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Research Article

Abstract − Cuong [Picture Fuzzy Sets, Journal of Computer Science and Cybernetics
30 (4) (2014) 409–420] has introduced the concept of picture fuzzy soft sets (pfs-sets)
relying on his definition and operations of picture fuzzy sets (pf -sets), in which
there exist some inconsistencies. Yang et al. [Adjustable Soft Discernibility Matrix
Based on Picture Fuzzy Soft Sets and Its Applications in Decision Making, Journal
of Intelligent & Fuzzy Systems 29 (4) (2015) 1711–1722] have claimed that they
have introduced the concept of pfs-sets with the inconsistencies in Cuong’s definition
of pf -sets. Therefore, this study redefines the concept of pfs-sets to deal with the
inconsistencies therein. Moreover, it investigates some of the properties of pfs-sets
and their product operations and proposes a soft decision-making method via pfs-sets.
Finally, pfs-sets, their product operations, and the proposed method are discussed for
further research.

Keywords − Fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, soft sets, picture fuzzy soft sets

Mathematics Subject Classification (2020) − 03E72, 03E99

1. Introduction

Various uncertainties may occur in real-world problems. Classical mathematical tools are inadequate
in modelling such uncertainties. To overcome this problem, introducing of new mathematical tools are
needed. One of the well-known mathematical tool to model uncertainty is fuzzy sets [1]. In a short
time, it has been applied to pure mathematics such as algebra, topology, and mathematical analysis
and computer science such as machine learning, image processing, and artificial intelligence [2]. Shortly
after the introducing of fuzzy sets, intuitionistic fuzzy sets [3] have been proposed as an extension
of fuzzy sets to model further uncertainty than fuzzy uncertainty. An element of a considered fuzzy
set has a membership degree denoted by µ(x) while those of a considered intuitionistic fuzzy set has
the membership and non-membership degrees denoted by µ(x) and ν(x) such that µ(x) + ν(x) ≤ 1,
respectively. A intuitionistic fuzzy set represents as a fuzzy set if µ(x)+ν(x) = 1, whose the membership
and non-membership degrees are equal to µ(x) and 1−µ(x), respectively. Moreover, the indeterminacy
degrees of fuzzy sets and intuitionistic fuzzy sets are equal to 0 and 1− (µ(x) + ν(x)), respectively.

One of the other state-of-the-art mathematical tools is soft sets defined by Molodstov [4] in 1999 to
parameterise the alternative set for the considered problems without employing the specific membership
functions. Due to its ease of implementation, it has been applied to a great variety of fields such as
algebra [5–7], topology [8–10], decision-making [11–15], and machine learning [16–18]. After that, the
hybrid structures of fuzzy sets and soft sets are studied, and fuzzy soft sets [19,20], fuzzy parameterized
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İstanbul, Turkey
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soft sets [21], and fuzzy parameterized fuzzy soft sets [22] are introduced to model problems containing
fuzzy parameters or alternatives.

In the real world, many more problems and uncertainties are encountered that fuzzy sets and
intuitionistic fuzzy sets can not model. For example, let us consider a voting process for an election.
The electorate’s decisions in the process may separate into three types: yes, no, and abstain. To
deal with this problem, Cuong [23] has introduced the concept of picture fuzzy sets (pf -sets). The
membership, neutral membership, and non-membership degrees are denoted by µ(x), η(x), and ν(x),
respectively, for a pf -set such that µ(x)+ η(x)+ ν(x) ≤ 1. In the Cuong’s definition, the indeterminacy
degree is denoted by 1 − (µ(x) + η(x) + ν(x)) for a pf -set. In the same study [23], Cuong has put
forward the concept of picture fuzzy soft sets (pfs-sets) to model problems containing picture fuzzy
alternatives and investigate some of their properties. However, the investigation is so limited, and
Cuong’s definitions and operations of pf -sets and pfs-sets have theoretical inconsistencies.

Recently, pfs-sets have been redefined [24] relying on definition of Cuong’s pf -sets without men-
tioning the definition of Cuong’s pfs-sets. Therefore, the concepts of pfs-sets in [24] inherit from the
inconsistencies [23]. To overcome the problem therein, Memiş [25], has been redefined the concept
of pf -sets, in which µ(x) + ν(x) ≤ 1 and µ(x) + η(x) + ν(x) ≤ 2, improved their operations, and
investigated their properties extensively. In this study, the main goal is that pfs-sets are redefined
relying on the definition of pf -sets in [25] to deal with the inconsistencies of definition and operations
in pfs-sets [24] and to ensure their consistency.

In Section 2 of the present study, we present concepts of fuzzy sets, intuitionistic fuzzy sets, pf -sets,
and basic operations of pf -sets. In Section 3, we present the counter-examples provided in [25] related
to Cuong’s definitions and operations and motivation of the redefining of pfs-sets. In Section 4, we
redefine the concept of pfs-sets, investigate and revise some of its basic operations, and define the
product operations of pfs-sets. In Section 5, we propose a soft decision-making method rely on the
concept of pfs-sets and compare its ranking orders with those in [24]. Finally, we discuss pfs-sets, their
product operations, and the proposed soft decision-making method and provide conclusive remarks for
further research.

2. Preliminaries

This section provides the concepts of fuzzy sets [1], intuitionistic fuzzy sets [3], and picture fuzzy sets
(pf -sets) [23, 25] and some of pf -sets’ operations and properties provided in [25] by considering the
notations used throughout this paper.

In the present paper, let E be a parameter set, F (E) be the set of all fuzzy sets over E, and
µ ∈ F (E). Here, a fuzzy set is denoted by {µ(x)x : x ∈ E} instead of {(x, µ(x)) : x ∈ E}.

Definition 2.1. [3] Let κ be a function from E to [0, 1] × [0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called an intuitionistic fuzzy set (if -set) over E.

Here, for all x ∈ E, κ(x) = (µ(x), ν(x)) such that µ(x) + ν(x) ≤ 1. Moreover, µ and ν are called
the membership function and non-membership function, respectively, and π(x) = 1− (µ(x) + ν(x)) is
called the degree of indeterminacy of the element x ∈ E. For brevity, we represent an intuitionistic

fuzzy set over E with κ =
{
µ(x)
ν(x)x : x ∈ E

}
instead of κ = {(x, µ(x), ν(x)) : x ∈ E}. Obviously, each

ordinary fuzzy set can be written as
{
µ(x)
1−µ(x)x : x ∈ E

}
.

Definition 2.2. [25] Let κ be a function from E to [0, 1]×[0, 1]×[0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called a picture fuzzy set (pf -set) over E.

Here, for all x ∈ E, κ(x) = (µ(x), η(x), ν(x)) such that 0 ≤ µ(x) + ν(x) ≤ 1 and 0 ≤

µ(x) + η(x) + ν(x) ≤ 2. We denote a pf -set over E by κ =

{〈
µ(x)
η(x)
ν(x)

〉
x : x ∈ E

}
instead of

κ = {(x, µ(x), η(x), ν(x)) : x ∈ E} for brevity.

Moreover, µ, η, and ν are called the membership function, neutral membership function, and
non-membership function, respectively,
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Note 2.3. Indeterminacy-membership of the element x ∈ E in a pf -set over E must be defined by
π(x) = 1− (µ(x) + ν(x)) in order to that a pf -set can model a real-world problem and has theoretical
consistency.

Manifestly, each ordinary fuzzy set can be written as

{〈
µ(x)
1

1− µ(x)

〉
x : x ∈ E

}
and each intuitionistic

fuzzy set can be written as

{〈
µ(x)
1

ν(x)

〉
x : x ∈ E

}
.

In the present paper, the set of all the pf -sets over E is denoted by PF (E) and κ ∈ PF (E). In
PF (E), since the graph(κ) and κ have generated each other uniquely, the notations are interchangeable.
Therefore, we represent a pf -set graph(κ) with κ as long as it causes no confusion.

Example 2.4. Let E = {x1, x2, x3, x4}. Then,

κ1 =

{〈
0.6
0.4
0.2

〉
x1,

〈
0.3
0
0.4

〉
x2,

〈
0.7
1
0.2

〉
x3,

〈
0
0
1

〉
x4

}
and

κ2 =

{〈
0.2
0.7
0.1

〉
x1,

〈
0.1
0
0.9

〉
x2,

〈
0.2
0.8
0.3

〉
x3,

〈
0.8
0
1

〉
x4

}
are two pf -sets over E.

Definition 2.5. [25] Let κ ∈ PF (E). For all x ∈ E, if µ(x) = λ, η(x) = ε, and ν(x) = ω, then κ is

called (λ, ε, ω)-pf -set and is denoted by

〈
λ
ε
ω

〉
E.

Definition 2.6. [25] Let κ ∈ PF (E). For all x ∈ E, if µ(x) = 0, η(x) = 1, and ν(x) = 1, then κ is

called empty pf -set and is denoted by

〈
0
1
1

〉
E or 0E .

Definition 2.7. [25]Let κ ∈ PF (E). For all x ∈ E, if µ(x) = 1, η(x) = 0, and ν(x) = 0, then κ is

called universal pf -set and is denoted by

〈
1
0
0

〉
E or 1E .

Definition 2.8. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≥ η2(x), and
ν1(x) ≥ ν2(x), then κ1 is called a subset of κ2 and is denoted by κ1⊆̃κ2.

Definition 2.9. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ1(x) = µ2(x), η1(x) = η2(x), and
ν1(x) = ν2(x), then κ1 and κ2 are called equal pf -sets and is denoted by κ1 = κ2.

Definition 2.10. [25] Let κ1, κ2 ∈ PF (E). If κ1⊆̃κ2 and κ1 ̸= κ2, then κ1 is called a proper subset
of κ2 and is denoted by κ1⊊̃κ2.

Definition 2.11. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = max{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)}, then κ3 is called union of κ1 and κ2 and is
denoted by κ3 = κ1∪̃κ2.
Definition 2.12. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = min{µ1(x), µ2(x)},
η3(x) = max{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)}, then κ3 is called intersection of κ1 and κ2
and is denoted by κ3 = κ1∩̃κ2.
Definition 2.13. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) = 1− η1(x), and
ν2(x) = µ1(x), then κ2 is called complement of κ1 and is denoted by κ2 = κc̃1.

Definition 2.14. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = min{µ1(x), ν2(x)},
η3(x) = max{η1(x), 1− η2(x)}, and ν3(x) = max{ν1(x), µ2(x)}, then κ3 is called difference between κ1
and κ2, and is denoted by κ3 = κ1\̃κ2.
Definition 2.15. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) =
max{min{µ1(x), ν2(x)},min{µ2(x), ν1(x)}}, η3(x) = min{max{η1(x), 1 − η2(x)},max{η2(x), 1 −
η1(x)}}, and ν3(x) = min{max{ν1(x), µ2(x)},max{ν2(x), µ1(x)}}, then κ3 is called symmetric dif-
ference between κ1 and κ2, and is denoted by κ3 = κ1△̃κ2.
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3.Motivations of the Redefining of Picture Fuzzy Soft Sets

This section presents the definition and basic operations of picture fuzzy sets and the counter examples
for the Cuong’s definition provided in [23] and [25], respectively, considering the notations used across
the present paper.

Definition 3.1. [23] Let κ be a function from E to [0, 1]×[0, 1]×[0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called a picture fuzzy set (pf -set) over E.

In this section, the set of all the pf -sets over E according to Cuong’s definition is denoted by
PFC(E) and κ ∈ PFC(E).

Definition 3.2. [23] Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≤ η2(x), and
ν1(x) ≥ ν2(x), then κ1 is called a subset of κ2 and is denoted by κ1⊆̃κ2.

Definition 3.3. [23] Let κ1, κ2 ∈ PFC(E). If κ1⊆̃κ2 and κ2⊆̃κ1, then κ1 and κ2 are called equal
pf -sets and is denoted by κ1 = κ2.

Definition 3.4. [23] Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = max{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)}, then κ3 is called union of κ1 and κ2, and is
denoted by κ3 = κ1∪̃κ2.

Definition 3.5. [23] Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = min{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)}, then κ3 is called intersection of κ1 and κ2,
and is denoted by κ3 = κ1∩̃κ2.

Definition 3.6. [23] Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) = η1(x), and
ν2(x) = µ1(x), then κ2 is called complement of κ1 and is denoted by κ2 = κc̃1.

Memiş [25] have provided the following several counter-examples related to definition and operations
of pf -sets in [23]. According to Definition 3.2, the definitions of empty and universal pf -sets should be
as in Definition 3.7 and Definition 3.8, respectively, to be held the following conditions [25]:

� Empty pf -set over E is a subset of all the pf -set over E.

� All pf -sets over E are the subset of universal pf -set over E.

Definition 3.7. [25] Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 0, η(x) = 0, and ν(x) = 1, then κ is

called empty pf -set and is denoted by

〈
0
0
1

〉
EC or 0EC

.

Definition 3.8. [25] Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 1, η(x) = 1, and ν(x) = 0, then κ is

called empty pf -set and is denoted by

〈
1
1
0

〉
EC or 1EC

.

Example 3.9. [25] There is a contradiction in Definition 3.8 since 1 + 1 + 0 ≰ 1, i.e., 1EC
/∈ PFC(E).

On the other hand, even if 1EC
∈ PFC(E), (1EC

)c̃ ̸= 0EC
.

Example 3.10. [25] Let κ ∈ PFC(E) such that κ =

{〈
0.1
0.2
0.3

〉
x

}
. Then, κ∪̃0E ̸= κ and κ∪̃1EC

̸= 1EC
.

To deal with the aforesaid inconsistencies in Example 3.9 and 3.10, the concept of pf -sets and their
operations have been redefined by Memiş [25].

Secondly, the definitions of picture fuzzy soft sets (pfs-sets) provided in [23, 24] considering the
notations used across the present paper.

Definition 3.11. [23] Let E be the set of parameters and A ⊆ E set. A pair (F,A) is called pfs-set
over U , where F is a mapping given by F : A → PFC(U).
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Definition 3.12. [24] Let U be the initial universe set and E a set of parameters. By pfs-set over U
we mean a pair ⟨F,A⟩, where A ⊆ E and F is a mapping given by F : A → PFC(U).

Cuong [23] has defined the concept of pfs-sets relying on his own definition and operations of pf -sets.
Therefore, the aforementioned inconsistencies have transferred to his concept of pfs-sets. Moreover,
Yang et. al. [24] have claimed that they have introduced the concept of pfs-sets while Cuong has defined
the concept of pfs-sets in [23]. Although the pfs-sets have been redefined in [24], the inconsistencies
mentioned above has also transferred to the concept of pfs-sets due to it based on the definition and
operations of pf -sets in [23].

Therefore, the concept of pfs-sets should be redefined to overcome the inconsistencies in the concept
of pfs-sets and their operations.

4. Picture Fuzzy Soft Sets, Some of Their Properties, and Their Product Operations

In this section, we redefine the concepts of pfs-sets and investigate some of their properties according
to new definition herein by considering the notations used throughout the present paper.

Definition 4.1. Let U be a universal set, E be a parameter set, and f is a function from E to PF (U).
Then the set {(x, fA(x)) : x ∈ E} ,being the graphic of f , is called a picture fuzzy soft set (pfs-set)
parameterized via E over U (or briefly over U).

Example 4.2. Let E = {x1, x2, x3, x4} be a parameter set and U = {u1, u2, u3, u4} be a universal set.
Then,

f =

{(
x1,

{〈
0.4
0.1
0.9

〉
u1,

〈
0
0.7
0.3

〉
u4

})
,

(
x2,

{〈
1
0.2
0

〉
u2

})
, (x3, 0U ) ,

(〈
1
0
0

〉
x4, 1U

)}
is a pfs-set over U .

Note 4.3. We do not display the element (x, 0U ) in a pfs-set where 0U is empty pf -set over U .

Henceforth, the set of all the pfs-sets over U is denoted by PFS(U). In PFS(U), the notations
graph(f) and f are interchangeable since they have generated each other uniquely. Thus, a pfs-set
graph(f) is denoted by f as long as it leads no confusion.

Definition 4.4. Let f ∈ PFS(U). If for all x ∈ E, f (x) =

〈
λ
ε
ω

〉
U , then f is called (λ, ε, ω)-pfs-set

and is denoted by

(
E,

〈
λ
ε
ω

〉
U

)
.

Definition 4.5. Let f ∈ PFS(U) and f be (λ, ε, ω)-pfs-set. If λ = 0, ε = 1, and ω = 1, then f is

called empty pfs-set and is denoted by

(
E,

〈
0
1
1

〉
U

)
or briefly 0̃.

Definition 4.6. Let f ∈ PFS(U) and f be (λ, ε, ω)-pfs-set. If λ = 1, ε = 0, and ω = 0, then f is

called universal pfs-set and is denoted by

(
E,

〈
1
0
0

〉
U

)
or briefly 1̃.

Definition 4.7. Let f, f1 ∈ PFS(U) and A ⊆ E. Then, Af1-restriction of f , denoted by fAf1 , is
defined by

fAf1 (x) :=


f (x) , x ∈ A

f1 (x) , x ∈ E \A

Briefly, if f1 = 0̃, then fA can be employed instead of fAf1 . It is clear that

fA (x) :=


f (x) , x ∈ A

0̃, x ∈ E \A
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Example 4.8. Let us consider the pfs-set f provided in Example 4.2, A = {x1, x3}, and f1 ∈ PFS(U)
such that

f1 =

{
(x1, 1U ) ,

(
x4,

{〈
0.2
0.5
0.4

〉
u1,

〈
0.6
0.3
0.2

〉
u4

})}
Then,

fAf1 =

{(
x1,

{〈
0.4
0.1
0.9

〉
u1,

〈
0
0.7
0.3

〉
u4

})
,

(
x4,

{〈
0.2
0.5
0.4

〉
u1,

〈
0.6
0.3
0.2

〉
u4

})}
Definition 4.9. 4.10 Let f1, f2 ∈ PFS(U). If for all x ∈ E, f1 (x) ⊆̃f2 (x), then f1 is called a subset
of f2 and is denoted by f1⊆̃f2.

Proposition 4.10. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f⊆̃1̃

ii. 0̃⊆̃f

iii. f⊆̃f

iv.
[
f1⊆̃f2 ∧ f2⊆̃f3

]
⇒ f1⊆̃f3

Remark 4.11. f1⊆̃f2 does not mean that every element of f1 is an element of f2. For instance, let
E = {x1, x2} be parameter set, U = {u1, u2} be a universal set,

f1 =

{(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
x2,

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.8

〉
u2

})}

and

f2 =

{(
x1,

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
x2,

{〈
0.5
0.3
0.1

〉
u1,

〈
0.3
0.3
0.2

〉
u2

})}

Thus, f1⊆̃f2 because f1 (x) ⊆̃f2 (x) for all x ∈ E. However, f1 ⊈ f2 since

(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
/∈

f2 while

(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
∈ f1, where the notation ⊆ indicates classic inclusion relation.

Definition 4.12. Let f1, f2 ∈ PFS(U). If for all x ∈ E, f1 (x) = f2 (x), then f1 and f2 are called
equal pfs-sets and is denoted by f1 = f2.

Proposition 4.13. Let f1, f2, f3 ∈ PF (E). Then,

i.
[
f1⊆̃f2 ∧ f2⊆̃f1

]
⇔ f1 = f2

ii. [f1 = f2 ∧ f2 = f3] ⇒ f1 = f3

Definition 4.14. Let f1, f2 ∈ PFS(U). If f1⊆̃f2 and f1 ̸= f2, then f1 is called a proper subset of f2
and is denoted by f1⊊̃f2

Definition 4.15. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) ∪̃f2 (x), then f3 is called
union of f1 and f2 and is denoted by f3 = f1∪̃f2.

Proposition 4.16. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f ∪̃f = f

ii. f ∪̃1̃ = 1̃

iii. f ∪̃0̃ = f

iv. f1∪̃f2 = f2∪̃f1
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v. f1∪̃ (f2∪̃f3) = (f1∪̃f2) ∪̃f3

vi. f1⊆̃f2 ⇒ f1∪̃f2 = f2

Definition 4.17. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) ∩̃f2 (x), then f3 is called
intersection of f1 and f2 and is denoted by f3 = f1∩̃f2.

Proposition 4.18. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f ∩̃f = f

ii. f ∩̃1̃ = f

iii. f ∩̃0̃ = 0̃

iv. f1∩̃f2 = f2∩̃f1

v. f1∩̃ (f2∩̃f3) = (f1∩̃f2) ∩̃f3

vi. f1⊆̃f2 ⇒ f1∩̃f2 = f1

Proposition 4.19. Let f1, f2, f3 ∈ PFS(U). Then,

i. f1∪̃ (f2∩̃f3) = (f1∪̃f2) ∩̃ (f1∪̃f3)

ii. f1∩̃ (f2∪̃f3) = (f1∩̃f2) ∪̃ (f1∪̃f3)

Proof. i. Let f1, f2, f3 ∈ PFS(U). Then,

f1∪̃(f2∩̃f3) = {(x, f1(x)) : x ∈ E} ∪̃ {(x, f2(x)∩̃f3(x)) : x ∈ E}

= {(x, f1(x)∪̃(f2(x)∩̃f3(x))) : x ∈ E}

= {(x, (f1(x)∪̃f2(x))∩̃(f1(x)∪̃f3(x))) : x ∈ E}

= {(x, (f1(x)∪̃f2(x))) : x ∈ E} ∩̃ {(x, (f1(x)∪̃f3(x))) : x ∈ E}

= (f1∪̃f2)∩̃(f1∪̃f3)

Definition 4.20. Let f1, f2 ∈ PFS(U). If f1∩̃f2 = 0̃, then f1 and f2 are called disjoint pfs-sets.

Definition 4.21. Let f1, f2 ∈ PFS(U). If for all x ∈ E, f2 (x) = f c̃
1 (x), then f2 is called complement

of f1 and is denoted by f2 = f c̃
1 .

Proposition 4.22. Let f, f1, f2 ∈ PFS(U). Then,

i.
(
f c̃
)c̃

= f

ii. 0̃c̃ = 1̃

iii. f1⊆̃f2 ⇒ f c̃
2⊆̃f c̃

1

Definition 4.23. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) \̃f2 (x), then f3 is called
difference between f1 and f2 and is denoted by f3 = f1\̃f2.

Proposition 4.24. Let f, f1, f2 ∈ PFS(U). Then,

i. f \̃0̃ = f

ii. f \̃1̃ = 0̃

iii. f1\̃f2 = f1∩̃f c̃
2
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Remark 4.25. It must be noted that the difference is non-commutative and non-associative. For

example, Let f1 =

{(
x,

{〈
0.2
0
0.3

〉
u

})}
, f2 =

{(
x,

{〈
0.3
0
0.1

〉
u

})}
, and f3 =

{(
x,

{〈
0.4
0.1
0.6

〉
u

})}
. Then,

i.

[
f1\̃f2 =

{(
x,

{〈
0.1
1
0.3

〉
u

})}
∧ f2\̃f1 =

{(
x,

{〈
0.3
1
0.2

〉
u

})}]
⇒ f1\̃f2 ̸= f2\̃f1

ii.

[
f1\̃

(
f2\̃f3

)
=

{(
x,

{〈
0.2
0.1
0.3

〉
u

})}
∧
(
f1\̃f2

)
\̃f3 =

{(
x,

{〈
0.1
1
0.4

〉
u

})}]
⇒ f1\̃

(
f2\̃f3

)
̸=(

f1\̃f2
)
\̃f3

Proposition 4.26. Let f1, f2 ∈ PF (E). Then, the following De Morgan’s Laws are valid.

i. (f1∪̃f2)c̃ = f c̃
1 ∩̃f c̃

2

ii. (f1∩̃f2)c̃ = f c̃
1 ∪̃f c̃

2

Proof. i. Let f1, f2 ∈ PFS(U). Then,

(f1∪̃f2)c̃ =


〈

µ1(x)
η1(x)
ν1(x)

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E

 ∪̃


〈

µ2(x)
η2(x)
ν2(x)

〉
x, f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

=


〈

max {µ1(x), µ2(x)}
min {η1(x), η2(x)}
min {ν1(x), ν2(x)}

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∪̃f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

=


〈

min {ν1(x), ν2(x)}
1−min {η1(x), η2(x)}
max {µ1(x), µ2(x)}

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∩̃f c̃
2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

min {ν1(x), ν2(x)}
max {1− η1(x), 1− η2(x)}

max {µ1(x), µ2(x)}

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∩̃f c̃
2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

ν1(x)
1− η1(x)
µ1(x)

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E

 ∩̃


〈

ν2(x)
1− η2(x)
µ2(x)

〉
x, f c̃

2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

µ1(x)
η1(x)
ν1(x)

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E


c̃

∩̃


〈

µ2(x)
η2(x)
ν2(x)

〉
x, f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

= f c̃
1 ∩̃f c̃

2

Definition 4.27. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) △̃f2 (x), then f3 is called
symmetric difference between f1 and f2 and is denoted by f3 = f1△̃f2.

Proposition 4.28. Let f, f1, f2 ∈ PFS(U). Then,

i. f△̃0̃ = f

ii. f△̃1̃ = f c̃

iii. f1△̃f2 = f2△̃f1

iv. f1△̃f2 = (f1\̃f2)∪̃(f2\̃f1)

Remark 4.29. It must be noted that the symmetric difference is non-associative. Let us consider the
pfs-sets f1, f2, and f3 provided in Remark 4.25.

Since f1△̃
(
f2△̃f3

)
=

{(
x,

{〈
0.3
0.1
0.3

〉
u

})}
and

(
f1△̃f2

)
△̃f3 =

{(
x,

{〈
0.3
0.1
0.4

〉
u

})}
, then

f1△̃
(
f2△̃f3

)
̸=
(
f1△̃f2

)
△̃f3.
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We secondly present the AND, OR, ANDNOT, and ORNOT-products of pfs-sets and their examples.

Definition 4.30. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∩̃f2(y)

then f3 is called AND-product of f1 and f2 and is denoted by f1 ∧ f2.

Definition 4.31. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∪̃f2(y)

then f3 is called OR-product of f1 and f2 and is denoted by f1 ∨ f2.

Definition 4.32. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∩̃f c̃
2(y)

then f3 is called ANDNOT-product of f1 and f2 and is denoted by f1 ⊼ f2.

Definition 4.33. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∪̃f c̃
2(y)

then f3 is called ORNOT-product of f1 and f2 and is denoted by f1∨f2.

Example 4.34. Let us consider the pfs-sets f1 and f2 provided in Remark 4.11. Then,

f1 ∧ f2 =

{(
(x1, x1),

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.3
0.8
0.2

〉
u1,

〈
0.3
0.6
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.1

〉
u2

})
,

(
(x2, x2),

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.2

〉
u2

})}

f1 ∨ f2 =

{(
(x1, x1),

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.5
0.3
0.1

〉
u1,

〈
0.8
0.3
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
(x2, x2),

{〈
0.5
0.3
0.1

〉
u1,

〈
0.3
0.3
0.2

〉
u2

})}

f1 ⊼ f2

{(
(x1, x1),

{〈
0.1
0.8
0.8

〉
u1,

〈
0.1
0.6
0.9

〉
u2

})
,

(
(x1, x2),

{〈
0.1
0.8
0.5

〉
u1,

〈
0.1
0.7
0.3

〉
u2

})
,

(
(x2, x1),

{〈
0.1
0.6
0.8

〉
u1,

〈
0.1
0.8
0.9

〉
u2

})
,

(
(x2, x2),

{〈
0.1
0.7
0.7

〉
u1,

〈
0.1
0.7
0.8

〉
u2

})}

f1∨f2
{(

(x1, x1),

{〈
0.3
0.4
0.2

〉
u1,

〈
0.8
0.4
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.3
0.7
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.3
0.4
0.7

〉
u1,

〈
0.2
0.4
0.8

〉
u2

})
,

(
(x2, x2),

{〈
0.3
0.6
0.5

〉
u1,

〈
0.2
0.6
0.3

〉
u2

})}
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5.A Soft Decision-Making Method Based on pfs-Sets and Its Comparison

This section proposes a soft decision-making method via pfs-sets. Its algorithm steps are as follows:

Proposed Method

Step 1. Construct a pfs-set f =

{(
x,

{〈
µ(x)
η(x)
ν(x)

〉
u

})
: x ∈ E

}
over U .

Step 2. Compute the score values

s(u) =
1

n

∑
x∈E

[µu(x)− ηu(x)νu(x)], for all u ∈ U

such that µu(x), ηu(x), and νu(x) denotes the membership, neutral membership, and non-
membership degrees of the alternative u according to the parameter x.

Step 3. Obtain the decision set {ŝ(uk)uk | uk ∈ U} such that

ŝ(uk) :=


s(uk)−min

i
{s(ui)}

max
i

{s(ui)}−min
i

{s(ui)} , max
i

{s(ui)} ≠ min
i
{s(ui)}

1, max
i

{s(ui)} = min
i
{s(ui)}

Secondly, the section provides the illustrative example in [24] to compare fairly the proposed method
with those in [24].

Example 5.1. [24] Suppose that there is an investment firm that wishes to put money into the
best option (adapted from [26]). Let us consider the pfs-set f , which describes the “attractiveness
of projects” being considered for investment by the firm. Assume that there are six alternative
projects, i.e., U = {u1, u2, u3, u4, u5, u6} such that u1 =“Project-1”, u2 =“Project-2”, u3 =“Project-3”,
u4 =“Project-4” ,u5 =“Project-5”, and u6 =“Project-6”, and four parameters, i.e., E = {x1, x2, x3, x4}
such that x1 =“Risk Analysis”, x2 =“Growth Analysis”, x3 =“Social-Political Impact Analysis”, and
x4 =“Environment Analysis”, under consideration. The firm evaluates the alternatives according to
the parameters and constructs a pfs-set f1 as follows:

f1 =

{(
x1,

{〈
0.31
0.22
0.41

〉
u1,

〈
0.12
0.41
0.33

〉
u2,

〈
0.23
0.52
0.21

〉
u3,

〈
0.45
0.09
0.36

〉
u4,

〈
0.57
0.30
0.05

〉
u5,

〈
0.44
0.40
0.13

〉
u6

})
,

(
x2,

{〈
0.54
0.21
0.15

〉
u1,

〈
0.81
0.11
0.02

〉
u2,

〈
0.13
0.48
0.37

〉
u3,

〈
0.23
0.59
0.18

〉
u4,

〈
0.60
0.23
0.14

〉
u5,

〈
0.42
0.36
0.22

〉
u6

})
,

(
x3,

{〈
0.60
0.14
0.26

〉
u1,

〈
0.26
0.51
0.20

〉
u2,

〈
0.72
0.15
0.03

〉
u3,

〈
0.32
0.49
0.15

〉
u4,

〈
0.81
0.11
0.06

〉
u5,

〈
0.43
0.27
0.13

〉
u6

})
,

(
x4,

{〈
0.38
0.21
0.40

〉
u1,

〈
0.65
0.15
0.18

〉
u2,

〈
0.29
0.58
0.12

〉
u3,

〈
0.14
0.32
0.45

〉
u4,

〈
0.43
0.18
0.35

〉
u5,

〈
0.35
0.29
0.34

〉
u6

})}
Thirdly, the proposed soft decision-making method is applied to the pfs-set f1 and the decision set is
as follows:{

0.3980Project-1,0.4062 Project-2,0.2636 Project-3,0.1788 Project-4,0.5718 Project-5,0.3424 Project-6
}

Fourthly, the ranking orders of proposed method and the decision-making method provided in [24]
present in Table 1.
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Table 1. The ranking orders of the proposed method and literature

Methods Structures Ranking Orders

Literature [24] pfs-sets Project-4 = Project-6 ≺ Project-1 = Project-3 ≺ Project-2 ≺ Project-5

Proposed Method pfs-sets Project-4 ≺ Project-3 ≺ Project-6 ≺ Project-1 ≺ Project-2 ≺ Project-5

According to the ranking orders in Table 1, proposed method and the literature is tend to producing
the same ranking except for the alternatives Project-1, Project-3, and Project-6. Moreover, they
confirm that Project-5 is the most suitable project and Project-4 is not suitable for the firm among
the projects.

6. Conclusion

In this paper, we redefined the concept of pfs-sets to ensure their theoretical consistency. We then
investigated their properties extensively and revised some of their operations. Afterwards, we defined
their product operations such as AND, OR, ANDNOT, and ORNOT-products. We then proposed
a soft decision-making method based on pfs-sets and compared it with the decision-making method
provided in [24]. The results manifested that proposed method generate the stable ranking order
compared to literature.

The concept of pfs-sets is a new mathematical tool for modelling the uncertainties. It has not been
applied to real-world problems such as image processing and machine learning. To carry out these
implementations, the matrix representation of the concept is required. The algebraic operations of
picture fuzzy soft matrices (pfs-matrices) [27] have been studied, but the concept therein has not been
explored substantially. In addition, it has the consistency resulting from definitions provided in [23,24].
Hence, redefining of pfs-matrices is worth studying. On the other hand, applications of pfs-matrices to
image processing and machine learning are crucial research topics since fuzzy parameterized fuzzy soft
matrices, which is a substructure of pfs-matrices, are successfully applied to machine learning [28–32].
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(Eds.), International Conferences on Science and Technology; Natural Science and Technology
ICONST-NST 2019, Prizren, Kosovo, 2019, pp. 68–77.
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Abstract − In this paper, the timelike V -Bertrand curve, a new type Bertrand
curve in Minkowski 3-space E3

1 , is characterized. Based on the timelike V -Bertrand
curve, the properties of the timelike T , N , and B Bertrand curves are obtained. From
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1. Introduction

The theory of curves has been a popular topic and many studies have been done on them. The
Euclidean case (or more generally the Riemann case) of regular curves, a special type of curve, has
been explored by many mathematicians. Characterization of a regular curve is one of the important
problems in Euclidean space. Also, determining the Serret-Frenet vectors and the curvatures of regular
curves is a common way to characterize a space curve in 3-dimensional space.

Minkowski space is one of the mathematical structures in which Einstein’s relativity theory is best
expressed. Since the inner product in Minkowski 3-space has an index, a vector has three different
casual character. Therefore, while there exists only one Serret-Frenet formula in Euclidean 3-space,
there exist five different Serret-Frenet formulas in Minkowski 3-space.

Bertrand curves are one of the most studied topics in the theory of curves. These curves have
been firstly defined by Bertrand [1]. In this study, he has given an answer to the Saint Venant’s open
problem in which whether a curve exists on the surface produced by its principal normal vector and
whether there exists another curve linearly dependent with principal normal vector of this curve [2].
The necessary and sufficient condition for existence of such a second curve is it satisfies the equation
aκ+bτ = 1 such that a, b ∈ R, a 6= 0, and κ and τ are curvatures [3]. Moreover, Izumiya and Takeuchi
have shown that all Bertrand curves can be obtained from a sphere, and they have given a method
in [4] to obtain a Bertrand curve from a sphere. Recently, Camcı et al. [5] have studied Bertrand
curves with a novel approach. İlarslan et al. have defined null Cartan and pseudo null Bertrand
curves in Minkowski 3-space E3

1 [6]. Further, (1,3)-Bertrand curves in a timelike (1,3)-normal plane in
Minkowski space-time E4

1 have been examined [7]. Also, Matsuda and Yorozu have shown that there
is no Bertrand curve in Euclidean n-space En such that n ≥ 4 and have defined (1,3)-Bertrand curves
in Euclidean 4-space E4 [8]. Lucas and Ortega-Yagües have characterized helices in S3 as the only
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twisted curves in S3 having infinite Bertrand conjugate curves [9]. Dede et al. have defined directional
Bertrand curves [10]. Additionally, a new type Bertrand curve, called V -Bertrand curve, has been
firstly defined and investigated by Camcı in [11].

In Section 2, we present some of definitions and properties to be used in the next sections. In Section
3, we describe timelike V -Bertrand curves in Minkowski 3-space E3

1 and give a characterization of a
timelike V -Bertrand curve. In Section 4, we define f -Bertrand curves using timelike curves. In Section
5, we give a method to obtain another Bertrand curve from a Bertrand curve. In Section 6, we define
Bertrand surfaces by timelike curves. Finally, we discuss the need for further research. This study is
a part of the first author’s master’s thesis [12].

2. Preliminaries

We start with recalling the definitions and theorems given by Camcı in [11]. Let γ : I → R3 be a unit-
speed curve with arc-length parameter “s”. If Serret-Frenet apparatus are denoted with {T,N,B, κ, τ},
then we can define a curve β : I → R3 as

β(s) =

∫
V (s)ds+ λ(s)N(s) (1)

where λ : I → R3 is a differentiable function and V is a unit vector field with

V : I → T (R3), V (s) = u(s)T (s) + v(s)N(s) + ω(s)B(s), u, v, ω ∈ C∞(I,R)

Definition 2.1. [11] Let {T̄ , N̄ , B̄, κ̄, τ̄} be Serret-Frenet apparatus of the curve β defined in (1). If
{N, N̄} is linearly dependent (e.g. N = εN̄ , ε = ±1), then (γ, β) is V -Bertrand curve mate and γ is
called V -Bertrand curve. If V = T , then (γ, β) is a classical Bertrand mate.

Theorem 2.2. [11] Let γ be a unit-speed curve with Serret-Frenet apparatus {T,N,B, κ, τ}. The
curve γ is a V -Bertrand curve if and only if the following equation holds:

λ(κ tan θ + τ) = u tan θ − ω (2)

where

λ(s) = −
∫
v(s)ds

and θ is a constant angle between T and T̄ .

Definition 2.3. [11] Let γ be a unit-speed and non-planar curve (τ 6= 0) with Serret-Frenet apparatus
{T,N,B, κ, τ}. If there exist λ 6= 0 and θ ∈ R satisfying the equation

λκ+ λ cot θτ = 1 (3)

then we say that the curve γ is a Bertrand curve (or T -Bertrand curve). In addition, if the equation

λκ tan θ + λτ = −1 (4)

holds, then we say that the curve γ is a B-Bertrand curve.

Remark 2.4. [11] If u(s) = 1 and v(s) = ω(s) = 0, then the pair (γ, β) is a T -Bertrand curve mate.
Also, if ω(s) = 1 and u(s) = v(s) = 0, then the pair (γ, β) is a B-Bertrand curve mate. Furthermore,
if v(s) = 1 and u(s) = ω(s) = 0, then we say that the pair (γ, β) is an N -Bertrand curve mate.

Next, recall that Minkowski 3-space E3
1 is Euclidean 3-space E3 equipped with the metric

g := −dx21 + dx22 + dx23

where (x1, x2, x3) is a rectangular coordinate system of E3
1 [13]. In this space, a vector can has one of

three casual characters according to this metric. If g(u, u) > 0 or u = 0, then u is a spacelike vector,
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if g(u, u) < 0, then u is a timelike vector, and if g(u, u) = 0 and u 6= 0, then u is a null (lightlike)
vector. Moreover, an arbitrary curve α = α(s) in Minkowski 3-space E3

1 can be called according to its
the velocity vector α

′
(s). A curve α is called spacelike, timelike, or null, if α

′
(s) is spacelike, timelike,

or null, respectively. For a timelike curve with Serret-Frenet apparatus {T,N,B, κ, τ}, the following
formulas hold:

T ′ = κN, N ′ = κT + τB, and B′ = −τN (5)

where
g(T, T ) = −1, g(N,N) = 1, g(B,B) = 1 (6)

g(N,B) = 0, g(T,N) = 0, g(T,B) = 0 (7)

T ×N = B, N ×B = −T, B × T = N (8)

3. Timelike V -Bertrand Curves in Minkowski 3-Space E3
1

In this section, we define timelike V -Bertrand curves in Minkowski 3-space E3
1 and investigate some

of their basic properties. In addition, we give a characterization for this type curves.

Definition 3.1. Let γ : I → E3
1 , γ = γ(s) be a unit-speed timelike curve with Frenet apparatus

{T,N,B, κ, τ} and β : I → E3
1 , β = β(s) be a regular curve with Frenet apparatus {T̄ , N̄ , B̄, κ̄, τ̄}.

We can define a curve β by

β(s) =

∫
V (s)ds+ λ(s)N(s) (9)

where λ : I → R3 is a differentiable function and V is a unit vector field with

V : I → T (R3), V (s) = u(s)T (s) + v(s)N(s) + ω(s)B(s), u, v, ω ∈ C∞(I,R).

If {N, N̄} is linearly dependent (e.g. N = εN̄ , ε = ±1), then the pair (γ, β) is called a timelike
V -Bertrand curve mate and γ is called a timelike V -Bertrand curve. Moreover, especially, if V = T
(N or B), then (γ, β) is a timelike T (N or B)-Bertrand curve mate.

Theorem 3.2. Let γ be a unit-speed timelike curve and {T,N,B, κ, τ} be Frenet apparatus of this
curve. The curve γ is a timelike V -Bertrand curve if and only if it satisfies the following condition:

λ(τ − κ tanh θ) = u tanh θ − ω (10)

such that

λ = −
∫
v(s)ds (11)

and θ is a constant angle between T and T .

Proof. Let γ : I → E3
1 , γ = γ(s) be a unit-speed timelike V -Bertrand curve and β : I → E3

1 ,
β = β(s̄) be V -Bertrand curve mate of γ. Also, let Frenet apparatus of these curves be {T,N,B, κ, τ}
and {T̄ , N̄ , B̄, κ̄, τ̄}, respectively.

(⇒) Derivating β with respect to s, we have the following equation

ds

ds
T̄ = uT + vN + ωB + λ′N + λN ′

= (u+ λκ)T + (λ′ + v)N + (ω + λτ)B
(12)

Since {N, N̄} is linearly dependent, we have

λ = −
∫
v(s)ds (13)
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After, it follows that equation (12), we have

T̄ =
ds

ds
(u+ λκ)T +

ds

ds
(ω + λτ)B (14)

From the equation (14), we get

cosh θ =
ds

ds
(u+ λκ) (15)

sinh θ =
ds

ds
(ω + λτ) (16)

From the equations (15) and (16), we get

λ(τ − κ tanh θ) = u tanh θ − ω

Thus, the equation (14) is rewritten as

T̄ = cosh θT + sinh θB (17)

Also, if the derivative of equation (17) according to the arc-parameter s is taken, then we get

ds

ds
κN = θ′ sinh θT + (κ cosh θ − τ sinh θ)N + θ′ cosh θB (18)

As {N, N̄} is linearly dependent, the angle θ is a constant.
(⇐) Let the equation (10) be valid for the constant θ. Derivating the equation (9), we have the

equation (12). From the equations (11) and (12), we get

T̄ =
ds

ds
(u+ λκ)T +

ds

ds
(ω + λτ)B = cosh(w(s))T + sinh(w(s))B (19)

From the equations (10) and (19), we obtain

tanh(w(s)) =
u+ λκ

ω + λτ
= tanh θ (20)

From the equation (20), w(s) = θ. Since θ is a constant, if the derivative of the equation (19) is taken,
then it is seen that {N, N̄} is linearly dependent. Therefore, the curve γ is a V -Bertrand curve.

Corollary 3.3. Let γ be a unit-speed and non-planar timelike curve and {T,N,B, κ, τ} be Frenet
apparatus of the curves in Minkowski 3-space E3

1 . If λ = λ tanh θ and µ = −λ such that λ and θ are
non-zero constant numbers, then

1. γ is a timelike T -Bertrand curve if and only if λκ + µτ = − tanh θ. Further, if u(s) = 1 and
v(s) = ω(s) = 0 in the equation V (s) = u(s)T (s) + v(s)N(s) + ω(s)B(s), then (γ, β) is a timelike
T -Bertrand curve mate. From the equation (9), we have

β(s) =

∫
T (s)ds+ λ(s)N(s)

If the integral constant is assumed as zero in this equation, then (γ, β) is a classical timelike Bertrand
curve mate.

2. γ is a timelike N -Bertrand curve if and only if τκ = tanh θ. Also, if u(s) = w(s) = 0 and v(s) = 1
in the equation V (s) = u(s)T (s) + v(s)N(s) + ω(s)B(s), then (γ, β) is a timelike N -Bertrand curve
mate. From Theorem 3.2, λ = −s + c and the timelike N -Bertrand curve γ is a general helix such
that θ is a constant.

3. γ is a timelike B-Bertrand curve if and only if λκ + µτ = 1. Morever, let γ be a timelike
anti-Salkowski curve, i.e., τ is a constant. If λ = 1

τ , then

(λ tanh θ)κ− λκ = 1

In this case, any timelike anti-Salkowski curve is a timelike B-Bertrand curve.
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Example 3.4. Let us consider the curve γ(s) = (
√

2 sinh s,
√

2 cosh s, s) in Minkowski 3-space E3
1

provided in [14]. It is clear that γ is a timelike curve. The Frenet vectors and curvatures of γ are as
follows:

T = (
√

2 cosh s,
√

2 sinh s, 1)

N = (sinh s, cosh s, 0)

B =
(

cosh s, sinh s,
√

2
)

κ =
√

2

τ = −1

(21)

If V = B (u = v = 0 and w = 1) is taken, then (γ, β) timelike B-Bertrand curve mate is obtained
in Definition 3.1. To find the curve β, if timelike B-Bertrand curve characterization is used, then we
have

λ =

√
2√

2 + 2 tanh θ

If the vectors N and B in the equation (21) and λ are written in the Definition 3.1, then we obtain

β(s) =
(

(1 + λ) sinh s, (1 + λ) cosh s,
√

2s
)

The tangent vector of the curve β is as follows:

T =
1√

2− (1 + λ)2

(
(1 + λ) cosh s, (1 + λ) sinh s,

√
2s
)

If 1 + λ = 1√
2
, then the curve β is obtained as

β(s) =

(
1√
2

sinh s,
1√
2

cosh s,
√

2s

)
Hence, the graph of the timelike B-Bertrand curve mate (γ, β) is as follows:

Fig. 1. The timelike B-Bertrand curve mate (γ, β)

4. f-Bertrand Curves Obtained from Timelike Curves

In this section, we propose f -Bertrand curves by using timelike curves. Morever, we provide three
examples for f -Bertrand curves.

Let γ be a unit-speed timelike curve and {T,N,B, κ, τ} be Frenet apparatus of the curve in
Minkowski 3-space E3

1 . Let V be a timelike unit vector field defined in the Definition 3.1. If v = 0,
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then −u2 +w2 = −1. For ε = ±1, then w = ε
√
u2 − 1. Applying transformation in the equation (10),

we have
u tanh θ − ε

√
u2 − 1 = f (22)

If this quadratic equation is solved according to the variable u, then we have

u± =
f tanh θ ±

√
f2 + 1− (tanh θ)2

(tanh θ)2 − 1
(23)

From (23), w±1,2 = ε
√

(u±)2 − 1. Therefore, there are four different situations for timelike unit vector
field:

V ±1 = u+T + w±1 B V ±2 = u−T + w±2 B

Thus, β±1 and β±2 can be defined as

β±1 (s) =

∫
V ±1 ds+ λN

β±2 (s) =

∫
V ±2 ds+ λN

(24)

Then, the curve γ is a timelike V +
1 , V −1 ,V +

2 , and V −2 -curve. Thus, the following definition can be
given.

Definition 4.1. Each of the curves β+1 (s), β−1 (s), β+2 (s), and β−2 (s) defined in (23) is called an
f -Bertrand curve mate of a timelike curve γ and the timelike curve γ is called an f -Bertrand curve.

Example 4.2. Let us consider the timelike curve γ provided in Example 3.4. To find tanh θ−Bertrand
mates of the timelike curve γ, we suppose that f = tanh θ in the equation (22). From the equations
(10) and (22),

tanh θ = − λ

1 + λ
√

2

Morever, u+ = 1− 2 (cosh θ)2 and u− = −1 from the equation (23). Therefore, we have w+
1 = sinh 2θ,

w−1 = − sinh 2θ, and w±2 = 0. Hence, the f -Bertrand curve mates of the timelike curve γ are as follows:

β±1 (s) =


((

1− 2 (cosh θ)2
)√

2± (sinh 2θ + λ)
)

sinh s,((
1− 2 (cosh θ)2

)√
2± (sinh 2θ + λ)

)
cosh s,((

1− 2 (cosh θ)2
)
±
(√

2 sinh 2θ
))
s


β±2 (s) = β2(s) =

((√
2 + λ

)
sinh s,

(√
2 + λ

)
cosh s, s

)
For λ =

√
2, the curve pairs (γ, β+1 ), (γ, β−1 ), and (γ, β2) are presented in the Fig. 2.
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(a) (b)

(c)

Fig. 2. (a) The curve pair (γ, β+1 ) for λ =
√

2 (b) The curve pair (γ, β−1 ) for λ =
√

2, and (c) The
curve pair (γ, β2) for λ =

√
2

5. Timelike and Spacelike Bertrand Curve Obtained From Timelike Bertrand Curve

In this section, we obtain new timelike and spacelike Bertrand curves using a timelike curve.
Let γ be a unit-speed timelike curve and {T,N,B, κ, τ} be Frenet apparatus of the curve in

Minkowski 3-space E3
1 . Considering u and w are constants and v = 0 in the unit vector field V in

Definition 3.1, V can be rewritten as V (s) = uT (s)+wB(s). Let γV =
∫
V (s)ds and its Frenet vectors

and curvatures is {TV , NV , BV , κV , τV }. In this section, the conditions for a curve γV to be a Bertrand
curve are investigated.

Lemma 5.1. Let V be a timelike unit vector field. In this case, curvatures of γ are written as follows
by curvatures of γV :

κ = wκV + uτV
τ = uκV + wτV

Proof. If V is a timelike unit vector field, we have −u2 +w2 = −1. Since the tangent vector of curve
γV is the vector V , the curve γV is a timelike curve. Therefore,

TV = uT + wB (25)

If the derivative of this equation is taken and NV = N , then

κV = uκ− wτ (26)



Journal of New Theory 38 (2022) 14-24 / Timelike V -Bertrand Curves in Minkowski 3-Space E3
1 21

Applying the cross product to the equation (25) by NV from the right, we get

BV = uB + wT

If we derivative this equation, we have

τV = −wκ+ uτ (27)

From equations (26) and (27), the curvatures of the curve γ are obtained as follows:

κ = wκV + uτV
τ = uκV + wτV

(28)

The following theorem is given from the Lemma 5.1.

Theorem 5.2. Let V be a timelike unit vector field. γ is a timelike Bertrand curve if and only if γV

is a timelike Bertrand curve.

Lemma 5.3. Let V be a spacelike unit vector field. In this case, curvatures of γ are written as follows
by curvatures of γV :

κ = −uκV + wτV
τ = −wκV + uτV

Proof. Let V be a spacelike unit vector field. Thus, −u2 + w2 = 1. Because the tangent vector of
curve γV is the vector V , the curve γV is a spacelike curve. Hereby,

TV = uT + wB (29)

If the equation (29) is differentiated and NV = N , thereby

κV = uκ− wτ (30)

Applying the cross product to the equation (29) by NV from the right, the following equation is
obtained:

BV = uB + wT

If we derivative this equation, we have
τV = wκ− uτ (31)

From equations (30) and (31), the curvatures of the curve γ are obtained as follows:

κ = −uκV + wτV
τ = −wκV + uτV

(32)

The following theorem is given from the Lemma 5.3.

Theorem 5.4. Let V be a spacelike unit vector field. γ is a timelike Bertrand curve if and only if γV

is a spacelike Bertrand curve whose binormal is a timelike curve.
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6. Bertrand Surface Obtained From Timelike Bertrand Curve

In this section, we suggest the concept of Bertrand surfaces and provide an example for Bertrand
surfaces.

Let γ be a unit-speed timelike curve and {T,N,B, κ, τ} be Frenet apparatus of the curves in
Minkowski 3-space E3

1 . Because of timelike Bertrand (timelike T -Bertrand) characterization, we have
the equation

λ tanh θκ− λτ = − tanh θ

If both sides of this equation are multiplied by a real number t, the following equation is obtained

λt tanh θκ− λtτ = −t tanh θ

Putting −t tanh θ instead of f in the equation (23), we find

u±(t) =
−t (tanh θ)2 ±

√
t2 (tanh θ)2 + 1− (tanh θ)2

(tanh θ)2 − 1
(33)

Also,

w±1 = ε

√
(u+(t))2 − 1 and w±2 = ε

√
(u−(t))2 − 1 (34)

Thus, the following definition can be given.

Definition 6.1. Let γ be a timelike Bertrand curve. Each of the following surfaces ψ+
1 , ψ−1 , ψ+

2 , and
ψ−2 is called a Bertrand surface of γ.

ψ±1 (t, s) =

∫
V ±1 ds+ λN

ψ±2 (t, s) =

∫
V ±2 ds+ λN

(35)

such that V ±1 (t, s) = u+(t)T (s) + w±1 (t)B(s) and V ±2 (t, s) = u−(t)T (s) + w±2 (t)B(s) by u±, w±1 , and
w±2 in the equations (33) and (34).

Example 6.2. Let γ be a timelike curve provided in Example 3.4. To find a Bertrand surface of the
curve γ, if the curvatures of the curve γ are written by using timelike T -Bertrand characterization,
we get

λ = − tanh θ

1 +
√

2 tanh θ

If tanh θ = −
√
2
3 , then

u+(t) =
2

7
t− 3

7

√
2t2 + 7

w+
1 (t) =

√(
2

7
t− 3

7

√
2t2 + 7

)2

− 1

(36)

The surface ψ+
1 in the equation (35) is as follows:

ψ+
1 (t, s) = u+(t)

∫
T (s)ds+ w+

1 (t)

∫
B(s)ds+ λN(s) (37)

From the equation (36), the equation (37) is rearranged as follows:

ψ+
1 (t, s) =


(
2
7

√
2t− 3

7

√
2
√

2t2 + 7 + 1
7

√
22t2 + 14− 12t

√
2t2 + 7 +

√
2
)

sinh s,(
2
7

√
2t− 3

7

√
2
√

2t2 + 7 + 1
7

√
22t2 + 14− 12t

√
2t2 + 7 +

√
2
)

cosh s,(
2
7st−

3
7s
√

2t2 + 7 + 1
7s
√

22t2 + 14− 12t
√

2t2 + 7
)√

2 +
√

2
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The graph of the surface ψ+
1 is provided in Fig. 3.

(a) (b)

Fig. 3. The Bertrand surface ψ+
1 of the curve γ

7. Conclusion

In this study, we characterized V -Bertrand curves in Minkowski 3-space by V -Bertrand curves in
Euclidean 3-space, a new type of Bertrand curve defined by Camcı [11]. Firstly, the characterization
of timelike V -Bertrand curves was given by a timelike curve. Afterwards, we defined T -Bertrand,
N -Bertrand, and B-Bertrand curves by the timelike V -Bertrand curve and their characterization.
Some of the obtained important results are the following: a timelike T -Bertrand curve is a timelike
Bertrand curve and a timelike N -Bertrand curve is a timelike circular helix. Furthermore, in the
timelike V -Bertrand curve characterization, four f -Bertrand curves were obtained from a timelike
V -Bertrand curve and a mapping f . Additionaly, using these f -Bertrand curve characterizations, four
Bertrand surfaces were defined by timelike Bertrand curves. Finally, a method was given to obtain a
spacelike curve whose binormal vector is a timelike vector and another timelike Bertrand curve from
a timelike Bertrand curve. Thus, timelike V -Bertrand curves in Minkowski 3-space, a new curve, has
been brought to the literature. With the idea used in this study, the researchers can develop this
study for other Frenet frames.
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Minkowski 3-Space, Honam Mathematical Journal 40 (3) (2018) 561–576.

[7] A. Uçum, O. Keçilioğlu, K. İlarslan, Generalized Bertrand Curves with Timelike (1,3)-normal
Plane in Minkowski Space-time, Kuwait Journal of Science 42 (3) (2015) 10–27.

[8] H. Matsuda, S. Yorozu, Notes on Bertrand Curves, Yokohama Mathematical Journal 50 (2003)
41–58.
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1. Introduction 

Recently, the applications of the special functions of mathematics have developed significantly in such fields 

as fractional calculus, approximation theory, mathematical physics, engineering, science and technology [1-

3]. One very interesting application area of special functions of mathematics is the extension of the standard 

kinetic equations by its integration [4] 

Λ(𝑡) − Λ0 = −𝑐𝜕 𝐷0 𝑡
−𝜕{Λ(𝑡)} (1) 

for any positive constant 𝑐, Λ(𝑡) represents the reaction rate, Λ0 represents Λ(𝑡) at 𝑡 = 0, and 𝐷0 𝑡
−𝜕 is the 

Riemann-Liouville fractional integral operator defined by 

𝐷0 𝑡
−𝜕{Λ(𝑡)} =

1

Γ(𝜕)
∫ (𝑡 − 𝑢)𝜕−1Λ(𝑢)𝑑𝑢,

𝑡

0

 (𝑅𝑒(𝜕) > 0, 𝑡 > 0) 

They [4] also give the following solution to equation (1): 

Λ(𝑡) = Λ0𝐸𝜕(−𝑐𝜕𝑡𝜕), (𝜕 ∈ ℝ+) 

Extensions, generalizations and different forms of equation (1) have been studied by Saxena et al., [5, 6] using 

functions of Wiman and Prabhakar [7-9], Khan et al., [10] studied the following fractional kinetic equations: 
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Λ(𝑡) − Λ0𝑡ℵ𝑅𝑝,𝑞
𝜏 (𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕) = −𝜎𝜕 𝐷0 𝑡

−𝜕{Λ(𝑡)} (2) 

and  

Λ(𝑡) − Λ0𝑡ℵ𝑅𝑝,𝑞
𝜏 (𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕) = − {∑ (

𝜅

𝜔
)

𝜔≥1

𝜎𝜕𝜔 𝐷0 𝑡
−𝜕𝜔} Λ(𝑡) (3) 

where 𝑅𝑝,𝑞
𝜏 (; ) is the (𝑝, 𝑞)-extended 𝜏-Gauss hypergeometric function [11]  

𝑅𝑝,𝑞
𝜏 (𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕) = ∑(𝑎)𝕜

𝐵𝑝,𝑞(𝑏 + 𝕜𝜏, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝑧𝕜

𝕜!
 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑎) > 𝑅𝑒(𝑏) > 0, and  𝐵𝑝,𝑞(℘, ℑ) is the extended beta 

function defined by [12] 

𝐵𝑝,𝑞(℘, ℑ) = ∫ 𝑡℘−1(1 − 𝑡)ℑ−1 exp (−
𝑝

𝑡
−

𝑞

1 − 𝑡
) 𝑑𝑡

1

0

 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(℘), 𝑅𝑒(ℑ)} > 0. 

Readers can refer to [13-20] for more generalizations and extensions of extended fractional kinetic equations. 

The main objective of this paper is to introduce the new the (𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric 

and 𝜏-confluent hypergeometric functions with some properties and their applications to fractional kinetic 

equations via the Laplace transforms methods. Furthermore, the resulting functions and equations can be 

reduced to well-known and perhaps new results. This paper is presented as follows: Section one is compressed 

with some preliminaries. In section 3, the (𝑝, 𝑞; ℓ)-extended 𝜏-hypergeometric functions and some of their 

properties have been discussed. In section 4, the solution of the fractional kinetic equations contains the 

(𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric and 𝜏-confluent hypergeometric functions. In section 5, include a 

conclusion.  

2. Preliminaries 

In this paper, the extended fractional kinetic equations will be studied by using the following (𝑝, 𝑞; ℓ)-extended 

𝜏-Gauss hypergeometric and 𝜏-confluent hypergeometric functions:  

Definition 2.1. The new (𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric function is  

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) = ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝑧𝕜

𝕜!
 (4) 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑎) > 𝑅𝑒(𝑏) > 0. 

Definition 2.2. The new (𝑝, 𝑞; ℓ)-extended (𝑝, 𝑞; ℓ)-confluent hypergeometric function is 

Φ𝑝,𝑞
𝜏;𝜙,𝜑(𝑏; 𝑐; 𝑧; ℓ) = ∑

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝑧𝕜

𝕜!
 (5) 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑎) > 𝑅𝑒(𝑏) > 0, and 

𝐵𝑝,𝑞
𝜙,𝜑(℘, ℑ; ℓ) is the extended beta function proposed in [21]  

𝐵𝑝,𝑞
𝜙,𝜑(℘, ℑ; ℓ) = ∫ 𝑡℘−1(1 − 𝑡)ℑ−1ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
𝑑𝑡

1

0

 (6) 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(℘), 𝑅𝑒(ℑ)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1},  min{𝑅𝑒(℘), 𝑅𝑒(ℑ)} > 0. 
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3. The (𝒑, 𝒒; 𝓵)-Extended 𝝉- Hypergeometric Functions 

In this section, the integral representation of the (𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric and 𝜏-confluent 

hypergeometric functions are established in the following theorem:   

Theorem 3.1. The following Laplace-type integral formula holds: 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) =

1

Γ(𝑎)
∫ 𝑡𝑎−1 exp(−𝑡) Φ𝑝,𝑞

𝜏;𝜙,𝜑(𝑏; 𝑐; 𝑧; ℓ)𝑑𝑡
∞

0

 

 for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑎) > 0, 𝑅𝑒(𝑧) < 1. 

PROOF. Consider equation (4) and expansion of the pochhammer notation in [22] 

(𝑎)𝕜 =
1

Γ(𝑎)
∫ 𝑡𝑎+𝕜−1 exp(−𝑡) 𝑑𝑡

∞

0

 

gives 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) = ∑ {

1

Γ(𝑎)
∫ 𝑡𝑎+𝕜−1 exp(−𝑡) 𝑑𝑡

∞

0

}
𝐵𝑝,𝑞

𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝑧𝕜

𝕜! 
 

As a result of changing the order of integration and summation, 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) = 

1

Γ(𝑎)
∫ 𝑡𝑎−1 exp(−𝑡) {∑

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)

(𝑡𝑧)𝕜

𝕜! 
𝕜≥0

} 𝑑𝑡
∞

0

 

 = 
1

Γ(𝑎)
∫ 𝑡𝑎−1 exp(−𝑡) Φ𝑝,𝑞

𝜏;𝜙,𝜑(𝑏; 𝑐; 𝑧; ℓ)𝑑𝑡
∞

0

 

Theorem 3.2. The following Euler-type equality holds: 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) =

1

𝐵(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑡𝜏𝑧)−𝑎ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
𝑑𝑡

1

0

 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑏) > 𝑅𝑒(𝑏) >

0, and |arg(1 − 𝑧)| < 𝜋. 

PROOF. Rewritten equation (4) in term of (𝑝, 𝑞; ℓ)-extended beta function in (6), yields 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) = ∑

(𝑎)𝕜

𝐵(𝑏, 𝑐 − 𝑏)
{∫ 𝑡𝑏+𝕜𝜏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑡𝜏𝑧)−𝑎ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
𝑑𝑡

1

0

}

𝕜≥0

𝑧𝕜

𝕜!
  

Changing the order of integration and summation will result in 

𝑅𝑝,𝑞
𝜏;𝜙,𝜑(𝑎, 𝑏; 𝑐; 𝑧; ℓ) = 

1

𝐵(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
{∑(𝑎)𝕜

(𝑡𝑧)𝕜

𝕜! 
𝕜≥0

} 𝑑𝑡
1

0

 

 = 
1

𝐵(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑡𝜏𝑧)−𝑎ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
𝑑𝑡

1

0

 

Considering equation (5), the following corollary can be obtained: 

Corollary 3.1. The following result is also holds true: 

Φ𝑝,𝑞
𝜏;𝜙,𝜑(𝑏; 𝑐; 𝑧; ℓ) =

1

𝐵(𝑏, 𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1 exp(𝑡𝜏𝑧) ℓ

(−
𝑝

𝑡𝜙−
𝑞

(1−𝑡)𝜑)
𝑑𝑡

1

0

 

for all min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0, ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0.   
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4. Extended Fractional Kinetic Equations Solutions 

In this section, the applications of (𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric and 𝜏-confluent hypergeometric 

functions to extended fractional kinetic equations are established using the Laplace transform method in the 

following theorem:  

Theorem 4.1. The extended fractional kinetic equation 

Λ(𝑡) − Λ0𝑡ℵ𝑅𝑝,𝑞
𝜏;𝜙,𝜑

(𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕; ℓ) = −𝜎𝜕 𝐷0 𝑡
−𝜕{Λ(𝑡)} (7) 

for all ℵ, 𝜕, 𝜎 ∈ ℝ+, 𝜓 ∈ ℂ with 𝛿 ≠ 𝜓, 𝜏 ∈ ℝ0
+; min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0,

ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0. 

Λ(𝑡) = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ(−𝜎𝜕𝑡𝜕) 

is the solution. 

PROOF. Applying the Laplace transform [23] to equation (7), gives 

ℒ{Λ(𝑡); 𝑠} − Λ0ℒ {𝑡ℵ𝑅𝑝,𝑞
𝜏;𝜙,𝜑

(𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕; ℓ); 𝑠} = −𝜎𝜕ℒ{ 𝐷0 𝑡
−𝜕{Λ(𝑡)}; 𝑠} 

Consider equation (4) and the Laplace transform of the Riemann-Liouville fractional integral [24] 

ℒ{ 𝐷0 𝑡
−𝜕{Λ(𝑡)}; 𝑠} = −𝑠𝜕ℒ{Λ(𝑡)} 

yields 

ℒ{Λ(𝑡); 𝑠} − Λ0 [∫ exp(−𝑠𝑡) {∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
} 𝑑𝑡

∞

0

] = −𝜎𝜕𝑠𝜕ℒ{Λ(𝑡)} 

When integration and summation are changed, it leads to 

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
{∫ exp(−𝑠𝑡)𝑡∂𝕜+ℵ−1𝑑𝑡

∞

0

} {
1

1 + (𝜎𝑠−1)𝜕
} 

Using result [25] 

∫ exp(−𝑠𝑡)𝑡ℵ𝑑𝑡 =
Γ(ℵ + 1)

𝑠ℵ+1
 ,

∞

0

(𝑅𝑒(ℵ) > −1) 

gives  

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!

Γ(∂𝕜 + ℵ)

𝑠∂𝕜+ℵ
{

1

1 + (𝜎𝑠−1)𝜕
} 

Applying the geometric series expansion [26] 

1

1 + (𝜎𝑠−1)𝜕
= ∑(−1)𝜉𝜎𝜎𝜉

𝜉≥0

𝑠−𝜎𝜉 

leads to 

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!

Γ(∂𝕜 + ℵ)

𝑠∂𝕜+ℵ
∑(−1)𝜉𝜎𝜎𝜉

𝜉≥0

𝑠−𝜎𝜉 
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 = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
Γ(∂𝕜 + ℵ) ∑(−1)𝜉𝜎𝜎𝜉

𝜉≥0

𝑠−(𝜎𝜉+∂𝕜+ℵ) 

Using the inverse Laplace transform and the result in [25] 

ℒ−1{𝑠− ∂} =
𝑡∂−1

Γ(∂)
  

one may obtain 

Λ(𝑡) = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
Γ(∂𝕜 + ℵ) ∑

(−1)𝜉𝜎𝜕𝜉

Γ(𝜎𝜉 + ∂𝕜 + ℵ)
𝜉≥0

𝑡𝜕𝜉+∂𝕜+ℵ−1 

 = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡∂)
𝕜

𝕜!
Γ(∂𝕜 + ℵ) ∑

(−𝜎𝜕𝑡∂)
𝜉

𝜎𝜎𝜉

Γ(𝜎𝜉 + ∂𝕜 + ℵ)
𝜉≥0

 

 = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ(−𝜎𝜕𝑡𝜕) 

Theorem 4.2. The extended fractional kinetic equation 

Λ(𝑡) − Λ0𝑡ℵ−1𝑅𝑝,𝑞
𝜏;𝜙,𝜑

(𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕; ℓ) = − {∑ (
𝜅

𝜔
)

𝜔≥1

𝜎𝜕𝜔 𝐷0 𝑡
−𝜕𝜔} Λ(𝑡) (8) 

for all ℵ, 𝜕, 𝜎 ∈ ℝ+, 𝜓, 𝜅 ∈ ℂ with 𝛿 ≠ 𝜓, 𝜏 ∈ ℝ0
+; min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0,

ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0. 

Λ(𝑡) = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ

κ (−𝜎𝜕𝑡𝜕) 

is the solution. 

PROOF. Applying the Laplace transform [23] to equation (8), gives 

ℒ{Λ(𝑡); 𝑠} − Λ0ℒ {𝑡ℵ−1𝑅𝑝,𝑞
𝜏;𝜙,𝜑

(𝑎, 𝑏; 𝑐; 𝜓𝑡𝜕; ℓ); 𝑠} = − ∑ (
𝜅

𝜔
)

𝜔≥1

𝜎𝜕𝜔ℒ{ 𝐷0 𝑡
−𝜕𝜔Λ(𝑡); 𝑠} 

Consider equation (4) and the Laplace transform of the Riemann-Liouville fractional integral [24] 

ℒ{ 𝐷0 𝑡
−𝜕{Λ(𝑡)}; 𝑠} = −𝑠𝜕ℒ{Λ(𝑡); 𝑠}, 

yields 

ℒ{Λ(𝑡); 𝑠} − Λ0 [∫ exp(−𝑠𝑡) {𝑡ℵ ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
} 𝑑𝑡

∞

0

] = ∑ (
𝜅

𝜔
)

𝜔≥1

𝜎𝜕𝜔𝑠𝜕ℒ{Λ(𝑡); 𝑠} 

By reordering integral and summation, we get 

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
{∫ exp(−𝑠𝑡)𝑡∂𝕜+ℵ−1𝑑𝑡

∞

0

} {
1

∑ (𝜅
𝜔)𝜔≥1 (𝜎𝑠−1)𝜕𝜔

} 

Using result [25] 

∫ exp(−𝑠𝑡)𝑡ℵ𝑑𝑡 =
Γ(ℵ + 1)

𝑠ℵ+1
 ,

∞

0

 (𝑅𝑒(ℵ) > −1) 

gives  
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ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!

Γ(∂𝕜 + ℵ)

𝑠∂𝕜+ℵ
{

1

∑ (𝜅
𝜔)𝜔≥1 (𝜎𝑠−1)𝜕𝜔

} 

Applying the geometric series expansion in [27] 

∑ (
𝜅

𝜔
)

𝜔≥1

𝜎𝜕 = (1 + 𝑧)𝜅 , (𝜅 ∈ ℂ, |𝑧| < 1) 

leads to 

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!

Γ(∂𝕜 + ℵ)

𝑠∂𝕜+ℵ
(1 + 𝜎𝜕𝑠𝜕)

𝜅
 

Can be rewritten using [27] 

(1 − 𝑧)𝜅 = ∑
(𝜅)𝜔

𝜔!
𝑧𝜔,

𝜔≥0

(𝜅 ∈ ℂ, |𝑧| < 1) 

so that  

ℒ{Λ(𝑡); 𝑠} = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!

Γ(∂𝕜 + ℵ)

𝑠∂𝕜+ℵ
{∑

(−1)𝜉(𝜅)𝜉

𝜉!
𝜉≥0

𝜎𝜕𝜉𝑠−(𝜎𝜉+∂𝕜+ℵ)} 

Using the inverse Laplace transform and the result in [25] 

ℒ−1{𝑠− ∂} =
𝑡∂−1

Γ(∂)
  

The following can be obtained: 

Λ(𝑡) = Λ0 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
Γ(∂𝕜 + ℵ) {∑

(−1)𝜉𝜎𝜕𝜉(𝜅)𝜉

Γ(𝜕𝜉 + ∂𝕜 + ℵ)
𝜉≥0

𝑡

𝜉!

𝜕𝜉+∂𝕜+ℵ−1

} 

 = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

𝜓𝕜

𝕜!
Γ(∂𝕜 + ℵ) {∑

(−1)𝜉𝜎𝜕𝜉(𝜅)𝜉

Γ(𝜕𝜉 + ∂𝕜 + ℵ)
𝜉≥0

(−𝜎𝜕𝑡𝜕)
𝜉

𝜉!
} 

 = Λ0𝑡ℵ−1 ∑(𝑎)𝕜

𝐵𝑝,𝑞
𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ

κ (−𝜎𝜕𝑡𝜕) 

Considering equations (5), (7), and (8), the following corollaries can be obtained:  

Corollary 4.1. The extended fractional kinetic equation 

Λ(𝑡) − Λ0𝑡ℵΦ𝑝,𝑞
𝜏;𝜙,𝜑

(𝑏; 𝑐; 𝜓𝑡𝜕; ℓ) = −𝜎𝜕 𝐷0 𝑡
−𝜕{Λ(𝑡)} 

for all ℵ, 𝜕, 𝜎 ∈ ℝ+, 𝜓 ∈ ℂ with 𝛿 ≠ 𝜓, 𝜏 ∈ ℝ0
+; min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0,

ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0. 

Λ(𝑡) = Λ0 ∑
𝐵𝑝,𝑞

𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ(−𝜎𝜕𝑡𝜕) 

is the solution. 

Corollary 4.2. The extended fractional kinetic equation 
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Λ(𝑡) − Λ0𝑡ℵ−1Φ𝑝,𝑞
𝜏;𝜙,𝜑

(𝑏; 𝑐; 𝜓𝑡𝜕; ℓ) = − {∑ (
𝜅

𝜔
)

𝜔≥1

𝜎𝜕𝜔 𝐷0 𝑡
−𝜕𝜔} Λ(𝑡) 

for all ℵ, 𝜕, 𝜎 ∈ ℝ+, 𝜓, 𝜅 ∈ ℂ with 𝛿 ≠ 𝜓, 𝜏 ∈ ℝ0
+; min{𝑅𝑒(𝑝), 𝑅𝑒(𝑞)} > 0,  min{𝑅𝑒(𝜙), 𝑅𝑒(𝜑)} > 0, 𝜏 ≥ 0,

ℓ ∈ ℝ+\{1}, 𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0. 

Λ(𝑡) = Λ0𝑡ℵ−1 ∑
𝐵𝑝,𝑞

𝜙,𝜑(𝑏 + 𝕜𝜏, 𝑐 − 𝑏; ℓ)

𝐵(𝑏, 𝑐 − 𝑏)
𝕜≥0

(𝜓𝑡𝜕)
𝕜

𝕜!
Γ(∂𝕜 + ℵ)E∂,∂𝕜+ℵ

κ (−𝜎𝜕𝑡𝜕) 

is the solution. 

5. Conclusion 

The new (𝑝, 𝑞; ℓ)-extended 𝜏-Gauss hypergeometric and (𝑝, 𝑞; ℓ)-extended 𝜏-confluent hypergeometric 

functions are defined by using the (𝑝, 𝑞; ℓ)-extended beta function in [21] with some of their properties such 

as integral formulas and their application to the solutions of extended fractional kinetic equations. If the 

parameters of these newly established functions and equations are appropriately substituted, a number of works 

already established in the literature are obtained, for example: if ℓ = 𝑒  and 𝜙 = 𝜑 = 1, then the results of 

Khan et al., [10] and Parmar et al., [11]; by setting ℓ = 𝑒,
,
 𝜙 = 𝜑 = 1 ,and 𝜏 = 1, the extended Gauss 

hypergeometric and confluent hypergeometric functions presented by Choi et al., [12] will be obtained; by 

setting ℓ = 𝑒,
,
 𝜙 = 𝜑 = 1 and 𝑝 = 𝑞 = 0, the proposed results will be returned to Virchenko et al., [28] and 

Virchenko [29]; the substituting ℓ = 𝑒,
,
 𝜙 = 𝜑 = 1, 𝜏 = 1and 𝑝 = 𝑞 leads to the results of Chaudhry et al., 

[30, 31]; finally, by taking ℓ = 𝑒,
,
 𝜙 = 𝜑 = 1, 𝜏 = 1, and 𝑝 = 𝑞 = 1, the results under discussion will naturally 

return to the classical results. The extended kinetic equations are expected to have potential applications in 

nuclear energy, nuclear physics, astrophysics and other related fields. Furthermore, the functions under 

discussion can be used to study fractional integrals and derivatives such as the Riemann-Liouville, Caputo, 

Eydilyi-kober, Saigo, Merichev-Saigo-Maide and the Caputo-type Merichev-Saigo-Maide.  
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1. Introduction

Statistical convergence is a generalization of the concept of convergence based on the concept of natural
density of a subset of N, the set of all natural numbers. This concept has been defined independently
by Fast [1] and Steinhaus [2] in 1951. Further, Schoenberg [3] has defined statistical convergence
as a summability method. Many mathematicians particularly Salat [4], Freedman and Sember [5],
Fridy [6], Connor [7], Kolk [8], and Fridy and Orhan [9, 10], have contributed to the development of
statistical convergence.

Let K ⊆ N and K(n) = {k ∈ K : k ≤ n}, for all n ∈ N. In this case, the natural density of the set
K is defined as follows:

δ(K) = lim
n→∞

|K(n)|
n

such that |K(n)| signifies the number of elements in K(n) [5]. If K is a finite set, its natural density
is zero. Let x = (xk) be a sequence in R and x0 ∈ R. For every ε > 0, if the natural density of the set
{k ∈ N : ||xk − x0|| ≥ ε} is zero, that is

lim
n→∞

|{k ≤ n : ||xk − x0|| ≥ ε}|
n

is zero, then the sequence x = (xk) is said to be statistical convergent to x0 and is denoted by
st− limx = x0. Since the natural density of finite sets is zero, every convergence sequence is statistical
convergence. Kostryko et al. [11] has introduced the concept of ideal convergence (or briefly I-
convergence), a generalization of the concept of statistical convergence. They have defined the concept
of I-convergence by the concept of an ideal. They have investigated many properties of I-convergence.
Statistical convergence by degree has been first provided by Gadjiev and Orhan [12] as the relationship
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to the statistical convergence of a set of positive linear operators. In 2010, Çolak [13] has generalized
the concept of statistical convergence by defining density of order α of a set and defined the concept
of the statistical convergence of order α, for sequence of real numbers. After, Savaş and Das [14] has
put forward I-statistical (I-st) convergence of order α (α ∈ (0, 1]).

Phu [15] has suggested the concept of rough convergence in finite-dimensional normed spaces and
examined between the relation rough convergence and other convergence types. He has also proved
that the set of all rough limit points is bounded, closed, and convex. Later on, the concept of rough
statistical convergence has been studied by Aytar [16]. Moreover, Aytar [17, 18] has also studied sets
of rough statistical limit points and rough statistical cluster points. Pal et al [19] have studied rough
ideal convergence and properties of the set of rough I-limit points. Moreover, Dündar and Çakan [20]
have also investigated rough ideal convergence. Savaş et al. [21] have defined the concept of I-st
rough convergence. Furthermore, the concept of rough statistical convergence of order α has been
propounded and studied some properties of the set of all rough statistical limit points of order α by
Maity [22].

In the second part of the present study, some basic definitions and properties to be required for the
next section are provided. Section 3 proposes the concept of I-st rough convergence of order α such
that 0 < α ≤ 1. Additionally, the necessary and sufficient conditions for a sequence (xk) to be I-st
convergent of order α and I-st bounded of order α are proved. Finally, the need for further research
studies is discussed.

2. Preliminaries

Throughout this study, a normed space (X, ||.||) will be denoted by X.

Definition 2.1. [15] Let x = (xk) be a sequence in X and r ≥ 0. x = (xk) is said to be rough
convergent (r-convergent) to x0 ∈ X, if for every ε > 0 there exists a kε ∈ N such that k ≥ kε implies

||xk − x0|| < r + ε

or equivalently
lim sup ||xk − x0|| < r

and denoted by xk
r−→ x0. Here, r is called the roughness degree of the sequence (xk). If r = 0, then

the concept of the r-convergence is equivalent to the concept of the classical convergence. Here, x0 is
called an r-limit point of (xk) and the set of all r-limit points is denoted by

LIMrx =
{
x0 ∈ X : xk

r−→ x0

}
If the set LIMrx is non-empty, then the sequence x = (xk) is r-convergent.

Definition 2.2. [16] Let x = (xk) be a sequence in X and r ≥ 0. x = (xk) is said to be statistical
rough convergent to x0 ∈ X, if, for every ε > 0,

lim
n→∞

|{k ≤ n : ||xk − x0|| ≥ r + ε}|
n

= 0

or equivalently
st− lim sup ||xk − x0|| ≤ r

and denoted by xk
st−r−−−→ x0. Thus,

st− LIMrx =
{
x0 ∈ X : xk

st−r−−−→ x0

}
If r = 0, then the concept of statistical rough convergence is equivalent to the concept of the statistical
convergence. If the set st − LIMrx is non-empty, then the sequence x = (xk) is statistical rough
convergent.



Journal of New Theory 38 (2022) 34-41 / I-Statistical Rough Convergence of Order α 36

Definition 2.3. [11] Let X 6= ∅ and I ⊆ P (X). If

i. ∅ ∈ I,

ii. A,B ∈ I imply A ∪B ∈ I,

iii. (A ∈ I ∧B ⊆ A) ⇒ B ∈ I,

then I is called an ideal of X.

Definition 2.4. [11] Let I be an ideal of X. Then,

i. I is called non-trivial ideal, if I 6= ∅ and X /∈ I.

ii. A non-trivial ideal I ⊆ P (X) is called admissible if and only if {{x} : x ∈ X} ⊆ I.

From now on, let I be a non-trivial admissible ideal of X.

Definition 2.5. [11] Let X 6= ∅ and ∅ 6= F ⊆ P (X). If

i. ∅ /∈ F ,

ii. A,B ∈ F ⇒ A ∩B ∈ F ,

iii. (A ∈ F ∧B ⊆ A)⇒ B ∈ F ,

then F is called a filter on X.

Remark 2.6. [11] Let I ⊆ P (X) be a non-trivial ideal. Then, the family

F (I) = {M ⊂ X : M = X \A, for some A ∈ I}

is a filter on X, is called the filter associated with the ideal I.

Definition 2.7. [19] Let x = (xk) be a sequence in X and r ≥ 0. x = (xk) is said to be ideal rough
convergent to x0 ∈ X if, for every ε > 0,

{k ∈ N : ||xk − x0|| ≥ r + ε} ∈ I

or equivalently
I − lim sup ||xk − x0|| ≤ r

and denoted by xk
I−r−−→ x0. Thus,

I − LIMrx =
{
x0 ∈ X : xk

I−r−−→ x0

}
If r = 0, then the concepts of the ideal rough convergence and the I-convergence are equivalent. If
the set I − LIMrx is non-empty, then the sequence x = (xk) is I − r convergent.

Definition 2.8. [23] Let x = (xk) be a sequence in X. x = (xk) is said to be I-statistical convergent
to x0 ∈ X, if, for any ε > 0 and δ > 0,{

n ∈ N :
1

n
|{k ≤ n : ||xk − x0|| ≥ ε}| ≥ δ

}
∈ I

and denoted by I − st − LIMx = x0 or xk
I−st−−−→ x0. If I = If = {A ⊆ N : A is a finite set}, then

I-statistical convergence is the same as the classical convergence. If I = Iδ = {A ⊆ N : δ(A) = 0},
then I-statistical convergence is the same as the statistical convergence.
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Definition 2.9. [17] Let x = (xk) be a sequence in X. x = (xk) is said to be I-statistical convergent
of order α ∈ (0, 1] to x0 ∈ X, if, for any ε > 0 and δ > 0, {n ∈ N : 1

nα |{k ≤ n : ||xk−x0|| ≥ ε}| ≥ δ} ∈ I
and denoted by I − st− LIMαx = x0 or xk

I−stα−−−−→ x0.

Definition 2.10. [19] Let x = (xk) be a sequence in X and r ≥ 0. x = (xk) is said to be I statistical
rough convergent (I-st rough convergent) to x0 ∈ X if, for every ε > 0,{

n ∈ N :
1

n
|{k ≤ n : ‖xk − x0‖ ≥ r + ε}| ≥ δ

}
∈ I

and denoted by I − st− LIMrx = x0 or xk
I−st−r−−−−−→ x0.

Definition 2.11. [24] Let x = (xk) be a sequence in X. If there exist a real number M such that
{n ∈ N : 1

n |{k ≤ n : ||xk|| > M}| > δ} ∈ I, then (xk) is called I-st bounded.

Definition 2.12. [21] Let x = (xk) be a sequence in X and c ∈ X. If, for any ε > 0 and δ > 0,{
n ∈ N :

1

n
|{k ≤ n : ||xk − c|| ≥ ε}| < δ

}
/∈ I

then c is called an I-statistical cluster point of x = (xk).
The set of all I-statistical (I − st) cluster points denoted by I − S(Γx).

Theorem 2.13. [21] Let x = (xk) be an I − st bounded sequence. If the sequence x = (xk) has one
cluster point, then it is I − st convergent.

3.Main Results

This section defines the concept of ideal statistical rough convergence of order α and studies some of
its basic properties.

Definition 3.1. [22] Let x = (xk) be a sequence in X, r ≥ 0, and 0 < α ≤ 1. x = (xk). For all ε > 0,
if

lim
n→∞

1

nα
|{k ≤ n : ||xk − x0|| ≥ r + ε}| = 0

then the sequence x = (xk) is said to be statistical rough convergence of order α to x0 and denoted

by xk
st−rα−−−−→ x0. Then, the set of all statistical rough of order α limit points of a sequence (xk) is

denoted by st− LIMα
r x.

Definition 3.2. Let x = (xk) be a sequence in X. For any ε > 0 and δ > 0, if{
n ∈ N :

1

nα
|{k ≤ n : ||xk − x0|| ≥ r + ε}| ≥ δ

}
∈ I, α ∈ (0, 1]

then x = (xk) is called to be ideal statistical rough convergent of order α to x0 and denoted by

xk
I−st−rα−−−−−−→ x0. Then, the set of all ideal statistical rough of order α limit points is denoted by

I − st− LIMα
r x.

Definition 3.3. Let x = (xk) be a sequence in X. Then, x = (xk) is called I-statistical bounded of
order α, if there exists a real number H such that{

n ∈ N :
1

nα
|{k ≤ n : ||xk|| > H}| > δ

}
∈ I

Limit of a convergent sequence is unique, however limit of a rough convergent sequence is not need
to be unique, for the degree of roughness r > 0.
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Theorem 3.4. Let x = (xk) be a sequence in X. x is I-st bounded of order α if and only if there
exists r ≥ 0 such that I − st− LIMα

r x 6= ∅.

Proof. Let X be a normed space and x = (xk) be a sequence in X.
(⇒) Assume that x = (xk) be I-st bounded sequence. Then, there exists a real number H such that

A =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk|| > H}| > δ

}
∈ I

Let r̄ = sup
t≤m
m∈N\A

{||xt||}. I − st − LIMα
r̄ x includes the origin of X I − st − LIMα

r̄ x 6= ∅. Here, since the

normed space X is a vector space, then the origin of X is θX .
(⇐) Suppose that for an arbitrary r ≥ 0, I − st− LIMα

r x 6= ∅. Then, for any ε > 0 and δ > 0, there
exists x0 ∈ I − st− LIMα

r x such that{
n ∈ N :

1

nα
|{k ≤ n : ||xk − x0|| ≥ r + ε}| ≥ δ

}
∈ I

Choose ε = ‖x0‖. Then, for each δ > 0 and H = r + ‖x0‖,{
n ∈ N :

1

nα
|{k ≤ n : ‖xk − x0‖ ≥ H}| ≥ δ

}
∈ I

Therefore, x = (xk) is an I− st bounded sequence of order α.

Theorem 3.5. Let x = (xk) be a sequence in X. The set I − st− LIMα
r x is closed.

Proof. If I − st − LIMα
r x = ∅, then the proof is clear. Let I − st − LIMα

r x 6= ∅ and there exists
(yn) ⊆ I − st − LIMα

r x such that yn → x0 as n → ∞. Then, for all ε > 0 there exists nε ∈ N such
that n > nε ⇒ ||yn − x0|| < ε. Choose n0 ∈ N, yn0 ∈ (yn) ⊆ I − st− LIMα

r x, then

A =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk − yn0 || ≥ r +

ε

2
}| < δ

}
∈ F (I)

For t ∈ A, 1
tα |{k ≤ t : ||xk − yn0 || ≥ r + ε

2}| < δ. For maximum k ≤ t, ||xk − yn0 || < r + ε
2 and for an

arbitrary n0 > nε
||xk − x0|| ≤ ||xk − yn0 ||+ ||yn0 − x0|| < r + ε

and for maximum k ≤ t ∈ A{
n ∈ N :

1

nα
|{k ≤ n : ||xk − x0|| ≥ r + ε}| < δ

}
∈ I

Hence, x0 ∈ I − st− LIMα
r x. Consequently, I − st− LIMα

r x is a closed set.

Theorem 3.6. Let x = (xk) be a sequence in X. The set I − st− LIMα
r x is convex.

Proof. Let y0, y1 ∈ I − st− LIMα
r x. For any ε > 0 and δ > 0,

A1 =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk − y0|| ≥ r + ε}| ≥ δ

}
∈ I

A2 =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk − y1|| ≥ r + ε}| ≥ δ

}
∈ I

As S = N \ (A1 ∪ A2) ∈ F (I), then S is a finite set. For s ∈ S, let B1 = {k ≤ s : ||xk − y0|| ≥ r + ε}
and B2 = {k ≤ s : ||xk − y1|| ≥ r+ ε}. Thus, lim

n→∞
1
nα |B1| = lim

n→∞
1
nα |B2| = 0. For all k ∈ Bc

1 ∩Bc
2 and

λ ∈ [0, 1],
||xk − ((1− λ)y0 + λy1)|| = ||(1− λ)(xk − y0) + λ(xk − y1)|| < r + ε
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and so lim
k→∞

1
kα |B

c
1 ∩Bc

2| = 1. Thereby,{
n ∈ N :

1

nα
|{k ≤ n : ||xk − ((1− λ)y0 + λy1)|| ≥ r + ε}| < δ

}
⊇ S ∈ F (I)

Consequently, I − st− LIMα
r x is convex.

Theorem 3.7. For an arbitrary b ∈ I − S(Γx). Then, for all x∗ ∈ I − st− LIMα
r x, ||x∗ − b|| ≤ r.

Proof. Assume that b ∈ I−S(Γx) and x∗ ∈ I−st−LIMα
r x such that ||x∗−b|| > r. Let ε = ||x∗−b||−r

2 .
Therefore,

A =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk − b|| ≥ ε}| < δ

}
/∈ I

Let

B =

{
n ∈ N :

1

nα
|{k ≤ n : ||xk − x∗|| ≥ r + ε}| ≥ δ

}
For t ∈ A, 1

mα |{k ≤ t : ||xk − b|| ≥ ε}| < δ. So, for maximum k ≤ t, ||xk − b|| < ε. Hence, for all
k ≤ t ∈ A,

||xk − x∗|| ≥ ||x∗ − b|| − ||xk − b|| > r + ε

Therefore, B ⊇ A implies that B is not an element of I and this is a contradiction. Thus, ||x∗−b|| ≤ r,
for all x∗ ∈ I − st− LIMα

r x and b ∈ I − S(Γx).

Theorem 3.8. Let r ≥ 0. x = (xk) is I-statistical rough convergent of order α to x∗ if and only if
there exists a sequence y = (yk) such that I − st− LIMαy = x∗ and for all k ∈ N, ||xk − yk|| ≤ r.

Proof. (⇐) Assume that I − st− LIMαy = x∗ and for all k ∈ N, ||xk − yk|| ≤ r. For any ε > 0 and
δ > 0

A =

{
n ∈ N :

1

nα
|{k ≤ n : ||yk − x∗|| ≥ ε}| < δ

}
∈ I

Moreover,
||xk − x∗|| ≤ ||xk − yk||+ ||yk − x∗|| < r + ε, k ≤ s ∈ Ac

Therefore, {
n ∈ N :

1

nα
|{k ≤ n : ||xk − x∗|| ≥ r + ε}| < δ

}
⊃ Ac ∈ F (I)

Then, x = (xk) is I-statistical rough convergent of order α to x∗
(⇒) Suppose that I − st− LIMαxk = x∗. For any ε > 0,{

n ∈ N :
1

nα
|{k ≤ n : ||xk − x∗|| ≥ ε}| > δ

}
∈ I

For the sequence y = (yk) defined by

yk =

{
x∗, if ||xk − x∗|| ≤ r
xk + r x∗−xk

||xk−x∗|| , otherwise

the following inequalities, for k ∈ N,

||yk − x∗|| ≤

{
0, if ||xk − x∗|| ≤ r
||xk − x∗||+ r, if otherwise

and
||xk − yk|| ≤ r

are hold. Thereby, {
n ∈ N :

1

nα
|{k ≤ n : ||yk − x∗|| ≥ r + ε}| ≥ δ

}
∈ I

Consequently, I − st− LIMαy = x∗ and for all k ∈ N, ||xk − yk|| ≤ r.
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4. Conclusion

In this study, ideal statistical rough convergence of order α was defined. Moreover, some important
properties of the set of all ideal statistical rough of order α limit points were studied. In addition,
this study proved two theorems that “a sequence (xk) in a normed space is I-st bounded of order α if
and only if there exists r ≥ 0 such that I − st− LIMα

r x 6= ∅” and “a sequence (xk) in a normed space
is I-statistical rough convergent of order α to x∗ if and only if there exists a sequence y = (yk) such
that I − st− LIMαy = x∗ and for all k ∈ N, ||xk − yk|| ≤ r”.
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1. Introduction 

Investigations on indicating the existence and uniqueness of fixed points of self-mappings have several 

applications in mathematics, economics, engineering, and statistics. In the mathematical aspect, fixed point 

theory is worth investigating by its applicability in various problems that consist of differential and integral 

equations, approximations, games, and so on. For these reasons, to determine the existence and uniqueness of 

(common) fixed points and coincident fixed points in different types of metric spaces, the researchers working 

in the different branches of mathematics pay attention. 

The notion of a parametric metric space is defined by Hussain et al. [1]. According to this definition, the 

distance between the points of the space takes values according to the parameters. Since the measurement tool 

depends on the parameters in these spaces, it can be thought as the parameterized extension of the classical 

metric. This idea has taken attention by several authors and applied to the weak and strong forms of the metric 

spaces. Rao et al. [2] presented parametric S-metric spaces and proved common fixed-point theorems in 

parametric S-metric spaces. Later, Çetkin [3] introduced the concept of parametric 2-metric spaces and 

investigated some of their characteristics and fixed-point results. Different versions of parametric metric spaces 

and investigations on fixed points of the proposed spaces have been considered by several authors [4-8]. 

Besides, the notion of soft metric spaces introduced by Das and Samanta [9] is one of the generalizations of 

metric spaces based on the parameterization tool. In fact, soft metric is a crisp distance function which 

measures the distance between two soft points in any soft universe. That is, the parameterization tool is used 

just for the points of the soft universe. Nowadays, research on soft metric spaces and their fixed-point theorems 

is prevalent. By expanding the role of the parameterization tool in the parametric metric spaces and soft metric 

spaces, Tunçay and Çetkin [10] defined the concept of a parametric soft metric space and observed the basic 
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features of these spaces. Hence, by using the parametric soft metric, one measures the distance between two 

soft points according to some parameters chosen in the soft universe. 

This study aims to show the existence and uniqueness of fixed soft points and common fixed soft points 

of self-soft mappings described on a (complete) parametric soft metric space. Hence, by providing the 

parametrized distance between two soft points, where the parameters are soft real numbers, we observe 

extensions of some fixed-point results in the proposed spaces. This study is arranged in the following manner. 

In section 2, we recall some basic notions and notations necessary for the main sections. In Section 3, we 

discuss the existence and uniqueness of fixed soft points in parametric soft metric spaces. In section 4, we 

show under what conditions two self-soft mappings have common fixed soft points.  

2. Preliminaries 

This section mentions the concepts and the findings that we need to understand in this manuscript. 

Definition 2.1. [11] Let 𝑋 denote the nonempty universal set, and 𝐸 represent the set of parameters. Then, the 

mapping 𝐹: 𝐸 → 𝒫(𝑋) is called a soft set over the universe 𝑋, denoted by the pair (𝐹, 𝐸). The collection of all 

soft sets over the universe 𝑋, with the set of parameters 𝐸, is represented by 𝑆𝑆(𝑋, 𝐸). 

Definition 2.2.[12] Let (𝐹, 𝐸) and (𝐺, 𝐸) be two soft sets over 𝑋. Then, the set operations for soft sets are 

defined as follows: 

(1) (𝐹, 𝐸) is a soft subset of (𝐺, 𝐸) and write (𝐹, 𝐸) ⊑ (𝐺, 𝐸) if 𝐹(𝑒) ⊆ 𝐺(𝑒), for each 𝑒 ∈ 𝐸.  

(2) the union of (𝐹, 𝐸) and (𝐺, 𝐸) is a soft set (𝐻, 𝐸) = (𝐹, 𝐸) ⊔ (𝐺, 𝐸), where 𝐻(𝑒) = 𝐹(𝑒) ∪ 𝐺(𝑒), for all 

𝑒 ∈ 𝐸. 

(3) the intersection of (𝐹, 𝐸) and (𝐺, 𝐸) is a soft set (𝐾, 𝐸) = (𝐹, 𝐸) ⊓ (𝐺, 𝐸), where 𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒), 

for all 𝑒 ∈ 𝐸. 

(4) (𝐹, 𝐸) is called an absolute soft set denoted by �̃�, if 𝐹(𝑒) = 𝑋, for all 𝑒 ∈ 𝐸. 

(5) (𝐹, 𝐸) is called a null soft set denoted by ∅̃, if 𝐹(𝑒) = ∅, for all 𝑒 ∈ 𝐸. 

Definition 2.3. [13] A soft set (𝐹, 𝐸) is called a soft real number if the mapping 𝐹 is a parameterized family 

of nonempty bounded subsets of the real line, i.e., 𝐹: 𝐸 → ℬ(ℝ). For simplicity, soft real numbers are denoted 

by the symbols �̃�, �̃�, �̃� and the constant soft real numbers are denoted by �̅�, �̅�, 𝑡̅. For instance, 0̅ represents the 

zero soft real number which means that 0̅(𝑒) = 0, for all 𝑒 ∈ 𝐸. Moreover, ℝ(𝐸)∗ denotes the collection of 

non-negative soft real numbers.  

Definition 2.4. [13] The pair (ℝ(𝐸)∗, ≤) is a partially ordered set. Here, the order " ≤ " is the natural order of 

reals over the parameters.  

Definition 2.5. [9] 

(1) A soft point over 𝑋 is a soft set (𝑃, 𝐸) if there is exactly one 𝜆 ∈ 𝐸 such that  

𝑃: 𝐸 → 𝒫(𝑋);  𝑃(𝑒) = {
{𝑥}, 𝑖𝑓 𝑒 = 𝜆
∅, 𝑖𝑓 𝑒 ≠ 𝜆

 

Therefore, it is indicated by the symbol 𝑃𝜆
𝑥. 

(2) If 𝑃(𝜆) = {𝑥} ⊆ 𝐹(𝜆), then 𝑃𝜆
𝑥 ∈̃ (𝐹, 𝐸). 

(3) 𝑃𝜆
𝑥 =  𝑃𝜇

𝑦
 if and only if 𝜆 = 𝜇 and 𝑥 = 𝑦. Thus, 𝑃𝜆

𝑥 ≠ 𝑃𝜇
𝑦

 if and only if 𝜆 ≠ 𝜇 or 𝑥 ≠ 𝑦. 

The notation 𝑆𝑃(�̃�) indicates the family of all soft points of the universe �̃�. 
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Definition 2.6. [13] Let 𝒮 denote a family of soft points. Then, the induced soft set by taking off all collection 

elements is symbolized by 𝑆𝑆(𝒮). Besides, the notation 𝑆𝑃(𝐹, 𝐸) represents the family of all soft points of the 

soft set (𝐹, 𝐸). 

Definition 2.7. [14] Let (𝐹, 𝐸1) ∈ 𝑆𝑆(𝑋, 𝐸1) and (𝐺, 𝐸2) ∈ 𝑆𝑆(𝑌, 𝐸2). Then, the pair (𝜑, 𝜓) ≔

𝜑𝜓: 𝑆𝑆(𝑋, 𝐸1) → 𝑆𝑆(𝑌, 𝐸2) is called a soft mapping. Here, 𝜑: 𝑋 → 𝑌 and 𝜓: 𝐸1 → 𝐸2 are the crisp functions. 

In this case, the image and the preimage of the soft sets (𝐹, 𝐸1) and (𝐺, 𝐸2) under the soft mapping 𝜑𝜓 are 

also soft sets which are defined as follows, respectively. 

𝜑𝜓((F, E1))(k) = ⋃ 𝜑(𝐹(𝑒))

𝑒∈𝜓−1(𝑘)

, ∀ 𝑘 ∈ 𝐸2 

and 

𝜑𝜓
−1((G, E2))(e) = φ−1 (𝐺(𝜓(𝑒))) , ∀ 𝑒 ∈ 𝐸1 

If 𝜑 and 𝜓 are both injective (surjective), then the soft mapping 𝜑𝜓 is said to be injective (surjective). 

  

Figure 1. Graphical representation of a soft mapping 

Definition 2.8. [10] A parametric soft metric on �̃� is a mapping 𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) × ℝ(𝐸)∗ → ℝ(𝐸)∗ which 

satisfies the following axioms.  

(P1) 𝑑(𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
, 𝑡̅) = 0̅, for all 𝑡̅ >̃ 0̅ if and only if 𝑃𝜆

𝑥 = 𝑃𝜇
𝑦

. 

(P2) 𝑑(𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
, 𝑡̅) = 𝑑(𝑃𝜇

𝑦
, 𝑃𝜆

𝑥 , 𝑡̅), for all 𝑡̅ >̃ 0̅. 

(P3) 𝑑(𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
, 𝑡̅) ≤̃ 𝑑(𝑃𝜆

𝑥 , 𝑃𝛾
𝑧, 𝑡̅) + 𝑑(𝑃𝛾

𝑧, 𝑃𝜇
𝑦

, 𝑡̅), for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
, 𝑃𝛾

𝑧 ∈̃ 𝑆𝑃(�̃�) and all 𝑡̅ >̃ 0̅. 

In this case, �̃� is said to be a parametric soft metric space and represented by the pair (�̃�, 𝑑).  

If the parameter set is one-pointed, then this definition turns to the original parametric metric definition 

of Hussain et al. [1]. Besides, in a case when one considers the interval (0, ∞) instead of ℝ(𝐸)∗, then Definition 

2.8 coincides with the definition of Bhardwaj et al. [8]. If one also considers the parameter set is one-pointed 

for the parameters only, then Definition 2.8 coincides with the soft metric definition of Das and Samanta [9]. 

Hence, our definition can be thought as the parametric extension of the parametric metric, soft metric and soft 

parametric metric, since both of the points and the parameters of the distance function are all have softness.  

Example 2.9.[10] Define a mapping 𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) × ℝ(𝐸)∗ → ℝ(𝐸)∗ by follows: for all 𝑡̅ >̃ 0̅ 

𝑑(𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
, 𝑡̅) = {

1, 𝑃𝜆
𝑥 ≠ 𝑃𝜇

𝑦

0, 𝑃𝜆
𝑥 =  𝑃𝜇

𝑦

 

 

Therefore, 𝑑 is a parametric soft metric over �̃�.  
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Example 2.10. [10] Let ℝ be the set of all reals and define a mapping 𝑑: 𝑆𝑃(ℝ̃) × 𝑆𝑃(ℝ̃) × ℝ(𝐸)∗ → ℝ(𝐸)∗ 

by follows: for each 𝑡̅ > 0 ̅, 

𝑑 (𝑃𝜆
𝑥, 𝑃𝜇

𝑦
, 𝑡̅) = 𝑡̅[|�̅� − �̅�| + |�̅� − �̅�|] 

Then, 𝑑 is a parametric soft metric over ℝ̃. 

Definition 2.11.[10] Let (�̃�, 𝑑) be a parametric soft metric space. 

(1) If lim
𝑛→∞

 𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆
𝑥 , 𝑡̅) = 0̅, for all 𝑡̅ >̃ 0̅, then the sequence of soft points {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 is convergent to a soft 

point 𝑃𝜆
𝑥 ∈̃ 𝑆𝑃(�̃�). This is denoted by 𝑃𝜆𝑛

𝑥𝑛 → 𝑃𝜆
𝑥 or lim

𝑛→∞
𝑃𝜆𝑛

𝑥𝑛 = 𝑃𝜆
𝑥. 

(2) If lim
𝑛,𝑚→∞

𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅ ) = 0̅, for each  �̅� >̃ 0̅, then the sequence of soft points {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 satisfies the 

Cauchy property. 

(3) If each sequence of soft points that satisfies the Cauchy property is convergent to some point in the given 

space, then the space is called complete. 

Definition 2.12. [10] Let 𝜑𝜓 : (�̃�, 𝑑1) → (�̃�, 𝑑2) be a soft mapping between parametric soft metric spaces. 

Then, the continuity of 𝜑𝜓 at 𝑃𝜆
𝑥 in �̃�, is described sequentially in the following manner: 

if for any sequence {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 such that lim
𝑛→∞

𝑃𝜆𝑛

𝑥𝑛 = 𝑃𝜆
𝑥, then lim

𝑛→∞
𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) = 𝜑𝜓(𝑃𝜆
𝑥).  

3. Main Results 

This section is devoted to investigating the existence and the uniqueness of the (common) fixed soft points of 

self-soft mappings in the parametric soft metric spaces. 

Lemma 3.1. Let (�̃�, 𝑑) be a parametric soft metric space. Then, the sequence of soft points {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 satisfies 

the Cauchy property if the following equality is satisfied for all �̅� ∈̃ [0,̅ 1̅ ) and 𝑛 ∈ ℕ. 

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) ≤̃ �̅�. 𝑑 (𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) (1) 

Proof. Let 𝑚 > n ≥ 1 be chosen. Then, it implies that the following for all 𝑡̅ >̃ 0̅,  

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) ≤̃ 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) +  𝑑 (𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛+2

𝑥𝑛+2 , 𝑡̅) + ⋯ + 𝑑 (𝑃𝜆𝑚−1

𝑥𝑚−1 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) 

(2)  ≤̃ (�̅�𝑛 + �̅�𝑛+1 + ⋯ + �̅�𝑚−1)𝑑 (𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅) 

 ≤̃
�̅�𝑛

1̅ − �̅�
 𝑑 (𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅) 

Assume that 𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1  , 𝑡̅) >̃  0̅. Since �̅� <̃ 1̅, if one taken limit as 𝑚, 𝑛 → +∞ in the previous inequality, 

then the following is gained  

lim
𝑛,𝑚→∞

𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) = 0̅ (3) 

As a result, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

satisfies the Cauchy property. Also, in case 𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅)  = 0̅, we have 

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚 , 𝑡̅) = 0̅ , for all 𝑚 > 𝑛 and hence the result is clear. 
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Theorem 3.2. Let (�̃�, 𝑑) be a complete parametric soft metric space and 𝜑𝜓 : (�̃�, 𝑑)  → (�̃�, 𝑑) be a surjective 

soft self-mapping. If there exist non-negative soft real numbers such that �̅� + �̅� + �̅� >̃ 1̅ satisfying the 

following for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈̃  𝑆𝑃(�̃�) and for all 𝑡̅ >̃ 0̅.  

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅� 𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅� 𝑑(𝑃𝜆
𝑥 , 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅) + 𝛾 ̅𝑑(𝑃𝜇
𝑦

, 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅) (4) 

then there exists a fixed soft point of 𝜑𝜓 . 

Proof. By the assumptions, it is evident that 𝜑𝜓  is an injective soft mapping. Let 𝛿𝜌 denote the inverse 

mapping of 𝜑𝜓 , for simplicity. Choose 𝑃𝜆0

𝑥𝑜 ∈̃ 𝑆𝑃(�̃�), and set a sequence as follows: 

𝑃𝜆1

𝑥1 =  𝛿𝜌 (𝑃𝜆0

𝑥0) ,  𝑃𝜆2

𝑥2  = 𝛿𝜌 (𝑃𝜆1

𝑥1) =  𝛿𝜌
2 (𝑃𝜆0

𝑥0) , ⋯ , 𝑃𝜆𝑛+1

𝑥𝑛+1  =  𝛿𝜌  (𝑃𝜆𝑛

𝑥𝑛) = 𝛿𝜌
𝑛+1 (𝑃𝜆0

𝑥0) ⋯  

Let us choose 𝑃𝜆𝑛−1

𝑥𝑛−1 ≠  𝑃𝜆𝑛

𝑥𝑛 for all positive integers (otherwise, if there exists some 𝑃
𝜆𝑛0

𝑥𝑛0  such that      𝑃
𝜆𝑛0−1

𝑥𝑛0−1
=

𝑃
𝜆𝑛0

𝑥𝑛0 , then 𝑃
𝜆𝑛0

𝑥𝑛0  is a fixed point of 𝜑𝜓 . By the condition (4), we gain the following inequalities: 

𝑑 (𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) = 𝑑 (𝜑𝜓 (𝜑𝜓 
−1 (𝑃𝜆𝑛−1

𝑥𝑛−1)) , 𝜑𝜓 (𝜑𝜓 
−1 (𝑃𝜆𝑛

𝑥𝑛)) , 𝑡)  

(5) 

 ≥̃ �̅�𝑑 (𝜑𝜓 
−1 (𝑃𝜆𝑛−1

𝑥𝑛−1) , 𝜑𝜓 
−1 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅) + �̅� 𝑑 (𝜑𝜓 
−1 (𝑃𝜆𝑛−1

𝑥𝑛−1) , 𝜑𝜓 (𝜑𝜓 
−1 (𝑃𝜆𝑛−1

𝑥𝑛−1)) , 𝑡̅)  

 +𝛾𝑑 (𝜑
𝜓 
−1(𝑃𝜆𝑛

𝑥𝑛), 𝜑𝜓 (𝜑𝜓 
−1(𝑃𝜆𝑛

𝑥𝑛)) , 𝑡̅) 

 = �̅�𝑑(𝛿𝜌(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝛿𝜌(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) + �̅�𝑑(𝛿𝜌(𝑃𝜆𝑛−1

𝑥𝑛−1), 𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑡̅) + �̅�𝑑(𝛿𝜌(𝑃𝜆𝑛

𝑥𝑛), 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) 

 = �̅�𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) + �̅�𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑡̅) + �̅�𝑑 (𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) 

By arranging the right side of the previous inequality, it is obtained that 

(1̅ − �̅�) 𝑑(𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅)  ≥̃  (�̅�  + �̅�) 𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) (6) 

If �̅� + �̅� =  0̅, then �̅� >̃ 1̅. This fact contradicts with the inequality (6). Thus, �̅� + �̅� must be non-negative and 

(1̅  −  �̅�)  >̃  0̅. 

This implies the following result in the case �̅� =
1̅ −�̅� 

�̅�+�̅�
<̃ 1̅ and for all 𝑛 ∈ ℕ ∪ {0} 

𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅)  ≤̃  �̅�𝑑(𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) (7) 

By repeating (7) n-times, we obtain the following inequality for all 𝑡̅ >̃ 0̅, 

𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅)  ≤̃  𝑘
𝑛

𝑑(𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1  , 𝑡̅) (8) 

By Lemma 3.1, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 satisfies the Cauchy property.  

So, by the hypothesis, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 converges to some soft point 𝑃𝜌
𝜛 ∈̃ 𝑆𝑃(�̃�). Now since 𝜑𝜓 is surjective, we 

may write 𝑃𝜌
𝜛 =  𝜑𝜓 (𝑃𝜇

𝑦
) for some 𝑃𝜇

𝑦
∈ 𝑆𝑃(�̃�). Taking into consideration, we obtain that 
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𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜌
𝜛 , 𝑡̅) = 𝑑 (𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅) 

(9)  ≤̃ �̅� 𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅� 𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1), 𝑡̅) + �̅� 𝑑(𝑃𝜇
𝑦

, 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅) 

 = �̅�𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜇
𝑦

, 𝑡̅) + �̅� 𝑑(𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) + �̅� 𝑑(𝑃𝜇
𝑦

, 𝑃𝜌
𝜛, 𝑡̅) 

This inequality witnesses the following result in case 𝑛 tends to infinity 

0̅ ≥  (�̅� + �̅�) d(𝑃𝜇
𝑦

, 𝑃𝜌
𝜛, 𝑡̅) (10) 

As a result, 𝑃𝜇
𝑦

=  𝑃𝜌
𝜛 is obtained as claimed. 

Corollary 3.3. Let (�̃�, 𝑑) be a complete parametric soft metric space and 𝜑𝜓 : (�̃�, d)  → (�̃�, 𝑑) be a surjective 

self-soft mapping. If there exists a constant �̅� ≥̃ 1̅ satisfying for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�), 𝑃𝜆

𝑥 ≠ 𝑃𝜇
𝑦

, and for all 𝑡̅ 

>̃ 0̅, 

𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜇

𝑦
), 𝑡̅) ≥̃ �̅� 𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) (11) 

Then, there exists a unique fixed soft point of 𝜑𝜓 .  

Proof. By the previous theorem, in the case �̅� = �̅� =  0̅ and �̅� = �̅�, the existence of the fixed soft point is 

clear. So, it is sufficient only to prove that the uniqueness. To do this, let us suppose the converse. That is, let 

𝑃𝜌
𝜛, 𝑃𝛾

𝑧 be two fixed soft points of 𝜑𝜓 , then from condition (11), we obtain the following 

𝑑(𝑃𝜌
𝜛, 𝑃𝛾

𝑧, 𝑡̅)  =  𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝜑𝜓  (𝑃𝛾

𝑧), 𝑡̅)  ≥̃  �̅� 𝑑(𝑃𝜌
𝜛, 𝑃𝛾

𝑧, 𝑡̅) (12) 

which implies 𝑑(𝑃𝜌
𝜛, 𝑃𝛾

𝑧, 𝑡̅) = 0̅, that is 𝑃𝜌
𝜛 =  𝑃𝛾

𝑧 as desired. 

Corollary 3.4. Let (�̃�, 𝑑) be a complete parametric soft metric space and 𝜑𝜓  be a surjective self soft mapping 

in this space. If the following is satisfied for some positive integer 𝑛 and a soft constant �̅� ≥̃ 1̅,  

𝑑(𝜑𝜓
𝑛 (𝑃𝜆

𝑥), 𝜑𝜓
𝑛 (𝑃𝜇

𝑦
), 𝑡̅)  ≥̃ �̅� d(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦

, 𝑡̅) (13) 

for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈̃ 𝑆𝑃(�̃�), 𝑃𝜆

𝑥 ≠ 𝑃𝜇
𝑦

, and for all 𝑡̅ >̃ 0̅, then there exists a unique fixed soft point of 𝜑𝜓 . 

Proof. By the previous corollary, 𝜑𝜓
𝑛  has a fixed soft point, such as 𝑃𝜌

𝜛. However, 𝜑𝜓
𝑛 (𝜑𝜓 (𝑃𝜌

𝜛))  =

 𝜑𝜓  (𝜑𝜓
𝑛 (𝑃𝜌

𝜛))  =  𝜑𝜓 (𝑃𝜌
𝜛) . So 𝜑𝜓 (𝑃𝜌

𝜛) is also a fixed soft point of the soft mapping 𝜑𝜓
𝑛 . Hence 

𝜑𝜓 (𝑃𝜌
𝜛) = 𝑃𝜌

𝜛. Since the mappings 𝜑𝜓  and 𝜑𝜓
𝑛  have the same fixed soft points. The result is obtained. 

Definition 3.5. Let 𝛿𝜌 and 𝜑𝜓  be two self soft mappings of the soft universe �̃�. Then, 𝛿𝜌 and 𝜑𝜓  are said to 

be weakly compatible if 𝛿𝜌(𝑃𝜆
𝑥) = 𝜑𝜓 (𝑃𝜆

𝑥), for some 𝑃𝜆
𝑥 ∈̃  𝑆𝑃(�̃�) and 𝛿𝜌(𝜑𝜓 (𝑃𝜆

𝑥)) = 𝜑𝜓 (𝛿𝜌(𝑃𝜆
𝑥)).  

Theorem 3.6. Let (�̃�, 𝑑) be a complete parametric soft metric space and 𝛿𝜌 , 𝜑𝜓 : (�̃�, 𝑑) → (�̃�, 𝑑) be the weakly 

compatible mappings such that 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�). If the following inequality holds for some �̅� ≥̃ 1̅ and for 

all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈̃  �̃�, 

𝑑(𝛿𝜌(𝑃𝜆
𝑥), 𝛿𝜌(𝑃𝜇

𝑦
), 𝑡̅)  ≥̃  �̅� 𝑑(𝜑𝜓 (𝑃𝜆

𝑥), 𝜑𝜓 (𝑃𝜇
𝑦

), 𝑡̅) (14) 

and if besides one of the images 𝜑𝜓 (�̃�) or 𝛿𝜌(�̃�) is complete, then these mappings have a unique common 

fixed soft point in �̃�.  
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Proof. Let 𝑃𝜆0

𝑥0 ∈̃ 𝑆𝑃(�̃�) be taken arbitrarily. Since 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�), choose 𝑃𝜆1

𝑥1 such that 𝑃𝜇1

𝑦1 =

 𝛿𝜌(𝑃𝜆1

𝑥1)  = 𝜑𝜓 (𝑃𝜆0

𝑥0) . In general, choose 𝑃𝜆𝑛+1

𝑥𝑛+1 such that 

𝑃𝜇𝑛+1

𝑦𝑛+1 =  𝛿𝜌(𝑃𝜆𝑛+1

𝑥𝑛+1)  =  𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), then from the condition (14) we gain the following  

𝑑(𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑃𝜇𝑛+2

𝑦𝑛+2 , 𝑡̅) =  d (𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝜑𝜓 (𝑃𝜆𝑛+1

𝑥𝑛+1) , 𝑡̅) ≤̃
1

𝑘
𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑡̅) (15) 

By repeating (15) (𝑛 + 1) –times, we obtain the following 

𝑑(𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑃𝜇𝑛+2

𝑦𝑛+2 , 𝑡̅) ≤̃  ℓ̅𝑛+1𝑑(𝑃𝜇0

𝑦0 , 𝑃𝜇1

𝑦1 , 𝑡̅) (16) 

where ℓ =
1

𝑘
. Hence for 𝑛 > 𝑚, we have for all 𝑡̅  >̃ 0̅, 

𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑚

𝑦𝑚 , 𝑡̅) ≤̃  𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑡̅) + 𝑑(𝑃𝜇𝑛

𝑦𝑛 , 𝑃𝜇𝑛+1

𝑦𝑛+1 , 𝑡̅) +  … … + 𝑑(𝑃𝜇𝑚−1

𝑦𝑚−1 , 𝑃𝜇𝑚

𝑦𝑚 , t) 

(17) 

 ≤̃  (ℓ̅𝑛  + ℓ̅𝑛+1  +  ⋯ +  ℓ̅𝑚−1 ) 𝑑(𝑃𝜇0

𝑦0 , 𝑃𝜇1

𝑦1 , 𝑡̅) 

The previous inequality witnesses the fact that if 𝑛 and 𝑚 tend to infinity,  

lim
𝑛,𝑚→∞

𝑑(𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜇𝑚

𝑦𝑚 , 𝑡̅) =  0̅. Therefore, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

satisfies the Cauchy property and by the hypothesis   𝑃𝜇𝑛

𝑦𝑛 →

 𝑃𝜌
𝜛 for some 𝑃𝜌

𝜛 ∈̃ 𝑆𝑃(�̃�). Hence, we get 

lim
𝑛→∞

𝑃𝜇𝑛

𝑦𝑛 =  lim
𝑛→∞

 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) =  lim
𝑛→∞

 𝛿𝜌 (𝑃𝜆𝑛

𝑥𝑛) =  𝑃𝜌
𝜛 (18) 

Since one of the soft images 𝜑𝜓 (�̃�) or 𝛿𝜌(�̃�) is complete and 𝜑𝜓 (�̃�)  ⊆  𝛿𝜌 (�̃�), 𝛿𝜌(𝑃𝑢
𝑣)  =  𝑃𝜌

𝜛 for some 

𝑃𝑢
𝑣 ∈̃  �̃�. Now from (14), we have for all 𝑡̅ >̃ 0̅, 

𝑑 (𝜑𝜓 (𝑃𝑢
𝑣), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛) , 𝑡̅) ≤̃
1̅

�̅�
𝑑(𝛿𝜌(𝑃𝑢

𝑣), 𝛿𝜌(𝑃𝜇𝑛

𝑦𝑛), 𝑡̅) (19) 

This implies the following for all 𝑡̅ >̃ 0̅ 

𝑑(𝜑𝜓 (𝑃𝑢
𝑣), 𝑃𝜌

𝜛, 𝑡̅)  ≤̃
1̅

�̅�
𝑑(𝛿𝜌(𝑃𝑢

𝑣), 𝑃𝜌
𝜛, 𝑡̅) (20) 

The last inequality witnesses the fact that 𝜑𝜓 (𝑃𝑢
𝑣) =  𝑃𝜌

𝜛 . Therefore 𝜑𝜓 (𝑃𝑢
𝑣)  =  𝛿𝜌(𝑃𝑢

𝑣) =  𝑃𝜌
𝜛.  

Since 𝜑𝜓  and 𝛿𝜌 are weakly compatible self-soft mappings, we have 𝛿𝜌(𝜑𝜓 (𝑃𝑢
𝑣) ) =  𝜑𝜓 (𝛿𝜌(𝑃𝑢

𝑣)), that is 

𝛿𝜌(𝑃𝜌
𝜛 )  =  𝜑𝜓 (𝑃𝜌

𝜛). Now we show that 𝑃𝜌
𝜛 is a fixed point of 𝛿𝜌 and 𝜑𝜓 . From (14), we have 

𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝛿𝜌(𝑃𝜆𝑛

𝑥𝑛), 𝑡̅))  ≥̃ �̅� 𝑑(𝜑𝜓 (𝑃𝜌
𝜛 ), 𝜑𝜓 (𝑃𝜆𝑛

𝑥𝑛), 𝑡̅) (21) 

If one takes limit as n → ∞ in (21), then the following inequality 

𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝑃𝜌

𝜛, 𝑡̅))  ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝑃𝜌

𝜛, 𝑡̅)) (22) 

implies the fact that 𝛿𝜌(𝑃𝜌
𝜛)  =  𝑃𝜌

𝜛. Hence, we have 𝛿𝜌(𝑃𝜌
𝜛)  = 𝜑𝜓 (𝑃𝜌

𝜛)  =  𝑃𝜌
𝜛. 
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Uniqueness: Let us suppose the converse, that is, let 𝑃𝜌
𝜛 ≠ 𝑃𝛾

𝑧 be two common fixed points of the given self- 

soft mappings. Then, we have 𝑑(𝛿𝜌(𝑃𝜌
𝜛), 𝛿𝜌(𝑃𝛾

𝑧), 𝑡̅))  ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜌
𝜛), 𝜑𝜓 (𝑃𝛾

𝑧), 𝑡̅)), for all 𝑡̅  >̃ 0̅, which 

witnesses the fact that 𝑃𝜌
𝜛 =  𝑃𝛾

𝑧. Hence, we get uniqueness. 

Theorem 3.7. Let (�̃�, 𝑑) be a complete parametric soft metric space and 𝜑𝜓 , 𝛿𝜌: �̃� →  �̃� be two surjective self 

soft mappings which satisfy the following conditions for some soft real numbers �̅�, 𝛽 and �̅� such that �̅�  >

 1̅  +  2�̅� and �̅� >  1̅  +  2�̅�. 

𝑑(𝜑𝜓  𝛿𝜌(𝑃𝜆
𝑥), 𝛿𝜌(𝑃𝜆

𝑥), 𝑡̅)  + �̅�𝑑(𝜑𝜓 𝛿𝜌(𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅)  ≥̃ �̅� 𝑑(𝛿𝜌(𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅) (23) 

and 

𝑑(𝛿𝜌 𝜑𝜓 (𝑃𝜆
𝑥), 𝜑𝜓 (𝑃𝜆

𝑥), 𝑡̅)  + �̅�𝑑(δρφψ(𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , �̃�) ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜆
𝑥), 𝑃𝜆

𝑥 , 𝑡̅) (24) 

for all 𝑃𝜆
𝑥 ∈̃ 𝑆𝑃(�̃�),all 𝑡̅ >̃ 0̅. If one of the soft mappings is continuous, then they have a common fixed soft 

point. 

Proof. Choose a soft point 𝑃𝜆0

𝑥0 ∈̃ 𝑆𝑃(�̃�). Since 𝜑𝜓  is surjective, 𝑃𝜆0

𝑥0 =  𝜑𝜓 (𝑃𝜆1

𝑥1) for some 𝑃𝜆1

𝑥1 ∈̃ 𝑆𝑃(�̃�). 

Since 𝛿𝜌 is surjective, too, 𝑃𝜆2

𝑥2 = 𝛿𝜌 (𝑃𝜆1

𝑥1) for some 𝑃𝜆2

𝑥2 ∈̃ 𝑆𝑃(�̃�). Continuing this process, we may set a 

sequence of soft points {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 in such a way that 

𝑃𝜆2𝑛

𝑥2𝑛 =  𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1)     and   𝑃𝜆2𝑛+1

𝑥2𝑛+1  =  𝛿𝜌 (𝑃𝜆2𝑛+2

𝑥2𝑛+2) , ∀ 𝑛 ∈ ℕ ∪ {0} (25) 

Now for 𝑛 ∈ ℕ ∪ {0}, we have 

𝑑(𝜑𝜓  𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝑡̅)  +  �̅� 𝑑(𝜑𝜓  𝛿𝜌(𝑃𝜆2𝑛+2

𝑥2𝑛+2), 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) ≥̃ �̅�𝑑 (𝛿𝜌 (𝑃𝜆2𝑛+2

𝑥2𝑛+2) , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) (26) 

Thus, we get 

𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) +  �̅� 𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅)  ≥̃ �̅�𝑑 (𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) (27) 

Since 

𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , t)  ≤̃  𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) +  𝑑 (𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2  , 𝑡̅) 

Hence from (27), 

𝑑 (𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) ≤̃
1̅ + �̅�

�̅� − �̅�
𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+2

𝑥2𝑛+2 , 𝑡̅) (28) 

On the other hand, we have 

𝑑(𝛿𝜌 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝑡̅)  +  �̅� 𝑑(𝛿𝜌 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) ≥̃ �̅�𝑑(𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1), 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) (29) 

Thus, we have 

𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛  , 𝑡̅) +  �̅� 𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) ≥̃ �̅�𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) (30) 

Since 
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𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅)  ≤̃  𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛 , 𝑡̅)  +  𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) 

And from (30), we have 

𝑑 (𝑃𝜆2𝑛

𝑥2𝑛 , 𝑃𝜆2𝑛+1

𝑥2𝑛+1 , 𝑡̅) ≤̃
1̅ + �̅�

�̅� − �̅�
𝑑 (𝑃𝜆2𝑛−1

𝑥2𝑛−1 , 𝑃𝜆2𝑛

𝑥2𝑛 , 𝑡̅) (31) 

Let ℓ̅ =  max {
1̅+�̅�

�̅�−�̅�
 ,

1̅+�̅�

�̅�−�̅�
}. Then, by combining (28) and (31), we have for each 𝑛 ∈ N ∪  {0} and 𝑡̅  >̃ 0̅ 

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅)  ≤̃ ℓ̅ 𝑑 (𝑃𝜆𝑛−1

𝑥𝑛−1 , 𝑃𝜆𝑛

𝑥𝑛 , 𝑡̅) (32) 

By repeating (31) n-times, we get for all 𝑛 ∈ N ∪  {0} and all 𝑡̅ >̃ 0̅,  

𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1 , 𝑡̅) ≤̃ ℓ
𝑛

 𝑑 (𝑃𝜆0

𝑥0 , 𝑃𝜆1

𝑥1 , 𝑡̅) (33) 

By Lemma 3.1, {𝑃𝜆𝑛

𝑥𝑛}
𝑛∈𝑁

 satisfies the Cauchy property. Then by the hypothesis, the sequence converges to 

some soft point as 𝑃𝜆𝑛

𝑥𝑛 → 𝑃𝜌
𝜛. So, 𝑃𝜆2𝑛+1

𝑥2𝑛+1 → 𝑃𝜌
𝜛 and 𝑃𝜆2𝑛+2

𝑥2𝑛+2 → 𝑃𝜌
𝜛. If 𝜑𝜓  is continuous, then 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1) →

𝜑𝜓 (𝑃𝜌
𝜛). But 𝜑𝜓 (𝑃𝜆2𝑛+1

𝑥2𝑛+1)  =  𝑃𝜆2𝑛

𝑥2𝑛  →  𝑃𝜌
𝜛. As a result, 𝜑𝜓 (𝑃𝜌

𝜛) = 𝑃𝜌
𝜛. By the surjectivity of 𝛿𝜌, we have 

𝛿𝜌(𝑃𝜌
𝜛)  =  𝑃𝜌

𝜛 for some soft point 𝑃𝜎
𝜗. Now 

𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜎
𝜗), 𝛿𝜌𝑃𝜎

𝜗), 𝑡̅)  +  �̅�𝑑(𝜑𝜓  (𝛿𝜌(𝑃𝜎
𝜗), 𝑃𝜎

𝜗, 𝑡̅) ≥̃  �̅�𝑑(𝛿𝜌(𝑃𝜎
𝜗), 𝑃𝜎

𝜗, 𝑡̅)  

implies that 

�̅�𝑑(𝑃𝜌
𝜛, 𝑃𝜎

𝜗, 𝑡̅)  ≥̃  �̅�𝑑(𝑃𝜌
𝜛, 𝑃𝜎

𝜗, 𝑡̅). 

Thus, we gain the following 

𝑑(𝑃𝜌
𝜛, 𝑃𝜎

𝜗, t) ≤̃
�̅�

�̅�
𝑑(𝑃𝜌

𝜛, 𝑃𝜎
𝜗, 𝑡̅) 

Since �̅� >̃ �̅�, we conclude that 𝑑(𝑃𝜌
𝜛, 𝑃𝜎

𝜗, 𝑡̅)  =  0̅. So 𝑃𝜌
𝜛 =  𝑃𝜎

𝜗. 

Hence, 𝜑𝜓 (𝑃𝜌
𝜛) =  𝛿𝜌(𝑃𝜌

𝜛) =  𝑃𝜌
𝜛. This completes the proof as claimed. 

4. Conclusion 

Fixed point theory is essential in the surveys given in metric and topological spaces. Several authors have 

applied/embedded this theory in different metric spaces and applied sciences. Since the solutions of integral 

and differential equations are based on the fixed-point theory constructed in normed spaces, in this merit, we 

decide to investigate the existence and the uniqueness of fixed soft points of self-soft mappings in parametric 

soft metric spaces, which spaces the parameterization tool plays the key role. Moreover, the studies on fixed-

circle results have gained attention in metric and metric-like spaces [15,16,17], nowadays. For further research, 

we hope to investigate some different kinds of fixed soft point theorems, some fixed-circle theorems and also, 

we plan to give some applications in such spaces.  
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1. Introduction 

It is well-known that the piecewise- uniform fitted meshes studied by Shishkin [1] and the corresponding 

numerical algorithms were developed and shown to be 𝜀 −uniform in various studies including the book by 

Shishkin [2]. The numerical results using a fitted mesh method were firstly presented in [3]. We refer the 

readers to Bakhvalov [4], Gartland [5] and Vulanovic [6] for other approaches to adapting the mesh, involving 

complicated redistribution of the mesh points [7, 8]. We note that none has the simplicity of the piecewise 

uniform fitted meshes. 

Motivating by this these considerations, we remark that both fitted operators and fitted meshes need to be 

studied. Since the methods using fitted meshes are usually easier to implement than the methods using fitted 

operators in practice, they recommended to be applied whenever possible. We also note that the methods using 

fitted meshes are easier to generalize to the problems in more than one dimension and to the nonlinear 

problems. 

In this paper, the following convection−diffusion problem with a concentrated source is considered and 

we prove that 𝜀-uniformly convergent methods can be designed for the problem (1). In other words, in this 

article, to investigate the numerical solution of equation (1) and to obtain a suitable method, we will focus on 

the following boundary value problem [9] 

𝐿𝑢 = −𝜀𝑢′′ + 𝑏𝑢′ + 𝑐 𝑢 = 𝑓(𝑥),   𝑢(0) = 0,    𝑢(1) = 0 (1) 

 
1alifiliz@pau.edu.tr (Corresponding Author) 
1Department of Mathematics, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey 

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 38 Year 2022

www.dergipark.org.tr/en/pub/jnt

https://dergipark.org.tr/en/pub/jnt
https://doi.org/10.53570/jnt.xxxxxx
https://orcid.org/0000-0002-0011-0635


53 

 

Journal of New Theory 38 (2022) 52-60 / Numerical Treatment of Uniformly Convergent Method … 

It is worth mentioning that the modelling of real-world problems including physical, chemical, and 

biological phenomena contain interactions of convection and diffusion processes, which can be 

described by the convection-diffusion- problem [10]. 

We remark that, we have studied the following  

−𝜀𝑔𝑖
′(𝑥𝑖−1) 𝑢𝑖−1 + 𝑢𝑖 + 𝜀𝑔𝑖

′(𝑥𝑖+1) 𝑢𝑖+1 = (𝑓 − 𝑐𝑢) ∫ 𝑔𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

and we obtained the analytical solution  

−
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
𝑈𝑖−1 + 𝑈𝑖 −

1

𝑒𝜌𝑖 + 1
𝑈𝑖+1 = (𝑓𝑖 − 𝑐𝑖 𝑈𝑖) 

ℎ

𝑏
 (
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) (2) 

see [10] and [11] for details. In this article, we will use the equation (1), and after applying various numerical 

treatments, we will get the same solution given by the equation (2) which was studied before in [12]. In this 

study, we have,  

𝑔𝑖
′(𝑥𝑖−1)  ≅ 𝐷

+𝐺0 =
𝐺1−𝐺0
ℎ1
∗  and 𝑔𝑖

′(𝑥𝑖+1)  ≅ 𝐷
−𝐺𝑀 =

𝐺𝑀−𝐺𝑀−1
ℎ2
∗   

−𝜀 𝐷+𝐺0𝑈𝑖−1 + 𝑈𝑖 + 𝜀 𝐷
−𝐺𝑀𝑈𝑖+1 = (𝑓𝑖 − 𝑐 𝑈𝑖) ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = 𝜀𝐷
+𝐺0           

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −𝜀𝐷
−𝐺𝑀          

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖 , 𝑀) = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

At the end of this paper, we will show that 

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) =
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −
1

𝜀
 (

1

𝑒𝜌𝑖 + 1
)  

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

Now, consider 

−𝜀 𝐷+𝐷−𝐺𝑗 − 𝑏𝐷
+𝐺𝑗 = ∆𝑋𝑖,𝑗,        𝑗 = 1, 2, 3, … ,𝑀 − 1 

 

−𝜀 (
𝐺𝑗+1 − 𝐺𝑗

ℎ𝑗+1
−
𝐺𝑗 − 𝐺𝑗−1

ℎ𝑗
)
1

ℎ𝑗
− 𝑏 (

𝐺𝑗+1 − 𝐺𝑗

ℎ𝑗+1
) = ∆𝑋𝑖,𝑗 

where  

∆𝑋𝑖,𝑗 = {

1

ℎ𝑗+1
,   𝑥𝑖 ∈ (𝑥𝑗, 𝑥𝑗+1)

0,   otherwise
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If  𝑗 = 0  or  𝑗 = 𝑀, then 𝐺0 = 0  or 𝐺𝑀 = 0. 

ℎ𝑗 =

{
 
 
 

 
 
 ℎ1  , 1 ≤ 𝑗 ≤

𝑀

4
− 1

ℎ2 ,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4
− 1

ℎ1 ,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4
− 1

ℎ2 ,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4
− 1

 

−𝐺𝑗+1 (1 +
𝑏 ℎ1
𝜀
) + 𝐺𝑗 (2 +

𝑏 ℎ1
𝜀
) + 𝐺𝑗−1(−1) = 0 

In the previous equation, if we take 𝐺𝑗+1 = 𝑟
2, 𝐺𝑗 = 𝑟,  𝐺𝑗−1 = 𝑟

0 = 1 and 𝜆1 = 1 +
𝑏 ℎ1

𝜀
 then we will get 

−𝑟2 (1 +
𝑏 ℎ1
𝜀
) + 𝑟 (2 +

𝑏 ℎ1
𝜀
) − 1 = 0 

−𝑟2𝜆1 + 𝑟(1 + 𝜆1) − 1 = 0  ⇒ (1 − 𝑟𝜆1)(𝑟 − 1) = 0 

Then, the roots of the quadratic equation are given by:   𝑟1 = 1 and 𝑟2 =
1

𝜆1
. Similarly, we get  

−𝐺𝑗+1 (1 +
𝑏 ℎ2
𝜀
) + 𝐺𝑗 (2 +

𝑏 ℎ2
𝜀
) + 𝐺𝑗−1(−1) = 0 

In the previous equation, if we take 𝐺𝑗+1 = 𝑟
2, 𝐺𝑗 = 𝑟,  𝐺𝑗−1 = 𝑟

0 = 1 and 𝜆2 = 1 +
𝑏 ℎ2

𝜀
, then we will get 

−𝑟2 (1 +
𝑏 ℎ2
𝜀
) + 𝑟 (2 +

𝑏 ℎ2
𝜀
) − 1 = 0 

−𝑟2𝜆2 + 𝑟(1 + 𝜆2) − 1 = 0  ⇒ (1 − 𝑟𝜆2)(𝑟 − 1) = 0 

Then, the roots of the quadratic equation are given by:   𝑟1 = 1 and 𝑟2 =
1

𝜆2
. 

2. Derivation of Trapezoidal Rule 

We can derive the trapezoidal rule by using polynomial interpolants of 𝑓(𝑥) function. The usage of a Lagrange 

interpolant for each sub-interval [𝑥𝑖−1, 𝑥𝑖],   𝑖 = 1, 2, 3, … , 𝑛 leads to the trapezoidal rule in [13], that is, 

∫ 𝑓(𝑥) 𝑑𝑥 ≈ ∫ 𝑃(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

  

𝑥𝑖

𝑥𝑖−1

 

where  

𝑃(𝑥) =
𝑥 − 𝑥𝑖
𝑥𝑖−1 − 𝑥𝑖

𝑓(𝑥𝑖−1) +
𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

𝑓(𝑥𝑖) 

∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 ≈ ∫ 𝑃(𝑥)𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 = ∫ (
(𝑥 − 𝑥𝑖)

𝑥𝑖−1 − 𝑥𝑖
𝑓(𝑥𝑖−1) +

(𝑥 − 𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1
𝑓(𝑥𝑖))𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 

   = 
𝑓(𝑥𝑖−1)

𝑥𝑖−1 − 𝑥𝑖
∫ (𝑥 − 𝑥𝑖)𝑑𝑥 +

𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖−1
∫ (𝑥 − 𝑥𝑖−1)𝑑𝑥 
𝑥𝑖

𝑥𝑖−1

 
𝑥𝑖

𝑥𝑖−1

 

   = 
𝑓(𝑥𝑖−1)

−(𝑥𝑖 − 𝑥𝑖−1)
 
(𝑥 − 𝑥𝑖)

2

2
  |
𝑥=𝑥𝑖−1

𝑥𝑖

+ 
𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖−1
 
(𝑥 − 𝑥𝑖−1)

2

2
  |
𝑥=𝑥𝑖−1

𝑥𝑖
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   = −
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖)

2

2
−
(𝑥𝑖−1 − 𝑥𝑖)

2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
−
(𝑥𝑖−1 − 𝑥𝑖−1)

2

2
] 

   = −
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 . [0 −

(𝑥𝑖−1 − 𝑥𝑖)
2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
− 0] 

   = 
𝑓(𝑥𝑖−1)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖−1 − 𝑥𝑖)

2

2
] +

𝑓(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑖−1)
 [
(𝑥𝑖 − 𝑥𝑖−1)

2

2
] 

∫ 𝑃(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

=
(𝑥𝑖 − 𝑥𝑖−1)

2
 [
𝑓(𝑥𝑖−1)

2
+
𝑓(𝑥𝑖)

2
]   

For the composite trapezoidal rule, we have, 

∫𝑓(𝑥)𝑑𝑥 =∑ ∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

𝑛

𝑖=1

   

𝑏

𝑎

= ∑(𝑥𝑖 − 𝑥𝑖−1)

𝑛

𝑖=1

[
𝑓(𝑥𝑖−1)

2
+
𝑓(𝑥𝑖)

2
] 

∫𝑃(𝑥) 𝑑𝑥

𝑏

𝑎

=
ℎ

2
 ∑[ 𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖) ] =  

ℎ

2
[𝑓(𝑥0) + 2∑𝑓(𝑥𝑖) + (𝑥𝑛) 

𝑛

𝑖=1

]

𝑛

𝑖=1

 

We note that, this is known as the composite trapezoidal rule in [13]. 

Lemma 2.1: If  

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) = 𝜀𝐷
+𝐺0          

then  

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) =
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

PROOF. Consider the uniform case, that is 𝜏 =
ℎ

2
. Then, the mesh parameters can be written as ℎ1

∗ = ℎ2
∗ =

2ℎ

𝑀
 

and 𝜆1 = 𝜆2 = 1 +
2𝑏ℎ

𝜀 𝑀
. 

lim
𝑀→∞

𝑇1(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = lim
𝑀→∞

𝐺1 − 𝐺0
ℎ1
∗ =

𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
 

Lemma 2.2: If  

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −𝜀𝐷
−𝐺𝑀          

then  

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖, ℎ,𝑀) = −
1

𝜀
 (

1

𝑒𝜌𝑖 + 1
)  

PROOF. We follow the same steps in the proof of Lemma 2.1. For the uniform case when 𝜏 =
ℎ

2
,  we use the 

difference solution 𝐺𝑖 and the fact that ℎ1
∗ = ℎ2

∗ =
2ℎ

𝑀
; 

lim
𝑀→∞

𝑇2(𝜀, 𝑏𝑖, 𝑐𝑖 , ℎ,𝑀) = lim
𝑀→∞

𝐺𝑀 − 𝐺𝑀−1
ℎ2
∗ = −

1

𝜀
 (

1

𝑒𝜌𝑖 + 1
) 

Lemma 2.3: If  

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖 , 𝑀) = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

then 
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lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

PROOF. In order to calculate the following integral 

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

 

the trapezoidal rule is used for the exact solution of 

𝐺𝑗
𝑖 =

{
 
 
 

 
 
 𝑎1𝑟1

𝑗
+ 𝑎2𝑟2

𝑗
   0 ≤ 𝑗 ≤

𝑀

4

𝑎3𝑟3
𝑗
+ 𝑎4𝑟4

𝑗
,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4

𝑎5𝑟1
𝑗
+ 𝑎6𝑟2

𝑗
,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4

𝑎7𝑟3
𝑗
+ 𝑎8𝑟4

𝑗
,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4

 

𝐺𝑗
𝑖 =

{
 
 
 

 
 
 𝑎1 + 𝑎2𝜆1

−𝑗
,   0 ≤ 𝑗 ≤

𝑀

4

𝑎3 + 𝑎4𝜆2
−𝑗
,   
𝑀

4
≤ 𝑗 ≤

2𝑀

4

𝑎5 + 𝑎6𝜆1
−𝑗
,   
2𝑀

4
≤ 𝑗 ≤

3𝑀

4

𝑎7 + 𝑎8𝜆2
−𝑗
,   
3𝑀

4
≤ 𝑗 ≤

4𝑀

4

 

Using the properties of Green’s function in [14–18], we get, 

𝑎1 + 𝑎2𝜆1
−𝑗
= 𝑎3 + 𝑎4𝜆2

−𝑗
 

𝑎3 + 𝑎4𝜆2
−𝑗
= 𝑎5 + 𝑎6𝜆1

−𝑗
 

𝑎5 + 𝑎6𝜆1
−𝑗
= 𝑎7 + 𝑎8𝜆2

−𝑗
 

For 𝐺0 = 𝐺𝑀 = 0, we have, 

𝑎1 + 𝑎2𝜆1
−𝑗
= 0 

𝑎7 + 𝑎8𝜆2
−𝑗
= 0 

For j = M/4, we have,  𝑎1𝜆1 + 𝑎2(𝑘1
−1(1 − 𝜆2 + 𝜆1)) − 𝑎3𝜆1 + 𝑎4𝑘3𝑘2

−1  = 0. 

For 
ℎ2

𝜀
, we have, 𝑎3𝜆2 + 𝑎4(𝑘2

−2(1 − 𝜆2 + 𝜆1)) − 𝑎5𝜆2 − 𝑎6𝑘1
−2𝑘3

−1  =
ℎ2

𝜀
. 

For j=3M/4, we have, ⇒ 𝑎5𝜆1 + 𝑎6(𝑘1
−3(1 − 𝜆2 + 𝜆1)) − 𝑎7𝜆1 − 𝑎8𝑘3𝑘2

−3  = 0. 

In order to get the difference solution exactly, we need to determine the eight unknown coefficients. Two 

equations can be obtained by using the boundary conditions:  𝐺0 = 𝐺𝑀 = 0; the difference equations related 

to the nodes 𝑥𝑀/4, 𝑥2𝑀/4  and 𝑥3𝑀/4 give us other three equations; and finally, the continuity conditions can 

be applied to obtain the other three equations. Next, the corresponding numerical algorithm can be obtained 

by using the fitted finite difference operator in order to get a system of finite difference equations on a standard 

mesh. We remark that the mesh is often a uniform mesh in practice. Finally, the obtained system can be solved 

in a practical way to get the numerical solutions. We refer the readers to [16] for other approaches in 

constructing fitted finite difference operators. 
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[
 
 
 
 
 
 
 1
1
𝜆1
0
0
0
0
0

1
𝑘1
−1

𝜉1
0
0
0
0
0

0
−1
−𝜆1
1
𝜆2
0
0
0

0
𝑘2
−1

−𝑘3𝑘2
−1

𝑘2
−2

𝜉2
0
0
0

0
0
0
−1
−𝜆2
1
𝜆1
0

0
0
0

−𝑘1
−2

−𝑘1
−2𝑘3

−1

𝑘1
−3

𝜉3
0

0
0
0
0
0
−1
−𝜆1
1

0
0
0
0
0

−𝑘2
−3

−𝑘3𝑘2
−3

𝑘2
−4 ]

 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
0
0
ℎ2
𝜀
0
0
0
0 ]
 
 
 
 
 
 
 
 

 

where 𝑘1 = 𝜆1

𝑀

4 , 𝑘2 = 𝜆2

𝑀

4 , 𝑘3 = 𝜆1𝜆2
−1, 𝜉1 = 𝑘1

−1(1 − 𝜆2 + 𝜆1), 𝜉2 = 𝑘2
−2(1 − 𝜆1 + 𝜆2), 𝜉3 = 𝑘1

−3(1 − 𝜆2 +

𝜆1), and 𝜂 = 𝜀(𝜆1 − 1)(1 + 𝜆1

𝑀

4 𝜆2

𝑀

4 ). 

Using the symbolic programming MATHEMATICA, one can solve 𝐴𝑋 = 𝐵 linear system and obtain the 

following results: 

𝑎1 =
ℎ2
𝜂
𝑘1  𝑘2  𝑘3   

𝑎2 = −
ℎ2
𝜂
𝑘1  𝑘2  𝑘3   

𝑎3 =
ℎ2
𝜂
(−𝑘2  𝑘3  + 𝑘1  𝑘2  𝑘3  + 𝑘2  ) 

𝑎4 = −
ℎ2
𝜂
𝑘2
2 

𝑎5 = −
ℎ2
𝜂
(𝜆2 − 𝜆2𝑘2 + 𝜆1𝑘2) 𝜆2

−1 

𝑎6 =
ℎ2
𝜂
𝑘1
3𝑘2  𝑘3   

𝑎7 =
ℎ2
𝜂

 

𝑎8 =
ℎ2
𝜂
𝑘2
4 

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥 + ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

𝑥𝑖+𝜏

𝑥𝑖

𝑥𝑖

𝑥𝑖−1+𝜏

𝑥𝑖−1+𝜏

𝑥𝑖−1

 

where 𝜏 =
ℎ

2
. 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4) 

Unless otherwise indicated, we will apply the trapezoidal rule for numerical integration until the end of this 

work. 

𝐼1 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖−1+𝜏

𝑥𝑖−1

= ℎ1 [
𝐺0
2
+ 𝐺1 + 𝐺2 +⋯+ 𝐺𝑀

4
−1
+

𝐺𝑀
4

2
] 
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𝐼1 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖−1+𝜏

𝑥𝑖−1

= ℎ1 [
0

2
+ 𝐺1 + 𝐺2 +⋯+ 𝐺𝑀

4
−1
+

𝐺𝑀
4

2
] 

𝐼1 = ℎ1

[
 
 
 

∑ 𝐺𝑗

𝑀
4
−1

𝑗=1
]
 
 
 

+
ℎ1
2
𝐺𝑀
4

 

𝐼1 = ℎ1 ∑(𝑎1𝑟1
𝑗
+ 𝑎2𝑟2

𝑗
 )

𝑀
4
−1

𝑗=1

+
ℎ1
2
(𝑎1𝑟1

𝑀/4
+ 𝑎2𝑟2

𝑀/4
 ) 

𝐼1 = ℎ1 ∑(𝑎1𝑟1
𝑗
 ) + ℎ1 ∑(𝑎2𝑟2

𝑗
 )

𝑀
4
−1

𝑗=1

𝑀
4
−1

𝑗=1

+
ℎ1
2
(𝑎1𝑟1

𝑀/4
+ 𝑎2𝑟2

𝑀/4
 ) 

𝐼2 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖

𝑥𝑖−1+𝜏

= ℎ2 [

𝐺𝑀
4

2
+ 𝐺𝑀

4
+1
+ 𝐺𝑀

4
+2
+⋯+ 𝐺2𝑀

4
−1
+

𝐺2𝑀
4

2
] 

𝐼2 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖

𝑥𝑖−1+𝜏

= ℎ2

[
 
 
 𝐺𝑀

4

2
+ ∑ 𝐺𝑗

2𝑀
4
−1

𝑗=
𝑀
4
+1

+

𝐺2𝑀
4

2

]
 
 
 

 

𝐼2 =
ℎ2
2
(𝑎3𝑟3

𝑀/4
+ 𝑎4𝑟4

𝑀/4
 ) + ℎ2 ∑ (𝑎3𝑟3

𝑗
+ 𝑎4𝑟4

𝑗
 )

2𝑀
4
−1

𝑗=
𝑀
4
+1

+
ℎ2
2
(𝑎3𝑟3

𝑀/2
+ 𝑎4𝑟4

𝑀/2
 ) 

𝐼3 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+𝜏

𝑥𝑖

= ℎ1 [

𝐺𝑀
2

2
+ 𝐺𝑀

2
+1
+ 𝐺𝑀

2
+2
+⋯+𝐺3𝑀

4
−1
+

𝐺3𝑀
4

2
] 

𝐼3 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+𝜏

𝑥𝑖

= ℎ1

[
 
 
 𝐺𝑀

2

2
+ ∑ 𝐺𝑗

3𝑀
4
−1

𝑗=
𝑀
2
+1

+

𝐺3𝑀
4

2

]
 
 
 

 

𝐼3 =
ℎ1
2
(𝑎5𝑟1

𝑀/2
+ 𝑎6𝑟2

𝑀/2
 ) + ℎ1 ∑ (𝑎5𝑟1

𝑗
+ 𝑎6𝑟2

𝑗
 )

3𝑀
4
−1

𝑗=
𝑀
2
+1

+
ℎ1
2
(𝑎5𝑟1

3𝑀/4
+ 𝑎6𝑟2

3𝑀/4
 ) 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ 𝐺3𝑀

4
+1
+ 𝐺3𝑀

4
+2
+⋯+ 𝐺𝑀−1 +

𝐺𝑀
2
] 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ 𝐺3𝑀

4
+1
+ 𝐺3𝑀

4
+2
+⋯+ 𝐺𝑀−1 +

0

2
] 

𝐼4 = ∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖+𝜏

= ℎ2 [

𝐺3𝑀
4

2
+ ∑ 𝐺𝑗

𝑀−1

𝑗=
3𝑀
4
+1

] 
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𝐼4 =
ℎ2
2
(𝑎7𝑟3

3𝑀/4
+ 𝑎8𝑟4

3𝑀/4
 ) + ℎ2 ∑ (𝑎7𝑟3

𝑗
+ 𝑎8𝑟4

𝑗
 )

𝑀−1

𝑗=
3𝑀
4
+1

 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4) 

Since the integral 𝑇3 integral can be written as the sum of the integrals 𝐼1,  𝐼2  𝐼3 and  𝐼4, we have 

lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= (
ℎ

𝑏𝑖
) tanh (

𝑏𝑖ℎ

2𝜀
) = (

ℎ

𝑏𝑖
) 
𝑒
𝑏𝑖ℎ
𝜀 − 1

𝑒
𝑏𝑖ℎ
𝜀 + 1

 

𝑇3 = lim
𝑀→∞

∫ 𝐺𝑖 𝑑𝑥

𝑥𝑖+1

𝑥𝑖−1

= lim
𝑀→∞

𝑇3(𝜀, 𝑏𝑖, 𝑐𝑖, 𝑀) = (
ℎ

𝑏𝑖
)(
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

        Finally, we proved that the numerical and analytical results converge exactly (see [11]), that is, 

−
𝑒𝜌𝑖

𝑒𝜌𝑖 + 1
𝑈𝑖−1 + 𝑈𝑖 −

1

𝑒𝜌𝑖 + 1
𝑈𝑖+1 = (𝑓𝑖 − 𝑐𝑖 𝑈𝑖) 

ℎ

𝑏
 (
𝑒𝜌𝑖 − 1

𝑒𝜌𝑖 + 1
) 

3. Conclusion 

In this paper, we studied different finite difference methods for the convection-diffusion problem. We 

presented numerical behaviour of the convection-diffusion problem. We applied a uniformly convergent 

numerical algorithm, called Il’in-Allen-Southwell scheme, with better accuracy throughout the domain for 

various values of  𝜀. At the end of the study, we showed how to construct such a method. Finally, we have 

constructed a uniformly convergent numerical method for the convection-diffusion problem. 
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Abstract − In this paper, we introduce Smarandache curves of an affine C∞-curve
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1. Introduction

In the theory of curves in differential geometry, one of the interesting problems studied by many
mathematicians is to characterize a regular curve and give information about its structure. Using
the curvatures κ and τ of a regular curve, its shape and size can be determined, so the curvatures
play an important role in the problem’s solution. The relationship between the corresponding Frenet
vectors of the two curves gives another approach to solving the problem. For example; involute-evolute
curve couple, Bertrand mate curves and Mannheim mate curves result from this relationship. Another
example is Smarandache curves, which are defined as regular curves with the location vector generated
by the Frenet vectors of the regular curve. Smarandache curves have been widely studied in different
ambient spaces ( [1–17]).

While Euclidean differential geometry is the study of differential invariants regarding the group of
rigid motions, affine differential geometry is the study of differential invariants regarding the group of
affine transformations x −→ Ax+ b, A ∈ GL (n,R), b ∈ Rn acting on x ∈ Rn, i.e., nonsingular linear
transformations together with translations, denoted by the Lie group A (n,R) = GL (n,R)× Rn with
a semi-direct product structure, (see [18,19]). Moreover, “affine geometry” is also called “equi-affine
geometry”, where we restrict to the subgroup SA (n,R) = SL (n,R)× Rn of volume-preserving linear
transformations together with translations.

In this paper, we introduce TN , TB, NB and TNB−Smarandache curves corresponding to a
regular C∞−curve in affine 3−space A3. We also establish the relationship between the Frenet frames
of the pair of curves and the Frenet apparatus of each curve.
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2. Basic Concepts

In this section, we give the information to understand the main subjects in this paper (see for
details [20–22]).

A set of points whose elements correspond to a vector of the vector space V over a field is called
the affine space associated with V . We refer to A3 as an affine 3-space associated with R3.

An arbitrary curve α : I ⊂ R→ A3 is called a regular affine curve if for all r ∈ I

det

(
dα

dr
(r) ,

d2α

dr2
(r) ,

d3α

dr3
(r)

)
6= 0

and the arc-length of α is defined as

s (r) :=

∫ r2

r1

∣∣∣∣det

(
dα

dr
(r) ,

d2α

dr2
(r) ,

d3α

dr3
(r)

)∣∣∣∣1/6 dr
Here, s is called the parameter of the affine arc-length if

det

(
dα

ds
(s) ,

d2α

ds2
(s) ,

d3α

ds3
(s)

)
= 1

Remark 2.1. In this paper, the prime denotes differentiation concerning the parameter s, i.e., α′ = dα
ds

etc., while a dot is reserved for differentiation concerning any arbitrary parameter r, i.e., α̇ = dα
dr etc..

For an affine C∞−curve α in A3 parameterized by the parameter of the affine arc-length s, κ and
τ are called the affine curvature and the affine torsion of α given by

κ(s) = det
[
α′(s), α′′′(s), α(iv)(s)

]
(1)

and
τ(s) = −det

[
α′′(s), α′′′(s), α(iv)(s)

]
(2)

From the definition of κ(s) and τ(s), we get

α(iv)(s) + κ(s)α′′(s) + τ(s)α′(s) = 0

that is

d

ds

 α′(s)
α′′(s)
α′′′(s)

 =

 0 1 0
0 0 1
−τ −κ 0

 α′(s)
α′′(s)
α′′′(s)

 (3)

Let us set
T = α′, N = α′′, B = α′′′

Then, we can write the relation (3) as T ′

N ′

B′

 =

 0 1 0
0 0 1
−τ −κ 0

 T
N
B

 (4)

Here, T , N and B are called the tangent vector, the normal vector, and the binormal vector of α,
respectively. Also, {T,N,B} is called an affine Frenet frame of α.

Example 2.2. Let α be an affine C∞−curve in A3 with parametric equation

α(s) = (cos s, sin s, s)
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The affine Frenet frame of α reads

T (s) = (− sin s, cos s, 1)
N(s) = (− cos s,− sin s, 0)
B(s) = (sin s,− cos s, 0)

It follows that the curvatures of α have the form

κ(s) = det
[
α′(s), α′′′(s), α(iv)(s)

]
= 1

and
τ(s) = −det

[
α′′(s), α′′′(s), α(iv)(s)

]
= 0

Then, we can write  T ′

N ′

B′

 =

 0 1 0
0 0 1
0 −1 0

 T
N
B


3. Smarandache Curves in Affine 3−space

In this section, we consider an affine C∞−curve α and define its affine Smarandache curves in affine
3−space A3. Let α = α(s) be a regular affine C∞−curve with affine Frenet frame {T,N,B} in A3.
Denote by β = β(u) arbitrary affine C∞−curve, where u is the parameter of the affine arc-length of β.

Definition 3.1. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u (s)) =
1√
2

(T (s) +N(s)) (5)

is called the TN−affine Smarandache curve of α.

Definition 3.2. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
2

(T (s) +B(s)) (6)

is called the TB−affine Smarandache curve of α.

Definition 3.3. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
2

(N(s) +B(s)) (7)

is called the NB−affine Smarandache curve of α.

Definition 3.4. Let α be an affine C∞−curve in affine 3−space A3. A curve β defined by

β(u(s)) =
1√
3

(T (s) +N(s) +B(s)) (8)

is called the TNB−affine Smarandache curve of α.

Next, we obtain the affine Frenet frame {Tβ, Nβ, Bβ} , and the curvatures κβ and τβ of affine
Smarandache curves of α.
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3.1. TN−affine Smarandache curve

Taking the derivatives β(u (s)) concerning u, we obtain

dβ

du
=

dβ

ds

ds

du
(9)

d2β

du2
=

d2β

ds2

(
ds

du

)2

+
dβ

ds

d2s

du2
(10)

d3β

du3
=

d3β

ds3

(
ds

du

)3

+ 3
d2β

ds2
ds

du

d2s

du2
+
dβ

ds

d3s

du3
(11)

and since u is the parameter of the affine arc-length of β, i.e., det(dβdu ,
d2β
du2

, d
3β
du3

) = 1, we can easily
obtain (

du

ds

)6

= det

(
dβ

ds
,
d2β

ds2
,
d3β

ds3

)
(12)

Using the relations (4) and (5) we get

dβ

ds
=

1√
2

(N +B)

d2β

ds2
=

1√
2

(−τT − κN +B)

d3β

ds3
=

1√
2

[(
−τ ′ − τ

)
T +

(
−κ′ − τ − κ

)
N − κB

]
and so, from the relation (12)

du

ds
=

(
1

2
√

2

[(
τ ′ + τ

)
(κ+ 1)− τ

(
κ′ + τ

)])1/6

(13)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ =
1√
2
N +

1√
2
B (14)

Nβ = − τ√
2
T − κ√

2
N +

1√
2
B (15)

and

Bβ = −τ
′ + τ√

2
T − κ′ + τ + κ√

2
N − κ√

2
B (16)

Differentiating the equation (16) concerning s and using the relations (4) we obtain

B′β = −τ
′′ + τ ′ − κτ√

2
T − κ′′ + 2τ ′ + κ′ + τ + κ2√

2
N − 2κ′ + τ + κ√

2
B (17)

Since B′β = −τβTβ − κβNβ, from the relations (14)-(17) we have

κβ = −τ
′′ + τ ′ − κτ

τ

and

τβ = −τ
′′ − 2κ′τ − τ ′ + τ2 + 2κτ

τ
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Theorem 3.5. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TN−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by Tβ

Nβ

Bβ

 =

 0 1√
2

1√
2

− τ√
2

− κ√
2

1√
2

− τ ′+τ√
2
−κ′+τ+κ√

2
− κ√

2


 T
N
B

 (18)

and the corresponding curvature κβ and τβ read

κβ = −τ
′′ + τ ′ − κτ

τ
, τβ = −τ

′′ − 2κ′τ − τ ′ + τ2 + 2κτ

τ
(19)

3.2. TB−affine Smarandache curve

Using the relations (4) and (6) we get

dβ

ds
=

1√
2

(−τT − (κ− 1)N)

d2β

ds2
=

1√
2

(
−τ ′T −

(
κ′ + τ

)
N − (κ− 1)B

)
d3β

ds3
=

1√
2

[
−
(
τ ′′ − κτ + τ

)
T −

(
κ′′ + 2τ ′ − κ2 + κ

)
N −

(
2κ′ + τ

)
B
]

and so, from the relation (12)

du

ds
=

(
1

2
√

2

(
− (κ− 1)2

(
τ ′′ + τ

)
+ (κ− 1)

(
τκ′′ + 3ττ ′ + 2κ′τ ′

)
−
(
2κ′ + τ

) (
κ′ + τ

)
τ
))1/6

(20)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ = − τ√
2
T − κ− 1√

2
N (21)

Nβ = − τ ′√
2
T − κ′ + τ√

2
N − κ− 1√

2
B (22)

and

Bβ = −τ
′′ − κτ + τ√

2
T − κ′′ + 2τ ′ − κ2 + κ√

2
N − 2κ′ + τ√

2
B (23)

Differentiating the equation (23) concerning s and using the relations (4) we obtain

B′β = −τ
′′′ − 3κ′τ − κτ ′ + τ ′ − τ2√

2
T− κ

′′′ + 3τ ′′ − 4κκ′ + κ′ − 2κτ + τ√
2

N− 3κ′′ + 3τ ′ − κ2 + κ√
2

B (24)

Since B′β = −τβTβ − κβNβ, from the relations (21)-(24) we have

κβ = −3κ′′ + 3τ ′ − κ2 + κ

κ− 1

and

τβ = 3κ′ + τ − τ ′′′ − 2κτ ′ + τ ′

τ
− 3κ′′τ ′ − 3(τ ′)2

κ− 1

where κ (s) 6= 1 for all s.
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Theorem 3.6. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by Tβ

Nβ

Bβ

 =

 − τ√
2

−κ−1√
2

0

− τ ′√
2

−κ′+τ√
2

−κ−1√
2

− τ ′′−κτ+τ√
2

−κ′′+2τ ′−κ2+κ√
2

−2κ′+τ√
2


 T
N
B

 (25)

and the corresponding curvature κβ and τβ read

κβ = −3κ′′ + 3τ ′ − κ2 + κ

κ− 1
, τβ = 3κ′ + τ − τ ′′′ − 2κτ ′ + τ ′

τ
− 3κ′′τ ′ − 3(τ ′)2

κ− 1
(26)

everywhere κ (s) 6= 1.

3.3.NB−affine Smarandache curve

Using the relations (4) and (7) we get

dβ

ds
=

1√
2

(−τT − κN +B)

d2β

ds2
=

1√
2

(
−
(
τ ′ + τ

)
T −

(
κ′ + τ + κ

)
N − κB

)
d3β

ds3
=

1√
2

[
−
(
τ ′′ + τ ′ − κτ

)
T −

(
κ′′ + 2τ ′ + κ′ + τ − κ2

)
N −

(
2κ′ + τ + κ

)
B
]

and so, from the relation (12)

du
ds =

(
1

2
√
2
(−2(κ′)2τ − 3κ′τ2 − τ3 + κ′′κτ + 3κτ ′τ + 2τ ′κ′κ− κ2τ ′′ + κ3τ + 2(τ ′)2

+κ′′τ ′ − κ2τ ′ + κ′′τ + 2τ ′τ + κ′τ + τ2 − κ′τ ′′ + κ′κτ − τ ′′τ + κτ2 − κτ ′′ − κτ ′)

)1/6

(27)

Without loss of generality, we assume that du = ds. Then the affine Frenet frame’s vectors are given by

Tβ = − τ√
2
T − κ√

2
N +

1√
2
B (28)

Nβ = −τ
′ + τ√

2
T − κ′ + τ + κ√

2
N − κ√

2
B (29)

and

Bβ = −τ
′′ + τ ′ − κτ√

2
T − κ′′ + 2τ ′ + κ′ + τ − κ2√

2
N − 2κ′ + τ + κ√

2
B (30)

Differentiating the equation (30) concerning s and using the relations (4) we obtain

B′β = −τ
′′′ + τ ′′ − 3κ′τ − κτ ′ − τ2 − κτ√

2
T − κ′′′ + κ′′ + 3τ ′′ + 2τ ′ − 4κ′κ− 2κτ − κ2√

2
N (31)

−3κ′′ + 2κ′ + 3τ ′ + τ − κ2√
2

B

Since B′β = −τβTβ − κβNβ, from the relations (27)-(31) we have

κβ = −τ
′′′ + τ ′′ − κ′τ − κτ ′ − κτ + 3κ′′τ + 3τ ′τ + κ2τ

τ ′ + τ + κτ

and

τβ = −κτ
′′′ + κτ ′′ − 3κ′′τ ′ − 3(τ ′)2 − 2κ′τ ′ − 3κ′′τ − 4τ ′τ − 2κ′τ − 3κ′κτ − κτ2 − τ2

τ ′ + τ + κτ
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Theorem 3.7. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is NB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by

 Tβ
Nβ

Bβ

 =

 − τ√
2

− κ√
2

1√
2

− τ ′+τ√
2

−κ′+τ+κ√
2

− κ√
2

− τ ′′+τ ′−κτ√
2

−κ′′+2τ ′+κ′+τ−κ2√
2

−2κ′+τ+κ√
2


 T
N
B

 (32)

and the corresponding curvature κβ and τβ read

κβ = −
τ ′′′ + τ ′′ + 3κ′′τ + (3τ − κ) τ ′ − κ′τ +

(
κ2 − κ

)
τ

τ ′ + τ + κτ

τβ = −κτ
′′′ + κτ ′′ − 3 (τ ′ + τ)κ′′ − 3(τ ′)2 − 2κ′τ ′ − 4τ ′τ − (2τ + 3κτ)κ′ − (1 + κ) τ2

τ ′ + τ + κτ
(33)

3.4. TNB−affine Smarandache curve

The next theorem can be proved analogously as in the previous three cases.

Theorem 3.8. Let α : I ⊆ R 7→ A3 be an affine C∞−curve in affine 3−space A3 with the affine
Frenet frame {T,N,B} and the curvatures κ and τ . If β : I ⊆ R 7→ A3 is TNB−affine Smarandache
curve of α, then its frame {Tβ, Nβ, Bβ} is given by

 Tβ
Nβ

Bβ

 =

 − τ√
3

−κ−1√
3

1√
3

− τ ′+τ√
3

−κ′+τ+κ√
3

−κ−1√
3

− τ ′′+τ ′−(κ−1)τ√
3

−κ′′+2τ ′+κ′−κ2+τ+κ√
3

−2κ′+τ+κ√
3


 T
N
B

 (34)

and the corresponding curvature κβ and τβ read

κβ = −τ
′′′ + τ ′′ + 3κ′′τ + (3τ − κ+ 1) τ ′ − κ′τ − κ2τ

τ ′ + κτ

τβ = −(κ− 1)τ ′′′ + (κ− 1)τ ′′ − 3(τ ′ + τ)κ′′ − 3(τ ′)2 + (κ− 1)τ ′ − (3κ− 1)κ′τ − (4τ + 2κ′) τ ′ − κτ2

τ ′ + κτ

4. Conclusion

Recently, many studies have been done on the curve theory in affine 3-space (see [23–26]). However,
until now, Smarandache curves in affine 3-space have not been defined and their characteristics have
not been examined. Therefore, in this paper, TN , TB, NB and TNB-Smarandache curves whose
position vector are made by Frenet frame vectors on another regular affine C∞-curve α with the affine
Frenet frame {T,N,B} in affine 3-space A3 are introduced. The affine curvature κβ , the affine torsion
τβ, and the expression of the affine frame vectors {Tβ, Nβ, Bβ} of Smarandache curves are obtained.
Also, the relationship between the Frenet frames of the curve α and Smarandache curves is given.
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[4] M. Çetin, Y. Tuncer, M. K. Karacan, Smarandache Curves According to Bishop Frame in Euclidean
3-Space, General Mathematics Notes 20(2) (2014) 50–66.

[5] M. Elzawy, S. Mosa, Smarandache Curves in the Galilean 4-Space G4, Journal of the Egyptian
Mathematical Society 25(1) (2017) 53–56.
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Abstract − In this study, we examine conformal spherically symmetric space-
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are obtained for f(R,φ) = (1 + λη2φ2)R model. All the quantities for anisotropic
fluid are investigated through equation of state constant, ω. The models for three
different selections of ω are represented for the constructed model. Moreover, string
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1. Introduction

Generalization of Einstein-Hilbert action is quite attractive topic in recent years. It is an alternative
way to understand dynamical characteristic of universe. Especially, last observations such as super-
nova type Ia [1–3] and cosmic microwave background radiation [4, 5] lead to expansion universe with
acceleration. Although studies indicate that the universe has exhibited different dynamic behaviors
in different epochs, current time expansion of universe is correlated with exotic matter components
called as ”dark energy” on it. Matter form has negative pressure which causes to expansion. Within
this framework, many researchers described great numbers of different dark energy models associated
with scalar field. Although the existence of dark energy, which has such a repulsive effect cosmolog-
ically, is sufficient to explain the movement of late time universe, the origin and dynamic structure
of this form of matter cannot be fully explained theoretically. Extended theories or generalizations
of Einstein-Hilbert action give researchers to examine universe from beginning to current time as an
alternative way. f(R,φ) theory is one of the most attractive generalization of Einstein-Hilbert action
by way of a general function depending on Ricci curvature scalar, scalar field and it’s terms. Einstein-
Hilbert action for f(R,φ) theory is firstly studied by Hwang and his collaborators [6–9]. Existence of
scalar field in action makes the theory quite interesting in order to study different epoch of universe
correlated with scalar field. In this context, Myrzakulov et al. [10] examined possible inflation scenario
for some models in f(R,φ) theory. Mathew et al. [11] obtained a possible exact inflationary model
in f(R,φ) theory. They showed that an inflationary model with an exit is possible in theory. Stabile
and Capozzielo [12] studied galaxy rotating curves without needing dark energy in f(R,φ) theory.
They showed that Yukawa-like correction in theory could be explain problem of dark matter in spiral
galaxies. In theory, many cosmological issue is studied by researchers [13–17].
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Conformal Killing vectors (CKVs) are quite important symmetrical property which could be used
for General Relativity caused to simplification of space-time [18]. It is easier to find exact solutions
for models by way of this isometries in field equations. Also, CKVs could be considered to explore
conservation laws, as well. CKVs are defined by [19]

Lξgik = ψgik (1)

where Lξ represent the Lie derivative operator, ψ is conformal factor and ξ is vector field that gen-
erates conformal symmetry [19]. Classification of conformal Killing vectors such as Killing vectors,
Homothetic Killing vectors, special conformal Killing vectors and non-special conformal Killing vectors
depends on the structure of the conformal factor, ψ [20]. In literature, great number of cosmological
models and issues in various theory are examined through conformal symmetry [21–24].

In this study, our main purpose to understand effect of conformal symmetry on anisotropic model
in the framework of f(R,φ) theory. In this context, we investigated conformal spherically symmetric
space-time filled with anisotropic fluid in f(R,φ) theory. Kinematic term of scalar field related with
dynamic structure of theory is attained for constructed model.

This study organized as: In section 2, we recaptured field equations of f(R,φ) theory. After, we
obtained field equations conformal spherically symmetric space-time with anisotropic fluid in f(R,φ)
theory. Exact solutions of field equations are obtained. Matter distribution investigated through
equation of state constant, ω. Anisotropy parameter and causality conditions are examined. In
section 3, Results for solutions have been concluded in the point of view physical and geometrical.

2. Anisotropic Conformal Spherically Symmetric Model in f(R, φ) Theory

Action function of f(R,φ) gravity can be written as [25]

S =

∫
d4
√
−g
[

1

κ2
(f(R,φ) + u(φ)φ;`φ

;`)

]
+ Sm (2)

where Sm is Lagrange density of matter field. Also, f(R,φ) is a general function connected with Ricci
curvature scalar, R, and scalar field, φ [25]. u(φ) represents kinematic term of scalar field and g is
determination of metric tensor gµν [26]. Variation of Eq.(2) leads to field equations of extended theory
as follows:

fRRik −
1

2
(f + u(φ)φ;`φ

;`)gik − fR;ik + u(φ)φ;iφ;k + gik2fR = κTik (3)

where 2 corresponds to d’Alambertian operator (2 = ∇`∇`). Energy-momentum tensor is defined

as Tik = − 2√
−g

δ(
√
−gSm)
δgik

[27]. From Eq.(2), the generalization of Klein-Gordon equation for f(R,φ)

theory is attained as [26]
2u(φ)2φ+ uφ(φ)φ;`φ

;` − fφ = 0 (4)

Line element of static spherically symmetric metric is described by

ds2 = eµ(r)dt2 − eν(r)dr2 − r2dθ2 − r2 sin2 θdΦ2 (5)

where µ(r) and ν(r) are metric potentials depending on radial coordinate. Also, Ricci curvature scalar
for selected metric is attained as

R = e−ν
[

1

2
(2µ̈− µ̇ν̇ + µ̇)− 2

r
(ν̇ − µ̇) +

2

r2

]
− 2

r2
(6)

where dot signs partial derivative according to radial coordinate. On the other hand, energy-momentum
tensor of anisotropic fluid is given by

Tik = (ρ+ pt)uiuk − ptgik + (pr − pt)xixk (7)
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where ρ(r) is energy density, pr(r) is radial pressure and pt(r) is tangential pressure of the fluid. ui is
four-velocity in co-moving coordinates and xi is unit four-vector along the radial direction. By using
Eqs.(3),(5) and (7), field equations for spherically symmetric anisotropic fluid in f(R,φ) theory are
attained in the following form:

e−ν
[

1

4
fR

(
µ̇ν̇ +

4ν̇

r
− 2µ̈− µ̇2

)
+

1

2
eνf +

1

2
u(φ)φ̇2 + ∂rfR

(
2

r
+
µ̇

2

)]
= κpr (8)

e−ν
[

1

2r
fR

(
ν̇ − µ̇+

2eν

r
− 2

r

)
+

1

2
eνf − 1

2
u(φ)φ̇2 +

1

2
∂rfR

(
2

r
+ µ̇− ν̇

)
+∂rrfR

]
= κpt (9)

and

e−ν
[

1

4
fR

(
µ̇2 − µ̇ν̇ + 2µ̈+

4µ̇

r

)
−1

2
eνf +

1

2
u(φ)φ̇2 +

1

2
∂rfR

(
ν̇ − 4

r

)
−∂rrfR

]
= κρ (10)

It is clearly seen that constructed field equations have eight unknown components. In consequence,
we have considered a viable model in f(R,φ) theory. The model is [25]

f(R,φ) = (1 + λη2φ2)R (11)

Also, kinematic term of scalar field is considered as power-law form as u(φ) = u0φ
m. In this study, we

assumed constant as m = 1. Conformal symmetry gives us to an opportunity to simplify space-time
via vector field, ξ. Conformal symmetry for static spherically symmetric metric is studied by Herrera
and Ponce de Leon [28]. They obtained homothetic vector fields and metric potentials in the following
form:

ξa = k1δ
a
4 + (

ψr

2
δa1) (12)

eµ = k22r
2 (13)

and

eν =
k23
ψ2

(14)

Line element of conformal spherically symmetric metric could be defined as

ds2 = k22r
2dt2 − k23

ψ2
dr2 − r2dθ2 + r2 sin2 θdΦ2 (15)

Under all consideration, it is possible to rewrite field equations of constructed model in f(R,φ) theory
in the following form: (

1

r2
+
λη2φ2

r2

)(
3ψ

k23
− 1

)
+

1

2

ψ2

k23
φφ̇

(
ωφ+ 12

λη2

r

)
= κpr (16)

2
ψ

rk23

(
ψ̇ +

ψ

2r

)
+2

ψψ̇

k23
λη2φ

(
φ

r
+ φ̇

)
+2

ψ2

k23
λη2φ̇

(
2
φ

r
+ φ̇

)
+
ψ2

k23
λη2φ

(
φ

r2
+ 2φ̈

)
−1

2

ψ2

k23
u0φφ̇

2 = κpt(17)

and

−2
ψ

rk23

(
ψ̇ +

ψ

2r

)
+

1

r2

(
1 + λη2φ2

)
−2

ψψ̇

k23
λη2φ

(
φ

r
+ φ̇

)
−2

ψ2

k23
λη2φ̇

(
2
φ

r
+ φ̇

)
−2

ψ2

k23
λη2φ

(
φ

2r2
+ φ̈

)
+

1

2

ψ2

k23
u0φφ̇

2 = κρ (18)

In order to simplify our solution, it is considered constants in f(R,φ) model as λ = −1 and η = 1.
Also, equation of state between radial pressure and density of fluid is given by

pr = ωρ (19)
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Fig. 1. Evolution of scalar field with r. Positive scalar field (red line) and positive scalar field (red
line) are represented for k4 = −0.01.

By using Eqs.(16)-(19), we obtained conformal factor as

ψ(r) =

√
2k23r(ω

2 − 1)
√
r2 + k4(6r

√
r2 + k4 − k4u0)

6(ω − 1)(16k4u0 − r
√
r2 + k4)

(20)

Scalar field of theory is obtained as:

φ(r) = ±
√
r2 + k4
r

(21)

Evolution of scalar field is represented with respect to radial coordinate in Fig. 1. The scalar field
is estranged from x-axis for bigger value of radial coordinate. Also, constructed model refers to both
complex scalar field and complex conformal factor depending on value of k4. In order to avoid that
condition, it is a way to define critical radius for constructed model. It could be given by r2cri > −k4.
Also, matter components such as density, radial pressure and tangential pressure are attained as

ρ(r) =
2k4

κr4(ω − 1)
(22)

pr(r) =
2ωk4

κr4(ω − 1)
(23)

and

pt(r) = − k4(ω + 1)

κr4(ω − 1)
(24)

Line element of conformal spherically symmetric space-time in the presence of anisotropic fluid in
f(R,φ) theory is rewritten as follows:

ds2 = k22r
2dt2 − (ω − 1)(6r

√
r2 + k4 − k4u0)

2r(ω + 1)
√
r2 + k4

dr2 − r2dθ2 + r2 sin2 θdΦ2 (25)

One can get a physically meaningful density in the case of ρ > 0. In Eq.(22), it depends on arbitrary
constant, k4, and ω. k4 must be negative when equation of state parameter is selected as ω < 1. On
the other hand, k4 can be selected as positive in the case of ω > 1 which isn’t expressive because this
condition refers to sound speed bigger than the speed of light. In order to get physically meaningful
matter distribution, one must select arbitrary constant as negative for constructed model. Also, it
is obviously seen that constructed model does not allow to value of ω = 1. In Eq.(24), tangential
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Fig. 2. Evolution of energy density with r for different selection of ω. (k4 = −0.1 and κ = 1)

pressure and radial pressure could be attractive or repulsive depending on value of ω. In the case of
−1 < ω < 1, tangential pressure has repulsive effect. Also, radial pressure has same effect for ω < 0
or ω > 1, as well. At the same time, tangential pressure given by Eq.(24) vanishes for selection of
ω = −1. Under this assumption, it could be said that cosmological constant case breaks structure
of anisotropy for constructed model in f(R,φ) theory. In Fig. 2, graphical representation of energy
density for different selection of ω is represented with respect to radial coordinate. Energy density
for all selections is decreasing for bigger value of radial coordinate. In Fig. 3 and Fig. 4, graphical
representations of radial and tangential pressures are represented with respect to radial coordinate.
Both figure shows that pressure components of fluid are approaching x-axis with bigger value of radial
coordinate. For ω = 1/3, radial pressure has attractive effect, while tangential pressure is repulsive
effect for constructed model. In addition to this, cases of ω = −1/3 and ω = −1/2, both pressure
components show repulsive behavior for constructed model.

Fig. 3. Evolution of radial pressure with r for different selection of ω. (k4 = −0.1 and κ = 1)
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Fig. 4. Evolution of tangential pressure with r for different selection of ω . (k4 = −0.1 and κ = 1)

Also, spherically symmetric anisotropic models give a opportunity to investigate behavior of radial
structures by way of anisotropy measurement indicated by 4. 4 is represented as 4 = κ(pt − pr).
Positive values of 4 are correlated with outward pressure, otherwise the opposite occurs on it. For
constructed model, anisotropy is

4 = κpt − pr = −k4(3ω + 1)

r4(ω − 1)
(26)

Considering that arbitrary constant, k4, is negative, as we studied earlier, constructed model in f(R,φ)
theory indicates outward pressure in the cases of ω > 1 which is physically meaningless and ω < −1/3
which corresponds to dark energy. At the same time, isotropic case (pt = pr = p) for fluid is possible
in the case of ω = −1/3. Under that condition, fluid behaves as string cloud. Also constructed model
could be practised for radial objects under some conditions. So, it is good to examine radial and
transverse sound velocities for constructed model.

υ2sr =
dpr
dρ

= ω (27)

and

υ2st =
dpt
dρ

= −1

2
(ω + 1) (28)

Both velocities must be satisfied for condition given by 0 < υ2sd,st ≤ 1. From Eqs.(27) and (28), both
velocities could not be satisfied because 0 < ω < 1 case allows valid radial sound, while −3 ≤ ω < −1
case is possible condition in order to get valid transverse sound. Even thought both condition can not
be satisfied for same region for ω, one can examine the stabile region in the case of −1 ≤ υ2st−υ2sr ≤ 0
offered by Abreu et al. [29] for constructed model. Stabile region for constructed model is described
as −1/3 ≤ ω ≤ 1/3.

3. Conclusion

In this study, we investigated conformal spherically symmetric space-time in the presence of anisotropic
fluid in f(R,φ) theory. Firstly, we get field equation for field equations of spherically symmetric space-
time with anisotropic fluid in f(R,φ) theory. After that, we considered conformal symmetry for spher-
ically symmetric metric offered by Herrera and Ponce de Leon [28] and field equations of anisotropic
conformal symmetric model are examined in f(R,φ) theory. Exact solution of field equation for con-
structed model are obtained to take notice of equation of state for f(R,φ) = (1 + λη2φ2)R model.
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We defined line element of conformal spherically symmetric metric with anisotropic fluid in f(R,φ)
theory. Also, it is shown that constructed model allow complex scalar field. In order to avoid complex
scalar field, critical radius is defined for constructed model. At the same time, effect of scalar field is
increasing with bigger value of radial coordinate in theory. All matter components are investigated
via arbitrary constants and equation of state parameter. Constructed model allows negative value of
arbitrary constant, k4. All possible cases for repulsive or attractive behaviors of radial and tangential
pressure are examined by favour of ω. Anisotropic conformal spherically symmetric model in f(R,φ)
theory for selected model has singularity for ω = 1. Also, cosmological constant case (ω = −1) breaks
structure of anisotropy for constructed model in f(R,φ) theory. For different selection of ω, behaviors
of matter components with respect to radial coordinate are investigated via graphical representations
of them. All quantities approaches to zero for bigger values of radial coordinate. Anisotropy param-
eter is investigated for conformal spherically symmetric model. The parameter shows that outward
pressure is possible when ω < −1/3. ω < −1/3 corresponds to dark energy. For constructed model,
f(R,φ) theory designates dark energy for outward pressure. Also, ω = −1/3 case which corresponds
to string gas is a only condition that anisotropic fluid behaves as isotropic fluid. Lastly, constructed
spherical model could be practised for radial objects under some conditions. For this reason, we
investigated causality condition and we defined stabile region for constructed model.
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1. Introduction

The equivalence between the homotopy category of connected CW-complexes X whose homotopy
groups πi(X) are trivial for i > 1 and the category of groups is well known. In [1] it is given that an
analogous equivalence for i > n+ 1 (where n is a constant natural number). Whitehead invented the
concept of a crossed module for n = 1. This notion replaces that of a group and gives a satisfactory
answer. Loday reformulates the concept of crossed module to produce an “n-cat-group”, which is a
generalization to any n.

The notion of a cat-1 group is merely another method to express the axioms of a strict two-group.
Nevertheless the type of characterization used for cat-1 groups, and, modified for cat-n groups is in
strictly group theoretic terms and so is frequently better to check than the more categorically defined
variant. As an example, getting a cat-1 group structure from a simplicial group, or a cat-n group
structure from an n-fold simplicial group is typically easy. The notion of a category can be formulated
internal to any other category with enough pullbacks. Since algebraic structures can be defined in
a category by giving suitable objects and morphisms, we can sometimes construct categories within
a category, C. In order to form a category (with objects O and morphisms A) inside C, we need to
define a composition m : At ×s A→ A which is associative and respects identities; note in particular
that m is also a morphism in C.

A cat-1 group is essentially another way of expressing an internal category in the category of
Groups, Grp, where the kernel commutator condition determines the interchange law. It is well-
known that these latter objects are equivalent to crossed modules, and so it’s not surprising to see an
equivalence between the category of cat-1 group and that of crossed modules in Loday’s study.

Alp and Wensley present a share package XMOD consisting functions for computing with finite,
permutation crossed modules, cat-1 groups and their morphisms, written using the GAP group theory
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programming language [2]. Also in [3,4], Porter generalized the category of categorical groups to that
of categories of groups with operations.

The main object of this paper is to formulate internal categories for the category of cat-1 group in
which the objects contain elements we can describe pullbacks in terms of. Also, it is observed that the
equivalence of between internal 1-Cat group and internal crossed modules. As we know the category
of cat-1 group is equivalent to that of crossed modules, we expect to be able to go between internal
category of cat-1 groups and that of crossed modules without hindrance, and we can prove that the
equivalence between the category of cat-1 group and that of crossed modules is also preserved for their
internal categories.

2. Preliminaries

Definition 2.1. Let C be a category with finite products. The internal category C in C consists of
the objects A,O with the morphisms s, t : A −→ O, e: O −→ A, m : A × A −→ A. The diagram of
the morphisms

A
t //
s

// O

e

gg

has the following equalities:
i.se = te = idO
ii.sm = sπ2, tm = tπ1
iii.m(1A ×m) = m(m× 1A)
iv.m(es, 1A) = m(1A, et) = 1A

where π1 and π2 are the projections. In the internal category s, t, e and m are denoted the source,
target, identity and composition morphism, respectively.

(A,O, s, t, e,m) is called the internal category of C in C, [5].

Definition 2.2. A cat-1 group consists of a group G with a normal subgroup N and the morphisms
s, t from G to N satisfied the following conditions:
• s|N = t|N = idN
• [Kers,Kert] = 1
A cat-1 group is denoted by (G,N, s, t), [1], [6].

Definition 2.3. Let (G,N, s, t) and (G′, N ′, s′, t′) be cat-1 groups. A cat-1 group morphism (G,N, s, t)→
(G′, N ′, s′, t′) is an α : G→ G′ group homomorphism satisfied the below equations:

Example 2.4. Let G be a group with a normal subgroup N = G. We get a cat-1 group (G,G, idG, idG)
for s = t = idG .

Example 2.5. Let G be an abelian group with a normal subgroup N = {1}. (G, {1}, s, t) is a cat-1
group with s(g) = t(g) = 1 for g ∈ G.

Definition 2.6. Let G and N be two groups, ∂ : N −→ G a group homomorphism and G acts on N
on the left. So (G,N, ∂) is a crossed module if and only if

(CM1) ∂(g · n) = g + ∂(n)− g
(CM2) ∂(n) · n1 = n+ n1 − n

for ∀n, n1 ∈ N and g ∈ G, [7].

Definition 2.7. Let (G1, N1, ∂1) and (G0, N0, ∂0) be crossed modules. The crossed module morphism

(α, β) : (G0, N0, ∂0)→ (G1, N1, ∂1)

is a pair of homomorphisms α : G0 → G1 and β : N0 → N1 such that
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• ∂1β(n) = α∂0(n), for all n ∈ N0,

• β(g0n0) =α(g0) β(n0), for all g0 ∈ G0, n0 ∈ N0, [8].

Definition 2.8. Let XMod be a category of crossed modules over groups and X be an internal
category. So X includes X1 = (A1, B1, ∂1) and X0 = (A0, B0, ∂0) with source s = (sA, sB), target
t = (tA, tB), identity e = (eA, eB) and composition m = (mA,mB) morphism defined by mA(a1, a

′
1) =

a1 ◦ a′1, mB(b1, b
′
1) = b1 ◦ b′1 with s1(a1) = t1(a

′
1) and s0(b1) = t0(b

′
1). Then we have the following

features:

i.sAeA = tAeA = idA0 , sBeB = tBeB = idB0

ii.sAmA = sAπ2, tAmA = tAπ1, sBmB = sBπ2, tBmB = tBπ1
iii.m(1X1 ×m) = m(m× 1X1)
iv.m(eAsA, 1X1) = m(1X1 , eAtA) = 1X1 ,m(eBsB, 1X1) = m(1X1 , eBtB) = 1X1

The condition iii can be expressed the following diagram:

X1 ×X1 ×X1

idX1
×m

//

m×idX1

��

X1 ×X1

m

��
X1 ×X1 m

// X1

X = (X1, X0, s, t, e,m) is called the internal category of crossed modules over groups, [9], [10], [11].

3. Internal of cat-1

Let C be an internal category in the category 1-Cat of cat-1 groups. Then C consists of two cat-1
groups X1 = (G1, N1, s, t), X0 = (G0, N0, s

′, t′) with s∗ = (s1, s0), t
∗ = (t1, t0), e

∗ = (e1, e0) illustrated
below diagram

G1

t1 //
s1

//

s

��

t

��

G0

s′

��

t′

��

e1

hh

N1

t0 //
s0

// N0

e0

hh

and m = (mG,mN ) : X1 ×X1 −→ X1 morphisms. (G1, G0, s1, t1,m1) and (N1, N0, s0, t0,m0) are the
internal of groups.

i.s1e1 = t1e1 = idG0 , s0e0 = t0e0 = idN0

ii.s1mG = s1π2, t1mG = t1π1, s0mN = s0π2, t0mN = t0π1
iii.m(1G1 ×m) = m(m× 1G1)
iv.m(e1s1, 1G1) = m(1G1 , e1t1) = 1G1 ,m(e0s0, 1N1) = m(1N1 , e0t0) = 1N1

where m = (mG,mN ) is the composition map for the internal of the category Grp of groups and
mG(g1, g

′
1) = g1 ◦ g′1, mN (n1, n

′
1) = n1 ◦ n′1 with s1(g1) = t1(g

′
1) and s0(n1) = t0(n

′
1). The category of

internal categories within the category of cat-1 groups is denoted by C(Int(cat-1)).

Proposition 3.1. Let (G1, N1, s, t) be a cat-1 group. Then (G1 ×G1, N1 ×N1, (s, s), (t, t)) is a cat-1
group and (X1, X0, s

∗, t∗, e∗,m∗) becomes an internal category in 1-Cat where X1 = (G1 × G1, N1 ×
N1, (s, s), (t, t)), X0 = (G1, N1, s, t), s

∗ = (sG, sN ), t∗ = (tG, tN ), e∗ = (eG, eN ),m = (mG,mN ).
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Proof. We show that (G1 ×G1, N1 ×N1, (s, s), (t, t)) is a cat-1 group.

Ker(s, s) = {(g, g′) ∈ G1 ×G1|(s, s)(g, g′) = 1N1×N1}
= {(g, g′) ∈ G1 ×G1|(sg, sg′) = (1, 1)}
= Kers×Kers

As the same way, Ker(t, t) = Kert×Kert.
Since for (n1, n

′
1) ∈ N1 ×N1, (g1, g2) ∈ Kers, (g3, g4) ∈ Kert the equations

(s, s)|N1×N1(n1, n
′
1) = (s(n1), s(n

′
1)) = (n1, n

′
1) = IdN1×N1(n1, n

′
1),

(t, t)|N1×N1(n1, n
′
1) = (t(n1), t(n

′
1)) = (n1, n

′
1) = IdN1×N1(n1, n

′
1)

and

(g1, g2)(g3, g4)(g
−1
1 , g−12 )(g−13 , g−14 ) = (g1g3g

−1
1 g−13 , g2g4g

−1
2 g−14 )

= (1, 1)

are valid, the cat-1 group conditions are satisfied.
Also, we get

sN (s, s)(g1, g
′
1) = sN (sg1, sg

′
1) = s(g1)s(g

′
1) = s(g1g

′
1) = ssG(g1, g

′
1)

tN (s, s) = stG, ttG = tN (t, t) and stG = tN (s, s) for the commutativity of below diagram. Thus, s∗

and t∗ are cat-1 group morphisms.

(G1 ×G1)× (G1 ×G1)
mG //

t̃

��

s̃

��

G1 ×G1

tG //

(s,s)

��

(t,t)

��

sG
// G1

eG

jj

s

��

t

��
(N1 ×N1)× (N1 ×N1)

mN // N1 ×N1

tN //
sN

// N1

eN

jj

(mG,mN ) is a morphism of cat-1 groups because of the diagram’s commutativity.

4. Natural Equivalence

Theorem 4.1. The category of internal categories within the category of cat-1 groups is natural
equivalent to the category of internal categories within the category of crossed modules over groups.

Proof. Let F be a functor
C(Int(cat−1))

F−→ C(Int(XMod))

G1

t

��

s

��

s1 //
t1

// G0

t′

��

s′

��

e1

gg Kers

t|Kers

��

t1|Kers

//
s1|Kers //

Kers′

e1|Kers′

ii

t′|Kers′

��

� F //

N1

s0 //
t0

// N0

e0

gg Ims
t0|Ims //

s0|Ims

// Ims′

e0|Ims′

ii
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where s1|Kers, t1|Kers, s0|Ims and t0|Ims are well-defined morphisms with the following relations:

s′t1|Kers(x) = t0s(x) = t0(1) = 1

and
s′s1|Kers(x) = s′0s(x) = s′0(1) = 1

for x ∈ Kers,

s0|Ims(n) ∈ Ims′

and
t0|Ims(n) ∈ Ims′

with n = s(g), s0s(g) = s′s1(g) and t0|Ims(n) = t0|Imss(g) = s′t1(g) for g ∈ G and n ∈ Ims.
Since t′t1(g) = t0t(g) and s′s1(g) = s0s(g) for g ∈ G1, we get

t′|Kers′t1|Kers(x) = t0|Imst|Kers(x)

for x ∈ Kers. t|Kers : Kers → Ims is a crossed module with the conjugation action of Ims on
Kers, [1]. The composition m1 : Kers×Kers→ Kers

m1(x, y) = mG|Kers(x, y) = mN (s, s)(x, y)

is well-defined group homomorphism for x, y ∈ Kers, since

sm1(x, y) = smG|Kers(x, y) = mN (s, s)(x, y) = mN (sx, sy) = mN (1, 1) = 1.

It is clear that m0 : Ims× Ims→ Ims

m0(a, b) = mN (a, b)

is also well-defined for a, b ∈ Ims.

Kers×Kers

(t|Kers,t|Kers)

��

m1 // Kers

t|Kers

��
Ims× Ims m0 // Ims

The above diagram is commutative:

t|Kersm1(x, y) = t|Kers(mG|Kers(x, y)) = t|KersmN (s(x), s(y))

m0(t|Kers, t|Kers)(x, y) = m0(t|Kers(x), t|Kers(y)) = mN (t|Kers(x), t|Kers(y)) = t|KersmG(x, y)

for x, y ∈ Kers. Also,

m0(a,b)m1(x, y) = mN (a, b)m1(x, y)mN (a, b)−1

= mG(a, b)mG(x, y)mG(a, b)−1

= mG((a, b)(x, y)(a, b)−1)

= mG(axa−1, byb−1)

= mG(ax,b y)

= m1(
(a,b)(x, y))

for a, b ∈ Ims. Thus (m0,m1) is a crossed module morphism.
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Let G be a functor as the following

C(Int(XMod))
G−→ C(Int(cat−1))

A1

∂1

��

sA //
tA

// A0

∂0

��

eA

gg A1 oB1

s+1

��

t+1

��

s1 //
t1

//
A0 oB0

e1

jj

s+0

��

t+0

��

� G //

B1

sB //
tB

// B0

eB

gg B1

sB //
tB

// B0

eB

ii

where

s+1 (a1, b1) = b1

s+0 (a0, b0) = b0

and

t+1 (a1, b1) = ∂1(a1)b1

t+0 (a0, b0) = ∂0(a0)b0

for (a1, b1) ∈ A1oB1,(a0, b0) ∈ A0oB0. It is clear that the first axiom of the definition of cat-1 group
is satisfied.

Kers+1 = {(a1, b1) ∈ A1 ×B1|s+1 (a1, b1) = b1 = 1B1} = A1 × 1B1

Kert+1 = {(a1, b1) ∈ A1 ×B1|t+1 (a1, b1) = ∂1(a1)b1 = 1B1}
= {(a−11 , ∂1(a1))|a1 ∈ A1}

Since ∂1 is a crossed module, we have a1a
′
1
−1 = a′1

−1(
∂1(a′1)a1).

Thus [Kers+1 ,Kert
+
1 ] = 1 because of

(a1, 1)(a′1
−1
, ∂1(a

′
1))(((a

′
1
−1, ∂1(a

′
1))(a1, 1))−1 = (a1a

′
1
−1, ∂1(a

′
1))(a

′
1
−1(

∂1(a′1)a1), ∂1(a
′
1))
−1 = 1,

[1]. So, (A1 oB1, B1, s
∗, t∗) is a cat-1 group.

The composition mA : (A1 oB1)× (A1 oB1)→ A1 oB1 given by

mA(((a1, b1), (a
′
1, b
′
1)) = (m1((a1, a

′
1)),m0((b1, b

′
1)))

is a group homomorphism with

mA(((a1, b1), (a
′
1, b
′
1))((a1, b1), (a

′
1, b
′
1))) = mA((a1, b1) ∗ (a1, b1), (a

′
1, b
′
1) ∗ (a′1, b

′
1))

= mA((ab11 a1, b1b1), (a
′b′1
1 a′1, b

′
1b
′
1))

= (m1(a
b1
1 a1, a

′b′1
1 a′1),m0(b1b1, b

′
1b
′
1))

= (m1((a1, a
′
1)

(b1,b′1)(a1, a′1)),m0((b1, b
′
1)(b1, b

′
1)))

= (m1(a1, a
′
1)m1(

(b1,b′1)(a1, a′1)),m0(b1, b
′
1)m0(b1, b′1)))

= (m1(a1, a
′
1)
m0(b1,b′1)m1(a1, a′1),m0(b1, b

′
1)m0(b1, b′1))

= (m1(a1, a
′
1),m0(b1, b

′
1)) ∗ (m1(a1, a′1),m0(b1, b′1))

= mA((a1, b1), (a
′
1, b
′
1)) ∗mA((a1, b1), (a′1, b

′
1)).



Journal of New Theory 38 (2022) 79-87 / Internal Cat-1 and XMod 85

Also, since (X1, X0, s, t, e, (m1,m2)) in C(Int(XMod)) whereX1 = (A1, B1, ∂1), X0 = (A0, B0, ∂0), s =
(sA, sB), t = (tA, tB), e = (eA, eB), we get group morphism

m2 = mB : B1 ×B1 → B1.

(A1 oB1)× (A1 oB1)
mA //

(s+1 ,s
+
1 )

��

(t+1 ,t
+
1 )

��

A1 oB1

t+1

��

s+1

��
B1 ×B1 mB

// B1

In this diagram,

s+1 mA = mB(s+1 , s
+
1 )

t+1 mA = mB(t+1 , t
+
1 )

are hold. So, (mA,mB) is a cat-1 group morphism.
For any object (X1, X0, s

∗, t∗, e∗,m) in C(Int(cat−1)) withX1 = (G1, N1, s, t), X0 = (G0, N0, s
′, t′), s∗ =

(s1, s0), t
∗ = (t1, t0), e

∗ = (e1, e0) and m = (mG,mN ), we get the following diagrams

G1

t

��

s

��

s1 //
t1

// G0

t′

��

s′

��

e1

gg Kers

t|Kers

��

t1|Kers

//
s1|Kers //

Kers′

e1|Kers

ii

t′|Kers′

��

� F //

N1

s0 //
t0

// N0

e0

gg Ims
t0|Ims //

s0|Ims

// Ims′

e0|Ims

ii

and

Kers

t|Kers

��

t1|Kers

//s1|Kers // Kers′

t′|Kers′

��

e1|Kers

ii Kerso Ims

s1+

��

t+1

��

sA
//

tA //
Kers′ o Ims′

eA

kk

s+0

��

t+0

��

� G //

Ims
t0|Ims //

s0|Ims

// Ims′

e0|Ims

ii Ims
sB //
tB

// Ims′.

eB

jj

Thus, we have GF (X1, X0, s
∗, t∗, e∗,m) as an object in C(Int(cat−1)).

Kerso Ims

s+1

��

t+1

��

sA
//

tA //
Kers′ o Ims′

eA

kk

s+0

��

t+0

��
Ims

tB //
sB

// Ims′

eB

jj

Also, we have G1
∼= Kers o Ims,N1

∼= Ims,G0
∼= Kers′ o Ims′ and N0

∼= Ims′ and the natural
transformation

ζ : 1C(Int(cat−1)) ⇒ GF
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Conversely, for any object (X1, X0, s, t, e,m) in C(Int(XMod)) where X1 = (A1, B1, ∂1), X0 =
(A0, B0, ∂0), we get the following diagrams

A1

∂1

��

sA //
tA

// A0

∂0

��

eA

gg A1 oB1

s+1

��

t+1

��

s1 //t1
//
A0 oB0

e1

jj

s+0

��

t+0

��

� G //

B1

sB //
tB

// B0

eB

gg B1

s0 //
t0

// B0

e0

ii

and

A1 oB1

t+1

��

s+1

��

s1 //
t1

// A0 oB0

t+0

��

s+0

��

e1

jj Kers+1

t+1 |Kers+1

��

t1|Kers+1

//

s1|Kers+1 //
Kers+0

e1|Kers+0

jj

t+0 |Kers+0

��

� F //

B1

s0 //
t0

// B0

e0

ii Ims+1

t0|Ims+1 //

s0|Ims+1

// Ims+0

e0|Ims+0

jj

Therefore, we get F (G(X1, X0, s, t, e))

Kers+1

t+1 |Kers+1

��

s1|Kers+1 //
t1|Kers+1

//
Kers+0

e1|Kers+0

jj

t+0 |Kers+0

��
Ims+1

s0|Ims+1 //

t0|Ims+1

// Ims+0

e0|Ims+0

jj

as an object in C(Int(XMod)). We can easily find

Kers+1
∼= A1,Kers

+
0
∼= A0

Ims+1
∼= B1, Ims

+
0
∼= B0.

So, there is a

ξ : 1C(Int(XMod)) ⇒ FG

natural transformation.
Finally, there is a natural equivalence between the category of internal categories in cat-1 and the

category of internal categories in XMod.

5. Conclusion

It is possible that each category containing pullbacks can generate other categories inside that category.
By this idea, we construct internal categories in the category of cat-1 groups. Since the category of
crossed modules is equivalent to that of cat-1 groups, we conclude that this equivalence is also between
their internal categories valid. This idea can be extended to other equivalent categories.
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Abstract − In this paper, the geometry of curves is discussed based on the Caputo fractional derivative 

in the Lorentz plane. Firstly, the tangent vector of a spacelike plane curve is defined in terms of the 

fractional derivative. Then, by considering a spacelike curve in the Lorentz plane, the arc length and 
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1. Introduction 

The fractional derivative was first established in the 17th century and with an adding number of studies, it has 

come the focus of attention for many researchers in numerous fields. Fractional analysis has lately become one 

of the important fields of study in differential geometry. While, in the classical sense, the differential and 

integral are determined by integer order, in fractional calculus the orders of the differential and integral are not 

necessarily integers but any real number. That is, fractional calculus is the generalization of ordinary 

differential and integral to arbitrary order. The difference between the fractional derivative from the integer 

derivative is that it is given by the integration of a function.  

Many studies have been conducted on this subject, and it can be found in detail [1-4]. We can also say 

that a non-local fractional derivative of a function is related to history or a space-range interaction. 

Furthermore, fractional calculus has many applications to viscoelastic [5-11], analytical mechanics [12-14], 

and dynamical systems [15-19]. Fractional analysis has also started to be studied from a differential geometry 

perspective in recent studies. There are many types of fractional operators, but it is recommended to study the 

geometry of curves and surfaces mostly based on the Caputo fractional derivative [20]. However, the Caputo 

fractional derivative is not yet directly used to formulate the differential geometry of curves. Using the Caputo 

fractional derivative is more appropriate than other fractional derivative operators for formulating a geometric 

theory since the fractional derivative of the constant function is zero [21-25]. Based on the advantages of the 

Caputo fractional derivative, it is discussed in [22,24] as a quantification of Lagrangian mechanics and in the 

theory of gravity [21,23,26].  
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In [27], the fractional geometry of curves in Euclidean 3-space is studied using the Caputo fractional 

derivative. Using the Caputo fractional derivative, the fractional geometry of curves in higher-dimensional 

Euclidean space is studied [28]. 

In this study, firstly, by considering a spacelike curve in the Lorentz plane, fractional ordered frame and 

Frenet-Serret formulas of this curve are obtained. Later, the relation between the fractional curvature and 

classical curvature of a spacelike plane curve is obtained. In the last part of this paper, considering the timelike 

plane curve in the Lorentz plane, new results are obtained with the method in the previous section. 

2. Preliminaries 

In general, the concepts of the Leibnitz rule and derivative of the composite function are needed when studying 

fractional differential geometry. However, within the scope of fractional analysis, these concepts are obtained 

with infinite series and are used in impact situations at the initial moment and after a long period [3,4].   

Leibnitz’s rule and derivative of the composite function can be given as follows for two functions f(x) and 

g(x) [29]: 

(𝐷𝑥
𝛼𝑓𝑔)(𝑥) = ∑ (

𝛼

𝑖
)

𝑑𝑖𝑓

𝑑𝑥𝑖
(𝐷𝑥

𝛼−𝑖𝑔)(𝑥)

∞

𝑖=0

−
𝑓(0)𝑔(0)

Γ(1 − 𝛼)
𝑥−𝛼 

and 

(𝐷𝑥
𝛼𝑓)(𝑔(𝑥)) = ∑ (

𝛼

𝑖
)

𝑥𝑖−𝛼

Γ(𝑖 − 𝛼 + 1)

𝑑𝑖𝑓(𝑔(𝑥))

𝑑𝑥𝑖

∞

𝑖=1

+
𝑓(𝑔(𝑥)) − 𝑓(𝑔(0))

Γ(1 − 𝛼)
𝑥−𝛼 (1) 

This different form of the integer derivative presents a challenge for deriving geometric concepts such as 

the curvature of a curve and the unit tangent vector. So, a certain simplification of the infinite series is used to 

construct the geometric theory of the derivative. With this simplification, most fundamental terms are removed 

from the infinite series, which retain the properties of the fractional derivative. Hence, with 𝑡 = 𝑔(𝑥), the 

following equality is achieved [30]: 

 (𝐷𝑥
𝛼𝑓)(𝑔(𝑥)) =

𝛼𝑥1−𝛼

Γ(2 − 𝛼)

𝑑𝑓

𝑑𝑡

𝑑𝑔

𝑑𝑥
(2) 

This simplification formula is obtained by taking only the 𝑖 = 1 term of the infinite series in equation (1). 

This formula gives a partial effect of the fractional derivative and is expressed by the ordinary derivative. After 

this simplification, the construction of the fractional geometric theory based on the direct Caputo derivative 

can be expected using the simplified Leibnitz rule and the derivative of the composite function. In other words, 

using the Caputo derivative researchers have an advantage when studying the differential geometry of curves 

and surfaces, especially since it is ineffective on a constant function. Throughout the study, the derivative 

formula given by (2) is discussed. 

Now, we will talk about some basic concepts in the Lorentz plane that we will use in the following 

sections. More detailed information on the following topics can be found in [31].  

The Lorentz plane 𝐿2 is the Euclidean plane 𝑅2 with metric given by 𝑔 =  −𝑑𝑥1
2  +  𝑑𝑥2

2 where (𝑥1, 𝑥2) 

is a rectangular coordinate system of 𝐿2. It is known that a vector 𝑣 ∈   𝐿2 \{0} can be spacelike if 𝑔(𝑣, 𝑣)  >

 0, timelike if 𝑔(𝑣, 𝑣)  <  0 and null (lightlike) if 𝑔(𝑣, 𝑣)  =  0. The null (lightlike) curves in 𝐿2 are lines, 

which curvature is identically zero.  

Therefore, in this study, we will only deal with spacelike and timelike plane curves. The norm of any 

vector 𝑣 in them is given by ‖𝑣‖ = √𝑔(𝑣, 𝑣)|. Two vectors 𝑣 and 𝑤 are said to be orthogonal if 𝑔(𝑣, 𝑤) = 0. 

An arbitrary curve 𝛾(𝑠) in 𝐿2 , can locally be spacelike or timelike if all of its velocity vectors �̇�(𝑠) are 
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spacelike, respectively timelike. A spacelike or timelike curve 𝛾 is parameterized by the arc-length parameter 

𝑠 if 𝑔(�̇�(𝑠) , �̇�(𝑠)) =  ±1.   

The curvature 𝜅 and the Frenet formulas of the spacelike curve 𝛾 can be given as follows: 

𝜅 = −𝑔 ( �̇� , 𝑛) 

and  

�̇�  =  𝜅𝑛 

�̇�  =  𝜅𝑡 

where �̇� = 𝑡,  𝑡 and 𝑛 are the tangent, and unit normal vector of a spacelike curve 𝛾, respectively. If 𝛾 is a 

spacelike curve in Lorentz plane, then 𝑔(𝑡, 𝑡) = 1 and 𝑔(𝑛, 𝑛) = −1. Moreover, the curvature 𝑘 and the Frenet 

formulas of the timelike curve β can be given as follows: 

𝑘 = 𝑔 (𝑣1̇ , 𝑣2) 

and  

𝑣1̇  =  𝜅𝑣2 

𝑣2̇  =  𝜅𝑣1 

where �̇� = 𝑣1,  𝑣1 and 𝑣2 are the tangent, and unit normal vector of a spacelike curve β, respectively. If 𝛽 is a 

timelike curve in Lorentz plane, then 𝑔(𝑣1, 𝑣1) = −1 and 𝑔(𝑣2, 𝑣2) = 1. 

3. Geometry of Spacelike Curves with Fractional Derivative 

In this section, the geometry of spacelike curves is discussed based on the Caputo fractional derivative in the 

Lorentz plane.  

Let us consider a smooth spacelike curve 𝛾 in the 2-dimensional 𝐿2 space is given by  

𝛾: 𝐼 ⊂ ℝ → 𝐿2, 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) 

where 𝑡 is an arbitrary parameter. From the definition of the length 𝜎 of a spacelike curve 𝛾, we can write 

𝜎 = ∫ √|−�̇�2 + �̇�2|
𝑡

0

𝑑𝑡, 𝑡 ∈ 𝐼 (3) 

where �̇� and �̇� denote the ordinary derivatives of 𝑥 and 𝑦 concerning t, respectively. The above formula is 

arclength of the spacelike curve for the tangent vector: 𝑡(𝜎) = (
𝑑𝑥

𝑑𝜎
,

𝑑𝑦

𝑑𝜎
). 

Let us now investigate the effect of the fractional derivative on the curvature of a spacelike curve. Since 

curvature is generally related to the change of the tangent vector of a spacelike curve, take a fractional tangent 

vector:  

𝑡(𝛼)(𝜎) = (
𝑑𝛼𝑥(𝜎)

𝑑𝜎𝛼
,
𝑑𝛼𝑦(𝜎)

𝑑𝜎𝛼 ) (4) 

Considering the infinite series given in (1), from the fractional derivative of the composite function, we 

can write ‖𝑡(𝛼)(𝜎)‖ ≠ 1. This means that the classical arclength given by (3) cannot be used in the geometry 

of curves with fractional derivatives. To define a fractional unit tangent vector, it is necessary to consider the 

fractional derivative of the composite function in a simpler form. Therefore, instead of the formula (1), only 

the first term of the summation is considered in the fractional derivative of the composite function. Thus, both 

the effect of fractional derivative and first-order derivative are obtained. In this case, we can write 
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𝑑𝛼𝛾(𝑡(𝑠))

𝑑𝑠𝛼
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝛾

𝑑𝑡

𝑑𝑡

𝑑𝑠
 (5) 

Throughout this study, the theory of curves in the Lorentz plane are examined by considering this simple 

version of the derivative of the composite function. Using equation (5), we can give the following 

transformation: 

𝑠 = [
𝛼2

Γ(2 − 𝛼)
𝜎]

1
𝛼

(6) 

where 𝛼 denotes the order of the fractional derivative and 0 < 𝛼 ≤ 1.  For the parameter 𝑠 given by (6), we 

write 

𝑑𝑠

𝑑𝑡
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)
√|−�̇�2 + �̇�2| (7) 

Since 𝑠 > 0  and 0 < 𝛼 ≤ 1 in (7),  
𝑑𝑠

𝑑𝑡
 is positive. So that parameter 𝑡 becomes a function dependent on 𝑠: 𝑡 =

𝑡(𝑠). In this case, the spacelike curve 𝛾 can be written depending on the parameter 𝑠 and is denoted by 𝛾(𝑠) =

(𝑥(𝑠), 𝑦(𝑠)).  

Now let us define the tangent vector of a given spacelike curve using the parameter 𝑠 and the Caputo 

fractional derivative:   

𝑡(𝛼)(𝑠) ≡
𝑑𝛼𝛾(𝑠)

𝑑𝑠𝛼
= (

𝑑𝛼𝑥(𝑠)

𝑑𝑠𝛼
,
𝑑𝛼𝑦(𝑠)

𝑑𝑠𝛼 ) (8) 

Considering Equation (5), the norm of the tangent vector of the spacelike curve is 

‖𝑡(𝛼)(𝑠)‖ = √|− (
𝑑𝛼𝑥

𝑑𝑠𝛼
)

2

+ (
𝑑𝛼𝑦

𝑑𝑠𝛼
)

2

| =
𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝑡

𝑑𝑠
√|−�̇�2 + �̇�2| = 1 (9) 

Then, using (5), a unit vector of the spacelike curve 𝛾 orthogonal to t can be defined as follows: 

𝑛(𝛼)(𝑠) ≡ (
𝑑𝛼𝑦

𝑑𝑠𝛼
,
𝑑𝛼𝑥

𝑑𝑠𝛼 ) (10) 

So, we can give the following theorem. 

Theorem 3.1. Let 𝛾 be a spacelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (6). Then 𝑡(𝛼)(𝑠) and 𝑛(𝛼)(𝑠) given by (8) and (10) are the unit tangent vector and unit 

normal vector of the spacelike curve 𝛾, respectively, and 𝑠 is the arclength. 

In the following, we is constructed the geometry of a spacelike curve with the fractional 

(𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) Frenet-Serret frame using the Caputo derivative. 

Let us take a smooth spacelike curve 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) given by the arclength parameter (6) in the 

Lorentz plane.  Based on the fractional frenet frame, let us define the frenet-serret formulas and the curvature 

of the spacelike curve 𝛾. From Theorem 3.1, the tangent vector 𝑡(𝛼)(𝑠) of the spacelike curve provides 

𝑔(𝑡(𝛼)(𝑠), 𝑡(𝛼)(𝑠)) = 1. If we take the derivative of both sides of this equation concerning 𝑠, we get  

𝑔 (𝑡(𝛼)(𝑠),
𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
) = 0 (11) 

which means that  
𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
  can be expressed with the normal vector 𝑛(𝛼)(𝑠): 
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𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠) (12) 

where 𝜅(𝛼)(𝑠) is the fractional curvature of the spacelike curve 𝛾. Then the norm of the normal vector 𝑛(𝛼)(𝑠) 

is also equal to one, ‖𝑛(𝛼)(𝑠) ‖ = 1. Then we write 𝑔(𝑛(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) = −1. If we take the derivative of 

both sides of this last equation concerning 𝑠, we have 

𝑔 (𝑛(𝛼)(𝑠),
𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
) = 0 (13) 

From (13), 
𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
 can be given using a certain arclength function  𝜆(𝛼): 

𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
=  𝜆(𝛼)(𝑠)𝑡(𝛼)(𝑠) (14) 

Considering the orthogonality relation 𝑔(𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) = 0, taking the derivative of both sides of this 

relation concerning 𝑠, we get the following expression: 

𝑡(𝛼)(𝑠)
𝑑𝑛(𝛼)

𝑑𝑠
+

𝑑𝑡(𝛼)

𝑑𝑠
𝑛(𝛼)(𝑠) = 0 (15) 

If the equations (12) and (14) are substituted in the expression (15), we get  𝜆(𝛼) = 𝜅(𝛼). Thus, the following 

theorem is obtained. 

Theorem 3.2. Let 𝛾 be a spacelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (6). Let us consider (𝑡(𝛼)(𝑠), 𝑛(𝛼)(𝑠)) as the fractional frame of this spacelike curve 𝛾. 

Then the Frenet-Serret formulas for 𝛾 can be given as  

𝑑𝑡(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠) (16) 

𝑑𝑛(𝛼)(𝑠)

𝑑𝑠
= 𝜅(𝛼)(𝑠)𝑡(𝛼)(𝑠) (17) 

Let us now investigate the relationship between the fractional curvature and classical curvature of a given 

spacelike curve 𝛾. Considering (8) and (16), we can write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛾(𝑠)

𝑑𝑠 𝛼
) = 𝜅(𝛼)(𝑠)𝑛(𝛼)(𝑠)  (18) 

If the normal vector 𝑛(𝛼) is applied to both sides of (18), we can write the fractional curvature as  

𝜅(𝛼)(𝑠) = −𝑔 (𝑛(𝛼)(𝑠),
𝑑

𝑑𝑠
(

𝑑 𝛼𝛾(𝑠)

𝑑𝑠 𝛼
)) (19) 

Considering the normal vector 𝑛(𝛼)(𝑠) in (19),  𝜅(𝛼)(𝑠) according to the fractional derivative is written 

as  

𝜅(𝛼)(𝑠) =
𝑑 𝛼𝑦

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝑥

𝑑𝑠 𝛼
) −

𝑑 𝛼𝑥

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝑦

𝑑𝑠 𝛼
) (20) 

If a curve is given by an arbitrary parameter 𝑡 and not by the arc length 𝑠, then we must calculate the 

fractional curvature according to an arbitrary parameter 𝑡. Then let us calculate the fractional curvature 

according to an arbitrary parameter 𝑡. From the expression (5) for the composite function 𝑡 = 𝑡(𝑠), we can 

write  
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𝑑

𝑑𝑠
(

𝑑 𝛼𝑥

𝑑𝑠 𝛼
) =

𝛼𝑠−𝛼�̇�

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠1−𝛼�̈�

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(21) 

𝑑

𝑑𝑠
(

𝑑 𝛼𝑦

𝑑𝑠 𝛼
) =

𝛼𝑠−𝛼�̇�

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠1−𝛼�̈�

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(22) 

where �̈� =
𝑑2𝑥

𝑑𝑡2  and  �̈� =
𝑑2𝑦

𝑑𝑡2 . If the expressions (21) and (22) are written instead in (20), the fractional-order 

curvature is  

𝜅(𝛼)(𝑡) = {
𝛼𝑠1−𝛼

Γ(2 − 𝛼)
}

2

(−�̇��̈� + �̈��̇�) (
𝑑𝑡

𝑑𝑠
)

3

 (23) 

Moreover, from (7), (23) it can be rewritten by 

𝜅(𝛼)(𝑡) =
Γ(2 − 𝛼)

𝛼𝑠1−𝛼
𝜅(𝑡) (24) 

𝜅(𝑡) in this last equation is the classical curvature and  

𝜅(𝑡) =
−�̇��̈� + �̈��̇�

(�̇�2 + �̇�2)
3
2

(25) 

Thus, using the arclength definition given by (6), we can give the following theorem. 

Theorem 3.3. The fractional curvature of a spacelike plane curve given as  𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is  

𝜅(𝛼)(𝑡) = {
𝛽(2 − 𝛼)

𝛼
}

1
𝛼

[𝛼 ∫ √|−�̇�2 + �̇�2|𝑑𝑡
𝑡

0

]

1−
1
𝛼

𝜅(𝑡) (26) 

where 𝑡 is an arbitrary parameter.  

The part of 
1

𝑠1−𝛼 in (24) characterizes the effects of the fractional derivative given by the fractional tangent 

vector (8). The effect of the fractional derivative is strong at the start but becomes less effective over a longer 

period. This property of the effect influences the change of fractional curvature. 

4. Geometry of Timelike Curves with Fractional Derivative 

In this section, the geometry of timelike curves is discussed based on the Caputo fractional derivative in the 

Lorentz plane.  

Let us consider a smooth timelike curve 𝛽 in the 2-dimensional 𝐿2 space is given by  

𝛽: 𝐼 ⊂ ℝ → 𝐿2, 𝛽(𝑡) = (𝛽1(𝑡), 𝛽2(𝑡)) 

where 𝑡 is an arbitrary parameter. From the definition of the length 𝜎 of a timelike curve 𝛽, we can write 

𝜎 = ∫ √|−(𝛽1)̇ 2 + (𝛽2)̇ 2|
𝑡

0

𝑑𝑡, 𝑡 ∈ 𝐼 (27) 

where 𝛽1̇ and 𝛽2̇ denote the ordinary derivatives of 𝛽1 and 𝛽2 concerning t, respectively. The above formula is 

arclength of the timelike curve for the tangent vector: 𝑣1(𝜎) = (
𝑑𝑥

𝑑𝜎
,

𝑑𝑦

𝑑𝜎
). 

Let us now investigate the effect of the fractional derivative on the curvature of a timelike curve. Since 

curvature is generally related to the change of the tangent vector of a timelike curve, let's define a fractional 

tangent vector:  
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𝑣1
(𝛼)(𝜎) = (

𝑑𝛼𝛽1(𝜎)

𝑑𝜎𝛼
,
𝑑𝛼𝛽2(𝜎)

𝑑𝜎𝛼 ) (28) 

Considering the infinite series given in (1), from the fractional derivative of the composite function, we can 

write ‖𝑣1
(𝛼)(𝜎)‖ ≠ 1. This means that the classical arclength given by (27) cannot be used in the geometry of 

curves with fractional derivatives. To define a fractional unit tangent vector, it is necessary to consider the 

fractional derivative of the composite function in a simpler form. Therefore, instead of the formula (1), only 

the first term of the summation is considered in the fractional derivative of the composite function. Thus, both 

the effect of fractional derivative and first-order derivative are obtained. In this case, we can write 

𝑑𝛼𝛽(𝑡(𝑠))

𝑑𝑠𝛼
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝛽

𝑑𝑡

𝑑𝑡

𝑑𝑠
 (29) 

Throughout this study, the theory of timelike curves in the Lorentz plane are examined by considering 

this simple version of the derivative of the composite function. Using equation (29), we can give the following 

transformation: 

𝑠 = [
𝛼2

Γ(2 − 𝛼)
𝜎]

1
𝛼

(30) 

where 𝛼 denotes the order of the fractional derivative and 0 < 𝛼 ≤ 1.  For the parameter 𝑠 given by (30), we 

write 

𝑑𝑠

𝑑𝑡
=

𝛼𝑠1−𝛼

Γ(2 − 𝛼)
√|−(𝛽1)̇ 2 + (𝛽2)̇ 2| (31) 

Since 𝑠 > 0  and 0 < 𝛼 ≤ 1 in (31),  
𝑑𝑠

𝑑𝑡
 is positive. So that parameter 𝑡 becomes a function dependent 

on 𝑠: 𝑡 = 𝑡(𝑠). In this case, the timelike curve 𝛽 can be written depending on the parameter 𝑠 and is denoted 

by 𝛽(𝑠) = (𝛽1(𝑠), 𝛽2(𝑠)). 

Now let us define the tangent vector of a given timelike curve using the parameter s and the Caputo 

fractional derivative:  

𝑣1
(𝛼)(𝑠) ≡

𝑑𝛼𝛽(𝑠)

𝑑𝑠𝛼
= (

𝑑𝛼𝛽1(𝑠)

𝑑𝜎𝛼
,
𝑑𝛼𝛽2(𝑠)

𝑑𝜎𝛼 ) (32) 

Considering Equation (29), the norm of the tangent vector of the timelike curve is 

‖𝑣1
(𝛼)(𝑠)‖ = √|− (

𝑑𝛼𝛽1

𝑑𝑠𝛼
)

2

+ (
𝑑𝛼𝛽2

𝑑𝑠𝛼
)

2

| =
𝛼𝑠1−𝛼

Γ(2 − 𝛼)

𝑑𝑡

𝑑𝑠
√|−(𝛽1)̇ 2 + (𝛽2)̇ 2| = 1 (33) 

Then using (29), a unit vector of the timelike curve 𝛽 orthogonal to 𝒗𝟏 can be defined as follows: 

𝑣2
(𝛼)(𝑠) ≡ (

𝑑𝛼𝛽2

𝑑𝑠𝛼
,
𝑑𝛼𝛽1

𝑑𝑠𝛼 ) (34) 

So, we can give the following theorem. 

Theorem 4.1. Let 𝛽 be a timelike curve in the Lorentz plane that satisfies the condition (29) and has the 

parameter s given by (30). Then 𝑣1
(𝛼)(𝑠) and 𝑣2

(𝛼)(𝑠) given by (32) and (34) are the unit tangent vector and 

unit normal vector of the timelike curve 𝛽, respectively, and 𝑠 is the arclength. 

In the following, we is constructed the geometry of a timelike curve with the fractional 

(𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) Frenet-Serret frame using the Caputo derivative. 
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Let us take a smooth timelike curve 𝛽(𝑠) = (𝛽1(𝑠), 𝛽2(𝑠)) given by the arclength parameter (30) in the 

Lorentz plane.  Based on the fractional frenet frame, let us define the frenet-serret formulas and the curvature 

of the timelike curve 𝛽. From Theorem 4.1, the tangent vector 𝑣1
(𝛼)(𝑠)  of the timelike curve provides 

𝑔(𝑣1
(𝛼)(𝑠), 𝑣1

(𝛼)(𝑠)) = −1. If we take the derivative of both sides of this equation concerning 𝑠, we get  

𝑣1
(𝛼)(𝑠)

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 0 (35) 

which means that  
𝑑𝑣1

(𝛼)(𝑠)

𝑑𝑠
  can be expressed with the normal vector 𝑣2

(𝛼)(𝑠): 

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (36) 

where 𝑘(𝛼)(𝑠) is the fractional curvature of the timelike curve 𝛽. Then the norm of the normal vector 𝑣2
(𝛼)(𝑠) 

is also equal to one, ‖𝑣2
(𝛼)(𝑠) ‖ = 1. Then we write 𝑔(𝑣2

(𝛼)
(𝑠), 𝑣2

(𝛼)(𝑠)) = 1. If we take the derivative of 

both sides of this last equation concerning 𝑠, we have 

𝑔 (𝑣2
(𝛼)(𝑠),

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
) = 0 (37) 

From (37),  
𝑑𝑣2

(𝛼)(𝑠)

𝑑𝑠
 can be given using a certain arclength function  𝜇(𝛼): 

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
=  𝜇(𝛼)(𝑠)𝑣1

(𝛼)(𝑠) (38) 

Considering the orthogonality relation 𝑔(𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) = 0, taking the derivative of both sides of this 

relation concerning 𝑠, we get the following expression: 

𝑣1
(𝛼)(𝑠)

𝑑𝑣2
(𝛼)

𝑑𝑠
+

𝑑𝑣1
(𝛼)

𝑑𝑠
𝑣2

(𝛼)(𝑠) = 0 (39) 

If the equations (36) and (38) are substituted in the expression (39), we get  𝜇(𝛼) = 𝑘(𝛼). Thus, the following 

theorem is obtained. 

Theorem 4.2. Let 𝛽 be a timelike curve in the Lorentz plane that satisfies the condition (5) and has the 

parameter s given by (30). Let us consider (𝑣1
(𝛼)(𝑠), 𝑣2

(𝛼)(𝑠)) as the fractional frame of this timelike curve 

𝛽. Then the Frenet-Serret formulas for 𝛽 can be given as  

𝑑𝑣1
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (40) 

𝑑𝑣2
(𝛼)(𝑠)

𝑑𝑠
= 𝑘(𝛼)(𝑠)𝑣1

(𝛼)(𝑠) (41) 

Let us now investigate the relationship between the fractional curvature and classical curvature of a given 

timelike curve 𝛽. Considering (32) and (40), we can write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽(𝑠)

𝑑𝑠 𝛼
) = 𝑘(𝛼)(𝑠)𝑣2

(𝛼)(𝑠) (42) 

If the normal vector 𝑣2
(𝛼) is applied to both sides of (42), we can write the fractional curvature as  

𝑘(𝛼)(𝑠) = 𝑔 (𝑣2
(𝛼)(𝑠),

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽(𝑠)

𝑑𝑠 𝛼
)) (43) 
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Considering the normal vector 𝑣2
(𝛼)(𝑠) in (43),  𝑘(𝛼)(𝑠) according to the fractional derivative is written 

as  

𝑘(𝛼)(𝑠) = −
𝑑 𝛼𝛽2

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
) +

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
𝑑

𝑑𝑠
(

𝑑 𝛼𝛽2

𝑑𝑠 𝛼
) (44) 

If a curve is given by an arbitrary parameter 𝑡 and not by the arc length 𝑠, then we must calculate the 

fractional curvature according to an arbitrary parameter 𝑡. Then let us calculate the fractional curvature 

according to an arbitrary parameter 𝑡. From the expression (29) for the composite function 𝑡 = 𝑡(𝑠), we can 

write  

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽1

𝑑𝑠 𝛼
) =

𝛼𝑠
−𝛼𝛽1̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠
1−𝛼𝛽1̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(45) 

𝑑

𝑑𝑠
(

𝑑 𝛼𝛽2

𝑑𝑠 𝛼
) =

𝛼𝑠
−𝛼𝛽2̇

Γ(2 − 𝛼)
((1 − 𝛼)

𝑑𝑡

𝑑𝑠
+ 𝑠

𝑑2𝑡

𝑑𝑠2
) +

𝛼𝑠
1−𝛼𝛽2̈

Γ(2 − 𝛼)
(

𝑑𝑡

𝑑𝑠
)

2

(46) 

where 𝛽1̈ =
𝑑2𝛽1

𝑑𝑡2   and  𝛽2̈ =
𝑑2𝛽2

𝑑𝑡2 . If the expressions (45) and (46) are written instead in (44), the fractional-

order curvature is  

𝑘(𝛼)(𝑡) = {
𝛼𝑠1−𝛼

Γ(2 − 𝛼)
}

2

(𝛽1̇𝛽2̈ − 𝛽1̈𝛽2̇) (
𝑑𝑡

𝑑𝑠
)

3

(47) 

Moreover, from (31), (47) it can be rewritten by 

𝑘(𝛼)(𝑡) =
Γ(2 − 𝛼)

𝛼𝑠1−𝛼
𝑘(𝑡) (48) 

𝑘(𝑡) in this last equation is the classical curvature and  

𝑘(𝑡) =
−𝛽1̇𝛽2̈ + 𝛽1̈𝛽2̇

(|−(𝛽1)̇ 2 + (𝛽2)̇ 2|)
3
2

(49) 

Thus, using the arclength definition given by (30), we can give the following theorem. 

Theorem 4.3. The fractional curvature of a timelike plane curve given as 𝛽(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is  

𝑘(𝛼)(𝑡) = {
Γ(2 − 𝛼)

𝛼
}

1
𝛼

[𝛼 ∫ √|−(𝛽1)̇ 2 + (𝛽2)̇ 2|𝑑𝑡
𝑡

0

]

1−
1
𝛼

𝑘(𝑡) (50) 

where 𝑡 is an arbitrary parameter.  

The part of 
1

𝑠1−𝛼 in (48) characterizes the effects of the fractional derivative given by the fractional tangent 

vector (32). The effect of the fractional derivative is strong at the start but becomes less effective over a longer 

period. This property of the effect influences the change of fractional curvature. 

5. Conclusion 

In this paper, firstly, the tangent vector of a spacelike (timelike) curve in the Lorentz plane are defined in terms 

of the fractional derivative. Then, by considering a spacelike (timelike) curve in the Lorentz plane, the arc 

length and fractional ordered frame of this curve are obtained. Later, the Caputo fractional derivative is 

considered and the relations between the standard curvature and fractional curvature of the spacelike (timelike) 
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curves in the Lorentz plane are obtained. It has been observed that these relations geometrically overlap with 

the results obtained using the derivative in the classical sense. 
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