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Research Article

Abstract − In this paper, we first show that the complete lift Uc to T M of a vector field
U on M is an infinitesimal fiber-preserving conformal transformation if and only if U is an
infinitesimal homothetic transformation of (M, g). Here, (M, g) is a Riemannian manifold and
T M is its tangent bundle with a Mus-Cheeger-Gromoll type metric g̃. Secondly, we search

for some conditions under which
(

h

∇, g̃

)
is a Codazzi pair on T M when (∇, g) is a Codazzi

pair on M where
h

∇ is the horizontal lift of a linear connection ∇ on M . We finally discuss
the need for further research.

Keywords Codazzi pair, infinitesimal fiber-preserving conformal transformation, infinitesimal homothetic transforma-
tion, Mus-Cheeger-Gromoll type metric, tangent bundle

Mathematics Subject Classification (2020) 53B21, 53C07

1. Introduction

The Sasaki metric [1] and the Cheeger-Gromoll metric [2] are the well-known metrics on the tangent
bundles of Riemannian manifolds. Moreover, many metrics on tangent bundles have been introduced
by deforming these two metrics. The rescaled Sasaki metric [3], the twisted Sasaki metric [4], the Mus-
Sasaki metric [5], the rescaled Cheeger-Gromoll metric [6], the generalized Cheeger-Gromoll metric [7],
and the Cheeger-Gromoll type metric [8] are examples of these deformations. Moreover, Latti and
Djaa [9] introduced a new deformation of the Cheeger-Gromoll metric g̃, called the Mus-Cheeger-
Gromoll metric. They computed the Levi-Civita connection and studied the curvature properties of
a tangent bundle with respect to this metric. This paper will deal with a special case of this metric.

A classical problem on a Riemannian manifold M is to find infinitesimal conformal transformations
(conformal vector fields) on M . The vector field U on M is an infinitesimal conformal transformation if
and only if there is a function ρ on M satisfying LU g = 2ρg where LU is the Lie derivative with respect
to U . If ρ is a nonzero constant (resp. zero), then U is referred to as an infinitesimal homothetic
transformation (resp. Killing vector field). Infinitesimal conformal transformations are studied on
tangent bundles by many authors [10–14].

Statistical manifolds were studied first by Amari [15] in view of information geometry, and Lauritzen
gave applications in [16]. These manifolds have a crucial role in statistics as the statistical model
often fashions a geometrical manifold. The geometry of statistical structures on tangent bundles is

1maltunbas@erzincan.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Türkiye

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0002-0371-9913
https://doi.org/10.53570/jnt.1167010


Journal of New Theory 42 (2023) 1-7 / A Short Note on a Mus-Cheeger-Gromoll Type Metric 2

an actual topic. These structures were examined with respect to various Riemannian metrics such as
the Sasaki metric [17], the Cheeger-Gromoll metric, and a g−natural metric which consists of three
classic lifts of the metric g [18], the twisted Sasaki metric, and the gradient Sasaki metric [19].

In this paper, we prove that the complete lift U c to TM of a vector field U on M is an infinitesimal fiber-
preserving conformal transformation (IFPCT) on TM if and only if U is an infinitesimal homothetic

transformation (IHT) of (M, g). We also investigate conditions under which
(

h
∇, g̃

)
is a Codazzi pair

on TM when (∇, g) is a Codazzi pair on M , where
h
∇ is the horizontal lift of a linear connection ∇

on M .

2. Preliminary

Let M be an n−dimensional (n > 1) Riemannian manifold and ∇ be a linear connection on M . The
tangent bundle TM of the manifold M is a 2n−dimensional differentiable manifold, and it is defined
by disjoint tangent spaces at distinct points on M . If {N, xi} is a local coordinate system in M , then
{π−1(N), xi, xı̄ = ui, ı̄ = n + 1, ..., 2n} is a local coordinate system in TM where π is the projection
defined by π : TM → M . We have a decomposition

TTM = V TM ⊕ HTM

for the tangent bundle of TM where the vertical subspace V TM is spanned by
{

∂
∂ui :=

(
∂

∂xi

)v}
and

the horizontal subspace HTM is spanned by
{

δ
δxi :=

(
∂

∂xi

)h
= ∂

∂xi − umΓj
mi

∂
∂uj

}
. Here, Γj

mi are the

Christoffel symbols of ∇. The vertical, horizontal, and the complete lift of a vector field U = U i ∂
∂xi

are defined by, respectively,

Uv = U i ∂

∂ui
, Uh = U i ∂

∂xi
− usΓm

siU
i ∂

∂um
, and U c = U i ∂

∂xi
+ us ∂U i

∂xs

∂

∂ui
(1)

where we used Einstein’s summation. In the sequel, for brevity, we denote ∂
∂xi , δ

δxi , and ∂
∂ui by ∂i, δi,

and ∂ı̄, respectively.

If ∇ is a torsionless linear connection, then the Lie brackets of the vertical lift and the horizontal lift
of vector fields fulfill the following relations:[

Uh, V h
]

= [U, V ]h − (R(U, V )u)v,
[
Uh, V v

]
= (∇U V )v, and [Uv, V v] = 0 (2)

where R is the curvature of ∇ [20].

The frame {Eλ} = {Ei, Eı̄} adapted to the torsionless linear connection ∇ is given by

Ei = δm
i ∂m − usΓm

si∂m̄ and Eı̄ = δm
i ∂m̄

Moreover,
{

dxh, δuh = duh + ucΓh
cddxd

}
is the dual frame of {Eλ}. We can rewrite Lie Brackets 2

according to the adapted frame as follows:

[Ei, Ej ] = usRk
ijsEk̄,

[
Ei, Ej̄

]
= Γk

ijEk̄, and
[
Eı̄, Ej̄

]
= 0

where Rk
jis are the components of R. Vector Fields 1 are expressed as, according to the adapted frame,

Uv = U iEi, Uh = U iEi and U c = U iEi + us∇sU iEi (3)
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We have the following Lie derivatives with respect to Ũ = vkEk + vk̄Ek̄ [13]

LŨ Ek = −∂kvcEc +
{

uavbRc
kba − vāΓc

ak − Ek(vc̄)
}

Ec̄

LŨ Ek̄ =
{
vaΓc

ak − Ek̄(vc̄)
}

Ec̄

LŨ dxk = ∂nvkdxn

LŨ δuk = −
{

uavbRk
nba − vāΓk

an − En(vk̄)
}

dxn −
{

vaΓk
an − En(vk)

}
δun

The horizontal lift connection
h
∇ of a linear connection ∇ is given by

h
∇UhV h = (∇U V )h,

h
∇UhV v = (∇U V )v, and

h
∇Uv V h =

h
∇Uv V v = 0

Remark that ∇ is a flat and torsionless linear connection if and only if
h
∇ is a torsionless linear

connection [20].

The Mus-Cheeger-Gromoll metric Gmc on TM is defined by

Gmc

(
Uh, V h

)
= g(U, V )

Gmc

(
Uh, V v

)
= 0

Gmc (Uv, V v) = f(x)ω(r2)(g(U, V ) + α(r2)g(U, u)g(V, u))

for every vector fields U and V on M where f : M → R+ and ω, α : R → R+ are three functions and
r2 = g(u, u) [9].

Particular cases of the metric Gmc are listed below:

i. If f = 1, ω = 1
1+r2 , and α = 1, then Gmc is the Cheeger-Gromoll metric [2].

ii. If f = 1, ω =
(

1
1+r2

)p
, α = cons., then Gmc is the generalized Cheeger-Gromoll metric [7].

iii. If ω =
(

1
1+r2

)p
and α = cons., then Gmc is the rescaled vertically generalized Cheeger-Gromoll

metric [21].

In this paper, we consider a Mus-Cheeger-Gromoll type metric g̃ by assuming ω(r2) = 1
1+r2 .

Definition 2.1. Let (M, g) be a Riemannian manifold and ∇ be a linear connection on M . The
couple (g, ∇) is called a Codazzi pair if the following Codazzi equations are valid:

(∇U g)(V, W ) = (∇V g)(W, U) = (∇W g)(U, V )

for all vector fields U , V , and W on M . In this case, (M, g, ∇) is referred to as a Codazzi manifold
and ∇ is called a Codazzi connection. Moreover, if ∇ is torsionless, then (M, g, ∇) is a statistical
connection.

3. Main Results

Let g = gij dxidxj is the Riemannian metric g on M . Then, the local expression of the Mus-Cheeger-
Gromoll type metric g̃ is

g̃ = gijdxidxj + hijδxiδxj

where hij = f
1+r2 (gij + αgimgjnumun). If G1 = gijdxidxj and G2 = hijδxiδxj , then

g̃ = G1 + G2

Besides, recall that a vector field Ũ with components
(
vh, vh̄

)
on TM is a fibre preserving (FP) if and

only if vh has components
(
xh

)
.
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The following lemma states the Lie derivatives of G1 and G2.

Lemma 3.1. The Lie derivatives of G1 and G2 with respect to a FP vector field Ũ are

LŨ G1 = (LU gij)dxidxj

LŨ G2 = −2hmj{ubvcRm
icb − vb̄Γm

bi − Ei(vm̄)}dxiδuj + {LU hij − 2hmj∇iv
m + 2hmjEi(vm)

+ 1
1+r2 vmus(−2gmshij + 2fα′gisgjtgmnutun + fα(gjsgim + gjmgis)}δuiδuj

where LU gij is the components of LU g and ∇iv
m is the components of ∇U .

Proof.
The proof is similar to the proof of Proposition 2.3 in [13].

The first main result of the paper is as follows:

Theorem 3.2. If TM is the tangent bundle of (M, g) equipped with the Mus-Cheeger-Gromoll type
metric g̃, then the complete lift U c of a vector field U is an IFPCT of (TM, g̃) if and only if U is an
IHT of (M, g).

Proof.
If Ũ is an IFPCT of (TM, g̃), then there exists a smooth function Ω satisfying

LŨ g̃ = 2Ωg̃

From Lemma 3.1,

2Ωgijdxidxj + 2Ωhijδxiδxj = (LU gij)dxidxj − 2hmj{ubvcRm
icb − vb̄Γm

bi − Ei(vm̄)}dxiδuj

+{LU hij − 2hjm∇iv
m + 2hmjEi(vm)

+ 1
1+r2 vmus(−2gmshij + 2fα′gisgjtgmnutun + fα(gjsgim + gjmgis)}δuiδuj

It follows that
LU gij = 2Ωgij (4)

ubvcRm
icb − vb̄Γm

bi − Ei(vm̄) = 0

LU hij −2hjm∇iv
m +2hmjEi(v

m)+ 1
1 + r2 vmus(−2gmshij +2fα′gisgjtgmnutun +fα(gjsgim +gjmgis)) = 2Ωhij

From Equation 3, we can write the complete lift a vector field U = vk∂k as U c = vkEk + us∇svkEk.
Thus,

LU gij = 2Ωgij

and
ub(vcRm

icb − ∇i∇bv
m) = 0 (5)

Therefore, Equation 5 gives
∇i∇bvj = vcRicbj

Using algebraic properties of the Riemannian curvature tensor,

∇i∇bvj + ∇i∇jvb = 0 (6)

Since LU gij = ∇ivj + ∇jvi, from Equation 4,

∇ivj + ∇jvi = 2Ωgij

Taking the covariant derivative on both hand sides of the above equation,

∇k(∇ivj) + ∇k(∇jvi) = 2(∇kΩ)gij (7)
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Equations 6 and 7 show that ∇kΩ = 0. Hence, Ω is constant. The proof of converse is clear.

In this part of this section, we deal with Codazzi pairs on M and TM . Let (M, g) be an n−dimensional

(n > 1) Riemannian manifold and
(

h
∇, g̃

)
be a Codazzi pair on TM . Taking into account Definition

2.1, by direct calculation,(
h
∇δi

g̃

)
(δj , ∂k̄) =

(
h
∇δj

g̃

)
(∂k̄, δi) =

(
h
∇∂k̄

g̃

)
(δi, δj) = 0

and (
h
∇∂ı̄ g̃

)
(∂j̄ , δk) =

(
h
∇∂j̄

g̃

)
(δk, ∂ı̄) =

(
h
∇δk

g̃

)
(∂ı̄, ∂j̄) = 0

Moreover, (
h
∇δi

g̃

)
(δj , δk) = ∇igjk

and (
h
∇∂ı̄ g̃

)
(∂j̄ , ∂k̄) = ∂ı̄g̃(∂j̄ , ∂k̄),

(
h
∇∂

j
g̃

)
(∂k̄, ∂ı̄) = ∂j g̃(∂k̄, ∂ı̄),

(
h
∇∂

k
g̃

)
(∂ı̄, ∂j) = ∂kg̃(∂ı̄, ∂j)

Furthermore,(
h
∇∂ı̄ g̃

)
(∂j̄ , ∂k̄) = f

{
−2um

(1+r2)2 (gimgjk + αusutgimgjsgkt) + 2α′

1+r2 gingjsgktu
nusut + αus

1+r2 (gjigks + gjsgki)
}

(8)

(
h
∇∂

j
g̃

)
(∂k̄, ∂ı̄) = f

{
−2um

(1+r2)2 (gjmgki + αusutgjmgksgit) + 2α′

1+r2 gjngksgitu
nusut + αus

1+r2 (gkjgis + gksgij)
}

(9)

(
h
∇∂

k
g̃

)
(∂ı̄, ∂j) = f

{
−2um

(1+r2)2 (gkmgij + αusutgkmgisgjt) + 2α′

1+r2 gkngisgjtu
nusut + αus

1+r2 (gikgjs + gisgjk)
}

(10)

Equations 8-10 yield two cases.

Case 1) If
(

h
∇∂ı̄ g̃

)
(∂j̄ , ∂k̄) =

(
h
∇∂

j
g̃

)
(∂k̄, ∂ı̄) =

(
h
∇∂

k
g̃

)
(∂ı̄, ∂j) = 0, then, from Equation 8,

(
h

∇∂ı̄ g̃

)
(∂j̄ , ∂k̄) = f

{
−2um

1 + r2 (gimgjk + αusutgimgjsgkt) + 2α′gingjsgktu
nusut + αus(gjigks + gjsgki)

}
= 0

Taking the derivative in the above equation with respect to ∂h,

0 = f

{
−2δm

h (1+r2)+4umungnh

(1+r2)2 (gimgjk + αusutgimgjsgkt) − 2umgmiu
t(2α′ghngjsgktunus+αgtkgjh+αgjtghk)

1+r2

−4umα′ghngjsgktgimusutun

1+r2 + (2α′ghnunus + αδs
h)(gjigks + gjsgki)

}
because

0 = f

{ −2
1 + r2 (gjkgih + αusutgihgjsgkt) + 4umungnh

(1 + r2)2 (gjkgim + usutgimgjsgkt)

−2umgmiu
t(2α′ghngjsgktu

nus + αgtkgjh + αgjtghk)
1 + r2 − 4umα

′
ghnungjsgktgimusut

1 + r2

+2α′ghnunus(gjigks + gjsgki)α(gjigkh + gjhgki)
}

(11)

Equation 11 is satisfied, for all (x, u) ∈ TM . For zero section, i.e., u = 0, Equation 11 becomes

−2gjkgih = 0

This is a contradiction, when i, j, and k run from 1 to n.
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Case 2) If
(

h
∇∂ı̄ g̃

)
(∂j̄ , ∂k̄) =

(
h
∇∂

j
g̃

)
(∂k̄, ∂ı̄) =

(
h
∇∂

k
g̃

)
(∂ı̄, ∂j) ̸= 0, then, from Equations 8-10,

−2gjkgih = −2gkigjh

Hence, gjkgih = gikgjh. Multiplying both side of this equation by gjh, gki = ngki. Thus, n = 1. This
is a contradiction. Consequently, we can express the following result.

Theorem 3.3. Let TM be the tangent bundle of an n−dimensional (n > 1) Riemannian manifold
(M, g) equipped with the metric g̃ and ∇ be a linear connection on M . If (∇, g) is a Codazzi pair on

M , then
(

h
∇, g̃

)
is not a Codazzi pair on TM .

4. Conclusion

The Mus-Cheeger-Gromoll metric is a new metric on the tangent bundle of a Riemannian manifold.
In this paper, we studied the infinitesimal fiber-preserving property of the complete lift of a vector
field and investigated the Codazzi pairs using the horizontal lift of a linear connection. Our findings
suggest that these techniques could be applied to more general metrics in tangent bundles, opening
up new avenues of research in this area. In addition, we believe that further investigation of the
Mus-Cheeger-Gromoll metric could yield even more insights into the nature of Riemannian manifolds
and their properties.
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Abstract − The permanent function is not as stable as the determinant function under the
elementary row operations. For example, adding a non-zero scalar multiple of a row to another
row does not change the determinant of a matrix, but this operation changes its permanent.
In this article, the variation in the permanent by applying the operation, which adds a scalar
multiple of a row to another row, is examined. The relationship between the permanent of
the matrix to which this operation is applied and the permanent of the initial matrix is given
by a theorem. Finally, the paper inquires the need for further research.
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1. Introduction

The permanent function was introduced first by Binet and Cauchy. According to Binet’s definition,
provided m ≤ 4, the permanent of a matrix with order m by n is the sum of all possible products
of m elements any two of which are not at the same column or row. Minc [1] emphasized that this
definition given by Binet could be generalized for all finite values of m and n and gave the following
definition.

Let A = [ai,j ] be a matrix of order m by n. Then, per(A), the permanent of A, is defined by

per(A) =
∑

σ

a1,σ1a2,σ2 ...am,σm

where the summation runs over on the set σ, which includes all one-to-one functions defined from
{1, 2, . . . , m} to {1, 2, . . . , n} such that m ≤ n [1].

The permanent function can be interpreted as a kind of assessment using all matrix elements. This
scalar-valued function of the matrix is best known for its relations with solutions to enumeration
problems in combinatorics. For example, the Menage problem is a classical combinatorial enumeration
problem, and it has been connected to the permanents of (0, 1)−matrices [2]. Another critical problem
is computing the permanent of some kind of matrices, for example, the sparse and the circulant. This
problem appears in various applications in mathematics, physics, computers, information systems,
cryptography, and other fields. It has been studied to obtain various linear recurrence relations for
permanents of certain sparse circulant matrices in [3], one of the recent studies in quantum computing.
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By solving the linear recursive system consisting of the obtained recurrences in [3], computing of
permanent will be realized in linear time.

The definition of permanent is the same as the definition of determinant except for the factor ±1
before terms in the summation. Thus, some properties of the permanent have direct analogs for the
determinant. The following will give a brief summary of several fundamental properties related to
both the permanent and the determinant.

The procedure of reducing anything to a simpler form is frequently used in both the determinant
and the permanent. Laplace expansion is an important example of reduction, and it can be applied
similarly to these two functions. Let A(i, j) denote the matrix of size m − 1 by n − 1 obtained from
the matrix A = [ai,j ] by deleting row i and column j such that i = 1, 2, · · · , m and j = 1, 2, · · · , n. It
follows as a direct consequence of the definition of the permanent that

per(A) =
n∑

j=1
aij per(A(i, j))

called Laplace expansion of the permanent according to the ith row of matrix A. Another procedure
that can be used for reduction is Gaussian elimination. The determinant can be evaluated efficiently
using Gaussian elimination (or row reduction) [4]. However, computation of the permanent in this way
is much more complicated. The elementary row operations may differ in these functions because the
permanent is not as stable as the determinant under the elementary row operations [2]. For example,
adding a non-zero scalar multiple of a row to another row does not change the determinant of a matrix,
but this operation changes its permanent. The determinant of a matrix with two equal rows is zero,
but its permanent does not have to be zero. Multiplying a row by a scalar requires multiplying the
determinant by the same scalar. This is also valid for the permanent. Interchanging two rows varies
the sign of determinant, but permanent is invariant under this operation [5].

One of the fundamental rules of the determinant is det(AB) = det(A) det(B). This rule is clearly false
for permanent. However, in [6], it has been proved that the equality per(AB) = per(A) per(B) holds
for the generalized complementary basic (GCB) matrices which have many remarkable properties such
as permanental, graph-theoretic, spectral, and inheritance properties [7, 8].

As mentioned above, for a square matrix A, adding a non-zero scalar multiple of a row to another
row varies its permanent. To the best of our knowledge, there is no discussion on the effect of this
operation on the permanent, in related literature. In this paper, the variation in the permanent has
been studied when the operation “adding a scalar multiple of one row to another row” is applied to
a square matrix. An equality that gives a relationship between the permanent of the original matrix
and the permanent of its changed form is presented. In addition, an algorithm that calculates the
variation is also given.

2. Main Results

Let

A =


a b c

d e f

g m n


be a square matrix of order 3 × 3 and |A| denote the determinant of the matrix A. The determinant
of a matrix remains unchanged when adding a non-zero scalar k multiple of a row to another row. As
an example of this property, the following equations can be written for the matrix A:
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∣∣∣∣∣∣∣∣
a b c

d + ak e + bk f + ck

g m n

∣∣∣∣∣∣∣∣ − |A| = 0

∣∣∣∣∣∣∣∣
a b c

d e f

g + ak m + bk n + ck

∣∣∣∣∣∣∣∣ − |A| = 0

and ∣∣∣∣∣∣∣∣
a b c

d + ak e + bk f + ck

g + ak m + bk n + ck

∣∣∣∣∣∣∣∣ − |A| = 0

These situations for the permanent function, in contrast to the determinant, are illustrated by the
equations below:

per




a b c

d + ak e + bk f + ck

g m n


 − per (A) = x (1)

per




a b c

d e f

g + ak m + bk n + ck


 − per (A) = y (2)

and

per




a b c

d + ak e + bk f + ck

g + ak m + bk n + ck


 − per (A) = z (3)

where x ̸= y ̸= z ̸= 0. The following theorem proposes obtaining x and y using (n − 2)-ordered
submatrices of a matrix A with order n by n. Namely, with the following theorem, we express the
variation in the permanents for which additive row operation is applied only once, as in x and y. We
note that the variation notion used in this study corresponds to x and y in Equalities 1 and 2. We
also note that the calculation of variation we suggest is necessary twice to calculate the z value in
Equality 3.

Let the notations used in this study clarify before giving on to the theorem. Let A = [ai,j ] be a matrix
of order n by n. The notation

Ãr|t

denotes the submatrix obtained by deleting the rth row and the tth column of the matrix A. The
notation

Ãi,r|j,t

denotes the submatrix obtained by deleting ith row, rth row, jth column, and tth column of the matrix
A. The submatrix Ãr|t is of order (n−1)×(n−1) and the submatrix Ãi,r|j,t is of order (n−2)×(n−2).
As an example, if we consider the matrix

B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44
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then

B̃1|4 =


b21 b22 b23

b31 b32 b33

b41 b42 b43

 and B̃1,2|3,4 =
[

b31 b32

b41 b42

]

are some submatrices obtained from the matrix B.

Theorem 2.1. Let A = [ai,j ] be a matrix of order n × n and B be the matrix obtained by adding k

times of the ith row to the rth row of the matrix A. Then,

per(B) − per(A) = 2k
∑

(j,t)∈Ω
ai,jai,t per(Ãi,r|j,t)

where the summation extends over the set Ω = {(j, t) ∈ S × S | j < t} such that S = {1, 2, ..., n}.

Proof.
By using the Laplace expansion with respect to rth row of the matrix B, we obtain

per (B) = (ar,1 + kai,1) per(B̃r|1) + · · · + (ar,n + kai,n) per(B̃r|n) (4)

where B̃r|j denotes the submatrices obtained by deleting rth row and jth column of the matrix B.
Equality 4 can be arranged as the form

per (B) =
(
ar,1 per(B̃r|1) + · · · + ar,nper(B̃r|n)

)
+ k

(
ai,1 per(B̃r|1) + · · · + ai,n per(B̃r|n)

)
(5)

By applying the Laplace expansion along by the rth row of the matrix A, it is easily seen that

ar,1 per(B̃r|1) + · · · + ar,nper(B̃r|n) = per(A)

Therefore, from Equality 5, per(B) = per(A) + kVA where

VA = ai,1 per(B̃r|1) + ai,2 per(B̃r|2) + · · · + ai,n per(B̃r|n) (6)

At this point, the process will be continued by applying the Laplace expansion to every permanent in
VA seen by Equality 6, respectively. Firstly, by expanding the permanent, which in the first term of
VA seen by Equality 6, with respect to ith row, the following equality is obtained:

per(B̃r|1) =ai,2 per





a1,3 a1,4 · · · a1,n

...
...

. . .
...

ai−1,3 ai−1,4 · · · ai−1,n

ai+1,3 ai+1,4 · · · ai+1,n

...
...

. . .
...

ar−1,3 ar−1,4 · · · ar−1,n

ar+1,3 ar+1,4 · · · ar+1,n

...
...

. . .
...

an,2 an,4 · · · an,n




+ ai,3 per





a1,2 a1,4 · · · a1,n

...
...

. . .
...

ai−1,2 ai−1,4 · · · ai−1,n

ai+1,2 ai+1,4 · · · ai+1,n

...
...

. . .
...

ar−1,2 ar−1,4 · · · ar−1,n

ar+1,2 ar+1,4 · · · ar+1,n

...
...

. . .
...

an,2 an,4 · · · an,n





+ · · · + ai,n per





a1,2 a1,3 · · · a1,n−1
...

...
. . .

...
ai−1,2 ai−1,3 · · · ai−1,n−1
ai+1,2 ai+1,3 · · · ai+1,n−1

...
...

. . .
...

ar−1,2 ar−1,3 · · · ar−1,n−1
ar+1,2 ar+1,3 · · · ar+1,n−1

...
...

. . .
...

an,2 an,3 · · · an,n−1





(7)
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Equality 7 can be written briefly as

per(B̃r|1) = ai,2 per(Ãi,r|1,2) + ai,3 per(Ãi,r|1,3) + · · · + ai,n per(Ãi,r|1,n)

Similarly, if the permanents in other terms of Equality 6 are expanded along by their ith row, then

per(B̃r|2) = ai,1 per(Ãi,r|2,1) + ai,3 per(Ãi,r|2,3) + · · · + ai,n per(Ãi,r|2,n)

per(B̃r|3) = ai,1 per(Ãi,r|3,1) + ai,2 per(Ãi,r|3,2) + ai,4 per(Ãi,r|3,4) + · · · + ai,n per(Ãi,r|3,n)

...

per(B̃r|n) = ai,1 per(Ãi,r|n,1) + ai,2 per(Ãi,r|n,2) + · · · + ai,n−1 per(Ãi,r|n,n−1)

If we plug the equalities obtained, for all per(B̃r|α), where α ∈ S, into VA seen by Equality 6, then we
get

VA =
∑

(j,t)∈∆
ai,jai,t per(Ãi,r|j,t) (8)

where ∆ = {(j, t) ∈ S × S | j ̸= t} . There are two of each term in the summation in Equality 8 because
the terms of the form

ai,jai,t per(Ãi,r|j,t)

equal to the terms of the form
ai,tai,j per(Ãi,r|t,j)

Thus, we can write Equality 8 as

VA = 2
∑

(j,t)∈Ω
ai,jai,t per(Ãi,r|j,t)

where Ω = {(j, t) ∈ S × S | j < t} .

According to Theorem 2.1, per(B) − per(A) which we called as the variation, can be calculated by the
following algorithm.

Algorithm 1 Calculation of the variation kVA

INPUT: Matrix A = [ai,j ]n×n and k, i, and r values.
OUTPUT: Result of the variation kVA.
Step 1: row set = The set of row numbers of the matrix A except the rows i and r
Step 2: for j = 1, 2, · · · , n − 1 do

for t = j + 1, · · · , n do
column set = The set of column numbers of the matrix A except the columns j and t
A tilda = Form a submatrix of the matrix A using row set and column set
Per(A tilda) = Calculate the permanent of A tilda
summation = summation + ai,j ∗ ai,t∗Per(A tilda)

end for
end for

Step 3: result = 2 ∗ k∗ summation

3. Conclusion

It is important to note that this study does not propose any permanent calculation method. Instead,
it provides a theoretical analysis of the variation that results from an additive row operation on the
permanent of a square matrix. Moreover, it formulates the variation that occurs in the permanent of
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a square matrix in which the additive row operation is applied. This formula, called the variation in
the permanent, proposes utilizing matrices of order (n−2)× (n−2) instead of matrices of order n×n.
Besides, this paper presents an algorithm to calculate this variation formula. The proposed algorithm
needs

(n − 2)n!
2

arithmetic operations if the permanent is calculated by the Naive algorithm, and

n(n − 1)(n − 2)2n−3

arithmetic operations if the permanent is calculated by the Ryser-NW algorithm. For the numbers of
arithmetic operations of the Naive and the Ryser-NW algorithms, see [9].

This article’s findings can be extended to non-square matrices for further investigation. Furthermore,
the variation formula suggested herein can be used to study the calculation of any square matrix
permanents via the Gaussian elimination process.
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1. Introduction (Compulsory) 

There is a growing literature on strong commutativity preserving (SCP) maps and derivations. Bell and Daif 

[1] first investigated the derivation of SCP maps on the ideal of a semiprime ring. Bresar [2] generalized this 

work to the Lie ideal of the ring. In [3], Ma and Xu handled this study for generalized derivations. Moreover, 

Koç and Gölbaşı [4] have been studied for the multiplicative generalized derivations by generalizing these 

conditions on the semiprime ring. In [5], Ali et al. showed that if ℜ is a semiprime ring and 𝑓 is an 

endomorphism which is an SCP map on a nonzero ideal 𝑈 of ℜ, then 𝑓 is commuting on 𝑈. Samman [6] 

proved that an epimorphism of a semiprime ring is strong commutativity preserving if and only if it is 

centralizing. Researchers have extensively studied derivations and SCP mappings in the context of operator 

algebras, prime rings, and semiprime rings. In [7], Melaibari et al. examined this condition for homoderivation. 

This paper investigated SCP maps for homoderivation in the ideal of a semiprime ring. In [8], Herstein showed 

that if ℜ is a prime ring of characteristics different from two and 𝑑 is a nonzero derivation such that 𝑑(ℜ) ⊆ 𝑍, 

then ℜ must be commutative. This condition on the Lie ideal of the prime ring was discussed by Bergen et al. 

[9]. Gölbaşı and Koç [10] examined this condition for the (𝜎, 𝜏)-Lie ideal of the prime ring. This condition is 

then examined for different subsets of the ring and different derivations. Ashraf et al. [11] proved that a prime 

ring ℜ must be commutative if ℜ satisfies the following condition: 𝑓(𝑥)𝑓(𝑦) = 𝑥𝑦 or 𝑓(𝑥)𝑓(𝑦) = 𝑦𝑥 

where 𝑓 is a generalized derivation of ℜ, and ℑ is a nonzero two-sided ideal of ℜ. In [12], the following 

conditions are examined by Alharfie and Muthana for homoderivation in the prime ring: 

𝑖. 𝑥𝛿(𝑦) ± 𝑥𝑦 ∈ 𝑍, 𝑖𝑖. 𝑥𝛿(𝑦) ± 𝑦𝑥 ∈ 𝑍, 𝑖𝑖𝑖. [𝛿(𝑥), 𝑦] ± 𝑥𝑦 ∈ 𝑍, and 𝑖𝑣. [𝛿(𝑥), 𝑦] ± 𝑦𝑥 ∈ 𝑍 

This article aims to generalize the above conditions for homoderivation on an ideal semiprime ring. 
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2. Preliminaries 

Let ℜ be an associative ring with center 𝑍. For any 𝑥, 𝑦 ∈ ℜ, the symbol [𝑥, 𝑦] stands for the commutator 𝑥𝑦 −

𝑦𝑥, and the symbol 𝑥 ∘ 𝑦 denotes the anti-commutator 𝑥𝑦 + 𝑦𝑥. Recall that a ring ℜ is a semiprime if 𝑥ℜ𝑥 =

0 implies 𝑥 = 0. An additive mapping 𝑑: ℜ → ℜ is called a derivation if 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦), for all 

𝑥, 𝑦 ∈ ℜ. An additive mapping 𝛿: ℜ → ℜ is called a homoderivation if 𝛿(𝑥𝑦) = 𝛿(𝑥)𝛿(𝑦) + 𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦), 

for all 𝑥, 𝑦 ∈ ℜ in [13]. For example, 𝛿(𝑥) = 𝑓(𝑥) − 𝑥, for all 𝑥 ∈ ℜ, where 𝑓 is an endomorphism on ℜ if 

𝛿(𝑥)𝛿(𝑦) = 0, for all 𝑥, 𝑦 ∈ ℜ, then the homoderivation 𝛿 is a derivation. If 𝑆 ⊆ ℜ, then a mapping 𝑓: ℜ → ℜ 

preserves 𝑆 if 𝑓(𝑆) ⊆ 𝑆. A mapping 𝑓: ℜ → ℜ is zero-power valued on 𝑆 if 𝑓 preserves 𝑆 and if, for each 𝑥 ∈

𝑆, there exists a positive integer 𝑛(𝑥) > 1 such that 𝑓𝑛(𝑥) = 0. Let 𝑆 be a nonempty subset of ℜ. A mapping 

𝐹 from ℜ to ℜ is called commutativity preserving on a subset 𝑆 of ℜ if [𝑥, 𝑦] = 0 implies [𝐹(𝑥), 𝐹(𝑦)] = 0, 

for all 𝑥, 𝑦 ∈ 𝑆. The mapping 𝐹 is called an SCP on 𝑆 if [𝑥, 𝑦] = [𝐹(𝑥), 𝐹(𝑦)], for all 𝑥, 𝑦 ∈ 𝑆. 

Proposition 2.1. Let ℜ be a semiprime ring. Then, 

i. The center of ℜ contains no nonzero nilpotent elements. 

ii. If 𝑃 is a nonzero prime ideal of ℜ and 𝑎, 𝑏 ∈  ℜ such that 𝑎 ℜ 𝑏 ⊆ 𝑃, then either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. 

iii. The center of a nonzero one-sided ideal is in the center of ℜ. In particular, any one-sided commutative ideal 

is included in the center of ℜ. 

Lemma 2.2. [14] If ℜ is a semiprime ring, then the center of a nonzero ideal of ℜ is contained in the center of 

ℜ. 

3. Main Results 

This section investigates the aforesaid commutativity conditions for homoderivations in the semiprime ring. 

Theorem 3.1. Let ℜ be a semiprime ring and ℑ a nonzero ideal of ℜ. Then, ℜ contains a nonzero central ideal 

if ℜ admits a nonzero homoderivation 𝛿 on ℑ such that 𝛿(ℑ) ⊆ 𝑍.  

PROOF.  

By the hypothesis, we have 

𝛿(𝑣1) ∈ 𝑍, for all 𝑣1 ∈ ℑ 

Commuting this term with 𝑟 ∈ ℜ, we obtain that 

[𝛿(𝑣1), 𝑟]  = 0, for all 𝜐₁ ∈ ℑ, 𝑟 ∈ ℜ 

Replacing 𝑣1 by 𝑣1𝑣2, 𝑣2 ∈ ℑ, in this equation and using the hypothesis, we get 

𝛿(𝑣1)[𝑣2, 𝑟] + [𝑣1, 𝑟]𝛿(𝑣2) = 0 

Taking 𝑟 by 𝑣1, we obtain that 

𝛿(𝑣1)[𝑣2, 𝑣1] = 0 (1) 

Replacing 𝑣2 by 𝑣2𝑟, 𝑟 ∈ ℜ, in the last equation and using Equation 1, we have 

𝛿(𝑣1)𝑣2[𝑟, 𝑣1] = 0, for all 𝑣1, 𝑣2 ∈ ℑ, 𝑟 ∈ ℜ (2) 

Taking 𝑣2 by [𝑟, 𝑣1]𝑡𝛿(𝑣1), 𝑡 ∈ ℜ, we observe that 

𝛿(𝑣1)[𝑟, 𝑣1]𝑡𝛿(𝑣1)[𝑟, 𝑣1] = 0 

and 
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𝛿(𝑣1)[𝑟, 𝑣1]ℜ 𝛿(𝑣1)[𝑟, 𝑣1] = (0) 

By the semiprimeness of ℜ, we get 

𝛿(𝑣1)[𝑟, 𝑣1] = 0 

That is, 

𝛿(𝑣1)ℜ[ℜ, 𝑣1] = (0), for all 𝑣1 ∈ ℑ 

Since ℜ is a semiprime ring, it must contain a family ℘ = {𝑃𝛼 | 𝛼 ∈ Λ} of prime ideals such that ⋂ 𝑃𝛼𝛼∈Λ =

{0}. If 𝑃 is a typical member of ℘ and 𝑣1 ∈ ℑ, we have [ℜ, 𝑣1] ⊆ 𝑃 or 𝛿(𝑣1) ⊆ 𝑃 by Proposition 2.1 (ii). 

Define two additive subgroups ℒ = {𝑣1 ∈ ℑ | [ℜ, 𝑣1] ⊆ 𝑃} and ℱ = {𝑣1 ∈ ℑ | 𝛿(𝑣1) ⊆ 𝑃}. 

It is clear that ℑ = ℒ ∪ ℱ. Since a group cannot be a union of two of its subgroups, either ℒ = ℑ or ℱ = ℑ. 

Therefore, we have 

[ℜ, ℑ] ⊆ 𝑃 or 𝛿(ℑ) ⊆ 𝑃 

Thus, both cases together yield 

[ℜ, ℑ]𝛿(ℑ) ⊆ 𝑃, for any 𝑃 ∈ ℘ 

Therefore, 

[ℜ, ℑ]𝛿(ℑ) ⊆  ⋂ 𝑃𝛼

𝛼∈Λ

= {0} 

and  

[ℜ, ℑ]𝛿(ℑ) = (0) 

Hence, 

[ℜ, ℜℑ𝛿(ℑ)ℜ]ℜℜℑ𝛿(ℑ)ℜ = (0) 

This implies that [ℜ, 𝛱]ℜ𝛱 = (0) where 𝛱 = ℜℑ𝛿(ℑ)ℜ is a nonzero ideal of ℜ since 𝛿(ℑ) ≠ (0). Then, 

[ℜ, 𝛱]ℜ[ℜ, 𝛱] = (0) 

By the semiprimeness of ℜ, we get [ℜ, 𝛱] = (0). Hence, 𝛱 ⊆ 𝑍. We conclude that ℜ contains a nonzero 

central ideal. 

The theorem below is proved for prime rings in Theorem 5 [15]. Here, it is generalized using semiprime rings. 

Theorem 3.2. Let ℜ be a semiprime ring and ℑ a nonzero ideal of ℜ. Then, ℜ contains a nonzero central ideal, 

if ℜ admits a nonzero homoderivation δ on ℑ such that 

i. 𝛿([ℑ, ℑ]) = (0) or 

ii. [𝛿(ℑ), ℑ] ⊆ 𝑍 or 

iii. [𝛿(ℑ), 𝛿(ℑ)] = (0), ℑ𝛿2(ℑ) ≠ (0), and 𝛿(ℑ) ⊆ ℑ 

PROOF. 

i. By the hypothesis, we have 

𝛿([𝑣1, 𝑣2]) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣1 in this equation, we get 

𝛿([𝑣1, 𝑣2]𝑣1) = 0 

Since 𝛿 is a homoderivation, we have 
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𝛿([𝑣1, 𝑣2])𝛿(𝑣1) + 𝛿([𝑣1, 𝑣2])𝑣1 + [𝑣1, 𝑣2]𝛿(𝑣1) = 0 

By the hypothesis, we get 

[𝑣1, 𝑣2]𝛿(𝑣1) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Using the same arguments in the proof of Theorem 3.1, we find that ℜ contains a nonzero central ideal. 

ii. By the hypothesis, we get 

[𝛿(𝑣1), 𝑣2] ∈ 𝑍, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, 

[[𝛿(𝑣1), 𝑣2], 𝑟] = 0, for all 𝑣1, 𝑣2 ∈ ℑ, 𝑟 ∈ ℜ 

Replacing 𝑣2 by 𝛿(𝑣1)𝑣2 in the last equation and using this equation, we have 

0 = [𝛿(𝑣1)[𝛿(𝑣1), 𝑣2], 𝑟] = [𝛿(𝑣1), 𝑟][𝛿(𝑣1), 𝑣2] 

Taking 𝑟 by 𝑣2𝑟 in this equation, we see that 

[𝛿(𝑣1), 𝑣2]𝑟[𝛿(𝑣1), 𝑣2] = 0 

By the semiprimeness of ℜ, we get 

[𝛿(𝑣1), 𝑣2] = 0 

That is, 𝛿(𝑣1) ∈ 𝑍(ℑ), for all 𝑣1 ∈ ℑ. By Lemma 2.2, we get 𝛿(𝑣1) ∈ 𝑍, for all 𝑣1 ∈ ℑ. By Theorem 3.1, we 

conclude that ℜ contains a nonzero central ideal. 

iii. By the hypothesis, we get 

[𝛿(𝑣1), 𝛿(𝑣2)] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Taking 𝑣2 by 𝑣2𝛿(𝑣1) in this equation and using this equation, we have 

[𝛿(𝑣1), 𝑣2]𝛿2(𝑣1) = 0 

Replacing 𝑣2 by 𝑟𝑣2, 𝑟 ∈ ℜ in the last equation and using this equation, we have 

[𝛿(𝑣1), 𝑟]𝑣2𝛿2(𝑣1) = 0 

That is, 

[𝛿(𝑣1), ℜ]ℜℑ𝛿2(𝑣1) = (0), for all 𝑣1 ∈ ℑ 

Since ℜ is a semiprime ring, we must contain a family ℘ = {𝑃𝛼 | 𝛼 ∈ Λ} of prime ideals such that ⋂ 𝑃𝛼𝛼∈Λ =

{0}. If 𝑃 is a typical member of ℘ and 𝑣1 ∈ ℑ, by Proposition 2.1 (ii), we have 

[𝛿(𝑣1), ℜ] ⊆ 𝑃 or ℑ𝛿2(𝑣1) ⊆ 𝑃 

Define two additive subgroups  

ℒ = {𝑣1 ∈ ℑ | [𝛿(𝑣1), ℜ] ⊆ 𝑃} and ℱ = {𝑣1 ∈ ℑ | ℑ𝛿2(𝑣1) ⊆ 𝑃} 

It is clear that ℑ = ℒ ∪ ℱ. Since a group cannot be a union of its two subgroups, either ℒ = ℑ or ℱ = ℑ. Then,  

[𝛿(ℑ), ℜ] ⊆ 𝑃 or ℑ𝛿2(ℑ) ⊆ 𝑃 

Thus, both cases together yield 

[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) ⊆ 𝑃, for any 𝑃 ∈ ℘ 

Therefore, 
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[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) ⊆ ⋂ 𝑃𝛼

𝛼∈Λ

= {0} 

and 

[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) = (0) 

That is, 

(0) = [𝛿(ℑℑ), ℜ]ℑ𝛿2(ℑ) 

 = [𝛿(ℑ)𝛿(ℑ) + 𝛿(ℑ)ℑ + ℑ𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) 

 = [𝛿(ℑ)𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) + [𝛿(ℑ)ℑ, ℜ]ℑ𝛿2(ℑ) + [ℑ𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) 

 = [𝛿(ℑ), ℜ]𝛿(ℑ)ℑ𝛿2(ℑ) + 𝛿(ℑ)[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) + [𝛿(ℑ)ℑ, ℜ]ℑ𝛿2(ℑ) + ℑ[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) 

  +[ℑ, ℜ]𝛿(ℑ)ℑ𝛿2(ℑ) 

Using 𝛿(ℑ) ⊆ ℑ, we have 

[𝛿(ℑ), ℜ]𝛿(ℑ)ℑ𝛿2(ℑ) + 𝛿(ℑ)[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) + [𝛿(ℑ)ℑ, ℜ]ℑ𝛿2(ℑ) + ℑ[𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) + [𝛿(ℑ), ℜ]𝛿(ℑ)ℑ𝛿2(ℑ) = (0) 

Since  [𝛿(ℑ), ℜ]ℑ𝛿2(ℑ) = (0), we get 

[𝛿(ℑ)ℑ, ℜ]ℑ𝛿2(ℑ) = (0) 

This implies that 

[𝛿(ℑ𝛿(ℑ))ℑ, ℜ]ℑ𝛿2(ℑ) = (0) 

and 

[ℑ𝛿2(ℑ)ℑ, ℜ]ℑ𝛿2(ℑ) = (0) 

Hence,  

[ℑ𝛿2(ℑ)ℑ, ℜ]ℜℑ𝛿2(ℑ)ℑ = (0) 

This implies that [𝛱, ℜ]ℜ𝛱 = (0) where 𝛱 = ℑ𝛿2(ℑ)ℑ is a nonzero ideal of ℜ since ℑ𝛿2(ℑ) ≠ (0). Then, 

[𝛱, ℜ]ℜ[𝛱, ℜ] = (0) 

By the semiprimeness of ℜ, we get [𝛱, ℜ] = (0). Hence, 𝛱 ⊆ 𝑍. We conclude that ℜ contains a nonzero 

central ideal. 

The proof of the following result differs from that of Theorem 2.2 in [7]. 

Corollary 3.3. Let ℜ be a semiprime ring, ℑ a nonzero ideal of ℜ, and 𝛿 a nonzero and zero-power valued 

homoderivation on ℑ. If 𝛿 is an SCP on ℑ, then ℜ contains a nonzero central ideal. 

PROOF.  

By the hypothesis, we get 

[𝛿(𝑣1), 𝛿(𝑣2)] = [𝑣1, 𝑣2], for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in the last equation, we have 

[𝛿(𝑣1), 𝛿(𝑣2)]𝛿(𝑣3) + 𝛿(𝑣2)[𝛿(𝑣1), 𝛿(𝑣3)] + [𝛿(𝑣1), 𝛿(𝑣2)]𝑣3 + 𝛿(𝑣2)[𝛿(𝑣1), 𝑣3] + [𝛿(𝑣1), 𝑣2]𝛿(𝑣3) + 𝑣2[𝛿(𝑣1), 𝛿(𝑣3)] = [𝑣1, 𝑣2]𝑣3 + 𝑣2[𝑣1, 𝑣3] 

Using the hypothesis, we obtain that 

[𝑣1, 𝑣2]𝛿(𝑣3) + 𝛿(𝑣2)[𝑣1, 𝑣3] + 𝛿(𝑣2)[𝛿(𝑣1), 𝑣3] + [𝛿(𝑣1), 𝑣2]𝛿(𝑣3) = 0 
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That is, 

[𝑣1 + 𝛿(𝑣1), 𝑣2]𝛿(𝑣3) + 𝛿(𝑣2)[𝛿(𝑣1) + 𝑣1, 𝑣3] = 0 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑣1) = 0, for all 𝑣1 ∈ ℑ. 

Replacing 𝑣1 by 𝑣1 − 𝛿(𝑣1) + 𝛿2(𝑣1) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣1) in this equation, we get 

[𝑣1, 𝑣2]𝛿(𝑣3) + 𝛿(𝑣2)[𝑣1, 𝑣3] = 0 

Replacing 𝑣3 by 𝑣1 in the last equation, we get 

[𝑣1, 𝑣2]𝛿(𝑣1) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

The rest of the proof is the same as Equation 1. This completes the proof. 

Theorem 3.4. Let ℜ be a semiprime ring and ℑ a nonzero ideal of ℜ. Then, ℜ contains a nonzero central ideal, 

if ℜ admits a nonzero homoderivation δ on ℑ such that 

i. 𝛿(ℑ ∘ ℑ) = (0) or 

ii. 𝛿(ℑ) ∘ ℑ ⊆ 𝑍 

PROOF. 

i. We have 

𝛿(𝑣1 ∘ 𝑣2) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Relacing 𝑣2 by 𝑣2𝑣1 in the above equation, we get 

𝛿(𝑣1 ∘ 𝑣2)𝛿(𝑣1) + 𝛿(𝑣1 ∘ 𝑣2)𝑣1 + (𝑣1 ∘ 𝑣2)𝛿(𝑣1) = 0 

Using the hypothesis, we get 

(𝑣1 ∘ 𝑣2)𝛿(𝑣1) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Taking 𝑣2 by 𝑟𝑣2, 𝑟 ∈ ℜ, in the last equation, we get 

[𝑣1, 𝑟]𝑣2𝛿(𝑣1) = 0, for all 𝑣1, 𝑣2 ∈ ℑ, 𝑟 ∈ ℜ 

Using the same arguments in the proof of Theorem 3.1, we find that ℜ contains a nonzero central ideal. 

ii. We get 

𝛿(𝑣1) ∘ 𝜐₂ ∈ 𝑍, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in this equation, we have 

(𝛿(𝑣1) ∘ 𝑣2)𝑣3 + 𝑣2[𝑣3, 𝛿(𝑣1)] ∈ 𝑍 

That is, 

[(𝛿(𝑣1) ∘ 𝑣2)𝑣3 + 𝑣2[𝑣3, 𝛿(𝑣1)], 𝑟] = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

and 

[(𝛿(𝑣1) ∘ 𝑣2), 𝑟]𝑣3 + (𝛿(𝑣1) ∘ 𝑣2)[𝑣3, 𝑟] + 𝑣2[[𝑣3, 𝛿(𝑣1)], 𝑟] + [𝑣2, 𝑟][𝑣3, 𝛿(𝑣1)] = 0 

 Using the hypothesis, we observe that 

(𝛿(𝑣1) ∘ 𝑣2)[𝑣3, 𝑟] + 𝑣2[[𝑣3, 𝛿(𝑣1)], 𝑟] + [𝑣2, 𝑟][𝑣3, 𝛿(𝑣1)] = 0 

Taking 𝑟 by 𝑣3 in the above equation, we have 

𝑣2[[𝑣3, 𝛿(𝑣1)], 𝑣3] + [𝑣2, 𝑣3][𝑣3, 𝛿(𝑣1)] = 0 

Replacing 𝑣2 by 𝛿(𝑣1)[𝛿(𝑣1), 𝑣3] in the last equation, we get 
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𝛿(𝑣1)[𝛿(𝑣1), 𝑣3][[𝑣3, 𝛿(𝑣1)], 𝑣3] + [𝛿(𝑣1)[𝛿(𝑣1), 𝑣3], 𝑣3][𝑣3, 𝛿(𝑣1)] = 0 

That is, 

𝛿(𝑣1)[𝛿(𝑣1), 𝑣3][[𝑣3, 𝛿(𝑣1)], 𝑣3] + 𝛿(𝑣1)[[𝛿(𝑣1), 𝑣3], 𝑣3][𝑣3, 𝛿(𝑣1)] + [𝛿(𝑣1), 𝑣3][𝛿(𝑣1), 𝑣3][𝑣3, 𝛿(𝑣1)] = 0 

Using the above equation, we get 

[𝛿(𝑣1), 𝑣3][𝛿(𝑣1), 𝑣3][𝑣3, 𝛿(𝑣1)] = 0 

and 

([𝛿(𝑣1), 𝑣3])3 = 0 

The semiprime ring contains no nonzero nilpotent elements. Thus, [𝛿(𝑣1), 𝑣3] = 0, for all 𝑣1, 𝑣3 ∈ ℑ. By 

Theorem 3.2 (ii), we get ℜ contains a nonzero central ideal. 

Theorem 3.5. Let ℜ be a semiprime ring and ℑ a nonzero ideal of ℜ. Then, ℜ contains a nonzero central ideal, 

if ℜ admits a nonzero and zero-power valued homoderivation δ on ℑ such that, for all 𝑣1, 𝑣2 ∈ ℑ,  

i. 𝛿(𝑣1)𝛿(𝑣2) = 𝑣1𝑣2 or 

ii. 𝛿(𝑣1)𝛿(𝑣2) = 𝑣2𝑣1 or 

iii. 𝛿(𝑣1)𝛿(𝑣2) = [𝑣1, 𝑣2] or 

iv. 𝛿(𝑣1)𝛿(𝑣2) = 𝑣1 ∘ 𝑣2 or 

v. 𝛿([𝑣1, 𝑣2]) = [𝛿(𝑣1), 𝑣2] or 

vi. 𝛿(𝑣1 ∘ 𝑣2) = 𝛿(𝑣1) ∘ 𝑣2 

PROOF. 

i. By the hypothesis, we get 

𝛿(𝑣1)𝛿(𝑣2) = 𝑣1𝑣2, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in this equation, we have 

𝛿(𝑣1)𝛿(𝑣2)𝑣3 + 𝛿(𝑣1)𝛿(𝑣2)𝛿(𝑣3) + 𝛿(𝑣1)𝑣2𝛿(𝑣3) = 𝑣1𝑣2𝑣3 

Using the hypothesis, we see that 

𝑣1𝑣2𝛿(𝑣3) + 𝛿(𝑣1)𝑣2𝛿(𝑣3) = 0 (3) 

That is, 

(𝑣1 + 𝛿(𝑣1))𝑣2𝛿(𝑣3) = 0 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛(𝑥) > 1 such that (𝛿𝑛(𝑥))(𝑥) = 0, for all 𝑥 ∈ ℑ. 

Replacing 𝑣1 by 𝑣1 − 𝛿(𝑣1) + 𝛿2(𝑣1) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣1) in this equation, we get 

𝑣1𝑣2𝛿(𝑣3) = 0 

Replacing 𝑣1 by 𝑣1𝑣2𝛿(𝑣3)𝑟𝑣1 in this equation, we get 

𝑣1𝑣2𝛿(𝑣3)𝑟𝑣1𝑣2𝛿(𝑣3) = 0 

That is, 

𝑣1𝑣2𝛿(𝑣3)ℜ𝑣1𝑣2𝛿(𝑣3) = (0) 

Since ℜ is a semiprime ring, we have 
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𝑣1𝑣2𝛿(𝑣3) = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣1 by [𝑟, 𝑣3] in the last equation, we have 

[𝑟, 𝑣3]𝑣2𝛿(𝑣3) = 0, for all 𝑣2, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

and 

[ℜ, 𝑣3]ℑ𝛿(𝑣3) = 0, for all 𝑣3 ∈ ℑ 

The rest of the proof is the same as Equation 2. This completes the proof. 

ii. By the hypothesis, we have 

𝛿(𝑣1)𝛿(𝑣2) = 𝑣2𝑣1, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in this equation, we get 

𝛿(𝑣1)𝛿(𝑣2)𝛿(𝑣3) + 𝛿(𝑣1)𝛿(𝑣2)𝑣3 + 𝛿(𝑣1)𝑣2𝛿(𝑣3)  = 𝑣2𝑣3𝑣1 

and 

𝛿(𝑣1)𝛿(𝑣2)𝛿(𝑣3) + 𝛿(𝑣1)𝛿(𝑣2)𝑣3 + 𝛿(𝑣1)𝑣2𝛿(𝑣3)  = 𝑣2𝑣1𝑣3 − 𝑣2𝑣1𝑣3 + 𝑣2𝑣3𝑣1 

Using the hypothesis, we obtain that 

𝛿(𝑣1)𝑣2𝛿(𝑣3) = −𝑣2𝑣1𝑣3 + 𝑣2𝑣3𝑣1 − 𝑣2𝑣1𝛿(𝑣3) (4) 

Replacing 𝑣2 by 𝑟𝑣2, 𝑟 ∈ ℜ, in this equation, we obtain that 

𝛿(𝑣1)𝑟𝑣2𝛿(𝑣3) = −𝑟𝑣2𝑣1𝑣3 + 𝑟𝑣2𝑣3𝑣1 − 𝑟𝑣2𝑣1𝛿(𝑣3) 

Using Equation 4 in this equation, we get 

𝛿(𝑣1)𝑟𝑣2𝛿(𝑣3) = 𝑟𝛿(𝑣1)𝑣2𝛿(𝑣3), for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

Replacing 𝑟 by 𝛿(𝑣3) in the above equation, we find that 

𝛿(𝑣1)𝛿(𝑣3)𝑣2𝛿(𝑣3) = 𝛿(𝑣3)𝛿(𝑣1)𝑣2𝛿(𝑣3) 

Using the hypothesis, we observe that 

𝑣3𝑣1𝑣2𝛿(𝑣3) = 𝑣1𝑣3𝑣2𝛿(𝑣3), for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

That is, 

[𝑣1, 𝑣3]𝑣2𝛿(𝑣3) = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣1 by 𝑟𝑣1 in the last equation and using this equation, we get 

[𝑟, 𝑣3]𝑣1𝑣2𝛿(𝑣3) = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

Taking 𝑣1 by 𝑣2𝛿(𝑣3)𝑡[𝑟, 𝑣3], 𝑡 ∈ ℜ, in the last equation, we observe that 

[𝑟, 𝑣3]𝑣2𝛿(𝑣3)𝑡[𝑟, 𝑣3]𝑣2𝛿(𝑣3) = 0 

and 

[𝑟, 𝑣3]𝑣2𝛿(𝑣3)ℜ[𝑟, 𝑣3]𝑣2𝛿(𝑣3) = (0) 

By the semiprimeness of ℜ, we get 

[𝑟, 𝑣3]𝑣2𝛿(𝑣3) = 0, for all 𝑣2, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

The rest of the proof is the same as Equation 2. This completes the proof. 

iii. By the hypothesis, we get 
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𝛿(𝑣1)𝛿(𝑣2) = [𝑣1, 𝑣2], for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣1 by 𝑣1𝑣3 in this equation, we have 

𝛿(𝑣1)𝛿(𝑣3)𝛿(𝑣2) + 𝛿(𝑣1)𝑣3𝛿(𝑣2) + 𝑣1𝛿(𝑣3)𝛿(𝑣2) = [𝑣1, 𝑣2]𝑣3 + 𝑣1[𝑣3, 𝑣2] 

Using the hypothesis, we see that 

[𝑣1, 𝑣3]𝛿(𝑣2) + 𝛿(𝑣1)𝑣3𝛿(𝑣2) = [𝑣1, 𝑣2]𝑣3 

Taking 𝑣2 by 𝑣1 in the above equation, we find that 

[𝑣1, 𝑣3]𝛿(𝑣1) + 𝛿(𝑣1)𝑣3𝛿(𝑣1) = 0 

By the hypothesis, we have 

𝛿(𝑣1)𝛿(𝑣3)𝛿(𝑣1) + 𝛿(𝑣1)𝑣3𝛿(𝑣1) = 0 (5) 

That is, 

𝛿(𝑣1)(𝛿(𝑣3) + 𝑣3)𝛿(𝑣1) = 0 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. 

Replacing 𝑣3 by 𝑣3 − 𝛿(𝑣3) + 𝛿2(𝑣3) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣3) in this equation, we get 

𝛿(𝑣1)𝑣3𝛿(𝑣1) = 0 

That is, 

𝛿(𝑣1)𝑣3ℜ𝛿(𝑣1)𝑣3 = (0), for all 𝑣1, 𝑣3 ∈ ℑ 

By the semiprimeness of ℜ, we have 

𝛿(𝑣1)𝑣3 = 0, for all 𝑣1, 𝑣3 ∈ ℑ 

Taking 𝑣3 by 𝑟[𝛿(𝑣1), 𝑣3], 𝑟 ∈ ℜ, in this equation, we obtain that 

𝛿(𝑣1)𝑟[𝛿(𝑣1), 𝑣3] = 0, for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ (6) 

Replacing 𝑟 by 𝑣3𝑟 in Equation 6, we find that 

𝛿(𝑣1)𝑣3𝑟[𝛿(𝑣1), 𝑣3] = 0, for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ (7) 

Multiplying Equation 6 on the left by 𝑣3, we have 

𝑣3𝛿(𝑣1)𝑟[𝛿(𝑣1), 𝑣3] = 0, for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ (8) 

Subtracting Equation 7 from Equation 8, we arrive at 

[𝛿(𝑣1), 𝑣3]𝑟[𝛿(𝑣1), 𝑣3] = 0 

Since ℜ is a semiprime ring, we get [𝛿(𝑣1), 𝑣3] = 0, for all 𝑣1, 𝑣3 ∈ ℑ. By Theorem 3.2 (ii), we have ℜ 

contains a nonzero central ideal. 

iv. By the hypothesis, we have 

𝛿(𝑣1)𝛿(𝑣2) = 𝑣1 ∘ 𝑣2, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣1 by 𝑣1𝑣3, 𝑣3 ∈ ℑ, in this equation, we get 

𝛿(𝑣1)𝛿(𝑣3)𝛿(𝑣2) + 𝛿(𝑣1)𝑣3𝛿(𝑣2) + 𝑣1𝛿(𝑣3)𝛿(𝑣2) = 𝑣1(𝑣3 ∘ 𝑣2) − [𝑣1, 𝑣2]𝑣3 

Using the hypothesis, we obtain that 
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𝛿(𝑣1)𝛿(𝑣3)𝛿(𝑣2) + 𝛿(𝑣1)𝑣3𝛿(𝑣2) = −[𝑣1, 𝑣2]𝑣3 

Replacing 𝑣2 by 𝑣1 in this equation, we obtain that 

𝛿(𝑣1)𝛿(𝑣3)𝛿(𝑣1) + 𝛿(𝑣1)𝑣3𝛿(𝑣1) = 0 

The rest of the proof is the same as Equation 5. This completes the proof. 

v. We obtain that 

𝛿([𝑣1, 𝑣2]) = [𝛿(𝑣1), 𝑣2], for all 𝑣1, 𝑣2 ∈ ℑ 

This implies that 

[𝛿(𝑣1), 𝛿(𝑣2)] + [𝛿(𝑣1), 𝑣2] + [𝑣1, 𝛿(𝑣2)] = [𝛿(𝑣1), 𝑣2], for all 𝑣1, 𝑣2 ∈ ℑ 

and 

[𝛿(𝑣1), 𝛿(𝑣2)] + [𝑣1, 𝛿(𝑣2)] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, 

[𝛿(𝑣1) + 𝑣1, 𝛿(𝑣2)] = 0 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. 

Replacing 𝑣1 by 𝑣1 − 𝛿(𝑣1) + 𝛿2(𝑣1) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣1) in this equation, we get 

[𝑣1, 𝛿(𝑣2)] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Theorem 3.2 (ii) concludes that ℜ contains a nonzero central ideal. 

vi. We get 

𝛿(𝑣1 ∘ 𝑣2) = 𝛿(𝑣1) ∘ 𝑣2, for all 𝑣1, 𝑣2 ∈ ℑ 

If this expression is edited, we have 

𝛿(𝑣1) ∘ 𝛿(𝑣2) + 𝛿(𝑣1) ∘ 𝑣2 + 𝑣1 ∘ 𝛿(𝑣2) = 𝛿(𝑣1) ∘ 𝑣2 

and 

𝛿(𝑣1) ∘ 𝛿(𝑣2) + 𝑣1 ∘ 𝛿(𝑣2) = 0 

That is, 

(𝛿(𝑣1) + 𝑣1) ∘ 𝛿(𝑣2) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Since 𝛿 is zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. Replacing 

𝑣1 by 𝑣1 − 𝛿(𝑣1) + 𝛿2(𝑣1) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣1) in this equation, we obtain that 

𝑣1 ∘ 𝛿(𝑣2) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

By Theorem 3.4 (ii), we get ℜ contains a nonzero central ideal. 

Theorem 3.6. Let ℜ be a 2-torsion free semiprime ring and ℑ a nonzero ideal of ℜ. Then, ℜ contains a nonzero 

central ideal, if ℜ admits a nonzero and zero-power valued homoderivation δ on ℑ such that, for all 𝑣1, 𝑣2 ∈

ℑ, 

i. 𝑣1𝛿(𝑣2) + 𝑣1𝑣2 ∈ 𝑍 or 

ii. 𝑣1𝛿(𝑣2) + 𝑣2𝑣1 = 0 or 

iii. 𝑣1𝛿(𝑣2) ± 𝑣1 ∘ 𝑣1 = 0 or 

iv. [𝛿(𝑣1), 𝑣2] ± 𝑣1𝑣2 = 0 or 
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v. [𝛿(𝑣1), 𝑣2] ± 𝑣2𝑣1 = 0 

PROOF. 

i. By the hypothesis, we get 

𝑣1𝛿(𝑣2) + 𝑣1𝑣2 ∈ 𝑍, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, 

𝑣1(𝛿(𝑣2) + 𝑣2) ∈ 𝑍, for all 𝑣1, 𝑣2 ∈ ℑ 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. 

Replacing 𝑣2 by 𝑣2 − 𝛿(𝑣2) + 𝛿2(𝑣2) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣2) in this equation, we obtain that 

𝑣1𝑣2 ∈ 𝑍, for all 𝑣1, 𝑣2 ∈ ℑ 

Commuting this term with 𝑟 ∈ ℜ, we obtain that 

0 = [𝑣1𝑣2, 𝑟] = [𝑣1, 𝑟]𝑣2 + 𝑣1[𝑣2, 𝑟] 

Replacing 𝑣1 by 𝑣3𝑣1, 𝑣3 ∈ ℑ, in this equation and using this equation, we get 

[𝑣3, 𝑟]𝜐₁𝜐₂ = 0 

Taking 𝑣2 by 𝑡[𝑣3, 𝑟]𝑣1 in this equation, we have 

[𝑣3, 𝑟]𝑣1𝑡[𝑣3, 𝑟]𝑣1 = 0, for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟, 𝑡 ∈ ℜ 

That is, 

[𝑣3, 𝑟]𝑣1ℜ[𝑣3, 𝑟]𝑣1 = (0), for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

Since ℜ is a semiprime, we have 

[𝑣3, 𝑟]𝑣1 = 0, for all 𝑣1, 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ 

Replacing 𝑣1 by 𝑡[𝑣3, 𝑟] in the last equation, we get 

[𝑣3, 𝑟]𝑡[𝑣3, 𝑟] = 0, for all 𝑣3 ∈ ℑ, 𝑟, 𝑡 ∈ ℜ 

By the semiprimeness of ℜ, we have [𝑣3, 𝑟] = 0, for all 𝑣3 ∈ ℑ, 𝑟 ∈ ℜ. Thus, ℑ ⊆ 𝑍. We conclude that ℜ 

contains a nonzero central ideal. 

ii. We get 

𝑣1𝛿(𝑣2) + 𝑣2𝑣1 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣1𝑣2, 𝑣2 ∈ ℑ, in this equation and using this equation, we have 

𝑣1𝛿(𝑣1)(𝛿(𝑣2) + 𝑣2) = 0 

Since 𝛿 is a zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. Replacing 

𝑣2 by 𝑣2 − 𝛿(𝑣2) + 𝛿2(𝑣2) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣2) in this equation, we obtain that 

𝑣1𝛿(𝑣1)𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Taking 𝑣2 by 𝑟𝑣1𝛿(𝑣1), 𝑟 ∈ ℜ, in the last equation, we have 

𝑣1𝛿(𝑣1)𝑟𝑣1𝛿(𝑣1) = 0, for all 𝑣1 ∈ ℑ, 𝑟 ∈ ℜ 

By the semiprimeness of ℜ, we get 

𝑣1𝛿(𝑣1) = 0, for all 𝑣1 ∈ ℑ (9) 

By the hypothesis, we get 
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𝑣1𝛿(𝑣1) + 𝑣1
2 = 0, for all 𝑣1 ∈ ℑ 

Using Equation 9, we obtain that 

𝑣1
2 = 0, for all 𝑣1 ∈ ℑ (10) 

Replacing 𝑣1 by 𝑣1 + 𝑣2 in this equation, we observe that 

𝑣1 ∘ 𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in the above expression and using this, we get 

[𝑣1, 𝑣2]𝑣3 = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣3 by 𝑟[𝑣1, 𝑣2] in this equation, we have 

[𝑣1, 𝑣2]ℜ[𝑣1, 𝑣2] = (0) 

Since ℜ is a semiprime ring, we get 

[𝑣1, 𝑣2] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, [ℑ, ℑ] = (0). By Lemma 2.2, we get ℑ ⊆ 𝑍. We conclude that ℜ contains a nonzero central ideal. This 

completes the proof.  

iii. By the hypothesis, we get 

𝑣1𝛿(𝑣2) ± 𝑣1 ∘ 𝑣2 = 0 

Replacing 𝑣2 by 𝑣2𝑣1 in this equation, we get 

𝑣1𝛿(𝑣2)𝛿(𝑣1) + 𝑣1𝛿(𝑣2)𝑣1 + 𝑣1𝑣2𝛿(𝑣1) ± (𝑣1 ∘ 𝑣2)𝑣1 = 0 

Using the hypothesis, we get 

𝑣1𝛿(𝑣2)𝛿(𝑣1) + 𝑣1𝑣2𝛿(𝑣1) = 0 

That is, 

𝑣1(𝛿(𝑣2) + 𝑣2)𝛿(𝑣1) = 0 

Since 𝛿 is zero-power valued on ℑ, there exists an integer 𝑛 > 1 such that 𝛿𝑛(𝑥) = 0, for all 𝑥 ∈ ℑ. Replacing 

𝑣2 by 𝑣2 − 𝛿(𝑣2) + 𝛿2(𝑣2) + ⋯ + (−1)𝑛−1𝛿𝑛−1(𝑣2) in this equation, we obtain that 

𝑣1𝑣2𝛿(𝑣1) = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Taking 𝑣2 by 𝛿(𝑣1)𝑟𝑣1, 𝑟 ∈ ℜ, in the above equation, we see that 

𝑣1𝛿(𝑣1)𝑟𝑣1𝛿(𝑣1) = 0 

By the semiprimeness of ℜ, we have 

𝑣1𝛿(𝑣1) = 0, for all 𝑣1 ∈ ℑ 

By the hypothesis and using this equation, we have 

𝑣1 ∘ 𝑣1 = 0, for all 𝑣1 ∈ ℑ (11) 

and 

2𝑣1
2 = 0, for all 𝑣1 ∈ ℑ 

Since ℜ is a 2-torsion free, we have 

𝑣1
2 = 0, for all 𝑣1 ∈ ℑ 

Replacing 𝑣1 by 𝑣1 + 𝑣2 in this equation, we see that 
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𝑣1 ∘ 𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in the above expression and using this, we get 

[𝑣1, 𝑣2]𝑣3 = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣3 by 𝑟[𝑣1, 𝑣2] in this equation, we have 

[𝑣1, 𝑣2]ℜ[𝑣1, 𝑣2] = (0) 

Since ℜ is a semiprime ring, we get 

[𝑣1, 𝑣2] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, [ℑ, ℑ] = (0). By Lemma 2.2, we get ℑ ⊆ 𝑍. We conclude that ℜ contains a nonzero central ideal. 

iv. We get 

[𝛿(𝑣1), 𝑣2] ± 𝑣1𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Taking 𝑣2 by 𝑣2𝑣1 in this equation, we get 

[𝛿(𝑣1), 𝑣2]𝑣1 + 𝑣2[𝛿(𝑣1), 𝑣1] ± 𝑣1𝑣2𝑣1 = 0 

By the hypothesis, we get 

𝑣2[𝛿(𝑣1), 𝑣1] = 0, for all 𝑣1, 𝑣2 ∈ ℑ (12) 

Replacing 𝑣2 by [𝛿(𝑣1), 𝑣1]𝑟, 𝑟 ∈ ℜ, in this equation, we get 

[𝛿(𝑣1), 𝑣1]𝑟[𝛿(𝑣1), 𝑣1] = 0 

Since ℜ is a semiprime ring, we have 

[𝛿(𝑣1), 𝑣1] = 0, for all 𝑣1 ∈ ℑ 

By the hypothesis, we get 

𝑣1
2 = 0, for all 𝑣1 ∈ ℑ 

Replacing 𝑣1 by 𝑣1 + 𝑣2 in this equation, we see that 

𝑣1 ∘ 𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in the above expression and using this, we get 

[𝑣1, 𝑣2]𝑣3 = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣3 by 𝑟[𝑣1, 𝑣2] in this equation, we have 

[𝑣1, 𝑣2]ℜ[𝑣1, 𝑣2] = (0) 

Since ℜ is a semiprime ring, we get 

[𝑣1, 𝑣2] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, [ℑ, ℑ] = (0). By Lemma 2.2, we get ℑ ⊆ 𝑍. We conclude that ℜ contains a nonzero central ideal. 

v. By the hypothesis, we get 

[𝛿(𝑣1), 𝑣2] ± 𝑣2𝑣1 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣1𝑣2 in this equation, we have 

𝑣1[𝛿(𝑣1), 𝑣2] + [𝛿(𝑣1), 𝑣1]𝑣2 ± 𝑣1𝑣2𝑣1 = 0 

That is, 
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[𝛿(𝑣1), 𝑣1]𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑟[𝛿(𝑣1), 𝑣1], 𝑟 ∈ ℜ, in this equation, we get 

[𝛿(𝑣1), 𝑣1]𝑟[𝛿(𝑣1), 𝑣1] = 0 

Since ℜ is a semiprime ring, we have 

[𝛿(𝑣1), 𝑣1] = 0, for all 𝑣1 ∈ ℑ 

By the hypothesis, we get 

𝑣1
2 = 0, for all 𝑣1 ∈ ℑ 

Replacing 𝑣1 by 𝑣1 + 𝑣2 in this equation, we see that 

𝑣1 ∘ 𝑣2 = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

Replacing 𝑣2 by 𝑣2𝑣3, 𝑣3 ∈ ℑ, in the above expression and using this, we get 

[𝑣1, 𝑣2]𝑣3 = 0, for all 𝑣1, 𝑣2, 𝑣3 ∈ ℑ 

Replacing 𝑣3 by 𝑟[𝑣1, 𝑣2] in this equation, we have 

[𝑣1, 𝑣2]ℜ[𝑣1, 𝑣2] = (0) 

Since ℜ is a semiprime ring, we get 

[𝑣1, 𝑣2] = 0, for all 𝑣1, 𝑣2 ∈ ℑ 

That is, [ℑ, ℑ] = (0). By Lemma 2.2, we get ℑ ⊆ 𝑍. We conclude that ℜ contains a nonzero central ideal. We 

complete the proof. 

Example 3.7. Let ℜ = {(
0 0 0
𝑎 0 𝑏
𝑐 0 0

) |𝑎, 𝑏, 𝑐 ∈ ℝ}, ℑ = {(
0 0 0
𝑎 0 0
𝑐 0 0

) |𝑎, 𝑏 ∈ ℝ}, and 𝛿: ℜ → ℜ be a map 

defined by 

δ (
0 0 0
𝑎 0 𝑏
𝑐 0 0

) = (
0 0 0
𝑎 0 0
𝑐 0 0

) 

Then, it is easy to verify that 𝛿 is an homoderivation of ℜ, ℑ  is an ideal of ℜ, and ℜ is not a semiprime ring. 

The commutativity conditions given in Theorem 3.5 are satisfied. However, we have ℑ ⊈ 𝑍.  We conclude 

that ℜ does not contain a nonzero central ideal. 

4. Conclusion 

The present study has shown some essential properties of a nonzero ideal of a semiprime ring with 

homoderivation. Moreover, it has exemplified the necessity of the hypotheses used in theorems. In future 

research, some well-known results in derivation can be applied to homoderivation and generalized 

homoderivation. Besides, the findings herein could help to uncover properties of homoderivations in Lie ideals 

or square-closed Lie ideals.  
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Abstract − This paper presents the roots of elliptic scator numbers in S1+n, which includes
both the fundamental 2π symmetry and the π-pair symmetry for n ≥ 2. Here, the scator
set S1+n is a subset of R1+n with the scator product and the multiplicative representation.
These roots are expressed in terms of both additive (rectangular) and multiplicative (polar)
variables. Additionally, the paper provides a comprehensive description of square roots in
S1+2, which includes a geometrical representation in three-dimensional space that provides a
clear visualization of the concept and makes it easier to understand and interpret. Finally,
the paper handles whether the aspects should be further investigated.
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1. Introduction

Due to the extra number of dimensions, hypercomplex number systems generally have a larger set of
roots than those obtained in the complex plane. However, the number of roots varies considerably
depending on the algebraic system [1]. The existence of roots and the obtention of their actual value
are two different problems, just as in polynomial real algebra. Formulae to find the roots in diverse
systems is subject to active research [2].

Scator algebra is an extension of complex algebra to higher dimensions where the real axis is unique,
but there can be an arbitrary number n of hyperimaginary units. In the scator context, the scalar
component corresponds to the real part, and each of the n director components corresponds to the
imaginary part of a different complex set. In this sense, there are n copies of the complex set embedded
in a 1+n dimensional scator algebra, just as in Clifford algebras. A geometric representation of scator
elements is possible in Argand type diagrams with the appropriate increase of extra imaginary axes. In
accordance with Froebenius Theorem and accord with other algebraic systems, not all group properties
can be satisfied for scators for n ≥ 2. Scator algebra is endowed with addition and product operations
and a main second-order involution. However, a peculiarity of the scator system is that the product
is generally not distributive over addition. The scator product definition gives rise to two branches,
elliptic and hyperbolic [3], that are, to some extent, related to Clifford algebras and higher dimensional
versions of complex and perplex algebras [4]. This communication is devoted to the description of
roots of elliptic scators, also referred to as imaginary or cuspheric scators.
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A general description of the roots of elliptic scators relies on two main theorems that give rise to the
Victoria equations in the multiplicative and additive representations. The former establishes that an
exponent 1

q distributes over the scator component factors. The latter translates this result to the
additive representation retaining the multiplicative (angle) variables. The Victoria equation in the
additive representation may be viewed as a higher dimensional version of the de Moivre theorem.
In [5], these theorems were presented, and several cases were expounded with particular emphasis in
the roots of unity. An asset of scator roots is that their number is always finite, contrasting with some
infinite solutions obtained in Clifford algebras [6].

In the present communication, the multiplicity of roots is treated in general in the multiplicative
(polar) and additive (rectangular) representations in Sections 2 and 3. Particular attention is given to
the π-pair symmetry overseen in the seminal publication [5]. The reader may choose to skip the two
initial sections in the first approach, where arbitrary S1+n dimensions and q roots are undertaken. In
the remaining manuscript, square roots in S1+2 are treated in detail. In Section 4, square roots in the
additive representation are expounded using multiplicative angle variables and additive rectangular
variables. In Section 5, the geometric representation of scators and their construction via the addition
or product of their components is described. In Subsection 5.1, the geometric visualization of the
square root in S1+2 is presented. Conclusions are drawn in the last section.

2. Scators Roots

Scator elements in the multiplicative representation are written as a product of exponentials

o
φ = φ0

n∏
j=1

eφj ěj ∈ S1+n

where the multiplicative scalar φ0 and the multiplicative director coefficients φj , for j from 1 to n ∈ N,
are real quantities and ěj /∈ R. The scator set S1+n is a subset of R1+n where the scator product
and the multiplicative representation exist. The product of two scators is evaluated by performing
the multiplicative scalars product and the addition of the multiplicative director coefficients with the
same director unit,

o
α

o
β =

(
α0

n∏
j=1

exp (αj ěj)
)(

β0

n∏
j=1

exp (βj ěj)
)

= α0β0

n∏
j=1

exp [(αj + βj) ěj ]

The components having the same director ěj satisfy the addition theorem for exponents. In contrast,
components with different director units ěl and ěm (l ̸= m) do not, i.e., exp (αlěl) exp (βměm) ̸=
exp (αlěl + βměm). An expression for the exponential of a scator with 1+2 components has been
derived in [7]. The conjugate of the scator o

φ = φ0
∏n

j=1 eφj ěj is obtained by taking the negative of

the director components o
φ

∗
≡ φ0

∏n
j=1 e−φj ěj . The magnitude of a scator o

φ is
∥∥ o
φ
∥∥ =

√
o
φ

o
φ

∗
= φ0, the

multiplicative scalar thus represents the scator magnitude. The multiplicative inverse o
φ

−1
= o

φ
∗∥∥ o

φ
∥∥−2

exists, if the scator magnitude is not zero. The additive representation of scator elements is

o
φ = f0 +

n∑
j=1

fj ěj

where the additive scalar component f0 and the additive director components fj , for j from 1 to n ∈ N,
are real quantities and ěj /∈ R. The scator set S1+n requires that the additive scalar component must
be different from zero, if two or more additive director components are not zero,

S1+n =
{

o
φ = f0 +

n∑
j=1

fj ěj : f0 ̸= 0 if ∃ fjfl ̸= 0, for any j ̸= l
}
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The multiplicative and additive representations are related by

o
φ = φ0

n∏
j=1

eφj ěj = φ0

n∏
k=1

cos (φk) + φ0

n∑
j=1

n∏
k ̸=j

cos (φk) sin (φj) ěj = f0 +
n∑

j=1
fj ěj

If f0 ̸= 0, then the magnitude in terms of additive variables is given by

∥∥ o
φ
∥∥ = |f0|

n∏
j=1

√√√√1 +
f2

j

f2
0

(1)

and if f0 = 0, then
∥∥ o
φ
∥∥ = |fj |. A constant magnitude generates the cusphere isometric surface. Other

relevant properties of elliptic scator algebra are summarized in [7].

In S1+1, the multiplicity of roots is due to the trigonometric functions 2π periodicity. Scators with a
single director component are isomorphic to the set of complex numbers, i.e., S1+1 ∼= C. Thus, the q

roots familiar from complex algebra are reproduced, for each ěj , if all the other director components
vanish. In S1+2 or higher dimensions (S1+n, n ≥ 2), the 2π trigonometric functions periodicity can
be applied to each of the n φj ’s. Then, there are q roots per each of the n hypercomplex director
directions. According to this reasoning, Corollary 1 in [5] stated incorrectly: “There are at most qn

different roots for a scator o
φ ∈ S1+n raised to the power 1

q ”. In scator algebra, when two or more hyper-
imaginary units are present, the arguments of two multiplicative components can be simultaneously
modified by π. Their product leaving the element invariant. This symmetry increases the multiplicity
of the roots. These assertions are formulated in the following propositions.

Definition 2.1. The π-pair transformation symmetry requires the simultaneous displacement by π of
the argument of two multiplicative director components of a scator element. Given o

φ = φ0
∏n

j=1 eφj ěj ∈
S1+n, a π-pair transformation o

φ → o
φ

′
is

o
φ

′
= φ0

n∏
j ̸=l,m

eφj ěj e(φl±π)ěle(φm±π)ěm

for any l, m pair from 1 to n.

Proposition 2.2. Elliptic scators are invariant under π-pair transformations.

Proof.
For the components ěl and ěm of a scator o

φ = φ0
∏n

j=1 eφj ěj ,

o
φ = φ0

n∏
j ̸=l,m

eφj ěj eφlěleφměm ∈ S1+n

Perform a π-pair displacement of the components ěl and ěm

o
φ

′
= φ0

n∏
j ̸=l,m

eφj ěj e(φl±π)ěle(φm±π)ěm = φ0

n∏
j ̸=l,m

eφj ěj eφlěleφměme±πěle±πěm

then
o
φ

′
= o

φe±πěle±πěm = o
φ (−1) (−1) = o

φ

This π-pair displacement can be carried over an arbitrary pair of components. Therefore,

o
φ

′
= φ0

n∏
j=1

e(φj+σjπ)ěj = o
φ

for σj = 1 applied in pairs. If σj = 0, then the jth component is unaltered.
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Corollary 2.3. The π-pair displacement of components k and l and subsequent π-pair displacement
of k and m is equal to the π-pair displacement of l and m.

Proof.
The k and l π-pair displacement is

φ0

n∏
j ̸=k,l,m

eφj ěj exp ((φk + π) ěk) exp ((φl + π) ěl) exp (φměm)

and the subsequent k and m π-pair displacement is

φ0

n∏
j ̸=k,l,m

eφj ěj exp ((φk + π + π) ěk) exp ((φl + π) ěl) exp ((φm + π) ěm)

Due to the 2π symmetry this scator is equal to

φ0

n∏
j ̸=k,l,m

eφj ěj exp (φkěk) exp ((φl + π) ěl) exp ((φm + π) ěm)

that is the l and m π-pair displacement.

In the multiplicative representation, Theorem 1 in [5] established the roots of a scator due to the 2π

trigonometric periodicity. This theorem can now be extended to include the roots arising from the
π-pair symmetry.

Theorem 2.4. In the multiplicative representation, for a scator o
φ = φ0

∏n
j=1 eφj ěj ∈ S1+n raised to

the power 1
q such that q ∈ Z, the exponent 1

q distributes over the scator component factors

o
φ

1
q =

(
φ0

n∏
j=1

eφj ěj

) 1
q

= φ
1
q

0

n∏
j=1

e
1
q

(φj+2πrj+σjπ)ěj (2)

where rj ∈ Z, from 0 to q − 1 and σj is 0 or 1, the sum of all σj is even, for j from 1 to n.

Proof.
Let o

φ =
o
ζ

q

. From the distributivity of an integer exponent over the scator factors, stated in Theorem
3 [7],

o
φ = φ0

n∏
j=1

exp ((φj + 2πrj + σjπ) ěj) =
(

ζ0

n∏
j=1

exp (ζj ěj)
)q

= ζq
0

n∏
j=1

exp (qζj ěj)

equating components, φ0 = ζq
0 and φj + 2πrj + σjπ = qζj , where rj ∈ Z takes values from 0 to q − 1

and σj = 0 or 1 in pairs, for each subindex j. The 2πrj addend in the argument makes explicit
the fundamental symmetry of the exponential function with unit directors that satisfy ěj ěj = −1.
Whereas the even sum of σj exhibits the π-pair symmetry of components couples. Evaluate the above
equation to the power 1

q ,

o
φ

1
q =

(
φ0

n∏
j=1

exp (φj ěj)
) 1

q

= ζ0

n∏
j=1

exp (ζj ěj)

Substitute ζj = φj+2πrj+σjπ
q and ζ0 = φ

1
q

0 , Equation 2,

o
φ

1
q =

(
φ0

n∏
j=1

exp (φj ěj)
) 1

q

= φ
1
q

0

n∏
j=1

exp
(1

q
(φj + 2πrj + σjπ) ěj

)
is obtained.

Corollary 2.5. A scator o
φ ∈ S1+n to the power 1

q has at most 2pqn different roots, where p is the
number of different π-pair possibilities.
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Proof.
For rj ∈ Z, from 0 to q − 1, there are q possible arguments for each of the n director components.
Therefore, there are qn possible permutations. For each of them, there is a number p of π-pair
possibilities, where every π-pair has two possible values. Thus, there are 2p qn possible configurations.

In many cases, the number of different roots is less than 2pqn, either because some root values are
repeated or involve only a single director component. Restricted to S1+2, o

φ = φ0eφxěxeφy ěy , where
in low dimensions x, y, z lower case roman letters are used instead of numbering the subindices. The
multiplicative Victoria Equation 2 is then

o
φ

1
q =

(
φ0eφxěxeφy ěy

) 1
q = φ

1
q

0 e
1
q

(φx+2πrx+σπ)ěxe
1
q

(φy+2πry+σπ)ěy (3)

where rx, ry ∈ Z, from 0 to q − 1 and σ = 0, 1. For S1+2, there is only one π-pair possibility, both
components with either 0 or π phase shift. Thus, there are at most 2q2 roots in S1+2.

3. Roots in the Additive Representation

Theorem 2 in [5] establishes the equation for the roots of scator numbers with the multiplicity due to
the fundamental 2π symmetry of the trigonometric functions. This theorem is extended here in order
to encompass the roots arising from the π-pair symmetry.

Theorem 3.1. A scator o
φ ∈ S1+n raised to the power 1

q , q ∈ Z, in the additive representation satisfies
the Victoria equation

o
φ

1
q =

(
φ0
∏n

k=1 cos φk +
∑n

j=1 φ0
∏n

k ̸=j cos φk sin φj ěj

) 1
q

=
o
ζr1r2···rn,σ1σ2···σn

= φ
1
q

0
∏n

k=1 cos
(

1
q (φk + 2πrk + σkπ)

)
+
∑n

j=1 φ
1
q

0
∏n

k ̸=j cos
(

1
q (φk + 2πrk + σkπ)

)
sin
(

1
q (φj + 2πrj + σjπ)

)
ěj

(4)

for rj ∈ Z, from 0 to q − 1, and σk, σj = 0 or 1, where
∑n

k=1 σk is even for j, k from 1 to n. Provided
that the q products of

o
ζ

q

r1r2···rn,σ1σ2···σn
and its n components are associative for a given set of rj ’s and

σ-pairs ,
o
ζr1r2···rn,σ1σ2···σn

is a root of o
φ =

o
ζ

q

r1r2···rn,σ1σ2···σn
.

Proof.
The sum of σk is even if the value of 1 is always assigned in pairs. For each pair σl = σm = 1,
l ̸= m from 1 to n, the φl and φm arguments of the trigonometric functions are displaced by π.
The scator o

φ = φ0
∏n

k=1 cos φk +
∑n

j=1 φ0
∏n

k ̸=j cos φk sin φj ěj is left unchanged by this transfor-
mation since cos (φl + π) cos (φm + π) = cos φl cos φm, cos (φm + π) sin (φl + π) = cos φm sin φl and
cos (φl + π) sin (φm + π) = cos φl sin φm. For odd n director dimension, the remaining unpaired φj

should not be displaced to leave o
φ invariant. This π-pair symmetry is carried through to the RHS of

Equation 4. Write the scator o
φ =

o
ζ

q

r1r2···rn,σ1σ2···σn
in the additive representation with multiplicative

variables

φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj =
(

ζ0

n∏
k=1

cos ζk +
n∑

j=1
ζ0

n∏
k ̸=j

cos ζk sin ζj ěj

)q

(5)

From Theorem 4 in [7], that generalizes De Moivre formula to S1+n scator space, provided that the
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product of the factors and its components are associative,

φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj = ζq
0

n∏
k=1

cos (qζk) +
n∑

j=1
ζq

0

n∏
k ̸=j

cos (qζk) sin (qζj) ěj (6)

Equating the additive scalar components

φ0

n∏
k=1

cos (φk + 2πrk + σkπ) = ζq
0

n∏
k=1

cos (qζk) (7)

whereas for each j director component

φ0

n∏
k ̸=j

cos (φk + 2πrk + σkπ) sin (φj + 2πrj + σjπ) ěj = ζq
0

n∏
k ̸=j

cos (qζk) sin (qζj) ěj

where the fundamental 2π symmetry of the trigonometric functions as well as the π-pair symmetry
are written explicitly, each rj ∈ Z goes from 0 to q − 1 and σl = σm = 0, 1 are set in pairs with
equal values, any unpaired σ is set equal to zero. If all ěj coefficients are zero except one, say the
ěl coefficient, φ0 sin (φl + 2πrl + σlπ) = ζq

0 sin (qζl) and the relationship between angles is straightfor-
ward. In this case, σl is unpaired and equal to zero. If two or more ěj coefficients are different from
zero, cos (φj + 2πrj + σjπ) ̸= 0 and cos (qζj) ̸= 0 for all j, since o

φ ∈ S1+n. The products can then be
completed for all k and each of the ěj equations become

φ0

n∏
k=1

cos (φk + 2πrk + σkπ) tan (φj + 2πrj + σjπ) ěj = ζq
0

n∏
k=1

cos (qζk) tan (qζj) ěj

With the use of Equation 7,

tan (qζj) = tan (φj + 2πrj + σjπ) ⇒ ζj = 1
q

(φj + 2πrj + σjπ) (8)

for all j from 1 to n. Replace the angles ζk = 1
q (φk + 2πrk + σjπ) in Equation 7, to find ζ0 = φ

1
q

0 .
Evaluate Equation 5 to the power 1

q ,

o
φ

1
q =

(
φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj

) 1
q

=
o
ζr1r2···rn,σ1σ2···σn

= ζ0
n∏

k=1
cos ζk +

n∑
j=1

ζ0
n∏

k ̸=j
cos ζk sin ζj ěj

Rewrite the ζj variables in terms of φj from Equation 8 to obtain,

o
φ

1
q =

o
ζr1r2···rn,σ1σ2···σn

=
(

φ
1
q

0

n∏
k=1

cos
(1

q
(φk + 2πrk + σkπ)

)

+
n∑

j=1
φ

1
q

0

n∏
k ̸=j

cos
(1

q
(φk + 2πrk + σkπ)

)
sin
(1

q
(φj + 2πrj + σjπ)

)
ěj

)

The derivation of Equation 6 from Equation 5 required associativity of the
o
ζ

q

r1r2···rn
products. How-

ever, due to the multi-valued inversion that followed, it is possible that for certain
o
ζr1r2···rn,σ1σ2···σn

solutions, some of the q products of
o
ζ

q

r1r2···rn,σ1σ2···σn
do not satisfy associativity. From [8] Theorem 2.1,

associativity is insured if all possible product pairs have a non vanishing additive scalar component.
For each

o
ζr1r2···rn,σ1σ2···σn

to be a root,
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o
ζ

q

r1r2···rn,σ1σ2···σn
=
[
φ

1
q

0
n∏

k=1
cos

(
1
q (φk + 2πrk + σkπ)

)
+

n∑
j=1

φ
1
q

0
n∏

k ̸=j
cos

(
1
q (φk + 2πrk + σkπ)

)
sin
(

1
q (φj + 2πrj + σjπ)

)
ěj

]q

=
n∏

j=1

(
cos

(
1
q (φk + 2πrk + σkπ)

)
+ sin

(
1
q (φj + 2πrj + σjπ)

)
ěj

)q

(9)

must be associative. Thus, none of the q × n products should give a scator with zero additive scalar
component if two or more director coefficients are different from zero, then

o
ζr1r2···rn,σ1σ2···σn

satisfies
o
ζ

q

r1r2···rn,σ1σ2···σn
= o

φ.

The scator roots are identical in the multiplicative representation (Theorem 2.4) or the additive
representation (Theorem 3.1), unless obstructed by the lack of associativity. Recall that associativity
is not an issue in the multiplicative representation. However, in the additive representation, non-
associative products can lead to spurious roots. This problem is discussed at length in [5].

4. Square Roots in 1+2 Dimensions

Lemma 4.1. The square roots of o
φ = φ0 cos φx cos φy + φ0 cos φy sin φx ěx + φ0 cos φx sin φy ěy, are

o
φ

1
2 =

o
ζ±,0 = ±φ

1
2
0

(
cos φx

2 cos φy

2 + cos φy

2 sin φx

2 ěx + cos φx

2 sin φy

2 ěy

)
(10)

and from the π-pair symmetry
o
φ

1
2 =

o
ζ±,1 = ±φ

1
2
0

(
sin φx

2 sin φy

2 − sin φy

2 cos φx

2 ěx − sin φx

2 cos φy

2 ěy

)
(11)

Proof.
For q = 2 in S1+2, from the Victoria Equation 4 in Theorem 3.1, the roots of o

φ are
o
φ

1
2 = φ

1
2
0 cos

(φx

2 + σπ
2 + πrx

)
cos

(φy

2 + σπ
2 + πry

)
+ φ

1
2
0 cos

(φy

2 + σπ
2 + πry

)
sin
(φx

2 + σπ
2 + πrx

)
ěx

+φ
1
2
0 cos

(φx

2 + σπ
2 + πrx

)
sin
(φy

2 + σπ
2 + πry

)
ěy

=
o
ζrxry ,σ

for rx, ry, σ = 0, 1. In this particular case, the rx, ry different values change the sign of all components,
− for rx ̸= ry and + for rx = ry. This degeneracy halves the number of roots arising from the 2π

symmetry from qn = 4 to 2,
o
φ

1
2 = ±φ

1
2
0
[
cos

(φx

2 + σπ
2
)

cos
(φy

2 + σπ
2
)

+ cos
(φy

2 + σπ
2
)

sin
(φx

2 + σπ
2
)

ěx

+ cos
(φx

2 + σπ
2
)

sin
(φy

2 + σπ
2
)

ěy
]

=
o
ζ±,σ

(12)

The multiplicity coming from the π-pair symmetry is 2p = 2, since there is only one possible pairing.
Hence, the total number of possibly different square roots is 4. If σ = 0 in Equation 12, two of the
square roots are given by Equation 10. If σ = 1, the other two square roots, since cos

(φj

2 + π
2
)

=
− sin φj

2 and sin
(φj

2 + π
2
)

= cos φj

2 , are given by Equation 11.

In the subsets S1+1, where either the ěx or ěy coefficient is different from zero, there are two roots
since these subspaces are isomorphic to the complex plane. In [5], it was wrongly stated that “For
elements o

φ ∈ S1+n \ S1+0, there are only two different square roots in the additive representation”.
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The π-pair symmetry now included, has corrected this mistake. There can be, as shown above, up
to four different square roots in S1+2 \ S1+1. The number of 2pqn roots in S1+n for n > 2 increase
considerably due to the π-pair p different pairing possibilities as well as the n dimensions.

4.1. Square roots with additive variables

Lemma 4.2. The square roots of o
φ = s + x ěx + y ěy are√

o
φ =

o
ζ±,0

= ±1
2

√
1
|s|

[√(√
s2 + x2 + s

) (√
s2 + y2 + s

)
+sgnx

√(√
s2 + x2 − s

) (√
s2 + y2 + s

)
ěx

+sgny

√(√
s2 + x2 + s

) (√
s2 + y2 − s

)
ěy

]
(13)

and for the π-pair symmetry√
o
φ =

o
ζ±,1

= ±1
2

√
1
|s|

[
sgnx sgny

√(√
s2 + x2 − s

) (√
s2 + y2 − s

)
−sgny

√(√
s2 + x2 + s

) (√
s2 + y2 − s

)
ěx

−sgnx

√(√
s2 + x2 − s

) (√
s2 + y2 + s

)
ěy

]
(14)

Proof.
The scator o

φ = φ0 cos φx cos φy + φ0 cos φy sin φx ěx + φ0 cos φx sin φy ěy in terms of additive variables
is o

φ = s + x ěx + y ěy. The relationship between multiplicative and additive variables is

s = φ0 cos φx cos φy, x = φ0 cos φy sin φx, y = φ0 cos φx sin φy.

From the quotient of the directors over the scalar coefficient
x

s
= tan φx, ⇒ cos φx = s√

s2 + x2
and y

s
= tan φy, ⇒ cos φy = s√

s2 + y2 (15)

In order to write the square roots in terms of the additive variables, rewrite the half angles in terms
of angles cos φ

2 = 1√
2
√

1 + cos φ and sin φ
2 = 1√

2
√

1 − cos φ. These substitutions put together give

cos
(

φx

2

)
cos

(
φy

2

)
= 1

2

√√√√(1 + s√
s2 + x2

)(
1 + s√

s2 + y2

)
(16)

sin
(

φx

2

)
cos

(
φy

2

)
= sgnx

2

√√√√(1 − s√
s2 + x2

)(
1 + s√

s2 + y2

)
(17)

sin
(

φy

2

)
cos

(
φx

2

)
= sgny

2

√√√√(1 + s√
s2 + x2

)(
1 − s√

s2 + y2

)
(18)

sin
(

φx

2

)
sin
(

φy

2

)
= sgnx sgny

2

√√√√(1 − s√
s2 + x2

)(
1 − s√

s2 + y2

)
(19)
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where sgn is the sign function. The scator magnitude from Equation 1 is

∥∥ o
φ
∥∥ = φ0 = |s|

√
1 + x2

s2

√
1 + y2

s2 = 1
|s|
√

s2 + x2
√

s2 + y2

Evaluate the product of the magnitude’s square root

√
φ0 =

√
1
|s|
√

s2 + x2
√

s2 + y2

times Equations 16-19. Substitution in Equation 10, Lemma 4.1, gives Equation 13. The π-pair
multiplicity is obtained from substitution in Equation 11.

If x or y are zero, the usual square root of a complex number is recovered. For example, from Equation
13, if y = 0,

√
o
φ = ±

(
1√
2

√√
s2 + x2 + s + sgnx√

2

√√
s2 + x2 − s ěx

)
. The x or y zero limit does not

make sense for
o
ζ±,1, because these novel roots arise from the π-pair symmetry that requires at least

two nonvanishing director components.

Corollary 4.3. The square roots of o
φ = s + x ěx + y ěy lie on the plane

(cos φx − cos φy) S + sin φx X − sin φy Y = 0 (20)

that in additive variables is

s

(√
s2 + x2 −

√
s2 + y2

)
S − x

√
s2 + y2 X + y

√
s2 + x2 Y = 0 (21)

Proof.
Since the roots come in ± pairs, zero must be on the plane where the roots lie. Let this plane be
a0S + axX + ayY = 0. Substitute the positive value of the roots Equations 10 and 11, upon division
by cos φx

2 cos φy

2 , the equations are

a0 + tan φx

2 ax + tan φy

2 ay = 0 and a0 − cot φx

2 ax − cot φy

2 ay = 0

Write the semiangles in terms of angles tan θ
2 = sin θ

1+cos θ and cot θ
2 = sin θ

1−cos θ . Isolate sin φy ay and add
the two equations

2a0 +
[(1 + cos φy)

1 + cos φx
− (1 − cos φy)

1 − cos φx

]
sin φxax = 0

Upon rearrangement

ax = − sin φx

(cos φy − cos φx)a0, ay = − sin φy

(cos φx − cos φy)a0

where ay follows an analogous procedure. From

a0S − sin φx

(cos φy − cos φx)X − sin φy

(cos φx − cos φy)a0Y = 0

Equation 20 is obtained. A similar procedure starting with Equations 13 and 14 gives Equation 21.

This result is particular to square roots. Higher order roots no longer lie on a plane as evinced by
cube and higher order roots in [5].

In the multiplicative representation, the square roots in S1+2 from Equation 3 with q = 2, are

o
φ

1
2 =

(
φ0eφxěxeφy ěy

) 1
2

= φ
1
2
0 e( φx

2 +σ π
2 +πrx)ěxe( φy

2 +σ π
2 +πry)ěy (22)

for σ = 0, 1 and rx = 0, 1 and ry = 0, 1. The eπrxěx and eπry ěy factors introduce a minus sign if
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rx ̸= ry. The four possibly distinct square roots of a scator o
φ = φ0eφxěxeφy ěy are

o
φ

1
2 = ±φ

1
2
0 e

φx
2 ěxe

φy
2 ěy , ±φ

1
2
0 e( φx

2 + π
2 )ěxe( φy

2 + π
2 )ěy (23)

5. Geometric visualization

The scalar and the two director components of a scator o
φ ∈ S1+2 can be depicted in orthogonal

directions in a three dimensional space as shown in Figure 1.

Figure 1. Geometrical representation of the unit magnitude (φ0 = 1) scator o
φ = cos φx cos φy +

cos φy sin φx ěx + cos φx sin φy ěy. In additive variables o
φ = s + x ěx + y ěy.

1. The additive components of a scator o
φ = s+x ěx +y ěy can be represented as directed line segments

in the s, ěx, ěy axes respectively.

2. In terms of the multiplicative variables:

(a) φ0 is the distance given by the scator magnitude of the point o
φ to the origin,

(b) φx is the angle that the projection of the point o
φ onto the s, x plane makes with the positive

scalar axis and,

(c) φy is the angle of the projection onto the s, y plane with the positive scalar axis.

3. A scator can be constructed from the sum of its components, o
φ = (s) + (x ěx) + (y ěy). This

procedure is visualized with dash-dot blue lines in Figure 1. The tip of the o
φ scator does not match

the sum of the three components because the scator magnitude is not an Euclidean magnitude.

4. A scator can also be constructed by the sum of two scators with a scalar component, o
φsx = s+x ěx =

cos φyeφxěx and o
φsy = s + y ěy = cos φxeφy ěy . o

φsx and o
φsy are depicted by green dashed lines with

arrows in Figure 1. However, the additive inverse of the scalar component has to be added to achieve
the appropriate result o

φsx+ o
φsy −s = 2s+x ěx+y ěy −s = s+x ěx+y ěy. Having a scalar and a director

component, permits the representation in polar coordinates. Notice that the o
φsx and o

φsy scators have a
somewhat smaller magnitude than their counterparts in the multiplicative representation. The scators
eφxěx = cos φx + sin φxěx and eφy ěy = cos φy + sin φyěy have been depicted in the figure ending with
a dot. The scators o

φsx = s + x ěx and eφxěx are collinear, thus are o
φsy = s + y ěy and eφy ěy .
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5. Scators can also be constructed from the product of their components,
o
φ = s + x ěx + y ěy = 1

s

o
φsx

o
φsy = 1

s
(s + x ěx) (s + y ěy)

provided that product with the multiplicative inverse of the additive scalar component is included.
In the multiplicative representation, o

φ = φ0eφxěxeφy ěy is equal to the product of the multiplicative
director components o

φ = o
φx

o
φy =

(√
φ0eφxěx

) (√
φ0eφy ěy

)
, where the magnitude has been symmet-

rically split between components. This product can be seen as a rotation of the √
φ0eφxěx scator by

φy in the ěy direction (plane depicted in semitransparent yellow). It can of course be seen the other
way around, a rotation in the ěx direction (plane depicted in semitransparent green) of the scator
√

φ0eφy ěy .

This last property of scators is in sharp contrast with vector elements, where the product of components
cannot be used to construct a several component vector.

Scator products geometrically represent rotations, although the term rotation is a bit of an abuse. The
product of an arbitrary scator with a unit scator geometrically represents a rotation that preserves
the scator magnitude. However, they are not rotations in the Euclidean sense because the Euclidean
metric is not preserved. For this reason, the end point of the scator o

φ is not equal to the end point
of the three components sum. In contrast, the tip of each of the o

φsx or o
φsy scators coincides with the

sum s + xěx or s + yěx respectively, since the scator magnitude in 1 + 1 dimensions is equal to the
Euclidean magnitude.

5.1. Geometric representation of the square root

The scator square roots involve halving the φx and φy angles and taking the square root of the
magnitude φ0. Some of the square roots also involve adding a π and/or a π

2 term to the argument.
The scator angles and half angles without any other terms are geometrically depicted in Figure 2.

Figure 2. Geometrical representation of a square root
√

o
φ of a scator o

φ. The φx and φy angles are
halved and the square root of the magnitude is evaluated.

A scator o
φ (in green) is projected in the s, ěx and s, ěy planes (green dotted lines). The angles φx

and φy are the angles that these projections make with respect to the scalar s axis. These angles are
halved and represent the projections of the resultant scator

√
o
φ (in red). A unit magnitude scator is

assumed, so that the tip of both scators must lie on the unit cusphere surface.
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The projection of o
φ in the s, ěx plane (green dotted line) is the scator o

φx = eφxěx . It is a unit
magnitude hypotenuse with projections cos φx and sin φx in the s and ěx axes, that correspond to the
additive representation of this scator o

φx = eφxěx = cos φx + sin φx ěx. The scator magnitude of o
φx,

from Equation 1 is
∥∥ o
φ
∥∥ = |f0|

√
1 + f2

x

f2
0

=
√

f2
0 + f2

x , equal to the Pythagorean identity. The scator

magnitude
√

s2 + x2 in S1+1 is identical to the Euclidean magnitude. Thus, a right angle triangle
where the tip of the hypotenuse matches the sum of the directed catheti is obtained.

An analogous result is obtained for the projection of o
φ in the s, ěy plane (green dotted line), o

φy =
eφy ěy = cos φy +sin φy ěy. Again, a unit magnitude hypotenuse is made up from a right angle triangle,
but this time in the s, ěy plane.

The product of these two projections o
φ = o

φx
o
φy =

(
eφxěx

) (
eφy ěy

)
, construct the o

φ scator. Its additive
representation is o

φ = cos φx cos φy + cos φy sin φx ěx + cos φx sin φy ěy. Its magnitude, from Equation
1 is ∥∥ o

φ
∥∥ = |s|

√
1 + x2

s2

√
1 + y2

s2 =

√
s2 + x2 + y2 + x2y2

s2

It is no longer the sum of three squares but has the x2y2

s2 term. The magnitude of this scator is one,∥∥ o
φ
∥∥ =

√
cos2 φx cos2 φy + cos2 φy sin2 φx + cos2 φx sin2 φy + sin2 φx sin2 φy = 1

where the last term x2y2

s2 = cos2 φy sin2 φx cos2 φx sin2 φy

cos2 φx cos2 φy
is crucial to attain this result. The tip of the

scator o
φ = s + x ěx + y ěy, cannot match the tip of the directed sum of the three components (That

would imply a magnitude
√

s2 + x2 + y2).

The o
φ scator root (in red) is now the product of the two projection scators e

φx
2 ěx and e

φy
2 ěy . It also

has unit magnitude and is leaned closer to the s axis in both ěx and ěy as expected for smaller angles.

Figure 3. Roots (green points) of o
φ = cos π

6 cos π
5 + cos π

5 sin π
6 ěx + cos π

6 sin π
5 ěy (red point). The

origin is located at the black point. The
(
2
√

3 − 1 −
√

5
)

s + 2 x − 2
√

5
2 −

√
5

2 y = 0 plane is shown in
semitransparent yellow. The four roots lie on this plane but not the o

φ scator (red).
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Consider as a numeric example, the scator

o
φ =

√
3

8
(√

5 + 1
)

+ 1
8
(√

5 + 1
)

ěx + 1
4

√
3
2
(
5 −

√
5
)

ěy

where the values have been chosen so that the two different angles are rational (relative primes)
functions of π. From Equation 13, two roots are given by

o
ζ±,0 = ±


(√

3 + 1
)√

5 +
√

5
8 +

(√
3 − 1

)√
5 +

√
5

8 ěx +

(√
3 + 1

) (√
5 − 1

)
8
√

2
ěy


and the other two π-pair symmetry roots from Equation 14 are

o
ζ±,π = ±


(√

3 − 1
) (√

5 − 1
)

8
√

2
−

(√
3 + 1

) (√
5 − 1

)
8
√

2
ěx −

(√
3 − 1

)
8

√
5 +

√
5 ěy


This scator in multiplicative variables is

o
φ = cos π

6 cos π

5 + cos π

5 sin π

6 ěx + cos π

6 sin π

5 ěy

Its roots from Equations 10 and 11 are
o
φ

1
2 =

o
ζ±,0 = ±

(
cos π

12 cos π

10 + cos π

10 sin π

12 ěx + cos π

12 sin π

10 ěy

)
and

o
φ

1
2 =

o
ζ±,1 = ±

(
sin π

12 sin π

10 − sin π

10 cos π

12 ěx − sin π

12 cos π

10 ěy

)
These roots are depicted in Figure 3. The equation of the plane where the four roots lie, from Equation
21 is (

2
√

3 − 1 −
√

5
)

s + 2 x − 2

√
5
2 −

√
5

2 y = 0

Figure 4. Projections of the roots (green points) of o
φ (red point) in the s, ěx (left) and s, ěy (right)

planes.

The halving of the angles is not at all evident in the three dimensional plot. However, in Figure 4,
where the projections in the s, ěx and s, ěy planes are shown, the angle division is clearly depicted.
Furthermore, the other three roots,

o
ζ−,0,

o
ζ+,1 and

o
ζ−,1 are seen as π, π

2 and π+ π
2 rotations respectively

of the first root.
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6. Conclusion

Scator roots exist in S1+n, and their values in the multiplicative and additive representations are
given in closed forms by the Victoria equations in Theorems 2.4 and 3.1. These extended versions of
previous theorems exhaust all possible values for the roots of a scator. The multiplicity of the qth root
of a scator o

φ ∈ S1+n is at most 2pqn, where p is the number of different π-pair possibilities (Corollary
2.5). The qth root of a scator involves the division of the scator angles by q. The φj angles are the
multiplicative director components of the scator. They can be represented geometrically as the angle
of the projections in the s, ěj planes. The square root of a scator in S1+2 has at most four different
values that are contained in a plane (Corollary 4.3). Their values are given by Lemmas 4.1 and 4.2.
These roots can be nicely depicted in three-dimensional space with the s, x ěx and y ěy components
drawn in orthogonal axes. The geometric construction of a scator by adding its components is not
surprising since vectors and other algebraic structures exhibit this feature. However, the construction
of a 1 + n dimensional scator via the product of its 1 + 1 components is quite novel and uncommon in
most algebraic structures.

In future studies, the square roots obtained here may be successfully used to find the inverse orbits
in the quadratic iteration dynamic scator space. Thus, an algorithm for visualizing the scator fractal
Julia sets in 1+2D may be provided. Moreover, this square roots inverse visualization procedure
may be implemented. We believe the present results also pave the way for studies on considering
higher-order roots and evaluating square roots in higher dimensional scator spaces.
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Abstract − This paper presents a quaternionic approach to generating and characterizing
the ruled surface drawn by the unit Darboux vector. The study derives the Darboux frame
of the surface and relates it to the Frenet frame of the base curve. Moreover, it obtains
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1. Introduction (Compulsory)

Quaternions include diverse fields such as game programming, robotics, animation, and navigation
systems [1–3]. In addition to these areas, quaternions are important for the theory of curves and
surfaces. Bharathi and Nagaraj have introduced the Serret-Frenet formulae for quaternionic curves
in R3 and R4 [4]. By utilizing this study, numerous studies have examined quaternionic curves.
One of them, the authors have proved that if the bitorsion of a quaternionic curve does not vanish,
then there is no quaternionic curve in E4. Therefore, they have expressed (1, 3) type Bertrand
curves for quaternionic curves [5]. Babaarslan and Yaylı have examined constant slope surfaces with
quaternions [6]. In [7], the authors have expressed the ruled surface as quaternionic and computed
some properties of the ruled surface. Moreover, they have investigated the dual ruled surface using
dual quaternion [8]. In light of these studies, Çalışkan have examined the quaternionic and dual
quaternionic Darboux ruled surfaces [9]. In [10], the authors have examined the advantage of the
dual number of Clifford algebra to make the singular ruled surfaces transform into dual singular
curves. Aslan and Yaylı have defined the quaternionic shape operator by the quaternion. Their article
has aimed to find a way to the invariants of the surface using Darboux frames and quaternions [11].
In [12,13], the connection between split quaternions and surfaces with the constant slope in Minkowski
3-space has been explored. It is demonstrated that these surfaces can be transformed using rotation
matrices associated with quaternions and homothetic motions. A surface is said to be ruled if it is
generated by moving a straight line continuously in R3. Thus, a ruled surface has a parameterization
1a.caliskan@odu.edu.tr (Corresponding Author)
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in the form Λ⃗(s, v) = α⃗(s) + vx⃗(s) where we call α the base curve and x⃗ the generator vector of
the ruled surface [14]. Ruled surfaces are important for robot kinematics. Ryuh has suggested that
ruled surfaces play an important role in robot end-effectors [15]. In another study, the ruled surfaces’
differential properties drawn by the developed trihedron’s generator vector have been examined [16].
In [17], the authors have introduced a new type of ruled surface defined using an orthonormal Sannia
frame on a base curve. They have studied the properties of these surfaces using the first and second
fundamental forms, as well as the mean and Gaussian curvatures. They have provided conditions for
when these surfaces are developable and minimal and present some examples of these ruled surfaces.
Eren et al. have introduced new types of ruled surfaces in Euclidean 3-space. These surfaces have been
obtained using the evolution of an involute-evolute curve pair and studied with the modified orthogonal
frame. They have provided some results on these surfaces’ Gaussian and mean curvatures [18, 19].
Bilici has examined ruled surfaces produced by a Frenet trihedron of closed dual involute for a specific
dual curve. He has specifically focused on the relations between the pitch, the angle of the pitch, and
the drall of these surfaces [20]. Some ruled surfaces produced using the Frenet trihedron, Blaschke
frame, and the surface family are studied in [21–24].

In Section 2, we provide some necessary background information about the problem of the paper that
was mentioned in the introduction. In Section 3, we give characterizations of ruled surfaces drawn
by the unit Darboux vector using quaternions. We obtain the quaternionic shape operators and their
matrix representations using normal and geodesic curvatures. In the last section, we exemplify the
findings.

2. Preliminaries

Let α : I → R3 be a unit-speed curve. Then, the three vector fields t⃗(s), n⃗(s), and b⃗(s) on the curve
α are unit vector fields that are mutually orthogonal at each point. We call t⃗(s), n⃗(s), and b⃗(s) the
Frenet vectors on the curve α. The Frenet formulas can be given

t⃗′(s) = κ(s)n⃗(s), n⃗′(s) = −κ(s)⃗t(s) + τ(s)⃗b(s), and b⃗′(s) = −τ(s)n⃗(s)

where κ(s) and τ(s) are the first and second curvature of the unit-speed curve, respectively [25]. For
any unit-speed curve α : I → R3, the vector W⃗ (s) is called Darboux vector defined by

W⃗ (s) = τ(s)⃗t(s) + κ(s)⃗b(s)

If consider the normalization of the Darboux C⃗(s) = 1
∥W⃗ (s)∥

W⃗ (s), we have

C⃗(s) = sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

where cos ξ(s) = κ(s)
∥W⃗ (s)∥

, sin ξ(s) = τ(s)
∥W⃗ (s)∥

, and ∠(W⃗ (s), b⃗(s)) = ξ(s). A quaternion is a unit length of
four-vectors q = d + ae⃗1 + be⃗2 + ce⃗3 characterized by the following properties:{

e⃗1
2 = e⃗2

2 = e⃗3
2 = e⃗1 × e⃗2 × e⃗3 = −1,

e⃗1, e⃗2, e⃗3 ∈ R3
e⃗1 × e⃗2 = e⃗3, e⃗2 × e⃗3 = e⃗1, e⃗3 × e⃗1 = e⃗2

The quaternion product of two quaternions q1 and q2, which we write as q1 × q2, takes the form

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e⃗1

+(d1b2 + b1d2 + b1a2 − a1b2)e⃗2 + +(d1c2 + c1d2 + a1b2 − b1a2)e⃗3

The complex conjugate of a quaternion q is denoted as q̄ = d − ae⃗1 − be⃗2 − ce⃗3. The norm of q is

N(q) =
√

d2 + a2 + b2 + c2
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Pure quaternion is denoted as q̄ + q = 0 = ae⃗1 + be⃗2 + ce⃗3. The quaternion multiplication of two
pure quaternions is q1 × q2 = −⟨q1, q2⟩ + q1 ∧ q2. The unit quaternion can be written in the form as
q = cos φ + sin φv⃗ where v⃗ ∈ R3 and ∥v⃗∥ = 1. Let q be a unit quaternion and w⃗ be a pure quaternion.
Then,

w⃗′ = q × w⃗ × q−1

is rotated 2φ about the axis v⃗. We say finally that the desired rotation matrix fixing the direction v is

R =



1 + sin2 φ(u2
1 − u2

2 − u2
3 − 1) − sin 2φu3 + 2 sin2 φu1u2 sin 2φu2 + 2 sin2 φu1u3

sin 2φu3 + 2 sin2 φu1u2 1 + sin2 φ(u2
2 − u2

1 − u2
3 − 1) 2 sin2 φu2u3 − sin 2φu1

2 sin2 φu1u3 − sin 2φu2 sin 2φu1 + 2 sin2 φu2u3 1 + sin2 φ(u2
3 − u2

2 − u2
1 − 1)


where R is an orthogonal matrix. For detailed information on the theory of quaternion, see the
references [1, 3, 26].

If p is a point of M , for each tangent vector X⃗ to M at p, Sp(X⃗) = −∇X⃗ Z⃗. Sp is defined as the shape
operator of M at p. The shape operator is the symmetric linear map. Here, Z is the unit normal
vector field. A surface M in R3 is flat provided its Gauss curvature is zero, and minimal provided its
mean curvature is zero. Moreover, the Gauss and minimal curvatures are independent of the choice
of basis. These curvatures are found in the equations

K = ∥S(T⃗ (u)) ∧ S(T⃗ (t))∥
∥T⃗ (u) ∧ T⃗ (t)∥

, H = ∥S(T⃗ (u)) ∧ T⃗ (t) + T⃗ (u) ∧ S(T⃗ (t))∥
2∥T⃗ (u) ∧ T⃗ (t)∥

where T⃗ (u) and T⃗ (t) are the tangent vectors of β(u) and ζ(t), respectively [25]. Let β be a curve that
is traced on a surface and Darboux frame {T⃗ (u), Y⃗ (u), Z⃗(u)} is an orthogonal frame. The equations
of motion of the Darboux frame can be written as

T⃗ ′(u)
Y⃗ ′(u)
Z⃗ ′(u)

 = ∥Λu∥


0 kg(u) kn(u)

−kg(u) 0 tg(u)
−kn(u) −tg(u) 0




T⃗ (u)
Y⃗ (u)
Z⃗(u)

 (1)

Here, kn, kg, and tg are the normal curvature, the geodesic curvature, and the geodesic torsion,
respectively [14,25].

Theorem 2.1. [11] Let M be a surface with parameter u and β(u) be a unit speed curve in M .
Using the quaternion operator Q(u) = kn(u) + tg(u)Z⃗(u), the shape operator can be given as

S(T⃗ (u)) = Q(u) × T⃗ (u) (2)

The quaternion Q will be called a quaternionic shape operator.

Quaternionic shape operator can be given by the unit quaternion p(u) = cos 2φ(u) + sin 2φ(u)Z⃗(u) as

Q(u) =
√

kn
2(u) + tg

2(u)
(

cos 2φ(u) + sin 2φ(u)Z⃗(u)
)

Then, we can say that the vector Q(u) × T⃗ (u) is obtained by revolving T⃗ (u) around the normal vector
Z⃗(u) of the surface through twice the angle of φ [11].

Theorem 2.2. [11] Let M be a surface, X be a local parameterization of M , N be the unit normal
vector field of M , and Q(t) and Q(u) be the quaternionic shape operators. Then, the Gauss curvature
K and mean curvature H of M are as follows:

K = ∥(Q(u) × T⃗ (u)) ∧ (Q(t) × T⃗ (t))∥
∥T⃗ (u) ∧ T⃗ (t)∥

(3)



Journal of New Theory 42 (2023) 43-54 / Characterizations of Unit Darboux Ruled Surface with Quaternions 46

and

H = ∥(Q(u) × T⃗ (u)) ∧ T⃗ (t) + T⃗ (u) ∧ (Q(t) × T⃗ (t))∥
2∥T⃗ (u) ∧ T⃗ (t)∥

(4)

3. Main Results

In this section, the quaternionic expression of the ruled surfaces drawn by the unit Darboux vector
and the striction curve on the surface are given. We obtain some interesting results, such as rotation
matrices, Gauss, and mean curvatures of the surface.

Theorem 3.1. Let ᾱ be a striction curve belonging to a ruled surface Λ⃗(s, v) = α⃗(s) + vC⃗(s). The
quaternionic equations of the ruled surface and striction curve are given by

Λ⃗(s, v) = α⃗(s) + vp(s) × t⃗(s)

and
ᾱ = α⃗(s) − v

⟨C ′(s), t⃗(s)⟩
∥C ′(s)∥2 p(s) × t⃗(s)

Proof.
By taking into account the unit quaternion p(s) = τ(s)√

κ2(s)+τ(s)2(s)
− κ(s)√

κ2(s)+τ(s)2(s)
n⃗(s) and the pure

quaternion t⃗(s), we obtain the ruled surface as follows:

Λ⃗(s, v) = α⃗(s) + vp(s) × t⃗(s)

= α⃗(s) + v

(
τ(s)√

κ2(s)+τ(s)2(s)
− κ(s)√

κ2(s)+τ(s)2(s)
n⃗(s)

)
× t⃗(s)

= α⃗(s) + vC⃗(s).

Similarly, we can obtain a striction curve using quaternion.

Theorem 3.2. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. There exists a frame of the curve α(s)
which is called Frenet frame and denoted by {t⃗(s), n⃗(s), b⃗(s)}. The relations among frames can be
given by 

T⃗ (s)
Y⃗ (s)
Z⃗(s)

 =


m√

m2+l2
0 l√

m2+l2
−l√

m2+l2
0 m√

m2+l2

0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)

 (5)

and 
T⃗ (v)
Y⃗ (v)
Z⃗(v)

 =


τ(s)

∥W⃗ (s)∥
0 κ(s)

∥W⃗ (s)∥
− κ(s)

∥W⃗ (s)∥
0 τ(s)

∥W⃗ (s)∥
0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)

 (6)

where m = 1 + v
(

τ(s)
∥W⃗ (s)∥

)′
and l = v

(
κ(s)

∥W⃗ (s)∥

)′
.

Proof.
The partial derivative is taken according to s and v for the ruled surface Λ, we obtain

Λ⃗s = t⃗(s) + v

(( τ(s)
∥W⃗ (s)∥

)′
t⃗(s) +

( κ(s)
∥W⃗ (s)∥

)′
b⃗(s)

)
and

Λ⃗v = C⃗(s)
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Arriving at this equation, we reach the tangent vectors of the parameters curve as follows:

T⃗ (s) = Λ⃗s

∥Λ⃗s∥
=

(
1 + v

( τ(s)
∥W⃗ (s)∥

)′)
t⃗(s) + v

( κ(s)
∥W⃗ (s)∥

)′⃗
b(s)√(

1 + v
(

τ(s)
∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and

T⃗ (v) = Λ⃗v

∥Λ⃗v∥
= C⃗(s)

For v <
κ(s)

√
κ2(s)+τ(s)2(s)

τ(s)κ′(s)−κ(s)τ ′(s) , the unit normal vector of the ruled surface Λ is given as

Z⃗ = Λ⃗s ∧ Λ⃗v

∥Λ⃗s ∧ Λ⃗v∥
= −n⃗(s)

Y⃗ (s) and Y⃗ (v) depending on Frenet frame at point α(s) can be obtained as

Y⃗ (s) = Z⃗(s) ∧ T⃗ (s) =
−v
( κ(s)

∥W⃗ (s)∥

)′
t⃗(s) +

(
1 + v

( τ(s)
∥W⃗ (s)∥

)′)
b⃗(s)√(

1 + v
(

τ(s)
∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
Y⃗ (v) = Z⃗(v) ∧ T⃗ (v) = − κ(s)

∥W⃗ (s)∥
t⃗(s) + τ(s)

∥W⃗ (s)∥
b⃗(s)

If the Darboux frame denoted by {T⃗ (s), Y⃗ (s), Z⃗(s)} is written in matrix form, this completes the proof
of the theorem.

Theorem 3.3. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. The singular point of the ruled surface
is given by P (s0, v0) =

(
s0, − ∥W (s0)∥κ(s0)

κ(s0)τ ′(s0)+τ(s0)κ′(s0)

)
.

Proof.
The unit normal vector field of the ruled surface Λ is defined by Z = Λs×Λv

∥Λs×Λv∥ at those points (s0, v0) ∈
Z at which Λs × Λv does not vanish. Then, Λ is a regular surface if and only if the unit normal vector
field Z is everywhere well defined. The points for which Λs ×Λv vanishes can be called singular points.
The equation

∥Λs × Λv∥(s0, v0) = 1
∥W (s0)∥2

√
(∥W (s0)∥κ(s0) + v0(κ(s0)τ ′(s0) − τ(s0)κ′(s0))2 = 0

can be written to have singular points. Hence, we can write

v0 = − ∥W (s0)∥κ(s0)
κ(s0)τ ′(s0) + τ(s0)κ′(s0)

Then, the singular point of the ruled surface is P (s0, v0) =
(
s0, − ∥W (s0)∥κ(s0)

κ(s0)τ ′(s0)+τ(s0)κ′(s0)

)
.

Taking into account Equation 1, we can write proposition as follows:

Proposition 3.4. The normal and the geodesic curvatures of the ruled surface Λ can be given by

kn(s) =
−κ(s)

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)
+ τ(s)v

(
κ(s)

∥W⃗ (s)∥

)′

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2 , kn(v) = 0
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and

tg(s) =
τ(s)

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)
+ κ(s)v

(
κ(s)

∥W⃗ (s)∥

)′

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2 , tg(v) = 0

Theorem 3.5. Let Λ be a ruled surface and Q(s) and Q(v) be quaternionic shape operators. The
shape operators S(T⃗ (s)) and S(T⃗ (v)) are obtained by

S(T⃗ (s)) = −κ(s)⃗t(s) + τ(s)⃗b(s)√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
S(T⃗ (v)) = 0⃗

Proof.
By using Proposition 3.4, quaternionic shape operators are given by

Q(s) = kn(s) + tg(s)Z⃗(s)

=
−κ(s)

(
1+v

(
τ(s)

∥W⃗ (s)∥

)′)
+τ(s)v

(
κ(s)

∥W⃗ (s)∥

)′
−
[

τ(s)
(

1+v

(
τ(s)

∥W⃗ (s)∥

)′)
+κ(s)v

(
κ(s)

∥W⃗ (s)∥

)′]
n⃗(

1+v

(
τ(s)

∥W⃗ (s)∥

)′)2

+
(

v

(
κ(s)

∥W⃗ (s)∥

)′)2

and
Q(v) = kn(v) + tg(v)Z⃗(v) = 0⃗

By considering Equation 2, the shape operators

S
(
T⃗ (s)

)
= Q(s) × T⃗ (s) = kn(s)T⃗ (s) + tg(s)Y⃗ (s)

= −κ(s)⃗t(s)+τ(s)⃗b(s)√(
1+v

(
τ(s)

∥W⃗ (s)∥

)′)2

+
(

v

(
κ(s)

∥W⃗ (s)∥

)′)2

and
S
(
T⃗ (v)

)
= Q(v) × T⃗ (v) = kn(v)T⃗ (v) + tg(v)Y⃗ (v) = 0⃗

are expressed.

Corollary 3.6. The operator Q(s) rotates the tangent vector T⃗ (s) in the tangent plane of the ruled
surface and around the normal vector Z⃗(s) of the surface. The rotation matrix which provides that
rotation is

R =



1 + sin2 φ(n2
1 − n2

2 − n2
3 − 1) sin 2φn3 + 2 sin2 φn1n2 − sin 2φn2 + 2 sin2 φn1n3

− sin 2φn3 + 2 sin2 φn1n2 1 + sin2 φ(n2
2 − n2

1 − n2
3 − 1) 2 sin2 φn2n3 + sin 2φn1

2 sin2 φn1n3 + sin 2φn2 − sin 2φn1 + 2 sin2 φn2n3 1 + sin2 φ(n2
3 − n2

2 − n2
1 − 1)


where Z(s) = −n(s) = (−n1, −n2, −n3) and the cosine and sine of the angle of between T⃗ (s) and
Q(s) × T⃗ (s) are

cos 2φ(s) = −mκ(s) + lτ(s)√
(m2 + l2)(κ2(s) + τ(s)2(s))

and sin 2φ(s) = lκ(s) + mτ(s)√
(m2 + l2)(κ2(s) + τ(s)2(s))
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Theorem 3.7. The ruled surface Λ is flat. The mean curvature H of this surface is obtained by

H = κ2(s) + τ(s)2(s)
2
∣∣− mκ(s) + lτ(s)

∣∣
Proof.
The Gauss curvature is a measure of the intrinsic curvature of a surface, and it is defined as quaternionic
as follows:

K =
∥
(
Q(s) × t⃗(s)

)
∧
(
Q(v) × T⃗ (v)

)
∥

∥t⃗(s) ∧ T⃗ (v)∥
If we substitute the quaternionic shape operators and tangent vector of parameter curves, we obtain

K = 1√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

∥(−κ(s)⃗t(s) + τ(s)⃗b(s)) ∧ 0⃗
)
∥

∥t⃗(s) ∧ T⃗ (v)∥

= 0

This means the surface is flat. The mean curvature is a measure of the extrinsic curvature of the ruled
surface, and the curvature is calculated as quaternionic as follows:

H =
∥
(
Q(s) × t⃗(s)

)
∧ T⃗ (v) + t⃗(s) ∧

(
Q(v) × T⃗ (v)

)
∥

2∥t⃗(s) ∧ T⃗ (v)∥
If we substitute the quaternionic shape operators Q(v), we get

H =
∥
(
Q(s) × t⃗(s)

)
∧ T⃗ (v)∥

2∥t⃗(s) ∧ T⃗ (v)∥
By taking into consideration Equations 5 and 6 and Theorem 3.5,

H =
√

κ2(s) + τ(s)2(s)
2
∣∣− mκ(s) + lτ(s)

∣∣
is arrived.

Considering the above theorem, we reach the following corollary.

Corollary 3.8. If the base curve of the ruled surface Λ drawn by the unit Darboux vector is a line
and planar, then the surface is minimal.

In differential geometry, the Darboux vector is a vector-valued function that measures the rate of
change of the tangent vector of a curve as it moves along the curve. The ruled surface generated by
the unit Darboux vector can be expressed as a function of the ξ(s), which is the angle between Darboux
and binormal vectors. This means some surface characterizations can be studied and analyzed as a
function of ξ(s).

Theorem 3.9. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. There exists a frame of the curve α(s)
called Frenet frame and denoted by {t⃗(s), n⃗(s), b⃗(s)}. The relations among frames in terms of ξ(s) are
given by 

T⃗ (s)
Y⃗ (s)
Z⃗(s)

 =


1+vξ′(s) cos ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
0 −vξ′(s) sin ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
vξ′(s) sin ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
0 1+vξ′(s) cos ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))

0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)
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and 
T⃗ (v)
Y⃗ (v)
Z⃗(v)

 =


sin ξ(s) 0 cos ξ(s)

− cos ξ(s) 0 sin ξ(s)
0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)


Proof.
If the partial derivative is taken according to s and v using the angle ξ(s), we have

Λ⃗s = t⃗(s) + v
(
ξ′(s) cos ξ(s)⃗t(s) − ξ′(s) sin ξ(s)⃗b(s)

)
and

Λ⃗v = C⃗(s)

Arriving at this equation, we reach to

T⃗ (s) = Λ⃗s

∥Λ⃗s∥
=

(1 + vξ′(s) cos ξ(s)) t⃗(s) − v
(
ξ′(s) sin ξ(s)⃗b(s)

)√
(1 + vξ′(s) cos ξ(s))2 +

(
v
(

κ(s)
∥W⃗ (s)∥

)′)2

and

T⃗ (v) = Λ⃗v

∥Λ⃗v∥
= sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

For v < cos ξ(s)
ξ′(s) , the unit normal vector of the ruled surface Λ is given as

Z⃗ = Λ⃗s ∧ Λ⃗v

∥Λ⃗s ∧ Λ⃗v∥
= −n⃗(s)

Y⃗ (s) and Y⃗ (v) depending on Frenet frame at point α(s) can be obtained

Y⃗ (s) = Z⃗(s) ∧ T⃗ (s) = vξ′(s) sin ξ(s)⃗t(s) + (1 + vξ′(s) cos ξ(s)) b⃗(s)√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
Y⃗ (v) = Z⃗(v) ∧ T⃗ (v) = − sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

This completes the proof of the theorem.

Theorem 3.10. Let Λ be a ruled surface and ξ(s) be the angle between the Darboux vector and the
binormal vector. The singular point belonging to the ruled surface is given by P (s0, v0) =

(
s0, cos ξ(s0)

ξ′(s0)

)
.

Proof.
To determine the normal vector for a singular point, the denominator of the normal vector must be
zero. As a result, when performing the necessary operations, the singular point becomes P (s0, v0) =(
s0, cos ξ(s0)

ξ′(s0)

)
.

Taking into account Equation 1, we have the following result.

Corollary 3.11. The normal and the geodesic curvatures of the ruled surface in terms of angle ξ(s)
can be expressed as follows:

kn(s) = −(cos ξ(s) + vξ′(s))∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) , kn(v) = 0

and

tg(s) = sin ξ(s)∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) , tg(v) = 0
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Using the angle ξ(s), quaternionic shape operators are given by

Q(s) = −(cos ξ(s) + vξ′(s))∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) + sin ξ(s)∥W⃗ (s)∥

1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) n⃗(s)

and
Q(v) = kn(v) + tg(v)Z⃗(v) = 0

Theorem 3.12. Let Λ be a ruled surface and ξ(s) be the angle between the Darboux vector and
the binormal vector. Using the quaternionic operators, the shape operators S(T⃗ (s)) and S(T⃗ (v)) are
obtained by

S(T⃗ (s)) = Q(s) × T⃗ (s) = −(cos ξ(s)∥W⃗ (s)∥+vξ′(s)∥W⃗ (s)∥(cos 2ξ(s)+vξ′(s) cos ξ(s)+1))⃗t(s)
(1+vξ′(s)(2 cos ξ(s)+vξ′(s)))3/2

+ (sin ξ(s)∥W⃗ (s)∥+vξ′(s)∥W⃗ (s)∥(sin 2ξ(s)+vξ′(s) sin ξ(s)))⃗b(s)
(1+vξ′(s)(2 cos ξ(s)+vξ′(s)))3/2

and
S(T⃗ (v)) = Q(v) × T⃗ (v) = 0⃗

Proof.
The proof of the theorem is similar to the proof of Theorem 3.3.

Corollary 3.13. According to ξ(s), the angle between Darboux and binormal vectors, the cosine and
sine of the angle of between T⃗ (s) and Q(s) × T⃗ (s) are as follows:

cos 2φ(s) = − cos ξ(s) − vξ′(s)√
1 + vξ′(s)(2 cos ξ(s) + vξ′(s))

and
sin 2φ(s) = sin ξ(s)√

1 + vξ′(s)(2 cos ξ(s) + vξ′(s))

Theorem 3.14. The ruled surface Λ is flat. The mean curvature H of this surface is obtained by

H = ∥W⃗ (s)∥
2
∣∣1 + vξ′(s)

∣∣
Proof.
The proof of the theorem is similar to the proof of Theorem 3.7.

Example 3.15. The various position of the generating unit Darboux vector is obtained from the
ruled surface. Such a surface has a parameterization,

Λ⃗(s, v) =
(√

1 + s2, ln(s +
√

1 + s2), s + v
)

If we choose the quaternion as p(s) = −
√

2
2 −

√
2

2
√

1+s2 (1, s, 0), then we can write the surface with
quaternions as follows:

Λ⃗(s, v) =
(√

1 + s2, ln(s +
√

1 + s2), s
)

+ 1√
2 + 2s2

vp(s) × (s, 1,
√

1 + s2)

This ruled surface is provided in Figure 1.
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Figure 1. The ruled surface drawn by unit Darboux vector and the base curve of the surface

The quaternionic shape operator, denoted as Q(s), is a mathematical construct that can be used to
analyze the shape of the surface. It is calculated as

Q(s) = kn(s) + tg(s)Z⃗ = 1
2
√

2(1 + s2)
− 1

2
√

2(1 + s2)3/2 (1, −s, 0)

The shape operator, denoted as S(T⃗ (s)), is obtained by taking the quaternionic product of the quater-
nionic shape operator and the tangent vector T⃗ (s). The tangent vector is a vector that is tangent to
the surface at a particular point and points in the direction of the surface at that point. The shape
operator is then calculated as

S(T⃗ (s)) = Q(s) × T⃗ (s) = 1
2
√

2(1 + s2)3/2 (s, 1, 0)

The shape operator for the parameter v, denoted as S(T⃗ (v)), is equal to 0⃗. Hence, by Equations 3
and 4, it is easy to express Gauss and mean curvatures as

K = 0 and H =
√

2
4(1 + s2)5/2

This means that the surface is developable and is not a minimal surface. The operator Q(s) rotates
the tangent vector T⃗ (s) in the tangent plane of the ruled surface and around the normal vector Z⃗(s)
of the ruled surface. In this case, the rotation matrix for the unit quaternion q = cos φ + sin φZ⃗(s) is
given as

R1 = 1√
2(1 + s2)


√

2 − s2(
√

2 − 1) −s(
√

2 − 1) s
√

1 + s2

−s(
√

2 − 1) 1 1
−s

√
1 + s2 −1 1

1+s2


where Z⃗(s) =

(
1√

1+s2 , − s√
1+s2 , 0

)
.

4. Conclusion

Quaternions are an essential topic in animation, robot kinematics, and rotational motion in 3-dimensional
space. Ruled surfaces have a vital role in technology (especially robot end-effectors). Moreover, it is
known that Gauss and mean curvatures and the shape operator are the invariants in the surface of
theory. These invariants are quaternionically calculated for the unit Darboux ruled surface.
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In this study, we combine some points on two critical subjects. Besides, we provide some theorems
related to the invariants and then show how to find a rotation matrix. Based on the quaternionic
shape operator and the rotation matrix, we derive different situations of the invariants and rotations:
one from the curvatures of the base curve and the other one by the angle ξ(s) between W⃗ (s) and b⃗(s).
Thus, we observe what happens when we express the relation form of the frame equations using ξ

instead of the curvatures. Furthermore, we obtain the shape operators by revolving tangent vectors
of parameter curves around the surface’s normal vector through twice the angle of φ and then get
rotation matrices.

In further research, it would be valuable to replicate similar approaches in different spaces, such as
Galileo or Lorentz spaces. These alternative spaces could potentially yield different results and provide
a deeper understanding of the results herein being studied.
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Abstract − Uncertain data is a challenge to decision-making (DM) problems. Multi-criteria
group decision-making (MCGDM) problems are among these problems that have received
much attention. MCGDM is difficult because the existing alternatives frequently conflict with
each other. In this article, we suggest a novel hybrid model for an MCGDM approach based on
modified rough bipolar soft sets (MRBSs) using a well-known method of technique for order
of preference by similarity to ideal solution (TOPSIS), which combines MRBSs theory and
TOPSIS for the prioritization of alternatives in an uncertain environment. In this technique,
we first introduce an aggregated parameter matrix with the help of modified bipolar soft
lower and upper matrices to identify the positive and negative ideal solutions. After that, we
define the separation measurements of these two solutions and compute relative closeness to
choose the best alternative. Next, an application of the proposed technique in the MCGDM
problem is introduced. Afterward, an algorithm for this application is developed, which is
illustrated by a case study. The application demonstrates the usefulness and efficiency of the
proposal. Compared to some existing studies, we additionally present several merits of our
proposed technique. Eventually, the paper handles whether additional studies on these topics
are needed.

Keywords Bipolar soft sets, bipolar soft rough sets, MRBSs, TOPSIS, MCGDM
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1. Introduction

Various issues in social sciences, engineering, medical sciences, economics, and other domains include
uncertainty. It is impossible to address these issues using traditional mathematical approaches. The
traditional mathematical model is a rational model of decision-making (DM) that depends on the
hypothesis that decision-makers have access to complete knowledge and can make the best decision by
weighing every alternative. Due to this, the mathematical model is highly complicated, and an accurate
solution cannot be obtained. To overcome this trouble, scholars are endeavoring to discover suitable
methodologies and mathematical theories to address data uncertainty. These theories include fuzzy
sets (FSs), rough set (RS) theory, vague set theory, automata theory, etc., but they have only partially
been successful in solving the problems. These theories diminished the space between traditional
mathematical concepts and ambiguous real-world data.

Zadeh [1] developed the FS theory to characterize fuzzy data mathematically. But, in FSs, finding
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the membership function might sometimes be challenging. Consequently, Molodtsov [2] developed
the soft set (SS) concept as a new strategy for modeling uncertainty, liberated from this trouble.
SS theory needs an approximate description of an object as its initial viewpoint. The selection of
suitable parameters like numbers, functions, words, etc., makes SS theory very advantageous and
straightforward to use in reality. Maji et al. [3] established several operations on SS. Ali et al. [4]
offered a variety of novel operations on SS. Çağman et al. [5] projected the idea of fuzzy SS theory.
Al-Shami and Mhemdi [6] offered to belong and non-belong relations on double-framed SS.

The RS theory [7, 8] is an effective mathematical strategy for handling uncertainties. In RSs, uncer-
tainty is characterized by a set’s boundary region. Pawlak examined how close a bunch of objects are
to the information associated with them using their lower and upper approximations.

The connections between SS theory, RSs, and FSs were provided by Feng et al. [9,10], leading to three
kinds of hybrid models: rough SS (RSS), soft RSs (SRSs), and soft-rough FSs (SRFSs). Shabir et
al. [11] redefined a version of an SRS called a modified SRS (MSRS). Shaheen et al. [12] established
the concept of dominance-based SRSs.

Bipolarity is critical in various kinds of data when establishing mathematical modeling for specific
problems. Bipolarity takes both the positive and negative characteristics of the data into account.
The positive data delivers what is conceivable, whereas the negative data emphasizes the impossibility.
The idea behind the existence of bipolar information is that a large variety of human DM relies upon
bipolar judgmental cognition.

Shabir and Naz [13] put the groundwork for bipolar SSs (BSSs) due to the significance of bipolarity.
Following this research, the BSS theory gained much fame among scholars. Karaaslan and Karataş [14]
reformulate BSS with a novel approximation, offering a prospect to explore the topological structures
of BSS. Mahmood [15] redesigned a form of BSS, known as T-BSS, and employed this concept for
DM problems. Moreover, Naz and Shabir [16] established the idea of fuzzy BSS and investigated
their algebraic structures. Al-Shami [17] came up with the idea of bipolar soft sets and the relations
between them and ordinary points, along with applications.

Karaaslan and Çağman [18] originally suggested bipolar SRSs (BSRSs) tackle the roughness of BSS,
which was then changed and improved by establishing the conception of MRBSs by Shabir and Gul [19].
Gul et al. [20] established a new strategy of the roughness for BSS with applications in MCGDM. Gul
and Shabir [21] pioneered the concept (α, β)-bipolar fuzzified RS using bipolar fuzzy tolerance relation.

In decision analysis, several multi-criteria DM (MCDM) frameworks have been carried out in the
literature. TOPSIS is one of the classical MCDM methods offered by Hwang and Yoon [22] in 1981.
The fundamental notion of TOPSIS is to measure the distance between every alternative and ideal
solution. The optimal alternative should be the one that has to have the shortest distance from
the positive ideal solution (PIS) and the farthest distance from the negative ideal solution (NIS).
PIS addresses the scenario for the best possible decision, whereas NIS shows the scenario for the
worst. Chen [23] generalized the TOPSIS approach for taking the MCDM problem in a fuzzy context.
Afterward, Chen and Tsao [24] proposed the interval-valued fuzzy TOPSIS. Boran et al. [25] fostered
the TOPSIS for MCDM problems based on intuitionistic FS. Ali et al. [26] offered the TOPSIS model
for probabilistic interval-valued hesitant fuzzy sets with application to healthcare facilities in public
hospitals. Eraslan [27] gave a DM method using TOPSIS on SS theory. Eraslan and Karaaslan [28]
gave a group DM method based on TOPSIS under a fuzzy SS environment.

Shabir et al. [29] proposed an algebraic approach to N-SS with application in DM via TOPSIS. Akram
et al. [30] generalize the TOPSIS and ELECTRE-I methods in a bipolar fuzzy framework. Akram
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and Adeel [31] extended the TOPSIS for MCGDM via an interval-valued hesitant fuzzy N-SS context.
Xu and Zhang [32] constructed a strategy based on maximizing deviation and the TOPSIS to explain
multi-attribute DM problems. In 2014, Zhang and Xu [33] extended the TOPSIS in MCDM using
Pythagorean FSs. Mousavi-Nasab and Sotoudeh-Anvari [34] gave an MCDM-based method using
TOPSIS, COPRAS, and DEA for material selection problems. Mahmood et al. [35] pioneered a novel
TOPSIS method based on lattice-ordered T-BSS with applications in DM.

Inspired by the previously mentioned earlier studies and the basic principle of MRBSs, we have
observed that the BSS can manage the bipolarity of the data concerning specific alternatives with
the assistance of two mappings. The positive side of the data is addressed by one mapping, whereas
the other mapping measures the negative side. Keeping in mind the relationship between RSs and
BSS, Karaaslan and Çağman [18] attempted to explore the roughness of BSS, which has certain
shortcomings. To overcome these shortcomings, Shabir and Gul [19] pioneered the idea of MRBSs.

Moreover, to per best of our knowledge, there does not exist any investigation on the appropriate
fusion of TOPSIS with MRBSs. This gap motivates the current research to propose a novel TOPSIS
approach using MRBSs and discuss their application in DM.

In a nutshell, to expand the theory of MRBSs, the primary goal of this study is to establish a novel
TOPSIS approach for MCGDM problems via the MRBSs environment. We introduce a DM algorithm
that determines the best and worst decision among some alternatives, with implementation on selecting
the optimal candidate for a particular post.

This article is structured as follows: Section 2 introduces basic notations related to RS, SS, BSS,
BSRS, and MRBSs. These notions will assist us in discussing our work and suffice the paper for the
reader. After this, we give the general procedure of the TOPSIS technique. Section 3 puts forward
the new TOPSIS-based strategy for addressing MCGDM problems using MRBSs. Section 4 states our
suggested algorithm for choosing the optimal alternative, which we validate through a fully developed
case study in Section 5. Section 6 represents a comparative analysis between the proposed technique
and the other existing methods in solving MCGDM problems. Finally, Section 7 ends with an outline
of the current work and a few perspectives for the future.

2. Preliminaries

In this section, we recapitulate a few essential notions associated with the background of this study.
Throughout this article, unless stated otherwise, we will use 0 for an initial universe, A for the set of
all the parameters related to the objects in 0, and 20 for the power set of 0.

Definition 2.1. [7] Let ∅ ̸= 0 be a finite universe, and σ be an equivalence relation of 0×0. Then,
(0, σ) is stated to be an approximation space.

If ∅ ̸= Q ⊆ 0, then Q may or may not be expressed as a union of some equivalence classes of 0. If Q
is expressed as a union of some equivalence classes, then Q is said to be σ-definable; in any other case,
it is referred to as σ-undefinable. If Q is σ-undefinable, then the lower and upper approximations of
Q concerning σ are given as follows:

apr
σ
(Q) =

{
q ∈ 0 : [q]σ ⊆ Q

}
(1)

and
aprσ(Q) =

{
q ∈ 0 : [q]σ ∩ Q ≠ ∅

}
(2)

where
[q]σ =

{
r ∈ 0 : (q, r) ∈ σ

}
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The boundary region of the RS is characterized as:

Bndσ(Q) = aprσ(Q) − apr
σ
(Q)

From Equations (1) and (2) we can see that

i. An element q belongs to the lower approximation apr
σ
(Q) if all elements equivalent to q belong to

Q.

ii. An element q belongs to the upper approximation aprσ(Q) if at least one element equivalent to q

belongs to Q.

Let 0 be a non-void universe and A be a set of parameters. Then, an SS is defined through a set-valued
map, as described below.

Definition 2.2. [2] A pair (f̂ ,A) is called an SS over 0, where f̂ : A −→ 20 is a set-valued map.

In other words, an SS over 0 gives a parameterized collection of subsets of 0. An SS over 0 may also
be represented as:

(f̂ ,A) =
{(

℘, f̂(℘)
)

: ℘ ∈ A, f̂(℘) ∈ 20
}

A BSS is obtained through two set-valued maps by considering not only a set of parameters but also
an associated set of parameters with an opposite meaning known as “not set of parameters”.

Definition 2.3. [3] By a “NOT set of parameters” of A, we mean a set having the form Ã =
{¬℘ : ℘ ∈ A} where ¬℘ = not ℘, for all ℘ ∈ A.

Definition 2.4. [13] A triplet (f̂ , ĝ : A) is termed as a BSS over 0 where f̂ : A −→ 20 and
ĝ : Ã −→ 20 such that, for all ℘ ∈ A, f̂(℘) ∩ ĝ(¬℘) = ∅.

In other words, a BSS over 0 offers a couple of parameterized families of subsets of 0 and f̂(℘)∩ĝ(¬℘) =
∅, for all ℘ ∈ A, is used as a consistency constraint. A BSS might be characterized as:

(f̂ , ĝ : A) =
{(

℘, f̂(℘), ĝ(¬℘)
)

: ℘ ∈ A, ¬℘ ∈ Ã and f̂(℘) ∩ ĝ(¬℘) = ∅
}

After this, the collection of all the BSSs over 0 will be denoted by BSS0.

Definition 2.5. [18] Let (f̂ , ĝ : A) ∈ BSS0. Then, β =
〈
0, (f̂ , ĝ : A)

〉
is termed as a BSAs (bipolar

soft approximation space). For any Q ⊆ 0, the bipolar soft rough approximations based on β are
defined:

BSβ(Q) =
(
SβP (Q), SβN (Q)

)
and

BSβ(Q) =
(
SβP (Q), SβN (Q)

)
where

SβP (Q) =
{

q ∈ 0 : ∃ ℘ ∈ A,
[
q ∈ f̂(℘) ⊆ Q

]}
SβN (Q) =

{
q ∈ 0 : ∃ ¬℘ ∈ Ã,

[
q ∈ ĝ(¬℘), ĝ(¬℘) ∩ Qc ̸= ∅

]}
SβP (Q) =

{
q ∈ 0 : ∃ ℘ ∈ A,

[
q ∈ f̂(℘), f̂(℘) ∩ Q ≠ ∅

]}
and

SβN (Q) =
{

q ∈ 0 : ∃ ¬℘ ∈ Ã,
[
q ∈ ĝ(¬℘) ⊆ Qc]}

Moreover, if BSβ(Q) ̸= BSβ(Q), then Q is called a BSRS; else Q is called bipolar soft β-definable.
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The boundary region of a BSRS is described as:

BNDβ(Q) =
(
SβP (Q) \ SβP (Q), SβN (Q) \ SβN (Q)

)
BSRSs were originally initiated by Karaaslan and Çağman [18] to manage the roughness of BSSs,
which was subsequently altered and improved by Shabir and Gul [19] by launching the idea of MRBSs.
MRBSs are characterized as follows:

Definition 2.6. [19] Let (f̂ , ĝ : A) ∈ BSS0 such that f̂ : A −→ 20 and ĝ : Ã −→ 20. Construct two
different maps as follows:

Φ : 0 −→ 2A

q 7−→ Φ(q) =
{
℘ : q ∈ f̂(℘)

}
and

Ψ : 0 −→ 2Ã

q 7−→ Ψ(q) =
{
¬℘ : q ∈ ĝ(¬℘)

}
Then, Ω =

〈
0, (Φ, Ψ)

〉
is called a modified rough bipolar soft approximation space (MRBS-AS).

For any ∅ ̸= Q ⊆ 0, the lower modified bipolar pair (LMBP) and the upper modified bipolar pair
(UMBP) concerning Ω are defined in the following manner, respectively:

MBSΩ(Q) =
(
QΦ+ , QΨ−

)
and

MBSΩ(Q) =
(
QΦ+

, QΨ−)
where

QΦ+ =
{
p ∈ Q : Φ(p) ̸= Φ(r), for all r ∈ Qc}

QΦ+
=

{
p ∈ 0 : Φ(p) = Φ(r), for some r ∈ Q

}
QΨ− =

{
p ∈ 0 : Ψ(p) = Ψ(r), for some r ∈ Q

}
and

QΨ−
=

{
p ∈ Q : Ψ(p) ̸= Ψ(r), for all r ∈ Qc}

Here, Qc = 0 − Q. Generally, QΦ+ , QΦ+
, QΨ− , and QΨ−

will be called Φ-lower positive, Φ-upper
positive, Ψ-lower negative, and Ψ-upper negative MRBS-approximations of Q ⊆ 0, respectively. If
MBS
˜Ω

(Q) ̸= M̃BSΩ(Q), then Q is said to be an MRBSs; otherwise, Q is said to be MRBS-definable.

The corresponding positive, boundary, and negative regions under MRBSs are listed as follows:

PosΩ(Q) =
(
QΦ+ , QΨ−)

BndΩ(Q) =
(
QΦ+

\ QΦ+ , QΨ− \ QΨ−

)
and

NegΩ(Q) =
((

QΦ+)c
,
(
QΨ−

)c)

TOPSIS is one of the most frequently utilized techniques for MCDM because it ranks alternatives and
chooses optimal alternatives in the concept evaluation procedure using Euclidean distances. Suppose
that for any DM problem, there are n criteria and m alternatives. Then, a decision matrix is described
as D = [δij ]m×n where i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}, and δij demonstrates the preference value
of an alternative for design criteria.
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The procedure of TOPSIS described in [36] is as follows:

i. Construct the normalized decision matrix Dnor = [rij ]m×n where rij = δij√∑m
i=1 δ2

ij

and weighted

normalized decision matrix. Here, vij = ωjrij is a weighted normalized value where ωj is the weight
of a criteria.

ii. Evaluate the positive ideal solution (PIS) and negative ideal solution (NIS) as:

v+
i =

{( ∨
i

(vij) | j ∈ I
)
,
( ∧

i

(vij) | j ∈ J
)}

and
v−
i =

{( ∧
i

(vij) | j ∈ I
)
,
( ∨
i

(vij) | j ∈ J
)}

where I and J are related to the benefit and cost criterion, respectively.

iii. Determine the separation measure of each alternative from PIS and NIS by using n-dimensional
Euclidean distance:

δ+
i =

√√√√ n∑
j=1

(
vij − v+

i

)2
, i ∈ {1, 2, · · · , m}

and

δ−
i =

√√√√ n∑
j=1

(
vij − v−

i

)2
, i ∈ {1, 2, · · · , m}

iv. Evaluate the relative closeness coefficient of each alternative to the ideal solution, given as:

C∗
i = δ−

i

δ−
i + δ+

i

, i ∈ {1, 2, · · · , m}

v. Sort the alternative concerning the value of C∗
i . The optimal alternative is the object with the

highest value of C∗
i . That alternative would have the least distance from the PIS and the largest

distance from the NIS.

3. An Integrated Model of MCGDM using TOPSIS Technique and MRBSs

The MCGDM is one of the substantial components of modern decision theory. MCGDM aims to select
the optimal from finite alternatives by incorporating the evaluation information of various alternatives
acquired from a group of experts(decision-makers). It is instrumental in economic evaluation, clus-
tering analysis, site selection, medical diagnosis, etc. In MCGDM, the primary step is to consider
a finite number of alternatives in terms of multiple conflicting criteria based on the experts’ opin-
ions. Characterizing the evaluation information for several attributes is a significant problem in the
MCGDM. In real-life MCGDM problems, uncertainty is inevitable because of imprecise judgment by
decision-makers. TOPSIS is a practical and extensively used multi-criteria DM (MCDM) technique
for sorting alternatives and determining the optimal alternative in the concept evaluation procedure.
The aggregating function computed in TOPSIS indicates “closeness to ideal solution”. To make cri-
teria with the same units, TOPSIS employs vector normalization. The critical concept of TOPSIS is
that the alternative that has been selected as the optimal should have the smallest distance from the
PIS and the greatest from the NIS.

In this section, we utilize the TOPSIS technique for MCGDM based on the MRBSs. The systematic
procedure of the TOPSIS under the MRBSs is explained as follows:
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3.1. Description of Problem

In this subsection, we first give the essential explanation of the MCGDM problem under consideration.
Suppose that 0 = {µ1, µ2, . . . , µn} be the set consisting of n alternatives in which the best object is to
be selected and A = {℘1, ℘2, . . . , ℘m} be the set of parameters (criterion) of objects. Assume that we
have a group of independent experts G = {P1, P2, . . . , Pk} consisting of k decision-makers to evaluate
the objects in 0. Each expert needs to review all the objects of 0 and will be requested to only
choose “the optimal alternatives” as their evaluation result. Hence each expert’s primary evaluation
result is a subset of 0. For the sake of simplicity, we assume that the evaluations of these experts
in G are of the same importance. Let Q1, Q2, . . . , Qk are non-void subsets of 0, indicate primary
evaluations of experts P1, P2, . . . , Pk, about n alternatives concerning m parameters, respectively, and
B1, B2, . . . , Br ∈ BSS0 are the real results previously captured for the same problems in various lo-
cations or various periods. Specifically, we can take the MRBS-approximations of the expert Pi’s
primary evaluation result Qi concerning the MRBS-AS Ω =

〈
0, (Φ, Ψ)

〉
. The Φ-lower positive ap-

proximation QiΦ+ can be interpreted as the set consisting of the objects which are undoubtedly the
optimum candidates according to the expert Pi’s primary evaluation. Similarly, the Φ-upper positive
approximation Qi

Φ+
can be interpreted as the set consisting of the objects which are possibly the opti-

mum candidates according to the expert Pi’s primary evaluation. The Ψ-lower positive approximation
QiΨ− can be interpreted as the set consisting of the objects which are possibly the worst candidates
according to the expert Pi’s primary evaluation. Likewise, the Ψ-upper negative approximation Qi

Ψ−

can be interpreted as the set consisting of the objects which are surely the worst candidates according
to the expert Pi’s primary evaluation. Then, the DM for this MCGDM problem is: “how to resolve
differences of the evaluation conveyed by the individual experts to determine the object which is highly
favorable by the entire group of experts”.

3.2. Methodology

Here, we present the step-by-step mathematical formulation and process of the TOPSIS technique
under the framework of MRBSs for the MCGDM problem.

Definition 3.1. Let MBSBq
(Qj) =

(
QjΦ+

q
, QjΨ−

q

)
be the LMBP and MBSBq (Qj) =

(
Qj

Φ+
q , Qj

ψ−
q

)
be UMBP of Qj such that j ∈ {1, 2, · · · , k} concerning Bq = (f̂q, ĝq : A) ∈ BSS0, for q ∈ {1, 2, . . . , r}.
Then,

M =



〈
Q1Φ+

1
, Q1Ψ−

1

〉 〈
Q2Φ+

1
, Q2Ψ−

1

〉
· · ·

〈
QkΦ+

1
, QkΨ−

1

〉
〈
Q1Φ+

2
, Q1Ψ−

2

〉 〈
Q2Φ+

2
, Q2Ψ−

2

〉
· · ·

〈
QkΦ+

2
, QkΨ−

2

〉
...

... . . . ...〈
Q1Φ+

r
, Q1Ψ−

r

〉 〈
Q2Φ+

r
, Q2Ψ−

r

〉
· · ·

〈
QkΦ+

r
, QkΨ−

r

〉


r×k

and

M =



〈
Q1

Φ+
1 , Q1

Ψ−
1

〉 〈
Q2

Φ+
1 , Q2

Ψ−
1

〉
· · ·

〈
Qk

Φ+
1 , Qk

Ψ−
1

〉
〈
Q1

Φ+
2 , Q1

Ψ−
2

〉 〈
Q2

Φ+
2 , Q2

Ψ−
2

〉
· · ·

〈
Qk

Φ+
2 , Qk

Ψ−
2

〉
...

... . . . ...〈
Q1

Φ+
r , Q1

Ψ−
r

〉 〈
Q2

Φ+
r , Q2

Ψ−
r

〉
· · ·

〈
Qk

Φ+
r , Qk

Ψ−
r

〉


r×k

are stated to be modified bipolar soft lower and upper approximation matrices, respectively, where

QjΦ+
q

=
(
µ1jΦ+

q
, µ2jΦ+

q
, . . . , µnjΦ+

q

)
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QjΨ−
q

=
(
µ1jΨ−

q
, µ2jΨ−

q
, . . . , µnjΨ−

q

)
Qj

Φ+
q =

(
µ1j

Φ+
q , µ2j

Φ+
q , . . . , µnj

Φ+
q

)
and

Qj
Ψ−

q =
(
µ1j

Ψ−
q , µ2j

Ψ−
q , . . . , µnj

Ψ−
q

)
Here,

µijΦ+
q

=

 1, µi ∈ XjΦ+
q

0, µi /∈ XjΦ+
q

µijΨ−
q

=

 −1
2 , µi ∈ XjΨ−

q

0, µi /∈ XjΨ−
q

µij
Φ+

q =


1
2 , µi ∈ Xj

Φ+
q

0, µi /∈ Xj
Φ+

q

and

µij
Ψ−

q =

 −1, µi ∈ Xj
Ψ−

q

0, µi /∈ Xj
Ψ−

q

Remark 3.2. From Definition 3.1, we have

i. QjΦ+
q

and Qj
Φ+

q show the Φ-lower and Φ-upper positive MRBS-approximation of the evaluation

Qj ⊆ 0 by the jth expert related to qth actual result represented by the BSS Bq = (f̂q, ĝq : A).

ii. QjΨ−
q

and Qj
Ψ−

q show the Ψ-lower and Ψ-upper negative MRBS-approximation of the evaluation

Qj ⊆ 0 by the jth expert related to qth actual result represented by the BSS Bq = (f̂q, ĝq : A).

Definition 3.3. Let M and M be modified bipolar soft lower and upper approximation matrices
concerning MBSBq

(Qj) and MBSBq (Qj). Then,

A = M + M =
(
αij

)
r×k =


α11 α12 · · · α1k

α21 α22 · · · α2k
...

... . . . ...
αr1 αr2 · · · αrk


is regarded as aggregated parameter matrix, where every element has the form:

αij =
〈
αΦ+
ij , αΨ−

ij

〉
=

〈
XjΦ+

q
⊕ XjΦ+

q
, XjΨ−

q
⊕ XjΨ−

q

〉
such that αΦ+

ij = XjΦ+
q

⊕XjΦ+
q

=
(

. . . , µmjΦ+
i

+µmj
Φ+

i , . . .
)

and αΨ−
ij = XjΨ−

q
⊕XjΨ−

q
=

(
. . . , µmjΨ−

i

+

µmj
Ψ−

i , . . .
)
. Here, the operation ⊕ stands for the vector addition.

Definition 3.4. Assume that A is an aggregated parameter matrix. Then,

S =
(〈

sΦ+
ij , sΨ−

ij

〉)
r×k

is said to be a standardized decision matrix where sΦ+
ij =

( k∑
m=1

αΦ+
im

)
j

and sΨ−
ij =

( k∑
m=1

αΨ−
im

)
j

such

that i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , n}.
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Remark 3.5. From Definition 3.4, we have noticed that sΦ+
ij is the positive information for the jth

coordinate of the vector sum of the ith row of the matrix A and sΨ−
ij is the negative information for the

jth coordinate of the vector sum of the ith row of the matrix A. ın other words, each row in the matrix
S is a vector obtained by taking the column sum of A. Thus,

〈
sΦ+
ij , sΨ−

ij

〉
represents the standardized

MRBS-approximation of alternative ui under the scenario of jth real result previously acquired for the
same problems in various locations or various periods.

Definition 3.6. Let S be a standardized decision matrix. Then,

ℵ =
(
nij

)
r×k =


n11 n12 · · · n1k

n21 n22 · · · n2k
...

... . . . ...
nr1 nr2 · · · nrk


is called a normalized decision matrix where each entry is of the form nij =

〈
ηΦ+
ij , ηΨ−

ij

〉
with the

following conditions:

ηΦ+
ij =

sΦ+
ij√√√√ r∑

ℓ=1

(
sΦ+
ℓj

)2

and

ηΨ−
ij =

sΨ−
ij√√√√ r∑

ℓ=1

(
sΨ−
ℓj

)2

Definition 3.7. Let ℵ be a normalized decision matrix. Then,

D =
(
δij

)
r×k =


δ11 δ12 · · · δ1k

δ21 δ22 · · · δ2k
...

... . . . ...
δr1 δr2 · · · δrk


is called an average weighted normalized decision matrix where each entry is of the form:

δij =

∣∣∣ηΦ+
ij

∣∣∣ +
∣∣∣ηΨ−
ij

∣∣∣
2

Definition 3.8. Let D be an average weighted normalized decision matrix. Then, the expressions:

MPIS =
{
δΦ+

1 , δΦ+
2 , · · · , δΦ+

k

}
=

{
max(δij) : i ∈ Ir

}
such that Ir = {1, 2, · · · , r}

and

MNIS =
{
δΨ−

1 , δΨ−
2 , · · · , δΨ−

k

}
=

{
min(δij) : i ∈ Ir

}
such that Ir = {1, 2, · · · , r}

are called modified PIS and modified NIS, respectively.

Definition 3.9. Let MPIS and MNIS be positive and negative ideal solutions. Then, the separation
measurement of each alternative to MPIS is determined as follows:

SΦ+
i =

√√√√√ k∑
j=1

(
δij − δΦ+

j

)2
, i ∈ {1, 2, · · · , r}
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Similarly, the separation measurement of each alternative to MNIS is evaluated as follows:

SΨ−
i =

√√√√√ k∑
j=1

(
δij − δΨ−

j

)2
, i ∈ {1, 2, · · · , r}

Definition 3.10. Let SΦ+
i and SΨ−

i be separation measurements of MPIS and MNIS, respectively.
The relative closeness of alternatives to the ideal solution is defined as:

C
(Φ+,Ψ−)
i = SΨ−

i

SΨ−
i + SΦ+

i

, i ∈ {1, 2, · · · , r}

Here, 0 ≤ C
(Φ+,Ψ−)
i ≤ 1, for all i ∈ {1, 2, · · · , r}. The larger value of C

(Φ+,Ψ−)
i corresponds to the

most desirable alternative. It has the least distance from the MPIS and the highest distance from the
MNIS.

4. An Algorithm for the Proposed MCGDM Problem

In this section, we present an algorithm for the developed TOPSIS-based MCGDM problem considered
in Section 3. The related steps are outlined as follows:

Step 1. Take primary evaluations Qi of experts Pi such that i ∈ {1, 2, · · · , k}.

Step 2. Construct B1, B2, . . . , Br using the real results.

Step 3. Determine MBSBq
(Qj) and MBSBq (Qj), for j ∈ {1, 2, · · · , k} and q ∈ {1, 2, · · · , r}, from

Definition 2.6.

Step 4. Construct M and M according to Definition 3.1.

Step 5. Construct the aggregated parameter matrix from Definition 3.3.

Step 6. Compute the standardized decision matrix using Definition 3.4.

Step 7. Compute the normalized decision matrix according to Definition 3.6.

Step 8. Construct the average weighted normalized decision matrix using Definition 3.7.

Step 9. Determine the MPIS and the MNIS using Definition 3.8.

Step 10. According to Definition 3.9, calculate separation measurements of MPIS and MNIS for
every alternative.

Step 11. Determine relative closeness of alternatives to ideal solutions using Definition 3.10.

Step 12. Ranking the preference order.

The flowchart of the above algorithm is displayed in Figure 1.



Journal of New Theory 42 (2023) 55-73 / A Hybridization of Modified Rough Bipolar Soft Sets and TOPSIS for MCGDM 65

Construct BSS using 

real results

Compute upper 
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Construct modified Bipolar soft lower 

approximation matrix 

Input
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modified bipolar pair 

Compute aggregated parameter matrix
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Compute normalized decision matrix

Compute average weighted normalized 

decision matrix

Calculate separation 
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Calculate relative 
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Calculate separation 

measurement of MNIS  

Rank the preference order   

Figure 1. Flowchart of TOPSIS using MRBSs

5. Case Study

In this section, we discuss a design example of the MCGDM problem in MRBSs to illustrate the
potential of the above-formulated TOPSIS method.

Example 5.1. Due to globalization’s growing competition and mechanical upgrades, global markets
are forcing companies to deliver top-quality things and services. This must be achieved through
the participation of suitable employees. Employee selection is a procedure selection of people with
the essential capabilities to perform a specific job at best. It chooses the information nature of
employees and performs a crucial role in personnel management. Growing rivalry in worldwide markets
encourages organizations to put greater emphasize on the recruitment process. Several companies
determine the best job-hunter using rigorous and expensive identification methodologies. A candidate
may be judged by various parameters such as managerial skills, ability to work under pressure, fluency
in English, etc. It is wise to consult experts to accurately judge the candidates based on these
parameters.
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Assume that a production corporation wants to hire a marketing manager for a vacant post. Let
0 = {µ1, µ2, µ3, µ4, µ5} be the set of five candidates who might fit the marketing manager position
at the production company. A panel of experts G = {P1, P2, P3} is set up to hire the most suitable
candidate for this job. The panel will evaluate the candidates according to the set of parameters
A = {℘1, ℘2, ℘3} such that ℘1 = managerial skills, ℘2 = ability to work under pressure, and ℘3 =
fluency in English. The following calculations are performed to solve the MCGDM problem using the
proposed methodology.

Step 1. The panel of experts G = {P1, P2, P3} gives their primary evaluations for the candidates as:

Q1 = {µ1, µ2, µ5}, Q2 = {µ1, µ3, µ5}, and Q3 = {µ2, µ4, µ5}

Step 2. Real results in three various times and places are displayed as BSSs B1 = (f̂1, ĝ1 : A),
B2 = (f̂2, ĝ2 : A), and B3 = (f̂3, ĝ3 : A) as follows:

f̂1 : A −→ 20 ĝ1 : Ã −→ 20

℘ 7−→ f̂1(℘) =


{µ1}, ℘ = ℘1

{µ1, µ5}, ℘ = ℘2

{µ4, µ5}, ℘ = ℘3

¬℘ 7−→ ĝ1(¬℘) =


{µ3, µ5}, ¬℘ = ¬℘1

{µ3}, ¬℘ = ¬℘2

{µ1, µ3}, ¬℘ = ¬℘3

f̂2 : A −→ 20 ĝ2 : Ã −→ 20

℘ 7−→ f̂2(℘) =


{µ2}, ℘ = ℘1

{µ2, µ4}, ℘ = ℘2

{µ3, µ4}, ℘ = ℘3

¬℘ 7−→ ĝ2(¬℘) =


{µ1, µ4}, ¬℘ = ¬℘1

{µ5}, ¬℘ = ¬℘2

{µ1, µ5}, ¬℘ = ¬℘3

and

f̂3 : A −→ 20 ĝ3 : Ã −→ 20

℘ 7−→ f̂3(℘) =


{µ3, µ5}, ℘ = ℘1

{µ2}, ℘ = ℘2

{µ2, µ5}, ℘ = ℘3

¬℘ 7−→ ĝ3(℘) =


{µ1, µ2}, ¬℘ = ¬℘1

{µ4}, ¬℘ = ¬℘2

{µ1, µ3}, ¬℘ = ¬℘3

Step 3. Using Definition 2.6, the LMBP and the UMBP for Q1, Q2, and Q3 concerning B1, B2, and
B3 are as follows:

MBSB1(Q1) =
(
{µ1, µ5}, {µ1, µ2, µ4, µ5}

)
MBSB1(Q1) =

(
{µ1, µ2, µ3, µ5}, {µ1, µ5}

)
MBSB1(Q2) =

(
{µ1, µ5}, {µ1, µ3, µ5}

)
MBSB1(Q2) =

(
{µ1, µ2, µ3, µ5}, {µ1, µ3, µ5}

)
MBSB1(Q3) =

(
{µ4, µ5}, {µ2, µ4, µ5}

)
MBSB1(Q3) =

(
{µ2, µ3, µ4, µ5}, {µ2, µ4, µ5}

)
MBSB2(Q1) =

(
{µ1, µ2, µ5}, {µ1, µ5}

)
MBSB2(Q1) =

(
{µ1, µ2, µ5}, {µ1, µ2, µ3, µ5}

)
MBSB2(Q2) =

(
{µ1, µ3, µ5}, {µ1, µ2, µ3, µ5}

)
MBSB2(Q2) =

(
{µ1, µ3, µ5}, {µ1, µ5}

)
MBSB2(Q3) =

(
{µ2, µ4}, {µ2, µ3, µ4, µ5}

)
MBSB2(Q3) =

(
{µ1, µ2, µ4, µ5}, {µ4, µ5}

)
and

MBSB3(Q1) =
(
{µ2, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q1) =

(
{µ1, µ2, µ4, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q2) =

(
{µ3, µ5}, {µ1, µ3, µ5}

)
MBSB3(Q2) =

(
{µ1, µ3, µ4, µ5}, {µ1, µ3, µ5}

)
MBSB3(Q3) =

(
{µ2, µ5}, {µ2, µ4, µ5}

)
MBSB3(Q3) =

(
{µ1, µ2, µ4, µ5}, {µ2, µ4, µ5}

)
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Step 4. Using Definition 3.1, the modified bipolar soft lower upper approximation matrices are ob-
tained as:

M =


〈

(1, 0, 0, 0, 1), (−
1
2
,−

1
2
, 0,−

1
2
,−

1
2

)
〉 〈

(1, 0, 0, 0, 1), (−
1
2
, 0,−

1
2
, 0,−

1
2

)
〉 〈

(0, 0, 0, 1, 1), (0,−
1
2
, 0,−

1
2
,−

1
2

)
〉

〈
(1, 1, 0, 0, 1), (−

1
2
, 0, 0, 0,−

1
2

)
〉 〈

(1, 0, 1, 0, 1), (−
1
2
,−

1
2
,−

1
2
, 0,−

1
2

)
〉 〈

(0, 1, 0, 1, 0), (0,−
1
2
,−

1
2
,−

1
2
,−

1
2

)
〉

〈
(0, 1, 0, 0, 1), (0,−

1
2
, 0,−

1
2
,−

1
2

)
〉 〈

(0, 0, 1, 0, 1), (−
1
2
, 0,−

1
2
, 0,−

1
2

)
〉 〈

(0, 1, 0, 0, 1), (0,−
1
2
, 0,−

1
2
,−

1
2

)
〉


and

M =


〈

(
1
2
,

1
2
,

1
2
, 0,

1
2

), (−1, 0, 0, 0,−1)
〉 〈

(
1
2
,

1
2
,

1
2
, 0,

1
2

), (−1, 0,−1, 0,−1)
〉 〈

(0,
1
2
,

1
2
,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉

〈
(

1
2
,

1
2
, 0, 0,

1
2

), (−1,−1,−1, 0,−1)
〉 〈

(
1
2
, 0,

1
2
, 0,

1
2

), (−1, 0, 0, 0,−1)
〉 〈

(
1
2
,

1
2
, 0,

1
2
,

1
2

), (0, 0, 0,−1,−1)
〉

〈
(

1
2
,

1
2
, 0,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉 〈

(
1
2
, 0,

1
2
,

1
2
,

1
2

), (−1, 0,−1, 0,−1)
〉 〈

(
1
2
,

1
2
, 0,

1
2
,

1
2

), (0,−1, 0,−1,−1)
〉


Step 5. According to Definition 3.3, the aggregated parameter matrix is constructed as:

A=


〈

(1.5, 0.5, 0.5, 0, 1.5), (−1.5, −0.5, 0, −0.5, −1.5)
〉 〈

(1.5, 0.5, 0.5, 0, 1.5), (−1.5, 0, −1.5, 0, −1.5)
〉 〈

(0, 0.5, 0.5, 1.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉〈

(1.5, 1.5, 0, 0, 1.5), (−1.5, −1, −1, 0, −1.5)
〉 〈

(1.5, 0, 1.5, 0, 1.5), (−1.5, −0.5, −0.5, 0, −1.5)
〉 〈

(0.5, 1.5, 0, 1.5, 0.5), (0, −0.5, −0.5, −1.5, −1.5)
〉〈

(0.5, 1.5, 0, 0.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉 〈

(0.5, 0, 1.5, 0.5, 1.5), (−1.5, 0, −1.5, 0, −1.5)
〉 〈

(0.5, 1.5, 0, 0.5, 1.5), (0, −1.5, 0, −1.5, −1.5)
〉


Step 6. Compute standardized decision matrix using Definition 3.4, we have

S =



〈
3, −3

〉 〈
1.5, −2

〉 〈
1.5, −1.5

〉 〈
1.5, −2

〉 〈
4.5, −4.5

〉
〈
3.5, −3

〉 〈
3, −2

〉 〈
1.5, −2

〉 〈
1.5, −1.5

〉 〈
3.5, −4.5

〉
〈
1.5, −1.5

〉 〈
3, −3

〉 〈
1.5, −1.5

〉 〈
1.5, −3

〉 〈
4.5, −4.5

〉


Step 7. According to Definition 3.6, the normalized decision matrix can be determined as:

ℵ =



〈
0.619, −0.666

〉 〈
0.333, −0.485

〉 〈
0.577, −0.514

〉 〈
0.577, −0.512

〉 〈
0.620, −0.577

〉
〈
0.722, −0.666

〉 〈
0.666, −0.485

〉 〈
0.577, −0.686

〉 〈
0.577, −0.384

〉 〈
0.482, −0.577

〉
〈
0.309, −0.333

〉 〈
0.666, −0.728

〉 〈
0.577, −0.514

〉 〈
0.577, −0.768

〉 〈
0.620, −0.577

〉


Step 8. Using Definition 3.7, the weighted normalized decision matrix is obtained as follows:

D =


0.643 0.818 0.546 0.545 0.599

0.694 0.576 0.632 0.481 0.530

0.321 0.697 0.546 0.673 0.599


Step 9. According to Definition 3.8, MPIS and MNIS are obtained as follows:

MPIS =
{
0.818, 0.694, 0.697

}
and

MNIS =
{
0.545, 0.481, 0.321

}
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Step 10. By Definition 3.9, the separation measurements of MPIS and MNIS for every parameter
are calculated as:

SΦ+
1 = 0.415 SΨ−

1 = 0.234

SΦ+
2 = 0.118 SΨ−

2 = 0.474

SΦ+
3 = 0.317 SΨ−

3 = 0.271

SΦ+
4 = 0.347 SΨ−

4 = 0.352

and
SΦ+

5 = 0.291 SΨ−
5 = 0.287

Step 11. The relative closeness of each alternative to the ideal solution according to Definition 3.10
can be calculated as:

C
(Φ+,Ψ−)
1 = 0.361

C
(Φ+,Ψ−)
2 = 0.801

C
(Φ+,Ψ−)
3 = 0.461

C
(Φ+,Ψ−)
4 = 0.465

and
C

(Φ+,Ψ−)
5 = 0.497

Step 12. Ranking the preference order is given as:

µ2 ⪰ µ5 ⪰ µ4 ⪰ µ3 ⪰ µ1

This indicates that µ2 is the optimal candidate for the marketing manager position. We also note
that although the initial selection of three experts favored candidate µ5 more, considering the previous
three evaluations regarding BSS and the proposed TOPSIS method revealed a different ranking with
more intelligence and insight into the given scenario. Note that “⪰” is the symbol of the preference
order of alternatives. The graphical display for the ranking of the candidates is also given in Figure 2.
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Figure 2. Graph for the ranking of candidates
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6. Comparative Analysis and Discussion

In this section, we discuss the merits and drawbacks of the proposed technique and compare the
suggested study with a few existing approaches.

6.1. Merits of the Proposed Model

Real-world MCGDM issues typically arise in a complex environment under ambiguous and imprecise
data, which is tough to handle. The suggested model is highly appropriate for the considered problem
when the information is complicated and uncertain, especially when the current information depends
on the bipolar data by experts. Some advantages of the suggested approach are summarized as follows:

i. The suggested technique replicates each alternative’s positive and negative characteristics as BSS.
To manage aggressive DM, this integrated model is more comprehensive and suitable.

ii. This approach is also preferable because, in this method, the experts are free from any external
constraints and requirements.

iii. There is no possibility of losing collective information throughout the process since aggregation is
done in the final step.

iv. The established strategy not only takes experts’ assessments but also integrates the previous
experiences by the MRBS-approximations in real circumstances. Therefore, it is a more generalized
approach for a better understanding available data and using artificial intelligence to make decisions.

6.2. Drawbacks of the Proposed Model

The suggested model has a few minor shortcomings, including its complicated structure and the
massive information in the form of BSS. Such huge information is challenging to address because of
enormous calculations, which are difficult to handle. However, one may establish MATLAB program-
ming to ease these calculations simpler. Moreover, in the proposed model, parameters are independent
of the environment. Therefore it cannot produce a ranking result when the parameters are dependent.

6.3. Comparison with Other Models

In this subsection, we compare the suggested strategy with TOPSIS approaches in fuzzy and bipolar
fuzzy settings. Among the various MCDM approaches, the TOPSIS technique is the most favored
one.

In the fuzzy TOPSIS technique, linguistic evaluations are used instead of numerical values. That
is, the rating of the objects and the weights of criteria within the problem are evaluated utilizing
fuzzy linguistic variables. Although the TOPSIS technique is the most effective approach in a fuzzy
setting, it just gives us a mechanism to estimate the truth membership. On the other hand, the
suggested TOPSIS technique offers a modified method for coping with MCGDM problems in which
the subjective data is provided via a decision-maker in the form of BSS.

The researchers initiated and investigated bipolar fuzzy TOPSIS [30, 37] and extended the TOPSIS
method based on IVHFNSSs [31]. It is generally known that the models can manage some DM
problems to convey the idea of experts by using a crisp number. But, due to the uncertainty of the
objective world and the complexity of the decision problems, they cannot address some group DM
problems. For instance, some experts argue the membership degree of an object to a set and cannot
compromise each other. One wants to assign 0.3, but the other prefers to choose 0.5. In this situation,
MRBSs can be a perfect solution to this problem.
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We explore the following points if we compare our proposed model with the TOPSIS techniques
described in [27, 28, 38]. Firstly, these methods cannot address the bipolarity in the DM process,
which is a critical feature of human cognition. Secondly, these techniques do not ensure harmony in
decision-makers’ opinions. Applying the most recent techniques presented in [18, 19] to Example 5.1
yields the following ranking results among the alternatives, displayed in Table 1.

Table 1. The ranking results of various methods to Example 5.1
Current Methods Ranking Orders

Karaaslan and Çağman [18] µ5 ⪰ µ2 ⪰ µ3 ≈ µ4 ⪰ µ1

Shabir and Gul [19] µ2 ≈ µ1 ≈ µ3 ⪰ µ5 ⪰ µ4

Our proposed approach µ2 ⪰ µ5 ⪰ µ4 ⪰ µ3 ⪰ µ1

A characteristics comparison of various approaches with suggested technique is given in Table 2. The
comparison is evaluated with features: membership function (MF), non-membership function (NMF),
parametrization, number of decision-makers, and ranking of alternatives.

Table 2. Characteristics comparison of different methods with proposed method

Methods Characteristics
Handle MF Handle NMF Manage parametrization Decision-makers Ranking

Akram et al. [30] Yes Yes No One Yes
Alghamdi et al. [37] Yes Yes No One Yes

Eraslan and Karaaslan [28] Yes No Yes More than one Yes
Feng [39] Yes No Yes More than one Yes

Saeed et al. [40] Yes No Yes More than one Yes
Sarwar [41] Yes No No More than one Yes

Proposed Method Yes Yes Yes More than one Yes

7. Conclusion

MRBSs are treated as practical tools for portraying the uncertainties and vagueness involved with the
MCGDM problems. Thus decision-makers become more flexible in representing their judgment using
MRBSs. In this work, we have presented a novel application of the MCGDM problem with the data
having bipolarity and uncertainty. The framework is based on the TOPSIS method and MRBSs. We
have defined a detailed mathematical procedure for the TOPSIS-based MRBSs method. The proposed
approach integrates the strength of MRBSs theory in handling uncertainty and the advantage of the
TOPSIS evaluation technique in MCGDM. An algorithm of DM is also established, which has two key
benefits. Firstly, it evaluates the bipolarity of the data, containing uncertainty. Secondly, it considers
the opinions of any (finite) number of experts about any (finite) number of objects. Additionally,
we provide an application to demonstrate that the proposed strategy can effectively apply to specific
issues, including uncertainty. At last, a comparative study of the suggested approach is conducted.

Numerous topics require further investigation. Bearing in mind the above, future perspectives will
focus on the following:

i. The hybridization of the MRBS theory and more comprehensive selection models, such as VIKOR,
ELECTRE, AHP, COPRAS, and PROMETHEE.

ii. The proposed method can be generalized to a fuzzy environment, and useful DM methods could
be established.
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1. Introduction

The algebra of hyperbolic quaternions in abstract algebra is a non-associative algebra over real numbers
with elements of the form

q = q0e0 + q1e1 + q2e2 + q3e3

where q0, q1, q2, and q3 are real numbers and e0, e1, e2, and e3 are the standard basis in R4. The
hyperbolic quaternion multiplication is defined using the rules

e2
0 = e2

1 = e2
2 = e2

3 = 1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, and e3e1 = −e1e3 = e2

This algebra is also non-commutative. Let q = q0e0+q1e1+q2e2+q3e3 and p = p0e0+p1e1+p2e2+p3e3

be any two hyperbolic quaternions. Then, the addition and subtraction of the hyperbolic quaternions
are

q ∓ p = (q0 ∓ p0)e0 + (q1 ∓ p1)e1 + (q2 ∓ p2)e2 + (q3 ∓ p3)e3

and multiplication of the hyperbolic quaternions is

qp = (q0e0 + q1e1 + q2e2 + q3e3)(p0e0 + p1e1 + p2e2 + p3e3)
= (q0p0 + q1p1 + q2p2 + q3p3)e0 + (q0p1 + q1p0 + q2p3 − q3p2)e1

+ (q0p2 − q2p0 + q1p3 + q3p1)e2 + (q0p3 + q3p0 − q1p2 + q2p1)e3

1orhandiskaya@mersin.edu.tr; 2hmenken@mersin.edu.tr (Corresponding Author); 3pcatarino23@gmail.com
1,2Department of Mathematics, Faculty of Science, Mersin University, Mersin, Türkiye
3Department of Mathematics, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0001-5698-7834
https://orcid.org/0000-0003-1194-3162
https://orcid.org/0000-0001-6917-5093
https://doi.org/10.53570/jnt.1199465


Journal of New Theory 42 (2023) 74-85 / On the Hyperbolic Leonardo and Hyperbolic Francois Quaternions 75

Moreover, for k ∈ R, the multiplication by scalar is

kq = kq0e0 + kq1e1 + kq2e2 + kq3e3

and conjugate and norm of the hyperbolic quaternion q are

q = q0e0 − q1e1 − q2e2 − q3e3

and
||q|| =

√
|qq| =

√
q2

0 − q2
1 − q2

2 − q2
3

respectively. One of the non-associative hyperbolic number systems, ideal for studying space-time
theories in relativities, is the hyperbolic quaternions. Many studies have been published on hyperbolic
quaternions. Macfarlane yields the hyperbolic counterpart of the spherical quaternions in [1]. Kösal
introduces hyperbolic quaternions and their algebraic properties in [2]. The four-dimensional real
algebra of bihyperbolic numbers is studied by Bilgin and Ersoy in [3]. An alternative representational
method is proposed for the formulation of classical and generalized electromagnetism in the case of
the existence of magnetic monopoles and massive photons after presenting the hyperbolic quaternion
formalism by Demir et al. in [4]. Kuruz introduces hyperbolic matrices with hyperbolic number entries
in [5]. Assis presents some properties of mathematical and physical interest in generalized algebras of
two, three, and four dimensions in [6]. The Fibonacci and Lucas sequences {Fn}n≥0 and {Ln}n≥0 are
defined by two order recurrences, respectively,

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn (1)

and

L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln (2)

Here, Fn and Ln are the nth Fibonacci and Lucas numbers. First few terms of these sequences are,
respectively,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

and
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199

The Recurrences 1 or 2 involve the characteristic equation

x2 − x − 1 = 0 (3)

The roots of Equation 3 are

α = 1 +
√

5
2 and β = 1 −

√
5

2 (4)

Then, the following relations can be derived

α + β = 1 α − β =
√

5 αβ = −1

Therefore, the Binet formulas for the Fibonacci and Lucas sequences are, respectively,

Fn = αn − βn

α − β
and Ln = αn + βn

More information for the Fibonacci and Lucas numbers are given in [7, 8]. The Leonardo sequence
{Ln}n≥0 is defined by recurrence

L0 = 1, L1 = 1, and Ln+2 = Ln+1 + Ln + 1
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where Ln is the nth Leonardo number. An expression of the relationship between Leonardo and
Fibonacci numbers is

Ln = 2Fn+1 − 1, n ≥ 0

The Binet-like formula for the Leonardo sequence is

Ln = 2
(

αn+1 − βn+1

α − β

)
− 1 (5)

where α and β are given Equation 4. Other studies about Leonardo numbers can be listed in [9–15].

2. The Francois Numbers

This section presents a new definition, called the Francois sequence, related to the Lucas-like form of
the Leonardo sequence as follows:

Definition 2.1. The Francois sequence {Fn} is defined by

Fn = Fn−1 + Fn−2 + 1, n ≥ 2 (6)

with initial conditions F0 = 2 and F1 = 1. Here, Fn is the nth Francois number.

First few terms of this sequence are 2, 1, 4, 6, 11, 18, 30, 49, 80, 130, 211. The Recurrence 6 can also
be written as follows

Fn+3 = 2Fn+2 − Fn (7)

In fact, by the equalities Fn+3 = Fn+2 + Fn+1 + 1 and Fn+2 = Fn+1 + Fn + 1, we reach Equation 7.

Equation 7 satisfies the characteristic equation

t3 − 2t2 + 1 = 0 (8)

The roots of Equation 8 are 1, α, and β. Here, the other roots except 1 are the same as those of
Equation 3. Taking F0 = 2, F1 = 1, and F2 = 4, we can easily reach the following result.

Theorem 2.2. The Binet-like formula for the Francois sequence is

Fn = αn + βn + αn+1 − βn+1

α − β
− 1, n ≥ 0 (9)

where α and β are given in Equation 4.

Proof.
Assume that Fn = aαn + bβn + c. Thus, we have

F0 = a + b + c = 2

F1 = aα + bβ + c = 1

and
F2 = aα2 + bβ2 + c = 4

By performing the solution with the Gaussian elimination method, we can find that

a = 1 + α

α − β
, b = 1 − β

α − β
, and c = −1

This proof is complete.
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Theorem 2.3. For n ≥ 0, the following identity is valid:

Fn = Ln + Fn+1 − 1, n ≥ 0

Proof.
The proof is clear by Theorem 2.2.

Studies similar to the Leonardo and Francois numbers can be seen in [9, 16–18]. The hyperbolic
Fibonacci and hyperbolic Lucas quaternions are defined as follows, respectively,

HFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

and

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3

The Binet-like formulas for the hyperbolic Fibonacci and hyperbolic Lucas quaternions are as the
form, respectively,

HFn = α̂αn − β̂βn

α − β
(10)

and

HLn = α̂αn + β̂βn (11)

where
α̂ = e0 + αe1 + α2e2 + α3e3

and
β̂ = e0 + βe1 + β2e2 + β3e3

The hyperbolic Fibonacci and hyperbolic Lucas quaternions and some of their generalizations are
given in [19–23].

3. Hyperbolic Leonardo and Hyperbolic Francois Quaternions

In this section, we define the hyperbolic Leonardo and hyperbolic Francois quaternions, and we pro-
vide their Binet-like formulas and generating functions. Then, we obtain certain binomial sums,
Honsberger-like, d’Ocagne-like, Catalan-like, and Cassini-like identities of the hyperbolic Leonardo
quaternions.

Definition 3.1. The hyperbolic Leonardo quaternion sequence {HLn}n≥0 is defined by

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3 (12)

where Len is the nth Leonardo number and e0, e1, e2, and e3 are units of the hyperbolic quaternions.

Definition 3.2. The hyperbolic Francois quaternion sequence {HFn}n≥0 is defined by

HFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

where Fn is the nth Francois number and e0, e1, e2, and e3 are units of the hyperbolic quaternions.

Theorem 3.3. (Binet-like Formula) The Binet-like formula for the hyperbolic Leonardo quater-
nions is

HLn = 2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂, n ≥ 0 (13)
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where
α̂ = e0 + αe1 + α2e2 + α3e3

β̂ = e0 + βe1 + β2e2 + β3e3

and
1̂ = e0 + e1 + e2 + e3

Proof.
From Identities 5 and 12,

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3

=
[
2
(

αn+1 − βn+1

α − β

)
− 1

]
e0 +

[
2
(

αn+2 − βn+2

α − β

)
− 1

]
e1 +

[
2
(

αn+3 − βn+3

α − β

)
− 1

]
e2

+
[
2
(

αn+4 − βn+4

α − β

)
− 1

]
e3

= 2
(

αn+1

α − β
(e0 + αe1 + α2e2 + α3e3) − βn+1

α − β
(e0 + βe1 + β2e2 + β3e3)

)
− (e0 + e1 + e2 + e3)

= 2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

is obtained.

Note that the hyperbolic Leonardo quaternion sequence can be expressed in terms of the hyperbolic
Fibonacci quaternion as:

HLn = 2HFn+1 − 1̂, n ≥ 0

where HFn is nth the hyperbolic Fibonacci quaternion.

Theorem 3.4. (Binet-like Formula) The Binet-like formula for the hyperbolic Francois quaternions
is

HFn = α̂αn + β̂βn + α̂αn+1 − β̂βn+1

α − β
− 1̂, n ≥ 0 (14)

where
α̂ = e0 + αe1 + α2e2 + α3e3

β̂ = e0 + βe1 + β2e2 + β3e3

and
1̂ = e0 + e1 + e2 + e3

Proof.
It is proved similarly to the proof of Theorem 3.3.

Note that the hyperbolic Francois quaternion sequence can be expressed in terms of the hyperbolic
Fibonacci and hyperbolic Lucas quaternion as:

HFn = HLn + HFn+1 − 1̂, n ≥ 0

where HLn and HFn is nth the hyperbolic Lucas and hyperbolic Fibonacci quaternions, respectively.
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Theorem 3.5. (Generating Function) The generating function for the hyperbolic Leonardo quater-
nions is

GHL(x) = A − Bx + Cx2

1 − 2x + x3

where
A = e0 + e1 + 3e2 + 5e3

B = e0 − e1 + e2 + e3

and
C = e0 − e1 − e2 − 3e3

Proof.
Let

GHL(x) =
∞∑

n=0
HLnxn = HL0 + HL1x + HH2x2 + HL3x3 + . . . + HLnxn + . . .

be generating function of the hyperbolic Leonardo quaternions. Assume that multiply every side of
the expansions above by −2x and x3 as follows:

−2xGHL(x) = −2HL0x − 2HL1x2 − 2HL2x3 − 2HL3x4 − . . . − 2HLnxn+1 − . . .

and

x3GHL(x) = HL0x3 + HL1x4 + HH2x5 + HL3x6 + . . . + HLnxn+3 + . . .

Then, we write

(1 − 2x + x3)GHL(x) = HL0 + (HL1 − 2HL0)x + (HL2 − 2HL1)x2 + (HL3 − 2HL2 + HL0)x3 + . . .

+(HLn − 2HLn−1 + HLn−3)xn + . . .

By using the values,
HL0 = e0 + e1 + 3e2 + 5e3

HL1 = e0 + 3e1 + 5e2 + 9e3

HL2 = 3e0 + 5e1 + 9e2 + 15e3

HL3 = 5e0 + 9e1 + 15e2 + 25e3

and
HLn − 2HLn−1 + HLn−3 = 0

are obtained.

Theorem 3.6. (Generating Function) The generating function for the hyperbolic Francois quater-
nions is

GHF (x) = E − Fx + Gx2

1 − 2x + x3

where
E = 2e0 + e1 + 4e2 + 6e3

F = 3e0 − 2e1 + 2e2 + e3

and
G = 2e0 − 2e1 − e2 − 4e3
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Proof.
The proof is similar to one of Theorem 3.5.

Theorem 3.7. (Exponential Generating Function) The exponential generating function for the
hyperbolic Leonardo quaternions is

EHL(x) = 2
(

α̂αeαx − β̂βeβx

α − β

)
− 1̂ex

Proof.
Using Equation 13,

EHL(x) =
∞∑

n=0
HLn

xn

n!

=
∞∑

n=0

(
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

)
xn

n!

= 2α̂α

α − β

∞∑
n=0

(αx)n

n! − 2β̂β

α − β

∞∑
n=0

(βx)n

n! − 1̂
∞∑

n=0

xn

n!

= 2
(

α̂αeαx − β̂βeβx

α − β

)
− 1̂ex

is obtained.

Theorem 3.8. (Exponential Generating Function) The exponential generating function for the
hyperbolic Francois quaternions is

EHF (x) = α̂αeαx + β̂βeβx + α̂αeαx − β̂βeβx

α − β
− 1̂ex

Proof.
The proof is similar to one of Theorem 3.7.

Theorem 3.9. (Binomial Sum) Let m be a positive integer. Then,
m∑

n=0

(
m

n

)
HLn = HL2m + 1̂(1 − 2m)

Proof.
Considering Equations 3 and 13 and the binomial formula,

m∑
n=0

(
m

n

)
HLn =

m∑
n=0

(
m

n

)[
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

]

= 2α̂α

α − β

m∑
n=0

(
m

n

)
αn − 2β̂β

α − β

m∑
n=0

(
m

n

)
βn − 1̂

m∑
n=0

(
m

n

)

= 2α̂α

α − β
(α + 1)m − 2β̂β

α − β
(β + 1)m − 1̂2m

= 2
(

α̂α2m+1 − β̂β2m+1

α − β

)
− 1̂ + 1̂ − 1̂2m

= HL2m + 1̂(1 − 2m)

is obtained.
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Corollary 3.10. Let m be a positive integer. Then,
m∑

k=0

(
m

k

)
HLn−k = HLn+m + 1̂(1 − 2m), n ≥ 0

Proof.
Considering Equations 3 and 13 and the binomial formula,

m∑
k=0

(
m

k

)
HLn−k =

m∑
k=0

(
m

k

)[
2
(

α̂αn−k+1 − β̂βn−k+1

α − β

)
− 1̂

]

=
m∑

k=0

(
m

k

)[
2
(

α̂αm−kαn−m+1 − β̂βm−kβn−m+1

α − β

)
− 1̂

]

= 2α̂αn−m+1

α − β

m∑
k=0

(
m

k

)
αm−k1k − 2β̂βn−m+1

α − β

m∑
k=0

(
m

k

)
βm−k1k − 1̂

m∑
k=0

(
m

k

)

= 2α̂αn−m+1

α − β
(α + 1)m − 2β̂βn−m+1

α − β
(β + 1)m − 1̂2m

= 2
(

α̂αn+m+1 − β̂βn+m+1

α − β

)
− 1̂ + 1̂ − 1̂2m

= HLn+m + 1̂(1 − 2m)

is obtained.

Some identities, such as Honsberger, dOcagne, Catalan, and Cassini identities for Fibonacci and its
generating, have been studied by many authors (see [19,24,25]). Here, we obtain similar identities for
the hyperbolic Leonardo quaternion.

Theorem 3.11. (Honsberger-like Identity) Let HLn be nth hyperbolic Leonardo quaternion.
The following relation is satisfied:

HLn+1HLm + HLnHLm−1 = 4
(

α̂2αn+m − β̂2βn+m

α − β

)
− 1̂ (HLn+1 + HLm) , n, m ≥ 0

Proof.
Using Equation 13,

HLn+1HLm + HLnHLm−1 =
[
2
(

α̂αn+1−β̂βn+1

α−β

)
− 1̂

] [
2
(

α̂αm−β̂βm

α−β

)
− 1̂

]
+
[
2
(

α̂αn−β̂βn

α−β

)
− 1̂

] [
2
(

α̂αm−1−β̂βm−1

α−β

)
− 1̂

]
= 4

(
(α̂)2αn+m+1−α̂β̂αn+1βm−β̂α̂βn+1αm+(β̂)2βn+m+1

(α−β)2

)
−21̂

(
α̂αn+1−β̂βn+1

α−β

)
− 21̂

(
α̂αm−β̂βm

α−β

)
+ 1̂2

+4
(

(α̂)2αn+m−1−α̂β̂αnβm−1−β̂α̂βnαm−1+(β̂)2βn+m−1

(α−β)2

)
−21̂

(
α̂αn−β̂βn

α−β

)
− 21̂

(
α̂αm−1−β̂βm−1

α−β

)
+ 1̂2

= 4
(

α̂2αn+m − β̂2βn+m

α − β

)
− 1̂ (HLn+1 + HLm)

is obtained.
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Theorem 3.12. (d’Ocagne-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. For
n, m ≥ 0,

HLmHLn+1 − HLm+1HLn = 1̂ (HLm+1 + HLn − HLm − HLn+1) + 4
(

α̂β̂αmβn − β̂α̂βmαn

α − β

)
+ 21̂2

Proof.
Using Equation 13,

HLmHLn+1 − HLm+1HLn =
[
2
(

α̂αm+1 − β̂βm+1

α − β

)
− 1̂

] [
2
(

α̂αn+2 − β̂βn+2

α − β

)
− 1̂

]

−
[
2
(

α̂αm+2 − β̂βm+2

α − β

)
− 1̂

] [
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

]

= 4
(

(α̂)2αn+m+3 − α̂β̂αm+1βn+2 − β̂α̂βm+1αn+2 + (β̂)2βn+m+3

(α − β)2

)

− 21̂
(

α̂αm+1 − β̂βm+1

α − β

)
− 21̂

(
α̂αn+2 − β̂βn+2

α − β

)
+ 1̂2

− 4
(

(α̂)2αn+m+3 − α̂β̂αm+2βn+1 − β̂α̂βm+2αn+1 + (β̂)2βn+m+3

(α − β)2

)

+ 21̂
(

α̂αm+2 − β̂βm+2

α − β

)
+ 21̂

(
α̂αn+1 − β̂βn+1

α − β

)
− 1̂2

= 1̂ (HLm+1 + HLn − HLm − HLn+1) + 4
(

α̂β̂αmβn − β̂α̂βmαn

α − β

)
+ 21̂2

is obtained.

Theorem 3.13. (Catalan-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. For
n ≥ r ≥ 0, the following relation is satisfied:

HLn−rHLn+r − HL2
n = (−1)n−r

(
α̂β̂βr + β̂α̂αr

α − β

)
Fr + 1̂ (2HLn − HLn−r − HLn+r) + 21̂2

Proof.
Using Equality 13,

HLn−rHLn+r − HL2
n =

[
2
(

α̂αn−r−β̂βn−r

α−β

)
− 1̂

] [
2
(

α̂αn+r−β̂βn+r

α−β

)
− 1̂

]
−
[
2
(

α̂αn−β̂βn

α−β

)
− 1̂

] [
2
(

α̂αn−β̂βn

α−β

)
− 1̂

]
= 4

(
(α̂)2α2n−α̂β̂αn−rβn+r−β̂α̂βn−rαn+r+(β̂)2β2n

(α−β)2

)
−21̂

(
α̂αn−r−β̂βn−r

α−β

)
− 21̂

(
α̂αn+r−β̂βn+r

α−β

)
+ 1̂2

−4
(

(α̂)2α2n−α̂β̂αnβn−β̂α̂βnαn+(β̂)2β2n

(α−β)2

)
+21̂

(
α̂αn−β̂βn

α−β

)
+ 21̂

(
α̂αn−β̂βn

α−β

)
− 1̂2

= (−1)n−r

(
α̂β̂βr + β̂α̂αr

α − β

)
Fr + 1̂ (2HLn − HLn−r − HLn+r) + 21̂2

is obtained.
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Corollary 3.14. (Cassini-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. The
following relation is satisfied:

HLn−1HLn+1 − HL2
n = (−1)n−1

(
α̂β̂β + β̂α̂α

α − β

)
+ 1̂ (2HLn − HLn−1 − HLn+1) + 21̂2, n ≥ 0

Proof.
We take 1 instead of r in Theorem 3.13 to prove this theorem.

Proofs of the following propositions can be easily proved using Equations 5, 9–11, 13, and 14.

Proposition 3.15. For n ≥ 0, the following identities are valid:

i. HLn+1e0 − HLn+2e1 − HLn+3e2 − HLn+4e3 = −2Ln+5 − 3

ii. HLn+1e0 + HLn+2e1 + HLn+3e2 + HLn+4e3 = 2HLn + 2Ln+5 + 3

Proposition 3.16. The following identities are valid:

i. HLn+rFn+r = 2
5
(
HL2n+2r+1 − (−1)n+rHL1

)
− 1̂Fn+r, n, r ≥ 0

ii. HLn−rFn−r = 2
5 (HL2n−2r+1 − (−1)n−rHL1) − 1̂Fn−r, n ≥ r ≥ 0

iii. HLn−rFn+r = 2
5
(
HL2n+1 − (−1)n+rHL1−2r

)
− 1̂Fn−r, n ≥ r ≥ 0

iv. HLn+rFn−r = 2
5 (HL2n+1 − (−1)n−rHL2r+1) − 1̂Fn+r, n ≥ r ≥ 0

v. HLn+rLn+r = 2
(
HF2n+2r+1 + (−1)n+rHF1

)
− 1̂Ln+r, n, r ≥ 0

vi. HLn−rLn−r = 2 (HF2n−2r+1 + (−1)n−rHF1) − 1̂Ln−r, n ≥ r ≥ 0

vii. HLn−rLn+r = 2 (HF2n+1 + (−1)n−rHF2r+1) − 1̂Ln+r, n ≥ r ≥ 0

viii. HLn+rLn−r = 2
(
HF2n+1 + (−1)n+rHF1−2r

)
− 1̂Ln−r, n ≥ r ≥ 0

ix. HFn+rFn+r = HF2n+2r − (−1)n+rHF0 + 1
5
(
HL2n+2r+1 − (−1)n+rHL1

)
− 1̂Fn+r, n, r ≥ 0

x. HFn−rFn−r = HF2n−2r − (−1)n−rHF0 + 1
5 (HL2n−2r+1 − (−1)n−rHL1) − 1̂Fn+r, n ≥ r ≥ 0

xi. HFn−rFn+r = HF2n − (−1)n+rHF−2r + 1
5
(
HL2n+1 − (−1)n+rHL1−2r

)
− 1̂Fn+r, n ≥ r ≥ 0

xii. HFn+rFn−r = HF2n − (−1)n−rHF2r + 1
5 (HL2n+1 − (−1)n−rHL2r+1) − 1̂Fn−r, n ≥ r ≥ 0

xiii. HFn+rLn+r = HL2n+2r + (−1)n+rHL0 + HF2n+2r+1 − (−1)n+rHF1 − 1̂Ln+r, n, r ≥ 0

xiv. HFn−rLn−r = HL2n−2r + (−1)n−rHL0 + HF2n−2r+1 − (−1)n−rHF1 − 1̂Ln+r, n ≥ r ≥ 0

xv. HFn−rLn+r = HL2n + (−1)n+rHL−2r + HF2n+1 − (−1)n+rHF1−2r − 1̂Ln+r, n ≥ r ≥ 0

xvi. HFn+rLn−r = HL2n + (−1)n−rHL2r + HF2n+1 − (−1)n−rHF2r+1 − 1̂Ln−r, n ≥ r ≥ 0

Proposition 3.17. For n ≥ 0, the following identities are valid:

i. HLn + HFn = 3HFn+1 + HLn − 21̂

ii. HFn − HLn = HFn+1 + HLn

iii. HLnLn+HFnFn = 2 (HF2n+1 + (−1)nHF1)+HF2n−(−1)nHF0+ 1
5 (HL2n+1 − (−1)nHL1)−1̂ (Ln + Fn)

iv. HLnLn −HFnFn = 2 (HF2n+1 + (−1)nHF1)−HF2n +(−1)nHF0 − 1
5 (HL2n+1 − (−1)nHL1)−1̂ (Ln − Fn)
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4. Conclusion

In the present study, we consider the Leonardo and Francois numbers related to the Fibonacci and
Lucas numbers, respectively. We define and investigate the hyperbolic Leonardo and hyperbolic Fran-
cois quaternions. We derive the Binet-like formulas, generating and exponential generating functions
for these new quaternions. We provide certain binomial sums. Finally, we establish well-known iden-
tities for these quaternions, such as the Honsberger-like, d’Ocagne-like, Catalan-like, and Cassini-like
identities. In the future, researchers may examine many more identities of the hyperbolic Leonardo
and Francois quaternions. In addition, these quaternions can be used in interdisciplinary studies.
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Abstract − The study presents the direct product of two objects in the category of 4-
dimensional 2-crossed modules. The structures of the domain, kernel, image, and codomain
can be related using isomorphism theorems by defining the kernel and image of a morphism
in a category. It then establishes the kernel and image of a morphism in the category of 4-
dimensional 2-crossed modules to apply isomorphism theorems. These isomorphism theorems
provide a powerful tool to understand the properties of this category. Moreover, isomorphism
theorems in 4-dimensional 2-crossed modules allow us to establish connections between differ-
ent algebraic structures and simplify complicated computations. Lastly, the present research
inquires whether additional studies should be conducted.
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1. Introduction

Crossed modules were first used for groups in Whitehead’s work [1] and presented for commutative
algebras by Porter in [2]. The idea of crossed modules modeling homotopy 2-types is well-known for
becoming useful in a wide range of situations. Conduché [3] presented the idea of 2-crossed modules of
groups as an algebraic model of homotopy 3-types. Algebra adaptation of 2-crossed modules is given
in [4].

As an algebraic model for homotopy 3-types, Baues [5] established the concept of a quadratic module
of groups and provided a relationship from simplicial groups. Actually, a quadratic module structure is
a 2-crossed module structure with extra nilpotency conditions. The connection between quadratic and
2-crossed modules was demonstrated in [6]. The relations between the category of 2-crossed modules
and related categories such as simplicial groups, quadratic modules, and crossed squares are given in
the following diagram:

2-Crossed Modules

[7]
��

[8]

**UUU
UUUU

UUUU
UUUU

UUU

ttiiii
iiii

iiii
iiii

i

Quadratic Modules

[6]
44iiiiiiiiiiiiiiiii

[6]
// Crossed Squares

[7]
//oo

OO

Simplicial Algebras≤2oo

jjUUUUUUUUUUUUUUUUUU

The 2-truncation of the Moore complex with a simplicial group results in a 2-crossed module. Since the
2-crossed module can be obtained from a simplicial group’s Moore complex, it makes sense to consider
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this model while researching algebraic topology from the perspective of simplicial groups. 2-crossed
modules have various uses in category theory, including their universal properties, representations, co-
homology, and relations with other categorical structures. For more information on 2-crossed modules,
see [9–13].

Baues and Bleile developed the idea of 4-dimensional quadratic complexes [14] to examine the pre-
sentation of a space X as the mapping cone of a map ∂(X) beneath a space D for the algebraic
description of pointed relative CW-complexes with cells in dimension 4. Based on the work of Baues
and Bleile, the idea of 4-Dimensional 2-crossed modules was developed in [15] to examine any probable
equivalence between homotopy 4-types. Moreover, subobjects and quotient objects in this category
are defined in [15].

In this work, we give fundamental properties for a given 4-dimensional 2-crossed module morphism,
including the kernel and the image. The isomorphism theorems explain the connection between
quotients, homomorphisms, and subobjects. For distinct algebraic structures, there are different
iterations of the isomorphism theorem. We also define the direct product to generalize the isomorphism
theorems for 4-Dimensional 2-crossed modules.

2. Direct Product of 4-Dimensional 2-Crossed Modules

In this section, we will obtain the direct product of two given 4-dimensional 2-crossed modules. A
4-dimensional 2-crossed module [15] is a complex of algebras

σ : C3
∂3 // C2

∂2 // C1
∂1 // C0

such that

i. (C2, C1, C0, ∂2, ∂1) is a 2-crossed module where {−, −} : C1 × C1 → C2 is the Peiffer lifting,

ii. C3 is a C1-module where ∂1(C1) acts trivially, and

iii. ∂3 is a homomorphism of C1-modules where ∂2∂3 = 1.

A morphism between 4-dimensional 2-crossed modules, f : σ1 → σ2, is a commutative diagram

σ1 : C3
∂3 //

f3
��

C2
∂2 //

f2
��

C1
∂1 //

f1
��

C0

f0
��

σ2 : D3
δ3

// D2
δ2
// D1

δ1
// D0

where (f2, f1, f0) is a 2-crossed module morphism and f3 is an f0-equivariant homomorphism of mod-
ules. We will denote this category with X2Mod4D.

Let σ1 := (C3, C2, C1, C0, ∂3, ∂2, ∂1) and σ2 := (D3, D2, D1, D0, δ3, δ2, δ1) be two objects in X2Mod4D.
We will define the direct product of 4-dimensional 2-crossed modules σ1 and σ2. For this, we first
define the product of pre-crossed modules ∂1 and ∂2.

Proposition 2.1. The algebra homomorphism

Φ1 : C1 × D1 → C0 × D0

(c1, d1) 7→ ϕ1(c1, d1) = (∂1(c1), δ1(d1))

is a pre-crossed module of algebras.
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Proof.
For direct product algebras C1 × D1 and C0 × D0, let the action of C0 × D0 on C1 × D1 be defined as

(c0, d0) · (c1, d1) = (c0 · c1, d0 · d1)

for (ci, di) ∈ Ci × Di such that i = 0, 1. Then, for (c0, d0), (c′
0, d′

0) ∈ C0 × D0 and (c1, d1) ∈ C1 × D1,
we have

[(c0, d0) + (c′
0, d′

0)] · (c1, d1) = (c0 + c′
0, d0 + d′

0) · (c1, d1)

= ((c0 + c′
0) · c1, (d0 + d′

0) · d1)

= (c0 · c1 + c′
0 · c1, d0 · d1 + d′

0 · d1)

= (c0 · c1, d0 · d1) + (c′
0 · c1, d′

0 · d1)

= (c0, d0) · (c1, d1) + (c′
0, d′

0) · (c1, d1)

and
[(c0, d0)(c′

0, d′
0)] · (c1, d1) = (c0c′

0, d0d′
0) · (c1, d1)

= ((c0c′
0) · c1, (d0d′

0) · d1)

= (c0 · (c′
0 · c1) , d0 · (d′

0 · d1))

= (c0, d0) · (c′
0 · c1, d′

0 · d1)

= (c0, d0) · [(c′
0, d′

0) · (c1, d1)]

Therefore, with this action, C1 × D1 is an (C0 × D0)-algebra. Moreover, for (c0, d0) ∈ C0 × D0 and
(c1, d1) ∈ C1 × D1,

Φ1 ((c0, d0) · (c1, d1)) = Φ1 (c0 · c1, d0 · d1)

= (∂1 (c0 · c1) , δ1 (d0 · d1))

= (c0 · ∂1 (c1) , d0δ1 (d1))

= (c0, d0) · (∂1 (c1) , δ1 (d1))

= (c0, d0) · Φ1(c1, d1)

is obtained. Therefore, Φ1 : C1 × D1 → C0 × D0 is a pre-crossed module.

C1 × D1 acts on C2 × D2 and C3 × D3 via Φ1. Define the Peiffer Lifting as

{−, −}P : (C1 × D1) × (C1 × D1) → C1 × D1

((c1, d1), (c′
1, d′

1)) 7→ {(c1, d1) ⊗ (c′
1, d′

1)}P = ({c1 ⊗ c′
1}C , {d1 ⊗ d′

1}D)

and
Φi : (Ci × Di) → Ci−1 × Di−1

(ci, di) 7→ (∂i(ci), δi(di))

for i = 2, 3.

Proposition 2.2. Let σ1 := (C3, C2, C1, C0, ∂3, ∂2, ∂1) and σ2 := (D3, D2, D1, D0, δ3, δ2, δ1) be two
objects in X2Mod4D. Then, the direct product of σ1 and σ2

σP := (C3 × D3, C2 × D2, C1 × D1, C0 × D0, Φ3, Φ2, Φ1)

is an object in X2Mod4D.

Proof.
Let σ1 := (C3, C2, C1, C0, ∂3, ∂2, ∂1) and σ2 := (D3, D2, D1, D0, δ3, δ2, δ1) be two objects in X2Mod4D.
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Then,

i. PL1. For (c1, d1), (c′
1, d′

1) ∈ C1 × D1,

Φ2{(c1, d1) ⊗ (c′
1, d′

1)}P = Φ2 ({c1 ⊗ c′
1}C , {d1 ⊗ d′

1}D)

= (∂2{c1 ⊗ c′
1}C , δ2{d1 ⊗ d′

1}D)

= (c1c′
1 − c1 · ∂1(c′

1), d1d′
1 − d1 · δ1(d′

1))

= (c1, d1)(c′
1, d′

1) − (c1, d1) · Φ1(c′
1, d′

1)

PL2. For (c2, d2), (c′
2, d′

2) ∈ C2 × D2,

{Φ2(c2, d2) ⊗ Φ2(c′
2, d′

2)}P = {(∂2 (c2) , δ2 (d2)) ⊗ (∂2 (c′
2) , δ2 (d′

2))}P

= ({∂2 (c2) ⊗ ∂2 (c′
2)}C , {δ2 (d2) ⊗ δ2 (d′

2)}D)

= (c2c′
2, d2d′

2)

= (c2, d2)(c′
2, d′

2)

PL3. For (c1, d1), (c′
1, d′

1), (c′′
1, d′′

1) ∈ C1 × D1,

{(c1, d1) ⊗ (c′
1, d′

1)(c′′
1 , d′′

1)}P = ({c1 ⊗ c′
1c′′

1}C , {d1 ⊗ d′
1d′′

1}D)

= ({c1c′
1 ⊗ c′′

1}C + ∂1(c′′
1) · {c1 ⊗ c′

1}C , {d1d′
1 ⊗ d′′

1}C + ∂1(d′′
1) · {d1 ⊗ d′

1}D)

= {(c1, d1)(c′
1, d′

1) ⊗ (c′′
1 , d′′

1)}P + Φ1 ((c′′
1 , d′′

1)) {(c1, d1), (c′
1, d′

1)}P

PL4.a. For (c2, d2) ∈ C2 × D2 and (c1, d1) ∈ C1 × D1,

{Φ2 (c2, d2) ⊗ (c1, d1)}P = {(∂2(c2), δ2(d2)) ⊗ (c1, d1)}P

= ({(∂2(c2) ⊗ c1)}C , (δ2(d2) ⊗ d1)}D)

= (c2 · c1 − ∂2(c2) · c1, d2 · d1 − δ2(d2) · d1)

= (c2, d2) · (c1, d1) − Φ2 (c2, d2) · (c1, d1)

b. For (c2, d2) ∈ C2 × D2 and (c1, d1) ∈ C1 × D1,

{(c1, d1) ⊗ Φ2 (c2, d2)}P = {(c1, d1) ⊗ (∂2(c2), δ2(d2))}P

= ({c1 ⊗ ∂2(c2)}C , {d1 ⊗ δ2(d2)}D)

= {c1 ⊗ ∂2(c2)}C , {d1 ⊗ δ2(d2)}D

= (c1 · c2, d1 · d2)

= (c1, d1) · (c2, d2)

PL5. For (c1, d1), (c′
1, d′

1) ∈ C1 × D1 and (c0, d0) ∈ C0 × D0,

{(c1, d1) ⊗ (c′
1, d′

1)}P · (c0, d0) = ({c1 ⊗ c′
1}C , {d1 ⊗ d′

1}D) · (c0, d0)

= ({c1 ⊗ c′
1}C · (c0, d0), {d1 ⊗ d′

1}D)

= ({c1 · c0 ⊗ c′
1 · d0}C , {d1 ⊗ d′

1}D)

= {(c1 · c0, d1) ⊗ (c′
1 · d0, d′

1)}P

= {(c1, d1) · (c0, d0) ⊗ (c′
1, d′

1)}P
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and
{(c1, d1) ⊗ (c′

1, d′
1)}P · (c0, d0) = ({c1 ⊗ c′

1}C , {d1 ⊗ d′
1}D) · (c0, d0)

= ({c1 ⊗ c′
1}C , {d1 ⊗ d′

1}D · (c0, d0))

= ({c1 ⊗ c′
1}C , {d1 · c0 ⊗ d′

1 · d0}D)

= {(c1, d1 · c0) ⊗ (c′
1, d′

1 · d0)}P

= {(c1, d1) ⊗ (c′
1, d′

1) · (c0, d0)}P

ii. C2 × D2 acts on C3 × D3 via C1 × D1 trivially. Therefore, C3 × D3 is a C2 × D2-module.

iii. For (c3, d3) ∈ C3 × D3,
Φ2Φ3(c3, d3) = Φ2 (∂3 (c3) , δ3 (d3))

= (∂2∂3 (c3) , δ2δ3 (d3))

= (1C1 , 1D1)

= 1C1×D1

is obtained.

3. Kernel and Image of a Morphism in X2Mod4D

In this section, we give the notions of the kernel and image of a morphism in the category X2Mod4D.
Throughout this section, we will consider the morphism

f = (f3, f2, f1, f0) : σ1 := (C3, C2, C1, C0, ∂3, ∂2, ∂1) → σ2 := (D3, D2, D1, D0, δ3, δ2, δ1)

in X2Mod4D.

Proposition 3.1. The object

ker f1 × ker f1

{−,−}ker
��

ker f3
∂3

// ker f2
∂2

// ker f1
∂1

// ker f0

in X2Mod4D is an ideal of σ1 where ∂i are restrictions, for i = 0, 1, 2.

Proof.
ker fi is an ideal of Ci, for i = 0, 1, 2, 3. The commutativity of the following diagram

ker f3
∂3|ker f3 //

� _

��

ker f2
∂2|ker f2//

� _

��

ker f1
∂1|kerf1//

� _

��

ker f0� _

��
C3

∂3
// C2

∂2
// C1

∂1
// C0

implies ∂i(ker fi+1) ⊂ ker fi, for i = 1, 2, 3. The axioms of an ideal in X2Mod4D can be calculated
using the definition of a kernel, i.e.,

f2(x0 · c1) = f1(x0) · f2(c1) = 0 · f2(c1) = 0 implies that x0 · c1 ∈ ker f2

for x0 ∈ ker f0 and c1 ∈ C1.
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Definition 3.2. The ideal

kerf1 × ker f1

{−,−}ker
��

ker f3
∂3

// ker f2
∂2

// ker f1
∂1

// ker f0

is called the kernel of the morphism f in X2Mod4D .

Definition 3.3. The subobject

f1(C1) × f1(C1)

{−,−}Im

��
f3(C3)

δ3|f3

// f2(C2)
∂2|f2

// f1(C1)
∂1|f1

// f0(C0)

of σ2 is called the image of the morphism f in X2Mod4D .

4. Universal Property in X2Mod4D

In this section, we show the existence and uniqueness of a morphism f : σ/σ1 → σ2 in X2Mod4D that
makes the following diagram

σ //

q
��

σ2

σ/σ1

f

<<yyyyyyyy

commutative where σ1 is an ideal of σ1 and σ2 is another object in X2Mod4D.

Theorem 4.1. [15] Let

σ1 : D3
δ3 // D2

δ2 // D1
δ1 // D0

be an ideal of
σ : C3

∂3 // C2
∂2 // C1

∂1 // C0

in X2Mod4D. Then,

σ/σ1 : C3/D3
q3 // C2/D2

q2 // C1/D1
q1 // C0/D0

is an object in X2Mod4D.

Theorem 4.2. Let σ2 := (D3, D2, D1, D0, δ3, δ2, δ1) be an ideal of σ1 := (C3, C2, C1, C0, ∂3, ∂2, ∂1) in
X2Mod4D. If β : σ1 → σ3 := (E3, E2, E1, E0, η3, η2, η1) is a morphism, then there exists a unique
morphism α : σ1/σ2 → σ3 in X2Mod4D.

Proof.
If σ2 is an ideal of σ1, then

C1 × C1

f1×f1

��

{−,−}C

((PP
PPP

PPP
PPP

PPP

C3

f3

��

∂3 // C2
∂2 //

f2

��

C1
∂1 //

f1

��

C0

f0

��

C1/D1 × C1/D1
{−,−}Q

''PP
PPP

PPP
PPP

''PP
PPP

PPP
PPP

C3/D3 //
q3

// C2/D2 q2
// C1/D1 q1

// C0/D0

(1)
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there exists fi+1 : Ci → Ci/Di, for i = 0, 1, 2, 3. Since, for c0 ∈ C0 and di ∈ Di, we have

fi+1 (c0 · d0) = (c0 · di) + Di = (c0 + Di) · (di + Di) = f0 (c0) · fi (di) , i = 0, 1, 2, 3

and Diagram 1 is commutative. Moreover, f = (f1, f2, f3, f4) is a morphism in X2Mod4D. Since, for
all c + Di, c′ + Di ∈ Ci/Di,

c + Di = c′ + Di ⇒ c − c′ ∈ Di

⇒ βi (c − c′) ∈ βi (Di)
⇒ βi (c) − βi (c′) ∈ βi (Di)
⇒ Di ⊂ Kerβi

⇒ βi (Di) = 1

αi : Ci/Di → Ei (i = 1, 2, 3, 4) are well defined. Furthermore, for i = 1, 2, 3,

qiαi+1 (ci + Di) = qiβi+1 (ci) = βi (∂i (ci)) = αi (∂i (ci) + Di) = αiqi (ci + Di)

As a result, α is the unique morphism in X2Mod4D, making the following diagram

C3

α3

��

f3
��

∂3 // C2

α2

��

f2
��

∂2 // C1

α1

��

f1
��

∂1 // C0

α0

��

f0
��

C3/D3

α3
��

q3 // C2/D2

α2
��

q2 // C1/D1

α1
��

q1 // C0/D0

α0
��

E3
η1 // E2

η2 // E1
η1 // E0

commutative.

5. Conclusion

In this work, we defined the direct products in the category of 4-Dimensional 2-crossed modules.
We provide the kernel and image of a morphism in this category in order to adapt the isomorphism
theorems. Given a morphism f = (f3, f2, f1, f0) : σ → σ′ in X2Mod4D, the mappings f∗

i : σ/ ker f →
f(σ) defined as f∗

i (x + ker fi) = fi(x), for i = 0, 1, 2, 3, are isomorphisms in this category. Using the
isomorphism theorem on groups, it can be easily shown that f∗ is an isomorphism. As a result, we
get

σ/ ker f
∼= f (σ)

In future studies, isomorphism theorems can be given for this category. Moreover, using semi-direct
product groupoid adaptations can be obtained.
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Abstract − This study generalizes the cross product defined in 3-dimensional almost contact metric 
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1. Introduction 

Yano [1] has led up to the groundwork of 𝑆-manifolds and has defined the concept of 𝑓-structures in 𝑀2𝑛+𝑠  

manifolds. Almost complex (𝑠 = 0) and almost contact (𝑠 = 1) structures are examples of 𝑓-structures. 

Goldberg and Yano [2] have defined the concept of the framed 𝑓-structures. Moreover, they have suggested a 

complex structure by the concept of 𝑓-structures. Furthermore, they have proposed the concept of framed 

metric manifolds by examining the normality condition of a metric framed structure. Blair [3] has introduced 

𝑆-manifolds, generalizing almost complex Kaehler and almost contact Sasakian structures. Sarkar et al. [4] 

have found the curvature and torsion of Legendre curves in 3-dimensional trans-Sasakian manifolds with 

respect to the semisymmetric metric connection. Özgür and Güvenç [5] have propounded biharmonic Legendre 

curves in 𝑆-space forms. They have analyzed characterizations of the curvature of the biharmonic Legendre 

curves in 4 cases. 

This paper is organized as follows: Section 2 provides the concept of 𝑆-manifolds and some of their basic 

properties. Section 3 generalizes the new cross-product in a 3-dimensional almost contact metric manifolds 

defined by Camcı [6] and defines a generalized cross-product in (2 + 𝑠)-dimensional 𝑆-manifolds. Besides, it 

demonstrates that this cross-product in ℝ4 is coherent with a triple product [7] by an example. In addition, 

Section 3 provides the basic properties of the generalized cross-product. Section 4 calculates the curvature of 

Legendre curves using the generalized cross-product and demonstrated that (2 + 3)-dimensional 𝑆-manifolds 

are imbedded in 3-dimensional space. Finally, the need for further research is discussed. 
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2. Preliminaries 

This section provides the concept of 𝑆-manifolds and some of their basic properties. 

Definition 2.1. [1] Let (𝑀, 𝑔) be a Riemannian manifold with dim𝑀 = 2𝑛 + 𝑠. It is said to be a framed 𝑓-

structure if 𝑓 is a tensor field of type (1, 1) and rank 2𝑛 satisfying 𝑓3 + 𝑓 = 0. 

Definition 2.2. [2] Let 𝑀2𝑛+𝑠 be a manifold with an 𝑓-structure of rank 2𝑛. Then, 𝑓-structure is said to be 

has completed frames if there exists vector fields 𝜉1, 𝜉2 , ⋯ , 𝜉𝑠  on 𝑀2𝑛+𝑠, and 𝜂1 , 𝜂2, ⋯ , 𝜂𝑠 are 1-forms, then 

𝜂𝑖 ∘ 𝑓 = 0, 𝑓 ∘ 𝜉𝑖 = 0, and 𝑓2 = −𝐼 + ∑ 𝜂𝑖⊗ 𝜉𝑖
𝑠
𝑖=1 . 

Definition 2.3. [8] Let 𝑀2𝑛+𝑠 be an 𝑓-structure with completed frames. The framed 𝑓-structure is normal if 

the tensor field 𝑆 of type (1,2) given by  

𝑆 = [𝑓, 𝑓] + 2∑𝑑𝜂𝑖⊗ 𝜉𝑖

𝑠

𝑖=1

 

vanishes. 

Definition 2.4. [2] Let 𝑀2𝑛+𝑠 be a manifold. Then, 𝑀 is said to be an 𝑆-manifold if the 𝑓-structure is normal. 

Definition 2.5. [1] Let 𝑀2𝑛+𝑠 be a Riemannian manifold. The distribution on 𝑀 spanned by the structure 

vector fields is denoted by ℳ, and its complementary orthogonal distribution is denoted by 𝐷. Consequently, 

𝑇𝑀 = 𝐷⊕ℳ. Moreover, if 𝑋 ∈ 𝐷, then 𝜂𝑖(𝑋) = 0, for any 𝑖 ∈ {1,2,⋯ , 𝑠}, and if 𝑋 ∈ ℳ, then 𝑓𝑋 = 0. 

Definition 2.6. [2] Let 𝑀2𝑛+𝑠 has an 𝑓-structure with completed frames. If there exists a Riemannian metric 

𝑔 on  𝑀2𝑛+𝑠 such that 

𝑔(𝑋, 𝑌) = 𝑔(𝑓𝑋, 𝑓𝑌) +∑𝜂𝑖(𝑋)𝜂𝑖(𝑌)

𝑠

𝑖=1

 

and 𝑋, 𝑌 ∈ 𝜒(𝑀2𝑛+𝑠), then 𝑀2𝑛+𝑠 is called that has a metric 𝑓-structure. 

From now on, the notation 𝜙 is used instead of 𝑓. 

Definition 2.7. [3] Let 𝑀2𝑛+𝑠 be an 𝑆-manifold. The covariant differentiation ∇ of 𝑀2𝑛+𝑠 satisfies 

∇𝑋𝜉𝑖 = −𝜙𝑋,    𝑖 ∈ {1,2,⋯ , 𝑠} 

and 

(∇𝑋𝜙)𝑌 =∑[𝑔(𝜙𝑋,𝜙𝑌)𝜉𝑖 + 𝜂𝑖(𝑌)𝜙
2𝑋]

𝑠

𝑖=1

 

for all 𝑋, 𝑌 ∈ 𝜒(𝑀). Besides, for all 𝑖 ∈ {1,2,⋯ , 𝑠}, 𝜂1 ∧ 𝜂2 ∧⋯∧ 𝜂𝑠 ∧ (𝑑𝜂𝑖)
𝑛 ≠ 0 and Φ = 𝑑𝜂𝑖 on an 𝑆-

manifold such that Φ is the fundamental 2-form defined by 

Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌),    𝑋, 𝑌 ∈ 𝑇𝑀 

Definition 2.8. [9] A submanifold of an 𝑆-manifold is called an integral submanifold if 

𝜂𝑖(𝑋) = 0,    𝑖 ∈ {1,2,⋯ , 𝑠}, for all 𝑋 ∈ 𝜒(𝑀) 

Definition 2.9. [5] A 1-dimensional integral submanifold of an 𝑆-manifold (𝑀2𝑛+𝑠 , 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈

{1,2,⋯ , 𝑠} is called a Legendre curve of 𝑀. In other words, a curve 𝛾: 𝐼 → 𝑀 is called a Legendre curve if 

𝜂𝑖(𝑇) = 0, for all 𝑖 ∈ {1,2,⋯ , 𝑠} such that 𝑇 is the tangent vector field of 𝛾. 
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3. Generalized Cross product in (𝟐 + 𝒔)-dimensional Framed Metric Manifolds 

This section, firstly, generalizes the cross-product in a 3-dimensional almost contact metric manifolds defined 

by Camcı [5] and defines a generalized cross-product in (2 + 𝑠)-dimensional 𝑆-manifolds. 

Definition 3.1. Let 𝐴 be a matrix of type 𝑠 × (𝑠 + 1). Then, 

i. �̃�𝑖𝑗𝑘 such that 𝑖, 𝑘 ∈ {1,2,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1} is the matrix obtained by deleting the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ columns and 𝑘𝑡ℎ row of the matrix 𝐴. Specially, for 𝑠 = 1, det �̃�121 = 1. 

ii. �̃̃�𝑚𝑛 such that 𝑚 ∈ {2,3,⋯ , 𝑠} and 𝑛 ∈ {𝑚 + 1,𝑚 + 2,⋯ , 𝑠 + 1} is the matrix obtained by deleting the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ columns of the matrix 𝐴 and adding the first column of the matrix 𝐴 to the left of the first column as a 

new column. 

For example, for 𝑠 = 3, let 

𝐴 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34

]. 

Then, 

�̃�231 = [
𝑎21 𝑎24
𝑎31 𝑎34

] 

and 

�̃̃�23 = [

𝑎11 𝑎11 𝑎14
𝑎21 𝑎21 𝑎24
𝑎31 𝑎31 𝑎34

] 

Definition 3.2. Let 𝑀 = (𝑀2+𝑠 , 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑠}, be a framed metric manifold in (2 + 𝑠)-

dimensional space. We define a generalized cross-product × by 

𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1 =∑(∑ ∑ (−1)𝑖+𝑗+𝑘Φ(𝑋𝑖 , 𝑋𝑗) det �̃�𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

)𝜉𝑘

𝑠

𝑘=1

 +

|

|

𝜙𝑋1 𝜙𝑋2 ⋯ 𝜙𝑋𝑠+1

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

 (1) 

such that 𝑋1, 𝑋2, ⋯ , 𝑋𝑠+1 ∈ 𝑇𝑀  and 

𝐴 =

[
 
 
 
 
 
 
𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

𝜂2(𝑋1) 𝜂2(𝑋2) ⋯ 𝜂2(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)]
 
 
 
 
 
 

 

Moreover, �̃�𝑖𝑗𝑘, 𝑖, 𝑘 ∈ {1,2,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1}, is as in Definition 3.1. For example, for 𝑠 =

1, we obtain 

𝑋1 × 𝑋2 = Φ(𝑋1, 𝑋2)𝜉1 + 𝜂1(𝑋2)𝜙𝑋1 − 𝜂1(𝑋1)𝜙𝑋2 (2) 

Equation 2 gives the cross product in 3-dimensional almost contact metric manifolds defined in [6]. For 𝑠 = 2, 

the generalized cross-product is 
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𝑋1 × 𝑋2 × 𝑋3 = (Φ(𝑋1, 𝑋2)𝜂2(𝑋3) − Φ(𝑋1, 𝑋3)𝜂2(𝑋2) + Φ(𝑋2, 𝑋3)𝜂2(𝑋1))𝜉1 

  +(−Φ(𝑋1, 𝑋2)𝜂1(𝑋3) + Φ(𝑋1, 𝑋3)𝜂1(𝑋2) − Φ(𝑋2, 𝑋3)𝜂1(𝑋1))𝜉2 

  + |

𝜙𝑋1 𝜙𝑋2 𝜙𝑋3
𝜂1(𝑋1) 𝜂1(𝑋2) 𝜂1(𝑋3)
𝜂2(𝑋1) 𝜂2(𝑋2) 𝜂2(𝑋3)

| 

Secondly, it demonstrates that this cross-product in ℝ4 is coherent with a triple product [7] by an example. 

Example 3.3. For the subspace 𝑉 = {(𝑥1, 𝑥2, 0,0) | 𝑥1, 𝑥2 ∈ ℝ} of the 4-dimensional Euclidean space 

ℝ4(𝑥1, 𝑥2 , 𝑥3, 𝑥4), the projection function 𝜋(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥1, 𝑥2 , 0,0), and the almost complex plane 

𝐽(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥2, −𝑥1, −𝑥4, 𝑥3), (ℝ
4(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2}, is a framed metric 

manifold such that 𝜙 = 𝐽 ∘ 𝜋, 𝜂1 = 𝑑𝑥3, 𝜂2 = 𝑑𝑥4, 𝜉1 = (0,0,1,0), 𝜉2 = (0,0,0,1), and 𝑔 is the standard 

Euclidean metric. As a result, 𝑋1 × 𝑋2 × 𝑋3 = 𝑋1 ∧ 𝑋2 ∧ 𝑋3 such that  𝑋1 ∧ 𝑋2 ∧ 𝑋3 is the triple product in ℝ4 

provided in [7]. 

Finally, this section provides some of the basic properties of the generalized cross-product. 

Theorem 3.4. Let 𝑀 = (𝑀2+𝑠 , 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑠} be a framed metric manifold in (2 + 𝑠)-

dimensional space. Then, for all 𝑋1, 𝑋2, ⋯ , 𝑋𝑠+1 ∈ 𝑇𝑀, the generalized cross-product has the following 

properties: 

i. The generalized cross-product is bilinear and antisymmetric. 

ii. 𝑋1 ×𝑋2 ×⋯× 𝑋𝑠+1  is perpendicular to each of 𝑋1, 𝑋2, ⋯ , 𝑋𝑠+1. 

iii. 𝜙𝑋 = 𝜉1 × 𝜉2 ×⋯× 𝜉𝑠 × 𝑋. 

PROOF.  

i. The proof is straightforward from the fundamental 2-form Φ and the determinant function’s bilinearity. 

ii. We need to show that 𝑔(𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1, 𝑋𝑡) = 0, for 𝑡 ∈ {1,2,⋯ , 𝑠 + 1}. For 𝑡 = 1, from Equation 

1, we obtain 

𝑔(𝑋1 × 𝑋2 ×⋯× 𝑋𝑠+1, 𝑋1) = ∑(∑ ∑ (−1)𝑖+𝑗+𝑘𝛷(𝑋𝑖 , 𝑋𝑗) det 𝐴𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

)𝜂𝑘(𝑋1)

𝑠

𝑘=1

+

|

|

|

0 𝑔(𝜙𝑋2, 𝑋1) ⋯ 𝑔(𝜙𝑋𝑠+1, 𝑋1)

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

|

 (3) 

Thus, 

|

|

|

0 𝑔(𝜙𝑋2, 𝑋1) ⋯ 𝑔(𝜙𝑋𝑠+1, 𝑋1)

𝜂1(𝑋1) 𝜂1(𝑋2) ⋯ 𝜂1(𝑋𝑠+1)

⋮ ⋮ ⋱ ⋮

𝜂𝑠(𝑋1) 𝜂𝑠(𝑋2) ⋯ 𝜂𝑠(𝑋𝑠+1)

|

|

|

= ∑ (∑(−1)𝑗+𝑘𝛷(𝑋1,𝑋𝑗)det �̃�1𝑗𝑘

𝑠+1

𝑗=2

)

𝑠

𝑘=1

𝜂𝑘(𝑋1) (4) 

If we substitute Equation 4 for Equation 3, we get 

𝑔( 𝑋1 × 𝑋2 ×𝑋3 ×⋯× 𝑋𝑠+1, 𝑋1) =∑ ∑ (−1)𝑖+𝑗Φ(𝑋𝑖, 𝑋𝑗) det �̃̃�𝑖𝑗

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=2
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Here, the �̃̃�𝑖𝑗, 𝑖 ∈ {2,3,⋯ , 𝑠} and 𝑗 ∈ {𝑖 + 1, 𝑖 + 2,⋯ , 𝑠 + 1}, is as in Definition 3.1. Thus, det �̃̃�𝑖𝑗 = 0. 

Therefore, 

𝑔(𝑋1 × 𝑋2 × 𝑋3 ×⋯× 𝑋𝑠+1, 𝑋1) = 0 

Similarly, it is proved that 𝑔(𝑋1 × 𝑋2 × 𝑋3 ×⋯× 𝑋𝑠+1, 𝑋𝑡) = 0, for 𝑡 ∈ {2,3,⋯ , 𝑠 + 1}. 

iii. If 𝜉𝑖 = 𝑌𝑖, for all 𝑖 ∈ {1,2,⋯ , 𝑠}, and 𝑋 = 𝑌𝑠+1, for all 𝑋, 𝜉1 , 𝜉2, ⋯ , 𝜉𝑠 ∈ 𝑇𝑀, from Equation 1, 

𝜉1 × 𝜉2 × …× 𝜉𝑠 × 𝑋 = 𝑌1 × 𝑌2 × …× 𝑌𝑠+1 =∑(∑ ∑ (−1)𝑖+𝑗+𝑘𝛷(𝑌𝑖 , 𝑌𝑗) det 𝐴𝑖𝑗𝑘

𝑠+1

𝑗=𝑖+1

𝑠

𝑖=1

)𝜉𝑘

𝑠

𝑘=1

+

|

|

|

𝜙𝑌1 𝜙𝑌2 ⋯ 𝜙𝑌𝑠+1

𝜂1(𝑌1) 𝜂1(𝑌2) ⋯ 𝜂1(𝑌𝑠+1)

⋮ ⋮ ⋮ ⋮

𝜂𝑠(𝑌1) 𝜂𝑠(𝑌2) ⋯ 𝜂𝑠(𝑌𝑠+1)

|

|

|

 (5) 

From Equation 5, Φ(𝑌𝑖 , 𝑌𝑗) = 0, 𝑖, 𝑗 ∈ {1,2, ⋯ , 𝑠 + 1}. Then, if we substitute the expressions 𝜙𝑌𝑖 = 𝜙𝜉𝑖 = 0 

and 𝑌𝑠+1 = 𝑋 in Equation 5, we get 𝜉1 × 𝜉2 × …× 𝜉𝑠 × 𝑋 = 𝜙𝑋. ◻ 

4. Legendre Curves in 𝑺-manifolds 

Let 𝛾: 𝐼 → 𝑀 be a unit-speed curve in an 𝑛-dimensional Riemannian manifold (𝑀, 𝑔) and 𝑘1, 𝑘2 , ⋯ , 𝑘𝑟  be 

positive functions on 𝐼. If there is an orthonormal basis {𝑉1, 𝑉2, ⋯ , 𝑉𝑟} along 𝛾 that satisfies the following 

Frenet equations, 𝛾 is called a Frenet curve of osculating order 𝑟: 

𝑉1 = 𝛾
′ 

∇𝑉1𝑉1 = 𝑘1𝑉2  

∇𝑉1𝑉2 = −𝑘1𝑉1 + 𝑘2𝑉3 

⋮ 

∇𝑉1𝑉𝑟 = −𝑘𝑟−1𝑉𝑟−1 

Theorem 4.1. Let 𝑀 = (𝑀2+𝑠 , 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2,⋯ , 𝑛} be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀 be a Legendre 

curve of osculating order (2 + 𝑠). Then, for 𝜀 = ±1, the following equations are obtained: 

𝑉2 = 𝜀𝜙𝑉1 

𝑉3 =
𝜀

√𝑠
∑ 𝜉𝑠

𝑠

𝛼=1

 

𝑘2 = √𝑠 

and 

𝑘3 = 0 

PROOF.  

For the function 𝜎𝑖𝑗: 𝐼 → ℝ defined by 𝜎𝑖𝑗(𝑠) = 𝑔(𝑉𝑖 , 𝜉𝑗), for 𝑖 ∈ {1,2,⋯ , 𝑠 + 2} and 𝑗 ∈ {1,2,⋯ , 𝑠}, 

𝜉𝑗 =∑𝜎𝑖𝑗𝑉𝑖

𝑠+2

𝑖=1

,    𝑗 ∈ {1,2,⋯ , 𝑠} (6) 
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Let 𝛾 be a Legendre curve. Then, 

𝜎11 = 𝜎12 = ⋯ = 𝜎1𝑠 = 0 (7) 

Moreover, from Theorem 3.4, 

𝜙𝑉1 = (−1)
𝑠+1

|

|

|

𝑉2 𝑉3 … 𝑉𝑠+1 𝑉𝑠+2

𝜎21 𝜎31 … 𝜎(𝑠+1)1 𝜎(𝑠+2)1

𝜎22 𝜎32 … 𝜎(𝑠+1)2 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮ ⋮

𝜎2𝑠 𝜎3𝑠 … 𝜎(𝑠+1)𝑠 𝜎(𝑠+2)𝑠

|

|

|

 (8) 

If we take the derivative from 𝜎11 = 0 = 𝑔(𝑉1, 𝜉1), then 

𝜎21 = 𝜎22 = 𝜎23 = ⋯ = 𝜎2𝑠 = 0 (9) 

From Equations 8-10,  

𝜙𝑉1 = (−1)
𝑠+1

|

|

𝜎31 … 𝜎(𝑠+1)1 𝜎(𝑠+2)1

𝜎32 … 𝜎(𝑠+1)2 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮

𝜎3𝑠 … 𝜎(𝑠+1)𝑠 𝜎(𝑠+2)𝑠

|

|

𝑉2 (10) 

If we substitute Equations 7 and 9 in Equation 6, then 

[
 
 
 
 
 
 
𝜉1

𝜉2

⋮

𝜉𝑠 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜎31 𝜎41 … 𝜎(𝑠+2)1

𝜎32 𝜎42 … 𝜎(𝑠+2)2

⋮ ⋮ ⋮ ⋮

𝜎3𝑠 𝜎42 … 𝜎(𝑠+2)𝑠 ]
 
 
 
 
 
 

⏟                
𝐵

[
 
 
 
 
 
 
𝑉3

𝑉4

⋮

𝑉𝑠+2]
 
 
 
 
 
 

 
(11) 

Since {𝜉1 , 𝜉2 , … , 𝜉𝑠} and {𝑉3,… , 𝑉𝑠+2} are orthonormal systems, 𝐵 is an orthonormal matrix. In this case, |𝐵| =

±1 where |𝐵| is the determinant of the matrix 𝐵. From Equation 10, for 𝜀 = ±1, 

𝜙𝑉1 = 𝜀𝑉2 (12) 

From Equation 12, 

𝜙𝑉2 = 𝜀𝑉1 (13) 

If we take the derivative from 𝜎2𝑖 = 𝑔(𝑉2, 𝜉𝑖) = 0, 𝑖 ∈ {1,2,⋯ , 𝑠}, 

𝑘2𝜎3𝑘 = 𝑔(𝑉2, 𝜙𝑉1),    𝑘 ∈ {1,2,⋯ , 𝑠} (14) 

 



100 

 

Journal of New Theory 42 (2023) 94-107 / Generalized Cross Product in (2 + 𝑠)-Dimensional Framed Metric ⋯ 

From Equation 8, 

𝑔(𝑉2, 𝜙𝑉1) = 1 (15) 

Then, from Equations 14 and 15, 

𝑘2𝜎3𝑘 = 1,    𝑘 ∈ {1,2,⋯ , 𝑠} 

In this case, 

𝜎3𝑘 =
1

𝑘2
,    𝑘 ∈ {1,2,⋯ , 𝑠} (16) 

Since 𝐵 is an orthonormal matrix, 

∑(𝜎3𝑘)
2 = 1

𝑠

𝑘=1

 (17) 

From Equations 16 and 17, for 𝜀 = ±1, 

𝜎3𝑘 =
𝜀

√𝑠
,    𝑘 ∈ {1,2,⋯ , 𝑠} (18) 

and 

𝑘2 = √𝑠 

If we take the derivative from Equation 17, then 

−𝑘2𝑔(𝑉2, 𝜉1) + 𝑘3𝑔(𝑉4, 𝜉1) + 𝑔(𝑉3, 𝜙𝑉1) = 0 (19) 

From Equations 9 and 12, Equation 19 becomes 

𝑘3𝜎41 = 0 (20) 

Similarly, 

𝑘3𝜎42 = 𝑘3𝜎43 = ⋯ = 𝑘3𝜎4𝑠 = 0 (21) 

As the matrix 𝐵 is orthonormal, 

(𝜎41)
2 + (𝜎42)

2 +⋯+ (𝜎4𝑠)
2 = 1 (22) 

From Equations 20-22, 

𝑘3 = 0 

Since 𝐵 is an orthonormal matrix, we can write Equation 11 as follows: 

[
 
 
 
 
𝑉3

𝑉4

⋮

𝑉𝑠+2]
 
 
 
 

= 𝐵𝑇

[
 
 
 
 
𝜉1

𝜉2

⋮

𝜉𝑠 ]
 
 
 
 

 (23) 
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From Equations 11 and 18, 

𝐵𝑇 =

[
 
 
 
 
 
 

𝜀

√𝑠

𝜀

√𝑠
…

𝜀

√𝑠

𝜎41 𝜎42 … 𝜎4𝑠

⋮ ⋮ ⋮ ⋮

𝜎(𝑠+2)1 𝜎(𝑠+2)2 ⋯ 𝜎(𝑠+2𝑠,)𝑠]
 
 
 
 
 
 

 (24) 

and from Equations 23 and 24, 

𝑉3 =
𝜀

√𝑠
∑ 𝜉𝛼

𝑠

𝛼=1

 

is obtained. ◻ 

Remark 4.2. In [5], Özgür and Güvenç assumed that 𝑉2 = 𝜙𝑉1 and obtained the same results as in Theorem 

4.1 for biharmonic Legendre curves. Thus, Legendre curves are also biharmonic. 

In [10], Hasegawa et al. have introduced ℝ2+𝑠(−3𝑠) space as follows: Let the coordinate functions’ set of 

𝑀 = ℝ2+𝑠 be {𝑥, 𝑦, 𝑧1 , ⋯ , 𝑧𝑠}. In this space, 

𝜉𝑖 = 2
𝜕

𝜕𝑧𝑖
,    𝑖 ∈ {1,2,⋯ , 𝑠} 

𝜂𝑗 =
1

2
(𝑑𝑧𝑗 − 𝑦𝑑𝑥),    𝑗 ∈ {1,2,⋯ , 𝑠} 

and 

𝑔 =
1

4
(𝑑𝑥2 + 𝑑𝑦2) +∑𝜂𝑗⊗

𝑠

𝑗=1

𝜂𝑗  

(25) 

with 

𝑋 = 𝑒1
𝜕

𝜕𝑥
+ 𝑒2

𝜕

𝜕𝑦
+∑𝜉𝑖

𝜕

𝜕𝑧𝑖

𝑠

𝑖=1

∈ 𝜒(𝑀) 

Thus, (𝑀 = ℝ2+𝑠 , 𝜙, 𝜉𝑖 , 𝜂𝑗, 𝑔) is an 𝑆-space form with the constant 𝜑-sectional curvature 𝑐 = −3𝑠. Besides, 

{𝑒, 𝜙𝑒, 𝜉1, 𝜉2 , ⋯ , 𝜉𝑠} is an orthonormal basis on ℝ2+𝑠(−3𝑠) such that 

𝑒1 = 𝑒 = 2
𝜕

𝜕𝑦
, 𝑒2 = 𝜙𝑒 = 2(

𝜕

𝜕𝑥
+ 𝑦∑𝜉𝑖

𝑠

𝑖=1

), and 𝜉𝑖 = 2
𝜕

𝜕𝑧𝑖
,    𝑖 ∈ {1,2,⋯ , 𝑠} 

According to this basis, the Levi-Civita connection is calculated as 

∇𝑒𝑒 = ∇𝜙𝑒𝜙𝑒 = 0 

∇𝑒𝜙𝑒 =∑𝜉𝑖

𝑠

𝑖=1

 

 

(26) 
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∇𝜙𝑒𝑒 = −∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑒𝜉𝑖 = ∇𝜉𝑖𝑒 = −𝜙𝑒 

and 

∇𝜙𝑒𝜉𝑖 = ∇𝜉𝑖𝜙𝑒 = 𝑒 

 

 

(26) 

We will examine Legendre curves in ℝ2+𝑠(−3𝑠). Let 𝛾: 𝐼 → ℝ2+𝑠(−3𝑠) be a Legendre curve. Let 

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧1(𝑡), … , 𝑧𝑠(𝑡)) 

such that 𝑡 is the arc-length parameter. If the tangent vector field of 𝛾 is 𝑉1, then 𝜂𝑗(𝑉1) = 0, 𝑗 ∈ {1,2,⋯ , 𝑠} 

since 𝛾 is a Legendre curve. From Equation 25, 

𝑧1
′(𝑡) = 𝑧2

′ (𝑡) = ⋯ = 𝑧𝑠
′(𝑡) = 𝑦(𝑡)𝑥′(𝑡) 

If 𝑧𝑖(𝑡) = 𝑓(𝑡), then 

𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑓(𝑡) + 𝑐1, 𝑓(𝑡) + 𝑐2 , ⋯ , 𝑓(𝑡) + 𝑐𝑠) 

If the tangent vector field of the curve 𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1 , 𝜉2 , … , 𝜉𝑠} is as follows: 

𝑉1 =
1

2
(𝑦′𝑒 + 𝑥′𝜙𝑒) 

Since 𝛾 is a unit speed curve, 

(𝑥′)2 + (𝑦′)2 = 4 

Hence, we have the following example: 

Example 4.3. 𝛾: 𝐼 → ℝ2+𝑠(−3𝑠), 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑓(𝑡) + 𝑐1, 𝑓(𝑡) + 𝑐2, … , 𝑓(𝑡) + 𝑐𝑠) is a unit speed 

Legendre curve such that 

𝑥(𝑡) =
2

𝑐
cos 𝜃(𝑡) + 𝑥0 

𝑦(𝑡) =
2

𝑐
sin𝜃(𝑡) + 𝑦0 

𝑓(𝑡) =
1

𝑐2
sin 2𝜃 +

2𝑦0
𝑐
cos 𝜃 −

2

𝑐
𝑡 

and 

𝜃(𝑡) = 𝑐𝑡 + 𝑐0 

The tangent vector field of  𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1 , 𝜉2 , … , 𝜉𝑠} is 𝑉1 = cos 𝜃 𝑒 − sin𝜃 𝜙𝑒. From 26, 

∇𝑉1𝑒 = sin 𝜃∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑉1𝜙𝑒 = cos 𝜃∑𝜉𝑖

𝑠

𝑖=1

 

∇𝑉1𝜉𝑖 = −sin 𝜃 𝑒 − cos 𝜃𝜙𝑒,    𝑖 ∈ {1,2,⋯ , 𝑠} 

∇𝑉1𝑉1 = −𝑐 sin 𝜃 𝑒 − 𝑐 cos 𝜃 𝜙𝑒 
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and 

𝑘1 = 𝑐 

Then, 𝑉2 = −(sin𝜃 𝑒 + cos𝜃 𝜙𝑒) and 𝜙𝑉1 = cos 𝜃 𝜙𝑒 + sin 𝜃 𝑒 = −𝑉2. If 

𝐸1 = 𝛾
′ = 𝑉1 

𝐸2 = ∇𝑉1𝑉1 

and 

𝐸3 = ∇𝑉1(∇𝑉1𝑉1) −
〈∇𝑉1(∇𝑉1𝑉1), ∇𝑉1𝑉1〉

〈∇𝑉1𝑉1, ∇𝑉1𝑉1〉
∇𝑉1𝑉1 −

〈∇𝑉1(∇𝑉1𝑉1), 𝑉1〉

〈𝑉1, 𝑉1〉
𝑉1 

then 

𝑉3 =
𝐸3
‖𝐸3‖

 

and 

∇V1(∇𝑉1𝑉1) = −𝑐
2 cos 𝜃 𝑒 + 𝑐2 sin 𝜃𝜙𝑒 − 𝑐∑𝜉𝑖

𝑠

𝑖=1

 

Then, 

〈∇𝑉1(∇𝑉1𝑉1), ∇𝑉1𝑉1〉 = 0 

〈∇𝑉1(∇𝑉1𝑉1), 𝑉1〉 = −𝑐
2 

𝐸3 = −𝑐∑𝜉𝑖

𝑠

𝑖=1

 

and 

𝑉3 =
−∑ 𝜉𝑖

𝑠
𝑖=1

√𝑠
 

From 𝑘2 = 〈∇𝑉1𝑉2, 𝑉3〉 and 

∇𝑉1𝑉2 = −(𝑐 cos 𝜃 𝑒 − 𝑐 sin𝜃 𝜙𝑒 +∑𝜉𝑖

𝑠

𝑖=1

) 

we obtain 𝑘2 = √𝑠. Similarly, since 

∇𝑉1𝑉3 = √𝑠(sin𝜃 𝑒 + cos 𝜃 𝜙𝑒) 

and 

∇𝑉1𝑉3 = −𝑘2𝑉2 + 𝑘3𝑉4 

we obtain 𝑘3𝑉4 = 0. Thus, 𝑘3 = 0. ◻ 

Let 𝛼: 𝐼 → 𝑀 be a unit-speed curve in a 4-dimensional Riemannian manifold (𝑀, 𝑔). The Frenet vectors of the 

curve 𝛼 are 

𝑉1 = 𝛼
′,    𝑉2 =

𝛼′′

‖𝛼′′‖
,    𝑉4 = −

𝛼′ × 𝛼′′ × 𝛼′′′

‖𝛼′ × 𝛼′′ × 𝛼′′′‖
,    and    𝑉3 = 𝑉4 × 𝑉1 × 𝑉2 (27) 
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and the system {𝑉1, 𝑉2, 𝑉3, 𝑉4} is an orthonormal system in 4-dimensional space [11]. From Equation 27,  

𝑉4 = −𝑉1 × 𝑉2 × 𝑉3 (28) 

is obtained. 

Theorem 4.4. Let 𝑀 = (𝑀2+2 , 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2}, be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀2+2 be a Legendre 

curve of osculating order 4. Then, 𝑉4 =
𝜀

√2
(𝜉1 − 𝜉2). 

PROOF.  

From Equations 1 and 28, 

𝑉4 = (𝑔(𝑉1, 𝜙𝑉2)𝜂2(𝑉3) − 𝑔(𝑉1, 𝜙𝑉3)𝜂2(𝑉2) + 𝑔(𝑉2, 𝜙𝑉3)𝜂2(𝑉1))𝜉1 

(29) 

  +(−𝑔(𝑉1, 𝜙𝑉2)𝜂1(𝑉3) + 𝑔(𝑉1, 𝜙𝑉3)𝜂1(𝑉2) − 𝑔(𝑉2, 𝜙𝑉3)𝜂1(𝑉1))𝜉2 +  |
|

𝜙𝑉1 𝜙𝑉2 𝜙𝑉3

𝜂1(𝑉1) 𝜂1(𝑉2) 𝜂1(𝑉3)

𝜂2(𝑉1) 𝜂2(𝑉2) 𝜂2(𝑉3)

|
| 

From Equations 9, 12, 13, 18, 28, and 29, 

𝑉4 =
𝜀

√2
(𝜉1 − 𝜉2) 

is obtained. ◻ 

Example 4.5. Let 𝑐1, 𝑐2 ∈ ℝ. Then, the curve 𝛾: 𝐼 → ℝ2+2(−6) defined by 

𝛾(𝑡) = (2 ln |√1 + 𝑡2 + 𝑡| , 2√1 + 𝑡2 , 4𝑡 + 𝑐1, 4𝑡 + 𝑐2) 

is a unit speed Legendre curve. The tangent vector field of 𝛾 in terms of basis {𝑒, 𝜙𝑒, 𝜉1 , 𝜉2} is 

𝑉1 =
𝑡

√1 + 𝑡2
𝑒 +

1

√1 + 𝑡2
𝜙𝑒 

From Equation 26, 

∇𝑉1𝑒 = −
1

√1 + 𝑡2
(𝜉1 + 𝜉2) 

∇𝑉1𝜙𝑒 =
𝑡

√1 + 𝑡2
(𝜉1 + 𝜉2) 

∇𝑉1𝜉𝑖 =
1

√1 + 𝑡2
(𝑒 − 𝑡𝜙𝑒),    𝑖 ∈ {1,2} 

∇𝑉1𝑉1 =
1

(1 + 𝑡2)
3
2⁄
𝑒 −

𝑡

(1 + 𝑡2)
3
2⁄
𝜙𝑒 

and 

𝑘1 =
1

1 + 𝑡2
 

then  

𝑉2 =
1

√1+𝑡2
𝑒 −

𝑡

√1+𝑡2
𝜙 and 𝜙𝑉1 = −𝑉2 
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Thus, 

∇𝑉1𝑉2 = −
𝑡

(1+𝑡2)
3
2⁄
𝑒 −

1

(1+𝑡2)
3
2⁄
𝜙𝑒 − (𝜉1 + 𝜉2)  

and  

∇𝑉1𝑉2 = −𝑘1𝑉1 + 𝑘2𝑉3 

Therefore, we obtain 

𝑘2 = √2 and 𝑉3 = −
𝜉1+𝜉2

√2
 

Since ∇𝑉1𝑉3 = −
√2

√1+𝑡2
(𝑒 + 𝑡𝜙𝑒) and ∇𝑉1𝑉3 = −𝑘2𝑉2 + 𝑘3𝑉4, we obtain 𝑘3 = 0. From Equation 28, 

𝑉4 =

|

|

𝑒 𝜙𝑒 𝜉1 𝜉2
1

√1 + 𝑡2
−

𝑡

√1 + 𝑡2
0 0

𝑡

√1 + 𝑡2

1

√1 + 𝑡2
0 0

0 0 −
1

√2
−
1

√2

|

|

=
1

√2
(𝜉2 − 𝜉1) 

is obtained. ◻ 

Theorem 4.6. Let 𝑀 = (𝑀2+3 , 𝜙, 𝜉𝑖 , 𝜂𝑗 , 𝑔), 𝑖, 𝑗 ∈ {1,2,3}, be an 𝑆-manifold and 𝛾: 𝐼 → 𝑀2+3 be a Legendre 

curve of osculating order 5. 𝛾 is imbedded in the 3-dimensional 𝐾-contact space. 

PROOF.  

Let 

𝑈1 = cos 𝜃 𝑉4 − sin 𝜃 𝑉5 

𝑈2 = sin𝜃 𝑉4 + cos𝜃 𝑉5 
(30) 

such that 

𝜃(𝑠) = ∫𝑘4𝑑𝑠 (31) 

From Equations 30 and 31, 

∇𝑉1𝑈1 = 0 

and 

∇𝑉1𝑈2 = 0 

Therefore, 𝑈1 and 𝑈2 are constant. From Equation 30, {𝑉1, 𝑉2, 𝑉3, 𝑈1, 𝑈2} is an orthonormal basis. For the 

functions 

𝑓𝑖 : 𝐼 → ℝ 

  𝑠 → 𝑓𝑖(𝑠) = 〈𝛾(𝑠) − 𝛾(0), 𝑈𝑖〉    

such that 𝑖 ∈ {1,2} from Equations 30 and 31, we get, for all 𝑠 ∈ 𝐼, 

𝑓𝑖
′(𝑠) = 〈𝑉1, 𝑈𝑖〉 = 0 

𝑓𝑖(𝑠) = 𝑐 ∈ ℝ 



106 

 

Journal of New Theory 42 (2023) 94-107 / Generalized Cross Product in (2 + 𝑠)-Dimensional Framed Metric ⋯ 

and 

𝑓𝑖(0) = 〈𝛾(0) − 𝛾(0), 𝑈𝑖〉 = 𝑐 = 0 

Hence, for all 𝑠 ∈ 𝐼, 

𝑓𝑖(𝑠) = 0,    𝑖 ∈ {1,2} 

Then, 𝛾(𝑠) − 𝛾(0) ∈ Sp{𝑉1, 𝑉2, 𝑉3}. Let 𝜔 = {𝑋 ∈ 𝜒(𝑀) ∶  𝑔(𝑋, 𝑈1) = 0 ∧ 𝑔(𝑋, 𝑈2) = 0}. Since  

𝜔 = Sp{𝑉1, 𝑉2, 𝑉3} and 𝛾(𝑠) − 𝛾(0) ∈ 𝜔 

For the function 

𝜋 : 𝜒(𝑀) → 𝜔 

  𝑋 → 𝜋(𝑋) = �̅� +
𝜆1 + 𝜆2 + 𝜆3

3
𝜉 

such that �̅� ∈ 𝐷 = {𝑋 ∈ 𝜒(𝑀) ∶  𝜂𝑖(𝑋) = 0, ∀𝑖 ∈ {1,2,3}}, 𝑋 = �̅� + 𝜆1𝜉1 + 𝜆2𝜉2 + 𝜆3𝜉3, and 𝜉 =
𝜉1+𝜉2+𝜉3

3
, if 

we get 𝜂 = 𝜂1 + 𝜂2 + 𝜂3, �̃� = 𝜙, and �̃� = 3𝑔, then (𝑤3, �̃�, 𝜉, 𝜂, �̃�) is a 𝐾-contact space. Since �̃� = 3𝑔, then 

Γ̃𝑖𝑗
𝑘 = Γ𝑖𝑗

𝑘 and ∇̃= ∇. Because 𝑑𝜂 = 𝑑𝜂1 + 𝑑𝜂2 + 𝑑𝜂3 = 3𝑑𝜂1 = 3Φ = 3𝑔 = �̃�, then Φ̃ = 𝑑𝜂. Moreover, 

∇̃𝜋𝑋𝜉 = ∇𝜋𝑋 (
𝜉1 + 𝜉2 + 𝜉3

3
) =

1

3
(∇𝜋𝑋𝜉1 + ∇𝜋𝑋𝜉2 + ∇𝜋𝑋𝜉3) =

−3

3
𝜙(𝜋𝑋) = −𝜙(𝜋𝑋) = −�̃�(𝜋𝑋) 

As 

𝜂(𝑉1) = (𝜂1 + 𝜂2 + 𝜂3)(𝑉1) = 𝜂1(𝑉1) + 𝜂2(𝑉1) + 𝜂3(𝑉1) = 0 

The curve 𝛾 is also a Legendre curve at 𝜔. ◻ 

5. Conclusion 

This study generalized the cross product defined in 3-dimensional almost contact metric manifolds and defined 

a new generalized cross product in (2𝑛 + 𝑠)-dimensional framed metric manifolds such that 𝑛 = 1. Moreover, 

it characterized the curvatures of Legendre curves in 𝑆-manifolds. Moreover, this study proved that Legendre 

curves are biharmonic. Besides, it demonstrated that (2 + 3)-dimensional 𝑆-manifolds are imbedded in 3-

dimensional space. In future studies, researchers can investigate Slant curves in 𝑆-manifolds using the 

generalized cross product herein. 
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