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Abstract − In this paper, we introduce a weak form of connectedness with respect
to an ideal. We also investigate its relation to connectedness. We examine the I-
connectedness property on the new topology introduced by the ideal. In addition, it
is revealed under what conditions I-connectedness and connectedness coincide and
one differs from another.
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1. Introduction

Vaidyanathaswamy [1] and Kuratowski [2] introduced the concept of an ideal in a topological space
and also introduced a new topology using this concept of an ideal. Later, more detailed investigations
were carried out on the ideal and the new topology it determines. An ideal I on a non-empty set X
is a collection of subsets of X, which is closed under taking subsets and finite union operations. If
(X, τ) is a topological space and I is an ideal on X, then (X, τ, I) is called an ideal topological space.
If (X, τ) is a topological space and A ⊆ X, then the closure and the interior of A are denoted by Ā

and
◦
A, respectively. V (x) will denote the open neighborhood system at x, (V (x) = {V ∈ τ : x ∈ V }),

Given a topological space (X, τ) and a subset A of X, the subspace topology on A is defined by
τ|A = {A ∩ U : U ∈ τ}.

Previously, some types of connectedness and their details in ideal topological spaces were studied
by Ekici and Noiri [3], Sathiyasundari and Renukadevi [4], Modak and Noiri [5], Kılınç [6] and Tyagi,
Bhardwaj and Singh [7], respectively. In this study, we have studied a different type of connectedness
from earlier existing connectedness of ideal topological spaces. Then, using this new type of connect-
edness, new component and new locally-connectedness definitions were introduced. It has been shown
that some of the basic properties of connectedness are also preserved according to this new type of
connectedness.

This article is organized as follows. In the next section some basic notions and properties of ideal
and ideal topological space are reviewed. In Section 3, we introduce the concept of I-connectedness.
Moreover, we introduce the concept of I-component, locally I-connectedness, and totally I- discon-
nectedness. We show that not connected space is not I-connected and it has been shown that I-
connectedness is preserved under bijective continuous functions. Then, we study some basic proper-
ties of them.

1selahattinkilinc@hotmail.com (Corresponding Author)
1Department of Mathematics, Faculty of Arts and Sciences, Çukurova University, Adana, Turkiye

https://dergipark.org.tr/en/pub/jnt
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2. Preliminaries

Definition 2.1. [2] Let (X, τ) be a topological space, and I be an ideal on X. The set A∗ (I, τ) =
{x ∈ X : A ∩ U /∈ I for every U ∈ V (x)} is called the local function of A with respect to τ and I. We
will write simply A∗ for A∗ (I, τ).

Definition 2.2. [8] Let (X, τ) be a topological space, and I be an ideal on X. It well known,
the operator Cl∗(.) from P(X) to P(X) defined by Cl∗(A) = A ∪ A∗(I) for every subset A of X,
is a Kuratowski closure operator. Thus, {U ⊆ X : Cl∗(X − U) = X − U} is a topology on X. The
topology is denoted by τ∗(I).

When there is no chance for confusion τ∗(I) is denoted by τ∗. The topology τ∗ has as a base
β(τ, I) = {W −B : W ∈ τ and B ∈ I}. [8]. It is easy to show that τ ⊂ τ∗. Also note that, if I = {∅}
then τ = τ∗ and if I = P(X) then A∗(P(X), τ) = ∅ which implies τ∗ = P(X). We will call each
element of τ∗ as a ∗-open set.

Definition 2.3. [9] Let (X, τ, I) be an ideal topological space. For every A ⊂ X, if

∀x ∈ A, ∃U ∈ V (x)|U ∩A ∈ I ⇒ A ∈ I

Then the topology τ is compatible with the ideal and denoted by τ ∼ I.

Lemma 2.4. [10] Let (X, τ) and (Y, ϕ) be two topological spaces. If f : X → Y is a function and I
is an ideal on X, then the set f(I) = {f(A) : A ∈ I} is an ideal on Y . Furthermore, If f : X → Y is
a one to one function and J is an ideal on Y , then the set f−1(J) =

{
f−1(B) : B ∈ J

}
is an ideal on

X.

3. Main Results

Definition 3.1. Let (X, τ, I) be an ideal topological space. If there exist open sets U and V with
U 6= ∅, V 6= ∅, and U∩V ∈ I, such that X = U∪V , then X is called a not I-connected (I-disconnected)
space. If the open sets U and V can not be found to meet the above conditions, the space X is called
I-connected..

Theorem 3.2. Every not connected space is a not I-connected.

Proof. Let (X, τ) be a disconnected space. There exist nonempty disjoint open sets U, V in X such
that X = U ∪ V . Since U ∩ V = ∅ ∈ I, then X is not an I-connected space.

We can see from the following example that the inverse of the above theorem is not always true.

Example 3.3. Let X = {a, b, c}, τ = {∅, X, {a} , {a, b} , {a, c}}, I = {∅, {a}}, U = {a, b}, and
V = {a, c}. Since X = U ∪ V and U ∩ V = {a} ∈ I, then X is not I-connected. Moreover, since ∅
and X are the only subsets of X being open and closed sets, then X is a connected space.

Theorem 3.4. [9] Let (X, τ) be a topological space and I be a ideal on X. If τ ∼ I, then β (τ, I) is
a topology on X.

Theorem 3.5. Let the ideal topological space (X, τ, I) be an I-connected space. If τ ∼ I, then the
topological space (X, τ∗) is connected.

Proof. Let τ ∼ I. Suppose that, (X, τ∗) is not connected. Since (X, τ∗) is not connected, then there
are disjoint ∗−open sets M 6= ∅, N 6= ∅ such that X = M ∪N . Moreover, since τ ∼ I, then U, V ∈ τ
and A,B ∈ I such that M = U −A and N = V −B. Here,

M ∩N =(U −A) ∩ (V −B)

=(U ∩Ac) ∩ (V ∩Bc)

=(U ∩ V ) ∩ (Ac ∩Bc)

=(U ∩ V ) ∩ (A ∪B)c

=(U ∩ V )− (A ∪B)
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U ∩ V ∈ τ and A ∪ B ∈ I. Thus, M and N are disjoint ∗-open sets, (U ∩ V ) − (A ∪ B) = ∅. That
is (U ∩ V ) ⊂ (A ∪ B). Hence, since I is an ideal on X, U ∩ V ∈ I. Consequently, X = M ∪ N and
M ⊆ U , N ⊆ V , so it becomes X = U ∪V . This shows that X is not I-connected, a contradiction.

Example 3.6. Let (X, τ) be a space and A ⊆ X. We know that I (A) = {B ⊆ X : B ⊆ A} is an ideal
on X [8]. Let’s choose X = R, τ = {∅, X}, and for p ∈ X, I (X − {p}) = {A ⊆ X : p /∈ A} specifically.
We know τ ∼ I. This ideal generates a topology τ∗ = {A ⊆ X : p ∈ A} ∪ {∅} known as a particular
point topology [8]. The space X is I-connected because the only open set of X that is different from
the empty set is X, if U = V = X is selected, then U ∩ V = X /∈ I. Moreover, we know particular
point topology is connected.

Theorem 3.7. If (X, τ∗) is a connected space and τ ∩ I = {∅}, then the ideal topological space
(X, τ, I) is I-connected.

Proof. Suppose that (X, τ, I) is not I-connected. Then, there are non-empty open subsets U, V with
U ∩ V ∈ I such that X = U ∪ V . Since τ ∩ I = {∅} and U ∩ V ∈ I, then U ∩ V = ∅. Proceeding from
this, the contradiction arises that the space (X, τ∗) is not connected because U, V ∈ τ ⊆ τ∗, so our
assumption is wrong, that is, the ideal topological space (X, τ, I) is I-connected.

Theorem 3.8. Let f : (X, τ, I) → (Y, ϕ, f(I)) be a bijective and continuous function. If X is an
I−connected space, then Y is a f(I)−connected space.

Proof. Let X be an I-connected space. Suppose that Y is not f(I)−connected. Then, there are non-
empty open subsets U, V with U∩V ∈ f(I) such that Y = U∪V . Since the function f is bijective, then
f−1(U) and f−1(V ) are non-empty open subsets of X. Then, X = f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).
Simultaneously, since f−1(U) ∩ f−1(V ) = f−1(U ∩ V ), U ∩ V ∈ f(I) and f is bijective, it becomes
f−1(U ∩ V ) ∈ f−1(f(I)) = I. Hence X is not I-connected. This is a contradicition. Consequently, Y
is a f(I)-connected space.

Recall, let (X, τ, I) be an ideal topological space and A be a nonempty subset of X. Then,
I|A = {B ∩A : B ∈ I} is an ideal on A, and

(
A, τ|A, I|A

)
is an ideal topological space.

Definition 3.9. Let (X, τ, I) be an ideal topological space and A be a subset of X. If subspace(
A, τ|A, I|A

)
is I|A-connected, the set A is called an I|A-connected set in the ideal topological space

(X, τ, I).

Definition 3.10. An I-component A of an ideal topological space (X, τ, I) is a maximal I−connected
subset of X; that is A is I−connected and A is not a proper subset of any I−connected subset of X.

Theorem 3.11. Let the space X be equal to the union of non-empty and open subsets of U and V
with U ∩ V ∈ I. If the set A ⊂ X is an I|A−connected subset in the ideal topological space (X, τ, I),
then A ⊂ U or A ⊂ V .

Proof. Because of the hypothesis, there exist non-empty open subsets U and V of X such that,
X = U ∪ V and U ∩ V ∈ I. Let A ⊂ X be an I|A−connected space. Moreover, let A ∩ U 6= ∅ and
A∩V 6= ∅. Since U and V are open subsets, then A∩U ∈ τ|A and A∩V ∈ τ|A. Besides, since U∩V ∈ I,
then (A ∩ U)∩(A ∩ V ) ∈ I|A. Since A ⊂ X and X = U∪V , then A = A∩(U ∪ V ) = (A ∩ U)∪(A ∩ V )
and so A is not I|A connected, a contradiction. Thus eitherA ∩ U = ∅ or A ∩ V 6= ∅. If A ∩ U = ∅,
then A ⊂ V . If A ∩ V = ∅, then A ⊂ U .

Theorem 3.12. If {Aj : j ∈ J} is a non-empty family of I|A−connected sets with τ|A ∩ I|A = {∅},
then ∪

j
Aj is I|A−connected.

Proof. Let B = ∪
j
Aj . Suppose that B is not I|A−connected. Then, there are non-emty subsets

U, V ∈ τ|A with U ∩ V ∈ I|A such that B = U ∪ V . From Theorem 3.11, we know that, for every j,
either Aj ⊂ U or Aj ⊂ V . Assume that for j, Aj ⊂ U and for k, Ak ⊂ V . Then, Aj ∩ Ak ⊆ U ∩ V .
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By the definition of I, Ai ∩ Aj ∈ I|A, which contradicts the fact that ∩Aj /∈ I. Here, for every j,
either Aj ⊂ U or Aj ⊂ V . Assume that for every j, Aj ⊂ U , then B = ∪Aj = U . Thus, V ⊂ U .
Since τ|A ∩ I|A = {∅}, then V ∩ U = V ∈ I|A. Hence V = ∅, which contradicts the fact that V 6= ∅. If
Aj ⊂ V is chosen, a similar contradiction is obtained.

Theorem 3.13. Let A be an I|A−connected subset of (X, τ, I). If there is a set B such that A ⊂
B ⊂ A, then B is I|B−connected.

Proof. Suppose that B is not I|B−connected. Then, there are non-empty subsets U, V ∈ τ|B with
U ∩ V ∈ I|B such that B = U ∪ V . Since A is an I|A−connected subset of B, from Theorem
3.11 we know that either A ⊂ U or A ⊂ V . It also happens that A ∩ U ∈ τ|A, A ∩ V ∈ τ|A,
(A ∩ U)∩ (A ∩ V ) = A∩ (U ∩ V ) ∈ I|A, and A = A∩ (U ∪ V ) = (A ∩ U)∪ (A ∩ V ). Now let’s consider
three different cases of A ∩ U and A ∩ V .

Case 1. If A ∩U 6= ∅ and A ∩ V 6= ∅, then A is not I|A−connected, it contradicts the fact that A
is a I|A connected.

Case 2. In the case of A∩U = ∅ and A∩V 6= ∅. By the definition of A, for any x ∈ A, A∩W 6= ∅
for every neighborhood W of the point x. Since every point of B is an element of A, the intersection
of A with the neighborhood of any of these points will be different from the empty set. Therefore,
if A ∩ U = ∅, then U = ∅ must be. This is a contradiction. A similar contradiction is obtained if
A ∩ U 6= ∅ and A ∩ V = ∅.

Case 3. If A ∩ U = ∅ and A ∩ V = ∅, then A is an empty set. This is a contradiction.
Consequently, our assumption is not true, and the set B is I|B−connected.

Corollary 3.14. Let (X, τ, I) be an ideal topological space. If A is an I|A-connected subset of X,
then Ā is an I|Ā-connected subset of X.

Proof. Let A be an I|A-connected subset of X. From Theorem 3.13, we know every set B such that
A ⊂ B ⊂ Ā is an I|B-connected. Moreover, since A ⊂ B, then Ā ⊂ B̄ and A ⊂ B ⊂ Ā ⊂ B̄. Therefore,
from Theorem 3.13 since B ⊂ Ā ⊂ B̄ and B is an I|B-connected, then Ā is an I|Ā -connected.

Theorem 3.15. Let (X, τ, I) be an ideal topological space. If A is an I|A−connected subset of X,
then cl∗(A) is Icl∗(A)−connected.

Proof. Since A ⊆ cl∗(A) ⊆ A in an ideal topological space (X, τ, I), then the proof is obvious from
Theorem 3.13.

Theorem 3.16. Let (X, τ, I) be an ideal topological space and A ⊂ X. If A is an I|A−connected and
dense subset of X, then X is an I-connected space.

Proof. Let (X, τ, I) be an ideal topological space, A be an I|A-connected, and a dense subset of X.
Suppose that X is not I-connected. Then, there exist U, V ∈ τ such that U 6= ∅, V 6= ∅, U ∩ V ∈ I,
and X = U ∪ V . Moreover, since A is a dense subset of X, then Ā = X. Thus, W ∩ A 6= ∅, for all
W ∈ τ . Besides, since τ|A := {G∩A : G ∈ τ}, then A∩U ∈ τ|A, A∩V ∈ τ|A, A∩U 6= ∅, and A∩V 6= ∅.
Furthermore, from I|A := {H∩A : H ∈ I}, since U ∩V ∈ I, then (A∩U)∩(A∩V ) ∈ I|A. Additionally,
since A ⊂ X and X = U∪V , then A ⊂ U∪V and so A = A∩(U∪V ) = (A∩U)∪(A∩V ). Consequently,
since there exist A ∩ U ∈ τ|A, A ∩ V ∈ τ|A such that A ∩ U 6= ∅, A ∩ V 6= ∅, A ∩ (U ∩ V ) ∈ I|A and
A = (A ∩ U) ∪ (A ∩ V ), then A is not I|A-connected. Hence, this is a contradiction. Therefore, X is
an I-connected space.

The following theorem will show us the necessary and sufficient conditions for a subspace A ⊂ X
to be I|A-connected.

Theorem 3.17. Let A be a subset of an ideal topological space (X, τ, I). Then, A is I|A−connected
if and only if for every U, V ∈ τ , A ⊂ U ∪ V , A ∩ U 6= ∅, and A ∩ V 6= ∅ such that A ∩ U ∩ V /∈ I.
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Proof. ⇒ : Let A be I|A-connected, for U, V ∈ τ,A ⊂ U ∪ V,A ∩ U 6= ∅ and A ∩ V 6= ∅. Suppose
that A ∩ U ∩ V ∈ I. Therefore, there exist A ∩ U ∈ τ|A, A ∩ V ∈ τ|A such that A ∩ U 6= ∅, A ∩ V 6=
∅, A ∩ (U ∩ V ) ∈ I|A and A = (A ∩ U) ∪ (A ∩ V ), then A is not I|A-connected. Thus, this is a
contradiction. Hence, A ∩ U ∩ V /∈ I.
⇐ : Let for every U, V ∈ τ,A ⊂ U ∪V,A∩U 6= ∅, and A∩V 6= ∅ such that A∩U ∩V /∈ I. Therefore,
there exist A∩U ∈ τ|A, A∩V ∈ τ|A such that A∩U 6= ∅, A∩V 6= ∅, A = A∩(U∪V ) = (A∩U)∪(A∩V ),
and (A ∩ U) ∪ (A ∩ V ) /∈ I. Then, A is I|A-connected.

Example 3.18. Let X = {a, b, c, d}, τ = {∅, X, {a} , {a, b}}, and A = {a, b, c}. If I = {∅, {c}} , then
A is an I|A−connected subset of X. If I = {∅, {a}} , then A is not an I|A−connected subset of X.

Theorem 3.19. Let (X, τ1, I) and (Y, τ2, J) be ideal topological spaces, f be a homeomorphism from
X to a dense subset of Y with J = f(I), that is, Y be a compactification of X. If (X, τ, I) is
I−connected, then (Y, ϕ, J) is J−connected.

Proof. Let (Y, τ2, J) be a compactification of (X, τ1, I). Then, there is a homeomorphism f : X → A
such that A = Y . Since f is bijective and ideal topological space (X, τ, I) is I−connected, then from
Theorem 3.8 an ideal topological space (Y, τ2, J) is J−connected.

Corollary 3.20. There is only one I-component of an I-connected space, and that is the space itself.

Corollary 3.21. Let A be an I-component of (X, τ, I). Then, A is a component of (X, τ).

Theorem 3.22. If A is an I-component of (X, τ, I) and τ ∼ I, then A is a component of (X, τ∗).

Proof. Let A be a maximal I|A−connected subspace of (X, τ). In other words, the space (A, τA)
is maximal I|A−connected subspace of (X, τ). Since τ ∼ I, then from Theorem 3.5, A is a maximal
I|A−connected subspace of (X, τ∗).

Theorem 3.23. Every I-component of the ideal topological space (X, τ, I) is closed.

Proof. Let A be an I-component of the ideal topological space (X, τ, I). Since A is I|A−connected,

then from Corollary 3.14, A is I|A−connected. Since A is a maximal I|A−connected subset of X, then

A ⊆ A. Moreover, A ⊆ A. Thus, A = A.

Definition 3.24. Let (X, τ, I) be an ideal topological space. For each pair of distinct points x, y ∈ X,
if there is a pair of open neighborhoods U and V of x and y such that U ∩ V ∈ I and X = U ∪ V ,
then X is called totally I-disconnected.

Corollary 3.25. Every totally disconnected space is totally I-disconnected.

Theorem 3.26. If an ideal topological space (X, τ, I) is totally I-disconnected the I-components in
X are the one-point sets.

Proof. Let (X, τ, I) be a totally I-disconnected space and C be an I-component of this space.
Suppose that I-component C contains more than one point. Here, let x 6= y ∈ C. Since the ideal
topological space (X, τ, I) is totally I-disconnected, then there exist U, V ∈ τ such that x ∈ U, y ∈ V ,
U ∩ V = ∅, X = U ∪ V , and U ∩ V ∈ I. Since C is I-component of this space, C ⊂ U ∪ V , C ∩U 6= ∅,
C ∩ V 6= ∅ and C ∩ (U ∩ V ) ⊆ U ∩ V ∈ I. Then, from Theorem 3.17. C is not I|c−connected. Thus,
C cannot be an I-component, then our assumption is wrong. Hence, C is the one-point set.

Definition 3.27. Let (X, τ, I) be an ideal topological space. For all V ∈ τ such that x ∈ V , if
there exist an I-connected open subset U such that x ∈ U and U ⊂ V , then (X, τ, I) is called locally
I-connected at x.
An ideal topological space (X, τ, I) is called locally I-connected if it is locally connected at x for every
x ∈ X.
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Theorem 3.28. Every I-component of a locally I-connected space is an open set.

Proof. Let C be an I-component of a locally I-connected space (X, τ, I) and x be an arbitrary point
of C. Since (X, τ, I) is locally I-connected and X is an open neighborhood of x, x belongs to an
I-connected open set U of X. Therefore, since C is an I-component, then C is maximal I- connected
subset of X, and so x ∈ U ⊂ C. Hence, C is a neighborhood of each of its points and so C is an open
set.

Theorem 3.29. If an ideal topological space (X, τ, I) is a locally I-connected, then the I-components
of every open subspace of (X, τ, I) are open in X.

Proof. Let (X, τ, I) be locally I-connected. Let Y be an open set in X and C be an I-component of
Y . Then by the definition of locally I-connectednes for every x ∈ C, there exists an I-connected open
set U in Y containing x. Since C is an I-component, then U ⊂ C. Thus, C contains a neighborhood
of each of its points in Y and so C is open in Y . Since Y is open in X, thus C is open in X.

Corollary 3.30. Every I-component of a locally I-connected space is both closed and open.

Theorem 3.31. Let f : (X, τ, I) → (Y, ϕ, f(I)) be a homeomorphism. If (X, τ, I) is locally I-
connected, then (Y, ϕ, f(I)) is locally f(I)−connected.

Proof. Let f : (X, τ, I) → (Y, ϕ, f(I)) be a homeomorphism. Let y be a point of f(X) = Y and V
be any open neighborhood of y in Y . Also, there exists x ∈ X such that y = f(x). As f is continuous,
then f−1(V ) is an open neighborhood of x. Since (X, τ, I) is locally I-connected, then there exist
I-connected open U ∈ τ such that x ∈ U ⊂ f−1(V ). Thus,

y = f(x) ∈ f(U) ⊂ f
(
f−1(V )

)
= V

Since f is an open map, then f(U) is an open subset of Y . From Theorem 3.8, f(U) is f(I)-connected.
Consequently, Y is locally f(I)-connected.

4. Conclusion

In this paper, we defined the concept of I-connectedness in ideal topological spaces. Then, we examined
the relationship between connectedness and I-connectedness. We shown that every not connected
space is not I-connected and the opposite is not true. We shown that some basic properties of
connectedness are valid in I-connectedness. Next, we put forward the definitions of I-component,
totally I-disconnectedness, and locally I-connectedness. We revealed some of their basic properties.

The relations of I-connectedness defined here in with other types of connectedness previously
defined in ideal topological spaces, can be investigated. In addition, the relationship between I-
connectedness and ∗-Hyperconnectedness in ideal topological spaces [11] can also be examined. Fur-
thermore, [12] have defined I-extremally disconnected spaces and have revealed the connection of this
connectedness concerning some weak continuity varieties. A similar study can also be conducted on
the I-connectedness defined here in.
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Abstract − The paper introduces a new kind of special ruled surface. The base
of each ruled surface is taken to be one of the Smarandache curves of a given curve
according to Frenet frame, and the generator (ruling) is chosen to be the correspond-
ing unit Darboux vector. The characteristics of these newly defined ruled surfaces
are investigated by means of first and second fundamental forms and their corre-
sponding curvatures. An example is provided by considering both the helix curve
and the Viviani’s curve.
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1. Introduction

A surface is defined as an image of a function with two real valued variables (domain) by a mapping
to two or three dimensional space. The surfaces are characterized by means of their curvatures and
accordingly they are used in many areas such as engineering, architectural designs, computer graphics,
automobile industry, etc. Researches on surface curvature went through various stages starting from
Ancient Greece, and gained momentum with the calculations developed by Newton and Leibniz in the
17th century after the studies of Descartes, Kepler, Fermat and Huygens. The curvature theory for
curves and surfaces is an important subject of differential geometry. The theory was first introduced
by Gauss in 19th century and it was named by his name as the Gaussian curvature. It is related to the
dimensions of the surface. The developability of a surface can be determined by its Gaussian curvature.
A surface with zero Gaussian curvature at every point is known as a developable surface. Another
kind of curvature for a surface is named as mean curvature. Since a mean curvature corresponds to
a ratio, it is independent of the size of the surfaces. Surfaces with a mean curvature of zero at every
point are known as minimal surfaces. In the theory of surfaces, there is a special kind that is known
as ruled surfaces. A ruled surface is constructed by infinitely many straight lines moving along a given
curve. Among other types, the ruled surfaces are mostly referred in computer based geometric designs
to deal with real world problems on modeling the real objects. For this reason, introducing new ruled
surfaces may lead new potentials to the related fields. Providing their characteristics by means of
curvatures may also enable easy adaptations for interested researchers.
The basic theory related to ruled surfaces can be found in many differential geometry textbooks such
as [1–4]. However, the generalization of those was first studied by Juza in the 1960s [5]. The ruled
surfaces with rulings of Frenet vectors are already covered in textbooks. Apart from Frenet frame,
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Şentürk and Yüce (2015) examined the characterizations of ruled surfaces with Darboux frame in [6].
Tunçer (2015) in [7] and Masal and Azak (2019) in [8], separately, studied some characteristics of the
ruled surfaces according to Bishop frame (introduced by Bishop, (1975) in [9]), whereas Ouarab et al.
(2018) provided the main properties of ruled surfaces according to alternative frame in [10]. Moreover,
some characteristics of the ruled surface with Frenet frame of a non-cylindrical one were investigated
in 2020 by Ouarab and Chahdi in [11].
Recently, Ouarab, (2021a) put forth a method to generate new ruled surfaces by taking the advantage
of the idea of Smarandache geometry introduced in [12, 13]. By assigning the base curve as one of
the Smarandache curves and taking the generator as the another vector element of Frenet frame, she
introduced these ruled surfaces as Smarandache ruled surfaces according to Frenet frame in [14]. The
same method of generating such ruled surfaces is applied to the Darboux frame by Ouarab, (2021b)
in [15] and according to the alternative frame by Ouarab, (2021c) in [16].
Motivated by these studies and acknowledging the great potential use of ruled surfaces, it is of interest
for us to define and introduce new kinds of ruled surfaces incorporated with the Darboux vector and
Smarandache curves. The geometric properties of these have been examined by means of fundamental
forms and the corresponding curvatures.

2. Preliminaries

In this section, we recall some basic notions of which we refer through out the paper. Let
α : I → E3 be a regular unit speed curve. We define the quantities of the Frenet apparatus and
Frenet formulae as in the following way:

T = α′, N =
α′′

‖α′′‖
, B = T ∧N, κ =

∥∥α′′∥∥ , τ =
〈
N ′, B

〉
T ′ = κN, N ′ = −κT + τB, B′ = −τN

The Darboux vector W of Frenet frame is defined as W = τT + κB. Corresponding to this, the unit
Darboux vector is

C = sinω T + cosωB

cosω =
κ√

κ2 + τ2
, sinω =

τ√
κ2 + τ2

, ω′ =
(τ
κ

)′(
1 +

τ2

κ2

)
(1)

where ω = ∠(B,W ). Moreover, a unit vector with a linear combination of Frenet vectors can be
defined as

γ =
fT + gN + hB√
f2 + g2 + h2

(2)

where f, g, h : < → < are some arbitrary functions. For ∀s ∈ I ⊂ <, the image of the vector γ is
a special differentiable curve. If, specifically, each function f, g and h is considered to be a constant
valued function and the vector γ is taken to be the position vector, then the generated curves are
known to be the special Smarandache curves [12]. These curves were outlined in many studies by
using different frames and considering different spaces, as well [4, 13,17–23].
On the other hand, a surface is said to be ruled if it is formed with a straight line r(s) sharing the
same parameter of the given curve α. The parametric form of a ruled surface is as following:

X(s, v) = α(s) + vr(s) (3)

The unit normal vector field of a ruled surface X(s, v) is computed as

NX =
Xs ∧Xv

‖Xs ∧Xv‖
(4)

and are the curvatures as:

K = − f2

EG− F 2
and H =

eG− 2fF

2 (EG− F 2)
(5)
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where the corresponding coefficients are defined by

E = 〈Xs, Xs〉 , F = 〈Xs, Xv〉 , and G = 〈Xv, Xv〉
e = 〈Xss, NX〉 , f = 〈Xsv, NX〉 , and g = 〈Xvv, NX〉

(6)

3. Smarandache ruled surfaces by Darboux vector according to Frenet frame in E3

In this section, we define and examine some special ruled surfaces where the base curve is considered
to be one of the Smarandache curves of α = α(s) which we define them by referring the equation (2)
as:

if h = 0 and f = g = 1 ⇒ the vector γ =
T +N√

2
draws the TN-Smarandache curve that is

γ1 =
T +N√

2

if g = 0 and f = h = 1 ⇒ the vector γ =
T +B√

2
draws the TB-Smarandache curve that is

γ2 =
T +B√

2

if f = 0 and g = h = 1 ⇒ the vector γ =
N +B√

2
draws the NB-Smarandache curve that is

γ3 =
N +B√

2

if f = g = h = 1 ⇒ the vector γ =
T +N +B√

3
draws the TNB-Smarandache curve that is

γ4 =
T +N +B√

3
and the generator for each ruled surface is taken to be the unit Darboux vector C given by the relation
(1).

Definition 3.1. The ruled surface generated by unit Darboux vector C along the TN- Smarandache
curve γ1 is given as

Φ (s, v) =
1√
2

(T +N) + vC

The first and second partial derivatives of the surface Φ are given in respective order as follows:

Φs =
1√
2

((
−κ+

√
2vω′ cosω

)
T + κN +

(
τ −
√

2vω′ sinω
)
B
)

Φss =
1√
2


((
−κ+

√
2vω′ cosω

)′ − κ2
)
T +

((
τ −
√

2vω′ sinω
)′

+ κτ
)
B

+
(
−
(
κ2 + τ2

)
+ vω′

√
2κ2 + 2τ2

)
N


Φsv = ω′ (cosωT − sinωB) , Φv = sinωT + cosωB, Φvv = 0

By considering (4), we first compute

Φs ∧ Φv =
1√
2

(
κ cosωT +

(√
κ2 + τ2 −

√
2vω′

)
N − κ sinωB

)
‖Φs ∧ Φv‖ =

1√
2

√
2κ2 + τ2 − vω′

√
2κ2 + 2τ2 + 2(vω′)2

to provide the unit normal vector as

NΦ =
κ cosωT +

(√
κ2 + τ2 −

√
2vω′

)
N − κ sinωB√

2κ2 + τ2 − vω′
√

2κ2 + 2τ2 + 2(vω′)2
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From (6), the coefficients of the first and second fundamental forms are

EΦ =
1

2

(
2κ2 + τ2 − 2

√
2vω′

√
κ2 + τ2 + 2

(
vω′
)2)

, FΦ = 0, GΦ = 1

eΦ =

−κ
(√

κ2 + τ2
)′
− κ
(
κ2 + τ2

) 3
2 +
√

2vκ
(
ω′′ + 2ω′

(
κ2 + τ2

))
−2v2ω′2κ

√
κ2 + τ2

√
2
√

2κ2 + τ2 − vω′
√

2κ2 + 2τ2 + 2(vω′)2

fΦ =
ω′κ√

2κ2 + τ2 − vω′
√

2κ2 + 2τ2 + 2(vω′)2
, gΦ = 0

Thus, by using (5) we compute the mean and Gaussian curvatures as following:

KΦ = −2

(
ω′κ

2κ2 + τ2 − vω′2
√

2
√
κ2 + τ2 + 2(vω′)2

)2

HΦ =

−κ
(√

κ2 + τ2
)′
− κ
(
κ2 + τ2

) 3
2 +
√

2vκ
(
ω′′ + 2ω′

(
κ2 + τ2

))
−2v2ω′2κ

√
κ2 + τ2

√
2
(

2κ2 + τ2 − vω′2
√

2
√
κ2 + τ2 + 2(vω′)2

) 3
2

Corollary 3.2. If the curve α = α(s) is planar or general helix, then the surface Φ is developable.

Proof. From (1), ω′ =
(τ
κ

)′(
1 +

τ2

κ2

)
. If α is either planar or general helix, then ω′ = 0 which

corresponds to that KΦ = 0.

Definition 3.3. Another ruled surface generated by unit Darboux vector C along the TB- Smaran-
dache curve γ2 is given as

Ψ (s, v) =
1√
2

(T +B) + vC

The first and second partial derivatives of Ψ(s, v) are given in respective order as follows:

Ψs = vω′ cosωT +
κ− τ√

2
N − vω′ sinωB

Ψss =

((
vω′ cosω

)′ − κ2 − κτ√
2

)
T +

(
vω′
√
κ2 + τ2 +

κ′ − τ ′√
2

)
N

+

((
−vω′ sinω

)′
+
κτ − τ2

√
2

)
B

Ψsv = ω′ cosωT − ω′ sinωB, Ψv = sinωT + cosωB, Ψvv = 0

By considering (4), we first compute

Ψs ∧Ψv =
(κ− τ) cosω√

2
T − vω′N − (κ− τ) sinω√

2
B

‖Ψs ∧Ψv‖ =
1√
2

√
(κ− τ)2 + 2(vω′)2

to get the unit normal vector denoted by NΦ as

NΨ =
(κ− τ) cosωT −

√
2vω′N − (κ− τ) sinωB√

(κ− τ)2 + 2(vω′)2
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Next, by using (6), the coefficients of the first and second fundamental forms are

EΨ =
1

2

(
(κ− τ)2 + 2

(
vω′
)2)

, FΨ = 0, GΨ = 1

eΨ =

√
2(vω′)′ (κ− τ)−

√
κ2 + τ2

(
2(vω′)2 + (κ− τ)2

)
−
√

2vω′ (κ′ − τ ′)
√

2
√

(κ− τ)2 + 2(vω′)2

fΨ =
ω′ (κ− τ)√

(κ− τ)2 + 2(vω′)2
, gΨ = 0.

Thus, from (5) the mean and Gaussian curvatures can be written as in the following way:

KΨ = −2

(
ω′ (κ− τ)

(κ− τ)2 + 2v2ω′2

)2

, κ− τ 6= 0,

HΨ =

√
2 (κ− τ) (vω′)′ −

√
κ2 + τ2

(
2(vω′)2 + (κ− τ)2

)
−
√

2vω′ (κ′ − τ ′)
√

2
(

(κ− τ)2 + 2(vω′)2
) 3

2

Corollary 3.4. If the curve α = α(s) is planar or general helix, then the surface Ψ is developable.

Proof. The proof is as same as of the proof of Corollary 3.2

Definition 3.5. The ruled surface generated by unit Darboux vector C along the NB- Smarandache
curve γ3 is given as

Ω (s, v) =
1√
2

(N +B) + vC

The first and second partial derivatives of Ψ(s, v) are given in respective order as follows:

Ωs =

(
− κ√

2
+ vω′ cosω

)
T − τ√

2
N +

(
τ√
2
− vω′ sinω

)
B

Ωss =
1√
2

 (
κτ − κ′ +

√
2
(
vω′ cosω

)′)
T +

(√
2vω′

√
κ2 + τ2 − τ ′ − κ2 − τ2

)
N

+
(
τ ′ − τ2 −

√
2
(
vω′ sinω

)′)
B


Ωsv = ω′ cosωT − ω′ sinωB, Ωv = sinωT + cosωB, Ωvv = 0

By considering (4), we first compute

Ωs ∧ Ωv =
1√
2

(
−τ cosωT +

(√
κ2 + τ2 −

√
2vω′

)
N + τ sinωB

)
‖Ωs ∧ Ωv‖ =

1√
2

√
κ2 + 2τ2 − vω′

√
2κ2 + 2τ2 + 2(vω′)2

to get the unit normal vector denoted by NΦ as

NΩ =
−τ cosωT +

(√
κ2 + τ2 −

√
2vω′

)
N + τ sinωB√

κ2 + 2τ2 − vω′
√

2κ2 + 2τ2 + 2(vω′)2
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Next, by using (6), the coefficients of the first and second fundamental forms are

EΩ =
κ2 + 2τ2

2
+
(
vω′
)2 −√2κ2 + 2τ2vω′, FΩ = 0, GΩ = 1

eΩ =

τ
(√

κ2 + τ2 −
√

2vω′
)′
− τ2
√
κ2 + τ2

+
(√

κ2 + τ2 −
√

2vω′
)(

vω′
√

2
√
κ2 + τ2 − τ ′ − κ2 − τ2

)
√

2
√
κ2 + 2τ2 − vω′

√
2κ2 + 2τ2 + 2(vω′)2

fΩ = − ω′τ√
κ2 + 2τ2 − vω′

√
2κ2 + 2τ2 + 2(vω′)2

Thus, from (5) the mean and Gaussian curvatures can be written as in the following way:

KΩ = −2

(
ω′τ

κ2 + 2τ2 + 2(vω′)2 − vω′2
√

2κ2 + 2τ2

)2

HΩ =

τ
(√

κ2 + τ2 −
√

2vω′
)′
− τ2
√
κ2 + τ2

+
(√

κ2 + τ2 −
√

2vω′
)(

vω′
√

2
√
κ2 + τ2 − τ ′ − κ2 − τ2

)
√

2
(
κ2 + 2τ2 + 2(vω′)2 −

√
2κ2 + 2τ2vω′

) 3
2

Corollary 3.6. If the curve α = α(s) is planar or general helix, then the surface Ω is developable.

Proof. The proof is the same as of the previous proofs.

Definition 3.7. The ruled surface generated by unit Darboux vector C along the TNB- Smarandache
curve γ4 is given as:

ξ (s, v) =
1√
3

(T +N +B) + vC

The first and second partial derivatives of Ψ(s, v) are given in respective order as follows:

ξs =

(
− κ√

3
+ vω′ cosω

)
T +

κ− τ√
3
N +

(
τ√
3
− vω′ sinω

)
B

ξss =

((
− κ√

3
+ vω′ cosω

)′
− κ2 − κτ√

3

)
T +

(
−κ

2 + τ2 − κ′ + τ ′√
3

+ vω′
√
κ2 + τ2

)
N

+

((
τ√
3
− vω′ sinω

)′
+
κτ − τ2

√
3

)
B

ξsv = ω′ cosωT − ω′ sinωB, ξv = sinωT + cosωB, ξvv = 0

By considering (4), we first compute

ξs ∧ ξv =
1√
3

(
(κ− τ) cosωT +

(√
κ2 + τ2 −

√
3vω′

)
N − (κ− τ) sinωB

)
‖ξs ∧ ξv‖ =

1√
3

√
(κ− τ)2 +

(√
κ2 + τ2 −

√
3vω′

)2

to get the unit normal vector denoted by NΦ as

Nξ =
(κ− τ) cosωT +

(√
κ2 + τ2 −

√
3vω′

)
N − (κ− τ) sinωB√

(κ− τ)2 +
(√

κ2 + τ2 −
√

3vω′
)2
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Next, by using (6), the coefficients of the first and second fundamental forms are

Eξ =
1

3

(
(κ− τ)2 +

(√
κ2 + τ2 −

√
3vω′

)2
)
, Fξ = 0, Gξ = 1

eξ =

(
κ′ − τ ′ − κ2 − τ2 + vω′

√
3
√
κ2 + τ2

)(
κ2 + τ2 − vω′

√
3
√
κ2 + τ2

)
+ (κ− τ)

(√
3vω′ −

√
κ2 + τ2

)′
− (κ− τ)2

√
κ2 + τ2

√
3

√
(κ− τ)2 +

(√
κ2 + τ2 −

√
3vω′

)2

fξ =
ω′ (κ− τ)√

(κ− τ)2 +
(
κ2 + τ2 −

√
3vω′

)2 , gξ = 0

Thus, from (5) the mean and Gaussian curvatures can be written as in the following way:

Kξ = −3

 ω′ (κ− τ)

(κ− τ)2 +
(√

κ2 + τ2 −
√

3vω′
)2


2

Hξ =

(
(κ− τ)′ −

(
κ2 + τ2

)
+ vω′

√
3κ2 + 3τ2

)(
κ2 + τ2 − vω′

√
3κ2 + 3τ2

)
+ (κ− τ)

(√
3vω′ −

√
κ2 + τ2

)′
− (κ− τ)2

√
κ2 + τ2

2
(√

3
)−1
(

(κ− τ)2 +
(√

κ2 + τ2 −
√

3vω′
)2
) 3

2

Corollary 3.8. If the curve α = α(s) is planar or general helix, then the surface ξ is developable.

Proof. The proof is the same as of the previous proofs.

Example 3.9. Let us consider the well known Viviani’s curve parameterized as

γ(t) =

(
a(1 + cost), asint, 2asin

1

2
t

)
, t ∈ [−2π, 2π], [2]

For a = 0.5 and by changing the parameter as t = 2s, we easily represent the given Viviani’s curve as
in the following way

α(s) =
(
cos2(s), sin(s) cos(s), sin(s)

)
s ∈ [−π, π]

Then, the Frenet apparatus of α = α(s) are given as

T (s) =
2√

2 cos (2s) + 6

(
− sin (2s) , cos (2s) , cos (s)

)

N(s) =
−1√

2 cos (2s) + 6
√

6 cos (2s) + 26

 cos (4s) + 12 cos (2s) + 3
sin (4s) + 12 sin (2s)
4 sin (s)


B(s) =

1√
6 cos (2s) + 26

(
sin (3s) + 3 sin (s) ,− cos (3s)− 3 cos (s) , 4

)

κ =
2
√

3cos(2s) + 13

(3 + cos(2s))
3
2

and τ =
12cos(s)

3cos(2s) + 13
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and the unit Darboux vector is found by

C (s) =



2
√

2 sin (s)3
(

6 cos (s)2 + 5
)

√
18 cos (2s)4 + 207 cos (2s)3 + 999 cos (2s)2 + 2493 cos (2s) + 2683

4
√

2 cos (s)
(

3 cos (s)4 − 2 cos (s)2 − 3
)

√
18 cos (2s)4 + 207 cos (2s)3 + 999 cos (2s)2 + 2493 cos (2s) + 2683

√
2
(

3 cos (2s)2 + 18 cos (2s) + 35
)

√
18 cos (2s)4 + 207 cos (2s)3 + 999 cos (2s)2 + 2493 cos (2s) + 2683


The figures of each ruled surface for −0.5 ≤ v ≤ 0.5 and −π ≤ s ≤ π is presented in the following:

(a) Transparent (default view) (b) Solid (oriented)

Fig. 1. The ruled surface Φ (s, v) from different orientations

(a) Transparent (default view) (b) Solid (oriented)

Fig. 2. The ruled surface Ψ (s, v) from different orientations
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(a) Transparent (default view) (b) Solid (oriented)

Fig. 3. The ruled surface Ω (s, v) from different orientations

(a) Transparent (default view) (b) Solid (oriented)

Fig. 4. The ruled surface ξ (s, v) from different orientations

Example 3.10. To generate a developable surface, we consider this time the regular unit speed

circular helix parameterized as β =
1√
2

(
cos(s), sin(s), s

)
.

The Frenet apparatus and the corresponding unit Darboux vector are given in following:

T (s) =
1√
2

(− sin(s), cos(s), 1) and N(s) = (− cos(s),− sin(s), 0)

B(s) =
1√
2

(sin(s),− cos(s), 1) , κ(s) = τ(s) =
1√
2
, and C(s) = (0, 0, 1)

The figure (5) given below is the image of Φ, Ω, and ξ which simply corresponds to cylinder as a
developable ruled surface for −0.5 ≤ v ≤ 0.5 and −π ≤ s ≤ π. However, the image of Ψ is simply a
line in the space, because the TB- Smarandache curve corresponds to a single point.
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Fig. 5. The image as a developable ruled surface of each Φ, Ω, and ξ is same

4. Conclusion

Overall, in the paper, four new ruled surfaces based on Smarandache curves and ruled by unit Darboux
vector have been introduced. The characteristics of each surface have been drawn. It is seen that the
characteristics of surfaces are effected if the initial curve α is chosen to be a special curve general or
circular helix.
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Abstract − In this study, a new family of odd nakagami exponential (NE-G)
distributions is introduced and investigated as a new generator of continuous dis-
tributions. Quantile, hazard rate function, moments, incomplete moments, order
statistics, and entropies are only a few of the statistical features that are investi-
gated. A unique model is presented and thoroughly examined. To estimate model
parameters based on describing real-life data sets, the maximum likelihood method
is applied. The bias and mean square error of maximum likelihood estimators are
investigated using a comprehensive simulation exercise. Finally, the new family
adaptability is demonstrated via application to real-world data sets.
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1. Introduction

There is a great need for expanded variants of classical distributions in many applied disciplines, such
as lifetime analysis, finance, and insurance. As a result, various efforts have been made to define new
families of probability distributions that expand well-known distributions and allow a high level of
flexibility in modelling data in practise.. Many researchers have suggested a variety of methods for
producing new families of distributions [1]. The beta-generalized family of distributions was created
by Kumaraswamy [2], the Exponentiated-G by [3], the Gamma-G (type I) by [4], the Gamma-G (type
II) by [5], the Generalised Gamma-G by [6], the Log-Gamma-G by [7], Additive Weibull-G by [8],
Beta Marshall-Olkin-G by [9], Logistic-G family by [4], the Generalized Odd Gamma-G by [10],odd-
Gamma-G (type III) by [11], new Weibull-G by [12], the Marshall-Olkin Odd Burr III-G by [13] and
Exponentiated Generalized Power Function Distribution by [14] among others.
[15] has developed and investigated a class of the Nakagami-G family of distributions. The goal of this
study is to introduce the odd Nakagami Exponential-G (NE-G) family of distributions. This family of
distributions is an extension of the Nakagami-G family proposed by [15]. We investigate some of the
new distribution’s statistical properties in depth, use the MLE method to estimate the parameters of
the proposed distribution, and finally fit real-life data sets to the new distribution and some of the
existing families of distributions to compare the NE-G family’s performance.
The cumulative distribution function (cdf ) and probability density function (pdf) of Nakagami Ex-
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ponential distribution (see [15]) is given by

F (x) = γ∗

(
λ,
λ

β

(
1− e−αx

e−αx

)2
)

(1)

f(x) =
2λλαe−αx (1− e−αx)

2λ−1

Γ(λ)βλ (e−αx)2λ+1
e
−λ
β

(
1−e−αx
e−αx

)2

(2)

The following is how the paper might look: In Section 2, a construction of the NE-G family of
distributions is introduced. A special model is provided, along with plots of pdfs, cdfs, survival
functions, and harzad rate functions to demonstrate the models’ flexibility. Our applied study will
be centred on the uniform distribution as a baseline. The parameter estimation and main statistical
properties of the NE-G are presented. In Section 3, a Monte Carlo simulation study is presented. The
proposed model is fitted based on two real data sets in Section 4 and compared to other well-known
models.

2. Constructions of the NE-G Distributions

Equation 2 can be used to calculate the cumulative distribution of a random variable.

P (X ≤ x) = F (x) =

G(x)
1−G(x)∫

0

2λλαe−αx
(
1− e−αt

)2λ−1

Γ(λ)βλ (e−αt)2λ+1
e
−λ
β

(
1−e−αt
e−αt

)2

∂t (3)

Therefore,

F (x) =
1

Γ(λ)
γ

λ, λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2
 (4)

Equation 4 the pdf of Nakagami Exponential G family becomes

f(x) =

2λλαg(x)

[
1− e−α

G(x)
1−G(x)

]2λ−1

Γ(λ)βλ [1−G(x)]2 e
−2λα

(
G(x)

1−G(x)

) e
−λ
β

 1−e
−α

(
G(x)

1−G(x)

)

e
−α

(
G(x)

1−G(x)

)


2

(5)

The survival and hazard rate functions of the NE-G family are, respectively, given by:

R(x) = 1− 1

Γ(λ)
γ

λ, λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2
 (6)

and

hr(x) =

2λλαg(x)

[
1−e

−α G(x)
1−G(x)

]2λ−1

Γ(λ)βλ[1−G(x)]2e
−2λα

(
G(x)

1−G(x)

) e
−λ
β

 1−e
−α

(
G(x)

1−G(x)

)

e
−α

(
G(x)

1−G(x)

)


2

1− 1
Γ(λ)γ

λ, λβ
(

1−e
−α

(
G(x)

1−G(x)

)

e
−α

(
G(x)

1−G(x)

)
)2
 (7)

Figures (1), (2), (3), and (4) show that the shapes of the pdf and cdf are flexible for certain
parameter values. Plots of the hazard rate and survival functions of the NE-U distribution for some
parameter values are shown.
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Fig. 1. NE-U function for λ = 1, β = 1, α = 3, and ϑ = 3

Fig. 2. NE-U function for λ = 1, β = 0.2, α = 3, and ϑ = 3
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Fig. 3. NE-U function for λ = 0.7, β = 1, α = 1, and ϑ = 1

Fig. 4. NE-U function for λ = 1, β = 0.5, α = 1, and ϑ = 3
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2.1. Limiting Behaviour

The cdf defined in Equation 4 must satisfy the Limiting behaviour whether the Nakagami Exponential-
G family of distributions is a valid family of distribution function. The behaviour of the NE-U
distributions at x→ 0 and as x→ 1. In this case, what was considered is: when lim

x→0
G(x) = 0

since γ(λ, 0) =
∫ 0

0 t
λ−1e−t∂t = 0

lim
G(x)→0

F (x) =
1

Γ(λ)
γ

λ, λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2
 = 0 (8)

when lim
x→∞

G(x) = 1

lim
G(x)→∞

F (x) =
1

Γ(λ)
γ

λ, λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2
 = 1 (9)

2.2. Investigation of the Proposed NE-G Family of Distribution

The pdf defined in Equation 5 must satisfy the integral to show whether the Nakagami Exponential-G
family of distributions is a valid family of probability density function.∫ ∞

−∞
f(x)∂x = 1 (10)

∞∫
0

2λλαg(x)

[
1− e−α

G(x)
1−G(x)

]2λ−1

Γ(λ)βλ [1−G(x)]2 e
−2λα

(
G(x)

1−G(x)

) e
−λ
β

 1−e
−α

(
G(x)

1−G(x)

)

e
−α

(
G(x)

1−G(x)

)


2

∂x (11)

let

u =
λ

β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2

⇒
(
uβ

λ

) 1
2

=

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)


∂x =
β [1−G(x)]2 e

−2α
(
G(x)

Ḡ(x)

)

2λαg(x)

(
1− e−α

(
G(x)

Ḡ(x)

))∂u (12)

substituting 12 into 11 yields

λλ−1

Γ(λ)βλ−1

∞∫
0

(
uβ

λ

)λ−1

e−u∂u (13)

The density function defined in Equation 5 is clearly a valid family of distributions, as evidenced by
this.

1

Γ(λ)
× Γ(λ) = 1 (14)

The following are the primary reasons for employing the NE-G family in practice: (i) to give sym-
metrical distributions a skewness; (ii) to model real data with heavy-tailed distributions that aren’t
longer-tailed; (iii) under the same baseline distribution, to provide consistently better fits than other
generated models
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2.3. Expansion for NE-G Density and Distribution Function

Using generalized binomial and taylor expansion, one may obtain

f(x) =

2λλαg(x)

[
1− e−α

G(x)
1−G(x)

]2λ−1

Γ(λ)βλ [1−G(x)]2 e
−2λα

(
G(x)

1−G(x)

) ∞∑
k=0

(−1)k

k!

λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2

k

(15)

=

2λλ+kαg(x)

[
1− e−α

G(x)
1−G(x)

]2λ+2k−1

Γ(λ)βλ+k [1−G(x)]2

∞∑
k=0

(−1)k

k!
e
α[2λ+2k]

(
G(x)

1−G(x)

)
(16)

[
1− e−α

G(x)
1−G(x)

]2λ+2k−1

=

∞∑
i=0

(−1)i
(

2λ+ 2k − 1

i

)
e
−iα

(
G(x)

1−G(x)

)

=
2λλ+kαg(x)

Γ(λ)βλ+k [1−G(x)]2

∞∑
k,i=0

(−1)k+i

k!

(
2λ+ 2k − 1

i

)
e
α[2λ+2k−i]

(
G(x)

1−G(x)

)
(17)

=
2λλ+kαg(x)

Γ(λ)βλ+k

∞∑
k,i,j,p=0

(−1)k+i+p

k!p!

(
2λ+ 2k − 1

i

)(
j + p+ 1

p

)
αj [2λ+ 2k − i]jG(x)j+p (18)

reduced

f(x) =
∞∑

k,i,j,p=0

κk,i,j,phj+p+1(x) (19)

where

κk,i,j,p =
2λλ+kα

Γ(λ)βλ+k

(−1)k+i+p

k!p!

(
2λ+ 2k − 1

i

)(
j + p+ 1

p

)
αj [2λ+ 2k − i]j

[j + p+ 1]

and

hj+p+1(x) = (j + p+ 1)g(x)G(x)j+p

We get by integrating from equation 19 with respect to x.

F (x) =

∞∑
k,i,j,p=0

κk,i,j,pHj+p+1(x) (20)

where

Hj+p+1(x) = G(x)j+p+1

2.4. Properties of the NE-G Distribution

We establish certain mathematical features of the NE-G family in this section.
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2.4.1. Quantile Function

The inverse distribution function is the most popular and simplest method for producing random
variates. The qf of the NE-G family can be obtained by inverting Equation 4 and then solve the
equation numerically. We can utilize the following method:

u = F (x) =
1

Γ(λ)
γ

λ, λ
β

1− e−α
(

G(x)
1−G(x)

)
e
−α
(

G(x)
1−G(x)

)
2
 (21)

G(x) =

1
α log

{{
β
λγ
−1 [λ, uΓ(λ)]

}1/2
+ 1

}
1 + 1

α log

{{
β
λγ
−1 [λ, uΓ(λ)]

}1/2
+ 1

} (22)

2.5. Moment and Moment Generating Function

Moments are crucial in statistical analysis. Moments can be used to investigate some of the most
important characteristics of a distribution.

2.5.1.Moment

The rth ordinary moment of X is given by

E(Xr) = µ′r =

∞∫
0

xrf(x)∂x (23)

The following can be derived from equation 19:

E(Xr) = µ′r =

∞∑
k,i,j,p=0

κk,i,j,pE(Y r
j+p+1) (24)

Yj+p+1 represents the Exp-G distribution with power parameter (j+p + 1). Choosing r = 1 in equation
24, We now have the mean of X.

2.5.2.Moment Generating Function

The moment generating function of X say, MX(t) = E(etX) is given by

MX(t) =
∞∑
r=0

tr

r!
µ′r =

∞∑
k,i,j,p,r=0

trκk,i,j,p
r!

E(Y r
j+p+1) (25)

2.5.3. Incomplete Moments

The kth incomplete moments, say ρk(t), is given by

ρk(t) =

∞∑
r=0

κk,i,j,p

t∫
−∞

hj+p+1(x)∂x (26)
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2.5.4. Entropy

The Rényi entropy of a random variable X is defined mathematically as follows:

IR(σ) =
1

1− σ
log

 ∞∫
0

fσ(x)∂x

 (27)

Where σ > 0 and σ 6= 1. Based on f(x) of any distribution. From equation 5

fσ(x) =


2λλαg(x)

[
1− e−α

G(x)
1−G(x)

]2λ−1

Γ(λ)βλ [1−G(x)]2 e
−2λα

(
G(x)

1−G(x)

) e
−λ
β

 1−e
−α

(
G(x)

1−G(x)

)

e
−α

(
G(x)

1−G(x)

)


2


σ

(28)

fσ(x) =

(
2λλ

Γ(λ)βλ

)σ (
σλ

β

)k ∞∑
k,i,j,p=0

(
(2λ− 1)σ + 2k

i

)(
2σ + j + p− 1

p

)
αj (i− (2λσ + 2k))j

g(x)σG(x)j+p (29)

reduced

fσ(x) =

∞∑
k,i,j,p=0

Λk,i,j,pg(x)σG(x)j+p (30)

where

Λk,i,j,p =

(
2λλ

Γ(λ)βλ

)σ (
σλ

β

)k ((2λ− 1)σ + 2k

i

)(
2σ + j + p− 1

p

)
αj (i− (2λσ + 2k))j

IR(σ) =
1

1− σ
log

 ∞∫
0

∞∑
k,i,j,p=0

Λk,i,j,pg(x)σG(x)j+p∂x

 (31)

2.5.5. Order Statistics

Let x1, x2 . . . , xn be independent random sample from a distribution function, F (x), with an associated
probability density function, f(x). Then, the probability density function of the ith order statistics,
x(i), is given by:

fx(j)
(x) =

n!

(r − 1)!(n− r)!

n−r∑
z=0

(−1)z
(
n− r
z

)
fX(x) [FX(x)]z+r−1 (32)

The pdf of ith order statistic from NE-G distribution is obtained by substituting equation 19 and 20
into 32

fx(j)
(x)=

n!

(r − 1)!(n− r)!

n−r∑
z=0

∞∑
k,i,j,p=0

(−1)z
(
n− r
z

)
κk,i,j,phj+p+1(x)

 ∞∑
k,i,j,p=0

κk,i,j,pHj+p+1(x)

z+r−1

(33)
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2.6. Maximum Likelihood Estimator

The maximum likelihood method is used here to estimate the unknown parameters of the NE-G
family. When constructing confidence intervals, MLEs have desirable properties and provide simple
approximations that work well in finite samples.
The log-likelihood function `(Θ) for the vector of parameters Θ = (λ, β, ξ)T from n observations
(x1, · · · , xn) has the form

`(Θ) = n ln(2) + nλ ln(λ) +
n∑
i=0

ln(g(xi, ξ)) + (2λ− 1)
n∑
i=0

ln

[
1− e

−α
(

G(xi,ξ)

1−G(xi,ξ)

)]
− λ

β

n∑
i=0

1− e
−α G(xi,ξ)

1−G(xi,ξ)

e
−α G(xi,ξ)

1−G(xi,ξ)

2

− n ln(Γ(λ))− nλ ln(β)− 2
n∑
i=0

ln [1−G(xi, ξ)] + 2λα
n∑
i=0

(
G(xi, ξ)

1−G(xi, ξ)

)
(34)

The maximum likelihood estimators can be obtained by numerically solving the following equations

∂`(Θ)

∂λ
= n+ n ln(λ) + 2

n∑
i=0

ln

[
1− e

−α
(

G(xi,ξ)

1−G(xi,ξ)

)]
− 1

β

n∑
i=0

1− e
−α G(xi,ξ)

1−G(xi,ξ)

e
−α G(xi,ξ)

1−G(xi,ξ)

2

− nΓ′(λ)

Γ(λ)
− n ln(β)

+ 2α

n∑
i=0

(
G(xi, ξ)

1−G(xi, ξ)

)
(35)

∂`(Θ)

∂β
=

λ

β2

n∑
i=0

1− e
−α G(xi,ξ)

1−G(xi,ξ)

e
−α G(xi,ξ)

1−G(xi,ξ)

2

− nλ

β
(36)

∂`(Θ)

∂ξ
=

n∑
i=0

g(xi, ξ)′

g(xi, ξ)
+ (2λ− 1)

n∑
i=0

αG(xi, ξ)
′e
−α
(

G(xi,ξ)

1−G(xi,ξ)

)

(1−G(xi, ξ))
2

[
1− e

−α
(

G(xi,ξ)

1−G(xi,ξ)

)] − 2αλ

β

n∑
i=0

G(xi, ξ)
′

(1−G(xi, ξ))2
×

1− e
−α
(

G(xi,ξ)

1−G(xi,ξ)

)
e
−2α

(
G(xi,ξ)

1−G(xi,ξ)

)
+ 2

n∑
1=0

G(xi, ξ)
′

1−G(xi, ξ)
+ 2λα

n∑
i=0

G(xi, ξ)
′

(1−G(xi, ξ))2
(37)

where g(xi, ξ)
′ = ∂g(xi,ξ)

∂ξ and G(xi, ξ)
′ = ∂G(xi,ξ)

∂ξ

2.7. The Nakagami Exponential Uniform (NE-U) Distribution

The cdf and pdf of our baseline distribution, the uniform distribution with parameters (0, ϑ) are given
by:

G(x;ϑ) =
x

ϑ

and

g(x;ϑ) =
1

ϑ
, 0 < x < ϑ

By plugging g(x;ϑ) and G(x;ϑ) into Equation 5, we get the pdf of the NE-U distribution.

f(x) =
2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2
[
1− e−α( x

ϑ−x)
]2λ−1

e−2λα( x
ϑ−x)

e

−λ
β

(
1−e

−α( x
ϑ−x)

e
−α( x

ϑ−x)

)2

(38)
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2.8. Investigation of the Proposed NE-U Distribution

∫ ∞
0

2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2
[
1− e−α( x

ϑ−x)
]2λ−1

e−2λα( x
ϑ−x)

e

−λ
β

(
1−e

−α( x
ϑ−x)

e
−α( x

ϑ−x)

)2

∂x = 1 (39)

let

u =
λ

β

(
1− e−α( x

ϑ−x)

e−α( x
ϑ−x)

)2

(40)

∂x =
β(ϑ− x)2e−

2αx
ϑ−x

2λαϑ
(

1− e−
αx
ϑ−x
)∂u (41)

substituting equation 41 and 40 into equation 39 yield

λλ−1

Γ(λ)βλ−1

∫ ∞
0

(
βu

λ

)λ−1

e−u∂u (42)

∫ ∞
0

f(x)∂x =
1

Γ(λ)
× Γ(λ) = 1 (43)

Hence Nakagami Exponential Uniform Distribution is pdf.

2.8.1. Cdf and Survival and Hazard Function of the NE-U Distribution

The distribution function of NE-U has the form

F (x) = γ1

(
λ,
λ

β

(
eα( x

ϑ−x) − 1
)2
)

(44)

The survival function of NE-U has the form

R(x) = 1− γ1

(
λ,
λ

β

(
eα( x

ϑ−x) − 1
)2
)

(45)

The hazard rate function of NE-U has the form

hrf(x) =

2λλα

ϑΓ(λ)βλ(ϑ−xϑ )
2

[
1−e−α(

x
ϑ−x)

]2λ−1

e
−2λα( x

ϑ−x)
e

−λ
β

(
1−e

−α( x
ϑ−x)

e
−α( x

ϑ−x)

)2

1− γ1

(
λ, λβ

(
eα( x

ϑ−x) − 1
)2
) (46)

2.9. Expansion for NE-U Distribution

In this part a simple form for the probability density function of NE-U distribution is derived.
Using generalized binomial and taylor expansion in the equation 38 one can obtain

e
−λ
β

(
1−e

−α( x
ϑ−x)

e
−α( x

ϑ−x)

)2

=

∞∑
i=0

(−1)i

i!

(
λ

β

)i(1− e−α( x
ϑ−x)

e−α( x
ϑ−x)

)2i

(47)
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Substituting 47 in pdf 38 then, the pdf of NE-U can be written as

f(x) =
2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2
[
1− e−α( x

ϑ−x)
]2λ−1

e−2λα( x
ϑ−x)

∞∑
i=0

(−1)i

i!

(
λ

β

)i(1− e−α( x
ϑ−x)

e−α( x
ϑ−x)

)2i

(48)

[
1−

(
1− e−α( x

ϑ−x)
)]−2(λ+i)

=
∞∑
j=0

(
2(λ+ i) + j − 1

j

)(
1− e−α( x

ϑ−x)
)j

(49)

By inserting 49 in pdf 48 then, the pdf of NE-U can be written as

f(x) =
2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2 ∞∑
i,j=0

(−1)i

i!

(
λ

β

)i(2(λ+ i) + j − 1

j

)(
1− e−α( x

ϑ−x)
)2λ+2i+j−1

(50)

(
1− e−α( x

ϑ−x)
)2λ+2i+j−1

=

∞∑
k=0

(−1)k
(

2λ+ 2i+ j − 1

k

)
e−kα( x

ϑ−x) (51)

Substituting 51 in pdf 50 then, the pdf of NE-U can be written as

f(x) =
2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2 ∞∑
i,j,k=0

(−1)i+k

i!

(
λ

β

)i(2(λ+ i) + j − 1

j

)(
2λ+ 2i+ j − 1

k

)
e−kα( x

ϑ−x) (52)

Therefore, the NE-U distribution reduced to

f(x) =

∞∑
i,j,k=0

qi,j,k(
ϑ−x
ϑ

)2 e
−kαx
ϑ−x (53)

where

qi,j,k =
2λλα

ϑΓ(λ)βλ
(−1)i+k

i!

(
λ

β

)i(2(λ+ i) + j − 1

j

)(
2(λ+ i) + j − 1

k

)

2.10. Quantile Function

It is not possible to obtain the qf of the NE-U distribution explicitly.

x =

ϑ
α log

{{
β
λγ
−1 [λ, uΓ(λ)]

}1/2
+ 1

}
1 + 1

α log

{{
β
λγ
−1 [λ, uΓ(λ)]

}1/2
+ 1

} (54)

2.11. Parameters Estimation

In this section, the method of estimation employed was Maximum Likelihood estimation to estimate
the parameters of the NE-U distribution. Let x1 · · · , xn be a random sample from the NE-U, and
the likelihood function be expressed as follows:

n∏
i=1

f(x) =

n∏
i=1

2λλα

ϑΓ(λ)βλ
(
ϑ−x
ϑ

)2
[
1− e−α( x

ϑ−x)
]2λ−1

e−2λα( x
ϑ−x)

e

−λ
β

(
1−e

−α( x
ϑ−x)

e
−α( x

ϑ−x)

)2

(55)
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Now, in the equation 55, take the log of the likelihood function.

` = n ln(2) + nλ ln(λ) + n ln(α) + (2λ− 1)

n∑
i=1

ln
[
1− e−α( x

ϑ−x)
]
− λ

β

n∑
i=1


[
1− e−α( x

ϑ−x)
]

e−α( x
ϑ−x)


2

− n ln(ϑ)− n ln(Γ(λ))− nλ ln(β)− 2
n∑
i=1

ln

(
x

ϑ− x

)
+ 2λα

n∑
i=1

ln

(
x

ϑ− x

)
(56)

By obtaining the derivative of the equation 56 with respect to λ, β, α, ϑ respectively,

∂`

∂λ
= n ln(λ) + n+ 2

n∑
i=1

ln
[
1− e−α( x

ϑ−x)
]
− 1

β

n∑
i=1


[
1− e−α( x

ϑ−x)
]

e−α( x
ϑ−x)


2

− nΓ′(λ)

Γ(λ)
− n ln(β)

+ 2α

n∑
i=1

ln

(
x

ϑ− x

)
(57)

∂`

∂λ
=

λ

β2

n∑
i=1


[
1− e−α( x

ϑ−x)
]

e−α( x
ϑ−x)


2

− nλ

β
(58)

∂`

∂α
=
n

α
+ (2λ− 1)

n∑
i=1

xe−α( x
ϑ−x)

(ϑ− x) ln
(

1− e−α( x
ϑ−x)

) − 2λ

β

n∑
i=1

 x
[
1− e−α( x

ϑ−x)
]

(ϑ− x)e−2α( x
ϑ−x)


+ 2λ

n∑
i=1

ln

(
x

ϑ− x

)
(59)

∂`

∂ϑ
= −(2λ− 1)

n∑
i=1

xαe−α( x
ϑ−x)

(ϑ− x)2 ln
(

1− e−α( x
ϑ−x)

) +
2λα

β

n∑
i=1

x
[
1− e−α( x

ϑ−x)
]

(ϑ− x)2e−2α( x
ϑ−x)

+

n∑
i=1

(
2

ϑ− x

)

−
n∑
i=1

(
2λα

ϑ− x

)
(60)

equate equations 57 to 60 to zero and solve them using any numerically iterative techniques.

3. NE-U Performance

The proposed NE-U model is evaluated in two ways in this section. The performance of the MLE’s
was examined using a simulation study. Secondly, the goodness of the fit of the NE-U was evaluated
in relation to the other existing distributions.

3.1. Monte Carlo Simulation

The properties of maximum likelihood estimators for the parameters of the NE-U distribution were
investigated using simulation in this section. The Average Bias and MSE of the parameters were
measured. To generate random samples from the NE-U distribution, the quantile function given in
equation 54 was employed. The simulation experiment was repeated N = 10000 times with sample
sizes of n = 25, 50, 75, 100, 125, and parameter values of λ, β, α, ϑ = (0.5, 0.9, 2, 1) and λ, β, α, ϑ =
(0.5, 0.9, 3, 1).
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Fig. 5. Bias Lambda for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 6. Bias Lambda for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 7. Bias Beta for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 8. Bias Beta for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 9. Bias Alpha for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 10. Bias Alpha for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 11. Bias Vartheta for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 12. Bias Vartheta for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 13. MSE Lambda for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 14. MSE Lambda for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 15. MSE Beta for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 16. MSE Beta for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 17. MSE Alpha for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 18. MSE Alpha for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Fig. 19. MSE Vartheta for λ = 0.5, β = 0.9, α = 2, and ϑ = 1

Fig. 20. MSE Vartheta for λ = 0.5, β = 0.9, α = 3, and ϑ = 1
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Figure [5-20] respectively show as the sample size grows, the average bias for the parameter esti-
mators fluctuates upward and downward. The MSE for the parameter estimators, on the other hand,
revealed a declining pattern as the sample size increased.

4. Applications

In this section, we provide application to real data sets to demonstration the applicability of the NE-G
family. The real-world data set was collected on the breaking stress of carbon fibres with a length of
50 mm (GPa). The data has already been used by [16] and [17]. The following is the data set:

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,0.74, 1.04, 1.27, 1.39, 1.49, 1.53,
1.59, 1.61, 1.66,1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5,1.54, 1.6, 1.62, 1.66, 1.69, 1.76,

1.84,2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62,1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51,
1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

Table 1. MLEs and Goodness-of-fit measures for real data set

Model MLE −` W A Ks P-value

NE-U

λ=1.3844747 85.97571 0.08519182 0.518155 0.088342 0.6816
β= 0.3061201
α= 2.6127508
ϑ=21.1906288

Nak-Wei

λ=1.6103057 86.19047 0.09335068 0.5278914 0.10898 0.4133
β= 1.1390558
α=0.2809454
ϑ=0.8761429

GIK-Exp
λ= 4.0944733 89.55029 0.1992844 1.069601 0.12743 0.2342
β=0.8866774
θ=6.6609265
α=0.5132424

Exp.-Wei

λ= 0.5379012 91.99278 0.1818074 0.9721329 0.15906 0.07089
β=1.8126305
α=0.3763266
ϑ= 1.8069314

GOG-Exp
λ= 2.9664896 86.58091 0.1057304 0.6069994 0.094865 0.5925
β=1.5056397
α=0.6131095

OGG-Wei

λ= 1.9006879 159.4275 0.18397049 0.6766763 0.62739 2.2e-16
β= 0.4242168
α=1.5138327
ϑ= 0.7524188

Exp. α= 2.9664896 132.9944 0.2462793 1.33359 0.35813 8.883e-08

Bet-Exp
λ=7.6786602 91.4858 0.2527494 1.369781 0.13384 0.1878
β=7.2017403
α=0.2758384

A summary of the fitted information criteria and MLEs is shown in Table 1. With the minimum of
Cramér-von Misses (W), Anderson Darling (A), and Kolmogorov-Smirnov test (Ks) and the maximum
value of log-likelihood, the proposed Nakagami exponential-uniform distribution has been sorted. As
you can see, all the criteria pointed to the NE-U as the best model. Notably, NE-U’s P-Value is higher
than that of every other distribution.
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5. Conclusion

This study proposes the appropriate NE-G family of distribution for any parent continuous distribution
G. Quantile functions, moments, moments-generating functions, incomplete moments, entropy, and
order statistics are some of the statistical and mathematical aspects of the new generator studied. The
maximum likelihood estimates of model parameters are derived. We finally fitted the proposed NE-U
model, among others, to real-life data and found that the Nakagami Exponential Uniform distribution
outperformed its competitors. We anticipate that this generalisation will lead to other statistical
applications.
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1. Introduction

Many authors have investigated the relationship between the commutativity of a ring and the act of
derivations(reverse derivation, (α, β)-reverse derivation, multiplicative reverse derivation, multiplica-
tive (generalised) - (α, β)-reverse derivation etc.) defined on ring. Herstein was the first to introduce
the concept of reverse derivation [1]. He shows that if R is a prime ring, and d is a nonzero reverse
derivation of R, then R is a commutative integral domain, and d is a derivation. Firstly, Samman and
Alyamani extended the result of Herstein to semiprime rings and investigated some more properties of
reverse derivations in [2]. Asma and Bano inquired into some identities involving multiplicative (gen-
eralised) reverse derivation and demonstrated some theorems in which we characterise these mappings
in [3]. Sandhu and Kumar investigate some properties of multiplicative reverse derivations on prime
rings in [4]. Tiwari et al. described multiplicative (generalised) reverse derivation in [5]. The pa-
per, as mentioned earlier, substantiated the commutativity of semiprime rings getting a multiplicative
(generalised) reverse derivation satisfying some identities. Alhaidary and Majeed [6] proved com-
mutativity of prime ring admitting a multiplicative (generalised) (α, β) reverse derivation such that
α and β are automorphism on the prime ring, satisfying some identities. Further, they investigate
some more properties of multiplicative (generalised)-(α, β)-reverse derivation of prime rings on square
closed Lie ideals in [7]. The present paper study is directly motivated by the studies mentioned earlier
and the work of Ulutaş and Gölbaşı [8]. We aim to investigate some identities with multiplicative
(generalised) - (α, α)- reverse derivation on a nonzero ideal of a semiprime ring. Thus, we proved the
following theorem:

1handankarahan1709@gmail.com; 2neseta@comu.edu.tr; 3dyesil@comu.edu.tr(Corresponding Author)
12,3 Department of Mathematics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale,
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Theorem 1.1. Let R be a semiprime ring, α is an anti-epimorphism of R, I  Kerα is a nonzero
ideal of R and F is a nonzero multiplicative (generalised)-(α, α)-reverse derivation with the map d of
R. If one of the following conditions holds,

i. F ([x, y]) = 0,

ii. F (xoy) = 0,

iii. F ([x, y]) = ±α([x, y]),

iv. F (xoy) = ±α(xoy),

v. F ([x, y]) = ±α(xoy),

vi. F (xoy) = ±α([x, y]),

vii. F ([x, y]) = ±α([F (x), y]),

viii. F (xoy) = ±α(F (x)ox),

ix. F (xy) = F (x)F (y),

x. F (xy) + F (x)F (y) = 0,

for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

2. Preliminaries

If the ring R satisfies the condition, a = 0 while aRa = (0) for a ∈ R, it is called a semiprime ring.
An additive mapping d : R → R is called (α, α)−derivation if d(xy) = d(x)α(y) + α(x)d(y) holds
for all x, y ∈ R, where α is automorphism of R. An additive mapping d : R → R is a reverse
derivation, if d(xy) = d(y)x + yd(x) for all x, y ∈ R. Let d : R → R be a map. If for all x, y ∈ R,
d(xy) = d(y)α(x) +α(y)d(x) such that α is an anti-epimorphism of R, then d is called multiplicative-
(α, α)-reverse derivation. Let F : R → R be a mapping and d be a multiplicative (α, α)-reverse
derivation . If for all x, y ∈ R,

F (xy) = F (y)α(x) + α(y)d(x)

then F is a called multiplicative (generalised)-(α, α)-reverse derivation associated with d. Hence the
concept of multiplicative (generalised)-(α, α)-reverse derivation involves the concept of multiplicative
(α, α)-reverse derivation and multiplicative generalised reverse derivation. Below, a multiplicative
(generalised)-(α, α)-reverse derivation which is not multiplicative (generalised)-(α, α)-derivation and
multiplicative (generalised)-(α, α)-derivation, which is not multiplicative (generalised)-(α, α)-reverse
derivation examples, are given, respectively.

Example 2.1. Let (R,+, .) be a commutative ring, and (S,⊕,�) be a noncommutative ring. Now
let’s consider operation ~ : S×S → S, a~ b = b�a. With these operations (S,⊕,~) called opposite
ring and it is shown Sop.

α : Sop → Sop is identity mapping, d : Sop → Sop is a multiplicative (α, α)-derivation, and
F : Sop → Sop is a multiplicative (generalised)-(α, α)- derivation of R associated with a nonzero
mapping d of R. Define the maps µ, φ, ϕ : R × Sop → R × Sop as follows: µ(a, x) = (a, F (x)),
φ(a, x) = (a, d(x)) and ϕ(a, x) = (a, α(x)). ϕ is an anti-homomorphism of R, and φ is multiplicative
(ϕ,ϕ)-reverse derivation.

Then it is straightforward to verify that µ is a multiplicative (generalised)-(ϕ,ϕ)-reverse derivation
associated with φ, but µ is not a multiplicative (generalised)-(ϕ,ϕ)-derivation of R.

Example 2.2. Now, define the maps µ, φ, ϕ : R × Sop → R × Sop as follows: µ(a, x) = (F (a), x),
φ(a, x) = (d(a), x) and ϕ(a, x) = (α(a), x). φ is multiplicative (ϕ,ϕ)-derivation, and ϕ is an anti-
homomorphism of R.

It is easy to see that µ is a multiplicative (generalised)-(ϕ,ϕ)-derivation if there exists a mapping
φ, but µ is not a multiplicative (generalised)-(ϕ,ϕ)- reverse derivation of R.
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3. Main Results

As of now on, R refers a semiprime ring, α is an anti-epimorphism of R, I is a nonzero ideal of R
such that I  Ker(α) and F is a nonzero multiplicative (generalised)-(α, α)-reverse derivation with
the map d of R unless otherwise mentioned.

Lemma 3.1. d is a multiplicative -(α, α)-reverse derivation, that is, d(xy) = d(y)α(x) +α(y)d(x) for
all x, y ∈ R.

Proof. By our assumption, we have

F (xz) = F (z)α(x) + α(z)d(x) for all x, z ∈ R. (1)

We put x = xy, y ∈ R in (1), and since α is an anti-epimorphism of R,

F ((xy)z) = F (z)α(y)α(x) + α(z)d(xy) for all x, y, z ∈ R. (2)

Since (xy)z = x(yz) and F is a multiplicative (generalised)-(α, α)-reverse derivation associated with
the map d, that is

F (x(yz)) = F (z)α(y)α(x) + α(z)d(y)α(x) + α(yz)d(x) for all x, y, z ∈ R. (3)

Subtracting (3) from (2), we obtain

α(z)(d(xy)− d(y)α(x)− α(y)d(x)) = 0 for all x, y, z ∈ R.

That is,

α(R)(d(xy)− d(y)α(x)− α(y)d(x)) = 0 for all x, y ∈ R.

Since α is an anti-epimorphism of R, α(R) = R and hence from above we have

R(d(xy)− d(y)α(x)− α(y)d(x)) = 0 for all x, y ∈ R. (4)

Left multipliying (4) by d(xy)− d(y)α(x)− α(y)d(x), we get
d(xy) − d(y)α(x) − α(y)d(x)R(d(xy) − d(y)α(x) − α(y)d(x)) = 0 for all x, y ∈ R. Since R is a

semiprime ring, we have

d(xy)− d(y)α(x)− α(y)d(x) = 0 for all x, y ∈ R.

Lemma 3.2. F (0) = 0.

Proof. From the definition of F, we get

F (xz) = F (z)α(x) + α(z)d(x) for all x, z ∈ R. (5)

Taking x = 0 and z = 0 in (5), one can obtain

F (0) = F (0)α(0) + α(0)d(0). (6)

Since α is an additive map of R, it gives us F (0) = 0.
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Theorem 3.3. If F ([x, y]) = 0 for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. From our assumption,

F ([x, y]) = 0 for all x, y ∈ I. (7)

If we write yx instead of x in (7), we get

0 = F ([yx, y]) = F (y[x, y] + [y, y]x) for all x, y ∈ I. (8)

Besides, since F is a nonzero multiplicative (generalised)-(α, α)-reverse derivation with the map d, we
have

F ([x, y])α(y) + α([x, y])d(y) = 0 for all x, y ∈ I. (9)

When editing the last equation, we obtained

α([x, y])d(y) = 0 for all x, y ∈ I. (10)

That is,

[α(x), α(y)]d(y) = 0 for all x, y ∈ I. (11)

Since α is an anti-epimorphism of R,

[z, α(y)]d(y) = 0 for all y ∈ I, z ∈ J, (12)

where J = α(I) a nonzero ideal of R. We put z = rz, where z ∈ J, r ∈ R in (12),

[r, α(y)]zd(y) = 0 for all y ∈ I, z ∈ J, r ∈ R. (13)

We put z = zα(y) in (13),

[r, α(y)]zα(y)d(y) = 0 for all y ∈ I, z ∈ J, r ∈ R. (14)

Right multipliying (13) by α(y),

[r, α(y)]zd(y)α(y) = 0 for all y ∈ I, z ∈ J, r ∈ R. (15)

Subtracting (15) from (14),

[r, α(y)]z[d(y), α(y)] = 0 for all y ∈ I, z ∈ J, r ∈ R. (16)

Replacing r by d(y) in (16),

[d(y), α(y)]z[d(y), α(y)] = 0 for all y ∈ I, z ∈ J, r ∈ R,

where J = α(I) a semiprime ring, we get the required result.
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Theorem 3.4. If F (xoy) = 0 for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. From the hypothesis,

F (xoy) = 0 for all x, y ∈ I. (17)

Substituting y by yx in (17),

α(xoy)d(x) = 0 for all x, y ∈ I. (18)

Replacing y by zy, z ∈ I in (18), and using α is an anti-epimorphism of R, we get

[α(x), w]td(x) = 0 for all x ∈ I, w, t ∈ J. (19)

Replacing w by wd(x) in (19),

w[α(x), d(x)]td(x) = 0 for all x ∈ I, w, t ∈ J. (20)

Right multiplying (20) by α(x),

w[α(x), d(x)]td(x)α(x) = 0 for all x ∈ I, w, t ∈ J. (21)

We put t = tα(x) in (20),

w[α(x), d(x)]tα(x)d(x) = 0 for all x ∈ I, w, t ∈ J. (22)

Subtracting (22) from (21),

w[α(x), d(x)]t[α(x), d(x)] = 0 for all x ∈ I, w, t ∈ J. (23)

Replacing t by w in (23),

w[α(x), d(x)]tw[α(x), d(x)] = 0 for all x ∈ I, w, t ∈ J,

where J = α(I) is semiprime ring, we get the required result.

Theorem 3.5. If F ([x, y]) = ±α([x, y]) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. By our assumption,

F ([x, y]) = ±α([x, y]) for all x, y ∈ I. (24)

Replacing x with yx in (24),

α([x, y])d(x) = 0 for all x, y ∈ I.

Using the same arguments after (10) in the proof of Theorem 3.3, the desired result is obtained.

Theorem 3.6. If F (xoy) = ±α(xoy) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.
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Proof. From the assumption,

F (xoy) = ±α(xoy) for all x, y ∈ I. (25)

Substituting x by yx in (25),

α(xoy)d(y) = 0 for all x, y ∈ I.

Since the last case is the same as the equation (10) and using the similar argument as used in the
Theorem 3.4, the desired result is obtained.

Theorem 3.7. If F ([x, y]) = ±α(xoy) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. By the assumption,

F ([x, y]) = ±α(xoy) for all x, y ∈ I. (26)

Replacing x with yx in (26),

α([x, y])d(y) = 0 for all x, y ∈ I.

The last expression is the same as the relation (10) and hence using the similar argument as used in
Theorem 3.3, we get the required result.

Theorem 3.8. If F (xoy) = ±α([x, y]) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. Substituting yx instead of x in hypothesis,

α(xoy)d(y) = 0 for all x, y ∈ I.

Since the last expression is the same as the equation (18), the desired result is obtained by the following
similar steps in the Theorem 3.4,

Theorem 3.9. If F ([x, y]) = ±α([F (x), y]) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. By the supposition, we have

F ([x, y]) = ±α([F (x), y]) for all x, y ∈ I. (27)

We put y = xy in (27),

α([x, y])d(x) = ±α(y)α([F (x), x]) for all x, y ∈ I. (28)

Replacing x in place of y in (27),

± α([F (x), x]) = 0 for all x ∈ I. (29)

Appliying (29), (28) yields that

α([x, y])d(x) = 0 for all x, y ∈ I.
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The equation is same as the equation (10) in Theorem 3.3, thus we proceed in the same way as in
Theorem 3.3 and we get the required result.

Theorem 3.10. If F (xoy) = ±α(F (x)ox) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. By the hypothesis,

F (xoy) = ±α(F (x)ox) for all x, y ∈ I. (30)

Replacing y with xy in (30),

α(xoy)d(x) = ±α(y)α([F (x), x]) for all x, y ∈ I. (31)

Substituting yr, r ∈ R for y in (31) and using this equation,

α([x, r])α(y)d(x) = 0 for all x, y ∈ I, r ∈ R. (32)

Seeing α is an anti-epimorphism of R,

[α(x), r]zd(x) = 0 for all x ∈ I, z ∈ J, r ∈ R.

The last expression is the same as the relation (13) and hence using the similar argument as used in
Theorem 3.3, we get the required result.

Theorem 3.11. If F (xy) = F (x)F (y) for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. By the hypothesis,

F (xy) = F (x)F (y) for all x, y ∈ I. (33)

Then replacing y with xy in (33),

F (x(xy)) = F (xy)α(x) + F (x)α(y)d(x) for all x, y ∈ I. (34)

Since F is a nonzero multiplicative generalised-(α, α)-reverse derivation associated with a nonzero
mapping d of R, it follows that

F (x(xy)) = F (xy)α(x) + α(xy)d(x) for all x, y ∈ I. (35)

Subtracting (35) from (34),

(α(xy)− F (x)α(y))d(x) = 0 for all x, y ∈ I. (36)

Substituting yr, r ∈ R for y in (36) and since α is an anti-epimorphism of R,

(rα(xy)− F (x)rα(y))d(x) = 0 for all x, y ∈ I, r ∈ R. (37)

Replacing r with F (z), where z ∈ I, in (37),

(F (z)α(xy)− F (x)F (z)α(y))d(x) = 0 for all x, y, z ∈ I. (38)
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Left multiplying (36) by F (z) and then subracting from (38),

(F (zx)− F (xz))α(y)d(x) = 0 for all x, y, z ∈ I. (39)

Replacing xz in place of z in (39),

α([z, x])d(x)α(y)d(x) = 0 for all x, y, z ∈ I. (40)

Since for r ∈ R, [z, x]r ∈ I, we put y = [z, x]r in (40) and α is an anti-epimorphism of R,

α([z, x])d(x)Rα([z, x])d(x) = 0 for all x, z ∈ I. (41)

Since R is a semiprime ring,

α([z, x])d(x) = 0 for all x, z ∈ I. (42)

Replacing z with zr, where r ∈ R, in (42),

[α(r), α(x)]α(z)d(x) = 0 for all x, z ∈ I, r ∈ R. (43)

Right multiplying (43) by α(x),

[α(r), α(x)]α(z)d(x)α(x) = 0 for all x, z ∈ I, r ∈ R. (44)

Replacing xz in place of z in (43) and then subracting from (44),

[α(r), α(x)]α(z)[d(x), α(x)] = 0 for all x, z ∈ I, r ∈ R. (45)

Since α is an anti-epimorphism of R, α(R) = R and hence from above,

[r, α(x)]α(I)[d(x), α(x)] = 0 for all x ∈ I, r ∈ R. (46)

We put r = d(x) in (46) and since α is an anti-epimorphism of R,

[d(x), α(x)]α(I)[d(x), α(x)] = 0 for all x ∈ I. (47)

Since α(I) is a semiprime ring,
[d(x), α(x)] = 0 for all x ∈ I.

Theorem 3.12. If F (xy) + F (x)F (y) = 0 for all x, y ∈ I, then [α(x), d(x)] = 0 for all x ∈ I.

Proof. If F is a nonzero multiplicative generalised-(α, α)-reverse derivation associated with a nonzero
map d, then −F is a nonzero multiplicative generalised-(α, α)-reverse derivation associated with a
nonzero map −d. We get the results by replacing F with −F and d with −d in Theorem 3.11.

Theorem 3.13. If F (xy) = F (y)F (x) for all x, y ∈ I, then α(I)d(I) = 0 and [F (y), α(y)] = 0 for all
y ∈ I.
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Proof. We have

F (xy) = F (y)F (x) for all x, y ∈ I. (48)

Then replacing x with xz in (48), where z ∈ I,

F ((xz)y) = F (zy)α(x) + F (y)α(z)d(x) for all x, y, z ∈ I. (49)

Since F is a nonzero multiplicative generalised-(α, α)-reverse derivation associated with a nonzero map
d of R,

F (x(zy)) = F (zy)α(x) + α(y)α(z)d(x) for all x, y, z ∈ I. (50)

Subtracting (49) from (50),

(F (y)− α(y))α(z)d(x) = 0 for all x, y, z ∈ I. (51)

Substituting z by zr, r ∈ R in (51) and since α is an anti-epimorphism of R,

(F (y)− α(y))Rα(z)d(x) = 0 for all x, y, z ∈ I. (52)

We put x = y in (52),

(F (y)− α(y))Rα(z)d(y) = 0 for all y, z ∈ I. (53)

Left multiplying (53) by F (z), that is

F (z)(F (y)− α(y))Rα(z)d(y) = 0 for all x, y, z ∈ I. (54)

Again, from (48) we can write F (z)α(y) + α(z)d(y) = F (z)F (y) for all x, y, z ∈ I, that is

F (z)(F (y)− α(y)) = α(z)d(y) for all x, y, z ∈ I. (55)

Let’s substitute (55) in (54), we get F (z)(F (y)−α(y))RF (z)(F (y)−α(y)) = 0 for all y, z ∈ I. More-
over α(z)d(y)Rα(z)d(y) = 0 for all x, z ∈ I where R is semiprime ring, we conclude that α(z)d(y) = 0
for all x, z ∈ I, that is α(I)d(I) = 0 and F (z)(F (y)− α(y)) = 0 for all y, z ∈ I. Thus we have

F (xy) = F (y)α(x) for all x, y ∈ I.

Now putting z = yz and y = y2 in F (z)(F (y)− α(y)) = 0 for all y, z ∈ I,

F (z)α(y)(F (y)− α(y)) = 0 for all y, z ∈ I. (56)

and

F (z)(F (y)α(y)− α(y)2) = 0 for all y, z ∈ I. (57)
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Subtracting (57) from (56),

F (z)[F (y), α(y)] = 0 for all y, z ∈ I. (58)

We put z = xz in (58),

F (z)α(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (59)

Then replacing z with z2 in (59) and since α is an anti-epimorphism of R,

F (z)α(z)α(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (60)

We put x = xz in (59), we obtain

F (z)α(z)α(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (61)

Left multiplying (59) by α(z), that is

α(z)F (z)α(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (62)

Subtracting (61) from (62), we obtain

[F (z), α(z)]α(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (63)

Then replacing x with xr, r ∈ R in (63), and since α is an anti-epimorphism of R,

[F (z), α(z)]Rα(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (64)

Left multiplying (64) by α(x), we obtain

α(x)[F (z), α(z)]Rα(x)[F (y), α(y)] = 0 for all x, y, z ∈ I. (65)

We put y = z in (65), for all x, y, z ∈ I

α(x)[F (z), α(z)]Rα(x)[F (z), α(z)] = 0 for all x, z ∈ I,

is obtained.Since F and α(I) is semiprime ring, we conclude that [F (y), α(y)] = 0 for all y ∈ I.

Theorem 3.14. If F (xy) + F (y)F (x) = 0 for all x, y ∈ I, then α(I)d(I) = 0 and [F (y), α(y)] = 0
for all y ∈ I.

Proof. If F is a nonzero multiplicative generalised-(α, α)-reverse derivation associated with a nonzero
map d, then −F is a nonzero multiplicative (generalised)-(α, α)-reverse derivation associated with a
nonzero map d. Thus replacing F with −F and d with −d in Theorem 3.13.
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4. Conclusions

We have shown some properties of a nonzero ideal of a semiprime ring with multiplicative (generalised)
(α, α)-reverse derivation. Moreover, when R is a semiprime ring, α is an anti-epimorphism of R, I
is a nonzero ideal of R such that I  Ker(α) and F : R → R is a nonzero multiplicative (gener-
alised) (α, α)-reverse derivation, we investigated the commutativity of semiprime rings. Also, we give
examples for each multiplicative (generalised) (α, α)-reverse derivation and generalised (α, α)-reverse
derivation. Furthermore, we adapt some well-known results in reverse derivation to (α, α)-reverse
derivation. The commutativity of a ring can be investigated in the sense of this article and the articles
in [9–13].
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Abstract − In the fight against the COVID-19 pandemic, it is vital to rapidly diagnose possible 

contagions, treat patients, plan follow-up procedures with correct and effective use of resources and 

ensure the formation of herd immunity. The use of machine learning and statistical methods provides 

great convenience in dealing with too many data produced during research. Since access to the PCR 

test used for the diagnosis of COVID-19 may be limited, the test is relatively too slow to yield results, 

the cost is high, and its reliability is controversial; thus, making a symptomatic classification before 

the PCR is timesaving and far less costly. In this study, by modifying a state-of-the-art classification 

method, namely Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier (FPFS-CMC), 

an effective method is developed for a rapid diagnosis of COVID-19. The paper then presents the 

accuracy, sensitivity, specificity, and F1-score values that represent the diagnostic performances of the 

modified method. The results show that the modified method can be adopted as a competent and 

accurate diagnosis procedure. Afterwards, a tirage study is performed by calculating the patients’ risk 

scores to manage inpatient overcrowding in healthcare institutions. In the subsequent section, a vaccine 

priority algorithm is proposed to be used in the case of a possible crisis until the supply shortage of a 

newly developed vaccine is over if a possible variant of COVID-19 that is highly contagious is 

insensitive to the vaccine. The accuracy of the algorithm is tested with real-life data. Finally, the need 

for further research is discussed. 

Keywords − Medical diagnosing, prioritizing treatment, planning vaccination priority, fpfs-matrices, soft decision-making 

Mathematics Subject Classification (2020) – 03E72, 68Q32 

1. Introduction 

1.1. Diagnosis of COVID-19 

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected our lives for the past two 

years. Rapid diagnosis of possible contagions, planning of follow-up treatment, and effective use of resources 

have vital importance in the fight against the COVID-19 pandemic. The use of machine learning and statistical 

methods provides great convenience to deal with these difficulties. In the literature, there are several common 
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classifiers, such as Support Vector Machine (SVM) [1], Fuzzy k-Nearest Neighbour (Fuzzy kNN) [2], 

AdaBoost [3], Decision Tree (DT) [4], Fuzzy Soft Set Classifier (FSSC) [5], Fuzzy Soft Set Classifier Using 

Distance-Based Similarity Measure (FussCyier) [6], and Hamming Distance-Based Fuzzy Soft Set Classifier 

(HDFSSC) [7]. Recently, a novel classifier, i.e., Compare-Matrix Based Fuzzy Parameterized Fuzzy Soft 

Classifier (FPFS-CMC) [8,9] that produces high scores in “Breast Cancer”, “Parkinsons[sic]”, and 

“Parkinson’s Diseases” datasets provided in UCI Machine Learning Repository [10], has been prominent 

among the aforesaid classifiers in medical diagnosis. However, it has not been applied to COVID-19 yet. 

Therefore, it is worth studying to diagnose COVID-19 via the classifier. This study, firstly, detects whether 

the individual is COVID-19 positive by utilizing a state-of-the-art classification method FPFS-CMC. 

COVID-19: SARS-CoV-2 was first reported in Wuhan, China, in December 2019 and spread rapidly 

worldwide. COVID-19 formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. This 

virus is a droplet infection [11]. The available research on COVID-19 has been increasing [12-18]. Moreover, 

several datasets related to COVID-19 have been shared in data repositories, such as UCI and Kaggle. This 

study uses the datasets titled “Symptoms and COVID Presence (May 2020 data)”, “Covid-19 Symptoms”, and 

“Brazilian Covid Symptomatic Patients Data” [19-21], provided in Kaggle Data Repository to diagnose 

COVID-19 by using a classification method (classifier). 

Classifiers: Supervised learning is a sub-field of machine learning which is commonly used in various 

fields, particularly defense industry, meteorology, psychology, finance, medicine, astronomy, and space 

sciences. Classification is a supervised learning technique that learns a predictive model from the training data 

to make an accurate prediction of a datum’s label [22]. Classifiers utilize the information of the training set, 

whose labels are known, and predict the class label of a sample with an unknown label. So far, many classifiers 

have been produced, such as SVM, Fuzzy kNN, AdaBoost, DT, FSSC, FussCyier, and HDFSSC. 

Lately, a state-of-the-art classifier FPFS-CMC, which employs the modeling capability of fuzzy 

parameterized fuzzy soft matrices (fpfs-matrices) [23] in real-world problems containing uncertainties, has 

been proposed. FPFS-CMC produces high scores than the aforesaid classifiers in “Breast Cancer”, 

“Parkinsons[sic]”, and “Parkinson’s Disease” datasets provided in UCI Machine Learning Repository [10]. 

Therefore, this study utilizes FPFS-CMC to diagnose COVID-19. 

1.2.  Follow-Up Treatment Priority in COVID-19 Patients 

Designing an algorithm to calculate each patient’s risk score is crucial for hospitals to provide better follow-

up methods and treatment services. These unique risk scores for patients who have tested positive for COVID-

19 have significance to compare the severity levels of the disease in patients. This study secondly determines 

how severely the patient will recover from the virus by comparing risk scores.  

Comorbidities: Comorbidities can negatively affect patients’ conditions during COVID-19 

[13,14,17,18]. This study focuses on the common comorbidities during COVID-19 – namely, hypertension, 

cardiovascular diseases, cancer, chronic kidney failure, and diabetes. 

1.3. Vaccination Priority Planning 

Furthermore, the COVID-19 vaccination priority planning is essential to overcoming a possible crisis until the 

supply shortage of a newly developed vaccine is over in the case a possible highly contagious variant of 

COVID-19 is insensitive to the vaccine. Besides, planning for booster doses is another issue that needs to be 

considered when an inadequate number of vaccines are available. This study thirdly produces a ranking order 

among individuals who are willing to get vaccinated based on their vaccination priority scores. Finally, it 

discusses the need for further research.  
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Current Vaccination Applications: Currently, several criteria are being utilized in the vaccination 

process. While planning for vaccination, the Turkish Ministry of Health [16] focused on systemic diseases, 

age, and occupation of an individual who will be vaccinated. This study expands these criteria to make a more 

specific analysis of the vaccination process. It considers seven criteria, i.e., systemic disease, age, presence of 

risk group individuals in the immediate vicinity, presence of COVID-19 history, province-district, 

transportation preference, and occupation, to make a better priority planning. The framework in this study is 

shown in Fig. 1. 

 
Fig.  1. Flowchart of the proposed work 

2. Hypotheses: 

This study considers the following hypotheses: 

i. If FPFS-CMC is used in medical diagnosis, then whether the individual has COVID-19 can be determined. 

ii. If the risk score of the patient can be calculated by looking at the patient’s age and systemic diseases, then 

the follow-up treatment priorities of patients can be compared. 

iii. If such parameters as systemic disease history, age, presence of risk-group individuals in the immediate 

vicinity, presence of COVID-19 history, province-district, transportation preference, and occupation can be 

obtained, then individuals’ vaccination priority scores can be calculated.  
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3. Preliminaries 

This study presents some of the basic definitions required in the next sections. Throughout this study, let 𝐸 be 

a parameter set, 𝑈 be a universal set, 𝐹(𝐸) be the set of all the fuzzy sets over 𝐸, and 𝜇 ∈ 𝐹(𝐸). Here, 𝜇 ≔

{ 𝑥 
𝜇(𝑥) : 𝑥 ∈ 𝐸}.  

Definition 1. [24] Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be a function from 𝜇 to 𝐹(𝑈). Then, the set 

{( 𝑥 
𝜇(𝑥) , 𝛼( 𝑥 

𝜇(𝑥) )) | 𝑥 ∈ 𝐸}, being the graphic of 𝛼, is called a fuzzy parameterized fuzzy soft set (fpfs-set) 

parameterized via 𝐸 over 𝑈 (or briefly over 𝑈). 

Moreover, the set of all the fpfs-sets parameterized via 𝐸 over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). 

Definition 2. [23] Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called fpfs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {
𝜇(𝑥𝑗), 𝑖 = 0

𝛼 ( 𝑥𝑗 
𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0

 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. Moreover, the set of all the fpfs-matrices 

parameterized via 𝐸 over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸[𝑈]. 

Definition 3. Let 𝑢, 𝑣 ∈ ℝ𝑛. Then, the function 𝑃:ℝ𝑛 ×ℝ𝑛 → [−1,1] defined by 

𝑃(𝑢, 𝑣) ≔
𝑛∑ 𝑢𝑖𝑣𝑖

𝑛
𝑖=1 − (∑ 𝑢𝑖

𝑛
𝑖=1 )(∑ 𝑣𝑖

𝑛
𝑖=1 )

√[𝑛∑ 𝑢𝑖
2𝑛

𝑖=1 − (∑ 𝑢𝑖
𝑛
𝑖=1 )

2
] [𝑛∑ 𝑣𝑖

2𝑛
𝑖=1 − (∑ 𝑣𝑖

𝑛
𝑖=1 )

2
]

 

Definition 4. [25] Let 𝐷𝑡𝑟𝑎𝑖𝑛 with 𝑚1 × 𝑛 and 𝐶𝑚1×1 be a training matrix and the class column vector of 

𝐷𝑡𝑟𝑎𝑖𝑛. Then, 𝑓𝑤 is called the feature weight vector based on the Pearson correlation coefficient of 𝐷𝑡𝑟𝑎𝑖𝑛 and 

is denoted by 

𝑓𝑤1𝑗 ≔ |𝑃(𝐷𝑡𝑟𝑎𝑖𝑛−𝑗, 𝐶)|,    𝑗 ∈ 𝐼𝑛 ≔ {1, 2, 3,⋯ , 𝑛} 

Definition 5. Let 𝑢 ∈ ℝ𝑛. Then, the vector  𝑢̂ ∈ ℝ𝑛 defined by 

𝑢̂𝑖 ≔

{
 
 

 
 𝑢𝑖 −min

𝑘∈𝐼𝑛
{𝑢𝑘}

max
𝑘∈𝐼𝑛

{𝑢𝑘} − min
𝑘∈𝐼𝑛

{𝑢𝑘}
, max

𝑘∈𝐼𝑛
{𝑢𝑘} ≠ min

𝑘∈𝐼𝑛
{𝑢𝑘}

1, max
𝑘∈𝐼𝑛

{𝑢𝑘} = min
𝑘∈𝐼𝑛

{𝑢𝑘}

,        𝑖 ∈ 𝐼𝑛 

is called normalizing vector of 𝑢. 
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Definition 6. Let 𝑢 ∈ ℝ𝑛. Then, the standard deviation of 𝑢 is defined by 

std(𝑢) ≔
√∑ (𝑢𝑖 −

1
𝑛
∑ 𝑢𝑖
𝑛
𝑖=1 )𝑛

𝑖=1

𝑛 − 1
 

Definition 7. [25] Let 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1)
 be a data matrix, 𝑖 ∈ 𝐼𝑚, and 𝑗 ∈ 𝐼𝑛. Then, the matrix 𝐷̃ = [𝑑̃𝑖𝑗]𝑚×𝑛

 

defined by 

𝑑̃𝑖𝑗 ≔

{
 
 

 
 

𝑑𝑖𝑗 − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

 

is called column normalized matrix (feature-fuzzification matrix) of 𝐷. 

Definition 8. [25] Let (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛 be a training matrix obtained from 𝐷 = [𝑑𝑖𝑗]𝑚×(𝑛+1)
. Then, the matrix 

𝐷̃𝑡𝑟𝑎𝑖𝑛 = [𝑑̃𝑖𝑗−𝑡𝑟𝑎𝑖𝑛]𝑚1×𝑛
 defined by 

𝑑̃𝑖𝑗−𝑡𝑟𝑎𝑖𝑛 ≔

{
 
 

 
 
𝑑𝑖𝑗−𝑡𝑟𝑎𝑖𝑛 − min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

, 𝑖 ∈ 𝐼𝑚1
 and 𝑗 ∈ 𝐼𝑛 

is called column normalized matrix (feature-fuzzification matrix) of 𝐷𝑡𝑟𝑎𝑖𝑛. 

Definition 9. [25] Let (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛 be a training matrix obtained from 𝐷 ≔ [𝑑𝑖𝑗]𝑚×(𝑛+1). Then, the matrix 

𝐷̃𝑡𝑒𝑠𝑡 = [𝑑̃𝑖𝑗−𝑡𝑒𝑠𝑡]𝑚2×𝑛
 defined by 

𝑑̃𝑖𝑗−𝑡𝑒𝑠𝑡 ≔

{
 
 

 
 
𝑑𝑖𝑗−𝑡𝑒𝑠𝑡 − min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} − min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}
, max

𝑘∈𝐼𝑚
{𝑑𝑘𝑗} ≠ min

𝑘∈𝐼𝑚
{𝑑𝑘𝑗}

1, max
𝑘∈𝐼𝑚

{𝑑𝑘𝑗} = min
𝑘∈𝐼𝑚

{𝑑𝑘𝑗}

, 𝑖 ∈ 𝐼𝑚2
 and 𝑗 ∈ 𝐼𝑛 

is called column normalized matrix (feature-fuzzification matrix) of 𝐷𝑡𝑒𝑠𝑡. 

Definition 10. [25] Let [𝑎𝑖𝑗]𝑚×𝑛, [𝑏𝑖𝑗]𝑚×𝑛 ∈ 𝐹𝑃𝐹𝑆𝐸
[𝑈] and 𝑝 ∈ ℤ+. Then, the mapping 𝑠𝑀

𝑝
: 𝐹𝑃𝐹𝑆𝐸[𝑈] ×

𝐹𝑃𝐹𝑆𝐸[𝑈] → ℝ defined by 

𝑠𝑀
𝑝
([𝑎𝑖𝑗], [𝑏𝑖𝑗]) = 1 −

1

√(𝑚 − 1)𝑛
𝑝 (∑∑|𝑎0𝑗𝑎𝑖𝑗 − 𝑏0𝑗𝑏𝑖𝑗|

𝑝
𝑛

𝑗=1

𝑚−1

𝑖=1

)

1
𝑝

 

is a pseudo-similarity over 𝐹𝑃𝐹𝑆𝐸[𝑈] and is called Minkowski pseudo-similarity. Here, 𝑠𝑀
1  is referred to as 

Hamming pseudo-similarity and is denoted by 𝑠𝐻. Moreover, 𝑠𝑀
2  is referred to as Euclidean pseudo-similarity 

and is denoted by 𝑠𝐸. 
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Definition 11. [25] Let [𝑎𝑖𝑗]𝑚×𝑛
, [𝑏𝑖𝑗]𝑚×𝑛

∈ 𝐹𝑃𝐹𝑆𝐸[𝑈] and 𝑝 ∈ ℤ+. Then, the mapping 𝑠𝐻𝑠
𝑝
: 𝐹𝑃𝐹𝑆𝐸[𝑈] ×

𝐹𝑃𝐹𝑆𝐸[𝑈] → ℝ defined by 

𝑠𝐻𝑠
𝑝
([𝑎𝑖𝑗], [𝑏𝑖𝑗]) = 1 −

1

√𝑚 − 1
𝑝 (∑ max

𝑗∈𝐼𝑛
{|𝑎0𝑗𝑎𝑖𝑗 − 𝑏0𝑗𝑏𝑖𝑗|

𝑝
}

𝑚−1

𝑖=1

)

1
𝑝

 

is a pseudo-similarity over 𝐹𝑃𝐹𝑆𝐸[𝑈] and is called 𝑝-Hausdorff pseudo-similarity. Here, 𝑠𝐻𝑠
1  is referred to as 

Hausdorff pseudo-similarity and is denoted by 𝑠𝐻𝑠. 

Definition 12. [25] Let [𝑎𝑖𝑗]𝑚×𝑛
, [𝑏𝑖𝑗]𝑚×𝑛

∈ 𝐹𝑃𝐹𝑆𝐸[𝑈]. Then, the mapping 𝑠𝐶 : 𝐹𝑃𝐹𝑆𝐸[𝑈] × 𝐹𝑃𝐹𝑆𝐸[𝑈] →

ℝ defined by 

𝑠𝐶([𝑎𝑖𝑗], [𝑏𝑖𝑗]) = 1 − max
𝑖∈𝐼𝑚−1

{max
𝑗∈𝐼𝑛

{|𝑎0𝑗𝑎𝑖𝑗 − 𝑏0𝑗𝑏𝑖𝑗|}} 

is a pseudo-similarity over 𝐹𝑃𝐹𝑆𝐸[𝑈] and is called Chebyshev pseudo-similarity. 

4. Method 

This study 

➢ diagnoses COVID-19 by employing the classification method mFPFS-CMC,  

➢ calculates the follow-up treatment priority of individuals with COVID-19 by risk scores,  

➢ computes COVID-19 vaccination priority scores. 

4.1. Safety 

This study does not include vertebrate animals, potentially hazardous biological agents (microorganisms, 

rDNA, and tissues, including blood and blood products), and hazardous substances and devices. 

The survey studies provided herein do not require any personal data while gathering information about 

individuals’ views about the vaccination process, and their criteria points. By not recording any name, gender, 

or e-mail address, the respective patient is anonymized. Thus, it stores the received data anonymously so that 

they cannot be associated with real people.  

All the participants have explicit consent to the following to be used for academic reasons: 

➢ participants’ views on vaccination priority planning 

➢ their information about their systemic disease, age, and occupation 

➢ whether they live in the immediate vicinity 

➢ presence of their COVID-19 history 

➢ the population of their current province and district 

➢ their transportation preferences  

Participants are aware of the potential risks of the study: 

➢ an outside source may be tampered when using the internet for collecting information.  

➢ there is always a possibility of hacking or other security breaches that could threaten the confidentiality 

of their responses while the confidentiality of participants’ responses will be protected once the data are 

downloaded from the internet. 

The surveys declare that the participants are free not to answer any questions. All the responses are deleted 

from the online survey. No personal or electronic identifier is kept. The data file is stored on a password-

protected computer. 
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4.2. Experimentation 

4.2.1. Diagnosis of COVID-19 

This subsection presents a classification algorithm to diagnose COVID-19. 

FPFS-CMC: FPFS-CMC firstly utilizes the Pearson correlation coefficient between each column, 

corresponding to parameters, and the last column, manifesting the class labels, in the considered dataset to 

calculate feature weights based on the impact of parameters on classification. Then, using feature fuzzification 

of the training and testing samples and feature weights, it creates two fpfs-matrices: a training fpfs-matrix and 

a testing fpfs-matrix. It then creates a comparison matrix based on the pseudo-similarities between the training 

and testing fpfs-matrices. After that, it calculates the standard deviation of each column of the comparison 

matrix to produce the parameter weights and then merges the parameter weights and the matrix to generate the 

comparison fpfs-matrix. The ideal training sample is obtained by applying the soft decision-making (SDM) 

method sMBR01 on the comparison fpfs-matrix. Finally, the testing sample is given the class label of the 

optimum training sample. The same procedures are applied for all the test samples. However, FPFS-CMC has 

a disadvantage in terms of running time compared to the aforesaid classifiers herein. To overcome this 

drawback, this study modifies FPFS-CMC by employing the SDM method EMK19 [26,27] instead of sMBR01 

[28]. Thus, the modified FPFS-CMC (mFPFS-CMC) produces a running time advantage of up to 70% over 

FPFS-CMC. The pseudocode of mFPFS-CMC is as follows: 

Algorithm 1. Pseudocode of mFPFS-CMC 

Input: (𝐷𝑡𝑟𝑎𝑖𝑛)𝑚1×𝑛, 𝐶𝑚1×1, and (𝐷𝑡𝑒𝑠𝑡)𝑚2×𝑛 

Output: 𝑇𝑚2×1
′  

1: procedure mFPFS-CMC(𝐷𝑡𝑟𝑎𝑖𝑛, 𝐶, 𝐷𝑡𝑒𝑠𝑡) 

2: Compute 𝑓𝑤 using 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐶 

3: Compute feature fuzzification of 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡, namely 𝐷̃𝑡𝑟𝑎𝑖𝑛 and 𝐷̃𝑡𝑒𝑠𝑡 

4: for 𝑖 from 1 to 𝑚2 do 

5: Compute the training fpfs-matrix [𝑎𝑖𝑗] using 𝑓𝑤 and 𝐷̃𝑗−𝑡𝑟𝑎𝑖𝑛 

6: for 𝑗 from 1 to 𝑚1 do 

7: Compute the testing fpfs-matrix [𝑏𝑖𝑗] using 𝑓𝑤 and 𝐷̃𝑖−𝑡𝑒𝑠𝑡 

8: 𝐹𝑗1 ← 𝑠𝐻([𝑎𝑖𝑗], [𝑏𝑖𝑗]) 

9: 𝐹𝑗2 ← 𝑠𝐶([𝑎𝑖𝑗], [𝑏𝑖𝑗]) 

10: 𝐹𝑗3 ← 𝑠𝐸([𝑎𝑖𝑗], [𝑏𝑖𝑗]) 

11: 𝐹𝑗4 ← 𝑠𝐻𝑠([𝑎𝑖𝑗], [𝑏𝑖𝑗]) 

12: 𝐹𝑗5 ← 𝑠𝑀
3 ([𝑎𝑖𝑗], [𝑏𝑖𝑗]) 

13: end for 

14: for 𝑗 from 1 to 5 do 

15: 𝑠𝑑𝑗 ← std(𝐹.𝑗) 

16: end for 

17: 
𝑝𝑤 ← 1 −

𝑠𝑑̂

4
 

18: Compute comparison fpfs-matrix [𝑔𝑖𝑗] using 𝑝𝑤 and 𝐹 

19: [[𝑠𝑘1], [𝑑𝑚𝑘1], [𝑜𝑝𝑘1]] ← EMK19([𝑔𝑖𝑗]) 

20: 𝑡𝑖1
′ ← 𝐶(𝑜𝑝11, 1) 

21: end for 

22: return 𝑇𝑚2×1
′  

23: end procedure 
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SDM Methods: The related literature offers many SDM methods operating fpfs-matrices [23,29-34]. The 

SDM methods employ single, double, or multiple fpfs-matrix/matrices. In FPFS-CMC, sMBR01 working with 

a single fpfs-matrix is used. Another SDM method EMK19, employing a single fpfs-matrix, provides the best 

advantage in running time of FPFS-CMC over the others. For this reason, this study has chosen EMK19 to 

modify FPFS-CMC.  

Real-Life Interpretation: This study firstly applies FPFS-CMC to the datasets Symptoms and COVID 

Presence (May 2020 data) [19], Covid-19 Symptoms [20], and Brazilian Covid Symptomatic Patients Data 

[21] provided in Kaggle Data Repository utilizing MATLAB R2021b software and a laptop with I(R) 

Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz and 8.00 GB. Moreover, it compares them with kNN, Fuzzy 

kNN, and SVM. In the simulation process, to split the datasets as training and testing, 5-fold cross-validation 

is used (for more details about 𝑘-fold cross-validation, see [35-37]). The simulation results in Table 1 show 

that FPFS-CMC can be successfully applied to diagnose COVID-19. However, the results also manifest that 

the classifier has a running time disadvantage. To overcome this difficulty, this study employs the SDM 

method EMK19 instead of sMBR01 used in a step of the classifier FPFS-CMC. Here, FPFS-CMC with 

EMK19 is denoted by mFPFS-CMC. 

Table 1. Simulation results of the classifiers for the considered dataset 

Datasets’ 

References 
Classifiers Acc∓SD Sen∓SD Spe∓SD F1∓SD RT ∓SD 

[19] 

kNN 96.8273∓0.0044 83.7574∓0.0220 99.9566∓0.0010 91.0564∓0.0134 1.7714∓0.6284 

Fuzzy kNN 96.8237∓0.0042 83.6718∓0.0211 99.9772∓0.0005 91.0489∓0.0129 0.5669∓0.2851 

SVM 96.7667∓0.0046 85.8218∓0.0388 99.3908∓0.0081 91.1028∓0.0138 0.8290∓0.5427 

FPFS-CMC 96.8182∓0.0041 83.6434∓0.0207 99.9772∓0.0005 91.0326∓0.0127 964.4258∓122.9805 

mFPFS-CMC 96.8182∓0.0041 83.6434∓0.0207 99.9772∓0.0005 91.0326∓0.0127 286.2255∓40.8747 

[20] 

kNN 84.8850∓0.0351 96.9331∓0.0312 30.0278∓0.1534 91.3102∓0.0203 0.0460∓0.0060 

Fuzzy kNN 84.7990∓0.0296 95.5320∓0.0368 35.8611∓0.1578 91.1349∓0.0181 0.0009∓0.0004 

SVM 86.8589∓0.0366 95.9630∓0.0318 45.3333∓0.1828 92.2945∓0.0212 0.0214∓0.0045 

FPFS-CMC 87.3923∓0.0314 94.9915∓0.0370 52.6944∓0.1460 92.4903∓0.0195 0.2757∓0.0159 

mFPFS-CMC 87.0406∓0.0318 94.9915∓0.0370 50.7222∓0.1589 92.3014∓0.0195 0.2902∓0.0223 

[21] 

kNN 96.1174∓0.0081 92.1834∓0.0215 98.0516∓0.0064 93.9858∓0.0129 0.5669∓0.0101 

Fuzzy kNN 96.5564∓0.0070 94.1915∓0.0187 97.7187∓0.0065 94.7402∓0.0110 0.1055∓0.0018 

SVM 86.5061∓0.0116 71.7255∓0.0247 93.7736∓0.0103 77.7876∓0.0200 0.2278∓0.0184 

FPFS-CMC 96.4052∓0.0071 94.4757∓0.0189 97.3536∓0.0081 94.5396∓0.0110 130.4978∓0.1860 

mFPFS-CMC 96.4052∓0.0071 94.4757∓0.0189 97.3536∓0.0081 94.5396∓0.0110 50.4621∓0.2595 

Acc, Sen, Spe, and F1 and their standard deviations (SD) are presented in percentage. Running time and its SD are presented in seconds. 

In medical diagnosis, accuracy, sensitivity, specificity, and F1-score are vital and expected to occur close 

to 100%. According to the results in Table 1, although mFPFS-CMC’s result of sensitivity for the dataset in 

[19] and the results of accuracy and specificity for the dataset in [20] are less than 90%, its other results are 
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above 90%. As seen in Table 2, since the considered datasets are imbalanced, some results are lower than 90%. 

Moreover, 𝑂((𝑚 − 1)2𝑛) and 𝑂((𝑚 − 1)𝑛𝑡) represent the computational complexities of sMBR01 and 

EMK19, respectively, such that 𝑚 − 1, 𝑛, and 𝑡 denote the number of samples, the number of attributes, and 

the number of matrices, respectively. Here, since mFPFS-CMC utilizes one matrix, 𝑡 = 1. Because the 

computational complexity of sMBR01 is higher than the computational complexity of EMK19, mFPFS-CMC 

has a running time advantage of up to 70% over FPFS-CMC. To this end, improving mFPFS-CMC is worth 

studying. Consequently, mFPFS-CMC is reliable and practical in medical diagnosis. 

Table 2. Details of the considered datasets (# represents “the number of”) 

No. Reference Sample # Attribute # Class # Class Labels Samples’ Distribution Balanced/Imbalanced 

1.  [19] 5434 20 2 No and Yes 
1051 (No) 

4383 (Yes) 
Imbalanced 

2.  [20] 227 31 2 0 and 1 
214 (0) 

13 (1) 
Imbalanced 

3.  [21] 2779 10 2 0 and 1 
916 (0) 

1863 (1) 
Imbalanced 

Here, the mathematical notations of the performance metrics, namely accuracy (acc), sensitivity (sen), 

specificity (spe), and F1-score (F1) [38,39], are as follows: Let 𝐷𝑡𝑒𝑠𝑡 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛}, 𝑇 = {𝑇1, 𝑇2, ⋯ , 𝑇𝑛}, 

𝑇′ = {𝑇1
′, 𝑇2

′,⋯ , 𝑇𝑛
′}, and 𝐼𝑛 ≔ {1, 2, 3,⋯ , 𝑛} be the set of 𝑛 samples to be classified, the set of ground truth 

classes of the samples, the set of prediction class of the samples, and an index set, respectively. Then, 

Accuracy(𝑇, 𝑇′) ≔
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity(𝑇, 𝑇′) ≔
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity(𝑇, 𝑇′) ≔
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1 − Score(𝑇, 𝑇′) ≔
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 are the number of true positive, true negative, false positive, and false negative, 

respectively, and their mathematical notations are as follows: 

𝑇𝑃 ≔ |{𝑥𝑘 ∶ 1 ∈ 𝑇𝑘 ∧ 1 ∈ 𝑇𝑘
′ , 𝑘 ∈ 𝐼𝑛}| 

𝑇𝑁 ≔ |{𝑥𝑘 ∶ 0 ∈ 𝑇𝑘 ∧ 0 ∈ 𝑇𝑘
′ , 𝑘 ∈ 𝐼𝑛}| 

𝐹𝑃 ≔ |{𝑥𝑘 ∶ 0 ∈ 𝑇𝑘 ∧ 1 ∈ 𝑇𝑘
′ , 𝑘 ∈ 𝐼𝑛}| 

𝐹𝑁 ≔ |{𝑥𝑘 ∶ 1 ∈ 𝑇𝑘 ∧ 0 ∈ 𝑇𝑘
′ , 𝑘 ∈ 𝐼𝑛}| 
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Furthermore, Table 3 shows the mean values TP, FN, TN, and FP for each fold of cross-validation 

obtained in ten runs by classifiers for the considered datasets.  

Table 3. Mean of TP, FN, TN, and FP values obtained in ten runs 

  [19] [20] [21] 

Classifiers k-fold TP FN TN FP TP FN TN FP TP FN TN FP 

k
N

N
 

Fold 1 176.9 33.1 875.3 0.7 36.3 0.7 1.7 6.3 169.5 13.5 364.9 7.1 

Fold 2 178.7 32.3 875.8 0.2 37 1 2.3 5.7 169.7 14.3 365.4 6.6 

Fold 3 175.7 34.3 876.6 0.4 35.8 1.2 3.5 5.5 168.1 14.9 365.8 7.2 

Fold 4 173.7 36.3 876.8 0.2 35.5 1.5 2.4 5.6 167.4 15.6 364.5 8.5 

Fold 5 175.3 34.7 876.6 0.4 35.7 1.3 2.5 5.5 169.7 13.3 366.1 6.9 

F
u

zz
y

 k
N

N
 

Fold 1 176.5 33.5 875.9 0.1 35.8 1.2 2.1 5.9 173.4 9.6 363.4 8.6 

Fold 2 178.5 32.5 875.8 0.2 36.7 1.3 2.7 5.3 174.4 9.6 363.1 8.9 

Fold 3 175.5 34.5 876.6 0.4 34.8 2.2 4.1 4.9 171.8 11.2 364.4 8.6 

Fold 4 173.5 36.5 876.8 0.2 35.2 1.8 3.3 4.7 170.8 12.2 364.3 8.7 

Fold 5 175.4 34.6 876.9 0.1 35.2 1.8 2.6 5.4 172.4 10.6 365.3 7.7 

S
V

M
 

Fold 1 181.3 28.7 870.4 5.6 35.5 1.5 3 5 132.6 50.4 349.7 22.3 

Fold 2 183.7 27.3 870.4 5.6 36.8 1.2 4.2 3.8 131 53 348.7 23.3 

Fold 3 179.5 30.5 871.9 5.1 35.2 1.8 5.1 3.9 130.1 52.9 352.3 20.7 

Fold 4 178.5 31.5 870.7 6.3 35.6 1.4 3.2 4.8 132.3 50.7 346.9 26.1 

Fold 5 179 31 872.9 4.1 35.4 1.6 3.2 4.8 131 52 349.4 23.6 

F
P

F
S

-C
M

C
 

Fold 1 176.5 33.5 875.9 0.1 35.5 1.5 3.7 4.3 173.9 9.1 361.2 10.8 

Fold 2 178.2 32.8 875.8 0.2 36.7 1.3 4.5 3.5 174.3 9.7 362.4 9.6 

Fold 3 175.5 34.5 876.6 0.4 34.5 2.5 5.6 3.4 172.5 10.5 363.1 9.9 

Fold 4 173.5 36.5 876.8 0.2 35.1 1.9 4.1 3.9 171.4 11.6 364 9 

Fold 5 175.4 34.6 876.9 0.1 34.9 2.1 3.8 4.2 173.3 9.7 363 10 

m
F

P
F

S
-C

M
C

 

Fold 1 176.5 33.5 875.9 0.1 35.5 1.5 3.4 4.6 173.9 9.1 361.2 10.8 

Fold 2 178.2 32.8 875.8 0.2 36.7 1.3 4.2 3.8 174.3 9.7 362.4 9.6 

Fold 3 175.5 34.5 876.6 0.4 34.5 2.5 5.5 3.5 172.5 10.5 363.1 9.9 

Fold 4 173.5 36.5 876.8 0.2 35.1 1.9 3.9 4.1 171.4 11.6 364 9 

Fold 5 175.4 34.6 876.9 0.1 34.9 2.1 3.9 4.1 173.3 9.7 363 10 
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4.2.2. Follow-Up Treatment Priority in COVID-19 Patients 

This subsection proposes a treatment priority algorithm to utilize in follow-up treatment priority in COVID-

19 patients. 

Risk Scores: This study calculates risk scores for age and the aforesaid comorbidities by using the 

following functions: 

Age: The odds ratios of individuals’ ages provided in [14,17] show that the age criterion affects the death 

rates caused by COVID-19. Therefore, this study considers the death rates of COVID-19 patients per 100,000 

people in the last 7 days by age group in Table 4 provided in [15]. It then determines a priority score for 

individuals according to their ages. Hence, the age risk score function 𝑓𝐴 is as follows: 

𝑓𝐴 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐴(𝑥) = 𝜒(𝑥, 𝑖) 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑖𝑛. Here, 𝐴 = {𝑥1, 𝑥2, 

𝑥3, 𝑥4, 𝑥5, 𝑥6} is a set of age ranges such that 𝑥1 = “0-14”, 𝑥2 = “15-24”, 𝑥3 = “25-49”, 𝑥4 = “50-64”, 𝑥5 = 

“65-79”, and 𝑥6 = “>80” and 𝑃 is a set of patents. To illustrate, if a patient 𝑥 belongs in the age range 15-24, 

then the priority score 𝑓𝐴(𝑥) = 𝜒(𝑥, 2) = 0.0013. 

Table 4. Normalized death rates according to age range 

Age Ranges 0-14 15-24 25-49 50-64 65-79 >80 

Scores 0.0130 0.0013 0.0100 0.1037 0.4552 1 

The scores are obtained by normalizing and merging the ranges < 2, 2-4, and 5-14 as 0-14. 

Hypertension: In Turkiye, approximately 80% of hypertension patients have primary hypertension and 

the remaining 20% have secondary hypertension [40]. Therefore, this study considers the basic risk scores 0.8 

and 0.2 for primary and secondary hypertensions, respectively. Moreover, it adds the effect of transmitting 

factors to basic risk scores, i.e., excessive alcohol intake, smoking, sedentary life, polysystem, non-steroidal 

anti-inflammatories, and low potassium intake. Hence, the hypertension risk score function is as follows: 

𝑓𝐻 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐻(𝑥) =

{
 
 

 
 0.8 +

1

30
∑𝜒(𝑖)

6

𝑖=1

, 𝑥 ℎ𝑎𝑠 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛

0.2 +
1

30
∑𝜒(𝑖)

6

𝑖=1

, 𝑥 ℎ𝑎𝑠 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 ℎ𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛

 

such that 𝜒(𝑖) = {
1, 𝑥 ℎ𝑎𝑠 ℎ𝑖
0, 𝑥 ℎ𝑎𝑠 𝑛𝑜𝑡 ℎ𝑖 

. Here, 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} is a set of transmitting factors such that 

ℎ1 = “excessive alcohol intake”, ℎ2 = “smoking”, ℎ3 = “sedentary life”, ℎ4 = “polysystem”, ℎ5 = “non-

steroidal anti-inflammatories”, and ℎ6 = “low potassium intake” and 𝑃 is a set of patients. To illustrate, if the 

patient 𝑥 has primary hypertension and three transmitting factors ℎ1, ℎ2, and ℎ6, then the hypertension risk 

score of 𝑥 is 𝑓𝐻(𝑥) = 0.8 +
1

30
(1 + 1 + 0 + 0 + 0 + 1) = 0.9. 

Cardiovascular Diseases: In Turkiye, the mortality rate because of cardiovascular disease is 42% [41]. 

Therefore, this study calculates the cardiovascular risk score by using the rate 42% and interactive risk score 
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𝑅(𝑥), obtained by the interactive form provided in [42,43]. Hence, the cardiovascular risk score function is as 

follows: 

𝑓𝐶𝑟 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐶𝑟(𝑥) = {
0.42 + 𝑅(𝑥), 𝑅(𝑥) ≤ 0.58 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑣𝑒 𝑐𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Here, 𝑃 is a set of patients. 

Cancer: This study determines cancer risk scores by using Table 5 provided as cited in [44, 45]. Hence, 

the cancer risk score function is as follows: 

𝑓𝐶 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐶(𝑥) = 1 − 𝜒(𝑥, 𝑖, 𝑗) 

such that 𝜒(𝑥, 𝑖, 𝑗) = 𝑡ℎ𝑒 5 − 𝑦𝑒𝑎𝑟 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑖𝑡ℎ 𝑐𝑎𝑛𝑐𝑒𝑟 𝑡𝑦𝑝𝑒 𝑎𝑛𝑑 𝑗𝑡ℎ 𝑠𝑡𝑎𝑔𝑒 𝑡ℎ𝑎𝑡 𝑥 ℎ𝑎𝑠. Here, 

𝐶 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7} is a set of cancer types such that 𝑥1 = “breast cancer”, 𝑥2 = “colorectal cancer”, 

𝑥3 = “non-Hodgkin lymphoma cancer”, 𝑥4 = “lung cancer ”, 𝑥5 = “testicular cancer ”, 𝑥6 = 

“bladder cancer”, and 𝑥7 = “uterine cancer ”, 𝑆 = {𝑠1, 𝑠2, 𝑠3} is a set of stages such that 𝑠1 = “early”, 𝑠2 = 

“local forward”, and 𝑠3 = “metastatic”, and 𝑃 is a set of patients. To illustrate, if a patient 𝑥 has lung cancer 

in the metastatic stage, then the cancer risk score 𝑓𝐶(𝑥) = 1 − 𝜒(𝑥, 4, 3) = 1 − 0.04 = 0.96. 

Table 5. Five-year lifetime rates for different cancer types and stages [as cited in 44] 

Cancer Types/Stages Early Local Forward Metastatic 

Breast Cancer  0.99 0.85 0.26 

Colorectal Cancer  0.90 0.71 0.13 

Non-Hodgkin Lymphoma Cancer  0.82 0.74 0.62 

Lung Cancer  0.55 0.27 0.04 

Testicular Cancer  0.99 0.96 0.74 

Bladder Cancer  0.70 0.34 0.05 

Uterine Cancer  0.95 0.68 0.17 

Chronic Kidney Failure: This study determines chronic kidney failure risk scores by using the stage 

number of the disease in Table 6 provided in [46]. Hence, the chronic kidney failure risk score function is as 

follows: 

𝑓𝐶ℎ : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐶ℎ(𝑥) =
𝑆(𝑥)

5
 

such that 𝑆(𝑥) is the stage of the disease shown in Table 6. Here, 𝑃 is a set of patients. To illustrate, if the 

patient is in the third stage, then his/her chronic kidney failure risk score is 
3

5
= 0.6. 
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Table 6. Stages of chronic kidney failure [46] 

Stage 
Glomerular 

Filtration Rate 
Description Treatment Stage 

1 90+ 
Normal kidney function but urine findings or structural 

abnormalities or genetic trait point to kidney disease 
Observation, control of blood pressure 

2 60-89 
Mildly reduced kidney function, and other findings (as for stage 1) 

point to kidney disease 

Observation, control of blood pressure 

and risk factor 

3 30-59 Moderately reduced kidney function 
Observation, control of blood pressure 

and risk factor 

4 15-29 Severely reduced kidney function Planning for end-stage renal failure 

5 
<15 or 

on dialysis 

Very severe or end-stage kidney failure (sometimes call established 

renal failure) 
Treatment choices 

Diabetes: This study determines diabetes risk scores by using the group number of the disease 𝐺(𝑥) in 

Table 7 provided in [47]. Moreover, it considers whether the individual has a cardiovascular disease because 

cardiovascular diseases significantly increase the risk of diabetes [48]. Hence, the diabetes risk score function 

is as follows: 

𝑓𝐷 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝐷(𝑥) =
9 − 𝐺(𝑥)

10
 +  0.2 𝜒(𝑥) 

such that 

𝜒(𝑥) = {
1, 𝑥 ℎ𝑎𝑠 𝑎 𝑐𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

To illustrate, if the patient is in the second group and he/she has a cardiovascular disease, then his/her diabetes 

risk score is  
9−2

10
+ 0.2 = 0.9. 

Table 7. Types of diabetes [47] 

Group Description 

1 Classic type-1 diabetes, a severe immune system disease 

2 A type of diabetes caused by severe insulin deficiency 

3 Severe insulin resistance 

4 A type of diabetes caused by obesity 

5 Moderate diabetes 

COVID-19 Death Correlation Score: This study calculates the death correlation score, for the aforesaid 

comorbidities, using mean death rates in Table 8. Moreover, the death correlation score for age criterion is 

obtained to be 0.26 by the mean of values in Table 4. The death rates of the patients with comorbidities who 

died from COVID-19 are obtained from [11,12,18,49]. 
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Table 8. COVID-19-induced death rates of the patients with comorbidities 

Group Chen et al., 2020 Çoktaş, 2020 Erol, 2020 Zhou et al., 2020 Mean  

Hypertension 0.58 N\A 0.76 0.45 0.60 

Cardiovascular diseases 0.70 N\A 0.63 N\A 0.67 

Cancer N\A 0.89 N\A 0 0.45 

Chronic kidney failure N\A N\A 0.93 1 0.97 

Diabetes N\A N\A 0.73 0.47 0.60 

N\A: Not Available 

Calculation of risk score: This study computes the total risk score of a patient with COVID-19 via age 

and comorbidities risk scores with the death correlation scores corresponding to each risk score. Hence, the 

treatment priority score function is as follows: 

𝑓𝑇𝑃𝑆 : 𝑃 → [0,1] 

  𝑥 → 𝑓𝑇𝑃𝑆(𝑥) =
1

∑ 𝑟𝑖
6
𝑖=1

(𝑓𝐴(𝑥)𝑟1 + 𝑓𝐻(𝑥)𝑟2 + 𝑓𝐶𝑟(𝑥)𝑟3 + 𝑓𝐶(𝑥)𝑟4 + 𝑓𝐶ℎ(𝑥)𝑟5 + 𝑓𝐷(𝑥)𝑟6) 

Here, 𝑀𝐷𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6} is a set of the mean death rates in Table 7 such that 𝑟1 = 0.26, 𝑟2 = 0.60, 

𝑟3 = 0.67, 𝑟4 = 0.45, 𝑟5 = 0.97, and 𝑟6 = 0.60 and 𝑃 is a set of patients. To illustrate, if the risk scores of a 

patient 𝑥 are 𝑓𝐴(𝑥) = 0.65, 𝑓𝐻(𝑥) = 0.4, 𝑓𝐶𝑟(𝑥) = 0.52, 𝑓𝐶(𝑥) = 0.34, 𝑓𝐶ℎ(𝑥) = 0.18, and 𝑓𝐷(𝑥) = 0, then 

the treatment priority score of 𝑥 is as follows: 

𝑓𝑇𝑃𝑆(𝑥) =
0.65 ∙ 0.26 + 0.4 ∙ 0.60 + 0.52 ∙ 0.67 + 0.34 ∙ 0.45 + 0.18 ∙ 0.97 + 0 ∙ 0.60

0.26 + 0.60 + 0.67 + 0.45 + 0.97 + 0.60
=
1.085

3.55
= 0.3056 

A Hypothetical Scenario: This study considers scores provided in Table 9 for ten patients to illustrate 

the aforesaid treatment priority score function’s performance and performance of the SDM method YE12 

employing a single matrix [50,51]. Let 𝑃 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} be a set of patients and 𝐸 =

{𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6} be a set of parameters such that 𝑒1 = “age”, 𝑒2 = “hypertension”, 𝑒3 = “cardiovascular 

diseases”, 𝑒4 = “cancer”, 𝑒5 = “chronic kidney failure”, and 𝑒6 = “diabetes”. Here, the weights of parameters 

are 𝑟1 = 0.26, 𝑟2 = 0.60, 𝑟3 = 0.67, 𝑟4 = 0.45, 𝑟5 = 0.97, and 𝑟6 = 0.60, respectively. Then, the fpfs-matrix 

[𝑎𝑖𝑗]11×6 constructed by these weights and the data in Table 9 is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.26 0.60 0.67 0.45 0.97 0.60

0.0130 0.84 0.54 0.39 0.6 0.7

0.4552 0.26 0.72 0.73 0.2 0.3

0.0100 0.90 0.64 0.66 0.4 0.9

0.0130 0.87 1 0.26 0.6 0.4

1 0.93 0.48 0.87 0.2 0

0.1037 0.27 0.82 0.96 0.8 0.3

0.0130 0.35 0.74 0.38 0.8 0.6

0.4552 0.36 0.42 0.83 0.2 0.4

0.0013 0.24 0.60 0.66 0.4 0.8

0.0013 0.34 0.80 0.01 0.4 0.1 ]
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Then, this study applies the SDM method YE12 to [𝑎𝑖𝑗]. Thus, the decision set, score matrix, and ranking 

order produced by YE12, respectively, are as follows: 

{ 𝑥1
0.5765 , 𝑥2

0.4111 , 𝑥3
0.6187 , 𝑥4

0.6012 , 𝑥5
0.4859 , 𝑥6

0.5990 , 𝑥7
0.5679 , 𝑥8

0.4009 , 𝑥9
0.4821 , 𝑥10

0.3360 } 

[𝑠𝑖1] = [0.5765 0.4111 0.6187 0.6012 0.4859 0.5990 0.5679 0.4009 0.4821 0.3360]𝑇 

and 

𝑥10 ≺ 𝑥8 ≺ 𝑥2 ≺ 𝑥9 ≺ 𝑥5 ≺ 𝑥7 ≺ 𝑥1 ≺ 𝑥6 ≺ 𝑥4 ≺ 𝑥3 

Here, 

𝑠41 = 𝑓𝑇𝑃𝑆(𝑥4) =
0.0130 ∙ 0.26 + 0.87 ∙ 0.60 + 1 ∙ 0.67 + 0.26 ∙ 0.45 + 0.6 ∙ 0.97 + 0.4 ∙ 0.60

0.26 + 0.60 + 0.67 + 0.45 + 0.97 + 0.60
=
2.1344

3.55
= 0.6012 

 

Table 9. Priority scores for 10 individuals 

Individuals / 

Criteria 
Age Hypertension 

Cardiovascular 

Diseases 
Cancer 

Chronic Kidney 

Failure 
Diabetes 

𝒙𝟏 0.0130 0.84 0.54 0.39 0.6 0.7 

𝒙𝟐 0.4552 0.26 0.72 0.73 0.2 0.3 

𝒙𝟑 0.0100 0.90 0.64 0.66 0.4 0.9 

𝒙𝟒 0.0130 0.87 1 0.26 0.6 0.4 

𝒙𝟓 1 0.93 0.48 0.87 0.2 0 

𝒙𝟔 0.1037 0.27 0.82 0.96 0.8 0.3 

𝒙𝟕 0.0130 0.35 0.74 0.38 0.8 0.6 

𝒙𝟖 0.4552 0.36 0.42 0.83 0.2 0.4 

𝒙𝟗 0.0013 0.24 0.60 0.66 0.4 0.8 

𝒙𝟏𝟎 0.0013 0.34 0.80 0.01 0.4 0.1 

4.2.3. Vaccination Priority Planning 

This subsection proposes a vaccine priority algorithm to employ in a possible vaccine crisis and for the 

planning of booster doses. 

Survey Criteria Scores: This study applies an online form, conducted through Google Forms, to 200 

people to gain insight into people’s understanding of the importance of the aforesaid seven criteria in 

vaccination priority and planning. This survey asks participants to rank the seven criteria from least to most 

important and calculates survey criterion points by arithmetic average. For the survey’s safety, see Section 4.1. 

the means of values determined by 200 participants for the aforesaid seven criteria, i.e., systemic disease, age, 

presence of risk group individuals in the immediate vicinity, presence of COVID-19 history, province-district, 

transportation preference, and occupation, provided in Table 10 are denoted by 𝑆𝑆𝑑, 𝑆𝐴, 𝑆𝐼𝑉, 𝑆𝐶𝐻, 𝑆𝑃𝐷, 𝑆𝑇𝑃, 

and 𝑆𝑂, respectively. 
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Table 10. Survey results 

Abbreviations Survey Criteria Mean Values Normalized Mean Values 

𝑺𝒅 Systemic disease 𝑆𝑆𝑑 = 3.0825 𝑁𝑆𝑆𝑑 = 1 

𝑨 Age 𝑆𝐴 = 2.805 𝑁𝑆𝐴 = 0.9100 

𝑰𝑽 Presence of risk group individuals in the immediate vicinity 𝑆𝐼𝑉 = 3.0575 𝑁𝑆𝐼𝑉 = 0.9919 

𝑪𝑯 Presence of COVID-19 history 𝑆𝐶𝐻 = 2.705 𝑁𝑆𝐶𝐻 = 0.8775 

𝑷𝑫 Province-district 𝑆𝑃𝐷 = 1.765 𝑁𝑆𝑃𝐷 = 0.5726 

𝑻𝑷 Transportation preference 𝑆𝑇𝑃 = 2.27 𝑁𝑆𝑇𝑃 = 0.7364 

𝑶 Occupation 𝑆𝑂 = 2.2725 𝑁𝑆𝑂 = 0.7372 

Individual Priority Scores: This study details the aforesaid seven criteria to make a more individual-

specific vaccination planning and assigns a score to each criterion.  

Systemic Disease: Scientific studies observe that cases of COVID-19 with systemic diseases have a higher 

death rate than cases without systemic diseases. Therefore, this study considers mean percentage values of 

mortality rates in Table 11 provided in [11,12,18,49]. Moreover, it determines a priority score for individuals 

with systemic disease. Hence, the systemic disease priority score function 𝑓𝑆𝑑 is as follows: 

𝑓𝑆𝑑 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝑆𝑑(𝑥) = {
𝜒(𝑥, 𝑖), 𝑖𝑡ℎ 𝑠𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡ℎ𝑎𝑡 𝑥 ℎ𝑎𝑠
0, 𝑥 ℎ𝑎𝑠 𝑛𝑜 𝑠𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑠𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡ℎ𝑎𝑡 𝑥 ℎ𝑎𝑠. Here, 𝑆𝑑 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} is a set of systemic diseases such that 𝑥1 = “kidney failure (dialysis)”, 𝑥2 = 

“chronic lung disease”, 𝑥3 = “cardiovascular disease”, 𝑥4 = “diabetes”, 𝑥5 = “cancer”, and 𝑥6 = “no” and 𝐼 

is a set of individuals. To illustrate, if an individual 𝑥 has diabetes, then the systemic disease priority score 

𝑓𝑆𝑑(𝑥) = 𝜒(𝑥, 5) = 0.60. 

Table 11. Systemic diseases and the respective vaccination scores 

Systemic Diseases [44] [12] [11] [18] Mean 

Chronic lung disease N\A N\A 0.80 0.67 0.74 

Cardiovascular diseases 0.70 N\A 0.63 N\A 0.67 

Cancer N\A 0.89 N\A 0 0.45 

Chronic kidney failure N\A N\A 0.93 1 0.97 

Diabetes N\A N\A 0.73 0.47 0.60 
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Age: This study considers the number of new COVID-19 patients per 100,000 people in the last 7 days 

by age group in Table 12 provided in [15]. It then determines a priority score for individuals according to their 

ages. Hence, the age priority score function 𝑓𝐴 is as follows: 

𝑓𝐴 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝐴(𝑥) = 𝜒(𝑥, 𝑖) 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠. Here, 𝐴 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} is a set of age ranges such that 𝑥1 = “0-14”, 𝑥2 = “15-24”, 𝑥3 = “25-49”, 𝑥4 = “50-64”, 

𝑥5 = “65-79”, and 𝑥6 = “>80” and 𝐼 is a set of individuals. To illustrate, if an individual 𝑥 belongs in the age 

range 15-24, then the age priority score 𝑓𝐴(𝑥) = 𝜒(𝑥, 2) = 0.8. 

Table 12. Normalized case distribution according to age range  

Age Ranges 0-14 15-24 25-49 50-64 65-79 >80 

Scores 0.39 0.80 1.00 0.92 0.85 0.76 

The scores are obtained by normalizing and merging the ranges < 2, 2-4, and 5-14 as 0-14. 

Presence of risk group individuals in the immediate vicinity: This study assigns priority scores in Table 

13 according to immediate vicinity levels of individuals that live in the same house. Hence, it sets a priority 

score for individuals that live in the same house. Hence, the immediate vicinity priority score function 𝑓𝐼𝑉 is 

as follows: 

𝑓𝐼𝑉 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝐼𝑉(𝑥) = {
𝜒(𝑥, 𝑖), 𝑖𝑡ℎ 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑖𝑐𝑖𝑛𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 𝑡ℎ𝑎𝑡 𝑥 𝑙𝑖𝑣𝑒𝑠 𝑤𝑖𝑡ℎ
0, 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑙𝑖𝑣𝑒 𝑤𝑖𝑡ℎ 𝑎𝑛𝑦 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑖𝑐𝑖𝑛𝑖𝑡𝑖𝑒𝑠

 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑣𝑖𝑐𝑖𝑛𝑖𝑡𝑦 𝑡𝑦𝑝𝑒 𝑡ℎ𝑎𝑡 𝑥 𝑙𝑖𝑣𝑒𝑠 𝑖𝑛. Here, 𝐼𝑉 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4} is a set of immediate vicinities such that 𝑥1 = “with chronic elderly patients”, 𝑥2 = “with 

chronic young patients”, 𝑥3 = “with elders”, and 𝑥4 = “with more than ten non-risky individuals” and 𝐼 is a 

set of individuals. To illustrate, if an individual 𝑥 lives with elders, then the immediate vicinity priority score 

𝑓𝐼𝑉(𝑥) = 𝜒(𝑥, 3) = 0.4. 

Table 13. Vicinity and risk relation 

Immediate Vicinities Scores 

With chronic elderly patients 0.8 

With chronic young patients 0.6 

With elders 0.4 

With > ten non-risky individuals 0.2 

Presence of COVID-19 History: How severely an individual with a history of COVID-19 presents 

symptoms is related to vaccination priority. This study determines priority scores in Table 14 according to 

their COVID-19 histories. Thus, the COVID-19 histories priority score function 𝑓𝐶𝐻 is as follows: 

𝑓𝐶𝐻 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝐶𝐻(𝑥) = 𝜒(𝑥, 𝑖) 
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such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝐶𝑂𝑉𝐼𝐷 − 19 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑡𝑦𝑝𝑒 𝑡ℎ𝑎𝑡 𝑥 ℎ𝑎𝑠. Here, 𝐶𝐻 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} is a set of COVID-19 history types such that 𝑥1 = “patient with COVID-19 hospitalized in 

intensive care”, 𝑥2 = “individual who have not had COVID-19”, 𝑥3 = “patient with moderate symptoms with 

COVID-19”, 𝑥4 = “patient with mild symptoms of COVID-19”, and 𝑥5 = “patient with COVID-19 who did 

not show any symptoms” and 𝐼 is a set of individuals. To illustrate, if an individual 𝑥 has not contracted 

COVID-19, then the COVID-19 history priority score 𝑓𝐶𝐻(𝑥) = 𝜒(𝑥, 2) = 0.6. 

Table 14. COVID-19 history and risk relation 

COVID-19 History Scores 

Patient with COVID-19 hospitalized in intensive care 0.8 

Individual with no COVID-19 history 0.6 

Patient with moderate symptoms of COVID-19 0.5 

Patient with mild symptoms of COVID-19 0.4 

Patient with COVID-19 with no symptoms 0.3 

Province-District: It is observed that COVID-19 cases increase in direct proportion to the region and the 

population of the region. Therefore, this study produces priority scores in Table 15 based on two criteria: 

province and district. Thereby, the province-district priority score function 𝑓𝑃𝐷 is as follows: 

𝑓𝑃𝐷 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝑃𝐷(𝑥) = 𝜒(𝑥, 𝑖, 𝑗) 

such that 𝜒(𝑥, 𝑖, 𝑗) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ  𝑎𝑛𝑑 𝑗𝑡ℎ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒𝑠 𝑜𝑓𝑡ℎ𝑒 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒 𝑎𝑛𝑑 

𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑙𝑖𝑣𝑒𝑠. Here, 𝑃 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} is a set of provinces’ population ranges such that 𝑥1 = 

“< 106”, 𝑥2 = “106 − 3 ∙ 106”, 𝑥3 = “3 ∙ 106 − 5 ∙ 106”, 𝑥4 = “5 ∙ 106 − 7 ∙ 106”, and 𝑥5 = “≥ 7 ∙ 106”, 

𝐷 = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} is a set of districts’ population ranges such that 𝑑1 = “104 − 105”, 𝑑2 = “105 − 2 ∙

105”, 𝑑3 = “2 ∙ 105 − 3 ∙ 105”, 𝑑4 = “3 ∙ 105 − 4 ∙ 105”, and 𝑑5 = “≥ 4 ∙ 105”, and 𝐼 is a set of individuals. 

To illustrate, if an individual 𝑥 lives in a province and district with the populations 4 ∙ 106 and 2.5 ∙ 105, 

respectively, then the province-district priority score 𝑓𝑃𝐷(𝑥) = 𝜒(𝑥, 3, 3) = 0.64. 

Table 15. Province-district and risk relation 

Province/District 𝟏𝟎𝟒 − 𝟏𝟎𝟓 𝟏𝟎𝟓 − 𝟐 ∙ 𝟏𝟎𝟓 𝟐 ∙ 𝟏𝟎𝟓 − 𝟑 ∙ 𝟏𝟎𝟓 𝟑 ∙ 𝟏𝟎𝟓 − 𝟒 ∙ 𝟏𝟎𝟓 ≥ 𝟒 ∙ 𝟏𝟎𝟓 

< 𝟏𝟎𝟔 0.40 0.42 0.44 0.46 0.48 

𝟏𝟎𝟔 − 𝟑 ∙ 𝟏𝟎𝟔 0.50 0.52 0.54 0.56 0.58 

𝟑 ∙ 𝟏𝟎𝟔 − 𝟓 ∙ 𝟏𝟎𝟔 0.60 0.62 0.64 0.66 0.68 

𝟓 ∙ 𝟏𝟎𝟔 − 𝟏𝟎𝟕 0.70 0.72 0.74 0.76 0.78 

≥ 𝟏𝟎𝟕 0.80 0.82 0.84 0.86 0.88 
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Transportation Preferences: The transportation preferences of individuals affect the number of COVID-

19 cases.  Therefore, this study sets a score in Table 16 for each possible transportation preference. Thereafter, 

the transportation preference priority score function 𝑓𝑇𝑃 is as follows: 

𝑓𝑇𝑃 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝑇𝑃(𝑥) = 𝜒(𝑥, 𝑖) 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑦𝑝𝑒 𝑡ℎ𝑎𝑡 𝑥 𝑝𝑟𝑒𝑓𝑒𝑟𝑠. Here, 𝑇𝑃 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} is a set of transporting types such that 𝑥1 = “using public transport 4+ per day”, 𝑥2 = “using 

public transport 4 times a day”, 𝑥3 = “using public transport 2 times a day”, 𝑥4 = “travelling by private 

vehicle”, and 𝑥5 = “not travelling” and 𝐼 is a set of individuals. To illustrate, if an individual 𝑥 travels by 

her/his own private vehicle, then the transportation preference priority score 𝑓𝑇𝑃(𝑥) = 𝜒(𝑥, 4) = 0.2. 

Table 16. Transportation preferences and risk relation 

Transportation Preferences Scores 

Using public transport 4+ per day 0.8 

Using public transport 4 times a day 0.6 

Using public transport 2 times a day 0.4 

Using private vehicle 0.2 

Not Travelling 0 

Occupations: This study considers priority scores corresponding to the classification of occupations in 

Table 17 provided in [16]. Therefore, the occupation priority score function 𝑓𝑂 is as follows: 

𝑓𝑂 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝑂(𝑥) = 𝜒(𝑥, 𝑖) 

such that 𝜒(𝑥, 𝑖) = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑖𝑡ℎ 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑥 ℎ𝑎𝑠. Here, 𝑂 = {𝑥1, 𝑥2, 𝑥3, 

𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9} is a set of occupations such that 𝑥1 = “health workers”, 𝑥2 = “nursing homes and 

protection homes”, 𝑥3 = “Ministry of National Defense, Ministry of Interior, individuals in strategic 

positions”, 𝑥4 = “municipal police, private security personal, Ministry of Justice, correctional facilities”, 𝑥5 = 

“education sector (teachers and faculty), food sector workers and bakeries, caterers, food and beverage 

processing plans, etc. registered with the Social Security Institution, transportation sector, workers registered 

with the Social Security Institution”, 𝑥6 = “workers in mass, crowded areas”, 𝑥7 = “businesses with less than 

ten employees”, 𝑥8 = “other/home-office”, and 𝑥9 = “unemployed” and 𝐼 is a set of individuals. To illustrate, 

if an individual 𝑥 is a teacher, then the occupation priority score 𝑓𝑂(𝑥) = 𝜒(𝑥, 5) = 0.5. 
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Table 17. Vaccination group ranking 

Type Occupations Scores 

 Health Workers 1.0 

 Nursing homes and Protection homes 0.8 

A1, A2, A3 Ministry of National Defense, Ministry of Interior, Individuals in Strategic Positions 0.7 

A4, A5, A6 Municipal Police, Private Security Personal, Ministry of Justice, Correctional Facilities 0.6 

A7, A8, A9 

Education Sector (Teachers and Faculty), Food Sector Workers and Bakeries, Caterers, 

Food and Beverage Processing Plans, etc. registered with the Social Security Institution, 

Transportation Sector, Workers registered with the Social Security Institution 

0.5 

A10 Workers in mass, crowded areas 0.4 

A11 Businesses with less than ten employees 0.3 

A12 Other/ Home-office 0.2 

 Unemployed 0 

The scores were assigned based on how crowded individuals’ workspace is. 

Calculation of Vaccination Priority Score: This study calculates the vaccination priority scores via the 

aforesaid scores in this subsection. Hence, the vaccination priority score function is as follows: 

𝑓𝑉𝑃𝑆 : 𝐼 → [0,1] 

  𝑥 → 𝑓𝑉𝑃𝑆(𝑥) =
𝑁𝑆𝑆𝑑𝑓𝑆𝑑(𝑥) + 𝑁𝑆𝐴𝑓𝐴(𝑥) + 𝑁𝑆𝐼𝑉𝑓𝐼𝑉(𝑥) + 𝑁𝑆𝐶𝐻𝑓𝐶𝐻(𝑥) + 𝑁𝑆𝑃𝐷𝑓𝑃𝐷(𝑥) + 𝑁𝑆𝑇𝑃𝑓𝑇𝑃(𝑥) + 𝑁𝑆𝑂𝑓𝑂(𝑥)

𝑁𝑆𝑆𝑑 +𝑁𝑆𝐴 + 𝑁𝑆𝐼𝑉 + 𝑁𝑆𝐶𝐻 + 𝑁𝑆𝑃𝐷 + 𝑁𝑆𝑇𝑃 + 𝑁𝑆𝑂
 

Here, 𝐼 is a set of individuals. To illustrate, if the total risk scores of an individual 𝑥 are 𝑓𝑆𝑑(𝑥) = 0.82, 𝑓𝐴(𝑥) =

0.92, 𝑓𝐼𝑉(𝑥) = 0.4, 𝑓𝐶𝐻(𝑥) = 0.5, 𝑓𝑃𝐷(𝑥) = 0.4, 𝑓𝑇𝑃(𝑥) = 0, and 𝑓𝑂(𝑥) = 0.2, then the vaccination priority 

score is as follows: 

𝑓𝑉𝑃𝑆(𝑥) =
1 ∙ 0.82 + 0.9100 ∙ 0.92 + 0.9919 ∙ 0.4 + 0.8775 ∙ 0.5 + 0.5726 ∙ 0.4 + 0.7364 ∙ 0 + 0.7372 ∙ 0.2

1 + 0.9100 + 0.9919 + 0.8775 + 0.5726 + 0.7364 + 0.7372
= 0.4925 

A Hypothetical Scenario: This study considers scores provided in Table 18 for ten individuals to 

illustrate the performances of the aforesaid vaccination priority score function and the SDM method YE12. 

Let 𝐼 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10} be a set of individuals and 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} be a set 

of parameters such that 𝑒1 = “systemic disease”, 𝑒2 = “age”, 𝑒3 = “presence of risk group individuals in the 

immediate vicinity”, 𝑒4 = “presence of COVID-19 history”, 𝑒5 = “province-district”, 𝑒6 = “transportation 

preference”, and 𝑒7 = “occupation”. Here, the weights of the parameters are 𝑆𝑆𝑑 = 1, 𝑆𝐴 = 0.9100, 𝑆𝐼𝑉 =

0.9919, 𝑆𝐶𝐻 = 0.8775, 𝑆𝑃𝐷 = 0.5726, 𝑆𝑇𝑃 = 0.7364, and 𝑆𝑂 = 0.7372. Then, the fpfs-matrix [𝑎𝑖𝑗]11×6 

constructed by these weights and the data in Table 18 is as follows: 
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[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0.9100 0.9919 0.8775 0.5726 0.7364 0.7372

0.97 0.80 0.4 0.6 0.68 0.6 0.8

0.45 1 0.2 0.8 0.52 0.4 0.6

0.60 0.39 0.2 0.5 0.54 0.6 0

0.60 0.76 0.6 0.5 0.76 0.8 0.4

0.74 0.85 0.4 0.3 0.72 0 0.4

0.74 0.92 0.8 0.6 0.84 0.2 0.5

0.67 0.80 0.8 0.3 0.82 0.6 0.5

0.97 0.76 0.2 0.8 0.68 0.4 0.8

0.45 0.76 0.6 0.6 0.42 0.4 1

0.60 0.39 0.8 0.4 0.46 0.8 0.3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Then, this study applies the SDM method YE12 to [𝑎𝑖𝑗]. The decision set, score matrix, and ranking order 

produced by YE12, respectively, are as follows: 

{ 𝑥1
0.6939 , 𝑥2

0.5656 , 𝑥3
0.4022 , 𝑥4

0.6256 , 𝑥5
0.4945 , 𝑥6

0.6684 , 𝑥7
0.6411 , 𝑥8

0.6584 , 𝑥9
0.6069 , 𝑥10

0.5447 } 

[𝑠𝑖1] = [0.6939 0.5656 0.4022 0.6256 0.4945 0.6684 0.6411 0.6584 0.6069 0.5447]𝑇 

and 

𝑥3 ≺ 𝑥5 ≺ 𝑥10 ≺ 𝑥2 ≺ 𝑥9 ≺ 𝑥4 ≺ 𝑥7 ≺ 𝑥8 ≺ 𝑥6 ≺ 𝑥1 

Here, 

𝑠71 = 𝑓𝑉𝑃𝑆(𝑥7) =
1 ∙ 0.67 + 0.9100 ∙ 0.8 + 0.9919 ∙ 0.8 + 0.8775 ∙ 0.3 + 0.5726 ∙ 0.82 + 0.7364 ∙ 0.6 + 0.7372 ∙ 0.5

1 + 0.9100 + 0.9919 + 0.8775 + 0.5726 + 0.7364 + 0.7372
= 0.6411 

 

Table 18. Priority scores for ten individuals 

Individuals / 

Criteria 

Systemic 

Disease 
Age 

Presence of 

risk group 

individuals in 

the immediate 

vicinity 

Presence of 

COVID-19 

History 

Province-

District 

Transportatio

n Preference 
Occupation 

𝒙𝟏 0.97 0.80 0.4 0.6 0.68 0.6 0.8 

𝒙𝟐 0.45 1 0.2 0.8 0.52 0.4 0.6 

𝒙𝟑 0.60 0.39 0.2 0.5 0.54 0.6 0 

𝒙𝟒 0.60 0.76 0.6 0.5 0.76 0.8 0.4 

𝒙𝟓 0.74 0.85 0.4 0.3 0.72 0 0.4 

𝒙𝟔 0.74 0.92 0.8 0.6 0.84 0.2 0.5 

𝒙𝟕 0.67 0.80 0.8 0.3 0.82 0.6 0.5 

𝒙𝟖 0.97 0.76 0.2 0.8 0.68 0.4 0.8 

𝒙𝟗 0.45 0.76 0.6 0.6 0.42 0.4 1 

𝒙𝟏𝟎 0.60 0.39 0.8 0.4 0.46 0.8 0.3 
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Real-Life Interpretation: This study applies the SDM method YE12 to a real-life data derived from an 

online survey by Google Forms with 100 participants, 50 of whom are COVID-19 positive and the rest of 

whom are COVID-19 negative. The participants are asked to give information about their systemic diseases, 

ages, whether they are living in the immediate vicinity, the presence of their COVID-19 history, province-

district they currently live in, their transportation preferences, and occupations. The results are provided in 

Table 19. To evaluate the performance of the SDM method YE12, this study utilizes the following validity 

function: 

𝑉 : 𝑃 → [0,1] 

  𝑥 → 𝑉(𝑥) = {
1, 𝑥 𝑖𝑠 𝐶𝑂𝑉𝐼𝐷 − 19 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑥 < 75
1, 𝑥 𝑖𝑠 𝐶𝑂𝑉𝐼𝐷 − 19 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑥 > 25
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Afterwards, it calculates the validity score 𝑉𝑆 =
1

|𝑃|
∑ 𝑉(𝑥)𝑥∈𝑃 . For this survey, the validity score is 𝑉𝑆 =

0.96. For example, for the second participant 𝑥2, 𝑉(𝑥2) = 1 because he/she is COVID-19 positive and her/his 

order is less than 75. Similarly, for the participant 𝑥24, 𝑉(𝑥24) = 0 because he/she is COVID-19 negative and 

her/his order is not greater than 25. 

Table 19. Survey results for vaccination priority 

Participants 

No / Criteria 

Systemic 

disease 
Age 

Immediate 

vicinity 

COVID-19 

history 

Province/ 

district 

Transportat

ion 

preference 

Occupation 
YE12’s 

scores 
COVID-19 

1  0.97 0.85 0.8 0.8 0.48 0 0.7 0.6918 + 

2  0.74 0.8 0.8 0.5 0.58 0.6 0.2 0.6217 + 

3  0.6 0.8 0.2 0.6 0.88 0.8 0.4 0.5906 + 

4  0.67 1 0 0.4 0.88 0.6 0.7 0.5824 + 

5  0.6 0.92 0.8 0.5 0.46 0.2 0.4 0.5793 + 

6  0.6 0.92 0.8 0.5 0.68 0.2 0.2 0.5757 + 

7  0.67 0.92 0.4 0.6 0.82 0.2 0.4 0.5737 + 

8  0.74 0.85 0.4 0.5 0.86 0.2 0.4 0.5636 + 

9  0.6 1 0 0.5 0.78 0.6 0.4 0.5376 + 

10  0.97 0.8 0 0.5 0.88 0.2 0.4 0.5292 + 

11  0.74 1 0.2 0.5 0.58 0.2 0.4 0.5255 + 

12  0.6 0.92 0.8 0.4 0.5 0.2 0 0.5176 + 

13  0.67 1 0 0.6 0.46 0.6 0.2 0.5080 + 

14  0.6 1 0 0.4 0.52 0.6 0.4 0.4970 + 

15  0.6 0.85 0.8 0.4 0.4 0.2 0 0.4968 + 

16  0.67 0.92 0 0.5 0.5 0.6 0.2 0.4843 + 
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17  0.6 0.85 0.4 0.4 0.42 0.6 0 0.4813 + 

18  0.6 1 0 0.5 0.56 0.2 0.5 0.4781 + 

19  0.6 0.85 0 0.4 0.88 0.2 0.5 0.4711 + 

20  0.6 0.85 0 0.8 0.88 0.2 0 0.4680 + 

21  0.6 1 0 0.5 0.7 0.2 0.3 0.4666 + 

22  0.6 1 0 0.5 0.54 0.2 0.4 0.4635 + 

23  0.67 0.92 0 0.5 0.54 0.2 0.4 0.4630 + 

24  0 0.92 0 0.6 0.88 0.6 0.5 0.4597 - 

25  0.6 0.92 0 0.5 0.88 0.2 0.2 0.4591 + 

26  0.6 0.92 0.4 0.4 0.58 0.2 0 0.4573 + 

27  0.6 0.92 0 0.8 0.4 0.2 0.2 0.4571 + 

28  0.6 0.92 0 0.8 0.4 0.2 0.2 0.4571 + 

29  0.74 1 0 0.4 0.88 0.2 0 0.4553 + 

30  0.6 0.92 0 0.4 0.58 0.2 0.5 0.4525 + 

31  0 1 0.4 0.5 0.78 0.2 0.4 0.4522 + 

32  0.6 0.92 0 0.5 0.42 0.2 0.5 0.4519 + 

33  0 0.85 0.8 0.6 0.88 0 0 0.4459 + 

34  0.6 0.85 0 0.4 0.86 0 0.5 0.4438 + 

35  0.6 0.92 0 0.8 0.52 0.2 0 0.4436 + 

36  0.6 0.92 0 0.5 0.68 0.2 0.2 0.4394 + 

37  0 1 0 0.6 0.5 0.6 0.5 0.4348 - 

38  0.6 0.85 0 0.8 0.5 0.2 0 0.4307 + 

39  0.6 0.92 0 0.3 0.88 0.2 0.2 0.4290 + 

40  0 1 0 0.6 0.82 0.6 0.2 0.4283 - 

41  0 1 0 0.6 0.4 0.6 0.5 0.4250 - 

42  0.6 0.85 0 0.6 0.6 0 0.3 0.4231 + 

43  0 0.92 0 0.5 0.78 0.2 0.8 0.4222 + 
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Table 19. (Continued) Survey results for vaccination priority 

Participants 

No / Criteria 

Systemic 

disease 
Age 

Immediate 

vicinity 

COVID-19 

history 

Province/ 

district 

Transportat

ion 

preference 

Occupation 
YE12’s 

scores 
COVID-19 

44  0 0.92 0 0.6 0.88 0.6 0.2 0.4217 - 

45  0.74 0.85 0 0.3 0.4 0.6 0 0.4201 + 

46  0 0.92 0 0.6 0.82 0.6 0.2 0.4158 - 

47  0 1 0 0.6 0.88 0.6 0 0.4089 - 

48  0 1 0 0.6 0.88 0.6 0 0.4089 - 

49  0 1 0 0.6 0.62 0.6 0.2 0.4087 - 

50  0.45 0.92 0 0.5 0.88 0.2 0 0.4080 + 

51  0 0.8 0 0.6 0.5 0.6 0.5 0.4036 - 

52  0 0.8 0 0.6 0.88 0.6 0.2 0.4030 - 

53  0 0.92 0 0.6 0.4 0.6 0.4 0.3999 + 

54  0 0.92 0.2 0.6 0.8 0.2 0.2 0.3974 - 

55  0 1 0 0.6 0.5 0.6 0.2 0.3969 - 

56  0 0.8 0 0.6 0.8 0.6 0.2 0.3951 - 

57  0 1 0 0.5 0.86 0.2 0.4 0.3919 + 

58  0.45 0.92 0 0.5 0.6 0.2 0 0.3805 + 

59  0 1 0 0.6 0.84 0.2 0.2 0.3797 - 

60  0 0.8 0 0.6 0.62 0.6 0.2 0.3774 - 

61  0 1 0 0.6 0.42 0.2 0.5 0.3764 - 

62  0 1 0 0.6 0.8 0.2 0.2 0.3758 - 

63  0 0.8 0 0.6 0.84 0.6 0 0.3737 - 

64  0 0.8 0 0.6 0.82 0.6 0 0.3718 - 

65  0 0.8 0 0.6 0.62 0.2 0.5 0.3648 - 

66  0 1 0 0.6 0.42 0.6 0 0.3637 - 
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67  0 0.92 0 0.4 0.82 0.2 0.4 0.3605 + 

68  0 0.85 0 0.5 0.6 0.2 0.5 0.3556 + 

69  0 1 0 0.4 0.52 0.2 0.4 0.3435 + 

70  0 0.8 0 0.6 0.4 0.2 0.5 0.3432 - 

71  0 1 0 0.6 0.62 0.2 0 0.3328 - 

72  0 1 0 0.6 0.62 0.2 0 0.3328 - 

73  0 1 0 0.6 0.6 0.2 0 0.3308 - 

74  0 0.8 0 0.6 0.62 0.2 0.2 0.3269 - 

75  0 0.85 0 0.6 0.4 0 0.5 0.3257 + 

76  0 1 0.2 0.6 0.4 0 0 0.3199 - 

77  0 1 0.2 0.6 0.4 0 0 0.3199 - 

78  0 1 0 0.6 0.62 0 0 0.3075 - 

79  0 1 0 0.6 0.6 0 0 0.3056 - 

80  0 0.8 0 0.6 0.4 0.2 0.2 0.3052 - 

81  0 0.92 0 0.6 0.46 0.2 0 0.3046 - 

82  0 0.8 0 0.6 0.6 0.2 0 0.2996 - 

83  0 0.92 0 0.6 0.4 0.2 0 0.2987 - 

84  0 0.8 0 0.6 0.84 0 0 0.2979 - 

85  0 0.92 0 0.6 0.62 0 0 0.2950 - 

86  0 1 0 0.6 0.46 0 0 0.2918 - 

87  0 1 0 0.6 0.46 0 0 0.2918 - 

88  0 0.8 0 0.6 0.52 0.2 0 0.2917 - 

89  0 0.8 0.2 0.6 0.4 0 0 0.2887 - 

90  0 0.8 0 0.6 0.46 0.2 0 0.2858 - 

91  0 0.8 0 0.6 0.46 0.2 0 0.2858 - 
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92  0 0.8 0 0.6 0.46 0.2 0 0.2858 - 

93  0 0.92 0 0.6 0.52 0 0 0.2852 - 

94  0 0.92 0 0.6 0.42 0 0 0.2754 - 

95  0 0.8 0 0.6 0.6 0 0 0.2743 - 

96  0 0.92 0 0.6 0.4 0 0 0.2734 - 

97  0 0.85 0 0.6 0.5 0 0 0.2723 + 

98  0 0.8 0 0.6 0.4 0 0 0.2547 - 

99  0 0.8 0 0.6 0.4 0 0 0.2547 - 

100  0 0.85 0 0.4 0.42 0 0 0.2343 + 

5. Findings & Conclusions 

This study successfully dealt with the rapid diagnosis of possible contagions, planning of follow-up methods 

and more developed treatment services, and planning an individual-specific vaccination priority by machine 

learning and statistical methods. 

Diagnosis of COVID-19: This study employed mFPFS-CMC, the modified FPFS-CMC which is 

prominent among the well-known classifiers in medical diagnosis to diagnose COVID-19, and the dataset 

“Symptoms and COVID Presence (May 2020 data)” provided in Kaggle Data Repository. This is the first 

study to apply this classifier to COVID-19. The simulation results in Table 1 showed that mFPFS-CMC can 

be successfully applied to diagnose COVID-19 and it has a running time advantage of up to 70% over FPFS-

CMC. This study then presented the accuracy, sensitivity, and specificity results of mFPFS-CMC. Although 

the sensitivity results of mFPFS-CMC are below 90%, its accuracy and specificity results are above 90%. The 

results showed that mFPFS-CMC is reliable and practical in medical diagnosis. Consequently, it has become 

more practical, timesaving, and far less costly to diagnose COVID-19 with the help of mFPFS-CMC. 

Follow-Up Treatment Priority in COVID-19 Patients: This study constructed six risk score functions 

related to age, hypertension, cardiovascular disease, cancer, chronic kidney failure, and diabetes using the data 

provided in [11,12,14,15,17,18,40-47,49]. It then proposed a treatment priority score function to utilize in 

follow-up treatment priority in the presence of COVID-19 patients using the aforesaid six risk score functions. 

This study achieved developing a methodology that calculates each patient’s risk score to provide better 

follow-up and treatment services. Afterward, it applied the SDM method YE12 to a hypothetical scenario. The 

results showed that the method herein is viable to rank COVID-19 patients in terms of treatment priority. 

Vaccination Priority Planning: This study examined the vaccination process based on an individual-

specific perspective via vaccination priority scores, calculated by considering the aforesaid seven criteria, i.e., 

systemic disease, age, presence of risk group individuals in the immediate vicinity, presence of COVID-19 

history, province-district, transportation preference, and occupation. Moreover, it proposed a multi-

dimensional vaccination priority algorithm to be used in a possible vaccine crisis in the case that a new variant 

that is insensitive to the vaccine or for booster dose planning. This study then presented a hypothetical and a 

real-life problem obtained by an online survey, conducted by Google Forms. The results manifested that this 

algorithm has 96% validity. 
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Suggestions: Although the first section of the project utilized three datasets consisting of 227, 2779, and 

5434 patients, the others used the data of up to 200 participants. Increasing the number of participants can 

positively affect the validity of the results. Since the datasets herein are imbalanced, the sensitivity and 

specificity results can be improved by balancing the datasets. In general, increasing the number of the 

considered studies can produce more sensitive results than the results herein. Moreover, the treatment priority 

method can also be applied to a real-life dataset. All these methodologies can be adapted to reflect more on the 

abilities of fpfs-matrices. A software program can be derived from this study to use the health system and e-

Pulse system, the personal health record system used in Turkiye. 
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1. Introduction

The solute transport is described by the advection-dispersion equation (in short ADE) (see for example
[1])

∂C

∂t
+ U ∂C

∂x
= D

∂2C

∂x2
(1)

where, C is solute concentration distribution, the positive constants U represent the average fluid
(wind) velocity; D, the dispersion coefficient; x, the spatial domain and t is time. The ADE is a
deterministic equation describing a probability function for the location of particles in a continuum.
The fundamental solutions of the ADE over time t have studied in the Gaussian densities with means
and variances based on the values of the macroscopic transport coefficients U and D.

The extension of the Eqn. (1) is presented in the typical advection-dispersion vector equation as

∂C

∂t
+ div(CU) = div(D∇C) + F (2)

Here, the Eqn. (2) consists the scalar quantities C,D, and F , such that D ̸= 0 and U , a vector
quantity.

We refer the principles of air pollution meteorology described in the researches [2–5]. Liu et al. [6,7]
presented various computational methods for solute transport in the advection-dispersion problems.
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The study of wind speed conditions is of interest, partly because the simulation of airborne pollutant
dispersion in certain conditions is rather difficult.

In our paper, we determine the distribution formulae of the solute transport by the typical
advection-dispersion of air pollution problem (2) through separation in two dimensional space vari-
ables. We evaluate the solute distribution formulae of the air pollution in terms of Gauss and confluent
hypergeometric functions by introducing different values of the solute velocity and dispersion coeffi-
cients.

2. Theory and Methods of Solute Distribution in Advection-dispersion Equation by
Separate Variables

In this section, we plug the Eqn. (2) via the theory and methods of separation in two dimensional
space variables stated on the basis of the researches done in [8–11].

We suppose that, ∀x, y ∈ R, the solute concentration distribution C = C(x, y, t), the wind velocity
U = u(x, y, t)i + v(x, y, t)j; i and j are unit vectors; u(x, y, t) and v(x, y, t) are scalar quantities; the
dispersion coefficient D = D1(x)D2(y), D1(x) ̸= 0, D2(y) ̸= 0, ∀x ∈ R, y ∈ R, and the scalar quantity

F = F (x, y, t), lim
t→0+

C(x, y, t) = f(x, y), lim
t→∞

C(x, y, t) = h(x, y), ∇ ≡ i
∂

∂x
+ j

∂

∂y

Also, the concentration distribution C(x, y, t) exists and have non - zero values for ∀x ∈ R, y ∈
R, t ≥ 0, and does not exist when t < 0.

By above assumptions, we convert the Eqn. (2) in the typical two variables advection-dispersion
equation given by

∂C(x, y, t)

∂t
+

∂

∂x
(C(x, y, t)u(x, y, t)) +

∂

∂y
(C(x, y, t)v(x, y, t))

= D2(y)
∂

∂x
(D1(x)

∂

∂x
C(x, y, t)) +D1(x)

∂

∂y
(D2(y)

∂

∂y
C(x, y, t)) + F (x, y, t) (3)

Theorem 2.1. If u(x, y, t) and v(x, y, t) are velocity components along unit vectors i and j ∀x ∈
R, y ∈ R, t ≥ 0, and C(x, y, t) = C1(x, t)C2(y, t), where, C1(x, t) ̸= 0, C2(y, t) ̸= 0 and F (x, y, t) =
f1(x, t)C2(y, t) + f2(y, t)C1(x, t), ∀x ∈ R, y ∈ R, t ≥ 0, then by the Eqn. (3), there exists following
separate differential equations with variable coefficients

D2(y)
∂2

∂y2
C2(y, t) +

{
∂

∂y
D2(y)−

v(x, y, t)

D1(x)

}
∂

∂y
C2(y, t) +

f2(y, t)

D1(x)

− 1

D1(x)

∂C2(y, t)

∂t
−

∂
∂yv(x, y, t)

D1(x)
C2(y, t) = 0 (4)

and

D1(x)
∂2

∂x2
C1(x, t) +

{
∂

∂x
D1(x)−

u(x, y, t)

D2(y)

}
∂

∂x
C1(x, t) +

f1(x, t)

D2(y)

− 1

D2(y)

∂C1(x, t)

∂t
−

∂
∂xu(x, y, t)

D2(y)
C1(x, t) = 0 (5)

Proof. Consider the Eqn. (3) and set

u(x, y, t) = u1(x, t)u2(y, t), v(x, y, t) = u3(x, t)u4(y, t) (6)
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Then, under the conditions given in the Theorem 2.1 and in Eqn. (6), the Eqn. (3) becomes as

C1(x, t)
∂C2(y, t)

∂t
+ C2(y, t)

∂C1(x, t)

∂t
+ u2(y, t)C2(y, t)

∂

∂x
(C1(x, t)u1(x, t))

+ C1(x, t)u3(x, t)
∂

∂y
(C2(y, t)u4(y, t))

= C2(y, t)D2(y)
∂

∂x
(D1(x)

∂

∂x
C1(x, t)) + C1(x, t)D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))

+ f1(x, t)C2(y, t) + f2(y, t)C1(x, t) (7)

Again, we write the Eqn. (7) in the form

C1(x, t)

[
∂C2(y, t)

∂t
+ u3(x, t)

∂

∂y
(C2(y, t)u4(y, t))−D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))− f2(y, t)

]
+

C2(y, t)

[
∂C1(x, t)

∂t
+ u2(y, t)

∂

∂x
(C1(x, t)u1(x, t))−D2(y)

∂

∂x
(D1(x)

∂

∂x
C1(x, t))− f1(x, t)

]
= 0 (8)

Since in Eqn. (8) C1(x, t) ̸= 0 and C2(y, t) ̸= 0, then ∀ x, y ∈ R, t ≥ 0, here the equality holds if
following equations satisfy

∂C2(y, t)

∂t
+ u3(x, t)

∂

∂y
(C2(y, t)u4(y, t))−D1(x)

∂

∂y
(D2(y)

∂

∂y
C2(y, t))− f2(y, t) = 0 (9)

and
∂C1(x, t)

∂t
+ u2(y, t)

∂

∂x
(C1(x, t)u1(x, t))−D2(y)

∂

∂x
(D1(x)

∂

∂x
C1(x, t))− f1(x, t) = 0 (10)

By the Eqn. (9), we obtain

∂C2(y, t)

∂t
+ u3(x, t)

{
C2(y, t)

∂

∂y
u4(y, t) + u4(y, t)

∂

∂y
C2(y, t)

}
−D1(x)

{
D2(y)

∂2

∂y2
C2(y, t) +

∂

∂y
D2(y)

∂

∂y
C2(y, t)

}
− f2(y, t) = 0, x, y ∈ R, t ≥ 0 (11)

Then, for x, y ∈ R, t ≥ 0, by Eqn. (11) we find

∂C2(y, t)

∂t
= D1(x)D2(y)

∂2

∂y2
C2(y, t) +

{
D1(x)

∂

∂y
D2(y)− u3(x, t)u4(y, t)

}
∂

∂y
C2(y, t)

− u3(x, t)
∂

∂y
u4(y, t)C2(y, t) + f2(y, t) (12)

Further in a similar manner, ∀x, y ∈ R, t ≥ 0, by Eqn. (10) we find

∂C1(x, t)

∂t
= D2(y)D1(x)

∂2

∂x2
C1(x, t) +

{
D2(y)

∂

∂x
D1(x)− u1(x, t)u2(y, t)

}
∂

∂x
C1(x, t)

− u2(y, t)
∂

∂x
u1(x, t)C1(x, t) + f1(x, t) (13)

Note that ∀x, y ∈ R, t ≥ 0 the Eqns. (12) and (13) may be written as

1

D1(x)

∂C2(y, t)

∂t
= D2(y)

∂2

∂y2
C2(y, t) +

{
∂

∂y
D2(y)−

v(x, y, t)

D1(x)

}
∂

∂y
C2(y, t)

−
∂
∂yv(x, y, t)

D1(x)
C2(y, t) +

f2(y, t)

D1(x)
(14)
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and

1

D2(y)

∂C1(x, t)

∂t
= D1(x)

∂2

∂x2
C1(x, t) +

{
∂

∂x
D1(x)−

u(x, y, t)

D2(y)

}
∂

∂x
C1(x, t)

−
∂
∂xu(x, y, t)

D2(y)
C1(x, t) +

f1(x, t)

D2(y)
(15)

Finally, by the Eqns. (14) and (15) we obtain the Eqns. (4) and (5), respectively.

By the Eqns. (4) and (5), we may obtain various distribution formulae of the solute in the transport
of advection-dispersion of air pollution on setting different wind velocities and dispersion coefficients.

3.Distribution Formulae of the Solute in Transport of Advection-dispersion of Air
Pollution for Different Wind Velocities and Dispersion Coefficients Involving
Special Functions

In this section, we determine the solute distribution formulae in terms of certain special functions
whose contiguity and analytic properties are described in the literature of the authors [12,13]. These
special functions are then applied in computation process of the related formulae. We present following
theorems for evaluation of our results:

Theorem 3.1. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , , D1(x) = x(1−x), D2(y) = y(1−y),
v(x, y, t) = [1− c2 + (a2 + b2 − 1)y]{x(1− x)}, and a partial differential equation is satisfied by

1

C2(y, t)

{
f2(y, t)−

∂C2(y, t)

∂t

}
= (a2+b2−1−a2b2){x(1−x)}, u(x, y, t) = [1−c1+(a1+b1−1)x]{y(1−y)}

and another partial differential equation is satisfied by

1

C1(x, t)

{
f1(x, t)−

∂C1(x, t)

∂t

}
= (a1 + b1 − 1− a1b1){y(1− y)}

then, by the Eqns. (4) and (5) of the Theorem 2.1, they also satisfy the simultaneous differential
equations

y(1− y)
∂2

∂y2
C2(y, t) + {c2 − (a2 + b2 + 1)y} ∂

∂y
C2(y, t)− a2b2C2(y, t) = 0 (16)

and

x(1− x)
∂2

∂x2
C1(x, t) + {c1 − (a1 + b1 + 1)x} ∂

∂x
C1(x, t)− a1b1C1(x, t) = 0 (17)

respectively.

Proof. Consider the Eqn. (4) in which by the statement of this Theorem 3.1, put D1(x) = x(1−x),

D2(y) = y(1− y), v(x, y, t) = [1− c2 + (a2 + b2 − 1)y]{x(1− x)} and set 1
C2(y,t)

{f2(y, t)− ∂C2(y,t)
∂t } =

(a2 + b2 − 1− a2b2){x(1− x)}, we get the Eqn. (16).
Similarly, for the particular values u(x, y, t) = [1− c1 + (a1 + b1 − 1)x]{y(1− y)}, 1

C1(x,t)
{f1(x, t)−

∂C1(x,t)
∂t } = (a1 + b1 − 1− a1b1){y(1− y)}, from the Eqn. (5), we obtain the required Eqn. (17).

Theorem 3.2. If ∀x, y ∈ (0, 1), t ≥ 0, in the relation 1
C1(x,t)

{
f1(x, t) − ∂C1(x,t)

∂t

}
= (a1 + b1 − 1 −

a1b1){y(1−y)}, it is assumed that ∀x, y such that 0 < x < 1, 0 < y < 1, C1(x, t) = e−α1tH1(x, y), α1 >
0, then by Eqn. (17) of the Theorem 3.1, there exists a formula

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + µ1 2F1

[
a1, b1;
c1;

x

]
(18)
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µ1 is an arbitrary constant and 2F1 is Gauss hypergeometric function (see [12,13]). Similarly, for the

relation 1
C2(y,t)

{f2(y, t)− ∂C2(y,t)
∂t } = (a2+b2−1−a2b2){x(1−x)} and C2(y, t) = e−β1tH2(x, y), β1 > 0,

there exists another formula

C2(y, t) = exp

[
− (a2 + b2 − 1− a2b2){x(1− x)}t

]
×
∫ t

0
exp

[
(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ + ν1 2F1

[
a2, b2;
c2;

y

]
(19)

ν1 is an arbitrary constant.

Proof. The relation of the Theorem 3.2 is written by the linear differential equation ∂C1(x,t)
∂t + (a1 +

b1 − 1− a1b1){y(1− y)}C1(x, t) = f1(x, t), so that its solution is found by

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + λ1(x, y) (20)

Now in Eqn. (17) set C1(x, t) = e−β1tH1(x, y), β1 > 0, so that C1(x, 0) = H1(x, y), and then
λ1(x, y) = H1(x, y) and hence we get

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ +H1(x, y) (21)

Again, by the relation C1(x, t) = e−β1tH1(x, y), β1 > 0 and the Eqn. (17), we get H1(x, y) =

µ1 2F1

[
a1, b1;
c1;

x

]
. Therefore, we obtain

C1(x, t) = exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ + µ1 2F1

[
a1, b1;
c1;

x

]
(22)

Similarly, we have for C2(y, t) = e−α1tH2(x, y), α1 > 0, then by Eqn. (16) we get H2(x, y) =

ν1 2F1

[
a2, b2;
c2;

y

]
and by the relation 1

C2(y,t)

{
f2(y, t)− ∂C2(y,t)

∂t

}
= (a2 + b2 − 1− a2b2){x(1− x)}, we

get

C2(y, t) = exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]

×
∫ t

0
exp[(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ + ν1 2F1

[
a2, b2;
c2;

y

]
(23)

Theorem 3.3. If ∀x, y ∈ (0, 1), t ≥ 0, all conditions of the Theorem 3.2 and 3.3 are satisfied, then
there exists following distribution formula of the solute as

C(x, y, t) = G1(x, y, t)G2(x, y, t) + ν1G1(x, y, t) 2F1

[
a2, b2;
c2;

y

]
+ µ1G2(x, y, t) 2F1

[
a1, b1;
c1;

x

]
+ ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
(24)
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Here in (24), it is given that

G1(x, y, t) = {exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]

×
∫ t

0
exp[(a1 + b1 − 1− a1b1){y(1− y)}τ ]f1(x, τ)dτ (25)

and

G2(x, y, t) = {exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]

×
∫ t

0
exp[(a2 + b2 − 1− a2b2){x(1− x)}τ ]f2(y, τ)dτ (26)

Proof. Apply the results of the Theorems 3.1 and 3.2 in the result C(x, y, t) = C1(x, t)C2(y, t) of
the Theorem 2.1 to find the result (21).

Theorem 3.4. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , , D1(x) = x, D2(y) = y

v(x, y, t) = [1− (y − c2)]x,
1

C2(y, t)

{
∂C2(y, t)

∂t
− f2(y, t)

}
= (a2 + 1)x

u(x, y, t) = [1− (x− c1)]y,
1

C1(x, t)

{
∂C1(x, t)

∂t
− f1(x, t)

}
= (a1 + 1)y

then, by the Eqns. (4) and (5) of the Theorem 2.1, they also satisfy following differential equations

y
∂2

∂y2
C2(y, t) + (c2 − y)

∂

∂y
C2(y, t)− a2C2(y, t) = 0 (27)

and

x
∂2

∂x2
C1(x, t) + (c1 − x)

∂

∂x
C1(x, t)− a1C1(x, t) = 0 (28)

respectively.

Proof. Consider the Eqn. (4) in which by the statement of this Theorem, put D1(x) = x, D2(y) = y,

v(x, y, t) = [1− (y− c2)]x, then
∂
∂y

v(x,y,t)

x = −1, and 1
C2(y,t)

{
∂C2(y,t)

∂t − f2(y, t)

}
= (a2 +1)x to get the

Eqn. (27) as

y
∂2

∂y2
C2(y, t) + (c2 − y)

∂

∂y
C2(y, t)− a2C2(y, t) = 0

Similarly, by the Eqn. (5) in which on putting u(x, y, t) = [1 − (x − c1)]y, to get
∂
∂x

u(x,y,t)

y = −1,

1
C1(x,t)

{
∂C1(x,t)

∂t − f1(x, t)

}
= (a1 + 1)y, gives us the Eqn. (28).

Theorem 3.5. If all the conditions of the Theorem 3.4 are satisfied and ∀t ≥ 0, let

C1(x, t) = e−α2tK1(x, y) = e−α2tK1(x)K1(y) = e−α2tK1(x) ( for K1(y) = 1) , α2 > 0;

C2(y, t) = e−β2tK2(x, y) = e−β2tK2(x)K2(y) = e−β2tK2(y) ( for K2(x) = 1) , β2 > 0.

Then, there exists the formulae

C1(x, t) = exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ + µ2 1F1

[
a1;
c1;

x

]
(29)

and

C2(y, t) = exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ + v2 1F1

[
a2;
c2;

y

]
(30)
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Proof. Consider the assumptions of the Theorem 3.5 and make an appeal to the Eqns. (27) and
(28) to get the confluent differential equations (see [12,13])

x
d2

dx2
K1(x) + (c1 − x)

d

dx
K1(x)− a1K1(x) = 0 and y

d2

dy2
K2(y) + (c2 − y)

d

dy
K2(y)− a2K2(y) = 0

respectively. Then we have their respective solutions

K1(x) = µ2 1F1

[
a1;
c1;

x

]
and K2(y) = v2 1F1

[
a2;
c2;

y

]
Again due to the conditions of the Theorem 3.4, we get the linear partial differential equations

∂C1(x, t)

∂t
− (a1 + 1) yC1(x, t) = f1(x, t) and

∂C2(y, t)

∂t
− (a2 + 1)xC2(y, t) = f2(y, t),

respectively. We obtain the solutions of these linear partial differential equations

C1(x, t) = exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ +K1(x, y)

= exp [(a1 + 1) yt]

∫ t

0
exp [− (a1 + 1) yτ ] f1(x, τ)dτ +K1(x)

and

C2(y, t) = exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ +K2(x, y)

= exp [(a2 + 1)xt]

∫ t

0
exp [− (a2 + 1)xτ ] f2(y, τ)dτ +K2(y)

respectively.
Finally introduce the values ofK1(x) andK2(y) in above solutions, we evaluate the required results

(29) and (30).

Theorem 3.6. If ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , all conditions of the Theorems 3.4
and 3.5 are satisfied. Then, by the relation of the Theorem 3.4 there exists then solute distribution in
the form

C(x, y, t) = G
′
1(x, y, t)G

′
2(x, y, t) + ν2G

′
1(x, y, t) 1F1

[
a2;
c2;

y

]
+ µ2G

′
2(x, y, t) 1F1

[
a1;
c1;

x

]
+ ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(31)

where

G′
1(x, y, t) = exp[(a1 + 1)yt]

∫ t

0
exp[−(a1 + 1)yτ ]f1(x, τ)dτ + µ2 1F1

[
a1;
c1;

x

]
and

G′
2(x, y, t) = exp[(a2 + 1)xt]

∫ t

0
exp[−(a2 + 1)xτ ]f2(y, τ)dτ + ν2 1F1

[
a2;
c2;

y

]
Proof. Consider the relation of the Theorem 2.1 that C(x, y, t) = C1(x, t)C2(y, t), in which by making
an appeal to the Theorems 3.4 and 3.5, we find the results of the Theorem 3.6.
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4. Special Cases

Example 4.1. In the Theorem 3.3, ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , set f1(x, τ) = eσ1xτ

and f2(y, τ) = eσ2yτ , σ1 < 0, σ2 < 0, a1 + b1 > (1 + a1b1). Thus we get

C(x, y, t) = G1(x, y, t)G2(x, y, t) + ν1G1(x, y, t) 2F1

[
a2, b2;
c2;

y

]
+ µ1G2(x, y, t) 2F1

[
a1, b1;
c1;

x

]
+ ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
. (32)

Here in (32), it is given that

G1(x, y, t) =
1

{(a1 + b1 − 1− a1b1){y(1− y)}+ σ1x}
× {exp[σ1xt]− exp[−(a1 + b1 − 1− a1b1){y(1− y)}t]} (33)

and

G2(x, y, t) =
1

{(a2 + b2 − 1− a2b2){x(1− x)}+ σ2y}
× {exp[σ2yt]− exp[−(a2 + b2 − 1− a2b2){x(1− x)}t]} (34)

On making an application of the results (32)-(34), and by conditions of Example 4.1, we find that

G1(x, y, 0) = 0 = G2(x, y, 0) and lim
t→∞

G1(x, y, t) = lim
t→∞

G2(x, y, t) = 0,

hence by Section 2 we get

lim
t→0+

C(x, y, t) = lim
t→∞

C(x, y, t) = f(x, y) = h(x, y) = ν1µ1 2F1

[
a1, b1;
c1;

x

]
2F1

[
a2, b2;
c2;

y

]
(35)

Example 4.2. In the Theorem 3.6, ∀x, y ∈ (0, 1), t ≥ 0, c1, c2 ̸= 0,−1,−2,−3, . . . , set f1(x, τ) =
e−ρ1xτ and f2(y, τ) = e−ρ2yτ , ρ1 > 0, ρ2 > 0, (a1 + 1) < 0 and get

C(x, y, t) = G′
1(x, y, t)G

′
2(x, y, t) + ν2G

′
1(x, y, t) 1F1

[
a2;
c2;

y

]
+ µ2G

′
2(x, y, t) 1F1

[
a1;
c1;

x

]
+ ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(36)

Here in (36), it is given that

G′
1(x, y, t) =

1

{(a1 + 1)y + ρ1x}
{exp[(a1 + 1)yt]− exp[−ρ1xt]} (37)

and

G′
2(x, y, t) =

1

{(a2 + 1)x+ ρ2y}
{exp[(a2 + 1)xt]− exp[−ρ2yt]} (38)

On applying the results (36)-(39), and by conditions of the Example 4.2, we find that G′
1(x, y, 0) =

0 = G′
2(x, y, 0), and limt→∞G′

1(x, y, t) = limt→∞G′
2(x, y, t) = 0 and hence by Section 2 we get

lim
t→0+

C(x, y, t) = lim
t→∞

C(x, y, t) = f(x, y) = h(x, y) = ν2µ2 1F1

[
a1;
c1;

x

]
1F1

[
a2;
c2;

y

]
(39)

Remark 4.3. Various elementary functions for example (1 − z)−a = 2F1(a, b; b; z), ln(1 + z) =
z 2F1(1, 1; 2;−z), Legendre functions of the first and second kinds, incomplete Beta function, complete
elliptic integrals of the first and second kinds, Jacobi polynomials, Gegenbauer polynomials, Legendre
polynomials, Tchebycheff polynomials of the first and second kinds are generally represented in terms
of the hypergeometric function 2F1(.). By the Theorem 3.3 and Example 4.1, the solute distribution
may be expressed in the form of these known hypergeometric functions,(also see [8, 10,14]).
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Remark 4.4. Various special functions like Bessel functions, Whittaker functions, incomplete Gamma
functions, Hermite polynomials and Leguerre functions etc. are represented in terms of the confluent
hypergeometric function 1F1(.). By the Theorem 3.6 and Example 4.2, the solute distribution may
be expressed in the form of these known hypergeometric functions,(also see [9, 15,16]).

5. Conclusion and Discussion

Air pollution meteorology, atmospheric diffusion models for regulatory applications, volume method for
transient simulation of time- and scale-dependent transport in heterogeneous aquifer systems are other
related topics which can be connected with our present study. A recent work [10,14-16] on obtaining
Voigt functions via Quadrature formula for the fractional in time diffusion and wave problem, on
a bi-dimensional basis involving Special Functions for partial in space and the time fractional wave
mechanical problems and approximation, are such examples. The study of wind speed conditions
is of interest, partly because the simulation of airborne pollutant dispersion in certain conditions is
rather difficult. We have determined the distribution formulae of the solute transport by the typical
advection-dispersion of air pollution problem through separation in two dimensional space variables.
Several other methods are available. We have evaluated the solute distribution formulae of the air
pollution in terms of Gauss and confluent hypergeometric functions by introducing different values of
the solute velocity and dispersion coefficients.

We can determine the solute distribution formulae in terms of certain special functions whose con-
tiguity and analytic properties are described in the literature of the authors [12, 13].The equation (2)
via the theory and methods of separation in two dimensional space variables stated on the basis of the
researches done in [8-11] may be useful by simply connecting relevant special functions in computation
process of the related formulae. By the Theorem 3.6 and Example 4.2, the solute distribution may
be expressed in the form of known special functions,(also see [9, 15, 16]). As a consequence, by in-
troducing different values of the solute velocity and dispersion coefficients, we can evaluate the solute
distribution formulae of the air pollution in terms of various known and unknown special functions.
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Jñānābha 47 (2) (2017) 291–300.



New Theory
Journal of

ISSN: 2149-1402 

39 (2022) 94-103

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Number 39 Year 2022

www.dergipark.org.tr/en/pub/jnt

A Generalization of p-Adic Factorial

Rafik Beldahef1 ID

Article Info

Received : 17 Mar 2022

Accepted : 30 Jun 2022

Published : 30 Jun 2022

doi:10.53570/jnt.1089241

Research Article

Abstract − In this paper, we establish a new approach of the p-adic analogue
of Roman factorial, called p-adic Roman factorial. We define this new concept and
demonstrate its properties and some properties of p-adic factorial.

Keywords − Roman factorial, p-adic number, p-adic factorial, p-adic gamma function

Mathematics Subject Classification (2020) − 05A10, 11D88

1. Introduction

In the literature, the Roman factorial in the real case is one of the generalizations of the classical
factorial for negative integers. This concept has been used by Steve Roman [1] to study the formal
series and the harmonic logarithm. It has also been studied by Loeb and Rota in [2], and [3]. The
above authors have used the notation bme! to define the Roman factorial of an integer m ∈ Z.
The p-adic domain has an important applications in a cryptography, number theory, algebraic geom-
etry, and arithmetic dynamics. However, the definition of the p-adic factorial of a positive integer was
considered by Alain Robert in [4] as restricted factorial, and denoted by

n!∗ =
∏

1≤j≤n,p-j

j

Another notation for the p-adic factorial (n!)p was adopted by Menken and Çolakoğlu [5]. Both of
Robert and Menken have used the p-adic factorial only to define the p-adic gamma function, without
giving its properties. Furthermore, Aidagulov and Alekseyev in [6] have also used the so-called modified
(p-adic) factorial, with the notation n!p, to study the modified (p-adic) binomial coefficients. It can
be remarked that the previous authors have given the definition of p-adic factorial without giving the
properties.
Taken into previous considerations, in the present paper, we firstly demonstrate some properties of
p-adic factorial (see Lemma 2.3, Theorem 2.4, Proposition 2.7, Proposition 2.8, Corollary 2.9, and
Corollary 2.10). Secondly, we propose a definition of p-adic analogue of Roman factorial named p-adic
Roman factorial (see Definition 3.1). Next, we demonstrate some combinatorial properties of this
factorial, using the concept of p-adic gamma function (see Lemma 3.2, Theorems 3.4-3.6, Corollaries
3.7-3.8, Theorems 3.9-3.11). Finally, some numerical examples are given (Examples 2.5 and 3.12).
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2. Preliminary

Throughout this paper, p is a prime number, Z is the set of all the real integers, Z− (resp. Z+) is
the set of all the negative real integers (resp. all the positive real integers), N is the set of all the
non-negative integers, Q is the field of rational numbers, and R is the field of real numbers. We use
|.| to denote the ordinary absolute value, [.] the real integer part, νp the p-adic valuation, and |.|p the
p-adic absolute value. The field of p-adic numbers Qp is the completion of Q with respect to the p-adic
absolute value. The ring of p-adic integers Zp is such that |x|p ≤ 1.

2.1. Roman Factorial in Real Domain

Roman in [1] proposed the factorial of negative integer n ∈ Z− as bne! =
(−1)−n−1

(−n− 1)!
. So, for n ∈ Z+

we have bne! = n!. Also, the Roman factorial satisfies a characteristic functional equation bne! =
bne · b(n− 1)e!, where bne = n if n 6= 0, and b0e = 1 is called Roman n.

For example, we give the Roman factorial of some integers in table1:

Table 1. oman factorial of some integers

n 0 1 2 3 4 5 6 7

bne! 1 1 2 6 24 120 720 5040

−n 0 −1 −2 −3 −4 −5 −6 −7

b−ne! 1 1 −1 1
2 − 1

6
1
24 − 1

120
1

720

The complement formula of the factorial function, known as Knuth’s theorem [7], is as follows:

bne! b−ne! = (−1)n |n|

and the Roman factorial can be rewritten using the gamma function Γ as follows:

bne! =


Γ(n+ 1), for n ≥ 0

(−1)−n−1

Γ(−n)
, for n < 0

(1)

2.2. p-adic Factorial and p-adic Gamma Function

In this subsection, we provide definitions of p-adic analogue of factorial function and gamma function
and some of their basic properties, to be needed in the next section.

Definition 2.1. [4] The p-adic factorial of n ∈ N is defined by 0!p = 1 and for n > 0

n!p =
n∏
j=1

(p,j)=1

j (2)

Remark 2.2. If 1 ≤ n ≤ p− 1, then (p, j) = 1, for all 1 ≤ j ≤ n. Then, n!p = n!.

Lemma 2.3. For p = 2, then we have (2k)!2 = (2k − 1)!2.

Proof. The result comes from the fact that if p = 2, we have n!2 =
n∏
j=1

j is odd

j.
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As in the real case, we define the p-adic Roman of a positive integer n as

bnep =


n, if |n|p = 1

1, if |n|p < 1
(3)

Therefore, the first property similar to that of the real factorial is given by the following

Theorem 2.4. Let n ∈ N, with n ≥ 1. Then n!p = bnep (n− 1)!p.

Proof. Two cases are considered.
1) We suppose |n|p = 1, so (p, n) = 1. Thus

n!p =
n∏
j=1

(p,j)=1

j = n
n−1∏
j=1

(p,j)=1

j = bnep (n− 1)!p

2) We suppose |n|p < 1, so (p, n) 6= 1. Thus

n!p =

n∏
j=1

(p,j)=1

j = 1 ·
n−1∏
j=1

(p,j)=1

j = bnep (n− 1)!p

Example 2.5. In Tables 2-5, we calculate some p-adic factorials of some positive integers. For
p = 2, 3, 5, 7.

Table 2. The 2-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!2 1 1 1 3 3 15 15 105 105 945 945 10395

Table 3. The 3-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!3 1 1 2 2 8 40 40 280 2240 2240 22400 246400

Table 4. The 5-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!5 1 1 2 6 24 24 144 1008 8064 72576 72576 798336

Table 5. The 7-adic factorial

n 0 1 2 3 4 5 6 7 8 9 10 11

n!7 1 1 2 6 24 120 720 720 5760 51840 518400 5702400

The next theorem represents a generalization of the Wilson congruence; it’s the key of some results
in this section.

Theorem 2.6. [4] Let a ∈ Z and s ∈ Z+. Then

1) For p ≥ 3 and s ≥ 1, we have
a+ps−1∏
j=a

(p,j)=1

j ≡ −1 (mod ps).
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2) For p = 2 and s ≥ 3, we have
a+2s−1∏
j=a
jodd

j ≡ 1 (mod 2s) .

From this generalization of the classical Wilson theorem, we obtain the following congruences:

Proposition 2.7. Let n ∈ N and s ∈ Z+.

1) If p ≥ 3 and s ≥ 1, then
(n+ ps)!p

n!p
≡ −1 (mod ps).

2) If p = 2 and s ≥ 3, then
(n+ 2s)!2

n!2
≡ 1 (mod 2s).

Proof. We have

(n+ ps)!p
n!p

=

n+ps∏
j=n+1
(p,j)=1

j

From the case 1 of Theorem 2.6 with a = n+ 1, we obtain the congruence for p ≥ 3 and s ≥ 1. From
the case 2 of the same Theorem with a = n+ 1, we obtain the congruence for p = 2 and s ≥ 3.

More generally, we have the following theorem:

Proposition 2.8. Let n ∈ N, and m, s ∈ Z+.

1) If p ≥ 3 and s ≥ 1, then
(n+mps)!p

n!p
≡ (−1)m (mod ps).

2) If p = 2 and s ≥ 3, then
(n+m2s)!2

n!2
≡ 1 (mod 2s).

Proof. The proof is done by induction on m.

Corollary 2.9. For p ≥ 3, n ∈ N and s ∈ Z+, we have |n!p|p = 1 and

|(n+ ps)!p + n!p|p ≤
1

ps

Corollary 2.10. For p = 2, n ∈ N and s ∈ Z+ with s ≥ 3, we have |n!2|2 = 1 and

|(n+ 2s)!2 − n!2|2 ≤
1

2s

In dynamic system and string theory, the p-adic gamma function has been well used. This function
studied by [8], [9] and [10], to give some properties of polynomials.
The function n! cannot be extended by continuity on Zp, because lim

n→+∞
n! = 0 in Zp. So, we have the

definition of p-adic gamma function as follows:

Definition 2.11. [11] The p-adic gamma function is defined by Morita as the continuous function

Γp : Zp −→ Zp

as an extension of the following sequence, with n ∈ Z+

Γp(n) = (−1)n
n−1∏

j=1,(p,j)=1

j (4)

Furthermore,

Γp(z) = lim
n →
in Zp

z
Γp(n) = lim

n →
in Zp

z
(−1)n

n−1∏
j=1

(p,j)=1

j
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Here, we cite some properties of Γp that we need to prove the theorems in the next section.

Proposition 2.12. [4] The function Γp satisfies the following properties:

1) Γp(0) = 1 , Γp(1) = −1, Γp(2) = 1

2) Γp(n+ 1) = (−1)n+1n!p, ∀n ∈ N

Other some important arithmetic formulas are given in the following proposition:

Proposition 2.13. [4] Let n ≥ 1, its p-adic expansion be
∑̀
i=0

nip
i, and the sum of digits be Sn =

∑̀
i=0

ni. Then,

1) Γp(n+ 1) =
(−1)n+1 n![
n
p

]
!× p

[
n
p

] . In particular, Γp(p
n) =

(−1)p pn!

pn−1!× ppn−1 .

2) Γp(np+ k + 1) =
(−1)np+k+1 (np+ k)!

n!× pn
, for 0 ≤ k < p.

3) n! = (−1)n+1−` (−p)
n−Sn
p−1

∏̀
i=0

Γp

([
n
pi

]
+ 1
)

.

3. Main Results and Proofs

Inspired by the works of Roman [1], Loeb and Rota [2], we will establish a p-adic analogue of the
Roman factorial, so-called the p-adic generalized factorial, or the p-adic Roman factorial. We define
of this new concept and demonstrate some of its properties.

Definition 3.1. For n ∈ Z, we define the p-adic Roman factorial of n as

bne!p =


n!p, for n ≥ 0

(−1)−n−1

(−n− 1)!p
, for n < 0

(5)

Remark 3.2. It can be remarked that

1) If 0 ≤ n ≤ p− 1, the we have n!p = n!. Then, bne!p = bne! = n!.

2) If −p ≤ n ≤ −1, the we have (−n− 1)!p = (−n− 1)!. Then, bne!p = bne!.

Lemma 3.3. For p = 2, then

bne!p =


bn− 1e!p, for n = 2k ≥ 0

−bn− 1e!p, for n = −2k < 0

Proof. From Lemma 2.3, we have (2k)!2 = (2k− 1)!2, thus b2ke!p = b2k − 1e!p. For the second case,
we have (−2k − 1)!2 = (−2k)!2, thus b−2k − 1e!p = b−2ke!p
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We keep the notation of the p-adic Roman for a negative integer n ∈ Z− and define it as

bnep =


n, if |n|p = 1

−1, if |n|p < 1
(6)

So, it can easily verified that b−nep = −bnep.

Therefore, the first property similar to that of the real Roman factorial is as follows:

Theorem 3.4. For all n ∈ Z, we have bn+ 1e!p = bn+ 1ep bne!p.

Proof. We consider the following three cases:
1) If n ≥ 0, then n+ 1 ≥ 1. Then, from Proposition 2.4 we have

bn+ 1e!p = (n+ 1)!p = bn+ 1ep n!p = bn+ 1ep bne!p

2) If n < −1, then n+ 1 < 0. Then, from Proposition 2.4 we have

bn+ 1e!p =
(−1)−n b−n− 1ep
b−n− 1ep (−n− 2)!p

=
(−1)−n−1 bn+ 1ep

(−n− 1)!p
= bn+ 1ep bne!p

3) If n = −1, then, we have in the left side bn+ 1e!p = 0!p = 1, and in the right side bn+ 1ep bne!p =
1 · b−1e!p = 1.

The following congruences hold from the properties of p-adic factorial.

Theorem 3.5. Let n ∈ Z and s ∈ Z+. Then

1) If p ≥ 3 and s ≥ 1, then we have
bn+ pse!p
bne!p

≡ −1 (mod ps) , if n ≥ 0

bne!p
bn− pse!p

≡ −1 (mod ps) , if n < 0

2) If p = 2 and s ≥ 3, then we have
bn+ 2se!2
bne!2

≡ 1 (mod 2s) , if n ≥ 0

bne!2
bn− 2se!2

≡ 1 (mod 2s) , if n < 0

Proof. The case n ≥ 0 comes from the Proposition 2.8. It only remains to explain the case n < 0.
Indeed, we have

bne!p
bn− pse!p

= (−1)p
s (−n− 1 + ps)!p

(−n− 1)!p

The result comes from Proposition 2.8, for two cases p ≥ 3 and p = 2.

More generally, we have the following Theorem

Theorem 3.6. Let n ∈ Z and s,m ∈ Z+. Then,
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1) If p ≥ 3 and s ≥ 1, then we have
bn+mpse!p
bne!p

≡ (−1)m (mod ps) , if n ≥ 0

bne!p
bn−mpse!p

≡ (−1)m (mod ps) , if n < 0

2) If p = 2 and s ≥ 3, then we have
bn+m2se!2
bne!2

≡ 1 (mod 2s) , if n ≥ 0

bne!2
bn−m2se!2

≡ 1 (mod 2s) , if n < 0

Proof. Easy recursion on m.

The following corollaries follow from the two previous theorems.

Corollary 3.7. Let p ≥ 3, n ∈ Z and s,m ∈ Z+. Then, | bne!p|p = 1 and
| bn+mpse!p + bne!p|p ≤

1

ps
, if n ≥ 0

| bn−mpse!p + bne!p|p ≤
1

ps
, if n < 0

Corollary 3.8. Let p = 2, n ∈ Z, and s,m ∈ Z+ with s ≥ 3. Then, | bne!2|2 = 1 and
| bn+m2se!2 − bne!2|2 ≤

1

2s
, if n ≥ 0

| bn−m2se!2 − bne!2|2 ≤
1

2s
, if n < 0

Next, we give the p-adic complement formula for p-adic Roman factorial function, in other words,
the p-adic version of Knuth’s theorem

Theorem 3.9. (p-adic Knuth’s theorem)
For all n ∈ Z, we have

bne!p b−n− 1e!p =


(−1)n , for n ≥ 0

(−1)n+1 , for n < 0

Proof. If n ≥ 0, then −n − 1 < 0. From Definition 3.1, we have bne!p = n!p and the result comes
from

b−n− 1e!p =
(−1)n

n!p

For the case n < 0, we use the same reasoning.

As we have seen before for p-adic factorial, we can rewrite the p-adic Roman factorial using the
p-adic gamma function, as follows:
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Theorem 3.10. Let n ∈ Z. Then, the relationship between p-adic Roman factorial and p-adic gamma
function is given by

bne!p = (−1)δ(n)Γp(n+ 1)

where

δ(n) =


n+ 1, for n ≥ 0

n+ 1 +
[
−n+1

p

]
, for n < 0

Proof. For the case of n ≥ 0, the result comes from Proposition 2.12 (2). We show the theorem
only for negative integers. Indeed, we proof n < 0, so −n − 1 > 1. From Proposition 2.12, we have
(−n− 1)!p = (−1)−n Γp(−n). On the other hand, from the complement formula of the p-adic gamma
function (see [4]), we have

Γp(n+ 1)Γp(−n) = (−1)
−n−[−n+1

p
]

Hence, we obtain

bne!p =
−1

Γp(−n)

=
−Γp(n+ 1)

(−1)
−n−[−n+1

p
]

= (−1)
n+1+

[
−n+1

p

]
Γp(n+ 1)

In the following theorem, we give some properties related to the p-adic gamma function.

Theorem 3.11. Let n ∈ Z, and m ∈ N. Then

1) We have

bne!p =



bne![
n
p

]
!× p

[
n
p

] , for n ≥ 0

(−1)n bne!
[
−n+1

p

]
!× p

[
−n+1

p

]
, for n < 0

2) In particular, pm+1!p =
pm+1!

pm!× ppm
.

3) (mp+ k)!p =
(mp+ k)!

m! pm
, for 0 ≤ k < p.

4) n! = (−1)n (−p)
n−Sn
p−1

∏̀
i=0

(
(−1)

[
n

pi

] ⌊[
n
pi

]⌉
!p

)
, for n ∈ N given by its p-adic expansion

∑̀
i=0

nip
i

and with the sum of digits Sn =
∑̀
i=0

ni .

Proof. The proof is clear from Proposition 2.13 and Theorem 3.10.
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Example 3.12. We give p-adic Roman factorial of the first ten negative integers in Tables 6-9. For
positive numbers are the same that given in example 2.5.

Table 6. The 2-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!2 1 1 1 3 3 15 15 105 105 945

bne!2 1 −1 1 − 1
3

1
3 − 1

15
1
15 − 1

105
1

105 − 1
945

Table 7. The 3-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!3 1 1 2 2 8 40 40 280 2240 2240

bne!3 1 −1 1
2 − 1

2
1
8 − 1

40
1
40 − 1

280
1

2240 − 1
2240

Table 8. The 5-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!5 1 1 2 6 24 24 144 1008 8064 72576

bne!5 1 −1 1
2 − 1

6
1
24 − 1

24
1

144 − 1
1008

1
8064 − 1

72576

Table 9. The 7-adic Roman factorial

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

−n− 1 0 1 2 3 4 5 6 7 8 9

(−n− 1)!7 1 1 2 6 24 120 720 720 5760 51840

bne!7 1 −1 1
2 − 1

6
1
24 − 1

120
1

720 − 1
720

1
5760 − 1

51840

4. Conclusion

In this article, we have given some properties of the p-adic factorial. Then, we have defined a gener-
alization of this factorial, so-called p-adic Roman factorial, with the proof of some properties and a
congruances modulo a power of a prime number. Also, a numerical examples have been given. This
concept will be used to define the p-adic binomial coefficients and its generalzation, in a future paper.
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