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Research Article

Abstract − In this paper, we first introduce a new class of convex functions called
strong s-Godunova-Levin functions, which encompass the strong Godunova-Levin,
s-Godunova-Levin, and Godunova-Levin function classes. By relying on the identity
given by Cerone et al. [Demonstratio Math., 37 (2004))] and by some simple technical
methods, we derive some new Ostrowski-type inequalities for functions whose deriva-
tives in absolute value at a certain power q ≥ 1 lies in the above cited new class of
functions. Some special cases are discussed. The results obtained can be considered
a generalization of certain known results.

Keywords − Ostrowski inequality, Hölder inequality, power mean inequality, strong s-Godunova-Levin func-
tions
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1. Introduction

Let H be an interval in R. The following concepts are known in the literature.

Definition 1.1. [1] A function η : H → R is said to be convex if

η (tx+ (1− t) y) ≤ tη (x) + (1− t) η (y)

holds for all x, y ∈ H and t ∈ [0, 1].

Definition 1.2. [2] A function η : H → R is called strongly convex with modulus c if

η (tx+ (1− t) y) ≤ tη (x) + (1− t) η (y)− ct(1− t) |x− y|2

holds for all x, y ∈ H and t ∈ (0, 1).

Definition 1.3. [3] A nonnegative function η : H → R is said to be p-convex if

η (tx+ (1− t) y) ≤ η (x) + η(y)

holds for all x, y ∈ H and all t ∈ [0, 1].

1badrimeftah@yahoo.fr (Corresponding Author); 2azaiziaassia@gmail.com
1Laboratory of Telecommunication, Faculty of Sciences and Technology, University of 8 Mai 1945, Guelma, Algeria
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Definition 1.4. [4] A nonnegative function η : H → R is said to be strongly p-convex if

η (tx+ (1− t) y) ≤ η (x) + η(y)− ct(1− t) |x− y|2

holds for all x, y ∈ H and all t ∈ [0, 1].

Definition 1.5. [5] A function η : H → [0,+∞) is said to be Godunova-Levin function if

η (tx+ (1− t) y) ≤ η(x)
t + η(y)

1−t

holds for all x, y ∈ H and t ∈ (0, 1).

Definition 1.6. [4] A function η : H → [0,+∞) is said to be strong Godunova-Levin function if

η (tx+ (1− t) y) ≤ η(x)
t + η(y)

1−t − ct(1− t) |x− y|
2

holds for all x, y ∈ H and all t ∈ (0, 1).

Definition 1.7. [6] A function η : H → [0,+∞) is said to be s-Godunova-Levin function, where
s ∈ [0, 1], if

η (tx+ (1− t) y) ≤ η(x)
ts + η(y)

(1−t)s

holds for all x, y ∈ H and all t ∈ (0, 1).

The most important inequality to study the error estimation for different numerical quadrature
rules is undoubtedly that known as the Ostrowski inequality which can be stated as follows:

Theorem 1.8. [7] Let η : U → R, where U ⊆ R is an interval, be a mapping, and e, g ∈ U◦, with
e < g. If |η′| ≤M for all x ∈ [e, g], then∣∣∣∣∣∣η(x)− 1

g−e

g∫
e

η (t) dt

∣∣∣∣∣∣ ≤M (g − a)

[
1

4
+

(x− e+g
2 )

2

(g−e)2

]
(1)

In recent decades, the inequality (1) has generated much interest from researchers, several papers
dealing with its generalizations and extensions has appeared, see [8–19], and references have been cited
therein.

In [20], Cerone and Dragomir have shown the following identity:

Lemma 1.9. [20] Let η : H ⊆ R→ R be a differentiable mapping on H
◦
, where e, g ∈ H with e < g.

If η′ ∈ L[e, g], then

η (υ)− 1
g−e

g∫
e

η (u) du = (x−e)2
g−e

1∫
0

tη′ (tυ + (1− t) a) dt− (g−x)2
g−e

1∫
0

tη′ (tυ + (1− t) g) dt

for each υ ∈ [e, g].

Based on the above lemma, they have established some Ostrowski-type inequalities via different
types of convexity. We cited the results therein.

Theorem 1.10. Let η : [a, b] → R be an absolutely continuous function on [a, b] and x ∈ [a, b]. If |η′|
is convex on [a, x] and [x, b], then∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
6

[(
x−a
b−a

)2 ∣∣η′ (a)
∣∣+
(
b−x
b−a

)2 ∣∣η′ (b)∣∣
+

(
1 + 2

(
x−a+b

2
b−a

)2
)∣∣η′ (x)

∣∣]
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In [21], Noor et al. have established the following Ostrowski-type inequalities for differential s-
Godunova-Levin functions.

Theorem 1.11. Let η : [a, b] → R be a differentiable mapping on (a, b) with a < b and η′ ∈ L ([a, b])
for all x ∈ [a, b]. If |η′| is s-Godunova-Levin function of the second kind and |η′| ≤ M , then the
following inequality holds, ∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ M((b−x)2+(x−a)2)
(b−a)(1−s)

Theorem 1.12. Let η : [a, b] → R be a differentiable mapping on (a, b) with a < b and η′ ∈ L ([a, b])
for all x ∈ [a, b]. If |η′|q is s-Godunova-Levin function of the second kind where q ≥ 1 and |η′| ≤ M ,
then the following inequality holds,∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ M((b−x)2+(x−a)2)

(b−a)(1−s)
1
q 21−q

Theorem 1.13. Let η : [a, b] → R be a differentiable mapping on (a, b) with a < b and η′ ∈ L ([a, b])
for all x ∈ [a, b]. If |η′|q is s-Godunova-Levin function of the second kind where q, p > 1 with 1

p + 1
q = 1

and |η′| ≤M , then the following inequality holds,∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ M((b−x)2+(x−a)2)

(b−a)(1−s)
1
q (p+1)

1
p

The last result is based on the Hölder inequality, which can be stated as follows:

Theorem 1.14. [22, Hölder Inequality for Integrals] Let p > 1 and 1
p + 1

q = 1. If f and g are real
functions defined on [e, g] and if |f |p, |g|q are integrable functions on [e, g], then

g∫
e

|f (u) g (u)| du ≤

 g∫
e

|f (u)|p du

 1
p
 g∫

e

|g (u)|q du

 1
q

with equality if and only if α |f (u)|p = β |g (u)|q almost everywhere for some constants α and β.

Motivated by the above and some other existing results, we establish some new Ostrowski-type
inequalities for functions whose derivatives in absolute values lie in a new class of convex functions
called strong s-Godunova-Levin functions.

2. Main Results

Definition 2.1. A function η : H → [0,+∞) is said to be strong s-Godunova-Levin functions with
modulus c > 0, where s ∈ [0, 1], if

η (tx+ (1− t) y) ≤ η(x)
ts + η(y)

(1−t)s − ct (1− t) |x− y|2

holds for all x, y ∈ H and all t ∈ (0, 1).

Remark 2.2. Clearly all strong s-Godunova-Levin functions is s-Godunova-Levin functions. More-
over, we note that Definition 2.1 recaptures all definitions cited above by fixing the value of s or by
tending c towards 0, with exception of Definitions 1 and 2.
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Theorem 2.3. Let η : [a, b]→ R be a differentiable mapping on (a, b), where a < b, and η′ ∈ L [a, b].
If |η′| is strong s-Godunova-Levin functions with modulus c > 0, where s ∈ [0, 1), then the following
inequality ∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

(
(1−s)|η′(x)|+|η′(a)|

(1−s)(2−s)

)
+ (b−x)2

b−a

(
(1−s)|η′(x)|+|η′(b)|

(1−s)(2−s)

)
− c

12

(
(b−x)4+(x−a)4

b−a

)
holds for all x ∈ [a, b].

Proof. From Lemma 1.9, modulus, and strong s-Godunova-Levin convexity of |η′|, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) a)

∣∣ dt+ (b−x)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) b)

∣∣ dt
≤ (x−a)2

b−a

1∫
0

t
(
|η′(x)|
ts + |η′(a)|

(1−t)s − ct (1− t) (x− a)2
)
dt

+ (b−x)2
b−a

1∫
0

t
(
|η′(x)|
ts + |η′(b)|

(1−t)s − ct (1− t) (b− x)2
)
dt

= (x−a)2
b−a

∣∣η′ (x)
∣∣ 1∫

0

t1−sdt+
∣∣η′ (a)

∣∣ 1∫
0

t (1− t)−s dt

− c (x− a)2
1∫
0

t2 (1− t) dt


+ (b−x)2

b−a

∣∣f ′ (x)
∣∣ 1∫

0

t1−sdt+
∣∣f ′ (b)∣∣ 1∫

0

t (1− t)−s dt

− c (b− x)2
1∫
0

t2 (1− t) dt


= (x−a)2

b−a

(
(1−s)|η′(x)|+|η′(a)|

(1−s)(2−s)

)
+ (b−x)2

b−a

(
(1−s)|η′(x)|+|η′(b)|

(1−s)(2−s)

)
− c

12

(
(b−x)4+(x−a)4

b−a

)
The proof is completed.

Corollary 2.4. In Theorem 2.3, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
4(1−s)(2−s)

(∣∣η′ (a)
∣∣+ 2 (1− s)

∣∣η′ (a+b2 )∣∣+
∣∣η′ (b)∣∣)− c(b−a)3

96

Corollary 2.5. In Theorem 2.3, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

(
(1−s)|η′(x)|+|η′(a)|

(1−s)(2−s)

)
+ (b−x)2

b−a

(
(1−s)|η′(x)|+|η′(b)|

(1−s)(2−s)

)
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Moreover, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
4(1−s)(2−s)

(∣∣f ′ (a)
∣∣+ 2 (1− s)

∣∣f ′ (a+b2 )∣∣+
∣∣f ′ (b)∣∣)

Remark 2.6. In Corollary 2.5, if we assume that |η′ (u)| ≤ M , then the first inequality recaptures
Corollary 3.1 from [21].

Corollary 2.7. In Theorem 2.3, if we take s = 0, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

(
|η′(x)|+|η′(a)|

2

)
+ (b−x)2

b−a

(
|η′(x)|+|η′(b)|

2

)
− c

12

(
(b−x)4+(x−a)4

b−a

)
Moreover, if we choose x = a+b

2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
8

(∣∣η′ (a)
∣∣+ 2

∣∣η′ (a+b2 )∣∣+
∣∣η′ (b)∣∣− c(b−a)2

12

)
Corollary 2.8. In Corollary 2.7, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

(
|η′(x)|+|η′(a)|

2

)
+ (b−x)2

b−a

(
|η′(x)|+|η′(b)|

2

)
Moreover, if we choose x = a+b

2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
8

(∣∣η′ (a)
∣∣+ 2

∣∣η′ (a+b2 )∣∣+
∣∣η′ (b)∣∣)

Theorem 2.9. Let η : [a, b] → R be a differentiable mapping on (a, b) with a < b, and η′ ∈ L [a, b].
If |η′|q is strong s-Godunova-Levin functions with modulus c > 0, where s ∈ [0, 1) and q > 1 with
1
p + 1

q = 1, then the following inequality∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
(p+1)

1
p

((
x−a
b−a

)2 ( |η′(x)|q+|η′(a)|q
1−s − c

6 (x− a)2
) 1

q

+
(
b−x
b−a

)2 ( |η′(x)|q+|η′(b)|q
1−s − c

6 (b− x)2
) 1

q

)
holds for all x ∈ [a, b].

Proof. From Lemma 1.9, properties of modulus, and Hölder inequality, we have∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) a)

∣∣ dt+ (b−x)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) b)

∣∣ dt
≤ (x−a)2

b−a

 1∫
0

tpdt


1
p
 1∫

0

∣∣η′ (tx+ (1− t) a)
∣∣q dt


1
q

+ (b−x)2
b−a

 1∫
0

tpdt


1
p
 1∫

0

∣∣η′ (tx+ (1− t) b)
∣∣q dt


1
q
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≤ 1

(p+1)
1
p

 (x−a)2
b−a

 1∫
0

∣∣η′ (tx+ (1− t) a)
∣∣q dt


1
q

+ (b−x)2
b−a

 1∫
0

∣∣η′ (tx+ (1− t) b)
∣∣q dt


1
q


≤ 1

(p+1)
1
p

 (x−a)2
b−a

 1∫
0

(
|η′(x)|q
ts + |η′(a)|q

(1−t)s − ct (1− t) (x− a)2
)
dt


1
q

+ (b−x)2
b−a

 1∫
0

(
|η′(x)|q
ts + |η′(b)|q

(1−t)s − ct (1− t) (b− x)2
)
dt


1
q


= 1

(p+1)
1
p

 (x−a)2
b−a

∣∣η′ (x)
∣∣q 1∫

0

t−sdt+
∣∣η′ (a)

∣∣q 1∫
0

(1− t)−s dt

− c (x− a)2
1∫
0

t (1− t) dt


1
q

+ (b−x)2
b−a

∣∣η′ (x)
∣∣q 1∫

0

t−sdt+
∣∣η′ (b)∣∣q 1∫

0

(1− t)−s dt

− c (b− x)2
1∫
0

t (1− t) dt


1
q


= b−a

(p+1)
1
p

((
x−a
b−a

)2 ( |η′(x)|q+|η′(a)|q
1−s − c

6 (x− a)2
) 1

q

+
(
b−x
b−a

)2 ( |η′(x)|q+|η′(b)|q
1−s − c

6 (b− x)2
) 1

q

)
The proof is completed.

Corollary 2.10. In Theorem 2.9, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
4(p+1)

1
p

((
|η′(a)|q+|η′(a+b

2 )|q
1−s − c(b−a)2

24

) 1
q

+

(
|η′(a+b

2 )|q+|η′(b)|q
1−s − c(b−a)2

24

) 1
q

)
Corollary 2.11. In Theorem 2.9, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
(p+1)

1
p

((
x−a
b−a

)2 ( |η′(x)|q+|η′(a)|q
1−s

) 1
q

+
(
b−x
b−a

)2 ( |η′(x)|q+|η′(b)|q
1−s

) 1
q

)
Moreover, if we choose x = a+b

2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
4(p+1)

1
p

((
|η′(a+b

2 )|q+|η′(a)|q
1−s

) 1
q

+

(
|η′(a+b

2 )|q+|η′(b)|q
1−s

) 1
q

)
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Remark 2.12. In Corollary 2.11, if we assume that |η′ (u)| ≤M , then the first inequality gives∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
(p+1)

1
p

(
2

1−s

) 1
q

((
x−a
b−a

)2
+
(
b−x
b−a

)2)
M,

which is the correct result of Corollary 3.2 from [21].

Corollary 2.13. In Theorem 2.9, if we take s = 0, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
(p+1)

1
p

((
x−a
b−a

)2 (∣∣η′ (x)
∣∣q +

∣∣η′ (a)
∣∣q − c

6 (x− a)2
) 1

q

+
(
b−x
b−a

)2 (∣∣η′ (x)
∣∣q +

∣∣η′ (b)∣∣q − c
6 (b− x)2

) 1
q

)
Moreover, if we choose x = a+b

2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (b−a)2

4(p+1)
1
p

((∣∣η′ (a+b2 )∣∣q +
∣∣η′ (a)

∣∣q − c(b−a)2
24

) 1
q

+
(∣∣η′ (a+b2 )∣∣q +

∣∣η′ (b)∣∣q − c(b−a)2
24

) 1
q

)
Corollary 2.14. In Corollary 2.13, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
(p+1)

1
p

((
x−a
b−a

)2 (∣∣η′ (x)
∣∣q +

∣∣η′ (a)
∣∣q) 1

q

+
(
b−x
b−a

)2 (∣∣η′ (x)
∣∣q +

∣∣η′ (b)∣∣q) 1
q

)
Moreover, if we choose x = a+b

2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (b−a)2

4(p+1)
1
p

((∣∣η′ (a+b2 )∣∣q +
∣∣η′ (a)

∣∣q) 1
q

+
(∣∣η′ (a+b2 )∣∣q +

∣∣η′ (b)∣∣q) 1
q

)

Theorem 2.15. Let η : [a, b]→ R be a differentiable mapping on (a, b) where a < b, and η′ ∈ L [a, b].
If |η′|q strong s-Godunova-Levin functions with modulus c > 0, where s ∈ [0, 1) and q > 1, then we
have ∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(a)|q

(1−s)(2−s) − c(x−a)2
12

) 1
q

+ (b−x)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(b)|q

(1−s)(2−s) − c(b−x)2
12

) 1
q

for all x ∈ [a, b].

Proof. From Lemma 1.9, properties of modulus, and power mean inequality, we get∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) a)

∣∣ dt+ (b−x)2
b−a

1∫
0

t
∣∣η′ (tx+ (1− t) b)

∣∣ dt
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≤ (x−a)2
b−a

 1∫
0

tdt

1− 1
q
 1∫

0

t
∣∣η′ (tx+ (1− t) a)

∣∣q dt


1
q

+ (b−x)2
b−a

 1∫
0

tdt

1− 1
q
 1∫

0

t
∣∣η′ (tx+ (1− t) b)

∣∣q dt


1
q

= (x−a)2

(b−a)21−
1
q

 1∫
0

t
∣∣η′ (tx+ (1− t) a)

∣∣q dt


1
q

+ (b−x)2

(b−a)21−
1
q

 1∫
0

t
∣∣η′ (tx+ (1− t) b)

∣∣q dt


1
q

≤ (x−a)2

2
1− 1

q (b−a)

 1∫
0

t
(
|η′(x)|q
ts + |η′(a)|q

(1−t)s − ct (1− t) (x− a)2
)
dt


1
q

+ (b−x)2

2
1− 1

q (b−a)

 1∫
0

t
(
|η′(x)|q
ts + |η′(b)|q

(1−t)s − ct (1− t) (b− x)2
)
dt


1
q

= (x−a)2

(b−a)21−
1
q

∣∣η′ (x)
∣∣q 1∫

0

t1−sdt+
∣∣η′ (a)

∣∣q 1∫
0

t (1− t)−s dt

− c (x− a)2
1∫
0

t2 (1− t) dt


1
q

+ (b−x)2

2
1− 1

q (b−a)

∣∣η′ (x)
∣∣q 1∫

0

t1−sdt+
∣∣η′ (b)∣∣q 1∫

0

t (1− t)−s dt

− c (b− x)2
1∫
0

t2 (1− t) dt


1
q

= (x−a)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(a)|q

(1−s)(2−s) − c(x−a)2
12

) 1
q

+ (b−x)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(b)|q

(1−s)(2−s) − c(b−x)2
12

) 1
q

The proof is completed.

Corollary 2.16. In Theorem 2.15, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
2
3− 1

q

(
(1−s)|η′(a+b

2 )|q+|η′(a)|q
(1−s)(2−s) − c(b−a)2

48

) 1
q

+ b−a
2
3− 1

q

(
(1−s)|η′(a+b

2 )|q+|η′(b)|q
(1−s)(2−s) − c(b−a)2

48

) 1
q
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Corollary 2.17. In Theorem 2.15, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(a)|q

(1−s)(2−s)

) 1
q

+ (b−x)2

2
1− 1

q (b−a)

(
(1−s)|η′(x)|q+|η′(b)|q

(1−s)(2−s)

) 1
q

Moreover, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
2
3− 1

q

((
(1−s)|η′(a+b

2 )|q+|η′(b)|q
(1−s)(2−s)

) 1
q

+

(
(1−s)|η′(a+b

2 )|q+|η′(a)|q
(1−s)(2−s)

) 1
q

)

Remark 2.18. In Corollary 2.17, if we assume that |η′ (u)| ≤M , then the first inequality recaptures
Corollary 3.3 from [21].

Corollary 2.19. In Theorem 2.15, if we take s = 0, we obtain∣∣∣∣∣∣η (x)− 1
b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
2(b−a)

(∣∣η′ (x)
∣∣q +

∣∣η′ (a)
∣∣q − c(x−a)2

6

) 1
q

+ (b−x)2
2(b−a)

(∣∣η′ (x)
∣∣q +

∣∣η′ (b)∣∣q − c(b−x)2
6

) 1
q

Moreover, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
8

((∣∣η′ (a+b2 )∣∣q +
∣∣η′ (a)

∣∣q − c(b−a)2
24

) 1
q

+
(∣∣η′ (a+b2 )∣∣q +

∣∣η′ (b)∣∣q − c(b−a)2
24

) 1
q

)
Corollary 2.20. In Corollary 2.19, if we tend c to 0, i.e. c→ 0+, we obtain∣∣∣∣∣∣η (x)− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ (x−a)2
2(b−a)

(∣∣η′ (x)
∣∣q +

∣∣η′ (a)
∣∣q) 1

q + (b−x)2
2(b−a)

(∣∣η′ (x)
∣∣q +

∣∣η′ (b)∣∣q) 1
q

Moreover, if we choose x = a+b
2 , we obtain∣∣∣∣∣∣η (a+b2 )− 1

b−a

b∫
a

η (u) du

∣∣∣∣∣∣ ≤ b−a
8

((∣∣η′ (a+b2 )∣∣q +
∣∣η′ (a)

∣∣q) 1
q

+
(∣∣η′ (a+b2 )∣∣q +

∣∣η′ (b)∣∣q) 1
q

)

3. Conclusion

Ostrowski-type inequalities are of great importance when studying the error estimation for different
numerical quadrature rules. It suffices to take for example x = (a+ b)/2, and we obtain the rule of
midpoint or fix some values of x and use the triangular inequality to estimate the error of the Simpson
rule and the Trapezoidal rule. In this study, we introduce the concept of strong s-Godunova-Levin
functions and established new Ostrowski-type inequalities for this new class of functions and their
associated corollaries. The results obtained generalize those of [22].
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[3] S. S. Dragomir, J. E. Pečarić, L. E. Persson, Some Inequalities of Hadamard Type, Soochow
Journal of Mathematics 21(3) (1995) 335–341.

[4] H. Angulo, J. Gimenez, A. M. Moros, K. Nikodem, On Strongly h-convex Functions, Annals of
Functional Analysis 2(2) (2011) 85–91.

[5] E. K. Godunova, V. I. Levin, Inequalities for Functions of A Broad Class That Contains Convex,
Monotone and Some Other Forms of Functions, (Russian) Numerical Mathematics and Mathe-
matical Physics (Russian) 138–142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.

[6] S. S. Dragomir, Nequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces,
Proyecciones 34(4) (2015) 323–341.
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Abstract − In this study, new formulas for the 𝑛th power of (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal 

Lucas special matrix sequences are established by using determinant and trace of the matrices. By these 

formulas, some identities for (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are obtained. The 

formulas for finding the 𝑛th power for classic Jacobsthal and Jacobsthal Lucas matrix sequences are 

also derivable if we choose 𝑠 = 𝑡 = 1.  

Keywords − Jacobsthal numbers, recurrence relations, special matrices 

Mathematics Subject Classification (2020) – 11B37, 11C20 

1. Introduction 

In the literature, the researchers investigated the 𝑛th power of the matrices by different methods. In [1], 

Williams studied the 𝑛th power of a 2 × 2 matrix. Laughlin found identities deriving from the 𝑛th power of 

some matrices in [2,3]. Belbachir investigated linear recurrent sequences and powers of a square matrix in [4]. 

There are certainly new developments on special integer and matrix sequences by constructing recurrence 

relation. In [5], the authors studied sums and products for recurring sequences. Halıcı and Akyuz derived 

combinatorial identities by using the trace, the determinant and the 𝑛th power of a special matrix whose entries 

are Horadam numbers [6,7]. Among these integer sequences, the Jacobsthal and Jacobsthal Lucas numbers 

have been studied extensively in the last decade years in [8-12]. The Jacobsthal numbers 𝑗𝑛 are terms of the 

sequence {0,1,1,3,5,11, ⋯ }, defined by the recurrence relation, 𝑗𝑛 = 𝑗𝑛−1 + 2𝑗𝑛−2, for 𝑛 ≥ 2, beginning with 

the values 𝑗0 = 0, 𝑗1 = 1. The Jacobsthal Lucas numbers 𝑐𝑛 are the terms of the sequence {2,1,5,7,17, ⋯ }, 

defined by the recurrence relation, 𝑐𝑛 = 𝑐𝑛−1 + 2𝑐𝑛−2, for 𝑛 ≥ 2, beginning with the values 𝑐0 = 2 and 𝑐1 =

1 in [13]. (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are defined by using the following recurrence 

relation, 

𝑗𝑛(𝑠, 𝑡) = 𝑠𝑗𝑛−1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−2 (𝑠, 𝑡)      ( 𝑗0(𝑠, 𝑡) = 0  and  𝑗1(𝑠, 𝑡) = 1) (1) 

and  

𝑐𝑛(𝑠, 𝑡) = 𝑐𝑛−1(𝑠, 𝑡) + 2𝑐𝑛−2 (𝑠, 𝑡)      (𝑐0(𝑠, 𝑡) = 2  and  𝑐1(𝑠, 𝑡) = 1)  

where 𝑠 > 0, 𝑡 ≠ 0 and 𝑠2 + 8𝑡 > 0 [8]. 
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The Binet formula enables us to state (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas number easily. It can 

be clearly obtained from the roots 𝑟1 and 𝑟2 of the characteristic equation as the form 𝑥2 = 𝑠𝑥 + 2𝑡, where 

 𝑟1 =
𝑠 + √𝑠2 + 8𝑡

2
  and  𝑟2 =

𝑠 − √𝑠2 + 8𝑡

2
  

The Binet formula for (𝑠, 𝑡)-Jacobsthal numbers and (𝑠, 𝑡)-Jacobsthal Lucas numbers are given, 

respectively, by 

𝑗𝑛(𝑠, 𝑡) =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
  and  𝑐𝑛(𝑠, 𝑡) = 𝑟1

𝑛 + 𝑟2
𝑛 

In [9], for any integer 𝑛 ≥ 1, (𝑠, 𝑡)-Jacobsthal matrix sequence is defined as 

𝐽𝑛(𝑠, 𝑡) = 𝑠 𝐽𝑛−1(𝑠, 𝑡) + 2𝑡 𝐽𝑛−2 (𝑠, 𝑡) (2) 

with initial conditions 𝐽0 = ( 
1 0 
0 1

)  and  𝐽1 = ( 
𝑠 2 
𝑡 0

) and (𝑠, 𝑡)-Jacobsthal Lucas matrix sequence is 

defined as 

𝐶𝑛(𝑠, 𝑡) = 𝑠 𝐶𝑛−1(𝑠, 𝑡) + 2𝑡 𝐶𝑛−2 (𝑠, 𝑡) 
(3) 

with initial conditions 𝐶0 = ( 
𝑠 4 

2𝑡 −𝑠
)   and  𝐶1 = ( 𝑠

2 + 4𝑡 2𝑠 
𝑠𝑡 4𝑡

). Some important properties for (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas matrix sequences are given as in [9] 

a) 𝐽𝑛 = ( 
𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡 𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)  

b) 𝐶𝑛 = ( 
𝑐𝑛+1(𝑠, 𝑡) 2𝑐𝑛(𝑠, 𝑡)

𝑡 𝑐𝑛(𝑠, 𝑡) 2𝑡𝑐𝑛−1(𝑠, 𝑡)
)  

c) 𝐽𝑚+𝑛 =  𝐽𝑚 𝐽𝑛 

d) 𝐽𝑛 = 𝐽1
𝑛 

e) 𝐶𝑛+1 = 𝐶1 𝐽𝑛 

2. The 𝒏th Power of Generalized (𝒔, 𝒕)-Jacobsthal and (𝒔, 𝒕)-Jacobsthal Lucas Matrix 

Sequences and Some Combinatorial Properties 

In [1], Williams gave a well-known formula for any integer 𝑛 ≥ 1, if 𝐴 =  [
𝑎 𝑏
𝑐 𝑑

], then 

𝐴𝑛 =  {

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
𝐴 −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2,                         𝑟1 ≠ 𝑟2

𝑛𝑟𝑛−1𝐴 − (𝑛 − 1) det(𝐴) 𝑟𝑛−2𝐼2,                    𝑟1 = 𝑟2

 (4) 

where 𝑟1, 𝑟2 being the roots of the associated characteristic equation 𝑟2 − (𝑎 + 𝑑)𝑟 + det(𝐴) = 0 of the matrix 

𝐴 and 𝐼2 is the identity matrix 2 × 2. 

Corollary 1. For any integer 𝑛 ≥ 1, the 𝑛th power of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) are 

𝐽1
𝑛(𝑠, 𝑡)  =

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
 ( 

𝑠 2 
𝑡 0

) −
𝑟1

𝑛−1 − 𝑟2
𝑛−1

𝑟1 − 𝑟2
𝐼2 (5) 

where 𝑟1 =
𝑠+√𝑠2+8𝑡

2
 and 𝑟2 =

𝑠−√𝑠2+8𝑡

2
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𝐶1
𝑛(𝑠, 𝑡)  =

𝑠1
𝑛 − 𝑠2

𝑛

𝑠1 − 𝑠2
 ( 𝑠

2 + 4𝑡 2𝑠 
𝑠𝑡 4𝑡

) −
𝑠1

𝑛−1 − 𝑠2
𝑛−1

𝑠1 − 𝑠2
𝐼2 (6) 

where 𝑠1 =
𝑠2+8𝑡+𝑠√𝑠2+8𝑡

2
 and 𝑠2 =

𝑠2+8𝑡−𝑠√𝑠2+8𝑡

2
. 

If we choose 𝑠 = 𝑡 = 1 in (5) and (6), we get the 𝑛th power of classic Jacobsthal and Jacobsthal Lucas 

matrix sequences: 

( 
1 2 
1 0

)
𝑛

=  
2𝑛 − (−1)𝑛

3
( 

1 2 
1 0

) −
2𝑛−1 − (−1)𝑛−1

3
𝐼2  

and 

( 
5 2 
1 4

)
𝑛

=  
2𝑛 − (−1)𝑛

3
( 

5 2 
1 4

) −
2𝑛−1 − (−1)𝑛−1

3
𝐼2  

 

PROOF. The proof is obtained by using the eigenvalues of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) and (2), (3), (4).                        □     

Corollary 2. For any integer 𝑛 ≥ 1, the determinants of 𝐽1
𝑛(𝑠, 𝑡) and 𝐶1

𝑛(𝑠, 𝑡) are 

det( 𝐽1
𝑛(𝑠, 𝑡)) = (−2𝑡)𝑛  and det(𝐶1

𝑛(𝑠, 𝑡)) = (2𝑡)𝑛(𝑠2 + 8𝑡)𝑛 

PROOF. By using the property of the determinant of a matrix is the product of eigenvalues of this matrix, we get 

the determinant of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) is −2𝑡 and (2𝑡)( 𝑠2 + 8𝑡), respectively. The determinant of the 𝑛th 

power of a matrix is the 𝑛th power of the product of the eigenvalues. So, the results are easily seen.                    

□ 

If we choose 𝑠 = 𝑡 = 1, we get classic Jacobsthal and Jacobsthal Lucas matrix sequences, and the 

determinant of them are obtained as  

det( 𝐽1
𝑛) = (−2)𝑛 ,  det( 𝐶1

𝑛 ) = (18)𝑛  

Laughlin, in [2,3] gave if 𝐴 is a 2 × 2 matrix as 𝐴 =  ( 
𝑎 𝑏
𝑐 𝑑

 ) then the 𝑛th power of 𝐴 is given by 

𝐴𝑛 = ( 
𝑥𝑛 − 𝑑𝑥𝑛−1 𝑏𝑥𝑛−1

𝑐𝑥𝑛−1 𝑥𝑛 − 𝑎𝑥𝑛−1
 ) (7) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑇𝑛−2𝑖(−𝐷)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 𝑇 is the trace of 𝐴, and D is the determinant of 𝐴. 

Corollary 3. The 𝑛th power of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) are 

𝐽1
𝑛(𝑠, 𝑡) = ( 

𝑥𝑛 2𝑥𝑛−1

𝑡𝑥𝑛−1 𝑥𝑛 − 𝑠𝑥𝑛−1
 ) (8) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 and 

𝐶1
𝑛(𝑠, 𝑡) =  ( 

𝑦𝑛 − 4𝑡 𝑦𝑛−1 2𝑠 𝑦𝑛−1

𝑠𝑡 𝑦𝑛−1 𝑦𝑛 − (𝑠2 + 4𝑡) 𝑦𝑛−1
 ) (9) 

such that 𝑦𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) (𝑠2 + 4𝑡)𝑛−𝑖(2𝑡)𝑖

⌊
𝑛

2
⌋

𝑖=0
. 

If we choose 𝑠 = 𝑡 = 1 in (8) and (9), we get the 𝑛th power of classic Jacobsthal and Jacobsthal Lucas 

matrix sequences, 
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( 
1 2 
1 0

)
𝑛

= ( 
𝑥𝑛 2𝑥𝑛−1

𝑥𝑛−1 𝑥𝑛 − 𝑥𝑛−1
 ) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) (2)𝑖 

⌊
𝑛

2
⌋

𝑖=0
 and 

( 
5 2 
1 4

)
𝑛

= ( 
𝑦𝑛 − 4 𝑦𝑛−1 2 𝑦𝑛−1

 𝑦𝑛−1 𝑦𝑛 − 5 𝑦𝑛−1
 ) 

such that 𝑦𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝔤𝑛−𝑖2𝑖.
 

⌊
𝑛

2
⌋

𝑖=0
 

PROOF. The proof is obtained by (2), (3), and (7).                         □ 

Corollary 4. The 𝑛th element of (𝑠, 𝑡)-Jacobsthal Lucas matrix sequence is given as 

𝐶𝑛(𝑠, 𝑡) =  𝐶1(𝑠, 𝑡)𝐽𝑛−1(𝑠, 𝑡) = ( 
(𝑠2 + 4𝑡)𝑥𝑛−1 + 2𝑠𝑡 𝑥𝑛−2 2(𝑠 𝑥𝑛−1 + 4𝑡 𝑥𝑛−2)

𝑡(𝑠 𝑥𝑛−1 + 4𝑡  𝑥𝑛−2) 2𝑡(𝑥𝑛−1 − 𝑠 𝑥𝑛−2)
 ) 

or 

𝐶𝑛(𝑠, 𝑡) =  𝑠 𝐽𝑛(𝑠, 𝑡) + 4𝑡 𝐽𝑛−1(𝑠, 𝑡) = ( 
𝑠 𝑥𝑛 + 4𝑡  𝑥𝑛−1 2(𝑠 𝑥𝑛−1 + 4𝑡 𝑥𝑛−2)

𝑡(𝑠 𝑥𝑛−1 + 4𝑡  𝑥𝑛−2)  𝑥𝑛 − 𝑠 𝑥𝑛−1+ 4𝑡(𝑥𝑛−1 − 𝑠 𝑥𝑛−2)
 ) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 for any integer 𝑛 ≥ 1. 

PROOF. By (d, e), (2-3), (7), the proofs are easily obtained.                         □           

Theorem 5. For any integer 𝑛 ≥ 1, the following property is satisfied, 

∑ (
𝑛 − 𝑖

𝑖
) 

𝑛 − 𝑖

𝑖
𝑠𝑛−2𝑖(2𝑡)𝑖 =  

1

2𝑛−1
 ∑ (

𝑛
2𝑖

) 𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖

⌊
𝑛
2

⌋

𝑖=0

 

⌊
𝑛
2

⌋

𝑖=0

      (10) 

PROOF. The eigenvalues of 𝐽1(𝑠, 𝑡) are 𝑟1 =
𝑠+√𝑠2+8𝑡

2
 and 𝑟2 =

𝑠−√𝑠2+8𝑡

2
. The eigenvalues of 𝐽1

𝑛(𝑠, 𝑡) are 𝑟1
𝑛 

and 𝑟2
𝑛. By using (8), it is obtained that 𝐽1

𝑛(𝑠, 𝑡) = ( 
𝑥𝑛 2𝑥𝑛−1

𝑡𝑥𝑛−1 𝑥𝑛 − 𝑠𝑥𝑛−1
 ). The trace of 𝐽1

𝑛(𝑠, 𝑡) is 

tr(𝐽1
𝑛(𝑠, 𝑡)) =2𝑥𝑛- s𝑥𝑛−1. Because the sum of the eigenvalues is equal to the trace of the matrix, 𝑟1

𝑛 + 𝑟2
𝑛 = 

2𝑥𝑛 − 𝑠𝑥𝑛−1 

2𝑥𝑛 − 𝑠 𝑥𝑛−1 = 2 ∑ (
𝑛 − 𝑖

𝑖
)

⌊
𝑛
2

⌋

𝑖=0

 𝑇𝑛−2𝑖 (−𝐷)𝑖 − 𝑠 ∑ (
𝑛 − 1 − 𝑖

𝑖
)

⌊
𝑛−1

2
⌋

𝑖=0

 𝑇𝑛−1−2𝑖 (−𝐷)𝑖 

=  ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖 (

𝑖

𝑛 − 𝑖
)                                

  

⌊
𝑛
2

⌋

𝑖=0

 

By binomial expansion 

𝑟1
𝑛 + 𝑟2

𝑛 =  (
𝑠 + √𝑠2 + 8𝑡

2
 )

𝑛

+ (
𝑠 − √𝑠2 + 8𝑡

2
 )

𝑛

 

          =  
1

2𝑛−1
∑ ( 

𝑛
2𝑖

 )  𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖 
  

⌊
𝑛
2

⌋

𝑖=0

  

The equality of the results completes the proof.                          □ 
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If we choose 𝑠 = 𝑡 = 1 in (10), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix 

sequences as 

    ∑ (
𝑛 − 𝑖

𝑖
)

𝑛

𝑛 − 𝑖
 2𝑖 =

1

2𝑛−1
∑ ( 

𝑛
2𝑖

 ) 9𝑖 
 

⌊
𝑛
2

⌋

𝑖=0

⌊
𝑛
2

⌋

𝑖=0

 

By the Binet formula of (𝑠, 𝑡)-Jacobsthal Lucas sequence, the following is obtained, 

 𝑐𝑛(𝑠, 𝑡) =  
1

2𝑛−1
∑ ( 

𝑛
2𝑖

 ) 𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖

  

⌊
𝑛
2

⌋

𝑖=0

 

 and 

𝑐𝑛(𝑠, 𝑡) =  
1

2𝑛−1
∑ ( 

𝑛 − 𝑖
𝑖

 ) 
𝑛

𝑛 − 𝑖
 𝑠𝑛−2𝑖(2𝑡)𝑖 

  

⌊
𝑛
2

⌋

𝑖=0

 

Corollary 6. The 𝑛th element of Jacobsthal matrix sequence is also demonstrated by using the elements of 

(𝑠, 𝑡)-Jacobsthal sequences, 

𝐽𝑛(𝑠, 𝑡) = 𝑗𝑛(𝑠, 𝑡) 𝐽1 −  𝑗𝑛−1 (𝑠, 𝑡) 𝐼2 (11) 

PROOF. By (a, d) and Binet formulas, we get 

𝐽𝑛(𝑠, 𝑡) = ( 
 𝑗𝑛−1(s, t) 2 𝑗𝑛(s, t)

𝑡 𝑗𝑛(s, t) 2𝑡  𝑗𝑛−1(s, t)
 ) = 𝐽1

𝑛(𝑠, 𝑡) 

          =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
𝐽1(𝑠, 𝑡)  −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2 

  =  𝑗𝑛(s, t) 𝐽1(𝑠, 𝑡) −  𝑗𝑛−1 (s, t) 𝐼2                                                                   □ 

If we choose 𝑠 = 𝑡 = 1 in (11), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix 

sequences as 

𝐽𝑛 =  𝑗𝑛−1 ( 
1 2 
1 0

) −  𝑗𝑛−1  𝐼2 

By binomial expansion, the following is derived, 

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
=

1

√𝑠2 + 8𝑡
 [(

𝑠 + √𝑠2 + 8𝑡

2
 )

𝑛

− (
𝑠 − √𝑠2 + 8𝑡

2
 )

𝑛

] =
1

2𝑛−1
∑ ( 

𝑛
2𝑖 + 1

 ) 𝑠𝑛−2𝑖−1 (𝑠2 + 8𝑡)𝑖

 

⌊
𝑛−1

2
⌋

𝑖=0

 

and 

 𝐽𝑛(𝑠, 𝑡) =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
𝐽1(𝑠, 𝑡)  −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2                     

                =
1

2𝑛−1
∑ ( 

𝑛
2𝑖 + 1

 ) 𝑠𝑛−1−2𝑖 (𝑠2 + 8𝑡)𝑖𝐽1(𝑠, 𝑡)
 

⌊
𝑛−1

2
⌋

𝑖=0

 

       −
1

2𝑛−2
∑ ( 

𝑛 − 1
2𝑖 + 1

 )  𝑠𝑛−2−2𝑖 (𝑠2 + 8𝑡)𝑖

 

⌊
𝑛−2

2
⌋

𝑖=0

𝐼2 
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Lemma 7. In [2], for all 𝑔 𝜖 ℝ or ℤ, for any integer  𝑛 ≥ 1, if 

𝐴 =  
1

𝑔2 + 𝑇𝑔 + 𝐷
(𝐴 + 𝑔𝐼)(𝑔𝐴 + 𝐷𝐼) (12) 

then 

𝐴𝑛 = (
𝑔𝐷

𝑔2 + 𝑇𝑔 + 𝐷
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) (

𝐷

𝑔2
 )

𝑖

 (
𝑔

𝐷
 )

𝑟

𝐴𝑟

𝑟

𝑖=0

2𝑛

𝑟=0

 (13) 

Corollary 8. For all 𝑔 𝜖 ℝ or ℤ, for any integer 𝑛 ≥ 1, 

𝐽1
𝑛(𝑠, 𝑡) = (

−2𝑡𝑔

𝑔2 + 𝑠𝑔 − 2𝑡
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) ( 

(−2𝑡 )𝑖−𝑟

𝑔2𝑖−𝑟
 ) 𝐽1

𝑟 

𝑟

𝑖=0

2𝑛

𝑟=0

(𝑠, 𝑡) 

and 

𝐶1
𝑛(𝑠, 𝑡) = (

2𝑡(𝑠2 + 8𝑡)𝑔

𝑔2 + (𝑠2 + 8𝑡)𝑔 + 2𝑡(𝑠2 + 8𝑡)
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) ( 

(2𝑡(𝑠2 + 8𝑡) )𝑖−𝑟

𝑔2𝑖−𝑟
 ) 𝐶1

𝑟(𝑠, 𝑡) 

𝑟

𝑖=0

2𝑛

𝑟=0

 

Example 9. If 𝑠 = 𝑡 = 1, we get classic the Jacobsthal and Jacobsthal Lucas matrix sequences. For 𝑛 = 4, the 

following is obtained, 

𝐽1
4 = ( 

𝐽5 2𝐽4 
𝐽4 2𝐽3

) = (
−2𝑡𝑔

𝑔2 + 𝑔 − 2
 )

4

∑ ∑ ( 
4
𝑖

 ) ( 
4

𝑟 − 𝑖
 ) (−2)𝑖−𝑟𝑔𝑟−2𝑖  ( 

1 2 
1 0

)

𝑟

𝑖=0

𝑠

𝑟=0

 

and 

𝐶1
4 = ( 

𝑐5 2𝑐4 
𝑐4 2𝑐3

) = (
18𝑔

𝑔2 + 9𝑔 + 18
 )

4

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) (

18𝑖−𝑟

𝑔𝑟−2𝑖
) ( 

5 2 
1 4

)
𝑟

 

𝑟

𝑖=0

2𝑛

𝑟=0

 

Theorem 10. For any integer 𝑛 ≥ 1, 

 𝑗𝑛𝑘(s, t) =  𝑗𝑛(s, t) ∑ ( 
𝑘 − 1 − 𝑖

𝑖
 ) 𝑐𝑛

𝑘−1−2𝑖(s, t) (2𝑡)𝑖𝑛

 

⌊
𝑘−1

2
⌋

𝑖=0

 

(14) 

PROOF. By using the property 𝑗𝑛+1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−1(𝑠, 𝑡) =  𝑐𝑛(𝑠, 𝑡) and the Binet formula of (s, t)-Jacobsthal 

sequence, the following is obtained, 

(𝐽1
𝑛)𝑘 =  𝐽1

𝑛𝑘
= 𝐽𝑛𝑘 = ( 

𝑗𝑛𝑘+1(𝑠, 𝑡) 2𝑗𝑛𝑘(𝑠, 𝑡)

𝑡𝑗𝑛𝑘(𝑠, 𝑡) 2𝑡𝑗𝑛𝑘−1(𝑠, 𝑡)
) 

(𝐽1
𝑛)𝑘 =  (𝐽𝑛)𝑘 = ( 

𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)

𝑘

 

                                                                   = ( 
𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1 2𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1

𝑡𝑗𝑛𝑘(𝑠, 𝑡)𝑥𝑘−1 𝑥𝑘 − 𝑗𝑛+1(𝑠, 𝑡)𝑥𝑘−1
) 

where 

𝑥𝑘 = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  𝑇𝑘−2𝑖 (−𝐷)𝑖 
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                                                         = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  [
(𝑗𝑛+1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−1(𝑠, 𝑡))

𝑘−2𝑖

( 2𝑡 (𝑗𝑛+1(𝑠, 𝑡) 𝑗𝑛−1(𝑠, 𝑡) −  𝑗𝑛
2(𝑠, 𝑡))𝑖

] 

                    = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−2𝑡)𝑖𝑛 

By the equality of the matrices, the proof is completed.            □ 

Theorem 11. 

𝑗𝑛𝑘+𝑟(𝑠, 𝑡) = ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛(𝑠, 𝑡))
𝑘−2𝑖

(−2𝑡)𝑖𝑛 [𝑗𝑟(𝑠, 𝑡) +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2𝑡)𝑟 𝑗𝑛−1(𝑠, 𝑡)

𝑐𝑛(𝑠, 𝑡)
] 

(15) 

PROOF. By using (a), (10) and [9], we get 

𝐽1
𝑛(𝑠, 𝑡) = ( 

𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
) 

Then, 

𝐽1
𝑛𝑘+𝑟

(𝑠, 𝑡) = ( 
𝑗𝑛𝑘+𝑟+1(𝑠, 𝑡) 2𝑗𝑛𝑘+𝑟(𝑠, 𝑡)

𝑡𝑗𝑛𝑘+𝑟(𝑠, 𝑡) 2𝑡𝑗𝑛𝑘+𝑟−1(𝑠, 𝑡)
) 

and 

𝐽1
𝑛𝑘+𝑟

(𝑠, 𝑡) = (
𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)

𝑘

(
𝑗𝑟+1(𝑠, 𝑡) 2𝑗𝑟(𝑠, 𝑡)

𝑡𝑗𝑟(𝑠, 𝑡) 2𝑡𝑗𝑟−1(𝑠, 𝑡)
)      

                  = ( 
𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1 2𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1

𝑡𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1 𝑥𝑘 − 𝑗𝑛+1(𝑠, 𝑡)𝑥𝑘−1
) (

𝑗𝑟+1(𝑠, 𝑡) 2𝑗𝑟(𝑠, 𝑡)

𝑡𝑗𝑟(𝑠, 𝑡) 2𝑡𝑗𝑟−1(𝑠, 𝑡)
) 

where 

𝑥𝑘 =  ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  𝑇𝑘−2𝑖 (−𝐷)𝑖 

                          = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−2𝑡)𝑖𝑛 

By the equality of the matrices, 

𝑗𝑛𝑘+𝑟(𝑠, 𝑡) = ( 𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1)𝑗𝑟(𝑠, 𝑡) + 2𝑡𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1𝑗𝑟−1(𝑠, 𝑡)  

                    = 𝑗𝑟(𝑠, 𝑡)𝑥𝑘 − 2𝑡( 𝑗𝑛−1(𝑠, 𝑡)𝑗𝑟(𝑠, 𝑡) −  𝑗𝑛(𝑠, 𝑡)𝑗𝑟−1(𝑠, 𝑡)) 𝑥𝑘−1 

                                                    = 𝑗𝑟(𝑠, 𝑡)𝑥𝑘 − (−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡) 𝑥𝑘−1  

                                                    = 𝑗𝑟(𝑠, 𝑡) ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛 

                                                    +(−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡) ∑ (
𝑘 − 1 − 𝑖

𝑖
)

⌊
𝑘−1

2
⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−1−2𝑖(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛  
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        =  ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

[

(𝑐𝑛(𝑠, 𝑡))
𝑘−2𝑖

(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛

[𝑗𝑟(𝑠, 𝑡) +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡)

𝑐𝑛(𝑠, 𝑡)
]
]                                       □    

If we choose 𝑠 = 𝑡 = 1 in (15), we get the property of the classic Jacobsthal sequences, 

𝑗𝑛𝑘+𝑟 = ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛)𝑘−2𝑖(2)𝑖𝑛(−1)𝑖𝑛−𝑖 [𝑗𝑟 +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2)𝑟 𝑗𝑛−𝑟−1

𝑐𝑛
]  

3. Conclusion 

The paper aims to find the 𝑛th power of 2 × 2 special matrices whose entries are the elements of (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas number sequences. From the results, some properties of the (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are established. We develop new methods for finding the 𝑛th 

element of (𝑠, 𝑡)-Jacobsthal sequences. 
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1. Introduction

During the process of information retrieval, duplicates may occur at various stages of the process.
In such situations, the need for multisets and multiset operations arises. For example, in a cyber
investigation, hitting on a particular website and phone number in a tower on some time interval are
some of such situations where multisets are more suitable than ordinary sets.

Multiset (in short mset) or Bag is a collection of objects in which repetition is allowed [1]. Multiset
theory can be used in situations, where the classical set theory proves inadequate. Research in the
multiset theory is still at the infant stage. The need for multisets was pointed out by Knuth in 1981 [1].
The papers [2–9] are on the multiset theory and its applications in Mathematics and Computer Science.
The relations and operations with multisets [10], relations, and functions in multiset context [11], are
some of the developments in this field.

The concept of convergence of sequences of real numbers has been extended by several authors to
the convergence of sequences of sets [12–17]. Statistical convergence for sequences of sets and some
basic theorems are established by Nuray and Rhoades [18]. These papers include topics, such as
statistical convergence and ideal convergence of set sequences.

In this paper, we define mset sequences and investigate their various properties. There is also
a comparison of mset sequences with set sequences. A few special examples of mset sequences, e.g.
a prime identifier, are also given. Here we are attempting to extend the concept of convergence on
classical set sequences to mset sequences. A metric is introduced on mset for statistical convergence,
and making use of this metric, Wijsman and Hausdorff convergences are defined.

Sequences have been used in various fields, such as computer science, for a variety of purposes, and
convergence of these sequences could be found as well. These wide range of applications of sequences
and their convergences in different real-life situations is the motivation of our work.
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In Section 2, some of the preliminaries that are necessary for further sections of the paper are
given. In Section 3, an extension of the sequence of sets into the multiset context is presented. The
following section has some examples of the same process. The final section covers the convergence of
these multiset sequences.

2. Preliminary

In this section, we recall some basic definitions and properties of multisets that are necessary for this
paper.

Definition 2.1. [1] A collection of elements containing duplicates is called multiset. The word
multiset is often shortened to mset. If the elements of a multiset are taken from a set X, then it is
said to be drawn from X. A multiset M drawn from X can be considered a function CM : X → W ,
where W is the set of non-negative integers. For each x ∈ X, CM (x) is the characteristic value or
count value of x in M and indicates the number of occurrence of x in M . Since characteristic value
actually characterizes a multiset, most of our assertions are based on this characteristic value.

Note 2.2. Let M be an mset drawn from X with x1 appearing k1 times, x2 appearing k2 times, and
xn appearing kntimes. Then, M is written as M = {k1|x1, k2|x2, · · · , kn|xn}. CM (x) = k is sometimes
denoted as x ∈k M .

Definition 2.3. [8] Let M1 and M2 be two msets drawn from a set X. M1 is a submultiset (shortly
submset) of M2 if CM1(x) ≤ CM2(x) for all x in X and is written as M1 ⊆M2.

Definition 2.4. [8] Two msets M1 and M2 are equal if M1 ⊆ M2 and M2 ⊆ M1. In other words,
CM1(x) = CM2(x), ∀x ∈ X.

Definition 2.5. [1] Addition of two multisets M1 and M2 drawn from a set X results in a new
multiset M = M1 ⊕M2 such that ∀x ∈ X, CM (x) = CM1(x) + CM2(x).

Definition 2.6. [8] Subtraction of two multisets M1 and M2 drawn from a set X results in a new
multiset M = M1 	M2 such that ∀x ∈ X, CM (x) = max{CM1(x)− CM2(x), 0}.

Definition 2.7. [11] For an mset M = {k1|x1, k2|x2, · · · , kn|xn}, the set S = {x1, x2, · · ·xn} is
known as the root set of M .

Definition 2.8. [1] The union of M1 and M2 is a multiset, denoted by M = M1∪M2, with the count
value CM (x) = max{CM1(x), CM2(x)}, for every x ∈ X.

Definition 2.9. [1] The intersection of M1 and M2 is a multiset, denoted by M = M1 ∩M2, with
the count value CM (x) = min{CM1(x), CM2(x)}, for every x ∈ X.

Definition 2.10. [11] For an mset M , the power mset P̃ (M) is the set of all the submsets of M .

Definition 2.11. [11][X]m is the collection of all the msets derived from X with multiplicity at most
m for every element of x ∈ X.

Definition 2.12. [11] The complement of a multiset M ∈ [X]m is the multiset M c with count value
CMc(x) = m− CM (x).

Definition 2.13. Partition of a positive integer n is a non-increasing sequence (n1, n2, · · ·nk) such
that n1 + n2 + . . . nk = n, where the elements ni are positive integers ∀i ∈ N .

Note 2.14. Partition of a positive integer is a multiset and conversely, every multiset represents
a partition of an integer. The mset M = {k1|x1, k2|x2, · · · kn|xn} is the partition of the integer
n = k1x1 + k2x2 + · · · , knxn. In such case, we write M = P (n).
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3. Multiset Sequence

Definition 3.1. A sequence in which all the terms are sets is known as a set sequence. A set sequence
is a function from N → P (X), where N is the set of positive integers and P (X) is the power set of a
nonempty set X.

Example 3.2. If An = {1, 2, · · · , n}, then {An} is a set sequence.

Definition 3.3. A sequence in which all the terms are multiset is known as a multiset sequence or
shortly mset sequence. An mset sequence can be considered a function from N → P̃ (X), where P̃ (X)
is the power mset of a nonempty set X. Many of the properties of set sequences are also satisfied by
mset sequences with appropriate modification. Some of them are discussed here.

Definition 3.4. An mset sequence {Mn} drawn from X is said to be bounded from below if there
exists an mset A drawn from X such that A ⊆Mn for each n ∈ N .

Definition 3.5. An mset sequence {Mn} drawn from X is said to be bounded from above if there
exists an mset B drawn from X such that Mn ⊆ B for each n ∈ N .

Definition 3.6. An mset sequence which is bounded from below and above is known as a bounded
sequence.

Definition 3.7. Let {Mn} be an mset sequence. This sequence is an expanding sequence or non-
decreasing sequence, if Mn ⊆Mn+1 for each n.

Definition 3.8. Let{Mn} be an mset sequence. This sequence is a contracting sequence or non-
increasing sequence, if Mn+1 ⊆Mn for each n.

Definition 3.9. An mset sequence which is either expanding or contracting is a monotone mset
sequence.

Note 3.10. We can construct a monotone mset sequence from the given mset sequences.

Definition 3.11. Let {Mn} be an mset sequence drawn from a set X. Consider the mset sequences
{An}, {Bn}, {Cn}, and {Dn}, defined as

An = ∩ni=1Mn, Bn = ∪∞i=nMn, Cn = ∪ni=1Mn, and Dn = ∩∞i=nMn

Then, {An} and {Bn} are the contracting mset sequences, while {Cn} and {Dn} are the expanding
mset sequences.

Theorem 3.12. Distributive Laws: Let {Mn} be an mset sequence and M be any mset, such that
Mn, for all n ∈ N and M are elements of [X]m for a nonempty set X and a positive integer m. Then,

(i) M ∩ (∪∞n=1Mn) = ∪∞n=1(M ∩Mn)

(ii) M ∪ (∩∞n=1Mn) = ∩∞n=1(M ∪Mn)

Proof.

(i) Let M ∩ (∪∞n=1Mn) = P and ∪∞n=1(M ∩Mn) = Q. Then, P and Q are msets drawn from X. For
an arbitrary x ∈ X, let CP (x) = k. Then, CM (x) ≥ k, since P is a subset of M .

Case 1: If CM (x) = k, then CM∩Mj (x) = k for those j with CMj (x) ≥ k and CM∩Mj (x) < k for
those j with CMj (x) < k. So, CQ(x) = k.

Case 2: If CM (x) > k, then CMn(x) ≤ k for each n and there exists at least one r with
CMr(x) = k. Therefore, for each n ∈ N , CM∩Mn(x) ≤ k and in particular CM ∩Mr(x) = k.
Hence, CQ(x) = k. Thus, in both cases, CP (x) = CQ(x). Since x is an arbitrary element, this
is true for every element of X and this proves (i).
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The proof of (ii) is similar.

Theorem 3.13. De Morgan’s Laws : Let X be a nonempty set and m be a positive integer. For
an mset sequence {Mn}, where each Mn ∈ [X]m,

(i) (∪∞n=1Mn)c = ∩∞n=1(Mn)c

(ii) (∩∞n=1Mn)c = ∪∞n=1(Mn)c

Proof. (i) Let(∪∞n=1Mn)c = P and ∩∞n=1(Mn)c = Q. For x ∈ X, let CP (x) = k. Then, C∪Mn(x) =
m − k. CMn(x) ≤ m − k for each n ∈ N and there exists at least one Mr with CMr(x) = m − k,
C(Mn)c(x) ≥ k for each n ∈ N , and in particular C(Mr)c(x) = k. So, CQ(x) = k. This completes the
proof of (i).

(ii) The proof is similar to that of (i).

4. Examples of Multiset Sequence

In this section, we introduce some multiset sequences that are of practical importance.

1. {Nn}, where Nn = {1|1, 2|2, · · · , n|n} is an mset sequence in which the nth term contains n(n+1)
2

elements.

2. The prime factorises n completely, and let Fn be the mset of these factors, including 1. Then,
{Fn} is an mset sequence. For example,

F1 = {1}

F2 = {1, 2}

F3 = {1, 3}

F4 = {1, 2, 2}

F36 = {1, 2, 2, 3, 3}

3. For every positive integer n, define an mset Mn = {an|n, an−1|(n− 1) · · · , a1|1} , where ai = [ni ]
, integer part of n

i .Then, {Mn} is an multiset sequence with many properties, which are listed
below. A remarkable one is that one can determine by using this sequence whether an integer is
prime or not.

M1 = {1|1}

M2 = {1|2, 2|1}

M3 = {1|3, 1|2, 3|1}

M4 = {1|4, 1|3, 2|2, 4|1}

M5 = {1|5, 1|4, 1|3, 2|2, 5|1}

Properties of {Mn}

� The root set of the nth term of Mn is {1, 2, · · · , n}.

� M1 ⊂M2 ⊂M3 ⊂ · · · . So, {Mn} is an expanding sequence.

� Mn ∈ [X]n, for each n.

� The number of elements in Mn is
∑n

k=1 n(Dk). Here, Dk = {m ∈ N : m divides k} and n(Dk)
denotes the number of elements in Dk.

Illustration: For M6 = {1|6, 1|5, 1|4, 2|3, 3|2, 6|1}, D1 = {1}, D2 = {1, 2}, D3 = {1, 3}, D4 =
{1, 2, 4}, D5 = {1, 5}, D6 = {1, 2, 3, 6}. Then,

∑6
k=1 n(Dk) = 14.
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� If Mn ∈ P (k), then Mn+1 ∈ P (k +
∑
j), where P (n) is the partition set of n and j ∈ Dn+1

Illustration : ForM5 = {1|5, 1|4, 1|3, 2|2, 5|1}, M5 ∈ P (21). ForM6 = {1|6, 1|5, 1|4, 2|3, 3|2, 6|1},
M6 ∈ P (33) = P (21 + 12). Here,

∑
j∈D6

j = 12.

� P (n) ⊂ P̃ (Mn), where P (n) is the partition set of n and P̃ (Mn) is the power multiset of Mn.

Illustration : For M3 = {1|3, 1|2, 3|1}, P̃ (M3) = {φ, {1|1}, {1|2}, {1|3}, {1|2, 1|3}, {1|2, 1|1},
{1|3, 1|1}, {2|1}, {1|2, 1|3, 1|1}, {1|2, 2|1}, {1|3, 2|1}, {3|1}, {1|2, 1|3, 2|1}, {1|2, 3|1}, {1|3, 3|1},M3}
and P (3) = {{1|3}, {1|2, 1|1}, {3|1}}. So, P (3) ⊂ P̃ (M3).

� Mk 	Mk−1 = Dk

Illustration : For M5 = {1|5, 1|4, 1|3, 2|2, 5|1} and M6 = {1|6, 1|5, 1|4, 2|3, 3|2, 6|1}, M6	M5 =
{1|6, 1|3, 1|2, 1|1} = {6, 3, 2, 1} = D6.

� If Mk 	Mk−1 = {1, k}, then k is a prime number, otherwise, composite.

Illustration : M13 	 M12 = {1, 13}. Thus, 13 is a prime number, but M12 	 M11 =
{1, 2, 3, 4, 6, 12}, so 12 is not a prime number.

5. Convergence of Multiset Sequences

In this section, the convergences of multiset sequences are discussed. The concepts of Wijsman con-
vergence, Hausdorff convergence, and statistical convergence are extended to mset sequences.

Definition 5.1. For an mset sequence {Mn}, ∪∞k=1∩j≥kMj is the limit infimum of {Mn} and ∩∞k=1∪j≥k
Mj is the limit supremum of {Mn}.

Definition 5.2. If the limit supremum and limit infimum of an mset sequence are equal, then the
sequence is said to be convergent and the common mset is known as the set theoretic limit or simply
the limit of the sequence {Mn}.

Proposition 5.3.

(i) For a non-decreasing mset sequence, the set theoretic limit is ∪∞n=1Mn, and that for a non-
increasing mset sequence is ∩∞n=1Mn.

(ii) For an mset sequence {Mn}, lim inf Mn ⊆ lim sup Mn.

Definition 5.4. Let M be an mset derived from a metric space (X, d). Then, (M,dM ) is an mset
metric space, if dM is a metric on M .

Note 5.5. The metric d is also a metric on M . Since this metric is calculated without considering
the multiplicity of elements, it is not treated as a good one.

Considering the multiplicity of each element of M , we can define a dM metric as follows:

Definition 5.6. Let (X, d) be a metric space and M be an mset drawn from X. Let dM : M×M → IR
be a mapping defined by dM (x, y) = d(x, y)+ |CM (x)−CM (y)| such that IR is the set of real numbers.

Proposition 5.7. dM is a metric on M .

Proof.

(i) For each x, y ∈ M , dM (x, y) ≥ 0. dM (x, y) = 0, which means d(x, y) = 0 and CM (x) = Cm(y).
That is, x = y in M .

(ii) From the definition, dM (x, y) = dM (y, x).
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(iii) For x, y, z in M ,

dM (x, y) = d(x, y) + |CM (x)− CM (y)|
≤ d(x, z) + d(z, y) + |CM (x)− CM (z)|+ |CM (z)− CM (y)|
= dM (x, z) + dM (z, y).

Definition 5.8. Let (M,dM ) be an mset metric space drawn from a metric space (X, d) and A be a
submset of M . For any x in M , dM (x,A) = inf{dM (x, a) : a ∈ A}.

Definition 5.9. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of
M . Then, the sequence {Mn} is said to be Wijsman convergent to an mset A ⊆ M if for each
x ∈M, limn→∞ dM (x,Mn) = dM (x,A). In this case, it is written as Wlim Mn = A.

Definition 5.10. Let (M,dM ) be an mset metric space and Mn ⊆ M , for n = 1, 2, · · · . Then the
sequence {Mn} is said to be a Wijsman Cauchy sequence, if for each ε > 0, there is a positive integer
N such that |dM (x,Mn)− dM (x,Mm)| < ε for each m,n > N and for each x ∈M .

Theorem 5.11. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of M .
If the sequence {Mn} is a Wijsman convergent sequence, then it is also a Wijsman Cauchy sequence.

Proof. Suppose {Mn} is a Wijsman convergent sequence converging to A. Then, for each x ∈M,

lim
n→∞

dM (x,Mn) = dM (x,A)

So, for given ε > 0, there is at least one positive integer N such that

|dM (x,Mk)− dM (x,A)| < ε

2
, ∀k ≥ N

Choose m,n > N . Then,

|dM (x,Mm)− dM (x,A)| < ε

2

and
|dM (x,Mn)− dM (x,A)| < ε

2

Thus,

|dM (x,Mm)− dM (x,Mn)| ≤ |dM (x,Mm)− dM (x,A)|+ |dM (x,A)− dM (x,Mn)| < ε

Therefore, {Mn} is a Wijsman Cauchy sequence.

Definition 5.12. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of M .
Then, {Mn} is said to be Hausdorff convergent to an mset A ⊆ M if limn→∞ supx∈M |dM (x,Mn) −
dM (x,A)| = 0

Theorem 5.13. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of M .
If {Mn} is a Hausdorff convergent sequence, then it is also a Wijsman convergent sequence.

Proof. The proof is obtained directly from the definitions of the Wijsman and Hausdorff conver-
gences.

Definition 5.14. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of M .
Then, {Mn} is said to be Wijsman statistically convergent to an mset A ⊂ M if limn→∞

1
n{k ≤ n :

|dM (x,Mk)− dM (x,A)| ≥ ε} = 0,∀x ∈M and ∀ε > 0.

Definition 5.15. Let (M,dM ) be an mset metric space and Mn, (n = 1, 2, 3, · · · ) are submsets of M .
Then, {Mn} is said to be Hausdorff statistically convergent to an mset A ⊂ M if limn→∞

1
n{k ≤ n :

supx∈M |dM (x,Mk)− dM (x,A)| ≥ ε} = 0, ∀x ∈M and ∀ε > 0.
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6. Conclusion

This paper attempts to probe into the development of the multiset theory in novel scenarios such
as mset sequences. It delves into the sequences and their convergences to obtain various results and
properties analogous to the set sequences. The work here only scratches the surface of the possibilities
of convergence of msets. An expanded scope of the research in this paper can dive much deeper into
the same, and further research can be conducted on their various applications in different fields.
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1. Introduction and Preliminaries

In 1922, Banach [1] proved a fundamental theorem as named the Banach contraction principle, which
is considered the beginning of fixed point theory on metric space. Due to its applicability, this principle
has been extended and generalized by many authors in various ways [2–11]. In this sense, Boyd and
Wong [12] obtained a fixed point theorem, a well-known generalization of the Banach contraction
principle, as follows:

Theorem 1.1. Let (0, ϑ) be a complete metric space and T : 0→ 0 be a mapping such that

ϑ(Tς, T%) ≤ ψ (ϑ(ς, %))

for all ς, % ∈ 0 where ψ : [0,∞) → [0,∞) is an upper semicontinuous from the right function such
that ψ(γ) < γ for all γ > 0. Then, T has a unique fixed point ξ ∈ 0.

The set of functions ψ is denoted Ψ.
On the other hand, Czerwik [13, 14] introduced the notion of a b-metric which is a generalization

of a metric with a view of generalizing the Banach contraction principle.

Definition 1.2. Let 0 be a non-empty set and ϑ : 0 × 0 → [0,+∞) be a function such that for all
ς, %, ξ ∈ 0,

(1) ϑ(ς, %) = 0 if and only if ς = %,
(2) ϑ(ς, %) = ϑ(%, ς),
(3) ϑ(ς, ξ) ≤ λ[ϑ(ς, %) + ϑ(%, ξ)].
Then ϑ is called a b-metric on ς and (ς, ϑ) is called a b-metric space.
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It is clear that every metric space is a b-metric space, but not conversely. Indeed, let us consider
the set 0 = R is endowed with the b-metric defined as ϑ(ς, %) = (ς − %)2 for all ς, % ∈ 0. Then, (0, ϑ)
is a b-metric space, but it is not a standard metric space. Note that b-metric may not be continuous.
To remedy this deficiency, Kirk and Shahzad [15] introduced a strong b-metric space as follows:

Definition 1.3. [15] Let 0 be a nonempty set. A map ϑ : 0×0→ [0,∞) is a strong b-metric on 0

if for all ς, %, ξ ∈ 0 and λ ≥ 1 the following conditions hold:
(i) ς = % if and only if ϑ(ς, %) = 0;
(ii) ϑ(ς, %) = ϑ(%, ς);
(iii) ϑ(ς, ξ) ≤ ϑ(ς, %) + λϑ(%, ξ).
Moreover, the triple (0, λ, ϑ) is called a strong b-metric space.

Lemma 1.4. [15] Every strong b-metric is continuous.

Let (0, ϑ) be a strong b-metric space with coefficient λ. Each strong b-metric ϑ on 0 generates T0
topology τϑ, which has, as a base, the family open p-balls

B(ς, ε) = {% ∈ 0 : ϑ(ς, %) < ε}

for all ς ∈ 0 and ε > 0 A sequence {ςn} in ς is said to be a Cauchy sequence if

lim
n,m→∞

ϑ(ςn, ςm) = 0.

A sequence {ςn} converges to a point ς in 0 if and only if

lim
n→∞

ϑ(ςn, ς) = 0.

(0, ϑ) is said to be complete if every Cauchy sequence {ςn} in 0 converges with respect to τϑ to a
point ς ∈ 0.

Recently, the fixed point theory has been extended and generalized in different ways for nonself
mappings T : Γ → Λ, where Γ and Λ are the subsets of a metric space (0, ϑ). Indeed, if Γ ∩ Λ = ∅,
it cannot have a solution of equation Tς = ς. Hence, it is sensible to investigate if there is a point ς
such that ϑ(ς, T ς) is minimum. The concept of best proximity point has been emerged with this idea.
A point ς is called a best proximity point if ϑ(ς, T ς) = ϑ(Γ,Λ). Since every best proximity point is a
natural generalization of fixed point, many authors have studied this topic [16–19].

Now, we recall some fundamental definitions and results on strong b-metric spaces which are useful
for our main results.

Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty subsets of 0.
We denote the following subsets of Γ and Λ, respectively,

Γ0 = {ς ∈ Γ : ϑ(ς, %) = ϑ(Γ,Λ) for some % ∈ Λ}

and
Λ0 = {% ∈ Λ : ϑ(ς, %) = ϑ(Γ,Λ) for some % ∈ Γ}

where ϑ(Γ,Λ) = inf {ϑ(ς, %) : ς ∈ Γ and % ∈ Λ} .

Definition 1.5. [20] Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty
subsets of 0 with Γ0 6= ∅. Then, the pair (Γ,Λ) is said to exhibit the weak p-property if

ϑ(ς1, %1) = ϑ(Γ,Λ)
ϑ(ς2, %2) = ϑ(Γ,Λ)

}
=⇒ ϑ(ς1, ς2) ≤ ϑ(%1, %2)

for all ς1, ς2 ∈ Γ0 and %1, %2 ∈ Λ0.
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Definition 1.6. [21] Let (0, ϑ) be a strong b-metric space with coefficient λ, a mapping T : Γ → Λ
is said to be a proximal contraction if there exists a nonnegative number α < 1 such that, for all
u1, u2, ς1, ς2 in Γ,

ϑ(u1, T ς1) = ϑ(Γ,Λ)
ϑ(u2, T ς2) = ϑ(Γ,Λ)

}
=⇒ ϑ(u1, u2) ≤ αϑ(ς1, ς2)

Definition 1.7. Let (0, ϑ) be a strong b-metric space with coefficient λ and Γ and Λ be nonempty
subsets of 0. If every sequence {%n} in Λ satisfying the condition ϑ(ς, %n) → ϑ(ς,Λ) for some ς in Γ
has a subsequence {%nk

} such that %nk
→ % ∈ Λ, then Λ is called an approximately compact with

respect to Γ.

In the present paper, we prove two best proximity point results on strong b-metric spaces with
coefficient λ by introducing two new concepts which are named as BW b-contraction and proximal
BW b-contraction. Thus, we generalize and improve many results avaliable in the literature. Besides,
to support our main results, some nontrivial and illustrative examples are given.

2. Best Proximity Point Results with Weak p-Property

We begin the following new concept of BW b-contraction mapping in this section.

Definition 2.1. Let (0, ϑ) be strong b-metric space with coefficient λ, Γ and Λ be nonempty subsets
of 0 and T → Γ→ Λ be a mapping. T is called BW b-contraction mapping if there exists ψ ∈ Ψ such
that

ϑ(Tς, T%) ≤ ψ (ϑ(ς, %))

for all ς, % ∈ Γ

Theorem 2.2. Let Γ and Λ be closed subsets of complete strong b-metric space (0, ϑ) with Γ0 6= ∅
and T : Γ→ Λ be a BW b-contraction mapping. Assume that the pair (Γ,Λ) has the weak p-property
and T (Γ0) ⊆ Λ0. Then, T has a best proximity point in Γ.

Proof. Let ς0 ∈ Γ0 be an arbitrary point. Since Tς0 ∈ T (Γ0) ⊆ Λ0, there exists ς1 ∈ Γ0 such that

ϑ(ς1, T ς0) = ϑ(Γ,Λ)

Similarly, there exists ς2 ∈ Γ0 such that

ϑ(ς2, T ς1) = ϑ(Γ,Λ)

Since (Γ,Λ) has the weak p-Property, we have

ϑ(ς1, ς2) ≤ ϑ(T0, T ς1)

Continuing this process, we can construct a sequence {ςn} such that

ϑ(ςn+1, T ςn) = ϑ(Γ,Λ) (1)

and
ϑ(ςn, ςn+1) ≤ ϑ(Tςn−1, T ςn) (2)

for all n ∈ N. If there exists n0 ∈ N such that ςn0 = ςn0+1, then the proof is done. Assume that
ςn 6= ςn+1 for all n ∈ N. Using contractivity of T, we get

ϑ(ςn, ςn+1) ≤ ϑ(Tςn−1, T ςn) (3)

≤ ψ (ϑ(ςn−1, ςn))

< ϑ(ςn−1, ςn)
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for all n ≥ 1. Thus, {ϑ(ςn, ςn+1)} is a nonincreasing sequence in R. Therefore, the sequence
{ϑ(ςn, ςn+1)} is convergent. Hence, there is u ∈ R+ such that

lim
n→∞

ϑ(ςn, ςn+1) = u.

We want to show that u = 0. Suppose that u > 0.

0 < u = lim
n→∞

ϑ(ςn, ςn+1)

≤ lim
n→∞

ϑ (Tςn−1, T ςn)

≤ lim
n→∞

ψ(ϑ(ςn−1, ςn))

≤ lim sup
n→∞

ψ(ϑ(ςn−1, ςn))

≤ ψ(u)

< u.

This is a contradiction. Therefore, we have limn→∞ ϑ(ςn, ςn+1) = 0. After that, we want to show that
limn,m→∞ ϑ(ςn, ςm) = 0. Assume the contrary. Hence, there is two subsequences {ςnk

} and {ςmk
} with

mk > nk ≥ k and ε > 0 such that
ϑ(ςnk

, ςmk
) ≥ ε (4)

for all k ≥ 1, where mk is the smallest natural number satisfying (10) corresponding nk. Therefore,
we get

ϑ(ςnk
, ςmk−1) < ε.

Hence, we have

ε ≤ ϑ(ςnk
, ςmk

) (5)

≤ ϑ(ςnk
, ςmk−1) + λϑ(ςmk−1, ςmk

)

< ε+ λϑ(ςmk−1, ςmk
)

Letting k →∞ in (5), limk→∞ ϑ(ςnk
, ςmk

) = ε. Also, we have

ϑ(ςnk
, ςmk

) ≤ λϑ(ςnk
, ςnk+1) + ϑ(ςnk+1, ςmk+1) + λϑ(ςmk+1, ςmk

) (6)

and
ϑ(ςnk+1, ςmk+1) ≤ λϑ(ςnk+1, ςnk

) + ϑ(ςnk
, ςmk

) + λϑ(ςmk
, ςmk+1). (7)

Taking limit as k →∞ in (6) and (7), we get

lim
k→∞

ϑ(ςnk+1, ςmk+1) = ε.

Then, we have

ε = lim
k→∞

ϑ(ςnk+1, ςmk+1)

≤ lim sup
n→∞

ψ(ϑ(ςnk
, ςmk

))

≤ ψ(ε)

< ε.

This is a contradiction. Hence, limn,m→∞ ϑ(ςn, ςm) = 0 and so {ςn} is a Cauchy sequence in Γ.
Similarly, it can be seen that {Tςn} is a Cauchy sequence in Λ. Since (0, ϑ) is a complete strong
b-metric space with coefficient λ and Γ and Λ are closed subsets of 0, there exist ς∗ ∈ Γ and %∗ ∈ Λ
such that

lim
n→∞

ϑ(ςn, ς
∗) = 0
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and
lim
n→∞

ϑ(Tςn, %
∗) = 0

From Lemma 1.4, letting n→∞ in (1), we have

ϑ(ς∗, %∗) = ϑ(Γ,Λ). (8)

Now, assume that ς∗ 6= ςn for all n ∈ Ṅ. Then, we have

ϑ(%∗, T ς∗) = lim
n→∞

ϑ(Tςn, T ς
∗)

≤ lim sup
n→∞

ψ(ϑ(ςn, ς
∗))

< ϑ(ςn, ς
∗)

Assume that ς∗ = ςn for some n ∈ N. Then, we can find a subsequence {ςnk
} of {ςn} such that

ς∗ 6= ςnk
for all k ∈ N and so we can consider this subsequence in the above steps. Hence, we have

ϑ(%∗, T ς∗) = 0 and so %∗ = Tς∗. Thus, ς∗ is a best proximity point of T.

Example 2.3. Let 0 = N and ϑ : 0× 0→ R be a function defined by

ϑ(ς, %) =


0 , ς = %
3 , ς, % ∈ {2n− 1 : n ≥ 1} and ς 6= %
1 , otherwise

It is clear that (0, ϑ) is a strong b-metric space with coefficient λ ≥ 2. Now, we will show that (0, ϑ)
is complete. Indeed, let {ςn} be a Cauchy sequence. Then, for every ε > 0, we have

ϑ(ςn, ςm) < ε

for all m,n ≥ n0. Hence, we get ςn = ςm = ς for all m,n ≥ n0. Define the sets Γ = {2n− 1 : n ≥ 1}
and Λ = {2n : n ≥ 1}. Then, we have Γ = Γ0, Λ = Λ0, and ϑ(Γ,Λ) = 1. Moreover, (Γ,Λ) has the
weak p-Property. Let T : Γ→ Λ and ψ : [0,∞)→ [0,∞) be mappings defined as

T (2n− 1) = 2n

for all n ≥ 1 and

ψ(t) =
t

3

for all t ∈ [0,∞). Then, it can be seen that ψ ∈ Ψ and T is a BW b-contraction mapping. Furthermore,
we have T (Γ0) ⊆ Λ0. Hence, all the hypotheses of Theorem 2.2 are satisfied. Therefore, T has a best
proximity point in Γ.

Taking Γ = Λ = 0 in Theorem 2.2, we give the following fixed point result.

Corollary 2.4. Let (0, ϑ) be a complete strong b-metric space with coefficient λ and T : 0 → 0 be
a BW b-contraction mapping. Then, T has a fixed point in 0.

If we take λ = 1 in Theorem 2.2 and Corollary 2.4 , we obtain the following results, respectively.

Corollary 2.5. Let Γ and Λ be closed subsets of complete metric space (0, ϑ) with Γ0 6= ∅ and
T : Γ → Λ be a BW b-contraction mapping. Assume that the pair (Γ,Λ) has the weak p-Property
and T (Γ0) ⊆ Λ0. Then, T has a best proximity point in Γ.

Corollary 2.6. Let (0, ϑ) be a complete metric space and T : 0→ 0 be a BW b-contraction mapping.
Then, T has a fixed point in 0.
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3. Best Proximity Point Results with Proximal Contraction

Definition 3.1. Let Γ and Λ be subsets of strong b-metric space (0, p) and T : Γ→ Λ be a mapping.
T is called a proximal BWb-contraction if the following condition satisfies

ϑ(u1, T ς1) = ϑ(Γ,Λ)
ϑ(u2, T ς2) = ϑ(Γ,Λ)

}
=⇒ ϑ(u1, u2) ≤ ψ(ϑ(ς, %))

for all u1, u2, ς1, ς2 ∈ Γ.

Theorem 3.2. Let (0, ϑ) be a complete strong b-metric space with coefficient λ, and Γ and Λ be
closed subsets of 0 with Γ0 6= ∅. Assume that T : Γ→ Λ be a mapping satisfying T (Γ0) ⊆ Λ0 and Λ is
an approximately compact w.r.t Γ. If T is a proximal BW b-contraction, then T has a best proximity
poit in Γ.

Proof. Let ς0 ∈ Γ0 be an arbitrary point. Since Tς0 ∈ T (Γ0) ⊆ Λ0, there exists ς1 ∈ Γ0 such that

ϑ(ς1, T ς0) = ϑ(Γ,Λ)

Similarly, there exists ς2 ∈ Γ0 such that

ϑ(ς2, T ς1) = ϑ(Γ,Λ)

Since T is a proximal BW b-contraction, we have

ϑ(ς1, ς2) ≤ ψ(ϑ(ς0, ς1))

Continuing this process, we can construct a sequence {ςn} in Γ such that

ϑ(ςn+1, T ςn) = ϑ(Γ,Λ) (9)

and
ϑ(ςn, ςn+1) ≤ ψ(ϑ(ςn−1, ςn))

for all n ∈ N. If there exists n0 ∈ N such that ϑ(ςn0 , ςn0+1) = 0, then the proof is done. Assume that
ϑ(ςn, ςn+1) > 0 for all n ∈ N. Hence, we have

ϑ(ςn, ςn+1) ≤ ψ(ϑ(ςn−1, ςn))

< ϑ(ςn−1, ςn)

for all n ≥ 1. Thus, {ϑ(ςn, ςn+1)} is a nonincreasing sequences in R. Therefore, the sequence
{ϑ(ςn, ςn+1)} is convergent. Hence, there is u ∈ R+ such that

lim
n→∞

ϑ(ςn, ςn+1) = u.

We want to show that u = 0. Suppose that u > 0.

0 < u = lim
n→∞

ϑ(ςn, ςn+1)

≤ lim
n→∞

ψ(ϑ(ςn−1, ςn))

≤ lim sup
n→∞

ψ(ϑ(ςn−1, ςn))

≤ ψ(u)

< u.

This is a contradiction. Therefore, we have limn→∞ ϑ(ςn, ςn+1) = 0. After that, we want to show that
limn,m→∞ ϑ(ςn, ςm) = 0. Assume the contrary. Hence, there are two subsequences {ςnk

} and {ςmk
}

with mk > nk ≥ k and ε > 0 such that

ϑ(ςnk
, ςmk

) ≥ ε (10)
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for all k ≥ 1, where mk is the smallest natural number satisfying (10) corresponding nk. Therefore,
we get

ϑ(ςnk
, ςmk−1) < ε.

Thus, we have

ε ≤ ϑ(ςnk
, ςmk

) (11)

≤ ϑ(ςnk
, ςmk−1) + λϑ(ςmk−1, ςmk

)

< ε+ λϑ(ςmk−1, ςmk
)

Letting k →∞ in (11), limk→∞ p(ςnk
, ςmk

) = ε. Also, we have

ϑ(ςnk
, ςmk

) ≤ λϑ(ςnk
, ςnk+1) + ϑ(ςnk+1, ςmk+1) + λϑ(ςmk+1, ςmk

) (12)

and
ϑ(ςnk+1, ςmk+1) ≤ λϑ(ςnk+1, ςnk

) + ϑ(ςnk
, ςmk

) + λϑ(ςmk
, ςmk+1). (13)

Taking limit as k →∞ in (12) and (13), we get

lim
k→∞

ϑ(ςnk+1, ςmk+1) = ε.

Then, we have

ε = lim
k→∞

ϑ(ςnk+1, ςmk+1)

≤ lim sup
n→∞

ψ(ϑ(ςnk
, ςmk

))

≤ ψ(ε)

< ε.

This is a contradiction. Hence, limn,m→∞ ϑ(ςn, ςm) = 0 and so {ςn} is a Cauchy sequence in Γ. Since
(ς, ϑ) is a complete strong b-metric space, and Γ is a closed subset of 0, there exists ς∗ ∈ Γ such that

lim
n→∞

ϑ(ςn, ς
∗) = 0 (14)

Also, we have

ϑ(ς∗,Λ) ≤ ϑ(ς∗, T ςn)

≤ λp(ς∗, ςn+1) + ϑ(ςn+1, T ςn)

= λϑ(ς∗, ςn+1) + ϑ(Γ,Λ)

≤ λϑ(ς∗, ςn+1) + ϑ(ς∗,Λ)

From (14), we get ϑ(ς∗, T ςn)→ ϑ(ς∗,Λ) as n→∞. Since Λ is an approximately compact concerning
Γ, there exists a subsequence {Tςnk

} of {Tςn} such that

Tςnk
→ %∗

for some %∗ ∈ Λ. Letting n→∞ in (9), we have

ϑ(ς∗, %∗) = ϑ(Γ,Λ).

Besides, since Tς∗ ∈ Λ0, there exists ξ ∈ Γ0 such that

ϑ(ξ, T ς∗) = ϑ(Γ,Λ)
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Now, assume that ς∗ 6= ςn for all n ∈ N. Then, we have

ϑ(ς∗, ξ) = lim
n→∞

ϑ(ςn+1, ξ)

≤ lim
n→∞

ψ(ϑ(ςn, ς
∗))

< lim
n→∞

ϑ(ςn, ς
∗)

= 0

Assume that ς∗ = ςn for some n ∈ N. Then, we can find a subsequence {ςnk
} of {ςn} such that ς∗ 6= ςnk

for all k ∈ N and so we can consider this subsequence in the above steps. Therefore, ς∗ = ξ and so T
has a best proximity point in Γ.

Example 3.3. Let 0 = [0, 1] ∪ [2,∞) and ϑ : 0× 0→ R be a function defined as

ϑ(ς, %) =


0 , ς = %
3 , ς, % ∈ [0, 1] and ς 6= %

|ς − %| , otherwise

Then, (0, ϑ) is a complete strong b-metric space with coefficient λ ≥ 2. Define the sets Γ = [0, 1] and
Λ = [2,∞), then we have ϑ(Γ,Λ) = 1, Γ0 = {1} and Λ0 = {2}. Let T : Γ → Λ be a mapping defined
as

Tς =

{
2 , ς = 1

ς + 2 , ς ∈ [0, 1)

for all ς ∈ Γ. Then, we have T (Γ0) ⊆ Λ0. Further, we define a function ψ : [0,∞)→ [0,∞) as ψ(t) = t
2

for all t ∈ [0,∞). Then, it can be seen that ψ ∈ Ψ and T is a proximal BW b-contraction mapping.
Moreover, we have T (Γ0) ⊆ Λ0. Hence, all the hypotheses of Theorem 3.2 are satisfied. Therefore, T
has a best proximity point in Γ.

If we take λ = 1 in Theorem 3.2, we obtain the following results, respectively.

Corollary 3.4. Let Γ and Λ be closed subsets of complete metric space (0, ϑ) with Γ0 6= ∅ and
T : Γ → Λ be a proximal BW b-contraction mapping satisfying T (Γ0) ⊆ Λ0. Then, T has a best
proximity point in Γ.

Note that if we take Γ = Λ = 0 in Definition 3.1, then the proximal BW b-contraction mapping
becomes BW b-contraction mapping. Therefore, we can obtain Corollary 2.5 and Corollary 2.6 from
Theorem 3.2.

4. Conclusion

The applications of the fixed point theorems comprise diverse disciplines of mathematics, statistics,
and engineering dealing with various problems such as the theory of differential equations, approxi-
mation theory, potential theory, functional analysis, and topology. In this paper, we obtain some best
proximity point results on strong b-metric spaces and present some generalizations of the fixed point
results.
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1. Introduction

Applications of geometry in many aspects of human life have motivated many mathematicians to find
and develop many new theories of local and general properties of curves and surfaces in geometry.
Many theories in classical differential geometry are extended to non-classical differential geometry, such
as Lorentzian manifold. It started at the beginning of the twentieth century, when Einstein’s theory
opened a door for the use of new geometries. One of the theories in classical differential geometry
which can be extended to Lorentzian space is the theory of involute-evolute of curves. The concept
of involute and evolute of curves in Riemannian manifold was firstly introduced by Huygens in 1973
when he tried to create an accurate clock called isochronous pendulum clock [1]. There are many
books and research articles providing explanations about the involute and evolute of curves both in
Riemannian space and semi-Riemannian space [2–10].

In Lorentz-Minkowski space, a curve can locally be time-like, space-like or null depending on the
casual character of the tangent vector of the curves. For non-null curves (time-like, space-like) it can
easily analogue with the curve in Euclidean space. However, geometry of null curves is different from
that of non-null curves since the arc length vanishes, so that it is not possible to normalize the tangent
vector in the usual way. The theory of null curves in Minkowski space has been studied by many
mathematicians such as Ferrandez, Gimenez and Lucas [11], Inoguchi and Lee [12], and Qian and
Kim [13]. Application of null curves has been studied by Duggal [14] and Mohajan [15].

In this study, we will discuss the theory of evolute curves of null Cartan curves in Minkowski
4-space. In the second part, we focus on the basic concepts of curves in Minkowski 4-space with its
Frenet equations. In the next section, we introduce and give the general formula of evolute curves of
null Cartan curves in Minkowski 4-space. We also provide some theorems and corollaries related to
the casual characteristics of the evolute curves which are derived from the null Cartan curves. In the
last part, an example is given as an application of the theorems in the previous section.
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2. Preliminary

Minkowski space E4
1 is the real vector space R4 equipped with the standard indefinite metric 〈, 〉 defined

as
〈x, y〉 = −x1y1 + x2y2 + x3y3 + x4y4 (1)

for any vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). In Minkowski space, any vector v 6= 0 is
said to be time-like if 〈v, v〉 < 0, space-like if 〈v, v〉 > 0 or v = 0 and null if 〈v, v〉 = 0 and v 6= 0. The
norm of a vector in E3

1 is defined by ‖v‖ =
√
|〈v, v〉|.

Let α : I → E3
1 be a curve in Minkowski space. Locally, α can be time-like, space-like or null if

its tangent vector is time-like, space-like or null, respectively. For non-null curves, the arc length s is
defined by s =

∫ t
0

√
|〈α′, α′〉|dt. If 〈α′, α′〉 = 1 the non-null curve is called the curve parametrized by

the arc length. For null curves, since 〈α′, α′〉 = 0, the pseudo-arc length is defined by s =
∫ t
0 〈α

′′, α′′〉
1
4dt,

and if 〈α′′, α′′〉 = 1, then the null curve is parametrized by pseudo-arc length.
Let {T (s), N(s), B1(s), B2(s)} be the Frenet frame along the curve α(s) in E4

1. T,N,B1 and B2

are the tangent, principal normal, first binormal and second binormal vector fields, respectively. If α
is a pseudo-null unit speed curve i.e., a space-like curve with light-like principal normal vector field
parametrized by arc length s in E4

1, the Frenet equations of α are given by

T ′ = κN, N ′ = τB1, B′1 = σN − τB2, B′2 = −κT − σB1 (2)

where κ and σ denote the curvature and bitorsion of α, respectively. T,N,B1 and B2 are mutually
orthogonal vectors satisfying equations

〈T, T 〉 = 〈B1, B1〉 = 1, 〈N,N〉 = 〈B2, B2〉 = 0, 〈N,B2〉 = 1,

〈T,N〉 = 〈T,B1〉 = 〈T,B2〉 = 〈N,B1〉 = 〈B1, B2〉 = 0
(3)

The curvature κ in (2) has value 0 when α is a straight line and 1 in all other cases [16].
Let γ : I → (s) be an arbitrary null Cartan curve in E4

1. Then, there exists a unique Cartan frame
{T,N,B1, B2} given by

T =
γ′

ϕ
, N =

(
1

ϕ

)′
γ′ +

1

ϕ
γ′′, B1 = − 1

ϕ
γ′′′ − 〈γ

′′′, γ′′′〉
2ϕ3

γ′, B2 =
1

ϕ3
(γ′ × γ′′ × γ′′′) (4)

for any given ϕ =
√
〈ϕ′′, ϕ′′〉 > 0. The Frenet equations of the null curve γ is given by

T ′ = N, N ′ = −k1T −B1, B′ = −k1N + k2B2, B′2 = −k2T (5)

where

k1 =
1

2ϕ2
(〈γ′′′, γ′′′〉+ 2ϕϕ′′ − 4(ϕ′)2), k2 = − 1

ϕ4
det
(
γ′, γ′′, γ′′′, γ4

)
(6)

Here, k1 and k2 are called the first and the second null curvatures of γ. The Cartan Frame {T,N,B1, B2}
satisfies the equations

〈T, T 〉 = 〈B1, B2〉 = 0, 〈T,N〉 = 〈N,N〉 = 〈B2, B2〉 = 1,

〈T,N〉 = 〈T,B2〉 = 〈B1, N〉 = 〈B1, B2〉 = 〈B2, N〉 = 0,
(7)

and
N × T ×B1 = B2, N ×B2 × T = T, N ×B1 ×B2 = B1, T ×B2 ×B1 = N (8)

(see [17]).
A null curve lies on pseudo-sphere in E4

1 with radius r if and only if k2 = ±1
r [18]. In addition, a

null curve which has non-zero constant k1 and k2 in E4
1 are called null helices [14]. Furthermore, a null

Cartan curve in E4
1 is a Bertrand null curve if and only if k1 is non-zero constant and k2 is zero [19].

In Euclidean case, if β is an evolute of α, then for a given point P on β and the corresponding point
P ′ on α the principal normal line of β at P is parallel to the tangent line of α at P ′ [8].
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3. Evolutes of Null Cartan Curves

Definition 3.1. The curve γ∗(s) is the evolute of null Cartan curve γ(s) if and only if for all s ∈ I ⊆ R,
the the tangent line of γ∗(s) intersects γ(s) orthogonally.

Let γ(s) be a null Cartan curve parametrized by pseudo-arc length s and γ∗ be its evolute curves.
If x∗ be the point of contact on the evolute to the tangent line which intersects γ at x(s), then x∗− x
lies on the tangent line of γ∗ and perpendicular to the tangent vector of γ. Since γ is a null Cartan
curve, x∗ − x can be represented as linear combination of the principal normal vector N(s) and the
second binormal vector B2(s) of curve γ(s). Therefore, it can be written as

x∗ = x(s) + p(s)(s)N(s) + q(s)B2(s) (9)

Next, we will find the function p(s) and q(s) by considering the causal characters of the curves.

Theorem 3.2. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then,

γ∗(s) = γ(s) +
1

k2
B2(s) (10)

Proof. If we take the derivative of equation (9), we have

(γ∗)′ =T + p′N + p(−k1T −B1) + q′B2 + q(−k2T )

=(1− pk1 − qk2)T + p′N − pB1 + q′B2
(11)

Since (γ∗)′(s) is the tangent of γ∗(s), which is perpendicular to the tangent vector T of γ, γ∗(s) is
proportional to γ∗(s)− γ(s) = pN + qB2. Therefore, we get

1− pk1 − qk2 = 0 p′ = λp, p = 0, q′ = λq (12)

for some smooth real function λ in E4
1. Consequently, From Equation (12) we have

p = 0, q =
1

k2
(13)

Substituting these value into Equation (9) obtains Equation (10).

Theorem 3.3. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then, the distance between γ∗(s) and γ(s) is 1

k2
.

Proof. From equation (10), we have

γ∗(s)− γ(s) =
1

k2
B2(s) (14)

Therefore,

‖γ∗(s)− γ(s)‖ =

√〈
1

k2
B2(s),

1

k2
B2(s)

〉
=

1

k2

Theorem 3.4. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. Then, γ∗(s) is a space-like curve.

Proof. From Equations (11) and (13) we have

(γ∗(s))′ = −k
′
2

k22
B2 (15)

Therefore,

〈(γ∗(s))′, (γ∗(s))′〉 =

〈
−k
′
2

k22
B2,−

k′2
k22
B2

〉
=

(
k′2
k22

)2

> 0

Thus, the proof is completed
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Theorem 3.5. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s and {T ∗, N∗, B∗1 , B∗2} be the Frenet frame of γ∗(s). If {T,N,B1, B2} and k2 are the Frenet frame
and the non-constant second null curvature of γ(s), then

T ∗ = −B2, N∗ =
k32
k′2
T, B∗1 =

3(k′2)
2 − k2k′′2
k2k′2

T +N, B∗2 =
k′2
k32
B1 (16)

Proof. Let s∗ be the arc length parameter of γ∗. Therefore, by Equation (15) we have

dγ∗

ds∗
· ds

∗

ds
= −k

′
2

k22
B2 =⇒ T ∗

ds∗

ds
= −k

′
2

k22
B2

Taking the norm of the Equation above yields ds∗

ds = ±k′2
k22

. As a result we get

T ∗ = −B2 (17)

Differentiating (17) towards parameter s yields

dT ∗

ds∗
ds∗

ds
= k2T =⇒ κN∗ =

k32
k′2
T (18)

From (18) we find that N∗ is a null principal normal vector field since T is a null vector. Therefore,
γ∗ is a pseudo-null curve in E4

1. Take κ = 1 by assuming that γ∗ is a non-straight line.
Taking the derivative of N∗ towards s∗ yields,

dN

ds∗
=
dN∗

ds

ds

ds∗
=

(
3k22(k′2)

2 − k32k′′2
(k′2)

2
T +

k32
k′2
N

)
k22
k′2

=
3k42(k′2)

2 − k52k′′2
(k′2)

3
T +

k52
(k′2)

2
N

As a consequence, we have

‖dN
ds∗
‖ =

k52
(k′2)

2
(19)

Using Equation (2) we find

B∗1 =
dN
ds∗

‖ dNds∗ ‖
=

3(k′2)
2 − k2k′′2
k2k′2

T +N (20)

and

B∗2 =
k′2
k32
B1 (21)

satisfying Equation (3).

Theorem 3.5 results in the following corollary.

Corollary 3.6. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc
length s. Then, γ∗(s) is a pseudo-null curve i.e., a space-like curve with light-like principal normal
vector field.

Theorem 3.7. Let γ∗(s) be the evolute of a null Cartan curve γ(s) parametrized by pseudo-arc length
s. If γ∗ is a non-straight line, then the curvature, torsion and bitorsion of γ∗ are given by

κ = 1, τ =
k52

(k′2)
2
, σ = − 1

k2

(
3(k′2)

2 − k2k′′2
k2k′2

)2

− k1 (22)

Proof. Since γ∗(s) is a pseudo-null in E4
1 and a non-straight line, from Equations (2) and (19), we

have

κ = 1, τ = ‖dN
∗

ds∗
‖ =

k52
(k′2)

2
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Differentiating Equation (21) towards parameter s∗, we have

dB∗2
ds∗

=
dB∗2
ds

ds

ds∗
=

(
k32k
′′
2 − 3k22(k′2)

2

k62
B1 +

k′2
k22

(−k1N + k2B2)

)
k22
k′2

= −k1N +
k2k
′′
2 − 3(k′2)

2

k22k
′
2

B1 +k2B2

Therefore, using (2), we find

σ =−
〈
B∗1 ,

B∗2
ds∗

〉
=

〈
3(k′2)

2 − k2k′′2
k2k′2

T +N,−k1N +
k2k
′′
2 − 3(k′2)

2

k22k
′
2

B1 + k2B2

〉
=− 1

k2

(
3(k′2)

2 − k2k′′2
k2k′2

)2

− k1

Theorem 3.7 results in some corollaries as follow:

Corollary 3.8. If γ(s) lies on pseudo-sphere in E4
1 with radius r, γ(s) has no evolute curve.

Corollary 3.9. Let γ(s) be a planar null Cartan curve. Then, there is no evolute of γ(s).

Corollary 3.10. If γ(s) is a Bertrand null curve, γ(s) has no evolute curve.

The proof of corollaries 3.8, 3.9, and 3.10 is clear since k2 is a constant, which implies the tangent
vectors of γ∗ vanish everywhere.

4. Example

In this section, an example of the evolute of the null Cartan curves is provided as an application of
the theorems in the previous section.

Example 4.1. Let γ : I → E3
1 be a null Cartan curve parametrized by pseudo-arc length s and given

as

γ(s) =

(
1√
56

(
s2+

3
√
6

2

2 + 3
√
6

2

+
s2−

3
√
6

2

2− 3
√
6

2

)
,

1√
56

(
s2+

3
√
6

2

2 + 3
√
6

2

− s2−
3
√
6

2

2− 3
√
6

2

)
,

2s2

9
√

14

(
2 cos

(√
2

2
ln s

)
+

√
2

2
sin

(√
2

2
ln s

))
,

2s2

9
√

14

(
2 sin

(√
2

2
ln s

)
−
√

2

2
cos

(√
2

2
ln s

)))

By direct calculation using (4), we find

T =

(√
14

28

(
s2+

3
√
6

2

s
+
s2−

3
√
6

2

s

)
,

√
14

28

(
s2+

3
√
6

2

s
− s2−

3
√
6

2

s

)
,
s
√

14

14
cos

(√
2

2
ln s

)
,
s
√

14

14
sin

(√
2

2
ln s

))
,

N =

(√
14

56

(
(2 + 3

√
6)s2+

3
√
6

2

2s2
+

(2− 3
√

6)s2−
3
√
6

2

2s2

)
,

√
14

56

(
(2 + 3

√
6)s2+

3
√
6

2

2s2
− (2− 3

√
6)s2−

3
√
6

2

2s2

)
,

−
√

14

28

(
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

))
,

√
14

28

(
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

)))
,
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B1 =

(
−3
√

14

56s3

(
(5 +

√
6)s2+

3
√
6

2 + (5−
√

6)s2−
3
√
6

2

)
,−3
√

14

56s3

(
(5 +

√
6)s2+

3
√
6

2 − (5−
√

6)s2−
3
√
6

2

)
√

7

28s

(
13
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

))
,

√
7

28s

(
13
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

)))
,

B2 =

(
−
√

7

28s2

(
−s2+

3
√
6

2 − s2−
3
√
6

2

)
,−
√

7

28s2

(
−s2+

3
√
6

2 + s2−
3
√
6

2

)
,−3
√

21

14
sin

(√
2

2
ln s

)
,

3
√

21

14
cos

(√
2

2
ln s

))
By using (6), we find

k1 = − 6

s2
, k2 = −3

√
3

2s2

Substituting k2 and B2 into (9), we find the evolute curve of γ as

γ∗(s) =

(√
14

28

(
s2+

3
√
6

2

2 + 3
√
6

2

+
s2−

3
√

6
2

2− 3
√
6

2

)
+

√
21

126

(
s2+

3
√
6

2 − s2−
3
√
6

2

)
,

√
14

28

(
s2+

3
√
6

2

2 + 3
√
6

2

− s2−
3
√
6

2

2− 3
√
6

2

)

+

√
21

126

(
s2+

3
√
6

2 + s2−
3
√
6

2

)
,
s2
√

14

63

(
2 cos

(√
2

2
ln s

)
+

√
2

2
sin

(√
2

2
ln s

))

+
s2
√

7

7
sin

(√
2

2
ln s

)
,
s2
√

14

63

(
2 sin

(√
2

2
ln s

)
−
√

2

2
cos

(√
2

2
ln s

))

−s
2
√

7

7
cos

(√
2

2
ln s

))
By using Equation (16), we get the Frenet frame of γ∗(s) as follows:

T ∗ =

√7

28

(
s2+

3
√

6
2 − s2−

3
√
6

2

s2

)
,

√
7

28

(
s2+

3
√
6

2 + s2−
3
√
6

2

s2

)
,
3
√

21 sin
(√

2
2 ln s

)
14

,−
3
√

21 cos
(√

2
2 ln s

)
14

 ,

N∗ =

s√14

112

(
s2+

3
√
6

2 + s2−
3
√
6

2

)
,
s
√

14

112

(
s2+

3
√
6

2 − s2−
3
√
6

2

)
,
s3
√

14 cos
(√

2
2 ln s

)
56

,
s3
√

14 sin
(√

2
2 ln s

)
56

 ,

B∗1 =

(
−
√

14

168

(
(3
√

6− 4)s2+
3
√
6

2

s2
− (3
√

6 + 4)s2−
3
√
6

2

s2

)
,

√
14

56

(
(3
√

6− 4)s2+
3
√

6
2

s2
+

(3
√

6 + 4)s2−
3
√
6

2

s2

)
,

−
√

7

14

(
2
√

2 cos

(√
2

2
ln s

)
+ sin

(√
2

2
ln s

))
,

√
7

14

(
−2
√

2 sin

(√
2

2
ln s

)
+ cos

(√
2

2
ln s

)))
,

B∗2 =

(√
14

63

(
(5 +

√
6)s2+

3
√
6

2 + (5−
√

6)s2−
3
√
6

2

)
,−
√

14

63

(
(5 +

√
6)s2+

3
√
6

2 − (5−
√

6)s2−
3
√
6

2

)
−2s2

√
7

189

(
13
√

2 cos

(√
2

2
ln s

)
+ 2 sin

(√
2

2
ln s

))
,

−2s2
√

7

189

(
13
√

2 sin

(√
2

2
ln s

)
− 2 cos

(√
2

2
ln s

)))
,



Journal of New Theory 34 (2021) 37-44 / On Evolutes of Null Cartan Curves in Minkowski 4-Space 43

Finally, by using Equation (20), we get

κ = 1, τ = −81
√

3

32s4
, σ = 2

√
3 +

3

s2

5. Conclusion

Based on the definitions, theorems, and an example in the previous section, we find that the evolute
of the null Cartan curve in Minkowski 4-space is a pseudo-null curve - i.e., a space-like curve with
light-like principal normal vector field. Furthermore, there is no evolute of null Cartan helices, null
Bertrand curves, and null curves lying on the pseudo-sphere in E4
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Abstract − The quadripartitioned single valued neutrosophic set consisting of
the real-valued amplitude terms: truth-membership grade, contradiction-membership
grade, ignorance-membership grade and falsity-membership grade, cannot handle
complex-valued information. In this paper, the ranges of grades of truth-membership,
contradiction-membership, ignorance-membership and falsity-membership are ex-
tended from the interval [0,1] to unit circle in the complex plane, and thus the notion
of complex quadripartitioned single valued neutrosophic set is proposed. Further,
some fundamental operations and relations on the complex quadripartitioned single
valued neutrosophic sets are studied. Secondly, the rough approximations of com-
plex quadripartitioned single valued neutrosophic sets are derived, and then their
related remarkable properties are discussed. Finally, a formulation is proposed to
measure rough degree of complex quadripartitioned single valued neutrosophic sets
in the approximate space.
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1. Introduction

To tackle real world issues, the techniques generally employed in classical mathematics are not always
beneficial due to uncertainties and ambiguities. In 1965, Zadeh [1] proposed the fuzzy set (FS) as an
effective mathematical tool to deal with such issues. In the following years, Atanassov [2] created an
intuitionistic fuzzy set (IFS) that offers both the truth-membership degree and the falsity-membership
degree of an object into the set. Many authors established several fuzzy models in the different aspects,
i.e., relations, aggregation operators, matrix representations [3–11]. Smarandache [12] developed the
neutrosophic logic sprouted from branch of philosophy neutrosophy which means the study of neutral-
ities, and then initiated the theory of neutrosophic sets (NSs), a generalization of the IFSs, in which
each element is characterized by a truth-membership function, indeterminate-membership function
and the falsity-membership function, each of which belongs to the the non-standard unit interval
]0−, 1+[. In 2010, Wang et al. [13] said that the NS is difficult to truly apply to practical problems
in real world scenarios, and therefore enlivened the idea of single valued neutrosophic set (SVNS),
in which each element is characterized by a truth-membership function, indeterminate-membership
function and the falsity-membership function, each of which belongs to the the unit interval [0, 1]. For
more details, refer to [14–16]. Many authors studied the generalized types of NSs and SVNSs such as
interval-valued [17–19], bipolar-valued [20–22], cubic [23–26], and their practical applications [27–29].
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In 2017, Ali and Smarandache [30] introduced the framework of complex neutrosophic set (CNS) char-
acterized by complex-valued truth-membership function, complex-valued indeterminate-membership
function and complex-valued falsity-membership function. They put forward that the CNS is the
mainstream over all because it is not only the extension of all the current frameworks but also repre-
sents the information in a complete and comprehensive way. Al-Quran and Alkhazaleh [31] studied
the relations between the (single valued) CNSs with their applications in decision making.

In 1982, Pawlak [32] developed the notion of rough set which expresses vagueness in the concepts
of the lower and upper approximations of a set and it employs the boundary region of a set. In [33,34],
the authors established the models of rough FSs and rough IFSs. In 2014, Broumi et al. [35] introduced
a hybrid structure of rough NSs and discussed its basic operations in the approximation space. In [36],
the multi-attribute decision making method based on the rough accuracy score function with rough
neutrosophic attribute values was constructed. Samuel and Narmadhagnanam [37] studied the tangent
logarithmic distance measure and cosecant similarity measure between rough NSs. In 2018, Abdel-
Basset and Mohamed [38] proposed the combination of SVNS and rough set will deal with all aspects
of vagueness, incompleteness and inconsistency of data and information. Nowadays, many authors
have concerned with the rough approximations of NSs and SVNSs in crisp and neutrosophic spaces,
in which both constructive and axiomatic approaches are employed.

By splitting the indeterminacy in the structure of SVNSs into two parts as Unknown (or ignorance)
and Contradiction, Chatterjee et al. [39] proposed the notion of quadripartitioned single valued neutro-
sophic set (QSVNS) based on Belnap’s [40] four-valued logic. Mohan and Krishnaswamy [41] presented
the axiomatic characterizations of the combined structure of QSVNS and rough set. In [42, 43], the
researchers discussed the bipolarity hybridizations of QSVNSs, and some basic set-theoretic terminolo-
gies of the emerging QSVNSs. Currently, QSVNS theory has become a very successful and flourishing
area of research in different aspects of both theory and practice.

In this study, we introduce the complex quadripartitioned single valued neutrosophic sets (CQSVNSs)
by extending the QSVNSs, whose complex-valued truth-membership function, complex-valued con-
tradiction-membership function, complex-valued ignorance-membership function and complex-valued
falsity-membership function are the combination of real-valued truth amplitude term in association
phase term, real-valued contradiction amplitude term in association phase term, real-valued ignorance
amplitude term in association phase term and real-valued falsity amplitude term in association phase
term, respectively. Moreover, their set-theoretic operations such as intersection, union, complement,
cartesian product, algebraic products are derived. We develop the rough approximations of CQSVNSs
and discuss their axiomatic characterizations. Further, we investigate the approximate precision degree
and the rough degree in the novel model.

The structure of the paper is organized as follows. In Section 2, some concepts required in our work
are briefly recalled. Section 3 is devoted to the construction, operations and relations of CQSVNSs.
Section 4 introduces the model of rough CQSVNS in the approximation space. In Section 5, the level
cut sets of lower and upper approximations and the rough degree of CQSVNS in the approximation
space are studied. Section 6 gives brief conclusion and future research directions.

2. Preliminaries

In this section, we give some preliminary information that will be useful in the following sections.

Definition 2.1. [13] Let A be a universe of discourse. A single valued nuetrosophic set (SVNS) N
in A is characterized in the following form

N = {(a, 〈tN (a), ιN (a), fN (a)〉) : a ∈ A} (1)

where tN , ιN , fN : A → [0, 1] are termed the functions of truth-membership, indeterminacy-membership
and falsity-membership, respectively. Also, tN (a), ιN (a) and fN (a) denote the grades of truth-
membership, indeterminacy-membership and falsity-membership of a ∈ A to the set N respectively
with the condition 0 ≤ tN (a) + ιN (a) + fN (a) ≤ 3 for each a ∈ A.
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Definition 2.2. [30] Let A be a universe of discourse. A complex single valued nuetrosophic set
(CSVNS) C in A is characterized in the following form

C = {(a, 〈tC(a), ιC(a), fC(a)〉) : a ∈ A} (2)

where tC(a) = ΓC(a).eiγC(a), ιC(a) = ∆C(a).eiδC(a) and fC(a) = ΩC(a).eiωC(a) (for i =
√
−1) denote

the complex truth-membership grade, complex indeterminacy-membership grade and complex falsity-
membership grade of a ∈ A to the set C, respectively. In addition, the amplitude terms ΓC(a),
∆C(a), ΩC(a) and the phase terms γC(a), δC(a), ωC(a) satisfy the following conditions: 0 ≤ ΓC(a) +
∆C(a) + ΩC(a) ≤ 3 for ΓC(a),∆C(a),ΩC(a) ∈ [0, 1] and 0 ≤ γC(a) + δC(a) + ωC(a) ≤ 6π for
γC(a), δC(a), ωC(a) ∈ [0, 2π].

Chatterjee et al. [39] split the indeterminacy in structure of SVNS into two parts signifying contra-
diction and unknown (ignorance), and thereby initiated the theory of quadripartitioned single valued
neutrosophic set. The term quadripartitioned means something that is divided into the four charac-
teristic features.

Definition 2.3. [39] Let A be a universe of discourse. A quadripartitioned single valued nuetrosophic
set (QSVNS) Q in A is an object having the following form

Q = {(a, 〈tQ(a), cQ(a), uQ(a), fQ(a)〉) : a ∈ A} (3)

where tQ, cQ, uQ, fQ : A → [0, 1] are termed the functions of truth-membership, contradiction-
membership, ignorance-membership and falsity-membership, respectively. Also, tQ(a), cQ(a), uQ(a)
and fQ(a) denote the grades of truth-membership, contradiction-membership, ignorance-membership
and falsity-membership of a ∈ A to the set Q respectively with the condition 0 ≤ tQ(a) + cQ(a) +
uQ(a) + fQ(a) ≤ 4 for each a ∈ A.

Remark 2.4. A QSVNS Q can be decomposed to yield two SVNS, say QT and QF , where the
respective membership functions of both these are described as tQT (a) = tQ(a) = tQF (a); ιQT (a) =
cQ(a); ιQF (a) = uQ(a); fQT (a) = fQ(a) = fQF (a) for all a ∈ A.

In this respect, it needs to be specified that while performing set-theoretic operations on these
SVNSs, the behavior of ιQT is treated similar to that of tQT while the behavior of ιQF is modelled in
a way similar to that of fQF .

Assume A and B is any non-empty crisp sets. The subset of cartesian product of A and B is called
a relation from A to B. Especially, the subset of cartesian product of A×A is a relation on A. The
relation < on A is said to be

1. reflexive when (aj , aj) ∈ < for all aj ∈ A.

2. symmetric when (aj , ak) ∈ < ⇒ (ak, aj) ∈ < for all aj , ak ∈ A.

3. transitive when (aj , ak) ∈ < and (ak, al) ∈ <⇒ (aj , al) ∈ < for all aj , ak, al ∈ A.

If < is reflexive, symmetric and transitive then it is called an equivalence relation on A.

Definition 2.5. [32] Let A be any non-empty crisp set and < an equivalence relation on A. Then,
(A,<) is said to be (Pawlak) approximation space. If B is a subset of A, then the sets

appr<(B) = {b : [b]< ⊆ B} (4)

and

appr<(B) = {b : [b]< ∩B 6= ∅} (5)

are called the lower and upper approximations of B , respectively, where [b]< stands for the equivalence
class of < containing the object b ∈ B ⊆ A. The pair appr<(B) = (appr<(B), appr<(B)) is said to be
rough set of B in the (Pawlak) approximation space (A,<). Especially, if appr<(B) = appr<(B) then
B is called a definable. The positive region, negative region and boundary region of B are defined as
P<(B) = appr<(B), N<(B) = A− appr<(B) and B<(B) = appr<(B)− appr<(B), respectively.
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3. Complex Quadripartitioned Single Valued Neutrosophic Set Theory

In this section, we initiate the theory of complex quadripartitioned single valued neutrosophic set and
discuss some basic complex quadripartitioned single valued neutrosophic operations and relations.

3.1. Construction of Complex Quadripartitioned Single Valued Neutrosophic Set

It can be observed that QSVNSs are insufficient to describe the complex information based on the
four-valued logic. To eliminate this drawback, the framework of complex quadripartitioned single
valued neutrosophic set is constructed as follows.

Definition 3.1. Let A be a universe of discourse. A complex quadripartitioned single valued neu-
trosophic set (CQSVNS) C in A is characterized by a truth-membership function tC, a contradiction-
membership function cC, an ignorance-membership function uC and a falsity-membership function
fC that assign an element a ∈ A a complex-valued degree of tC(a), cC(a), uC(a) and fC(a) in C.
The values tC(a), cC(a), uC(a), fC(a) and their sum may all within the unit circle in the complex
plane, and are of the form: tC(a) = ΓC(a).eiγC(a), cC(a) = ΛC(a).eiλC(a), uC(a) = ΨC(a).eiψC(a) and
fC(a) = ΩC(a).eiωC(a) (where i =

√
−1). In addition, the amplitude terms ΓC(a), ΛC(a), ΨC(a), ΩC(a)

and the phase terms γC(a), λC(a), ψC(a), ωC(a) satisfy the following conditions:

0 ≤ ΓC(a) + ΛC(a) + ΨC(a) + ΩC(a) ≤ 4 for ΓC(a),ΛC(a),ΨC(a),ΩC(a) ∈ [0, 1] (6)

and

0 ≤ γC(a) + λC(a) + ψC(a) + ωC(a) ≤ 8π for γC(a), λC(a), ψC(a), ωC(a) ∈ [0, 2π] (7)

Simply, a CQSVNS can be given in the following form:

C = {(a, 〈tC(a), cC(a), uC(a), fC(a)〉) : a ∈ A}
= {(a, 〈ΓC(a).eiγC(a),ΛC(a).eiλC(a),ΨC(a).eiψC(a),ΩC(a).eiωC(a)〉) : a ∈ A} (8)

The complex membership value 〈ΓC(a).eiγC(a),ΛC(a).eiλC(a),ΨC(a).eiψC(a),ΩC(a).eiωC(a)〉 for a of C is
simply denoted ((ΓC, γC), (ΛC, λC), (ΨC, ψC), (ΩC, ωC)) and named as complex quadripartitioned single
valued neutrosophic number (CQSVNN).

Example 3.2. Bronchitis is an inflammation of the lining of the bronchial tubes that carry air to
the lungs. The bronchitis can be acute or chronic. The symptoms of acute bronchitis are usually a
mild headache, cough and production of mucus. The sets of symptoms of acute bronchitis is A =
{a1 (a mild headache), a2 (cough), a3 (production of mucus)}. While these symptoms usually
improve in about a week, they may take a few weeks. By using the data of many patients who survived
the disease, a doctor (expert) can create the following CQSVNS in A depends on the membership
“recovery time of symptoms”.

C =


(a1, 〈0.4ei2π(1), 0.7ei2π( 3

4
), 0.6ei2π( 2

3
), 0.6ei2π( 3

5
)〉)

(a2, 〈0.1ei2π( 1
5

), 0.7ei2π( 2
3

), 0ei2π(0), 0.6ei2π( 1
3

)〉),
(a3, 〈0.4ei2π( 1

3
), 0.6ei2π( 1

4
), 0.2ei2π( 2

5
), 1ei2π(0)〉)


Definition 3.3. Let C be a CQSVNS in A. For α1, α2, α3, α4 ∈ [0, 1] and β1, β2, β3, β4 ∈ [0, 2π], the

((α1, β1), (α2, β2), (α3, β3), (α4, β4))-level cut set of C, denoted by C
(β1,β2,β3,β4)
(α1,α2,α3,α4), is defined as follows:

C
(β1,β2,β3,β4)
(α1,α2,α3,α4) =

{
a ∈ A :

(
ΓC(a) ≥ α1, ΛC(a) ≥ α2, ΨC(a) ≤ α3, ΩC(a) ≤ α4,
γC(a) ≥ β1, λC(a) ≥ β2, ψC(a) ≤ β3, ωC(a) ≤ β4

) }
(9)

Example 3.4. Consider the CQSVNS C in Example 3.2. Then, ((0.3, π5 ), (0.5, π2 ), (0.7, 4π
3 ), (1, π))-

level cut set of C is C
(π

5
,π
2
, 4π

3
,π)

(0.3,0.5,0.7,1) = {a3}.
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Proposition 3.5. Let C1 and C2 be two CQSVNSs in A. If C1 ⊆ C2 then (C1)
(β1,β2,β3,β4)
(α1,α2,α3,α4) ⊆

(C2)
(β1,β2,β3,β4)
(α1,α2,α3,α4).

Proof. It can be proved easily according to the Definition 3.3, therefore omitted.

Definition 3.6. A CQSVNS C in A is said to be a null CQSVNS, denoted by Φ, if its complex
membership degrees are respectively tΦ(a) = ΓΦ(a).eiγΦ(a) = 0, cΦ(a) = ΛΦ(a).eiλΦ(a) = 0, uΦ(a) =
ΨΦ(a).eiψΦ(a) = ei2π and fΦ(a) = ΩΦ(a).eiωΦ(a) = ei2π for all a ∈ A.

Definition 3.7. A CQSVNS C in A is said to be a absolute CQSVNS, denoted by Â, if its complex
membership degrees are respectively tÂ(a) = ΓÂ(a).eiγÂ(a) = ei2π, cÂ(a) = ΛÂ(a).eiλÂ(a) = ei2π,

uÂ(a) = ΨÂ(a).eiψÂ(a) = 0 and fÂ(a) = ΩÂ(a).eiωÂ(a) = 0 for all a ∈ A.

3.2. Operations of Complex Quadripartitioned Single Valued Neutrosophic Set

In this part, we study the set-theoretic operations on the CQSVNSs and the properties related to
them.

Definition 3.8. Let C, C1 and C2 be three CQSVNSs in A. Then,

(a) C1 is said to be a CQSVN subset of C2, denoted by C1 ⊆ C2, if the following conditions are
satisfied: 

tC1(a) ≤ tC2(a), i.e., ΓC1(a) ≤ ΓC2(a) and γC1(a) ≤ γC2(a)
cC1(a) ≤ cC2(a), i.e., ΛC1(a) ≤ ΛC2(a) and λC1(a) ≤ λC2(a)
uC1(a) ≥ uC2(a), i.e., ΨC1(a) ≥ ΨC2(a) and ψC1(a) ≥ ψC2(a)
fC1(a) ≥ fC2(a), i.e., ΩC1(a) ≥ ΩC2(a) and ωC1(a) ≥ ωC2(a)

 (10)

(b) C1 and C2 are said to be a CQSVN equal, denoted by C1 = C2, if the following conditions are
satisfied: 

tC1(a) = tC2(a), i.e., ΓC1(a) = ΓC2(a) and γC1(a) = γC2(a)
cC1(a) = cC2(a), i.e., ΛC1(a) = ΛC2(a) and λC1(a) = λC2(a)
uC1(a) = uC2(a), i.e., ΨC1(a) = ΨC2(a) and ψC1(a) = ψC2(a)
fC1(a) = fC2(a), i.e., ΩC1(a) = ΩC2(a) and ωC1(a) = ωC2(a)

 (11)

(c) the complement of C, denoted by ∼ C, is defined as

∼ C = {(a, 〈t∼C(a), c∼C(a), u∼C(a), f∼C(a)〉) : a ∈ A}, (12)

where t∼C(a) = fC(a), c∼C(a) = uC(a), u∼C(a) = cC(a), and f∼C(a) = tC(a) for all a ∈ A.

(d) the intersection of C1 and C2, denoted by C1 ∩ C2, is defined as

C1 ∩ C2 = {(a, 〈tC1∩C2(a), cC1∩C2(a), uC1∩C2(a), fC1∩C2(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓC1∩C2(a).eiγC1∩C2

(a),ΛC1∩C2(a).eiλC1∩C2
(a),

ΨC1∩C2(a).eiψC1∩C2
(a),ΩC1∩C2(a).eiωC1∩C2

(a)

〉 )
: a ∈ A

}
, (13)

where

ΓC1∩C2(a) = ΓC1(a) ∧ ΓC2(a), ΛC1∩C2(a) = ΛC1(a) ∧ ΛC2(a),

ΨC1∩C2(a) = ΨC1(a) ∨ΨC2(a), ΩC1∩C2(a) = ΩC1(a) ∨ ΩC2(a),

γC1∩C2(a) = γC1(a) ∧ ΓC2(a), λC1∩C2(a) = λC1(a) ∧ λC2(a),

ψC1∩C2(a) = ψC1(a) ∨ ψC2(a), ωC1∩C2(a) = ωC1(a) ∨ ωC2(a).
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(e) the union of C1 and C2, denoted by C1 ∪ C2, is defined as

C1 ∪ C2 = {(a, 〈tC1∪C2(a), cC1∪C2(a), uC1∪C2(a), fC1∪C2(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓC1∪C2(a).eiγC1∪C2

(a),ΛC1∪C2(a).eiλC1∪C2
(a),

ΨC1∪C2(a).eiψC1∪C2
(a),ΩC1∪C2(a).eiωC1∪C2

(a)

〉 )
: a ∈ A

}
, (14)

where

ΓC1∪C2(a) = ΓC1(a) ∨ ΓC2(a), ΛC1∪C2(a) = ΛC1(a) ∨ ΛC2(a),

ΨC1∪C2(a) = ΨC1(a) ∧ΨC2(a), ΩC1∪C2(a) = ΩC1(a) ∧ ΩC2(a),

γC1∪C2(a) = γC1(a) ∨ ΓC2(a), λC1∪C2(a) = λC1(a) ∨ λC2(a),

ψC1∪C2(a) = ψC1(a) ∧ ψC2(a), ωC1∪C2(a) = ωC1(a) ∧ ωC2(a).

Example 3.9. Let A = {a1, a2} be a universal set. Assume that two CQSVNS are

C1 = {(a1, 〈0.5ei2π(
1
2 ), 0.7ei2π(

7
10 ), 1ei2π(0), 0.1ei2π(1)〉), (a2, 〈0.4ei2π(

1
2 ), 0.5ei2π(1), 0.4ei2π(

3
5 ), 0.7ei2π(

1
10 )〉)}

and

C2 = {(a1, 〈0.6ei2π(
1
3 ), 0.2ei2π(

5
7 ), 0.9ei2π(

9
10 ), 0.1ei2π(

5
6 )〉), (a2, 〈0.7ei2π(

2
3 ), 0.4ei2π(1), 0.2ei2π(

1
5 ), 0.8ei2π(

1
2 )〉)}

The complement of C1 is

∼ C1 = {(a1, 〈0.1ei2π(1), 1ei2π(0), 0.7ei2π(
7
10 ), 0.5ei2π(

1
2 )〉), (a2, 〈0.7ei2π(

1
10 ), 0.4ei2π(

3
5 ), 0.5ei2π(1), 0.4ei2π(

1
2 )〉)}

The intersection of C1 and C2 is

C1 ∩ C2 = {(a1, 〈0.5ei2π(
1
3 ), 0.2ei2π(

7
10 ), 1ei2π(

9
10 ), 0.1ei2π(1)〉), (a2, 〈0.4ei2π(

1
2 ), 0.4ei2π(1), 0.4ei2π(

3
5 ), 0.8ei2π(

1
2 )〉)}

The union of C1 and C2 is

C1 ∪ C2 = {(a1, 〈0.6ei2π(
1
2 ), 0.7ei2π(

5
7 ), 0.9ei2π(0), 0.1ei2π(

5
6 )〉), (a2, 〈0.7ei2π(

2
3 ), 0.5ei2π(1), 0.2ei2π(

1
5 ), 0.7ei2π(

1
10 )〉)}

Proposition 3.10. For three CQSVNSs C, C1 and C2 in A, ∼ C, C1∩C2 and C1∪C2 are also CQSVNSs
in A.

Proof. By considering the concepts in Definition 3.8, these results can be proved easily.

Proposition 3.11. Let C1, C2 and C3 be three CQSVNSs in A. Then, the following are hold.

(i) C1 ∗ C2 and C2 ∗ C3 ⇒ C1 ∗ C3 for each ∗ ∈ {⊆,=}

(ii) C1♦C2 = C2♦C1 for each ♦ ∈ {∩,∪}

(iii) C1♦(C2♦C3) = (C1♦C2)♦C3 for each ♦ ∈ {∩,∪}

(iv) C1♦(C2�C3) = (C1♦C2)�(C1♦C3) for each ♦,� ∈ {∩,∪}

(v) (C1♦C2)�C3 = (C1�C3)♦(C2�C3) for each ♦,� ∈ {∩,∪}

(vi) ∼ (C1♦C2) =∼ C1� ∼ C2 for each ♦,� ∈ {∩,∪} and ♦ 6= �

Proof. We will prove (vi), others can be demonstrated by similar techniques.
(vi): Assume that ♦ = ∩ and � = ∪. According to the operations of complement and intersection in
Definition 3.8, we can write

∼ (C1 ∩ C2) = {(a, 〈fC1(a) ∨ fC2(a), uC1(a) ∨ uC2(a), cC1(a) ∧ cC2(a), tC1(a) ∧ tC2(a)〉) : a ∈ A} (15)
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Likewise, we obtain for d = 1, 2,

∼ Cd = {(a, 〈t∼Cd
(a), c∼Cd

(a), u∼Cd
(a), f∼Cd

(a)〉) : a ∈ A} = {(a, 〈fCd
(a), uCd

(a), cCd
(a), tCd

(a)〉) : a ∈ A}

and so

∼ C1∪ ∼ C2 = {(a, 〈fC1(a) ∨ fC2(a), uC1(a) ∨ uC2(a), cC1(a) ∧ cC2(a), tC1(a) ∧ tC2(a)〉) : a ∈ A} (16)

From Eqs. (15) and (16), we have ∼ (C1 ∩ C2) =∼ C1∪ ∼ C2. It is shown in a similar way that
∼ (C1 ∪ C2) =∼ C1∩ ∼ C2.

Definition 3.12. Let C, C1 and C2 be three CQSVNSs in A and n > 0 be a real number. Then, the
following operational laws are hold.

(a)

C1 ⊕ C2 = {(a, 〈tC1⊕C2(a), cC1⊕C2(a), uC1⊕C2(a), fC1⊕C2(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓC1⊕C2(a).eiγC1⊕C2

(a),ΛC1⊕C2(a).eiλC1⊕C2
(a),

ΨC1⊕C2(a).eiψC1⊕C2
(a),ΩC1⊕C2(a).eiωC1⊕C2

(a)

〉 )
: a ∈ A

}
(17)

where ΓC1⊕C2(a) = ΓC1(a)+ΓC2(a)−ΓC1(a)ΓC2(a), ΛC1⊕C2(a) = ΛC1(a)+ΛC2(a)−ΛC1(a)ΛC2(a),
ΨC1⊕C2(a) = ΨC1(a)ΨC2(a), ΩC1⊕C2(a) = ΩC1(a)ΩC2(a), γC1⊕C2(a) = γC1(a)+γC2(a)−γC1(a)γC2(a),
λC1⊕C2(a) = λC1(a) + λC2(a) − λC1(a)λC2(a), ψC1⊕C2(a) = ψC1(a)ψC2(a), and ωC1⊕C2(a) =
ωC1(a)ωC2(a).

(b)

C1 ⊗ C2 = {(a, 〈tC1⊗C2(a), cC1⊗C2(a), uC1⊗C2(a), fC1⊗C2(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓC1⊗C2(a).eiγC1⊗C2

(a),ΛC1⊗C2(a).eiλC1⊗C2
(a),

ΨC1⊗C2(a).eiψC1⊗C2
(a),ΩC1⊗C2(a).eiωC1⊗C2

(a)

〉 )
: a ∈ A

}
, (18)

where ΓC1⊗C2(a) = ΓC1(a)ΓC2(a), ΛC1⊗C2(a) = ΛC1(a)ΛC2(a), ΨC1⊗C2(a) = ΨC1(a) + ΨC2(a) −
ΨC1(a)ΨC2(a), ΩC1⊗C2(a) = ΩC1(a)+ΩC2(a)−ΩC1(a)ΩC2(a), γC1⊗C2(a) = γC1(a)γC2(a), λC1⊗C2(a) =
λC1(a)λC2(a), ψC1⊗C2(a) = ψC1(a) + ψC2(a)− ψC1(a)ψC2(a), and ωC1⊗C2(a) = ωC1(a) + ωC2(a)−
ωC1(a)ωC2(a).

(c)

nC = {(a, 〈tnC(a), cnC(a), unC(a), fnC(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓnC(a).eiγnC(a),ΛnC(a).eiλnC(a),

ΨnC(a).eiψnC(a),ΩnC(a).eiωnC(a)

〉 )
: a ∈ A

}
, (19)

where ΓnC(a) = 1 − (1 − ΓC(a))n, ΛnC(a) = 1 − (1 − ΛC(a))n), ΨnC(a) = (ΨC(a))n, ΩnC(a) =
(ΩC(a))n, γnC(a) = 1 − (1 − γC(a))n, λnC(a) = 1 − (1 − λC(a))n, ψnC(a) = (ψC(a))n, and
ωnC(a) = (ωC(a))n.

(d)

Cn = {(a, 〈tCn(a), cCn(a), uCn(a), fCn(a)〉) : a ∈ A},

=

{ (
a,

〈
ΓCn(a).eiγCn (a),ΛCn(a).eiλCn (a),

ΨCn(a).eiψCn (a),ΩCn(a).eiωCn (a)

〉 )
: a ∈ A

}
, (20)

where ΓCn(a) = (ΓC(a))n, ΛCn(a) = (ΛC(a))n, ΨCn(a) = 1 − (1 − ΨC(a))n, ΩCn(a) = 1 − (1 −
ΩC(a))n, γCn(a) = (γC(a))n, λCn(a) = (λC(a))n, ψCn(a) = 1 − (1 − ψC(a))n, and ωCn(a) =
1− (1− ωC(a))n.
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Example 3.13. Consider the CQSVNSs C1 and C2 in Example 3.9 and n = 2. Then we have

C1 ⊕ C1 =

{
(a1, 〈0.8ei2π( 2

3
), 0.76ei2π( 32

35
), 0.9ei2π(0), 0.01ei2π( 5

6
)〉),

(a2, 〈0.82ei2π( 5
6

), 0.7ei2π(1), 0.08ei2π( 3
25

), 0.56ei2π( 1
20

)〉)

}
,

C1 ⊗ C1 =

{
(a1, 〈0.3ei2π( 1

6
), 0.14ei2π( 1

2
), 1ei2π( 9

10
), 0.19ei2π(1)〉),

(a2, 〈0.28ei2π( 1
3

), 0.2ei2π(1), 0.52ei2π( 17
25

), 0.94ei2π( 11
20

)〉)

}
,

2C1 =

{
(a1, 〈0.75ei2π( 3

4
), 0.91ei2π( 91

100
), 1ei2π(0), 0.01ei2π(1)〉),

(a2, 〈0.64ei2π( 3
4

), 0.75ei2π(1), 0.16ei2π( 9
25

), 0.49ei2π( 1
100

)〉)

}
,

and

C2
1 =

{
(a1, 〈0.25ei2π( 1

4
), 0.49ei2π( 49

100
), 1ei2π(0), 0.19ei2π(1)〉),

(a2, 〈0.16ei2π( 1
4

), 0.25ei2π(1), 0.64ei2π( 21
25

), 0.91ei2π( 19
100

)〉)

}
Proposition 3.14. If C, C1 and C2 are three CQSVNSs in A and n > 0 is a real number then C1⊕C2,
C1 ⊗ C2, nC and Cn are also CQSVNSs in A.

Proof. By considering Definition 3.12, these results can be proved easily.

Proposition 3.15. Let C1 and C2 be two CQSVNSs in A and n,m > 0 be two real numbers. Then,

(i) C1�C2 = C2�C1 for each � ∈ {⊕,⊗}

(ii) n(C1 ⊕ C2) = nC1 ⊕ nC2

(iii) nC1 ⊕mC1 = (n+m)C1

(iv) (C1 ⊕ C2)n = Cn1 ⊗ Cn2

(v) Cn1 ⊗ Cm1 = Cn+m
1

(vi) ∼ (C1�C2) =∼ C1� ∼ C1 for each �,� ∈ {⊕,⊗} and � 6= �

Proof. It can be proved similar to calculations in the proof of Proposition 3.11.

Proposition 3.16. Let C1, C2 and C3 be three CQSVNSs in A. Then,

(i) (C1♦C2)�C3 = (C1�C3)♦(C2�C3) for each ♦ ∈ {∩,∪} and � ∈ {⊕,⊗}

(ii) (C1♦C2)�(C1�C2) = (C1�C2) for each � ∈ {⊕,⊗}, ♦,� ∈ {∩,∪} and ♦ 6= �

Proof. From Definitions 3.8 and 3.12, they can be proved easily.

Definition 3.17. Let C1 and C2 be two CQSVNSs in A. Then, the cartesian product of C1 and C2,
denoted by C1 × C2, is defined as

C1 × C2 =

{ (
(aj , ak),

〈
tC1×C2(aj , ak), cC1×C2(aj , ak),
uC1×C2(aj , ak), fC1×C2(aj , ak)

〉 )
: (aj , ak) ∈ A×A

}
,

=


 (aj , ak),

〈 ΓC1×C2(aj , ak).e
iγC1×C2

(aj ,ak),

ΛC1×C2(aj , ak).e
iλC1×C2

(aj ,ak),

ΨC1×C2(aj , ak).e
iψC1×C2

(aj ,ak),

ΩC1×C2(aj , ak).e
iωC1×C2

(aj ,ak)

〉  : (aj , ak) ∈ A×A

 (21)

where ΓC1×C2(aj , ak) = ΓC1(aj) ∧ ΓC2(ak), ΛC1×C2(aj , ak) = ΛC1(aj) ∧ ΛC2(ak), ΨC1×C2(aj , ak) =
ΨC1(aj)∨ΨC2(ak), ΩC1×C2(aj , ak) = ΩC1(aj)∨ΩC2(ak), γC1×C2(aj , ak) = γC1(aj)∧ΓC2(ak), λC1×C2(aj , ak) =
λC1(aj)) ∧ λC2(ak), ψC1×C2(aj , ak)) = ψC1(aj) ∨ ψC2(ak), and ωC1×C2(aj , ak)) = ωC1(aj) ∨ ωC2(ak).



Journal of New Theory 34 (2021) 45-63 / Rough Approximations of CQSVNSs 53

Example 3.18. Consider the CQSVNSs C1 and C2 in Example 3.9. Then, the cartesian product of
C1 and C2 is

C1 × C2 =


((a1, a1), 〈0.5ei2π( 1

4
), 0.2ei2π( 7

10
), 1ei2π( 9

10
), 0.1ei2π(1)〉),

((a1, a2), 〈0.5ei2π( 1
4

), 0.4ei2π( 7
10

), 1ei2π( 1
3

), 0.8ei2π(1)〉),
((a2, a1), 〈0.4ei2π( 1

3
), 0.2ei2π( 5

7
), 0.9ei2π( 9

10
), 0.7ei2π( 5

6
)〉),

((a2, a2), 〈0.4ei2π( 1
2

), 0.4ei2π(1), 0.4ei2π( 3
5

), 0.8ei2π( 1
2

)〉)


Also, the cartesian product of C1 × C1 is

C1 × C1 =


((a1, a1), 〈0.5ei2π( 1

4
), 0.7ei2π( 7

10
), 1ei2π(0), 0.1ei2π(1)〉),

((a1, a2), 〈0.4ei2π( 1
4

), 0.5ei2π( 7
10

), 1ei2π( 3
5

), 0.7ei2π(1)〉),
((a2, a1), 〈0.4ei2π( 1

4
), 0.5ei2π( 7

10
), 1ei2π( 3

5
), 0.7ei2π(1)〉),

((a2, a2), 〈0.4ei2π( 1
2

), 0.5ei2π(1), 0.4ei2π( 3
5

), 0.7ei2π( 1
10

)〉)


Proposition 3.19. For two CQSVNSs C1 and C2 in A, C1 × C2 is a CQSVNS in A×A.

Proof. By considering Definition 3.17, this result can be demonstrated easily.

Proposition 3.20. Let C1, C2 and C3 be three CQSVNSs in A. Then,

(i) C1 ∗ C2 ⇒ (C1 × C3) ∗ (C2 × C3) for each ∗ ∈ {⊆,=}

(ii) C1 × (C2 × C3) = (C1 × C2)× C3

(iii) C1 × (C2♦C3) = (C1 × C2)♦(C1 × C3) for each ♦ ∈ {∩,∪}

(iv) (C1♦C2)× C3) = (C1 × C3)♦(C2 × C3) for each ♦ ∈ {∩,∪}

Proof. We will prove the assertion (i), the other can be demonstrated in a similar way.

(i): Assume that C1 ⊆ C2. By considering Eq. (10), for truth-membership grades, we have tC1(aj) ≤
tC2(aj), i.e. ΓC1(aj) ≤ ΓC2(aj) and γC1(aj) ≤ γC2(aj). There are three cases.

Case 1: If tC3(ak) ≤ tC1(aj) ≤ tC2(aj) then tC3(ak) ∧ tC1(aj) = tC3(ak) and tC3(aj) ∧ tC2(ak) =
tC3(ak). It follows tC1(aj) ∧ tC3(ak) = tC2(aj) ∧ tC3(ak).

Case 2: If tC1(aj) ≤ tC3(ak) ≤ tC2(aj) then tC1(aj) ∧ tC3(ak) = tC1(aj) and tC3(aj) ∧ tC2(ak) =
tC3(ak). Since tC1(aj) ≤ tC3(ak), it is obtained that tC1(aj)∧tC3(ak) ≤ tC2(aj)∧tC3(ak).

Case 3: If tC1(aj) ≤ tC2(aj) ≤ tC3(ak) then tC1(aj) ∧ tC3(ak) = tC1(aj) and tC2(aj) ∧ tC3(ak) =
tC2(aj). It follows tC1(aj) ∧ tC3(ak) ≤ tC2(aj) ∧ tC3(ak).

As a result of these three cases, tC1(aj) ∧ tC3(ak) ≤ tC2(aj) ∧ tC3(ak) for every aj , ak ∈ A.
By making similar calculations, it can be shown that cC1(aj) ∧ cC3(ak) ≤ cC2(aj) ∧ cC3(ak),
uC1(aj) ∨ uC3(ak) ≥ uC2(aj) ∨ uC3(ak) and fC1(aj) ∨ fC3(ak) ≥ fC2(aj) ∨ fC3(ak) for every
aj , ak ∈ A. So we have C1 × C3 ⊆ C2 × C3 if C1 ⊆ C2. This is obvious for situation of equality.

3.3. Relations on Complex Quadripartitioned Single Valued Neutrosophic Set

In this part, we discuss the complex quadripartitioned single valued neutrosophic relation and equiv-
alence complex quadripartitioned single valued neutrosophic relation with desired properties.
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Definition 3.21. Let C1 and C2 be two CQSVNSs in A. Then, a complex quadripartitioned single
valued neutrosophic relation (CQSVN relation) from C1 to C2 is a (non-null) CQSVN subset of C1×C2.
Thus, a CQSVN relation from C1 to C2 is denoted by =(C1,C2), where =(C1,C2) ⊆ C1×C2. =(C1,C2)
can be represented as the set

=(C1,C2) =

{ (
(aj , ak),

〈
t=(C1,C2)(aj , ak), c=(C1,C2)(aj , ak),

u=(C1,C2)(aj , ak), f=(C1,C2)(aj , ak)

〉 )
: (aj , ak) ∈ A×A

}
,

=


 (aj , ak),

〈 Γ=(C1,C2)(aj , ak).e
iγ=(C1,C2)(aj ,ak),

Λ=(C1,C2)(aj , ak).e
iλ=(C1,C2)(aj ,ak),

Ψ=(C1,C2)(aj , ak).e
iψ=(C1,C2)(aj ,ak),

Ω=(C1,C2)(aj , ak).e
iω=(C1,C2)(aj ,ak)

〉  : (aj , ak) ∈ A×A

 (22)

Especially, a CQSVN subset of C1 × C1 is called a CQSVN relation on C1 and denoted by =(C1).

Example 3.22. We consider C1 × C2 given in Example 3.18. If

=(C1,C2) =


((a1, a1), 〈0.3ei2π( 2

9
), 0.2ei2π( 1

2
), 1ei2π(1), 0.9ei2π(1)〉),

((a1, a2), 〈0.2ei2π( 1
4

), 0.1ei2π( 1
4

), 1ei2π( 2
3

), 0.9ei2π(1)〉),
((a2, a1), 〈0.1ei2π( 1

5
), 0.2ei2π( 5

9
), 0.9ei2π(1), 0.8ei2π( 5

6
)〉),

((a2, a2), 〈0.3ei2π( 4
9

), 0.1ei2π( 2
5

), 0.7ei2π( 4
5

), 0.9ei2π( 2
3

)〉)

 ,

then =(C1,C2) ⊆ C1 × C2 and so =(C1,C2) is a CQSVN relation from C1 to C2.

Definition 3.23. If = is a CQSVN relation from C1 to C2 then the inverse =−1 is a CQSVN relation
from C2 to C1 and is defined as follows:

=−1(C2,C1) =

{ (
(ak, aj),

〈
t=−1(C2,C1)(ak, aj), c=−1(C2,C1)(ak, aj),

u=−1(C2,C1)(ak, aj), f=−1(C2,C1)(ak, aj)

〉 )
: (ak, aj) ∈ A×A

}
, (23)

where t=−1(C2,C1)(ak, aj) = t=(C1,C2)(aj , ak), c=−1(C2,C1)(ak, aj) = c=(C1,C2)(aj , ak), u=−1(C2,C1)(ak, aj) =
u=(C1,C2)(aj , ak) and f=−1(C2,C1)(ak, aj) = f=(C1,C2)(aj , ak).

Example 3.24. We consider the CQSVN relation =(C1,C2) from C1 to C2 in Example 3.22. Then,

=−1(C2,C1) =


((a1, a1), 〈0.3ei2π( 2

9
), 0.2ei2π( 1

2
), 1ei2π(1), 0.9ei2π(1)〉),

((a1, a2), 〈0.1ei2π( 1
5

), 0.2ei2π( 5
9

), 0.9ei2π(1), 0.8ei2π( 5
6

)〉),
((a2, a1), 〈0.2ei2π( 1

4
), 0.1ei2π( 1

4
), 1ei2π( 2

3
), 0.9ei2π(1)〉),

((a2, a2), 〈0.3ei2π( 4
9

), 0.1ei2π( 2
5

), 0.7ei2π( 4
5

), 0.9ei2π( 2
3

)〉)

 ,

is the inverse of =(C1,C2), and further is a CQSVN relation from C2 to C1.

Definition 3.25. If = is a CQSVN relation from C1 to C2 and =̃ is a CQSVN relation from C2 to C3

then the composition = ◦ =̃, is a CQSVN relation from C1 to C3, is defined as follows:

(= ◦ =̃)(C1,C3) =

{ (
(aj , al),

〈
t=◦=̃(C1,C3)

(aj , al), c=◦=̃(C1,C3)
(aj , al),

u=◦=̃(C1,C3)
(aj , al), f=◦=̃(C1,C3)

(aj , al)

〉 )
: (aj , al) ∈ A×A

}
,(24)

where t=◦=̃(C1,C3)
(aj , al) =

(∨
ak

{Γ=(C1,C2)(aj , ak)∧Γ=̃(C2,C3)
(ak, al)}

)
.e
i(
∨
ak

{γ=(C1,C2)(aj ,ak)∧γ=̃(C2,C3)
(ak,al)})

,

c=◦=̃(C1,C3)
(aj , al) =

(∨
ak

{Λ=(C1,C2)(aj , ak) ∧ Λ=̃(C2,C3)
(ak, al)}

)
.e
i(
∨
ak

{λ=(C1,C2)(aj ,ak)∧λ=̃(C2,C3)
(ak,al)})

,

u=◦=̃(C1,C3)
(aj , al) =

(∧
ak

{Ψ=(C1,C2)(aj , ak) ∨Ψ=̃(C2,C3)
(ak, al)}

)
.e
i(
∧
ak

{ψ=(C1,C2)(aj ,ak)∨ψ=̃(C2,C3)
(ak,al)})

,

f=◦=̃(C1,C3)
(aj , al) =

(∧
ak

{Ω=(C1,C2)(aj , ak) ∨ Ω=̃(C2,C3)
(ak, al)}

)
.e
i(
∧
ak

{ω=(C1,C2)(aj ,ak)∨ω=̃(C2,C3)
(ak,al)})

.



Journal of New Theory 34 (2021) 45-63 / Rough Approximations of CQSVNSs 55

Proposition 3.26. Let = and =̃ be two CQSVN relations from C1 to C2 and from C2 to C3, respec-
tively. Then, the following assertions are true.

(i) (=−1)−1 = =

(ii) (= ◦ =̃)−1 = =̃−1 ◦ =−1

Proof. (i): The proof is straightforward.
(ii): If the composition = ◦ =̃ is a CQSVN relation from C1 to C3 then the inverse (= ◦ =̃)−1 is a
CQSVN relation from C3 to C1. By the definitions of inverse and composition of CQSVN relations,
we can write

t
(=◦=̃)−1(C3,C1)

(al, aj) = t=◦=̃(C1,C3)
(aj , al)

=
(∨
ak

{Γ=(C1,C2)(aj , ak) ∧ Γ=̃(C2,C3)
(ak, al)}

)
.e
i(
∨
ak

{γ=(C1,C2)(aj ,ak)∧γ=̃(C2,C3)
(ak,al)})

=
(∨
ak

{Γ=−1(C2,C1)(ak, aj) ∧ Γ=̃−1(C3,C2)
(al, ak)}

)
.e
i(
∨
ak

{γ=−1(C2,C1)(ak,aj)∧γ=̃−1(C3,C2)
(al,ak)})

=
(∨
ak

{Γ=̃−1(C3,C2)
(al, ak) ∧ Γ=−1(C2,C1)(ak, aj)}

)
.e
i(
∨
ak

{γ=̃−1(C3,C2)
(al,ak)∧γ=−1(C2,C1)(ak,aj)})

= t
(=̃−1◦=−1)(C3,C1)

(al, aj) (25)

By using the similar techniques, we can demonstrate the equalities:
c

(=◦=̃)−1(C3,C1)
(al, aj)=c(=̃−1◦=−1)(C3,C1)

(al, aj), u(=◦=̃)−1(C3,C1)
(al, aj) = u

(=̃−1◦=−1)(C3,C1)
(al, aj) and

f
(=◦=̃)−1(C3,C1)

(al, aj) = f
(=̃−1◦=−1)(C3,C1)

(al, aj). So, we have (= ◦ =̃)−1 = =̃−1 ◦ =−1.

Definition 3.27. A CQSVN relation = on C is said to be

(a) reflexive if t=(C)(aj , aj) = ei2π, c=(C)(aj , aj) = ei2π, u=(C)(aj , aj) = 0 and f=(C)(aj , aj) = 0 for all
aj ∈ A.

(b) symmetric if t=(C)(aj , ak) = t=(C)(ak, aj), c=(C)(aj , ak) = c=(C)(ak, aj), u=(C)(aj , ak) = u=(C)(ak, aj)
and f=(C)(aj , ak) = f=(C)(ak, aj) for all aj , ak ∈ A.

(c) transitive if = ◦ = ⊆ =.
(e.g., for amplitude term and phase term of truth-membership, it is characterized as follows:
Γ=(C)(aj , al) ≥

∨
ak

{Γ=(C)(aj , ak) ∧ Γ=(C)(ak, al)}, γ=(C)(aj , al) ≥
∨
ak

{γ=(C)(aj , ak) ∧ γ=(C)(ak, al)}

for all aj , ak, al ∈ A. Likewise, it can be interpreted in accordance with the concept of com-
position of CQSVN relations for contradiction-membership, ignorance-membership and falsity-
membership.)

Example 3.28. For the CQSVNS C1×C1 in Example 3.18, =(C1) = C1×C1 is a CQSVN relation on C1.
=(C1) is not reflexive (e.g., t=(C1)(aj , aj) 6= ei2π). Since t=(C1)(a1, a2) = t=(C1)(a2, a1), c=(C1)(a1, a2) =
c=(C1)(a2, a1), u=(C1)(a1, a2) = u=(C1)(a2, a1) and f=(C1)(a1, a2) = f=(C1)(a2, a1), =(C1) is symmetric.
Since =(C1) ◦ =(C1) ⊆ =(C1), =(C1) is transitive.

Proposition 3.29. Let = be a CQSVN relations on C. Then,

(i) if = is a reflexive CQSVN relation, then =−1 is also reflexive.

(ii) if = is a symmetric CQSVN relation, then =−1 is also symmetric.

(iii) if = is a transitive CQSVN relation, then =−1 is also transitive.

Proof. The proofs are straightforward.
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Definition 3.30. A CQSVN relation = on C is said to be equivalence CQSVN relation if = is reflexive,
symmetric and transitive.

Proposition 3.31. If = is an equivalence CQSVN relation on C then =−1 is also an equivalence
CQSVN relation on C.

Proof. The proof is obvious from Definition 3.30 and Proposition 3.29.

4. Rough Sets Combined Complex Quadripartitioned Single Valued Neutrosophic
Sets

In this section, we introduce the concept of rough complex quadripartitioned single valued neutrosophic
set by combining both rough set and CQSVNS. Also, we investigate the axiomatic characterizations.

Definition 4.1. Let A be a non-empty set and < be a an equivalence relation on A. Assume that C
is a CQSVNS in A.
The lower approximation of C in the approximation space (A,<), denoted by appr<(C), is defined as

appr<(C) =



 aj ,

〈 Γappr<(C)(aj).e
iγappr<(C)(aj),

Λappr<(C)(aj).e
iλappr<(C)(aj),

Ψappr<(C)(aj).e
iψappr<(C)(aj),

Ωappr<(C)(aj).e
iωappr<(C)(aj)

〉  : aj ∈ A


, (26)

where, for all aj ∈ A,

Γappr<(C)(aj) =
∧

ak∈[aj ]<

ΓC(ak), Λappr<(C)(aj) =
∧

ak∈[aj ]<

ΛC(ak),

Ψappr<(C)(aj) =
∨

ak∈[aj ]<

ΨC(ak), Ωappr<(C)(aj) =
∨

ak∈[aj ]<

ΩC(ak),

γappr<(C)(aj) =
∧

ak∈[aj ]<

γC(ak), λappr<(C)(aj) =
∧

ak∈[aj ]<

λC(ak),

ψappr<(C)(aj) =
∨

ak∈[aj ]<

ψC(ak), ωappr<(C)(aj) =
∨

ak∈[aj ]<

ωC(ak)

The upper approximation of C in the approximation space (A,<), denoted by appr<(C), is defined as

appr<(C) =


 aj ,

〈 Γappr<(C)(aj).e
iγappr<(C)(aj),

Λappr<(C)(aj).e
iλappr<(C)(aj),

Ψappr<(C)(aj).e
iψappr<(C)(aj),

Ωappr<(C)(aj).e
iωappr<(C)(aj)

〉  : aj ∈ A

 , (27)

where, for all aj ∈ A,

Γappr<(C)(aj) =
∨

ak∈[aj ]<

ΓC(ak), Λappr<(C)(aj) =
∨

ak∈[aj ]<

ΛC(ak),

Ψappr<(C)(aj) =
∧

ak∈[aj ]<

ΨC(ak) Ωappr<(C)(aj) =
∧

ak∈[aj ]<

ΩC(ak),

appr<(C)(aj) =
∨

ak∈[aj ]<

γC(ak), λappr<(C)(aj) =
∨

ak∈[aj ]<

λC(ak),

ψappr<(C)(aj) =
∧

ak∈[aj ]<

ψC(ak), ωappr<(C)(aj) =
∧

ak∈[aj ]<

ωC(ak)
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It is easy to see that appr<(C) and appr<(C) are two CQSVNSs inA. appr<(C) = (appr<(C), appr<(C))
is called the rough complex quadripartitioned single valued neutrosophic set (rough CQSVNS) in the
approximation space (A,<). Furthermore, the positive region, negative region and boundary region
of CQSVNS C are defined as P<(C) = appr<(C), N<(C) =∼ appr<(C) and B<(C) = appr<(C)∩ ∼
appr<(C), respectively. If appr<(C) = appr<(C) then the CQSVNS C is called a definable CQSVNS
in (A,<), otherwise C is a rough. It can be easily demonstrated that null CQSVNS and absolute
CQSVNS are definable.

Example 4.2. Suppose that A = {a1, a2, a3, a4, a5, a6} is a universal set and

C =


(a1, 〈0.5ei2π(

1
2 ), 0.7ei2π(

2
5 ), 1ei2π(1), 1ei2π(

3
10 )〉), (a2, 〈0.4ei2π(

2
3 ), 0.9ei2π(

1
4 ), 0.7ei2π(

1
2 ), 0ei2π(0)〉),

(a3, 〈0.7ei2π(
1
9 ), 0.2ei2π(

1
3 ), 0.4ei2π(

2
7 ), 0.5ei2π(1)〉), (a4, 〈0.1ei2π(

1
5 ), 0.4ei2π(

2
3 ), 0.1ei2π(

2
5 ), 0.1ei2π(

1
10 )〉),

(a5, 〈0.2ei2π(
1
3 ), 0.5ei2π(

3
5 ), 0.6ei2π(

2
7 ), 0.7ei2π(

3
8 )〉), (a6, 〈0.2ei2π(1), 0.7ei2π(1), 0.4ei2π(

3
5 ), 0.2ei2π(

1
4 )〉)


is a CQSVNS in A. Also, let < be an equivalence relation on A such that the equivalence classes are
[a1]< = {a1, a3}, [a2]< = {a2}, and [a4]< = {a4, a4, a6}. Then, the lower and upper approximations of
C, i.e. appr<(C) and appr<(C), respectively, in the approximation space (A,<) are as follows:

(a1, 〈0.5ei2π(
1
9 ), 0.2ei2π(

1
3 ), 1ei2π(1), 1ei2π(1)〉), (a2, 〈0.4ei2π(

2
3 ), 0.9ei2π(

1
4 ), 0.7ei2π(

1
2 ), 0ei2π(0)〉),

(a3, 〈0.5ei2π(
1
9 ), 0.2ei2π(

1
3 ), 1ei2π(1), 1ei2π(1)〉), (a4, 〈0.1ei2π(

1
3 ), 0.4ei2π(

3
5 ), 0.6ei2π(

3
5 ), 0.7ei2π(

3
8 )〉),

(a5, 〈0.1ei2π(
1
3 ), 0.4ei2π(

3
5 ), 0.6ei2π(

3
5 ), 0.7ei2π(

3
8 )〉), (a6, 〈0.1ei2π(

1
3 ), 0.4ei2π(

3
5 ), 0.6ei2π(

3
5 ), 0.7ei2π(

3
8 )〉)

 ,

and
(a1, 〈0.7ei2π(

1
2 ), 0.7ei2π(

2
5 ), 0.4ei2π(

2
7 ), 0.5ei2π(

3
10 )〉), (a2, 〈0.4ei2π(

2
3 ), 0.9ei2π(

1
4 ), 0.7ei2π(

1
2 ), 0ei2π(0)〉),

(a3, 〈0.7ei2π(
1
2 ), 0.7ei2π(

2
5 ), 0.4ei2π(

2
7 ), 0.5ei2π(

3
10 )〉), (a4, 〈0.2ei2π(1), 0.7ei2π(1), 0.1ei2π(

2
7 ), 0.2ei2π(

1
10 )〉),

(a5, 〈0.2ei2π(1), 0.7ei2π(1), 0.1ei2π(
2
7 ), 0.2ei2π(

1
10 )〉), (a6, 〈0.2ei2π(1), 0.7ei2π(1), 0.1ei2π(

2
7 ), 0.2ei2π(

1
10 )〉)


So, it is a rough CQSVNS.

Proposition 4.3. For the lower and upper approximations of CQSVNSs C, C1 and C2, the following
properties are hold.

(i) appr<(C) ⊆ C ⊆ appr<(C)

(ii) C1 ⊆ C2 ⇒ appr<(C1) ⊆ appr<(C2) and appr<(C1) ⊆ appr<(C2)

(iii) appr<(appr<(C)) = appr<(C) and appr<(appr<(C)) = appr<(C)

(iv) appr<(appr<(C)) = appr<(C) and appr<(appr<(C)) = appr<(C)

(v) appr<(∼ C) =∼ appr<(C) and appr<(∼ C) =∼ appr<(C)

(vi) appr<(C1 ∩ C2) = appr<(C1) ∩ appr<(C2) and appr<(C1 ∪ C2) = appr<(C1) ∪ appr<(C2)

Proof.

(i): Let C be a CQSVNS in A, and appr<(C) and appr<(C) be lower and upper approximations of
C, respectively. For every aj ∈ A, we calculate (by considering Definitions 3.8 (a) and 4.1), for
the amplitude term of complex truth-membership,

Γappr<(C)(aj) =
∧

ak∈[aj ]<

ΓC(ak) ≤ ΓC(aj) ≤
∨

ak∈[aj ]<

ΓC(ak) = Γappr<(C)(aj)

and for the phase term of complex falsity-membership,

ωappr<(C)(aj) =
∨

ak∈[aj ]<

ωC(ak) ≥ ωC(aj) ≥
∧

ak∈[aj ]<

ωC(ak) = ωappr<(C)(aj).
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Proceeding with similar calculations, we obtain that

Λappr<(C)(aj) ≤ ΛC(aj) ≤ Λappr<(C)(aj), Ψappr<(C)(aj) ≥ ΨC(aj) ≥ Ψappr<(C)(aj),

Ωappr<(C)(aj) ≥ ΩC(aj) ≥ Ωappr<(C)(aj), γappr<(C)(aj) ≤ γC(aj) ≤ γappr<(C)(aj),

λappr<(C)(aj) ≤ λC(aj) ≤ λappr<(C)(aj), ψappr<(C)(aj) ≥ ψC(aj) ≥ ψappr<(C)(aj).

Therefore, we have appr<(C) ⊆ C ⊆ appr<(C)

(ii): It is obvious from the definitions of lower and upper approximations of CQSVNS.

(iii): According to the definition of lower approximation of CQSVNS, we can write, for ever aj ∈ A,

Γappr<(C)(aj) =
∧

ak∈[aj ]<

ΓC(ak) = ΓC(ak∗)

where ak∗ ∈ [aj ]<. It follows

Γappr<(appr<(C))(aj) =
∧

ak∈[aj ]<

(
∧

ak∈[aj ]<

ΓC(ak)) = ΓC(ak∗)

So, Γappr<(appr<(C))(aj) = Γappr<(C)(aj) for ever aj ∈ A. It can be shown similarly for other

amplitude terms and phase terms. These demonstrate that appr<(appr<(C)) = appr<(C). The
property appr<(appr<(C)) = appr<(C) can be proved similarly.

(iv): The proof is similar to the proof of (iii).

(v): According to the Definitions 3.8 (c) and 4.1, we can obtain

appr<(∼ C) =




aj ,

〈
( ∧
ak∈[aj ]<

Γ∼C(ak)
)
.e
i(

∧
ak∈[aj ]<

γ∼C(ak))

,

( ∧
ak∈[aj ]<

Λ∼C(ak)
)
.e
i(

∧
ak∈[aj ]<

λ∼C(ak))

,

( ∨
ak∈[aj ]<

Ψ∼C(ak)
)
.e
i(

∨
ak∈[aj ]<

ψ∼C(ak))

,

( ∨
ak∈[aj ]<

Ω∼C(ak)
)
.e
i(

∨
ak∈[aj ]<

ω∼C(ak))

〉


: aj ∈ A



=




aj ,

〈
( ∨
ak∈[aj ]<

ΩC(ak)
)
.e
i(

∨
ak∈[aj ]<

ωC(ak))

,

( ∨
ak∈[aj ]<

ΨC(ak)
)
.e
i(

∨
ak∈[aj ]<

ψC(ak))

,

( ∧
ak∈[aj ]<

ΛC(ak)
)
.e
i(

∧
ak∈[aj ]<

λC(ak))

,

( ∧
ak∈[aj ]<

ΓC(ak)
)
.e
i(

∧
ak∈[aj ]<

γC(ak))

,

〉


: aj ∈ A


= ∼ appr<(C). (28)

The property of appr<(∼ C) =∼ appr<(C) can be demonstrated similarly.

(vi): Based on the Definition 3.8 (c) and (d) and Definition 4.1, it can be proved similar to the proof
of (v).
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5. Level Cut Set-based Rough Degree of Complex Quadripartitioned Single Valued
Neutrosophic Set

In this section, we introduce the approximate precision and rough degree of CQSVNS and give some
theoretical results.

For the CQSVNS C in A, we know that appr<(C) and appr<(C) are two CQSVNSs. Thus, the
((α1, β1), (α2, β2), (α3, β3), (α4, β4))-level cut sets of appr<(C) and appr<(C) can be described as fol-
lows.

Definition 5.1. The ((α1, β1), (α2, β2), (α3, β3), (α4, β4))-level cut sets of appr<(C) and appr<(C),

denoted by (appr<(C))
(β1,β2,β3,β4)
(α1,α2,α3,α4) and (appr<(C))

(β1,β2,β3,β4)
(α1,α2,α3,α4), are defined as follows, respectively:

(appr<(C))
(β1,β2,β3,β4)
(α1,α2,α3,α4) =

 aj ∈ A :


Γappr<(C)(aj) ≥ α1, Λappr<(C)(aj) ≥ α2,

Ψappr<(C)(aj) ≤ α3, Ωappr<(C)(aj) ≤ α4,

γappr<(C)(aj) ≥ β1, λappr<(C)(aj) ≥ β2,

ψappr<(C)(aj) ≤ β3, ωappr<(C)(aj) ≤ β4


 (29)

and

(appr<(C))
(β1,β2,β3,β4)
(α1,α2,α3,α4) =

 aj ∈ A :


Γappr<(C)(aj) ≥ α1, Λappr<(C)(aj) ≥ α2,

Ψappr<(C)(aj) ≤ α3, Ωappr<(C)(aj) ≤ α4,

γappr<(C)(aj) ≥ β1, λappr<(C)(aj) ≥ β2,

ψappr<(C)(aj) ≤ β3, ωappr<(C)(aj) ≤ β4


 (30)

Definition 5.2. Let (A,<) be an approximation space and C be a CQSVNS in A. Also, let the
((α2

1, β
2
1), (α2

2, β
2
2), (α2

3, β
2
3), (α2

4, β
2
4))-level cut set of appr<(C) be not null. The level cut set-based

approximate precision of CQSVNS C can be defined as

σ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

=

∣∣(appr<(C))
(β1

1 ,β
1
2 ,β

1
3 ,β

1
4)

(α1
1,α

1
2,α

1
3,α

1
4)

∣∣∣∣(appr<(C))
(β2

1 ,β
2
2 ,β

2
3 ,β

2
4)

(α2
1,α

2
2,α

2
3,α

2
4)

∣∣ (31)

where the notation | · | denotes the cardinality of set and 0 < α2
1 ≤ α1

1 ≤ 1, 0 < α2
2 ≤ α1

2 ≤ 1,
0 < α1

3 ≤ α2
3 ≤ 1, 0 < α1

4 ≤ α2
4 ≤ 1, 0 < β2

1 ≤ β1
1 ≤ 1, 0 < β2

2 ≤ β1
2 ≤ 1, 0 < β1

3 ≤ β2
3 ≤ 1,

0 < β1
4 ≤ β2

4 ≤ 1.
The level cut set-based rough degree of CQSVNS C is denoted and defined by

ρ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

= 1− σ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

(32)

Note 5.3. From now on, the ((α2
1, β

2
1), (α2

2, β
2
2), (α2

3, β
2
3), (α2

4, β
2
4))-level cut set of appr<(C) is not null.

Theorem 5.4. Let (A,<) be an approximation space and C be a CQSVNS in A. Then, the approxi-

mate precision σ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

and the rough degree ρ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

of CQSVNS

C provide the following properties.

(i) 0 ≤ σ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

≤ 1

(ii) 0 ≤ ρ(C)
(β

(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

≤ 1
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Proof.

(i): By Proposition 4.3 (i), we know that appr<(C) ⊆ appr<(C). Since 0 < α2
p ≤ α1

p ≤ 1, 0 < β2
p ≤

β1
p ≤ 1 for p = 1, 2 and 0 < α1

q ≤ α2
q ≤ 1, 0 < β1

q ≤ β2
q ≤ 1 for p = 3, 4, we can say that∣∣(appr<(C))

(β1
1 ,β

1
2 ,β

1
3 ,β

1
4)

(α1
1,α

1
2,α

1
3,α

1
4)

∣∣ ≤ ∣∣(appr<(C))
(β1

1 ,β
1
2 ,β

1
3 ,β

1
4)

(α1
1,α

1
2,α

1
3,α

1
4)

∣∣
So, we have 0 ≤ σ(C)

(β
(1,2)
1 ,β

(1,2)
2 ,β

(1,2)
3 ,β

(1,2)
4 )

(α
(1,2)
1 ,α

(1,2)
2 ,α

(1,2)
3 ,α

(1,2)
4 )

≤ 1.

(ii): It is obvious from (i) and Eq. (32).

Example 5.5. Consider the lower approximation appr<(C) and upper approximation appr<(C) of C
in Example 4.2. We can find that the ((0.3, π3 ), (0.7, π2 ), (0.7, 4π

3 ), (0.3, 0))-level cut set of appr<(C) is

(appr<(C))
(π

3
,π
2
, 4π

3
,0)

(0.3,0.7,0.7,0.3) = {a2}

and ((0.2, π3 ), (0.7, 2π
5 ), (0.7, 4π

3 ), (0.5, π5 ))-level cut set of appr<(C) is

(appr<(C))
(π

3
, 2π

5
, 4π

3
,π
5

)

(0.2,0.7,0.7,0.5) = {a2, a4, a5, a6}

Hence, we calculate the approximation precision and rough degree as

σ(C)
((π

3
,π
3

),(π
2
, 2π

5
),( 4π

3
, 4π

3
),(0,π

5
))

((0.3,0.2),(0.7,0.2),(0.7,0.7),(0.3,0.5)) = 1
4

and

ρ(C)
((π

3
,π
3

),(π
2
, 2π
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Proposition 5.6. Let (A,<) be an approximation space, and C1 and C2 be two CQSVNSs in A.
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Proof.

(i): Since C1 ⊆ C2, we have (appr<(C1))
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by Propositions 3.5

and 4.3 (i). From the assumption, we have (appr<(C1))
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.

Therefore, the proof is clear from Eqs. (31) and (32).

(ii): It can be proved similar to proof of (i).
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6. Conclusion

The QSVNS based on the four-valued logic is an effective mathematical tool for managing ambiguity.
In this study based on extension of these sets, we introduced the concept of CQSVNSs and carried out
theoretical study of various set-theoretic operations on them. Then, we described the lower and upper
approximations of CQSVNSs in the approximation space and discussed their properties. Meanwhile,
we gave the definitions of rough CQSVN cut sets and then presented how to measure the rough degree
of CQSVN in the approximation space. It is worth mentioning that the CQSVNs and rough CQSVNs
can be used for dealing with many problems in real life. Future works may involve the different types
of distance measures between two CQSVNs (or rough CQSVNSs) and their applications in the medical
diagnosis, pattern recognition and clustering analysis.
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1. Introduction 
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America in 1992 [1], the use of SVM became widespread. Then, it was officially introduced by Vapnik in 

1995 [2]. 

The SVM theory is based on the idea of Vapnik-Chervonenkis (VC) theory and Structural Risk 

Minimization (SRM). The VC theory is a subbranch of statistical learning theory. The main goal in learning 

problems is to reach the most accurate results with the minimum error. For this, the expected risk is desired to 

be minimum. The basic idea in SRM principle and VC theory is to select the model with the correct level of 

complexity to minimize the expected risk or generalization error among many models. The SRM principle 

aims to minimize the upper bound of the expected risk. For a function with distribution, the SRM principle 

converges to the optimal solution. SVM tries to keep both experimental risk and VC dimension to a minimum 

so that the expected risk reaches the minimum [3]. 

SVM aims to classify the observations most accurately by finding the optimal separating hyperplane 

between two or more classes. It is used in linear and non-linear classification and regression problems. Datasets 

in which training data cannot be separated linearly are transferred to a higher dimensional feature space using 

mapping functions. The dataset mapped to the feature space can be linearly separated using kernel functions 
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[4]. In feature space, SVM tries to solve the quadratic optimization problem to find the optimal separating 

hyperplane. 

SVM is used in many different domains: pattern recognition (handwriting [5], face [6], speech [7], 

emotion [8], disease diagnosis [9], treatment success [10], time series [11], criminology [12], stock market 

prediction [13], etc.). 

This study aims to introduce the two-class SVM classification theory and examine the effects of sample 

size and optimal hyperparameter selection on classification accuracy. Besides, determining the optimal values 

of the hyperparameters of kernel functions has a significant impact on SVM results. For tuning the 

hyperparameters, many algorithms have been proposed, such as grid search, random search, Bayesian 

optimization, simulated annealing, particle swarm optimization, genetic algorithm, etc. [14]. In this study, we 

used a grid search CV algorithm to tune hyperparameters. After tuning the hyperparameters, the SVM 

classification results were examined on the simulated dataset with different scenarios.  

The rest of the paper is organized as follows. A brief review of the theory of SVM is described in Section 

2. The experiments are presented in Section 3. Results are given in Section 4, and we conclude the paper with 

a summary of results by emphasizing the importance of this study and mentioning some viable future work. 

2. Support Vector Machines 

The theory of SVMs in classification problems is given in this section [15,16]. SVMs are used to optimally 

separate dataset belonging multiple classes by specifying a hyperplane. With linear SVM, the dataset can be 

separated completely (hard margin) or partially (soft margin), and the dataset cannot be separated linearly in 

any way with non-linear SVM. 

2.1.  Linear Support Vector Machines 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛), 𝑥 ∈ 𝑅𝑛 be the training dataset for SVM with separable two-class labels such 

as 𝑦 ∈ {+1, −1}. The main purpose of SVM is to find the most suitable separating hyperplane that will enable 

to classify training observations correctly. Hyperplane represents a separating surface in a multidimensional 

space. There can be thousands of different hyperplanes between two classes, so the most suitable (optimal) 

hyperplane must be found for strong classification accuracy and better generalization performance. 

To find the optimal separating hyperplane, it is necessary to determine the distance between training 

observations with different two-class labels called Margin. The maximum margin classifier will give the 

optimal separating hyperplane. Separating hyperplanes are formulated as in Equation 1, 

 𝐷(𝑥) = (𝑤. 𝑧) + 𝑏 = 0 (1) 

and should provide Equation 2 for both classes. 

 𝑦𝑖[(𝑤. 𝑧) + 𝑏] ≥ 1, 𝑖 = 1, … , 𝑛 (2) 

The distance between hyperplane and origin is 

  𝑑 =
|𝑏|

‖𝑤‖
 (3) 

in which 𝑏 and 𝑤 are the parameters of the optimal hyperplane. Here, | . | is the absolute value and ‖ . ‖ is the 

Euclidean norm of a vector. Assume two hyperplanes (+𝑑, −𝑑) for two-class label (+1, −1). Thus, the margin 

is computed as  

  margin =  𝑑+ − 𝑑− =
|1−𝑏|

‖𝑤‖
−

|−1−𝑏|

‖𝑤‖
=

2

‖𝑤‖
 (4) 

To maximize this margin (hard margin), the norm of 𝑤 is minimized. Hence, the primal form of the 

optimization problem obtained for the maximum margin classifier or, in other words, the optimal separating 

hyperplane is as follows: 
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  minimize 
1

2
‖𝑤‖2  

  subject to 𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) ≥ +1, 𝑖 = 1, . . , 𝑛 (5) 

The optimal hyperplane problem is a classical optimization problem and can be solved by the Lagrangian 

multiplier method and Krush Kuhn Tucker (KKT) conditions, so the problem transforms into the dual form, 

and the dual form of the problem is solved as in Equation 6, 

  maximize 𝑊(𝑥) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑧𝑖. 𝑧𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1   

  subject to ∑ 𝛼𝑖𝑦𝑖 = 0, 𝑖 = 1, … , 𝑛𝑛
𝑖=1  (6) 

The KKT theorem is important in the theory of SVM. According to KKT conditions, there are two 

different situations for 𝛼𝑖(𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) − 1) = 0, which are the correctly classified features outside of 

hyperplanes (𝛼𝑖 = 0) and the correctly classified features located on hyperplanes (𝛼𝑖 ≥ 0), called support 

vectors. The structure of an SVM is shown in Figure 1. 

 
Fig 1: The structure of an SVM 

2.2.  Non-Linear Support Vector Machines 

The previous sections mentioned that the dataset is completely and linearly separable (hard margin). Moreover, 

when the dataset is partially non-separable (soft margin), slack variables (ξ) are added to Equation 2, and the 

computations are performed as in the hard margin optimization. Then, separating hyperplane for the partially 

non-separable dataset is found as in Equation 7, 

   𝑦𝑖[(𝑤. 𝑧) + 𝑏] ≥ 1 − 𝜉𝑖 , 𝑖 = 1, … , 𝑛 (7) 

The optimal hyperplane for the partially non-separable case is obtained from Equation 8, 

  minimize 
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1   

  subject to 𝑦𝑖(𝑤. 𝑧𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,   𝑖 = 1, . . , 𝑛, 𝜉𝑖 ≥ 0 (8) 

in which the regularization parameter C is constant. 

Non-linear SVM classifier is used in cases where training observations cannot be separated by a linear 

decision surface. Generally, datasets cannot be separated linearly in real analysis. For such problems, mapping 

functions are used to transform the input space in which training observations cannot be separated linearly into 

a higher dimensional feature space where observations can be linearly separated [17]. To access this aim, 

kernel functions are used because the transition to a higher dimensional space with mapping functions and 

processing with dot products in this space is computationally difficult and time-consuming. Kernel function 

𝐾 (. , . ) is given in Equation 9, 

   𝐾(𝑥𝑖 , 𝑥𝑗 ) = 𝑧𝑖. 𝑧𝑗 = 𝜑(𝑥𝑖). 𝜑(𝑥𝑗) (9) 
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The function satisfies Mercer’s theorem. The most known kernel functions are linear, radial basis 

function, polynomial, sigmoid, dot product, and two-layer neural network kernel [18]. Some kernel function 

algorithms are given in Table 1. 

Table 1. Kernel functions 

Kernel Functions Algorithms 

Linear 𝐾(𝑢′, 𝑣) = 𝑢′𝑣 

Polynomial 𝐾(𝑢′, 𝑣) = (𝑢′𝑣 + 1)𝑑  

Radial Basis Function 𝐾(𝑢′, 𝑣) = exp(−‖𝑢 − 𝑣‖2/𝜎2)  

The non-linear separating hyperplane can be found as 

   maximize 𝑊(𝛼) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1

𝑛
𝑖=1  

   subject to ∑ 𝑦𝑖𝛼𝑖 = 0,    0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛𝑛
𝑖=1  (10)   

and the decision function is as in Equation 11, 

   𝑓(𝑥) = sign(𝑤. 𝑧 + 𝑏) = sign(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏𝑛
𝑖=1 ) (11)   

3. Experiments 

It is aimed to determine the optimal hyperparameters of the kernel function to be used in SVM classification 

and to examine the effect of these optimal values on the classification accuracy.  

For this purpose, firstly datasets with standard normal distribution according to different correlation levels 

and different sample sizes were created by using the "MASS" package in the R. Correlation levels for simulated 

datasets were determined as 0.25,0.50,0.75 and sample sizes were determined as 20,50,100 and 200, 

respectively. The number of features has been kept constant as 2.  

For these datasets, optimal hyperparameter selection was performed according to kernel functions with 

Grid search and 10-fold Cross Validation (CV) methods with 30 iterations. The intervals for the 

hyperparameters determined as in Table 2. 

Table 2. Hyperparameter searching intervals setting 

 Hyperparameters 

Kernel Function C Sigma Degree Scale 

Linear {1, 2, … ,20} - - - 

Radial Basis Function {1, 2, … ,20} {0.1, 0.6, 1.1, … ,10} - - 

Polynomial {1, 2, … ,20} - {1,2,3} {10−3, 10−2, … , 101} 

2 class-SVM classification process was carried out by using "e1071" packages. Then, datasets for 3 

different kernel functions (linear, polynomial and radial basis function) were analysed for optimal 

hyperparameter values and the kernel functions with the highest test accuracy were examined according to the 

obtained test prediction results. 

4. Results 

Firstly, optimal hyperparameters were selected according to 3 different correlation levels and SVM classifier 

performances were obtained for 3 different kernel functions when the number of observations was 20. Results 

were given in Table 3. 
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Table 3. Optimal values for kernel hyperparameters and classification accuracies when sample size was 20 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

 

Linear 

0.25 C=1 0.60 

20 0.50 C=1 0.60 

 0.75 C=1 0.75 

 

Polynomial 

0.25 d=2, s=1, C=1 0.60 

20 0.50 d=2, s=1, C=1 0.60 

 0.75 d=3, s=1, C=1 0.74 

 

RBF 

0.25 C=2,  𝜎=2.5 0.60 

20 0.50 C=2,  𝜎=2.6 0.60 

 0.75 C= 2,  𝜎=9.6 0.75 

In Table 3, it was observed that when the sample size was 20, optimal hyperparameter values got almost 

the same values according to different correlation levels. Similar results were obtained for 3 kernel functions 

of SVM classification accuracies. While the sample size was 20, the most accurate classification percentage 

was obtained when the correlation level was 0.75 for all 3 kernel functions. While the sample size was small, 

it was concluded that the classification accuracy varied according to the correlation levels, not the kernel 

functions. 

Secondly, for the number of observations 50, optimal hyperparameters were selected according to 3 

different correlation levels and test accuracy percentages were obtained for 3 kernel functions according to the 

parameters. Results were given in Table 4. 

Table 4. Optimal values for kernel hyperparameters and classification accuracies when sample size was 50 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

 

Linear 

0.25 C=5 0.89 

50 0.50 C=6 0.87 

 0.75 C=3 0.88 

 

Polynomial 

0.25 d=2, s=1, C=18 0.98 

50 0.50 d=2, s=1, C=17 0.95 

 0.75 d=3, s=1, C=18 0.99 

 

RBF 

0.25 C=2,  ,𝜎=1.6 0.99 

50 0.50 C=19, 𝜎=1.1 0.99 

 0.75 C=1,   𝜎=0.6 0.99 

In Table 4, while the number of observations 50 with different correlation levels, it was seen that although 

the optimal hyperparameter values were different, more accurate classification percentages were obtained with 

the polynomial and RBF kernel functions.  

The optimal hyperparameters were selected according to 3 different correlation levels and test accuracy 

percentages were obtained for 3 kernel functions according to the parameters for the number of observations 

100. Results were given in Table 5. 



69 

 

Journal of New Theory 34 (2021) 64-71 / The Effects of Kernel Functions and Optimal Hyperparameter … 

Table 5. Optimal values for kernel hyperparameters and classification accuracies when sample size was 100 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

100 Linear 

0.25 C=3 0.76 

0.50 C=4 0.78 

0.75 C=1 0.76 

100 Polynomial 

0.25 d=2, s=1, C=8 0.96 

0.50 d=2, s=1, C=8 0.92 

0.75 d=2, s=1, C=8 0.96 

100 RBF 

0.25 C=12, 𝜎 =1.1 0.92 

0.50 C=20, 𝜎 =0.6 0.92 

0.75 C=20, 𝜎 =1.1 0.88 

It is seen in the Table 5 that the highest classification accuracy values were obtained with the polynomial 

kernel. For the polynomial kernel, the result is that the optimal parameter values are the same despite different 

correlation levels. The same analyses were performed for the number of observations 200, and the results were 

obtained as in Table 6. 

Table 6. Optimal values for kernel hyperparameters and classification accuracies when sample size was 200 

Sample size Kernel function Correlation 

levels 

Optimal hyperparameter 

values 

Classification 

accuracy% 

200 Linear 

0.25 C=2 0.92 

0.50 C=5 0.90 

0.75 C=2 0.90 

200 Polynomial 

0.25 d=2, s=1, C=20 0.98 

0.50 d=2, s=1, C=12 0.99 

0.75 d=2, s=1, C=20 0.99 

200 RBF 

0.25 C=3, 𝜎=0.6 0.98 

0.50 C=1, 𝜎=1.6 0.98 

0.75 C=20, 𝜎=1.1 0.99 

In Table 6, the highest accuracy values are obtained with polynomial and radial kernel. Although the 

optimal hyperparameter values are different in the radial kernel according to different correlation levels, it is 

seen that similar results are obtained for the appropriate hyperparameter values in the polynomial kernel. 

Furthermore, Haberman's Survival dataset from the University of California Irvine (UCI) repository [19] was 

used in the experiments. It was described in Table 6 with the number of classes, instances, and features. 

Table 6. Information about UCI dataset 

Dataset Number of Classes Number of Instances Number of Features 

Haberman’s Survival 2 306 3 

The analysis on the simulated datasets were also performed for the Haberman's Survival UCI dataset. The 

intervals specified in Table 2 were used to obtain the optimal hyperparameters. The optimal hyperparameter 

selection was performed according to kernel functions with Grid search and 10-fold CV methods with 30 

iterations. After determining the optimal hyperparameter values, the SVM classification process was 

performed. The results were given in Table 7. 

Table 7. SVM classification results of Haberman’s Survival dataset  

Kernel function Optimal hyperparameter values Classification accuracy % 

Linear C=5 0.7368 

Polynomial C=12, d=3, s=0.1  0.7337 

RBF C=8, 𝜎=0.1 0.7763 
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In Table 7, the highest SVM classification accuracy for the UCI dataset was achieved with the RBF kernel 

function with C=8 and  𝜎=0.1 values. In addition, the graphical representation of obtaining optimal 

hyperparameter values for 3 kernel functions was given in Figure 2. 

 
Fig 2: Optimal hyperparameters search for Haberman’s Survival dataset 

In Figure 2, the graphical representation of the values of the Cost parameter for the linear kernel according 

to SVM classification accuracy percentages was given on the left. It is seen that the highest accuracy values 

are obtained when the C parameter was greater than or equal to 5. In the middle, graphical representation of 

polynomial kernel parameters according to classification accuracy was given. It was observed that there is a 

relationship between C, scale and degree parameters and they have different effects on classification accuracy 

in different situations. On the right, a graphical representation of the values for the C and sigma parameters of 

the RBF kernel function was given. 

5. Conclusion 

The present study was focused on tuning the hyperparameters in SVM classification problems. Grid search 

and ten-fold CV methods were used to obtain optimal values of hyperparameters according to kernel functions 

with different sample sizes and correlation levels. Then, the classification accuracy values were examined by 

performing SVM classification. 

SVM is a powerful method developed for classification and regression problems. Although grid search 

and five- or ten-fold CV yields successful results in finding the optimal value for hyperparameters, it may still 

pose a risk to determine the intervals for these parameters by the users. Therefore, in future studies, developing 

new approaches in addition to existing methods on the automatic selection of hyperparameter and kernel 

function will save time in analyses and produce more reliable results. 
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1. Introduction 

Many authors very commonly discuss the point estimation and various characterization of the statistical 

distributions. Describing the distributions’ statistical properties in detail is very significant to illustrate the 

usefulness of the distributions. Another critical point is the parameter estimation problem for the statistical 

distributions. It is well-known that the maximum likelihood method is very popular for point estimation. 

However, many researchers studied various alternative methods to the maximum likelihood method. In the last 

decade, there are many papers on the characterization and estimation of the distributions. Mahmoud and 

Mandouh [1] described some distributional properties of transmuted Fréchet distribution. Hamedani [2] 

examined some characteristics of transmuted complementary Weibull geometric distribution. Ahmad et al. [3] 

provided the characterization of transmuted Kumaraswamy distribution. Ahmad et al. [4] focused on a number 

of statistical properties and point estimation for transmuted Rayleigh distribution. Bhatti et al. [5] studied a 

couple of characterizations of transmuted Dagum distribution. Bhatti et al. [6] discussed several distributional 

properties of transmuted modified Burr II distribution. Bhatti et al. [7] examined some statistical properties of 

the transmuted geometric-quadratic hazard rate distribution. Tanış et al. [8] considered a comparison of the 

approximate Bayes and maximum likelihood estimation methods for log-Dagum distribution. Tanış and 
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Saraçoğlu [9] compared the methods of estimation for log-Kumaraswamy distribution. Hanif et al. [10] 

discussed several estimation methods for Rician distribution. Anas et al. [11] performed partial characterisation 

of extreme value distribution. Hanif et al. [12] tackled the estimation of parameters’ discrete inverse Weibull 

distribution using ranked set sampling. Hanif et al. [13] focused on the estimation of parameters’ generalized 

exponential distribution. Karakaya and Tanış [14] compared the estimation methods for Akash distribution. 

Tanış and Saraçoğlu [15] provided a comparison of the methods of estimation for transmuted record type 

Weibull distribution. Karakaya and Tanış [16] discussed the estimation problem of Xgamma-Weibull 

distribution. Tanış et al. [17] described the estimation methods for transmuted lower record type Fréchet 

distribution.  

The purpose of this paper is to examine some distributional properties and compare five estimation 

methods such as maximum likelihood, least-squares, weighted least-squares, Anderson-Darling, and Crámer–

Von-Mises for transmuted power function distribution [18]. The paper is organized as follows: In Section 2, 

the transmuted power function distribution and distributional properties are described, such as density and 

hazard shapes with theorems. Then, some risk measures are defined for transmuted power function distribution 

in Section 3. Section 4 presents five methods of estimation for point estimation. Section 5 provides an extensive 

Monte Carlo simulation study to compare these estimation methods. Finally, the conclusions are presented in 

Section 6.  

2. Transmuted Power Function Distribution  

Transmuted power function distribution is proposed by Shahzad and Asghar [18] via a quadratic transmutation 

map (QRTM). The relationship between baseline distribution and transmuted distribution obtained by using 

QRTM are summarized by 

𝐹(𝑥) = 𝐺(𝑥)[1 + 𝜆(1 − 𝐺(𝑥))] (1) 

where |𝜆| ≤ 1, 𝐺(𝑥) denotes the cumulative distribution function (CDF) of baseline distribution, and 𝐹(𝑥) 

refers to the CDF of transmuted distribution newly generated by the QTRM. Consider the baseline distribution 

power function distribution with CDF 𝐺(𝑥; 𝛽) = 𝑥𝛽 and the probability density function (PDF) 𝑔(𝑥; 𝛽) =

𝛽𝑥𝛽−1 then, the PDF and CDF of transmuted power function distribution are as follows: 

𝐹(𝑥; 𝛽, 𝜆) = 𝑥𝛽{1 + 𝜆(1 − 𝑥𝛽)} (2)

and 

𝑓(𝑥; 𝛽, 𝜆) = 𝛽𝑥𝛽−1{1 + 𝜆 − 2𝜆𝑥𝛽} (3) 

respectively, where 𝛽 > 0 is a shape parameter and −1 ≤ 𝜆 ≤ 1 [18]. Transmuted power function distribution 

can model the datasets in many fields, such as engineering, economics, hydrology, and social and behavioural 

sciences. Some statistical properties include mean, mode, median, variance, quantile function, reliability 

function, hazard function, order statistics, and generalized TL-moments with its special cases L-, TL-, LL LH-

moments are described for transmuted power function distribution in [18]. In this paper, transmuted power 

function distribution is briefly denoted by 𝑇𝑃𝐹(𝛽, 𝜆). Recently, many papers have produced about power 

function distribution in the literature. Some of these studies are listed as follows: Akhter [19] studied the 

estimation methods for power function distribution. Tahir et al. [20] proposed a new statistical distribution 

called Weibull-power function distribution. Okorie et al. [21] introduced the modified power function 

distribution. Bursa and Özel [22] provided a new extension of power function distribution, called 

exponentiated Kumaraswamy-power function distribution. Hassan and Salwa [23] proposed a new statistical 

distribution called exponentiated Weibull-power function distribution. Haq et al. [24] suggested the transmuted 

Weibull power function distribution. The cubic transmuted power function distribution was introduced by [25]. 

Arshad et al. [26] suggested the exponentiated power function distribution. Jabenn and Zaka [27] tackled the 

problem of percentile estimation for power function distribution.  
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2.1. Density and Hazard Shapes  

In this subsection, we discuss the possible shapes of density and hazard for 𝑇𝑃𝐹(𝛽, 𝜆) distribution with some 

theorems. 

Theorem 2.1. PDF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is unimodal for 𝛽 > 2. 

PROOF. 𝑇1(𝑥) and 𝑇2(𝑥) denote the first and second derivatives of log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)), respectively. They are 

defined as follows: 

𝑇1(𝑥) =
𝑑

𝑑𝑥
log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)) =

2(2𝛽 − 1)𝜆𝑥𝛽 − (1 + 𝜆)(𝛽 − 1)

𝑥(2𝜆𝑥𝛽 − 𝜆 − 1)
 

and 

𝑇2(𝑥) =
𝑑2

𝑑𝑥2
log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)) =

−8𝜆2𝑥2𝛽 (𝛽 −
1
2) − (1 + 𝜆)2(𝛽 − 1)

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
−

2𝜆(1 + 𝜆)(𝛽 − 1)(𝛽 − 2)𝑥𝛽

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
 

It is observed that 𝑇2(𝑥) < 0 for 𝛽 > 2. Then, the density of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is log-concave and 

unimodal for 𝛽 > 2.             

                  □ 

Figure 1 illustrates the possible shapes of the density of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

 
Fig. 1. The density plots of 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Theorem 2.2. The hazard function (HF) of 𝑇𝑃𝐹(𝛽, 𝜆) distribution increases for 𝛽 > 2. 

PROOF.  

𝜂(𝑥) = −
𝑓′(𝑥)

𝑓(𝑥)
=

2(1 − 2𝛽)𝜆𝑥𝛽 + (1 + 𝜆)(𝛽 − 1)

𝑥(2𝜆𝑥𝛽 − 𝜆 − 1)
 

and the first derivative of 𝜂(𝑥) is defined by 

𝜂′(𝑥) =
𝑑

𝑑𝑥
𝜂(𝑥) =

8 (𝛽 −
1
2) 𝜆2𝑥2𝛽 + (1 + 𝜆)2(𝛽 − 1)

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
+

2𝜆(1 + 𝜆)(𝛽 − 1)(𝛽 − 2)𝑥𝛽

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
 

We notice that 𝜂(𝑥) > 0 for 𝛽 > 2, and it can be concluded that the HF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is increasing 

for 𝛽 > 2 according to Glaser [28].           □ 

Figure 2 shows that the possible shapes of HF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 
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Fig. 2. The hazard plots of 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

From Figure 2, we observe that the shape of HF tends to increase. Shahzad and Asghar [18] mention that the 

𝑇𝑃𝐹(𝛽, 𝜆) distribution is more flexible than power function distribution since it has an increasing and bathtub-

shaped hazard rate. 

3. Risk Measures 

In this section, we discuss the theoretical and computational aspects of some essential risk measures such as 

value at risk (VaR), tail value at risk (TVaR), tail variance (TV), and tail variance premium (TVP) for the 

𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

3.1. VaR Measure 

The VaR is a well-known measure of the risk of loss for investments. It is also called quantile risk measure. 

Firms and regulators generally use the VaR in the financial sector to determine the number of assets required 

to cover potential losses. The VaR of a random variable 𝑋 is the 𝑞th quantile of its CDF, denoted by 𝑉𝑎𝑅𝑞, and 

it is defined by 𝑉𝑎𝑅𝑞 = 𝑄(𝑞) [29,30]. 

Let 𝑋 be a random variable from 𝑇𝑃𝐹(𝛽, 𝜆) distribution, then its VaR can be obtained by 

𝑉𝑎𝑅𝑞 = [
𝜆 + 1 − √(1 + 𝜆)2 − 4𝜆𝑞

2𝜆
]

1
𝛽

(4) 

where 𝑞 ∈ (0,1).  

3.2. TVaR Measure 

TVaR, also known as conditional tail expectation, is a significant risk measure. It measures the expected value 

of the loss given that an event outside a given probability level has occurred. The TVaR of 𝑇𝑃𝐹(𝛽, 𝜆) 

distribution is  

𝑇𝑉𝑎𝑅𝑞 =
1

1 − 𝑞
∫ 𝑥𝑓(𝑥)

1

𝑉𝑎𝑅𝑞

𝑑𝑥 =
1

1 − 𝑞
[
(1 + 𝜆)𝛽(1 − 𝑉𝑎𝑅𝑞

𝛽+1)

𝛽 + 1
+

2𝜆𝛽(𝑉𝑎𝑅𝑞
𝛽+1 − 1)

2𝛽 + 1
] (5) 

where 𝑉𝑎𝑅𝑞 is defined in (4). 
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3.3. TV Measure 

The TV is one of the most significant risk-quantifying measures, which pay attention to the tail variance 

beyond the VaR. TV was suggested by Landsman [31]. The TV of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is given by 

𝑇𝑉𝑞(𝑋) = 𝐸(𝑋2 | 𝑋 > 𝑥𝑞) − {𝑇𝑉𝑎𝑅𝑞}
2
  

 
=

1

1 − 𝑞
∫ 𝑥2𝑓(𝑥)

1

𝑉𝑎𝑅𝑞

𝑑𝑥 − {𝑇𝑉𝑎𝑅𝑞}
2
 (6) 

 
=

1

1 − 𝑞
[
(1 + 𝜆)(1 − 𝑉𝑎𝑅𝑞

𝛽+2)

𝛽 + 2
+

𝜆𝛽(𝑉𝑎𝑅𝑞
2𝛽+2 − 1)

𝛽 + 1
] − {𝑇𝑉𝑎𝑅𝑞}

2
 

 

where 𝑇𝑉𝑎𝑅𝑞 is defined in (5). 

3.4. TVP Measure 

The TVP is one of the most used risk measures, which essentially plays a role in insurance sciences. The TVP 

of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is given as follows: 

𝑇𝑉𝑃𝑞 = 𝑇𝑉𝑎𝑅𝑞 + 𝜇𝑇𝑉𝑞 (7) 

where 0 < 𝜇 < 1, 𝑇𝑉𝑎𝑅𝑞, and 𝑇𝑉𝑞 are defined in (5) and (6), respectively. Tables 1-2 provide the VaR, TVaR, 

TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for some parameters. 

Table 1. VaR, TVaR, TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Parameters 𝝁 Significance Level VaR TVaR TV TVP 

𝛽 = 0.5, 𝜆 = 0.9 0.5 

0.7 0.226137 0.460796 0.035095 0.478343 

0.75 0.276244 0.502876 0.031448 0.5186 

0.8 0.337432 0.552153 0.027091 0.565698 

0.85 0.41415 0.61146 0.021889 0.622404 

0.9 0.514985 0.686193 0.015657 0.694022 

0.95 0.661611 0.789652 0.008135 0.79372 

0.99 0.876849 0.930279 0.001204 0.930881 

𝛽 = 2, 𝜆 = −0.5 0.3 

0.7 0.885733 0.945493 0.001083 0.945818 

0.75 0.907125 0.955287 0.000717 0.955502 

0.8 0.927441 0.964767 0.000438 0.964898 

0.85 0.946797 0.973958 0.000236 0.974028 

0.9 0.965289 0.982881 0.0001 0.982911 

0.95 0.982999 0.991556 2.41×10-5  0.991563 

0.99 0.996654 0.998329 9.33×10-7  0.998329 

𝛽 = 5, 𝜆 = 0.1 0.7 

0.7 0.92527 0.964136 0.000463 0.96446 

0.75 0.939076 0.970518 0.000308 0.970733 

0.8 0.952255 0.976718 0.00019 0.976851 

0.85 0.96488 0.982754 0.000103 0.982826 

0.9 0.977013 0.988638 4.4×10-5  0.988669 

0.95 0.988704 0.994383 1.06×10-5  0.994391 

0.99 0.997771 0.998886 4.14×10-7  0.998887 

𝛽 = 0.7, 𝜆 = 0.7 0.6 

0.7 0.398807 0.633135 0.026904 0.649277 

0.75 0.458578 0.674146 0.022134 0.687427 

0.8 0.526709 0.719719 0.017187 0.730031 

0.85 0.605911 0.771214 0.012135 0.778495 

0.9 0.700959 0.830911 0.007135 0.835192 

0.95 0.821919 0.903249 0.002592 0.904804 

0.99 0.955898 0.977402 0.000162 0.977499 
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Table 2. VaR, TVaR, TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Parameters 𝝁 Significance Level VaR TVaR TV TVP 

𝛽 = 1, 𝜆 = −0.9 0.4 

0.7 0.82811 0.916594 0.002456 0.917576 

0.75 0.859004 0.931184 0.001654 0.931845 

0.8 0.888889 0.945473 0.001028 0.945884 

0.85 0.917856 0.959482 0.000562 0.959707 

0.9 0.945986 0.97323 0.000243 0.973327 

0.95 0.973348 0.986731 5.92×10-5  0.986754 

0.99 0.994724 0.997364 2.32×10-6  0.997365 

𝛽 = 15, 𝜆 = 0.95 0.9 

0.7 0.950062 0.970539 0.000164 0.970687 

0.75 0.956434 0.973997 0.000125 0.97411 

0.8 0.96285 0.977589 9.05×10-5  0.97767 

0.85 0.96947 0.981407 6.12×10-5  0.981462 

0.9 0.976577 0.985628 3.62×10-5  0.98566 

0.95 0.984855 0.990692 1.55×10-5  0.990706 

0.99 0.994485 0.996725 2.24×10-6  0.996727 

𝛽 = 0.3, 𝜆 = 0.05 0.1 

0.7 0.289297 0.592721 0.041935 0.596915 

0.75 0.36717 0.645842 0.03329 0.649171 

0.8 0.459168 0.70432 0.024338 0.706754 

0.85 0.566811 0.768554 0.015625 0.770116 

0.9 0.691699 0.838956 0.007918 0.839747 

0.95 0.835509 0.915956 0.002255 0.916181 

0.99 0.96536 0.982606 10−4  0.982616 

𝛽 = 3, 𝜆 = 0.5 0.8 

0.7 0.833017 0.913352 0.002269 0.915167 

0.75 0.859061 0.926815 0.001624 0.928114 

0.8 0.885264 0.940485 0.001081 0.941349 

0.85 0.911932 0.954465 0.00064 0.954977 

0.9 0.93947 0.968894 0.000304 0.969136 

0.95 0.968481 0.983968 8.26×10-5  0.984034 

0.99 0.993418 0.996695 3.61×10-6  0.996698 

4. Point Estimation 

In this section, we consider five estimation methods to estimate the parameters of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution 

including maximum likelihood, least squares, weighted least squares, Anderson-Darling method, and Cramér-

Von Mises method. 
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Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a random sample from the 𝑇𝑃𝐹(𝛽, 𝜆) distribution and 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛) 

denote the corresponding order statistics. Further, 𝑥(𝑖) refers to the observed value of 𝑋(𝑖). In this regard, the 

log-likelihood function of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution is 

ℓ(𝜃) = 𝑛 log(𝛽) + (𝛽 − 1) ∑ log(1 + 𝑥𝑖
2)

𝑛

𝑖=1

+ ∑ log (1 + 𝜆 − 2𝜆𝑥𝑖
𝛽

)

𝑛

𝑖=1

(8) 

where 𝜃 = (𝛽, 𝜆) is a parameter vector. Then, the maximum likelihood estimator (MLE) of 𝜃 is given as 

follows: 

𝜃𝑀𝐿𝐸 = argmax
𝜃

{ℓ(𝜃)} (9) 

Let us define the following four functions, which are used to obtain the different type of estimates: 

𝑄𝐿𝑆(𝜃) = ∑ ([𝑥(𝑖)
𝛽{1 + 𝜆(1 − 𝑥(𝑖)

𝛽)}] −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

, 

𝑄𝑊𝐿𝑆(𝜃) = ∑
(𝑛 + 2)(𝑛 + 1)2

𝑖(𝑛 − 𝑖 + 1)
([𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}] −

𝑖

𝑛 + 1
)

2𝑛

𝑖=1

, 

𝑄𝐶𝑣𝑀(𝜃) =
1

12𝑛
+ ∑ ([𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}] −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

, 

and 

𝑄𝐴𝐷(𝜃) = −𝑛 −
1

𝑛
∑ ((2𝑖 − 1) log[𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}])

𝑛

𝑖=1

+
1

𝑛
∑(log(1 − [𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}]))

𝑛

𝑖=1

 

The least squares estimators (LSEs), weighted least squares estimators (WLSEs), Cramér–von Mises 

estimators (CvMEs), and Anderson-Darling estimators (ADEs) of the parameters 𝜃 = (𝛽, 𝜆) are given, 

respectively, by 

𝜃𝐿𝑆𝐸 = argmin
𝜃

{𝑄𝐿𝑆(𝜃)} (10) 

𝜃𝑊𝐿𝑆𝐸 = argmin
𝜃

{𝑄𝑊𝐿𝑆(𝜃)} (11) 

𝜃𝐶𝑣𝑀𝐸 = argmin
𝜃

{𝑄𝐶𝑣𝑀(𝜃)} (12) 

𝜃𝐴𝐷𝐸 = argmin
𝜃

{𝑄𝐴𝐷(𝜃)} (13) 

The estimators given in (9)-(13) can be obtained by optim () function in R with the BFGS algorithm. 

5. Simulation Study 

In this section, we perform a comprehensive Monte Carlo simulation study to compare the performances of 

MLEs, LSEs, WLSEs, CvMEs, and ADEs of 𝛽 and 𝜆 according to biases and MSEs. The simulation study is 

performed based on 1000 repetitions. We consider the sample size 50, 100, 250, 500, 1000, and four-parameter 

settings as follows: 

(𝛽 = 2, 𝜆 = 0.5), (𝛽 = 0.9, 𝜆 = −0.5), (𝛽 = 1, 𝜆 = 0.7), (𝛽 = 1.5, 𝜆 = −0.7)  

BFGS algorithm is performed to get the five estimates given in (9)-(13). Tables 3 and 4 provide the biases and 

MSEs of five estimators for selected parameters and sample sizes. 
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Table 3. Average biases of MLEs, LSEs, WLSEs, ADEs, and CvMEs of 𝛽 and 𝜆 parameters 

  �̂� �̂� 

Parameters 𝒏 MLE LSE WLSE ADE CvME MLE LSE WLSE ADE CvME 

 50 0.0777 -0.0300 -0.0071 0.0178 0.0650 -0.0592 -0.1386 -0.1235 -0.1015 -0.0573 

 100 0.0518 0.0068 0.0256 0.0317 0.0550 -0.0338 -0.0655 -0.0515 -0.0456 -0.0234 

𝛽 = 2, 𝜆 = 0.5 250 0.0388 0.0189 0.0273 0.0293 0.0370 -0.0245 -0.0388 -0.0334 -0.0316 -0.0234 

 500 0.0332 0.0217 0.0274 0.0270 0.0305 -0.0136 -0.0221 -0.0174 -0.0177 -0.0145 

 1000 0.0167 0.0088 0.0125 0.0123 0.0132 -0.0160 -0.0216 -0.0188 -0.0189 -0.0179 

 50 0.1899 0.0331 0.1018 0.0337 0.0205 0.1487 -0.1357 -0.0043 -0.1118 -0.1762 

 100 0.1330 0.0128 0.0317 0.0335 0.0027 0.0853 -0.1309 -0.0827 -0.0789 -0.1574 

𝛽 = 0.9, 𝜆 = −0.5 250 0.0688 -0.0191 0.0354 0.0051 -0.0255 0.0321 -0.1272 -0.0313 -0.0770 -0.1418 

 500 0.0496 -0.0152 0.0171 0.0138 -0.0207 0.0227 -0.0959 -0.0377 -0.0430 -0.1066 

 1000 0.0222 -00022 0.0040 0.0248 -0.0032 -0.0043 -00576 -0.0410 -0.0092 -0.0603 

 50 0.0234 -0.0179 -0.0082 -0.0003 0.0237 -0.1228 -0.1806 -0.1685 -0.1531 -0.1043 

 100 0.0215 0.0006 0.0092 0.0098 0.0197 -0.0652 -0.0958 -0.0818 -0.0820 -0.0608 

𝛽 = 1, 𝜆 = 0.7 250 0.0226 0.0156 0.0185 0.0185 0.0229 -0.0238 -0.0337 -0.0302 -0.0293 -0.0199 

 500 0.0134 0.0091 0.0111 0.0108 0.0128 -0.0210 -0.0269 -0.0237 -0.0244 -0.0201 

 1000 0.0094 0.0081 0.0090 0.0088 0.0099 -0.0137 -0.0157 -0.0142 -0.0146 -0.0123 

 50 0.3421 0.2711 0.2529 0.2517 0.2234 0.1521 0.0240 0.0402 0.0493 -0.0327 

 100 0.2050 0.1831 0.1782 0.1740 0.1507 0.0780 0.0069 0.0259 0.0278 -0.0303 

𝛽 = 1.5, 𝜆 = −0.7 250 0.1492 0.1341 0.1300 0.1271 0.1134 0.0590 0.0192 0.0281 0.0272 -0.0025 

 500 0.0923 0.1046 0.0884 0.0860 0.0908 0.0287 0.0204 0.0158 0.0141 0.0065 

 1000 0.0712 0.0796 0.0924 0.0684 0.0693 0.0268 0.0220 0.0372 0.0183 00122 

Table 4. Average MSEs of MLEs, LSEs, WLSEs, ADEs, and CvMEs of 𝛽 and 𝜆 parameters 

  �̂� �̂� 

Parameters 𝒏 MLE LSE WLSE ADE CvME MLE LSE WLSE ADE CvME 

 50 0.1403 0.1725 0.1581 0.1431 0.1751 0.1192 0.1655 0.1556 0.1347 0.1412 

 100 0.0752 0.0917 0.0794 0.0731 0.0899 0.0726 0.0837 0.0744 0.0670 0.0722 

𝛽 = 2, 𝜆 = 0.5 250 0.0276 0.0335 0.0321 0.0302 0.0341 0.0228 0.0286 0.0295 0.0266 0.0270 

 500 0.0144 0.0174 0.0149 0.0148 0.0178 0.0116 0.0142 0.0121 0.0121 0.0138 

 1000 0.0069 0.0085 0.0074 0.0074 0.0086 0.0056 0.0069 0.0060 0.0060 0.0067 

 50 0.1018 0.0563 0.0664 0.0506 0.0688 0.1655 0.1422 0.1289 0.1175 0.2011 

 100 0.0692 0.0400 0.0380 0.0372 0.0465 0.1110 0.1164 0.0960 0.0913 0.1454 

𝛽 = 0.9, 𝜆 = −0.5 250 0.0377 0.0273 0.0308 0.0254 0.0301 0.0768 0.0865 0.0730 0.0700 0.0982 

 500 0.0258 0.0210 0.0219 0.0215 0.0224 0.0551 0.0640 0.0571 0.0563 0.0700 

 1000 0.0147 0.0175 0.0149 0.0167 0.0185 0.0358 0.0460 0.0398 0.0387 0.0487 

 50 0.0274 0.0354 0.0308 0.0276 0.0349 0.0951 0.1450 0.1281 0.1093 0.1141 

 100 0.0129 0.0168 0.0135 0.0138 0.0172 0.0416 0.0629 0.0473 0.0513 0.0574 

𝛽 = 1, 𝜆 = 0.7 250 0.0053 0.0064 0.0060 0.0055 0.0067 0.0149 0.0204 0.0201 0.0161 0.0194 

 500 0.0025 0.0030 0.0026 0.0026 0.0031 0.0075 0.0097 0.0081 0.0080 0.0094 

 1000 0.0012 0.0016 0.0013 0.0013 0.0016 0.0036 0.0050 0.0040 0.0040 0.0049 

 50 0.2602 0.2566 0.2013 0.1731 0.2609 0.0762 0.0947 0.0582 0.0380 0.1220 

 100 0.1212 0.1695 0.1314 0.1156 0.1741 0.0524 0.0855 0.0544 0.0414 0.1001 

𝛽 = 1.5, 𝜆 = −0.7 250 0.0988 0.1104 0.0899 0.0838 0.1110 0.0504 0.0635 0.0454 0.0407 0.0681 

 500 0.0648 0.0850 0.0638 0.0612 0.0842 0.0388 0.0515 0.0363 0.0346 0.0531 

 1000 0.0481 0.0618 0.0624 0.0470 0.0604 0.0304 0.0392 0.0359 0.0285 0.0391 
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As a result of the simulation study, we observe that, with increasing sample sizes, the MSEs and biases decrease 

as expected. From Table 3 and 4, it has been general observed that the MLE has a smaller MSE compared to 

other estimators for both 𝛽 and 𝜆 parameters. However, there are some situations that ADE and CvME have a 

smaller bias than MLE. As a result, we recommend MLE for point estimation of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

However, ADE and CvME can be good alternatives to MLE to estimate the parameters of 𝑇𝑃𝐹(𝛽, 𝜆) 

distribution. 

6. Conclusion 

In this study, 𝑇𝑃𝐹(𝛽, 𝜆) distribution proposed by Shahzad and Asghar [18] is studied in terms of some 

characteristic properties and statistical inferences. Some critical risk measures are discussed and numerically 

obtained for 𝑇𝑃𝐹(𝛽, 𝜆) distribution. We compare five estimators of parameters of 𝑇𝑃𝐹(𝛽, 𝜆) distribution, such 

as MLE, LSE, WSE, ADE, and CvME via Monte Carlo simulations. In the simulation study, it is seen that 

MLE is the best estimator among others according to MSE criteria. We recommend MLE to estimate the 

parameters of 𝑇𝑃𝐹(𝛽, 𝜆) distribution.  
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1. Introduction 

The soft decision-making (SDM) methods, constructed with the concepts of soft sets [1], fuzzy soft sets [2,3], 

fuzzy parameterized soft sets [4], fuzzy parameterized fuzzy soft sets (fpfs-sets) [5], soft matrices [6], fuzzy 

soft matrices [7], and fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [8], are widely used to model 

uncertainties mathematically. The relationship between these concepts is provided as ordered from the general 

to the specific in Fig. 1. Moreover, many researchers have focused on these concepts in various areas, such as 

algebra [9-12], topology [13-17], analysis and function theory [18,19], decision-making [3,20], and data 

classification [21,22]. In literature, what studies related to SDM primarily lack is usually its application to a 

hypothetical problem instead of a real-life problem. A limited number of studies, including methods applied 

to a real problem, can be summarised as follows: In [23], the authors have used soft sets to attain shoreline 

resources evaluation rules. [24] has attracted attention to this theory using soft set theory in the computerised 

classification of malignant and normal micro-calcifications on mammograms. In [25], the scholars have 

proposed a method via fuzzy soft sets to classify numerical data. [26] has introduced a classification method 

to classify medical data using fuzzy soft sets. In [21], the researchers have applied an SDM method constructed 

by fpfs-matrices to monolithic columns classification. [22] has applied a data classification problem in machine 

learning by using fpfs-matrices. 
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Fig. 1. Relationship between fpfs-sets/matrices and their substructures 

 

 

Recently, the concept of fpfs-matrices [8] has stood out among the others due to its modelling success, 

the uncertainties in the decision-making problems where alternatives or parameters are fuzzy. Thus, the 

configurations of SDM methods constructed with the aforesaid concepts to operate them in fpfs-matrices space 

have become a popular study subject. To this end, over 50 SDM methods constructed with the aforesaid 

concepts have been configured [27-30] in fpfs-matrices space, faithfully to the original. Thereby, the 

configurations of the methods having been constructed with the abovementioned concepts and which were 

proposed between 1999 and 2012 have been completed. Furthermore, in [31-40], the authors have improved 

some of the configured methods to make them run faster and to simplify them mathematically. In [27,29], 

although some of the SDM methods proposed after 2012 have been configured, their configurations have not 

been completed yet. The present study aims to complete the configurations of the SDM methods having been 

constructed with soft sets, soft matrices, and their fuzzy hybrid versions and introduced between 2013 and 

2016. To this end, we consider the SDM methods provided in [41-72]. 

The following tables provide some information about the preconfigured SDM methods. Table 1 explains 

the abbreviations used in Table 2-5. Table 2, 3, 4, and 5 show the unabbreviated forms of the previously 

configured SDM methods employing single, double, triple, and multiple matrices and their spaces in which 

they have been first put forward, respectively. Moreover, Table 6 lists the SDM methods constructed in the 

fpfs-matrices space. Lastly, Table 7 presents the SDM methods with the same configurations. 

 

Table 1. Abbreviations of the considered spaces 

SS Soft Sets 

SM Soft Matrices 

FSS Fuzzy Soft Sets 

FSM Fuzzy Soft Matrices 

FPSS Fuzzy Parameterized Soft Sets 

FPFSS Fuzzy Parameterized Fuzzy Soft Sets 

FPFSM Fuzzy Parameterized Fuzzy Soft Matrices 
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Table 2. SDM methods employing single fpfs-matrix 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

CCE10 [27] ✓      Çağman, Çıtak, Enginoğlu 2010 

CCE11 [27]  ✓     Çağman, Çıtak, Enginoğlu 2011 

CEC11 [29]    ✓   Çağman, Enginoğlu, Çıtak 2011 

F10(z) [28]    ✓   Feng 2010 

FJLL10 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/2 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/3 [29]    ✓   Feng, Jun, Liu, Li 2010 

FJLL10/4 [29]    ✓   Feng, Jun, Liu, Li 2010 

KKT13 [27]   ✓    Khan, Khan, Thakur 2013 

KM11 [29]    ✓   Kalaichelvi, Malini 2011 

KS10 [28]    ✓   Kalayathankal, Singh 2010 

KSM10 [28]    ✓   Kuang, Shu, Mou 2010 

KWW11(w, z) [28]    ✓   Kong, Wang, Wu 2011 

M11 [29]    ✓   Mou 2011 

MBR01 [27]    ✓   Maji, Biswas, Roy 2001 

MRB02 [27]      ✓ Maji, Roy, Biswas 2002 

MS10 [29]      ✓ Majumdar, Samantha 2010 

SM11 [28]    ✓   Sun, Ma 2011 

WW11 [29]      ✓ Wu, Wang 2011 

YE12 [37]  ✓     Yılmaz, Eraslan 2012 

Table 3. SDM methods employing double fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFS

S 
FPSS FSM FSS SM SS 

BMM12 [30]   ✓    Basu, Mahapatra, Mondal 2012 

BMM12/3 [30]     ✓  Basu, Mahapatra, Mondal 2012 

CD12/3 [30]  ✓     Çağman, Deli 2012 

CD12/4 [30]  ✓     Çağman, Deli 2012 

CE10 [27]      ✓ Çağman, Enginoğlu 2010 

CE10-2 [27]     ✓  Çağman, Enginoğlu 2010 

CE12 [27]   ✓    Çağman, Enginoğlu 2012 

CE10an [39]      ✓ Çağman, Enginoğlu 2010 

CE10on [39]      ✓ Çağman, Enginoğlu 2010 

FLC12 [30]      ✓ Feng, Li, Çağman 2012 

ICJ17 [29]     ✓  Inthumathi, Chitra, Jayasree 

2017 

 
KWW11/2(w, z) [30]      ✓ Kong, Wang, Wu 2011 

NS11 [30]   ✓    Neog, Sut 2011 

VR13 [27]     ✓  Vijayabalaji, Ramesh 2013 

 Z14 [29]     ✓  Zhang 2014 

ZZ16 [27] ✓      Zhu, Zhan 2016 

ZZ16/2 [27] ✓      Zhu, Zhan 2016 

Table 4. SDM methods employing triple fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

BMM12/2 [30]     ✓  Basu, Mahapatra, Mondal 2012 

KGW09 [30]    ✓   Kong, Gao, Wang 2009 

QYZ12 [30]    ✓   Qin, Yang, Zhang 2012 

RM07a [30]    ✓   Roy, Maji 2007 

RM07o [30]    ✓   Roy, Maji 2007 

RM11 [27]      ✓ Razak, Mohamad 2011 

RM13 [27]    ✓   Razak, Mohamad 2013 
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Table 5. SDM methods employing multiple fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

BNS12 [29]   ✓    Borah, Neog, Sut 2012 

CD12 [27]  ✓     Çağman, Deli 2012 

CD12-2 [27]  ✓     Çağman, Deli 2012 

DB12 [27]    ✓   Das, Borgohain 2012 

E15 [27]      ✓ Eraslan 2015 

EK15 [27]    ✓   Eraslan, Karaaslan 2015 

MR13 [29]   ✓    Mondal, Roy 2013 

MR13/2 [29]   ✓    Mondal, Roy 2013 

MR13/3 [29]   ✓    Mondal, Roy 2013 

NB14 [29]   ✓    Nagarajan, Balamurugan 2014 

NKY17 [29]    ✓   Nagarani, Kalyani, Yookesh 

2017 S12 [29]    ✓   Sut 2012 

YJ11 [29]   ✓    Yang, Ji 2011 

YJ11/2 [29]   ✓    Yang, Ji 2011 

 

It can be seen from Table 2, 3, 4, and 5 that the fuzzy soft sets space, one of the substructures of fpfs-sets, is 

widely used in decision-making problems. 

Table 6. SDM methods constructed in fpfs-matrices space 

Proposed SDM Methods 
Number of Employed Matrices 

Descriptions 
Single Double Triple Multiple 

EM20o [36]   ✓  Enginoğlu, Memiş 2020 

EMA18on [32]  ✓   Enginoğlu, Memiş, Arslan 2018 

EMC19o [34]  ✓   Enginoğlu, Memiş, Çağman 2019 

EMK19 [35]    ✓ Enginoğlu, Memiş, Karaaslan 2019 

EMO18o [40]  ✓   Enginoğlu, Memiş, Öngel 2018 

EC20 (PEM) [8] ✓    Enginoğlu, Çağman 2020 (Prevalence Effect Method) 

Simplified SDM Methods   

EM20a [36]   ✓  Enginoğlu, Memiş 2020 

EMA18an [39]  ✓   Enginoğlu, Memiş, Arslan 2018 

EMC19a [34]  ✓   Enginoğlu, Memiş, Çağman 2019 

EMO18a [33]  ✓   Enginoğlu, Memiş, Öngel 2018 

sDB12 [38]    ✓ Simplified DB12 

sMBR01 [31] ✓    Simplified MBR01 

Table 7. SDM methods with the same configurations 

CE10-2 CE12 

RM11 RM13 

MR13 NB14 

In Section 2 of the present study, we present some of the basic definitions of fpfs-matrices to be needed 

in the following sections of the paper. In Section 3, we configure the SDM methods provided in [41-72]. In 

Section 4, we propound five test cases to examine the consistency of the SDM methods employing fpfs-

matrices. We then determine the considered SDM methods producing a valid ranking order in all the test cases. 

In Section 5, we apply the determined methods to a performance-based value assignment (PVA) problem in 

which the filters are ranked with regard to their salt-and-pepper noise (SPN) removal performances. Therefore, 

we compare the ranking order performances of the methods in the PVA problem. Finally, we discuss the need 

for further research. 
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2. Preliminaries 

In this section, firstly, we present the concept of fpfs-matrices [8]. Throughout this paper, let 𝐸 be a parameter 

set, 𝐹(𝐸) be the set of all the fuzzy sets over 𝐸, and 𝜇 ∈ 𝐹(𝐸). Here, a fuzzy set is denoted by { 𝑥 
𝜇(𝑥)  | 𝑥 ∈ 𝐸}. 

Definition 2.1. [5] Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be a function from 𝜇 to 𝐹(𝑈). Then, the set 

{( 𝑥 
𝜇(𝑥) , 𝛼( 𝑥 

𝜇(𝑥) )) | 𝑥 ∈ 𝐸}, being the graphic of 𝛼, is called a fuzzy parameterized fuzzy soft set (fpfs-set) 

parameterized via 𝐸 over 𝑈 (or briefly over 𝑈). 

In the present paper, the set of all the fpfs-sets over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). In 𝐹𝑃𝐹𝑆𝐸(𝑈), since the 

graph(𝛼) and 𝛼 generate each other uniquely, the notations are interchangeable. Therefore, as long as it causes 

no confusion, we denote an fpfs-set graph(𝛼) by 𝛼. 

Example 2.2. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. Then, 

𝛼 = {( 𝑥1 
0.4 , { 𝑢2 

0.2 , 𝑢3 
0.4 , 𝑢4 

0.7 }), ( 𝑥2 
0.9 , { 𝑢1 

0.5 , 𝑢2 
0.3 , 𝑢3 

0.6 , 𝑢4 
0.4 }), ( 𝑥3 

0.7 , { 𝑢1 
0.2 , 𝑢3 

0.9 , 𝑢4 
1 })} 

is an fpfs-set over 𝑈. 

Definition 2.3. [8] Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called fpfs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼 ( 𝑥𝑗 
𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0

 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. 

From now on, the set of all the fpfs-matrices parameterized via 𝐸 over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸[𝑈]. 

Example 2.4. The fpfs-matrix of 𝛼 provided in Example 2.2 is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0.4 0.9 0.7

0 0.5 0.2

0.2 0.3 0

0.4 0.6 0.9

0.7 0.4 0.1]
 
 
 
 
 

 

Definition 2.5. [8] Let [𝑎𝑖𝑗]𝑚×𝑛1
∈ 𝐹𝑃𝐹𝑆𝐸1[𝑈], [𝑏𝑖𝑘]𝑚×𝑛2 ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈], and [𝑐𝑖𝑝]𝑚×𝑛1𝑛2

∈ 𝐹𝑃𝐹𝑆𝐸1×𝐸2[𝑈] 

such that 𝑝 = 𝑛2(𝑗 − 1) + 𝑘. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔ min{𝑎𝑖𝑗, 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called and-product of [𝑎𝑖𝑗] 

and [𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ∧ [𝑏𝑖𝑘].  
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Definition 2.6. Let [𝑎𝑖𝑗]𝑚×𝑛1
∈ 𝐹𝑃𝐹𝑆𝐸1[𝑈], [𝑏𝑖𝑘]𝑚×𝑛2 ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈], and [𝑐𝑖𝑝]𝑚×𝑛1𝑛2

∈ 𝐹𝑃𝐹𝑆𝐸1×𝐸2[𝑈] 

such that 𝑝 = 𝑛2(𝑗 − 1) + 𝑘. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔
𝑎𝑖𝑗+𝑏𝑖𝑘

2
, then [𝑐𝑖𝑝] is called mean-product of [𝑎𝑖𝑗] and 

[𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ×𝑚 [𝑏𝑖𝑘]. 

Definition 2.7. Let [𝑠𝑖1] ∈ 𝑀(𝑚−1)×1(ℝ) such that 𝑚 ≥ 2. Then, normalisation [�̂�𝑖1] of [𝑠𝑖1] is defined by 

�̂�𝑖1 ∶= {

𝑠𝑖1 −min
𝑘
𝑠𝑘1

max
𝑘
𝑠𝑘1 −min

𝑘
𝑠𝑘1

, max
𝑘
𝑠𝑘1 ≠ min

𝑘
𝑠𝑘1

1, max
𝑘
𝑠𝑘1 = min

𝑘
𝑠𝑘1

 

To obtain an increasing sequence consisting of all the elements of an index set, being a subset of ℕ𝑛, we 

present a linear ordering relation over ℕ𝑛 as follows: 

Definition 2.8. [30] Let (𝑗1, 𝑗2, … , 𝑗𝑛), (𝑘1, 𝑘2, … , 𝑘𝑛) ∈ ℕ
𝑛. Then, the relation “≤” is called a linear ordering 

relation and is defined by 

(𝑗1, 𝑗2, … , 𝑗𝑛) ≤ (𝑘1, 𝑘2, … , 𝑘𝑛) ⇔ [𝑗1 < 𝑘1 ∨ (𝑗1 = 𝑘1 ∧ 𝑗2 < 𝑘2) ∨ …∨ (𝑗1 = 𝑘1 ∧ 𝑗2 = 𝑘2 ∧ …∧ 𝑗𝑛−1 = 𝑘𝑛−1 ∧ 𝑗𝑛 ≤ 𝑘𝑛)] 

3. Configurations of Soft Decision-Making Methods 

In this section, we configure the SDM methods constructed by soft sets [41-47], fuzzy soft sets [41,46,48-63], 

fuzzy parameterized soft sets [64,65], fpfs-sets [66,67], soft matrices [47,68], and fuzzy soft matrices [43,69-

72]. From now on, 𝐼𝑛 = {1,2,⋯ , 𝑛} and 𝐼𝑛
∗ = {0,1,2,⋯ , 𝑛}. 

[69] has employed fuzzy soft matrices to determine an eligible candidate in the recruitment process just as [70] 

has utilised them to select an environment with healthy living conditions. We configure the proposed methods 

therein as follows: 

Algorithm 3.1. BSD13 and SR15 

BSD13, SR15, and NS11 [30] are the same. Therefore, we prefer the notation NS11. 

In [41], the authors have suggested a new method based on spatial distance and fuzzy soft sets. Moreover, they 

have presented the method for two soft sets. We configure the proposed methods therein as follows: 

Algorithm 3.2. CXL13(𝝀) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Construct the parameters’ optimum solution matrix 𝜆 ≔ [𝜆1𝑗]1×𝑛
 such that 0 ≤ 𝜆1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖1](𝑚−1)×1 defined by  

𝑏𝑖1 ≔ √∑

𝑛

𝑗=1

(𝜆1𝑗 − 𝑎0𝑗𝑎𝑖𝑗)
2
,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ max
𝑘
𝑏𝑘1 − 𝑏𝑖1 such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm 3.3. CXL13/2(𝝀) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛
 and [𝑏𝑖𝑗]𝑚×𝑛

 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 𝑐𝑖𝑗 ≔
𝑎𝑖𝑗+𝑏𝑖𝑗

2
 such that 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 
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Step 3. Apply CXL13 to [𝑐𝑖𝑗] 

[48] has studied the selection of a suitable house with fuzzy soft sets. We configure the proposed method 

therein as follows: 

Algorithm 3.4. GLF13(𝑹) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛. Moreover, let (𝑟𝑘) denote the increasing sequence of 

the elements of 𝑅. 

Step 3. Obtain 𝐾𝑟 = {𝑣 ∈ 𝐼𝑡: ∃𝑖 ∋ 𝑎0𝑟
𝑣 𝑎𝑖𝑟

𝑣 ≠ 0}, for all 𝑟 ∈ 𝑅. For 𝑟 ∈ 𝑅, if 𝐾𝑟 = ∅, then 𝐾𝑟 is chosen as {0}. 

Furthermore, let (𝑢𝑘
𝑟) stand for the increasing sequence of the elements of 𝐾𝑟, for all 𝑟 ∈ 𝑅. 

Step 4. Obtain [𝑏𝑖𝑘
𝑧 ]𝑚×|𝐾𝑟| defined by 

𝑏𝑖𝑘
𝑧 ≔ {𝑎𝑖𝑟𝑧

𝑢𝑘
𝑟𝑧

, ∀𝑧 ∈ 𝐼|𝑅|, 𝑢𝑘
𝑟𝑧 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑧 ∈ 𝐼|𝑅|, and 𝑘 ∈ 𝐼|𝐾𝑟| 

Here, |𝑅| and |𝐾𝑟| denote the cardinality of 𝑅 and 𝐾𝑟, respectively. 

Step 5. Obtain [𝑐𝑖𝑗]𝑚×|𝑅| defined by 

𝑐𝑖𝑗 ≔ min
𝑘
{𝑏𝑖𝑘
𝑗
} 

such that 𝑖 ∈ 𝐼𝑚−1
∗ and 𝑗 ∈ 𝐼|𝑅| 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ min
𝑗∈𝐼|𝑅|

{𝑐0𝑗𝑐𝑖𝑗} ,    𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

In [42], the authors have developed a pruning method using soft sets. We configure it as follows: 

Algorithm 3.5. HG13 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖1](𝑚−1)×1, [𝑑𝑖1](𝑚−1)×1, [𝑒𝑖1](𝑚−1)×1, and 𝑉 = {𝑢𝑖 ∶  𝑒𝑖1 = max
𝑘∈𝐼𝑚−1

𝑒𝑘1} such that 

𝑐𝑖1 ≔∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

,    𝑑𝑖1 ≔∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

,    and    𝑒𝑖1 ≔ 𝑐𝑖1 + 𝑑𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 3. For all 𝑢𝑖 ∈ 𝑉, obtain �̅�𝑖 ≔ {𝑢𝑗 ∈ 𝑉 ∶  (𝑐𝑖1, 𝑑𝑖1) = (𝑐𝑗1, 𝑑𝑗1) ∨ (𝑐𝑖1, 𝑑𝑖1) = (𝑑𝑗1, 𝑐𝑗1)} 

Step 4. Obtain 𝑊 = { 𝑢𝑖 ∈ 𝑉 ∶  |�̅�𝑖| = min
𝑢𝑘∈𝑉

|�̅�𝑘|} 

Here, |�̅�𝑖| denotes the cardinality of �̅�𝑖. 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ {

1+𝑒𝑘1

1+  ∑ (𝑎0𝑗+𝑏0𝑗)𝑗
, 𝑢𝑘 ∈ 𝑊

𝑒𝑘1

∑ (𝑎0𝑗+𝑏0𝑗)𝑗
, 𝑢𝑘 ∈ 𝑈 −𝑊

,    𝑖 ∈ 𝐼𝑚−1  

Step 6. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 
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[49] has proposed a method based on group decision-making and applied it to a company’s staff selection 

problem. We configure the proposed method therein as follows: 

Algorithm 3.6. SM13(𝒘, 𝜶) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

 such that 𝑎0𝑗
1 = 𝑎0𝑗

2 = ⋯ = 𝑎0𝑗
𝑡 = 𝑎0𝑗 

Step 2. Construct 𝑤 ≔ [𝑤1𝑘]1×𝑡 such that 0 ≤ 𝑤1𝑘 ≤ 1 and ∑ 𝑤1𝑘
𝑡
𝑘=1 = 1, for 𝑘 ∈ 𝐼𝑡 

Step 3. Obtain [𝑏1𝑗]1×𝑛
 defined by 

𝑏1𝑗 ≔

{
 
 

 
 𝑎0𝑗
∑ 𝑎0𝑘
𝑛
𝑘=1

, ∑ 𝑎0𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑐𝑘𝑟]𝑡×𝑡 defined by 

𝑐𝑘𝑟 ≔∑𝑏1𝑗

𝑛

𝑗=1

𝑧𝑘𝑟
𝑗
,    𝑘, 𝑟 ∈ 𝐼𝑡 

such that  

𝑧𝑘𝑟
𝑗
≔ {

∑ min
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }𝑚−1
𝑖=1

∑ max
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }𝑚−1
𝑖=1

, ∑ max
 
{𝑎𝑖𝑗
𝑘 , 𝑎𝑖𝑗

𝑟 }

𝑚−1

𝑖=1

≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
  
 

Step 5. Obtain [𝑑1𝑘]1×𝑡 defined by 

𝑑1𝑘 ≔
1

𝑡 − 1
∑ 𝑐𝑘𝑟

𝑡

𝑟=1,𝑟≠𝑘

,    𝑘 ∈ 𝐼𝑡 

Step 6. Obtain [𝑒1𝑘]1×𝑡 defined by 

𝑒1𝑘 ≔

{
 
 

 
 𝑑1𝑘
∑ 𝑑1𝑙
𝑡
𝑙=1 

, ∑𝑑1𝑙

𝑡

𝑙=1 

≠ 0

1

𝑡
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   𝑘 ∈ 𝐼𝑡 

Step 7. For 𝛼 ∈ [0,1], obtain [𝜆1𝑘]1×𝑡 defined by 

𝜆1𝑘 ≔  𝛼𝑤1𝑘 + (1 − 𝛼)𝑒1𝑘,    𝑘 ∈ 𝐼𝑡 

Step 8. Obtain [𝑓𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑓𝑖𝑗 ≔∑𝜆1𝑘𝑎𝑖𝑗
𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1, 𝑗 ∈ 𝐼𝑛, and 𝑘 ∈ 𝐼𝑡 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ 1−√∑𝑏1𝑗 (𝑓𝑖𝑗 − max
𝑘∈𝐼𝑚−1

𝑓𝑘𝑗)
2

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 
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[43] has proposed two SDM methods via soft sets and fuzzy soft matrices. Moreover, [67] has suggested an 

SDM method constructed with fpfs-sets. We configure the proposed methods therein as follows: 

Algorithm 3.7. GDC14 and RH16/2 

GDC14, RH16/2, and MRB02 [27] are the same. Therefore, we prefer the notation MRB02. 

Algorithm 3.8. GDC14/2(𝝀) 

GDC14/2 and NKY17(𝜆) [29] are the same. Therefore, we prefer the notation NKY17(𝜆). 

In [44], the author has utilised soft sets to determine an optimal alternative. We configure the proposed method 

therein as follows: 

Algorithm 3.9. K14 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛
 and [𝑏𝑖𝑗]𝑚×𝑛

 

Step 2. Obtain  [𝑐𝑖𝑗](𝑚−1)×𝑛 defined by 𝑐𝑖𝑗 ≔ min{𝑎0𝑗𝑎𝑖𝑗 , 𝑏0𝑗𝑏𝑖𝑗} such that 𝑖 ∈ 𝐼𝑚 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain 𝑉 = {𝑢𝑖 ∈ 𝑈 ∶  ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 ≠ 0} 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔

{
 

 
(∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

)(∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

) −∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

−∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

, 𝑢𝑖 ∈ 𝑉

0, 𝑢𝑖 ∈ 𝑈 − 𝑉

  

such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[64] has studied financial decision-making problems using fuzzy parameterized soft sets, although it is stated 

that fuzzy soft sets are used. We configure the proposed method as follows: 

Algorithm 3.10. MM14 

MM14 and CCE10 [27] are the same. Therefore, we prefer the notation CCE10. 

In [50], the authors have proposed an algorithm using fuzzy soft sets to determine the optimal decision 

program. We configure the proposed method therein as follows: 

Algorithm 3.11. WQ14(𝜿) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖𝑘](𝑚−1)×(𝑚−1) defined by  

𝑏𝑖𝑘 ≔
1

𝑛
∑(1 − 𝑎0𝑗|𝑎𝑖𝑗 − 𝑎𝑘𝑗|)

𝑛

𝑗=1

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

Step 3. Obtain [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by  

𝑐𝑖𝑘 ≔ max
𝑗
{min

 
{𝑏𝑖𝑗, 𝑏𝑗𝑘}} ,    𝑖, 𝑗, 𝑘 ∈ 𝐼𝑚−1 

Step 4. Obtain the set 𝐷 of all the entries of [𝑐𝑖𝑘] 

Step 5. Obtain the descending-sorted matrix [𝑒1𝑗]1×|𝐷| of the 𝐷’s elements such that 𝑗 ∈ 𝐼|𝐷| 
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Step 6. Obtain [𝑓𝑖𝑘
𝑗
]
(𝑚−1)×(𝑚−1)

 defined by  

𝑓𝑖𝑘
𝑗
≔ {

1, 𝑐𝑖𝑘 ≥ 𝑒1𝑗
0, 𝑐𝑖𝑘 < 𝑒1𝑗

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 and  𝑗 ∈ 𝐼|𝐷| 

Step 7. Obtain [𝑔1𝑗]1×|𝐷|
 defined by  

𝑔1𝑗 ≔ ∑ 𝜒(𝑗, 𝑘)

𝑚−1

𝑘=1

,   𝑗 ∈ 𝐼|𝐷| 

such that 

𝜒(𝑗, 𝑘) ≔ {
1, 1 < ∑ 𝑓𝑖𝑘

𝑗

𝑚−1

𝑖=1

< 𝑚 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Step 8. Obtain [ℎ1𝑗]1×(|𝐷|−1) defined by  

ℎ1𝑗 ≔ {

𝑒1𝑗 − 𝑒1(𝑗+1)

𝑔1(𝑗+1) − 𝑔1𝑗
, 𝑔1(𝑗+1) > 𝑔1𝑗

0, 𝑔1(𝑗+1) ≤ 𝑔1𝑗

,    𝑗 ∈ 𝐼(|𝐷|−1) 

Step 9. Obtain 𝜆 ≔ 𝑒1𝑝 such that 𝑝 ≔ 1 + argmax
𝑗

ℎ1𝑗 

Here, argmax
𝑗

ℎ1𝑗 is an index of the ℎ1𝑗 being maximum for all 𝑗 ∈ 𝐼(|𝐷|−1). 

Step 10. For all 𝑢𝑖 ∈ 𝑈, obtain �̅�𝑖 ≔ {𝑢𝑠 ∈ 𝑈 ∶  ∀𝑘 ∈ 𝐼𝑛, 𝑗 ∈ 𝐼|𝐷|(𝑓𝑖𝑘
𝑗
= 𝑓𝑠𝑘

𝑗
)} 

Step 11. Obtain the clustering set 𝐶 = {�̅�𝑖 ∶  𝑢𝑖 ∈ 𝑈} 

Step 12. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑎𝑖𝑗
𝑟 ]
𝑚×(𝑛−1)

 deleting rth column of  [𝑎𝑖𝑗] 

Step 13. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑏𝑖𝑘
𝑟 ](𝑚−1)×(𝑚−1) applying Step 3 to [𝑎𝑖𝑗

𝑟 ] 

Step 14. For all 𝑟 ∈ 𝐼𝑛, obtain [𝑐𝑖𝑘
𝑟 ](𝑚−1)×(𝑚−1) applying Step 4 to [𝑏𝑖𝑘

𝑟 ] 

Step 15. Obtain [𝑓𝑖𝑘
𝑟 ]
(𝑚−1)×(𝑚−1)

 defined by  

𝑓𝑖𝑘
𝑟 ≔ {

1, 𝑐𝑖𝑘
𝑟 ≥ 𝜆

0, 𝑐𝑖𝑘
𝑟 < 𝜆

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 and  𝑟 ∈ 𝐼𝑛 

Step 16. For all 𝑢𝑖 ∈ 𝑈, obtain �̅�𝑖
𝑟 ≔ {𝑢𝑠 ∈ 𝑈 ∶  ∀𝑘 ∈ 𝐼𝑛, (𝑓𝑖𝑘

𝑟 = 𝑓𝑠𝑘
𝑟 )} 

Step 17. For all 𝑟 ∈ 𝐼𝑛, obtain the clustering set 𝐶𝑟 = {�̅�𝑖
𝑟 ∶  𝑢𝑖 ∈ 𝑈} 

Step 18. Obtain [𝜎1𝑗]1×𝑛 defined by 

𝜎1𝑗 ≔ 1−
|𝐶 ∩ 𝐶𝑗|

𝑚 − 1
,    𝑗 ∈ 𝐼𝑛 

Step 19. Obtain [𝛽1𝑗]1×𝑛 defined by 
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𝛽1𝑗 ≔

{
 
 

 
 𝜎1𝑗
∑ 𝜎1𝑘
𝑛
𝑘=1

, ∑ 𝜎1𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 20. Obtain [𝑤1𝑗]1×𝑛
 defined by 

𝑤1𝑗 ≔ 𝜅𝑎0𝑗 + (1 − 𝜅)𝛽1𝑗,    𝑗 ∈ 𝐼𝑛 

Here, 𝜅 is Bias coefficient chosen by decision-maker and 𝜅 ∈ [0,1] 

Step 21. Obtain [�̃�𝑖𝑗]𝑚×𝑛
 defined by �̃�0𝑗 ≔ 𝑤1𝑗 and �̃�𝑖𝑗 ≔ 𝑎𝑖𝑗, for all 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 22. Apply MRB02 [27] to [�̃�𝑖𝑗] 

[51,55,56] have introduced the same methods for fuzzy soft sets by combining grey relational analysis with 

the Dempster-Shafer theory of evidence and applied them to medical diagnosis. We configure the proposed 

methods therein as follows: 

Algorithm 3.12. XWL14(𝜶, 𝒒), LWX15(𝜶, 𝒒), and T15(𝜶, 𝒒) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔
1

𝑛
∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 3. Obtain [𝑐𝑖𝑗](𝑚−1)×𝑛
 defined by 

𝑐𝑖𝑗 ≔ |𝑎0𝑗𝑎𝑖𝑗 − 𝑏𝑖1| 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. For 𝛼 ∈ [0,1], obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔ {

min
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗

𝑐𝑖𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑐𝑘𝑗
, max

𝑘∈𝐼𝑚−1
𝑐𝑘𝑗 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. For 𝑞 ∈ ℕ+, obtain [𝑒1𝑗]1×𝑛 defined by 

𝑒1𝑗 ≔
1

𝑚 − 1
(∑(𝑑𝑖𝑗)

𝑞
𝑚−1

𝑖=1

)

1
𝑞

,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑓𝑖𝑗 ≔

{
 
 

 
 𝑎0𝑗𝑎𝑖𝑗

∑ 𝑎0𝑗𝑎𝑘𝑗
𝑚−1
𝑘=1

, ∑ 𝑎0𝑗𝑎𝑘𝑗

𝑚−1

𝑘=1

≠ 0

1

𝑚 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 



93 

 

Journal of New Theory 34 (2021) 82-114 / Operability-Oriented Configurations of the Soft Decision-Making Methods ... 

Step 7. Obtain [𝑔𝑖𝑗](𝑚−1)×𝑛 and [ℎ1𝑗]1×𝑛 defined by 

𝑔𝑖𝑗 ≔ (1 − 𝑒1𝑗)𝑓𝑖𝑗 

and 

ℎ1𝑗 ≔ 1− ∑ 𝑔𝑖𝑗

𝑚−1

𝑖=1

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [𝐵𝑒𝑙𝑖1
𝑛−1]

𝑚×1
  defined by 

𝐵𝑒𝑙𝑖1
𝑗
≔

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑔𝑖1𝑔𝑖2 + 𝑔𝑖1ℎ12 + ℎ11𝑔𝑖2

|1 − ∑ ∑ 𝑔𝑘1𝑔𝑙2
𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 ∈ 𝐼𝑚−1 and 𝑗 = 1

ℎ11ℎ12

|1 − ∑ ∑ 𝑔𝑘1𝑔𝑙2
𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 = 𝑚 and 𝑗 = 1

𝐵𝑒𝑙𝑖1
𝑗−1
𝑔𝑖(𝑗+1) + 𝐵𝑒𝑙𝑖1

𝑗−1
ℎ1(𝑗+1) + 𝐵𝑒𝑙𝑚1

𝑗−1
𝑔𝑖(𝑗+1)

|1 − ∑ ∑ 𝐵𝑒𝑙𝑘1
𝑗−1
𝑔𝑙(𝑗+1)

𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 ∈ 𝐼𝑚−1, 𝑗 ∈ 𝐼𝑛−1, and 𝑗 ≠ 1

𝐵𝑒𝑙𝑚1
𝑗−1
ℎ1(𝑗+1)

|1 − ∑ ∑ 𝐵𝑒𝑙𝑘1
𝑗−1
𝑔𝑙(𝑗+1)

𝑚−1
𝑙=1,𝑘≠𝑙

𝑚−1
𝑘=1 |

, 𝑖 = 𝑚, 𝑗 ∈ 𝐼𝑛−1, and 𝑗 ≠ 1

 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ 𝐵𝑒𝑙𝑖1
𝑛−1 such that 𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

XWL14(𝛼, 𝑞), LWX15(𝛼, 𝑞), and T15(𝛼, 𝑞) are the same. Therefore, we prefer the notation XWL14(𝛼, 𝑞). 

Algorithm 3.13. XWL14/2(𝜶, 𝒒), LWX15/2(𝜶, 𝒒), and T15/2(𝜶, 𝒒) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply XWL14 to [𝑐𝑖𝑝] 

XWL14/2(𝛼, 𝑞), LWX15/2(𝛼, 𝑞), and T15/2(𝛼, 𝑞) are the same. Therefore, we prefer the notation 

XWL14/2(𝛼, 𝑞). 

In [52], the scholars have suggested a new SDM method based on grey relational analysis and fuzzy soft sets. 

We configure the proposed method therein as follows: 

Algorithm 3.14. YHX14(𝜶, 𝜷) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝜆1𝑗]1×𝑛 defined by 

𝜆1𝑗 ≔
1

𝑚 − 1
∑ 𝑎𝑖𝑗

𝑚−1

𝑖=1

,    𝑖 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑏𝑖𝑗 ≔ {
𝑎0𝑗, 𝑎𝑖𝑗 ≥ 𝜆1𝑗
0, 𝑎𝑖𝑗 < 𝜆1𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 
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Step 4. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔∑𝑏𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain [𝑑1𝑗]1×𝑛 defined by 

𝑑1𝑗 ≔ max
𝑖∈𝐼𝑚−1

{𝑎0𝑗𝑎𝑖𝑗} ,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑒𝑖1](𝑚−1)×1 defined by 

𝑒𝑖1 ≔ −
1

𝑛 ln(2)
∑(𝑎0𝑗𝑎𝑖𝑗 ln (

𝜀 + 𝑎0𝑗𝑎𝑖𝑗

𝜀 +
1
2 (
𝑎0𝑗𝑎𝑖𝑗 + 𝑑1𝑗)

) + (1 − 𝑎0𝑗𝑎𝑖𝑗) ln(
1 + 𝜀 − 𝑎0𝑗𝑎𝑖𝑗

1 + 𝜀 −
1
2 (
𝑎0𝑗𝑎𝑖𝑗 + 𝑑1𝑗)

)

𝑛

𝑗=1

+ 𝑑1𝑗 ln(
𝜀 + 𝑑1𝑗

𝜀 +
1
2 (
𝑑1𝑗 + 𝑎0𝑗𝑎𝑖𝑗)

) + (1 − 𝑑1𝑗) ln(
1 + 𝜀 − 𝑑1𝑗

1 + 𝜀 −
1
2 (
𝑑1𝑗 + 𝑎0𝑗𝑎𝑖𝑗)

)) ,    𝑖 ∈ 𝐼𝑚−1 

Here, if 𝑎0𝑗𝑎𝑖𝑗 = 0, 𝑑1𝑗 = 0, 𝑎0𝑗𝑎𝑖𝑗 = 1, or 𝑑1𝑗 = 1, then ln (
𝑎0𝑗𝑎𝑖𝑗

1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), ln (
𝑑1𝑗

1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), 

ln (
1−𝑎0𝑗𝑎𝑖𝑗

1−
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), or ln (
1−𝑑1𝑗

1−
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

) are undefined, respectively. To cope with these drawbacks, we 

modify them as ln (
𝜀+𝑎0𝑗𝑎𝑖𝑗

𝜀+
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), ln (
𝜀+𝑑1𝑗

𝜀+
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), ln (
1+𝜀−𝑎0𝑗𝑎𝑖𝑗

1+𝜀−
1

2
(𝑎0𝑗𝑎𝑖𝑗+𝑑1𝑗)

), and ln (
1+𝜀−𝑑1𝑗

1+𝜀−
1

2
(𝑑1𝑗+𝑎0𝑗𝑎𝑖𝑗)

), 

respectively, such that 𝜀 ≪ 1 is a positive constant, e.g.,  𝜀 = 0.0001. 

Step 7. For 𝛼 ∈ [0,1], obtain [𝑓𝑖1](𝑚−1)×1 and [𝑔𝑖1](𝑚−1)×1 defined by 

𝑓𝑖1 ≔ {

min
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1} + 𝛼 max
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1}

𝑛 − 𝑐𝑖1 + 𝛼 max
𝑘∈𝐼𝑚−1

{𝑛 − 𝑐𝑘1}
, max

𝑘∈𝐼𝑚−1
{𝑛 − 𝑐𝑘1} ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖 ∈ 𝐼𝑚−1 

and 

𝑔𝑖1 ≔ {

min
𝑘∈𝐼𝑚−1

𝑒𝑘1 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑒𝑘1

𝑒𝑖1 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑒𝑘1
, max

𝑘∈𝐼𝑚−1
𝑒𝑘1 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑖 ∈ 𝐼𝑚−1 

Step 8. For 𝛽 ∈ [0,1], obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ 𝛽𝑓𝑖1 + (1 − 𝛽)𝑔𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 9. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[45] has applied an SDM method constructed via soft sets to a problem related to a company’s recruitment 

scenario. Moreover, the following method is a version constructed with 𝑡 fpfs-matrices of Z14 provided in 

[29]. We configure the proposed method therein as follows: 

Algorithm 3.15. Z14/2 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 𝑏𝑖𝑗 ≔ max
𝑘∈𝐼𝑡

𝑎𝑖𝑗
𝑘  such that 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply MRB02 [27] to [𝑏𝑖𝑗] 

Z14 [29] is a special version of Z14/2.  
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In [53], the researcher has availed of the concept of fuzzy soft sets. We configure the proposed method therein 

as follows: 

Algorithm 3.16. A15 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain  [𝑏𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑏𝑖𝑘 ≔ {
∑𝑎0𝑗𝜒(𝑎𝑖𝑗 , 𝑎𝑘𝑗)

𝑛

𝑗=1

, 𝑖 ≠ 𝑘

0, 𝑖 = 𝑘

 

such that  

𝜒(𝑎𝑖𝑗, 𝑎𝑘𝑗) ≔ {
1, 𝑎𝑖𝑗 > 𝑎𝑘𝑗
0, 𝑎𝑖𝑗 ≤ 𝑎𝑘𝑗

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

 

Step 3. Obtain  [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑐𝑖𝑘 ≔ {

𝑏𝑖𝑘 , 𝑖 ≠ 𝑘

𝑛(𝑚 − 2) − ∑ 𝑏𝑙𝑘

𝑚−1

𝑙=1,

, 𝑖 = 𝑘
,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

Step 4. Obtain sum of the eigenvectors [𝑠𝑖1](𝑚−1)×1 associated with the dominant eigenvalues 𝜆 ≔ 𝑛(𝑚 − 2) 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[65] has modelled a car purchasing problem through fuzzy parameterized soft sets. We configure the proposed 

method therein as follows: 

Algorithm 3.17. DC15(𝜶) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain increasing sequence (𝑟𝑡) consisting of all the elements of 𝑅 ≔ {𝑗 ∶ 𝑎0𝑗 ≥ 𝛼} such that 𝛼 ∈

[0,1]. If 𝑅 = ∅, then  𝛼 ≔
1

𝑛
∑ 𝑎0𝑗
𝑛
𝑗=1 . 

Step 3. Obtain [𝑏𝑖𝑝]𝑚×|𝑅|2 defined by 𝑏𝑖𝑝 = min {𝑎𝑖𝑟𝑗 , 𝑎𝑖𝑟𝑘} such that 𝑝 = 𝑛(𝑗 − 1) + 𝑘, 𝑖 ∈ 𝐼𝑚−1
∗ , and  𝑗, 𝑘 ∈

𝐼|𝑅|. Here, |𝑅| denote the cardinality of 𝑅. 

Step 4. Obtain the score matrix [𝑠𝑖1]𝑚×1 defined by 

𝑠𝑖1 ≔
1

|𝑅|2
∑

|𝑅|2

𝑝=1

𝑏0𝑝𝑏𝑖𝑝,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈}  

[54,58] have proposed an SDM method based on fuzzy soft sets. We configure the proposed methods therein 

as follows: 

Algorithm 3.18. HJ15(𝝀) and H16(𝝀) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. For 𝜆 ∈ [0,1], obtain [𝑐𝑖𝑗]𝑚×𝑛 and [𝑑𝑖𝑗]𝑚×𝑛 defined by 
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𝑐𝑖𝑗 ≔ {
𝑎𝑖𝑗 , 𝑎𝑖𝑗 ≥ 𝜆

0, 𝑎𝑖𝑗 < 𝜆
 and 𝑑𝑖𝑗 ≔ {

𝑏𝑖𝑗, 𝑏𝑖𝑗 ≥ 𝜆

0, 𝑏𝑖𝑗 < 𝜆
 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛  

Step 3. Apply CE10a [27] to [𝑐𝑖𝑗] and [𝑑𝑖𝑗] 

In [71], the scholars have suggested two SDM methods based on grey relational analysis and fuzzy soft 

matrices. We configure the proposed methods therein as follows: 

Algorithm 3.19. XHL15(𝜶, 𝒒) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛
 defined by 

𝑏𝑖𝑗 ≔ (2𝑎0𝑗 − 1)(2𝑎𝑖𝑗 − 1) 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔
1

𝑛
∑𝑏𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔ |𝑏𝑖𝑗 − 𝑐𝑖1| 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. For 𝛼 ∈ [0,1], obtain [𝑒𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑒𝑖𝑗 ≔ {

min
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗

𝑑𝑖𝑗 + 𝛼 max
𝑘∈𝐼𝑚−1

𝑑𝑘𝑗
, max

𝑘∈𝐼𝑚−1
𝑑𝑘𝑗 ≠ 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 6. For 𝑞 ∈ ℕ+, obtain [𝑓1𝑗]1×𝑛 defined by 

𝑓1𝑗 ≔
1

𝑚 − 1
(∑(𝑒𝑖𝑗)

𝑞
𝑚−1

𝑖=1

)

1
𝑞

,    𝑗 ∈ 𝐼𝑛 

Step 7. Obtain [𝑔1𝑗]1×𝑛 defined by 

𝑔1𝑗 ≔ 1− 𝑓1𝑗,    𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [ℎ𝑖𝑗](𝑚−1)×𝑛 defined by 

ℎ𝑖𝑗 ≔ 𝑏𝑖𝑗𝑔1𝑗 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 9. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 

𝑠𝑖1 ≔ 𝛿𝑖(1,2, … , 𝑛),    𝑖 ∈ 𝐼𝑚−1 

such that  
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𝛿𝑖(1,2, … , 𝑛) ≔
𝛿𝑖(1,2, … , 𝑛 − 1) + ℎ𝑖𝑛
1 + 𝛿𝑖(1,2,… , 𝑛 − 1)ℎ𝑖𝑛

,    𝑖 ∈ 𝐼𝑚−1 and 𝑛 ≥ 2 

and 

𝛿𝑖(1,2) ≔
ℎ𝑖1 + ℎ𝑖2
1 + ℎ𝑖1ℎ𝑖2

,    𝑖 ∈ 𝐼𝑚−1 

Step 10. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm 3.20. XHL15/2(𝜶, 𝒒) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply XHL15(𝛼, 𝑞) to [𝑐𝑖𝑝] 

[66] has benefited fpfs-sets to fill an announced position in a company. We configure the proposed methods 

therein as follows: 

Algorithm 3.21. ZXZ15(𝜶) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔ √(𝑎0𝑗)
2
+(𝑏0𝑗)

2

2
 and 𝑐𝑖𝑗 ≔ max

 
{𝑎𝑖𝑗, 𝑏𝑖𝑗} 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑑𝑖𝑗]𝑚×𝑛 defined by 

𝑑0𝑗 ≔ 𝑐0𝑗 and 𝑑𝑖𝑗 ≔ {
𝑐𝑖𝑗, 𝑐𝑖𝑗 ≥ 𝛼

0, 𝑐𝑖𝑗 < 𝛼
 

such that 𝛼 ∈ [0,1], 𝑖 ∈ 𝐼𝑚−1, and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply CCE10 [27] to [𝑑𝑖𝑗] 

Algorithm 3.22.  ZXZ15/2(𝜶) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔ √(𝑎0𝑗)
2
+(𝑏0𝑗)

2

2
 and 𝑐𝑖𝑗 ≔ min

 
{𝑎𝑖𝑗 , 𝑏𝑖𝑗} 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑑𝑖𝑗]𝑚×𝑛 defined by 

𝑑0𝑗 ≔ 𝑐0𝑗 and 𝑑𝑖𝑗 ≔ {
𝑐𝑖𝑗, 𝑐𝑖𝑗 ≥ 𝛼

0, 𝑐𝑖𝑗 < 𝛼
 

such that 𝛼 ∈ [0,1], 𝑖 ∈ 𝐼𝑚−1, and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply CCE10 [27] to [𝑑𝑖𝑗] 
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In [46], the researchers have revised two SDM methods based on soft sets and fuzzy soft sets. We configure 

the proposed methods therein as follows: 

Algorithm 3.23. ZZ15 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛defined by 𝑏0𝑗 ≔ {

𝑎0𝑗

∑ 𝑎0𝑘
𝑛
𝑘=1

, ∑ 𝑎0𝑘
𝑛
𝑘=1 ≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝑏𝑖𝑗 ≔ 𝑎𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply MRB02 [27] to [𝑏𝑖𝑗] 

Algorithm 3.24. ZZ15/2(𝝀) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Construct 𝜆 ≔ [𝜆1𝑗]1×𝑛
 such that 0 ≤ 𝜆1𝑗 ≤ 1 for 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔ {

𝑎0𝑗, 𝑖 = 0

1, 𝑖 ≠ 0 and 𝑎𝑖𝑗 ≥ 𝜆1𝑗
0, 𝑖 ≠ 0 and 𝑎𝑖𝑗 < 𝜆1𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛  

Step 4. Apply ZZ15 to [𝑏𝑖𝑗] 

[57] has propounded a novel approach associated with fuzzy soft sets. We configure the proposed method 

therein as follows: 

Algorithm 3.25. A16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

,⋯ , [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
  

Step 2. Find and-product fpfs-matrix [𝑏𝑖𝑗]𝑚×𝑛 of [𝑎𝑖𝑗1
1 ], [𝑎𝑖𝑗2

2 ],⋯ , [𝑎𝑖𝑗𝑡
𝑡 ] such that 𝑛 = 𝑛1𝑛2…𝑛𝑡 

Step 3. Obtain [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by 

𝑐𝑖𝑘 ≔∑𝑏0𝑗𝜒(𝑏𝑖𝑗, 𝑏𝑘𝑗)

𝑛

𝑗=1

,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

such that 

𝜒(𝑏𝑖𝑗 , 𝑏𝑘𝑗) ≔ {

𝑏𝑖𝑗 − 𝑏𝑘𝑗

max
𝑡∈𝐼𝑚−1

{𝑏𝑡𝑗}
, 𝑏𝑖𝑗 > 𝑏𝑘𝑗

0, 𝑏𝑖𝑗 ≤ 𝑏𝑘𝑗

 

Step 4. Apply Step 3-6 of MBR01 [27] to [𝑐𝑖𝑘] 

[47] has assessed the eligibility of a group of students for a scholarship using soft sets and soft matrices. 

Moreover, [67] has revised the SDM method in [3] via fpfs-sets. We configure the proposed method therein as 

follows: 

Algorithm 3.26. AC16, AC16/2, RH16 

AC16, AC16/2, RH16, and CEC11 [29] are the same. Therefore, we prefer the notation CEC11. 
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In [72], the researchers have studied the fuzzy soft matrices by using different t-norms. We configure the 

proposed methods therein as follows: 

Algorithm 3.27. AM16 

AM16 is the same as MR13 [29]. Therefore, we prefer notation MR13. 

Algorithm 3.28. AM16/2 

AM16/2 is the same as MR13/2 [29]. Therefore, we prefer notation MR13/2. 

Algorithm 3.29. AM16/3 

AM16/3 is the same as MR13/3 [29]. Therefore, we prefer notation MR13/3. 

In [59], the authors have applied the concept of fuzzy soft sets to a problem concerning selecting an investing 

area. We configure the proposed method therein as follows: 

Algorithm 3.30. NRM16(𝑹) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛. 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∏𝑎0𝑗𝑎𝑖𝑗
𝑗∈𝑅

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[67] has used fpfs-sets to decide on a car purchase problem. We configure the proposed method therein as 

follows: 

Algorithm 3.31. RH16/3(𝑹) 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛1 × 𝐼𝑛2 

Step 3. Obtain increasing sequence (𝑟𝑡) consisting of all the elements of 𝑅 such that 𝑟𝑡 ≔ (𝑢𝑡, 𝑣𝑡) 

Step 4. Obtain [𝑑𝑖𝑡]𝑚×|𝑅| defined by 

𝑑𝑖𝑡 ≔ min
𝑟𝑡∈𝑅

{𝑎𝑖𝑢𝑡 , 𝑏𝑖𝑣𝑡} ,    𝑖 ∈ 𝐼𝑚−1
∗  

Here, |𝑅| denotes the cardinality of 𝑅. 

Step 5. Obtain [𝑒𝑖𝑡]𝑚×|𝑅| defined by 

𝑒0𝑡 ≔ 𝑑0𝑡 and 𝑒𝑖𝑡 ≔ 𝑑0𝑡𝑑𝑖𝑡 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑡 ∈ 𝐼|𝑅| 

Step 6. Apply MBR01 [27] to [𝑒𝑖𝑡] 

In [60], the researchers have employed fuzzy soft sets to choose practical and reliable social network sites. We 

configure the proposed method therein as follows: 

Algorithm 3.32. RK16 

RK16 is the same as MBR01 [27]. Therefore, we prefer the notation MBR01. 
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[61] has constructed an SDM method being a generalisation of MRB02 by using multiple fuzzy soft sets. We 

configure the proposed method therein as follows: 

Algorithm 3.33. RS16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

,⋯ , [𝑎𝑖𝑗
𝑡 ]
𝑚×𝑛

  

Step 2. Obtain [𝑏𝑖1
1 ]

(𝑚−1)×1
, [𝑏𝑖1

2 ]
(𝑚−1)×1

, … , [𝑏𝑖1
𝑡 ]

(𝑚−1)×1
 defined by 

𝑏𝑖1
𝑘 ≔∑

𝑛

𝑗=1

𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘  

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑘 ∈ 𝐼𝑡 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1: = ∑𝑏𝑖1
𝑘

𝑡

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

In [62], the authors have drawn on fuzzy soft sets to solve a group decision-making problem. We configure 

the proposed method therein as follows: 

Algorithm 3.34. SMT16 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, … , [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑘
1 ]

(𝑚−1)×(𝑚−1)
, [𝑏𝑖𝑘

2 ]
(𝑚−1)×(𝑚−1)

, … , [𝑏𝑖𝑘
𝑡 ]

(𝑚−1)×(𝑚−1)
 defined by 

𝑏𝑖𝑘
𝑟 ≔∑

𝑛

𝑗=1

𝑎0𝑗
𝑟 𝜒(𝑎𝑖𝑗

𝑟 , 𝑎𝑘𝑗
𝑟 ),    𝑖, 𝑘 ∈ 𝐼𝑚−1, 𝑟 ∈ 𝐼𝑡 

such that 

𝜒(𝑎𝑖𝑗
𝑟 , 𝑎𝑘𝑗

𝑟 ) ≔ {
1, 𝑎𝑖𝑗

𝑟 ≥ 𝑎𝑘𝑗
𝑟

0, 𝑎𝑖𝑗
𝑟 < 𝑎𝑘𝑗

𝑟  

Step 3. Obtain [𝑐𝑖1
1 ]

(𝑚−1)×1
, [𝑐𝑖1

2 ]
(𝑚−1)×1

, … , [𝑐𝑖1
𝑡 ]

(𝑚−1)×1
 defined by 

𝑐𝑖1
𝑟 ≔ ∑ 𝑏𝑖𝑘

𝑟 ,

𝑚−1

𝑘=1

    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∑𝑐𝑖1
𝑟

𝑡

𝑟=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[68] has developed an SDM method based on mean-product and max-max decision-making via soft matrices. 

We configure the proposed method therein as follows: 

Algorithm 3.35. VMH16 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 
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Step 2. Find the mean-product matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ max
𝑘∈𝐼𝑛1

{
max
𝑝∈𝐼𝑘

(𝑐0𝑝𝑐𝑖𝑝) , 𝐼𝑘 ≠ ∅

0, 𝐼𝑘 = ∅
 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝐼𝑘 ≔ {𝑝 | ∃𝑖 ∋ 𝑐0𝑝𝑐𝑖𝑝 ≠ 0, (𝑘 − 1)𝑛2 < 𝑝 ≤ 𝑘𝑛2} 

Step 4. Obtain the decision set { 𝑢𝑘 
�̂�𝑘1 |𝑢𝑘 ∈ 𝑈} 

[63] has propounded two novel methods based upon ambiguity measure and Dempster-Shafer theory of 

evidence in the fuzzy soft sets space. We configure the proposed methods therein as follows: 

Algorithm 3.36. WHXDD16 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑏𝑖𝑗 ≔

{
 
 

 
 𝑎0𝑗𝑎𝑖𝑗

∑𝑚−1𝑘=1 𝑎0𝑗𝑎𝑘𝑗
, ∑

𝑚−1

𝑘=1

𝑎0𝑗𝑎𝑘𝑗 ≠ 0

1

𝑚 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛. 

Step 3. Obtain [𝑐1𝑗]1×𝑛 defined by  

𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗 log2(𝜀 + 𝑏𝑖𝑗)

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Here, if 𝑏𝑖𝑗 = 0, then 𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗
𝑚−1
𝑖=1 log2 𝑏𝑖𝑗 is undefined. To cope with this drawback, we modify it as 

𝑐1𝑗 ≔ −∑ 𝑏𝑖𝑗
𝑚−1
𝑖=1 log2(𝜀 + 𝑏𝑖𝑗) such that 𝜀 ≪ 1 is a positive constant, e.g.,  𝜀 = 0.0001. 

Step 4. Obtain [𝑑1𝑗]1×𝑛 defined by  

𝑑1𝑗 ≔

{
 
 

 
 𝑐1𝑗
∑ 𝑐1𝑘
𝑛
𝑘=1

, ∑ 𝑐1𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,    𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑒𝑖𝑗 ≔ 𝑏𝑖𝑗(1 − 𝑑1𝑗) 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓1𝑗]1×𝑛 defined by 

𝑓1𝑗 ≔ 1− ∑ 𝑒𝑖𝑗

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Step 7. Apply Step 7-10 of XWL14 to [𝑓1𝑗]  
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Algorithm 3.37. WHXDD16/2 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find and-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply WHXDD16 to [𝑐𝑖𝑝] 

4. Test Cases for the Comparison of the SDM Methods 

This section proposes five test cases to compare decision-making performances of SDM methods. SDM 

methods employ single, double, or multiple fpfs-matrices. Therefore, each test case consists of 𝑡 fpfs-matrices 

[𝑎𝑖𝑗
1 ], [𝑎𝑖𝑗

2 ],… , [𝑎𝑖𝑗
𝑡 ], which has order 𝑚 × 𝑛 and manifest the same ranking order of alternatives without 

employing SDM methods. If an SDM method employs a single fpfs-matrix, we only use [𝑎𝑖𝑗
1 ]. Similarly, if 

double, we use [𝑎𝑖𝑗
1 ] and [𝑎𝑖𝑗

2 ]. If an SDM method produces the ranking order provided in a test case, then it 

is said to accomplish the test case. In this section, let 𝑡 = 3, 𝑚 = 5, 𝑛 = 4, 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be the set of 

alternatives, and 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} be the set of parameters. 

4.1. Test Case 1 

Test Case 1 constructs three fpfs-matrices [𝑎𝑖𝑗
1 ]

5×4
, [𝑎𝑖𝑗

2 ]
5×4

, and [𝑎𝑖𝑗
3 ]
5×4

 such that for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑎01
𝑘 = 𝑎02

𝑘 = 𝑎03
𝑘 = 𝑎04

𝑘  and 𝑎1𝑗
𝑘 < 𝑎2𝑗

𝑘 < 𝑎3𝑗
𝑘 < 𝑎4𝑗

𝑘 . Therefore, 𝑎0𝑗
𝑘 𝑎1𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎2𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎3𝑗

𝑘 < 𝑎0𝑗
𝑘 𝑎4𝑗

𝑘 , for 

all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of alternatives is 𝑢1 ≺ 𝑢2 ≺ 𝑢3 ≺ 𝑢4. For 

example,  

[𝑎𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5

0.9 0.8 0.7 0.6

1 0.9 0.8 0.7]
 
 
 
 
 

,  [𝑎𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.3 0.2 0.1 0

0.4 0.3 0.2 0.1

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3]
 
 
 
 
 

,  and [𝑎𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.4 0.4 0.4 0.4

0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3

0.7 0.6 0.5 0.4

0.8 0.7 0.6 0.5]
 
 
 
 
 

  

4.2. Test Case 2 

Test Case 2 constructs three fpfs-matrices [𝑏𝑖𝑗
1 ]
5×4

, [𝑏𝑖𝑗
2 ]
5×4

, and [𝑏𝑖𝑗
3 ]
5×4

 such that for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑏01
𝑘 = 𝑏02

𝑘 = 𝑏03
𝑘 = 𝑏04

𝑘  and 𝑏4𝑗
𝑘 < 𝑏3𝑗

𝑘 < 𝑏2𝑗
𝑘 < 𝑏1𝑗

𝑘 . Therefore, 𝑏0𝑗
𝑘 𝑏4𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏3𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏2𝑗

𝑘 < 𝑏0𝑗
𝑘 𝑏1𝑗

𝑘 , for 

all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of alternatives is 𝑢4 ≺ 𝑢3 ≺ 𝑢2 ≺ 𝑢1. For 

example,  

[𝑏𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

1 0.9 0.8 0.7

0.9 0.8 0.7 0.6

0.8 0.7 0.6 0.5

0.7 0.6 0.5 0.4]
 
 
 
 
 

,  [𝑏𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

0.6 0.5 0.4 0.3

0.5 0.4 0.3 0.2

0.4 0.3 0.2 0.1

0.3 0.2 0.1 0 ]
 
 
 
 
 

,  and [𝑏𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.7 0.7 0.7 0.7

0.8 0.7 0.6 0.5

0.7 0.6 0.5 0.4

0.6 0.5 0.4 0.3

0.5 0.4 0.3 0.2]
 
 
 
 
 

  

4.3. Test Case 3 

Test Case 3 constructs three fpfs-matrices [𝑐𝑖𝑗
1 ]
5×4

, [𝑐𝑖𝑗
2 ]
5×4

, and [𝑐𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑐01
𝑘 < 𝑐02

𝑘 < 𝑐03
𝑘 < 𝑐04

𝑘 , 𝑐𝑖𝑖
𝑘 = 𝜆 ∈ [0,1], and if 𝑖 ≠  𝑗, then 𝑐𝑖𝑗

𝑘 = 0. Therefore, 𝑐01
𝑘 𝑐11

𝑘 < 𝑐02
𝑘 𝑐22

𝑘 < 𝑐03
𝑘 𝑐33

𝑘 <

𝑐04
𝑘 𝑐44

𝑘  and if 𝑖 ≠  𝑗, then 𝑐0𝑗
𝑘 𝑐𝑖𝑗

𝑘 = 0, for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the ranking order of 

alternatives is 𝑢1 ≺ 𝑢2 ≺ 𝑢3 ≺ 𝑢4. For example, 
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[𝑐𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.6 0.7 0.8 0.9

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  [𝑐𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.4 0.5 0.6 0.7

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  and [𝑐𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.2 0.3 0.4 0.5

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

  

4.4. Test Case 4 

Test Case 4 constructs three fpfs-matrices [𝑑𝑖𝑗
1 ]

5×4
, [𝑑𝑖𝑗

2 ]
5×4

, and [𝑑𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑑04
𝑘 < 𝑑03

𝑘 < 𝑑02
𝑘 < 𝑑01

𝑘 , 𝑑𝑖𝑖
𝑘 = 𝜆 ∈ [0,1], and if 𝑖 ≠  𝑗, then 𝑑𝑖𝑗

𝑘 = 0. Therefore, 𝑑04
𝑘 𝑑44

𝑘 < 𝑑03
𝑘 𝑑33

𝑘 <

𝑑03
𝑘 𝑑33

𝑘 < 𝑑01
𝑘 𝑑11

𝑘  and if 𝑖 ≠  𝑗, then 𝑑0𝑗
𝑘 𝑑𝑖𝑗

𝑘 = 0, for all 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3. For each fpfs-matrix herein, the 

ranking order of alternatives is 𝑢4 ≺ 𝑢3 ≺ 𝑢2 ≺ 𝑢1. For example, 

[𝑑𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.9 0.8 0.7 0.6

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

,  [𝑑𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.7 0.6 0.5 0.4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

 , and [𝑑𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.5 0.4 0.3 0.2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 ]
 
 
 
 
 

  

4.5. Test Case 5 

Test Case 4 constructs three fpfs-matrices [𝑒𝑖𝑗
1 ]
5×4

, [𝑒𝑖𝑗
2 ]
5×4

, and [𝑒𝑖𝑗
3 ]
5×4

 such that for all 𝑖, 𝑗 ∈ 𝐼4 and 𝑘 ∈ 𝐼3, 

𝑒𝑖𝑗
𝑘 = 𝜆 ∈ [0,1]. For each fpfs-matrix herein, the ranking order of alternatives is  

𝑢1 ≈ 𝑢2 ≈ 𝑢3 ≈ 𝑢4. Here, ≈ denotes the same ranking order. For example, 

[𝑒𝑖𝑗
1 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

,  [𝑒𝑖𝑗
2 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

,  and [𝑒𝑖𝑗
3 ] ≔

[
 
 
 
 
 
0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5]
 
 
 
 
 

  

4.6. Results of Test Cases 

In this subsection, we test the configured SDM methods using the aforesaid five test cases. Here, the methods 

working with a single matrix employ the first fpfs-matrices in each test case. Similarly, the methods working 

with double matrices utilise the first two fpfs-matrices. Moreover, the other methods use all the fpfs-matrices. 

For example, in Test Case 1, the methods employing single matrix, double matrices, and multiple matrices use 

the first fpfs-matrix [𝑎𝑖𝑗
1 ], the first two fpfs-matrices [𝑎𝑖𝑗

1 ] and [𝑎𝑖𝑗
2 ], and all the fpfs-matrices [𝑎𝑖𝑗

1 ], [𝑎𝑖𝑗
2 ], and 

[𝑎𝑖𝑗
3 ], respectively. 

Table 8 indicates in which test cases the methods are successful. It can be seen from Table 8 that 20 of 37 

methods, namely MBR01, MRB02, CCE10, CEC11, CXL13(𝜆1), WQ14(𝜅), YHX14(𝛼, 𝛽), DC15(𝛼), ZZ15, 

CXL13/2(𝜆1), HG13, ZXZ15(𝛼), VMH16, MR13, MR13/2, SM13(𝑤, 𝛼), Z14/2, RS16, SMT16, and 

NKY17(𝜆2), pass all the tests. Moreover, the numbers of the passed tests are provided in the last column of 

Table 8. Here, 𝛼 = 0.5, 𝛽 = 0.5, 𝜅 = 0.4, 𝜆 = 0.5, 𝜆1 = [1 1 1 1], 𝜆2 = [0.25 0.25 0.25 0.25], 𝜆3 =

[0.5 0.5 0.5 0.5], 𝑞 = 2, 𝑅 = {1, 2, 3, 4}, and 𝑤 = [0.34 0.34 0.34]. 
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Table 8. Success of the methods in the test cases 

 Algorithms\Test Cases 
Test 

Case 1 

Test 

Case 2 

Test 

Case 3 

Test 

Case 4 

Test 

Case 5 

Passed 

Test’s 

Numbers 

1 NS11 [BSD13, SR15]  ✓ ✓ ✓ ✓ 4 

2 CXL13(𝜆1) ✓ ✓ ✓ ✓ ✓ 5 

3 CXL13/2(𝜆1) ✓ ✓ ✓ ✓ ✓ 5 

4 GLF13(𝑅) ✓ ✓   ✓ 3 

5 HG13 ✓ ✓ ✓ ✓ ✓ 5 

6 SM13(𝑤, 𝛼) ✓ ✓ ✓ ✓ ✓ 5 

7 MRB02 [GDC14, RH16/2] ✓ ✓ ✓ ✓ ✓ 5 

8 NKY17(𝜆2) [GDC14/2] ✓ ✓ ✓ ✓ ✓ 5 

9 K14  ✓   ✓ 2 

10 CCE10 [MM14] ✓ ✓ ✓ ✓ ✓ 5 

11 WQ14(𝜅) ✓ ✓ ✓ ✓ ✓ 5 

12 XWL14(𝛼, 𝑞) [LWX15(𝛼, 𝑞), T15(𝛼, 𝑞)] ✓ ✓   ✓ 3 

13 XWL14/2(𝛼, 𝑞) [LWX15/2(𝛼, 𝑞), T15/2(𝛼, 𝑞)] ✓ ✓   ✓ 3 

14 YHX14(𝛼, 𝛽) ✓ ✓ ✓ ✓ ✓ 5 

15 Z14/2 ✓ ✓ ✓ ✓ ✓ 5 

16 A15   ✓ ✓ ✓ 3 

17 DC15(𝛼) ✓ ✓ ✓ ✓ ✓ 5 

18 HJ15(𝜆) [H16(𝜆)]  ✓   ✓ 2 

19 XHL15(𝛼, 𝑞)  ✓ ✓ ✓ ✓ 4 

20 XHL15/2(𝛼, 𝑞)  ✓ ✓ ✓ ✓ 4 

21 ZXZ15(𝛼) ✓ ✓ ✓ ✓ ✓ 5 

22 ZXZ15/2(𝛼)   ✓ ✓ ✓ 3 

23 ZZ15 ✓ ✓ ✓ ✓ ✓ 5 

24 ZZ15/2(𝜆3)   ✓ ✓ ✓ 3 

25 A16  ✓  ✓ ✓ 3 

26 CEC11 [AC16, AC16/2, RH16] ✓ ✓ ✓ ✓ ✓ 5 

27 MR13 [AM16] ✓ ✓ ✓ ✓ ✓ 5 

28 MR13/2 [AM16/2] ✓ ✓ ✓ ✓ ✓ 5 

29 MR13/3 [AM16/3]     ✓ 1 

30 NRM16(𝑅) ✓ ✓   ✓ 3 

31 RH16/3(𝑅) ✓ ✓   ✓ 3 

32 MBR01 [RK16] ✓ ✓ ✓ ✓ ✓ 5 

33 RS16 ✓ ✓ ✓ ✓ ✓ 5 

34 SMT16 ✓ ✓ ✓ ✓ ✓ 5 

35 VMH16 ✓ ✓ ✓ ✓ ✓ 5 

36 WHXDD16     ✓ 1 

37 WHXDD16/2 ✓    ✓ 2 

 Total 26 31 26 27 37  
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5. An Application of Some of the Configured Methods to a PVA Problem 

This section applies the configured methods herein to a PVA problem concerning the salt-and-pepper noise 

(SPN) removal performance of the filters provided in [73]. Therefore, firstly, we present the results of the 

filters in [73] produced by the quality metrics Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

(SSIM) [74], and Visual Information Fidelity (VIF) [75] for 20 traditional images at noise density occurring 

between 10% and 90% in Table 9, 10, and 11, respectively. Moreover, the bold values in the tables signify 

the filters with the best performance. 

Table 9. Mean-PSNR results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 37.52 34.29 31.96 29.83 27.86 25.89 23.90 21.55 18.55 

MDBUTMF 36.80 32.18 29.02 28.48 28.81 28.34 26.95 23.42 15.29 

BPDF 36.98 33.54 31.03 28.88 26.82 24.60 21.98 17.74 10.51 

NAFSMF 36.08 33.27 31.49 30.15 29.02 27.96 26.82 25.47 22.34 

AWMF 36.34 35.00 33.83 32.69 31.47 30.14 28.68 26.99 24.70 

DAMF 39.58 36.33 34.14 32.45 30.99 29.64 28.28 26.69 24.35 

ARmF 40.04 37.12 35.14 33.53 31.99 30.45 28.86 27.08 24.74 

Table 10. Mean-SSIM results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966 

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566 

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585 

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190 

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028 

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964 

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056 

Table 11. Mean-VIF results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

DBAIN 0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635 

MDBUTMF 0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730 

BPDF 0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334 

NAFSMF 0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226 

AWMF 0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928 

DAMF 0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913 

ARmF 0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955 

 

In this PVA problem, the alternatives are indicated as 𝑢1 ≔ “DBAIN”, 𝑢2 ≔ “MDBUTMF”, 𝑢3 ≔ “BPDF”, 

𝑢4 ≔ “NAFSMF”, 𝑢5 ≔ “AWMF”, 𝑢6 ≔ “DAMF”, and 𝑢7 ≔ “ARmF” such that 𝑈 =

{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7}. Moreover, the parameters are denoted by 𝑥1 ≔ “SPN ratio 10%”, 𝑥2 ≔ “SPN ratio 

20%”, 𝑥3 ≔ “SPN ratio 30%”, 𝑥4 ≔ “SPN ratio 40%”, 𝑥5 ≔ “SPN ratio 50%”, 𝑥6 ≔ “SPN ratio 60%”, 

𝑥7 ≔ “SPN ratio 70%”, 𝑥8 ≔ “SPN ratio 80%”, and 𝑥9 ≔ “SPN ratio 90%” such that 𝐸 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9}.  
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Suppose that the noise removal performances of the filters at high noise densities are more significant than at 

the other densities. In such a case, it is anticipated that the membership degrees at high noise densities are 

greater than at the other noise densities. In other words, the first rows of the fpfs-matrices are considered to be 

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] herein. Furthermore, while the SSIM and VIF values are in the interval 

[0,1], the PSNR values are not. Hence, the PSNR values are normalised via the maximum value provided in 

Table 9 to construct the fpfs-matrix [𝑎𝑖𝑗]. Thus, Table 9, 10, and 11 can be represented with fpfs-matrices 

[𝑎𝑖𝑗]8×9
, [𝑏𝑖𝑗]8×9

, and [𝑐𝑖𝑗]8×9
 as follows: 

 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 

 

 

[𝑏𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
 
 
 
 
 
 
 
 

 

and 

[𝑐𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 

 

Nine of the SDM methods having passed all the test cases, namely MBR01, MRB02, CCE10, CEC11, 

CXL13(𝜆1), WQ14(𝜅), YHX14(𝛼, 𝛽), DC15(𝛼), and ZZ15, employ only an fpfs-matrix. Similarly, 

CXL13/2(𝜆1), HG13, ZXZ15(𝛼), and VMH16 utilise two fpfs-matrices, and the others work with multiple 

fpfs-matrices. Moreover, we consider the variables 𝛼 = 0.5, 𝛽 = 0.5, 𝜅 = 0.4, 𝜆1 = [1 1 1 1 1 1 1 1 1], 𝜆2 =

[
1

7
 
1

7
 
1

7
 
1

7
 
1

7
 
1

7
 
1

7
]
𝑇

, and 𝑤 = [1 1 1]. 

Secondly, we apply the SDM methods to the aforesaid fpfs-matrices [𝑎𝑖𝑗]8×9, [𝑏𝑖𝑗]8×9, and [𝑐𝑖𝑗]8×9. The 

decision sets and ranking orders produced by these SDM methods are manifested in Table 12 and 13, 

respectively. The last column in Table 13 demonstrates the number of the methods producing the same ranking 

order. 
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Table 12. Decision sets produced by SDM methods (in the event of more-importance-attached noise removal 

performance at high noise densities) 

Algorithms Matrices Decision Sets 

MBR01 [𝑎𝑖𝑗] { DBAIN 
0.2227 , MDBUTMF, 

0.2422 BPDF 
0 , NAFSMF 

0.3828 , AWMF 
0.7891 , DAMF 

0.6719 , ARmF 
1 } 

MRB02 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CCE10 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CEC11 [𝑎𝑖𝑗] { DBAIN 
0.8450 , MDBUTMF, 

0.8523 BPDF 
0.7523 , NAFSMF 

0.9137 , AWMF 
0.9818 , DAMF 

0.9772 , ARmF 
1 } 

CXL13(𝜆1) [𝑎𝑖𝑗] { DBAIN 
0.4077 , MDBUTMF, 

0.4027 BPDF 
0 , NAFSMF 

0.6642 , AWMF 
0.9219 , DAMF 

0.9125 , ARmF 
1 } 

WQ14(𝜅) [𝑎𝑖𝑗] { DBAIN 
0.8483 , MDBUTMF, 

0.8480 BPDF 
0.7550 , NAFSMF 

0.9124 , AWMF 
0.9788 , DAMF 

0.9776 , ARmF 
1 } 

YHX14(𝛼, 𝛽) [𝑎𝑖𝑗] { DBAIN 
0.2630 , MDBUTMF, 

0.2779 BPDF 
0 , NAFSMF 

0.6484 , AWMF 
0.9819 , DAMF 

0.9750 , ARmF 
1 } 

DC15(𝛼) [𝑎𝑖𝑗] { DBAIN 
0.4628 , MDBUTMF, 

0.4727 BPDF 
0 , NAFSMF 

0.7927 , AWMF 
0.9880 , DAMF 

0.9526 , ARmF 
1 } 

ZZ15 [𝑎𝑖𝑗] { DBAIN 
0.8391 , MDBUTMF, 

0.8446 BPDF 
0.7361 , NAFSMF 

0.9143 , AWMF 
0.9835 , DAMF 

0.9776 , ARmF 
1 } 

CXL13/2(𝜆1) [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.4358 , MDBUTMF, 

0.3630 BPDF 
0 , NAFSMF 

0.6997 , AWMF 
0.9437 , DAMF 

0.9327 , ARmF 
1 } 

HG13 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.3674 , MDBUTMF, 

0.3409 BPDF 
0 , NAFSMF 

0.6317 , AWMF 
0.8651 , DAMF 

0.8459 , ARmF 
1 } 

ZXZ15(𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.7437 , MDBUTMF, 

0.7582 BPDF 
0.6995 , NAFSMF 

0.9321 , AWMF 
0.9925 , DAMF 

0.9878 , ARmF 
1 } 

VMH16 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { DBAIN 
0.2722 , MDBUTMF, 

0.5393 BPDF 
0 , NAFSMF 

0.7090 , AWMF 
0.9870 , DAMF 

0.9513 , ARmF 
1 } 

MR13 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.6585 , MDBUTMF, 

0.7256 BPDF 
0.5448 , NAFSMF 

0.7414 , AWMF 
0.9616 , DAMF 

0.9627 , ARmF 
1 } 

MR13/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.4119 , MDBUTMF, 

0.5444 BPDF 
0.2777 , NAFSMF 

0.6026 , AWMF 
0.9569 , DAMF 

0.9290 , ARmF 
1 } 

SM13(𝑤, 𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.3799 , MDBUTMF, 

0.3521 BPDF 
0 , NAFSMF 

0.6412 , AWMF 
0.9208 , DAMF 

0.9287 , ARmF 
1 } 

Z14/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.8608 , MDBUTMF, 

0.8483 BPDF 
0.7614 , NAFSMF 

0.9321 , AWMF 
0.9925 , DAMF 

0.9878 , ARmF 
1 } 

RS16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.3523 , MDBUTMF, 

0.3832 BPDF 
0 , NAFSMF 

0.6067 , AWMF 
0.9411 , DAMF 

0.9278 , ARmF 
1 } 

SMT16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.2237 , MDBUTMF, 

0.2666 BPDF 
0 , NAFSMF 

0.3641 , AWMF 
0.7867 , DAMF 

0.6723 , ARmF 
1 } 

NKY17(𝜆2) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { DBAIN 
0.2412 , MDBUTMF, 

0.2490 BPDF 
0 , NAFSMF 

0.3696 , AWMF 
0.7899 , DAMF 

0.6732 , ARmF 
1 } 

The ranking orders in Table 13 manifest that MBR01, MRB02, CCE10, CEC11, YHX14(𝛼, 𝛽), DC15(𝛼), 

ZZ15, ZXZ15(𝛼), VMH16, MR13/2, RS16, SMT16, and NKY17(𝜆2) produce the same ranking order just as 

CXL13(𝜆1), WQ14(𝜅), CXL13/2(𝜆1), HG13, and Z14/2 do. Moreover, the ranking orders produced by MR13 

and SM13(𝑤, 𝛼) except for those of MDBUTMF and DBAIN tend to generate the same pattern. The results 

show that the decision-making abilities of SDM methods herein agree that ARmF outperforms the other filters 

and BPDF exhibits the minimum performance compared to the others. 
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Table 13. Ranking orders produced by SDM methods (in the event of more-importance-attached noise 

removal performance at high noise densities) 

Algorithms Matrices Ranking Orders Frequency 

MBR01 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

MRB02 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CCE10 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CEC11 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CXL13(𝜆1) [𝑎𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

WQ14(𝜅) [𝑎𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

YHX14(𝛼, 𝛽) [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

DC15(𝛼) [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

ZZ15 [𝑎𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

CXL13/2(𝜆1) [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

HG13 [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

ZXZ15(𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

VMH16 [𝑎𝑖𝑗], [𝑏𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

MR13 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

MR13/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

SM13(𝑤, 𝛼) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

Z14/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺DAMF≺AWMF≺ARmF 5 

RS16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

SMT16 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

NKY17(𝜆2) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] BPDF≺ DBAIN ≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 13 

On the other hand, assume that the noise removal performances of the filters at low noise densities are more 

significant than at the higher densities. In such a case, it is anticipated that the membership degrees at low 

noise densities are greater than at the higher noise densities. In other words, the first rows of the fpfs-matrices 

are considered to be [0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1] herein. Therefore, Table 9, 10, and 11 can be 

represented with fpfs-matrices [𝑑𝑖𝑗]8×9, [𝑒𝑖𝑗]8×9, and [𝑓𝑖𝑗]8×9 as follows: 

[𝑑𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 

 

[𝑒𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
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and 

[𝑓𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 

 

Thirdly, we apply the SDM methods to the fpfs-matrices [𝑑𝑖𝑗]8×9
, [𝑒𝑖𝑗]8×9

, and [𝑓𝑖𝑗]8×9
. The decision sets and 

ranking orders generated by the SDM methods are provided in Table 14 and 15, respectively. The last column 

in Table 15 demonstrates the number of the methods producing the same ranking order. 

Table 14. Decision sets produced by SDM methods (in the event of more-importance-attached noise removal 

performance at low noise densities) 

Algorithms Matrices Decision Sets 

MBR01 [𝑑𝑖𝑗] { DBAIN 
0.2546 , MDBUTMF, 

0 BPDF 
0.0093 , NAFSMF 

0.1111 , AWMF 
0.5556 , DAMF 

0.6944 , ARmF 
1 }  

MRB02 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CCE10 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CEC11 [𝑑𝑖𝑗] { DBAIN 
0.9023 , MDBUTMF, 

0.9805 BPDF 
0.8717 , NAFSMF 

0.9030 , AWMF 
0.9512 , DAMF 

0.9779 , ARmF 
1 }  

CXL13(𝜆1) [𝑑𝑖𝑗] { DBAIN 
0.2896 , MDBUTMF, 

0.2641 BPDF 
0 , NAFSMF 

0.4731 , AWMF 
0.8380 , DAMF 

0.8623 , ARmF 
1 } 

WQ14(𝜅) [𝑑𝑖𝑗] { DBAIN 
0.8894 , MDBUTMF, 

0.8760 BPDF 
0.8450 , NAFSMF 

0.9057 , AWMF 
0.9576 , DAMF 

0.9780 , ARmF 
1 }  

YHX14(𝛼, 𝛽) [𝑑𝑖𝑗] { DBAIN 
0.1511 , MDBUTMF, 

0.0652 BPDF 
0 , NAFSMF 

0.1412 , AWMF 
0.5084 , DAMF 

0.9463 , ARmF 
1 }  

DC15(𝛼) [𝑑𝑖𝑗] { DBAIN 
0.2460 , MDBUTMF, 

0 BPDF 
0.0489 , NAFSMF 

0.2624 , AWMF 
0.7380 , DAMF 

0.7937 , ARmF 
1 }  

ZZ15 [𝑑𝑖𝑗] { DBAIN 
0.8964 , MDBUTMF, 

0.8784 BPDF 
0.8610 , NAFSMF 

0.9041 , AWMF 
0.9555 , DAMF 

0.9774 , ARmF 
1 }  

CXL13/2(𝜆1) [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.3143 , MDBUTMF, 

0.2127 BPDF 
0 , NAFSMF 

0.5349 , AWMF 
0.8828 , DAMF 

0.9884 , ARmF 
1 }  

HG13 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.2511 , MDBUTMF, 

0.0346 BPDF 
0 , NAFSMF 

0.3467 , AWMF 
0.6800 , DAMF 

0.7787 , ARmF 
1 } 

ZXZ15(𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.9318 , MDBUTMF, 

0.9022 BPDF 
0.9126 , NAFSMF 

0.9583 , AWMF 
0.9871 , DAMF 

0.9901 , ARmF 
1 } 

VMH16 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { DBAIN 
0.3679 , MDBUTMF, 

0.1858 BPDF 
0.2334 , NAFSMF 

0 , AWMF 
0.0406 , DAMF 

0.8737 , ARmF 
1 } 

MR13 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.8361 , MDBUTMF, 

0.8030 BPDF 
0.7619 , NAFSMF 

0.8153 , AWMF 
0.9337 , DAMF 

0.9715 , ARmF 
1 }  

MR13/2 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.8222 , MDBUTMF, 

0.7156 BPDF 
0.7516 , NAFSMF 

0.7477 , AWMF 
0.8485 , DAMF 

0.9575 , ARmF 
1 }  

SM13(𝑤, 𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.3023 , MDBUTMF, 

0.1238 BPDF 
0 , NAFSMF 

0.3911 , AWMF 
0.7184 , DAMF 

0.8759 , ARmF 
1 }  

Z14/2 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.9435 , MDBUTMF, 

0.9112 BPDF 
0.9188 , NAFSMF 

0.9583 , AWMF 
0.9871 , DAMF 

0.9901 , ARmF 
1 } 

RS16 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.2930 , MDBUTMF, 

0.0990 BPDF 
0 , NAFSMF 

0.3115 , AWMF 
0.7384 , DAMF 

0.8701 , ARmF 
1 } 

SMT16 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.2734 , MDBUTMF, 

0.0230 BPDF 
0 , NAFSMF 

0.1229 , AWMF 
0.5300 , DAMF 

0.6959 , ARmF 
1 } 

NKY17(𝜆2) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { DBAIN 
0.3049 , MDBUTMF, 

0.0717 BPDF 
0 , NAFSMF 

0.1121 , AWMF 
0.5995 , DAMF 

0.7040 , ARmF 
1 } 
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The ranking orders in Table 15 show that MRB02, CCE10, CXL13(𝜆1), WQ14(𝜅), ZZ15, CXL13/2(𝜆1), 

HG13, SM13(𝑤, 𝛼), and RS16 produce the same ranking order. The ranking orders produced by MBR01 and 

MR13/2 except for those of NAFMSF and BPDF tend to exhibit the same pattern. Moreover, YHX14(𝛼, 𝛽), 

MR13, SMT16, and NKY17(𝜆2) have the same ranking order just as DC15(𝛼), ZXZ15, and Z14/2 do even 

though CEC11 and VMH16 have more incoherent ranking order than the others. Despite the different decision-

making skills of all the SDM methods herein, all the methods validate that ARmF performs better than the 

other filters, and all the SDM methods except for MBR01, DC15(𝛼), ZXZ15, VMH16, MR13/2, and Z14/2 

indicate that BPDF displays the minimum performance. 

Table 15. Ranking orders produced by SDM methods (in the event of more-importance-attached noise 

removal performance at low noise densities) 

Algorithms Matrices Ranking Orders Frequency 

MBR01 [𝑑𝑖𝑗] MDBUTMF≺BPDF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 1 

MRB02 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CCE10 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CEC11 
[𝑑𝑖𝑗] BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺MDBUTMF≺ARmF 1 

CXL13(𝜆1) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

WQ14(𝜅) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

YHX14(𝛼, 𝛽) [𝑑𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

DC15(𝛼) [𝑑𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

ZZ15 
[𝑑𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

CXL13/2(𝜆1) [𝑑𝑖𝑗], [𝑒𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

HG13 [𝑑𝑖𝑗], [𝑒𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

ZXZ15(𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

VMH16 [𝑑𝑖𝑗], [𝑒𝑖𝑗] NAFSMF≺AWMF≺MDBUTMF≺BPDF≺ DBAIN ≺DAMF≺ARmF 1 

MR13 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

MR13/2 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] MDBUTMF≺NAFMSF≺BPDF≺ DBAIN ≺AWMF≺DAMF≺ARmF 1 

SM13(𝑤, 𝛼) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

Z14/2 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] MDBUTMF≺BPDF≺ DBAIN ≺NAFMSF≺AWMF≺DAMF≺ARmF 3 

RS16 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺ DBAIN ≺NAFSMF≺AWMF≺DAMF≺ARmF 9 

SMT16 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

NKY17(𝜆2) 
[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] BPDF≺MDBUTMF≺NAFMSF≺ DBAIN ≺AWMF≺DAMF≺ARmF 4 

6. Conclusion 

In this study, we configured SDM methods constructed with the concepts of soft sets, fuzzy soft sets, fuzzy 

parameterized soft sets, fpfs-sets, soft matrices, fuzzy soft matrices, and fuzzy parameterized soft matrices, 

faithfully to the original. Hereby, in 2013 and 2016, we completed the configurations of the methods proposed 

via these concepts to the fpfs-matrices space. Afterwards, we implemented the configured methods to five test 

cases. By doing so, we determined the methods passing all the test cases. We then applied them to a PVA 

problem to order the state-of-the-art filters with respect to their noise removal performance. 

https://tureng.com/tr/turkce-ingilizce/incoherent
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SDM methods constructed by the superstructures of fpfs-sets were not included in this study. In the future, 

researchers can also configure methods constructed via these superstructures to convenient spaces, such as 

intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices space [76] and interval-valued intuitionistic 

fuzzy parameterized interval-valued intuitionistic fuzzy soft sets/matrices space [77]. Furthermore, the 

configured methods can be compared by applying them to decision-making problems in different fields, such 

as medical diagnosis. Besides, it will be possible to compare all the SDM methods put forward via the aforesaid 

concepts in the literature and apply them to different decision-making problems once these methods have been 

configured. 
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1. Introduction

A real contact manifold is defined by a contact form η which is a volume form on a real (2p + 1)−
dimensional differentiable manifold M . The kernel of η defines 2p−dimensional a non-integrable
distribution of TM :

D = {X : η(X) = 0, X ∈ Γ(TM)}
We also recall D contact or horizontal distribution. Let ξ be a vector field on M , which is dual
vector of η. Then, for (1, 1)−tensor field φ, M is called an almost-contact metric manifold if following
conditions are satisfied:

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, g(φX1, φX2) = g(X1, X2)− η(X1)η(X2)

for all X1, X2 ∈ Γ(TM), where I is identity map on TM and g is a Riemannian metric [1]. Moreover,
we call g compatible metric. Similar to the Kähler manifold, we have a second fundamental form on an
almost-contact metric manifold Ω(X1, X2) = dη(X1, X2). Fruthermore, dη(X1, X2) = g(X1, φX2) and
in this case we recall g is an associated metric. An almost-contact structure is normal if N(φX1, φX2)+
2dη(X1, X2)ξ = 0, where N(φX1, φX2) is the Nijenhuis tensor field of φ. A normal almost-contact
metric manifold is called a Sasakian manifold.

In 1959, Kobayashi [2] defined the complex analogue of a real contact manifold. Later, in the 1980s
Ishihara and Konishi [3] proved that a complex contact manifold carried an almost-contact structure.
A complex almost-contact metric manifold is a complex odd (2p+ 1)−dimensional complex manifold
with (J, φ, φ ◦ J, ξ,−J ◦ ξ, η, η ◦ J, g) structure such that

φ2 = (φJ)2 = −I + η ⊗ ξ − (η ◦ J)⊗ (J ◦ ξ),
η(ξ) = 1 η(−J ◦ ξ) = 0, (η ◦ J)(−J ◦ ξ) = 1, (η ◦ J)(ξ) = 0,

g(φX1, X2) = −g(X1, φX2), g((φ ◦ J)X1, X2) = −g(X1, (φ ◦ J)X2)
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where g is an Hermitian metric on M , J is a natural almost complex structure. The normality of
complex almost-contact metric manifolds was given by Ishihara and Konishi [3] and Korkmaz [4].
Normal complex contact metric manifolds have been studied by several authors [4–7]. A normal
complex contact manifold with a globally defined holomorphic 1-form is called complex Sasakian
manifolds. This type of manifolds have been worked in [8–11]

It is wel-known that an odd-dimensional sphere S2p+1 carries a contact structure. Calabi and
Eckmann showed that the product of two odd-dimensional spheres M = S2p+1 × S2q+1 is a complex
manifold [12]. These kinds of manifolds recall Calabi-Eckman manifolds. These manifolds have some
significant properties in complex geometry. Blair, Ludden, and Yano [13] studied complex manifolds
whose complex structures are similar to the complex structure on M . In [13], the authors defined a
new structure on Hermitian manifolds called bicontact manifolds. They proved that ”A Hermitian
bicontact manifold is locally the product of two normal contact manifolds M2p+1 and M2q+1.” Her-
mitian bicontact manifolds were studied by Abe [14]. Abe obtained many useful results for complex
manifolds by using the notion of Hermitian bicontact manifolds.

In 2005, Bande and Hadjar [15] gave the definition of a contact pair manifold, and this definition was
similar to bicontact manifolds. Then, they constructed an almost-contact structure on a contact pair
manifold and defined the associated metric [16]. In 2013, the normality of almost-contact metric pair
structure was studied [17]. Later, some details of the normal contact metric pair (NMCP) manifolds
were studied by Bande, Hadjar and Blair in [18–20]. In 2020, one of the authors [21] defined the
notion of generalized quasi-Einstein normal-metric contact pair manifold and obtained some results
on curvature relations. Besides, same author worked on certain flatness conditions [22] and some semi-
symmetry conditions [23]. In [24], NMCP manifolds were studied under conditions of the generalized
quasi-conformal curvature tensor.

In this study, we work on NMCP manifolds under certain conditions related to the Ricci curvature.
We obtain some results for generalized quasi-EinsteinNMCP manifolds. We prove that such manifolds
are not Ricci pseudo-symmetric. Finally, we work on the notion of Ricci solitons.

2. Preliminary

In this section, we give a brief survey on normal metric contact pair manifolds. For details see [15–17].

Definition 2.1. A differentiable manifold M2p+2q+2 is called a contact pair manifold if we have

� α1 ∧ (dα1)
p ∧ α2 ∧ (dα2)

q 6= 0,

� (dα1)
p+1 = 0 and (dα2)

q+1 = 0.

for two 1-form α1, α2 [15]. We recall (α1, α2) as (p, q)-type contact pairs.

Two canonical examples of contact pair manifolds are given below.

Example 2.2. Let x1, ..., x2p+1, y1, ..., y2q+1 be the coordinate functions on R2p+2q+2. Then, two
1-form

α1 = dx2p+1 +

p∑
i=1

x2i−1dx2i, α2 = dy2q+1 +

q∑
j=1

y2i−1dy2i

defines a (p, q)-type contact pairs. (R2p+2q+2, α1, α2) is an example of contact pair manifolds.

Example 2.3. Let (M2p+1
1 , α1) and M2q+1

2 , α2) be two contact manifolds and M be the product of

M2p+1
1 and M2q+1

2 . Then, (α1, α2) is a (p, q)-type contact pairs. (M = M2p+1
1 ×M2q+1

2 , α1, α2) is
called as product contact pairs.

As we know, the kernel of contact form defines a distribution which we recall contact distribution.
For contact pairs, since we have two 1−forms α1 and α2, we have two integrable subbundle of TM as
D1 = kerα1, D2 = kerα2. We can naturally associate it to the distribution of vectors on which α1 and
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dα1 vanish, and the one of vectors on which α2 and dα2 vanish. (α1, α2) of Pfaffian forms of constant
classes 2p+1 and 2q+1, whose characteristic foliations are transverse and complementary, such that α1

and α2 restrict to contact forms on the leaves of the characteristic foliations of α1 and α2, respectively.
We determine F1 and F2 of these foliations. These distributions are involutive. Moreover, they are of
codimension 2p+ 1 and 2q+ 1, respectively, and their leaves are contact manifolds [15]. This allow us
to use the name of contact pairs. These two characteristic foliations of M are denoted by

F1 = D1 ∩ kerdα1 and F2 = D2 ∩ kerdα2

The Reeb vector fields of contact pair (α1, α2) are determined by the following equations:

α1(Z1) = α2(Z2) = 1, α1(Z2) = α2(Z1) = 0

iZ1dα1 = iZ1dα2 = iZ2dα2 = 0

where iX is the contraction with the vector field X.
Let’s define two subbundle of TM by

TGi = kerdαi ∩ kerα1 ∩ kerα2, i = 1, 2

then we can write
TFi = TGi ⊕ RZ1

and so
TM = TG1 ⊕ TG2 ⊕ RZ1 ⊕ RZ2

Thus, the horizontal and vertical subbundles are defined by H = TG1 ⊕ TG2 and V = RZ1 ⊕ RZ2,
respectively. Finally, we have TM = H⊕ V [16].

Any X ∈ Γ(TM) could be written as X = XH+XV , where XH ∈ H, XV ∈ V. In another way, we

can writeX = X1+X2 forX1 ∈ TF1 andX2 ∈ TF2. Furthermore, we can stateX1 = X1h+α2(X
1)Z2

and X2 = X2h +α1(X
2)Z1, where X1h and X2h are horizontal parts of X1 and X2, respectively. From

all these decomposition of X finally we get

X = X1h +X2h + α1(X
2)Z1 + α2(X

1)Z2

α1(X
1h) = α1(X

2h) = 0, α2(X
1h) = α2(X

2h) = 0

Let’s define (1, 1)−tensor field φ such as

φ2 = −I + α1 ⊗ Z1 + α2 ⊗ Z2, φZ1 = φZ2 = 0, α1(φ) = α2(φ) = 0

If φTFi = TFi, then φ is said to be decomposable, i.e φ = φ1 + φ2. With the decomposabil-
ity of φ, we have that (α1, Z1, φ1) (resp. (α2, Z2, φ2)) induces an almost-contact structure on the
leaves of F2 (resp.F1) [16]. Throughout this study, it is assume that φ is decomposable. We recall
(φ1, φ2, g, α2, Z2, φ2) the contact pair structure

A Riemannian metric g on (M,φ,Z1, Z2, α1, α2) is called compatible if g(φX1, φX2) = g(X1, X2)−
α1(X1)α1(X2)−α2(X1)α2(X2) for allX1, X2 ∈ TM , and associated if g(X1, φX2) = (dα1+dα2)(X1, X2)
and g(X1, Zi) = αi(X1), for i = 1, 2. 4-tuple (α1, α2, φ, g) is called metric contact pair structure on
M .

Normality of almost-contact structure is an important notion in contact geometry. As we know a
normal contact metric manifold is called as Sasakian manifold. A Sasakian manifold can be seen as
odd-dimensional Kähler manifolds. Similarly, we have many subclasses of complex contact manifolds
which are normal. A complex Sasakian manifold is also a normal complex contact metric manifold [11].
The normality of a MCP manifold was studied in [17]. We have two almost complex structures:

J = φ− α2 ⊗ Z1 + α1 ⊗ Z2, T = φ+ α2 ⊗ Z1 − α1 ⊗ Z2
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J and T are called almost complex structure associated (α1, α2, φ). If J and T are integrable, then
M is normal. On the other hand, the integrability of J and T is determined by the following condition

[φ, φ](X1, X2) + 2dα1(X1, X2)Z1 + 2dα2(X1, X2)Z2 = 0,

for all X1, X2 ∈ Γ(TM), where [φ, φ] is the Nijenhuis tensor of φ [17]. For the sake of brevity, we use
the abbreviation of NMCP instead of the term of normal metric contact pair.

The curvature properties of a NMCP manifold are given by

R(X1, Z)X2 = −g(φX1, φX2)Z,

R(X1, X2, Z,X3) = dα1(φX3, X1)α1(X2) + dα2(φX3X1)α2(X2)

−dα1(φX3, X2)α1(X1)− dα2(φX3, X2)α2(X1)

R(X1, Z)Z = −φ2X1

for X1, X2, X3 ∈ Γ(TM) and Z = Z1 + Z2 for the Reeb vector fields Z1, Z2, R is the Riemannian
curvature tensor [18]. Moreover, the Ricci curvature of M has the following properties [18];

Ric(X1, Z) = 0, for X1 ∈ Γ(H) (1)

Ric(Z,Z) = 2p+ 2q. (2)

Ric(Z1, Z1) = 2p, Ric(Z2, Z2) = 2q, Ric(Z1, Z2) = 0 (3)

Definition 2.4. An NMCP manifold is called a generalized quasi-Einstein (GQE) manifold if the
Ricci curvature of M has the following form:

Ric(X1, X2) = λg(X1, X2) + βα1(X1)α1(X2) + γα2(X1)α2(X2)

where λ, β, and γ are scalar fields on M and X1, X2 ∈ Γ(TM) [21].

Thus, from (2) and (3) we have

Ric(X1, X2) = λg(X1, X2) + (2p− λ)α1(X1)α1(X2) + (2q − λ)α2(X1)α2(X2)

for all X1, X2 ∈ Γ(TM).

3. Certain Conditions on the Ricci Curvature of Nomral-metric Contact Pair Man-
ifolds

Ricci curvature Ric, which is defined as the trace of Riemannian curvature tensor, has a major role
in the Riemannian geometry. In this section, we work on NMCP manifolds with certain conditions
related to the Ricci curvature.

We recall a Riemannian manifold as flat if it has zero curvature. Furthermore, a Riemannian
manifold is said to be Ricci-flat if Ric = 0.

Theorem 3.1. An NMCP manifold could not be Ricci-flat.

Proof. Let M be an NMCP manifold. Suppose that it is Ricci-flat, i.e for every X1, X2 vector fields
we have Ric(X1, X2) = 0. Then, from (2 ) we get 2p + 2q = 0, which is impossible. Thus, there is a
contradiction. The manifold could not be Ricci-flat.

An normal-metric contact pair manifoldmanifold is Ricci symmetric if ∇Ric = 0. Let M be a
GQE NMCP manifold with constant λ. From the Riemannian geometry we have following wel-known
relation;

(∇XRic)(X1, X2) = ∇XRic(X1, X2)−Ric(∇XX1, X2)−Ric(X1,∇XX2)

for all X,X1, X2 ∈ Γ(TM). Then, using (2) we obtain

(∇XRic)(X1, X2) = (2p− λ)g(φ1X,X1)α1(X2) + (2q − λ)g(φ2X,X2)α1(X1)

If X1 and X2 are horizontal vector fields, we get (∇XRic)(X1, X2) = 0.
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Corollary 3.2. On the horizontal bundle of a GQE NMCP manifold with constant λ, ∇Ric = 0.

If we take X1 = a1Z1 + a2Z2, X2 = b1Z1 + b2Z2 for coefficients ai, bi, i = 1, 2 since g(φ1X,X1) =
−g(X,φ1X1) and g(φ2X,X2) = −g(X,φ2X2), we get (∇XRic)(X1, X2) = 0.

Corollary 3.3. On the vertical bundle of a GQE NMCP manifold with constant λ, ∇Ric = 0.

Let X1 = X1h
1 + X2h

1 + α1(X
2
1 )Z1 + α2(X

1
1 )Z2 and X2 = X1h

2 + X2h
2 + α1(X

2
2 )Z1 + α2(X

1
2 )Z2.

Then, we obtain

(2p− λ)g(φ1X,X
1h

1 +X2h

1 )α1(X
2
1 )− (2q − λ)g(φ2X,X

1h

2 +X2h

2 )α1(X
1
2 ) = 0

Thus, we state the following theorem.

Proposition 3.4. On a GQE NMCP manifold with constant λ, (∇XRic)(X1, X2) = 0 if and only if

(2p−λ)g(φ1X,X
1h
1 +X2h

1 )α1(X1)− (2q−λ)g(φ2X,X
1h
2 +X2h

2 )α1(X2) = 0 for all X1 = X1h
1 +X2h

1 +

α1(X
2
1 )Z1 + α2(X

1
1 )Z2, X2 = X1h

2 +X2h
2 + α1(X

2
2 )Z1 + α2(X

1
2 )Z2 and X ∈ Γ(TM).

An NMCP manifold M satisfies cyclic parallel Ricci tensor if we have

(∇X1Ric)(X2, X3) + (∇X2Ric)(X3, X1) + (∇X3Ric)(X1, X2) = 0

for all X1, X2, X3 ∈ Γ(TM). M is also satisfies Codazzi type of Ricci tensor if we have

(∇X1Ric)(X2, X3)− (∇X2Ric)(X1, X3) = 0

for all X1 and X2 vector fields on M . In [21], one of the presented authors proved the following results.

Theorem 3.5. A GQE NMCP manifold with constant λ satisfies cyclic parallel Ricci tensor [21].

Theorem 3.6. A GQE NMCP manifold with constant λ does not satisfy Codazzi type of Ricci
tensor [21].

In [25], the authors proved that if the generators of GQE manifolds are Killing then the manifold
satisfies cyclic parallel Ricci tensor. Since Z1 and Z2 are Killing, Theorem 3.5 is compatible with this
result. The same authors proved that if a GQE manifold is Codazzi type of Ricci tensor then the
integral curves of the generator vector fields are geodesic. It is known that Z1 and Z2 are geodesics.
But the manifold is not the Codazzi type of Ricci tensor. Theorem 3.6 is guaranteed that the converse
of the second result in [25] is not satisfied.

In [26], the authors proved that in a GQE manifold, if the associated scalars are constant and the
Ricci tensor is of Codazzi type, then the associated 1-form are closed. As we know, α1 and α2 are not
closed. Thus, Theorem 3.6 is compatible with this result.

A generalization of Ricci symmetry was pointed out by the name of Ricci semi-symmetry. If
R · Ric = 0 we recall the manifold as Ricci semi-symmetric manifold. In [23], we proved following
theorem

Theorem 3.7. A Ricci semi-symmetric NMCP manifold is a GQE manifold [23].

A non-flat NMCP manifold M is called a Chaki pseudo-Ricci symmetric manifold if the Ricci
tensor Ric of type (0, 2) is non-zero and satisfies the condition

(∇XRic)(X1, X2) = 2A(X)Ric(X1, X2) +A(X2)Ric(X,X3) +A(X3)Ric(X2, X)

where A is non-zero 1−form such that g(X, ρ) = A(X) for all vector fields X; ρ being the vector field
corresponding to the associated 1-form [27]. If A = 0, then the manifold is called Ricci symmetric.

The another study on GQE manifolds was presented in [28], the authors proved that a pseudo-
Ricci symmetric manifold cannot cyclic parallel Ricci tensor; otherwise, this manifold reduces to a
Ricci symmetric manifolds. Thus, with the considered Theorem 3.5, we can state,
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Theorem 3.8. A GQE NMCP manifold with constant λ cannot be pseudo-Ricci symmetric.

A Riemannian manifold (M, g) is called a Ricci soliton if there is a smooth vector field V and a
scalar ν ∈ R such that

LV g + 2Ric = 2νg (4)

on M , where Ric is the Ricci tensor and LV g is the Lie derivative of the metric g. The Ricci
soliton is called shriking, steady, or expanding according to ν < 0, ν = 0, ν > 0, respectively [29].
Contact manifolds have been studied as the solution of Ricci soliton equations. For different structures,
see [30–33]

Suppose that a NMCP manifold satisfies (4) with the potential vector fields Z1 and Z2. Since Z1

and Z2 are the Killing vector fields, we get

Ric(X1, X2) = νg(X1, X2)

for all X1, X2 ∈ Γ(TM). Thus, M is Einstein manifold. Moreover, from (2), we get ν = 2p+2q. Thus,
we state the following result:

Theorem 3.9. Let a NMCP manifold satisfy the Ricci soliton equation with the potential vector
fields Z1 ( and Z2). Then, the Ricci soliton is expanding.

Let M be a GQE NMCP manifold which satisfies the Ricci soliton equation. Thus, from (2), we
obtain

(LV g)(X1, X2) = −(2ν + 2λ)g(X1, X2)− 2(2p− λ)α1(X1)α1(X2)− 2(2q − λ)α2(X1)α2(X2) (5)

Corollary 3.10. Let M be a GQE NMCP manifold which satisfies the Ricci soliton equation. The
potential vector field is Killing if and only if g(X1, X2) = 2(2p−λ)

(2ν+2λ)α1(X1)α1(X2)+ 2(2q−λ)
(2ν+2λ)α2(X1)α2(X2)

for all X1, X2 ∈ Γ(TM).

Let V = Z1 in (5), then we have

0 = −(2ν + 2λ)g(X1, X2)− 2(2p− λ)α1(X1)α1(X2)− 2(2q − λ)α2(X1)α2(X2)

Choose X1 = X2 = Z, then we get ν = p+ q. Thus, we state,

Theorem 3.11. Let M be a GQE NMCP manifold, which satisfies the Ricci soliton equation. If
V = Z1(orZ2), then the Ricci soliton is expanding with ν = p+ q.

There are many interesting vector fields (sometimes called collineations), considered infinitesimal
symmetries of geometric structure or physical quantities such as metric, curvature, energy-momentum
tensors, geodesics, and light cones. These vector fields have many applications in Riemannian ge-
ometry and general relativity. One of them is Killing vectors, which are named after a Norwegian
mathematician Killing, who first described these notions in 1892. The Killing vectors preserve the
metric and all the derived structures. Another type is the conformal Killing vector field. A vector
field X recall conformal Killing if its Lie derivative is proportional to itself LXg = 2µg, for some scalar
field µ. If µ is zero, X is the Killing vector fields and if µ is constant, but not zero, the vector field is
said to be homothetic, and the metric is changed by a (constant) scale factor as it moves along.

Suppose that V is conformal Killing in (5). Then, we obtain

−2(ν + λ+ µ)g(X1, X2) = 2(2p− λ)α1(X1)α1(X2) + 2(2q − λ)α2(X1)α2(X2)

By taking X1 = X2 = Z, we get −4(ν + λ + µ) = 4(p + q)− 4λ and so µ + ν = −(p + q). Since ν is
constant, we state the following result.

Theorem 3.12. Let M be a GQE NMCP manifold which satisfies the Ricci soliton equation. If the
potential vector field is conformal Killing, then it reduces to the homothetic vector field.
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4. Conclusion

Normal-metric contact pair manifolds are an important class of contact manifolds. These manifolds
have many significant properties that differ from the classical contact structures. Moreover, a normal
contact metric pair manifold could be a special solution to Einstein’s field equations. Furthermore,
we have the applications of GQE manifolds in the contact geometry thanks to normal-metric contact
pair manifolds. In this paper, we study normal-metric contact pair manifolds from the Riemannian
geometric perspective. We obtain some results on the Ricci curvature and the Ricci solitons. The
results of the paper will be a reference for future works on contact manifolds and general relativity.
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