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Research Article

Abstract − We study the so-called factorable surfaces in the pseudo-Galilean
space, the graphs of the product of two functions of one variable. We then classify
these surfaces when the mean and Gaussian curvatures are functions of one variable.

Keywords − Pseudo-Galilean space; factorable surface; Gaussian curvature; mean curvature
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1. Introduction

A Cayley-Klein space is defined as a real projective space P (R) with a certain absolute figure which is
a subset of quadrics and planes. Let (u0 : u1 : u2 : u3) denote the homogeneous coordinates in P (R).
The pseudo-Galilean 3-space G1

3 that we are interested in is a Cayley-Klein space P (R) with the
absolute figure {ω, f, I} such that ω is the absolute plane u0 = 0, f the line u0 = u1 = 0 and I the fixed
hyperbolic involution of points of f . The hyperbolic involution is (0 : 0 : u2 : u3) 7→ (0 : 0 : u3 : u2)
and u22 − u23 = 0 is the absolute conic, [1–5].

Consider the affine coordinates in G1
3 defined by (u0 : u1 : u2 : u3) = (1 : x : y : z) . Then, a plane

of the form x = d, d ∈ R, in G1
3 is said to be Lorentzian since its induced geometry is Lorentzian. We

call other planes isotropic.
The main purpose of this study, in this special ambient space, is determining the surfaces with

prescribed mean (H) and Gaussian (K) curvatures which is a common problem in differential geometry
of surfaces. For this, we focus on a graphical surface. Because of the absolute figure ofG1

3, the geometric
structure of the surface depends on if it is graph on an isotropic or a Lorentzian plane.

Without lose of generality we may consider the coordinate planes. Hence a graph on the isotropic
xy−plane (resp. the Lorentzian yz−plane) is said to be of type 1 (type 2 ). Let M be a non-degenerate
graph of a smooth function u = u (s, t) , s ∈ I ⊂ R, t ∈ J ⊂ R. If M is of type 1 then it parametrizes
r (s, t) = (s, t, u (s, t)) and hence its mean and Gaussian curvatures are given by

ussutt − u2st = −ϵK (s, t)
∣∣1− u2t

∣∣2 (1)

utt = 2ϵH (s, t) 2
∣∣1− u2t

∣∣3/2 (2)
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where ϵ is 1 if 1 − u2t > 0 and −1 otherwise. Here we notice us = ∂u/∂s, ust = ∂2u/∂s∂t, and so. If
M is of type 2 then parameterizes r (s, t) = (u (s, t) , s, t) and

ussutt − u2st = −ϵK (s, t)
∣∣u2s − u2t

∣∣2 (3)

u2sutt − 2usutust + u2tuss = −2ϵH (s, t)
∣∣u2s − u2t

∣∣3/2 (4)

We point out that the PDEs (1) and (3) are of Monge-Ampère type and their importance is due to
economics, meteorology, oceanography etc. [6–11].

In principle, we will concern with the PDEs (1)-(4). Finding their solutions is complicated and
one way to reduce their complexity is to use the technique of separation of variables, namely

u (s, t) = f (s) + g (t) , u (s, t) = f (s) g (t)

for smooth functions f, g. Notice that the graphs u (s, t) = f (s) + g (t) are known as translation
surfaces. The name is because kinematic point of view, obtained by translating one curve along the
other one. If the so-called generating curves are denoted by α (s) and β (t) then

r (s, t) = α (s) + β (t) = (s, t, f (s) + g (t))

r (s, t) = α (s) + β (t) = (f (s) + g (t) , s, t)

Those surfaces were completely obtained in [12–16] when H and K are a constant function.
Most recently, as a generalization, the present authors [17] classified translation surfaces when H

andK are a non-constant function of one variable, that is,K = K (s) andK = K (t) (orH = H (s) and
H = H (t)). The authors found the motivation in Ruiz-Hernández’s paper [18] where the translation
hypersurfaces in the Euclidean n−space Rn were obtained when mean and Gauss-Kronocker curvatures
depend on its first p (or second q) variables, p + q = n. This is indeed, in 3-dimensional setting, a
well-known framework for surfaces of revolution or, more generally, helicoidal surfaces due to the fact
the mean and Gaussian curvatures only depend on the parameter of the profile curve, see [19,20].

Following Ruiz-Hernández’s idea, we will consider the graphs u (s, t) = f (s) g (t) called factorable
(or homothetical) surfaces [21]. These surfaces were studied from various point of view in the (pseudo-)
Galilean ambient space, see [22–24].

When u (s, t) = f (s) g (t), the PDEs (1)-(4) that we will solve are now

fgf ′′g′′ −
(
f ′g′

)2
= −ϵK

∣∣∣1− (fg′)2∣∣∣2 (5)

fg′′ = 2ϵH
∣∣∣1− (fg′)2∣∣∣3/2 (6)

and

fgf ′′g′′ −
(
f ′g′

)2
= −ϵK

∣∣∣(f ′g
)2 − (fg′)2∣∣∣2 (7)

(
f ′g
)2

fg′′ − 2fg
(
f ′g′

)2
+
(
fg′
)2

f ′′g = −2ϵH
∣∣∣(f ′g

)2 − (fg′)2∣∣∣3/2 (8)

where H and K only depend on s or t and a prime denotes the derivative with respect to the related
variable. The Equations (5)-(8) were solved in [13,25,26] when K and H are a constant.

In Section 3, we will solve (5) and (6), obtaining the graphs are a cylindrical ruled surface of type
3 from geometric point of view. The detailed properties of ruled surfaces may be found in [2,27]. We
remark that K has to be a function of s in (5) while H has to be a function of t in (6). Contrary
to this, the solution of (7) is that, up to a change in the roles of the functions f, g, f (s) = aebs,
K (s) = cb2f−2 (s) and g (t) is the solution to the following autonomous differential equation

gg′′ − g′2 = c
(
g′2 − (cg)2

)2
, a, b ∈ R, a, b, c ̸= 0

We also provide an example admits a solution when H depends on only one variable.
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2. Preliminaries

The pseudo-Galilean distance between the points p = (p1, p2, p3) and q = (q1, q2, q3) is

d (p,q) =


|q1 − p1| , p1 ̸= q1√∣∣∣(q2 − p2)

2 − (q3 − p3)
2
∣∣∣, p1 = q1

Let a1, .., a5, φ be some constants. Then, the six-parameter group of motions of G1
3 which leaves

invariant the absolute figure and pseudo-Galilean distance is given in terms of affine coordinates by

x = a1 + x

y = a2 + a3x+ y coshφ+ z sinhφ

z = a4 + a5x+ y sinhφ+ z coshφ

A line in G1
3 is said to be isotropic if its intersection with the absolute line f is non-empty and

non-isotropic otherwise. A vector v = (v1, v2, v3) is said to be isotropic (non-isotropic) if v1 = 0
(̸= 0). Let w = (w1, w2, w3) and ⟨·, ·⟩G denote the pseudo-Galilean dot product. Then, ⟨v,w⟩G is
the Lorentzian scalar product if both v and w are isotropic. Otherwise, v21 + w2

1 ̸= 0, it is defined
by ⟨v,w⟩G = v1w1. The pseudo-Galilean angle between v and w is defined as the Lorentzian angle
if v and w are isotropic. Otherwise, it is given by the pseudo-Galilean distance. We call v and w
orthogonal if ⟨v,w⟩G = 0.

An isotropic vector v is called spacelike if ⟨v,v⟩L > 0; timelike if ⟨v,v⟩L < 0 and lighlike if
⟨v,v⟩L = 0. Let {e1, e2, e3} be standard basis vectors and v and w no both isotropic vectors. Then,
the pseudo-Galilean cross-product is

v×Gw =

∣∣∣∣∣∣
0 −e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
Then, ⟨v×Gw, z⟩G = −det (v,w, z̃) , where z̃ is the projection of z onto the yz−plane. Note that the
vector v×Gw is orthogonal to the vectors v and w.

Let S be a surface in G1
3 locally given by a regular map

(u1, u2) 7→ x (u1, u2) = (x (u1, u2) , y (u1, u2) , z (u1, u2)) , (u1, u2) ∈ D ⊂ R2

Denote x,i =
∂x
∂ui

and x,ij = ∂2x
∂ui∂uj

and etc., 1 ≤ i, j ≤ 2. Then, S is said to be admissible if x,i ̸= 0

for some i = 1, 2. For such an admissible surface S, the first fundamental form is

⟨dx, dx⟩G = Edu21 + 2Fdu1du2 +Gdu22

where E = (x,1)
2 , F = x,1x,2, G = (x,2)

2. Since nowhere an admissible surface has Lorentzian tangent
plane, up to the absolute figure, the isotropic vector x,1 ×G x,2 is normal to S. Let

W = ⟨x,1 ×G x,2,x,1 ×G x,2⟩L

Then, the surface S is called spacelike if W < 0; timelike if W > 0; and lightlike if W = 0. The
spacelike and timelike surfaces are so-called non-degenerate and, throughout this study, we deal with
the only non-degenerate admissible surfaces. The unit normal vector to the non-degenerate surface S
is

N =
x,1 ×G x,2√

|W |
Let ϵ = ⟨N,N⟩L = ±1 and

Lij = ϵ
1

x,1

〈
x,1x̃,ij − (x,i),j x̃,1,N

〉
L
= ϵ

1

x,2

〈
x,2 x̃,ij − (x,i),j x̃,2,N

〉
L
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in which one of x,1 and x,2 is always nonzero due to the admissibility. Then, the second fundamental
form of S is

II = Ldu21 + 2Mdu1du2 +Ndu22

where L = L11, M = L12, N = L22. Thereby, the Gaussian and mean curvatures are defined by

K = −ϵ
LN −M2

W
and H = −ϵ

GL− 2FM + EN

2W

A surface is said to be minimal if H vanishes identically.
Let S be a ruled surface in G1

3 locally given by

x (u1, u2) = γ(u1) + u2w(u1)

where γ(u1) is a regular curve and w(u1) is a nonvanishing vector field along γ(u1). There are three
types of such surfaces depending on the positions of γ(u1), w(u1) and the absolute figure:

� Type 1: w(u1) is non-isotropic and γ(u1) does not lie in a pseudo-Euclidean plane.

� Type 2: w(u1) is non-isotropic and γ(u1) lies in a pseudo-Euclidean plane.

� Type 3: w(u1) is isotropic and γ(u1) is an arbitrary curve lying a plane orthogonal to w(u1).

3. The Graphs of Type 1

Let the graph z (x, y) = f (x) g (y) be of type 1, then

r (x, y) = (x, y, f (x) g (y)) , (s, t) ∈ I × J ⊂ R2

The Gaussian curvature is

K =
fgf ′′g′′ − (f ′g′)2[

1− (fg′)2
]2 (9)

where a prime denotes the derivative with respect to the related variable. We study the case that
K is a non-constant function; that is, at least a partial derivative of K with respect to x and y is
non-vanishing. It is equivalent to the statement that the first derivatives of both f and g are nonzero
on I × J .

In the following we obtain the graphs with K(x, y) = k (x) where k(x) is some smooth function of
x.

Theorem 3.1. If the Gaussian curvature K(x, y) of the graph z (x, y) = f (x) g (y) is a non-constant
function depending one variable then it is of the form K(x, y) = k(x), where k(x) is some negative
smooth function of x. Furthermore, the graph is a cylindrical ruled surface of type 3 such that, up to
a translation of y,

z (x, y) = ±y tanh

(
±
∫ x√

−k (s)ds

)
Proof. Since there is not a symmetry in Equation (9) up to the functions f and g, we distinguish
two cases:

1. Case (∂K/∂y)(x, y) = 0. We set K(x, y) = k(x), for some smooth function k(x). Then,

k (x) =
fgf ′′g′′ − (f ′g′)2[

1− (fg′)2
]2 (10)
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Here, if there is a point y0 ∈ J such that g′′ (y0) = 0 then we may assume g′′ = 0 on a
neighborhood of y0 in J. Letting g′ = c, c ̸= 0, (10) is now

k (x) =
−c2f ′2

(1− c2f2)2

which implies that k (x) is a negative function. Notice that, up to a translation of y, the graph
is written by

r(x, y) = (x, 0, 0) + y (0, 1, cf (x))

which is a parametrization of a ruled surface of type 3. Here f (x) is the solution to

cf ′

1− c2f2
= ±

√
−k (x)

Integrating gives

f (x) = |c|−1 tanh

(
±
∫ x√

−k (s)ds

)
which proves the result. Next, we will show that Equation (10) has no a solution provided
g′′ (y) ̸= 0 on J. In order to overcome difficulties in our calculations we introduce

α1 = ff ′′

α2 = −f ′2

α3 = −f2

Then, Equation (10) turns into

k(x) =
α1gg

′′ + α2g
′2

(1 + α3g′2)
2 (11)

We observe two subcases;

(a) Subcase α1 ̸= 0. Then,

k (x)

α1

(
1 + α3g

′2)2 − (α2

α1

)
g′2 = gg′′ (12)

By taking derivative of Equation (12) with respect to x we obtain

4∑
n=0

Pn

(
g′
)n

= 0

where

P0 = (k (x) /α1)
′

P1 = 0

P2 = 2 (k (x) /α1)
′ α3 + 2 (k (x) /α1)α

′
3 − (α2/α1)

′

P3 = 0

P4 = (k (x) /α1)
′ α2

3 + 2 (k (x) /α1)α3α
′
3

Because of the fact that g′ is a non-constant function of y, P0, ..., P4 are zero all. From
P0 = 0 we get (k (x) /α1)

′ = 0, implying the existence of some nonzero constant c such that
k (x) = cα1. Then, using this in P4 = 0 we obtain 4cf3f ′ = 0 which allows k (x) to be zero.
This is not possible by our assumption.
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(b) Subcase α1 = 0. Then, because α1 = ff ′′, concludes α2 = c, c ̸= 0. Therefore considering
this in Equation (11) and next taking derivative with respect to y we obtain g′′ = 0, which
is a contradiction.

2. Case (∂K/∂x)(x, y) = 0. We set K(x, y) = k(y), for some smooth function k(y). Then, follows

k (y) =
α1gg

′′ + α2g
′2

[1 + α3g′2]
2 (13)

where if g is a linear function then the left hand side of (13) is a function of y and the other
side is a function of x. Thus, g cannot be a linear function by our assumption. Next, let g′′ ̸= 0.
Then, by replacing k (x) with k (y) in Equation (12) we may easily show that no (13) has a
solution.

Example 3.2. Take z(x, y) = f(x)g(y) with K(x, y) = −4x2. By Theorem 3.1, we have z(x, y) =
y tanh(x2) up to a translation of x. One can be drawn as in Fig. 1.

Fig. 1. Graph of z(x, y) = y tanh(x2) with 0 ≤ x ≤ 2π and −π ≤ y ≤ π. The Gaussian curvature is
K(x, y) = x2.

We are also interested in the graphs z (x, y) = f (x) g (y) whose mean curvature is non-vanishing
function of one variable and present the following results:

Theorem 3.3. If the mean curvature H of the graph z (x, y) = f (x) g (y) is a non-constant function
depending one variable then it is of the form H(x, y) = h(y), where h(y) is some smooth function of
y, and the graph is a cylindrical ruled surface of type 3 such that

z (x, y) = cg (y) = 2

∫ y

q(s) (1 + 4q(s))−1/2 ds (14)

where q(y) =
∫ y

h (s) ds and c is a non-zero constant.



Journal of New Theory 40 (2022) 1-11 / Factorable Surfaces in Pseudo-Galilean Space with ... 7

Proof. We distinguish two cases:

1. (∂H/∂x)(x, y) = 0. We set H(x, y) = h(y), for some smooth function h(y). Then, we have

h (y) =
fg′′

2
[
1− (fg′)2

]3/2 (15)

Suppose that f is non-constant function. By squaring we write

4h2 (y)
[
1−

(
fg′
)2]3 − f2g′′2 = 0

which is a polynomial equation of degree 6 on f whose leading coefficient is −4h2 (y) g′6. Since
h (y) is nowhere vanish, we obtain a contradiction. Therefore we have f = c, where c is a nonzero
constant. So the graph parameterizes as

x (1, 0, 0) + (0, y, cg (y))

which is locally a cylindrical ruled surface of type 3. The result follows by integrating (15).

2. Case (∂H/∂y)(x, y) = 0. We set H(x, y) = h(x), for some smooth function h(x). Then, follows

h (x) =
fg′′

2
[
1− (fg′)2

]3/2 (16)

in which f cannot be constant function because otherwise the left hand side is a function of x
and the other side is a function of y. In such a case, divide (16) with f/2 and derivative with
respect to y, obtaining (

3g′g′′2 − g′2g′′′
)
f2 + g′′′ = 0

Here is clear that the coefficients are not zero all, which is not possible. This completes the
proof.

4. The Graphs of Type 2

Consider the graph x(y, z) = f(y)g(z), (y, z) ∈ I × J. Then,

r (y, z) = (f (y) g (z) , y, z) , (s, t) ∈ I × J ⊂ R2

The Gaussian curvature is

K(y, z) =
fgf ′′g′′ − (f ′g′)2[
(fg′)2 − (f ′g)2

]2 (17)

Here we point out f ′, g′ ̸= 0 on I × J because K is a non-constant function in our case.
Thus we present the following result:

Theorem 4.1. If the Gaussian curvature K of the graph x(y, z) = f(y)g(z) is a non-constant function
of one variable then, up to a change in the roles of the functions f, g, f (y) = aeby and the following
autonomous differential equation holds

gg′′ − g′2 = c
(
g′2 − (cg)2

)2
, a, b ∈ R, a, b, c ̸= 0

Furthermore, K = c
(
ab−1eby

)−2
.
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Proof. Assume K is a non-constant function of one variable. Notice that the roles of f and g in
Equation (17) are symmetric and therefore we only focus on the case K = k (y). We previously observe
the following cases:

1. Case f (y) = cy + d, c, d ∈ R, c ̸= 0. Then, Equation (17) is now

±
√

−k(y) =
cg′

(fg′)2 − (cg)2
(18)

The partial derivative of (18) with respect to z is

−cg′2g′′f2 − c3g2g′′ + 2c3gg′2 = 0

which is a polynomial equation of degree 2 on f . Because k is nonzero function, the coefficients
are not zero all, which is a contradiction. Then, f cannot be a linear function. Similarly, if g is
a linear function then we easily arrive the contradiction f ′ = 0. This discussion gives us that f
and g must be non-linear functions.

2. Case f ′ = cfd, c, d ∈ R, c, d ̸= 0.. Then, the following two sub-cases are provided:

(a) Subcase d = 1. Then, f(y) = aecy, a ∈ R, a ̸= 0. Equation (17) is

c−2f2k(y) =
gg′′ − g′2

[g′2 − (cg)2]2
(19)

where the left hand side is a function of y and the other hand side is a function of z. Then,
there exists a nonzero constant λ such that c−2f2k(y) = λ and

gg′′ − g′2 = λ
(
g′2 − (cg)2

)2
which gives the result.

(b) Subcase d ̸= 1. Equation (17) imply that

(c2f2d−4)−1k(y) =
dgg′′ − g′2

(g′2 − c2f2d−2g2)
2 (20)

Letting dgg′′ − g′2 = T and next derivating with respect to z of Equation (20) we obtain

T ′g′2 − 4Tg′g′′ − c2
(
T ′g2 − 4Tgg′

)
f2d−2 = 0

which is polynomial equation on f . Using the equality of coefficients we derive following
equations

T ′g′2 − 4Tg′g′′ = 0

T ′g2 − 4Tgg′ = 0

From these equations, we have the contradiction g′ = bg, b = const.

3. Case that f is neither a linear function nor of the form f ′ = cfd. Then, derivating of (17) with
respect to z

ff ′′ [(g′g′′ + gg′′′
) (

g′2 − g2
)
− 4gg′′

(
g′g′′ − gg′

)]
+ 4f ′2g′2

(
g′g′′ − gg′

)
− 2f ′2g′g′′

(
g′2 − g2

)
= 0

Since f ′ ̸= 0, we obtain

ff ′′

f ′2 =
−4g′2 (g′g′′ − gg′) + 2g′g′′(g′2 − g2)

(g′g′′ + gg′′′) (g′2 − g2)− 4gg′′ (g′g′′ − gg′)

The left hand side is a function of y while the other side is a function of z. Then, both hand
sides are a constant, which contradicts with our assumption.
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The mean curvature of the graph x(y, z) = f(y)g(z) is given by

H =
(fg′)2f ′′g − 2fg(f ′g′)2 + (f ′g)2fg′′

2 [(fg′)2 − (f ′g)2]3/2
(21)

Apart from the previous results, we could not completely solve our problem when H(y, z) is noncon-
stant and

∂H(y, z)

∂y
= 0 or

∂H(y, z)

∂z
= 0 (22)

But we have an example indicating the existence of the graphs x(y, z) = f(y)g(z) when Equation (22)
holds.

Example 4.2. Let a, b, c ∈ R−{0}, up to a change in the roles of the functions f, g, g(z) = aebz and

f(y) = c exp

±
∫ y

((
2a

∫ y

h(s)ds

)−2

+ a−2

)−1/2

ds

 (23)

Then, the mean curvature of the graph x(y, z) = f(y)g(z) only depends on the variable y.

For the solution of Example, we set α = f
f ′ and β = g

g′ . Then, Equation (21) is now

H(x, y) = − αβ(α′ + β′)

2(α2 − β2)
3/2

(24)

Up to a change in the roles of the functions f, g, suppose that β is constant, or equivalently, g(z) = aebz,
for some nonzero constants a, b. Equation (24) is

−2aH(x, y) =
αα′

(α2 − a−2)3/2
(25)

which means that H(x, y) only depends on the variable y. Put H(x, y) = h(y), for some smooth
function h(y). Integrating Equation (25) gives the result of Example.

5. Conclusion

In this paper factorable surfaces are classified when the mean and Gaussian curvatures are functions
of one variable in the pseudo-Galilean space. We have obtained that if the Gaussian curvature K of
the graph z (x, y) = f (x) g (y) is a non-constant function of one variable then it is a negative function
of the form K = k (x). Furthermore, the graph is a cylindrical ruled surface of type 3 and if the mean
curvature H of the graph z (x, y) = f (x) g (y) is a non-constant function of one variable then it is
of the form H = h (y) and the graph is a cylindrical ruled surface of type 3. Also we have shown
that there does not exist a graph x(y, z) = f(y)g(z) in G1

3 when its mean curvature depends on one
variable.

Author Contributions

All authors contributed equally to this work. They all read and approved the last version of the
manuscript.

Conflicts of Interest

The authors declare no conflict of interest.



Journal of New Theory 40 (2022) 1-11 / Factorable Surfaces in Pseudo-Galilean Space with ... 10

References
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Abstract − In this study, we examine some properties of Salkowski curves in E3.
We then make sense of the angle (nt) in the parametric equation of the Salkowski
curves. We provide the relationship between this angle and the angle between the
binormal vector and the Darboux vector of the Salkowski curves. Through this
angle, we obtain the unit vector in the direction of the Darboux vector of the curve.
Finally, we calculate the modified orthogonal frames with both the curvature and
the torsion and give the relationships between the Frenet frame and the modified
orthogonal frames of the curve.
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1. Introduction

In differential geometry, the Frenet frame of a continuous differentiable regular curve in Euclidean
space E3 describe the geometric properties of any point moving along the curve. If {T (t), N(t), B(t)}
is the Frenet frame of any regular curve α in Euclidean space E3, here, the vector T (t) (resp. N(t)
and B(t)) is called tangent vector (normal vector and binormal vector) [1, 2]. In Euclidean 3-space,
the curves whose principal normal vector makes a constant angle with a fixed direction are called
slant helices. Kula et al. [3] studied on the slant helices in Euclidean space E3. Ali [4] obtained
the position vectors of slant helices Euclidean space E3. In a paper published by Salkowski [5], a
curve family, whose curvature is constant but torsion is not, has been defined. In a study done by
Monterde [6], it is found out that base normal vectors of Salkowski curves make a constant angle with
a constant line. The Frenet vectors and the geodesic curvatures of the spherical indicatrix curves
belong to Salkowski curves in E3 are calculated in [7]. The Smarandache curves according to Frenet
frame of Salkowski curves are studied in [8]. Moreover, the modified orthogonal frame of a space
curve in Euclidean space E3 was described by Sasai [9, 10] as a useful tool for investigating analytic
curves with singular points where the Frenet frame does not work. The authors in [11–14] obtained
the modified orthogonal frame of a space curve and its spherical curves in Euclidean and Minkowski
3-space. Arıkan and Nurkan [15] had a paper on adjoint curve according to modified orthogonal frame
with torsion in Euclidean 3-space. Furthermore, there are many studies on the frames of various curves
or surfaces in Euclidean 3-space, [16–25]. In another study, we [26] examined the modified frames with
both the non-zero curvature and the torsion of the non-unit speed curves in Euclidean space E3. In
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this study, it has been shown that Salkowski curves in E3 is not a unit speed curve. Therefore, the
torsion of Salkowski curves is investigated. The Frenet derivative formulas are obtained for this curve.
Besides, the angle (nt) is made sense and the relationship between this angle and the angle between
the binormal vector and the Darboux vector of Salkowski curves is given. By means of this angle, the
unit vector in the direction of this vector and the Darboux vector of the curve is calculated. Finally,
based on the work [26] done on calculating the modified orthogonal frame of a non-unit speed curve,
the modified orthogonal frames with the both curvature and torsion of Salkowski curves are calculated.
And relations between the modified orthogonal frames and the Frenet frame of Salkowski curves in
Euclidean 3-space are given.

2. Preliminary

Let the curve α(t) be a differentiable space curve in E3. Frenet vectors (the tangent, binormal and
principal normal vectors), the curvature and the torsion of this curve are given as follows:

T (t) =
α′(t)

v(t)
, B(t) =

α′(t) ∧ α′′(t)

∥α′(t) ∧ α′′(t)∥
, N(t) = B(t) ∧ T (t) (1)

κ(t) =
∥α′(t) ∧ α′′(t)∥

v3(t)
, and τ(t) =

det (α′(t), α′′(t), α′′′(t))

∥α′(t) ∧ α′′(t)∥2
(2)

respectively. Here, v(t) = ∥α′(t)∥. Frenet derivative formulas of this curve [2] are as follows:
T ′(t)

N ′(t)

B′(t)

 =


0 v(t)κ(t) 0

−v(t)κ(t) 0 v(t)τ(t)

0 −v(t)τ(t) 0




T (t)

N(t)

B(t)

 (3)

The Darboux vector W (t) of the non-unit speed curve α(t) is as follows:

W (t) = N(t) ∧N ′(t) = v(t) (τ(t)T (t) + κ(t)B(t)) (4)

The unit vector C(t) in direction of the vector W (t) of the non-unit speed curve α(t) is

C(t) = v(t)

(
τ(t)√

κ2(t) + τ2(t)
T (t) +

κ(t)√
κ2(t) + τ2(t)

B (t)

)
(5)

or if the angle between of the vectors B(t) and W (t) of the curve α(t) is φ(t), then the unit vector [27]
is

C(t) = sinφT (t) + cosφB (t) (6)

If v(t) = 1, then the curve α(t) is called unit speed curve. Let us create the following vectors for the
curve α(t):

E1(t) = α′(t), E2(t) = E′
1(t), E3(t) = E1(t) ∧ E2(t) (7)

These vectors form an orthogonal frame. If α(t) is a unit speed curve and its curvature is non-zero,
we can write these vectors in terms of Frenet vectors of the curve as following [9]:

E1(t) = T (t), E2(t) = κ(t)N(t), E3(t) = κ(t)B(t) (8)

where,
⟨E1(t), E1(t)⟩ = 1, ⟨E2(t), E2(t)⟩ = ⟨E3(t), E3(t)⟩ = κ2(t) (9)
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In this case, this frame obtained for the curve is called a modified orthogonal frame with the curvature
κ(t) of the curve α(t). There are the following relationships between these vectors and them derivative
vectors: 

E′
1(t)

E′
2(t)

E′
3(t)

 =


0 1 0

−κ2(t)
κ′(t)

κ(t)
τ(t)

0 −τ(t)
κ′(t)

κ(t)




E1(t)

E2(t)

E3(t)

 (10)

The parametric equation of Salkowski curves γm are as follows:

γm(t) =
1√

1 +m2

(
− 1− n

4 (1 + 2n)
sin ((1 + 2n) t)− 1 + n

4 (1− 2n)
sin ((1− 2n) t)− 1

2
sin t ,

1− n

4 (1 + 2n)
cos ((1 + 2n) t) +

1 + n

4 (1− 2n)
cos ((1− 2n) t) +

1

2
cos t,

1

4m
cos (2nt)

)
Figure 1. Here, m ̸= ± 1√

3
, 0 ∈ R and n = m√

m2+1
. Moreover,

∥∥∥γ′
m(t)

∥∥∥ = cos(nt)√
m2+1

; therefore, the curve

is regular in the interval of
]
− π

2n ,
π
2n

[
. The curvature, the torsion and the Frenet vectors of the curve

provided in [5, 6] are as follows:

κ(t) = 1

τ(t) = − tan (nt)

T (t) = −
(
cos t cos (nt) + n sin t sin (nt) , cos (nt) sin t− n cos t sin (nt) ,

n

m
sin (nt)

)
N(t) =

n

m
(sin t,− cos t,−m)

B(t) = −
(
cos t sin (nt)− n cos (nt) sin t, sin t sin (nt) + n cos t cos (nt) ,− n

m
cos (nt)

)

Fig. 1. Salkowski curves for m = 1
8 and m = 1

16
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3. The Some Properties of Salkowski Curves in E3

In this section, we show whether Salkowski curves in E3 are a unit speed curve. We obtain the its
torsion and the Frenet derivative formulas. Also, we make sense the angle (nt) and give the relationship
between this angle and the angle between the binormal vector and the Darboux vector of Salkowski
curves. By means of this angle, we get the Darboux vector of the curve and the unit vector in the
direction of this vector.

3.1.Are Salkowski Curves in E3 Unit Speed Curves?

First, let us examine whether Salkowski curves are a unit speed curve. If we take first derivative
according to the parameter t of Salkowski curves γm(t), we get

γ′m(t) = − n

m
cos (nt)

(
cos t cos (nt) + n sin t sin (nt) , cos (nt) sin t− n cos t sin (nt) ,

n

m
sin (nt)

)
(11)

The norm of the Equation 11 is∥∥∥γ′
m(t)

∥∥∥ = v (t) =
n

m
cos (nt) =

cos (nt)√
m2 + 1

(12)

If Salkowski curves were a unit speed curve, then we could write∥∥∥γ′
m(t)

∥∥∥ =
cos (nt)√
m2 + 1

= 1

Hence, we get

cos (nt) =
√

m2 + 1

For the cosine function, since −1 ⩽ cos(nt) ⩽ 1, we have

−1 ⩽
√

m2 + 1 ⩽ 1

And thus, we obtain
−1 ⩽ m2 ⩽ 0, m2 = 0, and m = 0

But in the definition of Salkowski curves, m ̸= 0, this is a contradiction.

Corollary 3.1. Salkowski curves are not a unit speed curve.

3.2. The Torsion of Salkowski Curves in E3

The sign of torsion of Salkowski curves in [6] is regarded as τ(t) = ⟨B′(t), N(t)⟩ , thus the torsion of
Salkowski curves is stated as τ(t) = tan (nt). However, in [5], the torsion of Salkowski curves is given
as τ(t) = − tan (nt). We know the torsion of the a unit speed curve is found as τ(t) = ⟨N ′(t), B(t)⟩ =
−⟨B′(t), N(t)⟩. But, we said that Salkowski curves are not a unit speed curve. Thus, to find the
torsion of Salkowski curves, we use the following equation:

τ(t) =
det (γ′m(t), γ′′m(t), γ′′′m(t))

∥γ′m(t) ∧ γ′′m(t)∥2
(13)

If we take second and third derivatives according to the parameter t of Salkowski curves γm(t), we get

γ′′m(t) =
n

m
cos (nt)

(
cos (nt) sin t+ n cos t sin (nt) + n2 sin t

(
sin2 (nt)− cos2 (nt)

)
− cos t cos (nt) + n sin t sin (nt)− n2 cos t

(
sin2 (nt)− cos2 (nt)

)
+

n2

m cos (nt)

(
sin2 (nt)− cos2 (nt)

))
(14)
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γ′′′m(t) =
n

m
cos (nt)

(
cos t cos (nt)− 3n sin t sin (nt) + 4n3 sin t sin (nt)

cos (nt) sin t+ 3n cos t sin (nt)− 4n3 cos t sin (nt) ,
4n3

m
sin (nt)

)
(15)

If we apply the vector product to the vectors 11 and 14, we have

γ′m(t) ∧ γ′′m(t) = − n3

m3
cos3 (nt) (cos t sin (nt)− n cos (nt) sin t, sin t sin (nt) + n cos t cos (nt) ,

− n

m
cos (nt)

)
= − n3

m3
cos3 (nt)B (t) (16)

Then, the norm of the Equation 16 is∥∥γ′m(t) ∧ γ′′m(t)
∥∥ =

n3

m3
cos3 (nt) (17)

If we apply the cross product the vectors 15 and 16, we get〈
γ′m(t) ∧ γ′′m(t), γ′′′m(t)

〉
=

n3

m3

(
− n

m
cos2 t cos5 (nt) sin (nt) +

n2

m
cos t sin t cos6 (nt)

+
3n2

m
cos t sin t cos4 (nt) sin2 (nt)− 3n3

m
sin2 t cos5 (nt) sin (nt)

−4n4

m
cos t sin t cos4 (nt) sin2 (nt) +

4n5

m
sin2 t cos5 (nt) sin (nt)

− n

m
sin2 t cos5 (nt) sin (nt)− n2

m
cos t sin t cos6 (nt)

−3n2

m
cos t sin t cos4 (nt) sin2 (nt)− 3n3

m
cos2 t cos5 (nt) sin (nt)

+
4n4

m
cos t sin t cos4 (nt) sin2 (nt) +

4n5

m
cos2 t cos5 (nt) sin (nt)

+
4n5

m3
cos5 (nt) sin (nt)

)
〈
γ′m(t) ∧ γ′′m(t), γ′′′m(t)

〉
=

n3

m3

(
− n

m
cos5 (nt) sin (nt)− 3n3

m
cos5 (nt) sin (nt)

+
4n5

m
cos5 (nt) sin (nt) +

4n5

m3
cos5 (nt) sin (nt)

)
= − n6

m6
cos5 (nt) sin (nt) (18)

Then, if the Equations 17 and 18 are substituted in the Equation 13, we obtain the torsion of Salkowski
curves as follows:

τ(t) = − tan (nt) (19)

[5]. But numerous authors take τ(t) = tan (nt) in the their studies. In this study, we will use the
equality 19 for the torsion of Salkowski curves.

3.3. The Frenet Derivative Formulas of Salkowski Curves in E3

By using the Equations 12 and 19, the derivative vectors of the Frenet vectors T (t), N(t), B(t) of
Salkowski curves are obtained as follows:

T ′(t) =
n2

m2
cos (nt) (sin t,− cos t,−m)

=
n

m
cos (nt)N(t) (20)
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N ′(t) =
n

m
(cos t, sin t, 0)

=
n

m

(
cos t cos2 (nt) + cos t sin2 (nt) + n cos (nt) sin t sin (nt)− n cos (nt) sin t sin (nt) ,

cos2 (nt) sin t+ sin t sin2 (nt)− n cos t cos (nt) sin (nt) + n cos t cos (nt) sin (nt) ,
n

m
cos (nt) sin (nt)− n

m
cos (nt) sin (nt)

)
=

n

m
cos (nt)

(
cos t cos (nt) + n sin t sin (nt) , cos (nt) sin t− n cos t sin (nt) ,

n

m
sin (nt)

)
+

n

m
sin (nt)

(
cos t sin (nt)− n cos (nt) sin t, sin t sin (nt) + n cos t cos (nt) ,− n

m
cos (nt)

)
= − n

m
(cos (nt)T (t) + sin (nt)B(t)) (21)

B′(t) =
n2

m2
sin (nt) (sin t,− cos t,−m)

=
n

m
sin (nt)N(t) (22)

We could have obtained these equations using the Equation 3, but we preferred to arrive at these
equations by operations.

Corollary 3.2. The Frenet derivative formulas for Salkowski curves are as following:


T ′(t)

N ′(t)

B′(t)

 =


0

n

m
cos (nt) 0

− n

m
cos (nt) 0 − n

m
sin (nt)

0
n

m
sin (nt) 0




T (t)

N(t)

B(t)

 (23)

3.4. The Darboux Vector of Salkowski Curves in E3

Now, let us make sense of the angle (nt) for Salkowski curves. We know that the Darboux vector of
any regular curve is found by

W (t) = N(t) ∧N ′(t). (24)

Then, for the Darboux vector of Salkowski curves, we get

W (t) =
n

m
(sin t,− cos t,−m) ∧ n

m
(cos t, sin t, 0)

=
n2

m

(
sin t,− cos t,

1

m

)
(25)

Or, we can get it another way. If we use τ(t) = − tan (nt), from the Equations 3 and 12, since
Salkowski curves are not a unit speed curve, from the Equation

W (t) = v(t) (τ(t)T (t) + κ(t)B(t)) ,

the Darboux vector of Salkowski curve is obtained as follows:

W (t) =
n

m
cos (nt) (cos t sin (nt) + n sin t sin (nt) tan (nt)− cos t sin (nt) + n cos (nt) sin t ,

sin t sin (nt)− n cos t sin (nt) tan (nt)− sin t sin (nt)− n cos t cos (nt) ,
n

m
sin (nt) tan (nt) +

n

m
cos (nt)

)
=

n2

m

(
sin t,− cos t,

1

m

)
(26)
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Here we see the equality of Equations 25 and 26. Also, the norm of the Darboux vector is

∥W (t)∥ =
n

m
(27)

3.5. The Angle (nt) of Salkowski Curves in E3

Let the angle between the vectors B(t) and W (t) of Salkowski curves be φ(t).

Fig. 2. The Darboux vector of Salkowski curves

In this case, from Figure 2, by using the Equation 27, we can write

⟨B(t),W (t)⟩ = ∥B(t)∥ ∥W (t)∥ cosφ

=
n

m
cosφ (28)

Also, if the inner product operation is applied to the vectors B (t) and W (t), we get

⟨B(t),W (t)⟩ = −n2

m

(
cos t sin t sin (nt)− n sin2 t cos (nt)− cos t sin t sin (nt)

−n cos2 t cos (nt)− n

m2
cos (nt)

)
= −n2

m

(
−n cos (nt)− n

m2
cos (nt)

)
=

n

m
cos (nt) (29)

From the equality of the Equations 28 and 29, we have

cosφ = cos (nt) (30)

On the other hand, from Figure 2, by using the Equation 27, we can write

⟨T (t),W (t)⟩ = ∥T (t)∥ ∥W (t)∥ sinφ,

=
n

m
sinφ (31)

Also, if the inner product operation is applied to the vectors T (t) and W (t), we get

⟨T (t),W (t)⟩ = −n2

m

(
n sin2 t sin (nt) + n cos2 t sin (nt) +

n

m2
sin (nt)

)
= −n2

m

(
n sin (nt) +

n

m2
sin (nt)

)
,

= − n

m
sin (nt) (32)
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From the equality of the Equations 31 and 32, we have

sinφ = − sin (nt) (33)

Hence, from the Equations 30 and 33, we write

cosφ− cos (nt) = 0 =⇒ cos2 φ− 2 cosφ cos (nt) + cos2 (nt) = 0

sinφ+ sin (nt) = 0 =⇒ sin2 φ+ 2 sinφ sin (nt) + sin2 (nt) = 0

If these two equations are added side by side, we get

2− 2 (cosφ cos (nt)− sinφ sin (nt)) = 0

cosφ cos (nt)− sinφ sin (nt) = cos (φ+ nt) = 1

And thus, we obtain
nt = −φ (34)

Corollary 3.3. The angle (nt) is the angle opposite sign to the angle between of the binormal vector
B(t) and the Darboux vector W (t) of Salkowski curves.

3.6. The Unit Vector in the Direction of Darboux Vector of Salkowski Curves in E3

Let the unit vector in the direction of Darboux vector W (t) of Salkowski curves be C(t). Then, from
the Equations 25 and 27, we have

C(t) =
W (t)

∥W (t)∥
=
(
n sin t,−n cos t,

n

m

)
(35)

On the other hand, from the Figure 2, we write

C(t) =
v(t)

∥W (t)∥
(τ(t)T (t) + κ(t)B(t))

= sinφT (t) + cosφB(t) (36)

[27]. If the Equation 34 is substituted in the Equation 36, we get

C(t) = − sin (nt)T (t) + cos (nt)B(t)

=
(
cos t cos (nt) sin (nt) + n sin t sin2 (nt) , cos (nt) sin t sin (nt)− n cos t sin2 (nt) ,

n

m
sin2 (nt)

)
−

(
cos t cos (nt) sin (nt)− n cos2 (nt) sin t, cos (nt) sin t sin (nt) + n cos t cos2 (nt) ,− n

m
cos2 (nt)

)
Then, we indeed obtain

C(t) =
(
n sin t,− cos t,

n

m

)
(37)

Here, we see that the Equations 35 and 37 are equal.

4. The Modified Orthogonal Frames of Salkowski Curves in E3

In this section, we calculate the modified orthogonal frames with the both curvature and torsion of
Salkowski curves. And we give the relations between the derivatives of the vectors of these frames
and the Frenet vectors or the vectors of the modified orthogonal frames. Let the Frenet frame, the
curvature and the torsion of Salkowski curves γm(t) be {T (t), N(t), B(t)} , κ(t) and τ(t), respectively.
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4.1. The Modified Orthogonal Frame with the Curvature of Salkowski Curves in E3

Considering the Gram-Schmidt orthogonalization procedure, let us define the orthogonal frame {E1(t),
E2(t), E3(t)} below for Salkowski curves γm(t), [26]:

E1(t) = γ′m(t), E2(t) = E′
1(t)−

⟨E′
1(t), E1(t)⟩

⟨E1(t), E1(t)⟩
E1(t), E3(t) = E1 (t) ∧ E2(t) (38)

Here, since Salkowski curves are not a unit speed curve, we can not use the Equation 8. From the
Equations 11 and 38, the vector E1(t) is obtained as follows:

E1(t) =
n

m
cos (nt)T (t) (39)

From the Equation 39, the following equation is gotten:

⟨E′
1(t), E1(t)⟩

⟨E1(t), E1(t)⟩
=

〈(
n

m
cos (nt)T (t)

)′

,
n

m
cos (nt)T (t)

〉
〈

n

m
cos (nt)T (t),

n

m
cos (nt)T (t)

〉

=

〈
−n sin (nt)T (t) +

n

m
cos2 (nt)N(t), cos (nt)T (t)

〉
cos2 (nt)

= −n tan (nt) (40)

From the Equations 3, 38 and 40, the vectors E2(t) and E3(t) are obtained as follows:

E2(t) = −n2

m
sin (nt)T (t) +

n2

m2
cos2 (nt)N(t) +

n2

m
sin (nt)T (t)

=
n2

m2
cos2 (nt)N(t) (41)

E3(t) =
n3

m3
cos3 (nt)B (t) (42)

Since the curvature of Salkowski curves is κ(t) = 1, using the Equation 12, from the Equations 39,
41 and 42, the modified orthogonal frame {E1(t), E2(t), E3(t)} with the curvature κ(t) of Salkowski
curves γm(t) is written as follows:

E1(t) = v(t)T (t), E2(t) = v2(t)κ(t)N (t) , E3(t) = v3(t)κ(t)B(t) (43)

where
⟨E1(t), E2(t)⟩ = ⟨E2(t), E3(t)⟩ = ⟨E1(t), E3(t)⟩ = 0 (44)

and

⟨E1(t), E1(t)⟩ = v2(t) =
n2

m2
cos2 (nt)

⟨E2(t), E2(t)⟩ = v4(t)κ2(t) =
n4

m4
cos4 (nt)

⟨E3(t), E3(t)⟩ = v6(t)κ2(t) =
n6

m6
cos6 (nt)

The frame {E1(t), E2(t), E3(t)} is indeed orthogonal (from the Equation 44), but is not orthonormal,
because the vectors E1(t), E2(t), E3(t) are not unit vectors. Now, let us find the derivative vectors of
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the frame, respectively. First, by using the Equation 3, from the Equations 39, 41 and 42, we obtain
the derivative vectors E′

1(t), E
′
2(t), E

′
3(t) in terms of the Frenet vectors T (t), N(t), B(t) as follows:

E′
1(t) = −n2

m
sin (nt)T (t) +

n2

m2
cos2 (nt)N (t) (45)

E′
2(t) = −2n3

m2
cos (nt) sin (nt)N (t) +

n2

m2
cos2 (nt)N ′(t)

= −2n3

m2
cos (nt) sin (nt)N (t) +

n2

m2
cos2 (nt)

(
− n

m
cos (nt)T (t)− n

m
sin (nt)B(t)

)
= − n3

m3
cos3 (nt)T (t)− 2n3

m2
cos (nt) sin (nt)N(t)− n3

m3
cos2 (nt) sin (nt)B(t), (46)

E′
3(t) = −3n4

m3
cos2 (nt) sin (nt)B(t) +

n3

m3
cos3 (nt)B′(t)

=
n4

m4
cos3 (nt) sin (nt)N(t)− 3n4

m3
cos2 (nt) sin (nt)B(t) (47)

Corollary 4.1. From the Equations 45, 46 and 47, we obtain the following equalities between the
Frenet vectors and the derivative vectors of the modified orthogonal frame with κ(t) of Salkowski
curves:


E′

1(t)

E′
2(t)

E′
3(t)

 =



− n2

m
sin (nt)

n2

m2 cos2 (nt) 0

− n3

m3 cos (nt) − 2n3

m2 cos (nt) sin (nt) − n3

m3 cos2 (nt) sin (nt)

0
n4

m4 cos3 (nt) sin (nt) − 3n4

m3 cos2 (nt) sin (nt)




T (s)

N (s)

B (s)



Second, let’s get the derivative vectors E′
1(t), E

′
2(t), E

′
3(t) in terms of the vectors E1(t), E2(t), E3(t).

From the Equations 39, 41 and 42, the Frenet vectors are written in terms of the vectors E1(t), E2(t),
E3(t) as follows:


T (t)

N(t)

B(t)

 =



m

n cos (nt)
0 0

0
m2

n2 cos2 (nt)
0

0 0
m3

n3 cos3 (nt)




E1 (s)

E2 (s)

E3 (s)

 (48)

If the Equation 48 are substituted in the Equations 45, 46 and 47, respectively, we get

E′
1(t) = −n2

m
sin (nt)

(
m

n cos (nt)
E1(t)

)
+

n2

m2
cos2 (nt)

(
m2

n2 cos2 (nt)
E2(t)

)
,

E′
1(t) = −n tan (nt)E1 (t) + E2(t) (49)
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E′
2(t) = − n3

m3
cos3 (nt)

(
m

n cos (nt)
E1(t)

)
− 2n3

m2
cos (nt) sin (nt)

(
m2

n2 cos2 (nt)
E2(t)

)
− n3

m3
cos2 (nt) sin (nt)

(
m3

n3 cos3 (nt)
E3(t)

)
,

= − n2

m2
cos2 (nt)E1(t)− 2n tan (nt)E2(t)− tan (nt)E3(t) (50)

E′
3(t) =

n4

m4
cos3 (nt) sin (nt)

(
m2

n2 cos2 (nt)
E2(t)

)
− 3n4

m3
cos2 (nt) sin (nt)

(
m3

n3 cos3 (nt)
E3(t)

)

=
n2

m2
cos (nt) sin (nt)E2(t)− 3n tan (nt)E3(t) (51)

Corollary 4.2. From the Equations 49, 50 and 51, we obtain the following equalities between the
vectors of the modified orthogonal frame with κ(t) of Salkowski curves and its derivative vectors:


E′

1(t)

E′
2(t)

E′
3(t)

 =



−n tan (nt) 1 0

− n2

m2 cos2 (nt) −2n tan (nt) − tan (nt)

0
n2

m2 cos (nt) sin (nt) −3n tan (nt)




E1 (s)

E2 (s)

E3 (s)



4.2. The Modified Orthogonal Frame with the Torsion of Salkowski curves in E3

Considering the Gram-Schmidt orthogonalization procedure, let us define the orthogonal frame {A1(t),
A2(t), A3(t)} below for Salkowski curves γm(t), [26]:

A1(t) = γ′m(t), A2(t) =
τ(t)

κ (t)

(
A′

1(t)−
⟨A′

1(t), A1(t)⟩
⟨A1(t), A1(t)⟩

A1(t)

)
, A3(t) = A1 (t) ∧A2(t) (52)

From the Equations 11 and 52, the vector A1(t) is obtained as follows:

A1(t) =
n

m
cos (nt)T (t) (53)

from the Equations 39 and 53, we see that the vectors E1(t) and A1(t) are equal. Therefore, from the
Equation 40, we have

⟨A′
1(t), A1(t)⟩

⟨A1(t), A1(t)⟩
= −n tan(nt) (54)

From the Equations 3, 52 and 54, the vectors A2(t) and A3(t) are obtained as follows:

A2(t) = − tan (nt)

(
−n2

m
sin (nt)T (t) +

n2

m2
cos2 (nt)N(t) +

n2

m
sin (nt)T (t)

)

= − n2

m2
cos (nt) sin (nt)N(t) (55)

A3(t) = − n3

m3
cos2 (nt) sin (nt)B(t) (56)

Since the torsion of Salkowski curves is τ(t) = − tan (nt), using the Equation 12, from the Equations
53, 55 and 56, the modified orthogonal frame {A1 (t) , A2(t), A3(t)} with the torsion τ(t) of Salkowski
curves γm (t) is written as follows:

A1(t) = v(t)T (t), A2(t) = v2(t)τ(t)N (t) , A3(t) = v3(t)τ(t)B(t) (57)
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where
⟨A1(t), A2(t)⟩ = ⟨A2(t), A3(t)⟩ = ⟨A1(t), A3(t)⟩ = 0 (58)

and

⟨A1(t), A1(t)⟩ = v2(t) =
n2

m2
cos2 (nt)

⟨A2(t), A2(t)⟩ = v4(t)τ2(t) =
n4

m4
cos2 (nt) sin2 (nt)

⟨A3(t), A3(t)⟩ = v6(t)τ2(t) =
n6

m6
cos4 (nt) sin2 (nt)

The frame {A1(t), A2(t), A3(t)} is indeed orthogonal (from the Equation 58), but is not orthonormal,
because the vectors A1(t), A2(t), A3(t) are not unit vectors. Now, let us find the derivative vectors of
the frame, respectively. First, by using the Equation 3, from the Equations 53, 55 and 56, we obtain
the derivative vectors A′

1(t), A
′
2(t), A

′
3(t) in terms of the Frenet vectors as follows:

A′
1(t) = −n2

m
sin (nt)T (t) +

n2

m2
cos2 (nt)N(t) (59)

A′
2(t) = − n2

m2

(
−n sin2 (nt) + n cos2 (nt)

)
N(t)− n2

m2
cos (nt) sin (nt)N ′(t)

= − n3

m2

(
− sin2 (nt) + cos2 (nt)

)
N(t)

− n2

m2
cos (nt) sin (nt)

(
− n

m
cos (nt)T (t)− n

m
sin (nt)B(t)

)
=

n3

m3
cos2 (nt) sin (nt)T (t) +

n3

m2

(
2 sin2 (nt)− 1

)
N(t) +

n3

m3
cos (nt) sin2 (nt)B(t) (60)

A′
3(t) = − n3

m3

((
−2n cos (nt) sin2 (nt) + n cos3 (nt)

)
B(t) + cos2 (nt) sin (nt)B′(t)

)
= − n4

m4
cos2 (nt) sin2 (nt)N(t) +

n4

m3
cos (nt)

(
3 sin2 (nt)− 1

)
B (t) (61)

Corollary 4.3. From the Equations 59, 60 and 61, we obtain the following equalities between the
Frenet vectors and the derivative vectors of the modified orthogonal frame with τ(t) of Salkowski
curves:


A′

1(t)

A′
2(t)

A′
3(t)

 =



− n2

m
sin (nt)

n2

m2 cos2 (nt) 0

n3

m3 cos2 (nt) sin (nt)
n3

m2

(
2 sin2 (nt)− 1

) n3

m3 cos (nt) sin2 (nt)

0 − n4

m4 cos2 (nt) sin2 (nt)
n4

m3 cos (nt)
(
3 sin2 (nt)− 1

)




T (s)

N (s)

B (s)



Second, let’s get the derivative vectors A′
1(t), A

′
2(t), A

′
3(t) in terms of the vectors A1(t), A2(t), A3(t).

From the Equations 53, 55, and 56, the Frenet vectors are written in terms of the vectors A1(t), A2(t),
and A3(t) as follows:


T (t)

N(t)

B(t)

 =



m

n cos (nt)
0 0

0 − m2

n2 cos (nt) sin (nt)
0

0 0 − m3

n3 cos2 (nt) sin (nt)




A1 (s)

A2 (s)

A3 (s)

 (62)
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If the Equation 62 are substituted in the Equations 59, 60 and 61, respectively, we get

A′
1(t) = −n2

m
sin (nt)

(
m

n cos (nt)
A1(t)

)
+

n2

m2
cos2 (nt)

(
− m2

n2 cos (nt) sin (nt)
A2(t)

)
= −n tan (nt)A1(t)−

1

tan (nt)
A2(t) (63)

A′
2(t) =

n3

m3
cos2 (nt) sin (nt)

(
m

n cos (nt)
A1(t)

)
+

n3

m2

(
2 sin2 (nt)− 1

)(
− m2

n2 cos (nt) sin (nt)
A2(t)

)
+

n3

m3
cos (nt) sin2 (nt)

(
− m3

n3 cos2 (nt) sin (nt)
A3(t)

)

=
n2

m2
cos (nt) sin (nt)A1(t)− n

(
2 sin2 (nt)− 1

cos (nt) sin (nt)

)
A2(t)− tan (nt)A3(t) (64)

A′
3(t) = − n4

m4
cos2 (nt) sin2 (nt)

(
− m2

n2 cos (nt) sin (nt)
A2(t)

)
+

n4

m3
cos (nt)

(
3 sin2 (nt)− 1

)(
− m3

n3 cos2 (nt) sin (nt)
A3(t)

)

=
n2

m2
cos (nt) sin (nt)A2(t)− n

(
3 sin2 (nt)− 1

cos (nt) sin (nt)

)
A3(t) (65)

Corollary 4.4. From the Equations 63, 64 and 65, we obtain the following equalities between the
modified orthogonal frame with τ(t) of Salkowski curves and its derivative vectors:


A′

1(t)

A′
2(t)

A′
3(t)

 =



−n tan (nt) − 1

tan (nt)
0

n2

m2 cos (nt) sin (nt) − n
(
2 sin2 (nt)− 1

)
cos (nt) sin (nt)

− tan (nt)

0
n2

m2 cos (nt) sin (nt) − n
(
3 sin2 (nt)− 1

)
cos (nt) sin (nt)




A1(t)

A2(t)

A3(t)



5. Conclusion

The modified orthogonal frame is a tool that can be used to solve the problem at singular points
where the Frenet frame of the analytical or discontinuous curves cannot be calculated. But there is
no harm in constructing a modified orthogonal frame of any regular curve. For example, in this study,
the modified orthogonal frames of Salkowski curves are calculated and the relationships between the
Frenet frame and the modified orthogonal frames are given. The characteristic properties of Salkowski
curves can be studied with its modified orthogonal frames, as well as with its Frenet frame.
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[25] S. Gür Mazlum, S. Şenyurt, L. Grilli, The Dual Expression of Parallel Equidistant Ruled Surfaces
in Euclidean 3-Space, Symmetry 14 (5) (2022) 1062.
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Abstract − Multivariate Adaptive Regression Splines (MARS) is a supervised learning model in 

machine learning, not obtained by an ensemble learning method. Ensemble learning methods are 

gathered from samples comprising hundreds or thousands of learners that serve the common purpose 

of improving the stability and accuracy of machine learning algorithms. This study presented 

REMARS (Random Ensemble MARS), a new MARS model selection approach obtained using the 

Random Forest (RF) algorithm. 200 training and test data set generated via the Bagging method were 

analysed in the MARS analysis engine. At the end of the analysis, two different MARS model sets 

were created, one yielding the smallest Mean Square Error for the test data (Test MSE) and the other 

yielding the smallest Generalised Cross-Validation (GCV) value. The best model was estimated for 

both Test MSE and GCV criteria by examining the error of measurement criteria, variable importance 

averages, and frequencies of the knot values for each model. Eventually, a new model was obtained 

via the ensemble learning method, i.e., REMARS, that yields result as good as the MARS model 

obtained from the original data set. The MARS model, which works better in the larger data set, 

provides more reliable results with smaller data sets utilising the proposed method. 

Keywords − Multivariate adaptive regression splines, random forest, model selection, machine learning, ensemble learning 
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1. Introduction 

Machine learning is concerned with designing and analysing models learned from data and developing 

practical algorithms for prediction [1]. In other words, it suggests using a machine or computer to learn 

similarly to how the brain learns and predicts [2]. Ensemble learning, another definition of machine learning, 

refers to a collection of basic models assembled to create a new prediction or classification using the same 

learning technique. Bagging and Boosting are among the most widely used methods. These methods were 

designed to improve the stability and accuracy of machine learning algorithms [3]. Random Forest (RF) is an 

ensemble learning method for classification and regression, representing a significant advancement in machine 

learning. The method of RF is used to create many individual Classification and Regression Tree (CART) 

decision trees during the training phase. It aims to find new ways to combine the information from the 

individual CART trees (the class modes for classification, averaging the predictions of each regression model) 

[4, 5]. Contrary to the linear and non-linear regression models widely used in practice, Multivariate Adaptive 
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Regression Spline (MARS) is defined as a nonparametric technique that generates different coefficients for 

different range values of the independent variable and reflects the actual structure better by also adding 

interaction terms to the model [6]. The model is obtained using the regression models’ forward selection and 

backward elimination algorithms and the essential piecewise functions and combinations [7]. 

Many studies are conducted in different disciplines using the MARS algorithm. The MARS model was 

used by [8] in the field of medicine for disease diagnosis, [9] in the field of computer sciences for the quality 

assessment of web services, by [10] in the field of civil and environmental engineering to estimate pile 

drivability, by [11] in the field of mechanical engineering to model heat transfer properties and by [12] in the 

field of accounting and information systems to make financial predictions.  

On the other hand, there are other studies in the literature where improvements were made in the model 

selection of the MARS algorithm. [13] used a genetic algorithm to interfere with knot selection. [14] suggested 

a new approach to the MARS as CMARS and used a penalised residual sum of squares for the MARS as a 

Tikhonov regularisation problem. [15] presented the new robust CMARS (RCMARS) in theory and by a robust 

optimisation technique. [16] proposed a new method for knot selection based on a mapping approach like self-

organising maps. [17] applied information measure of complexity (ICOMP) as a powerful model selection 

criterion for the MARS modelling. [18] used Bootstrapping to obtain the empirical distributions of the 

parameters and to determine whether they were statistically significant or not in a special case of nonparametric 

regression.  

There were many studies in which Ensemble Learning, Bagging, and Random Forest methods were used 

together in the literature. We can give the most up to date of these as follows. [19] showed the working 

mechanism of stacking and bagging on spoof fingerprint detection, which were widely used ensemble learning 

approaches. [20] offered a quantified way for the standard case when classifiers were aggregated by the 

majority (“algorithmic variance”, i.e., the prediction error variance due only to the randomised training 

algorithm). A new method was proposed as a multi-objective optimisation approach with the two objectives 

of accuracy and diversity based on two main challenges in the bagging method provided in [21]. [22] proposed 

a new classification method for sparse functional data based on functional principal component analysis 

(FPCA) and bootstrap aggregating. 

The present study aims to convert the MARS technique into ensemble learning using the RF algorithm. 

Moreover, we suggested a new method for selecting the model with superior performance and generalisation 

from the ensemble of the MARS models. Although there are studies in the literature where the MARS model 

was used as an ensemble [23-25], there is no method for selecting the best MARS model by creating the MARS 

models over a random ensemble. Correcting this deficiency in the literature will be attempted with the 

suggested new method. This study is derived from the first author's PhD dissertation conducted under the 

supervision of the second author. 

2. Method 

2.1. Random Forest Algorithm 

The article on the RF model published by Leo Breiman in 2001 took its final shape by referring to the studies 

conducted by [4, 5, 26-31]. The algorithm of the RF method is built by following the steps presented below 

[8, 32-36]: 

i. 𝑘 sampling is created by the Bagging method so that the number of observations in the original data set 

has the same number of observations as 𝑛. Also, each sampling represents a CART decision tree. 

ii. While 2/3 of the observations in the original data set are included in the sample as InBag data, 1/3 of 

them are excluded from the sample as OOB data to test the established internal error rate of the model. 
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iii. The widest CART decision tree is created with the InBag data. While creating this tree, instead of selecting 

the best variables out of all existing prediction variables in each node, 𝑝 out of a total of 𝑚 independent 

variables are randomly selected in a split of each node (𝑝 < 𝑚). That is because the tree is not expected 

to demonstrate excessive growth and overfitting.  

iv. The previous steps are repeated until the 𝑘 number of trees that will form the forest is obtained. Afterwards, 

a new prediction is made by combining the separate class predictions with 𝑘 trees. It counts how often an 

examined observation is classified and in which categories. Each observation is assigned a class with a 

majority of votes determined through the tree sets. 

v. The predictions made with the OOB observations that are not used in individual trees are used to estimate 

the internal error rate of the forest. The OOB error rate of each decision tree making up the forest is 

calculated. The percentage of misclassification is determined as the classification error rate of RF. 

2.2. Multivariate Adaptive Regression Splines 

The MARS technique was developed by the physician and statistician Jerome Harold Friedman in 1991 [37]. 

According to [38], the MARS is a good innovation in finding suitable conversions to convert the non-linear 

relationships between dependent and independent variables into a linear structure and determine the 

interactions between independent variables. 

The MARS uses a pair of functions in the form of [±(𝑥 − 𝑡)]+One is the mirror reflection of the other, 

as the basis function in linear and non-linear expansions that predict the relationship between dependent and 

independent variables. These function pairs are also called mirror basis functions. The sign [. ]+ states that 

only the positive results of the related functions will be considered. Otherwise, the related functions are 

considered zero. The basis function pair representing the variable 𝑥 and the knot value 𝑡 is defined as follows 

[3,6,39]: 

(𝑥 − 𝑡)+ = {
𝑥 − 𝑡, 𝑥 > 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and (𝑡 − 𝑥)+ = {
𝑡 − 𝑥, 𝑥 < 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

To find the desired model, the MARS uses a two-step process. Forward selection, the first phase of 

creating the MARS model, resembles forward stepwise regression. Unlike this method, the MARS uses basis 

function pairs instead of original inputs [6]. Each step finds the main basis function pair (meaning that both 

functions of a knot are included in the model) that leads to the most decrease in the SSE (Sum of Squares 

Error) value using the Greddy algorithm. In forward selection, the process of adding terms continues until the 

maximum number of terms included in the model is reached. The over fitted MARS model that is established 

by adding certain basis functions under the conditions and is much bigger than the optimum model is 

formulated as follows [37]: 

 𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑚𝐵𝑚(𝑥)𝑀
𝑚=1 = 𝑎0 + ∑ 𝑎𝑚

𝑀
𝑚=1 ∏ [𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]

+

𝐾𝑚
𝑚=1   (2) 

In Equation (2), M is the number of basis functions defined as 𝑚 = 1,2, … , 𝑀. While the quantity 𝐾𝑚 

represents the number of interactions, the quantity 𝑠𝑘𝑚 takes the value ±1. The constant term in the model is 

denoted by 𝑎0 while the regression coefficients are denoted by 𝑎𝑚. 𝐵𝑚(𝑥) is the m-th basis function. The 

𝑣(𝑘, 𝑚) label the independent variables and the 𝑡𝑘𝑚 present knot value on the corresponding variables [37]. 

Backward elimination constitutes the second phase of the creation of the MARS model. The main reason 

this stage is required is the inability to compare the models with the SSE value. That is because when SSE is 

used to compare the models, backward elimination always selects the biggest model. However, the biggest 

model does not possess the best generalisation performance; on the contrary, it is over fitted and does not 

produce good results on new data [6, 40]. The model that became over fitted with forwarding selection is 

subjected to the elimination process to turn it into a model capable of generalising. The GCV (Generalized 

Cross Validation) criterion, a goodness of fit index, is used to compare the performance of model subsets and 
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choose the best subset. GCV considers both the error of residuals and model complexity [3,6,41]. For this 

reason, lower GCV values are accepted much better. The GCV formula, introduced by [42], is calculated as 

follows [37]: 

𝐺𝐶𝑉 =
1

𝑛
∑[𝑦𝑖 − 𝑓𝑀(𝑥𝑖)]

2
𝑛

𝑖=1

[1 −
𝐶(𝑀)

𝑛
]

2

⁄  (3) 

In Equation (3), the value 𝑛 gives the number of observations in the data set, 𝑦𝑖 gives the observed value 

of the dependent variable and 𝑓(𝑥𝑖) provides the estimated value of the dependent variable. When the 

numerator of the formula is examined, it can be observed that the mean of the SSE value, i.e., MSE (Mean 

Square Error), was used. Therefore, the denominator of the formula renders the GCV criterion both different 

and essential compared to the SSE value. Cost complexity function 𝐶(𝑀) is calculated with the formula as 

follows [37]: 

𝐶(𝑀) = 𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 (4) 

In Equation (4), 𝐵 represents the 𝑀𝑥𝑛 dimensional data matrix of unconstant M basis functions. The cost 

complexity function was readapted for the MARS model by [43, 44] and took the form as follows [37]: 

�̃�(𝑀) = 𝐶(𝑀) + 𝑑𝑀 (5) 

Here, 𝑑 denotes the penalty value used to determine the best knot value. 𝑑 is also known as Degrees of 

Freedom (DOF). The most suitable penalty value is in the 2 ≤ 𝑑 ≤ 4 range [37].  

2.3. REMARS: Random Ensemble MARS  

2.3.1. Difference Between MARS and REMARS  

Contrary to linear regression models, in the MARS models, parameter confidence intervals and other controls 

in the model cannot be directly calculated, as in any nonparametric regression. Techniques related to GCV are 

used to validate the model. In the model selection of these techniques, the model that gives the lowest value 

related to the criterion is always selected. Generating hundreds or thousands of the MARS models from an 

original dataset, selecting the model with the lowest GCV criterion among these models and making 

predictions with the selected model may appear to be a highly reliable course of action. However, it cannot be 

deduced that the model with the lowest GCV value, etc., selected from a collection of models will always be 

the model with the best generalisation ability and performance. This is due to the presence of error 

measurement criteria such as SSE, MSE, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percent Error (MAPE) and R2 (Coefficient of Determination), which affect the generalisation 

ability and performance of the model. Although SSE forms the basis of all error measurement criteria and 

serves as a subset, the main differences in the formulas make the criteria different from each other. Selecting 

a model where these differences are not in effect impacts the model’s generalisation ability. When choosing 

the best model, preferring the model with the lowest error measurement criteria, such as RMSE, MSE and 

SSE, generally increase the R2 value. Reaching the highest R2 value with this method causes the error variance 

of the model to increase in new data. Therefore, when selecting the best model from the MARS models 

ensemble, a better course of action is observed progressing by considering the confidence interval of the means 

of different error measurement criteria. This route is not enough on its own. That is because the mean of each 

error measurement criterion does not correspond to the same model in the MARS models ensemble. Therefore, 

choosing a model in which knot values and variable importance are not enabled will also affect the validity of 

the selected model. 
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2.3.2.  REMARS Algorithm 

 REMARS, a new MARS model selection approach that is obtained using the Random Forest algorithm, 95% 

confidence interval for the mean of error measurement criteria, knot values and contribution percentages of 

variables to the model, is created with the following steps. 

i. Sampling: N samples (SAMPLE 1, SAMPLE 2, …, SAMPLE N) are created by the Bagging method so 

that the number of observations in the original data set has the same number of observations as n. Due to 

the bagging method, each sample differs in terms of the observations they contain, although they have the 

same number of observations. 

ii. InBag - Train: Each sample contains approximately 2𝑛/3 of the observations in the original data set, and 

this part is named InBag (InBag 1, InBag 2, …, InBag N). With 𝑛/3 observation repeated from 2𝑛/3 

observation in InBag, the number of observations of each training dataset (Train 1, Train 2, …, Train N) 

will be 𝑛(𝑛1 = 𝑛2 = ⋯ = 𝑛𝑁 = 𝑛). 

iii. OOB - Test: The number of observations in the original data set but non-existent in the samples is 

approximately 𝑛/3 and is named OOB (OOB 1, OOB 2, …, OOB N). The remaining 2𝑛/3 of the test data 

(Test 1, Test 2, …, Test N) with the number of observations 𝑛 is made up of repeated observations from 

the data separated as OOB. 

iv. Analysis: After the training and test data sets are created, each training data is analysed with its test data 

in the MARS program. N models (Y1 = Model 1, Y2 = Model 2, …, YN = Model N) are obtained at the 

end of the analysis. The results of these models were examined using two different selection criteria (Test 

MSE and GCV). 

v. Results: After obtaining a total of N models according to Test MSE and GCV criteria, mean – standard 

deviation – 95% confidence interval for the mean of error measurement criteria (RMSE, MSE, GCV, 

MAE, MAPE, SSE and R2) are firstly calculated. Secondly, the number of times each variable’s knot is 

repeated in the models, i.e., their frequency, is determined. Thirdly, each variable’s minimum, mean and 

maximum contribution percentages to the model are obtained. 

Fig. 1 shows the flowchart for the REMARS algorithm, which is a new approach for model selection from 

the randomly generated MARS models ensemble. 

 

Fig. 1. The flowchart of the REMARS (Random Ensemble MARS) algorithm 
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2.3.3.  REMARS Model Selection 

The information obtained from the results is respectively used for model selection. The first model elimination 

is performed by selecting the models that fall within the lower and upper bound values of the 95% confidence 

interval for the mean of each error measurement criterion among Test MSE and GCV models, respectively. 

Afterwards, the models with the highest frequency in the 95% confidence interval for the mean of each error 

measurement criterion are determined. Determined models are examined separately by considering the 

frequency of the knot values obtained from all models (the ensemble) and the descriptive statistics of the 

contribution percentages of the variables to the model. The model that best predicts the dependent variable is 

selected among the N models. The model set with REMARS will be as good as the MARS model to be obtained 

from the original data. That is, because the MARS models obtained from randomly generated samples, 

combined in 95% confidence limits of the mean of all error measurement criteria of these models, the knot 

values obtained from all of the models in the ensemble, and the use of the contribution percentages to models 

of the variables will ensure that the selected model is highly consistent. 

3. Application 

In this section, the application for the selection of the most suitable MARS model using the REMARS method 

is presented. The MARS analysis engine in the Salford Predictive Modeller version 8.3 by the company Salford 

System was used in these analyses. the MARS analysis engine, instead of presenting a single MARS model at 

the end of the analysis, provides a tab including MARS models with several numbers of basis functions. The 

tab also separately indicates two different models with different selection criteria. The first of these models is 

the training model that gives the lowest MSE value based on the test data in the backward elimination phase, 

while the second model is the training model that offers the lowest GCV value in the backward elimination 

phase. In the application, Test MSE and GCV models were examined separately, and the results were 

combined. 

3.1. Data Set 

The research of the data set used in the application was conducted in 1970 in East Boston–Massachusetts. The 

FEV (Forced Expiratory Volume) values of children of different ages, heights and sexes in smoking and non-

smoking environments were measured. [45, 46], who conducted the aforesaid research, examined the effects 

of parents smoking habits on the respiratory functions of children in East Boston–Massachusetts. [47] 

presented a section of the data from the study, conducted with Tager, for another analysis. This data set used 

by [48] was published on the website of [49] and used in the application section of the present study. In the 

FEV data set, there are measurements of 654 children in smoking/non-smoking environments, aged between 

3–19 and height vary between 46–74 inches. Their age means is ten and their height mean 61.1 inches. The 

FEV measurement values of the children range from 0.791–5.793 litres, and the mean FEV value was 

calculated as 2.637 litres. 

3.2. Analysis Results 

At the end of the analysis, the Salford Predictive Modeller 8.3 MARS program presents various criteria for 

each model obtained by Test MSE and GCV criteria. These criteria, which will be used to determine the best 

model, can be listed as RMSE, MSE, GCV, SSE, MAE, MAPE, SSE and R2. Each criterion was obtained 

separately from the 200 different MARS models created by Test MSE and GCV criteria. Table 1 shows the 

descriptive statistical findings of each criterion’s mean values, standard deviation and 95% confidence interval 

for the mean (lower limit - upper limit) obtained from 200 models. 
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Table 1. Descriptive statistics of error measurements of GCV and Test MSE models 

Model 

Selection 

Criteria 

Descriptive Statistics of 

Measurements 

Model Error Measurements 

RMSE MSE GCV MAD MAPE SSE R2 

Test MSE 

Mean 0.388 0.151 0.157 0.293 0.116 98.555 0.798 

Standard Deviation 0.018 0.014 0.013 0.012 0.005 9.017 0.018 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
0.385 0.149 0.156 0.291 0.115 97.555 0.796 

Upper 

Bound 
0.390 0.153 0.159 0.294 0.117 99.812 0.801 

GCV 

Mean 0.373 0.139 0.150 0.284 0.1128 90.974 0.814 

Standard Deviation 0.014 0.010 0.011 0.010 0.004 6.624 0.015 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
0.371 0.138 0.149 0.282 0.112 90.050 0.811 

Upper 

Bound 
0.375 0.141 0.152 0.285 0.1134 91.898 0.816 

When Table 1 is examined, it is clearly observed that the descriptive statistics values of each error criterion 

of the Test MSE models are higher than the descriptive statistics values of each error criterion of the GCV 

models. This situation is due to the fact that the number of basis functions in the Test MSE models is generally 

lower than the number of basis functions in GCV models. On the other hand, while GCV is based on a formula 

that considers both residuals and model complexity, the formula of the Test MSE is based only on residuals. 

For this reason, GCV selects the models with more complex structures in the backward elimination phase. In 

the results, the GCV values obtained from the Test MSE models are generally higher than those in GCV 

models.  

The knot values accompanying the basis functions that constitute each of the 200 Test MSE and GCV 

models are also included in determining the best model using REMARS method. As a result, the number of 

each knot belonging to a variable in the 200 models was determined. Frequencies of the top ten knot values 

most commonly observed in the models were determined for the height and age variables. Also, frequencies 

of knot values for the sex and smoker variables in the models were found. All of these results for the Test MSE 

and GCV models are shown in Table 2. When Table 2 was examined for the height variable, it was observed 

that the top five most commonly observed knot values are the same for the Test MSE and GCV models; 

however, their existence percentages in the models differ. Knot 66 was ranked first in both model ensembles 

by being present with a rate of 51% in the Test MSE models and 53% in the GCV models. In the Test MSE 

models, knots 65; 65.5; 57.5; 69 are present with rates of 34.5%, 27%, 25.5% and 19.5%, respectively. In the 

GCV models, knots 69; 65; 65.5; 57.5 are present with rates of 48.5%, 39.5%, 31% and 29.5%, respectively. 

Knot 67.5 is present in both model ensembles in different percentages.  

The age variable’s most common knot value in the Test MSE and GCV models is 8. This value is 

presented in the Test MSE and GCV models at approximately the same rates. The presence rates of knots other 

than 8 in both model ensembles were lower than 25%. Knots 1 and 2 for the sex variable are observed in the 

Test MSE models with rates of 10% and 8%, respectively, and the GCV models with rates of 28.5% and 29%, 

respectively. From this, it can be concluded that while each knot value of the sex variable is present in both 

Test MSE and GCV models with approximately the same rates, they were more effective in the GCV models 

compared to the Test MSE models. When Table 2 was examined for the smoker variable, it was observed that 

the knot value 1 had little effect in both model ensembles. The knot value 0 was much more effective in the 
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GCV models with a rate of 54.5% compared to the Test MSE models (16.5%). This is because observation 0 

outnumbers observation 1 in the data set. That is because the MARS models are affected by the quantitative 

amount of any observation of a variable in the data set to include it in the model. It is observed that the GCV 

values are higher than those of the Test MSE, when the knot values of a variable in the Test MSE and GCV 

models are the same, as shown in Table 2. Again, this is because fewer basis functions, therefore fewer knot 

values, are included in the Test MSE models compared to the GCV models.  

Table 2. Frequencies of knot values of GCV and Test MSE models 

Model 

Selection 

Criteria 

Variables 

Height Age Sex Smoker 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Test MSE 

66 102 8 112 

1 20 0 33 

65 69 9 34 

65.5 54 10 27 

57.5 51 7 8 

69 39 13 8 

58.5 31 6 6 

2 16 1 2 

64.5 27 3 5 

64 27 11 4 

67.5 25 14 4 

67 23 16 3 

GCV 

66 106 8 113 

1 57 0 109 

69 97 13 49 

65 79 9 37 

65.5 62 14 29 

57.5 59 10 26 

70 59 17 21 

2 58 1 13 

67.5 58 15 19 

67 47 12 16 

68.5 44 16 15 

71 41 11 13 

The MARS analysis engine includes a tab that ranks the predictors based on their contribution percentage 

to the model at the end of the analysis. In this tab, which is calculated at a 100% scale, variables are ranked 

according to their importance percentage in a way that the most important variable always scores 100%. Table 

3 shows the minimum, mean and maximum value findings of the importance percentages obtained for each 

variable in the Test MSE and GCV models.  
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Table 3. Importance percentage of variables of GCV and Test MSE models 

Model Selection Criteria Variables 
Variable Importance 

Minimum Mean Maximum 

Test MSE 

Height 100.00 100.00 100.00 

Age 8.35 23.87 43.59 

Sex 1.25 9.48 18.50 

Smoker 3.15 10.20 22.48 

GCV 

Height 100.00 100.00 100.00 

Age 14.03 27.20 52.71 

Sex 1.28 8.48 22.57 

Smoker 0.50 8.98 22.53 

Table 3 shows that height is the most important variable in the Test MSE and GCV models. It was found 

to have an importance percentage of 100% in all models. It is followed by the age variable as the variable with 

the most significant contribution to the models. However, while the age variable is present in all of the GCV 

models, it was absent in 8 of the Test MSE models. In comparison, the sex and smoker variables had 

percentages of contribution in the Test MSE models that were calculated as 15.5% and 17%, respectively, and 

their percentages in the GCV models are 58% and 60.5%. Therefore, while the sex and smoker variables had 

almost no contribution to the Test MSE models, the situation was the opposite in the GCV models. Thus, the 

GCV criterion considers model complexity and tends to establish models with too many variables and knots. 

3.3. Model Selection 

The results obtained from Test MSE and GCV models ensemble using the REMARS approach constitute the 

building block of the model selection. In addition to being an approach that converts the classical MARS 

method into an ensemble, REMARS also uses a different technique in model selection. Instead of selecting 

the models with the lowest Test MSE and GCV values among Test MSE and GCV ensembles, it considers 

each model’s error criteria, knot values, and variable importance. 

3.3.1. Test MSE Criteria 

To determine the MARS model with the best performance among the 200 models determined by the Test MSE, 

the analysis results obtained for the Test MSE in Table 1 are used. The first model elimination is performed 

by selecting the models that fall within the lower and upper bound values of the 95% confidence interval for 

the mean of each error measurement criterion among the Test MSE models. That is because progressing by 

determining a value according to the mean of each error criterion prevents us from selecting over fitted or 

under fitted models. According to their model number order, the models selected under these conditions are 

shown in Table 4 for the Test MSE error measurement criteria. When Table 4 is examined, it is seen that some 

error criteria have common models, and some do not. At this stage, it is important that a particular model 

number is commonly entering in several error measurement criteria. For this reason, in order to determine the 

best model, the second model elimination was performed by determining which model number is found in the 

error measurement criteria in Table 4, and how many times at the most. When Table 4 is examined, it is 

observed that Model 185 is commonly present in six error measurement criteria other than the MAD error 

measurement criterion, and Model 3, Model 24, Model 90 and Model 140 are commonly present in five 

different error measurement criteria. Other Test MSE models are present in fewer numbers in different error 

measurement criteria. 
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Table 4. Model numbers entering 95% confidence interval for error criterion mean from Test MSE models 
M

o
d

el
 N

u
m

b
er

 

Error Measurements of Test MSE Models 

RMSE MSE GCV MAE MAPE SSE R2 

2 2 3 1 1 3 1 

3 3 7 3 16 6 3 

6 6 17 21 46 24 17 

21 24 21 22 53 36 65 

24 36 24 24 58 56 70 

25 56 25 25 90 59 103 

36 59 36 48 92 64 110 

56 64 39 59 98 83 135 

59 83 51 83 122 90 147 

64 90 62 91 125 97 166 

90 97 83 103 134 127 180 

97 103 90 106 137 133 181 

103 108 92 108 140 140 185 

108 127 97 117 149 150 191 

127 133 108 127 153 152 194 

130 140 109 129 157 185  

133 150 136 130 166 187  

138 152 140 137 178 194  

140 174 144 144 185   

150 185 152 177    

152 187 171 180    

174 190 176 193    

185 194 180     

187  183     

190  185     

194  187     

    188         

According to these results, the five most common models in the error measurement criteria among the 

200 Test MSE models were determined. Table 5 shows the knot values and variable importance percentages 

of these models. 

In the third model elimination to determine the best out of the five models selected from the Test MSE 

models, the results in Table 2 are used. When Table 2 is examined, it is observed that in the Test MSE models, 

knot 66 is essential for the height variable while knot 8 is essential for the age variable. These values are not 

present in Model 3, Model 24, Model 90 and Model 185. The absence of these knots may cause significant 

problems in the performance of the error measurement criteria of the models for new data. According to Table 

3, the importance percentages of the height and age variables in the models indicate that these variables are 

required to be present in the models while also serving as moderator variables. It is also observed that the 

smoker variable contributes to the models. However, the smoker variable is not present in any of the models. 

That is because knot 0 of the smoker variable was found in 33 models while knot 1 was found in 2 models. 
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Their percentages of contribution to the models they are included in were found to be high. This shows that 

the knots contribute to the models, however, this contribution is not sufficient to be included in the selected 

models. The same situation applies to the sex variable. Model 24 includes the sex variable; however, it cannot 

be selected as the significant knots of the height variable are not included in this model. When all of these 

results are combined, Model 140 represents the best model among the Test MSE models. That is because 

Model 140 has produced the most consistent results in terms of the error measurement criteria, knot values and 

contribution percentages of variables to the model. 

Table 5. Knot values and variable importance percentages of selected Test MSE models 

Model Number Particulars 
Variables 

Height Age Sex 

3 
Knot Values 

52 6   

65.5   

66   

69   

Variable Importance (%) 100 25.81   

24 
Knot Values 

57.5 8 1 

58.5   

59.5   

65   

Variable Importance (%) 100 25.05 7.51 

90 
Knot Values 

65 11   

 13  

Variable Importance (%) 100 20.10   

140 
Knot Values 

65.5 8   

66   

69   

Variable Importance (%) 100 18.65   

185 
Knot Values 

65 7   

66   

67   

Variable Importance (%) 100 33.88   

65: Knot value entering the model with the mirror basis function 

3.3.2. GCV Criteria 

To determine the MARS model with the best performance among the 200 models determined in accordance 

with GCV firstly the analysis results obtained for GCV in Table 1 are used. The first model elimination is 

performed by selecting the models that fall within the lower and upper bound values of the 95% confidence 

interval for the mean of each error measurement criterion among the GCV models. That is because progressing 

by determining a value according to the mean of each error criterion prevents us from selecting over fitted or 

under fitted models. The models selected under these conditions are, according to their model number order, 

shown in Table 6 for the GCV error measurement criteria. According to Table 6, Model 59, Model 116 and 

Model 130 are commonly present in five different error measurement criteria. Other GCV models are present 

in fewer numbers in different error measurement criteria.  
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Table 6. Model numbers entering 95% confidence interval for error criterion mean from GCV models 
M

o
d

el
 N

u
m

b
er

 

Error Measurements of GCV Models 

RMSE MSE GCV MAD MAPE SSE R2 

23 23 9 7 5 23 6 

34 34 21 21 6 34 8 

46 59 34 52 9 59 12 

59 82 46 61 14 82 14 

79 104 52 79 28 104 18 

82 105 91 98 30 105 25 

104 106 92 108 43 106 27 

105 108 103 115 46 108 28 

106 116 105 127 53 116 30 

108 130 116 130 58 130 35 

116 146 117 144 59 146 48 

130 174 118 151 61 174 57 

146 182 130 171 62 182 59 

174 190 144 174 70 190 63 

190 198 146 183 75 198 69 

198  182 191 79  82 

  190 196 91  83 

  191 198 94  94 

  196  101  99 

    119  103 

    122  107 

    123  116 

    128  117 

    138  136 

    139  138 

    160  141 

    166  151 

    168  191 

    172   

    188   

    189   

    193   

    194   

        196     

According to these results, the three most common models in the error measurement criteria among the 

200 GCV models were determined. Table 7 shows the knot values and variable importance percentages of 

these models. The results in Table 2 and Table 3 are used to determine the best out of the three models selected 

from the GCV models. According to Table 2, knots 66 and 69 for the height variable and knots 8 and 13 for 
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the age variable repeat a lot in the GCV models. Knot value 69 from the height variable was not included in 

Model 130 while knot value 8 from the age variable was not included in Model 116. According to the 

importance percentages of the height and age variables in Table 3, they should be included in the model to be 

selected. The sex and smoker variables are seen to have similar contributions to the models. However, as knot 

0 of the smoker variable has a significantly higher number of repetitions in the models compared to the knot 

values of the sex variable, knot 0 of the smoker variable should be included in the model. Based on these 

observations, Model 59 represents the best model among the GCV models. 

Table 7. Knot values and variable importance percentages of selected GCV models 

Model Number Particulars 
Variables 

Height Age Sex Smoker 

59 
Knot Values 

58 8 2 0 

62 11   

66 13   

69 15   

Variable Importance (%) 100 34.53 15.62 6.60 

116 
Knot Values 

65 9 1  

66    

67    

67.5    

69    

70.5    

Variable Importance (%) 100 31.08 14.71   

130 
Knot Values 

56.5 8 2  

60    

66    

67.5    

68.5    

71    

Variable Importance (%) 100 25.06 7.13   

58: Knot value entering the model with mirror basis function 

4. Discussion 

The results related to the error measurement criteria what presented incidental to Model 140 selected from the 

Test MSE models using the REMARS method, Model 59 selected from the GCV models using the REMARS 

method and the MARS model obtained from the original data set are shown in Table 8. 

Table 8. Error measurement criteria of the MARS models obtained from original data and REMARS  

Data Sets 
Error Measurement Criteria 

RMSE MSE GCV MAD MAPE SSE R2 

Original Data Set 0.385 0.149 0.160 0.291 0.115 97.173 0.802 

GCV-Model 59 0.372 0.138 0.152 0.277 0.113 90.349 0.813 

Test MSE-Model 140 0.389 0.151 0.157 0.298 0.116 98.938 0.788 
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When each of the values of the error measurement criteria shown in Table 8 is compared individually for 

both the Test MSE-Model 140 and GCV-Model 59, it is observed that GCV-Model 59 produces more 

consistent and reliable results compared to the Test MSE-Model 140. That is because the GCV criterion is 

calculated with a formula that considers both error and the number of effective parameters. For this reason, it 

tends to create models with a more complex structure and higher variable efficiency compared to the Test MSE 

criterion. This situation causes the error measurement criteria of the Test MSE models, which have simpler 

structures, to deteriorate. Therefore, the model created based on the GCV criterion has a better ability to 

generalise compared to the model created based on the Test MSE criterion. This is clearly observed when the 

knot values and importance percentages of the variables in the Test MSE-Model 140 and GCV-Model 59 are 

examined. 

When the values of the error measurement criteria of the MARS model obtained from the original data 

set are compared with the error measurement criteria of GCV-Model 59, it is observed that GCV-Model 59 

produces better results. On the other hand, the knot values in the MARS model obtained from the original data 

set were obtained as 58.5; 59.5; 65; 66; 69 for the height variable, 8 for the age variable, 2 for the sex variable 

and 0 for the smoker variable. When these knot values are compared with the knot values of GCV-Model 59, 

it is observed that knots 66 and 69, which are important for the height variable, are present in both models. 

The age variable entered the model with a higher knot value in GCV-Model 59. This can be an advantage or 

disadvantage for the model. However, [48] proved that the abundance in age knots is an advantage for the 

model. That is because it was shown diagrammatically that the FEV distribution of the children in the smoking 

environment changed direction in knots 11, 13 and 15. The number of smoker parents is very low in the FEV 

data and when the number of smoker parents is increased in a different sample, these knots in the age variable 

take on an important role for the model. Both models have the same knot values for the sex and smoker 

variables. The contribution percentages of the height, age, sex and smoker variables in the MARS model were 

obtained as 100%, 27.4%, 4.88% and 2.91%, respectively. When these values are compared with GCV-Model 

59, it is understood that the age, sex and smoker variables contribute more to GCV-Model 59. In conclusion, 

Model 59, which was obtained with REMARS method based on the GCV criterion, produced better results 

than any other model. 

All prediction curves for the actual and predicted FEV values shown in Fig. 2 appear to be overlapped. 

Here, it can be understood that MSE-Model 140 and GCV-Model 59, which were obtained with REMARS 

method, produce results that are as consistent and reliable as the ones produced by the MARS model obtained 

from the original data. On the other hand, the Pearson Correlation between the actual and predicted FEV values 

was calculated as 𝑟 =  0.902 (𝑝 =  0.001) for the GCV-Model 59, 𝑟 =  0.888 (𝑝 =  0.001) for the Test 

MSE-Model 140 and 𝑟 =  0.896 (𝑝 =  0.001) for the MARS model obtained from the original data set. The 

fact that the best correlation between the actual and predicted FEV values are produced by GCV-Model 59 is 

understood from both the Pearson Correlation Coefficient Value and the scattering of the observation values 

in Fig. 2. 
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Fig. 2. Distribution of actual and predicted values of the MARS model obtained original data and REMARS  

Based on the results obtained, Table 9 shows the basis functions and knot values for Model 59, which was 

selected with REMARS method based on the GCV criterion, and information on the prediction model. 

Table 9. Basis functions and corresponding equations of the MARS model for GCV-Model 59 

Basis Functions  Equation Model 

BF1 Max (0, Height-57.5) 

FEV = 1.71963 +0.14058*BF1 -

0.0692608*BF2+0.0754913*BF3 

+0.145284*BF5+0.260453*BF7 -

0.280703*BF9-0.106875*BF11 

+0.172786*BF13-0.315717*BF23 

+0.295305*BF25+0.127262*BF27 

BF2 Max (0, 57.5- Height) 

BF3 Max (0, Age-8) 

BF5 (Sex (2)) 

BF7 Max (0, Height -66) 

BF9 Max (0, Height -69) 

BF11 Max (0, Height -62) 

BF13 (Sex (0)) 

BF23 Max (0,Age-13) 

BF25 Max (0, Age -15) 

BF27 Max (0, Age -11) 
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5. Conclusion 

Model 59, selected from GCV models, produces results more consistent than MARS model created by taking 

the original data set as training data. It is more suitable to be used for model selection particularly in data set 

where observations such as FEV data do not demonstrate homogeneity. The MARS model obtained from the 

original data set was created without being tested with separate test data. Therefore, it is not known whether it 

is the most useful model for new data. For this reason, the use of the model obtained through ensemble learning 

instead of the model obtained with a single learner produces more valid and reliable results. The MARS model 

obtained based on the REMARS method is suggested for this reason. The MARS model works better in big 

data set. The MARS model obtained using the REMARS method can produce reliable results with smaller data 

set due to the different samples generated with the Bagging Method. In data set with too many parameters, the 

procedure of independent variable selection can be carried out, as in the RF method.  
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1. Introduction

In order to generalize the well-known conclusion that the category of crossed modules is equivalent to
the category of simplicial groups with a Moore complex of length 2, Conduché introduced 2-crossed
modules of groups in [1] demonstrating that the category of simplicial groups with a three-dimensional
Moore complex and the category of 2-crossed modules are equivalent. Therefore, 2-crossed modules
also serve as algebraic models for connected homotopy 3-types or pointed CW-complexes X such that
π(X) = 0 if i > 3. The idea of 2-crossed modules is adapted for algebras by Grandjean and Vale [2].

The homotopy 3-types can also be represented by crossed squares [3] and quadratic modules [4].
The categories of braided regular crossed modules [5] and Gray 3-groupoids with a single object [6], are
other categories that are equivalent to the category of 2-crossed modules. The category of 2-crossed
modules is also shown in [7] to be equivalent to the categories of neat crossed squares and neat maps.

For the algebraic description of pointed relative CW–complexes with cells in dimensions 4, Baues
and Bleile introduced the concept of 4–dimensional quadratic complexes [8] to investigate the pre-
sentation of a space X as mapping cone of a map ∂(X) under a space D. The need for a proper
understanding of the relevant algebraic and categorical structure of the 4-Dimensional 2-crossed mod-
ules are motivated by studies and examples [9–15] for higher categorical structures. In this work, we
defined the notion of 4-Dimensional 2-crossed modules in order to look into any potential equivalence
between homotopy 4-types, which was inspired by the work of Baues and Bleile. Examining how
4-Dimensional 2-crossed modules relate to an algebraic structure resembling 2-crossed modules is the
main goal of this paper. In order to achieve this, we first introduce the category of 4-Dimensional
2-crossed modules before describing subobjects and ideals in full detail. In conclusion, we demonstrate
that the quotient of the objects in this category is a 4-Dimensional 2-crossed module.
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The main ideas of this work can be given as:
� To construct a new category weaker than homotopy 4-types and stronger than homotopy 3-types,
� To fully describe the subobjects and ideals within this category,
� To construct the quotient object by using ideals in this category.

2. 4-Dimensional 2-Crossed Modules

Grandjeán and Vale [2] have given a definition of 2-crossed modules of algebras. The following is an
equivalent formulation of that concept.

A 2-crossed module of k-algebras consists of a complex of P -algebras L
∂2→ M

∂1→ P together with
an action of P on all three algebras and a P -linear mapping

{−,−} : M ×M → L

which is often called the Peiffer lifting such that the action of P on itself is by multiplication, ∂2 and
∂1 are P -equivariant.

PL1 : ∂2 {m0,m1} = m0m1 − ∂1 (m1) ·m0

PL2 : {∂2 (l0) , ∂2 (l1)} = l0l1
PL3 : {m0,m1m2} = {m0m1,m2}+ ∂1 (m2) · {m0,m1}
PL4 : {m, ∂2 (l)}+ {∂2 (l) ,m} = ∂1 (m) · l
PL5 : {m0,m1} · p = {m0 · p,m1} = {m0,m1 · p}

for all m,m0,m1,m2 ∈ M, l, l0, l1 ∈ L and p ∈ P. Note that we have not specified that M acts on L.
We could have done that as follows: if m ∈ M and l ∈ L, define

m · l = {m, ∂2 (l)}

From this equation (L,M, ∂2) becomes a crossed module. We can split PL4 into two pieces:
PL4 :

(a) {m, ∂2 (l)} = m · l
(b) {∂2 (l) ,m} = m · l − ∂1 (m) · l

We denote such a 2-crossed module of algebras by {L,M,P, ∂2, ∂1} .
A morphism of 2-crossed modules is given by the following diagram

L
∂2
//

f2
��

M
∂1
//

f1
��

P

f0
��

L′
∂′
2

//M ′
∂′
1

// P ′

where f0∂1 = ∂′
1f1, f1∂2 = ∂′

2f2

f1 (p ·m) = f0 (p) · f1 (m) , f2 (p · l) = f0 (p) · f2 (l)

for all m ∈ M, l ∈ L, p ∈ P and
{−,−} (f1 × f1) = f2 {−,−}

We thus get the category of 2-crossed modules denoting it by X2Mod. In [4], Baues developed the
concept of 4-dimensional quadratic modules after defining quadratic modules. Adapting this definition
for 2-crossed modules we get a complex of algebras

σ : K
∂4

// L
∂3
//M

∂2
// P

such that

1. (L,M,P, ∂2, ∂3) is a 2-crossed module with Peiffer lifting {−,−} : M ×M → L;
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2. K is a L–module such that ∂2(M) acts trivially and

3. ∂4 is a homomorphism of Q1–modules, such that ∂3∂4 = 0.

A morphism of 4–dimensional 2-crossed modules, f : σ → σ′, is a sequence of morphisms

σ : K
∂4

//

f4
��

L
∂3
//

f3
��

M
∂2
//

f2
��

P

f1
��

σ′ : K ′
∂4

// L′
∂′
3

//M ′
∂′
2

// P ′

such that (f3, f2, f1) yields a morphism of 2-crossed modules, f4 is an f1–equivariant homomorphism of
modules and ∂4f4 = f3∂4. We denote the category of 4-Dimensional 2-crossed modules by X2Mod4D.

Next, we will define the subobjects in X2Mod4D.

Definition 2.1. Let

σ : Q4
∂4

// Q3
∂3
// Q2

∂2
// Q1

be an object in X2Mod4D. Then we say that

σ′ : Q′
4

∂′
4
// Q′

3

∂′
3
// Q′

2

∂′
2
// Q′

1

is a subobject of σ if

1. Q′
4 is a subalgebra of Q4, Q

′
3 is a subalgebra of Q3 and Q′

2 is a subring of Q2;

2. ∂′
2 : Q2 → Q1 is a subpre-crossed module of ∂2 : Q2 → Q1;

3. The actions of Q′
2 on Q′

4 and Q′
3 via Q′

1 is induced from the actions of Q2 on Q4 and Q3 via Q1;

4. σ′ is an object in X2Mod4D and

5. The diagram

Q2 ×Q2

µ1×µ1

��

{−,−}

$$I
I
I
I
I
I
I
I
I

Q4
∂3

// Q3
∂2

//

µ2

��

Q2
∂1

//

µ1

��

Q1

µ0

��

Q′
2 ×Q′

2

{−,−}′

##H
H
H
H
H
H
H
H
H

##H
H
H
H
H
H
H
H
H

Q′
4

//

∂′
3

// Q′
3

∂
′
2

// Q′
2

∂
′
1

// Q′
1

is commutative where for i=1, 2, 3 µi are injections.

Example 2.2. Let

σ : Q2 ⊗Q2
∂4

// Q2 ⊗Q2
∂3

// Q2
∂2
// Q1

be an object in X2Mod4D with Id : Q2 ⊗Q2 → Q2 ⊗Q2 as Peiffer lifting. If K2 is ideal of Q2 and K1

is a subring of Q1 that is δ2 : K2 → K1 is a subpre-crossed module of ∂2 : Q2 → Q1 then

σ′ : K2 ⊗K2
Id

// K2 ⊗K2
δ3

// K2
δ2
// K1

is a subobject of σ with Id : K2 ⊗K2 → K2 ⊗K2 as Peiffer lifting.
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Example 2.3. Let R be a k-algebra and

R/R2 ⊗R/R2

{−,−}=Id
��

σ : R/R2 ⊗R/R2
Id

// R/R2 ⊗R/R2
∂

// R
Id
// R

be an object in X2Mod4D. If I is an ideal of R and J is a subring of I then,

I/I2 ⊗ I/I2

{−,−}=Id
��

σ′ : I/I2 ⊗ I/I2
Id

// I/I2 ⊗ I/I2
∂′

// I
i
// J

is a subobject of σ.

3. Ideals in X2Mod4D

In this section we will define ideals in X2Mod4D and intersections of two ideals is an ideal in this
category.

Definition 3.1. Let

σ : K
∂4

// L
∂3
//M

∂2
// P

be an object in X2Mod4D. Then we say that

σ′ : K ′ ∂′
4
// L′ ∂′

3
//M ′ ∂′

2
// P ′

is an ideal of σ if

1. Let L′L ⊆ L′, K ′K ⊂ K ′ and M ′ be an ideal of M ;

2. (a) M ′M ⊂ M and P ′ is an ideal of P ;

(b) for p ∈ P ′ and m ∈ M , p ·m ∈ M ′;

(c) for m′ ∈ M ′ and p ∈ P , p ·m′ ∈ M ′;

3. For m′ ∈ M ′, l ∈ L, k ∈ K ∂1(m
′) · l ∈ L′, ∂1(m

′) · k ∈ K ′;

4. For l′ ∈ L′, m ∈ M and k′ ∈ K ′, ∂1(m) · l′ ∈ L′, ∂1(m) · k′ ∈ K ′ ;

5. K ′ and L′ are P -algebras. That is,

(a) For p′ ∈ P ′, l ∈ L and k ∈ K, p′ · l ∈ L′, p′ · k ∈ K ′ ;

(b) For l′ ∈ L′, p ∈ P and k′ ∈ K ′, p · l′ ∈ L′, p · k′ ∈ K ′ ;

Example 3.2. Let I be an ideal of R if

θ : K // L // I
id
// I

is an object in X2Mod4D then θ is an ideal of the 4-Dimensional 2-crossed module σ in Example 2.3.
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Example 3.3. Let I and I ′ be ideals of R and (I,R, µ), (I ′, R, µ′) be two nil(2)-modules. Since
(I ∩ I ′, I, ϑ) is a nil(2)-module we have,

i)

σ′ : K
∂2

// L
π
// I ∩ I ′

ϑ′
// I ′

is an ideal of

σ : K
δ2
// I × I

π
// I

µ
// R

ii)

θ′ : K
∂2

// L
π
// I ∩ I ′

ϑ
// I

is an ideal of

θ : K
δ′2
// I ′ × I ′

π
// I ′

µ′
// R

where L = (I ∩ I ′)× (I ∩ I ′) with Peiffer liftings as identities and π as projection.

Theorem 3.4. The intersection of finite ideals is an ideal in X2Mod4D.

Proof. Let

σ : K
∂3

// L
∂2
//M

∂1
// P

be an object in X2Mod4D. If

σ1 : K1
∂′
3
// L1

∂′
2
//M1

∂′
1
// P1

and

σ2 : K2
∂′′
3
// L2

∂′′
2
//M2

∂′′
1
// P2

be two subobjects of σ. Then we have,
1. Since L1L ⊂ L1, L2L ⊂ L2 and K1K ⊂ K1,K2K ⊂ K2 we get

(L1 ∩ L2)L ⊆ L1 ∩ L2

and
(K1 ∩K2)K ⊂ K1 ∩K2

2. a. Since M1M ⊆ M1 and M2M ⊆ M2 we get

(M1 ∩M2)M ⊆ M1 ∩M2

where N1 ⊴ P and P2 ⊴ P imply P1 ∩N2 ⊴ P .
b. Since σ1 is an ideal of σ for x ∈ P1 we have x ·m ∈ M1 and σ2 is an ideal of σ for x ∈ P2 we

have x ·m ∈ M2. Then we get x ·m ∈ M1 ∩M2.
c. Since σ1 and σ2 are ideals of σ, for y ∈ M1, y ∈ M2, and p ∈ P we have p ·y ∈ M1 and p ·y ∈ M2

which implies p · y ∈ M1 ∩M2.
3. Since σ1 is an ideal of σ for y ∈ M1 and l ∈ L we have ∂(y) · l ∈ L1 and since ∂2 is an ideal

of σ for ∂(y) ∈ M2 and l ∈ L we have ∂(y) · l ∈ L2. Then we get ∂(y) · l ∈ L1 ∩ L2. Similarly for
y ∈ M1 ∩M2 and k ∈ K we get ∂(y) · k ∈ K1 ∩K2.

4. Since for z ∈ L1 and m ∈ M ∂1(m) · z ∈ L1 and for z ∈ L2,m ∈ M ∂1(m) · z ∈ L2 we have
∂1(m) · z ∈ L1 ∩ L2. Similarly for t ∈ K1 ∩K2 we get ∂1(m) · t ∈ K1 ∩K2.

5. a. Let x ∈ P1 ∩ P2 for x ∈ P1 and l ∈ L we have x · l ∈ L1 and for x ∈ P2 and l ∈ L we have
x · l ∈ L2. Then we get x · l ∈ L1 ∩ L2. Simlarly for x ∈ P1 ∩ P2 and k ∈ K we have x · k ∈ K1 ∩K2.

b. Let z ∈ L1 ∩ L2 for p ∈ P and z ∈ L1 we have p · z ∈ L1 and for z ∈ L2 and p ∈ P we have
p · z ∈ L2. Then we have p · z ∈ L1 ∩ L2. Similarly for t ∈ K1 ∩K2 we have p · k ∈ K1 ∩K2.

As a result the object

K1 ∩K2
(∂′

3,∂
′′
3 )
// L2 ∩ L2

(∂′
2,∂

′′
2 )
//M1 ∩M2

(∂′
1,∂

′′
1 )
// P1 ∩ P2
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in X2Mod4D is an ideal of

K
∂3
// L

∂3
//M

∂3
// P

4.Quotient object in X2Mod4D

In this section using the ideal σ′ of an object σ in X2Mod4D, we prove that the quotient σ/σ′ is an
object in X2Mod4D.

Let

σ′ : K ′ ∂′
3
// L′ ∂′

2
//M ′ ∂′

1
// P ′

be an ideal of

σ : K
∂3

// L
∂2
//M

∂1
// P

in X2Mod4D. Since M ⊴ M and P ′ ⊴ P , the action of P/P ′ on M/M ′ can be given as

(x+ P ′) · (y +M ′) = x · y +M ′

and for p′ ∈ P ′

p′ · (y +M ′) = p′ · y +M ′

= 0 +M ′ (∵ p′ · y ∈ M)

P ′ acts on M/M ′ trivially. Next, we will show that

δ : M/M ′ → P/P ′

y +M ′ 7→ ∂1(y) + P ′

is a well defined nil(2)-module morphism.
∂′
1 is the restriction of ∂1 to M ′ implies ∂′

1 ⊂ P ′. For m′ ∈ M ′ we have ∂′
1(m

′) · (l + L′) =
∂′
1(m

′) · l + L′ = L′(σ′ is an ideal of σ then ∂′
1(m

′) · l ∈ L′ ). That is the action of M ′ on L/L′ via P ′

must be trivial. Therefore M/M ′ acts on L/L′ via P/P ′. This action can be defined as:

(∂1(m) +M) · (l + L′) = ∂1(m) · l + L′

for l + L′ ∈ L/L′ and m+M ′ ∈ M/M ′.

Theorem 4.1. Let

σ′ : K ′ ∂′
3
// L′ ∂′

2
//M ′ ∂′

1
// P ′

be an ideal of

σ : K
∂3

// L
∂2
//M

∂1
// P

in X2Mod4D. Then

σ/σ′ : K/K ′ δ3 // L/L′ δ2
//M/M ′ δ1

// P/P ′

is an object in X2Mod4D.

Proof. 1. PL1. For x1 +M ′, x2 +M ′ ∈ M/M ′ :

δ{x1 +M ′, x2 +M ′}δ = ∂2{x1, x2}σ + L′

= x1x2 − x1 · ∂1(x2) + L′

PL2. For y1 +M ′, y2 +M ′ ∈ L/L′ :

{δ2 (y1 + L′) , δ (y2 + L′)}δ = {∂2 (y1) +M ′, ∂2 (y2) +M ′}σ
= {∂2 (y1) , ∂2 (y2)}σ +M ′

= y1y2 +M ′

= (y1 +M ′) (y2 +M ′)
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PL3. For xo +M ′, x1 +M ′, x2 +M ′ ∈ M/M ′ :

{x0 +M ′, x1x2 +M ′}δ = {x0, x1x2}σ +M ′

= {x0x1, x2}σ + ∂1 (x2) {x0, x1}σ +M ′

= {x0x1, x2}σ +M ′ + ∂1 (x2) {x0, x1}σ +M ′

= {x0x1 +M ′, x2 +M ′}δ + ∂1 (x2) {x0 +M ′, x1 +M ′}δ

PL4. a. For y + L′ ∈ L/L′ and x+M ′ ∈ M/M ′ :

{δ2(y + L′), x+M ′}δ = {∂2(y) +M ′, x+M ′}δ
= {∂2(y), x}σ +M ′

= (x · y − ∂1(x) · y) +M ′

b. For y + L′ ∈ L/L′ and x+M ′ ∈ M/M ′ :

{x+M ′, δ2(y + L′)}δ = {x+M ′, ∂2(y) +M ′}δ
= {x, ∂2(y)}σ +M ′

= (x · y) +M ′

PL5. For xo +M ′, x1 +M ′ ∈ M/M ′ and t+ P ′ ∈ P/P ′ :

{x0 +M ′, x1 +M ′}δ · (t+ P ′) = ({x0, x1}σ · (t+ P ′)δ) +M ′

= ({x0 · t, x1}σ) +M ′

= {(x0 · t) +M ′, x1 +M ′}δ

and
{x0 +M ′, x1 +M ′}δ · (t+ P ′) = ({x0, x1}σ · (t+ P ′)δ) +M ′

= ({x0, x1 · t}σ) +M ′

= {x0 +M ′, (x1 · t) +M ′}δ
2. Since σ′ is an ideal of σ/σ′ form+M ′ ∈ M/M ′ we have δ1(m+M ′)·(k+K ′) = δ1(m+M ′)·(k+K ′) =
K ′. That is M/M ′ acts on K/K ′ via P ′ trivially. Therefore K/K ′ is a P/P ′-module.
3. For k +K ′ ∈ K/K ′:

δ2δ3(k +K ′) = δ2 (∂3(k) + L′)
= ∂2 (∂3(k) +M ′)
= 0 +M ′

= 0M/M ′

5. Conclusion

In this work, we introduced a new category weaker than homotopy 4-types and stronger than homo-
topy 3-types. As an intriguing result 4–dimensional 2-crossed modules serve as a bridge to investigate
categorical equivalences between homotopy 3-types and homotopy 4-types. The categorical equiv-
alences of the category X2Mod4D and other homotopy 3–4 types from the various models can be
explored as further research. The research presented in this study has addressed fundamentals of the
category X2Mod4D, and these provide guidance for future work in the following:

� Constructing categorical properties such as limit, product, pullback, pushout, etc.,
� Embedding theorem can be adapted for the category X2Mod4D,
� Freeness conditions and simplicial properties can be examined.
In addition, categorical equivalences and properties are also reference points for further work of

X2Mod4D.
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de la Real Academia de Ciencias 22 (1986) 1–28.

[3] G. Ellis, Crossed Squares and Combinatorial Homotopy, Mathematische Zeitschrift 214 (1) (1993)
93–110.

[4] H. J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, Berlin, De Gruyter, 2011.

[5] R. Brown, N. D. Gilbert, Algebraic Models of 3-Types and Automorphism Structures for Crossed
Modules, In Proceedings of the London Mathematical Society 59 (1) (1989) 51–73.

[6] K. H. Kamps, T. Porter, 2-Groupoid Enrichments in Homotopy Theory and Algebra, K-theory
25 (4) (2002) 373–409.

[7] J. F. Martins, The Fundamental 2-Crossed Complex of a Reduced CW-Complex, Homology, Ho-
motopy and Applications 13 (2) (2011) 129–157.

[8] H. J. Baues, B. Bleile, Presentation of Homotopy Types Under a Space, ArXiv Preprint,
ArXiv:1005.4810, 2010.

[9] U. E. Arslan, S. Kaplan, On Quasi 2-Crossed Modules for Lie Algebras and Functorial Relations,
Ikonion Journal of Mathematics 4 (1) (2022) 17–26.
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Abstract – This study analyses (𝑘,𝑚)-type slant helices in compliance with the modified orthogonal 
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1. Introduction 

Certain particular curves and surfaces have notable importance in differential geometry. Frenet equality and 

curvatures of the curve are important in works related to curves. Frenet equations are employed in the structure 

of plenty of curve theories. One of the primary importance of these curves is the helix curve. The 

characterisations of curvature and torsion of helix curves perform a remarkable role in describing particular 

curve types. A helix is a curve whose tangent makes a constant angle with a fixed direction [1]. There is an 

essential categorisation of a helix. In such a way, a curve is called a helix if  
𝜅

𝜏
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [2]. The curve is a 

(𝑘,𝑚)-type slant helix. Then, there is a non-zero fixed vector field, and with this constant vector field, the 

vector fields that have the identical index of a parallel transport frame do a constant angle. Lately, many search 

works related to this concept. The slant helix notion in 3-dimensional Euclidean space (𝔼3) is described by 

Takeuchi and Izumiya [3]. Soliman et al. [4] investigated the progression of space curves using the type 3-

Bishop frame. Bektaş and Yılmaz [5,6] described (𝑘,𝑚)-type slant helices in 𝔼4 and null curves in 4-

dimensional Minkowski space.  

Additionally, Bulut and Bektaş [7] acquired particular helices upon isomorphic differential geometry of 

spacelike curves in Minkowski spacetime. Furthermore, Bükcü et al. [8] investigated the spherical curves 

according to two types of modified orthogonal frames in 𝔼3. Besides, Eren and Köksal [9] investigated the 

development of space curves with modified orthogonal frames. Azak [10] described the notion of involute-

evolute curve according to modified orthogonal frames in 𝔼3. This paper studies (𝑘,𝑚)-type slant helices in 

compliance with the aforesaid frame in 𝔼3.  
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2. Preliminaries 

This section presents some basic definitions to be employed in the following sections. 

Definition 2.1. The curve formed by making a fixed angle in a fixed direction is called a helix. If ratio 
𝜏

𝜅
 is 

constant, it means that the curves are helices [13]. 

Throughout this paper, let 𝐶∞ denote the curves with continuous partial derivatives of every order ∞. Suppose 

that 𝜑(𝑠) ∈ 𝐶3 is parameterised by arc length 𝑠 in 𝔼3 and its curvature κ(𝑠) is different from zero. Thus, an 

orthonormal frame {𝑡, 𝑛, 𝑏} provides the Serret-Frenet equations 

[

𝑡′(𝑠)

𝑛′(𝑠)

𝑏′(𝑠)
] = [

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

] [

𝑡(𝑠)
𝑛(𝑠)
𝑏(𝑠)

] 

 

(2.1) 

Here, 𝑡 is the unit tangent vector, 𝑛 is the unit principal normal, 𝑏 is the unit binormal. 𝜏(𝑠) is also the torsion 

of the curve. Besides a provided 𝐶1 function 𝜅(𝑠) as well as a continuous function 𝜏(𝑠), there is a curve 𝐶3 

with an orthonormal frame {𝑡, 𝑛, 𝑏} that provides the Serret-Frenet frame given in Equation (2.1) [11]. 

Suppose that 𝜑(𝑡) is a common analytic curve that may be reparameterised by its arc length 𝑠. Herein, 𝑠 ∈ 𝐼 

and 𝐼 is a non-empty open interval. Suggesting that the curvature function has discrete zero points or 𝜅(𝑠) is 

not identically zero, we have an orthogonal frame {𝑇, 𝑁, 𝐵} named as noted below: 

𝑇 =
𝑑𝜑

𝑑𝑠
, 𝑁 =

𝑑𝑇

𝑑𝑠
, and        𝐵 = 𝑇 × 𝑁 

Here, 𝑇 × 𝑁 is the vector multiplying 𝑇 and 𝑁. The relation between {𝑇, 𝑁, 𝐵} and former Frenet frame vectors 

at non-zero spots of 𝜅 are as follows: 

𝑇 = 𝑡, 𝑁 = 𝜅𝑛, and        𝐵 = 𝜅𝑏 (2.2) 

Hence, we find out that 𝑁(𝑠0) = 𝐵(𝑠0) = 0 while 𝜅(𝑠0) = 0 and squares of the length of 𝑁 and 𝐵 change 

analytically according to 𝑠. By way of Equation (2.2), it is simply to be calculated 

[

𝑇′(𝑠)

𝑁′(𝑠)

𝐵′(𝑠)
] =

[
 
 
 
 

0 1 0

−𝜅2
𝜅′

𝜅
𝜏

0 −𝜏
𝜅′

𝜅 ]
 
 
 
 

[

𝑇(𝑠)
𝑁(𝑠)
𝐵(𝑠)

] (2.3) 

where the whole of the differentiations are executed according to the arc length (𝑠) and  

𝜏 = 𝜏(𝑠) =
𝑑𝑒𝑡(𝜑′, 𝜑′′, 𝜑′′′)

𝜅2
 

is the torsion of 𝜑. By way of the Serret-Frenet Equation, we acknowledge that whichever spot in which 𝜅2 =

0 is a removable singularity of 𝜏. Suggesting that 〈, 〉 be the standard inner multiplying of 𝔼3, in that case 

{𝑇, 𝑁, 𝐵} provide for 

〈𝑇, 𝑇〉 = 1, 〈𝑁,𝑁〉 = 〈𝐵, 𝐵〉 = 𝜅2, and      〈𝑇, 𝑁〉 = 〈𝑇, 𝐵〉 = 〈𝑁, 𝐵〉 = 0 (2.4) 

The orthogonal frame described in Equation (2.3) providing Equation (2.4) is called modified orthogonal 

frames [8,11]. Then, we acknowledge that for 𝜅 = 1, the Serret-Frenet frame matches up with the modified 

orthogonal frames. 
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Suppose that 𝛪 be an open interval of real line ℝ and 𝑀 be a 𝑛-dimensional Riemannian manifold and 𝑇𝑝(𝑀) 

be a tangent space of 𝑀 at a point 𝑝 ∈ 𝑀. A curve on 𝑀 is a smooth mapping 𝜓: 𝛪 → 𝑀. 𝐼, a submanifold of 

ℝ, has a coordinate system consisting of the identity map 𝑢 of 𝐼. The velocity vector of 𝜓 at 𝑠 ∈ 𝐼 is noted by  

𝜓′(𝑠) =
𝑑𝜓(𝑢)

𝑑𝑢
|
𝑠

∈ 𝑇𝜓(𝑠)(𝑀) 

If 𝜓′(𝑠) ≠ 0 for whichever 𝑠, then a curve 𝜓(𝑠) is the regular curve. Suppose that 𝜓(𝑠) is a space curve on 𝑀 

and {𝑡, 𝑛, 𝑏} the moving Frenet frame along 𝜓, thus we have the below-mentioned features 

𝜓′(𝑠) = 𝑡 

𝐷𝑡𝑡 = 𝜅𝑛 

𝐷𝑡𝑛 = −𝜅𝑡 + 𝜏𝑏 

𝐷𝑡𝑏 = −𝜏𝑛 

(2.5) 

where 𝐷 indicates the covariant differentiation on 𝑀 [12]. 

In the following, let vectors 𝑉𝐾 , 𝐾 ∈ {1,2,3} be given as 𝑉1 = 𝑇, 𝑉2 = 𝑁,𝑉3 = 𝐵  and let a fixed direction 

vector 𝑢 define the axis for the helix. 

Definition 2.2. A curve 𝛼(𝑠) is said to be a 𝐾-type slant helix if there exists a non-zero fixed direction vector 

𝑢 such that 〈𝑉𝐾 , 𝑢〉 = 𝑐, where 𝑐 is a real constant and 𝐾 ∈ {1,2,3} [14]. 

Definition 2.3. Let 𝛼 be a regular unit speed curve 𝔼3 with Frenet frame {𝑉1, 𝑉2, 𝑉3}. We call 𝛼 is a (𝑘,𝑚)-

type slant helices if there exists a non-zero constant vector field 𝑢 ∈ 𝔼3 satisfies 〈𝑉𝑘 , 𝑢〉 = 𝑎 and 〈𝑉𝑚, 𝑢〉 = 𝑏. 

Here, 𝑎 and 𝑏 are constant concerning Frenet frame {𝑉1, 𝑉2, 𝑉3} [5,6]. 

3. On the Characterisations of Curves with Modified Orthogonal Frame in 𝔼𝟑 

This section presents (𝑘,𝑚)-type slant helices in compliance with the modified orthogonal frame in 𝔼3. 

Furthermore, we get some characterisations of curves with modified orthogonal frames in 𝔼3. 

Theorem 3.1. A unit speed curve 𝜓 is a helix in compliance with orthonormal frame {𝑡, 𝑛, 𝑏} necessary and 

sufficient condition 𝜓 is a helix in compliance with the modified orthogonal framework {𝑇, 𝑁, 𝐵}. 

PROOF. ⇒ Let 𝜓 be a helix in compliance with the orthonormal framework {𝑡, 𝑛, 𝑏}, we know that 

〈𝑡, 𝑢〉 = 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.1) 

On the other hand, we write from Equations (2.2) and (3.1), 

〈𝑇, 𝑢〉 = 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.2) 

Thus, 𝜓 is a helix in compliance with a modified orthogonal framework {𝑇, 𝑁, 𝐵}. 

⇐ Suppose that 𝜓 is a helix in compliance with the modified orthogonal framework {𝑇, 𝑁, 𝐵}. Thus, we can 

write  

〈𝑇, 𝑢〉 = 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (3.3) 

Thus, from Equations (3.3) and (2.2), we obtain 〈𝑡, 𝑢〉 = 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. In this case, 𝜓 is a helix in 

compliance with the orthonormal framework {𝑡, 𝑛, 𝑏}. 

Theorem 3.2. There are no (1,2)-type slant helix in compliance with the modified orthogonal framework 

{𝑇, 𝑁, 𝐵}. 
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PROOF. Suppose that 𝜓 is a (1,2)-type slant helix. Then, we may write 

〈𝑇, 𝑢〉 = 𝑐1 (3.4) 

and 

〈𝑁, 𝑢〉 = 𝑐2 (3.5) 

where 𝑐1 and 𝑐2 are constants. If we take the derivative of these equations, we obtain 〈𝑁, 𝑢〉 = 0. That is to 

say, 𝑢 is orthogonal to 𝑁. Thus, there are no (1,2)-type slant helix in compliance with the modified orthogonal 

framework {𝑇, 𝑁, 𝐵}. 

Theorem 3.3. If 𝜓 is a (1,3)-type slant helix in compliance with the modified orthogonal framework {𝑇, 𝑁, 𝐵}. 

Then,  𝜅 and 𝜏 are constants. 

PROOF. Suppose that 𝜓 is a (1,3)-type slant helix in compliance with the modified orthogonal framework 

{𝑇, 𝑁, 𝐵}. Then, we may write 

〈𝑇, 𝑢〉 = 𝑐1 (3.6) 

and  

〈𝐵, 𝑢〉 = 𝑐3 (3.7) 

where 𝑐1 and 𝑐3 are constants. 

If we take the derivative of Equations (3.6) and (3.7) and use Equation (2.3), we acquire that 𝜅 and 𝜏 are 

constants. 

Theorem 3.4. If 𝜓 is a (2,3)-type slant helix in compliance with the modified orthogonal framework {𝑇, 𝑁, 𝐵}, 

then   

〈𝑇, 𝑢〉 =
𝜅′

𝜅3
𝑐2 +

𝜏

𝜅2
𝑐3 

(3.8) 

1

𝜏
(ln 𝜅 )′ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(3.9) 

where 𝑐2 and 𝑐3 are constants. 

PROOF. Suppose that 𝜓 is a (2,3)-type slant helix in compliance with the modified orthogonal framework 

{𝑇, 𝑁, 𝐵}. Then, we are written as follows: 

〈𝑁, 𝑢〉 = 𝑐2 (3.10) 

and  

〈𝐵, 𝑢〉 = 𝑐3 (3.11) 

Now, if we take the derivative of Equation (3.10) and we use Equation (2.3), we may write  

〈𝑇, 𝑢〉 =
𝜅′

𝜅3
𝑐2 +

𝜏

𝜅2
𝑐3 

Similarly, from Equations (3.11) and (2.3), we get 

1

𝜏
(ln 𝜅 )′ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Theorem 3.5. If 𝜓 is a 3-type slant helix according to the modified orthogonal frame. Then, the following 

ordinary differential equation holds 

(∫
𝜅𝜅′

𝜏
𝑑𝑠)

2

+ (
𝜅′

𝜅𝜏
)

2

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
(3.12) 

PROOF. Supposed that 𝜓 is a 3-type slant helix according to the modified orthogonal framework {𝑇, 𝑁, 𝐵}. 

Thus, we have  

〈𝐵, 𝑢〉 = 𝑐 (3.13) 

and if we take the derivative of Equation (3.13) and use Equation (2.3), we obtain 

〈𝑁, 𝑢〉 =
𝜅′

𝜅𝜏
𝑐 (3.14) 

Moreover, we decompose 𝑢 as follows 

𝑢 = 𝑎1𝑇 + 𝑎2𝑁 + 𝑐𝐵 

If we take the derivative of constant vector 𝑢 and use the Equation (2.3), we get 

𝑎1
′ 𝑇 + 𝑎2

′ 𝑁 + 𝑎1𝑁 + 𝑎2 (−𝜅2𝑇 +
𝜅′

𝜅
𝑁 + 𝜏𝐵) + 𝑐 (−𝜏𝑁 +

𝜅′

𝜅
𝐵) = 0 (3.15) 

and  

𝑎1
′ − 𝑎2𝜅

2 = 0 (3.16) 

𝑎2
′ + 𝑎1 + 𝑎2

𝜅′

𝜅
− 𝑐𝜏 = 0 (3.17) 

𝑎2𝜏 + 𝑐
𝜅′

𝜅
= 0 (3.18) 

From Equations (3.16) and (3.18),  we get  

𝑎1 = −𝑐 ∫
𝜅𝜅′

𝜏
𝑑𝑠 

𝑎2 =
−𝑐𝜅′

𝜅𝜏
            

We know that 𝑢 is constant. Moreover, we may select 𝑎1
2 + 𝑎2

2 = ‖𝑢‖2 = 1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. As a result, we 

are written by the following equations: 

(∫
𝜅𝜅′

𝜏
𝑑𝑠)

2

+ (
𝜅′

𝜅𝜏
)

2

=
1

𝑐2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

4. Conclusion 

We analyse (𝑘,𝑚)-form slant helices in compliance with the modified orthogonal frame in 𝔼3. Furthermore, 

we get some characterisations of curves with modified orthogonal frames in 𝔼3. In the subsequent studies, we 

will investigate the conformable curves according to a modified orthogonal frame in 𝔼3. 
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1. Introduction

As an extension of the classical sets, fuzzy set theory was introduced by Zadeh [1] in 1965 to model
uncertain information. Then, a kind of fuzzy sets were introduced by Yager [2] which is called multi-
fuzzy sets (fuzzy bags). It is a different generalization of fuzzy sets and provides complete informa-
tion in some problems as there are situations where each element has different membership values.
Miyamoto [3, 4] and Sebastian and Ramakrishnan [5, 6] expanded and studied the Yager’s multi-sets
and multi-fuzzy sets in detail. Since some occurrences are with more than one possibility of same or
different membership functions, Uluçay et al. [7] developed trapezoidal fuzzy multi-numbers (TFM-
numbers) on real number set R which are extension of both fuzzy numbers and multi-fuzzy sets by
allowing the repeated occurrences of any element. Later, various studies have been additionally done
by many authors in [8–11].

The Bonferroni mean (BM), primarily proposed by Bonferroni [12] is an aggregation method which
is useful to aggregate the crisp data. It can explore the interrelationships among arguments, which
have a critical role in multi criteria decision making problems. Therefore, Yager [13] introduced a
detailed work of BM and gave some generalizations that enhance its capability. Then, Beliakov et
al. [14] made the BM more enhanced by coping with the interrelation of any three aggregated elements
instead of any two.

Harmonic mean is a conservative average which give an aggregation locating between the maxi-
mum and minimum operators. It is commonly used by scientists as a tool of aggregating data that has
tendency to central [15]. In the literature, the harmonic mean is mostly considered as an aggregation
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method of numerical data information including fuzzy informations. For example, Xu [15] proposed
the fuzzy harmonic mean operators named fuzzy weighted harmonic mean (FWHM) operator, fuzzy
ordered weighted harmonic mean (FOWHM) operator and fuzzy hybrid harmonic mean (FHHM) oper-
ator. Furthermore, he applied these operators to multiple attribute group decision making (MAGDM)
problems. Wei [16] developed fuzzy induced ordered weighted harmonic mean (FIOWHM) operator
and then, he presented the approach to MAGDM based on the FWHM and FIOWHM operators. Sun
and Sun [17] introduced the fuzzy Bonferroni harmonic mean (FBHM) operator and the fuzzy ordered
Bonferroni harmonic mean (FOBHM) operator. Then, they applied the FOBHM operator to MADM
problems. Until now, Bonferroni harmonic mean aggregation operators based on trapezoidal multi
fuzzy numbers have not been studied as we know. In order to fill this gap, this article formed and
has five sections. In second section, we give definitions of fuzzy sets, multi-fuzzy sets, and trapezoidal
fuzzy multi-numbers and some of their basic properties. In third section, we introduce an aggregation
method called weighted Bonferroni harmonic mean operator for aggregating the trapezoidal multi
fuzzy information. In addition the section reviews its some special cases and some properties. In
fourth section, we propose an algorithm to solve multiple attribute decision making problems under
the trapezoidal multi fuzzy numbers. Then, in the section, we apply the proposed operator to a multi
attribute decision making problem. In fifth section, we give a brief conclusion. The present paper is
derived from the first author’s master’s thesis under the second author’s supervision.

2. Preliminary

In this section, we give some basic concepts such as fuzzy set [1], trapezoidal fuzzy multi numbers [7]
and etc. In [8–11,18–23], readers can find further knowledge.

Definition 2.1. [1] A fuzzy set z on X which is a non-empty set is defined as:

z = {〈x, µz(x)〉 : x ∈ X}

where µz is a function from X to [0, 1].

Definition 2.2. [24] t-norms are associative, monotonic and commutative two valued functions t
that map from [0, 1]× [0, 1] into [0, 1]. These properties are formulated with the following conditions:

i. t(0, 0) = 0 and t(µX1(x), 1) = t(1, µX1(x)) = µX1(x)

ii. If µX1(x) ≤ µX3(x) and µX2(x) ≤ µX4(x), then t(µX1(x), µX2(x)) ≤ t(µX3x), µX4(x))

iii. t(µX1(x), µX2(x)) = t(µX2(x), µX1(x))

iv. t(µX1(x), t(µX2(x), µX3(x))) = t(t(µX1(x), µX2)(x), µX3(x))

Definition 2.3. [24] s-norm are associative, monotonic and commutative two placed functions s
which map from [0, 1]× [0, 1] into [0, 1]. These properties are formulated with the following conditions:

i. s(1, 1) = 1 and s(µX1(x), 0) = s(0, µX1(x)) = µX1(x)

ii. if µX1(x) ≤ µX3(x) and µX2(x) ≤ µX4(x), then s(µX1(x), µX2(x)) ≤ s(µX3(x), µX4(x))

iii. s(µX1(x), µX2(x)) = s(µX2(x), µX1(x))

iv. s(µX1(x), s(µX2(x), µX3(x))) = s(s(µX1(x), µX2)(x), µX3(x))

For example, t2(µX1(x), µX2(x)) = µX1(x)µX2(x) is a t-norm and s2(µX1(x), µX2(x)) = µX1(x) +
µX2(x)− µX1(x)µX2(x) is a s-norm.
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Definition 2.4. [7] Let wN ∈ [0, 1], xi, yi, zi, ti ∈ R and xi ≤ yi ≤ zi ≤ ti. A trapezoidal fuzzy
number (TF-number) N = 〈(xi, yi, zi, ti);wN 〉 is a special fuzzy set on the real number set R. Its
membership function is given as:

µN (x) =


(x− xi)wN/(yi − xi), xi ≤ x < yi
wN , yi ≤ x ≤ zi
(ti − x)wN/(ti − zi), zi < x ≤ ti
0, otherwise

Definition 2.5. [5] A multi-fuzzy set G on X which is a non-empty set is defined as:

G = {〈x, µ1
G(x), µ2

G(x), ..., µiG(x), ...〉 : x ∈ X}

where µiG : X → [0, 1] for all i ∈ {1, 2, ..., p} and x ∈ X.

Definition 2.6. [7] Let ηsN ∈ [0, 1] s ∈ {1, 2, ..., p} and xi, yi, zi, ti ∈ R such that xi ≤ yi ≤ zi ≤ ti.
Then, trapezoidal fuzzy multi-number (TFM-number) shown by N = 〈(xi, yi, zi, ti); η1

N , η
2
N , ..., η

P
N 〉 is

a special fuzzy multi-set on the real numbers set R and its membership functions are defined as:

µsN (x) =


(x− xi)ηsN/(yi − xi) xi ≤ x ≤ yi

ηsN yi ≤ x ≤ zi
(ti − x)ηsN/(ti − zi) zi ≤ x ≤ ti

0 otherwise

From now on the set of all TFM-number on R+ will be denoted by 0(R+). Moreover, Ip and In
will be used instead of {1, 2, ..., p} and {1, 2, ..., n}, respectively.

Definition 2.7. [7] LetN1 = 〈(x1, y1, z1, t1); η1
N1
, η2
N1
, ..., ηPN1

〉, N2 = 〈(x2, y2, z2, t2); η1
N2
, η2
N2
, ..., ηPN2

〉 ∈
0(R+) and γ 6= 0, γ ∈ R. Then,

i. N1 +N2 = (x1 + x2, y1 + y2, z1 + z2, t1 + t2);
η1
N1

+ η1
N2
− η1

N1
η1
N2
, η2
N1

+ η2
N2
− η2

N1
η2
N2
, ..., ηPN1

+ ηPN2
− ηPN1

ηPN2
)〉

ii. N1 ×N2 =


〈(x1x2, y1y2, z1z2, t1t2); η1

N1
η1
N2
, η2
N1
η2
N2
, ...ηPN1

ηPN2
)〉 (t1 > 0, t2 > 0)

〈(x1t2, y1z2, z1y2, t1x2); η1
N1
η1
N2
, η2
N1
η2
N2
, ...ηPN1

ηPN2
)〉 (t1 < 0, t2 > 0)

〈(t1t2, z1z2, y1y2, x1x2); η1
N1
η1
N2
, η2
N1
η2
N2
, ...ηPN1

ηPN2
)〉 (t1 < 0, t2 < 0)

iii. γN1 = 〈(γx1, γy1, γz1, γt1); 1− (1− η1
N1

)γ , 1− (1− η2
N̄1

)γ , ..., 1− (1− ηpN1
)γ〉(γ ≥ 0)

iv. Nγ
1 = 〈(xγ1 , y

γ
1 , z

γ
1 , t

γ
1); (η1

N1
)γ , (η2

N1
)γ , ..., (ηPN1

)γ〉(γ ≥ 0)

v. Based on negative exponential of a trapezoidal intuitionistic fuzzy number given by Li [25], we
can give following property for TFM-numbers:

N−1
1 =

〈(
1

t1
,

1

z1
,

1

y1
,

1

x1

)
; η1
N1
, η2
N1
, ..., ηPN1

〉
Definition 2.8. [26] LetN1 = 〈(x1, y1, z1, t1); η1

N1
, η2
N1
, ..., ηPN2

〉, N2 = 〈(x2, y2, z2, t2); η1
N2
, η2
N2
, ..., ηPN2

〉
∈ 0(R+). Followings are right:

i. If x1 < x2, y1 < y2, z1 < z2, t1 < t2, η1
N1

< η1
N2

,η2
N1

< η2
N2

,...,ηPN1
< ηPN2

then N1 < N2

ii. If x1 > x2, y1 > y2, z1 > z2, t1 > t2, η1
N1

> η1
N2

,η2
N1

> η2
N2

,...,ηPN1
> ηPN2

then N1 > N2

iii. If x1 = x2, y1 = y2, z1 = z2, t1 = t2, η1
N1

= η1
N2

,η2
N1

= η2
N2

,...,ηPN1
= ηPN2

then N1 = N2

Based on score value for trapezoidal hesitant fuzzy numbers given by Deli [26], we propose following
definition.
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Definition 2.9. Let N = 〈(xi, yi, zi, ti); η1
N , η

2
N , ..., η

P
N 〉 be a TFM-number and P is number of ηiN .

Then, score of N denoted s(N) is defined as:

s(N) =
t2i + z2

i − x2
i − y2

i

2P

P∑
s=1

ηsN

Let Ni = 〈(xi, yi, zi, ti); η1
Ni
, η2
Ni
, ..., ηPNi

〉 (i ∈ I2) be a TFM-numbers’ collection. Then, comparison
of N1 and N2 is given as:

i. If s(N1) > s(N2), then N1 > N2

ii. If s(N1) < s(N2), then N1 < N2

iii. If s(N1) = s(N2), then N1 = N2

Definition 2.10. [12] Let σi (i ∈ In) be a nonnegative numbers’ collection and p, q ∈ R such that
p, q ≥ 0. Then, Bonferroni mean (BM) of σi (i ∈ In) is defined as:

BMp,q(σ1, σ2, ..., σn) =

 1

n(n− 1)

n∑
i,j=1,i 6=j

σpi σ
q
j

 1
p+q

For two collections of nonnegative numbers σi and υi (i ∈ In), the BM has some properties as
follows:

i. BMp,q(0, 0, ..., 0) = 0

ii. BMp,q(σ, σ, ..., σ) = σ, if σi = σ, for all i

iii. BMp,q(σ1, σ2, ..., σn) ≥ BMp,q(υ1, υ2, ..., υn),i.e., BMp,q is monotonic, if σi ≥ υi , for all i

iv. min{σi} ≤ BMp,q(σ1, σ2, ..., σn) ≤ max{σi}

Definition 2.11. [17] Let p, q ≥ 0 and σi (i ∈ In) be a collection of nonnegative numbers and

v = (v1, v2, ..., vn)T σi’s weight vector such that vi ≥ 0 (i ∈ In) and
n∑
i=1

vi = 1. If

WBHMp,q(σ1, σ2, ..., σn) =
1(

n∑
i,j=1,i 6=j

vivj
σp
i σ

q
j

) 1
p+q

then WBHMp,q is called the weighted Bonferroni Harmonic Mean (WBHM).

3. Weighted Bonferroni Harmonic Mean Operator on TFM-numbers

In this section we propose TFM weighted Bonferroni harmonic mean based on weighted Bonferroni
harmonic mean given by Su et al. [27]. Then, we analyze its properties and review special cases to see
how it converts into other operators. In addition, a basic example is presented to see its application
to three TFM-numbers.

Definition 3.1. Let Ni = 〈(xi, yi, zi, ti); η1
Ni
, η2
Ni
, ..., ηPNi

〉 (i ∈ In) be a TFM-numbers’ collection,

p, q > 0 and Ni’s weight vector is v = (v1, v2, ..., vn)T . Here, vi is Ni’s importance degree, satisfying

vi ∈ [0, 1], i ∈ In such that
n∑
i=1

vi = 1. Then,

TFMBHMp,q
v (N1, N2, ..., Nn) =

1(
n⊕

i,j=1,i 6=j

((
vi
Np

i

)
⊗
(
vj
Nq

j

))) 1
p+q

is called TFM weighted Bonferroni harmonic mean operator (TFMBHMv).
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Considering operational laws in Definitions 2.7 of TFM-numbers, we can give following theorem:

Theorem 3.2. Let Ni = 〈(xi, yi, zi, ti); η1
Ni
, η2
Ni
, ..., ηPNi

〉 (i ∈ In) be a TFM-numbers’ collection,

p, q > 0 and Ni’s weight vector is v = (v1, v2, ..., vn)T . Here, vi is Ni’s importance degree, satisfying

vi ∈ [0, 1], i ∈ In such that
n∑
i=1

vi = 1. Then, TFMBHMp,q
v (A1, A2, ..., An) is a TFM-number and

computed as:

TFMBHMp,q
v (N1, N2, ..., Nn) =

〈(
1(

n∑
i,j=1,i 6=j

vivj
xpi x

q
j

) 1
p+q

,
1(

n∑
i,j=1,i 6=j

vivj
ypi y

q
j

) 1
p+q

,

1(
n∑

i,j=1,i 6=j

vivj
zpi z

q
j

) 1
p+q

,
1(

n∑
i,j=1,i 6=j

vivj
tpi t

q
j

) 1
p+q

)
;

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nj
)q)vj )]

1
p+q ,

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nj
)q)vj )]

1
p+q , ...,

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNj
)q)vj )]

1
p+q

〉

(1)

Proof. By operation laws in Definition 2.7 of TFM-numbers,(
vi
Np
i

)
⊗

(
vj
N q
j

)
=

〈(
vivj
xpi x

q
j

,
vivj
ypi y

q
j

,
vivj
zpi z

q
j

,
vivj
tpi t

q
j

)
;

(1− (1− (η1
Ni

)p)vi)(1− (1− (η1
Nj

)q)vj ),

(1− (1− (η2
Ni

)p)vi)(1− (1− (η2
Nj

)q)vj ), ...,

(1− (1− (ηPNi
)p)vi)(1− (1− (ηPNj

)q)vj
〉

First of all, we need to show:

n⊕
i,j=1,i 6=j

((
vi
Np
i

)
⊗

(
vj
N q
j

))
=

〈 n∑
i,j=1,i 6=j

vivj
xpi x

q
j

,

n∑
i,j=1,i 6=j

vivj
ypi y

q
j

,

n∑
i,j=1,i 6=j

vivj
zpi z

q
j

,

n∑
i,j=1,i 6=j

vivj
tpi t

q
j

 ;

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nj
)q)vj )]

1
p+q ,

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nj
)q)vj )]

1
p+q , ...,

1−
n∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNj
)q)vj )]

1
p+q

〉
(2)

If we use mathematical induction on n:
1) when n = 2 , from Equation (2), we obtain:

2⊕
i,j=1,i 6=j

((
vi
Np
i

)
⊗

(
vj
N q
j

))
=

(
v1

Np
1

⊗ v2

N q
2

)
⊕
(
v2

Np
2

⊗ v1

N q
1

)
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=

〈(
v1v2

xp1x
q
2

+
v2v1

xp2x
q
1

,
v1v2

yp1y
q
2

+
v2v1

yp2y
q
1

,
v1v2

zp1z
q
2

+
v2v1

zp2z
q
1

,
v1v2

tp1t
q
2

+
v2v1

tp2t
q
1

)
;

[(1− (1− (η1
N1

)p)v1)(1− (1− (η1
N2

)q)v2)]⊕ [(1− (1− (η1
N2

)p)v2)(1− (1− (η1
N1

)q)v1)],

[(1− (1− (η2
N1

)p)v1)(1− (1− (η2
N2

)q)v2)]⊕ [(1− (1− (η2
N2

)p)v2)(1− (1− (η2
N1

)q)v1)], ...,

[(1− (1− (ηPN1
)p)v1)(1− (1− (ηPN2

)q)v2)]⊕ [(1− (1− (ηPN2
)p)v2)(1− (1− (ηPN1

)q)v1)]

〉

=

〈 2∑
i,j=1,i 6=j

vivj
xpi x

q
j

,
2∑

i,j=1,i 6=j

vivj
ypi y

q
j

,
2∑

i,j=1,i 6=j

vivj
zpi z

q
j

,
2∑

i,j=1,i 6=j

vivj
tpi t

q
j

 ;

1−
2∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nj
)q)vj )]

1
p+q ,

1−
2∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nj
)q)vj )]

1
p+q , ...,

1−
2∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNj
)q)vj )]

1
p+q

〉

2) Suppose when n = k, the Equation (2) is true, i.e.,

k⊕
i,j=1,i 6=j

((
vi
Np
i

)
⊗

(
vj
N q
j

))
=

〈 k∑
i,j=1,i 6=j

vivj
xpi x

q
j

,
k∑

i,j=1,i 6=j

vivj
ypi y

q
j

,
k∑

i,j=1,i 6=j

vivj
zpi z

q
j

,
k∑

i,j=1,i 6=j

vivj
tpi t

q
j

 ;

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nj
)q)vj )]

1
p+q ,

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nj
)q)vj )]

1
p+q , ...,

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNj
)q)vj )]

1
p+q

〉
(3)

3) Now we will show Equation (2) is true for n = k + 1. If we accept n = k + 1 in Equation (2):

k+1⊕
i,j=1,i 6=j

((
vi
Np
i

)
⊗

(
vj
N q
j

))
=

 k⊕
i,j=1,i 6=j

((
vi
Np
i

)
⊗

(
vj
N q
j

))⊕
(

k⊕
i=1

((
vi
Np
i

)
⊗

(
vk+1

N q
k+1

)))
⊕ k⊕

j=1

((
vk+1

Np
k+1

)
⊗

(
vj
N q
j

))
(4)
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k⊕
i=1

((
vi
Np
i

)
⊗
(
vk+1

N q
k+1

))
=

〈( k∑
i=1

vivk+1

xpi x
q
k+1

,
k∑
i=1

vivk+1

ypi y
q
k+1

,
k∑
i=1

vivk+1

zpi z
q
k+1

,
k∑
i=1

vivk+1

tpi t
q
k+1

)
;

1−
k∏
i=1

[1− (1− (1− (η1
Ni

)p)vi)(1− (1− (η1
Nk+1

)q)vk+1)]
1

p+q ,

1−
k∏
i=1

[1− (1− (1− (η2
Ni

)p)vi)(1− (1− (η2
Nk+1

)q)vk+1)]
1

p+q , ...,

1−
k∏
i=1

[1− (1− (1− (ηPNi
)p)vi)(1− (1− (ηPNk+1

)q)vk+1)]
1

p+q

〉
(5)

and
k⊕
j=1

((
vk+1

Np
k+1

)
⊗
(
vj
N q
j

))
=

〈( k∑
j=1

vk+1vj
xpk+1x

q
j

,
k∑
j=1

vk+1vj
ypk+1y

q
j

,
k∑
j=1

vk+1vj
zpk+1z

q
j

,
k∑
j=1

vk+1vj
tpk+1t

q
j

)
;

1−
k∏
j=1

[1− (1− (1− (η1
Nk+1

)p)vk+1)(1− (1− (η1
Nj

)q)vj )]
1

p+q ,

1−
k∏
j=1

[1− (1− (1− (η2
Nk+1

)p)vk+1)(1− (1− (η2
Nj

)q)vj )]
1

p+q , ...,

1−
k∏
j=1

[1− (1− (1− (ηPNk+1
)p)vk+1)(1− (1− (ηPNj

)q)vj )]
1

p+q

〉
(6)

Finally from Equations (3), (4), (5) and (6), we obtain:

TFMBHMp,q
v (N1, N2, ..., Nn) =

〈 k∑
i,j=1,i 6=j

vivj
xpi x

q
j

,
k∑

i,j=1,i 6=j

vivj
ypi y

q
j

,
k∑

i,j=1,i 6=j

vivj
zpi z

q
j

,
k∑

i,j=1,i 6=j

vivj
tpi t

q
j

 ;

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nj
)q)vj )]

1
p+q ,

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nj
)q)vj )]

1
p+q , ...,

1−
k∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNj
)q)vj )]

1
p+q

〉

⊗
〈( k∑

i=1

vivk+1

xpi x
q
k+1

,

k∑
i=1

vivk+1

ypi y
q
k+1

,

k∑
i=1

vivk+1

zpi z
q
k+1

,

k∑
i=1

vivk+1

tpi t
q
k+1

)
;

1−
k∏
i=1

[1− (1− (1− (η1
Ni

)p)vi)(1− (1− (η1
Nk+1

)q)vk+1)]
1

p+q ,

1−
k∏
i=1

[1− (1− (1− (η2
Ni

)p)vi)(1− (1− (η2
Nk+1

)q)vk+1)]
1

p+q , ...,

1−
k∏
i=1

[1− (1− (1− (ηPNi
)p)vi)(1− (1− (ηPNk+1

)q)vk+1)]
1

p+q

〉

⊗

〈 k∑
j=1

vk+1vj
xpk+1x

q
j

,

k∑
j=1

vk+1vj
ypk+1.y

q
j

,

k∑
j=1

vk+1vj
zpk+1z

q
j

,

k∑
j=1

vk+1vj
tpk+1t

q
j

 ;
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1−
k∏
j=1

[1− (1− (1− (η1
Nk+1

)p)vk+1)(1− (1− (η1
Nj

)q)vj )]
1

p+q ,

1−
k∏
j=1

[1− (1− (1− (η2
Nk+1

)p)vk+1)(1− (1− (η2
Nj

)q)vj )]
1

p+q , ...,

1−
k∏
j=1

[1− (1− (1− (ηPNk+1
)p)vk+1)(1− (1− (ηPNj

)q)vj )]
1

p+q

〉

=

〈 k+1∑
i,j=1,i 6=j

(
vivj
xpi x

q
j

) 1
p+q

,
k+1∑

i,j=1,i 6=j

(
vivj
ypi y

q
j

) 1
p+q

,
k+1∑

i,j=1,i 6=j

(
vivj
zpi z

q
j

) 1
p+q

,
k+1∑

i,j=1,i 6=j

(
vivj
tpi t

q
j

) 1
p+q

 ;

1−
k+1∏

i,j=1,i 6=j
[1− (1− (1− (η1

Ni
)p)vi)(1− (1− (η1

Nk+1
)q)vj )]

1
p+q ,

1−
k+1∏

i,j=1,i 6=j
[1− (1− (1− (η2

Ni
)p)vi)(1− (1− (η2

Nk+1
)q)vj )]

1
p+q , ...,

1−
k+1∏

i,j=1,i 6=j
[1− (1− (1− (ηPNi

)p)vi)(1− (1− (ηPNk+1
)q)vj )]

1
p+q

〉

Note 3.3. Let p, q > 0 and Ni = 〈(xi, yi, zi, ti); η1
Ni
, η2
Ni
, ..., ηPNi

〉 (i ∈ In) be a TFM-numbers’ collec-

tion. If v =
(

1
n ,

1
n , ...,

1
n

)T
, then the TFMBHMv operator converted into the following:

TFMBHMp,q
1
n

(N1, N2, ..., Nn) = 1(
n⊕

i,j=1,i 6=j

((
1/n

N
p
i

)
⊗
(

1/n

N
q
j

))) 1
p+q

Proposition 3.4. Let p, q > 0 andNi = 〈(xi, yi, zi, ti); η1
Ni
, η2
Ni
, ..., ηPNi

〉, Mi = 〈(ki, li,mi, ni); η
1
Mi
, η2
Mi
,

..., ηPMi
〉 (i ∈ In) be TFM-numbers’ two collections. TFMBHMv operator has following properties:

i. (Idempotency) If Ni = N for all (i ∈ In), we have

TFMBHMp,q
v (N1, N2, ..., Nn) = TFMBHMp,q

v (N,N, ..., N) = N

ii. (Monotonicity) Based on Definition 2.8, if Ni ≥ Mi for all i ∈ In, then TFMBHMp,q
v is

monotonic that is,

TFMBHMp,q
v (N1, N2, ..., Nn) ≥ TFMBHMp,q

v (M1,M2, ...,Mn)

iii. (Commutativity) If (Ṅ1, Ṅ2, ..., Ṅn) be any permutation of (N1, N2, ..., Nn) then,

TFMBHMp,q
v (N1, N2, ..., Nn) = TFMBHMp,q

v (Ṅ1, Ṅ2, ..., Ṅn)

iv. (Boundedness)
N− ≤ TFMBHMp,q

v (N1, N2, ..., Nn) ≤ N+

where
N+ = 〈(max{xi}i∈In ,max{yi}i∈In ,max{zi}i∈In ,max{ti}i∈In);

max{η1
Ni
}
i∈In ,max{η

2
Ni
}
i∈In , ...,max{η

P
Ni
}
i∈In〉

and
N− = 〈(min{xi}i∈In ,min{yi}i∈In ,min{zi}i∈In ,min{ti}i∈In);

min{η1
Ni
}
i∈In ,min{η

2
Ni
}
i∈In , ...,min{η

P
Ni
}
i∈In〉
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By considering different values of p and q, a few specific cases of TFMBHMp,q
v are obtained as

follows:

Remark 3.5. If q = 0, TFMBHMp,q
v operator converted into TFM weighted generalized harmonic

mean operator:

TFMBHMp,0
v (N1, N2, ..., Nn) =

1(
n⊕

i,j=1,i 6=j

(
vivj
Np

i

)) 1
p

=
1(

n⊕
i=1

(
vi
Np

i

) n⊕
j=1

vj

) 1
p

=
1(

n⊕
i=1

(
vi
Np

i

)) 1
p

which is TFM weighted generalized harmonic mean (TFMGHMv) operator.

Remark 3.6. If p = 1, q = 0, TFMBHMp,q
v operator converted into:

TFMBHM1,0
v (N1, N2, ..., Nn) =

1
n⊕

i,j=1,i 6=j

(
vivj
Ni

) =
1(

n⊕
i=1

(
vi
Ni

) n⊕
j=1

vj

) =
1

n⊕
i=1

(
vi
Ni

)
Remark 3.7. If p = 2, q = 0, TFMBHMp,q

v operator converted into:

TFMBHM2,0
v (N1, N2, ..., Nn) =

1(
n⊕

i,j=1,i 6=j

(
vivj
N2

i

)) 1
2

=
1(

n⊕
i=1

(
vi
N2

i

) n⊕
j=1

vj

) 1
2

=
1(

n⊕
i=1

(
vi
N2

i

)) 1
2

Remark 3.8. If p = 1, q = 1, TFMBHMp,q
v operator converted into:

TFMBHM1,1
v (N1, N2, ..., Nn) =

1(
n⊕

i,j=1,i 6=j

(
vivj
NiNj

)) 1
2

Example 3.9. Suppose we have three TFM-numbers as follows:

N1 = 〈(0.1, 0.4, 0.5, 0.6); 0.5, 0.3, 0.4, 0.2〉
N2 = 〈(0.1, 0.2, 0.5, 0.8); 0.9, 0.6, 0.3, 0.5〉
N3 = 〈(0.2, 0.3, 0.3, 0.4); 0.7, 0.8, 0.3, 0.4〉

Then, based on the operations in Definition 2.7 and Equation (1) for p, q = 1, we have

N1
1 ⊕N1

2 = 〈(0.01, 0.08, 0.25, 0.48); 0.45, 0.18, 0.12, 0.10〉
N1

2 ⊕N1
1 = 〈(0.01, 0.08, 0.25, 0.48); 0.45, 0.18, 0.12, 0.10〉

N1
1 ⊕N1

3 = 〈(0.02, 0.12, 0.15, 0.24); 0.35, 0.24, 0.12, 0.08〉
N1

3 ⊕N1
1 = 〈(0.02, 0.12, 0.15, 0.24); 0.35, 0.24, 0.12, 0.08〉

N1
2 ⊕N1

3 = 〈(0.02, 0.06, 0.15, 0.32); 0.63, 0.48, 0.09, 0.20〉
N1

3 ⊕N1
2 = 〈(0.02, 0.06, 0.15, 0.32); 0.63, 0.48, 0.09, 0.20〉

and then we obtain:

TFMBHM1,1(N1, N2, N3) = 〈(0.0056, 0.0289, 0.0611, 0.1156); 0.9912, 0.9460, 0.7095, 0.7492〉

In a similar way, if p, q = 2, from Equation (1), we have

TFMBHM2,2(N1, N2, N3) = 〈(0.0001, 0.0014, 0.0060, 0.0217); 0.9521, 0.8440, 0.5173, 0.5736〉

if p = 1, q = 3, from Equation (1), we have

TFMBHM1,3(N1, N2, N3) = 〈(0.0001, 0.0015, 0.0063, 0.0239); 0.9618, 0.8664, 0.5214, 0.5901〉

if p = 3, q = 1, from Equation (1), we have

TFMBHM3,1(N1, N2, N3) = 〈(0.0001, 0.0015, 0.0063, 0.0239); 0.9618, 0.8664, 0.5214, 0.5901〉
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4. An Application of Weighted Bonferroni Harmonic Mean Operator on TFM-
numbers

This section developes an algorithm based on weighted Bonferroni harmonic mean operator to solve
multi criteria decision making problems.

Algorithm
Here, we firstly give an algorithm to solve decision making problems with multi criteria. Then, to

see application of the algorithm, we give an example. As for end of the section, we present a table of
TFMBHMp,q

v taken by changing (p, q) values.

Table 1. TFM-numbers for linguistic terms

Linguistic terms Linguistic values of TFM-numbers

Absolutely low (AL) 〈(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4〉
Very Very Low (VVL) 〈(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1〉
Very Low (VL) 〈(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3〉
Low (L) 〈(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1〉
Fairly low (FL) 〈(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5〉
Medium (M) 〈(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8〉
Fairly high (FH) 〈(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4〉
High (H) 〈(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6〉
Very High (VH) 〈(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3〉
Very Very High (VVH) 〈(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9〉
Absolutely high (AH) 〈(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2〉

Step 1: Build the decision matrix based on experts’ decision according to Table 1. Let X =
{xi|i ∈ Im} be set of alternatives and C = {cj |j ∈ In} be set of criteria whose weight vector is

v = (v1, v2, ...vn)T such that vi ≥ 0 and
n∑
i=1

vi = 1.

Preferable of the alternatives xi based on the criteria cj expressed by a linguistic terms is computed
by following TFMBHMv:

Nij = 〈(xij , yij , zij , tij); η1
Nij
, η2
Nij
, ..., ηPNij

〉 (i ∈ Im)

Step 2: Get preferable for xi based on Ni (i ∈ Im) to aggregate the TFM-numbers Ni1, Ni2, ..., Nin

as:
Ni = TFMBHMp,q

v (Ni1, Ni2, ..., Nin)

Step 3: Calculate score value s(Ni) whose formula is given in Definition 2.9 for each Ni to rank
alternatives.

Step 4: Rank all score value of Ni according to descending order.

4.1. An Illustrative Example

Example 4.1. An entrepreneur wants to set a factory to a suitable place in the country. There are
five alternatives to be chosen to set the factory. The entrepreneur takes into account of following
criteria in decision making process :

1. Closeness to raw material (c1)

2. Facility of transportation (c2)

3. Regional incentive (c3)

4. Market breadth (c4)
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There are five candidates xi (i ∈ I5). Besides v = (0.1, 0.3, 0.1, 0.5)T is weight vector of criteria cj
(j ∈ I4). Suppose that the preferability of the alternative xi with regard to the attribute cj is mea-
sured by a TFM Nij = 〈(xij , yij , zij , tij); η1

Nij
, η2
Nij
, ..., ηPNij

〉 (i ∈ Im) and then we build TFM decision

matrix (Nij)5x4 according to decision makers’ choices based on linguistic Table 1.

Step 1: Decision matrix is constructed according to decision maker’s choices:

Table 2. Decision Matrix Nij

c1 c2 c3 c4

N1 〈(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4〉 〈(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2〉 〈(0.05, 0.10, 0.15, 0.200.2, 0.3, 0.4, 0.1〉 〈(0.70, 0.80, 0.90, 1.000.7, 0.8, 0.9, 0.2〉

N2 〈(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3〉 〈(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3〉 〈(0.10, 0.20, 0.20, 0.300.3, 0.4, 0.8, 0.1〉 〈(0.01, 0.05, 0.10, 0.150.1, 0.2, 0.3, 0.4〉

N3 〈(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1〉 〈(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4〉 〈0.25, 0.30, 0.35, 0.400.4, 0.5, 0.6, 0.8〉 〈(0.50, 0.60, 0.70, 0.800.1, 0.7, 0.8, 0.9〉

N4 〈(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3〉 〈(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5〉 〈(0.40, 0.45, 0.50, 0.550.8, 0.9, 0.3, 0.6〉 〈(0.05, 0.10, 0.15, 0.200.2, 0.3, 0.4, 0.1〉

N5 〈(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4〉 〈(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3〉 〈(0.50, 0.60, 0.70, 0.800.1, 0.7, 0.8, 0.9〉 〈(0.45, 0.55, 0.65, 0.750.7, 0.8, 0.6, 0.3〉

Step 2: We aggregate experts’ ratings for each alternative, by using TFM-weighted Bonferroni
harmonic mean operator. That is,

N1 = TFMBHM1,1
v (N11, N12, N13, N14) = 1(

n⊕
i,j=1,i 6=j

((
vi
N

p
1i

)
⊗
(

vj

N
q
1j

))) 1
1+1

= 〈(0.1212, 0.3091, 0.4629, 0.5941); 0.1583, 0.2536, 0.4058, 0.0175〉

where
n⊕

i,j=1,i 6=j

((
vi
Np

1i

)
⊗
(

vj
Nq

1j

))
=

(
v1
Np

11
⊗ v2

Nq
12

)
⊕
(
v1
Np

11
⊗ v3

Nq
13

)
⊕
(
v1
Np

11
⊗ v4

Nq
14

)
⊕
(
v2
Np

12
⊗ v1

Nq
11

)
⊕
(
v2
Np

12
⊗ v3

Nq
13

)
⊕
(
v2
Np

12
⊗ v4

Nq
14

)
⊕

(
v3
Np

13
⊗ v1

Nq
11

)
⊕
(
v3
Np

13
⊗ v2

Nq
12

)
⊕
(
v3
Np

13
⊗ v4

Nq
14

)
⊕
(
v4
Np

14
⊗ v1

Nq
11

)
⊕
(
v4
Np

14
⊗ v2

Nq
12

)
⊕
(
v4
Np

14
⊗ v3

Nq
13

)
N2 = TFMBHM1,1

v (N21, N22, N23, N24)
= 〈(0.0724, 0.1981, 0.2897, 0.4003); 0.0704, 0.1373, 0.1391, 0.0377〉

N3 = TFMBHM1,1
v (N31, N32, N33, N34)

= 〈(0.3450, 0.4673, 0.5228, 0.6316); 0.0383, 0.0720, 0.3806, 0.2141〉
N4 = TFMBHM1,1

v (N41, N42, N43, N44)
= 〈(0.1191, 0.1930, 0.2490, 0.3169); 0.0592, 0.1439, 0.0457, 0.0414〉

N5 = TFMBHM1,1
v (N51, N52, N53, N54)

= 〈(0.2990, 0.3964, 0.4334, 0.5300); 0.0789, 0.1574, 0.2311, 0.0911〉

Step 3: Scores of N ′is calculated as:

s(N1) = 0.59412+0.46292−0.12122−0.30912

2.4 (0.1583 + 0.2536 + 0.4058 + 0.0175) = 0.0477,

s(N2) = 0.0096, s(N3) = 0.0295, s(N4) = 0.0040, s(N5) = 0.0155

Step 4: Alternatives are ranked:

x1 > x3 > x5 > x2 > x4

Finally, the best alternative to choose is x1. Moreover, rankings for some alternatives in terms of
different TFMBHMp,q

v of the example are given in Table 3.
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Table 3. Rankings for some alternatives in terms of different TFMBHMp,q
v of Example 4.1

(p, q) s(N1) s(N2) s(N3) s(N4) s(N5) Ranking

(1.0, 2.0) 0.0139 0.0023 0.0110 0.0010 0.0042 x1 > x3 > x5 > x2 > x4

(3.0, 1.0) 0.0051 0.0007 0.0052 0.0003 0.0014 x3 > x1 > x5 > x2 > x4

(3.0, 2.0) 0.0028 0.0003 0.0025 0.0001 0.0006 x1 > x3 > x5 > x2 > x4

(1.0, 0.5) 0.0932 0.0234 0.0590 0.0106 0.0339 x1 > x3 > x5 > x2 > x4

(2.0, 0.5) 0.0201 0.0043 0.0190 0.0023 0.0071 x1 > x3 > x5 > x2 > x4

(3.0, 0.5) 0.0068 0.0013 0.0084 0.0008 0.0023 x3 > x1 > x5 > x2 > x4

(4.0, 0.5) 0.0031 0.0006 0.0044 0.0004 0.0010 x3 > x1 > x5 > x2 > x4

5. Comparison Analysis

Table 4. Some rankings in terms of different methods and proposed method of Example 4.1

Methods Operator Ranking

Proposed method TFMBHM
(1,1)
v x1 > x3 > x5 > x2 > x1

Method of Deli and Keleş [8] Si(xi) x5 > x3 > x4 > x1 > x2

Method of Uluçay et al. [7] TFMGv x5 > x3 > x4 > x1 > x2

Method of Şahin et al. [10] Dv x3 > x5 > x1 > x4 > x2

Method of Uluçay [11] Sv x4 > x3 > x1 > x5 > x2

Table 4 compares introduced method with other existing methods such as distance measure operator
proposed by Deli & Keleş [8], TFM weighted geometric operator introduced by Uluçay et al. [7],
weighted dice vector similarity operator submitted by Şahin et al. [10] and vector similarity operator
given by Uluçay [11] based on Example 4.1. If we check over the comparison table given above, we can
see result of the proposed aggregation method presents a new perspective to decision making process.
So, proposed method can be readily used to solve decision making problems with multiple criteria.

6. Conclusion

In this article, firstly, Bonferroni harmonic mean was introduced. Then, its some special cases
were investigated to see how it converted into other operators. Secondly, to see an application of the
operator, a basic example was given. Thirdly, an algorithm was proposed to solve decision making
problems. Then, a numerical example was given to show performance of the developed approach and
to demonstrate its degree of effectiveness and practicality. Finally, a comparison table was presented
to compare proposed method with some existing methods.

In future, the operator will be applied to hesitant fuzzy numbers, intuitionistic fuzzy numbers
and neutrosophic fuzzy numbers. In addition, we plan to extend our research to AHP method, ANP
method, Topsis method, VIKOR method, QUALIFLEX method, ELECTRE I method, ELECTRE II
method, ELECTRE III method, defuzzification techniques and so on.
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Abstract − The theory of boundedness of classical operators of real analyses on
Morrey spaces defined on Carleson curves has made significant progress in recent
years as it allows for various applications. This study obtains new estimates about
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1. Introduction

Lp,λ(Rn) Morrey spaces, proposed by Morrey in 1938, were used in the study of the local behavior
of the solutions of elliptic partial differential equations. Morrey spaces are quite used for problems in
the analysis of variations theory. In addition, Navier-Stokes and Schrödinger’s equations have many
applications in the potential theory of elliptic problems with discontinuous coefficients. Over the years,
many researchers have done various studies on Morrey spaces (For more details, see [1–5]).

In recent years, there has been an increasing interest in various spaces on Carleson curves, such as
Lebesgue spaces, Morrey spaces. We only mention [3,6–9]. There are many applications for Maximal
operators, which have a capital place in real and fractional analysis. These nonlinear operators,
which are informative in differentiation theory, have inspired the studies of classical operators of
harmonic analysis in various spaces. Moreover, they are also featured in many valuable studies (see,
for example, [7, 10–12]). Samko [5] studied the boundedness of the M maximal operator in Morrey
spaces defined on quasi-metric measure spaces, especially in Lp,λ(Γ) Morrey spaces defined on Carleson
curves.

The commutator operation and properties of maximal integrals have been extensively studied in
various spaces, and there are many important consequences associated with them (see, for example
[13–22]). The maximal commutator Mb is of great importance in studying the commutators of the
BMO symbol and singular integral operators. There are important studies on the properties and
boundedness of Mb (For more details, see [13,14,18,19]). The commutator of maximal operator [M, b]
was studied by many authors (For more details, see [13–15, 18]). This operator is the product of two
functions from BMO and H1 Hardy space. It emerged when it was wanted to give meaning (Let us
note that the product of these two functions may not be locally integrable).
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The fact that the operator Mb is a positive linear operator, unlike the [M, b] operator, indicates
that these operators are quite different from each other. However, b is bound to the operator Mb

manage the operator [M, b], with some additional conditions.
This study consists of three sections. Section 2 presents preliminaries of the commutator of the

maximal operator and maximal commutator on Carleson curves. Section 3 investigates the bounded-
ness of these operators on Lp,λ (Γ).

2. Preliminaries

In this section, before giving the basic definitions and theorems, let us briefly talk about Carleson
curves, which are the focus of the paper. For every t ∈ Γ and r > 0, if a locally rectifiable Jordan
curve Γ satisfies the following condition;

νΓ(t, r) ≤ c0r

it is called the Carleson curve (regular curve), where Γ (t, r) := Γ ∩ B (t, r), t ∈ Γ, r > 0. Let
Γ : γ (t) = x (t) + iy (t), a ≤ t ≤ b. Length of a regular curve is given with:

νΓ = ` (γ) =

∫
γ
|dz| =

b∫
a

√
x′ (t)2 + y′ (t)2dt

Let Γ, equipped with Lebesgue length measure, be a locally rectifiable compound arc. The measure
of a measurable subset γ ⊂ Γ is displayed with γ ⊂ Γ. In particular, |Γ (t, r)| is the sum of the lengths
of the countably many arcs that make up Γ (t, r). Let Γ be a locally rectifiable composite curve and
Γ1,. . . , ΓN be a finite number of arcs combined such that Γ = Γ1∪. . .∪ΓN . Since

Γj (t, ε) ⊂ Γ (t, ε) ⊂ Γ1 (t, ε) ∪ . . . ∪ ΓN (t, ε)

and
|Γj (t, ε)| ≤ |Γ (t, ε)| ≤ |Γ1 (t, ε)|+ . . .+ |ΓN (t, ε)|

from the above expression

Γ is a Carleson curve⇔ Each Γj is a Carleson curve

is obtained. In order to indicate the dependence on t, we shall denote this family by {Γt,j}. For almost
every ξ /∈ Γt,j is f (ξ) ≤ t. Now, we need to give below the necessary definitions for the case of spaces
on Carleson curves.

Definition 2.1. [5] Lp,λ(Γ) Morrey spaces with 0 ≤ λ < 1, 1 ≤ p <∞ and f ∈ Llocp (Γ) is the space
of functions such that

‖f‖Lp,λ(Γ) = sup
r>0, t∈Γ

r
−λ
p ‖f‖Lp(Γ(t,r))

= sup
r>0, t∈Γ

(
r−λ

∫
Γ(t,r)

|f (τ)|p dν (τ)

)1/p

<∞

When λ < 0 or λ > 1, Lp,λ(Γ) = θ where θ denotes the set of functions on Γ that is equivalent to 0.
İf λ = 0, then Lp,0(Γ) = Lp(Γ) is obtained.

Definition 2.2. [8] The space of functions with bounded mean oscillation BMO (Γ) is defined as
the set of locally integrable functions f with a finite norm

‖f‖BMO(Γ) = sup
r>0,t∈Γ

(vΓ (t, r))−1
∫

Γ(t,r)

∣∣f (τ)− fΓ(t,r)

∣∣ dv (τ) <∞

here fΓ(t,r) is displayed with;

fΓ(t,r) := (vΓ (t, r))−1
∫

Γ(t,r)
f (τ) dv (τ)
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Definition 2.3. [8] Let 1 ≤ p <∞ and Γ be a Carleson curve. Then,

L∞ (Γ) = sup
t∈Γ,r>0

r
− 1
p ‖f‖Lp(Γ)

and
‖f‖L∞(Γ) ≤ sup

t∈Γ,r>0
r
− 1
p ‖f‖Lp(Γ) ≤ c

1/p
0 ‖f‖L∞(Γ)

The application of the Lebesgue Differentiation Theorem on Carleson curves is as follows:
Let f ∈ Lloc1 (Γ), then the following statement applies

lim
r→0

(νΓ(t, r))−1
∫

Γ(t,r)
f(τ)dν(τ) = f(t) (1)

Note that in expression (1) supremum instead of limit and |f | instead of function f is taken, the
maximal function is defined.

The definition of the maximal operator on Carleson curves is as follows;

Definition 2.4. [5] Let Γ be a simple Carleson curve and f ∈ Lloc1 (Γ) . The maximal operator M on
Γ defined by

Mf (t) = sup
t>0

(vΓ (t, r))−1
∫

Γ(t,r)
|f (τ)| dv (τ)

The boundedness of the maximal function on Lp (Γ) has been studied by Guliyev in [3].

Theorem 2.5. [3] Let Γ be a Carleson curve, 1 ≤ p <∞ and t0 ∈ Γ. Then, for p > 1 and any r > 0
in Γ, the inequality

‖Mf‖Lp(Γ(t0,r))
- r

1
p sup
τ>2r

τ
− 1
p ‖f‖Lp(Γ(t0,r))

holds for all f ∈ Llocp (Γ).

The definitions of the maximal commutator and commutator of maximal operator on Carleson
curves are as follows, respectively.

Definition 2.6. [9] Given a locally integrable function b, the maximal commutator is defined by

Mb(f)(t) := sup
t>0

1

vΓ (t, r)

∫
Γ(t,r)

|b(t)− b(τ)||f(τ)|dv (τ) , for all t ∈ Γ

Definition 2.7. [9] Given a locally integrable function b, the commutator of the maximal operator
is defined by

[M, b] f(t) := M(bf)(t)− b(t)Mf(t) for all t ∈ Γ

Türkay and Mursaleen proved the following statement in [9].

Theorem 2.8. [9] Let b ∈ BMO (Γ) and 0 < δ < 1. In this case, there is a positive constant C = Cδ
where the following inequalities holds for all f ∈ Lloc1 (Γ);

i)Mδ (Mb (f)) (ς) ≤ C ‖b‖BMO(Γ)M
2f (ς) , ς ∈ Γ

ii)Mb (f) (ς) ≤ C ‖b‖∗M
2f (ς) , ς ∈ Γ

Lemma 2.9. [9] Let b be any non-negative locally integrable function on Γ. Then for all f ∈ Lloc1 (Γ),
the following inequalities are provided;

| [M, b] f(t)| ≤Mb(f)(t), t ∈ Γ (2)

and
| [M, b] f(t)| ≤Mb(f)(t) + 2b−(t)Mf(t), t ∈ Γ (3)

Theorem 2.10. [9] Let b ∈ BMO (Γ) such that b− ∈ L∞ (Γ) . Then, there exists a positive constant
C such that

|[M, b] f(t)| ≤ C
(∥∥b+∥∥∗ +

∥∥b−∥∥∞)M2f (t) for all f ∈ Lloc1 (Γ)
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3. Some New Estimates

This section studies the Lp,λ (Γ)−boundedness of the operator Mb and the operator [M, b]. Since it is
easier to examine the boundedness of the operator Mb than the operator [M, b], we will first investigate
the boundedness of the operator Mb. Before the main results are given, the auxiliary theorems that
will help in the proof will be reminded. Türkay and Murselen examined the boundedness of the Mb

operator in Lp (Γ) in [9].

Theorem 3.1. [9] Let 1 < p <∞. The operator Mb is bounded on Lp (Γ) if and only if b ∈ BMO (Γ).

Inspired by Theorem 3.1, we establish the following theorem.

Theorem 3.2. Let 1 < p <∞, 0 ≤ λ ≤ 1. b ∈ BMO (Γ) if and only if The operator Mb is bounded
on Lp,λ (Γ).

Proof. (⇒) Let Γ (t0, r0) be a constant Carleson curve. Suppose that b ∈ BMO (Γ). By Theorem ??
and Theorem 2.5 the following inequality holds for f ∈ Lp (Γ):

||Mb(f)‖Lp,λ(Γ) ≈ sup
Γ(t,r)

(
|Γ (t, r)|λ−1 ∫

Γ(t,r)

Mb(f) (τ) dv (τ)

) 1
p

= |Γ (t0, r0)|
λ−1
p sup

Γ(t,r)⊂Γ(t0,r0)

( ∫
Γ(t,r)

Mb(f) (τ) dv (τ)

) 1
p

≤ |Γ (t0, r0)|
λ−1
p ‖b‖∗‖f‖Lp(Γ)

(⇐) Let the operator Mb be bounded on Lp,λ (Γ), that is, for every f ∈ Lp,λ (Γ) there is such a positive
constant c that the following inequality is obtained;

‖Mb(f)‖Lp,λ(Γ) ≤ c‖f‖Lp,λ(Γ)

Obviously,

‖f‖Lp,λ(Γ) ≈ sup
Γ(t,r)

|Γ (t, r)|λ−1
∫

Γ(t,r)

|f(τ)|pdv (τ)


1
p

Let f = χΓ(t0,r0) such that Γ (t0, r0) is a constant Carleson curve. In this case, the following
expression is easily written;

||χΓ(t0,r0)‖Lp,λ(Γ) ≈ sup
Γ(t,r)

(
|Γ (t, r)|λ−1 ∫

Γ(t,r)

xΓ(t0,r0) (τ) dv (τ)

) 1
p

= sup
Γ(t,r)

(
|Γ (t, r) ∩ Γ (t0, r0)| |Γ (t, r)|λ−1

) 1
p

= sup
Γ(t,r)⊂Γ(t0,r0)

(
|Γ (t, r)| |Γ (t, r)|λ−1

) 1
p

= |Γ (t0, r0)|
λ
p

(4)

In addition, since

Mb

(
χΓ(t0,r0)

)
(t) &

1

|Γ (t0, r0)|

∫
Γ(t0,r0)

∣∣b (τ)− bΓ(t0,r0)

∣∣ dv (τ) , for all t ∈ Γ (t0, r0)

then ∥∥Mb

(
χΓ(t0,r0)

)∥∥
Lp,λ(Γ)

≈ sup
Γ(t,r)

(
|Γ (t, r)|λ−1 ∫

Γ(t,r)

∣∣Mb

(
χΓ(t0,r0)

)
(τ)
∣∣p dv (τ)

) 1
p

& |Γ (t0, r0)|
λ
p 1
|Γ(t0,r0)|

∫
Γ(t0,r0)

∣∣b (τ)− bΓ(t0,r0)

∣∣ dv (τ)

(5)
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Since by assumption ∥∥Mb

(
χΓ(t0,r0)

)∥∥
Lp,λ(Γ)

.
∥∥χΓ(t0,r0)

∥∥
Lp,λ(Γ)

and by (4) and (5), we get that

1

|Γ (t0, r0) |

∫
Γ(t0,r0)

|b (τ)− bΓ(t0,r0)|dv (τ) ≤ c (6)

Thus, the desired result is obtained.

Milman and Schonbek obtained the Lp (Rn)-boundedness of the operator [M, b] with real interpo-
lation techniques in [20]. Inspired by this study, Türkay and Murselen examined the boundedness of
the operator [M, b] in Lp (Γ) in [9].

Theorem 3.3. [9] Let 1 < p < ∞. The operator [M, b] is bounded on Lp (Γ) if and only if b ∈
BMO (Γ) and b− ∈ L∞ (Γ) .

Applying Theorem 3.3, the below theorem is obtained.

Theorem 3.4. Let 1 < p < ∞, 0 ≤ λ ≤ 1. b ∈ BMO (Γ) such that b− ∈ L∞ (Γ) if and only if the
operator [M, b] is bounded on Lp,λ (Γ) .

Proof. (⇒) Suppose that b ∈ BMO (Γ) such that b− ∈ L∞ (Γ). Thus, the following inequality is
obtained from Theorem 2.10;

|[M, b] f(t)| ≤ C
(∥∥b+∥∥∗ +

∥∥b−∥∥∞)M2f (t) for all f ∈ Lloc1 (Γ)

Moreover, from Theorem 3.3, the operator [M, b] is bounded on Lp (Γ), with 1 < p < ∞, so the
following inequality is satisfied for all f ∈ Lp (Γ) ;

‖[M, b]‖Lp,λ(Γ)

sup
Γ(t,r)

(
|Γ (t, r)|λ−1 ∫

Γ(t,r)

|[M, b] f(τ)|p dv (τ)

) 1
p

≤ |Γ (t0, r0)|
λ−1
p sup

Γ(t,r)⊂Γ(t0,r0)

( ∫
Γ(t,r)

|[M, b] f(τ)|p dv (τ)

) 1
p

≤ C |Γ (t0, r0)|
λ−1
p

(
‖b+‖BMO(Γ) + ‖b−‖L∞(Γ)

)
M2f (t)

≤ CΓ

Hence,
‖ [M, b] f‖Lp,λ(Γ) ≤ C‖f‖Lp,λ(Γ) (7)

The inequality (7) gives the desired result easily.
(⇐) Assume that [M, b] is bounded on Lp,λ (Γ) . Let Γ (t0, r0) be a fixed Carleson curve.
Denote by Mb the local maximal function of f :

MΓ(t0,r0)f(x) := sup
t∈Γ(t,r): Γ(t,r)⊂Γ(t0,r0)

1

|Γ (t, r)|

∫
Γ(t,r)

|f (y)| dv (τ) , (t ∈ Γ)

Since
M(bχΓ(t0,r0))χΓ(t0,r0) = MΓ(t0,r0)(b)

and
M
(
χΓ(t0,r0)

)
χΓ(t0,r0) = χΓ(t0,r0)
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then, we get the following inequality∣∣MΓ(t0,r0)(b)− bχΓ(t0,r0)

∣∣ =
∣∣M(bχΓ(t0,r0))χΓ(t0,r0) − bM

(
χΓ(t0,r0)

)
χΓ(t0,r0)

∣∣
≤

∣∣M(bχΓ(t0,r0))− bM
(
χΓ(t0,r0)

)∣∣
=

∣∣[M, b]χΓ(t0,r0)

∣∣
Hence, ∥∥MΓ(t0,r0)(b)− bχΓ(t0,r0)

∥∥
Lp,λ(Γ)

≤
∥∥[M, b]χΓ(t0,r0)

∥∥
Lp,λ(Γ)

(8)

Thus, from Equation (8), we get

1
|Γ(t0,r0)|

∫
Γ(t0,r0)

∣∣(b−MΓ(t0,r0) (b)
)

(τ)
∣∣ dv (τ) ≤

(
1

Γ(t0,r0)

∫
Γ(t0,r0)

∣∣(b−MΓ(t0,r0) (b)
)

(τ)
∣∣p dv (τ)

) 1
p

≤ |Γ (t0, r0)|−
1
p |Γ (t, r)|

1−λ
p
∥∥bχΓ(t0,r0) −MΓ(t0,r0)(b)

∥∥
Lp,λ(Γ)

≤ |Γ (t0, r0)|−
1
p |Γ (t, r)|

1−λ
p
∥∥[M, b]χΓ(t0,r0)

∥∥
Lp,λ(Γ)

≤ c |Γ (t0, r0)|−
1
p |Γ (t, r)|

1−λ
p
∥∥χΓ(t0,r0)

∥∥
Lp,λ(Γ)

≈ c |Γ (t0, r0)|−
1
p |Γ (t, r)|

1−λ
p |Γ (t0, r0)|

1
p |Γ (t, r)|

λ−1
p

= c

Since∫
Γ(t0,r0)

|
(
b− bΓ(t0,r0)

)
(τ) |dv (τ) =


−

∫
Γ(t0,r0)

b(τ)− bΓ(t0,r0)dv (τ) , b (t) ≤ bΓ(t0,r0) and t ∈ Γ (t0, r0)∫
Γ(t0,r0)

b(τ)− bΓ(t0,r0)dv (τ) , b (t) > bΓ(t0,r0) and t ∈ Γ (t0, r0)
(9)

for the following sets
I1 :=

{
t ∈ Γ (t0, r0) : b (t) ≤ bΓ(t0,r0)

}
and

I2 :=
{
t ∈ Γ (t0, r0) : b (t) > bΓ(t0,r0)

}
are valid. Thus, the expression

−
∫
I1

[
b(τ)− bΓ(t0,r0)

]
dv (τ) =

∫
I2

[
b(τ)− bΓ(t0,r0)

]
|dv (τ)

can be written. In view of the inequality

b(x) ≤ bΓ(t0,r0) ≤MΓ(t0,r0)(b), x ∈ E

we get that
1

|Γ(t0,r0)|
∫

Γ(t0,r0)

|
(
b− bΓ(t0,r0)

)
(τ) |dv (τ)

= 2
|Γ(t0,r0)|

∫
I2

[(
b− bΓ(t0,r0)

)
(τ)
]
dv (τ)

≤ 2
|Γ(t0,r0)|

∫
I2

[(
b−MΓ(t0,r0)(b)

)
(τ)
]
dv (τ)

- c

Consequently, b ∈ BMO (Γ).
Besides, the following expression is valid

0 ≤ b− = |b| − b+ ≤MΓ(t0,r0)(b)− b+ + b− = MΓ(t0,r0)(b)− b (10)

where MΓ(t0,r0)(b) ≥ |b|. From our assumption, [M, b] is bounded on Lp,λ (Γ), thus the following
inequality is valid;

‖[M, b] f‖Lp,λ(Γ) ≤ C
(
‖b+‖BMO(Γ) + ‖b−‖L∞(Γ)

)
‖f‖Lp,λ(Γ)

< CΓ

Moreover, we obtained b ∈ BMO (Γ) before, with these data we obtain b− ∈ L∞ (Γ) .
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4. Conclusion

In recent years, studies on Morrey spaces defined in Rn metric space and their reinterpretation with
Carleson curves have presented a different field of study to scientists working on Morrey spaces. In this
article, we have given new estimates about the boundedness of the maximal commutator operator Mb

and the commutator of the maximal function [M, b] in Morrey spaces defined on Carleson curves. By
making some generalizations on Morrey spaces defined on Carleson curves of this study, it is thought
that it will inspire the obtaining of new inequalities boundedness of the maximal commutator operator
Mb and the commutator of the maximal function [M, b].
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Abstract − This paper finds sufficient conditions to determine a surface whose mean curvature along 

a given Smarandache curve is constant in a three-dimensional Lie group. This is accomplished by using 

the Frenet frames of the specified curve to express surfaces that span the 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache 

curves parametrically. In terms of the curvatures of given Smarandache curves, marching scale 

functions, and their partial derivatives, the mean curvatures of these surfaces along the given 𝑇𝑁, 𝑁𝐵, 

and 𝑇𝐵 Smarandache curves are determined. Sufficient conditions are found to maintain the provided 

mean curvatures of the resulting surfaces at a constant value. Finally, some examples are provided. 
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1. Introduction 

The theory of curves is one of the most crucial research areas in classical differential geometry. For a very 

long time, and even now, special curves and their characterizations have been investigated. The use of special 

curves can be observed in nature, mechanical devices, computer-aided design, and other things. The 

Smarandache curve, one of the special curves, has a position vector made up of Frenet frame vectors on another 

regular curve. Ahmad first presented a few special Smarandache curves to the Euclidean space in [1]. 

Additionally, some researchers investigated Smarandache curves in the Lie group and Minkowski space [2,3], 

respectively. 

In two ways, Lie groups are made of algebra and geometry, two significant branches of mathematics: 

first, Lie groups are groups, and second, they are smooth manifolds. As a result, there must be some kind of 

coherence between the Lie groups’ geometric and algebraic structure. The current approach to geometry as a 

whole is based on the geometry of Lie groups. Additionally, numerous research findings on curves and surfaces 

in the 3-dimensional Lie group have been published in [4-8]. 

On the other hand, in differential geometry, surfaces can have a variety of remarkable effects and 

properties. Researchers later turned their focus to the construction surfaces along a special curve such as a 

geodesic, an asymptotic, or a line of curvature. Some recently research on these topics was done in [9-12]. The 

process in these papers is as follows: conditions for that curve to be a geodesic, asymptotic, and line of 

curvature have been given, and the parametric surface has been constructed as a linear combination of an 
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isoparametric curve and its Frenet frame. A new study on construction surfaces with constant curvatures along 

a given curve was recently proposed by Bayram et al. [13,14]. 

We organized our paper as follows: we give some basic information regarding the Smarandache curve 

and surface theory in the 3-dimensional Lie group in Section 2. We build surfaces along the Smarandache 

curves of the specified curve in Section 3, and then we derive sufficient conditions for each case where the 

surfaces have constant mean curvature along the 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves. This study was derived 

from the second author’s master’s thesis under the supervision of the first author. 

2. Preliminaries 

The Frenet formulas for a unit speed curve 𝛼(𝑠) in the Lie group are expressed as follows: 

[

𝑇′(𝑠)

 𝑁′(𝑠)

𝐵′(𝑠)
] = [−

0   𝜅1 0

𝜅1 0 (𝜅2 − 𝜅2̅̅ ̅)

0 −(𝜅2 − 𝜅2̅̅ ̅) 0
] [

𝑇(𝑠)
𝑁(𝑠)
𝐵(𝑠)

] (1) 

where 𝜅1 and 𝜅2 are the curvature functions of 𝛼(𝑠) and 𝜅2̅̅ ̅ =
1

2
〈[𝑇, 𝑁], 𝐵〉 which was introduced [4-7], is the 

Lie group torsion of 𝛼(𝑠). Here, 𝑇 = 𝛼′(𝑠), 𝜅1(𝑠) = ‖𝐷𝑇𝑇‖ = ‖𝑇′‖, 𝜅2 = ‖𝐷𝑇𝐵‖ − 𝜅2̅̅ ̅, and 𝐷𝑇𝑋 = 𝑋′ +
1

2
[𝑇, 𝑋]. 

Definition 2.1. [5] ℎ̃ =
𝜅2−𝜅2̅̅ ̅̅

𝜅1
  is denoted the harmonic curvature function of 𝛼(𝑠). 

Theorem 2.2. [4,5] The curve is a general helix in Lie Group G if and only if its harmonic function is a constant 

function. 

Definition 2.3. [15] Let 𝜑 = 𝜑(𝑠, 𝑡) be a surface in the 3-dimesional Lie Group, then the mean curvature of 

the ruled surface 𝜑 in three-dimensional Lie group is given by 

𝐻 =
𝐸𝑛 − 2𝐹𝑚 + 𝑙𝐺

𝐸𝐺 − 𝐹2
 (2) 

where the surface normal 𝑁 =
𝜑𝑠×𝜑𝑡

‖𝜑𝑠×𝜑𝑡‖
, 𝐸 = 〈𝜑𝑠, 𝜑𝑠〉, 𝐹 = 〈𝜑𝑠, 𝜑𝑡〉, 𝐺 = 〈𝜑𝑡 , 𝜑𝑡〉, 𝑙 = 〈𝜑𝑠𝑠, 𝑁〉, 𝑚 = 〈𝜑𝑠𝑡 , 𝑁〉, 

and 𝑛 = 〈𝜑𝑡𝑡, 𝑁〉. 

Definition 2.4. [3] Smarandache curves are defined as regular curves whose position vectors are composed of 

Frenet frame vectors. This leads us 

𝑇𝑁-Smarandache curve is defined as 𝛼𝑇𝑁(𝑠)=
1

√2
(𝑇(𝑠) + 𝑁(𝑠)), 

𝑁𝐵-Smarandache curve is defined as 𝛼𝑁𝐵(𝑠)=
1

√2
(𝑁(𝑠) + 𝐵(𝑠)), 

𝑇𝐵-Smarandache curve is defined as 𝛼𝑇𝐵(𝑠)=
1

√2
(𝑇(𝑠) + 𝐵(𝑠)), 

and 

𝑇𝑁𝐵-Smarandache curve is defined as 𝛼𝑇𝐵(𝑠)=
1

√3
(𝑇(𝑠) + 𝑁(𝑠) + 𝐵(𝑠)). 

3. Surfaces with Constant Mean Curvature along Given Smarandache Curves 

One of the special curves is the Smarandache curve, whose position vector is composed of Frenet frame vectors 

on another regular curve. Ahmad first presented a few unique Smarandache curves to the Euclidean space in 

[1]. Then, Değirmen et al. presented a few unique Smarandache curves to the Lie group in [3]. In this section, 

we will characterize the surfaces whose mean curvatures are constant in the three-dimensional Lie Group.  
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Consider 𝛼(𝑠) to be an arc-length parametrized curve on a surface 𝑃(𝑠, 𝑡) in 𝐺. Then the curve 𝛼 is called an 

isoparametric curve if it is a parameter curve, that is, there exists a parameter 𝑡0 such that 𝛼(𝑠) = 𝑃(𝑠, 𝑡0). 

Since 𝛼(𝑠)  is an isoparametric curve on this surface, there exists a parameter 𝑡 = 𝑡0 ∈ [0, 𝑇] such that 𝛼(𝑠) =

𝑃(𝑠, 𝑡0) that leads us 

𝑓(𝑠, 𝑡0) = 𝑔(𝑠, 𝑡0) = ℎ(𝑠, 𝑡0) = 0 such that 𝑠 ∈ [0, 𝐿] and 𝑡0 ∈ [0, 𝑇] (3) 

Hence, if the 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves are isoparametric curves on this surface, then there exists 

a parameter 𝑡 = 𝑡0 ∈ [0, 𝑇] such that 𝛼𝑇𝑁(𝑠) = 𝑃(𝑠, 𝑡0), 𝛼𝑁𝐵(𝑠) = 𝑃(𝑠, 𝑡0), 𝛼𝑇𝐵(𝑠) = 𝑃(𝑠, 𝑡0), 

respectively. 

𝑃(𝑠, 𝑡) is defined based on the Smarandache curves of the curve 𝛼(𝑠)  and using the Frenet frame of the curve 

in Lie group 𝐺, respectively, as follows  

𝑃(𝑠, 𝑡) = 𝛼𝑇𝑁(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) (4) 

𝑃(𝑠, 𝑡) = 𝛼𝑁𝐵(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) (5) 

𝑃(𝑠, 𝑡) =  𝛼𝑇𝐵(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) (6) 

Using the Formulation (2) to calculate mean curvatures, one can easily get the mean curvature of the surface 

provided in Equation (4) as follows: 

𝐻 =
𝑝0 𝑝1 + 𝑝2 − 𝑝3𝑝4

𝑝5𝑝6
 (7) 

where 

𝑝0 =
1

√2
(𝑓𝑡

2 + 𝑔𝑡
2 + ℎ𝑡

2) 

𝑝1 = ((𝜅1ℎ𝑡 − ℎ̃𝜅1𝑔𝑡) (−
𝜕

𝜕𝑠
𝜅1 − 𝜅1

2) + (𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡) (−𝜅1
2 +

𝜕

𝜕𝑠
𝜅1 − (ℎ̃𝜅1)

2
) − (𝜅1𝑔𝑡 + 𝜅1𝑓𝑡) (𝜅1(ℎ̃𝜅1) −

𝜕

𝜕𝑠
(ℎ̃𝜅1))) 

𝑝2 = ((𝜅1ℎ𝑡 − ℎ̃𝜅1𝑔𝑡)𝑓𝑡𝑡 + ( 𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡)𝑔𝑡𝑡 − (𝜅1𝑔𝑡 + 𝜅1𝑓𝑡)ℎ𝑡𝑡) (𝜅1
2 +

(ℎ̃𝜅1)
2

2
) 

𝑝3 = 2 ((𝜅1ℎ𝑡 − ℎ̃𝜅1𝑔𝑡)(𝑓𝑡𝑠 − 𝑔𝑡𝜅1) + (𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡)(𝑓𝑡𝜅1 + 𝑔𝑡𝑠 − ℎ𝑡ℎ̃𝜅1) − (𝜅1𝑔𝑡 + 𝜅1𝑓𝑡)(𝑔𝑡ℎ̃𝜅1 + ℎ𝑡𝑠)) 

𝑝4 = (−
1

√2
𝜅1𝑓𝑡 +

1

√2
𝜅1𝑔𝑡 +

1

√2
ℎ̃𝜅1ℎ𝑡) 

𝑝5 = 2 ((𝜅1
2 +

(ℎ̃𝜅1)
2

2
) (𝑓𝑡

2 + 𝑔𝑡
2 + ℎ𝑡

2) −
1

2
(−𝜅1𝑓𝑡 + 𝜅1𝑔𝑡 + ℎ̃𝜅1ℎ𝑡)

2
) 

and 

𝑝6=√(𝜅1ℎ𝑡 − ℎ̃𝜅1𝑔𝑡)2 + (𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡)2 + (𝜅1𝑔𝑡 + 𝜅1𝑓𝑡)2 

The mean curvature of the surface provided in Equation (5) is given as follows: 

𝐻 =
𝑞0𝑞1 + 𝑞2 − 𝑞3𝑞4

𝑞5𝑞6
 (8) 

where 
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𝑞0 = (𝑓𝑡
2 + 𝑔𝑡

2 + ℎ𝑡
2) 

𝑞1 = ((−(ℎ̃𝜅1)(ℎ𝑡 + 𝑔𝑡)) (− 
𝜕

𝜕𝑠
𝜅1 + 𝜅1(ℎ̃𝜅1)) + (𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡) (−𝜅1

2 −
𝜕

𝜕𝑠
(ℎ̃𝜅1) − (ℎ̃𝜅1)

2
) + (−𝜅1𝑔𝑡 + ℎ̃𝜅1𝑓𝑡) (−(ℎ̃𝜅1)

2
+

𝜕

𝜕𝑠
(ℎ̃𝜅1))) 

𝑞2 = ((−(ℎ̃𝜅1)(ℎ𝑡 + 𝑔𝑡)) 𝑓𝑡𝑡 + ( 𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡)𝑔𝑡𝑡 + (−𝜅1𝑔𝑡 + ℎ̃𝜅1𝑓𝑡)ℎ𝑡𝑡) (
𝜅1

2

2
+

(ℎ̃𝜅1)
2

2
) 

𝑞3 =
2

√2
((−(ℎ̃𝜅1)(ℎ𝑡 + 𝑔𝑡)) (𝑓𝑡𝑠 − 𝑔𝑡𝜅1) + (𝜅1ℎ𝑡 + ℎ̃𝜅1𝑓𝑡)(𝑓𝑡𝜅1 + 𝑔𝑡𝑠 − ℎ𝑡ℎ̃𝜅1) + (−𝜅1𝑔𝑡 + ℎ̃𝜅1𝑓𝑡)(𝑔𝑡ℎ̃𝜅1 + ℎ𝑡𝑠)) 

𝑞4 = (−𝜅1𝑓𝑡 − (ℎ̃𝜅1)(ℎ𝑡 + 𝑔𝑡)) 

𝑞5 = ((𝜅1
2 + (ℎ̃𝜅1)

2
) (𝑓𝑡

2 + 𝑔𝑡
2 + ℎ𝑡

2) − (−𝜅1𝑓𝑡 − ℎ̃𝜅1𝑔𝑡 + ℎ̃𝜅1ℎ𝑡)
2

) 

and 

𝑞6 = √(−(ℎ̃𝜅1)(𝑔𝑡 + ℎ𝑡))2 + (𝜅1ℎ𝑡  + ℎ̃𝜅1𝑓𝑡)2 + (−𝜅1𝑔𝑡 + ℎ̃𝜅1𝑓𝑡)2 

Then, the mean curvature of the surface provided in Equation (6) is given as follows: 

𝐻 =
𝑟0𝑟1 − 𝑟2

𝑟3
 (9) 

where 

𝑟0 = (𝑓𝑡
2 + 𝑔𝑡

2 + ℎ𝑡
2) 

𝑟1 = ((ℎ𝑡) (− 
1

√2
𝜅1

2 +
1

√2
𝜅1ℎ̃𝜅1) − (𝑓𝑡) (

1

√2
𝜅1ℎ̃𝜅1 −

1

√2
(ℎ̃𝜅1)

2
)) +

1

2
(ℎ𝑡𝑓𝑡𝑡 − 𝑓𝑡ℎ𝑡𝑡)(𝜅1 − ℎ̃𝜅1)

2
 

𝑟2 = 2 (
1

√2
(𝜅1 − ℎ̃𝜅1)𝑔𝑡) ((ℎ𝑡)(𝑓𝑡𝑠 − 𝑔𝑡𝜅1) − (𝑓𝑡)(𝑔𝑡ℎ̃𝜅1 +  ℎ𝑡𝑠)) 

and 

𝑟3 = (((𝜅1 − ℎ̃𝜅1)
2

) (𝑓𝑡
2 + 𝑔𝑡

2 + ℎ𝑡
2) − ((𝜅1 − ℎ̃𝜅1)𝑔𝑡)

2
) √(ℎ𝑡

2 − 𝑓𝑡
2) 

Therefore, we can give the following main theorems for all the Smaradanche curves of the curve 𝛼(𝑠): 

Theorem 3.1. Consider that the surface 𝑃(𝑠, 𝑡) is determined by Equation (4). One of the following six 

conditions is satisfied if the mean curvature in Equation (7) along the isoparametric Smarandache curve 𝑇𝑁 of 

the curve 𝛼(𝑠) is constant: 

a) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑓𝑡𝑡(s, 𝑡0) =  0, 𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

b) 𝑓 = 𝑔 = ℎ = 𝑔𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) =  0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

c) 𝑓 = 𝑔 = ℎ = ℎ𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0,  𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

d) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑔𝑡 = 𝑓𝑡𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) = 0, ℎ𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

e) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = ℎ𝑡 = 𝑓𝑡𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
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f) 𝑓 = 𝑔 = ℎ = ℎ𝑡 = 𝑔𝑡 = ℎ𝑡𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

Theorem 3.2. Consider that the surface 𝑃(𝑠, 𝑡) is determined by Equation (5). One of the following six 

conditions is satisfied if the mean curvature in Equation (8) along the isoparametric Smarandache curve 𝑁𝐵 

of the curve 𝛼(𝑠) is constant: 

a) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑓𝑡𝑡(s, 𝑡0) =  0, 𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

b) 𝑓 = 𝑔 = ℎ = 𝑔𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) =  0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0,  ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

c) 𝑓 = 𝑔 = ℎ = ℎ𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0,  𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

d) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑔𝑡 = 𝑓𝑡𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) = 0, ℎ𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

e) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = ℎ𝑡 = 𝑓𝑡𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑔𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

f) 𝑓 = 𝑔 = ℎ = 𝑔𝑡 = ℎ𝑡 = 𝑔𝑡𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Theorem 3.3. Consider that the surface 𝑃(𝑠, 𝑡) is determined by Equation (6). One of the following six 

conditions is satisfied if the mean curvature in Equation (9) along the isoparametric Smarandache curve 𝑇𝐵 of 

the curve 𝛼(𝑠) is constant: 

a) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑓𝑡𝑡(s, 𝑡0) =  0, 𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 1, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

b) 𝑓 = 𝑔 = ℎ = 𝑔𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) =  0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

c) 𝑓 = 𝑔 = ℎ = ℎ𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0,  𝑔𝑡(𝑠, 𝑡0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, ℎ̃(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 1,  and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

d) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = 𝑔𝑡 = 𝑓𝑡𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) = 0, ℎ𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 1, and 𝜅1(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

e) 𝑓 = 𝑔 = ℎ = 𝑓𝑡 = ℎ𝑡 = 𝑓𝑡𝑡 = ℎ𝑡𝑡(𝑠, 𝑡0) = 0, 𝑔𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and 𝜅1(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

f) 𝑓 = 𝑔 = ℎ = 𝑔𝑡 = ℎ𝑡 = ℎ𝑡𝑡 = 𝑔𝑡𝑡(𝑠, 𝑡0) = 0, 𝑓𝑡(𝑠, 𝑡0) ≠ 0, ℎ̃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 1, and 𝜅1(𝑠) =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Example 3.4. Let 𝛼(𝑠) be a parametrized by 𝛼(𝑠) = (
1

√2
cos 𝑠 ,

1

√2
sin 𝑠 ,

𝑠

√2
), 0 ≤ 𝑠 ≤ 2𝜋. Then, the Frenet 

vectors in the three dimensional Lie Group are given as 

𝑇(𝑠) = (−
1

√2
sin 𝑠 ,

1

√2
cos 𝑠 ,

1

√2
) 

𝑁(𝑠) = (− cos 𝑠 , − sin 𝑠 , 0) 

and 

𝐵(𝑠) =  
1

√2
(sin 𝑠 , − cos 𝑠 , 1) 

where 𝜅1 =
1

√2
, 𝜅2̅̅ ̅ = 0, 𝜅2 =

1

√2
, and ℎ̃(𝑠) = 1. 

Then, we can give the following cases: 
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Case 1. We can select 𝑓(𝑠, 𝑡) = 0, 𝑔(𝑠, 𝑡) = 𝑡3, ℎ(𝑠, 𝑡) = 𝑠 sin 𝑡, and 𝑡0 = 0 while taking into account the (d) 

condition of Theorem 3.1. Consequently, the surface 𝑃1(𝑠, 𝑡) of the Lie group is provided by 

𝑃1(𝑠, 𝑡) = 𝛼𝑇𝑁(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

𝑃1(𝑠, 𝑡) =
1

√2
(𝑇(𝑠) + 𝑁(𝑠)) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

and so 

𝑃1(𝑠, 𝑡) = (−
sin 𝑠

2
−

cos 𝑠

√2
− 𝑡3 cos 𝑠 +

1

√2
𝑠 sin 𝑡 sin 𝑠 ,

cos 𝑠

2
−

sin 𝑠

√2
− 𝑡3 sin 𝑠 − 𝑠 sin 𝑡

cos 𝑠

√2
,
1

2
+

1

√2
𝑠 sin 𝑡) 

which is plotted in Fig. 1, where 0 ≤ 𝑠 ≤ 2𝜋 and 0 ≤ 𝑡 ≤ 1 with constant mean curvature 𝐻(𝑠, 𝑡0) = −
1

4
. 

 

Fig. 1. The surface 𝑃1(𝑠, 𝑡) with constant mean curvature along the 𝑇𝑁 Smarandache curve of the curve 𝛼(𝑠) 

Case 2. We can select 𝑓(𝑠, 𝑡) = 𝑒𝑠𝑡, 𝑔(𝑠, 𝑡) = 𝑡3, ℎ(𝑠, 𝑡) = 0, and 𝑡0 = 0 while taking into account the (f) 

condition of Theorem 3.2. Consequently, the surface 𝑃2(𝑠, 𝑡) of the Lie group is provided by 

𝑃2(𝑠, 𝑡) =  𝛼𝑁𝐵(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

𝑃2(𝑠, 𝑡) =  
1

√2
(𝑁(𝑠) + 𝐵(𝑠)) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

and so 

𝑃2(𝑠, 𝑡) = (−
1

√2
cos 𝑠 +

1

2
sin 𝑠 − 𝑒𝑠𝑡

1

√2
sin 𝑠 − 𝑡3 cos 𝑠 , −

1

√2
sin 𝑠 −

1

2
cos 𝑠 + 𝑒𝑠𝑡

1

√2
cos 𝑠 − 𝑡3 sin 𝑠 ,

1

2
+

1

√2
𝑒𝑠𝑡) 

which is plotted in Fig. 2, where 0 ≤ 𝑠 ≤ 2𝜋 and 0 ≤ 𝑡 ≤ 1 with constant mean curvature 𝐻(𝑠, 𝑡0) = −
1

2
. 

 

Fig. 2. The surface 𝑃2(𝑠, 𝑡) with constant mean curvature along the 𝑁𝐵 Smarandache curve of the curve 𝛼(𝑠) 

Case 3. We can select 𝑓(𝑠, 𝑡) = 𝑠𝑡3, 𝑔(𝑠, 𝑡) = 𝑠 sin 𝑡, ℎ(𝑠, 𝑡) = 0, and 𝑡0 = 0 while taking into account the 

(e) condition of Theorem 3.3. Consequently, the surface 𝑃3(𝑠, 𝑡) of the Lie group is provided by 
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𝑃3(𝑠, 𝑡) = 𝛼𝑇𝐵(𝑠) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

𝑃3(𝑠, 𝑡) =
1

√2
(𝑇(𝑠) + 𝐵(𝑠)) + 𝑓(𝑠, 𝑡)𝑇(𝑠) + 𝑔(𝑠, 𝑡)𝑁(𝑠) + ℎ(𝑠, 𝑡)𝐵(𝑠) 

and so 

𝑃3(𝑠, 𝑡) = (−𝑠𝑡3
1

√2
sin 𝑠 − 𝑠 sin 𝑡 cos 𝑠 , 𝑠𝑡3

1

√2
cos 𝑠 − 𝑠 sin 𝑡 sin 𝑠 , 1 +

1

√2
𝑠𝑡3) 

which is plotted in Fig. 3, where 0 ≤ 𝑠 ≤ 2𝜋 and 0 ≤ 𝑡 ≤ 1 with constant mean curvature 𝐻(𝑠, 𝑡0) = 0. 

 

Fig. 3. The surface 𝑃3(𝑠, 𝑡) with constant mean curvature along the 𝑇𝐵 Smarandache curve of the curve 𝛼(𝑠) 

4. Conclusion 

In this study, we constructed surfaces along the given 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves of the curve 𝛼(𝑠), 

and in each case, calculated the mean curvature of the given surfaces. Thus, sufficient conditions were derived 

to obtain surfaces with constant mean curvature along the 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves of the curve 

𝛼(𝑠), respectively. According to the given theorems, we constructed the surfaces 𝑃𝑖(𝑠, 𝑡), for 1 ≤ 𝑖 ≤ 3 with 

constant mean curvature and illustrated them in Figs. 1-3 for the parameters 0 ≤ 𝑠 ≤ 2𝜋 and 0 ≤ 𝑡 ≤ 1 by 

using Mathematica, respectively. In addition to the results shown in the manuscript, the work has also brought 

up a number of open questions for future studies, such as how to construct surfaces with constant Gauss 

curvatures along the given 𝑇𝑁, 𝑁𝐵, and 𝑇𝐵 Smarandache curves.  
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Abstract – The main purpose of this work is to provide a new approximation method, the so-called 

parameterised differential transform method (PDTM), for solving high-order boundary value problems 

(HOBVPs). Our method differs from the classical differential transform method by calculating the 
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1. Introduction 

High-order boundary value problems (HOBVPs) for differential equations are essential for modelling a wide 

range of physical and chemical phenomena in all areas of natural science. In most cases, obtaining an exact 

solution to these boundary value problems is impossible. Therefore, there is growing interest in developing a 

new numerical method for finding a reliable approximate solution or understanding the exact solution’s 

qualitative nature. This paper presents a new approximate method, parameterised differential transform, for 

solving HOBVPs. To show the applicability and effectiveness of PDTM, we will solve an illustrative fourth-

order boundary value problem using this method.  

Zhou firstly developed the classical differential transform method (DTM) in 1986 to solve some boundary 

value problems that arise when modelling electrical circuits [1]. In recent years, the application of classical 

DTM and its various generalisation to the solution of (HOBVPs) has attracted great interest. For example, 

Momami and Noor demonstrated different analytical techniques using the classical differential transform 

method, Adomian decomposition method (ADM) and homotopy perturbation method and gave a numerical 

comparison of these methods when solving a special fourth-order boundary value problem [2]. Hassan and 

Ertürk employed the DTM to solve HOBVPs [3]. Hussin and Kılıçman applied the DTM and ADM to solve 

linear and nonlinear HOBVPs [4]. Zahar used the DTM to obtain numerical solutions of singular perturbed 

fourth-order BVP’s [5]. Ertürk and Momani used the DTM and ADM to get a numerical solution for fourth-

 
1merve.yucel@outlook.com.tr (Corresponding Author); 2fahreddinmuhtarov@gmail.com; 3omukhtarov@yahoo.com 
1Department of Mathematics, Faculty of Arts and Sciences, Hitit University, Çorum, Türkiye 
2Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan 
3Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpaşa University, Tokat, Türkiye 

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 40 Year 2022

www.dergipark.org.tr/en/pub/jnt

https://dergipark.org.tr/en/pub/jnt
https://doi.org/10.53570/jnt.1171760
https://orcid.org/0000-0001-7990-2821
https://orcid.org/0000-0002-5482-2478
https://orcid.org/0000-0001-7480-6857


91 

 

Journal of New Theory 40 (2022) 90-100 / A New Transformation Method for Solving High-Order Boundary Value … 

order BVP [6]. They also gave a numerical comparison between these methods. Wazwaz used a modified 

decomposition method to obtain the numerical solution of special type HOBVPs [7]. In some papers, the DTM 

is generalised so that it can be used to study approximate solutions and the spectral properties of various types 

of Sturm-Liouville problems (see [8-11]).  

In [12], Boukary et al. use the ADM to solve the fourth-order parabolic type partial differential equations. 

Kwami et al. [13] introduced a new modification of ADM for solving fourth-order ODEs. This modification 

is based on transforming the considered fourth-order ODE into an equivalent integral equation of the Volterra 

type. Mukhtarov and Yücel [14] utilised the ADM to investigate the eigenvalues and eigenfunctions of two-

interval SLPs that arise in modelling many phenomena in physics and engineering. Rysak and Gregorczyk 

[15] have shown the effectiveness of the DTM in solving problems arising in fractional dynamical systems. 

Yücel and Mukhtarov [16] developed a new generalisation of the DTM for solving nonclassical boundary 

value problems, which differs from the classical boundary value problems in that, the boundary conditions 

contain some internal points at which given additional conditions. Al-Saif and Harfash compare the reduced 

DTM and perturbation-iteration method in [17] solving two-dimensional Navier-Stokes equations. Duan et al. 

[18] provided an overview of the DTM and its applications in solving fractional-order differential equations. 

The applicability of DTM to a system of differential equations was investigated by Ayaz [19]. 

2. Parameterized DTM 

Let 𝑠: [𝑐, 𝑑] → 𝑅 be a real-valued analytic function and 𝛼 ∈ [0,1] be any real parameter. 

Definition 2.1. [10] We say the sequence (𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑠) is the parameterised differential transform of the 

original function 𝑠(𝑡) if  

(𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑠) ≔ 𝛼(𝑆𝑐(𝑠))
𝑛

+ (1 − 𝛼)(𝑆𝑑(𝑠))
𝑛

 

where  

(𝑆𝑐(𝑠))
𝑛

≔
𝑑𝑛𝑠(𝑐)

𝑛!
 and (𝑆𝑑(𝑠))

𝑛
≔

𝑑𝑛𝑠(𝑑)

𝑛!
 

Definition 2.2. [10] We say the function s(t) is the inverse differential transform if  

𝑠𝛼(𝑡) ≔ ∑(𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑠)(𝑡 − (𝛼𝑐 + (1 − 𝛼)𝑑))
𝑛

∞

𝑛=0

 (1) 

provided that the series is convergent. The inverse differential transforms, we will denote by (𝑆𝛼
−1(𝑐, 𝑑)𝑛)(𝑠). 

Definition 2.3.  [10] The N-th partial sum of the series (1) is said to be an N-th parameterised approximation 

of the original function s(t) and is denoted by 𝑠𝛼,𝑁(𝑡), that is 

𝑠𝛼,𝑁(𝑡) ≔ ∑(𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑠)(𝑡 − (𝛼𝑐 + (1 − 𝛼)𝑑))
𝑛

𝑁

𝑛=0

 (2) 

By Definition 2.1., we can show that the parameterised differential transform has the following properties: 

i. (𝑆𝛼(𝑐, 𝑑))
𝑛

(𝜇𝑠) = 𝜇(𝑆𝛼(𝑐, 𝑑)(𝑠))𝑛 

ii. (𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑓 ± 𝑠) = (𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑓) ± (𝑆𝛼(𝑐, 𝑑))
𝑛

(𝑠) 

iii. (𝑆𝛼(𝑐, 𝑑))
𝑛

(
𝑑𝑚𝑠

𝑑𝑡𝑚) =
(𝑛+𝑚)!

𝑛!
(𝑆𝛼(𝑐, 𝑑))

𝑛
(𝑠) 
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3. Numerical Results 

Example 3.1. Consider the following HOBVP  

𝑦(4)(𝑡) = 4𝑒𝑡 + 𝑦(𝑡), 0 < 𝑡 < 1 (3) 

subject to the boundary conditions  

𝑦(0) = 1, 𝑦′′(0) = 3, 𝑦(1) = 2𝑒, and 𝑦′′(1) = 4𝑒 (4) 

The exact solution for the problem is 𝑦(𝑡) = (1 + 𝑡)𝑒𝑡. A graph of the exact solution to the problem is 

presented in Fig. 1 as follows: 

 

Fig. 1. Graph of the exact solution for the problem provided in (3)-(4) 

If it is applied 𝑃𝐷𝑇 to both sides of (3), then we obtain 

(𝑆𝛼(0,1))
𝑛+4

(𝑦)(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) = (
4

𝑛!
+ (𝑆𝛼(0,1))

𝑛
(𝑦)) (5) 

Therefore, from the definition of 𝑃𝐷𝑇,  

𝑦𝛼(𝑡) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝑡 − 𝑡𝛼)𝑛

∞

𝑛=0

 

and 

𝑦𝛼
′′(𝑡) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝑡 − 𝑡𝛼)𝑛−2

∞

𝑛=0

 

Moreover, for the boundary conditions 𝑦(0) = 1, 𝑦′′(0) = 3, 𝑦(1) = 2𝑒, 𝑦′′(1) = 4𝑒, 

𝑦𝛼(0) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼 − 1)𝑛 = 1

𝑁

𝑛=0

 

𝑦𝛼
′′(0) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝛼 − 1)𝑛−2 = 3

𝑁

𝑛=0

 

𝑦𝛼(1) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼)𝑛 = 2𝑒

𝑁

𝑛=0

 

𝑦𝛼
′′(1) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑛 − 1)(𝛼)𝑛−2 = 4𝑒

𝑁

𝑛=0
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respectively. Here, let (𝑆𝛼(0,1))
0

(𝑦) = 𝜌, (𝑆𝛼(0,1))
1

(𝑦) = 𝜎, (𝑆𝛼(0,1))
2

(𝑦) = 𝜏, and (𝑆𝛼(0,1))
3

(𝑦) = 𝜔, 

then substituting in the recursive relation (5), we can calculate the other terms of the 𝑃𝐷𝑇 as 

(𝑆𝛼(0,1))
4

(𝑦) =
1

3!
+

𝜌

4!
, (𝑆𝛼(0,1))

5
(𝑦) =

4

5!
+

𝜎

5!
, (𝑆𝛼(0,1))

6
(𝑦) =

4

6!
+

𝜏

6!
 

(𝑆𝛼(0,1))
7

(𝑦) =
4

7!
+

6𝜔

7!
, (𝑆𝛼(0,1))

8
(𝑦) =

8

8!
+

𝜌

8!
, (𝑆𝛼(0,1))

9
(𝑦) =

8

9!
+

𝜎

9!
 

(𝑆𝛼(0,1))
10

(𝑦) =
8

10!
+

2𝜏

10!
, (𝑆𝛼(0,1))

11
(𝑦) =

8

11!
+

6𝜔

11!
,  (𝑆𝛼(0,1))

12
(𝑦) =

12

12!
+

𝜌

12!
 

(𝑆𝛼(0,1))
13

(𝑦) =
12

13!
+

𝜎

13!
,  (𝑆𝛼(0,1))

14
(𝑦) =

12

14!
+

2𝜏

14!
 ,  (𝑆𝛼(0,1))

15
(𝑦) =

12

15!
+

6𝜔

15!
, … 

Hence, the parameterised series solution 𝑦𝛼(𝑡) is evaluated up to 𝑁 = 15: 

𝑦𝛼(𝑡) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝑡 − 𝑡𝛼)𝑛

15

𝑛=0

 

= 𝜌 + 𝜎(𝑡 − 1 + 𝛼) + 𝜏(𝑡 − 1 + 𝛼)2 + 𝜔(𝑡 − 1 + 𝛼)3 + (
1

3!
+

𝜌

4!
) (𝑡 − 1 + 𝛼)4 

 + (
4

5!
+

𝜎

5!
) (𝑡 − 1 + 𝛼)5 + (

4

6!
+

𝜏

6!
) (𝑡 − 1 + 𝛼)6 + (

4

7!
+

6𝜔

7!
) (𝑡 − 1 + 𝛼)7 

 + (
8

8!
+

𝜌

8!
) (𝑡 − 1 + 𝛼)8 + (

8

9!
+

𝜎

9!
) (𝑡 − 1 + 𝛼)9 + (

8

10!
+

2𝜏

10!
) (𝑡 − 1 + 𝛼)10 

 + (
8

11!
+

6𝜔

11!
) (𝑡 − 1 + 𝛼)11 + (

12

12!
+

𝜌

12!
) (𝑡 − 1 + 𝛼)12 + (

12

13!
+

𝜎

13!
) (𝑡 − 1 + 𝛼)13 

 + (
12

14!
+

2𝜏

14!
) (𝑡 − 1 + 𝛼)14 + (

12

15!
+

6𝜔

15!
) (𝑡 − 1 + 𝛼)15 

Furthermore, the numbers 𝜌, 𝜎, 𝜏, 𝜔 are evaluated from the boundary conditions (4). 

For 𝛼 =
1

2
, 𝛼 =

1

5
, 𝛼 =

999

1000
 the numerical 𝑃𝐷𝑇 solutions are presented in Fig. 2-4 as follows: 

 

Fig. 2. Graph of the PDTM solution for the problem provided in (3)-(4) (𝛼 =
1

2
) 
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Fig. 3. Graph of the PDTM solution (𝛼 =
1

5
) 

 

 

Fig. 4. Graph of the PDTM solution (𝛼 =
999

1000
) 

 

 

Fig. 5. Graph of the ADM solution for the problem provided in (3)-(4) (See, [7]) 
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Fig. 6. Graph of the DTM solution for the problem provided in (3)-(4) (See, [6]) 

 

 

Fig. 7. Comparison of exact solution (red line) and the approximate solution for problem provided in (3)-(4) 

obtained by using DTM [6] (blue line) 

 

 

Fig. 8. Comparison of exact solution (red line) and the approximate solution for problem provided in (3)-(4) 

obtained by using PDTM (orange line) 
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Fig. 9. Comparison of exact solution (red line) and the approximate solution for problem provided in (3)-(4) 

obtained by using ADM [7] (green line), PDTM (blue line) 

 

Fig. 10. Comparison of exact solution (red line) and the approximate solution for problem provided in (3)-(4) 

obtained by using DTM [6] (orange line), PDTM (blue line)  

Example 3.2. Consider the boundary value problem  

 

𝑦(4)(𝑡) = 𝑦(𝑡) + 𝑦′′(𝑡) + 𝑒𝑡(𝑡 − 3) (6) 

subject to the boundary conditions  

𝑦(0) = 1, 𝑦′(0) = 0, 𝑦(1) = 0, 𝑦′(1) = −𝑒 (7) 

The exact solution to the problem is 

𝑦(𝑡) = (1 − 𝑡)𝑒𝑡 

If it is applied 𝑃𝐷𝑇 to both sides of (6), then we obtain 

(𝑆𝛼(0,1))
𝑛+4

(𝑦)(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) = (𝑆𝛼(0,1))
𝑛

(𝑦) + (𝑆𝛼(0,1))
𝑛+2

(𝑦)(𝑘 + 1)(𝑘 + 2) 

(8) 

 −
3

𝑛!
+ ∑

𝛿(𝑛1 − 1)

(𝑛 − 𝑛1)!

𝑛

𝑛1
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Therefore, from the definition of 𝑃𝐷𝑇,  

𝑦𝛼(𝑡) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝑡 − 𝑡𝛼)𝑛

∞

𝑛=0

 

and 

𝑦𝛼
′ (𝑡) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝑡 − 𝑡𝛼)𝑛−1.

∞

𝑛=0

 

Moreover, for the boundary conditions 𝑦(0) = 1, 𝑦′(0) = 0, 𝑦(1) = 0, 𝑦′(1) = −𝑒, 

𝑦𝛼(0) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼 − 1)𝑛 = 1

𝑁

𝑛=0

 

𝑦𝛼
′ (0) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝛼 − 1)𝑛−1 = 0

𝑁

𝑛=0

 

𝑦𝛼(1) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝛼)𝑛 = 0

𝑁

𝑛=0

 

𝑦𝛼
′ (1) = ∑(𝑆𝛼(0,1))

𝑛
(𝑦)𝑛(𝛼)𝑛−1 = −𝑒

𝑁

𝑛=0

 

respectively. Here, let (𝑆𝛼(0,1))
0

(𝑦) = 𝜌1, (𝑆𝛼(0,1))
1

(𝑦) = 𝜌2, (𝑆𝛼(0,1))
2

(𝑦) = 𝜌3, (𝑆𝛼(0,1))
3

(𝑦) = 𝜌4 

and then substituting in the recursive relation (8), we can calculate the other terms of the 𝑃𝐷𝑇 as 

(𝑆𝛼(0,1))
4

(𝑦) =
1

4!
(𝜌1 + 2𝜌3 − 3) (𝑆𝛼(0,1))

5
(𝑦) =

1

120
(𝜌2 + 6𝜌4 − 2) 

(𝑆𝛼(0,1))
6

(𝑦) =
1

360
(

𝜌1

2
+ 2𝜌3 − 2) (𝑆𝛼(0,1))

7
(𝑦) =

1

840
(

𝜌2 + 12𝜌4 − 2

6
) 

(𝑆𝛼(0,1))
8

(𝑦) =
1

1680
(

𝜌1

12
+

𝜌3

4
−

1

4
) (𝑆𝛼(0,1))

9
(𝑦) =

1

3024
(

𝜌2

60
+

3𝜌4

20
−

1

60
) 

(𝑆𝛼(0,1))
10

(𝑦) =
1

5040
(

3𝜌1

720
+

5𝜌3

360
−

7

720
) 

Hence, the parameterised series solution 𝑦𝛼(𝑡) is evaluated up to 𝑁 = 10: 

𝑦𝛼(𝑡) = ∑(𝑆𝛼(0,1))
𝑛

(𝑦)(𝑡 − 𝑡𝛼)𝑛

10

𝑛=0

 

 = 𝜌1 + 𝜌2(𝑡 − 1 + 𝛼) + 𝜌3(𝑡 − 1 + 𝛼)2 + 𝜌4(𝑡 − 1 + 𝛼)3 +
1

4!
(𝜌1 + 2𝜌3 − 3)(𝑡 − 1 + 𝛼)4 

 +
1

120
(𝜌2 + 6𝜌4 − 2)(𝑡 − 1 + 𝛼)5 +

1

360
(

𝜌1

2
+ 2𝜌3 − 2) (𝑡 − 1 + 𝛼)6 

 +
1

840
(

𝜌2 + 12𝜌4 − 2

6
) (𝑡 − 1 + 𝛼)7 +

1

1680
(

𝜌1

12
+

𝜌3

4
−

1

4
) (𝑡 − 1 + 𝛼)8 

 +
1

3024
(

𝜌2

60
+

3𝜌4

20
−

1

60
) (𝑡 − 1 + 𝛼)9 +

1

5040
(

3𝜌1

720
+

5𝜌3

360
−

7

720
) (𝑡 − 1 + 𝛼)10 
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A graph of the exact solution to the problem is presented in Fig. 11 as follows: 

 

Fig. 11. Graph of the exact solution of the problem provided in (6)-(7) 

 

For 𝛼 =
1

2
 the numerical 𝑃𝐷𝑇 solution is presented in Fig. 12 as follows: 

 

Fig. 12. Graph of the numerical PDT solution for 𝛼 =
1

2
 of the problem provided in (6)-(7) 

 

 

Fig. 13. Comparison of the exact solution (red dashing) with the PDT solution for 𝛼 =
1

2
 (blue line) 
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4. Conclusion 

This paper provides a new semi-analytical method, the so-called parameterised differential transform method 

(P DTM), to find an exact solution in the series form or approximate various high-order boundary value 

problems. To show the reliability of our method, we solved an illustrative high-order boundary value problem. 

We compared the resulting solutions with the analytical solution and with the solutions obtained by the 

traditional DTM and ADM methods. Figures 5-10 and 13 show that the PDTM is the efficient method for 

solving high-order boundary value problems. 
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