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Research Article

Abstract − Basic logic algebras (BL-algebras) were introduced by Hajek. Multi-value
algebras (MV-algebras), Gödel algebras, and product algebras are particular cases of BL-
algebras. Moreover, BL-algebras are algebraic structures, and their principal examples are
the real interval [0, 1] with the structure given by a continuous t-norm and abelian l-groups.
In this article, we consider a type of derivation structure on BL-algebras. We study (⊙, ∨)-
permuting tri-derivations of BL-algebras and their examples and basic properties. We obtain
results regarding the trace of (⊙, ∨)-permuting derivations on Gödel BL-algebras. Finally, the
article presents that the results herein can be generalized in future research.

Keywords BL-algebra, permuting tri-derivation, Boolean algebra, isotone, trace

Mathematics Subject Classification (2020) 08A05, 03G25

1. Introduction

The interest in multi-value algebras (MV-algebras) introduced by Chang [1] continues to increase.
One of the most important examples of MV-algebra is the interval [0, 1] of the commutative l-group:
(M,max,min,+, ′, 0) equipped with a continuous t-conorm and continuous t-norm defined by m⊕n =
min {m+ n, 1} and m⊙ n = max {m+ n− 1, 0} and with the negation defined by m′ = 1 −m. After
MV-algebras, Gödel algebras and product algebras have been investigated [2–5]. These three structures
form the most important algebraic model structure for fuzzy logic, which are Lukasiewicz logic, Gödel
logic and product logic, respectively. These logics studying these algebras are of logical interest, as
well as their connection to some mathematical structures, as they correspond to the most important
continuous t-norms on [0, 1] and their associated residues. Basic logic algebras (BL-algebras) [6] has
been introduced by Hajek. MV-algebras, Gödel algebras, and product algebras are particular cases
of BL-algebras. Various derivation studies [7–9] have been done on BL-algebras. In this article, we
investigate a derivation type defined by some authors [10–13] in rings, lattices, and MV-algebras.
More precisely, we define a type of permuting tri-derivations on BL-algebras and study some of its
properties.

This article is organized as follows: The next section reminds some results and basic properties of
BL-algebras. Section 3 defines (⊙,∨)-permuting tri-derivation structure in BL-algebras and obtains
their some results. Moreover, it explores many properties by the trace of the (⊙,∨)-permuting tri-
derivation on BL-algebras. Finally, the conclusion briefly overviews this type of algebra and discusses
future studies.
1damla.yilmaz@erzurum.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
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2. Preliminaries

This section provides some basic notions to be needed for the next section. A t-norm ⊗ on the real
interval [0, 1] is a commutative and associative operation on [0, 1] such that

i. If β ≤ δ, then β ⊗ η ≤ δ ⊗ η, for all β, δ, η ∈ [0, 1]

ii. 1 ⊗ β = β, for all β ∈ [0, 1]

From i and ii, 0 ⊗ β = 0, for all β ∈ [0, 1]. A t-norm ⊗ on [0, 1] is continuous if it is continuous in the
usual sense as a function ⊗ : [0, 1] × [0, 1] → [0, 1]. On [0, 1], Lukasiewicz t-norm, Gödel t-norm, and
Product t-norm, the most important continuous t-norms, are defined as follows, respectively:

β ⊙ δ = max {β + δ − 1, 0}

β ⊙ δ = min {β, δ}

and
β ⊙ δ = βδ

Note that every continuous t-norm ⊗ on [0, 1] induces a binary operation → defined by

β → δ = max {η ∈ [0, 1]|β ⊗ η ≤ δ}

called the associated residuum. The binary operation satisfies the statement β ⊗ δ ≤ η if and only if
(iff) β ≤ δ → η, for all β, δ, η ∈ [0, 1]. These three norms above are related to fuzzy logic along with
the residues Lukasiewicz implication, Gödel implication, and Product implication, defined as follows,
respectively:

β → δ = min {1, 1 − β − δ}

β → δ =
{

1, β ≤ δ

δ, otherwise

and

β → δ =
{

1, β ≤ δ
δ
β , otherwise

If ⊗ is a continuous t-norm on [0, 1] and → is the associated residuum, then the structure

([0, 1],max,min,⊗,→, 0, 1)

is the starting point in describing and investigating Basic Logic and corresponds to the basic logic
system: BL-algebras.

Definition 2.1. [6] A basic logic algebra (BL-algebra) is a structure (Λ,∧,∨,⊙,→, 0, 1) such that

i. (Λ,∧,∨, 0, 1) is a bounded lattice

ii. (Λ,⊙, 1) is a commutative monoid

iii. β ≤ δ → η iff δ ⊙ β ≤ η (residuation)

iv. β ∧ η = β ⊙ (β → η) (divisibility)

v. (β → η) ∨ (η → β) = 1 (prelinearity)

For any β, η ∈ Λ, we define

β∗ = β → 0, β ⊕ η =
(
β

∗ ⊙ η
∗)∗

, and β ⊖ η = β ⊙ η
∗

We recall that a BL-algebra Λ is an MV-algebra iff (β∗)∗ = β, for all β ∈ Λ [4]. A Gödel algebra is a
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BL-algebra Λ satisfying the condition β ⊙ β = β, for all β ∈ Λ [6]. Moreover, a product algebra is a
BL-algebra Λ satisfying the conditions i. β ∧ β∗ = 0 and ii. (δ∗)∗ ⊙ (β ⊙ δ → η ⊙ δ) ≤ β → η, for all
β, η, δ ∈ Λ [6].

Proposition 2.2. [2] Suppose that Λ is a BL-algebra and β, η, δ ∈ Λ. Thus, the followings hold:

i. β ≤ η iff β → η = 1

ii. β → (η → δ) = (β ⊙ η) → δ = η → (β → δ)

iii. If β ≤ η, then η → δ ≤ β → δ, δ → β ≤ δ → η, β ⊙ δ ≤ η ⊙ δ, and η∗ ≤ β∗

iv. β ≤ (η → β) → β, η ≤ (η → β) → β, and β ∨ η = ((β → η) → η) ∨ ((η → β) → β)

v. β ⊙ η ≤ β, β ⊙ η ≤ η, β ⊙ η ≤ β ∧ η, β ⊙ 0 = 0, and β ⊙ β∗ = 0

vi. 1 → β = β, β → β = 1, β ≤ η → β, β → 1 = 1, and 0 → β = 1

vii. β ⊙ η = 0 iff β ≤ η∗

viii. β ⊙ (η ∧ σ) = (β ⊙ η) ∧ (β ⊙ σ)

ix. β ⊙ (η ∨ σ) = (β ⊙ η) ∨ (β ⊙ σ)

A BL-algebra satisfying β ∨ β∗ = 1 is called a Boolean algebra. For a BL-algebra Λ, if

B(Λ) = {β ∈ Λ : β ⊕ β = β} = {β ∈ Λ : β ⊙ β = β}

then (B(Λ),⊕, ∗, 0) is the largest subalgebra of Λ and a Boolean algebra. Hence, B(Λ) is called
Boolean center of Λ.

Theorem 2.3. [2] Let Λ be a BL-algebra and β, η ∈ Λ. Then, the following conditions are equivalent:

i. β ∈ B(Λ)

ii. β ⊙ β = β and β∗∗ = β

iii. β ⊙ β = β and β∗ → β = β

iv. β∗ ∨ β = 1

v. (β → η) → β = β

vi. β ∧ η = β ⊙ η

3. (⊙, ∨)-Permuting Tri-derivations on BL-algebras

This section defines (⊙,∨)-permuting tri-derivation structures in BL-algebras and explores their some
results. It investigates the properties provided by the trace of the (⊙,∨)-permuting tri-derivation on
BL-algebras. Throughout this paper, Λ denotes a BL-algebra unless otherwise specified.

Definition 3.1. A map Φ : Λ × Λ × Λ → Λ is called a permuting mapping if Φ(β, δ, θ) = Φ(β, θ, δ) =
Φ(δ, β, θ) = Φ(δ, θ, β) = Φ(θ, β, δ) = Φ(θ, δ, β), for all β, δ, θ ∈ Λ.

Furthermore, a map φ : Λ → Λ defined by φ(β) = Φ(β, β, β) is referred to as the trace of Φ such that
Φ is a permuting mapping. Hereinafter, for brevity, we use the notation φβ instead of φ(β).

Definition 3.2. Let Φ : Λ×Λ×Λ → Λ be a permuting mapping. If Φ satisfies the following condition

Φ(β ⊙ η, δ, θ) = (Φ(β, δ, θ) ⊙ η) ⊕ (β ⊙ Φ(η, δ, θ))

for all β, η, δ, θ ∈ Λ, then Φ is called a permuting tri-derivation. Clearly, if Φ is a permuting tri-
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derivation on Λ, then the following relations hold:

Φ(β, δ ⊙ η, θ) = (Φ(β, δ, θ) ⊙ η) ⊕ (δ ⊙ Φ(β, η, θ))

and
Φ(β, δ, θ ⊙ η) = (Φ(β, δ, θ) ⊙ η) ⊕ (θ ⊙ Φ(β, δ, η))

for all β, η, δ, θ ∈ Λ.

Example 3.3. Let Λ = {0, β, θ, 1} such that 0 < β < θ < 1 and the binary operations ⊙ and → be
defined as follows:

⊙ 0 β θ 1
0 0 0 0 0
β 0 β β β

θ 0 β θ θ

1 0 β θ 1

and

→ 0 β θ 1
0 1 1 1 1
β 0 1 1 1
θ 0 β 1 1
1 0 β θ 1

Then, (Λ,∧,∨,⊙,→, 0, 1) is a BL-algebra. Define a map Φ : Λ × Λ × Λ → Λ by

Φ (x1, x2, x3) =


β, (x1, x2, x3) ∈

{
(β, β, β), (β, β, θ), (β, θ, β), (θ, β, β), (β, β, 1),
(β, 1, β), (1, β, β), (θ, θ, 1), (θ, 1, θ), (1, θ, θ)

}
θ, (x1, x2, x3) = (θ, θ, θ)
0, otherwise

It is easy to observe that Φ is a (⊙,∨)-permuting tri-derivation on Λ.

Proposition 3.4. Assume that Φ is a (⊙,∨)-permuting tri-derivation on Λ, φ is the trace of Φ, and
β, δ, θ ∈ Λ. Then, the following conditions are valid:

i. φ0 = 0

ii. φβ ⊙ β∗ = β ⊙ φβ
∗ = 0

iii. φβ = φβ ∨ (β ⊙ Φ(β, β, 1))

iv. If β ∈ B(Λ), then β ≤ (Φ(β, β, β∗))∗

v. If β ∈ B(Λ), then Φ(β, δ, θ) ≤ β and Φ(β∗, δ, θ) ≤ β∗

Proof.

i. For all β ∈ Λ,
Φ(β, β, 0) = Φ(β, β, 0 ⊙ 0)

= (Φ(β, β, 0) ⊙ 0) ∨ (0 ⊙ Φ(β, β, 0))
= 0 ∨ 0 = 0

Since φ is the trace of Φ,
φ0 = Φ(0, 0, 0)

= Φ(0 ⊙ 0, 0, 0)
= (Φ(0, 0, 0) ⊙ 0) ∨ (0 ⊙ Φ(0, 0, 0))
= 0 ∨ 0 = 0

ii. For all β ∈ Λ,
0 = Φ(β, β, 0)

= Φ(β, β, β ⊙ β∗)
= (Φ(β, β, β) ⊙ β∗) ∨ (β ⊙ Φ(β, β, β∗))
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Hence, φβ ⊙ β∗ = 0 and β ⊙ Φ(β, β, β∗) = 0. Similarly, β ⊙ φβ
∗ = 0, for all β ∈ Λ.

iii. For all β ∈ Λ,
φβ = Φ(β, β, β)

= Φ(β, β, β ⊙ 1)
= (Φ(β, β, β) ⊙ 1) ∨ (β ⊙ Φ(β, β, 1))
= φβ ∨ (β ⊙ Φ(β, β, 1))

iv. Let β ∈ B(Λ). Since Φ(β, β, β∗) ⊙ β = 0, then Φ(β, β, β∗) ≤ β∗. From Theorem 2.3, β∗∗ = β

because β ∈ B(Λ). From Proposition 2.2 iii, β ≤ (Φ(β, β, β∗))∗.

v. Let β ∈ B(Λ). For all δ, θ ∈ Λ,

Φ(β ⊙ β∗, δ, θ) = (Φ(β, δ, θ) ⊙ β∗) ∨ (β ⊙ Φ(β∗, δ, θ)

which implies that Φ(β, δ, θ)⊙β∗ = 0 and β⊙Φ(β∗, δ, θ) = 0. Thus, Φ(β, δ, θ) ≤ β and Φ(β∗, δ, θ) ≤ β∗.

Proposition 3.5. Let Φ be a (⊙,∨)-permuting tri-derivation on Λ, φ be the trace of Φ, and β, θ ∈ Λ
such that β ≤ θ. Then, the followings hold:

i. φ(β ⊙ θ
∗) = 0

ii. φθ∗ ≤ β∗

iii. If β ∈ B(Λ), then φβ ⊙ φθ∗ = 0

Proof.

i. Since β ≤ θ, then β ⊙ θ∗ ≤ θ ⊙ θ
∗ = 0. Hence, β ⊙ θ

∗ = 0. Thus, φ(β ⊙ θ
∗) = 0.

ii. Since β ≤ θ, then β⊙φθ
∗ ≤ θ⊙φθ

∗ = 0. Hence, φθ∗ ⊙β = 0. From Proposition 2.2 vii, β ∈ B(Λ).
Then, φθ∗ ≤ β∗.

iii. Let β ∈ B(Λ). For all θ ∈ Λ,

0 = Φ(β ⊙ β∗, θ, θ) = (Φ(β, θ, θ) ⊙ β∗) ∨ (β ⊙ Φ(β∗, θ, θ))

Hence, Φ(β, θ, θ) ⊙ β∗ = 0. Therefore, Φ(β, θ, θ) ≤ β. Thus, we replace θ by β in the last relation,
φβ ≤ β. Therefore, φβ ⊙ φθ

∗ ≤ β ⊙ φθ∗ = 0.

Proposition 3.6. Let Φ be a (⊙,∨)-permuting tri-derivation on Λ, φ be the trace of Φ, and β ∈ B(Λ).
Then,

i. φβ ⊙ φβ
∗ = 0

ii. φβ∗ = (φβ)∗ iff φ is the identity on Λ

Proof.

i. By Proposition 3.5 iii, as β ≤ β and β ∈ B(Λ), then φβ ⊙ φβ
∗ = 0.

ii. (⇒) : Since β ⊙ φβ
∗ = 0, then β ⊙ (φβ)∗ = 0. Thus, φβ ≤ β and β ≤ φβ which implies that

φβ = β. Hence, φ is identity on Λ.

(⇐) : If φ is an identity on Λ, then φβ
∗ = (φβ)∗ , for all β ∈ Λ.
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Definition 3.7. Let Φ be a (⊙,∨)-permuting tri-derivation on Λ. If β ≤ δ implies Φ(β, θ, η) ≤
Φ(δ, θ, η), for all β, θ, η ∈ Λ, then Φ is called an isotone. If φ is the trace of Φ, and Φ is an isotone,
then β ≤ δ implies φβ ≤ φδ, for all β, δ ∈ Λ.

Example 3.8. Let Λ be a BL-algebra and Φ be a (⊙,∨)-permuting tri-derivation in Example 3.3.
Then, Φ is not isotone, because Φ(β, β, 1) ⩽̸ Φ(1, β, 1).

Example 3.9. Consider Λ = {0, β, θ, 1} in Example 3.3. Define a map Φ : Λ × Λ × Λ → Λ by

Φ (x1, x2, x3) =



β, (x1, x2, x3) ∈


(β, β, β), (β, β, θ), (β, θ, β), (θ, β, β), (β, β, 1), (β, 1, β), (1, β, β),
(β, θ, θ), (θ, β, θ), (θ, θ, β), (β, θ, 1), (β, 1, θ), (θ, β, 1), (θ, 1, β),

(1, β, θ), (1, θ, β), (β, 1, 1), (1, β, 1), (1, 1, β)


θ, (x1, x2, x3) ∈

{
(θ, θ, θ), (θ, θ, 1), (θ, 1, θ), (1, θ, θ), (θ, 1, 1), (1, θ, 1), (1, 1, θ)

}
1, (x1, x2, x3) = (1, 1, 1)
0, otherwise

Then, Φ is an isotone (⊙,∨)-permuting tri-derivation on Λ.

Proposition 3.10. Suppose that Φ is a (⊙,∨)-permuting tri-derivation on Λ and φ is the trace of Φ.
If φβ∗ = φβ, for all β ∈ Λ, then the followings hold:

i. φ1 = 0

ii. φβ ⊙ φβ = 0

iii. If Φ is an isotone on Λ, then φ = 0

Proof.

i. Replacing β by 0 in the relation φβ
∗ = φβ, since 0∗ = 1 and φ0 = 0, then φ1 = 0.

ii. Using hypothesis, φβ ⊙ φβ = φβ ⊙ φβ∗ = 0, for all β ∈ Λ.

iii. Let Φ be an isotone on Λ. For β ∈ Λ, φβ = 0, since φβ ≤ φ1 = 0. Thus, φ = 0.

Definition 3.11. Let Φ be a (⊙,∨)-permuting tri-derivation on Λ. If Φ(β ⊙ θ, δ, η) = Φ(β, δ, η) ⊙
Φ(θ, δ, η), for all β, θ, δ, η ∈ Λ, then Φ is called a tri-multiplicative (⊙,∨)-permuting tri-derivation on
Λ.

Theorem 3.12. Suppose that Φ is a tri-multiplicative (⊙,∨)-permuting tri-derivation on Λ and φ is
the trace of Φ. Hence, φ(B(Λ)) ⊆ B(Λ).

Proof.
Let β ∈ φ(B(Λ)). Then, β = φ(θ), for some θ ∈ B(Λ). Thus, β⊙β = φθ⊙φθ = Φ(θ⊙θ, θ, θ) = φθ = β.
Therefore, β ∈ B(Λ). Hence, φ(B(Λ)) ⊆ B(Λ).

Theorem 3.13. Let Φ be a (⊙,∨)-permuting tri-derivation on Λ. If there exists a β ∈ Λ such that
β ⊙ Φ(θ, δ, η) = 1, for all θ, δ, η ∈ Λ, then β = 1.

Proof.
Assume that there exists a β ∈ Λ such that Φ(θ, δ, η) ⊙ β = 1, for all θ, δ, η ∈ Λ. Since Φ is a
(⊙,∨)-permuting tri-derivation on Λ,
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1 = Φ(θ ⊙ β, δ, η) ⊙ β

= ((Φ(θ, δ, η) ⊙ β) ∨ (θ ⊙ Φ(β, δ, η)) ⊙ β

= (1 ∨ (θ ⊙ Φ(β, δ, η)) ⊙ β

= 1 ⊙ β

= β

Theorem 3.14. Let Φ be a (⊙,∨)-permuting tri-derivation on B(Λ). Thus,

i. Φ is a permuting tri-derivation on a lattice, i.e.,

Φ(β ∧ η, θ, δ) = (Φ(β, θ, δ) ∧ η) ∨ (β ∧ Φ(η, θ, δ)), for all β, θ, δ, η ∈ B(Λ)

ii. Φ(β, θ, δ) = Φ(β, θ, δ) ∧ β, for all β, θ, δ ∈ B(Λ)

Proof.

i. For all β, θ, δ, η ∈ B(Λ),

Φ(β ∧ η, θ, δ) = Φ(β ⊙ η, θ, δ)
= (Φ(β, θ, δ) ⊙ η) ∨ (β ⊙ Φ(η, θ, δ))
= (Φ(β, θ, δ) ∧ η) ∨ (β ∧ Φ(η, θ, δ))

ii. For all β, θ, δ ∈ B(Λ),

Φ(β, θ, δ) = Φ(β ⊙ β, θ, δ)
= (Φ(β, θ, δ) ⊙ β) ∨ (β ⊙ Φ(β, θ, δ))
= Φ(β, θ, δ) ⊙ β

= Φ(β, θ, δ) ∧ β

Theorem 3.15. Suppose that Φ is a (⊙,∨)-permuting tri-derivation on Gödel BL-algebra Λ, φ is the
trace of Φ, and β, θ ∈ Λ. Then, the followin conditions are valid:

i. φβ ≤ β

ii. If β ≤ Φ(β, β, 1), then φβ = β

iii. If β ≥ Φ(β, β, 1), then Φ(β, β, 1) ≤ φβ

iv. If β ≤ θ, then φβ = β or φβ ≥ Φ(β, β, θ)

Proof.

i.
φβ = Φ(β, β, β) = Φ(β ⊙ β, β, β)

= (φβ ⊙ β) ∨ (β ⊙ φβ) = φβ ⊙ β

= min {φβ, β}

Thus, φβ ≤ β.
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ii. Let β ≤ Φ(β, β, 1), for β ∈ Λ. Thus,

φβ = Φ(β, β, β)
= Φ(β ⊙ 1, β, β)
= (φβ ⊙ 1) ∨ (β ⊙ Φ(1, β, β))
= φβ ∨ min {β,Φ(1, β, β)}
= φβ ∨ β

= β, by i.

iii. Let β ≥ Φ(β, β, 1), for β ∈ Λ. Hence,

φβ = Φ(β, β, β)
= Φ(β ⊙ 1, β, β)
= φβ ∨ min {β,Φ(1, β, β)}
= φβ ∨ Φ(1, β, β)

Thus, Φ(β, β, 1) ≤ φβ.

iv. Let β ≤ θ. From i, φβ ≤ β ≤ θ. Thus, φβ ≤ θ. Thereby,

φβ = Φ(β, β, β)
= Φ(β ⊙ θ, β, β)
= (φβ ⊙ θ) ∨ (β ⊙ Φ(θ, β, β))
= φβ ∨ (β ⊙ Φ(θ, β, β))

If β ≤ Φ(θ, β, β), then φβ = β by i. If β ≥ Φ(θ, β, β), then φβ = φβ ∨ Φ(θ, β, β). Hence, φβ ≥
Φ(β, β, θ).

4. Conclusion

BL-algebras were introduced by Hajek [6] to investigate many-valued logic. One of the reasons for his
motivations for introducing BL-algebras was providing an algebraic counterpart of propositional logic,
called Basic Logic (BL-logic), which embodies a fragment common to some of the most important
many-valued logics, namely Lukasiewicz Logic, Gödel Logic, and Product Logic. This BL-logic is
proposed as “the most general” many-valued logic with truth values in [0, 1]. Another reason to work
was to provide an algebraic mean for the study of continuous t-norms on [0, 1]. In this work, we
introduce one type of permuting tri-derivation on BL-algebras and investigate its some properties.
Moreover, we propose many of the basic properties that the trace of (⊙,∨)-permuting tri-derivation
provides. In the future, different permuting tri-derivations can be defined in these algebras, and
generalized permuting tri-derivations can be studied in BL-algebras.
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(DSS) that models the dispersive water waves in fluid dynamics. Moreover, 3D and 2D graphs
of some of the obtained exact solutions are plotted to present how various characteristic forms
they have. The results show that the presented method simplifies the computation process on
the computer in a highly reliable and straightforward manner while providing the solutions
in more general forms. In addition, the GUM has great potential to apply to a wide range
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1. Introduction

Nonlinear partial differential equations (NPDEs), usually represented by an equation that describes
a relationship between an unknown function and its partial derivatives, are great tools for modeling
these real-world phenomena in many scientific fields. Finding solutions for NPDEs is essential be-
cause it improves our understanding of the physical phenomena these equations model, accelerates
technological advances, and optimizes the production process of these technological tools. Therefore,
finding numerical and exact solutions to NPDEs corresponding to the physical problems in science
and engineering becomes increasingly important.

In this study, the exact solutions of the nonlinear Drinfeld-Sokolov System (DSS), considered to model
for dispersive water in fluid dynamics, are investigated by using the generalized unified method (GUM).
The explicit mathematical form of the system is given as follows: ut(x, t) + (v2(x, t))x = 0

vt(x, t) − αvxxx(x, t) + 3βux(x, t)v(x, t) + 3γu(x, t)vx(x, t) = 0

where α, β, and γ are real constants. This system was first proposed by Drinfeld and Sokolov [1]
as an extension of the Korteweg-de Vries (KdV), which possesses Lax pairs of a special form for
affine Lie algebras. The solutions of the DSS exhibit different characteristics, such as static solitons
1tgb.aydemir@gmail.com (Corresponding Author)
1Department of International Trade and Finance, Faculty of Economics and Administrative Sciences, Yalova University,
Yalova, Türkiye

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0000-0003-3889-0603
https://doi.org/10.53570/jnt.1294322


Journal of New Theory 44 (2023) 10-19 / New Exact Solutions of the Drinfeld-Sokolov System by the Generalized Unified Method 11

that interact with moving solitons without deformations [2]. Morris and Kara [3] showed that the
interaction between the underlying symmetries and conservation laws of a partial differential equation
system results in double reductions of a class of Drinfeld–Sokolov–Wilson equations.

Due to its significant applications in fluid dynamics and optical fiber, many researchers have de-
veloped several methods to obtain exact and numerical solutions for the Drinfeld-Sokolov family.
Wazwaz [4] used the sine–cosine and tanh methods to have exact solutions for the Drinfeld-Sokolov
System. Arora and Kumar [5] applied the homotopy analysis method to obtain an approximation of
the analytic solution for the coupled Drinfeld’s–Sokolov–Wilson. He et al. [6] obtained exact solutions
for the classic Drinfeld-Sokolov-Wilson equation using the F-expansion method combined with the
exp-function method. Gómez [7] studied the generalized Drinfeld-Sokolov-Wilson equation to obtain
exact solutions by applying the improved tanh-coth method. Düşünceli [8] employed the improved
Bernoulli sub-equation function method (IBSEFM) to have exact solutions of the Drinfeld-Sokolov
equation. Zhang [9] solved the Drinfeld-Sokolov-Wilson equation using a variational approach. Günay
et al. [10] derived solitary wave solutions to the DSS using the generalized exponential rational function
method. Salim et al. [11] solved the Drinfeld-Sokolov-Wilson system numerically using the modified
Adomian decomposition method. Alam et al. [12] established some exact solutions of the Drinfeld-
Sokolov-Wilson equation with S(ξ)-expansion method.

Recently, fractional partial differential equations (FPDEs) have also been studied by many authors
because fractional order derivatives provide a powerful and enhanced model for expressing some real-
world phenomena. In particular, these fractional equations are encountered in modeling considerable
complex problems in networks, optics, and fluid dynamics. Jaradat et al. [13] investigated the an-
alytical solution of the time-fractional Drinfeld–Sokolov–Wilson system through the residual power
series method. Bhatter et al. [14] considered the fractionalized homotopy analysis transform method
to solve the fractional Drinfeld–Sokolov–Wilson model numerically. Gao et al. [15] found the solutions
of fractional Drinfeld–Sokolov–Wilson equation using amalgamations of Laplace transform technique
with q-homotopy analysis scheme, called q-homotopy analysis transform method (q-HATM) with
Atangana-Baleanu derivative. Taşbozan et al. [16] applied the Sine-Gordon expansion method to ob-
tain exact solutions and the perturbation-iteration algorithm to obtain approximate solutions for the
fractional Drinfeld-Sokolov-Wilson system. Wang and Wang [17] found the numerical solution for the
time-space fractional nonlinear Drinfeld–Sokolov–Wilson system using He’s variational method. Noor
et al. [18] used the homotopy perturbation transform method and Sumudu transform decomposition
method to solve approximately the time-fractional Drinfeld–Sokolov–Wilson system.

In this paper, we have applied the GUM [19] to derive exact solutions for the DSS. The GUM is an
enhanced version of the unified method [20,21] that many authors [22–36] have successfully applied to
solve different types of NPDEs. Compared with other methods, the GUM requires less computational
work with high reliability to solve NPDEs.

This paper is structured as follows: After describing briefly the GUM in section 2, the exact solutions of
the DSS are obtained by the GUM, and graphical illustrations of some selected solutions are displayed
in section 3. In section 4, the derivation of the exact solution sets obtained by some methods from
the solutions obtained by the GUM is discussed. Lastly, conclusive remarks are given in section 5.

2. The Generalized Unified Method

In this section, a brief explanation of the GUM for constructing wave solutions of NPDEs is provided.
In the first step, when applying the GUM, the NPDE is converted to a nonlinear ordinary differential
equation (NODE) by using wave transformation u(x, t) = U(η) such that η = x−νt+η0. The solution
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form of the obtained NODE is expressed by an ansatz statement as follows:

U(η) = a0 +
M∑

m=1

[
amϕm + bmϕ−m] (1)

After finding the balance value M in the ansatz statement, this statement and its derivatives are
substituted into NODE to obtain an algebraic polynomial system. Here, ϕ(η) is considered Riccati
differential equation in the form ϕ′(η) = ϕ2(η) − µ2 with ϕ′ = dϕ

dη and µ = (c + id) where c and d are
parameters. The polynomial system with powers ϕ provides to get the values of the coefficients in
Equality 1. Finally, wave solutions of the NPDE are obtained in closed form with free parameters A,
B, and C, using these coefficients and the solutions of the Riccati differential equation as given by:

ϕ(η) =



ϕ1 = ∓(c+id)
√

A2+(B+iC)2−A(c+id) cosh(2(c+id)(η+η0))
(B+iC)+A sinh(2(c+id)(η+η0))

ϕ2 = ∓(c+id)(−A+e∓2(c+id)(η+η0))
(A+e∓2(c+id)(η+η0))
ϕ3 = − 1

η+η0

where A ̸= 0, B, and C are real arbitrary parameters.

3. Application of The Generalized Unified Method to Drinfeld-Sokolov Sys-
tem

In this section, the GUM is applied to the DSS to obtain exact wave solutions by following the steps
as explained in Section 2. The DSS is given by

ut(x, t) + (v2(x, t))x = 0

vt(x, t) − αvxxx(x, t) + 3βux(x, t)v(x, t) + 3γu(x, t)vx(x, t) = 0
(2)

where α, β, and γ are real constants. Converting NPDE System 2 to ordinary differential equations
(ODEs) by using the wave transformation η = x − νt + η0 in u(x, t) and v(x, t) gives:

−νU ′(η) + 2V (η)V ′(η) = 0

−νV ′(η) − αV ′′′(η) + 3βU ′(η)V (η) + 3γU(η)V ′(η) = 0
(3)

Here, U(η) and V (η) denote the shape of the nonlinear wave with the wave variable η = x − νt + η0.

Integrating the first equation with respect to η yields the equality U(η) = V 2(η)
ν

in ODE System 3.
Substituting this equality into the second equation in ODE System 3, this second one can be rewritten
in the form as follows:

νV (η) + αV ′′(η) − 6β + 3γ

ν
V 3(η) = 0 (4)

The solutions of the DSS in Equation 2 can be written in the form with balance value M = 1, found
from the highest order V ′′ and the nonlinear term V 3. Therefore, the solutions in closed form for
Equation 2 are described as follows: 

V (η) = a0 + a1ϕ + b1
ϕ

U(η) = V 2(η)
ν

(5)

where a0, a1, and b1 are coefficients of ϕ, determined later. Substituting the ansatz statement in
Solution 5 and its derivatives into Equation 4 gives an algebraic polynomial equation system with
a0, a1, b1, and µ. Solving this polynomial equation system by using any symbolic computation program
yields the following sets for the unknowns a0, a1, b1, and µ. Substituting these values into Solution 5



Journal of New Theory 44 (2023) 10-19 / New Exact Solutions of the Drinfeld-Sokolov System by the Generalized Unified Method 13

with ϕ1 and ϕ2 gives rise to the following exact solutions to the DSS, respectively.

Case 1. For a0 = 0, a1 = ∓
√

2α
K , b1 = 0, and µ = ∓

√
ν

2α such that K = 6β+3γ
ν , the exact solutions

are as follows: 
u1 (x, t) = v2

1(x,t)
ν

v1 (x, t) = ∓

√
ν2

6β+3γ

(√
A2+(B+iC)2∓A cosh

(√
2ν
α

(x−νt+η0)
))

(B+iC)∓A sinh
(√

2ν
α

(x−νt+η0)
)

and 

u2 (x, t) = v2
2(x,t)

ν

v2 (x, y, t) =

√
ν2

6β+3γ

(
−A+e

∓
√

2ν
α (x−νt+η0)

)
(

A+e
∓
√

2ν
α (x−νt+η0)

)

Figure 1. 3D and 2D graphs of the solution v1 for the parameter A = 1, B = 0, and C = 0

Case 2. For a0 = 0, a1 = 0, b1 = ∓ν
√

1
2Kα , and µ = ∓

√
ν

2α such that K = 6β+3γ
ν ,the exact solutions

are as follows: 
u3 (x, t) = v2

3(x,t)
ν

v3 (x, t) = ∓

√
ν2

6β+3γ
(B+iC)∓A sinh

(√
2ν
α

(x−νt+η0)
)

(√
A2+(B+iC)2∓A cosh

(√
2ν
α

(x−νt+η0)
))

and 

u4 (x, t) = v2
4(x,t)

ν

v4 (x, y, t) =

√
ν2

6β+3γ

(
A+e

∓
√

2c
α (x−νt+η0)

)
(

−A+e
∓
√

2ν
α (x−νt+η0)

)
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Figure 2. 3D and 2D graphs of real part for the solution v3 for the parameter A = 1, B = 1, and
C = 1

Case 3. For a0 = 0, a1 = ν
2Kb1

, b1 = ∓ν
√

1
8Kα , and µ = ∓ b1

ν

√
−2νK such that K = 6β+3γ

ν , the exact
solutions are as follows:

u5 (x, t) = v2
5(x,t)

ν

v5(x, t) = ∓
√

ν2

−12β−6γ

 (B+iC)∓A sinh
(√

−ν
α

(x−νt+η0)
)

(√
A2+(B+iC)2∓A cosh

(√
−ν
α

(x−νt+η0)
)) +

(√
A2+(B+iC)2∓A cosh

(√
−ν
α

(x−νt+η0)
))

(B+iC)∓A sinh
(√

−ν
α

(x−νt+η0)
) 

and 
u6 (x, t) = v2

6(x,t)
ν

v6(x, t) = ∓
√

ν2

−12β−6γ

(
A+e

∓
√

−ν
α

(x−νt+η0)

−A+e
∓
√

−ν
α

(x−νt+η0)
+ −A+e

∓
√

−ν
α

(x−νt+η0)

A+e
∓
√

−ν
α

(x−νt+η0)
)

)

Figure 3. 3D and 2D graphs of the real part for the solution v5 for the parameter choices A = 1,
B = 1, and C = 0
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Figure 4. 3D and 2D graphs of the imaginary part for the solution v5 for the parameter choices
A = 1, B = 1, and C = 0

Case 4. For a0 = 0, a1 = ν
4Kb1

, b1 = ∓ν
√

1
32Kα , and µ = ∓2b1

ν

√
νK such that K = 6β+3γ

ν , the exact
solutions are as follows:

u7 (x, t) = v2
7(x,t)

ν

v7(x, t) = ∓ ν

2
√

6β+3γ

(
(B+iC)∓A sinh(

√
ν

2α
(x−νt+η0))(√

A2+(B+iC)2∓A cosh(
√

ν
2α

(x−νt+η0))
) +

(√
A2+(B+iC)2∓A cosh(

√
ν

2α
(x−νt+η0))

)
(B+iC)∓A sinh(

√
ν

2α
(x−νt+η0))

)
and 

u8 (x, t) = v2
8(x,t)

ν

v8(x, y, t) = ∓ ν

2
√

6β+3γ

(
A+e

∓
√

ν
2α

(x−νt+η0)

−A+e
∓

√
ν

2α
(x−νt+η0)

+ −A+e
∓

√
ν

2α
(x−νt+η0)

A+e
∓

√
ν

2α
(x−νt+η0)

)
)

Figure 5. 3D and 2D graphs of imaginary part for the solution v7 for the parameter choices A = 1,
B = 1, and C = 0

The 3D and 2D graphs of the solutions v1, v3, v5, and v7 are shown as in Figures 1-5 for the parameters
ν = 2, α = 1, β = 1, and γ = 1 on the intervals −10 < x < 10 and −10 < t < 10. From these figures,
it is observed that the solutions obtained by the GUM display a wide variety of characteristics,
represented by hyperbolic and trigonometric functions. 2D graphs of the solutions are also plotted for
x = 0 to follow properly the characteristics of the solutions. The solutions in different shapes can be
obtained by using free parameters for the corresponding physical problems.
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4. Results and Discussion

We have obtained more general forms of exact solutions for the Drinfeld-Sokolov System by using the
GUM in Section 3. In this section, we show more concretely how to derive solutions from some other
methods from these solutions, considering some of the above solution sets.

The first group of hyperbolic and trigonometric solutions of the unified method can be obtained by
taking B = 0 and C = 0, respectively, depending on the wave velocity in {u1, v1} as follows:

u1,1 (x, t) = v2
1(x,t)

ν

v1,1 (x, t) = ∓

√
ν2

6β+3γ

(√
A2+B2∓A cosh

(√
2ν
α

(x−νt+η0)
))

(B∓A sinh
(√

2ν
α

(x−νt+η0)
)

and 
u1,2 (x, t) = v2

1(x,t)
ν

v1,2 (x, t) = ∓

√
ν2

6β+3γ

(√
A2−C2∓A cosh

(√
2ν
α

(x−νt+η0)
))

iC∓A sinh
(√

2ν
α

(x−νt+η0)
)

In addition, the solution sets obtained by the tanh method can be derived by taking B = 0 and C = 0
with the identities cosh(2x) = 2 cosh2(x) − 1 = 2 sinh2(x) + 1 and sinh(2x) = 2 sinh(x) cosh(x) as
follows: 

u1,3 (x, t) = v2
1(x,t)

ν

v1,3 (x, t) = ∓

√
ν2

6β+3γ

(
A∓A cosh

(√
2ν
α

(x−νt+η0)
))

A sinh
(√

2ν
α

(x−νt+η0)
)

Similarly, we can also obtain the second group of hyperbolic and trigonometric solutions of the unified
method depending on the wave velocity after some simplification in {u2, v2}.

u21 (x, t) = v2
2(x,t)

ν

v21 (x, y, t) =
√

ν2

6β+3γ −
2A

√
ν2

6β+3γ(
A+e

∓
√

2ν
α (x−νt+η0)

)
In the studies [20, 21], it is explained that the unified method gives many more solutions than the
family of the tanh method, the

(
G′

G

)
-expansion method, and the extended homogeneous balance

method. Therefore, it can be concluded that the GUM gives more general solution sets than these
methods.

The GUM, an enhanced version of the unified method, provides a more general solution structure for
the models in mathematical physics. Considering hyperbolic-trigonometric identities and the value
of µ in the case of a real number or pure imaginary number, the solutions obtained by the unified
method can be derived by GUM as above while setting B = 0 and C = 0, respectively. Further,
when µ is a complex number, solutions combining trigonometric-hyperbolic solution sets can also be
obtained. Moreover, performing the GUM as a new expansion method on a computer contributes to
a very simple, straightforward, effective, and accurate way to solve a wide range of NPDEs. Since a
more general closed solution form in a compact way is obtained by the GUM with free parameters,
we applied this method to solve the Drinfeld-Sokolov System.
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5. Conclusion

In this study, the GUM has been successfully applied to obtain solutions for the DSS. The main
contributions of this study are:

i. More general forms of exact solutions are obtained for DSS using the GUM. Some of the obtained
solutions have been visualized by plotting graphs to show how diverse characteristics the solutions
have.

ii. These obtained solutions can be more functional in explaining the physical characteristics of various
models arising in science and engineering.

iii. We have shown that the solution sets obtained by some other exact solution methods, including
the unified method, can be derived from the GUM.

iv. It is obvious that the GUM is quite simple to perform on any symbolic computation program and
gives reliable and straightforward results to find exact solutions for NPDEs.

v. Moreover, the results show that the GUM can be applied in future studies for NPDEs and fractional
NPDEs.
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Abstract − In this study, we propose a new distribution based on the Dinesh, Umesh, and Sanjay (DUS) 

transformation by using the Unit Exponentiated Half-Logistic (UEHL) distribution as the baseline 

distribution, a member of the family of proportional hazard rate models. Moreover, we study several 

properties, such as moments, skewness, kurtosis, stress-strength reliability, and likelihood ratio ordering. 

Further, we discuss the statistical inference on the parameters of the proposed distribution by the maximum 

likelihood estimation (MLE) method. Besides, we conduct a simulation based on the new distribution to 
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1. Introduction  

A variety of models exist in the literature for examining lifetime data. The Weibull distribution originated as 

an extension of the exponential distribution. The distribution is more flexible in shape than the exponential 

distribution. This property makes the Weibull distribution useful for lifetime modeling and modeling data from 
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obtain a new distribution family. Let 𝑓(𝑥) and 𝐹(𝑥) denote the probability density function (PDF) and 

cumulative distribution function (CDF) of the baseline distribution, respectively. Then, the PDF and CDF of 

the DUS family are given by  

𝑓𝐷𝑈𝑆(𝑥) =
𝑓(𝑥)𝑒𝐹(𝑥)

𝑒 − 1
,    𝑥 ∈ 𝐷 (1) 

and 

𝐹𝐷𝑈𝑆(𝑥) =
𝑒𝐹(𝑥) − 1

𝑒 − 1
 (2) 

respectively. In Equation (1), 𝐷 is the domain of the baseline distribution. As observed from Equations (1) and 

(2) that the DUS family does not contain any new parameters in addition to those used in the baseline 

distribution. Hence, the DUS family results in a parsimonious distribution in terms of computation and 

interpretation. 

There exist several studies in the literature where the DUS transformation is used. Kumar et al. [14] applied 

the DUS transformation to an exponential CDF. Deepthi and Chacko [15] proposed the DUS-Lomax 

distribution, considering the Lomax distribution as the baseline distribution for the DUS transformation. Kavya 

and Manoharan [16] obtained the DUS-Weibull distribution with the same approach. Maurya et al. [17] 

proposed a generalization of the DUS transformation and studied the exponential baseline in the proposed 

method. Karakaya et al. [18] considered the DUS transformation with the Kumaraswamy distribution and 

investigated the properties of the distribution.  

The performance of the UEHL distribution can be improved by applying the DUS transformation to the CDF 

of the UEHL distribution. In this paper, we use the DUS transformation to the UEHL distribution to enhance 

distribution in the scope of modeling proportional data.  

The rest of the paper is organized as follows: Section 2 introduces the UEHL distribution with DUS 

transformation and obtains the survival and hazard rate functions. Section 3 discusses some analytical 

characteristics, such as the moments, quantile function, stress-strength reliability, likelihood ratio ordering, 

and the maximum likelihood estimation (MLE) of the method. Section 4 performs a simulation study to 

validate the performance of the maximum likelihood estimates of the distribution. Section 5 provides a 

numerical example to illustrate the performance of the proposed distribution in modeling the real data. The 

last section concludes the paper. 

2. DUS-UEHL Distribution 

Recently, the UEHL distribution [9] has been proposed as a special case of omega distribution [8], a member 

of the class of proportional hazard rate models. The distribution corresponds to the transformation 𝑍 = 𝑒−𝑋 

where 𝑋 has the exponentiated half-logistic distribution. The UEHL distribution has many applications in 

reliability theory through exponentiated half-logistic distribution [10, 19, 20]. This section applies the DUS 

transformation to the UEHL distribution to introduce a new class of distributions. The PDF and CDF of the 

UEHL distribution are given as follows, respectively: 

𝑓𝑈𝐸𝐻𝐿(𝑥) = 2𝜆𝜃𝑥𝜃−1
(1 − 𝑥𝜃)

𝜆−1

(1 + 𝑥𝜃)𝜆+1
,    0 < 𝑥 < 1 (3) 

and 

𝐹𝑈𝐸𝐻𝐿(𝑥) = 1 − (
1 − 𝑥𝜃

1 + 𝑥𝜃
)

𝜆

,    0 < 𝑥 < 1 (4) 
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where 𝜃 > 0 and 𝜆 > 0 are the scale and shape parameters of the distribution, respectively. By applying the 

transformations given in Equations (1) and (2) to Equations (3) and (4), the PDF and CDF of the new 

distribution are obtained as follows, respectively: 

𝑓𝐷−𝑈𝐸𝐻𝐿(𝑥) =
1

𝑒 − 1
2𝜆𝜃𝑥𝜃−1

(1 − 𝑥𝜃)
𝜆−1

(1 + 𝑥𝜃)𝜆+1
𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆

 
(5) 

and  

𝐹𝐷−𝑈𝐸𝐻𝐿(𝑥) =
1

𝑒 − 1
(𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆

− 1) (6) 

The random variable 𝑋 with the CDF in Equation (6) is said to follow the two-parameter DUS-UEHL 

distribution and is denoted by 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆). Considering the derivative of PDF in Equation 5, we obtain 

𝑓′𝐷−𝑈𝐸𝐻𝐿(𝑥) =
2𝜆𝜃𝑥𝜃 − 2(−2𝜆𝜃𝑥𝜃 + (𝜃 + 1)𝑥2𝜃 + 𝜃 − 1) (

2
𝑥𝜃 + 1

− 1)
𝜆

(𝑥2𝜃 − 1)2
 

which has the critical points 𝑥1,2 = (
(𝜆𝜃±√𝜆2𝜃2−𝜃2+1)

(𝜃+1)
)

1 𝜃⁄

 and the extreme points 0 and 1. Given 𝜃 > 1, this 

indicates that the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution is unimodal with the unique mode at 𝑥1 or 𝑥2 depending on the 

scale and shape parameters of the distribution. Moreover, the PDF can be an increasing, decreasing, or U-

shaped function of 𝑥 depending on the values of the PDF at the extreme points.  

Figure 1 shows the PDF of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for various values of the parameters 𝜃 and 𝜆. 

According to Figure 1, the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution can take different shapes, including unimodal, 

increasing, decreasing, and U-shaped functions. 

 

 
Figure 1. PDF plots of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for various values of the parameters 𝜃 and 𝜆 
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The survival function and the hazard rate functions of the 𝐷-𝑈𝐸𝐻𝐿 distribution are provided as follows, 

respectively: 

𝑆𝐷−𝑈𝐸𝐻𝐿(𝑥) =
𝑒 − 𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆

𝑒 − 1
 

(7) 

and 

ℎ𝐷−𝑈𝐸𝐻𝐿(𝑥) =

2𝜆𝜃𝑥𝜃−1
(1 − 𝑥𝜃)

𝜆−1

(1 + 𝑥𝜃)𝜆+1 𝑒
1−(

1−𝑥𝜃

1+𝑥𝜃)

𝜆

𝑒 − 𝑒
1−(

1−𝑥𝜃

1+𝑥𝜃)

𝜆  
(8) 

Figure 2 manifests the hazard rate function for selected values of the parameters 𝜃 and 𝜆. According to Figure 

2, the hazard function of 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) is an increasing function. 

 
Figure 2. Hazard rate function plots of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for various values of the parameters 𝜃 

and 𝜆 

3. Some Analytical Characteristics of the 𝑫-𝑼𝑬𝑯𝑳(𝜽, 𝝀) Distribution 

This section discusses some statistical characteristics, including the moments, quantile function, stress-strength 

reliability, likelihood ratio ordering, and MLE of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution. 

3.1.  Moments 

The moments are useful for understanding the various characteristics of a statistical distribution. In this section, 

we consider the moments of a 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) random variable. Let 𝑋 be a 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) random variable 

with PDF given by Equation (5). Then, for 𝑟 ∈ {1,2,3, ⋯ }, the 𝑟-th raw moment of 𝑋 is 

𝐸(𝑋𝑟) =
2𝜆𝑒

𝑒 − 1
∫ 𝑥𝑟 (𝜃𝑥𝜃−1

(1 − 𝑥𝜃)
𝜆−1

(1 + 𝑥𝜃)𝜆+1
) 𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆

𝑑𝑥

1

0

 

By substituting 𝑣 = 𝑥𝜃 , the expectation is written as  

𝐸(𝑋𝑟) =
2𝜆𝑒

𝑒 − 1
∫ 𝑣𝑟/𝜃(1 − 𝑣)𝜆−1(1 + 𝑣)−𝜆−1𝑒−(

1−𝑣
1+𝑣

)
𝜆

𝑑𝑣

1

0

 

By using the Taylor expansion 𝑒𝑥 = ∑
𝑥𝑗

𝑗!

∞
𝑗=0 , 
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𝐸(𝑋𝑟) =
2𝜆𝑒

𝑒 − 1
∑ [

(−1)𝑖

𝑖!
 ∫(𝑣𝑟/𝜃(1 − 𝑣)𝜆(1+𝑖)−1(1 + 𝑣)−𝜆(1+𝑖)−1)𝑑𝑣

1

0

]

∞

𝑖=0

 

Using Equation 3.197.3 provided in [21], i.e., ∫ 𝑥𝜆−1(1 − 𝑥)𝜇−1(1 − 𝛽𝑥)−𝜈𝑑𝑥
1

0
= 𝐵(𝜆, 𝜇) 𝐹12

 (𝜈, 𝜆; 𝜆 + 𝜇; 𝛽) 

such that Re 𝜆 > 0, Re 𝜇 > 0, and |𝛽| < 1, the 𝑟-th raw moment is obtained as 

𝐸(𝑋𝑟) =
2𝜆𝑒

𝑒 − 1
∑

(−1)𝑖

𝑖!
𝐵 (1 +

𝑟

𝜃
, 𝜆(1 + 𝑖))

∞

𝑖=0

𝐹12
 (𝜆(1 + 𝑖) + 1,1 +

𝑟

𝜃
; 1 +

𝑟

𝜃
+ 𝜆(1 + 𝑖); −1) 

where 

𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡
1

0

  and   𝐹12
 (𝑎, 𝑏; 𝑐; 𝑧) = ∑

(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

𝑧𝑛

𝑛!

∞

n=0

 

are the beta and Gauss hypergeometric functions, respectively, and (𝑎)𝑛 =  𝑎(𝑎 +  1) ⋯ (𝑎 +  𝑛 +  1). 

Table 1 shows the mean, variance, skewness, and kurtosis of 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for selected pairs of 

(𝜃, 𝜆). The results indicate that the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) has various shapes depending on the values of the 

distribution parameters. 

Table 1. Mean, variance, skewness, and kurtosis of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution 

𝜃 𝜆 Mean Variance Skewness Kurtosis 
0.7 0.7 0.4893 0.1057 0.0478 1.6247 

 1.5 0.2600 0.0557 0.9766 3.0931 
 3 0.1179 0.0168 1.8289 6.8839 

1.5 0.7 0.6574 0.0725 -0.5416 2.1708 
 1.5 0.4688 0.0573 0.1228 2.1052 
 3 0.3153 0.0322 0.5336 2.7771 

3 0.7 0.7874 0.0374 -1.0363 3.4153 
 1.5 0.6571 0.0369 -0.4670 2.5985 
 3 0.5355 0.0285 -0.1805 2.5863 

3.2.  Quantile Function 

The quantile function of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution is given by 

𝑄𝐷−𝑈𝐸𝐻𝐿(𝑢; 𝜃, 𝜆) = 𝐹−1(𝑢; 𝜃, 𝜆) = [2(1 + (1 − log(1 + 𝑢(𝑒 − 1))) 1/𝜆)
−1

− 1]
1/𝜃

 (9) 

Based on Equation (9), the median of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution is given by the following function, a 

function of the parameters 𝜃 and 𝜆: 

𝑄𝐷−𝑈𝐸𝐻𝐿(0.5; 𝜃, 𝜆) = [2(1 + (1 − log2 − log (1 + 𝑒)))1 𝜆⁄ )
−1

− 1]
1/𝜃

 (10) 

The median values of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for selected parameter values are provided in Table 2. 

Table 2. Median of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution 

  𝜃 0.1 0.5 1 2.5 5 10 

  0.1 0.99874892 0.05466397 0.00033596 0.00000007 < 10−8 < 10−8 

  0.5 0.99974966 0.55916532 0.20195643 0.03655548 0.00930982 0.00233835 

𝜆 1 0.99987482 0.74777357 0.44939563 0.19119487 0.09648743 0.04835653 

  2.5 0.99994993 0.89024193 0.72619213 0.51592966 0.39245358 0.29770219 

  5 0.99997496 0.94352633 0.85216907 0.71828244 0.62646116 0.54562093 

  10 0.99998748 0.97135283 0.92313004 0.84751545 0.79149299 0.73866158 
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3.3.  Stress-Strength Reliability 

Given the stress and strength random variables, 𝑌 and 𝑋, the stress-strength reliability is defined as 𝑅 =

𝑃(𝑌 < 𝑋). In this section, we compute the stress-strength reliability for the model 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆). 

Proposition 1. Let 𝑌 and 𝑋 be independent stress and strength random variables following 𝐷-𝑈𝐸𝐻𝐿 

distribution with parameters (𝜃, 𝜆1) and (𝜃, 𝜆2), respectively. Then, the stress-strength reliability is 

𝑅 =
𝑒2

(𝑒 − 1)2
∑

(−1)𝑗

𝑗!
𝛾 (

𝜆1

𝜆2
𝑗 + 1,1) −

1

𝑒 − 1

∞

𝑗=0

 (11) 

where 𝜆1 > 0, 𝜆2 > 0, and 𝛾(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑥

𝑎
𝑒−𝑡  𝑑𝑡 is the incomplete gamma function. 

PROOF. 

By the definition, the stress-strength reliability can be written as 

𝑅 = ∫ 𝑃(𝑌 < 𝑋 ∣ 𝑋 = 𝑥)𝑓𝑥(𝑥)𝑑𝑥

1

0

 

= ∫
1

𝑒 − 1

1

0

(𝑒
1−(

1−𝑥𝜃

1+𝑥𝜃)

𝜆1

− 1) (
1

𝑒 − 1
2𝜆2𝜃𝑥𝜃−1

(1 − 𝑥𝜃)
𝜆2−1

(1 + 𝑥𝜃)𝜆2+1
𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆2

)  𝑑𝑥 

By substituting 𝑡 = (
1−𝑥𝜃

1+𝑥𝜃
)

𝜆1

 and applying the Taylor expansion of 𝑒𝑥 , 

𝑅 = 
𝑒

(𝑒 − 1)2
∫ (𝑒−𝑡𝜆1/𝜆2+1 − 1) 𝑒−𝑡

1

0

 𝑑𝑡 

 = 
𝑒2

(𝑒 − 1)2
∫ (∑

(−1)𝑗𝑡𝜆1𝑗/𝜆2

𝑗!

∞

𝑗=0

−
1

𝑒
) 𝑒−𝑡

1

0

 𝑑𝑡 

 = 
𝑒2

(𝑒 − 1)2
∑ {

(−1)𝑗

𝑗!
(∫ 𝑡𝜆1𝑗/𝜆2𝑒−𝑡  𝑑𝑡

1

0

)}

∞

𝑗=0

−
1

𝑒 − 1
 

 = 
𝑒2

(𝑒 − 1)2
∑ {

(−1)𝑗

𝑗!
𝛾 (

𝜆1

𝜆2
𝑗 + 1,1)}

∞

𝑗=0

−
1

𝑒 − 1
 

◻ 

3.4.  Likelihood Ratio Ordering 

Let 𝑋 and 𝑌 be random variables with PDFs 𝑓𝑋(⋅) and 𝑓𝑌(⋅), respectively. If 
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 is non-decreasing in 𝑥, then 

it is said to be the random variable 𝑋 is smaller than 𝑌 in likelihood ratio ordering and denoted by 𝑋 ≤𝑙𝑟 𝑌. 

Proposition 2 gives the property of likelihood ratio ordering for the 𝐷-𝑈𝐸𝐻𝐿 distribution. 

Proposition 2. Let 𝑋 ∼ 𝐷-𝑈𝐸𝐻𝐿(𝜃1, 𝜆1) and 𝑌 ∼ 𝐷-𝑈𝐸𝐻𝐿(𝜃2, 𝜆2). If 𝜃1 = 𝜃2, then 𝑋 ≤𝑙𝑟 𝑌. 
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PROOF.  

Let 𝜃1 = 𝜃2 = 𝜃. The ratio of the PDFs of 𝑋 and 𝑌 is given by 

𝑔(𝑥) =

2𝜆1𝜃𝑥𝜃−1
(1 − 𝑥𝜃)

𝜆1−1

(1 + 𝑥𝜃)𝜆1+1

2𝜆2𝜃𝑥𝜃−1 (1 − 𝑥𝜃)𝜆2−1

(1 + 𝑥𝜃)𝜆2+1

 

After simplifications, we obtain 𝑔′(𝑥) < 0, for 0 < 𝑥 < 1 and 𝜃 > 0. Hence, 𝑔(⋅) is a non-decreasing function 

of 𝑥, which completes the proof. 

3.5.  Maximum Likelihood Estimation 

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be an identically independent distributed sample from 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆). Then, the likelihood 

and log-likelihood functions are written as 

𝐿(𝜃, 𝜆) = ∏ (
1

𝑒 − 1
2𝜆𝜃𝑥𝑖

𝜃−1
(1 − 𝑥𝑖

𝜃)
𝜆−1

(1 + 𝑥𝑖
𝜃)

𝜆+1
𝑒

1−(
1−𝑥𝑖

𝜃

1+𝑥𝑖
𝜃)

𝜆

)

𝑛

𝑖=1

 (12) 

and 

ℓ(𝜃, 𝜆) = −𝑛 log(𝑒 − 1) + 𝑛(1 + log 2) + 𝑛 log 𝜆 + 𝑛 log 𝜃 + (𝜃 − 1) ∑ log(𝑥𝑖)

𝑛

𝑖=1

 

+(𝜆 − 1) ∑ log(1 − 𝑥𝑖
𝜃)

𝑛

𝑖=1

− (𝜆 + 1) ∑ log(1 + 𝑥𝑖
𝜃)

𝑛

𝑖=1

− ∑ (
1 − 𝑥𝑖

𝜃

1 + 𝑥𝑖
𝜃

)

𝜆𝑛

𝑖=1

 

(13) 

respectively. Differentiating the log-likelihood function with respect to the parameters, we get the log-

likelihood equations as 

𝜕ℓ(𝜃, 𝜆)

𝜕𝜃
=

𝑛

𝜃
+ ∑ log(𝑥𝑖)

𝑛

𝑖=1

− (𝜆 − 1) ∑
𝑥𝑖

𝜃 log 𝑥𝑖

1 − 𝑥𝑖
𝜃

𝑛

𝑖=1

+ (𝜆 + 1) ∑
𝑥𝑖

𝜃 log 𝑥𝑖

1 + 𝑥𝑖
𝜃

𝑛

𝑖=1

+ 2𝜃 ∑
𝑥𝑖

𝜃−1

(1 + 𝑥𝑖
𝜃)

2

𝑛

𝑖=1

= 0 (14) 

and 

𝜕ℓ(𝜃, 𝜆)

𝜕𝜆
=

𝑛

𝜆
+ ∑ log (

1 − 𝑥𝑖
𝜃

1 + 𝑥𝑖
𝜃

)

𝑛

𝑖=1

− ∑ (
1 − 𝑥𝑖

𝜃

1 + 𝑥𝑖
𝜃

)

𝜆

log (
1 − 𝑥𝑖

𝜃

1 + 𝑥𝑖
𝜃

)

𝑛

𝑖=1

= 0 (15) 

Equations (14) and (15) do not have a closed-form solution. To solve these equations, some iterative methods 

can be employed. We apply the optim procedure in 𝑅 to obtain the solution of the equation system. 

4. Simulation Study 

In this section, a simulation study is carried out to examine the properties of the MLE, which we discussed in 

detail in Section 3. Table 3 shows the biases and mean squared errors (MSEs) of the parameter estimates with 

5000 replications for various values of the parameters (𝑛, 𝜃, 𝜆). According to the results in Table 3, the MLEs 

are asymptotically unbiased. Moreover, the bias and MSE values of the MLEs decrease to zero as the sample 

size increases as desired. 
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Table 3. Bias and MSEs of MLE estimators for selected parameter values 
   Bias  MSE  

𝜃 𝜆 𝑛 𝜃 𝜆̂ 𝜃 𝜆̂ 

2 2 50 0.06108 0.10841 0.09290 0.19997 

  100 0.02521 0.04550 0.04196 0.08155 

  200 0.01127 0.02281 0.01972 0.03706 

  300 0.00690 0.01386 0.01311 0.02379 

  500 0.00304 0.00752 0.00779 0.01394 

3 1.5 50 0.09989 0.06955 0.24153 0.09187 

  100 0.04119 0.02920 0.10856 0.03866 

  200 0.01851 0.01493 0.05089 0.01787 

  300 0.01147 0.00909 0.03392 0.01148 

  500 0.00511 0.00496 0.02015 0.00676 

1.5 0.8 50 0.06884 0.02793 0.09443 0.01843 

  100 0.02873 0.01179 0.04116 0.00817 

  200 0.01308 0.00629 0.01895 0.00389 

  300 0.00834 0.00381 0.01267 0.00250 

  500 0.00396 0.00216 0.00753 0.00148 

5. Real Data Application 

In this section, we investigate the flexibility performance of the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution with a real data 

application. For this purpose, we consider the reservoir data set obtained from the monthly water capacity of 

the Shasta Reservoir in California [22]. We compare the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution with well-known Weibull, 

Beta, Kumaraswamy, and UEHL distributions. The PDFs of the distributions used for comparison are given 

as follows: 

Weibull distribution 

𝑓𝑊(𝑥; 𝜃, 𝜆) =
𝜃

𝜆
(

𝑥

𝜆
)

𝜃−1

𝑒−(𝑥 𝜆⁄ )𝜃
,    𝜃, 𝜆 > 0 

Beta distribution 

𝑓𝐵(𝑥; 𝜃, 𝜆) =
1

𝐵(𝜃, 𝜆)
𝑥𝜃−1(1 − 𝑥)𝜆−1,    𝜃, 𝜆 > 0 

Kumaraswamy distribution 

𝑓𝐾𝑤(𝑥; 𝜃, 𝜆) = 𝜃𝜆𝑥𝜃−1(1 − 𝑥𝜃)
𝜆−1

,    𝜃, 𝜆 > 0 

We use the maximum likelihood method to estimate the unknown parameters of the considered distributions. 

We test the goodness of fits of the models with Kolmogorov-Smirnov test statistic (K-S (stat)) and associate 

𝑝-value (K-S (p-value)). We report the Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) to compare the proposed model with the other models. AIC and BIC are computed as 

AIC = 2𝑘 − 2ℓ(𝜃, 𝜆)    and    BIC = 𝑘 log 𝑛 − 2ℓ(𝜃, 𝜆) 

where 𝑘 is the number of parameters, 𝑛 is the number of observations, and ℓ is the maximum value of the 

likelihood function for the underlying distribution. 
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Table 4. Bias and MSEs of MLE estimators for selected parameter values 
 𝜃 𝜆 AIC BIC −2ℓ K-S (stat) K-S (p-value) 

Weibull 7.2987 0.7748 -20.5347 -18.5432 -24.5347 0.2220 0.2396 

Beta 7.3157 2.9099 -21.1238 -19.1324 -25.1238 0.2359 0.1834 

Kumaraswamy 6.3476 4.4894 -22.9494 -20.9580 -26.9494 0.2209 0.2447 

UEHL 6.9010 2.8883 -21.2699 -19.2784 -25.2699 0.2254 0.2248 

D-UEHL 6.4316 3.2682 -23.0543 -21.0629 -27.0543 0.2046 0.3267 

Table 4 shows the parameter estimates, AIC values, BIC values, and −2ℓ values together with K-S (stat) and 

K-S (𝑝-value) for all models fitted to the reservoir data set. The K-S test results indicate that the compared 

distributions are appropriate to fit the underlying data. From Table 4, it can be observed that the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution yields the lowest AIC and BIC values, followed by the Kumaraswamy distribution. Hence, we 

conclude that the 𝐷-𝑈𝐸𝐻𝐿(𝜃, 𝜆) model has the best fit for the reservoir data set among the compared 

distributions in the study. Moreover, Figure 3 manifests the empirical and fitted curves based on the reservoir 

data set for illustrative purposes. 

 
Figure 3: Empirical and fitted distribution functions based on the reservoir data set 

6. Conclusion  

In this study, we introduce 𝐷-𝑈𝐸𝐻𝐿 distribution for record data based on DUS transformation on unit 

exponentiated half-logistic distribution CDF. We obtain various analytical characteristics, including moments, 

quantile function, stress-strength reliability, and likelihood ratio ordering of the proposed distribution. We 

perform a simulation study that illustrates the properties of the maximum likelihood estimates of the 𝐷-𝑈𝐸𝐻𝐿 

distribution. The real data analysis on a record data shows that the 𝐷-𝑈𝐸𝐻𝐿 model performs better on the data 

than the other well-known models in terms of AIC and BIC criteria. 

The findings of this article can be extended by applying the DUS transform to the omega distribution. In this 

context, the effect of the extra support parameter of the omega distribution with the DUS transformation is a 

topic for further research. 
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Article Info

Received: 17 Jul 2023

Accepted: 21 Sep 2023

Published: 30 Sep 2023

doi:10.53570/jnt.1328605

Research Article

Abstract − In this paper, we define a one-parameter generalization of Leonardo dual
quaternions, namely k−generalized Leonardo-like dual quaternions. We introduce the prop-
erties of k-generalized Leonardo-like dual quaternions, including relations with Leonardo, Fi-
bonacci, and Lucas dual quaternions. We investigate their characteristic relations, involv-
ing the Binet-like formula, the generating function, the summation formula, Catalan-like,
Cassini-like, d’Ocagne-like, Tagiuri-like, and Hornsberger-like identities. The crucial part of
the present paper is that one can reduce the calculations of Leonardo-like dual quaternions
by considering k. For k = 1, these results are generalizations of the ones for ordered Leonardo
quadruple numbers. Finally, we discuss the need for further research.
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1. Introduction

The well-known Fibonacci sequence {Fn}n≥2 and the Lucas sequence {Ln}n≥2 are defined recursively
by Fn = Fn−1 + Fn−2, and Ln = Ln−1 + Ln−2 with initial conditions F0 = 0, F1 = 1, and L0 = 2,
L1 = 1, respectively [1]. The Binet’s formulas of the Fibonacci and Lucas sequences are as follows,
respectively:

Fn =
αn − βn

α − β
(1)

and
Ln = αn + βn

where α = 1+
√

5
2 and β = 1−

√
5

2 are roots of characteristic equation x2 − x − 1 = 0 [1]. Many
generalizations of the Fibonacci and Lucas sequences have been studied by several researchers. In
this study, we consider the Leonardo sequence. The Leonardo sequence {Len}n≥2 is defined non-
homogeneous recursively by

Len = Len−1 + Len−2 + 1

or
Len+1 = 2Len − Len−2
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with initial conditions Le0 = Le1 = 1 and Le2 = 3 [2]. The Binet-like formula of the Leonardo
sequence is

Len = 2

αn+1 − βn+1

α − β

− 1

There exist many identities between Fibonacci, Lucas, and Leonardo numbers. For n ≥ 0, the funda-
mental relationships between the Fibonacci, Lucas, and Leonardo sequences are [2]:

Len = 2Fn+1 − 1

Len = 2

Ln + Ln+2

5

− 1

Len+3 =
Ln+1 + Ln+7

5 − 1

and
Len = Ln+2 − Fn+2 − 1

Although the Fibonacci, Lucas, and Leonardo sequences are closely related, they exhibit distinct
characteristic properties. Several different properties and generalizations of the Leonardo sequence
were previously studied by various researchers [3–15]. Recently, a one-parameter generalized Leonardo
sequence has been defined as non-homogeneous recursively by

Le(k)
n = Le(k)

n−1 + Le(k)
n−2 + k, n ≥ 2 (2)

with the initial conditions Le(k)
0 = Le(k)

1 = 1. Here, k is a fixed positive integer [4]. The Binet-like
formula of the k−generalized Leonardo sequence is

Le(k)
n = (k + 1)

αn+1 − βn+1

α − β

− k

The k−generalized Leonardo sequence is related to the Fibonacci and Lucas sequences. For n ≥ 0,
the fundamental relationships between Fibonacci, Lucas, and the k−generalized Leonardo sequences
are [4]:

Le(k)
n = (k + 1)Fn+1 − k (3)

and
Le(k)

n = (k + 1) (Ln − Fn−1) − k

The summation formulas of the k−generalized Leonardo numbers are [4]:
n∑

s=0
Le(k)

s = Le(k)
n+2 − k (n + 1) − 1 (4)

n∑
s=0

Le(k)
2s = Le(k)

2n+1 − kn (5)

and
n∑

s=0
Le(k)

2s+1 = Le(k)
2n+2 − k(n + 2) (6)

The k−generalized Leonardo sequence is the key concept of the present paper. For k = 1, this sequence
is the classical Leonardo sequence, i.e., Le(1)

n = Len. In this case, we may omit the superscript (1) in
the notation.

There are several ways to define new special sequences but the most popular method is to define a
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sequence with different hypercomplex number components. Horadam [16] defined the real quaternions
with the classic Fibonacci sequence {QFn}n≥2 and the classic Lucas sequence {QLn}n≥2 recursively
by

QFn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3

and
QLn = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3

where Fn and Ln are the n-th classic Fibonacci and Lucas numbers, respectively. Here, the quater-
nionic units {e1, e2, e3} satisfy the following multiplication rules:

e1
2 = e2

2 = e3
2 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, and e3e1 = −e1e3 = e2

In general, a real quaternion q is of the form q = a+e1b+e2c+e3d where a, b, c, d ∈ R. The quaternions
form a four-dimensional associative and non-commutative algebra over the real numbers. For a deeper
discussion of the quaternions, see [17–19]. Changing conditions in the multiplication rules produces
different type of quaternions. In this study, we consider the dual quaternions. The dual quaternionic
units obey the following multiplication rules:

e1
2 = e2

2 = e3
2 = 0 and e1e2 = −e2e1 = e2e3 = −e3e2 = e3e1 = −e1e3 = 0 (7)

Yüce et al. [20] defined the dual quaternions with the Fibonacci sequence {F̂n}n≥2 and the Lucas
sequence {L̂n}n≥2 recursively by

F̂n = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3

and
L̂n = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3

where Fn and Ln are the n-th classic Fibonacci and Lucas numbers, respectively. Here, the non-real
dual quaternionic units {e1, e2, e3} satisfy Equation 7. For a deeper discussion of the dual quaternions,
see [21–27]. Nurkan et al. [13] defined the dual quaternions with the classic Leonardo sequence
{L̂en}n≥2 recursively by

L̂en = Len + Len+1e1 + Len+2e2 + Len+3e3

where Len is the n-th classic Leonardo number.

Considering all these details, a natural question is whether the paper [13] can be generalized. In this
study, we aim to determine the dual quaternions with the k−generalized Leonardo sequence. We
consider the coefficients of the dual quaternions as the k−generalized Leonardo sequence.

2. The k−Generalized Leonardo-like Dual Quaternion Sequence

This section introduces the dual quaternions with one parameter generalized Leonardo sequence and
investigates their characteristic properties.

Definition 2.1. The n-th k−generalized Leonardo-like dual quaternion is defined by

L̂e(k)
n = Le(k)

n + Le(k)
n+1 e1 + Le(k)

n+2 e2 + Le(k)
n+3 e3 (8)

where Le(k)
n is the n-th k−generalized Leonardo number, k is a fixed positive integer, and {e1, e2, e3} are

the set of all the dual quaternionic units. The k−generalized Leonardo-like dual quaternion sequence
is denoted by

{
L̂e(k)

n

}
n≥2

.

Note that, if k = 1, the generalized Leonardo-like dual quaternion sequence
{

L̂e(k)
n

}
n≥2

is the Leonardo
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quadruple sequence. In this case, we may omit the superscript (1) in the notation.

Let L̂e(k)
n and L̂e(k)

m be two k−generalized Leonardo-like dual quaternions. The k−generalized Leonardo
number Le(k)

n is called scalar (real) part of L̂e(k)
n and denoted by S

L̂e(k)
n

and the vector

Le(k)
n+1 e1 + Le(k)

n+2 e2 + Le(k)
n+3 e3

is called the pure part of L̂e(k)
n and denoted by V

L̂e(k)
n

. The addition is defined component-wise as

L̂e(k)
n ± L̂e(k)

m =
(
Le(k)

n ± Le(k)
m

)
+
(
Le(k)

n+1 ± Le(k)
m+1

)
e1 +

(
Le(k)

n+2 ± Le(k)
m+2

)
e2 +

(
Le(k)

n+3 ± Le(k)
m+3

)
e3

whereas multiplication is defined by

L̂e(k)
n L̂e(k)

m =
(
Le(k)

n Le(k)
m

)
+
(

L̂e(k)
n L̂e(k)

m+1 + L̂e(k)
m L̂e(k)

n+1

)
e1 +

(
L̂e(k)

n L̂e(k)
m+2 + L̂e(k)

m L̂e(k)
n+2

)
e2

+
(

L̂e(k)
n L̂e(k)

m+3 + L̂e(k)
m L̂e(k)

n+3

)
e3

or
L̂e(k)

n L̂e(k)
m = S

L̂e(k)
n

S
L̂e(k)

m

+ S
L̂e(k)

n

V
L̂e(k)

m

+ S
L̂e(k)

m

V
L̂e(k)

n

The conjugate and norm of any k−generalized Leonardo-like dual quaternion L̂e(k)
n is given by

L̂e(k)
n = S

L̂e(k)
n

− V
L̂e(k)

n

= L̂e(k)
n − L̂e(k)

n+1e1 − L̂e(k)
n+2 e2 − L̂e(k)

n+3e3

and
||L̂e(k)

n || = L̂e(k)
n L̂e(k)

n =
(

L̂e(k)
n

)2
∈ R

respectively.

Theorem 2.2. The recurrence relation of the k−generalized Leonardo-like dual quaternion sequence
is

L̂e(k)
n = L̂e(k)

n−1 + L̂e(k)
n−2 + K̂, n ≥ 2

where K̂ = k (1 + e1 + e2 + e3) with initial conditions L̂e(k)
0 = 1 + e1 + (2 + k) e2 + (3 + 2k) e3 and

L̂e(k)
1 = 1 + (2 + k) e1 + (3 + 2k) e2 + (5 + 4k) e3.

Proof.
From Definition 2.1, it follows that

L̂e(k)
n−1 + L̂e(k)

n−2 + K̂ =
(
Le(k)

n−1 + Le(k)
n−2 + k

)
+
(
Le(k)

n + Le(k)
n−1 + k

)
e1 +

(
Le(k)

n+1 + Le(k)
n + k

)
e2

+
(
Le(k)

n+2 + Le(k)
n+1 + k

)
e3

By applying Equation 2, we complete the proof.

Throughout this paper, let K̂ = k (1 + e1 + e2 + e3).

Theorem 2.3. The other recurrence relation of
{

L̂e(k)
n

}
n≥2

is

L̂e(k)
n+1 = 2L̂e(k)

n − L̂e(k)
n−2

Proof.
By Theorem 2.2, the proof is straightforward.

Afterward, we state the Binet-like formula for the k−generalized Leonardo-like dual quaternion L̂e(k)
n .

Thus, we derive some well-known mathematical properties.
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Theorem 2.4. The Binet-like formula of the k−generalized Leonardo-like dual quaternion L̂e(k)
n is

L̂e(k)
n = (k + 1)

α∗αn+1 − β∗βn+1

α − β

− K̂ (9)

where α∗ = 1 + αe1 + α2e2 + α3e3 and β∗ = 1 + βe1 + β2e2 + β3e3.

Proof.
By using Definition 2.1 and Equation 3,

L̂e(k)
n = Le(k)

n + Le(k)
n+1 e1 + Le(k)

n+2 e2 + Le(k)
n+3 e3

= (k + 1) (Fn+1 + Fn+2 e1 + Fn+3 e2 + Fn+4 e3) − k (1 + e1 + e2 + e3)

Applying the Binet’s formula of the Fibonacci sequence in Equation 1 and then taking α∗ = 1 + αe1 +
α2e2 + α3e3, β∗ = 1 + βe1 + β2e2 + β3e3, and K̂ = k (1 + e1 + e2 + e3),

L̂e(k)
n = (k + 1)

αn+1 (1 + αe1 + α2e2 + α3e3
)

− βn+1 (1 + βe1 + β2e2 + β3e3
)

α − β

− K̂

= (k + 1)

α∗αn+1 − β∗βn+1

α − β

− K̂

is obtained.

Here, we state some relations between k−generalized Leonardo-like dual quaternions, Fibonacci dual
quaternions, Lucas dual quaternions, and Fibonacci and Lucas numbers.

Theorem 2.5. Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual quaternion, F̂n be the n-th

Fibonacci dual quaternion, and L̂n be the n-th Lucas dual quaternion. For positive integers n, m, r,
and t with n ≥ r and n ≥ m, the following relations hold:

i. L̂e(k)
n = (k + 1)F̂n+1 − K̂

ii. L̂e(k)
n = (k + 1)(L̂n − F̂n−1) − K̂

iii. L̂e(k)
n+r + L̂e(k)

n−r = (k + 1)

LrF̂n+1 − 2K̂, r = 2t

FrL̂n+1 − 2K̂, r = 2t + 1

iv. L̂e(k)
n+r − L̂e(k)

n−r = (k + 1)

FrL̂n+1, r = 2t

LrF̂n+1, r = 2t + 1

v. L̂e(k)
n+m + (−1)mL̂e(k)

n−m = LmL̂e(k)
n + K̂(Lm − (−1)m − 1)

vi. L̂e(k)
n+m − (−1)mL̂e(k)

n−m = (k + 1) FmL̂n+1 − K̂ (1 − (−1)m)

Proof.
Let L̂e(k)

n be the n-th k−generalized Leonardo-like dual quaternion, F̂n be the n-th Fibonacci dual
quaternion, and L̂n be the n-th Lucas dual quaternion.

i. According to Equation 3,

L̂e(k)
n = ((k + 1) Fn+1 − k) + ((k + 1) Fn+2 − k) e1 + ((k + 1) Fn+3 − k) e2 + ((k + 1) Fn+4 − k) e3

= (k + 1) F̂n+1 − K̂
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iii.

L̂e(k)
n+r + L̂e(k)

n−r =
(
Le(k)

n+r + Le(k)
n−r

)
+
(
Le(k)

n+1+r + Le(k)
n+1−r

)
e1 +

(
Le(k)

n+2+r + Le(k)
n+2−r

)
e2

+
(
Le(k)

n+3+r + Le(k)
n+3−r

)
e3

Considering Equation 3,

L̂e(k)
n+r + L̂e(k)

n−r = (k + 1) ((Fn+1+r + Fn+1−r) + (Fn+2+r + Fn+2−r) e1 + (Fn+3+r + Fn+3−r) e2

+ (Fn+4+r + Fn+4−r) e3) − 2K̂

By using the definition of Fibonacci dual quaternion and the following relation of Fibonacci numbers
(see [1])

Fn+r + Fn−r =
{

FnLr, r = 2t

FrLn, r = 2t + 1

we complete the proof.

v. From Theorem 2.5(i) and the Binet’s formulas of Fibonacci and Lucas numbers,

L̂e(k)
n+m + (−1)mL̂e(k)

n−m =
(
(k + 1) F̂n+m+1 − K̂

)
+ (−1)m

(
(k + 1) F̂n−m+1 − K̂

)
= (k + 1) F̂n+1Lm + K̂ (−1 − (−1)m)

=
(
(k + 1) F̂n+1 − K̂

)
Lm + K̂(Lm − (−1)m − 1)

= LmL̂e(k)
n + K̂(Lm − (−1)m − 1)

Corollary 2.6. Using the identities iii and iv presented in Theorem 2.5, the following basic identities
are obtained:

i. L̂e(k)
n+1 + L̂e(k)

n−1 = (k + 1)L̂n+1 − 2K̂

ii. L̂e(k)
n+1 − L̂e(k)

n−1 = (k + 1)F̂n+1

iii. L̂e(k)
n+2 + L̂e(k)

n−2 = 3(k + 1)F̂n+1 − 2K̂

iv. L̂e(k)
n+2 − L̂e(k)

n−2 = (k + 1)L̂n+1

Theorem 2.7. Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual quaternion. Then, the following

relations hold:

i. L̂e(k)
n − L̂e(k)

n+1 e1 − L̂e(k)
n+2 e2 − L̂e(k)

n+3 e3 = Le(k)
n

ii. L̂e(k)
n + L̂e(k)

n = 2Le(k)
n

iii.
(

L̂e(k)
n

)2
= 2Le(k)

n L̂e(k)
n −

(
Le(k)

n

)2

iv. L̂e(k)
n L̂e(k)

n + L̂e(k)
n+1L̂e(k)

n+1 = (k + 1) Le(k)
2n+2 − 2k Le(k)

n+2 + k (k + 1)

v. L̂e(k)
n+1L̂e(k)

n+1 − L̂e(k)
n−1L̂e(k)

n−1 = (k + 1) Le(k)
2n+1 − 2k Le(k)

n − k (k − 1)

Proof.
Let L̂e(k)

n be the n-th k−generalized Leonardo-like dual quaternion.
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iv. Using Equation 3 and the Binet’s formula of the Fibonacci sequence in Equation 1,

L̂e(k)
n L̂e(k)

n + L̂e(k)
n+1L̂e(k)

n+1 =
(
Le(k)

n

)2
+
(
Le(k)

n+1

)2

= ((k + 1) Fn+1 − k)2 + ((k + 1) Fn+2 − k)2

= (k + 1)2 (F 2
n+1 + F 2

n+2
)

− 2k (k + 1) (Fn+1 + Fn+2) + 2k2

= (k + 1)2 F2n+3 − 2k (k + 1) Fn+3 + 2k2

= (k + 1) ((k + 1) F2n+3 − k) + k (k + 1) − 2k ((k + 1) Fn+3 − k)

= (k + 1) Le(k)
2n+2 − 2k Le(k)

n+2 + k (k + 1)

is obtained.

v. Applying Equation 3 and the Binet’s formula of the Fibonacci sequence in Equation 1,

L̂e(k)
n+1L̂e(k)

n+1 − L̂e(k)
n−1L̂e(k)

n−1 =
(
Le(k)

n+1

)2
−
(
Le(k)

n−1

)2

= ((k + 1) Fn+2 − k)2 − ((k + 1) Fn − k)2

= (k + 1)2 (F 2
n+2 − F 2

n

)
+ 2k (k + 1) (Fn − Fn+2)

= (k + 1) ((k + 1) F2n+2 − k) + k (k + 1) − 2k ((k + 1) Fn+1 − k) − 2k2

= (k + 1) Le(k)
2n+1 − 2k Le(k)

n − k (k − 1)

is obtained.

Theorem 2.8. Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual quaternion. For n ≥ 2, the

generating function G(x) =
∞∑

n=0
L̂e(k)

n is as follows:

G(x) =
L̂e(k)

0 +
(

L̂e(k)
1 − 2L̂e(k)

0

)
x +

(
L̂e(k)

2 − 2L̂e(k)
1

)
x2

1 − 2x + x3

=
(
1 − x + kx2)+

(
1 + kx − x2) e1 +

(
2 + k − x + x2) e2 +

(
3 + 2k − x + (−2 − k) x2) e3

1 − 2x + x3

where 1 − 2x + x3 ̸= 0.

Proof.
The proof is similar to the proof of the generating function of the Leonardo sequence in [2].

Theorem 2.9. For n ≥ 0, the following summation formulas are satisfied:

i.
n∑

s=0
L̂e(k)

s = L̂e(k)
n+2 − K̂ (n + 2) + (k − 1) − 2e1 + (−k − 3) e2 + (−5 − 3k) e3

ii.
n∑

s=0
L̂e(k)

2s = L̂e(k)
2n+1 − K̂n − (2k) e1 + (−k − 1) e2 + (−3k − 1) e3

iii.
n∑

s=0
L̂e(k)

2s+1 = L̂e(k)
2n+2 − K̂n − (2k) + (−k − 1) e1 + (−3k − 1) e2 + (−3k − 3) e3

Proof.
Let n ≥ 0.
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i. Using Equations 4 and 8,
n∑

s=0
L̂e(k)

s =
n∑

s=0
Le(k)

s +
(

n∑
s=0

Le(k)
s+1

)
e1 +

(
n∑

s=0
Le(k)

s+2

)
e2 +

(
n∑

s=0
Le(k)

s+3

)
e3

=
(
Le(k)

n+2 − k(n + 1) − 1
)

+
(

n+1∑
s=0

Le(k)
s − Le(k)

0

)
e1 +

(
n+2∑
s=0

Le(k)
s − Le(k)

0 − Le(k)
1

)
e2

+
(

n+3∑
s=0

Le(k)
s − Le(k)

0 − Le(k)
1 − Le(k)

2

)
e3

=
(
Le(k)

n+2 − k(n + 1) − 1
)

+
(
Le(k)

n+3 − k(n + 2) − 1 − 1
)

e1

+
(
Le(k)

n+4 − k(n + 3) − 1 − 1 − 1
)

e2 +
(
Le(k)

n+5 − k(n + 4) − 1 − 1 − 1 − (2 + k)
)

e3

= L̂e(k)
n+2 − K̂ (n + 2) + (k − 1) − 2e1 + (−k − 3) e2 + (−5 − 3k) e3

ii. Using Equations 5, 6, and 8,
n∑

s=0
L̂e(k)

2s =
n∑

s=0
Le(k)

2s +
(

n∑
s=0

Le(k)
2s+1

)
e1 +

(
n∑

s=0
Le(k)

2s+2

)
e2 +

(
n∑

s=0
Le(k)

2s+3

)
e3

=
(
Le(k)

2n+1 − kn
)

+
(
Le(k)

2n+2 − k (n + 2)
)
e1 +

(
n+1∑
s=0

Le(k)
2s − Le(k)

0

)
e2 +

(
n+1∑
s=0

Le(k)
2s+1 − Le(k)

1

)
e3

=
(
Le(k)

2n+1 − kn
)

+
(
Le(k)

2n+2 − k (n + 2)
)

e1 +
(
Le(k)

2n+3 − k (n + 1) − 1
)

e2

+
(
Le(k)

2n+4 − k(n + 3) − 1
)

e3

= L̂e(k)
2n+1 − K̂n + (−2k) e1 + (−k − 1) e2 + (−3k − 1) e3

Theorem 2.10 (The Honsberger-like identity). Let L̂e(k)
n be the n-th k−generalized Leonardo-like

dual quaternion. For positive integers n and m,

L̂e(k)
n L̂e(k)

m + L̂e(k)
n+1L̂e(k)

m+1 = (k + 1)
(

2L̂e(k)
n+m+2 + k

)
− k L̂e(k)

n+2 − k L̂e(k)
m+2 − (k + 1) Le(k)

n+m+2

− (e1 + e2 + e3)
(
k Le(k)

n+2 + k Le(k)
m+2 − 2k (k + 1)

)
where Le(k)

n is the n-th k−generalized Leonardo number.

Proof.
Let L̂e(k)

n be the n-th k−generalized Leonardo-like dual quaternion and n and m be positive integers.
Then,

L̂e(k)
n L̂e(k)

m + L̂e(k)
n+1L̂e(k)

m+1 =
(
Le(k)

n Le(k)
m + Le(k)

n+1 Le(k)
m+1

)
+
((

Le(k)
n Le(k)

m+1 + Le(k)
n+1 Le(k)

m+2

)
+
(
Le(k)

n+1 Le(k)
m + Le(k)

n+2 Le(k)
m+1

))
e1

+
((

Le(k)
n Le(k)

m+2 + Le(k)
n+1 Le(k)

m+3

)
+
(
Le(k)

n+2 Le(k)
m + Le(k)

n+3 Le(k)
m+1

))
e2

+
((

Le(k)
n Le(k)

m+3 + Le(k)
n+1 Le(k)

m+4

)
+
(
Le(k)

n+3 Le(k)
m + Le(k)

n+4 Le(k)
m+1

))
e3
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We conclude from Equation 3 and FnFm + Fn+1Fm+1 = Fn+m+1 [1] that

L̂e(k)
n L̂e(k)

m + L̂e(k)
n+1L̂e(k)

m+1 = (k + 1)2
(
2F̂n+m+3 − Fn+m+3

)
− k (k + 1) (Fn+3 + Fm+3) (e1 + e2 + e3)

−k (k + 1)
(
F̂m+3 + F̂n+3

)
+ 4k2 (1 + e1 + e2 + e3) − 2k2

Then, applying Theorem 2.5(i),

L̂e(k)
n L̂e(k)

m + L̂e(k)
n+1L̂e(k)

m+1 = (k + 1)
(

2L̂e(k)
n+m+2 + k

)
− k L̂e(k)

n+2 − k L̂e(k)
m+2 − (k + 1) Le(k)

n+m+2

− (e1 + e2 + e3)
(
k Le(k)

n+2 + k Le(k)
m+2 − 2k (k + 1)

)
is obtained.

Across this study, let α∗β∗ = 1 + e1 + 3e2 + 4e3.

Theorem 2.11 (The Catalan-like identity). Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual

quaternion. For positive integers n and r with n ≥ r,(
L̂e(k)

n

)2
− L̂e(k)

n+rL̂e(k)
n−r = (k + 1)2 α∗β∗ (−1)n−r+1 (Fr)2 − K̂

(
2L̂e(k)

n − L̂e(k)
n+r − L̂e(k)

n−r

)
where Fn is the n-th Fibonacci number.

Proof.
By using the Binet-like formula in Equation 9,(

L̂e
(k)
n

)2
− L̂e

(k)
n+rL̂e

(k)
n−r =

(
(k + 1)

(
α∗αn+1 − β∗βn+1

α − β

)
− K̂

)2

−
(

(k + 1)
(

α∗αn+r+1 − β∗βn+r+1

α − β

)
− K̂

)(
(k + 1)

(
α∗αn−r+1 − β∗βn−r+1

α − β

)
− K̂

)
=

(k + 1)2

5 α∗β∗ (αn−r+1βn−r+1) (α2r + β2r − 2αrβr
)

−K̂
(

2
(

L̂e
(k)
n + K̂

)
−
(

L̂e
(k)
n+r + K̂

)
−
(

L̂e
(k)
n−r + K̂

))
= (k + 1)2

α∗β∗ (−1)n−r+1 (Fr)2 − K̂
(

2L̂e
(k)
n − L̂e

(k)
n+r − L̂e

(k)
n−r

)

Theorem 2.12 (The Cassini-like identity). Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual

quaternion. For positive integer n with n ≥ 3,

L̂e(k)
n−1L̂e(k)

n+1 −
(

L̂e(k)
n

)2
= (k + 1)2 (−1)n+1 α∗β∗ − K̂ L̂e(k)

n−3 − K̂2

Proof.
From the Cassini identity and the recurrence relation of the Fibonacci dual quaternion sequence
(see [20]),

L̂e
(k)
n−1L̂e

(k)
n+1 −

(
L̂e

(k)
n

)2
=
(

(k + 1) F̂n − K̂
)(

(k + 1) F̂n+2 − K̂
)

−
(

(k + 1) F̂n+1 − K̂
)2

= ((k + 1))2
(

F̂n F̂n+2 −
(

F̂n+1

)2
)

− K̂ (k + 1)
(

F̂n + F̂n+2 − 2F̂n+1

)
= (k + 1)2 (−1)n+1 (1 + e1 + 3e2 + 4e3) − K̂ (k + 1)

((
F̂n+2 − F̂n+1

)
−
(

F̂n+1 − F̂n

))
= (k + 1)2 (−1)n+1 (1 + e1 + 3e2 + 4e3) − K̂

(
(k + 1) F̂n−2 − K̂

)
− K̂2

= (k + 1)2 (−1)n+1 (1 + e1 + 3e2 + 4e3) − K̂ L̂e
(k)
n−3 − K̂2
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Theorem 2.13 (The d’Ocagne-like identity). Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual

quaternion. For positive integers m and n,

L̂e(k)
m L̂e(k)

n+1 − L̂e(k)
m+1L̂e(k)

n = (k + 1)2 α∗β∗ (−1)n+1 Fm−n + K̂
(

L̂e(k)
m−1 − L̂e(k)

n−1

)
where Fn is the n-th Fibonacci number.

Proof.
Applying the Binet-like formula in Equation 9,

L̂e
(k)
m L̂e

(k)
n+1 − L̂e

(k)
m+1L̂e

(k)
n =

(
(k + 1)

(
α∗αm+1 − β∗βm+1

α − β

)
− K̂

)(
(k + 1)

(
α∗αn+2 − β∗βn+2

α − β

)
− K̂

)

−
(

(k + 1)
(

α∗αm+2 − β∗βm+2

α − β

)
− K̂

)(
(k + 1)

(
α∗αn+1 − β∗βn+1

α − β

)
− K̂

)

=
(k + 1)2

α − β
α∗β∗ (αm+1βn+1 − αn+1βm+1)

−K̂
((

L̂e
(k)
m + K̂

)
+
(

L̂e
(k)
n+1 + K̂

)
−
(

L̂e
(k)
m+1 + K̂

)
−
(

L̂e
(k)
n + K̂

))
= (k + 1)2

α∗β∗αn+1βn+1 (αm−n − βm−n)
α − β

+ K̂
((

L̂e
(k)
m+1 − L̂e

(k)
m

)
−
(

L̂e
(k)
n+1 − L̂e

(k)
n

))
= (k + 1)2

α∗β∗ (−1)n+1
Fm−n + K̂

(
L̂e

(k)
m−1 − L̂e

(k)
n−1

)

Theorem 2.14 (The Tagiuri-like identity). Let L̂e(k)
n be the n-th k−generalized Leonardo-like dual

quaternion. For positive integers n, n + r and n + s,

L̂e
(k)
n+rL̂e

(k)
n+s − L̂e

(k)
n L̂e

(k)
n+r+s =

(k + 1)2

5 α∗β∗(−1)n+1(Lr+s − (−1)sLr−s) + K̂(L̂e
(k)
n + L̂e

(k)
n+r+s − L̂e

(k)
n+r − L̂e

(k)
n+s)

where Ln is the n-th Lucas number.

Proof.
The proof is straightforward from applying the Binet-like formula in Equation 9.

Note that the d’Ocagne-like, Catalan-like, and Cassini-like identities are the special cases of the
Tagiuri-like identity.

3. Conclusion

Taking k = 1 gives the analogous relations for the Leonardo sequence with the dual-quaternions
coefficients. Hence, we can say that our main results presented here generalize the paper [13]. These
results can trigger further research on the subjects of the Leonardo sequence and the dual quaternions.
Additionally, this study opens the door for future research on sequences; for instance, one may define
non-commutative quaternions (real, split, semi-split, etc.) with the k−generalized Leonardo sequence.
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[20] S. Yüce, F. T. Aydın, A New Aspect of Dual Fibonacci Quaternions, Advances in Applied Clifford
Algebras (26) (2016) 873–884.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD797.html
https://www.emis.de/classics/Hamilton/OnQuat.pdf


Journal of New Theory 44 (2023) 31-42 / On Dual Quaternions with k−Generalized Leonardo Components 42

[21] W. K. Clifford, Preliminary Sketch of Bi-Quaternions, Proceedings of the London Mathematical
Society s1–4 (1) (1873) 381–395.

[22] J. D. Jr. Edmonds, Relativistic Reality: A Modern View, World Scientific, Singapore, 1997.
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Abstract − In this paper, we consider a diffusion operator with discrete boundary condi-
tions, which include the conformable fractional derivatives of order α such that 0 < α ≤ 1
instead of the ordinary derivatives in the classical diffusion operator. We prove that the co-
efficients of the given operator are uniquely determined by the Weyl function and spectral
data, which consist of a spectrum and normalizing numbers. Moreover, using the well-known
Hadamard’s factorization theorem, we prove that the characteristic function ∆α (ρ) is deter-
mined by the specification of its zeros for each fixed α. The obtained results in this paper can
be regarded as partial α-generalizations of similar findings obtained for the classical diffusion
operator.
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1. Introduction

Inverse spectral problems aim to reconstruct the coefficients of an operator from given data such as the
Weyl function, nodal points, and spectral data (two spectra or a spectrum and normalizing numbers).
For the last century, these kinds of problems for various classical Sturm-Liouville, diffusion, and Dirac
operators have been extensively investigated; for more details, see [1–7].

The beginning of the fractional derivative dates back to 1695, and many fractional derivative concepts
have been proposed until today, such as the Riemann-Liouville fractional derivative, the Caputo
fractional derivative, and the Atangana fractional derivative. In 2014, Khalil et al. [8] introduced
the conformable fractional derivative. Then, many researchers identified important and fundamental
properties of this derivative in [9–14]. In 2017, Jarad et al. [15] showed that this derivative is necessary
and useful for generating new types of fractional operators. In recent years, numerous significant
studies [16–20] have been conducted on inverse problems related to various conformable fractional
operators, including the diffusion operator.

We consider a conformable fractional diffusion operator with discrete boundary conditions, denoted
as Lα = Lα(p(x), q(x), h,H). The form of this operator is as follows:

ℓαy := −Tα
x T

α
x y + [2ρp(x) + q(x)] y = ρ2y, 0 < x < π (1)

Uα(y) := Tα
x y(0) − hy(0) = 0
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and
Vα(y) := Tα

x y(π) +Hy(π) = 0

where ρ is the spectral parameter, h,H ∈ R, q(x) ∈ W 1
2,α [0, π] and p(x) ∈ W 2

2,α [0, π] are real-valued
functions such that p(x) ̸= const, Tα

x y is a conformable fractional derivative of order α ∈ (0, 1] of y at
x,

Tα
x y(x) = lim

h→0

y(x+ hx1−α) − y(x)
h

, for all x > 0

W 1
2,α [0, π] = {f(x) | f(x) is absolutely continuous on [0, π] and Tα

x f(x) ∈ L2,α (0, π)}

W 2
2,α [0, π] = {f(x) | f(x) and Tα

x f(x) are absolutely continuous on [0, π] and Tα
x T

α
x f(x) ∈ L2,α (0, π)}

and the space L2,α (0, π) consists of all the functions f : [0, π] → R satisfying the condition(∫ π

0
|f(x)|2 dαx

)1/2
=
(∫ π

0
|f(x)|2 xα−1dx

)1/2
< ∞

This operator is referred to as the Conformable Fractional Diffusion Operator (CFDO).

In this paper, we have proved that the coefficients of the given operator can be uniquely determined
by the Weyl function and spectral data, which consist of a spectrum and normalizing numbers.

2. Preliminaries

This section provides some basic notions to be needed in the following sections. Let the functions
φ = φ (x, ρ;α), ψ = ψ (x, ρ;α), and S = S (x, ρ;α) be the solutions of Equation 1 satisfying the
following initial conditions

φ (0, ρ;α) = 1 and Tα
x φ (0, ρ;α) = h (2)

ψ (π, ρ;α) = 1 and Tα
x ψ (π, ρ;α) = −H (3)

S (0, ρ;α) = 0 and Tα
x S (0, ρ;α) = 1 (4)

respectively. From [19, 21, 22], these solutions satisfy the following asymptotic formulas, for |ρ| → ∞
and each fixed α,

φ = cos
(
ρxα

α
− θ(x)

)
+O

( 1
|ρ|

exp
( |Imρ|xα

α

))
(5)

Tα
x φ = −ρ sin

(
ρxα

α
− θ(x)

)
+O

(
exp

( |Imρ|xα

α

))
(6)

ψ = cos
(
ρ (πα − xα)

α
− θ(π) + θ(x)

)
+O

( 1
|ρ|

exp
( |Imρ| (πα − xα)

α

))
(7)

Tα
x ψ = ρ sin

(
ρ (πα − xα)

α
− θ(π) + θ(x)

)
+O

(
exp

( |Imρ| (πα − xα)
α

))
(8)

S = 1
ρ

sin
(
ρxα

α
− θ(x)

)
+O

( 1
ρ2 exp

( |Imρ|xα

α

))
(9)

Tα
x S = cos

(
ρxα

α
− θ(x)

)
+O

(1
ρ

exp
( |Imρ|xα

α

))
(10)

where

θ(x) =
x∫

0

p (t) dαt
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We denote

∆α (ρ) = Wα [ψ,φ] =
∣∣∣∣∣ ψ φ

Tα
x ψ Tα

x φ

∣∣∣∣∣ = ψTα
x φ− φTα

x ψ (11)

where Wα [ψ,φ] is the fractional Wronskian of the functions ψ and φ. Furthermore, the ∆α (ρ) is
called as the characteristic function of the operator Lα and is entire function in ρ for each fixed α.

Lemma 2.1. [23] For each fixed α, ∆α (ρ) does not depend on x and can be written as

∆α (ρ) = Vα (φ) = −Uα (ψ) (12)

Lemma 2.2. [23] The zeros {ρn} of the function ∆α (ρ) are coincide with the eigenvalues of the
operator Lα, and for eigenfunctions ψ (x, ρn;α) and φ (x, ρn;α), there exists a sequence {βn} such
that

ψ (x, ρn;α) = βnφ (x, ρn;α) and βn ̸= 0 (13)

are satisfied for each fixed α.

It is clear from Equations 2, 3, and 13 that βn = ψ (0, ρn;α) = 1
φ(π,ρn;α) .

Lemma 2.3. [23] The equality
.

∆α (ρn) = −2ρnβnαn is valid where
.

∆α (ρ) = d∆α (ρ)
dρ

and the
normalizing numbers are

αn =
π∫

0

φ2 (x, ρn;α) dαx− 1
ρn

π∫
0

p (x)φ2 (x, ρn;α) dαx

Definition 2.4. The data {ρn, αn}n≥1 are called the spectral data of the operator Lα.

Let {ρn} be the eigenvalues set of the operator Lα. From [23], the numbers ρn hold the following
estimate:

ρn = nα

πα−1 + cα,0 + cα,1
n

+ o

( 1
n

)
, n → ∞

where

cα,0 = α

πα

π∫
0

p(x)dαx

and

cα,1 = 1
π

h+H + 1
2

π∫
0

(
q(x) + p2 (x)

)
dαx


Let Gδ =

{
ρ |

∣∣∣ρ− nα
πα−1

∣∣∣ ≥ δ, n ∈ {1, 2, . . .}
}

where δ is a sufficiently small positive number. It is
obvious from Equations 5, 6, and 12 that the function ∆α (ρ) satisfies the inequality

|∆α (ρ)| ≥ cδ |ρ| exp
( |Imρ|

α
πα
)
, ρ ∈ Gδ (14)

3. Main Results

This section proves uniqueness theorems for the solution of inverse problems according to the Weyl
function and spectral data, which consist of a spectrum and normalizing numbers. Together with Lα,
we consider a second operator L̃α = L̃α(p(x), q̃(x), h̃, H̃) of the following form

ℓ̃αy := −Tα
x T

α
x y + [2ρp(x) + q̃(x)] y = ρ2y, 0 < x < π

Ũα(y) := Tα
x y(0) − h̃y(0) = 0
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and
Ṽα(y) := Tα

x y(π) + H̃y(π) = 0

We note that if a certain symbol σ denotes an object related to Lα, then σ̃ will denote an analogous
object related to L̃α.

It can be observed that Wα [φ, S]|x=0 = 1 ̸= 0. Thus, the functions φ and S are linearly independent,
and the function ψ can be written as

ψ (x, ρ;α) = c1 (ρ;α)φ (x, ρ;α) + c2 (ρ;α)S (x, ρ;α) (15)

where c1 (ρ;α) and c2 (ρ;α) are arbitrary constant for each fixed α. It is clear from Equation 15 that

ψ (0, ρ;α) = c1 (ρ;α)φ (0, ρ;α) + c2 (ρ;α)S (0, ρ;α)

and
Tα

x ψ (0, ρ;α) = c1 (ρ;α)Tα
x φ (0, ρ;α) + c2 (ρ;α)Tα

x S (0, ρ;α)

From Equations 2, 4, and 12,
c1 (ρ;α) = ψ (0, ρ;α)

and
c2 (ρ;α) = Tα

x ψ (0, ρ;α) − hψ (0, ρ;α) = −∆α (ρ)

Consequently, Equation 15 is rewritten as

ψ (x, ρ;α) = ψ (0, ρ;α)φ (x, ρ;α) − ∆α (ρ)S (x, ρ;α)

or
−ψ (x, ρ;α)

∆α (ρ) = −ψ (0, ρ;α)
∆α (ρ) φ (x, ρ;α) + S (x, ρ;α) (16)

If we denote

Φ (x, ρ;α) := −ψ (x, ρ;α)
∆α (ρ) and Mα (ρ) := Φ (0, ρ;α) = −ψ (0, ρ;α)

∆α (ρ) (17)

then, from Equation 16,
Φ (x, ρ;α) = S (x, ρ;α) +Mα (ρ)φ (x, ρ;α) (18)

The functions Φ (x, ρ;α) and Mα (ρ) are called as the Weyl solution and the Weyl function of the op-
erator Lα, respectively. It is obvious that Φ (x, ρ;α) is the solution of Equation 1 under the conditions
Uα (Φ) = 1, Vα (Φ) = 0, and Mα (ρ) is a meromorphic function with poles in {ρn}.

Theorem 3.1. If Mα (ρ) = M̃α (ρ) for each fixed α, then q(x) = q̃ (x), almost everywhere in [0, π],
h = h̃, and H = H̃. Thus, the Weyl function uniquely determines the operator Lα.

Proof.
Consider the functions P1 (x, ρ;α) and P2 (x, ρ;α) defined by

P1 (x, ρ;α) = φ (x, ρ;α)Tα
x Φ̃ (x, ρ;α) − Φ (x, ρ;α)Tα

x φ̃ (x, ρ;α) (19)

and
P2 (x, ρ;α) = Φ (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) Φ̃ (x, ρ;α) (20)

From Equation 18,

P1 (x, ρ;α) = φ (x, ρ;α)Tα
x S̃ (x, ρ;α) − S (x, ρ;α)Tα

x φ̃ (x, ρ;α) +
[
M̃α (ρ) −Mα (ρ)

]
φ (x, ρ;α)Tα

x φ̃ (x, ρ;α)
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and

P2 (x, ρ;α) = S (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) S̃ (x, ρ;α) +
[
Mα (ρ) − M̃α (ρ)

]
φ (x, ρ;α) φ̃ (x, ρ;α)

Since Mα (ρ) = M̃α (ρ), the functions P1 (x, ρ;α) and P2 (x, ρ;α) are entire in ρ, for each fixed α.
Moreover, from Equations 11 and 17,

Wα [φ (x, ρ;α) ,Φ (x, ρ;α)] = −Wα [φ (x, ρ;α) , ψ (x, ρ;α)]
∆α (ρ) = 1

and similarly,
Wα

[
φ̃ (x, ρ;α) , Φ̃ (x, ρ;α)

]
= 1

Thus, Equation 19 can be rewritten as

P1 (x, ρ;α) = 1 + φ (x, ρ;α)
[
Tα

x Φ̃ (x, ρ;α) − Tα
x Φ (x, ρ;α)

]
+ Φ (x, ρ;α) [Tα

x φ (x, ρ;α) − Tα
x φ̃ (x, ρ;α)]

It follows from the asymptotic formulas of Equations 5-10 and Equality 14 that

|P1 (x, ρ;α) − 1| ≤ Cδ

|ρ|
and |P2 (x, ρ;α)| ≤ Cδ

|ρ|
, x ∈ [0, π] , |ρ| ∈ Gδ

Therefore, since lim
|ρ|→∞

|P1 (x, ρ;α) − 1| = lim
|ρ|→∞

|P2 (x, ρ;α)| = 0 by the well-known Liouville’s theorem,

we obtain for x ∈ [0, π] and each fixed α that

P1 (x, ρ;α) = 1 and P2 (x, ρ;α) = 0 (21)

Hence, by using Equations 19-21, we get the following system
φ (x, ρ;α)Tα

x Φ̃ (x, ρ;α) − Φ (x, ρ;α)Tα
x φ̃ (x, ρ;α) = 1

Φ (x, ρ;α) φ̃ (x, ρ;α) − φ (x, ρ;α) Φ̃ (x, ρ;α) = 0
(22)

If System 22 is solved according to functions φ (x, ρ;α) and Φ (x, ρ;α), then

φ (x, ρ;α) = φ̃ (x, ρ;α)

and
Φ (x, ρ;α) = Φ̃ (x, ρ;α)

is obtained, for all x and ρ and each fixed α. Thus, q(x) = q̃(x), almost everywhere in [0, π], h = h̃,
and H = H̃. Consequently, Lα = L̃α.

Lemma 3.2. For each fixed α, the characteristic function ∆α (ρ) is determined by the specification
of its zeros as:

∆α (ρ) = Cρ exp (C1ρ)
∞∏

n=1

(
1 − ρ

ρn

)
exp

(
ρ

ρn

)
where

C = sin θ (π)
∞∏

n=1

ρ

ρ0
n

, C1 = −πα

α
cot θ (π)+

∞∑
n=1

( 1
ρ0

n

− 1
ρn

)
, ρ0

n =
(
n+ θ (π)

π

)
α

πα−1 , n ∈ {1, 2, · · · }

Proof.
It is clear from Equations 5, 6, and 12 that the characteristic function ∆α (ρ) holds the following
asymptotic representation:

∆α (ρ) = −ρ sin
(
ρπα

α
− θ(π)

)
+O

(
exp

( |Imρ|
α

πα
))

(23)
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Consider the function
∆0

α (ρ) = −ρ sin
(
ρπα

α
− θ(π)

)
(24)

The zeros of the function ∆0
α (ρ) are ρ = 0 and ρ0

n =
(
n+ θ(π)

π

)
α

πα−1 such that n ∈ {1, 2, 3, · · · }. Since
∆0

α (ρ) is an entire function, according to the Hadamard’s factorization theorem,

∆0
α (ρ) = −ρm exp (g(ρ))

∞∏
n=1

Ep

(
ρ

ρ0
n

)
(25)

where m ≥ 0 is the multiplicity of the zero eigenvalue, g (ρ) is a polynomial with der (g (ρ)) = p, and

Ep (ξ) =

 (1 − ξ) , n = 0

(1 − ξ) exp
(

ξ
1 + ξ2

2 + . . .+ ξn

n

)
, otherwise

Since the multiplicity of the zero is 1, m = 1. Besides, for every r > 0 and for p = 1, the series
∞∑

n=1
r1+p

|ρ0
n|1+p converges. Therefore, Equation 25 can rewrite as

∆0
α (ρ) = −ρ exp (aρ+ b))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
If we consider the following equalities to find the constants a and b,

lim
ρ→0

sin
(
ρπα

α
− θ(π)

)
= lim

ρ→0
exp (aρ+ b))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
and

lim
ρ→0

d

dρ
ln
[
sin
(
ρπα

α
− θ(π)

)]
= lim

ρ→0

d

dρ
ln
[
C0 exp (aρ))

∞∏
n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)]
then

C0 = exp (b) = − sin θ(π)

and
C0

1 = a = −πα

α
cot θ(π)

respectively. Thus,

∆0
α (ρ) = −ρC0 exp

(
C0

1ρ)
) ∞∏

n=1

(
1 − ρ

ρ0
n

)
exp

(
ρ

ρ0
n

)
(26)

Moreover,

∆α (ρ) = C exp (C1ρ)) ρm
∞∏

n=1

(
1 − ρ

ρn

)
exp

(
ρ

ρn

)
(27)

where C and C1 are constants and m ≥ 0. According to Equations 23 and 24,
∆α (ρ)
∆0

α (ρ) = 1 +O

(1
ρ

)
, |ρ| → ∞

Then, together with Equations 26 and 27,

∆α (ρ)
∆0

α (ρ) = − C

C0 ρ
m−1

∞∏
n=1

ρ0
n

ρn

∞∏
n=1

(
1 + ρn − ρ0

n − ρ

ρ0
n − ρ

)
exp

( ∞∑
n=1

ρ0
n − ρn

ρnρ0
n

+ C1 − C0
1

)
ρ

Consequently,

m = 1, C = −C0
∞∏

n=1

ρn

ρ0
n

, and C1 = C0
1 +

∞∑
n=1

( 1
ρ0

n

− 1
ρn

)
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Theorem 3.3. If {ρn, αn}n≥1 = {ρ̃n, α̃n}n≥1 for each fixed α, then q (x) = q̃(x), almost everywhere
in [0, π], h = h̃, and H = H̃. Thus, the spectral data {ρn, αn}n≥1 uniquely determines the operator
Lα.

Proof.
Since ρn = ρ̃n, according to Lemma 3.2, ∆α (ρ) = ∆̃α (ρ). Using Lemma 2.3 and αn = α̃n, βn = β̃n

and thus ψ (0, ρn;α) = ψ̃ (0, ρn;α). For each fixed α, let

Hα (ρ) := ψ (0, ρ;α) − ψ̃ (0, ρ;α)
∆α (ρ)

It is clear that Hα (ρ) is entire on ρ. Moreover, by using Equations 7 and 14,

Hα (ρ) := O

( 1
ρ2

)
, |ρ| → ∞

Hence, Hα (ρ) ≡ 0 and ψ (0, ρ;α) = ψ̃ (0, ρ;α). Consequently, from Equation 17, Mα (ρ) ≡ M̃α (ρ).
Thus, the proof is completed by Theorem 3.1.

4. Conclusion

The Weyl function and spectral data are very natural and useful spectral characteristics in inverse
problem theory. Until today, by using these concepts, many inverse problems have been studied for
various classes of operators, such as regular or singular Sturm-Liouville operators, diffusion operators,
and Dirac operators, including the classical derivatives. In [18], some inverse problems for the Sturm-
Liouville operator, including conformable fractional derivatives, are investigated.

In this study, the diffusion operator, which includes conformable fractional derivatives, is considered,
and the inverse problems are investigated for this operator for the first time according to both the
Weyl function and spectral data. This study can be considered as a partial α-generalization of similar
findings for the classical diffusion operator.

Considering this study’s results, some inverse problems can be investigated in the future for various
conformable operators with jump conditions, parameter-dependent boundary conditions, or non-local
boundary conditions.
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Abstract − In this study, transformation graphs obtained from the concept of the total graph and the result 

of its paired domination number for some special graph families are discussed. If a subset 𝑆 of the vertex 

set of the graph 𝐺 dominates and the induced subgraph ⟨S⟩ has a perfect matching that covers every vertex 

of the graph, then 𝑆 is called a paired-dominating set of 𝐺. A paired dominating set with the smallest 

cardinality is denoted by 𝛾𝑝𝑟-set. Haynes and Slater introduced paired domination parameters. The present 

study commences with assessing outcomes stemming from eight permutations within the realm of path 

graphs. Subsequently, building upon this foundational structure, the results are extrapolated from the realm 

of cycle transformation graph structures based on findings from path transformation graphs. 
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1. Introduction  

In graph theory, the investigation of domination numbers and their various forms has garnered significant 

attention, leading to a continual expansion of knowledge in this domain. Let 𝐺 be a graph with the vertex set 

𝑉(𝐺) (or simply 𝑉) and the edge set 𝐸(𝐺) (or simply 𝐸). Then, 𝑆 ⊆ 𝑉 is called the dominating set of 𝐺 if every 

vertex in 𝑉 − 𝑆 is adjacent to any vertex in 𝑆, and the domination number of 𝐺 is denoted by 𝛾(𝐺). The 

domination number is the minimum cardinality of a dominating set. 

Furthermore, the discourse extends to exploring the total domination number, a parameter that has drawn 

extensive discussion. A total dominating set 𝑆 of 𝐺, denoted by 𝑇𝐷-set, is a dominating set with no isolated 

vertex and total domination number, which is the minimum cardinality of a total dominating set abbreviated 

by 𝛾𝑡(𝐺). Total domination was introduced by Cockayne et al. [1]. 

This paper delves into another alteration of the domination parameter, termed paired domination. Let 𝑆 ⊆ 𝑉. 

Then, 𝑆 is called a paired-dominating set of 𝐺 and is denoted 𝑃𝐷-set, if it dominates, and the induced subgraph 

⟨𝑆⟩ has a perfect matching that covers every vertex of the graph. A paired dominating set with the smallest 

cardinality is denoted by 𝛾𝑝𝑟-set. This concept was pioneered by Haynes and Slater [2]. To explain the meaning 

of these three domination parameters in terms of application, consider each 𝑠 ∈ 𝑆 as a protector that can guard 

each vertex where s dominates then every protector guards itself. Regarding total domination, every protector 

must be guarded by another protector. As for paired domination, the guards' positions must be chosen as pairs 

of adjacent vertices so that each guard is assigned to each other and exists as substitutes for each other. There 
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are many domination parameters in different categories, and the paired domination parameters discussed in 

this paper are considered under the category with restricted forms based on ⟨𝑆⟩. We can present the reader with 

references to some significant studies, particularly in this work, that address the behavior of the paired 

domination number under various graph operations, as [3-11] in the literature. In addition, regarding the 

domination parameter, the three new books, which provide even more comprehensive coverage of current 

studies on domination parameters, can be offered to the reader as references [12-14]. 

In this paper, we consider simple graphs and refer to the book [15] for notation and terminology. The open 

neighborhood of any vertex in 𝑉(𝐺), denoted by 𝑁(𝑣) = {𝑢 ∈ 𝑉(𝐺) | (𝑢𝑣) ∈ 𝐸(𝐺)}. The degree of a vertex 𝑣 

is the number of edges that are incident to it and is denoted by deg(𝑣). Moreover, a vertex whose degree is 

one is called a pendant vertex. Furthermore, the maximum degree of 𝐺, denoted by 𝛥(𝐺), is the degree of the 

vertex with the maximum number of edges incident to it. Similarly, the minimum degree of 𝐺, abbreviated by 

𝛿(𝐺), is the degree of a vertex with the minimum number of edges incident to it. The distance between two 

vertices 𝑢 and 𝑣 is the shortest path between them and is denoted by the notation 𝑑(𝑢, 𝑣). 

In this study, transformation graphs 𝐺𝑥𝑦− and 𝐺𝑥𝑦+ are considered, and values of their paired-domination 

number for some special graph families are obtained. Transformation graph definitions are bottomed on the 

total graph [16]. Let 𝑉(𝐺) ∪ 𝐸(𝐺) be the vertex set of a total graph where two vertices are adjacent if and only 

if the vertices and edges are adjacent or incident in 𝐺. The transformation graphs introduced by Wu and Meng 

can be provided, denoted by 𝐺𝑥𝑦𝑧 . Their paper considers its eight structure cases and generalizations of the 

total graph concept [17]. Before defining transformation graphs, we must explain some fundamental graph 

constructions such as complement and line graphs. The complement graph of 𝐺, denoted by the notation 𝐺, is 

based on the same vertex set 𝑉(𝐺) but a different edge set completes the graph 𝐺 to complement the graph. The 

line graph 𝐿(𝐺) of 𝐺 is the graph that takes the edge set 𝐸(𝐺) as its vertex set. Two vertices are adjacent in 

the line graph 𝐿(𝐺) if and only if corresponding edges are adjacent in graph 𝐺 [18]. Thus, the concept of the 

transformation graph represented by 𝐺𝑥𝑦𝑧  can now be addressed, where 𝑥, 𝑦, and 𝑧 can take values + or −. The 

transformation graph 𝐺𝑥𝑦𝑧  of 𝐺 is a simple graph having as the vertex set 𝑉(𝐺) ∪ 𝐸(𝐺), and for 𝛼, 𝛽 ∈ 𝑉(𝐺) ∪

𝐸(𝐺) and their relationships in 𝐺𝑥𝑦𝑧  can be explained as follows: 

i. Let 𝛼, 𝛽 ∈ 𝑉(𝐺). Then, 𝛼 and 𝛽 are adjacent in 𝐺𝑥𝑦𝑧  if 𝑥 = +; otherwise 𝑥 = −. 

ii. Let 𝛼, 𝛽 ∈ 𝐸(𝐺). Then, 𝛼 and 𝛽 are adjacent in 𝐺𝑥𝑦𝑧  if 𝑦 = +; otherwise 𝑦 = −. 

iii. Let 𝛼 ∈ 𝑉(𝐺) and 𝛽 ∈ 𝐸(𝐺). Then, 𝛼 and 𝛽 are incidents in 𝐺𝑥𝑦𝑧  if 𝑧 = +; otherwise 𝑧 = −. 

There are eight distinct constructions from three signature permutations {+,−}. Then, it may be obtained 

transformation graphs where 𝐺+++ is the total graph of 𝐺, and 𝐺−−− is the complement of it. Moreover, 𝐺−+−, 

𝐺−−+, and 𝐺−++ are the complements of 𝐺+−+, 𝐺++−, and 𝐺+−−, respectively. Moreover, the transformation 

graph can be expressed as a relationship between 𝐺 (or 𝐺) and its line graph 𝐿(𝐺) (or 𝐿(𝐺)) depending on the 

sign of 𝑥, 𝑦, and 𝑧. If 𝑥 = +, then the transformation graph includes 𝐺 as a subgraph, otherwise includes 𝐺 as 

a subgraph, and if 𝑦 = +, then the transformation graph includes 𝐿(𝐺) as a subgraph, otherwise includes 

𝐿(𝐺) as a subgraph alike. Thus, depending on the sign of 𝑧, the relationship between 𝐺 (or 𝐺) and 𝐿(𝐺) (or 

𝐿(𝐺)) has been structured based on the aforesaid situation (iii). Let 𝑉(𝐺) ∪ 𝑉(𝐿(𝐺)) be the vertex set of the 

transformation graph where 𝑉(𝐺) = {1,2,⋯ , 𝑛} and 𝑉(𝐿(𝐺)) = {(𝑖𝑗) ∶  (𝑖𝑗) ∈ 𝐸(𝐺)}. The vertex set will be 

expressed in this form unless otherwise stated. We direct readers’ attention to select papers that offer 

comprehensive insights into the outcomes concerning specific domination parameters in transformation 

graphs. These referenced works provide detailed and in-depth information that can facilitate a deeper 

understanding of the subject matter of transformation graphs [19- 26]. 

2. Preliminaries  

This section presents pivotal outcomes from scholarly literature concerning the paired domination number.  
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Proposition 2.1. [2] If 𝑢 is adjacent to an end vertex of 𝐺, then 𝑢 is in every paired dominating set. 

Furthermore, for certain specific families of graphs, 𝛾𝑝𝑟(𝐾𝑛) = 𝛾𝑝𝑟(𝐾𝑟,𝑠) = 𝛾𝑝𝑟(𝑊𝑛) = 2 and 𝛾𝑝𝑟(𝑃𝑛) =

𝛾𝑝𝑟(𝐶𝑛) = 2 ⌈
𝑛

4
⌉. 

Here, the notation ⌈ . ⌉ represents the ceiling function.  

Theorem 2.2. [2] For any graph 𝐺, 𝛾𝑝𝑟(𝐺) ≥ 4 if and only if diam(𝐺) = 2. 

Theorem 2.3. [2] If a graph 𝐺 has no isolated vertices, then 2 ≤ 𝛾𝑝𝑟(𝐺) ≤ 𝑛. 

Proposition 2.4. [2] If a graph 𝐺 has no isolated vertices, then 𝛾(𝐺) ≤ 𝛾𝑡(𝐺) ≤ 𝛾𝑝𝑟(𝐺), and 𝛾𝑝𝑟(𝐺) is even. 

3. Results 

This section presents the results of the eight different permutations of path and cycle transformation graphs for 

the paired domination parameter. 

3.1. Paired Domination of Transformation Path Graphs 

In this designated section, we intend to acquire and elucidate the outcomes of the paired domination of 

transformation graphs across all permutations. We shall commence our exposition by focusing on the specific 

𝑃𝑛
+++ form of permutations. 

Theorem 3.1. Let 𝑛 > 6 and 𝑃𝑛 be a path graph. Then, 

𝛾𝑝𝑟(𝑃𝑛
+++) =

{
 
 

 
 ⌈

4𝑛 − 2

7
⌉ , 𝑛 ≡ 0,3,4,6 (mod 7)

⌈
4𝑛 − 2

7
⌉ + 1, otherwise

 

PROOF. 

The vertices of the graph 𝑃𝑛
+++ can be partitioned into two parts, such as 𝑉 = 𝑉1 ∪ 𝑉2. To alleviate the burden 

of complex notation, the vertex sets can be labeled as 𝑉1 = {1,2,⋯ , 𝑛} and 𝑉2 = {𝑛 + 1, 𝑛 + 2,⋯ ,2𝑛}. Let 𝐷 

be a 𝑃𝐷-set of 𝑃𝑛
+++ . To begin, we establish an upper bound for 𝛾𝑝𝑟(𝑃𝑛

+++) as follows: Let 𝑆 = 𝑆1 ∪ 𝑆2 be a 

set where 𝑆1 includes the vertices of 𝑉(𝑃𝑛
+++), and 𝑆2 includes the vertices of 𝑉(𝐿(𝑃𝑛

+++)) as follows: 

𝑆1 = ⋃ {(7𝑖 + 2,7𝑖 + 3)}

⌈
𝑛−2
7
⌉−1

𝑖=0

 

and 

𝑆2 = ⋃ {(𝑛 + 7𝑖 + 5, 𝑛 + 7𝑖 + 6)}

⌈
𝑛−6
7
⌉−1

𝑖=0

 

Here, the cardinality of 𝑆 is |𝑆| = 2 ⌈
𝑛−2

7
⌉ + 2 ⌈

𝑛−6

7
⌉. 

i. If 𝑛 ≡ 0,3,4 (mod 7), then 𝐷 = 𝑆. 

ii. If 𝑛 ≡ 1,2 (mod 7), then 𝐷 = 𝑆 ∪ {𝑛, 𝑛 − 1}. 

iii. If 𝑛 ≡ 5,6 (mod 7), then 𝐷 = 𝑆 ∪ {2𝑛 − 2, 2𝑛 − 1}. 

Therefore, |𝐷| = ⌈
4𝑛−2

7
⌉, for 𝑛 ≡ 0,3,4 (mod 7), otherwise |𝐷| = ⌈

4𝑛−2

7
⌉ + 1. Thus, 
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𝛾𝑝𝑟(𝑃𝑛
+++) ≤

{
 
 

 
 ⌈

4𝑛 − 2

7
⌉ , 𝑛 ≡ 0,3,4 (mod 7)

⌈
4𝑛 − 2

7
⌉ + 1, otherwise

 

In order to prove the necessary condition, assume that the set 𝑇 = {𝑎1, 𝑎2,⋯ , 𝑎𝑡} is 𝛾𝑝𝑟-set of 𝑃𝑛
+++. Assume 

that the elements of 𝑇 are ordered as 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑖 < ⋯ < 𝑎𝑚 < 𝑎𝑚+1 < ⋯ < 𝑎𝑗 < ⋯ < 𝑎𝑡 . Here, 𝑎𝑖 

and 𝑎𝑗 are positive integers, 1 ≤ 𝑎𝑖 ≤ 𝑛, for all 𝑖 ∈ {1,⋯ ,𝑚}, and 𝑛 + 1 ≤ 𝑎𝑗 ≤ 2𝑛 − 1, for all 𝑗 ∈ {𝑚 +

1,⋯ , 𝑡}. Define a function such as 𝑓𝑥 = 𝑎𝑥+2 − 𝑎𝑥 where 𝑥 ∈ {1,2,⋯ , 𝑡 − 2} such that 𝑥 ≠ 𝑚 and 𝑥 ≠ 𝑚 −

1. It is needed to prove that 𝑓𝑥 ≤ 7. Assume that a value of 𝑓𝑥  is greater than or equal to 8. Without loss of 

generality, choose 𝑓1 = 8. Therefore, for 𝑛 ≥ 14, we can create a set 

𝑆′ = {2,3, 𝑛 + 5, 𝑛 + 6, 𝑛 + 7, 𝑛 + 8} ∪

(

 ⋃ {7𝑖 + 10,7𝑖 + 11}

⌈
𝑛−10
7

⌉−1

𝑖=0
)

 ∪

(

 ⋃ {𝑛 + 7𝑖 + 13, 𝑛 + 7𝑖 + 14}

⌈
𝑛−10
7

⌉−1

𝑖=0
)

  

For 𝑛 ≡ 3 (mod 7), 𝑇 = 𝑆′ ∪ {𝑛, 𝑛 − 1}. Thus, 

|𝑇| = |𝑆′| + 2 = 8 + 2(
𝑛 − 10

7
) + 2(

𝑛 − 10

7
) =

4𝑛 + 16

7
 

However, it contradicts the obtained upper bound ⌈
4𝑛−2

7
⌉. Hence, 𝑓𝑥  should be less than or equal to 7. Then, 

the upper bound for the total value of 𝑓𝑥  can be gotten as follows: 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

≤ 7(𝑡 − 4) 

In order to construct a relationship between the values of 𝑡 and 𝑛, the total value of 𝑓𝑥  can be evaluated as 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 𝑎𝑚 + 𝑎𝑚−1 + 𝑎𝑡 + 𝑎𝑡−1 − (2𝑛 + 16) 

where 𝑎1 = 2, 𝑎2 = 3, 𝑎𝑚+1 = 𝑛 + 5, and 𝑎𝑚+2 = 𝑛 + 6. 

If 𝑛 ≡ 0 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 28 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛

7
 where 𝑎𝑚 = 𝑛 − 4, 𝑎𝑚−1 = 𝑛 − 5, 𝑎𝑡 = 2𝑛 − 1, and 𝑎𝑡−1 = 2𝑛 − 2. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛

7
= ⌈

4𝑛 − 2

7
⌉ 

Thus, it requires that 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉, for 𝑛 ≡ 0 (mod 7). 

If 𝑛 ≡ 1 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 22 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛+6

7
 where 𝑎𝑚 = 𝑛, 𝑎𝑚−1 = 𝑛 − 1, 𝑎𝑡 = 2𝑛 − 2, and 𝑎𝑡−1 = 2𝑛 − 3. Therefore, 
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|𝑇| = 𝑡 ≥
4𝑛 + 6

7
= ⌈

4𝑛 − 2

7
⌉ + 1 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉ + 1, for 𝑛 ≡ 1 (mod 7). 

If 𝑛 ≡ 2 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 24 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛+4

7
 where 𝑎𝑚 = 𝑛, 𝑎𝑚−1 = 𝑛 − 1, 𝑎𝑡 = 2𝑛 − 3, and 𝑎𝑡−1 = 2𝑛 − 4. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛 + 4

7
= ⌈

4𝑛 − 2

7
⌉ + 1 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉ + 1, for 𝑛 ≡ 2 (mod 7). 

If 𝑛 ≡ 3 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 26 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛+2

7
 where 𝑎𝑚 = 𝑛, 𝑎𝑚−1 = 𝑛 − 1, 𝑎𝑡 = 2𝑛 − 4, and 𝑎𝑡−1 = 2𝑛 − 5. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛 + 2

7
= ⌈

4𝑛 − 2

7
⌉ 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉, for 𝑛 ≡ 3 (mod 7). 

If 𝑛 ≡ 4 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 30 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛−2

7
 where 𝑎𝑚 = 𝑛 − 1, 𝑎𝑚−1 = 𝑛 − 2, 𝑎𝑡 = 2𝑛 − 5, and 𝑎𝑡−1 = 2𝑛 − 6. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛 − 2

7
= ⌈

4𝑛 − 2

7
⌉ 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉, for 𝑛 ≡ 4 (mod 7). 

If 𝑛 ≡ 5 (mod 7), then 

∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 24 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛+4

7
 where 𝑎𝑚 = 𝑛 − 2, 𝑎𝑚−1 = 𝑛 − 3, 𝑎𝑡 = 2𝑛 − 1, and 𝑎𝑡−1 = 2𝑛 − 2. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛 + 4

7
= ⌈

4𝑛 − 2

7
⌉ + 1 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉ + 1, for 𝑛 ≡ 5 (mod 7). 

If 𝑛 ≡ 6 (mod 7), then 
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∑ 𝑓𝑥1

𝑚−2

𝑥1=1

+ ∑ 𝑓𝑥2

𝑡−2

𝑥2=𝑚+1

= 4𝑛 − 26 ≤ 7(𝑡 − 4) 

It is obtained that 𝑡 ≥
4𝑛+2

7
 where 𝑎𝑚 = 𝑛 − 3, 𝑎𝑚−1 = 𝑛 − 4, 𝑎𝑡 = 2𝑛 − 1, and 𝑎𝑡−1 = 2𝑛 − 2. Therefore, 

|𝑇| = 𝑡 ≥
4𝑛 + 2

7
= ⌈

4𝑛 − 2

7
⌉ 

Thus, 𝛾𝑝𝑟(𝑃𝑛
+++) ≥ ⌈

4𝑛−2

7
⌉ + 1 for 𝑛 ≡ 6 (mod 7). 

Hence, from the necessary and sufficient conditions, we obtain the result as 

𝛾𝑝𝑟(𝑃𝑛
+++) =

{
 
 

 
 ⌈

4𝑛− 2
7

⌉ , 𝑛 ≡ 0,3,4,6 (mod 7)

⌈
4𝑛− 2
7

⌉+1, otherwise
 

Theorem 3.2. Let 𝑛 > 5 and 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
++−) = 4. 

PROOF. 

Consider the set of vertices {1,2,⋯ , 𝑛} as the vertex set of 𝑃𝑛. Let 𝑆 be paired dominating set of 𝑃𝑛
++− and 

𝑆 = 𝑆1 ∪ 𝑆2 where 𝑆1 = {𝑢 | 𝑢 ∈ 𝑉(𝑃𝑛)} and 𝑆2 = {𝑒 | 𝑒 ∈ 𝑉(𝐿(𝑃𝑛))}. If the vertex 1 is part of 𝑆1 then all the 

vertices in 𝐿(𝑃𝑛) except for (12) ∈ 𝑉(𝐿(𝑃𝑛)) are dominated. To achieve perfect matching and ensure the 

domination of the vertex (12) and the remaining vertices {3,4,⋯ , 𝑛} ∈ 𝑉(𝑃𝑛), it is needed to add a vertex 𝑒 =

(𝑢𝑣) to 𝑆2, which is adjacent to 1, and 𝑣 and 𝑣 + 1 to 𝑆1 . Therefore, {1, (𝑢𝑣), 𝑣, 𝑣 + 1} is a paired dominating 

set for 𝑃𝑛
++− and |𝑆| ≤ 4. However, it is impossible to dominate all the vertices with two pairs of vertices. 

Then, |𝑆| > 2. Moreover, since the paired domination number must be an even number according to 

Proposition 2.4. Then,  

𝛾𝑝𝑟(𝑃𝑛
++−) = 4 

◻ 

Theorem 3.3. Let 𝑛 ≥ 6 and 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
+−+) = 2 + 𝛾𝑝𝑟(𝑃𝑛−4). 

PROOF. 

Consider the set of vertices {1,2,⋯ , 𝑛} as the vertex set of 𝑃𝑛. Let 𝑆 be the minimum paired dominating set of 

𝑃𝑛
+−+. It is known that |𝑆| ≥ 2 from Theorem 2.3. If the vertices (12) and ((𝑛 − 1)(𝑛)) with the maximum 

degree in 𝑃𝑛
+−+ are added to 𝑆, then all the vertices in 𝑉(𝐿(𝑃𝑛)) are dominated. However, there are some non-

dominated vertices such as {3,4,⋯ , (𝑛 − 2)} ∈ 𝑉(𝑃𝑛
+−+). These non-dominated (𝑛 − 4) vertices construct a 

𝑃𝑛−4 structure. As a result, the size of S can be expressed as 2 + 𝛾𝑝𝑟(𝑃𝑛−4). ◻ 

Theorem 3.4. Let 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
+−−) = 2. 

PROOF. 

Let {1,2,⋯ , 𝑛} be the vertex set of 𝑃𝑛. Let 𝑆 be a paired dominating set of 𝑃𝑛
+−−. It is clear that all the vertices 

in 𝑃𝑛
+−− dominated pairedly by {(12), ((𝑛 − 1)𝑛)}. This insight leads to the conclusion that |𝑆| ≤ 2. By 

Theorem 2.3, it is established that 𝑆 must have a size of at least 2. Consequently, combining these observations, 

we can affirm that |𝑆| = 2. ◻ 

Theorem 3.5. Let 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
−−−) = 2. 
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PROOF. 

Let {1,2,⋯ , 𝑛} be the vertex set of 𝑃𝑛. Let 𝑆 be a paired dominating set of 𝑃𝑛
−−−. As in the proof of 𝑃𝑛

+−−, all 

the vertices in 𝑃𝑛
−−− dominated pairedly by {(12), ((𝑛 − 1)𝑛)}. Therefore, |𝑆| ≤ 2. It is known that |𝑆| ≥ 2 

from Theorem 2.3. Consequently, |𝑆| = 2. ◻ 

Theorem 3.6. Let 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
−−+) = 4. 

PROOF. 

Let {1,2,⋯ , 𝑛} be the vertex set of 𝑃𝑛. Consider that 𝑆 be paired dominating set of 𝑃𝑛
−−+ and 𝑆 = 𝑆1 ∪ 𝑆2 

where 𝑆1 = {𝑢 | 𝑢 ∈ 𝑉(𝑃𝑛)} and 𝑆2 = {𝑒 | 𝑒 ∈ 𝑉(𝐿(𝑃𝑛))}. If 1 ∈ 𝑆1, then all the vertices in 𝑃𝑛
−−+ except for 

2 ∈ 𝑉(𝑃𝑛) and the vertex (12) ∈ 𝑉(𝐿(𝑃𝑛)) are dominated. In order to get perfect matching and dominate 2 ∈ 

𝑉(𝑃𝑛), it is needed to add a vertex (12) to 𝑆2, which is adjacent to 1. However, the vertex (23) is the only 

non-dominated vertex in the graph. Therefore, a pair should be added to the set as {1, (12), 𝑣, 𝑣 + 1}, a paired 

dominating set for 𝑃𝑛
−−+. Hence, |𝑆| ≤ 4. Furthermore, it is not feasible to achieve domination over all the 

vertices using only two pairs of vertices, leading to the conclusion that |𝑆| > 2. Considering Proposition 2.4 

stating the paired domination number must be an even value, 𝛾𝑝𝑟(𝑃𝑛
++−) = 4. ◻ 

Theorem 3.7. Let 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
−+−) = 2. 

PROOF. 

Consider the set of vertices {1,2,⋯ , 𝑛} as the vertex set of 𝑃𝑛. Let 𝑆 represent the paired dominating set of 

𝑃𝑛
−+−. All the vertices in 𝑃𝑛

−+− are dominated pairedly by {1, 𝑛}. As a direct consequence, we deduce that 

|𝑆| ≤ 2. It is established in Theorem 2.3 that |𝑆| must have a minimum size of 2. Hence, combining these 

results, |𝑆| = 2. ◻ 

Theorem 3.8. Let 𝑃𝑛 be a path graph. Then, 𝛾𝑝𝑟(𝑃𝑛
−++) = 2 + 𝛾𝑝𝑟(𝑃𝑛−5). 

PROOF. 

Let {1,2,⋯ , 𝑛} be the vertex set of 𝑃𝑛, and 𝑆 be the minimum paired dominating set of 𝑃𝑛
−++. It is known that 

|𝑆| ≥ 2 from Theorem 2.3. Upon introducing the vertices (2) and ((𝑛 − 1)), which possess the highest degree 

in 𝐺, are added to the set 𝑆, then all the vertices in 𝑉(𝑃𝑛) are dominated. Nevertheless, there are some non-

dominated vertices, such as {(34), (45), . . . , ((𝑛 − 3)(𝑛 − 2))} in 𝑉(𝐿(𝐺)). These non-dominated (𝑛 − 5) 

vertices construct a 𝑃𝑛−5 structure. Therefore, it is obtained that 𝑆 = 2 + 𝛾𝑝𝑟(𝑃𝑛−5). ◻ 

3.2. Paired Domination of Transformation Cycle Graphs 

Given the particular structure of the cycle graph, it is noteworthy that the line graph of 𝐶𝑛 exhibits isomorphism 

to itself. This observation leads to deduce the subsequent results: 

Theorem 3.9. Let 𝐶𝑛  be a cycle graph. Then, 𝛾𝑝𝑟(𝐶𝑛
++−) = 4. 

PROOF. 

Let {1,2,3,⋯ , 𝑛} be the vertex set of 𝐶𝑛 , and 𝑆 be the paired dominating set of 𝐶𝑛
++−. If 𝑆 contains the vertex 

1 and the vertex (12), then it ensures the domination of all the vertices within the graph. Nevertheless, these 

two vertices are not adjacent according to the form of the graph. In order to get perfect matching, it is needed 

to add two more vertex. It holds that the size of set 𝑆 exceeds 2. Consequently, we can deduce that the 

parameter 𝛾𝑝𝑟(𝐶𝑛
++−) is equal to 4. ◻ 

Theorem 3.10. Let 𝐶𝑛  be a cycle graph and 𝑛 ≥ 9. Then, 𝛾𝑝𝑟(𝐶𝑛
−++) = 𝛾𝑝𝑟(𝐶𝑛

+−+) = 4 + 2 ⌈
𝑛−8

4
⌉. 
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PROOF. 

Let {1,2,3,⋯ , 𝑛} be the vertex set of 𝐶𝑛  and 𝑆 be the paired dominating set of 𝐶𝑛
−++. If 𝑆 includes the vertices 

(12), (1𝑛), 4, and (𝑛 − 2), then all the vertices of 𝐶𝑛 and the vertices labeled by (12), (23), (34), (45), 

((𝑛 − 3)(𝑛 − 2)), ((𝑛 − 2)(𝑛 − 1)), ((𝑛 − 1)(𝑛)), and (𝑛1) in 𝐿(𝐶𝑛) are dominated pairedly. However, the 

non-dominated 𝑃𝑛−8 the structure remains. Consequently, from [2] 

𝛾𝑝𝑟(𝐶𝑛
−++) = 𝛾𝑝𝑟(𝐶𝑛

+−+) = 4 + 𝛾𝑝𝑟(𝑃𝑛−8) = 4 + 2 ⌈
𝑛 − 8

4
⌉ 

◻ 

Theorem 3.11. Let 𝐶𝑛  be a cycle graph and 𝑛 ≥ 6. Then, 𝛾𝑝𝑟(𝐶𝑛
−+−) = 𝛾𝑝𝑟(𝐶𝑛

+−−) = 2. 

PROOF. 

Consider the vertex set {1,2,3,⋯ , 𝑛} as the vertex set of 𝐶𝑛 , and let 𝑆 denote a paired dominating set of 𝐶𝑛
+−−. 

If 𝑆 includes (12) and (45) from 𝑉(𝐿(𝐶𝑛)), then all the vertices in 𝐶𝑛
+−− are dominated pairedly. 

Consequently, it follows that 𝛾𝑝𝑟(𝐶𝑛
−+−) = 𝛾𝑝𝑟(𝐶𝑛

+−−) = 2, establishing the paired domination number for 

𝐶𝑛
−+− and 𝐶𝑛

+−−. ◻ 

Theorem 3.12. Let 𝐶𝑛  be a cycle graph and 𝑛 ≥ 6. Then, 𝛾𝑝𝑟(𝐶𝑛
−−+) = 4. 

PROOF. 

Given the graph 𝐶𝑛
−−+, the complete graph of 𝐶𝑛

++−, it can be deduced from Theorem 2.2 that its diameter is 

2. Consequently, this implies that 𝛾𝑝𝑟(𝐶𝑛
−−+) ≥ 4. Considering the vertex set {1,2,3,⋯ , 𝑛} as the vertex set of 

𝐶𝑛 , and let 𝑆 be paired dominating set of 𝐶𝑛
−−+. If 𝑆 is included (1) and (3) from 𝑉(𝐶𝑛) and (12) and (34) 

from 𝑉 (𝐿(𝐶𝑛)), then all the vertices in 𝐶𝑛
−−+ are dominated. This observation leads to the conclusion that 

|𝑆| = 𝛾𝑝𝑟(𝐶𝑛
−−+) ≤ 4. Hence, 𝛾𝑝𝑟(𝐶𝑛

−−+) = 4. ◻ 

Theorem 3.13. Let 𝐶𝑛  be a cycle graph. Then, 𝛾𝑝𝑟(𝐶𝑛
−−−) = 2. 

PROOF. 

Consider the vertex set {1,2,3,⋯ , 𝑛} of the 𝐶𝑛 , and let 𝑆 be a paired dominating set of 𝐶𝑛
−−− . If 𝑆 contains the 

vertices 1 and 4, then it ensures that 𝑆 dominates 𝐶𝑛  and 𝐿(𝐶𝑛). Additionally, ⟨𝑆⟩ forms a graph with perfect 

matching. ◻ 

Theorem 3.14. Let 𝐶𝑛  be a cycle graph. Then, 

𝛾𝑝𝑟(𝐶𝑛
+++) = {

𝛾𝑝𝑟(𝑃𝑛
+++) + 2, 𝑛 ≡ 4 (mod 7)

𝛾𝑝𝑟(𝑃𝑛
+++), otherwise

 

PROOF. 

Let 𝑆 be the 𝛾𝑝𝑟-set of 𝑃𝑛
+++. Considered similar to the proof of the 𝑃𝑛

+++, 𝑆 is also the 𝛾𝑝𝑟-set of 𝐶𝑛
+++ when 

𝑛 ≢ 4 (mod 7). If the vertex set of 𝐿(𝐶𝑛) labeled as in the proof of 𝑃𝑛
+++, the vertex (𝑛1) corresponds to the 

vertex 2𝑛. However, the vertex (2𝑛) ∈ 𝑉(𝐿(𝐶𝑛
+++)) cannot be dominated by 𝑆 when 𝑛 ≡ 4 (mod 7). In such 

cases, the addition of two extra vertices becomes necessary to ensure paired domination. Hence,  

𝛾𝑝𝑟(𝐶𝑛
+++) = 𝛾𝑝𝑟(𝑃𝑛

+++) + 2 

when 𝑛 ≡ 4 (mod 7). Henceforth, it is deduced that 

𝛾𝑝𝑟(𝐶𝑛
+++) = {

𝛾𝑝𝑟(𝑃𝑛
+++) + 2, 𝑛 ≡ 4 (mod 7)

𝛾𝑝𝑟(𝑃𝑛
+++), otherwise

 

◻  
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4. Conclusion  

We have implemented the discussed paired domination parameter from this research on path and cycle 

structures, two significant classes within the realm of graphs. We have derived outcomes for the transformation 

graphs encompassing all eight permutations in both these structural contexts. The outcome 𝛾𝑝𝑟(𝑃𝑛
+++) is then 

applied to derive the 𝛾𝑝𝑟(𝐶𝑛
+++) result for the cycle structure. 

In upcoming research endeavors related to the topic, paired domination values of transformation graphs can 

be investigated for a general 𝐺 graph. Furthermore, an attempt can be made to establish associations with other 

graph parameters to derive lower or upper-bound values. Since the concept of domination holds a significant 

position in graph theory, researchers interested in the subject might also explore the influence of transformation 

graphs on other domination parameters. 
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underlying field is algebraically closed. Only a few cases are possible regarding the number of
lines over fields that are not algebraically closed. The next two cases of interest are smooth
cubic surfaces with 15 or 9 lines. The author has recently settled the case of 15 lines. In this
paper, we address the case of smooth cubic surfaces with 9 lines. We describe a way to create
some cubic surfaces with 9 or more lines based on a set of six field elements. Conditions on
the six parameters are given under which the surface has exactly 9, 15, or 27 lines. However,
the problem of generating all cubic surfaces with 9 lines remains open.
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1. Introduction

It is well known that a smooth cubic surface over an algebraically closed field has exactly 27 lines [1].
However, the number of lines over a non-algebraically closed field varies. Naturally, the following
question arises: How many lines can a smooth cubic surface have over a non-algebraically closed field?
The problem of determining these numbers over the fields of R, Q, Fq where q is odd, and F2 has been
considered by several authors [2–5]. In [6], the author gives the possible number of lines of smooth
cubic surfaces over Fq where q is even. The number of lines of a smooth cubic surface is one of 27, 15,
9, 7, 5, 3, 2, 1, or 0 [3]. The results on cubic surfaces with 15 or 27 lines over a given field are found
in [7–11], as well as using alternative methods in papers [12–14]. All the classification results agree
with an enumerative formula recently found by Das [15].

In this paper, we focus on smooth surfaces with at least 9 lines over various fields, characteristic 0 or
p. In [2], Schlafli described 27 lines of the cubic surface, explaining the line intersection properties.
Each line intersects ten others and skews to 16. He defined the term “double-six”, which has 12 lines
with some special properties, and another 15 can be produced by these 12. To give the intersection
properties of the lines for 9, we use the same idea of the double-six but for double-three. Smooth
cubic surfaces may only have less than 27 lines if the field is nonalgebraically closed. However, over
the algebraic closure of that field, the surface will have 27 lines. Therefore, we can use Schlafli labeling
to notate 9 lines. We will then prove that the line intersection graph of the smooth cubic surfaces
with 9 lines is unique.
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We go back to the original proof by Cayley and Salmon that the surface has 27 lines over the alge-
braically closed fields as we did in [11]. We see that there is a discriminant condition certain polynomial
of degree 5, which can have irreducible factors of degree 3 over the field F, which is not algebraically
closed. When this happens, we end up with cubic surfaces with 9 lines. Considering the rational
lines over a given field F, we formulate the conditions that the surface has 9 lines over the given
field. We describe smooth cubic surfaces with at least 9 lines using six parameters. Our approach is
experimental. We study some examples of smooth cubic surfaces with 9 lines that we obtain using
the computer algebra system Orbiter [16]. Once we observe the pattern, we make the computer free
proof. The proof is based on the symmetry of the projective group. We use the computer algebra
system Maple for the symbolic computations. When we extend the field over the algebraic closure F,
the surface is complete to 27 lines since these surfaces are smooth. Using our model, we will show
examples of cubic surfaces over a field of characteristic zero and p. These examples would have 9, 15,
or 27 lines depending on whether the special polynomial is irreducible or reducible into two irreducible
polynomials or splits completely over the base field.

We give the rational parameterization of points of our new form. To do this, we study the birational
map between cubic surfaces and a plane, [9, 17]. There is an exceptional locus, and the birational
map is defined outside the exceptional locus bijective. The exceptional locus of the map on the plane
is two conics and a line. The exceptional locus of the map on the surface is two skew lines and one
transversal line. We give them explicitly.

The smooth cubic surface has q2 +tq+1 points where t is between -2 and 7, but 6 is never possible [18].
Studying the birational map helps us to prove that the smooth cubic surfaces with 9 lines have
q2 + 4q+ 1 points. If the cubic surface has a double-six, then the surface is smooth and has exactly 27
lines. However, if the surface has a double-three, it does not necessarily have exactly 9 lines. It can
have more lines, in which case the surface is singular. Hence, a necessary condition for the smoothness
of our new form is needed. We give this condition using the rational parameterization of our new
form.

In section 2, we will provide some basic theory about the cubic surfaces with 27 lines since the structure
of smooth cubic surfaces with 9 lines is the sub-configuration of the structure of cubic surfaces with 27
lines. In section 3, we show the uniqueness of 9 lines and investigate the configuration. In this section,
we also give our new form for smooth cubic surfaces with at least 9 lines using six parameters, and
we provide the conditions when the surface has exactly 9, 15, or 27 over the given field. In section
4, we provide examples of various fields, including Q and some finite fields. In section 5, we give the
rational parameterization of our new form and the condition when our form is smooth. In section 6,
we discuss future work.

2. Preliminaries

In this section, we provide some background material on cubic surfaces and projective geometry over
finite fields. For a deeper treatment, we refer to [11,19,20].

A finite field is a field with only a finite number of elements. Fq is a finite field of order q = pk where p is
a prime number. The characteristic of the field is the smallest n such that 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸

n times

= 0. The

characteristic of Fq is p. Fp = Fp adjoints all the roots of polynomials over Fp. Fp is an algebraically
closed field of characteristic p. Fp contains every Fpe , for all e ≥ 1. Each Fp has a unique Fp.

Let F be a field. A projective space PG(n,F) is a partially ordered set of subspaces of a vector space
v(n+ 1,F). It is a lattice with respect to “join” and “meet”. Join is the span of two subspaces. Meet
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is the intersection of two subspaces. In PG(3,F), a point is denoted by P = P(α0, α1, α2, α3). A line
through the points P(β0, β1, β2, β3) and P(γ0, γ1, γ2, γ3) is denoted by

ℓ = L
[
β0 β1 β2 β3
γ0 γ1 γ2 γ3

]
The plane consists of the non-collinear points P(α0, α1, α2, α3), P(β0, β1, β2, β3), and P(γ0, γ1, γ2, γ3)
and is denoted by

π = v(c0x0 + c1x1 + c2x2 + c3x3) =


α0 α1 α2 α3

β0 β1 β2 β3

γ0 γ1 γ2 γ3


where c0, c1, c2, and c3 are elements of the field F.

A conic is a curve of degree 2 in PG(2,F). It is either an irreducible conic, two distinct lines, or a
double line. The space of quadratic polynomials in three variables has dimension 6. To determine
conic in the associated projective space, 5 linearly independent conditions are required. A cubic curve
is a curve of degree three in PG(2,F). It is one of the following: an irreducible cubic, a conic, and
a line, 3 different lines, or 2 different lines such that one of which is a double or a triple line. To
determine a conic in the associated projective space, 9 linearly independent conditions are required.
A k-arc in PG(2,F) is a set of k points where no three are collinear.

Let π be a plane in PG(3,F), and Q be a point on π. Let ℓ1 and ℓ2 be two skew lines in PG(3,F) \ π.
Then, there is a unique transversal line of ℓ1 and ℓ2 through Q.

The automorphism group PΓL(n+ 1,F) of PG(n,F) is the group of bijective mappings that preserve
collinearity. The collineation group contains PGL(n+ 1,F) as subgroup which is the group of projec-
tivities of PG(n,F). PGL(4,F) is transitive on the points, lines, and planes of PG(3,F). In PG(n,F),
any (n + 2)-arc can be mapped to any other (n + 2)-arc. The pointwise stabilizer of a hyperplane π
in the PGL(4,F) is transitive on the set of two skew lines of PG(3,F) not in π which meet the fixed
plane π in two points.

Let f be a homogeneous cubic equation in 4 variables over the field F. A cubic surface F in PG(3,F)
is the zero set of f . For instance,

F = v(f) = v
(
x3

0 + x3
1 + x3

2 + x3
3 − (x0 + x1 + x2 + x3)3)

The cubic surface is smooth if the following system of equations has no solution:

f(x0, x1, x2, x3) = 0
∂f(x0,x1,x2,x3)

∂x0
= 0

∂f(x0,x1,x2,x3)
∂x1

= 0
∂f(x0,x1,x2,x3)

∂x2
= 0

∂f(x0,x1,x2,x3)
∂x3

= 0

To define a cubic surface F in PG(3,F), it is sufficient to specify 19 linearly independent points on
it. A line in PG(3,F) either intersects cubic surfaces in three points, or it is the line of F . Therefore,
if the 4 points of the line are on the cubic surface, then the line lies on it. A cubic surface intersects
a plane in a cubic curve. If the surface is smooth, then that cubic curve is one of the following: an
irreducible cubic, a line, an irreducible conic, or 3 different lines. If the cubic surface intersects a plane
in 3 different lines, then that plane is called a tritangent plane.
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A “double-six” in PG(3,F) is the set of 12 lines

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

such that ai intersects bj if and only if i ̸= j, ai are pairwise skew, and bi are pairwise skew.

Figure 1. 19 independent points of cubic surfaces with 27 lines

A double-six determines a unique cubic surface with 27 lines. 15 further lines cij are given by < ai, bj >

∩ < aj , bi > [2]. The red points in Figure 1 represent the 19 independent points that determine the
cubic surface with 27 lines.

When three lines of the cubic surface are concurrent at a point, then this point is called an Eckardt
point. From line intersection properties, only two cases are possible: either ai, bj , and cij are concurrent
where i ̸= j or cij , ckl, and cmn are concurrent where i, j, k, l, m, and n are all different. In the first
case, we notate the Eckardt point as Eij , and for the second case, Eij,kl,mn.

There is a map between the cubic surface in PG(3,F) and a plane. This map is called Clebsch map
in [9]. Here, we refer to [9,11,17,20] and repeat the description of the map. Let F be a cubic surface
and π be a plane in PG(3,F). Let ℓ1 and ℓ2 be two skew lines of F not lying on the plane π, and
P = P(X) be a point of F which is neither on ℓ1 nor on ℓ2. There is a unique line ℓ through P which
is the transversal to ℓ1 and ℓ2. The line ℓ meets π in a unique point Q = P(Y ). Let Q be the image
of P . Therefore,

Φ : F → π

P 7→Q

There is a unique line through Q that is transversal to ℓ1 and ℓ2. This line intersect F in 3 points.
Two of them are on ℓ1 and ℓ2, let the third one to be P . The inverse Φ−1 of this map moves Q to P .

Figure 2. Birational map from cubic surfaces with 27 lines to 6-arc not on a conic

Some properties of this map are as follows: Consider that the surface F has 27 lines. Each line of the
half double-six of F maps to a single point in π under Φ. These six points form a 6-arc not on a conic
in the plane, see Figure 2. Outside these six lines, the map is bijective.
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The following lemma is elementary. For a proof of the lemma, see Proposition 7.3 in [21]. For the
sake of completeness, we include the reference of the previous paper of the author [11].

Lemma 2.1. [11,21] Let F be a smooth cubic surface with at least one line. The number of tritangent
planes through a line of F is one of 0, 1, 2, 3, and 5 but never 4.

Lemma 2.2. [1] If two lines of a smooth cubic surface intersect, then they span a tritangent plane.

We introduce the following notation. Two tritangent planes are called disjoint if their line of intersec-
tion does not belong to F .

Lemma 2.3. [22] Any two disjoint tritangent planes of F determine a third.

The three tritangent planes in Lemma 2.3 give rise to 9 lines of F . These 9 lines give rise to three
further tritangent planes [11,20].

A trihedral pair consists of two sets of three tritangent planes, which pairwise intersect in 9 lines of
F [22].

Lemma 2.4. Let F be a smooth cubic surface with at least 9 lines over the field F. There exist at
least four tritangent planes of F .

Proof.
As 9 lines of F cannot be pairwise skew, there exist two lines ℓ1 and ℓ2 which intersect. From Lemma
2.2, there is a third line ℓ3 such that ℓ1, ℓ2, and ℓ3 form a tritangent plane. Any line not contained
in a hyperplane intersects the hyperplane at a point. In the case of a tritangent plane and a line of
the surface, this point of intersection must be on one of the three lines of the tritangent plane. Hence,
each mi such that i ∈ {1, . . . , 6} intersect one of the ℓj such that j ∈ {1, 2, 3}. This gives rise to 6
pairs (ℓj ,mi) of intersecting lines. By Lemma 2.2, these 6 pairs create at least 3 tritangent planes
different from the tritangent plane through ℓ1, ℓ2, and ℓ3.

Lemma 2.5. Let F be a smooth cubic surface with at least 9 lines over the field F. Lemma 2.4
guarantees that there are at least 4 tritangent planes. If these 4 tritangent planes of F intersect
pairwise in a line of the surface, then they all intersect in the same line of F .

Proof.
Let π1, π2, π3, and π4 be the tritangent planes arising from Lemma 2.4. Let π1 and π2 intersect in
the line a1 of F . Without loss of generality, we may assume that π1 is spanned by a1, b2, and c12, and
π2 is spanned by a1, b3, and c13. The lines b2 and c12 are skew to the lines b3 and c13. Therefore, if
the third tritangent plane π3 intersects π1 and π2 in lines of F , this line must be a1. The same holds
true for π4.

Lemma 2.6. Let F be a smooth cubic surface with at least 9 lines over the field F. Then, there is at
least one pair of disjoint tritangent planes.

Proof.
From Lemma 2.4, there exist 4 tritangent planes of F . To show that a disjoint pair of tritangent
planes exist, we assume the opposite. From Lemma 2.5, these planes are all through the same line.
By Lemma 2.1, there exists a fifth tritangent plane in this pencil. This configuration gives rise to 11
lines of the surface. Because of Lemma 2.2, any further line would create another tritangent plane
not passing through a1, contradicting Lemma 2.5, and it is not possible that a smooth cubic surface
to have 11 lines.
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3. Construction of a Smooth Cubic Surface with 9 Lines

This section proves the uniqueness of the line intersection graph of a smooth cubic surface with 9 lines
and defines double-three. Besides, is provides a new form of smooth cubic surfaces with at least 9
lines involving 6 parameters.

The result of Cayley (and Salmon) in [1] is strengthened for smooth cubic surfaces with 15 lines in [11].
In this section, we will strength this result for cubic surfaces with 9 lines.

Theorem 3.1. The line intersection graph of a smooth cubic surface with exactly 9 lines over F is
unique.

Proof.
Let F be a smooth cubic surface with 9 lines over F. By Lemma 2.6, there is a pair of disjoint tritangent
planes. Because of Lemma 2.3, there is a unique third tritangent plane which is also disjoint to others.
The 9 lines obtained in this way give rise to 3 more tritangent planes. Hence, there exists a trihedral
pair of F . In addition, there are 2 tritangent planes through each line of F . Moreover, each line in
the trihedral pair intersects 4 others and is skew to 4. Therefore, it is unique.

Let ℓ be a line of F and π(µ) be the plane through ℓ. π(µ) intersects F in a conic C(µ) and the line
ℓ. Let Q(µ) be a quadratic polynomial which represents C(µ). We define ∆(µ) as the discriminant of
the quadratic polynomial Q(µ) as in the proof of Lemma 2.1.

Theorem 3.2. Let F be a non-algebraically closed field, and F be a smooth cubic surface with at
least one line. The smooth cubic surface F has exactly 9 lines over F if and only if ∆(µ) consists of
an irreducible polynomial of degree 3 and 2 linear factors over F.

Proof.
If ∆(µ) has two linear factors over the field F, then there exists 2 tritangent planes through ℓ. With a
similar argument in the proof of Theorem 11 in [11], we start with a fixed tritangent plane. There is
one more tritangent plane through each of the three lines of the fixed plane. This gives 3 tritangent
planes different from the one we started with. Each tritangent plane gives rise to 2 new lines. Counting
all lines gives 1 + 2 + 3 · 1 · 2 = 9 lines. If F has exactly 9 lines, there are 2 tritangent planes through
each line of F from Theorem 3.1. Therefore, there are exactly 2 distinct solutions for µ ∈ F in the
∆(µ). Hence, ∆(µ) has exactly two distinct linear factors.

To give the intersection properties of the lines for smooth cubic surfaces with exactly 9 lines, we used
the same idea of double-six but for double-three.

Definition 3.3. Let F be a field. A double-three in PG(3,F) is the set of 6 lines

a1 a2 a3

b1 b2 b3

such that each line is skew to the ones in the same column or row and meets others. One row from
the array is called half double-three.

Once a smooth cubic surface include a double-three, then it follows with 3 more lines which arise from
the intersection of the following planes:

c12 = ⟨a1, b2⟩ ∩ ⟨a2, b1⟩

c13 = ⟨a1, b3⟩ ∩ ⟨a3, b1⟩

and
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c23 = ⟨a2, b3⟩ ∩ ⟨a3, b2⟩

The intersection table of 9 lines can be seen in Table 1. We insert 1 in the table if the lines intersect;
otherwise, 0.

Table 1. Pairwise intersection table of the 9 lines

a1 a2 a3 b1 b2 b3 c12 c13 c23

a1 − 0 0 0 1 1 1 1 0

a2 0 − 0 1 0 1 1 0 1

a3 0 0 − 1 1 0 0 1 1

b1 0 1 1 − 0 0 1 1 0

b2 1 0 1 0 − 0 1 0 1

b3 1 1 0 0 0 − 0 1 1

c12 1 1 0 1 1 0 − 0 0

c13 1 0 1 1 0 1 0 − 0

c23 0 1 1 0 1 1 0 0 −

The following theorem presents a new form of a smooth cubic surfaces with 9 lines.

Theorem 3.4. Let F be a field with at least 4 elements. Let a, c ∈ F \ {0, 1}, b, d ∈ F \ {0,−1}, and
f, g ∈ F \ {0} such that b ̸= d and f ̸= g. Let Fa,b,c,d,f,g = v(fa,b,c,d,f,g) be the variety over F given by
the equation fa,b,c,d,f,g

d002x
2
0x2 + d012x0x1x2 + d013x0x1x3 + d022x0x

2
2 + d023x0x2x3

+d112x
2
1x2 + d113x

2
1x3 + d122x1x

2
2 + d123x1x2x3 + d133x1x

2
3 = 0

(1)

where

d002 = bgκ3

d012 = g(a+ b)κ2 − f(bf + a)κ1

d013 = fκ1κ4

d022 = agκ3

d112 = −(1 + d)fκ4

d113 = d112

d023 = −abgκ3

d122 = −cfκ4

d133 = cdfκ4

d123 = (d− 1)cfκ4

κ1 = c+ d+ 1

κ2 = dg + c+ g

κ3 = cf + df − dg − c+ f − g

κ4 = ag − bf + bg − a

κ5 = abd+ acd+ bcd+ ab

κ6 = abc+ abd+ bcd+ ab

κ3 ̸= 0, κ4 ̸= 0, aκ1 + bc ̸= 0, and aκ2 + bcf ̸= 0

Let ga,b,c,d,f,g be the polynomial

ga,b,c,d,f,g = A3µ
3 +A2µ

2 +A1µ+A0 (2)
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in µ such that
A0 = −bcdf(ac+ ad+ cd+ a)(ag − bf + bg − a)

A1 = g2A12 + g(c2A112 + cA111 +A110) +A10

A2 = a2(fA221 +A220) − abc(f2A212 + fA211 +A210) +A20

A3 = (f − g)(ac+ ad+ bc+ a)(adg + bcf + ac+ ag)

and

A12 = −a(d+ 1)b(abd+ acd+ bcd+ ab) A220 = g(dg + c+ g)(bc+ 2bd+ cd+ 2b)

A112 = −(a+ b)(bd2f + abd− abf − adf − 2bdf) A212 = (c+ d+ 1)(b+ d− 1)

A111 = a(d+ 1)(ab2f − ab2 + abf + adf + b2f + bdf) A211 = −2cdg + 2cd+ 2cg + dg − c+ g

A110 = a2b2f(d+ 1)2 A210 = −g(dg + c+ g)(b+ d)

A221 = −(c+ d+ 1)(2bdg + bc+ 2bg + cd+ cg − c) A20 = −b2c2f(f − g)(2d− 1)

A10 = cf(bf + a)(abcd+ abd2 + bcd2 − abc− acd− ad2 − 2bcd− ab− ad)

Assume that the surface Fa,b,c,d,f,g is smooth over F. The surface Fa,b,c,d,f,g has at least 9 lines, six of
which form a double-three. The conditions on the exact number of lines of Fa,b,c,d,f,g depends on the
polynomial ga,b,c,d,f,g of degree three.

i. If the polynomial ga,b,c,d,f,g is irreducible over the field F, then the surface Fa,b,c,d,f,g has exactly 9
lines.

ii. If ga,b,c,d,f,g is reducible into one irreducible quadratic polynomial and one linear over the field F,
then the surface Fa,b,c,d,f,g has exactly 15 lines.

iii. If ga,b,c,d,f,g splits completely to 3 linear factors over the field F, then the surface Fa,b,c,d,f,g has
exactly 27 lines.

In Table 2, the parametrization of the 9 lines of Fa,b,c,d,f,g can be observed.

Table 2. Lines of Fa,b,c,d,f,g

a1 = L

[
a(b + 1) 0 −b b

a + b b 0 0

]
a2 =


L

[
1 0 0 0

0 d133 0 −d112

]
, κ1 = 0

L

[
−cd 0 0 κ1

1 + d κ1 0 0

]
, otherwise

a3 = L

[
0 0 0 1

0 0 1 0

]

b1 = L

[
1 0 0 0

0 0 0 1

]
b2 = L

[
0 1 0 0

0 0 −1 1

]
b3 = L

[
1 1 1 0

c(b − d)a 0 κ6 aκ1 + bc

]

c12 = L

[
1 0 0 0

0 1 0 0

]
c13 = L

[
a 0 0 1

0 0 b 1

]
c23 = L

[
0 0 d 1

0 c −1 1

]

Proof.
The group PGL(4,F) is transitive on the planes. Therefore, we can start from any hyperplane. Hence,
we may pick π = v(x3). Consider that we want to construct a cubic surface F with 9 lines, including
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the double-three. Considering the sub-configuration of Schlafli configuration and the labeling for 9
lines, we may choose the labels that a1, a2, a3, b1, b2, b3, c12, c13, and c23. To determine this surface
F , we have to specify 19 independent conditions. Nine of them should be on the plane π since the
cubic surface intersects π in a cubic curve. We can assume that the coordinates of 4 of those 9 points
are P1 = P(1, 0, 0, 0), P2 = P(1, 0, 0, 0), P3 = P(1, 0, 0, 0), and P4 = P(1, 0, 0, 0) since the projective
group of the plane is transitive on the quadrangles. Since PGL(4,F) is transitive on the lines, we can
pick the first line of the surface F without any constraints. Let assume that the first line of F is

c12 = L

 1 0 0 0
0 1 0 0


Since c12 lies on the surface F , there are 2 more independent points on the intersection c12∩F . Assume
that P7 = P(1, 1, 0, 0) and P8 = P(−1, 1, 0, 0) are the points of F as well as c12 is transitive. It is
known that the pointwise stabilizer of the hyperplane π in the PGL(4,F) is transitive on the set of
two skew lines of PG(3,F) not in π which meet the fixed plane π in two points P1 and P2. Therefore,
we are free to choose two skew lines not on the plane π through P1 and P2. Let

b1 = L

 1 0 0 0
0 0 0 1

 and b2 = L

 0 1 0 0
0 0 −1 1


are the two skew lines. b1 are through P1 and P5 = P(0, 0, 0, 1) and b2 are through P2 and P6 =
P(0, 0,−1, 1). It is known that there is a unique line through P2 and transversal to b1 and b2. We call
this line is a line of F . Because of the configuration of 9 lines, we can label that line as a3 and it is
the line through P5 and P6,

a3 = L

 0 0 0 1
0 0 −1 1


From line intersection properties, we know that there exists a line c23 which meets b2 and a3 and skew
to c12, i.e., not in π. When a3, b2, and c23 are not concurrent which means the Eckardt point E32

does not exist, we may set the line c23 through P9 = P(0, c,−1, 1) and P10 = P(0, 0, d, 1). Since P2,
P6, and P9 are three distinct points from our assumption, we have 0 ̸= c ̸= 1.

From line intersection properties, we know that there exists a line c13 which meets b1 and a3 and skew
to c12, i.e., not in π. When a3, b1, and c13 are not concurrent which means the Eckardt point E31 does
not exist, we may set the line c13 through P11 = P(a, 0, 0, 1) and p′ = P(0, 0, b, 1). Since P1, P5, and
P11 are three distinct points from our assumption, we have 0 ̸= a ̸= 1. Therefore, two lines of F are

c13 = L

 a 0 0 1
0 0 b 1

 and c23 = L

 0 c −1 1
0 0 d 1


Since P3, P5, P6, P10, and p′ are five distinct points on the line a3, we have b, d /∈ {0,−1} and
b ̸= d. Since there are already 4 independent points on a3, we do not count the point p′. The plane
π intersects the line c13 at the point P13 = P(−a, 0, b, 0) and intersects the line c23 at the point
P12 = P(0,−c, d + 1, 0). From line intersection properties, we know that there exists a line b3 which
meets c13 and c23 and skew to a3, b1, b2, and c12. The line b3 cannot intersect the line through P1 and
P3 and the line through P2 and P3 since those lines already have 3 points of F each. The new line b3 is
either P4 or P19 = P(f, g, 1, 0). For this new form, we consider the b3 is through P4. We know that the
line c13 and c23 are not in π, and they are skew. Hence, the transversal line b3 to c13 and c23 through P4

is uniquely determined. It intersects c13 at the point P14 = P(ac(b− d), 0, κ6, aκ1 + bc) and intersects
c23 at the point P15 = P(0,−ac(b− d), κ5, aκ1 + bc) where κ1 = c+ d+ 1, κ5 = abd+ acd+ bcd+ ab,
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and κ6 = abc+ abd+ bcd+ ab. Thus,

b3 = L

 1 1 1 0
c(b− d)a 0 κ6 aκ1 + bc


The line c13 already has 4 independent points of F which are p′, P11, P13, and P14. Hence, it is a
line of F . The line c23 already has 4 independent points of F which are P12, P10, P9, and P15. Thus,
it is a line of F . The lines b1, b2, and b3 have 3 points of F each. Therefore, we force the points
P16 = P(1, 0, 0, 1), P17 = P(0, 1,−1, 1), and P18 = a · P15 + P14 to be on the surface F . The following
18 points are chosen to force the lines

b1, b2, b3, a3, c12, c13, and c23

to be on the cubic surface. More conditions arise from the fact that the cubic surface intersects the
plane v(x3) in a cubic curve which consists of the line c12 and an irreducible conic. Besides, we have
considered the 8 points on π

P1, P2, P3, P4, P7, P8, P12, and P13

We need to force one further point of the surface to lie on this plane. We may pick the point
P19 = P(f, g, 1, 0). The conic through P3, P4, P12, P13, and P19 is irreducible. This gives the
restriction on the parameters a, b, c, d, f , and g such that a, c, f, g ̸= 0, f ̸= g, κ3 ̸= 0, κ4 ̸= 0,
aκ1 + bc ̸= 0, and aκ2 + bcf ̸= 0.

The points P1, . . . , P19 define the cubic surface uniquely since they are linearly independent. Using
Maple, we compute the equation fa,b,c,d,f,g as in Equation 1 which is the unique equation of a cubic
surface Fa,b,c,d,f,g defined by these 19 points. This surface also involves a double-three. By Theorem
3.1, we know that there is only one way to complete the configuration of the lines. By Definition 3.3,
further lines will be defined as a1 and a2. These further lines a1 and a2 can be computed using Maple.
All these 9 lines can be seen in Table 2.

Figure 3. Configuration of 19 points
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We check whether the cubic surface Fa,b,c,d,f,g has any further lines. The only possible way would be
the surface having 15 or 27 lines. This depends on the discriminant condition. By Theorem 3.2 and
Theorem 11 in [11], we know that it depends on the factors of the discirimant. Therefore, we need
to compute it. As in the proof of Theorem 3.2, we start with a fixed tritangent plane π = v(x3).
Consider the line

c12 = L

 1 0 0 0

0 1 0 0


and the planes

v(x2 − µx3)

through this line c12. Each of these planes intersects Fa,b,c,d,f,g in c12 and in a conic C(µ). Substituting
x2 = µx3 into the equation of Equation 1, we find the conic equation C(µ) in x0, x1, and x3. Hence, we
calculate the discriminant ∆(µ) of C(µ). It has a factor of the polynomial ga,b,c,d,f,g of degree 3 as in
the Equation 2. Similarly, considering the planes through a1 and b2, two further polynomials fa,b,c,d,f,g

and ha,b,c,d,f,g of degree three arise. These polynomials are not stated due to space restrictions. For a
given field F, if the polynomial ga,b,c,d,f,g is irreducible, then fa,b,c,d,f,g and ha,b,c,d,f,g are irreducible,
and vice versa.

There are 2 tritangent planes of Fa,b,c,d,f,g through each created 9 lines. Hence, there are either one
or 3 more tritangent planes through each line. Then, these further lines would arise from the new
tritangent planes.

If ga,b,c,d,f,g is reducible into one linear factor and one irreducible quadratic, then the surface Fa,b,c,d,f,g

has 15 lines over F from Part 2 of Theorem 11 in [11]. The further 6 lines arise as following: Each of
c12, a1, and b2 lies on one further tritangent planes, and each of which gives two lines to the surface.
This gives 3 · 1 · 2 = 6 further lines of F .

If ga,b,c,d,f,g is reducible into three linear factors, then the surface Fa,b,c,d,f,g has 27 lines over F from
Part 1 of Theorem 11 in [11]. The further 18 lines arise as following: Each of c12, a1, and b2 lies on
three further tritangent planes, each of which gives two lines to the surface. This gives 3 · 3 · 2 = 18
further lines of F .

If the polynomial ga,b,c,d,f,g is irreducible over F, then the surface Fa,b,c,d,f,g has exactly 9 lines over
this field by Theorem 3.2.

Remark 3.5. Figure 3 summarises the content of Theorem 3.4 by giving the configuration of 19
points on the cubic surface and forcing the surface including the double-three.

Remark 3.6. The cubic surface Fa,b,c,d,f,g cannot have 2 specific Eckardt points. Therefore, we
cannot create all possible smooth cubic surfaces with 9 lines using this form.

Remark 3.7. The line b3 of Fa,b,c,d,f,g could be through P19 instead P4. Considering this way would
give another form of such surfaces.

4. Illustrative Examples

This section exemplifies the aforesaid form over finite fields and fields of characteristic zero.

Example 4.1. The surface F−1,1,−1,2,−1,1 given by the equation

−2x2
0x2 − 2x0x1x2 − 2x0x1x3 + 2x0x

2
2 − 2x0x2x3 + 3x2

1x2 + 3x2
1x3 − x1x

2
2 + x1x2x3 + 2x1x

2
3 = 0
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is smooth over C. The polynomial

g−1,1,−1,2,−1,1 = −6µ3 + 10µ2 − 16µ+ 16

is irreducible over Q. Hence, the surface F−1,1,−1,2,−1,1 has exactly 9 lines over Q. The polynomial
g−1,1,−1,2,−1,1 has one real and two complex roots. Therefore, by Theorem 3.4, it has exactly 15 lines
over R and 27 over C.

Example 4.2. Over F5, the cubic surface F2,1,4,2,4,1 given by the equation

3x2
0x2 + 3x2

1x2 + 3x2
1x3 + x0x

2
2 + 4x1x

2
2 + 2x1x

2
3 + 4x0x1x2 + 3x0x1x3 + 4x0x2x3 + x1x2x3 = 0

is smooth. Since the polynomial

g2,1,4,2,4,1 = 2µ3 + 3µ2 + 4µ+ 3

is reducible into (µ+ 1) and (2µ2 +µ+ 3) over F5, the surface F2,1,4,2,4,1 has exactly 15 lines over this
field by Theorem 3.4.

Let τ ∈ F25 satisfy the equation τ2 + τ + 2 = 0. The polynomial

g2,1,4,2,4,1 = 2µ3 + 3µ2 + 4µ+ 3

= (µ+ 1)(2µ2 + µ+ 3)

= (µ+ 1)(µ+ 4τ + 1)(µ+ τ + 2)

is reducible into three linear factors over F25. Therefore, by Theorem 3.4, the surface F2,1,4,2,4,1 has
exactly 27 lines over this field.

Example 4.3. Over F5, the cubic surface F4,1,4,2,4,1 given by the equation

3x2
0x2 + 3x2

1x2 + 3x2
1x3 + 2x0x

2
2 + 4x1x

2
2 + 2x1x

2
3 + 3x0x1x2 + 3x0x1x3 + 3x0x2x3 + x1x2x3 = 0

is smooth. Since the polynomial
g4,1,4,2,4,1 = 3µ3 + 3µ+ 2

is irreducible over F5, the surface F4,1,4,2,4,1 has exactly 9 lines over this field by Theorem 3.4. Over
F25, this polynomial is also irreducible. Therefore, the cubic surface F4,1,4,2,4,1 has exactly 9 lines over
this field.

Let ψ ∈ F125 satisfy the equation ψ3 + ψ2 + 2 = 0. The polynomial

g4,1,4,2,4,1 = 3µ3 + 3µ+ 2

= (µ+ 4ψ2 + 3ψ + 3)(µ+ 4ψ2 + 2ψ + 1)(µ+ 2ψ2 + 1)

is reducible into three linear factors over F125. Therefore, the surface F4,1,4,2,4,1 has exactly 27 lines
over this field by Theorem 3.4.

5. Rational Parametrization of the New Form

This section provides a parametrization of the rational points at lines of the cubic surface Fa,b,c,d,f,g

given in Section 3. The proof of the following theorem is based on the birational map between the
cubic surface and a plane. In Subsection 4.2 of [11], rational parametrization of a smooth cubic surface
with 15 lines is given explicitly. The proof here and the remarks are similar to the proof of Theorem
8 and its following remarks in [11] but for the cubic surface with at least 9 lines Fa,b,c,d,f,g.
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Theorem 5.1. Let F be a field with at least 4 elements. Let Fa,b,c,d,f,g be the variety given in
Theorem 3.4. Assume that Fa,b,c,d,f,g is smooth. Let P = P(x0, x1, x2, x3) be a point on Fa,b,c,d,f,g

and Q = P(y0, y1, y2) be a point in a plane so that P and Q are the images of each other under a
birational map

Φa,b,c,d,f,g : Fa,b,c,d,f,g → PG(2,F)

P(x0, x1, x2, x3) 7→ P(y0, y1, y2)

Then, (x0, x1, x2, x3) can be expressed as

x0 = −g(a+ b)κ3y
2
0y1 + ga(b+ 1)κ3y

2
0y2 − (1 + d)fκ4y0y

2
1 − fc(1 + d)κ4y0y1y2

x1 = abgκ3y0y1y2 − cdfκ4y
2
1y2 − bgκ3y

2
0y1 − fκ1κ4y0y

2
1

x2 = abgκ3y0y
2
2 − cdfκ4y1y

2
2 − bgκ3y

2
0y2 − fκ1κ4y0y1y2

x3 = gbκ3y
2
0y2 + agκ3y

2
2y0 − cfκ4y

2
2y1 + d012y0y1y2 − (1 + d)fκ4y

2
1y2

(3)

and (y0, y1, y2) can be expressed as 
y0 = x0x2

y1 = x1x2 + x1x3

y2 = x2
2 + x2x3

(4)

up to a nonzero scalar multiple.

Proof.
No generality is lost by picking the plane as v(x3), and the two skew lines b1 and b2 of Fa,b,c,d,f,g

b1 = L

 1 0 0 0

0 0 0 1

 and b2 = L

 0 1 0 0

0 0 −1 1


Let P = P(x0, x1, x2, x3) be a point on Fa,b,c,d,f,g but neither on b1 nor on b2. To find the image Q of
P under Φa,b,c,d,f,g, first we compute the transversal line ℓ of b1 and b2 through P . Then, we find the
unique point Q where ℓ meets v(x3) as follows:

ℓ = L

 x0 0 0 x2 + x3

x0x2 x1x2 + x1x3 x2
2 + x2x3 0


and

Φa,b,c,d,f,g(P(x0, x1, x2, x3)) = P(y0, y1, y2) = P(x0x2, x1x2 + x1x3, x
2
2 + x2x3)

whose coordinates are given in System 4.

Conversely, let Q = P(y0, y1, y2, 0) be a point in the plane v(x3). To find the image Q of P under
Φ−1

a,b,c,d,f,g, first we compute the transversal line ℓ′ of b1 and b2 through Q as follows:

ℓ′ = L

 y0 0 0 y2

y0 y1 y2 0


Then, we find the three intersection points where ℓ′ meets Fa,b,c,d,f,g by substituting the point

P(y0, 0, 0, y2) + t · P(y0, y1, y2, 0)
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of ℓ′ into the equation of Fa,b,c,d,f,g. This gives a polynomial of degree three in t, for some t ∈ F.
Solving this polynomial in t gives 3 solutions as follows:

t1 = 0

t2 = −1

and
t3 = abgκ3y0y2 − cdfκ4y1y2 − bgκ3y

2
0 − fκ1κ4y0y1

gbκ3y2
0 + agκ3y2y0 − cfκ4y2y1 + d012y0y1 − (1 + d)fκ4y2

1

The point P(y0, 0, 0, y2) arising from t1 is the point where ℓ′ meets the line b1. The point P(0,−y1,−y2, y2)
arising from t2 is the point where ℓ′ meets the line b2. Let P = P(x0, x1, x2, x3) be the third point of
intersection of ℓ′ with Fa,b,c,d,f,g. Hence,

x0 = y0 + t3 · y0

x1 = t3 · y1

x2 = t3 · y2

and
x3 = y2

as in System 3. Then,
Φ−1

a,b,c,d,f,g(P(y0, y1, y2)) = P(x0, x1x2, x3)

Remark 5.2. Let Fa,b,c,d,f,g be the smooth cubic surface over the field F as described in Theorem
3.4, and Φa,b,c,d,f,g be the birational map from Fa,b,c,d,f,g to the plane embedded in PG(3,F) as the
hyperplane v(x3), described in Theorem 5.1. Consider the lines a1, a2, and a3 of Fa,b,c,d,f,g. The map
Φa,b,c,d,f,g sends the line a1 to the point P(1, 0, 0), the line a2 to the point P(0, 1, 0), and the line a3

to the point P(0, 0, 1).

Remark 5.3. The exceptional locus of Φa,b,c,d,f,g on the surface consists of 3 lines of Fa,b,c,d,f,g which
are b1, b2, and c12. The exceptional locus on the plane can be found explicitly by applying Φ−1

a,b,c,d,f,g

to P(x0, x1, x2, x3) and then by applying Φa,b,c,d,f,g to P(y0, y1, y2). It consists of one line and two
conics in the plane, which are the line L′ through P(1, 0, 0) and P(0, 1, 0) and two conics

D1 = abgκ3y0y2 − cdfκ4y1y2 − bgκ3y
2
0 − fκ1κ4y0y1

and
D2 = −f(1 + d)κ4y

2
1 + ag(b+ 1)κ3y0y2 − cf(1 + d)κ4y1y2 + (−fκ1κ4 + d012)y0y1

The points of the lines b1 and b2 are mapped to the points of the conics D1 and D2 and the points of
c12 are mapped to the points of L′ under Φa,b,c,d,f,g.

Theorem 5.4. The cubic surface Fa,b,c,d,f,g = v(fa,b,c,d,f,g) as described in Theorem 3.4 is non-singular
over F if and only if the certain four sextic curves in (2,F) never intersect at a point of Fa,b,c,d,f,g.

Proof.
The idea of the proof is similar to the proof of Theorem 9 in [11] but for Fa,b,c,d,f,g. The partial
derivatives of fa,b,c,d,f,g as follows:

∂fa,b,c,d,f,g

∂x0
= 2d002x0x2 + d012x1x2 + d013x1x3 + d022x

2
2 + d023x2x3
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∂fa,b,c,d,f,g

∂x1
= d012x0x2 + d013x0x3 + 2d112x1x2 + 2d113x1x3 + d122x

2
2 + d123x2x3 + d133x

2
3

∂fa,b,c,d,f,g

∂x2
= d002x

2
0 + d012x0x1 + 2d022x0x2 + d023x0x3 + d112x

2
1 + 2d122x1x2 + d123x1x3

and
∂fa,b,c,d,f,g

∂x3
= d013x0x1 + d023x0x2 + d113x

2
1 + d123x1x2 + 2d133x1x3

Let P = P(x0, x1, x2, x3) be a point of Fa,b,c,d,f,g. By substituting the coordinates of the point
P(y0, y1, y2) as given in Theorem 5.1 into the four partial derivatives of fa,b,c,d,f,g, we get four poly-
nomials S1, S2, S3, and S4 of degree 6 in three variables y0, y1, and y2. We did not present these
polynomials explicitly here so that they do not take up much space. The zeros of these polynomi-
als form curves S1,S2,S3, and S4 of degree six in PG(2,F). The point P = P(x0, x1, x2, x3) is a
singular point if and only if it appears on all the partial derivatives of fa,b,c,d,f,g if and only if the
curves S1,S2,S3, and S4 intersect at P . Therefore, the surface is non singular if and only if the curves
S1,S2,S3, and S4 never intersect in a point of Fa,b,c,d,f,g.

6. Conclusion

In this paper, the theorems are proved with a computer-free proof. However, at the beginning of the
work, computers are used to produce data. Then, the data is analyzed to make a conjecture. To
follow this experimental approach, one needs to have good data. To have good data, one must have
the right computer software for computations. We use Orbiter [16], which is an open source. The idea
behind that paper has been found this way. This paper shows the uniqueness of the line intersection
graph of smooth cubic surfaces with 9 lines. The properties of line intersections are defined. A new
form of smooth cubic surfaces Fa,b,c,d,f,g with at least 9 lines is created. The conditions specify when
the surface has 9, when 15, and when 27 lines. This form is exemplified over several fields. Besides,
the rational parametrization of points and lines of Fa,b,c,d,f,g.

The Remarks 3.6 and 3.7 will be considered as a continuation of this work. All possible smooth cubic
surfaces with 9 lines can be created by considering Remark 3.6 and 3.7. Studying the sub-configuration
of Eckardt points of smooth cubic surfaces with 9 lines and investigating which cases are not covered
by the form in this paper are worth reaching that aim. Moreover, the solution can be found for
the other cases to generalize. Regarding Remark 3.7, the points P14, P15, and P18 need to be reset.
Maple can be used to construct another form, covering all possible cases. Once these two remarks are
considered, the classification problem of smooth cubic surfaces with 9 lines over the small finite fields
can be considered. Therefore, the result herein can be verified by the enumerative formula of Das [15]
using the Orbit Stabilizer Theorem. Besides, one may generalize certain cases and find a family over
Q.

Even though it was a popular topic in the 19th century, it still maintains its current and interesting
nature. For recent related studies, see [23,24].
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Abstract − This research introduces a novel sub-estimator designed to estimate the population mean 

under ranked set sampling, motivated by the new concept of a recently introduced sub-ratio estimator. The 

mathematical formulas of the proposed estimator’s mean square error and bias are presented and 

theoretically contrasted with an analogous estimator found in the existing best sub-estimator literature. In 

addition to the theoretical analysis, empirical evidence is provided to validate the superiority of the 

proposed estimator. This empirical validation is based on numerical computations using Monte Carlo 

simulations, encompassing synthetic and real data applications. The results underscore the effectiveness 

of the proposed estimator. Finally, this study discusses the need for further research. 
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1. Introduction  

Ranked set sampling (RSS) represents a recommended option to simple random sampling (SRS), recognized 

for its capacity to yield more cost-efficient, time-saving, and efficient outcomes in comparison to SRS [1-3]. 

The RSS technique hinges on the availability of an auxiliary variable (𝑧), ideally easily accessible and 

correlated with the study variable (𝑔). This auxiliary variable is pivotal in the ranked process and sample 

selection procedure. However, once the sample selection is finalized, the estimation process exclusively 

pertains to the study variable. While it is feasible to incorporate the auxiliary variable into the estimation phase 

through various estimator types (e.g., ratio, product, or regression type estimators using auxiliary variables) 

[4-13], such approaches often necessitate knowledge of population parameters. The undeniable impact of 

utilizing auxiliary variable information in enhancing efficiency is well established. It is widely recognized that 

employing multiple auxiliary variables has the potential to yield even greater efficiency gains than using a 

single auxiliary variable [14-17]. However, obtaining these parameters for all variables is frequently 

impractical, limiting the applicability of such estimators on applications. 

A novel method has been proposed, displaying that the auxiliary variable, a crucial component of the RSS 

method, can be effectively employed in the estimation phase without requiring population parameters. This 

breakthrough not only broadens the scope of utility for such estimators but also elevates the overall efficiency 

of the estimation process. These estimators developed for the RSS method are called sub-estimators [18]. The 

primary objective of this study is to introduce an estimator that surpasses the existing population mean 

estimators found in the literature in terms of efficiency. For this purpose, a novel sub-estimator using two 
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auxiliary variables without their population parameters is proposed to estimate the population mean. Once the 

theoretical foundations of the proposed estimator have been established, the subsequent aim is to validate its 

efficiency through numerical investigations. 

2. Estimators in Literature 

In the RSS method, a simple random sample of 𝑚2 of the observations 𝑧 is initially drawn and subsequently 

divided into 𝑚 sets. Within each set, a ranking is established based on 𝑧, leading to the selection of 

measurements for the 𝑔 corresponding to the units situated along the diagonal. If the required sample size 

cannot be achieved with 𝑚, the process is repeated 𝑐 times, and the desired 𝑛 = 𝑚𝑐 is obtained. The 

fundamental mean estimator of the RSS method and its mean square error (MSE) obtained after the cycle 𝑐: 

𝑔̂𝑅𝑆𝑆 =
1

𝑚𝑐
∑ ∑ 𝑔[𝑖,𝑖];𝑗

𝑚

𝑖=1

𝑐

𝑗=1

 

and 

MSE(𝑔̂𝑅𝑆𝑆) = 𝐺
2

(𝛾𝐶𝑔
2 − 𝜔𝑔

2) 

where 𝑔[𝑖];𝑗 is the observation value 𝑔 of 𝑖𝑡ℎ ranked in 𝑖𝑡ℎ set and 𝑗𝑡ℎ cycle, 𝛾 =  1/𝑚𝑐, 𝐶𝑔
2 is the coefficient 

of variation of 𝑔, 𝜔𝑔(𝑖)
2 =

1

𝑚2𝑐𝐺
2 ∑ 𝜏𝑔(𝑖)

2𝑚
𝑖=1 , 𝜏𝑔(𝑖)

2 = 𝜇𝑔(𝑖) − 𝐺, and 𝜇𝑔(𝑖) represents the mean of the 𝑖𝑡ℎ order 

statistics of 𝑔. The RSS sub-ratio estimator and its MSE are described as the following equations: 

𝑔̂𝐾𝐾1 =
𝑔

𝑅𝑆𝑆

𝑧𝑅𝑆𝑆
𝑍𝑆𝑈𝐵 

and 

MSE(𝑔̂𝐾𝐾1) = 𝐺
2

[𝛾𝐶𝑧𝑆𝑈𝐵
2 − 𝜔𝑧𝑆𝑈𝐵(𝑖)

2 + 𝛾𝐶𝑔
2 − 𝜔𝑔(𝑖)

2 − 2(𝛾𝐶𝑔𝑧𝑆𝑈𝐵
− 𝜔𝑔𝑧𝑆𝑈𝐵(𝑖))] (1) 

where 𝑧𝑅𝑆𝑆 =
1

𝑚𝑐
∑ ∑ 𝑧[𝑖,𝑖];𝑗

𝑚
𝑖=1

𝑐
𝑗=1  is the ranked set sample mean of 𝑧, 

𝑍𝑆𝑈𝐵 =
1

𝑚2𝑐
∑ ∑ ∑ 𝑍[𝑖,𝑘];𝑗

𝑚

𝑖=1

𝑚

𝑘=1

𝑐

𝑗=1

 

𝐶𝑧𝑆𝑈𝐵
2 =

𝑆𝑧𝑆𝑈𝐵
2

𝑍𝑆𝑈𝐵
2  is the coefficient of variation of the 𝑍𝑆𝑈𝐵, 

𝐶𝑔𝑧𝑆𝑈𝐵
= 𝜌𝐶𝑔𝐶𝑧𝑆𝑈𝐵

 

𝜔𝑧𝑆𝑈𝐵(𝑖)
2 =

1

𝑚2𝑐𝑍𝑆𝑈𝐵

2 ∑ 𝜏𝑧𝑆𝑈𝐵(𝑖)
2

𝑚

𝑖=1

 

𝜔𝑔𝑧𝑆𝑈𝐵(𝑖) =
1

𝑚2𝑐𝐺𝑍𝑆𝑈𝐵

∑ 𝜏𝑔𝑧𝑆𝑈𝐵(𝑖)
2

𝑚

𝑖=1

 

and 𝜏𝑔𝑧𝑆𝑈𝐵(𝑖)
2  represents the cross-product of the deviation [18]. The RSS sub-exponential ratio type estimator 

and its MSE are formulated as [18]: 

𝑔̂𝐾𝐾2 = 𝑔
𝑅𝑆𝑆

exp (
𝑍𝑆𝑈𝐵 − 𝑧𝑅𝑆𝑆

𝑍𝑆𝑈𝐵 + 𝑧𝑅𝑆𝑆

) 
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and 

MSE(𝑔̂𝐾𝐾2) = 𝐺
2

[𝛾𝐶𝑧𝑆𝑈𝐵
2 − 𝜔𝑧𝑆𝑈𝐵(𝑖)

2 +
1

4
(𝛾𝐶𝑔

2 − 𝜔𝑔(𝑖)
2 ) − (𝛾𝐶𝑔𝑧𝑆𝑈𝐵

− 𝜔𝑔𝑧𝑆𝑈𝐵(𝑖))] (2) 

The sub-regression type estimator and its MSE are given as [19]: 

𝑔̂𝐾𝑅 = 𝑔
𝑅𝑆𝑆

+ 𝑏̂(𝑍𝑆𝑈𝐵 − 𝑧𝑅𝑆𝑆) 

and 

𝑀𝑆𝐸(𝑔̂𝐾𝑅)𝑆𝑈𝐵
2 = [𝛾𝐶𝑔

2 − 𝜔𝑔
2 −

(𝛾𝐶𝑔𝑧𝑆𝑈𝐵
− 𝜔𝑔𝑧𝑆𝑈𝐵

)
2

𝛾𝐶𝑧𝑆𝑈𝐵
2 − 𝜔𝑧𝑆𝑈𝐵

2
]

min

 (3) 

where 𝑏̂ = 𝑅𝑆𝑈𝐵

𝛾𝐶𝑔𝑧𝑆𝑈𝐵
−𝜔𝑔𝑧𝑆𝑈𝐵

𝛾𝐶𝑧𝑆𝑈𝐵
2 −𝜔𝑧𝑆𝑈𝐵

2  and 𝑅𝑆𝑈𝐵 =
𝐺

𝑍𝑆𝑈𝐵
. 

3. Proposed Estimator 

Building upon the foundation laid by the sub-ratio, sub-exponential, and sub-regression type estimators 

[18,19], as well as the multiple auxiliary variable estimators [14-17], we introduce a novel sub-estimator for 

the population mean under ranked set sampling with two auxiliary variables with the following formulation: 

𝑔̂𝑃𝑅𝑂 = [𝑔
𝑅𝑆𝑆

exp (
𝑍𝑆𝑈𝐵 − 𝑧𝑅𝑆𝑆

𝑍𝑆𝑈𝐵 + 𝑧𝑅𝑆𝑆

) exp (
𝑋𝑆𝑈𝐵 − 𝑥𝑅𝑆𝑆

𝑋𝑆𝑈𝐵 + 𝑥𝑅𝑆𝑆

)] 

where 𝑥 is the second auxiliary variable,  

𝑥𝑅𝑆𝑆 =
1

𝑚𝑐
∑ ∑ 𝑥[𝑖,𝑖];𝑗

𝑚

𝑖=1

𝑐

𝑗=1

 

and 

𝑋𝑆𝑈𝐵 =
1

𝑚2𝑐
∑ ∑ ∑ 𝑋[𝑖,𝑘];𝑗

𝑚

𝑖=1

𝑚

𝑘=1

𝑐

𝑗=1

 

To derive the MSE of the proposed estimator, we introduce the following definitions: 

𝑔
𝑅𝑆𝑆

= 𝐺(𝑒𝑔 + 1),    𝑧𝑅𝑆𝑆 = 𝑍𝑆𝑈𝐵(𝑒𝑧 + 1),    and    𝑥𝑅𝑆𝑆 = 𝑋𝑆𝑈𝐵(𝑒𝑥 + 1) (4) 

where  

𝐸(𝑒𝑔) = 𝐸(𝑒𝑧) = 𝐸(𝑒𝑥) = 0 

(5) 

𝐸(𝑒𝑔
2) = 𝛾𝐶𝑔

2 − 𝜔𝑔
2 =  𝑉200 

 

 

𝐸(𝑒𝑧
2) = 𝛾𝐶𝑧𝑆𝑈𝐵

2 − 𝜔𝑧𝑆𝑈𝐵
2 = 𝑉020 

𝐸(𝑒𝑥
2) = 𝛾𝐶𝑥𝑆𝑈𝐵

2 − 𝜔𝑥𝑆𝑈𝐵
2 = 𝑉002 

𝐸(𝑒𝑔𝑒𝑧) = 𝛾𝐶𝑔𝑧𝑆𝑈𝐵
− 𝜔𝑔𝑧𝑆𝑈𝐵

= 𝑉110 

 
𝐸(𝑒𝑔𝑒𝑥) = 𝛾𝐶𝑔𝑥𝑆𝑈𝐵

− 𝜔𝑔𝑥𝑆𝑈𝐵
= 𝑉101 

𝐸(𝑒𝑧𝑒𝑥) = 𝛾𝐶𝑧𝑆𝑈𝐵𝑥𝑆𝑈𝐵
− 𝜔𝑧𝑆𝑈𝐵𝑥𝑆𝑈𝐵

= 𝑉011 

𝐸(𝑒𝑔𝑒𝑧𝑒𝑥) = 𝛾𝐶𝑔𝑧𝑆𝑈𝐵𝑥𝑆𝑈𝐵
− 𝜔𝑔𝑧𝑆𝑈𝐵𝑥𝑆𝑈𝐵

= 𝑉111 
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By utilizing the provided definitions in Equation 4, we can express the estimator given in Equation 5 in linear 

form using Taylor series and second-degree approximation: 

𝑔̂𝑃𝑅𝑂  = [𝐺(𝑒𝑔 + 1) exp (
𝑍𝑆𝑈𝐵 − 𝑍𝑆𝑈𝐵(𝑒𝑧 + 1)

𝑍𝑆𝑈𝐵 + 𝑍𝑆𝑈𝐵(𝑒𝑧 + 1)
) exp (

𝑋𝑆𝑈𝐵 − 𝑋𝑆𝑈𝐵(𝑒𝑥 + 1)

𝑋𝑆𝑈𝐵 + 𝑋𝑆𝑈𝐵(𝑒𝑥 + 1)
)] 

 = 𝐺(𝑒𝑔 + 1) exp (
−𝑒𝑧

𝑒𝑧 + 2
) exp (

−𝑒𝑥

𝑒𝑥 + 2
) 

 = 𝐺(𝑒𝑔 + 1) exp [
−𝑒𝑧

2
(

𝑒𝑧

2
+ 1)

−1

] exp [
−𝑒𝑥

2
(

𝑒𝑥

2
+ 1)

−1

] 

 = 𝐺(𝑒𝑔 + 1) (1 −
𝑒𝑧

2
+

3𝑒𝑧
2

8
) (1 −

𝑒𝑥

2
+

3𝑒𝑥
2

8
) 

 = 𝐺 + 𝐺𝑒𝑔 (1 −
𝑒𝑧

2
+

3𝑒𝑧
2

8
−

𝑒𝑥

2
+

3𝑒𝑥
2

8
+

𝑒𝑧𝑒𝑥

4
) 

Hence, 

𝑔̂𝑃𝑅𝑂 = 𝐺 + 𝐺 (𝑒𝑔 −
𝑒𝑧

2
−

𝑒𝑥

2
+

3𝑒𝑧
2

8
+

3𝑒𝑥
2

8
+

𝑒𝑧𝑒𝑥

4
−

𝑒𝑔𝑒𝑥

2
−

𝑒𝑔𝑒𝑧

2
+

𝑒𝑔𝑒𝑧𝑒𝑥

4
) (6) 

When subtracting from Equation 5 and then taking the expected value, the bias of the estimator is determined 

as follows: 

𝐵(𝑔̂𝑃𝑅𝑂) = 𝐺
2

(
3𝑉020

8
+

3𝑉002

8
+

𝑉011

4
−

𝑉101

2
−

𝑉110

2
+

𝑉111

4
) 

After subtracting 𝐺 from Equation 6 and subsequently squaring and taking the expected value, upon 

substituting the equations provided in Equation 5 into their corresponding positions, we arrive at the MSE 

equation of the estimator as follows: 

𝑀𝑆𝐸(𝑔̂𝑃𝑅𝑂) = 𝐺
2

(𝑉200 +
𝑉020

4
+

𝑉002

4
− 𝑉110 − 𝑉101 +

𝑉011

2
) (7) 

For theoretical comparisons, we can express Equations 1–3 in the following forms:  

𝑀𝑆𝐸(𝑔̂𝐾𝐾1) = 𝐺
2

(𝑉200 + 𝑉020 − 2𝑉110) 

𝑀𝑆𝐸(𝑔̂𝐾𝐾2) = 𝐺
2

(𝑉200 +
1

4
𝑉020 − 𝑉110) 

and 

𝑀𝑆𝐸(𝑔̂𝐾𝑅 )𝐺
2

(𝑉200 +
𝑉110

2

𝑉020
)

𝑚𝑖𝑛

 

Subsequently, by employing Equation 7, we can perform concluding the disparities between the estimators: 

i. If  𝑀𝑆𝐸(𝑔̂𝑃𝑅𝑂) < 𝑀𝑆𝐸(𝑔̂𝐾𝐾1) then 
𝑉002−4𝑉101+2𝑉011

3𝑉020−4𝑉110
< 1. 

ii.  If 𝑀𝑆𝐸(𝑔̂𝑃𝑅𝑂) < 𝑀𝑆𝐸(𝑔̂𝐾𝐾2) then  
𝑉002+2𝑉011

4𝑉110
< 1. 

iii. If 𝑀𝑆𝐸(𝑔̂𝑃𝑅𝑂) < 𝑀𝑆𝐸(𝑔̂𝐾𝑅) then −
𝑉020(𝑉002−4𝑉110−4𝑉101+2𝑉011)

𝑉020
2 +4𝑉110

2 > 1. 
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4. Numerical Study 

This section encompasses the numerical computations performed on synthetic and real data sets using the 

existing and proposed estimator. All calculations are carried out utilizing the R programming language in 

numerical studies. 

4.1. Monte Carlo Simulation 

Trivariate random observations (𝐺, 𝑍, 𝑋) are generated from a trivariate normal distribution characterized by 

parameters: 𝜇𝑔 =  𝜇𝑧 =  𝜇𝑥 ≈ 5, and 𝜎𝑔 =  𝜎𝑧 =  𝜎𝑥 ≈ 1, correlation coefficients 𝜌𝑔𝑧  =  𝜌𝑔𝑥  =  𝜌𝑧𝑥 ≈

0.7, 0.8, and 0.9, along with population sizes 𝑁 = 100 and 1000. In the existing literature, it is recommended 

that the set size “𝑚” for the RSS method does not exceed 5, and it is often chosen as 3, 4, or 5. Therefore, 

100000 RSS samples were drawn from these populations with a set size of 𝑚 ∈ {3,4,5} and cycle 𝑐 ∈

{1,2,3,4}. The estimators’ values were computed based on these selected RSS samples. 

MSE values for the estimators are computed using Equation 8, while the relative efficiency (RE) values are 

obtained via Equation 9. In the context of the RE comparison, the reference variable is designated as the RSS 

basic mean estimator (𝑔̂𝑅𝑆𝑆). The results of these comparisons are tabulated in Tables 1-3, each corresponding 

to distinct parameter combinations. These tables encapsulate valuable insights into the performance of the 

estimators under varying conditions. 

𝑀𝑆𝐸(𝑔̂ℎ) = ∑
(𝑔̂ℎ𝑗 − 𝐺̄)

2

100000

100000

𝑗=1

,    ℎ ∈ {𝑅𝑆𝑆, 𝐾𝐾1, 𝐾𝐾2, 𝐾𝑅, 𝑃𝑅𝑂} (8) 

𝑅𝐸(𝑔̂𝑙) =
𝑀𝑆𝐸(𝑔̂𝑅𝑆𝑆)

𝑀𝑆𝐸(𝑔̂𝑙)
,    𝑙 ∈ {𝐾𝐾1, 𝐾𝐾2, 𝐾𝑅, 𝑃𝑅𝑂} (9) 

Table 1. RE results for 𝜌𝑔𝑧  =  𝜌𝑔𝑥  =  𝜌𝑧𝑥 ≈ 0.7 

𝑵 = 𝟏𝟎𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝑔𝐾𝐾1  1.0837 1.0957 1.0845 1.0917 1.1028 1.0906 1.0975 1.0943 1.0933 1.0967 1.1006 1.0927 

𝑔𝐾𝐾2  1.1099 1.1161 1.1117 1.1164 1.1238 1.1174 1.1209 1.1198 1.1194 1.1211 1.1235 1.1197 

𝑔𝐾𝑅  1.1176 1.1254 1.1129 1.1092 1.1248 1.1246 1.1222 1.1034 1.1215 1.1210 1.1175 1.0911 

𝑔𝑃𝑅𝑂  1.2244 1.2398 1.2246 1.2329 1.2361 1.2176 1.2282 1.2255 1.2059 1.2079 1.2070 1.2031 

𝑵 = 𝟏𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝒈̂𝑲𝑲𝟏  1.1683 1.1598 1.1639 1.1613 1.1647 1.1512 1.1560 1.1557 1.1478 1.1431 1.1451 1.1420 

𝒈̂𝑲𝑲𝟐  1.1552 1.1510 1.1528 1.1513 1.1547 1.1483 1.1500 1.1516 1.1456 1.1430 1.1433 1.1433 

𝒈̂𝑲𝑹  1.1766 1.1764 1.1722 1.1686 1.1707 1.1720 1.1688 1.1646 1.1641 1.1602 1.1586 1.1442 

𝒈̂𝑷𝑹𝑶  1.3396 1.3222 1.3199 1.3174 1.3066 1.2982 1.3071 1.2931 1.2684 1.2649 1.2643 1.2550 

Boldfaced values indicate the “best” performances. 
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Table 2. RE results for 𝜌𝑔𝑧  =  𝜌𝑔𝑥  =  𝜌𝑧𝑥  ≈  0.8 

𝑵 = 𝟏𝟎𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝑔𝐾𝐾1  1.2043 1.1980 1.1993 1.1952 1.2133 1.2088 1.2114 1.2121 1.2072 1.2047 1.2027 1.1977 

𝑔𝐾𝐾2  1.1708 1.1681 1.1675 1.1665 1.1772 1.1751 1.1762 1.1763 1.1729 1.1714 1.1702 1.1680 

𝑔𝐾𝑅  1.2056 1.2044 1.2010 1.1825 1.2071 1.2087 1.2021 1.1875 1.2003 1.1944 1.1877 1.1610 

𝑔𝑃𝑅𝑂  1.4034 1.3979 1.3941 1.3924 1.3828 1.3722 1.3789 1.3789 1.3398 1.3371 1.3369 1.3219 

𝑵 = 𝟏𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝒈̂𝑲𝑲𝟏  1.1904 1.1820 1.1892 1.1844 1.1875 1.1864 1.1852 1.1791 1.1784 1.1752 1.1751 1.1694 

𝒈̂𝑲𝑲𝟐  1.2306 1.2281 1.2292 1.2279 1.2263 1.2265 1.2256 1.2218 1.2128 1.2099 1.2095 1.2070 

𝒈̂𝑲𝑹  1.2418 1.2321 1.2248 1.1898 1.2300 1.2258 1.2133 1.1805 1.2137 1.2088 1.1929 1.1546 

𝒈̂𝑷𝑹𝑶  1.3452 1.3399 1.3403 1.3375 1.3265 1.3268 1.3285 1.3210 1.2986 1.2898 1.2846 1.2841 

Boldfaced values indicate the “best” performances. 

Table 3. RE results for 𝜌𝑔𝑧  =  𝜌𝑔𝑥  =  𝜌𝑧𝑥 ≈ 0.9 

𝑵 = 𝟏𝟎𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝑔𝐾𝐾1  1.3782 1.3816 1.3722 1.3805 1.3722 1.3744 1.3689 1.3659 1.3416 1.3377 1.3333 1.3252 

𝑔𝐾𝐾2  1.2765 1.2799 1.2761 1.2799 1.2735 1.2738 1.2732 1.2700 1.2518 1.2498 1.2495 1.2436 

𝑔𝐾𝑅  1.3762 1.3730 1.3608 1.3385 1.3634 1.3600 1.3537 1.3086 1.3264 1.3100 1.3028 1.2655 

𝑔𝑃𝑅𝑂  1.5093 1.5155 1.5074 1.5184 1.4786 1.4852 1.4732 1.4799 1.4243 1.4194 1.4140 1.4109 

𝑵 = 𝟏𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝒈̂𝑲𝑲𝟏  1.4533 1.4484 1.4471 1.4368 1.4204 1.4166 1.4186 1.4094 1.3651 1.3651 1.3659 1.3639 

𝒈̂𝑲𝑲𝟐  1.3240 1.3233 1.3218 1.3190 1.3041 1.3045 1.3053 1.3007 1.2708 1.2693 1.2707 1.2694 

𝒈̂𝑲𝑹  1.4387 1.4240 1.4113 1.3855 1.4011 1.3968 1.3794 1.33975 1.3455 1.3466 1.3196 1.2751 

𝒈̂𝑷𝑹𝑶  1.6143 1.6016 1.6037 1.5920 1.5385 1.5379 1.5418 1.5285 1.4497 1.4537 1.4530 1.4422 

Boldfaced values indicate the “best” performances. 

4.2. Real Data Application 

This section extends the simulation study employed in the preceding segment to utilize real rather than 

synthetic data. The dataset originates from the compilation of data across 81 provinces in Türkiye [20]. The 

variables used within this context are as follows: 𝑮: The population of Türkiye in the year 2021; 𝒁: The number 

of registered vehicles in the year 2017, and 𝑿: The tally of traffic accidents involving fatalities or injuries in 

2017. The underlying population parameters are briefly summarized as follows: 𝐺 = 1045435, 𝑍 = 15400.6, 

𝑋 = 2255.173, 𝜎𝑔 = 1914343, 𝜎𝑧 = 50392.4, 𝜎𝑥 = 2662.278, 𝜌𝑔𝑧 = 0.97, 𝜌𝑔𝑥 = 0.87, and 𝜌𝑧𝑥 = 0.77. 

100000 RSS samples were drawn from this population (𝑁 = 81), considering various set sizes 𝑚 ∈ {3,4,5}, 

and cycle 𝑐 ∈ {1,2,3,4}. After calculating the estimator values from these samples, RE values were computed 
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utilizing Equations 8 and 9. The outcomes of these computations are presented in Table 4, offering insights 

into the performance of the estimators within the context of real data. 

Table 4. RE results for a real data set 

𝑵 = 𝟏𝟎𝟎𝟎 

RE 
𝒎 5 5 5 5 4 4 4 4 3 3 3 3 

𝒄 4 3 2 1 4 3 2 1 4 3 2 1 

𝑔𝐾𝐾1  0.8853 0.9082 0.9102 0.8641 0.8205 0.8214 0.7860 0.71628 0.7274 0.6975 0.6608 0.5989 

𝑔𝐾𝐾2  3.7009 3.5807 3.3467 3.1058 2.8741 2.8033 2.6894 2.6239 2.2153 2.1860 2.1698 2.2215 

𝑔𝐾𝑅  1.3834 1.2962 1.2149 1.0786 1.7861 1.8303 1.8906 1.9278 2.5979 2.8551 3.2944 4.1129 

𝑔𝑃𝑅𝑂  3.7707 3.7500 3.6274 3.5907 2.9717 2.9644 2.9386 3.0829 2.3119 2.3417 2.4090 2.6944 

Boldfaced values indicate the “best” performances. 

5. Conclusion 

This study aims to introduce a new sub-estimator that surpasses the existing alternatives available in the 

literature regarding efficiency. A novel sub-estimator is proposed to achieve this objective, which utilizes two 

auxiliary variables without relying on population parameters. Once the theoretical framework of this novel 

estimator is established, the subsequent step involves substantiating its efficiency through numerical 

investigations. 

The outcomes of the numerical studies indicate that, across all scenarios, the proposed estimator consistently 

outperforms other estimators in terms of effectiveness, as evidenced by simulation results derived from 

trivariate normal distributions. Considering the simulation study conducted on real data, the proposed estimator 

is the optimal choice in most cases, except for instances where 𝑚 = 3.  

In the simulation study and the real data application, a discernible pattern emerged, underscoring that the 

effectiveness of the estimator exhibited a positive correlation with the parameter “𝑚”, denoting the number of 

ranked sets employed in the sampling process. Specifically, as the value of “𝑚” increased, there was a notable 

enhancement in the estimator’s performance. 

For prospective research, exploring the proposed estimator’s behavior in the context of skewed distributions 

and under varied sampling methodologies is recommended. Furthermore, an intriguing avenue for exploration 

involves devising sub-estimator adaptations under the ranked set sampling (RSS) of the proposed estimators 

for other sampling methods, subsequently assessing their efficiencies. 
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Abstract − In this study, the homogenous and anisotropic locally rotationally symmetric
(LRS) Bianchi type-I universe filled with the bulk viscous and the string cloud matter has
been investigated in the Brans-Dicke (BD) scalar-tensor theory. The modified Einstein field
equations of the constructed model have been solved by using the relation of the scale factors
A = Bm and considering the deceleration parameter to be q = m − 1. It is found that the
string does not survive for the model due to the obtained zero string energy density (ρs = 0)
and agrees with some studies in recent years. Moreover, it is possible to say that string matter
may be turned into phantom energy over time, depending on the obtained negative rest energy
density of the matter. When BD scalar field Φ is assumed constant, the attained solutions are
reduced to General Relativity (GR) solutions for the static vacuum. Thus, the constructed
model has not allowed the reduction of the BD solutions to GR solutions, including the matter
distributions. In addition, some expansion models for choosing a value of constant m have
been obtained and provided. All the results have been analyzed in detail.

Keywords LRS Bianchi I universe, Brans-Dicke theory, bulk viscous, string cloud, deceleration parameter
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1. Introduction

Gravitation theories are based on Newton’s theory, successful in determining the orbits of planets
and other celestial bodies. However, this theory was insufficient to explain some cosmic issues. On
the other hand, Einstein’s General Relativity (GR) theory [1] was the first theory that succeeded in
explaining gravity geometrically. But Einstein’s theory has been suggested for a static universe. After
studies of Friedman [2], Lemaitre [3], and Hubble [4], when considering the expanding universe model,
a function determining the expansion of the universe has been needed to add to the field equations
in Einstein’s GR theory. Einstein has suggested the cosmological constant Λ as the added function
to GR theory. Hence, the GR theory has become the most valid gravitational theory, which provides
tests, such as the perihelion progression of planets, the gravitational deflection, and the redshift of
light. Firstly, scientists have discussed decelerating expanding universe until some observation, such
as Supernova IA observation [5], Cosmic Microwave Background radiation (CMB) [6], Wilkinson
Microwave Anisotropy Probe (WMAP) [7], etc. Such studies have proven the expanding universe
model by accelerating, and then researchers have been focused on studies on this expansion model.
Especially alternative gravitation theories, such as Lyra theory [8], Barber’s Theory [9], Creation Field
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Theory [10], Yılmaz Theory [11], and Brans-Dicke theory [12] have been investigated with some cosmic
matter distribution to explain accelerating expansion of the universe.

In addition, cosmic strings formed during the phase transition have been suggested to cause variations
in the density of the particles, which cause the formation of the galaxies [13, 14]. Because of this
assumption, it is believed that cosmic strings are important matter structures to investigate and
determine the universe’s evolution from early to late. Scientists have recently studied the Brans-
Dicke (BD) theory with cosmic string for various space-time models. Delice [15] has investigated BD
theory for the generalized cylindrical symmetric universe with cosmic string. Reddy and Rao [16]
have researched the axially symmetric metric in the presence of a string dust cloud for BD theory.
Besides, in BD theory, Rao and Neelima [17] have analyzed the axially symmetric universe model with
bulk string matter distribution. Vidya et al. [18] have solved equations of BD theory for the Bianchi
type-III universe with bulk string matters. Sharma and Singh [19] have gotten the solutions of Bianchi
II universe for the massive string in BD alternative theory. Trivedi and Bhabor [20] have investigated
five-dimensional Bianchi III space-time with dark energy fluid and cosmic string in BD theory.

Moreover, Mahanta et al. [21] have calculated plane-symmetric metric with strange quark matter by
attaching to string cloud and bulk viscous matter in BD theory. Chakraborty et al. [22] have analyzed
BD theory for the Bianchi type-III universe in the presence of perfect fluid matter. Adhav et al. [23]
have gotten exact solutions of the Bianchi III cosmological model for vacuum in BD gravity. Çağlar et
al. [24] have investigated the locally rotationally symmetric (LRS) Bianchi type I universe in BD theory
by assuming strange quark matter (SQM) coupled with string cloud as matter distributions. Çağlar
and Aygün [25] have gotten the exact solutions of higher dimensional Friedman–Walker Friedmann-
Robertson-Walker (FRW) universe in the presence of SQM with bulk viscous and cosmic string matter
in Lyra theory. Furthermore, higher dimensional FRW universe filled with SQM attached to cosmic
string matter for Self Creation Cosmology and BD theory, respectively, have been examined by Çağlar
and Aygün [26,27].

Motivated by the studies mentioned above, the LRS Bianchi type-I universe has been studied in BD
theory by assuming cosmic string with bulk viscous as matter distribution. This paper is organized
as follows: In the second section, the universe model has been constructed, and the modified field
equations of the model have been solved. In the last section, all the obtained solutions have been
concluded in detail.

2. MEFE’s of LRS Bianchi-I Universe for Brans-Dicke Theory

The modified Einstein field equations (MEFE’s) in BD theory [12] have been suggested as:

Rij − 1
2Rgij = −8π

Φ Tij − ω

Φ2 (Φ,iΦ,j − 1
2gijΦ,kΦ,k) − 1

Φ(Φi;j − gijΦ,k
;k)) (1)

Here, R, Rij , and ω are Ricci scalar, Ricci tensor, and the coupling constant of BD theory, respectively.
It is possible to reduce BD theory to GR theory when ω →∝ and Φ = constant [28]. In addition, Φ
symbolizes BD scalar field and it is given as follows [29]:

Φ = Φ,k
;k = 8π

3 + 2ω
T (2)

Here and after, comma (,) and semicolon (;) represent partial derivative and covariant derivative,
respectively. Furthermore, Tij is a tensor characterized stress energy of the matter in Equation 1. In
this study, it has been assumed that the string cloud matter with bulk viscous filled the universe and
this matter distribution is written as

Tij = ρuiuj − ρsxixj − ηuk
;k(uiuj − gij) (3)
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Here, ρ and ρs symbolizes the rest energy density of matter and the string energy density, respectively.
Moreover, the bulk viscous coefficient has been represented as η. Besides, ui defines 4-velocity of the
particle and xi is named unit space-like vector determined the string direction [21, 30]. Further, the
LRS Bianchi type-I space-time line element can be written as

ds2 = dt2 − A(t)2dx2 − B(t)2(dy2 + dz2) (4)

Here, A(t) and B(t) are time-depending scale factors of the universe [31,32]. Some kinematic quanti-
ties, such as spatial volume (V ), Hubble parameter (H), expansion scalar (θ), shear scalar (σ2), and
deceleration parameter (q), for LRS Bianchi type-I universe are provided as follows, respectively:

V = a3 = AB2 (5)

H = at

a
= At

3A
+ 2Bt

3B
(6)

θ = At

3A
+ 2Bt

B

σ2 = 1
3

[
At

A
− Bt

B

]2

and
q = d

dt

( 1
H

)
− 1 = 2(ABt − AtB)2 − 3AB(AttB + 2ABtt)

(2ABt + AtB)2 (7)

Here and after, the lower index t represents the derivative with respect to cosmic time t. Besides,
a provided in Equations 5 and 6 symbolizes the average scale factor [33]. By using Equations 1-4,
the modified Einstein field equations of LRS Bianchi-I space-time for string cloud coupled with bulk
viscous matter have been obtained in BD theory as follows:

B2
t

B2 + 2Btt

B
= 1

Φ

[
8πη

(
At

A
+ 2Bt

B

)
− ωΦ2

t

2Φ − 2BtΦt

B
− Φtt

]
(8)

B2
t

B2 + 2AtBt

AB
= 1

Φ

[
8πρ + ωΦ2

t

2Φ − AtΦt

A
− 2BtΦt

B

]
(9)

Att

A
+ Btt

B
+ AtBt

AB
= 1

Φ

[
8πη

(
At

A
+ 2Bt

B

)
− Φt

(
At

A
− Bt

B

)
− ωΦ2

t

2Φ − Φtt

]
(10)

Att

A
+ Btt

B
+ AtBt

AB
= 1

Φ

[
8πη

(
At

A
+ 2Bt

B

)
− Φt

(
At

A
− Bt

B

)
+ 8πρs − ωΦ2

t

2Φ − Φtt

]
(11)

Field equations obtained as in Equations 8-11 have six unknown quantities such as A, B, Φ, ρ, ρs,
and η. Therefore, two approximations have been used to solve field equations. The first one is the
relationship of the scale factors came from a proportion of the shear scalar and the expansion scalar
given as follows:

A = Bk (12)

Here, k is an arbitrary constant [24,34,35]. The second assumption is a constant form of deceleration
parameter by using Equation 7 given as follows:

q = m − 1 (13)

where the arbitrary constant m determines the expansion model of the universe. Deceleration param-
eter q specifies the fate of the universe model as follows [15,24,36]:

i. When m < 0, one gets q < −1 named super-exponential expansion
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ii. When m = 0, one gets q = −1 named exponential expansion

iii. When 0 < m < 1, one gets −1 < q < 0 named accelerating power law expansion

iv. When m = 1, one gets q = 0 named constant expansion

v. When m > 1, one gets q > 0 named decelerating expansion

By using Equation 13 with Equation 12, the scale factor B has been calculated as

B = (s1t + s2)
3

m(k+2) (14)

Then, by using Equation 14 in Equation 12, the scale factor A has been attained as follows:

A = (s1t + s2)
3k

m(k+2) (15)

Considering the scale factors’ values in Equations 14 and 15 in field Equations 8–11, the BD scalar
field Φ, the rest energy density ρ, the string energy density ρs, and the bulk viscous coefficient η have
been obtained as follows, respectively:

Φ = s3(s1t + s2)
m−3

m

ρ =
[
(k + 2)2 (

6ω + 6m − ωm2 − 9ω
)

− 18k(k + 2) − 54
]
s3s2

1

16πm2(k + 2)2(s1t + s2)
m+3

m

ρs = 0

and
η =

[
(k + 2)2 (

ωm2 − 6ω − 6m + 9ω
)

+ 18k(k + 2) + 54
]
s1s3

48πm2(k + 2)2(s1t + s2)
3
m

Furthermore, kinematic quantities, such as spatial volume (V ), Hubble parameter (H), expansion
scalar (θ), and shear scalar (σ2) for the constructed model are calculated as follows, respectively:

V = (s1t + s2)
1
m

H = s1
m(s1t + s2)

θ = 3s1
m(s1t + s2)

and
σ2 = 3(k − 1)2s2

1
m2(k + 2)2(s1t + s2)2

All the obtained solutions of constructed model have been investigated in the next section.

3. Discussions

In this paper, the bulk viscous coupled with the string cloud matter distribution has been investigated
in BD theory for LRS Bianchi type-I space-time. By considering the scale factor values given in
Equations 14 and 15 within Equation 4, the new line element of the LRS Bianchi-I universe can be
rewritten as

ds2 = dt2 − (s1t + s2)
6k

m(k+2) dx2 − (s1t + s2)
6

m(k+2) (dy2 + dz2) (16)

It is obviously seen that s1 and k in Equation 16 are important constants to determine meaningful
the universe model and must be s1 ̸= 0, k ̸= −2, and k ̸= 0. Besides, it is well know that the
universe is expanding with acceleration. When 0 < m < 1, the deceleration parameter value has given
accelerating power law expansion universe. At this condition, the evolution of scale factor A(t) has
been shown in Figure 1. As seen in the figure, the expansion of the constructed universe model is as
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expected in given situations.

Figure 1. Evolutions of the scale factor A(t) for the accelerating expanding universe (s1 = s2 = k = 1
and m = 0.5)

Moreover, the string energy density ρs vanishes for constructed model. Thus, it can be said that
the string matter does not survive in the model LRS Bianchi type-I universe for BD theory with the
bulk viscous and the string cloud. This finding agrees with the studies of Zel’dovich [13], Çağlar and
Aygün [25–27], Sahoo and Mishra [37], Kiran and Reddy [38], etc. In addition, the obtained all the
solutions give the negative energy density of particle. Hence, it is possible that the cosmic string
may have disappeared by time and turned into a phantom [39]. Rest energy density and bulk viscous
coefficient have been shown in Figure 2.

Figure 2. Evolutions of the rest energy density and the bulk viscous coefficient for the accelerating
expanding universe (s1 = s2 = s3 = k = 1, ω = 2, and m = 0.5)
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Furthermore, the BD scalar field Φ has been obtained time dependent and shown in Figure 3 for
the accelerating expanding universe. It is observed that the scalar field of the theory is inversely
proportional to time, intense at the beginning, and loses its effect over time.

Figure 3. Evolutions of the BD scalar field for the accelerating expanding universe (s1 = s2 = s3 = 1
and m = 0.5)

Considering the kinematic quantities, it is obtained that the universe has expansion with accelerating.
This expansion is observed in Figures 4 and 5. Further, this result agrees with some studies [4–7].

Figure 4. Evolutions of spatial volume for accelerating expanding universe (s1 = s2 = s3 = 1 and
m = 0.5)
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Figure 5. Evolutions of the Hubble parameter, the expansion scalar, and the shear scalar for the
accelerating expanding universe (s1 = s2 = s3 = 1, k = 2, and m = 0.5)

The obtained all the solutions have been calculated depending on some integer values of arbitrary
constant m to investigate expansion type of the universe. By assuming m = 2, m = 1, and m = 0,
one obtains the results of the constructed model for decelerating expansion, the constant expansion,
and the exponential expansion universe, respectively. Additionally, these results have been provided
in Table 1.

Table 1. Results of Constructed Model for the Deceleration Parameters
Quantities Decelerating Expansion q = 1 Constant Expansion q = 0 Exponential Expansion q = −1

Scale Factor A (s1t + s2)
3k

2k+4 (s1t + s2)
3k

k+2 sk
4 es5kt

Scale Factor B (s1t + s2)
3

2k+4 (s1t + s2)
3

k+2 s4es5t

BD Scalar Field Φ s3√
s1t+s2

s3
(s1t+s2)2

s6
e(k+2)s5 t

Rest Energy Density ρ − [(ω+6)k2+(4ω−12)k+4ω+6]s3s2
1

96π(k+2)2(s1t+s2)
3
2

− [(ω+3)2k2+(4ω+3)2k+8ω+15]s3s2
1

8π(k+2)2(s1t+s2)4 − [(ω+2)k2+4(ω+1)k+4ω+6)]s6s2
5

16πe(k+2)s5 t

Bulk Viscous Coefficient η
[(ω+6)k2+(4ω−12)k+4ω+6]s1s3

96π(k+2)2(s1t+s2)
3
2

[(ω+3)2k2+(4ω+3)2k+8ω+15]s1s3

24π(k+2)2(s1t+s2)3
[(ω+2)k2+4(ω+1)k+4ω+6)]s5s6

16πe(k+2)s5 t

Spatial Volume V
√

s1t + s2 s1t + s2 s4e
(k+2)s5 t

3

Hubble Parameter H s1
2(s1t+s2)

s1
(s1t+s2)

(k+2)s5
3

Expansion Scalar θ 3s1
2(s1t+s2)

3s1
(s1t+s2) (k + 2)s5

Shear Scalar σ2 3(k−1)2s2
1

4(k+2)2(s1t+s2)2
3(k−1)2s2

1
(k+2)2(s1t+s2)2

(k−1)2s2
5

3

It is possible to get GR solutions of the LRS Bianchi type-I space-time with the bulk string cloud
matter by assuming Φ = constant in BD theory. To get the constant BD scalar field, s3 must be zero
in the model results. In this situation, the energy density and the bulk viscous coefficient became
zero, and it gives the static vacuum solutions. Thus, the obtained results do not allow GR solutions
of the constructed model by reducing BD solutions with Φ = constant.
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4. Conclusion

This study investigated BD theory in the LRS Bianchi type-I space-time for bulk viscous and string
cloud matter distribution. In the future, it is worth investigating LRS Bianchi I universe filled with
bulk string matter or various cosmic matter in alternative gravitation theories such as f(G), f(Q),
and f(Q, T ).
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Abstract − In this paper, we provide an alternative method to determine the position vector
of a slant helix with the help of an alternative moving frame. We then construct a vector
differential equation in terms of the principal normal vector of a slant helix using an alternative
moving frame. By solving this vector differential equation, we determine the position vector
of the slant helix. Afterward, we obtain parametric representations of some examples of slant
helices for chosen curvature and torsion functions as an application of the proposed method.
Finally, we discuss the method and whether further research should be conducted or not.
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1. Introduction

In differential geometry, the theory of curves is one of the main study areas. The theory of curves
is generally studied with the well-known Frenet frame. Many geometric properties of differentiable
curves can be defined with the help of this frame. In addition, the determination of the characterization
of some special curves can be achieved by the curvatures of the Frenet frame. Among these special
curves, various types of helices, including general helices, circular helices, and slant helices, are the
curves that attract the most attention from researchers. A general helix (formerly called cylindrical
helix) is defined by the property that all tangent vectors along the curve make a constant angle with
a fixed direction. A necessary and sufficient condition for a curve to be a general helix is that the
ratio of torsion to curvature is a constant [1]. There are numerous uses for general helices in different
branches of science, such as biology, fractal geometry, computer-aided geometric design, engineering,
and architecture [2–5]. After a long time since the concept of general helix hs been introduced, a new
curve called slant helix has been defined with a similar idea. A slant helix is a curve whose principal
normal vectors make a constant angle with a fixed straight line, which is the axis of the slant helix [6].
A necessary and sufficient condition for a curve to be a slant helix is that the ratio κ2

(κ2+τ2)3/2 ( τ
κ)′ is

constant, where κ and τ are curvature and torsion functions of the curve, respectively [6].

According to the fundamental theorem for curves, given two continuous functions of one parameter,
a space curve can be determined uniquely up to rigid motion for which the two functions are its
curvature and torsion [7]. The problem of determining the position vector of this curve is known as
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solving natural or intrinsic equations [1]. Although the problem has a solution for an arbitrary curve
in Galilean space, it remains an open problem for Euclidean and Minkowski spaces [8, 9]. For the
problem of determining the position vector of a general helix, a method depending on solving a vector
differential equations constructed with the help of the Frenet frame has been proposed in [10]. Using
this method, the parametric representation of the position vector of a general helix with the known
curvature and torsion functions has been found. Then, a similar method has been used to determine
a slant helix’s position vector in [11]. After that, similar techniques have been applied for determining
position vectors of some special curves with the help of various moving frames, such as the Frenet
frame, the type-2 Bishop frame, the Darboux frame, and the alternative moving frame, in various
spaces, Euclidean space, Minkowski space, and Galilean space [9, 12–19].

In this paper, we propose an alternative method to the existing methods in the literature to determine
the position vector of a slant helix. We first rewrite the derivative formulae of the alternative moving
frame to obtain a simpler differential equation. Then, we construct a vector differential equation in
terms of the principal normal vector with the help of the new derivative formulae of the alternative
moving frame. By solving this vector differential equation, we find the principal normal vector of
the slant helix and thus determine the position vector of the curve. Finally, applying the proposed
method, we obtain parametric representations of some examples of slant helices for chosen curvature
and torsion functions.

2. Preliminaries

Let α = α(s) be a unit speed Frenet curve in E3, that is, ⟨α′(s), α′(s)⟩ = 1 and α′′(s) ̸= 0. The Frenet
frame along the curve α consists of three mutually orthonormal vectors defined by

T(s) = α′(s), N (s) = 1
∥T ′(s)∥T ′(s), and B(s) = T(s) × N(s) (1)

where T(s), N (s), and B(s) are called tangent vector, principal normal vector, and binormal vector,
respectively. The derivative formulae of the Frenet frame also known as Frenet formulae can be
provided as follows: 

T ′(s)
N ′(s)
B′(s)

 =


0 κ(s) 0

−κ(s) 0 τ(s)
0 −τ(s) 0




T(s)
N (s)
B(s)

 (2)

where κ and τ are called curvature and torsion functions of the curve α, respectively. These functions,
also called Frenet curvatures, are defined by

κ(s) =
∥∥T ′(s)

∥∥ and τ(s) = −
〈
B′(s), N (s)

〉
In Euclidean 3-space, apart from the Frenet frame, many moving frames has been defined to study
the differential geometric properties of curves. One of them is the alternative moving frame. The
alternative moving frame consists of three mutually orthonormal vectors. These vectors are the unit
principal normal vector N (s), also included in the Frenet frame, the unit vector C(s) defined by
C(s) = N ′(s)

∥N ′(s)∥ , and the unit vector W (s) defined by W (s) = N (s) × C(s), also normalized instanta-
neous rotation vector of the Frenet frame [20, 21]. The derivative formulae of the alternative moving
frame are as follows [20]: 

N ′(s)
C ′(s)
W ′(s)

 =


0 f(s) 0

−f(s) 0 g(s)
0 −g(s) 0




N (s)
C(s)
W (s)

 (3)
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where the functions
f =

√
κ2 + τ2 (4)

and
g = κ2

κ2 + τ2

(
τ

κ

)′
(5)

are called the first and the second alternative curvatures of the curve α, respectively. From Equalities
4 and 5, we have the followings [22]:

κ(s) = f (s) cos
(∫

g(s)ds

)
(6)

and
τ(s) = f (s) sin

(∫
g(s)ds

)
(7)

The alternative curvatures play a major role in the characterizations of curves. The following theorem
supports this idea.

Theorem 2.1. [20] Let α be a curve in E3 with alternative curvatures f and g. The curve α is a
slant helix if and only if the function

σ = g
f (8)

is a constant.

3. Determination of the Position Vector of a Slant Helix

In this section, the problem of determining a slant helix’s position vector is solved using a method
based on the alternative moving frame. To achieve this, we first rewrite the derivative formulae of the
alternative moving frame with a new parameter. Then, we construct a vector differential equation in
terms of the principal normal vector by using these new formulae. By solving this vector differential
equation, we obtain the position vector of the slant helix in parametric form. Before constructing
the vector differential equation, it will be more useful to use new derivative formulae obtained by the
parameter transformation θ =

∫
f(s)ds instead of the derivative formulae given in Equality 3 where

f(s) is the first alternative curvature. According to this new parameter θ, the derivative formulae of
the alternative moving frame become the following form [19]:

N ′(θ)
C ′(θ)
W ′(θ)

 =


0 1 0

−1 0 σ(θ)
0 −σ(θ) 0




N (θ)
C(θ)
W (θ)

 (9)

such that σ(θ) = g(θ)
f (θ) .

Theorem 3.1. Let α = α(s) be a unit speed slant helix and α = α(θ) be another parametric
representation of this curve where θ =

∫
f(s)ds. The principal normal vector N (θ) satisfies the

following vector differential equation

N ′′′(θ) + (1 + σ2)N ′(θ) = 0 (10)

where σ(θ) = g(θ)
f (θ) .

Proof.
From the second equation of Equality 9, the vector W (θ) can be written as

W (θ) = 1
σ(θ)

(
C ′(θ) + N (θ)

)
(11)
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Differentiating the first equation of Equality 9,

N ′′(θ) = C ′(θ) (12)

Substituting Equality 12 into Equality 11,

W (θ) = 1
σ(θ)

(
N ′′(θ) + N (θ)

)
(13)

By differentiating Equality 13 and by using the first and third equations of Equality 9,( 1
σ(θ)

(
N ′′(θ) + N (θ)

))′
+ σ(θ)N ′(θ) = 0 (14)

According to Theorem 2.1, σ(θ) is a constant. Thus, Equality 14 becomes Equality 10 which completes
the proof.

Equality 10 is a third-order vector differential equation with constant coefficients. The principal
normal vector N can be found by solving this equation. The following theorem provides a solution
for the problem of determining the position vector of a slant helix given the curvature and torsion
functions.

Theorem 3.2. Let κ(s) > 0 and τ(s) be two differentiable functions on an interval I . On this
interval, the position vector α(s) = (α1(s), α2(s), α3(s)) of a slant helix for which s, κ(s) and τ(s)
become the arc-length, the curvature and the torsion, respectively, can be determined up to rigid
motions in Euclidean 3-space as follows:

α1(s) = 1√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
cos

(√
1 + σ2

∫
f (s)ds

)
ds

)
ds

α2(s) = 1√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
sin
(√

1 + σ2
∫

f (s)ds

)
ds

)
ds

α3(s) = σ√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
ds

)
ds

(15)

where σ = g
f and f and g are the alternative curvatures defined in Equalities 4 and 5, respectively.

Proof.
Let α = α(s) be a unit speed slant helix in E3 and α = α(θ) be another parametrization of the
same where θ =

∫
f(s)ds. We can write the principal normal vector N (θ) of the curve α(θ) with the

standard basis of E3 as N (θ) = N1(θ)e1 + N2(θ)e2 + N3(θ)e3. We can choose the axis of the slant
helix to be parallel to e3 without losing generality. Note that selections of different axes will produce
the same slant helix up to rigid motion in Euclidean 3-space. Since the vector N (θ) makes a constant
angle with the axis, then

⟨N (θ), e3⟩ = N3(θ) = n (16)

where n is a constant real number. It is clear that N3(θ) = n satisfies Equality 10. Additionally, since
N (θ) is a unit vector,

N2
1 (θ) + N2

2 (θ) = 1 − n2 (17)

From the general solution of Equality 17, the components N1 and N2 can be written as

N1(θ) =
√

1 − n2 cos(t(θ)) and N2(θ) =
√

1 − n2 sin(t(θ))

where t is a function of θ. The components N1 and N2 should satisfy Equality 10. Substituting N1(θ)
and N2(θ) into Equality 10, we obtain the following equalities:(

3t′t′′) cos t +
(
−(t′)3 + t′′′ + (1 + (σ)2)t′

)
sin t = 0 (18)



Journal of New Theory 44 (2023) 97-105 / An Alternative Method for Determination of the Position Vector of a Slant Helix 101

(
3t′t′′) sin t −

(
−(t′)3 + t′′′ + (1 + (σ)2)t′

)
cos t = 0 (19)

From Equalities 18 and 19, we have the following equalities:

3t′′t′ = 0 (20)

t′′ − (t′)3 + (1 + σ2)t′ = 0 (21)

From Equality 20,
t(θ) = c1θ + c2 (22)

where c1 and c2 are constants. If we change the parameter t → t + c2, then

t(θ) = c1θ (23)

Substituting Equality 23 into Equality 21,

c1(−c1
2 + 1 + σ2) = 0 (24)

Solving Equality 24,
c1 = ±

√
1 + σ2 (25)

Substituting Equality 25 into Equality 23, the function t(θ) can be obtained as

t = ±
√

1 + σ2θ

Therefore, the vector N (θ) can be found as follows:

N (θ) =
(√

1 − n2 cos (
√

1 + σ2θ), ±
√

1 − n2 sin
(√

1 + σ2θ
)

, n
)

(26)

Moreover, the constant n in Equality 26 can be written in terms of σ. Differentiating Equality 16 and
using the first equation of Equality 9,

⟨C(θ), e3⟩ = 0 (27)

Differentiating Equality 27 and using the second equation of Equality 9,

⟨W (θ), e3⟩ = n
σ

Since the axis of the slant helix is a unit vector,

n = ± σ√
1 + σ2

(28)

Substituting Equality 28 into Equality 26, the principal normal vector N (θ) of the slant helix can be
written in terms of the parameter θ as

N (θ) = 1√
1 + σ2

(
cos

(√
1 + σ2θ

)
, ± sin

(√
1 + σ2θ

)
, ±σ

)
or in terms of the arc-length parameter s as

N (s) = 1√
1 + σ2

(
cos

(√
1 + σ2

∫
f(s)ds

)
, ± sin

(√
1 + σ2

∫
f(s)ds

)
, ±σ

)
(29)

Moreover, from Equalities 1 and 2, the curve α can be written as

α(s) =
∫ (∫

κ(s)N (s)ds

)
ds

By using Equality 4 and the parameter transformation θ =
∫

f(s)ds,

α(θ) =
∫ 1

f(θ)

(∫
cos (σθ)N (θ)dθ

)
dθ
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If the curve α is written again in terms of the arc length parameter s,

α(s) =
∫ (∫

f(s) cos
(

σ

∫
f(s)ds

)
N (s)ds

)
ds (30)

By choosing the positive sign in Equality 29 and substituting it into Equality 30, the position vector
α(s) = (α1(s), α2(s), α3(s)) of the slant helix can be found as

α1(s) = 1√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
cos

(√
1 + σ2

∫
f (s)ds

)
ds

)
ds

α2(s) = 1√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
sin
(√

1 + σ2
∫

f (s)ds

)
ds

)
ds

α3(s) = σ√
1+σ2

∫ (∫
f (s) cos

(
σ

∫
f (s)ds

)
ds

)
ds

(31)

Given the curvature and torsion functions, the functions f , g, and σ can be determined using Equalities
4 and 5 and Theorem 2.1. Substituting f and σ into Equality 31, the position vector of the slant helix
can be obtained.

4. Illustrative Examples

In this section, we obtain parametric representations of some examples of slant helices for chosen some
special curvature and torsion functions.

Example 4.1. If κ = cos(s) and τ = sin(s), then f = 1, g = 1, and σ = 1 from Equalities 4, 5, and
8. From Equality 15, the position vector α(s) of the slant helix can be found as

α(s) =
(
−3

√
2

2 cos(
√

2s) cos(s) − 2 sin(
√

2s) sin(s), −3
√

2
2 sin(

√
2s) cos(s) + 2 cos(

√
2s) sin(s), −

√
2

2 cos(s)
)

Figure 1. Slant helix with κ = cos(s) and τ = sin(s)

Example 4.2. Let curvature and torsion functions be given as κ = 1
(1+s2)3/2 and τ = s

(1+s2)3/2 ,
respectively. From Equalities 4, 5, and 8, f = 1

1+s2 , g = 1
1+s2 , and σ = 1. Using Equality 15, the
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position vector of the slant helix can be obtained in the parametric representation as

α(s) =
(√

2
2
√

1 + s2 cos
(√

2 arctan(s)
)

, −
√

2
2
√

1 + s2 sin
(√

2 arctan(s)
)

,

√
2

2
√

1 + s2

)

Figure 2. Slant helix with κ = 1
(1+s2)3/2 and τ = s

(1+s2)3/2

Example 4.3. Let curvature and torsion functions be given as κ = cos(√
s)

2
√

s
and τ = sin(√

s)
2
√

s
, res-

pectively. The functions f , g, and σ can be found as f = 1
2
√

s
, g = 1

2
√

s
, and σ = 1, respectively.

Using Equality 15, the position vector α(s) of the slant helix can be expressed in the parametric
representation as

α(s) =
(
−

√
2

2 cos
(√

2s
)

sin (
√

s) + sin
(√

2s
)

cos (
√

s) , −
√

2
2 sin

(√
2s
)

sin (
√

s) − cos
(√

2s
)

cos (
√

s) ,
√

2
2 sin (

√
s)
)

Figure 3. Slant helix with κ = cos(√
s)

2
√

s
and τ = sin(√

s)
2
√

s
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5. Conclusion

In this paper, we give a method for the determination of the position vector of a slant helix. This
method basically includes two important steps. The first step is constructing a vector differential
equation in terms of the principal normal vector of the curve with the help of the alternative moving
frame. The second step is determining the position vector of the slant helix by solving the equation in
the first step. Thanks to this method, the problem of determining the position vector of a curve given
the curvature and torsion functions is solved for a slant helix case. As an application of the method,
some examples of slant helices in parametric form are obtained for given special curvature and torsion
functions. It is thought that the obtained examples of slant helices will contribute to the variety of
examples of slant helices in the literature.

The problem of determining the position vector of a slant helix, solved in this paper, is also discussed in
[11] and [19]. In [11], a method based on solving a vector differential equation in terms of the principal
normal vector constructed with the help of Frenet formulae is presented. Since the characterization of
a slant helix cannot be used directly in this vector differential equation, this method for determining
the position vector of a slant helix involves much more complicated mathematical operations than the
method in the present paper. In [19], the authors give a method based on the alternative moving frame
to solve the same problem. Unlike the method in the present paper, the vector differential equation
is constructed in terms of the vector C of the alternative moving frame in the method given in [19].
Moreover, this method has been developed to determine a slant helix’s position vector in Minkowski
3-space, not Euclidean 3-space. The necessity of finding all the vectors of the alternative moving frame
to determine the position vector of the slant helix is an important disadvantage of this method. In
light of all these comparisons, it is hoped that the method in the present paper will be an important
alternative to the methods in the literature for the problem of determining the position vector of a
slant helix.
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[18] T. Şahin, B. C. Dirişen, Position Vectors of Curves with respect to Darboux Frame in the Galilean
space G3, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and
Statistics 68 (2) (2019) 2079–2093.

[19] B. Yılmaz, A. Has, New Approach to Slant Helix, International Electronic Journal of Geometry
12 (1) (2019) 111–115.
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