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Research Article

Abstract − Finding the ideal circumstances for a mapping to have a fixed point is the
fundamental goal of fixed point theory. These criteria can also be used for the structure under
investigation. One of this theory’s most well-known theorems, Banach’s fixed point theorem,
has been expanded adopting various methods, making it possible to conduct numerous re-
search studies. Thanks to the Jungck-Contraction Theorem, which has been proven through
commutative mappings, many fixed point theorems have been obtained using classical fixed
point iteration methods and newly defined methods. This study aims to investigate the con-
vergence, stability, convergence rate, and data dependency of the new four-step fixed-point
iteration method. Nontrivial examples are also included to support some of the results herein.

Keywords Jungck-contraction principle, fixed point, iteration method, stability, data dependence

Mathematics Subject Classification (2020) 47H09, 47H10

1. Introduction

The solutions of some problems in mathematics can be reduced to finding the solution of an equation
that can be written as f(x)−x = 0 for a function f satisfying the appropriate conditions. The points x,
which are the solutions of equations of this type, are called the fixed points of the f function. With its
extensive range of applications in fields such as differential and integral equations [1], approximation
theory and game theory [2], fixed point theory has emerged as a captivating and fundamental subject
within nonlinear analysis. Moreover, this theory yields fruitful outcomes across various domains,
including optimization [3], physics [4], economics [5], and medicine [6]. Consequently, fixed point
theory has remained a dynamic research area, drawing significant attention from researchers in the
past fifty years, due to its foundation in analysis and topology, and continues to generate a vibrant
body of literature.

Geometrically, the definition of a fixed point means the point on the y = x line. The theorems
formulated to establish the existence and uniqueness of a fixed point are commonly referred to as
fixed-point theorems. One of the most famous existence and uniqueness theorems is the theorem,
which was proved by Banach [7] in 1922 and called the Banach Contraction Principle. While this
theorem states that a contraction mapping defined on itself in complete metric spaces will have a
unique fixed point, it also offers a method called iteration in order to reach this unique fixed point.

1yunusatalan@aksaray.edu.tr (Corresponding Author); 2esraa erbas@hotmail.com
1,2Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, Aksaray, Türkiye
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The main idea in the studies on the iterations mentioned above is to determine under which con-
ditions the sequences obtained from these algorithms, which are formed by using certain mapping
classes, converge to the fixed point, the equivalence of the convergence behavior with other methods.
Furthermore, testing the convergence speed, analysis of the data dependency, and stability of the
iteration methods are considered one of the main targets of these studies.

Since the Picard iteration used in the Banach Contraction Principle cannot converge to the fixed point
of non-expansive mappings, this problem has been tried to be overcome by defining new iteration
methods. As a result of this approach, many iteration methods have been brought to the literature
and studies on the definition of new iterations have continued to maintain their popularity today.

While the iterative sequence converges to the fixed point of a certain mapping class, it may not converge
to the fixed point of another mapping class. This problem has revealed the concept of equivalence
of convergence for iteration methods, and whether the iteration methods in the literature and the
newly defined iteration methods are equivalent in terms of convergence have been examined in various
spaces [8, 9]. A large literature has been created as a result of trying to determine which of the two
iteration methods, which are shown to be equivalent in terms of convergence, converges to the fixed
point of the relevant mapping more rapidly [10,11].

After showing that the iterative sequence converges to the fixed point of the used mapping, it can
be shown that the new sequence to be obtained by using another mapping called the approximation
operator for this iteration method is also convergent to the fixed point of the approximate operator.
In such a case, the questions of how close the fixed points of both mappings are to each other and
how to calculate this distance bring up the concept of data dependency. There are many studies on
different kinds of constructs on whether fixed point iteration methods are data dependent [12–15].

Mathematically, the concept of stability can be thought of as the fact that small changes to be applied
to the structure studied cannot disrupt the functioning of it. In this context, many studies have been
carried out on the stability of fixed-point iteration methods. The approach here is; instead of the
sequence to be obtained from the iteration method used, calculation errors, rounding errors, etc.,
it can be characterized as the convergence of the new sequence to the fixed point of the mapping,
although another sequence is obtained for various reasons [16,17].

Because the mapping used in the Banach Contraction Principle is contraction, researchers have sought
to obtain various generalizations of this theorem for different types of mappings [18–20]. One of the
notable generalizations of this theorem was made by Jungck [21] in 1976 using commutative mappings.

In this paper, a Jungck-type four-step iteration method is introduced and the convergence and stability
of the sequence obtained from this method, which is constructed using a certain type of mapping,
under favorable conditions are investigated. Moreover, the convergence behavior of the new iterative
sequence is compared with other Jungck-type iterative sequences in the literature. In addition, the
concept of data dependence is analyzed and some of the results mentioned here are supported by
numerical examples.

2. Preliminaries

Jungck [21] expressed one of the noteworthy generalizations of the Banach Contraction Principle using
commutative mappings as follows:

Theorem 2.1. Let f1, f2 : B → B be two functions satisfy in the following conditions, for all
b1, b2 ∈ B:

i. (f1, f2) is a commutative pair of map
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ii. f2 is continuous

iii. f1 (B) ⊊ f2 (B)

iv. ℘ (f1b1, f1b2) ≤ t℘ (f2b1, f2b2) such that t ∈ [0, 1]

in which B is complete metric space with respect to metric function ℘. In this case f1 and f2 have a
unique common fixed point p ∈ B.

The condition specified by iv in this theorem is known as the Jungck Contraction mapping, and when
taking f2 as a unit function, it corresponds to the classical Banach Contraction Principle. Building
upon this theorem, Jungck introduced the following iteration method:

Assume that B be a Banach space, C any set, and S, T : B → C satisfy T (C) ⊆ S (C).

Sxn+1 = Txn (1)

This is referred to as the Jungck iteration method. If S = I and C = B in Equation 1, the
classical Picard iteration method [22] is obtained. Many researchers have worked on this method
introduced by Jungck and have obtained many fixed point theorems by rewriting the classical it-
eration methods in Jungck type. Some of the works done with this approach are as follows for
{αn}∞

n=0, {βn}∞
n=0, {γn}∞

n=0, {µn}∞
n=0, {an}∞

n=0, {bn}∞
n=0, {cn}∞

n=0 ⊆ [0, 1]:

Jungck-SP iteration method [23] is defined as under:
Sxn+1 = (1 − αn)Syn + αnTyn

Syn = (1 − βn)Szn + βnTzn

Szn = (1 − γn)Sxn + γnTxn

(2)

Jungck-CR iteration is defined by [24]:
Sun+1 = (1 − αn)Svn + αnTvn

Svn = (1 − βn)Tun + βnTwn

Swn = (1 − γn)Sun + γnTun

(3)

Furthermore, if {αn}∞
n=0 = 0 in Equation 3, the following Jungck-type Agarwal iteration method is

obtained [25]: Sxn+1 = (1 − αn)Txn + αnTyn

Syn = (1 − βn)Sxn + βnTxn

(4)

If {αn}∞
n=0 = 0 and {βn}∞

n=0 = 1 in Equation 3, the following Jungck-type Sahu iteration method is
obtained [25]:  Sxn+1 = Tyn

Syn = (1 − γn)Sxn + γnTxn

(5)

The Jungck-Khan iteration method is defined as follows [26]:
Sun+1 = (1 − αn − βn)Sun + αnTvn + βnTun

Svn = (1 − bn − cn)Sun + bnTwn + cnTun

Swn = (1 − an)Sun + anTun

(6)

The new four-step iteration method that we have defined inspired by the literature on the iteration
methods given above is as follows:
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xn+1 = (1 − αn) yn + αnTyn

yn = (1 − βn)Txn + βnTzn

zn = (1 − γn)wn + γnTwn

wn = (1 − µn)xn + µnTxn

(7)

The following iteration method is obtained by rewriting the iteration method given by Equation 7 in
Jungck-type: 

Sxn+1 = (1 − αn)Syn + αnTyn

Syn = (1 − βn)Txn + βnTzn

Szn = (1 − γn)Swn + γnTwn

Swn = (1 − µn)Sxn + µnTxn

(8)

The following statements hold for the Jungck-type iteration methods given above for n ∈ {0, 1, 2...},
taking S = I and C = B:

Remark 2.2. i. The classical SP iteration method [27] can be obtained from the iteration method
provided by Equation 2;

ii. The classical CR iteration method [28] can be obtained from the iteration method provided by
Equation 3;

iii. The classical Agarwal-S [29] and classical Sahu [30] iteration methods can be obtained from the
iteration methods provided by Equation 4 and Equation 5, respectively.

iv. If µn = 0 is chosen in the iteration method provided by Equation 7, the classical CR iteration [28]
is obtained.

v. If µn = 0 is chosen in the iteration method provided by Equation 8, the Jungck-CR iteration
method provided by Equation 3 is obtained.

Some auxiliary theorems and definitions have been given to obtain the main results in the following:

Definition 2.3. [24] Suppose that B ̸= ∅ and S, T : B → B are mappings.

i. b ∈ B is referred to as the common fixed point of T and S if b = Tb = Sb

ii. c ∈ B is referred to as the coincidence point of T and S if c = Tb = Sb

iii. The pair of maps (S, T ) is referred to as commuting if TSb = STb for all b ∈ B

iv. The pair of maps (S, T ) is referred to as weakly compatible if TSb = STb whenever Tb = Sb for
some b ∈ B.

Definition 2.4. [31] Let
{

Θ(i)
n

}∞

n=0
be two sequences with lim

n→∞
Θ(i)

n = Θi, i ∈ {1, 2}. Then, it is said

that
{

Θ(1)
n

}∞

n=0
converges faster than

{
Θ(2)

n

}∞

n=0
if

lim
n→∞

∥∥∥Θ(1)
n − Θ1

∥∥∥∥∥∥Θ(2)
n − Θ2

∥∥∥ = 0

Definition 2.5. [31] Assume that
{

Θ(i)
n

}∞

n=0
and

{
Π(i)

n

}∞

n=0
are four sequences for i ∈ {1, 2} such

that Π(i)
n ≥ 0 for each n ∈ N, lim

n→∞
Θ(i)

n = Θ∗, and lim
n→∞

Π(i)
n = 0. Suppose that the following error

estimates are available:
(∀n ∈ N)

∥∥∥Θ(i)
n − Θ∗

∥∥∥ ≤ Π(i)
n i ∈ {1, 2}
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If
{

Π(1)
n

}∞

n=0
converges faster than

{
Π(2)

n

}∞

n=0
(in the sense of Definition 2.4), then it is said that{

Θ(1)
n

}∞

n=0
converges to Θ∗ faster than

{
Θ(2)

n

}∞

n=0
.

Definition 2.6. [32] Assume that S, T : C → B are mappings satisfy T (C) ⊆ S(C) and p = Tb = Sb.
Suppose that {Sxn}∞

n=0 attained by Sxn+1 = f(T, xn) converges to p for any x0 ∈ C. Let {Syn}∞
n=0 ⊊

B be an arbitrary sequence and set ϵn = d (Syn+1, f (T, yn)) , n ∈ {0, 1, 2, . . . }. Then f (T, xn) will
be called (S, T )-stable if and only if lim

n→∞
ϵn = 0 implies that lim

n→∞
Syn = p.

Definition 2.7. [33] Assume that (X, d) is a metric space and the maps S, T : X → X satisfy the
following conditions for all x, y ∈ X:

i. T (X) ⊆ S(X)

ii. for non-negative λ and µ satisfying the condition λ+ µ < 1,

d (Tx, Ty) ≤ λd (Sx, Sy) + µ

(
d (Sx, Tx) .d (Sy, Ty)

1 + d (Sx, Sy)

)
(9)

iii. S (X) is complete sub-space of X

Then, the mappings S and T have a coincidence point. In addition, if S and T are weakly compatible,
these mappings have a unique common fixed point.

Lemma 2.8. [34] Suppose that
{
ρ

(k)
n

}∞

n=0
are two sequences such that ρ(k)

n ≥ 0, for each n ∈ N and

for k ∈ {1, 2}. Assume that lim
n→∞

ρ
(2)
n = 0 and µ ∈ (0, 1). If ρ(1)

n+1 ≤ µρ
(1)
n + ρ

(2)
n , then lim

n→∞
ρ

(1)
n = 0.

Lemma 2.9. [35] Assume that {an}∞
n=1 is a non negative real sequence and there exists n0 ∈ N such

that for all n ≥ n0 satisfying the following condition:

an+1 ≤ (1 − µn)an + µnηn

where µn ∈ (0,1) such that
∞∑

n=1
µn = ∞ and ηn ≥ 0. Then, the following inequality holds:

0 ≤ lim
n→∞

sup an ≤ lim
n→∞

sup ηn

Definition 2.10. [36] Suppose that (B, d) is a metric space and A1 : B → B is operator with fixed
point p and there exist a fixed point iteration method that converges to p. A2 : B → B is referred to
as approximate operator of A1 for a suitable µ > 0 if d (A1x,A2x) ≤ µ, for each x ∈ B.

3. Main Results

In this part of the study, the concept of convergence is analyzed using the new iteration method. It
is also shown that this result can be obtained independently of the condition applied to the control
sequences. In addition, the theorems such as stability, convergence speed, and data dependence are
proved.

Theorem 3.1. Assume that X is a Banach space, Y an arbitrary set and S, T : Y → X satisfy the
condition given by Inequality 9 with p = Txp = Sxp. Suppose that S(Y ) is a complete subset of X
such that T (Y ) ⊆ S(Y ) and {Sxn}∞

n=0 be iterative sequence given by Equation 8 with
∑∞

n=0 αn = ∞.
Then, {Sxn}∞

n=0 converges strongly to p. If Y = X and S and T are weakly compatible then, p is a
unique common fixed point of S and T .

Proof.
By using Equation 8, Inequality 9, and {αn}∞

n=0, {βn}∞
n=0, {γn}∞

n=0, {µn}∞
n=0 ⊆ [0, 1], in the following

inequalities are obtained:
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∥Sxn+1 − p∥ = ∥(1 − αn)Syn + αnTyn − p∥

≤ (1 − αn) ∥Syn − Txp∥ +αn ∥Tyn − Txp∥

≤ (1 − αn) ∥Syn − Sxp∥

+ αn

{
λ ∥Syn − Sxp∥ + µ

(
∥Syn − Tyn∥ . ∥Sxp − Txp∥

1 + ∥Syn − Sxp∥

)}

≤ (1 − αn) ∥Syn − Sxp∥ + λαn ∥Syn − Sxp∥

= [1 − αn (1 − λ)] ∥Syn − Sxp∥

and
∥Syn − p∥ = ∥(1 − βn)Txn + βnTzn − p∥

≤ (1 − βn) ∥Txn − Txp∥ + βn ∥Tzn − Txp∥

≤ (1 − βn)
{
λ ∥Sxn − Sxp∥ + µ

(
∥Sxn − Txn∥ . ∥Sxp − Txp∥

1 + ∥Sxn − Sxp∥

)}

+ βn

{
λ ∥Szn − Sxp∥ + µ

(
∥Szn − Tzn∥ . ∥Sxp − Txp∥

1 + ∥Szn − Sxp∥

)}

= λ (1 − βn) ∥Sxn − Sxp∥ + λβn ∥Szn − Sxp∥

Similarly,
∥Szn − p∥ ≤ [1 − γn (1 − λ)] ∥Swn − Sxp∥

and
∥Swn − p∥ ≤ [1 − µn (1 − λ)] ∥Sxn − Sxp∥

If these inequalities are nested and necessary simplifications are made considering that [1−γn (1 − λ)] ≤
1 and [1 − µn (1 − γ)] ≤ 1, then it is attained that

∥Sxn+1 − p∥ ≤ λ[1 − αn (1 − λ)] ∥Sxn − p∥ (10)

If induction is applied to the last inequality, then

∥Sxn+1 − p∥ ≤ λn+1
n∏

i=0
[1 − αi(1 − λ)] ∥Sx0 − p∥ (11)

By using 1 − x ≤ e−x, for all x ∈ [0,1], it is obtained in the following inequality:

∥Sxn+1 − p∥ ≤ λn+1 ∥Sx0 − p∥
n∏

i=0
e−(1−λ)αi

= λn+1 ∥Sx0 − p∥ e
−(1−λ)

n∑
i=0

αi

If the limit for the last inequality as n → ∞ is taken, it can be observed that Sxn → p. It will be
demonstrated that S and T have a unique common fixed point like p. Suppose the pair (S, T ) has
another coincidence point, say q. Therefore,

0 ≤ ∥p− q∥ = ∥Txp − Txq∥ ≤ λ (∥Sxp − Sxq∥) + µ

(
∥Sxp − Txp∥ . ∥Sxq − Txq∥

1 + ∥Sxp − Sxq∥

)

= λ ∥Sxp − Sxq∥
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which implies that p = q, that is S and T have a unique coincidence point. Since S and T are weakly
compatible and Sxp = Txp = p, then TTp = TTxp = TSxp = STxp signifies Tp = Sp. Thus, Tp
is the unique coincidence point of (S, T ), then Tp = p. As a result, the (S, T ) pair of maps have a
unique common fixed point.

In the next theorem, it is proven that the result of Theorem 3.1 can be derived without the
∑∞

n=0 αn = ∞
condition:

Theorem 3.2. Assume that X, Y and the mappings S and T are defined as in Theorem 3.1 with
p = Txp = Sxp. Then {Sxn}∞

n=0 converges strongly to p. Moreover, if Y = X and S and T are weakly
compatible, then p is a unique common fixed point of S and T .

Proof.
Since [1 − αn (1 − λ)] ≤ 1, from Inequality 10, it is attained the following inequality

∥Sxn+1 − p∥ ≤ λn+1 ∥Sx0 − p∥

Given that λ < 1 and taking the limit in the last inequality, one can obtain Sxn → p as n → ∞. It
can be observed from Theorem 3.1 that p is the unique common fixed point of the T and S.

Theorem 3.3. Assume that X, Y and the mappings S and T are defined as in Theorem 3.1 with
p = Txp = Sxp. Suppose that iterative sequence {Sxn}∞

n=0 given by Equation 8 converges to p with∑∞
n=0 αn = ∞. Then, it is (S, T )-stable.

Proof.
Assume that εn = ∥San+1 − f(T, an)∥ and lim

n→∞
εn = 0. Besides, {San}∞

n=0 ⊊ X is any sequence
obtained from the following equation:

San+1 = (1 − αn)Sbn + αnTbn

Sbn = (1 − βn)Tan + βnTcn

Scn = (1 − γn)Sdn + γnTdn

Sdn = (1 − µn)San + µnTan

(12)

It will be shown that lim
n→∞

San = p. By using Inequality 9 and Equation 12, the following inequalities
are obtained:

∥Sdn − p∥ = ∥(1 − µn)San + µnTan − p∥

≤ (1 − µn) ∥San − p∥ +µn ∥Tan − Txp∥

≤ (1 − µn) ∥San − p∥ + µn

{
λ ∥San − Sxp∥ + µ

(
∥San − Tan∥ . ∥Sxp − Txp∥

1 + ∥San − Sxp∥

)}

≤ [1 − µn (1 − λ)] ∥San − p∥

(13)

and
∥Scn − p∥ = ∥(1 − γn)Sdn + γnTdn − p∥

≤ (1 − γn) ∥Sdn − p∥ +γn ∥Tdn − Txp∥

≤ (1 − γn) ∥Sdn − p∥ + γn

{
λ ∥Sdn − p∥ + µ

(
∥Sdn − Tdn∥ . ∥Sxp − Txp∥

1 + ∥Sdn − Sxp∥

)}

≤ [1 − γn (1 − λ)] ∥Sdn − p∥

(14)
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Similarly,
∥Sbn − p∥ ≤ (1 − βn)λ ∥San − p∥ + βnλ ∥Scn − p∥ (15)

Substituting Inequality 13 in Inequality 14 and Inequality 14 in Inequality 15, and making the necessary
simplifications considering that [1 − µn (1 − λ)] ≤ 1, [1 − γn (1 − λ)] ≤ 1, and

∥Sbn − p∥ ≤ λ ∥San − p∥ (16)

In addition,

∥San+1 − p∥ ≤ ∥San+1 − f (T, an)∥ + ∥f (T, an) − p∥

≤ εn + ∥San+1 − p∥

≤ εn + (1 − αn) ∥Sbn − p∥ + αn ∥Tbn − p∥

≤ εn + (1 − αn) ∥Sbn − p∥ + αn

{
λ ∥Sbn − p∥ + µ

(
∥Sbn − Tbn∥ . ∥Sxp − Txp∥

1 + ∥Sbn − Sxp∥

)}

= εn + [1 − αn (1 − λ)] ∥Sbn − p∥

(17)

Substituting Inequality 16 in Inequality 17,

∥San+1 − p∥ ≤ εn + λ[1 − αn (1 − λ)] ∥San − p∥

Hence, from Lemma 2.8, it is obtained that lim
n→∞

San = p.

Conversely, assume that lim
n→∞

San = p. It will be shown that lim
n→∞

εn = 0:

εn = ∥San+1 − f (T, an)∥

≤ ∥San+1 − p∥ + ∥f (T, an) − p∥

≤ ∥San+1 − p∥ + (1 − αn) ∥Sbn − p∥ + αn ∥Tbn − p∥

(18)

By using similar operations in Inequalities 13-17, from Inequality 18,

εn ≤ ∥San+1 − p∥ + λ[1 − αn (1 − λ)] ∥San − p∥

If the limit for the above inequality is taken, then it is obtained that lim
n→∞

εn = 0.

Example 3.4. Assume that X = R is Banach space, Y = [0, 1], and S, T : Y → X are defined by
Sx = 1

5sin2x and Tx = 1
10sin2x respectively. It can be observed that S and T are pairs of maps

satisfying Inequality 9 and having unique common fixed point p = 0. If the iteration method given by
Equation 8 is rewritten for S and T with αn = βn = γn = µn = 1

n+1 :

xn+1 = 1
2sin−1 [( n

n+1

)
sin2yn + 1

2(n+1)sin2yn

]
yn = 1

2sin−1 [( n
2(n+1)

)
sin2xn + 1

2(n+1)sin2zn

]
zn = 1

2sin−1 [( n
n+1

)
sin2wn + 1

2(n+1)sin2wn

]
wn = 1

2sin−1 [( n
n+1

)
sin2xn + 1

2(n+1)sin2xn

]
It can be observed from Theorem 3.1 that the {Sxn}∞

n=0 sequence to be obtained from the above equa-
tion converges to p = 0. If the sequence {San}∞

n=0 is chosen as San = ( 1
n+5), then lim

n→∞
|Sxn − San| =

0. Hence, {San}∞
n=0 is approximate sequence of {Sxn}∞

n=0. If the iteration method given by Equation
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12 is rewritten using S and T :

an+1 = 1
2sin−1 [( n

n+1

)
sin2bn + 1

2(n+1)sin2bn

]
bn = 1

2sin−1 [( n
2(n+1)

)
sin2an + 1

2(n+1)sin2cn

]
cn = 1

2sin−1 [( n
n+1

)
sin2dn + 1

2(n+1)sin2dn

]
dn = 1

2sin−1 [( n
n+1

)
sin2an + 1

2(n+1)sin2an

]
From the above equality, it is obtained that

an+1 = 1
2sin−1


1
2

(
n

n+1

)2
sin2an + n

2(n+1)2 sin2
{

1
2sin−1 ( n

n+1

)
u1 + 1

2(n+1)sin2
(

1
2sin−1

u1
)}

+ 1
2(n+1)sin2

{
1
2sin−1 { n

2(n+1)sin2an + 1
2(n+1)sin2

(
1
2sin−1

u2
)}}


in which u1 =

(
n

n+1

)
sin2an + 1

2(n+1)sin2an and u2 =
(

n
n+1

)
u1 + 1

2(n+1)sin2
(

1
2sin−1u1

)
. If εn =

|San+1 − f (T, an)|, then limn→∞
∣∣∣( 1

n+6

)
− f (T, an)

∣∣∣ = 0. As a result, lim
n→∞

εn = 0.

Theorem 3.5. Assume that X, Y and the mappings S and T are defined as in Theorem 3.1 with
p = Txp = Sxp. Consider the sequence {Sxn}∞

n=0 obtained from the iteration method given by
Equation 8 and the sequence {Sun}∞

n=0 obtained from the Jungck-CR iteration method given by
Equation 3 under the condition α1 < αn ≤ 1, where x0 = u0 ∈ Y . In this case, {Sxn}∞

n=0 has a better
convergence rate with respect to {Sun}∞

n=0.

Proof.
From Inequality 11, it is attained that

∥Sxn+1 − p∥ ≤ λn+1
n∏

i=0
[1 − αi(1 − λ)] ∥Sx0 − p∥ (19)

In addition, if similar steps are taken as in the proof of Theorem 3.1 for the Jungck-CR iteration
method, then

∥Sun+1 − p∥ ≤ [1 − αn (1 − λ)] ∥Sun − p∥

If induction is applied to the above inequality, then

∥Sun+1 − p∥ ≤
n∏

i=0
[1 − αi(1 − λ)] ∥Su0 − p∥ (20)

If the assumption α1 < αn ≤ 1 is applied to Inequalities 19 and 20, then

∥Sxn+1 − p∥ ≤ λn+1[1 − α1(1 − λ)]n+1 ∥Sx0 − p∥

and
∥Sun+1 − p∥ ≤ [1 − α1(1 − λ)]n+1 ∥Su0 − p∥

Denote
an = λn+1[1 − α1(1 − λ)]n+1

and
bn = [1 − α1(1 − λ)]n+1

Then,
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ψn = an

bn

= λn+1[1 − α1(1 − λ)]n+1

[1 − α1(1 − λ)]n+1

= λn+1

Since λn+1 < 1, it is obtained that lim
n→∞

ψn = 0. From Definition 2.5, {Sxn}∞
n=0 has a better conver-

gence speed than {Sun}∞
n=0.

The following example shows that iteration method given by Equation 8 has a higher convergence
speed under favorable conditions than the other Jungck-type methods presented in this paper:

Example 3.6. Assume that X = R is Banacah space, Y = [0.5, 1.5], and S, T : [0.5, 1.5] → [1, 81]
are defined by Sx = 16x4 and Tx = x8 + 24x3 − 44x2 + 35, respectively. It can be observed that
T1 = S1 = 16 and T ([0.5, 1.5]) ⊆ S ([0.5, 1.5]), and (S, T ) are pairs of maps satisfying Inequality
9 with λ = 0.4 and µ = 0.2. The convergence of the Jungck-type iteration methods provided by
Equations 2-6 and Equation 8 to the p = T1 = S1 = 16 with the control sequences αn = βn = γn =
µn = an = bn = cn = 3

20 , for the initial condition x0 = 0.75, are shown in Tables 1 and 2. The
following conclusions can be obtained from these tables:

• While newly defined iteration method given by Equation 8 reaches the fixed point at the 16th step,

• the Jungck-SP iteration method given by Equation 2 reaches the fixed point at the 72nd step,

• the Jungck-CR iteration method given by Equation 3 reaches the fixed point at the 17th step,

• the Jungck-Agarwal iteration method given by Equation 4 reaches the fixed point at the 17th step,

• the Jungck-Sahu iteration method given by Equation 5 reaches the fixed point at the 17th step, and

• the Jungck-Khan iteration method given by Equation 6 reaches the fixed point at the 101st.

Table 1. Convergence of some iteration methods for the initial point x0 = 0.75

xn New Jungck Type Jungck-CR Jungck-Agarwal

x1 0.75 0.75 0.75

x2 1.05295512496838 1.05414377123399 1.06137648831351
... ... ... ...

x11 0.99999999994918 0.99999999994220 0.99999999978115

x12 1.00000000000533 1.00000000000615 1.00000000002691
... ... ... ...

x15 0.99999999999999 1.00000000000007 1.00000000000041

x16 1.00000000000000 0.99999999999999 0.99999999999995

x17
... 1.00000000000000 1.00000000000000

... ... ... ...
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Table 2. Convergence of some iteration methods for the initial point x0 = 0.75

xn Jungck-Sahu Jungck-SP Jungck-Khan

x1 0.75 0.75 0.75

x2 1.04466023384367 0.87897378710221 0.85315042838595
... ... ... ...

x11 0.99999999993357 0.99820409366943 0.999542288145375

x12 1.00000000000718 0.99883957379660 0.999202265784102
... ... ... ...

x16 0.99999999999999 0.99979688882405 0.999951335812014

x17 1.00000000000000 0.99986856789305 0.99998589613924
... ... ... ...

x72
... 1.00000000000000 ...

x101
... ... 1.00000000000000

... ... ... ...

Theorem 3.7. Assume that X, Y and the mappings S and T are defined as in Theorem 3.1 with
p = Txp = Sxp. Suppose that S1, T1 : Y → X are the approximation operators of S and T ,
respectively, satisfying the conditions T1xp = S1xp = q, ∥Tx− T1x∥ ≤ ε1, and ∥Sx− S1x∥ ≤ ε2, for
ε1 and ε2 and for each x ∈ Y . Consider the sequence {Sxn}∞

n=0 obtained from the iteration method
given by Equation 8 with the condition 1

2 ≤ αn. Moreover, suppose that {S1en}∞
n=0 is any sequence

obtained from the following equation:

S1en+1 = (1 − αn)S1fn + αnT1fn

S1fn = (1 − βn)T1en + βnT1gn

S1gn = (1 − γn)S1hn + γnT1hn

S1hn = (1 − µn)S1en + µnT1en

(21)

If {S1en}∞
n=0 → q as n → ∞, then

∥p− q∥ ≤ 7ε1+11ε2
1−λ

Proof.
By using Equation 8 and Inequalities 9 and 21,

∥Swn − S1hn∥ = ∥(1 − µn)Sxn + µnTxn − (1 − µn)S1en − µnT1en∥

≤ (1 − µn) ∥Sxn − S1en∥ +µn ∥Txn − T1en∥

≤ (1 − µn) ∥Sxn − Sen∥ + (1 − µn) ∥Sen − S1en∥

+ µn ∥Txn − Ten∥ + µn ∥Ten − T1en∥

≤ (1 − µn) ∥Sxn − Sen∥ + (1 − µn) ε2

+ µn ∥Txn − Ten∥ + µnε1

(22)
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Moreover,
∥Txn − Ten∥ ≤ λ ∥Sxn − Sen∥ + µ

(∥Sxn − Txn∥ . ∥Sen − Ten∥
1 + ∥Sxn − Sen∥

)
Suppose that D1 =

(
∥Sxn−T xn∥.∥Sen−T en∥

1+∥Sxn−Sen∥

)
. Then, it is attained that

∥Txn − Ten∥ ≤ λ ∥Sxn − Sen∥ + µD1 (23)

Substituting Inequality 23 in Inequality 22,

∥Swn − S1hn∥ ≤ [1 − µn (1 − λ)] ∥Sxn − Sen∥ + µnµD1 + (1 − µn) ε2 + µnε1 (24)

Similarly,

∥Szn − S1gn∥ ≤ (1 − γn) ∥Swn − Shn∥ + (1 − γn) ε2 + γn ∥Twn − Thn∥ + γnε1

and
∥Twn − Thn∥ ≤ λ ∥Swn − Shn∥ + µ

(∥Swn − Twn∥ . ∥Shn − Thn∥
1 + ∥Swn − Shn∥

)
Suppose that D2 =

(
∥Swn−T wn∥.∥Shn−T hn∥

1+∥Swn−Shn∥

)
. Then, it is obtained that

∥Szn − S1gn∥ ≤ [1 − γn (1 − λ)] ∥Swn − Shn∥ + γnµD2 + (1 − γn) ε2 + γnε1 (25)

Moreover,
∥Swn − Shn∥ ≤ ∥Swn − S1hn∥ + ε2 (26)

Substituting Inequality 26 in Inequality 25,

∥Szn − S1gn∥ ≤ [1 − γn (1 − λ)] ∥Swn − S1hn∥ + [1 − γn (1 − λ)]ε2 + γnµD2 + (1 − γn) ε2 + γnε1 (27)

Substituting Inequality 24 in Inequality 27,

∥Szn − S1gn∥ ≤ [1 − µn (1 − λ)][1 − γn (1 − λ)] ∥Sxn − S1en∥ + [1 − µn (1 − λ)][1 − γn (1 − λ)]ε2

+ [1 − γn (1 − λ)]µnµD1 + [1 − γn (1 − λ)] (1 − µn) ε2 + [1 − γn (1 − λ)]µnε1

+ [1 − γn (1 − λ)]ε2 + (1 − γn) ε2 + γnε1 + γnµD2

Similarly,

∥Syn − S1fn∥ ≤ (1 − βn) ∥Txn − Ten∥ + (1 − βn) ε1 + βn ∥Tzn − Tgn∥ + βnε1 (28)

and
∥Tzn − Tgn∥ ≤ λ ∥Szn − Sgn∥ + µ

(∥Szn − Tzn∥ . ∥Sgn − Tgn∥
1 + ∥Szn − Sgn∥

)
Suppose that D3 =

(
∥Szn−T zn∥.∥Sgn−T gn∥

1+∥Szn−Sgn∥

)
. Then, it is obtained that

∥Tzn − Tgn∥ ≤ λ ∥Szn − S1gn∥ + λε2 + µD3

Therefore,

∥Tzn − Tgn∥ ≤ λ[1 − µn (1 − λ)][1 − γn (1 − λ)] ∥Sxn − S1en∥

+ λ[1 − µn (1 − λ)][1 − γn (1 − λ)]ε2

+ λ[1 − γn (1 − λ)]µnµD1 + λ[1 − γn (1 − λ)] (1 − µn) ε2

+ λ[1 − γn (1 − λ)]µnε1 + λ[1 − γn (1 − λ)]ε2

+ λ (1 − γn) ε2 + γnλε1 + γnλµD2 + λε2 + µD3

(29)
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In addition,
∥Txn − Ten∥ ≤ λ ∥Sxn − Sen∥ + µ

(∥Sxn − Txn∥ . ∥Sen − Ten∥
1 + ∥Sxn − Sen∥

)
Suppose that D4 =

(
∥Sxn−T xn∥.∥Sen−T en∥

1+∥Sxn−Sen∥

)
. Then, it is attained that

∥Txn − Ten∥ ≤ λ ∥Sxn − S1en∥ + λε2 + µD4 (30)

Substituting Inequalities 29 and 30 in Inequality 28,

∥Syn − S1fn∥ ≤ (1 − βn)λ ∥Sxn − S1en∥ + (1 − βn)µD4 + (1 − βn)λε2 + (1 − βn) ε1

+ βnλ[1 − µn (1 − λ)][1 − γn (1 − λ)] ∥Sxn − S1en∥

+ βnλ[1 − µn (1 − λ)][1 − γn (1 − λ)]ε2

+ βnλ[1 − γn (1 − λ)]µnµD1 + βnγnλµD2 + βnµD3

+ βnλ[1 − γn (1 − λ)] (1 − µn) ε2 + βnλ[1 − γn (1 − λ)]µnε1

+ βnλ[1 − γn (1 − λ)]ε2 + βnλ (1 − γn) ε2 + βnγnλε1 + βnλε2 + βnε1

(31)

Moreover,
∥Sxn+1 − S1en+1∥ ≤ (1 − αn) ∥Syn − S1fn∥

+ αn ∥Tyn − Tfn∥ + αnε1
(32)

and
∥Tyn − Tfn∥ ≤ λ ∥Syn − Sfn∥ + µ

(∥Syn − Tyn∥ . ∥Sfn − Tfn∥
1 + ∥Syn − Sfn∥

)
Suppose that D5 =

(
∥Syn−T yn∥.∥Sfn−T fn∥

1+∥Syn−Sfn∥

)
. Then,

∥Tyn − Tfn∥ ≤ λ ∥Syn − S1fn∥ + λε2 + µD5 (33)

Substituting Inequalities 31 and 33 in Inequality 32,

∥Sxn+1 − S1en+1∥ ≤ [1 − αn (1 − λ)] (1 − βn)λ ∥Sxn − S1en∥ + [1 − αn (1 − λ)] (1 − βn)λε2

+ [1 − αn (1 − λ)] (1 − βn)µD4 + [1 − αn (1 − λ)] (1 − βn) ε1

+ [1 − αn (1 − λ)]βn [1 − µn (1 − λ)] [1 − γn(1 − λ] ∥Sxn − S1en∥

+ [1 − αn (1 − λ)]βnλ [1 − µn (1 − λ)] [1 − γn(1 − λ] ε2

+ [1 − αn (1 − λ)]βnλ [1 − γn (1 − λ)]µnµD1

+ [1 − αn (1 − λ)]βnγnλ µD2 + [1 − αn (1 − λ)]βnµD3

+ [1 − αn (1 − λ)]βnλ [1 − γn (1 − λ)] (1−µn) ε2

+ [1 − αn (1 − λ)]βnλ [1 − γn (1 − λ)]µnε1

+ [1 − αn (1 − λ)] βnλ [1 − γn (1 − λ)] ε2

+ [1 − αn (1 − λ)]βnλ (1 − γn) ε2 + [1 − αn (1 − λ)]βnλγnε1

+ [1 − αn (1 − λ)]βnλε2 + [1 − αn (1 − λ)]βnε1 + αnλε2 + αnµD5 + αnε1

For the above inequality , if necessary simplifications are made considering that 1
2 ≤ αn and αn, βn, γn, µn ∈

[0, 1] and λ < 1, then it is attained that
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∥Sxn+1 − S1en+1∥ ≤ {[1 − αn (1 − λ)] (1 − βn) + [1 − αn (1 − λ)]βn} ∥Sxn − S1en∥

+ [1 − αn (1 − λ)]D1 + [1 − αn (1 − λ)]D2 + [1 − αn (1 − λ)]D3

+ [1 − αn (1 − λ)]D4 + αnD5

+
{

[1 − αn (1 − λ)] (1 − βn) + [1 − αn (1 − λ)]βn

+ [1 − αn (1 − λ)] + [1 − αn (1 − λ)] + αn

}
ε1

+
{

[1 − αn (1 − λ)] (1 − βn) + [1 − αn (1 − λ)]βn + [1 − αn (1 − λ)]

+ [1 − αn (1 − λ)] + [1 − αn (1 − λ)] + [1 − αn (1 − λ)] + αn

}
ε2

and

∥Sxn+1 − S1en+1∥ ≤ [1 − αn (1 − λ)] ∥Sxn − S1en∥ + [1 − αn (1 − λ)] (D1 +D2 +D3 +D4)

+αnD5 + {3 [1 − αn (1 − λ)] + αn} ε1 + {5 [1 − αn (1 − λ)] + αn} ε2

Therefore,

∥Sxn+1 − S1en+1∥ ≤ [1 − αn (1 − λ)] ∥Sxn − S1en∥

+2αn(D1 +D2 +D3 +D4 +D5)

+7αnε1 + 11αnε2

Hence,

∥Sxn+1 − S1en+1∥ ≤ [1 − αn (1 − λ)] ∥Sxn − S1en∥

+ αn(1 − λ)
{7ε1 + 11ε2 + 2 (D1 +D2 +D3 +D4 +D5)

1 − λ

} (34)

It is clear that lim
n→∞

(D1 +D2 +D3 +D4 +D5) = 0. With this in mind, consider the following
equalities:

an = ∥Sxn − S1en∥

µn = αn (1 − λ) ∈ (0, 1)

and
ηn =

{7ε1 + 11ε2 + 2 (D1 +D2 +D3 +D4 +D5)
1 − λ

}
It can be observed that Inequality 34 satisfies all the conditions of Lemma 2.9. Hence, it follows by
its conclusion that

0 ≤ lim sup
n→∞

∥Sxn − S1en∥ ≤ lim
n→∞

sup
{7ε1 + 11ε2 + 2 (D1 +D2 +D3 +D4 +D5)

1 − λ

}
= 7ε1 + 11ε2

1 − λ

By using {S1en}∞
n=0 → q and {Sxn}∞

n=0 → p,

∥p− q∥ ≤ 7ε1 + 11ε2
1 − λ
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4. Conclusion

This paper introduces a new four-step fixed-point iteration method, which is rewritten with the help
of the Jungck Contraction Principle, and some fixed-point theorems for a general class of mappings are
investigated. The results show that the new iteration method converges faster than the other methods
presented in this paper. This method is stable and can obtain a data dependence result. Numerical ex-
amples are given to concretize the stability and convergence speed analysis. In future work, researchers
can rewrite the iteration method provided in this paper by considering the Volterra-Fredholm integral
equations as an operator in complex-valued Banach spaces with appropriate conditions and study the
solution of these integral equations.

Author Contributions

All the authors equally contributed to this work. This paper is derived from the second author’s
master’s thesis supervised by the first author. They all read and approved the final version of the
paper.

Conflicts of Interest

All the authors declare no conflict of interest.

References

[1] A. Amini-Harandi, H. Emami, A Fixed Point Theorem for Contraction Type Maps in Partially
Ordered Metric Spaces and Application to Ordinary Differential Equations, Nonlinear Analysis:
Theory, Methods and Applications 72 (5) (2010) 2238–2242.

[2] A. Wieczorek, Applications of Fixed-Point Theorems in Game Theory and Mathematical Eco-
nomics, Wisdom Mathematics (28) (1988) 25–34.

[3] L. C. Ceng, Q. Ansari, J. C. Yao, Some Iterative Methods for Finding Fixed Points and for
Solving Constrained Convex Minimization Problems, Nonlinear Analysis: Theory, Methods and
Applications (74) (2011) 5286–5302.

[4] J. Borwein, B. Sims, Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
Vol. 49 of The Douglas–Rachford Algorithm in the Absence of Convexity, Springer, New York,
2011, Ch. 6, pp. 93-109.

[5] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cam-
bridge University Press, Cambridge, 1989.

[6] M. Chen, W. Lu, Q. Chen, K. J. Ruchala, G. H. Olivera, A Simple Fixed-Point Approach to
Invert a Deformation Field, Medical Physics 35 (1) (2008) 81–88.

[7] S. Banach, Sur Les Opérations Dans Les Ensembles Abstraits Et Leur Application Aux Equations
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1. Introduction 

The Clannish Random Walker’s Parabolic (CRWP) equation in the form 

𝜕𝑢

𝜕𝑡
−
𝜕𝑢

𝜕𝑥
+ 2𝑢

𝜕𝑢

𝜕𝑥
+
𝜕2𝑢

𝜕𝑥2
= 0 

is a mathematical model of physical problems appearing in various scientific fields such as mathematical 

biology and physics. This equation describes the behavior of two types that carry out a concurrent one-

dimensional random walk defined by the condensation of the clannishness of members as the density of another 

increases. In the literature, various methods, such as the improved tanh function method [1], homotopy 

perturbation method [2], Jacobi elliptic function method [3], unified rational expansion method [3], and a direct 

rational exponential scheme [4], have been used to solve the CRWP equation. 

Fractional calculus is a quickly developing branch of mathematics with various applications in numerous 

chemistry, physics, biology, and engineering fields such as thermodynamics, viscoelasticity, electricity, 

aerodynamics, fluid dynamics, control theory, turbulence, signal processing, and others [5-10]. Thus, finding 

exact and approximate solutions to fractional differential equations is important in scientific studies. An 

important one of these fractional differential equations is the time fractional CRWP equation. 

Recently, many methods, such as the adapted (𝐺′ 𝐺⁄ )-expansion scheme [11,12], the (𝐺′ 𝐺⁄ , 1/𝐺)-expansion 

method [12,13], the Kudryashov method [14], the improved tan(𝑄(𝜉)/2)-expansion method [15], the 

generalized homotopy analysis method [16], the modified Kudryashov method [17], the extended 

exp(−𝜑(𝜉)/2)- expansion method [18], the modified extended auxiliary mapping method [19], the modified 

 
1sevilunal@sdu.edu.tr (Corresponding Author) 
1Department of Avionics, School of Civil Aviation, Süleyman Demirel University, Isparta, Türkiye 

New Theory
Journal of

ISSN: 2149-1402

New Theory
Journal of

ISSN: 2149-1402

Editor-in-Chief
NaimÇağman

Number 45 Year 2023

www.dergipark.org.tr/en/pub/jnt

https://dergipark.org.tr/en/pub/jnt
https://doi.org/10.53570/jnt.1344706
mailto:sevilunal@sdu.edu.tr
https://orcid.org/0000-0001-7447-9219


19 

 

Journal of New Theory 45 (2023) 18-29 / Approximate Solutions of the Fractional Clannish Random Walker’s Parabolic ⋯ 

F-expansion method [19, 20], the modified (𝐺′ 𝐺2⁄ )-expansion method [20], the power series method [21], 

the natural decomposition method [22], the energy inequality method [23], and the modified trial equation 

method [24], have been used to find solutions to the fractional CRWP equation. Residual Power Series Method 

(RPSM) has not yet been investigated to solve the time fractional CRWP equation in the literature. Thus, the 

main focus of this paper is to utilize RPSM to calculate the approximate solutions of the time fractional CRWP 

equation 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡) + 𝑢𝑥𝑥(𝑥, 𝑡) = 0,    0 < 𝜇 ≤ 1 (1) 

where 𝐷𝑡
𝜇

 is the fractional derivative operator in the Caputo sense. Abu Arqub [25] suggested RPSM as a 

useful method for obtaining coefficients of the power series solution in 2013. RPSM has numerous benefits 

for solving partial differential equations compared to other methods [26]. RPSM provides an easy and effective 

power series solution for various equations without linearization, discretization, or perturbation. This method 

does not need a recursion relationship and does not require comparing the coefficients of the corresponding 

terms. The suggested method yields the solutions as a convergence series. With this method, infinite series 

solutions can be gained by iterated operations. Besides, RPSM is unaffected by rounding errors in computation 

and does not require a lot of computer memory and time. Moreover, there is no need for any transformation 

with this method. Furthermore, RPSM can be implemented directly into the present equation by choosing an 

initial guess approximation. In literature, RPSM has been used to find power series solutions for different 

problems, such as those provided in [27-44]. 

The organization of the study is as follows: Section 2 provides some definitions and theorems for the Caputo 

derivative and the fractional power series. Section 3 presents RPSM for the approximate solutions of nonlinear 

fractional differential equations. Section 4 applies the proposed method for the fractional CRWP equation 

solutions and exhibits the suggested method’s effectiveness with table and graphics. Finally, the last section 

contains the concluding remarks. 

2. Preliminaries 

Many fractional derivative definitions, such as Riemann-Liouville, Caputo, Grunwald-Letnikov, Marchaud, 

Weyl, and Hadamard fractional derivatives, have been used in scientific studies. In this section, the Caputo 

derivative is considered because the initial conditions of the fractional partial differential equations with the 

Caputo derivative have the common form of the integer order partial differential equations, and the derivative 

of the constant is zero. 

Definition 2.1. [45] The time-fractional derivative in Caputo sense is described as 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) =

{
 
 

 
 1

Γ(𝑚 − 𝜇)
∫(𝑡 − 𝜏)𝑚−1−𝜇

𝜕𝑚𝑢(𝑥, 𝜏)

𝜕𝜏𝑚
𝑑𝜏

𝑡

0

, 𝑚 − 1 < 𝜇 < 𝑚

𝜕𝑚𝑢(𝑥, 𝑡)

𝜕𝑡𝑚
, 𝑚 = 𝜇 ∈ ℕ

 

Definition 2.2. [46] The fractional power series about 𝑡0 is defined as 

∑ 𝑐𝑚(𝑡 − 𝑡0)
𝑚𝜇 =

∞

𝑚=0

𝑐0 + 𝑐1(𝑡 − 𝑡0)
𝜇 + 𝑐2(𝑡 − 𝑡0)

2𝜇 +⋯ ,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚    and    𝑡 ≥ 𝑡0 

Here, 𝑐𝑚 are constants, and 𝑡 is a variable. 
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Theorem 2.1. [46] Suppose that ℎ is a fractional power series representation about 𝑡0 of the manner  

ℎ(𝑡) = ∑ 𝑐𝑚(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚    and    𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅 

When 𝐷𝑚𝜇ℎ(𝑡) are continuous on (𝑡0, 𝑡0 + 𝑅),  then coefficients 𝑐𝑚 are given as 

𝑐𝑚 =
𝐷𝑚𝜇ℎ(𝑡0)

Γ(1 + 𝑚𝜇)
,    𝑚 ∈ {0,1,2,⋯ } 

where 𝑅 is the radius of convergence and 𝐷𝑚𝜇 = 𝐷𝜇𝐷𝜇⋯𝐷𝜇⏟        
𝑚 𝑡𝑖𝑚𝑒𝑠

. 

Theorem 2.2. [46] Suppose that 𝑢(𝑥, 𝑡) has a multivariate fractional power series representation at 𝑡0 of the 

form 

𝑢(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

,    𝑥 ∈ 𝐼,    0 ≤ 𝑚 − 1 < 𝜇 ≤ 𝑚,    and    𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅 

If 𝐷𝑡
𝑚𝜇
𝑢(𝑥, 𝑡) are continuous on 𝐼 × (𝑡0, 𝑡0 + 𝑅), then ℎ𝑚(𝑥) are given as 

ℎ𝑚(𝑥) =
𝐷𝑡
𝑚𝜇
𝑢(𝑥, 𝑡0)

Γ(1 + 𝑚𝜇)
,    𝑚 ∈ {0,1,2,⋯ } 

Here, 𝐷𝑡
𝑚𝜇

=
𝜕𝑚𝜇

𝜕𝑡𝑚𝜇
=

𝜕𝜇

𝜕𝑡𝜇
 
𝜕𝜇

𝜕𝑡𝜇
⋯

𝜕𝜇

𝜕𝑡𝜇
 and 𝑅 = min

𝑐∈𝐼
𝑅𝑐 that 𝑅𝑐 is the radius of convergence of the fractional 

power series 

∑ ℎ𝑚(𝑐)(𝑡 − 𝑡0)
𝑚𝜇

∞

𝑚=0

 

3. General Structure of RPSM 

In this section, to find the approximate solutions of nonlinear fractional differential equations with the 

suggested method, we investigate the following general nonlinear fractional differential equation with the 

initial condition 

𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) = 𝑅(𝑢) + 𝑁(𝑢),    0 < 𝜇 ≤ 1,    𝑡 > 0,    and    𝑢(𝑥, 0) = ℎ(𝑥) (2) 

where  𝑅(𝑢) is the linear term and 𝑁(𝑢) is the nonlinear term. Here, 𝐷𝑡
𝜇

 is the fractional derivative operator 

in the Caputo sense. The proposed method suggests the solution for Equation 2 as a fractional power series, 

𝑢(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

∞

𝑚=0

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    and    0 ≤ 𝑡 < 𝑅 

Then, the 𝑢𝑘(𝑥, 𝑡) is given as 

𝑢𝑘(𝑥, 𝑡) = ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

𝑘

𝑚=0

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    and    0 ≤ 𝑡 < 𝑅 (3) 

The 0-th RPSM approximate solution of 𝑢(𝑥, 𝑡) is expressed as 

𝑢0 = ℎ0(𝑥) = 𝑢(𝑥, 0) = ℎ(𝑥) 

Equation 3 can be given as  
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𝑢𝑘(𝑥, 𝑡) = ℎ(𝑥) + ∑ ℎ𝑚(𝑥)
𝑡𝑚𝜇

Γ(1 + 𝑚𝜇)

𝑘

𝑚=1

,    𝑥 ∈ 𝐼,    0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑅,    and    𝑘 ∈ {1,2,⋯ } (4) 

The residual function for Equation 2 is stated by 

Res𝑢(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) − 𝑅(𝑢) − 𝑁(𝑢) 

Hence, Res𝑢,𝑘 is expressed as 

Res𝑢,𝑘(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢𝑘(𝑥, 𝑡) − 𝑅(𝑢𝑘) − 𝑁(𝑢𝑘) (5) 

As can be seen in [25,26, 47-49], it is obvious that Res𝑢(𝑥, 𝑡) = 0 and lim
𝑘→∞

Res𝑢,𝑘(𝑥, 𝑡) = Res𝑢(𝑥, 𝑡), for 𝑡 ≥

0 and 𝑥 ∈ 𝐼. Since the fractional derivative of a constant function is zero in the Caputo sense, we express 

𝐷𝑡
𝑚𝜇
Res𝑢(𝑥, 𝑡) = 0. Besides, the fractional derivatives of Res𝑢(𝑥, 𝑡) and Res𝑢,𝑘(𝑥, 𝑡) are matching at 𝑡 = 0 

for 𝑚 ∈ {0,1,⋯ , 𝑘}; that is 𝐷𝑡
𝑚𝜇
Res𝑢(𝑥, 0) = 𝐷𝑡

𝑚𝜇
Res𝑢,𝑘(𝑥, 0) = 0, 𝑚 ∈ {0,1,⋯ , 𝑘}. 

To gain the coefficients ℎ𝑚(𝑥) with 𝑚 ∈ {1,2,⋯ , 𝑘} in Equation 4, we substitute the 𝑢𝑘(𝑥, 𝑡) in Equation 5 

and calculate the 𝐷𝑡
(𝑘−1)𝜇

 of Res𝑢,𝑘(𝑥, 𝑡) for 𝑘 ∈ {1,2,⋯ } at 𝑡 = 0. Then, we solve the following algebraic 

equation  

𝐷𝑡
(𝑘−1)𝜇

Res𝑢,𝑘(𝑥, 0) = 0,    0 < 𝜇 ≤ 1,    0 ≤ 𝑡 < 𝑅,    𝑡 = 0,    and    𝑘 ∈ {1,2,⋯ } (6) 

4. Implementation of RPSM for the Solution of the Fractional CRWP Equation 

In this section, the suggested method is used to determine the RPSM solutions for Equation 1 subject to the 

initial condition 

𝑢(𝑥, 0) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
 (7) 

Here, 𝑢(𝑥, 𝑡) =
1

2
+

1

1+cosh(𝑥−𝑡)−sinh(𝑥−𝑡)
 is the exact solution of Equation 1 for 𝜇 = 1 [14]. We express the 

residual function of Equation 1 as 

Res𝑢(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) 

Hence, Res𝑢,𝑘(𝑥, 𝑡) is given as 

Res𝑢,𝑘(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢𝑘(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢𝑘(𝑥, 𝑡) + 2𝑢𝑘(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢𝑘(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢𝑘(𝑥, 𝑡) (8) 

We investigate 𝑘 = 1 in this equation to determine the ℎ1(𝑥) and gain 

Res𝑢,1(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢1(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢1(𝑥, 𝑡) + 2𝑢1(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢1(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢1(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 1, 

𝑢1(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
 

Therefore, 
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Res𝑢,1(𝑥, 𝑡) = ℎ1(𝑥) − (ℎ
′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
) + 2 (ℎ(𝑥) + ℎ1(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
) (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
 

We gain Res𝑢,1(𝑥, 0) = 0 from Equation 6. Hence, 

ℎ1(𝑥) =
1

−2(1 + cosh𝑥)
 

Therefore, 

𝑢1(𝑥, 𝑡) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
 

To determine ℎ2(𝑥), we investigate 𝑘 = 2 in Equation 8 and gain 

Res𝑢,2(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢2(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢2(𝑥, 𝑡) + 2𝑢2(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢2(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢2(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 2, 

𝑢2(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
 

Thus, 

Res𝑢,2(𝑥, 𝑡) = ℎ1(𝑥) + ℎ2(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
− (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
) 

 +2(ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
)(ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′′(𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
 

We gain 𝐷𝑡
𝜇
Res𝑢,2(𝑥, 0) = 0 from Equation 6. Thus, 

ℎ2(𝑥) = −2csch
3𝑥 sinh4 (

𝑥

2
) 

Hence,  

𝑢2(𝑥, 𝑡) =
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

To find ℎ3(𝑥), we investigate 𝑘 = 3 in Equation 8 and gain 

Res𝑢,3(𝑥, 𝑡) = 𝐷𝑡
𝜇
𝑢3(𝑥, 𝑡) −

𝜕

𝜕𝑥
𝑢3(𝑥, 𝑡) + 2𝑢3(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢3(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢3(𝑥, 𝑡) 

From Equation 4 at 𝑘 = 3, 

𝑢3(𝑥, 𝑡) = ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3(𝑥)

𝑡3𝜇

Γ(1 + 3𝜇)
 

Hence, 
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Res𝑢,3(𝑥, 𝑡) = ℎ1(𝑥) + ℎ2(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ3(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
− (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′ (𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
) 

 +2(ℎ(𝑥) + ℎ1(𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ℎ2(𝑥)

𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3(𝑥)

𝑡3𝜇

Γ(1 + 3𝜇)
) (ℎ′(𝑥) + ℎ1

′ (𝑥)
𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′ (𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′ (𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
) 

 +ℎ′′(𝑥) + ℎ1
′′(𝑥)

𝑡𝜇

Γ(1 + 𝜇)
+ ℎ2

′′(𝑥)
𝑡2𝜇

Γ(1 + 2𝜇)
+ ℎ3

′′(𝑥)
𝑡3𝜇

Γ(1 + 3𝜇)
 

We gain 𝐷𝑡
2𝜇
Res𝑢,3(𝑥, 0) = 0 from Equation 6. Thus, 

ℎ3(𝑥) = −
1

8
(−2 + cosh𝑥)sech4 (

𝑥

2
) 

Therefore, 

𝑢3(𝑥, 𝑡) = 
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

 −
1

8
(cosh𝑥 − 2)sech4 (

𝑥

2
)

𝑡3𝜇

Γ(1 + 3𝜇)
 

Utilizing the same operation for 𝑘 = 4, 

ℎ4(𝑥) = −
1

16
sech5 (

𝑥

2
)(−11sinh (

𝑥

2
) + sinh (

3𝑥

2
)) 

and 

𝑢4(𝑥, 𝑡) = 
1

2
+

1

1 + cosh𝑥 − sinh𝑥
−

1

2(1 + cosh𝑥)

𝑡𝜇

Γ(1 + 𝜇)
− 2csch3𝑥 sinh4 (

𝑥

2
)

𝑡2𝜇

Γ(1 + 2𝜇)
 

 −
1

8
(cosh𝑥 − 2𝑥)sech4 (

𝑥

2
)

𝑡3𝜇

Γ(1 + 3𝜇)
−
1

16
sech5 (

𝑥

2
)(−11sinh (

𝑥

2
) + sinh (

3𝑥

2
))

𝑡4𝜇

Γ(1 + 4𝜇)
 

The solution 𝑢4(𝑥, 𝑡) is obtained for 𝜇 = 0.25, 𝜇 = 0.50, and 𝜇 = 1 with the different values of 𝑥 and 𝑡 in 

Table 1. Besides, 𝑢4(𝑥, 𝑡) is compared numerically with the exact solution for 𝜇 = 1 in this table. Table 1 

indicates that the absolute error increases as the value 𝑡 increases. When compared with the generalized 

homotopy analysis method [16] and the natural decomposition method [22], it is seen that more numerical 

results are presented with the proposed method for the different values of 𝑥 and 𝑡 in this table. The comparison 

of the approximate solution and the exact solution is illustrated for 0 ≤ 𝑥 ≤ 1 and  𝑡 = 0.1 by the natural 

decomposition method. However, this comparison is illustrated for −20 ≤ 𝑥 ≤ 20 and 0 ≤ 𝑡 ≤ 1 by the 

suggested method. Moreover, the comparison of the approximate and exact solutions is demonstrated only 

with the help of figures by the generalized homotopy analysis method. 

Table 1. Comparing the 𝑢4(𝑥, 𝑡) solution with the exact solution  

𝑥 𝑡 
𝜇 = 0.25 𝜇 = 0.50 𝜇 = 1 

𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) Exact solution Absolute error 

-20 

0 0.500000002061 0.500000002061 0.500000002061 0.500000002061 0 

0.2 0.500000001322 0.500000001336 0.500000001688 0.500000001688 5.21805 × 10−15 

0.4 0.50000000142 0.500000001187 0.500000001382 0.500000001382 1.64757 × 10−13 

0.6 0.500000001569 0.500000001147 0.500000001132 0.500000001131 1.21259 × 10−12 

0.8 0.500000001743 0.50000000118 0.500000000931 0.500000000926 4.9557 × 10−12 

1 0.500000001931 0.500000001277 0.500000000773 0.500000000758 1.46766 × 10−11 
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Table 1. (Continued) Comparing the 𝑢4(𝑥, 𝑡) solution with the exact solution 

𝑥 𝑡 
𝜇 = 0.25 𝜇 = 0.50 𝜇 = 1 

𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) 𝑢4(𝑥, 𝑡) Exact solution Absolute error 

-5 

0 0.506692850924 0.506692850924 0.506692850924 0.506692850924 0 

0.2 0.504227945443 0.504341132518 0.50548631283 0.505486298899 1.39308 × 10−8 

0.4 0.504461951935 0.503840255916 0.504496707853 0.504496273161 4.34692 × 10−7 

0.6 0.504857371886 0.503672525135 0.503687458916 0.503684239899 3.21902 × 10−6 

0.8 0.505329920677 0.503726292195 0.503031646234 0.503018416325 1.32299 × 10−5 

1 0.50585023446 0.50396675685 0.502512007312 0.502472623157 3.93842 × 10−5 

5 

0 1.49330714908 1.49330714908 1.49330714908 1.49330714908 0 

0.2 1.48180816187 1.48809037128 1.4918374435 1.49183742885 1.46499 × 10−8 

0.4 1.47688585161 1.48424157072 1.49004867877 1.49004819813 4.8064 × 10−7 

0.6 1.47276294279 1.48024305141 1.48787530595 1.48787156502 3.74094 × 10−6 

0.8 1.46904740969 1.47598316537 1.4852421188 1.48522596831 1.61505 × 10−5 

1 1.46559068753 1.47142711235 1.48206425377 1.48201379004 5.04637 × 10−5 

20 

0 1.5 1.5 1.5 1.5 0 

0.2 1.49999999636 1.49999999837 1.49999999954 1.5 4.56339 × 10−10 

0.4 1.49999999477 1.49999999715 1.49999999899 1.5 1.01354 × 10−9 

0.6 1.49999999343 1.49999999587 1.49999999831 1.5 1.69303 × 10−9 

0.8 1.49999999222 1.4999999945 1.49999999748 1.5 2.51955 × 10−9 

1 1.4999999911 1.49999999303 1.49999999648 1.4999999851 1.138 × 10−8 

In Figure 1, the comparison between the exact solution and the 𝑢4(𝑥, 𝑡) is demonstrated for −20 ≤ 𝑥 ≤ 20 

and 0 ≤ 𝑡 ≤ 1 at 𝜇 = 1. When equal parameters are chosen, it is clear that the 𝑢4(𝑥, 𝑡) solution has almost the 

same shape as the exact solution in Figure 1. 

 
Figure 1. The graphic of the exact solution and 𝑢4(𝑥, 𝑡) 
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In Figure 2, the 𝑢4(𝑥, 𝑡) is demonstrated for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 5 when 𝜇 = 0.1, 𝜇 = 0.4, 𝜇 = 0.7, 

𝜇 = 1. In Figure 3, the same solution is illustrated for −10 ≤ 𝑥 ≤ 10  and 𝑡 = 4 with the different values of 

𝜇. The solution at 𝜇 = 0.1 is demonstrated with the blue line, the solution at 𝜇 = 0.4 is demonstrated with the 

orange line, the solution at 𝜇 = 0.7 is demonstrated with the green line, and the solution at 𝜇 = 1 is 

demonstrated with the red line in Figure 3. Cleary observed from Figure 3 that a solitary wave occurs as the 

values of 𝛼 increase. All graphics are demonstrated with the aid of Mathematica. 

  

i. ii. 

  

iii. iv. 

Figure 2. 3D graphics of the 𝑢4(𝑥, 𝑡): (i) for 𝜇 = 0.1, (ii) for 𝜇 = 0.4, (iii) for 𝜇 = 0.7, and (iv) for 𝜇 = 1 

 

 
Figure 3. 2D graphic of the 𝑢4(𝑥, 4) for the different values of 𝜇 

5. Conclusion 

In this paper, RPSM is utilized to obtain the approximate solutions of Equation 1. Numerical results are 

introduced with the different values of 𝜇, 𝑥, and 𝑡. The proposed method reaches a higher level of accuracy 
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when these results are investigated. It is seen that the approximate solutions are found to have nearly the same 

shape as the exact solution when equal parameters are chosen. These solutions are also illustrated in 2D and 

3D graphics as proof of visualization. The suggested method does not require a lot of calculation work and 

time. This method can obtain infinite series solutions using only a few iterations. Moreover, RPSM is highly 

efficient for the fractional CRWP equation. Furthermore, there is no need for perturbation, linearization, 

discretization, or transformation when utilizing the proposed method. For future studies, RPSM can be used 

as an alternative to gain the approximate solutions of different types of partial and fractional differential 

equations encountered in physics, mathematics, and engineering.  
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minimization problem. This approach works for the generalized Bessel polynomials, including
the normalized reversed variant, as well as the Vieté–Pell and Vieté–Pell–Lucas polynomials.
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vances. We provide zeros and error estimates for various cases of the Jacobi, Hermite, and
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1. Introduction

The Jacobi, Hermite, and Laguerre polynomials are called classical orthogonal polynomials. They
have served as objects of study as early as the 19th century and found applications in physics and
approximation and number theory. For example, the Jacobi polynomials contain the Legendre poly-
nomials as a special case, the coefficients in the expansion of the gravitational potential associated to
a point mass [1]. The last two chapters of Szegö’s classic text [2] focus on applications to interpolation
and mechanical quadrature. More recently, the theory of orthogonal polynomials was used to present
a formulation of quantum mechanics [3]. The classical orthogonal polynomials may be characterized
as solutions to a Sturm–Liouville type equation of the form:

Q(x)y′′ + L(x)y′ + λy = 0

In the case of the Jacobi polynomials, Q(x) = 1−x2, L(x) = β−α−(α+β+2)x, and λ = n(n+α+β+1).
For the Hermite polynomials, Q(x) = 1, L(x) = −2x, and λ = 2n. For the generalized Laguerre
polynomials, Q(x) = x, L(x) = (α + 1 − x), and λ = n. In each case, the corresponding polynomial
solutions satisfy an orthogonality condition of the form∫ ∞

−∞
Pm(x)Pn(x)W (x)dx = 0, m ̸= n
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where for the Jacobi polynomials,

W (x) =

 (1 − x)α(1 + x)β, −1 ≤ x ≤ 1
0, |x| > 1

for the Hermite polynomials,
W (x) = e−x2

and for the generalized Laguerre polynomials,

W (x) =

 xαe−x, x ≥ 0
0, x < 0

Some topics of recent interest in the area of orthogonal polynomials include generalized Bessel poly-
nomials [4], Vieté–Pell–Lucas polynomials [5, 6], and quasi-orthogonal polynomials [7]. Dunster et
al. [4] study the reverse generalized Bessel polynomials by combining a qualitative analysis involving
Liouville–Green Stokes lines and anti-Stokes lines with a fixed point method to calculate their zeros.
Tasci and Yalcin [6] present some fundamental properties of Vieté–Pell and Vieté–Pell–Lucas polyno-
mials, such as their characteristic equations, Binet formulas, and generating functions. More recently,
Kuloğlu et al. [5] study a generalization of these polynomials, incomplete generalized Vieté–Pell and
Vieté–Pell–Lucas polynomials, presenting recurrence relations and their generating functions. The
well-known electrostatic interpretation is a central reason for continued interest in the zeros of classi-
cal and nonclassical orthogonal polynomials. Ismail [8,9] extensively researches this topic, including a
recent study on the general theory of quasi-orthogonal polynomials, which included an investigation
into an electrostatic equilibrium problem [7]. Another point of interest is that these zeros have been
used in quadrature rules [10–12].

The above treatment can be provided to both the (normalized reversed) generalized Bessel polynomials
and the Vieté–Pell and Vieté–Pell–Lucas polynomials. Take Q(x) = x2, L(x) = αx + β, and λ =
−n(n+α−1), for the generalized Bessel polynomials, while the normalized reverse Bessel polynomials
satisfy Q(x) = x, L(x) = −(2n − 2 + a + 2x), and λ = 2n (for more details, see [4, 13]). To provide
Vieté–Pell and Vieté–Pell–Lucas polynomials a similar treatment, one can exploit their relationship to
the Chebyshev polynomials to find that Q(x) = 4−x2, L(x) = −3x, and λ = n(n+1) for the Vieté–Pell
polynomials and Q(x) = 4 − x2, L(x) = −x, and λ = n2 for the Vieté–Pell–Lucas polynomials.

We present a unified method to calculate the zeros of a class of orthogonal polynomials, including
the classical orthogonal polynomials and generalized Bessel polynomials. We discuss the electrostatic
interpretation for several cases and the connection to the energy minimization problem. The method
in question differs from that used by Dunster et al. [4] and is more akin to an approach developed by
Pasquini [14–16] and more recently [17]. In Section 2, we present the details of the method. In Section
3, we discuss the electrostatic interpretation in the context of the energy minimization problem. We
briefly outline how to implement the method symbolically and numerically in Section 4. In Section 5,
we provide some examples. The paper concludes with possible avenues for future investigation.

2. Method

Given a polynomial y = cn

n∏
i=1

(x − xi), where cn, xi ∈ R, cn ̸= 0, and the xi are distinct,

y′

y
=

n∑
i=1

1
x − xi

(1)
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y′′

y
=

n∑
i=1

∑
j∈Ji

1
(x − xi)(x − xj) = 2

∑
i<j

1
(x − xi)(x − xj) (2)

and
ax2 + bx + c

(x − xi)(x − xj) = a + ax2
i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bj + c

(xj − xi)(x − xj) (3)

where Ji consists of all integers in [1, n] except i. Identities 1 and 2 follow from the product rule.
Identity 3 follows from partial fraction decomposition.

Lemma 2.1. From the above setting,

(µx + ν)y′

y
= µn +

n∑
i=1

ν + µxi

x − xi

and

(ax2 + bx + c)y′′

y
= a(n2 − n) + 2

∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

Proof.
The first identity follows directly from Identity 1 and some long division. For the second identity,
combine Identities 2 and 3 and get the equality

(ax2 + bx + c)y′′

y
= 2

∑
i<j

[
a + ax2

i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bxj + c

(xj − xi)(x − xj)

]

There are n2−n
2 terms in the above summation. Thus, 2

∑
i<j

a = a(n2 − n). Observe that

∑
i<j

[
ax2

i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bxj + c

(xj − xi)(x − xj)

]
=

∑
i<j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

∑
i<j

ax2
j + bxj + c

(xj − xi)(x − xj)

=
∑
i<j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

∑
j<i

ax2
i + bxi + c

(xi − xj)(x − xi)

=
∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

where the second to last equality follows from index swapping on the second summation. Putting the
above calculations together yields the desired result.

Proposition 2.2. Suppose y is a degree n polynomial solution to the differential equation

(ax2 + bx + c)y′′ + (µx + ν)y′ + κy = 0

If the zeros of y, x1, · · · , xn are distinct, then for each integer k ∈ [1, n],

2
∑
j∈Jk

ax2
k + bxk + c

xk − xj
+ ν + µxk = 0

Proof.
Divide by y and apply Lemma 1,
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a(n2 − n) + 2
∑
i̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)
+ µn +

n∑
i=1

ν + µxi

x − xi
+ κ = 0 ⇔2

∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

n∑
i=1

ν + µxi

x − xi
+ M = 0

⇔2(x − xk)
∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

+ (x − xk)
n∑

i=1

ν + µxi

x − xi
+ (x − xk)M = 0

where M = κ + a(n2 − n) + µn and k is some integer in [1, n]. As x approaches xk, all terms will
approach zero except those for i = k. Taking this limit gives the desired result.

2.1. Jacobi Polynomials

For α, β > −1, the degree n Jacobi polynomial P
(α,β)
n (x) solves the differential equation

(1 − x2)y′′ + (β − α − (α + β + 2)x)y′ + n(n + α + β + 1)y = 0

Denote the n distinct zeros of P
(α,β)
n (x) by x1, · · · , xn. Let a = −1, b = 0, c = 1, µ = −(α + β + 2),

and ν = β − α. By Proposition 2.2, we see that the zeros must satisfy

2
∑
j∈Jk

−x2
k + 1

xk − xj
+ β − α − (α + β + 2)xk = 0 ⇔

1
2(α + 1)
xk − 1 +

1
2(β + 1)
xk + 1 +

∑
j∈Jk

1
xk − xj

= 0 (4)

The following theorem, which we have adapted from the Marsden and Hoffman classic [18], expresses
the well-known fact that a continuous real-valued function over a compact set must attain an absolute
maximum:

Theorem 2.3. [18] Suppose A ⊂ Rn and let f : A → R be continuous. If K ⊂ A is compact, then f

is bounded on K. Furthermore, there exists an x0 ∈ K such that f(x0) = sup f(A).

In what follows, consider the real-valued function

f(x⃗) =
n∏

k=1

[
(1 − xk)(α+1)/2(1 + xk)(β+1)/2

] ∏
i<j

(xj − xi)

defined over the set Dn = {x⃗ ∈ Rn : −1 < x1 < x2 < · · · < xn < 1}. Note that f is smooth over Dn

and continuous on Dn. Note that f vanishes on the boundary of Dn but is positive over Dn. Since f

must attain an absolute maximum in Dn, the previous observations show that this maximum occurs
in Dn and must be a critical point.

Lemma 2.4. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 4 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
n∑

k=1

[α + 1
2 ln(1 − xk) + β + 1

2 ln(1 + xk)
]

+
∑
i<j

ln(xj − xi)

we have that
∂ ln(f)

∂xk
= fxk

f
=

1
2(α + 1)
xk − 1 +

1
2(β + 1)
xk + 1 +

∑
j∈Jk

1
xk − xj

demonstrating the claim.

Lemma 2.5. The function ln(f) has only one critical point in Dn.
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Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

=
−1

2(α + 1)
(xk − 1)2 −

1
2(β + 1)
(xk + 1)2 −

∑
j∈Jk

1
(xk − xj)2

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

Example 2.6. To see the above results in action, set α = β = 0, giving the Legendre differential
equation:

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

The general solution is
y = k1Pn(x) + k2Qn(x)

where
Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n

is the n-th Legendre polynomial and

Qn =


1
2 log 1+x

1−x , if n = 0

P1(x)Q0(x) − 1, if n = 1
2n−1

n Qn−1(x) − n−1
n Qn−2(x), if n ≥ 2

is the n-th Legendre function of the second kind [2]. For n = 2, the second Legendre polynomial
P2(x) = 3x2−1

2 solves the following differential equation:

(1 − x2)y′′ − 2xy′ + 6y = 0

The corresponding real-valued function on D2 is

f(x1, x2) = (x2 − x1)
√

(1 − x2
1)(1 − x2

2)

which attains a global maximum at x1 = −1/
√

3 and x2 = 1/
√

3. It is clear that P2(x1) = P2(x2) = 0.

2.2. Hermite Polynomials

The degree n Hermite polynomial Hn(x) solves the differential equation y′′ − 2xy
′ + 2ny = 0. Denote

the n distinct zeros of Hn(x) by x1, · · · , xn. Let a = b = ν = 0, c = 1, µ = −2, and κ = 2n. By
Proposition 2.2, we observe that the zeros must satisfy

2
∑
j∈Jk

1
xk − xj

− 2xk = 0 ⇔
∑
j∈Jk

1
xk − xj

− xk = 0 (5)

In what follows, consider the real-valued function

f(x⃗) =
∏
i<j

[
xj − xi

]
e− 1

2
∑n

k=1 x2
k

defined over the set Dn = {x⃗ ∈ Rn : −∞ < x1 < x2 < · · · < xn < ∞}. Note that f is smooth, posi-
tive and bounded over Dn but approaches 0 on the boundary. Thus, f must have a critical point in Dn.
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Lemma 2.7. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 5 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) − 1
2

n∑
k=1

x2
k

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

− xk

demonstrating the claim.

Lemma 2.8. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 − 1

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

2.3. Laguerre Polynomials

The degree n generalized Laguerre polynomial L
(α)
n (x) solves the differential equation

xy′′ + (α + 1 − x)y′ + ny = 0

Denote the n distinct zeros of L
(α)
n (x) by x1, · · · , xn. Let a = c = 0, b = 1, µ = −1, ν = α + 1, and

κ = n. By Proposition 2.2, we see that the zeros must satisfy

2
∑
j∈Jk

xk

xk − xj
+ α + 1 − xk = 0 ⇔

∑
j∈Jk

1
xk − xj

+
1
2(α + 1)

xk
− 1

2 = 0 (6)

In what follows, consider the real-valued function

f(x⃗) =
∏
i<j

[
xj − xi

] n∏
k=1

[
x

(α+1)/2
k

]
e− 1

2
∑n

k=1 xk

defined over the set Dn = {x⃗ ∈ Rn : 0 < x1 < x2 < · · · < xn < ∞}. Note that f is smooth, positive
and bounded over Dn but approaches 0 on the boundary. Thus, f must have a critical point in Dn.

Lemma 2.9. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 6 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) +
n∑

k=1

[α + 1
2 ln xk

]
− 1

2

n∑
k=1

xk
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we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
1
2(α + 1)

xk
− 1

2

demonstrating the claim.

Lemma 2.10. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

1
2(α + 1)

x2
k

< 0

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

2.4. Normalized Reversed Generalized Bessel Polynomials

The normalized reversed generalized Bessel polynomials (RGBP)

θ̂n(z; a) = θn

((2n + a − 2)z
2 ; a

)
satisfy the differential equation

2z

2n + a − 2 θ̂′′
n − (2z + 2)θ̂′

n + 2nθ̂n = 0

Applying Proposition 2.2, ∑
j∈Jk

1
zk − zj

+ Mn,a

zk
+ Mn,a = 0 (7)

where Mn,a = 2 − 2n − a

2 , which correspond to the critical points of the function

f(z⃗) =
∏
i<j

(zj − zi)
n∏

i=1

(
z

Mn,a

i

)
eMn,a

∑
zi

with domain Dn = {z⃗ : zi ̸= zj if i ̸= j}.

Lemma 2.11. A point z⃗ ∈ Dn is a critical point of f if and only if Equation 7 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(zj − zi) + Mn,a

n∑
i=1

ln zi − Mn,a

n∑
i=1

zk

we have that
∂ ln(f)

∂zk
= fzk

f
=

∑
j∈Jk

1
zk − zj

+ Mn,a

zk
− Mn,a

demonstrating the claim.

Lemma 2.12. The function ln(f) has only one critical point in Dn.
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Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂z2

k

= −
∑
j∈Jk

1
(zk − zj)2 − Mn,a

z2
k

and for i ̸= j that
∂2 ln(f)

∂zizj
= 1

(zi − zj)2

The Hessian is thus diagonally dominant and negative definite.

2.5. Generalized Bessel Polynomials

In the case of generalized Beesel Polynomials (GBP), which satisfies the differential equation x2y′′ +
(αx + β)y′ + n(n + α − 1)y = 0, we can take a = 1, b = c = 0, µ = α, ν = β, and κ = n(n + α − 1), to
get that the zeros of the nth GBP satisfy∑

j∈Jk

1
xk − xj

+
1
2β

x2
k

+
1
2α

xk
= 0 (8)

These correspond to the critical points of the function

f(x⃗) =
∏
i<j

(xj − xi)
n∏

i=1

(
x

α/2
i

)
e− 1

2 β
∑

1/xi

with domain Dn = {x⃗ : xi ̸= xj if i ̸= j}.

Lemma 2.13. A point x⃗ ∈ Dn is a critical point of f if and only if Equation 8 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) + α

2

n∑
i=1

ln xi − β

2

n∑
i=1

1
xi

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
1
2α

xk
+

1
2β

x2
k

demonstrating the claim.

Lemma 2.14. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

1
2α

x2
k

−
1
2β

x2
k

and for i ̸= j that
∂2 ln(f)
∂xixj

= −
∑
j∈Jk

1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.
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2.6. Vieté–Pell and Vieté–Pell–Lucas Polynomials

Vieté–Pell polynomials satisfy the differential equation (4 − x2)y′′ − 3xy′ + n(n + 1)y = 0 and Vieté–
Pell–Lucas polynomials satisfy the differential equation (4 − x2)y′′ − xy′ + n2y = 0 where n is the
degree of the polynomial. Applying Proposition 2.2 in each case, we find that the zeros satisfy∑

j∈Jk

1
xk − xj

+
3
4

xk + 2 +
3
4

xk − 2 = 0 (9)

and ∑
j∈Jk

1
xk − xj

+
1
2

xk + 2 +
1
2

xk − 2 = 0 (10)

respectively. Consider the functions

f(x⃗) =
n∏

k=1

[
(2 − xk)

3
4 (2 + xk)

3
4
] ∏

i<j

(xj − xi)

and
g(x⃗) =

n∏
k=1

[
(2 − xk)

1
2 (2 + xk)

1
2
] ∏

i<j

(xj − xi)

Proceeding as in the Jacobi case, one finds that:

Lemma 2.15. A point x⃗ ∈ Dn is a critical point of f (resp. g) if and only if Equation 9 (resp.
Equation 10) holds for k ∈ {1, 2, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) + 3
4

n∑
i=1

ln(2 − xi) + 3
4

n∑
i=1

ln(2 + xi)

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
3
4

xk − 2 +
3
4

xk + 2

demonstrating the claim for f . For g, replace 3
4 with 1

2 .

Lemma 2.16. The functions ln(f) and ln(g) have only one critical point in Dn.

Proof.
The claim holds if we can show that both ln(f) and ln(g) are concave in Dn. This, in turn, will follow
if we can show that their Hessians are diagonally dominant and negative definite. To that extent,
observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

3
4

(xk − 2)2 −
3
4

(xk + 2)2

and for i ̸= j that
∂2 ln(f)
∂xixj

= −
∑
j∈Jk

1
(xi − xj)2

For g, replace 3
4 with 1

2 . In either case, the Hessian is thus diagonally dominant and negative definite.
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3. Electrostatic Interpretation and the Connection to the Energy Minimiza-
tion Problem

As detailed by Szego in [2], the zeros of the classical orthogonal polynomials may be interpreted as
the equilibrium position of an electrostatic problem. Stieltjes derived this connection in the case of
the Jacobi polynomials in 1885. In this case, the problem is to find the position of n ≥ 2 unit masses
in the interval [−1, 1] given two fixed positive masses α+1

2 and β+1
2 at −1 and 1, respectively, for

which electrostatic equilibrium is attained. The problem is solved by locating the zeros of the Jacobi
polynomial P

(α,β)
n (x) [2]. Stieltjes provided a similar interpretation to the other classical orthogonal

polynomials. The unit “masses” lie in the interval (0, ∞) for the Laguerre polynomials with the
restriction that the arithmetic mean of the unit charges is uniformly bounded and (−∞, ∞) for the
Hermite polynomials with the restriction that the square arithmetic mean of the unit charges is
uniformly bounded [2, 19].

A similar electrostatic interpretation may be presented for Vieté–Pell and Vieté–Pell–Lucas polyno-
mials; the unit masses lie in the interval [−2, 2], where we have positive mass 3

4 at both −2 and
2 in Vieté–Pell case and positive mass 1

2 at both −2 and 2 in Vieté–Pell–Lucas case. To the best
of our knowledge, an electrostatic interpretation for the normalized RGBP and the GBP remains
open. Interest in this connection has been steadily growing; see Marcellán, Mart́ınez-Finkelshtein and
Mart́ınez-González’s excellent survey [19] for details. As noted in [19], this is due in part to advances
in the theory of logarithmic potentials as well as special functions from other areas of study, such
as physics, combinatorics and number theory. Marcellán et al. [19] consider the following natural
questions:

i. Can the electrostatic interpretation be generalized to other families of polynomials?

ii. Is it necessary to consider the global minimum of the energy? What about other equilibria?

In regards to the first question, it is noted in [19] that Ismail [8,9] has provided an electrostatic model
for general orthogonal polynomials, in which the external field is given as the sum of a long-range
and short-range potential. For example, in [8], an explicit formula is given for the total energy of the
model at the equilibrium position, and this energy is shown to be minimum. In the case of Freud
weights, the total energy is shown to be asymptotic to −n2

α ln n.

The authors [19] consider a more general case where the weight function satisfies the Pearson equation,
particularly with the weight function corresponding to the Freud-type polynomials. It is noted that, in
this case, the zeros of the Freud-type polynomials provide a critical configuration for the total energy.
Still, it is an open problem whether the zeros are in a stable equilibrium. Regarding the second
question, it is posited whether other types of equilibria are preserved in this case. The authors [19]
present a max-min characterization of the zeros of the Jacobi polynomials, which is amenable to
complex zeros of the family when the parameters fall out of the “classical” bounds. Loosely speaking,
the characterization shows that of all possible compact continua from -1 to 1 (within the complex
plane), the energy (minimized over n points for a given compact continua) is maximized over all
compact continua when the n points are the zeros of the Jacobi polynomial.

More recently, regarding the first question above, Ismail and Wang developed an electrostatic inter-
pretation of quasi-orthogonal polynomials in [7]. The main result is analogous to one given in [8]. In
brief, it says that the equilibrium position of n unit charges in the presence of a given external field is
uniquely attained at the zeros of the associated quasi-orthogonal polynomials.
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4. Implementation

The above method was implemented using an amalgamation of symbolic and numerical approaches
in Maple 2018. As an illustration, we present the steps taken to calculate the zeros of the Laguerre
polynomial L

(0)
9 (x).

Step 1. We implement the initial guess procedure using the asymptotic formula in the Digital Library
of Mathematical Functions section 18.16. [20]. The input for the initial guess procedure is α and n

corresponding to the desired Laguerre polynomial L
(α)
n (x).

Step 2. We define the nonlinear system Expression 6, corresponding to the Laguerre polynomials.

Step 3. We calculate the Jacobian matrix using the built-in Maple function “Jacobian”.

Step 4. For instructive purposes, we perform one iteration of Newton’s method before writing a loop
to iterate it ten times. We evaluate L

(0)
9 (x) at the approximated zeros as a quick check for accuracy.

Maple produces the zeros after each iteration.

5. Illustrative Examples

In the following Tables 1-7, zeros approximations are listed for a variety of classical orthogonal poly-
nomials of a specified degree n. The Jacobi column corresponds to the general Jacobi polynomial
with α = 1

4 and β = 1
8 . The Chebyshev column refers to the Chebyshev polynomials of the 1st kind,

which correspond to Jacobi polynomials with α = β = −1
2 . The Gegenbauer column corresponds to

Jacobi polynomials with α = β = 1
4 . The Legendre column corresponds to Jacobi polynomials with

α = β = 0. The Laguerre column corresponds to the classical Laguerre polynomials. The General
Laguerre column corresponds to Laguerre polynomials with α = 1.

These results are obtained by using a straightforward implementation of Newton’s method in the
following way: Let n be a fixed natural number and consider the vector x⃗ = (x1, x2, · · · , xn) which
contains the zeros of the orthogonal polynomial of degree n and f⃗ = (f1, f2, · · · , fn) be a vector-
valued function. With this notation, we can write the system of equations as f⃗(x⃗) = 0⃗. The nonlinear
equation above is represented by Expression 4 in the case of the Jacobi polynomials, by Expression 5
in the case of the generalized Laguerre polynomials and by Expression 6 in the case of the Hermite
polynomials. As for the initial guess, we relied on formulas given in Section 18.16 of [20].

Since the exact roots are known for the Chebyshev case, one may calculate the exact error. Thus, the
same can be said for Vieté–Pell and Vieté–Pell–Lucas polynomials. Using the infinity norm we have
for n = 20 the exact error is 6.749 × 10−17, while for n = 25 the exact error is 6.297 × 10−17. We
provide error estimates in each case using the infinity norm.

Table 1. Error estimates for n = 20
Polynomial Error Estimate

Legendre 1.6064700823479085388 × 10−16

General Jacobi α = 1/4, β = 1/8 2.0443258006786251481 × 10−16

Gegenbauer 2.4276213934271014550 × 10−16

Chebyshev 1st Kind 2.775557561562891350 × 10−17

Classical Laguerre 7.0122389569333584353 × 10−15

General Laguerre α = 1 1.0850726264919494635 × 10−14

Hermite 1.2572574676652352260 × 10−16
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Table 2. Error estimates for n = 25
Polynomial Error Estimate

Legendre 2.1554887097997079110 × 10−16

General Jacobi α = 1/4, β = 1/8 1.1129640277756032144 × 10−16

Gegenbauer 1.4290762156055028002 × 10−16

Chebyshev 1st Kind 1.3834655062070259971 × 10−16

Classical Laguerre 8.9260826473499668326 × 10−15

General Laguerre α = 1 2.4825341532472729961 × 10−16

Hermite 4.7043788112778503159 × 10−16

Table 3. Newton’s Method results for n = 20 and 30 iterations

Jacobi Chebyshev Gegenbauer

-0.992143445584654 -0.996917333733128 -0.991034230192877

-0.962098494639669 -0.972369920397677 -0.959770495283156

-0.90991914333223 -0.923879532511287 -0.906555627647643

-0.83679724371729 -0.852640164354092 -0.832601034386276

-0.744414638606914 -0.760405965600031 -0.739597864903566

-0.634897399553407 -0.649448048330184 -0.629673706991205

-0.510766182525352 -0.522498564715949 -0.505343420884813

-0.374878073128636 -0.382683432365090 -0.369451505240359

-0.230360787671044 -0.233445363855905 -0.22510699141448

-0.080540669675107 -0.0784590957278449 -0.0756123031135758

0.071133877871622 0.078459095727845 0.0756123031135758

0.221171767113119 0.233445363855905 0.22510699141448

0.366119581638305 0.382683432365090 0.369451505240359

0.502641066039214 0.522498564715949 0.505343420884813

0.627593920566186 0.649448048330184 0.629673706991205

0.738102136937797 0.760405965600031 0.739597864903566

0.831622222573934 0.852640164354092 0.832601034386276

0.906001841773546 0.923879532511287 0.906555627647643

0.959529848266796 0.972369920397677 0.959770495283156

0.99098031100982 0.996917333733128 0.991034230192877
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Table 4. Newton’s Method results for n = 20 and 30 iterations
Legendre Laguerre General Laguerre

-0.993128599185095 0.0705398896919887 0.174906752386615
-0.963971927277914 0.372126818001611 0.587303080638269
-0.912234428251326 0.916582102483273 1.23822510183424
-0.839116971822219 1.70730653102834 2.13139626007693
-0.746331906460151 2.74919925530943 3.27213313351699
-0.636053680726515 4.04892531385089 4.66749446588836
-0.510867001950827 5.61517497086162 6.32653619767384
-0.37370608871542 7.45901745367106 8.26067095201373
-0.227785851141645 9.5943928695811 10.4841673812082
-0.0765265211334974 12.0388025469643 13.0148487721526
0.0765265211334973 14.8142934426307 15.8750870127848
0.227785851141645 17.9488955205194 19.0932519076063
0.373706088715419 21.478788240285 22.7058938881731
0.510867001950827 25.4517027931869 26.7611702293794
0.636053680726515 29.9325546317006 31.3245161370075
0.746331906460151 35.013434240479 36.4887033461491
0.839116971822219 40.8330570567286 42.3934227457745
0.912234428251326 47.6199940473465 49.2688138498685
0.963971927277914 55.8107957500639 57.5544209713148
0.993128599185095 66.5244165256157 68.3770378145523

Table 5. Newton’s Method results for n = 25 and 30 iterations
Jacobi Chebyshev Gegenbauer

-0.994901665878463 -0.998026728428272 -0.994174685362604
-0.975360959985654 -0.982287250728689 -0.973813483540093
-0.941256322689963 -0.951056516295154 -0.938979875687483
-0.893091307988287 -0.90482705246602 -0.890187770804335
-0.831584665110590 -0.844327925502015 -0.828161987824607
-0.757655035013272 -0.770513242775789 -0.75382448992158
-0.672406769138576 -0.684547105928689 -0.668280361715944
-0.577113343604359 -0.587785252292473 -0.57280131807384
-0.473198311079934 -0.481753674101715 -0.468806780981076
-0.362214026547642 -0.368124552684678 -0.357842771895352
-0.245818453819013 -0.248689887164855 -0.241558925568652
-0.125750396162197 -0.125333233564304 -0.121683964806954
-0.0038035200079399 8.36062906219094E-18 2.87922513006768E-17
0.118200440621912 0.125333233564304 0.121683964806954
0.238438898854630 0.248689887164855 0.241558925568652
0.355115642426439 0.368124552684678 0.357842771895352
0.466487667212620 0.481753674101715 0.468806780981076
0.570891216112889 0.587785252292473 0.57280131807384
0.666766634609609 0.684547105928689 0.668280361715944
0.752681672462637 0.770513242775789 0.75382448992158
0.827352885709386 0.844327925502015 0.828161987824607
0.889664827092574 0.904827052466020 0.890187770804335
0.938686772318027 0.951056516295154 0.938979875687483
0.973686941970036 0.982287250728689 0.973813483540093
0.994146438181037 0.998026728428272 0.994174685362604
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Table 6. Newton’s Method results for n = 25 and 30 iterations
Legendre Laguerre General Laguerre

-0.995556969790498 0.0567047754527055 0.141236726258096

-0.976663921459518 0.299010898586989 0.473974537884425

-0.942974571228974 0.735909555435016 0.998383405621479

-0.894991997878275 1.36918311603519 1.71638168719236

-0.833442628760834 2.20132605372147 2.63069311458477

-0.759259263037358 3.23567580355804 3.7448777262027

-0.673566368473468 4.47649661507383 5.06340831233858

-0.577662930241223 5.92908376270045 6.59177560687321

-0.473002731445715 7.59989930995675 8.33662635980513

-0.361172305809388 9.49674922093243 10.3059430256137

-0.243866883720988 11.6290149117788 12.5092780113164

-0.12286469261071 14.0079579765451 14.9580612826525

-3.94351965660777E-18 16.6471255972888 17.6660089928416

0.12286469261071 19.5628980114691 20.6496747456588

0.243866883720988 22.775241986835 23.9292078044927

0.361172305809388 26.3087723909689 27.5294209021358

0.473002731445715 30.1942911633161 31.481337894211

0.577662930241223 34.471097571922 35.8245167628475

0.673566368473468 39.1906088039374 40.61069001566

0.759259263037358 44.422349336162 45.9097868582297

0.833442628760834 50.2645749938335 51.8206158754045

0.894991997878275 56.8649671739402 58.4916748142772

0.942974571228974 64.4666706159541 66.1674493598106

0.976663921459518 73.5342347921002 75.315081358106

0.995556969790498 85.260155562496 87.1338948199813

Table 7. Newton’s Method results for n = 12 and 30 iterations
Hermite

0.440147298645308

0.881982756213821

1.32728070207308

1.77800112433715

2.23642013026728

2.70532023717303

3.1882949244251

3.69028287699836

4.21860944438656

4.78532036735222

5.41363635528003

6.16427243405245
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6. Conclusion

We have presented a unified approach for calculating the zeros of the classical orthogonal polynomials
and provided examples involving the Jacobi polynomials, including Chebyshev and Gengebauer, the
General Laguerre polynomials, including Legendre and Laguerre and the Hermite polynomials. We are
working on a similar approach that works for more general classes of polynomials, the Heine–Stieltjes
polynomials. The difficulty lies in choosing a decent guess for the zeros of the given Heine–Stieltjes
polynomial. We have had some success using the electrostatic interpretation for the initial guess, but
more work is needed. Other future studies include expanding the family of orthogonal polynomials to
which this method applies, expanding the electrostatic interpretation to other families of polynomials,
such as the generalized Bessel polynomials, and exploring connections between orthogonal polynomials
and Lucas polynomial identities, such as was done in [21].
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Article Info

Received: 29 Aug 2023

Accepted: 21 Nov 2023

Published: 31 Dec 2023

doi:10.53570/jnt.1351848

Research Article
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research.
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1. Introduction

In the field of engineering design, it is often the case that there is no clear solution or design, which
often leads to fuzziness, and Zadeh [1] proposed a rule to address such issues in engineering and design.
Goguen [2] expanded Zadeh’s study with a fresh viewpoint, considering the ordered structures beyond
the unit interval. It is typically necessary for a partially ordered set (poset) to be at least a complete
lattice with distributive law to query what the maximum and minimum values of a fuzzy set are. A
detailed study about these concepts can be found in [2, 3].

Moreover, Menger [4] presented probabilistic metric spaces and associated ideas. The notion was then
greatly improved by Schweizer and Sklar [5, 6]. Subsequently, Kramosil and Michálek in [7] provided
an equivalent definition for the term probabilistic metric in the form of fuzzy metric spaces, which
George and Veeramani [8] later adapted to provide a Hausdorff topology. The degree of nearness
between two elements a and b of a set X concerning the real number s is the subject of the notion
of fuzzy metric. The reality of X having a vector space structure is a common occurrence (for more
details, see [9–11]). Alternatively, the distance in a Riesz space can be defined as a vector; more details
can be found in [12–15].

In this study, we consider the parameter s as a vector based on L-fuzzy sets given by Goguen and
the fuzzy metric space provided by Kramosil and Michálek. In this case, the order structure must be
added to the concept of left-hand continuity. Thus, we define left (right) order continuity to construct
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L-fuzzy vector metric spaces and non-Archimedean L-fuzzy vector metric spaces. Then, we obtain
some new results and provide Cantor’s intersection theorem and Baire’s theorem in non-Archimedean
L-fuzzy vector metric spaces.

2. Preliminaries

This section provides some basic notions to be needed in the next section. The concept of an L-fuzzy
set was introduced by Goguen [2], who generalized the notion of a fuzzy set nicely introduced by
Zadeh. Goguen defined an L-fuzzy set as a function that maps elements of a universe of discourse to
elements of a complete lattice L, where each lattice element represents the degree of membership of
the corresponding universe element in the fuzzy set. He defined L-fuzzy set in the following manner.

Definition 2.1. [2] Let X ̸= ∅ and L = (L,⩽L) be a complete lattice with distributive law. Then,
an L-fuzzy set A is a function such that A : X → L and A(a), for each a ∈ X, means the degree of a

in L.

Definition 2.2. [10] Let X ̸= ∅. Then, an intuitionistic L-fuzzy set Aξ,ϑ is an object on X such that
Aξ,ϑ = {(ξA(a), ϑA(a)) : a ∈ X}, where the notations ξA(a) and ϑA(a) represent the membership and
non-membership degrees of a, respectively, and satisfy the condition ξA(a) + ϑA(a) ⩽L 1L.

Goguen [2] and Sadati et al. [10] provided the definitions of t-norm, decreasing negation function, and
involutive negation as follows:

Definition 2.3. [2, 10] A t-norm on L is a function T : L2 → L holding following properties, for all
k, l, m, n ∈ L, where inf L = 0L and sup L = 1L.

i. T (k, 1L) = k (boundary condition)

ii. T (k, l) = T (l, k) (commutativity)

iii. T (k, T (l, m)) = T (T (k, l), m) (associativity)

iv. k ⩽L m and l ⩽L n ⇒ T (k, l) ⩽L T (m, n) (monotonicity)

Definition 2.4. [2, 10] Let L = (L,⩽L) be a complete lattice. Then, N : L → L is a decreasing
negation function on L satisfying N (0L) = 1L and N (1L) = 0L. Furthermore, N is called an involutive
negation if N (N (x)) = x, for all x ∈ L.

Aliprantis, in his books Infinite Dimensional Analysis [12] and Positive Operators [13], discussed the
concept of ordered vector space in the following fashion.

Definition 2.5. [12,13] Let E be a real vector space. If E has an order relation ≤, which is compatible
with the algebraic structure of E in terms of the following two axioms:

i. if s ≤ u, then s + w ≤ u + w, for all w ∈ E

ii. if s ≤ u, then γs ≤ γu, for all γ ∈ R+

then E is called an ordered vector space.

For any two vectors s, u ∈ E, the notation s ≤ u can be represented by u ≥ s in another way. If θ ≤ s

where θ represents the zero vector of E, then the vector s is called positive. The set of all the positive
vectors of E is denoted by E+ := {s ∈ E : θ ≤ s}.

Aliprantis et al. [12, 13] also proposed the concept of Riezs spaces and some related concepts in the
following form.

Definition 2.6. [12, 13] Let E be an ordered vector space. For all s, u ∈ E, if E has the supremum
and the infimum of the set {s, u}, then E is called a Riesz space or a vector lattice. The notations
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used for sup{s, u} and inf{s, u} are as follows:

s ∨ u = sup{s, u} and s ∧ u = inf{s, u}

An example of a Riesz space is the space of real-valued continuous functions on a set X, considering
the pointwise ordering, defined as follows: f1 ≤ f2 in E if and only if f1(a) ≤ f2(a), for all a ∈ X.
The lattice operation in any function space E can be defined as

[f1 ∨ f2](a) = max{f1(a), f2(a)} and [f1 ∧ f2](a) = min{f1(a), f2(a)}

for each pair f1, f2 ∈ E and for all a ∈ X.

We will denote Riesz spaces with the letter E in the rest of this study.

Theorem 2.7. [12, 13] For all s, u, w ∈ E, the following properties hold:

i. s ∨ u = −[(−s) ∧ (−u)] and s ∧ u = −[(−s) ∨ (−u)]

ii. s + u = (s ∧ u) + (s ∨ u)

iii. s + (u ∨ w) = (s + u) ∨ (s + w) and s + (u ∧ w) = (s + u) ∧ (s + w)

iv. γ(s ∨ u) = (γs) ∨ (γu) and γ(s ∧ u) = (γs) ∧ (γu), for all γ ⩾ 0

For any vector s ∈ E, the positive part, negative part, and absolute value of s are denoted by s+, s−,
and |s|, respectively, and defined as follows:

s+ := s ∨ θ, s− := (−s) ∨ θ, and |s| = s ∨ (−s)

Theorem 2.8. [12, 13] For any vector s ∈ E, the following properties hold:

i. s = s+ − s−

ii. |s| = s+ + s−

iii. s+ ∧ s− = θ

A sequence (sn) ⊆ E is decreasing, denoted by sn ↓, if and only if n ⩾ m implies sn ≤ sm. In
addition the notation sn ↓ s means sn ↓ and inf{sn} = s. Similarly, a sequence (sn) ⊆ E is increasing,
represented by sn ↑, if and only if n ⩽ m implies sn ≤ sm. In addition the notation sn ↑ s means sn ↑
and sup{sn} = s.

Aliprantis et al. [12,13] set forth the concepts of ordered convergence and lattice norm in the following
way.

Definition 2.9. [12,13] Let (sn) ⊆ E be a sequence and s ∈ E be a vector. Then, (sn) is called order
convergent to s, denoted by sn

o→ s, if there exists another sequence (un) satisfying |sn − s| ≤ un ↓ θ.

Definition 2.10. [3,13] Let s and u be some vectors of E and ∥·∥ be a defined norm on E. If |s| ≤ |u|
implies ∥s∥ ≤ ∥u∥, then ∥·∥ is called a lattice norm. In addition, a Riesz space equipped with this
norm is called a normed Riesz space.

The notion of vector metric spaces, where the distance function takes values in Riesz spaces, was first
mentioned in [14].

Definition 2.11. [14] Let X ̸= ∅, E be a Riesz space, and dE : X × X → E be a function. Then,
(X, dE) is called a vector metric space if the function dE satisfies the following properties, for all
a, b, c ∈ X:

i. θ ≤ dE(a, b)
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ii. dE(a, b) = θ if and only if a = b

iii. dE(a, b) = dE(b, a)

iv. dE(a, c) ≤ dE(a, b) + dE(b, c)

Since the set of real numbers R is a Riesz space with the usual ordering, it is obvious that every metric
space is a vector metric space.

Example 2.12. [14] Every Riesz space E is a vector metric space with the function dE : E × E → E

defined by dE(a, b) = |a − b|. This vector metric is called the absolute valued vector metric on E.

To set up the definition of non-Archimedean L-fuzzy vector metric spaces, we benefit from the defini-
tion of fuzzy metric space suggested by Kramosil and Michálek [7].

Definition 2.13. [7] Let X ̸= ∅, M be a fuzzy set on X × X × [0, ∞), and T be a continuous
t-norm. Then, the triple (X, M, ∗) is a fuzzy metric space as Kramosil and Michálek describe, if for
all a, b, c ∈ X and 0 < s, u, the following properties hold:

i. M(a, b, 0) = 0

ii. M(a, b, s) = 1 if and only if a = b

iii. M(a, b, s) = M(b, a, s)

iv. T (M(a, b, s), M(b, c, u)) ⩽ M(a, c, s + u)

v. M(a, b, .) : [0, ∞) → [0, 1] is left-continuous

Here, the notation M(a, b, s) denotes the nearness degree between a and b according to s.

3. Main Results

We define the concepts of left and right-order convergence and continuity. Thanks to these concepts,
new ideas on L-fuzzy vector metric space will be built.

Definition 3.1. Let (sn) ⊆ E be a sequence and s ∈ E be a vector. Then,

i. (sn) is called left-order convergent to some vector s, denoted by sn
o−
→ s, if there exists another

sequence (un) satisfying (sn − s)− ≤ un ↓ θ.

ii. (sn) is called right-order convergent to some vector s, denoted by sn
o+
→ s, if there exists another

sequence (un) satisfying (sn − s)+ ≤ un ↓ θ.

Definition 3.2. Let X ̸= ∅, ME be an L-fuzzy set on X ×X ×E+, and T be a continuous t-norm on
L. Then, the triple (X, ME , T ) is an L-fuzzy vector metric space if for all a, b, c ∈ X and s, u ∈ E+,
the following properties hold:

i. ME(a, b, θ) = 0L

ii. ME(a, b, s) = 1L if and only if a = b

iii. ME(a, b, s) = ME(b, a, s)

iv. T (ME(a, b, s), ME(b, c, u)) ⩽L ME(a, c, s + u)

v. ME(a, b, .) : E+ → L is left-order-continuous

If the condition vi below is used instead of the condition iv, then the triple (X, ME , T ) is said to be
a non-Archimedean L-fuzzy vector metric space.

vi. T (ME(a, b, s), ME(b, c, u)) ⩽L ME(a, c, s ∨ u)
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It can be observed that every non-Archimedean L-fuzzy vector metric space is an L-fuzzy vector metric
space because the triangular inequality vi implies iv. Moreover, if s∧u = 0, then every L-fuzzy vector
metric space becomes a non-Archimedean L-fuzzy vector metric space.

Lemma 3.3. In a non-Archimedean L-fuzzy vector metric space, the function ME(a, b, .) is non-
decreasing, for all a, b ∈ X.

Lemma 3.4. In a non-Archimedean L-fuzzy vector metric space, the following statements hold:

i. If sn
o→ s and sn

o→ u, then ME(a, b, s) = ME(a, b, u)

ii. If sn
o→ s and u ⩽ sn hold for n ∈ N, then ME(a, b, u) ⩽L ME(a, b, s)

iii. If sn ↓ and sn
o→ s, which means both sn

o+
→ s and sn ↓ s, then for all n ∈ N, ME(x, y, s) ⩽L

ME(x, y, sn)

iv. If sn ↑ and sn
o→ s, which means both sn

o−
→ s and sn ↑ s, then for all n ∈ N, ME(a, b, sn) ⩽L

ME(a, b, s)

v. If sn
o→ s and un

o→ u, then lim
n→∞

ME(a, b, ksn +run) = ME(a, b, ks+ru), for all n ∈ N and k, r ∈ R

Corollary 3.5. By the definition s+ := s ∨ θ, if s, u ∈ E+, then ME(a, c, s ∨ u) = ME(a, c, s+ ∨ u+).

Theorem 3.6. Let ∅ ≠ A ⊆ E+ and s ∈ E+. If inf A exists, then the infimum of the set (s∨A) exists
and

T (ME(a, b, s), ME(b, c, inf A)) ⩽L ME(a, c, s ∨ inf A) = ME(a, c, inf(s ∨ A))

Proof.
Assume that inf A exists. Let u = inf A, then s ∨ u ≤ s ∨ w, for all w ∈ A and s ∈ E, which means
that s ∨ u is a lower bound of the set s ∨ A and ME(a, b, s ∨ u) ⩽L ME(a, b, s ∨ w) holds. Let r be
another lower bound. To show that s ∨ u is the greatest lower bound of s ∨ A, we must show r ≤ s ∨ u.
Besides, w + s = (s ∧ w) + (s ∨ w), for all w ∈ E. From the properties in Theorem 2.7,

w = (s ∧ w) + (s ∨ w) − s ≥ (s ∧ w) + r − s ≥ (s ∧ u) + r − s

Because inf A = u, it follows that u ≥ (s ∧ u) + r − s. This implies u ≥ (u + s) − (s ∨ u) + r − s. Thus,
s ∨ u ≥ r is obtained. It means that s ∨ u is the greatest lower bound. Then, inf(s ∨ A) exists and
inf(s ∨ A) = s ∨ inf A. Consequently,

T (ME(a, b, s), ME(b, c, inf A)) ⩽L ME(a, c, s ∨ inf A) = ME(a, c, inf(s ∨ A))

Example 3.7. Let (X, ME , T ) be an L-fuzzy vector space with (sn) and (un) in C[0, 1] = {h | h :
[0, 1] → R is a continuous function} define as follows:

sn =
{

0 , x ∈ [0, 1
n+1 ]

(n+1)x−1
n , x ∈ ( 1

n+1 , 1]

un =
{

−(n + 1)x + 1 , x ∈ [0, 1
n+1 ]

0 , x ∈ ( 1
n+1 , 1]

Since sn ↑ 1L = 1 and un ↓ 0L = θ, then sn ∧ un = θ holds, where 1(x) = 1 and θ(x) = 0 are constant
functions in C[0, 1]. Hence, (X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Example 3.8. Let the pair (X, dE) be a bounded vector metric space such that dE(a, b) < k, for
all a, b ∈ X and k ∈ E. In addition, let g : E+ → (∥k∥ , +∞) be an increasing continuous function.
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Define T (l, t) = sup{l + t − 1L, 0L} and the function ME by

ME(a, b, s) = 1L − dE(a, b)
g(s)

In this case, (X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Example 3.9. For T (k, l) = inf{k, l}, define the function ME by

ME(a, b, s) =
{

1, a = b

φ(s), a ̸= b

where φ : E+ → [0L, 1L) is an increasing continuous function. In this case, (X, ME , T ) becomes a
non-Archimedean L-fuzzy vector metric space.

Example 3.10. Let the pair (X, dE) be a vector metric space and E be a normed Riesz space. For
all a, b ∈ X and s ∈ E+ and for T (k, l) = inf{k, l}, define the function ME by

ME(a, b, s) = ∥s∥
∥s∥ + ∥dE(a, b)∥

Particularly, ME is called the standard L-fuzzy vector metric induced by the vector metric dE . Then,
(X, ME , T ) becomes a non-Archimedean L-fuzzy vector metric space.

Moreover, this example is used successfully in color image processing in [9,11] as a real-life application.
For this, let Fi and Fj be two image pixels. In this case, the spatial closeness between Fi and Fj is
calculated with

S(Fi, Fj , s) = s

s + ∥dE(Fi, Fj)∥

where s ∈ R+ is a parameter adjusting the sensitivity of S.

Definition 3.11. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space. In this case,
BE(a, r, s) and BE [a, r, s], for s ∈ E+, with center a ∈ X and radius r ∈ L \ {0L, 1L} are defined as
follows:

BE(a, r, s) = {b ∈ X : ME(a, b, s) >L N (r)}

and
BE [a, r, s] = {b ∈ X : ME(a, b, s) ⩾L N (r)}

Corollary 3.12. A subset Ω ⊆ X is said to be open if for a ∈ Ω, there exist an s ∈ E+ and a
radius r ∈ L \ {0L, 1L} such that BE(a, r, s) ⊂ Ω. Then, every open ball is an open set. Futhermore,
τME

= {Ω ⊆ X : Ω is open} is a topology on X.

Definition 3.13. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space.

i. Let ∅ ̸= Ω ⊆ X. For every a, b ∈ Ω and s ∈ E+, if there exists an r ∈ L \ {0L, 1L} such that
ME(a, b, s) ⩾L N (r), then Ω is bounded. Moreover, for all n ∈ N, (an) ⊆ X is called bounded if there
exists an r ∈ L \ {0L, 1L} such that (an) ⊆ BE [a, r, s].

ii. For every ε ∈ L \ {0L, 1L} and s ∈ E+, (an) ⊆ X is convergent to a ∈ X if there exists n0 ∈ N
such that ME(an, a, s) >L N (ε), for all n ⩾ n0 and denoted by

lim
n→∞

ME(an, a, s) = 1L or an
ME→ a

iii. For each ε ∈ L \ {0L, 1L} and s ∈ E+, (an) ⊆ X is a Cauchy sequence in X if there exists n0 ∈ N
such that ME(an, am, s) >L N (ε), for all n, m ⩾ n0.

iv. (X, ME , T ) is complete if and only if every Cauchy sequence in X is convergent.
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v. Let Ω ⊆ X. Then, Ω is said to be closed if (an) ⊆ Ω and an
ME→ a imply a ∈ Ω.

In the following example, we provide a nonconvergent sequence in a non-Archimedean L-fuzzy vector
metric space.

Example 3.14. Let X = (an) ∪ {1} for (an) ⊆ R+ with an ↑ 1. Define ME(an, an, s) = 1L,
ME(1, 1, s) = 1L, and

ME(an, 1, s) =
{

inf{an, s} , θ < s < 1

an , s > 1

for all n and s ∈ E+. Then, (X, ME , T ) is a non-Archimedean L-fuzzy vector metric space where
T (k, l) = inf{k, l}. Since lim

n→∞
ME(an, 1, 13 ) = 1

3 , (an) is not a convergent sequence in this space.

Proposition 3.15. Let (X, ME1 , T ) and (Y, ME2 , T ) be two non-Archimedean L-fuzzy vector metric
spaces. If

ME((a1, b1), (a2, b2), s) = T (ME1(a1, a2, s), ME2(b1, b2, s))

for (a1, b1), (a2, b2) ∈ X × Y and for all s ∈ E+, then ME is a non-Archimedean L-fuzzy vector metric
on X × Y .

Note 3.16. For the rest of this study, T stands for a continuous t-norm on L such that for any
s ∈ E+ and ε ∈ L \ {0L, 1L}, there exists an element r ∈ L \ {0L, 1L} satisfying the condition
T (N (r), N (r)) ⩾L N (ε).

Theorem 3.17. Let ME be defined as in Proposition 3.15 and (an) ⊆ X and (bn) ⊆ Y be two
sequences. If an

ME1→ a in X and bn
ME2→ b in Y , then (an, bn) ME→ (a, b) in X × Y .

Proof.
Let an

ME1→ a in X and bn
ME2→ b in Y . Then, according to Definition 3.13 (ii) there exist n1 ∈ N and

n2 ∈ N such that ME1(an, a, s) >L N (r), for all n ⩾ n1 and ME2(bn, b, s) >L N (r), for all n ⩾ n2. If
n0 = max{n1, n2}, then

ME((an, bn), (a, b), s) = T (ME1(an, a, s), ME2(bn, b, s))
>L T (N (r), N (r))
⩾L N (ε)

is obtained. Thus, the proof is completed.

Theorem 3.18. Suppose (X, ME , T ) be a non-Arcimedean L-fuzzy vector metric space and (an) ⊆ X

be a convergent sequence. Then, the following properties hold:

i. (an) is bounded and its limit is unique.

ii. (an) is a Cauchy sequence.

iii. Any subsequence (ank
) of (an) converges to the same limit.

Proof.
Suppose (X, ME , T ) be a non-Arcimedean L-fuzzy vector metric space and (an) ⊆ X be a convergent
sequence.

i. Let an
ME→ a. Then, for each ε, η ∈ L \ {0L, 1L} and s ∈ E+, there exists n1 ∈ N such that

ME (an, a, s/2) ⩾L N (ε), for all n ⩾ n1 and a0 ∈ X such that ME (a0, a, s/2) ⩾L N (η). For some
λ ∈ L \ {0L, 1L}, suppose

min {ME (an, a, s/2) : n1 > n} = N (λ)
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Then, an r ∈ L \ {0L, 1L} can be found such that

min
{
T
(
N (η), N (λ)

)
, T
(
N (η), N (ε)

)}
= N (r)

Thereby, for all n ∈ N+

ME (a0, an, s) ⩾L T
(
ME (a0, a, s/2) , ME (an, a, s/2)

)
⩾L N (r)

is obtained. As a result, (an) ⊆ BE [a0, r, s], which means (an) is bounded. To illustrate the uniqueness
of the limit, suppose the sequence (an) has two different limits a and b. Let ε = N (ME(a, b, s)), for
any s ∈ E+. Since (an) is convergent, then there exist n1, n2 ∈ N such that ME (an, a, s/2) ⩾L N (λ)
and ME (an, b, s/2) ⩾L N (λ), for all n ⩾ n1, n2. Let n0 = max {n1, n2}. Then, for n ⩾ n0,

ME(a, b, s) ⩾L T
(
ME (an, a, s/2) , ME (an, b, s/2)

)
>L T

(
N (λ), N (λ)

)
⩾L N (ε)

which means a contraction. Hence, the limit of the convergent sequence is unique.

ii. Let s ∈ E+ and ε ∈ L \ {0L, 1L}. Because of the convergent of the sequence (an), there exists
n0 ∈ N such that ME (an, a, s/2) > N (λ), for all n ⩾ n0. Then, for all m ⩾ n0,

ME (an, am, s) ⩾L T
(
ME (an, a, s/2) , ME (a, am, s/2)

)
>L T

(
N (r), N (r)

)
⩾L N (ε)

Thus, every convergent sequence is a Cauchy sequence.

iii. Let an
ME→ a and (ani) ⊆ (an). Thus, for all ε ∈ L \ {0L, 1L} and s ∈ E+, there exists n0 ∈ N such

that ME (an, a, s/2) > N (ε), for all n ⩾ n0. If i ⩾ n0, then n0 ⩽ i ⩽ ni and thus ME (ani , a, s) >

N (ε).

Definition 3.19. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space and Ω ⊆ X.
Then, the L-fuzzy vector metric diameter DE(Ω) is defined as follows:

DE(Ω) = sup
s∈E+

{inf ME(a, b, s) : a, b ∈ Ω}

If DE(Ω) = 1L, then Ω is said to be bounded.

Remark 3.20. If Ω is a singleton set, then DE(Ω) = 1L. However, unlike crisp sets, the converse may
not always be true. For example, for the standard non-Archimedean L-fuzzy vector metric defined in
Example 3.10 as follows

ME(a, b, s) = ∥s∥
∥s∥ + ∥dE(a, b)∥

and for Ω = {a0, b0} ⊂ X,

DE(Ω) = sup
s∈E+

∥s∥
∥s∥ + ∥dE(a0, b0)∥ = 1L

is obtained.

Theorem 3.21. For DE(Ω), the following statements hold:

i. Let Ω ⊆ Ψ. Then, DE(Ψ) ⩽L DE(Ω)

ii. DE(Ω) ⩽L ME(a, b, s), for any a, b ∈ Ω

iii. Let Ω = {a, b}. Then, DE(Ω) = ME(a, b, s)
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iv. Let Ω ∩ Ψ ̸= ∅. Then, T (DE(Ω), DE(Ψ)) ⩽L DE(Ω ∪ Ψ)

Definition 3.22. Let (X, ME , T ) be a non-Archimedean L-fuzzy vector metric space. For ∅ ≠ (Ωn) ⊆
X if

lim
n→∞

DE(Ωn) = 1L

then it is said to be Ω has appearing L-fuzzy vector metric diameter. Moreover, for all r ∈ L\{0L, 1L}
and s ∈ E+, a number n0 ∈ N can be found such that ME(a, b, s) >L N (r), for all a, b ∈ Ωn0 .

Theorem 3.23 (Theorem of Cantor Intersection). Let (X, ME , T ) be a non-Archimedean L-fuzzy
vector metric space. Let ∅ ≠ Ωn be closed and decreasing sequence of subsets of X. Suppose that
lim

n→∞
DE(Ωn) = 1L. Then, X is complete if and only if the intersection of the sequence is a singleton.

Proof.
Let X be complete. For each n ∈ N by considering a point an ∈ Ωn, a sequence (an) can be
formed. If m ⩾ n is chosen, Ωm ⊆ Ωn is obtained such that all the points {am : m ⩾ n} of
the sequence belong to the set Ωn. According to Theorem 3.21, DE(Ωn) ⩽L ME(am, an, s), for
s ∈ E+ and for all m ⩾ n. Since the sequence (Ωn) has an appearing L-fuzzy vector diameter,

lim
n,m→∞

ME(am, an, s) = 1L. Thus, (an) is a Cauchy sequence. Since X is complete, there is a point
a ∈ X such that lim

n→∞
ME(an, a, s) = 1L. If a set Ωn0 is taken and formed the sequence (an) ⊂ Ωn0 , for

n ⩾ n0, then lim
n→∞

ME(an, a, s) = 1L. Moreover, a ∈ Ωn0 because Ωn0 is closed. As a result, it follows

that a belongs to all the members of the sequence (Ωn). Hence, a ∈
∞⋂

n=1
Ωn is obtained. Considering

another point a′ ∈
∞⋂

n=1
Ωn, DE(Ωn) ⩽L ME(a, a′, s), for all s ∈ E+. Since the sequence (Ωn) has

an appearing L-fuzzy vector diameter, ME(a, a′, s) = 1L. As a result, it follows that
∞⋂

n=1
Ωn = {a}

because of a = a′.

Conversely, considering a Cauchy sequence (an) ⊆ X and closed nonempty subset Ωn = {am : m ⩾ n}
of X, then lim

n→∞
DE(Ωn) = 1L because the sequence (Ωn) is decreasing and (an) is a Cauchy sequence.

According to the assumption of the theorem, there is only a single point a such that
∞⋂

n=1
Ωn = {a}.

Then, because of the definition of L-fuzzy vector diameter there is a natural number n0 such that
DE(Ωn0) >L N (ε), for each ε ∈ L \ {0L, 1L}. Moreover, since a ∈ Ωn0 , M(an, a, s) >L N (ε), for all
n ⩾ n0. It means that an

ME→ a. Consequently, the non-Archimedean L-fuzzy vector metric space X

is a complete space.

Theorem 3.24 (Baire Category Theorem). Let (X, ME , T ) be a non-Archimedean L-fuzzy vector
metric space and let (Ωn) ⊂ X be a countable collection of open and dense subsets. Then, the
intersection of (Ωn) is also dense in X.

Proof.
For proof, it is necessary that

BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)
̸= ∅

is satisfied for all a ∈ X, r ∈ L \ {0L, 1L} and s ∈ E+. For Ω1, BE(a, r, s) ∩ Ω1 is open and
nonempty because Ω1 ⊂ X is dense. Considering the element a1 ∈ BE(a, r, s) ∩ Ω1, then there exist
r1 ∈ L \ {0L, 1L} and s1 ∈ E+ such that BE [a1, r1, s1] ⊂ BE(a, r, s) ∩ Ω1. Let BE1 = BE(a1, r1, s1).
BE1 ∩Ω2 is open and nonempty because Ω2 ⊂ X is dense. Considering the element a2 ∈ BE1 ∩Ω2, then
there exist r2 ∈ (0L, 1L/2) and s2 ∈ E+ such that BE [a2, r2, s2] ⊂ BE1 ∩ Ω2. Let BE2 = BE(a2, r2, s2).
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If continued inductively, two sequences (an) ⊆ X and (rn) ⊆ R are obtained such that

BE [an+1, rn+1, sn+1] ⊂ BEn ∩ Ωn+1 ⊂ BE [an, rn, sn] and rn ∈ (0L, 1L/n)

for all n ∈ N. According to Theorem 3.23,
∞⋂

n=1
BE [an, rn, sn] has only one element. As a result, from

∞⋂
n=1

BE [an, rn, sn] ⊂ BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)

we reach the conclusion BE(a, r, s) ∩
( ∞⋂

n=1
Ωn

)
̸= ∅. This completes the proof.

4. Conclusion

In conclusion, this article contributes to the field of fuzzy metric spaces by defining left and right-order
convergence and continuity within the framework of non-Archimedean L-fuzzy vector metric spaces.
Left and right-order continuity concepts are used to construct L-fuzzy vector metric spaces and non-
Archimedean L-fuzzy vector metric spaces. Furthermore, some non-trivial examples are built, and as
an implication, the findings are used to prove Cantor’s intersection theorem and Baire’s theorem. In
the next stages, as a continuation of this study, examples of these spaces can be multiplied, and fixed
point theorems can be studied.
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Abstract − In this paper, a Bayesian paradigm of a mixture model with finite and non-finite components 

is expounded for a generic prior and likelihood that can be of any distributional random noise. The mixture 

model consists of stylized properties-proportional allocation, sample size allocation, and latent 

(unobserved) variable for similar probabilistic generalization. The Expectation-Maximization (EM) 

algorithm technique of parameter estimation was adopted to estimate the stated stylized parameters. The 

Markov Chain Monte Carlo (MCMC) and Metropolis–Hastings sampler algorithms were adopted as an 

alternative to the EM algorithm when it is not analytically feasible, that is, when the unobserved variable 

cannot be replaced by imposed expectations (means) and when there is need for correction of exploration 

of posterior distribution by means of acceptance ratio quantity, respectively. Label switching for 

exchangeability of posterior distribution via truncated or alternating prior distributional form was imposed 

on the posterior distribution for robust tailoring inference through Maximum a Posterior (MAP) index. In 

conclusion, it was deduced via simulation study that the number of components grows large for all 

permutations to be considered for subsample permutations. 

Keywords Bayesian paradigm, expectation-maximization, MCMC, proportional allocation, metropolis–hastings 

Mathematics Subject Classification (2020) 62F15, 62H30 

1. Introduction 

The essence of Bayesian methods, inference, and statistics in time-series analysis, mixture models, 

econometric, machine learning, and data science had received great attention since the propounded of Bayes’ 

theorem by Thomas Bayes in the early 1980s [1]. Its great advantage is via its simplicity and bedrock of 

simplifying Bayes’ theorem in a discretized or continuous form. However, it provides subjective pre-judgment 

and pre-knowledge (prior information) about the data that is to be incorporated into likelihoods, in order to aid 

sequential learning, decision-making, and prediction [2]. In other words, an inescapable requirement of 

Bayesian methods is to rightfully specify prior distributions for all involved parameters in the model that are 

usually regarded as unknown quantities. However, there have been debates and controversies over the choice 

of priors that truly advocate for likelihood(s) of interest [3]. Although, different types of prior have been 

proposed, types like, conjugate and non-conjugate priors; horseshoe prior, improper priors (otherwise refer to 
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as 𝜎-finite measure), Zellner’s G-prior, G-Priors, non-informative G-Priors, Jeffreys’ prior, but there has not 

been a clear distinction as regards the ideal one [4]. However, prior distributions to be considered depend on 

how they inclusively or exclusively contained in the mixture model, the model to be considered, their 

involvements in the likelihood coefficients; and their bearing resulting inference via sensitivity analysis. 

Consequently, it is not all the time that conjugate priors defined for certain likelihoods do give posterior forms 

of the likelihoods. In addition, the deduction that some non-informative priors usually accompany undefined 

posteriors irrespective of the sample size is a clear indicator of the complexity of Bayesian inference for some 

models [5]. 

According to [6], prior distributions are being specified based on principles, relying on asymptotes, 

approximations, algorithms’ flexibilities, and ignorance about the parameters. This makes it feasible for 

emergence of any inferential probabilistic prior with its corresponding likelihood to yield closed form solution 

and limiting distribution for the embedded parameters. Contrary to the adoption of priors’ principles, [7] 

proposed Approximate Bayesian Computation–Population Monte Carlo (ABC–PMC) algorithm as an 

alternative technique for finite mixture model inferential. [7] adopted a kernel function as a substitute for prior 

distribution and explicitly highlighted how the problem of label switching can be solved with the use of the 

adopted kernel. In extension, [8] adopted Bayes factor to find required number of K-components that will be 

associated to a finite mixture model. The adopted Bayes factor ratio was incorporated in parametric family of 

finite mixtures and that of nonparametric via `strongly identifiable’ Dirichlet Process Mixture (DPM) model 

and inferred that scalable evidence estimation technique for non-conjugate Dirichlet Process mixtures will be 

needed to derive the parametric and nonparametric processes. Prediction is one of the key factors that 

distinguished Bayesian paradigm, because of its ability to take into account all involved parameters and 

integrate them into posterior distribution in order to iteratively estimate their reliable and inferential solutions 

[9].  

The continual usage of Bayesian methods in mixture models and econometrics in general, is because of the 

repercussion in flexibility and efficient algorithms used in conducting inferential inference through estimating 

unknown quantities. However, various powerful Bayesian computational techniques have been designed to 

estimate posterior solutions analytically and intractably for dimensional models. Among the techniques 

designed are Markov Chain Monte Carlo (MCMC) methods, Gibbs sampler and the Metropolis-Hastings 

sampler, Arnason–Schwarz Gibbs Sampler; and Stan implemented Hamiltonian Monte Carlo called “Stan” 

algorithms. The MCMC method is a veritable revolution and procedure for implementing a class of 

computational algorithms that can be easily applied to almost every model. The idea behind MCMC method 

is to generate analytically intractable posterior solutions via Markov Chain that converge to a chain of 

selections from the posterior distribution [10,11]. Once one of the chain drawings is available or successful, 

predictive inference will also be achieved. There are various ways of designing Markov Chain depending on 

the structure of the problem, once the chain exists, Gibbs sampler and the Metropolis-Hastings sampler; 

Arnason–Schwarz Gibbs Sampler; or Stan implemented Hamiltonian Monte Carlo can then be employed. 

Adding of additional auxiliary variable(s) (data augmentation) by the sampler (MCMC sampler) usually 

facilitate the implementation and analysis to be conducted on the augmented domain on not only the unknown 

quantities (model parameters), but also on unobserved variables (latent variables) and missing observational 

structure [12, 13]. This accessible reference and ability to incorporate additional data augmentation by MCMC 

sampler makes Bayesian paradigm to be the feasible method for mixture models (mixture models that involve 

incorporation of latent variable for regime switching, sample size allocation, and proportional allocation 

(mixing weights)).  

This article covers a wide range of mixture models for simple probability distribution to be made more complex 

and less informative by a mechanism that combines several known or unknown same distribution. This 

composition is what is called mixture model or mixture of distributions. Inference made about the known and 

unknown quantities (parameters) of the ingredients of the mixture model and proportional allocations (mixing 
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weights) is what is usually referred to as mixture estimation. In relation to machine learning, the repossession 

of the source distribution of each observation from the mixture of distributions is usually termed as 

classification (that is, distinguishing unsupervised classification from supervised classification). This 

technique requires advanced and sophisticated computational tools since the composition of the posterior 

distribution might not be easily computed. However, this article covers theoretical cases, as well as simulation 

studies for generic finite and non-finite Bayesian mixture models for common likelihoods with their prior 

distributions for known and unknown number of components, proportional allocation, and allotted sample size 

for specific approximation of Expectation-Maximization (EM) parameter estimation. The EM parameter 

estimation technique will be alternatively updated via MCMC, Gibbs sampler and the Metropolis-Hastings 

algorithms. The problem of identifying exchangeable posterior distribution will be treated via label switching, 

with its associated total allocation sample size being carve-out via Monte Carlo approximation with the use of 

Maximum a Posteriori (MAP) estimator. 

2. Method 

[14-16] propounded that a finite mingle of mixture model of similar probabilistic distribution to be a 

generalization of, 

ℎ𝑖(𝑦) = 𝜆1𝑔1(𝑦) + 𝜆2𝑔2(𝑦) + ⋯ + 𝜆𝑘𝑔𝑘(𝑦) (1) 

ℎ𝑖(𝑦) = ∑ 𝜆𝑖

𝑘

𝑖=1

𝑔𝑖(𝑦) (2) 

That is, a mixture model of same distribution is nothing but a convex combination, such that, ℎ𝑖(𝑦) is the 

complete function of the mixture generalization model, with 𝑔𝑖(𝑦)(𝑖 ∈ {1,2,3, ⋯ , 𝑘}) being the known and 

inferential probabilistic distribution for each allocation (𝜆𝑘) with their corresponding unknown proportions on 

sample points (𝑦1, ⋯ , 𝑦𝑛) on 𝑔𝑖 components, such that, 𝜆𝑖 ≥ 0 ∋ ∑ 𝜆𝑖
𝑘
𝑖=1 ≈ 1, for 𝑖 ∈ {1,2,3, ⋯ , 𝑘}, for a 

drawn or selected sample size of size (𝑛).  

However, in a parametric setting, where 𝑔𝑖(𝑦)(𝑖 ∈ {1,2,3, ⋯ , 𝑘}) can take any distributional form, forms like 

Gaussian, exponential, Beta, or student-t distribution with unknown coefficients (parameters, say 𝜗𝑖), Equation 

2 can then be rewritten as: 

ℎ(𝑦) = ∑ 𝜆𝑖

𝑘

𝑖=1

𝑔𝑖(𝑦 | 𝜗𝑖) (3) 

With 𝜆𝑖 as the mixing weights (or proportional allocation) and 𝜗𝑖 the component coefficients for (𝑖 ∈

{1,2,3, ⋯ , 𝑘}). The idea of mixing allocations from a parametric point of view makes it possible to associate 

component coefficients with missing data structure (unobserved or latent variable), while in a subjective 

prejudgment manner (Bayesian paradigm), they are known to be related observations. This noticeable assertion 

might not be germane in a computational setting that involves likelihood function or construction of prior 

distribution, pertinent in the interpretation of posterior results.  

One of the reasons (motivations) for constructing mixtures of same distributions is to usefully extend 

“standard” distributions statistically in an approach that envisions observations as several unobserved (latent) 

sub-populations (strata). Conditioning it on the setting, the inferential goal is to associate selected samples (𝑛𝑖) 

or drawings from mixtures of finite or non-finite, but with components of the same distribution to reassemble 

selected groups (usually refer to as cluster) by estimating the unobserved component, say “𝑠”, to provide 

estimators for unknown coefficients for several groups, or to estimate the number of 𝑘 -groups.  
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2.1.  Procedure for Generic Mixture Likelihoods and Posteriors Drawings  

Assuming an Independent and Identically Distributed (IID) sample drawings of (𝑦1, ⋯ , 𝑦𝑛) was drawn from 

the mixture of distributions with, proportional allocations, and component parameters of Equation 3. Then, the 

likelihood is such that, 

ℓ(𝜗, 𝛾|𝑦) = ∏ ∑ 𝜆𝑖𝑔(𝑦𝑗|𝜗𝑖)

𝑘

𝑖=1

𝑛

𝑗=1

 (4) 

Equation 4 is the likelihood that contains 𝑘𝑛-terms of 𝜆𝑖𝑔(𝑦𝑗|𝜗𝑖). The computational acumen of Equation 4 

depends on the feasibility of the order 𝑂(𝑛𝑘) of Equation 3 that can cater for the analytical solution of either 

the Bayes estimators or Maximum Likelihood (ML) estimators.  

Let 𝛵(𝜗, 𝜆) be the prior distribution of any form for the likelihood distribution, then the posterior distribution 

of (𝜗, 𝜆|𝑦) can be added-up for a multiplicative constant, say, 

 𝛵(𝜗, 𝜆|𝑦)∞ (∏ ∑ 𝜆𝑖𝑔(𝑦𝑗|𝜗𝑖)

𝑘

𝑖=1

𝑛

𝑗=1

) 𝛵(𝜗, 𝜆) (5) 

For 𝛵(𝜗, 𝜆|𝑦) that can be computed for guess values of the parameters in 𝛵(𝜗, 𝜆) at a contrivance order of 

𝑂(𝑛𝑘). The derivation of 𝛵(𝜗, 𝜆|𝑦) posterior outputs and expectations (means) of the mixture distribution 

coefficients of interest can only be achieved in an exponential time order of 𝑂(𝑛𝑘). Incorporating the latent 

(unobserved or missing variable) intuition into the mixture posterior distribution of Equation 5 for each 𝑦𝑖 in 

association to the latent variable “𝑠” indicated a Markov chain component of distribution that can be generated. 

This makes it to be seen as hierarchical structure associated with the mixture model to be: 

𝑠𝑖|𝜆 ∼ 𝛭𝑘(𝜆1, ⋯ , 𝜆𝑘) 

where 𝛭𝑘 denotes the Multinomial distribution for  𝑦𝑖| 𝑠𝑖 , 𝜗 ∼ 𝑔(𝑦|𝜗𝑠𝑖
). 

The complete data, that is, (𝑦𝑖 , 𝑠𝑖) is the complete likelihood corresponding to the unobserved variable, 𝑠𝑖 is 

ℓ(𝜗, 𝜆|𝑦, 𝑠) = ∏ 𝜆𝑠𝑗
𝑔(𝑦𝑗|𝜗𝑠𝑗

𝑛

𝑗=1

) (6) 

Then, the posterior distribution that added-up for a multiplicative constant is given as 

𝛵(𝜗, 𝜆|𝑦, 𝑠)∞ (∏ 𝜆𝑠𝑗
𝑔(𝑦𝑗|𝜗𝑠𝑗

𝑛

𝑗=1

)) 𝛵(𝜗, 𝜆) (7) 

where 𝑠 = {𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑛} for 𝑘𝑛-terms of 𝛯 = {1,2,3, ⋯ , 𝑘}𝑛 possible values of the specified vector of “𝑠”. 

Having ascertained proportional allocation for each mixture distribution to be (𝜆𝑘). In a similar manner, 

sample size allocation can also be ascertained via partitioning (decomposition) to Ɍ via Ɍ = ⋃ 𝛯𝑖
𝑟
𝑖=1  for a given 

allocation size vector of (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘), where, ∑ 𝑛𝑘
𝑘
𝑖=1 , the number of observations allotted to each 

component, then partition sets can be worked-out as: 

𝛯𝑗 = {𝑠: ∑ 𝛪𝑠𝑖=1

𝑛

𝑖=1

, ⋯ , ∑ 𝛪𝑠𝑘=𝑘

𝑛

𝑖=1

} (8) 
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𝛯𝑗 consist of all proportional allocations with their corresponding or given allocation sizes (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘), 

such that, the partitioning sets with 𝑗 = (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘)𝑗 can be conceptualized as a lexicographical 

ordering of (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘)’s.  

𝑗 = 1,  (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘) = (𝑛, 0, ⋯ ,0) 

𝑗 = 2,  (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘) = (𝑛 − 1,1, ⋯ ,0) 

𝑗 = 3,  (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘) = (𝑛 − 1,0,1, ⋯ ,0) 

and 

𝑗 = 4,  (𝑛1, 𝑛2, 𝑛3, ⋯ , 𝑛𝑘) = (𝑛 − 1,1,0,1, ⋯ ,0) 

So that the posterior distribution of (𝜃, 𝜆) can be rewritten in a close form as: 

𝑇(𝜃, 𝜆|𝑦) = ∑ ∑ 𝜂(𝑠)𝛵(𝜃, 𝜆|𝑦, 𝑠)

𝑠∈𝛯𝑟

𝑟

𝑗=1

= ∑ 𝛵(𝜃, 𝜆|𝑦, 𝑠)

𝑠∈𝛯

 (9) 

Such that 𝜂(𝑠) is the marginal posterior likelihood of the allotted “𝑠” conditioned on sample points’ domain 

of “𝑦”. This can be derived after integrating out “𝜗” and “𝜆”, such that, the close form of the Bayes estimator 

of (𝜗, 𝜆) is  

𝛦𝛵[𝜗, 𝜆|𝑦] = ∑ ∑ 𝜂(𝑠)

𝑠∈𝛯𝑟

𝑟

𝑗=1

𝛦𝛵[𝜗, 𝜆|𝑦] (10) 

Decomposing Equation 9, for an inferential point of view. It connotes that the posterior distribution takes into 

account each possible partition of “𝑠” in the dataset and allocate a posterior likelihood of 𝜂(𝑠) to these 

partitions, as well construct a posterior distribution for the embedded coefficients conditioned on the 

allocations.  

Employing the Expectation-Maximization (EM) algorithm procedure for completion of parameter estimation 

mechanism that involves latent (unobserved) variable. The “E” stands for expectation and “M” connotes 

maximization steps that involve convergence of local maximum of likelihood. 

Iteratively in time variant “t”, the E-step computational function corresponds to  

𝑄{(𝜗(𝑡), 𝜆(𝑡)), (𝜗, 𝜆)} = 𝛦(𝜗(𝑡),𝜆(𝑡))
[log ℓ (𝜗, 𝜆|𝑦, 𝑠)|𝑦] (11) 

log ℓ (𝜗, 𝜆|𝑦, 𝑠)is regarded as the likelihood of the joint distribution of “𝑦” and
 
“𝑠”, such that, imposed means 

of the coefficients to be calculated under the conditional distribution of “𝑠” given “𝑦” for the value of 

(𝜗(𝑡), 𝜆(𝑡)). The second case, which is the M-step, is the maximization of 𝑄{(𝜗(𝑡), 𝜆(𝑡)), (𝜗, 𝜆)} in (𝜗, 𝜆) with 

convergence solution of (𝜗(𝑡+1), 𝜆(𝑡+1)) (see [17,18]). 

2.2.  MCMC Solutions as an Alternate for Expectation-Maximization (EM) Algorithm  

In situation where the first step (that is, the E-step) of the EM-algorithm is not analytically feasible, that is, 

when the unobserved variable “𝑠” cannot be replaced by imposed expectations (means) for the joint 

distribution of Equation 5, then the full conditional distribution of “𝑠” given “𝑦” will be evaluated as, 

𝛵(𝑠|𝑦, 𝜗, 𝜆)∞ ∏ 𝜆𝑠𝑗
𝑔

𝑛

𝑗=1

(𝑦𝑖|𝜗𝑠𝑖
) (12) 
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Equation 12 can be computed for guess value of 𝛵(𝜗, 𝜆) at a contrivance order of 𝑂(𝑛) for standard 

distributions of 𝑔(⋅ |𝜗). 

It is to be noted that if 𝛵(𝜗, 𝜆) is a conjugate prior, then its full conditional posterior can also be worked-out 

via Gibbs sampler. Assuming “𝜗” and “𝜆” are independent a priori, then conditioning “𝑠”, the vectors “𝑦” and 

“𝜆” are independent; that is,  

𝛵(𝜆|𝑠, 𝑦)∞𝛵(𝜆)𝑔(𝑠 | 𝜆)𝑔(𝑦 | 𝑠)∞𝛵(𝜆)𝑔(𝑠 | 𝜆)∞)𝛵(𝜆|𝑠) (13) 

It is to be noted that “𝜗” is independent posterior of the form “𝜆” given “𝑠” and “𝑦”, with density 𝛵(𝜗|𝑠, 𝑦) 

for successive simulation of “𝑠” and (𝜆, 𝜗) conditional on one another, as well on the data points (𝑦).  

This implies that Gibbs sampler will be ideal under the umbrella of latent variable (unobserved variable) by 

simulation under data augmentation. The simulation of 𝜗𝑗′𝑠 depends solely on sampling density of 𝑔(⋅ |𝜗) 

coupled with the prior,
 
𝛵(𝜗, 𝜆).  

The marginal distribution of 𝑠𝑖’s is nothing but a multinomial distribution of 𝛭𝑘(𝜆1, ⋯ , 𝜆𝑘), which allow a 

conjugate prior on “𝜆”, such that, 𝜆 = (𝜆1, ⋯ , 𝜆𝑘), where “𝜆” follows a Dirichet distribution, that is, 𝜆 ∼

℘(𝛿1, ⋯ , 𝛿𝑘) with density 

𝛤(𝛿1 + ⋯ + 𝛿𝑘)

𝛤(𝛿1) ⋯ 𝛤(𝛿𝑘)
𝜆1

𝛿1 ⋯ 𝜆𝑘
𝛿𝑘 

on k-real number line ℜ
𝑘

, 

℘ = {(𝜆1, ⋯ , 𝜆𝑘) ∈ [0,1]𝑘; ∑ 𝜆𝑖 = 1

𝑘

𝑖=1

} (14) 

Its own sample size allocation can be denoted as 

𝑛𝑖 = ∑ 𝛪𝑠𝜄=𝑖

𝑛

𝜄=1

(1 ≤ 𝑖 ≤ 𝑘) 

for posterior distribution of “𝜆” given “𝑠” that is, 

𝜆|𝑠 ∼ ℘(𝑛1 + 𝛿1, ⋯ , 𝑛𝑘 + 𝛿𝑘) (15) 

2.2.1. Algorithm for the Gibbs Sampler 

Guess an initialization (that is starting values) for “𝜆” and “𝜗”: That is, choose 𝜆(0) and 𝜗(0) arbitrarily. Note 

that 0 ≤ 𝜆(0) ≤ 1. 

Iteration 𝑡(𝑡 ≥ 1): 

i. For 𝑖 ∈ {1,2,3, ⋯ , 𝑛}, generate 𝑠𝑖
(𝑡)

 ∋ 𝛲(𝑠𝑖 = 𝑗|𝜆, 𝜗)∞𝜆𝑗
(𝑡−1)

𝑔 (𝑦𝑖|𝜗𝑗
(𝑡−1)

)  

ii. Generate 𝜆(𝑡) according to (𝜆|𝑠(𝑡)) 

iii.  Generate 𝜗(𝑡) according to (𝜗|𝑠(𝑡), 𝑦) 

The simulation of  𝜗𝑗’s exists only for conjugate prior. The intricacy in the simulation of the  𝜗𝑗’s depends on 

the sampling density  𝑔(⋅ |𝜗) as well as the prior distribution of 𝛵(𝜗, 𝜆). 
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2.3.  Metropolis–Hastings Algorithm as an Alternate to Expectation-Maximization 

(EM) and MCMC Algorithms 

Knowing that the likelihood of mixture model is usually in a closed-form manner when computation is in 

𝑂(𝑛𝑘) order and time variant “𝑡” and the posterior distribution is thus up to a multiplicative constant. One can 

alternatively switch to Metropolis–Hastings algorithm, as long as a new quantity “ϒ” provides a correct 

exploration for the posterior distribution with acceptance ratio,  

𝛾(𝑦 | 𝜗′, 𝜆′) =
𝛵(𝜗′, 𝜆′|𝑦)

𝛵(𝜗, 𝜆|𝑦)

ϒ(𝜗, 𝜆|𝜗′, 𝜆′)

ϒ(𝜗′, 𝜆′|𝜗, 𝜆)
∧ 1 (16) 

computed in 𝑂(𝑛𝑘) time. 

2.3.1. Algorithm for the Metropolis–Hastings 

Guess an initialization (that is starting values) for 𝑦
(0): That is, choose 𝑦(0) arbitrarily.  

Iteration 𝑡(𝑡 ≥ 1): 

i. Given 𝑦(𝑡 −1), generate 𝜗′ ∼ 𝜆′(𝑦(𝑡−1), 𝑦)  

ii. Given 𝑦(𝑡 −1), generate 𝜆′ ∼ 𝜗′(𝑦(𝑡−1), 𝑦) 

iii. Compute 𝛾(𝑦(𝑡−1) | 𝜗′, 𝜆′) = min (
𝛵(𝜗′,𝜆′|𝑦)

𝛵(𝜗,𝜆|𝑦)

ϒ(𝜗,𝜆|𝜗′,𝜆′)

ϒ(𝜗′,𝜆′|𝜗,𝜆)
∧ 1) 

iv. With probability 𝛾(𝑦(𝑡−1) | 𝜗′, 𝜆′), accept 𝜗′and set 𝑦(𝑡) = 𝜗′; or accept 𝜆′and set 𝑦(𝑡) = 𝜆′ otherwise reject 

𝜗′

 

and set 𝑦(𝑡) = 𝑦(𝑡−1) or reject 𝜆′

 

and set 𝑦(𝑡) = 𝑦(𝑡−1) 

The distribution of 𝜗′, 𝜆′ is called the instrumental distribution for acceptance–rejection method. 𝜗′, 𝜆′ and  𝑇 

are proportionality constants in the calculation of “𝛾”. The merit of this approach in comparison to Gibbs 

sampler is that it does not necessarily need the usage of conditional distributions of “𝛵”.  The Metropolis-

Hastings algorithm proposed that the distribution of 𝜗′ to provide correct exploration of the posterior surface, 

since the acceptance ratio 

𝛵(𝜗′, 𝜆′|𝑦)

𝛵(𝜗, 𝜆|𝑦)

ϒ(𝜗, 𝜆|𝜗′, 𝜆′)

ϒ(𝜗′, 𝜆′|𝜗, 𝜆)
∧ 1 

2.4. Label Switching for Exchangeability of Posterior Distribution 

In scenarios, where either robust alternative prior distribution is needed for more tailoring inference, label 

switching is what is termed to be required. The ability to identify exchangeable posterior distribution answers 

the problem of imposing identifiability restriction to estimate the unknown quantities (parameters). A typical 

example is by defining components via ordering means, allocation sample size, or proportional allocation in a 

mixture model. From Bayesian perspective, this is nothing but truncating the source or first used prior 

distribution from 𝛵(𝜗, 𝜆) to 

𝛵(𝜗, 𝜆)𝛪𝜗1≤⋯≤𝜗𝑘
 (17) 

The resolution to label switching problem is to shun imposition of the restriction mingling that consist 

arbitrarily drawing of the 𝑘! (𝑘 factorial). 
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2.5. Monte Carlo Approximation for Estimating Maximum a Posteriori (MAP) 

Given a MCMC of total allocation sample of size of say “𝑁”, We might be interested in finding the Monte 

Carlo approximation of the MAP estimator by taking 𝜗(𝑖∗), 𝜆(𝑖∗), such that, 

𝑖∗ = arg max
𝑖=1,⋯,𝑁

𝑇{(𝜆, 𝜗)(𝑖) | 𝑦} (18) 

The approximate MAP estimate would act as pivot that yields good approximation for the mode and when 

reordering iterations with respect to the mode. It is to be noted that Equation 18 is for simulation value that 

produces maximal posterior density.  

In case where the reordering is based on Euclidean distance in the parameter space domain of 𝜗, one can 

employ the distance in the domain of the allotted proportions. Assuming 𝛹𝑘 is a 𝑘 −permutation set and 𝑟 ∈

𝛹𝑘, minimizing “𝑟” in an entropy Euclidean distance by adding the relative entropies between 

𝛲(𝑠𝑗 = 𝑡|𝜗(𝑖∗), 𝜆(𝑖∗))′𝑠 and 𝛲(𝑠𝑗 = 𝑡| 𝑟{𝜗(𝑖), 𝜆(𝑖)}) such that, 

𝑓(𝑖, 𝑟) = ∑ ∑ 𝛲(𝑠𝑗 = 𝑡|𝜗(𝑖∗), 𝜆(𝑖∗))

𝑘

𝑡=1

𝑛

𝑗=1

log [
𝛲(𝑠𝑗 = 𝑡|𝜗(𝑖∗), 𝜆(𝑖∗))

𝛲(𝑠𝑗 = 𝑡| 𝑟[𝜗(𝑖), 𝜆(𝑖)])
] (19) 

See the permutations of selection of reordering the MCMC output algorithm below.  

Algorithm for Pivotal Reordering  

For iteration of 𝑖 ∈ {1,2,3, ⋯ , 𝑁}  

i. Compute 𝑟𝑖 = arg min
𝜈′∈𝛹𝑘

𝑓(𝑖, 𝑟)  

ii. Set (𝜗(𝑖), 𝜆(𝑖)) = 𝑟𝑖(𝜗(𝑖), 𝜆(𝑖))  

Therefore, after the reordering steps from Equation 16 to 18, the Monte Carlo estimate of the posterior 

expectation can be written as 𝛦𝛵[𝜗𝑗|𝑦] = ∑
𝜗𝑗

(𝑖)

𝑁
𝑁
𝑖=1 , where 𝛦𝛵[𝜗𝑗|𝑦] (or its approximation) can be compared 

with 𝛹𝑘 in order to check for convergence. 

2.6. Mixtures with an Unknown Number of Components 

It is to be noted that the number of homogeneous components (𝑘-components) connotes the degree of 

approximation, and cannot be fixed in advance, except one ascertained the number of components 

(proportional allocation) via visualization or other detection techniques. Even from the classical approach 

perspective, the number of homogeneous clustering (usually via the mean) within the population of interest is 

usually not ascertained and first-hand inference is usually employed to determine the number of components. 

For example, in financial stock where the number of different patterns of studied stock evolution that may be 

unknown to analyst (unknown homogeneous components) (for more details, see [19,20]).  

In this type of computational resolution, the number of models is infinite and requires special type of MCMC 

exploration with variability inference. Mixture models with unknown number of proportional allocations are 

usually referred to as variable dimensional models that require special simulation technique called reversible 

jump and collection of 2𝑘-sub-models. It usually requires high degree of formalization, sensitive calibration, 

and approximated marginal likelihoods in this kind of special case of mixture model. The enumeration of 

mixture model with unknown components depends on sampling approximation via the marginal likelihood of 

whole range of potentials models as 
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𝑓𝐽(𝑦|𝜍𝐽) = ∏ ∑ 𝜆𝑗

𝐽

𝑗=1

𝑛

𝑖=1

𝑓(𝑦𝑖|𝜗𝑗) (20) 

such that 𝜍𝐽 = (𝜗, 𝜆) = (𝜗1, ⋯ , 𝜗𝐽, 𝜆1, ⋯ , 𝜆𝐽). 𝑓𝐽(𝑦|𝜍𝐽) evolve round the marginal likelihood integral via the 

sampling approximation,  

𝑐𝐽(𝑦) = ∫ 𝑓𝐽(𝑦| 𝜍𝐽)𝛵𝐽(𝜍𝐽)𝜕𝜍𝐽 (21) 

“𝐽” connotes the model index, that is, the infinitesimal case of the components in a different representation that 

starts from another arbitrary density say 𝑑𝐽, then 

𝛤 = ∫ 𝑑𝐽(𝜍𝐽)𝜕𝜍𝐽 = ∫
𝑑𝐽(𝜍𝐽)

𝑓𝐽(𝑦|𝜍𝐽)𝛵𝐽(𝜍𝐽)
𝑓𝐽(𝑦|𝜍𝐽)𝛵𝐽(𝜍𝐽)𝜕𝜍𝐽 (22) 

𝛤 = 𝑐𝐽(𝑦) ∫
𝑑𝐽(𝜍𝐽)

𝑓𝐽(𝑦|𝜍𝐽)𝛵𝐽(𝜍𝐽)
𝛵𝐽(𝜍𝐽)𝜕𝜍𝐽 (23) 

This connotes that the estimate of 𝑐𝐽(𝑦) is 

𝑐𝐽(𝑦) =
∧ 1

1
𝑇

∑ [
𝑑𝐽(𝜍𝐽

(𝑡)
)

𝑓𝐽(𝑦|𝜍𝐽
(𝑡)

)𝛵𝐽 (𝜍𝐽
(𝑡)

)
]𝑇

𝑡=1

 

(24) 

where 𝜍𝐽
(𝑡)

 are products of the MCMC sampler pointed at 𝛵𝐽 (𝜍𝐽
(𝑡)

).  

3. Simulation Studies 

A simulated dataset of 1000 observations from independent Gaussian randomly selected observations with 

true mean values  (𝜇1, 𝜇2, 𝜆1) = (2.3,0,0.7) were considered, such that, Dirichet variates were used as prior, 

we consider a two-component Gaussian mixture model of  

𝜆1𝑁(𝜇1, 1) + 𝜆2𝑁(𝜇2, 1) ∋ 𝜆2 = (1 − 𝜆1) (25) 

In this scenario, the Gaussian coefficients (parameters) are identifiable. This connotes that 𝜇1 and 𝜇2 cannot 

be bewildered for each other, such that, 𝜆1 is not equal to 0.5. If 𝜆1 is equal to 0.5, it implies that 

𝜆[𝑁(𝜇1, 1) + 𝑁(𝜇2, 1)]. The log-likelihood surfaces of Figure 1 below give the image representation of 

Equation 25. Two modes were exhibited and expounded, such that the upper chamber with larger mode is 

noted to be closer to the neighborhood of the true values of the average coefficients simulated. The mode with 

the lower chamber possessed an inverse separation of the dataset of the two clusters. For better understanding 

of the lower chamber mode, if a limit of 𝜆1 = 𝜆2 = 0.5 is set, it means that there is high likelihood that the 

two equivalent modes will be approximately equal, that is (𝜇1, 𝜇2) = (𝜇2, 𝜇1). If 𝜆1 will be different from 0.5, 

the lower chamber mode becomes smaller and smaller in comparison with the larger chamber. It is to be noted 

that the starting guessing points in both cases of 𝜇1 and 𝜇2 are saddled points between the two modes. 
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Figure 1. Log-likelihood of the mixture of distribution in Equation 25 

A special case of Equation 25 is when two different independent Gaussian priors of 𝜇1 ∼ ℕ(0,4) and 𝜇2 ∼

ℕ(2,4) are considered from the simulated dataset, then the posterior allocation weight vector of “𝑠” is given 

as 

𝑦(𝑠) =
1

1000
∑ 𝛪𝑠𝑖=1𝑦𝑖

1000

𝑖=1

 and  𝑦(𝑠) =
1

1000 − 𝑛1
∑ 𝛪𝑠𝑖=2𝑦𝑖

1000

𝑖=1

 

Its variance is equal to 

𝜎1
2(𝑠)

∧

= ∑ 𝛪𝑠𝑖=1(𝑦𝑖 − 𝑦1(𝑠))
2

1000

𝑖=1

and 𝜎2
2(𝑠)

∧

= ∑ 𝛪𝑠𝑖=2(𝑦𝑖 − 𝑦2(𝑠))
2

1000

𝑖=1

 

The log-likelihood of the posterior distribution was carved-out in Figure 2 below (contour plot function that 

exhibits an additional mode on the likelihood surface). It simply connotes that each of the two partitions of “𝑠” 

of the simulated dataset, such that 0.0002 and 0.0006 allocates a posterior probability to each of the partition, 

and afterwards construct a posterior distribution for the conditional coefficients on 𝜇1 and 𝜇2. The conditional 

posterior distribution of the 𝑠𝑖’s given (𝜇1, 𝜇2), for 𝑖 ∈ {1,2,3, ⋯ , 𝑛} 

𝛲(𝑠𝑖 = 1|𝜇1, 𝑦𝑖) ∞𝜆 exp(−0.5(𝑦𝑖 − 𝜇1)2) 

 
Figure 2. Contour plot of two different independent Gaussian priors of 𝜇1 ∼ ℕ(0,4);𝜇2 ∼ ℕ(2,4) 
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Considering a more general case of a mixture of two Gaussian distributions with their parameters unknown, 

such that, 𝜆1𝛮(𝜇1, 𝜎1
2) + (1 − 𝜆1)𝛮(𝜇2, 𝜎2

2) and for the conjugate prior distribution (𝑗 ∈ {1,2}). The same 

starting guessing points in both cases of 𝜇1 and 𝜇2 were the saddled points between the modes. Gaussian 

random walk of scaled unity was adopted because of its smaller magnitude require to paddle more iterations 

for proper modal region to be reached. For the posterior associated with Equation 25, the Gaussian random 

walk proposal is 𝜇1

∧
∼ 𝛮 (𝜇1

(𝑡−1)
, 𝛾2) and 𝜇2

∧
∼ 𝑁 (𝜇2

(𝑡−1)
, 𝛾2) which leads to the acceptance probability of 

𝑟 = min {1,
𝛵 (𝜇1

∧
, 𝜇2

∧
|𝑦)

(𝜇1
(𝑡−1)

, 𝜇2
(𝑡−1)

|𝑦)
} 

 “𝛾” was chosen to achieve a reasonable acceptance rate. However, Metropolis–Hastings algorithm 

checkmated the drawback of Gibbs sampler of insignificantly smaller index that can trap in phenomenon as 

the scale. This corresponds to 0.25𝑁(2.35,1) + 0.75𝑁(0.02,1) of the likelihood surface of Figure 3. The 

Gibbs sampler was based on 10,000 iterations in agreement with the likelihood surface. It was deduced that 

the Gibbs sampler ended-up in trapping the lower mode. 

 
Figure 3. Log-likelihood surface and the corresponding Gibbs sampler for the model, based on 10,000 

iterations 

It is to be noted that the starting point of the Gibbs sampler in Figure 3 is (𝜇1 = 0.005 and 𝜇2 =0.005). It 

clearly indicates that the unconstrained random walk of Metropolis-Hastings remains justifiable for 

constrained parameters, but not efficient when the Markov Chain moves closer to the boundary of the 

parameter domain of Figure 4. It also needs to be noted that the parameter domain moves slowly by 

conditioning the proposed values to be incompatible with the constraints, thus leading to the rejection of the 

Metropolis-Hastings acceptance ratio. For label switching under invariant permutation indices of components, 

the Gaussian mixture of 0.25𝑁(2.35,1) + 0.75𝑁(0.002,1) and 0.75𝑁(0.002,1) + 0.25𝑁(2.35,1) are 

similar. This does not tantamount to 0.75𝑁(0.002,1) distribution that can be called the first component of the 

mixture model. However, the component parameters 𝜗𝑖 are not identifiable marginal, such that, 𝜗1 =

0.002 maybe 2.35 as well. In this case, the quantities (𝜗1, 𝜆1) and (𝜗2, 𝜆2) are exchangeable. 
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Figure 4. 10,000-iteration outcome of the random walk metropolis-hastings sample on the log-likelihood 

surface with guessing starting point of (0.5,0.4) 

 

 

Figure 5. Contour plot of the three-component multivariate mixture model of data + true components 
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Figure 6. Contour plot of the three-component multivariate mixture model of Initial Estimate + Observations 

 

 
Figure 7. Plot the log-posterior distribution for various samples 

 

 
Figure 8. Plot the density estimate for the last iteration of the MCMC 
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3.1.  Discussion of Simulation Results 

MCMC algorithm of mixture models of three-component of 2-variates Gaussian components was tested to 

produce Figures 5 to 8, respectively. The true weights for the three associated components are 0.5, 0.3, and 0.2 

respectively. Their true means are (0,0), (5,5), and (-3,7) for the first, second and third components respectively 

for the simulated data of sample of size 120, such that their true sigma (variance) are (1,0), (2,0.9), and (1,-

0.9) respectively. The starting guess value of the weights for each component was assigned to by equal weight 

of repetition (1,3)/3 via iteration of the sampler. From Figure 5, this is the cluster of three contour plots of the 

simulated data. The first contour of cluster is denser with clustered of numbers in black color, where the second 

contour with red character number is lesser than the first one. The third contour at the left corner possessed a 

scanty cluster of numbers in green color. However, there are three numbers that can be regarded as point 

outliers: 54, 58, and 133 for the first, second and third contour respectively. The three-compartmental 

multivariate contour plot of Figure 6 is similar to that of Figure 5 and Figure 8 but it was notably contaminated 

with outliers, positively abnormal values to indicate that there is possibility of absolving a robust noisy prior-

posterior distribution for proper capture. In comparison, the logarithm of the posterior was estimated to be -

504.222, such that, the outliers possessed by the posterior density of Figure 7 carved-out six (6) point outliers 

in contrast to by the true data. 

4. Conclusion 

This article studies the generic procedure of mixture models with similar inferential probabilistic distribution 

in a Bayesian setting was proposed. Mixture of similar distributions via Bayesian paradigm was expounded in 

a finite and non-finite setting, such that the proportional allocation, sample size allocation, and mixing weights 

for the posterior distribution were carved-out for k-components. The parameter estimation of the generic 

posterior distribution of proportional allocation, sample size allocation, and mixing components coupled with 

the embedded latent (unobserved) variable was carried-out via the EM algorithm. Metropolis–Hastings and 

MCMC algorithms were alternately employed in place of the EM algorithm under some conditions. Monte 

Carlo approximation technique was employed to estimate MAP, such that label switching for exchangeability 

of posterior distribution was carried-out under different prior for known and unknown components with finite 

and non-finite mixture. In conclusion, it was deduced that the number of components grows large for all 

permutations to be considered for subsample of permutations simulated. Further study can be extended to 

generic procedure of mixture models with different inferential probabilistic distributions from both a 

parametric, non-parametric and Bayesian point of view. In addition, in scenarios where different prior-

likelihood distributions are merged or convoluted, label switching for exchangeability of posterior distribution 

for finite and non-finite mixture needs to be further studied. In extension, the finite and non-finite mixture 

models via Bayesian paradigm can be extended to time-varying processes like networking autoregressive and 

mixture autoregressive processes. 
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Abstract − We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a 

specific value {𝑎} from the square of the 𝑛𝑡ℎ Fibonacci numbers 𝐺𝐹(𝑛)
(2)

(𝑎) and 𝐻𝐹(𝑛)
(2)

(𝑎). These numbers 

are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we 

establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like 

formulas. Moreover, we explore greatest common divisor (GCD) sequences of 𝑟-successive terms of 

altered Fibonacci numbers represented by {𝐺𝐹(𝑛),𝑟
(2)

(𝑎)} and {𝐻𝐹(𝑛),𝑟
(2)

(𝑎)} such that 𝑟 ∈ {1,2,3} and          

𝑎 ∈ {1,4}. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers 

and structured as periodic or Fibonacci sequences. 
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1. Introduction 

It is known [1] that the Fibonacci sequence is defined recursively as 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

for 𝑛 ≥ 2 with initial values 𝐹0 = 0 and 𝐹1 = 1 (A000045 in OEIS). As a similar, 𝐿𝑛 is the 𝑛𝑡ℎ term in the 

Lucas sequence (A000032) and defined by  

𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2,  𝐿0 = 2    and    𝐿1 = 1 

Their characteristic equation is 𝑥2 = 𝑥 + 1 and its roots are 𝛼 =
1+√5

2
 and 𝛽 =

1−√5

2
. Hence, the Binet formulas 

for the Fibonacci 𝐹𝑛 and Lucas 𝐿𝑛 numbers are 

𝐹𝑛 =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
    and    𝐿𝑛 = 𝛼𝑛 + 𝛽𝑛 

Binet formulas can be used to prove certain properties of the Fibonacci and Lucas numbers. For instance, for 

negative subscripts the 𝑛𝑡ℎ Fibonacci number can be established as 𝐹−𝑛 = (−1)𝑛+1𝐹𝑛, for all 𝑛 ≥ 1, or two 

useful identities can be confirmed the Cassini identity and the d’Ocagne identity [1-3], respectively, 

𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛
2 = (−1)𝑛 

and 
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𝐹𝑚𝐹𝑛+1 = 𝐹𝑛𝐹𝑚+1 + (−1)𝑛𝐹𝑚−𝑛,    𝑚 > 𝑛 ≥ 1 

Additionally, the formulas sum and subtraction for the Fibonacci numbers squared are 

𝐹𝑚+𝑛+1
2 + 𝐹𝑚−𝑛

2 = 𝐹2𝑚+1𝐹2𝑛+1 (1) 

and 

𝐹𝑚+𝑛
2 − 𝐹𝑚−𝑛

2 = 𝐹2𝑚𝐹2𝑛 (2) 

Many sum properties [1-3] can be provided as examples of sequences derived from the Fibonacci numbers. 

The sum of the Fibonacci numbers is ∑ 𝐹𝑖
𝑛
𝑖=1 = 𝐹𝑛+2 − 1 (A000071 in OEIS [2]), and the sum of even-indices 

Fibonacci numbers is ∑ 𝐹2𝑖
𝑛
𝑖=1 = 𝐹2𝑛+1 − 1 (A027941 in [2]). These findings have been scrutinized as the 

altered Fibonacci sequences [4]. The sum of odd-indices Fibonacci numbers is ∑ 𝐹2𝑖−1
𝑛
𝑖=1 = 𝐹𝑛𝐿𝑛 (A001906 

in [2]). The sum of the Fibonacci numbers squared between 𝐹1 and 𝐹𝑛 is ∑ 𝐹𝑖
2𝑛

𝑖=1 = 𝐹𝑛𝐹𝑛+1 (A180662, The 

golden rectangle numbers in [2]).  

In the literature, numerous researchers [4-8] have developed novel sequences utilizing Fibonacci numbers and 

analyzed some of their basic properties. Dudley et al. [4] studied two altered Fibonacci sequences  

{𝐺𝑛} = {𝐹𝑛 + (−1)𝑛} and {𝐻𝑛} = {𝐹𝑛 − (−1)𝑛}, concerned with number sequences A000071 and A027941, 

using the equations given by Theorem 1 in [4] 

𝐹4𝑘 + 1 = 𝐹2𝑘−1𝐿2𝑘+1 𝐹4𝑘 − 1 = 𝐹2𝑘+1𝐿2𝑘−1 (3) 

𝐹4𝑘+1 + 1 = 𝐹2𝑘+1𝐿2𝑘 𝐹4𝑘+1 − 1 = 𝐹2𝑘𝐿2𝑘+1 (4) 

𝐹4𝑘+2 + 1 = 𝐹2𝑘+2𝐿2𝑘 𝐹4𝑘+2 − 1 = 𝐹2𝑘𝐿2𝑘+2 (5) 

𝐹4𝑘+3 + 1 = 𝐹2𝑘+1𝐿2𝑘+2 𝐹4𝑘+3 − 1 = 𝐹2𝑘+2𝐿2𝑘+1 (6) 

Some of those are easily obtained according to whether n is odd or even in the Cassini identity. Moreover, 

{(𝐺𝑛, 𝐺𝑛+1)}𝑛≥0 and {(𝐻𝑛, 𝐻𝑛+1)}𝑛≥0 sequences are defined by using the greatest common divisor (GCD) of 

the numbers 𝐺𝑛 and 𝐻𝑛 considering Equations 3-6 are multiplication cases. These sequences produce 

Fibonacci subsequences, such as (𝐺4𝑘, 𝐺4𝑘+1) = 𝐿2𝑘+1, (𝐺4𝑘+2, 𝐺4𝑘+3) = 𝐹2𝑘+2, (𝐻4𝑘, 𝐻4𝑘+1) = 𝐹2𝑘+1, and 

(𝐻4𝑘+2, 𝐻4𝑘+3) = 𝐿2𝑘+2 [4]. Hernandez and Luca [5] proved the existence of an integer 𝑐 in the form of an 

infinite number (𝐹𝑛 + 𝑎, 𝐹𝑚 + 𝑏) > 𝑒(𝑐𝑚) of any positive integer 𝑛 < 𝑚, according to various 𝑛 and 𝑚 for the 

positive integers 𝑎 and 𝑏. Chen [6] defined a sequence {𝐹𝑛 + 𝑎}𝑛≥0 such that 𝑎 ∈ ℤ, called a shifted Fibonacci 

sequence, and established a sequence {𝑓𝑛(𝑎)}𝑛≥0 = {(𝐹𝑛 + 𝑎, 𝐹𝑛+1 + 𝑎)}𝑛≥0, referred to as a GCD sequence 

of the shifted Fibonacci sequence. He showed that some successive terms of the altered and shifted sequences 

have different behavior, such as 𝑓4𝑛−1(1) = 𝐹2𝑛−1, 𝑓4𝑛+1(1) = 𝐿2𝑛, 𝑓4𝑛−1(−1) = 𝐿2𝑛−1, and 𝑓4𝑛+1(−1) =

𝐹2𝑛. The author showed that {𝑓𝑛(𝑎)} is bounded from above if 𝑎 ≠ ±1. In [7], in addition to the properties of 

{𝑓𝑛(𝑎)}, Spilker showed that for two integers 𝑎 and 𝑛 if 𝑚 = 𝑎4 − 1 is not 0 and 𝑓𝑛(𝑎) divides 𝑎2 + (−1)𝑛, 

then 𝑓𝑛(𝑎) is simply periodic such that a period 𝑝 is defined by 𝐹𝑝 ≡ 0 (mod 𝑚). Koken [8] defined the altered 

sequences {𝐿𝑛
+}𝑛>0 and {𝐿𝑛

−}𝑛>0 such that 𝐿4𝑘
+ = 5𝐹2𝑘+1𝐹2𝑘−1, 𝐿4𝑘+1

+ = 5𝐹2𝑘+1𝐹2𝑘, 𝐿4𝑘+2
+ = 𝐿2𝑘+2𝐿2𝑘, and 

𝐿4𝑘+3
+ = 𝐿2𝑘+2𝐿2𝑘+1 and 𝐿4𝑘

− = 𝐿2𝑘+1𝐿2𝑘−1, 𝐿4𝑘+1
− = 𝐿2𝑘+1𝐿2𝑘, 𝐿4𝑘+2

− = 5𝐹2𝑘+2𝐹2𝑘, and 𝐿4𝑘+3
− =

5𝐹2𝑘+2𝐹2𝑘+1. Furthermore, he presented the numbers 𝐿4𝑘,1
+ = 5𝐹2𝑘+1, 𝑘 ≥ 1, 𝐿4𝑘−2,1

+ = 𝐿2𝑘 , 𝑘 ≥ 1, 𝐿4𝑘,1
− =

𝐿2𝑘+1 and 𝐿4𝑘+2,1
− = 5𝐹2𝑘+2 where 𝐿𝑛,𝑟

± = (𝐿𝑛
±, 𝐿𝑛+𝑟

± ) denotes r-successive GCD numbers. Besides, the GCD 

numbers 𝐿𝑛,𝑟
+  and 𝐿𝑛,𝑟

−  are obtained by 𝑟 ∈ {2,3,4}. For over 50 years, many authors [9-14] have studied to 

determine all such numbers of the forms 𝑤2, 𝑤3, 𝑤2 ± 1, and 𝑤3 ± 1 in the Fibonacci sequences. Marques 
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[15] has considered the Fibonacci variant of the Brocard-Ramanujan equation and claimed that the Diophantine 

equation 

𝐹𝑛𝐹𝑛+1 ⋯ 𝐹𝑛+𝑘−2𝐹𝑛+𝑘−1 + 1 = 𝐹𝑚
2  (7) 

has no solution according to the positive integer values 𝑘, 𝑚, and 𝑛. However, according to equations 𝐹2𝐹4 +

1 = 𝐹1𝐹4 + 1 = 𝐹3
2 and 𝐹2𝐹6 + 1 = 𝐹1𝐹6 + 1 = 𝐹4

2, it can be observed that the Fibonacci Brocard-Ramanujan 

version in Equality 7 has solutions. Szalay [16] obtains the solutions of the equations by accepting a correct 

version of the result of Marques [15] more general than the Fibonacci Brocard-Ramanujan equation in Equality 

7. Pongsriiam [17] has continued to search for the solutions of the Diophantine equations: 

𝐹𝑛1
𝐹𝑛2

⋯ 𝐹𝑛𝑘−1
𝐹𝑛𝑘

± 1 = 𝐹𝑚
2    and    𝐿𝑛1

𝐿𝑛2
⋯ 𝐿𝑛𝑘−1

𝐿𝑛𝑘
± 1 = 𝐹𝑚

2 

such that 0 ≤ 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘−1 < 𝑛𝑘, 𝑚 ≥ 0, and 𝑘 ≥ 1.  

Inspired by previous research on altered Fibonacci numbers and the Brocard-Ramanujan equation, this study 

aims to explore their applications and altered sequences of Fibonacci numbers squared. This investigation is 

continued by the question of whether it is possible to define altered Fibonacci sequences, specifically those of 

the form {𝐹𝑛
2 ± 𝑎}. Unlike [18,19], related to the sum of sequences of 𝑘-consecutive Fibonacci numbers, the 

paper considers the results of altered Fibonacci numbers squared through the following sums:  

∑ 𝐹𝑗𝐹𝑗+1

2𝑛

𝑗=1

= 𝐹2𝑛+1
2 − 1    or    ∑ 𝐹𝑗𝐹𝑗+1

2𝑛

𝑗=2

= 𝐹2𝑛+1
2 − 2 

and 

∑ 𝐹𝑗𝐹𝑗+1

2𝑛−1

𝑗=1

= 𝐹2𝑛
2  

Koken [20] investigate two types altered Lucas numbers 𝐺𝐿(𝑛)
(2)

(𝑎) and 𝐻𝐿(𝑛)
(2)

(𝑎). Since these numbers form as 

the consecutive products of the Fibonacci numbers, they give the GCD sequences of 𝑟–successive terms of 

altered Lucas numbers denoted {𝐺𝐿(𝑛),𝑟
(2) (𝑎)} and {𝐻𝐿(𝑛),𝑟

(2) (𝑎)} such that 𝑟 ∈ {1,2} and 𝑎 ∈ {1,9}. We show that 

these sequences are periodic or Fibonacci sequences. 

This present paper is organized as follows: Section 2 provides brief definitions and properties. Section 3 defines 

two altered sequences and investigates some of their properties. This includes analyzing the sum and 

difference, Binet formula, and closed forms for the numbers 𝐺𝐹(𝑛)
(2) (𝑎) = 𝐹𝑛

2 + (−1)𝑛𝑎 and 𝐻𝐹(𝑛)
(2) (𝑎) = 𝐹𝑛

2 −

(−1)𝑛𝑎. Section 4 establishes two types of 𝑟-successive altered Fibonacci GCD sequences, referred to as 

𝐺𝐹(𝑛),𝑟
(2) (𝑎) and 𝐻𝐹(𝑛),𝑟

(2) (𝑎), and investigates these sequences according to the cases 𝑟 ∈ {1,2,3} for the values 

𝐺𝐹(𝑛)
(2) (𝑎) and 𝐻𝐹(𝑛)

(2) (𝑎) such that 𝑎 ∈ {1,4}. 

2. Preliminaries 

This section defines two types of altered numbers derived by using a value {𝑎} from the 𝑛𝑡ℎ Fibonacci number 

squared. It works on taking values {±1} instead of {𝑎}. 

Definition 2.1. The 𝑛𝑡ℎ altered Fibonacci numbers denoted by 𝐺𝐹(𝑛)
(2) (𝑎) and 𝐻𝐹(𝑛)

(2) (𝑎) are defined as 

𝐺𝐹(𝑛)
(2) (𝑎) = 𝐹𝑛

2 + (−1)𝑛𝑎 (8) 
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and 

𝐻𝐹(𝑛)
(2) (𝑎) = 𝐹𝑛

2 − (−1)𝑛𝑎 (9) 

where 𝐹𝑛 be the 𝑛𝑡ℎ Fibonacci number and 𝑎 ∈ ℤ. 

For example, particular values 𝐺𝐹(𝑛)
(2)

(1) and 𝐻𝐹(𝑛)
(2)

(1) numbers are provided in Table 1, and they follow 

𝐺𝐹(𝑛)
(2) (1) = 𝐻𝐹(𝑛)

(2) (−1) and 𝐻𝐹(𝑛)
(2) (1) = 𝐺𝐹(𝑛)

(2) (−1). 

Table 1. First few terms of 𝐺𝐹(𝑛)
(2)

(1) and 𝐻𝐹(𝑛)
(2)

(1) 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝐺𝐹(𝑛)
(2)

(1) 1 0 2 3 10 24 65 168 442 1155 3026 7920 20737 

𝐻𝐹(𝑛)
(2)

(1) -1 2 0 5 8 26 63 170 440 1157 3024 7922 20735 

Table 1 shows that 𝐺𝐹(3𝑛)
(2) (1) and 𝐻𝐹(3𝑛)

(2) (1) are odd, and the others are even, any increasing sequences with 

special values except the first few values. The general terms of the sequences {𝐺𝐹(𝑛)
(2) (1)} and {𝐻𝐹(𝑛)

(2) (1)} can 

be given as follows: 

Theorem 2.2. Let 𝐺𝐹(𝑛)
(2) (1) and 𝐻𝐹(𝑛)

(2) (1) denote the 𝑛𝑡ℎ altered Fibonacci numbers. Then, 

𝐺𝐹(𝑛)
(2)

(1) = 𝐹𝑛+1𝐹𝑛−1 (10) 

and 

𝐻𝐹(𝑛)
(2)

(1) = 𝐹𝑛+2𝐹𝑛−2 (11) 

PROOF. 

If 𝑚 = 𝑘 + 1 and 𝑛 = 𝑘 in Equation 1, then 𝐺𝐹(2𝑘)
(2) (1) = 𝐹2𝑘−1𝐹2𝑘+1, for 𝑎 = 1 and 𝑛 = 2𝑘 in Equation 8. 

In addition, if 𝑚 = 𝑘 + 1 and 𝑛 = 𝑘 in Equation (2), then 𝐺𝐹(2𝑘+1)
(2) (1) = 𝐹2𝑘+2𝐹2𝑘, for 𝑎 = 1 and 𝑛 = 2𝑘 +

1 in Equation 8. The number 𝐺𝐹(𝑛)
(2) (1) is observed from these equations for 𝑛 = 2𝑘 and 𝑛 = 2𝑘 + 1.  

If 𝑚 = 𝑘 + 2 and 𝑛 = 𝑘 in Equation 1, then 𝐻𝐹(2𝑘+1)
(2) (1) = 𝐹2𝑘+3𝐹2𝑘−1, for 𝑎 = 1 and 𝑛 = 2𝑘 + 1 in 

Equation 9. For 𝑚 = 𝑘 + 2 and 𝑛 = 𝑘 in Equation 2, 𝐻𝐹(2𝑘)
(2) (1) = 𝐹2𝑘+2𝐹2𝑘−2 when 𝑛 = 2𝑘 in Equation 9. 

The number 𝐻𝐹(𝑛)
(2) (1) is observed from these equations for 𝑛 = 2𝑘 and 𝑛 = 2𝑘 + 1. ◻ 

We have conducted research on several addition and subtraction identities of numbers 𝐺𝐹(𝑛)
(2) (1) and 𝐻𝐹(𝑛)

(2) (1). 

Theorem 2.3. Let 𝐺𝐹(𝑛)
(2) (1) and 𝐻𝐹(𝑛)

(2) (1) be the 𝑛𝑡ℎ altered Fibonacci numbers. Then, 

𝐺𝐹(𝑛)
(2) (1) + 𝐺𝐹(𝑛+1)

(2) (1) = 𝐻𝐹(𝑛)
(2) (1) + 𝐻𝐹(𝑛+1)

(2) (1) = 𝐹2𝑛+1 (12) 

𝐺𝐹(𝑛+1)
(2) (1) − 𝐺𝐹(𝑛−1)

(2) (1) = 𝐻𝐹(𝑛+1)
(2) (1) − 𝐻𝐹(𝑛−1)

(2) (1) = 𝐹2𝑛 (13) 

2𝐺𝐹(𝑛+1)
(2) (1) + 𝐺𝐹(𝑛)

(2) (1) − 𝐺𝐹(𝑛−1)
(2) (1) = 𝐹2𝑛+2 (14) 
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2𝐻𝐹(𝑛+1)
(2)

(1) + 𝐻𝐹(𝑛)
(2)

(1) − 𝐻𝐹(𝑛−1)
(2)

(1) = 𝐹𝑛+1𝐿𝑛+1
 

(15) 

PROOF.  

From Equations 10 and 11 and the identities 𝐹𝑛
2 + 𝐹𝑛+1

2 = 𝐹2𝑛+1 and 𝐹𝑛𝐿𝑛 = 𝐹2𝑛, 

𝐻𝐹(𝑛)
(2)

(1) + 𝐻𝐹(𝑛+1)
(2)

(1) = 𝐹𝑛+2𝐹𝑛−2 + (𝐹𝑛+2 + 𝐹𝑛+1)𝐹𝑛−1 = 𝐹2𝑛+1 

and 

𝐺𝐹(𝑛+1)
(2) (1) − 𝐺𝐹(𝑛−1)

(2) (1) = 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛 − 𝐹𝑛−2) = 𝐹𝑛𝐿𝑛 

The others in Equations 12 and 13 are obtained similarly. If Equations 12 and 13 are summed side-to-side 

collection, then Equations 14 and 15 are obtained. ◻ 

2.1. Altered Fibonacci Sequences 𝑮𝑭(𝒏)
(𝟐)(𝑭𝒕

𝟐) and 𝑯𝑭(𝒏)
(𝟐)(𝑭𝒕

𝟐)  

This subsection generalizes the value {𝑎} in Equations 8 and 9 as the square of 𝑡𝑡ℎ Fibonacci numbers such 

that 𝑡 ∈ ℤ.  

Theorem 2.4. Let 𝐺𝐹(𝑛)
(2) (𝐹𝑡

2) and 𝐻𝐹(𝑛)
(2) (𝐹𝑡

2) denote the 𝑛𝑡ℎ altered Fibonacci numbers. Then, 

𝐺𝐹(𝑛)
(2) (𝐹𝑡

2) = 𝐹𝑛+𝑡𝐹𝑛−𝑡 , 𝑡 is odd (16) 

and 

𝐻𝐹(𝑛)
(2) (𝐹𝑡

2) = 𝐹𝑛+𝑡𝐹𝑛−𝑡 , 𝑡 is even (17) 

where 𝐹𝑡
2 is the square of the 𝑡𝑡ℎ Fibonacci numbers. 

PROOF.  

Let 𝑡 is odd. If 𝑚 = 𝑘 + (𝑡 + 1)/2 and 𝑛 = 𝑘 − (𝑡 − 1)/2 are taken in Equation 1, for 𝑎 = 𝐹𝑡
2 and 𝑛 = 2𝑘 in 

Equation 8, then 𝐺𝐹(2𝑘)
(2) (𝐹𝑡

2) = 𝐹(2𝑘)+𝑡𝐹(2𝑘)−𝑡. Moreover, if values of 𝑚 = 𝑘 + (𝑡 + 1)/2 and 𝑛 = 𝑘 −

(𝑡 − 1)/2 are considered in Equation 2, according to 𝑎 = 𝐹𝑡
2 and 𝑛 = 2𝑘 + 1 in Equation 8, then 

𝐺𝐹(2𝑘+1)
(2) (𝐹𝑡

2) = 𝐹(2𝑘+1)+𝑡𝐹(2𝑘+1)−𝑡. 

Similarly, let 𝑡 is even. If 𝑚 = 𝑘 + 𝑡/2 and 𝑛 = 𝑘 − 𝑡/2 in Equations 1 and 2, then the desired result is 

obtained. ◻ 

As a result, the sum of two successive altered Fibonacci numbers equals the Fibonacci number, and no alike 

Fibonacci recurrence relation is provided. However, a Binet-like formula for the numbers 𝐺𝐹(𝑛)
(2) (𝐹𝑡

2) and 

𝐻𝐹(𝑛)
(2)

(𝐹𝑡
2) can be obtained by using the Fibonacci Binet formula. 

Theorem 2.5. Let 𝐺𝐹(𝑛)
(2) (𝐹𝑡

2) and 𝐻𝐹(𝑛)
(2) (𝐹𝑡

2) be the 𝑛𝑡ℎ altered Fibonacci numbers. Then, 

𝐺𝐹(𝑛)
(2) (𝐹𝑡

2) =
(𝛼2𝑛 + 𝛽2𝑛) + (−1)𝑛(𝛼2𝑡 + 𝛽2𝑡)

5
, 𝑡 is odd (18) 

and 
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𝐻𝐹(𝑛)
(2)

(𝐹𝑡
2) =

(𝛼2𝑛 + 𝛽2𝑛) − (−1)𝑛(𝛼2𝑡 + 𝛽2𝑡)

5
, 𝑡 is even (19) 

PROOF.  

Let 𝑡 is odd. If we substitute the Fibonacci Binet formula in Equation 16. Then, 

𝐺𝐹(𝑛)
(2)

(𝐹𝑡
2) =

(𝛼𝑛+𝑡 − 𝛽𝑛+𝑡)(𝛼𝑛−𝑡 − 𝛽𝑛−𝑡)

(𝛼 − 𝛽)2
 

By using 𝛼 − 𝛽 = √5 and 𝛼𝛽 = −1, the desired expression is obtained. The other appeared as an application 

of the Fibonacci Binet formula in Equation 17.  ◻ 

As a result of Equations 18 and 19, Binet-like formulas for the numbers 𝐺𝐹(𝑛)
(2)

(1) and 𝐻𝐹(𝑛)
(2)

(1) are 

𝐺𝐹(𝑛)
(2)

(1) =
(𝛼2𝑛 + 𝛽2𝑛) + (−1)𝑛3

5
=

𝐿2𝑛 + (−1)𝑛3

5
 

and 

𝐻𝐹(𝑛)
(2)

(1) =
(𝛼2𝑛 + 𝛽2𝑛) − (−1)𝑛7

5
=

𝐿2𝑛 − (−1)𝑛7

5
 

More details about the sequences 𝑎(𝑛) = 𝐹𝑛𝐹𝑛+2 and 𝑏(𝑛) = 𝐹𝑛𝐹𝑛+4 can be found in (A059929) and 

(A192883). We study the special terms of the altered Fibonacci numbers 𝐺𝐹(𝑛)
(2)

(𝐹𝑡
2) = 𝐻𝐹(𝑛)

(2)
(−𝐹𝑡

2) and 

𝐻𝐹(𝑛)
(2) (𝐹𝑡

2) = 𝐺𝐹(𝑛)
(2) (−𝐹𝑡

2). The altered number 𝐺𝐹(𝑛)
(2) (4) = 𝐹𝑛+3𝐹𝑛−3 is the case 𝑡 = 3 in Equation 16. 

Furthermore, the sequence 𝑥(𝑛) = 𝐹𝑛+3𝐹𝑛−3 has been studied in the literature (A292612) with its different 

applications. The altered number 𝐻𝐹(𝑛)
(2) (9) = 𝐹𝑛+4𝐹𝑛−4 is the case 𝑡 = 4 in Equation 17. In addition, the 

sequence 𝑏(𝑛) = 𝐹𝑛+4𝐹𝑛−4 has been studied in the literature (A292612) with its different applications. 

However, 𝐻𝐹(𝑛)
(2)

(4) and 𝐺𝐹(𝑛)
(2)

(9) could not be generalized as the product of Fibonacci or Lucas numbers. 

3. Altered Fibonacci GCD Sequences 𝑮𝑭(𝒏),𝒓
(𝟐) (𝒂) and 𝑯𝑭(𝒏),𝒓

(𝟐) (𝒂) 

A GCD of two Fibonacci numbers is a Fibonacci number, such as (𝐹𝑚, 𝐹𝑛) = 𝐹(𝑚,𝑛) and (𝐹𝑚, 𝐹𝑛) = (𝐹𝑛, 𝐹𝑟), 

for all 𝑚 = 𝑞𝑛 + 𝑟 such that 𝑚, 𝑛, 𝑟, 𝑞 ∈ ℕ. Thus, two successive Fibonacci numbers are relatively prime, i.e., 

(𝐹𝑛, 𝐹𝑛+1) = 1 and (𝐹𝑞𝑛−1, 𝐹𝑛) = (𝐹𝑛, 𝐹𝑛+2) = 1 [1-3]. This section investigates properties related to GCD of 

two numbers whose indices differ 𝑟 from the altered sequences {𝐺𝐹(𝑛)
(2) (𝑎)} and {𝐻𝐹(𝑛)

(2) (𝑎)}. 

Definition 3.1. Let 𝐺𝐹(𝑛)
(2) (𝑎) and 𝐻𝐹(𝑛)

(2) (𝑎) be the 𝑛𝑡ℎ altered Fibonacci numbers. Then, 

𝐺𝐹(𝑛),𝑟
(2) (𝑎) = (𝐺𝐹(𝑛)

(2) (𝑎), 𝐺𝐹(𝑛+𝑟)
(2) (𝑎)) 

and 

𝐻𝐹(𝑛),𝑟
(2) (𝑎) = (𝐻𝐹(𝑛)

(2) (𝑎), 𝐻𝐹(𝑛+𝑟)
(2) (𝑎)) 

The sequences {𝐺𝐹(𝑛),𝑟
(2) (𝑎)} and {𝐻𝐹(𝑛),𝑟

(2) (𝑎)} formed by these numbers are called the 𝑟-successive altered 

Fibonacci GCD sequences. 

Table 2 shows {𝐺𝐹(𝑛),1
(2) (1)} and {𝐻𝐹(𝑛),1

(2) (1)} are not increasing or decreasing but can be periodic sequences. 
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Table 2. 1-successive altered Fibonacci GCD numbers 𝐺𝐹(𝑛),1
(2)

(1) and 𝐻𝐹(𝑛),1
(2)

(1) 

𝑛 0
 

1 2
 

3 4
 

5 6
 

7 8
 

9
 

10 11
 

12
 

13
 

14
 

15 

𝐺𝐹(𝑛),1
(2)

(1) 1
 

2 1
 

1 2
 

1 1
 

2 1
 

1
 

2 1
 

1
 

2
 

1
 

1 

𝐻𝐹(𝑛),1

(2)
(1) 1 2 5 1 2 1 1 10 1 1 2 1 5 2 1 1

 

The following theorem investigates whether 1-successive altered Fibonacci GCD sequences take special values 

in certain periods. 

Theorem 3.2. Let 𝐺𝐹(𝑛),1
(2)

(1) and 𝐻𝐹(𝑛),1
(2)

(1) be the 𝑛𝑡ℎ 1-successive altered Fibonacci GCD numbers. Then, 

𝐺𝐹(𝑛),1
(2) (1) = {

2, 𝑛 ≡ 1 (mod 3)
1, otherwise

 

and 

𝐻𝐹(𝑛),1
(2) (1) = {

10, 𝑛 ≡ 7 (mod 15)

5, 𝑛 ≡ 2,12 (mod 15)

2, 𝑛 ≡ 1,4,10,13 (mod 15)
1, otherwise

 

PROOF. 

According to Equation 10, 𝐺𝐹(𝑛),1
(2)

(1) = (𝐹𝑛+1𝐹𝑛−1, 𝐹𝑛𝐹𝑛+2). Since (𝐹𝑛+1, 𝐹𝑛) = (𝐹𝑛+1, 𝐹𝑛+2) =

(𝐹𝑛−1, 𝐹𝑛) = 1, then 𝐺𝐹(𝑛),1
(2) (1) = (𝐹𝑛−1, 𝐹𝑛+2). Therefore, let (𝐹𝑛−1, 𝐹𝑛+2) = 𝑑. By using (𝐹𝑥 , 𝐹𝑦) =

𝐹(𝑥,𝑦−𝑥), (𝐹𝑛−1, 𝐹𝑛+2) = 𝐹(𝑛−1,3) = 𝐹3, 𝑛 ≡ 1 (mod 3). Otherwise, (𝐹𝑛−1, 𝐹𝑛+2) = 𝐹1. 

According to Equation 11, 𝐻𝐹(𝑛),1
(2) (1) = (𝐹𝑛+2𝐹𝑛−2, 𝐹𝑛−1𝐹𝑛+3). Since (𝐹𝑛+2, 𝐹𝑛+3) = (𝐹𝑛−2, 𝐹𝑛−1) = 1, then 

𝐻𝐹(𝑛),1
(2) (1) = (𝐹𝑛−2, 𝐹𝑛+3)(𝐹𝑛+2, 𝐹𝑛−1). Thus, if (𝐹𝑛−2, 𝐹𝑛+3) = 𝐹(𝑛−2,5) = 𝐹5, 𝑛 ≡ 2 (mod 5) and 

(𝐹𝑛+2, 𝐹𝑛−1) = 𝐹(𝑛−1,3) = 𝐹3, 𝑛 ≡ 1 (mod 3), then we can obtain desired results by using the Chinese 

remainder theorem. ◻ 

Table 3 manifests that the 2-successive altered Fibonacci GCD sequence {𝐺𝐹(𝑛),2
(2) (1)}, for 𝑛 ≥ 2, takes values 

according to a specific increasing sequence, and the sequence {𝐻𝐹(𝑛),2
(2) (1)} is seen periodic. 

Table 3. 2-successive altered Fibonacci GCD numbers 𝐺𝐹(𝑛),2
(2) (1) and 𝐻𝐹(𝑛),2

(2) (1) 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝐺𝐹(𝑛),2

(2)
(1) 1

 
3 2 3 5 24 13 21 34 165 89 144 233 1131 610 987 

𝐻𝐹(𝑛),2

(2)
(1) 1 1 8 1 1 2 1 1 8 1 1 2 1 1 8 1 

Some properties of the aforesaid sequences are as follows: 

Theorem 3.3. Let 𝐺𝐹(𝑛),2
(2) (1) and 𝐻𝐹(𝑛),2

(2) (1) be the 𝑛𝑡ℎ 2-successive altered Fibonacci GCD numbers. Then, 

𝐺𝐹(𝑛),2
(2) (1) = {

3𝐹𝑛+1, 𝑛 ≡ 1 (mod 4)

𝐹𝑛+1, otherwise
 

and 

𝐻𝐹(𝑛),2
(2) (1) = {

8, 𝑛 ≡ 2 (mod 6)

2, 𝑛 ≡ 5 (mod 6)
1, otherwise
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PROOF. 

According to Equation 10, 𝐺𝐹(𝑛),2
(2)

(1) = (𝐺𝐹(𝑛)
(2)

(1), 𝐺𝐹(𝑛+2)
(2)

(1)) = 𝐹𝑛+1(𝐹𝑛−1, 𝐹𝑛+3). Therefore, 

(𝐹𝑛−1, 𝐹𝑛+3) = 𝐹(𝑛−1,4) = 𝐹4, 𝑛 ≡ 1 (mod 4) by using (𝐹𝑥 , 𝐹𝑦) = 𝐹(𝑥,𝑦−𝑥). Otherwise, it is seen that 

(𝐹𝑛−1, 𝐹𝑛+3) = 𝐹(𝑛−1,4) = 𝐹2 or 𝐹1.  

According to Equation 11, 𝐻𝐹(𝑛),2
(2) (1) = (𝐹𝑛+2𝐹𝑛−2, 𝐹𝑛𝐹𝑛+4). Because of (𝐹𝑛+2, 𝐹𝑛) = (𝐹𝑛+2, 𝐹𝑛+4) =

(𝐹𝑛−2, 𝐹𝑛) = 1, we study on 𝐻𝐹(𝑛),2
(2)

(1) = (𝐹𝑛−2, 𝐹𝑛+4). Thus, 𝐻𝐹(𝑛),2
(2)

(1) = 𝐹(𝑛−2,6) = 𝐹6, 𝑛 ≡ 2 (mod 6). 

Otherwise, the others are 𝐻𝐹(𝑛),2
(2)

(1) = 𝐹(𝑛−2,6) = 𝐹3, 𝑛 ≡ 5 (mod 6); 𝐻𝐹(𝑛),2
(2)

(1) = 𝐹2, 𝑛 ≡ 0,4 (mod 6); or 

𝐻𝐹(𝑛),2
(2)

(1) = 𝐹1, 𝑛 ≡ 1,3 (mod 6). ◻ 

Theorem 3.4. Let 𝐺𝐹(𝑛),2
(2)

(1) be the 𝑛𝑡ℎ 2-successive altered Fibonacci GCD number. Then, 

𝐺𝐹(𝑛),2
(2)

(1) + 𝐺𝐹(𝑛+1),2
(2)

(1) = {

𝐹𝑛+1 + 𝐿𝑛+2, 𝑛 ≡ 1 (mod 4)

𝐿𝑛+3, 𝑛 ≡ 0 (mod 4)
𝐹𝑛+3, otherwise

 

PROOF.  

According to 𝐺𝐹(𝑛),2
(2) (1) in Theorem 3.3, 

𝐺𝐹(𝑛),2
(2)

(1) + 𝐺𝐹(𝑛+1),2
(2)

(1) = {

𝐹𝑛+2 + 3𝐹𝑛+1, 𝑛 ≡ 1 (mod 4)

3𝐹𝑛+2 + 𝐹𝑛+1, 𝑛 ≡ 0 (mod 4)
𝐹𝑛+1 + 𝐹𝑛+2, otherwise

 

 = {

𝐹𝑛+3 + 2𝐹𝑛+1, 𝑛 ≡ 1 (mod 4)

𝐹𝑛+2 + 𝐹𝑛+4, 𝑛 ≡ 0 (mod 4)

𝐹𝑛+3, otherwise
 

by the identity 𝐹𝑛+1 + 𝐹𝑛−1 = 𝐿𝑛.  ◻ 

This study continues according to the particular values of the numbers 𝐺𝐹(𝑛)
(2) (4) = 𝐹𝑛+3𝐹𝑛−3 and 𝐻𝐹(𝑛)

(2) (9) =

𝐹𝑛+4𝐹𝑛−4 provided in Table 4. 

Table 4. Altered Lucas numbers 𝐺𝐹(𝑛)
(2) (4) and 𝐻𝐹(𝑛)

(2) (9) 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝐺𝐹(𝑛)
(2)

(4)
 

4 -3 5 0 13 21 68 165 445 1152 3029 7917 20740 

𝐻𝐹(𝑛)
(2)

(9)
 

-9 10 -8 13 0 34 55 178 432 1165 3016 7930 20727 

By utilizing properties divisibility and GCD of Fibonacci numbers, GCD sequences 𝐺𝐹(𝑛),𝑟
(2) (4), 𝑟 ∈ {1,2,3}, 

of the sequences 𝐺𝐹(𝑛)
(2) (4) presented in Table 4 are observed periodic. 

𝐺𝐹(𝑛),1
(2) (4) = (𝐹𝑛+3𝐹𝑛−3, 𝐹𝑛+4𝐹𝑛−2) = {

𝐹5𝐹7, 𝑛 ≡ 17 (mod 3 5)

𝐹7, 𝑛 ≡ 3,10,24,31 (mod 3 5)

𝐹5, 𝑛 ≡ 2,7,12,22,27,32 (mod 3 5)

1, otherwise

 

𝐺𝐹(𝑛),2
(2) (4) = (𝐹𝑛+3𝐹𝑛−3, 𝐹𝑛+5𝐹𝑛−1) = {

𝐹8, 𝑛 ≡ 3 (mod 8)

𝐹4, 𝑛 ≡ 1,5,7 (mod 8)
1, otherwise
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and 

𝐺𝐹(𝑛),3
(2) (4) = (𝐹𝑛+3𝐹𝑛−3, 𝐹𝑛+6𝐹𝑛) = {

𝐹3𝐹9, 𝑛 ≡ 3 (mod 8)

𝐹3
2, 𝑛 ≡ 1,5,7 (mod 8)

1, otherwise

 

We haven’t got a closed-form expression for the numbers 𝐺𝐹(𝑛)
(2)

(9) = 𝐻𝐹(𝑛)
(2)

(−9) and 𝐺𝐹(𝑛)
(2)

(−4) = 𝐻𝐹(𝑛)
(2)

(4). 

Thus, the properties of the GCD sequences 𝐺𝐹(𝑛),𝑟
(2) (9) and 𝐻𝐹(𝑛),𝑟

(2) (4), 𝑟 ∈ {1,2,3}, have been investigated by 

using MAPLE up to 𝑛 < 100. It is seen that all sequences are bounded and periodic sequences. 

4. Conclusion 

In this study, we derived two types of altered numbers of the Fibonacci numbers squared, defined as 

𝐺𝐹(𝑛)
(2)

(𝑎) = 𝐹𝑛
2 + (−1)𝑛𝑎 and 𝐻𝐹(𝑛)

(2)
(𝑎) = 𝐹𝑛

2 − (−1)𝑛𝑎, for 𝑎 ∈ ℤ. We observed that the numbers 𝐺𝐹(𝑛)
(2)

(1) 

and 𝐻𝐹(𝑛)
(2) (1) correspond to an extraordinary multiplication of the Fibonacci numbers. Furthermore, their 

generalizations 𝐺𝐹(𝑛)
(2)

(𝐹𝑡
2) and 𝐻𝐹(𝑛)

(2)
(𝐹𝑡

2) exhibit the same unique Fibonacci multiplication as follows: 

𝐺𝐹(𝑛)
(2)

(𝐹𝑡
2) = 𝐹𝑛+𝑡𝐹𝑛−𝑡 , 𝑡 is odd 

and 

𝐻𝐹(𝑛)
(2)

(𝐹𝑡
2) = 𝐹𝑛+𝑡𝐹𝑛−𝑡 , 𝑡 is even 

Therefore, we researched 𝑟-successive altered Fibonacci GCD sequences {𝐺𝐹(𝑛),𝑟
(2) (𝑎)} and {𝐻𝐹(𝑛),𝑟

(2) (𝑎)}, 

where 𝑎 ∈ {−1,1} and 𝑟 ∈ {1,2}. We could refer that the sequences {𝐺𝐹(𝑛),2
(2) (1)} and {𝐻𝐹(𝑛),4

(2) (1)} are 

Fibonacci subsequences. The other GCD sequences are periodic and bounded. In future studies, other 

properties of the sequences {𝐺𝐹(𝑛),𝑟
(2)

(𝐹𝑡
2)} and {𝐻𝐹(𝑛),𝑟

(2)
(𝐹𝑡

2)} and their 𝑟-successive GCD sequences are worth 

studying. Besides, matrix and graph applications may be handled. 
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Abstract − Hermite-like manifolds, which admit two different, almost complex structures,
can be considered a general concept of Hermitian manifolds. Factoring in the effects of these
two complex structures on the radical, screen, and transversal spaces, a new classification
of lightlike hypersurfaces of Hermite-like manifolds is proposed in the present paper. More-
over, an example of screen semi-invariant lightlike hypersurfaces of Hermite-like manifolds is
provided. Besides, some results on these hypersurfaces admitting a statistical structure are ob-
tained. Further, screen semi-invariant lightlike hypersurfaces are investigated on Kaehler-like
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and totally umbilical screen lightlike hypersurfaces are obtained. Finally, the need for further
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1. Introduction

Firstly, the concept of Hermite-like manifolds was given by Takano [1, 2]. A different feature of these
manifolds that differs from Hermitian manifolds is that even the simplest examples are not found in
Euclidean spaces but are found in non-Euclidean spaces. A pseudo-Riemannian manifold (H̃, h̃) with
two different almost complex structures J and J⋆ providing

h̃(JZ1, Z2) = −h̃(Z1, J
⋆Z2) (1)

for any Z1, Z2,∈ Γ(TH̃) is entitled a Hermite-like manifold. For any Hermite-like manifold, we possess

h̃(JZ1, J
⋆Z2) = h̃(Z1, Z2) (2)

If we indite J = J⋆ in Equations 1 and 2, then a Hermite-like manifold becomes an almost Hermitian
manifold.

Various authors have investigated non-degenerate submanifolds of Hermite-like manifolds [3–5]. More-
over, the authors have researched Riemannian submersions admitting Hermite-like manifolds [6–11].
However, no studies on degenerate submanifolds of Hermite-like manifolds have been published thus
far.

In addition to the above facts, lightlike geometry has interesting results thanks to the different ge-
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ometric properties of radical, screen, and transversal distributions. Considering the effects of J and
J⋆ on the radical, screen, and transversal spaces, new classifications of lightlike hypersurfaces can
be identified. With this perspective, we familiarize the impression of screen semi-invariant lightlike
hypersurfaces of Hermite-like manifolds and Hermite-like statistical manifolds in this paper.

Section 2 of the handled study presents some basic notions to be used in the following sections. Section
3 provides lightlike hypersurfaces of Hermite-like manifolds. Section 4 analyzes screen semi-invariant
lightlike hypersurfaces of Kaehler-like statistical manifolds (H̃, h̃, J, D̃).

2. Preliminaries

This section provides some basic properties to be needed in the following sections. For any lightlike
hypersurface (H,h) of a pseudo-Riemannian manifold, we invite the radical space at each point p ∈ H

by

Rad TpH = {ξ ∈ TpH : hp(ξ, Z) = 0,∀Z ∈ TpH}

Here, h is the induced degenerate metric from h̃. The complementary non-degenerate vector bundle
of Rad TpH is indicated by S(TH) and we indite

TH = Rad TH ⊕orth S(TH)

There exists a lightlike transversal bundle ltr TH = span{N} such that we possess

h̃(Z,N) = h̃(N,N) = 0, h̃(ξ,N) = 1 (3)

for any Z ∈ Γ(S(TH)). Therefore, the tangent bundle TH̃ of H̃ is decomposed as follows:

TH̃ = TH ⊕ ltr TH =
{
TH⊥ ⊕ ltr(TH)

}
⊕orth S(TH) (4)

where ⊕ indicates the direct sum, not orthogonal. Let D̃0 be the Riemannian connection of (H̃, h̃).
The Gauss and Weingarten formulas for (H,h) are represented by

D̃0
Z1
Z2 = D0

Z1
Z2 +B0(Z1, Z2)N

D̃0
Z1
N = −A0

NZ1 + τ0(Z1)N
(5)

for any Z1, Z2 ∈ Γ(TH). Here, D0 is the induced connection, B0 is the second fundamental form,
A0

N is the shape operator, and τ0 is a 1−form on Γ(TH). We note that D0 is not a Riemannian
connection [12].

If B0 = 0, then a lightlike hypersurface (H,h, S(TH)) is called totally geodesic. If there exists a
function λ on H satisfying

B0(Z1, Z2) = λh(Z1, Z2)

then (H,h, S(TH)) is entitled totally umbilical [13].

Let (H̃, h̃, D̃) be a statistical manifold. Then,

Z3h̃(Z1, Z2) = h̃(D̃Z3Z1, Z2) + h̃(Z1, D̃
⋆
Z3Z2) (6)

and

D̃0
Z1Z2 = 1

2(D̃Z1Z2 + D̃⋆
Z1Z2) (7)

The connection D̃⋆ is entitled the dual of D̃ [14]. Indicate the Riemannian curvature tensors with
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regard to connections D̃ and D̃⋆ by R̃ and R̃⋆, respectively. In this regard,

h̃(R̃⋆(Z1, Z2)Z3, Z4) = −h̃(Z3, R̃(Z1, Z2)Z4) (8)

for any Z1, Z2, Z3, Z4 ∈ Γ(TH̃) [15]. Equation 8 implies that R̃ and R̃⋆ are not symmetric.

Let (H,h, S(TH)) be a lightlike hypersurface of (H̃, h̃, D̃). The Gauss and Weingarten type formulas
with regard to (D̃, D̃⋆) are formulated by

D̃Z1Z2 = DZ1Z2 +B(Z1, Z2)N (9)

D̃Z1N = −A⋆
NZ1 + τ⋆(Z1)N (10)

and

D̃⋆
Z1Z2 = D⋆

Z1Z2 +B⋆(Z1, Z2)N (11)

D̃⋆
Z1N = −ANZ1 + τ(Z1)N (12)

where DZ1Z2, D⋆
Z1
Z2, ANZ1, and A⋆

NZ1 are included in Γ(TH) and D and D⋆ are the induced
connections on H.

Suppose that P is the projection mapping from Γ(TH) onto Γ(S(TH)). In this regard,

DZ1PZ2 = D̃Z1PZ2 + C(Z1, PZ2)ξ (13)

and

DZ1ξ = −ÃξZ1 − τ(Z1)ξ (14)

where D̃Z1PZ2 and ÃξZ1 are included in Γ(S(TH)). Then,

B(Z1, Z2) = h̃(D̃Z1Z2, ξ), τ⋆(Z1) = h̃(D̃Z1N, ξ) (15)

and

B⋆(Z1, Z2) = h̃(D̃⋆
Z1Z2, ξ), τ(Z1) = h̃(D̃⋆

Z1N, ξ) (16)

Similarly, in view of Equations 13 and 14, we indite

D⋆
Z1PZ2 = D̃⋆

Z1PZ2 + C⋆(Z1, PZ2)ξ (17)

and

D⋆
Z1ξ = −Ã⋆

ξZ1 − τ⋆(Z1)ξ (18)

where D̃⋆
Z1
PZ2 and Ã⋆

ξZ1 are included in Γ(S(TH)) [16]. Using Equations 11-18, the following relations
are provided:

B(Z1, Z2) = h(Ã⋆
ξZ1, Z2) +B⋆(Z1, ξ)h̃(Z2, N) (19)

and

B⋆(Z1, Z2) = h(ÃξZ1, Z2) +B(Z1, ξ)h̃(Z2, N) (20)

In view of Equations 19 and 20,

B(Z1, ξ) +B⋆(Z1, ξ) = 0, h(ANZ1 +A⋆
NZ1, Z2) = 0, and C(Z1, PZ2) = h(ANZ1, PZ2) (21)

As a result of Equation 21, we obtain that B and B⋆ do not vanish on the radical space [17,18].

A lightlike hypersurface of a statistical manifold is entitled
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i. totally geodesic with regard to D̃ if B = 0,

ii. totally geodesic with regard to D̃⋆ if B⋆ = 0,

iii. totally tangential umbilical about D̃ if there exists a smooth function k such that B(Z1, Z2) =
kh(Z1, Z2),

and

iv. totally tangential umbilical with respect to D̃⋆ if there exists a smooth function k⋆ such that
B⋆(Z1, Z2) = k⋆h(Z1, Z2) [17].

3. Lightlike Hypersurfaces of Hermite-like Manifolds

This section presents lightlike hypersurfaces of Hermite-like manifolds.

Definition 3.1. [2] A Hermite-like manifold is called a Hermite-like statistical manifold if there is a
linear connection D̃ providing Equations 6 and 7. A Hermite-like statistical manifold is specified by
(H̃, h̃, J, D̃).

Definition 3.2. [2] A Hermite-like statistical manifold (H̃, h̃, J, D̃) is entitled a Kaehler-like statistical
manifold if D̃J = 0. For each Kaehler-like statistical manifold (H̃, h̃, J, D̃), D̃⋆J⋆ = 0.

We define semi-invariant lightlike hypersurfaces inspiring [19–24] as follows:

Definition 3.3. A lightlike hypersurface (H,h, S(TH)) is called screen semi-invariant if J(Rad TH)
and J(ltr TH) are included in S(TH).

In view of Equation 1, if (H,h, S(TH)) is a screen semi-invariant lightlike hypersurface, then J⋆(Rad TH)
and J⋆(ltr TH) are included in S(TH).

Example 3.4. Let (H̃, h̃) be a 6−dimensional pseudo-Riemannian manifold with a pseudo-Riemannian
metric h̃ provided by

h̃ =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Define almost complex structures

J =



0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


and

J⋆ =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
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Then, Equation 1 is satisfied. Therefore, (H̃, h̃, J) is an example of Hermite-like manifold.

Let {∂1, ∂2, ∂3, ∂4, ∂5, ∂6} be the standard frame field on Γ(TH)). Denote ∇̃∂i
∂j =

8∑
k=1

Γk
ij∂k and

∇̃⋆
∂i
∂j =

8∑
k=1

Γ⋆k
ij ∂k, for i, j ∈ {1, . . . , 8}. From Equation 6, Γk

ij h̃(∂k, ∂k)+Γ⋆j
ik h̃(∂j , ∂j) = 0. Considering

this fact, ∇̃∂1∂1 = ∂1, ∇̃∂1∂2 = ∂2, ∇̃⋆
∂1
∂1 = −∂1, and ∇̃⋆

∂1
∂2 = −∂2 and the other terms of ∇̃ and ∇̃⋆

vanish. Then, (H̃, h̃, J) becomes a Kaehler-like statistical manifold.

Regard as a hypersurface of (H̃, h̃, J) described by

H =
{

(zi)i∈{1,2,3,4,5,6} : z1 = z3
}

In this case, the induced metric h becomes

h =



0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


By a straightforward computation,

Rad TH = span {ξ = ∂1 + ∂3}

ltr TH = span
{
N = −1

2(∂1 + ∂3)
}

and
S(TH) = span {e1 = ∂1, e2 = ∂4, e3 = ∂5, e4 = ∂6}

Therefore,

Jξ = e2 + e4, JN = 1
2(e2 + e4), J⋆ξ = −(e2 + e4), and J⋆N = 1

2(e2 − e4)

which indicate that (H,h, S(TH)) is screen semi-invariant.

Let (H,h, S(TH)) be a screen semi-invariant lightlike hypersurface of (H̃, h̃, J). In this regard,

JN = α, J⋆N = α⋆, Jξ = β, and J⋆ξ = β⋆ (22)

where α, α⋆, β, and β⋆ are included in Γ(S(TH)). For each Z ∈ Γ(TH),

JZ = ψZ + w⋆(Z)ξ + η⋆(Z)N (23)

and

J⋆Z = ψ⋆Z + w(Z)ξ + η(Z)N (24)

where ψ and ψ⋆ are projections from Γ(TH) onto Γ(S(TH)) and w, w⋆, η, and η⋆ are 1−forms
described by

w(Z) = h(Z,α), w⋆(Z) = h(Z,α⋆)

and

η(Z) = h(Z, β), η⋆(Z) = h(Z, β⋆)

for all Z ∈ Γ(TH).

Proposition 3.5. Let (H,h, S(TH)) be a screen semi-invariant lightlike hypersurface of (H̃, h̃, J).
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Then, the following equations hold:

η⋆(ψZ) = 0 and η(ψ⋆Z) = 0

for all Z ∈ Γ(TH). In particular,

w⋆(ψZ) = 0 and w(ψ⋆Z) = 0

for all Z ∈ Γ(S(TH)).

Proof.
Using Equations 22-24,

−Z = J2Z = J(ψZ) + w⋆(Z)Jξ + η⋆(Z)JN

and

−Z = ψ2Z + w⋆(ψZ)ξ + η⋆(ψZ)N + w⋆(Z)β + η⋆(Z)α (25)

Investigating the tangential and transversal sides of Equation 25, η⋆(ψZ) = 0.

If Z is included in Γ(S(TH)), then w⋆(ψZ) = 0. Applying (J⋆)2 = −In+2 and a similar technique as
in the proof of Equation 25,

−Z = (ψ⋆)2Z + w(ψ⋆Z)ξ + η(ψ⋆Z)N + w(Z)β⋆ + η(Z)α⋆ (26)

which indicates η(ψ⋆Z) = 0, for all Z ∈ Γ(TH). If Z ∈ Γ(S(TH)), then w(φ⋆Z) = 0 from Equation
26.

Using Equations 25 and 26, the following results are obtained.

Proposition 3.6. For any screen semi-invariant lightlike hypersurface (M, g, S(TH)) of (H̃, h̃, J), the
following relations occur, for all Z ∈ Γ(TH),

ψ2Z = −PZ − w⋆(Z)β − η⋆(Z)α

(ψ⋆)2Z = −PZ − w(Z)β⋆ − η(Z)α⋆

and

w⋆(ψZ) = w(ψ⋆Z)

Proposition 3.7. For any screen semi-invariant lightlike hypersurface (M, g, S(TH)), the following
relations occur, for all Z1, Z2 ∈ Γ(TH),

h̃(ψZ1, Z2) + η⋆(Z2)h̃(Z2, N) = h̃(Z1, ψ
⋆Z2) + η(Z2)h̃(Z1, N)

and

h̃(ψZ1, ψ
⋆Z2) = −h̃(Z1, Z2) − w⋆(Z1)η(Z2) − η⋆(Z1)w(Z2)

In particular, the relation

h(ψZ1, Z2) = h(Z1, ψ
⋆Z2)

is valid, for all Z1, Z2 ∈ Γ(S(TH)).

The proof is obvious by utilizing Equations 23 and 24 in Equation 1.
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4. Screen Semi-Invariant Lightlike Hypersurface of Kaehler-like Statistical
Manifolds

This section analyzes screen semi-invariant lightlike hypersurfaces of Kaehler-like statistical manifolds
(H̃, h̃, J, D̃).

Proposition 4.1. Let (H,h, S(TH)) be a screen semi-invariant lightlike hypersurface of (H̃, h̃, J, D̃).
Then, the following relations occur, for all Z ∈ Γ(TH),

D̃Zα− η⋆(DZα)α = ψANZ (27)

and

η⋆(DZα) = −τ⋆(Z) (28)

Proof.
Considering (H̃, h̃, J) is a Kaehler-like statistical manifold,

−D̃ZN = D̃ZJα = JD̃Zα (29)

Using Equations 10 and 29,

JD̃Zα = ANZ − τ⋆(Z)N (30)

From Equation 9 in Equation 30,

ψDZα+ w⋆(DZα)ξ + η⋆(DZα)N +B(Z,α)α = ANZ − τ⋆(Z)N (31)

Because ψα = 0 and investigating the tangential and transversal sides of Equation 31, Equation 28 is
obtained and

ψDZα+ w⋆(DZα)ξ +B(Z,α)α = ANZ (32)

From Equation 32,

ψ2DZα+ w⋆(DZα)ψξ = ψANZ (33)

Using Equations 22, 25, and 33, Equation 27 is obtained.

Definition 4.2. Let (H̃, h̃) be pseudo-Riemannian manifold and D̃H̃ indicate a linear connection on
(H̃, h̃). A vector field v on H̃ is entitled torse-forming with regard to D̃H̃ if the following circumstance
is provided, for each Z ∈ Γ(H̃),

D̃H̃
Z v = γZ + φ(Z)v

where φ is a linear form and γ is a function [25]. A torse-forming vector field is entitled

i. torqued if φ(v) = 0,

ii. concircular if φ = 0,

iii. concurrent if γ = 1 and φ = 0,

and

iv. reccurrent if γ = 0.

In view of Proposition 4.1 and Definition 4.2, the following are obtained.

Corollary 4.3. If (H,h, S(TH)) is totally geodesic with regard to D̃, then there is no less than one
vector field lying on Γ(S(TH)), reccurrent with regard to D.
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Corollary 4.4. If α is a torse-forming vector field with regard to D, then (H,h, S(TH)) can not be
totally geodesic with regard to D̃.

Proof.
Assume that α is torse-forming with regard to D. If we indite Equation 5 in Equation 27, then

PANZ = αψZ (34)

for each vector field Z, orthogonal to α and β. From Equation 34, if H is totally geodesic with regard
to D̃, then ψZ = 0. This contradicts the fact that (H,h, S(TH)) is screen semi-invariant.

Corollary 4.5. If α is parallel with regard to D (or D̃), then the shape operator takes the following
format:

ANZ = w⋆(ANZ)β + η⋆(ANZ)α

Corollary 4.6. There does not exist any totally umbilical semi-invariant lightlike hypersurface of
(H̃, h̃, J, D̃) admitting a parallel vector field JN = α with regard to D (or D̃).

Contemplate the following distributions:

D1 = span {β, β⋆} and D2 = span {α, α⋆}

Hence, there exists a (n− 4)−dimensional pseudo-Riemannian distribution D in S(TH) such that

S(TH) = D ⊕orth {D1 ⊕ D2}

Therefore, from Equations 3 and 4,

TH = D ⊕orth {D1 ⊕ D2} ⊕orth Rad(TH)

and
TH̃ = D ⊕orth {D1 ⊕ D2} ⊕orth {Rad TH ⊕ ltr TH}

From the above verities, D is invariant with respect to J and J⋆. Suppose that

D̃ = D ⊕orth Rad TH ⊕orth J(Rad TH) ⊕orth J
⋆(Rad TH)

Hence, D̃ is invariant with respect to J and J⋆.

Theorem 4.7. Let (H,h, S(TH)) be a screen semi-invariant lightlike hypersurface of (H̃, h̃, J, D̃).
Then, the following assertions are equivalent:

i) D̃ is integrable with regard to D.

ii) The equality

B(Z1, tZ2) = B(Z2, tZ1)

is valid, for all Z1, Z2 ∈ Γ(D̃).

iii) The equality

h(Ã⋆
ξZ1, tZ2) − h(Ã⋆

ξZ2, tZ1) = B(Z1, ξ)h̃(tZ2, N) −B(Z2, ξ)h̃(tZ1, N)

is valid, for all Z1, Z2 ∈ Γ(D̃), where tZ1 = ψZ1 + w⋆(Z1)ξ.

Proof.
Since (H̃, h̃, J, D̃) is a Kaehler-like statistical manifold, it is obvious that

D̃Z1JZ2 = JD̃Z1Z2 (35)
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for all Z1, Z2 ∈ Γ(D̃). If Z2 is perpendicular to α and α⋆, then

D̃Z1JZ2 = D̃Z1(ψZ2 + w⋆(Z2)ξ) (36)

From Equations 9 and 36,

D̃Z1JZ2 = D̃Z1ψZ2 +B(Z1, ψZ2)N + Z1 [w⋆(Z2)] ξ + w⋆(Z2)DZ1ξ + w⋆(Z2)B(Z1, ξ)N (37)

Combining Equations 9 and 23,

JD̃Z1Z2 = ψDZ1Z2 + w⋆(DZ1Z2)ξ + η⋆(DZ1Z2)N +B(Z1, Z2)α (38)

Taking into account of Equations 35, 37, and 38,

D̃Z1ψZ2 +B(Z1, ψZ2)N + Z1 [w⋆(Z2)] ξ + w⋆(Z2)DZ1ξ + w⋆(Z2)B(Z1, ξ)N = ψDZ1Z2 + w⋆(DZ1Z2)ξ

+η⋆(DZ1Z2)N +B(Z1, Z2)α
(39)

Altering the position of Z1 and Z2 in Equation 39,

D̃Z2ψZ1 +B(Z2, ψZ1)N + Y [w⋆(Z1)] ξ + w⋆(Z1)DZ2ξ + w⋆(Z1)B(Z2, ξ)N = ψDZ2Z1 + w⋆(DZ2Z1)ξ

+η⋆(DZ2Z1)N +B(Z2, Z1)α
(40)

If we subtract Equations 39 and 40 side to side,

η⋆(DZ1Z2) − η⋆(DZ2Z1) = B(Z1, ψZ2) −B(Z2, ψZ1) + w⋆(Z2)B(Z1, ξ) − w⋆(Z1)B(Z2, ξ)

which shows

B(Z1, tZ2) −B(Z2, tZ1) = η⋆([Z1, Z2]) (41)

Taking into consideration of Equation 41, B(Z1, tZ2) = B(Z2, tZ1) is provided for all Z1, Z2 ∈ Γ(D̃) if
and only if [Z1, Z2] ∈ Γ(D̃). Hence, (i) ⇔ (ii). From Equations 19 and 41, (ii) ⇔ (iii).

From Theorem 4.7, the following results are obtained.

Corollary 4.8. If (H,h, S(TH)) is totally geodesic with regard to D, then D̃ is integrable with regard
to D.

Corollary 4.9. If (H,h, S(TH)) is totally umbilical with regard to D, then D̃ is not integrable with
regard to D.

An analogous to Theorem 4.7 is as follows:

Theorem 4.10. For any screen semi-invariant lightlike hypersurface (H,h, S(TH)), the following
assertions are equivalent:

i) D̃ is integrable with regard to D⋆.

ii) The equality
B⋆(Z1, t

⋆Z2) = B⋆(Z2, t
⋆Z1)

is valid, for all Z1, Z2 ∈ Γ(D̃).

iii) The equality

h(ÃξZ1, t
⋆Z2) − h(A⋆

ξZ2, t
⋆Z1) = B⋆(Z1, ξ)h̃(t⋆Z2, N) −B⋆(Z2, ξ)h̃(t⋆Z1, N)

is valid, for all Z1, Z2 ∈ Γ(D̃), where t⋆Z1 = ψ⋆Z1 + w(Z1)ξ.

Theorem 4.11. (H,h, S(TH)) is mixed geodesic with regard to D̃ if and only if A⋆
NZ is included in

D⊥
1 , for all Z ∈ Γ(D̃).
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Proof.
Assume that (H,h, S(TH)) is mixed geodesic with regard to D̃. In view of Equations 9 and 10,

D̃Zα = DZα+B(Z,α)N (42)

and

JD̃ZN = −tA⋆
NZ − η⋆(A⋆

NZ)N + τ⋆(Z)α (43)

for all Z ∈ Γ(D̃). Since (H̃, h̃, J) is a Kaehler-like statistical manifold, we derive the following relation
using Equations 42 and 43:

0 = B(Z,α) = −η⋆(A⋆
NZ) = −∼

g(JA⋆
NZ, ξ)

Hence, h(A⋆
NZ, β

⋆) = 0. With similar arguments,

D̃Zα
⋆ = DZα

⋆ +B(Z,α⋆)N (44)

and

J⋆D̃ZN = −h⋆A⋆
NZ − η(A⋆

NZ)N + τ⋆(Z)α⋆ (45)

From Equations 44 and 45,

0 = B(Z,α⋆) = −η(A⋆
NZ) = −∼

g(J⋆A⋆
NZ, ξ)

Hence, h(A⋆
NZ, β) = 0. Therefore, A⋆

NZ is included in D⊥
1 for all Z ∈ Γ(D̃). The proof of converse is

clear.

With a similar method of Theorem 4.11, the following result is obtained.

Theorem 4.12. (H,h, S(TH)) is mixed geodesic with regard to D̃⋆ if and only if ANZ is included
in D⊥

1 , for all Z ∈ Γ(D̃).

5. Conclusion

This study investigates the geometry of screen semi-invariant lightlike hypersurfaces, where almost
complex structures J and includes J⋆ in the screen distribution. With this perspective, new types of
lightlike hypersurfaces can be introduced. For example, the cases where almost complex structures J
and J⋆ are invariant or anti-invariant in the radical space or invariant and anti-invariant on the screen
space can be examined. Thus, the problem of the existence of new kinds of lightlike hypersurfaces for
almost Hermite-like manifolds and Kaehler-like statistical manifolds arises in the future.
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Project number: 122F326.



Journal of New Theory 45 (2023) 83-94 / Screen Semi-Invariant Lightlike Hypersurfaces on Hermite-Like Manifolds 93

References

[1] K. Takano, Statistical Manifolds with Almost Contact Structures and Its Statistical Submersions,
Journal of Geometry 85 (1-2) (2006) 171–187.

[2] K. Takano, Statistical Manifolds with Almost Complex Structures, in: H. Shimada (Ed.), Pro-
ceedings of the 45th Symposium on Finsler Geometry, Tokyo, 2011, pp. 54–57.

[3] M. Aquib, Some Inequalities for Statistical Submanifolds of Quaternion Kaehler-like Statistical
Space Forms, International Journal of Geometric Methods in Modern Physics 16 (08) (2019)
1950129 16 pages.

[4] M. Aquib, M. H. Shahid, Generalized Normalized δ-Casorati Curvature for Statistical Subman-
ifolds in Quaternion Kaehler-like Statistical Space Forms, Journal of Geometry 109 (1) (2018)
Article Number 13 13 pages.
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Abstract − In this paper, we describe the crossed corner of commutative algebras and
present the relation between the category of crossed corners of commutative algebras and
the category of reduced simplicial commutative algebras with Moore complex of length 2. We
provide a passage from crossed corners to bisimplicial algebras. In this construction, we utilize
the Artin-Mazur codiagonal functor from reduced bisimplicial algebras to simplicial algebras
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of the reduced simplicial algebra obtained from a crossed corner is 2.
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1. Introduction

Whitehead [1] introduced the concept of crossed modules of groups as an algebraic model of connected
homotopy 2-types of topological spaces. As a 2-dimensional crossed module, or a crossed module of
crossed modules, the notion of crossed square has been introduced by Guin-Waléry and Loday [2].
Another 2-dimensional crossed modules of groups is the quadratic module was introduced by Baues
as an algebraic model for 3-types in [3]. The commutative algebra and the Lie algebra versions of
quadratic modules were introduced by Arvasi and Ulualan [4] and Ulualan and Uslu [5], respectively.
The quasi quadratic modules over Lie algebras has been studied in [6]. For further work about the
2-dimensional crossed modules, see [7].

Alp [8] has defined crossed corners of groups, closely associated with crossed squares, and studied
relationships between them. The commutative algebra analogue of crossed modules has been studied
by Porter [9]. Moreover, the commutative, associative, and Lie algebra versions of crossed squares
has been defined by Ellis [10], as higher dimensional versions of crossed modules of algebras. The
equivalence between simplicial algebras and these crossed structures was proven in [4, 10–12]. In this
paper, our first aim is to achieve the definition of a crossed corner over commutative algebras. We
investigate the close relationship between the categories of crossed corners of commutative algebras
and reduced simplicial algebras with Moore complex of length 2 in terms of Peiffer pairings in the
Moore complex. Throughout this paper, an algebra action of r ∈ R on s ∈ S will be denoted by r ·s or
s ·r. Since all algebras in this work are commutative algebras, we can write r ·s = s ·r. Recall from [13]
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that a crossed module of algebras is a homomorphism of R-algebras ∂ : S → R with the algebra action
of R on S such that the following axioms are satisfied: CM1. ∂(s · r) = ∂(s)r, ∂(r · s) = r∂(s), and
CM2. ∂(s) · s′ = ss′ = s · ∂(s′) , for all r ∈ R, and s, s′ ∈ S. It is well known that a crossed module
is equivalent to a simplicial algebra with Moore complex of length 1. For the connection between
crossed modules of Lie algebras and simplicial Lie algebras and for the Lie-Rinehart version of this
connection, see [14,15].

A crossed corner can be regarded as a 2-dimensional crossed module. By giving the definition of a
crossed corner of commutative algebras, we will prove that the category of crossed corners is equivalent
to the category of reduced simplicial commutative algebras with Moore complex of length 2. In this
equivalence, we will define a passage from the crossed corners to reduced bisimplicial algebras and
Artin-Mazur codioganal functor from bisimplicial algebras to simplicial algebras. In this construction,
we see that the length of this reduced simplicial algebras is 2.

2. Crossed Corner of Commutative Algebras

Suppose that k is a fixed commutative ring. All of the k-algebras studied in this work are assumed
to be commutative and associative. We will denote the category of commutative algebras by Algk. In
this section, we provide the commutative algebra version of a crossed corner of groups, presented by
Alp [8, 16,17].

Definition 2.1. A crossed corner of algebras is a diagram of commutative algebras

K1
∂ //

∂′

��

K2

K3

together with algebra actions of K2 on K1 and K3 on K1 and homomorphisms ∂ : K1 → K2 and
∂′ : K1 → K3 of algebras with a map h : K2 ⊗ K3 → K1 satisfying the following axioms:

CC1. ∂ and ∂′ are crossed modules of algebras

CC2. h((k2 + k2
′) ⊗ k3) = h(k2 ⊗ k3) + h(k2

′ ⊗ k3) and h(k2 ⊗ (k3 + k3
′)) = h(k2 ⊗ k3) + h(k2 ⊗ k3

′)

CC3. h(∂(k1) ⊗ k3) = k3 · k1 and h(k2 ⊗ ∂′(k1)) = k2 · k1

CC4. (k2 · k3) · k1 = (k2k3) · k1 and (k3 · k2) · k1 = (k3k2) · k1

where the actions
k3 · k2 = ∂′h(k2 ⊗ k3)

and
k2 · k3 = ∂h(k2 ⊗ k3)

These two actions are commutative algebra actions, for all k1 ∈ K1, k2, k′
2 ∈ K2, k3, k′

3 ∈ K3.

Example 2.2. Let I1 and I2 be two ideals of a k-algebra I. The following diagram of inclusions

I1 ∩ I2
∂ //

∂′

��

I1

I2

together with the actions of I1, I2 on I1∩I2 given by multiplication and the function h : I1⊗I2 → I1∩I2,
h(i1 ⊗ i2) = i1i2 is a crossed corner. It can be observed that this is a crossed corner of commutative
algebras.
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2.1. Morphisms of Crossed Corners

In this section, we define the morphism between two crossed corners. Let

K : K1
∂ //

∂′

��

K2

K3

and
K′ : K ′

1
δ //

δ′

��

K ′
2

K ′
3

be crossed corners together with maps h : K2 ⊗ K3 → K1 and h′ : K ′
2 ⊗ K ′

3 → K ′
1. The morphism

σ = (σ1, σ2, σ3) : K → K′ is provided by the following commutative diagram

K1
∂ //

σ1

  
∂′

��

K2
σ2

  
K ′

1
δ //

δ′

��

K ′
2

K3

σ3   
K ′

3

where δ′σ1 = σ3∂′ and δσ1 = σ2∂ and for k2 ∈ K2, k3 ∈ K3

σ1h(k2 ⊗ k3) = h′(σ2(k2) ⊗ σ3(k3))

Furthermore, for k2 ∈ K2, k1 ∈ K1,

σ1(k2 · k1) = σ2(k2) · σ1(k1)

and for k3 ∈ K3

σ1(k3 · k1) = σ3(k3) · σ1(k1)

and where σ1, σ2, σ3 are k-algebra homomorphism.

Thus, we can define the category of crossed corners of algebras denoting it as CC.

3. (Bi)simplicial Algebras

Recall from [12] that a simplicial algebra E consists of k-algebras En, for n ∈ Z+ ∪ {0}, together with
the homomorphisms dn

i : En → En−1, 0 ≤ i ≤ n, and sn
j : En → En+1, 0 ≤ j ≤ n, called faces

and degeneracies, respectively, satisfying the usual simplicial identities given in [4]. As an alternative
description of a simplicial algebra, we can say that a simplicial algebra E can be regarded as a functor
from the opposite category of finite ordinals ∆op[n], for n ∈ Z+ ∪ {0} to the category of algebras.
That is, E is simplicial object in the category of commutative algebras. For each k ≥ 0, it is obtained
a subcategory ∆[n]≤k of ∆[n] whose objects are [j] = {0 < 1 < · · · < j} of ∆[n] with j ≤ k. Then, for
each k ≥ 0, we can obtain a k-truncated simplicial algebra by defining the functor E : ∆[n]≤k → Alg.

Let E be a simplicial algebra. Then, its Moore complex (NE, ∂) is a chain complex defined on
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each level by NEn =
n−1⋂
i=0

Kerdn
i = Kerdn

0 ∩ Kerdn
1 ∩ . . . ∩ Kerdn

n−1 with the boundary morphism
∂n : NEn → NEn−1 restricted to NEn of the morphism dn

n : En → En−1. Thus, we can illustrate the
Moore (chain) complex by

(NE, ∂) : · · · ∂3 // NE2
∂2 // NE1

∂1 // NE0

If NEn = {0}, for n ≥ k + 1, then the Moore complex NE is of length k. We will denote the category
of simplicial algebras with Moore complex of length k by SimpAlg≤k. If the first component E0 of
a simplicial algebra E is zero, that is E0 = {0}, then E is called a reduced simplicial algebra. We
denote the category of reduced simplicial algebras with Moore complex of length k by ReSimpAlg≤k.

A morphism between reduced simplicial algebras in this category is given by the following diagram

E = · · · E3

//////// E2

f2
��

d0 //d1 //d2 //dd``[[YY E1

f1
��

d0 //
d1 //

s0
dd

s1

[[ {0}

f0
��

s0
dd

E′ = · · · E′
3

//////// E′
2

d0 //d1 //d2 //eeaa\\ZZ
E′

1
d0 //
d1 //

s0
ee

s1

\\
{0}

s0
ee

in which f : E → E′ consists of k-algebra homomorphisms fi : Ei → E′
i, i ∈ Z+ ∪ {0}, commuting

with all the face and degeneracy operators.

Arvasi and Porter [12] have defined the functions Cα,β in the Moore complex of a simplicial algebra
E. We recall these functions to use them in the connection between reduced simplicial algebras and
crossed corners. We only use these functions in dimension 3. These functions are

C(0),(2,1)(x, z) = (s2s1(x))(−s0(z) + s1(z) + s2(z))

and
C(2,0),(1)(x, z) = (s2s0(x) − s2s1(x))(s1(z) − s2(z))

For the images of these functions under the boundary map ∂3, see [12].

Now consider the product category ∆[n] × ∆[n] whose objects are the pairs ([p], [q]) and whose mor-
phisms between objects are the pairs of non-decreasing maps. Then, the functor E.,. from (∆ × ∆)op

to Alg can be regarded as a bisimplicial algebra. Thus, we can give the definition of a bisimplicial
algebra equivalently as follows. For each object (p, q) of (∆ × ∆)op, there is an k-algebra Ep,q and for
each morphism between the pairs (p, q), there are homomorphisms of algebras

dh
i : Ep,q → Ep−1,q; sh

i : Ep,q → Ep+1,q, p ≥ i ≥ 0
dv

j : Ep,q → Ep,q−1; sv
j : Ep,q → Ep,q+1, q ≥ j ≥ 0

such that morphisms dv
j , sv

j commute with dh
i , sh

i . Furthermore, these morphisms satisfy the usual
simplicial identities. The Moore bicomplex of a bisimplicial algebra E.,. is given by

NEn,m =
(n−1,m−1)⋂
(i,j)=(0,0)

Kerdh
i ∩ Kerdv

j

with the boundary homomorphisms ∂h
i : NEn,m → NEn−1,m and ∂v

j : NEn,m → NEn,m−1 obtained
by the restriction to dh

i and dv
j , respectively. Thus, we can show pictorially a Moore bicomplex of a

bisimplicial algebra by the following diagram
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�� ��
· · ·

... // NE1,2

... //

��

NE0,2

��
· · · // NE1,1

��

// NE0,1

��
· · · // NE1,0 // NE0,0

If E0,0 is a zero in a bisimplicial algebra E.,., then it is called a reduced bisimplicial algebra. If
NEp,q = {0}, for p + q ≥ k + 1, then the Moore bicomplex is of length k. For 2-dimensional version of
Cα,β functions for bisimplicial algebras, see [18].

4. From Reduced Simplicial Algebras to Crossed Corners

In this section, we investigate the relation between the categories of crossed corners and reduced
simplicial algebras. Suppose that E is a reduced simplicial algebra with E0 = {0}. We will construct
a crossed corner of commutative algebras as

K1
∂ //

∂′

��

K2

K3

with the h-map h : K2 ⊗ K3 → K1.

Suppose K2 = NE1 = Kerd1
0 and K3 = NE∗

1 = Kerd1
1. Let K1 = NE2 = NE2/∂3(NE3∩I3), where I3

is the ideal of E3 generated by the degeneracy elements given in [12]. Then, the action of K2 on K1

is given by k2 ∈ K2 and k1 = k1 + ∂3(NE3 ∩ I3) ∈ K1, k2 · k1 = s1(k2)k1, and k1 · k2 = k1s1(k2).
The action of k3 ∈ K3 on K1 is given by k3 · k1 = s1(k3)k1 = k1s1(k3) = k1 · k3. The homomorphism
∂ : K1 → K2 is given by the restriction of d2

2 : E2 → E1 on Kerd1
0 and similarly ∂′ : K1 → K3 is given

by the restriction of d2
2 on Kerd1

1. Then, we obtain the following diagram:

NE2/∂3(NE3∩I3)
∂2 //

∂∗
2
��

NE1

NE∗
1

where x ∈ NE1 = Kerd1
0 and y ∈ NE∗

1 = Kerd1
1 and h map is provided by

h : NE1 ⊗ NE∗
1 −→ NE2/∂3(NE3∩I3)

(x ⊗ y) 7−→ s1(x)s1(y) − s0(x)s1(y) = (s1(x) − s0(x))s1(y) + ∂3(NE3 ∩ I3)

We will show that all axioms of crossed corner are verified.

CC1. ∂2 and ∂∗
2 are crossed modules. Because, there are actions of NE∗

1 on NE2 = NE2/∂3(NE3∩I3)
and NE1 via s1 and NE1 acts on NE2/∂3(NE3∩I3)and NE∗

1 via s1. For x ∈ NE1 and y = y +∂3NE3 ∈
NE2,

∂2(x · y) = ∂2(x · y) = ∂2(s1xy) = x∂2(y)

and for y, y′ ∈ NE2,
∂2(y) · y′ = s1d2y.y′ + ∂3(NE3 ∩ I3)
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We know from the Cα,β functions from [12] that

yy′ − s1d2y · y′ = d2(s1ys1y′ − s0ys1y′) ∈ ∂3(NE3 ∩ I3)

Thus,
∂2(y) · y′ = yy′

and then ∂2 is a crossed module of algebras. Similarly ∂∗
2 is a crossed module of algebras.

CC2. For x1, x2 ∈ NE1 and y ∈ NE∗
1 , it must be h((x1 + x2) ⊗ y) = h(x1 ⊗ y) + h(x2 ⊗ y).

h((x1 + x2) ⊗ y) = s1(x1 + x2)s1(y) − s0(x1 + x2)s1(y) + ∂3(NE3 ∩ I3)

= (s1(x1) + s1(x2))s1(y) − (s0(x1) + s0(x2))s1(y) + ∂3(NE3 ∩ I3)

= (s1(x1)s1(y) + s1(x2)s1(y)) − (s0(x1)s1(y) + s0(x2)s1(y)) + ∂3(NE3 ∩ I3)

= (s1(x1)s1(y) − s0(x1)s1(y)) + (s1(x2)s1(y) − s0(x2)s1(y)) + ∂3(NE3 ∩ I3)

= h(x1 ⊗ y) + h(x2 ⊗ y)

Similarly, for x ∈ NE1 and y1, y2 ∈ NE∗
1 , h(x ⊗ (y1 + y2)) = h(x ⊗ y1) + h(x ⊗ y2) is satisfied.

CC3. For z = z + ∂3(NE3 ∩ I3) ∈ NE2/∂3(NE3∩I3), x ∈ NE1, y ∈ NE∗
1 it must be h(∂2(z) ⊗ y) = y · z

and h(x⊗∂∗
2(z)) = x·z. We will use the image of the Cα,β pairings in the Moore complex of a simplicial

commutative algebra. For the image of these elements, see [12].

Firstly, h(∂2(z)⊗y) = s1d2(z)s1(y)−s0d2(z)s1(y)+∂3(NE3∩I3). For α = (0) and β = (2, 1), from [12],

d3(C(0),(2,1)(y, z)) = d3[(s2s1(y))(−s0(z) + s1(z) + s2(z))]

= d3(s2s1(y))(−d3s0(z) + d3s1(z) + d3s2(z))

= s1(y)(−s0d2(z) + s1d2(z) + z) (∵ d3s2 = id, d3s0 = s0d2, d3s1 = s1d2)

= s1d2(z)s1(y) − s0d2(z)s1(y) + s1(y)z ∈ ∂3(NE3 ∩ I3)

Thus,

h(∂2(z) ⊗ y) = s1(y)z (mod ∂3(NE3 ∩ I3))

= y · z

Similarly, h(x ⊗ d∗
2(z)) = s1(x)s1d2(z) − s0(x)s1d2(z) + ∂3(NE3 ∩ I3). For α = (2, 0) and β = (1),

from [12],

d3(C(2,0),(1)(x, z)) = d3[(s2s0(x) − s2s1(x))(s1(z) − s2(z))]

= d3s2s0(x)d3s1(z) − d3s2s0(x)d3s2(z) − d3s2s1(x)d3s1(z) + d3s2s1(x)d3s2(z)

= s0(x)s1d2(z) − s0(x)z − s1(x)s1d2(z) + s1(x)z ∈ ∂3(NE3 ∩ I3)

Then,

h(x ⊗ ∂∗
2(z)) = s1(x)z − s0(x)z (mod ∂3(NE3 ∩ I3))

= s1(x)z (∵ ∂1(x) = 0)

= x · z

CC4. We show (x · y) · z = (xy) · z, for x ∈ NE1, y ∈ NE∗
1 , and z ∈ NE2/∂3(NE3∩I3):
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(x · y) · z = (∂2h(x ⊗ y)) · z (∵ x · y = ∂2h(x ⊗ y))

= d2(s1(x)s1(y) − s0(x)s1(y)) · z

= (d2s1(x)d2s1(y) − d2s0(x)d2s1(y)) · z

= (xy − d2s0(x)y) · z

= (xy − s0d1(x)y) · z

= (xy) · z (∵ ∂1(x) = 0)

Similarly, the axiom (y · x) · z = (yx) · z is satisfied.

Thus, we obtained a crossed corner of a reduced simplicial algebra. If the length of the Moore complex
of given reduced simplicial algebra E is 2, then NE3 = {0} and thus ∂3(NE3 ∩ I3) = {0}. Therefore,
the equivalence between cosets becomes equality. Thus, we have defined a functor from the category
of reduced simplicial algebras to the category of crossed corners,

N : ReSimpAlg≤2 → CC

5. From Crossed Corners to Reduced Simplicial Algebras

In this section, we will construct a reduced simplicial algebra with Moore complex of length ≤ 2 from
a crossed corner

K1
∂ //

∂′

��

K2

K3

together with the h-map h : K2 ⊗ K3 → K1. We can consider this crossed corner as a crossed square

K1
∂ //

∂′

��

K2

ζ
��

K3
ζ′
// K0 = {0}

with the h-map h : K2 ⊗ K3 → K1. Since ζ : K2 → {0} is the zero morphism, then we obtain a
diagonal simplicial algebra

· · · K2 ⋉ (K2 ⋉ {0})
////// K2 ⋉ {0}oooo

//// {0}oo

and then we can say that this is a reduced simplicial algebra. In this structure, the face and degeneracy
maps are given by

d1
0(k2, 0) = d1

1(k2, 0) = 0 s0
0(0) = (0, 0)

and

d1
0(k2, k′

2, 0) = (k2k′
2, 0)

d1
1(k2, k′

2, 0) = (k2, 0)
d1

2(k2, k′
2, 0) = (k′

2, 0)
s1

0(k2, 0) = (0, k2, 0)
s1

1(k2, 0) = (k2, 0, 0)
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Since K2 × {0} ∼= K2, we can write it as

· · · K2 ⋉ K2

////// K2oooo

//// {0}oo

Similarly, since ζ
′ : K3 → {0} is a crossed module, we obtain a reduced simplicial algebra as

· · · K3 ⋉ K3

////// K3oooo

//// {0}oo

Using the actions of K2 on K1 and of K3 on K1, we have a reduced bisimplicial algebra.

· · ·
//////

������

(K1 ⋉ K3) ⋉ ((K1 ⋉ K3) ⋉ K2)oo oo

////

������

K2 ⋉ K2

������

oo

((K1 ⋉ K3) ⋉ K2) ⋉ (K2 ⋉ K2)
//////

OO OO

����

(K1 ⋉ K3) ⋉ K2oooo

////

OO OO

����

K2oo

OOOO

����
K3 ⋉ K3

//////

OO

K3oooo

////

OO

{0}oo

OO

We will use the way from bisimplicial algebras to simplicial algebras with the help of the functor
defined by Artin Mazur [19]. The subset of the algebra E1,0 × E0,1 = (K2 ⋉ {0}) × (K3 ⋉ {0}) is

E1 = {((k2, 0), (k3, 0))|dv
0(k2, 0) = dh

1(k3, 0) = 0}

where {0} ∼= E0. The isomorphism between E1 and E1,0 × E0,1 can be defined by

η : E1 −→ K3 ⋉ K2 ⋉ {0}
((k2, 0), (k3, 0)) 7−→ (k3, k2, 0)

Thus, we can write E1 ∼= K3 ⋉ K2 ⋉ {0}. Then, we have the structural homomorphisms between E0

and E1 obviously
d0(k3, k2, 0) = 0

and
d1(k3, k2, 0) = 0

Hence, we obtain {E1, E0} as a reduced 1-truncated simplicial algebra together with these zero homo-
morphisms. Moreover, the elements of the subalgebra

E2,0 × E1,1 × E0,2 = (K2 ⋉ (K2 ⋉ {0})) × ((K1 ⋉ K3) ⋉ (K2 ⋉ {0})) × (K3 ⋉ (K3 ⋉ {0}))

can be written by
((k′

2, k
′′
2 , 0), ((k1, k3), (k2, 0)), (k′

3, k
′′
3 , 0))

Moreover, the vertical face maps are

dv
0(k′

2, k
′′
2 , 0) = dh

1(k1, k3, k2, 0)

and
dv

1(k1, k3, k2, 0) = dh
2(k′

3, k
′′
3 , 0)

Then, k
′′
2 = k2 and ∂

′(k1)k3 = k
′
3. Thus, it can be written by

((k′
2, k

′′
2 , 0), ((k1, ∂

′(k1)k′
3), (k2, 0)), (∂′(k1)k3, k

′′
3 , 0))

as elements of E2. We see that the map

η′ : E2 −→ (K1 ⋉ (K3 ⋉ K2)) ⋉ (K3 ⋉ (K2 ⋉ {0}))
((k′

2, k
′′
2 , 0), ((k1, k3), (k′′

2 , 0)), (∂′(k1)k3, k
′′
3 , 0)) 7−→ ((k1, (k3, k

′′
2 )), (k′′

3 , (k2, 0)))
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is an isomorphism. Consequently, using the Artin-Mazur codiagonal functor, we obtain the following
reduced simplicial algebra.

E : (K1 ⋉ (K3 ⋉ K2)) ⋉ (K3 ⋉ (K2 ⋉ {0}))
// //// (K3 ⋉ (K2 ⋉ {0}))oooo

//// {0}oo

The faces and degeneracies maps are defined as follows:

d1
0(k3, k2, 0) = 0

d1
1(k3, k2, 0) = 0

s0
0(0) = (0, 0, 0)

and

d2
0((k1, (k3, k

′′
2 )), (k′′

3 , (k′
2, 0))) = (k′′

3 , ∂(k1)k′′
2 , 0)

d2
1((k1, (k3, k

′′
2 )), (k′′

3 , (k′
2, 0))) = (k′′

3 , ∂
′(k1)k3, k

′′
2 k

′
2, 0)

d2
2((k1, (k3, k

′′
2 )), (k′′

3 , (k′
2, 0))) = (k3, k

′
2, 0)

s1
0(k3, k2, 0) = ((0, (0, k2)), (k3, (0, 0)))

s1
1(k3, k2, 0) = ((0, (k3, 0)), (0, (k2, 0)))

We can get a 2-truncated reduced simplicial algebra. Using the coskeleton functor from k-truncated
simplicial algebras to simplicial algebras with Moore complex of length k given in [12], we can see
that E is a reduced simplicial algebra with Moore complex of length 2. Therefore, we obtained the
following functor

∆ : CC → ReSimpAlg≤2

We can provide the following result:

Theorem 5.1. The category of reduced simplicial algebras with Moore complex of length 2 is equiv-
alent to that of crossed corners of commutative algebras.

6. Conclusion

In this paper, the commutative algebra analog of crossed corners has been introduced. We have ob-
tained that the category of reduced simplicial algebras with Moore complex of length 2 is equivalent
to that of crossed corners of commutative algebras. We know a categorical equivalence exists between
braided crossed modules, reduced quadratic modules, and reduced simplicial groups with Moore com-
plex of length 2. This result establishes the equivalence between crossed corners and braided crossed
modules or reduced quadratic modules. Furthermore, this idea can be extended to the Lie algebra
case for further research.
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Abstract − In this study, a mathematical model describing diabetes mellitus and its com-
plications in a population is considered. Since standard numerical methods can lead to nu-
merical instabilities, it aims to solve the problem using a nonstandard method. Among the
nonstandard methods, nonstandard finite difference (NSFD) schemes that satisfy dynamical
consistency are preferred to make the model discrete. Both continuous and discrete models
are analyzed to show the stability of the model at the equilibrium points. The Schur-Cohn cri-
terion is used to perform stability analysis at the equilibrium point of the discretized model.
Thus, asymptotically stability of the model is presented. Moreover, the advantages of the
NSFD method are emphasized by comparing the stability for different step sizes with classi-
cal methods, such as Euler and Runge-Kutta. It has been observed that the NSFD method
is convergence for larger step sizes. In addition, the numerical results obtained by NSFD
schemes are compared with the Runge–Kutta–Fehlberg (RKF45) method in graphical forms.
The accuracy of the NSFD method is observed.

Keywords Diabetes mellitus, nonstandard finite difference scheme, stability analysis

Mathematics Subject Classification (2020) 34A30, 65L07

1. Introduction

Many biological problems can be modeled by using differential equations. As is known, diabetes has
become a very common disease recently. Many important studies about diabetes have been performed.
In epidemic models, stability analysis has an important role. Some of the studies about diabetes can
be summarized as follows:

Boutayeb et al. [1] propose a mathematical model of diabetes to present a better quality of line
for humans. The numerical solution and the stability analysis for the linear model in which the
unknowns are numbers of diabetics with and without complications are presented. Akinsola and
Oluyo [2–4] obtain the numerical and analytical solution of the model of complications and control
of diabetes mellitus in their studies with different methods. Moreover, the linear diabetes mellitus
model is considered by AlShurbaji et al. [5]. The numerical comparison of the solution of a system
of linear differential equations by numerical methods such as Euler, Heun, Runge-Kutta, and Adams-
Moulton is presented. Stability analysis is given. Furthermore, Vanitha and Porchelvi [6] consider the
linear mathematical model of diabetes mellitus. A numerical solution by the Euler-Cauchy method is
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presented. Besides, Boutayeb et al. [7] present a nonlinear mathematical model of diabetes mellitus
by applying appropriate parameters. Stability analysis and numerical experiments are presented. de
Oliveira et al. [8] consider the model proposed in [7] and global asymptotic stability is studied. The
stability is verified through numerical simulations. Boutayeb et al. [9] present the dynamics of a
population of healthy people, pre-diabetics, and diabetics with and without complications. Optimal
control theory is used. Permatasari et al. [10] considered the model developed by [9]. Global stability
and controllability for linear and nonlinear systems are presented, respectively. Widyaningsih et al. [11]
consider the nonlinear diabetes mellitus model in terms of lifestyle and genetic factors. Fourth-order
Runge-Kutta method is applied to predict the number of deaths due to diabetes, recently. Aye [12]
presents stability analysis of a linear model describing diabetes mellitus and its complications. The
stability is tested by using the Bellman and Coke theorem. Aye et al. [13] solve a similar model using
the Homotopy Perturbation Method. Aye [14] investigates the effect of control on the same model.

It is known that stability analysis of mathematical models plays an important role in the disciplines
of applied mathematics. Since, in real-life problems, the points are discrete, discretizing the models is
very important in stability analysis. Likewise, in solving such problems, standard numerical methods
can lead to numerical instabilities. Hence, nonstandard methods are important. Among the discrete
methods, the Nonstandard Finite Difference (NSFD) method developed by Mickens [15–20] is very
effective and easy to apply. Moreover, it provides convergence results in even bigger step sizes. The
detailed literature survey about NSFD schemes is presented in the studies of Patidar [21, 22]. There
are many studies about NSFD schemes in many disciplines of applied mathematics. Some of the recent
studies about NSFD schemes and stability analysis can be listed as follows:

Adekanye and Washington [23] consider a mathematical model presented by the collapse of the Tacoma
Narrows Bridge. Two NSFD schemes are constructed for the vertical and torsional models. Graphics
present vertical and torsional motions. An application of NSFD schemes to a model of the Ebola virus
in Africa is presented in [24] by Anguelov et al. Epidemic fractional models about susceptible-infected
(SI) and susceptible-infected-recovered (SIR) are proposed by Arenas et al. in [25]. NSFD schemes
are applied, and some comparisons with classical methods are given. Baleanu et al. [26] analyze a
novel fractional chaotic system for integer and fractional order cases. Stability analysis is presented
for both cases. Numerical simulations are presented with the help of NSFD schemes. Dang and
Hoang [27] construct NSFD schemes for two metapopulation models. Stability analysis and other
properties, such as positivity, boundedness, and monotone convergence, are presented. Numerical
calculations are given to support the theoretical study. Dang and Hoang [28], and Kocabıyık et
al. [29] approximate a computer virus model with the NSFD method. Ozdogan and Ongun [30]
solve a mathematical model describing the Michaelis-Menten harvesting rate with the help of NSFD
schemes. NSFD discretization of a distributed order smoking model is presented to determine the
effects of smoking on humans by Kocabiyik and Ongun [31]. A comparison of two different NSFD
schemes for the fractional order Hantavirus model is given in the study of Ongun and Arslan [32].
A predator-prey model is constructed by NSFD schemes by Shabbir et al. in [33]. Stability analysis
and other properties such as positivity, boundedness, and persistence of solutions are investigated.
Vaz and Torres [34] proposed an NSFD scheme for the Susceptible–Infected–Chronic–AIDS (SICA)
model. Elementary and global stability are studied. A linear mathematical model of pharmacokinetics
is considered by Egbelowo et al. in [35]. The Standard Finite Difference method, NSFD method, and
analytical solution are presented. More recent studies about the stability analysis of the mathematical
models are presented in [36–39].

In this study, a system of linear ordinary differential equations led from diabetes mellitus and its
complications given in [13] is considered. The second section defines the mathematical model and its
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parameters and variables. The stability of the continuous model is given. The third section is devoted
to discretizing the model by the NSFD method. The fourth section includes the stability analysis of
the discrete model. The fifth section is the numerical simulation section. Finally, the last section is
the conclusion section.

2. The Continuous Model Describing Diabetes Mellitus and Its Complica-
tions

This section presents the definition of a mathematical model of diabetes mellitus and its complications
provided in [13]. The model consists of a system of linear ordinary differential equations and is defined
as

dH

dt
= βθ − (µ+ τ)H + σS

dS

dt
= β(1 − θ) + τH − (µ+ α+ σ)S

dD

dt
= αS − (µ+ λ)D + ωT (1)

dC

dt
= λD − (µ+ δ + γ)C

dT

dt
= γC − (µ+ ω)T

with the initial conditions H(0) = H0, S(0) = S0, D(0) = D0, C(0) = C0, and T (0) = T0, where
the variables H(t), S(t), D(t), C(t), and T (t) denote to the healthy, susceptible, diabetics without
complication, diabetics with complication and diabetics with complications receiving a cure, respec-
tively. The parameters β, θ, µ, τ , σ, α, λ, ω, δ, and γ denote rate of birth, rate of children born
healthy, rate of natural mortality death, the rate at which healthy individual become susceptible, the
rate at which susceptible individual become healthy, probability rate of incidence of diabetes, rate of a
diabetic person developing complications, rate at which diabetic with complications after cured return
diabetic without complications, rate of mortality due to complications and rate at which diabetic with
complications are cured.

Hereinafter, the asymptotic stability of the continuous model described by Equation 1 will be pre-
sented. Thus, we first give some basic preliminaries. For a general autonomous vector field

ẋ = f(x), x ∈ Rn (2)

the linearized system can be defined as
dy

dt
= J(E)y

where E and J(E) denotes the equilibrium point of the Equation 2 and Jacobian matrix of the
Equation 2 at the equilibrium point E, respectively.

Theorem 2.1. [40] Suppose all the J(E) have negative reel parts. Then, the equilibrium solution of
the nonlinear vector field defined by Equation 2 is asymptotically stable.

The equilibrium point of Equation 1 is obtained as E∗ = (H∗, S∗, D∗, C∗, T ∗), where

H∗ = β(σ + θµ+ θα)
χ

S∗ = −β(−µ− τ + θµ)
χ
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D∗ = −αβ(µ+ ω)(−µ− τ + θµ)(µ+ δ + γ)
ϖ

C∗ = −αβλ(µ+ ω)(−µ− τ + θµ)
ϖ

T ∗ = −αβλγ(−µ− τ + θµ)
ϖ

χ = µ2 + (σ + τ + α)µ+ ατ

and
ϖ = (µ3 + (ω + δ + λ+ γ)µ2 + (ω(γ + δ + λ) + λ(δ + γ))µ+ ωλδ)χ

The Jacobian matrix of the continuous model at the equilibrium point E∗ = (H∗, S∗, D∗, C∗, T ∗) is
determined as

J(H∗, S∗, D∗, C∗, T ∗) =



−τ − µ σ 0 0 0
τ −µ− α− σ 0 0 0
0 α −µ− λ 0 ω

0 0 λ −µ− δ − λ 0
0 0 0 γ −µ− ω


Thus, considering Theorem 2.1, the continuous system defined by Equation 1 is asymptotically stable
if all the eigenvalues of J(H∗, S∗, D∗, C∗, T ∗) have negative reel parts. A detailed analysis of the
asymptotic stability of the continuous model will be given in Section 5.

3. Discretization of the Model by NSFD Schemes

In this section, the model defined by Equation 1 is discretized by using NSFD schemes, an effective
method. Some advantages of the proposed method are that it removes the numerical instabilities
obtained by standard finite difference procedures, gives more approximate results compared to classical
methods such as Runge-Kutta and Euler methods, and is converged for bigger step sizes compared to
classical methods.

The rules for constructing NSFD schemes and determination of denominator function can be summa-
rized as follows [16]:

i. To avoid numerical instabilities, the order of discrete derivatives should be equal to the derivatives
in the differential equations.

ii. The discretization of first-order derivatives is usually in the following general form:
dx

dt
→ xn+1 − ψ(h)xn

ϕ(h)
where ψ(h) and ϕ(h) are called numerator and denominator functions, respectively.

iii. Nonlinear terms should be replaced by nonlocal discrete terms such as x2 → xk+1xk and x2 → x2
k.

iv. Additional conditions for the differential equations should be satisfied for difference equations.

In the view of the procedure given above, the model is discretized by using the following steps to
satisfy the positivity conditions:

In the first equation of Equation 1, the replacements H(t) → H(n + 1) and S(t) → S(n) are used.
Similarly, in the second equation of Equation 1, the replacements H(t) → H(n) and S(t) → S(n+1); in
the third equation of Equation 1, the replacements S(t) → S(n), D(t) → D(n+ 1), and T (t) → T (n);
in the fourth equation of Equation 1, the replacements D(t) → D(n) and C(t) → C(n + 1); and
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finally, in the last equation of Equation 1, the replacements C(t) → C(n) and T (t) → T (n + 1) are
implemented. Thus, the following discrete model is obtained:

H(n+ 1) = H(n) + (βθ + σS(n))ϕ1
1 + (µ+ τ)ϕ1

S(n+ 1) = S(n) + (β(1 − θ) + τH(n))ϕ2
1 + (µ+ α+ σ)ϕ2

D(n+ 1) = D(n) + (αS(n) + ωT (n))ϕ3
1 + (µ+ λ)ϕ3

(3)

C(n+ 1) = C(n) + λϕ4D(n)
1 + (µ+ δ + γ)ϕ4

T (n+ 1) = T (n) + γϕ5C(n)
1 + (µ+ ω)ϕ5

where ϕi, i = 1, 5 are denominator functions and determined as

ϕ1 = eh(µ+τ) − 1
µ+ τ

ϕ2 = eh(µ+α+σ) − 1
µ+ α+ σ

ϕ3 = eh(µ+λ) − 1
µ+ λ

ϕ4 = eh(µ+δ+γ) − 1
µ+ δ + γ

and
ϕ5 = eh(µ+ω) − 1

µ+ ω

4. Stability Analysis of the Discretized Model

In this section, the stability analysis of the discretized model is performed. Some theorems and lemmas
about the stability and properties such as positivity, and permanence of the solutions of the discrete
system given by Equation 3 are presented.

Lemma 4.1. All solutions of discrete system given in Equation 3 are positive with positive initial
conditions and positive parameters β, θ, µ, τ, σ, α, λ, ω, δ, γ, and h under the assumption of

S(n)
ϕ2

> −(β(1 − θ) + τH(n))

Proof.
Assume that the parameters β, θ, µ, τ, σ, α, λ, ω, δ, γ, and h are positive. Moreover, assume that the
initial conditions H(0) = H0, S(0) = S0, D(0) = D0, C(0) = C0, and T (0) = T0 are positive. Then,
it is obvious that the denominator functions are all positive, i.e.,

ϕ1 = eh(µ+τ) − 1
µ+ τ

> 0, ϕ2 = eh(µ+α+σ) − 1
µ+ α+ σ

> 0,

ϕ3 = eh(µ+λ) − 1
µ+ λ

> 0, ϕ4 = eh(µ+δ+γ) − 1
µ+ δ + γ

> 0,

and
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ϕ5 = eh(µ+ω) − 1
µ+ ω

> 0

Therefore, for the positive parameters, it is obvious that

H(n+ 1) = H(n) + (βθ + σS(n))ϕ1
1 + (µ+ τ)ϕ1

> 0

D(n+ 1) = D(n) + (αS(n) + ωT (n))ϕ3
1 + (µ+ λ)ϕ3

> 0

C(n+ 1) = C(n) + λϕ4D(n)
1 + (µ+ δ + γ)ϕ4

> 0

and
T (n+ 1) = T (n) + γϕ5C(n)

1 + (µ+ ω)ϕ5
> 0

As well, assuming S(n)
ϕ2

> −(β(1 − θ) + τH(n)), it can be concluded that

S(n+ 1) = S(n) + (β(1 − θ) + τH(n))ϕ2
1 + (µ+ α+ σ)ϕ2

Thus, the discrete system is positive for all the positive parameters and initial conditions.

Locally asymptotic stability of the model can be analyzed by obtaining the eigenvalues of the Jacobian
matrix at equilibrium points. Local asymptotic stability of the system depends on the eigenvalues of
the Jacobian matrix at the equilibrium points.

Theorem 4.2 (Schur-Cohn Criterion). [41] Consider the characteristic polynomial

p(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an (4)

where a1, a2, · · · , an are constants. The zeros of the characteristic polynomial defined by Equation 4
lie inside the unit disk if and only if the following conditions hold:

i. p(1) > 0

ii. (−1)np(−1) = 1 − a1 + a2 − · · · + (−1)nan > 0

iii. The matrices

B±
n−1 =



1 0 0 · · · 0

a1 1 0 · · · 0
...

...
...

...
...

an−3 an−4 · · · 1 0

an−2 an−3 · · · a1 1


±



0 0 · · · 0 an

0 0 · · · an an−1

...
... . . . ...

...

0 an · · · a4 a3

an an−1 · · · a3 a2


are positive innerwise.

Hence, one can conclude that if the Schur-Cohn criterion is satisfied, then the discrete system is
asymptotically stable. Note that the equilibrium point of the discrete system given by Equation
3 is the same as the continuous model. Therefore, the Jacobian matrix at the equilibrium point
E∗ = (H∗, S∗, D∗, C∗, T ∗) can be written as
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J∗ = J(H∗, S∗, D∗, C∗, T ∗) =



j1 ϕ1σj1 0 0 0

ϕ2τj2 j2 0 0 0

0 ϕ3αj3 j3 0 ϕ3ωj3

0 0 ϕ4λj4 j4 0

0 0 0 ϕ5γj5 j5


where

j1 = 1
1 + ϕ1(µ+ τ)

j2 = 1
1 + ϕ2(µ+ α+ σ)

j3 = 1
1 + ϕ3(µ+ λ)

j4 = 1
1 + ϕ4(µ+ δ + γ)

and
j5 = 1

1 + ϕ5(µ+ ω)
The characteristic equation is as follows:

p(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 (5)

where the coefficients of Equation 5 are determined as

a1 = −(j1 + j2 + j3 + j4 + j5)

a2 = (j3 + j4)j5 + j3j4 + (j1 + j2)(j3 + j4 + j5) − (1 − τσϕ1ϕ2)j1j2

a3 = −(1 + γλωϕ3ϕ4ϕ5)j5j4j3 + (τσϕ1ϕ2 − 1)j2j1(j5 + j4 + j3) − (j2 + j1)[j5(j4 + j3) + j3j4] (6)

a4 = (j2 + j1)(1 + ϕ3ϕ4ϕ5λωγ) + j2j1(1 − στϕ1ϕ2)[j5(j4 + j3) + j4j3]

a5 = j5j4j3j2j1(στϕ1ϕ2 − 1)(1 + ϕ3ϕ4ϕ5λωγ)

To analyze the stability of the model at the equilibrium point, the following theorem for the discrete
system given by Equation 3 is presented.

Theorem 4.3. The discrete system in Equation 3 is locally asymptotically stable at the equilibrium
point E∗ = (H∗, S∗, D∗, C∗, T ∗) if the following conditions are satisfied:

i. [−1 + ϕ3ϕ4ϕ5γωλj3j4j5 + j5 + (j5 − 1)(j4j3 − j4 − j3)][ϕ1ϕ2τσj1j2 + (1 − j1)(j2 − 1)] > 0

ii. [1 + ϕ3ϕ4ϕ5γωλj3j4j5 + (1 + j3)(j4 + j5(1 + j4)) + j3][−ϕ1ϕ2τσj1j2 + (j2 + 1)(j1 + 1)] > 0

iii. 1 − a1a5 + a4 − a2
5 > 0

[1 + (a1a2a5 − a1a5(1 − a4))(1 + a4) + a4a5(2a1 + a3) − a2
4(a4 + a2 + 1) + (a5 + a3 + a1)(a3

5 − a3)

−a2
5(a4 + 2 + a2 + a2

1 + a2
2) − a5a

2
1(a1 + a3) + a4(1 + a1(a3 + a1)) + a2(1 + a5(2a3 − a5a4))] > 0

[1 + a4a5(2a1 − 3a3) + a2
4(a4 − 1 − a2) + a3(a5 − a3 + a1(1 + a4)) − a2

1(a4 + a5(a3 − a1 + a5))

+a1a5(1 − 3a2 + a4(a2 − a4)) + a2
5(a5(a5 − a3 − a1) + a2(1 − a2) + a4(1 + a2) − 2(1 + a1a3))

−a4(1 − 2a2) − a2(1 − 2a2a3a5)] > 0

where a1, a2, a3, a4, and a5 are denoted by Equation 6.
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Proof.
Considering Theorem 4.2, it is obvious that if the conditions i-iii in Theorem 4.3 are satisfied, then
the discrete system given by Equation 3 is locally asymptotically stable at the equilibrium point
E∗ = (H∗, S∗, D∗, C∗, T ∗).

5. Numerical Results

This section presents the stability analysis for the parameters given in [13]. The parameters are taken
into consideration as

β = 0.038, θ = 0.923, µ = 0.118, τ = 0.04, σ = 0.08,

α = 0.02, λ = 0.05, ω = 0.08, δ = 0.02, and γ = 0.08
(7)

Under the given parameters above, the stability of the continuous model and discrete model will be
analyzed in the view of Theorems 2.1 and 4.2.

5.1. Stability Analysis of the Continuous Model

The characteristic polynomial of the Jacobian matrix at the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

is determined as

J(E∗) =



−0.158 0.08 0 0 0

0.04 −0.218 0 0 0

0 0.02 −0.168 0 0.08

0 0 0.05 −0.218 0

0 0 0 0.08 −0.198


The eigenvalues of J(E∗) is as follows:

λ1 = −0.123042327249903

λ2 = −0.123968757625671

λ3 = −0.252031242374328

and
λ4,5 = −0.230478836375048 ∓ 0.0566939252859813i

Since all the eigenvalues of J(E∗) have negative reel parts, according to Theorem 2.1, the continuous
model defined by Equation 1 is asymptotically stable at the equilibrium point E∗.

5.2. Stability Analysis of the Discrete Model

In addition to the parameters given in Equation 7, the step size is chosen as h = 0.01. The Jacobian
matrix at the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

is determined as
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J(E∗) =



0.9984212475 0.0007993683 0 0 0

0.0003995643 0.9978223744 0 0 0

0 0.00019983209 0.9983214104 0 0.0007993283

0 0 0.0004994553 0.9978223744 0

0 0 0 0.0007992085 0.9980219589


(8)

The characteristic polynomial of the Jacobian matrix defined by Equation 8 is as

p(λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5

where the constants of characteristic polynomials are

a1 = −4.990409365, a2 = 9.9616737805, a3 = −9.9425650792, a4 = 4.9617462802,

and
a5 = −0.99044561567

In the view of Theorem 4.2, since

i. p(1) = 1 + a1 + a2 + a3 + a4 + a5 = 0.215 × 10−13 > 0

ii. −p(−1) = 1 − a1 + a2 − a3 + a4 − a5 = 31.84684012 > 0

iii. The inners of the matrices

B±
4 =



1 0 0 ±a5

a1 1 ±a5 ±a4

a2 a1 ± a5 1 ± a4 ±a3

a3 ± a5 a2 ± a4 a1 ± a3 1 ± a2


are the matrices B±

4 itself and the matrice

IB± =

 1 ±a5

a1 ± a5 1 ± a4


Since the determinants of the inners of the matrice B±

4

det(B+
4 ) = 0.213 × 10−12

det(B−
4 ) = 0.614 × 10−24

det(IB+
4 ) = 0.038034685

and
det(IB−

4 ) = 0.278 × 10−6

are positive, the matrices B±
4 are positive innerwise. Thus, since all the conditions of the Schur-Cohn

criterion are satisfied, the discrete system given in Equation 3 is locally asymptotically stable for the
estimated parameters.

A numerical solution obtained by NSFD schemes is presented in the figures to support the stability of
the discrete model. Moreover, the Runge-Kutta-Fehlberg (RKF45) method is applied for the estimated
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parameters. Therefore, the accuracy of the results obtained by the NSFD method is shown.

The estimated parameters defined in Equation 7, the step size h = 0.01, and the positive initial
condition

H(0) = 198195839, S(0) = 101535728, D(0) = 940000, C(0) = 3760000,

and
T (0) = 1193250

are used during the calculations.

Figures 1-5 present the numerical comparison of the results obtained by the NSFD method with the
RKF45 method. It can be observed from Figures 1-5 that the results approach the equilibrium point

E∗ = (0.2522152093, 0.0597000384, 0.007435253915, 0.001705333467, 0.000689023623)

The compatibility of the results can also be observed in Figures 1-5.

Figure 1. Variation of healthy class H(t)

Figure 2. Variation of susceptible class S(t)
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Figure 3. Variation of diabetics without complication C(t)

Figure 4. Variation of diabetics with complication D(t)

Figure 5. Variation of diabetics with complications receiving a treatment T (t)
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NSFD method is a very effective method for the bigger step size. Table 1 compares the convergence
of the methods. One can see the effectiveness of NSFD schemes from Table 1.

Table 1. Stability of equilibrium point E∗ under application of different methods for different step
size h

h Euler Method Fourth Order Runge-Kutta Method NSFD Schemes

0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.5 Convergence Convergence Convergence
1 Convergence Convergence Convergence
5 Convergence Convergence Convergence
7 Divergence Convergence Convergence
10 Divergence Divergence Convergence
25 Divergence Divergence Convergence
50 Divergence Divergence Convergence
100 Divergence Divergence Convergence

6. Conclusion

This paper presents the stability analysis of a mathematical model describing diabetes mellitus and
its complications. The main aims of the study are to analyze the stability of the model and show the
advantages of the NSFD method. Thus, the stability of the continuous model is analyzed, and it is
concluded that the model is asymptotically stable. Moreover, the continuous model is discretized with
the help of the NSFD method. Considering the Schur-Cohn criterion, it is concluded that the discrete
model is asymptotically stable, too. The accuracy of the NSFD scheme is supported by comparing
the numerical results with the RKF45 method. The compatibility of the numerical results can be seen
through graphics. One of the advantages of the NSFD method is to be convergence for the bigger step
sizes. The efficiency of the NSFD method for the bigger step size is presented in tabular form.

In future studies, the NSFD schemes for the linear and nonlinear models can be constructed, and their
stability analysis can be performed using a similar technique. Moreover, since the NSFD method can
be applied to the fractional order differential equations, fractional diabetes models can be solved by
the NSFD method. In addition, stability analysis can be given.
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[39] Ö. A. Gümüs, Q. Cui, G. M. Selvam, A. Vianny, Global Stability and Bifurcation Analysis of a
Discrete Time SIR Epidemic Model, Miskolc Mathematical Notes 23 (1) (2022) 193–210.

[40] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New
York, 2003.

[41] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.



New Theory
Journal of

ISSN: 2149-1402 

45 (2023) 120-130

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Number 45 Year 2023

www.dergipark.org.tr/en/pub/jnt

Spacelike Ac-Slant Curves with Non-Null Principal Normal in
Minkowski 3-Space

Hasan Altınbaş1 ID
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Abstract − In this paper, we define a spacelike ac-slant curve whose scalar product of its
acceleration vector and a unit non-null fixed direction is a constant in Minkowski 3-space.
Furthermore, we give a characterization depending on the curvatures of the spacelike ac-slant
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1. Introduction

The motion of the object has a route that looks like a curve in space. The position of the object
at time t is represented by the position vector of the curve at parameter t in the space. The first,
second, and third derivatives of the curve are represented by the object’s velocity, acceleration, and
jerk vectors at any time t, respectively.

In kinematics and classical mechanics, which deal with the motion of bodies, the physical vector
quantities are significant. The magnitude of velocity is known as speed. The rate at which velocity
changes is called acceleration. The direction of acceleration is determined by the total force applied
to the object. Newton’s Second Law was first articulated in the seventeenth century by the English
mathematician and scientist Sir Isaac Newton, who also described the magnitude of acceleration.
Additionally, the jerk is the acceleration’s rate of change [1–3].

In Euclidean 3-space, a regular curve α is said to be a helix if the tangent vector of α makes the fixed
angle ϕ with a fixed direction which is the axis of helix where ϕ ∈ (0, π) \π

2 . Moreover, the ratio τ/κ

is a constant if and only if it is a general helix [4, 5]. A regular curve α is called a slant helix if its
principal normal vector of α makes the fixed angle ϕ with a fixed direction which is the axis where ϕ

is a constant [6]. If a regular curve α has nonconstant torsion τ but constant curvature κ, then α is
called a Salkowski curve [7].

In Minkowski 3-space, A curve is called a helix (resp. slant helix) if the scalar product of its tangent
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(resp. principal normal) vector and fixed direction is constant [8, 9]. Furthermore, Ali [10] modified
the definition of spacelike Salkowski curves with spacelike or timelike principle normal in this space
with an explicit parametrization. These special curves are studied in different ambient spaces by some
authors [11–17].

The plan of this paper is as follows: In section 2, we review the fundamental theory of curves in
Minkowski 3-space. In section 3, we define a spacelike ac-slant curve whose scalar product of its
acceleration vector and a non-null fixed direction is a constant. First, we provide a characterization
based on the torsion and curvature of a spacelike ac-slant curve. Later, we get to the conclusion
that when the ac-slant curve is a helix, either the acceleration vector is orthogonal to its axis or
the magnitude of its velocity vector is a linear function. Later on, a unit speed curve with constant
magnitude acceleration is an ac-slant curve if and only if it is a slant helix. Moreover, a unit speed
curve is only a spacelike ac-slant curve if and only if it is a Salkowski curve when the magnitude of
the acceleration is equal to one (i.e. κ = 1).

2. Preliminaries

In this section, we provide basic facts for Minkowski 3-space. For more detail and background,
see [8, 18,19].

Let E3
1 =

(
R3 (t, x, y) , g

)
be a Minkowski 3-space where g = −dt2 + dx2 + dy2 denotes the standard

metric and (t, x, y) is the connanical coordinates in 3-dimensional real vector space R3. A vector u in
E3

1 is called spacelike if g (u, u) > 0 or u = 0, timelike if g (u, u) < 0, and null if g (u, u) = 0 and u ̸= 0,
respectively. Moreover, the norm of u is defined by ∥u∥ =

√
|g(u, u)| . Furthermore, u is a unit vector

if g (u, u) = ±1.

A curve α(t) is called spacelike, timelike, or null if velocity vector v = α′(t) of α(t) are spacelike,
timelike, or null in E3

1 for each parameter t, respectively. Denote by {T, N, B} the moving Frenet-
Serret frame along the curve α in E3

1. Then, T , N , and B are the tangent, the principal normal, and
the binormal vector fields, respectively. Besides, Frenet-Serret formulae are provided as follows:

T ′ = ενκN, N ′ = −νκT − εντB, B′ = −εντN (1)

where κ and τ are curvatures of the curve α and
g T N B

T 1 0 0
N 0 ε 0
B 0 0 −ε

such that ε = ±1.

In here, ν = g (α′ (t0) , α′ (t0)) is called speed of α at t0 ∈ I. Moreover, if ν = 1, for all t ∈ I, then α

is a unit speed curve. Lorentzian unit sphere is S2
1 =

{
x ∈ E3

1 : g (x, x) = 1
}
. A curve that lies on the

Lorentzian unit sphere is called a Lorentzian spherical curve.

From a physical point of view, the motion of particle P along the curve α at time t is correspond
to the position vector of α. Then, it is widely known that the first, second, and third derivatives of
α concerning time determine the velocity vector v(t), acceleration vector a(t), and jerk vector j(t),
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respectively. These vectors are determined by Equations 1 as follows:

v = α′ = νT

a = α′′ = ν ′T + εν2κN

j = α′′′ =
(
ν ′′ − εν3κ2

)
T +

(
3εν ′νκ + εν2κ′

)
N − ν3κτB

(2)

3. Spacelike Ac-Slant Curves with Non-Null Principal Normal

This section provides new curves, called spacelike ac-slant curves in Minkowski 3-space. Additionally,
we characterize these curves.

Definition 3.1. A spacelike curve α is called a spacelike ac-slant curve whose inner product of a unit
non-null fixed direction u, called axis of spacelike ac-slant curve, and acceleration vector a of the curve
is constant, i.e., g (a, u) = c, in Minkowski 3−space.

Remark 3.2. Let α be spacelike curve in E3
1. Then, α is a spacelike ac-slant helix if and only if the

jerk vector of α is orthogonal to its axis u, i.e., g (j, u) = 0.

Theorem 3.3. Let α be a spacelike curve with Frenet apparatus {T, N, B, κ, τ} in Minkowski 3−space.
Then, α is a spacelike ac-slant curve if and only if

η2
1 + εη2

2 − εη2
3 = ϵ (3)

such that

η1 =
1
ν

(
ε τ

κ − f
)

−
(

1
εντ

(
1

ν2κ

)′
)′

+
(

1
εντ

(
ν′

ν3κ

))′

f ′ + ν′

ν

(
ε τ

κ − f
) (4)

η2 = 1
ν2κ

− ν ′

ν2κ
η1 (5)

and
η3 = fη1 + 1

εντ

(( 1
ν2κ

)′
− ν ′

ν3κ

)
(6)

where c is a nonzero constant, ϵ = ±1, and

f = κ

τ
− 1

εντ

((
ν ′

ν2κ

)′
− (ν ′)2

ν3κ

)
Proof.
Assume that α is a spacelike ac-slant curve with timelike or spacelike axis u. By Definition 3.1, there
exist a constant c = g (a, u) and differentiable functions λi such that

u = λ1T + λ2N + λ3B (7)

By using Equation 2 and 7,

λ2 = c

ν2κ
− ν ′

ν2κ
λ1 (8)

After differentiating of Equation 7 and using Equation 8,

λ′
1 − c

ν
+ ν ′

ν
λ1 = 0 (9)

ενκλ1 + c

( 1
ν2κ

)′
−
(

ν ′

ν2κ

)′
λ1 − ν ′

ν2κ
λ1

′ − εντλ3 = 0 (10)

and
λ3

′ − ε
c τ

νκ
+ ε

ν ′τ

νκ
λ1 = 0 (11)
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By substituting Equation 9 in Equation 10,

fλ1 + c

εντ

(( 1
ν2κ

)′
− ν ′

ν3κ

)
− λ3 = 0 (12)

where

f = κ

τ
− 1

εντ

((
ν ′

ν2κ

)′
− (ν ′)2

ν3κ

)
After differentiating of Equation 12, by using Equations 9 and 11,

λ1 =
c
ν

(
ε τ

κ − f
)

−
(

c
εντ

(
1

ν2κ

)′
)′

+
(

c
εντ

(
ν′

ν3κ

))′

f ′ + ν′

ν

(
ε τ

κ − f
) (13)

Clearly, from Equation 12,

λ3 = fλ1 + c

εντ

(( 1
ν2κ

)′
− ν ′

ν3κ

)
(14)

Hence, by using Equations 8, 13, and 14, it is clear that there exist differentiable functions ηi = 1
c λi

which is satisfying Equation 3, for i ∈ {1, 2, 3}

Conversely, let α be a spacelike curve with Frenet apparatus {T, N, B, κ, τ}. Assume that there exists
a unit non-null fixed direction u provided by Equation 7 where differentiable functions λi are presented
by Equations 4-6. Then, it is observed that the scalar product of acceleration vector a is given by
Equation 2 of α, and u is equal to a nonzero constant c. Thus, α is an ac-slant curve with the axis u.

Thus, we conclude the following Corollaries from Theorem 3.3.

Corollary 3.4. Let α be a unit speed spacelike non helix curve with curvatures κ and τ in E3
1. Then,

α is a spacelike ac-slant curve if and only if((
τ
κ

)
m(

τ
κ

)′
)2

+ ε
1
κ2 − ε

(
1
ετ

(1
κ

)′
+ m(

τ
κ

)′
)2

= ϵ

where m = 1 − ε
(

τ
κ

)2 + ε τ
κ

(
1
τ

(
1
κ

)′
)′

.

Corollary 3.5. Let α be a unit speed spacelike ac-slant curve with curvature κ = 1 in E3
1. Then,

τ (t) = ±

√
c2

c2−ϵε
t√

1 + ε c2

c2−ϵε
t2

where c is a nonzero constant.

Example 3.6. The curve

α(t) =
(1

4(t + 2)2,
1
4(t + 2)2 sin t,

1
4(t + 2)2 cos t

)
is a spacelike curve in E3

1 since g (α′ (t) , α′ (t)) = 1
16(t + 2)4 > 0, for t ∈ R. Moreover, the curve α lies

on the surface y2 + z2 = x2, and its acceleration vector is

a(t) =
(1

2 ,
sin t

2 + (t + 2) cos t − 1
4(t + 2)2 sin t,

cos t

2 − (t + 2) sin t − 1
4(t + 2)2 cos t

)
in E3

1. Furthermore, α is a spacelike ac-slant curve with the timelike axis u = (1, 0, 0) such that c = −1
2

(see Figure 1).
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Figure 1. A spacelike ac-slant curve lying on the surface y2 + z2 = x2

Example 3.7. The curve

α(t) =
(

log(cos t), t2

2
√

3
, log

(
sin t

2 + cos t

2

)
− log

(
cos t

2 − sin t

2

))

is a spacelike curve in E3
1 since g (α′ (t) , α′ (t)) = 1

3
(
t2 + 3

)
> 0, for t ∈ R. Moreover, the acceleration

vector of α is
a(t) =

(
−sec2t,

1√
3

, tan t sec t

)
in E3

1. Furthermore, α is a spacelike ac-slant curve with the spacelike axis u = (0, 1, 0) such that
c = 1√

3 (see Figure 2).

Figure 2. A spacelike ac-slant curve

Lemma 3.8. Let ν be a constant function and c = 0. Then, γ is a spacelike ac-slant curve if and
only if

λ2
1 − ελ2

3 = ϵ and λ2 = 0 (15)

where λ1 and λ3 are nonzero constants.

Proof.
Assume that α is a spacelike ac-slant curve with timelike or spacelike axis u. By Definition 3.1, there
exist a constant c = g (a, u) and differentiable functions λi such that

u = λ1T + λ2N + λ3B (16)
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By using assumption ν is a constant function and c = 0, we obtain λ2 = 0 by using Equation 2. After
differentiating of Equation 16 and using the fact of λ2 = 0, we have following differential equations

λ′
1 = 0

ενκλ1 − εντλ3 = 0

and
λ′

3 = 0

It can be observed that Equation 15 is satisfied since u is a unit fixed direction.

Conversely, let α be a spacelike curve with Frenet apparatus {T, N, B, κ, τ}. Suppose that there exists
a unit fixed direction u presented by Equation 16 where differentiable functions λi are provided by
Equation 15. Then, it is clear that g (a, u) = 0 where ν is constant function.

Remark 3.9. It can be observed that u is not exist if c = 0 and ν is a nonconstant function.

In the light of [20], we can provide following Corollary.

Corollary 3.10. Let α be a spacelike Lorentzian spherical curve with radius r ∈ R+ in Minkowski
3−space. Then, following equations are satisfied:(1

κ

)2
−
( 1

ντ

(1
κ

)′)2
= εr2

and
τ

κ
= 1

ν

( 1
ντ

(1
κ

)′)′

Theorem 3.11. Let α be a unit speed spacelike spherical curve with radius r ∈ R+, not a helix in
S2

1. Then, α is a spacelike ac-slant curve if and only if(
1(
τ
κ

)′
)2(

τ2

κ2 − ε

)
− 2

1
τ

(
1
κ

)′

(
τ
κ

)′ = 1 − r2

c2 (17)

where c is a nonzero constant.

Proof.
Let α be a unit speed spacelike spherical curve in S2

1. Then, Corollary 3.10 is satisfied. Assume that
α is a spacelike ac-slant curve with a non-zero constant c = g (a, u). Then, by using Corollary 3.10
join with Equations 4-6, there exist differentiable functions λi such that

u = λ1T + λ2N + λ3B

where
λ1 = c

τ
κ(
τ
κ

)′
λ2 = c

1
κ

and
λ3 = c

(
1
ετ

(1
κ

)′
+ 1(

τ
κ

)′
)

Using Corollary 3.10, since u is a unit fixed direction, we obtain Equation 17. Conversely, the proof
is clear.

Moreover, we get the following characterization for ac-slant curves from Lemma 3.8.
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Remark 3.12. The curve α is a spacelike ac-slant curve with the non-null axis u satisfying Equation
15 if and only if α is a helix with the same axis u.

The proof is straightforward from Equation 15.

Theorem 3.13. Let α be a spacelike helix with axis u in E3
1. Then, α is a spacelike ac-slant curve

with the axis u if and only if the magnitude of the velocity, i.e., |v| = |α′| = ν, is a linear function
concerning parameter of α.

Proof.
Let α be a spacelike curve with the Frenet apparatus {T, N, B, κ, τ} in E3

1. We assume that α is a
spacelike helix with axis u. Then, there exists a constant c1 such that

g (T, u) = c1 (18)

After differentiating of Equation 18 and using Equation 1,

g (N, u) = 0 (19)

Suppose that α is a spacelike ac-slant curve with the same axis u which is provided by Equation 16.
Then, λ1 = c1 by using Equations 18 and 19. By using Equation 8,

λ2 = 1
ν2κ

(
c − ν ′c1

)
= 0

Therefore, ν ′ is a constant.

Conversely, suppose that α is a spacelike helix with axis u in E3
1 and ν is a linear function with respect

to the parameter of α. Then, there exists a constant c1 such that u = c1T +
√

1 − εc2
1B. Thus, by

using Equation 2, g (a, u) = ν ′c1 = const. Hence, α is a spacelike ac-slant curve with the axis u.

Example 3.14. The curve

α(t) =
(

t cosh t − sinh t, t sinh t − cosh t,
t2

2

)
is a spacelike curve in E3

1 since g (α′ (t) , α′ (t)) = 2t2 > 0, for t ∈ R. Moreover, the curve α lies on the
surface y2 − x2 + 2z = 1, and its acceleration vector is

a(t) = (sinh t + t cosh t, t sinh t + cosh t, 1)

in E3
1. Furthermore, α is an ac-slant curve with the spacelike axis u = (0, 0, 1) such that c = 1 (see

Figure 3).

Figure 3. A spacelike ac-slant helix lying on the surface y2 − x2 + 2z = 1
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Moreover, tangent vector field of α(t) is

T =
(sinh t√

2
,
cosh t√

2
,

1√
2

)
Then, α(t) is a spacelike helix since g (T, u) = 1√

2 and τ
κ = 1. Furthermore, Theorem 3.13 is satisfied,

i.e., |v(t)| =
√

2t is a lineer function.

Example 3.15. The curve

α(t) =
(
t2, t2 sin

(
log

(
t2
))

, t2 cos
(
log

(
t2
)))

is a spacelike curve in E3
1 since g (α′ (t) , α′ (t)) = 4t2 > 0, for t ∈ R. Moreover, the curve α lies on the

surface y2 + z2 = x2, and its acceleration vector is

a(t) = (2, 6 cos(2 log(t)) − 2 sin(2 log(t)), −2(3 sin(2 log(t)) + cos(2 log(t))))

in E3
1. Furthermore, α is an ac-slant curve with the timelike axis u = (1, 0, 0) such that c = −2 (see

Figure 4).

Figure 4. A spacelike ac-slant helix lying on the surface y2 − z2 = x2

Moreover, tangent vector field of α(t) is

T = (1, sin(2 log(t)) + cos(2 log(t)), cos(2 log(t)) − sin(2 log(t)))

Then, α(t) is a spacelike helix since g (T, u) = −1 and τ
κ = 1√

2 . Furthermore, Theorem 3.13 is satisfied,
i.e., |v(t)| = 2t is a lineer function.

Corollary 3.16. Let α be a unit speed spacelike curve with a constant magnitude of acceleration,
i.e., with constant curvature, in E3

1. Then, α is a spacelike ac-slant curve if and only if α is a slant
helix.

Proof.
Suppose that α is a unit speed spacelike curve with nonzero constant curvature κ = κ0. Then,
a = εκ0N . Hence, the proof is clear.

Example 3.17. The curve

α(t) =
(
t2,
√

t4 + 1 cos t,
√

t4 + 1 sin t
)

spacelike curve in E3
1 since g (α′ (t) , α′ (t)) > 0, for t ∈ (1, ∞). Moreover, the curve α lies on the
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Lorentzian sphere y2 + z2 − x2 = 1, and its acceleration vector is

a(t) =



2,

−4
(
t4 + 1

)
t3 sin t −

(
t8 − 2t6 + 2t4 − 6t2 + 1

)
cos t

(t4 + 1)3/2 ,

4
(
t7 + t3) cos t −

(
t8 − 2t6 + 2t4 − 6t2 + 1

)
sin t

(t4 + 1)3/2


in E3

1. Furthermore, α is an ac-slant curve with the timelike axis u = (1, 0, 0) such that c = −2 (see
Figure 5).

Figure 5. A spacelike Lorentzian spherical ac-slant helix lies on the surface y2 + z2 − x2 = 1

Moreover, Corollary 3.10 is satisfied since α is spacelike Lorentzian sphere.

In the light of [10], we can provide the following lemma.

Lemma 3.18. Let α be a unit speed spacelike curve with non-null principal normal vector field with
κ = 1. Its normal vector N makes a constant hyperbolic angle ϕ with a fixed straight line in E3

1 if and
only if τ(s) = ± s√

ε(s2−tanh2ϕ)
.

Corollary 3.19. Let α be a unit speed spacelike curve with non-null principal normal vector with
κ = 1. Then, α is a spacelike ac-slant curve if and only if α is a Salkowski curve.

Proof.
Assume that α is a unit speed spacelike ac-slant curve with κ = 1. Then, α is a Salkowski curve by
Corollary 3.16 and Lemma 3.18. Conversely, α is a unit speed spacelike Salkowski curve with κ = 1.
Then, α is a spacelike ac-slant curve by Lemma 3.18 and Corollary 3.4.

Example 3.20. The curve

α(t) =



t2 − 3
8 ,

−
4t

(√
3 − 2

√
3t

√
3 − 4t2 + 3t

√
2
√

3t + 3
)

+ 3
√

2
√

3t + 3

15
√

2
,

t212
√

3 − 2
√

3t − 4t
√

2
√

3t + 3
√

3 − 4t2 + 3
√

3 − 2
√

3t

15
√

2


is a unit speed spacelike curve in E3

1 since g (α′ (t) , α′ (t)) = 1 > 0, for t ∈ R. Moreover, the curve α
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lies on the surface x + 9
8√

15
2
√

2

2

− y2

2 − z2

2 = 6
25

and α is a spacelike ac-slant curve with timelike axis u = (1, 0, 0) since g (a, u) = −2 (see Figure 6).

Figure 6. A spacelike ac-slant helix, Salkowski and slant helix lying on the surface
(

x+ 9
8√

15
2

√
2

)2

− y2

2 − z2

2 =
6
25

Moreover, g (N, u) = 2. Thus, α is also a spacelike slant helix. Furthermore, since κ = 1, Corollary
3.16 is satisfied. Hence, α is a Salkowski curve. Further, Corollary 3.5 is satisfied and τ(t) = − 2t√

3−4t2

4. Conclusion

Acceleration helps us understand the motion state of an object and aids in controlling that motion.
Moreover, acceleration is a fundamental parameter for comprehending object interactions and explain-
ing physical events. This comprehensive study contributes to the theoretical foundation of spacelike
ac-slant curves and demonstrates their connections to well-known curves in Minkowski 3-space. We
believe further investigation of spacelike ac-slant curves applies to other spaces.
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