf + wh) = mGβ(f) + wGβ(h), for all m,w ∈ <.

(ii) Gβ(ts) = sts−β, for all s ∈ <.

(iii) Gβ(fh) = fGβ(h) + hGβ(f).

(iv) Gβ(fh) =
hGβ(f)−fGβ(h)

h2
.

(v) Gβ(λ) = 0, for all constant functions f(t) = λ.

(vi) If f is a differentiable function, then Gβ(f)(t) = t1−β dfdt .

For more mathematical examples about each property in theorem 1, we refer to [7, 12]. Çenesiz
and Kurt [10] discussed the possibility of applying the CFD definition for solving the two-dimensional
and three-dimensional time fractional wave equation in rectangular domain. As a result, Çenesiz and
Kurt [10] showed how the conformable fractional derivatives can easily and efficiently transform frac-
tional differential equations into classical usual differential equations without the need for complicated
methods to find the analytical solutions for partial fractional differential equations of higher dimen-
sional systems. On the other hand, Tasbozanet et al. [11] discussed how to find the analytical traveling
wave solutions in the sense of the conformable derivatives for nonlinear partial differential equations
such as Nizhnik-Novikov-Veselov and Klein-Gordon equations by introducing a method consisting of a
series of exponential functions, known as exp-function method, to study nonlinear evolution equations.

Recently, numerical and analytical solution methods to the conformable fractional differential equa-
tions are attracting attention from all over the world. Yavuz discussed in [13] some novel methods
such as Adomian decomposition method and modified homotopy perturbation method for solving
the initial boundary value problems in the sense of conformable fractional differentiation. Yavuz
and Yaşkıran applied in [14] comfortable derivatives in modeling neuronal dynamics using methods of
modified homotopy perturbation and reduced differential transform to solve the conformable fractional
cable equation (CFCE). In addition, CFCE has also been solved in [15] using Adomian decomposition
method and variational iteration method. In [16], conformable derivative has been successfully ap-
plied to solve the Black-Scholes equation of the European call option pricing models using Adomian
decomposition method and modified homotopy perturbation method.

The CFD is a type of the local fractional derivative (LFD) [17]. The LFD has been successfully
applied in modeling several applications in engineering such as the entropy (function of state) analysis
of thermodynamic systems and the control theory of dynamic systems [18]. A new mathematical
branch, known as fractal calculus, have been recently introduced in modeling various mathematical
and engineering phenomena in hierarchical structures or porous media such as fractal kinetics [19],
heat conduction in fractal medium [19], and the porous hairs of polar bear [20]. Research studies
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showed that there is a relation between the fractional order and the fractional dimension [19]. Several
definitions of fractal derivatives have been proposed by researchers such as Chen’s fractal derivative
and Ji-Huan He’s fractal derivative (HFD) [20]. However, some fractional derivatives lacks the physical
and geometrical interpretation, therefore, the fractal calculus is very helpful in providing a physical
interpretation for many fractional models in fractal media [19]. Both LFD and HFD have been
applied extensively in science and engineering due to their accurate mathematical properties, physical
insights, and geometrical interpretations [18–20]. The fractal derivative with fractal dimensions can
be applied in modeling engineering problems and describing their discontinuous media [21] such as
the applications of multi-scale fabrics and wool fibers by modeling their water permeation [20]. LFD
and HFD have been defined in [18,20] on a fractal space as follows:

Definition 1.3. For a fractal dimension, β, where 0 < β ≤ 1, given a set of non-differentiable
functions with fractal dimension, say Cβ(a, b) such that for Φ(x) ∈ Cβ(a, b), the βth order local

fractional derivative (LFD) of Φ(x) at x = x0, denoted by D
(β)
x Φ(x0), can be written as:

D(β)
x Φ(x0) = Φ(β)(x0) =

dβΦ(x)

dxβ
|x=x0 = lim

x→x0

4β(Φ(x)− Φ(x0))

(x− x0)β
, (3)

where 4β(Φ(x)− Φ(x0)) ∼= Γ(1 + β)4(Φ(x)− Φ(x0)).

Definition 1.4. Using figure 1 in [21], the fractal geometry describes the distance between two
points, say xa and xb, in a discontinuous media i.e. porous medium such that M is supposed to be the
smallest measure (thickness) in the given fractal media where any discontinuity less than this measure
is neglected. Given a fractal dimension, say β, and constant, say ξ, the Ji-Huan He’s fractal derivative
(HFD) can be written [20,21] as follows:

DΦ(t)

Dxβ
= lim

∆x→M

Φ(xa)− Φ(xb)

ξMβ
= Γ(1 + β) lim

∆x→M

Φ(xa)− Φ(xb)

(xa − xb)β
, (4)

where ∆x = xa − xb; and ∆x tends only to M and it does not tend to 0. By using the fractal
gradient [19], ξMβ = Mβ

Γ(1+β) such that ξMβ is extremely small, but ξMβ > M . For more applications

using HFD in applied science and engineering, we refer to [19,20,22,27].

In addition, He’s fractional derivative (HFcD) has been applied for modeling several scientific
phenomena (see [20, 23]). The physical and geometrical interpretations of the HFcD were discussed
in [19,27]. The following is the definition of HFcD [20,23]:

Definition 1.5. Assume β to be the fractional dimension of the fractal medium, the He’s fractional
derivative (HFcD), denoted by ∂β

∂tβ
, can be written as::

∂βΨ

∂tβ
=

1

Γ(m− β)

dm

dtm

∫ t

t0

(ξ − t)m−β−1[Ψ0(ξ)−Ψ(ξ)]dξ, (5)

where for a fractional-order problem in fractal media, the continuum partner of problem with the same
initial and boundary conditions of the fractal partner has the same solution which is Ψ0(x, t) [20].

The conformable fractional derivative (CFD) is basically a generalized fractal derivative or q-
derivative [24]. The q-derivative is very important in quantum calculus where the derivative is
expressed using Leibniz’s notation and the spacetime is discontinuous in quantum scales [27] (see
also [25]). The generalized q-derivative (fractal derivative) using CFD definition 1 can be written [24]
as follows:

Definition 1.6. Using definition 1, given a function Ψ : [0,∞) → < such that for all t > 0 and
β ∈ (0, 1), and by assuming q = 1 + εt−β where q tends to 1 and ε tends to 0, the generalized
q-derivative (fractal derivative), denoted by Gβ(Ψ)(t), is written as:

Gβ(Ψ)(t) = Ψ(β)
q (t) = lim

q→1

Ψ(qt)−Ψ(t)

qtβ − tβ
= lim

q→1

Ψ(qt)−Ψ(t)

(q − 1)tβ
. (6)

This generalized q-derivative coincides with definition 11 of q-derivative in [27].
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Weberszpil and Chen in [26] showed that using the method of change of variables in part (vi)
of theorem 1 to transform t to 1 + x

l0
, the CFD is simply a Hausdorff derivative (HD) which is

valid for differential functions. HD is a kind of fractal derivatives [28] that has been applied in various
engineering phenomena to describe the physical behaviors and complex mechanics [29]. HD extends the
modeling approach used in the classical continuum mechanics to fractal materials using the Hausdorff
calculus [28]. Some examples of HD applications in science and engineering are anomalous diffusion,
non-Guassian distribution, creep and relaxation in fractal media, and viscosity [28,29].

CFD is simply a usual Newton derivative multiplied by the term t1−β [17]. The term t1−β in the
definition 1 is basically a type of fractional conformable function (FCF) (see definition 5 in [17]) [17].
CFD combines the properties of usual derivative with the properties of fractional derivatives [30].
Therefore, CFD can be applied to extend and generalize theorems from the classical calculus such as
integration by parts, mean value theorem, power series expansion, and Rolle’s theorem [30]. From
definition 1, the function is differentiable in the sense of conformable derivatives which implies that the
Taylor power series expansion (TPSE) exists for CFD, while the other forms of fractional derivatives
where functions are not differentiable, TPSE do not exist, when there are infinitely differentiable
functions at some points [30]. As a result, several researchers got motivated to explore the CFD and
apply it in modeling phenomena in applied science and engineering [30].

The CFD can be physically interpreted as a modified standard limit-based derivative in magnitude
and direction [31]. Therefore, CFD is a special case of the well-known directional derivative (DD).
The directional derivative is a kind of Gâteaux derivative (GD). Zhao and Luo proposed in [17] a new
generalized form of CFD named the general conformable fractional derivative (GRCFD) by extending
and generalizing the definition of Gâteaux derivative (see definition 2 in [17]) into Extended Gâteaux
derivative (see definition 3 in [17]) and Linear Extended Gâteaux derivative (see definition 4 in [17])
together with the definition of CFD. The physical and geometrical interpretations of CFD were also
discussed in [17] using GRCFD as a special case of CFD. Using definitions 2, 3, 4, and 5 and using
<+ as a space in [17] and definition 1 in this paper, GRCFD can be defined [17] as follows:

Definition 1.7. For 0 < β ≤ 1, given a fractional conformable function, say Ω(m,β), the general
conformable fractional derivative (GRCFD) can be written as:

Dβ
ΩGm = lim

ε→0

G(m+ εΩ(m,β))−G(m)

ε
. (7)

For the definition of GRCFD of arbitrary order, we refer to definition 7 in [17]. Since CFD is
a modified version of Newton derivative, then the geometrical and physical meaning of CFD can be
interpreted [17] as the slope of tangent where the value of the given function in the definition of
Gâteaux derivative in [17] changes as m (independent variable) changes ε, and the magnitude and
direction of the velocity of particle are obtained from the ratio limit of the changes in function value.
In addition, the Extended Gâteaux derivative can be interpreted [17] as a special case of velocity
of particle where the magnitude and direction of this velocity depends only on Ω(m, ε, β), while the
physical meaning of the Linear Extended Gâteaux derivative is just a modified version of usual velocity
(as a multiple of usual velocity of particle) in magnitude and direction where this derivative can be
geometrically represented [17] as the gradient of a given function, G , projected onto Ω(m,β) (we also
refer to [32] for new proposed multiplicative (geometric) forms of conformable fractional derivatives
and integrals).

In addition, Guzmán et al. [33] proposed a new definition of local fractional derivative known as the
non-conformable fractional derivative (NCFD) which is also extended naturally from the usual deriva-
tive of a function in a point. NCFD can be defined as [33]: Given a function ψ : [0,+∞) → <. The

NCFD, denoted by N -derivative of ψ of order β can be written as: Nβ
1 ψ(t) = limε→0

ψ(t+εet
−β

)−ψ(t)
ε ,

for all t > 0 and β ∈ (0, 1). If the function ψ is β-differentiable in some (0, b), and limt→0+ N
(β)
1 ψ(t)

exists, then we have: N
(β)
1 ψ(0) = limt→0+ N

(β)
1 ψ(t). By comparing both CFD and NCFD, the angle of

the tangent line to the curve in NCFD is not conserved, while in CFD is conserved [33]. For more new
results about NCFD definition, we refer to [34]. Recently, several research studies with applications
have been done using the definition NCFD such as the oscillatory character of liénard’s system [36]
(see also [35]), Laplace transform [37], and Hermite-Hadamard inequality [38].

Circular vibrating membrane problem (CVMP) has been applied in several applications in engi-
neering such as industrial dynamic filtration modules and vibratory shear enhanced process (VSEP)
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for wastewater treatment systems [39, 40]. CVMP has been also used extensively in investigating the
transverse vibration using a vibrating membrane in a linearly transverse direction and analyzing the
modes of transverse vibratory motion [41]. CVMP studies the vibration of membranes (vibration
equation) which has many practical applications in industry and bioengineering [42]. Studying the
two-dimensional analysis of wave mechanics and propagation in CVMP is very important in building
the components of microphones, speakers, and some medical and industrial instruments [42].

In this paper, we formulate the two-dimensional time fractional wave partial differential equation
in the sense of conformable fractional derivative for a circular membrane undergoing axisymmetric
vibrations, and we solve it using the methods of separation of variables, double Laplace transform,
and reduced differential transform. We compare and discuss all obtained approximate solutions using
those methods and the error between analytical and approximate solutions.

In Section 2, the conformable fractional wave partial differential equation is solved using the
methods of separation of variables, double Laplace transform, and reduced differential transform. In
Section 3, we discuss the error between analytical and approximate solutions from section 2, and we
compare all results with the classical analytical solution from [43, 44]. In Section 4, the conclusion of
this study is presented.

2. Conformable fractional wave equation

In this section, we investigate the conformable fractional mixed initial- boundary value problem of a
circular membrane [44] of radius R and constant density ρo where the initial vibration conditions are
radially symmetric or axisymmetric. Under such conditions, polar coordinates (r, θ) can be introduced
such that m(x, y, t) = M(r, t) where the displacement is independent of θ, and the initial displacement
and velocity functions can be written as q(r) and n(r), respectively. The laplacian in polar coordinates
can be written as:

∇2 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
. (8)

Since the initial vibration conditions are axisymmetric, they are dependent only on the radial distance
r from the center of the circle. Hence, q(r) and p(r) do not depend on θ, and instead they depend

only on r, and from equation (3), the term ∂2

∂θ2
= 0. Consequently, the governing system of equations

for a circular membrane undergoing axisymmetric vibrations can be mathematically modeled by the
following two-dimensional wave partial differential equation equation in the sense of CFD:

∂2βM

∂t2β
= c2

o

(
∂2M

∂r2
+

1

r

∂M

∂r

)
. (9)

0 < r < R; t > 0; 0 < β ≤ 1; and c2
o=(τo/ρo) where τo is the assumed to be the constant value of

the elastic membrane stretch-resisting restorative force per unit length or surface tension. Equation
(9) is subjected to the following boundary and initial conditions:

M(R, t) = 0; and M(r, t) bounded as r → 0 for t > 0. (10)

M(r, 0) = q(r); and
∂βM

∂tβ
(r, 0) = p(r); for 0 < r < R and 0 < β ≤ 1. (11)

The problem is divided into two main parts; analytical solution part and approximate solution part:

2.1. The analytical solution by the separation of variables method

By using the separation of variables method, we let M(r, t) = V (r)G(t) to be the solution form of
the governing conformable fractional wave partial differential equation and boundary conditions. The
following is obtained from substituting the assumed solution form in equation (9):

d2βG(t)

dt2β
V (r) = c2

o

(
d2V (r)

dr2
G(t) +

1

r

dV (r)

dr
G(t)

)
. (12)
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Dividing both sides of equation (12) by c2
o, left hand side term of equation (12) by G(t), and the two

terms of the right hand side of equation (12) by V (r), we obtain:

d2βG(t)

dt2β
1

G(t)c2
o

= c2
o

(
d2V (r)

dr2

1

V (r)
+

1

r

dV (r)

dr

1

V (r)

)
≡ −λ2. (13)

where λ is the separation constant. As a result, the following two equations are obtained:

d2βG(t)

dt2β
+ c2

oG(t)λ2 = 0. (14)

d2V (r)

dr2
+

1

r

dV (r)

dr
+ λ2V (r) = 0. (15)

From equation (14), it is necessary to introduce the sequential CFD from [45] as follows:

Definition 2.1. For 0 < β < 1, and n ∈ Z+, given a function f : [0,∞) → <, the nth order of
sequential CFD can be generally written as:
(n)Gβf(t)=GβGβGβ...Gβf(t). Let’s consider the f : [0,∞)→ < to be a second continuously differen-
tiable function [45] and β ∈ (0, 0.5], then the 2nd order of sequential CFD is written as:

(2)Gβf(t) = GβGβf(t) =

{
(1− β)t1−2βf (1)(t) + t2−2βf (2)(t) if t > 0

0 if t = 0
(16)

By using the sequential CFD definition and property (vi) from theorem (1), equation (14) can be
re-written as:

(1− β)t1−2βG(1)(t) + t2−2βG(2)(t) + c2
oG(t)λ2 = 0. (17)

Multiplying both sides equation (15) by r2 to make calculations simple, we obtain:

r2d
2V (r)

dr2
+ r

dV (r)

dr
+ r2λ2V (r) = 0. (18)

Let’s now introduce the change of variables [44]: s = λr for V (r) = ψ(s) such that for dV (r)
dr , it is

transformed into the following:

dV (r)

dr
=
dψ(s)

dr
(s) =

dψ(s)

ds

ds

dr
(s) = λ

dψ(s)

ds
. (19)

Similarly, for d2V (r)
dr2

, it is transformed into the following:

d2V (r)

dr2
=

d

dr

(
λ
dψ(s)

ds
(s)

)
= λ2d

2ψ

ds2
(s). (20)

Substituting r = ( sλ) and results from (19) and (20) in equation (18), we obtain the following equation:

s2d
2ψ(s)

ds2
+ s

dψ(s)

ds
+ s2ψ(s) = 0; for 0 < s < λR. (21)

From the boundary condition in (10), ψ(s) in equation (21) is also bounded as s→ 0, and ψ(λR) = 0.
By using the results from the eigenvalue problem involving the Bessel function of the first kind of
order zero in [43, 44], we have: V (R) = 0 → Jo(λR) = 0 where λR is the root of Bessel function
Jo, and V (r) = Jo(λr). Hence, it can be concluded that for n ∈ Z+, λn = ξn

R , and Vn(r) = Jo(
ξnr
R )

is the corresponding solution to equation (10) where Jo has infinitely many positive zeros such that
ξ1 < ξ2 < ξ3 < ... < ξn where ξn is the nth positive zero of the Bessel function Jo.

For equation (17), the WolframAlpha computational intelligence solver is used to obtain the fol-
lowing solution:

Gn(t) = Encos

(
coλnt

β

β

)
+Knsin

(
coλnt

β

β

)
; for n ∈ Z+. (22)
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By substituting λn = ξn
R in equation (22), the solution can be re-written as:

Gn(t) = Encos

(
coξnt

β

βR

)
+Knsin

(
coξnt

β

βR

)
; for n ∈ Z+. (23)

By using the superposition principle, the general solution for the conformable fractional mixed initial-
boundary value can be written as a linear combination of both Vn(r) and Gn(t):

M(r, t) =
∞∑
n=1

Mn(r, t) =
∞∑
n=1

Vn(r)Gn(t) =
∞∑
n=1

Jo

(
ξnr

R

)
×
[
Encos

(
coξnt

β

βR

)
+Knsin

(
coξnt

β

βR

)]
; for n ∈ Z+.

(24)

To find the coefficients, En and Kn, from equation (24) so the general solution satisfies the initial
conditions in (11), the first condition M(r, 0) = q(r) is substituted in equation (24) as follows:

M(r, 0) = q(r) =
∞∑
n=1

Mn(r, 0) =
∞∑
n=1

Vn(r)Gn(0) =
∞∑
n=1

Jo

(
ξnr

R

)
×
[
Encos

(
coξn(0)β

βR

)
+Knsin

(
coξn(0)β

βR

)]
=
∞∑
n=1

Jo

(
ξnr

R

)
× [Encos (0) +Knsin (0)] =

∞∑
n=1

Jo

(
ξnr

R

)
En; for n ∈ Z+.

(25)

For the second initial condition, ∂M
∂t (r, 0) = p(r), in (11), we first find ∂βM

∂tβ
(r, t) from equation (24)

using the two examples from [7] where Gβ(sin( t
β

β )) = cos( t
β

β ) and Gβ(cos( t
β

β )) = −sin( t
β

β ), and our

previous conclusion λn = ξn
R as follows:

∂βM

∂tβ
(r, t) = p(r) =

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
×
[
−Ensin

(
coξnt

β

βR

)
+Kncos

(
coξnt

β

βR

)]
;

for n ∈ Z+.

(26)

We now substitute ∂M
∂t (r, 0) = p(r) in equation (26) as follows:

∂βM

∂tβ
(r, 0) = p(r) =

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
×
[
−Ensin

(
coξn0β

βR

)
+Kncos

(
coξn0β

βR

)]
=

∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
[−Ensin (0) +Kncos (0)]

=
∞∑
n=1

J0

(
ξnr

R

)(
coξn
R

)
Kn; for n ∈ Z+.

(27)

Using the orthogonality property of Bessel function J0( ξnrR ) and representing the normalization con-
stant in terms of J1(ξn), we obtain the following:

En =

〈
q(r), J0

(
ξnr

R

)〉
r∥∥∥∥J0

(
ξnr

R

)∥∥∥∥2

r

=
2

R2J2
1 (ξn)

∫ R

0
rq(r)J0

(
ξnr

R

)
dr; for n ∈ Z+. (28)
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Kn =

(
R

coξn

) 〈p(r), J0

(
ξnr

R

)〉
r∥∥∥∥J0

(
ξnr

R

)∥∥∥∥2

r

=
2

RcoξnJ2
1 (ξn)

∫ R

0
rp(r)J0

(
ξnr

R

)
dr;

for n ∈ Z+.

(29)

By substituting the results from (28) and (29) in equation (24), the most general solution for the
conformable fractional mixed initial-boundary value problem emerging from the separation of variables
method can be written as follows:

M(r, t) =
∞∑
n=1

[(
2

R2J2
1 (ξn)

∫ R

0
q(r)J0

(
ξnr

R

)
r dr

)
cos

(
coξnt

β

βR

)]
J0

(
ξnr

R

)

+

∞∑
n=1

[(
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

)
sin

(
coξnt

β

βR

)]
J0

(
ξnr

R

)
;

for n ∈ Z+.

(30)

2.2. The analytical solution by the conformable fractional double Laplace transform
method

The classical Laplace transform method for a function of single variable has been used extensively
in solving ordinary differential equations and partial differential equations. Double Laplace transform
and other multiple Laplace transformations were introduced by Estrin and Higgins in [46] to solve
partial differential equations. Double Laplace transform (DLT) has been rarely introduced or not
at all for certain cases in the literature for solving partial differential equations [47]. Introducing
double Laplace transform to solve the fractional differential equations is an open math problem [48].
Eltayeb and Kılıçman in [49] used the DLT and Sumudu transform methods to solve non-fractional
one-dimensional wave equation with variable coefficients (see also [50, 51]). There are some recent
research studies on solving fractional differential equations such as heat and telegraph equations in
the sense of Caputo derivatives [48,52].

To define the conformable fractional double Laplace transform, let’s first define the conformable
fractional integral (CFI) [31] as follows:

Definition 2.2. For 0 < β ≤ 1, given a function f : [0,∞)→ < such that for all t ≥ 0, the βth order
conformable fractional integral (CFI) of f from 0 to t can be written as:

Iβ(f)(t) =

∫ t

0
f(ψ)dβψ =

∫ t

0
f(ψ)ψβ−1dψ. (31)

If β = 1, then Iβ(f)(t) = Iβ=1(tβ−1f)(t) which is the classical improper Riemann integral of a
function f(t). For 0 < β ≤ 1, given a continuous function f on (0,∞), then Gβ(f)(t) [Iβ(f)(t)] = f(t).

Let’s now define the conformable fractional double Laplace transform (CFDLT) as follows:

Definition 2.3. For 0 < β ≤ 1, given a function M(r, t) : [0,∞)→ < such that for all r, t > 0, the βth
order conformable fractional double Laplace transform (CFDLT) of M(r, t), denoted by `rtβ [M(r, t)],
starting from 0 can be written as:

`rtβ [M(r, t)] = `rβ`
t
β[M(r, t)] = M

¯
rt
β (sa, sb) =

∫ ∞
0

e
−sa r

β

β

∫ ∞
0

e
−sb t

β

β M(r, t) dβt dβr

=

∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t) dβr dβt

=

∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t)rβ−1tβ−1 dr dt,

(32)
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where sa, sb ∈ C. The above definition is true provided that the above integral exists. Previously,
it is assumed that M(r, t) = V (r)G(t). By using definition (9), the CFDLT can be written [52]:

`rtβ [V (r)G(t)] = `rβ`
t
β[V (r)G(t)] = V

¯β
(sa)G

¯ β
(sb) = `rβ[V (r)]`tβ[G(t)]. (33)

Let’s show the CFDLT of the second-order conformable fractional partial derivative (CFPD) with
respect to t [53] as follows:

`rtβ

[
∂2β

∂t2β
M(r, t)

]
=

∫ ∞
0

∫ ∞
0

e
−sa r

β

β e
−sb t

β

β
∂2βM

∂t2β
(r, t) dβr dβt

=

∫ ∞
0

e
−sa r

β

β

∫ ∞
0

{
e
−sb t

β

β
∂2βM

∂t2β
(r, t) dβt

}
dβr.

(34)

To find the above inner integral, let’s use the theorem 3.1 of conformable fractional integration by
parts and lemma 2.8 in [2] in addition to definition (7) to obtain the following:

`rtβ

[
∂2β

∂t2β
M(r, t)

]
=

∫ ∞
0

e
−sa r

β

β

{
e
−sb t

β

β M(r, t)|∞t=0 −
∫ ∞

0

(
∂2β

∂t2β
e
−sb t

β

β

)
M(r, t) dβt

}
dβr

=

∫ ∞
0

e
−sa r

β

β M(r, 0)rβ−1dr

+

∫ ∞
0

∫ ∞
0

s2
b

e−sb t
β

β

tβ−1
− sb

e
−sb t

β

β

tβ
(1− β)

 e−sb tββ e−sa rββ rβ−1 dt dr

= s2β
b M

¯
rt
β (sa, sb)− s2β−1

b M
¯
rt
β (sa, 0)− s2β−2

b (M
¯
rt
β )t(sa, 0).

(35)

As a result, The CFDLT of the first-order conformable fractional partial derivative (CFPD) with
respect to t can be similarly written as:

`rtβ

[
∂β

∂tβ
M(r, t)

]
= sβbM

¯
rt
β (sa, sb)− sβ−1

b M
¯
rt
β (sa, 0). (36)

The CFDLT of the first-order conformable fractional partial derivative (CFPD) with respect to t can
be also generally written as:

`rtβ

[
∂β

∂tβ
M(r, t)

]
= sβbM

¯
rt
β (sa, sb)−

ζ−1∑
γ=0

sβ−1−γ
b `r

[
∂γM(r, 0)

∂tγ

]
. (37)

The double Laplace transform in (37) coincides with the general form of the double Laplace transform
of the partial fractional derivatives in the sense of Caputo derivatives in [48,52]. The complex double
integral formula in [47, 52] can be used to write the inverse conformable fractional double Laplace
transform, denoted by (`rtβ )−1[M

¯
rt
β (sa, sb)], as follows:

Definition 2.4. For 0 < β ≤ 1, given an analytic function M
¯
rt
β (sa, sb) for all sa, sb ∈ C such that both

sa and sb are defined [52] by Re{sa ≥ %} and Re{sb ≥ ς}, where %, ς ∈ <, the inverse conformable
fractional double Laplace transform (ICFDLT) can be written as follows:

(`rtβ )−1[M
¯
rt
β (sa, sb)] = (`rβ)−1`tβ)−1[M

¯
rt
β (sa, sb)] =

M(r, t) =
1

2πi

∫ %+i∞

%−i∞
esardsa

1

2πi

∫ ς+i∞

ς−i∞
esbtM

¯
rt
β (sa, sb)dsb

=
−1

4π2

∫ %+i∞

%−i∞

∫ ς+i∞

ς−i∞
esaresbtM

¯
rt
β (sa, sb) dsa dsb.

(38)

Let’s prove the existence and uniqueness of CFDLT in the following theorem:
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Theorem 2.5. For 0 < β ≤ 1, given a continuous exponential-order function M(r, t) : [0,∞) → <
such that for some %, ς ∈ < and sa, sb ∈ C where Re{sa > %} and Re{sb > ς}, then there exists a
conformable fractional double Laplace transform of M(r, t), denoted by M

¯
rt
β (sa, sb), for both sa and

sb.

Proof. Since M(r, t) is a continuous exponential-order function M(r, t) : [0,∞) → < such that for
some %, ς ∈ < and sa, sb ∈ C on the interval [0,∞) = {r, t|0 ≤ r, t < ∞}, then ∃L ∈ Z+ such that
∀sa > Sa and sb > Sb [47, 48] as follows:

|M(r, t)| ≤ Le%
rβ

β
+ς t

β

β , (39)

Examine: sup
r,t>0

∣∣∣∣∣ M(r, t)

e
ω r

β

β
+µ t

β

β

∣∣∣∣∣ < 0, then we have the following:

lim
(r,t)→∞

e
−ω r

β

β
−µ t

β

β |M(r, t)| = Le−(ω−%)r
rβ

β
e−(µ−ς)r

tβ

β
= 0; ∀ω > %; µ > ς

Similarly,|M
¯
rt
β (sa, sb)| =

∣∣∣∣∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t) dβr dβt

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫ ∞
0

e
−(sa

rβ

β
+sb

tβ

β
)
M(r, t)rβ−1tβ−1 dr dt

∣∣∣∣
≤ L

∫ ∞
0

∫ ∞
0

e
−((sa−%) r

β

β
+(sb−ς) t

β

β
)
M(r, t)rβ−1tβ−1 dr dt

=

∫ ∞
0

e
−(sa−%) r

β

β rβ−1 dr

∫ ∞
0

e
−(sb−ς) t

β

β tβ−1 dt

=
L

(sa − %)(sb − ς)
; ∀Re{sa > %}, Re{sb > ς}.

(40)

Since the lim(sa,sb)→∞ |M¯
rt
β (sa, sb)| = lim(sa,sb)→∞M

¯
rt
β (sa, sb) = 0 [47], then the conformable fractional

double Laplace transform (CFLT) of M(r, t) exists and can be written as (32) ∀ sa > %, sb > ς.

Numerical Experiment 1:

By using the above definitions and theorems of the CFDLT, let’s solve the mixed initial-boundary
value problem (equation (9)) subject to the following boundary and initial conditions:

M(R, t) = 0; and M(r, t) bounded as r → 0 for t > 0. (41)

M(r, 0) = 0; and
∂βM

∂tβ
(r, 0) = cos

(
r

β

)
+ sin

(
r

β

)
; for 0 ≤ r < R and 0 < β ≤ 1. (42)

Let’s apply the CFDLT method to equation (9), the following is obtained:

s2β
b M

¯
rt
β (sa, sb)− s2β−1

b M
¯
rt
β (sa, 0)− s2β−2

b (M
¯
rt
β )t(sa, 0)

= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(43)

Similarly, let’s apply the conformable fractional single Laplace transform of the initial conditions in
(42):

M
¯
rt
β (sa, 0) = 0; and (M

¯
rt
β )t(sa, 0) =

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


. (44)
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By substituting the initial conditions of (44) in equation (43), we obtain:

s2β
b M

¯
rt
β (sa, sb)− s2β−1

b (0)− s2β−2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(45)

Let’s simplify (45) to obtain the following:

s2β
b M

¯
rt
β (sa, sb)−

s2β
b

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




= c2
o

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(46)

By taking s2β
b as a common factor on the left side of (46) and dividing both sides by c2

o, we obtain the
following:

s2β
b

c2
o

M
¯
rt
β (sa, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2





=

(
∂2M

¯
rt
β (sa, sb)

∂r2
+

1

r

∂M
¯
rt
β (sa, sb)

∂r

)
.

(47)

Assume that M
¯
rt
β∗(sa, sb) = M

¯
rt
β (sa, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (48)

By applying the assumption in (48) on (47) and combine the left-hand side term with the right-hand
side terms together, the following is obtained:

∂2M
¯
rt
β∗(sa, sb)

∂r2
+

1

r

∂M
¯
rt
β∗(sa, sb)

∂r
−
s2β
b

c2
o

M
¯
rt
β∗(sa, sb) = 0. (49)

Multiplying all terms in (49) on both sides by r2, we obtain:

r2
∂2M

¯
rt
β∗(sa, sb)

∂r2
+ r

∂M
¯
rt
β∗(sa, sb)

∂r
−
s2β
b

c2
o

r2M
¯
rt
β∗(sa, sb) = 0. (50)

The WolframAlpha computational intelligence solver is used to obtain the following solution of (50):

M
¯
rt
β∗(sa, sb) = ψ J0

(
isβb r

co

)
+ ϕY0

(
−isβb r
co

)
;

where J0

(
isβb r

co

)
and Y0

(
−isβb r
co

)
.

are the zeroth order Bessel functions of 1st and 2nd kind, respectively.

(51)

From the boundary conditions in (42), M(R, t) = 0 and M(r, t) remains bounded as r → 0 for t > 0
which means that M

¯
rt
β (R, sb) has a finite value. As a result, M

¯
rt
β∗(R, sb) has a finite value, and from
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the physical point of view for wave equation solution in [43], ϕ is set to be zero so that the whole

term, Y0

(
−isβb r
co

)
, is terminated. The solution of (51) becomes as follows:

M
¯
rt
β∗(sa, sb) = ψ J0

(
isβb r

co

)
;

where J0

(
isβb r

co

)
is the zeroth order Bessel functions of 1st kind.

(52)

Similarly, since M(R, t) = 0 from (42), then M
¯
rt
β (R, sb) = 0. let’s substitute M

¯
rt
β (R, sb) = 0 and (52)

in equation (48) to obtain the following:

M
¯
rt
β∗(R, sb) = ψ J0

(
isβbR

co

)
= M

¯
rt
β (R, sb)−

1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (53)

M
¯
rt
β∗(R, sb) = ψ J0

(
isβbR

co

)
= − 1

s2
b

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2


 . (54)

As a result, ψ can be written as follows:

ψ =



− 1
s2b


 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




J0

(
isβbR

co

)



= −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


.

(55)

By substituting (55) in equation (52), the following is obtained:

M
¯
rt
β∗(sa, sb) = −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


J0

(
isβb r

co

)
. (56)
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By substituting (56) in equation (48), we obtain the following:

M
¯
rt
β (sa, sb) = −




 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2




s2
bJ0

(
isβbR

co

)


J0

(
isβb r

co

)

+

 sb

s2
b +

(
1

β

)2 +


(

1

β

)
s2
b +

(
1

β

)2




s2
b

.

(57)

After simplifications, we obtain:

M
¯
rt
β (sa, sb) =

J0

(
isβbR

co

)
− J0

(
isβb r

co

)

s2
bJ0

(
isβbR

co

)

 sb

s2
b +

(
1

β

)2

+


(

1

β

)
s2
b +

(
1

β

)2


 . (58)

By using the residue theorem of the complex inversion formula and the solution in [54] with a few
mathematical simplifications, it is easy to obtain the ICFDLT of equation (58) which is the following
approximate analytical solution for equation (9) subject to the boundary and initial conditions in (41)
and (42), respectively, using the method of CFDLT:

M(r, t) =
∞∑
ξ=1

iJ0

(
λξ
r

R

){
cos

(
−λξ

cot
β

Rβ

)
+ i sin

(
−λξ

cot
β

Rβ

)}
λ2
ξ

(co
R

)
J1(λξ)

;

where
i R sβbξ
co

= λξ;
i r sβbξ
co

= λξ

( r
R

)
[54]; and 0 < β ≤ 1.

(59)

Figures (1), (2), and (3) show the numerical simulation of the approximate analytical solution (59)
for β = 1; 0.75; 0.50, respectively.

2.3. The approximate analytical solution by the conformable reduced differential
transform method

To show the efficiency of CFD, let’s obtain an approximate analytical solution to the two-dimensional
conformable fractional wave equation. A fractional differential equation (FDE) approximate method
is the conformable fractional differential transform method (CFDTM) in the sense of CFD [55]. The
differential transform method (DTM) was introduced by Zhou [57] for solving ordinary differential
equations by formulating Taylor series [55, 57]. With the introduction of fractional differential equa-
tions (FDEs), the fractional differential transform method (FDTM) was developed by Arikoglu and
Ozkol in [56] to solve FDEs by formulating power series. Similarly, CFDTM can be used to solve CFD
by formulating conformable fractional power series, and can be defined as [55]:

Definition 2.6. For some 0 < β ≤ 1, given a function f(t) is infinitely β-differentiable function.
Then, the conformable fractional differential transform of f(t) can be written as:

Fβ(k) =
1

βkk!

[(
Gtoβ f

)(k)
(t)

]
t=to

, (60)
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Fig. 1. Approximate Analytical Solution in (59) for β = 1

where (Gtoβ f)(k)(t) is the kth number of CFD application’s times, and the conformable fractional
differential transform of initial conditions for integer order derivatives can be also written as [55]:

Fβ(k) =


1

(βk)!

[(
dβkf(t)

dtβk

)]
t=to

for k=0,1,...,

(
n

β
− 1

)
if βk ∈ Z+

0 if βk 6∈ Z+

(61)

Definition 2.7. Suppose that Fβ(k) is the conformable fractional differential transform for f(t) such
that the inverse conformable fractional differential transform of Fβ(k) can be written as [55]:

f(t) =

∞∑
k=0

Fβ(k)(t− to)βk =

∞∑
k=0

1

βkk!

[(
Gtoβ f

)(k)
(t)

]
t=to

(t− to)βk. (62)

Recently, Acan et al. [58] introduced the reduced differential transform method (RDTM) for solving
partial differential equation, and Acan and Baleanu [59] developed a new definition for the conformable
reduced differential transform method (CRDTM) as follows:

Definition 2.8. For some 0 < β ≤ 1, given a function m(x, t) is analytic continuously β-differentiable
function with respect to time t and space x. Then, the conformable reduced differential transform of
m(x, t) can be written as:

Mβ
k (x) =

1

βkk!

[(
tG

(k)
β m

)]
t=to

, (63)

where tGβ
(k)m = ((tGβ)(tGβ)...(tGβ))m(x, t), and the conformable reduced differential transform of
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Fig. 2. Approximate Analytical Solution in (59) for β = 0.75

initial conditions for integer order derivatives can be also written as [58,59]:

Fβ(k) =


1

(βk)!

[(
∂βk

∂tβk
m(x, t)

)]
t=to

for k=0,1,...,

(
n

β
− 1

)
if βk ∈ Z+

0 if βk 6∈ Z+

(64)

For (61) and (64), n is the order of conformable differential operator for ordinary differential
equation and partial differential equation, respectively.

Definition 2.9. Suppose that Mβ
k (x) is the conformable reduced differential transform for m(x, t)

such that the inverse conformable reduced differential transform of Mβ
k (x) can be written as [58,59]:

m(x, t) =

∞∑
k=0

Mβ
k (x)(t− to)βk =

∞∑
k=0

1

βkk!

[(
tG

(k)
β m

)]
t=to

(t− to)βk. (65)

For theorems and basic operations about both DTM and CRDTM, we refer to [55,59].

Numerical Experiment 2:

By using the basic operations of CRDTM in [59], CRDTM is applied to solve the mixed initial-
boundary value problem (see equation (9)) as follows:

β(k + 1)(k + 2)Mβ
k+2(r) =

 ∂2

∂r2
Mβ
k (r) +

k∑
j=0

Mβ
k−j(r)

∂

∂r
Mβ
j (r)

 ;

c2
o is assumed to be equal 1 for simplicity

(66)
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Fig. 3. Approximate Analytical Solution in (59) for β = 0.50

Hence, the recurrence relation of equation (66) can be written as follows:

Mβ
k+2(r) =

[
∂2

∂r2
Mβ
k (r) +

∑k
j=0M

β
k−j(r)

∂
∂rM

β
j (r)

β(k + 1)(k + 2)

]
, (67)

where Mβ
k (r) is the conformable reduced differential function. For the initial conditions in (11), we

assume that q(r) = cos

(
r

β

)
+ sin

(
r

β

)
and p(r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
. By applying CRDTM to

the assumed initial conditions, we obtain the following:

Mβ
0 (r) = cos

(
r

β

)
+ sin

(
r

β

)
.

Mβ
1 (r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
.

(68)
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By substituting (68) in equation (67), the following Mβ
k (r) values are obtained as follows:

Mβ
2 (r) =

−cos
(
r

β

)
− sin

(
r

β

)
2!β2

,

Mβ
3 (r) =

−2cos

(
r

β

)
− 2sin

(
r

β

)
3!β3

,

Mβ
4 (r) =

cos

(
r

β

)
+ sin

(
r

β

)
4!β4

,

Mβ
5 (r) =

2cos

(
r

β

)
+ 2sin

(
r

β

)
5!β5

,

Mβ
6 (r) =

−cos
(
r

β

)
− sin

(
r

β

)
6!β6

.

(69)

Consequently, the set of values {Mβ
k (r)}nk=0 provides the following approximate solution:

m̃w(r, t) =

w∑
k=0

Mβ
k (r)tβk

=



∑w
k=0

(−1)
3k
2

k!βk

[
cos

(
rtβk

β

)
+ sin

(
rtβk

β

)]
; if k is even

2

[
cos

(
rtβk

β

)
+ sin

(
rtβk

β

)]

+
∑w

k=3
(−1)

2k
3 +(k−(k−3))

k!βk

[
2cos

(
rtβk

β

)
+ 2sin

(
rtβk

β

)]
; if k is odd

(70)

3. Comparison of results and Discussion

Consequently, after trying to solve this particular two-dimensional wave equation using the classical
definitions of fractional derivatives such as Riemann-Liouville, Caputo, Riesz, Riesz-Caputo, and
Grünwald-Letnikov, the analytical solution is very complicated to obtain or even may impossible
to obtain due to the fact that the classical fractional derivatives are nonlocal differential operators
represented using convolution integrals with a weakly singular kernels [60]. To show a simple example
of how complicated to obtain analytical solution using classical fractional derivatives for this particular
problem, we refer to the general solution obtained in [61] for the time fractional wave equation for a
vibrating string. We also refer to a method used in solving classical fractional differential equations
(FDEs) in [62], but it cannot find analytical solutions to some examples and cases of FDEs. As
a result, the conformable fractional derivatives (CFD) are local operator and can be implemented
successfully and easily in various case studies arising from science and engineering in comparison to
classical fractional derivatives. CFD can also be used very efficiently in constructing mathematical
models for complex problems in physics and engineering.

Due to the difficulty of analytical solutions using classical fractional derivatives, several research
studies have developed approximate methods to approximate analytical solutions for the fractional dif-
ferential equations in the calculus of variations. Approximate methods for FDEs have been introduced
successfully in [63–66].

To discuss the error between the analytical and approximate solutions from using all three methods
in sections 2.1, 2.2, and 2.3, let’s do a numerical test for various values of β and t with various initial
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conditions from the suggested numerical experiments in this paper and using example 2 in section 4.2
of [43] to discuss the accuracy, reliability, and applicability of the three proposed methods in sections
2. All numerical data of the obtained approximate solutions in table 1, 3, and 3 have been calculated
and approximated for the first three terms using an online computer software, known as Keisan Online
Calculator service, developed by CASIO COMPUTER CO., LTD.

Numerical Example 1:

By using the mixed initial-boundary value problem in (9) and (10), and example 2 in section 4.2
of [43], the initial conditions in (11) can be written as:

M(r, 0) = q(r) = 1− r2; and
∂βM

∂tβ
(r, 0) = p(r) = 0; for 0 < r < R and 0 < β ≤ 1,

R = co = 1.

(71)

The above example represents a circular membrane with axisymmetric initial shape [43]. By using
the conformable separation of variables method (CSVM) in section 2.1, the approximate analytical
solution can be written as:

Mapproximate(r, t) =
∞∑
n=1

[
8

ξ3
nJ1(ξn)

cos

(
ξnt

β

β

)
J0(ξnr)

]
. (72)

Similarly, the analytical solution in [43] using the separation of variables method (SVM) can be also
written as:

Manalytical(r, t) =
∞∑
n=1

[
8

ξ3
nJ1(ξn)

cos (ξnt) J0(ξnr)

]
. (73)

Table 1 shows the numerical data for both analytical and approximate analytical solutions from using
CSVM and SVM for different values of r, t, and β. The absolute error between the analytical and
approximate analytical solutions, written as Error = |Mapproximate(r, t) −Manalytical(r, t)|, has also
been recorded in table 1. From Table 1, it is obvious that at various values of r and t, when β values
are getting close to 1, absolute error values become very small. At β = 1, the obtained approximate
analytical solution from CSVM becomes equivalent to the analytical solution from SVM. Figure 4
shows the approximate solutions for different values of t and β at a fixed r = 0.5. From Figure 4, at
β = 0.75 the obtained approximate solution by CSVM are closer to the analytical solution using the
SVM for integer-order derivatives. Therefore, the behavior of membrane’s displacement with respect
to time at various β values at a fixed value of membrane radii [42] in Figure 4 can be described as the
value of β increases in the conformable formulation (CSVM), the approximate solution from CSVM
becomes closer to the analytical solution using the integer-order SVM, and the absolute error value
between analytical and approximate solutions becomes small.
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Table 1. Comparison of the Analytical and Approximate Solutions from using SVM and CSVM

(r, t) SVM β CSVM Error

(0.1,0.1) 1.0003
0.25 0.9963 4E-3
0.75 1.0002 1E-4
1 1.0003 0

(0.3,0.3) 0.9051
0.25 0.9005 4.6E-3
0.75 0.9050 1E-4
1 0.9051 0

(0.5,0.5) 0.7496
0.25 0.7432 6.4E-3
0.75 0.7494 2E-4
1 0.7496 0

(0.7,0.7) 0.5152
0.25 0.5056 9.6E-3
0.75 0.5148 4E-4
1 0.5152 0

(0.9,0.9) 0.1803
0.25 0.1752 5.1E-3
0.75 0.1800 3E-4
1 0.1803 0

Numerical Example 2:

By using the numerical experiment 1 in section 2.2, the approximate solution in (59) can be written
with only the real part which satisfies the mixed initial-boundary value problem in (9), (10), and (11)
as follows: [54]

M(r, t) =

∞∑
ξ=1

J0

(
λξ
r

R

)
sin

(
λξ
cot

β

Rβ

)
λ2
ξ

(co
R

)
J1(λξ)

;

where 0 < β ≤ 1.

(74)

The above equation (74) represents the approximate solution with a real part only using the con-
formable double Laplace transform method (DLTM). Let’s also assume R = co = 1. So, equation (74)
can be simplified as follows:

M(r, t) =
∞∑
ξ=1

J0 (λξr) sin

(
λξ
tβ

β

)
λ2
ξJ1(λξ)

;

where 0 < β ≤ 1.

(75)

To compare the above approximate solution with approximate analytical solution, let’s use the pro-
posed mixed initial-boundary value problem in (41) and (42) to find the approximate analytical so-
lution in the sense of conformable derivative. Since M(r, 0) = q(r) = 0, then En = 0 in (28). Kn in
(29) can be found as follows:

Kn =
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

=
2

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(76)

By using integration by parts for (76) and the identity (11) in [43], we have the following: u =

cos

(
r

β

)
+ sin

(
r

β

)
; du =

(
−sin

(
r

β

)
+ cos

(
r

β

))
dr; dv = J0 (ξnr) r dr; and v = 1

ξn
J1 (ξn). Let
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(
−sin

(
r

β

)
+ cos

(
r

β

))
= ω; we have the following:

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn)−
∫ 1

0

J1 (ξn)

ξn
ω dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +

∫ 1

0

(
−cos

(
r

β

)
+ sin

(
r

β

))
ξn

J1 (ξn) dr

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn


−sin

(
r

β

)
1
β

−
cos

(
r

β

)
1
β



r=1

r=0

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn

[
−βsin

(
1

β

)
− βcos

(
1

β

)
+

1

β

]

=

cos

(
r

β

)
+ sin

(
r

β

)
ξn

J1 (ξn) +
J1 (ξn)

ξn

[
−β
(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]

=

cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)
ξn

J1 (ξn) .

(77)

By substituting (77) in (76), we obtain Kn as follows:

2

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
2

ξnJ2
1 (ξn)

cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)
ξn

J1 (ξn)

=
2

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(78)

To obtain the approximate analytical solution using CSVM, let’s substitute (78) in (30) as follows:

M(r, t) =
∞∑
n=1

2

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
sin

(
ξnt

β

β

)
J0 (ξnr)

]
;

for n ∈ Z+ and co = R = 1.

(79)

Table 2 shows the numerical data for approximate solutions from using CSVM and DLTM for different
values of r, t and β. The absolute error between approximate solutions using CSVM and DLTM has
been recorded in table 2. At r = t = 0.9 and β = 0.50, both approximate solutions using CSVM and
DLTM in Table 2 are equivalent to each other with no absolute error between them. When β = 0.75 or
β = 1 for r = t = 0.1; 0.3; 0.5; 0.7; 0.9, the absolute error values become very small. Figure 5 shows the
approximate solutions for different values of t and β at a fixed r = 0.5. Between t = 0.1 and t = 0.2 at
a fixed value (r = 0.5) of membrane radii in figure 5, the behavior of membrane’s displacement with
respect to time shows that the numerical values of approximate solution DLTM and CSVM at various
β values are very close to each other and the absolute error values between them small. In table 2,
it is also clear that numerical value of approximate solutions using CSVM at β = 1 and DLTM at
β = 0.50 are close to each other and the error between them is very small. When the time is very
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small i.e. t = 0.1, both approximate solutions from using CSVM and DLTM are very close to each
other in value and the absolute error values between them become smaller than other numerical values
of the same approximate solutions at larger time periods.

Table 2. Comparison of the Analytical and Approximate Solutions from using CSVM and DLTM

(r, t) β CSVM DLTM Error

(0.1,0.1)
0.50 0.0017 0.0071 5.4E-3
0.75 6.275E-4 0.0027 2.073E-3
1 2.643E-4 0.0011 8.357E-4

(0.3,0.3)
0.50 0.0190 0.0083 0.0107
0.75 0.0093 0.0041 5.2E-3
1 0.0052 0.0023 2.9E-3

(0.5,0.5)
0.50 0.0356 0.0117 0.0239
0.75 0.0198 0.0066 0.0132
1 0.0125 0.0041 8.4E-3

(0.7,0.7)
0.50 0.0291 0.0178 0.0113
0.75 0.0176 0.0109 6.7E-3
1 0.0121 0.0075 4.6E-3

(0.9,0.9)
0.50 0.0098 0.0098 0
0.75 0.0063 0.0064 1E-4
1 0.0046 0.0047 1E-4

Numerical Example 3:

To compare the approximate solutions from using CSVM and conformable reduced differential trans-
form method (CRDTM), let’s use the approximate solution in (70) from the numerical experiment 2 in
section 2.3. Similarly, we need to find the approximate analytical solution in the sense of conformable
derivative using CSVM for the mixed initial-boundary value problem in the numerical experiment 2 as

we did in numerical example 2.We choose R = co = 1 in this example. Since q(r) = cos

(
r

β

)
+sin

(
r

β

)
and p(r) = 2cos

(
r

β

)
+ 2sin

(
r

β

)
, then let’s find En in (28) and Kn in (29) as follows:

En =
2

R2J2
1 (ξn)

∫ R

0
rq(r)J0

(
ξnr

R

)
dr

=
2

J2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(80)

Kn =
2

RcoξnJ2
1 (ξn)

∫ R

0
p(r)J0

(
ξnr

R

)
r dr

=
4

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr.

(81)

From the result in (77), En and Kn can be written as follows:

En =
2

J2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
2

ξnJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(82)

Kn =
4

ξnJ2
1 (ξn)

∫ 1

0
cos

(
r

β

)
+ sin

(
r

β

)
J0 (ξnr) r dr

=
4

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
.

(83)
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Fig. 4. Comparison of Analytical and Approximate Solutions in (73) and (72) for different values of
β at a fixed r = 0.5

By substituting both (82) and (83) in (30), we obtain the following approximate analytical solution
using CSVM:

M(r, t) =
∞∑
n=1

2

ξnJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
cos

(
ξnt

β

β

)
J0 (ξnr)

]
+
∞∑
n=1

4

ξ2
nJ1(ξn)

[
cos

(
r

β

)
+ sin

(
r

β

)
− β

(
sin

(
1

β

)
+ cos

(
1

β

)
− 1

)]
×
[
sin

(
ξnt

β

β

)
J0 (ξnr)

]
;

for n ∈ Z+ and co = R = 1.

(84)

The numerical data for approximate solutions from using CSVM and CRDTM have been recorded
in Table 3 for various values of r, t and β. Table 2 shows also the absolute error between approximate
solutions using CSVM and CRDTM. The absolute error value is the smallest at r = t = 0.7 and β = 1
in Table 3 which implies that both approximate solutions using CSVM and CRDTM are very close
in numerical value to each other. From Table 3, it is very clear that at β = 0.85 and β = 1 at various
values of r and t, most of the absolute error values between approximate solutions from using CSVM
and CRDTM are smaller than absolute error values at β = 0.75. Figure 6 shows the approximate
solutions for different values of t and β at a fixed value (r = 0.5) of membrane radii. The behavior of
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Fig. 5. Comparison of Approximate Solutions in (75) and (79) for different values of β at a fixed
r = 0.5

membrane’s displacement with respect to time in figure 6 shows that using CSVM at β = 1 is closer in
numerical value to the numerical values using CRDTM at β = 0.75; 0.85; 1. Using CSVM at β = 0.75
and β = 1, the numerical values of approximate solutions are close to each other, but both solutions
farther in value comparing to the approximate solution using CSVM at β = 1.
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Table 3. Comparison of the Analytical and Approximate Solutions from using CSVM and CRDTM

(r, t) β CSVM CRDTM Error

(0.1,0.1)
0.75 1.2840 0.3207 0.9633
0.85 1.2806 0.7651 0.5155
1 1.2828 1.1667 0.1161

(0.3,0.3)
0.75 0.8764 0.3232 0.5532
0.85 0.8719 0.7677 0.1042
1 0.8672 1.1689 0.3017

(0.5,0.5)
0.75 0.9710 0.3292 0.6418
0.85 0.9647 0.7734 0.1913
1 1.4054 1.1739 0.2315

(0.7,0.7)
0.75 1.2609 0.3380 0.9229
0.85 1.2533 0.7819 0.4714
1 1.2445 1.1817 0.0628

(0.9,0.9)
0.75 0.6170 0.3495 0.2675
0.85 0.6135 0.7931 0.1796
1 0.6092 1.1922 0.5830

Fig. 6. Comparison of Approximate Solutions in (84) and (70) for different values of β at a fixed
r = 0.5

By comparing the analytical and approximate solutions in (30), (59) and (70), with the classical
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non fractional standard analytical solution in [43,44], we obtain the same analytical solution provided
by [43, 44] by substituting β = 1 in equations (30), (59) and (70) since 0 < β ≤ 1. Figures (7), (8),
and (9) show the comparison of analytical and approximate solutions in (30) and (70) graphically for
various values of β = 1; 0.75; 0.25.

Fig. 7. Comparison of Solutions in (30) and (70) for β = 1

Fig. 8. Comparison of Solutions in (30) and (70) for β = 0.75

Thus, the CFD formulation is a simple fractional definition to obtain analytical solutions for frac-
tional partial differential equations in comparison to the complicated classical fractional formulations
that require various theorems, generalizations, or mathematical extensions to obtain analytical solu-
tion or even in some cases can not be obtained at all without introducing numerical and approximate



Journal of New Theory 31 (2019) 56-85 / Novel Methods for solving the Conformable Wave Equation 81

Fig. 9. Comparison of Solutions in (30) and (70) for β = 0.25

methods. The analytical solutions provided in this paper can be extended to solve higher order
fractional PDEs more efficiently than nonlocal classical fractional derivatives formulations.

4. Conclusion

Fractional differential equations have been undergoing major developments due to the importance of
understanding the physical and dynamical behavior of problems arising from physics and engineering
applications. This article sheds the light on the importance of the conformable fractional derivatives
(CFD) and the fact that the CFD can provide efficient analytical and approximate analytical solutions
for the two-dimensional fractional wave equation using novel methods such as conformable separation
of variables, conformable double Laplace transform, and conformable reduced differential transform
methods. We believe that the conformable fractional formulation can be applied effectively in modeling
various PDEs problems.
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[15] M. Yavuz and B. Yaşkıran, Approximate-analytical solutions of cable equation using conformable
fractional operator, New Trends in Mathematical Sciences 5 (2017), no.4, 209–219.
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1. Introduction

The concept of soft sets was initiated by Molodtsov [1] in 1999 as a completely new approach for
modeling vagueness and uncertainty. He has shown several applications of this theory in solving many
practical problems in economics, engineering, social science, medical science, etc. Later Maji et al. [2]
presented some new definitions on soft sets such as a subset, the complement of a soft set. Research
works on soft sets are progressing rapidly in recent years.

Shabir and Naz [3] introduced the soft topological spaces which are defined over an initial universe
with a fixed set of parameters. Later Aygünoğlu and Aygün [4], Min [5], Zorlutuna et al. [6] and
Hussain and Ahmad [7] continued to study the properties of soft topological spaces. They got many
important results in soft topological spaces. Recently, weak forms of soft open sets have been studied
[8–19] in soft topological spaces.

The purpose of this paper is to introduce the notions of soft αA−set, soft αB−set, soft αC−set
and soft αLC−set in soft topological spaces. We study the relations between these different types of
subsets in soft topological spaces. We also introduce soft αA−continuous, soft αB−continuous, soft
αC−continuous and soft αLC−continuous functions. Finally, we obtain some decompositions.

2. Preliminary

In this section, we present the basic definitions and results of soft set theory which may be found in
earlier studies.

Definition 2.1. [1] Let X be an initial universe set and E be the set of all possible parameters with
respect to X. Let P (X) denote the power set of X. A pair (F,A) is called a soft set over X where
A ⊆ E and F : A → P (X) is a set valued mapping.

1naimedemirtas@mersin.edu.tr (Corresponding Author); 2orhandlk952495@hotmail.com
1,2Department of Mathematics, Faculty of Science and Art, Mersin University, Mersin, Turkey
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The set of all soft sets over X is denoted by SS(X)E .

Definition 2.2. [2] A soft set (F,A) over X is said to be a null soft set denoted by Φ if for all e ∈ A,

F (e) = ∅. A soft set (F,A) over X is said to be an absolute soft set denoted by
∼
A if for all e ∈ A,

F (e) = X.

Definition 2.3. [3] Let Y be a nonempty subset of X, then
∼
Y denotes the soft set (Y,E) over X for

which Y (e) = Y, for all e ∈ E. In particular, (X,E) will be denoted by
∼
X.

Definition 2.4. [2] For two soft sets (F,A) and (G,B) over X, we say that (F,A) is a soft subset of
(G,B) if A ⊆ B and F (e) ⊆ G(e) for all e ∈ A. We write (F,A) ⊑ (G,B). (F,A) is said to be a soft
super set of (G,B), if (G,B) is a soft subset of (F,A). We denote it by (G,B) ⊑ (F,A). Then (F,A)
and (G,B) are said to be soft equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of
(F,A).

Definition 2.5. [2] The union of two soft sets (F,A) and (G,B) over X is the soft set (H,C), where
C = A ∪B and for all e ∈ C, H(e) = F (e) if e ∈ A\B, H(e) = G(e) if e ∈ B\A, H(e) = F (e) ∪G(e)
if e ∈ A ∩B. We write (F,A) ⊔ (G,B) = (H,C).

Definition 2.6. [20] The intersection (H,C) of two soft sets (F,A) and (G,B) over X, denoted by
(F,A) ⊓ (G,B), is defined as C = A ∩B, and H(e) = F (e) ∩G(e) for all e ∈ C.

Definition 2.7. [3] The difference (H,E) of two soft sets (F,E) and (G,E) over X, denoted by
(F,E)\(G,E), is defined as H(e) = F (e)\G(e) for all e ∈ E.

Definition 2.8. [3] The relative complement of a soft set (F,E) is denoted by (F,E)c and is defined
by (F,E)c = (F c, E) where F c : E −→ P (X) is a mapping given by F c(e) = X\F (e) for all e ∈ E.

Definition 2.9. [3] Let τ be the collection of soft sets over X, then τ is said to be a soft topology
on X if

(1) Φ,
∼
X ∈ τ

(2) If (F,E), (G,E) ∈ τ , then (F,E) ⊓ (G,E) ∈ τ
(3) If {(Fi, E)}i∈I ∈ τ , ∀i ∈ I, then ⊔i∈I(Fi, E) ∈ τ .
The triplet (X, τ,E) is called a soft topological space over X. Every member of τ is called a soft

open set in X. A soft set (F,E) over X is called a soft closed set in X if its relative complement
(F,E)c belongs to τ . We will denote the family of all soft open sets (resp., soft closed sets) of a soft
topological space (X, τ,E) by SOS(X, τ,E) (resp., SCS(X, τ,E)).

Definition 2.10. Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X.

(1) [3] The soft closure of (F,E) is the soft set cl(F,E) = ⊓{(G,E) : (G,E) is soft closed and
(F,E) ⊑ (G,E)}.

(2) [6] The soft interior of (F,E) is the soft set int(F,E) = ⊔{(H,E) : (H,E) is soft open and
(H,E) ⊑ (F,E)}.

Clearly, cl(F,E) is the smallest soft closed set over X which contains (F,E) and int(F,E) is the
largest soft open set over X which is contained in (F,E).

Throughout the paper, the spaces X and Y (or (X, τ,E) and (Y, ν,K)) stand for soft topological
spaces assumed unless stated otherwise.

Definition 2.11. A soft set (F,E) is called

(i) soft semi-open [8] in a soft topological space X if (F,E) ⊑ cl(int(F,E)).
(ii) soft pre-open [9] in a soft topological space X if (F,E) ⊑ int(cl(F,E)).
(iii) soft α-open [10] in a soft topological space X if (F,E) ⊑ int(cl(int(F,E))).
The relative complement of a soft semi-open (resp., soft pre-open, soft α-open) set is called a soft

semi-closed (resp., soft pre-closed, soft α-closed) set.
We will denote the family of all soft semi-open (resp., soft pre-open and soft α-open) sets of a soft

topological space (X, τ,E) by SSOS(X, τ,E) (resp., SPOS(X, τ,E) and SαOS(X, τ,E)).



Journal of New Theory 31 (2020) 86-94 / Decompositions of Soft α−continuity and Soft A−continuity 88

Definition 2.12. [8] Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X.
The soft semi-closure of (F,E) is the soft set cls(F,E) = ⊓{(H,E) : (H,E) is soft semi-closed and
(F,E) ⊑ (H,E)} and cls(F,E) is soft semi-closed.

Theorem 2.13. [8] Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X. We
have (F,E) ⊑ cls(F,E) ⊑ cl(F,E).

Definition 2.14. Let (X, τ,E) be a soft topological space. A soft set (F,E) is called

(1) a soft regular closed set [19] in X if (F,E) = cl(int(F,E)).
(2) a soft A−set [17] in X if (F,E) = (G,E)⊓ (H,E), where (G,E) is a soft open set and (H,E)

is a soft regular closed set in X.
(3) a soft t-set [17] in X if int(cl(F,E)) = int(F,E).
(4) a soft B−set [17] in X if (F,E) = (G,E) ⊓ (H,E), where (G,E) is a soft open set and (H,E)

is a soft t-set in X.
(5) a soft α∗-set [16] in X if int(cl(int(F,E))) ⊑ (F,E).
(6) a soft C−set [16] in X if (F,E) = (G,E) ⊓ (H,E) where (G,E) is soft open and (H,E) is a

soft α∗-set in X.
(7) a soft locally closed set (briefly; soft LC−set) [14] in X if (F,E) = (G,E) ⊓ (H,E), where

(G,E) is soft open and (H,E) is soft closed in X.
We will denote the family of all soft regular closed sets (resp., soft A−sets, soft B−sets, soft C−sets

and soft LC−sets) of a soft topological space X by SRCS(X) (resp., SAS(X), SBS(X), SCS(X) and
SLCS(X)).

Remark 2.15. In a soft topological space (X, τ,E);

(1) every soft open set is soft α-open [10],
(2) every soft α-open set is soft pre-open and soft semi-open [10],
(3) every soft regular closed set is soft closed [19],
(4) every soft open set is a soft A−set [17],
(5) every soft A−set is soft semi-open [17],
(6) every soft A−set is a soft LC−set [14],
(7) every soft LC−set is a soft B−set [14],
(8) every soft B−set is a soft C−set [16].

Definition 2.16. [21] Let (X, τ,E) be a soft topological space and (F,E) be a soft set over X. (F,E)

is called (1) a soft dense set if cl(F,E) =
∼
X, (2) a soft nowhere dense set if int(cl(F,E)) = Φ.

Definition 2.17. [22] Let SS(X)E and SS(Y )K be families of soft sets, u : X −→ Y and p : E −→ K
be mappings. Then the mapping fpu : SS(X)E −→ SS(Y )K is defined as:

(1) Let (F,E) ∈ SS(X)E . The image of (F,E) under fpu, written as fpu(F,E) = (fpu(F ), p(E)),
is a soft set in SS(Y )K such that

fpu(F )(y) =

{
∪x∈p−1(y)∩Au(F (x)) , p−1(y) ∩A ̸= ∅
∅ , otherwise

for all y ∈ K.
(2) Let (G,K) ∈ SS(Y )K . The inverse image of (G,K) under fpu, written as f−1

pu (G,K) =
(f−1

pu (G), p−1(K)), is a soft set in SS(X)E such that

f−1
pu (G)(x) =

{
u−1(G(p(x))) , p(x) ∈ K
∅ , otherwise

for all x ∈ E.

Definition 2.18. [6] Let (X, τ,E) and (Y, υ,K) be soft topological spaces and fpu : SS(X)E −→
SS(Y )K be a function. Then fpu is called a soft continuous function if for each (G,K) ∈ υ we have
f−1
pu (G,K) ∈ τ .
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Definition 2.19. Let (X, τ,E) and (Y, υ,K) be soft topological spaces and fpu : SS(X)E −→ SS(Y )K
be a function. Then fpu is called

(1) a soft semi-continuous function [15] if for each (G,K) ∈ SOS(Y ) we have f−1
pu (G,K) ∈

SSOS(X).
(2) a soft α-continuous function [10] if for each (G,K) ∈ SOS(Y ) we have f−1

pu (G,K) ∈ SαOS(X).
(3) a soft pre-continuous function [10] if for each (G,K) ∈ SOS(Y ) we have f−1

pu (G,K) ∈
SPOS(X).

(4) a soft A−continuous function [17] if for each (G,K) ∈ SOS(Y ), f−1
pu (G,K) is a soft A−set in

X.
(5) a soft B−continuous function [17] if for each (G,K) ∈ SOS(Y ), f−1

pu (G,K) is a soft B−set in
X.

(6) a soft C−continuous function [16] if for each (G,K) ∈ SOS(Y ), f−1
pu (G,K) is a soft C−set in

X.
(7) a soft LC−continuous function [14] if for each (G,K) ∈ SOS(Y ), f−1

pu (G,K) is a soft LC−set
in X.

Remark 2.20. Let (X, τ,E) and (Y, υ,K) be soft topological spaces and fpu : SS(X)E −→ SS(Y )K
be a function. Then,

(1) every soft continuous function is soft α-continuous [10],
(2) every soft α-continuous function is soft semi-continuous and soft pre-continuous [10],
(3) every soft continuous function is soft A−continuous [17],
(4) every soft A−continuous function is soft semi-continuous [17],
(5) every soft A−continuous function is soft LC−continuous [14],
(6) every soft LC−continuous function is soft B−continuous [14],
(6) every soft B−continuous function is soft C−continuous [16].

3. Soft αA−sets, Soft αB−sets, Soft αC−sets and Soft αLC−sets

Definition 3.1. A soft set (F,E) in a soft topological space (X, τ,E) is called

1) a soft αA−set if (F,E) = (G,E)⊓(H,E) where (G,E) is soft α−open and (H,E) is soft regular
closed.

2) a soft αB−set if (F,E) = (G,E) ⊓ (H,E) where (G,E) is soft α−open and (H,E) is a soft
t−set in X.

3) a soft αC−set if (F,E) = (G,E)⊓ (H,E) where (G,E) is soft α−open and int(cl(int(H,E))) ⊑
(H,E).

4) a soft αLC−set if (F,E) = (G,E) ⊓ (H,E) where (G,E) is soft α−open and (H,E) is soft
closed.

We will denote the family of all soft αA−sets (resp.,soft αB−sets, soft αC−sets and soft αLC−sets)
of (X, τ,E) by SαAS(X) (resp., SαBS(X), SαCS(X) and SαLCS(X)).

Theorem 3.2. For a soft topological space (X, τ,E), the following hold:

1) Every soft A−set is a soft αA−set.
2) Every soft B−set is a soft αB−set.
3) Every soft C−set is a soft αC−set.
4) Every soft LC−set is a soft αLC−set.

Proof. The proofs are obvious since every soft open set is soft α−open.

Example 3.3. Let X = {x1, x2, x3}, E = {e1, e2} and τ = {Φ,
∼
X, (F,E)} such that

(F,E) = {(e1, {x1}), (e2, {x2})}.

Then τ defines a soft topology on X and thus (X, τ,E) is a soft topological space over X [17]. Then
(G,E) = {(e1, {x1, x2}), (e2, {x2})} is a soft α-open set in X but not soft open. Since (G,E) =
(G,E) ⊓ X̃ and X̃ is a soft t−set, (G,E) is a soft αB−set but not a soft B−set.



Journal of New Theory 31 (2020) 86-94 / Decompositions of Soft α−continuity and Soft A−continuity 90

Example 3.4. Let X = {x1, x2, x3} and E = {e1, e2}. Let us take the soft topology τ on X and the
soft set (G,E) = {(e1, {x1, x2}), (e2, {x2})})} in Example 3.3. (G,E) is a soft αC−set but not a soft
C−set.

Example 3.5. Let X = {x1, x2, x3} and E = {e1, e2}. Let us take the soft topology τ on X and the
soft set (G,E) = {(e1, {x1, x2}), (e2, {x2})})} in Example 3.3. (G,E) is a soft αLC−set but not a soft
LC−set.

Proposition 3.6. In a soft topological space (X, τ,E), every soft αA−set is a soft αLC−set.

Proof. The proof is obvious since every soft reguler closed set is soft closed.

Example 3.7. Let X = {x1, x2, x3, x4}, E = {e1, e2} and τ = {Φ, X̃, (F1, E), ..., (F11, E)} such that

(F1, E) = {(e1, {x1}), (e2, {x1})},
(F2, E) = {(e1, {x2}), (e2, {x2})},
(F3, E) = {(e1, {x1, x2}), (e2, {x1, x2})},
(F4, E) = {(e1, {x1, x2, x3}), (e2, {x1, x3})},
(F5, E) = {(e1, {x1, x2, x4}), (e2, {x1, x2, x3})},
(F6, E) = {(e1, {x2}), (e2,∅)},
(F7, E) = {(e1, {x1, x2}), (e2, {x1})},
(F8, E) = {(e1, {x1, x2, x3}), (e2, {x1, x2, x3})},
(F9, E) = {(e1, X), (e2, {x1, x2, x3})},
(F10, E) = {(e1, {x1, x2}), (e2, {x1, x2, x3})},
(F11, E) = {(e1, {x1, x2}), (e2, {x1, x3})}.

Then τ defines a soft topology on X and thus (X, τ,E) is a soft topological space over X [19]. Let
us take a soft set (G,E) = (F9, E) ⊓ (F11, E)c = {(e1, {x3, x4}), (e2, {x2})} on X. Since (G,E) is a
soft LC−set, (G,E) is a soft αLC−set. But (G,E) is not a soft αA− set.

Proposition 3.8. In a soft topological space (X, τ,E), every soft αB−set is a soft αC−set.

Proof. Let (F,E) be a soft αB−set, so (F,E) = (G,E) ⊓ (H,E) where (G,E) is soft α−open and
(H,E) is a soft t−set. Since (H,E) is a soft t−set, int(cl(H,E)) = int(H,E). Then int(cl(int(H,E))) ⊑
int(cl(H,E)) = int(H,E) ⊑ (H,E). Hence we obtain (F,E) is a soft αC−set.

Example 3.9. Let X = {x1, x2, x3}, E = {e1, e2} and τ = {Φ, X̃, (F1, E), (F2, E), (F3, E)} such that

(F1, E) = {(e1, {x1}), (e2, {x1})},

(F2, E) = {(e1, {x2}), (e2, {x2})},

(F3, E) = {(e1, {x1, x2}), (e2, {x1, x2})}.

Then τ defines a soft topology on X and thus (X, τ,E) is a soft topological space over X. (G,E) =
{(e1, {x3}), (e2, {x1, x3})} is a soft α∗−set since int(cl(int(G,E))) = int(G,E). So it is a soft C−set
and a soft αC−set. But (G,E) is not a soft αB−set.

Proposition 3.10. In a soft topological space (X, τ,E), every soft αLC−set is a soft αB−set.

Proof. Let (G,E)⊓(H,E) be a soft αLC−set such that (G,E) is soft α−open and cl(H,E) = (H,E).
Since int(cl(H,E)) = int(H,E) then the proof is obvious.

Example 3.11. Let X = {x1, x2, x3}, E = {e1, e2} and τ = {Φ, X̃, (F1, E), (F2, E), (F3, E)} such
that

(F1, E) = {(e1, {x2}), (e2, {x2})},

(F2, E) = {(e1, {x3}), (e2, {x3})},

(F3, E) = {(e1, {x2, x3}), (e2, {x2, x3})}.



Journal of New Theory 31 (2020) 86-94 / Decompositions of Soft α−continuity and Soft A−continuity 91

Then τ defines a soft topology on X and thus (X, τ,E) is a soft topological space over X. Then
(G,E) = {(e1, {x2}), (e2, {x1, x2})} is a soft αB−set, but it is not a soft αLC−set.

Lemma 3.12. [12] Let (X, τ,E) be a soft topological space, (F,E) ∈ SαOS(X) and (G,E) ∈
SSOS(X). Then (F,E) ⊓ (G,E) ∈ SSOS(X).

Proposition 3.13. In a soft topological space (X, τ,E), every soft αA−set is soft semi-open.

Proof. Let (G,E) ⊓ (H,E) be a soft αA−set, (G,E) is soft α−open and cl(int(H,E)) = (H,E).
Hence (H,E) is soft semi-open. Using Lemma 3.12 we have that (G,E)⊓(H,E) is soft semi-open.

Theorem 3.14. [14] For a soft topological space (X, τ,E), we have SAS(X) = SSOS(X)∩SLCS(X).

Theorem 3.15. For a soft topological space (X, τ,E), we have SAS(X) = SαAS(X) ∩ SLCS(X).

Proof. Every soft αA−set is soft semi-open by Proposition 3.13 and SAS(X) = SSOS(X) ∩
SLCS(X) by Theorem 3.14. Hence SαAS(X) ∩ SLCS(X) ⊆ SSOS(X) ∩ SLCS(X) = SAS(X).
So we obtain SαAS(X) ∩ SLCS(X) ⊆ SAS(X).
By Theorem 3.2, we have that every soft A−set is a soft αA−set. Also, since SAS(X) = SSOS(X)∩
SLCS(X) then SAS(X) ⊆ SLCS(X) and thus SAS(X) ⊆ SαAS(X) ∩ SLCS(X).

Proposition 3.16. Let (X, τ,E) be a soft topological space. A soft set (F,E) over X is a soft α−open
set iff (F,E) = (G,E) \ (H,E) where (G,E) is soft open and (H,E) is soft nowhere dense.

Proof. If (F,E) is a soft α−open set we have

(F,E) = int(cl(int(F,E))) \ ((int(cl(int(F,E)))) \ (F,E))

where int(cl(int(F,E))) \ (F,E) clearly is soft nowhere dense.
Conversely, if (F,E) = (G,E) ⊑ (H,E), (G,E) is soft open, (H,E) is soft nowhere dense, we can see
that (G,E) < cl(int(F,E)) and consequently

int(cl(int(F,E))) ⊒ (G,E) ⊒ (F,E)

So the proof is complete.

Proposition 3.17. Let (X, τ,E) be a soft topological space. (F,E) is a soft αB − set if and only if
(F,E) = (G,E) ⊓ (H,E) where (G,E) is soft B−set and int(H,E) is soft dense.

Proof. Let (F,E) be a soft αB−set, we have (F,E) = (G,E) ⊓ (H,E) where (G,E) is a soft
α−open set and (H,E) is a soft t−set. By Proposition 3.16, we write (G,E) = (G1, E) ⊓ (G2, E)
where (G1, E) is a soft open B−set and int(G2, E) is soft dense. Hence (F,E) = (G,E) ⊓ (H,E) =
((G1, E) ⊓ (G2, E)) ⊓ (H,E) = ((G1, E) ⊓ (H,E)) ⊓ (G2, E) where (G1, E) ⊓ (H,E) is a soft B−set
and int(G2, E) is soft dense.
Conversely, let (F,E) = (H,E) ⊓ (G2, E) such that (H,E) is a soft B−set and int(G2, E) is soft
dense. Then we have (H,E) = (G1, E) ⊓ (H1, E) where (G1, E) is soft open and (H1, E) is a soft
t−set. Thus (F,E) = (H,E)⊓ (G2, E) = ((G1, E)⊓ (H1, E))⊓ (G2, E) = ((G1, E)⊓ (G2, E))⊓ (H,E)
is soft α−open from Proposition 3.16 and (H,E) is a soft t−set. Thus (F,E) is a soft αB−set.

Theorem 3.18. [8] A soft subset (F,E) in a soft topological space (X, τ,E) is soft semi-cosed iff
int(cl(F,E)) ⊑ (F,E).

Theorem 3.19. [12] Let (X, τ,E) be a soft topological space and (F,E) ∈ SS(X,E). Then (F,E)
is soft semi-closed iff (F,E) = (F,E) ⊔ int(cl(F,E)).

Another description of soft αB−sets is given in the next result.

Proposition 3.20. Let (X, τ,E) be a soft topological space. (F,E) is a soft αB − set iff (F,E) =
(G,E) ⊓ cls(F,E) for some (G,E) ∈ SαOS(X).
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Proof. Let (F,E) be a soft αB−set, we have (F,E) = (G,E)⊓(H,E) where (G,E) is a soft α−open
set and (H,E) is a soft t−set. Now (F,E) ⊑ (G,E) and (F,E) ⊑ (H,E), so cls(F,E) ⊑ cls(H,E) =
(H,E) ⊔ int(cl(H,E)) by Theorem 3.19. Since (H,E) is a soft t−set, int(cl(H,E)) = int(H,E).
Hence we obtain

(F,E) ⊑ (G,E) ⊓ cls(F,E) ⊑ (G,E) ⊓ cls(H,E) = (G,E) ⊓ ((H,E) ⊔ int(cl((H,E)))) =

= (G,E) ⊓ ((H,E) ⊔ int(H,E)) = (G,E) ⊓ (H,E) = (F,E).

Conversely, assume that (F,E) = (G,E) ⊓ cls(F,E) for some (G,E) ∈ SαOS(X). Put (H,E) =
cls(F,E). Then (H,E) is soft semi-closed and we have int(cl(F,E)) ⊑ (H,E) by Theorem 3.18.
Hence int(cl(H,E)) = int(H,E) and (H,E) is a soft t−set. Therefore (F,E) is a soft αB−set.

Theorem 3.21. For a soft topological space (X, τ,E) we have

SαOS(X) = SPOS(X) ∩ SαBS(X).

Proof. It is clear that SαOS(X) ⊆ SPOS(X)∩SαBS(X). For the converse, let (F,E) ∈ SPOS(X)∩
SαBS(X). From (F,E) ∈ SPOS(X) we have (F,E) ⊑ int(cl(F,E)). Since (F,E) ∈ SαBS(X),
we have that (F,E) = (G,E) ⊓ cls(F,E) for some (G,E) ∈ SαOS(X) by Proposition 3.20. Also
cls(F,E) = (F,E) ⊔ int(cl(F,E)) = int(cl(F,E)) from Theorem 3.19. Thus (F,E) = (G,E) ⊓
int(cl(F,E)) where (G,E) ∈ SαOS(X) and int(cl(F,E)) ∈ SOS(X) ⊆ SαOS(X). Therefore
(F,E) = (G,E) ⊓ int(cl(F,E)) ∈ SαOS(X).

Theorem 3.22. For a soft topological space (X, τ,E) the following hold:

SαOS(X) = SPOS(X) ∩ SαLCS(X).

Proof. Since every soft α−open set is soft pre-open and every soft α−open set is soft αLC−set, we
obtain SαOS(X) ⊆ SPOS(X) ∩ SαLCS(X).
From Theorem 3.21, SαOS(X) = SPOS(X) ∩ SαBS(X). Also, since every soft αLC−set is a soft
αB− set we obtain SPOS(X) = SPOS(X) ∩ SαLCS(X) ⊆ SPOS(X) = SPOS(X) ∩ SαBS(X) =
SαOS(X).

4.Decompositions of Soft α−continuity and Soft A−continuity

In this section, two new decompositions of soft α−continuity are given. Also we obtain a decomposition
of soft A−continuity.

Definition 4.1. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces. Let u : X → Y and p : E → K
be mappings and fpu : SS(X)E → SS(Y )K be a function. Then the function fpu is called soft
αA−continuous (resp., soft αB−continuous, soft αC−continuous, soft αLC−continuous) if for each
(G,K) ∈ SOS(Y ), f−1

pu (G,K) is a soft αA−set (resp., soft αB−set, soft αC−set, soft αLC−set) in
X.

Theorem 4.2. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function. Then the following hold:

1) If fpu is soft A−continuous, then it is soft αA−continuous.
2) If fpu is soft B−continuous, then it is soft αB−continuous.
3) If fpu is soft C−continuous, then it is soft αC−continuous.
4) If fpu is soft LC−continuous, then it is soft αLC−continuous.

Proof. The proof is obvious from Theorem 3.2.

Theorem 4.3. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function. Then every soft αA−continuous function is soft semi-continuous.

Proof. The proof is obvious from Proposition 3.13.
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Theorem 4.4. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function.Then fpu is soft A−continuous and soft αA−continuous, then it is soft LC−continuous.

Proof. This is a direct consequence of Theorem 3.15.

Theorem 4.5. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K be
a function.Then fpu is soft A−continuous and soft αLC−continuous, then it is soft αB−continuous.

Proof. The proof is obvious from Proposition 3.10.

Theorem 4.6. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function.Then fpu is soft A−continuous iff it is soft αA−continuous and soft LC−continuous.

Proof. This follows immediately from Theorem 3.15.

Theorem 4.7. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function.Then fpu is soft α−continuous iff it is soft pre-continuous and soft αB−continuous.

Proof. This follows immediately from Theorem 3.21.

Theorem 4.8. Let (X, τ,E) and (Y, ϑ,K) be soft topological spaces and fpu : SS(X)E → SS(Y )K
be a function.Then fpu is soft α−continuous iff it is soft pre-continuous and soft αLC−continuous.

Proof. This follows immediately from Theorem 3.22.
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1. Introduction and Preliminaries

In sixties, attempts were initiated through the study of 2-metric spaces by S.Gähler [1,2] to generalize
the metric space. However, Ha et al. [3] have pointed out that the results over 2-metrics spaces are
independent, rather than generalizations, of the corresponding results in metric spaces. Another such
generalization is D-metric space introduced by Dhage [4] in 1992 where he proved some results on fixed
points of contraction mappings over complete and bounded D-metric spaces. But in 2006, Mustafa
and Sims [5] pointed out that Dhage’s notion of a D-metric space is fundamentally flawed and most of
the results claimed by Dhage and others are invalid. They introduced a more appropriate and robust
version of a generalized metric space namely G-metric space in 2006. Sedghi et al. [6,7] improved and
modified D-metric space and thus introduced D∗-metric space. They proved some basic properties
of D∗-metric spaces and some fixed point theorems on it. In continuation with untiring attempts to
find a most appropriate one, Sedghi et al. [8, 9] recently introduced and characterized the concept of
S-metric space which modifies D-metric and G-metric spaces.

Definition 1.1. (S-metric space) Let X be a non-empty set. An S-metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,
(S1) S(x, y, z) = 0, if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
The pair (X,S) is called an S-metric space.

According to Sedghi et al. [8], some of the examples of such S-metric spaces are:
(1) Let X = Rn and ‖.‖ be a norm on X, then S(x, y, z) = ‖y + z − 2x‖+ ‖y − z‖ is an S-metric on
X.
(2) Let X = Rn and ‖.‖ be a norm on X, then S(x, y, z) = ‖x− z‖+ ‖y − z‖ is an S-metric on X.
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(3) Let X be a nonempty set, d be a metric on X, then S(x, y, z) = d(x, z) + d(y, z) is an S-metric on
X.
(4) [intuitive geometric example for S-metric] Let X = R2, d be a metric on X, therefore, S(x, y, z) =
d(x, y) + d(x, z) + d(y, z) is an S-metric on X. If we connect the points x, y, z by a line, we have a
triangle and if we choose a point a within the triangle, then the inequality S(x, y, z) ≤ S(x, x, a) +
S(y, y, a) + S(z, z, a) holds.
(5) Let R be the real line. Then S(x, y, z) = |x− z| + |y − z| for all x, y, z ∈ R is an S-metric on R.
This S-metric on R is called the usual S-metric on R.

Definition 1.2. [8] Let (X,S) be an S-metric space and A ⊂ X.
(1) A subset A of X is called S-bounded if there exists r > 0 such that S(x, x, y) < r for all x, y ∈ A.
(2) A sequence {xn} in X converges to x ∈ X if and only if S(xn, xn, x) → 0 as n → ∞. That is
for every ε > 0 there exists n0 ∈ N such that S(xn, xn, x) < ε whenever n ≥ n0. We denote this by
limn→∞ xn = x or limn→∞ S(xn, xn, x) = 0.
(3) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm)→ 0 as n,m→∞. That is for
every ε > 0, there exists n0 ∈ N such that S(xn, xn, xm) < ε whenever n,m ≥ n0.
(4) The S-metric space (X,S) is called complete if every Cauchy sequence is convergent to an element
of X.

Lemma 1.3. [8] For a S-metric space X, we have S(x, x, y) = S(y, y, x) ∀x, y ∈ X.

Lemma 1.4. [9] Let (X,S) be an S-metric space. If {xn} and {yn} are sequences in X such that
xn → x and yn → y as n→∞, then S(xn, xn, yn)→ S(x, x, y) as n→∞.

Definition 1.5. [9] Let T : X → Y be a map from an S-metric space X to an S-metric space Y .
Then T is continuous at x ∈ X if and only if Txn → Tx in Y whenever xn → x in X.

A mapping T is continuous at X if and only if it is continuous at all x ∈ X.

Theorem 1.6. [8] Let (X,S) be a complete S-metric space and let F : X → X be a contraction i.e

S (F (x), F (x), F (y)) ≤ LS (x, x, y) for all x, y ∈ X

where 0 ≤ L < 1. Then F has a unique fixed point u ∈ X. Furthermore, for any x ∈ X we have
limn→∞ F

n(x) = u with

S (Fn(x), Fn(x), u) ≤ 2Ln

1− L
S (x, x, F (x)) .

Theorem 1.7. [8] Let (X,S) be a compact S-metric space and let F : X → X satisfying

S (F (x), F (x), F (y)) < S (x, x, y) for all x, y ∈ X and x 6= y.

Then F has a unique fixed point in X.

2.A-contraction and fixed point

Akram et al. [10, 11] have defined A-contractions as follows: Let a nonempty set A consisting of all
functions α : R3

+ → R+ satisfying
(A1) : α is continuous on the set R3

+ of all triplets of nonnegative reals (with respect to the Euclidean
metric on R3).
(A2) : a ≤ kb for some k ∈ [0, 1) whenever a ≤ α (a, b, b) or a ≤ α (b, a, b) or a ≤ α (b, b, a), for all
a, b ∈ R+.

Definition 2.1. [10] A self map T on a metric space X is said to be A-contraction if it satisfies the
condition

d (Tx, Ty) ≤ α (d (x, y) , d (x, Tx) , d (y, Ty))

for all x, y ∈ X and for some α in A.
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Following the definition of A-contraction mappping on a metric space (see [10]- [11]) and over a
2-metric space (see [12]), we now define A-contractions on an S-metric space and prove fixed point
theorem on it.

Definition 2.2. A self map T on an S-metric space X is said to be A-contraction if it satisfies the
condition

S (Tx, Tx, Ty) ≤ α (S (x, x, y) , S (x, x, Tx) , S (y, y, Ty))

for all x, y ∈ X and for some α in A.

Now we state our main theorem.

Theorem 2.3. Let (X,S) be a complete S-metric space and let T be A-contraction mapping on X.
Then, T has a unique fixed point in X.

Proof. Let x0 be an arbitrary element of X and consider the sequence {xn} of iterates xn+1 = Txn,
n ∈ N . Now

S (x1, x1, x2) = S (Tx0, Tx0, Tx1) ≤ α (S (x0, x0, x1) , S (x0, x0, x1) , S (x1, x1, x2))

implies

S (x1, x1, x2) ≤ kS (x0, x0, x1) (1)

for some k ∈ [0, 1) because α ∈ A. By easy iteration one can check that

S (xn, xn, xn+1) ≤ knS (x0, x0, x1) . (2)

For all m > n and by using Lemma 1.3 and (S2) we get

S (xn, xn, xm) ≤ 2
m−2∑
i=n

S (xi, xi, xi+1) + S (xm−1, xm−1, xm)

≤ 2

m−2∑
i=n

kiS (x0, x0, x1) + km−1S (x0, x0, x1)

≤ 2[kn + kn+1 + ...km−1]S (x0, x0, x1)

≤ 2kn

1− k
S (x0, x0, x1) .

Taking limit as m,n → ∞ we get S (xn, xn, xm) → 0. This proves that the sequence {xn} is Cauchy
and by completeness of X, xn → z for some z ∈ X as n→∞. Now,

S(z, z, Tz) ≤ 2S(z, z, xn+1) + S(Tz, Tz, xn+1)

= 2S(xn+1, xn+1, z) + S(Txn, Txn, T z)

≤ 2S(xn+1, xn+1, z) + α(S(xn, xn, z), S(xn, xn, Txn), S(z, z, Tz))

= 2S(xn+1, xn+1, z) + α(S(xn, xn, z), S(xn, xn, xn+1), S(z, z, Tz)).

Therefore by taking limit as n → ∞ we get S(z, z, Tz) ≤ α(0, 0, S(z, z, Tz)), which implies that
S(z, z, Tz) = 0. So z is a fixed point of T . For uniqueness, let u, v ∈ X be two distinct fixed points of
T . So by definition of A-contraction,

S(u, u, v) = S(Tu, Tu, Tv) ≤ α (S (u, u, v) , S (u, u, Tu) , S (v, v, Tv))

= α (S (u, u, v) , S (u, u, u) , S (v, v, v))

= α (S (u, u, v) , 0, 0) .

Then by axiom A2 of α we have u = v and so the fixed point is unique.

Now we give an example in support of the Theorem 2.3.
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Example 2.4. First we take a function α : R3
+ → R+ as α(x, y, z) = β.(y + z), where 0 < β < 1

2 ,
which satisfies the property (A1) obviously. Now

a ≤ α(a, b, b) = β.(b+ b) = 2β.b implies a ≤ k.b where k = 2β < 1,

a ≤ α(b, a, b) = β.(a+ b) implies a ≤ k.b where k =
β

1− β
< 1 and also

a ≤ α(b, b, a) = β.(b+ a) = implies a ≤ k.b where k =
β

1− β
< 1.

So α satisfies the property (A2). Now Let X = [0, 1] and S(x, y, z) = |x− z|+ |y − z|. Clearly (X,S)
is a complete S metric space. Let T : X → X be given by

T (x) =

{
x
4 , for x ∈ [0, 12)
x
5 , for x ∈ (12 , 1].

One can check that T is an A-contraction on X = [0, 1] and satisfies all the conditions of the Theorem
2.3. Also T has a unique fixed point at x = 0.

Now we show that the above Theorem 2.3 holds for A-contraction mapping, in absence of which,
the map T fails to produce any fixed point in the underlying space though other conditions remain
invariant.

Example 2.5. Let X = [0, 1] ⊂ R and S(x, y, z) = |x− z| + |y − z|. Then, (X,S) is a complete
S metric space. Take a function α as defined in the previous Example 2.4. Then, α satisfies the
properties (A1) and (A2). If we assume T : X → X as

T (x) =

{
1, for x ∈ [0, 1)
1
3 , for x = 1.

Then T is a self mapping on a complete S-metric space [0, 1]. Next let x = 1
2 and y = 1, then it is easy

to check that β > 1
2 , which leads to the conclusion, that T is not an A-contraction mapping. Also, T

has no fixed point in X though other conditions of the Theorem 2.3 are being satisfied.

Theorem 2.6. Let (X,S) be a complete S-metric space and let T1 and T2 satisfy

S (T1x, T1x, T2y) ≤ α (S (x, x, y) , S (x, x, T1x) , S (y, y, T2y))

for all x, y ∈ X and for some α in A. Then T1 and T2 have a unique common fixed point in X.

Proof. Let us construct the following sequence in X.

xn =

{
T1xn−1, whenever n ∈ N is odd and

T2xn−1, whenever n ∈ N is even

Then

S(x1, x1, x2) = S(T1x0, T1x0, T2x1)

≤ α(S(x0, x0, x1), S(x0, x0, T1x0), S(x1, x1, T2x1))

= α(S(x0, x0, x1), S(x0, x0, x1), S(x1, x1, x2)) (3)

and therefore from the property of α we have S(x1, x1, x2) ≤ kS(x0, x0, x1). Also, we see that

S(x2, x2, x3) = S(x3, x3, x2) = S(T1x2, T1x2, T2x1)

≤ α(S(x2, x2, x1), S(x2, x2, T1x2), S(x1, x1, T2x1))

= α(S(x1, x1, x2), S(x2, x2, x3), S(x1, x1, x2))

(4)
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and we get from the property of α that S(x2, x2, x3) ≤ kS(x1, x1, x2) ≤ k2S(x0, x0, x1). Proceeding
in a similar fashion, we see that S(xn, xn, xn+1) ≤ kS(xn−1, xn−1, xn) ≤ knS(x0, x0, x1) for all n ∈ N.
Then it is a routine calculation to check that {xn} is Cauchy and since X is complete, there exists
some z ∈ X such that xn → z as n→∞. Now,

S(z, z, T1z) ≤ 2S(z, z, x2n) + S(T1z, T1z, x2n)

= 2S(z, z, x2n) + S(T1z, T1z, T2x2n−1)

≤ 2S(z, z, x2n) + α(S(x2n−1, x2n−1, z), S(z, z, T1z),

S(x2n−1, x2n−1, x2n)). (5)

Since α is continuous, taking n tending to infinity we get S(z, z, T1z) ≤ α(0, S(z, z, T1z), 0) implying
that S(z, z, T1z) = 0 i.e. T1z = z. In a similar way we can show that T2z = z and therefore z is a
common fixed point of T1 and T2. Uniqueness of fixed point is obvious.

3. Result in integral setting

In 2002, Branciari [13] first analyzed the existence of fixed point of a contractive mapping of integral
type defined over a complete meric space (X, d).

Theorem 3.1. [13] Let (X, d) be a complete metric space, c ∈ (0, 1) and let f : X → X be a mapping
such that for each x, y ∈ X, ∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ d(x,y)

0
ϕ(t)dt (6)

where ϕ : [0,+∞) → [0,+∞) is a Lesbesgue-integrable mapping which is summable (i.e. with finite
integral) on each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ ε
0 ϕ(t)dt > 0,

then f has a unique fixed point a ∈ X such that for each x ∈ X, lim
n→∞

fnx = a.

Rhoades [15] extended the result of Branciari by replacing the condition (6) by the following∫ d(fx,fy)

0
ϕ(t)dt ≤ c

∫ max{d(x,y),d(x,fx),d(y,fy), [d(x,fy)+d(y,fx)]
2

}

0
ϕ(t)dt. (7)

Since then numerous generalizations have been made in this direction (see [15], [14] for details).

Motivated by these results we apply and prove the analogue of A-contraction mapping over a complete
S-metric space.

An important definition is needed to state our theorem in this section.

Definition 1.2. (Sub additivity)
u : [0,+∞)→ [0,+∞) is sub additive on each [a, b] ⊂ [0,+∞) if∫ a+b

0
u(t)dt ≤

∫ a

0
u(t)dt+

∫ b

0
u(t)dt. (8)

Now we state our result as following.

Theorem 3.2. Let T be a self-mapping of a complete S-metric space (X,S) satisfying the following
condition:∫ S(Tx,Tx,Ty)

0
ϕ(t)dt ≤ α

(∫ S(x,x,y)

0
ϕ(t)dt,

∫ S(x,x,Tx)

0
ϕ(t)dt,

∫ S(y,y,Ty)

0
ϕ(t)dt

)
(9)

for each x, y ∈ X with some α ∈ A, where ϕ : [0,+∞) → [0,+∞) is a Lesbesgue-integrable mapping
which is summable (i.e. with finite integral), sub additive on each [a, b] ⊂ [0,+∞), nonnegative, and
such that

for each ε > 0,

∫ ε

0
ϕ(t)dt > 0. (10)

Then T has a unique fixed point z ∈ X and for each x ∈ X, lim
n
Tnx = z.
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Proof. Let x0 be an arbitrary element of X and, for brevity, consider xn+1 = Txn. then for each
integer n ≥ 1, from (9) we get,∫ S(xn,xn,xn+1)

0
ϕ(t)dt

=

∫ S(Txn−1,Txn−1,Txn)

0
ϕ(t)dt

≤ α

(∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn−1,xn−1,Txn−1)

0
ϕ(t)dt,

∫ S(xn,xn,Txn)

0
ϕ(t)dt

)

≤ α

(∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt,

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

)
.

Then by the axiom A2 of function α,∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ k

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt (11)

for some k ∈ [0, 1) as α ∈ A.
In similar fashion, one can obtain∫ S(xn,xn,xn+1)

0
ϕ(t)dt ≤ k

∫ S(xn−1,xn−1,xn)

0
ϕ(t)dt

≤ k2
∫ S(xn−2,xn−2,xn−1)

0
ϕ(t)dt

≤ ...

≤ kn
∫ S(x0,x0,x1)

0
ϕ(t)dt. (12)

Now for m > n,

S (xn, xn, xm) ≤ 2
m−2∑
i=n

S (xi, xi, xi+1) + S (xm−1, xm−1, xm)

≤ 2
m−1∑
i=n

S (xi, xi, xi+1) .

Now applying subadditivity of ϕ(t)∫ S(xn,xn,xm)

0
ϕ(t)dt ≤

∫ 2S(xn,xn,xn+1)

0
ϕ(t)dt+

∫ 2S(xn+1,xn+1,xn+2)

0
ϕ(t)dt+ ...

+

∫ 2S(xm−2,xm−2,xm−1)

0
ϕ(t)dt+

∫ 2S(xm−1,xm−1,xm)

0
ϕ(t)dt

≤ [kn + kn+1 + ...+ km−2 + km−1]

∫ 2S(x0,x0,x1)

0
ϕ(t)dt

= kn[1 + k + ...+ km−n−2 + km−n−1]

∫ 2S(x0,x0,x1)

0
ϕ(t)dt

≤ kn

1− k

∫ 2S(x0,x0,x1)

0
ϕ(t)dt.

Now taking limit as m,n→∞, we get lim
m,n→∞

∫ S(xn,xn,xm)

0
ϕ(t)dt = 0 which, from (10) implies that

lim
m,n

S(xn, xn, xm) = 0.
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Therefore, {xn} is Cauchy, hence convergent. Call the limit z.
From (9) we get∫ S(Tz,Tz,xn+1)

0
ϕ(t)dt =

∫ S(Tz,Tz,Txn)

0
ϕ(t)dt

≤ α

(∫ S(z,z,xn)

0
ϕ(t)dt,

∫ S(z,z,Tz)

0
ϕ(t)dt,

∫ S(xn,xn,xn+1)

0
ϕ(t)dt

)
.

Taking limit as n→∞, we get∫ S(Tz,Tz,z)

0
ϕ(t)dt ≤ α

(
0,

∫ S(z,z,Tz)

0
ϕ(t)dt, 0

)
.

So by the axiom A2 of function α,∫ S(Tz,Tz,z)

0
ϕ(t)dt = k.0 = 0

which, from (10), implies that S(Tz, Tz, z) = 0 or, Tz = z.
Next suppose that w(6= z) be another fixed point of T . Then from (9) we have∫ S(z,z,w)

0
ϕ(t)dt =

∫ S(Tz,Tz,Tw)

0
ϕ(t)dt

≤ α

(∫ S(z,z,w)

0
ϕ(t)dt,

∫ S(z,z,Tz)

0
ϕ(t)dt,

∫ S(w,w,Tw)

0
ϕ(t)dt

)

= α

(∫ S(z,z,w)

0
ϕ(t)dt,

∫ S(z,z,z)

0
ϕ(t)dt,

∫ S(w,w,w)

0
ϕ(t)dt

)

= α

(∫ S(z,z,w)

0
ϕ(t)dt, 0, 0

)
.

So by the axiom A2 of function α, ∫ S(z,z,w)

0
ϕ(t)dt = 0

which, from (10), implies that S(z, z, w) = 0 or, z = w and so the fixed point is unique.

Remark 3.3. On setting ϕ(t) = 1 over R+, the contractive condition of integral type transforms into
a general contractive condition not involving integrals.

4. An application to homotopy

In this section, we obtain a homotopy result as an application of Theorem 2.3. For this purpose first
we give the definition of homotopy between two functions.

Definition 4.1. [16] Let X,Y be two topological spaces, and let G,S : X → Y be two continuous
mappings. Then, a homotopy from G to S is a continuous function H : X × [0, 1] → Y such that
H(x, 0) = Gx and H(x, 1) = Sx, for all x ∈ X. Also, G and S are called homotopic mappings.

Theorem 4.2. Let X be a complete S−metric space and U be an open and V be a closed subset of
X with U ⊂ V . Let the operator F : V × [0, 1]→ X satisfies the following conditions:
1) x 6= F (x, t) for every x ∈ V \U and for any t ∈ [0, 1],
2) There exists some α ∈ A such that

S(F (x, t), F (x, t), F (y, t)) ≤ α(S(x, x, y), S(x, x, F (x, t)), S(y, y, F (y, t))) (13)
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for all t ∈ [0, 1] and x, y ∈ V,
3) There exists a continuous function f : [0, 1]→ R such that

S(F (x, t), F (x, t), F (x, s))) ≤ |f(t)− f(s)| (14)

∀ t, s ∈ [0, 1] and for every x ∈ V,
4) For any r > 0 we have α(a, b, 0) ≤ δr < r whenever a ≤ r or b ≤ r, where 0 < δ < 1.
Then F (., 0) has a fixed point if and only if F (., 1) has a fixed point.

Proof. Let us define G = {t ∈ [0, 1] : F (x, t) = x for some x ∈ U}.
First let us assume that F (., 0) has a fixed point. Then F (x, 0) = x for some x ∈ U since (1) holds.
Then 0 ∈ G and thus G is non-empty. We will show that G is a clopen subset of [0, 1], then from
connectedness of [0, 1] we can easily say that G = [0, 1].
First we prove thatG is open. let t0 ∈ G then there exists x0 ∈ U such that F (x0, t0) = x0 [as (1) holds].
Therefore there exists r > 0 such that B(x0, r) ⊂ U , where B(x0, r) = {x ∈ X : S(x, x, x0) < r}.
Now let, x ∈ B(x0, r) = {x ∈ X : S(x, x, x0) ≤ r} and we choose

ε =
1

2

[
r − sup

x∈B(x0,r)

α (S(x, x, x0), S(x, x, F (x, t0)), 0)

]
.

Therefore ε > 0 by condition (4). Since f is continuous on [0, 1], there exists η(ε) > 0 such that
|f(t)− f(t0)| < ε whenever t ∈ (t0 − η(ε), t0 + η(ε)) ⊂ [0, 1]. Now,

S(F (x, t), F (x, t), x0) = S(F (x, t), F (x, t), F (x0, t0))

≤ 2S(F (x, t), F (x, t), F (x, t0)) + S(F (x0, t0), F (x0, t0),

F (x, t0))

= 2S(F (x, t), F (x, t), F (x, t0)) + S(F (x, t0), F (x, t0),

F (x0, t0))

≤ 2|f(t)− f(t0)|+ α(S(x, x, x0), S(x, x, F (x, t0)),

S(x0, x0, F (x0, t0)))

= 2|f(t)− f(t0)|+ α(S(x, x, x0), S(x, x, F (x, t0)), 0).

(15)

Therefore, whenever t ∈ (t0 − η(ε), t0 + η(ε)) ⊂ [0, 1], we get S(F (x, t), F (x, t), x0) ≤ r implying that
F (x, t) ∈ B(x0, r). Therefore F (., t) : B(x0, r)→ B(x0, r) for every fixed t ∈ (t0−η(ε), t0 +η(ε)). Now
since F (., t) satisfies all the conditions of Theorem 2.3 we have, F (., t) has a fixed point in B(x0, r) ⊂ V,
but it must be in U as condition (1) holds. Therefore t ∈ G for every t ∈ (t0 − η(ε), t0 + η(ε)). Hence
(t0 − η(ε), t0 + η(ε)) ⊂ G. So G is open in [0, 1].
Now we show that G is closed also. Let {tn} ⊂ G such that tn → t∗ ∈ [0, 1] as n → ∞. Then there
exists xn ∈ U such that xn = F (xn, tn) for all n ∈ N. Moreover we have,

S(xn, xn, xm) = S(F (xn, tn), F (xn, tn), F (xm, tm))

≤ 2S(F (xn, tn), F (xn, tn), F (xn, tm)) + S(F (xn, tm), F (xn, tm),

F (xm, tm))

≤ 2|f(tn)− f(tm)|+ α(S(xn, xn, xm), S(xn, xn, F (xn, tm)),

S(xm, xm, F (xm, tm))

= 2|f(tn)− f(tm)|+ α(S(xn, xn, xm), S(xn, xn, F (xn, tm)), 0)

≤ 2|f(tn)− f(tm)|+ δS(xn, xn, xm) (16)

which implies S(xn, xn, xm) ≤ 2
1−δ |f(tn) − f(tm)| → 0 as n,m → ∞. Therefore {xn} is Cauchy in X

and since X is complete thus it converges to some x∗ ∈ V . Now we show that F (x∗, t∗) = x∗. Here
we see that,

S(xn, xn, F (x∗, t∗)) = S(F (xn, tn), F (xn, tn), F (x∗, t∗))

≤ 2S(F (xn, tn), F (xn, tn), F (xn, t
∗))

+S(F (xn, t
∗), F (xn, t

∗), F (x∗, t∗))

≤ 2|f(tn)− f(t∗)|+ α(S(xn, xn, x
∗), S(xn, xn, F (xn, t

∗)),

S(x∗, x∗, F (x∗, t∗))).
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Now S(xn, xn, F (xn, t
∗)) ≤ |f(tn)− f(t∗)| → 0 as n→∞. Thus using continuity of α we get,

S(x∗, x∗, F (x∗, t∗)) ≤ α(0, 0, S(x∗, x∗, F (x∗, t∗))) (17)

and therefore by the property of α we have, S(x∗, x∗, F (x∗, t∗)) ≤ k.0 = 0 implying that S(x∗, x∗, F (x∗, t∗))
= 0 that is F (x∗, t∗) = x∗. Therefore by condition (1) we get x∗ ∈ U and so t∗ ∈ G. Hence G is closed
also and so G = [0, 1] that is F (., 1) has also a fixed point. The converse part can be shown in a
similar way.
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Abstract − There are various types of nano generalization of continuous function
in the development of nano topology. In this paper, we obtain a decomposition of
nano continuity using a nano generalized continuity called nano g∗-continuity in nano
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1. Introduction

Different types of nano generalizations of continuous function were introduced and studied by various
authors in the recent development of nano topology. The decomposition of nano continuity is one of
the many problems in nano topology. Recently, Ganesan et. al. [2] obtained on some decomposition
of nano continuity. In this paper, we obtain a decomposition of nano continuity in nano topological
spaces using nano g∗-continuity in nano topological spaces.

2. Preliminary

Definition 2.1. [3] Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U named as the indiscernibility relation. Elements belonging to the same
equivalence class are said to be indiscernible with one another. The pair (U,R) is said to be the
approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain
classified as X with respect to R and it is denoted by LR(X).
i.e., LR(X) =

⋃
x∈U{R(X) : R(X) ⊆ X} where R(x) denotes the equivalence class determined

by X.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly
classified as X with respect to R and it is denoted by UR(X).
i.e., UR(X) =

⋃
x∈U{R(X) : R(X)∩X 6= ∅}

3. The boundary region of X with respect to R is the set of all objects, which can be neither in
nor as not-X with respect to R and it is denoted by BR(X).
i.e., BR(X) = UR(X)− LR(X).

1sgsgsgsgsg77@gmail.com (Corresponding Author);
1PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil

Nadu, India. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India)
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Proposition 2.2. [3] If (U,R) is an approximation space and X,Y ⊆ U , then

1. LR(X) ⊆X⊆ UR(X).

2. LR(∅) = UR(∅) = ∅, LR(U) = UR(U) = U .

3. UR(X ∪ Y ) = UR(X) ∪ UR(Y ).

4. UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y ).

5. LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y ).

6. LR(X ∩ Y ) = LR(X) ∩ LR(Y ).

7. LR(X) ⊆ LR(Y ) and UR(X) ⊆ UR(Y ) whenever X ⊆ Y .

8. UR(Xc) = [LR((X)]c and LR(Xc = [UR(X)]c.

9. UR(UR(X)) = LR(UR(X)) = UR(X).

10. LR(LR(X)) = UR(LR(X)) = LR(X).

Definition 2.3. [3] Let U be an universe, R be an equivalence relation on U and τR(X) = {U, ∅, LR(X),
UR(X), BR(X)}, where X ⊆ U . Then, by proposition 2.2, τR(X) satisfies the following axioms

1. U, ∅ ∈ τR(X).

2. The union of the elements of any sub-collection of τR(X) is in τR(X).

3. The intersection of the elements of any finite sub collection of τR(X) is in τR(X).

Then, τR(X) is called the nano topology on U with respect to X.

The space (K, τR(X)) is the nano topological space. The elements of are called nano open sets.

Definition 2.4. [3] If (U, τR(X)) is the nano topological space with respect to X where X ⊆ U and
if A ⊆ U , then

1. The nano interior of the set M is defined as the union of all nano open subsets contained in A
and it is denoted by NInt(A). That is, NInt(A) is the largest nano open subset of A.

2. The nano closure of the set A is defined as the intersection of all nano closed sets containing A
and it is denoted by NCl(A). That is, NCl(A) is the smallest nano closed set containing A.

Definition 2.5. Let (U, τR(X)) be a nano topological space. A subset A of (U, τR(X)) is called

1. Nano generalised closed (briefly, Ng-closed) set [1] if Ncl(A) ⊆ V whenever A ⊆ V and V is
nano open in (U, τR(X)). The complement of Ng-closed set is called Ng-open.

2. Nano generalised star closed (briefly, Ng∗-closed) set [5] Ncl(A) ⊆ V whenever A ⊆ V and V is
Ng-open in (U, τR(X)). The complement of Ng∗-closed set is called Ng∗-open.

Definition 2.6. A function f : (U, τR(X))→ (V, τ ′R(Y )) is called:

1. nano continuous [4] if the inverse image of every nano closed set in V is nano closed in U .

2. nano g∗-continuous [6] if the inverse image of every nano closed set in V is Ng∗-closed in U .

Proposition 2.7. [5] Every nano closed set is Ng∗-closed set but not conversely.

Proposition 2.8. [6] Every nano continuous function is nano g∗-continuous but not conversely.
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3.Decomposition of nano continuity

In this section, we obtain a decomposition of nano continuity in nano topological spaces by using nano
g∗-continuity.

To obtain a decomposition of nano continuity, we first introduce the notion of Nglc∗-continuous
function in nano topological spaces and prove that a function is nano continuous if and only if it is
both nano g∗-continuous and Nglc∗-continuous.

Definition 3.1. A subset A of a space (U, τR(X)) is said to be Nglc∗-set if A = M ∩O, where M is
Ng-open set and O is nano closed in (U, τR(X)).

Example 3.2. Let U = {a, b, c}, with U/R = {{a}, {b, c}} and X = {a}. Then, the nano topol-
ogy τR(X) = {U, ∅, {a}}. Then, nano closed are U , ∅, and {b, c}. Then, Nglc∗(U, τR(X)) =
{U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Here, the set {c} is Nglc∗-set in (U, τR(X)).

Proposition 3.3. Every nano closed set is Nglc∗-set but not conversely.

Proof. It is follows from Definition 3.1.

Example 3.4. Let U = {a, b, c} with U/R = {{b}, {a, c}} and X = {b}. Then, nano topol-
ogy τR(X) = {U, ∅, {b}}. The nano closed sets are U , ∅, and {a, c}. Then, Nglc∗(U, τR(X)) =
{U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Here, the set {a, b} is Nglc∗-set but not nano closed in
(U, τR(X)).

Remark 3.5. Ng∗-closed sets and Nglc∗-sets are independent of each other.

Example 3.6. Let U = {a, b, c} with U/R = {{c}, {a, b}, {b, a}} and X = {a, b}. Then, nano
topology τR(X) = {U, ∅, {a, b}}. The nano closed sets are U , ∅, and {c}. Then, Ng∗(U, τR(X)) =
{U, ∅, {c}, {a, c}, {b, c}} and Nglc∗(U, τR(X)) = {U, ∅, {a}, {b}, {c}, {a, b}}. Here, the set {a, c} is an
Ng∗-closed but not Nglc∗-set in (U, τR(X)).

Example 3.7. Let U = {a, b, c} with U/R = {{a}, {b, c}} and X = {a, c}. Then, nano topology
τR(X) = {U, ∅, {a}, {b, c}}. The nano closed sets are U , ∅, {a}, and {b, c}. Then, Ng∗(U, τR(X)) =
{U, ∅, {a}, {b, c}} and Nglc∗(U, τR(X)) = {U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Here, the set {a, b}
is an Nglc∗-set but not Ng∗-closed in (U, τR(X)).

Proposition 3.8. Let (U, τR(X)) be a nano topological space. Then, a subset A of (U, τR(X)) is
nano closed if and only if it is both Ng∗-closed and Nglc∗-set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both Ng∗-closed and Nglc∗-
set. Then, A = M ∩O, where M is Ng-open set and O is nano closed set in (U, τR(X))). Therefore,
A ⊆M and A ⊆ O and so by hypothesis, Ncl(A) ⊆M and Ncl(A) ⊆ O. Thus, Ncl(A) ⊆M ∩O = A
and hence Ncl(A) = A i.e., A is nano closed set in (U, τR(X)).

Definition 3.9. Let f : (U, τR(X)) → (V, τ ′R(Y )) is called Nglc∗-continuous if for each nano closed
set B of (V, τ ′R(Y )), f−1(B) is Nglc∗-set of (U, τR(X)).

Example 3.10. Let U = {a, b, c} with U/R = {{c}, {a, b}} and X = {c}. Then, nano topol-
ogy τR(X) = {U, ∅, {c}}. Then, nano closed sets are U , ∅, and {a, b}. Then, Nglc∗(U, τR(X)) =
{U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Let V = {a, b, v} with V/R′ = {{b}, {a, c}} and Y = {a, b}.
Then, the nano topology τ ′R(Y ) = {V, ∅, {b}, {a, c}}. The nano closed sets are V , ∅, {b}, and {a, c}.
Let f : (U, τR(X))→ (V, τ ′R(Y )) be the identity function. Then, f is Nglc∗-continuous function. Since
for the nano closed set {a, c} in (V, τ ′R(Y )), f−1({a, c}) = {a, c}, which is Nglc∗ set in (U, τR(X)).

Proposition 3.11. Every nano continuous function is Nglc∗-continuous but not conversely..

Example 3.12. Let U = {a, b, c} with U/R = {{a}, {b, c}} and X = {a}. Then, nano topol-
ogy τR(X) = {U, ∅, {a}}. The nano closed sets are U , ∅, and {b, c}. Then, Nglc∗(U, τR(X)) =
{U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Let V = {a, b, c} with V/R′ = {{a}, {b, c}} and Y = {a, c}.
Then, nano topology τ ′R(Y ) = {V, ∅, {a}, {b, c}}. The nano closed sets are V , ∅, {a}, and {b, c}. Let
f : (U, τR(X))→ (V, τ ′R(Y )) be the identity function. Then, f is Nglc∗-continuous function. Since for
the nano closed set {a} in (V, τ ′R(Y )), f−1({a}) = {a}, which is not nano closed in (U, τR(X)), f is
not nano continuous.
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Remark 3.13. Nano g∗-continuity and Nglc∗-continuity are independent of each other.

Example 3.14. Let U = {a, b, c} with U/R = {{c}, {a, b}, {b, a}} and X = {a, b}. Then, nano
topology τR(X) = {U, ∅, {a, b}}. The nano closed sets are U , ∅, and {c}. Then, Ng∗(U, τR(X)) =
{U, ∅, {c}, {a, c}, {b, c}} and Nglc∗(U, τR(X)) = {U, ∅, {a}, {b}, {c}, {a, b}}. Let V = {a, b, c} with
V/R′ = {{a}, {b, c}} and Y = {a}. Then, nano topology τ ′R(Y ) = {V, ∅, {a}}. The nano closed sets
are V , ∅, and {b, c}. Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then, f is nano
g∗-continuous function. Since for the nano closed set {b, c} in (V, τ ′R(Y )), f−1({b, c}) = {b, c}, which
is not Nglc∗-set in (U, τR(X)), f is not Nglc∗-continuous.

Example 3.15. Let U = {a, b, c} with U/R = {{b}, {a, c}} and X = {b}. Then, nano topol-
ogy τR(X) = {U, ∅, {b}}. The nano closed sets are U , ∅, and {a, c}. Then, Ng∗(U, τR(X)) =
{U, ∅, {a, c}} and Nglc∗(U, τR(X)) = {U, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Let V = {a, b, c} with
V/R′ = {{a}, {b, c}, {c, b}} and Y = {b, c}. Then, nano topology τ ′R(Y ) = {V, ∅, {b, c}}. The nano
closed sets are V , ∅, and {a}. Let f : (U, τR(X)) → (V, τ ′R(Y )) be the identity function. Then, f is
Nglc∗-continuous function. Since for the nano closed set {a} in (V, τ ′R(Y )), f−1({a}) = {a}, which is
not Ng∗-closed set in (U, τR(X)), f is not nano g∗-continuous.

We have the following decomposition for nano continuity

Theorem 3.16. A function f : (U, τR(X)) → (V, τ ′R(Y )) is nano continuous if and only if it is both
nano g∗-continuous and Nglc∗-continuous.

Proof. Assume that f is nano continuous. Then, by Proposition 2.8 and Proposition 3.11, f is both
nano g∗-continuous and Nglc∗-continuous.

Conversely, assume that f is both nano g∗-continuous and Nglc∗-continuous. Let B be a nano
closed subset of (V, τ ′R(Y )). Then, f−1(B) is both Ng∗-closed and Nglc∗-set. By Proposition 3.8,
f−1(B) is a nano closed set in (U, τR(X)) and so f is nano continuous.
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Abstract − The purpose of this paper is to introduce a new class of closed set called
g*ωα-closed sets in digital topology. We establish a relationship between closed and
g*ωα-closed sets in digital topology. Also, we obtained the properties of g*ωα-closed
sets in digital plane.
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1. Introduction

In the literature, the concept of Digital Topology was first introduced and studied in the late 60’s by
the computer image analysis researcher Azriel Rosenfeld [1]. The digital line, the digital plane and
the three dimensional digital spaces are of great importance in the study of applications of point set
topology to computer graphics. Digital Topology consist in providing algorithmic tools for pattern
recognition, image analysis and image processing using a discrete formalism for geometrical objects
and it is applied in image processing.

First we recall the related definitions and some properties of the digital plane. The digital line or
called Khalimsky Line is the set of integers Z, equipped with the topology K having 2n+1, 2n, 2n-1
: n ∈ Z as a subbas and is denoted by (Z, K). Thus, a subset U is open in (Z, K) if and only if,
whenever x ∈ U is an even integer, then x-1, x+1 ∈ U. Let (Z2, K2) be the topological product of
two digital lines (Z, K), where Z2 = Z × Z and K2 = K × K. This space is called the digital plane
( [2], [3], [4], [5], [6], [7]). For each point x ∈ Z2, there exists a smallest open set containing x say U(x).
For the case of x = (2n+1, 2m+1), U(x) = 2n+1 × 2m+1 ; for the case of x = (2n, 2m), U(x) = 2n-1,
2n, 2n+1 × 2m-1, 2m, 2m+1 ; for the case of x = (2n, 2m+1), U(x) = 2n-1, 2n, 2n+1 × 2m+1 ; for
the case of x = (2n+1, 2m), U(x) = 2n+1 × 2m-1, 2m, 2m+1 where n, m ∈ Z.

For a subset E of (Z2, K2), we have the following three subsets as follows:
EF = x ∈ E: x is closed in (Z2, K2) ; EK2 = x ∈ E: x is open in (Z2, K2) ; Emix = E \ (EF ∪

EK2). Then it is shown that EF = (2n, 2m) ∈ E: n, m ∈ Z ; EK2 = (2n+1, 2m+1) ∈ E: n, m ∈ Z and
Emix = (2n, 2m+1) ∈ E: n, m ∈ Z ∪ (2n+1, 2m) ∈ E : n, m ∈ Z.

In the digital plane if the corner points of a digital plane are even then it is called closed set. If
the corner points of a digital plane are odd it is called an open set.
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2. Preliminaries

Definition 2.1. A subset A of a topological space X is called a

(i) g*ωα-closed [8] if cl(A) ⊆ U whenever A ⊆ U and U is ωα-open in X.

(ii) g*ωα-open [8] if U ⊆ int(A) whenever U ⊆ A and U is ωα-closed in X.

(iii) ωα-closed [9] if αcl(A) ⊆ U whenever A ⊆ U and U is ω-open in X.

Definition 2.2. A subset A of a topological space X is called a

(i) Tg*ωα-space [10] if every g*ωα-closed set is closed.

(ii) gωαTgωα-space [10] if every gωα-closed set is g*ωα-closed.

(iii) Tgωα-space [11] if every gωα-closed set is closed.

3. g*ωα-Closed Sets in Digital Plane

Lemma 3.1. [4] Let (Z2, K2) be a digital plane. Then the following properties hold:

(i) if m is even point, that is m = (2n, 2m), then cl( 2n, 2m ) = 2n, 2m

(ii) if m is odd point, that is m = (2n+1, 2m+1), then
cl( 2n+1, 2m+1 ) = 2n, 2n+1, 2n+2 × 2m, 2m+1, 2m+2

(iii) if m is mixed point, that is m = (2n+1, 2m) or (2n, 2m+1), then
cl( 2n, 2m+1 ) = 2n × 2m ,2m+1, 2m+2
cl( 2n+1, 2m ) = 2n, 2n+1, 2n+2 × 2m

Theorem 3.2. Every closed in (Z2, K2) is g*ωα-closed in (Z2, K2).

Proof. Let A be a subset of (Z2, K2). Let us consider the following three cases:

(i) The set A contains all even points (EF ⊆ A)
that is A = (2n, 2m), then U(A) = { 2n-1, 2n, 2n+1 } × { 2m-1, 2m, 2m+1 }. Let A ⊆ U and
U is ωα-open (Z2, K2). Then by lemma 3.1, cl(A) = cl({ 2n, 2m }) = { 2n, 2m } = A,
that is cl(A) = A.
This implies cl(A) = A ⊆ U. Hence A is g*ωα-closed in (Z2, K2).

(ii) The set A contains all even, odd and mixed points (Emix ∪ EF ∪ EK2 ⊆ A)
Let A ={ 2n, 2n±1, 2n±2 . . . 2n±q ± 2m, 2m±1, 2m±2 . . . 2m±q} where n, m and q are even
integer.
Then U = {2n, 2n±1, 2n±2 . . . 2n±q, 2n±q±1 } × { 2m, 2m±1, 2m±2 . . . 2m±q, 2m±q±1}.
Let A ⊆ U, where U is ωα-open in (Z2, K2). Since A is closed, cl(A) = A. Therefore cl(A) = A
⊆ U. Therefore A is g*ωα-closed in (Z2, K2).

(iii) A contains all even and mixed points (EF ∪ Emix ⊆ A) Let A = { 2n } × { 2m, 2m±1, 2m±2
. . . 2m±q }, where n, m, q are even integers. Then U = { 2n, 2n±1, 2n±2 . . . 2n±q, 2n±q±1
} × { 2m, 2m±1, 2m±2 . . . 2m±q, 2m±q±1 } for any n, m, q are even integers. Let A ⊆ U,
where U is ωα-open in (Z2, K2). Since A is closed, cl(A) = A ⊆ U, that is cl(A) ⊆ U. Therefore
A is g*ωα-closed set in (Z2, K2). Similarly, A is g*ωα-closed by considering A = { 2n, 2n±1,
2n±2 . . . 2n±q } × {2m }.

Remark 3.3. The following example shows that the converse is not true in general.

Example 3.4. Let A = (2,2), (2,3), (2,4), (3,3), (3,4), (4,4) and U = {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}
Then cl(A) = {2, 3, 4} × {2, 3, 4} , that is cl(A) ⊆ U. Therefore A is g*ωα-closed in (Z2, K2). But
cl(A) = A, hence A is not closed in (Z2, K2).
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Theorem 3.5. Every open set in (Z2, K2) is g*ωα-open in (Z2, K2).

Proof. Let us consider the following three cases:

Case (i): A contains all odd points (EK2 ⊆ A). Let A = (2n+1, 2m+1) and U = ϕ. Assume that U⊆ A,
where A is ωα-closed in (Z2, K2). Then U ⊆ A = int(A), as A is open in (Z2, K2). Therefore U
⊆ int(A) and U is ωα-closed in (Z2, K2). Hence A is g*ωα-open in (Z2, K2).

Case (ii): A contains all even, odd and mixed points (Emix ∪ EK2 ∪ EF ⊆ A) Let A = { 2n, 2n±1, 2n±2
. . . 2n±q } × { 2m, 2m±1, 2m±2 . . . 2m±q }, for any n, m, q is odd integers and U = { 2n,
2n±1, 2n±2 . . . 2n±q, 2n±(q-1) } × { 2m, 2m±1, 2m±2 . . . 2m±q, 2m±(q-1) }. Let A ⊆ U,
where U is ωα-closed in (Z2, K2), that is U ⊆ int(A) = A, as A is open in (Z2, K2). Therefore
U ⊆ int(A) and hence A is g*ωα-open in (Z2, K2).

Case (iii): A contains odd and mixed points ( Emix ∪ EK2 ∪ EF ⊆ A) A contains odd and mixed points
(EK2 ∪ Emix ⊆ A) Let A = {2n+1} × { 2m, 2m±1, 2m±2 . . . 2m±q} and U = ϕ. Let U ⊆
A, where U is ωα-closed in (Z2, K2). That is U ⊆ A = int(A), because A is open in (Z2, K2).
Therefore U ⊆ int(A) and hence A is g*ωα-open in (Z2, K2).

Example 3.6. The converse of the above theorem is not true follows from the example 3.4.

Theorem 3.7. If A is g*ωα-closed in (Z2, K2), then it does not contain all odd points (EK2 6⊂ A).

Proof. Let A be any set in (Z2, K2) which contains all odd points. Let A = (2n+1, 2m+1) and
U = (2n+1, 2m+1) be ωα-open set in (Z2, K2). Then cl(A) = {2n, 2n+1, 2n+2} × {2m, 2m+1,
2m+2} , we get cl(A) U, which is contradiction to the assumption. Hence A does not contain all odd
points.

Theorem 3.8. A g*ωα-open set A in (Z2, K2) does not contain all even points (EF 6⊂ A).

Proof. Let A be any set in (Z2, K2) which contain all even points. Let A = (2n, 2m) and U = (2n,
2m) be any ωα-closed in (Z2, K2). Let us assume that U ⊆ A, where U is ωα-closed in (Z2, K2). Then
U int(A), since int(A) = ϕ, if A is even, which is contradiction to the fact that A contains all even
points. Hence A does not contain all even points.

Remark 3.9. Union of an open and g*ωα-open set is again a g*ωα-open.

Theorem 3.10. Let A and E be subsets of (Z2, K2)

(i) if E is non empty g*ωα-closed, then EF 6= ϕ.

(ii) if E is ωα-closed and E ⊆ Bmix ∪ BK2 holds for some subset B of (Z2, K2), then E = ϕ.

(iii) The set U(AF ) ∪ Ami ∪ Ak2 is g*ωα-open containing A.

Proof. .

Case (i) Let y be any point in E, then y ∈ cl(E) = E, as E is closed. Let us consider the following three
cases: Let y ∈ EF , then EF 6= ϕ. Let y ∈ EK2 , that is y = (2n+1, 2m+1) where n, m ∈ Z.
Then cl({ y }) = { 2n, 2n+1, 2n+2 } × { 2m, 2m+1, 2m+2 } ⊆ E. Thus, there exists a point x
= (2n, 2m) such that x ∈ EF . Therefore EF 6= ϕ. Let y ∈ Emix, that is y = (2n+1, 2m). Then
cl({y}) = { 2n, 2n+1, 2n+2 } × { 2m} ⊆ E. Thus there exists a point x = (2n, 2m) ⊆ EF such
that EF 6= ϕ. Similarly, EF 6= ϕ for x = (2n, 2m + 1). Therefore in all the three cases we have
EF 6= ϕ.

Case (ii) Suppose on the contrary E 6= ϕ. From case (i), EF 6= ϕ. By hypothesis EF ⊆ (Bmix ∪ BK2 )F
= ϕ, which is contradiction to the assumption. Hence E = ϕ.
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Case (iii) We have to prove that U(AF ) ∪ Amix ∪ AK2 is g*ωα-open containing A. We know that U(AF )
is an open set in (Z2, K2). Then we have to show that Amix ∪ AK2 is g*ωα-open in (Z2,K2).
Let F be any non-empty ωα-closed set such that F ⊆ Amix ∪ AK2 . But from case (ii), F =
ϕ, implies F ⊆ (Amix ∪ AK2). Thus, Amix ∪ AK2 is g*ωα-open in (Z2, K2) and U(AF ) is an
open set in (Z2, K2). Therefore U(AF ) ∪ Amix ∪ AK2 is g*ωα-open set in (Z2, K2) by remark
3.9. Therefore A ⊆ U(AF ) ∪ Amix ∪ AK2 . Therefore U(AF ) ∪ Amix ∪ AK2 is g*ωα-open set
containing A.

Remark 3.11. [10] If X is a Tg*ωα-space, then every singleton set {x} is either open or ωα-closed.

Theorem 3.12. The digital plane (Z , K ) is a Tg*ωα-space.

Proof. Let {x} be any point in (Z2, K2).
Let us consider the following three cases:

Case (i) if {x} is odd, that is x = (2n+1, 2m+1), then {x} is open in (Z2, K2).

Case (ii) if {x} is even, that is x = (2n, 2m). Then {x} is closed in (Z2, K2).

Case (iii) if {x} is a mixed point, that is x = (2n, 2m+1) or x = (2n+1, 2m).
Let U be any α-open set containing { x }. Then αcl({ x }) = { x } ∪ cl(int(cl({ x }))) ={ x }
∪ cl(int([ { 2n } × { 2m, 2m+1, 2m+2 }])) = { x } ∪ cl(ϕ) = { x } ⊆ U. Therefore { x } is
ωα-closed in (Z2, K2). Similarly, {x} is ωα-closed in (Z2, K2) for x = (2n+1, 2m). Thus, we
have, {x} is either open or ωα-closed in all the cases. Therefore from remark 3.11, we have (Z2,
K2) is Tg*ωα-space. Hence (Z3, K2) is Tg*ωα-space.

Corollary 3.13. The digital plane (Z2, K2) is a Tgωα-space.

Theorem 3.14. The digital plane (Z2, K2) is gωαTg*ωα-space.

Proof. Let A be gωα-closed in (Z2, K2). From corollary 3.13, (Z2, K2) is Tgωα-space, so A is closed.
From [8], every closed set in g*ωα-closed. Hence A is g*ωα-closed in (Z2, K2). Hence (Z2, K2) is

gωαTg*ωα-space.

Theorem 3.15. Let B be a non empty subset of (Z2, K2). If B = ϕ, then B is g*ωα-open in (Z2,K2).

Proof. Let F be an ωα-closed in (Z2, K2) such that F ⊆ B. From hypothesis, BE = ϕ, then B = Bmix
∪ BK2 . Then from Theorem 3.10 (ii), we have F = ϕ. Thus, we say that, whenever F is ωα-closed
and F ⊆ B, F = ϕ ⊆ int(B). This implies F ⊆ int(B). Thus B is g*ωα-open in (Z2, K2).

Remark 3.16. [8] A topological space X is said to be g*ωα-closed if and only if cl(A) \ A does not
contain any non empty ωα-closed sets.

Theorem 3.17. Let A be a subset of (Z2, K2) and x be a point of (Z2, K2). If A is g*ωα-closed in
(Z2, K2) and x ∈ Amix, then cl({x}) \ {x} ⊆ A and hence cl({x}) ⊆ A.

Proof. From thy hypothesis, we have x ∈ Amix, that is x = (2n, 2m+1) or x = (2n+1, 2m).
Let x = (2n, 2m+1). Then cl({ x }) = cl({ 2n, 2m+1 }) = { 2n } × { 2m, 2m+1, 2m+2 } = {(2n,
2m) (2n, 2m+1) (2n, 2m+2)} = { x1, x , x2 }, where x1 = (2n, 2m), x = (2n, 2m+1) and x2 = (2n,
2m+2).
Let x = (2n+1, 2m), then cl({ x }) = cl({ 2n+1, 2m }) = { 2n, 2n+1, 2n+2 } × {2m } = { (2n, 2m),
(2n+1, 2m), (2n+2, 2m) } = { x1, x, x2 }, where x1 = (2n, 2m), x = (2n+1, 2m) and x2 = (2n+2,
2m).
Thus, cl({ x }) \ { x } = { x1, x, x2 } \ { x } = { x1, x2 }. It should be noted that {x1} and {x2} are
ωα-closed singleton sets in (Z2, K2).
Let us prove: x1 ∈ A or x2 ∈ A.
Consider x1 /∈ A, then x1 ∈ cl({ x }) ⊆ cl(A), implies that x1 ∈ cl(A) \ A. Thus cl(A) \ A contains a
ωα-closed set { x1 }, which is contradiction to the remark 3.16.
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Consider x2 /∈ A, then x2 ∈ cl({ x }) ⊆ cl(A), implies that x2 ∈ cl(A) \ A contains a ωα-closed set
{x2}, which is again contradiction to the remark 3.16. Therefore, x1 ∈ A or x2 ∈ A. Hence cl({ x })
⊂ A, because x ∈ Amix ⊂ A.

Theorem 3.18. The following properties holds for any singleton set {x} in (Z2, K2):

(i) if x ∈ (Z2)K2 , then { x } is g*ωα-open, but not g*ωα-closed in (Z2, K2).

(ii) if x ∈ (Z2)F , then { x } is g*ωα-closed, but not g*ωα-open in (Z2)K2 .

(iii) if x ∈ (Z2)mix, then { x } is not g*ωα-closed, it is g*ωα-open in (Z2, K2).

Proof. (i) We know that { x } is open in (Z2, K2). Then { x } is g*ωα-open in (Z2,K2 ) [8]. Let
x = (2n+1, 2m+1) ∈ (Z)K2 , that is x = (2n+1, 2m+1) ⊆ U = (2n+1, 2m+1), where U is ωα
open set in (Z2, K2). Then cl({ x }) = { 2n, 2n+1, 2n+2 } × { 2m, 2m+1, 2m+2 }. But cl({x})
U, this implies {x} is not g*ωα-closed in (Z2, K2).

(ii) Let x ∈ (Z2)F , that is {x}is closed in (Z2, K2). From [8], {x} is g*ωα-closed in (Z2,K2). Let, F
= (2n, 2m) ⊆ {x} =(2n, 2m), where F is ωα-closed in (Z2, K2). Then F ⊆ int({x}) , because
int({x}) = ϕ, if x is even. This shows that {x} is not g*ωα-open in (Z2, K2).

(iii) Let x ∈ (Z2)mix, that is x = (2n+1, 2m) or x = (2n, 2m+1).
The cl({ x }) = { 2n, 2n+1, 2n+2 } × { 2m } 6⊂ { x } = U, where U is ωα-open in (Z2, K2).
Therefore {x} is not g*ωα-closed in (Z2, K2).
Similarly, we can prove that {x} is not g*ωα-closed by taking x = (2n, 2m+1).

Theorem 3.19. Let B be a non empty subset of (Z2, K2). For a subset BF 6= ϕ, if B is g*ωα-open
in (Z2, K2), then (U({ x }))K2 ⊂ B holds for each point x ∈ BF .

Proof. Let x ∈ BF . Since {x} is closed, {x} is g*ωα-closed [8] and {x} ⊂ B. As B is g*ωα-open, {x}
⊂ int(B). This shows that {x} is the interior point of the set B. Thus, for the smallest open set U(X)
containing x, U(X) ⊂ B. That is int({ x }) = int(int(B)) = int(B) and int({x}) =U(x). Therefore
U(x) ⊂ int(B).
Let us consider x = (2n, 2m). Since U(2n, 2m) = { 2n-1, 2n, 2n+1 } × { 2m-1, 2m, 2m+1 }. Then
(U({ x }))K2 = { (x1, x2) ∈ U(x): x1 and x2 are odd } = { y1, y2, y3, y4 }, where y1 = (2n-1, 2m-1),
y2 = (2n-1, 2m+1), y3 = (2n+1, 2m-1) and y4 = (2n+1, 2m+1). Thus for each point Pi (1 ≤ i ≤ 4),
we have Pi ∈ B and Pi ∩ B 6= ϕ. Therefore (U({ x }))K2 ⊂ B.
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