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Research Article 

Abstract − In the present manuscript, we introduce the concept of a discrete dynamical system (Ⱬ, 𝛹) 

in BCK-algebra where Ⱬ is a BCK-algebra and 𝛹 is a homomorphism from Ⱬ to Ⱬ and establish some 

of their related properties. We prove that the set of all fixed points and the set of all periodic points in 

BCK-algebra Ⱬ are the BCK-subalgebras. We show that when a subset of BCK-algebra Ⱬ is invariant 

concerning 𝛹. We prove that the set of all fixed points and the set of all periodic points in commutative 

BCK-algebra Ⱬ with relative cancellation property are the ideals of Ⱬ. We also prove that the set of all 

fixed points in Ⱬ is an S-invariant subset of a BCK-algebra Ⱬ. 

Keywords − BCK-Algebra, discrete dynamical system, periodic points, fixed points, invariant set, strongly invariant 

Mathematics Subject Classification (2020) − 37A15, 06F35 

1. Introduction 

The foundation of the concept of BCK-Algebra was laid down by the famous mathematicians Imai and Iseki 

in their pioneering paper [1]. Their theory about BCK-algebra and related ideas and properties are nowadays 

utilized extensively in different areas of science like artificial intelligence information sciences, cybernetics, 

and computer sciences. BCK-algebra has been inspired by two considerations; one based on classical and non-

classical propositional calculi of Meredith and the other based on set theory [2]. The BCK-algebra can also be 

considered as the algebraic formulation of Meredith’s BCK-implicational calculus [3]. The concept of the ideal 

theory of BCK-algebra playing a fundamental role in the evolution of BCK-Algebra was first introduced by 

Iseki in [4]. Besides, the notion of BCK-homomorphism was also first defined by Iseki in [5]. During the past 

four decades, several researchers have extensively investigated this field and have produced much literature 

about the theory of BCK-algebra [6].  

The foundation of the dynamical system was laid down by the eminent mathematician Henri Poincare in 

1899 in his famous paper celestial mechanics [7]. His theories about dynamical systems and connected ideas 

and properties are nowadays widely used in various fields of science like physics, biology, meteorology, 

astronomy, economics, and many others. The main idea of the study of the dynamical system indicates the 

mathematical techniques for describing the eventual or asymptotic behaviour of an iterative process in different 

specified scientific disciplines. In 1917, Julia and Fatau diverted the concept of the dynamical system theory 

in the relationship of complex analysis, established a new notion, and provided the name as complex analytic 

dynamical system [8]. Latterly, Birkhoff enthusiastically adopted Poincare’s viewpoint, realized the 
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significance of the concept of mappings, and introduced a discrete dynamical system [9]. A discrete dynamical 

system is an interesting and active area of applied and pure mathematics that involves tools and techniques 

from different fields such as Number Theory, Analysis, and Geometry. According to a fixed rule, discrete 

dynamical systems are those dynamical systems whose states evolve over a state space in discrete steps. 

Birkhoff’s opinion based on discrete steps was highly captivating and attracted the attention of mathematicians 

to use in various fields of mathematics. Many researchers applied the concept of a discrete dynamical system 

in their related areas. This becomes the extension of the theory of discrete dynamical systems in many branches 

of mathematical sciences. In 1927 Birkhoff infused the notion of discrete dynamical systems in topology and 

laid down the foundation of another field known as topological Dynamics [10]. Topological dynamics then 

flourished and further generated algebraic topology and differential topology [11]. Differential Topological 

techniques enabled Peixoto and Smale to understand the chaotic behaviour of a large class of dynamical 

systems and introduced a new area of the dynamical system known as hyperbolic dynamical system [12]. Von 

Neumann, Birkhoff, and Koopman introduced a discrete dynamical system in measure theory, due to which a 

new field emerged by the name of Ergodic theory [13]. Dikranjan and Bruno embedded the discrete dynamical 

system in group theory and established a new algebraic structure known as discrete dynamical systems in 

group theory [14]. Dawood et al. have recently infused the discrete dynamical system in BCI-algebra and 

obtained specific interesting properties [15]. 

In the present paper, we emphasize the mathematical aspects of the theory of discrete dynamical system 

(Ⱬ, 𝛹). We define the concept of discrete dynamical system (Ⱬ 𝛹) in BCK-algebra where Ⱬ is a BCK-algebra 

and 𝛹 is a homomorphism from Ⱬ to Ⱬ and establish some properties of the set of periodic points and the set 

of fixed points of BCK-algebra Ⱬ. We prove that the sets of all fixed points and periodic points of BCK-algebra 

Ⱬ are the BCK-subalgebras of Ⱬ. We show that when a subset of a BCK-algebra Ⱬ is invariant concerning 𝛹. 

We prove that the sets of all fixed and periodic points of a commutative BCK-algebra Ⱬ with relative 

cancellation property are the ideals of Ⱬ.we also prove that in the discrete dynamical system (Ⱬ, 𝛹) the set of 

all fixed points is S-Invariant subset of a BCK-algebra Ⱬ.  

2. Preliminaries 

This section consists of some preliminary definitions and basic facts about BCK-algebra, useful to prove our 

results. Throughout this research work, we consistently denote the BCK-algebra by Ⱬ without any 

specification. 

Here we only mention those concepts of BCK-algebra which are necessary for our treatment. For further 

information regarding BCK-algebra, the readers are referred to the references [16-21]. 

Definition 2.1. [7] A BCK-algebra (Ⱬ,∗, 0)  is an algebra of the type (2, 0) satisfying the following five axioms 

for all  𝔞, 𝔟, 𝔠 ∈  Ⱬ 

(BCK-i) ((𝔞 ∗  𝔟)  ∗  (𝔞 ∗  𝔠))  ∗  (𝔠 ∗  𝔟)  = 0 

(BCK-ii) (𝔞 ∗  (𝔞 ∗  𝔟))  ∗  𝔟 =  0 

(BCK-iii) 𝔞 ∗  𝔞 =  0 

(BCK-iv) 0 ∗  𝔞 =  0 

(BCK-v) 𝔞 ∗  𝔟 =  0 and 𝔟 ∗  𝔞 =  0 ⟹ 𝔞 =  𝔟   

Moreover ≤ is a partial order on Ⱬ and is defined by  

𝔞 ≤  𝔟 ⟺  𝔞 ∗  𝔟 =  0 

Definition 2.2. [7] BCK-algebra (Ⱬ,∗, 0) is said to be commutative if the following condition holds in Ⱬ for 

any  𝔞, 𝔟 ∈  Ⱬ 

𝔞 ∗  (𝔞 ∗  𝔟)  =  𝔟 ∗  (𝔟 ∗  𝔞) 
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Definition 2.3. [7] Let Ⱬ𝒔  be a non-vacuous subset of a BCK-algebra (Ⱬ,∗, 0). Then, Ⱬ𝑠  is said to be a BCK-

subalgebra of Ⱬ if it satisfies the (s-i) and (s-ii) conditions where 

(s-i) 0 𝜖 Ⱬ𝑠  

(s-ii) 𝔞 ∗  𝔟 𝜖 Ⱬ𝑠   for any   𝔞, 𝔟 ∈  Ⱬ𝑠 

Definition 2.4. [7] Let Ⱬ be a BCK-algebra and 𝐼𝑑  be a non-vacuous subset of Ⱬ. Then, 𝐼𝑑 is said to be an ideal 

of Ⱬ if it satisfies (𝐼𝑑-i) and (𝐼𝑑-ii) conditions, where  

(𝐼𝑑-i) 0 𝜖 𝐼𝑑  

(𝐼𝑑-ii) 𝔞 ∗  𝔟 𝜖 𝐼𝑑 and 𝔟 ∈  𝐼𝑑  ⟹  𝔞 ∈  𝐼𝑑  , ∀ 𝔞, 𝔟 ∈  Ⱬ 

Definition 2.5. [5,17] A mapping  𝛹: Ⱬ1  ⟶ Ⱬ2 where Ⱬ1and Ⱬ2 are two BCK-algebras is said to be a BCK-

homomorphism if it satisfies the following condition  

𝛹 (𝔞 ∗ 𝔟) =  𝛹 (𝔞) ∗  𝛹 (𝔟),    ∀ 𝔞, 𝔟 ∈  Ⱬ1 

Definition 2.6. [18] A commutative BCK-algebra (Ⱬ, ∗, 0) has the relative cancellation property if for 

𝔞, 𝔟, 𝔠 ∈  Ⱬ and 𝔞 ≥  𝔠, 𝔟 ≥  𝔠 such that 𝔞 ∗  𝔠 =  𝔟 ∗  𝔠, then 𝔞 =  𝔟. 

3. Definitions of Some Notions of Discrete Dynamical System in BCK-Algebra 

This section picks some terminologies of discrete dynamical systems and defines them in terms of BCK-

algebra. 

Definition 3.1. Let Ⱬ be a BCK-algebra and 𝛹: Ⱬ ⟶  Ⱬ be a homomorphism. Then, (Ⱬ, 𝛹) is called a discrete 

dynamical system in BCK-algebra  

In the present paper, whenever we say a discrete dynamical system, it means we are taking an ordered 

pair (Ⱬ, 𝛹) where Ⱬ is a BCK-algebra and 𝛹 is a homomorphism from Ⱬ to Ⱬ. 

Definition 3.2. In the discrete dynamical system (Ⱬ, 𝛹) a point 𝔞 𝜖 Ⱬ is a fixed point if 𝛹 (𝔞)  =  𝔞. 

Definition 3.3. In the discrete dynamical system (Ⱬ, 𝛹) a point 𝔞 ∈ Ⱬ is a periodic point if  𝛹  𝑚(𝔞)  =  𝔞 for 

some positive integer ‘𝑚’, the least value of ‘𝑚’ is said to be the period of ‘𝔞’. 

Definition 3.4. In the discrete dynamical system (Ⱬ, 𝛹) a subset 𝐴 of Ⱬ is an invariant subset of Ⱬ if 𝛹 (𝐴)  ⊂

 𝐴. 

Definition 3.5. In the discrete dynamical system (Ⱬ, 𝛹) a subset 𝐴 of Ⱬ is a strongly invariant subset of 𝛹 if 

𝛹 (𝐴)  = 𝐴. 

The following are simple examples regarding the definitions given in the paper. 

Example 3.1. Suppose that Ⱬ = {0, 𝑝, 𝑞, 𝑟} is a BCK-algebra. 

* 0 𝑝 𝑞 𝑟 

0 0 0 0 0 

𝑝 𝑝 0 𝑝 𝑝 

𝑞 𝑞 𝑞 0 𝑞 

𝑟 𝑟 𝑟 𝑟 0 

And a mapping 𝛹: Ⱬ ⟶  Ⱬ defined by 𝛹(0) =  0, 𝛹(𝑝) =  0, 𝛹(𝑞) =  𝑞, and 𝛹(𝑟) =  𝑟 is a homomorphism. 

Then, the points 0, 𝑞, and 𝑟 are fixed points and the periodic points of period 1. 

Example 3.2. Consider the BCK-algebra Ⱬ of example 3.1. Where the subset 𝐴 =  {0, 𝑞 , 𝑟} is a strongly 

invariant subset of Ⱬ because 𝛹 (𝐴)  = 𝐴 while the subset 𝐵 = {0, 𝑝} is invariant because 𝛹 (𝐵)  ⊂ 𝐵. 
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4. Basic Results 

In this section, we prove some properties essential in proving the theorems in this paper. 

Proposition 4.1. If a mapping 𝛹: Ⱬ ⟶  Ⱬ is a homomorphism from BCK-algebra Ⱬ to Ⱬ and 0 ∈ Ⱬ, then 

𝛹 (0)  =  0. 

PROOF.                 𝛹 (0)  =  𝛹 (0 ∗ 0)                           ∵ (BCK-iii) 

                                       =  𝛹 (0)  ∗  𝛹 (0)  =  0         ∵ (BCK-iii) 

Proposition 4.2. If 𝛹: Ⱬ ⟶  Ⱬ is a homomorphism, then 𝛹  𝑛: Ⱬ ⟶  Ⱬ is a homomorphism. (Here Ψ𝑛 means 

𝛹 ₒ 𝛹ₒ 𝛹 … ₒ 𝛹 (n time)). 

PROOF.  We prove this result by using the principle of mathematical induction. We have to show that for any 

two elements 𝑎, 𝑏 in Ⱬ 

𝛹𝑛(𝔞 ∗ 𝔟)  =  𝛹𝑛(𝔞) ∗ 𝛹𝑛(𝔟) (1) 

where 𝑛 is the positive integer. 

It has been given that statement (1) is valid for 𝑛 = 1, and we assume that it is valid for 𝑛 = 𝑘 then we have  

𝛹𝑘(𝔞 ∗ 𝔟)  = 𝛹𝑘(𝔞)  ∗  𝛹𝑘(𝔟) 

𝛹(𝛹𝑘(𝔞 ∗ 𝔟))  = 𝛹(𝛹𝑘(𝔞) ∗ 𝛹𝑘(𝔟)) 

𝛹𝑘+1(𝔞 ∗ 𝔟)  =  𝛹(𝛹𝑘(𝔞)) ∗  𝛹(𝛹𝑘(𝔟)),   ∵ 𝛹 is homomorphism 

𝛹𝑘+1(𝔞 ∗ 𝔟)  =  𝛹𝑘+1(𝔞) ∗ 𝛹𝑘+1(𝔟) 

Thus, the validity of statement (1) at 𝑛 = 𝑘 implies the validity of (1) at 𝑛 = 𝑘 + 1. Hence, (1) holds for all 

positive integers ‘𝑛’.  

Proposition 4.3. If 𝛹: Ⱬ ⟶  Ⱬ is a homomorphism,𝛹𝑛(𝔞)  =  𝔞 and 𝑛, 𝑝 are positive integers such that 𝑛 

divides 𝑝 then 𝛹𝑝(𝔞)  =  𝔞. 

PROOF.   Since 𝛹𝑛(𝔞) =  𝔞                                                                                                                                                  (2)  

Where, 𝑛 is a positive integer which divides 𝑝 then there exists an integer 𝑞 such that 𝑝 =  𝑛𝑞, then we have 

𝛹𝑝(𝔞) = 𝛹𝑛𝑞(𝔞)  = 𝛹𝑛(𝑞−1)(𝛹𝑛(𝔞))  

 = 𝛹𝑛(𝑞−1)(𝔞)                        ∵ using (2) 

 = 𝛹𝑛(𝑞−2)(𝛹𝑛(𝔞))  

 = 𝛹𝑛(𝑞−2)(𝔞)                        ∵ using (2) 

              ⋮  

 =  𝛹𝑛(𝑞−(𝑞−1))(𝔞)  = 𝛹𝑛(𝑞−𝑞+1)(𝔞)  =  𝛹𝑛(𝔞)  = 𝔞        ∵ using (2) 

Hence 𝛹𝑝(𝔞)  =  𝔞. 

Proposition 4.4. In the discrete dynamical system (Ⱬ, 𝛹) if ‘𝔟’ is a fixed point in Ⱬ and  𝔞 ≥  𝔟 for any 𝔞 ∈  Ⱬ 

then 𝛹 (𝔞)  ≥  𝔟. 

PROOF. Since 𝔞 ≥  𝔟 can also be written as 𝔟 ≤  𝔞 ⟹  𝔟 ∗ 𝔞 =  0 ⟹  𝛹 (𝔟 ∗ 𝔞) =  𝛹 (0). 

⟹  𝛹 (𝔟) ∗  𝛹 (𝔞)  =  0 (3) 
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Where ‘𝔟’ is a fixed point. Therefore, (3) becomes 𝔟 ∗  𝛹 (𝔞)  =  0 ⟹  𝔟 ≤  𝛹 (𝔞) or  𝛹 (𝔞)  ≥  𝔟. 

Proposition 4.5. In the discrete dynamical system (Ⱬ, 𝛹), if ‘𝔟’ is a fixed point in Ⱬ and 𝔞 ≥  𝔟 for any 𝔞 ∈  Ⱬ, 

then 𝛹 𝑛(𝔞) ≥  𝔟. Where ‘ 𝑛’ is a positive integer. 

PROOF. We prove this result by using the principle of mathematical induction, so by Proposition 4.4, the 

statement Ψ𝑛(𝔞)  ≥  𝔟 is true for 𝑛 = 1. Next, we assume that the statement Ψ𝑛(𝔞)  ≥  𝔟 is true for 𝑛 = 𝑘 such 

that                     

𝛹𝑘(𝔞)  ≥  𝔟 (4) 

from equation (4), we get   𝔟 ∗ 𝛹𝑘(𝔞)  =  0 ⟹ 𝛹 (𝔟 ∗ 𝛹𝑘(𝔞))  =  𝛹 (0) 

            ⟹  𝛹 (𝔟) ∗  𝛹𝑘+1(𝔞)  =  0 (5) 

where ‘𝔟’ is a fixed point.  

Therefore, equation (5) becomes  

𝔟 ∗  𝛹𝑘+1 (𝔞) =  0 ⟹  𝔟 ≤  𝛹𝑘+1 (𝔞) or  𝛹𝑘+1 (𝔞) ≥  𝔟 

Thus, the truth of the statement Ψ𝑛(𝔞)  ≥  𝔟 at 𝑛 = 𝑘 implies the truth of Ψ𝑛(𝔞)  ≥  𝔟 at 𝑛 = 𝑘 + 1 hence the 

statement Ψ𝑛(𝔞)  ≥  𝔟 is true for any positive integer ‘𝑛’. 

5. Main Theorems 

Theorem 5.1. In the discrete dynamical system (Ⱬ, 𝛹), the set of all fixed points in Ⱬ is a BCK-subalgebra of 

Ⱬ. 

PROOF. Let Ⱬ be a BCK-algebra and a mapping 𝛹: Ⱬ ⟶  Ⱬ is a homomorphism. Suppose that Ⱬ𝑓 be the set of 

all fixed points in Ⱬ. We show that Ⱬ𝑓 is a BCK-subalgebra for this Ⱬ𝑓 has to satisfy the conditions of BCK- 

subalgebra. Since 𝛹 is a homomorphism therefore by Proposition 4.1, we have 𝛹 (0)  = 0, which implies that 

0 is a fixed point ⟹ 0 ∈ Ⱬ𝑓   ⟹  Ⱬ𝑓 is a non-vacuous set.  

Thus, condition (s-i) of BCK-sub algebra holds in Ⱬ𝑓. Now assume that 𝑎, 𝔟 ∈ Ⱬ𝑓  

Then, 

𝛹 (𝔞)  =  𝔞 (6) 

and 

𝛹 (𝔟)  =  𝔟 (7) 

Since 𝛹 is a homomorphism, therefore we get 

𝛹 (𝔞 ∗ 𝔟)  =  𝛹 (𝔞)  ∗  𝛹 (𝔟) (8) 

Using (6) and (7) in (8) we get 

𝛹 (𝔞 ∗ 𝔟)  =  𝔞 ∗ 𝔟 ⟹  𝔞 ∗ 𝔟 is a fixed point ⟹  𝔞 ∗ 𝔟 ∈ Ⱬ𝑓 

Thus, for any 𝔞, 𝔟 ∈  Ⱬ𝑓 we have 𝔞 ∗ 𝔟 ∈  Ⱬ𝑓. Hence Ⱬ𝑓 is a BCK-subalgebra. 

Theorem 5.2. In the discrete dynamical system (Ⱬ, 𝛹), the set of all periodic points in Ⱬ is a BCK-subalgebra 

of Ⱬ. 

PROOF. Let Ⱬ be a BCK-algebra and a mapping 𝛹: Ⱬ ⟶  Ⱬ is a homomorphism Suppose that Ⱬ𝑝  be the set of 

all periodic points in BCK-algebra. We show that Ⱬ𝑝 is a BCK-subalgebra for this Ⱬ𝑝 has to satisfy the 

conditions of Definition 2.3. Since 𝛹 is a homomorphism therefore by Proposition 4.1, we have 𝛹(0) = 0  ⟹
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 0 is a periodic point of a period 1 ⟹  0 ∈  Ⱬ𝑝  ⟹  Ⱬ𝑝  ≠ {  }. Thus, condition (s-i) of Definition 2.3 holds in 

Ⱬ𝑝. 

Let 𝔞, 𝔟 ∈ Ⱬ𝑝 and suppose that the periods of ‘𝑎’ and ‘𝔟’ are 𝑚 and 𝑛 respectively. 

Such that          

𝛹𝑚(𝔞)  =  𝔞 (9) 

and                 

𝛹𝑛(𝔟)  =  𝔟 (10) 

Here we take 𝑟 =LCM[𝑚, 𝑛], then by Proposition 4.3, equations (9) and (10) become  

𝛹𝑟(𝔞)  =  𝔞 (11)                              

and     

𝛹𝑟(𝔟)  =  𝔟 (12) 

Next, by Proposition 2.2, we get      

𝛹𝑟(𝔞 ∗ 𝔟)  =  𝛹𝑟(𝔞)  ∗ 𝛹𝑟(𝔟) (13) 

Using the values of (11) and (12) on the right-hand side of (13), we get 

𝛹𝑟(𝔞 ∗ 𝔟)  =  𝔞 ∗ 𝔟 ⟹  𝔞 ∗ 𝔟 is periodic of period ‘𝑟’ ⟹  𝔞 ∗ 𝔟 ∈ Ⱬ𝑝 

 Thus, for any 𝔞, 𝔟 ∈ Ⱬ𝑝 we have 𝔞 ∗ 𝔟 ∈ Ⱬ𝑝. Hence Ⱬ𝑝 is a BCK-subalgebra. 

Theorem 5.3. Let (Ⱬ, 𝛹) is a discrete dynamical system, then the set of all fixed points in Ⱬ is a strongly 

invariant (S-invariant) subset of BCK-algebra Ⱬ. 

PROOF. Let Ⱬ𝑓   be the set of all fixed points in Ⱬ. 

Let 𝛹 (𝔞)  ∈  𝛹 (Ⱬ𝑓). Where ‘𝔞’ is any element of Ⱬ. 

⟹  𝛹 (𝔞) = 𝔞,      ∵ 𝛹 (Ⱬ𝑓) is a set of the images of all the fixed points 

⟹ 𝔞 ∈ Ⱬ𝑓  

⟹  𝛹 (𝔞)  ∈  Ⱬ𝑓 ,     ∵ 𝛹 (𝔞)  =  𝔞 

Thus, 𝛹 (𝔞)  ∈  𝛹 (Ⱬ𝑓)  ⟹  𝛹 (𝔞)  ∈  Ⱬ𝑓 

Therefore, we have    

 𝛹 (Ⱬ𝑓)  ⊆  Ⱬ𝑓 (14)

Now, we suppose that 

 𝔞 ∈ Ⱬ𝑓   ⟹  𝛹 (𝔞)  = 𝔞 (15)                

where 

𝛹 (𝔞)  ∈  𝛹 (Ⱬ𝑓)  ⟹ 𝔞 ∈  𝛹(Ⱬ𝑓),           ∵ using (15) 

Thus, 𝔞 ∈ Ⱬ𝑓  ⟹  𝔞 ∈  𝛹 (Ⱬ𝑓). Therefore, we have 

Ⱬ𝑓  ⊆  𝛹 (Ⱬ𝑓) (16) 

From (14) and (16), we have 𝛹 (Ⱬ𝑓) = Ⱬ𝑓. Hence, Ⱬ𝑓  in Ⱬ is S-invariant or strongly invariant. 
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Theorem 5.4. In the discrete dynamical system (Ⱬ, 𝛹) if ‘𝔞’ is a fixed point and ‘𝔟’ is a periodic point in Ⱬ, 

then 𝔞 ∗ 𝔟 is a periodic point in Ⱬ. 

PROOF. Since ‘𝔞’ is a fixed point, therefore we have 

𝛹(𝔞) = 𝔞 (17) 

Let the period of the point ‘𝑏’ is ‘𝑘’ such that  

𝛹𝑘(𝔟) = 𝔟 (18) 

As ‘𝑎’ is a fixed point of period 1 and 1 divides ‘𝑘’; therefore, by Proposition 4.3, we have       

𝛹𝑘(𝔞) = 𝔞 (19)        

Now by using the homomorphism property of  Ψ𝑘   we can get 

𝛹𝑘(𝔞 ∗ 𝔟) =  𝛹𝑘(𝔞) ∗  𝛹𝑘(𝔟) (20) 

Using (18) and (19) in (20), we get 

𝛹𝑘(𝔞 ∗ 𝔟) = 𝔞 ∗ 𝔟 (21) 

Equation (5) implies that the period of 𝔞 ∗ 𝔟 is ‘𝑘’ hence 𝔞 ∗ 𝔟 is a periodic point. 

Theorem 5.5. In the discrete dynamical system (Ⱬ, 𝛹) if 𝐴 is a subset of Ⱬ such that 𝛹(Ⱬ)  ⊂ 𝐴 ⊂ Ⱬ, then 𝐴 is 

invariant concerning 𝛹. 

PROOF. Since  

𝛹(Ⱬ)  ⊂ 𝐴 ⊂ Ⱬ (22) 

From equation (22), we have 

𝐴 ⊂ Ⱬ (23) 

and                

𝛹(Ⱬ)  ⊂ 𝐴 (24) 

From (23), we can get 

𝛹(𝐴) ⊂ 𝛹(Ⱬ) (25) 

From (24) and (25), we get  

𝛹(𝐴) ⊂ 𝛹(Ⱬ)  ⊂ 𝐴 (26) 

Equation (26) implies that 𝛹(𝐴)  ⊂ 𝐴. Hence 𝐴 is an invariant subset of BCK-algebra Ⱬ. 

Example 5.1. Consider the BCK-algebra Ⱬ =  {0, 𝑝 , 𝑞 , 𝑟 } and a mapping  𝛹: Ⱬ ⟶  Ⱬ  where the mapping is 

a homomorphism defined by  𝛹 (0)  = 0, 𝛹 (𝑝)  = 0, 𝛹 (𝑞)  = 0, and 𝛹 (𝑟)  = 𝑟. Let the subset of Ⱬ is 𝐴 =

 {0, 𝑝, 𝑟} while 𝛹(Ⱬ)  =  {0, 𝑟}. Then, it is clear that 𝛹(Ⱬ)  ⊂ 𝐴 ⊂ Ⱬ. Hence A is an invariant set of  Ⱬ. 

Theorem 5.6. In the discrete dynamical system (Ⱬ, 𝛹), if Ⱬ is a commutative BCK-algebra and for any 𝔞 ∗

𝔟, 𝔟 ∈ Ⱬ𝑓 where Ⱬ𝑓 is the set of all fixed points in Ⱬ and 𝔞 ≥  𝔟 for all 𝔞, 𝔟 ∈ Ⱬ, then Ⱬ𝑓 is an ideal of Ⱬ. 

PROOF. Since Ⱬ is a commutative BCK-algebra and a mapping 𝛹: Ⱬ ⟶ Ⱬ is a homomorphism. Ⱬ𝑓 is the set of 

all fixed points in Ⱬ. We show that Ⱬ𝑓 is an ideal of Ⱬ for this Ⱬ𝑓 has to satisfy the conditions of Definition 2.4. 

Since 𝛹 is a homomorphism therefore by Proposition 4.1, we have  

𝛹 (0) =  0 ⟹  0 ∈ Ⱬ𝑓  ⟹ Ⱬ𝑓 ≠ {  } 

Thus, the first condition of ideal holds in Ⱬ𝑓. Next, we have 𝔞 ∗ 𝔟 ∈ Ⱬ𝑓 and 𝔟 ∈ Ⱬ𝑓. Then, 
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𝛹 (𝔞 ∗ 𝔟)  =  𝔞 ∗ 𝔟 (27) 

and                

𝛹(𝔟)  =  𝔟 (28) 

We know that 𝛹 is a homomorphism, i.e., 𝛹 (𝔞 ∗ 𝑏)  =  𝛹(𝔞)  ∗ 𝛹(𝑏) so using this in (27) we get  

 𝛹 (𝔞) ∗ 𝛹(𝔟) =  𝔞 ∗ 𝔟 (29) 

Using (28) in (29), we get  

𝛹 (𝔞)  ∗ 𝔟 =  𝔞 ∗ 𝔟 (30) 

Since 𝔞 ≥  𝔟 and by Proposition 4.4 𝛹 (𝔞)  ≥  𝔟, then by Definition 2.6 from (30), we get 

𝛹 (𝔞)  =  𝔞 ⟹  𝔞 ∈ Ⱬ𝑓 

Thus, 𝔞 ∗ 𝔟 ∈ Ⱬ𝑓 and 𝔟 ∈ Ⱬ𝑓  ⟹ 𝔞 ∈ Ⱬ𝑓. Thus, the second condition of Definition 2.4 also holds in Ⱬ𝑓. Hence 

Ⱬ𝑓 is an ideal of commutative BCK-algebra Ⱬ.    

Theorem 5.7. In the discrete dynamical system (Ⱬ, 𝛹) if Ⱬ is a commutative BCK-algebra and for any 𝔞 ∗

𝔟, 𝔟 ∈ Ⱬ𝑝 where Ⱬ𝑝 is a set of all periodic points in Ⱬ and 𝔞 ≥  𝔟 for all 𝔞, 𝔟 ∈ Ⱬ then Ⱬ𝑝 is an ideal of BCK-

algebra Ⱬ. 

PROOF. Since Ⱬ is a BCK-algebra and a mapping 𝛹: Ⱬ ⟶ Ⱬ is a homomorphism. Ⱬ𝑝 is a set of all periodic 

points in Ⱬ. We show that Ⱬ𝑝 is an ideal of Ⱬ for this Ⱬ𝑝 has to satisfy the conditions of Definition 2.4. Since  

𝛹  is a homomorphism therefore by Proposition 4.1, we have 𝛹(0) = 0 that implies that 0 is a periodic point 

of period 1  ⟹   0 ∈ Ⱬ𝑝   ⟹   Ⱬ𝑝 ≠ {  }. Thus, the first condition of ideal holds in Ⱬ𝑝. Next, we have 𝔞 ∗ 𝔟 ∈

Ⱬ𝑝 and 𝔟 ∈ Ⱬ𝑝 and let their periods are ‘ 𝑚’ and ‘𝑛’, respectively, such that 

𝛹 𝑚(𝔞 ∗ 𝔟)  = 𝔞 ∗ 𝔟 (31) 

and

𝛹 𝑛(𝔟)  = 𝔟 (32) 

Here, we take 𝑟 = 𝐿𝐶𝑀 [𝑚, 𝑛], then by Proposition 4.3 we can get 

𝛹  𝑟(𝔞 ∗ 𝔟) = 𝔞 ∗ 𝔟 (33)

and 

𝛹  𝑟(𝔟)  = 𝔟 (34) 

By Proposition 4.2 equation (33) becomes  

𝛹  𝑟(𝔞) ∗ 𝛹  𝑟(𝔟) =  𝔞 ∗ 𝔟, ∵  𝛹𝑟 is homomorphism (35)

Using equation (34) in (35), we get 

𝛹  𝑟(𝔞) ∗ 𝔟 =  𝔞 ∗ 𝔟 (36) 

Since 𝔞 ≥  𝑏 and by Proposition 4.5 𝛹  𝑟(𝔞)  ≥  𝔟, then by Definition 2.6 from (36), we get 

𝛹 𝑟(𝔞)  =  𝔞 ⟹  𝔞 ∈ Ⱬ𝑝 

Thus, 𝔞 ∗ 𝔟 ∈ Ⱬ𝑝 and 𝔟 ∈ Ⱬ𝑝 ⟹  𝔞 ∈ Ⱬ𝑝. Thus, the second condition of Definition 2.4 also holds in Ⱬ𝑝. Hence 

Ⱬ𝑝 is an ideal of BCK-algebra Ⱬ. 
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6. Conclusion 

We see that a discrete dynamical system with unique properties plays a central role in investigating the 

structure of an algebraic system. 

We have no doubt that the research along this line can be kept up, and indeed, some results in this 

manuscript have already made up a foundation for further exploration concerning the further progression of a 

discrete dynamical system in BCK-algebra and their applications in other disciplines of algebra. The 

forthcoming study of a discrete dynamical system in BCK-algebras may be the following topics are worth to 

be taken into account. 

(i) To describe other classes of BCK-algebra by using this concept.                                

(ii) To refer this concept to some other algebraic structures. 

(iii) To consider the results of this concept to some possible applications in information systems and computer 

sciences.  
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1. Introduction

The perception of ideals was initiated by Kuratowski [1] and Vaidyanathaswamy [2]. A subset I
of the universal set X is said to be an ideal, if there exist two subsets A and B of X satisfying i)
A ∈ I and B ⊂ A then B ∈ I ii)A,B ∈ I implies A ∪ B ∈ I. The notion of minimal structure and
minimal spaces were established by Maki et al. [3]. They have explained the minimal spaces as the
generalisation of classical topological spaces. M is referred as the minimal structure of the space X, if
φ,X ∈ M . The spaces (X,MX) is called as the minimal structure space.The introduction of m-open
sets in minimal structures was initialised by Maki et al. [3]. The members of minimal structure are
called m-open sets. Generalised closed sets (briefly g-closed sets)were introduced by Levine [4]. The
notion of αm-open sets was introduced by Min [5]. The idea of m-normal spaces and mg-normal
spaces were established by Noiri et al. [6]. m-regular spaces was elaborately studied by Popa et al. [7].
m-continuous functions and its salient features in minimal structures were instigated by Popa et al. [8].
Singha et al. [9] proved Urysohn’s lemma in minimal structures. An innovative approach on ideals in
minimal spaces was given by Özbakır et al. [10]. They have defined a new type of local function A∗

m

named as minimal local function in ideal minimal spaces. The conception of mIg-normal spaces and
its characterisations were well established by Haining et al. [11]. Also they have proved Urysohn’s
lemma under mIg-normal spaces ideal minimal spaces. A new notion of generalised closed sets, called
mIαg-closed sets and its features in ideal minimal spaces were studied by Parimala et al. [12]. Local
closedness under mIαg-closed sets and few separation axioms under mIαg-closed sets are intended by
Parimala et al. in [13,14]. In this article, few properties of separating sets are studied in ideal minimal
spaces. Two new separations namely mIαg-normal spaces and mIαg-regular spaces are initiated and
their significant properties are established. As an application of mIαg-normal spaces, we have proved
Urysohn’s lemma on mIαg-normal spaces.
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In the present study, Section 2 provides preliminary definitions in minimal structure spaces and
in ideal minimal spaces, Section 3 mIαg-normal spaces and its characterisations in ideal minimal
spaces, Section 4 Urysohn’s lemma under mIαg-normal spaces, Section 5 mIαg-regular spaces in
ideal minimal spaces, and Section 6 conclusion and future work.

2. Preliminary

In the following sequel, the following notations are used.

(i) MSS- minimal structure spaces

(ii) IMS - ideal minimal spaces

Definition 2.1. [8] The interior and closure in an MSS are defined as follows. Let (X,M) be a MSS
and A ⊂ X, then

(a) m-int(A) =∪{K : K ⊆ A,K ∈M}

(b) m-cl(A) =∩{N : A ⊆ N,X −N ∈M}

Proposition 2.2. [8] Properties of m-cl and m-int are listed below.

(a) m-int(X) = X and m-cl(φ) = φ

(b) m-int(A) ⊆ A and A ⊆ m-cl(A)

(c) If A ∈M , then m-int(A) = A and if X − F ∈M , then m-cl(F ) = F .

(d) If A ⊆ B, then m-int(A) ⊆ m-int(B) and m-cl(A) ⊆ m-cl(B).

Definition 2.3. [10] Let (X,M, I) be an IMS with an ideal I. The power set of X is denoted by
P (X). A mapping (.)∗m is defined from P (X) to itself. For a subset A ⊂ X, the minimum local
function is A∗

m(I,M) = {x ∈ X : Um ∩A /∈ I; for every Um ∈ Um(x)}. The minimal ∗-closure operator
m-cl∗ is defined as m-cl∗(A) = A∪A∗

m. A minimal structure via m-cl∗ is termed as M∗(I,M) (briefly
M∗) and is described as M∗ = {U ⊂ X : m-cl(X − U) = X − U}. The members of M∗(I,M) are
termed as m∗-open sets. The interior of m∗-open sets is denoted by m-int∗.

Theorem 2.4. [10] In an MSS (X,M), let I, J be two ideals on X. P,Q ⊂ X. Then,

(a) P ⊂ Q⇒ P ∗
m ⊂ Q∗

m

(b) P ∗
m ∪Q∗

m ⊂ (P ∪Q)∗m

(c) (P ∗
m)∗m ⊂ P ∗

m

(d) P ∗
m = m-cl(P ∗

m) ⊂ m-cl(P )

(e) I ⊂ J ⇒ P ∗
m(J) ⊂ P ∗

m(I)

Remark 2.5. [10] The MSS (X,M) is said to exhibit the property [U ] if the union of any number of
m-open sets is an m-open set and the property [I] if the intersection of finite number of m-open sets
is an m-open set.

Remark 2.6. [10] If (X,M) has the property [U ], then (b) of Theorem 2.4. can be stated as
P ∗
m ∪Q∗

m = (P ∪Q)∗m.

Proposition 2.7. [10] Significant features of m-cl∗ are as follows. Let P1, P2 ⊆ X. Then,

(a) m-cl∗(P1) ∪m-cl∗(P2) ⊆ m-cl∗(P1 ∪ P2)

(b) If P1 ⊆ P2, then m-cl∗(P1) ⊆ m-cl∗(P2).
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(c) When A ⊆ X, then A ⊆ m-cl∗(A).

(d) m-cl∗(φ) = φ and m-cl∗(X) = X

Definition 2.8. In an MSS (X,M, I), let A be a non empty subset of X. A is defined to be an

(a) m∗-closed set [10] if A∗
m is a subset of A. (A∗

m ⊂ A).

(b) minimal generalised closed set (mg-closed) [3] if m-cl(A) ⊆ U , A ⊆ U and U is an m-open set.

(c) minimal α-open set (αm-open set) [5] if A ⊆ m-int(m-cl(m-int(A))). The complement of αm-open
set is called an αm-closed set.

(d) minimal ideal α generalised closed set (mIαg-closed set) [12] if A∗
m ⊆ U whenever A ⊆ U and U

is an αm-open set.

Proposition 2.9. [5] In an MSS (X,MX) if a subset A is an m-open set, then it is an αm-open set.

Definition 2.10. [5] α-closure and α-interior of a set A are defined as follows:

(a) αm-cl(A) = ∩{F : A ⊆ F , F is αm-closed in X}

(b) αm-int(A) = ∪{U : U ⊆ A, U is αm-open in X}
Let (X,M, I) be an IMS, then we have the following theorems.

Proposition 2.11. [12] When I = {φ}, then an mIαg-closed set (mIαg-open set) is an mg-closed
set (mg-open set).

Proposition 2.12. [12] An m∗-closed set in an IMS is an mIαg-closed set.

Theorem 2.13. [12] The necessary and sufficient condition for a subset to be an mIαg-closed set in
(X,M, I) is that every αm open set in X is an m∗-closed set.

Theorem 2.14. [12] Theorem 3.4(d), in an IMS X a subset A is an mIαg-closed set if and only if
every m open set is an m∗-closed set.

Proof. Obvious, since every m open set is an αm open set.

Theorem 2.15. [12] Consider A ⊆ X, then A is mIαg-open if S ⊆ m-int∗(A), S is αm-closed and
S ⊆ A. Sufficiency is also true.

Definition 2.16. [6] An MSS (X,M) is called m-normal (resp.mg-normal) if for every pair of m-
closed subsets (resp. mg-closed subsets) A and B such that A ∩ B = φ, there exists m-open sets U
and V such that U ∩ V = φ and A ⊂ U , B ⊂ V .

Definition 2.17. [7] An MSS (X,M) is termed to be a m-regular space if for every m-closed set F
and an element x /∈ F , there are m-open sets U and V such that x ∈ U , F ⊆ V and also U ∩ V = φ.

Definition 2.18. [15] A m-T1 space we mean, for all distinct points x1, x2 ∈ X there exists an
m-open set X such that x1 ∈ X, but x2 /∈ X and an m-open set Y such that x1 /∈ Y , x2 ∈ Y .

Theorem 2.19. [7] Consider an m-T1 space (X,M, I) with I = {φ} then the following statements
below given are equivalent.

(a) (X,M, I) is an m-regular space.

(b) For every m-open set V such that x ∈ X, there exists an m-open set U of X satisfying x ∈ U ⊆ m-
cl(U) ⊆ V .

Proposition 2.20. [16] Every m-closed set is an mIαg-closed set. (Every m-open set is an mIαg-
open set.)

Proposition 2.21. [16] Every mg-closed set is an mIαg-closed set.

Definition 2.22. [8] Let (X,MX) and (Y,MY ) be two MSS. The function f : (X,MX) → (Y,MY )
is defined to be an m-continuous function, if for x ∈ X and V ∈ M(f(x)), there exist U ∈ M(x)
satisfying f(U) ⊆ V .
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3.mIαg-Normal Spaces

Definition 3.1. mIαg-normal space we mean, if for every pair of mIαg closed sets K1, K2 such that
K1 ∩K2 = φ, there exists at least a pair of m-open sets U and V of X such that U ∩V = φ satisfying
A ⊆ U and B ⊆ V .

Theorem 3.2. An mIαg-normal space is an m-normal space (mg-normal space).

Proof. Obvious, since every m-closed set(mg-closed set) is an mIαg set with references to Propo-
sition 2.20., and Proposition 2.21. The example given below shows that the converse of the above
theorem is not true.

Example 3.3. (X,M, I) be an IMS with X = {a, b, c, d}, M = {φ,X, {b}, {a, b}, {a, c, d}} and I =
{φ, {a}, {c}, {a, c}} and M c = {X,φ, {a, c, d}, {c, d}, {b}}. Here X is an m-normal space. Since for
the disjoint mIαg-closed sets {a} and {c} there does not exists disjoint m open sets containing them,
X is not an mIαg-normal space.

Theorem 3.4. In an IMS (X,M, I) the equivalent statements on mIαg-normal-spaces are given
below.

(a) (X,M, I) is an mIαg-normal space.

(b) For each mIαg-closed set K and an mIαg-open set F such that K ⊆ F , there exists an m-open
set U ⊆ X such that K ⊆ U ⊆ m-cl(U) ⊆ F .

Proof.
(a) ⇒ (b): Assume K be an mIαg-closed set and F be an mIαg-open set such that K ⊂ F . Then
X − F is an mIαg-closed set. Therefore K ∩ (X − F ) = φ. Referring the hypothesis (a), for a pair of
disjoint m-open sets U and V such that K ⊆ U and X − F ⊆ V and U ∩ V = φ. But U ⊆ (X − V )
implies m-cl(U) ⊆ (X − V ). Hence K ⊆ U ⊆ m-cl(U) ⊆ (X − V ) ⊆ F which proves (b).

(b) ⇒ (a): Let K and F be two disjoint mIαg-closed sets such that K ⊆ (X − F ). Hypothesis (b) of
this theorem infers the existence of the m-open subset U of X such that K ⊆ U ⊆ m-cl(U) ⊆ (X−F ).
Let V = X −m-cl(U), since m-cl(U) is a m-closed set V is m-open. These U and V are the m-open
sets which contains K and F which proves (a).

Corollary 3.5. In an IMS (X,M, I) the statements below given are equivalent.

(a) (X,M, I) is an mIαg-normal space.

(b) For every mIαg-closed set A and mIαg-open set B such that A ⊆ B, there exists an αm-open
set U ⊆ X satisfies A ⊆ U ⊆ αm-cl(U) ⊆ B).

Proof. By referring Proposition 2.9., every m-open set is an αm-open set. Apply this result in
Theorem 3.4., the proof follows.

Corollary 3.6. In an IMS (X,M, I) the following statements are equivalent on mg-normal spaces
when I = {φ}.

(a) Consider (X,M, I) be an mg-normal space

(b) For a pair of mg-closed set A and an mg-open set B such that A ⊆ B, there exists an m-open set
U ⊆ X satisfies A ⊆ U ⊆ m-cl(U) ⊆ B.

Proof. When I = {φ}, Proposition 2.11., infers that every mIαg-open set is an mg-open set. Apply
this result in Theorem 3.4., the proof follows.

Theorem 3.7. In an IMS (X,M, I) the following statements are equivalent.

(a) (X,M, I) is an mIαg-normal space.
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(b) For every pair of mIαg closed subsets A and B of X, there corresponds an m-open set U of X
satisfies A ⊆ U , then m-cl(U) ∩B = φ.

(c) For every pair of mIαg-closed subsets A and B such that A∩B = φ, there corresponds an m-open
set U satisfying A ⊆ U and an m-open set V satisfying B ⊆ V then m-cl(U) ∩ m-cl(V ) is an
empty set.

Proof.
(a)⇒ (b): Consider a pair of mIαg-closed subsets A, B such that A∩B = φ then A ⊆ (X−B) where
X − B is an mIαg-open set. Referring Theorem 3.4., there corresponds an m-open set U such that
A ⊆ U ⊆ m-cl(U) ⊆ X − B. Therefore, m-cl(U) and B are disjoint sets. Hence, U is the required
m-open set that satisfies (b).

(b)⇒ (c): Hypothesis (b) of this theorem implies that m-cl(U) and B are disjoint mIαg-closed subsets
of X. Therefore, there exists an m-open set V containing B such that m-cl(U) ∩m-cl(V ) = φ which
proves (c).

(c) ⇒ (a): Hypothesis (c) proves (a).

Corollary 3.8. In an IMS (X,M, I) the statements given below are equivalent when I = {φ}.

(a) The IMS X is an mg-normal space.

(b) All pairs of subsets of X consisting mg closed sets A, B there corresponds an m-open set U of X
such that A ⊆ U , then m-cl(U) and B are disjoint sets.

(c) Every pair of mg-closed sets A, B of X such that A ∩B = φ there corresponds an m-open set U
such that A ⊆ U and an m-open set V such that B ⊆ V then m-cl(U) and m-cl(V ) are disjoint
sets.

Proof. When I = {φ}, every mIαg-open set is an mg-open set by Proposition 2.11. Apply this
result in Theorem 3.7., we get the proof.

Theorem 3.9. Let (X,M, I) be an mIαg-normal space. If A and B are mIαg-closed sets that
containing no common elements, then there exists a pair of m-open sets U and V such that U ∩V = φ
and satisfies m-cl∗(A) ⊆ U and m-cl∗(B) ⊆ V .

Proof. Consider a pair of mIαg-closed sets A and B. Referring Theorem 3.7 (3)., there exist m-
open sets U and V such that A ⊂ U and B ⊂ V satisfying m-cl(U) ∩ m-cl(V ) = φ. As A is an
mIαg-closed set, we have A∗

m ⊆ U and also A ⊆ U . Therefore, A ∪ A∗
m = m-cl∗(A) ⊆ U . Similarly,

m-cl∗(B) ⊆ V .

Corollary 3.10. Let (X,M, I) be an mIαg-normal space with I = {φ} and A and B are mg-closed
sets of X and A∩B = φ, then there are disjoint m-open sets U and V such that m-cl∗(A) is contained
in U and m-cl∗(B)is contained in V .

Proof. When I = {φ}, referring Proposition 2.11., we know that every mIαg-open set is an mg-open
set. Apply this result in Theorem 3.9., we get the proof.

Theorem 3.11. Let (X,M, I) be an mIαg-normal space. If A and B are mIαg-closed and mIαg-
open sets respectively and also A ⊂ B, then there corresponds an m-open set U such that A ⊆ m-
cl∗(A) ⊆ U ⊆ m-int∗(B) ⊆ B.

Proof. Suppose that A is an mIαg-closed set and B is an mIαg-open set such that A ⊆ B. Then,
A∩ (X −B) = φ. That is, A and X −B are disjoint mIαg-closed sets. Referring Theorem 3.9., there
exist disjoint m-open sets K1 and K2 such that m-cl∗(A) ⊆ K1 and m-cl∗(X−B) ⊆ K2. Also, X−(m-
int∗(B)) = m-cl∗(X−B) ⊆ K2. So m-cl∗(X−B) ⊆ K2 implies that X−K2 ⊆ m-int∗(B). Also, since
K1 and K2 are disjoint m-open sets, we get A ⊆ m-cl∗(A) ⊆ K1 ⊆ (X −K2) ⊆ m-int∗(B) ⊆ B.
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Corollary 3.12. Let (X,M, I) be an mg-normal space and I = {φ}. For each mg-closed subset A and
an mg-open subset U containing A there exists an m-open subset V such that A ⊆ m-cl∗(A) ⊆ V ⊆ m-
int∗(U) ⊆ U .

Proof. Let I = {φ}. With reference to Proposition 2.11., every mIαg-open set is an mg-open set.
Apply this result in Theorem 3.11., we get the proof.

4. Urysohn’s Lemma on mIαg-Normal Spaces

Theorem 4.1. The necessary and sufficient condition for an IMS (X,M, I) to be an mIαg-normal
space is that, for every pair of mIαg-closed sets A and B and A ∩ B = φ, it is possible to define a
m-continuous mapping f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.
Proof.

Necessary Part: Consider a mIαg-normal space (X,M, I) and let A,B ⊂ X be a pair of mIαg-closed
sets such that A∩B = φ. As B is an mIαg-closed set, X −B is mIαg-closed and also A ⊂ (X −B).
Here, A is an mIαg-closed set and X − B is an mIαg-open set in X. Referring Theorem 3.4., there
exists an m-open set namely U1/2 satisfies A ⊆ U1/2 ⊆ m-cl(U1/2) ⊆ (X − B). With reference to
Theorem 2.19., U1/2 is a mIαg-open set. That is, U1/2 and X −B are the mIαg-open sets such that
A ⊆ U1/2 and m-cl(U1/2) ⊆ (X −B), where A and m-cl(U1/2) are mIαg-closed sets. Therefore, with
reference to Theorem 3.4., there exist m-open sets U1/4 and U3/4 such that

A ⊆ U1/4 ⊆ m-cl(U1/4) ⊆ U1/2 and m-cl(U1/2) ⊆ U3/4 ⊆ m-cl(U3/4) ⊆ (X −B)

Continuing in this way, for every rational number in the open interval (0, 1) of the form t = m
2n , n =

1, 2, 3, .... and m = 1, 2, 3, ...2n−1, we obtain m-open sets of the form Ut such that for each s < t,

A ⊆ Us ⊆ m-cl(Us) ⊆ Ut ⊆ m-cl(Ut) ⊆ (X −B)

Let us denote the set of all rational number by Q. Also, Q(x) = {t : t ∈ Q and x ∈ Ut}, this set
contains no number less than 0, since no x is in Ut for t < 0 and it contains every number greater
than 1. Let us define f : X → [0, 1] as f(x) = 1, if x /∈ Ut and f(x) = inf{t : t ∈ Q and x ∈ Ut}. For
each x ∈ B, x /∈ X − B implies x /∈ Ut. Therefore, f(B) = {1}. For each x ∈ A, x ∈ Ut and t ∈ Q.
By definition f(x) = inf{t : t ∈ Q and x ∈ Ut} = infQ = 0. Hence, f(A) = 0. To prove f is an
m-continuous mapping, let the intervals of the form [0, a) and (b, 1] where a, b ∈ (0, 1) forms an open
subbase in the space [0, 1]. Therefore our aim is to prove that f−1([0, a)) and f−1((b, 1]) are m-open
sets in X. To prove f−1([0, a)) is an m-open set in X. Let x ∈ Ut for some t < a, then by definition
f(x) = inf{s : s ∈ Q and x ∈ Us} = r ≤ t < a. That is, f(x) < a. Thus 0 ≤ f(x) < a. Conversely,
if f(x) = 0, then x ∈ Ut for all t ∈ Q, hence x ∈ Ut for some t < a. If 0 < f(x) < a, by definition of
we have f(x) = {s : s ∈ Q and x ∈ Ut} < a. Since a < 1 we get f(x) = t for some t < a and hence
x ∈ Ut for some t < a. Therefore, we conclude that 0 ≤ f(x) < a if and only if x ∈ Ut for some t < a.
Hence, f−1([0, a)) = ∪{Ut; t ∈ Q and x ∈ Ut} which is an m-open set of X. To prove f−1((b, 1]) is an
m-open set in X. We need to prove X − f−1([0, b]) is an m-open subset of X. For that we have to
prove 0 ≤ f(x) ≤ b if and only if x ∈ Ut for all t > b to get union of m-open subsets Ut. Let x ∈ X
such that 0 ≤ f(x) ≤ b when t > b, It is evident that f(x) < t implies x ∈ Ut for t > b. Conversely,
let x ∈ Ut for all t > b, then by definition f(x) = inf{t : t ∈ ψ and x ∈ Ut} ≤ t. Since t > b, f(x) ≤ b
for all t > b. From the definition of f , it is clear that f(x) ≥ 0. Therefore, we get 0 ≤ f(x) ≤ b if
and only if x ∈ Ut for all t > b. Also, t > b implies that there is r ∈ Q such that t > r > b. then
m − cl(Ut) ⊆ Ut. Consequently, we have ∩{Ut; t ∈ Q and t > b}=∩{m-cl(Ut); r ∈ Q and r > b}.
Therefore, f−1([0, b]) = {x : 0 ≤ f(x) ≤ b} = ∩{Ut; t ∈ Q and t > b}=∩{m-cl(Ut; r ∈ ψ and r > b)}.
Since, f−1((0, 1]) = f−1(X − ([0, b]))=X − f−1([0, b]) = ∪{X −m-cl(Ut); r ∈ Q and r > b}, which is
m-open in X. Therefore, f : X → [0, 1] is m-continuous.

Sufficient Part: Consider a pair of mIαg-closed sets A and B such that A ∩ B = φ. Referring the
sufficient condition, there exists an m-continuous mapping f : X → [0, 1] satisfying f(A) = {0} and
f(B) = {1}. Moreover, U = f−1([0, 1/2)) and V = f−1((1/2, 1]) are disjoint m-open subsets of X.
Clearly A ⊂ U and B ⊂ V . Hence, X is an mIαg-normal space.
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5.mIαg-Regular Spaces

Definition 5.1. An IMS (X,M, I) is referred to be an mIαg-regular space, if for every pair consisting
a point x ∈ X and an m-closed set B such that x /∈ B there exists at least one pair of mIαg-open
sets U and V with U ∩ V = φ satisfying x ∈ U and B ⊂ V .

Example 5.2. Consider an IMS (X,M, I) with X = {a, b, c}, M = {φ,X, {b}, {a, b}, {b, c}} M c =
{X,φ, {a, c}, {c}, {a}} and the ideal I = {φ, {b}}. Here mIαg closed sets are the elements of the power
set P (X) and X is mIαg-regular.

Theorem 5.3. If (X,M, I) is an mIαg-regular space, then it is an m-regular space, but the converse
of this theorem may not be true.

Proof. Obvious, since every m-closed set is an mIαg-closed set.

Example 5.4. In Example 4.2., X is an mIαg-regular space, but not a m-regular space, since for the
point x = a ∈ X and an m-closed set B = {c}, there does not exist m-open sets containing x and B.

Theorem 5.5. In an IMS (X,M, I), if every m-open set is m∗-closed, then the minimal space is an
mIαg-regular space.

Proof. Suppose every m-open subset of X is m∗-closed, then by Theorem 2.11., every subset of X is
an mIαg-open set. If B is an m-closed set such that x /∈ B, then {x} and B are the two mIαg-open
sets such that {x} ∩B = φ and also x ∈ {x} and B ⊆ B. Therefore, X is an mIαg-regular space.

Definition 5.6. A subset K of (X,M, I) is termed as an mIαg-neighbourhood of B ⊆ X, if there
exists an mIαg-open set U such that B ⊆ U ⊆ K.

Definition 5.7. A subset K of (X,M, I) is termed to be an mIαg-closed neighbourhood of B ⊆ X,
if there exists an mIαg-closed set U such that B ⊆ U ⊆ K.

Theorem 5.8. In an IMS (X,M, I) the following are statements equivalent.

(a) (X,M, I) is an mIαg-regular space.

(b) For each m-open se)t U and let x ∈ U , there corresponds an mIαg-open set V satisfying x ∈ V ⊆
m-cl∗(V ) ⊂ U .

(c) For each m-closed set A, ∩Ai = A where Ai are mIαg-closed neighbourhoods of A.

(d) For any set A and an m-open set B such that A ∩ B contains at least one element, there exists
an mIαg-open set U such that A ∩ U 6= φ and m-cl∗(U) ⊆ B.

(e) For any non empty set A and an m-closed set B such that A and B are disjoint, there exists
atleast a pair of mIαg-open sets U , V satisfies A ∩ U 6= φ and B ⊆ V .

Proof.
(a)⇒ (b): Consider an m-open set V and let x ∈ V . Hence X−V is m-closed such that x /∈ (X−V ).
Since X is an mIαg-regular space, there exists a pair of mIαg-open sets U and W such that U∩W = φ
satisfying x ∈ U and X − V ⊆ W . Observing Theorem 2.8., X − V is αm closed. Theorem 2.14.,
infers that X − V ⊆ m-int∗(W ). Therefore, X − (m-int∗(W )) ⊆ V . Hence, U ∩ W = φ implies
U ∩m-int∗(W ) = φ and so m-cl∗(U) ⊆ X − (m-int∗(W )). Which implies x ∈ U ⊆ m-cl∗(U) ⊆ V .

(b) ⇒ (c): Let A be an m-closed set and x /∈ A then X − A is an m-open set containing x. By
hypothesis (b), there exists an mIαg-open set V satisfying x ∈ V ⊆ m-cl∗(V ) ⊆ (X − A). Thus,
A ⊆ X − (m-cl∗(V )) ⊆ (X − V ). Since X − (m-cl∗(V )) is mIαg-open, we get X − V is mIαg-closed
neighbourhood of A and x /∈ (X−V ). This shows that A is the intersection of all mIαg neighbourhood
of A.
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(c) ⇒ (d): Assume a non empty set A and an m-closed set B such that A ∩ B 6= φ. Consider an
element x of A ∩ B then, X − B is m-closed and x /∈ (X − B). Observing the hypothesis (c), there
exists an mIαg-closed neighbourhood V of X − B such that, x /∈ V . Let (X − V ) ⊆ G ⊆ V and G
be an mIαg-open then, U = (X − V ) is an mIαg-open set satisfying x ∈ U and A ∩ U 6= φ. Further,
X −G is mIαg-closed and m-cl∗(U) = m-cl∗(X − V ) ⊆ m-cl∗(X −G) ⊆ B.

(d) ⇒ (e): Consider a non empty set A and m-closed set B, A ∩ B contains no element. X − B is
an m-open set and so A ∩ (X − B) 6= φ. Observing hypothesis (d), there exists an mIαg-open set U
such that the sets A and U contains at least one common element. Also, U ⊆ m-cl∗(U) ⊆ (X − B).
Assume that V = X − (m-cl∗(U)). Then, U and V are mIαg-open sets satisfying B ⊆ X − (m-
cl∗(U) = V ⊆ (X − U)) which implies (e).

(e) ⇒ (a): Let A be an m-closed set and x /∈ A. Let the set B = {x}. Then there exist disjoint
mIαg-open sets U and V such that {x} ∩ U = B ∩ U 6= φ and A ⊆ V . Thus, x ∈ U .

Definition 5.9. A subset K of (X,M, I) is referred as an mg-neighbourhood of set B ⊆ X, if there
exists an mg-open set U such that B ⊆ U ⊆ K.

Definition 5.10. A subset K of (X,M, I) is referred as an mg-closed neighbourhood of set B ⊆ X,
if there exists an mg-closed set U such that B ⊆ U ⊂ K.

Corollary 5.11. Let (X,M, I) be an IMS such that I = {φ}. Then, the following statements on
mg-regular spaces are equivalent.

(a) (X,M, I) is an mg-regular space.

(b) Let U be an m-open set containing x, then there exists an mg-open set V satisfying x ∈ V ⊆ m-
cl∗(V ) ⊆ U .

(c) For any m-closed set A, ∩Ai = A where Ai are mg-closed neighbourhoods of A.

(d) For any set A and an m-open set B, A∩B is non empty, then there exists an mg-open set U such
that A ∩ U 6= φ and m-cl∗(U) ⊆ B.

(e) For any non empty set A and an m-closed set B such that A and B are disjoint, then there exists
disjoint mg-open sets U , V satisfies A ∩ U is non empty and B ⊆ V

Proof. When I = {φ}, observing Theorem 2.10., we have inferred that every mIαg-open set is
mg-open set. Apply this result in Theorem 5.8., the proof follows.

If I = {φ} in Theorem 2.18., then we have the following Corollary.

Corollary 5.12. If (X,M, I) is an m-T1 space with I = {φ} then the statements given below are
equivalent.

(a) (X,M, I) is an m-regular space.

(b) Consider an m-open set V and let x ∈ X, there exists an mIαg-open set U of X such that
x ∈ U ⊆ m-cl(U) ⊆ V .

Proof. Observing Theorem 2.19., every m-closed set is an mIαg-closed set, the proof is obvious by
Theorem 2.18.

6. Conclusion

In this work, we discussed about two separations called mIαg-normal and mIαg-regular spaces in ideal
minimal spaces. The famous separation lemma called Urysohn’s has been proved under mIαg-normal
spaces. Few equivalent statements on mIαg-normal and mIαg-regular spaces were established. In
future, this work will be extended to discuss about Tietze extension theorem and Hausdorff spaces in
ideal minimal spaces.
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1. Introduction 

Heinz Hopf did much work in the field of the algebraic topology of Lie groups [1,2]. Later on, mathematicians 

worked on it and named it after Heinz Hopf as Hopf algebra (HA) [3-5]. Vast applications of HA are in physics, 

quantum groups, non-commutative geometry and representation theory etc. [6,7], e.g., a particle move in 

space-time has HA structures [8]. So, it is necessary to extend these concepts in uncertainty. In 1969, Sweedler 

[9] wrote the first book on HA. After that, much research was done in this algebra [10,11]. 

HA is an algebra with dual structure coalgebra and has an endomorphism called antipode. In other words, 

we can also say that an algebra with the structures of cohomology and homology of a topological group is 

called HA. In 1939, such algebras were introduced and linked with Lie groups. An example of HA is the 

Steenrod algebra introduced in the 1960s by Milnor and Moore [12], the cohomology algebra. 

Zadeh gave the approach to fuzzy sets (FS) in 1965 [13]. Rosenfeld worked on the notion of fuzzy groups 

[14]. Basically, in fuzzy sets, the range of membership degree is [0,1], which tells us up to which degree the 

element belongs to a set. The fuzzy set theory deals with uncertainties. Fuzzy set theory is the door to 

developing an intelligent system for identification and decision making etc. There are vast applications of 

fuzzy sets in decision-making, pattern recognition, control theory, and optimization. A fuzzy set is also known 

as a model that represents uncertainty in the universe. 

The thought of fuzzy submodule was given by Zahedi and Ameri [15]. Many authors used the concept of 

fuzzy submodules in different fields of mathematics and physics [16-18]. The thought of fuzzy subcomodule 

was offered by Chen and Akram [19] in 2012. Notions of comodule and coalgebra are generalizations and 

dualizations of module and algebra, respectively. 
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The thought of fuzzy algebra was offered by Abdulkhalikov et al. [20] in 1988. The thought of fuzzy 

subcoalgebra was given by Chen [21] in 2009, and the thought of fuzzy subbialgebra was also given by Chen 

and Wenxu [22] in 2012. The concept of fuzziness was also applied in some other algebras in [23-25]. 

The main problem in mathematics containing uncertainty is how to carry out the ordinary concepts to the 

uncertainty case. The proposed work will help in dealing with uncertainty problems in HA and quantum 

groups. Our obtained results probably can be applied in various fields such as artificial intelligence, signal 

processing, multiagent systems, pattern recognition, robotics, expert systems, medical diagnosis, and 

engineering. 

In this study, we introduce the concepts of fuzzy Hopf subalgebra (FHA), fuzzy Hopf ideal (FHI) and 

fuzzy 𝐻-submodule (FHM). Some basic and essential definitions that are helpful in this paper are recalled in 

Section 2. The notion of fuzzy Hopf subalgebra is introduced in Section 3. In this section, we also investigate 

some results and examples about fuzzy Hopf subalgebra. The concept of fuzzy Hopf ideal is introduced in 

Section 4. In this section, we also investigate some examples and results about fuzzy Hopf ideals. The thought 

of fuzzy 𝐻-submodule is offered in Section 5. In this section, we also investigate some examples and results 

about fuzzy 𝐻-submodule. Section 6 is about the advantages of our article, and Section 7 have application. 

2. Preliminaries 

In this section, we include some relevant definitions which are helpful for the reader. From now onward, except 

if stated otherwise, we use 𝐻 for Hopf algebra, 𝑘 for field and 𝑄 for 𝐻-module. 

Definition 2.1. [5] A HA (𝐻, 𝑚, 𝑢, 𝛥, 𝜀) is a bialgebra with antipode 𝑆, where 𝑆 is an inverse map under 

convolution operation. 

Definition 2.2. [5] A subspace 𝐽 of 𝐻 is called Hopf subalgebra if it is subalgebra and 𝑆(𝐽) ⊆ 𝐽. 

Definition 2.3. [5] A 𝐵𝑐𝑜𝑝(bialgebra having opposite comultiplication) is a co-opposite HA 𝐻𝑐𝑜𝑝 with 

antipode 𝑆̃. 

Definition 2.4. [5] A subspace 𝐼 of 𝐻 is a Hopf ideal if it is a bi-ideal and 𝑆𝐼 ⊆ 𝐼 

Definition 2.5. [5] A right 𝑘-space 𝑄 is 𝐻-Hopf module of 𝐻 if 

i. 𝑄 is a right 𝐻-module and right 𝐻-comodule, via 𝜌: 𝑄 → 𝑄 ⊗ 𝐻. 

ii. 𝜌 is a right 𝐻-module map. 

Definition 2.6. [13] An FS 𝜉: 𝑋 → [0,1] is a function of a non-empty set 𝑋. 

Definition 2.7. If 𝜉 is an FS of 𝑋, then the subset 𝜉𝑡′ = {𝑥 ∈ 𝑋: 𝜉(𝑥) ≥ 𝑡′, 𝑡′ ∈ [0,1]} is called level subsets. 

Definition 2.8. [14] The intersection of two FSs 𝜉 and 𝜎 of 𝑋 is also an FS of 𝑋 and is defined by 

(𝜉 ∩ 𝜎)(𝑥) = 𝜉(𝑥) ∧ 𝜎(𝑥), for all 𝑥 ∈ 𝑋 

Definition 2.9. [14] The sum of two FSs 𝜉 and 𝜎 of 𝑋 is defined as follows: 

(𝜉 + 𝜎)(𝑥) = 𝑠𝑢𝑝{𝜉(𝑎) ∧ 𝜎(𝑏)}, for all 𝑥 ∈ 𝑋 

Definition 2.10. [20] An FS 𝜉 of 𝑘-vector space 𝑉 is called fuzzy subspace if for any 𝑣, 𝑣′ ∈ 𝑉 and 𝛼, 𝛽 ∈ 𝑘 

𝜉(𝛼𝑣 + 𝛽𝑣′) ≥ 𝜉(𝑣) ∧ 𝜉(𝑣′) 

Definition 2.11. [22] An FS 𝜉 of a bialgebra 𝐵 is called fuzzy subbialgebra of 𝐵, if for any 𝑏, 𝑏′ ∈ 𝐵 and 

𝛼, 𝛽 ∈ 𝑘, the following conditions are satisfied: 

i. 𝜉(𝛼𝑏 + 𝛽𝑏′) ≥ 𝜉(𝑏) ∧ 𝜉(𝑏′) 

ii. 𝜉(𝑏𝑦) ≥ 𝜉(𝑏) ∧ 𝜉(𝑏𝑏′) 
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iii. 𝜉(𝑏) ≤ 𝜉(𝑏𝑖1) ∧ 𝜉(𝑏𝑖2) 

Definition 2.12. [16] An FS 𝜉 of a 𝑃-module 𝑄 is said to be a fuzzy submodule of 𝑄 if for any 𝑞, 𝑞′ ∈ 𝑄 and 

𝑝 ∈ 𝑃, 

i. 𝜉(0) = 1 

ii. 𝜉(𝛼𝑞 + 𝛽𝑞′) ≥ 𝜉(𝑞) ∧ 𝜉(𝑞′) 

iii. 𝜉(𝑝𝑞) ≥ 𝜉(𝑞) 

Definition 2.13. [19] An FS 𝜉 of a 𝐶-comodule 𝑄 and a left comodule map 𝜌: 𝑄 → 𝐶 ⊗ 𝑄 is said to be fuzzy 

subcomodule of 𝑄, where 𝜌(𝑞) = ∑ 𝑞𝑖0 ⊗ 𝑞𝑖1𝑖=1,𝑛  if for any 𝑞, 𝑞′ ∈ 𝑄, 𝑐 ∈ 𝐶, and 𝛼, 𝛽 ∈ 𝑘, 

i. 𝜉(0) = 1 

ii. 𝜉(𝛼𝑞 + 𝛽𝑞′) ≥ 𝜉(𝑞) ∧ 𝜉(𝑞′) 

iii. 𝜉(𝑞) ≤ 𝜉(𝑞𝑖0), for all 𝑖. 

3. Fuzzy Hopf Subalgebra 

In this section, the notion of FHA is proposed. Some significant results related to this concept are also discussed 

in it. 

Definition 3.1. A FS 𝜉 of 𝐻 is called FHA, if for any ℎ, ℎ′ ∈ 𝐻 and 𝛼, 𝛽 ∈ 𝑘 it satisfies: 

i. 𝜉(𝛼ℎ + 𝛽ℎ′) ≥ 𝜉(ℎ) ∧ 𝜉(ℎ′) 

ii. 𝜉(ℎℎ′) ≥ 𝜉(ℎ) ∧ 𝜉(ℎ′) 

iii. 𝜉(ℎ) ≤ 𝜉(ℎ𝑖1) ∧ 𝜉(ℎ𝑖2) 

iv. 𝜉(ℎ′) ≥ {
sup {𝜉(ℎ)}, if  ℎ′ ∈ 𝑆(𝐻)

0, if ℎ′ ∉ 𝑆(𝐻)
 

Example 3.2. Consider the 4-dimensional 𝐻𝐴 

𝐻₄ = 〈1, ℎ₁, ℎ₂, ℎ₁ℎ₂ | ℎ₁² = 1, ℎ₂² = 0, ℎ₂ℎ₁ = −ℎ₁ℎ₂〉 

and 𝜉: 𝐻₄ → [0,1] defined by 

𝜉(𝑎) = {
0.4,           if 𝑎 ∈ 𝐻₄\{0}
0.8, if 𝑎 = 0

 

Then, 𝜉 becomes an FHA of 𝐻₄. 

Remark 3.3. There is no difference between FHA and fuzzy co-opposite HA because 𝜉(ℎ) ∧ 𝜉(ℎ′) = 𝜉(ℎ′) ∧

𝜉(ℎ). 

Theorem 3.4. Let 𝜉 and 𝜎 be FHA of 𝐻 such that 𝜉(0) = 𝜎(0). Then, 𝜉 + 𝜎 is also fuzzy FHA of 𝐻. 

PROOF. Let ℎ, ℎ′ ∈ 𝐻 and 𝛼, 𝛽 ∈ 𝑘. Now, we first have to show that 𝜉 + 𝜎 is a fuzzy subspace. 

Suppose on the contrary 

 (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′)  <  (𝜉 + 𝜎)(ℎ) ∧ (𝜉 + 𝜎)(ℎ′) 

(𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′)  <  (𝜉 + 𝜎)(ℎ) 

and 

 (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) < (𝜉 + 𝜎)(ℎ′) 
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Let ∃𝑡′ ∈ [0,1] such that 

 (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) < 𝑡′ < (𝜉 + 𝜎)(ℎ) 

and 

 (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) < 𝑡′ < (𝜉 + 𝜎)(ℎ′) 

Then, ∃ℎ₁, ℎ₂, ℎ₃, ℎ₄ ∈ 𝐻 with  𝛼ℎ = ℎ₁ + ℎ₂ 

ℎ = (
ℎ1+ℎ2

𝛼
) and 𝛽ℎ′ = ℎ₃ + ℎ₄ 

ℎ′ = (
ℎ3 + ℎ4

𝛽
)  such that  𝜉((

ℎ1 + ℎ2

𝛼
)) > 𝑡′, 𝜎((

ℎ3 + ℎ4

𝛽
)) > 𝑡′ 

Now, we have 

(𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) = sup
ℎ+ℎ′=𝑚+𝑛

{𝜉(𝑚) ∧ 𝜎(𝑛)} 

 
≥ sup

ℎ+ℎ′=𝑚+𝑛
{𝜉(

ℎ1 + ℎ2

𝛼
) ∧ 𝜎(

ℎ3 + ℎ4

𝛽
)} 

 >  𝑡′ > (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) 

which is contradiction. Therefore, 

 (𝜉 + 𝜎)(𝛼ℎ + 𝛽ℎ′) ≥ (𝜉 + 𝜎)(ℎ) ∧ (𝜉 + 𝜎)(ℎ′) 

For all ℎ, ℎ′ ∈ 𝐻, let ℎ = ℎ₁ + ℎ₂ and ℎ′ = ℎ₃ + ℎ₄. Then, ℎℎ′ = ℎ₁ℎ₃ + ℎ₁ℎ₄ + ℎ₂ℎ₃ + ℎ₂ℎ₄. Moreover, 

(𝜉 + 𝜎)(ℎℎ′) = sup
ℎℎ′=𝑚+𝑛

{𝜉(𝑚) ∧ 𝜎(𝑛)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₁ℎ₃ + ℎ₁ℎ₄) ∧ 𝜎(ℎ₂ℎ₃ + ℎ₂ℎ₄)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₁ℎ₃) ∧ 𝜉(ℎ₁ℎ₄) ∧ 𝜎(ℎ₂ℎ₃) ∧ 𝜎(ℎ₂ℎ₄)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₁) ∧ 𝜉(ℎ₃) ∧ 𝜉(ℎ₄) ∧ 𝜎(ℎ₂) ∧ 𝜎(ℎ₃) ∧ 𝜎(ℎ₄)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{(𝜉(ℎ₁) ∧ 𝜎(ℎ₂)) ∧ (𝜉(ℎ₃) ∧ 𝜎(ℎ₄)) ∧ (𝜉(ℎ₄) ∧ 𝜎(ℎ₃))} 

 =  (𝜉 + 𝜎)(ℎ) ∧ (𝜉 + 𝜎)(ℎ′) ∧ (𝜉 + 𝜎)(ℎ′) 

 =  (𝜉 + 𝜎)(ℎ) ∧ (𝜉 + 𝜎)(ℎ′) 

 Furthermore, let ℎ = ℎ₁ + ℎ₂ ∈ 𝐻. Then,    

∑ ℎ𝑖1 ⊗ ℎ𝑖2

𝑖=1,𝑛

= 𝛥(ℎ) = 𝛥(ℎ₁ + ℎ₂) = 𝛥(ℎ₁) + 𝛥(ℎ₂) 

Here, ℎ₁ = ∑ ℎ1(𝑠1) ⊗ ℎ1(𝑠2)𝑠=1,𝑛  and ℎ₂ = ∑ ℎ2(𝑡1) ⊗ ℎ2(𝑡2)𝑡=1,𝑛 . 

Since 

(𝜉 + 𝜎)(ℎ)  = sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ₁) ∧ 𝜎(ℎ₂)} 

 ≤ sup
ℎ=ℎ1+ℎ2

{(𝜉(ℎ1(𝑠1)) ∧ 𝜉(ℎ1(𝑠2))) ∧ (𝜎(ℎ2(𝑡1)) ∧ 𝜎(ℎ2(𝑡2)))} 

 = sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ1(𝑠1)) ∧ 𝜎(0) ∧ 𝜉(0) ∧ 𝜎(ℎ2(𝑡1))} ∧ sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ1(𝑠2)) ∧ 𝜎(0) ∧ 𝜉(0) ∧ 𝜎(ℎ2(𝑡2))} 
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 ≤  ((𝜉 + 𝜎)(ℎ1(𝑠1)) ∧ (𝜉 + 𝜎)(ℎ2(𝑡1))) ∧ ((𝜉 + 𝜎)(ℎ1(𝑠2)) ∧ (𝜉 + 𝜎)(ℎ2(𝑡2))) 

 ≤  (𝜉 + 𝜎)(ℎ𝑖1) ∧ (𝜉 + 𝜎)(ℎ𝑖2) 

(𝜉 + 𝜎)(ℎ′)  ≥ {
sup

ℎ∈𝑆−1(ℎ′)
{ sup

ℎ=ℎ1+ℎ2

𝜉(ℎ1) ∧ 𝜎(ℎ2)} , if  h′ ∈ S(H)

0,  if ℎ′ ∉ 𝑆(𝐻)

 

and 

(𝜉 + 𝜎)(ℎ′)   ≥ {
sup

ℎ∈𝑆−1(ℎ′)
(𝜉 + 𝜎)(ℎ), if  ℎ′ ∈ 𝑆(𝐻)

0,  if ℎ′ ∉ 𝑆(𝐻)
 

Then 𝜉 + 𝜎 is FHA. 

Theorem 3.5. Let 𝜉 and 𝜎 be two FHA of 𝐻 then 𝜉 ∩ 𝜎 is also FHA. 

Theorem 3.6. Let {𝜉𝑖 ∶ 𝑖 ∈ 𝑁} be any collection of an FHA of 𝐻 then ∩ 𝜉𝑖 is also FHA. 

Theorem 3.7. An FS 𝜉 of 𝐻 is an FHA iff the level sets 𝜉𝑡′ are Hopf subalgebras of 𝐻. 

PROOF. Assume that 𝜉 is an FHA. Since, 

𝜉(ℎ)  ≥  0 = 𝑡′, ∀ℎ ∈ 𝐻 

𝜉𝑡′  ≠  𝜙 

Let ℎ, ℎ′ ∈ 𝜉𝑡′, 𝜉(ℎ) ≥ 𝑡′, and 𝜉(ℎ′) ≥ 𝑡′. Since 

𝜉(𝛼ℎ + 𝛽ℎ′)   ≥  𝜉(ℎ) ∧ 𝜉(ℎ′) ≥ 𝑡′ ∧ 𝑡′ = 𝑡′ 

then 𝛼ℎ + 𝛽ℎ′ ∈ 𝜉𝑡′. Similarly, since 

𝜉(ℎℎ′)   ≥  𝜉(ℎ) ∧ 𝜉(ℎ′) ≥ 𝑡′ ∧ 𝑡′ = 𝑡′ 

then ℎℎ′ ∈ 𝜉𝑡′ . 

Let ℎ ∈ 𝐻 such that 𝜉(ℎ) = 𝑡′ ⇒ ℎ ∈ 𝜉𝑡′ and 𝛥(ℎ) = ∑ 𝛴𝑖=1,𝑛 ℎ𝑖0 ⊗ ℎ𝑖1  ⇒   𝜉(ℎ𝑖0) ≥ 𝑡′ and 𝜉(ℎ𝑖1) ≥ 𝑡′. 

Then, 

𝜉(ℎ𝑖0) ∧ 𝜉(ℎ𝑖1) ≥ 𝑡′ ∧ 𝑡′ = 𝑡′ = 𝜉(ℎ) 

Let ℎ ∈ 𝐻 such that  𝜉(ℎ) = 𝑡′ ⇒   ℎ ∈ 𝜉𝑡′ . If ℎ′ ∈ 𝑆(𝐻), then, 

𝜉(ℎ′)  ≥ sup
ℎ∈𝑆−1(ℎ′)

𝜉(ℎ) = 𝑡′ 

⇒  ℎ′ ∈ 𝜉𝑡′  

Hence, 𝜉𝑡′ is Hopf subalgebra for all 𝑡′. 

Conversely, assume that all 𝜉𝑡′ are Hopf subalgebras. 

Let ℎ, ℎ′ ∈ 𝜉𝑡′  and 𝛼, 𝛽 ∈ 𝑘. We may assume that 

𝜉(ℎ′) ≥ 𝜉(ℎ) = 𝑡′ 

Since ℎ, ℎ′ ∈ 𝜉𝑡′ , then 𝛼ℎ + 𝛽ℎ′ ∈ 𝜉𝑡′. Thus,  

𝜉(𝛼ℎ + 𝛽ℎ′)   ≥  𝑡′ = 𝜉(ℎ) ∧ 𝜉(ℎ′) 

Since ℎ, ℎ′ ∈ 𝜉𝑡′, then ℎℎ′ ∈ 𝜉𝑡′. Thus, 

𝜉(ℎℎ′)   ≥  𝑡′ = 𝜉(ℎ) ∧ 𝜉(ℎ′) 
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Let ℎ ∈ 𝜉𝑡′ and 𝛥(ℎ) = ∑ ℎ𝑖0 ⊗ ℎ𝑖1𝑖=1,𝑛  where ℎ𝑖0, ℎ𝑖1 ∈ 𝜉𝑡′. Therefore, 

𝜉(ℎ𝑖0) ∧ 𝜉(ℎ𝑖1) ≥ 𝑡′ ∧ 𝑡′ = 𝑡′ = 𝜉(ℎ) 

Let ℎ′ ∈ 𝑆(𝐻) and 𝜉(ℎ′) ≥ 𝑡′. Since ℎ′ ∈ 𝜉𝑡′ and 

𝜉(ℎ′) ≥ 𝑡′ = sup
ℎ∈𝑆−1(ℎ′)

𝜉(ℎ) 

Then, 𝜉 is FHA. 

4. Fuzzy Hopf Ideal 

In this section, the concept of fuzzy Hopf Ideal is proposed. Some significant results of the fuzzy Hopf ideal 

are also studied in it. 

Definition 4.1. A fuzzy subspace 𝜉 of 𝐻 is called fuzzy Hopf left (right) ideal if for any ℎ, ℎ′ ∈ 𝐻 

i. 𝜉(ℎℎ′) ≥ 𝜉(ℎ′), (𝜉(ℎℎ′) ≥ 𝜉(ℎ)) 

ii. 𝜉(ℎ) ≤ 𝜉(ℎ𝑖2) , (𝜉(ℎ) ≤ 𝜉(ℎ𝑖1)) 

iii. 𝜉(ℎ′) ≥ {
sup ξ(h)
ℎ∈𝑆−1(ℎ′)

, if  ℎ′ ∈ 𝑆(𝐻)

0, if  ℎ′ ∉ 𝑆(𝐻)
 

Example 4.2. Consider 𝜉: 𝐻₄ → [0,1] defined by 

𝜉(𝑎) = {
0.5, if  𝑎 ∈ 𝐻₄\{0,1}
0.3, if 𝑎 = 1
0.8, if 𝑎 = 0

 

Then, 𝜉 becomes a fuzzy Hopf left ideal of 𝐻₄. 

Remark 4.3. If 𝜉 is both right and left fuzzy Hopf ideal of 𝐻 then 𝜉 is called an FHI of 𝐻. 

Theorem 4.4. Let 𝜉 and 𝜎 be two fuzzy Hopf left (right) ideals of 𝐻 such that 𝜉(0) = 𝜎(0). Then, 𝜉 + 𝜎 is 

also a fuzzy Hopf left (right) ideal of 𝐻. 

PROOF. 𝜉 + 𝜎 is a fuzzy subspace. Let ℎ = ℎ₁ + ℎ₂,  ℎ′ = ℎ₃ + ℎ₄. Then, 

ℎℎ′ = ℎ₁ℎ₃ + ℎ₁ℎ₄ + ℎ₂ℎ₃ + ℎ₂ℎ₄ 

Moreover, 

(𝜉 + 𝜎)(ℎℎ′) = sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₁ℎ₃ + ℎ₁ℎ₄) ∧ 𝜎(ℎ₂ℎ₃ + ℎ₂ℎ₄)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₁ℎ₃) ∧ 𝜉(ℎ₁ℎ₄) ∧ 𝜎(ℎ₂ℎ₃) ∧ 𝜎(ℎ₂ℎ₄)} 

 ≥ sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₃) ∧ 𝜉(ℎ₄) ∧ 𝜎(ℎ₃) ∧ 𝜎(ℎ₄)} 

 = sup
ℎℎ′=ℎ₁ℎ₃+ℎ₁ℎ₄+ℎ₂ℎ₃+ℎ₂ℎ₄

{𝜉(ℎ₃) ∧ 𝜎(ℎ₄) ∧ 𝜎(ℎ₃) ∧ 𝜉(ℎ₄)} 

 =  (𝜉 + 𝜎)(ℎ′) ∧ (𝜉 + 𝜎)(ℎ′) 

 =  (𝜉 + 𝜎)(ℎ′) 

Let ℎ = ℎ₁ + ℎ₂ ∈ 𝐻. Then, 

∑ hi1 ⊗ hi2 = Δ(h) = Δ(h₁ + h₂) = Δ(h₁) + Δ(h₂)

𝑖=1,𝑛
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where, ℎ₁ = ∑ ℎ1(𝑠1) ⊗ ℎ1(𝑠2)𝑠=1,𝑛  and ℎ2 = ∑ ℎ2(𝑡1) ⊗ ℎ2(𝑡2)𝑡=1,𝑛  such that 

(𝜉 + 𝜎)(ℎ) = sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ₁) ∧ 𝜎(ℎ₂)} 

 ≤ sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ1(𝑠2)) ∧ 𝜎(ℎ2(𝑡2))} 

 = sup
ℎ=ℎ1+ℎ2

{𝜉(ℎ1(𝑠2)) ∧ 𝜎(0) ∧ 𝜉(0) ∧ 𝜎(ℎ2(𝑡2))} 

 ≤  (𝜉 + 𝜎)(ℎ1(𝑠2)) ∧ (𝜉 + 𝜎)(ℎ2(𝑡2)) 

 ≤  (𝜉 + 𝜎)(ℎ𝑖2) 

(𝜉 + 𝜎)(ℎ′)  ≥ {
sup

ℎ∈𝑆−1(ℎ′)
{ sup

ℎ=ℎ1+ℎ2

ξ(h₁) ∧ σ(h₂)} , if ℎ′ ∈ 𝑆(𝐻)

0, if ℎ′ ∉ 𝑆(𝐻)

 

and 

(𝜉 + 𝜎)(ℎ′)  ≥ {
sup

ℎ∈𝑆−1(ℎ′)
(𝜉 + 𝜎)(ℎ), if ℎ′ ∈ 𝑆(𝐻)

0, if ℎ′ ∉ 𝑆(𝐻)
 

Hence, 𝜉 + 𝜎 is fuzzy Hopf left ideal. 

Theorem 4.5. Let 𝜉 and 𝜎 be two fuzzy Hopf left (right) ideals then 𝜉 ∩ 𝜎 is also a fuzzy Hopf left (right) 

ideal. 

Theorem 4.6. Let {𝜉𝑖 ∶ 𝑖 ∈ 𝑁} be a collection of fuzzy Hopf left (right) ideals then ∩ 𝜉𝑖 is also a fuzzy Hopf 

left (right) ideal. 

5. Fuzzy 𝑯-Submodule 

In this section, the concept of fuzzy 𝐻-Submodule is proposed. Some significant results of fuzzy 𝐻-Submodule 

are also studied in it. 

Definition 5.1. A FS 𝜉 of 𝑄 is right FHM if for any 𝑞, 𝑞′ ∈ 𝑄, ℎ ∈ 𝐻 and 𝛼, 𝛽 ∈ 𝑘 

i. 𝜉(0) = 1 

ii. 𝜉(𝛼𝑞 + 𝛽𝑞′) ≥ 𝜉(𝑞) ∧ 𝜉(𝑞′) 

iii. 𝜉(𝑞ℎ) ≥ 𝜉(𝑞) 

iv. 𝜉(𝑞) ≤ 𝜉(𝑞𝑖0) 

v. 𝜉(𝑞′) ≥ {
sup

𝑞∈𝜌−1(𝑞′)
ξ(q) , if 𝑞′ ∈ 𝜌(𝑄)

0, if 𝑞′ ∉ 𝜌(𝑄)
 

 (vi). 𝜉(𝜌(𝑞)ℎ) ≥ 𝜉(𝜌(𝑞)) 

Example 5.2. Consider 𝜉: 𝐻₄ → [0,1] defined by 

𝜉(𝑎) = {
0.4, if 𝑎 ∈ 𝐻₄\{0}
1, if 𝑎 = 0

 

Then, 𝜉 becomes an FHM of 𝐻₄. 

Theorem 5.3. Let 𝜉 and 𝜎 be two FHM of 𝑄 such that 𝜉(0) = 𝜎(0). Then, 𝜉 + 𝜎 is also an FHM of 𝑄. 
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PROOF. Let 𝑞, 𝑞′ ∈ 𝑄 and 𝛼, 𝛽 ∈ 𝑘. Now, we have to show that 𝜉 + 𝜎 is a fuzzy subspace. 

On the contrary, suppose that 

(𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′)   <  (𝜉 + 𝜎)(𝑞) ∧ (𝜉 + 𝜎)(𝑞′), 

(𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′)   <  (𝜉 + 𝜎)(𝑞) 

and 

 (𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) < (𝜉 + 𝜎)(𝑞′) 

If ∃𝑡′ ∈ [0,1] such that 

 (𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) < 𝑡′ < (𝜉 + 𝜎)(𝑞) 

and 

 (𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) < 𝑡′ < (𝜉 + 𝜎)(𝑞′) 

If ∃ 𝑞₁, 𝑞₂, 𝑞₃, 𝑞₄ ∈ 𝑄 with  𝛼𝑞 = 𝑞₁ + 𝑞₂, then 

𝑞 = ((𝑞₁ + 𝑞₂)/𝛼) and 𝛽𝑞′ = 𝑞₃ + 𝑞₄ 

𝑞′ = (
𝑞3+𝑞4

𝛽
)  such that  𝜉((

𝑞1+𝑞2

𝛼
)) > 𝑡′, 𝜎((

𝑞3+𝑞4

𝛽
)) > 𝑡′ 

Now, we have 

(𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) = sup
𝑞+𝑞′=𝑛+𝑛′

{𝜉(𝑛) ∧ 𝜎(𝑛′)} 

 
≥ sup

𝑞+𝑞′=
𝑞1+𝑞2

𝛼
+

𝑞3+𝑞4
𝛽

{𝜉((
𝑞1 + 𝑞2

𝛼
)) ∧ 𝜎((

𝑞3 + 𝑞4

𝛽
))} 

 >  𝑡′ > (𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) 

which is a contradiction. Therefore, 

 (𝜉 + 𝜎)(𝛼𝑞 + 𝛽𝑞′) ≥ (𝜉 + 𝜎)(𝑞) ∧ (𝜉 + 𝜎)(𝑞′) 

Now, let 𝑞 ∈ 𝑄 and ℎ ∈ 𝐻 such that 

(𝜉 + 𝜎)(𝑞ℎ) = sup
𝑞ℎ=𝑞1+𝑞2

{𝜉(𝑞₁) ∧ 𝜎(𝑞₂)} 

 ≥ sup
𝑞=

𝑞1
ℎ

+
𝑞2
ℎ

{𝜉(
𝑞1

ℎ
) ∧ 𝜎(

𝑞2

ℎ
)} 

 =  (𝜉 + 𝜎)(𝑞) 

Let 𝑞 = 𝑞₁ + 𝑞₂ ∈ 𝑄. Then, 

∑ 𝑞𝑖0 ⊗ 𝑞𝑖1

𝑖=1,𝑛

 =  𝜌(𝑞) =  𝜌(𝑞₁ + 𝑞₂) 

 =  𝜌(𝑞₁) + 𝜌(𝑞₂) 

 =  ∑ 𝑞1(𝑠0) ⊗ 𝑞1(𝑠1)

𝑠=1,𝑛

+ ∑ 𝑞2(𝑡0) ⊗ 𝑞2(𝑡1)

𝑡=1,𝑛

 

Moreover, 
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(𝜉 + 𝜎)(𝑞)  = sup
𝑞=𝑞1+𝑞2

{𝜉(𝑞₁) ∧ 𝜎(𝑞₂)} 

 ≤ sup
𝑞=𝑞1+𝑞2

{𝜉(𝑞1(𝑠0)) ∧ 𝜎(𝑞2(𝑡0))} 

 = sup
𝑞=𝑞1+𝑞2

{𝜉(𝑞1(𝑠0)) ∧ 𝜎(0) ∧ 𝜉(0) ∧ 𝜎(𝑞2(𝑡0))} 

 = sup
𝑞=𝑞1+𝑞2

{𝜉(𝑞1(𝑠0)) ∧ 𝜎(0)} ∧ sup
𝑞=𝑞1+𝑞2

𝜉(0) ∧ 𝜎(𝑞2(𝑡0)) 

 ≤  (𝜉 + 𝜎)(𝑞1(𝑠0)) ∧ (𝜉 + 𝜎)(𝑞2(𝑡0)) 

 ≤  (𝜉 + 𝜎)(𝑞𝑖0) 

and 

 (𝜉 + 𝜎)(0)  = sup
0=𝑞1+𝑞2

{𝜉(𝑞₁) ∧ 𝜎(𝑞₂)} ≥  𝜉(0) ∧ 𝜎(0) = 1 ∧ 1 = 1 

Thus,  

(𝜉 + 𝜎)(𝜌(𝑞)ℎ) = sup
𝜌(𝑞)ℎ=𝑞1+𝑞2

{𝜉(𝑞₁) ∧ 𝜎(𝑞₂)} 

 ≥ sup
𝜌(𝑞)=

𝑞1
ℎ

+
𝑞2
ℎ

{𝜉(
𝑞1

ℎ
) ∧ 𝜎(

𝑞2

ℎ
)} 

 =  (𝜉 + 𝜎)(𝜌(𝑞)) 

Hence, 𝜉 + 𝜎 is FHM of 𝑄. 

Theorem 5.4. Let 𝜉 and 𝜎 be two FHMs of 𝑄 then 𝜉 ∩ 𝜎 is also an FHM. 

Theorem 5.5. Let {𝜉𝑖 ∶ 𝑖 ∈ 𝑁} be a collection of FHMs of 𝑄. Then ∩ 𝜉𝑖 is also an FHM. 

Theorem 5.6. An FS 𝜉 of 𝑄 is an FHM iff the level sets 𝜉𝑡′ are 𝐻 −submodules of 𝑄. 

PROOF. Assume that 𝜉 is an FHM. As 𝜉(0) = 1. Therefore, 𝜉𝑡 ≠ 𝜑. Let 𝑞, 𝑞′ ∈ 𝜉𝑡′. Then, 

𝜉(𝑞) ≥ 𝑡′ and 𝜉(𝑞′) ≥ 𝑡′ 

Since 

𝜉(𝛼𝑞 + 𝛽𝑞′) ≥ 𝜉(𝑞) ∧ 𝜉(𝑞′) ≥ 𝑡′ ∧ 𝑡′ = 𝑡′ 

then 𝛼𝑞 + 𝛽𝑞′ ∈ 𝜉𝑡′. Similarly, since 𝜉(𝑞ℎ) ≥ 𝜉(𝑞) = 𝑡′ then 𝑞ℎ ∈ 𝜉𝑡′. Moreover, since 𝜉(𝑞𝑖0) ≥ 𝜉(𝑞) ≥ 𝑡′ 

then 𝑥𝑖0 ∈ 𝜉𝑡′. Let 𝜌(𝑥) ∈ 𝜉𝑡′ and ℎ ∈ 𝐻. Since 

𝜉(𝜌(𝑞)ℎ) ≥ 𝜉(𝜌(𝑞)) ≥ 𝑡′ 

then 𝜌(𝑞)ℎ ∈ 𝜉𝑡′ . Therefore, each 𝜉𝑡′ is 𝐻 −submodule of 𝑄. 

Conversely, assume that each 𝜉𝑡′ is a fuzzy 𝐻-submodules. Let 𝑞, 𝑞′ ∈ 𝑄 and 𝛼, 𝛽 ∈ 𝑘. We may assume that 

𝜉(𝑞′) ≥ 𝜉(𝑞) = 𝑡′. Therefore, 𝑞, 𝑞′ ∈ 𝜉𝑡′ Since, 𝜉𝑡′ is 𝐻 −submodule of 𝑄, then 𝛼𝑞 + 𝛽𝑞′ ∈ 𝜉𝑡′. Therefore, 

𝜉(𝛼𝑞 + 𝛽𝑞′) ≥ 𝑡′ = 𝜉(𝑞) ∧ 𝜉(𝑞′) 

Let 𝑞 ∈ 𝑄 and ℎ ∈ 𝐻. Let 𝜉(𝑞) = 𝑡′. Therefore, 𝑞 ∈ 𝜉𝑡′ and 𝑞ℎ ∈ 𝜉𝑡′. Thus, 𝜉(𝑞ℎ) ≥ 𝑡′ = 𝜉(𝑞). 

Since 𝜌(𝑞) = ∑ 𝑞𝑖0 ⊗ 𝑞𝑖1𝑖=1,𝑛  where 𝑞𝑖0 ∈ 𝜉𝑡′, then  

𝜉(𝑞𝑖0) ≥ 𝑡′ = 𝜉(𝑞) 

Moreover,  
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𝜉(0) = sup
𝑞∈𝑄

{𝜉(𝑞)} = 1 

Let 𝜌(𝑞) ∈ 𝑄 and ℎ ∈ 𝐻, such that 𝜉(𝜌(𝑞)) = 𝑡′. Then, 𝜌(𝑞)ℎ ∈ 𝜉𝑡′ 

𝜉(𝜌(𝑞)ℎ) ≥ 𝑡′ = 𝜉(𝜌(𝑞)) 

Thus, 𝜉 is an FHM. 

6. Advantages 

The importance of Hopf algebra in Quantum physics and physics cannot be rejected. Shahn Majid and other 

physicist and mathematician use Hopf algebra to solve many problems. By using fuzzy theory, we can solve 

these problems with easier. So, it is crucial to extend these concepts in uncertainty. So, in this manuscript, we 

proposed fuzziness on Hopf algebraic structures. 

7. Application 

Discrete gauge theory in the 2 + 1 dimension arises by breaking a gauge symmetry with gauge group 𝐺 to 

discrete subgroup 𝐻 due to photons becoming massive w, making the guage force ultra-short ranged. Some 

particles are charged, and some carry flux. Charged particles carry a representation of 𝐻, and massive charges 

are ultra-short ranged. By using fuzziness, we can deal with these particles easily. Here is a simple example, 

Example 7.1. Let 𝐻 = {ℎ₁, ℎ₂, ℎ₃, ℎ₄}  be a Hopf algebra with antipode 𝑆, 𝑘 = ℝ, 𝛥(ℎ) = ℎ ⊗ ℎ, 𝜀(ℎ) = 1, 

𝑆(ℎ) = ℎ−1,  

+ 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 

𝒉𝟏 ℎ1 ℎ1 ℎ1 ℎ1 

𝒉𝟐 ℎ1 ℎ1 ℎ1 ℎ1 

𝒉𝟑 ℎ1 ℎ1 ℎ1 ℎ1 

𝒉𝟒 ℎ1 ℎ1 ℎ1 ℎ1 
 

and 

∙ 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 

𝒉𝟏 ℎ1 ℎ2 ℎ3 ℎ4 

𝒉𝟐 ℎ2 ℎ1 ℎ4 ℎ3 

𝒉𝟑 ℎ3 ℎ4 ℎ2 ℎ1 

𝒉𝟒 ℎ4 ℎ3 ℎ1 ℎ2 
 

Then, 𝜉: 𝐻 → [0,1] defined by 

𝜉(𝑑) = {
0.6, if ℎ = ℎ1

0.4, if ℎ ∈ 𝐻/{ℎ1}
 

is an FHA. Therefore, ℎ1 is the short, ranged particle. 

Similarly, we can apply this uncertainty in other fields of physics, like to know the energy level of photons 

in non-ideal lasers etc. 

8. Conclusion 

This manuscript introduces the concept of fuzzy Hopf subalgebra, fuzzy Hopf ideal, and fuzzy H-submodule. 

Some properties and significant results are also studied in it. Our obtained results probably can be applied in 

various fields such as artificial intelligence, signal processing, multiagent systems, pattern recognition, 

robotics, expert systems, medical diagnosis, and engineering. Weak Hopf algebra is a Hopf algebra with a 

linear map that satisfy some specific conditions. In the future study, we aim to extend this concept in the field 

of weak Hopf algebra. 
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1. Introduction

Zadeh [1] introduced the idea of fuzzy set in 1965. The deep study of fuzzy subsets and its applications
to different mathematical structures developed the fuzzy mathematics. Fuzzy algebra is a significant
branch of fuzzy mathematics. Idea of Fuzzy set has been applied to different algebraic structures like
groups, rings, modules, vector spaces and topologies. In this way, Iseki and Tanaka [2] introduced the
idea of BCK-algebra in 1978. Iseki [3] introduced the idea of BCI-algebra in 1980 and it is clear that
the class of BCK-algebra is a proper sub class of the class of BCI-algebra. Lee et al. [4] discussed the
fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication of fuzzy subalgebra
in BCK/BCI-algebra. Relationship among fuzzy translation, (normalized, maximal) fuzzy extension
and fuzzy multiplication are also investigated. Ansari and Chandramouleeswaran [5] introduced the
notion of fuzzy translation, fuzzy extension and fuzzy multiplication of fuzzy β ideals of β-algebra
and investigated some of their properties. Priya and Ramachandran [6, 7] introduced the class of
PS-algebra. Lekkoksung [8] concentrated on fuzzy magnified translation in ternary hemirings, which
is a generalization of BCI / BCK/Q / KU / d-algebra. Senapati et al. [9] have done much work
on intuitionistic fuzzy H-ideals in BCK/BCI-algebra. Jana et al. [10] wrote on intuitionistic fuzzy
G-algebra. Senapati et al. [11] discussed fuzzy translations of fuzzy H-ideals in BCK/BCI-algebra.
Atanassov [12] introduced intuitionistic fuzzy set. Senapati [13] investigated the relationship among
intuitionistic fuzzy translation, intuitionistic fuzzy extension and intuitionistic fuzzy multiplication in
B-algebra. Kim and Jeong [14] introduced the intuitionistic fuzzy structure of B-algebra. Senapati
et al. [15] introduced the cubic subalgebras and cubic closed ideals of B-algebras. Senapati et al. [16]
discussed the fuzzy dot subalgebra and fuzzy dot ideal of B-algebras. Priya and Ramachandran [17]
worked on fuzzy translation and fuzzy multiplication in PS-algebra. Chandramouleeswaran et al. [18]
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worked on fuzzy translation and fuzzy multiplication in BF/BG-algebra. Jun and Kim [19] worked on
intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras.

Purpose of this paper is to introduce the idea of intuitionistic fuzzy α translation (IFAT), intu-
itionistic fuzzy α multiplication (IFAM) and intuitionistic fuzzy magnified βα translation (IFMBAT)
in PS-algebra. Some of their properties are investigated in depth by using the idea of intuitionistic
fuzzy PS ideal (IFID) and intuitionistic fuzzy PS subalgebra (IFSU).

2. Preliminaries

In this section, we present some basic definitions, that are helpful to understand the paper.

Definition 2.1. [3] An algebra (Y ; ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies the following
conditions:

i. (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2)

ii. t1 ∗ (t1 ∗ t2) ≤ t2

iii. t1 ≤ t1

iv. t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2

v. t1 ≤ 0⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, ∀ t1, t2, t3 ∈ Y

Definition 2.2. [1] An algebra (Y ; ∗, 0) of type (2,0) is called a BCK-algebra if it satisfies the
following conditions:

i. (t1 ∗ t2) ∗ (t1 ∗ t3) ≤ (t3 ∗ t2)

ii. t1 ∗ (t1 ∗ t2) ≤ t2

iii. t1 ≤ t1

iv. t1 ≤ t2 and t2 ≤ t1 ⇒ t1 = t2

v. 0 ≤ t1 ⇒ t1 = 0, where t1 ≤ t2 is defined by t1 ∗ t2 = 0, for all t1, t2, t3 ∈ Y

Definition 2.3. [7] A nonempty set S with a constant 0 and having binary operation ∗ is called
PS-algebra if it satisfies the following conditions:

i. t1 ∗ t1 = 0

ii. t1 ∗ 0 = 0

iii. t1 ∗ t2 = 0 and t2 ∗ t1 = 0⇒ t1 = t2, ∀ t1, t2 ∈ Y

Definition 2.4. [7] Let S be a nonempty subset of PS-algebra Y, then S is called a PS subalgebra
of Y if t1 ∗ t2 ∈ S, ∀ t1, t2 ∈ S.

Definition 2.5. [7] Let Y ba a PS-algebra and I is a subset of Y , then I is called a PS ideal of Y if
it satisfies following conditions:

i. 0 ∈ I

ii. t2 ∗ t1 ∈ I and t2 ∈ I → t1 ∈ I

Definition 2.6. [6] Let Y be a PS-algebra. A fuzzy set B of Y is called a fuzzy PS ideal of Y if it
satisfies the following conditions:

i. µ(0) ≥ µ(t1)

ii. µ(t1) ≥ min{µ(t2 ∗ t1), µ(t2)}, for all t1, t2 ∈ Y
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2.1. Fuzzy and Intuitionistic Fuzzy Logics

Definition 2.7. [1] Let Y be the group of objects denoted generally by t1. Then, a fuzzy set B of
Y is defined as B = {< t1, µB(t1) > | t1 ∈ Y }, where µB(t1) is called the membership value of t1 in B
and µB(t1) ∈ [0, 1].

Definition 2.8. [6] A fuzzy set B of PS-algebra Y is called a fuzzy PS subalgebra of Y if µ(t1 ∗ t2) ≥
min{µ(t1), µ(t2)}, ∀ t1, t2 ∈ Y.

Definition 2.9. [4, 5] Let a fuzzy subset B of Y and α ∈ [0, 1− sup{µB(t1) | t1 ∈ Y }]. A mapping
(µB)Tα | Y ∈ [0, 1] is said to be a fuzzy α translation of µB if it satisfies (µB)Tα(t1) = µB(t1) + α, ∀ t1
∈ Y.

Definition 2.10. [4, 5] Let a fuzzy subset B of Y and α ∈ [0, 1]. A mapping (µB)Mα | Y → [0, 1] is
said to be a fuzzy α multiplication of B if it satisfies (µB)Mα (t1) = α.(µB)(t1), ∀ t1 ∈ Y.

Definition 2.11. [12] An intuitionistic fuzzy set (IFS) B over Y is an object having the form
B = {〈t1, µB(t1), νB(t1)〉 | t1 ∈ Y }, where µB(t1) | Y → [0, 1] and νB(t1) | Y → [0, 1], with the
condition 0 ≤ µB(t1) + νB(t1) ≤ 1, ∀ t1 ∈ Y . µB(t1) and νB(t1) represent the degree of membership
and the degree of non-membership of the element t1 in the set B respectively.

Definition 2.12. [12] Let A = {〈t1, µA(t1), νA(t1)〉 | t1 ∈ Y } and B = {〈t1, µB(t1), νB(t1)〉 | t1 ∈ Y }
are two IFSs on Y . Then, intersection and union of A and B are indicated by A ∩ B and A ∪ B
respectively and are given by

A ∩B = {〈t1,min(µA(t1), µB(t1)),max(νA(t1), νB(t1))〉 | t1 ∈ Y }

A ∪B = {〈t1,max(µA(t1), µB(t1)),min(νA(t1), νB(t1))〉 | t1 ∈ Y }

Definition 2.13. [14] An IFS B = {〈t1, µB(t1), νB(t1)〉 | t1 ∈ Y } of Y is called an IFSU of Y if it
satisfies these two conditions:

i. µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)}

ii. νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}, ∀ t1, t2 ∈ Y

Definition 2.14. [19] An IFS B = {〈t1, µB(t1), νB(t1)〉 | t1 ∈ Y } of Y is said to be an IFID of Y if
satisfies these conditions:

i. µB(0) ≥ µB(t1), νB(0) ≤ νB(t1)

ii. µB(t1) ≥ min{µB(t1 ∗ t2), µB(t2)}

iii. νB(t1) ≤ max{νB(t1 ∗ t2), νB(t2)}, for all t1, t2 ∈ Y

Definition 2.15. [8] Let µ be a fuzzy subset of Y , α ∈ [0,T] and β ∈ [0, 1]. A mapping µM T
β α | Y →[0,1]

is said to be fuzzy magnified βα translation of µ if it satisfies µM T
β α (t1) = β.µ(t1) + α, for all t1 ∈ Y.

3. Intuitionistic Fuzzy Translation and Multiplication

For simplicity, we use the notion B = (µB, νB) for the IFS B = {〈t1, µB(t1), νB(t1)〉 | t1 ∈ Y }. In this
paper, we use U = inf{νB(t1) | t1 ∈ Y } for any IFS B = (µB, νB) of Y .
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3.1. Intuitionistic Fuzzy Translation and Multiplication of PS Subalgebra

Definition 3.1. Let B = (µB, νB) be an IFS of Y and let α ∈ [0,U]. An object of the form
BT
α = ((µB)Tα , (νB)Tα) is called an IFAT of B, when (µB)Tα(t1) = µB(t1)+α and (νB)Tα(t1) = νB(t1)−α,

for all t1 ∈ Y .

Example 3.2. Let Y = {0, 1, 2} be a PS-algebra with the following Cayley table:

* 0 1 2

0 0 1 2
1 0 0 1
2 0 2 0

thus (Y ; ∗, 0) is a PS-algebra. Now, IFS B = (µB, νB) is defined as

µB(t1) =

{
0.2 if t1 6= 1

0.4 if t1 = 1,

νB(t1) =

{
0.6 if t1 6= 1

0.3 if t1 = 1

is an IFSU. HereÃ¼ U = inf{νB(t1) | t1 ∈ Y } = 0.3, choose α = 0.2, then the mapping BT
0.2 | Y →

[0, 1] is defined as

(µB)T0.2(t1) =

{
0.4 if t1 6= 1

0.6 if t1 = 1

and

(νB)T0.2(t1) =

{
0.4 if t1 6= 1

0.1 if t1 = 1

which imply that, (µB)T0.2(t1) = µB(t1)+0.2 and (νB)T0.2(t1) = νB(t1)−0.2, ∀ t1 ∈ Y is an intuitionistic
fuzzy (0.2) translation.

Theorem 3.3. Let B be an IFSU of Y and α ∈ [0,U]. Then, IFAT BT
α of B is an IFSU of Y .

Proof. Assume that, t1, t2 ∈ Y . Then,

(µB)Tα(t1 ∗ t2) = µA(t1 ∗ t2) + α

≥ min{µB(t1), µB(t2)}+ α

= min{µB(t1) + α, µB(t2) + α}
= min{(µB)Tα(t1), (µB)Tα(t2)}

and

(νB)Tα(t1 ∗ t2) = νB(t1 ∗ t2)− α
≤ max{νB(t1), νB(t2)} − α
= max{νB(t1)− α, νB(t2)− α}
= max{(νB)Tα(t1), (νB)Tα(t2)}

Hence, IFAT BT
α of B is an IFSU of Y .

Theorem 3.4. Let B be an IFS of Y such that IFAT BT
α of B is an IFSU of Y for some α ∈ [0,U].

Then, B is an IFSU of Y .
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Proof. Let BT
α = ((µB)Tα , (νB)Tα) be an IFSU of Y for some α ∈ [0,U] and t1, t2 ∈ Y . So, we have

µB(t1 ∗ t2) + α = (µB)Tα(t1 ∗ t2)

≥ min{(µB)Tα(t1), (µB)Tα(t2)}
= min{µB(t1) + α, µB(t2) + α}
= min{µB(t1), µB(t2)}+ α

and

νB(t1 ∗ t2)− α = (νB)Tα(t1 ∗ t2)

≤ max{(νB)Tα(t1), (νB)Tα(t2)}
= max{νB(t1)− α, νB(t2)− α}
= max{µB(t1), νB(t2)} − α

which imply that, µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)} and νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}, for all
t1, t2 ∈ Y . Hence, B is an IFSU of Y .

Definition 3.5. Let B be an IFS of Y and α ∈ [0, 1]. An object having the form BM
α = (µB)Mα , (νB)Mα

is called an IFAM of B. If (µB)Mα (t1) = α.µB(t1) and (νB)Mα (t1) = α.νB(t1), for all t1 ∈ Y .

Example 3.6. Let Y = {0, 1, 2} be a PS-algebra with the following Cayley table:

* 0 1 2

0 0 1 2
1 0 0 1
2 0 2 0

thus (Y ; ∗, 0) is a PS-algebra. Now IFS B = (µB, νB) is defined as

µB(t1) =

{
0.5 if t1 6= 1

0.4 if t1 = 1,

νB(t1) =

{
0.2 if t1 6= 1

0.3 if t1 = 1

is an IFSU, choose α = 0.2, then the mapping BM
(0.2) | Y → [0, 1] is defined by

(µB)M0.2(t1) =

{
0.10 if t1 6= 1

0.08 if t1 = 1

and

(µB)M0.2(t1) =

{
0.04 if t1 6= 1

0.06 if t1 = 1

which imply that, (µB)M0.2(t1) = µB(t1).(0.2), (νB)M0.2(t1) = νB(t1).(0.2), ∀ t1 ∈ Y is an intuitionistic
fuzzy (0.2) multiplication.

Theorem 3.7. Let IFS B = (µB, νB) of Y and α ∈ [0, 1], if the IFAM BM
α of B be an IFSU of Y .

Then, B is an IFSU of Y .

Proof. Assume that, BM
α of B is an IFSU of Y for some α ∈ [0, 1]. Now, for all t1, t2 ∈ Y , we have

µB(t1 ∗ t2).α = (µB)Mα (t1 ∗ t2)

≥ min{(µB)Mα (t1), (µB)Mα (t2)}
= min{µB(t1).α, µB(t2).α}
= min{µB(t1), µB(t2)}.α
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and

νB(t1 ∗ t2).α = (νB)Mα (t1 ∗ t2)

≤ max{(νB)Mα (t1), (νB)Mα (t2)}
= max{νB(t1).α, νB(t2).α}
= max{νB(t1), νB(t2)}.α

which imply that, µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)} and νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}, for all
t1, t2 ∈ Y . Hence, B is an IFSU of Y .

Theorem 3.8. Let IFS B = (µB, νB) of Y is an IFSU of Y and α ∈ [0, 1], then IFAM BM
α of B is an

IFSU of Y .

Proof. Suppose that, B = (µB, νB) be an IFSU of Y . Then, for all t1, t2 ∈ Y , we have

(µB)Mα (t1 ∗ t2) = α.µ(t1 ∗ t2)

≥ α.min{(µB)(t1), (µB)(t2)}
= min{α.µB(t1), α.µB(t2)}
= min{(µB)Mα (t1), (µB)Mα (t2)}
≥ min{(µB)Mα (t1), (µB)Mα (t2)}

and

(νB)Mα (t1 ∗ t2) = α.ν(t1 ∗ t2)

≤ α.max{(νB)(t1), (νB)(t2)}
= max{α.νB(t1), α.νB(t2)}
= max{(µB)Mα (t1), (µB)Mα (t2)}
≤ max{(νB)Mα (t1), (νB)Mα (t2)}

which imply that, µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)} and νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}, for all
t1, t2 ∈ Y . Hence, BM

α is an IFSU of Y .

3.2. Intuitionistic Fuzzy Translation and Multiplication of PS Ideal

In this section, intuitionistic fuzzy α translation of IFID, intuitionistic fuzzy α multiplication of IFID,
union and intersection of intuitionistic fuzzy translation of IFID are investigated through some results.

Theorem 3.9. If IFAT BT
α of B is an intutionistic fuzzy PS ideal, then it fulfills the condition

(µB)Tα(t1 ∗ (t2 ∗ t1)) ≥ (µB)Tα(t2) and (νB)Tα(t1 ∗ (t2 ∗ t1)) ≤ (νB)Tα(t2).

Proof. Let IFAT BT
α of B is an intutionistic fuzzy PS ideal. Then,

(µB)Tα(t1 ∗ (t2 ∗ t1)) = µB(t1 ∗ (t2 ∗ t1)) + α

≥ min{µB(t2 ∗ (t1 ∗ (t2 ∗ t1))) + α, µB(t2) + α}
= min{µB(0) + α, µB(t2) + α}
= min{(µB)Tα(0), (µB)Tα(t2)}
= (µB)Tα(t2)

and

(νB)Tα(t1 ∗ (t2 ∗ t1)) = νB(t1 ∗ (t2 ∗ t1))− α
≤ max{νB(t2 ∗ (t1 ∗ (t2 ∗ t1)))− α, νB(t2)− α}
= max{νB(0)− α, νB(t2)− α}
= max{(νB)Tα(0), (νB)Tα(t2)}
= (νB)Tα(t2)
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Hence, (µB)Tα(t1 ∗ (t2 ∗ t1)) ≥ (µB)Tα(t2) and (νB)Tα(t1 ∗ (t2 ∗ t1)) ≤ (νB)Tα(t2).

Theorem 3.10. If B is an IFID of Y , then IFAT BT
α of B is an IFID of Y , for all α ∈ [0,U].

Proof. Let B be an IFID of Y and α ∈ [0,U]. Then, (µB)Tα(0) = µB(0)+α ≥ µB(t1)+α = (µB)Tα(t1)
and (νB)Tα(0) = νB(0)− α ≤ νB(t1)− α = (νB)Tα(t1). Therefore,

(µB)Tα(t1) = µB(t1) + α,

≥ min{µB(t1 ∗ t2), µB(t2)}+ α

= min{µB(t1 ∗ t2) + α, µB(t2) + α}
= min{(µB)Tα(t1 ∗ t2), (µB)Tα(t2)}

and

(νB)Tα(t1) = νB(t1)− α,
≤ max{νB(t1 ∗ t2), νB(t2)} − α
= max{νB(t1 ∗ t2)− α, νB(t2)− α}
= max{(νB)Tα(t1 ∗ t2), (νB)Tα(t2)}

for all t1, t2 ∈ Y and α ∈ [0,U]. Hence, BT
α of B is an IFID of Y .

Theorem 3.11. If B is an intutionistic fuzzy set of Y , such that IFAT BT
α of B is an IFID of Y , for

all α ∈ [0,U]. Then, B is an IFID of Y .

Proof. Suppose BT
α is an IFID of Y , where α ∈ [0,U] and t1, t2 ∈ Y then,

µB(0) + α = (µB)Tα(0) ≥ (µB)Tα(t1) = µB(t1) + α

νB(0)− α = (νB)Tα(0) ≤ (νB)Tα(t1) = νB(t1)− α

which imply, µB(0) ≥ µB(t1) and νB(0) ≤ νB(t1) now,

µB(t1) + α = (µB)Tα(t1) ≥ min{(µB)Tα(t1 ∗ t2), (µB)Tα(t2)}
= min{µB(t1 ∗ t2) + α, µB(t2) + α}
= min{µB(t1 ∗ t2), µB(t2)}+ α

and

νB(t1)− α = (νB)Tα(t1) ≤ max{(νB)Tα(t1 ∗ t2), (νB)Tα(t2)}
= max{νB(t1 ∗ t2)− α, νB(t2)− α}
= max{νB(t1 ∗ t2), νB(t2)} − α

which imply that, µB(t1) ≥ min{µB(t1 ∗ t2), µB(t2)} and νB(t1) ≤ max{νB(t1 ∗ t2), νB(t2)}, for all
t1, t2 ∈ Y . Hence, B is an IFID of Y .

Theorem 3.12. Let B be an IFID of Y for some α ∈ [0,U]. Then, IFAT BT
α of B is an IFSU of Y .

Proof. Assume that, t1, t2 ∈ Y , then

(µB)Tα(t1 ∗ t2) = µB(t1 ∗ t2) + α

≥ min{µB(t2 ∗ (t1 ∗ t2)), µB(t2)}+ α

= min{µB(0), µB(t2)}+ α

≥ min{µB(t1), µB(t2)}+ α

= min{µB(t1) + α, µB(t2) + α}
= min{(µB)Tα(t1), (µB)Tα(t2)}
≥ min{(µB)Tα(t1), (µB)Tα(t2)}
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and

(νB)Tα(t1 ∗ t2) = νB(t1 ∗ t2)− α
≤ max{νB(t2 ∗ (t1 ∗ t2)), νB(t2)} − α
= max{νB(0), νB(t2)} − α
≤ max{νB(t1), νB(t2)} − α
= max{νB(t1)− α, νB(t2)− α}
= max{(νB)Tα(t1), (νB)Tα(t2)}
≤ max{(νB)Tα(t1), (νB)Tα(t2)}

Hence, BT
α is an IFSU of Y .

Theorem 3.13. If IFAT BT
α of B is an IFID of Y and α ∈ [0,U], then B is an IFSU of Y .

Proof. Suppose that, BT
α of B is an IFID of Y . Since

(µB)(t1 ∗ t2) + α = (µB)Tα(t1 ∗ t2)

≥ min{(µB)Tα(t2 ∗ (t1 ∗ t2)), (µB)Tα(t2)}
= min{(µB)Tα(0), (µB)Tα(t2)}
≥ min{(µB)Tα(t1), (µB)Tα(t2)}
= min{µB(t1) + α, µB(t2) + α}
= min{µB(t1), µB(t2)}+ α

then µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)}. Similarly, since

(νB)(t1 ∗ t2)− α = (νB)Tα(t1 ∗ t2)

≤ max{(νB)Tα(t2 ∗ (t1 ∗ t2)), (νB)Tα(t2)}
= max{(νB)Tα(0), (νB)Tα(t2)}
≤ max{(νB)Tα(t1), (νB)Tα(t2)}
= max{νB(t1)− α, νB(t2)− α}
= max{νB(t1), νB(t2)} − α

then νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}. Hence, B is an IFSU of Y .

Theorem 3.14. Intersection of any two intuitionistic fuzzy translations of an intuitionistic fuzzy PS
ideal B of Y is an intuitionistic fuzzy PS ideal of Y .

Proof. Suppose, BT
α and BT

β are intuitionistic fuzzy translations of intuitionistic fuzzy PS ideal B

of Y , where α, β ∈ [0,U] and α ≤ β, as we know that, BT
α and BT

β are intuitionistic fuzzy PS ideals
of Y . Then,

((µB)Tα ∩ (µB)Tβ )(t1) = min{(µB)Tα(t1), (µB)Tβ (t1)}
= min{µB(t1) + α, µB(t1) + β}
= µB(t1) + α

= (µB)Tα(t1)

and

((νB)Tα ∩ (νB)Tβ )(t1) = max{(νB)Tα(t1), (νB)Tβ (t1)}
= max{νB(t1)− α, νB(t1)− β}
= νB(t1)− α
= (νB)Tα(t1)
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Hence, BT
α ∩BT

β is an intuitionistic fuzzy PS ideal of Y .

Theorem 3.15. Union of any two intuitionistic fuzzy translations of an IFID B of Y is an IFID of
Y .

Proof. Suppose BT
α and BT

β are intuitionistic fuzzy translations of an IFID B of Y , where α, β ∈
[0,U] and α ≤ β, as we know that, BT

α and BT
β are intuitionistic fuzzy PS ideals of Y . Then,

((µB)Tα ∪ (µB)Tβ )(t1) = max{(µB)Tα(t1), (µB)Tβ (t1)}
= max{µB(t1) + α, µB(t1) + β}
= µB(t1) + β

= (µB)Tβ (t1)

and

((νB)Tα ∪ (νB)Tβ )(t1) = min{(νB)Tα(t1), (νB)Tβ (t1)}
= min{νB(t1)− α, νB(t1)− β}
= νB(t1)− β
= (νB)Tβ (t1)

Hence, BT
α ∪BT

β is an intuitionistic fuzzy PS ideal of Y .

Theorem 3.16. Let B be an IFS of Y such that IFAM BM
α of B is an IFID of Y for α ∈ (0, 1], then

B is an IFID of Y .

Proof. Suppose that, BM
α is an IFID of Y for α ∈ (0, 1] and t1, t2 ∈ Y . Then, α.µB(0) = (µB)Mα (0)

≥ (µB)Mα (t1) = α.µB(t1), so µB(0) ≥ µB(t1) and α.νB(0) = (νB)Mα (0) ≤ (νB)Mα (t1) = α.νB(t1), so
νB(0) ≤ νB(t1). Since

α.µB(t1) = (µB)Mα (t1)

≥ min{(µB)Mα (t1 ∗ t2), (µB)Mα (t2)}
= min{α.µB(t1 ∗ t2), α.µB(t2)}
= α.min{µB(t1 ∗ t2), µB(t2)}

then µB(t1) ≥ min{µB(t1 ∗ t2), µB(t2)}. Similarly, since

α.νB(t1) = (νB)Mα (t1)

≤ max{(νB)Mα (t1 ∗ t2), (νB)Mα (t2)}
= max{α.νB(t1 ∗ t2), α.νB(t2)}
= α.max{νB(t1 ∗ t2), νB(t2)}

then νB(t1) ≤ max{νB(t1 ∗ t2), νB(t2)}. Hence, B is an IFID of Y .

Theorem 3.17. If B is an IFID of Y , then IFAM BM
α of B is an IFID of Y , for all α ∈ (0, 1].

Proof. Let B be an IFID of Y and α ∈ (0, 1], we have

(µB)Mα (0) = α.µB(0)

≥ α.µB(t1)

= (µB)Mα (t1)
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and

(νB)Mα (0) = α.νB(0)

≤ α.νB(t1)

= (νB)Mα (t1)

Moreover,

(µB)Mα (t1) = α.µB(t1)

≥ α.min{µB(t1 ∗ t2), µB(t2)}
= min{α.µB(t1 ∗ t2), α.µB(t2)}
= min{(µB)Mα (t1 ∗ t2), (µB)Mα (t2)}
≥ min{(µB)Mα (t1 ∗ t2), (µB)Mα (t2)}

and

(νB)Mα (t1) = α.νB(t1)

≤ α.max{νB(t1 ∗ t2), νB(t2)}
= max{α.νB(t1 ∗ t2), α.νB(t2)}
= max{(νB)Mα (t1 ∗ t2), (νB)Mα (t2)}
≤ max{(νB)Mα (t1 ∗ t2), (νB)Mα (t2)}

Hence, BM
α of B is an IFID of Y , ∀ α ∈ (0, 1].

Theorem 3.18. Let B be an IFID of Y and α ∈ [0, 1]. Then, IFAM BM
α of B is an IFSU of Y .

Proof. Suppose that, t1, t2 ∈ Y , we have

(µB)Mα (t1 ∗ t2) = α.µB(t1 ∗ t2)

≥ α.min{µB(t2 ∗ (t1 ∗ t2)), µB(t2)}
= α.min{µB(0), µB(t2)}
≥ α.min{µB(t1), µB(t2)}
= min{α.µB(t1), α.muB(t2)}
= min{(µB)Mα (t1), (µB)Mα (t2)}
≥ min{(µB)Mα (t1), (µB)Mα (t2)}

and

(νB)Mα (t1 ∗ t2) = α.νB(t1 ∗ t2)

≤ α.max{νB(t2 ∗ (t1 ∗ t2)), νB(t2)}
= α.max{νB(0), νB(t2)}
≤ α.max{νB(t1), νB(t2)}
= max{α.νB(t1), α.νB(t2)}
= max{(νB)Mα (t1), (νB)Mα (t2)}
≤ max{(νB)Mα (t1), (νB)Mα (t2)}

Hence, BM
α is an IFSU of Y .

Theorem 3.19. If the IFAM BM
α of B is an IFID of Y , for α ∈ (0, 1]. Then, B is an intuitionistic

fuzzy PS-subalgebra of Y .
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Proof. Assume that, BM
α of B is an IFID of Y . Since

α.(µB)(t1 ∗ t2) = (µB)Mα (t1 ∗ t2)

≥ min{(µB)Mα (t2 ∗ (t1 ∗ t2)), (µB)Mα (t2)}
= min{(µB)Mα (0), (µB)Mα (t2)}
≥ min{(µB)Mα (t1), (µB)Mα (t2)}
= min{α.µB(t1), α.µB(t2)}
= α.min{µB(t1), µB(t2)}

then µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)}. Similarly, since

α.(νB)(t1 ∗ t2) = (νB)Mα (t1 ∗ t2)

≤ max{(νB)Mα (t2 ∗ (t1 ∗ t2)), (νB)Mα (t2)}
= max{(νB)Mα (0), (νB)Mα (t2)}
≤ max{(νB)Mα (t1), (νB)Mα (t2)}
= max{α.νB(t1), α.νB(t2)}
= α.max{νB(t1), νB(t2)}

then νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}. Hence, B is an IFSU of Y .

Theorem 3.20. Intersection of any two intuitionistic fuzzy multiplications of an IFID B of Y is an
IFID of Y .

Proof. Suppose that, BM
α and BM

β are intuitionistic fuzzy multiplications of IFID B of Y , where

α, β ∈ [0, 1] and α ≤ β, as we know that BM
α and BM

β are IFIDs of Y . Then,

((µB)Mα ∩ (µB)Mβ )(t1) = min{(µB)Mα (t1), (µB)Mβ (t1)}
= min{µB(t1).α, µB(t1).β}
= µB(t1).α

= (µB)Mα (t1)

and

((νB)Mα ∩ (νB)Mβ )(t1) = max{(νB)Mα (t1), (νB)Mβ (t1)}
= max{νB(t1).α, νB(t1).β}
= νB(t1).α

= (νB)Mα (t1)

Hence, BM
α ∩BM

β is IFID of Y .

Theorem 3.21. Union of any two intuitionistic fuzzy multiplications of an IFID B of Y is an IFID
of Y .

Proof. Suppose that, BM
α and BM

β are intuitionistic fuzzy multiplications of an IFID B of Y , where

α, β ∈ [0, 1] and α ≤ β and BM
α and BM

β are IFIDs of Y . Then,

((µB)Mα ∪ (µB)Mβ )(t1) = max{(µB)Mα (t1), (µB)Mβ (t1)}
= max{µB(t1).α, µB(t1).β}
= µB(t1).β

= (µB)Mβ (t1)
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and

((νB)Mα ∪ (νB)Mβ )(t1) = min{(νB)Mα (t1), (νB)Mβ (t1)}
= min{νB(t1).α, νB(t1).β}
= νB(t1).β

= (νB)Mβ (t1)

Hence, BM
α ∪BM

β is IFID of Y .

3.3. Intuitionistic Fuzzy Magnified βα Translation

In this section, the notion of intuitionistic fuzzy magnified βα translation IFMBAT is presented and
investigated.

Definition 3.22. Let B = (µB, νB) be an IFS of Y and α ∈ [0,U], β ∈ [0, 1]. An object having the form
BM T
β α = {(µB)M T

β α , (νB)M T
β α } is said to be an IFMBAT of B if it satisfies (µB)M T

β α (t1) = β.µB(t1) + α

and (νB)M T
β α (t1) = β.νB(t1)− α, ∀ t1 ∈ Y .

Example 3.23. Let Y = {0, 1, 2} be a PS-algebra defined in example 2.1. A IFS B = (µB, νB) of Y
is defined as:

µB(t1) =

{
0.3 if t1 6= 2

0.5 if t1 = 2

νB(t1) =

{
0.6 if t1 6= 2

0.4 if t1 = 2

is an IFSU and U = inf{νB(t1) | t1 ∈ Y } = 0.4, choose α = 0.1 ∈ [0,U] and β = 0.3 ∈ [0, 1], then the
mapping BM T

(0.3) (0.1) | Y → [0, 1] is given as

(µB)M T
(0.3) (0.1)(t1) =

{
(0.3)(0.3) + (0.1) = 0.19 if t1 6= 2

(0.3)(0.5) + (0.1) = 0.25 if t1 = 2

and

(νB)M T
(0.3) (0.1)(t1) =

{
(0.3)(0.6)− (0.1) = 0.08 if t1 6= 2

(0.3)(0.4)− (0.1) = 0.02 if t1 = 2

which imply that, (µB)M T
(0.3) (0.1)(t1) = (0.3).µB(t1) + 0.1 and (νB)M T

(0.3) (0.1)(t1) = (0.3).νB(t1)− 0.1, ∀ t1
∈ Y . Hence, BM T

(0.3) (0.1) is an intuitionistic fuzzy magnified (0.3)(0.1) translation.

Theorem 3.24. Let B be an intuitionistic fuzzy subset of Y , such that α ∈ [0,U], β ∈ [0, 1] and a
mapping BM T

β α | Y → [0, 1] is IFMBAT of B, if B is IFSU of Y . Then, BM T
β α is IFSU of Y .

Proof. Let B be an IFS of Y , α ∈ [0,U], β ∈ [0, 1] and a mapping BM T
β α | Y → [0, 1] is IFMBAT of

B. Suppose B is an IFSU of Y . Then,

µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)}
νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}

Moreover,

(µB)M T
β α (t1 ∗ t2) = β.µB(t1 ∗ t2) + α

≥ β.min{µB(t1), µB(t2)}+ α

= min{β.µB(t1) + α, β.µB(t2) + α}
= min{(µB)M T

β α (t1), (µB)M T
β α (t2)}

≥ min{(µB)M T
β α (t1), (µB)M T

β α (t2)}
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and

(νB)M T
β α (t1 ∗ t2) = β.νB(t1 ∗ t2)− α

≤ β.max{νB(t1), νB(t2)} − α
= max{β.νB(t1)− α, β.νB(t2)− α}
= max{(νB)M T

β α (t1), (νB)M T
β α (t2)}

≤ max{(νB)M T
β α (t1), (νB)M T

β α (t2)}

Hence, IFMBAT BM T
β α is an IFSU of Y .

Theorem 3.25. Let B be an IFS of Y , such that α ∈ [0,U], β ∈ [0, 1] and a mapping BM T
β α | Y →

[0, 1] is IFMBAT of B, if BM T
β α is IFSU of Y . Then, B is an IFSU of Y .

Proof. Let B be an intuitionistic fuzzy subset of Y , where α ∈ [0,U], β ∈ [0, 1] and a mapping
BM T
β α | Y → [0, 1] is IFMBAT of B. Let BM T

β α = {(µB)M T
β α , (νB)M T

β α } is an IFSU of Y , we have

β.µB(t1 ∗ t2) + α = (µB)M T
β α (t1 ∗ t2)

≥ min{(µB)M T
β α (t1), (µB)M T

β α (t2)}
= min{β.µB(t1) + α, β.µB(t2) + α}
= β.min{µB(t2), µB(t1)}+ α

and

β.νB(t1 ∗ t2)− α = (νB)M T
β α (t1 ∗ t2)

≤ max{(νB)M T
β α (t1), (νB)M T

β α (t2)}
= max{β.νB(t2)− α, β.νB(t1)− α}
= β.max{νB(t1), νB(t1)} − α

which imply that, µB(t1 ∗ t2) ≥ min{µB(t1), µB(t2)} and νB(t1 ∗ t2) ≤ max{νB(t1), νB(t2)}, for all
t1, t2 ∈ Y . Hence, B is an IFSU of Y .

Theorem 3.26. If B is an IFID of Y , then IFMBAT BM T
β α of B is an IFID of Y , for all α ∈ [0,U]

and β ∈ (0, 1].

Proof. Suppose that B = (µB, νB) be an IFID of Y . Then,

(µB)M T
β α (0) = β.µB(0) + α

≥ β.µB(t1) + α

= (µB)M T
β α (t1)

and

(νB)M T
β α (0) = β.νB(0)− α

≤ β.νB(t1)− α
= (νB)M T

β α (t1)

Moreover, since

(µB)M T
β α (t1) = β.µB(t1) + α

≥ β.min{µB(t1 ∗ t2), µB(t2)}+ α

= min{β.µB(t1 ∗ t2) + α, β.µB(t2) + α}
= min{(µB)M T

β α (t1 ∗ t2), (µB)M T
β α (t2)}
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then (µB)M T
β α (t1) ≥ min{(µB)M T

β α (t1 ∗ t2), (µB)M T
β α (t2)}, for all t1, t2 ∈ Y and ∀ α ∈ [0,U], β ∈ (0, 1].

Similarly, since

(νB)M T
β α (t1) = β.νB(t1)− α

≤ β.max{νB(t1 ∗ t2), νB(t2)} − α
= max{β.νB(t1 ∗ t2)− α, β.νB(t2)− α}

(νB)M T
β α (t1) = max{(νB)M T

β α (t1 ∗ t2), (νB)M T
β α (t2)}

then (νB)M T
β α (t1) ≤ max{(νB)M T

β α (t1 ∗ t2), (νB)M T
β α (t2)}, for all t1, t2 ∈ Y and ∀ α ∈ [0,U], β ∈ (0, 1].

Hence, BM T
β α of B is an IFID of Y .

Theorem 3.27. If B is an intuitionistic fuzzy set of Y , such that IFMBAT BM T
β α of B is an IFID of

Y , for all α ∈ [0,U] and β ∈ (0, 1]. Then, B is an IFID of Y .

Proof. Suppose that IFMBAT BM T
β α is an IFID of Y for some α ∈ [0,U], β ∈ (0, 1] and t1, t2 ∈ Y ,

then

β.µB(0) + α = (µB)M T
β α (0)

≥ (µB)M T
β α (t1)

= β.µB(t1) + α

and

β.νB(0)− α = (νB)M T
β α (0)

≤ (νB)M T
β α (t1)

= β.νB(t1)− α

which imply that, µB(0) ≥ µB(t1) and νB(0) ≤ νB(t1). Now, we have

β.µB(t1) + α = (µB)M T
β α (t1)

≥ min{(µB)M T
β α (t1 ∗ t2), (µB)M T

β α (t2)}
= min{β.µB(t1 ∗ t2) + α, β.µB(t2) + α}
= β.min{µB(t1 ∗ t2), µB(t2)}+ α

and

β.νB(t1)− α = (νB)M T
β α (t1)

≤ max{(νB)M T
β α (t1 ∗ t2), (νB)M T

β α (t2)}
= max{β.νB(t1 ∗ t2)− α, β.νB(t2)− α}
= β.max{νB(t1 ∗ t2), νB(t2)} − α

which imply that, µB(t1) ≥ min{µB(t1 ∗ t2), µB(t2)} and νB(t1) ≤ max{νB(t1 ∗ t2), νB(t2)}, for all
t1, t2 ∈ Y . Hence, B is an IFID of Y .

Theorem 3.28. Intersection of any two IFMBATs BM T
β α of an IFID B of Y is an IFID of Y .

Proof. Suppose that, BM T
β α and BM T

β́ ά
are two IFMBATs of IFID B of Y , where α, ά ∈ [0,U] and

β, β́ ∈ (0, 1]. Assume α ≤ ά, and β = β́, then by Theorem 3.26, BM T
β α and BM T

β́ ά
are IFIDs of Y .
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Therefore,

((µB)M T
β α ∩ (µB)M T

β́ ά
)(t1) = min{(µB)M T

β α (t1), (µB)M T
β́ ά

(t1)}

= min{β.µB(t1) + α, β́.µB(t1) + ά}
= β.µB(t1) + α

= (µB)M T
β α (t1)

and

((νB)M T
β α ∩ (νB)M T

β́ ά
)(t1) = max{(νB)M T

β α (t1), (νB)M T
β́ ά

(t1)}

= max{β.νB(t1)− α, β́.νB(t1)− ά}
= β.νB(t1)− α
= (νB)M T

β α (t1)

Hence, BM T
β α ∩BM T

β́ ά
is IFID of Y .

Theorem 3.29. Union of any two IFMBATs BM T
β α of an IFID B of Y is an IFID of Y .

Proof. Suppose that, BM T
β α and BM T

β́ ά
are two IFMBATs of IFID B of Y , where α, ά ∈ [0,U] and

β, β́ ∈ (0, 1]. Assume α ≤ ά, and β = β́, then by Theorem 3.26, BM T
β α and BM T

β́ ά
are IFIDs of Y .

Therefore,

((µB)M T
β α ∪ (µB)M T

β́ ά
)(t1) = max{(µB)M T

β α (t1), (µB)M T
β́ ά

(t1)}

= max{β.µB(t1) + α, β́.µB(t1) + ά}
= β́.µB(t1) + ά

= (µB)M T
β́ ά

(t1)

and

((νB)M T
β α ∪ (νB)M T

β́ ά
)(t1) = min{(νB)M T

β α (t1), (νB)M T
β́ ά

(t1)}

= min{β.νB(t1)− α, β́.νB(t1)− ά}
= β́.νB(t1)− ά
= (νB)M T

β́ ά
(t1)

Hence, BM T
β α ∪BM T

β́ ά
is IFID of Y .

4. Conclusion

In this paper, IFAT, IFAM and IFMBAT of PS-algebra are discussed with the help of subalgebras
and ideals. Moreover, IFMBAT of PS-algebra is studied, which gave us new line of thought to
apply PS-algebra on some other sets. For future work, PS-algebra can be applied on interval valued
intuitionistic fuzzy magnified translation, neutrosophic cubic magnified translation and T-neutrosophic
cubic magnified translation.
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Abstract − The Poisson regression model is widely used for count data. This model assumes 

equidispersion. In practice, equidispersion is seldom reflected in data. However, in real-life data, the 

variance usually exceeds the mean. This situation is known as overdispersion. Negative binomial 

distribution and other Poisson mix models are often used to model overdispersion count data. Another 

extension of the negative binomial distribution in another model for count data is the univariate 

generalized Waring. In addition, the model developed by Famoye can be used in the analysis of count 

data. When the count data contains a large number of zeros, it is necessary to use zero-inflated models. 

In this study, different generalized regression models are emphasized for the analysis of excessive zeros 

count data. For this purpose, a real data set was analysed with the generalized Poisson model, 

generalized negative binomial model, generalized negative binomial Famoye, generalized Waring 

model, and the foregoing zero-inflated models. Log-likelihood, Akaike information criterion, Bayes 

information criterion, Vuong statistics were used for model comparisons. 

Keywords − Count data, overdispersion, generalized distribution models, zero-inflated 

Mathematics Subject Classification (2020) − 62P10, 62J05  

1. Introduction 

In regression analysis, the relationship between a dependent variable and one or more independent variables 

is examined. When the dependent variable consists of count data, count regression models are used instead of 

classical regression analysis. Count data can be expressed as observations consisting of nonnegative integers 

that can take the value of zero or a value greater than zero and show a discrete distribution [1]. Count data are 

generally right skewed and do not show normal distribution [2]. Different count regression models are used 

according to the mean and variance in modelling this type of data. Poisson regression analysis is based on the 

assumption of equidispersion, in other words, equality of mean and variance(mean=variance) in cases where 

the dependent variable is count data. In practice, however, even the distribution of data is rare. In practice, 

however, the variance usually exceeds the mean. This occurrence of non-Poisson variation is known as 

overdispersion (mean>variance) [3]. In cases where the variance is smaller than the mean, the data is 

considered underdispersion (mean<variance). Modelling overdispersion or underdispersion count data with 

inappropriate models can lead to overestimated standard errors and misleading inferences [4]. In this case, 

regression models containing the dispersion parameter should be used in the dataset instead of Poisson 
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regression. Two approaches explain the overdispersion that occurs in Poisson regression. One of these 

approaches is the semi-likelihood approach, and the other approach is the mixed Poisson model approach [5]. 

Besides several models for modelling overdispersion count data, such as negative binomial distributions, 

quasi-Poisson, and other Poisson mixes, there are several models for underdispersion count data [6,7]. Harris, 

Yang, and Hardin (2012) proposed a generalized Poisson (GP) regression model for underdispersion count 

data [8].  

Count data can be expressed as observations made up of nonnegative integers and showing a discrete 

distribution. For this reason, count data are generally right-skewed and do not show normal distribution. 

Poisson regression or alternative models are used in modelling this type of data, depending on the state of 

mean and variance. Count data can be analysed using regression models based on the Poisson distribution in 

the case of equidispersion. However, other discrete regression models, such as the generalized negative 

binomial distribution (GNB), can be used in case of overdispersion [9,10]. Also, a model was investigated by 

Famoye (1995) to show its use for analysing grouped binomial data [11]. In case of overdispersion, GNB is 

recommended besides the negative binomial distribution. GP has been found to be useful in fitting 

overdispersion and under dispersion count data to a model [12]. GNB is a simplification based on the 

generalized negative binomial distribution. 

The generalized Waring distribution is an extension of the negative binomial distribution. This 

distribution is known as the beta negative binomial distribution. Waring distribution was first proposed and 

used by Irwin (1968) to model accident number data [13]. One advantage of this model over the negative 

binomial model is that researchers can distinguish unobserved heterogeneity from internal factors of each 

individual's characteristics and covariates that can affect the variability of the data. These models obtain 

parameter estimates by including the effect from overdispersion into the model. 

Generalized Famoye (GNB-F) and generalized Waring (GNB-W) models have different applications in 

the literature. Various applications of GNB-F have been demonstrated in physics, ecology, medicine, etc. [14-

16]. Another issue to be considered in the analysis of count data is the zeros' density in the dependent variable. 

Count data have zero values by nature, and the classical ordinary least squares (OLS) method does not give 

good estimates because it does not show a normal distribution.  

The presence of more than expected zero values in the data set is defined as zero inflation [17,18]. It is 

more appropriate to analyse such data sets with zero-inflated models that take into account zeros [19]. Zero-

inflated models are used in different fields such as econometrics, demography, medicine, public health, 

biology, agriculture, etc. Failure to use appropriate methods to analyse zero-inflated data may result in biased 

parameter estimates, smaller standard errors, and inconsistent results [20]. Zero-inflated count data may lack 

equality of mean and variance. In such a case, overdispersion or underdispersion must be taken into account. 

The zero-inflated generalized Poisson (ZIGP) model is an extension of the generalized Poisson 

distribution [21]. Other widely used methods are the zero-inflated negative binomial (ZINB) model and Hurdle 

models in case of excess zeros in the data [22,23]. There are two types of zeros in the zero-inflated model: 

"real zeros" and "excess zeros". There are situations where a zero-inflation model makes sense in terms of 

theory or common sense. Altun (2018) proposed Poisson-Lindley distribution for overdispersion data. The 

Poisson-Lindley distribution arises when the parameter of the Poisson distribution has the Lindley distribution 

[24]. Unlike the Poisson distribution, the Poisson-Lindley distribution allows for overdispersion. Therefore, 

this model is a good option for modelling datasets that are overdispersion and zero-inflated. 

In this study, some generalized models used for count data with overdispersion are discussed. These 

models are generalized Poisson (GP), generalized negative binomial Famoye (GNB-F), generalized negative 

binomial (GNB), generalized negative binomial Waring (GNB-W), zero-inflated negative binomial (ZINB), 

zero-inflated negative binomial Waring (ZINB-W) and zero-inflated negative binomial Famoye (ZINB-F) 

regression models. 
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2. The Generalized Models 

2.1. Generalized Poisson Regression Model (GP) 

The most widely used regression model for count data sets is the Poisson regression model with the log-link 

function. The most prominent feature of the Poisson model is its equidispersion. Still, in implementations, data 

sets often have a variance that exceeds the mean. When there is overdispersion in the data set, the generalized 

Poisson distribution is as follows [25]; 

𝑓(𝑦𝑖 , 𝜃𝑖, 𝑘) =
𝜃𝑖(𝜃𝑖 + 𝑘𝑦𝑖)𝑦𝑖−1𝑒−𝜃𝑖−𝑘𝑦𝑖

𝑦𝑖!
     𝑦𝑖 = 0, 1,2, … . (1) 

here 𝜃𝑖 > 0 and max (−1,
−𝜃𝑖

4
) < 𝑘 < 1. Also, the expected value and variance of the generalized Poisson 

distribution can be written as: 

𝜇𝑖 = 𝐸(𝑌𝑖) =
𝜃𝑖

1 − 𝑘
 

𝑣𝑎𝑟(𝑌𝑖) =
𝜃𝑖

(1 − 𝑘)3
=

𝜃𝑖

(1 − 𝑘)2
(2) 

𝐸(𝑌𝑖) = ∅𝐸(𝑌𝑖)  

In particular, the term ∅ = 1(1 − 𝑘)2 plays the role of a dispersed factor. It is clear that the generalized 

Poisson distribution for 𝑘 = 0 is the general Poisson distribution with the parameter of 𝜃𝑖. When 𝑘 < 0, under 

dispersion, occurs, while when 𝑘 > 0, overdispersion occurs [26]. The presence of overdispersion will cause 

the standard error to be below estimate and misinterpretation of the regression parameters. As a result, a 

number of estimation methods have been proposed to model data in the occurrence of overdispersion. These 

models include the quasi-Poisson or quasi-binomial regression model and the negative binomial distribution. 

Parameter estimates of these models are similar to the simple Poisson approach, but confidence intervals are 

larger [27]. As a result, the models will give different results in terms of the significance of the coefficients. 

2.2. Generalized Negative Binomial: Famoye (GNB-F) 

The GNB-F model assumes that the value of 𝜃 is an unknown scalar parameter. So, the probability mass 

function of the distribution, mean, and variance are given as: 

𝑃(𝑌 = 𝑦) =
𝜃

𝜃 + ∅𝑦
(

𝜃 + ∅𝑦
𝑦

) 𝜇𝑦(1 − 𝜇)𝜃−𝑦−∅𝑦  

0 < 𝜇 < 1, 1 ≤ ∅ < 𝜇−1   , 𝜃 > 0 and 𝑦𝑖 ∈ (0,1,2, … ) (3) 

𝐸(𝑌) = 𝜃𝑖𝜇(1 − ∅𝜇)−1  

𝑣𝑎𝑟(𝑌𝑖) = 𝜃𝑖𝜇(1 − ∅𝜇)−1(1 − ∅𝜇)−3  

Its main difference from the negative binomial model is that the θ parameter is unknown in Equation 2, 

but a known parameter in Equation 3 𝜎 = ∅ > 1. As the ∅ value approaches 1, the variance approaches the 

negative binomial. Thus, the parameter is generalized to have greater variance than is allowed in the GNB-F 

model. To compare the results of the Poisson and negative binomial distribution, the log link is as follows: 

𝑙𝑜𝑔(𝜇) = 𝑥𝛽 (4) 
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2.3. Generalized Negative Binomial Regression Model (GNB) 

The negative binomial distribution is the first distribution to consider when the variance is greater than the 

mean. Negative binomial regression is used as an alternative to Poisson regression because these two methods 

fit the model by using the same connection log link function [28]. NB model is often used to model 

overdispersion count result variables. The assumption that the Poisson parameter changes proportionally to the 

chi-square leads to the negative binomial distribution. 

The GNB model is based on the simplification of the generalized negative binomial distribution. If 𝜎 = ∅ 

and  𝜇 = 𝜋/(1 + ∅𝜋) expressions are substituted for  𝜎 and 𝜇 expressions given in Equation 3, the parameter 

becomes a vector of observation-specific known constants. When the 𝜃 parameter is known, while  ∅ > 1, the 

𝜎 parameter is not negative in the generalized negative binomial distribution. Thus, under these conditions, the 

probability mass function, mean, and variance are given by: 

𝑃(𝑌 = 𝑦) =
𝑛

𝑛 + 𝜎𝑦
(

𝑛 + 𝜎𝑦
𝑦 ) (

𝜋

1 + 𝜎𝜋
)

𝑦

(1 −
𝜋

1 + 𝜎𝜋
)

𝑛−𝑦−𝜎𝑦

 

𝐸(𝑌) = 𝑛
𝜋

1 + 𝜎𝜋
(1 −

𝜋

1 + 𝜎𝜋
) 𝜎−1 (5) 

𝑣𝑎𝑟(𝑌) = 𝑛
𝜋

1 + 𝜎𝜋
(1 −

𝜋

1 + 𝜎𝜋
𝜎) (1 + 𝜎𝜋)−3  

= 𝑛𝜋(1 + 𝜎𝜋)(1 + 𝜎𝜋 − 𝜋)  

Therefore, the variance is equal to binomial variance, = 0. It is equal to negative binomial variance 𝑖𝑓 𝜎 =

1. Here, if 𝜎 > 0, GNB generalizes the binomial distribution in the regression model. 

2.3.1. Generalized Waring Regression Model (GNB-W) 

The negative binomial distribution is a limiting case of the generalized Waring distribution. This distribution 

provides a model for the distribution of accidents. Here the variance is divided into three components. The 

first of these is the usual random component in classical accident theory; the other two can often be described 

as separate variances due to "liability" and "proneness". The sum of the last two components is the only 

component defined by the variation in sensitivity in classical theory [13]. The generalized Waring distribution 

(the number of crashes A) depends on three parameters: 𝜋, 𝑎, and 𝑘.  However, the "three-component 

distribution" is not necessarily a generalized Waring distribution. The generalized Waring distribution must 

satisfy the following conditions: 

i.  𝑌 / 𝑥, 𝜆𝑥, 𝑣 ~ Poisson (𝜇𝑥) 

ii. 𝜆𝑥 ,/𝑣 ~ Gamma (𝑎𝑥 , 𝑣) 

iii. 𝑣 ~ Beta (𝜌, 𝑘) 

In Irwin's study on accident data, 𝜆/𝑣 is specified as "accident liability" and 𝑣 as "accident proneness". 

Thus, the mass density function is given by: 

𝑃(𝑌 = 𝑦) =
Г(𝑎𝑥 + 𝜌)Г(𝑘 + 𝜌)

Г(𝜌)Г(𝑎𝑥+𝑘+𝜌)

(𝑎𝑥)𝑦(𝑘)𝑦

(𝑎𝑥 + 𝑘 + 𝜌)𝑦

1

𝑦!
(6) 

where 𝑎𝑥 , 𝑘 , 𝜌 > 0; 𝑎𝑥 = 𝜇(𝜌 − 1)/𝑘 and (𝑎)𝑤 is the Pochhammer notation Г(𝑎 + 𝑤)/Г(𝑤), if 

𝑎>0. 

𝐸(𝑌) = 𝜇 =
𝑎𝑥𝑘

𝜌 − 1
(7) 

𝑣𝑎𝑟(𝑌) = 𝜇 + 𝜇 (
𝑘 + 1

𝜌 − 2
) + 𝜇2 {

𝑘 + 𝜌 − 1

𝑘(𝜌 − 2)
}  
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2.3.2. Zero-Inflation Model 

Count models can also take zero value due to their nature. However, having more than the expected number 

of zero values in the data set is defined as zero inflation. In the datasets where most of the observations are 

zero, excluding the zero values from the analysis leads to incorrect results. Zero-inflated count data may lack 

equality of mean and variance. Therefore, when there are too many zeros, it may not be appropriate to use 

Poisson and other models. It is more appropriate to use zero-inflated Poisson (ZIP), zero-inflated negative 

binomial (ZINB), Poisson Hurdle (PH) or negative binomial Hurdle (NBH) regression methods in modelling 

dependent variables with more than the expected number of zero values [29]. 

Hardin and Hilbe (2012) describe two origins of the zero result [15]: Those who do not enter the counting 

process and those who enter the counting process and have a zero result. Therefore, the model should be 

divided into different parts, one being zero count 𝑦 = 0 and the other being nonzero 𝑦 > 0. The zero-inflated 

model can be given as: 

𝑃(𝑌 = 𝑦) = {
𝑝 + (1 − 𝑝)𝑓(𝑦),       𝑦 = 0

(1 − 𝑝)𝑓(𝑦),              𝑦 > 0
(8) 

In the above equation, p is the probability that the binary process will result in zero results. Here 0 ≤ 𝑝 <

1 and 𝑓(𝑦) is the probability function. Famoye and Singh (2006) proposed the zero-inflated generalized 

Poisson (ZIGP) model, an extension of the generalized Poisson distribution. In another widely used method, 

the negative binomial model may be preferred where the Poisson mean has a gamma distribution [21]. A 

natural extension of the negative binomial model, the zero-inflated negative binomial (ZINB) model, is used 

in case of excess zeros in the data [23]. 

For the Waring distribution and Famoye's proposed models, it is more appropriate to use zero-inflated 

versions if there are too many zeros in the data. In this context, ZINB-W and ZINB-F distributions have been 

proposed for models based on zero. 

3. Model Selection 

The fact that all p values in the model selection are less than 0.05 means that all explanatory variables are 

suitable for the model. However, the fact that all the explanatory variables are significant does not mean that 

the regression model applied will be suitable for the data. Various tests are used to determine which model is 

more suitable for count data. In this study, Akaike Information Criterion (AIC), Bayes Information Criterion 

(BIC), log-likelihood (LL) value and Vuong statistics were used. The interpretation that a model is good can 

be made when the AIC and BIC value is the smallest, or the LL value is the largest. Vuong test is one of the 

tests used to compare non-nested models. Apart from nested model comparisons, possible binary models can 

also be compared with the Vuong test. It is a widely used test, especially in zero-inflated model comparisons. 

In this way, it can be determined which models are suitable for models with excessive zeros. 

3.1. Log-Likelihood (LL) 

The advantage of using the maximum likelihood method (ML) is that the log-likelihood (LL) test can be used 

for model comparisons. The LL test can be used to test for the presence of overdispersion. To test the Poisson 

model against the GP model, where α is the overdispersion parameter, the hypothesis is expressed as 𝐻0: 𝛼 =

0 and 𝐻0: 𝛼 ≠ 0. Probability ratio statistics is calculated as; 

𝐿𝐿 = 2(𝑙𝑛𝐿1 − 𝑙𝑛𝐿0) (9) 

Where 𝐿1  and  𝐿0  are the log-likelihood under the respective hypothesis. LL has an asymptotic chi-square 

distribution with one degree of freedom [30]. When choosing the model over the LL value, the model with the 

largest log-likelihood value is determined as the appropriate model. 
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3.2. Akaike Information Criterion (AIC) 

This criterion, which is widely used to compare different models, can be expressed as follows [31]; 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑜𝑔(𝐿) (10) 

In this equation, L represents the maximum value of the log-likelihood function, and k represents the 

number of explanatory variables. Among the existing models, the model with the lowest AIC value is selected 

as the appropriate model. In cases where the number of parameters is larger than the sample size, the AICc 

proposed by Hurvich and Tsai should be used instead of AIC [32]. This value can be written as follows [31-

33]; 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1 
=

2𝑘𝑛

𝑛 − 𝑘 − 1
− 2ln (𝐿) (11) 

3.3. Bayes Information Criteria (BIC) 

Akaike derived the BIC (Bayesian Information Criterion) model selection criteria for selected model problems 

in linear regression [34]. The equation regarding the Bayesian measure of knowledge is as follows: 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(ℒ) + 𝑘𝑙𝑜𝑔(𝑛) (12) 

As in the Akaike information criterion, the model with the smallest BIC value among the available models 

is selected as the appropriate model. 

3.4. Vuong Test  

The Vuong statistic is used to compare non-nested models such as ZIP, NB and ZINB. This test is a statistic 

used when there is no missing observation in the data set [35,36]. Equations used for the Vuong test are given 

in Equation 13 and Equation 14. 

𝑉𝑢𝑜𝑛𝑔 =
𝑚̅√𝑛

∑ √𝑚 − 𝑚̅
𝑛 − 1

=
𝑚̅√𝑛

𝑠𝑚

(13)
 

Here, 𝑚𝑖 is a random variable,  𝑚̅ is the mean of  𝑚𝑖, 𝑠𝑚 is the standard deviation, and n is the sample size. 

Suppose we want to compare the probability density functions of the ZIP and ZINB models. The Ho and H1 

hypotheses are as follows: 

H0: ZIP and ZINB distribution functions are equal 

H1: ZIP and ZINB distribution functions are not equal 

Probability density functions with 𝑓1 and 𝑓2 , the representation way of 𝑚𝑖 is as follows; 

𝑚𝑖 = log (
𝑓1(𝑦𝑖/𝑥𝑖)

𝑓2(𝑦𝑖/𝑥𝑖)
) (14) 

Within the family of ZIP models, testing if a Poisson model is adequate corresponds to testing: 𝐻0 = ∅𝑖 =

0 vs. 𝐻0 = ∅𝑖 > 0.  In the interpretation of the Vuong test value having a normal distribution (e.g. for 𝛼 =

0.05 significance level), if the Vuong value is greater than 1.96, the first model is interpreted as "closer" to 

the real model; if the Vuong value is less than −1.96, the second model can be interpreted as "closer" to the 

real model. If the calculated value is not between (−1.96;  1.96), it is interpreted as "there is no difference 

between using the first or the second model" [37].  
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4. Experimental Results 

In this study, the data from a three-year study conducted by Hemmingsen et al. (2005) in four regions off the 

Norwegian coast to count parasites [38] were used. The dependent variable is the number of parasites 

(Intensity), while the independent variables are depth, length of the fish, and area. In addition, missing 

observations in the original data were removed from the model. Since the data set contains a large number of 

zeros, it was tested in zero-inflated models and generalized models. Statistical analysis of the study was made 

using Stata 14 software program. The frequency distribution showing the parasite density is given in Figure 1. 

 

Fig 1. Frequency distribution of the number of parasites  

4.1. Generalized Poisson Regression Model (GP) 

The Poisson regression model, one of the most widely used generalized models, was first tried because 

overdispersion was detected in observation values. The results obtained are given in Table 1. IRR values show 

exp β values in Tables. 

Table  1. Generalized Poisson regression model (GP) 

Generalized Poisson regression Number of obs = 1191    

 LR chi2(3) = 89.68    

Dispersion =  . 8910582 Prob > chi2 = 0.0000    

Log-likelihood = −2566.7445 Pseudo R2 = 0.0172    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.004756 . 0006329 7.50 0.000 1.00351 1.006003 

Length . 9981571 . 0028743 −0.64 0.521 . 9925496 1.003796 

Area 1.123788 . 047966 2.43 0.015 1.022953 1.234562 

_cons 2.024088 . 2408844 2.93 0.003 1.262374 3.245417 

/atanhdelta 1.427039 . 0548193   1.319595 1.534483 

delta . 8910582 . 0112936   . 8666833 . 9111886 

Likelihood-ratio test of delta=0: chi2(1)  =  1.8𝑒 + 04 Prob>=chi2 = 0.0000 

According to the results presented in Table 1, the length was found to be insignificant in terms of the 

number of parasites. The area and depth variables were found to be significant. According to the GP model, 

the length variable was found insignificant (𝑝 > 0.05). Area and depth variables are significant (𝑝 < 0.05). 

Accordingly, a one-unit increase in depth increases the parasite intensity approximately 1.005 times. When 

the area changes, the parasites density increases approximately 1.124 times. When the model is evaluated as 

a whole, it is significant according to the chi-square test. 
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4.2. Generalized Negative Binomial: Famoye (GNB-F) 

Results for GNB-F are shown in Table 2. According to this model, the depth, length, and area variables are 

significant (𝑝 <  0.05). The model was again found to be statistically significant (𝑃𝑟𝑜𝑏 > 𝑐ℎ𝑖2 = 0.0000).  

Table  2. Generalized negative binomial: Famoye (GNB-F) 

Generalized negative binomial-F regression Number of obs = 1191    

 LR chi2(3) = 120.96    

Log likelihood =  −2550.873 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.006702 . 0013168 5.11 0.000 1.004.125 1.009286 

Length . 9756556 . 0050295 −4.78 0.000 . 9658476 . 9855632 

Area 1.245722 . 0802515 3.41 0.001 1.097957 1.413373 

_cons 15.753 6.412282 6.77 0.000 7.093826 34.98212 

/lnphim1 −6.154845 2.049813   −101.724 −2.137286 

/lntheta −1.64351 . 0809544   −1.802178 −1.484842 

phi 1.002123 . 0043521   1.000038 1.117975 

theta . 1933004 . 0156485   . 1649393 . 2265381 

4.3. Generalized Negative Binomial Regression Model (GNB) 

The GNB distribution is one of the most widely used models in cases where the variance is greater than the 

mean; that is, in the case of overdispersion. The results obtained are given in Table 3. The fact that 𝛼 = 5.34 

dispersion parameter is greater than zero indicates that it is overdispersion. According to the GNB model, the 

depth, length, and area variables are significant (𝑝 < 0.05). One unit increase in depth increases the parasite 

intensity nearly 1.006 times. When the area changes, the parasite intensity increases approximately 1.258 

times. 

Table  3. Generalized negative binomial regression model (GNB) 

Generalized Poisson regression Number of obs = 1191    

 LR chi2(3) = 114.65    

 Prob > chi2 = 0.0000    

Log likelihood = -2551.0291 Pseudo R2 = 0.0220    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Depth 1.006555 . 0012471 5.27 0.000 1.004114 1.009002 

Length . 9753681 . 004905 −4.96 0.000 . 9658017 . 9850293 

Area 1.258504 . 0772588 3.75 0.000 1.115834 1.419414 

_cons 3.096207 1.192705 2.93 0.003 1.45524 6.587573 

/lnalpha 1.675206 . 0539381   1.56949     1.780923 

alpha 5.339897 . 288024   4.804195     5.935333 

Likelihood-ratio test of delta= 0: chibar2(01) =  1.8𝑒 + 04 Prob>=chibar2 =  0.0000 

4.3.1. Generalized Waring Regression Model (GNB-W) 

The results obtained for the GNB-W model are given in Table 4. The depth, length and area variables are 

significant according to the GNB-W model (𝑝 < 0.05).  



56 

 

Journal of New Theory 35 (2021) 48-61 / Models for Overdispersion Count Data with Generalized Distribution … 

Table  4. Generalized Waring regression model (GNB-W) 

Generalized negative binomial-W regression Number of obs = 1191    

 LR chi2(3) = 106.77    

Log likelihood =  −2544.401 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [95% Conf. Interval] 

Depth 1.008.675 . 0014077 6.19 0.000 1.005919 1.011437 

Length . 9783038 . 0058167 −3.69 0.000 . 9669695 . 9897709 

Area 1.204.492 . 0851747 2.63 0.009 1.048605 1.383554 

_cons 2.089.578 . 9044374 1.70 0.089 . 8946043 4.880748 

/lnrhom2 −.4083326 . 4713641   −1.332189 . 5155241 

/lnk −1.508367 . 0772628   −1.659799 −1.356935 

rho 2.664758 . 3133429   2.263899 3.674516 

k . 221271 . 017096   .1901771 . 2574488 

One unit increase in depth increases the parasites intensity approximately 1.008 times. When the area 

changes, the parasite intensity increases about 1.204 times. 

4.3.2. Zero-Inflation 

In the study, 651 observations within 1191 observations were found to contain zero values. In other words, 

approximately 55% of the parasite count data consists of zero observation. For this reason, analyses have also 

been made with zero-inflated models. The results of ZINB, ZINB-W, and ZINB-F models are given below. 

4.3.2.1. Zero-Inflated Negative Binomial Regression (ZINB) 

Zero-inflated models consist of two parts. ZINB model results are given in Table 5. The length variable is 

specified as the inflate variable. One unit increase in depth increases the parasites intensity approximately 

1.006 times. When the area changes, the parasite intensity increases approximately 1.238 times. As the length 

decreases, the parasite density decreases (−0.223). 

Table  5. Zero-inflated negative binomial regression (ZINB) 

Zero-inflated negative binomial regression Number of obs = 1191    

 Nonzero obs = 540    

 Zero obs = 651    

Inflation model = logit LR chi2(3) = 128.03    

Log likelihood =  −2539.562 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

intensity       

Depth 1.006497 . 001221 5.34 0.000 1.004107 1.008893 

Length . 9693981 . 00494 −6.10 0.000 . 9597642 . 9791287 

Area 1.238253 . 0743365 3.56 0.000 1.100801 1.392868 

_cons 4.755356 1.888854 3.93 0.000 2.183137 10.35822 

inflate       

Length −.2229618 . 0809777 −2.75 0.006 −.3816751 −.0642484 

_cons 5.721762 2.252244 2.54 0.011 1.307444 10.13608 

/lnalpha 1.584263 . 061479 25.77 0.000 1.463767 1.70476 

alpha 4.875699 . 2997532   4.322209 5.500066 

Vuong test of zinb vs. standard negative binomial: 𝑧 =  2.58 Pr> 𝑧 =  0.0049 
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Using the ZINB distribution is more meaningful than the standard negative binomial distribution 

according to the Vuong test (𝑧 = 2.58 Pr > 𝑧 = 0.0049). The variables are significant for both parts of the 

model. 

4.3.2.2. Zero-Inflated Negative Binomial Regression-W (ZINB-W) 

The ZINB-W model was compared with the standard Waring model. Table 6 shows the results. One unit 

increase in depth increases the parasites intensity approximately 1.008 times. When the area changes, the 

parasite intensity increases approximately 1.164 times. As the length decreases, the parasite density decreases 

(−0.175). 

Table  6. Zero-inflated negative binomial regression-W (ZINB-W) 

Zero-inflated gen neg binomial-W regression Number of obs = 1191    

Regression link :  Nonzero obs = 540    

Inflation link: logit Zero obs = 651    

 Wald chi2(3) = 126.93    

Log likelihood = -2530.653 Prob > chi2 = 0.0000    

Intensity IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

intensity       

Depth 1.008.867 . 0013606 6.55 0.000 1.006204 1.011537 

Length . 9667968 . 0063723 −5.12 0.000 . 9543876 . 9793674 

Area 1.163945 . 0820843 2.15 0.031 1.013686 1.336477 

_cons 4.490452 2.178.058 3.10 0.002 1.735488 1.161873 

inflate       

Lengt −.1750797 . 0808031 −2.17 0.030 −.3334509 −.0167085 

_cons 4.615169 2.244926 2.6 0.040 . 2151952 9.015143 

/lnrhom2 −.9190866 . 4479906   −1.797132 −.0410411 

/lnk −1.337637 . 1120339   −1.55722 −1.118055 

rho 2.398883 . 1786959   2.165774 2.95979 

𝑘 . 262465 . 029405   . 2107211 . 3269151 

Vuong test of zinbregw vs. gen neg binomial(W): 𝑧 =  29.81 Pr > 𝑧 =  0.0000 

Bias-corrected (AIC) Vuong test: 𝑧 =  29.81 Pr > 𝑧 =  0.0000 

Bias-corrected (BIC) Vuong test: 𝑧 =  29.79 Pr > 𝑧 =  0.0000 

According to the Vuong test, this model is more significant than the generalized negative binomial 

distribution. The number of parasites increases as depth, length, and area change. 

4.3.2.3. Zero-Inflated Negative Binomial Regression-F (ZINB-F) 

The results found for ZINB-F are as in Table 7. When this model was compared with the results obtained with 

GNB-F, the Vuong test was found to be significant. 
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Table  7. Zero-inflated negative binomial regression-F (ZINB-F) 

Zero-inflated gen neg binomial-F regression Number of obs = 1191    

Regression link :  Nonzero obs = 540    

Inflation link: logit Zero obs = 651    

 Wald chi2(3) = 139.87    

Log likelihood =  −2539.562 Prob > chi2 = 0.0000    

Intensity_ IRR Std. Err. 𝒛 𝑷 > 𝒛 [𝟗𝟓% Conf. Interval] 

Intensity_       

Depth 1.006497 . 0012211 5.34 0.000 1.004107 1.008893 

Length . 9693989 . 0049403 −6.10 0.000 . 9597644 . 9791302 

Area 1.238.237 . 0743426 3.56 0.000 1.100775 1.392866 

_cons 2.318.361 9.117.887 7.99 0.000 10.72536 50.11299 

inflate       

Length −.2229628 . 0809865 −2.75 0.006 −.3816934 −.0642322 

_cons 5.721764 2.252445 2.54 0.011 1.307053 10.13647 

/lnphim1 −15.16193 695.4499   −1378.219 1347.895 

/lntheta −1.584.224 . 061541   −1.704842 −1.463606 

phi 1 . 0001809   1 . 

theta . 2051068 . 0126225   . 181801 . 2314003 

Vuong test of zinbregf vs. gen neg binomial(F): 𝑧 =  3.97 Pr> 𝑧 =  0.0000 

Bias-corrected (AIC) Vuong test: 𝑧 =  3.74 Pr > 𝑧 =  0.0001 

Bias-corrected (BIC) Vuong test: 𝑧 =  3.14 Pr > 𝑧 =  0.0008 

5. Conclusion 

Modelling discrete data is a special type of regression. As is known, linear regression analysis can be used in 

cases where the dependent variable is continuous. However, the data to be used in the analysis may not always 

be available continuously. In such cases, if the data are discontinuous, analyses using linear regression models 

will give ineffective, inconsistent, and contradictory results. Therefore, count data models should be used when 

the dependent variable consists of nonnegative discrete values. One of the most common models used in count 

data analysis is the Poisson regression model. The most important feature of the Poisson regression model is 

that the variance and mean are equal. Generally, this feature cannot be provided in practice. In this case, 

negative binomial regression analysis or generalized Poisson regression analysis is widely used. In addition, 

cases where count data contain too many zero values are encountered in many areas. In such cases, the zero-

inflated Poisson, zero-inflated Negative Binomial, Poisson Hurdle and Negative Binomial Hurdle regression 

models can be preferred. 

Table  8. Model Selection 

Count Models LL AIC BIC 

GP −2566.7445 5143.489 5168.902 

GNB-F −2550.873 5113.747 5144.242 

GNB −2551.0291 5112.058 5137.471 

GNB-W −2544.401 5100.802 5131.298 

ZINB −2539.562 5093.124 5128.702 

ZINB-W −𝟐𝟓𝟑𝟎. 𝟔𝟓𝟑 𝟓𝟎𝟕𝟕. 𝟑𝟎𝟔 𝟓𝟏𝟏𝟕. 𝟗𝟔𝟕 

ZINB-F −2539.562 5095.124 5135.785 
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This study aims to compare the generalized Famoye and Waring models with classical methods apart 

from the commonly used methods. Thus, GP, GNB-F, GNB and GNB-W models were examined by 

considering an overdispersion data set. Since approximately 55% of the data set consists of zero, the zero-

inflated models of these models were also tested, and a model comparison was made. As a result, LL, AIC, 

and BIC values for the six count models are given in Table 8. Due to the large number of zeros in the data set 

we were using, zero-inflated models yielded better results. Among these, the highest LL value and the lowest 

AIC and BIC values were obtained for the ZINB-W model. 

The study focused on generalized models, especially on count regression models. For these models, their 

performances can also be investigated by conducting a simulation study. In the case of different rates of zero 

values and outliers in the data set, the models' performances can be compared. Thus, the reliability of the 

obtained results can be increased by selecting the appropriate model for the data structure. 
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1. Introduction

A conventional way to compare two manifolds is by defining smooth maps from one manifold to
another. One such map is submersion, whose rank equals to the dimension of the target manifold.
Riemannian submersion between Riemannian submanifolds were first introduced by O’ Neill and Gray
[1, 2]. Later many authors studied different geometric properties of the Riemannian submersions [3],
semi-slant submersions [4–6], hemi-slant submersions [7–9], semi-invariant submersions [10–12], anti-
invariant submersions [13–15].

On the other hand, Friedmann et al. defined the concept of the semi-symmetric non-metric con-
nection in a differential manifold [16]. Hayden studied metric connection with torsion a Riemannian
manifold [17]. Later, Yano investigated a Riemannian manifold with new connection, which is called a
semi-symmetric metric connection [18]. Afterwards, Agashe et al. studied semi-symmetric non-metric
connection (SSNMC) on a Riemannian manifold [19]. Many author have studied semi-symmetric
connection [20–26].

Let M be differentiable manifold with linear connection ∇. Therefore, for all K,L ∈ Γ(TN), we
get

T (K,L) = ∇KL−∇LK − [K,L],

where T is torsion tensor of ∇. If the torsion tensor T = 0, then the connection ∇ is said to be
symmetric, otherwise it is called non-symmetric. Moreover, for all K,L ∈ Γ(TN), the connection ∇
is said to be semi-symmetric if

T (K,L) = η(L)K − η(K)L

where η is a 1-form on N . However, ∇ is called metric connection if ∇g = 0 with Riemannian metric
g, otherwise it is said to be non-metric.

1ramazan.sari@amasya.edu.tr (Corresponding Author)
1Gümüşhacıköy Hasan Duman Vocational School, Amasya University, Amasya, Turkey

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0002-4618-8243


Journal of New Theory 35 (2021) 62-71 / Semi-Invariant Riemannian Submersions with ... 63

In [27], Akyol and Beyendi studied the idea of Riemannian submersion with SSNMC. They inves-
tigated O’Neill’s tensor fields, obtain derivatives of those tensor fields and compare curvatures of the
total manifold, the base manifold and the fibres by computing curvatures.

The main purpose of this paper is to investigate geometry of semi-invariant Riemannian submersion
from a Kaehler manifold with SSNMC to a Riemannian manifold.

2. Preliminaries

Definition 2.1. Let F : (Nn, gN ) → (Bb, gB) be a submersion between two Riemannian manifolds.
Then, F said to be Riemannian submersion if

i. F has maximal rank.

ii. The differential F∗ preserves the lenghts of horizontal vectors.

On the other hand, F−1(k) is an (n − b) dimensional submanifold of N , for each k ∈ N The
submanifolds F−1(k) are called fibers. Moreover, vector fields tangent to fibers are called vertical and
vector fields orthogonal to fibers are horizantal. A vector field X on N is called basic if X is horizontal
and F∗Xq = Xπ∗(q) for all q ∈ N . We determine that V and H define projections kerF∗ and (kerF∗)

⊥,
respectively.

On the other hand, a Riemannian submersion F : N → B determines tensor fields T and A on N
such that,

T (E,F ) = TEF = H∇M

VEVF + V∇M

VEHF, (1)

A(E,F ) = AEF = V∇M

HEHF +H∇M

HEVF (2)

for any E,F ∈ Γ(TM) (see [1]). By virtue of (1) and (2), one can obtain

∇M

V W = TV W + ∇̂V W (3)

∇M

V X = TV X +H(∇M

V X) (4)

∇M

XV = V(∇M

XV ) +AXV (5)

∇M

XY = AXY +H(∇M

XY ) (6)

for all V,W ∈ Γ(kerF∗) and X,Y ∈ Γ((kerF∗)
⊥). Further, if X is basic, then

H(∇M

V X) = AXV (7)

On the other hand, let N,B be two Rieamannian manifold and F : N → B is a smooth map.
Therefore, the second fundamental form of F is expressed by

(∇F∗)(K,L) = ∇B

KF∗L− F∗(∇
N

KL) (8)

for K,L ∈ Γ(TN). Moreover, π is said to be a totally geodesic map if (∇F∗)(K,L) = 0 for K,L ∈
Γ(TN) [28].

Now, we recall the definition of Kaehler manifold. Let N be a Hermitian manifold with respect
Hermitian structure (J, g) such that

J2 = −I (9)

and
g(E,F ) = g(JE, JF ) (10)

for all E,F ∈ Γ(TN),where g(JE, F ) = −g(E, JF ).
A Hermitian manifold is called Kaehler manifold if

∇J = 0 (11)
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On the other hand, we define a linear connection ∇̃ on Kaehler manifold N such that

∇̃EF = ∇EF + η(F )E (12)

where E,F ∈ Γ(TN), ∇ is a Levi-Civita connection on N and η is a 1-form with the vector field P on
N by

η(E) = g(E,P )

By virute of (12), we arrive that

T̃ (E,F ) = η(F )E − η(E)F

and
(∇̃Eg)(F,K) = −η(F )g(E,K)− η(K)g(E,F )

where T̃ is torsion tensor of ∇̃. Then, ∇̃ defined a semi-symmetric non metric conection with (12).
Let N be a Kaehler manifold. We using (12), for all K,L ∈ Γ(TN), we get,

(∇KJ)L = ∇KJL− J∇KL

= ∇̃KJL− η(L)K − J∇̃KL+ η(L)JK

Then, using (11) we obtain,
(∇̃KJ)L = η(L)JK − η(L)K (13)

Now, we call O’Neill’s tensor fields for SSNMC [27]. For all K,L ∈ Γ(TN), we have,

T̃KL = TKL+ η(hL)vK

and
ÃKL = AKL+ η(vL)hK

Then, using last two equations, we obtain

∇̃KL = TKL+ v∇̃KL (14)

∇̃KX = TKX + h∇̃KX + η(X)K (15)

∇̃XK = AXK + v∇̃XK + η(K)X (16)

∇̃XY = AXY + h∇̃XY (17)

where for all K,L ∈ Γ(kerF∗), X, Y ∈ Γ((kerF∗)
⊥).

3. Semi-Invariant Riemannian Submersion

Definition 3.1. Let N and B be a Kaehler manifold and Riemannian manifold, respectively. Let
us assume that F : N → B be a Riemannian submersion. Therefore, F is called semi-invariant
Riemannian submersion if there is a distribution D1 ⊆ kerF∗ such that

kerF∗ = D1 ⊕D2

and
JD1 = D1, JD2 ⊆ (kerF∗)

⊥

where D2 is orthogonal complementary to D1 in kerF∗ ( [12]).
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Example 3.2. Let F be a submersion. We denote that

F : R6 −→ R3

(x1, x2, x3, x4, x5, x6) (x1+x2√
2

, x3+x6√
2

, x4+x5√
2

)

Then, it follows that

kerF∗ = span{V1 =
∂

∂x1
− ∂

∂x2
, V2 =

∂

∂x3
− ∂

∂x6
, V3 = − ∂

∂x4
− ∂

∂x5
}

and

(kerF∗)
⊥ = span{H1 =

∂

∂x1
+

∂

∂x2
, H2 =

∂

∂x3
+

∂

∂x6
, H3 =

∂

∂x4
+

∂

∂x5

Hence we have JV1 = −V1, JV2 = H3 and JV3 = −H2. Thus it follows that D1 = span{V1} and
D2 = span{H2, H3}. On the other hand, we arrive that,

gR3(F∗H2, F∗H2) = gR6(H2, H2), gR3(F∗H3, F∗H3) = gR6(H3, H3)

where gR3 and gR6 determine metrics of R3 and R6, respectively. Then, F is semi-invariant Riemannian
submersion.

Let F : (N, J, g) → (B, g) be a semi-invariant Riemannian submerion such that N and B are
Kaehler manifold and Riemannian manifold respectively. For all K ∈ Γ(TN), we write

E = VE +HE

where VE ∈ Γ(kerF∗) and HE ∈ Γ((kerF∗)
⊥). Then, for all K ∈ Γ(kerF∗), we write

JK = ϕK + ωK (18)

where ϕK ∈ Γ(D1) and ωK ∈ Γ(JD2).
Since F is a semi-invariant Riemannian submersion, we can determine

(kerF∗)
⊥ = JD2 ⊕ µ

where JD2 and µ are complementary to each other. Similarly, x ∈ Γ((kerF∗)
⊥), we get

JX = BX + CX (19)

where BX ∈ Γ(D2) and CX ∈ Γ(µ).

4.Geometry of Distributions

We note that, for brevity we use a abbreviation ”F is a semi-invariant Riemannian submersion with
SSNMC” for F : (N, J, g) → (B, g) be a semi-invariant Riemannian submersion from Kaehler manifold
with SSNMC M and Riemannian manifold N .

Theorem 4.1. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D1 is integrable if and only if we have

gB(F∗(TV BZ + h∇̃V CZ), F∗(ωU))− gB(F∗(TUBZ + h∇̃UCZ), F∗(ωV )) = gN (v∇̃UBZ + TUCZ, ϕV )

−gN (v∇̃V BZ + TV CZ, ϕU)

+2gN (ϕU, V )η(Z)

for all U, V ∈ Γ(D1) and Z ∈ Γ(D2).
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Proof. Firstly, we using (10) and (13). For all U, V ∈ Γ(D1) and Z ∈ Γ(D2), we arrive that

gN (∇̃UV,Z) = gN (∇̃UJV, JZ) (20)

By virtue of (13) and (20), we get,

gN ([U, V ], Z) = gN (∇̃UJV, JZ)− gN (∇̃V JU, JZ)

After some calculations, we conclude,

gN ([U, V ], Z) = −gN (JV, ∇̃UJZ) + gN (JU, ∇̃V JZ)

We know that F is a semi-invariant Riemannian submersion, by virtue of (19), (14), (15) and (18),
we conclude that,

gN ([U, V ], Z) = −gN (ϕV, v∇̃UBZ + TUCZ)− gN (wV, TUBZ + h∇̃UCZ)− η(CZ)gN (JV, U)

+gN (ϕU, v∇̃V BZ + TV CZ) + gN (wU, TV BZ + h∇̃V CZ) + η(CZ)gN (JU, V )

which gives proof.

Theorem 4.2. Let F be a semi-invariant Riemannian submersion with SSNMC . Therefore, the
distribution D2 is integrable if and only if we have

gB(F∗(TZϕU + h∇̃ZwU), F∗(JW )) = gB(F∗(TWϕU + h∇̃WwU), F∗(JZ))

for all U ∈ Γ(D1) and Z,W ∈ Γ(D2).

Proof. By virtue of (12), (10) and (13), we get

gN ([Z,W ], U) = gN (∇̃ZJW, JU)− gN (∇̃WJZ, JU)

for all U ∈ Γ(D1) and Z,W ∈ Γ(D2). Therefore, we conclude

gN ([Z,W ], U) = −gN (JW, ∇̃ZJU) + gN (JZ, ∇̃WJU)

Then, using (18), (14) and (15), we arrive,

gN ([Z,W ], U) = −gN (JW, TZϕU + h∇̃ZwU) + gN (JZ, TWϕU + h∇̃WwU)

which proves assertion.

Theorem 4.3. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D1 defines a totally geodesic foliation on N if and only if we have

F∗(∇̃UJV ) ∈ Γ(µ)

and

gB(F∗(TUϕV ), F∗(CX)) + gB(F∗(h∇̃UwV ), F∗(CX)) = gN (v∇̃UϕV + TUwV,BX)

+gN (U,BX)η(wV )

for all U, V ∈ Γ(D1), Z ∈ Γ(D2) and X ∈ Γ(kerF⊥
∗ ).

Proof. We know that, D1 defines a totally geodesic foliation on M if and only if gN (∇̃UV,Z) = 0
and gN (∇̃UV,X) = 0, for all U, V ∈ Γ(D1), Z ∈ Γ(D2) and X ∈ Γ(kerF⊥

∗ ).
Then, using (13) and (10), we get,

gN (∇̃UV,Z) = gN (∇̃UJV, JZ)
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Since E = VE +HE, for all E ∈ Γ(TM), we have

gN (∇̃UV,Z) = gN (H∇̃UJV, JZ)

Therefore, F is a semi-invariant Riemannian submersion and character of F , we arrive that,

gN (∇̃UV,Z) = gB(F∗(H∇̃UJV ), F∗(JZ))

Moreover, using (13) and (10), we get

gN (∇̃UV,X) = gN (∇̃UJV, JX)

By virtue of (14) and (15), we get

gN (∇̃UV,X) = gN (TUϕV + h∇̃UwV,CX) + gN (v∇̃UϕV,BX) + η(wV )gN (U,BX)

or

gN (∇̃UV,X) = gB(F∗(TUϕV + h∇̃UwV ), F∗(CX)) + gM (v∇̃UϕV,BX) + η(wV )gN (U,BX)

which gives our assertion.

Theorem 4.4. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution D2 defines a totally geodesic foliation on N if and only if we have

gB(F∗(TZBX), F∗(CX)) + gB(F∗(h∇̃ZCX), F∗(CX)) = −gN (v∇̃ZBX + TZCX,BX)− η(CX)gN (Z,BX)

and

gB(F∗(TZϕU), F∗(CW )) + gB(F∗(h∇̃ZwU), F∗(CW )) = gN (v∇̃ZϕU + TZwU,BW )

+gN (Z,BW )η(wU)− gN (Z, ϕU)η(wW )

for all Z,W ∈ Γ(D2), U ∈ Γ(D1) and X ∈ Γ(kerF⊥
∗ ).

Proof. For all Z,W ∈ Γ(D2), X ∈ Γ(kerF⊥
∗ ), using (10), and (13), we conclude,

gN (∇̃ZW,X) = gN (∇̃ZJW, JX)

Then, from (19), (14) and (15), we have,

gN (∇̃ZW,X) = gN (TZBX + v∇̃ZBX + TZCX + h∇̃ZCX + η(CX)Z,BX + CX)

We know that F is semi-invariant Riemannian submersion, we conclude,

gN (∇̃ZW,X) = gB(F∗(TZBX+h∇̃ZCX), F∗(CX))+gN (v∇̃ZBX+TZCX,BX)+η(CX)gN (Z,BX)

Moreover, for all Z,W ∈ Γ(D2), U ∈ Γ(D1), using (10), and (13),

gN (∇̃ZW,U) = −gN (JW, ∇̃ZJU)

By virtue of (19), (14) and (15), imply that

gN (∇̃ZW,U) = −gN (BW +CW,TZϕU + v∇̃ZϕU + TZwU + h∇̃ZwU + η(wU)Z)− η(JW )gN (Z, JU)

Since F is semi-invariant Riemannian submersion, we arrive,

gN (∇̃ZW,U) = −gB(F∗(TZϕU + h∇̃ZwU), F∗(CW ))− gN (BW, v∇̃ZϕU + TZwU)

−η(wU)gN (BW,Z)− η(wW )gN (Z, ϕU)

which give proof.
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Corollary 4.5. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the fibers
of F are the locally product Riemannian manifold of leaves of D1 and D2 if and only if

F∗(∇̃UJV ) ∈ Γ(µ),

gB(F∗(TUϕV ), F∗(CX)) + gB(F∗(h∇̃UwV ), F∗(CX)) = gN (v∇̃UϕV + TUwV,BX)

+gN (U,BX)η(wV )

and

gB(F∗(TZBX), F∗(CX))+gB(F∗(h∇̃ZCX), F∗(CX)) = −gN (v∇̃ZBX+TZCX,BX)−η(CX)gN (Z,BX)

gB(F∗(TZϕU), F∗(CW )) + gB(F∗(h∇̃ZwU), F∗(CW )) = gN (v∇̃ZϕU + TZwU,BW )

+gN (Z,BW )η(wU)− gM (Z, ϕU)η(wW )

for all U, V ∈ Γ(D1), Z,W ∈ Γ(D2) and X ∈ Γ(kerF⊥
∗ ).

Theorem 4.6. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution kerF⊥

∗ is integrable if and only if we have

AY CX −AXCY + v∇̃Y BX − v∇̃XBY /∈ Γ(D1)

and

gB(F∗(AY BX), F∗(wZ)) + gB(F∗(h∇̃Y CX,F∗(wZ)) = −gN (v∇̃Y BX +AY CX,ϕZ)

+η(X)gN (Y − wY,wZ)− η(Y )gN (X − wX,wZ)

for all X ∈ Γ(kerF⊥
∗ ), Z ∈ Γ(D2) and U ∈ Γ(D1) .

Proof. We using (12), (10) and (13), for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1), we have

gN ([X,Y ], U) = gN (∇̃XJY, JU)− gN (∇̃Y JX, JU)

Then, using (19), (16) and (17), we arrive,

gN ([X,Y ], U) = −gN (−v∇̃XBY −AXCY + v∇̃Y BX +AY CX,U)

Moreover, for Z ∈ Γ(D2), by (12), (10) and (13), we get

gN ([X,Y ], Z) = gN (∇̃XJY, JZ)− η(Y )gN (X − JX, JZ)

−gN (∇̃Y JX, JZ) + η(X)gN (Y − JY, JZ)

Therefore, by virtue of (18), (15) and (16), we conclude that

gN ([X,Y ], Z) = −gN (AY BX + h∇̃Y CX,wZ)− gN (v∇̃Y BX +AY CX,ϕZ)

−η(Y )gN (X − wX,wZ) + η(X)gN (Y − wY,wZ)

On the other hand, F is semi-invariant Riemannian submersion, therefore we get,

gN ([X,Y ], Z) = −gB(F∗(AY BX + h∇̃Y CX), F∗(wZ))− gN (v∇̃Y BX +AY CX,ϕZ)

−η(Y )gN (X − wX,wZ) + η(X)gN (Y − wY,wZ)

which conclude proof.
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Theorem 4.7. Let F be a semi-invariant Riemannian submersion with SSNMC . Therefore, the
distribution kerF⊥

∗ defines a totally geodesic foliation on N if and only if we have

v∇̃XBY +AXCY ∈ Γ(D2)

and
gB(F∗(h∇̃XCY ), F∗(wZ)) = −gN (AXBY, JZ)

for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. We using (10), (13) and (19), for all X,Y ∈ Γ(kerF⊥
∗ ), U ∈ Γ(D1), we have

gN (∇̃XY,U) = gN (∇̃XBY, JU) + gM (∇̃XCY, JU)

Therefore, using (15), (16) and (10), we arrive

gN (∇̃XY, U) = −gN (J(v∇̃XBY +AXCY ), U)

Moreover, for Z ∈ Γ(D2), using (10), (19),(16) and (17), we conclude,

gN (∇̃XY, Z) = gN (AXBY + v∇̃XBY + η(BY )X +AXCY + h∇̃XCY, JZ)

Also, character of F , we obtain

gN (∇̃XY,Z) = gB(F∗(h∇̃XCY ), F∗(wZ)) + gN (AXBY, JZ)

which completes proof.

Theorem 4.8. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the dis-
tribution kerF∗ defines a totally geodesic foliation on N if and only if we have

v∇̃KL+ TKwL+ η(wL)E ∈ Γ(D1)

and

gB(F∗(TKϕL), F∗(CX)) + gB(F∗(h∇̃KwL), F∗(CX)) = −gN (v∇̃KϕL,BX)− gN (TKwL,BX)

−η(ϕL)gN (K,BX)

for all K,L ∈ Γ(kerF∗) and X ∈ Γ(µ).

Proof. We know that kerF∗ denote a totally geodesic foliation on N if and only if gN (∇̃KL,X) = 0
and gN (∇̃KL, JZ) = 0 for all Z ∈ Γ(D2), K, L ∈ Γ(kerF∗) and X ∈ Γ(µ).

Then, by (10), (13) and (18), we get

gN (∇̃KL,X) = gN (∇̃KϕL, JX) + gN (∇̃KwL, JX)

Therefore, using (14), (15) and (19), we have

gN (∇̃KL,X) = gN (v∇̃KϕL+ TKwL+ η(ϕL)K,BX) + gN (TKϕL+ h∇̃KwL,CX)

We know that F is semi-invariant Riemannian submersion, we arrive

gN (∇̃KL,X) = gN (v∇̃KϕL+ TKwL+ η(ϕL)K,BX) + gB(F∗(TKϕL+ h∇̃KwL), F∗(CX))

Moreover, from (10), (13) ,(18), (14) and (15), we obtain,

gN (∇̃KL, JZ) = gN (v∇̃KL+ TKwL+ η(wL)E,Z)

which give proof.
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Corollary 4.9. Let F be a semi-invariant Riemannian submersion with SSNMC. Therefore, the total
space M is a locally product manifold of the leaves of kerF⊥

∗ and kerF∗ if and only if

v∇̃XBY +AXCY ∈ Γ(D2),

gB(F∗(h∇̃XCY ), F∗(wZ)) = −gN (AXBY, JZ)

and
v∇̃KL+ TKwL+ η(wL)E ∈ Γ(D1),

gB(F∗(TKϕL), F∗(CX)) + gB(F∗(h∇̃KwL), F∗(CX)) = −gN (v∇̃KϕL,BX)− gN (TKwL,BX)

−η(ϕL)gN (K,BX)

for all X,Y ∈ Γ(kerF⊥
∗ ),K, L ∈ Γ(kerF∗) and Z ∈ Γ(D2).

5. Conclusion

Riemannian submersions and SSNMC have an important application for many sciences such as physics
and mathematical physics. Researchers have increased studies on this field from different areas in
recent years. In this paper, the idea of examining Riemann submersion with different connections is
emphasized. We defined and studied Riemannian submersions with SSNMC for the first time. We
investigated geometry of foliatons with SSNMC. The works on this subject will be useful tools for the
applications of Riemannian submersion with different connections.
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1. Introduction

In the case of groups, the description of an action is provided by the automorphism group. The action
of any group A on itself is given by a group homomorphism A −→ Aut(A). In some other algebraic
contexts, automorphism structure is not enough to give an action. The set of automorphisms of
an associative algebra is not usually an algebra. For associative algebra case, the bimultiplication
algebra Bim(G) of an associative algebra G which is defined by Lane [1] will accomplish the role of
an automorphism group.

The concept of a crossed module for groups is defined in [2, 3] by Whitehead. The commutative
algebra version of crossed modules is mentioned in a different name, by Lichtenbaum and Schlessinger
[4] also, the paper of Gerstenhaber [5] contains the notion of crossed modules in commutative algebras.
The notion of crossed modules in associative algebras is defined by Dedecker and Lue in [6].

In [7], Norrie improved Lue’s work [8], and she defined the concept of an actor of crossed modules for
groups as analogue of an automorphism group. For commutative algebras, Arvasi and the first author
explained that this notion is related to the multiplication algebra in [9]. In this paper based on the
second author’s PhD dissertation [10], our starting point is the generalization of the bimultiplication
algebra. For this, we define the bimultiplication of crossed modules for associative algebras and give
details of the construction of actor crossed module for associative algebras via this context. The notion
of actor crossed module is also studied simultaneously by Boyacı et al. in [11] as the split extension
classifier of a crossed module. By constructing a morphism under certain conditions from a crossed
module and its actor, we get the action of any crossed modules in associative algebras on itself. Since
the annihilator of an algebra A is given by the kernel of algebra homomorphism A −→ Bim(A),
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we have a similar notion for a crossed modules in associative algebras via the kernel of the above-
mentioned morphism between a crossed module and its actor. Also, while we get A −→ Bim(A)
crossed module as a two-dimensional associative algebra via an algebra A, we can have a crossed
square as a two-dimensional crossed module via an appropriate crossed module morphism.

2. Preliminary

Conventions: Throughout this paper, it is supposed that K is a fixed commutative ring with identity
1 ̸= 0, K-algebra G is a unitary K-bimodule G equipped with a K-bilinear associative multiplication
and also if G is a K-algebra, then a G -algebra C is a G-bimodule equipped with a G-bilinear asso-
ciative multiplication. C will not necessarily have identities.

We recall the definition of a crossed module in associative algebras [12].

Definition 2.1. A crossed module in associative K-algebras is a morphism from a G-algebra C to a
K-algebra G, δ : C −→ G, with two-sided actions of G on C satisfying

CM1) δ(g · c) = gδ(c) and δ(c · g) = δ(c)g

CM2) δc · c′ = cc′ and c · δc′ = cc′

for all c ∈ C, g ∈ G. It is denoted by (C,G, δ).

The following are some standard examples of crossed modules in associative algebras:

i. An inclusion map I ↪→ G is a crossed module, where I is any two-sided ideal in G. On the other
hand, let δ : C −→ G be any crossed module. Then, we get that δ(C) is a two sided ideal in G
by CM1.

ii. Any G-bimodule M has a G-algebra structure with zero multiplication. Thus, we get the crossed
module 0 : M → G,0(m) = 0. Conversely, the kernel of crossed module δ : N −→ G is an
G/δ(N)-bimodule.

Thus, the concept of crossed modules in associative algebras is a generalisation the concepts both
of a two-sided ideal and that of a bimodule over an algebra. Also, any associative algebra is considered
as a crossed modules by identity map Id : G −→ G.

Definition 2.2. A pair (f, ϕ) of G-algebra morphisms f : C −→ C ′, ϕ : G −→ G′ such that

f(g · c) = ϕ(g) · f(c) and f(c · g) = f(c) · ϕ(g)

for c ∈ C, g ∈ G is called a morphism of crossed modules from (C,G, δ) to (C ′, G′, δ′).

Thus, we get the category AssXMod of crossed modules in associative algebras.

The kernel of (f, ϕ) and the image Im(f, ϕ) are defined by (ker f, kerϕ, δ) and (Imf, Imϕ, δ′) ,
respectively.

Definition 2.3. A crossed module (C ′, G′, δ′) is called a subcrossed module of a crossed module
(C,G, δ) if the following conditions are satisfied:

i. C ′ and G′ are the subalgebra of C and G, respectively

ii. δ′ = δ |C′

iii. The action of G′ on C ′ inherits from the action of G on C

The image Im(f, ϕ) of (f, ϕ) is the subcrossed module (Imf, Imϕ, δ′) of (C,G, δ).
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Definition 2.4. A subcrossed module (C ′, G′, δ′) of (C,G, δ) is called an ideal if

i. G′ is an two sided ideal of G

ii. g · c′ ∈ C ′

iii. g′ · c ∈ C ′

for all g ∈ G, g′ ∈ G′ c ∈ C, c′ ∈ C ′.

If (f, ϕ) : (C,G, δ) −→ (C ′, G′, δ′) is any crossed module morphism, (ker f, kerϕ, δ) is an ideal of
(C,R, δ) and (Imf, Imϕ, δ′) is a subcrossed module of (C ′, G′, δ′).

Definition 2.5. Let (R,S, δ′) be an ideal of (C,G, δ). Then,
−
δ : C/R −→ G/S,

−
δ(c+ R) = δ(c) + S

is a crossed module with (g + S) · (c+R) = (g · c) +R and (c+R) · (g + S) = (c · g) +R. It is called

the quotient crossed module of (C,G, δ) by (R,S, δ′) and denoted by (C,G,δ)
(R,S,δ′) .

3.Actor Crossed Modules in Associative Algebras

3.1. A Bimultiplier of a Crossed Module

We recall the structure of the R-algebra of bimultipliers of C, Bim(C) [1, 13]. Bim(C) consists of all
pairs (γ, δ) of R-linear mappings γ, δ : C → C such that

γ(cc′) = γ(c) · c′,

δ(cc′) = c · δ
(
c′
)
,

and
c · γ

(
c′
)
= δ(c) · c′

It has an R-module structure and a product

(γ, δ) · (γ′, δ′) = (γ ◦ γ′, δ′ ◦ δ)

Suppose that Ann(C) = 0 or C2 = C. Then, Bim(C) acts on C by

Bim(C)× C → C; ((γ, δ), c) 7→ γ(c),

C × Bim(C) → C; (c, (γ, δ)) 7→ δ(c)

and there is a
µ : C −→ Bim(C)

c 7−→ (γc, δc)

with
γc(x) = c · x and δc(x) = x · c

We give the following result from their work of Lavendhomme and Lucas [14].

Proposition 3.1. Let G be a K-algebra such that Ann (G) = 0 or G2 = G. Then, (G,Bim(G), (γ, σ))
is a crossed module.

Proof. Bim(G) acts on G by

Bim(G)×G −→ G

((γ′, σ′), g) 7−→ γ′(g)
and

G×Bim(G) −→ G

(g, (γ′, σ′)) 7−→ σ′(g)

and there is a (γ, σ) : G −→ Bim(G) defined by (γ, σ)(g) = (γ′g, σ
′
g) with γ′g(g

′) = gg′ and σ′
g(g

′) = g
′
g

for all g, g′ ∈ G.
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CM1)
(γ, σ)((γ′, σ′) · g) = (γ, σ)(γ′(g))

= (γ′γ′(g), σ
′
γ′(g))

(∗)
= (γ′γ′(g), σ′(g)σ′)

= (γ′, σ′)(γ′(g), σ′(g))

= (γ′, σ′)((γ, σ)(g))

(∗)
(
γ′γ′(g)

)
(g′) = γ′(g)g′

(
σ′
γ′(g)

)
(g′) = g′γ′(g)

= γ′(gg′) = σ′(g′)g

= γ′(γ′g(g
′)) = σ′

g(σ
′(g′))

= (γ′γ′(g)) (g′) = (σ′(g)σ′) (g′)

(γ, σ)(g · (γ′, σ′)) = (γ, σ)(σ′(g))

= (γ′σ′(g), σ
′
σ′(g))

(∗)
= (γ′(g)γ′, σ′σ′(g))

= (γ′(g), σ′(g))(γ′, σ′)

= ((γ, σ)(g))(γ′, σ′)

(∗)
(
γ′σ′(g)

)
(g′) = σ′(g)g′

(
σ′
σ′(g)

)
(g′) = g′σ′(g)

= gγ′(g′) = σ′(g′g)

= γ′g(γ
′(g′)) = σ′(σ′

g(g
′))

= (γ′(g)γ′) (g′) = (σ′σ′(g)) (g′)

CM2)
((γ, σ)(g)) · g′ = (γ′g, σ

′
g) · g′ g · ((γ, σ)(g′)) = g · (γ′g′ , σ′

g′)

= γ′g(g
′) = σ′

g′(g)

= gg′ = gg′

Definition 3.2. A bimultiplier of the crossed module µ : T −→ L is a pair of

(λ, χ) = ((Θ,Ξ), (Θ′,Ξ′)) : (T, L, µ) −→ (T, L, µ)

satisfying the following conditions:

i. (λ = (Θ,Ξ) : T −→ T ) ∈ Bim(T ) and (χ = (Θ′,Ξ′) : L −→ L) ∈ Bim(L )

ii.

T

λ=(Θ,Ξ)
��

µ // L

χ=(Θ′,Ξ′)
��

T µ
// L

χµ = µλ (Θ′µ = µΘ, Ξ′µ = µΞ)

and
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iii. For l ∈ L, t ∈ T ,
Θ(l · t) = Θ′(l) · t
Θ(t · l) = Θ(t) · l
Ξ(l · t) = l · Ξ(t)
Ξ(t · l) = t · Ξ′(l)

l ·Θ(t) = Ξ′(l) · t
Ξ(t) · l = t ·Θ′(l)

The set of bimultipliers of the crossed module µ : T −→ L will be denoted by Bim(T, L, µ).

Proposition 3.3. The set Bim(T, L, µ) has an associative K-algebra structure with following oper-
ations:

+) ((Θ,Ξ), (Θ′,Ξ′)) + ((Θ,Ξ), (Θ
′
,Ξ

′
)) = ((Θ + Θ,Ξ + Ξ), (Θ′ +Θ

′
,Ξ′ + Ξ

′
)

·) k((Θ,Ξ), (Θ′,Ξ′)) = (kΘ, kΞ), (kΘ′, kΞ′)

◦) ((Θ,Ξ), (Θ′,Ξ′)) ◦ ((Θ,Ξ), (Θ
′
,Ξ

′
)) = ((Θ ◦Θ,Ξ ◦ Ξ), (Θ′ ◦Θ′

,Ξ
′ ◦ Ξ))

Proof. See for details [10].

Definition 3.4. Let (T, L, µ) be a crossed module. U(L, T ) is the set of pair maps (β1, β2) such that

β1(l1l2) = β1(l1) · l2
β2(l1l2) = l1 · β2(l2)
l1 · β1(l2) = β2(l1) · l2

for all l1, l2 ∈ L, where β1, β2 : L → T, are K-linear maps.

U(L, T ) has an associative K-algebra structure with the following operations:

+) ((β1, β2) + (θ1, θ2)) = (β1 + θ1, β2 + θ2)

·) k(β1, β2) = (kβ1, kβ2)

◦) ((β1, β2) ◦ (θ1, θ2)) = (β1µθ1, θ2µβ2)

Proposition 3.5. Let (T, L, µ) be a crossed module and (β1, β2) ∈ U(L, T ). Each such K-linear maps
β1, β2 : L −→ T defines bimultipliers (Θβ,Ξβ), (Θ

′
β,Ξ

′
β) of T and L respectively, given by Θβ = β1µ,

Ξβ = β2µ, Θ
′
β = µβ1, Ξ

′
β = µβ2.

Proof.
Θβ(tt

′) = β1(µ(tt
′))

= β1(µ(t)µ(t
′))

= β1(µ(t)) · µ(t′)

= Θβ(t) · µ(t′)

= Θβ(t) · t′

Ξβ(tt
′) = β2(µ(tt

′))

= β2(µ(t)µ(t
′))

= µ(t) · β2(µ(t′))

= µ(t) · Ξβ(t
′)

= t · Ξβ(t
′)
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tΘβ(t
′) = tβ1(µ(t

′))

= µ(t) · β1(µ(t′))

= β2(µ(t)) · µ(t′)

= β2(µ(t))t
′

= Ξβ(t)t
′

for t, t′ ∈ T . Thus, (Θβ,Ξβ) ∈ Bim(T ). Similarly, (Θ′
β,Ξ

′
β) ∈ Bim(L).

Proposition 3.6. The bimultipliers λβ = (Θβ,Ξβ) of T and χβ = (Θ′
β,Ξ

′
β) of L satisfy the following

conditions:

i.
Θββ1 = β1µβ1 = β1Θ

′
β and Ξββ2 = β2µβ2 = β2Ξ

′
β

Θββ2 = β1µβ2 = β1Ξ
′
β and Ξββ1 = β2µβ1 = β2Θ

′
β

ii. The following diagram

T

λβ=(Θβ ,Ξβ)
��

µ //
L

χβ=(Θ′
β ,Ξ

′
β)

��

β1
oo
β2
oo

T

µ //
Lβ1

oo
β2
oo

is commutative, that is
µΘβ = µ(β1µ) = (µβ1)µ = Θ′

βµ

µΞβ = µ(β2µ) = (µβ2)µ = Ξ′
βµ

iii.
(λβ, χβ) = ((Θβ,Ξβ), (Θ

′
β,Ξ

′
β)) ∈ Bim(T, L, µ)

Proposition 3.7. If µ : T −→ L is a crossed module,then

Γ : U(L, T ) −→ Bim(T )

(β1, β2) 7−→ (Θβ,Ξβ) = (β1µ, β2µ)

Φ : U(L, T ) −→ Bim(L)

(β1, β2) 7−→ (Θ′
β,Ξ

′
β) = (µβ1, µβ2)

are algebra morphisms.

Lemma 3.8. Let µ : T −→ L be a crossed module. Then, the left and right actions of Bim(T, L, µ)
on U(L,T) is given by

Bim(T, L, µ)× U(L, T ) −→ U(L, T )

((λ, χ), (θ1, θ2)) 7−→ (Θθ1, θ2Ξ
′)

U(L, T )×Bim(T, L, µ) −→ U(L, T )

((θ1, θ2), (λ, χ)) 7−→ (θ1Θ
′,Ξθ2)

where (λ, χ) = ((Θ,Ξ), (Θ′,Ξ′))

Proof. Since

(Θθ1)(ll
′) = Θ(θ1(ll

′))

= Θ(θ1(l) · l′)
= Θ(θ1(l)) · l′

= ((Θθ1)(l)) · l′)

(θ2Ξ
′)(ll′) = θ2(Ξ

′(ll′))

= θ2(lΞ
′(l′))

= l · θ2(Ξ′(l′))

= l · ((θ2Ξ′)(l′))
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l · ((Θθ1)(l
′)) = l · (Θ(θ1(l

′)))

= Ξ′(l) · θ1(l′)

= θ2(Ξ
′(l)) · l′

= ((θ2Ξ
′)(l)) · l′

the left action of Bim(T, L, µ) on U(L,T) is well defined. Since

(θ1Θ
′)(ll′) = θ1(Θ

′(ll′))

= θ1(Θ
′(l)l′)

= (θ1(Θ
′(l))) · l′

= ((θ1Θ
′)(l)) · l′

(Ξθ2)(ll
′) = Ξ(θ2(ll

′))

= Ξ(l · θ2(l′))

= l · Ξ(θ2(l′))

= l · ((Ξθ2)(l′))

l · ((θ1Θ′)(l′)) = l · (θ1(Θ′(l′)))

= θ2(l) · (Θ′(l′)

= Ξ(θ2(l)) · l′

= ((Ξθ2)(l)) · l′

the right action of Bim(T, L, µ) on U(L,T) is well defined.

Moreover, one sees that associative algebra action conditions are satisfied by routine calculations.
(See for details [10])

The next theorem begins the analysis of the associative algebra version of the actor structure.

Theorem 3.9. If µ : T −→ L is a crossed module, then the morphism

△ : U(L, T ) → Bim(T, L, µ)

is a crossed module given by

△(β1, β2) = ((Θβ1 ,Ξβ2), (Θ
′
β1
,Ξ′

β2
)) = ((β1µ, β2µ), (µβ1, µβ2)).

Proof. The right and left actions of Bim(T, L, µ) on U(L, T ) are given by

((Θ,Ξ), (Θ′,Ξ′)) · (θ1, θ2) = (Θθ1, θ2Ξ
′)

and
(θ1, θ2) · ((Θ,Ξ), (Θ′,Ξ′)) = (θ1Θ

′,Ξθ2)

as mentioned before. We need to check the crossed module axioms:

For ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), (θ1, θ2) ∈ U(L, T ),

CM1)
△ [((Θ,Ξ), (Θ′,Ξ′)) · (θ1, θ2)] = △(Θθ1, θ2Ξ

′)

= (Θθ1µ, θ2Ξ
′µ), (µΘθ1, µθ2Ξ

′)

= (Θθ1µ, θ2µΞ), (Θ
′µθ1, µθ2Ξ

′)

= ((Θ ◦Θθ,Ξθ ◦ Ξ), (Θ′ ◦Θ′
θ,Ξ

′
θ ◦ Ξ′))

= [((Θ,Ξ) ◦ (Θθ,Ξθ)), ((Θ
′,Ξ′) ◦ (Θ′

θ,Ξ
′
θ))]

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ ((Θ′
θ,Ξ

′
θ), (Θθ,Ξθ))

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ △(θ1, θ2)
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△ [(θ1, θ2) · ((Θ,Ξ), (Θ′,Ξ′))] = △(θ1Θ
′,Ξθ2)

= (θ1Θ
′µ,Ξθ2µ), (µθ1Θ

′, µΞθ2)

= (θ1µΘ,Ξθ2µ), (µθ1Θ
′,Ξ′µθ2)

= ((Θθ ◦Θ,Ξ ◦ Ξθ), (Θ
′
θ ◦Θ′,Ξ′ ◦ Ξ′

θ))

= [((Θθ,Ξθ) ◦ (Θ,Ξ)), ((Θ′
θ,Ξ

′
θ) ◦ (Θ′,Ξ′))]

= ((Θ′
θ,Ξ

′
θ), (Θθ,Ξθ)) ◦ ((Θ,Ξ), (Θ′,Ξ′))

= △(θ1, θ2) ◦ ((Θ,Ξ), (Θ′,Ξ′))

CM2)
△(β1, β2) · (θ1, θ2) = ((Θβ,Ξβ), (Θ

′
β,Ξ

′
β)) · (θ1, θ2)

= (Θβθ1, θ2Ξ
′
β)

= (β1µθ1, θ2µβ2)

= (β1, β2) ◦ (θ1, θ2)

(β1, β2) · △(θ1, θ2) = (β1, β2) · ((Θθ,Ξθ), (Θ
′
θ,Ξ

′
θ))

= (β1Θ
′
θ,Ξθβ2)

= (β1µθ1, θ2µβ2)

= (β1, β2) ◦ (θ1, θ2)

The crossed module (U(L, T ), Bim(T, L, µ),△) will be called the “the actor crossed module” of
(T, L, µ) and it will be denoted by A(T, L, µ).

Lemma 3.10. If µ : T −→ L is a crossed module, then η : T → U(L, T ) given by η(t) = (η1t, η2t) is
an algebra morphism where η1t(l) = t · l, η2t(l) = l · t and η(T ) is an ideal of U(L, T ).

Lemma 3.11.
α : L → Bim(T, L, µ)

l 7→ ((Θl,Ξl), (Θ
′
l,Ξ

′
l))

is an algebra morphism where Θl(t) = l · t,Θ′
l(l

′) = ll′,Ξl(t) = t · l,Ξ′
l(l

′) = l′l, and α(L) is an ideal of
Bim(T, L, µ).

Theorem 3.12. If µ : T −→ L is a crossed module, then the morphism

(η, α) : (T, L, µ) → A(T, L, µ)

is a morphism of crossed modules where (η(t))(l) = ηt(l) = (η1t(l), η2t(l)) and α(l) = ((Θl,Ξl), (Θ
′
l,Ξ

′
l)).

Proof.

T

µ

��

η // U(L, T )

∆
��

L α
// Bim(T, L, µ)
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i.
△η(t) = △ηt(l)

= △(η1t(l), η2t(l))

=
[
(Θη1t(t

′),Ξη2t(t
′)), (Θ′

η1t(l),Ξ
′
η2t(l))

]
= [(η1tµ(t

′), η2tµ(t
′)), (µη1t(l), µη2t(l))]

= [(t · µ(t′), µ(t′) · t), (µ(t · l), µ(l · t))]

= [(µ(t) · t′, t′ · µ(t)), (µ(t)l, lµ(t))]

=
[
(Θµ(t),Ξµ(t)), (Θ

′
µ(t),Ξ

′
µ(t))

]
= α(µ(t))

= αµ(t)

ii.
(α(l) ◦ η(t))(l′) = [((Θl,Ξl), (Θ

′
l,Ξ

′
l)) · (η1t, η2t)] (l′)

= (Θlη1t, η2tΞ
′
l)(l

′)

= [Θlη1t(l
′), η2tΞ

′
l(l

′)]

= (Θl(t · l′), η2t(l′l))

= (l · (t · l′), (l′l) · t)

= ((l · t) · l′, l′ · (l · t))
= (η1l·t(l

′), η2l·t(l
′))

= η(l · t)(l′)

and
(η(t) ◦ α(l))(l′) = [(η1t, η2t) · ((Θl,Ξl), (Θ

′
l,Ξ

′
l))] (l

′)

= (η1tΘ
′
l,Ξlη2t)(l

′)

= [η1tΘ
′
l(l

′),Ξlη2t(l
′)]

= (η1t(l
′l),Ξl(l

′ · t))

= (η1t(l
′) · l, (l′ · t) · l)

= ((t · l) · l′, (l′ · t) · l)

= ((t · l) · l′, l′ · (t · l))

= (η1t·l(l
′), η2t·l(l

′))

= η(t · l)(l′)

Proposition 3.13. Im(η, α) =(Im(η) , Im (α)) is an ideal of (U(L, T ), Bim(T, L, µ),∆) .

Proof.

i. For ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) ∈ Im (α),

((Θl,Ξl), (Θ
′
l,Ξ

′
l)) ◦ ((Θ,Ξ), (Θ′,Ξ′)) = ((Θl ◦Θ,Ξ ◦ Ξl), (Θ

′
l ◦Θ′,Ξ′ ◦ Ξ′

l))

= ((ΘΞ′(l),ΞΞ′(l)), (Θ
′
Ξ′(l),Ξ

′
Ξ′(l))) ∈ Im(α)

and
((Θ,Ξ), (Θ′,Ξ′)) ◦ ((Θl,Ξl), (Θ

′
l,Ξ

′
l)) = ((ΘΘ′(l),ΞΘ′(l)), (Θ

′
Θ′(l),Ξ

′
Θ′(l))) ∈ Im(α)
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ii. For ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), (η1t, η2t) ∈ Im(η), since[
((Θ,Ξ), (Θ′,Ξ′)) · (η1t, η2t)

]
(l) = (η1Θ(t), η2Θ(t))(l)

and [
(η1t, η2t) · ((Θ,Ξ), (Θ′,Ξ′))

]
(l) = (η1Ξ(t), η2Ξ(t))(l)

We get (η1Θ(t), η2Θ(t)) and (η1Ξ(t), η2Ξ(t)) belong to Im(η).

iii. For ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) ∈ Im (α), (β1, β2) ∈ U(L, T ), l′ ∈ L, since

[((Θl,Ξl), (Θ
′
l,Ξ

′
l)) · (β1, β2)] (l

′) = (Θlβ1, β2Ξ
′
l)(l

′)

= (Θlβ1(l
′), β2Ξ

′
l(l

′))

= (l · β1(l′), β2(l′l))

= (l · β1(l′), l′ · β2(l))

= (β2(l) · l′, l′ · β2(l))

= (η1β2(l)(l
′), η2β2(l)(l

′))

[ (β1, β2) · ((Θl,Ξl), (Θ
′
l,Ξ

′
l))] (l

′) = (β1Θ
′
l,Ξlβ2)(l

′)

= (β1(Θ
′
l(l

′)),Ξl(β2(l
′)))

= (β1(ll
′), β2(l

′) · l)

= (β1(l) · l′, l′ · β1(l))

= (η1β1(l)(l
′), η2β1(l)(l

′)),

then [
((Θl,Ξl), (Θ

′
l,Ξ

′
l)) · (β1, β2)

]
= (η1β2(l), η2β2(l))

and
(β1, β2) · ((Θl,Ξl), (Θ

′
l,Ξ

′
l)) = (η1β1(l), η2β1(l)) ∈ Im(α)

4. The Annihilator of a Crossed Module

In this section, our object is to generalise the notion of annihilator in associative algebras by using
actor crossed module.

Definition 4.1. Let (T, L, µ) be a crossed module. An annihilator of the crossed module in associative
algebras is the kernel of the homomorphism

(η, α) : (T, L, µ) → A(T, L, µ)

and it is denoted by Ann(T, L, µ).

Ann(T, L, µ) = Ker(η, α) = (AnnT (L), AnnL(T ) ∩AnnL(L), µ)

where
Kerη = {t ∈ T | η1(t) = 0, η2(t)} = {t ∈ T | t · l = 0, l · t = 0, l ∈ L} = AnnT (L)

and

Kerα = {l ∈ L | α(l) = ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) = (0, 0)}

= {l ∈ L | Θl(t) = l · t = 0,Ξl(t) = t · l = 0,Θ′
l(l

′) = ll′ = 0,Ξ′
l(l

′) = l′l = 0, t ∈ T, l′ ∈ L}

= AnnL(T ) ∩AnnL(L)

Ann(T, L, µ) is a two sided ideal of the crossed module µ : T −→ L, because it is the kernel of a
crossed module morphism under certain conditions.
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5.An Application for Crossed Squares

It is considered that a crossed n-cubes is a higher dimensional analogous of crossed modules. If we
take the case n = 2, a crossed square is obtained. As an associative algebra G gives rise to a crossed
module µ : G → Bim(G), that idea allows us to get an generalisation for higher dimension.

The definition of a crossed square in associative algebras is given by Ellis in [12]. Some related
studies are [15], [16], and [17].

5.1. Crossed Squares

If a commutative diagram of associative algebras

T

µ

��

λ // N

ν

��
L

λ′
// P

satisfies the following axioms together with functions h : L×N → T, h′ : N × L → T and actions of
P on T, L and N , then it is called as a crossed square:

i. The maps µ, λ, λ′, ν and νλ are crossed modules.

ii. The maps λ, µ preserve the action of P .

iii. kh(l, n) = h(kl, n) = h(l, kn)

kh′(n, l) = h′(kn, l) = h′(n, kl)

iv. p · h(l, n) = h(p · l, n)

h(l, n) · p = h(l, n · p)

h(l · p, n) = h(l, n · p)

p · h′(n, l) = h′(p · n, l)

h′(n, l) · p = h′(n, l · p)

h′(n · p, l) = h′(n, p · l)

v. h(l1 + l2, n) = h(l1, n) + h(l2, n)

h(l, n1 + n2) = h(l, n1) + h(l, n2)

h′(n1 + n2, l) = h′(n1, l) + h′(n2, l)

h′(n, l1 + l2) = h′(n, l1) + h′(n, l2)

vi. λh(l, n) = λ′l · n, λh′(n, l) = n · λ′l

λ′h(l, n) = l · νn, λ′h′(n, l) = νn · l

vii. h(l, λt) = λ′l · t, h′(λt, l) = t · λ′l

h(µt, n) = t · νn, h′(n, µt) = νn · t

viii. n2 · h(l, n1) = h′(n2, l) · n2

l2 · h′(n, l1) = h(l2, n) · l1
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for all l, l1, l2 ∈ L, n, n1, n2 ∈ N, p ∈ P, t ∈ T , k ∈ K, where l · t means λ′ (l) · t. There are actions of L
on T and N, via λ′, and of N on T and L via ν.

As a crossed module µ : G → Bim(G) arises from an associative algebra G, we have been able to
deduce the result shown below:

Theorem 5.1. If µ : T −→ L is a crossed module, then the morphism

(η, α) : (T, L, µ) → A(T, L, µ)

gives rise to the crossed square

T

µ

��

η=(η1t,η2t) // U(L, T )

∆

��
L

α=((Θl,Ξl),(Θ′
l,Ξ

′
l))

// Bim(T, L, µ)

with functions
h : U(L, T )× L → T

((β1, β2), l) 7→ h((β1, β2), l) = β1(l)

and

h′ : L× U(L, T ) → T

(l, (β1, β2)) 7→ h′(l, (β1, β2)) = β2(l)

where Bim(T, L, µ) acts on L and T via the appropriate projections.

Proof.

i. △ : U(L, T ) −→ Bim(T, L, µ) is a crossed module as mentioned before. Since

CM1)
α(((Θ,Ξ), (Θ′,Ξ′)) · l) = α(Θ′

l)

= ((ΘΘ′
l
,ΞΘ′

l
), (Θ′

Θ′
l
,Ξ′

Θ′
l
))

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ ((Θl,Ξl), (Θ
′
l,Ξ

′
l))

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ α(l)

and
α(l · ((Θ,Ξ), (Θ′,Ξ′))) = α(Ξ′

l)

= ((ΘΞ′
l
,ΞΞ′

l
), (Θ′

Ξ′
l
,Ξ′

Ξ′
l
))

= ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) ◦ ((Θ,Ξ), (Θ′,Ξ′))

= α(l) ◦ ((Θ,Ξ), (Θ′,Ξ′))

CM2)
α(l) · l′ = ((Θl,Ξl), (Θl′,Ξ′

l)) · l′

= Θ′
l(l

′) = ll′

and
l · α(l′) = l · ((Θl′ ,Ξl

′), (Θ′
l′ ,Ξ

′
l′))

= Ξl′(l) = ll′,

for ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), l ∈ L, α is a crossed module.

Also χ = αµ = △η is a crossed module, because
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CM1)
χ(((Θ,Ξ), (Θ′,Ξ′)) · t) = χ(Θt)

= αµ(Θt)

= ((ΘµΘt ,ΞµΘt), (Θ
′
µΘt

,Ξ′
µΘt

))

= ((ΘΘ′µt ,ΞΘ′µt), (Θ
′
Θ′µt

,Ξ′
Θ′µt

))

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ ((Θµt ,Ξµt), (Θ
′
µt
,Ξ′

µt
))

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ αµ(t)

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ χ(t)

and
χ(t · (Θ,Ξ), (Θ′,Ξ′))) = χ(Ξt)

= αµ(Ξt)

= ((ΘµΞt ,ΞµΞt), (Θ
′
µΞt

,Ξ′
µΞt

))

= ((ΘΞ′µt ,ΞΞ′µt), (Θ
′
Ξ′µt

,Ξ′
Ξ′µt

))

= ((Θµt ,Ξµt), (Θ
′
µt
,Ξ′

µt
)) ◦ ((Θ,Ξ), (Θ′,Ξ′))

= αµ(t) ◦ ((Θ,Ξ), (Θ′,Ξ′))

= χ(t) ◦ ((Θ,Ξ), (Θ′,Ξ′))

CM2)
χ(t) · t′ = αµ(t) · t′

= ((Θµt ,Ξµt), (Θ
′
µt
,Ξ′

µt
)) · t′

= Θµt(t
′)

= µ(t) · t′

= tt′

and
t · χ(t′) = t · αµ(t′)

= t · ((Θµt′ ,Ξµt′ ), (Θ
′
µt′

,Ξ′
µt′

))

= Ξµt′ (t)

= t · µ(t′)

= tt′

for ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), t ∈ T .

ii. Since
α(((Θ,Ξ), (Θ′,Ξ′)) · t) = µ(Θt)

= Θ′µ(t)

= ((Θ,Ξ), (Θ′,Ξ′)) ◦ µ(t)

α(t · ((Θ,Ξ), (Θ′,Ξ′))) = µ(Ξt)

= Ξ′µ(t)

= µ(t) ◦ ((Θ,Ξ), (Θ′,Ξ′))
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and
η(((Θ,Ξ), (Θ′,Ξ′)) · t) = η(Θt)

= (η1Θt , η2Θt)

= ((Θ,Ξ), (Θ′,Ξ′)) · (η1t, η2t)

= ((Θ,Ξ), (Θ′,Ξ′)) · η(t)

η(t · ((Θ,Ξ), (Θ′,Ξ′))) = η(Ξc)

= (η1Ξt , η2Ξt)

= (η1t, η2t) · ((Θ,Ξ), (Θ′,Ξ′))

= η(t) · ((Θ,Ξ), (Θ′,Ξ′))

for ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), t ∈ T , µ and η preserve the action of Bim(T, L, µ).

iii.
kh((β1, β2), l) = k(β1(l))

= kβ1(l)

= β1(kl)

= h((β1, β2)(kl))

= k(β1(l))

= (k(β1))l

= h(k(β1, β2), l)

kh′(l, (β1, β2)) = k(β2(l))

= kβ2(l)

= β2(kl)

= h′((kg), (β1, β2))

= k(β2(l))

= (k(β2))l

= h′(l, k(β1, β2))

for k ∈ K, (β1, β2) ∈ U(L, T ), l ∈ L.

iv. For ((Θ,Ξ), (Θ′,Ξ′)) ∈ Bim(T, L, µ), l ∈ L,

((Θ,Ξ), (Θ′,Ξ′)) · (h((β1, β2), l)) = ((Θ,Ξ), (Θ′,Ξ′)) · β1(l)
= Θβ1(l)

= Θβ1(l)

= h((Θβ1, β2Ξ
′), l)

= h((((Θ,Ξ), (Θ′,Ξ′)) · (β1, β2)), l)

h((β1, β2), l)) · ((Θ,Ξ), (Θ′,Ξ′)) = β1(l) · ((Θ,Ξ), (Θ′,Ξ′))

= Ξβ1(l)

= Ξβ1(l)

= β1Ξ
′
l

= h((β1, β2),Ξ
′
l)

= h((β1, β2), l · ((Θ,Ξ), (Θ′,Ξ′)))
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h(((Θ,Ξ), (Θ′,Ξ′)) · (β1, β2), l)) = h((Θβ1, β2Ξ
′), l))

= Θβ1(l)

= Θβ1(l)

= β1Θ
′(l)

= h((β1Θ
′,Ξβ2), l)

= h(((β1, β2) · ((Θl,Ξl), (Θ
′
l,Ξ

′
l)), l)

((Θ,Ξ), (Θ′,Ξ′)) · (h′(l, (β1, β2))) = ((Θ,Ξ), (Θ′,Ξ′)) · β2(l)
= Θβ2(l)

= Θβ2(l)

= β2Θ
′(l)

= h′(Θ′
l, (β1, β2))

= h′(((Θ,Ξ), (Θ′,Ξ′)) · l, (β1, β2))

h′((β1, β2), l)) · ((Θ,Ξ), (Θ′,Ξ′)) = β2(l) · ((Θ,Ξ), (Θ′,Ξ′))

= Ξβ2(l)

= Ξβ2(l)

= β2Ξ
′
l

= h′(l, (Θβ1, β2Ξ
′))

= h′(l, (β1, β2) · ((Θ,Ξ), (Θ′,Ξ′)))

h′((β1, β2) · ((Θβ,Ξβ), (Θ
′
β,Ξ

′
β)), β)) = h′(β; (β1Θ

′,Ξβ2))

= Ξβ2(l)

= Ξβ2(l)

= β2Ξ
′(l)

= h′(l, (Θβ1, β2Ξ
′))

= h′(l, (β1, β2) · ((Θl,Ξl), (Θ
′
l,Ξ

′
l)))

v.
h((β1, β2) + (θ1, θ2), l) = h((β1 + θ1, β2 + θ2), l)

= (β1 + θ1)l

= β1(l) + θ1(l)

= h((β1, β2), l) + h((θ1, θ2), l)

h((β1, β2), l1 + l2) = β1(l1 + l2)

= β1(l1) + β1(l2)

= h((β1, β2), l1) + h((β1, β2)), l2)

h′(l1 + l2, (β1, β2)) = β2(l1 + l2)

= β2(l1) + β2(l2)

= h′(l1, (β1, β2)) + h′(l2, (β1, β2))

h′(l, (β1, β2) + (θ1, θ2)) = h′(l, (β1 + θ1, β2 + θ2))

= (β2 + θ2)(l)

= β2(g) + θ2(l)

= h′(l, (β1, β2)) + h′(l, (θ1, θ2))
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vi.
µh((β1, β2), l) = µ(β1(l))

= µβ1(l)

= ((β1µ, β2µ), (µβ1, µβ2)) · l

= ((Θβ,Ξβ), (Θ
′
β,Ξ

′
β)) · l

= (△(β1, β2)) · l

µh′(l, (β1, β2)) = µ(β2(l))

= µβ2(l)

= l · ((β1µ, β2µ), (µβ1, µβ2))

= l · ((Θβ,Ξβ), (Θ
′
β,Ξ

′
β))

= l · (△(β1, β2))

ηh((β1, β2), l) = η(β1(l))

= (η1β1(l), η2β1(l))

(∗)
= ((β1Θ

′
l,Ξlβ2)

= (β1, β2) · ((Θl,Ξl), (Θ
′
l,Ξ

′
l))

= (β1, β2) · α(l)

(∗)
η1β1(l)(l

′) = β1(l) · l′

= β1(ll
′)

= β1Θ
′
l(l

′)

and

η2β1(l)(l
′) = l′ · β1(l)

= β2(ll
′)

= Ξlβ2(l
′)

ηh′((β1, β2), l) = η(β2(l))

= (η1β2(l), η2β2(l))

(∗)
= ((Θlβ1, β2Ξ

′
l)

= ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) · (β1, β2)

= α(l) · (β1, β2)

(∗)
η1β2(l)(l

′) = β2(l) · l′

= l · β1(l′)
= Θlβ1(l

′)

and

η2β2(l)(l
′) = l′ · β2(l)

= β2(ll
′)

= β2Ξ
′
l(l

′)

vii.
h((β1, β2), µ(t)) = β1(µ(t))

= β1µ(t)

= ((β1µ, β2µ), (µβ1, µβ2)) · t

= ((Θβ,Ξβ), (Θ
′
β,Ξ

′
β)) · t

= (△(β1, β2)) · t
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h′(µ(t), (β1, β2)) = β2(µ(t))

= β2µ(t)

= t · ((β1µ, β2µ), (µβ1, µβ2))

= t · ((Θβ,Ξβ), (Θ
′
β,Ξ

′
β))

= t · (△(β1, β2))

h(η(t), l) = h((η1t, η2t), l)

= η1t(l)

= t · l
= Ξl(t)

= t · ((Θl,Ξl), (Θ
′
l,Ξ

′
l))

= t · α(l)

h′(l, η(t)) = h′(l, (η1t, η2t))

= η2t(l)

= l · t
= Θl(t)

= ((Θl,Ξl), (Θ
′
l,Ξ

′
l)) · t

= α(l) · t

viii.
l′ · h((β1, β2), l) = l′ · β1(l)

= β2(l
′) · l

= h′(l′, (β1, β2)) · l

(θ1, θ2) · h′(l, (β1, β2)) = △(θ1, θ2) · β2(l)
= θ1µβ2(l)

(∗)
= β2µθ1(l)

= θ1(l) · △((β1, β2)

= h((θ1, θ2), l) · (β1, β2)

(∗) Because of L2 = L, for every l ∈ L, we can take l = l1l2.

θ1µβ2(l1l2) = θ1µ(l1 · β2(l2))

= Θθ(l1 · β2(l2))

= Θ′
θ(l1) · β2(l2)

= µθ1(l1) · β2(l2)

= β2((µθ1(l1))l2)

= β2(µ(θ1(l1)l2))

= β2(µ(θ1(l1) · l2))

= β2(µ(θ1(l1l2)))

= β2µθ1(l1l2)
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6. Conclusion

It is well known that the action of any group on itself is given by a group homomorphism from
any group to its automorphism group. In the case of associative algebra, the role of automorphism
groups replaces with bimultiplication algebra. It is considered that the concept of a crossed module in
associative algebra is a generalisation of the concept of an associative algebra. Thus we can generalise
the notion of bimultiplication algebra for a crossed module in associative algebras. Thus, we conclude
that in this context the notion of action is given by the actor crossed module which is obtained via
bimultiplication crossed module. Also since the annihilator of an associative algebra A is given by the
kernel of algebra morphism A → Bim(A), we get the annihilator crossed module as the kernel of the
crossed module morphism (η, α) : (T, L, µ) → A(T, L, µ). Furthermore, we see that this morphism
gives rise to a crossed square which is a two-dimensional analogous to crossed module.
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computer sciences. In recent years, the studies mostly focused on queueing networks. A queueing network is 

simply a combination of several queueing systems. Bertsimas studied on performance analyse of queueing 

networks via Robust optimization [1]. A semi-open queueing network with a Markovian arrival process having 

a finite number of nodes is considered in a study [2]. A study on evaluating the performance of general 

queueing networks in manufacturing systems is given in [3]. Dudina et al. considered a multi-service retrial 

queueing system with Markovian arrival flow to model a call centre [4]. For the first time, Hunt [5] defined 

the customer’s blocking effects in a queue sequence. Various performance measures, namely the average 

number of customers in the queueing system, the proportion of customers entering the queueing system, 

average waiting time, and a blocked series queue, have been obtained in the study [6]. Basharin et al. show 
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how properties of Markovian Arrival Processes can be derived from the general theory of Markov processes 

with a homogeneous second component [7]. In another study [8], a two-station tandem queue with blocking is 

considered, and an accurate solution with correct stationary distribution is given. A stochastic queueing model, 

consisting of two heterogeneous service channels and having no waiting room, is considered [9]. In that study, 

Sağlam et al. calculated the expected number of customers and loss probability, an optimal ordering of service 

channels is given and minimizing parameters of the queueing system are found. In another related study [10], 

a queueing model with two sequential stations is constructed. In this model, there is a single service at each 

station, and no queue is allowed at the second station. The state probabilities and loss probability of this model 

are obtained. Furthermore, the model is simulated. In a recent study [2], a semi-open queueing network having 

a finite number of nodes is considered, and the stationary behaviour of queueing states is analysed. 

In this paper, a new blocked tandem queueing system is constructed and analysed. The model we have 

analysed is a modified version of the model studied in [9]. The arrival process to this new queueing system is 

Poisson. There is one service unit at the first stage of the system, and the service time of this unit is 

exponentially distributed. There are two parallel service units at the second stage, and the service time of these 

service units are exponentially distributed. No queue is allowed at the first stage of the system. Upon 

completing service at the first stage, a customer proceeds to the second stage if at least one of the service units 

at the second stage is available. If both service units at the second stage are busy, the customer blocks the 

service unit at the first stage; hence, loss occurs. The most important measure of performance of this queueing 

system is the loss probability. 

2. The Stochastic Queueing Model 

The queueing model we considered in this study has Poisson arrival flow with parameter 𝜆. At the first station, 

there is a single service unit that has exponentially distributed service time with parameter 𝜇1 and no queue is 

allowed at this phase. The second station of the system consists of two parallel service units, and they also 

have exponentially distributed service times with parameters 𝜇2 and 𝜇3 respectively. As well as the first station, 

no queue is allowed at the second station. Upon receiving service at the first station, a customer proceeds to 

the second station of the queueing system. If both service units at the second station are empty, the customer 

enters the first service unit with probability 𝛼1 or second service unit with probability 𝛼2 = 1 − 𝛼1. If only 

one of the service units at the second station is available, the customer proceeds to this server. On the other 

hand, if both servers at the second station are busy, the customer waits at the first station until any of the service 

units of the second station is available; hence the customer blocks the first station. This queueing model is 

mathematically stated as follows: At any given time 𝑡, let 𝜉1(𝑡) random variable be the number of customers 

in service unit of the first station,  𝜉2(𝑡) and 𝜉3(𝑡) random variables be the number of customers in the services 

of the second station. Then the 3-dimensional continuous-time Markov chain of the model is stated as 

{𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡); 𝑡 ≥ 0 } and the state probabilities of the Markov chain is 𝑝𝑛1,𝑛2,𝑛3
 where 𝑛1 ∈ {0,1}, 𝑛2 ∈

{0,1}, 𝑛3 ∈ {0,1}. Finally, the state space of the defined Markov chain is ℑ =

{(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), (𝑏, 1,1)}. 

2.1.  The Transition Probabilities of the Queueing System 

First, we need to find the state probabilities of the system to obtain transition probabilities.  Then Kolmogorov 

differential equations are acquired using state probabilities, and by using Kolmogorov equations, the stationary 

distribution of the chain is obtained. Finally, the transition probabilities are found with the help of stationary 

distribution. The probability at any given time 𝑡, in which there are 𝑛1 customers in the first service unit, 𝑛2 

customers in the second, and 𝑛3 customers in the third, is defined as  

𝑃(𝜉1(𝑡) = 𝑛1, 𝜉2(𝑡) = 𝑛2, 𝜉3(𝑡) = 𝑛3) = 𝑝𝑛1𝑛2𝑛3
(𝑡) 

For ∆𝑡 → 0, the state probabilities of the Markov chain {𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡); 𝑡 ≥ 0 } are obtained as below: 
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𝑝000(𝑡 + ℎ) = 𝑝000(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ)) + 𝑝010(𝑡)(𝜇2ℎ + 𝑜(ℎ)) 

+𝑝001(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                             (2.1) 

𝑝010(𝑡 + ℎ) = 𝑝010(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑝100(𝑡)𝛼1(𝜇1ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                            (2.2) 

𝑝001(𝑡 + ℎ) = 𝑝001(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜇2ℎ + 𝑜(ℎ)) + 𝑝100(𝑡)𝛼2(𝜇1ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                            (2.3) 

𝑝011(𝑡 + ℎ) = 𝑝011(𝑡)(1 − 𝜆ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

                    +𝑝110(𝑡)(𝜇1ℎ + 𝑜(ℎ)) + 𝑝101(𝑡)(𝜇1ℎ + 𝑜(ℎ)) + 𝑝𝑏11(𝑡)(𝜇2ℎ + 𝑜(ℎ)) 

+𝑝𝑏11(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                               (2.4) 

𝑝100(𝑡 + ℎ) = 𝑝100(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ)) + 𝑝000(𝑡)(𝜆ℎ + 𝑜(ℎ)) 

+𝑝110(𝑡)(𝜇2ℎ + 𝑜(ℎ)) + 𝑝101(𝑡)(𝜇3ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                 (2.5) 

𝑝110(𝑡 + ℎ) = 𝑝110(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇3 + 𝑜(ℎ)) + 𝑝010(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                      (2.6) 

𝑝101(𝑡 + ℎ) = 𝑝101(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇2 + 𝑜(ℎ)) + 𝑝001(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                     (2.7) 

𝑝111(𝑡 + ℎ) = 𝑝111(𝑡)(1 − 𝜇1ℎ + 𝑜(ℎ))(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝011(𝑡)(𝜆ℎ + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                                 (2.8) 

𝑝𝑏11(𝑡 + ℎ) = 𝑝𝑏11(𝑡)(1 − 𝜇2ℎ + 𝑜(ℎ))(1 − 𝜇3ℎ + 𝑜(ℎ)) 

+𝑝111(𝑡)(𝜇1 + 𝑜(ℎ)) + 𝑜(ℎ)                                                                                                (2.9) 

under the assumption of limit distribution by using state probabilities, we have the stationary state probabilities 

as following: 

0 = −𝜆𝑝000 + 𝜇2𝑝010 + 𝜇3𝑝001 (2.10) 

0 = −(𝜆 + 𝜇2)𝑝010 + 𝜇3𝑝011 + 𝛼1𝜇1𝑝100 (2.11) 

0 = −(𝜆 + 𝜇3)𝑝001 + 𝜇2𝑝011 + 𝛼2𝜇1𝑝100 (2.12) 

0 = −(𝜆 + 𝜇2 + 𝜇3)𝑝011 + 𝜇1𝑝110 + 𝜇1𝑝101 + 𝜇2𝑝𝑏11 + 𝜇3𝑝𝑏11 (2.13) 

0 = −𝜇1𝑝100 + 𝜆𝑝000 + 𝑝110𝜇2 + 𝑝101𝜇3 (2.14) 

0 = −(𝜇1 + 𝜇2)𝑝110 + 𝜇3𝑝111 + 𝜆𝑝010 (2.15) 

0 = −(𝜇1 + 𝜇3)𝑝101 + 𝜇2𝑝111 + 𝜆𝑝001 (2.16) 

0 = −(𝜇1 + 𝜇2 + 𝜇3)𝑝111 + 𝜆𝑝011 (2.17) 

0 = −(𝜇2 + 𝜇3)𝑝𝑏11 + 𝜇1𝑝111 (2.18) 

Now, we calculate the transition probabilities of the queueing system by using stationary state 

probabilities. Using Equation (2.17), we have 
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𝑝111 = (
𝜆

𝜇1 + 𝜇2 + 𝜇3
) 𝑝011 (2.19) 

Equations (2.18) and (2.19) lead us to: 

𝑝𝑏11 = (
𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) 𝑝011 (2.20) 

With the same solution manner, all transition probabilities are obtained in terms of  𝑝011: 

𝑝001 = [
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4] 𝑝011 (2.21) 

𝑝010 = [
𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4] 𝑝011 (2.22) 

𝑝000 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4)] 𝑝011 (2.23) 

𝑝101 = [
𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4] 𝑝011 (2.24) 

𝑝100 = Δ4. 𝑝011 (2.25) 

𝑝110 = [
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)] 𝑝011 (2.26) 

where, 

∆1= 1 − 𝛼1

𝜇2

𝜆 + 𝜇2
(1 +

𝜆

𝜇1 + 𝜇2
) − 𝛼2

𝜇3

𝜆 + 𝜇3
(1 +

𝜆

𝜇1 + 𝜇3
) 

∆2=
𝜇3

𝜆 + 𝜇2
+ (

𝜇3

𝜇1 + 𝜇2
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜆

𝜇1 + 𝜇2
∙

𝜇3

𝜆 + 𝜇2
) 

∆3=
𝜇2

𝜆 + 𝜇3
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
) 

and 

∆4=
𝜇2∆2 + 𝜇3∆3

𝜇1∆1
 

Hence, the sum of all these probabilities is 1, i.e., 

𝑝000 + 𝑝001 + 𝑝010 + 𝑝100 + 𝑝011 + 𝑝101 + 𝑝110 + 𝑝111 + 𝑝𝑏11 = 1 (2.27) 

Substituting all obtained transition probabilities in Equation (2.27), we have 

𝑝011 [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

+ (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇
3

𝜆 + 𝜇
2

+ 𝛼1

𝜇
1

𝜆 + 𝜇
2

Δ4) + Δ4 + 1 

+ (
𝜇2

𝜇1 + 𝜇3

∙
𝜆

𝜇1 + 𝜇2 + 𝜇3

+
𝜆

𝜇1 + 𝜇3

∙
𝜇2

𝜆 + 𝜇3

+ 𝛼2

𝜆

𝜇1 + 𝜇3

∙
𝜇1

𝜆 + 𝜇3

Δ4) 
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+ (
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

+ (
𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)] 

= 1 

Note that the last Equation is only in terms of 𝑝011. Hereby, the transition probability  𝑝011 is obtained in 

terms of system parameters precisely as: 

𝑝011 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

The last thing to do is to rewrite all transition probabilities in terms of system parameters: 

𝑝001 = [
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4] ∙ [

𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
𝛥4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
𝛥4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝010 = [
𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4] ∙ [

𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 
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+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

  

𝑝000 = [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4)] 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝101 = (
𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1
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𝑝100 = Δ4. [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

 

𝑝110 = [
𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)] 

 ∙ [
𝜇2

𝜆
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) +

𝜇3

𝜆
(

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) 

 + (
𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜇1

𝜆 + 𝜇3
Δ4) + (

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4) + Δ4 + 1 

 
+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4)) 

 
+ (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) + (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
)]

−1

 

2.2. The Loss Probability and The Mean Customer Number of the Queue 

The most important performance measure of the defined queueing model is the loss probability. In this 

queueing model, customer loss occurs only at the first station of the queue, as previously stated. In this context, 

the loss probability can be simply calculated as: 

𝜋𝑙𝑜𝑠𝑠 = 𝑝110 + 𝑝100 + 𝑝101 + 𝑝𝑏11 + 𝑝111 (2.28) 

Substituting the previously calculated probabilities 𝑝110,  𝑝100, 𝑝101, 𝑝𝑏11, and 𝑝111, which are the 

equations (2.26), (2.25), (2.24), (2.20), and (2.19), respectively, in Equation (2.28); we precisely have loss 

probability in terms of system parameters as below: 

𝜋𝑙𝑜𝑠𝑠 = [
𝜆

𝜇1 + 𝜇2 + 𝜇3
+ (

𝜇1

𝜇2 + 𝜇3
) (

𝜆

𝜇1 + 𝜇2 + 𝜇3
) 
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+ (

𝜇2

𝜇1 + 𝜇3
∙

𝜆

𝜇1 + 𝜇2 + 𝜇3
+

𝜆

𝜇1 + 𝜇3
∙

𝜇2

𝜆 + 𝜇3
+ 𝛼2

𝜆

𝜇1 + 𝜇3
∙

𝜇1

𝜆 + 𝜇3
Δ4) + Δ4 

 
+ (

𝜆𝜇3

(𝜇1 + 𝜇2)(𝜇1 + 𝜇2 + 𝜇3)
+

𝜆

𝜇1 + 𝜇2
(

𝜇3

𝜆 + 𝜇2
+ 𝛼1

𝜇1

𝜆 + 𝜇2
Δ4))] 𝑝011                                    (2.29) 

Furthermore, the mean number of customers in the system is obtained as: 

𝐸(𝑁) = ∑ ∑ ∑ (𝑛1 + 𝑛2 + 𝑛3)

𝑛3∈ℑ𝑛2∈ℑ𝑛1∈ℑ

𝑝𝑛1,𝑛2,𝑛3
  (2.30) 

where ℑ = {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), (𝑏, 1,1)} is the state space of the 

defined Markov chain. Hence the mean number of customers in the system is calculated as follows: 

𝐸(𝑁) = 0. 𝑝000 + 1. (𝑝100 + 𝑝010 + 𝑝001) + 2. (𝑝110 + 𝑝101 + 𝑝011) + 3. (𝑝111 + 𝑝𝑏11) 

2.3. The Optimization of the Loss Probability 

In a blocked queueing system, one of the most notable performance measures is the loss probability. When a 

service is busy, a new incoming customer cannot enter the service and has two options: to leave the system 

without having service or wait until the service is available. In the system we are interested in, when a service 

is busy, the incoming customer leaves the queue system without being served, so that loss occurs. The 

probability of this loss is called the loss probability. In this section, we aim to minimize the loss probability 

𝜋𝑙𝑜𝑠𝑠, obtained in the previous section, and calculate the mean customer number in the queueing system. When 

the loss probability, given with the Equation (2.29), is examined; clearly, it is very complex and difficult to 

reach the minimum value of  𝜋𝑙𝑜𝑠𝑠 with the help of algebraic methods. Therefore, under two configurations of 

the queuing system, the loss probability is numerically calculated, and the minimum loss probability values of 

both configurations are determined. These two different configurations of the queuing system are based on 

customer arrival rate and the total service capacity of the system. In order to calculate the loss probability and 

mean number of customers, the arrival rate 𝜆 is chosen as constant. In this context, 𝑐 =  2𝜆 and 𝑐 =  𝜆 

configurations are established where 𝑐 = 𝜇1 + 𝜇2 + 𝜇3 is the total service capacity of the queueing system.  

First, the optimal service capacity of the 1𝑠𝑡 service unit is searched, and in the next step, the optimal 

service capacities of the 2nd and 3rd service units are determined for the changing 𝛼1 and 𝛼2 possibilities. The 

data obtained by applying this method are given in Table 1, 2, 3, and 4. According to the data obtained from 

the tables, minimum 𝜋𝑙𝑜𝑠𝑠 values for 𝑐 =  2𝜆 and 𝑐 =  𝜆 configurations are found. The results are also shown 

in Figure 1 and 2. 

Table 1. Optimal service capacity selection of 1st service unit for 𝑐 =  2𝜆 system configuration and the 

corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 0.2 1.9 1.9 0.5 0.5 0.9090 1.0047 

2 0.8 1.6 1.6 0.5 0.5 0.7150 1.0712 

2 1.4 1.3 1.3 0.5 0.5 0.5955 1.2177 

2 2 1 1 0.5 0.5 0.5322 1.4677 

2 2.2424 0.8889 0.8889 0.5 0.5 0.5233 1.5958 

2 3 0.5 0.5 0.5 0.5 0.6013 2.1958 

2 3.6 0.2 0.2 0.5 0.5 0.8073 2.7342 
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Table 2. Selection of optimal service capacities of 2𝑛𝑑 and 3𝑟𝑑 service units for 𝑐 =  2𝜆 system 

configuration and the corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 2.2424 0.2 1.5575 0.5 0.5 0.5389 1.8454 

2 2.2424 0.8889 0.8889 0.5 0.5 0.5233 1.5958 

2 2.2424 1.7 0.0575 0.5 0.5 0.5474 1.9877 

 

 

Fig. 1. The obtained 𝜋𝑙𝑜𝑠𝑠 and 𝐸(𝑁) values for 𝑐 =  2𝜆  configuration 

As seen in Figure 1, under the condition 𝜇1 = 𝜇2  and 𝛼1 = 𝛼2, minimum 𝜋𝑙𝑜𝑠𝑠 = 0.523330711 is 

obtained for 𝑐 =  2𝜆 configuration. 

Table 3. Optimal service capacity selection of 1st service unit for 𝑐 =  𝜆 system configuration and the 

corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 0.2 0.9 0.9 0.5 0.5 0.9091 1.1110 

2 0.8 0.6 0.6 0.5 0.5 0.7316 1.6262 

2 1.07 0.465 0.465 0.5 0.5 0.7079 1.9639 

2 1.5 0.25 0.25 0.5 0.5 0.7785 2.5503 

2 1.9 0.05 0.05 0.5 0.5 0.9501 2.9422 
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Table 4. Selection of optimal service capacities of 2nd and 3rd service units for 𝑐 =  𝜆 system configuration 

and the corresponding loss probability and mean customer number values 

𝜆 𝜇1 𝜇2 𝜇3 𝛼1 𝛼2 𝜋𝑙𝑜𝑠𝑠 𝐸(𝑁) 

2 1.07 0.1 0.83 0.5 0.5 0.7183 2.1628 

2 1.07 0.4 0.53 0.5 0.5 0.7082 1.9695 

2 1.07 0.465 0.465 0.5 0.5 0.7079 1.9639 

2 1.07 0.7 0.23 0.5 0.5 0.7120 2.0406 

2 1.07 0.9 0.03 0.5 0.5 0.7236 2.2625 

 

 

Fig. 2. The obtained 𝜋𝑙𝑜𝑠𝑠 and 𝐸(𝑁) values of 𝑐 = 𝜆 configuration for 𝛼1 = 𝛼2 

As shown in Figure 2, as in 𝑐 =  2𝜆 configuration, under the condition of 𝜇1 = 𝜇2  and 𝛼1 = 𝛼2, the 

minimum 𝜋𝑙𝑜𝑠𝑠 value of 𝑐 =  𝜆 configuration is reached, and this value is obtained as 𝜋𝑙𝑜𝑠𝑠 = 0.707998663. 

3. The Simulation of the Model 

In this section, the previously obtained loss probabilities are simulated for  𝑛 =  100, 𝑛 =  1000, and 𝑛 =

 10000 using Matlab R2010a program under the system configuration in which they are obtained. As shown 

in Table 5 and 6 below, previously obtained loss probability 𝜋𝑙𝑜𝑠𝑠values are found close to the simulation 

values. This shows that the formula of 𝜋𝑙𝑜𝑠𝑠, which is theoretically found with Equation (2.29), is obtained 

correctly. In Table 7 and 8, the simulation values are given separately for each of the loss probabilities obtained 

for 𝑐 =  𝜆 and 𝑐 =  2𝜆  configurations, respectively. As seen from these tables, the numerical loss possibilities 

obtained for each system configuration converge to the simulation results.  

Table 5. Comparison of the optimal 𝜋𝑙𝑜𝑠𝑠 value obtained for 𝑐 =  𝜆 configuration with simulation results 

 
Optimal numerical 

value 

Simulation value         

(𝑛 = 100) 

Simulation value  

(𝑛 = 1000) 

Simulation value 

(𝑛 = 10000) 

Simulation value 

(𝑛 = 1000000) 

𝜋𝑙𝑜𝑠𝑠 0.707999 0.70 0.704 0.690 0.6899 
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Table 6. Comparison of the optimal 𝜋𝑙𝑜𝑠𝑠 value obtained for 𝑐 =  𝜆 configuration with simulation results 

 
Optimal 

numerical value 

Simulation value         

(𝑛 = 100) 

Simulation value 

(𝑛 = 1000) 

Simulation value 

(𝑛 = 10000) 

Simulation value 

(𝑛 = 1000000) 

𝜋𝑙𝑜𝑠𝑠 0.523330711 0.53 0.519 0.521 0.5158 

Table 7.  𝜋𝑙𝑜𝑠𝑠 values and simulation (𝑛 =  100000) results obtained for 𝑐 =  𝜆 configuration 

𝜇1 𝜇2 𝜇3 𝜋𝑙𝑜𝑠𝑠(Numerical) 𝜋𝑙𝑜𝑠𝑠(Simulation) 

0.2 0.9 0.9 0.9091 0.9084 

0.9 0.55 0.55 0.7176 0.7093 

1.07 0.465 0.465 0.7079 0.6899 

1.3 0.35 0.35 0.7279 0.6930 

1.8 0.1 0.1 0.9016 0.8440 

1.9 0.05 0.05 0.9501 0.9107 

Table 8.  𝜋𝑙𝑜𝑠𝑠 values and simulation (𝑛 =  100000) results obtained for 𝑐 =  2𝜆 configuration 

𝜇1 𝜇2 𝜇3 𝜋𝑙𝑜𝑠𝑠(Numerical) 𝜋𝑙𝑜𝑠𝑠(Simulation) 

0.2 1.9 1.9 0.9090 0.9095 

0.8 1.6 1.6 0.7150 0.7192 

1 1.5 1.5 0.6685 0.6654 

1.6 1.2 1.2 0.5681 0.5667 

1.8 1.1 1.1 0.5468 0.5421 

2 1 1 0.5322 0.5252 

2.2424 0.8889 0.8889 0.5233 0.5158 

2.4 0.8 0.8 0.5267 0.5197 

2.6 0.7 0.7 0.5388 0.5239 

2.8 0.6 0.6 0.5630 0.5387 

3 0.5 0.5 0.6013 0.5401 

4. Conclusion and Discussion 

In this study, a blocked stochastic queueing model consisting of parallel service units is given. In this queueing 

model, the customer arrivals are Poisson distributed with an average of 𝜆. In the first stage of the system, there 

is one service unit with an exponential service time with an average of 1 𝜇1⁄  and in the second stage, there are 

two service units with exponentially distributed service times, with averages of 1 𝜇2⁄   and 1 𝜇3⁄ , respectively. 

This queue model is not allowed to wait in front of the first stage service unit, so there is no queue in this 

system. An arriving customer is served if the service unit in the first stage is empty. Then, if the service units 

in the second stage are both empty, the customer continues to the first unit with the probability of 𝛼1, the 

second unit with a probability of 𝛼2 = 1 − 𝛼1 or if only one of the service units in the second stage is empty, 

completes its service in this unit and leaves the system. A third case is that if both service units in the second 

stage are full, the customer expects at least one of these service units to be empty by blocking the service unit 

in the 1st stage. Loss occurs when the customer continues to put into service at the 1st stage service unit or 
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when he/she blocks this service unit. One of the main problems in such a queueing model is to calculate this 

probability of loss and calculate what its optimal value will be. This given stochastic queueing model is 

mathematically defined by a three-dimensional continuous parameter Markov chain. Limit probabilities of this 

model are obtained by Kolmogorov difference and differential equations. Afterwards, transition probabilities 

and blocking probabilities are obtained by the elimination method. The loss probability of the system is found 

with the help of transition probabilities and blocking probability. In addition, the average number of customers 

in the system 𝐸(𝑁), which is one of the performance measures of the system, is calculated. Since the optimal 

value of 𝜋𝑙𝑜𝑠𝑠 cannot be calculated algebraically, optimal 𝜋𝑙𝑜𝑠𝑠 is numerically analysed under the condition 

𝜇1 + 𝜇2 + 𝜇3 = 𝑐 instead. As a result, the optimal 𝜋𝑙𝑜𝑠𝑠 value for 𝑐 =  𝜆 and 𝑐 =  2𝜆 is reached when 𝜇2 =

𝜇3 and 𝛼1 = 𝛼2. The model is simulated with MATLAB R2010 software. The simulation results are compared 

with the optimal 𝜋𝑙𝑜𝑠𝑠 values and the simulation results are found to be very close to the optimal 𝜋𝑙𝑜𝑠𝑠 values 

achieved in the study. 
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problems handled by researchers. This study aims to introduce a soft decision-making method and 

apply it to rank the side effects of COVID-19 vaccines. Based on the literature, the present study 

features the advantages and disadvantages of previously observed multi-criteria decision-making 

(MCDM) methods are summarized. This paper achieves to utilize multisets simultaneously with the 

known soft decision-making methods. The primary concern hereof is to offer an insightful everyday-

life example. Finally, the authors discuss the need for further research. 
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1. Introduction 

Multi-criteria decision-making (MCDM) methods encompass a diverse set of approaches. These methods can 

be broadly divided into two categories: discrete MCDM or discrete multi-attribute decision-making (MADM) 

and continuous multi-objective decision-making (MODM) methods [1,2]. A great many publications have 

recently been released on the development and application of MCDM methods in various fields. This article 

aims to document the exponentially growing interest in MCDM methods and techniques and reviews the latest 

literature on MCDM methods and their applications. The foundations of the modern MCDM were established 

in the 1950s and 1960s. The 1970s marked a critical decade for many pioneering works. The development of 

MCDM research built momentum in the 1980s and early 1990s and seems to have continued to grow 

exponentially up to the present time [3]. [4] has formulated the fundamentals of decision-making with multiple 

objectives. [5] has reviewed the development of MODM methods and their applications in a relatively short 

period. Later, [6] has analysed the MADM methods: Simple Additive Weighting (SAW) [7], Technique for 

Order of Preference by Similarity to Ideal Solution (TOPSIS) [7], Elimination and Choice Expressing Reality 

(ELECTRE) [8], and LINMAP [9]. [10] has published a detailed study on Analytic Hierarchy Process (AHP). 

Then, the author has published a study on the further development of Analytic Network Process (ANP) and a 

book which deals with the problem of the compromise theory. [11] has authored a book that addresses the 

same theory. [5] has studied MCDM in groups. [8] has summed up the available information on the ELECTRE 
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group method. [12] has written several seminal research papers. Yet the development of hybrid and modular 

methods has recently become more critical. They are based on the well-known methods, such as SAW [7], 

TOPSIS [5], AHP [10], and ELECTRE [8], and their modifications by applying fuzzy number and grey number 

theory. It is evident from the foregoing theoretical discussion that two articles [13,14] stand out. Two other 

relevant papers have featured soft multisets [15] and soft multi-criteria decision-making [16].  

In the current study, section 2 analyses MCDM methods. Section 3 presents some of the basic notions needed 

for the following sections. Section 4 proposes a new algorithm by modifying the algorithm provided in [16], 

and then propounds its other version to allow for a comparison with the proposed method. The last section 

discusses the need for new methods further research. 

2. Analysis of Multi-Criteria Decision-Making Methods 

This section presents a review of 11 methods in the literature. These methods are 1) MAUT, 2) AHP, 3) FST, 

4) CBR, 5) DEA, 6) SMART, 7) GP, 8) ELECTRE, 9) PROMETHEE, 10) SAW, and 11) TOPSIS. It is 

expected that this detailed review will give a deeper insight into these methods. 

2.1. Multi-Attribute Utility Theory (MAUT): The most commonly used MCDM approach in this analysis 

is MAUT [17-19]. This theory has been summarized by Loken as “a more systematic approach to incorporate 

risk expectations and uncertainty into decision support approaches with multiple parameters” [20]. MAUT’s 

main benefit is that it takes confusion into account. It potentially has a utility attributed to it, which is not a 

quality that is accounted for in many MCDM methods.  

MAUT has been widely applied to attend to economic, environmental, actuarial, and agricultural issues and 

water and energy management problems. These issues typically exhibit large quantities of ambiguities and 

provide ample data to make MAUT a proper decision-making process. 

2.2. Analytic Hierarchy Process (AHP): While examining the methods, their relationship with the above or 

other predefined methods is included as well. The MAUT and AHP approaches are based on various 

assumptions on value measures, and AHP is developed independently of other decision theories. The use of 

pair-wise comparisons to evaluate alternatives in terms of several parameters as well as to estimate criteria 

weights is the main characteristic of the AHP system. AHP’s implementation and its position in the studies on 

MCDM have followed a similar pattern as with MAUT and experienced increased usage in real-world 

application examples. AHP is used to compare weighting and ranking. AHP is capable of navigating various 

indicators. 

2.3. Fuzzy Set Theory (FST): Modelling and handling uncertainties have become essential issues in solving 

complex problems. FST was introduced by [21] to overcome the problems caused by uncertainties in a wide 

variety of fields. An efficient MCDM technique itself has been proved to be fuzzy logic. The use of cost-

benefit analysis as the primary tool for decision analysis to discuss environmental projects has been tackled by 

[22]. Fuzzy logic “takes into account the insufficient information and the evolution of available knowledge” 

[23]. Fuzzy systems can also be challenging to build because of drawbacks. In certain instances, before being 

used in the real world, they can require multiple simulations. FST has been developed and used in such fields 

as engineering, economics, medicine, and environmental and social sciences. 

2.4. Case-Based Reasoning (CBR): There are two popular ways to distinguish between companies in 

financial distress and those in healthy financial situations: human preference-oriented forecasting and data-

driven forecasting. [24] uses CBR to provide a new framework for forecasting financial distress in businesses 

one year before the real distress. Employing the Manhattan distance, Euclidean distance, and inductive form, 

CBR compares three different models and their respective results with a ranking-order case-based model of 

reasoning (ROCBR). One of CBR’s key advantages over most MCDM techniques is that it can improve over 

time, especially as more instances are added to the database. Through its database of events, it can also respond 

to environmental changes. Its significant downside is its vulnerability to data inconsistencies.  
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2.5. Data Envelopment Analysis (DEA) [25]: DEA is used to develop a model that will help policymakers 

of any country prioritize their actions. The goal thereof is to improve the relevant highways in the most efficient 

way possible. This method is able to successfully score the productivity of countries by obtaining 21 separate 

data. In this method, a mutual comparison is made. The comparison method refers to the grading of the 

efficiency of the most efficient alternatives. With a rating of 1.0, all the other alternatives are a fraction of 1.0. 

This offers several advantages. The most essential one is that multiple inputs and outputs can be processed. 

2.6. Simple Multi-Attribute Rating Technique (SMART) [26]: SMART counts as one of the most 

accessible categories of MAUT. Its name derives from its convenient use. This approach requires two 

assumptions, “preferential independence” and “utility independence”. In conjunction with the real numbers, 

this approach transforms significance weights into real numbers. In addition to those described in MAUT, the 

key benefits of SMART relative to the MAUT system are that it is easy to use and genuinely facilitates any 

form of weight assignment technique. 

2.7. Goal Programming (GP) [13]: GP is a realistic type of programming that provides an unlimited number 

of solutions to choose from. All of its strengths are that it can address large-scale concerns. Its most notable 

value, according to some methods, is the potential to generate limitless alternatives. A significant downside to 

this strategy is that the coefficients are not weighted. To accurately weight the coefficients, many 

implementations find it appropriate to use other approaches, such as AHP. This condition is not, however, 

present in this process. It eliminates one of its drawbacks by doing this while choosing infinite options, which 

can cause option inconsistencies. This follows a general trend that in applications that avoid many of their 

drawbacks, MCDM approaches are most frequently used – i.e., that coefficient weight does not care.  

2.8. ELECTRE [8]: The areas in which ELECTRE is used are issues with electricity, economy, environment, 

water management, and transport. It considers ambiguity as other approaches do. ELECTRE is a form of 

transformation of several iterations dependent on compatibility analysis. Its greatest value is that it takes into 

account complexity and uncertainty. Its downside is that it may be difficult to describe the mechanism and its 

consequences concerning its terms and poor comprehensibility. 

2.9. PROMETHEE [27]: PROMETHEE is similar to the aforesaid ELECTRE method in that it has multiple 

iterations and is also a transformation method. Its value is that it is convenient to use. The presumption that 

the parameters are proportional does not require it. The drawbacks are that it provides no explicit weight 

distribution method and allows weights to be allocated. Still, it fails to offer a consistent method for assigning 

these values. 

2.10. SAW [7]: “SAW is a value function established based on a simple addition of scores representing the 

goal achievement under each criterion, multiplied by the particular weights” [7]. Its ability to compensate 

between criteria is among the reasons for its selection in usage. For policymakers, it is intuitive as well. It is 

easy to use thanks to its ability to render calculations without basic and complicated computer programs. 

2.11. TOPSIS [5]: Its main benefits are that it has a clear method and it is accessible and programmable. 

Regardless of the number of attributes, the number of phases remain the same. It can be inferred from most of 

the uses in the literature that TOPSIS confirms the responses proposed by other methods of MCDM. The value 

of its flexibility and the potential to retain the same number of steps regardless of the challenge scale helps it 

be easily used as a decision-making mechanism for evaluating or retaining other approaches in its own right. 

3. Preliminaries 

This section provides some of the basic definitions to be needed for the following sections.  

Definition 3.1. Soft sets [28, as cited in 29] Let 𝑈 be an initial universe, 𝑃(𝑈) be the power set of 𝑈, 𝐸 

be the set of parameters, and 𝐴 ⊆ 𝐸. Then, a soft set 𝐹𝐴 over 𝑈 is defined as 𝐹𝐴 ≔ {(𝑥, 𝑓𝐴(𝑥)): 𝑥 ∈ 𝐸} 

where 𝑓𝐴: 𝐸 → 𝑃(𝑈) is a mapping and 𝑥 ∉ 𝐴 for 𝑓𝐴(𝑥) = ∅. 
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Definition 3.2. Multisets [30] Let 𝑈 be universal set, ℕ be a set of unsigned integer numbers, and 𝑋 ⊆

𝑈. Then, a multiset 𝑀𝑋 over 𝑈 is defined as 

𝑀𝑋 ≔ {
𝑓𝑋(𝑢)

𝑢
∶ 𝑢 ∈ 𝑈} 

where 𝑓𝑋: 𝑈 → ℕ be a mapping such that 𝑢 ∉ 𝑋 for 𝑓𝑋(𝑢) = 0  Here, 
𝑓𝑋(𝑢)

𝑢
 means that 𝑢 occurring 

𝑓𝑋(𝑢) times. Moreover, if 𝑓𝑋(𝑢) = 0, then  
𝑓𝑋(𝑢)

𝑢
 is not shown in the multiset. Here, if 𝑋 = 𝑈, MSs 

can be denoted by M or M1, M2, … 

Definition 3.3. [30] Let 𝑀𝑋, 𝑀𝑌 be two multisets over 𝑈. If, for all 𝑢 ∈ 𝑈, 𝑓𝑋(𝑢) ≤ 𝑓𝑌(𝑢), then  𝑀𝑋 is 

called multi-subset of 𝑀𝑌 and is denoted by 𝑀𝑋 ⊆̃ 𝑀𝑌. 

Example 3.4. Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, 𝑋 = {𝑢1, 𝑢3}, and 𝑓𝑋: 𝑈 → ℕ is a mapping defined by 𝑓𝑋(𝑢1) = 25, 

𝑓𝑋(𝑢2) = 33, and 𝑓𝑋(𝑢3) = 40. Then, the multiset 𝑀𝑋 = {
25

𝑢1
,
0

𝑢2
,
40

𝑢3
} briefly 𝑀𝑋 = {

25

𝑢1
,
40

𝑢3
}. 

Similarly, let 𝑌 = 𝑈 and 𝑀𝑌 = {
32

𝑢1
,
10

𝑢2
,
50

𝑢3
}. Then, 𝑀𝑋 ⊆̃ 𝑀𝑌 since 

𝑓𝑋(𝑢1) = 25 ≤ 𝑓𝑌(𝑢1) = 32 

𝑓𝑋(𝑢2) = 0 ≤ 𝑓𝑌(𝑢2) = 10 

𝑓𝑋(𝑢3) = 40 ≤ 𝑓𝑌(𝑢3) = 50 

Definition 3.5. [30] Let 𝑀𝑈 be a multiset over 𝑈 and 𝑛 ∈ ℕ. If, for all 𝑢 ∈ 𝑈, 𝑓𝑈(𝑢) = 𝑛, then 𝑀𝑈 is 

called n-multi-set over 𝑈 and is denoted by 𝑀𝑛. If, for all 𝑋 ⊆ 𝑈, max
𝑢∈𝑋

𝑓𝑋(𝑢) = 𝑛, then 𝑀𝑛 is referred 

to as n-universal multiset over 𝑈. Here, 𝑀0 is called empty multiset over 𝑈. It can be observed that 

𝑀∅ is empty multiset over 𝑈.  

Definition 3.6. Soft multisets (SMSs) [31] Let 𝑀𝑉 be a multiset, 𝑀(𝑀𝑉) be the set of all the multiset of 𝑈, 

𝐸 be parameters set, and 𝐴 ⊆ 𝐸. Then, a soft multiset (SMS) Ω𝐴 over 𝑍𝐾 is defined as 

Ω𝐴 ≔ {(𝑥, Ω𝐴(𝑥)): 𝑥 ∈ 𝐸} 

where Ω𝐴: 𝐸 → 𝑀(𝑈) is a mapping such that Ω𝐴(𝑥) = 𝑀
0 if 𝑥 ∉ 𝐴. Here, if 𝐴 = 𝐸, SMSs can be 

denoted by Ω or Ω1, Ω2, … 

Definition 3.7. Fuzzy set [21] Let 𝑈 be an initial universe, [0,1] be unit closed interval, and 𝜇:𝑈 → [0,1] 

be a mapping, Then, a fuzzy set 𝜇 over 𝑈 is defined as  

𝜇 ∶= {(𝑥, 𝜇(𝑥)): 𝑥 ∈ 𝑈} or briefly 𝜇 ∶= { 𝑥
𝜇(𝑥)

: 𝑥 ∈ 𝑈} 

Definition 3.8. Fuzzy soft set [32, as cited 33] Let 𝑈 be an initial universe, 𝐹(𝑈) be the set of all the fuzzy 

sets over 𝑈, 𝐸 be parameters set, and 𝐴 ⊆ 𝐸. Then, a fuzzy soft set Γ𝐴 over 𝑈 is defined as 

Γ𝐴 ≔ {(𝑥, Γ𝐴(𝑥)): 𝑥 ∈ 𝐸} 

where Γ𝐴: 𝐸 → 𝐹(𝑈) is a mapping such that Γ𝐴(𝑥) = 𝟎 if 𝑥 ∉ 𝐴. Here, 𝟎 denotes the empty fuzzy set. 

Moreover, if 𝐴 = 𝐸, fuzzy soft sets can be denoted by Γ or Γ1, Γ2, … 

Definition 3.9. [34, as cited in 35] Let 𝑈 be an initial universe, 𝐸 be parameters set, 𝐴 ⊆ 𝐸, and Γ𝐴 be a 

fuzzy soft set over 𝑈. Then, [𝑎𝑖𝑗] is called fuzzy soft matrix of Γ𝐴 and is defined by 
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[𝑎𝑖𝑗] =

[
 
 
 
 
𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

𝑎21 𝑎22 𝑎23 … 𝑎2𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 

 

such that for 𝑖, 𝑗 ∈ {0,1,2,⋯ }, 𝑎𝑖𝑗 ≔ ΓA(𝑥𝑗)(𝑢𝑖) where ΓA(𝑥𝑗)(𝑢𝑖) refers to the membership degree of 𝑢𝑖 in 

the fuzzy set ΓA(𝑥𝑗). Here, if |𝑈| = 𝑚 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. 

Definition 3.10. Let [𝑠𝑖1] be a real matrix has order 𝑚 × 1. Then, normalisation [𝑠̂𝑖1] of [𝑠𝑖1] is defined by 

𝑠̂𝑖1 ∶= {

𝑠𝑖1 −min
𝑘
𝑠𝑘1

max
𝑘
𝑠𝑘1 −min

𝑘
𝑠𝑘1

, max
𝑘
𝑠𝑘1 ≠ min

𝑘
𝑠𝑘1

1, max
𝑘
𝑠𝑘1 = min

𝑘
𝑠𝑘1

 

4. An Application of Soft Multisets to a Decision-Making Problem Concerning Side 

Effects of COVID-19 Vaccines  

Firstly, this section presents the data on the post-treatment side effects of the COVID-19 vaccine provided in 

[36-39] and obtained by the feedback received from 791, 530, 80, and 814 people located in Manisa/Turkey, 

the United States, Konya/Turkey, and the Czech Republic, respectively. The COVID-19 pandemic, identified 

in 59 suspect cases (In Hubei/Wuhan, China), has spread to affect the whole world [40-41]. Authorities have 

launched vaccination campaigns to prevent its spread. In this sense, several types of vaccines have been 

developed (for more about the properties of the COVID-19 vaccines, see [41-42]). 

Table 1. By-Symptom Distribution of the frequency of side effects (%) of COVID-19 vaccine 

 Symptoms / Sources  n*=791 [36] n=530 [37]  n=80 [38]  n=814 [39]  

𝒔𝟏 Headache 11.9 13 13.8 45.6 

𝒔𝟐 Muscle/joint pain 9.5 11.6 46.3 64.9 

𝒔𝟑 Sore Throat 3.7 8.5 23.8 - 

𝒔𝟒 Chills/Fever 3.2 2.8 37.5 55.6 

𝒔𝟓 Diarrhoea/Nausea/Vomiting 3.4 5.7 5 13 

𝒔𝟔 Loss/change in taste or smell 1.2 1.6 6.3 10 

𝒔𝟕 Cough 1.6 9.9 61.3 - 

𝒔𝟖 Hypertension 0.9 - 26.2 - 

𝒔𝟗 Shortness of breath 0.4 4.1 20 - 

𝒔𝟏𝟎 Injection site pain 18 - - 89.8 

𝒔𝟏𝟏 Injection site swelling 1.3 - - 25.6 

𝒔𝟏𝟐 Injection site itching/redness 1.4 - - 23 

𝒔𝟏𝟑 Lymphadenopathy 0.4 - - 16.2 

𝒔𝟏𝟒 Fatigue  - 

 

17.9 50 62.2 

*number of people 

Secondly, this section presents two soft decision-making (SDM) methods provided in [43,44]. Since these 

SDM methods have been configured to operate in the fuzzy parameterized fuzzy soft matrices space, they are 

reduced to the fuzzy soft matrices space. 
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Algorithm Steps of sMBR01 [43] 

Step 1: Construct a fuzzy soft matrix [𝑎𝑖𝑗] has order 𝑚× 𝑛 

Step 2: Obtain [𝑠𝑖1] defined by 

𝑠𝑖1 ≔∑

𝑚

𝑘=1

∑

𝑛

𝑗=1

sgn(𝑎𝑖𝑗 − 𝑎𝑘𝑗),    𝑖 ∈ {1,2, . . . , 𝑚} 

Step 3: Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm Steps of CCE10 [44] 

Step 1: Construct a fuzzy soft matrix [𝑎𝑖𝑗] has order 𝑚× 𝑛 

Step 2: Obtain the score matrix [𝑠𝑖1] defined by 

𝑠𝑖1 ≔
1

n
∑

𝑛

𝑗=1

𝑎𝑖𝑗 ,   𝑖 ∈ {1,2, . . . , 𝑚} 

Step 3: Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Thirdly, this section proposes a new algorithm, denoted by KPS21, by modifying the algorithm provided in 

[16]. Then, it propounds its other version, i.e., KPS21/2, to allow for a comparison with KPS21. These methods 

achieve to utilize multisets simultaneously with the known soft decision-making methods. 

Algorithm Steps of KPS21 

Step 1: Input a parameter set 𝐸, 𝐴 ⊆ 𝐸, a universal set 𝑈, and 𝑋 ⊆ 𝑈 

Step 2: Construct a multiset 𝑀𝑋 over 𝑈 

Step 3: Construct an SMS ΩA over 𝑈 

Step 4: Compute the fuzzy soft set Γ𝐴 = {(𝑥, Γ𝐴(𝑥)): 𝑥 ∈ 𝐸} defined by  

Γ𝐴(𝑥) = {
Ω𝐴(𝑥)(𝑢)/∑ Ω𝐴(𝑥)(𝑣)𝑣

𝑢
∶ 𝑥 ∈ 𝐸} 

Step 5: Obtain the fuzzy soft matrices [𝑎𝑖𝑗] 

Step 6: Apply sMBR01 to the [𝑎𝑖𝑗] 

Algorithm Steps of KPS21/2 

Step 1: Input a parameter set 𝐸, 𝐴 ⊆ 𝐸, a universal set 𝑈, and 𝑋 ⊆ 𝑈 

Step 2: Construct a multiset 𝑀𝑋 over 𝑈 

Step 3: Construct an SMS ΩA over 𝑈 

Step 4: Compute the fuzzy soft set Γ𝐴 = {(𝑥, Γ𝐴(𝑥)): 𝑥 ∈ 𝐸} defined by  

Γ𝐴(𝑥) = {
Ω𝐴(𝑥)(𝑢)/∑ Ω𝐴(𝑥)(𝑣)𝑣

𝑢
∶ 𝑥 ∈ 𝐸} 

Step 5: Obtain the fuzzy soft matrices [𝑎𝑖𝑗] 

Step 6: Apply CEC11 to the [𝑎𝑖𝑗] 

Fourthly, this section applies KPS21 and KPS21/2 to the side-effect data provided in Table 1. 

Step 1: 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝐴 = 𝐸, 𝑈 = {𝑢1, 𝑢2, … , 𝑢14}, and 𝑋 = 𝑈 such that 

𝑢𝑖 = 𝑠𝑖 for all 𝑖 ∈ {1,2,… ,14}  
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𝑥1 = Data located in Manisa/Turkey 

𝑥2 = Data located in the United States 

𝑥3 = Data located in Konya/Turkey 

𝑥4 = Data located in the Czech Republic 

Step 2: The multisets 𝑀1,𝑀2, 𝑀3 and 𝑀4 over 𝑈, which show the distribution of side effects and whose values 

are obtained by rounding the values provided in Table 1 to the nearest integer number, are as follows:   

𝑀1 = 〈
12

𝑢1
,
10

𝑢2
,
4

𝑢3
,
3

𝑢4
,
3

𝑢5
,
1

𝑢6
,
2

𝑢7
,
1

𝑢8
,
18

𝑢10
,
1

𝑢11
,
1

𝑢12
〉 

𝑀2 = 〈
13

𝑢1
,
12

𝑢2
,
9

𝑢3
,
3

𝑢4
,
6

𝑢5
,
2

𝑢6
,
10

𝑢7
,
4

𝑢9
,
18

𝑢14
〉 

𝑀3 = 〈
14

𝑢1
,
46

𝑢2
,
24

𝑢3
,
38

𝑢4
,
5

𝑢5
,
6

𝑢6
,
61

𝑢7
,
26

𝑢8
,
20

𝑢9
,
50

𝑢14
〉 

𝑀4 = 〈
46

𝑢1
,
65

𝑢2
,
56

𝑢4
,
13

𝑢5
,
10

𝑢6
,
90

𝑢10
,
26

𝑢11
,
23

𝑢12
,
16

𝑢13
,
62

𝑢14
〉 

Step 3: Thus, an SMS Ω over 𝑈 is as follows: 

Ω = {(𝑥1,𝑀1), (𝑥2, 𝑀2), (𝑥3,𝑀3), (𝑥3, 𝑀4)} 

Step 4: Therefore, the fuzzy soft set Γ  

Γ =

{
  
 

  
 
(𝑥1, { 𝑢1

0.21 , 𝑢2
0.18 , 𝑢3

0.07 , 𝑢4
0.05 , 𝑢5

0.05 , 𝑢6
0.02 , 𝑢7

0.04 , 𝑢8
0.02 , 𝑢10

0.32 , 𝑢11
0.02 , 𝑢12

0.02 }),

(𝑥2, { 𝑢1,
0.17 𝑢2,

0.16 𝑢3,
0.12 𝑢4,

0.04 𝑢5,
0.08 𝑢6

0.03 , 𝑢7,
0.13 𝑢9

0.05 , 𝑢14
0.23 }),

(𝑥3, { 𝑢1,
0.05 𝑢2,

0.16 𝑢3,
0.08 𝑢4

0.13 , 𝑢5,
0.02 𝑢6

0.02 , 𝑢7, 𝑢8
0.09 ,0.21 𝑢9

0.07 , 𝑢14
0.17 }),

(𝑥4, { 𝑢1,
0.11 𝑢2,

0.16 𝑢3,
0.14 𝑢4

0.03 , 𝑢5,
0.02 𝑢6

0.22 , 𝑢7, 𝑢8
0.06 ,0.06 𝑢9

0.04 , 𝑢14
0.15 }), }

  
 

  
 

 

Step 5: The fuzzy soft matrix of Γ is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.21 0.17 0.05 0.11

0.18 0.16 0.16 0.16

0.07 0.12 0.08 0

0.05 0.04 0.13 0.14

0.05 0.08 0.02 0.03

0.02 0.03 0.02 0.02

0.04 0.13 0.21 0

0.02 0 0.09 0

0 0.05 0.07 0

0.32 0 0 0.22

0.02 0 0 0.06

0.02 0 0 0.06

0 0 0 0.04

0 0.23 0.17 0.15]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 6: The decision set and the rank of the alternatives obtained by sMBR01 are as follows: 

{ 𝑢1,
0.83 𝑢2

1 , 𝑢3,
0.52 𝑢4

0.7 , 𝑢5
0.45 , 𝑢6

0.22 , 𝑢7
0.61 , 𝑢8

0.19 , 𝑢9
0.03 , 𝑢10

0.7 , 𝑢11
0.14 , 𝑢12

0.14 , 𝑢13
0 , 𝑢14

0.77 } 

and 
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𝑢13 ≺ 𝑢9 ≺ 𝑢11 ≈ 𝑢12 ≺ 𝑢8 ≺ 𝑢6 ≺ 𝑢5 ≺ 𝑢3 ≺ 𝑢7 ≺ 𝑢4 ≈ 𝑢10 ≺ 𝑢14 ≺ 𝑢1 ≺ 𝑢2 

Similarly, the decision set and the rank of the alternatives obtained by CEC11 is as follows: 

{ 𝑢1
0.82 , 𝑢2

1 , 𝑢3
0.41 , 𝑢4,

0.54 𝑢5,
0.27 𝑢6

0.14 , 𝑢7,
0.58 𝑢8

0.17 , 𝑢9
0.11 , 𝑢10

0.89 , 𝑢11
0.12 , 𝑢12

0.12 , 𝑢13
0.06 , 𝑢14

0.83 } 

and 

𝑢13 ≺ 𝑢9 ≺ 𝑢11 ≈ 𝑢12 ≺ 𝑢8 ≺ 𝑢6 ≺ 𝑢5 ≺ 𝑢3 ≺ 𝑢4 ≺ 𝑢7 ≺ 𝑢1 ≺ 𝑢14 ≺ 𝑢10 ≺ 𝑢2 

Both of the results manifest that the appearance rates of the side effects 𝑢13, 𝑢9, 𝑢11, 𝑢12, 𝑢8, 𝑢6, and 𝑢5 account 

for less than 50%, and the methods produce the same ranking orders for these alternatives. Moreover, the 

appearance rates of the side effects 𝑢3, 𝑢7, 𝑢4, 𝑢10, 𝑢14, 𝑢1, and 𝑢2 are greater than 50%, and the methods 

produce the same ranking orders for 𝑢3 and 𝑢2, while those of the others are different. sMBR01 and CEC11 

methods are reliable since they pass all the tests provided in [45]. KPS21 and KPS21/2 methods are also 

reliable as they are based on the aforesaid methods, respectively. However, the uncertainty inherent in the 

problem causes some of the produced ranking orders to be different. 

5. Conclusion 

In this study, an example of an algorithm used in alternative decision-making processes was introduced to 

provide a working example of the MCDM method for selecting alternatives used in everyday life and the 

decisions that can be reached with the help of the concept of soft sets emerging on the concept of uncertainties. 

It is believed that the algorithms proposed in this study can be used in different disciplines and will offer 

guidance for future studies. Moreover, to improve the proposed method, it is worth studying the current soft 

decision-making methods [46-52]. 

Conflict of Interest 

The authors declare no conflict of interest. 

References 

[1] N. Chauhan, P. Mohapatra, K. Pandey, Improving Energy Productivity in Paddy Production Through 

Benchmarking-An Application of Data Envelopment Analysis, Energy Conversion and Management 

47(9-10) (2006) 1063-1085. 

[2] E. K. Zavadskas, Z. Turskis, S. Kildienė, State of Art Surveys of Overviews on MCDM/MADM 

Methods, Technological and Economic Development of Economy 20(1) (2014) 165-179.  

[3] M. M. Köksalan, J. Wallenius, S. Zionts, Multiple Criteria Decision Making: From Early History to the 

21st Century, World Scientific (2011) https://doi.org/10.1142/8042  

[4] R. Keeney, The Art of Assessing Multiattribute Utility Functions, Organizational Behavior and Human 

Performance 19(2) (1977) 267-310. 

[5] C. L. Hwang, K. Yoon, Methods for Multiple Attribute Decision Making, In Multiple Attribute Decision 

Making (1981) Springer, Berlin, Heidelberg, pp. 58-191.  

[6] G. H. Tzeng, C. H. Chiang, C. W. Li, Evaluating Intertwined Effects in E-Learning Programs: A Novel 

Hybrid MCDM Model Based on Factor Analysis and DEMATEL, Expert Systems with 

Applications 32(4) (2007) 1028-1044.  

[7] X. S. Qin, G. H. Huang, A. Chakma, X. H. Nie, Q. G. Lin, A MCDM-Based Expert System for Climate-

Change Impact Assessment and Adaptation Planning–A Case Study for The Georgia Basin, 

Canada, Expert Systems with Applications 34(3) (2008) 2164-2179.  

https://doi.org/10.1142/8042


111 

 

Journal of New Theory 35 (2021) 103-113 / An Application of Soft Multisets to a Decision-Making Problem … 

[8] B. Roy, ELECTRE III: A Ranking Algorithm Based on A Fuzzy Representation of Preferences in the 

Presence of Multiple Criteria (In French) 20(1) (1978) 3-4. 

[9] V. Srinivasan, A. D. Shocker, Linear Programming Techniques for Multidimensional Analysis of 

Preferences, Psychometrika 38(3) (1973) 337-369. 

[10] T. L. Saaty, The Analytic Hierarchy Process (AHP), The Journal of the Operational Research Society 

41(11) (1980) 1073-1076. 

[11] M. Zeleny, J. L. Cochrane, Multiple Criteria Decision Making, University of South Carolina Press (1973) 

Columbia.  

[12] V. Belton, T. Stewart, Multiple Criteria Decision Analysis: An Integrated Approach, Springer Science & 

Business Media (2002) 372. 

[13] M. Velasquez, P. T. Hester, An Analysis of Multi-Criteria Decision-Making Methods, International 

Journal of Operations Research 10(2) (2013) 56-66.  

[14] C. Kahraman, S. C. Onar, B. Oztaysi, Fuzzy Multi-Criteria Decision-Making: A Literature Review, 

International Journal of Computational Intelligence Systems 8(4) (2015) 637-666.  

[15] D. Tokat, İ. Osmanoğlu, Soft Multi Set and Soft Multi Topology, Journal of Nevsehir University Institue 

of Science 2 (2011) 109-118.  

[16] M. Riaz, N. Çağman, N. Wali, A. Mushtaq, Certain Properties of Soft Multi-Set Topology with 

Applications in Multi-Criteria Decision Making, Applications in Management and Engineering 3(2) 

(2020) 70-96.  

[17] P. C. Fishburn, Conjoint Measurement in Utility Theory with Incomplete Product Sets, Journal of 

Mathematical Psychology 4(1) (1967) 104-119.  

[18] P. C. Fishburn, R. L. Keeney, Seven Independence Concepts and Continuous Multiattribute Utility 

Functions, Journal of Mathematical Psychology 11(3) (1974) 294-327.  

[19] R. L. Keeney, The Art of Assessing Multiattribute Utility Functions, Organizational Behavior and Human 

Performance 19(2) (1977) 267-310.  

[20] E. Loken, Use of Multi-Criteria Decision Analysis Methods for Energy Planning Problems, Renewable 

and Sustainable Energy Reviews 11(7) (2007) 1584-1595. 

[21] L. Zadeh, Fuzzy Sets, Information and Control 8(3) (1965) 338-353. 

[22] I. M. Khadam, J. J. Kaluarachchi, Multi-Criteria Decision Analysis with Probabilistic Risk Assessment 

for the Management of Contaminated Ground Water, Environmental Impact Assessment Review 23(6) 

(2003) 683-721.  

[23] J. F. Balmat, F. Lafont, R. Maifret, N. Pessel, A Decision-Making System to Maritime Risk 

Assessment, Ocean Engineering 38(1) (2011) 171-176.  

[24] H. Li, J. Sun, Ranking-Order Case-Based Reasoning for Financial Distress Prediction, Knowledge-

Based Systems 21(8) (2008) 868-878. 

[25] E. Thanassoulis, M. Kortelainen, R. Allen, Improving Envelopment in Data Envelopment Analysis Under 

Variable Returns to Scale, European Journal of Operational Research 218(1) (2012) 175-185. 

[26] Y. Chen, G. Okudan, D. Riley, Decision Support for Construction Method Selection in Concrete 

Buildings: Prefabrication Adoption and Optimization, Automation in Construction 19(6) (2010) 665-

675. 



112 

 

Journal of New Theory 35 (2021) 103-113 / An Application of Soft Multisets to a Decision-Making Problem … 

[27] J. P. Brans, P. Vincke, B. Mareschal, How to Select and How to Rank Projects: The PROMETHEE 

Method, European Journal of Operational Research 24(2) (1986) 228-238. 

[28] D. Molodtsov, Soft Set Theory-First Results, Computers & Mathematics with Applications 37(4-5) 

(1999) 19-31.  

[29] N. Çağman, S. Enginoğlu, Soft Sets Theory and Uni-Int Decision-Making, Computers & Mathematics 

with Applications 207 (2010) 847-855. 

[30] S. Apostolos, Mathematics of Multisets. Multiset Processing (2001) LNCS, 2235, 347-358.  

[31] K.V. Babitha, S.J. John, On Soft Multiset, Annals of Fuzzy Mathematics and Informatics 5(1) (2013) 35-

44 

[32] P. K. Maji, A. R. Roy, R. Biswas, Fuzzy Soft Sets, Journal of Fuzzy Mathematics 9(3) (2001) 589-602. 

[33] N. Çağman, S. Enginoğlu, F. Çıtak, Fuzzy Soft Set Theory and Its Applications, Iranian Journal of Fuzzy 

Systems 8(3) (2017) 137-147. 

[34] N. Çağman, S. Enginoğlu, Fuzzy Soft Matrix Theory and Its Application in Decision-Making, Iranian 

Journal of Fuzzy Systems 9(1) (2012) 109-119. 

[35] S. Enginoğlu, M. Ay, N. Çağman, V. Tolun, Classification of the Monolithic Columns Produced in Troad 

and Mysia Region Ancient Granite Quarries in Northwestern Anatolia via Soft Decision-Making, Bilge 

International Journal of Science and Technology Research 3(Special Issue) (2019) 21-34. 

[36] Ş. Şenol, E. Eser, S. Akçalı, B. C. Özyurt, P. E. Dündar, T. Ecemiş, …, Interim Results of the “CoronaVac 

Vaccine Protection Study” (In Turkish), 

https://www.mcbu.edu.tr/Haber/MCBUTipFakultesiHastanesiSaglikCalisanlarininYuruttuguCoronova

VacAsiKoruyuculuguCalismasiAraSonuclariniYayimladi_19_35_35 Access Date: 09.04.2021 

[37] K. Michaud, K. Wipfler, Y. Shaw, T. A. Simon, A. Cornish, B. R. England, …, Experiences of Patients 

with Rheumatic Diseases in the United States During Early Days of the COVID-19 Pandemic, American 

College of Rheumatology 2(6) (2020) 335-343. 

[38] E. B. Batur, M. K. Korez, I. A. Gezer, F. Levendoğlu, O. Ural, Musculoskeletal symptoms and 

relationship with laboratory findings in patients with COVID-19, International Journal of Clinical 

Practice 75(6) (2021) 1-7. https://doi.org/10.1111/ijcp.14135  

[39] A. Riad, A. Pokorná, S. Attia, J. Klugarová, M. Košcík, M. Klugar, Prevalence of COVID-19 Vaccine 

Side Effects among Healthcare Workers in the Czech Republic, Journal of Clinical Medicine 10 (2021) 

1-18. https://doi.org/10.3390/jcm10071428  

[40] Y. Demirbilek, G. Pehlivantürk, Z. Ö. Özgüler, E. A. Meşe, COVID-19 Outbreak Control, Example of 

Ministry of Health of Turkey, Turkish Journal of Medical Sciences 50(SI-1) (2014) 489-494. 

[41] S. Çağlar, What Does It Really Mean When the COVID-19 Vaccine is 95% Effective? (In Turkish)  

https://www.matematiksel.org/COVID-19-asisi-95-etkili-demek-gercekte-ne-anlama-geliyor/ Access 

Date: 09.04.2021. 

[42] B. Meral, How Do Vaccines Work? How Does it Strengthen the Immune System? (In Turkish)  

https://www.matematiksel.org/asilar-nasil-calisir-bagisiklik-sistemini-nasil-guclendirir/ Access Date: 

09.04.2021 

[43] S, Enginoğlu, S, Memiş, Comment on Fuzzy Soft Sets [The Journal of Fuzzy Mathematics, 9(3), 2001, 

589 602], International Journal of Latest Engineering Research and Applications 3(9) (2018) 1-9. 

[44] S. Enginoğlu, S. Memiş, A Configuration of Some Soft Decision-Making Algorithms via fpfs-matrices, 

Cumhuriyet Science Journal 39(4) (2018) 871-881. 

https://www.mcbu.edu.tr/Haber/MCBUTipFakultesiHastanesiSaglikCalisanlarininYuruttuguCoronovaVacAsiKoruyuculuguCalismasiAraSonuclariniYayimladi_19_35_35
https://www.mcbu.edu.tr/Haber/MCBUTipFakultesiHastanesiSaglikCalisanlarininYuruttuguCoronovaVacAsiKoruyuculuguCalismasiAraSonuclariniYayimladi_19_35_35
https://doi.org/10.1111/ijcp.14135
https://doi.org/10.3390/jcm10071428
https://www.matematiksel.org/COVID-19-asisi-95-etkili-demek-gercekte-ne-anlama-geliyor/
https://www.matematiksel.org/asilar-nasil-calisir-bagisiklik-sistemini-nasil-guclendirir/


113 

 

Journal of New Theory 35 (2021) 103-113 / An Application of Soft Multisets to a Decision-Making Problem … 

[45] S. Enginoğlu, T. Aydın, S. Memiş, B. Arslan, Operability-Oriented Configurations of the Soft Decision-

Making Methods Proposed between 2013 and 2016 and Their Comparisons, Journal of New Theory (34) 

(2021) 82-114. 

[46] S. Enginoğlu, S. Memiş, T. Öngel, Comment on Soft Set Theory and Uni-Int Decision Making [European 

Journal of Operational Research, (2010) 207, 848-855], Journal of New Results in Science 7(3) (2018) 

28-43. 

[47] S. Enginoğlu, S. Memiş, B. Arslan, Comment (2) on Soft Set Theory and uni-int Decision Making 

[European Journal of Operational Research, (2010) 207, 848-855], Journal of New Theory (25) (2018) 

84-102. 

[48] S. Enginoğlu, S. Memiş, N. Çağman, A Generalisation of Fuzzy Soft Max-Min Decision-Making Method 

and Its Application to A Performance-Based Value Assignment in Image Denoising, El-Cezerî Journal of 

Science and Engineering 6(3) (2019) 466-481. 

[49] S. Enginoğlu, S. Memiş, F. Karaaslan, A New Approach to Group Decision-Making Method Based on 

TOPSIS under Fuzzy Soft Environment, Journal of New Results in Science 8(2) (2019) 42-52. 

[50] S. Enginoğlu, T. Öngel, Configurations of Several Soft Decision-Making Methods to Operate in Fuzzy 

Parameterized Fuzzy Soft Matrices Space, Eskişehir Technical University Journal of Science and 

Technology Applied Sciences and Engineering 21(1) (2020) 58-71. 

[51] S. Enginoğlu, S. Memiş, A New Approach to the Criteria-Weighted Fuzzy Soft Max-Min Decision-Making 

Method and Its Application to a Performance-Based Value Assignment Problem, Journal of New Results 

in Science 9(1) (2020) 19-36. 

[52] S. Enginoğlu, T. Aydın, S. Memiş, B. Arslan, SDM Methods’ Configurations (2017-2019) and Their 

Application to a Performance-Based Value Assignment Problem: A Follow up Study, Annals of 

Optimization Theory and Practice (In Press) 


