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Abstract − This paper aims to define and characterize the relative Gol’dberg order
and type of a multiple entire Dirichlet series with respect to another multiple entire
Dirichlet series in terms of their coefficients and exponents. By using the definition,
we study the growth properties of the Hadamard product between two such series.
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1. Introduction

Relative Gol’dberg order and type of a multiple entire Dirichlet series with respect to another multiple
entire Dirichlet series in terms of their maximum modulus function, has been defined in [1] and [2]
respectively. Those definitions have been used to study about growth properties of sum functions and
asymptotically equivalent multiple entire Dirichlet series. Hadamard product between two such series
involves coefficients and exponents of them. Therefore, use of the definition which involves maximum
modulus function, may not be useful to study about growth property of Hadamard product. So, it
is necessary to find an expression of relative Gol’dberg order and type in terms of coefficients and
exponents of the two multiple entire Dirichlet series.

We now briefly discuss about entire Dirichlet series in one complex variable and the reasons due
to which, the series satisfies the condition to be an entire function.

A Series of the form
∞∑
n=1

ane
λns (1)

where s = σ + it, an ∈ C and 0 ≤ λ1 < λ2 < · · · < λn → ∞ is called a Dirichlet series in one
complex variable. If the Dirichlet series is convergent at s0 = σ0 + it0 ∈ C, then it is convergent
at any point in the set D = {s ∈ C : Re(s) < Re(s0)} and uniformly convergent in the domain
D1 = {s ∈ C : |arg(s − s0)| ≤ θ < π

2 }. The abscissa of convergence of (1) is σc = sup{σ ∈ R :
series(1) converges for all s ∈ C where Re(s) < σ}.

1m.middya19@gmail.com
1Department of Business Mathematics and Statistics, St. Xavier’s College(Autonomous), 30, Mother Teresa Sarani,

Kolkata 700016, India

https://dergipark.org.tr/en/pub/jnt
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The series (1) is absolutely convergent if the series

∞∑
n=1

|aneλns| =
∞∑
n=1

|an|eλnσ (2)

is convergent. Let σA be the abscissa of absolute convergence of the series (1).
The following theorem gives a general relationship between the abscissa of convergence and the

abscissa of absolute convergence.

Theorem 1.1. ( [3], p-31) If the exponents λn in (1) satisfy the condition L = lim sup
n→∞

log n

λn
< ∞,

then 0 ≤ σc − σA ≤ L.

If L = lim sup
n→∞

log n

λn
= 0, then σA = σc = − lim sup

n→∞

log |an|
λn

.

Therefore, the series (1) will represent an entire function g(s) if and only if [3]

lim sup
n→∞

log |an|
λn

= −∞ (3)

In this paper, we have studied about multiple entire Dirichlet series. Next, we write the notations
which have been used throughout this paper and then briefly discuss about the series in multiple
complex variables.

1.1. Notations

For s = (s1, s2, . . . , sn), w = (w1, w2, . . . , wn) ∈ Cn, and α ∈ C, we define s = w if and only if si = wi,
s + w = (s1 + w1, s2 + w2, . . . , sn + wn), αs = (αs1, αs2, . . . , αsn), s.w = s1w1 + s2w2 + · · · + snwn,

| s |= (|s1|2 + |s2|2 + · · · + |sn|2)
1
2 . s + R = (s1 + R, s2 + R, . . . , sn + R), for R ∈ R. λn,m =

(λ1m1 , λ2m2 , . . . , λnmn) ∈ R+n where R+n = {x : x ∈ Rn, xi ≥ 0}. s.λn,m = s1λ1m1 + s2λ2m2 + · · · +
snλnmn . λ

k
n,m = (λk1m1

, λk2m2
, . . . , λknmn) ∈ R+n , for k = 0, 1, 2, . . . ‖λn,m‖ = λ1m1 + λ2m2 + · · ·+ λnmn

For r, t ∈ R+n , we define r ≤ t if and only if ri ≤ ti and r < t if and only if ri < ti for i = 1, 2, . . . , n.

Definition 1.2. A multiple entire Dirichlet Series is of the form

f(s) =

∞∑
‖m‖=1

am1,...,mne
s.λn,m (4)

where am1,...,mn ∈ C, s = (s1, s2, . . . , sn) ∈ Cn, sj = σj + itj , j = 1, 2, . . . , n, and {λj,mj}
∞
mj=1

, j =

1, . . . , n are n sequences of exponents satisfying the conditions 0 ≤ λjm1 < λjm2 < · · · < λjmk →

∞ as k →∞, j = 1, . . . , n, and lim
mj→∞

logmj

λjmj
= 0, j = 1, 2, . . . , n.

As described in Equation (3), series (4) must satisfy the following condition in order to represent
an entire function

lim sup
‖m‖→∞

log |am1···n |
‖λn,m‖

= −∞ (5)

Let D ⊂ Cn be an arbitrary complete n-half-plane defined by D = {s : s ∈ Cn, Re(si) ≤ ri} where
r = (r1, r2, . . . , rn) ∈ Rn. Consider a parameter R ∈ R, define R + D = D + R = {s + R : s ∈ D}.
Then, for the multiple Dirichlet entire function f , the maximum modulus function Mf,D(R) with
respect to the region D and R ∈ R is defined as

Mf,D(R) = sup{| f(s) |: s ∈ D +R} (6)

Mf,D(R) is strictly increasing, increases to ∞ and continuous functions of R. The inverse function is
M−1f,D : (L,∞)→ (−∞,∞) where 0 ≤ L = lim

R→−∞
Mf,D(R).
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Throughout this paper, we have considered a class of multiple entire Dirichlet series with same
sequence of exponents.

For k = 0, 1, 2, 3, . . . , we define

fk(s) =

∞∑
‖m‖=1

‖λkn,m‖ames.λn,m (7)

Therefore, for two multiple entire Dirichlet series f(s) and g(s), we have (f + g)k = fk + gk, k =
0, 1, 2, . . .

2. Preliminary

In this section, we write a few preliminary definitions which have been used to prove the theorems
and results in the next section.

Definition 2.1. [4] The Gol’dberg order of a multiple entire Dirichlet Series f with respect to the
domain D is defined by

ρf (D) = lim sup
R→∞

log logMf,D(R)

R
(8)

Definition 2.2. [4] The lower Gol’dberg order of a multiple entire Dirichlet Series f with respect to
the domain D is defined by

λf (D) = lim inf
R→∞

log logMf,D(R)

R
(9)

f is said to be of regular growth if ρf (D) = λf (D).

Definition 2.3. [4] The Gol’dberg type of a multiple entire Dirichlet Series f with Gol’dberg order
ρf (D), (0 < ρf (D) <∞) with respect to the domain D, is defined by

σf (D) = lim sup
R→∞

logMf,D(R)

eRρf (D)
(10)

Definition 2.4. [4] The lower Gol’dberg type of a multiple entire Dirichlet Series f with Gol’dberg
order ρf (D), (0 < ρf (D) <∞) with respect to the domain D, is defined by

τf (D) = lim inf
R→∞

logMf,D(R)

eRρf (D)
(11)

f is said to be of perfectly regular growth if ρf (D) = λf (D) and σf (D) = τf (D).

Definition 2.5. [1] Let f and g be two multiple entire Dirichlet series. The relative Gol’debrg order
of f with respect to g, denoted by ρg,D(f), is defined as

ρg,D(f) = lim sup
R→∞

M−1g,D(Mf,D(R))

R
(12)

Definition 2.6. [2] The relative Gol’dberg type of a multiple entire Dirichlet series f with respect
to another multiple entire Dirichlet series g, with 0 < ρg,D(f) <∞, denoted by σg,D(f), is defined as

σg,D(f) = lim sup
R→∞

logMf,D(R)

logMg,D(ρg,D(f)R)
(13)

From the definition(2.5) and (2.6) it follows that for k = 0, 1, 2, . . .

ρg,D(fk) = lim sup
R→∞

M−1g,D(Mfk,D(R))

R
(14)

and

σg,D(fk) = lim sup
R→∞

logMfk,D(R)

logMg,D(ρg(fk)R)
(15)

where fk is defined in Equation (7).
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Definition 2.7. [5] P. K. Sarkar defined the Gol’dberg order ρf (D) of a multiple entire Dirichlet
series f in terms of coefficients and exponents as

ρf (D) = lim sup
‖m‖→∞

‖λn,m‖ log ‖λn,m‖
− log |am|

(16)

Definition 2.8. [5] P. K. Sarkar also defined the Gol’dberg type σf (D) of a multiple entire Dirichlet
series f in terms of coefficients and exponents as

σf (D) =
1

eρf (D)
lim sup
‖m‖→∞

‖λn,m‖
{
|am|φD(m)

} ρf (D)

‖λn,m‖
(17)

where φD(m) = sup
s∈D
| exp{s.λn,m}|

Definition 2.9. For f(s) =

∞∑
‖m‖=1

ame
s.λn,m and g(s) =

∞∑
‖m‖=1

bme
s.λn,m , Hadamard product f ∗ g is

defined as

(f ∗ g)(s) = f(s) ∗ g(s) =
∞∑

‖m‖=1

ambme
s.λn,m (18)

Then, for k = 0, 1, 2, 3, . . . ,

(f(s) ∗ g(s))k =
∞∑

‖m‖=1

‖λkn,m‖ambmes.λn,m (19)

fk(s) ∗ gk(s) =

∞∑
‖m‖=1

‖λ2kn,m‖ambmes.λn,m (20)

where fk is defined in Equation (7).

We know that Gol’dberg order ρf (D) and relative Gol’dberg order ρg,D(f) does not depend on
the choice of domain D while Gol’dberg type σf (D) and relative Gol’dberg type σg,D(f) does ( [5]).
Henceforth we may write ρf and ρg(f) instead of writing ρf (D) and ρg,D(f).

3. Theorems and Results

In this section, we have proved the theorems which establish relative Gol’dberg order and type in
terms of coefficients and exponents of a multiple entire Dirichlet series. Before proving the theorem,
we write the statement of Theorem (4.2.2) ( [6], Chapter 4) and Theorem (5.2.5) ( [6], Chapter 5)
which has been used to prove the main results.

Lemma 3.1. Let f and g be two multiple entire Dirichlet series of finite Gol’dberg orders ρf and ρg
such that ρg 6= 0. Then the relative Gol’dberg order of f with respect to g satisfies the inequality
ρg(f) ≥ ρf

ρg
. If g is of regular growth then ρg(f) =

ρf
ρg

.

Lemma 3.2. Let f and g be two multiple entire Dirichlet series of finite Gol’dberg orders ρf , ρg and
Gol’dberg types σf (D), σg(D) respectively such that σg(D) 6= 0 and g is of regular growth. Then the

relative Gol’dberg type of f with respect to g satisfies the inequality σg,D(f) ≥ σf (D)
σg(D) . Moreover, if g

is of perfectly regular growth then σg,D(f) =
σf (D)
σg(D) .

Theorem 3.3. Let f(s) =

∞∑
‖m‖=1

ame
s.λn,m and g(s) =

∞∑
‖m‖=1

bme
s.λn,m be two multiple entire Dirichlet

series of finite Gol’dberg orders ρf and ρg such that ρg 6= 0 and g is of regular growth. Then, the

relative Gol’dberg order of f with respect to g is given by ρg(f) = lim sup
‖m‖→∞

log |bm|
log |am|

.
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Proof. Since g is of regular growth, by Lemma (3.1),

ρg(f) =
ρf
ρg

= lim sup
‖m‖→∞

‖ λn,m ‖ log ‖ λn,m ‖
log | 1

am
|

lim inf
‖m‖→∞

log | 1bm |
‖ λn,m ‖ log ‖ λn,m ‖

, by Equation (16)

≤ lim sup
‖m‖→∞

log |bm|
log |am|

= µ (say) (21)

Then, for any ε > 0 there is an increasing sequence {mk} of positive integers, increasing to ∞, such

that
log | 1

bmk
|

log | 1
amk
| > µ− ε. Hence,

log | 1
bmk
|

‖ λn,mk ‖ log ‖ λn,mk ‖
.
‖ λn,mk ‖ log ‖ λn,mk ‖

log | 1
amk
|

> µ− ε (22)

This implies

ρf = lim sup
‖m‖→∞

‖ λn,m ‖ log ‖ λn,m ‖
log | 1

am
|

≥ lim sup
‖mk‖→∞

‖ λn,mk ‖ log ‖ λn,mk ‖
log | 1

amk
|

≥ (µ− ε) lim sup
‖mk‖→∞

‖ λn,mk ‖ log ‖ λn,mk ‖
log | 1

bmk
|

, by Equation (22)

≥ (µ− ε) lim inf
‖m‖→∞

‖ λn,m ‖ log ‖ λn,m ‖
log | 1bm |

= (µ− ε)ρg, [Since g is of regular growth]

Therefore,

ρf
ρg

> µ− ε (23)

Since ε > 0 is arbitrary, combining (21) and (23)

ρg(f) = lim sup
‖m‖→∞

log |bm|
log |am|

In the next theorem, we have established relative Gol’dberg type in terms of coefficients and
exponents of a multiple entire Dirichlet series.

Theorem 3.4. Let f(s) =
∞∑

‖m‖=1

ame
s.λn,m and g(s) =

∞∑
‖m‖=1

bme
s.λn,m be two non constant multiple

entire Dirichlet series of finite Gol’dberg orders ρf , ρg and Gol’dberg types σf (D), σg(D) respectively
such that σg(D) 6= 0 and g is of perfectly regular growth. Then, the relative Gol’dberg type of f with
respect to g is given by

σg,D(f) =
1

ρg(f)
lim sup
‖m‖→∞

[{|am|φD(m)}ρf
{|bm|φD(m)}ρg

] 1
‖λn,m‖

=
1

ρg(f)
lim sup
‖m‖→∞

[{|am|φD(m)}ρg(f)

|bm|φD(m)

] ρg
‖λn,m‖

where φD(m) = sup
s∈D
| exp{s.λn,m}|.
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Proof. Since σg(D) 6= 0 and g is of perfectly regular growth, then by Lemma (3.2) ,

σg,D(f) =
σf (D)

σg(D)

=

1
eρf

lim sup
‖m‖→∞

‖ λn,m ‖ {|am|φD(m)}
ρf

‖λn,m‖

1
eρg

lim sup
‖m‖→∞

‖ λn,m ‖ {|bm|φD(m)}
ρg

‖λn,m‖
, by Definition (2.7)

≤ ρg
ρf

lim sup
‖m‖→∞

[{|am|φD(m)}ρf
{|bm|φD(m)}ρg

] 1
‖λn,m‖

(24)

=
1

ρg(f)
lim sup
‖m‖→∞

[{|am|φD(m)}ρg(f)

|bm|φD(m)

] ρg
‖λn,m‖

= µ(say) (25)

Therefore, for any ε > 0 there is an increasing sequence {mk} of positive integers, increasing to infinity
such that

1

ρg(f)

[{|amk |φD(mk)}ρf
{|bmk |φD(mk)}ρg

] 1
‖λn,mk‖

> µ− ε

Hence,

{|amk |φD(mk)}
ρf

‖λn,mk‖

e.ρf
≥ (µ− ε){|bmk |φD(mk)}

ρg
‖λn,mk‖

e.ρg
(26)

Therefore,

σf (D) =
1

eρf
lim sup
‖m‖→∞

‖ λn,m ‖ {|am|φD(m)}
ρf

‖λn,m‖

≥ lim sup
‖mk‖→∞

(µ− ε)‖ λn,mk ‖ {|bmk |φD(mk)}
ρg

‖λn,mk‖

e.ρg
, by Equation (26)

≥ lim inf
‖mk‖→∞

(µ− ε)‖ λn,mk ‖ {|bmk |φD(mk)}
ρg

‖λn,mk‖

e.ρg

≥ lim inf
‖m‖→∞

(µ− ε)‖λn,m‖{|bm|φD(m)}
ρg

‖λn,m‖

e.ρg

= (µ− ε)σg(D), [Since g is of perfectly regular growth.]

Hence,

σg,D(f) =
σf (D)

σg(D)
≥ (µ− ε) (27)

Since ε > 0 is arbitrarily small, combining (25) and (27) we get

σg,D(f) =
1

ρg(f)
lim sup
‖m‖→∞

[{|am|φD(m)}ρf
{|bm|φD(m)}ρg

] 1
‖λn,m‖

=
1

ρg(f)
lim sup
‖m‖→∞

[{|am|φD(m)}ρg(f)

|bm|φD(m)

] ρg
‖λn,m‖

Now, by using the above definitions we discuss about relative growth of Hadamard product of two
multiple entire Dirichlet series.
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Theorem 3.5. Let f1, f2, and g be three multiple entire Dirichlet series of finite order such that
g is of regular growth. If ρg(f) denotes the relative Gol’dberg order of f with respect to g, then
ρg((f1 ∗ f2)k) = ρg(f

k
1 ∗ fk2 ) = ρg(f1 ∗ f2), for k = 0, 1, 2, . . .

Proof. Let f1(s) =
∞∑

‖m‖=1

ame
s.λn,m , f2(s) =

∞∑
‖m‖=1

bme
s.λn,m , and g(s) =

∞∑
‖m‖=1

cme
s.λn,m . Then, by

Theorem (3.3)

1

ρg((f1 ∗ f2)k)
= lim inf
‖m‖→∞

log |(‖λkn,m‖)ambm|
log |cm|

= lim
‖m‖→∞

log ‖ λkn,m ‖
log |cm|

+ lim inf
‖m‖→∞

log |ambm|
log |cm|

= lim inf
‖m‖→∞

log |ambm|
log |cm|

, [Since g is entire, by Equation (5), lim sup
‖m‖→∞

log |cm|
‖λn,m‖

= −∞.]

=
1

lim sup
‖m‖→∞

log |cm|
log |ambm|

=
1

ρg(f1 ∗ f2)

Hence, ρg((f1 ∗f2)k) = ρg(f1 ∗f2). Similarly it can be proved that ρg(f
k
1 ∗fk2 ) = ρg(f1 ∗f2). Therefore,

ρg((f1 ∗ f2)k) = ρg(f
k
1 ∗ fk2 ) = ρg(f1 ∗ f2), for k = 0, 1, 2, . . .

Theorem 3.6. Let f1,f2 and g be three multiple entire Dirichlet series, then

σg,D((f1 ∗ f2)k) = σg,D(fk1 ∗ fk2 ) = σg,D(f1 ∗ f2)

Proof. Let f1(s) =
∞∑

‖m‖=1

ame
s.λn,m , f2(s) =

∞∑
‖m‖=1

bme
s.λn,m and g(s) =

∞∑
‖m‖=1

cme
s.λn,m . Then, by

Theorem (3.4),

σg,D(f1 ∗ f2)k =
1

ρg(f1 ∗ f2)k
lim sup
‖m‖→∞

[{|(‖λkn,m‖)ambm|φD(m)}ρg(f1∗f2)k

|cm|φD(m)

] ρg
‖λn,m‖

where φD(m) = sup
s∈D
| exp{s.λn,m}|

=
1

ρg(f1 ∗ f2)
lim sup
‖m‖→∞

[{|(‖λkn,m‖)ambm|φD(m)}ρg(f1∗f2)

|cm|φD(m)

] ρg
‖λn,m‖

[Since ρg((f1 ∗ f2)k) = ρg(f
k
1 ∗ fk2 ) = ρg(f1 ∗ f2)]

=
1

ρg(f1 ∗ f2)
lim sup
‖m‖→∞

[{|ambm|φD(m)}ρg(f1∗f2)

|cm|φD(m)

] ρg
‖λn,m‖

[Since lim sup
‖m‖→∞

[
λk11m1

+ · · ·+ λknnmn
] 1
‖λn,m‖ = 1]

= σg,D(f1 ∗ f2)

Similarly, it can be proved that σg,D(fk1 ∗ fk2 ) = σg,D(f1 ∗ f2). Therefore,

σg,D((f1 ∗ f2)k) = σg,D(fk1 ∗ fk2 ) = σg,D(f1 ∗ f2)

Theorem 3.7. Let f1(s) =

∞∑
‖m‖=1

ame
s.λn,m and f2(s) =

∞∑
‖m‖=1

bme
s.λn,m be two multiple entire Dirich-

let series of relative Gol’dberg order ρg(f1) and ρg(f2) with respect to another multiple entire Dirichlet

series g =

∞∑
‖m‖=1

cme
s.λn,m respectively. Then, for k = 0, 1, 2, . . .
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1

ρg(fk1 ∗ fk2 )
=

1

ρg(f1 ∗ f2)k
≥ 1

ρg(f1)
+

1

ρg(f2)
.

Proof. Using Theorem (3.3) and Equation (20), we have

1

ρg(f1 ∗ f2)k
= lim inf
‖m‖→∞

log |(‖λkn,m‖)ambm|
log |cm|

≥ lim inf
‖m‖→∞

log ‖λkn,m‖
log |cm|

+ lim inf
‖m‖→∞

log |am|
log |cm|

+ lim inf
‖m‖→∞

log |bm|
log |cm|

=
1

ρg(f1)
+

1

ρg(f2)

Therefore,

1

ρg(f1 ∗ f2)k
≥ 1

ρg(f1)
+

1

ρg(f2)

By Theorem (3.5), ρg(f
k
1 ∗ fk2 ) = ρg(f1 ∗ f2)k. Therefore,

1

ρg(fk1 ∗ fk2 )
=

1

ρg(f1 ∗ f2)k
≥ 1

ρg(f1)
+

1

ρg(f2)

Theorem 3.8. Let f1(s) =

∞∑
‖m‖=1

ame
s.λn,m and f2(s) =

∞∑
‖m‖=1

bme
s.λn,m be two multiple entire Dirich-

let series of relative Gol’dberg order ρg(f1) and ρg(f2) with respect to another multiple entire Dirichlet

series g =
∞∑

‖m‖=1

cme
s.λn,m respectively. Then, for k = 0, 1, 2, . . . ,

ρg(f
k
1 ∗ fk2 ) ≤

[
ρg(f

k
1 ).ρg(f

k
2 )
] 1
2

provided

log |(‖λ2kn,m‖)ambm| ∼
{

log |(‖λkn,m‖)am| log |(‖λkn,m‖)bm|
} 1

2

Proof. We have

1

ρg(fk1 )
= lim inf
‖m‖→∞

log |(‖λkn,m‖)am|
log |cm|

and

1

ρg(fk2 )
= lim inf
‖m‖→∞

log |(‖λkn,m‖)bm|
log |cm|

Therefore, for any arbitrary ε > 0, and for all sufficiently large ‖ m ‖

1

ρg(fk1 )
− ε

2
<

log |(‖λkn,m‖)am|
log |cm|

and

1

ρg(fk2 )
− ε

2
<

log |(‖λkn,m‖)bm|
log |cm|
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Thus,

( 1

ρg(fk1 )
− ε

2

)( 1

ρg(fk2 )
− ε

2

)
<

log |(‖λkn,m‖)am| log |(‖λkn,m‖)bm|
(log |cm|)2

or

{( 1

ρg(fk1 )
− ε

2

)( 1

ρg(fk2 )
− ε

2

)} 1
2
<

{
log |(‖λkn,m‖)am| log |(‖λkn,m‖)bm|

} 1
2

log |cm|

for all sufficiently large ‖ m ‖. Since log |(‖λ2kn,m‖)ambm| ∼
{

log |(‖λkn,m‖)am| log |(‖λkn,m‖)bm|
} 1

2 , for
all sufficiently large ‖ m ‖, we have

{( 1

ρg(fk1 )
− ε

2

)( 1

ρg(fk2 )
− ε

2

)} 1
2
<

log |(‖λ2kn,m‖)ambm|
log |cm|

Therefore, ( 1

ρg(fk1 )ρg(fk2 )

) 1
2 ≤ lim inf

‖m‖→∞

log |(‖λ2kn,m‖)ambm|
log |cm|

or ( 1

ρg(fk1 )ρg(fk2 )

) 1
2 ≤ 1

ρg(fk1 ∗ fk2 )

Hence,

ρg(f
k
1 ∗ fk2 ) ≤

[
ρg(f

k
1 ).ρg(f

k
2 )
] 1
2

4. Conclusion

Thus, we understand that, in the study of growth properties of Hadamard product between two
multiple entire Dirichlet series, the method of using coefficients and exponents is easy and useful.
However, not only in the case of Hadamard product, but also for any study of growth property which
involves exponents and coefficients of the series, our result will be useful and an easy method to prove
them.
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Research Article

Abstract − Phase transformations which lead to dramatical property change are
very important for engineering materials. Phase-field methods are one of the most
successful and practical methods for modelling phase transformations in materials.
The Cahn-Hillard phase-field model is among the most promising phase-field models.
The most successful aspect of the model is that it can predict spinodal decomposition
(which is essential to determining the microstructure of an alloy) in a binary system.
It is used in both materials science and many other fields, such as polymer science,
astrophysics, and computer science. In this study, the Cahn-Hillard phase-field model
is evaluated by an analytical approach using the (1/G′)-expansion method. The so-
lutions obtained are tested for certain thermodynamic conditions, and their accuracy
of predicting the spidonal decomposition of a binary system is confirmed.

Keywords − Cahn-Hillard phase field model, spidonal decomposition, (1/G′)-expansion method
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1. Introduction

Foreseeing phase transformations is very important for tailoring the properties of engineering materials.
For instance, occurrence of domains may determine magnetic properties of a metallic material [1]. On
the other hand, mechanical properties of a material can be altered by a phase transformation [2].
Because of having a significant impact on the physical and chemical properties of the material, phase
transformations, which are changes in the microstructure at equilibrium or non- equilibrium states,
are the primary and most important concern of a materials engineering scientist. There are certain
difficulties that this issue brings along with its importance. A method developed to model phase
transformations to predict the properties of the material needs to take into account many thermal,
electromagnetic, elastic and chemical effects. Hence, the issue is getting very difficult mathematically.

Phase-field methods are one of the most successful and practical methods for modeling phase
transformations in materials. A phase field model can be described as spatiotemporal treating of the
microstructure of a material as a scalar field (concentration, strain temperature, etc.). Phase field
models have attracted much attention in recent years due to their versatility [3–5]. In these models,
the free energy equation based on the thermodynamic state of the system is given in terms of phase
fields. Nonlinear partial differential equations play an important role in the phase-field model due
to dynamical governing of one or more order parameters as well as heat or mass transfer. These
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dynamical interactions of the parameters are based on the tendency of free energy to reach to its
possible minimum value.

Cahn-Hillard phase field model is the one of the most promising phase field models [6,7]. The most
successful aspect of the model is that it can predict spinodal decomposition (which is very essential
for determining the microstructure of an alloy) in a binary system [8]. Due to the success of the model
in this regard, it is being used both in materials science [9, 10] and in many fields such as polymer
science [11], astrophysics [12], computer science [13] and astrophysics [12]. The simple structure of
the model is mainly due to the fact that it is based on the diffusion laws in the Ginzburg-Landau
theorem [14, 15]. Total energy of a binary alloy is illustrated by the sum of two parts which are the
bulk part depending on local energy difference and the interfacial part depending on concentration
gradient. In summary, the total energy expression can be written as follows:

E =

∫
Ω
f(ϕ)dΩ +

∫
Ω

ε2

2
|∇ϕ|2dΩ (1)

where the first term is bulk and second term is interfacial energy (ε > 0 represents the interfacial
parameter). In order to evaluate the thermodynamic conditions, on the f(ϕ) which is the free energy
function is considered as follows according to Flory-Huggins model [16];

f(ϕ) =
1

2
((1 + ϕ) ln(1 + ϕ) + (1− ϕ) ln(1− ϕ)− θϕ2)

where θ = T/Tcritical and ϕ is the phase field.
In the literature, different numerical techniques such as radial basis functions differential quadra-

ture [17], finite element [18] and reduced differential transform [19] methods have been employed for
the solution of Cahn-Hillard equation. Unfortunately, numerical methods give approximate results.
Analytical methods can give precise predictions to phase separation processes. Thus, Cahn-Hillard
phase field model is evaluated by an analytical approach using the (1/G′)-expansion method in this
study. The obtained analytical solutions are firstly appeared in the literature.

2. Governing Equation

Authors considered the general form of the Cahn-Hillard [20];

ϕt + ϕxxxx = (A(ϕ))xx + lϕx.l > 0 (2)

In this equation A(ϕ(x, t)) denotes an inherent chemical potential arising from driven forces (such
as thermodynamic) that has the form of A(ϕ(x, t)) = ϕ3(x, t) − ϕ(x, t) and ϕ(x, t) states phase field
of a binary system that the components are having separated and lϕx indicates the diffusion induced
kinetics of the mixture(such as a binary alloy).

3. (1/G′)-Expansion Method

Many authors used The (1/G′)-expansion method as a tool to get the exact solutions of various
differential equations [21–23]. These studies represent that considered method is a powerful and
effective while obtaining the analytical solutions of partial differential equations (PDEs). Suppose
that nonlinear PDE for ϕ(x, t) is given in the form

H

(
ϕ,
∂ϕ

∂t
,
∂ϕ

∂x
,
∂2ϕ

∂t2
,
∂2ϕ

∂x2
, . . .

)
= 0 (3)

that the unknown function ϕ(x, t) is the function of two independent the variables x, t and also H is
the polynomial of the function ϕ(x, t) and its higher order partial derivatives.

Regarding the wave variable as

ϕ(x, t) = ϕ(ξ), ξ = kx+ ct (4)
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where k and c can be described as free constants. By using Equation (4) and Equation (3) changes
into an nonlinear ordinary differential equation (ODE) with respect to ϕ = ϕ(ξ)

F
(
ϕ,ϕ′, ϕ′′, ϕ′′′, . . .

)
= 0 (5)

where prime indicates Newtonian concept derivative due to ξ. According to considered method the
traveling wave solutions of Equation (5) can be expressed as a polynomial of (1/G′) as follows

ϕ(ξ) =
n∑
i=0

ai

(
1

G′

)i
, an 6= 0 (6)

where G = G(ξ) satisfies the following differential equation

G′′ + λG′ + µ = 0 (7)

and ai(i = 0, . . . , n), λ, µ are random constants to be examined later. To represent the solution of
Equation (7) with G = G(ξ), the Equation (6) will include the following equation

1

G′(ξ)
=

1

−µ
λ +A tanh(λξ)−A sinh(λξ)

(8)

where A is integral constant.

Step 1. By using the homogeneous balance principle between the highest nonlinear terms and the
highest order derivatives of ϕ(ξ) in Equation (5), the positive integer n in Equation (6) can be deter-
mined.

Step 2. Subrogating (6) with Equation (7) into Equation (5) and collecting together all the same
powered terms of (1/G′) together, the left hand side of Equation (5) is turns into a polynomial with
respect to (1/G′). After equating each coefficient of this polynomial to zero, we handle an algebraic
equation system with respect to ai(i = 0, . . . , n), λ, µ, c, k.

Step 3. In this step symbolic computer software is used to solve the algebraic equations system with
respect to arbitrary constants ai(i = 0, . . . , n), λ, µ, c, k, then subrogating the results with the solutions
of Equation (7) into Equation (6) led to traveling wave solutions of Equation (5).

4. The Analytical Solution of Cahn-Hillard Equation

The transformation
ϕ(x, t) = ϕ(ξ), ξ = kx+ ct (9)

converts Equation (2) into nonlinear differential equation as

(c− l)ϕ+ ϕ
′′′ − (ϕ3 − ϕ)

′
= 0 (10)

Now, considering the homogeneous balance principle between ϕ
′′′

and ϕ2ϕ
′

appearing in Equation
(10), we get n = 1. Consequently, we can write the equation:

ϕ(ξ) = a1

(
1

G′(ξ)

)
+ a0, a1 6= 0 (11)

and therefore

ϕ′(ξ) = a1µ

(
1

G′(ξ)

)2

+ a1λ

(
1

G′(ξ)

)
(12)

ϕ′′′(ξ) = 6a1µ
3

(
1

G′(ξ)

)4

+ 12a1µ
2λ

(
1

G′(ξ)

)3

+ 7a1λ
2µ

(
1

G′(ξ)

)2

+ a1λ
3

(
1

G′(ξ)

)
(13)

By substituting Equations (11)-(13) into Equation (10) and bringing all terms with the same power
of (1/G′) together, the left-hand side of Equation (10) is changes into another polynomial in (1/G′).
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Equating each coefficient of this polynomial to zero, yields a set of simultaneous algebraic equations
for a0, a1, k, c, λ and µ follows:(

1

G′(ξ)

)0

: ca0 − lka0 = 0(
1

G′(ξ)

)1

: ca1 − lka1 − 3k2a1a
2
0λ+ k2a1λ+ k4a1λ

3 = 0(
1

G′(ξ)

)2

: −3k2a1a
2
0µ+ 7k4a1λ

2µ+ k2a1µ− 6k2a2
1a0λ = 0(

1

G′(ξ)

)3

: −3k2a3
1λ+ 12k4a1µ

2λ− 6k2a2
1a0µ = 0(

1

G′(ξ)

)4

: 6k4a1µ
3 − 3k2a3

1µ = 0

Solving the algebraic equations above, yields

c = ± l
√

2

λ
, k = ±

√
2

λ
, a0 = ±1, a1 = ±2µ

λ
(14)

and λ, µ are arbitrary constants. By using (14), expression (11) and (8), we have of travelling wave
solutions of Equation (2) as follows:

ϕ1,2(x, t) = ±1± 2µ

−µ+Aλ cosh
(√

2lt+
√

2x
)
∓Aλ sinh

(√
2lt+

√
2x
) (15)

5. Graphical Representation of ϕ1(x, t) for Some Thermodynamic Conditions

Interfacial parameter ε thickening with the decrease in the l parameter can be seen in Figure 1(a).
It can be said that in a binary system interfacial region where the metastable phase exist narrows
with the increasing l values. As it is expected from the model that the double-well structure for the
θ values bigger than one can be seen in the Figure 1(b). The peak between the troughs of the wells
corresponds to the metastable phase in the interfacial region. This issue can be more clearly in Figure
2(a-c) which show the energy density distribution for the corresponding θ values of 1, 1.25, and 1.5.

l=1

l=0.75

l=0.5

- 15 - 10 - 5 5 10 15 x

- 1.0

- 0.5

0.5

1.0
u

(a) t = 0.1

θ=1

θ=1.25

θ=1.5

- 10 - 5 5 φ1(x,t)

- 0.10

- 0.05

0.05

0.10

0.15

0.20

f(φ1(x,t))

(b) l = 0.75, x = 0.1, t = 1

Fig. 1. Phase field (a), free energy (b) for the solution ϕ1(x, t) for µ = −0.1, λ = 0.1, A = 0.1.
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(a) l = 0.75, θ = 1 (b) l = 0.75, θ = 1.25

(c) l = 0.75, θ = 1.5

Fig. 2. Spatiotemporal energy distribution (a-c) for the solution ϕ1(x, t) for µ = −0.1, λ = 0.1, A = 0.1.

6. Conclusion

The exact solutions of Cahn-Hillard model have been achieved by the (1/G′)-expansion method. An
energy equation based on Flory-Huggins model was employed for evaluation of the solutions in certain
thermodynamic conditions. As it is expected from the model double-well structure of the energy
density distribution which corresponds to spinodal decomposition and occurrence of a metastable
phase was seen. The results obtained in this study were shown to be accurate in predicting spinodal
decomposition phenomenon. Also, some 2D graphical representations and contour plots of the obtained
solutions are given for different values of l and θ. These results may be used by material engineers for
tailoring the materials properties.
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Abstract − Several specific types of generalized sets (briefly, g-Tg-sets) in gener-
alized topological spaces (briefly, Tg-spaces) have been defined and investigated for
various purposes from time to time in the literature of Tg-spaces. Our recent re-
search in the field of a new class of g-Tg-sets in Tg-spaces is reported herein as a
starting point for more generalized classes. It is shown that the class of g-Tg-sets is
a superclass of those whose elements are called open, closed, semi-open, semi-closed,
pre-open, pre-closed, semi-pre-open, and semi-pre-closed sets in a Tg-space. A sub-
class of the Tg-subspace corresponds to the class of g-Tg-sets of a Tg-space. A class
of g-Tg-sets of the Cartesian product of these Tg-spaces corresponds to the Cartesian
product of a finite number of classes of g-Tg-sets, each of which belongs to a Tg-space.
Diagrams establish the various relationships amongst the classes presented here and
in the literature, and an ad hoc application supports the overall theory.

Keywords − Generalized topology, generalized topological space, generalized operations, generalized open sets,
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1. Introduction

Just as the notion of T -set (open or closed set relative to ordinary topology) is fundamental and
indispensable in the study of T-sets in T -spaces (arbitrary sets in ordinary topological spaces) and
in the formulation of the concept of g-T -set (generalized T -open or T -closed set relative to ordinary
topology) in the study of g-T-sets in T -spaces (generalized sets in ordinary topological spaces) [1–6],
so is the notion of Tg-set (open or closed set relative to generalized topology) in the study of Tg-sets
in Tg-spaces (arbitrary sets in generalized topological spaces) and in the formulation of the concept of
g-Tg-set (generalized Tg-open or Tg-closed set relative to generalized topology) in the study of g-Tg-
sets in Tg-spaces (generalized sets in generalized topological spaces) [7]. Thus, the g-topology maps
Tg : P (Ω) −→ P (Ω) from the power set P (Ω) of Ω into itself, thereby inducing g-topologies on the
underlying set Ω, are classes of distinguished open subsets of a T -space which are not T -open sets
but are Tg-open sets which are related to the families of g-T -open sets [8, 9]. Examples of g-T-sets
in T -spaces are α-open and α-closed sets [10], β-open sets [11], and γ-open sets [12]. Examples of
g-Tg-sets in Tg-spaces are ∆µ-sets and ∇µ-sets [13], ω-open sets [2], and θ-sets [14]. From these α,
β, γ-sets and, ∆µ, ∇µ, ω, θ-sets, the theories of g-T-sets and g-Tg-sets then appear to be subjects of
primary interest.

To the best of our knowledge, the theory of g-T-sets is well-known and that of g-Tg-sets less-
known. The earliest works on the theory of g-T-sets are those of Levine [15, 16], Nj̊astad [10], and
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Császár [14, 17–20], and the latest works on the theory of g-T-sets are those of Rajeshwari et al. [21],
Jeyanthi et al. [3,13], Ghour et al. [2], and Tyagi et al. [6], among others. Levine [16] introduced and
investigated the weaker forms of open sets, Nj̊astad [10] introduced and investigated the structures of
some classes of more or less nearly open sets, and Császár [20] introduced the notion of g-topologies; [21]
introduced the weaker forms of closed sets and studied some of their characterizations, Jeyanthi et
al. [3] gave a unified framework for the study of several types of g-Tg-sets, Ghour et al. [2] extended the
notion of a type of g-T-sets in a T -space to its analogue in a Tg-space, and Tyagi et al. [6] introduced
and investigated several types of g-Tg-sets in Tg-spaces.

Several other specific classes of g-T, g-Tg-sets have been defined and investigated by other authors
for various purposes from time to time in the literature of T , Tg-spaces [9, 22–38]. The fruitfulness of
all these references have made significant contributions to the theory of T , Tg-spaces, among others.

In this paper, we will show how further contributions can be added to the field in a unified way.
The rest of this paper is structured in this manner: In Section 2, preliminary notions are described
in Subsection 2.1 and the main results of the theory of g-Tg-sets in Tg-spaces are reported in Section
3. In Section 4, the establishment of the various relationships between the classes of Tg-open and
Tg-closed sets and the classes of g-Tg-open and g-Tg-closed sets in the Tg-space Tg are discussed and
illustrated through diagrams in Subsection 4.1. To support the work, a nice application, concentrating
on fundamental concepts from the standpoint of the theory of g-Tg-sets is presented in Subsection 4.2.
Finally, Subsection 5 provides concluding remarks and future directions of the theory of g-Tg-sets in
Tg-spaces.

2. Theory

2.1. Preliminaries

Our discussion starts by recalling a carefully chosen set of terms used in this study [39]. Throughout
this manuscript, the structures T = (Ω, T ) and Tg = (Ω, Tg), respectively, are called ordinary and
generalized topological spaces (briefly, T -space and Tg-space). The symbols T and Tg, respectively,
are called ordinary topology and generalized topology (briefly, topology and g-topology). Subsets of T
and Tg, respectively, are called T-sets and Tg-sets; subsets of T and Tg, respectively, are called T -open
and Tg-open sets, and their complements are called T -closed and Tg-closed sets. Generalizations of
T-sets, T -open and T -closed sets in T , respectively, are called g-T-sets, g-T -open and g-T -closed sets;
generalizations of Tg-sets, Tg-open and Tg-closed sets in Tg, respectively, are called g-Tg-sets, g-Tg-open
and g-Tg-closed sets; U stands for the universe of discourse, fixed within the framework of the theory
of g-Tg-sets and containing as elements all sets (Ω, Γ-sets; T , g-T , T, g-T-sets; Tg, g-Tg, Tg, g-Tg-sets)
considered in this theory, and I0n :=

{
ν ∈ N0 : ν ≤ n

}
; index sets I0∞, I∗n, I

∗
∞ are defined similarly.

A set Γ ⊂ U is a subset of the set Ω ⊂ U and, for some Tg-open set Og ∈ T ∪ g-T ∪Tg ∪ g-Tg, these
implications hold:

Og ∈ T ⇒ Og ∈ g-T ⇒ Og ∈ Tg ⇒ Og ∈ g-Tg ⇒ Og ⊂ Ω ⊂ U (1)

In a natural way, a monotonic map Tg : P (Ω) −→ P (Ω) from the power set P (Ω) of Ω into itself
can be associated to a given mapping πg : Ω −→ Ω, thereby inducing a g-topology Tg ⊂ P (Ω) on the
underlying set Ω [9]. Therefore, the definition of a Tg-space can be presented in a nice way. Thus,
retaining the axioms to be satisfied by its g-topology [33], and assuming no separation axioms, unless
otherwise stated, the following definition is suggestive:

Definition 2.1 (Tg-Space [39]). Let Ω ⊂ U be a given set and let P (Ω) :=
{
Og,ν : Og,ν ⊆ Ω

}
be the

family of all subsets Og,1, Og,2, . . ., of Ω. Then, every one-valued map of the type Tg : P (Ω) −→ P (Ω)
satisfying the following axioms:

i. Tg (∅) = ∅

ii. Tg (Og) ⊆ Og
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iii. Tg
(⋃

ν∈I∗∞ Og,ν

)
=

⋃
ν∈I∗∞ Tg (Og,ν)

is called a “g-topology on Ω,” and the structure Tg := (Ω, Tg) is called a “Tg-space.”

In Definition 2.1, by Ax. i., Ax. ii., and Ax. iii., respectively, are meant that the unary operation
Tg : P (Ω) −→ P (Ω) preserves nullary union, is contracting and preserves binary union. Any element
Og ∈ Tg (Ω) of the Tg-space Tg is called a Tg-open set and its complement element ∁ (Og) = Kg /∈ Tg (Ω)
is called a Tg-closed set. If there exists a ν ∈ I∗∞ such that Og,ν = Ω, then Tg is called a strong Tg-
space [9,19]. Moreover, if the relation Tg

(⋂
ν∈I∗n Og,ν

)
=

⋂
ν∈I∗n Tg (Og,ν) holds for any index set I∗n ⊂ I∗∞

such that n <∞, then Tg is called a quasi Tg-space [17].

Definition 2.2 (g-Closure, g-Interior Operators [39]). Let Tg be a Tg-space on the set Ω ⊂ U with a
g-topology Tg : P (Ω) −→ P (Ω). Then,

i. The operator clg : P (Ω) −→ P (Ω) carrying each Tg-set Sg ⊂ Tg into its closure clg (Sg) =
Tg \ intg (Tg \ Sg) ⊂ Tg is called a “g-closure operator.”

ii. The operator intg : P (Ω) −→ P (Ω) carrying each Tg-set Sg ⊂ Tg into its interior intg (Sg) =
Tg \ clg (Tg \ Sg) ⊂ Tg is called a “g-interior operator.”

By convention, we let Tg (Ω) and ¬Tg (Ω), respectively, stand for the classes of all Tg-open and
Tg-closed sets relative to the g-topology Tg. Their proper definitions are contained below.

Definition 2.3 (Classes: Tg-Open, Tg-Closed Sets [39]). Let Tg be a Tg-space, let ∁ : P (Ω) −→ P (Ω)
denotes the absolute complement with respect to the underlying set Ω ⊂ U, and let Sg ⊂ Tg be any
Tg-set. The classes

Tg (Ω) :=
{
Og ⊂ Tg : Og ∈ Tg

}
and ¬Tg (Ω) :=

{
Kg ⊂ Tg : ∁ (Kg) ∈ Tg

}
(2)

respectively, denote the classes of all Tg-open and Tg-closed sets relative to the g-topology Tg, and the
classes

Csub
Tg [Sg] :=

{
Og ∈ Tg : Og ⊆ Sg

}
and Csup

¬Tg [Sg] :=
{
Kg ∈ ¬Tg : Kg ⊇ Sg

}
(3)

respectively, denote the classes of Tg-open subsets and Tg-closed supersets (complements of the Tg-open
subsets) of the Tg-set Sg ⊂ Tg relative to the g-topology Tg.

That Csub
Tg [Sg] ⊆ Tg (Ω) and ¬Tg (Ω) ⊇ Csup

¬Tg [Sg] are true for the Tg-set Sg ⊂ Tg in question are
clear from the context. To this end, the g-closure and the g-interior of a Tg-set Sg ⊂ Tg in a Tg-space
define themselves as

intg (Sg) :=
⋃

Og∈Csub
Tg [Sg]

Og and clg (Sg) :=
⋂

Kg∈Csup
¬Tg [Sg]

Kg (4)

We note in passing that, clg (·) ̸= cl (·) and intg (·) ̸= int (·), because the resulting sets obtained
from the intersection of all Tg-closed supersets and the union of all Tg-open subsets, respectively,
relative to the g-topology Tg are not necessarily equal to those which would be obtained from the
intersection of all T -closed supersets and the union of all T -open subsets relative to the topology
T [23]. Throughout this work, by clg ◦ intg (·), intg ◦ clg (·), and clg ◦ intg ◦ clg (·), respectively, are
meant clg (intg (·)), intg (clg (·)), and clg (intg (clg (·))); other composition operators are defined in a
similar way. Also, the backslash Tg \ Sg refers to the set-theoretic relative complement of Sg in Tg.
Finally, for convenience of notation, let P∗ (Ω) = P (Ω) \

{
∅
}
, T ∗

g = Tg \
{
∅
}
, and ¬T ∗

g = ¬Tg \
{
∅
}
.

Definition 2.4 (g-Operation [39]). Let Tg = (Ω, Tg) be a Tg-space. Then, a mapping opg : P (Ω) −→
P (Ω) on P (Ω) ranging in P (Ω) is called a “g-operation” if and only if the following statements hold:(

∀Sg ∈ P∗ (Ω)
)(
∃ (Og,Kg) ∈ T ∗

g × ¬T ∗
g

)[(
opg (∅) = ∅

)
∨
(
¬ opg (∅) = ∅

)
∨
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)]
(5)

where ¬ opg : P (Ω) −→ P (Ω) is called the “complementary g-operation” on P (Ω) ranging in

P (Ω) and, for all (Sg,Ug,µ,Vg,ν) ∈
⊗

α∈I∗3
P∗ (Ω) such that Wg = Ug,µ ∪ Vg,ν and

(
Ŵg,¬Ŵg

)
=(

opg (Wg) ,¬ opg (Wg)
)
, the following axioms are satisfied:
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i.
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
ii.

(
opg (Sg) ⊆ opg ◦ opg (Og)

)
∨
(
¬ opg (Sg) ⊇ ¬ opg ◦¬ opg (Kg)

)
iii.

(
Ŵg ⊆

⋃
σ=µ,ν

opg (Og,σ)

)∨(
¬Ŵg ⊇

⋃
σ=µ,ν

¬ opg (Kg,σ)

)
iv.

(
Ug,µ ⊆ Vg,ν −→ opg (Og,µ) ⊆ opg (Og,ν)

)
∨
(
Ug,µ ⊇ Vg,ν ←− ¬ opg (Kg,µ) ⊇ ¬ opg (Kg,ν)

)
for some (Og,Og,µ,Og,ν) ∈

⊗
α∈I∗3

T ∗
g and (Kg,Kg,µ,Kg,ν) ∈

⊗
α∈I∗3

¬T ∗
g .

The formulation of Definition 2.5 is based on the axioms of the Čech closure operator [25] and the
various axioms used by many mathematicians to define closure operators [36]. The class Lg

[
Ω
]
stands

for the class of all possible g-operators and their complementary g-operators in the Tg-space Tg.

Definition 2.5 (opg (·)-Elements [39]). Let Tg be a Tg-space. The elements of the class Lg
[
Ω
]
=

Lωg
[
Ω
]
× Lκg

[
Ω
]
, where

Lg
[
Ω
]
:=

{
opg,νµ (·) =

(
opg,ν (·) ,¬ opg,µ (·)

)
: (ν, µ) ∈ I03 × I03

}
(6)

in the Tg-space Tg are defined as:

opg (·) ∈ Lωg
[
Ω
]
:=

{
opg,0 (·) , opg,1 (·) , opg,2 (·) , opg,3 (·)

}
=

{
intg (·) , clg ◦ intg (·) , intg ◦ clg (·) , clg ◦ intg ◦ clg (·)

}
¬ opg (·) ∈ Lκg

[
Ω
]
:=

{
¬ opg,0 (·) , ¬ opg,1 (·) , ¬ opg,2 (·) , ¬ opg,3 (·)

}
=

{
clg (·) , intg ◦ clg (·) , clg ◦ intg (·) , intg ◦ clg ◦ intg (·)

}
(7)

We remark in passing that, opg,11 (·) = ¬opg,22 (·), and the use of opg (·) =
(
opg (·) ,¬ opg (·)

)
∈

Lg
[
Ω
]
on a class of Tg-sets will construct a new class of g-Tg-sets, just as the use of L

[
Ω
]
:=

{
opν (·) =(

opν (·) ,¬ opν (·)
)
: ν ∈ I03

}
on the class of T-sets have constructed the new class of g-T-sets. But

since clg (·) ̸= cl (·) and intg (·) ̸= int (·), in general, it follows that opg (·) ̸= op (·) and, therefore, the
new class of g-Tg-sets that will be obtained from the first construction will, in general, differ from the
new class of g-T-sets that had been obtained from the second construction.

Definition 2.6 (g-ν-Tg-Set [39]). A Tg-set Sg ⊂ Tg in a Tg-space is called a “g-Tg-set” if and only if
there exist a pair (Og,Kg) ∈ Tg ×¬Tg of Tg-open and Tg-closed sets, and a g-operator opg (·) ∈ Lg

[
Ω
]

such that the following statement holds:

(∃ξ)
[
(ξ ∈ Sg) ∧

((
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

))]
(8)

The g-Tg-set Sg ⊂ Tg is said to be of category ν if and only if it belongs to the following class of
g-ν-Tg-sets:

g-ν-S
[
Tg

]
:=

{
Sg ⊂ Tg :

(
∃Og,Kg,opg,ν (·)

) [(
Sg ⊆ opg,ν (Og)

)
∨
(
Sg ⊇ ¬ opg,ν (Kg)

)]}
(9)

It is called a g-ν-Tg-open set if it satisfies the first property in g-ν-S
[
Tg

]
and a g-ν-Tg-closed set

if it satisfies the second property in g-ν-S
[
Tg

]
. The classes of g-ν-Tg-open and g-ν-Tg-closed sets,

respectively, are defined by

g-ν-O
[
Tg

]
:=

{
Sg ⊂ Tg :

(
∃Og,opg,ν (·)

) [
Sg ⊆ opg,ν (Og)

]}
g-ν-K

[
Tg

]
:=

{
Sg ⊂ Tg :

(
∃Kg,opg,ν (·)

) [
Sg ⊇ ¬ opg,ν (Kg)

]}
(10)

From the class g-ν-S
[
Tg

]
, consisting of the classes g-ν-O

[
Tg

]
and g-ν-K

[
Tg

]
, respectively, of g-ν-Tg-

open and g-ν-Tg-closed sets of category ν, where ν ∈ I03 , there results in the following definition.
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Definition 2.7 (g-Tg-Set [39]). Let Tg be a Tg-space. If, for each ν ∈ I03 , g-ν-O
[
Tg

]
and g-ν-K

[
Tg

]
,

respectively, denote the classes of g-ν-Tg-open and g-ν-Tg-closed sets of category ν then,

g-S
[
Tg

]
=

⋃
ν∈I03

g-ν-S
[
Tg

]
=

⋃
ν∈I03

(
g-ν-O

[
Tg

]
∪ g-ν-K

[
Tg

])
=

(⋃
ν∈I03

g-ν-O
[
Tg

])
∪
(⋃

ν∈I03
g-ν-K

[
Tg

])
= g-O

[
Tg

]
∪ g-K

[
Tg

]
(11)

In the sequel, it is interesting to view the concepts of open, semi-open, pre-open, semi-pre-open
sets as g-T-open sets of categories 0, 1, 2, and 3; likewise, to view the concepts of closed, semi-closed,
pre-closed, semi-pre-closed sets as g-T-closed sets of categories 0, 1, 2, and 3. These can be realised
by omitting the subscript “g” in all symbols of the above definitions.

Definition 2.8 (g-ν-T-Set [39]). A T-set S ⊂ T in a T -space is called a “g-T-set” if and only if there
exists a pair (O,K) ∈ T × ¬T of T -open and T -closed sets, and an operator op (·) ∈ L

[
Ω
]
such that

the following statement holds:

(∃ξ)
[
(ξ ∈ S) ∧

(
(S ⊆ op (O)) ∨ (S ⊇ ¬ op (K))

)]
(12)

The g-T-set S ⊂ T is said to be of category ν if and only if it belongs to the following class of
g-ν-T -sets:

g-ν-S
[
T
]
:=

{
S ⊂ T : (∃O,K,opν (·))

[
(S ⊆ opν (O)) ∨ (S ⊇ ¬ opν (K))

]}
(13)

It is called a g-ν-T-open set if it satisfies the first property in g-ν-S
[
T
]
and a g-ν-T-closed set if it

satisfies the second property in g-ν-S
[
T
]
. The classes of g-ν-T-open and g-ν-T-closed sets, respectively,

are defined by

g-ν-O
[
T
]

:=
{
S ⊂ T : (∃O,opν (·))

[
S ⊆ opν (O)

]}
g-ν-K

[
T
]

:=
{
S ⊂ T : (∃K,opν (·))

[
S ⊇ ¬ opν (K)

]}
(14)

As in the previous definitions, from the class g-ν-S
[
T
]
, consisting of the classes g-ν-O

[
T
]
and

g-ν-K
[
T
]
, respectively, of g-ν-T-open and g-ν-T-closed sets of category ν, where ν ∈ I03 , there results

in the following definition.

Definition 2.9 (Class: g-Tg-Sets [39]). Let T be a T -space. If, for each ν ∈ I03 , g-ν-O
[
T
]
and

g-ν-K
[
T
]
, respectively, denote the classes of g-ν-T-open and g-ν-T-closed sets of category ν then,

g-S
[
T
]
=

⋃
ν∈I03

g-ν-S
[
T
]

=
⋃

ν∈I03

(
g-ν-O

[
T
]
∪ g-ν-K

[
T
])

=
(⋃

ν∈I03
g-ν-O

[
T
])
∪
(⋃

ν∈I03
g-ν-K

[
T
])

= g-O
[
T
]
∪ g-K

[
T
]

(15)

The classes of Tg-open and Tg-closed sets in a Tg-space Tg as well as the classes of T-open and
T-closed sets in a T -space T are defined as thus:

Definition 2.10 (Families: g-Tg-Open Sets, g-Tg-Closed Sets [39]). Let Tg = (Ω, Tg) be a Tg-space
and let T = (Ω, T ) be a T -space.

i. The classes O [Tg] and K [Tg] denote the families of Tg-open and Tg-closed sets, respectively, in
Tg, with S [Tg] = O [Tg] ∪K [Tg].

ii. The classes O [T] and K [T] denote the families of T-open and T-closed sets, respectively, in T,
with S [T] = O [T] ∪K [T].

In the following sections, the main results of the theory of g-Tg-sets are presented.
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3.Main Results

Theorem 3.1. Let clg : P (Ω) −→ P (Ω) and intg : P (Ω) −→ P (Ω), respectively, be g-closure and
g-interior operators in the Tg-space Tg. Then,

i. clg (·) and intg (·) are enhancing and contracting, respectively.

ii. clg (·) and intg (·) are idempotent.

iii. clg (·) and intg (·) are monotone.

Proof.

i. Since the following logical statement

Sg ⊂ Tg : (∀ξ)
[
(ξ ∈ clg (Sg)←− ξ ∈ Sg) ∨ (ξ ∈ intg (Sg) −→ ξ ∈ Sg)

]
holds, it follows that Sg ⊆ clg (Sg) or Sg ⊇ intg (Sg).

ii. If Sg is open, then Sg = intg (Sg); if it is closed, Sg = clg (Sg). Consequently, the substitutions
Sg 7−→ intg (Sg) and Sg 7−→ clg (Sg), respectively, give intg (Sg) = intg ◦ intg (Sg) and clg (Sg) =
clg ◦ clg (Sg).

iii. Let Rg, Sg ⊂ Tg such that Rg ⊆ Sg. Then, Rg ⊆ clg (Rg), Rg ⊇ intg (Rg), Sg ⊆ clg (Sg), and
Sg ⊇ intg (Sg) by i. Consequently, intg (Rg) ⊆ intg (Sg) and clg (Rg) ⊆ clg (Sg).

Lemma 3.2. Let Sg ⊂ Tg be a Tg-set of a Tg-space. Then,

i. (Sg = ∅) ∧ (Ω ∈ Tg) ⇒ (intg (Sg) = ∅) ∧ (clg (∅) = ∅)

ii. (Sg = ∅) ∧ (Ω /∈ Tg) ⇒ (intg (Sg) = ∅) ∧ (clg (∅) ̸= ∅)

Proof.

i. If Sg = ∅ and Ω ∈ Tg, then
(
∅ ∈ Csub

Tg [∅]
)
∧
(
∅ ∈ Csup

Tg [∅]
)
. Consequently, intg (∅) = ∅ and

clg (∅) = ∅.

ii. If Sg = ∅ and Ω /∈ Tg, then
(
∅ ∈ Csub

Tg [∅]
)
∧
(
∅ /∈ Csup

Tg [∅]
)
. Consequently, intg (∅) = ∅ and

intg (∅) ̸= ∅.

According to Sarsak [40] and Noiri [41], the Tg-space Tg may be called a µ-space when clg (∅) = ∅.

Theorem 3.3. If Sg,1, Sg,2, . . ., Sg,n ⊂ Tg are n ≥ 1 Tg-sets of a Tg-space, then,

i. clg
(⋃

ν∈I∗n Sg,ν
)
=

⋃
ν∈I∗n clg

(
Sg,ν

)
ii. intg

(⋂
ν∈I∗n Sg,ν

)
=

⋂
ν∈I∗n intg

(
Sg,ν

)
Proof. Expressed in set-builder notation, the g-closure and the g-interior of a Tg-set Sg ⊂ Tg in a
Tg-space can also be defined as thus:

clg (Sg) :=
{
ξ ∈ Tg : (Sg ∩ cl (Og) ̸= ∅) ∧ (ξ ∈ Og ∈ Tg)

}
intg (Sg) :=

{
ξ ∈ Tg : (Sg ∩ int (Og) = int (Og)) ∧ (ξ ∈ Og ∈ Tg)

}
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respectively, from which it is easily seen that,

clg
(⋃

ν∈I∗n Sg,ν
)

=
⋃
ν∈I∗n

{
ξ ∈ Tg : (Sg,ν ∩ cl (Og) ̸= ∅) ∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

((⋃
ν∈I∗n Sg,ν

)
∩ cl (Og) ̸= ∅

)
∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

(⋃
ν∈I∗n

(
Sg,ν ∩ cl (Og)

)
̸= ∅

)
∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

∨
ν∈I∗n

((
Sg,ν ∩ cl (Og) ̸= ∅

)
∧ (ξ ∈ Og ∈ Tg)

)}
=

⋃
ν∈I∗n clg

(
Sg,ν

)
Likewise, it is also easily seen that,

intg
(⋂

ν∈I∗n Sg,ν
)

=
⋂
ν∈I∗n

{
ξ ∈ Tg : (Sg,ν ∩ int (Og) = int (Og)) ∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

((⋂
ν∈I∗n Sg,ν

)
∩ int (Og) = int (Og)

)
∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

(⋂
ν∈I∗n

(
Sg,ν ∩ int (Og)

)
= int (Og)

)
∧ (ξ ∈ Og ∈ Tg)

}
=

{
ξ ∈ Tg :

∧
ν∈I∗n

((
Sg,ν ∩ int (Og) = int (Og)

)
∧ (ξ ∈ Og ∈ Tg)

)}
=

⋂
ν∈I∗n intg

(
Sg,ν

)

Clearly, Sg,µ ⊆
⋃

ν∈I∗n Sg,ν and Sg,µ ⊇
⋂

ν∈I∗n Sg,ν hold true for any µ ∈ I∗n. The following corollary,
then, is an immediate consequence of the above theorem.

Corollary 3.4. If Sg,1, Sg,2, . . ., Sg,n ⊂ Tg are n ≥ 1 Tg-sets of a Tg-space, then,

i. clg
(⋂

ν∈I∗n Sg,ν
)
⊆

⋂
ν∈I∗n clg

(
Sg,ν

)
ii. intg

(⋃
ν∈I∗n Sg,ν

)
⊇

⋃
ν∈I∗n intg

(
Sg,ν

)
Proposition 3.5. For any Tg-set Sg ⊂ Tg in a Tg-space Tg, the following statement holds:

Tg \
(
intg (Sg) ∪ clg (Tg \ Sg)

)
= ∅ (16)

Proof. Let ξ ∈ clg (Tg \ Sg). Then, ξ ∈ Tg \ Sg since, Tg \ Sg ⊆ clg (Tg \ Sg). But, Tg \ Sg ⊆ Tg \
intg (Sg) ⊆ clg (Tg \ Sg) and, consequently, ξ ∈ Tg \ intg (Sg). Hence, there follows that, clg (Tg \ Sg) ⊆
Tg \ intg (Sg). Conversely, let ξ ∈ Tg \ intg (Sg). Then, ξ ∈ clg (Tg \ intg (Sg)), since Tg \ intg (Sg) ⊆
clg (Tg \ intg (Sg)). But, since Tg \ intg (Sg) ⊆ clg (Tg \ Sg) and clg (Tg \ Sg) ⊆ clg (Tg \ intg (Sg)), and,
consequently, ξ ∈ Tg \ intg (Sg). Hence, Tg \ intg (Sg) ⊆ clg (Tg \ Sg). Since clg (Tg \ Sg) = Tg \ intg (Sg)
is equivalent to (

clg (Tg \ Sg) ⊆ Tg \ intg (Sg)
)
∧
(
clg (Tg \ Sg) ⊇ Tg \ intg (Sg)

)
the proof of the proposition at once follows.

Proposition 3.6. Let clg : P (Ω) −→ P (Ω) and intg : P (Ω) −→ P (Ω), respectively, be g-closure and
g-interior operators in a Tg-space Tg. If Sg,1, Sg,2, . . ., Sg,n ⊂ Tg are n ≥ 1 Tg-sets of the Tg-space Tg,
then,

i. clg ◦ intg
(⋃

ν∈I∗n Sg,ν
)
⊇

⋃
ν∈I∗n clg ◦ intg

(
Sg,ν

)
ii. intg ◦ clg

(⋃
ν∈I∗n Sg,ν

)
⊇

⋃
ν∈I∗n intg ◦ clg

(
Sg,ν

)
iii. clg ◦ intg ◦ clg

(⋃
ν∈I∗n Sg,ν

)
⊇

⋃
ν∈I∗n clg ◦ intg ◦ clg

(
Sg,ν

)
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Proof. Since the relations

clg
(⋃

ν∈I∗n Sg,ν
)
=

⋃
ν∈I∗n clg

(
Sg,ν

)
, intg

(⋃
ν∈I∗n Sg,ν

)
⊇

⋃
ν∈I∗n intg

(
Sg,ν

)
hold, it follows that

clg ◦ intg
(⋃

ν∈I∗n Sg,ν
)
⊇ clg

(⋃
ν∈I∗n intg

(
Sg,ν

))
=

⋃
ν∈I∗n clg ◦ intg

(
Sg,ν

)
intg ◦ clg

(⋃
ν∈I∗n Sg,ν

)
⊇ intg

(⋃
ν∈I∗n clg

(
Sg,ν

))
=

⋃
ν∈I∗n clg ◦ intg

(
Sg,ν

)
clg ◦ intg ◦ clg

(⋃
ν∈I∗n Sg,ν

)
= clg ◦ intg

(⋃
ν∈I∗n clg

(
Sg,ν

))
⊇

⋃
ν∈I∗n clg ◦ intg ◦ clg

(
Sg,ν

)

From the above proposition, it is obvious that their duals are

intg ◦ clg
(⋂

ν∈I∗n Sg,ν
)
⊆

⋂
ν∈I∗n intg ◦ clg

(
Sg,ν

)
clg ◦ intg

(⋂
ν∈I∗n Sg,ν

)
⊆

⋂
ν∈I∗n clg ◦ intg

(
Sg,ν

)
intg ◦ clg ◦ intg

(⋂
ν∈I∗n Sg,ν

)
⊆

⋂
ν∈I∗n intg ◦ clg ◦ intg

(
Sg,ν

)
(17)

respectively. On this basis, we have the following corollary:

Corollary 3.7. Let opg (·) ∈ Lg
[
Ω
]
be a g-operator in a Tg-space Tg. If Sg,1, Sg,2, . . ., Sg,n ⊂ Tg are

n ≥ 1 Tg-sets of the Tg-space Tg, then,

i. opg ◦¬ opg
(⋃

ν∈I∗n Sg,ν
)
⊇

⋃
ν∈I∗n opg ◦¬ opg

(
Sg,ν

)
ii. ¬ opg ◦ opg

(⋂
ν∈I∗n Sg,ν

)
⊆

⋂
ν∈I∗n¬ opg ◦ opg

(
Sg,ν

)
Theorem 3.8. If Sg,1, Sg,2, . . ., Sg,n ∈ g-S

[
Tg

]
are n ≥ 1 g-Tg-sets of a class g-S

[
Tg

]
in a Tg-space

Tg, then
⋃

ν∈I∗n Sg,ν ∈ g-S
[
Tg

]
.

Proof. The statement Sg,ν ∈ g-S
[
Tg

]
for every ν ∈ I∗n is identical to the logical statement:

∃ (Og,ν ,Kg,ν) ∈ Tg × ¬Tg :
(
Sg,ν ⊆ opg (Og,ν)

)
∨
(
Sg,ν ⊇ ¬ opg (Kg,ν)

)
On the other hand, if opg (·) ∈ Lg

[
Ω
]
is a g-operator in the Tg-space, then

opg
(⋃

ν∈I∗n Og,ν

)
=

⋃
ν∈I∗n opg (Og,ν)

¬ opg
(⋃

ν∈I∗n Kg,ν

)
=

⋃
ν∈I∗n ¬ opg (Kg,ν)

Consequently, ∨
ν∈I∗n

((
Sg,ν ⊆ opg (Og,ν)

)
∨
(
Sg,ν ⊇ ¬ opg (Kg,ν)

))
⇒

((⋃
ν∈I∗n Sg,ν ⊆

⋃
ν∈I∗n opg (Og,ν)

)
∨
(⋃

ν∈I∗n Sg,ν ⊇
⋃

ν∈I∗n ¬ opg (Kg,ν)
))

⇒
((⋃

ν∈I∗n Sg,ν ⊆ opg
(⋃

ν∈I∗n Og,ν

))
∨
(⋃

ν∈I∗n Sg,ν ⊇¬ opg
(⋃

ν∈I∗n Kg,ν

)))
But,

⋃
ν∈I∗n Og,ν ∈ Tg and

⋃
ν∈I∗n Kg,ν ∈ ¬Tg. Hence,

⋃
ν∈I∗n Sg,ν ∈ g-S

[
Tg

]
.
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Theorem 3.9. If Sg,1, Sg,2, . . ., Sg,n ∈ g-S
[
Tg

]
are n ≥ 1 g-Tg-sets of a class g-S

[
Tg

]
in a Tg-space

Tg, then (⋂
ν∈I∗n Sg,ν ∈ g-S

[
Tg

])
∨
(⋂

ν∈I∗n Sg,ν /∈ g-S
[
Tg

])
(18)

Proof. Because, Sg,1, Sg,2, . . ., Sg,n ∈ g-S
[
Tg

]
by hypothesis, the trueness of

⋂
ν∈I∗n Sg,ν ∈ g-S

[
Tg

]
and

⋂
ν∈I∗n Sg,ν /∈ g-S

[
Tg

]
evidently depend on the following property:∧

ν∈I∗n

((
Sg,ν ⊆ opg (Og,ν)

)
∨
(
Sg,ν ⊇ ¬ opg (Kg,ν)

))
where (Og,ν ,Kg,ν) ∈ Tg×¬Tg for every ν ∈ I∗n. Furthermore, because the g-Tg-set-theoretic operations
concern finite intersections, it suffices to prove the theorem for n = 2. Set the first property preceding
∨ to P (ν) and that following ∨ to Q (ν). Then, its decomposition gives∧

ν∈I∗2

(
P (ν) ∨Q(ν)

)
=

(∧
ν∈I∗2

P (ν)
)
∨
(∧

ν∈I∗2
Q(ν)

)
=

(
P (1) ∧Q(2)

)
∨
(
P (2) ∧Q(1)

)
If Sg,1, Sg,2 ∈ g-S

[
Tg

]
are both g-Tg-open sets then

∧
ν∈I∗2

P (ν) is true, and if they are both g-T g-closed

sets then
∧

ν∈I∗2
Q(ν) is true. In these two cases,

⋂
ν∈I∗2
Sg,ν ∈ g-S

[
Tg

]
. Because, in general, there does

not necessarily exists g-Tg-set which is simultaneously g-T g-open and g-T g-closed, both P (1) ∧Q(2)
and P (2) ∧Q(1) are untrue; thus,

⋂
ν∈I∗2
Sg,ν /∈ g-S

[
Tg

]
.

Theorem 3.10. Let Sg ⊂ Tg be a Tg-set and let opg (·) ∈ Lg
[
Ω
]
be a g-operator in a Tg-space. If

Sg ∈ g-S
[
Tg

]
, then (

opg (Sg) ∈ g-S
[
Tg

])
∨
(
¬ opg (Sg) ∈ g-S

[
Tg

])
(19)

Proof. Let Sg ∈ g-S
[
Tg

]
. Then,

(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
for some pair (Og,Kg) ∈

Tg × ¬Tg of Tg-open and Tg-closed sets relative to Tg. Consequently, opg (Sg) ⊆ opg ◦ opg (Og) or
¬ opg (Sg) ⊇ ¬ opg ◦¬ opg (Kg). But, opg ◦ opg (Og) ⊆ opg (Og) and ¬ opg ◦¬ opg (Kg) ⊇ ¬ opg (Kg).
Thus, there follows that opg (Sg) ⊆ opg (Og) or ¬ opg (Sg) ⊇ ¬ opg (Kg). Hence, opg (Sg) ∈ g-S

[
Tg

]
or

¬ opg (Sg) ∈ g-S
[
Tg

]
.

Proposition 3.11. Let Sg ∈ g-S
[
Tg

]
in a Tg-space Tg and suppose the logical statement

(∃Rg ⊂ Tg)
[(
Rg ⊆ opg (Sg)

)
∨
(
Rg ⊇ ¬ opg (Sg)

)]
(20)

holds, then Rg ∈ g-S
[
Tg

]
.

Proof. Let there exists a Tg-set Rg ⊂ Tg such that Rg ⊆ opg (Sg) or Rg ⊇ ¬ opg (Sg). But Sg ∈
g-S

[
Tg

]
implies opg (Sg) ∈ g-S

[
Tg

]
or ¬ opg (Sg) ∈ g-S

[
Tg

]
. Thus, Rg ∈ g-S

[
Tg

]
.

Corollary 3.12. Let Tg be a Tg-space. If g-S
[
Tg

]
= g-O

[
Tg

]
∪ g-K

[
Tg

]
denotes a class of g-Tg-open

and g-Tg-closed sets, and S
[
Tg

]
= O

[
Tg

]
∪K

[
Tg

]
denotes a class of Tg-open and Tg-closed sets, then

g-S
[
Tg

]
⊇ g-O

[
Tg

]
∪ g-K

[
Tg

]
⊇ O

[
Tg

]
∪K

[
Tg

]
⊇ S

[
Tg

]
(21)

An important remark should be pointed out at this stage.

Remark 3.13. The converse of the statement “if Sg ∈ S
[
Tg

]
then Sg ∈ g-S

[
Tg

]
” is obviously untrue.

Because, the negation of this statement gives(
Sg ∈ S

[
Tg

])
∧
(
¬
(
Sg ∈ g-S

[
Tg

]))
which is an untrue statements.
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Theorem 3.14. Let Tg be a Tg-space. If Sg ⊂ Tg, then

Sg ∈ g-S
[
Tg

]
⇔

(
Sg ⊆ opg ◦¬ opg (Sg)

)
∨
(
Sg ⊇ ¬ opg ◦ opg (Sg)

)
(22)

Proof.
(⇐) : Let (

Sg ⊆ opg ◦¬ opg (Sg)
)
∨
(
Sg ⊇ ¬ opg ◦ opg (Sg)

)
Then, the substitution of ¬ opg (Sg) = Og in the logical statement preceding ∨ and opg (Sg) = Kg in
that following ∨ gives

(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
.

(⇒) : Let Sg ∈ g-S
[
Tg

]
. Then,

(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
. Consequently, substituting

Og = ¬ opg (Sg) in the logical statement preceding ∨ and Kg = opg (Sg) in that following ∨, the
required logical statement at once follows, which proves the theorem.

The class g-S
[
Tg

]
forms a g-topology on Ω, which will be denoted by Tg-S.

Theorem 3.15. Let g-S
[
Tg

]
be a given g-class in a Tg-space Tg. Then, the one-valued map Tg-S :

g-S
[
Tg

]
−→ g-S

[
Tg

]
forms a g-topology on Ω in the Tg-space.

Proof. By definition,
(
∅ = opg (∅)

)
∨
(
∅ = ¬ opg (∅)

)
. Since, either opg (∅) ⊆ opg (Og) or ¬ opg (∅) ⊇

¬ opg (Kg) holds, where Og, Kg ⊂ Tg, respectively, are some Tg-open and Tg-closed sets in Tg, it follows
that ∅ ∈ g-S

[
Tg

]
and, hence, Tg-S (∅) = ∅. Let Sg ∈ g-S

[
Tg

]
. Then, since g-S

[
Tg

]
⊆ g-S

[
Tg

]
, it follows

that Sg is a superset of Tg-S (Sg). Hence, Tg-S (Sg) ⊆ Sg. Let Sg,1, Sg,2, . . . be Tg-sets satisfying, for
every ν ∈ I∗∞, Sg,ν . Then, there exist classes

{
Og,ν ∈ Tg : ν ∈ I∗∞

}
and

{
Kg,ν ∈ ¬Tg : ν ∈ I∗∞

}
,

respectively, of Tg-open and Tg-closed sets such that(⋃
ν∈I∗∞ Sg,ν ⊆ opg

(⋃
ν∈I∗∞ Og,ν

))
∨
(⋃

ν∈I∗∞ Sg,ν ⊇ ¬ opg
(⋃

ν∈I∗∞ Kg,ν

))
a relation established on the following expressions:⋃

ν∈I∗∞ opg (Og,ν) = opg
(⋃

ν∈I∗∞ Og,ν

)
⋃

ν∈I∗∞ ¬ opg (Kg,ν) = ¬ opg
(⋃

ν∈I∗∞ Kg,ν

)
Consequently,

⋃
ν∈I∗∞ Sg,ν ∈ g-S

[
Tg

]
, since

⋃
ν∈I∗∞ Og,ν ∈ Tg is a Tg-open set and

⋃
ν∈I∗∞ Og,ν ∈ ¬Tg is

a Tg-closed set. Hence,

Tg-S
(⋃

ν∈I∗∞ Sg,ν
)
=

⋃
ν∈I∗∞ Tg-S (Sg,ν)

An immediate consequence of the above theorem is the following corollary.

Corollary 3.16. Let a Tg be a Tg-space. Then, the structure (Ω, Tg-S), where Tg-S : g-S
[
Tg

]
−→

g-S
[
Tg

]
, is a Tg-space.

To condense the set-builder notation describing the classes g-S
[
Tg

]
and then classify it into sub-

classes, predicates must be introduced, and the choice made is to consider the so-called Boolean-valued
functions on Tg × Tg ∪ ¬Tg × Lg

[
Ω
]
×
{
⊆,⊇

}
, the definition of which are given below.

Definition 3.17. Let (Sg,Og,Kg) ∈ Tg × Tg × ¬Tg and let opg (·) ∈ Lg
[
Ω
]
be a g-operator in a

Tg-space Tg. The first two predicates

Pg

(
Sg,Og;opg (·) ;⊆

)
:=

(
∃Og, opg (·)

) (
Sg ⊆ opg (Og)

)
Pg

(
Sg,Kg;opg (·) ;⊇

)
:=

(
∃Kg,¬ opg (·)

) (
Sg ⊇ ¬ opg (Kg)

)
Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
:= Pg

(
Sg,Og;opg (·) ;⊆

)
∨Pg

(
Sg,Kg;opg (·) ;⊇

)
(23)

are called a Boolean-valued functions on Tg × Tg ∪ ¬Tg × Lg
[
Ω
]
×
{
⊆,⊇

}
.
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In this respect, g-S
[
Tg

]
:=

{
Sg ⊂ Tg : Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)}
. Moreover, employing the

set-builder notations, the class of g-Tg-open and g-Tg-closed sets, denoted by g-O
[
Tg

]
and g-K

[
Tg

]
,

respectively, may then be defined as thus:

Definition 3.18. Let Tg be a Tg-space. The classes

g-O
[
Tg

]
:=

{
Sg ⊂ Tg : Pg

(
Sg,Og;opg (·) ;⊆

)}
g-K

[
Tg

]
:=

{
Sg ⊂ Tg : Pg

(
Sg,Kg;opg (·) ;⊇

)}
(24)

respectively, such that g-S
[
Tg

]
= g-O

[
Tg

]⋃
g-K

[
Tg

]
, denote the families of all g-Tg-open and g-Tg-

closed sets in Tg.

It is interesting to demonstrate their usefulness. In this direction, let us prove in a different way
that g-Tg-set-theoretic operations is closed under arbitrary unions.

Pg

(
Sg,Og;opg (·) ;⊆

)
:=

(
∃Og, opg (·)

) (
Sg ⊆ opg (Og)

)
Pg

(
Sg,Kg;opg (·) ;⊇

)
:=

(
∃Kg,¬ opg (·)

) (
Sg ⊇ ¬ opg (Kg)

)
Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
:= Pg

(
Sg,Og;opg (·) ;⊆

)
∨Pg

(
Sg,Kg;opg (·) ;⊇

)
(25)

Theorem 3.19. If
{
Sg,ν ∈ g-O

[
Tg

]
: ν ∈ I∗n

}
and

{
Sg,ν ∈ g-K

[
Tg

]
: ν ∈ I∗n

}
, respectively, are finite

collections of g-Tg-open and g-Tg-closed sets in a Tg-space Tg, then⋃
µ∈I∗n

{
ξ ∈ Tg :

(
∃ν ∈ I∗µ

) (
ξ ∈ Sg,ν ∈ g-O

[
Tg

])}
⊆ g-O

[
Tg

]
⋂
µ∈I∗n

{
ξ ∈ Tg :

(
∀ν ∈ I∗µ

) (
ξ ∈ Sg,ν ∈ g-K

[
Tg

])}
⊆ g-K

[
Tg

]
(26)

Proof. Let
{
Rg,ν ∈ g-O

[
Tg

]
: ν ∈ I∗n

}
and

{
Sg,ν ∈ g-K

[
Tg

]
: ν ∈ I∗n

}
, respectively, be finite collec-

tions of g-Tg-open and g-Tg-closed sets in a Tg-space Tg. Then, since (Rg,ν ,Sg,ν) ∈ g-O
[
Tg

]
×g-K

[
Tg

]
,

there exists (Og,ν ,Kg,ν) ∈ Tg×¬Tg such that the propositional formulas Pg

(
Rg,ν ,Og,ν ;opg (·) ;⊆

)
and

Pg

(
Sg,ν ,Kg,ν ;opg (·) ;⊇

)
hold true for every index ν ∈ I∗n. Consequently, the propositional formulas∨

ν∈I∗n Pg

(
Rg,ν ,Og,ν ;opg (·) ;⊆

)
and

∧
ν∈I∗n Pg

(
Sg,ν ,Kg,ν ;opg (·) ;⊇

)
also hold true. Since⋃

µ∈I∗n

Rg,ν ←→
⋃
µ∈I∗n

{
Rg,ν ∈ g-O

[
Tg

]
: ν ∈ I∗µ

}
←→

⋃
µ∈I∗n

{
ξ ∈ Tg :

(
∃ν ∈ I∗µ

) (
ξ ∈ Sg,ν ∈ g-O

[
Tg

])}
⊆

⋃
ν∈I∗n

opg
(
Og,ν

)
⋃
ν∈I∗n

opg
(
Og,ν

)
←→

⋂
µ∈I∗n

{
Sg,ν ∈ g-K

[
Tg

]
: ν ∈ I∗µ

}
←→

⋂
µ∈I∗n

{
ξ ∈ Tg :

(
∀ν ∈ I∗µ

) (
ξ ∈ Sg,ν ∈ g-K

[
Tg

])}
⊇

⋂
ν∈I∗n

¬ opg
(
Kg,ν

)
it results that

⋃
µ∈I∗n Rg,ν ⊆

⋃
ν∈I∗n opg

(
Og,ν

)
and

⋂
µ∈I∗n Sg,ν ⊇

⋂
ν∈I∗n ¬ opg

(
Kg,ν

)
. But it holds

that
⋃

µ∈I∗n Rg,ν ⊆ opg
(⋃

µ∈I∗n Rg,ν

)
∈ g-O

[
Tg

]
and

⋂
µ∈I∗n Sg,ν ⊇ ¬ opg

(⋂
µ∈I∗n Sg,ν

)
∈ g-K

[
Tg

]
.

Consequently, there exists (Og,Kg) ∈ Tg × ¬Tg such that
⋃

µ∈I∗n Rg,ν ⊆ opg (Og) ∈ g-O
[
Tg

]
and⋂

µ∈I∗n Sg,ν ⊇ ¬ opg (Kg) ∈ g-K
[
Tg

]
, implying that both Pg

(⋃
ν∈I∗n Rg,ν ,

⋃
ν∈I∗µ Og,ν ;opg (·) ;⊆

)
and

Pg

(⋃
ν∈I∗n Sg,ν ,

⋃
ν∈I∗µ Kg,ν ;opg (·) ;⊇

)
, respectively, hold true. But,

Pg

(⋃
ν∈I∗n Rg,ν ,Og;opg (·) ;⊆

)
=

∨
ν∈I∗n

Pg

(
Rg,ν ,Og;opg (·) ;⊆

)
Pg

(⋃
ν∈I∗n Sg,ν ,Kg;opg (·) ;⊇

)
=

∧
ν∈I∗n

Pg

(
Sg,ν ,Kg;opg (·) ;⊇

)
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Hence, it suffices to set

Pg

(
Rg,Og;opg (·) ;⊆

)
=

∨
ν∈I∗n

Pg

(
Rg,ν ,Og;opg (·) ;⊆

)
Pg

(
Sg,Kg;opg (·) ;⊇

)
=

∨
ν∈I∗n

Pg

(
Sg,ν ,Kg;opg (·) ;⊇

)
and the theorem is proved.

If in Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
it be assumed that (Og,Kg) ∈ g-S

[
Tg

]
× g-S

[
Tg

]
, we have the

following theorem:

Theorem 3.20. Let (Sg,Og,Kg) ∈ Tg × Tg ×¬Tg in a Tg-space Tg. If (Og,Kg) ∈ g-O
[
Tg

]
× g-K

[
Tg

]
,

then {
Sg ⊂ Tg : Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)}
⊆ g-S

[
Tg

]
(27)

Proof. It is clear that

Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
= Pg

(
Sg,Og;opg (·) ;⊆

)
∨ Pg

(
Sg,Kg;opg (·) ;⊇

)
and the Boolean-valued functions surrounding ∨ hold on Tg×Tg∪¬Tg×Lg

[
Ω
]
×
{
⊆,⊇

}
. Consequently,

the following two cases must be considered in proving the theorem:

Case i. Let Pg

(
Sg,Og;opg (·) ;⊆

)
hold on Tg×Tg∪¬Tg×Lg

[
Ω
]
×
{
⊆,⊇

}
. Then, Sg ⊆ opg (Og). But,

Og ∈ g-O
[
Tg

]
, and consequently, it follows that Og ⊆ opg (Og,ν) and opg (Og) ⊆ opg ◦ opg (Og,ν) ⊆

opg (Og,ν) for some Og,ν ∈ Tg, by the properties of the g-operator. Hence, Pg

(
Sg,Og,ν ; opg (·) ;⊆

)
holds

on Tg × Tg ∪ ¬Tg × Lg
[
Ω
]
×
{
⊆,⊇

}
.

Case ii. Let Pg

(
Sg,Kg;opg (·) ;⊇

)
hold on Tg×Tg∪¬Tg×Lg

[
Ω
]
×
{
⊆,⊇

}
. Then, Sg ⊇ ¬ opg (Kg). But,

Kg ∈ g-K
[
Tg

]
, and consequently, it follows that Kg ⊇ ¬ opg (Kg,ν) and opg (Kg) ⊇ ¬ opg ◦¬ opg (Kg,ν) ⊇

¬ opg (Kg,ν) for some Kg,ν ∈ ¬Tg, by the properties of the g-operator. Hence, Pg

(
Sg,Kg,ν ; opg (·) ;⊇

)
holds on Tg × Tg ∪ ¬Tg × Lg

[
Ω
]
×
{
⊆,⊇

}
.

From Case i. and Case ii., it follows that{
Sg ⊂ Tg : Pg

(
Sg,Og;opg (·) ;⊆

)}
⊆ g-O

[
Tg

]{
Sg ⊂ Tg : Pg

(
Sg,Kg;opg (·) ;⊇

)}
⊆ g-K

[
Tg

]
But, since g-S

[
Tg

]
= g-O

[
Tg

]⋃
g-K

[
Tg

]
, the proof of the theorem at once follows.

The following theorem shows that the class g-S
[
Tg

]
, upon satisfaction of two conditions, is the

smallest class of g-Tg-sets in the Tg-space Tg.

Theorem 3.21. Let g-S0

[
Tg

]
= g-O0

[
Tg

]
∪ g-K0

[
Tg

]
be a class of g-Tg-sets in a Tg-space Tg such

that the following two conditions are satisfied:

i. If (Og,Kg) ∈ g-O0

[
Tg

]
× g-K0

[
Tg

]
and Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
holds on Tg × g-O0

[
Tg

]
×

g-K0

[
Tg

]
× Lg

[
Ω
]
×
{
⊆,⊇

}
, then Sg ∈ g-S0

[
Tg

]
.

ii. The relation Sg ∈ S
[
Tg

]
implies Sg ∈ g-S0

[
Tg

]
.

Then, g-S
[
Tg

]
⊆ g-S0

[
Tg

]
.

Proof. Let Sg ∈ g-S
[
Tg

]
. Then, Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
holds on Tg×O

[
Tg

]
×K

[
Tg

]
×Lg

[
Ω
]
×{

⊆,⊇
}
for some pair (Og,Kg) ∈ O

[
Tg

]
× K

[
Tg

]
. But, (Og,Kg) ∈ O

[
Tg

]
× K

[
Tg

]
implies (Og,Kg) ∈

g-O0

[
Tg

]
× g-K0

[
Tg

]
by (i.), and the latter together with the trueness of Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
on Tg×g-O0

[
Tg

]
×g-K0

[
Tg

]
×Lg

[
Ω
]
×
{
⊆,⊇

}
implies Sg ∈ g-S0

[
Tg

]
by (ii.). Thus, g-S

[
Tg

]
⊆ g-S0

[
Tg

]
,

which completes the proof.
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In the earlier discussion, the set Ω ⊂ U carried the g-topology Tg (Ω). A g-topology of this kind will
be termed an absolute g-topology. To this end, if Γ ⊆ Ω is any subset of Ω then, obviously, we would
expect Γ to carry the g-topology Tg (Γ). But, since Tg (Γ) ⊆ Tg (Ω), as a consequence of the fact that
Tg : P (Γ) −→ P (Γ) is the one-valued restriction map of Tg : P (Ω) −→ P (Ω), which follows from the
statement, Γ ⊆ Ω implies P (Γ) ⊆ P (Ω), it does make sense to term Tg (Γ) a relative g-topology. In
order to determine what any g-set-theoretic concepts for the Tg-space Tg = (Ω, Tg (Ω)) becomes when
discussion is restricted to Γ ⊆ Ω, it merely suffices to regard Γ as the set which carries the relative
g-topology Tg (Γ) and carry over the discussion verbatim.

Definition 3.22 (Tg-Subspace). Let Tg (Ω) := (Ω, Tg (Ω)) be a Tg-space Tg, where Ω ⊂ U carries the
absolute g-topology Tg : P (Ω) −→ P (Ω), and let P (Γ) :=

{
Og,ν : Og,ν ⊂ Γ

}
be the family of all

subsets Og,1, Og,2, . . ., of any subset Γ ⊆ Ω of Ω, then every one-valued restriction map of the type

Tg : P (Γ) 7−→ Tg (Γ) :=
{
Og ∩ Γ : Og ∈ Tg (Ω)

}
(28)

defines a “relative g-topology on Γ,” and the structure Tg (Γ) := (Γ, Tg (Γ)) is called a “Tg-subspace.”

Theorem 3.23. Let Sg ⊂ Tg (Γ) ⊆ Tg (Ω), where Tg (Γ) = (Γ, Tg (Γ)) is the Tg-subspace of a Tg-space
Tg (Ω) = (Ω, Tg (Ω)). If Sg ∈ g-S

[
Tg (Ω)

]
, then Sg ∈ g-S

[
Tg (Γ)

]
.

Proof. If Sg ∈ g-S
[
Tg (Ω)

]
, then Pg

(
Sg,Og,Kg;opg (·) ;⊆,⊇

)
holds on Tg (Ω) × Tg (Ω) ∪ ¬Tg (Ω) ×

Lg
[
Ω
]
×
{
⊆,⊇

}
. Therefore, if Sg ∈ g-S

[
Tg (Γ)

]
, then Pg

(
Sg∩Γ,Og∩Γ,Kg∩Γ;opg (·) ;⊆,⊇

)
holds on

Tg (Γ)×Tg (Γ)∪¬Tg (Γ)×Lg
[
Γ
]
×
{
⊆,⊇

}
. But, since Sg∩Γ = Sg ∈ g-S

[
Tg (Γ)

]
, Og∩Γ = Og ∈ Tg (Γ),

and Kg∩Γ = Kg ∈ Tg (Γ), it follows that Sg ∈ g-S
[
Tg (Γ)

]
whenever Sg ∈ g-S

[
Tg (Ω)

]
, and the theorem

is proved.

Definition 3.24 (Cartesian Product). The Cartesian product of an arbitrary family
{
Ων ⊂ U : ν ∈

I∗n
}
of sets is the set of functions ϕ : I∗n −→

⋃
ν∈I∗n Ων such that ϕ : ν 7−→ Ων for every ν ∈ I∗n. It is

denoted by
⊗

ν∈I∗n Ων and satisfies the following properties:

i.
⊗

ν=µΩν = Ωµ ∀µ ∈ I∗n

ii.
⊗

ν∈I∗µ+1
Ων =

(⊗
ν∈I∗µ Ων

)
× Ωµ+1 ∀µ ∈ I∗n−1

The projection map which gives the projection of the Cartesian product set
⊗

ν∈I∗n Ων onto the

µth factor of
⊗

ν∈I∗n Ων is defined as thus.

Definition 3.25 (Projection). Let
{
Ων ⊂ U : ν ∈ I∗n

}
be any class of sets and let

⊗
ν∈I∗n Ων denotes

the Cartesian product of these sets. The map

projµ :
⊗

ν∈I∗nΩν −→ Ωµ

(
projµ

(⊗
ν∈I∗nΩν

)
= Ωµ

)
(29)

is called the projection of the Cartesian product set
⊗

ν∈I∗n Ων onto the µth factor of
⊗

ν∈I∗n Ων .

To generate all Tg-open sets in a Tg-space Tg, a basis B [Tg] for Tg must be supplied, and the
following definition is worth considering.

Definition 3.26 (Tg-Basis). A subclass B
[
Tg (Ωµ)

]
⊆ Tg (Ωµ) consisting of Tg-open sets in a Tg-space

Tg (Ωµ) := (Ωµ, Tg (Ωµ)), defined by

B
[
Tg (Ωµ)

]
:=

{
Og,σ(ν,µ) : (ν, µ, σ (ν, µ)) ∈ I∗∞ ×

{
µ
}
× I∗∞

}
(30)

is said to be a base for Tg : P (Ωµ) −→ P (Ωµ) if and only if

∀
(
µ, σ (µ) ,Og,σ(µ)

)
∈
{
µ
}
× I∗∞ × Tg (Ωµ) , ∃Iσ(µ) ⊆ I∗∞ : Og,σ(µ) =

⋃
ν∈I∗

σ(µ)
Og,σ(ν,µ) (31)
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With regards to the terminology employed, B [Tg (Ωµ)] is called a Tg-basis and its elements, BTg-
open sets, because they are Tg-open sets of Tg : P (Ωµ) −→ P (Ωµ). With regards to the definition
itself, an immediate consequence follows. By the relation Og,σ(µ) =

⋃
ν∈I∗

σ(µ)
Og,σ(ν,µ), is meant, for

every (ν, µ, σ (µ) , σ (ν, µ)) ∈ I∗σ(µ)× I∗n× I∗∞× I∗∞, that Og,σ(ν,µ) ∈ B [Tg (Ωµ)] and Og,σ(µ) ∈ Tg (Ωµ) in

the relation Og,σ(µ) =
⋃

ν∈I∗
σ(µ)
Og,σ(ν,µ), where B [Tg (Ωµ)] and Og,σ(µ) ∈ Tg (Ωµ) are given by

projα :
⊗

µ∈I∗nB [Tg (Ωµ)] −→ B [Tg (Ωα)]

projα :
⊗

µ∈I∗nTg (Ωµ) −→ Tg (Ωα) ∀α ∈ I∗n (32)

respectively. To this end, a Cartesian product topology (Cartesian Tg-product) is one that having
for Tg-basis all BTg-open sets of the form proj−1

µ

(
Og,σ(ν,µ)

)
, where Og,σ(ν,µ) ∈ B [Tg (Ωµ)] for every

(ν, µ, σ (ν, µ)) ∈ I∗σ(µ)× I∗n× I∗∞. Therefore, in order to define a Cartesian product Tg-space, it suffices
to take the above descriptions into account and postulate a proper definition on this ground. The
following definition presents itself.

Definition 3.27. Let
{
Tg (Ωµ) := (Ωµ, Tg (Ωµ)) : µ ∈ I∗n

}
be a class of n ≥ 1 Tg-spaces and, for

every µ ∈ I∗n, let Tg,Ωµ : P (Ωµ) −→ P (Ωµ) be the g-topology for Tg (Ωµ). The Cartesian Tg-product
:=

⊗
µ∈I∗n Tg (Ωµ) on the Cartesian product set Ω :=

⊗
µ∈I∗n Ωµ is that having for Tg-basis all BTg-open

sets belonging to the following class:

B [Tg (Ω)] :=
{
proj−1

µ

(
Og,σ(ν,µ)

)
: Og,σ(ν,µ) ∈ B [Tg (Ωµ)]∀ (ν, µ, σ (ν, µ)) ∈ I∗σ(µ) × I∗n × I∗∞

}
(33)

The structure Tg (Ω) := (Ω, Tg (Ω)) is called a “Cartesian product Tg-space.”

The fact that Og,σ(ν,µ) ∈ B [Tg (Ωµ)] and Og,σ(µ) ∈ Tg (Ωµ) hold for every (ν, µ, σ (µ) , σ (ν, µ)) ∈
I∗σ(µ) × I∗n × I∗∞ × I∗∞ makes it reasonable to write⊗

µ∈I∗nOg,σ(µ) ∈
⊗

µ∈I∗nTg (Ωµ)⊗
µ∈I∗n

(⋃
ν∈I∗

σ(µ)
Og,σ(ν,µ)

)
=

⋃
→
ν ∈

⊗
α∈I∗nI

∗
σ(α)

(⊗
α∈I∗nOg,σ(να,α)

)
(34)

∈
⊗

µ∈I∗nB [Tg (Ωµ)]

where
→
ν := (ν1, ν2, . . . , νn) and, for every α ∈ I∗n, να ∈ I∗σ(α). An immediate consequence of such

relation is contained in the following lemma.

Lemma 3.28. If Tg : Q
(
Ω
)
−→ Q

(
Ω
)
is a one-valued map on the Cartesian product set Ω =⊗

µ∈I∗n Ωµ, where

Q (Ω) :=

{
Og,σ =

⋃
→
ν ∈

⊗
α∈I∗nI

∗
σ(α)

(⊗
α∈I∗nOg,σ(να,α)

)
: Og,σ ∈

⊗
µ∈I∗nB [Tg (Ωµ)]

}
(35)

then Tg : Q (Ω) −→ Q (Ω) is a g-topology on the Cartesian product set
⊗

µ∈I∗n Ωµ.

Proof. Let Og,σ =
⋃

→
ν ∈

⊗
α∈I∗nI

∗
σ(α)

(⊗
α∈I∗nOg,σ(να,α)

)
. Since Og,σ(να,α) ∈ Tg (Ωµ) holds true for every

(να, α, σ (να, α)) ∈ I∗σ(α) × I∗n × I∗∞, it is evident that Og,σ = ∅ only if, for every (να, α, σ (να, α)) ∈
I∗σ(α) × I∗n × I∗∞, Og,σ(να,α) = ∅. Thus, Tg (∅) = ∅.

Let Og,σ =
⋃

→
ν ∈

⊗
α∈I∗nI

∗
σ(α)

(⊗
α∈I∗nOg,σ(να,α)

)
. Then, since Q (Ω) ⊆ Q (Ω), it follows that Og,σ is a

superset of Tg (Ω). Thus, Tg (Og,σ) ⊆ Og,σ.
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Let
→
ν = (ν1, . . . , νn) and

→
κ = (κ1, . . . , κn), and consider

Og,σ =
⋃

→
ν ∈

⊗
α∈I∗nI

∗
σ(α)

(⊗
α∈I∗nOg,σ(να,α)

)
Og,τ =

⋃
→
κ∈

⊗
β∈I∗nI

∗
τ(β)

(⊗
β∈I∗nOg,τ(κβ ,β)

)

Further, let us assume that
⇒
η= (ν1, . . . , νn, κ1, . . . , κn), I∗σ(α) :=

⊗
α∈I∗nI

∗
σ(α), and I∗σ(β) :=

⊗
β∈I∗nI

∗
τ(β).

Then,

Og,σ ∪ Og,τ =
⋃

⇒
η∈I∗

σ(α)
×I∗

σ(β)

(⊗
µ∈I∗n

Og,σ(να,α)

)
∪
(⊗

β∈I∗n

Og,σ(κβ ,β)

)

Thus, Tg (Og,σ ∪ Og,τ ) ⊆ Tg (Og,σ) ∪ Tg (Og,τ ).

Theorem 3.29. Let Tg,1 (Ω), Tg,2 (Ω), . . ., Tg,n (Ω) be n ≥ 1 Tg-spaces and let Tg (Ω) :=
⊗

ν∈I∗n Tg,ν (Ω)

be the Tg-space product. If the relation (Sg,1, . . . ,Sg,n) ∈
⊗

ν∈I∗n g-S
[
Tg,ν

]
holds, then

⊗
ν∈I∗n Sg,ν ∈

g-S
[⊗

ν∈I∗n Tg,ν (Ω)
]
.

Proof. For every σ ∈ I∗n, let

opg,12···σ (·) =
(
opg,12···σ (·) ,¬ opg,12···σ (·)

)
∈ Lg,12···σ

[
Ω
]

denotes the g-operator in
⊗

ν∈I∗σ Tg,ν (Ω) and, for every ν ∈ I∗n, let (Sg,ν ,Og,ν ,Kg,ν) ∈ g-S
[
Tg,ν

]
×

Tg,ν × ¬Tg,ν . Then,

opg,12···n
(⊗

ν∈I∗n Og,ν

)
=

⊗
ν∈I∗n opg,ν (Og,ν)

¬ opg,12···n
(⊗

ν∈I∗n Kg,ν

)
=

⊗
ν∈I∗n ¬ opg,ν (Kg,ν)

On the other hand, for every ν ∈ I∗n, the logical statement(
Sg,ν ⊆ opg,ν (Og,ν)

)
∨
(
Sg,ν ⊇ ¬ opg,ν (Kg,ν)

)
holds in Tg,ν . Consequently,⊗

ν∈I∗n

((
Sg,ν ⊆ opg,ν (Og,ν)

)
∨
(
Sg,ν ⊇ ¬ opg,ν (Og,ν)

))
⇒

((⊗
ν∈I∗n Sg,ν ⊆

⊗
ν∈I∗n opg,ν (Og,ν)

)
∨
(⊗

ν∈I∗n Sg,ν ⊇
⊗

ν∈I∗n ¬ opg,ν (Kg,ν)
))

⇒
((⊗

ν∈I∗n Sg,ν ⊆ opg,12···n
(⊗

ν∈I∗n Og,ν

))
∨
(⊗

ν∈I∗n Sg,ν ⊇¬ opg,12···n
(⊗

ν∈I∗n Kg,ν

)))
Therefore, the Boolean-valued functions

Pg

(⊗
ν∈I∗n Sg,ν ,

⊗
ν∈I∗n Og,ν ,

⊗
ν∈I∗n Kg,ν ;opg,12···n (·) ;⊆,⊇

)
holds on g-S

[
Tg

]
× Tg × ¬Tg × Lg,12···n

[
Ω
]
×
{
⊆,⊇

}
and, hence, it follows that⊗

ν∈I∗n

Sg,ν ∈ g-G
[⊗
ν∈I∗n

Tg,ν (Ω)
]

The categorical classifications of T-sets and g-T-sets in the T -space T ⊂ Tg and, Tg-sets and
g-Tg-sets in the Tg-space Tg are discussed and diagrammed on this ground in the next sections.
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4.Discussion

4.1. Categorical Classifications

Having adopted a categorical approach in the classifications of g-Tg-sets in the Tg-space Tg, the twofold
purposes here are to establish the various relationships between the classes of Tg-open and Tg-closed
sets and the classes of g-Tg-open and g-Tg-closed sets in the Tg-space Tg, and to illustrate them through
diagrams.

We have seen that, S
[
Tg

]
⊆ g-S

[
Tg

]
. But, S

[
Tg

]
= O

[
Tg

]
∪ K

[
Tg

]
and g-S

[
Tg

]
= g-O

[
Tg

]
∪

g-K
[
Tg

]
. Consequently, O

[
Tg

]
, K

[
Tg

]
⊆ S

[
Tg

]
and g-O

[
Tg

]
, g-K

[
Tg

]
⊆ g-S

[
Tg

]
; O

[
Tg

]
⊆ g-O

[
Tg

]
⊆

g-S
[
Tg

]
and K

[
Tg

]
⊆ g-K

[
Tg

]
⊆ g-S

[
Tg

]
. In Figure 1, we present the relationships between the class

S
[
Tg

]
= O

[
Tg

]
∪ K

[
Tg

]
of Tg-open and Tg-closed sets and the class g-S

[
Tg

]
= g-O

[
Tg

]
∪ g-K

[
Tg

]
of

g-Tg-open and g-Tg-closed sets in the Tg-space Tg.

Fig. 1. Relationships: classes of Tg-sets and g-Tg-sets

It is plain that g-ν-O
[
T
]
⊆ g-O

[
T
]
and g-ν-O

[
T
]
⊆ g-ν-O

[
Tg

]
⊆ g-O

[
Tg

]
for every ν ∈ I03 .

Moreover, it is also clear that, g-2-O
[
T
]
⊆ g-3-O

[
T
]
and g-0-O

[
T
]
⊆ g-1-O

[
T
]
⊆ g-3-O

[
T
]
, and

g-2-O
[
Tg

]
⊆ g-3-O

[
Tg

]
and g-0-O

[
Tg

]
⊆ g-1-O

[
Tg

]
⊆ g-3-O

[
Tg

]
. In fact, for every Tg-set Sg ⊂ Tg,

the relation intg (Sg) ⊆ clg ◦ intg (Sg) ⊆ clg ◦ intg ◦ clg (Sg) ⊇ intg ◦ clg (Sg) holds. Consequently,

opg,0 (Sg) ⊆ opg,1 (Sg) ⊆ opg,3 (Sg) ⊇ opg,2 (Sg) ∀Sg ⊂ Tg (36)

In Figure 2, we present the relationships between the class g-O
[
Tg

]
=

⋃
ν∈I03

g-ν-O
[
Tg

]
of g-Tg-open

sets of categories 0, 1, 2 and 3 in the Tg-space Tg, and the class g-O
[
T
]
=

⋃
ν∈I03

g-ν-O
[
T
]
of g-T-open

sets of categories 0, 1, 2 and 3 in the T -space T ⊂ Tg.

Fig. 2. Relationships: classes of g-T-open sets and g-Tg-open sets
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It is plain that, g-ν-K
[
T
]
⊆ g-K

[
T
]
and g-ν-K

[
T
]
⊆ g-ν-K

[
Tg

]
⊆ g-K

[
Tg

]
for every ν ∈ I03 .

Moreover, it is also clear that, g-2-K
[
T
]
⊆ g-3-K

[
T
]
and g-0-K

[
T
]
⊆ g-1-K

[
T
]
⊆ g-3-K

[
T
]
, and

g-2-K
[
Tg

]
⊆ g-3-K

[
Tg

]
and g-0-K

[
Tg

]
⊆ g-1-K

[
Tg

]
⊆ g-3-K

[
Tg

]
. Because, for every Tg-set Sg ⊂ Tg,

the relations clg (Sg) ⊇ intg ◦ clg (Sg) ⊇ intg ◦ clg ◦ intg (Sg) ⊆ clg ◦ intg (Sg) holds. Consequently,

¬ opg,0 (Sg) ⊇ ¬ opg,1 (Sg) ⊇ ¬ opg,3 (Sg) ⊆ ¬ opg,2 (Sg) ∀Sg ⊂ Tg (37)

In Figure 3, we present the relations between the class g-K
[
Tg

]
=

⋃
ν∈I03

g-ν-K
[
Tg

]
of g-Tg-closed

sets of categories 0, 1, 2 and 3 in the Tg-space Tg, and the class g-K
[
T
]
=

⋃
ν∈I03

g-ν-K
[
T
]
of g-T-closed

sets of categories 0, 1, 2 and 3 in the T -space T ⊂ Tg.

Fig. 3. Relationships: classes of g-T-closed sets and g-Tg-closed sets

As in the papers of Caldas et al. [42], Dontchev [43], Jun et al. [8], and Tyagi et al. [6], among
others, the manner we have positioned the arrows is solely to stress that, in general, none of the
implications in Figs 1, 2 and 3 is reversible.

At this stage, a nice application is worth considering, and is presented in the following section.

4.2.A Nice Application

Concentrating on fundamental concepts from the standpoint of the theory of g-Tg-sets, we shall now
present a nice application. Let Ω =

{
ξν : ν ∈ I∗5

}
denotes the underlying set and consider the Tg-space

Tg = (Ω, Tg), where

Tg (Ω) =
{
∅,
{
ξ1
}
,
{
ξ3, ξ4

}
,
{
ξ1, ξ3, ξ4

}}
=

{
Og,1,Og,2,Og,3,Og,4

}
(38)

¬Tg (Ω) =
{
Ω,

{
ξ2, ξ3, ξ4, ξ5

}
,
{
ξ1, ξ2, ξ5

}
,
{
ξ2, ξ5

}}
=

{
Kg,1,Kg,2,Kg,3,Kg,4

}
(39)

respectively, stand for the classes of Tg-open and Tg-closed sets. Since conditions Tg (∅) = ∅, Tg (Og,ν) ⊆
Og,ν for every ν ∈ I∗4 , and Tg

(⋃
ν∈I∗4
Og,ν

)
=

⋃
ν∈I∗4
Tg (Og,ν) are satisfied, it is clear that the one-

valued map Tg : P (Ω) → P
({

ξν : ν ∈ I∗5
})

is a g-topology. Furthermore, it is easily checked
that, Og,µ ∈ g-ν-O

[
T
]
for every (ν, µ) ∈ I03 × I∗4 . Hence, the Tg-open sets forming the g-topology

Tg : P (Ω) −→ P (Ω) of the Tg-space Tg = (Ω, Tg) are g-T-open sets relative to the T -space T = (Ω, T ).
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After calculations, the classes g-ν-O
[
Tg

]
and g-ν-K

[
Tg

]
, respectively, of g-Tg-open and g-Tg-closed

sets of categories ν ∈
{
0, 2

}
then take the following forms:

g-ν-O
[
Tg

]
= Tg ∪

{{
ξ3
}
,
{
ξ4
}
,
{
ξ1, ξ3

}
,
{
ξ1, ξ4

}}
g-ν-K

[
Tg

]
= ¬Tg ∪

{{
ξ2, ξ4, ξ5

}
,
{
ξ1, ξ2, ξ3, ξ5

}{
ξ1, ξ2, ξ4, ξ5

}
,
{
ξ2, ξ3, ξ5

}}
, ∀ν ∈

{
0, 2

}
(40)

On the other hand, those of categories ν ∈
{
1, 3

}
take the following forms:

g-ν-O
[
Tg

]
= Tg ∪

{
Og : Og ∈ P (Ω) \ Tg

}
g-ν-K

[
Tg

]
= ¬Tg ∪

{
Kg : Kg ∈ P (Ω) \ ¬Tg

}
, ∀ν ∈

{
1, 3

}
(41)

The discussions carried out in the preceding sections can be easily verified from this nice applica-
tion. The next section provides concluding remarks and future directions of the theory of g-Tg-sets
discussed in the preceding sections.

5. Conclusion

In this paper, we developed a new theory, called Theory of g-Tg-Sets. In its own rights, the proposed
theory has several advantages. The very first advantage is that the theory holds equally well when
(Ω, Tg) = (Ω, T ) and other features adapted on this basis, in which case it might be called Theory
of g-T-Sets. Hence, in a Tg-space the theoretical framework categorises such pairs of concepts as
g-Tg-open and g-Tg-closed sets, g-Tg-semi-open and g-Tg-semi-closed sets, g-Tg-pre-open and g-Tg-
pre-closed sets, and g-Tg-semi-pre-open and g-Tg-semi-pre-closed sets as g-Tg-sets of categories 0, 1, 2,
and 3, respectively, and theorises the concepts in a unified way; in a T -space it categorises such pairs
of concepts as g-T-open and g-T-closed sets, g-T-semi-open and g-T-semi-closed sets, g-T-pre-open
and g-T-pre-closed sets, and g-T-semi-pre-open and g-T-semi-pre-closed sets as g-T-sets of categories
0, 1, 2, and 3, respectively, and theorises the concepts in a unified way.

It is an interesting topic for future research to develop the theory of g-Tg-sets of mixed categories.
More precisely, for some pair (ν, µ) ∈ I03 × I03 such that ν ̸= µ, to develop the theory of g-Tg-open sets
belonging to the class

{
Og = Og,ν ∪ Og,µ : (Og,ν ,Og,µ) ∈ g-ν-O

[
Tg

]
× g-µ-O

[
Tg

]}
and the theory of

g-Tg-closed sets belonging to the class
{
Kg = Kg,ν ∪Kg,µ : (Kg,ν ,Kg,µ) ∈ g-ν-K

[
Tg

]
×g-µ-K

[
Tg

]}
in a

Tg-space Tg, as Andrijević [22] and Caldas et al. [44] developed the theory of b-open and b-closed sets
in a T -space T. Such two theories are what we thought would certainly be worth considering, and the
discussion of this work ends here.
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[40] M. S. Sarsak, On some Properties of Generalized Open Sets in Generalized Topological Spaces,
Demonstratio Mathematica XLVI (2) (2013) 415–427.



Journal of New Theory 36 (2021) 18-38 / Theory of Generalized Sets in Generalized Topological Spaces 38

[41] T. Noiri, Unified Characterizations for Modifications of R0 and R1 Topological Spaces, Circolo
Matematico di Palermo 55(2) (2006) 29–42.

[42] M. Caldas, S. Jafari, R. K. Saraf, Semi-θ-Open Sets and New Classes of Maps, Bulletin of the
Iranian Mathematical Society 31(2) (2005) 37–52.

[43] J. Dontchev, On Some Separation Axioms Associated with the α-Topology, Memoirs of the Faculty
of the Science, Kochi University Series A Mathematics 18 (1997) 31–35.

[44] M. Caldas, S. Jafari, On Some Applications of b-Open Sets in Topological Spaces, Kochi Journal
of Mathematics 2 (2007) 11–19.



New Theory
Journal of

ISSN: 2149-1402 

36 (2021) 39-48

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Number 36 Year 2021

www.dergipark.org.tr/en/pub/jnt

Roots of Second Order Polynomials with Real Coefficients in
Elliptic Scator Algebra

Manuel Fernandez-Guasti1 ID

Article History

Received : 23 Jun 2021

Accepted : 18 Sep 2021

Published : 30 Sep 2021

10.53570/jnt.956340

Research Article
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1. Introduction

The quadratic equation ax2 + bx+ c = 0, x ∈ H in the quaternion set with real coefficients a, b, c: i)

if 4ac ≤ b2, has real solutions x = 1
2a

(
−b±

√
b2 − 4ac

)
and ii) if 4ac > b2, has an infinite number of

solutions x = −b+ βi+ γj+ δk, with β2 + γ2 + δ2 = 4c− b2 and β, γ, δ ∈ R [1, 2]. In contrast, as we
shall presently see, the quadratic equation with real coefficients in elliptic scator algebra has a finite
number of roots.

Scator numbers are compound numbers that have one scalar component and n director components
in R1+n,

o
φ = f0 +

∑n
j=1 fj ěj , where f0, fj ∈ R for j from 1 to n in N and ěj /∈ R. Scator addition,

performed component-wise, satisfies commutative group properties. Multiplication in elliptic scator
algebra is commutative, possesses an identity element and all elements are invertible if zero is excluded.
Multiplication is not associative if the additive scalar component of any two products vanish [3].
However, the non associative products can be isolated by imposing the appropriate conditions (i.e.
ajbj ̸= a0b0 in (3a)), so that the additive scalar component of the products does not vanish. In
general, scator multiplication is not distributive over addition [4]. Scator algebra has been successfully
applied to several problems: time-space description in a deformed Lorentz metric [5], a wave-function
evolution and collapse unified description in quantum mechanics [3] and three dimensional fractal
structures [6]. Explicit formulae for scator holomorphic functions recently published, will very likely
expand applications to other areas [7].
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1.1. Elliptic Scators

Scator multiplication is defined in the scator set,

S1+n =

 o
φ = f0 +

n∑
j=1

fj ěj , (f0; . . . fj , . . . fn) ∈ R1+n : f0 ̸= 0, if there exists fjfl ̸= 0 for j ̸= l ∈ n

 (1)

where the scalar component must be non-zero if two or more director components are non-zero. In
particular, in 1 + 2 dimensions,

S1+2 =
{

o
φ = f0 + f1 ě1 + f2 ě2, (f0; f1, f2) ∈ R1+2 : f0 ̸= 0, if f1f2 ̸= 0

}
(2)

The S1+1
j scator set is isomorphic to the complex set C for the real component and any one of the j

director components. There are n copies of the complex set embedded in S1+n sharing the real part
(named the scalar component in scator algebra) and having n different hyper-imaginary parts. In this
communication, we shall restrict to scators in 1 + 2 dimensions.

Definition 1.1. The product of two scators
o
α = a0+a1ě1+a2ě2 ∈ S1+2 and

o
β = b0+b1ě1+b2ě2 ∈ S1+2

is defined by:

If a0b0 ̸= 0,

o
α

o

β = a0b0

(
1− a1b1

a0b0

)(
1− a2b2

a0b0

)
+ (a0b0 − a2b2)

(
a1
a0

+
b1
b0

)
ě1 + (a0b0 − a1b1)

(
a2
a0

+
b2
b0

)
ě2 (3a)

If a0 = 0 and b0 ̸= 0,

(a1ě1)
o
β = −a1b1 + b0a1ě1 −

(
a1b1b2
b0

)
ě2 (3b)

(a2ě2)
o
β = −a2b2 + b0a2ě2 −

(
a2b2b1
b0

)
ě1 (3c)

If a0 = b0 = 0,
a1ě1b2ě2 = 0, a1ě1b1ě1 = −a1b1, a2ě2b2ě2 = −a2b2 (3d)

The conjugate of a scator
o
φ = f0 + f1ě1 + f2ě2 ∈ S1+2 is obtained by reversing the sign of all

the director components while leaving the scalar component unaltered,
o
φ
∗
= f0 − f1ě1 − f2ě2. The

magnitude of a scator
∥∥ o
φ
∥∥ ∈ R, is given by the positive square root of the scator times its conjugate

∥∥ o
φ
∥∥2 = o

φ
o
φ
∗
= f2

0

(
1 +

f2
1

f2
0

)(
1 +

f2
2

f2
0

)
(4)

if f0 ̸= 0, and
∥∥ o
φ
∥∥2 = f2

j if f0 = 0.

2.Roots of the Scator Quadratic Polynomial with Real Coefficients

Consider the second order polynomial

a
o
φ
2
+ b

o
φ+ c = 0 (5)

where
o
φ is a scator element and a, b, c ̸= 0 are real numbers. This polynomial cannot be factorized

into
( o
φ− o

r1
)( o
φ− o

r2
)
= 0, since the scator product does not distribute over addition if

o
φ ∈ S1+2 \S1+1.

Furthermore, the product
o
α

o
β = 0 does not imply that

o
α = 0 or

o
β = 0. The product of two scators

o
α,

o
β is zero if their components satisfy the conditions

a0b0 = a1b1 = a2b2 (6)
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as may be seen from direct computation from the product definition (3a). For a given scator
o
α ∈

S1+2 \ S1+1, there always exists
o
β such that (6) is satisfied. Thus, all elements are zero divisors in

the Bourbaki sense [8, p.98]. Nonetheless, it is possible to solve the polynomial equation in the scator
domain without performing a factorization.

Theorem 2.1. The second order polynomial a
o
φ
2
+ b

o
φ+ c = 0, where

o
φ ∈ S1+2 is an elliptic scator

and a, b, c ̸= 0 are real coefficients, has the following roots:

If |4ac| > b2, then

o
φS1+2\S1+1 = −4ac+ b2

4ab
±

√
(4ac)2 − (b2)2

16a2b2
ě1 ±

√
(4ac)2 − (b2)2

16a2b2
ě2 (7a)

If 4ac ≤ b2, then

o
φS1+0 = − b

2a
±

√
b2 − 4ac

2a
(7b)

If 4ac > b2, then

o
φS1+1

1
= − b

2a
±

√
−b2 + 4ac

2a
ě1,

o
φS1+1

2
= − b

2a
±

√
−b2 + 4ac

2a
ě2 (7c)

Proof. Consider the scator
o
φ = f0 + f1ě1 + f2ě2 ∈ S1+2 \ S1+1, with non-vanishing components

f0, f1, f2 ̸= 0. From the product definition (3a), the square of this scator is,

o
φ
2
= f2

0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ 2f0f1

(
1− f2

2

f2
0

)
ě1 + 2f0f2

(
1− f2

1

f2
0

)
ě2

The polynomial (5), is then

a

[
f2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ 2f0f1

(
1− f2

2

f2
0

)
ě1 + 2f0f2

(
1− f2

1

f2
0

)
ě2

]
+ b (f0 + f1ě1 + f2ě2) + c = 0 (8)

Grouping components,

af2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ bf0+ c+

(
2af0f1

(
1− f2

2

f2
0

)
+ bf1

)
ě1+

(
2af0f2

(
1− f2

1

f2
0

)
+ bf2

)
ě2 = 0

Two scators are equal if and only if all its additive components are equal. In particular, since the zero

scator is 0 =
o
0 = 0 + 0 ě1 + 0 ě2, the scalar component of the polynomial equation is then

af2
0

(
1− f2

1

f2
0

)(
1− f2

2

f2
0

)
+ bf0 + c = 0 (9a)

whereas the director components equations are

2af0f1

(
1− f2

2

f2
0

)
+ bf1 = 0 (9b)

2af0f2

(
1− f2

1

f2
0

)
+ bf2 = 0 (9c)

Since f1 and f2 are both different from zero, Eq. (9b) can be multiplied by 1
f1

and (9c) by 1
f2
, to

obtain

2af0

(
1− f2

2

f2
0

)
+ b = 0 (10a)

2af0

(
1− f2

1

f2
0

)
+ b = 0 (10b)
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The square of the two director components must then be equal, f2
1 = f2

2 . The term 1 − f2
2

f2
0
can be

written in terms of f0 from (10a) or (10b) , 1− f2
2

f2
0
= − b

2af0
. The scalar component is then

f0 = −
(
c

b
+

b

4a

)
and the director components are

f2 = f1 = ±
√

c2

b2
− b2

16a2

The four hyper-complex roots with non-vanishing director components are then

o
φS1+2\S1+1 = −

(
c

b
+

b

4a

)
±
√

c2

b2
− b2

16a2
ě1 ±

√
c2

b2
− b2

16a2
ě2

These roots can be written in a similar form to the complex solutions as in equation (7a). To es-
tablish the interval where these roots exist, recall that the director coefficients were assumed to
be non zero, thus (4ac)2 ̸=

(
b2
)2
. However, non-vanishing director coefficients also imply the in-

equality (4ac)2 >
(
b2
)2
: Assume (4ac)2 <

(
b2
)2
, since the radicand is negative,

√
(4ac)2 − (b2)2 =√

(b2)2 − (4ac)2
√
−1, where

√
(b2)2 − (4ac)2 ∈ R. The root of minus one is any of the imaginary

director units in scator algebra, let
√
−1 =

√
ě1ě1 = ±ě1. The first director term in (7a) is then√

((b2)2−(4ac)2)
16a2b2

ě1ě1 = −
√

((b2)2−(4ac)2)
16a2b2

∈ R, thus this director term is zero. For the second director

term in (7a),

√
((b2)2−(4ac)2)

16a2b2
ě1ě2 = 0, the director term is again zero. Therefore the two director

coefficients vanish for (4ac)2 <
(
b2
)2
.

If one of the director components is zero, then
o
φ = f0 + f1ě1 ∈ S1+1

1 or
o
φ = f0 + f2ě2 ∈ S1+1

2 .
If f2 = 0, the polynomial (8) is

a
[(
f2
0 − f2

1

)
+ 2f0f1ě1

]
+ b (f0 + f1ě1) + c = 0

and the real and ě1 equations are a
(
f2
0 − f2

1

)
+ bf0 + c = 0, and 2f0f1 + bf1 = 0, respectively.

If f1 ̸= 0, f0 = − b
2a , the solutions if 4ac > b2 are then,

o
φS1+1

1
= f0 + f1ě1 = − b

2a
±

√
−b2 + 4ac

2a
ě1

If 4ac ≤ b2,
√
−b2 + 4ac =

√
b2 − 4ac ě1, and thus

o
φS1+1

1
= − b

2a
∓

√
b2 − 4ac

2a
∈ S1+0

Similarly, if f1 = 0 and 4ac > b2, then

o
φS1+1

2
= f0 + f2ě2 = − b

2a
±

√
−b2 + 4ac

2a
ě2

whereas if 4ac ≤ b2,
√
−b2 + 4ac =

√
b2 − 4ac ě2, thus

o
φS1+1

2
= − b

2a
∓

√
b2 − 4ac

2a
∈ S1+0.

If the solutions are real, S1+0 ∈
(
S1+1
1 ∩ S1+1

2

)
= S1+0 This exhausts all possibilities stated in the

proposition.
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We refer to solutions of the form (7a), as the hypercomplex roots. Notice that the scalar component
of the solution is zero for the hypercomplex roots (7a) if 4ac = −b2, but then the two director

components are also zero. Thus,
o
φS1+2\S1+1 ∈ S1+2. However, the hypercomplex roots are not a

solution if 4ac = −b2, the only solution is then given by the
o
φS1+0 real root.

o
φ is always in the S1+2

set, where the scator product is defined. Note that two of the conditions |4ac| > b2, 4ac ≤ b2 and
4ac > b2 can be met simultaneously depending on the values of a, b and c, so that the hypercomplex
roots can coexist with the real or complex roots.

In order to establish the interval where the hypercomplex roots (7a) exist,
√
−1 was written as

ě1 in the Theorem’s proof. It could have equally been written as ě2, then the product with ě1
vanishes. As far as the proof is concerned, in both cases, the director component is zero, so no
problems arise. However, the two results are not equal, i.e. −1 · ě1 = (ě1ě1) ě1 = −ě1, whereas
−1 · ě1 = (ě2ě2) ě1 ̸= ě2 (ě2ě1) = 0. The reason being that associativity does not hold when the
product of two factors have zero scalar component, as is the case for (ě2ě1) = 0.

It is reassuring to confirm that the solutions satisfy the polynomial equation. The real and complex
like expressions are the familiar solutions. Let us evaluate the entirely novel hypercomplex solution
(7a). The squared term for equal director components, from (3a) is

o
φ
2
= f2

0

(
1− f2

1

f2
0

)2

+ 2f0f1

(
1− f2

1

f2
0

)
ě1 + 2f0f1

(
1− f2

1

f2
0

)
ě2 (11)

Evaluation of f0, f1 and f2 from (7a), noting that f0

(
1− f2

1

f2
0

)
= − b

2a , after some algebra gives,

o
φ
2

S1+2\S1+1 =
b2

4a2
∓ b

a

√
(4ac)2 − (b2)2

16a2b2
ě1 ∓

b

a

√
(4ac)2 − (b2)2

16a2b2
ě2

The sum of a times this expression plus b
o
φS1+2\S1+1 + c, confirms that the quadratic polynomial

equation (5) is satisfied.

3.Geometric Representation of the Scator Roots in 1+2 Space

If 4ac ≤ b2 and |4ac| > b2, there exist six roots: i) two real roots and ii) four hypercomplex roots.
The initial conditions imply that 4ac is negative, 4ac + b2 < 0. Recalling that the hypercomplex
scalar component is −4ac+b2

4ab , these hypercomplex roots always lie in the real positive semispace if the
product a b is positive and in the real negative semispace if a b is negative. These roots are depicted in

Figure 1, for a = 1, b = 1, c = −1. The two real roots (drawn in blue) are
o
φS1+0 = −1

2 ±
√
5
2 , whereas

the four hypercomplex roots (drawn in orange) are
o
φS1+2\S1+1 = 3

4 ±
√
15
4 ě1 ±

√
15
4 ě2. It is interesting

to notice that the hypercomplex roots coexist with real roots in this region.
If 4ac > b2, there are eight roots because conditions |4ac| > b2 and 4ac > b2 in Theorem 2.1

are met: i) two in the s, ě1 plane (the scalar axis is hereafter labeled s) and ii) two in the s, ě2
plane, corresponding to the complex roots in C, but the imaginary parts are now the orthogonal
ě1, ě2 imaginary units. iii) four hypercomplex roots that lie in the negative s semispace if a b is
positive and in the real positive s semispace if a b is negative. These roots are shown in Figure 1, for

a = 1, b = 1, c = 1. The complex akin roots are
o
φS1+1

1
= −1

2 ±
√
3
2 ě1 (green) and

o
φS1+1

2
= −1

2 ±
√
3
2 ě2

(brown). The hypercomplex roots are
o
φS1+2\S1+1 = −5

4 ±
√
15
4 ě1 ±

√
15
4 ě2 (drawn in red).

In the interval −b2 < 4ac ≤ b2, only the two real roots exist; these roots collapse to the same − b
2a

value when 4ac = b2. The regions where the different roots coexist are illustrated in Figure 2. Since
the hypercomplex roots have directors with equal square components f2

1 = f2
2 , the hypercomplex roots

always lie in planes at 45° with respect to the ě1, ě2 axes. Let the function
o
f(a, b, c) = a

o
φ
2
+ b

o
φ+ c.

The values of
o
φ where

o
f(a, b, c) is zero as a function of c, for constant a, b are shown in Figure 3. The

possible values for the real, complex like and hypercomplex roots are shown in different colors. The
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Fig. 1. Roots of the scator quadratic polynomial. Left: 4ac ≤ b2 and |4ac| > b2 with a = 1, b =
1, c = −1. Hypercomplex roots in orange; real roots in blue. Right: 4ac > b2 with a = 1, b = 1, c = 1.
Hypercomplex roots in red; complex like roots in the s, ě1 plane in green and in the s, ě2 plane in
brown.

Fig. 2. The scator quadratic equation with real coefficients has six, two or eight roots, depending on
the value of 4ac.

complex like roots (in green) have constant scalar component since the real (or scalar) part does not
depend on c. There are however, two perpendicular branches, one for each hypercomplex direction
ě1 or ě2. The hypercomplex roots with two nonvanishing director components, have been drawn in
orange when they coexist with the real (blue) solutions and in red, when they coexist with the complex
(green) solutions.

Lemma 3.1. Given a hypercomplex solution
o
φS1+2\S1+1 = f0+f1ě1+f2ě2 to the quadratic polynomial

equation with real coefficients a
o
φ
2
+ b

o
φ + c = 0, the scators

o
φS1+2\S1+1 = f0 ± f1ě1 ± f2ě2 are also

solutions to this equation.

Proof. The solution
o
φS1+2\S1+1 = f0−f1ě1−f2ě2 can be obtained following the usual complex proof

of the conjugate polynomial equation. To prove that the sign of any one director can be changed,
consider one such component. The ě1 component of the squared scator can only cancel out with the
ě1 component of the linear scator term since the polynomial coefficients are real, thus

a · 2f0f1
(
1− f2

1

f2
0

)
ě1 = bf1ě1 ⇒ 2f0

(
1− f2

1

f2
0

)
=

b

a

If this result is satisfied for f1 it also holds for−f1. A similar argument is true for the ě2 component.



Journal of New Theory 36 (2021) 39-48 / Roots of Second Order Polynomials with Real Coefficients ... 45

Fig. 3. Image of the polynomial roots for a = b = 1 with c as a parameter in the ±2 interval in each

axis,
o
f(1, 1, c) =

o
φ
2
+

o
φ+ c. Real solutions in blue, complex like solutions in green and hypercomplex

solutions for 4ac > 0 in red and 4ac < 0 in orange. Roots for c = 1 (red and green dots) and c = −1
(blue and orange dots)

The hypercomplex roots clearly have the same magnitude (4), since
∥∥ o
φ
∥∥ depends only on the

square of the scator coefficients. The magnitude of the hypercomplex roots (7a), noticing that the

squared ratio of director over scalar components is
f2
1

f2
0
= 4ac−b2

4ac+b2
, is given by∥∥∥ o

φS1+2\S1+1

∥∥∥ = 2
∣∣∣c
b

∣∣∣ (12)

The solutions as a function of a, depicted in figure 4, lie in an isometric surface since the above
equation is independent of a. The elliptic scators isometric surface, named a cusphere, is illustrated
in Figs. 5 and 6 in [9]. The teal curves in figure 4, are scator isometric ellipses lying on one of the two
planes at ±45° with respect to the ě1, ě2 director axes. The projection of these ellipses in the s, ě1
and s, ě2 planes are actually circles with unit radius centered at −1, as we shall now see.

Consider the change of variable u = 1
4a , the hypercomplex solutions (7a), can then be written as

o
φS1+2\S1+1 = −c

b
− bu±

√
c2

b2
− b2u2 ě1 ±

√
c2

b2
− b2u2 ě2 (13)

Let c and b be constants. The above expression is then recognized as the parametric representation
of the circle equation x2 + y2 = c2

b2
, shifted by c

b in the negative scalar axis, where x = −bu and

y =
√

c2

b2
− b2u2 is the director coefficient in the ě1 or the ě2 axes. These circle projections in the

s, ě1 and s, ě2 planes, exclude the points when the circles cross the scalar axis, i.e. c2 = b4u2. If b and
u are considered constant, a parametric representation of the hyperbolic equation x2 − y2 = b2u2, is
obtained, this time shifted by −bu in the scalar axis, where x = − c

b and y is the director coefficient
in either axis. These curves are plotted in red in figure 4, the asymptotes lie at ±45° in the s, ě1 or
s, ě2 planes. The vertices are located at 0 and −2bu = − b

2a , but these two points are not solutions to
o
φS1+2\S1+1 , since

∣∣ c
u

∣∣ = |4ac| must be greater than b2. If c and u are constant, the parametric equation
(13) as a function of b, is no longer a conic curve.

The limit of the hypercomplex, real and complex like roots when 4ac → b2 is the same,

lim
4ac→b2

(
o
φsol S1+2\S1+1

)
= lim

4ac→b2

(
o
φsol S1+0

)
= lim

4ac→b2

o
φsol S1+1

1,2
= − b

2a

Hypercomplex (red), real (blue) and complex like (green) curves approach − b
2a = −1

2 in the Figure 3.



Journal of New Theory 36 (2021) 39-48 / Roots of Second Order Polynomials with Real Coefficients ... 46

Fig. 4. Hypercomplex roots of the scator function,
o
f(a, b, c) = a

o
φ
2
+ b

o
φ + c for |4ac| > b2 in the

±2 interval in each direction. a = b = 1 with c as a parameter in red (red and orange in figure 3);
a = c = 1 with b as a parameter in green; b = c = 1 with a as a parameter in teal. All curves lie in
planes that are at ±45° with respect to the ě1, ě2 axes.

The limit of the hypercomplex and real roots when 4ac → −b2 are

lim
4ac→−b2

(
o
φsol S1+2\S1+1

)
= 0 and lim

4ac→−b2

(
o
φsol S1+0

)
= − b

2a

(
1±

√
2
)

However, it should be noted that the hypercomplex root function domain excludes 4ac = −b2, so
that 0 is not a root of the polynomial. In Figure 3, the hypercomplex curve (orange) does not intersect
the real curve (blue) at zero. However, as 4ac approaches −b2 from the negative real axis, all three
hypercomplex scator coefficients become infinitesimal. Nonetheless, from (12), the magnitude of the

scator in this limit is lim
4ac→−b2

∥∥∥ o
φS1+2\S1+1

∥∥∥ = 2
∣∣ c
b

∣∣ = ∣∣ b
2a

∣∣.
3.1. Roots of Minus One

The square roots of minus one have been studied in quaternions [10,11], complexified quaternions [12],
split quaternions [13] and more generally in Clifford algebras [14]. In scator algebra, the hypercomplex
roots tend to infinity as b tends to zero, the green curves in Figure 4 are then asymptotic to ±45°
lines. If b2 ≪ |4ac|, the binomial expansion of the roots to first non-vanishing order is

o
φS1+2\S1+1 ≈ −c

b
(1 + δ)± c

b

(
1− 1

2
δ2
)
ě1 ±

c

b

(
1− 1

2
δ2
)
ě2

where δ = b2

4ac . In the limit when b → 0, each component diverges so that the solution diverges. The

hypercomplex solutions in this limit become
o
φS1+2\S1+1 = − c

b ± c
b ě1 ± c

b ě2, but recall that scators
whose three components have equal absolute value are square nilpotent [6, Lemma 1]. This result
can also be readily seen from (11), for f0 = f1 = f2. The quadratic polynomial leading term is thus

zero a · o
φ
2

S1+2\S1+1 = 0, and the polynomial equation becomes b
o
φ + c = 0. However, no scator in

S1+2 \ S1+1 satisfies this equation since b, c are real. Therefore, there are no hypercomplex square
roots in S1+2 \ S1+1 of a real number, be it positive or negative. If b = 0, then the only possible
polynomial roots are

o
φS1+1

1
= ±

√
c

a
ě1,

o
φS1+1

2
±
√

c

a
ě2, if ac > 0

For a = c, the roots of −1 in S1+2 are thus ±ě1 and ±ě2.
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4. Conclusions

The quadratic polynomial ax2 + bx + c = 0, x =
o
φ ∈ S1+2 in the imaginary scator set with real

coefficients a, b, c, has a finite number of roots. In sharp contrast, an infinite number of roots to the
quadratic equation are encountered in quaternions and more generally in Clifford algebras. In the
S1+2 scator set:

� If 4ac > b2, there exist eight roots in three sets,
o
φS1+1

1
= − b

2a ±
√
−b2+4ac

2a ě1 and
o
φS1+1

2
=

− b
2a ±

√
−b2+4ac

2a ě2 give two sets of two roots that are akin to the complex roots but the hy-

perimaginary units are now ě1 and ě2 instead of i. Four hypercomplex roots
o
φS1+2\S1+1 =

−4ac+b2

4ab ±
√

(4ac)2−(b2)2

16a2b2
ě1 ±

√
(4ac)2−(b2)2

16a2b2
ě2, that involve non zero components in both hyper-

complex axes.

� If |4ac| ≤ b2 there exist two real roots,
o
φS1+0 = − b

2a ±
√
b2−4ac
2a identical to the roots in the real

set.

� If 4ac < b2 and |4ac| > b2, there exist six roots in two sets, two real roots
o
φS1+0 and four

hypercomplex roots
o
φS1+2\S1+1 .

Hypercomplex roots always come in sets of four in S1+2, in as much as complex roots come in sets
of two in C. Hypercomplex roots coexist with the real or complex like roots, in contrast with roots
in the complex set, where the roots are either real xor complex. If b, the polynomial linear coefficient
vanishes, the hypercomplex roots become square nilpotent so that the only roots of minus one are ±ě1
and ±ě2. Arbitrary integer powers of scators and nilpotent elements are discussed in [15]. The S1+2

scator roots can be visualized geometrically in a three dimensional space, where the scalar (real) axis
and the two hypercomplex axes are drawn in orthogonal directions.
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Abstract − Unusual Points (UPs) occur for different reasons, such as an observational error or the 

presence of a phenomenon with unknown cause. Influential Points (IPs), one of the UPs, have a 

negative effect on parameter estimation in the Logistic Regression model. Many researchers in fisheries 

sciences face this problem and have recourse to some manipulations to overcome this problem. The 

limitations of these manipulations have prompted researchers to use more suitable and innovative 

estimation techniques to deal with the problem.  In this study, we examine the classification accuracies 

and parameter estimation performances of the Maximum Likelihood (ML) estimator and robust 

estimators through modified real datasets and simulation experiments. Besides, we discuss the potential 

applicability of the assessed robust estimators to the estimation models when the IPs are kept in the 

dataset. The obtained results show that the Weighted Maximum Likelihood (WML) and Weighted 

Bianco-Yohai (WBY) estimators of robust estimators outperform the others.  

Keywords – Influential point, robust estimators, unusual point, logistic regression 

Mathematics Subject Classification (2020) – 62G32, 65C60 

1. Introduction 

The most frequently adopted statistical method to obtain parameter estimates of the explanatory variables 

relationship with the binary outcome (0 and 1) is Logistic Regression. Binary Logistic Regression (BLR) 

models the functional relationship between the binary response variable and one/more explanatory variable [1-

4]. Maximum Likelihood Estimator (MLE), which has the optimal properties under proper circumstances, is 

utilized to estimate the parameters in BLR; however, it is considerably affected by the presence of an unusual 

data point(s) in the dataset and may cause misleading inferences and misinterpretations in parameter estimates 

[5-11].  

The unusual data point(s) (UP(s)) is generally defined as point(s) that are relatively far from the central 

tendency compared to all values [12-13]. These types of point(s) may derive from errors existing during the 

recording of observations, sampling errors, and experimental errors or may originate from an unknown 

phenomenon in a study area (e.g., economy, applied science, health, engineering).  

The UP(s) are differently named as an outlier(s), influential point(s), or leverage point(s) according to 

their locations in the two-dimensional space. Among these definitions, influential point(s) (IPs) can be 

described as the product of dangerous outliers and bad leverage points and significantly affect the fit of the 
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model or the estimation of the parameters compared to the others [14-17]. If the variable on the 𝑥-axis is 

continuous and the one on the 𝑦-axis is binary, unusual points can only occur as a transposition 0 → 1 or 1 →

0 in the 𝑦-axis direction [6]. This type of UP(s) is also recognized as a residual outlier or misclassification-

type error [16]. 

These point(s) can be observed in datasets of numerous studies conducted in applied areas, and most 

researchers have been confused about what to do with them and how to manage them. To manage IP(s), 

researchers generally have had to decide among such strategies as keeping them, removing them, or recoding 

them [12]. [18] reported as a result of their research on the frequency of these points in different scientific 

disciplines that there is no overarching explanation and the frequency varies according to the study area and 

sample size; and they have claimed that if these outliers occur in about 1-10% of the dataset, it is normal. 

Although this decision differs according to the scientific field studied, it is recommended to estimate 

parameters using a more robust estimator instead of MLE by [18] if these points are to be kept in the data. 

Robust estimator instead of MLE has become the focus of many research fields in statistics [19]. 

In the BLR model, [20] is the first to indicate the problem of parameter estimation in the presence of IPs. 

After that, several robust alternative parameter estimation methods much less influenced by these points are 

suggested in the literature (i.e., [5,6,18,21-31]). Besides, many researchers have also studied to compare the 

performances of the estimators to examine the robustness of these proposed estimators on simulation 

experiments [11,16,27,32,33]. These studies have shown that MLE can be influenced even by the presence of 

1% IPs in the dataset, and therefore robust estimators were recommended [34]. However, there are very few 

studies examining these points in terms of their effects on parameter estimates as they move away from the 

centre. Our hypothesis in the present study is to display that IP(s) occurs in different levels of percentage 

amounts in the dataset, three standard deviations away from the centre influence parameter estimations and to 

illustrate to researchers the possibility of being anomaly as research questions. The present paper was built on 

two purposes within the framework of our hypothesis: (a) to examine the performance of MLE and some robust 

estimators in parameter estimation in extreme situations, such as different sample size data have different 

percentages of influential points (i.e., contamination rate) in simulation experiments, and to contribute to the 

literature by providing information on what kind of results researchers may obtain if they encounter such data 

points. 

2. Material 

In this study, we carried out comprehensive simulation experiments to examine commonly cited or recently 

proposed robust estimators for BLR. 

In the simulation study, to examine the performance of the estimators in different situations, we generated 

specific datasets created in combinations that vary according to different percentages of IPs occurring farther 

from the centre of the dataset in three different sample sizes (100, 250, and 500). We generated datasets with 

IPs, which we called a contaminated dataset, by adding IPs that fall 1.5, 3, and 5 whiskers away from the centre 

of the dataset that constituted 1%, 5%, 10%, and 15% of the dataset in each sample size and IP-free datasets 

(0% contaminated), which we called a clean dataset in each sample size for control purposes. The simulated 

datasets contain a response and two explanatory variables. We first generated a design matrix of explanatory 

variables of size 𝑛 × 𝑝 by drawing each observation from a bivariate normal distribution (𝑥𝑖~𝑁(𝜇, Σ)). Where 

𝜇 is a mean vector of length 𝑝 =  2 and Σ is a 2 × 2 non-singular covariance matrix. The considered true 

values of the BLR model parameters are set to be 𝛽 = (𝛽0, 𝛽1, 𝛽2)′ = (0, 2, 2)′. Then, we produced the binary 

response variable according to the BLR model as follows: 

𝑦𝑖 = {
0   if    𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀𝑖 < 0
1   if    𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀𝑖 ≥ 0

 (1) 
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where the error terms were generated according to a logistic distribution, 𝜀𝑖~𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1). We added the 

contaminants (IPs) to the dataset by inflating the covariance matrix and deriving it in the % amounts denoted 

in the simulation scenario. In the simulation study, we obtained the design matrix of the contaminated and 

uncontaminated explanatory variables with the configuration denoted below by [35].  

(1 − 𝛾)𝑁𝑠𝑠(𝜇, Σ) + 𝛾𝑁𝑠𝑠  (𝜇, 𝑘 × Σ) 

where 𝑁𝑠𝑠 is the sample size (100, 250 and 500), 𝛾 represents the percentage of contaminants (𝛾  = 1%, 5%, 

10%, and 15% contamination rate) in a dataset, and 𝑘 represents a scalar which determines the separation of 

the contaminants from the rest of the data (𝑘 = 1.5, 3, and 5 whiskers), for any amount of contamination. 

The aforesaid processes were applied to all the estimators used in this study. Each simulation study was 

replicated 1000 times by using the Monte Carlo simulation. 

3. Method 

The logistic regression model is a special case of GLMs, especially for a binary response variable 𝑦𝑖, with the 

assigned values 1 (success) and 0 (failure). The explanatory variables (𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, … , 𝑛) and the 

probability of response variable 𝑝(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) are linked to explanatory variables by the mean of a link 

function 𝑔(𝜋) = 𝑋𝛽, such that 𝑔−1(𝑋𝛽) is the logit link function, which transforms the covariate values in 

the internal (0,1). The BLR model can be defined by: 

𝑝(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) = 𝐹(𝑥𝑖
′𝛽) =

exp(𝑥𝑖
′𝛽)

1 + exp(𝑥𝑖
′𝛽)

 ,     𝑖 = 1, 2, … , 𝑛 (2) 

where 𝑋 = (1, 𝑥1, … , 𝑥𝑝) is an 𝑛 × 𝑘 matrix of explanatory variables with 𝑘 =  𝑝 + 1 and 𝛽′ = (𝛽0, 𝛽1, … , 𝛽𝑝) 

is the vector of the unknown regression coefficient. The BLR model can be defined by: 

𝜂𝑖 = 𝑥𝑖
′𝛽 (3) 

where 𝜂𝑖 is a linear predictor known as transformation function and 𝜂𝑖 = logit(𝜋𝑖) = log (
𝜋𝑖

1−𝜋𝑖
). Suppose that 

the response variable 𝑦𝑖 has Bernoulli distribution and the joint probability density function for the 𝑖𝑡ℎ 

observation is, 

𝑓(𝑦𝑖) = 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖 ,   𝑖 = 1, 2, … , 𝑛 (4) 

and each 𝑦𝑖 observation takes the value 1 or 0. The likelihood function is given by: 

𝑙(𝛽; 𝑦𝑖) = ∏ 𝑓𝑖(𝑦𝑖)

𝑛

𝑖=1

= ∏ 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖

𝑛

𝑖=1

 (5) 

Then, we take a logarithm of the likelihood function (log-likelihood), which can be written as: 

𝑙(𝛽; 𝑦𝑖) = 𝑙𝑛 ∏ 𝑓𝑖(𝑦𝑖)

𝑛

𝑖=1

= ∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝛽) 

= ∑ [𝑦𝑖𝑙𝑛 (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)] + ∑ 𝑙𝑛

𝑛

𝑖=1

𝑛

𝑖=1

(1 − 𝜋(𝑥𝑖)) 

(6) 

To estimate the parameters in BLR, Maximum Likelihood Estimator (MLE) is used. The likelihood function 

is produced by maximizing the logarithm of and is defined as:  
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�̂�𝑀𝐿𝐸 = argmax
𝛽

∑ 𝑙

𝑛

𝑖=1

(𝑦𝑖 , 𝛽) (7) 

As an alternative, MLE deviation statistics are minimized according to 𝛽 [16], and it is defined as: 

𝑑𝑖 =  [−𝑦𝑖ln (
�̂�𝑖

𝑦𝑖
) − (1 − 𝑦𝑖)ln (

1 − �̂�𝑖

1 − 𝑦𝑖
)] 

�̂�𝑀𝐿𝐸 = argmin
𝛽

∑ 𝑑𝑖

𝑛

𝑖=1

 

(8) 

It is known that MLE is the most efficient estimator, but it may behave very inadequately in the presence of 

outlying observations in terms of their location and impact. Many robust estimators have been proposed in the 

literature to replace MLE in order to solve this problem, but in this study, we aspired to evaluate the 

performances of the most cited and most recommended estimators. These robust estimators are briefly 

discussed in the subsequent sections. 

3.1.  The Mallows Type Leverage Dependent Weights Estimator (MALLOWS) 

MALLOWS type estimator, introduced by [22] and intensively examined by [26], was obtained by minimizing 

log-likelihood function using weights dependent on explanatory variables. A robust estimate of β can be 

obtained by the solution of the following function [23]: 

∑ 𝑤𝑖{𝑦𝑖ln[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖)ln[1 − 𝜋(𝑥𝑖)]}

𝑛

𝑖=1

 (9) 

where 𝑤𝑖 = 𝑊(ℎ𝑛(𝑥𝑖)) are the weights function. 𝑊 is bounded by depending on 𝑊(𝑢) and a non-increasing 

function. 𝑊(𝑢) is dependent on a parameter 𝑐 > 0, and 𝑊(𝑢) = (1 −
𝑢2

𝑐2)
3

𝐼(|𝑢| ≤ 𝑐). If 𝑤𝑖 ≡ 1 and 

𝑐(𝑥𝑖, 𝛽) ≡ 0, then Eq. (8) supplies the usual BLR model parameter estimate. If 𝑤𝑖 = 𝑤(𝑥𝑖, 𝑥𝑖
′𝛽), 𝑐(𝑥𝑖, 𝑥𝑖

′𝛽) ≡

0, and the weights depend only on the design, this estimate is called Weighted Maximum Likelihood 

(MALLOWS type estimator). 

3.2.  Weighted Maximum Likelihood Estimator (WMLE) 

This estimator is obtained in a similar way to the strategy used in constructing the MALLOWS type estimator. 

That is, it detects unusual values and makes the parameter estimation by equalizing the weights of these values 

to zero. WMLEs for BLR can be obtained with a solution in (Eq. 8). However, in this study, parameters were 

estimated by equalizing the weights obtained by the weighting function introduced by [36] and proposed by 

[33]. First, the square of the Mahalanobis distances of the explanatory variables is calculated according to the 

computed �̂�(0) and Σ̂(0) values. The square of the Mahalanobis distances (𝑚2) is calculated by: 

𝑚2 = (𝑥𝑖 − �̂�(0))
′
(Σ̂(0))

−1
(𝑥𝑖 − �̂�(0)) 

The weight function proposed by [33] is defined as: 

𝑤𝑖 = (0.8 ∗ 𝑚2 + 0.2) 

Then, WMLEs for BLR can be obtained by the solution of the following: 

∑ 𝑤𝑖{𝑦𝑖ln[𝜋(𝑥𝑖)] + (1 − 𝑦𝑖)ln[1 − 𝜋(𝑥𝑖)]}

𝑛

𝑖=1

 (10) 
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3.3.  The Conditionally Unbiased Bounded Influence Function (CUBIF) Estimator 

In CUBIF estimator, introduced by [22], the weights depend on the response variables besides the explanatory 

variables. This method minimises a measure of efficiency based on the asymptotic (co)variance matrix to 

bound the measures of infinitesimal sensitivity. The M-estimators are the solution of the form of 

∑ 𝜓(𝑦𝑖 , 𝑥𝑖 , 𝛽) = 0, where 𝜓 is a known function. Its optimal function is written by: 

𝜓(𝑦, 𝑥, 𝛽, 𝐵) = 𝑊(𝛽, 𝑦, 𝑥, 𝑏, 𝐵) [𝑦 − 𝑔(𝛽′𝑥) − 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥, 𝐵)
) 𝑥] (11) 

where 𝐵 is a (co)variance matrix, 𝑏 is bounded infinitesimal sensitively and ℎ(𝑥, 𝐵) = (𝑥′𝐵−1𝑥)1/2 is a 

leverage measure. 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥,𝐵)
) is a bias correction with corrected residual  

(𝑟(𝑦, 𝑥, 𝛽, 𝑏, 𝐵) = 𝑦𝑖 − 𝑔(𝛽′𝑥) − 𝑐 (𝛽′𝑥,
𝑏

ℎ(𝑥, 𝐵)
)) 

The weight function 𝑊(𝛽, 𝑦, 𝑥, 𝑏, 𝐵) = 𝑊𝑏𝑟((𝑦, 𝑥, 𝛽)ℎ(𝑥, 𝐵)) downweighs observations with high leverage 

points and largely corrected residuals making M-estimator have bonded influence.  

3.4.  Consistent Misclassification Estimator (CME) 

It is a known fact that unusual points in the dataset cause misclassification, and this issue has been studied by 

many researchers under different assumptions [37]. Misclassification is a stand-alone issue, and there are 

estimators developed for parameter estimation in case of misclassification. In this study, we used the Consistent 

Misclassification estimator (CME), proposed by [6], since we consider the parameter estimation in 

contaminated datasets. If 𝑃(𝑌 = 1|𝑥𝑖) = 𝐹(𝑥𝑖
′|𝛽𝐿) considered robust estimation in the BLR model, a 

misclassification model in which each response is misclassified with probability 𝛾, so that [23]: 

𝑃(𝑌 = 1|𝑥𝑖) = 𝐹(𝑥𝑖
′𝛽𝑀𝑐) + 𝛾{1 − 2𝐹(𝑥𝑖

′𝛽𝑀𝑐)} = 𝐺(𝑥𝑖
′𝛽𝑀𝑐 , 𝛾) (12) 

where 𝛽𝐿 is the true regression parameter for the conventional BLR model and 𝛽𝑀𝑐 is the true regression 

parameter under the misclassification model. [6] has investigated small values of 𝛾 and the use of (Eq. 11) in 

generating robust estimators and diagnostics and suggested a bias-corrected version that is suitable for small 

𝛾. 

3.5.  Robust Quasi-Likelihood Estimator (RQL) 

The quasi-likelihood estimator, proposed by [38], is defined as solutions of the following equation: 

∑
𝑦𝑖 − 𝜇(𝛽′𝑥𝑖)

𝑉(𝛽′𝑥𝑖)
𝜇′(𝛽′𝑥𝑖)𝑥𝑖

𝑛

𝑖=1

= 0 

Then, the quasi-likelihood approach to parameter estimation was robustified by [26] by bounding and centring 

the quasi-likelihood score function [39]. 

𝜓(𝑦, 𝛽) =
𝑦𝑖 − 𝜇(𝛽′𝑥)

𝑉(𝛽′𝑥)
𝜇′(𝛽′𝑥)𝑥, 

To deal with high leverage points, they suggest putting weight on each point [39]. 
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3.6.  Bianco Yohai Estimator (BYE) and Weighted Bianco Yohai Estimator (WBYE) 

[25] have found that Pregibon's estimator based on deviation statistics (Eq. 7) does not reduce the weight of 

high leverage points and is inconsistent. They have improved the consistent and more robust Bianco and Yohai 

Estimator (BYE) by shrinking Pregibon's estimator as follows: 

�̂� = argmin
𝛽

∑[𝜌([𝑑(𝑥𝑖
′𝛽; 𝑦𝑖) + 𝐺(𝐹(𝑥𝑖

′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖
′𝛽))])]

𝑛

𝑖=1

 (13) 

where 𝜌(𝑥) = (𝑥 − 𝑥2/(2𝑐))𝐼(−∞,𝑐)(𝑥) + (𝑐/2)𝐼(𝑐,∞)(𝑥) is Huber’s loss function and  𝑐 is a tuning 

parameter, 

𝐺(𝑥) = ∫ 𝜌′(−𝑙𝑛(𝑢))𝑑𝑢

𝑥

0

 

and 𝐼𝐴 stands for the usual indicator function. 𝐺(𝐹(𝑥𝑖
′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖

′𝛽)) is a bias correction term [40].  

[25] have also stressed that other choices of the bounded function 𝜌 are possible. To reduce the effect of 

unusual points in the covariate space, [27] have proposed to include an extra weight to downweigh the high 

leverage points in (Eq. 10). Weighted Bianco and Yohai (WBY) estimator can be defined as follows [27-40]: 

�̂� = argmin
𝛽

∑ 𝑤(𝑥𝑖)[𝜌([𝑑(𝑥𝑖
′𝛽; 𝑦𝑖) + 𝐺(𝐹(𝑥𝑖

′𝛽)) + 𝐺(1 − 𝐹(𝑥𝑖
′𝛽))])]

𝑛

𝑖=1

 (14) 

where  

𝑤(𝑥𝑖) = {
1        𝑖𝑓 (𝑅𝑀𝐷𝑖)2 ≤ 𝜒𝑚,0.975

2

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 

are the weights for a decreasing function of Robust Mahalanobis Distances, and distances are computed by 

using the Minimum Covariance Determinant (MCD) estimator [41]. 

WBYE remains consistent because the weighting is merely applied to the explanatory variables. 

Unfortunately, the above weighting procedure also decreases the weights of the good leverage points, which 

is not required, and can lead to a loss of efficiency [11-16]. 

To test the performance of the estimators, we conducted computational experiments on Monte Carlo 

simulation and modified real datasets. The evaluations focused on the magnitude and severity of the IPs and 

the number of observations by adding outliers to the uncontaminated data. In the study, we used R 3.0.2. [42-

44] to set up the Monte Carlo simulation and to examine the performance of the estimators via BLR analysis 

procedure.  

The performances of the estimators are evaluated in view of each predicted beta parameter based on the 

bias and MSE (mean-squared errors): 

Bias = ‖
1

𝑚
∑ �̂�𝑖 − 𝛽𝑖

𝑚

𝑖=1

‖, 

MSE =
1

𝑚
∑‖�̂�𝑖 − 𝛽𝑖‖

2
𝑚

𝑖=1

 

where ‖. ‖ indicates the Euclidean norm. 
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4. Results 

The values for the bias and the MSE of the MLE, and the seven robust estimators are given in this section in 

Table 1-4 for the simulation study. A “good estimator” is one that has the values of the bias, and MSE is 

relatively small or close to zero. The bias and MSE of the eight estimators are shown in Table 1. In the 

uncontaminated dataset, it can be seen that the biases and MSEs of all the estimators are considerably close to 

each other and also will reduce when the number of observations is increased. 

Table 1. Bias, variance, and MSE values of ML, WMLE, and robust estimators for uncontaminated dataset 

Sample Size Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

𝒏 = 100 

Bias 0.256 0.261 0.255 0.294 0.253 0.280 0.286 0.292 

MSE 0.746 0.772 0.747 0.960 0.744 0.839 0.849 0.882 

𝒏 = 250 

Bias 0.107 0.106 0.106 0.110 0.105 0.130 0.112 0.111 

MSE 0.224 0.230 0.224 0.234 0.224 0.274 0.240 0.246 

𝒏 = 500 

Bias 0.038 0.037 0.038 0.038 0.037 0.046 0.039 0.038 

MSE 0.099 0.102 0.100 0.103 0.099 0.121 0.107 0.110 

MLE: Maximum Likelihood Estimator, WMLE: Weighted Maximum likelihood estimator, CUBIF: The Conditionally Unbiased Bounded Influence 
Function, CME: Consistent Misclassification Estimator, MALLOWS: The Mallows Type Leverage Dependent Weights Estimator, RQL: Robust 
Quasi-Likelihood Estimator, BYE: Bianco Yohai Estimator, WBYE: Weighted Bianco Yohai Estimator, MSE: Mean square error 

In Table 2-4, the Bias and MSE outputs of the simulation derived from examining the estimator's 

behaviour under different conditions are given. As seen in the tables, the MLE method was quickly affected 

by the 1% degradation rate (percentage of IPs) that occurred, and outputs are the same in other studies. The 

presence of moderate and extreme IPs (5%, 10%, 15%) changes the results dramatically. Whereas the WMLE 

performs best in terms of Bias and MSE as the percentage of IP (degradation rate) increases, MLE appears to 

behave very poorly. The closest values to WMLE in terms of MSE and bias were observed in WBY and 

MALLOWS, respectively. The weighting process in the WML and WBY estimators becomes more 

advantageous in extreme contamination. It can be observed that the CUBIF, CME and RQL estimators do not 

perform well even at 5% contamination. The robustness performance of MLE dramatically decreases as the 

rate of contamination increases as IPs move away from the centre. At a distance of 3 whiskers, WMLE, WBY, 

and MALLOWS show the best performance at medium and high fouling rates, respectively, while 

MALLOWS, WBY, and WMLE estimators at a distance of 5 whiskers have the best performance, respectively, 

in terms of biases and MSEs. Meanwhile, it can be observed that bias and MSE decrease when the sample size 

is increased. WMLE, WBY, and Mallows have the overall best performance among all the compared 

estimators for different sample sizes. CUBIF, CME, and RQL estimators did not perform as well as WMLE, 

WBY and Mallows, even as the sample size was increased. This situation is thought to be due to the location 

of the unusual points. Finally, the WMLE, WBY, and Mallows estimators exhibited reasonable perform in the 

contaminated dataset. 
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Table 2. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 100 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.460 0.229 0.798 0.287 1.024 0.644 0.129 0.259 

MSE 2.258 0.846 0.851 2.016 1.229 1.884 0.957 0.851 

3 

Bias 2.132 0.246 0.814 0.251 0.099 0.334 0.094 0.266 

MSE 4.644 0.745 0.875 0.954 0.565 1.122 0.768 0.862 

5 

Bias 2.569 0.204 0.803 0.543 0.234 0.390 0.184 0.253 

MSE 6.686 0.749 0.855 2.953 0.742 3.340 0.841 0.896 

5% 

1.5 

Bias 2.358 0.250 1.748 2.253 2.024 0.229 1.073 0.253 

MSE 5.650 0.768 3.164 5.528 4.197 1.867 1.681 0.921 

3 

Bias 2.692 0.249 1.745 2.692 0.664 2.616 2.692 0.280 

MSE 7.336 0.755 3.148 7.338 0.937 7.448 7.614 0.923 

5 

Bias 2.753 0.251 1.742 2.753 0.228 2.751 2.807 0.274 

MSE 7.672 0.758 3.136 7.671 0.749 7.669 7.934 0.891 

10% 

1.5 

Bias 2.624 0.239 2.414 2.625 2.455 2.621 2.623 0.039 

MSE 6.983 0.733 5.924 6.988 6.119 7.015 6.983 1.607 

3 

Bias 2.785 0.281 2.411 2.785 1.352 2.780 2.780 0.258 

MSE 7.862 0.802 5.912 7.859 2.333 7.841 7.840 0.876 

5 

Bias 2.802 0.253 2.407 2.799 0.236 2.785 2.788 0.056 

MSE 7.949 0.778 5.887 7.940 0.727 7.863 7.881 1.569 

15% 

1.5 

Bias 2.740 0.284 2.710 2.741 2.623 2.746 2.746 0.262 

MSE 7.607 0.898 7.439 7.612 6.977 7.652 7.647 0.931 

3 

Bias 2.835 0.209 2.725 2.833 1.932 2.814 2.819 0.243 

MSE 8.139 0.719 7.524 8.128 4.136 8.033 8.061 0.813 

5 

Bias 2.830 0.223 2.725 2.826 0.216 2.804 2.806 0.243 

MSE 8.113 0.721 7.525 8.095 0.712 7.978 7.987 0.814 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Table 3. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 250 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.071 0.081 0.549 0.088 0.720 0.101 0.142 0.073 

MSE 1.212 0.221 0.408 0.240 0.609 0.300 0.224 0.237 

3 

Bias 1.643 0.084 0.558 0.068 0.077 0.089 0.022 0.084 

MSE 2.743 0.225 0.419 0.235 0.200 0.276 0.228 0.243 

5 

Bias 2.127 0.082 0.551 0.086 0.078 0.106 0.055 0.054 

MSE 4.560 0.241 0.414 0.249 0.233 0.299 0.260 0.260 

5% 

1.5 

Bias 2.267 0.101 1.604 1.920 1.898 0.096 0.934 0.088 

MSE 5.175 0.240 2.617 4.515 3.640 0.318 1.016 0.241 

3 

Bias 2.658 0.085 1.609 2.658 0.635 2.221 1.435 0.086 

MSE 7.100 0.236 2.632 7.100 0.593 6.163 3.610 0.251 

5 

Bias 2.742 0.087 1.609 2.742 0.086 2.742 2.741 0.076 

MSE 7.556 0.230 2.634 7.556 0.247 7.561 7.555 0.282 

10% 

1.5 

Bias 2.603 0.104 2.335 2.604 2.431 2.602 2.598 0.101 

MSE 6.811 0.244 5.487 6.814 5.946 6.838 6.790 0.250 

3 

Bias 2.777 0.087 2.334 2.777 1.422 2.775 2.773 0.099 

MSE 7.750 0.240 5.482 7.748 2.183 7.738 7.732 0.262 

5 

Bias 2.799 0.093 2.333 2.797 0.078 2.783 2.783 0.107 

MSE 7.872 0.241 5.477 7.863 0.219 7.788 7.786 0.271 

15% 

1.5 

Bias 2.725 0.077 2.700 2.725 2.607 2.731 2.732 0.088 

MSE 7.460 0.227 7.325 7.463 6.829 7.496 7.503 0.253 

3 

Bias 2.826 0.090 2.719 2.825 2.033 2.808 2.813 0.104 

MSE 8.029 0.235 7.430 8.019 4.260 7.930 7.953 0.260 

5 

Bias 2.826 0.067 2.721 2.823 0.069 2.801 2.802 0.083 

MSE 8.022 0.215 7.441 8.006 0.224 7.888 7.895 0.242 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Table 4. Bias, Variance, and MSE values of MLE and robust estimators over m = 1000 replication for 500 

sample sizes in all cases 

𝜸 k Output MLE WMLE CUBIF CME MALLOWS RQL BYE WBYE 

1% 

1.5 

Bias 1.08 0.053 0.569 0.038 0.738 0.035 0.154 0.056 

MSE 1.201 0.109 0.378 0.111 0.591 0.129 0.128 0.122 

3 

Bias 1.642 0.051 0.567 0.047 0.091 0.064 0.044 0.054 

MSE 2.717 0.108 0.374 0.111 0.102 0.135 0.113 0.119 

5 

Bias 2.126 0.049 0.567 0.046 0.042 0.058 0.020 0.055 

MSE 4.538 0.111 0.376 0.114 0.111 0.133 0.115 0.120 

5% 

1.5 

Bias 2.268 0.039 1.614 2.131 1.909 0.005 0.955 0.043 

MSE 5.160 0.110 2.627 4.771 3.663 0.131 0.986 0.121 

3 

Bias 2.658 0.038 1.615 2.658 0.67 2.408 0.546 0.039 

MSE 7.08 0.102 2.629 7.08 0.534 6.509 0.655 0.110 

5 

Bias 2.742 0.04 1.613 2.742 0.043 2.743 2.741 0.044 

MSE 7.537 0.112 2.62 7.537 0.100 7.541 7.532 0.122 

10% 

1.5 

Bias 2.596 0.044 2.312 2.597 2.422 2.605 2.585 0.051 

MSE 6.756 0.100 5.363 6.76 5.883 6.804 6.703 0.112 

3 

Bias 2.774 0.046 2.31 2.774 0.413 2.772 2.771 0.048 

MSE 7.715 0.110 5.353 7.713 0.250 7.706 7.701 0.118 

5 

Bias 2.797 0.033 2.307 2.795 0.052 2.782 2.784 0.037 

MSE 7.841 0.111 5.337 7.832 0.109 7.758 7.768 0.119 

15% 

1.5 

Bias 2.724 0.036 2.701 2.724 2.608 2.729 2.732 0.040 

MSE 7.438 0.104 7.315 7.442 6.821 7.469 7.483 0.112 

3 

Bias 2.795 0.792 2.626 2.794 0.632 2.783 2.785 0.791 

MSE 7.831 0.767 6.913 7.825 0.522 7.766 7.778 0.782 

5 

Bias 2.826 0.046 2.722 2.823 0.038 2.802 2.802 0.048 

MSE 8.007 0.107 7.427 7.991 0.103 7.872 7.873 0.119 

𝜸: contamination rate, 𝒌: whiskers distance from the centre of the data 
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Figure 2 shows the changes in the performance of the eight estimators concerning MSE in their respective 

datasets have IP(s) under different conditions. As clear from the plots, the WMLE, WBY, and MALLOWS 

estimators had reasonable perform in the contaminated dataset. 

 

Fig. 2. Plots of change of estimator performance in terms of MSE under different conditions 
MLE: Maximum Likelihood Estimator, WMLE: Weighted Maximum likelihood estimator, CUBIF: The Conditionally Unbiased Bounded Influence 

Function, CME: Consistent Misclassification Estimator, MALLOWS: The Mallows Type Leverage Dependent Weights Estimator, RQL: Robust 
Quasi-Likelihood Estimator, BYE: Bianco Yohai Estimator, WBYE: Weighted Bianco Yohai Estimator 

5. Conclusion 

Since datasets containing Influential Points (IP(s)), one of the Unusual Points (UP(s)), are possible to be 

encountered in every field, it becomes essential to use estimators that give more robust results than the MLE 

estimator to make parameter estimation. Since the size of these kinds of points is as important as their distances 

to the centre, the estimators designed are approaches developed with lessening the weight depending on both 

the location of the points and their sample size. Therefore, the simulation scenario in this study is developed 

considering the modelling principles of robust estimators focused on weighting.  

The first of these approaches is the WML estimator, which was developed for weighting the likelihood 

function, and then [23] expanded the estimators by adding weights to reduce the effect of unusual points and 

developed new estimators. Parameter estimates (CUBIF, CME and MALLOWS) are made by using IP(s) the 

effect of which is reduced by this extended method, according to their position to the centre and their values. 
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Another approach is extended estimators (RQL), with less weight given to IP(s) and minimizing 

deviations from the estimated parameters. [25] developed another robust method, the Bianco and Yohai (BY) 

estimator, adding a function limited, differentiable, and decreasing. However, since this approach was also 

ineffective in reducing the weight of IP(s) with an increasing amount, [27] extended the estimator by adding a 

different weight to the Bianco and Yohai (BY) estimator, they defined Bianco and Yohai (WBY) estimator 

obtaining more consistent results. 

In this study, we evaluated the MLE and seven robust estimators from the contaminated dataset with IP(s) 

whether it is feasible to obtain consistent parameter estimates. We conducted simulation experiments under 

different scenarios to examine the performance of MLE and robust estimators under contaminated and 

uncontaminated datasets. According to the simulation results, turned out that the uncontaminated dataset MLE 

and robust estimators exhibited performances similar to each other, the classical ML estimates lacked 

robustness and could be biased when IPs were present, while robust estimators gave better results. Among the 

robust estimators, the WML WBY and MALLOWS estimators, respectively, produced the smallest BIAS and 

MSE in the contaminated data. With the increase of the contamination at five whiskers, the MALLOWS, 

WBY, and WML estimators, respectively, produced the smallest bias and MSE. The results demonstrated that 

there might be frequent and significant differences in the case of IPs in the dataset and, therefore, should be 

taken into account as an example of how results can differ in different research areas. It can, thus, be concluded 

that the WML, WBY, and MALLOWS estimators outperformed the ML estimator and the rest of the robust 

estimators in the presence of IP(s). 

In addition to examining the performances of robust estimators, we evaluated the problem regarding what 

percentage of UP(s) should be kept in the dataset. The results of our study showed that, like other studies 

comparing predictors, the traditional ML estimator deteriorated even at 1% contamination; for this reason, if 

the datasets contain approximately 1-10% or more unusual points, we recommend that they should be 

examined carefully. A robust method is needed, especially when there is an UP(s) at 1.5 or more whisker 

distance from the centre. These data should be treated from an objective perspective, and they should then be 

examined specifically. After being examined in detail with as different analytical methods as possible, it should 

be kept in the dataset, or one of the other strategies (removed or transformed) should be opted for. If the 

distance and amount of contamination are high, these points, determined by analytical and graphical methods, 

may be the possibility of anomaly, depending on the field of study. Anomaly detection methods are different 

from the detection of IP(s), and in such cases, these points should be considered a separate research subject 

without treating them as IP(s) or outliers. More studies are needed to develop and research more suitable robust 

methods that can be used to detect unusual points and anomalies in BLR and for parameter estimation in these 

types of datasets.  

The first point to be considered on which estimator should be used for performance in further studies is 

the location of the IP(s) and the amount of the IP(s) in the dataset.  

As the distance of IP(s) to the centre increases, it can be said that WML and MALLOWS estimators, in 

which weighting is performed according to the location to lessen the effect of the points, are better. On the 

other hand, the WBY estimator is a better alternative in case the number of IP(s) is high (1-10% and/or more). 
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Abstract − In this paper, we study a special class of elements in the finite commutative rings called 

involutions. An involution of a ring 𝑅 is an element with the property that 𝑥2 − 1 = 0 for some 𝑥 in 

𝑅. This study describes both the implementation and enumeration of the involutions of various rings, 
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The paper begins with simple well-known results of an equation 𝑥2 − 1 = 0 over the finite 

commutative ring 𝑅. It provides a concrete setting to enumerate the involutions of the finite cyclic and 

non-cyclic rings 𝑅, along with the isomorphic relation 𝐼(𝑅) ≅ 𝑍2
𝑘. 
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1. Introduction 

In this paper, 𝑅 denotes a commutative finite ring with unity. We call that a nonzero element 𝑢 in 𝑅 is a unit 

if there is some 𝑥 ∈ 𝑅 such that 𝑢𝑥 = 1. When such an element 𝑥 exists, it is called the multiplicative inverse 

of 𝑢 and denoted by 𝑥 = 𝑢−1. The collection of units of the ring 𝑅 is denoted by 𝑈(𝑅). However, 𝑈(𝑅) is a 

multiplicative group concerning the multiplication defined on the ring 𝑅. If 𝑅 is a finite field, then 𝑈(𝑅) is a 

cyclic group. If the unit group 𝑈(𝑅) of 𝑅 is cyclic, then 𝑈(𝑅) is finite. The order of 𝑅 and the order of its 

group of units will be denoted by |𝑅| and |𝑈(𝑅)| , respectively. In the case when 𝑅 = 𝑍𝑛, |𝑈(𝑅)| = 𝜑(𝑛), 

where 𝜑(𝑛) is Euler’s phi-function, the number of positive integers less than 𝑛 and relatively prime to 𝑛. If 

𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟 is the decomposition of 𝑛 into product of distinct prime powers, then 𝜑(𝑛) =

𝑛 ∏ (1 − 1/𝑝)𝑝|𝑛 . It is well known that if a finite commutative ring with unity 𝑅 decomposes as a direct product 

𝑅 = 𝑅1 × 𝑅2 × … × 𝑅𝑘, then its group of units decomposes naturally as a direct product of groups. That is, 

𝑈(𝑅) is isomorphic to 𝑈(𝑅1) × 𝑈(𝑅2) × … × 𝑈(𝑅𝑘). The symbol ≅ will be used for both ring and group 

isomorphism. Note that if two rings 𝑅 and 𝑅′are isomorphic, 𝑅 ≅ 𝑅′, then their group of units is isomorphic, 

𝑈(𝑅) ≅ 𝑈(𝑅′). Since the number of units of 𝑍𝑛 is |𝑈(𝑍𝑛)| = 𝜑(𝑛) and the number of units in the ring 

𝑍𝑚 × 𝑍𝑛 is 𝜑(𝑚)𝜑(𝑛), but in general 𝜑(𝑚𝑛) ≠ 𝜑(𝑚)𝜑(𝑛) for some 𝑚, 𝑛 ≥ 1. If 𝑅 is a finite field, then 

𝑈(𝑅) is a cyclic group. Otherwise, 𝑈(𝑅) is an abelian group but not cyclic. If the unit group 𝑈(𝑅) of 𝑅 is 

cyclic, then 𝑈(𝑅) is finite and |𝑈(𝑅)| must be an even number. 
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Up to isomorphism, there is a unique cyclic group 𝐶𝑛 = {1, 𝑎, 𝑎2, … , 𝑎𝑛−1 ∶ 𝑎𝑛 = 1} = ⟨𝑎⟩ of order 𝑛. 

But the fundamental theorem of finite abelian groups states that any finite non cyclic abelian group 𝐺 is 

isomorphic to a direct product of cyclic groups 𝐶𝑛1
, 𝐶𝑛2

, … , 𝐶𝑛𝑘
. That is, 𝐺 ≅ 𝐶𝑛1

× 𝐶𝑛2
× … × 𝐶𝑛𝑘

. Hence, the 

group of units of a finite commutative ring with unity is isomorphic to a direct product of cyclic groups. For 

instance, 𝑈(𝑍𝑚 × 𝑍𝑛) ≅ 𝑈(𝑍𝑚𝑛) if and only if (𝑚, 𝑛) = 1 if and only if 𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛). The problem 

of classifying the group of units of an arbitrary finite commutative ring with identity is an open problem. 

However, the problem is solved for certain classes. In the case when 𝑅 = 𝑍𝑛, its group of units 𝑈( 𝑍𝑛) is 

characterized by using the following, see [1]. 

The group of units of the ring 𝑍𝑛 when 𝑛 is a prime power integer is given by 

(1) 𝑈(𝑍2) ≅ 𝐶1,  

(2) 𝑈(𝑍4) ≅ 𝐶2,  

(3) 𝑈(𝑍2𝑘) ≅ 𝑈(𝑍2) × 𝑈(𝑍2𝑘−1), for every 𝑘 > 1. For instance, 𝑈(𝑍8) ≅ 𝑈(𝑍2) × 𝑈(𝑍4).   

For every prime 𝑝, we have 𝑈(𝑍𝑝𝛼) ≅ 𝐶𝑝 × 𝐶𝑝𝛼−1. 

Cross [2] gave a characterization of the group of units of 𝑍[𝑖]/⟨𝛼⟩, where 𝑍[𝑖] is the ring of Gaussian 

integers and 𝛼 is an element in 𝑍[𝑖]. Smith and Gallian [3] solved the problem when 𝑅 = 𝐹[𝑖]/⟨𝑓(𝑥)⟩ where 

𝐹 is a finite field and 𝑓(𝑥) is an irreducible polynomial over 𝐹. The related problem of determining the cyclic 

groups of units for each of the above classes of rings is completely solved. It is well known that 𝑈(𝑍𝑛) is a 

cyclic group if and only if 𝑛 = 2,4, 𝑝𝛼 or 2𝑝𝛼, where 𝑝 is an odd prime integer. In [2], Cross showed that the 

group of units of 𝑍[𝑖]/⟨𝛼⟩ is a cyclic group if and only if (1) 𝛼 = (1 + 𝑖)𝑘, where 𝑘 = 1,2,3 and (2)
 
𝛼 =

𝑝, (1 + 𝑖)𝑝, where 𝑝 is a prime integer of the form 4𝑘 + 3 and 𝛼 is a Gaussian prime such that 𝛼�̄� is a prime 

integer of the form 4𝑘 + 1. The problem of determining all quotient rings of polynomials over a finite field 

with a cyclic group of units was solved by El-Kassar et al., see [4]. For more details about the unit groups and 

their corresponding properties, we refer to the work [5-6]. 

A ring 𝑅 is called cyclic if (𝑅, +) is a cyclic group. In [7], the author Buck proved that every cyclic ring 

is a commutative and commutative finite cyclic ring with unity is isomorphic to the ring 𝑍𝑛. Further, a ring 

(𝑅0, +,⋅) is a zero ring [8], if 𝑎𝑏 = 0 for every, 𝑎, 𝑏 ∈ 𝑅0, where ‘0’ is the additive identity in 𝑅0. For any 

finite commutative cyclic ring 𝑅 without unity, we have 𝑅 ≅ 𝑅0 and hence 𝑈(𝑅0) = 𝜙. Let 𝐵 be a finite 

Boolean ring with unity, then 𝑏2 = 𝑏 for every 𝑏 ∈ 𝐵. If 𝐵 ≅ 𝑍2, then 𝐵 is a Boolean ring with two elements 

0,1 and 𝐵𝑛 = 𝐵 × 𝐵 × … × 𝐵 is a Boolean ring with 2𝑛elements, and clearly |𝑈(𝐵𝑛)| = 1. 

The purpose of this paper is to enumerate the involutions in the group of units of a finite commutative 

ring with unity and to examine the properties of the involutions in a group of units. For this first, we shall 

define involutions in various fields of mathematics and their other related fields. Generally, in mathematics and 

other related fields, involution is a function 𝑓 and it is equal to its inverse. This means that 𝑓(𝑓(𝑥)) = 𝑥 for 

all 𝑥 in the domain of 𝑓. So, the involution is a bijection. For this reason, many fields in modern mathematics 

contain the term involution such as Group theory, Ring theory, and Vector spaces. Moreover, in the Euclidean 

and the Projective geometry, the involution is a reflection through the origin, and an involution is a 

projectivity of period 2, respectively. In mathematical logic, the operation of complement in Boolean algebra 

is called involution, and in classical logic, the negation that satisfies the law of double negation is called 

involution. Finally, in Computer science, the XOR bitwise operation with a given value for one parameter is 

also an involution, and RC4 cryptographic cipher is involution, as encryption and decryption operations use 

the same function. Recently in [9], the authors Fakieh and Nauman studied involutions and their minimalities 

of Reversible Rings. For further representations of involutions of various rings, the reader refers [10-13]. 

2. Properties of Involutions of Rings 

Throughout this section, we are interested in involutions that have a special property in the elements of rings. 

Also, this section provides a useful theory that can be used to help to find solutions of equations of the form 

𝑥2 = 1, where 1 is the multiplicative unity of 𝑅. 
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Definition 2.1. An element 𝑢 in a finite ring 𝑅 with unity 1 is called an involution of 𝑅 if 𝑢2 = 1 where 1 is 

the unity of 𝑅. We denote it with 𝐼(𝑅), the set of all involutions of 𝑅. In particular, 𝐼(𝑅) ⊆ 𝑈(𝑅) ⊂ 𝑅.  

For instance, 4 and 6 are the involutions of the ring 𝑅 = {0,2,4,6,8} with unity 6 modulo 10. When the 

cyclic ring 𝑅 = 𝑍𝑛, for a given positive integer 𝑛, we will use the symbol 𝐼𝑛 to denote the set of all involutions 

of the ring 𝑍𝑛 and we will call it the set of involutions modulo 𝑛. For instance, 𝐼3 = {1,2}, 𝐼8 = {1,3,5,7} and 

𝐼10 = {1,9}. For any finite cyclic ring 𝑅 with unity and finite zero rings 𝑅0, we have 𝐼(𝑅) ≠ 𝜙 and 𝐼(𝑅0) =

𝜙. But we can simply verify that 𝐼𝑛 is a subgroup of 𝑈(𝑍𝑛). This is a basic property for the ring 𝑅 with an 

abelian unit group 𝑈(𝑅). Now we show that 𝐼(𝑅) is a subgroup of 𝑈(𝑅).  

Theorem 2.2. Let 𝑅 be a commutative ring with unity. Then, 𝐼(𝑅) is a subgroup of 𝑈(𝑅). 

PROOF. Since 𝐼(𝑅) is a nonempty subset of 𝑈(𝑅). It is sufficient to prove that if 𝑢, 𝑣 ∈ 𝐼(𝑅), then 𝑢𝑣−1 ∈ 𝐼(𝑅). 

Indeed, if 𝑢2 = 1 and 𝑣2 = 1, then clearly (𝑢𝑣−1)2 = 𝑢2(𝑣−1)2 = 𝑢2(𝑣2)−1 = 1.                                        

Example 2.3. Let us take the ring 𝑅 = 𝑍5. Then, 𝐼(𝑅) = {1,4} and 𝑈(𝑅) = {1,2,3,4}. This clearly shows that 

𝐼(𝑅) is a subgroup of 𝑈(𝑅). 

Here, we recall that the Cartesian product of two rings and the results about these rings. For a complete 

treatment of these rings, see [1]. Let 𝑅 and 𝑆 be any two rings. Then, (𝑅 × 𝑆, +,⋅) is again a ring concerning 

the component-wise addition and component-wise multiplication: (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) and 

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑), for every (𝑎, 𝑏),(𝑐, 𝑑) ∈ 𝑅 × 𝑆. It is well known that (1𝑅 , 1𝑆) ∈ 𝑅 × 𝑆 if and only if 

1𝑅 ∈ 𝑅 and 1𝑆 ∈ 𝑆. Also, 𝑍𝑚𝑛 is not isomorphic to 𝑍𝑚 × 𝑍𝑛 if and only if 𝑔𝑐𝑑( 𝑚, 𝑛) ≠ 1. In general, the 

following result is well known in the literature for 𝑈(𝑅) and 𝑈(𝑆). 

Theorem 2.4. If 𝑅 and 𝑆 are commutative rings with unity, then 𝑈(𝑅 × 𝑆) = 𝑈(𝑅) × 𝑈(𝑆). 

PROOF. Since (1𝑅 , 1𝑆) ∈ 𝑅 × 𝑆. For (𝑢, 𝑣) ∈ 𝑈(𝑅 × 𝑆), there exists (𝑢−1, 𝑣−1) ∈ 𝑈(𝑅 × 𝑆) such that 

(𝑢, 𝑣)(𝑢−1, 𝑣−1) = (1𝑅 , 1𝑆) ⇔ (𝑢𝑢−1, 𝑣𝑣−1) = (1𝑅 , 1𝑆) 

 ⇔ 𝑢𝑢−1 = 1𝑅 

for some 𝑢−1 ∈ 𝑅 and 𝑣𝑣−1 = 1𝑆 for some 𝑣−1 ∈ 𝑆 ⇔ 𝑢 ∈ 𝑈(𝑅) and 𝑣 ∈ 𝑈(𝑆) ⇔ (𝑢, 𝑣) ∈ 𝑈(𝑅) × 𝑈(𝑆). 

Therefore, 𝑈(𝑅 × 𝑆) = 𝑈(𝑅) × 𝑈(𝑆).                                               

Example 2.5. Let 𝑅 = 𝑍2 and 𝑆 = 𝑍3. Then, 𝑅 × 𝑆 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}, 𝑈(𝑅) = 1, and 

𝑈(𝑆) = {1,2}. Also, 𝑈(𝑅 × 𝑆) = {1} × {1,2} = {(1,1), (1,2)} and  𝑈(𝑅) × 𝑈(𝑆) = {(1,1), (1,2)}. 

By Theorem 2.4, the following remark is obvious.  

Remark 2.6. For any ring 𝑅, we have 𝐼(𝑅) = 𝐼(𝑈(𝑅)). 

The strategy is then to express 𝐼(𝑅 × 𝑆) in terms of 𝐼(𝑅) and 𝐼(𝑆). It is essential for finding the number 

of involutions in a finite commutative ring with unity. 

Theorem 2.7. For any finite cyclic rings 𝑅 and 𝑆 with unity, then we 𝐼(𝑅 × 𝑆) = 𝐼(𝑅) × 𝐼(𝑆). 

PROOF. Let 𝑅 be a commutative ring with unity 1𝑅 and 𝑆 be a commutative ring with unity 1𝑆. Then by the 

Theorem 2.2 and Theorem 2.4, 𝐼(𝑅) ⊆ 𝑈(𝑅), 𝐼(𝑆) ⊆ 𝑈(𝑆) and 𝐼(𝑅 × 𝑆) ⊆ 𝑈(𝑅 × 𝑆). This implies that 

𝐼(𝑅) × 𝐼(𝑆) is a non-empty subset of 𝑈(𝑅) × 𝑈(𝑆).  

First, we have to prove that 𝐼(𝑅 × 𝑆) ⊆ 𝐼(𝑅) × 𝐼(𝑆). For any (𝑟, 𝑠) ∈ 𝑅 × 𝑆, if (𝑟, 𝑠) ∈ 𝐼(𝑅 × 𝑆) then 

(𝑟, 𝑠)2 = (1,1), or  (𝑟2, 𝑠2) = (1,1). This is the same as 𝑟2 = 1 and 𝑠2 = 1. Consequently, 𝑟 ∈ 𝐼(𝑅) and 𝑠 ∈

𝐼(𝑆). Therefore, (𝑟, 𝑠) ∈ 𝐼(𝑅) × 𝐼(𝑆). Thus 𝐼(𝑅 × 𝑆) ⊆ 𝐼(𝑅) × 𝐼(𝑆). Similarly, we can show that 

𝐼(𝑅) × 𝐼(𝑆) ⊆ 𝐼(𝑅 × 𝑆). Hence, by the set inclusions,
 
𝐼(𝑅 × 𝑆) = 𝐼(𝑅) × 𝐼(𝑆).                      

Example 2.8. Let 𝑅 = 𝑍2 and 𝑆 = 𝑍3. Then, 𝑅 × 𝑆 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}, 𝐼(𝑅) = {1}, 

and 𝐼(𝑆) = {1,2}. Therefore, 𝐼(𝑅 × 𝑆) = {(1,1), (1,2)} = 𝐼(𝑅) × 𝐼(𝑆). 
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We will denote with |𝐼(𝑅)|, the number of involutions of 𝑅. Particularly, if the ring 𝑅 = 𝑍𝑛, the number 

|𝐼𝑛| will represent the number of involutions modulo 𝑛. We now state and prove the basic theorem for the 

involutions of 𝑅 that shows that the number |𝐼(𝑅)| > 1 is even.  

Theorem 2.9. For any finite commutative ring 𝑅 with |𝐼(𝑅)| > 1, then |𝐼(𝑅)| is even.  

PROOF. Let 𝑢 ∈ 𝐼(𝑅) and |𝐼(𝑅)| > 1. Then, 𝑢2 = 1, and |𝑢| divides 2. This implies that |𝑢| ∈ {1,2}. By the 

consequence of Lagrange’s theorem [1] for finite groups, |𝑢|||𝐼(𝑅)|. Therefore, for some positive integer 𝑞, 

|𝐼(𝑅)| = |𝑢|𝑞. Suppose |𝑢| = 1. Then, clearly 𝑢 = 1, because 𝑢2 = 1. So, our assumption |𝑢| = 1 is not true. 

Thus, for every unit 𝑢 ≠ 1 in 𝐼(𝑅), we have |𝑢| = 2. Hence, |𝐼(𝑅)| = 2𝑞. This concludes that |𝐼(𝑅)|  must be 

even.                   

We observe that |𝐼(𝑅)| is even except 𝑅 ≅ 𝐵𝑛, as the following remark illustrates how Theorem 2.9 is 

applicable.  

Remark 2.10. If 𝑅 is a finite cyclic ring with unity and |𝐼(𝑅)| is an odd number, then it must be equal to one, 

that is 𝐼(𝑅) = {1}. If |𝑅| > 2 and 𝑅 ≇ 𝑅0, 𝐵𝑛 then either |𝐼(𝑅)| = 1, or |𝐼(𝑅)| must be even. For instance, 

𝑅 =
𝑍2[𝑥]

(𝑥3+1)
 and 𝑅′ =

𝑍2[𝑥]

(𝑥3+𝑥)
 are both commutative rings with unity 1, so 𝐼(𝑅) = {1} and 𝐼(𝑅′) = {1,1 + 𝑥 +

𝑥2}. 

Before we proceed, we need to solve the equation 𝑥2 − 1 = 0 over the ring 𝑅 with unity. Note that if 

𝐶ℎ𝑎𝑟(𝑅) = 2, and then the set of solutions of 𝑥2 − 1 = 0 is the same as the set of solutions of 𝑥2 + 1 = 0 

and vice versa. If 𝐶ℎ𝑎𝑟(𝑅) ≠ 2, then 𝑥2 + 1 = 0 contains either finite or infinite number of solutions over 𝑅. 

In [14], the authors Khanna and Bhambri proved that the equation 𝑥2 + 1 = 0 has an infinite number of 

solutions over the ring of Quaternions. Recently, Suzanne discussed and described the solution of 𝑥2 + 1 = 0 

in [15]. For finite fields, the following result is well known.           

Theorem 2.11. Let 𝐹 be a finite field with unity 1 and 𝑥2 = 1 for some 𝑥 ∈ 𝐹. Then, 𝑥 = ±1, in particular, 

|𝐼(𝐹)| = 2. 

PROOF. Assume 𝐹 is a finite field with unity 1 and 𝑥2 = 1 over 𝐹. Then, algebraically 𝑥2 − 1 = 0 implies that 

(𝑥 − 1)(𝑥 + 1) = 0. If both (𝑥 − 1) ≠ 0 and (𝑥 + 1) ≠ 0, then they are both zero-divisors of 𝐹. But 𝐹 has 

no zero-divisors because every field is an integral domain. So, either 𝑥 − 1 = 0, or 𝑥 + 1 = 0 for some 𝑥 ∈ 𝐹, 

so that either 𝑥 = 1, or 𝑥 = −1. Hence,  |𝐼(𝐹)| = 2.            

Example 2.12. Let 𝐹 = {0,2,4,6,8}. Then, (𝐹, +10,×10) is a field with unity 6 and the set of involutions 𝐼(𝐹) =

{4,6}. 

Now we consider the solutions of the equation 𝑥2 − 1 = 0 over the finite commutative ring 𝑅. For this, 

we need to consider two cases, i.e., (i) 𝑈(𝑅) is a cyclic group and (ii) 𝑈(𝑅) is a non-cyclic group.  

Before getting started for the enumeration of involutions, we need to recall two familiar theorems from 

finite group theory. 

Theorem 2.13 (Fundamental theorem of cyclic groups) [1]. Every subgroup of a cyclic group is cyclic. 

Theorem 2.14 (Fundamental theorem of finite abelian groups) [1]. Every finite abelian group is isomorphic 

to a direct product of cyclic groups of prime power order. 

Theorem 2.15. Let 𝑅 be a finite cyclic ring with unity 1. Then, 𝑈(𝑅) is a cyclic group if and only if |𝐼(𝑅)| =

2. 

PROOF. Let 𝑥 be a generator of a finite cyclic group 𝑈(𝑅). Then, 𝑈(𝑅) = ⟨𝑥⟩. Because of 𝐼(𝑅) ⊆ 𝑈(𝑅), every 

involution 𝑢 in 𝐼(𝑅) can be written as 𝑢 = 𝑥𝑚 for some positive integer 𝑚, 1 ≤ 𝑚 ≤ |𝑈(𝑅)|. Therefore, 
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𝑢2 = 1 ⇔ (𝑥𝑚)2 = 1 

 ⇔ 𝑥2𝑚 = 1 

 ⇔ 2𝑚 ≡ 0(𝑚𝑜𝑑|𝑈(𝑅)|) 

Because of 𝑔𝑐𝑑( 2, |𝑈(𝑅)|) = 2, this linear congruence has exactly two solutions. Hence, |𝐼(𝑅)| = 2 if and 

only if 𝑈(𝑅) is cyclic.                

Example 2.16. Let us take the ring 𝑅 = 𝑍5. Then, 𝐼(𝑅) = {1,4} and 𝑈(𝑅) = {1,2,3,4}. Clearly, 𝑈(𝑅) =<

2 >=< 3 > is a cyclic group, and |𝐼(𝑅)| = 2.   

Theorem 2.17. Let 𝑈(𝑅) be the unit group of a finite cyclic ring 𝑅 with unity 1. For some 𝑘 > 1, 𝑈(𝑅) is a 

non-cyclic group if and only if |𝐼(𝑅)| = 2𝑘. 

PROOF. By Theorem 2.14, the finite abelian non-cyclic group 𝑈(𝑅) is isomorphic to the direct product of cyclic 

groups of prime power order. Suppose that the prime factorization of |𝑈(𝑅)| is 𝑝1
𝑎1𝑝2

𝑎2 . . . 𝑝𝑘
𝑎𝑘, where each 𝑝𝑖 

is a distinct prime and 𝑘 ≥ 2. Then, clearly there exist cyclic groups 𝑈 (𝑍𝑝1
𝑎1 ) , 𝑈 (𝑍𝑝2

𝑎2 ) , … , 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 ) of 

prime power orders such that 

𝑈(𝑅) ≅ 𝑈 (𝑍𝑝1
𝑎1) × 𝑈 (𝑍𝑝2

𝑎2) × … × 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 ) ⇒ 𝐼(𝑈(𝑅)) ≅ 𝐼 (𝑈 (𝑍𝑝1
𝑎1) × 𝑈 (𝑍𝑝2

𝑎2) × … × 𝑈 (𝑍
𝑝𝑘

𝑎𝑘 )) 

 ⇒ 𝐼(𝑈(𝑅)) ≅ 𝐼 (𝑈 (𝑍𝑝1
𝑎1)) × 𝐼 (𝑈 (𝑍𝑝2

𝑎2)) × … × 𝐼 (𝑈 (𝑍
𝑝𝑘

𝑎𝑘)) 

In view of the Remark 2.6 and the Theorem 2.7, we have 𝐼(𝑅) ≅ 𝐼 (𝑍𝑝1
𝑎1 ) × 𝐼 (𝑍𝑝2

𝑎2 ) × … × 𝐼 (𝑍
𝑝𝑘

𝑎𝑘 ). From 

the Theorem 2.15, 𝑈 (𝑍
𝑝

𝑖

𝑎𝑖 ) is a cyclic group and hence 𝐼 (𝑍
𝑝

𝑖

𝑎𝑖 ) = |𝐼 (𝑈 (𝑍
𝑝

𝑖

𝑎𝑖 ))| = 2. Therefore, the number 

of Involutions of a finite cyclic ring 𝑅 is equal to |𝐼(𝑅)|. Clearly, |𝑈(𝑅)| = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑘
𝑎𝑘, we have |𝐼(𝑅)| =

|𝐼 (𝑍𝑝1
𝑎1 )| |𝐼 (𝑍𝑝2

𝑎2 )| … |𝐼 (𝑍
𝑝

𝑘

𝑎𝑘 )| = 2.2 … 2 (𝑘 times) = 2𝑘.                                                                                 

Example 2.18. Let the ring 𝑅 = 𝑍8. Then 𝑈(𝑅) = 𝐼(𝑅) = {1,3,5,7} and therefore 𝑈(𝑅) is a non-cyclic and 

|𝐼(𝑅)| = 4. 

3. Properties of Involutions of Rings 

In the previous section, we studied the properties of the set of involutions of finite commutative rings, 

particularly, finite cyclic rings. A specifically appealing of elementary number theory is that many fundamental 

properties of the positive integers relating to their primality, divisibility, and factorization can be carried over 

to the other sets and algebraic structures of numbers. In this section, we study the set of involutions of Gaussian 

integers modulo 𝑛, complex numbers of the form 𝑎 + 𝑖𝑏, where 𝑎 and 𝑏 are integers modulo 𝑛 and 𝑖2 = −1. 

We introduce the concept of Gaussian involution and establish the basic properties of Gaussian involutions 

over addition and multiplication of complex integers over modulo 𝑛. 

For any positive integer 𝑛 ≥ 1, < 𝑛 > be the proper principal ideal generated by 𝑛 in the infinite ring of 

Gaussian integers 𝑍𝑛[𝑖]. So there exists a quotient ring 𝑍𝑛[𝑖]/⟨𝑛⟩. In [16], the authors Dresden and Dymacek 

proved that 𝑍𝑛[𝑖]/⟨𝑛⟩ is isomorphic to 𝑍𝑛[𝑖], the ring of Gaussian integers modulo 𝑛 with unity 1 = 1 + 𝑖0 

where 𝑛 > 1. If 𝑛 = 1, then 𝑍𝑛[𝑖] = {0 + 𝑖 0}. When 𝑅 = 𝑍𝑛[𝑖], for given positive integer 𝑛 > 1, we will use 

the symbols 𝑈𝑛[𝑖], 𝐼𝑛[𝑖] to denote the set of units and involutions of the ring 𝑍𝑛[𝑖], and call it the set of all 

Gaussian units and Gaussian involutions modulo 𝑛, respectively. It is well known that |𝑍𝑛[𝑖]| = 𝑛2 and 𝑍𝑛[𝑖] 

is a field if and only if 𝑛 ≡ 3(𝑚𝑜𝑑 4) and also for more information about 𝑍𝑛[𝑖], see [1]. First, we prove that 
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the basic property of the ring 𝑍𝑛[𝑖], it indicated that 𝑍𝑛[𝑖] is not a cyclic ring. First, we notice that
 
𝑍𝑛[𝑖] = {0} 

if and only if 𝑛 = 1. Consequently, the following theorem is true for 𝑛 > 1. 

Theorem 3.1. The ring 𝑍𝑛[𝑖] of Gaussian integers modulo 𝑛 is not a cyclic ring. 

PROOF. We use proof by contradiction. Suppose 𝑍𝑛[𝑖] is a cyclic ring for some values of 𝑛. Then there exists 

an element 𝛼 = 𝑎 + 𝑏𝑖 ∈ 𝑍𝑛[𝑖] such that 𝑍𝑛[𝑖] =< 𝛼 > with respect to the addition of Gaussian integers 

modulo 𝑛. Now we have reached a contradiction. Note that 𝑐 + 𝑑𝑖 ∈ 𝑍𝑛[𝑖] implies there exists a positive 

integer 𝑚 such that 

𝑐 + 𝑑𝑖 = 𝑚(𝑎 + 𝑏𝑖)(𝑚𝑜𝑑 𝑛) ⇒ 𝑚𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑛)and 𝑚𝑏 ≡ 𝑑(𝑚𝑜𝑑 𝑛) 

 ⇒ 𝑍𝑛 = ⟨𝑎⟩ and 𝑍𝑛 = ⟨𝑏⟩ 

 ⇒ 𝑍𝑛 × 𝑍𝑛 = ⟨𝑎⟩ × ⟨𝑏⟩ 

 ⇒ 𝑍𝑛 × 𝑍𝑛 = ⟨(𝑎, 𝑏)⟩ 

This implies that the ring 𝑍𝑛 × 𝑍𝑛 is generated by the element (𝑎, 𝑏) and thus 𝑍𝑛 × 𝑍𝑛 is a cyclic group with 

a generator (𝑎, 𝑏) under addition modulo 𝑛, which is a contradiction to the fact that 𝑍𝑛 × 𝑍𝑛 is not a cyclic 

group for addition modulo 𝑛. This completes the proof.                       

It is well known that a Diophantine equation is a polynomial equation for which you seek integer solutions, 

see [17]. For example, the Pythagorean triples (𝑎, 𝑏, 𝑐) are positive integer solutions to the equation 𝑎2 + 𝑏2 =

𝑐2. Here is another Diophantine equation 𝑎2 − 𝑏2 = 1 over the infinite ring of integers ℤ to the usual addition 

and multiplication of integers. According to the literature survey of algebraic equations, there are no positive 

integer solutions to the Diophantine equation 𝑎2 − 𝑏2 = 1 over the ring 𝑍. But we observe that there exist 

integer solutions over the finite ring 𝑍𝑛. For instance, the pair (3, 4) satisfies the equation 𝑎2 − 𝑏2 = 1 over 

the ring 𝑍8. The identity (𝑎 + 𝑏𝑖)2 = 1 is true over the ring 𝑍𝑛[𝑖] if and only if 𝑎2 − 𝑏2 = 1 and 2𝑎𝑏 = 0 

over modulo 𝑛. 

Now we are going to study basic properties of Gaussian involutions 𝐼𝑛[𝑖] and next investigate the 

cardinality of 𝐼𝑛[𝑖] for various values of 𝑛.  

Definition 3.2. A Gaussian integer 𝑎 + 𝑖𝑏 in 𝑍𝑛[𝑖] is called a Gaussian unit if 𝑎2 + 𝑏2 ∈ 𝑈𝑛 and the set of 

Gaussian units 𝑍𝑛[𝑖] is 𝑈𝑛[𝑖]. For example, 𝑈2[𝑖] = {1, 𝑖}.  

Properties 3.3. The set 𝑈𝑛[𝑖], the collection of Gaussian units in 𝑍𝑛[𝑖] has the following basic properties.  

i. 𝑈𝑛 ⊂ 𝑈𝑛[𝑖] for every 𝑛 > 1. 

ii. If 𝑎 + 𝑖𝑏 is a Gaussian unit in, then 𝑍𝑛[𝑖] then 𝑏 + 𝑖𝑎 is also a Gaussian unit in 𝑍𝑛[𝑖]. 

iii. If 𝑢, 𝑣 ∈ 𝑈𝑛, then 𝑢 + 𝑖𝑣 may not be in 𝑈𝑛[𝑖]. 

iv. For any odd prime 𝑝, 𝑝 ≢ 3(𝑚𝑜𝑑 4), the unit group 𝑈𝑝 is cyclic but 𝑈𝑝[𝑖] may not be cyclic. 

Example 3.4.  

i. For the rings 𝑍2 and 𝑍2[𝑖], the corresponding sets of units are 𝑈2 = {1} and 𝑈2[𝑖] = {1, 𝑖}. So that clearly 

𝑈2 ⊂ 𝑈2[𝑖].   

ii. In the ring 𝑍3[𝑖], 1 + 2𝑖 and 2 + 𝑖 are both Gaussian units. 

iii. 1 is a unit in 𝑈4, but 1 + 𝑖 is not a unit in 𝑈4[𝑖]. 

iv. For the prime 𝑝 = 5, the unit group 𝑈5 is cyclic but 𝑈5[𝑖] may not be cyclic. 

Definition 3.5. A Gaussian unit 𝛼 = 𝑎 + 𝑖𝑏 is called a Gaussian involution modulo 𝑛 if 𝛼2 = 1. The set of all 

Gaussian involutions modulo 𝑛 is denoted by 𝐼𝑛[𝑖], with cardinality |𝐼𝑛[𝑖]|. For example, |𝐼2[𝑖]| = |{𝑖, 1}| =

2, |𝐼3[𝑖]| = |{1,2}| = 2, and |𝐼4[𝑖]| = |{1,1 + 2𝑖, 3,3 + 2𝑖}| = 4.  
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To determine the structure of the group 𝐼𝑛[𝑖], we must first derive a relation for determining when an 

element of 𝐼𝑛[𝑖] is a Gaussian involution. Recall that in a finite commutative ring 𝑅, a nonzero element is a 

unit if and only if it is not a zero divisor. Particularly, this is true for the rings 𝑍𝑛, 𝑍𝑛 × 𝑍𝑛, 𝑍𝑛[𝑖], and 

𝑍𝑛[𝑖] × 𝑍𝑛[𝑖]. Since,
 
𝐼𝑛 ⊆ 𝑈𝑛 and 𝐼𝑛[𝑖] ⊆ 𝑈𝑛[ 𝑖]. It is clear that 𝐼𝑛 ⊆ 𝐼𝑛[𝑖], it is not surprising that there is an 

interrelationship between the elements in the groups 𝐼𝑛 and 𝐼𝑛[𝑖]. 

Theorem 3.6. Let 𝛼 = 𝑎 + 𝑖𝑏 be a nonzero element in the ring 𝑍𝑛[𝑖]. Then  𝑎 + 𝑏𝑖 ∈ 𝐼𝑛[𝑖] if and only if 𝑎2 −

𝑏2 = 1 and 2𝑎𝑏 = 0 over modulo 𝑛. 

PROOF. Suppose that 𝛼 = 𝑎 + 𝑖𝑏 ∈ 𝑍𝑛[𝑖] and 𝛼 ≠ 0. By the definition of involution, 

𝛼 ∈ 𝐼𝑛[𝑖] ⇔  𝛼2 = 1 under modulo 𝑛 

 ⇔ (𝑎 + 𝑏𝑖)(𝑎 + 𝑏𝑖) = 1 

 ⇔ 𝑎2 − 𝑏2 + 𝑖2𝑎𝑏 = 1 + 𝑖0 

 ⇔ 𝑎2 − 𝑏2 = 1 and 2𝑎𝑏 = 0 

                  

Remark 3.7.  

i. Every Gaussian involution is a Gaussian unit, but the converse is not true. For instance, 2 + 3𝑖 is a 

Gaussian unit in 𝑍4[𝑖] but not a Gaussian involution, since 22 − 32 = 3 ≠ 1.  

ii. If  𝑎 + 𝑏𝑖 is a Gaussian involution, then 𝑏 + 𝑎𝑖 may not be a Gaussian involution. For example, 3 + 2𝑖 

is a Gaussian involution in 𝑍4[𝑖], but 2 + 3𝑖 is not a Gaussian involution. 

In general, it is not clear to satisfy finite groups and their subgroups by resolving the orders of each of its 

members. According to the Chinese remainder’s theorem [18] of numbers, a standard method is to resolve the 

finite groups to its orders like primes and prime powers as recommended in the following theorems. 

Theorem 3.8. [17] If 𝑙 and 𝑚 are both relatively prime, then 

i. 𝑍𝑙𝑚 ≅ 𝑍𝑙 × 𝑍𝑚 and 𝑍𝑙𝑚[𝑖] ≅ 𝑍𝑙[𝑖] × 𝑍𝑚[𝑖] 

ii. 𝑈𝑙𝑚 ≅ 𝑈𝑙 × 𝑈𝑚 and 𝑈𝑙𝑚[𝑖] ≅ 𝑈𝑙[𝑖] × 𝑈𝑚[𝑖] 

Theorem 3.9. [17] If 𝑛 > 1 is a positive integer with the canonical form 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟. Then, 

i. 𝑈𝑛 ≅ 𝑈𝑝1
𝑎1 × 𝑈𝑝2

𝑎2 × … × 𝑈𝑝𝑟
𝑎𝑟  

ii. 𝑈𝑛[𝑖] ≅ 𝑈𝑝1
𝑎1 [𝑖] × 𝑈𝑝2

𝑎2 [𝑖] × … × 𝑈𝑝𝑟
𝑎𝑟 [𝑖] 

We observe the previous results do hold good for the collection of Gaussian involutions modulo 𝑛. We 

know that the collection of positive integers is partitioned into the sets of positive integers 𝑛 such that 𝑛 ≡

3(𝑚𝑜𝑑 4), 𝑛 ≡ 2(𝑚𝑜𝑑 4), 𝑛 ≡ 1(𝑚𝑜𝑑 4), and 𝑛 ≡ 0(𝑚𝑜𝑑 4). Also, every odd prime can be written as 𝑛 ≡

3(𝑚𝑜𝑑 4) and 𝑛 ≡ 1(𝑚𝑜𝑑 4). We observe that, for the even prime 2, 𝐼2[𝑖] = {1, 𝑖} and thus |𝐼2[𝑖]| = 2. But, 

for the collection of Gaussian involutions, we accomplish many results. 

Theorem 3.10. If 𝑝 is a prime of the form 𝑝 ≡ 3(𝑚𝑜𝑑 4), then |𝐼𝑝[𝑖]| = 2. 

PROOF. Because of the prime 𝑝 of the form 𝑝 ≡ 3(𝑚𝑜𝑑 4), the ring 𝑍𝑝[𝑖] is a field, and this 𝑈𝑝[ 𝑖] is a cyclic 

group. Hence, by the Theorem [2.11], it is well known that every finite field contains exactly two involutions, 

so
 
|𝐼𝑝[𝑖]| = 2.                             

Example 3.11.  

i. For 𝑝 = 3, 𝐼3[𝑖] = {1,3} and |𝐼3[𝑖]| = 2. 

ii. For 𝑝 = 7, 𝐼7[𝑖] = {1,6} and |𝐼7[𝑖]| = 2. 
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Theorem 3.12. For every prime𝑝, 𝑝 ≡ 3(𝑚𝑜𝑑 4) and 𝑘 ≥ 1 then |𝐼𝑝𝑘[𝑖]| = |𝐼𝑝𝑘| = 2. 

PROOF. By the definition of Gaussian involutions,  

𝐼𝑝𝑘[𝑖] = {𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ (𝑎 + 𝑖𝑏)2 = 1} = {𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘), 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘)} 

For the condition 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘), there are the following possibilities exist. First suppose 𝑎 = 0 and 𝑏 =

0, then 𝑎2 − 𝑏2 = 0. This is a contradiction to the fact that 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘). So at least one of 𝑎 and 𝑏 

must be not equal to zero. Suppose the elements 𝑎 and 𝑏 are both not equal to 0. Without loss of generality we 

may assume that 𝑎 = 𝑝𝑞 and 𝑏 = 𝑝𝑘−𝑞 (𝑞 > 0), 𝑎2 − 𝑏2 = (𝑝𝑞)2 − (𝑝𝑘−𝑞)2 = 𝑝2𝑞 − 𝑝2(𝑘−𝑞) ≢

1(𝑚𝑜𝑑 𝑝𝑘), a contradiction. Hence, we conclude that the condition 𝑏 = 0 holds good because Gaussian 

involution is not purely imaginary over modulo 𝑝𝑘. This clears that 𝐼𝑝𝑘[𝑖] = 𝐼𝑝𝑘. 

Now enumerate the total number of Gaussian involutions in 𝐼𝑝𝑘[𝑖]. For this let 𝑥 ∈ 𝐼𝑝𝑘[𝑖], we have 𝛼 = 𝑎 +

𝑏𝑖 = 𝑎 + 0𝑖 = 𝑎 and 𝑎2 = 1. This implies that 

𝑎2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) ⇒ ((𝑎 − 1) + 1)((𝑎 − 1) + 1) − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ ((𝑎 − 1) + 1)2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ (𝑎 − 1)2 + 2(𝑎 − 1) ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ (𝑎 − 1)(𝑎 + 1) ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

 ⇒ 𝑝𝑘|(𝑎 − 1)(𝑎 + 1) 

This shows that 𝑝𝑘|(𝑎 − 1), or 𝑝𝑘|(𝑎 + 1). Now suppose 𝑝𝑘|(𝑎 − 1), then 𝑎 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘).
 
Therefore, 

𝑎 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) implies that 𝛼 = 1. Again suppose 𝑝𝑘|(𝑎 + 1), then there exists a positive integer 𝑟 such that 

𝑎 + 1 = 𝑝𝑘𝑟. Now we claim that 𝑟 = 1. Suppose 𝑟 > 1. Then, 𝑎 = 𝑝𝑘𝑟 − 1 and 𝑎2 = 1. This implies that 

(𝑝𝑘𝑟 − 1)2 = 1. It follows that, either 𝑟 = 0, or 𝑟 = 2(𝑝−𝑘), this is again a contradiction. So, our assumption 

that 𝑟 > 1 is not true, and hence 𝑟 = 1. Therefore, 𝑎 + 1 = 𝑝𝑘, and thus 𝑎 = 𝛼 = 𝑝𝑘 − 1. This shows that 

𝛼 = 1 and 𝛼 = 𝑝𝑘 − 1 are the only two elements in 𝐼𝑝𝑘[𝑖]. So, for every prime 𝑝 ≡ 3(𝑚𝑜𝑑 4) there is a cyclic 

subgroup ⟨1, 𝑝𝑘 − 1 ∶ (𝑝𝑘 − 1)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)⟩ in the group 𝑈𝑝𝑘[𝑖] such that 𝐼𝑝𝑘[𝑖] ≅ ⟨1, 𝑝𝑘 − 1 ∶ (𝑝𝑘 −

1)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)⟩ ≅ 𝐼𝑝𝑘. Hence, |𝐼𝑝𝑘[𝑖]| = |𝐼𝑝𝑘| = 2.            

Example 3.13.  

i. For 𝑝 = 3 and 𝑘 = 2, 𝐼32[𝑖] = 𝐼9[𝑖] = {1,8} and |𝐼32[𝑖]| = 2. 

ii. For 𝑝 = 7 and 𝑘 = 2, 𝐼72[𝑖] = 𝐼49[𝑖] = {1,48} and |𝐼72[𝑖]| = 2.  

Theorem 3.14. If 𝑝 is a prime of the form 𝑝 ≡ 1(𝑚𝑜𝑑 4) and 𝑘 ≥ 1, then |𝐼𝑝𝑘[𝑖]| = 4. 

PROOF. For the prime 𝑝 of the form 𝑝 ≡ 1(𝑚𝑜𝑑 4), the set of Gaussian involutions of the ring 𝑍𝑝𝑘[𝑖] is 𝐼𝑝𝑘[𝑖] =

{𝑎 + 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ (𝑎 + 𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}. Let 𝑎 + 𝑖𝑏 ∈ 𝐼𝑝𝑘[𝑖], then    

(𝑎 + 𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) ⇒ 𝑎2 − 𝑏2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘) and 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) 

First, 2𝑎𝑏 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) means 𝑎 = 0 or 𝑏 = 0. From this condition, the group 𝐼𝑝𝑘[𝑖] reduces to 𝐼𝑝𝑘[𝑖] =

{𝑎, 𝑖𝑏 ∈ 𝑍𝑝𝑘[𝑖] ∶ 𝑎2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}, (𝑖𝑏)2 ≡ 1(𝑚𝑜𝑑 𝑝𝑘)}. This shows that for 𝑎, 𝑖𝑏 ∈ 𝐼𝑝𝑘[𝑖], we have 

𝑝𝑘|(𝑎2 − 1) and 𝑝𝑘|(𝑏2 + 1) ⇒ 𝑎2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘) and 𝑏2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘).  

These two quadratic congruences give two distinct values for 𝑎 and two distinct values for 𝑏 over modulo 𝑝𝑘. 

Consequently, for 𝛼 and 𝛽 in 𝑈𝑝𝑘[𝑖], there is a non-cyclic subgroup 𝐼𝑝𝑘[𝑖] of the group 𝑈𝑝𝑘[𝑖] such that 

𝐼𝑝𝑘[𝑖] = ⟨𝛼, 𝛽 ∶ 𝛼2 − 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘), 𝛽2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝𝑘)⟩ whenever the prime 𝑝 ≡ 1(𝑚𝑜𝑑 4). 

Therefore, |𝐼𝑝𝑘[𝑖]| = 4.                                                                    
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Example 3.15.  

1. Let 𝑝 = 5.   

i. If 𝛼 = 1, then 𝐼5[𝑖] = {1,4,2𝑖, 3𝑖} and |𝐼5[𝑖]| = 4. 

ii. If 𝛼 = 2, then 𝐼52[𝑖] = 𝐼25[𝑖] = {1,24,7𝑖, 18𝑖} and |𝐼52[𝑖]| = 4. 

2. Let 𝑝 = 13.   

i. If 𝛼 = 1, then 𝐼13[𝑖] = {1,12,5𝑖, 8𝑖} and |𝐼13[𝑖]| = 4.  

ii. If 𝛼 = 2, then 𝐼132[𝑖] = 𝐼169[𝑖] = {1,168,70𝑖, 99𝑖} and |𝐼132[𝑖]| = 4. 

Theorem 3.16. For even prime 2 and 𝑘 > 1 then 𝐼2𝑘[𝑖] ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘times) and |𝐼2𝑘[𝑖]| =

2𝑘. 

PROOF. Since 𝐼2[𝑖] is a cyclic group of order 2, and thus 𝐼2𝑘[𝑖] is a finite abelian but not cyclic. Accordingly, 

by the fundamental theorem of finite abelian groups, the group 𝐼2𝑘[𝑖] can be written as 𝐼2𝑘[𝑖] ≅

𝐼2[𝑖] × 𝐼2𝑘−1[𝑖] ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × 𝐼2𝑘−2[𝑖] ≅ ⋯ ≅ 𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘 times) and hence 

|𝐼2𝑘[𝑖]| = |𝐼2[𝑖] × 𝐼2[𝑖] × … × 𝐼2[𝑖](𝑘times)| 

 = |𝐼2[𝑖]| ⋅ |𝐼2[𝑖]| ⋅ … ⋅ |𝐼2[𝑖]| (k times) 

 = 2 ⋅ 2 ⋅ … ⋅ 2(𝑘 times) 

 = 2𝑘 

                  

Example 3.17. For 𝑘 = 2, 𝐼22[𝑖] = 𝐼4[𝑖] = {1,3,1 + 2 𝑖, 3 + 2𝑖} and |𝐼22[𝑖]| = 4 = 22. 

If the prime 𝑝 > 2 then Theorem 3.16 is not true, that is |𝐼𝑝𝑘[𝑖]| ≠ 𝑝𝑘 because 𝐼𝑝𝑘[𝑖] ≇ 𝐼𝑝[𝑖] × 𝐼𝑝𝑘−1[𝑖] . 

For example, 𝐼52[𝑖] ≇ 𝐼5[𝑖] × 𝐼5[𝑖] . In particular, the following results are well cleared. For any 𝑘 > 1, 

i. 𝑍2𝑘 ≇ 𝑍2 × 𝑍2𝑘−1 and 𝑍2𝑘[𝑖] ≇ 𝑍2[𝑖] × 𝑍2𝑘−1[𝑖] 

ii. 𝑈2𝑘 ≇ 𝑈2 × 𝑈2𝑘−1 and 𝑈2𝑘[𝑖] ≇ 𝑈2[𝑖] × 𝑈2𝑘−1[𝑖] 

iii. 𝐼2𝑘 ≅ 𝐼2 × 𝐼2𝑘−1 and 𝐼2𝑘[𝑖] ≅ 𝐼2[𝑖] × 𝐼2𝑘−1[𝑖] 

Theorem 3.18. If 𝑝 and 𝑞 are relatively prime, then 𝐼𝑝𝑞[𝑖] ≅ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖].  

PROOF. Without loss of generality, assume that 𝑝 ≡ 2(𝑚𝑜𝑑 4) and 𝑞 ≡ 3(𝑚𝑜𝑑 4). Now we define a map 

𝑓: 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] → 𝐼𝑝𝑞[𝑖] by the relation 𝑓((𝑎, 𝑏)) = 𝑖𝑞𝑎 + 𝑝𝑏 for every (𝑎, 𝑏) ∈ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] and the element 

𝑖𝑞𝑎 + 𝑝𝑏 ∈ 𝐼𝑝𝑞[𝑖] for all 𝑎 and 𝑏. One can easily verify that𝑓 is a well-defined group homomorphism. Now to 

show that 𝑓 is an injection. For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖], we have 𝑓((𝑎, 𝑏)) = 𝑓((𝑐, 𝑑)). This implies that 

𝑖𝑞𝑎 + 𝑝𝑏 = 𝑖𝑞𝑐 + 𝑝𝑑 ⇒ 𝑎 = 𝑐 and 𝑏 = 𝑑 

 ⇒ (𝑎, 𝑏) = (𝑐, 𝑑) 

Thus 𝑓 is injective. Since the finite groups 𝐼𝑝[𝑖] × 𝐼𝑞[𝑖] and 𝐼𝑝𝑞[𝑖] have the same cardinality, so that 𝑓 is 

surjective and hence 𝑓 is a group isomorphism.                                                                                                                            

For example, take 𝑝 ≡ 2 and 𝑞 ≡ 3, 𝐼6[𝑖] ≅ 𝐼2[𝑖] × 𝐼3[𝑖]. We have 𝐼2[𝑖] = {1, 𝑖}, 𝐼3[𝑖] = {1,2} and 

𝐼6[𝑖] = {1,5,2 + 3𝑖, 4 + 3𝑖}. Clearly, (1,1) → 2 + 3𝑖, (1,2) → 4 + 3𝑖, (𝑖, 1) → 5, and (𝑖, 2) → 1.   
 
 

Theorem 3.19. Let 𝑛 > 1 be a positive integer with the canonical form 𝑛 = 𝑝1
𝑎1𝑝2

𝑎2 … 𝑝𝑟
𝑎𝑟. Then, 

𝐼𝑛[𝑖] ≅ 𝐼𝑝1
𝑎1 [𝑖] × 𝐼𝑝2

𝑎2 [𝑖] × … × 𝐼𝑝𝑟
𝑎𝑟 [𝑖] and |𝐼𝑛[𝑖]| ≅ |𝐼𝑝1

𝑎1 [𝑖]| × |𝐼𝑝2
𝑎2 [𝑖]| × … × |𝐼𝑝𝑟

𝑎𝑟 [𝑖]| 

PROOF. It is clear from the Chinese remainder theorem [18].           
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Generally, now establish a formula for enumerating the total number of Gaussian involutions in the 

Gaussian ring for various values of 𝑛. Remember that the cardinality of the Gaussian involutions of the non-

cyclic ring 𝑍𝑛[𝑖] is |𝐼𝑛[𝑖]| and 𝐼 (𝑍𝑛[𝑖]) = 𝐼  (𝑈𝑛[ 𝑖]), and the representation theory of the finite cyclic group 

is a critical base case for the representation theory of more general finite groups. For any integer 𝑛 ≥ 1, there 

exists a finite cyclic group 𝐶𝑛 with representation 𝐶𝑛 = ⟨𝑎 ∶ 𝑎𝑛 = 1⟩ for multiplication. For instance,
 
a group 

𝐶2 = {1, 𝑎 ∶ 𝑎2 = 1} is a cyclic group of order 2, and it is also isomorphic to the cyclic group 𝑍2 = {0,1} for 

addition modulo 2. 

Theorem 3.20. If 𝑛 is a positive integer, then |𝐼𝑛[𝑖]| = 2𝑘 for some positive integer 𝑘. 

PROOF. The result is clear if 𝑛 = 2. If 𝑛 = 2 so that |𝑍𝑛[𝑖]| = 4, then there is only one subgroup, namely {1, 𝑖} 

in 𝑍𝑛[𝑖] with the property that 𝑎2 = 1, and so |𝐼𝑛[𝑖]| = 2 = 21. Assume that 𝑛 > 2. We now prove this by the 

two cases, namely, 𝐼𝑛[𝑖] is either cyclic or not. First, suppose 𝐼𝑛[𝑖] is cyclic. Then, there is nothing to prove. 

Now suppose 𝐼𝑛[𝑖] is a non-cyclic abelian group, then we have to prove that |𝐼𝑛[𝑖]| = 2𝑘 for some positive 

integer 𝑘. For this, we define a map 𝑓 ∶ 𝑍2 × 𝑍2 × … × 𝑍2 → 𝐼𝑛[𝑖] by the relation 𝑓(𝑎1, 𝑎2, … , 𝑎𝑘) =

𝛼1
𝑎1𝛼2

𝑎2 … 𝛼𝑘
𝑎𝑘 for every element 𝑎1, 𝑎2, … , 𝑎𝑘 in the non-cyclic group 𝑍2 × 𝑍2 × … × 𝑍2 ≅ 𝑍2

𝑘, where 

𝛼1
𝑎1 , 𝛼2

𝑎2 , … , 𝛼𝑘
𝑎𝑘 are distinct 𝑘 involutions of 𝐼𝑛[𝑖]. By Theorem 3.18, 𝐼𝑛[𝑖] ≅ 𝑍2

𝑘, and hence |𝐼𝑛[𝑖]| = |𝑍2
𝑘| =

2𝑘.                            

For verification of the above results, we obtain the following set of Gaussian involutions of the Gaussian 

ring 𝑍𝑛[𝑖] with fixed values of 𝑛 = 2,3,4, … ,13, respectively. 

𝐼2[𝑖] = {1, 𝑖} ≅ 𝐶2, 

𝐼3[𝑖] = {1,2} ≅ 𝐶2, 

𝐼4[𝑖] = {1,3,1 + 2 𝑖, 3 + 2𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼5[𝑖] = {1,4,2 𝑖, 3 𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼6[𝑖] = {1,5,2 + 3𝑖, 4 + 3𝑖} ≅ 𝐶2 × 𝐶2, 

𝐼7[𝑖] = {1,6} ≅ 𝐶2, 

𝐼8[𝑖] = {1,3,5,7,1 + 4𝑖, 3 + 4𝑖, 5 + 4 𝑖, 7 + 4𝑖} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

𝐼9[𝑖] = {1,8} ≅ 𝐶2, 

𝐼10[𝑖] = {1,9,3𝑖, 7𝑖, 4 + 5𝑖, 5 + 2𝑖, 6 + 5𝑖, 5 + 8𝑖}} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

𝐼11[𝑖] = {1,10} ≅ 𝐶2,
  

𝐼12[𝑖] = {1,5,7,11,1 + 6𝑖, 5 + 6𝑖, 7 + 6𝑖, 11 + 6𝑖} ≅ 𝐶2 × 𝐶2 × 𝐶2, 

 𝐼13[𝑖] = {1,12,5𝑖, 8𝑖} ≅ 𝐶2 × 𝐶2 

4. Conclusion 

Owing to the involution theory, involutions over finite commutative rings have been widely used in 

applications such as algebraic cryptography, network security, and coding theory. Further, quadratic 

polynomials like 𝑥2 − 1 = 0 over finite rings and fields have been extensively studied due to their wide 

applications in block cipher designs, algebraic coding theory, and combinatorial design theory. Following these 

applications of involutions to characterize the involutory behaviour of the digital control systems, digital logic 

systems, modern algebraic systems, and generalized cyclotomic systems and this paper gives more concise 

criterion analytical methods for enumerating Involutions over the finite cyclic and non-cyclic rings.  
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Abstract − In this paper, a developable surface with geodesic or line of curva-
ture coordinates is constructed in the Euclidean 3-space. A developable surface is
coordinated by two families of parametric curves, base curves (directrices) and lines
(rulings). Since any part of a straight line on a developable surface is geodesic and
line of curvature, we only need to show that the directrices curves are geodesics or
lines of curvature to ensure that the developable surface is parameterized by geodesic
or line of curvature coordinates. The necessary and sufficient conditions for the direc-
trices curves to be geodesics or lines of curvature are studied. The main results of this
paper show that the developable surface with geodesic coordinates is a generalized
cylinder, and the developable surface with line of curvature coordinates is a tangent
surface.
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1. Introduction

A ruled surface is constructed by the continuous motion of a straight line called the ruling or generator
through a given curve called the base or directrix curve. Developable surfaces are a special class of
the ruled surfaces that can be mapped isometrically into the plane, therefore the developable surface
has zero Gaussian curvature as the plane. Cylinders (including planes), cones, and tangent surfaces
are three basic types of developable surface. The developable surface has been used in geometric
modeling, architecture, and many applications in manufacturing industries [1–3].

Geodesic is a curve that travel in directions of zero geodesic curvature on a surface. The shortest
path between two given points on a curved space is given by geodesic. Any (part of ) a straight line on
a surface is a geodesic as are the rulings of any ruled surface. Line of curvature is a curve that travel
in directions for which the surface curvature takes its maximum or minimum values, in other words,
the directions in which a shape bends extremely. The lines of curvatures exists as orthogonal curves
on non-umbilical points of the surface. Rulings of any developable surface are lines of curvature.

A coordinate on a surface is said to be geodesic or line of curvature if the two families of coordinate
curves are geodesics or lines of curvature. Extracting the geometric information from the surface
depends on the parametrization that is using as a coordinate system on the surface. Using geodesic or
line of curvature coordinates are suitable for many tasks not only in differential geometry but involves
other areas of applications, such as integrable systems [4], surfaces motions [5, 6], and architectural
shape design [7, 8].

1althibany1972@yahoo.com
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In this paper, we discuss how a developable surface can be parameterized by geodesic or line of
curvature coordinates. For our purpose, we parameterize the ruled surface by its directrix curve and
director vector that is expressed by a linear combination of Frenet frame with angular functions as
coefficients. The two families of parametric curves are rulings and directrices. It is well known that
the rulings are geodesics and lines of curvature on a developable surface. Consequently, throughout
this paper, our focus lies on the family of directrices. Many constraints are assumed on the angular
functions through many steps to generate parametrization whose directrices are geodesics or lines
of curvature. The main results show that the developable surface with geodesic coordinates is a
generalized cylinder, and the developable surface with line of curvature coordinates is a tangent surface.

There are many articles for constructing a developable surface family that possesses the directrix
curve as a common characteristic curve, see for example [9–11]. For our approach, [11] is a relevant
paper, but it is restricted and limited. More explicitly, it focused on the sufficient and necessary
conditions for only one directrix curve to be a line of curvature, whereas our paper deals with conditions
on the family of directrices to be geodesics or lines of curvature in the constructed developable surface.

The rest of this paper is organized as follows: In section 2, some basic notations, facts and defi-
nitions of the space curves and ruled surfaces are reviewed. The main results are studied in section
3, where the developable surface with geodesic or line of curvature coordinates is constructed, the
necessary and sufficient conditions for the directrices curves to be geodesics or lines of curvature are
derived, some geometric properties of such coordinates are analyzed. Examples is presented in section
4. Finally, the conclusion is given in section 5.

2. Preliminary

This section introduces some basic concepts on the classical differential geometry of space curves and
ruled surfaces in Euclidean 3-space, as well as some basic definitions and notions that are required
subsequently. More details can be found in such standard references as [12,13].

2.1. Curves in Euclidean 3-space

A smooth space curve in Euclidean 3-space is parameterized by a map γ : I ⊆ R → E3, γ is
called a regular curve if γ′ ̸= 0 for every point of an interval I ⊆ R, and if |γ′(s)| = 1 where
|γ′(s)| =

√
⟨γ′(s), γ′(s)⟩, then γ is said to be of unit speed (or parameterized by arc-length s). For a

unit speed regular curve γ(s) in E3, the unit tangent vector t(s) of γ at γ(s) is given by t(s) = γ′(s).

If γ′′(s) ̸= 0, the unit principal normal vector n(s) of the curve at γ(s) is given by n(s) = γ′′(s)
∥γ′′∥ . The

unit vector b(s) = t(s) × n(s) is called the unit binormal vector of γ at γ(s). Physically, the vectors
γ′(s) and γ′′(s) are called the velocity and acceleration vectors respectively. For each point of γ(s)
where γ′′(s) ̸= 0, we associate the Serret-Frenet frame {t, n, b} along the curve γ. As the parameter s
traces out the curve, the Serret-Frenet frame moves along γ and satisfies the following formula.

t′(s) = κ(s)n(s)

n′(s) = −κ(s)t(s) + τb(s)

b′(s) = −τ(s)n(s)

(1)

where κ = κ(s) and τ = τ(s) are the curvature and torsion functions. The planes spanned by
{t(s), n(s)}, {t(s), b(s)} and {n(s), b(s)} are respectively called the osculating plane, the rectifying
plane and the normal plane. Kinematically, when the point moves along the unit speed curve with
non vanishing curvature and torision, the Serret-Frenet frame {t, n, b} is drawn to the curve at each
position of the moving point, this motion consists of translation with rotation and described by the
following Darboux vector

ω = τt+ κb (2)

The direction of Darboux vector is the direction of rotational axis and its magnitude gives the
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angular velocity of rotation. The unit Darboux vector field is defined by

ω̂ =
τ√

τ2 + κ2
t+

κ√
τ2 + κ2

b (3)

A necessary and sufficient condition that a curve be of constant slope (or general helix ) is that
the ratio of curvature to torsion is constant ( τκ = c). The general helix lies on a general cylinder and
also known as a cylindrical helix. The circular helix ( a helix on a circular cylinder) is a special helix
with both of κ(s) ̸= 0 and τ(s) are constants. The Darboux vector is constant for circular helix. For
the cylindrical helix, the unit Darboux vector is constant, where (3) can be written as

ω̂ =
τ√

τ2 + κ2
t+

κ√
τ2 + κ2

b =
τ/κ√

(τ/κ)2 + 1
t+

1√
(τ/κ)2 + 1

b =
c√

c2 + 1
t+

1√
c2 + 1

b (4)

For a regular curve on a surface, there exists another frame which is called Darboux frame and
denoted by {t(s), g(s), N(s)}. In this frame t(s) is the unit tangent of the curve, N(s) is the unit
normal of the surface and g is a unit vector given by g = N × t. Derivative of the Darboux frame
according to arc-length parameter is governed by the following relations

t′(s) = κgg(s) + κnN(s)

g′(s) = −κgt(s) + τgN(s)

N ′(s) = −κnt(s)− τgg(s)

(5)

where κg is the geodesic curvature, κn is the normal curvature and τg is the geodesic torsion at each
point of the curve γ(s) which are given by the following

κg =< γ′′(s), g >, κn =< γ′′(s), N >, and τg =< N ′, g > (6)

The unit tangent t is common in both Frenet frame and Darboux frame, then the vectors N ,g,n
and b lie on the same plane and the relations between these frames can be given as follows: t

g
N

 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 t
n
b

 (7)

where {
g(s) = cosϕ(s)n(s) + sinϕ(s)b(s)

N(s) = − sinϕ(s)n(s) + cosϕ(s)b(s)
(8)

Differentiating (8), by using (5) and (1) we get the relation between geodesic curvature, normal
curvature, geodesic torsion with curvature, torsion as follows:

κg = κ cosϕ, κn = κ sinϕ, and τg = τ +
dϕ

ds
(9)

A unit-speed curve on a surface is a geodesic if and only if its geodesic curvature is zero everywhere
(κg = 0 ) [13]. From (9) and (8), this condition is equivalent to the following

N = ±n (10)

Hence a curve is a geodesic on the surface if and only if the principal normal n to the curve and
the surface normal N are parallel to each other at any point on the curve. Equivalently, a curve γ(s)
on the surface is a geodesic provided its acceleration vector γ′′(s) is always normal to the surface, i.e.

γ′′(s)×N = 0 (11)

A unit-speed curve on a surface is a line of curvature if and only if its geodesic torsion is zero
everywhere (τg = 0 ) [13]. From (9), this condition is equivalent to the following

τ +
dϕ

ds
= 0 (12)
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2.2. Ruled Surfaces

Let X(u, v) be a regular parameterization of a smooth surface in Euclidean 3-space, and defined by

X(u, v) : U ⊆ R2 → R3

The variables (u, v) are called the (curvilinear) coordinates on the surface, the two families of u-
curves (v = const), and v-curves (u = const), are called the parametric curves (or coordinate curves).
Their directions are defined by the tangents vectors Xu and Xv respectively. The surface X(u, v) is
regular if the condition Xu ×Xv ̸= 0 is satisfied for all points, that means the vectors Xu and Xv do
not vanish and have different directions. Consequently, the surface normal is defined at every point
on the regular surface as a unit vector on the tangent plane and given by

N(u, v) =
Xu ×Xv

|Xu ×Xv|
(13)

The first and second fundamental form of the parameterized regular surface are given by

I = Eds2 + 2Fdsdv +Gdv2, II = eds2 + 2fdsdv + gdv2 (14)

where their coefficients can be calculated respectively as

E =< Xs, Xs >, F =< Xs, Xv >, G =< Xv, Xv > (15)

e =< N,Xss >, f =< N,Xvs >, g =< N,Xvv > (16)

The fundamental quantities I and II are important tools to describe the intrinsic and extrinsic
geometry of surface. In particular, type of the parametric curves and their characteristics properties
are described by the coefficients of the fundamental quantities I and II. For example, the coordinate
curves are orthogonal if F = 0, conjugate if f = 0, and lines of curvature if satisfy both conditions.

Theorem 2.1. [14] A necessary and sufficient condition for the coordinate curves of a parametrization
to be lines of curvature in a neighborhood of a nonumbilical point is that F = f = 0.

The ruled surfaces are defined by moving a straight line on a given curve and parameterized by

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ ℓ, v ∈ R (17)

A unit regular curve γ(s) is called a base curve (or directrix), and the line passing through γ(s)
that is parallel to D(s) is called the ruling (or generator). D(s) is a unit director vector field that
gives the direction of the ruling. Different ruled surfaces can be constructed based on different γ(s)
and D(s). By the above discussion, the ruled surface has two families of parametric curves, the family
of lines (or rulings), and the family of base curves (or directrices), which can be defined respectively
by

X(s0, v) = {γ(s0) + vD(s0), 0 ≤ s0 ≤ ℓ} and X(s, v0) = {γ(s) + v0D(s), v0 ∈ R} (18)

In this paper, we call γ(s) the first directrix curve, where X(s, 0) = γ(s). The unit normal vector
field (surface normal, for shortly) is defined by

N(s, v) =
Xs ×Xv

|Xs ×Xv|
=

[α′(s) + vD′(s)]×D(s)

[α′(s) + vD′(s)]×D(s)|
(19)

A point on a ruled surface that satisfies Xs ×Xv = 0 is called a singular point. A ruled surface
may have singular points, which are located (if exist) on the striction curve that parameterized by [12]

β(s) = γ(s)− ⟨γ′(s), D′(s)⟩
⟨D′(s), D′(s)⟩

D(s), D′(s) ̸= 0 (20)

A ruled surface is said to be cylindrical if D(s) is constant, i.e. D′(s) = 0. Otherwise, it is said to
be non-cylindrical. The Gaussian curvature is non-positive for a ruled surface, it vanishes identically
for special classes called the developable surfaces. Equivalently, a ruled surface (17) is developable if
and only if [12]

det⟨γ′(s), D(s), D′(s)⟩ = 0 (21)
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Remark 2.2. For a developable surface, the singular points can be classified using (20) into three
cases based on the type of developable surface.

i. Cylindrical surface (all rulings are parallel i.e. D′(s) = 0), has no singular points.

ii. Conical surface (all rulings meet at a vertex ), has one singular point at its vertex.

iii. Tangent surface has singularities along the curve which is called the cuspidal edge.

A curve is called a twisted curve if has nonzero curvature and torsion. Through this paper, we
assume that the first directrix curve γ(s) is a unit speed twisted curve. D(s) is a unit director vector
field lies in the space formed by moving frame {t, n, b} of γ(s) and can be written using (7) as

D(s) = cos θ(s)t(s) + sin θ(s)g(s), where g(s) = cosϕ(s)n(s) + sinϕ(s)b(s) (22)

Therefore, D(s) can be decomposed as following [15]

D(s) = cos θ(s)t(s) + sin θ(s)(cosϕ(s)n(s) + sinϕ(s)b(s)) (23)

Definition 2.3. A surface defined by:

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R (24)

is ruled surface where D(s) = cos θ(s)t(s) + sin θ(s)(cosϕ(s)n(s) + sinϕ(s)b(s)).

The singular points on the constructed ruled surface are avoided, therefore the vectors γ′(s) and
D(s) must be not collinear. It requires that sin θ(s) ̸= 0 which can be used as a regularity condition.
By using (8) the surface normal along the first directrix curve is given by

N(s, 0) = − sinϕ(s)n(s) + cosϕ(s)b(s) (25)

Lemma 2.4. [15] A ruled surfaces family (24) is developable if and only if the following condition is
satisfied,

sin θ(s)(
dϕ

ds
+ τ(s))− κ(s) sinϕ(s) cos θ(s) = 0 (26)

The main result of this paper is the following main theorem which is proved in the next section.

Theorem 2.5. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R be a ruled surface, where γ(s) is a
unit speed twisted curve, and D(s) is a unit director vector defined by (23), then the developable
surface with geodesic coordinates is a generalized cylinder. And the developable surface with lines of
curvatures coordinates is a tangent surface.

3.Developable Surface with Geodesic and Line of Curvature Coordinates

This section is the main part of this paper, it consists of two subsections which are devoted to pa-
rameterizing the developable surface with geodesics and lines of curvature coordinate respectively.
As well known, the parametric curves of the developable surface are base curves (directrices) and
lines (rulings). Any part of a straight line on a developable surface is geodesic and line of curvature,
therefore, this section is devoted to giving the necessary and sufficient condition for the directrices to
be geodesics or lines of curvature. We show that the developable surface with geodesic coordinates
is a generalized cylinder, and the developable surface with line of curvature coordinates is a tangent
surface.
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3.1.Developable Surface with Geodesics Coordinates

This subsection is devoted to construct a ruled developable surface parameterized by (24) with geodesic
coordinates. In particular, to design a developable surface with geodesic directrices curves. For this
purpose, three conditions must be satisfied through three theorems, the first one is a geodesic condition
(10) that insures the first directrix curve is a geodesic. The second one is the developability condition
(26). Finally, the third condition is that makes the other directrices are geodesics. In the following, we
start with the first theorem which gives the condition that makes the first directrix curve is a geodesic.

Theorem 3.1. Let X be a ruled surface parameterized by X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R,
where γ(s) is the first directrx curve. D(s) is a unit director vector defined by (23), then γ(s) is a
geodesic if and only if D(s) is a rectifying vector.

Proof. From (25), it is clear that N = ±n, if and only if cosϕ(s) = 0, by (10) this is equivalent to
γ(s) is a geodesic if and only if D(s) is a rectifying vector.

Definition 3.2. A ruled surface defined by:

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R (27)

possesses the first directrix curve as geodesic where D(s) = cos θ(s)t(s) + sin θ(s)b(s).

The following theorem gives the second condition that makes the ruled surface with geodesic first
directrix (27) is a developable

Theorem 3.3. A ruled surface that has a geodesic first directrix (27) is developable if and only if
τ(s) sin θ(s)− κ(s) cos θ(s) = 0.

Proof. Since cosϕ(s) = 0 for a ruled surface whose the first directrix is a geodesic (27), then the
developability condition (26) can be abbreviated as

τ(s) sin θ(s)− κ(s) cos θ(s) = 0 (28)

Definition 3.4. A ruled surface defined by:

X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)b(s)], 0 ≤ s ≤ L, and v ∈ R (29)

is a developable surface with geodesic first directrix where τ(s) sin θ(s)− κ(s) cos θ(s) = 0.

The developability condition (28) for a ruled surface whose first directrix curve is a geodesic has
geometric restriction should be imposed on the unit director vector as given in the following proposition

Proposition 3.5. [16] Suppose that D(s) = cos θ(s)t(s) + sin θ(s)b(s) is a rectifying vector field
defined along a unit speed twisted curve γ(s), then D(s) is a unit Darboux vector field if and only if
κ cos θ − τ sin θ = 0

Proof. Let D(s) = cos θ(s)t(s) + sin θ(s)b(s) be a unit Darboux vector. From (3),

cos θ =
τ√

κ2 + τ2
, sin θ(s) =

κ√
κ2 + τ2

, and cot θ =
τ

κ

This implies that κ cos θ − τ sin θ = 0, and vice versa.

Definition 3.6. A ruled surface defined by:

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R (30)

is developable with geodesic first directrix where D(s) = τ(s)√
κ2+τ2

t(s) + κ(s)√
κ2+τ2

b(s).
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The developable surface whose first directrix curve is a geodesic has an equivalent two parameteri-
zation (29) and (30). The parameterization (30) has a nice geometric expression, where the constraints
are viewed on the director vector, whereas the calculations based on differentiation become easier with
parameterization (29). This can be shown as follows, where the first and second derivatives of the
developable surface with geodesic first directrix (29) are listed in the following equations

Xs = (1− v sin θθ′(s))t+ v cos θθ′(s)b

Xss = −v(sin θθ′′ + cos θθ′2)t+ [κ− vθ′(κ sin θ + τ cos θ)]n+ v(cos θθ′′ − sin θθ′2)b

Xsv = − sin θθ′(s)t(s) + v cos θθ′(s)b(s)

Xv = cos θ(s)t(s) + sin θ(s)b(s)

Xvv = 0

(31)

The inner and cross products of the tangents vectors Xs and Xv are given by{
⟨Xs, Xv⟩ = cos θ(s)

Xs ×Xv = (− sin θ(s) + vθ′(s))n(s)
(32)

By using the regularity condition sin θ(s) ̸= 0, and from (32) the unit normal of developable surface
with geodesic first directrix (29) is defined everywhere and given by the following

N(s, v) =
Xs ×Xv

|Xs ×Xv|
= n (33)

Until now, we get a parameterization (30) that is characterized by two properties, the first directrix
curve is geodesic and the ruled surface is developable. These are satisfied under two constraints, the
director vector must be rectifying, and Darboux vector receptively. The following third theorem gives
the third condition that makes the directrices are geodesics as one of the main results of this paper.

Theorem 3.7. Let X(s, v) be a developable surface parameterized by (29). Then, the directrices
curves are geodesics if and only if θ is constant.

Proof. The directrices curves on a developable surface (29) are geodesics if and only if its acceleration
vector Xss is normal to the surface according to (11), then we have

N(s, v)×Xss = 0 (34)

From (31) and (33), it follows that

−v(sin θθ′′ + cos θθ′2)b+ v(cos θθ′′ − sin θθ′2)t = 0

The above condition is satisfied when v = 0, i.e., the first directrix curve is geodesic. Or the coefficients
of tangent and binormal vectors must vanish simultaneously as the following{

sin θθ′′ + cos θθ′2 = 0

cos θθ′′ − sin θθ′2 = 0
(35)

Using the elimination method, we obtain their common solution θ′ = 0, which implies that θ is a
constant and vice versa.

Definition 3.8. A ruled surface defined by:

X(s, v) = γ(s) + v[cos θ(s)t(s) + sin θ(s)b(s)], 0 ≤ s ≤ L, and v ∈ R (36)

is developable with geodesic directrices where τ(s) sin θ(s)− κ(s) cos θ(s) = 0 and θ′(s) = 0.
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As we know from poposition (3.5), the second condition τ(s) sin θ(s)−κ(s) cos θ(s) = 0 means that
the unit director vector is a unit Darboux vector. At the same time, the third condition, θ′(s) = 0,
implies that a unit Darboux vector is constant.

Definition 3.9. A ruled surface defined by:

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R (37)

is developable with geodesic directrices where D(s) = τ(s)√
κ2+τ2

t(s) + κ(s)√
κ2+τ2

b(s) and D′(s) = 0.

There is an important hidden property in an equivalent parameterizations (36) and (37) for a
developable surface with geodesic directrices, and can be extracted by the following proposition

Proposition 3.10. For a developable surface with geodesic directrices and parametrized by (36) or
(37), the first directrix is a helix.

Proof. For parameterization (36), we have the second condition

τ(s) sin θ(s)− κ(s) cos θ(s) = 0, which gives cot θ =
τ

κ

At the same time, we have the third condition θ′(s) = 0, which implies that τ
κ = c, then the first

directrix is a helix by definition. For parameterization (37), the unit Darboux vector is a constant,
which means that the first directrix is a helix as discussed in (4), which confirms that every helix
described by its constant unit Darboux vector.

The first directrix curve and the director vector are responsible to build the ruled developable
surface, therefore the following theorem gives the conditions that can be applied on the first directrix
curve and the director vector at the same time to generate a developable parameterization with
geodesic directrices.

Theorem 3.11. Let X(s, v) = γ(s)+ vD(s), 0 ≤ s ≤ L, v ∈ R be a ruled surface, where γ(s) is a unit
speed twisted curve, D(s) is a unit director vector defined by (23). Then every ruling is geodesic and
the directrices curves are geodesics if and only if γ(s) is a helix and D(s) is a unit Darboux vector.

Definition 3.12. A ruled surface defined by:

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R (38)

is developable with geodesic directrices where D(s) = τ(s)√
κ2+τ2

t(s) + κ(s)√
κ2+τ2

b(s) and γ(s) is a helix.

The developable surface with geodesic directrices is a generalized cylinder, where the director
vector is constant, i.e., D′(s) = 0 (37). Therefore, the generalized cylinder is the only developable
surface that can be coordinated by geodesics parametric curves with additional assumptions. This
result is given in the following theorem

Theorem 3.13. Among all developable surfaces parameterized by (24), the generalized cylinder can
be equipped with geodesic coordinates if and only if the directrix curve is a helix and the director
vector is a unit Darboux vector.

For a developable surface with geodesic coordinates (38), the directrices geodesic curves have the
same curvature and torsion, and differ only by the rigid motion modeled by a constant unit Darboux
vector with fixed direction and fixed angular velocity, this result formulated as following

Proposition 3.14. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R, be a ruled surface, D(s) is a unit
director vector defined by (23), if the directrices are geodesics, then they are congruent.

Corollary 3.15. The geodesic parametric curves of the developable surface (38) are lines and helices.

Corollary 3.16. There is no a skew ruled surface parameterized by (24) whose parametric curves are
geodesics.
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3.2.Developable Surface with Line of Curvature Coordinates

This subsection investigates how to construct a ruled developable surface parametrized by (24) with
lines of curvature coordinates. In particular, to design a developable surface with lines of curvature
directrices curves. For this aim, two conditions are required, the first one insures that the first directrix
curve is a line of curvature. The second one is a developability condition (26). After that, we show that
the other directrices of a ruled developable surface are lines of curvature without further assumptions.
The following definition combines the line of curvature condition (12) with parametrization (24) to
obtain a ruled surface whose the first directrix curve is a line of curvature.

Definition 3.17. A ruled surface defined by:

X(s, v) = γ(s)+v[cos θ(s)t(s)+sin θ(s)(cosϕ(s)n(s)+sinϕ(s)b(s))], 0 ≤ s ≤ L, and v ∈ R (39)

has line of curvature first directrix where τ + dϕ
ds = 0.

Remark 3.18. If cosϕ(s) = 0 or sinϕ(s) = 0, then ϕ(s) has constant value and dϕ
ds = 0, this

implies that τ = 0, it is contradiction with the assumption that γ(s) is a twisted curve. In general,
cosϕ(s) = const. or sinϕ(s) = const., lead to the same contradiction. Therefore, through this section
we suppose that neither cosϕ(s) = const. nor sinϕ(s) = const.

Theorem 3.19. A ruled surface with line of curvature first directrix (39) is developable if and only
if cos θ(s) = 0.

Proof. A ruled surface whose first directrix is the line of curvature (39) satisfies τ + dϕ
ds = 0. After

substitution, the developabity condition (26) becomes

κ(s) sinϕ(s) cos θ(s) = 0 (40)

Since γ(s) is a twisted curve, then sinϕ(s) ̸= 0 and κ(s) ̸= 0. Therefore, a ruled surface with line of
curvature first directrix (39) is developable if and only if cos θ(s) = 0.

Definition 3.20. A ruled surface defined by:

X(s, v) = γ(s) + v[cosϕ(s)n(s) + sinϕ(s)b(s)], 0 ≤ s ≤ L, and v ∈ R (41)

with line of curvature first directrix is developable where τ + dϕ
ds = 0.

The first and second derivatives of the developable surface parametrization whose the first directrix
is line of curvature (41) are listed in the following equations

Xs = (1− vκ cosϕ(s))t(s)

Xss = −v(
dκ

ds
cosϕ(s)− κ sinϕ(s)dϕ(s)ds )t(s) + κ(1− vκ cosϕ(s))n(s)

Xsv = −κ cosϕ(s) t(s)

Xv = cosϕ(s)n(s) + sinϕ(s) b(s)

Xvv = 0

(42)

The inner and cross products of the tangents vectors Xs and Xv are given by{
⟨Xs, Xv⟩ = 0

Xs ×Xv = (1− vκ cosϕ(s))[− sinϕ(s) t(s) + cosϕ(s) b(s)]
(43)

By using the regularity condition 1−vκ cosϕ(s) ̸= 0, and from (43) the unit normal of developable
surface with line of curvature first directrix (41) is defined everywhere and given by the following

N(s, v) =
Xs ×Xv

|Xs ×Xv|
= − sinϕ(s)n(s) + cosϕ(s) b(s) (44)
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Theorem 3.21. Let X be a developable surface parameterized by (41), then the directrices curves
are line of curvature.

Proof. By Theorem (2.1), the directrices curves on a developable surface (41) are line of curvature
if and only if F = f = 0. First, its clearly that F = ⟨Xs, Xv⟩ = 0 from equation (43). Second, using
equations (42) and (44), we obtain that

f =< N,Xvs >=< − sinϕ(s)n(s) + cosϕ(s) b(s),−κ cosϕ(s) t(s) >= 0 (45)

Theorem (3.21) proves that for the developable parametrization (41), the condition τ + dϕ
ds = 0 for

the first directrix to be a line of curvature is sufficient to make other directrices are lines of curvature.

Theorem 3.22. Let X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, v ∈ R be a developable ruled surface, where
γ(s) is a unit speed twisted curve, and D(s) = cosϕ(s)n(s) + sinϕ(s)b(s) is a unit director vector.
Then every ruling is line of curvature and the directrices curves are lines of curvature if and only if
τ + dϕ

ds = 0.

Previously, the condition τ + dϕ
ds = 0 with this form has been used to simplify the calculations.

For the surface construction, it is useful to write the condition in terms of ϕ(s) explicitly as ϕ(s) =
ϕ0 −

∫ s
s0
τds. If we choose s0 = 0, hence ϕ0 = ϕ(0), then the condition becomes ϕ(s) = ϕ(0)−

∫ s
0 τds.

Definition 3.23. A ruled surface defined by:

X(s, v) = γ(s) + v[cosϕ(s)n(s) + sinϕ(s)b(s)], 0 ≤ s ≤ L, and v ∈ R (46)

is developable surface with line of curvature coordinates where ϕ(s) = ϕ(0)−
∫ s
0 τds.

As we have seen, the developable surface with geodesic coordinates is a generalized cylinder. The
type of developable surface with line of curvature coordinates (46) is determined in the following.

Theorem 3.24. A developable surface with line of curvature coordinates (46) is non cylindrical.

Proof. Assume by contradiction that a developable surface with line of curvature coordinates (46) is
a cylinder, then D′(s) = 0. Since D(s) = cosϕ(s)n(s) + sinϕ(s)b(s), then D′(s) = −κ cosϕ(s)t(s) = 0
implies that κ = 0 or cosϕ = 0, which contradicts to the assumption that γ(s) is a twisted curve. Hence
D′(s) ̸= 0, and a developable surface with line of curvature coordinates (41) is non cylindrical.

Non-cylindrical developable surface is a tangent or a generalized cone surfaces. The singular points
or the striction curve β(s) (20) can be used to distinguish between them as given in the following.

Definition 3.25. A non-cylindrical developable surface is

i. A generalized cone if and only if the striction curve β(s) (20) is a fixed point, i.e., β′(s) = 0.

ii. A tangent surface if and only if, there exists striction curve β(s) (20) such that β′(s) ̸= 0.

Theorem 3.26. For a developable surface with line of curvature coordinates (46). The striction curve
and its first derivative are given respectively by

β(s) = γ(s) + 1
κ cosϕD(s)

β′(s) =
κ sinϕϕ′(s)− κ′ cosϕ

κ2 cos2 ϕ
D(s)

(47)
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Proof. The striction curve for non-cylindrical developable surface is defined by

β(s) = γ(s)− ⟨γ′(s), D′(s)⟩
⟨D′(s), D′(s)⟩

D(s), D′(s) ̸= 0

For a developable surface with line of curvature coordinates (46), ⟨γ′(s), D′(s)⟩ = −κ cosϕ and
⟨D′(s), D′(s)⟩ = κ2 cos2 ϕ. Then, the striction curve (20) is given by

β(s) = γ(s) +
1

κ cosϕ
D(s)

The first derivative of the striction curve is

β′(s) = t(s) +
κ cosϕ(−κ cosϕt(s))− (κ′ cosϕ− κ sinϕϕ′(s))D(s)

κ2 cos2 ϕ

=
κ sinϕϕ′(s)− κ′ cosϕ

κ2 cos2 ϕ
D(s)

Theorem 3.27. A non cylindrical developable surface with line of curvature coordinates (46) is a
tangent surface.

Proof. Suppose that a non cylindrical developable surface with lines of curvature coordinates (46)
is a generalized cone, then β′(s) = 0. By using (47), the following equation is satisfied

κ sinϕϕ′(s)− κ′ cosϕ = 0, which gives
κ′

κ
=

sinϕ

cosϕ
ϕ′(s)

By taking the integral of both sides and some calculations, we get

κ cosϕ = κ0 cosϕ0 (48)

Since κ0 and cosϕ0 are constants, then κ and cosϕ are both also constants, this yields a contradiction
with a twisted curve. Therefore β′(s) ̸= 0, and a non cylindrical developable surface with line of
curvature coordinates (46) must be a tangent surface, where β′(s) is parallel with director D(s).

Li et al. [11] derived a similar condition with (48) in order to make the developable surface through
a given line of curvature is cone or tangent surface. Finally, the following theorem is more identified.

Theorem 3.28. Among all developable surfaces parametrized by (24), the tangent surface can
be equipped with lines of curvature coordinates if and only if the unit director vector is D(s) =
cosϕ(s)n(s) + sinϕ(s)b(s) where ϕ(s) = ϕ(0)−

∫ s
0 τds.

4. Examples

In this section we give an example of a developable surface whose coordinates is geodesic (generalized
cylinder) or line of curvature (tangent surface) and draw their pictures by using Mathematica.

Example 4.1. Let γ(s) = (
√
3
2 sin(s), s2 ,

√
3
2 cos(s)) be a unit speed circular helix curve, the unit tan-

gent, the unit normal and the unit binormal are t =
(√

3
2 cos(s), 12 ,−

√
3
2 sin(s)

)
, n = (− sin(s), 0,− cos(s))

and b = (−1
2 cos(s),

√
3
2 , 12 sin(s)). The curvature and torsion of α(s) are κ =

√
3
2 and τ = 1

2 .

(a) According to theorem (3.11) and definition (38), the developable geodesic coordinates is given by

X(s, v) = γ(s) + vD(s), 0 ≤ s ≤ L, and v ∈ R

where D(s) = τ(s)√
κ2+τ2

t(s) + κ(s)√
κ2+τ2

b(s) and γ(s) is a helix.

By substitution τ√
κ2+τ2

= 1
2 and κ√

κ2+τ2
=

√
3
2 , and for 0 ≤ s ≤ 2π, 0 ≤ v ≤ π, the constructed

developable surface is a generalized cylinder with geodesic coordinates as shown in Figure 1(a).
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(a) Cylinder with geodesic coordinates. (b) Tangent surface with line of cur-
vature coordinates.

Fig. 1. Developable surface with geodesic or line of curvature coordinates.

(b) By theorem (3.22) and definition (46), the developable line of curvature coordinates is given by

X(s, v) = γ(s) + v[cosϕ(s)n(s) + sinϕ(s)b(s)], 0 ≤ s ≤ L, and v ∈ R

where ϕ(s) = ϕ(0)−
∫ s
0 τds.

If we choose ϕ(0) = 0, then ϕ(s) = −1
2s, and for 0 ≤ s ≤ 2π, 0 ≤ v ≤ π/2, the developable

constructed surface is a tangent surface with line of curvature coordinates as shown in Figure 1(b).

5. Conclusion

In this paper, using a ruled parametrization (24), we constructed a developable surface whose coor-
dinates curves are geodesics or lines of curvature. The main results asserted that the developable
surface with geodesic coordinates is a generalized cylinder, and the developable surface with the line
of curvature coordinates is a tangent surface. Also, the first directrix curve must be a helix as a first
condition to generate a developable surface with geodesic coordinates, but this condition need not to
be satisfied to construct a developable surface with the line of curvature coordinates. Furthermore,
the developable line of curvature coordinates is orthogonal, but the developable geodesic coordinates
is not. Finally, among the three types of developable surfaces, the generalized cylinder and the tangent
surface can be equipped with geodesic coordinates and line of curvature coordinates respectively.
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The recently proposed fuzzy parameterized fuzzy soft matrices (fpfs-matrices) [10] are capable of 

modelling situations where parameters and alternatives (objects) are fuzzy. Therefore, 136 soft decision-

making (SDM) methods [11-22] constructed with the subspaces [3,23-29] of the fpfs-sets/matrices space 

between 1999 and 2019 have been rendered operable in the fpfs-matrices space. Moreover, more successful 

methods with shorter running time have been produced by mathematically simplifying some configured SDM 

methods [21,22,30-33]. However, these SDM methods are incapable of modelling the problems in which 

parameters and alternatives have intuitionistic fuzzy uncertainties. To this end, to model such problems and to 

achieve the same or similar modelling success of the SDM methods configured in the fpfs-matrices space 

within the ifpifs-matrices space, the generalisations of these methods have great importance. Hence, the main 

motivation of the present study is to generalise the SDM methods [10,11,15,16,20] operating with a single 

fpfs-matrix to the ifpifs-matrices space.  

Section 2 presents several of the basic notions to be required in the next sections. Section 3 generalises 

the aforesaid SDM methods to the ifpifs-matrices space. Section 4 proposes five test cases to test the 

generalised SDM methods’ performance of ranking the alternatives in the presence of decision-making 

problems and to determine the successful SDM methods. Section 5 applies the methods passing all the tests to 

a performance-based value assignment (PVA) problem and compares their ranking performances. The final 

section discusses the need for further research. 

2. Preliminaries 

This section presents the concepts of fuzzy sets [2], intuitionistic fuzzy sets [1], ifpifs-sets [8], and ifpifs-

matrices [9] to be employed in the next sections. Throughout this study, let 𝑈 be a universal set and 𝐸 be a 

parameter set. 

Definition 2.1. [2] Let 𝜇 be a function from 𝐸 to [0,1]. Then, the set  { 𝑥 
𝜇(𝑥) ∶ 𝑥 ∈ 𝐸}, being the graphic of 𝜇, 

is called a fuzzy set over 𝐸.  

Definition 2.2. [1] Let 𝑓 be a function from 𝐸 to [0,1] × [0,1]. Then, the set  {(𝑥, 𝑓(𝑥))| 𝑥 ∈ 𝐸}, being the 

graphic of 𝑓, is called an intuitionistic fuzzy set over 𝐸.  

Here, for all 𝑥 ∈ 𝐸, 𝑓(𝑥) ≔ (𝜇(𝑥), 𝜈(𝑥)) such that 0 ≤ 𝜇(𝑥) + 𝜈(𝑥) ≤ 1. Moreover, 𝜇 and 𝜈 are called 

membership function and non-membership function in an intuitionistic fuzzy set, respectively. Thus, for 

brevity, we represent an intuitionistic fuzzy set over 𝐸 with 𝑓 ≔ { 𝑥𝜈(𝑥)
𝜇(𝑥)

∶ 𝑥 ∈ 𝐸} instead of 𝑓 =

{(𝑥, 𝜇(𝑥), 𝜈(𝑥)) ∶ 𝑥 ∈ 𝐸}. Besides, 𝐼𝐹(𝐸) denotes the set of all the intuitionistic fuzzy sets over 𝐸. For 

convenience, we do not display the elements 𝑥1
0  in an intuitionistic fuzzy set. 

Definition 2.3. [8] Let 𝑓 ∈ 𝐼𝐹(𝐸) and 𝛼 be a function from 𝑓 to 𝐼𝐹(𝑈). Then, the set {( 𝑥𝜈(𝑥)
𝜇(𝑥)

, 𝛼 ( 𝑥𝜈(𝑥)
𝜇(𝑥)

)) 𝑥 ∈

𝐸}, being the graphic of 𝛼, is called an intuitionistic fuzzy parameterized intuitionistic fuzzy soft set (ifpifs-

set) parameterized via 𝐸 over 𝑈 (or briefly over 𝑈). 

In the present study, the set of all the ifpifs-sets over 𝑈 is denoted by 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈). In 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈), since 

the graph(𝛼) and 𝛼 generate each other uniquely, the notations are interchangeable. Therefore, as long as it 

causes no confusion, we denote an ifpifs-set graph(𝛼) by 𝛼. Moreover, for convenience, we do not display the 

elements ( 𝑥1
0 , 0𝑈) in an ifpifs-set. Here, 0𝑈 is the empty intuitionistic fuzzy set over 𝑈.  

Example 2.1. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. Then, 

𝛼 = {( 𝑥10.6
0.3 , { 𝑢10.2

0.6 , 𝑢30.3
0.4 , 𝑢40.5

0.1 }), ( 𝑥21
0 , { 𝑢10.3

0.6 , 𝑢20.8
0 , 𝑢40.4

0.1 }), ( 𝑥40.4
0.4 , { 𝑢10.7

0.2 , 𝑢30
1 , 𝑢40.5

0.5 })} 

is an ifpifs-set over 𝑈. 
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Definition 2.4. [9] Let 𝛼 ∈ 𝐼𝐹𝑃𝐼𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called ifpifs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
 

𝜈(𝑥𝑗)

𝜇(𝑥𝑗) , 𝑖 = 0

𝛼 ( 𝑥𝑗𝜈(𝑥𝑗)

𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0
 

or briefly 𝑎𝑖𝑗 ≔  𝜈𝑖𝑗

𝜇𝑖𝑗
. Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚× 𝑛. 

From now on, as long as it causes no confusion, the membership and non-membership functions of [𝑎𝑖𝑗], 

i.e. 𝜇𝑖𝑗 and 𝜈𝑖𝑗, will be represented by 𝜇𝑖𝑗
𝑎  and 𝜈𝑖𝑗

𝑎 , respectively. Moreover, the set of all the ifpifs-matrices 

parameterized via 𝐸 over 𝑈 is denoted by 𝐼𝐹𝑃𝐼𝐹𝑆𝐸[𝑈]. 

Example 2.2. The ifpifs-matrix of 𝛼 provided in Example 2.1 is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 

 0.6
0.3  1

0  1
0  0.4

0.4

 0.2
0.6  0.3

0.6  1
0  0.7

0.2

 1
0  0.8

0  1
0  1

0

 0.3
0.4  1

0  1
0  0

1

 0.5
0.1  0.4

0.1  1
0  0.5

0.5 ]
 
 
 
 
 
 
 
 

 

Proposition 2.1. [34] Let 𝐼𝐹𝑉([0,1]) be the set of all the intuitionistic fuzzy values and 
𝜇1
𝜈1
,
𝜇2
𝜈2
∈ 𝐼𝐹𝑉([0,1]). 

Then, the relation ≤̃ defined by 

𝜇1
𝜈1
≤̃
𝜇2
𝜈2
⇔ [𝑠1 (

𝜇1
𝜈1
) < 𝑠1 (

𝜇2
𝜈2
) ∨ (𝑠1 (

𝜇1
𝜈1
) = 𝑠1 (

𝜇2
𝜈2
) ∧ 𝑠2 (

𝜇1
𝜈1
) ≤ 𝑠2 (

𝜇2
𝜈2
))] 

is a linear ordering relation over 𝐼𝐹𝑉([0,1]). Here, 𝑠1 (
𝜇1
𝜈1
) ≔ 𝜇1 − 𝜈1 and 𝑠2 (

𝜇1
𝜈1
) ≔ 𝜇1 + 𝜈1. Moreover, 

𝑠1 (
𝜇1
𝜈1
) and 𝑠2 (

𝜇1
𝜈1
) are called score value and accuracy value of intuitionistic fuzzy value 

𝜇1
𝜈1

, respectively. 

3. Generalisations of SDM Methods 

This section generalises the SDM methods [10,11,15,16,20] employed a single fpfs-matrix and have been 

constructed with fpfs-matrices [10]. Hereinafter, 𝐼𝑛 indicates the set of all unsigned integer numbers from 1 to 

𝑛, i.e., 𝐼𝑛 = {1,2,⋯ , 𝑛}. Similarly, 𝐼𝑛
∗  denotes the set of all nonnegative numbers from 0 to 𝑛, i.e., 𝐼𝑛

∗ =

{0,1,2,⋯ , 𝑛}. Moreover, the variables (inputs) 𝑅, 𝑤, 𝜆, 𝜆1, and 𝜆2 are used in algorithms. Here, 𝑅 is a set of 

indices, 𝑤 is an intuitionistic fuzzy valued row matrix, 𝜆 ∈ (0,1], and 𝜆1, 𝜆2 ∈ [0,1]. Furthermore, the notation 

of each algorithm is created by inserting the first letter of the word “intuitionistic” at the beginning of the 

algorithm notation proposed in [16].  
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Algorithm 3.1. iMBR01 

Step 1. Construct ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑘
1 ]

(𝑚−1)×(𝑚−1)
 and [𝑏𝑖𝑘

2 ]
(𝑚−1)×(𝑚−1)

 defined by 

𝑏𝑖𝑘
1 ≔∑𝜇0𝑗

𝑎 𝜒(𝜇𝑖𝑗
𝑎 , 𝜇𝑘𝑗

𝑎 )

𝑛

𝑗=1

    and    𝑏𝑖𝑘
2 ≔∑𝜈0𝑗

𝑎 𝜓(𝜈𝑖𝑗
𝑎 , 𝜈𝑘𝑗

𝑎 )

𝑛

𝑗=1

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1, 

𝜒(𝜇𝑖𝑗
𝑎 , 𝜇𝑘𝑗

𝑎 ) ≔ {
1, 𝜇𝑖𝑗

𝑎 ≥ 𝜇𝑘𝑗
𝑎

0, otherwise
   and     𝜓(𝜈𝑖𝑗

𝑎 , 𝜈𝑘𝑗
𝑎 ) ≔ {

0, 𝜈𝑖𝑗
𝑎 ≤ 𝜈𝑘𝑗

𝑎

1, otherwise
 

Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 

𝑐𝑖1 ≔ ∑(𝑏𝑖𝑘
1 − 𝑏𝑘𝑖

1 )

𝑚−1

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖1](𝑚−1)×1 

𝑑𝑖1 ≔ ∑(𝑏𝑖𝑘
2 − 𝑏𝑘𝑖

2 )

𝑚−1

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑐𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

and  

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑐𝑖1 + |𝑑𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

Step 6. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

Algorithm 3.2. isMBR01 

Step 1. Construct ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖1](𝑚−1)×1 and [𝑐𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔ ∑∑𝜇0𝑗
𝑎 sgn(𝜇𝑖𝑗

𝑎 − 𝜇𝑘𝑗
𝑎 )

𝑛

𝑗=1

𝑚−1

𝑘=1

    and    𝑐𝑖1 ≔ ∑∑𝜈0𝑗
𝑎 sgn(𝜈𝑖𝑗

𝑎 − 𝜈𝑘𝑗
𝑎 )

𝑛

𝑗=1

𝑚−1

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑏𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

and  



92 

 

Journal of New Theory 36 (2021) 88-116 / Generalisations of SDM Methods in fpfs-Matrices Spaces … 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑏𝑖1 + |𝑐𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

Step 4. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.3. iMBR01/2 

Step 1. Construct ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain  [𝑏𝑖𝑘
1 ]

(𝑚−1)×(𝑚−1)
 and [𝑏𝑖𝑘

2 ]
(𝑚−1)×(𝑚−1)

 defined by 

𝑏𝑖𝑘
1 ≔∑𝜇0𝑗

𝑎 𝜒(𝜇𝑖𝑗
𝑎 , 𝜇𝑘𝑗

𝑎 )

𝑛

𝑗=1

    and    𝑏𝑖𝑘
2 ≔∑𝜈0𝑗

𝑎 𝜓(𝜈𝑖𝑗
𝑎 , 𝜈𝑘𝑗

𝑎 )

𝑛

𝑗=1

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 and 

 
𝜓(𝜈𝑖𝑗

𝑎 ,𝜈𝑘𝑗
𝑎 )

𝜒(𝜇𝑖𝑗
𝑎 ,𝜇𝑘𝑗

𝑎 )
≔ {

,0
1 𝜇𝑖𝑗

𝑎 ≥ 𝜇𝑘𝑗
𝑎  ve 𝜈𝑖𝑗

𝑎 ≤ 𝜈𝑘𝑗
𝑎

,1
0 otherwise

 

Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 

𝑐𝑖1 ≔ ∑(𝑏𝑖𝑘
1 − 𝑏𝑘𝑖

1 )

𝑚−1

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖1](𝑚−1)×1 

𝑑𝑖1 ≔ ∑(𝑏𝑖𝑘
2 − 𝑏𝑘𝑖

2 )

𝑚−1

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑐𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

and  

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑐𝑖1 + |𝑑𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

Step 6. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.4. iMRB02(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖1](𝑚−1)×1 and [𝑐𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔∑𝜇0𝑗
𝑎 𝜇𝑖𝑗

𝑎

𝑗∈𝑅

    and    𝑐𝑖1 ≔∑𝜈0𝑗
𝑎 𝜈𝑖𝑗

𝑎

𝑗∈𝑅

 

such that 𝑖 ∈ 𝐼𝑚−1 
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Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑏𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

and 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑏𝑖1 + |𝑐𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

Step 5. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.5. iKM11(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖1](𝑚−1)×1 and [𝑐𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔∏𝜇0𝑗
𝑎 𝜇𝑖𝑗

𝑎

𝑗∈𝑅

    and   𝑐𝑖1 ≔∏𝜈0𝑗
𝑎 𝜈𝑖𝑗

𝑎

𝑗∈𝑅

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑏𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

and 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑏𝑖1 + |𝑐𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

Step 5. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

Algorithm 3.6. iCCE11 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 𝐾 = {𝑗 ∶  𝜇0𝑗

𝑎 ≠ 0 ∨

𝜈0𝑗
𝑎 ≠ 1}, 

𝜇𝑖1
𝑠 ≔ {

1

|𝐾|
∑𝜇0𝑗

𝑎 𝜇𝑖𝑗
𝑎

𝑛

𝑗=1

, |𝐾| ≠ 0

0, |𝐾| = 0

    and    𝜈𝑖1
𝑠 ≔ {

1

|𝐾|
∑𝜈0𝑗

𝑎 𝜈𝑖𝑗
𝑎

𝑛

𝑗=1

, |𝐾| ≠ 0

0, |𝐾| = 0

 

Here, |𝐾| denotes the cardinality of 𝐾. 
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Step 3. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠

𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.7. iYE12 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 ≔

{
 
 

 
 1

∑ 𝜇0𝑗
𝑎𝑛

𝑗=1

∑𝜇0𝑗
𝑎 𝜇𝑖𝑗

𝑎

𝑛

𝑗=1

, ∑𝜇0𝑗
𝑎

𝑛

𝑗=1

≠ 0

0, ∑𝜇0𝑗
𝑎

𝑛

𝑗=1

= 0

    and    𝜈𝑖1
𝑠 ≔

{
 
 

 
 1

∑ 𝜈0𝑗
𝑎𝑛

𝑗=1

∑𝜈0𝑗
𝑎 𝜈𝑖𝑗

𝑎

𝑛

𝑗=1

, ∑𝜈0𝑗
𝑎

𝑛

𝑗=1

≠ 0

0, ∑𝜈0𝑗
𝑎

𝑛

𝑗=1

= 0

 

Step 3. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠

𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

Algorithm 3.8. iCCE10 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 ≔

1

𝑛
∑𝜇0𝑗

𝑎 𝜇𝑖𝑗
𝑎

𝑛

𝑗=1

    and    𝜈𝑖1
𝑠 ≔

1

𝑛
∑𝜈0𝑗

𝑎 𝜈𝑖𝑗
𝑎

𝑛

𝑗=1

 

Step 3. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.9. iCEC11 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏1𝑗]1×𝑛 defined by 𝑏1𝑗 ≔
𝜇1𝑗
𝑏

𝜈1𝑗
𝑏  such that 𝑗 ∈ 𝐼𝑛, 

𝜇1𝑗
𝑏 ≔

𝜇0𝑗
𝑎

𝑚 − 1
∑ 𝜇𝑖𝑗

𝑎

𝑚−1

𝑖=1

    and    𝜈1𝑗
𝑏 ≔

𝜈0𝑗
𝑎

𝑚 − 1
∑ 𝜈𝑖𝑗

𝑎

𝑚−1

𝑖=1

 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 ≔

1

𝑛
∑𝜇𝑖𝑗

𝑎 𝜇1𝑗
𝑏

𝑛

𝑗=1

    and    𝜈𝑖1
𝑠 ≔

1

𝑛
∑𝜈𝑖𝑗

𝑎𝜈1𝑗
𝑏

𝑛

𝑗=1

 

Step 4. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.10. iM11 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑘
1 ]

(𝑚−1)×(𝑚−1)
 and [𝑏𝑖𝑘

2 ]
(𝑚−1)×(𝑚−1)

 defined by 

𝑏𝑖𝑘
1 ≔∑𝜇0𝑗

𝑎 (𝜇𝑖𝑗
𝑎 − 𝜇𝑘𝑗

𝑎 )

𝑛

𝑗=1

    and    𝑏𝑖𝑘
2 ≔∑𝜈0𝑗

𝑎 (𝜈𝑖𝑗
𝑎 − 𝜈𝑘𝑗

𝑎 )

𝑛

𝑗=1

 

such that 𝑖, 𝑘 ∈ 𝐼𝑚−1 
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Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 ve [𝑑𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 = ∑ 𝑏𝑖𝑘
1

𝑚−1

𝑘=1

    and    𝑑𝑖1 ≔ ∑ 𝑏𝑖𝑘
2

𝑚−1

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑐𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

and 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑐𝑖1 + |𝑑𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑐𝑘1 + |𝑑𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑐𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑐𝑘1 + |𝑑𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑐𝑘1}| = 0

 

Step 5. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈}  

Algorithm 3.11. iKKT13 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗](𝑛+1)×𝑛
  

Step 2. Obtain [𝑏𝑖1]𝑛×1 defined by 𝑏𝑖1 ≔
𝜇𝑖1
𝑏

𝜈𝑖1
𝑏  such that 𝑖 ∈ 𝐼𝑛, 

𝜇𝑖1
𝑏 ≔

1

𝑛
∑𝜇𝑖𝑗

𝑎

𝑛

𝑗=1

    and    𝜈𝑖1
𝑏 ≔

1

𝑛
∑𝜈𝑖𝑗

𝑏

𝑛

𝑗=1

 

Step 3. Obtain the score matrix [𝑠𝑖1]𝑛×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑛, 

𝜇𝑖1
𝑠 ≔ 𝜇0𝑖

𝑎 𝜇𝑖1
𝑏     and    𝜈𝑖1

𝑠 ≔ 𝜈0𝑖
𝑎 + 𝜈𝑖1

𝑏 − 𝜈0𝑖
𝑎 𝜈𝑖1

𝑏  

Step 4. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

iKKT13 is used in decision-making problems containing the same number of alternatives and parameters. 

Algorithm 3.12. iFJLL10(𝑹,𝒘) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Construct an intuitionistic fuzzy valued row matrix [𝑤1𝑗]1×𝑛 defined by 𝑤1𝑗 ≔
𝜇1𝑗
𝜈1𝑗

 such that 

𝜇1𝑗, 𝜈1𝑗 ∈ [0,1] and 0 ≤ 𝜇1𝑗 + 𝜈1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔ {

1
0
, 𝜇𝑖𝑗

𝑎 ≥ 𝜇1𝑗 and 𝜈𝑖𝑗
𝑎 ≤ 𝜈1𝑗

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛  
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Algorithm 3.13. iFJLL10/2(𝑹,𝒘) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Construct an intuitionistic fuzzy valued row matrix [𝑤1𝑗]1×𝑛
 defined by 𝑤1𝑗 ≔

𝜇1𝑗
𝜈1𝑗

 such that 

𝜇1𝑗, 𝜈1𝑗 ∈ [0,1] and 0 ≤ 𝜇1𝑗 + 𝜈1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛
 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔

{
  
 

  
 
𝜇0𝑗
𝑎

 𝜈0𝑗
𝑎 , 𝑖 = 0

1
0
, 𝑖 ≠ 0, 𝜇𝑖𝑗

𝑎 ≥ 𝜇1𝑗, and 𝜈𝑖𝑗
𝑎 ≤ 𝜈1𝑗

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.14. iFJLL10/3(𝑹,𝒘) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Construct an intuitionistic fuzzy valued row matrix [𝑤1𝑗]1×𝑛
 defined by 𝑤1𝑗 ≔

𝜇1𝑗
𝜈1𝑗

 such that 

𝜇1𝑗, 𝜈1𝑗 ∈ [0,1] and 0 ≤ 𝜇1𝑗 + 𝜈1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔ {

1
0
, 𝜇𝑖𝑗

𝑎 ≥ max
𝑘∈𝐼𝑛

𝜇1𝑘  and 𝜈𝑖𝑘
𝑎 ≤ min

𝑘∈𝐼𝑛
𝜈1𝑘

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.15. iFJLL10/4(𝑹,𝒘) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Construct an intuitionistic fuzzy valued row matrix [𝑤1𝑗]1×𝑛 defined by 𝑤1𝑗 ≔
𝜇1𝑗
𝜈1𝑗

 such that 

𝜇1𝑗, 𝜈1𝑗 ∈ [0,1] and 0 ≤ 𝜇1𝑗 + 𝜈1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔

{
  
 

  
 
𝜇0𝑗
𝑎

 𝜈0𝑗
𝑎 , 𝑖 = 0

1
0
, 𝑖 ≠ 0, 𝜇𝑖𝑗

𝑎 ≥ max
𝑘∈𝐼𝑛

𝜇1𝑘 , and 𝜈𝑖𝑗
𝑎 ≤ min

𝑘∈𝐼𝑛
𝜈1𝑘

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 4. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.16. iFJLL10m(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 
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𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔

{
 
 

 
 1
0
, 𝜇𝑖𝑗

𝑎 ≥
1

𝑚 − 1
∑ 𝜇𝑘𝑗

𝑎

𝑚−1

𝑘=1

 and 𝜈𝑖𝑗
𝑎 ≤

1

𝑚 − 1
∑ 𝜈𝑘𝑗

𝑎

𝑚−1

𝑘=1

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.17. iFJLL10/2m(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔

{
 
 
 

 
 
 
𝜇0𝑗
𝑎

 𝜈0𝑗
𝑎 , 𝑖 = 0

1
0
, 𝑖 ≠ 0, 𝜇𝑖𝑗

𝑎 ≥
1

𝑚 − 1
∑ 𝜇𝑘𝑗

𝑎

𝑚−1

𝑘=1

, and 𝜈𝑖𝑗
𝑎 ≤

1

𝑚 − 1
∑ 𝜈𝑘𝑗

𝑎

𝑚−1

𝑘=1

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.18. iFJLL10max(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛
 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔ {

1
0
, 𝜇𝑖𝑗

𝑎 ≥ max
𝑘∈𝐼𝑚−1

𝜇𝑘𝑗
𝑎  and 𝜈𝑖𝑗

𝑎 ≤ min
𝑘∈𝐼𝑚−1

𝜈𝑘𝑗
𝑎

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.19. iFJLL10/2max(𝑹) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝜇𝑖𝑗
𝑏

 𝜈𝑖𝑗
𝑏 ≔

{
  
 

  
 
𝜇0𝑗
𝑎

 𝜈0𝑗
𝑎 , 𝑖 = 0

1
0
, 𝑖 ≠ 0, 𝜇𝑖𝑗

𝑎 ≥ max
𝑘∈𝐼𝑚−1

𝜇𝑘𝑗
𝑎 , and 𝜈𝑖𝑗

𝑎 ≤ min
𝑘∈𝐼𝑚−1

𝜈𝑘𝑗
𝑎

0
1
, otherwise

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply iMRB02(𝑅) to [𝑏𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.20. iF10(𝝀) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏1𝑗]1×𝑛 defined by 𝑏1𝑗 ≔
𝜇1𝑗
𝑏

 𝜈1𝑗
𝑏  such that 𝑖 ∈ 𝐼𝑚−1, 𝑗 ∈ 𝐼𝑛, 𝛿𝑖 ≔ 𝑓 (

𝑖

𝑚−1
) − 𝑓 (

𝑖−1

𝑚−1
), 
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𝜇1𝑗
𝑏 ≔ ∑ 𝜇𝑗

𝑎𝑖𝛿𝑖

𝑚−1

𝑖=1

    and    𝜈1𝑗
𝑏 ≔ ∑ 𝜈𝑗

𝑎𝑖𝛿𝑖

𝑚−1

𝑖=1

 

Here, for 𝜆 ∈ (0,1], 𝑓 is a function defined by 𝑓(𝑥) = 𝑥
1−𝜆

𝜆 . Moreover, 𝜇𝑗
𝑎𝑖 denotes 𝑖𝑡ℎ largest membership 

degree of the elements with index nonzero in 𝑗𝑡ℎ column of [𝑎𝑖𝑗]. Similarly, 𝜈𝑗
𝑎𝑖 indicates 𝑖𝑡ℎ smallest non-

membership degree of the elements with index nonzero in 𝑗𝑡ℎ column of [𝑎𝑖𝑗]. 

Step 3. Obtain [𝑐𝑖𝑗]𝑚×𝑛
 defined by 𝑐𝑖𝑗 ≔

𝜇𝑖𝑗
𝑐

 𝜈𝑖𝑗
𝑐  such that 𝑖 ∈ 𝐼𝑚−1

∗ , 𝑗 ∈ 𝐼𝑛, and 

𝜇𝑖𝑗
𝑐

 𝜈𝑖𝑗
𝑐 ≔

{
  
 

  
 
𝜇0𝑗
𝑎

 𝜈0𝑗
𝑎 , 𝑖 = 0

1
0
, 𝑖 ≠ 0, 𝜇𝑖𝑗

𝑎 ≥ 𝜇1𝑗
𝑏 , and 𝜈𝑖𝑗

𝑎 ≤ 𝜈1𝑗
𝑏

0
1
, otherwise

 

Step 4. Apply iMRB02(𝑅) to [𝑐𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 

Algorithm 3.21. iKSM10 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 and [𝑐𝑖𝑗]𝑚×𝑛 defined by  

𝑏𝑖𝑗 ≔

{
 
 
 

 
 
 1

𝑛 − 1
(1 −

𝑏1𝑗
∗

∑ 𝑏1𝑘
∗𝑛

𝑘=1

) , 𝑖 = 0  and ∑ 𝑏1𝑘
∗

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑖 = 0  and ∑ 𝑏1𝑘

∗

𝑛

𝑘=1

= 0

𝜇𝑖𝑗
𝑎 , 𝑖 ≠ 0

 

and 

𝑐𝑖𝑗 ≔

{
 
 
 

 
 
 1

𝑛 − 1
(1 −

𝑐1𝑗
∗

∑ 𝑐1𝑘
∗𝑛

𝑘=1

) , 𝑖 = 0  and ∑ 𝑐1𝑘
∗

𝑛

𝑘=1

≠ 0

1

𝑛
, 𝑖 = 0  and ∑ 𝑐1𝑘

∗

𝑛

𝑘=1

= 0

𝜈𝑖𝑗
𝑎 , 𝑖 ≠ 0

 

𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Here,  

𝑏1𝑗
∗ ≔

{
 
 
 
 

 
 
 
 1

𝑚 − 1
∑(𝜇02

𝑎 𝜇𝑖2
𝑎 − 𝜇01

𝑎 𝜇𝑖1
𝑎 )

𝑚−1

𝑖=1

, 𝑗 = 1

1

2(𝑚 − 1)
∑(𝜇0(𝑗+1)

𝑎 𝜇𝑖(𝑗+1)
𝑎 − 𝜇0(𝑗−1)

𝑎 𝜇𝑖(𝑗−1)
𝑎 )

𝑚−1

𝑖=1

, 𝑗 ∈ {2,3, … , 𝑛 − 1}

1

𝑚 − 1
∑(𝜇0𝑛

𝑎 𝜇𝑖𝑛
𝑎 − 𝜇0(𝑛−1)

𝑎 𝜇𝑖(𝑛−1)
𝑎 )

𝑚−1

𝑖=1

, 𝑗 = 𝑛

 

and 
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𝑐1𝑗
∗ ≔

{
 
 
 
 

 
 
 
 1

𝑚 − 1
∑(𝜈02

𝑎 𝜈𝑖2
𝑎 − 𝜈01

𝑎 𝜈𝑖1
𝑎 )

𝑚−1

𝑖=1

, 𝑗 = 1

1

2(𝑚 − 1)
∑(𝜈0(𝑗+1)

𝑎 𝜈𝑖(𝑗+1)
𝑎 − 𝜈0(𝑗−1)

𝑎 𝜈𝑖(𝑗−1)
𝑎 )

𝑚−1

𝑖=1

, 𝑗 ∈ {2,3,… , 𝑛 − 1}

1

𝑚 − 1
∑(𝜈0𝑛

𝑎 𝜈𝑖𝑛
𝑎 − 𝜈0(𝑛−1)

𝑎 𝜈𝑖(𝑛−1)
𝑎 )

𝑚−1

𝑖=1

, 𝑗 = 𝑛

 

such that 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑑𝑖𝑗]𝑚×𝑛
 defined by 𝑑𝑖𝑗 ≔

𝜇𝑖𝑗
𝑑

𝜈𝑖𝑗
𝑑  such that 𝑖 ∈ 𝐼𝑚−1

∗ , 𝑗 ∈ 𝐼𝑛,  

𝜇𝑖𝑗
𝑑 =

{
 
 

 
 𝑏𝑖𝑗 + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘𝑗}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘𝑗}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗}| = 0

 

and 

𝜈𝑖𝑗
𝑑 =

{
 
 

 
 
1 −

𝑏𝑖𝑗 + |𝑐𝑖𝑗| + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘𝑗}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗 + |𝑐𝑘𝑗|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘𝑗}| = 0

 

Step 4. Apply iM11 to [𝑑𝑖𝑗]  

Algorithm 3.22. iKWW11(𝝀𝟏, 𝝀𝟐) 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Apply iMBR01 and iMRB02(𝑅) to [𝑎𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 and obtain the score matrices [𝑠𝑖1](𝑚−1)×1 

and [�̃�𝑖1](𝑚−1)×1, respectively 

Step 3. Obtain [𝑏𝑖1
1 ]

(𝑚−1)×1
, [𝑏𝑖1

2 ]
(𝑚−1)×1

, [𝑐𝑖1
1 ]

(𝑚−1)×1
, and [𝑐𝑖1

2 ]
(𝑚−1)×1

 defined by 

𝑏𝑖1
1 ≔ max

𝑘∈𝐼𝑚−1
𝜇𝑘1
𝑠 − 𝜇𝑖1

𝑠     and   𝑏𝑖1
2 ≔ | min

𝑘∈𝐼𝑚−1
𝜈𝑘1
𝑠 − 𝜈𝑖1

𝑠 | 

and 

𝑐𝑖1
1 ≔ max

𝑘∈𝐼𝑚−1
𝜇𝑘1
�̃� − 𝜇𝑖1

�̃�     and    𝑐𝑖1
2 ≔ | min

𝑘∈𝐼𝑚−1
𝜈𝑘1
�̃� − 𝜈𝑖1

�̃� | 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 4. For 𝜆1 ∈ [0,1], obtain [𝑑𝑖1
1 ]

(𝑚−1)×1
, [𝑑𝑖1

2 ]
(𝑚−1)×1

, [𝑒𝑖1
1 ]

(𝑚−1)×1
, and [𝑒𝑖1

2 ]
(𝑚−1)×1

defined by 

𝑑𝑖1
1 ≔

{
 
 

 
 min
𝑘∈𝐼𝑚−1

{min{𝑏𝑘1
1 , 𝑐𝑘1

1 }} + 𝜆1 max
𝑘∈𝐼𝑚−1

{max{𝑏𝑘1
1 , 𝑐𝑘1

1 }}

𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }}

, 𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }} ≠ 0

1, 𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }} = 0

 

𝑑𝑖1
2 ≔

{
 
 

 
 
1 −

min
𝑘∈𝐼𝑚−1

{min{𝑏𝑘1
2 , 𝑐𝑘1

2 }} + 𝜆1 max
𝑘∈𝐼𝑚−1

{max{𝑏𝑘1
2 , 𝑐𝑘1

2 }}

𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }}

, 𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }} ≠ 0

0, 𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }} = 0
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𝑒𝑖1
1 ≔

{
 
 

 
 
min
𝑘∈𝐼𝑚−1

{min{𝑏𝑘1
1 , 𝑐𝑘1

1 }} + 𝜆1 max
𝑘∈𝐼𝑚−1

{max{𝑏𝑘1
1 , 𝑐𝑘1

1 }}

𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }}

, 𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }} ≠ 0

1, 𝑏𝑖1
1 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

1 , 𝑐𝑘1
1 }} = 0

 

and 

𝑒𝑖1
2 ≔

{
 
 

 
 
1 −

min
𝑘∈𝐼𝑚−1

{min{𝑏𝑘1
2 , 𝑐𝑘1

2 }} + 𝜆1 max
𝑘∈𝐼𝑚−1

{max{𝑏𝑘1
2 , 𝑐𝑘1

2 }}

𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }}

, 𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }} ≠ 0

0, 𝑐𝑖1
2 + 𝜆1 max

𝑘∈𝐼𝑚−1
{max{𝑏𝑘1

2 , 𝑐𝑘1
2 }} = 0

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. For 𝜆2 ∈ [0,1], obtain [𝑓𝑖1
1]
(𝑚−1)×1

 and [𝑓𝑖1
2]
(𝑚−1)×1

 defined by  

𝑓𝑖1
1 ≔ 𝜆2𝑑𝑖1

1 + (1 − 𝜆2)𝑒𝑖1
1     and    𝑓𝑖1

2 ≔ 𝜆2𝑑𝑖1
2 + (1 − 𝜆2)𝑒𝑖1

2  

such that 𝑖 ∈ 𝐼𝑚−1 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑓𝑖1

1 + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }|

max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }|

, max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }| = 0

 

and 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑓𝑖1
1 + |𝑓𝑖1

2| + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }|

max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }|

, max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 + |𝑓𝑘1

2 |} + | min
𝑘∈𝐼𝑚−1

{𝑓𝑘1
1 }| = 0

 

Step 7. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

Algorithm 3.23. iSM11 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏1𝑗
1 ]

1×𝑛
 and [𝑏1𝑗

2 ]
1×𝑛

 defined by 

𝑏1𝑗
1 ≔ max

𝑖∈𝐼𝑚−1
{𝜇0𝑗
𝑎 𝜇𝑖𝑗

𝑎 }     and    𝑏1𝑗
2 ≔ min

𝑖∈𝐼𝑚−1
{𝜈0𝑗
𝑎 𝜈𝑖𝑗

𝑎 } 

such that 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain  [𝑐𝑖1
1 ]

(𝑚−1)×1
 and [𝑐𝑖1

2 ]
(𝑚−1)×1

 defined by  

𝑐𝑖1
1 ≔ min

𝑗∈𝐼𝑛
{max{1 − 𝜇0𝑗

𝑎 𝜇𝑖𝑗
𝑎 , 𝑏1𝑗

1 }}     and   𝑐𝑖1
2 ≔ max

𝑗∈𝐼𝑛
{min{1 − 𝜈0𝑗

𝑎 𝜈𝑖𝑗
𝑎 , 𝑏1𝑗

2 }} 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖1
1 ]

(𝑚−1)×1
 and [𝑑𝑖1

2 ]
(𝑚−1)×1

 defined by 

𝑑𝑖1
1 ≔ max

𝑗∈𝐼𝑛
{min{𝜇0𝑗

𝑎 𝜇𝑖𝑗
𝑎 , 𝑏1𝑗

1 }}     and    𝑑𝑖1
2 ≔ min

𝑗∈𝐼𝑛
{max{𝜈0𝑗

𝑎 𝜈𝑖𝑗
𝑎 , 𝑏1𝑗

2 }}  

such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1 

𝜇𝑖1
𝑠 ≔ 𝑐𝑖1

1 + 𝑑𝑖1
1 − 𝑐𝑖1

1 𝑑𝑖1
1     and    𝜈𝑖1

𝑠 ≔ 𝑐𝑖1
2 𝑑𝑖1

2   

Step 6. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 
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Algorithm 3.24. iPEM/iEC20 

Step 1. Construct an ifpifs-matrix [𝑎𝑖𝑗]𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖1](𝑚−1)×1 and [𝑐𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔∑[(
1

𝑚 − 1
∑ 𝜇𝑘𝑗

𝑎

𝑚−1

𝑘=1

)(
1

𝑛
∑𝜇𝑖𝑡

𝑎

𝑛

𝑡=1

)𝜇0𝑗
𝑎 𝜇𝑖𝑗

𝑎 ]

𝑛

𝑗=1

    and    𝑐𝑖1 ≔∑[(
1

𝑚 − 1
∑ 𝜈𝑘𝑗

𝑎

𝑚−1

𝑘=1

)(
1

𝑛
∑𝜈𝑖𝑡

𝑎

𝑛

𝑡=1

)𝜈0𝑗
𝑎 𝜈𝑖𝑗

𝑎 ]

𝑛

𝑗=1

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 3. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔
𝜇𝑖1
𝑠

𝜈𝑖1
𝑠  such that 𝑖 ∈ 𝐼𝑚−1, 

𝜇𝑖1
𝑠 =

{
 
 

 
 𝑏𝑖1 + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

1, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

and 

𝜈𝑖1
𝑠 =

{
 
 

 
 
1 −

𝑏𝑖1 + |𝑐𝑖1| + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|

max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}|
, max

𝑘∈𝐼𝑚−1
{𝑏𝑘1 + |𝑐𝑘1|} + | min

𝑘∈𝐼𝑚−1
{𝑏𝑘1}| ≠ 0

0, max
𝑘∈𝐼𝑚−1

{𝑏𝑘1 + |𝑐𝑘1|} + | min
𝑘∈𝐼𝑚−1

{𝑏𝑘1}| = 0

 

Step 4. Obtain the decision set { 𝑢𝑘𝜈𝑘1
𝑠
𝜇𝑘1
𝑠

|𝑢𝑘 ∈ 𝑈} 

4. Proposed Test Cases for Generalised SDM Methods 

This section proposes five new test cases by availing of the test cases provided in [13] to compare the decision-

making performances of the generalised SDM methods. Each test case generating the same ranking order of 

the alternatives without using an SDM method consists of 𝑡 ifpifs-matrices [𝑎𝑖𝑗
1 ], [𝑎𝑖𝑗

2 ], …, [𝑎𝑖𝑗
𝑡 ], with the order 

of 𝑚 × 𝑛. If an SDM method produces the same ranking order of the alternatives presented in a given test case, 

it means that the method is successful therein. Moreover, Proposition 2.1 of this study is utilised to rank the 

alternatives in the proposed test cases. Besides, because the numbers of the alternatives and the parameters are 

required to be equal in Test Case 3 and Test Case 4, we utilise equal numbers of alternatives and parameters 

in the remaining test cases as well. Therefore, for all the test cases, let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} be the set of 

alternatives and 𝐸 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the set of parameters. 

4.1. Test Case 1 

Test case 1 constructs ifpifs-matrices [𝑎𝑖𝑗
1 ]

(𝑛+1)×𝑛
, [𝑎𝑖𝑗

2 ]
(𝑛+1)×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]
(𝑛+1)×𝑛

 such that, 𝜇01
𝑎𝑘 = 𝜇02

𝑎𝑘 = ⋯ =

𝜇0𝑛
𝑎𝑘,  𝜈01

𝑎𝑘 = 𝜈02
𝑎𝑘 = ⋯ = 𝜈0𝑛

𝑎𝑘, 𝜇1𝑗
𝑎𝑘 < 𝜇2𝑗

𝑎𝑘 < ⋯ < 𝜇𝑛𝑗
𝑎𝑘, and 𝜈𝑛𝑗

𝑎𝑘 < ⋯ < 𝜈2𝑗
𝑎𝑘 < 𝜈1𝑗

𝑎𝑘, for all 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛. 

Therefore, 

𝜇0𝑗
𝑎𝑘𝜇1𝑗

𝑎𝑘 − 𝜈0𝑗
𝑎𝑘𝜈1𝑗

𝑎𝑘 < 𝜇0𝑗
𝑎𝑘𝜇2𝑗

𝑎𝑘 − 𝜈0𝑗
𝑎𝑘𝜈2𝑗

𝑎𝑘 < ⋯ < 𝜇0𝑗
𝑎𝑘𝜇𝑛𝑗

𝑎𝑘 − 𝜈0𝑗
𝑎𝑘𝜈𝑛𝑗

𝑎𝑘 

for all 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛. For each ifpifs-matrix herein, the ranking order of alternatives is 𝑢1 ≺ 𝑢2 ≺ ⋯ ≺ 𝑢𝑛.  
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4.2. Test Case 2 

Test case 2 constructs ifpifs-matrices [𝑏𝑖𝑗
1 ]
(𝑛+1)×𝑛

, [𝑏𝑖𝑗
2 ]
(𝑛+1)×𝑛

, …, [𝑏𝑖𝑗
𝑡 ]
(𝑛+1)×𝑛

 such that, 𝜇01
𝑏𝑘 = 𝜇02

𝑏𝑘 = ⋯ =

𝜇0𝑛
𝑏𝑘 ,  𝜈01

𝑏𝑘 = 𝜈02
𝑏𝑘 = ⋯ = 𝜈0𝑛

𝑏𝑘, 𝜇𝑛𝑗
𝑏𝑘 < ⋯ < 𝜇2𝑗

𝑏𝑘 < 𝜇1𝑗
𝑏𝑘, and 𝜈1𝑗

𝑏𝑘 < 𝜈2𝑗
𝑏𝑘 < ⋯ < 𝜈𝑛𝑗

𝑏𝑘, for all 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛. 

Therefore,  

𝜇0𝑗
𝑏𝑘𝜇𝑛𝑗

𝑏𝑘 − 𝜈0𝑗
𝑏𝑘𝜈𝑛𝑗

𝑏𝑘 < ⋯ < 𝜇0𝑗
𝑏𝑘𝜇2𝑗

𝑏𝑘 − 𝜈0𝑗
𝑏𝑘𝜈2𝑗

𝑏𝑘 < 𝜇0𝑗
𝑏𝑘𝜇1𝑗

𝑏𝑘 − 𝜈0𝑗
𝑏𝑘𝜈1𝑗

𝑏𝑘 

for all 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛. For each ifpifs-matrix herein, the ranking order of alternatives is 𝑢𝑛 ≺ ⋯ ≺ 𝑢2 ≺ 𝑢1. 

4.3. Test Case 3 

Test case 3 constructs ifpifs-matrices [𝑐𝑖𝑗
1 ]
(𝑛+1)×𝑛

, [𝑐𝑖𝑗
2 ]
(𝑛+1)×𝑛

, …, [𝑐𝑖𝑗
𝑡 ]
(𝑛+1)×𝑛

 such that for all 𝑖, 𝑗 ∈ 𝐼𝑛 and 

𝑘 ∈ 𝐼𝑡, 𝜇01
𝑐𝑘 < 𝜇02

𝑐𝑘 < ⋯ < 𝜇0𝑛
𝑐𝑘  and  𝜈0𝑛

𝑐𝑘 < ⋯ < 𝜈02
𝑐𝑘 < 𝜈01

𝑐𝑘, 
𝜇𝑖𝑖
𝑐𝑘

𝜈𝑖𝑖
𝑐𝑘
= 𝜆𝜀 such that 𝜆, 𝜀 ∈ [0,1] and 𝜆 + 𝜀 ≤ 1, and 

if 𝑖 ≠ 𝑗, then 
𝜇𝑖𝑗
𝑐𝑘

𝜈𝑖𝑗
𝑐𝑘
= 0
1

. Therefore,  

𝜇01
𝑐𝑘𝜇11

𝑐𝑘 − 𝜈01
𝑐𝑘𝜈11

𝑐𝑘 < 𝜇02
𝑐𝑘𝜇22

𝑐𝑘 − 𝜈02
𝑐𝑘𝜈22

𝑐𝑘 < ⋯ < 𝜇0𝑛
𝑐𝑘𝜇𝑛𝑛

𝑐𝑘 − 𝜈0𝑛
𝑐𝑘𝜈𝑛𝑛

𝑐𝑘  

and if 𝑖 ≠  𝑗, then 𝜇0𝑗
𝑐𝑘𝜇𝑖𝑗

𝑐𝑘 − 𝜈0𝑗
𝑐𝑘𝜈𝑖𝑗

𝑐𝑘 = 0 − 𝜈0𝑗
𝑐𝑘 = −𝜈0𝑗

𝑐𝑘, for all 𝑖, 𝑗 ∈ 𝐼𝑛 and 𝑘 ∈ 𝐼𝑡. For each ifpifs-matrix 

herein, the ranking order of alternatives is 𝑢1 ≺ 𝑢2 ≺ ⋯ ≺ 𝑢𝑛. 

4.4. Test Case 4 

Test case 4 constructs ifpifs-matrices [𝑑𝑖𝑗
1 ]

(𝑛+1)×𝑛
, [𝑑𝑖𝑗

2 ]
(𝑛+1)×𝑛

, …, [𝑑𝑖𝑗
𝑡 ]
(𝑛+1)×𝑛

 such that for all 𝑖, 𝑗 ∈ 𝐼𝑛 and 

𝑘 ∈ 𝐼𝑡, 𝜇0𝑛
𝑑𝑘 < ⋯ < 𝜇02

𝑑𝑘 < 𝜇01
𝑑𝑘 and  𝜈01

𝑑𝑘 < 𝜈02
𝑑𝑘 < ⋯ < 𝜈0𝑛

𝑑𝑘, 
𝜇𝑖𝑖
𝑑𝑘

𝜈𝑖𝑖
𝑑𝑘
= 𝜆𝜀 such that 𝜆, 𝜀 ∈ [0,1] and 𝜆 + 𝜀 ≤ 1, and 

if 𝑖 ≠ 𝑗, then 
𝜇𝑖𝑗
𝑑𝑘

𝜈𝑖𝑗
𝑑𝑘
= 0
1

. Therefore,  

𝜇0𝑛
𝑑𝑘𝜇𝑛𝑛

𝑑𝑘 − 𝜈0𝑛
𝑑𝑘𝜈𝑛𝑛

𝑑𝑘 < ⋯ < 𝜇02
𝑑𝑘𝜇22

𝑑𝑘 − 𝜈02
𝑑𝑘𝜈22

𝑑𝑘 < 𝜇01
𝑑𝑘𝜇11

𝑑𝑘 − 𝜈01
𝑑𝑘𝜈11

𝑑𝑘 

and if 𝑖 ≠  𝑗, then 𝜇0𝑗
𝑑𝑘𝜇𝑖𝑗

𝑑𝑘 − 𝜈0𝑗
𝑑𝑘𝜈𝑖𝑗

𝑑𝑘 = 0 − 𝜈0𝑗
𝑑𝑘 = −𝜈0𝑗

𝑑𝑘, for all 𝑖, 𝑗 ∈ 𝐼𝑛 and 𝑘 ∈ 𝐼𝑡. For each ifpifs-matrix 

herein, the ranking order of alternatives is 𝑢𝑛 ≺ ⋯ ≺ 𝑢2 ≺ 𝑢1. 

4.5. Test Case 5 

Test case 5 constructs ifpifs-matrices [𝑒𝑖𝑗
1 ]
(𝑛+1)×𝑛

, [𝑒𝑖𝑗
2 ]
(𝑛+1)×𝑛

, …, [𝑒𝑖𝑗
𝑡 ]
(𝑛+1)×𝑛

 such that for all 𝑖, 𝑗 ∈ 𝐼𝑛 and 

𝑘 ∈ 𝐼𝑡, 
𝜇𝑖𝑖
𝑒𝑘

𝜈𝑖𝑖
𝑒𝑘
=
𝜆
𝜀

, 𝜆, 𝜀 ∈ [0,1], and 𝜆 + 𝜀 ≤ 1. Therefore, 𝜇𝑖𝑗
𝑒𝑘 − 𝜈𝑖𝑗

𝑒𝑘 = 𝜇𝑙𝑗
𝑒𝑘 − 𝜈𝑙𝑗

𝑒𝑘 and 𝜇𝑖𝑗
𝑒𝑘 + 𝜈𝑖𝑗

𝑒𝑘 = 𝜇𝑙𝑗
𝑒𝑘 + 𝜈𝑙𝑗

𝑒𝑘, 

for all 𝑖, 𝑙, 𝑗 ∈ 𝐼𝑛 and 𝑘 ∈ 𝐼𝑡. For each ifpifs-matrix herein, the ranking order of alternatives is 𝑢1 ≈ 𝑢2 ≈ ⋯ ≈

𝑢𝑛. Here, ≈ denotes the same ranking order. 
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4.6. Results of Test Cases 

This subsection tests the generalised SDM methods using aforesaid test cases. Thus, it determines SDM 

methods being successful in all the test cases. Since the generalised SDM methods herein employ only a single 

matrix, we consider 𝑡 = 1, 𝑛 = 4, 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, and 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}, for all the test cases. 

Therefore, we use ifpifs-matrices provided in Table 1. 

Table 1. ifpifs-matrices employed in the test cases 

Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5 

[𝑎𝑖𝑗
1 ] ≔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.4
0.3

0.4
0.3

0.4
0.3

0.4
0.3

0.7
0.15

0.6
0.2

0.5
0.25

0.4
0.3

0.8
0.1

0.7
0.15

0.6
0.2

0.5
0.25

0.9
0.05

0.8
0.1

0.7
0.15

0.6
0.2

1
0

0.9
0.05

0.8
0.1

0.7
0.15]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  [𝑏𝑖𝑗
1 ] ≔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.8
0.1

0.8
0.1

0.8
0.1

0.8
0.1

1
0

0.9
0.05

0.8
0.1

0.7
0.15

0.9
0.05

0.8
0.1

0.7
0.15

0.6
0.2

0.8
0.1

0.7
0.15

0.6
0.2

0.5
0.25

0.7
0.15

0.6
0.2

0.5
0.25

0.4
0.3 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  [𝑐𝑖𝑗
1 ] ≔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0.6
0.2

0.7
0.15

0.8
0.1

0.9
0.05

1
0

0
1

0
1

0
1

0
1

1
0

0
1

0
1

0
1

0
1

1
0

0
1

0
1

0
1

0
1

1
0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

  [𝑑𝑖𝑗
1 ] ≔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0.9
0.05

0.8
0.1

0.7
0.15

0.6
0.2

1
0

0
1

0
1

0
1

0
1

1
0

0
1

0
1

0
1

0
1

1
0

0
1

0
1

0
1

0
1

1
0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

  [𝑒𝑖𝑗
1 ] ≔

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Moreover, since all the parameters should be considered in all the test cases, we determine the variables 

(inputs) 𝑅, 𝑅1, 𝑅2, and 𝑅3 as 𝐼4. Additionally, the other variables are intently selected so that the methods can 

pass the largest number of test cases. Table 2 provides the test results of the SDM methods created using 

MATLAB R2021a. Furthermore, the numbers of the passed tests are presented in the last column of Table 2. 

12 of 24 methods are observed to be successful in all the test cases. These methods are iMBR01, isMBR01, 

iMBR01/2, iMRB02(𝐼4), iCCE11, iCCE10, iCEC11, iKKT13, iFJLL10/2(𝐼4, [
0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 

2), iFJLL10/2(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5), iFJLL10/4(𝐼4, [

0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 2), 

iFJLL10/4(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5), iKWW11(𝐼4, 0.5,0.5), and iPEM. 

Table 2. Performance of the generalised SDM methods in the test cases 

 Algorithms\Test Cases 
Test 

Case 1 

Test 

Case 2 

Test 

Case 3 

Test 

Case 4 

Test 

Case 5 

Numbers 

of Tests 

Passed  

1.  iMBR01 ✓ ✓ ✓ ✓ ✓ 5 

2.  isMBR01 ✓ ✓ ✓ ✓ ✓ 5 

3.  iMBR01/2 ✓ ✓ ✓ ✓ ✓ 5 

4.  iMRB02(𝐼4) ✓ ✓ ✓ ✓ ✓ 5 

5.  iKM11(𝐼4) ✓ ✓ – – ✓ 3 

6.  iCCE11 ✓ ✓ ✓ ✓ ✓ 5 

7.  iYE12 ✓ ✓ – – ✓ 3 

8.  iCCE10 ✓ ✓ ✓ ✓ ✓ 5 

9.  iCEC11 ✓ ✓ ✓ ✓ ✓ 5 

10.  iM11 – – – – ✓ 1 

11.  iKKT13 

 

 

 

 

 

✓ ✓ ✓ ✓ ✓ 5 
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12.  
iFJLL10(𝐼4, [

0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 2) 

iFJLL10(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5) 

– ✓ – – ✓ 2 

13.  
iFJLL10/2(𝐼4, [

0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 2) 

iFJLL10/2(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5) 

✓ ✓ ✓ ✓ ✓ 5 

14.  
iFJLL10/3(𝐼4, [

0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 2) 

iFJLL10/3(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5) 

– ✓ – – ✓ 2 

15.  
iFJLL10/4(𝐼4, [

0.7
0.1

0.7
0.1

0.7
0.1

0.7
0.1
]) (Test 1, 2) 

iFJLL10/4(𝐼4, [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]) (Test 3, 4, 5) 

✓ ✓ ✓ ✓ ✓ 5 

16.  iFJLL10m(𝐼4) – – – – ✓ 1 

17.  iFJLL10/2m(𝐼4) – – ✓ ✓ ✓ 3 

18.  iFJLL10max(𝐼4) – – – – ✓ 1 

19.  iFJLL10/2max(𝐼4) – – ✓ ✓ ✓ 3 

20.  iF10(𝐼4, 0.5) – – ✓ ✓ ✓ 3 

21.  iKSM10 – – – – ✓ 1 

22.  iKWW11(𝐼4, 0.5,0.5) ✓ ✓ ✓ ✓ ✓ 5 

23.  iSM11 – ✓ ✓ ✓ ✓ 4 

24.  iPEM ✓ ✓ ✓ ✓ ✓ 5 

 Total 14 17 16 16 24 12 

Bold values in the last column indicate the SDM methods passing all the test cases (✓: Successful, –: Unsuccessful) 

5. An Application of the Generalised SDM Methods Being Successful in All the Test 

Cases to a PVA Problem 

This section applies the SDM methods generalised in Section 3, which is successful in all test cases to a real 

problem related to performance-based value assignment (PVA) to seven noise-removal filters, namely “Based 

on Pixel Density Filter (BPDF)” [35], “Decision-Based Algorithm (DBAIN)” [36], “Modified Decision Based 

Unsymmetrical Trimmed Median Filter (MDBUTMF)” [37], “Noise Adaptive Fuzzy Switching Median Filter 

(NAFSMF)” [38], “Different Applied Median Filter (DAMF)” [39], “Adaptive Weighted Mean Filter 

(AWMF)” [40], and “Adaptive Riesz Mean Filter (ARmF)” [41]. In this PVA problem, we indicate the set of 

alternatives 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7} such that 𝑢1 = “BPDF”, 𝑢2 = “DBAIN”, 𝑢3 = “MDBUTMF”, 

𝑢4 = “NAFSMF”, 𝑢5 = “DAMF”, 𝑢6 = “AWMF”, and 𝑢7 = “ARmF”. Moreover, we denote the parameters 

set 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9} such that 𝑥1 = “noise density 10%”, 𝑥2 = “noise density 20%”, 𝑥3 = 

“noise density 30%”, 𝑥4 = “noise density 40%”, 𝑥5 = “noise density 50%”, 𝑥6 = “noise density 60%”, 𝑥7 = 

“noise density 70%”, 𝑥8 = “noise density 80%”, and 𝑥9 = “noise density 90%”. Therefore, we present the 

Structural Similarity (SSIM) [42] results of aforesaid filters for 20 traditional images, i.e., “Lena”, 

“Cameraman”, “Barbara”, “Baboon”, “Peppers”, “Living Room”, “Lake”, “Plane”, “Hill”, “Pirate”, “Boat”, 

“House”, “Bridge”, “Elaine”, “Flintstones”, “Flower”, “Parrot”, “Dark-Haired Woman”, “Blonde Woman”, 

and “Einstein”, at noise density ranging from 10% to 90% in Table 3-8. We obtain these results using 

MATLAB R2021a. 
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Table 3. SSIM results of BPDF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9848 0.9657 0.9411 0.9087 0.8689 0.8120 0.7247 0.5683 0.3063 

Cameraman 0.9911 0.9782 0.9608 0.9344 0.8966 0.8453 0.7726 0.6722 0.5105 

Barbara 0.9743 0.9427 0.9046 0.8606 0.8024 0.7289 0.6258 0.4597 0.2316 

Baboon 0.9795 0.9516 0.9112 0.8556 0.7812 0.6841 0.5622 0.4080 0.1377 

Peppers 0.9735 0.9460 0.9158 0.8798 0.8363 0.7780 0.7001 0.5584 0.2194 

Living Room 0.9747 0.9432 0.9056 0.8569 0.7962 0.7153 0.6012 0.4372 0.2337 

Lake 0.9795 0.9526 0.9218 0.8796 0.8253 0.7468 0.6464 0.4839 0.2226 

Plane 0.9885 0.9733 0.9533 0.9220 0.8797 0.8194 0.7309 0.5631 0.1894 

Hill 0.9761 0.9480 0.9129 0.8676 0.8062 0.7275 0.6232 0.4954 0.3573 

Pirate 0.9801 0.9549 0.9232 0.8817 0.8266 0.7506 0.6494 0.4797 0.2741 

Boat 0.9753 0.9456 0.9085 0.8608 0.8010 0.7245 0.6155 0.4697 0.2851 

House 0.9938 0.9858 0.9730 0.9550 0.9241 0.8835 0.8113 0.7002 0.4932 

Bridge 0.9705 0.9335 0.8856 0.8269 0.7503 0.6452 0.5159 0.3648 0.1815 

Elaine 0.9707 0.9405 0.9052 0.8649 0.8149 0.7517 0.6628 0.4927 0.2911 

Flintstones 0.9726 0.9417 0.9021 0.8550 0.7912 0.7099 0.5908 0.4125 0.1259 

Flower 0.9808 0.9618 0.9346 0.8998 0.8446 0.7718 0.6634 0.4970 0.2249 

Parrot 0.9791 0.9663 0.9490 0.9270 0.8992 0.8580 0.7955 0.6816 0.3541 

Dark-Haired Woman 0.9909 0.9802 0.9665 0.9471 0.9200 0.8789 0.8100 0.6828 0.4483 

Blonde Woman 0.9657 0.9385 0.9055 0.8664 0.8191 0.7561 0.6624 0.5003 0.2184 

Einstein 0.9830 0.9614 0.9361 0.9051 0.8640 0.8085 0.7315 0.5892 0.3465 

Table 4. SSIM results of DBA for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9885 0.9741 0.9555 0.9291 0.8989 0.8560 0.7942 0.7139 0.5979 

Cameraman 0.9948 0.9867 0.9758 0.9586 0.9332 0.8977 0.8452 0.7805 0.6917 

Barbara 0.9769 0.9502 0.9174 0.8762 0.8279 0.7662 0.6880 0.5882 0.4589 

Baboon 0.9844 0.9644 0.9352 0.8933 0.8373 0.7605 0.6587 0.5422 0.4161 

Peppers 0.9742 0.9508 0.9239 0.8909 0.8535 0.8034 0.7387 0.6565 0.5402 

Living Room 0.9802 0.9557 0.9251 0.8857 0.8368 0.7693 0.6888 0.5838 0.4565 

Lake 0.9768 0.9565 0.9315 0.8988 0.8561 0.7984 0.7228 0.6267 0.5053 

Plane 0.9885 0.9781 0.9642 0.9423 0.9124 0.8706 0.8139 0.7343 0.6268 

Hill 0.9801 0.9578 0.9287 0.8912 0.8410 0.7784 0.6997 0.6036 0.4833 

Pirate 0.9832 0.9637 0.9387 0.9062 0.8605 0.8017 0.7286 0.6247 0.5002 

Boat 0.9767 0.9532 0.9239 0.8844 0.8396 0.7785 0.6968 0.5992 0.4825 

House 0.9969 0.9920 0.9832 0.9703 0.9522 0.9238 0.8777 0.8142 0.7234 

Bridge 0.9728 0.9424 0.9047 0.8552 0.7917 0.7104 0.6060 0.4880 0.3518 

Elaine 0.9746 0.9483 0.9173 0.8800 0.8358 0.7832 0.7157 0.6292 0.5121 

Flintstones 0.9769 0.9533 0.9210 0.8793 0.8239 0.7487 0.6490 0.5308 0.3807 

Flower 0.9854 0.9722 0.9517 0.9259 0.8841 0.8330 0.7579 0.6588 0.5230 

Parrot 0.9840 0.9741 0.9607 0.9440 0.9209 0.8900 0.8467 0.7871 0.6951 

Dark-Haired Woman 0.9925 0.9850 0.9754 0.9614 0.9414 0.9133 0.8715 0.8065 0.7056 

Blonde Woman 0.9666 0.9449 0.9184 0.8856 0.8441 0.7938 0.7259 0.6470 0.5432 

Einstein 0.9867 0.9706 0.9500 0.9236 0.8881 0.8449 0.7839 0.7102 0.6142 
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Table 5. SSIM results of MDBUTMF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9865 0.9479 0.8498 0.8155 0.8655 0.8898 0.8668 0.7830 0.4010 

Cameraman 0.9911 0.9412 0.8160 0.7818 0.8653 0.9174 0.9052 0.8265 0.4667 

Barbara 0.9741 0.9228 0.8235 0.7757 0.7962 0.7914 0.7477 0.6573 0.3884 

Baboon 0.9727 0.9321 0.8655 0.8228 0.8126 0.7869 0.7317 0.6333 0.3625 

Peppers 0.9794 0.9331 0.8263 0.7884 0.8321 0.8484 0.8206 0.7382 0.4131 

Living Room 0.9764 0.9338 0.8567 0.8137 0.8251 0.8066 0.7621 0.6682 0.3744 

Lake 0.9802 0.9275 0.8097 0.7749 0.8177 0.8374 0.8066 0.7192 0.4084 

Plane 0.9884 0.9317 0.7907 0.7539 0.8392 0.8978 0.8833 0.7857 0.3518 

Hill 0.9781 0.9340 0.8335 0.7938 0.8193 0.8220 0.7827 0.6976 0.3921 

Pirate 0.9813 0.9381 0.8418 0.8072 0.8363 0.8430 0.8096 0.7178 0.4185 

Boat 0.9783 0.9353 0.8450 0.8064 0.8268 0.8243 0.7833 0.6906 0.3796 

House 0.9950 0.9491 0.8178 0.7831 0.8833 0.9449 0.9425 0.8641 0.4270 

Bridge 0.9699 0.9236 0.8433 0.7994 0.7855 0.7572 0.6950 0.6000 0.3651 

Elaine 0.9774 0.9324 0.8347 0.7965 0.8224 0.8295 0.7925 0.6973 0.3492 

Flintstones 0.9764 0.9304 0.8315 0.7932 0.8169 0.8128 0.7671 0.6735 0.3965 

Flower 0.9820 0.9486 0.8681 0.8407 0.8732 0.8832 0.8523 0.7679 0.4292 

Parrot 0.9771 0.9334 0.8242 0.7958 0.8655 0.9042 0.8911 0.8123 0.4008 

Dark-Haired Woman 0.9923 0.9395 0.7833 0.7576 0.8620 0.9294 0.9272 0.8566 0.4772 

Blonde Woman 0.9642 0.9236 0.8294 0.7952 0.8214 0.8258 0.7936 0.7017 0.3539 

Einstein 0.9833 0.9418 0.8476 0.8127 0.8528 0.8677 0.8393 0.7561 0.4127 

Table 6. SSIM results of NAFSMF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9839 0.9669 0.9485 0.9279 0.9080 0.8821 0.8511 0.8040 0.6862 

Cameraman 0.9798 0.9643 0.9500 0.9340 0.9177 0.8988 0.8727 0.8325 0.7207 

Barbara 0.9749 0.9472 0.9174 0.8843 0.8483 0.8039 0.7533 0.6896 0.5729 

Baboon 0.9612 0.9216 0.8767 0.8305 0.7800 0.7211 0.6540 0.5777 0.4671 

Peppers 0.9772 0.9551 0.9328 0.9068 0.8810 0.8512 0.8154 0.7665 0.6470 

Living Room 0.9704 0.9382 0.9047 0.8687 0,8301 0.7839 0.7329 0.6678 0.5472 

Lake 0.9754 0.9489 0.9210 0.8925 0.8588 0.8229 0.7805 0.7221 0.6021 

Plane 0.9845 0.9685 0.9524 0.9334 0.9136 0.8892 0.8596 0.8175 0.7019 

Hill 0.9733 0.9451 0.9148 0.8824 0.8463 0.8064 0.7585 0.7010 0.5843 

Pirate 0.9766 0.9511 0.9248 0.8970 0.8635 0.8251 0.7844 0.7227 0.6093 

Boat 0.9723 0.9422 0.9115 0.8766 0.8414 0.8005 0.7528 0.6898 0.5778 

House 0.9914 0.9831 0.9733 0.9643 0.9535 0.9405 0.9210 0.8918 0.7827 

Bridge 0.9631 0.9222 0.8788 0.8337 0.7818 0.7237 0.6544 0.5766 0.4578 

Elaine 0.9774 0.9542 0.9295 0.9025 0.8730 0.8404 0.8010 0.7470 0.6310 

Flintstones 0.9659 0.9333 0.8983 0.8631 0.8220 0.7743 0.7165 0.6464 0.5215 

Flower 0.9763 0.9568 0.9363 0.9143 0.8883 0.8600 0.8218 0.7682 0.6492 

Parrot 0.9785 0.9653 0.9519 0.9380 0.9209 0.9030 0.8774 0.8418 0.7331 

Dark-Haired Woman 0.9906 0.9815 0.9723 0.9622 0.9513 0.9361 0.9192 0.8891 0.7756 

Blonde Woman 0.9606 0.9366 0.9104 0.8833 0.8526 0.8184 0.7805 0.7259 0.6113 

Einstein 0.9801 0.9591 0.9364 0.9132 0.8878 0.8591 0.8231 0.7732 0.6698 
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Table 7. SSIM results of DAMF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9902 0.9789 0.9653 0.9488 0.9310 0.9085 0.8796 0.8396 0.7657 

Cameraman 0.9961 0.9908 0.9844 0.9759 0.9652 0.9512 0.9321 0.9012 0.8347 

Barbara 0.9815 0.9588 0.9327 0.9013 0.8675 0.8261 0.7786 0.7176 0.6308 

Baboon 0.9884 0.9748 0.9572 0.9356 0.9086 0.8738 0.8237 0.7466 0.6037 

Peppers 0.9804 0.9594 0.9372 0.9110 0.8835 0.8515 0.8152 0.7707 0.7018 

Living Room 0.9846 0.9654 0.9422 0.9152 0.8824 0.8443 0.7976 0.7325 0.6295 

Lake 0.9856 0.9690 0.9499 0.9285 0.9020 0.8689 0.8293 0.7737 0.6842 

Plane 0.9938 0.9861 0.9769 0.9648 0.9505 0.9331 0.9086 0.8714 0.7987 

Hill 0.9841 0.9656 0.9438 0.9181 0.8875 0.8515 0.8075 0.7495 0.6571 

Pirate 0.9875 0.9722 0.9542 0.9332 0.9063 0.8744 0.8362 0.7784 0.6853 

Boat 0.9833 0.9634 0.9407 0.9123 0.8829 0.8463 0.8011 0.7419 0.6514 

House 0.9982 0.9955 0.9912 0.9861 0.9796 0.9709 0.9577 0.9376 0.8852 

Bridge 0.9798 0.9560 0.9276 0.8953 0.8563 0.8072 0.7465 0.6667 0.5415 

Elaine 0.9774 0.9534 0.9270 0.8961 0.8620 0.8230 0.7784 0.7248 0.6584 

Flintstones 0.9840 0.9658 0.9430 0.9173 0.8865 0.8464 0.7980 0.7268 0.6061 

Flower 0.9878 0.9786 0.9662 0.9513 0.9321 0.9089 0.8772 0.8290 0.7404 

Parrot 0.9839 0.9763 0.9666 0.9563 0.9423 0.9270 0.9064 0.8775 0.8226 

Dark-Haired Woman 0.9950 0.9891 0.9826 0.9743 0.9647 0.9525 0.9362 0.9134 0.8664 

Blonde Woman 0.9700 0.9518 0.9301 0.9053 0.8764 0.8424 0.8015 0.7505 0.6753 

Einstein 0.9894 0.9765 0.9619 0.9445 0.9244 0.8989 0.8666 0.8208 0.7472 

Table 8. SSIM results of AWMF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9822 0.9740 0.9636 0.9497 0.9349 0.9134 0.8852 0.8447 0.7737 

Cameraman 0.9883 0.9849 0.9813 0.9759 0.9681 0.9563 0.9371 0.9059 0.8401 

Barbara 0.9718 0.9540 0.9331 0.9065 0.8762 0.8366 0.7879 0.7250 0.6382 

Baboon 0.9720 0.9616 0.9487 0.9343 0.9135 0.8824 0.8331 0.7550 0.6108 

Peppers 0.9609 0.9560 0.9410 0.9204 0.8952 0.8633 0.8256 0.7789 0.7096 

Living Room 0.9693 0.9539 0.9358 0.9144 0.8879 0.8523 0.8062 0.7394 0.6356 

Lake 0.9742 0.9620 0.9474 0.9297 0.9067 0.8758 0.8361 0.7799 0.6904 

Plane 0.9850 0.9796 0.9733 0.9645 0.9532 0.9376 09133 0.8760 0.8055 

Hill 0.9724 0.9576 0.9409 0.9195 0.8929 0.8593 0.8152 0.7562 0.6632 

Pirate 0.9753 0.9624 0.9489 0.9322 0.9088 0.8790 0.8417 0.7834 0.6913 

Boat 0.9706 0.9555 0.9375 0.9146 0.8887 0.8543 0.8091 0.7483 0.6571 

House 0.9933 0.9924 0.9905 0.9878 0.9834 0.9760 0.9630 0.9426 0.8948 

Bridge 0.9638 0.9440 0.9209 0.8948 0.8611 0.8148 0.7551 0.6736 0.5469 

Elaine 0.9684 0.9514 0.9296 0.9021 0.8696 0.8313 0.7857 0.7310 0.6640 

Flintstones 0.9551 0.9502 0.9364 0.9167 0.8908 0.8541 0.8058 0.7334 0.6118 

Flower 0.9752 0.9684 0.9594 0.9488 0.9333 0.9126 0.8820 0.8340 0.7459 

Parrot 0.9779 0.9727 0.9655 0.9572 0.9457 0.9316 0.9112 0.8828 0.8309 

Dark-Haired Woman 0.9910 0.9870 0.9823 0.9761 0.9678 0.9565 0.9404 0.9177 0.8744 

Blonde Woman 0.9579 0.9450 0.9273 0.9061 0.8802 0.8476 0.8069 0.7554 0.6814 

Einstein 0.9798 0.9701 0.9588 0.9450 0.9280 0.9043 0.8724 0.8259 0.7531 
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Table 9. SSIM results of ARmF for 20 traditional images 

Images/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Lena 0.9910 0.9810 0.9697 0.9554 0.9398 0.9176 0.8885 0.8471 0.7752 

Cameraman 0.9970 0.9933 0.9890 0.9828 0.9743 0.9614 0.9416 0.9093 0.8426 

Barbara 0.9841 0.9654 0.9438 0.9172 0.8861 0.8450 0.7949 0.7291 0.6394 

Baboon 0.9915 0.9818 0.9689 0.9523 0.9294 0.8960 0.8442 0.7630 0.6150 

Peppers 0.9826 0.9640 0.9439 0.9205 0.8939 0.8618 0.8241 0.7779 0.7096 

Living Room 0.9856 0.9699 0.9514 0.9294 0.9018 0.8653 0.8171 0.7483 0.6418 

Lake 0.9867 0.9716 0.9553 0.9361 0.9113 0.8793 0.8391 0.7828 0.6926 

Plane 0.9947 0.9887 0.9816 0.9719 0.9599 0.9433 0.9182 0.8795 0.8080 

Hill 0.9860 0.9703 0.9526 0.9310 0.9038 0.8690 0.8240 0.7626 0.6672 

Pirate 0.9884 0.9750 0.9600 0.9424 0.9181 0.8875 0.8487 0.7886 0.6939 

Boat 0.9842 0.9664 0.9467 0.9223 0.8957 0.8606 0.8142 0.7529 0.6610 

House 0.9987 0.9970 0.9946 0.9913 0.9863 0.9786 0.9652 0.9446 0.8962 

Bridge 0.9823 0.9621 0.9385 0.9113 0.8762 0.8285 0.7663 0.6819 0.5515 

Elaine 0.9773 0.9532 0.9272 0.8971 0.8630 0.8239 0.7791 0.7270 0.6631 

Flintstones 0.9847 0.9688 0.9491 0.9267 0.8987 0.8608 0.8112 0.7381 0.6154 

Flower 0.9877 0.9796 0.9696 0.9577 0.9411 0.9195 0.8876 0.8384 0.7489 

Parrot 0.9851 0.9786 0.9706 0.9621 0.9499 0.9351 0.9141 0.8848 0.8320 

Dark-Haired Woman 0.9956 0.9909 0.9854 0.9787 0.9701 0.9585 0.9420 0.9189 0.8753 

Blonde Woman 0.9718 0.9551 0.9355 0.9132 0.8864 0.8531 0.8114 0.7582 0.6825 

Einstein 0.9911 0.9805 0.9687 0.9543 0.9367 0.9121 0.8788 0.8305 0.7551 

In this PVA problem, we construct an ifpifs-matrix [𝑎𝑖𝑗]8×9 by using multiple fuzzy values provided in 

Table 3-9. We calculate the other rows of this ifpifs-matrix except for its zero-index row by employing the 

membership function and non-membership function defined by  

𝜇𝑖𝑗
𝑎 ≔ min

𝑡
𝑆𝑖𝑗
𝑡     and    𝜈𝑖𝑗

𝑎 ≔ 1 −max
𝑡
𝑆𝑖𝑗
𝑡  

such that 𝑖 ∈ 𝐼7 , 𝑗 ∈ 𝐼9, and 𝑡 ∈ 𝐼20. Here, (𝑆𝑖𝑗
𝑡 ) denotes ordered 𝑠-tuples such that 𝑆𝑖𝑗

𝑡  corresponds to SSIM 

results originating from 𝑡th image for 𝑖th filter and 𝑗th noise density. Moreover, 𝑠 is the number of images. That 

is, 𝑠 = 20. For instance, 

(𝑆11
𝑡 ) = (0.9848,0.9911,0.9743,0.9795,0.9735,0.9747,0.9795,0.9885,0.9761,0.9801,0.9753,0.9938, 

   0.9705,0.9707,0.9726,0.9808,0.9791,0.9909,0.9657,0.9830) 

Hence, 𝜇11
𝑎 = 0.9657 and 𝜈11

𝑎 = 0.0062. Similarly, the values of the other alternatives can be calculated. 

Moreover, suppose that the noise removal success of the filters at high noise densities is more significant than 

at the other densities, it is anticipated that the membership degrees at high noise densities are greater than the 

non-membership degrees and the former at low noise densities are smaller than the latter. In other words, we 

consider the first row of [𝑎𝑖𝑗]8×9
 to be  

[
0.05
0.9

0.15
0.8

0.25
0.7

0.35
0.6

0.5
0.5

0.65
0.3

0.75
0.2

0.85
0.1

0.9
0.05

] 

Thus, ifpifs-matrix [𝑎𝑖𝑗]8×9  is constructed as follows: 
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[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.05
0.9

0.15
0.8

0.25
0.7

0.35
0.6

0.5
0.5

0.65
0.3

0.75
0.2

0.85
0.1

0.9
0.05

          
0.9657
0.0062

0.9335
0.0142

0.8856
0.0270

0.8269
0.0450

0.7503
0.0759

0.6452
0.1165

0.5159
0.1887

0.3648
0.2998

0.1259
0.4895

          
0.9666
0.0031

0.9424
0.0080

0.9047
0.0168

0.8552
0.0297

0.7917
0.0478

0.7104
0.0762

0.6060
0.1223

0.4880
0.1858

0.3518
0.2766

            
0.9642
0.0050

0.9228
0.0509

0.7833
0.1319

0.7539
0.1593

0.7855
0.1167

0.7572
0.0551

0.6950
0.0575

0.6000
0.1359

0.3492
0.5228

         
0.9606
0.0086

0.9216
0.0169

0.8767
0.0267

0.8305
0.0357

0.7800
0.0465

0.7211
0.0595

0.6540
0.0790

0.5766
0.1082

0.4578
0.2173

         
0.9700
0.0018

0.9518
0.0045

0.9270
0.0088

0.8953
0.0139

0.8563
0.0204

0.8072
0.0291

0.7465
0.0423

0.6667
0.0624

0.5415
0.1148

         
0.9551
0.0067

0.9440
0.0076

0.9209
0.0095

0.8948
0.0122

0.8611
0.0166

0.8148
0.0240

0.7551
0.0370

0.6736
0.0574

0.5469
0.1052

         
0.9718
0.0013

0.9532
0.0030

0.9272
0.0054

0.8971
0.0087

0.8630
0.0137

0.8239
0.0214

0.7663
0.0348

0.6819
0.0554

0.5515
0.1038]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Table 10, 𝑤 = [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]. Moreover, since the number of 

alternatives and parameters is not equal in this PVA problem, iKKT13 is not applied to  

[𝑎𝑖𝑗]. 

Table 10. Decision sets produced by SDM methods* 

Algorithms Matrix Decision Sets 

iMBR01 [𝑎𝑖𝑗] { BPDF0.8098
0 , DBAIN0.8005

0.1770 , MDBUTMF0.5865
0.2008 , NAFSMF0.6433

0.1955 , DAMF0.3699
0.4571 , AWMF0.3884

0.5271 , ARmF0
0.6711 } 

isMBR01 [𝑎𝑖𝑗] { BPDF0.8098
0 , DBAIN0.8005

0.1770 , MDBUTMF0.5865
0.2008 , NAFSMF0.6433

0.1955 , DAMF0.3699
0.4571 , AWMF0.3884

0.5271 , ARmF0
0.6711 } 

iMBR01/2 [𝑎𝑖𝑗] { BPDF0.8210
0 , DBAIN0.8257

0.1582 , MDBUTMF0.6475
0.1508 , NAFSMF0.6005

0.2131 , DAMF0.3720
0.4444 , AWMF0.4088

0.5255 , ARmF0
0.6662 } 

iMRB02(𝑰𝟗) [𝑎𝑖𝑗] { BPDF0.1520
0.8080 , DBAIN0.0872

0.8878 , MDBUTMF0.0285
0.9085 , NAFSMF0.0546

0.9209 , DAMF0.0064
0.9833 , AWMF0.0025

0.9869 , ARmF0
0.9924 } 

iCCE11 [𝑎𝑖𝑗] { BPDF0.0253
0.2560 , DBAIN0.0158

0.3065 , MDBUTMF0.0399
0.3197 , NAFSMF0.0155

0.3275 , DAMF0.0066
0.3670 , AWMF0.0067

0.3693 , ARmF0.0048
0.3728 } 

iCCE10 [𝑎𝑖𝑗] { BPDF0.0253
0.2560 , DBAIN0.0158

0.3065 , MDBUTMF0.0399
0.3197 , NAFSMF0.0155

0.3275 , DAMF0.0066
0.3670 , AWMF0.0067

0.3693 , ARmF0.0048
0.3728 } 

iCEC11 [𝑎𝑖𝑗] { BPDF0.0035
0.2129 , DBAIN0.0021

0.2469 , MDBUTMF0.0055
0.2556 , NAFSMF0.0021

0.2598 , DAMF0.0009
0.2895 , AWMF0.0009

0.2912 , ARmF0.0007
0.2938 } 

iFJLL10/2(𝑰𝟗, 𝒘) [𝑎𝑖𝑗] { BPDF0.2238
0.7552 , DBAIN0.1189

0.8741 , MDBUTMF0.1189
0.8741 , NAFSMF0

1 , DAMF0
1 , AWMF0

1 , ARmF0
1 } 

iFJLL10/4(𝑰𝟗, 𝒘) [𝑎𝑖𝑗] { BPDF0.2238
0.7552 , DBAIN0.1189

0.8741 , MDBUTMF0.1189
0.8741 , NAFSMF0

1 , DAMF0
1 , AWMF0

1 , ARmF0
1 } 

iKWW11(𝑰𝟗, 𝟎. 𝟓, 𝟎. 𝟓) [𝑎𝑖𝑗] { BPDF0.0827
0.6198 , DBAIN0.0542

0.6793 , MDBUTMF0.0968
0.6950 , NAFSMF0.0662

0.7018 , DAMF0.0325
0.8114 , AWMF0

0.8429 , ARmF0.0569
0.9430 } 

iPEM [𝑎𝑖𝑗] { BPDF0.2507
0.7485 , DBAIN0.1532

0.8465 , MDBUTMF0.1388
0.8602 , NAFSMF0.1195

0.8803 , DAMF0.0149
0.9850 , AWMF0.0113

0.9886 , ARmF0
1 } 

*In the event that noise removal performance at high noise densities is more important. 
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The intuitionistic fuzzy values in the decision sets provided in Table 10 are generated on MATLAB 

R2021a. Moreover, using the relation in Proposition 2.1, the ranking orders of the alternatives are presented in 

Table 11. The number of the algorithms producing the same ranking order is signified in the last column of 

Table 11. According to the table, iMBR01/2, iCEC11, and iPEM have the same ranking orders just as iCCE11, 

iCCE10, and iKWW11(𝐼9, 0.5,0.5) do. Moreover, these six methods produce the same ranking orders with the 

exception of DBAIN and MDBUTMF’s ranks. Besides, iMBR01, isMBR01, and iMRB02(𝐼9) generate the 

same ranking orders. However, iFJLL10/2(𝐼9, 𝑤) and iFJLL10/4(𝐼9, 𝑤) have anomalous ranking orders unlike 

the other SDM methods. Although the decision-making abilities of all the SDM methods herein differ, all 

signify that BPDF has the lowest noise removal performance. Similarly, all the SDM methods but 

iFJLL10/2(𝐼9, 𝑤) and iFJLL10/4(𝐼9, 𝑤) yield that ARmF has the highest noise removal performance. 

Table 11. Ranking orders of SDM methods*  

Algorithms Ranking Orders Frequency 

iMBR01 BPDF≺DBAIN≺NAFSMF≺MDBUTMF≺DAMF≺AWMF≺ARmF 3 

isMBR01 BPDF≺DBAIN≺NAFSMF≺MDBUTMF≺DAMF≺AWMF≺ARmF 3 

iMBR01/2 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

iMRB02(𝑰𝟗) BPDF≺DBAIN≺NAFSMF≺MDBUTMF≺DAMF≺AWMF≺ARmF 3 

iCCE11 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

iCCE10 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

iCEC11 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

iFJLL10/2(𝑰𝟗, 𝒘) BPDF≺DBAIN≈MDBUTMF≺NAFSMF≈DAMF≈AWMF≈ARmF 2 

iFJLL10/4(𝑰𝟗, 𝒘) BPDF≺DBAIN≈MDBUTMF≺NAFSMF≈DAMF≈AWMF≈ARmF 2 

iKWW11(𝑰𝟗, 𝟎. 𝟓, 𝟎. 𝟓) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

iPEM BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 3 

*In the event that noise removal performance at high noise densities is more important. 

On the other hand, suppose that the noise removal success of the filters at low noise densities are more 

significant than at the other densities, it is anticipated that the membership degrees at high noise densities are 

smaller than the non-membership degrees and the former at low noise densities are greater than the latter. In 

other words, we consider the first row of [𝑏𝑖𝑗]8×9
 to be 

[
0.9
0.05

0.85
0.1

0.75
0.2

0.65
0.3

0.5
0.5

0.35
0.6

0.25
0.7

0.15
0.8

0.05
0.9

] 

Thereby, ifpifs-matrix [𝑏𝑖𝑗]8×9  is constructed as follows:  
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[𝑏𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.9
0.05

0.85
0.1

0.75
0.2

0.65
0.3

0.5
0.5

0.35
0.6

0.25
0.7

0.15
0.8

0.05
0.9

          
0.9657
0.0062

0.9335
0.0142

0.8856
0.0270

0.8269
0.0450

0.7503
0.0759

0.6452
0.1165

0.5159
0.1887

0.3648
0.2998

0.1259
0.4895

          
0.9666
0.0031

0.9424
0.0080

0.9047
0.0168

0.8552
0.0297

0.7917
0.0478

0.7104
0.0762

0.6060
0.1223

0.4880
0.1858

0.3518
0.2766

            
0.9642
0.0050

0.9228
0.0509

0.7833
0.1319

0.7539
0.1593

0.7855
0.1167

0.7572
0.0551

0.6950
0.0575

0.6000
0.1359

0.3492
0.5228

         
0.9606
0.0086

0.9216
0.0169

0.8767
0.0267

0.8305
0.0357

0.7800
0.0465

0.7211
0.0595

0.6540
0.0790

0.5766
0.1082

0.4578
0.2173

         
0.9700
0.0018

0.9518
0.0045

0.9270
0.0088

0.8953
0.0139

0.8563
0.0204

0.8072
0.0291

0.7465
0.0423

0.6667
0.0624

0.5415
0.1148

         
0.9551
0.0067

0.9440
0.0076

0.9209
0.0095

0.8948
0.0122

0.8611
0.0166

0.8148
0.0240

0.7551
0.0370

0.6736
0.0574

0.5469
0.1052

         
0.9718
0.0013

0.9532
0.0030

0.9272
0.0054

0.8971
0.0087

0.8630
0.0137

0.8239
0.0214

0.7663
0.0348

0.6819
0.0554

0.5515
0.1038]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Table 12, 𝑤 = [
0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4
]. Moreover, since the numbers of 

the alternatives and the parameters are not equal in this PVA problem, iKKT13 is not applied to  

[𝑏𝑖𝑗]. 

Table 12. Decision sets of SDM methods* 

Algorithms Matrix Decision Sets 

iMBR01 [𝑏𝑖𝑗] { BPDF0.6250
0.0491 , DBAIN0.6042

0.2217 , MDBUTMF0.7589
0.0238 , NAFSMF0.9271

0 , DAMF0.4092
0.4449 , AWMF0.4702

0.2827 , ARmF0
0.6027 } 

isMBR01 [𝑏𝑖𝑗] { BPDF0.6250
0.0491 , DBAIN0.6042

0.2217 , MDBUTMF0.7589
0.0238 , NAFSMF0.9271

0 , DAMF0.4092
0.4449 , AWMF0.4702

0.2827 , ARmF0
0.6027 } 

iMBR01/2 [𝑏𝑖𝑗] { BPDF0.6294
0.0255 , DBAIN0.6242

0.2078 , MDBUTMF0.8237
0 , NAFSMF0.8762

0.0173 , DAMF0.4164
0.4314 , AWMF0.4576

0.2993 , ARmF0
0.5994 } 

iMRB02(𝑰𝟗) [𝑏𝑖𝑗] { BPDF0
0.8760 , DBAIN0.0340

0.8913 , MDBUTMF0.0202
0.8755 , NAFSMF0.0585

0.8868 , DAMF0.0589
0.9125 , AWMF0.0638

0.9104 , ARmF0.0607
0.9148 } 

iCCE11 [𝑏𝑖𝑗] { BPDF0.1084
0.3830 , DBAIN0.0653

0.3963 , MDBUTMF0.0911
0.3826 , NAFSMF0.0479

0.3924 , DAMF0.0250
0.4149 , AWMF0.0226

0.4130 , ARmF0.0214
0.4169 } 

iCCE10 [𝑏𝑖𝑗] { BPDF0.1084
0.3830 , DBAIN0.0653

0.3963 , MDBUTMF0.0911
0.3826 , NAFSMF0.0479

0.3924 , DAMF0.0250
0.4149 , AWMF0.0226

0.4130 , ARmF0.0214
0.4169 } 

iCEC11 [𝑏𝑖𝑗] { BPDF0.0311
0.3775 , DBAIN0.0184

0.3882 , MDBUTMF0.0267
0.3735 , NAFSMF0.0134

0.3832 , DAMF0.0071
0.4032 , AWMF0.0065

0.4010 , ARmF0.0063
0.4049 } 

iFJLL10/2(𝑰𝟗, 𝒘) [𝑏𝑖𝑗] { BPDF0
0.8205 , DBAIN0.0769

0.8308 , MDBUTMF0.0769
0.8308 , NAFSMF0.1641

0.8359 , DAMF0.1641
0.8359 , AWMF0.1641

0.8359 , ARmF0.1641
0.8359 } 

iFJLL10/4(𝑰𝟗, 𝒘) [𝑏𝑖𝑗] { BPDF0
0.8205 , DBAIN0.0769

0.8308 , MDBUTMF0.0769
0.8308 , NAFSMF0.1641

0.8359 , DAMF0.1641
0.8359 , AWMF0.1641

0.8359 , ARmF0.1641
0.8359 } 

iKWW11(𝑰𝟗, 𝟎. 𝟓, 𝟎. 𝟓) [𝑏𝑖𝑗] { BPDF0.1208
0.7130 , DBAIN0.0657

0.7508 , MDBUTMF0.0985
0.7097 , NAFSMF0.0588

0.7158 , DAMF0
0.8317 , AWMF0.0391

0.7801 , ARmF0.0331
0.9332 } 

iPEM [𝑏𝑖𝑗] { BPDF0.1366
0.8585 , DBAIN0.0829

0.9154 , MDBUTMF0.0988
0.8968 , NAFSMF0.0779

0.9211 , DAMF0.0080
0.9918 , AWMF0.0107

0.9891 , ARmF0
0.9998 } 

*In the event that noise removal performance at low noise densities is more important. 
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The intuitionistic fuzzy values in the decision sets provided in Table 12 are obtained with MATLAB 

R2021a. Moreover, using the relation in Proposition 2.1, the ranking orders of the alternatives are presented in 

Table 13. The number of the algorithms producing the same ranking orders is signified in the last column of 

Table 13. According to these ranking orders, iMBR01, isMBR01, and iMBR01/2 produce the same ranking 

orders just as iCEC11 and iKWW11(𝐼9, 0.5,0.5) do. Furthermore, these methods have the same ranking orders 

with the exception of BPDF and NAFSMF’s ranks. Besides, iCCE11 and iCCE10 generate the same ranking 

orders. However, iFJLL10/2(𝐼9, 𝑤) and iFJLL10/4(𝐼9, 𝑤) have anomalous ranking order unlike the other SDM 

methods. Additionally, all the SDM methods except for iMBR01, isMBR01, iMBR01/2, iMRB02(𝐼9), 

iFJLL10/2(𝐼9, 𝑤), and iFJLL10/4(𝐼9, 𝑤) confirm that BPDF exhibits the lowest performance. Further, all the 

SDM methods but iMRB02(𝐼9), iFJLL10/2(𝐼9, 𝑤), and iFJLL10/4(𝐼9, 𝑤) validate that ARmF performs better 

than the other filters. 

Table 13. Ranking orders of SDM methods* 

Algorithms Ranking Orders Frequency 

iMBR01 NAFSMF≺MDBUTMF≺BPDF≺DBAIN≺AWMF≺DAMF≺ARmF 3 

isMBR01 NAFSMF≺MDBUTMF≺BPDF≺DBAIN≺AWMF≺DAMF≺ARmF 3 

iMBR01/2 NAFSMF≺MDBUTMF≺BPDF≺DBAIN≺AWMF≺DAMF≺ARmF 3 

iMRB02(𝑰𝟗) NAFSMF≺AWMF≺DAMF≺ARmF≺MDBUTMF≺DBAIN≺BPDF 1 

iCCE11 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 2 

iCCE10 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 2 

iCEC11 BPDF≺MDBUTMF≺NAFSMF≺DBAIN≺AWMF≺DAMF≺ARmF 2 

iFJLL10/2(𝑰𝟗, 𝒘) NAFSMF≈DAMF≈AWMF≈ARmF≺DBAIN≈MDBUTMF≺BPDF 2 

iFJLL10/4(𝑰𝟗, 𝒘) NAFSMF≈DAMF≈AWMF≈ARmF≺DBAIN≈MDBUTMF≺BPDF 2 

iKWW11(𝑰𝟗, 𝟎. 𝟓, 𝟎. 𝟓) BPDF≺MDBUTMF≺NAFSMF≺DBAIN≺AWMF≺DAMF≺ARmF 2 

iPEM BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

*In the event that noise removal performance at low noise densities is more important. 

6. Conclusion 

In this study, we generalised 24 SDM methods [10,11,15,16,20], constructed by the concept of fpfs-matrices, 

in the ifpifs-matrices space. We then suggested five new test scenarios by inspiring from the scenarios in [13] 

to examine the performance consistency of the SDM methods in decision-making problems. Thus, we 

determined the SDM methods which successfully passed all the tests. Afterwards, we applied the successful 

SDM methods to a PVA problem to rank the state-of-the-art noise removal filters according to their noise 

removal performance. 

The present study encourages researchers to generalised other SDM methods to render them operable in 

the ifpifs-matrices space. Researchers can also focus on SDM methods constructed with intuitionistic fuzzy 

sets, soft sets, or their hybrid versions [4-8]. Moreover, classification algorithms can be developed using a 
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generalised method (for more on classification methods, see [43-47]). This study ignored the SDM methods 

suggested by using the superstructures of ifpifs-sets/matrices. Thereby, future papers can study the 

generalisations of SDM methods for such spaces as interval-valued intuitionistic fuzzy parameterized interval-

valued intuitionistic fuzzy soft sets/matrices space [48,49] and the hybrid versions of picture fuzzy sets [50,51] 

and soft sets. 
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concerning 24 environmental indicators. However, it is well known that there are huge differences 

between countries regarding environmental factors besides social, economic, and cultural factors. This 

case aggravates the doubt that the data set has outliers. Therefore, the index values should be obtained 

such that they are unsensitive to outliers. This study aims to generate a composite index, which is a 

robust alternative to EPI. For this aim, we use the Robust Principal Component Analysis (ROBPCA) 

and the Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS), which is a multi-
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1. Introduction 

Rapid industrialization and population growth cause harmful effects on the environment. In recent years, 

even ordinary people have realized this fact because of global warming and climate change. Therefore, we 

need evaluation and comparing countries concerning environmental factors. For this aim, a composite index 

called EPI was defined to measure the environmental performance of countries. This index was obtained with 

the collaboration of the Yale Center for Environmental Law and Policy (YCELP), Yale University, Columbia 

University Center for International Earth Science Information Network (CIESIN), and the World Economic 

Forum (WEF). The result of this index was released in Davos, Switzerland, at the annual meeting of the World 

Economic Forum in 2018. According to this report, 180 countries were sorted according to their EPI values, 

calculated from 24 environmental indicators [1]. 

In the literature, there are many studies related to environmental factors. In some of these studies, 

researchers investigated the relationship between the environmental performance of counties and different 

factors, such as socioeconomic, cultural, financial, ideological, economic growth [2-7]. In other studies, 

authors focused on obtaining a new composite index, which measures the environmental performance of 

countries, by using data envelopment analysis and Malmquist approaches [8-13]. 

Also, the principal components analysis (PCA) is one of the valuable methods to obtain a composite index 

[14]. Generally, researchers are interested in topics on human development, quality of life, and economic 

development in the studies that purpose a composite index using PCA [15-19]. Moreover, Bulut and Öner used 

robust PCA to obtain a composite index that is not sensitive to outliers. Thus, they evaluated the regions 
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robustly in Turkey about their socioeconomic development [20]. Also, Alpaykut investigated the well-being 

of cities in Turkey by using classical PCA, which is sensitive to outliers, and TOPSIS methods [21]. 

It is well known that the economic and cultural features of countries may affect environmental factors. 

For example, companies may call in their top model cars because of unsuitable emissions in a developed 

country, while old vehicles may be on the roads by polluting the environment in an undeveloped country. 

Because of similar reasons, when countries’ environmental performance is evaluated, it should not forget that 

the data sets consist of countries having different development levels. This case may cause the data set to 

include outliers. Hence, a robust approach is needed to obtain a composite index from like data.  

This study purposes construction of a composite index, which is not sensitive to outliers, to evaluate 

countries’ environmental performance. For this purpose, we use the ROBPCA method, which is a robust 

principal component analysis algorithm, and the TOPSIS algorithm, which is a multi-criteria decision method. 

In this way, we have robustly constructed a composite index measuring the environmental performances of 

countries and sort countries according to these values. 

The remainder of the paper is organized as follows. The principal component analysis and TOPSIS 

methods are introduced in Section 2. In Section 3, a robust alternative to the EPI is constructed called the 

robust EPI (REPI). The REPI values of countries are obtained, and the countries are ordered according to these 

values. Finally, we conclude from the obtained results in the last section.  

2. Materials and methods 

In this section, we introduce the principal component analysis and TOPSIS methods used to construct a 

composite index called robust environmental performance index. 

2.1.  Principal Component Analysis 

The principal component analysis is one of the most popular multivariate statistical methods. The PCA aims 

to obtain the new variables, which are the linear combinations of variables that are correlated with each other, 

and components number is less than the number of the original variables (𝑝). These new variables are called 

principal components. However, it is well known that classical PCA is sensitive to outliers [20]. A robust 

principal component analysis method called ROBPCA was developed [22].  

The ROBPCA algorithm consists of three stages which are given below.  

• Stage 1: The data is reduced to space that has maximum (𝑛 − 1) dimension using the projection 

pursuit approach.  

• Stage 2: The initial covariance matrix 𝛴0 is obtained, and 𝑞, which is the number of important 

components, is determined.  

• Stage 3: The data points are projected on this subspace where their location and scatter matrix are 

robustly estimated, from which its 𝑘 nonzero eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑞 are computed. The 

corresponding eigenvectors are the 𝑞 robust principal components [20,22] 

Principal component scores are obtained from (1): 

𝑇𝑛,𝑞 = (𝑋𝑛,𝑝 − 1𝑛 𝜇 ̂𝑇)𝑃𝑝,𝑞                                                               (1) 

where 𝑋: 𝑛 × 𝑝 is data matrix, 𝑛 is observation number, 𝑝 is the variable number, 𝑃: 𝑝 × 𝑞 is eigenvectors 

matrix, 𝜇 ̂ which is called a robust location estimation is a column vector with 𝑝-dimension 1𝑛 is the column 

vector with all 𝑛 components equal to 1, and (. )𝑇 is the transpose operator. The robust scatter matrix is also 

calculated using spectral demonstration, as below  

𝛴𝑝,𝑝 = 𝑃𝑝,𝑞𝐿𝑞,𝑞𝑃𝑞,𝑝
′                                                                            (2)    

where 𝐿𝑞,𝑞 is eigenvalues matrix [22]. 
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An essential advantage of the ROBPCA algorithm is that it detects outliers by calculating orthogonal and 

score distances and using critical values for these distances. The critical value of score distance is√𝜒𝑞,0.975
2  

and the critical value of the orthogonal distance is (�̂� + �̂�𝑍0.975)2, where 𝑔1 and  𝑔2 are unknown parameters,  

�̂� = (𝑔1𝑔2)
1

3 (1 −
2

9𝑔2
) and  �̂�2 =

2𝑔1

2
3

9𝑔2

1
3

. Score and orthogonal distances are calculated as below, respectively: 

 𝑆𝐷𝑖 = √∑
𝑡𝑖𝑗

2

𝜆𝑗

𝑞
𝑗=1  , (𝑖 = 1,2, … , 𝑛)                                                            (3)   

 𝑂𝐷𝑖 = ‖𝑥𝑖 −  �̂� − 𝑃𝑝,𝑞𝑡𝑖
′‖  , (𝑖 = 1,2, … , 𝑛)                                               (4)  

where tij is a member in ith row and jth column of Tn,q matrix, which is defined in (1). ti is also ith row vector 

of Tn,q matrix [22]. 

In this study, “rrcov” package in the R programming language has been used for calculations regarding 

the ROBPCA algorithm [23]. 

2.2.  The technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) 

Hwang and Yoon [24] suggested the TOPSIS method. In the TOPSIS method, the aim is to select the best 

solution between different alternatives. The main idea of the TOPSIS method is based on the selection of a 

solution, which is the nearest to the positive ideal solution and is the farthest to the negative ideal solution. 

Thus, the TOPSIS method obtains the best sorting [21].    

In the TOPSIS method, one needs a decision matrix and a weights vector. Criteria are in rows of the 

decision matrix, and alternative values are in columns of the decision matrix. Weight vector consists of weights 

of alternative solutions. 

In this study, “topsis” package in the R programming language has been used for calculations regarding 

the TOPSIS algorithm [25]. 

3. Construction of Robust Environmental Performance Index 

This study uses the data set consisted of the values of 180 countries’ 24 environmental indicators. These 

indicators are given in Table 1. We have downloaded the data set from web site EPI 2018 [26]. 

Table  1. The environmental indicators used in this study 

Indicator Code Indicator Code 

Household Solid Fuels HAD Marine Protected Areas MPA 

PM2.5 Exposure PME Biome Protection (National) TBN 

PM2.5 Exceedance PMW Biome Protection (Global) TBG 

Drinking-Water UWD Species Protection Index SPI 

Sanitation USD Representativeness Index PAR 

Lead Exposure PBD Species Habitat Index SHI 

Tree Cover Loss TCL Methane Emissions DMT 

Fish Stock Status FSS N2O Emissions DNT 

Regional Marine Trophic Index MTR Black Carbon Emissions DBT 

CO2 Emissions – Total DCT SO2 Emissions DST 

CO2 Emissions – Power DPT NOX Emissions DXT 

Sustainable Nitrogen Management SNM Wastewater Treatment WWT 
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Firstly, we investigate whether the data set has outliers by using both classical Mahalanobis distances and 

the ROBPCA algorithm. While we cannot determine outliers in the classical approach, we determine outliers 

in the data set via the ROBPCA algorithm. Because classical Mahalanobis distances are based on classical 

mean vector and sample covariance matrix, which are sensitive to outliers, they may fail to determine outliers. 

In the robust literature, this case is called masking. The results of outlier detection are given in Table A in the 

Appendix. 

Moreover, we investigate the relationship between 24 environmental indicators and give the graph of the 

obtained correlation matrix in Figure A in the Appendix. The X icon of this graph means that the relationship 

is statistically unimportant. According to the graphic, we decide to use PCA for dimension reduction because 

there are many statistically important correlations. 

Table  2. The proportion of explained variance 

Method Values 𝑷𝑪𝟏 𝑷𝑪𝟐 𝑷𝑪𝟑 𝑷𝑪𝟒 𝑷𝑪𝟓 𝑷𝑪𝟔 𝑷𝑪𝟕 𝑷𝑪𝟖 

CPCA 

Standard deviation 73.27 55.87 52.17 35.90 33.31 29.13 25.86 24.87 

Proportion of Variance 0.28 0.16 0.14 0.07 0.06 0.04 0.03 0.03 

Cumulative Proportion 0.275 0.436 0.575 0.641 0.698 0.742 0.776 0.808 

ROBPCA 

Standard deviation 79.59 57.43 56.32 35.42 31.37 26.23 24.48 22.92 

Proportion of Variance 0.36 0.19 0.18 0.07 0.06 0.04 0.03 0.03 

Cumulative Proportion 0.358 0.545 0.724 0.795 0.851 0.890 0.924 0.953 

Also, we decide to use robust principal component analysis because the data set has outliers. Table 2 gives 

the explained variance’s proportions obtained from classical PCA (CPCA) and robust PCA (ROBPCA). 

According to Table 2, 8 components explain 80.8% of the variance in CPCA, while only 5 components explain 

85.1% of the variance in ROBPCA. Therefore, we use the scores obtained from the ROBPCA, which the 

number of important components is 5.   

To obtain only a composite index by basing five principal components, we use the TOPSIS method. In 

the TOPSIS method, we take countries as criteria and the important components as alternative values. We also 

take the marginal proportions of explained variance as weights for each alternative. Therefore, the first 

principal component, which explains the biggest proportion of variance, has the biggest weight on the 

composite index. In this way, the obtained composite index is called the Robust Environmental Performance 

Index (REPI) because it is not sensitive to outliers.  The EPI and the REPI values and the ranks of countries 

according to these values are given in Table 3. We show these values of indexes on the world map in Figure 

1. 

According to Table 3, there are dramatic differences in the results of the REPI and the EPI. The 

performance rankings of some countries (Armenia, Azerbaijan, Bolivia, Hungary, Czech Republic, 

Turkmenistan, Makedonia, etc.) decrease, while the performance rankings of other countries (Bahrain, 

Bangladesh, Chile, China, Malaysia, Maldives, etc.) increase. We detect an essential difference for top 

countries. Accordingly, the rank of Malta is 1 instead of 4, the rank of Israel is 2 instead of 19, the rank of 

Sweden is 3 instead of 5, the rank of Finland is 4 instead of 10, the rank of Holland is 5 instead of 18, the rank 

of South Korea is 6 instead of 60, the rank of Singapore is 7 instead of 49, and the rank of Japan is 8 instea of 

20.  On the contrary, the rank of Switzerland decreases from 1 to 52, the rank of France decreases from 2 to 

10, the rank of Denmark decreases from 3 to 17, the rank of Luxembourg decreases from 7 to 69 and the rank 

of United Kingdom decreases from 6 to 12. 
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Table  3. The Index Values and Ranking of Countries According to EPI2018 and REPI 

Country 
EPI 2018  REPI  

Country 
EPI 2018  REPI 

Value

s 

Rank  Value

s 

Ran

k 

 Value

s 

Ran

k 

 Value

s 

Ran

k Afghanistan 37.74 168  31.46 161  Djibouti 40.04 163  40.05 136 

Albania 65.46 40  62.83 34  Dominica 59.38 73  49.01 98 

Algeria 57.18 88  51.49 88  Dominican Republic 64.71 46  60.23 46 

Angola 37.44 170  37.27 146  Ecuador 57.42 87  53.47 75 

Antigua and Barbuda 59.18 76  55.08 67  Egypt 61.21 66  55.77 61 

Argentina 59.3 74  60.03 48  El Salvador 53.91 106  43.58 118 

Armenia 62.07 63  43.07 123  Equatorial Guinea 60.4 71  54.62 70 

Australia 74.12 21  67.89 19  Eritrea 39.34 165  35.34 153 

Austria 78.97 8  54.89 68  Estonia 64.31 48  61.41 41 

Azerbaijan 62.33 59  44.04 115  Ethiopia 44.78 141  21.88 175 

Bahamas 54.99 98  52.36 81  Fiji 53.09 107  49.77 93 

Bahrain 55.15 96  63.54 29  Finland 78.64 10  71.26 4 

Bangladesh 29.56 179  43.44 121  France 83.95 2  70.12 10 

Barbados 55.76 93  53.09 78  Gabon 45.05 140  42.36 126 

Belarus 64.98 44  48.58 101  The Gambia 42.42 156  37.14 147 

Belgium 77.38 15  68.68 15  Georgia 55.69 94  53.22 77 

Belize 57.79 81  50.71 90  Germany 78.37 13  68.89 14 

Benin 38.17 167  30.50 162  Ghana 49.66 124  46.60 111 

Bhutan 47.22 131  30.42 164  Greece 73.6 22  64.21 26 

Bolivia 55.98 92  35.66 152  Grenada 50.93 118  48.05 102 

Bosnia and Herzegovina 41.84 158  34.23 155  Guatemala 52.33 110  51.51 86 

Botswana 51.7 113  32.82 156  Guinea 46.62 134  38.58 140 

Brazil 60.7 69  58.08 55  Guinea-Bissau 44.67 143  36.48 149 

Brunei Darussalam 63.57 53  61.78 39  Guyana 47.93 128  38.52 141 

Bulgaria 67.85 30  59.87 49  Haiti 33.74 174  35.17 154 

Burkina Faso 42.83 154  20.97 176  Honduras 51.51 114  48.60 100 

Burundi 27.43 180  19.91 178  Hungary 65.01 43  46.84 110 

Cabo Verde 56.94 89  47.64 107  Iceland 78.57 11  66.54 22 

Côte d’Ivoire 45.25 139  42.52 125  India 30.57 177  43.65 117 

Cambodia 43.23 150  43.45 120  Indonesia 46.92 133  49.08 97 

Cameroon 40.81 161  31.50 160  Iran 58.16 80  52.62 80 

Canada 72.18 25  62.99 32  Iraq 43.2 152  36.11 150 

The central African 

Republic 
36.42 171  17.29 180  Ireland 78.77 9  69.63 11 

Chad 45.34 137  23.55 171  Israel 75.01 19  73.86 2 

Chile 57.49 84  61.92 37  Italy 76.96 16  67.06 21 

China 50.74 120  61.79 38  Jamaica 58.58 78  48.98 99 

Colombia 65.22 42  63.28 30  Japan 74.69 20  70.14 8 

Comoros 44.24 146  38.16 143  Jordan 62.2 62  49.54 95 

Costa Rica 67.85 31  57.47 57  Kazakhstan 54.56 101  40.65 132 

Croatia 65.45 41  59.02 53  Kenya 47.25 130  40.37 134 

Cuba 63.42 55  61.24 42  Kiribati 55.26 95  49.37 96 

Cyprus 72.6 24  66.45 24  Kuwait 62.28 61  64.25 25 

Czech Republic 67.68 33  47.79 104  Kyrgyzstan 54.86 99  32.61 157 

Dem. Rep. Congo 30.41 178  20.35 177  Laos 42.94 153  30.20 166 

Denmark 81.6 3  68.32 17  Latvia 66.12 37  59.67 50 

Lebanon 61.08 67  60.47 44  São Tomé and Príncipe 54.01 104  44.69 114 

Lesotho 33.78 173  29.86 167  Saint Lucia 56.18 91  51.80 85 

Liberia 41.62 160  40.06 135  Saint Vincent and the 

Grenadines 
66.48 36  55.33 63 

Libya 49.79 123  46.55 112  Samoa 54.5 102  49.74 94 

Lithuania 69.33 29  63.64 28  Saudi Arabia 57.47 86  61.44 40 

Luxembourg 79.12 7  54.85 69  Senegal 49.52 126  43.21 122 

Macedonia 61.06 68  41.56 129  Serbia 57.49 85  41.36 130 

Madagascar 33.73 175  39.23 137  Seychelles 66.02 39  52.21 83 

Malawi 49.21 127  22.76 172  Sierra Leone 42.54 155  37.50 145 

Malaysia 59.22 75  64.12 27  Singapore 64.23 49  70.22 7 

Maldives 52.14 111  55.57 62  Slovakia 70.6 28  51.88 84 

Mali 43.71 147  22.22 173  Slovenia 67.57 34  47.03 109 
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Table  3. (Continued) The Index Values and Ranking of Countries According to EPI2018 and REPI 

Country 
EPI 2018  REPI  

Country 
EPI 2018  REPI 

Values Rank  Values Rank  Values Rank  Values Rank 

Malta 80.9 4  74.24 1  Solomon Islands 43.22 151  41.61 128 

Mauritania 39.24 166  40.77 131  South Africa 44.73 142  50.35 91 

Mauritius 56.63 90  52.33 82  South Korea 62.3 60  71.05 6 

Mexico 59.69 72  56.71 59  Spain 78.39 12  66.52 23 

Micronesia 49.8 122  47.49 108  Sri Lanka 60.61 70  52.64 79 

Moldova 51.97 112  42.64 124  Sudan 51.49 115  47.77 105 

Mongolia 57.51 83  38.09 144  Suriname 54.2 103  50.92 89 

Montenegro 61.33 65  54.14 73  Swaziland 40.32 162  30.22 165 

Morocco 63.47 54  55.78 60  Sweden 80.51 5  72.45 3 

Mozambique 46.37 135  39.16 138  Switzerland 87.42 1  59.11 52 

Myanmar 45.32 138  47.66 106  Taiwan 72.84 23  67.81 20 

Namibia 58.46 79  49.94 92  Tajikistan 47.85 129  31.70 159 

Nepal 31.44 176  22.16 174  Tanzania 50.83 119  43.46 119 

Netherlands 75.46 18  71.23 5  Thailand 49.88 121  55.21 65 

New Zealand 75.96 17  67.92 18  Timor-Leste 49.54 125  43.84 116 

Nicaragua 55.04 97  51.49 87  Togo 41.78 159  31.78 158 

Niger 35.74 172  19.09 179  Tonga 62.49 57  54.59 71 

Nigeria 54.76 100  45.45 113  Trinidad and Tobago 67.36 35  59.53 51 

Norway 77.49 14  68.60 16  Tunisia 62.35 58  61.23 43 

Oman 51.32 116  54.41 72  Turkey 52.96 108  53.94 74 

Pakistan 37.5 169  38.94 139  Turkmenistan 66.1 38  48.00 103 

Panama 62.71 56  58.57 54  Uganda 44.28 145  24.77 170 

Papua New Guinea 39.35 164  36.94 148  Ukraine 52.87 109  56.99 58 

Paraguay 53.93 105  36.04 151  United Arab Emirates 58.9 77  63.07 31 

Peru 61.92 64  60.35 45  United Kingdom 79.89 6  69.37 12 

Philippines 57.65 82  55.32 64  United States of America 71.19 27  68.92 13 

Poland 64.11 50  60.10 47  Uruguay 64.65 47  62.15 36 

Portugal 71.91 26  62.86 33  Uzbekistan 45.88 136  38.42 142 

Qatar 67.8 32  70.13 9  Vanuatu 44.55 144  41.69 127 

Republic of Congo 42.39 157  40.45 133  Venezuela 63.89 51  55.21 66 

Romania 64.78 45  57.82 56  Viet Nam 46.96 132  53.24 76 

Russia 63.79 52  62.32 35  Zambia 50.97 117  30.48 163 

Rwanda 43.68 148  25.42 168  Zimbabwe 43.41 149  25.04 169 

 
Fig.  1. The world maps according to environmental performance indexes (a) EPI2018 (b) REPI 
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These results based on the REPI are more confidential than those based on the EPI because the REPI is 

not sensitive to outliers in the data set. Moreover, it is seen that African countries have poorer 

environmental performances than American and European countries, according to both the EPI and 

the REPI, when maps given in Figure 1 are investigated. 

4. Conclusion 

This study aims to construct a robust composite index, an alternative to the EPI. For this aim, firstly, we have 

investigated whether the data set has outliers or not and decided the data set has outliers. Therefore, we used 

the ROBPCA algorithm, a robust principal component analysis, for dimension reduction and obtained five 

important principal components scores for each country. We have used the TOPSIS method to construct a 

composite index from five principal components scores. Finally, we have obtained the REPI values, which are 

not sensitive to outliers in the data set, for each country and have ranked countries according to these index 

values. When they are compared with the EPI results, the REPI results have dramatic differences. The reason 

for these differences is the impact of outliers in data sets. Therefore, we suggest using methods that are not 

sensitive to outliers when constructing a composite index. 
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Appendix  

 

Fig.  A. Correlation matrix for environmental indicators 

Table  A. Outlier Detection 
Country 𝑴𝒂𝒉𝑪 SD OD Decision   Country 𝑴𝒂𝒉𝑪 SD OD Decision 

Afghanistan 37.14 4.84 82.58 FALSE  Djibouti 14.00 2.54 45.46 TRUE 

Albania 31.39 2.56 76.74 TRUE  Dominica 23.77 2.55 111.72 FALSE 

Algeria 28.21 3.10 67.56 TRUE  Dominican Republic 15.97 2.19 46.18 TRUE 

Angola 16.41 3.00 46.30 TRUE  Ecuador 21.97 2.58 50.36 TRUE 

Antigua and Barbuda 34.28 3.03 116.98 FALSE  Egypt 42.66 3.35 66.42 TRUE 

Argentina 29.78 2.30 64.39 TRUE  El Salvador 21.67 2.88 61.76 TRUE 

Armenia 29.15 2.63 71.40 TRUE  Equatorial Guinea 21.17 3.89 29.69 TRUE 

Australia 18.79 3.26 37.74 TRUE  Eritrea 32.78 4.70 52.54 FALSE 

Austria 21.72 2.96 47.66 TRUE  Estonia 13.61 2.42 40.73 TRUE 

Azerbaijan 38.94 3.88 63.17 TRUE  Ethiopia 22.20 4.49 37.21 TRUE 

Bahamas 23.19 3.84 45.33 TRUE  Fiji 19.64 2.14 58.48 TRUE 

Bahrain 31.74 4.37 64.33 TRUE  Finland 17.35 2.46 50.94 TRUE 

Bangladesh 67.70 5.74 79.49 FALSE  France 17.38 2.71 39.51 TRUE 

Barbados 30.74 3.52 93.33 FALSE  Gabon 31.01 3.27 52.13 TRUE 

Belarus 13.16 2.18 32.26 TRUE  Gambia 15.03 2.38 40.92 TRUE 

Belgium 19.76 1.86 48.80 TRUE  Georgia 34.73 4.27 60.79 TRUE 

Belize 16.34 2.55 57.53 TRUE  Germany 16.39 2.48 45.88 TRUE 

Benin 16.56 2.63 51.72 TRUE  Ghana 9.53 1.82 37.38 TRUE 

Bhutan 22.49 4.07 44.86 TRUE  Greece 23.74 3.08 44.66 TRUE 

Bolivia 16.00 2.46 35.63 TRUE  Grenada 29.50 2.51 113.88 FALSE 

Bosnia and Herzegovina 31.18 3.24 84.71 FALSE  Guatemala 28.83 2.96 58.94 TRUE 

Botswana 20.72 3.43 38.51 TRUE  Guinea 18.98 3.12 39.70 TRUE 

Brazil 31.14 2.82 49.21 TRUE  Guinea-Bissau 15.60 2.91 34.90 TRUE 

Brunei Darussalam 49.77 3.27 109.83 FALSE  Guyana 26.52 2.39 88.64 FALSE 

Bulgaria 22.03 2.10 49.47 TRUE  Haiti 27.84 3.24 52.89 TRUE 

Burkina Faso 13.05 2.86 28.12 TRUE  Honduras 17.65 2.50 41.55 TRUE 

Burundi 12.82 2.86 31.44 TRUE  Hungary 19.46 2.82 37.60 TRUE 

Cabo Verde 18.89 3.70 35.28 TRUE  Iceland 33.92 2.75 81.39 FALSE 

Côte d’Ivoire 17.71 2.20 56.14 TRUE  India 28.61 5.67 30.80 FALSE 

Cambodia 21.54 2.89 41.71 TRUE  Indonesia 8.35 2.38 22.62 TRUE 

Cameroon 25.38 4.04 39.14 TRUE  Iran 36.01 4.35 62.79 TRUE 

Canada 14.87 3.27 32.86 TRUE  Iraq 31.83 3.09 46.05 TRUE 

Central African Republic 16.02 3.16 26.76 TRUE  Ireland 21.01 2.83 45.92 TRUE 

Chad 28.70 3.34 57.87 TRUE  Israel 30.45 2.75 55.63 TRUE 

Chile 32.27 5.22 43.99 FALSE  Italy 14.75 2.31 36.99 TRUE 

China 12.21 2.84 28.80 TRUE  Jamaica 21.99 1.85 56.78 TRUE 

Colombia 10.73 1.53 36.14 TRUE  Japan 23.19 3.54 36.47 TRUE 

Comoros 25.72 2.78 49.65 TRUE  Jordan 31.61 3.23 65.28 TRUE 

Costa Rica 14.34 2.38 43.09 TRUE  Kazakhstan 33.83 2.96 65.89 TRUE 

Croatia 20.06 2.64 45.38 TRUE  Kenya 17.69 2.26 40.71 TRUE 

Cuba 15.07 2.41 51.40 TRUE  Kiribati 29.31 3.11 103.39 FALSE 

Cyprus 27.11 2.86 57.96 TRUE  Kuwait 34.25 2.94 89.96 FALSE 

Czech Republic 19.39 2.85 37.06 TRUE  Kyrgyzstan 30.46 3.88 61.15 TRUE 

Dem. Rep. Congo 28.54 5.11 51.21 FALSE  Laos 28.66 5.02 29.13 FALSE 

Denmark 16.64 2.21 46.20 TRUE  Latvia 14.64 2.67 40.76 TRUE 

Critical Values 39.36 4.53 77.28       39.36 4.53 77.28   
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Table  A. Outlier Detection (Continue) 
Country 𝑴𝒂𝒉𝑪 SD OD Decision   Country 𝑴𝒂𝒉𝑪 SD OD Decision 

Lebanon 26.37 3.72 46.77 TRUE  São Tomé and Príncipe 28.93 2.12 117.10 FALSE 

Lesotho 17.64 2.98 38.86 TRUE  Saint Lucia 43.98 3.52 135.91 FALSE 

Liberia 22.94 2.67 55.91 TRUE  Saint Vincent and the Grenadines 18.44 2.71 40.96 TRUE 

Libya 31.52 4.99 41.92 FALSE  Samoa 25.84 2.92 94.54 FALSE 

Lithuania 15.54 1.43 49.76 TRUE  Saudi Arabia 15.70 2.83 49.83 TRUE 

Luxembourg 26.27 3.52 46.70 TRUE  Senegal 8.55 2.34 26.51 TRUE 

Macedonia 18.12 2.10 46.99 TRUE  Serbia 15.64 2.11 46.85 TRUE 

Madagascar 33.00 3.16 60.31 TRUE  Seychelles 41.32 3.70 101.34 FALSE 

Malawi 13.56 2.65 36.08 TRUE  Sierra Leone 22.62 2.60 39.06 TRUE 

Malaysia 28.60 3.35 59.82 TRUE  Singapore 48.81 5.70 79.33 FALSE 

Maldives 21.10 3.59 35.72 TRUE  Slovakia 22.53 2.91 43.10 TRUE 

Mali 20.18 3.05 34.34 TRUE  Slovenia 15.98 2.45 32.93 TRUE 

Malta 32.86 3.80 92.14 FALSE  Solomon Islands 15.89 2.78 38.75 TRUE 

Mauritania 23.90 3.17 51.35 TRUE  South Africa 18.17 3.41 43.32 TRUE 

Mauritius 20.15 1.88 47.33 TRUE  South Korea 32.02 3.99 61.69 TRUE 

Mexico 11.16 1.63 48.37 TRUE  Spain 15.45 2.17 41.29 TRUE 

Micronesia 43.49 4.89 105.69 FALSE  Sri Lanka 17.57 2.94 48.24 TRUE 

Moldova 9.65 2.61 23.11 TRUE  Sudan 36.42 6.47 41.20 FALSE 

Mongolia 26.61 2.46 48.52 TRUE  Suriname 29.89 2.90 88.79 FALSE 

Montenegro 31.79 2.01 61.92 TRUE  Swaziland 19.40 2.68 53.63 TRUE 

Morocco 17.21 2.48 42.77 TRUE  Sweden 17.03 2.58 48.08 TRUE 

Mozambique 16.42 2.87 36.38 TRUE  Switzerland 27.22 4.03 34.05 TRUE 

Myanmar 29.86 4.57 31.48 FALSE  Taiwan 21.27 3.21 40.95 TRUE 

Namibia 27.95 3.47 57.82 TRUE  Tajikistan 29.09 5.36 37.50 FALSE 

Nepal 47.19 5.75 46.73 FALSE  Tanzania 17.30 2.71 33.99 TRUE 

Netherlands 17.13 2.65 47.59 TRUE  Thailand 37.07 3.49 40.67 TRUE 

New Zealand 11.06 2.10 38.00 TRUE  Timor-Leste 13.35 2.68 37.02 TRUE 

Nicaragua 24.34 3.84 40.99 TRUE  Togo 30.06 4.08 72.13 TRUE 

Niger 18.44 3.23 47.25 TRUE  Tonga 35.89 3.99 105.62 FALSE 

Nigeria 17.93 3.31 28.50 TRUE  Trinidad and Tobago 28.69 2.80 59.20 TRUE 

Norway 18.24 3.18 41.76 TRUE  Tunisia 20.85 2.62 46.97 TRUE 

Oman 29.00 3.98 58.47 TRUE  Turkey 16.85 3.14 45.37 TRUE 

Pakistan 31.09 6.07 37.91 FALSE  Turkmenistan 33.01 3.22 60.17 TRUE 

Panama 13.20 2.78 27.65 TRUE  Uganda 10.67 2.67 17.03 TRUE 

Papua New Guinea 20.58 2.76 55.59 TRUE  Ukraine 20.87 2.81 47.67 TRUE 

Paraguay 31.18 4.66 43.90 FALSE  United Arab Emirates 41.79 2.24 100.27 FALSE 

Peru 15.63 2.66 30.39 TRUE  United Kingdom 18.76 3.07 45.88 TRUE 

Philippines 19.86 1.95 44.49 TRUE  United States of America 31.40 2.39 40.21 TRUE 

Poland 22.87 2.54 57.67 TRUE  Uruguay 38.47 3.59 87.97 FALSE 

Portugal 30.64 2.13 60.00 TRUE  Uzbekistan 29.48 4.94 48.61 FALSE 

Qatar 20.21 3.10 51.45 TRUE  Vanuatu 18.73 2.99 57.38 TRUE 

Republic of Congo 26.25 3.89 45.24 TRUE  Venezuela 23.42 3.75 49.59 TRUE 

Romania 12.15 1.82 43.08 TRUE  Viet Nam 18.87 3.33 40.50 TRUE 

Russia 13.55 2.17 30.24 TRUE  Zambia 17.62 2.76 50.04 TRUE 

Rwanda 19.20 2.59 39.96 TRUE  Zimbabwe 20.56 3.46 38.00 TRUE 

  39.36 4.53 77.28       39.36 4.53 77.28   

 

 

 


