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Original Article 

Abstract − A mathematical model for hard-to-treat infections with culturing and antibiotic 

susceptibility testing (CAST) as an intervention strategy in a population is formulated and analysed. 

The analysis of the model has been done qualitatively to investigate the existence and stability of 

equilibria. Using the Lyapunov function, the disease-free equilibrium of the model proved to be 

globally asymptotically stable with respect to the threshold quantity Rc < 1. Of course, this entails 

local stability. A similar approach is employed in proving the global stability of the endemic 

equilibrium state in the case Rc > 1. However, the local stability of the endemic equilibrium is 

investigated using the method of row elimination. The model was validated using the Tuberculosis case 

in South Africa, and the result reveals that patients without adopting CAST strategy are prone to drug 

resistance and delay in quick response to the treatment regimen. On the contrary, individuals who have 

adopted the strategy have shown greater recovery potential from the infection. Based on that, self - 

medication, blind prescription should be avoided to curtail the consequences of drug resistance. 

Keywords – Hard- to- treat infections, Culturing, Antibiotic susceptibility testing, Global stability, Lyapunov function 

1. Introduction 

In the world of medicine, the consequences of an improper diagnosis of most hard-to-treat infections such as 

Mycobacterium Tuberculosis, Typhoid fever, Gonorrhoea, staphylococcus etc. are responsible for high human 

mortality and morbidity [1]. To this paper, hard-to-treat infections refer to diseases/infections that prove 

incurable without culturing and antibiotic susceptibility testing. It is primarily culturing to ascertain the main 

cause of an infection and determine drug resistance strains under laboratory-controlled conditions to give a 

correct diagnosis and treatment [2]. It is observed that those who carry out culture testing tends not to have 

antibiotic-resistant strains and do heal quickly [3]. To achieve this, it is necessary to carry out antibiotic 

susceptibility testing, which involves culturing the disease in the presence of antibiotics. If the bacteria grow, 

they are resistant to the drugs, but if it fails to multiply, it implies that the drugs are effective and the bacteria 

are not resistant [4, 5].  

[6] explains the need for rapid diagnostic testing to determine the causative organism of infection and 

maintained that diagnosis through culture before treatment plays a valuable and critical role in the cure of 

patients and those at risk of developing the infection. [7] identify disk diffusion and broth dilution techniques 
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for bacterial culture and antibiotic susceptibility testing used in veterinary medicine and [8] made a case for 

integrating culture-based and molecular methods in agro-ecosystems to understand better ways of bacterial 

inhibition. [9] gave an overview of the current methods available to identify antimicrobial susceptibility testing 

of anaerobes (aerobic bacterial).  

The number of mortality and morbidity cases recorded against drug resistance to diseases due to non-culturing 

and antibiotic susceptibility testing is alarming, and mathematical models under this area are few and not 

widely explored. People have made attempts to model this kind of infections on specific diseases as far back, 

as seen in [10, 11].  [12] projected that rapid expansion of Tuberculosis (TB) culture and drug sensitivity 

testing (DST) among South African adults could save >47,000 lives and prevent >7,000 multidrug-resistant 

(MDR)-TB cases during the 10 years from 2008 to 2017. This corresponds to a reduction of 17% in total TB 

mortality, 14% in MDR-TB incidence, and 47% in MDR-TB mortality. Their model projected that culture and 

DST impact depends most strongly on the speed and sensitivity of culture, treatment rates in diagnosed TB 

patients, and TB case detection rates in the absence of culture. In the paper, Detection of antibiotic resistance 

is essential for gonorrhoea point-of-care (POC) testing: a mathematical modelling study, [13] addressed 

clinically relevant situations to evaluate the potential impact of gonorrhoea POC tests on antibiotic-resistant 

Gonorrhoea and can guide the introduction of POC tests. [14] used mathematical modelling to provide a 

framework that integrates information regarding the transmission and control of foodborne pathogens and 

antimicrobial resistance. [15] provided a highlight on critical questions in the management of Gonorrhoea that 

can be addressed by mathematical models and identify key data needs. Their overarching aim is to articulate a 

shared agenda across gonococcus-related fields from microbiology to epidemiology that will catalyse a 

comprehensive evidence-based clinical and public health strategy to manage gonococcal infections 

antimicrobial resistance.  

Because of the above, the present study uses this opportunity to consider the general dynamics of hard – to - 

treat infections with antibiotic susceptibility testing as a robust way of enhancing proper medical treatment. 

This paper's organisation begins with an introduction in Section 1 and follows model formulation in Section 

2. The analysis of the model is presented in Section 3 with numerical simulations and discussion in Section 4. 

Finally, the conclusion is given in Section 5. 

2. Model formulation and the Feasible Region 

The model classifies the total population at time t, denoted by 𝑁, into susceptible individuals 𝑆, infected 

individuals without CAST strategy 𝐼𝑤, infected individuals with CAST strategy 𝐼𝑐 and individuals who 

recovered from the infection 𝑅. It is assumed that individuals are recruited at a constant rate  𝜙 to the 

susceptible population 𝑆 and recovered individual also become susceptible at 𝛾 rate. Susceptible individuals 

can be infected with disease following the contact with infected individuals at an average rate 𝜆 = 𝛽 (
𝐼𝑤+θ𝐼𝑐

𝑁
), 

where  𝛽 is effective contact rate and 𝜃 is the modification parameter which takes the values 0 ≤ 𝜃 ≤ 1. When 

𝜃 = 1 implies that CAST strategy is ineffective in disease control while when 𝜃 = 0 signifies that the strategy 

can effectively control the spread of the infection. Individuals with culture and antibiotic susceptibility testing 

can acquire the infection at a reduced rate of (1 − 𝜋)𝜆 and a higher recovery rate of 𝜌𝑐 compared to those 

without. It is also assumed that some of the infectives 𝐼𝑤 move to join 𝐼𝑐 class with a rate  𝛼 depending on 

CAST strategy. It is also assumed that the natural death rate occurs in all populations at a per-capita rate of 𝜇. 

It is noted that the recovery rate of infective due to CAST strategy is greater than those without the strategy 

(𝜌𝑐 > 𝜌𝑤). The mortality rate due to 𝐼𝑐 is lower than that of  𝐼𝑤 (𝛿𝑐 < 𝛿𝑤). The variables and parameters of 

the model (1) are hereby presented in Table 1. 
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Table 1: Parameters of the Model. 

Parameter Interpretation 

𝑆 Number of susceptible persons 

𝐼𝑤 Number of infected persons without CAST strategy 

𝐼𝑐 Number of infected persons with CAST strategy 

𝑅 Number of recovered persons due to treatment 

Φ Recruitment number of susceptible persons 

𝜋 The fraction of susceptible persons who become infected and do not adopt CAST strategy 

𝛼 The rate of adopting CAST strategy 

𝛽 Effective contact rate 

𝜆 The force of infection 

𝜇 Natural death rate 

𝜃 Modification parameter 

𝛿𝑤 Disease induced death rate for infectives without CAST strategy 

𝛿𝑐 Disease induced death rate for infectives with CAST strategy 

𝜌𝑐 Recovery rate based on CAST intervention strategy 

𝜌𝑤 Recovery rate based on ordinary medical test prescription (without CAST strategy) 

𝛾 The rate at which recovered persons regain susceptibility 

 

Fig. 1. Flow diagram of the generalised model of hard-to-treat infections 

2.1.  Model Equations 

Using the description of model and Fig. 1, we derive the differential equations below. 

                                        

𝑑𝑆

𝑑𝑡
= 𝜙 − 𝜆𝑆 + 𝛾𝑅 − 𝜇𝑆

𝑑𝐼𝑤
𝑑𝑡

= 𝜋𝜆𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤

𝑑𝐼𝑐
𝑑𝑡

= (1 − 𝜋)𝜆𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐

𝑑𝑅

𝑑𝑡
= 𝜌𝑤𝐼𝑤 + 𝜌𝑐𝐼𝑐 − (𝜇 + 𝛾)𝑅 }

 
 
 

 
 
 

,                                      (1) 

where 

                                                  𝜆 = 𝛽 (
𝐼𝑤 + θ𝐼𝑐
𝑁

).                                                                                     (2) 

Adding the whole equations of (1) yields 

𝑑𝑁

𝑑𝑡
= ϕ − 𝜇𝑁 − 𝛿𝑤𝐼𝑤 − 𝛿𝑐𝐼𝑐 .                                                                 (3) 
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2.2.  The feasible region 

This sub-section examines the model's invariant region (1) whereby the system is mathematically and 

epidemiologically well-posed. 

Theorem 2. 1. The model (1) is a dynamical system on the biologically feasible region: 

𝐷 = {(𝑆, 𝐼𝑤 , 𝐼𝑐 , 𝑅) ∈ ℝ+
4 :𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆0}, 

where 𝑆0 =
ϕ

μ
 and 𝑁+ =

ϕ

𝜇+𝛿𝑤+𝛿𝑐
. 

PROOF. The proof follows a two-step approach [16] 

Step 1. We prove that the solution 𝑆(𝑡), 𝐼𝑤(𝑡), 𝐼𝑐(𝑡) and 𝑅(𝑡) of the model (1) based on the initial conditions 

such that 𝑆(0), 𝐼𝑤(0), 𝐼𝑐(0) and 𝑅(0) are non-negative. Let 𝑡̃ = 𝑠𝑢𝑝{𝑡 > 0: 𝑆 > 0, 𝐼𝑤 ≥ 0, 𝐼𝑐 ≥ 0, 𝑅 ≥ 0}. 

Then, 𝑡̃ > 0 and it shows from the first equation of the model (1) that 

𝑑𝑆

𝑑𝑡
= ϕ − (𝜇 + 𝜆(𝑡))𝑆 + 𝛾𝑅 ≥ ϕ − (𝜇 + 𝜆(𝑡))𝑆,  

The above inequality equation has the form 

𝑑

𝑑𝑡
[𝑆(𝑡)𝑒𝑥𝑝 {𝜇𝑡 + ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

}] ≥ ϕexp {𝜇𝑡 + ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0

}. 

Thus, 

𝑆(𝑡̃)𝑒𝑥𝑝 {𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

} − 𝑆(0) ≥ ∫ ϕexp
𝑡̃

0

{𝜇𝑝 + ∫ 𝜆(𝑣)𝑑𝑣
𝑝

0

} 𝑑𝑝, 

So that 

𝑆(𝑡̃) ≥ 𝑆(0)𝑒𝑥𝑝 {−(𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

)} + (0)𝑒𝑥𝑝 {−(𝜇𝑡̃ + ∫ 𝜆(𝑠)𝑑𝑠
𝑡̃

0

)} × ∫ ϕexp
𝑡̃

0

{𝜇𝑝 + ∫ 𝜆(𝑣)𝑑𝑣
𝑝

0

}𝑑𝑝

> 0. 

Similarly, it can be proven that  𝐼𝑤 ≥ 0, 𝐼𝑐 ≥ 0, 𝑎𝑛𝑑 𝑅 ≥ 0 for all 𝑡 > 0. 

Step 2. We now show that the total population at time 𝑡, 𝑁(𝑡) satisfies the boundedness property 

𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆
0 whenever 𝑁+ ≤ 𝑁(𝑡0) ≤ 𝑆

0. 

From equation (3), one has that 

ϕ− (𝜇 + 𝛿𝑤 + 𝛿𝑐)𝑁(𝑡) ≤
𝑑𝑁

𝑑𝑡
≤ ϕ − 𝜇𝑁(𝑡).                                                  (4) 

Applying the Gronwall inequality to the equation (4) yields 

ϕ

𝜇 + 𝛿𝑤 + 𝛿𝑐
[1 − 𝑒−(𝜇+𝛿𝑤+𝛿𝑐)𝑡] + 𝑆(0)𝑒−(𝜇+𝛿𝑤+𝛿𝑐)𝑡 ≤ 𝑆(0)𝑒−𝜇𝑡 +

ϕ

𝜇
(1 − 𝑒−𝜇𝑡) 

which implies that  

𝑁+ ≤ 𝑁(𝑡) ≤ 𝑆
0.                                                                                              

Bringing step 1 and step 2 together, Theorem 2.1 follows from the classical theory of dynamical systems. 
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3. Existence of model equilibria and stability 

3.1. Local stability of disease-free equilibrium (DFE) 

The disease-free equilibrium point occurs at the state in which there is no infection. Hence, the DFE point of 

the model (1) is given by Ε0 = (𝑆
0, 0,0,0), where the infected compartment tends to zero and 𝑆0 is the same 

as in Theorem 2.1. 

The local stability of the DFE  (Ε0) depends on the control reproduction number, 𝑅𝑐 , which is computed by a 

next-generation operator [17]. Using their notations 𝐹 and 𝑉 which denote the matrix of the new infections 

and transition matrix respectively, we have  

 𝐹 = 𝛽 (
𝜋 𝜋𝜃

1 − 𝜋 (1 − 𝜋)𝜃
)  and 𝑉 = (

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤 0
−𝛼 𝜇 + 𝜌𝑐 + 𝛿𝑐

), 

with 

𝑉−1 =

(

 

1

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤
0

𝛼

(𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)(𝜇 + 𝜌𝑐 + 𝛿𝑐)

1

𝜇 + 𝜌𝑐 + 𝛿𝑐)

 .                        

Therefore, the control reproduction number is  

𝑅𝑐 = 𝜌(𝐹𝑉
−1) = 𝛽 (

𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
),                                          (5) 

where 

𝑑1 = 𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤  and 𝑑2 = 𝜇 + 𝜌𝑐 + 𝛿𝑐 . 

Therefore, by Theorem 2 in [17], we can claim the following result. 

 Lemma 3.1. The DFE of the model (1) is locally asymptotically stable if 𝑅𝑐 < 1 and unstable otherwise. 

 

Biologically, lemma 3.1 implies that an adequate pool of few infected individuals into the susceptible 

population will not generate an outbreak of infection except 𝑅𝑐 > 1. Therefore, to ensure better control of 

infection, the global asymptotic stability of DFE is needed as addressed in the next subsection.  

 

3.2. Global Stability of the DFE 

The global investigation of stability at the disease-free state using Lyapunov function's construction depends 

on the infected compartments only. 

Lemma 3.2. The DFE of the model (1) is globally asymptotically stable in 𝐷 provided that 𝑅𝑐 < 1 and 

unstable if 𝑅𝑐 > 1. 

PROOF.  Following the work of [18], we consider the Lyapunov function 

𝐿 = 𝐴𝐼𝑤 + 𝐵𝐼𝑐 ,                                                                                                        (6) 

where 𝐴 > 0 and 𝐵 > 0, with the derivatives of  𝐿 defined by  

𝑑𝐿

𝑑𝑡
= 𝐴

𝑑𝐼𝑤
𝑑𝑡

+ 𝐵
𝑑𝐼𝑐
𝑑𝑡
.                                                                                            (7) 

Thus, substituting the corresponding right-hand side of (1) into (7) gives 

𝑑𝐿

𝑑𝑡
= (𝜋𝐴 + (1 − 𝜋)𝐵)𝜆𝑆 − (𝑑1𝐴 − 𝛼𝐵)𝐼𝑤 − 𝑑2𝐵𝐼𝑐 .                                   (8) 
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Therefore, setting the coefficients of 𝜆𝑆 to the numerator of 𝑅𝑐 (excluding 𝛽) and that of 𝐼𝑤 to the denominator 

of 𝑅𝑐, we have 

𝜋𝐴 + (1 − 𝜋)𝐵 = 𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃,
𝑑1𝐴 − 𝛼𝐵 = 𝑑1𝑑2,                               

                                                                

from which we obtain 

𝐴 = 𝑑2 + 𝛼𝜃 > 0 and 𝐵 = 𝑑1𝜃 > 0.                               

Now replacing the expressions for 𝐴 and 𝐵 in (8) above yields  

𝑑𝐿

𝑑𝑡
= 𝛽 (

𝐼𝑤 + θ𝐼𝑐
𝑁

)𝑆(𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃) − 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐), 

= 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐) (𝛽 (
𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
)
𝑆

𝑁
− 1). 

Since 𝑆 ≤ 𝑁 is in the region of the invariant set, it then follows that  

𝑑𝐿

𝑑𝑡
≤ 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐) (𝛽 (

𝜋(𝑑2 + 𝛼𝜃) + (1 − 𝜋)𝑑1𝜃

𝑑1𝑑2
) − 1), 

   = 𝑑1𝑑2(𝐼𝑤 + θ𝐼𝑐)(𝑅𝑐 − 1).                                               

This shows that 

  
𝑑𝐿

𝑑𝑡
< 0 if 𝑅𝑐 < 1                                                                                        

Equality holds at 𝑅𝑐 = 1 and 𝐼𝑤 = 𝐼𝑐 = 0. Therefore, we can conclude from the LaSalle's invariance principle 

stated in Theorem 3.1 below that the DFE is globally asymptotically stable since 𝑆 →
ϕ

𝜇
as 𝑡 → ∞ at 𝐼𝑤 = 𝐼𝑐 =

0. 

Theorem 3.1. [19] (La Salle Invariance Principle). Let 𝐻(𝑥) be a locally Lipschitz function defined over a 

domain 𝐺 ⊂ 𝑅𝑛 and Ω ⊂ 𝐺 be a compact set that is positively invariant concerning 𝑥̇ = 𝐻(𝑥). Let 𝑉(𝑥) be a 

continuously differentiable positive definite function on 𝐺 such that 𝑉̇(𝑥) ≤ 0 in Ω for all 𝑥 ∈ 𝐺. Let E =

{𝑥 ∈ Ω⌈𝑉̇(𝑥) = 0}, and 𝑀 be the largest invariant set in 𝐸. Then every solution starting in Ω approaches 𝑀 as 

t ⟶ ∞. 

3.3. Existence of Endemic Equilibrium State (EES) 

The endemic equilibrium state defines the persistence of an infection in the population. Suppose 

Ε∗∗ = (𝑆∗∗, 𝐼𝑤
∗∗, 𝐼𝑐

∗∗, 𝑅∗∗) > 0 is the endemic equilibrium of the model (1). Then,  

0 = ϕ − 𝜆∗∗𝑆∗∗ + 𝛾𝑅∗∗ − 𝜇𝑆∗∗,          

0 = 𝜋𝜆∗∗𝑆∗∗ − 𝑑1𝐼𝑤
∗∗,                           

0 = (1 − 𝜋)𝜆∗∗𝑆∗∗ + 𝛼𝐼𝑤
∗∗
− 𝑑2𝐼𝑐

∗∗,

0 = 𝜌𝑤𝐼𝑤
∗∗ + 𝜌𝑐𝐼𝑐

∗∗ − 𝑑3𝑅
∗∗.            

 

Therefore, 

{
 
 
 
 

 
 
 
 𝑆∗∗ =

𝜙 + 𝛾𝑅∗∗

𝜆∗∗ + 𝜇
,

𝐼𝑤
∗∗ =

𝜋

𝑑1
𝜆∗∗𝑆∗∗,

𝐼𝑐
∗∗ = (

𝛼𝜋

𝑑1𝑑2
+
1 − 𝜋

𝑑2
) 𝜆∗∗𝑆∗∗,

𝑅∗∗ = (
𝜋

𝑑1
(
𝜌𝑤
𝑑3
+
𝜌𝑐𝛼

𝑑2𝑑3
) +

(1 − 𝜋)𝜌𝑐
𝑑2𝑑3

)𝜆∗∗𝑆∗∗.

                                          (9) 
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To be specific, the value of 𝑆∗∗ is  

  𝑆∗∗ =
ϕ

𝜇 + 𝜆∗∗ (1 −
𝛾
𝑑3
(
𝜋
𝑑1
(𝜌𝑤 +

𝜌𝑐𝛼
𝑑2
) + (1 − 𝜋)

𝜌𝑐
𝑑2
))

.                             (10) 

 

Recall from (2) that the force of infection at the equilibrium state is  

𝜆∗∗ = 𝛽 (
𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗

𝑁∗∗
) =

𝑅𝑐 − 1

𝐾
,                                                                 (11) 

with 

𝐾 =
𝜋

𝜇
(1 +

𝜌𝑤
𝑑3
+
𝛼

𝑑2
(1 +

𝜌𝑐
𝑑3
)) +

1 − 𝜋

𝑑2
(1 +

𝜌𝑐
𝑑3
).  

Note that 𝜆∗∗ ≠ 0 defines the endemic equilibrium which exists at the point,   𝑅𝑐 > 1. From the above, the 

following result can be inferred. 

Lemma 3.3.  If  𝑅𝑐 > 1, then the model (1) admits a unique positive endemic equilibrium state. 

 

3.4. Local Stability of EES 

The linearised form of system (1) at Ε∗∗ gives the Jacobian, 𝐽, 

𝐽 =

(

 
 
 
 
 
−(𝜇 + 𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
) −𝛽

𝑆∗∗

𝑁∗∗
−𝛽𝜃

𝑆∗∗

𝑁∗∗
𝛾

𝜋𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
−(𝑑1 − 𝜋𝛽

𝑆∗∗

𝑁∗∗
) 𝜋𝛽𝜃

𝑆∗∗

𝑁∗∗
0

(1 − 𝜋)𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
𝛼 + (1 − 𝜋)𝛽

𝑆∗∗

𝑁∗∗
−(𝑑2 − (1 − 𝜋)𝛽𝜃

𝑆∗∗

𝑁∗∗
) 0

0 𝜌𝑤 𝜌𝑐 −(𝜇 + 𝛾))

 
 
 
 
 

. (12) 

The transition by row reduction into an upper triangular matrix of the Jacobian is given by  

𝑇𝑈 = (

−𝑔1 −𝑔2 −𝑔3 𝛾
0 −𝐴1 −𝐴2 𝐴3
0 0 −(𝐴1𝐵2 + 𝐴2𝐵1) (𝐴3𝐵1 + 𝐴1𝐵3)
0 0 0 𝑄

),                                  (13) 

where 

𝐴1 = 𝑔1𝑔5 + 𝑔2𝑔4, 𝐴2 = 𝑔3𝑔4 − 𝑔1𝑔6, 𝐴3 = 𝛾𝑔4, 

𝐵1 = 𝑔1𝑔8 − 𝑔2𝑔7, 𝐵2 = 𝑔1𝑔9 + 𝑔3𝑔7, 𝐵3 = 𝛾𝑔7,  

and 𝑄 = (𝐴1𝐵2 + 𝐴2𝐵1)(𝜌𝑤𝐴3 − 𝑔10𝐴1) + (𝜌𝑐𝐴1 − 𝜌𝑤𝐴2)(𝐴3𝐵1 + 𝐴1𝐵3), 

with  

𝑔1 = 𝜇 + 𝛽
(𝐼𝑤

∗∗ + 𝜃𝐼𝑐
∗∗)

𝑁∗∗
, 𝑔2 = 𝛽

𝑆∗∗

𝑁∗∗
, 𝑔3 = 𝛽𝜃

𝑆∗∗

𝑁∗∗
, 𝑔4 = 𝜋𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
,   

𝑔5 = (𝑑1 − 𝜋𝛽
𝑆∗∗

𝑁∗∗
) , 𝑔6 = 𝜋𝛽𝜃

𝑆∗∗

𝑁∗∗
, 𝑔7 = (1 − 𝜋)𝛽

(𝐼𝑤
∗∗ + 𝜃𝐼𝑐

∗∗)

𝑁∗∗
, 

𝑔8 = 𝛼 + (1 − 𝜋)𝛽
𝑆∗∗

𝑁∗∗
, 𝑔9 = (𝑑2 − (1 − 𝜋)𝛽𝜃

𝑆∗∗

𝑁∗∗
) , 𝑔10 = (𝜇 + 𝛾). 

For the system to be Locally Asymptotically Stable at the endemic state, we now show that all the diagonal 

elements of the upper triangular matrix, which are the eigenvalues of (12) are negative. 
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Then, from (13) 

𝜆1 = −𝑔1 = −(𝜇 +
(𝑅𝑐 − 1)

𝐾
) < 0 iff 𝑅𝑐 > 1.                                    (14) 

Similarly,  

𝜆2 = −𝐴1 = −(𝑑1 (𝜇 +
(𝑅𝑐 − 1)

𝐾
) − 𝜇𝛽𝜋

𝑆∗∗

𝑁∗∗
) < 0 iff 𝑅𝑐 > 1.        (15) 

For  𝜆3 = −(𝐴1𝐵2 + 𝐴2𝐵1) < 0, 

it implies that (𝐴1𝐵2 + 𝐴2𝐵1) > 0, and detail simplification gives 

𝜆3 = −𝜇𝛽
𝑆∗∗

𝑁∗∗
(𝜃 (𝛽

𝑆∗∗

𝑁∗∗
(𝜇𝜋 − 𝛼) − 𝑑1(1 − 𝜋)(1 + 𝜇)) − (𝜇 + (

𝑅𝑐 − 1

𝐾
)) (𝑑2𝜋 + 𝛼𝜃))

           −𝑑1𝑑2 ((
𝑅𝑐 − 1

𝐾
)
2

+ 2𝜇 (
𝑅𝑐 − 1

𝐾
) + 𝜇2) < 0 iff 𝑅𝑐 > 1.

 (16) 

Lastly,  

 
𝜆4 = 𝑄 = (𝐴1𝐵2 + 𝐴2𝐵1)(𝜌𝑤𝐴3 − 𝑔10𝐴1) + (𝜌𝑐𝐴1 − 𝜌𝑤𝐴2)(𝐴3𝐵1 + 𝐴1𝐵3). 

Since (𝐴1𝐵2 + 𝐴2𝐵1) and (𝐴3𝐵1 + 𝐴1𝐵3) are positive, we are left to show that (𝜌𝑤𝐴3 − 𝑔10𝐴1) and 
(𝜌𝑐𝐴1 − 𝜌𝑤𝐴2) are negative. This implies that  

𝜌𝑤𝐴3 − 𝑔10𝐴1 < 0⟺ 𝜌𝑤𝐴3 < 𝑔10𝐴1 yields  

𝜌𝑤 < 𝑔10
𝐴1
𝐴3
,                                                                                                               (17) 

and 

𝜌𝑐𝐴1 − 𝜌𝑤𝐴2 < 0⟺ 𝜌𝑐𝐴1 < 𝜌𝑤𝐴2.  

This gives  

𝜌𝑐
𝐴1
𝐴2
< 𝜌𝑤 .                                                                                                                 (18) 

Combining equations (17) and (18), we get the inequality 

𝜌𝑐
𝐴1
𝐴2
< 𝜌𝑤 < 𝑔10

𝐴1
𝐴3

 

from which we arrived at  

𝜆4 < 0 iff 𝜌𝑐 >
−𝜇(𝜇+𝛾)𝜃𝑆∗∗

𝛾𝜋𝑁∗∗(𝐼𝑤
∗∗+𝜃𝐼𝑐

∗∗)
= −(𝜇 + 𝛾)𝜇𝛽𝜃

𝑆∗∗

𝑁∗∗
𝐾

𝛾𝜋(𝑅𝑐−1)
 , provided 𝑅𝑐 > 1. 

Lemma 3.4. The endemic equilibrium is locally asymptotically stable iff 𝑅𝑐 > 1. 

 

3.5 . Global Stability of the Endemic Equilibrium 𝚬∗∗ 

Lemma 3.5.  The endemic equilibrium point of the model (1) is globally asymptotically stable if and only if 

𝑅𝑐|𝛼=𝛾=0 > 1. 

PROOF. We consider a nonlinear Lyapunov function of Volterra type as applied in [20] 

𝐿1 = 𝑆 − 𝑆
∗∗ − 𝑆∗∗ ln (

𝑆

𝑆∗∗
) +

1

𝜋
[𝐼𝑤 − 𝐼𝑊

∗∗ ln (
𝐼𝑤
𝐼𝑊

∗∗)] +
1

1 − 𝜋
[𝐼𝑐 − 𝐼𝑐

∗∗ ln (
𝐼𝑐
𝐼𝑐
∗∗)].      
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The derivative of 𝐿1 with respect to time is given by 

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
)
𝑑𝑆

𝑑𝑡
+
1

𝜋
(1 −

𝐼𝑤
∗∗

𝐼𝑤
)
𝑑𝐼𝑤
𝑑𝑡

+
1

1 − 𝜋
(1 −

𝐼𝑐
∗∗

𝐼𝑐
)
𝑑𝐼𝑐
𝑑𝑡
.                                  (19) 

Putting the equations of the model (1) at 𝛾 = 0 in (19), we have 

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
) [ϕ − 𝛽 (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 − 𝜇𝑆] +
1

𝜋
(1 −

𝐼𝑤
∗∗

𝐼𝑤
) [𝛽𝜋 (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤]

         +
1

1 − 𝜋
(1 −

𝐼𝑐
∗∗

𝐼𝑐
) [𝛽(1 − 𝜋) (

𝐼𝑤 + 𝜃𝐼𝐶
𝑁

)𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐] .

 

For convenience, let 𝐻(𝐼) =
𝐼𝑤+𝜃𝐼𝐶

𝑁
 ,  then simplification gives  

𝐿1 
′ = (1 −

𝑆∗∗

𝑆
) [ ϕ − 𝛽𝐻(𝐼)𝑆 − 𝜇𝑆] + (

1

𝜋
) × (1 −

𝐼𝑤
∗∗

𝐼𝑤
) [𝛽𝜋𝐻(𝐼)𝑆 − (𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤)𝐼𝑤]

         + (
1

1 − 𝜋
) × (1 −

𝐼𝑐
∗∗

𝐼𝑐
) [𝛽(1 − 𝜋)𝐻(𝐼)𝑆 + 𝛼𝐼𝑤 − (𝜇 + 𝜌𝑐 + 𝛿𝑐)𝐼𝑐].                                      (20)

 

Using the following equilibrium relations of the model (1) obtained at 𝛾 = 0, 

ϕ = 𝛽𝐻(𝐼∗∗)𝑆∗∗ + 𝜇𝑆∗∗,

𝜇 + 𝛼 + 𝜌𝑤 + 𝛿𝑤 =
𝛽𝜋𝐻(𝐼∗∗)𝑆∗∗

𝐼𝑤
∗∗ ,

𝜇 + 𝜌𝑐 + 𝛿𝑐 =
𝛽(1 − 𝜋)𝐻(𝐼∗∗)𝑆∗∗ + 𝛼𝐼𝑤

∗∗

𝐼𝑤
∗∗ ,

                                                                                  

Then, equation  (20) becomes 

𝐿1 
′ = 𝜇𝑆∗∗ (1 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + 𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 1 −

𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝑆∗∗

𝑆
+
𝐻(𝐼)

𝐻(𝐼∗∗)
]

         +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 
𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝐼𝑤
𝐼𝑤
∗∗ +

𝐼𝑤
∗∗𝐻(𝐼)𝑆

𝐼𝑤𝐻(𝐼
∗∗)𝑆∗∗

+ 1]

         +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 
𝐻(𝐼)𝑆

𝐻(𝐼∗∗)𝑆∗∗
−
𝐼𝑐
𝐼𝑐
∗∗ +

𝐼𝑐
∗∗𝐻(𝐼)𝑆

𝐼𝑐𝐻(𝐼
∗∗)𝑆∗∗

+ 1]                                      

         +
𝛼

1 − 𝜋
𝐼𝑤
∗∗ [

𝐼𝑤
𝐼𝑤
∗∗ −

𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝐼𝑤

𝐼𝐶𝐼𝑤
∗∗ + 1]                                                                           (21) 

 

Adding the second, third and fourth terms of (21) and using the fact that 
𝐻(𝐼)

𝐻(𝐼∗∗)
≤ 1, since 𝐻(𝐼) is a decreasing 

function, we get 

𝐿1 
′ = 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + 𝛽𝐻(𝐼∗∗)𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
]

       +𝛽𝐻(𝐼∗∗)𝑆∗∗ [ −
𝑆∗∗

𝑆
+
𝑆

𝑆∗∗
] +

𝛼

1 − 𝜋
𝐼𝑤
∗∗ [

𝐼𝑤
𝐼𝑤
∗∗ −

𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝐼𝑤

𝐼𝐶𝐼𝑤
∗∗ + 1].                                   (22) 

 

But 𝛽𝐻(𝐼∗∗) = 𝜆∗∗ =
𝑅𝑐−1

𝐾
 from (11) and setting 𝛼 = 0 in (22), we have  

𝐿1 
′ = 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + (

𝑅𝑐 − 1

𝐾
) 𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
] − (

𝑅𝑐 − 1

𝐾
)𝑆∗∗ [ 

(𝑆∗∗)2 − 𝑆2

𝑆𝑆∗∗
], 

from which we arrived at  
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𝐿1 
′ ≤ 𝜇𝑆∗∗ (2 −

𝑆∗∗

𝑆
−
𝑆

𝑆∗∗
) + (

𝑅𝑐 − 1

𝐾
)𝑆∗∗ [ 4 −

𝐼𝑤
𝐼𝑤
∗∗ −

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
−
𝐼𝑐
𝐼𝑐
∗∗ −

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗
].                        

Thus,  

𝐿1 
′ ≤ 0  if and only if  𝑅𝑐 > 1, 2 ≤

𝑆∗∗

𝑆
+

𝑆

𝑆∗∗
 and  4 ≤

𝐼𝑤

𝐼𝑤
∗∗ +

𝑆𝐼𝑤
∗∗

𝑆∗∗𝐼𝑤
+

𝐼𝑐

𝐼𝑐
∗∗ +

𝐼𝑐
∗∗𝑆

𝐼𝑐𝑆
∗∗.  However, 𝐿1 

′ = 0 if 𝑅𝑐 =

1, 𝑆 = 𝑆∗∗, 𝐼𝑤 = 𝐼𝑤
∗∗ and 𝐼𝑐 = 𝐼𝑐

∗∗.  Hence,  {(𝑆, 𝐼𝑤, 𝐼𝐶) = (𝑆
∗∗, 𝐼𝑤

∗∗, 𝐼𝑐
∗∗
)} is the only singleton set in 𝐷, 

which is the largest compact subset where 𝐿1 
′ = 0.  At this point, we can conclude by invariance principle in 

Theorem 3.1 that the endemic equilibrium is globally asymptotically stable. 

3.6. Threshold Analysis 

The control reproduction number, 𝑅𝑐 , of a model system with CAST strategy defined by (5) is a threshold 

quantity that determines whether the disease will invade the host population. If 𝑅𝑐 is less than unity, the disease 

will be under control, and if it is not, then there will be an outbreak of disease. 

In the absence of CAST strategy, we have 

lim
(𝛼,𝜃,𝜌𝑐,𝛿𝑐)→(0,1,0,0)

𝑅𝑐 =
𝛽𝜋

𝑑1
+
𝛽(1 − 𝜋)

𝑑2
= 𝑅0,                                                             (23)   

where 𝑅0 is the basic reproduction number. 

Thus, the difference between equations 𝑅𝑐  of (5) and 𝑅0 of (23) is 

𝑅0 − 𝑅𝑐 =
𝛽(1 − 𝜋)

𝑑2
(1 − 𝜃) −

𝛽𝜋𝛼𝜃

𝑑1𝑑2
.                                                           (24) 

Clearly from equation (24),  𝑅0 − 𝑅𝑐 is positive if  𝜃 = 0. This epidemiologically implies that CAST strategy 

could be essential for effective treatment of hard-to-treat infections. On the other hand, 𝜃 = 1 biologically 

shows that 𝑅0 − 𝑅𝑐 is negative and thus ineffective in curtailing this kind of infections. 

4. Numerical results and discussion 

As an application of our model developed on hard– to – treat infections, we focus on the case study of 2014 

Mycobacterium Tuberculosis (TB) outbreak in South Africa. 

4.1. Parameter estimation 

According to the Population Reference Bureau in 2018, the total population of South Africa denoted by 𝑁 was 

estimated as of 2014 to be 53,700,000. The Global TB Report 2015 estimated that South Africa had the second 

highest TB incidence rate in 593 cases per 100, 000 population. Thus, we have the total number of infected 

individuals with TB as in 2014 to be 

𝐼 =
593

100,000
× 53, 700, 000 = 318, 441.                                                       

Meanwhile those individuals 𝐼𝐶 infected with TB who adopted the CAST strategy was 101, 423 [21], and the 

total number of infected individuals 𝐼𝑤 without considering the strategy becomes 

𝐼𝑤 = 𝐼 − 𝐼𝑐 = 318,441 − 101,423 = 217,018.                                             

On the other hand, the total number of people 𝑅 who have recovered from TB during the year under review by 

[4] was 251, 344. To this effect, the number of individuals susceptible to TB in 2014 evidently satisfies the 

relation  

𝑆 = 𝑁 − (𝐼𝑤 + 𝐼𝑐 + 𝑅) = 53,130,215.                                                           
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The death rate is defined as the inverse of the life expectancy at birth. As in the year 2014, the life expectancy 

of South Africans was 60.99 years. Therefore, the natural death rate, 𝜇, is estimated to be  𝜇 =
1

60.99
=

0.0163961  per year. Also, the recruitment number ϕ can be estimated from the relation in the feasible region 

as 

ϕ ≅ 𝑁 × 𝜇 = 880,472.21 

The rest of the parameters can be similarly estimated and appropriately assumed as presented in Table 2 

 

Table 2: Values for population-independent parameters  

of the model ( )1−yr  

Variable/Parameter Value Source 

𝑁 53,700,000 [4] 

𝑆 53,130,215 Estimated 

𝐼𝑤 217,018 Estimated 

𝐼𝑐 101,423 [21] 

𝑅 251,344 [4] 

Φ 880,472.21 Estimated 

𝜋 0.5 Assumed 

𝛼 0 ≤ 𝛼 ≤ 1 Variable 

𝛽 0.6983 [22] 

𝜇 0.0163961 Estimated 

𝜃 0 ≤ 𝜃 ≤ 1 Variable 

𝛿𝑤 0.06908 Assumed 

𝛿𝑐 0.03384 Assumed 

𝜌𝑐 0.06667 [4] 

𝜌𝑤 0.075 [4] 

𝛾 0.007893 Assumed 

 

 

Fig. 2. Effect of 𝜃 on TB infectives, 𝐼𝐶 with CAST strategy 
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Fig. 3. Effect of 𝜃 on TB infectives,  𝐼𝑤 without Fig. 4. The effect of the modification parameter  

CAST strategy (𝜃 = 1) on the dynamics of TB infectives 

 

Fig. 5. Effect of 𝛼 on TB infectives, 𝐼𝐶  with CAST strategy. Fig. 6. Effect of 𝛼 on TB infectives, 𝐼𝐶 

without CAST strategy 

Fig. 2 illustrated the dynamical behaviour of infectives 𝐼𝐶 who have gone for culture and conducted antibiotic 

susceptibility testing concerning the modification parameter, 𝜃. The number of infected individuals remains 

high at 𝜃 = 1, implying that, CAST strategy fails at that point and begins to decline as the value of 𝜃 decreases 

demonstrating the effectiveness of culture and antibiotic susceptibility testing. A similar consideration was 

carried out in Fig. 3 on those infectives 𝐼𝑊 that have gone only for ordinary prescription treatment and indicates 

the same scenario only that the number of people with CAST strategy has a comparative advantage in quick 

response to treatment than those without the intervention strategy. A clear comparison of the above two 

experiments is given in Fig. 4 at 𝜃 = 1 in which 𝐼𝐶 < 𝐼𝑊. This inequality shows the significance of CAST 

strategy as a prerequisite to the proper treatment of infectious diseases and further discourages the ordinary 

diagnosis/blind prescription treatment of patients suffering from hard-to-treat infections. This result agrees 

with the works of [3, 6] that mandated the use of culture before medication as it prevents drug resistance and 

promotes timely cure from infections. The impact of 𝛼 on the infectives is also given in Fig. 5 and 6. In both 

Figures, it is important to say that infection is easily treated in individuals who embrace CAST strategy but 

prove difficult for those who have gone for blind prescription or ordinary diagnosis at 𝛼 = 0. This outcome is 

consistent with [12] that says culture and drug sensitivity test can save more lives and prevent multi-drug 

resistance in patients.  
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5. Conclusion 

This paper aims to model the role of culture and antibiotic susceptibility testing on the treatment of 

hard-to-treat infections. To this end, incidence function that accounts for individuals' behaviour with 

(out) culture has been introduced. Stability analysis concerning 𝑹𝒄 being the key objective of any 

epidemiological study has been done, and the investigation reveals that the basic equilibria of the 

model are stable, both local and global using appropriate standard stability methods. Threshold 

analysis of the effective reproduction number 𝑹𝒄 has proven that CAST strategy is very critical in 

mitigating and controlling the hard-to-treat diseases. Numerically, we simulate the proposed model 

using tuberculosis data from South Africa as a case study. The result confirms that individuals who 

present themselves for treatment of infection without culture and antibiotic susceptibility testing have 

a slow recovery pace and thus increases their mortality. Based on these findings; priority should be 

on culture and drug sensitivity testing by health practitioners before prescribing drugs to patients, 

since this will reduce fatality and boast recovery rates of individuals from hard-to-use infections. 

Additionally, since the study focuses on a generalised model for non-specific infection, we expect 

future research to target specific diseases as each disease may have its peculiar transmission 

dynamics. 
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1. Introduction

In 1965, to dispose uncertain or vaguee information in decision making, fuzzy set theory was first
introduced by Zadeh [1]. Fuzzy set theory was characterized by a membership function which assigns
to each target a membership value ranging between 0 and 1. Further, Chang [2] introduced the
fuzzy topological spaces and studied some basic notions of topology such as open set, closed set and
continuity. Later, Lowen [3, 4] also made different studies on fuzzy topological spaces. Intuitionistic
fuzzy set (IFS), initially proposed by Atanassov [5], is incorporated the degree of non-membership γ
into the analysis along with the membership degree µ in such a way that µ+γ ≤ 1. Coker [6] introduced
the concept of intuitionistic fuzzy topological spaces and studied some notions such as continuity and
compactness. Then, different studies were carried out on intuitionistic fuzzy topological spaces [7–9].
Although intuitionistic fuzzy set theory is popular, in some pactical decision-making processes the
sum of degree of membership and the degree of non-membership, in which an alternative that meets
the criteria of expertise is given, can be larger than 1; but their square sum is 1 or less.
Yager developed pythagorean fuzzy set (PFS) [10] characterized by a membership degree and non-
membership degree which satisfies the condition that the square sum of its membership and non-
membership degree is less than or equal to 1. Obviously, PFS is more effective than IFS. Yager [11]
showed this situation with an example. An expert gives his support for membership of an alternative

is
√

3
2 and his support against membership is 1

2 . Since the sum of the two values is bigger than 1.

They are not avaliable for IFS. But they are avaliable for PFS since
(√

3
2

)2
+
(

1
2

)2 ≤ 1. The PFS

also has been studied from different perspectives such as in decision-making technologies [11–14],
aggregation operator [15–18], information measure [19, 20], the extensions of PFS [21–24] and basic
properties [10, 25, 26]. Besides, In 2019, Olgun et al. [27] introduce pythagorean fuzzy topological
spaces and studied some properties. After that, In 2020, Naeem et. al. studied Pythagorean m-
polar Fuzzy Topology with TOPSIS Approach in Exploring Most Effectual Method for Curing from
COVID-19 [28].
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In this study, we investigated some basic notions of pythagorean fuzzy topological spaces such as
pythagorean fuzzy interior, pythagorean fuzzy closure, pythagorean fuzzy boundary and pythagorean
fuzzy basic. Finally, we also defined pythagorean fuzzy open (closed) function and pythagorean fuzzy
homeomorphism.

2. Preliminaries

In this section, we will give some preliminary information for the present study.

Definition 2.1. [1] Let X be an universe. A fuzzy set (FS for short) A in X, A = {(x, µA(x)) :
x ∈ X}, where µA : X → [0, 1] is the membership function of the fuzzy set A; µA(x) ∈ [0, 1] is the
membership of x ∈ X in A.

Definition 2.2. [5] Let X be a non-empty fixed set. An intuitionistic fuzzy set (IFS for short) A in
X is an object having the form A = {〈x, µA(x), γA(x)〉 : x ∈ X} where the functions µA : X → [0, 1]
and γA : X → [0, 1] denote the degree of membership and the degree of non-membership of each
element x ∈ X to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1 for each x ∈ X.

The degree of indeterminacy IA = 1− µA(x)− γA(x).

Definition 2.3. [10] Let X be a universe of discourse. A pythagorean fuzzy set P in X is given
by P = {〈x, ϕP (x), ψP (x)〉 : x ∈ X} where the functions ϕP (x) : X → [0, 1] denotes the degree of
membership and ψP (x) : X → [0, 1] denotes the degree of non-membership of the element x ∈ X to
the set P , respectively, with the condition that 0 ≤ (ϕP (x))2 + (ψP (x))2 ≤ 1.

The degree of indeterminacy IP =
√

1− (ϕP (x))2 − (ψP (x))2.

Remark 2.4. It is easy to check that PFSs generalize IFSs. That is, all intuitionistic fuzzy degrees
are part of the Pythagorean fuzzy degrees. In actual decision-making problems, the PFS characterizes
a larger membership space than the IFS. Namely, the PFS a higher capability than the IFS to model
vagueness in real decision-making problems. Yager [10] proposed a novel concept of PFS to model the
condition that the sum of the degree to which an alternative xi satisfies and dissatisfies with respect
to the attribute Cj is bigger than 1, while the IFS cannot deal with it.

Fig. 1. Comparison of intuitionistic fuzzy subsets and Pythagorean fuzzy subsets

Definition 2.5. [10] Let P1 = {〈x, ϕP1(x), ψP1(x)〉 : x ∈ X} and P2 = {〈x, ϕP2(x), ψP2(x)〉 : x ∈ X}
be two pythagorean fuzzy sets over X. Then,

a the pythagorean fuzzy complement of P1 is defined by

P c
1 = {〈x, ψP1(x), ϕP1(x)〉 : x ∈ X} ,

b the pythagorean fuzzy intersection of P1 and P2 is defined by

P1 ∩ P2 = {〈x,min{ϕP1(x), ϕP2(x)},max{ψP1(x), ψP2(x)}〉 : x ∈ X} ,
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c the pythagorean fuzzy union of P1 and P2 is defined by

P1 ∪ P2 = {〈x,max{ϕP1(x), ϕP2(x)},min{ψP1(x), ψP2(x)}〉 : x ∈ X} ,

d we say P1 is a pythagorean fuzzy subset of P2 and we write P1 ⊆ P2 if ϕP1(x) ≤ ϕP2(x) and
ψP1(x) ≥ ψP2(x) for each x ∈ X,

e 0X = {〈x, 0, 1〉 : x ∈ X} and 1X = {〈x, 1, 0〉 : x ∈ X} .

Definition 2.6. [27] Let X 6= ∅ be a set and τ be a family of pythagorean fuzzy subsets of X. If

T1 0X , 1X ∈ τ,

T2 for any P1, P2 ∈ τ , we have P1 ∩ P2 ∈ τ,

T3 for any {Pi}i∈I ⊆ τ , we have ∪
i∈I
Pi ∈ τ

then τ is called a pythagorean fuzzy topology on X and the pair (X, τ)p is said to be a pythagorean
fuzzy topological space (PFTS for short).Each member of τ is called a pythagorean fuzzy open set
(PFOS for short). The complement of a pythagorean fuzzy open set is called a pythagorean fuzzy
closed set (PFCS for short).

Remark 2.7. As any fuzzy set or intuitionistic fuzzy set can be considered as a pythagorean fuzzy set,
we observe that any fuzzy topological space or intuitionistic fuzzy topological space is a pythagorean
fuzzy topological space as well. Conversely, it is obvious that pythagorean fuzzy topological space
needs not to be a fuzzy topological space or intuitionistic fuzzy topological space. Even a pythagorean
fuzzy open set may be neither a fuzzy set nor an intuitionistic fuzzy set (see following example).

Example 2.8. [27] Let X = {x1, x2}. Consider the following family of pythagorean fuzzy subsets
τ = {0X , 1X , P1, ..., P5} where

P1 = {〈x1, 0.5, 0.7〉 , 〈x2, 0.2, 0.4〉} ,
P2 = {〈x1, 0.6, 0.5〉 , 〈x2, 0.3, 0.9〉} ,
P3 = {〈x1, 0.4, 0.8〉 , 〈x2, 0.1, 0.95〉} ,
P4 = {〈x1, 0.6, 0.5〉 , 〈x2, 0.3, 0.4〉} ,
P5 = {〈x1, 0.5, 0.7〉 , 〈x2, 0.2, 0.9〉} .

Observe that (X, τ)p is a pythagorean fuzzy topological space.

Definition 2.9. [27] Let X and Y be two non-empty sets, let f : X → Y be a function and let A and
B be Pythagorean fuzzy subsets of X and Y, respectively. Then, the membership and non-membership
functions of image of A with respect to f that is denoted by f [A] are defined by

µf [A](y) =

{
sup

z∈f−1(y)

µA(z) , if f−1(y) 6= ∅

0 , otherwise

and

vf [A](y) =

{
inf

z∈f−1(y)
vA(z) , if f−1(y) 6= ∅

0 , otherwise

respectively. The membership and non-membership functions of pre-image of B with respect to f that
is denoted by f−1[B] are defined by

µf−1[B](x) = µB(f(x)) and vf−1[B](x) = vB(f(x)) respectively.
In the study [27], they showed that µ2

f [A] + v2
f [A] ≤ 1 pythagorean fuzzy membership condition is

provide for pythagorean fuzzy image and pre-image.

Proposition 2.10. [27] Let X and Y be two non-empty sets and f : X → Y be a pythagorean fuzzy
function. Then, we have
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1. f−1 [Bc] =
(
f−1 [B]

)c
for any pythagorean fuzzy subset B of Y.

2. (f [A])c ⊆ f [Ac] for any pythagorean fuzzy subset A of X.

3. If B1 ⊆ B2 then f−1 [B1] ⊆ f−1 [B2] where B1 and B2 are pythagorean fuzzy subset of Y.

4. If A1 ⊆ A2 then f [A1] ⊆ f [A2] where A1 and A2 are pythagorean fuzzy subset of X.

5. f
[
f−1 [B]

]
⊆ B for any pythagorean fuzzy subset B of Y.

6. A ⊆ f−1 [f [A]] for any pythagorean fuzzy subset A of X.

Definition 2.11. [27] Let (X, τ1)p and (Y, τ2)p be two pythagorean fuzzy topological spaces and
f : X → Y be a pythagorean fuzzy function. Then, f is said to be pythagorean fuzzy continuous
if for any pythagorean fuzzy subset A of X and for any neighbourhood V of f [A] there exists a
neighbourhood U of A such that f [U ] ⊆ V .

Theorem 2.12. [27] Let (X, τ1)p and (Y, τ2)p be two pythagorean fuzzy topological spaces. A
function f : X → Y is pythagorean fuzzy continuous iff for each open (closed) pythagorean fuzzy
subset B of Y we have f−1 [B] is an open (closed) pythagorean fuzzy subset of X.

3. Basic Results

Definition 3.1. Let {Pi = {〈x, ϕPi(x), ψPi(x)〉 : x ∈ X}}i∈I be a family of pythagorean fuzzy sets
over X. Then,

a ∩
i∈I
Pi = {〈x, inf {ϕPi(x)} , sup {ψPi(x)}〉 : x ∈ X} ,

b ∪
i∈I
Pi = {〈x, sup {ϕPi(x)} , inf {ψPi(x)}〉 : x ∈ X} .

Note that ∩
i∈I
Pi and ∪

i∈I
Pi are pythagorean fuzzy sets over X. We shall ∩

i∈I
Pi define ∩

i∈I
Pi ={〈

x, α ∩
i∈I

Pi , β ∩
i∈I

Pi

〉
: x ∈ X

}
such that α ∩

i∈I
Pi = inf {ϕPi(x)} and β ∩

i∈I
Pi = sup {ψPi(x)}. In order

to for ∩
i∈I
Pi to be pythagorean fuzzy set we must have that α2

∩
i∈I

Pi
(x) + β2

∩
i∈I

Pi
(x) ≤ 1. We see since

β2
∩
i∈I

Pi
(x) = sup

{
ψ2
Pi

(x)
}

, then

β2
∩
i∈I

Pi
(x) = sup

{
ψ2
Pi

(x)
}

= sup
{
r2
i − ϕ2

Pi
, r2

i − ψ2
Pi

}
≤ sup

{
r2
i − inf

{
ϕ2
Pi
, ψ2

Pi

}
, r2

i − inf
{
ϕ2
Pi
, ψ2

Pi

}}
β2
∩
i∈I

Pi
(x) ≤ sup

{
1− inf

{
ϕ2
Pi
, ψ2

Pi

}}
, 1− inf

{
ϕ2
Pi
, ψ2

Pi

}
≤ 1− inf

{
ϕ2
Pi
, ψ2

Pi

}
where ϕ2

Pi
+ψ2

Pi
= r2

i for every i ∈ I. From this we see that α2
∩
i∈I

Pi
(x)+β2

∩
i∈I

Pi
(x) ≤ inf

{
ϕ2
Pi
, ψ2

Pi

}
+

1− inf
{
ϕ2
Pi
, ψ2

Pi

}
≤ 1. Thus, ∩

i∈I
Pi is a pythagorean fuzzy set.

The prof is trivial for ∪
i∈I
Pi.

Theorem 3.2. Let {Pi = {〈x, ϕPi(x), ψPi(x)〉 : x ∈ X}}i∈I be a family of pythagorean fuzzy sets over
X. Then,

i ∩
i∈I
Pi = ∪

i∈I
Pi,

ii ∪
i∈I
Pi = ∩

i∈I
Pi.
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Proof. i) We have ∩
i∈I
Pi = {〈x, inf {ϕPi(x)} , sup {ψPi(x)}〉 : x ∈ X} . Then

∩
i∈I
Pi = {〈x, sup {ψPi(x), inf {ϕPi(x)}}〉 : x ∈ X}

and Pi = {〈x, ψPi(x), ϕPi(x)〉 : x ∈ X} and so ∪
i∈I
Pi = {〈x, sup {ψPi(x), inf {ϕPi(x)}}〉 : x ∈ X}.

That is, ∩
i∈I
Pi = ∪

i∈I
Pi.

ii) It is proved similar to (i)

Definition 3.3. Let (X, τ)p be a PFTS and P = {〈x, ϕP (x), ψP (x)〉 : x ∈ X} be a PFS over X.
Then the pythagorean fuzzy interior, pythagorean fuzzy closure and pythagorean fuzzy boundary of
P are defined by;

a int (P ) = ∪{G : G is a PFOS in X and G ⊆ P } ,

b cl (P ) = ∩{K : K is a PFCS in X and P ⊆ K } ,

c Fr (P ) = cl (P ) ∩ cl (P c).

It is clear that,

a int (P ) is the biggest pythagorean fuzzy open set contained P ,

b cl (P ) is the smallest pythagorean fuzzy closed set containing P.

Remark 3.4. From the definition pythagorean fuzzy union and intersection, it is obvious that
pythagorean fuzzy interior, closure and boundary is a pythagorean fuzzy set.

Example 3.5. Let X = {x1, x2, x3}. Consider the following family of pythagorean fuzzy sets τ =
{1X , 0X , P1, P2, P3, P4, } where

P1 = {〈x1, 0.6, 0.8〉 , 〈x2, 0.7, 0.6〉 , 〈x3, 0.3, 0.2〉} ,
P2 = {〈x1, 0.7, 0.9〉 , 〈x2, 0.2, 0.5〉 , 〈x3, 0.1, 0.9〉} ,
P3 = {〈x1, 0.7, 0.8〉 , 〈x2, 0.7, 0.5〉 , 〈x3, 0.3, 0.2〉} ,
P4 = {〈x1, 0.6, 0.9〉 , 〈x2, 0.2, 0.6〉 , 〈x3, 0.1, 0.9〉} .

It is clear that (X, τ)p is a pythagorean fuzzy topological space. Now, assume that,

P = {〈x1, 0.8, 0.5〉 , 〈x2, 0.9, 0.3〉 , 〈x3, 0.4, 0.1〉}

is a pythagorean fuzzy subset over X. Then

int(P ) = 0X ∪ P1 ∪ P2 ∪ P3 ∪ P4

= P3 = {〈x1, 0.7, 0.8〉 , 〈x2, 0.7, 0.5〉 , 〈x3, 0.3, 0.2〉} .

On the other hand, in order to find the pythagorean fuzzy closure of P , it necessary to determine
the pythagorean fuzzy closed sets over X. Then

P c
1 = {〈x1, 0.8, 0.6〉 , 〈x2, 0.6, 0.7〉 , 〈x3, 0.2, 0.3〉} ,
P c

2 = {〈x1, 0.9, 0.7〉 , 〈x2, 0.5, 0.2〉 , 〈x3, 0.9, 0.1〉} ,
P c

3 = {〈x1, 0.8, 0.7〉 , 〈x2, 0.5, 0.7〉 , 〈x3, 0.2, 0.3〉} ,
P c

4 = {〈x1, 0.9, 0.6〉 , 〈x2, 0.6, 0.2〉 , 〈x3, 0.9, 0.1〉} .

Hence,
cl(P ) = 1X

Similarly to find the pythagorean fuzzy boundary of P ,

P c = {〈x1, 0.5, 0.8〉 , 〈x2, 0.3, 0.9〉 , 〈x3, 0.1, 0.4〉}
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cl (P c) = 1X ∩ P c
1 ∩ P c

2 ∩ P c
3 ∩ P c

4

= P c
3 = {〈x1, 0.8, 0.7〉 , 〈x2, 0.5, 0.7〉 , 〈x3, 0.2, 0.3〉}

Fr(P ) = cl(P ) ∩ cl (P c)

= 1X ∩ P c
3

= {〈x1, 0.8, 0.7〉 , 〈x2, 0.5, 0.7〉 , 〈x3, 0.2, 0.3〉} .

Proposition 3.6. Let (X, τ)p be a PFTS and P, P1, P2 be PFSs over X. Then the following
properties hold;

i int (P ) ⊆ P,

ii int (int (P )) = int (P ) ,

iii P1 ⊆ P2 ⇒ int (P1) ⊆ int (P2) ,

iv int (P1 ∩ P2) = int (P1) ∩ int (P2) ,

v int (1X) = 1X , int (0X) = 0X .

Proof. (i), (ii), (iii) and (v) can be easily obtained from the definition of the pythagorean fuzzy
interior.

(iv) From int (P1 ∩ P2) ⊆ int (P1) and int (P1 ∩ P2) ⊆ int (P2) we obtain int (P1 ∩ P2) ⊆ int (P1)∩
int (P2). On the other hand, from the facts int (P1) ⊆ P1 and int (P2) ⊆ P2 ⇒ int (P1) ∩ int (P2) ⊆
P1 ∩P2 and int (P1)∩ int (P2) ∈ τ we have int (P1)∩ int (P2) ⊆ int (P1 ∩ P2). So, proof of the axioms
(iv) is obtained from these two inequalities.

Theorem 3.7. Let J : PFS(X)→ PFS(X) be a mapping. The family τ = {P ∈ PFS(X) : J(P ) = P}
is a pythagorean fuzzy topology over X, if the mapping J satisfies the following conditions:

i J(P ) ⊆ P,

ii J(1X) = 1X ,

iii J (J(P )) = J(P ),

iv J (P1 ∩ P2) = J (P1) ∩ J (P2) .

Also, J(P ) = int (P ) for each pythagorean fuzzy set P in this pythagorean fuzzy topological space.

Proof. Straightforward.

Proposition 3.8. Let (X, τ)p be a PFTS and P, P1, P2 be PFSs over X. Then the following
properties hold;

i P ⊆ cl (P ) ,

ii cl (cl (P )) = cl (P ) ,

iii P1 ⊆ P2 ⇒ cl (P1) ⊆ cl (P2) ,

iv cl (P1 ∪ P2) = cl (P1) ∪ cl (P2) ,

v cl (1X) = 1X , cl (0X) = 0X .

Proof. (i), (ii), (iii) and (v) can be easily obtained from the definition of the pythagorean fuzzy
closure.

(iv) From cl (P1) ⊆ cl (P1 ∪ P2) and cl (P2) ⊆ cl (P1 ∪ P2) we obtain cl (P1)∪ cl (P2) ⊆ cl (P1 ∪ P2).
On the other hand, from the facts P1 ⊆ cl (P1) and P2 ⊆ cl (P2) ⇒ P1 ∪ P2 ⊆ cl (P1) ∪ cl (P2) and
cl (P1) ∪ cl (P2) ∈ PFCS we have cl (P1 ∪ P2) ⊆ cl (P1) ∪ cl (P2). Thus, proof of the axioms (iv) is
obtained from these two inequalities.
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Theorem 3.9. Let C : PFS(X)→ PFS(X) be a mapping. The family τ = {P ∈ PFS(X) : C(P c) = P c}
is a pythagorean fuzzy topology over X, if the mapping C satisfies the following conditions:

i P ⊆ C (P ) ,

ii C(0X) = 0X ,

iii C (C(P )) = C(P ),

iv C (P1 ∪ P2) = C (P1) ∪ C (P2) .

Also, C(P ) = cl (P ) for each pythagorean fuzzy set P in this pythagorean fuzzy topological space.

Proof. Straightforward.

Theorem 3.10. Let (X, τ)p be a PFTS and P be a PFS over X. Then,

a cl (P c) = (int (P ))c ,

b int (P c) = (cl (P ))c .

Proof. (a) Let P = {〈x, ϕP (x), ψP (x)〉 : x ∈ X} and assume that the family of PFSs contained
in P are indexed by the family {Pi = {〈x, ϕPi(x), ψPi(x)〉 : x ∈ X}}i∈I . Then we see that int (P ) =
{〈x, sup {ϕPi(x)} , inf {ψPi(x)}〉 : x ∈ X} and hence (int (P ))c = {〈x, inf {ψPi(x)} , sup {ϕPi(x)}〉 : x ∈ X}.
Since P c = {〈x, ψP (x), ϕP (x)〉 : x ∈ X} and ϕPi(x) ≤ ϕP (x), ψPi(x) ≥ ψP (x) for each i ∈ I, we obtain
that
{Pi = {〈x, ϕPi(x), ψPi(x)〉 : x ∈ X}}i∈I is the family of PFSs containing P c, i.e.

cl (P c) = {〈x, inf {ψPi(x)} , sup {ϕPi(x)}〉 : x ∈ X}. Therefore, cl (P c) = (int (P ))c immediately.
(b) This analagous to (a).

Proposition 3.11. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then, the following are equivalent to each other;

a f is a pythagorean fuzzy continuous function,

b f [cl(P )] ⊆ cl (f [P ]) for each PFS P in X,

c cl
(
f−1 [K]

)
⊆ f−1 [cl (K)] for each PFS K in Y ,

d f−1 [int(K)] ⊆ int
(
f−1 [K]

)
for each PFS K in Y.

Proof. a)⇒b) Let f : X → Y be a pythagorean fuzzy continuous function and P be a PFS over
X. Then, f [P ] ⊆ cl (f [P ]) and P ⊆ f−1 [cl (f [P ])]. Since cl (f [P ]) is a pythagorean fuzzy closed set
in Y and f is a pythagorean fuzzy continuous function, f−1 [cl (f [P ])] is a pythagorean fuzzy closed
set in X. On the other hand, if cl(P ) is the smallest pythagorean fuzzy closed set containing P , then
cl(P ) ⊆ f−1 [cl (f [P ])] and so, f [cl(P )] ⊆ cl (f [P ]).

b)⇒c) Suppose that P = f−1 [K]. From (b), f [cl(P )] = f
[
cl
(
f−1 [K]

)]
⊆ cl (f [P ]) = cl

(
f
[
f−1 [K]

])
⊆

cl (K). Then, cl
(
f−1 [K]

)
= cl(P ) ⊆ f−1 [f [cl (P )]] ⊆ f−1 [cl (K)].

c)⇒d) Since int (K) = (cl (Kc))c, then cl
(
f−1 [K]

)
= cl(P ) ⊆ f−1 [f [cl (P )]] ⊆ f−1 [cl (K)].

Assume that, G is a pythagorean fuzzy open set in Y . Then, int (G) = G. From (d), f−1 [G] =
f−1 [int (G)] ⊆ int

(
f−1 [G]

)
⊆ f−1 [G]. Therefore, f is a pythagorean fuzzy continuous function.

Definition 3.12. Let (X, τ)p be a PFTS.

a A subfamily Γ of τ is called a pythagorean fuzzy basic (PFB for short) for τ , if for each P ∈ τ ,
P = 0X or there exists Γ

′ ⊆ Γ such that P = ∪Γ
′
.

b A subfamily Φ of τ is called a pythagorean fuzzy subbase (PFSB for short) for τ , if the family

Γ =
{
∩Φ

′
: Φ
′

is a finite subset of Φ
}

is a pythagorean fuzzy basic for τ .
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Example 3.13. Considering the pythagorean fuzzy topology in Example 1, the family

Φ = {P1, P2}

is a pythagorean fuzzy subbase for τ and

Γ = {P1, P2, P4}

is a pythagorean fuzzy basic for τ .

Theorem 3.14. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then,

i f is a pythagorean fuzzy continuous function iff for each B ∈ Γ we have f−1 [B] is a pythagorean
fuzzy open subset of X such that Γ is a pythagorean fuzzy basic for τ2.

ii f is a pythagorean fuzzy continuous function iff for each K ∈ Φ we have f−1 [K] is a pythagorean
fuzzy open subset of X such that Φ is a pythagorean fuzzy subbase for τ2.

Proof. i) Let f be a pythagorean fuzzy continuous function. Since each B ∈ Γ ⊆ τ2 and f is a
pythagorean fuzzy continuous function, then f−1 [B] ∈ τ1.

Concersely, suppouse that Γ is a pythagorean fuzzy basic for τ2 and f−1 [B] ∈ τ1 for each B ∈ Γ.
Then for arbitrary a pythagorean fuzzy open set P ∈ τ2,

f−1 [P ] = f−1

[
∪

B∈Γ
B

]
= ∪

B∈Γ
f−1 [B] ∈ τ1.

That is, f is a pythagorean fuzzy continuous function.
ii) Let f be a pythagorean fuzzy continuous function. Since eachK ∈ Φ ⊆ τ2 and f is a pythagorean

fuzzy continuous function, then f−1 [K] ∈ τ1.
Concersely, assume that Φ is a pythagorean fuzzy subbase for τ2 and f−1 [K] ∈ τ1 for each K ∈ Φ.

Then for arbitrary a pythagorean fuzzy open set P ∈ τ2,

f−1 [P ] = f−1

[
∪

ij∈I
(Ki1 ∩Ki2 ∩ ... ∩Kin)

]
= ∪

ij∈I

(
f−1 [Ki1 ] ∩ f−1 [Ki2 ] ∩ ... ∩ f−1 [Kin ]

)
∈ τ1

That is, f is a pythagorean fuzzy continuous function.

Definition 3.15. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then,

a f is called a pythagorean fuzzy open function if f [P ] is a pythagorean fuzzy open set over Y for
every pythagorean fuzzy open set P over X.

b f is called a pythagorean fuzzy closed function if f [K] is a pythagorean fuzzy closed set over Y for
every pythagorean fuzzy closed set K over X.

Example 3.16. Let X = {x1, x2, x3} and Y = {y1, y2, y3}. Consider the following families of
pythagorean fuzzy sets τ1 = {0X , 1X , P1, P2, P3, P4} and τ2 = {0Y , 1Y , S1, S2, S3, S4} where

P1 = {〈x1, 0.3, 0.5〉, 〈x2, 0.6, 0.2〉, 〈x3, 0.6, 0.5〉},
P2 = {〈x1, 0.6, 0.5〉, 〈x2, 0.8, 0.3〉, 〈x3, 0.7, 0.6〉},
P3 = {〈x1, 0.6, 0.5〉, 〈x2, 0.8, 0.2〉, 〈x3, 0.7, 0.5〉},
P4 = {〈x1, 0.3, 0.5〉, 〈x2, 0.6, 0.3〉, 〈x3, 0.6, 0.6〉},
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S1 = {〈y1, 0.6, 0.2〉, 〈y2, 0.3, 0.5〉, 〈y3, 0.6, 0.5〉},
S2 = {〈y1, 0.8, 0.3〉, 〈y2, 0.6, 0.5〉, 〈y3, 0.7, 0.6〉},
S3 = {〈y1, 0.8, 0.2〉, 〈y2, 0.6, 0.5〉, 〈y3, 0.7, 0.5〉},
S4 = {〈y1, 0.6, 0.3〉, 〈y2, 0.3, 0.5〉, 〈y3, 0.6, 0.6〉},

It is clear that (X, τ1)p and (Y, τ2)p are pythagorean fuzzy topological spaces. If pythagorean fuzzy
function f : X → Y is defined as;

f(x1) = y2

f(x2) = y1

f(x3) = y3

Then f is a pythagorean fuzzy open function. However f is not pythagorean fuzzy closed function on
pythagorean fuzzy topological spaces (X, τ1)p.

Theorem 3.17. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then,

i f is a pythagorean fuzzy open function if f [int (P )] ⊆ int (f [P ]) for each pythagorean fuzzy set P
over X.

ii f is a pythagorean fuzzy closed function if cl (f [P ]) ⊆ f [cl (P )] for each pythagorean fuzzy set P
over X.

Proof. i) Let f be a pythagorean fuzzy open function and P be a PFS over X. Then, int (P ) is a
pythagorean fuzzy open set and int (P ) ⊆ P . Since f is a pythagorean fuzzy open function, f [int (P )]
is a pythagorean fuzzy open set over Y and f [int (P )] ⊆ f [P ]. Thus, f [int (P )] ⊆ int (f [P ]) is
obtained.

Conversely, suppouse that P is any pythagorean fuzzy open set over X. Then P = int (P ). From
the condition of theorem, we have f [int (P )] ⊆ int (f [P ]). Then f [P ] = f [int (P )] ⊆ int (f [P ]) ⊆
f [P ]. This implies that f [P ] = int (f [P ]). That is, f is a pythagorean fuzzy open function.

ii) Let f be a pythagorean fuzzy closed function and P be a PFS over X. Since f is a pythagorean
fuzzy closed function then f [cl (P )] is a pythagorean fuzzy closed set over Y and f [P ] ⊆ f [cl (P )].
Thus, cl (f [P ]) ⊆ f [cl (P )] is obtained.

Conversely, assume that P is any pythagorean fuzzy closed set over X. Then P = cl (P ). From
the condition of theorem, we have cl (f [P ]) ⊆ f [cl (P )] = f [P ] ⊆ cl (f [P ]). This means that,
cl (f [P ]) = f [P ]. That is, f is a pythagorean fuzzy closed function.

Definition 3.18. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then f is a called a pythagorean fuzzy homeomerphism, if

i f is a bijection,

ii f is a pythagorean fuzzy continuous function,

iii f−1 is a pythagorean fuzzy continuous function.

Theorem 3.19. Let (X, τ1)p and (Y, τ2)p be two PFTSs and f : X → Y be a pythagorean fuzzy
function. Then the following conditions are equivalent;

i f is a pythagorean fuzzy homeomerphism,

ii f is a pythagorean fuzzy continuous function and pythagorean fuzzy open function,

iii f is a pythagorean fuzzy continuous function and pythagorean fuzzy closed function.

Proof. The proof can be easily obtained by using the previous theorems on continuity, opennes and
closedness are omitted.
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Conclusion

In this paper, we introduced the concept of pythagorean fuzzy interior, pythagorean fuzzy closure,
pythagorean fuzzy boundary, pythagorean fuzzy basic on pythagorean fuzzy topological spaces. We
also study pythagorean fuzzy open (closed) function and pythagorean fuzzy homeomorphism. Some
basic properties of these concepts are explored. We hope that, the results of this study may help in
the investigation of pythagorean fuzzy topological spaces in many researches.

Acknowledgement: We would like to thank the referees for their comments and suggestions on
the manuscript.
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1. Introduction 

Neutrosophy is a new kind of logic founded by 𝐹. Smarandache to deal with indeterminacy in nature and 

reality. According to Smarandache's work, every idea can be represented by three corresponding values (degree 

of truth, falsity, and indeterminacy). Recently, neutrosophy has found its way into algebraic studies. Many 

neutrosophic algebraic structures were defined and handled, such as neutrosophic group, neutrosophic ring, 

and neutrosophic field. See [1-5]. 

Refined neutrosophic structures such as refined neutrosophic groups and refined neutrosophic rings were 

firstly presented in the works of Agboola et al. [6,7] by using Smarandache's idea in splitting the indeterminacy 

I into many different logical degrees. Laterally, refined neutrosophic algebraic structures were studied widely 

in [2,8-13].  

Through this paper, we try to establish the basic theory of neutrosophic algebraic equations. We introduce 

a full description of basic algorithms which solve the linear neutrosophic equation, neutrosophic quadratic 

equation, and neutrosophic linear system in a neutrosophic field 𝐹(𝐼) and refined neutrosophic field 𝐹(𝐼1, 𝐼2). 

Also, we construct some examples to clarify the validity of this work. 

Our work's main idea is to transform the neutrosophic equation into an easy equivalent system of classical 

equations, and then we can build the desired algorithms. 

2. Preliminaries 

Definition 2.1. [3] Let (𝑅, +,×) be a ring. Then, 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ∶  𝑎, 𝑏 ∈ 𝑅} is called the neutrosophic ring 

where 𝐼 is a neutrosophic element with the condition 𝐼2 = 𝐼. 

If 𝑅 is a field, then 𝑅(𝐼) is called a neutrosophic field. 

A neutrosophic field is not a field by classical meaning, since 𝐼 is not invertible. 

 
1mohammadabobala777@gmail.com (Corresponding Author) 
1Faculty of Science, Tishreen University, Lattakia, Syria 

 

http://www.newtheory.org/
https://orcid.org/0000-0002-1372-1769


 

27 

 

Journal of New Theory 33 (2020) 26-32 / On Some Neutrosophic Algebraic Equations 

Definition 2.2. [1] Let 𝑅 be a ring and 𝑅(𝐼) be the related neutrosophic ring and 𝑃 = 𝑃0 + 𝑃1𝐼 =

{𝑎0 + 𝑎1𝐼 ∶  𝑎0 ∈ 𝑃0 , 𝑎1 ∈ 𝑃1}; 𝑃0, 𝑃1 are two subsets of 𝑅. 

(a) We say that 𝑃 is an AH-ideal if 𝑃0, 𝑃1 are ideals in the ring 𝑅. 

(b) We say that 𝑃 is an AHS-ideal if 𝑃0 = 𝑃1. 

Remark 2.3. [6] The element 𝐼 can be split into two indeterminacies 𝐼1 , 𝐼2 with conditions: 

𝐼1
2 = 𝐼1 , 𝐼2

2 = 𝐼2 , 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1 

Definition 2.4. [6] If 𝑋 is a set, then 𝑋(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2) ∶ 𝑎 , 𝑏 , 𝑐 ∈ 𝑋 } is called the refined neutrosophic 

set generated by 𝑋, 𝐼1, 𝐼2. 

Definition 2.5. [6] Let (𝑅, +,×) be a ring, (𝑅(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated by 

𝑅, 𝐼1, 𝐼2. 

Theorem 2.6. [6] Let (𝑅(𝐼1, 𝐼2) , + ,×) be a refined neutrosophic ring, then it is a ring. It is called a 

neutrosophic field if 𝑅 is a classical field. 

3. Main Discussion 

Definition 3.1. Let 𝐹(𝐼) be a neutrosophic field. Then, a neutrosophic algebraic linear equation is defined as 

follows: 

𝐴𝑋 + 𝐵 = 0; 𝐴 = 𝑎0 + 𝑎1𝐼, 𝐵 = 𝑏0 + 𝑏1𝐼, 𝑋 = 𝑥0 + 𝑥1𝐼;𝑥𝑖, 𝑎𝑖, 𝑏𝑖 ∈ 𝐹 

A neutrosophic quadratic equation is defined as follows: 

𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0; 𝐴 = 𝑎0 + 𝑎1𝐼, 𝐵 = 𝑏0 + 𝑏1𝐼, 𝐶 = 𝑐0 + 𝑐1𝐼, 𝑋 = 𝑥0 + 𝑥1𝐼;𝑥𝑖, 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 ∈ 𝐹 

Theorem 3.2. Let 𝐹(𝐼) be a neutrosophic field, 𝐴𝑋 + 𝐵 = 0 be a linear neutrosophic equation. Then, it is 

equivalent to the following two classical linear equations: 

(a) 𝑎0𝑥0 + 𝑏0 = 0. 

(b) (𝑎0 + 𝑎1)(𝑥0 + 𝑥1) + (𝑏0 + 𝑏1) = 0. 

PROOF. By computing 𝐴𝑋 + 𝐵 = 0, we find 𝑎0𝑥0 + 𝑏0 + (𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑏1)𝐼 = 0. Thus, 

𝑎0𝑥0 + 𝑏0 = 0 (equation (a)) 

𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑏1 = 0 (*) 

 By adding (a) to (*), we get (𝑎0 + 𝑎1)(𝑥0 + 𝑥1) + (𝑏0 + 𝑏1) = 0 (equation (b)). 

Remark 3.3. It is easy to get an algorithm to solve neutrosophic linear equation 𝐴𝑋 + 𝐵 = 0 in a neutrosophic 

field 𝐹(𝐼). We should solve the equivalent system, and then we get the desired solution. 

Example 3.4. Consider the following neutrosophic linear equation (1 + 2𝐼)𝑋 + (2 − 3𝐼) = 0 (*) over the 

neutrosophic field of real numbers 𝑅(𝐼). The equivalent system is: 

(a) 𝑥0 + 2 = 0. (Its solution is 𝑥0 = −2.) 

(b) 3(𝑥0 + 𝑥1) + (−1) = 0. Its solution is 𝑥0 + 𝑥1 =
1

3
, thus 𝑥1 =

7

3
. 

The solution of (*) is 𝑋 = −2 +
7

3
𝐼. 

Example 3.5. Consider the neutrosophic linear equation (1 + 2𝐼)𝑋 + (2 − 3𝐼) = 0 (*) over 𝑍3(𝐼) the 

neutrosophic field of integers modulo 3. The equivalent system is: 

(a) 𝑥0 + 2 = 0. (Its solution is 𝑥0 = −2 ≡ 1(mod 3)) 
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(b) 3(𝑥0 + 𝑥1) + (−1) = 0. It is a non solvable in 𝑍3. Hence (*) is not solvable in 𝑍3(𝐼). 

Theorem 3.6. Let 𝐹(𝐼) be a neutrosophic field, 𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0 be a quadratic neutrosophic equation. 

Then, it is equivalent to the following two classical linear equations: 

(a) 𝑎0𝑥0
2 + 𝑏0𝑥0 + 𝑐0 = 0. 

(b) (𝑎0 + 𝑎1)(𝑥0 + 𝑥1)2 + (𝑏0 + 𝑏1)(𝑥0 + 𝑥1) + 𝑐0 + 𝑐1 = 0. 

PROOF. By computing 𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0, we get 

(𝑎0𝑥0
2 + 𝑏0𝑥0 + 𝑐0) + (2𝑎0𝑥0𝑥1 + 𝑎0𝑥1

2 + 𝑎1𝑥0
2 + 2𝑎1𝑥0𝑥1 + 𝑎1𝑥1

2 + 𝑏0𝑥1 + 𝑏1𝑥0 + 𝑏1𝑥1 + 𝑐1)𝐼 = 0 

Thus, 𝑎0𝑥0
2 + 𝑏0𝑥0 + 𝑐0 = 0 (equation (a)) and 2𝑎0𝑥0𝑥1 + 𝑎0𝑥1

2 + 𝑎1𝑥0
2 + 2𝑎1𝑥0𝑥1 + 𝑎1𝑥1

2 + 𝑏0𝑥1 +

𝑏1𝑥0 + 𝑏1𝑥1 + 𝑐1(*), by adding (a) to (*) we get (𝑎0 + 𝑎1)(𝑥0 + 𝑥1)2 + (𝑏0 + 𝑏1)(𝑥0 + 𝑥1) + 𝑐0 + 𝑐1 = 0 

(equation (b)). 

Remark 3.7. To solve a quadratic neutrosophic equation 𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0 in a neutrosophic field 𝐹(𝐼). It 

is sufficient to solve the equivalent system presented in Theorem 3.6. 

Example 3.8. Consider the following quadratic neutrosophic equation (1 + 𝐼)𝑋2 + (2 − 𝐼)𝑋 + 3𝐼 = 0 (*) 

over the neutrosophic field of real numbers 𝑅(𝐼). The equivalent system is: 

(a) 𝑥0
2 + 2𝑥0 = 0. (It has two solutions 𝑥0 = 0, or 𝑥0 = −2. 

(b) (2)(𝑥0 + 𝑥1)2 + (1)(𝑥0 + 𝑥1) + 3 = 0. (It has no solutions in 𝑅, thus (*) is not solvable in 𝑅(𝐼).) 

Example 3.9. Consider the following quadratic neutrosophic equation (1 + 𝐼)𝑋2 + (2 − 𝐼)𝑋 + 3𝐼 = 0 (*) 

over the neutrosophic field of complex numbers 𝐶(𝐼). The equivalent system is: 

(a) 𝑥0
2 + 2𝑥0 = 0. (It has two solutions 𝑥0 = 0, or 𝑥0 = −2.) 

(b) (2)(𝑥0 + 𝑥1)2 + (1)(𝑥0 + 𝑥1) + 3 = 0. It has two solutions 𝑥0 + 𝑥1 =
−1+𝑖√23

4
  or 

−1−𝑖√23

4
, thus 𝑥1 ∈

{
−1+𝑖√23

4
,

−1−𝑖√23

4
} if 𝑥0 = 0. If 𝑥0 = −2, then 𝑥1 ∈ {2 +

−1+𝑖√23

4
, 2 +

−1−𝑖√23

4
}. The solutions of equation (*) 

are 𝑋 =
−1+𝑖√23

4
𝐼, or 𝑋 =  

−1−𝑖√23

4
𝐼, or 𝑋 = −2 + (2 +

−1+𝑖√23

4
) 𝐼, or 𝑋 = −2 + (2 +

−1−𝑖√23

4
) 𝐼. 

Theorem 3.10. Let 𝐴1𝑋1 + 𝐴2𝑋2 + ⋯ + 𝐴𝑛𝑋𝑛 = 𝐶 (*) be a neutrosophic linear equation with n-variables 

over a neutrosophic field 𝐹(𝐼). Suppose that 𝐶 = 𝑐0 + 𝑐1𝐼, 𝐴𝑖 = 𝑎0
(𝑖)

+ 𝑎1
(𝑖)

𝐼, 𝑋 = 𝑥0
(𝑖)

+ 𝑥1
(𝑖)

𝐼; 𝑐𝑖 , 𝑥𝑗
(𝑖)

, 𝑎𝑗
(𝑖)

∈

𝐹. Then, (*) has the following equivalent system of classical linear equations: 

(a) 𝑎0
(1)

𝑥0
(1)

+ 𝑎0
(2)

𝑥0
(2)

+ ⋯ + 𝑎0
(𝑛)

𝑥0
(𝑛)

= 𝑐0. 

(b) (𝑎0
(1)

+ 𝑎1
(1)

) (𝑥0
(1)

+ 𝑥1
(1)

) + (𝑎0
(2)

+ 𝑎1
(2)

) (𝑥0
(2)

+ 𝑥1
(2)

) + ⋯ + (𝑎0
(𝑛)

+ 𝑎1
(𝑛)

) (𝑥0
(𝑛)

+ 𝑥1
(𝑛)

) = 𝑐0 + 𝑐1. 

PROOF.  

First of all, we should compute 𝐴𝑖𝑋𝑖. We have 𝐴𝑖𝑋𝑖 = 𝑎0
(𝑖)

𝑥0
(𝑖)

+ (𝑎0
(𝑖)

𝑥1
(𝑖)

+ 𝑎1
(𝑖)

𝑥0
(𝑖)

+ 𝑎1
(𝑖)

𝑥1
(𝑖)

) 𝐼, we remark 

that 𝑎0
(𝑖)

𝑥0
(𝑖)

+ (𝑎0
(𝑖)

𝑥1
(𝑖)

+ 𝑎1
(𝑖)

𝑥0
(𝑖)

+ 𝑎1
(𝑖)

𝑥1
(𝑖)

) = (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

). Hence, 

𝐴𝑖𝑋𝑖 = 𝑎0
(𝑖)

𝑥0
(𝑖)

+ (𝑎0
(𝑖)

𝑥1
(𝑖)

+ 𝑎1
(𝑖)

𝑥0
(𝑖)

+ 𝑎1
(𝑖)

𝑥1
(𝑖)

) 𝐼 = 𝑎0
(𝑖)

𝑥0
(𝑖)

+ [(𝑎0
(𝑖)

+ 𝑎1
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

) − 𝑎0
(𝑖)

𝑥0
(𝑖)

]𝐼 

Now, we can write ∑ 𝐴𝑖𝑋𝑖 = (∑ 𝑎0
(𝑖)

𝑥0
(𝑖)𝑛

𝑖=1 ) + 𝐼(∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)𝑛

𝑖=1
𝑛
𝑖=1 )𝑛

𝑖=1 = 𝐶 =

𝑐0 + 𝑐1𝐼. Thus, (∑ 𝑎0
(𝑖)

𝑥0
(𝑖)𝑛

𝑖=1 ) = 𝑐0 (equation (a)). And ∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)𝑛

𝑖=1
𝑛
𝑖=1 = c1 

(*), by adding (a) to (*) we get ∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

) = 𝑐0 + 𝑐1
𝑛
𝑖=1 . (equation (b)). 
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Remark 3.11. We can solve a linear system of neutrosophic equations in a neutrosophic field 𝐹(𝐼) by solving 

its equivalent system in the classical field 𝐹. 

Example 3.12. Consider the following neutrosophic linear system over the neutrosophic field of real numbers: 

(1) (1 + 𝐼)𝑋 + (2 − 𝐼)𝑌 = 1 + 3𝐼. 

(2) (2 + 𝐼)𝑋 + 5𝐼𝑌 = −1 + 𝐼. 

The equivalent system of (1) is 

𝑥0 + 2𝑦0 = 1 (I)

2(𝑥0 + 𝑥1) + (𝑦0 + 𝑦1) = 4 (II)
 

The equivalent system of (2) is 

2𝑥0 + 0. 𝑦0 = −1 (III)

3(𝑥0 + 𝑥1) + 5(𝑦0 + 𝑦1) = 0 (IV)
 

From (I), (III), we get 𝑥0 = −
1

2
, 𝑦0 =

3

4
. From (II), (IV), we get 𝑥0 + 𝑥1 =

20

7
, 𝑦0 + 𝑦1 = −

12

7
. 

Definition 3.13. Let 𝐹(𝐼1, 𝐼2) be a refined neutrosophic field. We define 

(a) 𝐴𝑋 + 𝐵 = (0,0,0); 𝐴 = (𝑎0, 𝑎1𝐼1, 𝑎2𝐼2), 𝐵 = (𝑏0, 𝑏1𝐼1, 𝑏2𝐼2), 𝑋 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2); 𝑏𝑖, 𝑎𝑖, 𝑥𝑖 ∈ 𝐹. (Refined 

neutrosophic linear equation with one variable). 

(b) 𝐴𝑋2 + 𝐵𝑋 + 𝐶 = (0,0,0); 𝐶 = (𝑐0, 𝑐1𝐼1, 𝑐2𝐼2). (Refined quadratic neutrosophic equation). 

Theorem 3.14. Let 𝐹(𝐼1, 𝐼2) be a refined neutrosophic field, 𝐴𝑋 + 𝐵 = (0,0,0) be a refined linear neutrosophic 

equation. Then, it is equivalent to the following system of classical linear equations: 

(a) 𝑎0𝑥0 + 𝑏0 = 0. 

(b) (𝑎0 + 𝑎2)(𝑥0 + 𝑥2) + (𝑏0 + 𝑏2) = 0. 

(c) (𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2) = 0. 

PROOF.  

We compute  

𝐴𝑋 + 𝐵 = (𝑎0𝑥0 + 𝑏0, [𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑎1𝑥2 + 𝑎2𝑥1 + 𝑏1]𝐼1, [𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑏2]𝐼2) 

So, we get  

𝑎0𝑥0 + 𝑏0 = 0 (equation (a)) 

𝑎0𝑥2 + 𝑎2𝑥0 + 𝑎2𝑥2 + 𝑏2 = 0 (*),𝑎0𝑥1 + 𝑎1𝑥0 + 𝑎1𝑥1 + 𝑎1𝑥2 + 𝑎2𝑥1 + 𝑏1 (**) 

By adding (a) to (*), we find (𝑎0 + 𝑎2)(𝑥0 + 𝑥2) + (𝑏0 + 𝑏2) = 0 (equation (b)). 

By adding (b) to (**), we find (𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2) + (𝑏0 + 𝑏1 + 𝑏2) = 0 (equation (c)). 

Example 3.15. Consider the following refined neutrosophic linear equation (*) (2, 𝐼1, 3𝐼2)𝑋 + (4,7𝐼1, −5𝐼2) =

(0,0,0) over the refined neutrosophic field 𝑄(𝐼1, 𝐼2). 

The equivalent system is: 

(a) 2𝑥0 + 4 = 0. It has a solution 𝑥0 = −2. 

(b) 5(𝑥0 + 𝑥2) + (−1) = 0. It has a solution 𝑥0 + 𝑥2 =
1

5
, hence 𝑥2 =

11

5
. 

(c) 6(𝑥0 + 𝑥1 + 𝑥2) + (6) = 0. It has a solution 𝑥0 + 𝑥1 + 𝑥2 = −1, hence 𝑥1 =
−6

5
. 

The solution of equation (*) is 𝑋 = (−2,
−6

5
𝐼1,

11

5
𝐼2). 
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Theorem 3.16. Let 𝐹(𝐼1, 𝐼2) be a refined neutrosophic field, 𝐴𝑋2 + 𝐵𝑋 + 𝐶 = (0,0,0) be a refined quadratic 

neutrosophic equation over 𝐹(𝐼1, 𝐼2). Then, it is equivalent to the following system of classical quadratic 

equations: 

(a) 𝑎0𝑥0
2 + 𝑏0𝑥0 + 𝑐0 = 0. 

(b)(𝑎0 + 𝑎2)(𝑥0 + 𝑥2)2 + (𝑏0 + 𝑏2)(𝑥0 + 𝑥2) + 𝑐0 + 𝑐2 = 0. 

(c) (𝑎0 + 𝑎1 + 𝑎2)(𝑥0 + 𝑥1 + 𝑥2)2 + (𝑏0 + 𝑏1 + 𝑏2)(𝑥0 + 𝑥1 + 𝑥2) + 𝑐0 + 𝑐1 + 𝑐2 = 0. 

PROOF. The proof is similar to the previous theorem. 

Example 3.17. Consider the following refined neutrosophic quadratic equation over the refined neutrosophic 

field of complex numbers 𝐶(𝐼1, 𝐼2), 

(∗) (1,0, 𝐼2)𝑋2 + (1, 𝐼1, 0)𝑋 + (−2, 𝐼1, 𝐼2) = (0,0,0), the equivalent system is 

(a) 𝑥0
2 + 𝑥0 − 2 = 0. It has two solutions 𝑥0 = 1 or 𝑥0 = −2. 

(b) 2(𝑥0 + 𝑥2)2 + (𝑥0 + 𝑥2) − 1 = 0. It has two possible solutions 𝑥0 + 𝑥2 = −1 or 𝑥0 + 𝑥2 =
1

2
. Thus if 

𝑥0 = −2, then 𝑥2 = 1 or 𝑥2 =
5

2
, and if 𝑥0 = 1, then 𝑥2 = −2 or 𝑥2 =

−1

2
. 

(c) 2(𝑥0 + 𝑥1 + 𝑥2)2 + 2(𝑥0 + 𝑥1 + 𝑥2) = 0. It has two possible solutions 𝑥0 + 𝑥1 + 𝑥2 = 0 or 𝑥0 + 𝑥1 +

𝑥2 = −1. 

If 𝑥0 + 𝑥2 = −1, then 𝑥1 = 1 or 𝑥1 = 0, and if 𝑥0 + 𝑥2 =
1

2
, then 𝑥1 =

−1

2
 or 𝑥1 = −

3

2
. 

The set of solutions of equation (*) are 

{(1, 𝐼1, −2𝐼2), (1,
−1

2
𝐼1, −

1

2
𝐼2) , (−2, 𝐼1, 𝐼2), (−2, −

1

2
𝐼1,

5

2
𝐼2) , (1,0, −2𝐼2), (1, −

3

2
𝐼1, −

1

2
𝐼2) , (−2,0, 𝐼2), (−2, −

3

2
𝐼1,

5

2
𝐼2)} 

Theorem 3.18. Let 𝐴1𝑋1 + ⋯ + 𝐴𝑛𝑋𝑛 = 𝐶; 𝐶 = (𝑐0, 𝑐1𝐼1, 𝑐2𝐼2), 𝑋𝑖 = (𝑥0
(𝑖)

, 𝑥1
(𝑖)

𝐼1, 𝑥2
(𝑖)

𝐼2), 𝐴𝑖 =

(𝑎0
(𝑖)

, 𝑎1
(𝑖)

𝐼1, 𝑎2
(𝑖)

𝐼2) be a linear equation with n-variables over a refined neutrosophic field 𝐹(𝐼1, 𝐼2). Then, it is 

equivalent to the following system of classical linear equations over the classical field 𝐹: 

(a) ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

= 𝑐0
𝑛
𝑖=1 . 

(b) ∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) = 𝑐0 + 𝑐2
𝑛
𝑖=1 . 

(c) ∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

+ 𝑥2
(𝑖)

) = 𝑐0 + 𝑐1 + 𝑐2
𝑛
𝑖=1 . 

PROOF.  

We shall prove that ∑ 𝐴𝑖𝑋𝑖
𝑛
𝑖=1 = (∑ 𝑎0

(𝑖)
𝑥0

(𝑖)𝑛
𝑖=1 , [∑ (𝑎0

(𝑖)
+ 𝑎1

(𝑖)
+ 𝑎2

(𝑖)
) (𝑥0

(𝑖)
+ 𝑥1

(𝑖)
+ 𝑥2

(𝑖)
) −𝑛

𝑖=1

∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

)𝑛
𝑖=1 ] 𝐼1, [∑ (𝑎0

(𝑖)
+ 𝑎2

(𝑖)
) (𝑥0

(𝑖)
+ 𝑥2

(𝑖)
) − ∑ 𝑎0

(𝑖)
𝑥0

(𝑖)𝑛
𝑖=1

𝑛
𝑖=1 ] 𝐼2). 

We will use induction on 𝑛. For 𝑛 = 1, the theorem is true easily. Suppose that it is true for 𝑘. We must prove 

it for 𝑘 + 1. 

∑ 𝐴𝑖𝑋𝑖

𝑘+1

𝑖=1

 = ∑ 𝐴𝑖𝑋𝑖 + 𝐴𝑘+1𝑋𝑘+1

𝑘

𝑖=1

 

 

= (∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

𝑘

𝑖=1

, [∑(𝑎0
(𝑖)

+ 𝑎1
(𝑖)

+ 𝑎2
(𝑖)

)(𝑥0
(𝑖)

+ 𝑥1
(𝑖)

+ 𝑥2
(𝑖)

) − ∑(𝑎0
(𝑖)

+ 𝑎2
(𝑖)

)(𝑥0
(𝑖)

+ 𝑥2
(𝑖)

)

𝑘

𝑖=1

𝑘

𝑖=1

] 𝐼1, 
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[∑(𝑎0
(𝑖)

+ 𝑎2
(𝑖)

)(𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

𝑘

𝑖=1

𝑘

𝑖=1

] 𝐼2) + (𝑎0
(𝑘+1)

, 𝑎1
(𝑘+1)

𝐼1, 𝑎2
(𝑘+1)

𝐼2)(𝑥0
(𝑘+1)

, 𝑥1
(𝑘+1)

𝐼1, 𝑥2
(𝑘+1)

𝐼2) 

 = (𝑚, 𝑛𝐼1, 𝑡𝐼2) 

We have 𝑚 = (∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

)𝑘
𝑖=1 + 𝑎0

(𝑘+1)
𝑥0

(𝑘+1)
= ∑ 𝑎0

(𝑖)
𝑥0

(𝑖)𝑘+1
𝑖=1 . 

𝑡 =  ∑(𝑎0
(𝑖)

+ 𝑎2
(𝑖)

)(𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

𝑘

𝑖=1

𝑘

𝑖=1

+ [𝑎0
(𝑘+1)

𝑥2
(𝑘+1)

+ 𝑎2
(𝑘+1)

𝑥0
(𝑘+1)

+ 𝑎2
(𝑘+1)

𝑥2
(𝑘+1)

] 

 

= ∑(𝑎0
(𝑖)

+ 𝑎2
(𝑖)

)(𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

𝑘

𝑖=1

𝑘

𝑖=1

+ [(𝑎0
(𝑘+1)

+ 𝑎2
(𝑘+1)

)(𝑥0
(𝑘+1)

+ 𝑥2
(𝑘+1)

) − 𝑎0
(𝑘+1)

𝑥0
(𝑘+1)

] 

 

 = ∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

𝑘+1

𝑖=1

𝑘+1

𝑖=1

 

By following the same argument, we find that 

𝑛 = ∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

)

𝑘+1

𝑖=1

𝑘+1

𝑖=1

 

By putting 𝑚, 𝑛, 𝑡 in equation (*) we get: 

(a) ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)

= 𝑐0
𝑛
𝑖=1 . 

(I) ∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ 𝑎0
(𝑖)

𝑥0
(𝑖)𝑛

𝑖=1 = 𝑐2
𝑛
𝑖=1 . 

(II) ∑ (𝑎0
(𝑖)

+ 𝑎1
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥1
(𝑖)

+ 𝑥2
(𝑖)

) − ∑ (𝑎0
(𝑖)

+ 𝑎2
(𝑖)

) (𝑥0
(𝑖)

+ 𝑥2
(𝑖)

)𝑛
𝑖=1 = 𝑐1

𝑛
𝑖=1 . 

We add (a) to (I) to get equation (b). Also, we add (b) to (II) to get equation (c). Hence our proof is complete. 

Remark 3.19. According to the previous theorem, we can solve any linear system of refined neutrosophic 

linear equations by transforming it into a classical equivalent system. 

Example 3.20. Consider the following system of refined linear neutrosophic equations over the refined 

neutrosophic field of real numbers 𝑅(𝐼1, 𝐼2). 

(1) (1, 𝐼1, 0)𝑋 + (0, 𝐼1, 𝐼2)𝑌 = (1,0, 𝐼2). 

(2) (2,0, 𝐼2)𝑋 + (−1, 𝐼1, −𝐼2)𝑌 = (3,0,0). Where 𝑋 = (𝑥0, 𝑥1𝐼1, 𝑥2𝐼2), 𝑌 = (𝑦0, 𝑦1𝐼1, 𝑦2𝐼2). 

The equivalent system of equation (1) is: 

1. 𝑥0 + 0. 𝑦0 = 1 (I), 

1. (𝑥0 + 𝑥2) + 1. (𝑦0 + 𝑦2) = 2 (II), 

2. (𝑥0 + 𝑥1 + 𝑥2) + 2(𝑦0 + 𝑦1 + 𝑦2) = 2 (III). 

The equivalent system of equation (2) is: 

2. 𝑥0 − 1. 𝑦0 = 3 (a), 

3. (𝑥0 + 𝑥2) − 2(𝑦0 + 𝑦2) = 3  (b), 

3. (𝑥0 + 𝑥1 + 𝑥2) − 1(𝑦0 + 𝑦1 + 𝑦2) = 3 (c). 

By solving (I) with (a), we find 𝑥0 = 1, 𝑦0 = −1. 
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By solving (II) with (b), we find 𝑥0 + 𝑥2 =
7

5
, 𝑦0 + 𝑦2 =

3

5
. Thus, 𝑥2 =

2

5
, 𝑦2 =

8

5
. 

By solving (III) with (c), we find 𝑥0 + 𝑥1 + 𝑥2 = 1, 𝑦0 + 𝑦1 + 𝑦2 = 0. Thus, 𝑥1 = −
2

5
, 𝑦1 = −

3

5
. 

The solution of the system (1) and (2) is: 

3. 𝑋 = (1, −
2

5
𝐼1,

2

5
𝐼2), 𝑌 = (−1, −

3

5
𝐼1,

8

5
𝐼2). 

4. Conclusion 

In this article, we have introduced an algorithm to solve linear and quadratic equations in a neutrosophic field 

𝐹(𝐼) and refined neutrosophic field 𝐹(𝐼1, 𝐼2). Also, we have introduced an algorithm to solve a linear system 

of neutrosophic equations over 𝐹(𝐼) and 𝐹(𝐼1, 𝐼2) by turning it into an easy classical equivalent system of 

linear equations.  
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Abstract − Idempotent elements in a ring 𝑅 are the elements with the condition 𝒂𝟐 = 𝒂. This paper 

introduces the criterion of any element in a refined neutrosophic ring to be idempotent. Also, the 

concept of symmetric and supersymmetric elements in a neutrosophic ring 𝑅(𝐼), and a refined 

neutrosophic ring 𝑅(𝐼1, 𝐼2) are defined. Also, the invertibility of these elements is discussed. 
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1. Introduction 

Neutrosophic algebra is a new trend in pure mathematics; it is considered a combination between the 

neutrosophic set introduced by Smarandache and classical algebra. 

Many neutrosophic algebraic structures were defined and studied in a wide range such as neutrosophic 

groups, neutrosophic rings, neutrosophic vector spaces, and neutrosophic modules. See [1-6]. 

Recently, many generalized concepts came to light, such as refined neutrosophic rings, Boolean rings, and 

𝑛-refined neutrosophic rings [7-14]. These generalizations were built over the idea of splitting the 

indeterminacy 𝐼 into many logical degrees. In the case of refined structures, 𝐼 is splitting into two sub-

indeterminacies 𝐼1, 𝐼2 with the following property 𝐼1𝐼2 = 𝐼1, 𝐼1
2 = 𝐼1, 𝐼2

2 = 𝐼2 [9]. Also, 𝐼 is splitting into n 

sub-indeterminacies 𝐼1, … , 𝐼𝑛 in the case of n-refined structures. See [12,13]. 

Idempotents in a ring 𝑅 are the elements with the property 𝑎2 = 𝑎. They were handled and classified in 

neutrosophic rings with semi idempotents in [15,16]. Through this paper, we introduce the condition of any 

element in a refined neutrosophic ring 𝑅(𝐼1, 𝐼2) to be idempotent. Two new kinds of special elements 

(symmetric and supersymmetric elements) in neutrosophic rings and refined neutrosophic rings are presented 

and classified. These elements have many interesting properties, especially in neutrosophic fields and refined 

neutrosophic fields. Also, their algebraic structure will be discussed in previous cases. 

2. Preliminaries 

Definition 2.1. [13] Let (𝑅, +,×) be a ring. Then, 𝑅(𝐼) = {𝑎 + 𝑏𝐼 ∶  𝑎, 𝑏 ∈ 𝑅} is called the neutrosophic ring 

where 𝐼 is a neutrosophic element with the condition 𝐼2 = 𝐼. 
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If 𝑅 is a field, then 𝑅(𝐼) is called a neutrosophic field. 

A neutrosophic field is not a field by classical meaning, since 𝐼 is not invertible. 

Definition 2.2. [1] Let 𝑅 be a ring and 𝑅(𝐼) be the related neutrosophic ring and 𝑃 = 𝑃0 + 𝑃1𝐼 =

{𝑎0 + 𝑎1𝐼 ∶  𝑎0 ∈ 𝑃0 , 𝑎1 ∈ 𝑃1}; 𝑃0, 𝑃1 are two subsets of 𝑅. 

(a) We say that 𝑃 is an AH-ideal if 𝑃0, 𝑃1 are ideals in the ring 𝑅. 

(b) We say that 𝑃 is an AHS-ideal if 𝑃0 = 𝑃1. 

Remark 2.3. [11] The element 𝐼 can be split into two indeterminacies 𝐼1 , 𝐼2 with conditions: 

I1
2 = I1 , 𝐼2

2 = 𝐼2 , 𝐼1𝐼2 = 𝐼2𝐼1 = 𝐼1 

Definition 2.4. [11] If 𝑋 is a set, then 𝑋(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2) ∶ 𝑎 , 𝑏 , 𝑐 ∈ 𝑋 } is called the refined 

neutrosophic set generated by 𝑋 , 𝐼1, 𝐼2. 

Definition 2.5. [11] Let (𝑅, +,×) be a ring, (𝑅(𝐼1, 𝐼2) , + ,×) is called a refined neutrosophic ring generated 

by 𝑅 ,𝐼1, 𝐼2. 

Theorem 2.6. [11] Let (𝑅(𝐼1, 𝐼2) , + ,×) be a refined neutrosophic ring, then it is a ring. It is called a 

neutrosophic field if 𝑅 is a classical field. 

Definition 2.7. [17] Let 𝑅 be a ring, 𝑎 be any element in 𝑅. Then, it is called idempotent if and only if 𝑎2 = 𝑎. 

3. Idempotents in 𝑹(𝑰𝟏, 𝑰𝟐) 

Theorem 3.1. Let 𝑅 be any ring (noncommutative ring in general), 𝑅(𝐼1, 𝐼2) be its corresponding refined 

neutrosophic ring. Assume that 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is an arbitrary element in 𝑅(𝐼1, 𝐼2). Then, 𝑥 is idempotent in 

𝑅(𝐼1, 𝐼2) if and only if 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅. 

PROOF. Let 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) be an idempotent in 𝑅(𝐼1, 𝐼2), then 

𝑥2 = (𝑎2, [𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏]𝐼1, [𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2]𝐼2) = 𝑥 

Thus, [𝑎2 = 𝑎],(*)[ 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑏],  (**)[𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑐], hence a is an idempotent 

in 𝑅. 

Now, we compute (𝑎 + 𝑐)2 = 𝑎2 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2, we can find from (**) that (𝑎 + 𝑐)2 = 𝑎2 + 𝑐 = 𝑎 + 𝑐, 

thus 𝑎 + 𝑐 is idempotent in 𝑅. 

Also, we have (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏, by (*) we get 

(𝑎 + 𝑏 + 𝑐)2 = (𝑎2 + 𝑐2 + 𝑎. 𝑐 + 𝑐. 𝑎) + (𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏) = (𝑎 + 𝑐) + 𝑏 = 𝑎 + 𝑏 + 𝑐 

Thus, 𝑎 + 𝑏 + 𝑐 is idempotent in 𝑅. 

For the converse, we suppose that 𝑎, 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅, then we get 

(1) [𝑎2 = 𝑎]. 

(2) (𝑎 + 𝑐)2 = 𝑎2 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑎 + 𝑐. By using equation (1), we get 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2 = 𝑐. 

(3) (𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑎. 𝑐 + 𝑐. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐. By using (1) and (2), 

we get (𝑎 + 𝑏 + 𝑐)2 = 𝑎 + 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + (𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2) + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐. Thus, 

𝑎 + 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + (𝑐) + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑎 + 𝑏 + 𝑐 

 Hence, 𝑏2 + 𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏. 𝑐 + 𝑐. 𝑏 = 𝑏. 
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Now, we compute 𝑥2 = (𝑎2, [𝑎. 𝑏 + 𝑏. 𝑎 + 𝑏2 + 𝑏. 𝑐 + 𝑐. 𝑏]𝐼1, [𝑎. 𝑐 + 𝑐. 𝑎 + 𝑐2]𝐼2) = (𝑎, 𝑏𝐼1, 𝑐𝐼2) = 𝑥. So, it 

is idempotent in the refined neutrosophic ring 𝑅(𝐼1, 𝐼2). 

Example 3.2. Let 𝑅 = 𝑍3 be the ring of integers modulo 3, 𝑅(𝐼1, 𝐼2) = {(𝑎, 𝑏𝐼1, 𝑐𝐼2) ∶ 𝑎, 𝑏, 𝑐 ∈ 𝑍3} be its 

corresponding refined neutrosophic ring. The set of idempotents in 𝑅 is 

𝑀 = {0,1}, the set of idempotents in 𝑅(𝐼1, 𝐼2) according to Theorem 3.1 is: 

𝑁 = {(1, 𝐼1, 2𝐼2), (1,0,2𝐼2), (1,2𝐼1, 0), (1,0,0), (0,0,0), (0, 𝐼1, 0), (0,0, 𝐼2), (0,2𝐼1, 𝐼2)} 

The following theorem determines the number of idempotents in 𝑅(𝐼1, 𝐼2). 

Theorem 3.3. If the ring 𝑅 has 𝑚 idempotents, then the corresponding refined neutrosophic ring 𝑅(𝐼1, 𝐼2) has 

𝑚3 idempotents. 

PROOF. According to Theorem 3.1, for each idempotent 𝑎 ∈ 𝑅, we have 𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is idempotent in 

𝑅(𝐼1, 𝐼2), if and only if 𝑎 + 𝑐, 𝑎 + 𝑏 + 𝑐 are idempotents in 𝑅, thus 𝑐 can be taken by 𝑚 ways, and 𝑏 is the 

same. By this argument, we get the fact that 𝑅(𝐼1, 𝐼2) has 𝑚 × 𝑚 × 𝑚 = 𝑚3 idempotents. 

4. Symmetric Elements 

This section is devoted to studying a new kind of special elements in a neutrosophic ring and a refined 

neutrosophic ring with its algebraic structures. 

Definition 4.1. Let 𝑅 be a ring, 𝑅(𝐼) be the corresponding neutrosophic ring. An arbitrary element 𝑥 = 𝑎 +

𝑏𝐼 ∈ 𝑅(𝐼) is called symmetric if and only if 𝑎 = 𝑏. The set of all symmetric elements in a neutrosophic ring 

is denoted by 𝑆(𝐼).  

Definition 4.2. Let 𝑅 be a ring, 𝑅(𝐼1, 𝐼2) be the corresponding refined neutrosophic ring. An arbitrary element 

𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) ∈ 𝑅(𝐼1, 𝐼2) is called symmetric if and only if 𝑎 = 𝑏 = 𝑐. The set of all symmetric elements 

in a refined neutrosophic ring is denoted by 𝑆(𝐼1, 𝐼2). 

Theorem 4.3. Let 𝑅(𝐼) be a neutrosophic ring, 𝑆(𝐼) be the set of all symmetric elements. Then, (𝑆(𝐼), +) is a 

subgroup of (𝑅(𝐼), +) and (𝑆(𝐼), +) ≅ (𝑅, +). 

PROOF. Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 𝑆(𝐼), 𝑥 − 𝑦 = (𝑎 − 𝑏) + (𝑎 − 𝑏)𝐼 ∈ 𝑆(𝐼), 

thus 𝑆(𝐼) is a subgroup of (𝑅(𝐼), +). (It is known that (𝑅(𝐼), +) is an abelian group by the definition of the 

ring). 

We define 𝑓: 𝑅 → 𝑆(𝐼); 𝑓(𝑎) = 𝑎 + 𝑎𝐼, suppose that 𝑎, 𝑏 ∈ 𝑅, then 𝑓(𝑎 + 𝑏) = (𝑎 + 𝑏) + (𝑎 + 𝑏)𝐼 =

𝑓(𝑎) + 𝑓(𝑏). 

𝑓 is a well-defined map since if 𝑎 = 𝑏, then 𝑎 + 𝑎𝐼 = 𝑏 + 𝑏𝐼, i.e. 𝑓(𝑎) = 𝑓(𝑏). Clearly, 𝑓 is bijective; thus, 

it is an isomorphism. 

Theorem 4.4: Let 𝑅(𝐼1, 𝐼2) be a refined neutrosophic ring, 𝑆(𝐼1, 𝐼2) be the set of all symmetric elements. Then, 

(𝑆(𝐼1, 𝐼2), +) is a subgroup of (𝑅(𝐼1, 𝐼2), +) and (𝑆(𝐼1, 𝐼2), +) ≅ (𝑅, +). 

PROOF. The proof is similar to that of Theorem 4.3. 

Theorem 4.5. Let 𝐾(𝐼) be a neutrosophic field, 𝑆(𝐼) be the set of all symmetric elements. If 𝐶ℎ𝑎𝑟(𝐾)  =  2, 

then 𝑆(𝐼) is a field and 𝑆(𝐼) ≅ 𝐾. 

PROOF. We must prove that (𝑆(𝐼)/{0}, . ) is a group. Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 

𝑆(𝐼)/{0}, we have 𝑥. 𝑦 = (𝑎. 𝑏) + (𝑎. 𝑏 + 𝑎. 𝑏 + 𝑎. 𝑏)𝐼 = (𝑎. 𝑏) + (𝑎. 𝑏)𝐼 ∈ 𝑆(𝐼), since 𝑎. 𝑏 + 𝑎. 𝑏 =

2𝑎. 𝑏 = 0 (under the assumption 𝐶ℎ𝑎𝑟(𝐾)  =  2). The inverse of 𝑥 is 𝑥−1 = 𝑎−1 + 𝑎−1𝐼 because 𝑥. 𝑥−1 =

(𝑎𝑎−1) + (𝑎𝑎−1 + 𝑎𝑎−1 + 𝑎𝑎−1)𝐼 = 1 + 𝐼. 1 + 𝐼 is an identity concerning multiplication, that is because 

(𝑎 + 𝑎𝐼). (1 + 𝐼) = 𝑎 + (𝑎 + 𝑎 + 𝑎)𝐼 = 𝑎 + 𝑎𝐼. 
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We define 𝑓: 𝑆(𝐼) → 𝐾; 𝑓(𝑎 + 𝑎𝐼) = 𝑎, 𝑓 is a well-defined bijective map. 

Let 𝑥 = 𝑎 + 𝑎𝐼, 𝑦 = 𝑏 + 𝑏𝐼 be two arbitrary elements in 𝑆(𝐼), 𝑓(𝑥 + 𝑦) = (𝑎 + 𝑏) = 𝑓(𝑥) + 𝑓(𝑦), 𝑓(𝑥. 𝑦) =

𝑓(𝑎. 𝑏 + 𝑎. 𝑏𝐼) = 𝑎. 𝑏 = 𝑓(𝑥). 𝑓(𝑦). Hence 𝑓 is an isomorphism. 

Example 4.6. Let 𝐾 = 𝑍2 be a field with 𝐶ℎ𝑎𝑟(𝐾)  =  2, 𝐾(𝐼) = {0,1, 𝐼, 1 + 𝐼}, 𝑆(𝐼) = {0,1 + 𝐼}. 

We can see that 𝑆(𝐼) is a field, the identity concerning multiplication is 1 + 𝐼, and 𝑆(𝐼) ≅ 𝑍2 = 𝐾. 

Theorem 4.7. Let 𝐾(𝐼1, 𝐼2) be a refined neutrosophic field, 𝑆(𝐼1, 𝐼2) be the set of all symmetric elements. 

If 𝐶ℎ𝑎𝑟(𝐾)  =  2, then 𝑆(𝐼1, 𝐼2) is a field and S(𝐼1, 𝐼2) ≅ 𝐾. 

PROOF. We must prove that (𝑆(𝐼1, 𝐼2)/{0}, . ) is a group. Let 𝑥 = (𝑎, 𝑎𝐼1, 𝑎𝐼2), 𝑦 = (𝑏, 𝑏𝐼1, 𝑏𝐼2) be two arbitrary 

elements in 𝑆(𝐼1, 𝐼2)/{0}, we have 𝑥. 𝑦 = (𝑎. 𝑏, [5𝑎. 𝑏]𝐼1, [3𝑎. 𝑏]𝐼2) = (𝑎. 𝑏, 𝑎. 𝑏𝐼1, 𝑎. 𝑏𝐼2) ∈ S(𝐼1, 𝐼2), since 

5𝑎. 𝑏 = 3𝑎. 𝑏 = 𝑎. 𝑏 (under the assumption 𝐶ℎ𝑎𝑟(𝐾)  =  2).  

The inverse of 𝑥 is 𝑥−1 = (𝑎−1, 𝑎−1𝐼1, 𝑎−1𝐼2) because 𝑥. 𝑥−1 = (𝑎. 𝑎−1, [5𝑎. 𝑎−1]𝐼1, [3𝑎. 𝑎−1]𝐼2) =

(1,1. 𝐼1, 1. 𝐼2). (5𝑎𝑎−1 = 5 = 1 + 4 = 0, 3𝑎𝑎−1 = 3 = 1 + 2 = 1, under the assumption 𝐶ℎ𝑎𝑟(𝐾) = 2). 

(1,1. 𝐼1, 1. 𝐼2) is an identity concerning multiplication, that is because (𝑎, 𝑎𝐼1, 𝑎𝐼2). (1,1. 𝐼1, 1. 𝐼2) =

(𝑎, 𝑎𝐼1, 𝑎𝐼2). 

We define 𝑓: 𝑆(𝐼1, 𝐼2) → 𝐾; 𝑓(𝑎, 𝑎𝐼1, 𝑎𝐼2) = 𝑎, 𝑓 is an isomorphism (It can be proved by a similar way to the 

previous theorem.). 

Example 4.8. Let 𝐾 = 𝑍2 be a field with 𝐶ℎ𝑎𝑟(𝐾)  =  2, 

𝐾(𝐼1, 𝐼2) = {(0,0,0), (1,0,0), (0,1. 𝐼1, 0), (0,0,1. 𝐼2), (1,1. 𝐼1, 1𝐼2), (1,1𝐼1, 0), (0,1. 𝐼1, 1. 𝐼2), (1,0,1. 𝐼2} 

𝑆(𝐼1, 𝐼2) = {(0,0,0), (1,1. 𝐼1, 1𝐼2)}, which is a field isomorphic to 𝐾 = 𝑍2. 

The following theorem determines which elements in a neutrosophic field 𝐾(𝐼) are invertible. 

Theorem 4.9. Let 𝐾 be a field, 𝐾(𝐼) be the corresponding neutrosophic field. An arbitrary element 𝑧 = 𝑎 +

𝑏𝐼 ∈ 𝐾(𝐼) is invertible if and only if 𝑎 ≠ 0 and 𝑎 ≠ −𝑏. 

PROOF. Let 𝑧 = 𝑎 + 𝑏𝐼 ∈ 𝐾(𝐼) be an invertible element in 𝐾(𝐼). There is 𝑚 = 𝑥 + 𝑦𝐼 ∈ 𝐾(𝐼); 𝑧. 𝑚 = 1. Thus, 

(𝑎. 𝑥) + (𝑎. 𝑦 + 𝑏. 𝑥 + 𝑏. 𝑦)𝐼 = 1, this means 𝑥 = 𝑎−1, 𝑎. 𝑦 + 𝑏(𝑎−1) + 𝑏𝑦 = 0. Hence, 

𝑦 =
−𝑏.𝑎−1

𝑎+𝑏
, this implies 𝑎 ≠ 0 and 𝑎 ≠ −𝑏 

Conversely, suppose that 𝑎 ≠ 0 and 𝑎 ≠ −𝑏, then there is  𝑚 = 𝑥 + 𝑦𝐼 ∈ 𝐾(𝐼), where  𝑥 = 𝑎−1, 𝑦 =
−𝑏.𝑎−1

𝑎+𝑏
  

with 𝑧. 𝑚 = 1. 

Result 4.10. If 𝐾(𝐼) is a neutrosophic field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2, then all symmetric elements different from 

zero are invertible. 

PROOF. Let 𝐾 be a field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2, 𝑥 = 𝑎 + 𝑎𝐼 be a symmetric element different from zero. It is clear 

that 𝑎 ≠ −𝑎, thus 𝑥 is invertible according to Theorem 4.10. 

Example 4.11. Let 𝐾 = 𝑍5 be the field of integers modulo 5. We have 𝑥 = 3 + 3𝐼 a symmetric element. The 

inverse of 𝑥 is 𝑥−1 = 2 + 4𝐼. 

The inverse of a symmetric element is not supposed to be symmetric in general. 

The following theorem determines which elements are invertible in a refined neutrosophic field 𝐾(𝐼1, 𝐼2). 

Theorem 4.12. Let 𝐾(𝐼1, 𝐼2) be a refined neutrosophic field. An arbitrary element 𝑡 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is invertible 

if and only if 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0. 

PROOF. Suppose that 𝑡 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) is invertible. Then, there is 𝑚 = (𝑥, 𝑦𝐼1, 𝑧𝐼2); 𝑚. 𝑡 = 1𝐾(𝐼1,𝐼2). 
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𝑚. 𝑡 = (𝑎. 𝑥, [𝑎. 𝑦 + 𝑏. 𝑥 + 𝑏. 𝑧 + 𝑏. 𝑦 + 𝑐. 𝑦]𝐼1, [𝑎. 𝑧 + 𝑐. 𝑥 + 𝑐. 𝑧]𝐼2) = (1,0,0), this means 𝑥 = 𝑎−1, 𝑧 =
−𝑐𝑎−1

𝑎+𝑐
, 𝑦 = (𝑎 + 𝑏 + 𝑐)−1. (−𝑏. 𝑎−1 +

𝑏𝑐

𝑎(𝑎+𝑐)
), which implies that 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0. 

Conversely, if 𝑎 ≠ 0, 𝑎 + 𝑐 ≠ 0, 𝑎 + 𝑏 + 𝑐 ≠ 0, then there is 𝑚 = (𝑥, 𝑦𝐼1, 𝑧𝐼2); 𝑚. 𝑡 = 1𝐾(𝐼1,𝐼2), where 𝑥 =

𝑎−1, 𝑧 =
−𝑐𝑎−1

𝑎+𝑐
, 𝑦 = (𝑎 + 𝑏 + 𝑐)−1. (−𝑏. 𝑎−1 +

𝑏𝑐

𝑎(𝑎+𝑐)
). 

Result 4.13. Let 𝐾 be a field with 𝐶ℎ𝑎𝑟(𝐾) ≠ 2 and 𝐶ℎ𝑎𝑟(𝐾) ≠ 3, then all symmetric elements different 

from zero in the corresponding refined neutrosophic field 𝐾(𝐼1, 𝐼2) are invertible since the conditions of 

Theorem 4.12 are true in this case. 

Example 4.14. Let 𝐾 = 𝑍5 be the field of integers modulo 5 and 𝐶ℎ𝑎𝑟(𝐾)  =  5, let 𝑥 = (3, 3𝐼1, 3𝐼2) is an 

element in the refined neutrosophic field 𝐾(𝐼1, 𝐼2). According to Theorem 12.3, the inverse of 𝑥 is 𝑥−1 =

(2,3𝐼1, 4𝐼2). 

The inverse of a symmetric element in a refined neutrosophic field is not supposed to be a symmetric 

element in general. 

5. Super Symmetric Elements 

The following section is discussing a generalized kind of symmetric elements. 

Definition 5.1. Let 𝑅 be a ring, 𝑅(𝐼) be the corresponding neutrosophic ring. An arbitrary element 𝑥 = 𝑎 +

𝑏𝐼 ∈ 𝑅(𝐼) is called supersymmetric if and only if 𝑎 = 𝑚. 𝑐, 𝑏 = 𝑛. 𝑐 ; 𝑐 ∈ 𝑅 and 𝑚, 𝑛 ∈ 𝑍. The set of all 

supersymmetric elements in a neutrosophic ring is denoted by 𝑆𝑆(𝐼). 

Definition 5.2. Let 𝑅 be a ring, 𝑅(𝐼1, 𝐼2) be the corresponding refined neutrosophic ring. An arbitrary element 

𝑥 = (𝑎, 𝑏𝐼1, 𝑐𝐼2) ∈ 𝑅(𝐼1, 𝐼2) is called supersymmetric if and only if 𝑎 = 𝑚. 𝑑, 𝑏 = 𝑛. 𝑑, 𝑐 = 𝑠. 𝑑; 𝑑 ∈ 𝑅 and 

𝑚, 𝑛, 𝑠 ∈ 𝑍. The set of all supersymmetric elements in a refined neutrosophic ring is denoted by 𝑆𝑆(𝐼1, 𝐼2). 

Theorem 5.3. Let 𝑅(𝐼) be a neutrosophic ring, 𝑆𝑆(𝐼) be the set of all supersymmetric elements. Then, 𝑆𝑆(𝐼) 

is closed under the multiplication of 𝑅(𝐼). 

PROOF. Let 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼, 𝑦 = 𝑠. 𝑏 + 𝑡. 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑅 and 𝑚, 𝑛, 𝑠, 𝑡 ∈ 𝑍, we have 𝑥. 𝑦 = (𝑚𝑛)(𝑎. 𝑏) +

[(𝑚𝑡 + 𝑛𝑠 + 𝑛𝑡)(𝑎. 𝑏)]𝐼 ∈ 𝑆𝑆(𝐼). Since 𝑚𝑛, 𝑚𝑡 + 𝑛𝑠 + 𝑛𝑡 ∈ 𝑍. 

Remark 5.4. 𝑆𝑆(𝐼) is not an additive subgroup of (𝑅(𝐼), +) in general. We clarify it by the following example: 

Let 𝑅 be the ring of real numbers, 𝑥 = √2 + 3√2𝐼, 𝑦 = √3 − 4√3𝐼 be two elements in 𝑆𝑆(𝐼), 𝑥 + 𝑦 =

(√2 + √3) + (3√2 − 4√3)𝐼, we can see that 𝑥 + 𝑦 is not in 𝑆𝑆(𝐼), since 3√2 − 4√3 cannot be written as 

𝑚. (√2 + √3), where m is an integer. 

Theorem 5.5. Let 𝑅(𝐼1, 𝐼2) be a refined neutrosophic ring, 𝑆𝑆(𝐼1, 𝐼2) be the set of all supersymmetric elements. 

Then, 𝑆𝑆(𝐼1, 𝐼2) is closed under the multiplication of 𝑅(𝐼1, 𝐼2). 

PROOF. The proof is similar to that of Theorem 5.3. 

Remark 5.6. 𝑆𝑆(𝐼1, 𝐼2) is not an additive subgroup of (𝑅(𝐼1, 𝐼2), +) in general. We illustrate an example. 

Let 𝑅 be the ring of real numbers, 𝑥 = (√2, √2 𝐼1, 3√2 𝐼2), 𝑦 = (√3, 2√3𝐼1, 5√3𝐼2) be two elements in 

𝑆𝑆(𝐼1, 𝐼2), 𝑥 + 𝑦 = (√2 + √3, [√2 + 2√3]𝐼1, [3√2 + 5√3]𝐼2), we can see that √2 + 2√3 can not be written 

as 𝑚. (√2 + √3) where m is an integer.  

The following theorem introduces a special case, which 𝑆𝑆(𝐼) and 𝑆𝑆(𝐼1, 𝐼2), will be two additive subgroups 

of (𝑅(𝐼), +) and (𝑅(𝐼1, 𝐼2), +), respectively. 
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Theorem 5.7. Let 𝑅 = 𝑍 be the ring of integers. Then, 

(a) (𝑆𝑆(𝐼), +) is a subgroup of (𝑅(𝐼), +). 

(b) (𝑆𝑆(𝐼), +. ) is a subring of (𝑅(𝐼), +, . ). 

(c) (𝑆𝑆(𝐼1, 𝐼2), +) is a subgroup of (𝑅(𝐼1, 𝐼2), +). 

(d) (𝑆𝑆(𝐼1, 𝐼2), +, . ) is a subring of (𝑅(𝐼1, 𝐼2), +, . ). 

PROOF.  

(a) Let 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼, 𝑦 = 𝑠. 𝑏 + 𝑡. 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍 and 𝑚, 𝑛, 𝑠, 𝑡 ∈ 𝑍, we have 𝑥 − 𝑦 = (𝑚. 𝑎 − 𝑠. 𝑏)(1) +

[(𝑛. 𝑎 − 𝑡. 𝑏)(1)]𝐼 ∈ 𝑆𝑆(𝐼), thus (𝑆𝑆(𝐼), +) is an additive subgroup of (𝑅(𝐼), +). 

(b) It holds directly from (a) and Theorem 5.3. 

(c) It can be proved by a similar argument of (a). 

(d) It holds directly from (c) and Theorem 5.5. 

We discuss the invertibility properties of supersymmetric elements in a neutrosophic field and a refined 

neutrosophic field by the following theorem. 

Theorem 5.8. Let 𝐾 be a field, 𝐾(𝐼) be the corresponding neutrosophic field, 𝐾(𝐼1, 𝐼2) be the corresponding 

refined neutrosophic field. Then, 

(a) An arbitrary supersymmetric element 𝑥 = 𝑚. 𝑎 + 𝑛. 𝑎𝐼 ∈ 𝐾(𝐼); 𝑚, 𝑛 ∈ 𝑍 and 𝑎 ∈ 𝐾 is invertible if and 

only if 𝑎 ≠ 0 and (𝑚 + 𝑛). 𝑎 ≠ 0. 

(b) An arbitrary supersymmetric element 𝑥 = (𝑚. 𝑎, 𝑛. 𝑎𝐼1, 𝑠. 𝑎𝐼2) ∈ 𝐾(𝐼1, 𝐼2); 𝑚, 𝑛, 𝑠 ∈ 𝑍 and 𝑎 ∈ 𝐾 is 

invertible if and only if 𝑎 ≠ 0, (𝑚 + 𝑠). 𝑎 ≠ 0, (𝑚 + 𝑛 + 𝑠). 𝑎 ≠ 0. 

PROOF.  

(a) According to Theorem 4.9, 𝑥 = 𝑎 + 𝑏𝐼 is invertible if and only if 𝑎 ≠ 0 and 𝑎 + 𝑏 ≠ 0, thus 𝑥 = 𝑚. 𝑎 +

𝑛. 𝑎𝐼 is invertible if and only if 𝑎 ≠ 0 and 𝑚. 𝑎 + 𝑛. 𝑎 = (𝑚 + 𝑛). 𝑎 ≠ 0. 

(b) It can be proved by a similar argument of section (a), and by using Theorem 4.12. 

6. Conclusion 

In this article, we have determined the criterion of idempotency in a refined neutrosophic ring. Also, we have 

introduced two new kinds of special elements in neutrosophic rings and refined neutrosophic rings. We have 

studied the invertibility conditions of these elements and their algebraic structure. This work should be 

extended to the case of n-refined neutrosophic rings defined in [12], where the necessary and sufficient 

condition for nilpotency is still unknown. 
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Abstract – This work is concerned with the boundary-value-transition problem consisting of a two-

interval Sturm-Liouville equation 

𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [−1,0) ∪ (0,1] 

together with antiperiodic boundary conditions, given by 

𝑢(−1) = −𝑢(1) 

𝑢′(−1) = −𝑢′(1) 

and transition conditions at the interior point 𝑥 = 0, given by 

𝑢(+0) = 𝐾𝑢(−0) 

𝑢′(+0) =
1

𝐾
𝑢′(−0) 

where 𝑞(𝑥) is a continuous function in the intervals [−1,0) and (0,1] with finite limit values 𝑞(±0), 

𝐾 ≠ 0 is the real number, and 𝜆 is the complex eigenvalue parameter. In this study, we shall investigate 

some properties of the eigenvalues and eigenfunctions of the considered problem. 

Keywords–Antiperiodic Sturm-Liouville problem, eigenvalue, eigenfunction, transition condition 

1. Introduction 

A simple model for the movement of electrons in a crystal lattice, consisting of the ions in the crystal lattice 

and crystal with a periodic potential time-independent Schrödinger equation that describes the effects of forces 

from other electrons. The wave function of the electron meets the one-dimensional Schrödinger equation with 

the periodic potential. 𝑇(𝑥). Let 𝑡 be a period that is 𝑇(𝑥 + 𝑡) = 𝑇(𝑥). By changing the variable 

𝑢(𝑥) = 𝜑 (
𝑥

𝑡
),  𝑞(𝑥) =

2𝑚𝑡2

ℏ
𝑇 (

𝑥

𝑡𝑎
), and   𝜆 =

2𝑚𝐸

ℏ2  

we have 

−𝑢′′ + 𝑞(𝑥)𝑢 = 𝜆𝑢 (1.1) 

where 𝑢 is the normalized wavefunction, 𝜆 is energy parameter, 𝑞(𝑥 + 1) = 𝑞(𝑥). The spectrum of (1.1) is 

absolutely continuous and occurs a combination of closed intervals or 'bands' separated by 'gaps'. The presence 

of these bands and gaps has important implications for the conductivity properties of crystals.  
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The study published by Birkhoff [1] investigated the asymptotic behaviour of the solutions of linear 

differential equations depending on the eigenvalue parameter given by 

𝑑𝑛𝑦

𝑑𝑥𝑛
+ 𝜆𝑎𝑛−1(𝑥, 𝜆)

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
+ ⋯ + 𝜆𝑛𝑎0(𝑥, 𝜆)𝑦 = 0 

In this work, asymptotic formulas of solutions of the considered linear differential equations related to the 

eigenvalue parameter have been studied, and it is defined as the concept of regular boundary conditions. In the 

literature, such conditions are called regular boundary conditions in the sense of Birkhoff. He proved the 

theorem associate with the completeness of systems consisting of eigenfunctions and associated functions (i.e., 

root functions) of the differential operator corresponding to the problem. 

In the study of Tamarkin [2], it is found the asymptotic of basic solutions for linear differential equations 

dependent on parameters. He defined the concept of strong regular conditions, and he studied the properties of 

eigenfunctions under these boundary conditions and the expansion in the series of eigenfunctions. In later 

years, the investigation of new concrete problems posed by physics led to the rapid development of Sturm-

Liouville theory. Today, the Sturm-Liouville problems remain one of the most current issues needed by 

spectral theory. 

In the study of Lee [3] showed the periodic analogues of spectral and oscillation theory concerned with the 

standard Sturm-Liouville problem. 

Berghe et al. [4] investigated the eigenvalues of boundary value problems under periodic and quasi-periodic 

boundary conditions and explained that a simple linearly dependent multistep method could reduce the error 

of approximate eigenvalues. 

Liu [5] prove existence for the solutions of the periodic Sturm-Liouville problem consisting of the 𝑛-th 

order functional differential equation with impulses effects, given by 

{
𝑥𝑛(𝑠) = 𝑓 (𝑠, 𝑥(𝑠), 𝑥(𝛼1(𝑠)) … , 𝑥(𝛼𝑚(𝑠))) , 𝑠 ∈ [0, 𝑆]

∆𝑥𝑖(𝑠𝑘) = 𝐼𝑖,𝑘(𝑥(𝑠𝑘), … 𝑥𝑛−1(𝑠𝑘)), 𝑘 = 1,2, … , 𝑟
 

and the periodic boundary conditions, given by 

𝑥𝑖(0) = 𝑥𝑖(𝑆), 𝑖 = 0,1, … , 𝑛 − 1 

This method is based on Mawhin's theory and some technical inequalities. 

In the study of Wang [6], by using a fixed-point theorem for operators on a cone, some results of first-order 

periodic Sturm-Liouville problem of impulsive dynamic equations with time scales are established. Examples 

are provided to show the results in this paper. 

The article by Malathi et al. [7] discusses the shooting algorithm and the Floquet theory. In the shooting 

algorithm for an eigenvalue of a Sturm-Liouville problem, the equation is solved as an initial value problem 

on the interval [𝑎, 𝑏]. Floquet theory is used to show a non-trivial solution of boundary value problems, and 

the application of shooting techniques approximates the eigenvalues. The numerical results of Sturm-Liouville 

eigenvalue problems with periodic boundary conditions are given. 

In the studies [8-12], boundary value transmission problems are discussed for the two-linked regular Sturm-

Liouville equations. 

This study investigates some properties of eigenvalues and characteristic function of the antiperiodic Sturm-

Liouville value transition problem together with boundary-transition conditions on [−1,0) ∪ (0,1]. 

2. Eigenvalues and Corresponding Eigenfunctions of The Problem 

In this study, in the Hilbert space 𝐿2(−1,0) ⊕ 𝐿2(0,1) we shall examine some spectral properties of a 

boundary-value-transition problem consisting of a two-interval Sturm-Liouville equation 

𝐿𝑢 ≔ −𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥), 𝑥 ∈ [−1,0) ∪ (0,1] (2.1) 

together with antiperiodic boundary conditions, given by 
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𝑢(−1) = −𝑢(1), 𝑢′(−1) = −𝑢′(1) (2.2) 

and transition conditions at the interior point 𝑥 = 0, given by 

𝑢(+0) = 𝐾𝑢(−0),     𝑢′(+0) =
1

𝐾
𝑢′(−0) (2.3) 

where𝑞(𝑥) is a continuous function in the intervals [−1,0) and (0,1] with finite limit values 𝑞(±0), 𝐾 ≠ 0 is 

the real number, and 𝜆 is the complex eigenvalue parameter. 

Theorem 2.1. All eigenvalues of the boundary-value-transition problem (2.1) − (2.3) are real. 

PROOF. Let (𝜆, 𝑢) be an eigenvalue-eigenfunction pair, 𝑢̅ be the complex conjugate of 𝑢, 𝜆̅ be the complex 

conjugate of 𝜆. Since 𝐾 is a real number and 𝑞(𝑥) is a real-valued function, we get 

−𝑢̅′′(𝑥) + 𝑞(𝑥)𝑢̅(𝑥) = 𝜆̅𝑢̅(𝑥) (2.4) 

𝑢̅(−1) = −𝑢̅(1) , 𝑢̅′(−1) = −𝑢̅′(1) 

𝑢̅(+0) = 𝐾𝑢̅(−0), 𝑢̅′(+0) =
1

𝐾
𝑢̅′(−0) 

Now, multiplying the equation (2.1) by 𝑢̅ and the equation (2.4) by 𝑢 we have 

−𝑢′′𝑢̅ + 𝑞(𝑥)𝑢𝑢̅ = 𝜆𝑢𝑢̅ 

and 

−𝑢𝑢̅′′ + 𝑞(𝑥)𝑢𝑢̅ = 𝜆̅𝑢𝑢̅ 

respectively. Subtracting these two equalities gives 

𝑢𝑢̅′′ − 𝑢′′𝑢̅ = (𝜆 − 𝜆̅)𝑢𝑢̅ 

Taking in view the identity 𝑢𝑢̅′′ − 𝑢′′𝑢̅ = (𝑢𝑢̅′ − 𝑢′𝑢̅)′ we have 

(𝑢𝑢̅′ − 𝑢′𝑢̅)′ = (𝜆 − 𝜆̅)𝑢𝑢̅ 

Now integrating over [−1, 0) we obtain 

∫ (𝑢𝑢̅′ − 𝑢′𝑢̅)′

−0

−1

𝑑𝑥 = ∫ (𝜆 − 𝜆̅)𝑢𝑢̅𝑑𝑥

−0

−1

 

Hence, 

𝑢(−0)𝑢̅′(−0) − 𝑢′(−0)𝑢̅(−0) − 𝑢(−1)𝑢̅′(−1) + 𝑢′(−1)𝑢̅(−1) = ∫ (𝜆 − 𝜆̅)𝑢𝑢̅𝑑𝑥

−0

−1

 

Similarly, we can show that 

𝑢(1)𝑢̅′(1) − 𝑢′(1)𝑢̅(1) − 𝑢(+0)𝑢̅′(+0) + 𝑢′(+0)𝑢̅(+0) = ∫(𝜆 − 𝜆̅)𝑢𝑢̅𝑑𝑥

1

+0

 

Since 𝑢(𝑥) satisfies the transition conditions (2.3), we have 

 𝑢(+0) = 𝐾𝑢(−0) 

𝑢′(+0) =
1

𝐾
𝑢′(−0) 

Similarly, we get 



 

43 

 

Journal of New Theory 33 (2020) 40-49 / Spectral Properties of the Antiperiodic Boundary-Value-Transition Problems 

 

𝑢̅(+0) = 𝐾𝑢̅(−0) 

𝑢̅′(+0) =
1

𝐾
𝑢̅′(−0) 

and 

𝑢(1)𝑢̅′(1) − 𝑢′(1)𝑢̅(1) − 𝐾𝑢(−0)
1

𝐾
𝑢̅′(−0) +

1

𝐾
𝑢′(−0)𝐾𝑢̅(−0) = ∫(𝜆 − 𝜆̅)𝑢𝑢̅𝑑𝑥

1

+0

 

Thus, we get that 

0 = (𝜆 − 𝜆̅) [ ∫ 𝑢𝑢̅𝑑𝑥

−0

−1

+ ∫ 𝑢𝑢̅𝑑𝑥

1

+0

] = (𝜆 − 𝜆̅)‖𝑢‖𝐻
2  

Since the eigenfunction 𝑢 is nonzero, the last equality gives 𝜆 = 𝜆̅. Consequently, 𝜆 is real, which completes 

the proof. 

Theorem 2.2. Let (𝜆𝑚, 𝑢𝑚) and (𝜆𝑛, 𝑢𝑛) be two eigenpairs of the boundary-value-transition problem (2.1) −

(2.3). If 𝜆𝑚 ≠ 𝜆𝑛 then the eigenfunctions 𝑢𝑚 and 𝑢𝑛 are orthogonal in the Hilbert space 𝐻 ≔ 𝐿2(−1,0) ⊕

𝐿2(0,1). That is, 

∫ 𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚(𝑥)𝑢𝑛(𝑥)𝑑𝑥

1

+0

= 0 

PROOF. Since 𝑢𝑚 and 𝑢𝑛 are eigenfunctions corresponding to the eigenvalues 𝜆𝑚 and 𝜆𝑛, respectively, we get 

the following equalities, 

−𝑢𝑚
′′ + 𝑞(𝑥)𝑢𝑚 = 𝜆𝑚𝑢𝑚 

−𝑢𝑛
′′ + 𝑞(𝑥)𝑢𝑛 = 𝜆𝑛𝑢𝑛 

Multiplying the first equality by 𝑢𝑛 and the second equality by 𝑢𝑚 and taking the difference yields 

𝑢𝑚𝑢𝑛
′′ − 𝑢𝑚

′′𝑢𝑛 = (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛 

Applying the well-known Lagrange's formulae commonly known as Green's identity we get 

𝑢𝑚(−0)𝑢𝑛
′(−0) − 𝑢𝑚

′(−0)𝑢𝑛(−0) − 𝑢𝑚(−1)𝑢𝑛
′(−1) + 𝑢𝑚

′(−1)𝑢𝑛 = ∫ (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

(2.5) 

By the boundary conditions (2.2) we have 

𝑢𝑚(−1) = −𝑢𝑚(1),  𝑢𝑚
′(−1) = −𝑢𝑚

′(1) 

and 

𝑢𝑛(−1) = −𝑢𝑛(1),  𝑢𝑛
′(−1) = −𝑢𝑛

′(1) 

Substituting these into the equation (2.5), we get 

𝑢𝑚(−0)𝑢𝑛
′(−0) − 𝑢𝑚

′(−0)𝑢𝑛(−0) − 𝑢𝑚(1)𝑢𝑛
′(1) + 𝑢𝑚

′(1)𝑢𝑛(1) = ∫ (𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

 

Similarly, we can show that 
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𝑢𝑚(1)𝑢𝑛
′(1) − 𝑢𝑚

′(1)𝑢𝑛(1) − 𝑢𝑚(+0)𝑢𝑛
′(+0) + 𝑢𝑚

′(+0)𝑢𝑛(+0) = ∫(𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

(2.6) 

Since 𝑢𝑚 and 𝑢𝑛 satisfy the transition conditions (2.3), we get 

𝑢𝑚(+0) = 𝐾𝑢𝑚(−0), 𝑢𝑚
′(+0) =

1

𝐾
𝑢𝑚

′(−0) 

and 

𝑢𝑛(+0) = 𝐾𝑢𝑛(−0),  𝑢𝑛
′(+0) =

1

𝐾
𝑢𝑛

′(−0) 

Substituting these into the equation (2.6), we obtain 

𝑢𝑚(1)𝑢𝑛
′(1) − 𝑢𝑚

′(1)𝑢𝑛(1) − 𝐾𝑢𝑚(−0)
1

𝐾
𝑢𝑛

′(−0) +
1

𝐾
𝑢𝑚

′(−0)𝐾𝑢𝑛(−0) = ∫(𝜆𝑚 − 𝜆𝑛)𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

 

from which it follows that 

0 = (𝜆𝑚 − 𝜆𝑛) [ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

] 

Since 𝜆𝑚 ≠ 𝜆𝑛, we get that 

∫ 𝑢𝑚𝑢𝑛𝑑𝑥

−0

−1

+ ∫ 𝑢𝑚𝑢𝑛𝑑𝑥

1

+0

= 0, 

That is 〈𝑢𝑚 , 𝑢𝑛〉 = 0, which completes the proof. 

2.1.  Construction of the Hilbert Space and Differential Operator for Given Boundary-

Value-Transition Problem 

Let us define the inner product of 𝜑(𝑥), 𝜔(𝑥) ∈ 𝐻 by the equality 

〈 𝜑, 𝜔 〉 = ∫ 𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

−0

−1

+ ∫ 𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

1

+0

 

where 

𝐻 = {𝜑(𝑥) | 𝜑(𝑥) ∈ 𝐿2(−1,0) ⊕ 𝐿2(0,1)} 

We can show that the inner-product axioms are obviously satisfied. 

Lemma 2.1.1. The inner product space (𝐻 , 〈 ∙ ,∙ 〉) is a Hilbert space. 

PROOF. It is sufficient to show that every Cauchy sequence in the space 𝐻 is convergent to some limit point in 

𝐻. Let (𝜑𝑛)𝑛∈ℕ be a Cauchy sequence in 𝐻. Then for any 𝜀 > 0, there is 𝑛0(𝜀) ∈ ℕ such that ‖𝜑𝑛 − 𝜑𝑚‖ <

𝜀2 whenever 𝑛, 𝑚 ≥ 𝑛0(𝜀). Since 

‖𝜑𝑛 − 𝜑𝑚‖𝐻
2 = 〈𝜑𝑛 − 𝜑𝑚 , 𝜑𝑛 − 𝜑𝑚〉𝐻 

                                                                              = ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(−1,0)
2 + ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(0,1)

2 < 𝜀2 

we have 

‖𝜑𝑛 − 𝜑𝑚‖𝐿2(−1,0)
2 < 𝜀2,   ‖𝜑𝑛 − 𝜑𝑚‖𝐿2(0,1)

2 < 𝜀2 
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Consequently, the sequence (𝜑𝑛)𝑛∈ℕ is a Cauchy sequence in both Hilbert spaces 𝐿2(−1,0) and 𝐿2(0,1). Since 

the spaces 𝐿2(−1,0) and 𝐿2(0,1) are complete, any Cauchy sequence taken from these spaces are convergent 

sequences. So, there are 𝜑𝑙 ∈ 𝐿2(−1,0) and 𝜑𝑟 ∈ 𝐿2(0,1) such that 

‖𝜑𝑛 − 𝜑𝑙‖𝐿2(−1,0)
2  ⟶ 0 (𝑛 → ∞) , ‖𝜑𝑛 − 𝜑𝑟‖𝐿2(0,1)

2  ⟶ 0 (𝑛 → ∞) 

Consequently 

‖𝜑𝑛 − 𝜑̃‖𝐻
2 = ‖𝜑𝑛 − 𝜑𝑙‖𝐿2(−1,0)

2 + ‖𝜑𝑛 − 𝜑𝑟‖𝐿2(0,1)
2 ⟶ 0 (𝑛 → ∞) 

where 𝜑̃ ≔ { 𝜑𝑙 ,   𝑥 ∈ [−1,0)

𝜑𝑟,   𝑥 ∈ (0,1]
∈ 𝐻. Therefore, the completeness of the inner-product space 𝐻 is proved. 

Now we will define a linear operator 𝐴 ∶ 𝐻 → 𝐻 associated with the boundary value transition problem (2.1) −

(2.3) as follows: 

Let the domain 𝐷(𝐴) be define as follows: 

𝐷(𝐴) = { 𝜑 ∈ 𝐻 |The functions 𝜑1(𝑥), 𝜑2(𝑥),  𝜑1
′ (𝑥) and  𝜑2

′ (𝑥) are absolute continuous in the 

intervals [−1,0] and [0,1], there are finite limit values 𝜑(±0) and 𝜑′(±0), and −𝜑1
′′ +

𝑞(𝑥)𝜑1 ∈ 𝐿1(−1,0), − 𝜑2
′′ + 𝑞(𝑥)𝜑2 ∈ 𝐿2(0,1),  𝜑1(−1) = −𝜑2(1), 𝜑1

′(−1) =

−𝜑2
′(1), 𝜑1(0) = 𝐾𝜑2(0),  𝜑1

′(0) =
1

𝐾
𝜑2

′(0) } 

(2.7) 

and the operator 𝐴: 𝐷(𝐴) → 𝐻 be defined by 

𝐴𝜑 ≔ −𝜑′′ + 𝑞(𝑥)𝜑 (2.8) 

where 

𝜑1(𝑥) = {
𝜑(𝑥) , 𝑥 ∈ [−1, 0)

𝜑(−0) , 𝑥 = 0
  and  𝜑2(𝑥) = {

𝜑(𝑥) , 𝑥 ∈ (0, 1]

𝜑(+0) , 𝑥 = 0
 

The eigenvalues and the eigenfunctions of the boundary value transition problem are defined as the eigenvalues 

and eigenfunctions of the operator 𝐴, respectively. 

The following lemma is easy to prove. 

Lemma 2.1.2. The operator 𝐴 is the linear operator. 

Theorem 2.1.2. The linear operator 𝐴 defined by (2.7) − (2.8) is symmetric in the Hilbert space 

 𝐻 = 𝐿2(−1,0) ⊕ 𝐿2(0,1). 

PROOF. Let 𝜑, 𝜔 ∈ 𝐷(𝐴) ⊂ 𝐻. By the definition of 𝐴 we have 

〈 𝐴𝜑, 𝜔 〉𝐻 = − ∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 + ∫ 𝑞(𝑥)𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 − ∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 + ∫ 𝑞(𝑥)𝜑(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 (2.9) 

Integrating by parts twice, we obtain 

∫ 𝜑′′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 = 𝜑′(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅ |
−0

−1
−  𝜑(𝑥)𝜔′(𝑥)̅̅ ̅̅ ̅̅ ̅̅ |

−0

−1
+ ∫ 𝜑(𝑥)

−0

−1

𝜔′′(𝑥)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥, 

and therefore, 

∫ (−𝜑′′(𝑥) + 𝑞(𝑥)𝜑(𝑥))𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

−0

−1

𝑑𝑥 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

−0

−1

𝑑𝑥 + 𝑊(𝜑, 𝜔̅; −0) − W(φ,ω̅;-1) (2.10) 
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By similar technique as above, one can show that 

∫(−𝜑′′(𝑥) + 𝑞(𝑥)𝜑(𝑥))𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅

1

+0

𝑑𝑥 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

1

+0

𝑑𝑥 + 𝑊(𝜑, 𝜔̅; 1) − 𝑊(𝜑, 𝜔̅; +0) (2.11) 

Substituting (2.10) and (2.11) into (2.9), we obtain 

〈 𝐴𝜑, 𝜔 〉𝐻 = ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

−0

−1

𝑑𝑥 + ∫ 𝜑(𝑥)(−𝜔′′(𝑥) + 𝑞(𝑥)𝜔(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

1

+0

𝑑𝑥

+ 𝑊(𝜑, 𝜔̅; −0) − 𝑊(𝜑, 𝜔̅; −1) + 𝑊(𝜑, 𝜔̅; 1) − 𝑊(𝜑, 𝜔̅; +0) 

(2.12) 

Hence, (2.12) takes the form 

〈 𝐴𝜑, 𝜔 〉𝐻 − 〈 𝜑, 𝐴𝜔 〉𝐻 =  𝑊(𝜑, 𝜔̅; −0) − 𝑊(𝜑, 𝜔̅; −1) + 𝑊(𝜑, 𝜔̅; 1) − 𝑊(𝜑, 𝜔̅; +0) 

Since 𝜑, 𝜔 ∈ 𝐷(𝐴), this yield 

𝜑(−0)𝜔′(−0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜑′(−0)𝜔(−0)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜑(−1)𝜔′(−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜑′(−1)𝜔(−1)̅̅ ̅̅ ̅̅ ̅̅ ̅ +  𝜑(1)𝜔′(1)̅̅ ̅̅ ̅̅ ̅̅ − 𝜑′(1)𝜔(1)̅̅ ̅̅ ̅̅ ̅

− 𝜑(+0)𝜔′(+0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜑′(+0)𝜔(+0)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 

Then the equality 

〈 𝐴𝜑, 𝜔 〉𝐻 = 〈 𝜑, 𝐴𝜔 〉𝐻 

is valid for all 𝜑, 𝜔 ∈ 𝐷(𝐴). This completes the proof of Theorem. 

2.2.  Some Auxiliary Initial Value Problems and Solutions 

In this section, we will use solutions of some auxiliary initial value problems, given only on the sub-intervals 

[−1, 0] and [0, 1], which are closely related to the boundary value transition problem (2.1) − (2.3). The initial 

value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [−1,0] 

𝑢(−1) = 1 

𝑢′(−1) = 0 

has a unique solution 𝑢 = 𝜙1(𝑥, 𝜆) for each 𝜆 ∈ ℂ for the theory of ordinary differential equations and this 

solution is analytical in the whole complex plane concerning the variable 𝜆 for each 𝑥 ∈ [−1, 0]. (See, [13]) 

Let 𝜙2(𝑥, 𝜆) be the solution of the initial-value problem given by 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 

𝑢(1) = 1 

𝑢′(1) = 0 

This solution is an entire function of  𝜆 ∈ ℂ for each fixed 𝑥 ∈ [0, 1]. (See, [13]) 

Similarly, for each 𝜆 ∈ ℂ, the initial-value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 

𝑢(1) = 0 

𝑢′(1) = 1 

has a unique solution 𝑢 = 𝜒2(𝑥, 𝜆) and the initial-value problem 

−𝑢′′(𝑥) + 𝑞(𝑥)𝑢(𝑥) = 𝜆𝑢(𝑥) , 𝑥 ∈ [0,1] 
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𝑢(−1) = 0 

𝑢′(−1) = 1 

has a unique solution 𝑢 = 𝜒1(𝑥, 𝜆). These solutions are also analytical in the whole complex plane concerning 

the variable 𝜆 for each fixed 𝑥, that is,  𝜒1(𝑥, 𝜆) and 𝜒2(𝑥, 𝜆) are entire functions of 𝜆 ∈ ℂ for each fixed 𝑥(see, 

[13]). 

2.3.  The Characteristic Function 

Theorem 2.3.1. The eigenvalues of the boundary-value-transition problem  (2.1) − (2.3) are coincide with 

the zeros of the characteristic function 

Δ(𝜆) = [𝜙
2
(+0, 𝜆) − 𝐾𝜙

1
(−0, 𝜆)] [𝜒

2
′ (+0, 𝜆) −

1

𝐾
𝜒

1
′ (−0, 𝜆)] − [𝜒

2
(+0, 𝜆) − 𝐾𝜒

1
(−0, 𝜆)] [𝜙

2

′ (+0, 𝜆) −
1

𝐾
𝜙

1

′ (−0, 𝜆)] (2.13) 

PROOF. Since for each 𝜆 ∈ ℂ the Wronskian 𝑊(𝜙1, 𝜒1; 𝑥) is independent on 𝑥 ∈ [−1,0] and 𝑊(𝜙1, 𝜒1; −1) =

1 ≠ 0, the functions 𝜙1(𝑥, 𝜆),  𝜒1(𝑥, 𝜆) are linearly independent solutions of the equation (2.1) in the interval 

[−1,0]. Therefore, the general solution of the equation (2.1) on the left interval [−1,0] can be expressed in 

the form  

𝑦 = 𝑐1𝜙1(𝑥, 𝜆) + 𝑐2𝜒1(𝑥, 𝜆) 

Similarly, the general solution of the same differential equation on the right interval [0,1] can be expressed in 

the form 

𝑦 = 𝑐3𝜙2(𝑥, 𝜆) + 𝑐4𝜒2(𝑥, 𝜆) 

Thus, the general solution of the differential equation (2.1) on the interval [−1,0) ∪ (0,1] can be written in 

the form 

𝑦 = {
𝑐1𝜙1(𝑥, 𝜆) + 𝑐2𝜒1(𝑥, 𝜆) , 𝑥 ∈ [−1, 0)

𝑐3𝜙2(𝑥, 𝜆) + 𝑐4𝜒2(𝑥, 𝜆), 𝑥 ∈ (0, 1]
 

Applying the antiperiodic boundary conditions (2.2) we obtain 

                            𝑐1𝜙1(−1, 𝜆) + 𝑐2𝜒1(−1, 𝜆) = 𝑐3𝜙2(1, 𝜆) + 𝑐4𝜒2(1, 𝜆) 

𝑐1𝜙1
′ (−1, 𝜆) + 𝑐2𝜒1

′ (−1, 𝜆) = 𝑐3𝜙2
′ (1, 𝜆) + 𝑐4𝜒2

′ (1, 𝜆)(2.3.2) (2.14) 

By the definition of the solutions 𝜙1, 𝜒1, 𝜙2 and 𝜒2 we get 

𝜙1(−1, 𝜆) = 1,  𝜙1
′ (−1, 𝜆) = 0,  𝜙2(1, 𝜆) = 1,  𝜙2

′ (1, 𝜆) = 0 

𝜒1(−1, 𝜆) = 0,  𝜒1
′ (−1, 𝜆) = 1,   𝜒2(1, 𝜆) = 0, 𝜒2

′ (1, 𝜆) = 1 

Substituting these equalities into (2.14), we obtain that 𝑐1 = 𝑐3 = 𝐴 and 𝑐2 = 𝑐4 = 𝐵. Then, the general 

solution can be written in the form 

𝑦 = 𝐴𝜙(𝑥, 𝜆) + 𝐵𝜒(𝑥, 𝜆) 

Substituting this into transition conditions (2.3), we obtain the following linear system of equations concerning 

the variables 𝐴 and 𝐵, given by 

(𝜙2(+0, 𝜆) − 𝐾𝜙1(−0, 𝜆))𝐴 + (𝜒2(+0, 𝜆) − 𝐾𝜒1(−0, 𝜆))𝐵 = 0 

(𝜙2
′ (+0, 𝜆) −

1

𝐾
𝜙1

′ (−0, 𝜆)) 𝐴 + (𝜒2
′ (+0, 𝜆) −

1

𝐾
𝜒1

′ (−0, 𝜆)) 𝐵 = 0 

This homogeneous system of linear equations has a nontrivial solution (𝐴, 𝐵) ≠ (0,0) if the determinant of 

this system is equal to zero, i.e. 

|
𝜙2(+0, 𝜆) − 𝐾𝜙1(−0, 𝜆) 𝜒2(+0, 𝜆) − 𝐾𝜒1(−0, 𝜆)

𝜙2
′ (+0, 𝜆) −

1

𝐾
𝜙1

′ (−0, 𝜆) 𝜒2
′ (+0, 𝜆) −

1

𝐾
𝜒1

′ (−0, 𝜆)
| = 0 
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Hence, Δ(𝜆) = 0. This completes the proof. 

Theorem 2.3.2. If 𝐾2 ≠ 1, then for the characteristic function Δ(𝜆) the following asymptotic formulas hold 

Δ(𝜆) = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 + 𝑂 (

1

√𝜆
𝑒2𝑡) 

as |𝜆| → ∞, where 𝑡 = 𝐼𝑚√𝜆. 

PROOF. By applying well-known properties of Volterra integral equations, we can derive the following 

asymptotic formulas 

𝜙1(𝑥, 𝜆) = cos (√𝜆(𝑥 + 1)) + 𝑂 (
1

√𝜆
𝑒|𝑡||𝑥+1|) 

𝜙1
′(𝑥, 𝜆) = −√𝜆 sin (√𝜆(𝑥 + 1)) + 𝑂(𝑒|𝑡||𝑥+1|) 

𝜙2(𝑥, 𝜆) = cos(√𝜆(𝑥 − 1)) + 𝑂 (
1

√𝜆
𝑒|𝑡||𝑥−1|) 

𝜙2
′(𝑥, 𝜆) = −√𝜆 sin (√𝜆(𝑥 − 1)) + 𝑂(𝑒|𝑡||𝑥−1|) 

𝜒1(𝑥, 𝜆) =
1

√𝜆
sin (√𝜆(𝑥 + 1)) + 𝑂 (

1

𝜆
𝑒|𝑡||𝑥+1|) 

𝜒1
′ (𝑥, 𝜆) = cos (√𝜆(𝑥 + 1)) + 𝑂 (

1

√𝜆
𝑒|𝑡||𝑥+1|) 

𝜒2(𝑥, 𝜆) =
1

√𝜆
sin (√𝜆(𝑥 − 1)) + 𝑂 (

1

𝜆
𝑒|𝑡||𝑥−1|) 

𝜒2
′ (𝑥, 𝜆) = cos (√𝜆(𝑥 − 1)) + 𝑂 (

1

√𝜆
𝑒|𝑡||𝑥−1|) 

as |𝜆| ⟶ ∞, where 𝑂 denote the Landau symbol. Substituting these asymptotic formulas into (2.13) we arrive 

at 

Δ(𝜆) = [(1 − 𝐾)cos√𝜆 + 𝑂 (
1

√𝜆
𝑒|𝑡|)] [(1 −

1

𝐾
) cos√𝜆 + 𝑂 (

1

√𝜆
𝑒|𝑡|)] 

                                             − [(−1 − 𝐾)
1

√𝜆
sin√𝜆 + 𝑂 (

1

𝜆
𝑒|𝑡|)] [(1 +

1

𝐾
) √𝜆sin√𝜆 + 𝑂(𝑒|𝑡|)] 

                                       = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 + 𝑂 (

1

√𝜆
𝑒2𝑡) 

This completes the proof. 

Theorem 2.3.3. If 𝐾2 ≠ 1, then the boundary-value-transition problem (2.1) − (2.3) has a countable set of 

eigenvalues without finite accumulation point. 

PROOF. Denote by Δ1(𝜆) the leading term of Δ(𝜆), that is 

Δ1(𝜆) = (1 − 𝐾) (1 −
1

𝐾
) cos2√𝜆 + (1 + 𝐾) (1 +

1

𝐾
) sin2√𝜆 

This function has a countable set of zeros 𝜆𝑛
′ , 𝑛 = 1, 2, ⋯ without a finite accumulation point. Applying now 

the well-known Rouche's theorem (see, for example, [13]) to the appropriate circles we conclude that the 

characteristic function Δ(𝜆) has a countable set zeros 𝜆𝑛, 𝑛 = 1, 2, ⋯ which satisfies the asymptotic equality 

𝜆𝑛 = 𝜆𝑛
′ + 𝑂 (

1

𝑛
). The proof is complete. 



 

49 

 

Journal of New Theory 33 (2020) 40-49 / Spectral Properties of the Antiperiodic Boundary-Value-Transition Problems 

 

3. Conclusions 

In this study, antiperiodic Sturm-Liouville problems, including transition conditions, were investigated for the 

first time in the literature. A Hilbert space suitable for the problem is established. Then, an operator is defined 

on this Hilbert space that is the same as the problem's eigenvalues. It has been proved that the eigenvalues are 

real and the eigenfunctions are orthogonal. The problem's characteristic function is defined, and the asymptotic 

formula is obtained for the characteristic function. Finally, the asymptotic formula for eigenvalues was found 

using the asymptotic formula of the characteristic function. 
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Abstract − In this paper, we first introduce the evolute offset of non-cylindirical
ruled surfaces with B-Darboux frame in Euclidean 3-space. Then some geometric
properties of this evolute offset of non-cylindirical ruled surface are studied. That
is, we examine the striction curve, distribution parameter, orthogonal trajectory of
evolute offset of ruled surfaces in terms of B-Darboux frame of given ruled surfaces,
and we study the developability of ruled surface generated by B-Darboux vectors in
three dimensional Euclidean space.

Keywords − B-Darboux Frame, Curvatures, Evolute Offset, Ruled Surface

1. Introduction

In geometry, a ruled surface in three dimensional space is a surface which is stated as the set of
points swept by a moving straight line. By using the directions, many offset of this surface such as
parallel, Bertrand, Mannheim, involute-evolute, and Smarandache have been defined. In kinematics,
mechanism, geophysics, Computer-Aided Geometric Design, and geometric modelling, both offsets and
ruled surfaces are extensively worked on. In general, offsets of surfaces are usually more complicated
than their origin surfaces. Because of this, analysing offsets surfaces or curves by the help of the
properties of the base surface or curve is important. Therefore, many researchers have been working
on this subject.

After [1] Pottmann et al. in 1996 studied rational ruled surfaces and their offsets, Kasap et al.
in [2], Akyigit et. al. in [3] had a research on the involute-evolute offsets of ruled surface in 2009 and
involute-evolute curves in Galilean Space in 2010, respectively. The involute evolute partner of both
d-curves in Euclidean 3-space and pseudo null curves in Minkowski 3-space found in [4]- [5]. While
Yoon worked on, in 2016, the evolute offsets of ruled surfaces in three dimensional Lorentzian space [6],
recently, Senturk and Yuce in [7]- [8] studied evolute offsets of ruled surfaces using Darboux frame in
3 dimensional Euclidean space.

In this paper, after giving necessary definitions and theorems in preliminary section, the evolute
offset of ruled surfaces with B-Darboux frame is defined in the following chapter. Some geometric
properties of this evolute offset of non-cylindirical ruled surface are studied. That is, we examine the
striction curve, distribution parameter and the developability of evolute offset of given ruled surfaces
in terms of B-Darboux frame in Euclidean 3- space.
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1Department of Mathematics, Faculty of Science, Cankiri Karatekin University, Cankiri, Turkey
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2. Preliminary

Let M(u(s), v(s)) be an oriented surface and α(s) be a unit speed curve on M in E3. If t is the unit
tangent vector of α, U is the unit normal vector of M and V = U ∧ t, then {t,V,U} is called the
Darboux frame of α(s). Therefore, the Darboux formulas are written as

d
ds

 t
V
U

 =

 0 κg κn
−κg 0 τg
−κn −τg 0

 t
V
U

 (1)

where
κg =

〈
t′,V

〉
, κn =

〈
t′,U

〉
, τg =

〈
V′,U

〉
(2)

are called the normal curvature, geodesic curvature and the geodesic torsion of α, respectively [9].
As an alternative to the Darboux frame, B-Darboux frame is defined as a new adapted frame on the
surface [10], [11]. Its mathematical properties derive from the observation that, while the tangent
vector t for a curve on a surface is unique, we can pick any practical arbitrary basis vectors B1 and
B2 for the remainder of the proposed frame in the normal plane of the surface.

Theorem 2.1. [12] Assume that r(s) = M(u(s), v(s)) is a unit speed curve on a surface M in E3.
Let us consider the Darboux frame {t,V,U} along this curve on the surface. Then, the variation
equation of the B-Darboux frame {t,B1,B2} on the surface given as

d

dt

 t
B1

B2

 =

 0 n1 n2
−n1 0 0
−n2 0 0

 t
B1

B2

 , (3)

where the B-Darboux curvatures are obtained as

n1 = κg sinφ+ κn cosφ

n2 = κn sinφ− κg cosφ,
(4)

where the angle φ between the vectors U and B1 are obtained by

φ− φo =

∫
τgdt (5)

here φo is an arbitrary integration constant.

A straightforward computation shows that the following relations among the B-Darboux curva-
tures, the normal curvature and the geodesic curvature holds:

κ2g + κ2n = n21 + n22. (6)

If α(s) be a curve and X(s) be a generator vector, then the parametrization of ruled surface ϕ(s, v) is

ϕ(s, v) = α(s) + vX(s). (7)

The striction curve on the ruled surface consists of the foot of the common perpendicular line of the
consecutive rulings on the main ruling. It is written as

c(s) = α(s)− 〈αs,Xs〉
〈Xs,Xs〉X(s). (8)

Theorem 2.2. The ruled surface is developable if consecutive rulings intersect [13].

The distribution parameter of the ruled surface is determined as (see [14], [15])

PX = det(αs,X,Xs)
〈Xs,Xs〉 . (9)

Theorem 2.3. The ruled surface is named as developable if and only if PX = 0 [13].
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The ruled surface is called as a non-cylindirical ruled surface if 〈Xs, Xs〉 6= 0.
A unit direction vector of straight line X is span by the vectors {t,B1}. Therefore, it is given as

X = cosφt + sinφB1. (10)

where φ is the angle between the vectors t and X [15]. In [12], the distrubition parameter and the
striction curve of ruled surface with B-Darboux frame are determined as

PX = n2 sinφ cosφ
(φ′+n1)2+(n2)2(cosφ)2

, (11)

and
c(s) = α(s)− (φ′+n1) sinφ

(φ′+n1)2+(n2)2(cosφ)2
X(s). (12)

respectively.
The ruled surface with B-Darboux frame is a developable provided that

n2 cosφ sinφ = 0. (13)

In that case, we have the followings:

i) If n2 = 0 then
κg
κn

= tanφ which is trivial. Specially, if φ = 0, then α is geodesic curve and never
asymptotic line.

ii) If cosφ = 0 then base curve is orthogonal trajectory.

iii) If sinφ = 0 then main ruled surface is the tangent developable.

An orthogonal trajectory of a family of curves is a curve which intersect each curve of the family
orthogonally. For the ruled surface ϕ(s, v), the orthogonal trajectory is

cosφds = −dv. (14)

3. Evolute Offsets of Ruled Surface with B-Darboux Frame

Definition 3.1. Two ruled surfaces ϕ(s, v) with B-Darboux frame {t,B1,B2} and ϕ∗(s, v) with B-
Darboux frame {t∗,B∗1,B∗2} are given

ϕ(s, v) = α(s) + vX(s) (15)

ϕ∗(s, v) = α∗(s) + vX∗(s). (16)

ϕ(s, v) is said to be involute offsets of ϕ∗(s, v) or ϕ∗(s, v) is said to be evolute offset of ϕ(s, v) if frame
vectors t of ϕ(s, v) and B∗1 of ϕ∗(s, v) are linearly dependent at the points of their corresponding
rullings.

A unit direction vector of straight line X∗ of ϕ∗ is spanned by the vectors {t∗,B∗1}. Therefore, it
is given

X∗ = cosφ∗t∗ + sinφ∗B∗1, (17)

where φ∗ is the angle between the vectors t∗ and X∗.

If t,B1 and B2 are the B-Darboux vectors of ϕ, then the B-Darboux vectors of evolute offset ϕ∗

of ϕ, as in Figure 1, are written as t∗

B∗1
B∗2

 =

 0 cosψ − sinψ
1 0 0
0 sinψ cosψ

 t
B1

B2

 , (18)

where the ψ is the angle between B2 and B∗2.
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𝐵1
∗

()

𝐵1



𝑡∗

𝐵2
∗

∗()

t

𝐵2

O

R
𝑋∗

X
l

(,v) ∗(,v)


l∗

Fig. 1. Relation between ϕ and ϕ∗.

It is easy to see that
α∗(s) = α(s) +Rt (19)

where R is the distance function between the corresponding points of the base curves α(s) and α∗(s),
and it is given as R(s) = c− s [4].

X∗(s) = sinφ∗t + cosφ∗ cosψB1 − cosφ∗ sinψB2 (20)

in terms of B-Darboux frame of ϕ. The parametrization of the offset ruled surface ϕ∗, using the
equations (19) and (20), can be stated

ϕ∗(s, v) = α∗(s) + vX∗(s)

= α(s) +Rt + v[sinφ∗t + cosφ∗ cosψB1 − cosφ∗ sinψB2].
(21)

Taking derivative of the equation (20) with respect to s, we get

X∗s = cosφ∗((φ∗)′ − n1 cosψ + n2 sinψ)t

+[sinφ∗(n1 − (φ∗)′ cosψ)− ψ′ cosφ∗ sinψ]B1

+[sinφ∗(n2 + (φ∗)′ sinψ)− ψ′ cosφ∗ cosψ]B2.

(22)

Striction curve of the ruled surface ϕ∗ in terms of B-Draboux frame of ϕ is calculated by

c∗(s) = α(s) + (c− s)t− c−s
<X∗s ,X

∗
s>

(sinφ∗(n21 + n22 + (φ∗)′(n2 sinψ − n1 cosψ))

−ψ′ cosφ∗(n1 sinψ + n2 cosψ))X∗(s).

(23)

Distribution parameter of the evolute offset ϕ∗ in terms of B-Draboux frame of ruled surface ϕ is
given as

PX∗ = c−s
||X∗s ||2

(ψ′ cosφ∗ sinφ∗(n1 cosψ − n2 sinψ)− (φ∗)′(n1 sinψ + n2 cosψ)

− cos2(φ∗)(n2 sinψ − n1 cosψ)(n1 sinψ + n2 cosψ)).

(24)
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Corollary 3.2. If the tangent vector t∗ and X∗ are linearly dependent, then ϕ∗ is developable.

For the distribution parameters of ruled surfaces ϕt, ϕB1 , and ϕB2 , respectively, one can get

Pt = det(αs,t,ts)
〈ts,ts〉 = det(t,t,ts)

〈ts,ts〉 = 0,

PB1 = det(αs,B1,B1s)
〈B1s,B1s〉 = det(t,B1,−n1t)

〈−n1t,−n1t〉 = 0,

PB2 = det(αs,B2,B2s)
〈B2s,B2s〉 = det(t,B2,−n2t)

〈−n2t,−n2t〉 = 0.

(25)

Similarly, the distrubition parameters of evolute offsets of the ruled surface spanned by B-Darboux
frame vectors are calculated

Pt∗ = c−s
||t∗||2 (n1 cosψ − n2 sinψ)(n1 sinψ + n2 cosψ),

PB∗1
= 0,

PB∗2
= c−s

||B∗2||2
(n2 sinψ − n1 cosψ)(n1 sinψ + n2 cosψ).

(26)

Corollary 3.3. The ruled surface spanning t∗ is a developable only if n1
n2

= ± cotψ satisfies.

Corollary 3.4. The ruled surface spanning B∗1 is always developable.

Corollary 3.5. The ruled surface spanning B∗2 is a developable, either n1
n2

= tanψ or n1
n2

= − cotψ
satisfies.

When we take v is constant, we obtain the curve β∗(s) = α∗(s) + vX∗(s) on the evolute offsets of
ruled surface whose tangent vector field is calculated

T ∗ = v cosφ∗((φ∗)′ − n1 cosψ + n2 sinψ)t

+[Rn1 + v(sinφ∗(n1 − (φ∗)′ cosψ)− ψ′ cosφ∗ sinψ)]B1

+[Rn2 + v(sinφ∗(n2 + (φ∗)′ sinψ)− ψ′ cosφ∗ cosψ)]B2.

(27)

So, it is easy to get < T ∗, X∗ >= R cosφ∗(n1 cosψ − n2 sinψ).
The orthogonal trajectory of the evolute offsets ϕ∗ is written as

R cosφ∗(n1 cosψ − n2 sinψ)ds = −dv. (28)

Theorem 3.6. The shortest distance between the rullings of the evolute offset ϕ∗(s, v) = α∗(s) +
vX∗(s) along the orthogonal trajectories is given

v =
R(sinφ∗(n21 + n22 + (φ∗)′(n2 sinψ − n1 cosψ))− ψ′ cosφ∗(n1 sinψ + n2 cosψ))

< X∗s , X
∗
s >

.

Proof. Suppose α∗(s1) and α∗(s2) are two points in succesive rullings on evolute offset along the
orthogonal trajectories. The distance between these two points is given

l(v) =

∫ s2

s1

||T ∗||ds.

Calculating ||T ∗||, we get

l(v) =

∫ s2

s1

(R2(n21 + n22) + 2Rv(sinφ∗(n21 + n22 + (φ∗)′(n2 sinψ − n1 cosψ))

−ψ′ cosφ∗(n1 sinψ + n2 cosψ))− v2 < X∗s , X
∗
s >)

1
2ds.

(29)

In order to find the distance, we need to minimize the integrant. Therefore, using l′(v) = 0, we have

R(sinφ∗(n21 + n22 + (φ∗)′(n2 sinψ − n1 cosψ))− ψ′ cosφ∗(n1 sinψ + n2 cosψ))− v < X∗s , X
∗
s >= 0

which proves the theorem.
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Abstract − Structural Equation Models (SEMs) with latent variables provide a general framework for 

modelling relationships in multivariate data. Although SEMs are most commonly used in studies 

involving intrinsically latent variables, such as happiness, quality of life, or stress, they also provide a 

parsimonious framework for covariance structure modelling. For this reason, they have become 

increasingly used outside of traditional social science applications. Frequentist inferences are based on 

point estimates and hypothesis tests for the measurement and latent variable parameters. Although most 

of the literature on SEMs is frequentist, Bayesian approaches have been proposed in the last years. This 

study aims to provide an easily accessible overview of a Classic and a Bayesian approach to SEMs. 

Due to the flexibility of the Bayesian approach, it is straightforward to apply the method in a 

comprehensive class of SEM-type modelling frameworks, allowing nonlinearity, interactions, missing 

data, mixed categorical, count, and continuous observed variables. The WinBUGS software package, 

which is freely available, can be used to implement Bayesian SEM analysis. Bayesian model fitting 

typically relies on MCMC, which involves simulating draws from the joint posterior distribution of the 

model unknowns (parameters and latent variables) through a computationally intensive procedure. The 

advantage of MCMC is that there is no need to rely on broad sample assumptions because exact 

posterior distributions can be estimated for any function of the model unknowns. In small to moderate 

samples, these exact posteriors can provide a more realistic measure of model uncertainty. Therefore, 

we use the MCMC method for the Bayesian approach in this study. All approaches given above are 

applied to the data obtained from Samsun Chamber of Commerce and Industry. 

Keywords − Structural equation models, Bayesian approach, MCMC, Bayesian structural equation models 

1. Introduction 

The Structural Equation Model (SEM) is a multivariate statistical modelling technique that reveals the cause-

effect relationship between measurable variables and non-measurable (implicit) variables. SEM consists of 

Observed/Measured Variables and unobservable or unmeasurable variables (Latent Variables) that can 

function as endogenous and exogenous. Since implicit variables cannot be measured directly, it is essential to 

define the measurable variables that the researcher wants to examine, and that is thought to represent the 

implicit variable. Measurable variables that describe implicit variables can be one or more. Therefore, the fact 

that makes the implicit variable measurable is assessing variables or variables that define the implicit variable. 

In SEM, which is based on the causality relationship between implicit variables, each of the implicit 

variables is a linear function of the set of variables that were observed or measured. The parameters of these 
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linear functions are obtained using an analysis of covariance. It is tested that using the goodness of fit tests 

whether the researcher's model is compatible with the data’s variance-covariance structure. If the model 

predictions are accepted at the end of the test, the linear relationship between the implicit variables is assumed 

to be reasonable. SEM is a hybrid method that combines factor analysis and path analysis. Perhaps the main 

reason why SEM is so widely used today is that direct or indirect relationships between observable and 

unobservable variables can be analysed in a single model. SEM can also be considered as multiple regression 

analysis, and factor analysis performed simultaneously. Therefore, YEM; is also named with definitions such 

as causal analysis, causal modelling, concurrent structural modelling, covariance structure analysis, path 

analysis, or confirmatory factor analysis. 

SEM is based on three basic analytical developments [1]. These are, respectively, path analysis, latent 

variable model, and general covariance estimation methods. Wright [2] started his first studies on road analysis 

and along with other studies, road analysis was developed and basic rules were established [2,3]. Today, SEM 

is widely used in many fields such as behavioral sciences, educational sciences, economics, marketing, health 

sciences and social sciences. In examining the structural relations of production practices, delivery time and 

productivity in Japan and Korea, the effect of time-based production on customer-specific production and 

adding value to the customer, the development of customer satisfaction index in the Turkish mobile phone 

industry, evaluation of customer satisfaction in the telephone industry with multi-level structural equation 

models, brand In the measurement of the value of the supply chain management, the effect of e-supply chain 

competence on competitive advantage and organizational performance, the effect of supplier development on 

purchasing performance, in modelling student success, In performing risk analysis in the coal mine 

construction project, The effects of total quality management practices applied in enterprises on employee 

performance, the examination of factors affecting individuals’ adoption of internet banking, in fraudulent 

financial reporting determination of auditor responsibility, investigation of the effect of critical control 

(success) factors in enterprise resource planning (ERP) applications, determinants of capital structure selection. 

Effects of depression and disease severity on quality of life, Use of SEM in decision tree models, Operation 

management, symptoms related to ecstatic; the role of fear of blood, injection and injury (KEY), estimation of 

post-stress traumas of child welfare institutions, processing speed, relationship between intelligence, creativity 

and school performance, use of incremental goodness of fit indexes in market research studies, structural 

equation for river water quality data model, role ambiguity, role conflict, relationships between job satisfaction 

and performance, structural equation technique and interactional stress and coping model. 

Why not take advantage of our abilities, which we regularly use and call intuition, common sense, and sixth 

sense, for scientific purposes? Bayes Theory emerges as an alternative inference in the scientific use of such 

abilities. The classic inference is to conclude the population we do not have information about with sample 

data. Statistical operations such as confidence intervals and hypothesis tests are the basis of classical inference. 

However, “Life; It is the art of drawing sufficient conclusions from insufficient a priori.” Thomas Bayes, who 

has a similar opinion with Samuel Butler, has a different perspective on the audience’s inference based on the 

observed sample data. In general, he formed the chain of logic from causes to effects, from results to causes. 

In the last 30 years, using an approach different from other common basic approaches in statistical analysis 

has increased. This approach is Bayesian inference and is based on the well-known theorem put forward by 

Thomas Bayes in 1763. Thomas Bayes did not even predict that his simple probabilistic theorem would be a 

statistical method of inference. However, in the last 30 years, this theorem has influenced many statisticians 

and mathematicians, and Bayes statistics has been accepted as the primary method of statistical inference. 

Many researchers such as Jeffreys, de Finetti, Savage, and Lindley contributed to the development of Bayesian 

analysis. In recent years, the technical applicability of Bayes analysis has also rapidly developed using 

computers and has opened up new application areas. As a result of these developments, Bayesian analysis was 

expanded with researchers such as Berger [4] and Bernardo and Smith [5]. 

Today, Bayesian analysis is successfully applied in every discipline. Many applied studies have been 

revealed. A broad overview of these studies will be given below. It is often difficult to calculate the Bayesian 
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factor. Different calculation methods have been proposed by Kass and Raftery [6]. A simple approach is used 

in the Bayesian Knowledge Criteria (BIC) YEM. For example, [7] on the LISREL model, Lee and Song [8] 

on the two-level SEM, Jedidi, Jagpal [9] applied to finite mixed SEM. Also, posterior simulation based 

approaches are used in Bayes Factor calculations. DiCiccio, Kass [10] detailed many methods from the Laplace 

approach to importance sampling. Gelman and Meng [11] developed a road sampling approach. Lee [12] gave 

the Bayesian approach with WinBUGS applications on linear, nonlinear and loss observation structural 

equation models. Wang and Fan [13] examined the factors affecting myopia disease with Bayesian structural 

equation models. Bayesian approach for semi-parametric structural equation models is given by Guo, Zhu 

[14]. In the first part of this study, firstly, literature information about structural equation models, secondly 

Bayesian approach and finally Bayesian structural equation models are given. In the second section under the 

title of basic information, basic concepts related to structural equation models and Bayesian approach are 

presented. Linear and nonlinear structural equation models are presented with a Bayesian approach in the 

material method section. In the fourth chapter, 2011 data of Samsun Chamber of Commerce and Industry 

member satisfaction are used. There are 4 factors that are thought to affect the overall satisfaction of the room. 

These 4 factors are guidance, solution, personnel and representation factors, respectively. Factors affecting the 

general satisfaction of the chamber were determined by both classical and Bayesian structural equation models. 

2. Materials and Methods 

2.1.  Linear Structural Equation Modelling 

Due to the nature of the problems and the design of the questionnaires in behaviour, education, medical and 

social sciences, data are usually obtained as sequential categorical variables. Examples of these variables; 

Scales such as attitude scales, likert scales, rating scales can be given. When questioned about some attitudes, 

the scale was “I do not approve”, “I have no idea”, “I approve”, while questioning about the effect of a drug 

was “worsened”, “did not change”, “got better” and when questioned about a political event, definitely “I don’t 

agree”, “I don’t agree”, “I have no idea”, “I agree”, “I absolutely agree”. Consider a five-point scale associated 

with responses to a political event. A common approach is to treat these integer values as continuous values 

drawn from the normal distribution. This approach does not cause serious problems if the histograms of the 

observation value are symmetrical and the frequencies of the central values are high. This will emerge in many 

cases when the “I have no idea” option is chosen. To claim that the observed variables are multivariate 

normally distributed, in most cases we have to choose the middle category. For example, “I have no idea” or 

“no change”. In many cases likert scales may have clutter at both ends. For example, such as “strongly agree 

(strongly disagree)” or “agree (disagree)”. Therefore, histograms are either skewed or bimodal as opposed to 

the variables involved. Treating such ordered categorical variables as normal may lead to erroneous results 

[15,16]. A better approach for evaluating discrete data is to consider these data as latent continuous variables 

from a specified threshold normal distribution. For a given data set, the ratios of 1, 2, 3, and 4 values are 0.05, 

0.05, 0.40, and 0.5, respectively. From the histogram given in Figure 1, it is seen that the dashed data are 

skewed to the right. 

 

Fig. 1. Historical development of YEM [17] 
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The threshold approach for the analysis of this discrete data is to consider the discrete categorical data as 

normal variable 𝑦. There are no precise continuous measurements of 𝑦 but they are related to the observed 

ordered categorical variable 𝑧. This relationship is expressed as follows: 

𝑧 = 𝑘            𝑖𝑓   ∝𝑘−1< 𝑦 <∝𝑘      𝑘 = 1,2,3,4 

Here, −∞ <∝1<∝2<∝3< ∞ where ∝1, ∝2 and ∝3 are threshold values. Then, the histogram of sequential 

categorical observations given in Figure 1 can be in a view with 𝑁[0.1] distribution with appropriate threshold 

values as in Figure 2.  

 

Fig. 2. Histogram chart of the scale 

While the difference ∝2−∝1  may differ from the difference ∝3 −∝2, unequal scales are allowed. 

Therefore, this threshold approach allows flexible modelling. As associated with a common normal 

distribution, it also allows parameters to be easily interpreted. It should be noted that temporary integer values 

(𝑘 =  1,2,3,4) are used only to represent the category; Only the frequencies of these values are important in 

statistical analysis. Structural equation modelling consisting of continuous and discrete data does not have a 

simple structure. Because it is necessary to calculate multiple integrals associated with cell probabilities 

determined by ordered categorical results [12]. 

Some multi-step methods have been introduced to reduce the computational difficulties of these integrals. 

The basic procedure of these multi-stage methods is polychromic and polyserial correlations, estimating the 

threshold value in the first stage, deriving the asymptotic distribution of the predictions in the second stage, 

and analysing the structural equation model with the generalized least-squares approach and covariance 

structural equation model in the last stage. There are different methods at the first stage to manage the different 

procedures given in PRELIS and LISREL. Different methods initially applied PRELIS and LISREL [18], 

LISCOMP and MPLUS [19], and Lee et al. [20] causes different operations. Multistep estimators, however, 

are not statistically optimal and need to invert a large matrix of size that increases very rapidly with the number 

of variables that can be observed at each stage of generalized least squares minimization. Besides multi-step 

operations, Reboussin and Liang [21] proposed an equality estimation approach and Shi and Lee [22] 

developed a Monte Carlo EM algorithm for the maximum likelihood analysis of a factor analysis model.  

When dealing with sequential categorical variables in Bayesian analysis, the basic idea is to treat the 

expressed latent continuous measurements as hypothetically lost data and amplify them with observed data in 

posterior analysis. Using this data magnification strategy, the model based on the full data set becomes 

continuously variable. Sequences of observations of structural parameters, latent variables, and thresholds in 

infinitive analysis are simulated from the composite posterior distribution using a hybrid algorithm that is the 

combination of Gibbs sampling [23] and MH algorithm [24,25]. Combined Bayesian estimates of unknown 

thresholds, structural parameters, and latent variables are produced together with the standard error estimates 

of these estimates by using simulated observations. In addition to these point estimates, Bayesian model 

selection can be reviewed using the Bayes factor [12]. 
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2.2.  Application Material 

The questions regarding the Samsun Chamber of Commerce and Industry member satisfaction survey used in 

this study. Table 1 is also given. 

Table 1. Survey questions and related factors 

Factors Question Factor Name  

a1 H1 

General 

General When you think about it in general, how satisfied you 

with are being a member of our chamber? 

a1 H2 
Generally speaking, how satisfied are you with the services of 

our room? 

a2 H3 

Guidance 

Guidance Room responds to our requests in a timely manner 

a2 H4 
The efficiency of the chamber in strengthening the dialogue 

between the public authority and the industrialist is sufficient. 

a2 H5 
The efficiency of chamber services in the development of the 

sectors is sufficient. 

a2 H6 
Chamber efficiency is sufficient in terms of national and 

international expansion of the members. 

a3 H7 

Solution 

Solution I find the room management successful in 

understanding our problems / needs related to the sector. 

a3 H8 I can reach the management / concerned people when we need it 

a3 H9 
Room management has the ability to produce solutions to your 

sectoral problems 

a3 H10 
Our individual problems are taken into consideration by the 

room management. 

a3 H11 
I find room management successful in providing an environment 

and coordination that helps to solve individual problems. 

a4 H12 

Personal 

Staff Attitudes and behaviours of personnel in business relations 

a4 H13 Personnel being innovative and productive 

a4 H14 Personnel bringing suggestions and guidance 

a5 H15 

Representation 

Representation How satisfied are you with the representation 

level of the Chamber management? 

a5 H16 
How satisfied are you with the chamber management in terms of 

member relations? 
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3. Results 

In this study, member satisfaction survey data with 616 companies randomly selected among Samsun Chamber 

of Commerce and Industry members in 2011 were used. The aim is to reveal the structural relationship between 

general satisfaction from Samsun Chamber of Commerce and Industry and guidance, solution, personnel and 

representation. The application consists of 2 steps. In the first step, the structural equation model was examined 

with confirmatory factor analysis using the LISREL package program. In the second step, the Bayesian 

structural equation model was analysed using the WinBUGS package program.  

CLASSIC SOLUTION WITH LISREL 

All relevant observed variables were associated with latent variables using a one-way road vehicle. The main 

reason why we draw the path diagram is that it allows easy visualization of the relationship between variables. 

After completing the figural representation of the relationship between variables, the solution phase was 

started. In the solution phase, the fit indices specified in the material and method section were examined and 

the final solution was obtained. Goodness of fit criteria are extremely important in obtaining the final solution. 

Although there is no comparison in the literature regarding the superiority of goodness of fit criteria, the 

LISREL program has highlighted the RMSEA value under the path diagram. Since the RMSEA value was not 

within the required fit criteria in the initial solution, the correction indices suggested by the program were 

examined and the solution process was repeated. The correction indices suggested as a result of the LISREL 

solution were used and associated as shown in Figure 3. The decrease in chi-square value is taken into account 

when using correction indices. The new solution is obtained by performing the correction process that provides 

the highest decrease in the chi-square value. Below, all the situations under the Estimates option in the LISREL 

program are shown on the path diagram. 

 
Fig. 3. Threshold values for the scale 

The non-standardized coefficients obtained as a result of the LISREL solution are shown in Figure 3. The 

chi-square value was obtained as 67.71 at the program output. The ratio of the chi-square value to the degrees 

of freedom 50 is obtained as 1.35. This ratio shows us that the model established is a very powerful model. 

Another supporting indicator is the approximate root mean square error (RMSEA) value. The fact that this 

value is close to (0.024) 0 shows that the fit of the model is good. After checking the general fit of the model, 

the significance of the model parameters was examined. 
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Fig 4. Unstandardized results 

 

Fig. 5. Unstandardized results 

Figure 4 contains the standardized path coefficients for the parameters, while the 𝑡-values of the non-

statistically significant path coefficients on the path diagram are given in Figure 5. The 𝑡-values of the non-

significant path coefficients are shown in red in the path diagram. When the 𝑡-values of the variables of 

guidance, solution, personnel and representation, which are thought to have an effect on general satisfaction, 

were examined, it was seen that the guidance (𝑡 =  −0.93) and personnel (𝑡 =  −1.06) variables were 

meaningless. 
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Interpreting Measurement Model Results 

After the path diagram is obtained, the process of interpreting the analysis results is started. The results 

obtained are given below. 

Table 2. Measurement model results 

 

Measurement model results are given in Table 2. The standardized loads included in the measurement 

model results show the correlation between each observed variable and the implicit variable it is related to. 

Considering the first indicator of the implicit variable a1, H1, the correlation coefficient is 0.75. When the 

correlation coefficient is squared, R2 of H1 is 0.56. It is seen that the variability related to the implicit variable 

a1 is mostly explained by H2 (0.62). Fit criteria for the measurement model are given in Table 3. 

Factor / Expression Standardized Loads 𝒕-values R2 

Factor a1    

H1 0.75  0.57 

H2 0.79 19.67 0.62 

Factor a2    

H3 0.77 21.65 0.60 

H4 0.71 17.95 0.52 

H5 0.44 9.35 0.34 

H6 0.83 23.74 0.69 

H8 0.25 3.80 0.73 

H10 −0.46 −𝟓. 𝟏𝟗 0.41 

H11 −0.01 −𝟎. 𝟏𝟏 0.23 

H13 0.25 5.23 0.19 

H14 −0.24 −𝟏. 𝟒𝟒 0.71 

Factor a3    

H7 0.63 16.18 0.39 

H8 0.63 10.03 0.73 

H9 0.83 24,84 0.69 

H10 1.02 11.53 0.41 

H11 0.16 𝟎. 𝟗𝟗 0.23 

H14 0.50 2.62 0.71 

Factor a4    

H12 0.55 12.16 0.30 

H13 0.35 8.02 0.19 

H14 0.59 5.49 0.71 

H4 0.08 𝟏. 𝟔𝟖 0.52 

H5 0.35 9.15 0.34 

Factor a5    

H15 0.61 13.57 0.37 

H16 0.51 11.78 0.26 

H11 0.33 3.98 0.23 
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Table 3. Fit criteria for the model 

Fit Measurement Good Fit Acceptable Fit Results 

𝜒2 0 ≤ 𝜒2 ≤ 2𝑑𝑓  67.71  

(𝑃 = 0.04831) 

P of Close Fit ≥ 0.05  1.00 

𝜒2

𝑑𝑓
 0 ≤

𝜒2

𝑑𝑓
≤ 2 2 ≤

𝜒2

𝑑𝑓
≤ 3 1.35 

RMSEA 0 ≤RMSEA≤ 0.05 0.05 ≤ RMSEA ≤ 0.08 0.024 

NFI 0.95 ≤ NFI ≤ 1 0.90 ≤ NFI ≤ 0.95 0.99 

NNFI 0.97 ≤ NNFI ≤ 1 0.95 ≤ NNFI ≤ 0.97 1.00 

CFI 0.97 ≤ CFI ≤ 1 0.95 ≤ CFI ≤ 0.97 1.00 

GFI 0.95 ≤ GFI ≤ 1 0.90 ≤ GFI ≤ 0.95 0.99 

AGFI 0.90 ≤ AGFI ≤ 1 0.85 ≤ AGFI ≤ 0.90 0.96 

PGFI ≥ 0.95  0.36 

AIC  239.71 

ECVI  0.39 

IFI ≥ 0.95 0.90 ≤ IFI ≤ 0.94 1.00 

RFI ≥ 0.90  0.99 

Critical N   688.06 

The adaptation criteria obtained for the model are presented in Table 3. When the results are examined, it 

is seen that the goodness of fit criteria are within the ranges recommended by the literature. It was seen that 

the value (1.35) obtained by dividing the Chi-square value by the degrees of freedom was within the acceptable 

range. 

Table 4. Structural relationship coefficient values 

Factor / Expression Standardized Loads 𝒕-values R2 

Factor a1    

a2 0.23 𝟏. 𝟔𝟏 

𝟎. 𝟗𝟑 
a3 0.59 3.20 

a4 0.32 4.28 

a5 −0.01 −𝟎. 𝟏𝟒 
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In Table 4, standardized loads and t-value are given regarding the structural relationship between the 

general satisfaction implicit variable and the implicit variables of guidance, solution, personnel and 

representation. According to the results, the path coefficients between the general satisfaction. 

 

Table 5. Frequency disturbution from response to the questions 

 

Implicit variable and the counselling and representation implicit variable were not found to be significant. 

Only the structural relationship between the general satisfaction implicit variable and the solution and 

personnel implicit variable was found to be significant. Bayesian solution has been implemented with 

WinBUGS package program. Before starting the Bayesian solution, frequency tables for 16 questions were 

prepared. The main purpose of extracting the frequency tables is to determine the percentage rates for each 

question of the 5-point Likert scale used in the questionnaire form and the threshold values required for analysis 

based on these rates. The frequency distribution of each question is given in the table below. The threshold 

values were started to be calculated by obtaining the percentages of the scale categories from the frequency 

table for each question. Threshold value calculation is made as one minus of the number of categories used in 

Likert scale. Threshold values in Table 6 were obtained from the reverse of the normal cumulative distribution 

by using the relevant frequency tables. 

 

 

 
Likert Scale  

𝟏 𝟐 𝟑 𝟒 𝟓 Sum 

H1 2 67 119 294 134 616 

H2 36 210 139 184 47 616 

H3 16 127 177 168 128 616 

H4 28 115 121 161 191 616 

H5 27 97 197 130 165 616 

H6 13 89 129 195 190 616 

H7 45 106 184 183 98 616 

H8 9 143 86 292 86 616 

H9 30 159 157 217 53 616 

H10 8 44 182 332 50 616 

H11 8 51 220 249 88 616 

H12 4 44 259 255 54 616 

H13 3 42 206 190 175 616 

H14 29 49 205 292 41 616 

H15 4 57 122 361 72 616 

H16 5 16 114 264 217 616 
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Table 6. Distribution percentage of response to the questions 

The expressions to be used in the analysis in WinBUGS are given in the table below for both measurement 

models and structural equation model. 

Structure of model in WinBUGS 

Table 7. Symbolic representation of implicit and measurable variables 

Factor Questions Node Implicit Variable Node 

a1 H1 1 a1 a2 gam[1] 

a1 H2 lam[1] a1 a3 gam[2] 

a2 H3 1 a1 a4 gam[3] 

a2 H4 lam[2] a1 a5 gam[4] 

a2 H5 lam[3] 

a2 H6 lam[4] 

a3 H7 1 

a3 H8 lam[5] 

a3 H9 lam[6] 

a3 H10 lam[7] 

a3 H11 lam[8] 

a4 H12 1 

a4 H13 lam[9] 

a4 H14 lam[10] 

a5 H15 1 

a5 H16 lam[11] 

 
Likert Scale 

𝟏 𝟐 𝟑 𝟒 𝟓 

H1 0.003247 0.108766 0.193182 0.477273 0.217532 

H2 0.058442 0.340909 0.225649 0.298701 0.076299 

H3 0.025974 0.206169 0.287338 0.272727 0.207792 

H4 0.045455 0.186688 0.196429 0.261364 0.310065 

H5 0.043831 0.157468 0.319805 0.211039 0.267857 

H6 0.021104 0.144481 0.209416 0.316558 0.308442 

H7 0.073052 0.172078 0.298701 0.297078 0.159091 

H8 0.01461 0.232143 0.13961 0.474026 0.13961 

H9 0.048701 0.258117 0.25487 0.352273 0.086039 

H10 0.012987 0.071429 0.295455 0.538961 0.081169 

H11 0.012987 0.082792 0.357143 0.404221 0.142857 

H12 0.006494 0.071429 0.420455 0.413961 0.087662 

H13 0.00487 0.068182 0.334416 0.308442 0.284091 

H14 0.047078 0.079545 0.332792 0.474026 0.066558 

H15 0.006494 0.092532 0.198052 0.586039 0.116883 

H16 0.008117 0.025974 0.185065 0.428571 0.352273 
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Measurement of The Equality 

for(j in 1:P){ 

 

y[i,j]~dnorm(mu[i,j],psi[j])I(thd[j,z[i,j]],thd[j,z[i,j]+1]) 

  ephat[i,j]<-y[i,j]-mu[i,j] 

 } 

 mu[i,1]<-eta[i] 

 mu[i,2]<-lam[1]*eta[i] 

 mu[i,3]<-xi[i,1] 

 mu[i,4]<-lam[2]*xi[i,1] 

 mu[i,5]<-lam[3]*xi[i,1] 

 mu[i,6]<-lam[4]*xi[i,1] 

 mu[i,7]<-xi[i,2] 

 mu[i,8]<-lam[5]*xi[i,2] 

             mu[i,9]<-lam[6]*xi[i,2] 

 mu[i,10]<-lam[7]*xi[i,2] 

 mu[i,11]<-lam[8]*xi[i,2] 

 mu[i,12]<-xi[i,3] 

 mu[i,13]<-lam[9]*xi[i,3] 

 mu[i,14]<-lam[10]*xi[i,3] 

     mu[i,15]<-xi[i,4] 

 mu[i,16]<-lam[11]*xi[i,4] 

 

Structural Equation 

xi[i,1:4]~dmnorm(u[1:4],phi[1:4,1:4]) 

  eta[i]~dnorm(nu[i],psd) 

  nu[i]<-gam[1]*xi[i,1]+gam[2]*xi[i,2]+gam[3]*xi[i,3]+gam[4]*xi[i,4] 

  dthat[i]<-eta[i]-nu[i] 

Threshold Values 

thd=structure( 

       .Data=c(-200.000.-2.722,-1.216,-0.510. 

0.781,200.000. 

-200.000.-1.568,-0.255, 0.319, 1.430.200.000. 

-200.000.-1.944,-0.732, 0.049, 0.814,200.000. 

-200.000.-1.691,-0.732,-0.180. 0.496,200.000. 

-200.000.-1.708,-0.837, 0.053, 0.619,200.000. 

-200.000.-2.031,-0.972,-0.319, 0.500.200.000. 

-200.000.-1.453,-0.690. 0.110. 0.998,200.000. 

-200.000.-2.180.-0.685,-0.289, 1.082,200.000. 

-200.000.-1.658,-0.505, 0.155, 1.366,200.000. 

-200.000.-2.227,-1.376,-0.306, 1.397,200.000. 

-200.000.-2.227,-1.306,-0.118, 1.068,200.000. 

-200.000.-2.484,-1.419, -0.004, 1.355,200.000. 

-200.000.-2.585,-1.453,-0.234, 0.571,200.000. 

-200.000.-1.674,-1.142,-0.102, 1.502,200.000. 

-200.000.-2.484,-1.287,-0.533, 1.191,200.000. 

-200.000.-2.404,-1.824,-0.775, 0.379,200.000), 

       .Dim=c(16,6)), 

Primarily, the point at which convergence was achieved was determined and this point was used as the 

burning period. Two methods were used to check whether convergence was achieved. The first of these is to 

examine the trace graphs for the related parameters. The trace graphs of the path coefficients for each 

measurement equations are given below. When the trace charts are examined, it is seen that the predicted 

values in the parameters gradually become stagnant and not take extreme values. 
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Fig. 6. Trace graphics related to measurement model parameters 

 

When the trace graphs of the measurement model parameters in Figure 6 are examined, it is seen that there 

is no extreme value. After 11000 samples, it can be seen from the trace graphs that convergence is achieved.  

 

 

Fig. 7. Trace graphics related to measurement model parameters 
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Fig. 8. Trace graphics related to structural model parameters 
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When the trace graphs of the structural equation model parameters in Figure 8 are examined, it is seen that 

there is no extreme value as in the measurement model parameters. After 11000 samples, it can be seen from 

the trace graphs that convergence is achieved. The interpretation of trace charts alone does not provide us with 

precise information on whether convergence is achieved. Secondly, the Thumb rule, which is a stronger 

method, is used to determine whether convergence is achieved. As a rule, MC errors for each parameter must 

be less than 5% of the standard deviation values. In the table below, it can be checked whether there is 

convergence for both the measurement and structural equation parameters. 

Table 8. Convergence results of measurement model and structural equation model parameters 

Node Mean 
Standard 

Deviation 
Sd. (𝟓%) MC error 𝟐. 𝟓𝟎% Median 𝟗𝟕. 𝟓𝟎% 

gam[1] 0.3074 0.08184 0.004092 0.00328 0.1571 0.304 0.4626 

gam[2] 0.5539 0.1152 0.00576 0.00549 0.348 0.5526 0.7694 

gam[3] 0.1405 0.09059 0.00453 0.003564 −0.04055 0.1425 0.312 

gam[4] 0.2714 0.08856 0.004428 0.003877 0.1012 0.2702 0.4458 

lam[1] 0.9102 0.0487 0.002435 0.001313 0.8182 0.9095 1.005 

lam[2] 0.8605 0.06729 0.003365 0.001976 0.7517 0.8582 0.9763 

lam[3] 0.7595 0.06857 0.003429 0.002095 0.6467 0.757 0.8805 

lam[4] 1.075 0.06825 0.003413 0.002101 0.9633 1.073 1.193 

lam[5] 1.167 0.07395 0.003698 0.003261 1.045 1.166 1.296 

lam[6] 1.154 0.07424 0.003712 0.003361 1.034 1.152 1.284 

lam[7] 0.9194 0.07099 0.00355 0.00276 0.8021 0.9167 1.045 

lam[8] 0.6654 0.06959 0.00348 0.002214 0.5485 0.6637 0.7891 

lam[9] 0.8138 0.08949 0.004475 0.002305 0.65 0.811 0.9912 

lam[10] 1.381 0.09121 0.004561 0.003211 1.217 1.378 1.565 

lam[11] 0.8534 0.09682 0.004841 0.003385 0.6805 0.8497 1.04 

As can be seen in Table 8, MC error values of all parameters related to measurement models and structural 

equation models are less than 5% of the standard deviation values. Buddha reveals the point at which 

convergence is achieved in the Bayesian solution more clearly than the trace graphs. The main purpose in 

finding the point at which convergence is achieved is to determine the burning period and to ensure that the 

estimates up to this period are not taken into account. After the burning period, 15000 updates were made, 

and parameter estimations were made for the model. The historical graphics for each parameter are represented 

in Figure 9.  
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Fig. 9. History plots for parameters 

Past graphs of the path coefficients related to both measurement models and structural equation model are 

given. From these graphs, it can be seen that there are no excessive fluctuations, and that each parameter 

converges. The Bayesian structural equation results obtained over 26000 samples, 11000 of which were taken 

using the burning period, are given in the table below. 

Table 9. Bayesian prediction results 

Node Mean 
Standard 

Deviation 
Sd. (𝟓%) MC error 𝟐. 𝟓𝟎% Median 𝟗𝟕. 𝟓𝟎% 

gam[1] 0.3132 0.07689 0.003845 0.003078 0.1659 0.3129 0.4667 

gam[2] 0.5436 0.1055 0.005275 0.004844 0.3391 0.5432 0.7545 

gam[3] 𝟎. 𝟏𝟒𝟎𝟏 𝟎. 𝟎𝟖𝟗𝟕𝟓 𝟎. 𝟎𝟎𝟒𝟒𝟖𝟖 𝟎. 𝟎𝟎𝟑𝟒𝟏𝟗 −𝟎. 𝟎𝟑𝟏𝟓𝟒 𝟎. 𝟏𝟑𝟗𝟖 𝟎. 𝟑𝟏𝟕𝟏 

gam[4] 0.2749 0.08222 0.004111 0.003308 0.1139 0.2741 0.4383 

lam[1] 0.9111 0.04736 0.002368 0.001148 0.8211 0.9095 1.007 

lam[2] 0.8605 0.05756 0.002878 0.001349 0.751 0.8595 0.9768 

lam[3] 0.7586 0.05795 0.002898 0.001222 0.6478 0.7578 0.8758 

lam[4] 1.073 0.05736 0.002868 0.001587 0.9642 1.071 1.188 

lam[5] 1.166 0.0619 0.003095 0.002353 1.047 1.165 1.289 

lam[6] 1.151 0.0609 0.003045 0.002406 1.036 1.15 1.275 

lam[7] 0.9171 0.0623 0.003115 0.00192 0.7966 0.9156 1.042 

lam[8] 0.6643 0.06102 0.003051 0.001395 0.5479 0.6627 0.7858 

lam[9] 0.8176 0.0875 0.004375 0.002139 0.6521 0.815 0.9956 

lam[10] 1.382 0.08879 0.00444 0.00332 1.216 1.381 1.563 

lam[11] 0.8461 0.08819 0.00441 0.00268 0.6808 0.8449 1.023 
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Bayesian parameter estimation results are given in Table 9. Only the gamut [3] structural equation 

parameter is meaningless. Additionally, parameter estimates of classical and Bayesian measurement models 

were represented in the Table 10 and 11. 

Table 10. Parameter estimates of classical and Bayesian measurement models 

Factor/ Expression LISREL BAYES 

Factor a1   

H1 0.75 1 

H2 0.79 0.9111 

Factor a2   

H3 0.77 1 

H4 0.71 0.8605 

H5 0.44 0.7586 

H6 0.83 1.073 

Factor a3   

H7 0.63 1 

H8 0.63 1.166 

H9 0.83 1.151 

H10 1.02 0.9171 

H11 0.16 0.6643 

Factor a4   

H12 0.55 1 

H13 0.35 0.8176 

H14 0.59 1.382 

Factor a5   

H15 0.61 1 

H16 0.51 0.8461 

Table 11. Classical and Bayesian structural model parameter estimates 

Factor/ Expression LISREL BAYES 

Factor a1   

a2 𝟎. 𝟐𝟑 0.31 

a3 0.59 0.54 

a4 0.32 𝟎. 𝟏𝟒 

a5 −𝟎. 𝟎𝟏 0.27 

With LISREL, it was seen that the implicit variables of counselling and representation did not have an 

effect on general satisfaction in the classical solution, only the solution and staff implicit variables were 

effective. In the Bayesian approach, contrary to the classical analysis, it was found that the counselling implicit 

variable and the representation implicit variable were significant, while the staff implicit variable was not 

significant. 
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4. Conclusion 

In this study, classical structural equation models and Bayesian structural equation models are emphasized. 

Both approaches were applied to the survey data obtained from Samsun Chamber of Commerce and Industry. 

The data consists of 16 observed variables measuring 5 latent variables and 616 observations. Structural 

relationship and measurement models designed in classical analysis were created. First, the model fit indices 

were examined, and the analysis process was started. When the measurement models created in LISREL and 

the structural relationship were examined, it was seen that the model fit was not good and correction indices 

were needed. Correction indices were discussed in two parts. The correction indices in the first part show the 

relationships between observed variables and latent variables. The correction indices in this section show the 

decrease in the chi-square value calculated to evaluate model fit as a result of associating the observed variables 

under one latent variable with another latent variable. The correction indices in the second part are based on 

the independence of the errors for the observed variables. Since the model fit was not achieved in the initial 

solution, the analysis was performed using correction indices. In the initial solution, both the RMSEA value 

was higher than 0.08 and the division of the chi-square to the degrees of freedom was over 3. These values 

made it necessary to use correction indices in classical analysis. After the recommended corrections were made 

in the measurement model, it was determined that the model fit well according to all the criteria used in the 

assessment of goodness of fit. When the obtained fit indices were examined, the RMSEA value was found to 

be 0.024 and the division of the chi-square to the degrees of freedom was found to be 1.35. After examining 

the model fit indices, parameter estimation was started. Otherwise, it would not be reasonable to examine the 

parameter estimates unless the model fit is achieved. The significance of the parameter estimates related to the 

measurement models and the structural model was examined using t-values. Path coefficient with a 𝑡-value 

below 1.96 was considered to be insignificant. One of the most important advantages of the path diagram in 

classical analysis is that the meaningless relations are shown in shape and in different colours. This advantage 

allows for interpretation and viewing all relationships in a single photo. It was determined that the structural 

relationship between the counselling and representation implicit variables symbolized by a2 and a5 of the 

general satisfaction implicit variable was insignificant. While there was no significant relationship between 

the two latent variables and the general satisfaction implicit variable, a significant relationship was found 

between the other two latent variables (solution and staff). With this structural relationship obtained, 93% of 

the general satisfaction implicit variable is explained. 

In the Bayesian structural equation model solution, model structures were defined in two stages: 

measurement models and structural model. By creating the frequency tables for the questions prepared using 

a 5-point Likert, (4) threshold values equal to one less than the number of Likert categories were calculated. 

The inverse of the cumulative normal distribution was used in calculating the threshold values. With the 

calculation of the threshold values, the model was started to be analysed. The most important step of the 

analysis phase is convergence. Unless convergence was achieved, model parameters were not estimated. It 

was seen that all parameters related to the model converged in 11000 iterations. Convergence has been 

examined in two stages. In the first stage, the trace graphs of each parameter were examined, and a stationary 

structure was observed. The interpretation of trace charts alone is not sufficient as a precise information. In the 

second stage, according to the Thumb rule; The condition that MC error values for each parameter should be 

less than 5% of the standard deviation value of the same parameter was examined. All parameters were found 

to meet this requirement and 11000 was used as the burning period. The purpose of using 11000 as the 

burning period is to ignore the parameter values in these iterations where convergence is not achieved. After 

the burning period, the parameters related to the model were obtained at the end of 15000 iterations. When 

the structural relationship between general satisfaction and the other 4 latent variables was examined, it was 

seen that the personnel implicit variable represented by a4 was meaningless, unlike the classical analysis. 

Guidance, solution, personnel and representation factors affecting general satisfaction were examined in 

the data obtained from Samsun Chamber of Commerce and Industry, and it was revealed that classical and 
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Bayesian approaches give different results in terms of parameter estimates. While only the solution and 

personnel implicit variables were significant in the classical approach, the implicit variables of guidance, 

solution and representation were found to be significant in the Bayesian approach. This study was applied to 

the standard Samsun Chamber of Commerce and Industry questionnaire, whose data were prepared previously. 

The results can be obtained differently by redesigning and obtaining the questionnaire forms. Model 

comparisons were not emphasized in this thesis. In the classical approach, Akaike information criterion was 

calculated, and AIC, BIC and DIC calculations in Bayesian approach will be our future studies. 

Although there are many a priori selection methods in the Bayesian approach, a priori selection in this study 

is limited to only conjugate a priori. Theoretical information is given about the use of other a priori such as 

Jeffrey’s a priori. Therefore, a priori comparison and comparison of the adaptation criteria in the Bayesian 

approach has prepared a theoretical background for the studies to be carried out in the following years. In this 

study, the scale type is taken as a fixed 5-point Likert. There are no studies on the use of Bayesian structural 

equation when the types of scales are different. Studies in this field will provide new gains to the literature. 
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Abstract – In the context of generalized linear modeling (GLM), the beta regression 

analysis is used to estimate regression models when the dependent variable lies 

between (0,1). In this paper, we carried out a model selection process using several 

information criteria with heuristic optimization. We employed the differential 

evolution algorithm as a heuristic optimization method to select the best model for 

beta regression analysis. The results show that the alternative-type information 

criteria provide competitive results during the model selection process in beta 

regression analysis. 

Keywords – Beta regression, differential evolution algorithm, information criteria, model selection 

1. Introduction 

In the regression analysis, the models are estimated according to the distribution of the dependent variable. 

Therefore, the distribution of the dependent variable should be appropriate, and the alternative choices can be 

used in the violation of normality. The generalized linear modelling (GLM) approach is employed to construct 

the regression models for several distribution-types such as Poisson, Gamma, Binomial, etc. Also, the selection 

of the optimal model including the best explanatory variable is very crucial. There are lots of attempts in the 

literature for the model selection in regression modeling. Sakate et al. [1] proposed a stepwise selection 

approach for Poisson regression analysis. Calcagno and Mazancourt [2] developed a software package to apply 

model selection for GLM. Örkcü [3] used and hybrid simulated annealing approach in regression analysis for 

model selection. Unler ve Murat [4] proposed a model selection approach based on the particle swarm 

optimization for binary dependent variables. The researchers also utilized the information criteria during the 

model selection [5-9]. 

Overall, we can see that the model selection process in GLM can be handled with three components:  

1) GLM with an appropriate distribution,  

2) The information criteria,  

3) An appropriate optimization technique. 
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When the dependent variable is ranging between (0,1) beta regression analysis can be used instead of the 

normal linear regression analysis [10]. By inspiring the current model approaches, we performed model 

selection in beta regression analysis using several information criteria. 

To the best of our knowledge, this study is the first attempt to apply model selection under the alternative 

Bayesian and Information Complexity (ICOMP) type criteria for beta regression analysis. Also, we adopted 

the binary type of differential evolution algorithm to choose the optimal subset of the explanatory variables 

[11]. 

The article is organized as follows: In Section 2, we introduced the beta regression analysis and parameter 

estimates. In Section 3 we described the working mechanism of the binary differential evolution algorithm. In 

Section 4, we presented the information criteria which are used in the article. In Section 5, we introduced the 

numerical examples including the simulation studies and real data set applications. Finally, we presented the 

conclusion and discussion part in Section 6. 

2. Beta regression analysis 

In the regression analysis, beta regression analysis is used when the dependent variable includes ratio or 

percentage values in the interval (0,1). The main reason for using beta regression analysis is that the ratio or 

percentage values of the data in the interval (0,1) are suitable for the beta distribution due to the nature of the 

data [12]. The probability function of the beta distribution is expressed as follows: 

𝑓 (𝑦|𝜇, 𝜙) =
𝛤(𝜙)

𝛤(𝜇𝜙)𝛤((1 − 𝜇)𝜙)
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1, 0 < 𝑦 < 1 (1) 

where μ shows the location parameter and 𝜙 shows the dispersion parameter. The parameter of μ is between 

(0,1) and 𝜙 > 0. The expected value of the variable in beta distribution is 𝐸(𝑦) = 𝜇 and the variance is 

𝑉𝑎𝑟(𝑦) = 𝜇 (1 −  𝜇)/(1 + 𝜙) [13]. 

Based on the probability distribution, the log-likelihood function for the beta regression is written as: 

𝐿(𝜇, 𝜙) = log𝛤(𝜙) − log𝛤(𝜇𝜙) − log𝛤((1 − 𝜇)𝜙) + (𝜇𝜙 − 1) log𝑦 +((1 − 𝜇)𝜙 − 1)log(1 −  𝑦) (2) 

By following the GLM approach, the beta regression can be written as the following form: 

𝑔(𝜇) = 𝛽0 + ∑ 𝛽𝑖𝑘

𝑝

𝑘=1

𝑋𝑖𝑘 , 𝑖 = 1,2, … , 𝑛 (3) 

where 𝑔(. ) denotes the link function and 𝛽 =  (𝛽1, 𝛽2, . . . , 𝛽𝑝) vector represents the regression coefficients, 

and they are estimated with the numerical methods such as Newton-Rapson or Fisher scoring on the log-

likelihood function. The detailed information can be found in [13].  

Table 1. The link functions for beta regression 

Link function Formula 

Logit log(μ (1 −  μ))  

Log-log -log(-log( μ)) 

Complementary log-log log(-log((1 −  μ))) 

Probit Φ−ı(μ) 

Cauchy tan(π(μ-0.5)) 

Log log(μ)  
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The beta regression model can be estimated with various link functions. Table 1 shows the possible link 

functions that can be used within beta regression framework. In Table 1, log(. ) shows the natural logarithm, 

𝛷(. ) denotes the cumulative link function of the standard normal distribution and tan(. ) indicates the 

trigonometric tangent function [10,14].  

3. Differential evolution algorithm for binary search 

Heuristic techniques are very common to optimize a target function. Heuristic methods are implemented 

effectively inside the statistical modeling. Especially, the model selection is carried out with a proper heuristic 

optimization technique for determining the best variable subset. To carry out the model selection, each variable 

is coded as binary and the optimal set is chosen such as optimizing a target function. 

The mentioned approach is employed in regression modeling and we can perform the model selection in beta 

regression analysis. Differential evolution is a very effective optimization method [15] and we used this 

method as a binary version. In our approach, the target functions are the information criteria that evaluates the 

several beta regressions models.  

Differential evolution algorithm consists of four main steps: 

1) Generating the initial population 

2) Mutation 

3) Crossover  

4) Selection 

As it occurs in the similar algorithms, the initial population is generated at the starting point [11]. The initial 

population is generated as the following way:  

𝑥𝑖
𝐺 =  𝑥𝑖 (𝐿) +  𝑟𝑎𝑛𝑑𝑖 [0,1] (𝑥𝑖 (𝐻) − 𝑥𝑖 (𝐿)) (4) 

where 𝑥 = (𝑥1, 𝑥2 … 𝑥𝑝) is the vector of the parameters, 𝑥𝑖 (𝐻) and 𝑥𝑖 (𝐿) are the bounds and 𝑟𝑎𝑛𝑑 is the 

generated parameters as uniformly distributed. Since we employ a binary search, the bounds are limited 

between [0,1] and the parameters are rounded. Figure 1 represents the coding scheme for model selection.  

 
Fig. 1: The coding of the explanatory variables 

The mutation process is applied to make the search process more robust and durable. This process also allows 

new regions in the search space to be discovered. For this purpose, vectors called trial parameters are created. 

Trial parameters are formed by adding the weighted difference between two units onto a third unit [11]. The 

parameters re-derived in this way are evaluated within the objective function (i.e. information criteria) 

according to the values of the previous units. If the value of the objective function consisting of the re-derived 

vectors is better than the previous value, it is replaced with the more appropriate parameter vectors. This 

process for each size proceeds as follows: 

𝑣𝐺+1 =  𝑥𝑟3
𝐺  +  F (𝑥𝑟1

𝐺 − 𝑥𝑟2
𝐺) (5) 

where F ∈ [0,1] is a scaling factor for 𝑟1 ≠ 𝑟2 ≠ 𝑟3.  

After the mutation stage, a crossover process is applied over the parameter vectors. Crossing is used to 

strengthen the success level of the parameter vectors obtained in the mutation stage and to define new vectors 
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by acting from existing vectors. In the crossover stage, a crossover constant defined as 𝐶𝑅 ∈ [0,1] is processed 

as follows: 

𝑥𝐺+1 = {
   𝑢𝐺+1,     𝑓(𝑢𝐺+1) ≤ 𝑓(𝑥𝐺)

   𝑥𝐺 ,          𝑓(𝑢𝐺+1) > 𝑓(𝑥𝐺)
 (6) 

where f(.) denotes the target function. This process is iteratively employed until reaching the optimum. 

4. Information criteria and model selection 

Information criterion is a measure that shows the performance of a statistical model. Mainly, information 

criteria attempt to penalize the bias and they are widely used within the scope of regression models, especially 

when choosing the most appropriate model.  

The general structure of an information criterion is defined as follows: 

Information criterion = − 2 𝐿𝐿 + Penalty (7) 

where LL is the log-likelihood of the model. 

The penalty of the criterion has a huge impact on the selected models in regression analysis. The formulations 

of the most common criteria such as AIC and BIC are given as follows: 

𝐴𝐼𝐶(𝑘) = −2𝐿𝐿 + 2𝑘 (8) 

𝐵𝐼𝐶(𝑘) = −2𝐿𝐿 + 𝑘log(𝑛) (9) 

where 𝑘 shows the number of free parameters and 𝑛 shows the sample size. In regression models, 𝑘 represents 

the number of explanatory variables.  

Moreover, the different terms can be added as the penalty inside the information criteria. For example, ICOMP-

type criteria include the covariance matrix of the statistical models with a complexity function [16,17]. There 

are also different criteria called as the information matrix-based information criterion (IBIC) and scaled unit 

information prior Bayesian information criterion (SPBIC) [18]. 

Table 2. Penalty terms of the seven information criteria 

Information criteria Penalty 

ICOMPifim 2C(𝐹−1)  

ICOMPpeu k+2C(𝐹−1) 

ICOMPpeuln k+log(n)C(𝐹−1) 

ICOMPperf n+2C(𝐹−1) 

CICOMP k(1+log(n)) + 2C(𝐹−1) 

IBIC klog(n/2𝜋) + log |(𝛴̂𝑚𝑜𝑑𝑒𝑙)
−1

 |  

SPBIC p (1 - log(k/ (𝛽𝑇(𝛴̂𝑚𝑜𝑑𝑒𝑙)
−1

 β)) )  

Table 2 demonstrates the penalty terms of five ICOMP-type and two Bayesian-type information criteria. In 

ICOMP-type criteria, 𝐶(. ) denotes the complexity function and 𝐹 is the Fisher information matrix of the 

statistical model. We considered the 𝐶1𝐹 complexity, shown as: 

𝐶1𝐹(. ) =  
1

4λ𝑚
2 ∑(λ𝑖 − λ𝑚)2

p

i=1

 (10) 

where λ𝑚 is the arithmetic mean of the eigenvalues which obtained from the inverse of Fisher information 

matrix [19]. In our study, we consider the Fisher information matrix of the beta regression model. In IBIC and 

SPBIC, 𝛴̂𝑚𝑜𝑑𝑒𝑙 is the variance-covariance matrix of the beta regression models. 
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5. Numerical examples 

In this part we performed a simulation study and real data applications on model selection for beta regression 

analysis. Mainly, we assessed the performance of the seven criteria in terms of the model selection capability. 

We formulated the simulation settings from the following equation [20]: 

log (
𝜇

1 − 𝜇
) = 𝛽𝑜 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 (11) 

The expected value, 𝜇 is generated by considering the logit link function. After generating the expected values, 

we simulated the response variable from the beta distribution with a fixed dispersion parameter 𝜙. 

In simulation part, we obtained the ratio of correct selected variables (C) and incorrectly selected variables (I) 

for each correct and incorrect variable set. The number of runs is 100 for the simulation settings. 

In real data analysis part, we evaluated the prediction errors and the number of the significant-insignificant 

variables. All the implementations were performed betareg and DEoptim packages, existing in R software [21, 

22]. 

 

5.1 Simulation study-1 

The simulation part includes a design which has the multicollinearity among the predictors. The explanatory 

variables are generated as the following way: 

𝑥1 = 10 + 𝜀1 (12) 

𝑥2  = 10 + 0.3𝜀1 + α𝜀2 (13) 

𝑥3  = 10 + 0.3𝜀1 + 0.5604α𝜀2 + 0.8282α𝜀3 (14) 

𝑥4  = −8 + 𝑥1 + 0.5𝑥2  + 0.3𝑥3   + 0.5𝜀4 (15) 

𝑥5  = −5 + 0.5𝑥1  + 𝑥2   + 0.5𝜀5  (16) 

where ε1, ε2, ε3, ε4, ε5 ~ 𝑁(0,1). We fixed 𝛼 = 0.3 for this setting and it causes the multicollinearity [23]. 

The true model includes x1, x2,x3 and the generation process is conducted as follows: 

𝐿 = 5 + 1.75𝑥1 + 1.25𝑥2 + 0.5𝑥3 + 𝑒 (17)         

𝑀 = 1/(1 + 𝑒𝑥𝑝(−𝐿)) (18) 

𝑌 ~ 𝐵𝑒𝑡𝑎(𝑀𝜙, (1 − 𝑀)𝜙) (19) 

As it is seen from above, the correct model includes {𝑥1, 𝑥2, 𝑥3}. We considered 𝜙 = 5, 50 with an error term 

𝑒~𝑁(0,1) and added five irrelevant variables as 𝑑 𝑥 𝑅𝑑 ~ U (0,1) d=1,2,3,4,5. The sample size was chosen as 

𝑛 = 50, 100, 300, 500. 

Table 3. The ratio of the correctly selected variables beta regression models for 𝜙 = 5 

Criteria Sample size Average 
𝑛 = 50 𝑛 = 100 𝑛 = 300 𝑛 = 500 

AIC 77.333 90.667 99.333 100.000 91.833 

BIC 67.333 83.333 98.000 98.639 86.827 

IBIC 60.000 74.000 90.667 96.599 80.316 

SPBIC 68.667 86.667 98.667 99.320 88.330 

CICOMP 50.000 66.000 88.667 96.599 75.316 

ICOMPifim 68.667 86.667 99.333 100.000 88.667 

ICOMPpeu 68.667 86.667 99.333 100.000 88.667 

ICOMPpeuln 68.667 86.667 99.333 100.000 88.667 

ICOMPperf 68.667 86.667 99.333 100.000 88.667 
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Table 4. The ratio of the incorrectly selected variables beta regression models for 𝜙 = 5 

Criteria Sample size Average 
𝑛 = 50 𝑛 = 100 𝑛 = 300 𝑛 = 500 

AIC 19.200 13.200 16.800 14.286 15.871 

BIC 3.600 2.800 2.000 0.816 2.304 

IBIC 0.400 0.000 0.000 0.000 0.100 

SPBIC 8.800 5.600 4.000 3.265 5.416 

CICOMP 1.200 0.000 0.000 0.000 0.300 

ICOMPifim 8.400 5.600 4.400 4.898 5.824 

ICOMPpeu 8.400 5.600 4.400 4.898 5.824 

ICOMPpeuln 8.400 5.600 4.400 4.898 5.824 

ICOMPperf 8.400 5.600 4.400 4.898 5.824 

 

  

Table 5. The ratio of the correctly selected variables beta regression models for 𝜙 = 50 

Criteria Sample size Average 
𝑛 = 50 𝑛 = 100 𝑛 = 300 𝑛 = 500 

AIC 99.333 100.000 100.000 100.000 99.833 

BIC 99.333 100.000 100.000 100.000 99.833 

IBIC 95.333 100.000 100.000 100.000 98.833 

SPBIC 98.667 100.000 100.000 100.000 99.667 

CICOMP 94.000 100.000 100.000 100.000 98.500 

ICOMPifim 97.333 100.000 100.000 100.000 99.333 

ICOMPpeu 97.333 100.000 100.000 100.000 99.333 

ICOMPpeuln 97.333 100.000 100.000 100.000 99.333 

ICOMPperf 97.333 100.000 100.000 100.000 99.333 

  

Table 6. The ratio of the incorrectly selected variables beta regression models for 𝜙 = 50 

Criteria Sample size Average 
𝑛 = 50 𝑛 = 100 𝑛 = 300 𝑛 = 500 

AIC 18.400 19.600 16.800 12.400 16.800 

BIC 7.200 5.200 3.200 1.200 4.200 

IBIC 0.000 0.000 0.000 0.000 0.000 

SPBIC 4.000 4.000 2.000 0.800 2.700 

CICOMP 0.000 0.000 0.000 0.000 0.000 

ICOMPifim 1.600 3.200 2.400 1.200 2.100 

ICOMPpeu 1.600 3.200 2.400 1.200 2.100 

ICOMPpeuln 1.600 3.200 2.400 1.200 2.100 

ICOMPperf 1.600 3.200 2.400 1.200 2.100 

The simulation results are shown in Table 3-6. When checking the results, we see that AIC was able to select 

the correct variables in beta regression models. However, covariance-based information criteria give 

competitive results while determining the true models. ICOMP-type and BIC-type alternative criteria become 

superior to the classical ones while excluding the incorrect variables. The ratio of the incorrectly selected 

variables is lower than AIC and BIC. As the sample size increases, the model selection capability of ICOMP-

type and BIC-type criteria become much obvious. 
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5.2 Real data analysis 

In this part, we conducted real data analysis applications on two data sets. We considered two real benchmark 

data sets, Bodyfat and Vitamin. Bodyfat [24] consists 𝑝 = 17 and Vitamin [25] consists 𝑝 = 11 explanatory 

variables. In each data sets the range of the response variable is (0,1).  

 

Table 7. Kolmogorov-Smirnov test for the beta distribution of the response variables 

Data set 𝑀𝜙 𝑀(1 − 𝜙) Statistic 𝑝 

Bodyfat 4.783 20.372 0.061 0.302 

Vitamin 8.341 4.310 0.136 0.127 

Table 7 shows the goodness of fit tests testing the fitness of the beta distribution for the response variables. 

The test results reveal that the response variables follow the beta distribution. 

To test the predictive performance of the criteria in beta regression models, we used the standardized absolute 

errors [26] as follows: 

𝑆𝐴𝐸 = ∑
𝜀𝑖 − 𝐸(𝜀)

𝜎𝜀

𝑛

𝑖=1

 
(20) 

where 𝜀 = 𝑌 − 𝑌̂ is the prediction error and 𝐸(𝜀), 𝜎𝜀 show the standart deviation of the expected values of 

the errors, respectively. 

Table 8. The performance results for Bodyfat data set 

 
Table 9. The performance results for Vitamin data set 

Table 9 shows the real data analysis performance results of the information criteria for the selected beta 

regression models. The number of selected significant and insignificant variables are represented as Significant 

(V) and Insignificant (V), respectively. 

The models selected by AIC are not satisfactory because of including insignificant variables and relatively 

higher errors. AIC seems to cause overfitting in the selected beta regression models. Most of the ICOMP-type 

criteria give promising results with low errors and a high number of significant variables. BIC-type alternative 

criteria also excluded the irrelevant variables, and the predictive errors are competitive. Although alternative 

ICOMP-type and BIC-type chose the different beta regression models, they tend to select only the significant 

variables and provide satisfactory prediction results. 

6. Conclusion and Discussion 

Model selection is one of the most important fields in regression analysis. The information criteria are much 

useful to carry out the model selection process. Within the scope of many regression models included in GLM, 

model selection results differ depending on the information criteria and selection mechanism. In this study, we 

Criteria Significant (V)  Insignificant (V)    SAE 

AIC 6 1 189.585 

IBIC, SPBIC, CICOMP 3 0 183.348 

BIC, ICOMPifim, ICOMPpeu, ICOMPpeuln, ICOMPperf 4 0 178.944 

Criteria Significant (V)  Insignificant (V)    SAE 

AIC 7 2 2.08E-02 

BIC, SPBIC 7 0 2.09E-02 

ICOMPifim, ICOMPpeu, ICOMPpeuln, ICOMPperf 6 0 2.22E-02 

IBIC, CICOMP 4 0 2.11E-02 
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focused on the model selection task beta regression analysis using several information criteria and a heuristic 

optimization approach. Firstly, we assessed the alternative information criteria on beta regression analysis for 

the model selection task.  

We implemented the numerical examples with the simulation and real data set analysis. The simulation studies 

demonstrate the alternative information criteria provide better results since they can exclude the wrong 

variables in the selected beta regression models. Also, they tend to select correct variables as the sample size 

increases. Especially, we should emphasize that the alternative criteria provide satisfactory results in the 

presence of multicollinearity. The alternative ICOMP-type and BIC-type criteria are not affected by the 

multicollinearity and exclude the irrelevant variables. The increment of the sample size demonstrates this fact 

more obviously. The real data set examples also provide the model selection skills of the alternative criteria in 

both estimation and prediction results.  

The different type of model selection strategies can be tried such as forward, backward and stepwise selection 

procedures for beta regression modeling. But it is well-known that the heuristic methods produce more efficient 

results. When using the information criteria inside the model selection process, the goal is to find the optimum 

value in the criteria so differential evolution algorithm is quite successful on the optimization process.  

The information criteria that we used in the article are favorable on the model selection for beta regression. 

The classical criteria, especially for high multicollinearity, tend to select redundant variables. Overall, we can 

conclude that when the variance-covariance matrix exists as a penalty in the information criteria, it can improve 

the model selection results in beta regression analysis. 
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Abstract − Clustering plays an important role in data mining, pattern recognition and machine 

learning. This paper proposes Pythagorean neutrosophic clustering methods based on similarity 

measures between Pythagorean neutrosophic sets with T and F are dependent neutrosophic components 

[PN-Set]. First, we define a generalized distance measure between PN-Sets and propose two distance-

based similarity measures of PN-Sets. Then, we present a clustering algorithm based on the similarity 

measures of PN-Sets to cluster Pythagorean neutrosophic data. Finally, an illustrative example is given 

to demonstrate the application and effectiveness of the developed clustering methods. 

Keywords − Pythagorean neutrosophic Sets with T and F are dependent neutrosophic components, clustering algorithm, distance 

measure, similarity measure. 

3. Introduction 

Fuzzy sets were firstly initiated by L.A. Zadeh [1] in 1965. Zadeh’s idea of fuzzy set evolved as a new tool to 

deal with uncertainties in real-life problems and discussed only membership function. After the extensions of 

fuzzy set theory Atanassov [2] generalized this concept and introduced a new set called intuitionistic fuzzy set 

(IFS) in 1986, which can describe the non-membership grade of an imprecise event along with its membership 

grade under a restriction that the sum of both membership and non-membership grades does not exceed 1. IFS 

has its greatest use in practical multiple attribute decision-making problems. In some practical problems, the 

sum of membership and non-membership degree to which an alternative satisfying attribute provided by 

decision-maker (DM) may be bigger than 1.  

Yager [3] was decided to introduce the new concept known as Pythagorean fuzzy sets. Pythagorean fuzzy sets 

have a limitation that their square sum is less than or equal to 1. IFS was failed to deal with indeterminate and 

inconsistent information which exist in beliefs system; therefore, Smarandache [4] in 1995 introduced a new 

concept known as neutrosophic set (NS) which generalizes fuzzy sets and intuitionistic fuzzy sets and so on. 

A neutrosophic set includes truth membership, falsity membership and indeterminacy membership. 

In 2006, Smarandache introduced, for the first time, the degree of dependence (and consequently the degree 

of independence) between the components of the fuzzy set, and also between the components of the 

neutrosophic set. In 2016, the refined neutrosophic set was generalized to the degree of dependence or 

independence of subcomponents [5]. In neutrosophic set [5], if truth membership and falsity membership are 
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100% dependent and indeterminacy is 100% independent, that is 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2.  

Sometimes in real life, we face many problems which cannot be handled by using neutrosophic for example 

when 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) > 2. So, Pythagorean neutrosophic set with T and F are dependent neutrosophic 

components [PN-SET] of the condition is as their square sum does not exceed 2. Here, T and F are dependent 

neutrosophic components, and we make 𝑢𝐴(𝑥), 𝑣𝐴(𝑥)𝑎𝑠 Pythagorean, then (𝑢𝐴(𝑥))
2
+ (𝑣𝐴(𝑥))

2
≤ 1 with 

𝑢𝐴(𝑥), 𝑣𝐴(𝑥) ∈ [0,1].  If 𝜁𝐴(𝑥) is independent of them, then 0 ≤ 𝜁𝐴(𝑥) ≤ 1. Then, 0 ≤ (𝑢𝐴(𝑥))
2
+

(𝜁𝐴(𝑥))
2
+ (𝑣𝐴(𝑥))

2
≤ 2,  with 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥) ∈ [0,1].      

Recently, Ye [6,7] presented the correlation coefficient of single-valued neutrosophic sets (SVNSsaa0 and the 

cross-entropy measure of SVNSs and applied them to single-valued neutrosophic decision-making problems. 

Then, Ye [8] proposed similarity measures between interval neutrosophic sets and their applications in 

multicriteria decision making. Xu [9] and Zhang [10] proposed a clustering algorithm. J. Ye [11] also 

introduced the clustering methods using Distance-based similarity measures of single-valued neutrosophic 

sets. 

This paper proposes a Pythagorean neutrosophic clustering algorithm to deal with data represented by 

Pythagorean neutrosophic set with dependent neutrosophic components between T and F [PN-Set, in short]. 

We define a generalized distance measure between PN-Sets and propose two distance-based similarity 

measures of PN-Sets. Then, we present a clustering algorithm based on the similarity measures of PN-Sets to 

cluster Pythagorean neutrosophic data and gives an illustrative example. 

4. Preliminaries 

Definition 2.1 [2] 

Let 𝐸 be a universe. An intuitionistic fuzzy set 𝐴 on 𝐸 can be defined as follows: 

𝐴 = {< 𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥) >: 𝑥 ∈ 𝐸}. 

where 𝑢𝐴: 𝐸 → [0,1] 𝑎𝑛𝑑 𝑣𝐴: 𝐸 → [0,1]  such that 0 ≤ 𝑢𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 1 for any 𝑥 ∈ 𝐸. 

Here, 𝑢𝐴(𝑥) and 𝑣𝐴(𝑥) is the degree of membership and degree of non-membership of the element x, 

respectively. 

Definition 2.2 [12,13] 

Let X be a nonempty set, and 𝐼 the unit interval [0,1]. A Pythagorean fuzzy set S is an object having the form 

𝐴 = {(𝑥, 𝑢𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋} where the functions 𝑢𝐴: 𝑋 → [0,1] and 𝑣 𝐴: 𝑋 → [0,1]  denote respectively the 

degree of membership and degree of non-membership of each element 𝑥 ∈ 𝑋 to the set P, and 0 ≤ (𝑢𝐴(𝑥))
2
+

(𝑣𝐴(𝑥))2 ≤ 1 for each 𝑥 ∈ 𝑋.  

Definition 2.3[4] 

Let 𝑋 be a nonempty set (universe). A neutrosophic set 𝐴 on 𝑋 is an object of the form: 

A= {(𝑥, 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)): 𝑥 ∈ 𝑋}. 
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Where 𝑢𝐴(𝑥), 𝜁𝐴(𝑥), 𝑣𝐴(𝑥)  ∈ [0,1], 0 ≤ 𝑢𝐴(𝑥) + 𝜁𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝑋. 𝑢𝐴(𝑥) is the degree of 

membership, 𝜁𝐴(𝑥) is the degree of indeterminacy and 𝑣𝐴(𝑥) is the degree of non-membership. Here 

𝑢𝐴(𝑥) 𝑎𝑛𝑑 𝑣𝐴(𝑥) are dependent components and 𝜁𝐴(𝑥) is an independent component. 

Definition 2.4 [4] 

Let X be a nonempty set, and 𝐼 the unit interval [0,1]. A neutrosophic set A and B of the form 

𝐴 = {(𝑥, 𝑢𝐴 (𝑥), 𝜁𝐴(𝑥), 𝑣𝐴 (𝑥)): 𝑥 ∈ 𝑋} and   B = {(𝑥, 𝑢𝐵 (𝑥), 𝜁𝐵(𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋} 

Then, 

𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 1 − 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋} or 𝐴𝐶 = {(𝑥, 𝑣𝐴(𝑥), 𝜁𝐴(𝑥), 𝑢𝐴(𝑥)): 𝑥 ∈ 𝑋} 

𝐴 ∪ 𝐵 = {(𝑥,max(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) ,min(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) ,min (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥))): 𝑥 ∈ 𝑋} 

𝐴 ∩ 𝐵 = {(𝑥,min(𝑢𝐴 (𝑥), 𝑢𝐵 (𝑥)) ,max(𝜁𝐴(𝑥), 𝜁𝐵(𝑥)) ,max (𝑣𝐴 (𝑥), 𝑣𝐵 (𝑥)): 𝑥 ∈ 𝑋} 

3. Distance-Based Similarity Measures between PN-Sets 

Definition 3.1 

Let X be a nonempty set (universe). A PN-Set M on X is an object of the form: 

𝑀 = {(𝑥, 𝑢𝑀(𝑥), 𝜁𝑀(𝑥), 𝑣𝑀(𝑥)): 𝑥 ∈ 𝑋}, 

Where 𝑢𝑀(𝑥), 𝜁𝑀(𝑥), 𝑣𝑀(𝑥)  ∈ [0,1], 0 ≤ (𝑢𝑀(𝑥))
2
+ (𝜁𝑀(𝑥))

2
+ (𝑣𝑀(𝑥))

2
≤ 2, for all 𝑥 ∈ 𝑋. 𝑢𝑀(𝑥) is 

the degree of membership, 𝜁𝑀(𝑥) is the degree of indeterminacy and 𝑣𝑀(𝑥) is the degree of non-membership. 

Here 𝑢𝑀(𝑥) 𝑎𝑛𝑑 𝑣𝑀(𝑥) are dependent components and 𝜁𝑀(𝑥) is an independent component. 

Definition 3.2  

Let 𝑋 be a nonempty set and 𝐼 the unit interval [0,1]. A PN-Sets 𝑀 and 𝑁 of the form 

𝑀 = {(𝑥, 𝑢𝑀 (𝑥), 𝜁𝑀(𝑥), 𝑣𝑀 (𝑥)): 𝑥 ∈ 𝑋} and N = {(𝑥, 𝑢𝑁 (𝑥), 𝜁𝑁(𝑥), 𝑣𝑁 (𝑥)): 𝑥 ∈ 𝑋}. 

Then, 

𝑀𝐶 = {(𝑥, 𝑣𝑀(𝑥), 1 − 𝜁𝑀(𝑥), 𝑢𝑀(𝑥)): 𝑥 ∈ 𝑋}or 𝑀𝐶 = {(𝑥, 𝑣𝑀(𝑥), 𝜁𝑀(𝑥), 𝑢𝑀(𝑥)): 𝑥 ∈ 𝑋} 

𝑀 ∪ 𝑁 = {(𝑥,max(𝑢𝑀 (𝑥), 𝑢𝑁 (𝑥)) ,min(𝜁𝑀(𝑥), 𝜁𝑁(𝑥)) , min (𝑣𝑀 (𝑥), 𝑣𝑁 (𝑥))): 𝑥 ∈ 𝑋} 

𝑀 ∩ 𝑁 = {(𝑥,min(𝑢𝑀 (𝑥), 𝑢𝑁 (𝑥)) ,max(𝜁𝑀(𝑥), 𝜁𝑁(𝑥)) ,max (𝑣𝑀 (𝑥), 𝑣𝑁 (𝑥))): 𝑥 ∈ 𝑋} 

For two PN-Sets S and T in a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, which are denoted by 𝑀 =

{(𝑥𝑖, 𝑢𝑀(𝑥𝑖), 𝜁𝑀(𝑥𝑖), 𝑣𝑀(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋} and 𝑁 = {(𝑥𝑖, 𝑢𝑁(𝑥𝑖), 𝜁𝑁(𝑥𝑖), 𝑣𝑁(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋}, where 𝑢𝑀(𝑥𝑖), 𝜁𝑀(𝑥𝑖), 

𝑣𝑀(𝑥𝑖), 𝑢𝑁(𝑥𝑖), 𝜁𝑁(𝑥𝑖), 𝑣𝑁(𝑥𝑖) ∈ [0,1] for every 𝑥𝑖 ∈ 𝑋. Let us consider the weight 𝑤𝑖(𝑖 = 1,2, … , 𝑛) of an 

element 𝑥𝑖(𝑖 = 1,2,… , 𝑛), with 𝑤𝑖 ≥ 0 (𝑖 = 1,2, … , 𝑛), and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then, we define the generalized PN 

weighted distance measure: 

𝑑𝑝(𝑀,𝑁) = {
1

3
∑ 𝑤𝑖

𝑛
𝑖=1 [|𝑢𝑀

2 (𝑥𝑖) − 𝑢𝑁
2 (𝑥𝑖)|

𝑝
+ |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑁
2(𝑥𝑖)|

𝑝
+ |𝑣𝑀

2 (𝑥𝑖) − 𝑣𝑁
2 (𝑥𝑖)|

𝑝
]}

1

𝑝
   (1) 
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where 𝑝 >  0. When 𝑝 = 1,2, we can obtain the PN weighted Hamming distance, and the PN weighted 

Euclidean distance, respectively, as follows: 

𝑑1(𝑀,𝑁) =
1

3
∑ 𝑤𝑖

𝑛
𝑖=1 [|𝑢𝑀

2 (𝑥𝑖) − 𝑢𝑁
2 (𝑥𝑖)| + |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑁
2(𝑥𝑖)| + |𝑣𝑀

2 (𝑥𝑖) − 𝑣𝑁
2(𝑥𝑖)|]                      (2) 

𝑑2(𝑀,𝑁) = {
1

3
∑ 𝑤𝑖

𝑛
𝑖=1 [|𝑢𝑀

2 (𝑥𝑖) − 𝑢𝑁
2 (𝑥𝑖)|

2
+ |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑁
2(𝑥𝑖)|

2
+ |𝑣𝑀

2 (𝑥𝑖) − 𝑣𝑁
2(𝑥𝑖)|

2
]}

1

2
            (3) 

Therefore, Eqs. (2) and (3) are the special cases of (1). Then, for the distance measure, we have the following 

proposition. 

Proposition 3.3. The above-defined distance 𝑑𝑝(𝑀, 𝑁) 𝑓𝑜𝑟 𝑝 > 0 satisfies the following properties: 

(DP1) 0 ≤ 𝑑𝑝(𝑀,𝑁) ≤ 1; 

(DP2) 𝑑𝑝(𝑀,𝑁) = 0 if and only if M = N; 

(DP3) 𝑑𝑝(𝑀,𝑁) = 𝑑𝑝(𝑁,𝑀); 

(DP4) If 𝑀 ⊆ 𝑁 ⊆ 𝑂, O is a PN-Set in X, then 𝑑𝑝(𝑀, 𝑂) ≥ 𝑑𝑝(𝑀,𝑁)  𝑎𝑛𝑑  𝑑𝑝(𝑀, 𝑂) ≥ 𝑑𝑝(𝑁, 𝑂). 

Proof: 

It is easy to see that 𝑑𝑝(𝑀,𝑁) satisfies the properties (DP1)-DP43). Therefore, we only prove (DP4). Let M ⊆

𝑁 ⊆ 𝑂, then, 𝑢𝑀(𝑥𝑖) ≤ 𝑢𝑁(𝑥𝑖) ≤ 𝑢𝑂(𝑥𝑖), 𝜁𝑀(𝑥𝑖) ≥ 𝜁𝑁(𝑥𝑖) ≥ 𝜁𝑂(𝑥𝑖) 𝑎𝑛𝑑 𝑣𝑀(𝑥𝑖) ≥ 𝑣𝑁(𝑥𝑖) ≥ 𝑣𝑂(𝑥𝑖) for 

every 𝑥𝑖 ∈ 𝑋. Also, 𝑢𝑀
2 (𝑥𝑖) ≤ 𝑢𝑁

2 (𝑥𝑖) ≤ 𝑢𝑂
2 (𝑥𝑖), 𝜁𝑀

2 (𝑥𝑖) ≥ 𝜁𝑁
2(𝑥𝑖) ≥ 𝜁𝑂

2(𝑥𝑖), and 𝑣𝑀
2 (𝑥𝑖) ≤ 𝑣𝑁

2(𝑥𝑖) ≤ 𝑣𝑂
2(𝑥𝑖), 

for every 𝑥𝑖 ∈ 𝑋. 

Then, we obtain the following relations: 

|𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑁

2 (𝑥𝑖)|
𝑝

≤ |𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑂

2 (𝑥𝑖)|
𝑝
, |𝑢𝑁

2 (𝑥𝑖) − 𝑢𝑂
2(𝑥𝑖)|

𝑝
≤ |𝑢𝑀

2 (𝑥𝑖) − 𝑢𝑂
2 (𝑥𝑖)|

𝑝
, 

|𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑁

2(𝑥𝑖)|
𝑝

≤ |𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑂

2(𝑥𝑖)|
𝑝
, |𝜁𝑁

2(𝑥𝑖) − 𝜁𝑂
2(𝑥𝑖)|

𝑝
≤ |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑂
2(𝑥𝑖)|

𝑝
, 

|𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑁

2(𝑥𝑖)|
𝑝

≤ |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑂

2(𝑥𝑖)|
𝑝
, |𝑣𝑁

2(𝑥𝑖) − 𝑣𝑂
2(𝑥𝑖)|

𝑝
≤ |𝑣𝑀

2 (𝑥𝑖) − 𝑣𝑂
2(𝑥𝑖)|

𝑝
, 

Hence, 

|𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑁

2 (𝑥𝑖)|
𝑝

+ |𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑁

2(𝑥𝑖)|
𝑝

+ |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑁

2(𝑥𝑖)|
𝑝
 

≤ |𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑂

2 (𝑥𝑖)|
𝑝

+ |𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑂

2(𝑥𝑖)|
𝑝

+ |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑂

2(𝑥𝑖)|
𝑝

 

|𝑢𝑁
2 (𝑥𝑖) − 𝑢𝑂

2 (𝑥𝑖)|
𝑝

+ |𝜁𝑁
2(𝑥𝑖) − 𝜁𝑂

2(𝑥𝑖)|
𝑝

+ |𝑣𝑁
2(𝑥𝑖) − 𝑣𝑂

2(𝑥𝑖)|
𝑝
 

≤ |𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑂

2 (𝑥𝑖)|
𝑝

+ |𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑂

2(𝑥𝑖)|
𝑝

+ |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑂

2(𝑥𝑖)|
𝑝

 

Combining the above inequalities with the above-defined distance formula (1), we can obtain 𝑑𝑝(𝑀, 𝑂) ≥

𝑑𝑝(𝑀,𝑁)  and  𝑑𝑝(𝑀, 𝑂) ≥ 𝑑𝑝(𝑁, 𝑂) for 𝑝 > 0. Thus, the property (DP4) is satisfied. 

This completes the proof. 

 Note that similarity and distance (dissimilarity) measures are complementary: when the first increases, the 

second decreases. Normalized distance measure and similarity measure are dual concepts.  

Thus,  𝑆(𝑀,𝑁) = 1 − 𝑑(𝑀,𝑁)  and vice versa. The properties of distance measures below are complementary 

to those of similarity measure. 
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Proposition 3.4 Let A and B be two PN-Sets in a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}; 𝑆(𝐴, 𝐵) is called 

a Pythagorean neutrosophic similarity measure, which should satisfy the following properties: 

(SP1) 0 ≤ 𝑆(𝑀,𝑁) ≤ 1; 

(SP2) 𝑆(𝑀,𝑁) = 0 if and only if A = B; 

(SP3) 𝑆(𝑀,𝑁) = 𝑆(𝑁,𝑀); 

(SP4) If 𝑀 ⊆ 𝑁 ⊆ 𝑂, C is a PN-Set in X, then 𝑆(𝑀, 𝑂) ≥ 𝑆(𝑀,𝑁)  𝑎𝑛𝑑  𝑆(𝑀, 𝑂) ≥ 𝑆(𝑁, 𝑂). 

Assume that there are two PN-sets 𝑀 = {(𝑥𝑖, 𝑢𝑀(𝑥𝑖), 𝜁𝑀(𝑥𝑖), 𝑣𝑀(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋} and  

𝑁 = {(𝑥𝑖, 𝑢𝑁(𝑥𝑖), 𝜁𝑁(𝑥𝑖), 𝑣𝑁(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋} in a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Thus, according to 

the relationship between the distance and the similarity measure, we can obtain the following PN similarity 

measure: 

𝑆1(𝑀,𝑁) = 1 − 𝑑𝑝(𝑀,𝑁) = 1 − {
1

3
∑ 𝑤𝑖[|𝑢𝑀

2 (𝑥𝑖) − 𝑢𝑁
2 (𝑥𝑖)|

𝑝 + |𝜁𝑀
2 (𝑥𝑖) − 𝜁𝑁

2(𝑥𝑖)|
𝑝 + |𝑣𝑀

2 (𝑥𝑖) − 𝑣𝑁
2 (𝑥𝑖)|

𝑝]

𝑛

𝑖=1

}

1
𝑝

      (4) 

Obviously, we can easily prove that 𝑆1(𝑀,𝑁) satisfies the properties (SP1) - (SP4) in Proposition 2 by the 

relationship between the distance and the similarity measure and the proof of Proposition 1, which is omitted 

here. 

Furthermore, we can also propose another PN similarity measure: 

 𝑆2(𝑀,𝑁) =
1 − 𝑑𝑝(𝑀,𝑁)

1 + 𝑑𝑝(𝑀,𝑁)
=

1 − {
1
3

∑ 𝑤𝑖[|𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑁

2 (𝑥𝑖)|
𝑝 + |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑁
2(𝑥𝑖)|

𝑝 + |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑁

2 (𝑥𝑖)|
𝑝]𝑛

𝑖=1 }

1
𝑝

1 + {
1
3

∑ 𝑤𝑖[|𝑢𝑀
2 (𝑥𝑖) − 𝑢𝑁

2 (𝑥𝑖)|
𝑝 + |𝜁𝑀

2 (𝑥𝑖) − 𝜁𝑁
2(𝑥𝑖)|

𝑝 + |𝑣𝑀
2 (𝑥𝑖) − 𝑣𝑁

2 (𝑥𝑖)|
𝑝]𝑛

𝑖=1 }

1
𝑝

   (5) 

Then, the similarity measure  𝑆2(𝑀,𝑁) also satisfied the properties (SP1) - (SP4) in Proposition 2. 

Proof: 

It is easy to see that  𝑆2(𝑀,𝑁) satisfies the properties (SP1) - (SP3). Therefore, we only prove the property 

(SP4). 

As we obtain 𝑑𝑝(𝑀, 𝑂) ≥ 𝑑𝑝(𝑀,𝑁)  𝑎𝑛𝑑  𝑑𝑝(𝑀, 𝑂) ≥ 𝑑𝑝(𝑁, 𝑂) for p > 0 from the property (DP4) in 

Proposition 1, there are 1 − 𝑑𝑝(𝑀,𝑁) ≥ 1 − 𝑑𝑝(𝑀, 𝑂), 1 − 𝑑𝑝(𝑁, 𝑂) ≥ 1 − 𝑑𝑝(𝑀, 𝑂), 1 + 𝑑𝑝(𝑀,𝑁) ≤ 1 +

𝑑𝑝(𝑀, 𝑂) and 1 + 𝑑𝑝(𝑁, 𝑂) ≤ 1 + 𝑑𝑝(𝑀, 𝑂).Then, there are the following inequalities: 

1 − 𝑑𝑝(𝑀,𝑁)

1 + 𝑑𝑝(𝑀,𝑁)
≥

1 − 𝑑𝑝(𝑀, 𝑂)

1 + 𝑑𝑝(𝑀, 𝑂)
 

and 

1 − 𝑑𝑝(𝑁, 𝑂)

1 + 𝑑𝑝(𝑁, 𝑂)
≥

1 − 𝑑𝑝(𝑀, 𝑂)

1 + 𝑑𝑝(𝑀, 𝑂)
 

Then, there are 𝑆(𝑀,𝑂) ≤ 𝑆(𝑀,𝑁)𝑎𝑛𝑑 𝑆(𝑀,𝑂) ≤ 𝑆(𝑁, 𝑂). Hence, the property (SP4) is satisfied. 

This completes the proof. 

Example 3.5: 

Assume that we have the following three PN-Sets in a universe of distance 𝑋 = {𝑥1, 𝑥2}: 

𝐴 = {(𝑥1, 0.1,0.9,0.6), (𝑥1, 0.1,0.9,0.6)} 

𝐵 = {(𝑥1, 0.7,0.8,0.4), (𝑥1, 0.4,0.6,0.7)} 

𝐶 = {(𝑥1, 0.8,0.1,0.3), (𝑥1, 0.4,0.3,0.1)} 
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Then, there are 𝐴 ⊆ 𝐵 ⊆ 𝐶, with 𝑢𝐴(𝑥𝑖) ≤ 𝑢𝐵(𝑥𝑖) ≤ 𝑢𝐶(𝑥𝑖), 𝜁𝐴(𝑥𝑖) ≤ 𝜁𝐴(𝑥𝑖) ≤ 𝜁𝐵(𝑥𝑖)𝜁𝐶(𝑥𝑖) 𝑎𝑛𝑑 𝑣𝐴(𝑥𝑖) ≤

𝑣𝐵(𝑥𝑖)𝑣𝐶(𝑥𝑖) for each 𝑥𝑖 in X={𝑥1, 𝑥2}, and the weight vector 𝑤 = (0.4,0.6)𝑇. 

By applying Eq. (4) (take p = 1), the similarity measures between the PN-Sets are as follows: 

𝑆1(𝐴, 𝐵) = 0.7427, 𝑆1(𝐵, 𝐶) = 0.7367, 𝑆1(𝐴, 𝐶) = 0.4793.  

Hence, 𝑆1(𝐴, 𝐶) ≤ 𝑆1(𝐴, 𝐵)  𝑎𝑛𝑑  𝑆1(𝐴, 𝐶) ≤ 𝑆1(𝐵, 𝐶) 

By applying Eq. (5) for p = 1, the similarity measures between the PN-Sets are as follows: 

𝑆2(𝐴, 𝐵) = 0.5907, 𝑆2(𝐵, 𝐶) = 0.5832, 𝑆2(𝐴, 𝐶) = 0.3152.  

Hence, 𝑆2(𝐴, 𝐶) ≤ 𝑆2(𝐴, 𝐵)  𝑎𝑛𝑑  𝑆2(𝐴, 𝐶) ≤ 𝑆2(𝐵, 𝐶). 

4. Clustering Algorithm Based on the Similarity Measures of PN-Sets 

In this section, we can apply the proposed similarity measures of PN-Sets to clustering analysis under a PN 

environment. Based on the intuitionistic fuzzy clustering algorithm proposed by Zhang [1] and Xu [9]. 

Definition 4.1 Assume that 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑚) is a set of PN-Sets and 𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
 is a similarity matrix, 

where 𝑆𝑖𝑗 = 𝑆𝐾(𝐴𝑖, 𝐴𝑗)(𝑘 = 1,2) and 𝑆𝑖𝑗 ∈ [0,1] for 𝑖, 𝑗 = 1,2,… ,𝑚, with 𝑆𝑖𝑖 = 1 for 𝑖 = 1,2,… ,𝑚, and 𝑆𝑖𝑗 =

𝑆𝑗𝑖,   for   𝑖, 𝑗 = 1,2, … ,𝑚. 

Definition 4.2 [9,10] Let 𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
 be a similarity matrix, if 𝐶2 = 𝐶ₒ 𝐶 = (𝑆𝑖̅𝑗)𝑚×𝑚

, then 𝐶2 is called a 

composition matrix of C, where 𝑆𝑖̅𝑗 = max
𝑘

{𝑚𝑖𝑛(𝑆𝑖𝑘 , 𝑆𝑘𝑗)}, for 𝑖, 𝑗 = 1,2,… ,𝑚. 

Definition 4.3 [9,10] Let 𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
 be a similarity matrix, if 𝐶2 ⊆ 𝐶, i.e., 𝑆𝑖̅𝑗 ≤ 𝑆𝑖𝑗 for 𝑖, 𝑗 = 1,2, … ,𝑚, 

then C is called an equivalent similarity matrix. 

Definition 4.4 [9,10] Let   𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
 be a similarity matrix. Then, after finite time compositions of C: 

𝐶 → 𝐶2 → 𝐶4 → ⋯ → 𝐶2𝑘
→ ⋯,                         (6) 

there must exist a positive integer k such that 𝐶2𝑘
= 𝐶2(𝑘+1)

, then 𝐶2𝑘
 is also an equivalent similarity matrix. 

Definition 4.5 [9,10] Let 𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
 be an equivalent similarity matrix. Then, 𝐶𝜆 = (𝑆𝑖𝑗

𝜆)
𝑚×𝑚

  is called 

the λ-cutting matrix of C, where 

𝑆𝑖𝑗
𝜆 = {

0, 𝑆𝑖𝑗 < 𝜆;

1, 𝑆𝑖𝑗 ≥ 𝜆
  for 𝑖, 𝑗 = 1,2,… ,𝑚,                  (7) 

and λ is the confidence level with 𝜆 ∈ [0,1]. 

Assume that 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is a set of PN-Set, where 𝐴𝑗 = {(𝑥𝑖, 𝑢𝐴𝑗
, 𝜁𝐴𝑗

, 𝑣𝐴𝑗
) : 𝑥𝑖 ∈ 𝑋}   

(𝑗 = 1,2,… ,𝑚) in a universe of discourse 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is a PN. Let 𝑤𝑖 be the weight for each element 

𝑥𝑖 (𝑖 = 1,2,… , 𝑛), with 𝑤𝑖 ∈ [0,1], and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then, we can give the algorithm of clustering PN-Sets 

as follows: 

Step 1. By use of Eqs. (4) or (5), one can calculate the similarity measure degrees of PN-Sets, and then 

construct a similarity matrix 𝐶 = (𝑆𝑖𝑗)𝑚×𝑚
, where 𝑆𝑖𝑗 = 𝑆𝑘(𝐴𝑖, 𝐴𝑗) (𝑘 = 1,2) for 𝑖, 𝑗 = 1,2,… ,𝑚. 

Step 2. The process of building the composition matrices is repeated until it holds that 

𝐶 → 𝐶2 → 𝐶4 → ⋯ → 𝐶2𝑘
= 𝐶2(𝑘+1)

 



 

91 

 

Journal of New Theory 33 (2020) 85-94 / Similarity Measures of Pythagorean Neutrosophic Sets … 

which implies that 𝐶2𝑘
 is an equivalent similarity matrix, which is denoted by 𝐶̅ = (𝑆𝑖̅𝑗)𝑚×𝑚

. 

Step 3. For the equivalent similarity matrix 𝐶̅ = (𝑆𝑖̅𝑗)𝑚×𝑚
, we can construct a λ-cutting matrix 𝐶𝜆̅ = (𝑆𝑖̅𝑗

𝜆)
𝑚×𝑚

 

of 𝐶̅ by Eq(7); if all the elements of the ith row or column in 𝐶𝜆̅ are the same as the corresponding elements of 

the ith row or column, we conceive object sets 𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 are the same class. 

5. Illustrative Example 

A car market is going to classify five different cars of 𝐴𝑗 (𝑗 = 1,2, … ,5). Every car has six evaluation attributes: 

(i) 𝑥1, fuel consumption; (ii) 𝑥2, price; (iii) 𝑥3, coefficient friction; (iv) 𝑥4, comfortable degree; (v) 𝑥5, safety. 

The characteristics of each car under the six attributes are represented by the form of PN-SETs, and then the 

Pythagorean neutrosophic data are as follows: 

𝐴1 = {𝑥1, (0.5,0.9,0.8), 𝑥2, (0.6,0.7,0.7), 𝑥3, (0.4,0.2,0.5), 𝑥4, (0.7,0.8,0.5), 𝑥5, (0.1,0.6,0.3)} 

𝐴2 = {𝑥1, (0.1,0.7,0.8), 𝑥2, (0.6,0.9,0.8), 𝑥3, (0.5,0.2,0.4), 𝑥4, (0.3,0.5,0.1), 𝑥5, (0.7,0.3,0.5)} 

𝐴3 = {𝑥1, (0.1,0.7,0.8), 𝑥2, (0.5,0.6,0.7), 𝑥3, (0.2,0.8,0.6), 𝑥4, (0.4,0.3,0.9), 𝑥5, (0.9,0.1,0.4)} 

𝐴4 = {𝑥1, (0.3,0.6,0.7), 𝑥2, (0.8,0.7,0.6), 𝑥3, (0.1,0.9,0.5), 𝑥4, (0.4,0.6,0.2), 𝑥5, (0.5,0.2,0.7)} 

𝐴5 = {𝑥1, (0.4,0.6,0.7), 𝑥2, (0.9,0.6,0.1), 𝑥3, (0.8,0.9,0.6), 𝑥4, (0.5,0.2,0.3), 𝑥5, (0.6,0.2,0.5)} 

If the weight vector of the attributes, 𝑥𝑖  (𝑖 = 1,2,3,4,5,6) 𝑖𝑠 𝑤 = (
1

5
,
1

5
,
1

5
,
1

5
,
1

5
)
𝑇
, then we utilize the two 

Pythagorean neutrosophic similarity measures to classify the five different cars of 𝐴𝑗 (𝑗 = 1,2,3,4,5) by  

the Pythagorean neutrosophic clustering algorithms. 

5.1 Clustering Analysis using Eq. (4) 

Step 1. Utilize the similarity measure formula (4) (take p = 2) to calculate the similarity measure between each 

pair of PN-SETs 𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 (𝑖, 𝑗 = 1,2,3,4,5) and construct the following similarity matrix: 

𝐶 =

[
 
 
 
 

   

1                   0.7358     0.6287        0.6824       0.6128
0.7358            1             0.7596         0.7339      0.6574
0.6287          0.7596          1              0.7095      0.6995
0.6824             0.7339     0.7095       1                 0.7742
0.6168            0.6574     0.6995        0.7742             1 ]

 
 
 
 

 

Step 2. Obtain equivalent similarity matrices by limited time composition of C: 

𝐶2 =

[
 
 
 
 

   

1            0.7358     0.7358        0.7339       0.6574
0.7358        1            0.7596       0.7339      0.6574
0.7358     0.7596          1            0.7339      0.6574
0.7339      0.7339     0.7339        1             0.6574
0.6574     0.6574     0.6574        0.6574             1 ]

 
 
 
 

 

 

𝐶4 =

[
 
 
 
 

   

1            0.7358     0.7358        0.7339       0.6574
0.7358        1            0.7596       0.7339      0.6574
0.7358     0.7596          1            0.7339      0.6574
0.7339      0.7339     0.7339        1             0.6574
0.6574     0.6574     0.6574        0.6574             1 ]

 
 
 
 

 

Obviously, 𝐶4 = 𝐶2 implies that 𝐶2 is an equivalent similarity matrix, denoted by 𝐶̅. 

Step 3. When λ has different values, we can construct a λ-cutting matrix 𝐶𝜆̅ = (𝑆𝑖̅𝑗
𝜆)

𝑚×𝑚
of 𝐶̅ by Eq.(7) and 

obtain different categories, which give the following discussion: 
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(i) If 0 ≤ 𝜆 ≤ 0.6574 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1]

 
 
 
 

, 

then the cars are the same category:{𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}. 

(ii) If 0.6574 < 𝜆 ≤ 0.7339 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  1  0
1   1  1  1  0
1   1  1  1  0
1   1  1  1  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into two categories: {𝐴1, 𝐴2, 𝐴3, 𝐴4}, {𝐴5}. 

(iii) If 0.7339 < 𝜆 ≤ 0.7358 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  0  0
1   1  1  0  0
1   1  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into three categories: {𝐴1, 𝐴2, 𝐴3}, {𝐴4}, {𝐴5}. 

(iv) If 0.7358 < 𝜆 ≤ 0.7596 

𝐶𝜆̅ =

[
 
 
 
 
1   0  0  0  0
0   1  1  0  0
0   1  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into four categories: {𝐴1}, {𝐴2, 𝐴3}, {𝐴4}, {𝐴5}. 

(v) If 0.7596 < 𝜆 ≤ 1 

𝐶𝜆̅ =

[
 
 
 
 
1   0  0  0  0
0   1  0  0  0
0   0  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into five categories: {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5}. 

 

5.2 Clustering Analysis Using Eq. (5) 

Step 1. Utilize the similarity measure formula (5) (take p = 2) to calculate the similarity measure between each 

pair of PN-SETs 𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 (𝑖, 𝑗 = 1,2,3,4,5) and construct the following similarity matrix: 

𝐶 =

[
 
 
 
 

   

1            0.5820     0.4585        0.5179       0.4459
0.5820        1            0.6124       0.5797      0.4896
0.4585     0.6124          1            0.5498      0.5379
0.5179      0.5797     0.5498        1             0.6316
0.4459      0.4896     0.5379        0.6316             1]
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Step 2. Obtain equivalent similarity matrices by limited time composition of C: 

 

𝐶2 =

[
 
 
 
 

   

1            0.5820     0.5820        0.5797       0.4896
0.5820        1            0.6124       0.5797      0.4896
0.5820     0.6124          1            0.5797      0.4896
0.5797      0.5797     0.5797        1             0.4896
0.4896     0.4896     0.4896        0.4896             1 ]

 
 
 
 

 

 

𝐶4 =

[
 
 
 
 

   

1            0.5820     0.5820        0.5797       0.4896
0.5820        1            0.6124       0.5797      0.4896
0.5820     0.6124          1            0.5797      0.4896
0.5797      0.5797     0.5797        1             0.4896
0.4896     0.4896     0.4896        0.4896             1 ]

 
 
 
 

 

Obviously, 𝐶4 = 𝐶2 implies that 𝐶2 is an equivalent similarity matrix, denoted by 𝐶̅. 

Step 3. When λ has different values, we can construct a λ-cutting matrix 𝐶𝜆̅ = (𝑆𝑖̅𝑗
𝜆)

𝑚×𝑚
of 𝐶̅ by Eq.(7) and 

obtain different categories, which give the following discussion: 

(i) If 0 ≤ 𝜆 ≤ 0.4896 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1
1   1  1  1  1]

 
 
 
 

, 

then the cars are the same category:{𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}. 

(ii) If 0.4896 < 𝜆 ≤ 0.5797 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  1  0
1   1  1  1  0
1   1  1  1  0
1   1  1  1  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into two categories: {𝐴1, 𝐴2, 𝐴3, 𝐴4}, {𝐴5}. 

(iii) If 0.5797 < 𝜆 ≤ 0.5820 

𝐶𝜆̅ =

[
 
 
 
 
1   1  1  0  0
1   1  1  0  0
1   1  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into three categories: {𝐴1, 𝐴2, 𝐴3}, {𝐴4}, {𝐴5}. 

(iv) If 0.5820 < 𝜆 ≤ 0.6124 

𝐶𝜆̅ =

[
 
 
 
 
1   0  0  0  0
0   1  1  0  0
0   1  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into four categories: {𝐴1}, {𝐴2, 𝐴3}, {𝐴4}, {𝐴5}. 
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(v) If 0.6124 < 𝜆 ≤ 1 

𝐶𝜆̅ =

[
 
 
 
 
1   0  0  0  0
0   1  0  0  0
0   0  1  0  0
0   0  0  0  0
0   0  0  0  1]

 
 
 
 

, 

then the cars can be divided into five categories: {𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5}. 

 

Conclusion 

This paper introduced a generalized PN weighted distance measure and presented two distance-based 

similarity measures in a PN setting. Then, a PN clustering algorithm was established based on the two 

similarity measures. Finally, an illustrative example was given to demonstrate the application and effectiveness 

of the PN clustering methods.  
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Abstract In this paper, we will focus to one of the recent applications of PU-algebras in the coding 

theory, namely the construction of codes by soft sets PU-valued functions. First, we shall introduce the 

notion of soft sets PU-valued functions on PU-algebra and investigate some of its related properties. 

Moreover, the codes generated by a soft sets PU-valued function are constructed and several examples 

are given. Furthermore, example with graphs of binary block code constructed from a soft sets PU-

valued function is constructed. 
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1. Introduction 

Imai and Is´eki [1] in 1966 introduced the notion of a BCK-algebra. Is´eki [2] introduced BCI- 

algebras as a super class of the class of BCK-algebras. In [3], Hu and Li introduced a wide class of 

abstract algebras, BCH-algebras. They are shown that the class of BCI-algebras is a proper subclass 

of the class of BCH-algebras. Elkabany et al, in [4] introduced a new algebraic structure called PU-

algebra, and they investigated severed basic properties. Moreover, they derived new view of several 

ideals on PU-algebra. Molodtsov [5] introduced the concept of soft set as a new mathematical tool 

for dealing with uncertainties that is free form the difficulties that have troubled the usual theoretical 

approaches. Maji et al [6,7] described the application of soft theory and studied several operations on 

the soft sets. Many Mathematicians have studied the concept of soft set of some algebraic structures. 

For example, see [8-13]. Coding theory is a mathematical domain with many applications in 

information theory, for more details see [14]. Various type of codes and their connections with other 

mathematical objects have been intensively studied. One of the recent applications was given in the 

Coding theory are BCK/ Hilbert/ R0-algebras see [15-18]. In [12,18] provided an algorithm which 

allows to find a BCK/-algebra starting from a given binary block code. In [17] the authors presented 

some new connections between BCK- algebras and binary block codes. In [19,20] the authors 

established block-codes by using the notion of KU-valued functions. 

In this paper, we will focus to one of the recent applications of PU-algebras in the coding theory, 

namely the Construction of codes by soft sets PU-valued functions. First, we shall introduce the 

notion of soft sets PU-valued functions on PU-algebra and investigate some of its related properties. 

Moreover, the codes generated by a soft sets PU-valued function are constructed and several 

Examples are given. Furthermore, Example with graphs of binary block code constructed from a soft 

sets PU-valued function is constructed. 
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2. Preliminaries 

Now, we will recall some known concepts related to PU-algebra from the literature, which will be helpful in 

further study of this article. 

Definition 2.1. [4] A PU-algebra is a non-empty set X  with a constant X0  and a binary operation  

satisfying the following conditions: 

(i) 0 ∗  𝑥 =  𝑥, 

(ii) (𝑥 ∗ 𝑧) ∗  (𝑦 ∗  𝑧) =  𝑦 ∗ 𝑥, for any 𝑥, 𝑦, 𝑧  X  

On X  we can define a binary relation " ≤ " by x ≤ y if and only if 𝑦 ∗  𝑥 =  0. 

Example 2.2. [4] Let X  = {0, 1, 2, 3, 4} be a set and  is defined by  

 0 1 2 3 4 

0 0 1 2 3 4 

1 4 0 1 2 3 

2 3 4 0 1 2 

3 2 3 4 0 1 

4 1 2 3 4 0 

Then, (𝑋,∗, 0) is a PU-algebra. 

Proposition 2.3. [4] In a PU-algebra (𝑋,∗, 0) the following hold, for all 𝑥, 𝑦, 𝑧  X , 

(a) 𝑥 ∗ 𝑥 =  0 

(b) (𝑥 ∗  𝑧) ∗  𝑧 =  𝑥 

(c) 𝑥 ∗ (𝑦 ∗  𝑧) =  𝑦 ∗ (𝑥 ∗  𝑧) 

(d) 𝑥 ∗ (𝑦 ∗  𝑥) =  𝑦 ∗ 0 

(e) (𝑥 ∗  𝑦) ∗  0 =  𝑦 ∗  𝑥 

(f) If 𝑥 ≤  𝑦, then 𝑥 ∗  0 =  𝑦 ∗ 0 

(g) (𝑥 ∗  𝑦) ∗  0 =  (𝑥 ∗  𝑧) ∗  (𝑦 ∗  𝑧) 

(h) 𝑥 ∗  𝑦 ≤  𝑧 if and only if 𝑧 ∗ 𝑦 ≤  𝑥 

(i) 𝑥 ≤  𝑦 if and only if 𝑦 ∗  𝑧 ≤  𝑥 ∗  𝑧 

(j) In a PU-algebra (𝑋,∗, 0), the following are equivalent: 

 (1) 𝑥 =  𝑦, (2) 𝑥 ∗  𝑧 =  𝑦 ∗  𝑧, (3) 𝑧 ∗  𝑥 =  𝑧 ∗  𝑦 

(k) The right and the left cancellation laws hold in X . 

(l) (𝑧 ∗  𝑥) ∗  (𝑧 ∗  𝑦) =  𝑥 ∗  𝑦 

(m) (𝑥 ∗  𝑦) ∗  𝑧 =  (𝑧 ∗  𝑦) ∗  𝑥 

(n) (𝑥 ∗  𝑦) ∗  (𝑧 ∗ 𝑢)  =  (𝑥 ∗ 𝑧)  (𝑦 ∗ 𝑢) for all 𝑥, 𝑦, 𝑧 and 𝑢  X  

Lemma 2.4. [4] If (𝑋,∗, 0) is a PU-algebra, then (𝑋, ≤) is a partially ordered set. 

Definition 2.5. [4] A non-empty subset S of a PU-algebra (𝑋,∗, 0) is called a sub-algebra of X if 𝑥 ∗  𝑦  𝑆 

whenever x, y  S. 
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Definition 2.6. [4] A non-empty subset I of a PU-algebra (X, , 0) is called a new ideal of X  if, 

(i) 0 I, 

(ii) (𝑎 ∗  (𝑏 ∗  𝑥))  ∗  𝑥   I, for all 𝑎, 𝑏   𝐼 and Xx . 

Theorem 2.7 [4] Any sub-algebra S of a PU-algebra X is a new ideal of X. 

Example 2.8 [4] Let X = {0, a, b, c} be a set with  is defined by the following table: 

 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 

Then, ( X , , 0) is a PU-algebra. It is easy to show that I1 = {0, a}, I2 = {0, b}, I3 = {0, c} are new 

ideals of X.  

3. Brief review of soft set with examples in coding and fuzzy 

Definition 3,1. [5] Molodtsov defined the notion of a soft sets as follows. Let U be an initial universe and E 

be the set of parameters. The parameters are usually “attributes, characteristics or properties of an object”. Let 

P(U) denote the power set of U and A  is a subset of E.A pair ( F , A) is called a soft set over U, where F is a 

mapping given by F : A → P(U).In other words, a soft set over a universe is a U  parameterized family of 

subsets of the universe U . For )(, eFAe  may be considered as the set of e-elements or e-approximate 

elements of the soft set ),( AF . Thus  EAeUPeFAF = :)()(),( . As an illustration, let us consider 

the following: 

Example 3.2. (soft). Suppose a universe U is the set of eight Cars  87654321 ,,,,,,, CCCCCCCCU =  be the 

set of Cars under consideration, E  be a set of parameters. 

 








===

====
=

repairbadinerepairgoodinegearautomatice

cheapegearmanualebeautifuleensivee
E

765

4321

,,

,,,,exp
. 

Then, the soft set ),( EF  describes the attractiveness of the cars. which say Mr. X wants to buy. In this case, 

to define the soft set ),( EF  means to point out the cars for each parameter, i.e. expensive, beautiful, manual 

gear, cheap, automatic gear, etc. Let   EeeeA = 621 ,,  and Now consider the mapping )(: UPAF →  is 

given by      63165312321 ,,)(,,,)(,,)( CCCeFCCCeFCCeF === .  

Then, the soft set ),( AF  is a parameterized family  3,2,1),( =ieF i  of subsets of the universe given by 

     },,,,,,,{),( 63153132 CCCCCCCCAF =  

for example, )( 1eF means car (expensive) whose functional value, called the 1e - approximate value set, is the 

set  32 ,CC .Thus we can view the soft set (𝐹, 𝐴) as consisting of a collection of approximations given by 
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     },,)(,,,)(,,)({),( 63165312321 CCCeFCCCeFCCeFAF ====  

Each approximation has two parts: 

(i) A predicate )()()( 621 eForeForeF  and 

(ii) The approximate set      },,,,, 63153132 CCCorCCCorCC , respectively. 

The soft set ),( AF can also be represented by the set of ordered pairs given by 

))}(,()),(,()),(,{(),( 662211 eFeeFeeFeAF =  

     )},,,(),,,,(),,,{(),( 63165312321 CCCeCCCeCCeAF =  

It is worth noting that the sets AeeF ),(  may be arbitrary, may be empty or may have non-empty 

intersection. Also, the soft set ),( AF can be divided by AF . 

Example 3.3 (coding soft) To store a soft set in a computer, a two-dimensional table is used to represent it. 

Table 1 (below) shows the tabular representation of the soft set ),( AF , where if 

0,1,)( ,, == jijiii hotherwisehtheneFh , where 
jih ,
 are the entries in the table. 

 

 

 

 

 

 

 

 

Let U  be a universe and let A  be a fuzzy set on the universe U , characterized by its membership function 

A , such that UAUA → ],1,0[: . Thus, the fuzzy set A can be completely defined as a set of ordered 

pairs given by   ]1,0[)(,:)(, = xUxxxA  . 

Now let us consider the family of -level sets for A , given by   ]1,0[,)(:)( =  xUxF A , such 

that given F, we can find )(xA  by the formula:  )(:]1,0[sup)(  FxxA = . Then, every Zadeh’s 

fuzzy set A may be considered as the soft set ])1,0[,(F  . As an illustration, let us consider the following 

example. 

Example 3.4. (fuzzy soft). Suppose that  87654321 ,,,,,,, CCCCCCCCU = and that we consider the single 

parameter quality of cars which are characterized by the value set whose terms are {expensive, beautiful, 

U  1e  2e  6e
 

Choice value 

1C  
0 1 1 2 

2C  
1 0 0 1 

3C
 

1 1 1 3 

4C
 

0 0 0 0 

5C
 

0 1 0 1 

6C
 

0 0 1 1 

7C
 

0 0 0 0 

8C
 

0 0 0 0 
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manual gear and cheap}. Let the terms beautiful and cheap for example be associated with its own fuzzy set 

as follows: 

 )1.0,(),9.0,(),7.0,(),2.0,( 6521 CCCCFbeautiful =  

 )2.0,(),1.0,(),1.0,(),3.0,(),9.0,( 54321 CCCCCFcheap =  

Then, the  – level set of 
beautifulF  and 

cheapF  are given by; 

 521 ,,)2.0( CCCFbeautiful = ,  5421 ,,,)2.0( CCCCFcheap =  

 52,)7.0( CCFbeautiful = ,  1)7.0( CFcheap =  

 5)9.0( CFbeautiful = ,  1)9.0( CFcheap =  

 6521 ,,,)1.0( CCCCFbeautiful = ,  54321 ,,,,)1.0( CCCCCFcheap =  

 52,)3.0( CCFbeautiful = ,  21,)3.0( CCFcheap = , where here   ]1,0[9.0,7.0,3.0,2.0,1.0 =A  

which can be regarded as the parameter set such that )(: UPAFbeautiful →  gives the approximate value set

AforFbeautiful  ,)(  .Thus, the soft set for the fuzzy set
beautifulF  can be written as: 

=),( AFbeautiful
{  ),,,,1.0( 6521 CCCC ,  ),,,2.0( 521 CCC ,  ),,3.0( 52 CC ,  ),,7.0( 52 CC ,  ),9.0( 5C }.  

Similarly, the soft set for the fuzzy set 
cheapF  is given by; 

=),( BFcheap
{  ),,,,,1.0( 54321 CCCCC ,  ),,,,2.0( 5421 CCCC ,  ),,3.0( 21 CC ,  ),7.0( 1C ,  ),9.0( 1C },  

where   ]1,0[9.0,7.0,3.0,2.0,1.0, =BA  

Definition 3.5. The complement of a soft set ),( AF is denoted by ),( AF C
and is defined by 

CAF ),( , where 

)(: UPAFC →  is a mapping given by XxxFUxFC −= )()( . 

Let the terms beautiful and cheap for example be associated with its own fuzzy set as follows: 

 )1.0,(),9.0,(),7.0,(),2.0,( 6521 CCCCFbeautiful =  

 )2.0,(),1.0,(),1.0,(),3.0,(),9.0,( 54321 CCCCCFcheap = , then 

 )9.0,(),1.0,(),3.0,(),8.0,( 6521 CCCCF beautiful
C = , and 

 )8.0,(),9.0,(),9.0,(),7.0,(),1.0,( 54321 CCCCCF cheap
C = . 

4. Soft PU-algebras 

Mostafa et al [21] introduced the concept soft PU-algebras. Let X  and A  be a PU-algebra and a nonempty 

set, respectively. A pair ),( AF  is called a soft set over X  if and only if F  is a mapping from a set of A  into 

the power set of X . That is, )(: XPAF →  such that =)(xF  if Ax . A soft set over X  can be 

represented by the set of ordered pairs  )X(P)x(F,Ax:))x(F,x(  . 

It is clear to see that a soft set is a parameterized family of subsets of the set X . 
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Definition 4.1. Let ),( AF be a soft set over X . Then, ),( AF  is called a soft PU-algebra over X , if )(xF  is 

a new ideal of X , for all Ax .  

Example 4.2. Let X = {0, a, b, c} be a set provided in Example 2.8. Define a mapping )(: XPXF →  by: 

F (0) = {0}, F (a) = {0, a}, F (b) = {0, b} and F (c) = {0, c}. It is clear that ),( XF  is a soft PU-algebra over

X .  

Definition 4.3. Let ),( AF  and ),( BG  be two soft PU-algebras over X . Then, ),( AF  is called a soft PU-

subalgebra of ),( BG , denoted by ),(),( BGAF  , if it satisfies: 

(i) BA , 

(ii) )(xF  is sub-algebra of )(xG , for all Ax . 

Proposition 4.4. A soft set ),( AF  over X  is a soft PU-algebra, if and only if each  ≠ F ( ) is a new ideal 

of X , for all A . 

Theorem 4.5. Let ),( AF  and ),( BG be two soft PU-algebras over X . If BA ,then the intersection 

),(
~

),( BGAF   is a soft PU-algebra over X . 

5. Codes generate by a soft PU-algebra 

Definition 5.1. Let )(: XPAF → be a mapping from a set XA  into the power set of X , then F  is called 

a soft PU-function on A . 

Definition 5.2. A cut function of F , for )(XPp  is defined to be a mapping }1,0{: →AFp  such that 

)(1)( xFpxFp = , for all x  in A . 

Obviously, pF is the characteristic function of p -level subset (or, a p -cut) }1)(:{ == xFAxf pp
. 

Example 5.3 Let   Ee,eA 21 = and let X= { 0C , 1C , 2C , 3C  } be the set of Cars with the following Cayley 

table: 

 

 

 

 

 

Then, (X, , 0) is a PU-algebra. Let   where,Ee,eA 21 =  

 cheape,gearmanuale,beautifule,ensiveexpeE 4321 =====  

be a set of parameters and F  : A → P (X) and given by 

   3132

21

21

21

C,CC,C

ee

)e(F)e(F

ee
F ==

 

 0C
 1C  2C  3C

 

0C
 0C

 1C  2C  3C
 

1C  1C  0C
 3C

 2C  

2C  2C  3C
 0C

 1C  

3C
 3C

 2C
 1C

 0C
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and }1,0{: →AFp . Table 1 (below) shows the tabular representation of the soft set ),( AF , where if 

0)x(Fotherwise,1)x(Fthen,)e(FC ppii == , where )x(Fp  are the entries in the table.
 

X 
1e  2e  

0C
 

0 0 

1C  
0 0 

2C  
1 1 

3C
 

1 1 

Definition 5.4. Let )(: XPAF →  be a soft PU-function on A , and ~ a binary relation on )(XP , such that 

]q~[),(, qp ffpXPqp = . Then, ~ is an equivalence relation on )(XP . 

Let }),(:)({)( AxsomeforxFpXPpAF == , and for )(XPp , let }:)({)[ qpXPqp = . 

Lemma 5.5. If )X(PA:F →  is a soft PU-function on A , then for )X(Pq,p   

)()[)()[~ AFqAFpqp  =  

Proof. qp ffpXPqp = q~),(,  

(for = )}[)(:{)}[)(:{)]()([), qxFAxpxFAxxFqxFpAx

)()[)()[ AFqAFp  = . 

Example 5.6. Let X = {0, a, b} be a set with the operation   defined by the following table.  

 0 a b 

0 0 a b 

a b 0 a 

b a b 0 

and }},,0{},,{},,0{},,0{},{},{},0{,{)( babababaXP = . Then, )0,,( X  is a PU-algebra. 

 Let )(: XPXF →  be a soft PU-function on X  given by 









=

},0{},0{}0{

0

ba

ba
F , then a cut function 

of F is given by the following table:  

 0  a  b  
 {0} {0, a} {0, b} 

F

 

1 1 1 

}0{F
 

1 1 1 

}{aF
 

0 1 0 

}{bF
 

0 0 1 

},0{ aF
 

0 1 0 

},0{ bF
 

0 0 1 

},{ baF
 

0 0 0 

},,0{ baF
 

0 0 0 
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Hence, },,0{}0{ baff == , }{},0{}{ aff aa == , }{},0{}{ bff bb ==  and == Xba ff },{
. 

Lemma 5.7. Let )(: XPAF →  be a soft PU-function on A , for every Ax , if pxF =)( , then )(XPp

is an infimum of the class to which it belongs, i.e. ~][inf pp = . 

Proof. If ~][pq , then qxFp = )( . Hence, ~][inf pp = .  

Theorem.5.8. If )(: XPAF →  is a soft PU-function on A , then for all Ax ,  

}1)(:)({sup)( == xFXPpxF p
 

Proof. Let )()( XPqxF = . Then, 1)( =xFq
. Now, if any )(XPp , 1)( =xFp

, then )(xFp  , i.e., 

qp  . Also, }1)(:)({ = xFXPpq p
, thus q is the greatest element of that family. Thus,  

}1)(:)({sup)( === xFXPpqxF p
 

Proposition 5.9. Let )(: XPAF → be a soft PU-function on A . If pq  , for all )(, XPqp  , then 

qp ff  . 

Proof. Let pq  , for all )(, XPqp  and pfx , then )(xFp  . It follows that )(xFq  and so qfx . 

Hence, 
qp ff  . 

Proposition 5.10. Let )(: XPAF →  be a soft PU-function on A . Then, ])()([ )()( yFxF AAyFxF  ,

Ayx  , . 

Proof. The sufficiency is obvious. Assume that 
)()( yFxF AA  , Ayx  , . Then, 

)()( )}()(:{)}()(:{ yFxF AzFyFAzzFxFAzA ==  

Corollary 5.11. Let )(: XPAF →  be a soft PU-function on A . Then,  

Ayx  , , ])()([ )()( yFxF AAxFyF   

Proof. Clear. 

Let )(: XPAF →  be a soft PU-function on A , and ~ a binary relation on )(XP , such that 

]q~[),(, qp ffpXPqp = . Then, ~ is an equivalence relation on )(XP  and 

} ~:)({][ ~ qpXPqp =
 
is an equivalence class containing p . Every soft PU-function on A  determines 

a binary block code c  of length n , in the following way:  

To every class ~][ p , where )(XPp , there are corresponds a codeword 
np wwc ...1][ =  such that 

jiFww rji == )( , for }1,0{,  jAi . 
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We use the following defined order on the set of codeword’s belonging to a binary block code C , for any 

nxxxCyx ...,, 1= , nyyy ...1= , ncnc yyxxyx ,...,,..., 11  . 

Example 5.12. Let X = {0, a, b} be a set with the operation   defined by the following table.  

 

 

  

Then, )0,,( X is a PU-algebra. Let )(: XPXF →  be a soft PU-function on X  given by











=

},0{},0{}0{

0

ba

ba
F  and }1,0{: →XFp

, then a cut function is given by the following table:  

 0  a  b  

 {0} {0, a} {0, b} 

}0{F
 

1 1 1 

},0{ aF
 

0 1 0 

},0{ bF
 

0 0 1 

Then, }001,010,111{=C , see Fig.1 

 

Fig 1. Graphs of the binary block codeC  

Theorem 5.13. Let X be a finite PU-algebra. Every )),(( XP determines a block-codeC , such that 

)),(( XP is isomorphic with ),( cC  . 

Proof. Let },...,1:{ nirX i == be a finite PU-algebra in which 1r is the least element and let a mapping 

)()(: XPXPH →  be identify PU-valued function on )(XP . The decomposition of H  gives a family 

}:{ XrHr   which is the required code, under the above defined order ncnc yyxxyx ,...,,..., 11  . Let 

}:{: XrHXf r →  be a function defined by rHrf =)( , for all Xr . By Lemma 4.6 every class 

contains exactly one element, and thus f  is one to one. If Xmr ,  and mr  , then rm HH  , which 

means that rm HH  , and f  is an isomorphism. 

 0 a b 

0 0 a b 

a b 0 a 

b a b 0 



 

104 

 

Journal of New Theory 33 (2020) 95-106 / Brief review of soft sets and its application in coding theory 

 

Example 5.14. Let X = {0, a, b} be a set with the operation   defined by the following table.  

 0 a b 

0 0 a b 

a b 0 a 

b a b 0 

and }},,0{},,{},,0{},,0{},{},{},0{,{)( babababaXP = . Then, )0,,( X is a PU-algebra.  

Let )(: XPXF →  be a soft PU-function on X  given by 









=

},0{},0{}0{

0

ba

ba
F  .  

Now, let )()(: XPXPH →  be identify PU-valued function on )(XP , then a cut function is given 

by the following table:  

 
 

{0} {a} {b} {0, a} {0, b} {a, b} {0, a, b} 

F
 

1 1 1 1 1 1 1 1 

}0{F
 

0 1 0 0 1 1 0 1 

}{aF
 

0 0 1 0 1 0 1 1 

}{bF
 

0 0 0 1 0 1 1 1 

},0{ aF
 

0 0 0 0 1 0 0 1 

},0{ bF
 

0 0 0 0 0 1 0 1 

},{ baF
 

0 0 0 0 0 0 1 1 

},,0{ baF
 

0 0 0 0 0 0 0 1 

 

𝐶 = {11111111, 01001101, 00101011, 00010111, 00001001, 00000101, 00000011, 00000001}
 

6. Conclusion 

Coding Theory is a mathematical domain with many applications in Information theory. Various type of codes 

and their connections with other mathematical objects have been intensively studied. One of these applications, 

namely connections between binary block codes and BCK-algebras, was recently studied in [16,17]. In this 

paper, we focused to one of the recent applications of PU-algebras in the coding theory, namely the 

construction of codes by soft sets PU-valued functions. First, we introduced the notion of soft sets PU-valued 

functions, on a set and investigated some of its related properties. Moreover, the codes generated by a soft sets 

PU-valued function were constructed and several examples are given. Furthermore, example with graphs of 

binary block code were constructed from a soft sets PU-valued function. 
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