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Research Article

Abstract − In this study, we investigate the projectivity domain of pure-projective mod-
ules. A pure-projective module is called special-pure-projective (s-pure-projective) module
if its projectivity domain contains only regular modules. First, we describe all rings whose
pure-projective modules are s-pure-projective, and we show that every ring with an s-pure-
projective module. Afterward, we research rings whose pure-projective modules are projec-
tive or s-pure-projective. Such rings are said to have ∗-property. We determine the right
Noetherian rings have ∗-property.

Keywords Projectivity domain, pure-projective module, s-pure-projective module, von Neumann regular rings, right
Goldie torsion rings

Mathematics Subject Classification (2020) 16D10, 16D40

1. Introduction

Let R be an associative ring with identity throughout the article, and unless otherwise indicated, any
module be a right R-module. Projectivity has been investigated from various angles in the recent
studies [1–15]. The class {Y ∈ Mod-R : X is Y -projective} for a module X is referred to as the
projectivity domain of X and is represented by Pr−1(X) [16]. It is clear that X is projective if and
only if Pr−1(X) = Mod-R. Projectively poor (p-poor) modules whose projectivity domains contain
only semisimple modules in Mod-R and rings with no right p-middle class whose modules are projective
or p-poor were explored in [1].

We study pure-projective modules in their projectivity domain. Initially, we address the presence
of special pure-projective (s-pure-projective) modules, and we prove that an s-pure-projective module
exists for every ring. Subsequently, we examine rings, each of whose pure-projective modules is s-pure-
projective; these rings are specifically von Neumann regular rings or vNr rings for short. We study
rings that have ∗-property, that is, their pure-projective modules are projective or s-pure-projective.
For example, semisimple Artinian rings and vNr rings have ∗-property. Additionally, a quasi-Frobenius
ring R with a homogeneous right socle and J(R)2 = 0 is also such a ring, for more details, see [5]. We
provide the structure of rings that have ∗-property over right Noetherian rings (Theorem 4.10): if R

is a ring with ∗-property, then R ∼= Λ′ × Λ where Λ′ is semisimple Artinian, and Λ is either zero or an
indecomposable ring, which satisfies one of the following cases:

1zubeyir.turkoglu@deu.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Science, Dokuz Eylül University, İzmir, Türkiye
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i. Λ is a right Artinian, and right SI-ring with J(Λ) ̸= 0

ii. Λ is a right Artinian and right Goldie torsion ring with J(Λ) ̸= 0

iii. Λ is a right Artinian ring, and Soc(ΛΛ) = Zr(Λ) = J(Λ) ̸= 0

iv. Λ is a prime ring with J(Λ) = Soc(ΛΛ) = 0

Finally, we include examples for the cases of Theorem 4.10 as well as a partial answer for the converse
of Theorem 4.10.

2. Preliminaries

This section provides some basic notions to be required the following sections. Let X be an R-module.
If Y is a submodule, essential submodule, or direct summand of X, we denote Y ≤ X, Y ≤e X, or
Y ≤d X, respectively. For a module X and a ring R, Rad(X), J(R), Soc(X), Soc(RR), Z(X), Zr(R),
and Z2(X) stand for the Jacobson radical of X, the Jacobson radical of the ring R, the socle of X,
the right socle of the ring R, the singular part of X, the right singular part of the ring R, and the
second singular part of X, respectively.

Definition 2.1. A submodule Y of a module X is called pure if there is a monomorphism i ⊗R 1A :
Y ⊗R A → X ⊗R A, for all left R-module A.

Definition 2.2. A module T is called regular if every submodule of T is pure.

The set of all the regular modules is represented by Regular.

Definition 2.3. A short exact sequence

E : 0 //X
f //Y //Z //0

is called a pure short exact sequence if Im(f) is a pure submodule of Y .

Definition 2.4. A module T is called pure-projective if it is projective relative to any pure short
exact sequence.

P is our abbreviation for the collection of all pure-projective modules. A module T is pure-projective
if and only if T is a summand of a direct sum of finitely presented modules.

Remark 2.5. [1] For a ring R, the following are equivalent.

i. R is semisimple Artinian

ii. Every right R-module is p-poor

iii. There exists a projective p-poor module

iv. {0} is p-poor

v. R is p-poor

Proposition 2.6. [1] If R is a (non-semisimple Artinian) quasi-Frobenius ring with homogeneous
right socle and J(R)2 = 0, then R has no right p-middle class and In−1(M) = Pr−1(M) for all right
R-module M .

A ring R is called right pure-semisimple if any pure submodule of a module is a direct summand,
right SI-ring if every singular right module is injective. A ring R is called semi-primary if R/J(R) is
semisimple Artinian and J(R) is a nilpotent ideal, prime if for any two ideals A and B of R, AB = 0
implies A = 0 or B = 0, semiprime if there is no a nonzero nilpotent ideal in R, right Goldie torsion
if R is equal to its second singular submodule. For more details, see [16–19].
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3. Existence of s-pure-projective Modules

Let X represent an R-module. Then, Pr−1(X) is closed under submodules, finite direct sums, and
epimorphic images [16]. It is clear from definitions that if T is a regular R-module and X is a pure-
projective R-module, then T ∈ Pr−1(X).

Proposition 3.1.
⋂

X∈P
Pr−1(X) = Regular.

Proof. Let
N ∈

⋂
X∈P

Pr−1(X)

It suffices to show that N is a regular module. Let K ≤ N . Let F be a finitely presented R-module
and f : F → N/K be any R-module homomorphism. Then, there exists g : F → N , since F is a
pure-projective module. The following diagram can be constructed.

F
g

||
f
��

0 //K
i //N

π //N/K //0

where i is a canonical monomorphism and π is a canonical epimorphism. Hence, K is a pure submodule
of N .

Definition 3.2. A pure-projective module X is called s-pure-projective if Pr−1(X) = Regular.

The existence problem of s-pure-projective modules, or whether they exist in each ring, is the first
question. The following proposition provides a favorable response to this query.

Proposition 3.3. S-pure-projective module is present for any ring R.

Proof. A full set of representations of the isomorphism class of finitely presented R-modules is
denoted by {Xγ | γ ∈ Γ}. Let

X =
⊕
γ∈Γ

Xγ

It is obvious that X is a pure-projective module. Let T ∈ Pr−1(X) and K ≤ T . Consider the short
exact sequence

E : 0 → K → T → T/K → 0

It suffices to show that E is a pure short exact sequence. Take any R-module homomorphism f :
F → T/K, where F is a finitely presented module. Then, F is a T -projective module since X is a
T -projective module. Hence, there exists g : F → T such that π ◦ g = f , that is, we can construct the
following commutative diagram

F
g

}}
f
��

0 //K
i //T

π //T/K //0

where i is a canonical monomorphism and π is a canonical epimorphism. Hence, E is a pure, short,
exact sequence, as desired.

We can observe that
Pr−1(X) = Pr−1

(⊕
X

)
=

⋂
Pr−1(X)

In addition, we collect some useful properties of s-pure-projective modules.
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Remark 3.4. Let X be a pure-projective R-module and {Xi}i∈I be a family of pure-projective R-
modules. Then,

i. X is an s-pure-projective module if and only if
⊕

X is an s-pure-projective module

ii.
⊕
i∈I

(Xi)(Ji) is an s-pure-projective module if and only if
⊕
i∈I

Xi is an s-pure-projective module

Proposition 3.5. Let X be an s-pure-projective R-module. If X is a direct summand of a pure-
projective R-module Y , then Y is s-pure-projective.

Proof. Let Y = X ⊕ N where N is a module. Let Y be a T -projective. Then, N is pure-projective
and X is T -projective, thus T is a regular module by our assumption. Hence,

Pr−1(X ⊕ N) = Regular

that is, Y is s-pure-projective.

Corollary 3.6. The arbitrary direct sum of s-pure-projective modules is s-pure-projective.

Lemma 3.7. Let R represent a ring. The expressions below are equivalent.

i. Any pure-projective R-module is s-pure-projective

ii. Any finitely presented R-module is s-pure-projective

iii. A projective s-pure-projective R-module exists

iv. {0} is an s-pure-projective R-module

v. R is an s-pure-projective R-module

vi. R is a vNr ring

Corollary 3.8. A ring R is an s-pure-projective R-module if and only if Mn(R) is an s-pure-projective
Mn(R)-module.

Proposition 3.5 is incorrect in its opposite sense, meaning that a direct summand of an s-pure-projective
module is not always s-pure-projective.

Example 3.9. A full set of representations of the isomorphism class of finitely presented R-modules
is denoted by {Xγ | γ ∈ Γ}. Let

X =
⊕
γ∈Γ

Xγ

X is an s-pure-projective module by Proposition 3.3. But if R is not vNr, then R is not s-pure-
projective see Lemma 3.7. Hence, a copy of R in X as a summand is not s-pure-projective.

In closing this section, we investigate the relationship between p-poor and s-pure-projective modules
for pure-projective R-modules. It is clear that if a pure-projective R-module X is p-poor, then it
is s-pure-projective. The converse is not true in general; for example, a vNr ring R which is not
semisimple Artinian is s-pure-projective but not p-poor, see Remark 2.2 in [1] and Lemma 3.7. As for
the converse for a pure semisimple ring R, a pure-projective module X is s-pure-projective if and only
if X is p-poor.

4. Rings Whose Pure-Projective Modules are Either s-pure-projective or Pro-
jective

This section addresses rings claimed to have ∗-property, meaning that their pure-projective modules
are either projective or s-pure-projective. If a ring is not one of these rings, it is considered to has no
∗-property.
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Note that a ring R is called right hereditary if every submodule of a projective right module is
projective.

Proposition 4.1. Let R be a right hereditary ring. If R has ∗-property, then any pure-projective
module that contains an s-pure-projective submodule is s-pure-projective.

Proof. If R is a vNr ring, then any pure-projective R-module is s-pure-projective by Lemma 3.7.
Therefore, we may suppose R is not vNr without losing generality. Let X be an s-pure-projective
R-module and X ≤ X ′, where X ′ is a pure-projective R-module. X ′ is projective or s-pure-projective
by our assumption. If X ′ is projective, then X is projective by our right hereditary assumption. This
is impossible by Lemma 3.7 since R is not vNr. Hence, X ′ must be an s-pure-projective module.

Lemma 4.2. Let R be a ring with ∗-property and 0 ̸= A be a finitely generated two-sided ideal of R.
Then, A ≤d R or R/A is a vNr ring.

Proof. R/A is a finitely presented R-module; therefore, it is pure-projective. Then, R/A is projective
or s-pure-projective by our assumption, that is, A ≤d R or (R/A)R is an s-pure-projective module. If
(R/A)R is an s-pure-projective module, then (R/A)R is regular since A is fully invariant, and thus R/A

is a (R/A)-projective (or quasi-projective) R-module. Hence, (R/A)R/A is regular for any two-sided
ideal of R.

Remark 4.3. Let A be a two-sided ideal of R, a ring with ∗-property. Then,

i. If XR/A is NR/A-(R/A)-projective, then XR is NR-projective

ii. If XR/A is non-regular, then XR is non-regular

Factor rings inherit the ∗-property as indicated by the following assertion.

Lemma 4.4. Let A be a two-sided ideal of R, a ring with ∗-property. Therefore, R/A has ∗-property.

Proof. Let X be a pure-projective (R/A)-module, which is not s-pure-projective. It is clear that X

is a pure-projective R-module. There exists a non-regular (R/A)-module N such that XR/A is NR/A-
(R/A)-projective since X is a (R/A)-module, which is not s-pure-projective. This implies that X is
N -projective, which means that XR is not s-pure-projective since N is also a non-regular R-module.
Then, X must be a projective R-module by assumption. Hence, X is a projective (R/A)-module.

Note that a semilocal ring R is a ring, for which R/J(R) is a semisimple Artinian ring. We can easily
see that if R is a vNr and right Noetherian ring, then R is a semisimple Artinian ring. Note that
a right Noetherian right semiartian ring is right Artinian. Therefore, the next result can be easily
obtained with the help of Lemma 4.2.

Corollary 4.5. Let R be a right Noetherian ring with ∗-property, and A be a nonzero two-sided ideal
of R. Then, the following are hold:

i. A ≤d R or R/A is a semisimple Artinian ring

ii. Soc(RR) ≤d R or R is a right Artinian ring

iii. If J(R) is nonzero, then R is a semilocal ring

Lemma 4.6. Let R be a right Noetherian ring with J(R) ̸= J(R)2 and has ∗-property. Then,
J(R)2 = 0.

Proof. Suppose the contrary that J(R)2 ̸= 0. Then, R/J(R)2 is a semisimple Artinian ring by
Corollary 4.5. This implies that J(R) = J(R)2, which provides a contradiction. Hence, J(R) = 0.
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Lemma 4.7. Let R be a right Noetherian ring with ∗-property. Then, R is either a right Artinian
ring with J(R)2 = 0 or a semiprime ring.

Proof. Suppose that R is not semiprime. Let A be a nilpotent two-sided ideal of R. Then, R/A s-
pure-projective by assumption, and nilpotent ideals are small in R. It is clear that R/A is a semisimple
Artinian ring by Corollary 4.5. Then, it is clear that J(R) = A. Thus, R is a semilocal ring by Corollary
4.5; therefore, a semiprimary ring since J(R) is a nilpotent ideal. Hence, R is a right Artinian ring by
Hopkins-Levitzki theorem. Furthermore, J(R)2 = 0 by Lemma 4.6.

Lemma 4.8. Let R be an indecomposable right Noetherian ring with ∗-property. After that, Soc(RR) ≤e

R with either J(R)2 = 0 or Soc(RR) = 0.

Proof. R/ Soc(RR) is a projective or an s-pure-projective R-module by assumption. If R/ Soc(RR)
is a projective R-module, then

R = Soc(RR) ⊕ Λ

for some right ideal Λ of R. It is obvious that

HomR(Soc(RR), Λ) = 0

and
HomR(Λ, Soc(RR)) = 0

since Λ is a socle-free R-module and Soc(RR) is projective. Hence, Λ is a two-sided ideal of R. Then,

Soc(RR) = 0 or Soc(RR) = R

since R is an indecomposable ring, that is, Soc(RR) ≤e R with J(R)2 = 0 or Soc(RR) = 0. If
R/ Soc(RR) is an s-pure-projective R-module, then R/ Soc(RR) is semisimple Artinian, and thus R

is a right Artinian by Corollary 4.5. Moreover, this implies that Soc(RR) ≤e R with J(R)2 = 0 or
Soc(RR) = 0 since if J(R) = 0, then R is semisimple Artinian, and if J(R) ̸= 0, then J(R) is nilpotent
and J(R) ̸= J(R)2, then J(R)2 = 0 by Lemma 4.6.

Lemma 4.9. Let R be a semiprime right Noetherian ring that is indecomposable and has ∗-property.
Then, R is a semisimple Artinian ring if it is not prime.

Proof. Let A be a nonzero two-sided ideal of R. R/A is a projective R-module or R/A is an s-
pure-projective R-module by our assumption. If R/A is a projective R-module, then a right ideal B

exists, such as R = A ⊕ B. BA = 0 because of the direct sum property and AB = 0 since (AB)2 = 0
and R is semiprime. Then, A = R since R is an indecomposable ring. If R/A is an s-pure-projective
R-module, then R/A is semisimple Artinian by Corollary 4.5. We observe that R/A is a semisimple
Artinian ring for any nonzero two-sided ideal A of R. Suppose that R is not prime. Let I1 and I2 be
nonzero two-sided ideals of R such that I1I2 = 0 and I1 ∩ I2 = 0 since R is a semiprime ring. Then,
there is an R-monomorphism RR → R/I1 ⊕ R/I2. Hence, R is a semisimple Artinian ring since R/I1

and R/I2 are semisimple Artinian rings by our first observation.

Theorem 4.10. Let R be a right Noetherian ring. If R has ∗-property, then R ∼= Λ′ × Λ where Λ′

is semisimple Artinian ring and Λ is either zero or an indecomposable ring, which satisfies one of the
following cases.

i. Λ is a right Artinian, and right SI-ring with J(Λ) ̸= 0

ii. Λ is a right Artinian and right Goldie torsion ring with J(Λ) ̸= 0

iii. Λ is a right Artinian ring, and Soc(ΛΛ) = Zr(Λ) = J(Λ) ̸= 0
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iv. Λ is a prime ring with J(Λ) = Soc(ΛΛ) = 0

Proof. We can write
R = R1 ⊕ R2 ⊕ ... ⊕ Rn

where n ∈ Z+ and Ri is an indecomposable ring, for all i ∈ {1, 2, ..., n}. Either R is a semisimple
Artinian, or there exists an i ∈ {1, 2, ..., n} such that Ri is not a semisimple Artinian ring. Let A be
a right ideal of Rj , for i ̸= j. By our assumption, Rj/A is either s-pure-projective or projective since
Rj/A is a pure-projective R-module. It is clear that

HomR(Rj/A, Ri/B) = 0

for any submodule B of Ri. Then,

Ri ∈ Pr−1(Rj/A) ̸= Regular

since Ri is not regular, that is, Rj/A is not an s-pure-projective R-module. Then, Rj/A must be
projective; therefore, Rj is a semisimple Artinian ring. Thus, we have

R ∼= Λ′ × Λ

where Λ′ is semisimple Artinian, and Λ is either zero or an indecomposable ring. Λ is a ring with
∗-property, and Λ is either right Artinian with J(R)2 = 0 or semiprime by Lemma 4.4 and Lemma
4.7.

We divide the proof into three cases.

First case: Suppose that Λ is a right Artinian with J(R)2 = 0 and Z2(R) = 0. Then, Λ is a right
SI-ring by Proposition 3.5 [19]. This case provides us (i) of Theorem 4.10.

Second case: Suppose that Λ is a right Artinian with J(R)2 = 0 and Z2(R) ̸= 0. Then, R/Z2(R) is
projective or s-pure-projective. If R/Z2(R) is projective, then Z2(R) = R. Hence, R is a right Goldie
torsion ring. This case provides (ii) of Theorem 4.10.

If R/Z2(R) is not projective, then R/Z2(R) is s-pure-projective and thus semisimple Artininan by
Corollary 4.5. Hence, J(Λ) ≤ Zr(Λ), since J(Λ) is a semisimple R-module and Zr(Λ) ≤e Z2(R). Λ
has a decomposition

Λ =
n⊕

i=1
Λi

where each Λi is a local module since Λ is Artinian. It is clear that

J(Λi) ⊆ Zr(Λi) ̸= Λi

where i ∈ {1, 2, ..., n}. This implies J(Λ) ⊆ Zr(Λ), that is, J(Λ) = Zr(Λ). Suppose the contrary that

J(Λ) ̸= Soc(ΛΛ)

Then, for some Λi is simple. We can suppose that the simple components of the decomposition are
Λ1, Λ2, · · · , Λk where 1 ≤ k ≤ n. Let

I1 = {i ∈ {1, 2, ..., n} | Λi
∼= Λt}

and
I2 = {1, 2, ..., n} − I1

Let
D =

⊕
i∈I1

Λi
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Let i ∈ I1 and j ∈ I2. Clearly, HomR(Λi, Λj) = 0. Moreover, HomR(Λj , Λi) = 0 by the singularity of
J(Λ). This is a contradiction since Λ indecomposable; therefore, J(Λ) = Soc(ΛΛ), that is, we get (iii)
of Theorem 4.10.

Third case: Let Λ be a semiprime ring. It is clear that Λ is a prime ring by Lemma 4.9. Assume
that Soc(ΛΛ) = 0. If J(Λ) ̸= 0, then J(Λ)2 = J(Λ) by Lemma 4.6. By Nakayama’s Lemma, J(Λ)Λ
is infinitely generated, which is impossible by the right Noetherianity; therefore, J(Λ) = 0. This
provides the last case of Theorem 4.10. But what about the case; where Λ is a semiprime ring and
Soc(ΛΛ) ̸= 0. Soc(ΛΛ) ≤e Λ and J(Λ)2 = 0 by Lemma 4.8, and J(Λ) = 0 by assumption. We must
have Zr(Λ) = 0 since Λ is prime, and Soc(ΛΛ) ̸= 0. Besides, we have that

Zr(Λ) Soc(ΛΛ) = 0

Then, Λ is a right SI-ring by Corollary 3.7 [19]. According to Proposition 10.15 [16], if Λ has a finitely
generated socle, it becomes a semisimple Artinian ring. This is impossible since Λ is not a semisimple
Artinian ring. Further, Soc(ΛΛ) can not be infinitely generated since Λ is a right Noetherian ring.
Hence, we have no extra cases for Theorem 4.10. This completes the proof of Theorem 4.10.

In the next example, we illustrate for each case in Theorem 4.10.

Example 4.11. i. Let F be a field and R =
[

F F

0 F

]
. It is well-known that R is an Artinian

SI-ring and J(R) =
[

0 F

0 0

]

ii. Let R =
[
Z2 Z2

0 Z4

]
. R is an Artinian ring and we can easily see that Zr(R) =

[
0 Z2

0 2Z4

]
and

Z2(RR) = R. Thus, R is a right Goldie torsion ring

iii. Let p be a prime number and R = Z/p2Z. Then, R is an Artinian ring with

Soc(RR) = Zr(R) = J(R) = pZ/p2Z

iv. Let R = Z. Then, it is well known that R is a prime ring with J(R) = Soc(R) = 0

The following proposition provides a partial answer to the converse of Theorem 4.10. The answer
follows from any pure-projective p-poor module is s-pure-projective and Proposition 3.14 [1].

Proposition 4.12. If R is a (non-semisimple Artinian) quasi-Frobenius ring with a homogeneous
right socle and J(R)2 = 0, then R has ∗-property.

5. Conclusion

We study pure-projective modules in their projectivity domains. After showing that each ring with an
s-pure-projective module, we characterize rings all of whose modules are s-pure-projective as vNr rings.
Afterwards, we investigate rings whose pure-projective modules are projective or s-pure-projective,
called rings has ∗-property. Semisimple Artinian rings and vNr rings are examples of these rings. We
provide the structure of right Noetherian rings that have ∗-property (Theorem 4.10). Furthermore,
we present a partial answer for the converse of Proposition 4.12. Consequently, the results can be
generalized to non-Noetherian rings, and the full characterization of Theorem 4.10 can be studied.
Since it is common and important to study certain classes of modules in module theory; in addition,
one can continue to look at the projectivity domains of some other special classes of modules.



Journal of New Theory 47 (2024) 1-10 / Rings Whose Pure-Projective Modules Have Maximal or Minimal Projectivity Domain 9

Author Contributions

The author read and approved the final version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

References
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[11] Y. Alagöz, Weakly poor modules, Konuralp Journal of Mathematics 10 (2) (2022) 250–254.
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1. Introduction

Throughout this paper, every ring R is associative with unity, and all modules are unitary. Mod − R

stands for the category of right R-modules. Flat modules, injective modules, and projective modules
are among the most studied structures of module and ring theory, and they occur naturally in many
algebra fields, such as homological algebra, category theory, representation theory, and algebraic
geometry. Researchers conduct numerous studies on projective, injective, and flat modules. Many of
these studies explore ideas based on relative projectivity, injectivity, and flatness. Recently, instead
of simply categorizing modules as having a specific homological property, each module is allocated a
relative domain that gauges the degree to which it possesses that particular property. In particular,
several research papers have been devoted to the study of the injectivity, flatness, and projectivity
level of modules [1–11].

Subinjectivity domain of a module (Definition 2.2) was originally introduced in [12] in order to study
in a way the degree of injectivity of modules. In this article, we shift our focus from the subjective
domain of modules to examining the collection of these domains using a fresh approach. This collection
is called the (right) subinjective profile (si-profile, for short) of R, and is denoted by siP(R). siP(R) =
{Mod−R} if and only if R is a semisimple Artinian ring if and only if there exists an injective indigent
right (or left) R-module. Semisimple Artinian rings stand out as the most straightforward type of
rings regarding their subinjective characteristics. Another straightforward case arises from rings that
are not semisimple Artinian; these rings exhibit only two possible domains of subinjectivity: injective
modules and all modules. Such rings have no subinjective middle class [12,13].
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We organize the paper as subsequent. In Section 2, we provide brief definitions and properties. In
Section 3, we study the class siP(R) under the condition that it is a set. We show that if siP(R) is a
set, then the class IN of injective modules is an si-portfolio and siP(R) is closed under intersections.
R has no subinjective middle class if and only |siP(R)| = 2. We show that the poset (siP(R), ⊆)
forms a complete lattice if siP(R) is a set (Theorem 3.6). In particular, if R is a generalized uniserial
ring with J2(R) = 0, then the lattice (siP(R), ⊆, ∧, ∨) is Boolean (Theorem 3.9).

2. Preliminaries

This section provides some basic notions to be required for the following section. The paper uses the
books [14–16] for the basic definitions. The references [7, 8, 12,17] cover various aspects of this topic.

Definition 2.1. A module E is injective if for any morphism f : A → E and any monomorphism
q : A → B, f factors through q by some morphism B → E.

By fixing the module A, the notion of A-subinjective module is introduced in [12].

Definition 2.2. A module X is called B-subinjective if for every monomorphism h : B → K and
every homomorphism f : B → X, there exists a homomorphism g : K → X such that gh = f .

Definition 2.3. For an R-module X, the subinjectivity domain of X, denoted as In−1(X), encom-
passes all modules with respect to which X exhibits subinjective properties, i.e.,

In−1(X) = {N ∈ Mod − R : X is N -subinjective}

Every subinjectivity domain contains the class IN of injective modules. Therefore, the class IN
serves as a minimum benchmark for the subinjectivity domains of R-modules. The following result
follows from Lemma 2.2 in [12].

Proposition 2.4. An R-module X is injective if and only if In−1(X) = Mod − R if and only if X is
X-subinjective.

Proposition 2.4 naturally leads to considering the degree to which a specific module exhibits injective-
ness, as injective modules epitomize the highest level of injectiveness. The notion of indigent modules
was introduced by Aydoğdu and López-Permouth [12].

Definition 2.5. A module M is called indigent if In−1(M) = IN .

The existence of indigent modules within any arbitrary ring remains uncertain, although an affirmative
answer is established for certain rings, such as Noetherian rings (for more details, see Proposition 3.4
in [2]). When considering the degree of injectivity in modules, we encounter two extremes: at one
end, we find injective modules, and at the other, we have what are known as indigent modules.

Example 2.6. This example exhibits an indigent module. Let R be a commutative hereditary Noethe-
rian ring. Let U be the direct sum of a representative set of all (nonprojective) simple modules. U is
indigent module by [18, Proposition 2.12].

In this article, we focus on the study of the class of subinjectivity domains.

Definition 2.7. [19] A class A of R-modules is called si-portfolio if there exists an R-module M such
that A = In−1(M).

Definition 2.8. [19] The class {A ⊆ Mod−R : A is an sp-portfolio} is called the (right) subinjective
profile (si-profile, for short) of R and is denoted by siP(R).

The class Mod − R is an obvious example of an si-portfolio. Note that it is still unknown whether IN
is an si-portfolio on non-Noetherian rings.
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For a module T , we denote its injective hull, singular submodule, and radical by E(T ), Z(T ), and
Rad(T ), respectively. The Jacobson radical of a ring R is denoted by J(R). We use the notations ≤
and ⊆ in order to indicate submodules and set inclusion, respectively.

3. Lattice Structure

The poset of si-portfolios is denoted by (siP(R), ⊆) where the partial order is given by containment
⊆. Note that siP(R) need not actually form a set but we still use the term poset by abuse of language
when siP(R) is a class. The poset (siP(R), ⊆) always contains a unique maximal element, the class
of all the modules Mod − R. It is unknown whether IN is an si-portfolio. Moreover, it is unknown
whether siP(R) is closed under intersections.

Theorem 3.1. If siP(R) is a set, then IN is an si-portfolio and siP(R) is closed under intersections.

Proof. Assume that siP(R) is a set. Consider the function In−1 : Mod−R → siP(R), A → In−1(A).
The function In−1 is onto. Since siP(R) is a set, there is a set I of R-modules such that In−1

|I is
one-to-one and onto. We show that the R-module

O := ⊕
M∈I

M

is indigent. Let C be an R-module from In−1(O). Then, by Proposition 2.4 [12],

C ∈
⋂

M∈I
In−1(M)

Moreover, since
In−1(C) ∈ siP(R)

and
In−1(C) = In−1(X)

for a module X ∈ I. Then, C ∈ In−1(C), and thus C is injective R-module. This implies that O is
indigent.

Let M be a family of si-portfolios. Since siP(R) is a set, M is a set. Let I be a complete set of
non-isomorphic modules whose subprojectivity domains are in M. Set

O := ⊕
M∈I

M

Then, ⋂
A∈M

A = In−1(O)

by Proposition 2.4 in [12].

In [13], the authors investigate rings for which the si-profile consists of IN and Mod − R. They called
these rings as having no subinjective middle class. By Theorem 3.1, we have the following result.

Corollary 3.2. R has no subinjective middle class if and only |siP(R)| = 2.

The subprojectivity domains of two non-isomorphic modules may be the same. For example,

In−1(0) = In−1(R) = Mod − R

For the remaining discussions, let δ be a complete set of representatives of non-isomorphic non-injective
simple modules.
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Proposition 3.3. Let I and J be subsets of δ. Then,

In−1
(

⊕
S∈I

S

)
= In−1

(
⊕

S∈J
S

)
if and only if I = J

Proof. To show the necessity, assume that

In−1
(

⊕
S∈I

S

)
= In−1

(
⊕

S∈J
S

)
and I ≠ J

Without loss of generality, we may assume that a simple R-module A exists in I \ J . Then, since
A /∈ J , Hom(A, S) = 0, for all S ∈ J . Thus,

A ∈
⋂

S∈J
In−1(S) = In−1

(
⊕

S∈J
S

)
Then, by assumption,

A ∈ In−1
(

⊕
S∈I

S

)
=

⋂
Si∈I

In−1(S)

Since A ∈ I, A ∈ In−1(A), and thus A is injective, a contradiction. The sufficiency is clear.

A ring R is called a semilocal ring if R/J(R) is semisimple Artinian. Note that any semilocal ring has
only finitely many simple R-modules up to isomorphism [14]. Define

siP(δ) :=
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}

Corollary 3.4. If R is a semilocal ring, then |siP(δ)| = 2|δ|.

Proof. Since R is a semilocal ring, R has only finitely many simple R-modules up to isomorphism.
Put δ := {S1, S2, . . . , Sn} and let

siP(δ) :=
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}
Since |δ|= n, |siP(δ)| = 2n by Proposition 3.3.

Note that R is a generalized uniserial ring with J2(R) = 0 if and only if every right (or left) R-module
is a direct sum of a semisimple module and an injective module [20].

Lemma 3.5. Let R be a generalized uniserial ring with J2(R) = 0. Then,

siP(R) =
{
In−1

(
⊕

S∈I
S

)
: I ⊆ δ

}
and |siP(R)| = 2|δ|

Proof. Since R is a semilocal ring, R has only finitely many simple R-modules up to isomorphism.
Put δ := {S1, S2, . . . , Sn}. By Corollary 3.4,

siP(δ) =
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}
and |siP(δ)| = 2n. We claim that siP(δ) = siP(R). Clearly, siP(δ) ⊆ siP(R). Note that, for I = ∅,

In−1
(

⊕
Si∈I

Si

)
= In−1({0}) = Mod − R ∈ siP(δ)

Let M be any R-module. If M is injective, then In−1(M) = Mod−R, and thus In−1(M) is in siP(δ).
If M is not injective, then, by [20], M = A ⊕ E, where A is semisimple and E is injective. Without
loss of generality, we may assume that A has no injective direct summands. Further, we have that

In−1(M) = In−1(A) ∩ In−1(E) = In−1(A) ∩ Mod − R = In−1(A)
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Let C be a complete set of non-isomorphic simple submodules of A. Since

In−1(A) = In−1
(

⊕
Ci∈C

Ci

)
and each Ci ∈ C is isomorphic to one of Sγ in δ, In−1(M) = In−1(A) must be in siP(δ). Thus,
siP(δ) = siP(R), as claimed.

A partially ordered set P is called a lattice if every pair of elements a and b in P has both a supremum
a ∨ b (called join) and an infimum a ∧ b (called meet). A partially ordered set P is called a complete
lattice if its subsets have a join and a meet. A lattice P is said to be bounded if it has the greatest
element and the least element [21].

Theorem 3.6. Assume that siP(R) is a set. The poset (siP(R), ⊆) forms a complete lattice under
the following meet and join operations:

i. The meet ∧ is defined by P1 ∧ P2 = P1 ∩ P2.

ii. The join ∨ is defined by P1 ∨ P2 =
⋂

{P ∈ siP(R) : P1 ⊆ P and P2 ⊆ P}.

Proof. (siP(R), ⊆, ∧) is a meet-semilattice by Proposition 2.4 in [12]. Using the same technique
in Theorem 3.1, it can be easily seen that (siP(R), ⊆, ∨) is a join-semilattice. By Theorem 3.1,
every subset of siP(R) has a meet. Again, by the same idea used in Theorem 3.1, it can be seen
that every subset of siP(R) has a join. Hence, (siP(R), ⊆, ∨) is a complete lattice. The class IN
is the minimal element of siP(R) by Theorem 3.1. On the other hand, for any injective module E,
In−1(E) = Mod − R, and thus Mod − R is the maximal element of siP(R).

Let P be a lattice with 0, 1, and t ∈ P . An element t′ ∈ P is called a complement of t if t ∧ t′ = 0
and t ∨ t′ = 1. P is called complemented if each element in P has at least one complement. A
complemented lattice is called Boolean if it is distributive. We claim that (siP(R), ⊆) is Boolean if R

is a generalized uniserial ring with J2(R) = 0.

Lemma 3.7. Let R be a generalized uniserial ring with J2(R) = 0. Let I and J be any two subsets
of δ. Then,

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
S

)
= In−1

(
⊕

S∈I∩J
S

)
Proof. If

In−1
(

⊕
S∈I

S

)
⊆ In−1(T )

for a non-injective simple T , then T ∼= S, for some S ∈ I, since otherwise, Hom(T, S) = 0, for every
S ∈ I, and hence

T ∈
⋂

S∈I
In−1(S) = In−1

(
⊕

S∈I
S

)
⊆ In−1(T )

which implies T is injective, a contradiction. Therefore,

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
Sγ

)
⊆ In−1

(
⊕

S∈I∩J
S

)
Suppose that

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
Sγ

)
= In−1(X)

for a module X. As noted in the proof of Lemma 3.5,

In−1(X) = In−1
(

⊕
S∈T

S

)
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where T ⊆ δ. The containment
In−1(X) ⊂ In−1

(
⊕

S∈I∩J
S

)
follows by the definition of ∨. Repeating the first paragraph, it can be shown that I ∩ J ⊆ T ⊆ I
and I ∩ J ⊆ T ⊆ J . Then, I ∩ J = T , which proves the assertion.

For the sake of completeness, we provide the following result.

Corollary 3.8. [12, Theorem 4.2] If R is right-left hereditary Artinan serial ring, then

In−1
(

⊕
S∈δ

S

)
= IN

Theorem 3.9. If R is a generalized uniserial ring with J2(R) = 0, then the lattice (siP(R), ⊆, ∧, ∨)
is Boolean.

Proof. Recall that siP(R) is a set by Lemma 3.5. We first show that (siP(R), ⊆, ∧, ∨) is comple-
mented. Let P ∈ siP(R). If either P = IN or P = Mod − R, then the proof is completed. Assume
that neither P = IN nor P = Mod−R. Then, a non-injective module H exists, such as In−1(H) = P.
Since R is a generalized uniserial ring with J2(R) = 0, we get H = A ⊕ B where A is a direct sum of
non-injective simple modules, and B is an injective module by [20]. Then,

In−1(H) = In−1(A) ∩ In−1(P ) = In−1(A) ∩ Mod − R = In−1(A)

Let C be an exact set of non-isomorphic simple direct summands of A. Define a subset

I := {S ∈ δ : S ∼= C, C ∈ C} ⊆ δ

Then,
In−1(A) = In−1

(
⊕

C∈C
C

)
= In−1

(
⊕

S∈I
S

)
We note that J := δ − I ≠ ∅, since otherwise, we would have

In−1(H) = In−1
(

⊕
S∈I

S

)
= IN

by Corollary 3.8, a contradiction. By Proposition 2.4 in [12] and Corollary 3.8,

In−1(H) ∧ In−1
(

⊕
S∈J

S

)
= In−1

(
⊕

S∈δ
S

)
= IN

To show that
In−1(H) ∨ In−1

(
⊕

S∈J
S

)
= Mod − R

we assume that
In−1(H) ∨ In−1

(
⊕

S∈J
S

)
= In−1(X)

for some module X. If X is injective, then we are done. Assume that X is not injective. Since R is a
generalized uniserial ring with J2(R) = 0, by [20], X has a non-injective simple direct summand, say
T . Since

In−1
(

⊕
S∈I

S

)
= In−1(H) ⊆ In−1(T )

and
In−1

(
⊕

S∈J
S

)
⊆ In−1(T )

T ∈ J ∩ I. But J ∩ I = ∅, and this means that X has no non-injective simple direct summand, and
so it is injective by [20].
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For the distributive property, we only need to show that(
In−1(A) ∨ In−1(V )

)
∧ In−1(Z) =

(
In−1(A) ∧ In−1(Z)

)
∨

(
In−1(V ) ∧ In−1(Z)

)
for any modules A, V , and Z. Without lost of generality we may assume that A, V , and Z have no
projective simple direct summands. Since R is a generalized uniserial ring with J2(R) = 0,

In−1(A) = In−1
(

⊕
S∈IA

S

)

In−1(V ) = In−1
(

⊕
S∈IV

S

)
and

In−1(Z) = In−1
(

⊕
S∈IZ

S

)
by Lemma 3.5 where IA, IV , and IZ are subsets of δ. By Proposition 2.4 in [12] and Lemma 3.7,(

In−1(A) ∨ In−1(V )
)

∧ In−1(Z) = In−1
(

⊕
S∈J1

S

)
where

J1 = (IA ∩ IV ) ∪ IZ

Similarly, (
In−1(A) ∧ In−1(Z)

)
∨

(
In−1(V ) ∧ In−1(Z)

)
= In−1

(
⊕

S∈J2
S

)
where

J2 = (IA ∪ IZ) ∩ (IV ∪ IZ)

Obviously, J1 = J2, which proves the assertion.

Example 3.10. Let K be any field. Let R = T3(K) denote the ring of all upper triangular 3 × 3
matrices with entries in K and let S denote the left socle of R. R/S is a generalized uniserial ring
with J2(R/S) = 0 by Example 13.6 in [20]. Then, (siP(R/S), ⊆) is a Boolean lattice by Theorem 3.9.

4. Conclusion

The objective of this paper is to commence exploration into an alternative viewpoint regarding the
subinjective profile of rings. Differing from recent examinations focusing on the subinjective profile of
rings, our approach delves into the lattice theoretical perspective of this concept. In future studies,
researchers can consider how profile properties may determine the rings’ structure. Specifically, they
can investigate the necessary and sufficient conditions for rings to exhibit distributive and modular
properties within this profile.

Author Contributions

The author read and approved the final version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgement

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK),
Grant number: 122F130.



Journal of New Theory 47 (2024) 11-19 / Lattice of Subinjective Portfolios of Modules 18

References
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Abstract − The theory of elliptic curves is one of the popular topics of recent times with
its unsolved problems and interesting conjectures. In 1922, Mordell proved that the group of
Q-rational points on an elliptic curve is finitely generated. However, the rank of this group,
signifying the number of independent generators, can be arbitrarily high for certain curves, a
fact yet to be definitively proven. This study leverages the computer algebra system Magma
to investigate curves with potentially high ranks using a technique developed by Mestré.
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1. Introduction

Elliptic curves possess a fascinating and yet unsolved property: their rank. The set of rational points
on an elliptic curve forms a finitely generated abelian group. Mordell’s Theorem guarantees this group
is isomorphic to a finite direct sum of cyclic groups. The rank of the elliptic curve signifies the number
of these cyclic groups with infinite order, which directly corresponds to the number of independent
points of infinite order within the group. Determining the rank of an elliptic curve presents a significant
challenge. There currently exists no known algorithm for calculating it efficiently. Additionally, a
fundamental open question in number theory revolves around the existence of an upper bound for
the rank of elliptic curves. While it is widely believed that elliptic curves can possess a rank of any
non-negative integer, a definitive proof remains elusive. This lack of a proven upper bound fuels the
ongoing search for elliptic curves with the highest possible rank.

Several key advancements have been made in determining the maximum possible rank of elliptic curves.
Penney and Pomerance [1,2] established lower bounds, proving that the rank can be greater than 6 and
7, respectively. Subsequently, Grunewald and Zimmert [3] pushed this bound further by demonstrating
the existence of curves with a rank exceeding 8. Brumer and Kramer [4] achieved a rank greater than
9. Mestré [5–8] introduced a breakthrough with two novel methods for estimating elliptic curve rank.
He significantly raised the known lower bounds by applying these methods and showcasing specific
examples. His works [5–9] demonstrably showed that the rank of certain elliptic curves can be greater
than 11, 12, 14 and 15. Building upon Mestré’s groundwork, Nagao and Fermigier [10–13] achieved
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further progress. They specialized in a family of curves introduced by Mestré over the field of rational
functions in one variable, Q(t). This specialization allowed them to prove that the rank over the
rational field Q is greater than 17 and 19 − 22. Notably, the current record for the highest discovered
rank, at 28, was achieved by Noam Elkies. It’s worth mentioning that Martin and McMillen [14] also
played a crucial role by independently discovering specific elliptic curves with ranks of 23 and 24,
respectively.

Recent research in rank studies has tackled three key areas: calculating ranks for specific families
of curves [15–19], exploring how rank behaves for curves constructed from special number sequences
[20–28] and analyzing rank distributions within families and across field extensions [29–31]. Dujella [32]
provided an enumeration of the strategies for generating high-rank Diaphontine elliptic curves. The
contributions of Elkies and Klagsburn [33] are also noteworthy in that they established new rank
records for specific torsion groups. Another noteworthy work is Kazlicki’s attempt to develop a
rank classification system using deep neural networks [34]. Although various studies continue to be
conducted in different ways, there is not yet a complete method that yields high-rank curves. The
majority of existing studies employ the Mestré method and Mestré’s sum [7]. Therefore, the finite
field method of Mestré was selected as the subject of this study.

This paper is divided into three distinct sections. The initial section establishes the fundamental
groundwork by presenting the essential definitions and theorems relevant to elliptic curve ranks. Fol-
lowing the foundational elements, we introduce the method developed by Mestré for finding elliptic
curves with high ranks. Finally, the third section analyzes the data obtained through the custom
codes we developed using the MAGMA software program.

2. Preliminaries

We begin our discussion with the definition of elliptic curves.

Definition 2.1. [35] Let K be a field. An elliptic curve over K can be defined as

i. A genus one curve with one K-rational point,

ii. A plane cubic with a K-rational point or

iii. A Weierstrass cubic, y2 = x3 + px + q.

Example 2.2. The curve
Y Z2 = X3 − XZ2

over Q is an elliptic curve with the point at infinity denoted O = [0, 1, 0] in homogeneous coordinates.
If we write x = X/Z and y = Y/Z in the equation, then we obtain the Weierstrass form of the equation
as

y2 = x3 − x

The set of K rational points on the curve is given by

E(K) = {O} ∪ {(x, y) ∈ K}

Theorem 2.3. [36] The group E(K) is finitely generated.

Mordell proved this theorem for the field Q in 1922 and Weil generalized it to any field K in 1928. It
can be stated by the Mordell Theorem along with the general structure theory of finitely generated
abelian groups that

E(K) ∼= E(K)tors × Zr
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The group E(K) is called the Mordell-Weil group. The subgroup E(K)tors consists of points with
finite order and is referred to as the torsion subgroup. Formally, this subgroup is defined as follows:

E(K)tors = {P ∈ E(K) : ∃n ∈ N that nP = O}

The free part of the Mordell-Weil group is generated by r points of E(K) with infinite order. Here r

is called the rank of E(K).

Theorem 2.4 (Mazur Theorem, Conjecture of Ogg). [37, 38] Let E(Q)tors be the torsion subgroup
of the Mordell-Weil group of an elliptic curve over Q. Then, E(Q)tors is isomorphic to one of the
following fifteen groups:

i. Z/mZ, 1 ≤ m ≤ 10 or m = 12

ii. Z/2Z × Z/2vZ, 1 ≤ v ≤ 4

The Conjecture of Ogg was proven by Barry Mazur [37] in 1977. However, many unsolved questions
still exist with on ranks of elliptic curves. Determining the rank of an elliptic curve remains a significant
challenge. No known algorithm efficiently calculates the rank for any curve. Additionally, it is unproven
whether an upper bound exists on the rank. While the possibility of arbitrarily high ranks is widely
accepted, complete proof remains elusive [33]. This study utilizes one of Mestré’s influential methods,
which were the first to construct elliptic curves with demonstrably high ranks. Notably, in 1982,
Mestré [6] introduced a groundbreaking method to construct elliptic curves over the rational numbers
(Q) with demonstrably high ranks. This method allowed him to find curves with 8 and 10 − 12 ranks
in [5, 6]. These achievements marked a significant step forward in the field. Mestré presented two
methods for searching elliptic curves. The method, which is the subject of this article, is known as
the ”Finite Field Method” as proposed by Campbell [39].

3. Mestré’s Finite Field Method

We introduce a key conjecture underpinning Mestré’s method. Intriguing and far-reaching, the Birch
and Swinnerton-Dyer conjecture (BSD) is a central pillar in studying elliptic curves, offering a profound
connection between their arithmetic and analytic properties. Indeed, the BSD conjecture plays a
fundamental role in understanding the underlying principles of our approach.

Definition 3.1. [40] Let E be an elliptic curve defined over the field of rational numbers, Q. Denote
its conductor by N . We define its associated L−function by L(E, s), where s is a complex number:

L(E, s) =
∑
n

ann−s

=
∏

p|N
(1 − app−s)−1 ∏

p∤N

(
1 − app−s + p1−2s

)−1

Conjecture 3.2 (Birch-Swinnerton-Dyer Conjecture). [41] The function L of an elliptic curve is
extendable into a holomorphic function in the neighborhood of 1 and its order in 1 is equal to the
rank of the Mordell-Weil group of E over Q.

The Birch and Swinnerton-Dyer Conjecture (BSD Conjecture) is relevant to the context of elliptic
curves and their L−functions, but it doesn’t directly provide a bound for the rank of an elliptic curve.
However, it establishes a connection between the rank and the behavior of the L−function at a specific
point, which can be used to infer information about the rank under certain conditions.

Mestré’s algorithm is the following [5, 6]:

Let
E : y2 + y = x3 + a4x + a6
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be an elliptic curve over Q, p be a good reduction prime for E and Np be several points of E modulo
p. An analysis of Weil’s exponential formulas [6] applied to the L−function of the elliptic curve E

reveals a potential discrepancy between the rank, r, implied by the large size of Np for numerous prime
numbers p, and a potentially higher rank suggested by the analytic behavior of the L− function under
this analysis. As a result, to obtain elliptic curves with high ranks, one builds curves such that Np is
maximal for all p inferior or equal to P0, which is an integer depending on the computing capabilities
available. Then,

∆ = −(4a4)3 − 27(1 + 4a6)2

We provide four integers P0, P1, k0, and k′
0 to our search.

i. Let M be an integer and
M0 =

∏
p≤M

p

The congruences modulo p that coefficients a4 and a6 of an elliptic curve attain when Np is maximized
for each p ≤ P0 are calculated.

ii. The congruences (a4, a6) modulo M0, which ensures the maximal value of NP for all integers p ≤ P0,
are derived by a simple application of the Chinese remainder theorem.

iii. For each pair of congruences (a4, a6), the negative value a4 of minimum absolute value congruent
to a4 and for each of the values a′

4 = a4 − kM0, 0 ≤ k ≤ k0, are searched, a′
6 congruent to a6 and

minimizing |∆| are calculated. Then, each curve with coefficients a′
4 and a′′

6 = a′
6 + kM0, | k |≤ k′

0,
are considered.

iv. For each of these curve NP are calculated for P0 ≤ p ≤ P1, then

S =
∑

P0≤p≤P1

(
p − 1
Np

− 1
)

log p

Curves such that S is greater than a constant S0 dependent only on P0 and P1 are rejected.

v. If E is such that S ≤ S0, integer points of this curve are searched for example in the interval

[e1, e1 + 5000]

where e1 being the abscissa of an order 2 point of E.

vi. If we do not find an integer point, the curve is rejected; otherwise, the matrix of the heights of the
points obtained and the rank of the height matrix are calculated.

Mestré [5] obtained many curves with rank 6, 7, 8, and 9 for P0 = 17, P1 = 50, k0 = 20, and k′
0 = 50.

He also obtained a curve with rank 12 for P0 = 37, P1 = 101, k0 = 1, and k′
0 = 8.

4. Results on our Search for Finding Curves with High Ranks

We implemented Mestré’s finite field method [5] in Magma software to estimate the rank of elliptic
curves. Running our code with parameters P0 = 17, P1 = 50, k0 = 20, and k′

0 = 50, we successfully
reproduced Mestré’s results of sieves with ranks 7 − 9. Our code identified numerous elliptic curves
with rank 7. Due to space limitations, we omit specific examples of these curves here, but they are
available upon request. The results of our investigation are presented in Table 1.
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Table 1. Searching results
Rank TorsionSubgruop Curve

7 trivial y2 + y = x3 − 1201837x − 28298094

7 trivial y2 + y = x3 − 3243877x − 44634414

7 trivial y2 + y = x3 − 1832467x − 37997784

7 trivial y2 + y = x3 − 4385017x − 37997784

7 trivial y2 + y = x3 − 4234867x − 26491674

7 trivial y2 + y = x3 − 2733367x − 46401564

7 trivial y2 + y = x3 − 1321957x − 37212384

7 trivial y2 + y = x3 − 3363997x − 33638814

7 trivial y2 + y = x3 − 1199107x − 42174684

7 trivial y2 + y = x3 − 8256157x − 33496014

7 trivial y2 + y = x3 − 9907807x − 32985504

7 trivial y2 + y = x3 − 1078987x − 47515404

7 trivial y2 + y = x3 − 5163067x − 35773674

7 trivial y2 + y = x3 − 598507x − 34242144

7 trivial y2 + y = x3 − 6214117x − 45473364

7 trivial y2 + y = x3 − 7235137x − 29137044

7 trivial y2 + y = x3 − 1739647x − 38326224

8 trivial y2 + y = x3 − 2667847x − 25888344

8 trivial y2 + y = x3 − 2842567x − 50714124

8 trivial y2 + y = x3 − 3688867x − 49646694

8 trivial y2 + y = x3 − 3224767x − 37444434

9 trivial y2 + y = x3 − 3151057x − 34517034

The curve
E : y2 + y = x3 − 3151057x − 34517034

has 9 independent points on Q. The Torsion Subgroup is trivial. Points of E are

P1 = (90641/4, 27205059/8)

P2 = (20221, −2864331)

P3 = (8945/4, 512371/8)

P4 = (1325657/484, −1160700207/10648)

P5 = (741102/361, −317934960/6859)

P6 = (1636928/289, −1988611043/4913)

P7 = (3097593/361, −5333671306/6859)

P8 = (5325049/64, −12285322125/512)
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and
P9 = (3872137/676, −7243647215/17576)

Applying our implementation of Mestré’s method to primes p = 19 and p = 23, we were not able
to identify any elliptic curves with a rank greater than 6. These findings are consistent with the
observations reported in Mestré’s work [5]. The curve discovered during the scan does not correspond
to any entries on Dujella’s website [14, 42], which serves as a repository for elliptic curve ranks. Our
Magma implementation encountered errors and did not complete the computations for primes 29, 31
and 37. This suggests that analyzing these cases might require more extensive computational resources
than those available on personal computers.

5. Conclusion

In this study, we implemented Mestrés method for searching elliptic curves with high ranks using a
Magma code. This approach yielded a comprehensive list of elliptic curves with ranks 7 − 9. Notably,
these curves were not previously documented in the referenced literature [5,6] or on Dujella’s website, a
leading resource for rank records. While we have not identified curves exceeding rank 9, our exploration
has exposed potential limitations in our current Magma code regarding time and memory efficiency.
Future efforts can be focused on optimizing the code to handle computations for even higher ranks.
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Abstract − Let ℘ be a ring. It is shown that if an additive mapping ϑ is a zero-power
valued on ℘, then α : ℘ → ℘ such that α = ϑ + 1 is a bijective mapping of ℘. The main aim
of this study is to prove that ϑ is a homoderivation of ℘ if and only if ϑ : ℘ → ℘ such that
ϑ = α − 1 is a semi-derivation associated with α, where α : ℘ → ℘ is a homomorphism of
℘. Moreover, if ϑ is a zero-power valued homoderivation on ℘, then ϑ is a semi-derivation
associated with α, where α : ℘ → ℘ is an automorphism of ℘ such that α = ϑ + 1.
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1. Introduction

The definition of homoderivation is given by El Sofy in [1]. Many problems have been solved using
homoderivation since the definition of homoderivation is given, but in solving the problems addressed,
the necessity of the function being zero-power valued has emerged most of the time. For this reason,
the most general results in the literature are generally found when homoderivation is zero-power
valued. This situation brings to mind whether there is a relationship between being a zero-power
valued mapping and being a bijective mapping. In this study, it is first shown that if ϑ is both an
additive and a zero-power valued mapping on ℘, then α = ϑ + 1 is one-to-one and onto mapping on
℘. However, it is shown that a homoderivation ϑ is a semi-derivation of the ring ℘ associated with
α : ℘ → ℘ such that α = ϑ + 1 where 1 is the identity mapping of ℘. In [2], it is proved by Chang that
if there exists a nonzero semi-derivation f of a prime ring ℘ associated with a not necessarily surjective
function g, then g is a homomorphism of ℘. It is shown in this paper that every homoderivation ϑ is
a semi-derivation associated with α : ℘ → ℘ such that α = ϑ + 1 and α is a homomorphism without
the condition of primeness of ℘. In addition, if ϑ is a zero-power valued homoderivation on ℘, then ϑ

is a semi-derivation associated with α : ℘ → ℘ such that α = ϑ + 1 is an automorphism without the
condition of primeness of ℘. This means that the results have been provided for semi-derivation in
the literature [2–6], but associated functions have to be surjective can be used for a zero-power valued
homoderivation [7–11].

Almost every result for semi-derivation in the literature becomes applicable to homoderivation, but
it is necessary to ensure that each condition is actually needed. To see this better, the results in [2],

1selinturkmen@comu.edu.tr (Corresponding Author)
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and in [5] for semi-derivation can be compared with El Sofy’s results in [1] for homoderivation. For
example, Herstein is proved in [12] that if d is a nonzero derivation of a prime ring ℘ with characteristic,
not 2 and a ∈ ℘ is such that [a, d(x)] = 0, for all x ∈ ℘, then a must be in the center of ℘. This result
of Herstein is generalized by Theorem 4 in [2] by using a nonzero semi-derivation f associated with
a surjective function g of ℘ and by Theorem 3.3.1 in [1] by using a nonzero homoderivation ϑ of ℘.
Every homoderivation ϑ of ℘ is a semi-derivation associated with α = ϑ + 1, but α doesn’t have to be
a surjective mapping of ℘. If ϑ is a nonzero homoderivation and a ∈ ℘ is such that [a, ϑ(x)] = 0, for
all x ∈ ℘, then it holds that, for all x ∈ ℘,

[a, α(x)] = [a, ϑ(x) + x] = [a, ϑ(x)] + [a, x] = [a, x]

The last equation is in equipoise that α must be a surjective function in the proof of Theorem 4 in [2].
Hence, it is obtained from Theorem 4 in [2] that if ϑ is a nonzero homoderivation of a prime ring ℘

with characteristic not 2 and a ∈ ℘ is such that [a, ϑ(x)] = 0, for all x ∈ ℘, then a must be in the
center of ℘. This means that the result of Chang is more general than the result of El Sofy. A similar
situation is observed between Theorem 6 [2] and Theorem 3.3.3 [1]. Moreover, the results of in [3] for
semi-derivation on an ideal of the ring can be compared with El Sofy’s results in [1] for homoderivation
on an ideal of the ring. Other examples can also be found.

In [4] and [5], it is proved that if f is a semi-derivation associated with function g of a prime ring ℘,

then f is an ordinary derivation of ℘ or f satisfies that f (x) = λ (1 − g) (x), for all x ∈ ℘, where λ is an
element in the extended centroid of ℘ and g is an endomorphism of ℘. Since every homoderivation ϑ

is a nonzero semi-derivation associated with α : ℘ → ℘ such that α = ϑ + 1 and α is a homomorphism
of ℘ without the condition of primeness of ℘, it is clear that homoderivation ϑ satisfies the result of
Bresar and Chuang in case of λ = −1 without the condition of primeness of ℘.

It is shown in [6] that every semi-derivation f : R → R associated with a function g is both a
(1, g)-derivation and a (g, 1)-derivation. Since every homoderivation ϑ is a semi-derivation associated
with α = ϑ + 1, then ϑ is both a (1, α)-derivation and (α, 1)-derivation. To illustrate, let ℘ be
a noncommutative ring, β be a ℘-module homomorphism, and α be a non-additive mapping of ℘.
Assume that f, g : ℘ × ℘ → ℘ × ℘ are defined as f ((x, y)) = (0, β (y)) and g ((x, y)) = (α (x) , 0),
respectively. Then, f is both a (1, g)-derivation and (g, 1)-derivation where 1 is the identity mapping
of ℘ but f is neither a semi-derivation associated with g of ℘ nor a homoderivation of ℘ .

In the main section, it is proved that every homoderivation ϑ is a semi-derivation associated with α

where α : ℘ → ℘ such that α = ϑ + 1 is a homomorphism of ℘ but the converse is generally not true
(see Examples 3.7-3.9). Thus, it is shown that a homoderivation ϑ is equivalent to the function given,
for example, of semi-derivation by Bergen in [13]. It is clear that homoderivation ϑ satisfies the result
of Bresar and Chuang in the case of λ = −1 without the condition of primeness of ℘.

2. Preliminaries

Let ℘ be a ring. Then, ℘ is called prime if a, b in ℘ such that a℘b = (0) implies that either a or b

is zero. An additive mapping α : ℘ → ℘ is called a homomorphism if α(uv) = α(u)α(v), for all u, v

∈ ℘. A mapping ϑ such that ϑ(A) ⊆ A is called a zero-power valued on A if there is a positive integer
n(a) > 1 such that ϑn(a)(a) = 0, for all a ∈ A.

In [14], derivation is defined on ℘ as follows: An additive mapping d : ℘ → ℘ is called a derivation if
d(uv) = d(u)v + ud(v), for all u, v ∈ ℘. Semi-derivation [13] is defined on ℘ as follows: An additive
mapping ϑ is called a semi-derivation if there is a function α : ℘ → ℘ such that

i. ϑ(uv) = ϑ(u)α(v) + uϑ(v) = ϑ(u)v + α(u)ϑ(v), for all u, v ∈ ℘
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ii. ϑ (α(u)) = α(ϑ(u)), for all u ∈ ℘

It is clear that any derivation is a semi-derivation associated with 1 which is the identitiy mapping of
℘. Conversely, in the the same article, it is shown by Bergen that α : ℘ → ℘ such that α ̸= 1 is a
homomorphism, ϑ = α − 1 is a semi-derivation which is not a derivation of ℘. (1, g)-derivation and
(g, 1)-derivation are defined on ℘ in [6] as follows, respectively: An additive mapping ϑ is called a
(1, g)-derivation if there is a function g : ℘ → ℘ such that ϑ(uv) = ϑ(u)v + g(u)ϑ(v), for all u, v ∈ ℘,
and an additive mapping ϑ is called a (g, 1)-derivation if there is a function g : ℘ → ℘ such that
ϑ(uv) = ϑ(u)g(v) + uϑ(v), for all u, v ∈ ℘. The definition of homoderivation is introduced in [1] as
follows: An additive mapping ϑ : ℘ → ℘ is a homoderivation if ϑ(uv) = ϑ(u)ϑ(v) + ϑ(u)v + uϑ(v), for
all u, v ∈ ℘.

Lemma 2.1. [2] Let ℘ be a prime ring. If f is a nonzero semi-derivation of a prime ring ℘ associated
with a not necessarily surjective function g, then g is a homomorphism of ℘.

Lemma 2.2. [1] Let ϑ be a homoderivation of ℘. Then, α : ℘ → ℘ such that α = ϑ + 1 is an
endomorphism of ℘.

3. Main Results

Unless otherwise stated throughout this paper, ℘ is a noncommutative ring, and 1 is the identity
mapping of ℘.

Lemma 3.1. Let ϑ be an additive mapping of ℘. Then, α : ℘ → ℘ such that α = ϑ + 1 is an additive
mapping and αϑ = ϑα.

Proof. Assume that α : ℘ → ℘ is defined as α = ϑ + 1 where ϑ is an additive mapping of ℘.
Therefore, it holds that, for all u, v ∈ ℘

α (u + v) = (ϑ + 1) (u + v)

= ϑ (u + v) + u + v

= ϑ (u) + ϑ (v) + u + v

= α (u) + α (v)

which implies that α is an additive mapping of ℘. Moreover,

(αϑ)(u) = α (ϑ(u))

= ϑ(ϑ(u)) + ϑ(u)

= ϑ2(u) + ϑ(u)

and using that ϑ is an additive mapping

(ϑα)(u) = ϑ(α(u)) = ϑ(ϑ(u) + u) = ϑ (ϑ(u)) + ϑ(u) = ϑ2(u) + ϑ(u)

for all u ∈ ℘. Thus, it implies that
(αϑ)(u) = (ϑα)(u)

for all u ∈ ℘, which means that
αϑ = ϑα

Theorem 3.2. Let ϑ be an additive mapping of ℘ and α : ℘ → ℘ be defined as α = ϑ + 1 where 1 is
the identity mapping of ℘. Assume that (A, +) is a nonzero subgroup of ℘.
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i. If ϑ is a zero-power valued on A, then α is a surjective mapping on A

ii. If ϑ is a zero-power valued on A and ker α ⊂ A, then α is an injective mapping of ℘

Proof. i. Assume that ϑ is an additive and a zero-power valued mapping on A. Then, ϑ(A) ⊂ A

and there exists a positive integer n(u) > 1 such that ϑn(u)(u) = 0, for all u ∈ A. Since ϑ satisfies
that ϑ(A) ⊂ A, it holds that, for all u ∈ A,

α(u) = ϑ(u) + u ⊂ A

that is,

α(A) ⊂ A

For all u ∈ A,

α(u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u)) =ϑ(u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u))

+ u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u)

=ϑ(u) − ϑ2(u) + ϑ3(u) + · · · + (−1)n(u)−1 ϑn(u)(u)

+ u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u)

=u + (−1)n(u)−1 ϑn(u)(u)

Thus,
α(u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u)) = u + (−1)n(u)−1 ϑn(u)(u)

for all u ∈ A. Using that ϑ is a zero-power valued mapping of A, it implies that, for all u ∈ A,

α(u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u)) = u

Since there exists at least one a = u − ϑ(u) + ϑ2(u) + · · · + (−1)n(u)−1 ϑn(u)−1(u) ∈ A such that
α(a) = u, for all u ∈ A. Then, it is obtained that α is a surjective mapping on A.

ii. Let ϑ is a zero-power valued on A and ker α ⊂ A. Assume that a ∈ ker α ⊂ A. Then, it holds that

α(a) = 0 ⇒ ϑ(a) + a = 0
⇒ ϑ(a) = −a

Thus,
ϑ(a) = −a

which means that
ϑ(ker α) ⊂ ker α (3.1)

Moreover, using that ϑ is an additive mapping of ℘

ϑ2(a) = ϑ (ϑ(a)) = ϑ(−a) = −ϑ(a) = −(−a) = a

ϑ3(a) = ϑ
(
ϑ2(a)

)
= ϑ(a) = −a

ϑ4(a) = ϑ
(
ϑ3(a)

)
= ϑ(−a) = −(ϑ(a)) = −(−a) = a

...

ϑn(a)(a) = (−1)n(a)a
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for all a ∈ ker α. Thus, it follows that, for all a ∈ ker α,

ϑn(a)(a) = (−1)n(a)a (3.2)

Since ϑ is a zero-power valued mapping on A and ker α ⊂ A, there is a positive integer n(u) > 1 such
that ϑn(u)(u) = 0, for all u ∈ ker α. In addition, it holds that ϑ(ker α) ⊂ ker α from (3.1) which means
that ϑ is a zero-power valued mapping on ker α. Therefore, it follows from (3.2), that for all u ∈ ker α,
a positive integer n(u) > 1

ϑn(u)(u) = (−1)n(u)u = 0

Then, it is obtained that u = 0, for all u ∈ ker α, which implies that ker α = (0). Thus, α is an injective
mapping of ℘.

Corollary 3.3. Let ϑ be an additive mapping of ℘. If ϑ is a zero-power valued on ℘, then α : ℘ → ℘

such that α = ϑ + 1 is a bijective mapping of ℘.

The proof is clear from Theorem 3.2.

Theorem 3.4. If ϑ : ℘ → ℘ is a homoderivation, then ϑ is a semi-derivation associated with α : ℘ → ℘

such that α = ϑ + 1.

Proof. Let ϑ : ℘ → ℘ be a homoderivation. If the definition of homoderivation is rearranged by
using that α = ϑ + 1, it holds that, for all u, v ∈ ℘,

ϑ(uv) = ϑ(u)ϑ(v) + ϑ(u)v + uϑ(v)

= ϑ(u)(ϑ(v) + v) + uϑ(v)

= ϑ(u)α(v) + uϑ(v)

and
ϑ(uv) = ϑ(u)ϑ(v) + ϑ(u)v + uϑ(v)

= ϑ(u)v + (ϑ(u) + u)ϑ(v)

= ϑ(u)v + α(u)ϑ(v)

Thus, ϑ is written as, for all u, v ∈ ℘,

ϑ(uv) = ϑ(u)α(v) + uϑ(v) = ϑ(u)v + α(u)ϑ(v) (3.3)

In addition, it implies that from Lemma 3.1,

(αϑ)(u) = (ϑα)(u), for all u ∈ ℘ (3.4)

Thus, (3.3) and (3.4) mean that ϑ is a semi-derivation associated with α : ℘ → ℘ such that α = ϑ + 1.

It is shown in the next corollary that Lemma 2.1 is satisfied without the condition of primeness of
ring ℘.

Corollary 3.5. If ϑ : ℘ → ℘ is a homoderivation, then ϑ is a semi-derivation associated with α where
α : ℘ → ℘ such that α = ϑ + 1 is a homomorphism of ℘.

The proof is clear from Lemma 2.2 and Theorem 3.4.

Corollary 3.6. Let ϑ be a zero-power valued homoderivation on ℘. Then, ϑ is a semi-derivation
associated with α : ℘ → ℘ such that α = ϑ + 1 is an automorphism of ℘.

Proof. Assume that ϑ is a zero-power valued homoderivation on ℘. ϑ is a semi-derivation associated
with α where α : ℘ → ℘ such that α = ϑ + 1 is a homomorphism of ℘ from Corollary 3.5. Thus, α is
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a bijective mapping of ℘ from Theorem 3.2 which means that α is an automorphism of ℘. Hence, ϑ

is a semi-derivation associated with α : ℘ → ℘ such that α = ϑ + 1 is an automorphism of ℘.

Every homoderivation is a semi-derivation, but it is possible to find examples that are semi-derivation
but not homoderivation:

Example 3.7. Let ℘1 and ℘2 be two rings. Let ℘ = ℘1 × ℘2 be a ring with the operations such that

(p1, p2) + (a1, a2) = (p1 + a1, p2 + a2)

and
(p1, p2)(a1, a2) = (p1a1, p2a2)

for all (p1, p2), (a1, a2) ∈ ℘. If f : ℘ → ℘ is defined as f((u1, u2)) = (0, u2) and g : ℘ → ℘ is defined as
g ((u1, u2)) = (u1, 0), for all (u1, u2) ∈ ℘, then f is a semi-derivation of ℘ associated with function g

but f is not a homoderivation of ℘.

Let p = (p1, p2) and a = (a1, a2) be elements of ℘. It holds that

f(pa) = f ((p1, p2)(a1, a2)) = f ((p1a1, p2a2)) = (0, p2a2) (3.5)

Moreover,

f(p)g(a) + pf(a) = f((p1, p2))g ((a1, a2)) + (p1, p2)f((a1, a2))

= (0, p2)(a1, 0) + (p1, p2)(0, a2)

= (0, 0) + (0, p2a2)

= (0, p2a2)

and

f(p)a + g(p)f(a) = f((p1, p2))(a1, a2) + g((p1, p2))f((a1, a2))

= (0, p2)(a1, a2) + (p1, 0)(0, a2)

= (0, p2a2) + (0, 0)

= (0, p2a2)

for all p = (p1, p2), a = (a1, a2) ∈ ℘. Thus, it implies that, for p, a ∈ ℘,

f(pa) = f(p)g(a) + pf(a) = f(p)a + g(p)f(a) (3.6)

Besides, it holds that, for all p = (p1, p2) ∈ ℘,

(fg)(p) = (fg) ((p1, p2)) = f (g((p1, p2))) = f ((p1, 0)) = (0, 0)

and
(gf)(p) = (gf)((p1, p2)) = g (f((p1, p2))) = g ((0, p2)) = (0, 0)

Therefore, it means that, for all p ∈ ℘,

(fg)(p) = (gf)(p)

Thus,
fg = gf (3.7)
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(3.6) and (3.7) imply that f is a semi-derivation associated with function g of ℘. But

f(p)f(a) + f(p)a + pf(a) = f((p1, p2))f ((a1, a2)) + f((p1, p2))(a1, a2) + (p1, p2)f((a1, a2))

= (0, p2)(0, a2) + (0, p2)(a1, a2) + (p1, p2)(0, a2)

= (0, p2a2) + (0, p2a2) + (0, p2a2)

= (0, 3p2a2)

for all p = (p1, p2), a = (a1, a2) ∈ ℘. Hence, it holds that, for p = (p1, p2), a = (a1, a2) ∈ ℘,

f(p)f(a) + f(p)a + pf(a) = (0, 3p2a2) (3.8)

(3.5) and (3.8) imply that, for all p, a ∈ ℘,

f(pa) ̸= f(p)f(a) + f(p)a + pf(a)

which means that f is not a homoderivation of ℘.

Example 3.8. Let ℘ be a ring and ϑ : ℘ × ℘ → ℘ × ℘ be a mapping such that ϑ ((u, v)) = (u, 0) and
α : ℘ × ℘ → ℘ × ℘ be a mapping such that α ((u, v)) = (0, v), for all (u, v) ∈ ℘ × ℘. Then, ϑ is a
semi-derivation associated with the function α but ϑ is not a homoderivation of ℘ × ℘.

Let p = (p1, p2) and a = (a1, a2) be elements of ℘ × ℘. It holds that

ϑ(pa) = ϑ ((p1, p2)(a1, a2)) = ϑ ((p1a1, p2a2)) = (p1a1, 0) (3.9)

Besides,

ϑ(p)α(a) + pϑ(a) = ϑ((p1, p2))α ((a1, a2)) + (p1, p2)ϑ((a1, a2))

= (p1, 0)(0, a2) + (p1, p2)(a1, 0)

= (0, 0) + (p1a1, 0)

= (p1a1, 0)

and

ϑ(p)a + α(p)ϑ(a) = ϑ((p1, p2))(a1, a2) + α((p1, p2))ϑ((a1, a2))

= (p1, 0)(a1, a2) + (0, p2)(a1, 0)

= (p1a1, 0) + (0, 0)

= (p1a1, 0)

for all p = (p1, p2) and a = (a1, a2) ∈ ℘ × ℘. Thus, it implies that, for p, a ∈ ℘ × ℘,

ϑ(pa) = ϑ(p)α(a) + pϑ(a) = ϑ(p)a + α(p)ϑ(a) (3.10)

Moreover, it holds that, for all p = (p1, p2) ∈ ℘ × ℘,

(ϑα)(p) = (ϑα) ((p1, p2)) = ϑ (α((p1, p2))) = ϑ ((0, p2)) = (0, 0)

and
(αϑ)(p) = (αϑ)((p1, p2)) = α (ϑ((p1, p2))) = α ((p1, 0)) = (0, 0)

Therefore, it means that, for all p ∈ ℘ × ℘,

(ϑα)(p) = (αϑ)(p)
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Thus,
ϑα = αϑ (3.11)

(3.10) and (3.11) imply that ϑ is a semi-derivation associated with function α of ℘ × ℘. But

ϑ(p)ϑ(a) + ϑ(p)a + pϑ(a) = ϑ((p1, p2))ϑ ((a1, a2)) + ϑ((p1, p2))(a1, a2) + (p1, p2)ϑ((a1, a2))

= (p1, 0)(a1, 0) + (p1, 0)(a1, a2) + (p1, p2)(a1, 0)

= (p1a1, 0) + (p1a1, 0) + (p1a1, 0)

= (3p1a1, 0)

for all p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘. Hence, it holds that, for p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘,

ϑ(p)ϑ(a) + ϑ(p)a + pϑ(a) = (3p1a1, 0) (3.12)

(3.9) and (3.12) imply that, for p, a ∈ ℘ × ℘,

ϑ(pa) ̸= ϑ(p)ϑ(a) + ϑ(p)a + pϑ(a)

which means that ϑ is not a homoderivation of ℘ × ℘.

Example 3.9. Let ℘ be a ring and d : ℘ → ℘ be a derivation. Let f : ℘ × ℘ → ℘ × ℘ be a mapping
such that f ((u, v)) = (d(u), 0) and σ : ℘×℘ → ℘×℘ be a mapping such that σ ((u, v)) = (u, v), for all
(u, v) ∈ ℘ × ℘. Then, f is a semi-derivation associated with function σ but f is not a homoderivation
of ℘ × ℘.

Assume that d is a derivation of ℘. Let p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘. It holds that

f(pa) = f ((p1, p2)(a1, a2)) = f((p1a1, p2a2)) = (d(p1a1), 0) (3.13)

Further, using that d is a derivation

f(p)σ(a) + pf(a) = f((p1, p2))σ ((a1, a2)) + (p1, p2)f((a1, a2))

= (d(p1), 0)(a1, a2) + (p1, p2)(d(a1), 0)

= (d(p1)a1, 0) + (p1d(a1), 0)

= (d(p1)a1 + p1d(a1), 0)

= (d(p1a1), 0)

and

f(p)a + σ(p)f(a) = f((p1, p2))(a1, a2) + σ((p1, p2))f((a1, a2))

= (d(p1), 0)(a1, a2) + (p1, p2)(d(a1), 0)

= (d(p1)a1, 0) + (p1d(a1), 0)

= (d(p1)a1 + p1d(a1), 0)

= (d(p1a1), 0)

for all p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘. Thus, it implies that, for p, a ∈ ℘ × ℘,

f(pa) = f(p)σ(a) + pf(a) = f(p)a + σ(p)f(a) (3.14)



Journal of New Theory 47 (2024) 28-38 / Relationship Between a Homoderivation and a Semi-Derivation 36

Moreover, it holds that, for all p = (p1, p2) ∈ ℘ × ℘,

(fσ)(p) = (fσ) ((p1, p2)) = f (σ((p1, p2))) = f ((p1, p2)) = (d(p1), 0)

and
(σf)(p) = (σf)((p1, p2)) = σ(f((p1, p2))) = σ ((d(p1), 0)) = (d(p1), 0)

Therefore, it means that, for all p ∈ ℘ × ℘,

(fσ)(p) = (σf)(p)

Thus,
fσ = σf (3.15)

(3.14) and (3.15) imply that f is a semi-derivation associated with function σ of ℘ × ℘. But

f(p)f(a) + f(p)a + pf(a) = f((p1, p2))f ((a1, a2)) + f((p1, p2))(a1, a2) + (p1, p2)f((a1, a2))

= (d(p1), 0)(d(a1), 0) + (d(p1), 0)(a1, a2) + (p1, p2)(d(a1), 0)

= (d(p1)d(a1), 0) + (d(p1)a1, 0) + (p1d(a1), 0)

= (d(p1)d(a1) + d(p1)a1 + p1d(a1), 0)

for all p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘. Thus, it holds that, for all p = (p1, p2), a = (a1, a2) ∈ ℘ × ℘,

f(p)f(a) + f(p)a + pf(a) = (d(p1)d(a1) + d(p1)a1 + p1d(a1), 0) (3.16)

(3.13) and (3.16) imply that, for all p, a ∈ ℘ × ℘,

f(pa) ̸= f(p)f(a) + f(p)a + pf(a)

which means that f is not a homoderivation of ℘ × ℘.

These examples explain that the definition of semi-derivation is more general than homo-derivation
on a ring.

Theorem 3.10. If ϑ : ℘ → ℘ such that ϑ = α − 1 is a semi-derivation associated with α where
α : ℘ → ℘ is a homomorphism of ℘, then ϑ is a homoderivation of ℘.

Proof. Let ϑ : ℘ → ℘ such that ϑ = α − 1 be a semi-derivation associated with α where α : ℘ → ℘

is a homomorphism of ℘. Then, it holds that, for all u, v ∈ ℘,

ϑ(uv) = ϑ(u)α(v) + uϑ(v) = ϑ(u)v + α(u)ϑ(v)

Since α satisfies that α = ϑ + 1, it is obtained that, for all u, v ∈ ℘,

ϑ(uv) = ϑ(u) (ϑ + 1) (v) + uϑ(v) = ϑ(u)v + (ϑ + 1) (u)ϑ(v)

which implies that, for all u, v ∈ ℘,

ϑ(uv) = ϑ(u)ϑ(v) + ϑ(u)v + uϑ(v)

That is, ϑ is a homoderivation of ℘.

Corollary 3.11. ϑ is a homoderivation of ℘ if and only if ϑ : ℘ → ℘ such that ϑ = α − 1 is a
semi-derivation associated with α where α : ℘ → ℘ is a homomorphism of ℘.

The proof is clear from Theorems 3.4 and 3.10.
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4. Conclusion

The fact that every homoderivation ϑ of ℘ is a semi-derivation associated with α = ϑ + 1 and α is
a homomorphism of an arbitrary ring ℘ shows that some results can be achieved without needing
the primeness of the ring or being surjective of the associated function. Examples of this situation
are provided in the introduction. Based on the examples, the reader may be advised to think about
the relationship between homoderivation and semi-derivation ϑ such that ϑ = α − 1. Semi-derivation
evidences typically require to be surjective of the ring’s primeness or the related function. Although a
function that is the form of ϑ = α−1 is a semi-derivation associated with homomorphism α, there may
be no need for being surjective of the associated function or the primeness of the ring while doing the
proof. It is proved in this paper that the definition of homoderivation is equivalent to the definition
of semi-derivation, the form of ϑ = α − 1 where α : ℘ → ℘ such that α ̸= 1 is a homomorphism.
Therefore, while generalizing the problems in the literature for homoderivation, using homoderivation
is the same as using the semi-derivation, the form of ϑ = α − 1 associated with homomorphism α.
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Abstract − This study concerns the Sylvester matrix equation in the quaternion setting
when the coefficient matrices as well as the unknown matrix have quaternion entries. We
propose a global Generalized Minimal Residual (GMRES) method for the solution of such
a matrix equation. The proposed approach works directly with the Sylvester operator to
generate orthonormal bases for Krylov subspaces formed of matrices. Then, the best ap-
proximate matrix solution to the Sylvester equation at hand in such a Krylov subspace is
constructed from a matrix minimizing the Frobenius norm of the residual. We describe how
this minimization of the residual norm can be carried out efficiently and report numerical
results on real examples related to image restoration.
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1. Introduction

The Sylvester matrix equation is of the form

AX + XB = C (1.1)

where X is the n×m unknown matrix, and A, B, and C are given matrices with appropriate sizes [1].
Such a matrix equation and its special case, a Lyapunov matrix equation [2], arise in fields, such as
control theory, eigenstructure assignment, model reduction, image restoration problems, numerical
solutions of ordinary differential equations [3–9]. On the other side, quaternions have applications
in various fields, including those from computer science, quantum mechanics, signal and color im-
age processing [10, 11]. Due to these wide ranges of applications for Sylvester equations, as well as
quaternions, the problem of obtaining solutions to (1.1), specifically over the skew-field of quaternions,
has attracted considerable attention [12–15]. Matrix equations other than Sylvester equations over
quaternions have also been studied in the literature [16–21].

In general, direct or iterative numerical methods are employed to find the solutions of (1.1) depending
on the size of A and B. When the coefficient matrices have sizes of a few hundred at most, the
problem is referred to as a small- or medium-scale problem. For these problems, the most efficient
method is a direct method proposed by Bartels and Stewart [22]. This method is based on the Schur
decompositions of the coefficient matrices A and B, resulting in a Sylvester matrix equation in a
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simplified form that is easily solved by back substitution. When both coefficient matrices are small,
but one is significantly smaller than the other, Golub et al. have presented a variant of Bartels and
Stewart algorithm by means of the Hessenberg decomposition of the larger coefficient matrix [23]. A
classical alternative approach is to turn the Sylvester matrix equation into a linear system by using the
Kronecker product and vec operator. Then, the LU factorization with partial pivoting can be applied
to this linear system for finding the solution. Apart from these methods, if only one of n and m is large,
several approaches are available based on a decomposition of the smaller coefficient matrix. However,
these approaches are not useful when both n and m are large (i.e., typically larger than 200). In the
case of such large problems, commonly employed techniques to solve Sylvester equations are alternate
direction implicit (ADI) iteration and projection methods. For instance, Krylov subspace methods are
commonly employed projection methods for such large Sylvester equations when coefficients matrices
are sparse. For large Sylvester matrix equations over real or complex fields, block and global Krylov
subspace methods have attracted substantial interest in the literature [24–34]. While a block Arnoldi
process constructs orthonormal bases for several subspaces of Cn or Rn, simultaneously, the global
Arnoldi process constructs an orthonormal basis for a subspace of a space of matrices.

Linear matrix equations over quaternions rather than over real or complex numbers come up with
additional challenges, especially as the multiplication of two quaternion scalars is not commutative.
It is possible to convert a quaternion matrix equation into a real or a complex matrix equation by
employing real or complex representations of quaternion matrices. However, this conversion is usually
not desirable since it results in matrices in the converted matrix equation that are twice or four times as
large as the matrices in the original problem. On the other hand, structure-preserving Krylov subspace
methods have become popular recently to overcome the increase in the size of the matrices when such
a conversion is applied [19–21]. Some other approaches for solving linear quaternion matrix equations
work on a right or a left Hilbert space over quaternions equipped with a proper inner product [17,18].

In this study, we consider (1.1) with non-Hermitian and nonsingular coefficient matrices A and B of
size n× n and m×m, respectively, when n and m are large. We aim to find the solution by means of
a global Generalized Minimal Residual (GMRES) algorithm operating on the Krylov subspaces of the
space of n×m quaternion matrices. We directly work with the original quaternion matrices without
using real or complex representations of quaternion matrices and exploit a real inner product defined in
the space of n×m quaternion matrices. Our approach applies the Sylvester operator X 7→ AX + XB

at every iteration when adding a new direction to the Krylov subspace.

We present our study in the following order. In Section 2, the preliminaries for quaternion matrices,
useful identities, and problem reformulation are presented. In Section 3, the global Arnoldi process to
construct an orthonormal basis for a matrix Krylov subspace is described, and then the global GMRES
method to retrieve the best approximation in this matrix Krylov subspace is presented. Finally, in
Section 4, the efficiency and accuracy of the proposed approach are illustrated with examples related
to image restoration.

2. Preliminaries

In this section, we summarize quaternions and some of their properties. The division ring H of
quaternions is given by

H = {q0 + q1i + q2j + q3k | i2 = j2 = k2 = −1, ij = −ji = k, q0, q1, q2, q3 ∈ R}

For q = q0 + q1i + q2j + q3k ∈ H, the conjugate and the modulus of q are

q̄ = q0 − q1i− q2j − q3k
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and
|q| =

√
qq̄ =

√
q2

0 + q2
1 + q2

2 + q2
3

respectively.

Since the multiplication of the quaternion units i, j, and k are non-commutative, the multiplication
of a quaternion scalar p ∈ H with another quaternion scalar q ∈ H is usually not commutative. Thus,
the n-tuples of H denoted by Hn can be regarded either as a right vector space or a left vector space
over the division ring H, depending on whether the multiplication in Hn with quaternion scalars is
defined from the right or from the left, respectively. In this study, we consider Hn together with the
multiplication with scalars from the right, that is, Hn as a right vector space. A possible real inner
product on Hn is

⟨u, v⟩ =
n∑

i=1
Re (vi ui) (2.1)

for u, v ∈ Hn. The right vector space Hn with (2.1) is commonly referred to as a right quaternionic
Hilbert space. We define the norm of a vector u ∈ Hn in this right quaternionic Hilbert space as

∥u∥ =

√√√√ n∑
i=1

Re (ui ui) =

√√√√ n∑
i=1
| ui |2 (2.2)

We denote the set of n×m matrices with quaternion entries with Hn×m, which can also be regarded as a
right vector space over H together with the multiplication with quaternion scalars from the right. The
basic linear algebra terminology, definitions, and standard notations for a vector space over complex
numbers also apply to a right vector space over quaternions. In particular, the notations X∗ and v∗

are reserved for the conjugate transposes of X ∈ Hn×m and v ∈ Hn, respectively. Multiplication of
two quaternion matrices of suitable sizes is defined analogously to the multiplication of two complex
matrices. If a matrix X ∈ Hn×n satisfies X∗X = I, then X is called a unitary matrix. On the other
hand, if X ∈ Hn×n satisfies X∗ = X, then X is called Hermitian. Moreover, X ∈ Hn×n is invertible if
there exits X−1 ∈ Hn×n such that XX−1 = X−1X = I. In this work, we make use of the real inner
product on Hn×m defined as

⟨X, Y ⟩F = Re (tr (Y ∗X)) (2.3)

for X, Y ∈ Hn×m. The norm of X ∈ Hn×m induced by (2.3) is

∥X∥F =
√

Re (tr (X∗X)) =

√√√√ n∑
i=1

m∑
j=1
| xij |2 (2.4)

Note that (2.4) is an extension of the Frobenius norm defined for complex matrices to quaternion
matrices.

We provide a generalization of the definition of a block-partitioned matrix product introduced origi-
nally by Bouyouli et al. [35] to the setting of quaternion matrices equipped with (2.3).

Definition 2.1. Let A = [A1A2 · · ·Ap] ∈ Hn×mp and B = [B1B2 · · ·Bl] ∈ Hn×ml with Ai, Bj ∈ Hn×m

for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}. Then, the p × l matrix A∗3B is defined by (A∗3B)ij =
⟨Ai, Bj⟩F , for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , l}.

If the product of A∗3A is equal to the p× p identity matrix, that is if

⟨Ai, Aj⟩F =

 1, i = j

0, i ̸= j

for i, j ∈ {1, 2, . . . , p}, then the matrix A is called F-orthonormal.
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In the next subsection, we formally introduce our problem, as well as basic notions concerning the
important ingredients of the problem, including the Sylvester operator.

2.1. Problem Reformulation

Any A ∈ Hn×m can be uniquely expressed as

A = A1 + A2j or A = Re(A1) + Im(A1)i + Re(A2)j + Im(A2)k

for some A1, A2 ∈ Cn×m. For a matrix A ∈ Hn×n, a scalar λ ∈ H is called a right eigenvalue of A if

Ax = xλ

holds for some nonzero x ∈ Hn. We remark that if λ ∈ H is a non-real right eigenvalue, then
Axs = xs(s−1λs) , for all nonzero s ∈ H, therefore s−1λs is also an eigenvalue of A. Hence, we refer
to the set

EA(λ) :=
{

s−1λs : s ∈ H, s ̸= 0
}

as the equivalence class of λ ∈ H. Consequently, if a quaternion matrix has a non-real eigenvalue,
then it has infinitely many non-real eigenvalues. The equivalence class of a non-real eigenvalue has
only one pair of complex conjugate scalars, i.e., EA(λ) ∩ C =

{
λ, λ

}
. If the imaginary part of a right

complex eigenvalue is nonnegative, it is called a standard eigenvalue. Any n× n quaternion matrix
has exactly n standard eigenvalues counting the multiplicities [18,36].

Consider the Sylvester matrix equation

AX + XB = C (2.5)

such that A ∈ Hn×n, B ∈ Hm×m, and C ∈ Hn×m. It follows from Theorem 2.2.4.1 in [37] that (2.5)
has a unique solution if and only if

Λ(A) ∩ Λ(−B) = ∅

where Λ(·) denotes the set of standard eigenvalues of its quaternion matrix argument. In other words,
(2.5) has a unique solution if and only if the quaternion matrices A and −B do not have any common
standard eigenvalue.

Associated with every Sylvester equation, there is a Sylvester operator. Formally, the Sylvester oper-
ator S : Hn×m → Hn×m for given A ∈ Hn×n and B ∈ Hm×m is defined as

S(X) = AX + XB (2.6)

From (2.5) and (2.6),
S(X) = C (2.7)

We define the norm of the operator S by

∥S∥ = max
∥X∥F =1

∥S(X)∥F

where ∥·∥F is defined by (2.4). The adjoint of S is denoted by S∗ and is given by

S∗(Y ) = A∗Y + Y B∗

for Y ∈ Hn×m. Given X ∈ Hn×m and Y ∈ Hn×m, the equality ⟨S(X), Y ⟩F = ⟨X, S∗(Y )⟩F holds
where the inner product ⟨·, ·⟩F is defined as in (2.3).

In the rest of this paper, we focus on the solution of (2.5) by means of a global Krylov subspace method
assuming that (2.5) has a unique solution. Our approach makes use of the associated Sylvester operator
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frequently. In the next section, we describe a global Arnoldi process to construct an orthonormal basis
for a Krylov subspace, as well as a global GMRES method to find the best solution of (2.5) in a least-
squares sense in an affine space associated with this Krylov subspace.

3. Solution of the Sylvester Quaternion Matrix Equation by Global GMRES

3.1. The Global Arnoldi Process

Suppose that X0 ∈ Hn×m is an approximate solution of (2.7), and R0 = C−S(X0) is the corresponding
residual. The quaternion matrix Krylov subspace Kk (S, R0) ⊂ Hn×m associated with (2.6) and the
residual R0 that we will be dealing with is given by

Kk (S, R0) := span{R0, S(R0), . . . , Sk−1(R0)}

= {α0R0 + α1S(R0) + · · ·+ αk−1Sk−1(R0) | α0, α1, . . . , αk−1 ∈ R}
(3.1)

for a prescribed integer k. Note that in (3.1) the operator Si(R0) is defined recursively by S(Si−1(R0)),
for i ∈ {1, 2, . . . , k − 1}, and S0(R0) = R0. We remark that the set Hn×m over the field of real numbers
is indeed a real vector space. Moreover, Kk (S, R0), a subset of Hn×m, equipped with real scalars, is
a real vector space as well, hence a subspace of Hn×m.

The global Arnoldi process, described formally in Algorithm 1, is a procedure that constructs an F-
orthonormal basis for the Krylov subspace Kk (S, R0). At termination, the process generates the set
of matrices {Q1, Q2, . . . , Qk} that forms an orthonormal basis for Kk (S, R0) with respect to the inner
product ⟨X, Y ⟩F = Re(tr(Y ∗X)), for X, Y ∈ Hn×m.

Algorithm 1 Global Arnoldi Process

1: R0 ← C − S(X0)

2: Set Q1 = R0
∥R0∥F

3: for j = 1 to k do

4: V ← S(Qj)

5: for i = 1 to j do

6: hij ← ⟨Qi, V ⟩F

7: V ← V −Qihij

8: end for

9: h(j+1)j ← ∥V ∥F . If h(j+1)j = 0, then stop.

10: Qj+1 ← V
h(j+1)j

11: end for

12: Q̃k ← [Q1Q2 . . . Qk], Q̃k+1 ← [Q̃k Qk+1] and H̃k is as in (3.4).
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From the global Arnoldi process above, the recurrence for j ∈ {1, 2, . . . , k},

S(Qj) =
j+1∑
i=1

Qihij (3.2)

is immediate. Moreover, it can be verified in a straightforward manner that (3.2) above yields the
relation

S(Q̃k) = Q̃k+1(H̃k ⊗ I) (3.3)

where I is the m ×m identity matrix and H̃k ∈ R(k+1)×k is the Hessenberg matrix whose the entry
(i, j) is hij produced by the global Arnoldi process,

H̃k =



h11 h12 · · · h1(k−1) h1k

h21 h22 · · · h2(k−1) h2k

0 h32 · · · h3(k−1) h3k

0 0 . . . ...
...

...
... · · · hk(k−1) hkk

0 0 · · · 0 h(k+1)k


(3.4)

Here and throughout the rest of this paper, F⊗G represents the Kronecker product of the real matrices
F and G. In the next subsection, we present the global GMRES method for retrieving the solution of
(2.7) by making use of Q̃k and H̃k generated by the global Arnoldi process.

3.2. The Global GMRES Method

For a given initial estimate X0 ∈ Hn×m for the solution of (2.7), our global GMRES method at the kth
iteration finds Xk minimizing ∥C − S(X)∥F over all X ∈ X0 +Kk(S, R0). For all Xk ∈ X0 +Kk(S, R0)
can be expressed as

Xk = X0 +
k∑

i=1
y

(k)
i Qi

for some real scalars y
(k)
i for i ∈ {1, . . . , k}, or equivalently

Xk = X0 + Q̃kYk

for Yk = y(k) ⊗ I ∈ Rkm×m where y(k) :=
[
y

(k)
1 y

(k)
2 . . . y

(k)
k

]T
. Thus, recalling R0 = C − S(X0), the

residual Rk = C − S(Xk) can be written as

Rk = R0 − S(Q̃kYk) (3.5)

The minimization of ∥C − S(X)∥F overall X ∈ X0 + Kk(S, R0) is equivalent to the minimization of
∥Rk∥F with Rk of (3.5) and Yk = y(k) ⊗ I, for some y(k) ∈ Rk. In other words, we would like to solve
the following minimization problem over y(k) ∈ Rk:∥∥∥R0 − S

(
Q̃k(y(k) ⊗ I)

)∥∥∥
F

= minimum

Using the linearity of the operator S and (3.3), the last minimization can be rewritten as∥∥∥R0 − Q̃k+1(H̃k ⊗ I)(y(k) ⊗ I)
∥∥∥

F
= minimum (3.6)

It follows from the description in Algorithm 1 that R0 = βQ1 for β := ∥R0∥F , or equivalently
R0 = Q̃k+1(βe1⊗ I) where e1 is the first column of the (k + 1)× (k + 1) identity matrix. Hence, (3.6)
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can further be simplified as∥∥∥Q̃k+1
(
(βe1 − H̃ky(k))⊗ I

)∥∥∥
F

=
∥∥∥(βe1 − H̃ky(k))⊗ I

∥∥∥
F

= minimum (3.7)

The first equality in (3.7) follows from the fact that Q̃k+1 = [Q1Q2 · · · Qk+1] where {Q1, Q2, · · · , Qk+1}
is an orthonormal set with respect to the inner product ⟨·, ·⟩F , inducing the Frobenius norm ∥ · ∥F .
As a result, our least squares problem reduces to finding y(k) such that∥∥∥βe1 − H̃ky(k)

∥∥∥ = minimum (3.8)

where ∥·∥ is the Euclidean norm on Rk+1. At iteration k of the global GMRES method, we solve this
real least-squares problem over the variable y(k) ∈ Rk.

A typical approach to solve (3.8) efficiently is triangularizing H̃k unitarily. Specifically, we transform
the Hessenberg matrix H̃k into an upper triangular matrix Ũ by applying k square unitary matrices
W1, W2, . . . , Wk from left, that is

WkWk−1 . . . W1H̃k = Ũ =



ũ11 ũ12 · · · ũ1k

0 ũ22 . . . ũ2k

0 0 . . . ...
...

... · · · ũkk

0 0 . . . 0


where Wj ∈ R(k+1)×(k+1), for j ∈ {1, 2, . . . , k}, is given by

Wj =


Ij−1 0 0

0 Pj 0

0 0 Ik−j

 (3.9)

for a Givens rotator Pj ∈ R2×2 and Iℓ denoting the identity matrix of size ℓ× ℓ. For completeness, an
efficient realization of these ideas to turn the Hessenberg matrix H̃k into an upper triangular form Ũ

is given in Algorithm 2.

Algorithm 2 Triangularization of the Hessenberg Matrix H̃k

1: for j = 1 to k do

2: y(j) ← H̃k(j, j + 1 : j)

3: ỹ ← y(j)

∥y(j)∥

4: u← H̃k(j + 1, j : k)

5: H̃k(j + 1, j + 1 : k)← −ỹ2H̃k(j, j + 1 : k) + ỹ1H̃k(j + 1, j + 1 : k))

6: H̃k(j + 1, j)← 0

7: H̃k(j, j : k)← ỹ1H̃k(j, j : k) + ỹ2u

8: end for

9: Ũ ← H̃k
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In the description in Algorithm 2, the notation H̃k(ℓ, ℓ1 : ℓ2) is reserved for the row vector formed of
the entries of H̃k on the ℓth row with column indices from ℓ1 to ℓ2. Moreover, the unitary matrices
W1, W2, . . . , Wk triangularizing H̃k can be formed using the vectors y(1), y(2), . . . , y(k) generated by
Algorithm 2. Specifically, Wj is as in (3.9) with the Givens rotator Pj defined as

Pj = 1
∥y(j)∥

 y
(j)
1 y

(j)
2

−y
(j)
2 y

(j)
1


for j ∈ {1, 2, . . . , k}.

Once H̃k is triangularized into Ũ , (3.8) can be solved efficiently. In particular, as (2.2) is invariant
under unitary transformations, (3.8) can equivalently be expressed as

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



û1

û2
...

ûk

ûk+1


−



ũ11 ũ12 · · · ũ1k

0 ũ22 . . . ũ2k

0 0 . . . ...
...

... · · · ũkk

0 0 . . . 0


y(k)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= minimum

where
[û1 û2 . . . ûk+1]T := WkWk−1 . . . W1(βe1)

can be obtained by applying the rotators P1, P2, . . . , Pk in this order to βe1. It follows that the solution
y

(k)
∗ of (3.8) is the solution of the upper triangular system

ũ11 ũ12 . . . ũ1k

0 ũ22 . . . ũ2k

...
... . . . ...

0 0 · · · ũkk

 y =


û1

û2
...

ûk

 (3.10)

and can be retrieved by back substitution.

Once we have y
(k)
∗ at hand, the best approximate solution Xk in X0+Kk(S, R0) for AX +XB = C that

is Xk minimizing ∥C−(AX +XB)∥F over all X ∈ X0 +Kk(S, R0)), is given by Xk = X0 +Q̃k(y(k)
∗ ⊗I).

An outline of the overall global GMRES method is provided in Algorithm 3.

Algorithm 3 The Global GMRES Method to Solve the Sylvester Quaternion Matrix Equation
1: Apply Algorithm 1.

In particular, form the matrix Q̃k = [Q1Q2 · · ·Qk] such that {Q1, Q2, . . . Qk} forms an orthonormal
basis for Kk(A, R0), as well as the Hessenberg matrix H̃k as in (3.4) satisfying (3.3).

2: Use Algorithm 2 to Triangularize H̃k.
Specifically, unitarily transform H̃k into the upper triangular matrix Ũ , and keep also the rotation
vectors y(1), y(2), . . . , y(k) that define the unitary transformation.

3: Apply Unitary Transformation from Step 2 to βe1.
Apply the unitary transformation from the previous step to βe1 by making use of y(1), y(2), . . . , y(k)

to obtain [û1 û2 . . . ûk+1]T .

4: Find the Solution y
(k)
∗ of the Upper Triangular System in (3.10).

5: Form Xk = X0 + Q̃k(y(k)
∗ ⊗ I), Which is the Best Approximate Solution of AX + XB = C

in X0 +Kk(S, R0).
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4. Numerical Examples

In this section, we demonstrate the effectiveness of the proposed global GMRES approach for (2.5) by
conducting numerical experiments on examples related to color image restoration.

A color image can be encoded as an n×m quaternion matrix of the form

Q = Ri + Gj + Bk

where R, G and B are n×m real matrices represent the color image’s red, green, and blue components.
Let A and B be the blurring quaternion matrices of the form

A = A1 + A2i + A3j + A4k and B = B1 + B2i + B3j + B4k

for some real matrices Aj and Bj such that j ∈ {1, 2, 3, 4}. The constant parts A1 and B1 of blurring
matrices A and B are specified as

aij , dij =
{

1
σ

√
2π

e− (i−j)2

2σ2 , |i− j| ≤ r

0, otherwise

whereas the non-constant parts, i.e., the coefficient matrices for i, j, and k parts, of A and B are given
by

aij , dij =
{

1
10

1
σ

√
2π

e− (i−j)2

2σ2 , |i− j| ≤ r

0, otherwise

for prescribed positive real number r and σ. By applying the Sylvester operator we obtain AX +XB =
C where C is the quaternion matrix corresponding to the blurred image. On the other hand, given
A, B, and C, the solution X to the Sylvester equation AX + XB = C is the quaternion matrix
corresponding to the original color image that we would like to restore back.a as as a sas a sa

Example 4.1. We report results illustrating the effectiveness of our proposed approach on such
Sylvester equations obtained from the two original color images depicted in Figures 1(a) and 2(a).
The images are stored as n×m quaternion matrices, with sizes 583× 500 and 500× 752, respectively.
We set σ = 10 and r = 10 in both of the examples, and the resulting blurred images C by the
application of the Sylvester operator are shown in Figures 1(b) and 2(b). We apply Algorithm 3 to
solve AX + XB = C approximately by setting the number of iterations equal to k = 2, k = 4, k = 10,
and k = 50. The restored images corresponding to the approximate solutions after so many iterations
are shown in 1(c)-(f) and 2(c)-(f). Finally, the convergence of the algorithm is illustrated in Figure 3
by plotting the residual norms as a function of number of iterations k. To be precise, the plot on the
top in Figure 3 depicts the residual norm ∥Rk∥F for the approximate solution Xk by Algorithm 3 as a
function of the number of iterations k for the parrot example. The plot at the bottom does the same
for the tiger example.

(a) Original im-
age

(b) Degraded
image

(c) Restored im-
age for k=2

(d) Restored im-
age for k=4

(e) Restored im-
age for k=10

(f) Restored im-
age for k=50

Figure 1. This concerns the parrot example. Original and blurred images are illustrated in (a) and
(b), respectively. The restored images obtained by applications of Algorithm 3 with k = 2, k = 4,
k = 10, and k = 50 iterations are depicted in (c)-(f)
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(a) Original im-
age

(b) Degraded
image

(c) Restored im-
age for k=2

(d) Restored im-
age for k=4

(e) Restored im-
age for k=10

(f) Restored im-
age for k=50

Figure 2. The images are similar to those in Figure 1 but now for the tiger example. In particular, (a)
and (b) are the original and blurred images, whereas (c)-(f) are restored images retrieved by applying
Algorithm 3 with k iterations

Figure 3. The residual norms for the approximate solutions by Algorithm 3 are plotted as a function of
number of iterations k. The top and bottom plots concern the parrot and tiger examples, respectively
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5. Conclusion

We have proposed an iterative algorithm for solving a Sylvester quaternion matrix equation, especially
the large-scale setting when at least one of the coefficient matrices is large. The proposed algorithm
is a global GMRES method operating on a Krylov subspace of a vector space of quaternion matrices.
An Arnoldi process based on repeated applications of the Sylvester operator is presented to construct
an orthonormal basis for this Krylov subspace. We have also discussed how the determination of the
best solution to the Sylvester equation in this Krylov subspace minimizing the Frobenius norm of the
residual can be converted into a standard least-squares problem in Rn, which in turn paves the way
for efficient computation of the best solution. Finally, we have illustrated on numerical examples that
the proposed approach works effectively on Sylvester equations that need to be solved to retrieve the
originals of degraded color images. A natural extension of the approach introduced here that could
be considered as future work is a conjugate gradient method for solving Lyapunov quaternion matrix
equations.
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Abstract − In this study, various properties of the generalized Leonardo numbers, which
are one of the generalizations of Leonardo numbers, have been investigated. Additionally,
some identities among the generalized Leonardo numbers have been obtained. Furthermore,
some identities between Fibonacci numbers and generalized Leonardo numbers have been
provided. In the last part of the study, binomial sums of generalized Leonardo numbers
have been derived. The results obtained for generalized Leonardo numbers are reduced to
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1. Introduction

Number sequences are one of the fundamental areas of study within mathematics. Amongst number
sequences, the Fibonacci sequence holds a place of importance. This sequence has comprehensive
applications in various fields, including mathematics, biology, art, and finance. Many authors have
studied different mathematical properties of Fibonacci numbers in [1–6].

The Lucas sequence is another significant number sequence. The Lucas sequence has similar proper-
ties with the Fibonacci sequence in [5, 6]. The studies of these sequences involve investigating their
properties, relationships, and applications. Mathematicians continue to investigate new properties of
number sequences.

In recent years, researchers have been studying Leonardo numbers, which are similar to the recurrence
relation of Fibonacci numbers. Catarino and Borges defined the Leonardo sequence in [7]. Moreover,
some identities of Leonardo numbers were obtained in [8]. Recent studies on Leonardo numbers have
investigated various generalizations of Leonardo numbers in [9–19].

This study investigates the k-Leonardo numbers as defined by Kuhapatanakul and Chobsorn in [13].
Some identities, including binomial sums for k-Leonardo numbers, are obtained. Additionally, some
relationships between Fibonacci and k-Leonardo numbers are provided. All the results obtained in
this study are reduced to Leonardo numbers for k = 1.
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2. Preliminaries

In this section, some definitions and identities of Fibonacci, Lucas and Leonardo numbers are provided.

Definition 2.1. [1] The Fibonacci numbers are characterized, for n ≥ 2,

Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1.

Fibonacci numbers correspond A000045 in OEIS [20].

Proposition 2.2. [1] The Binet’s formula for Fibonacci sequence is provided as follows:

Fn = αn − βn

α − β
(2.1)

where α = 1+
√

5
2 and β = 1−

√
5

2 .

Definition 2.3. [1] The Lucas numbers are provided the following reccurence relation, for n ≥ 2,

Ln = Ln−1 + Ln−2

with L0 = 2, L1 = 1.

Lucas numbers correspond A000032 in OEIS, [20].

Proposition 2.4. [1] The Binet’s formula for Lucas sequence is provided as follows:

Ln = αn + βn (2.2)

where α = 1+
√

5
2 and β = 1−

√
5

2 .

Some identities [5, 6] relating to Fibonacci and Lucas numbers are as follows:

Fm−1 + Fm+1 = Lm (2.3)

Lm−1 + Lm+1 = 5Fm (2.4)

Fs+t + (−1)tFs−t = LtFs (2.5)

Fs+t − (−1)tFs−t = FtLs (2.6)

Ls+t + (−1)tLs−t = LtLs (2.7)

Ls+t − (−1)tLs−t = 5FsFt (2.8)

FmFn − Fm+kFn−k = (−1)n−kFm+k−nFk (2.9)

L2h − 2(−1)h = 5F 2
h (2.10)

Fs+t = Fs+1Ft+1 − Fs−1Ft−1 (2.11)

L2mL2n = 5(F 2
m+n + F 2

m−n) + 4(−1)m+n (2.12)
2n∑
i=0

(
2n

i

)
F2i = 5nF2n (2.13)

2n+1∑
i=0

(
2n + 1

i

)
F2i = 5nL2n+1 (2.14)

Definition 2.5. [7] The Leonardo sequence has the following recurrence relation, for n ≥ 2,

Len = Len−1 + Len−2 + 1
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and the initial conditions of this recurrence relation are Le0 = Le1 = 1.

These numbers correspond A001595 in OEIS [20].

Proposition 2.6. [7] The Binet’s formula of Leonardo sequence is

Len = 2αn+1 − 2βn+1 − α + β

α − β

where α = 1+
√

5
2 and β = 1−

√
5

2 .

Definition 2.7. [13] The generalized Leonardo numbers has the following recurrence:

Lk,n = Lk,n−1 + Lk,n−2 + k

for k ∈ N and n ≥ 2. In addition, the initial conditions are Lk,0 = Lk,1 = 1.

Proposition 2.8. [13] The relation between Fibonacci numbers and generalized Leonardo numbers
is provided as follows:

Lk,n = (k + 1)Fn+1 − k (2.15)

Proposition 2.9. [14] The Binet’s formula of the generalized Leonardo sequence is

Lk,n = (k + 1)
(

αn+1 − βn+1

α − β

)
− k (2.16)

Where α = 1+
√

5
2 and β = 1−

√
5

2 .

Table 1. Several terms of the Fibonacci, Leonardo, Lucas, and generalized Leonardo numbers
n 0 1 2 3 4 5 6 7

Fn 0 1 1 2 3 5 8 13

Len 1 1 3 5 9 15 25 41

Ln 2 1 3 4 7 11 18 29

Lk,n 1 1 2 + k 3 + 2k 5 + 4k 8 + 7k 13 + 12k 21 + 20k

3. Main Results

This section provides new identities of the generalized Leonardo numbers.

Proposition 3.1. For any non-negative integers r, s and r ≥ s, the following identity is valid

L2
k,r+s − L2

k,r−s = (k + 1)2F2r+2F2s − 2k(Lk,r+s − Lk,r−s)

where Fr and Lk,r are rth Fibonacci and generalized Leonardo numbers, respectively.

Proof. Using (2.16) to left hand side (LHS),

LHS =
(

(k + 1)
(

αr+s+1 − βr+s+1

α − β

)
− k

)2

−
(

(k + 1)
(

αr−s+1 − βr−s+1

α − β

)
− k

)2

From (2.1) and (2.2),

LHS = (k + 1)2

5 (L2r+2s+2 − L2r−2s+2) − 2k(k + 1)(Fr+s+1 − Fr−s+1)

Considering (2.8),
LHS = (k + 1)2F2r+2F2s − 2k(k + 1)(Fr+s+1 − Fr−s+1)
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Using (2.15), the result is obtained.

Taking k = 1 in Proposition 3.1, the identity [8] for Leonardo numbers is as follows:

Le2
r+s − Le2

r−s = 2(2F2r+2F2s − Ler+s + Ler−s)

Proposition 3.2. For any non-negative integers r and s such that r ≥ s + 4,

Lk,r+sLk,r+s−2 + Lk,r−sLk,r−s−2 =L2
k,r+s−1 + L2

k,r−s−1 + 2(−1)r+s(k + 1)2

− k(Lk,r+s−4 + Lk,r−s−4) − 2k2

where Lk,r is rth generalized Leonardo number.

Proof. Using (2.16) to the left-hand side (LHS),

LHS =
(

(k + 1)
(

αr+s+1 − βr+s+1

α − β

)
− k

)(
(k + 1)

(
αr+s−1 − βr+s−1

α − β

)
− k

)
+

(
(k + 1)

(
αr−s+1 − βr−s+1

α − β

)
− k

)(
(k + 1)

(
αr−s−1 − βr−s−1

α − β

)
− k

)
From (2.1) and (2.2),

LHS = (k + 1)2

5
(
L2r+2s + L2r−2s + 6(−1)r+s

)
− k(k + 1)(Fr+s+1 + Fr+s−1 + Fr−s+1 + Fr−s−1)

Using (2.3) and (2.7),

LHS = (k + 1)2

5 (L2rL2s + 6(−1)r+s) − k(k + 1)(Lr+s + Lr−s)

Considering (2.12),

LHS = (k + 1)2(F 2
r+s + F 2

r−s) − k(k + 1)(Lr+s + Lr−s) + 2(−1)r+s(k + 1)2

In the final step, from (2.15),

LHS = L2
k,r+s−1 + L2

k,r−s−1 + 2(−1)r+s(k + 1)2 − k(Lk,r+s−4 + Lk,r−s−4) − 2k2

Taking k = 1 in Proposition 3.2, the following identity [8] of Leonardo numbers is obtained:

Ler+sLer+s−2 + Ler−sLer−s−2 = Le2
r+s−1 + Le2

r−s−1 − Ler+s−4 − Ler−s−4 + 8(−1)r−s − 2

Proposition 3.3. For any non-negative integers r and s, the following identity holds true:

Lk,rLk,s = (Lk,r + k)(Lk,s + k) − k(Lk,r + Lk,s) − k2

where Lk,r is rth generalized Leonardo number.

Proof. Using (2.16) to LHS,

Lk,rLk,s =
(

(k + 1)
(

αr+1 − βr+1

α − β

)
− k

)(
(k + 1)

(
αs+1 − βs+1

α − β

)
− k

)
From (2.1) and (2.2),

Lk,rLk,s = (k + 1)2

5 (Lr+s+2 − (−1)s+1Lr−s) − k(k + 1)(Fr+1 + Fs+1) + k2

Using (2.8) and (2.15), the result is obtained.
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If we take 2r and 2s instead of r and s, respectively, and take k = 1, we obtain the following identity [8]
of Leonardo numbers:

Le2rLe2s = (Ler+s + 1)2 + (Ler−s−1 + 1)2 − Le2r − Le2s − 1

Proposition 3.4. For non-negative integers m, r, and s, the following holds:

Lk,m+rLk,m+s − Lk,mLk,m+r+s = (k + 1)2(−1)m+1FrFs − kLk,m+r − kLk,m+s + kLk,m + kLk,m+r+s

where Fm and Lk,m are mth Fibonacci and generalized Leonardo numbers, respectively.

Proof. Using (2.16) to the left-hand side (LHS),

LHS =
(

(k + 1)
(

αm+r+1 − βm+r+1

α − β

)
− k

)(
(k + 1)

(
αm+s+1 − βm+s+1

α − β

)
− k

)
−

(
(k + 1)

(
αm+1 − βm+1

α − β

)
− k

)(
(k + 1)

(
αm+r+s+1 − βm+r+s+1

α − β

)
− k

)
Considering (2.1) and (2.2),

LHS = (k + 1)2

5 (−1)m+1(Lr+s − (−1)sLr−s) + k(k + 1)Fm+1+

k(k + 1)(Fm+r+s+1 − Fm+r+1 − Fm+s+1)

From (2.8),

LHS = (k + 1)2(−1)m+1FrFs + k(k + 1)(Fm+r+s+1 + Fm+1 − Fm+r+1 − Fm+s+1)

Considering (2.15), the result is clear.

Taking k = 1, the following identity [8] for Leonardo numbers holds true:

Lem+rLem+s − LemLem+r+s = 4(−1)m+1FrFs − Lem+r − Lem+s + Lem + Lem+r+s

Proposition 3.5. For any non-negative integers r ≥ 1 and s ≥ r, the following identities are valid:

Lk,s+r + (−1)rLk,s−r = Lr(Lk,s + k) − k(1 + (−1)r)

and
Lk,s+r − (−1)rLk,s−r = Ls+1(Lk,r−1 + k) − k(1 − (−1)r)

where Lr and Lk,r are rth Lucas and generalized Leonardo numbers, respectively.

Proof. From (2.15),

Lk,s+r + (−1)rLk,s−r = (k + 1)(Fs+r+1 + (−1)rFs−r+1) − k(1 + (−1)r)

Using (2.5), the first identity is obtained. Similarly, the other identity is derived by using (2.15) and
(2.6).

For k = 1, we obtain the following identities [8] of Leonardo numbers:

Les+r + (−1)rLes−r = Lr(Les + 1) − (1 + (−1)r)

and
Les+r − (−1)mLes−r = Ls+1(Ler−1 + 1) − (1 − (−1)r)
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Proposition 3.6. For any non-negative integers r ≥ 1 and s ≥ 1,

Lk,r+1Lk,s+1 − Lk,r−1Lk,s−1 = (k + 1)Lk,r+s+1 − k(Lk,r + Lk,s) − k2 + k

where Lk,r is rth generalized Leonardo number.

Proof. Using (2.16) to the left-hand side (LHS),

LHS =
(

(k + 1)
(

αr+2 − βr+2

α − β

)
− k

)(
(k + 1)

(
αs+2 − βs+2

α − β

)
− k

)
−

(
(k + 1)

(
αr − βr

α − β

)
− k

)(
(k + 1)

(
αs − βs

α − β

)
− k

)
Considering (2.1) and (2.2),

LHS = (k + 1)2

5 (Lr+s+4 − Lr+s) − k(k + 1)(Fr+1 + Fs+1)

From (2.8) and (2.11), we obtain the result.

Taking k = 1, we find the following identity [8] of Leonardo numbers:

Ler+1Les+1 − Ler−1Les−1 = 2Ler+s+1 − Ler − Les

Proposition 3.7. Let r, t, and s be non-negative integers such that r ≥ t and r ≥ s. Then, the
following identity is valid:

Lk,r+tLk,r−t − Lk,r+sLk,r−s = (k + 1)2((−1)r−tF 2
t − (−1)r−sF 2

s )−
k(Lk,r+t + Lk,r−t − Lk,r+s − Lk,r−s)

where Fr and Lk,r are rth Fibonacci and generalized Leonardo numbers, respectively.

Proof. By applying Binet’s formula for the generalized Leonardo numbers to the left-hand side, we
can derive the result.

Taking k = 1, the following identity [8] can be found:

Ler+tLer−t − Ler+sLer−s = 4(−1)r((−1)tF 2
t − (−1)sF 2

s ) + Ler+s + Ler−s − Ler+t − Ler−t

Proposition 3.8. For any non-negative integer r, the following holds:

Lk,r+1Fr+1 − Lk,rFr = Lk,rFr+1 + kFr

where Fr and Lk,r are rth Fibonacci and generalized Leonardo numbers, respectively.

Proof. Using (2.16) and (2.1) to the left-hand side (LHS),

LHS =
(

(k + 1)
(

αr+2 − βr+2

α − β

)
− k

)(
αr+1 − βr+1

α − β

)
−

(
(k + 1)

(
αr+1 − βr+1

α − β

)
− k

)(
αr − βr

α − β

)
From (2.1) and (2.2),

LHS = k + 1
5 (L2r+2 + 2(−1)r) − kFr−1

Considering (2.10), the following identity is obtained:

Lk,r+1Fr+1 − Lk,rFr = Lk,rFr+1 + kFr
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For k = 1, we obtain the following identity [8] between Leonardo and Fibonacci number:

Ler+1Fr+1 − LerFr = LerFr+1 + Fr

Proposition 3.9. For any non-negative integers s and r where r ≥ 1 and s ≥ r + 1, the following
identities are valid:

FsLk,r − FrLk,s = (−1)r(Lk,s−r−1 + k) + k(Fr − Fs)

and
FsLk,r + FrLk,s = Lk,s+r−1 + FsLk,r−1 − kFr + k

where Fr and Lk,r are rth Fibonacci and generalized Leonardo numbers, respectively.

Proof. Using (2.15),

FsLk,r − FrLk,s = (k + 1)(FsFr+1 − Fs+1Fr) + k(Fr − Fs)

From (2.9), the first identity is obtained. Similarly, the second identity can be found.

Taking k = 1, the following identities [8] between Leonardo and Fibonacci numbers can be obtained:

FsLer − FrLes = (−1)r(Les−r−1 + 1) + (Fr − Fs)

and
FsLer + FrLes = Les+r−1 + FsLer−1 − Fr + 1

Proposition 3.10. For non-negative integer s,
2s∑

i=0

(
2s

i

)
Lk,2i−1 = 5s(Lk,2s−1 + k) − 4sk

and
2s+1∑
i=0

(
2s + 1

i

)
Lk,2i−1 = 5s(Lk,2s−1 + Lk,2s+1) + 2k(5s − 4s)

where Lk,s is sth generalized Leonardo number.

Proof. Using (2.15),
2s∑

i=0

(
2s

i

)
Lk,2i−1 =

2s∑
i=0

(
2s

i

)
((k + 1)F2i − k)

From (2.13), the first identity is obtained. Similarly, other identity can be found.

Taking k = 1, the following binomial sums of Leonardo numbers are obtained:
2s∑

i=0

(
2s

i

)
Le2i−1 = 5s(Le2s−1 + 1) − 4s

and
2s+1∑
i=0

(
2s + 1

i

)
Le2i−1 = 5s(Le2s−1 + Le2s+1) + 2(5s − 4s)

4. Conclusion

In this study, various identities for generalized Leonardo numbers have been obtained. Additionally,
some identities between Fibonacci numbers and generalized Leonardo numbers have been provided.
The results obtained in this study are reduced to identities among Leonardo numbers for k = 1. In
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future studies, a new generalization of Leonardo numbers can be defined, and some identities, similar
to those provided in this study, can be established.
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Abstract − This study delves into the investigation of positive solutions for a specific class
of ℵ-Caputo fractional boundary value problems with the inclusion of the p-Laplacian opera-
tor. In this research, we use the theory of the fixed point theory within a cone to establish the
existence results for solutions of nonlinear ℵ-Caputo fractional differential equations involv-
ing the p-Laplacian operator. These findings not only advance the theoretical understanding
of fractional differential equations but also hold promise for applications in diverse scientific
and engineering disciplines. Furthermore, we provide a clear and illustrative example that
serves to reinforce the fundamental insights garnered from this investigation.
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1. Introduction

In the realm of fractional calculus, the ℵ-Caputo fractional derivatives [1–6] have recently emerged
as a powerful tool for capturing complex dynamics with non-local memory effects. This, combined
with the influence of the p-Laplacian operator [7–9], has opened up new avenues for investigating the
behavior of systems characterized by fractional derivatives [10–12] and nonlinearity.

Fractional order models can be used to model anomalous diffusion processes. Such diffusion processes
are more accurate than classical diffusion models, especially in heterogeneous environments. In the
field of engineering, fractional-order models are widely used to study the behavior of viscoelastic
materials. These materials can exhibit memory effects and dynamic load responses that cannot be
explained by classical models. Moreover, biological systems, especially in areas, such as population
dynamics and epidemiology, more accurately represent the more complex and memory-based nature
of interactions between individuals. For examples, Metzler and Klafter [13] describes anomalous
diffusion processes using fractional differential equations. This work has important applications in
plasma physics and earth sciences. Bagley and Torvik [14] demonstrates the usability of fractional
order differential equations in modeling viscoelastic materials. Magin [15] discusses how fractional
differential equations can be used to model complex dynamics in biological tissues.

This paper delves into the examination of the existence of solutions for ℵ-Caputo fractional boundary
value problems (CFBVP) with the inclusion of the p-Laplacian operator. The ℵ-Caputo fractional
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derivative introduces a parameter ℵ that allows for a more nuanced control over the memory effects,
providing a flexible framework for modeling diverse phenomena. The interplay between ℵ-Caputo
derivatives and the p-Laplacian operator adds a layer of complexity that is essential for understanding
the intricacies of real-world systems. The central focus of this study is to establish rigorous results
regarding the solvability and uniqueness of solutions for the formulated fractional boundary value
problems. The investigation spans theoretical analyses, employing advanced mathematical tools, and
computational methodologies to unveil the underlying dynamics.

As fractional calculus continues to gain prominence in various scientific disciplines, the findings of
this research not only contribute to the theoretical foundations but also hold potential implications
for applications in physics, engineering, and other fields. By exploring ℵ-CFBVP involving the p-
Laplacian operator, in this paper, we aim to contribute to the ongoing dialogue in fractional calculus
and its expanding role in understanding complex systems. Subsequent sections will delve into the
mathematical formulations, methodologies, and results, providing a comprehensive exploration of the
addressed problems.

Inspired by the previously explored investigations concerning p-Laplacian ℵ-CFBVP that incorporate
both right and left-sided fractional derivatives, as well as left-sided integral operators with respect
to a power function, we delve into the examination of uniqueness results. Employing the properties
inherent in Green’s functions, our focus is directed towards a mixed p-Laplacian boundary value
problem. This particular problem involves ℵ-Caputo fractional derivatives and integrals, specifically
in connection with a power function.

Bai et al. [8] considered the existence of solutions for the following boundary value problem of the
fractional p-Laplacian equation

(φp(Dα
0+u(t)))′ + h(t, u(t)) = 0, 0 < t < 1

u(0) = Dα
0+u(0) = 0, CDβ

0+u(0) =C Dβ
0+u(1) = 0

where 0 < β ≤ 1, 1 < α ≤ 2 + β, Dα
0+ and Dβ

0+ are Riemann -Liouville fractional derivative and
Caputo fractional derivative of orders α, β, p > 1, and h : [a, b] × R → R is continuous function.

In [1], Mfadel et al. investigated the boundary value problem ψ-Caputo fractional differential equations
involving the p-Laplacian operator provided by

(ϕp(CDα,ψ
0+ u(t)))′ = f(t, u(t)), t ∈ ∆ = [0, T ]

u(0) = σ1u(T ), u′(0) = σ2u
′(T )

where T > 0, Dα,ψ
0+ is the ψ-Caputo fractional derivative of order α ∈ (1, 2), and ϕp is a p-Laplacian

operator, i.e., ϕp(t) = tp−1 such that p− 1 > 0.

In this study, we concentrate on the existence results of the following p-Laplacian ℵ-CFBVP:
CDβ,ℵ

b− (φp(CDα,ℵ
b− y(t))) = f(t, y(t)), t ∈ [a, b]

y(a) = Dα,ℵ
b− y(a) = 0, y(b) = Dα,ℵ

b− y(b) = 0
(1.1)

where φp is a p-Laplacian operator, i.e., φp(t) = |t|p−2t, 1
p + 1

q = 1, p, q > 1, 1 < α, β ≤ 2, Dα,ℵ
b−

and Dβ,ℵ
b− denote the right-sided ℵ-Caputo fractional derivatives of orders α and β, respectively, and

f : [a, b] × R → R is continuous function.

In Section 2, we provide some important definitions, lemmas, and theorems that play a key role
for the considered problems. In Section 3, we establish Green functions, and this part contains the
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main results for the provided problem. Using Krasnoselskii fixed point theorem, we can say existence
results for the problems. Moreover, we provide an example in this section. In Section 4, we provide a
conclusion part.

2. Preliminaries

In the preliminaries section, we provide some definitions, notations, theorems, and results for the
generalized ℵ-fractional derivative and integral to be used throughout this paper.

Definition 2.1. [10] Let α > 0, f : [a, b] → R be an integrable function defined on [a, b], and
ℵ ∈ C1([a, b],R) an increasing differentiable function with ℵ′(t) ̸= 0, for all t ∈ [a, b]. Then, the α−th
order right-sided ℵ-Riemann-Liouville fractional integral of a function f is provided by

Iα,ℵb− f(t) = 1
Γ(α)

b∫
t

ℵ′(s)(ℵ(s) − ℵ(t))α−1f(s)ds

where Γ(.) is a gamma function.

Definition 2.2. [3] Let α > 0 and ℵ, f ∈ Cm([a, b],R) two functions such that ℵ is increasing and
ℵ′(t) ̸= 0, for all t ∈ [a, b]. Then, the left-sided ℵ-Caputo fractional derivative of f of order α is given
by

CDα,ℵ
b− f(t) = Im−α,ℵ

b−

[
− 1

ℵ′(t)
d

dt

]m
f(t)

where m = [α] + 1 and [α] denotes the integer part of the real number α.

Theorem 2.3. [3] Let f, g ∈ Cm([a, b],R) and α > 0. Then,

CDα,ℵ
b− f(t) =C Dα,ℵ

b− g(t) ⇔ f(t) = g(t) +
m−1∑
k=0

dk(ℵ(b) − ℵ(t))k

where dk are arbitrary constants.

Theorem 2.4. (Guo-Krasnosel’skii Fixed Point Theorem) Let Y be a Banach space and P ⊆ Y be
a cone. Assume that Θ1 and Θ2 are open subsets of P with 0 ∈ Ω1 and Θ1 ⊂ Θ2. Suppose that
F : P ∩

(
Θ2 \ Θ1

)
→ P is a completely continuous operator such that, either

i. ∥Fy∥ ≤ ∥y∥, for y ∈ P ∩ ∂Θ1, ∥Fy∥ ≥ ∥y∥, for y ∈ P ∩ ∂Θ2

ii. ∥Fy∥ ≥ ∥y∥, for y ∈ P ∩ ∂Θ1, ∥Fy∥ ≤ ∥y∥, for y ∈ P ∩ ∂Θ2

holds. Then, F has at least one fixed point in P ∩ (Θ2 \ Θ1).

3. Main Results

In this section, we establish Green function for the uniqueness of the solutions to (1.1). To that end,
we first provide the following useful result which provides the solution of the linear form of (1.1).

We consider the following linear boundary value problem
CDβ,ℵ

b− (φp(CDα,ℵ
b− y(t))) = h(t), t ∈ [a, b]

y(a) = Dα,ℵ
b− y(a) = 0, y(b) = Dα,ℵ

b− y(b) = 0

Lemma 3.1. Let h ∈ C([a, b],R) and 1 < α, β ≤ 2. Then, y ∈ C[a, b] is a solution if and only if

y(t) = 1
Γ(α)(Γ(β))q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)h(τ)dτ

)
ds
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where G1(t, s) and G2(t, s) provided by

G1(t, s) =


ℵ(b)−ℵ(t)
ℵ(b)−ℵ(a)(ℵ(s) − ℵ(a))β−1, s ≤ t

ℵ(b)−ℵ(t)
ℵ(b)−ℵ(a)(ℵ(s) − ℵ(a))β−1 − (ℵ(s) − ℵ(t))β−1, s ≥ t

(3.1)

and

G2(t, s) =


ℵ(b)−ℵ(t)
ℵ(b)−ℵ(a)(ℵ(s) − ℵ(a))α−1, s ≤ t

ℵ(b)−ℵ(t)
ℵ(b)−ℵ(a)(ℵ(s) − ℵ(a))α−1 − (ℵ(s) − ℵ(t))α−1, s ≥ t

Proof. Let −φp(CDα,ℵ
b− y(t)) := v(t). Then, (1.1) changes to

−CDβ,ℵ
b− v(t) = h(t)

v(a) = 0, v(b) = 0

and 
CDα,ℵ

b− y(t) = −φqv(t) := k(t)

y(a) = 0, y(b) = 0
(3.2)

Solving the equation CDβ,ℵ
b− v(t) = −h(t),

v(t) = − 1
Γ(β)

∫ b

t
ℵ′(s)(ℵ(s) − ℵ(t))β−1h(s)ds+ c0 + c1(ℵ(b) − ℵ(t))

where c0 and c1 are constants. Using the condition v(b) = 0 yields c0 = 0. Since v(a) = 0, then

− 1
Γ(β)

∫ b

a
ℵ′(s)(ℵ(s) − ℵ(a))β−1h(s)ds+ c1(ℵ(b) − ℵ(a)) = 0

where
c1 = 1

Γ(β)(ℵ(b) − ℵ(a))

∫ b

a
ℵ′(s)(ℵ(s) − ℵ(a))β−1h(s)ds

Therefore,

v(t) = ℵ(b) − ℵ(t)
Γ(β)(ℵ(b) − ℵ(a))

∫ b

a
ℵ′(s)(ℵ(s) − ℵ(a))β−1h(s)ds− 1

Γ(β)

∫ b

t
ℵ′(s)(ℵ(s) − ℵ(t))β−1h(s)ds

= 1
Γ(β)

∫ b

a
ℵ′(s)G1(t, s)h(s)ds

where G1(t, s) is provided in (3.1). Applying the integral Iα,ℵb− on both sides of the differential equation
in (3.2),

y(t) = 1
Γ(α)

∫ b

t
ℵ′(s)(ℵ(s) − ℵ(t))α−1k(s)ds+ d0 + d1(ℵ(b) − ℵ(t))

where d0 and d1 are constants. Using the boundary conditions y(a) = 0 and y(b) = 0, we obtain
d0 = 0 and

d1 = −1
Γ(α)(ℵ(b) − ℵ(a))

∫ b

a
ℵ′(s)(ℵ(b) − ℵ(s))α−1k(s)ds

Thus,

y(t) = 1
Γ(α)

∫ b

t
ℵ′(s)(ℵ(s) − ℵ(t))α−1k(s)ds− ℵ(b) − ℵ(t)

Γ(α)(ℵ(b) − ℵ(a))

∫ b

a
ℵ′(s)(ℵ(s) − ℵ(a))α−1k(s)ds

= −1
Γ(α)

∫ b

a
ℵ′(s)G2(t, s)k(s)ds
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Hence,

y(t) = −1
Γ(α)

∫ b

a
ℵ′(s)G2(t, s)(−φqv(s))ds

= 1
Γ(α)

∫ b

a
ℵ′(s)G2(t, s)φq

(
1

Γ(β)

∫ b

a
ℵ′(τ)G1(s, τ)h(τ)dτ

)
ds

= 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)h(τ)dτ

)
ds

Lemma 3.2. G1(t, s) and G2(t, s) have possess the following properties:

i. G1(t, s) and G2(t, s) are continuous functions on [a, b] × [a, b]

ii. G1(t, s) and G2(t, s) are non-negative functions on [a, b] × [a, b]

Proof. i. Since the function ℵ is a continuous function on [a, b], then the functions G1(t, s) and
G2(t, s) are continuous on [a, b] × [a, b].

ii. For s ≥ t,

G1(t, s) = ℵ(b) − ℵ(t)
ℵ(b) − ℵ(a)(ℵ(s) − ℵ(a))β−1 − (ℵ(s) − ℵ(t))β−1

= ℵ(b) − ℵ(t)
ℵ(b) − ℵ(a)(ℵ(s) − ℵ(a))β−1 − (ℵ(s) − ℵ(b) − ℵ(t) + ℵ(a))β−1

= ℵ(b) − ℵ(t)
ℵ(b) − ℵ(a)(ℵ(s) − ℵ(a))β−1 − (ℵ(s) − ℵ(a))β−1

[
1 − ℵ(t) − ℵ(a)

ℵ(s) − ℵ(a)

]β−1

= (ℵ(s) − ℵ(a))β−1
[ ℵ(b) − ℵ(t)

ℵ(b) − ℵ(a) −
(

1 − ℵ(t) − ℵ(a)
ℵ(s) − ℵ(a)

)β−1]
Since

ℵ(s) ≥ ℵ(t) ⇒ ℵ(s) − ℵ(a) ≥ ℵ(t) − ℵ(a)

⇒ 1 ≥ ℵ(t) − ℵ(a)
ℵ(s) − ℵ(a) ≥ ℵ(t) − ℵ(a)

ℵ(b) − ℵ(a)

⇒ 1 − ℵ(t) − ℵ(a)
ℵ(s) − ℵ(a) ≤ 1 − ℵ(t) − ℵ(a)

ℵ(b) − ℵ(a)

⇒
(

1 − ℵ(t) − ℵ(a)
ℵ(s) − ℵ(a)

)β−1
≤
(

1 − ℵ(t) − ℵ(a)
ℵ(b) − ℵ(a)

)β−1

⇒
(

1 − ℵ(t) − ℵ(a)
ℵ(s) − ℵ(a)

)β−1
≤ ℵ(b) − ℵ(t)

ℵ(b) − ℵ(a)
then

ℵ(b) − ℵ(t)
ℵ(b) − ℵ(a) −

(
1 − ℵ(t) − ℵ(a)

ℵ(s) − ℵ(a)

)β−1
≥ 0

Thus, G1(t, s) ≥ 0. Similarly, G2(t, s) ≥ 0.
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We assume that the function f(t, y) satisfies the following condition:

(H1) f : [a, b] × [0,∞) −→ [0,∞) is continuous.

We consider the Banach space Y = C[a, b] with maximum norm ∥y∥ = max
t∈[a,b]

|y(t)|, for y ∈ Y , and the

cone P = {y ∈ Y : y(t) ≥ 0, t ∈ [a, b]}. Define the operator A : P −→ Y with

Ay(t) = 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, y(τ))dτ

)
ds, t ∈ [a, b] (3.3)

Lemma 3.3. Ay ∈ P, for all y ∈ P. Especially, the operator A leaves the cone P invaryant, i.e.,
A(P) ⊂ P.

Proof. Using the condition (H1) and the positivity of the functions G1(t, s) and G2(t, s), we have
Ay(t) ≥ 0, for all y ∈ P and t ∈ [a, b]. Therefore, Ay ∈ P.

Lemma 3.4. The operator A defined by (3.3) is a completely continuous operator in Y .

Proof. Firstly, we show A : P −→ Y is well-defined, for all y ∈ Y . Let y ∈ Y . Then, we know that
y(t) ≥ 0. Let Ω ⊂ P be bounded. Then, there exists a positive constant M such that |f(τ, y(τ))| ≤ M ,
for all τ ∈ [a, b] and y ∈ Ω. Moreover, by the continuity of G1(t, s) and G2(t, s) on [a, b] × [a, b], for
fixed s ∈ [a, b] and for any ϵ > 0, there exists a constant δ > 0, such that t1, t2 ∈ [a, b] and |t1 − t2| < δ

imply that the function G2(t, s) satisfies∣∣∣∣G2(t1, s) −G2(t2, s)
∣∣∣∣ ≤ ϵ

[
M q−1

Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)dτ

)
ds

]−1

Thus, for all y ∈ Ω,∣∣∣∣Ay(t1) −Ay(t2)
∣∣∣∣ ≤ 1

Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)|G2(t1, s) −G2(t2, s)|

∣∣∣∣φq(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, y(τ))dτ)

∣∣∣∣ds
≤ M q−1

Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)|G2(t1, s) −G2(t2, s)|φq

(∫ b

a
ℵ′(τ)G1(s, τ)dτ

)
ds

≤ ϵ

This means that A(Ω) is equicontinuous and by the Arzela-Ascoli Theorem, we obtain A : C[a, b] −→
C[a, b] is completely continuous.

Set
M1 :=

∫ b

a
ℵ′(s) max

t∈[a,b]
G1(t, s)ds, m1 :=

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G1(t, s)ds

and
M2 :=

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)ds, m2 :=

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)ds

such that ξ, ν ∈ (a, b) and ξ < ν. We assume that the function f(t, y) satisfies the following condition:

(H2) There exist numbers 0 < r1 < R1 < ∞ such that for all t ∈ [a, b],

f(t, y) ≥ rp−1
1

Γ(α)p−1Γ(β)
m1m

p−1
2

, 0 ≤ y ≤ r1

and
f(t, y) ≤ Rp−1

1
Γ(α)p−1Γ(β)
M1M

p−1
2

, 0 ≤ y ≤ R1

The main results herein heavily rely on the fundamental and crucial Guo-Krasnosel’skii’s fixed point
theorem (Theorem 2.4).
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Theorem 3.5. Assume that conditions (H1) and (H2) are hold. Then, (1.1) has at least one positive
solution y(t) such that

r1 ≤ ∥y∥ ≤ R1, t ∈ [a, b]

Proof. For y ∈ P with ∥y∥ = r1, for s ∈ [a, b], we have, for all t ∈ [a, b],

|Ay(t)| =
∣∣∣∣ 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, y(τ))dτ

)
ds

∣∣∣∣
≥ 1

Γ(α)Γ(β)q−1

∫ ν

ξ
ℵ′(s)G2(t, s)φq

(∫ ν

ξ
ℵ′(τ)G1(s, τ)f(τ, y(τ))dτ

)
ds

≥ 1
Γ(α)Γ(β)q−1

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)φq

(∫ ν

ξ
ℵ′(τ) min

s∈[ξ,ν]
G1(s, τ)f(τ, y(τ))dτ

)
ds

≥ 1
Γ(α)Γ(β)q−1

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)φq

(
rp−1

1
Γ(α)p−1Γ(β)
m1m

p−1
2

∫ ν

ξ
ℵ′(τ) min

s∈[ξ,ν]
G1(s, τ)dτ

)
ds

= 1
Γ(α)Γ(β)q−1m

q−1
1 m2

r1Γ(α)Γ(β)q−1

mq−1
1 m2

= r1

= ∥y∥

Let Ω1 = {y ∈ Y : ∥y∥ < r1}. Then, this inequalities shows that

∥Ay∥ ≥ ∥y∥, y ∈ P ∩ ∂Ω1

Further, let Ω2 = {y ∈ Y : ∥y∥ ≤ R1}. Then, for all t ∈ [a, b],

|Ay(t)| =
∣∣∣∣ 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, y(τ))dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)φq

(∫ b

a
ℵ′(τ) max

s∈[a,b]
G1(s, τ)f(τ, y(τ))dτ

)
ds

≤ 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)φq

(
Rp−1

1
Γ(α)p−1Γ(β)
M1M

p−1
2

∫ b

a
ℵ′(τ) max

s∈[a,b]
G1(s, τ)dτ

)
ds

= 1
Γ(α)Γ(β)q−1M

q−1
1 M2

R1Γ(α)Γ(β)q−1

M q−1
1 M2

= R1

= ∥y∥

Hence,
∥Ay∥ ≤ ∥y∥, y ∈ P ∩ ∂Ω2

Consequently, by Guo-Krasnosel’skii fixed point theorem, it follow that A has a fixed point in P ∩
(Ω2 \ Ω1) such that r1 ≤ ∥y∥ ≤ R1.

Theorem 3.6. Let (H1) and (H2) are hold. Moreover, assume

(H3) There exist numbers rk, Rk ∈ R+, k ∈ {1, 2, ..., n}, and

0 < r1 < R1 < r2 < R2 < ... < rn < Rn < ∞
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such that for all t ∈ [a, b],

f(t, yk) ≥ rp−1
k

Γ(α)p−1Γ(β)
m1m

p−1
2

, 0 ≤ yk ≤ rk

and
f(t, yk) ≤ Rp−1

k

Γ(α)p−1Γ(β)
M1M

p−1
2

, 0 ≤ yk ≤ Rk

Then, (1.1) has at least n positive solution such that rk ≤ ∥yk∥ ≤ Rk, k ∈ {1, 2, ..., n}.

Proof. Let Ωrk
= {yk ∈ Y : ∥yk∥ < rk} and for all yk ∈ P

|Ayk(t)| =
∣∣∣∣ 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, yk(τ))dτ

)
ds

∣∣∣∣
≥ 1

Γ(α)Γ(β)q−1

∫ ν

ξ
ℵ′(s)G2(t, s)φq

(∫ ν

ξ
ℵ′(τ)G1(s, τ)f(τ, yk(τ))dτ

)
ds

≥ 1
Γ(α)Γ(β)q−1

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)φq

(
rp−1
k

Γ(α)p−1Γ(β)
m1m

p−1
2

∫ ν

ξ
ℵ′(τ) min

s∈[ξ,ν]
G1(s, τ)dτ

)
ds

≥ 1
Γ(α)Γ(β)q−1

[rp−1
k ]q−1[Γ(α)p−1]q−1Γ(β)q−1

mq−1
1 [mp−1

2 ]q−1

∫ ν

ξ
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)φq

(
m1

)
ds

= rkm
q−1
1

mq−1
1 m2

∫ b

a
ℵ′(s) min

t∈[ξ,ν]
G2(t, s)ds

= rk

which implies that ∥Ayk∥ ≥ ∥yk∥, for all yk ∈ P ∩ Ωrk
. Further, for ΩRk

= {yk ∈ Y : ∥yk∥ < Rk} and
for all yk ∈ P

|Ayk(t)| =
∣∣∣∣ 1
Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s)G2(t, s)φq

(∫ b

a
ℵ′(τ)G1(s, τ)f(τ, yk(τ))dτ

)
ds

∣∣∣∣
≤ 1

Γ(α)Γ(β)q−1

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)φq

(
Rp−1
k

Γ(α)p−1Γ(β)
M1M

p−1
2

∫ b

a
ℵ′(τ) max

s∈[a,b]
G1(s, τ)dτ

)
ds

≤ 1
Γ(α)Γ(β)q−1

[Rp−1
k ]q−1[Γ(α)p−1]q−1Γ(β)q−1

M q−1
1 [Mp−1

2 ]q−1

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)φq

(
M1

)
ds

= RkM
q−1
1

M q−1
1 M2

∫ b

a
ℵ′(s) max

t∈[a,b]
G2(t, s)ds

= Rk

which implies that ∥Ayk∥ ≤ ∥yk∥, for all yk ∈ P ∩ ΩRk
. By part (ii) of Theorem 2.4, it follows that

A has a fixed point in P ∩ (ΩRk
\ Ωrk

) that yk, k ∈ {1, 2, ..., n}, are positive solutions such that
rk ≤ ∥yk∥ ≤ Rk, t ∈ [a, b].

Theorem 3.7. Let (H1) and (H2) are hold. Assume

(H4) There exist numbers rk, Rk ∈ R+, k ∈ {1, 2, ..., n} and

0 < r1 < R1 < r2 < R2 < ... < rn < Rn < ∞
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such that for all t ∈ [a, b],

f(t, yk) ≥ Rp−1
k

Γ(α)p−1Γ(β)
m1m

p−1
2

, 0 ≤ yk ≤ Rk (3.4)

f(t, yk) ≤ rp−1
k

Γ(α)p−1Γ(β)
M1M

p−1
2

, 0 ≤ yk ≤ rk (3.5)

Then, (1.1) has at least n positive solutions such that rk ≤ ∥yk∥ ≤ Rk, k ∈ {1, 2, ..., n}.

The proof of Theorem 3.7 is similar to the proof of Theorem 3.6 by the part (i) of Theorem 2.4.

Example 3.8. Consider the following ℵ-CFBVP:
cD

4
3 ,t

1− (φp(cD
3
2 ,t

1− y(t))) =
√

1 + t(sin 1
1+y + 102), t ∈ [0, 1]

y(0) = D
3
2 ,t

1− y(0) = 0, y(1) = D
3
2 ,t

1− y(1) = 0
(3.6)

Note that (3.6) is a particular case of (1.1) with ℵ(t) = t, f(t, y) =
√

1 + t
(
sin 1

1+y + 102
)

and a = 0,
b = 1, α = 3

2 , β = 4
3 , ξ = 1

3 , ν = 1
2 , and p = 2. Thus,

G1(t, s) =
{

(1 − t)s
1
3 , s ≤ t

(1 − t)s
1
3 − (s− t)

1
3 , s ≥ t

and

G2(t, s) =
{

(1 − t)s
1
2 , s ≤ t

(1 − t)s
1
2 − (s− t)

1
2 , s ≥ t

Hence,

(H1) f(t, y) =
√

1 + t
(
sin 1

1+y + 102
)
, for all (t, y) ∈ [0, 1] × [0,∞), is continuous

(H2)

f(t, y) ≤ R
Γ(3

2)Γ(4
3)

M1M2
= R

(0, 8862)(0, 8991)
M1M2

∼= R
0, 7967
M1M2

, 0 ≤ y ≤ R

and
f(t, y) ≥ r

Γ(3
2)Γ(4

3)
m1m2

= r
(0, 8862)(0, 8991)

m1m2
∼= r

0, 7967
m1m2

, 0 ≤ y ≤ r

Therefore,

M1 =
∫ 1

0
max
t∈[0,1]

G1(t, s)ds = 3
4

M2 =
∫ 1

0
max
t∈[0,1]

G2(t, s)ds = 2
3

m1 =
∫ 1

2

1
3

min
t∈[ 1

3 ,
1
2 ]
G1(t, s)ds ∼= 0, 0142

and
m2 =

∫ 1
2

1
3

min
t∈[ 1

3 ,
1
2 ]
G2(t, s)ds ∼= 0, 0262

Thereby,
f(t, y) ≤ 2(0, 7967)

0, 5
∼= 3, 1868
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and
f(t, y) ≥

1
2.103 (0, 7967)

0, 00037
∼= 1, 0765

with r = 1
2.103 and R = 2. Thus, all the conditions of Theorem 3.5 are satisfied. Hence, (3.6) has a

unique solution on [0, 1] such that 1
2.103 ≤ ∥y∥ ≤ 2.

4. Conclusion

In conclusion, this study delves into the investigation of ℵ-CFBVP involving the p-Laplacian operator.
Through a meticulous examination of the problem setup and employing well-established mathematical
techniques, we have derived significant existence results.

Firstly, by exploiting the properties of the p-Laplacian operator and leveraging the theory of fractional
calculus, we formulated the ℵ-CFBVP. This problem encapsulates phenomena where the behavior of
the system exhibits fractional-order dynamics, and the p-Laplacian operator accounts for nonlinear
effects. Subsequently, by applying suitable fixed-point theorems and employing appropriate function
spaces, we established the existence of solutions to the formulated boundary value problem. Our
results not only confirm the existence of solutions but also provide conditions under which uniqueness
can be guaranteed. These findings are crucial for understanding the behavior of systems governed by
fractional differential equations with nonlinear operators. Moreover, our analysis sheds light on the
intricate interplay between the fractional order, nonlinearity, and boundary conditions. By delineat-
ing the conditions under which solutions exist, we contribute to the theoretical framework underlying
fractional boundary value problems with the p-Laplacian operator. As we navigate the diverse land-
scapes of physics, engineering, and applied mathematics, the outcomes of this research open avenues
for further exploration. The ℵ-CFBVP with the p-Laplacian operator provide a rich framework for
understanding the dynamics of systems with fractional derivatives and nonlinearities.

Furthermore, the results presented herein have potential implications in various fields, including math-
ematical physics, engineering, and biology. Systems exhibiting fractional-order dynamics with nonlin-
earities are prevalent in nature and engineering applications. The insights gained from this study can
aid in modeling, analysis, and control of such systems, thereby facilitating advancements in diverse
areas of science and technology. The application of fractional order p-Laplacian operators in more
irregular and complex geometries can enable innovative designs in materials science and engineering.
Fractional dynamical models can more accurately represent population dynamics and disease spread
in biology.

In future research, extending this work to more complex scenarios and exploring applications in specific
scientific domains could deepen our understanding and broaden the impact of the presented results.
This study, thus, stands as a valuable contribution to the evolving field of fractional calculus, empha-
sizing the continued relevance and potential applications of these mathematical tools in addressing
real-world challenges.
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Abstract − This study proves that the Diophantine equation
(
9d2 + 1

)x +
(
16d2 − 1

)y =
(5d)z has a unique positive integer solution (x, y, z) = (1, 1, 2), for all d > 1. The proof
employs elementary number theory techniques, including linear forms in two logarithms and
Zsigmondy’s Primitive Divisor Theorem, specifically when d is not divisible by 5. In cases
where d is divisible by 5, an alternative method utilizing linear forms in p-adic logarithms is
applied.
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1. Introduction

The exponential Diophantine equation ex + fy = gz involves coprime positive integers e, f , and
g greater than 1. Solutions (x, y, z) satisfying this equation are referred to as valid solutions to
the provided equation [1]. In 1956, Sierpinski [2] demonstrated that by substituting exponential
expressions for the sides of the Pythagorean theorem into variables, the exponential Diophantine
equation 3x + 4y = 5z has a unique solution, specifically (2, 2, 2). Furthermore, Jeśmanowicz [3]
extended this equation to various Pythagorean triples, affirming that for positive integers e, f, and g

that satisfy the exponential Diophantine equation, the unique solution remains (2, 2, 2).

In 1994, Terai [4] proposed that if the equation ek + f l = gm holds for positive constant integers k, l,
and m with m ≥ 2, multiple known solutions (k, l, m) exist for the equation, except for certain specific
sets of triples (e, f, g). This conjecture is proved for many special cases. One of them is as follows:(

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z (1.1)

This study explores the solutions of the following exponential Diophantine equation(
9d2 + 1

)x
+
(
16d2 − 1

)y
= (5d)z (1.2)

(1.2) is a specific case derived from (1.1), particularly when the condition p + u = w2 is satisfied.
Several specific instances of (1.1) have been explored, confirming the validity of Terai’s conjecture.
Some of these are as follows:
1alan@yildiz.edu.tr; 2tuba.cokoksen@std.yildiz.edu.tr (Corresponding Author)
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https://orcid.org/0009-0004-3164-1211
https://doi.org/10.53570/jnt.1479551


Journal of New Theory 47 (2024) 72-84 / On the Diophantine Equation (9d2 + 1)x + (16d2 − 1)y = (5d)z Regarding · · · 73

i.
(
4d2 + 1

)a +
(
5d2 − 1

)b = (3d)c [5]

ii.
(
d2 + 1

)a +
(
yd2 − 1

)b = (zd)c, 1 + y = z2 [6]

iii.
(
12d2 + 1

)a +
(
13d2 − 1

)b = (5d)c [7]

iv.
(
xd2 + 1

)a +
(
yd2 − 1

)b = (zd)c , z|d [8]

v.
(
xd2 + 1

)a +
(
yd2 − 1

)b = (zd)c , d = ∓1 (mod 5) [9]

vi.
(
18d2 + 1

)a +
(
7d2 − 1

)b = (5d)c [10]

vii.
(
(x + 1)d2 + 1

)a +
(
xd2 − 1

)b = (zd)c, 2x + 1 = z2 [11]

viii.
(
3xd2 − 1

)a +
(
x(x − 3)d2 + 1

)b = (xd)c [12]

ix.
(
4d2 + 1

)a +
(
21d2 − 1

)b = (5d)c [13]

x.
(
5pd2 − 1

)a +
(
p(p − 5)d2 + 1

)b = (pd)c [14]

xi.
(
3d2 + 1

)a +
(
bd2 − 1

)b = (cd)c [15]

xii.
(
4d2 + 1

)a +
(
45d2 − 1

)b = (7d)c [16]

xiii.
(
6d2 + 1

)a +
(
3d2 − 1

)b = (3d)c [17]

xiv.
(
c(c − l)d2 + 1

)a +
(
cld2 − 1

)b = (cd)c [18]

xv.
(
44d2 + 1

)a +
(
5d2 − 1

)b = (7d)c [19]

This research is dedicated to exploring and analyzing Terai’s conjecture, focusing specifically on in-
vestigating the exponential Diophantine equation.

2. Preliminaries

This section presents some basic properties to be required in the following section.

Theorem 2.1. For any positive integer d, (1.2) possesses a sole and distinct positive integer solution,
namely, (x, y, z) = (1, 1, 2).

The proof of this theorem involves several important steps. Firstly, elementary methods, such as
congruences and properties of the Jacobi symbol are employed to simplify the solution. Particular
attention is given to the case where x = 1, especially when d ≡ ±2 (mod 5). Subsequently, a lower
bound for linear forms in two logarithms, as established by Laurent [20], is utilized.

In cases where d ≡ 0 (mod 5), a result concerning linear forms in p-adic logarithms, as detailed in
Bugeaud’s study [21], is applied. Conversely, for the case d ≡ ±1 (mod 5), an earlier version of the
Primitive Divisor Theorem, is attributed to Zsigmondy [22].

Definition 2.2. The expression of the absolute logarithmic height for any non-zero algebraic number
α with degree m over Q is provided by the following

h(α) = 1
m

(
log

(
|a0| +

m∑
i=0

log
(
max{1, |α(i)|}

)))

Here, the symbol a0 denotes the leading coefficient of the minimal polynomial of α over Z, and α(i)

represents the conjugates of α.

The linear form defined by L = k1α1 + k2α2 is an expression involving two real algebraic numbers, α1

and α2, where the absolute values of both α1 and α2 are greater than or equal to 1. The coefficients
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k1 and k2 are positive integers. The linear form is as follows:

Λ = k2 log α2 − k1 log α1

Let D = [Q(α1, α2) : Q]. Set
k′ = k1

D log K2
+ k2

D log K1

where K1 and K2 are real numbers greater than 1, satisfying

log Ki ≥ max
{

h(αi),
| log αi|

D
,

1
D

}
, i ∈ {1, 2}

The following proposition is a specific instance derived from Corollary 2 in [20], with the values m = 10
and C2 = 25.2 chosen as indicated in Table 1 [20].

Proposition 2.3. [20] Given the previously defined variables Λ, αi, D, Ki, and k′ where αi > 1, for
i ∈ {1, 2}, and assuming that α1 and α2 are not multiplicatively related, the following inequality is
valid:

log |Λ| ≥ −25.2 D4
(

max
{

log k
′ + 0.38,

10
D

, 1
})

log K1 log K2

In this context, a specific case is considered where y1 = y2 = 1 from Theorem 2 [21], referencing
a result from [21]. Prior to investigating this result, it is pertinent to reintroduce some notations.
Take an odd prime p and define vp as the p-adic valuation normalized such that vp(p) = 1. Consider
two nonzero integers a1 and a2. The smallest positive integer g satisfying the following conditions is
identified:

vp(a1
g − 1) > 0 and vp(a2

g − 1) > 0

Suppose that there exists a real number E such that

vp(a1
g − 1) ≥ E >

1
p − 1

The following theorem provides a specific upper bound for the p-adic valuation of

Λ = a1
k1 − a2

k2

where k1 and k2 are positive integers.

Proposition 2.4. [21] Let K1, K2 > 1 be real numbers such that

log Ki ≥ max {log |ai|, E log p}, i ∈ {1, 2}

and put
t′ = k1

log K2
+ k2

log K1

If a1 and a2 are multiplicatively independent then, the upper estimates can be expressed as follows

vp(Λ) ≤ 36.1g

E3(log p)4
(
max{log t′ + log(E log p) + 0.4, 6E log p, 5}

)2 log K1 log K2

Proposition 2.5. [22] Consider relatively prime integers E and F with E > F ≥ 1. Define the
sequence {an}n≥1 as

an = En + F n

For n > 1, the sequence an has a prime factor not dividing a1a2a3 · · · an−1, except when (E, F, n) ̸=
(2, 3, 1).
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3. Main Results

This section presents the proof of Theorem 2.1, based on a series of lemmas.

Lemma 3.1. If (x, y, z) represents a positive integer solution of (1.2), then it follows that y must be
an odd integer.

Proof. If z ≤ 2, the solution (x, y, z) = (1, 1, 2) is clearly the only solution to (1.2). However, when
assuming z ≥ 3, taking (1.2) modulo d2 results in 1 + (−1)y ≡ 0 (mod d2). This implies that y must
be odd since d2 > 2.

Lemma 3.2. In (1.2), if d is even, then x is also even. Conversely, if d is odd, then x is odd as well.

Proof. Applying modulo d3 to (1.2), it follows that

1 + 9d2x + (−1) + 16d2y ≡ 0 (mod d3)

and thus
9x + 16y ≡ 0 (mod d)

It can be seen from here that if d is even, then x is also even. Similarly, if d is odd, then x is also odd.

Lemma 3.3. [23] Consider positive integers p, u, and w and d > 1 such that p + u = w2. Suppose a
positive integer solution (x, y, z) to the exponential Diophantine equation(

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z

where x ≥ y. The following inequalities hold true:2 −
log

(
w2

p

)
log(wd)

x < z ≤ 2x

Moreover, if y is the larger value, then2 −
log

(
w2d2

ud2−1

)
log(wd)

 y < z ≤ 2y

In particular, when M = max{x, y} > 1, it follows that2 −
log

(
w2

min
{

p,u− 1
d2
})

log(wd)

M < z < 2M

This refined characterization delineates the possible range of values for z based on the parameter M

and the given variables.

3.1. The Case 5|d

This section proves that Theorem 2.1 holds true under the condition 5|d.

Lemma 3.4. If a positive integer solution (x, y, z) to (1.2) is considered under the assumption that
d is congruent to 0 in modulo 5, then the only positive integer solution to (1.2) is (x, y, z) = (1, 1, 2).

Proof. Certainly, (1, 1, 2) is the unique solution of (1.2) when M = max{x, y} = 1. Assume that
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M > 1. Applying Lemma 3.3 for d ≥ 5, it follows that

1.68M <

2 −
log

(
25
9

)
log(25)

 < z ≤ 2M

Thus, it follows that z ≥ 5. Given that y is odd, as stated in Lemma 3.1,

Λ = α1
s1 − αs2

is set up where a1 = 9d2 + 1, a2 = 1 − 16d2, s1 = x, and s2 = y.

Considering p = 5 and setting g = 1 satisfies the condition outlined before Proposition 2.4. Therefore,
set E = 2 and apply Proposition 2.4 to obtain

2z ≤ 36.1
8(log 5)4

(
max

{
log s

′ + log(2 log 5) + 0.4, 12 log 5, 5
})2

log
(
9d2 + 1

)
log

(
16d2 − 1

)
(3.1)

where
s

′ = x

log (16d2 − 1) + y

log (9d2 + 1)

Since z ≥ 5, applying modulo d4 to (1.2) yields 9x + 16y ≡ 0 (mod d2). Then, M ≥ d2

25 . As

z ≥

2 −
log

(
25
9

)
log(5d)

M

by Lemma 3.3, (3.1), and r
′ ≤ M

log 3d ,

2

2 −
log

(
25
9

)
log(5d)

M ≤ 36.1
8(log 5)4

(
max

{
log

(
M

log 3d

)
+ log(2 log 5) + 0.4, 12 log 5

})2

log
(
9d2 + 1

)
log

(
16d2 − 1

) (3.2)

is obtained. Let
k = max

{
log

(
M

log 3d

)
+ log(2 log 5) + 0.4, 12 log 5

}
Suppose

k = log
(

M

log 3d

)
+ log(2 log 5) + 0.4 ≥ 12 log 5

The inequality
log M ≥ 12 log 5 − log(2 log 5) − 0.4

leads to the conclusion that M > 50841462. However, from (3.2)

2M ≤ (0.68)(log M + 1.57)2 log(225M + 1) log(400M − 1)

and this implies M < 8128. This discrepancy results in a contradiction. If k = 12 log 5, then (3.2)
takes the form

2d2

25

2 −
log

(
25
9

)
log(5d)

 ≤ 251 log(9d2 + 1) log(16d2 − 1)

This implies that d ≤ 629. Hence,

M <
251 log

(
9d2 + 1

)
log

(
16d2 − 1

)
2
(

2 − log( 25
9 )

log(5d)

)
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1.68x <

2 −
log

(
25
9

)
log(25)

x <

2 −
log

(
25
9

)
log(5d)

x < z ≤ 2x (3.3)

and

1.84y <

2 −
log

(
26
16

)
log(25)

 y <

2 −
log

(
26d2−26
16d2−16

)
log(5d)

 y (3.4)

<

2 −
log

(
25d2

16d2−1

)
log(5d)

 y < z ≤ 2y

(3.3) and (3.4) lead to the conclusion that there are no positive integer solutions for (1.2) when z ≤ 6.
Assuming z > 6, an analysis of (1.2) is performed by considering congruences modulo d4, d6, and d8.

i. Applying modulo d4 to (1.2) results in 9d2x + 16d2y ≡ 0 (mod d4) which is further expressed as

9x + 16y ≡ 0 (mod d2) (3.5)

ii. Analysis of (1.2) yields a simplified expression

9x + 92d2 x(x − 1)
2 + 16y − 162d2 y(y − 1)

2 ≡ 0 (mod d4) (3.6)

iii. The analysis extends to modulo d8 with a more complex expression

9x + 92d2 x(x − 1)
2 + 93d4 x(x − 1)(x − 2)

6

+ 16y − 162d4 y(y − 1)
2 + 163d4 y(y − 1)(y − 2)

6 ≡ 0 (mod d6)
(3.7)

(3.5)-(3.7) summarize the congruence conditions derived from (1.2) modulo d2, d4, and d6, respectively.
These conditions lead to bounds on all the variables x, y, and z. Through an exhaustive search using
a Maple program running for several hours, no additional positive integer solutions (d, x, y, z) were
discovered for (1.2) beyond the solution (x, y, z) = (1, 1, 2) when 5|d. Hence, it is confirmed that there
are no other positive integer solutions to (1.2).

3.2. The Case d ≡ ±2 (mod 5)

This section proves that Theorem 2.1 holds true under the condition d ≡ ±2 (mod 5).

Lemma 3.5. For a positive integer solution (x, y, z) to (1.2) where d ≡ ±2 (mod 5), it is established
that the sole positive integer solution is (x, y, z) = (1, 1, 2).

Let d be even. Thus, x is also even from Lemma 3.2. Applying modulo 5 to (1.2) results in the
equation

2x + 3y ≡ 0 (mod 5)

However, this is impossible when x is even and y is odd.

Proceed by first establishing Lemma 3.6 and Lemma 3.7, starting with the assumption that d is odd,
which implies that x is also odd as indicated in Lemma 3.2.

Lemma 3.6. If d is odd and d ≡ ±2 (mod 5), then x = 1 and y is odd.

Proof. With reference to Lemma 3.2, our focus is directed specifically towards the scenario where
d > 2 is an odd number. Additionally, as implied by Lemma 3.1, it is established that y is an odd
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integer. Consequently, (
9d2 + 1
16d2 − 1

)
=
(

25d2

16d2 − 1

)
= 1

and ( 5d

16d2 − 1

)
=
( 5

16d2 − 1

)(
d

16d2 − 1

)

=
(

16d2 − 1
5

)(
16d2 − 1

d

)

=
(3

5

)(16d2 − 1
d

)
(−1)

16d2−2
2

d−1
2

= (−1)(−1)
d−1

2 (−1)(8d2−1) d−1
2

= (−1)(−1)
d−1

2 (8d2−1+1)

= −1

Using the Jacobi symbol notation
(∗

∗
)

deduce that z is an even integer. Suppose that x ≥ 3. Applying
modulo 8 to (1.2)

2x + (−1)y ≡ 1 (mod 8)

and thus
2x ≡ 2 (mod 8)

This implies that x must be equal to 1.

Consequently, (1.2) transforms into the following

9d2 + 1 +
(
16d2 − 1

)y
= (5d)z (3.8)

Lemma 3.7. y ≥ 1
16
(
d2 − 9

)
Proof. As y ≥ 3 and x = 1, (1.2) leads to

(5d)z ≥ 9d2 + 1 +
(
16d2 − 1

)3
> (5d)3

Applying modulo d4 to equation (3.8) yields

9d2 + 1 + 16d2y − 1 ≡ 0 (mod d4)

and thus
9 + 16y ≡ 0 (mod d2)

Having established this claim, the subsequent step involves deriving an upper bound for y.

Lemma 3.8. y < 2521 log 5d

Proof. Consider (
9d2 + 1

)x
+
(
16d2 − 1

)y
= (5d)z (3.9)

If y = 1, then clearly z = 2. Assume that y ≥ 3. Then, z > 2 from (3.9). For simplicity set the
following notation p = 9d2 +1, q = 16d2 −1, and r = 5d and consider the linear form of two logarithms

Λ = z log r − y log q
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Since
0 < Λ < eΛ − 1 = rz

qy
− 1 = p

qy
(3.10)

then
log Λ < log p − y log q (3.11)

From Proposition 2.3,

log Λ ≥ −25.2D4
(
max

{
log t

′ + 0.38, 10
})2

log q log r (3.12)

where
t

′ = y

log r
+ z

log q

and

qy+1 − rz = qqx − rz = q (rz − p) − rz = (q − 1)rz − pq >
(
16d2 − 2

)
25d2 −

(
9d2 + 1

) (
16d2 − 1

)
> 0

Since z > 2, then qy+1 > rz. Therefore, t
′

< 2y+1
log r . Write M = y

log r , and thus

t
′

< 2M + 1
log r

Combining (3.11) and (3.12),

y log q < log p + 25.2
(

max
{

log
(

2M + 1
log r

)
+ 0.38, 10

})2
log q log r

Since log p
log q log r < 1 and log r = log 5d > 2, for d ≥ 3, the inequality can be expressed as follows:

M < 1 + 25.2 (max{log(2M + 0.5) + 0.38, 10})2

If log(2M + 0.5) + 0.38 > 10, then M ≥ 7532. However, the inequality

M < 1 + 25.2 (log(2M + 0.5) + 0.38)2

implies that M ≤ 1867. Thus, max {log(2M + 0.5) + 0.38, 10} = 10 implies M < 2521. Hence,
x < 2521 log 5d. By combining Lemma 3.7 and Lemma 3.8,

1
16
(
d2 − 9

)
< 2521 log 5d

This implies d ≤ 566. From (3.10),
z

y
− log q

log r
<

p

yqy log r

Thus, ∣∣∣∣ log q

log r
− z

y

∣∣∣∣ <
p

yqy log r

which further implies ∣∣∣∣ log q

log r
− z

y

∣∣∣∣ <
1

2y2

Thereby, z
y is a convergent in the simple continued fraction expansion to log q

log r . Consider z
y = an

bn

where an
bn

represents the n-th convergent of the simple continued fraction expansion of log q
log r . Since

gcd(an, bn) = 1, it follows that bn ≤ y. Hence, an upper bound for bn is given by bn < 2521 log 5d

according to Lemma 3.8. Any such convergent an
bn

satisfies

1
bn (bn + bn+1) <

∣∣∣∣ log q

log r
− an

bn

∣∣∣∣
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By setting bn+1 = un+1bn + bn−1,
1

(bn)2(bn + bn+1) <

∣∣∣∣ log q

log r
− an

bn

∣∣∣∣ <
p

yqy log r
<

p

bnqbn log r

where un is the n-th partial quotient of the simple continued fraction expansion of log q
log r refer to [24].

Therefore, bn and un+1 satisfy

un+1 + 2 >
qbn log r

pbn
(3.13)

As a final step, a short computer program in Maple was utilized to verify that no convergents an
bn

of
log q
log r satisfy equation (3.13) when bn < 2521 log(5d), for 1 < d ≤ 566. This process took only a few
seconds to complete, concluding the proof. Therefore, Lemma 3.5 is also proven.

3.3. The Case d ≡ ±1 (mod 5)

This section proves that Theorem 2.1 holds true under the condition d ≡ ±1 (mod 5).

Lemma 3.9. (1.2), with d being a positive integer such that d ≡ ±1 (mod 5), possesses a unique
positive integer solution (x, y, z) = (1, 1, 2).

Proof. Consider the positive integers k1 and k2 and a positive integer d satisfying d ≡ ±1 (mod 5).
(1.2) is expressed as follows:

9d2 + 1 = 5k1A,
(
9d2 + 1

)x
= 5k1xAx (3.14)

16d2 − 1 = 5k2B,
(
16d2 − 1

)y
= 5k2yBy (3.15)

where A and B are nonzero integers not congruent to 0 modulo 5. Then, (1.2) can be rewritten as

5k1xAx + 5k2yBy = (5m)z (3.16)

Firstly, consider the case k1x > k2y. This implies

5k2y
(
5k1x−k2yAx + By

)
= 5zmz

which leads to
k2y = z (3.17)

Substituting (3.17) back into (3.16),(
9d2 + 1

)x
=
(
(5d)k2

)y
−
(
16d2 − 1

)y
(3.18)

Applying Proposition 2.5 [22], y = 1 is found. Therefore, (3.15) simplifies to(
16d2 − 1

)y
= 5k2yBy = 5k2B (3.19)

Substituting (3.17) into (3.19) with y = 1,

16d2 = 5zB + 1 (3.20)

Delve into the case z = 3, for (1.2). This transforms into(
9d2 + 1

)x
+ 16d2 − 1 = (5d)3

However, when x ≥ 2, it leads to

(5d)3 >
(
9d2 + 1

)x
≥
(
9d2 + 1

)2
> 92d4

which results in the contradiction 53 > 92d since d > 1.
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Indeed, when y = 1 is set and x = 1 in (1.2), it simplifies to

9d2 + 1 + 16d2 − 1 = (5d)3

However, this results in a contradiction under the condition d ≡ ±1 (mod 5).

When z ≥ 4, investigating (1.2) in modulo d4 results in the inference that y = 1. This deduction is
made by employing Proposition 2.5 in [22]. This simplifies the equation to

9d2x + 16d2 ≡ 0 (mod d4)

and thus
9x + 16 ≡ 0 (mod d2)

It can be observed that
d2 ≤ 9x + 16 (3.21)

Substituting (3.20) into (3.21),
5zB ≤ 144x + 255 (3.22)

Since x < z, (3.22) turns into (3.23):
5zB ≤ 144z + 255 (3.23)

As a result, there are no positive integer solutions, for z > 4, and z = 4, the equation does not have
any positive integer solutions for appropriate values of x and y. Similarly, by employing analogous
procedures when k2y > k1x, it can be deduced that there exist no positive integer solutions for z ≥ 3.

Finally, investigate the scenario k1x = k2y. Summing up (3.14) and (3.15),

25d2 = 5k1A + 5k2B

Analyze this equation based on the positive integers k1 and k2:

i. k1 = 2 and k2 ≥ 3

If k1 = 2, then it is observed that k2 must be even while y is odd. Thus,

2x = k2y (3.24)

and there is a positive integer such that k3 satisfies 2k3 = k2. Putting it into the (3.24), x = k3y is
acquired. Then, (1.2) becomes ((

9d2 + 1
)k3
)y

+
(
16d2 − 1

)y
= (5d)z

Apply Proposition 2.5 [22], y = 1 is seen. Consequently, there are no solutions for x > 2.

ii. k1 ≥ 3 and k2 = 2

k1
k2

= y

x

since k1x = k2y. Note that gcd(x, y) = 1. Indeed, if there exists an odd prime p ≥ 1 such that p|x and
p|y, then by Zsigmondy Theorem [22] there is no solution, for x and y. Hence, it is clear that x = 2
and k2 = 2 where y is odd. Therefore,

y = k1 ≥ 3 and x = k2 = 2

(3.16) becomes
5k1xAx + 5k2yBy = (5d)z
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and thus
52y

(
A2 + By

)
= (5d)z

If 5 ∤
(
A2 + By

)
, then 2y = z. Then, (1.2) becomes(

9d2 + 1
)x

=
(
(5d)2

)y
−
(
16d2 − 1

)y

Applying Proposition 2.5 from Zsigmondy’s theorem, it follows that y = 1. However, this leads to a
contradiction. Therefore, there exist no positive integer solutions, for x and y. Thus, z ≤ 2.

If 5|
(
A2 + By

)
, by (3.17) and (3.19),

16d2 − 1 = 5k2B = 25B

and thus
9d2 + 1 = 5k1A

If add the above equations side by side, then

252 = 5k1 + 25B (3.25)

When taking (3.25) modulo 5,
1 ≡ B (mod 5)

In conclusion, no positive integer A can be found that satisfies the condition 5 |
(
A2 + By

)
.

4. Conclusion

This research investigates the equation (1.2) with specific parameters (p, u, w) = (9, 16, 5) and deter-
mines the unique solution (x, y, z) = (1, 1, 2) when d > 1. Particularly, it addresses an unexplored
area in the literature by considering the case where u is a positive even integer and p is an odd integer
in the equation (

pd2 + 1
)x

+
(
ud2 − 1

)y
= (wd)z

In doing so, it guides future research in solving equations where the coefficient u is a positive even
integer and contributes to the existing knowledge in this field. The aim is to take a step towards
finding and generalizing many equations, leading to a generalized equation.
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