Research Article
BibTex RIS Cite

Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study

Year 2017, Volume: 1 Issue: 1, 20 - 26, 28.12.2017

Abstract



. The thermal behaviors of the core/shell spherical Au@Pd nanoparticles (NPs) with different hollow Au core sizes for the diameter of 7nm and 8nm NPs were first investigated by molecular dynamics (MD) simulations. Size effect on their thermodynamic stability related to the melting behavior was examined by caloric curves, the specific heat capacity, self-diffusion coefficients and total radial distribution functions under continuous heating process. The predicted results for four hollow NPs were evaluated by comparing with those obtained for the solid core-shell Au0.42Pd0.58 and  Au0.63Pd0.37 NPs. The hollow Au@Pd NPs with thin Pd shells exhibited less thermodynamic stability and smaller melting point than those of the solid ones with the same size. A two stage melting process was observed clearly for only one hollow NPs within the Pd rich compositions. The negative heat capacity occurs only at the second stage melting in hollow core-shell of Au0.34@Pd0.66 NPs. These results indicate that the composition of hollow Au@Pd NPs together with hollow size is more important than the shell thickness of NPs. Thus, an atomistic insight into the size and thermal effect on the hollow NPs has presented for the future construction of core-shell type Au@Pd nano catalysts with hollow structures.

References

  • [1] H. Liao, A. Fisher, and J. Xu, Zhichuan, Small, 11, 3221 (2015). DOI: 10.1002/smll.201403380
  • [2] S. Alayoglu, F. Tao, V. Altoe, C. Specht, Z. Zhu, F. Aksoy, D. Butcher, R. Renzas, Z.Liu, G. Somorjai, Catal. Lett. 141, 633 (2011). DOI:10.1007/s10562-011-0565-7
  • [3] D. Wang, Y. Li, Adv. Mater., 23, 1044 (2011). DOI:10.1002/adma.201003695.
  • [4] R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 112, 2373 (2012). DOI: 10.1021/cr100449n
  • [5] R. Ferrando, J. Jellinek and R. L Johnston, Chem. Rev. 108, 845 (2008). DOI: 10.1021/cr040090g.
  • [6] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Chem. Phys. Lett., 288, 243 (1998).
  • [7] L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, Nano Biomed. Eng., 2, 258 (2010). DOI: 10.5101/nbe.v2i4.
  • [8] W.-Y. Yu, G. M. Mullen, D. W. Flaherty and C.B. Mullins, J. Am. Chem. Soc.,136, 11070 (2014) DOI: 10.1021/ja505192v
  • [9] A Samanta, T Rajesh, R. N Devi, J. Mater. Chem. A, 2, 4398 (2014). DOI: 10.1039/C3TA15194H
  • [10] G. Yang, D. Chen, P. Lv, X. Kong, Y. Sun, Z. Wang, Z. Yuan, H. Liu and J. Yang, Sci. Rep. 6, 35252 (2016). DOI: 10.1038/srep35252
  • [11] C. Li, Y. Su, X. Lv, Y. Zuo, X. Yang, Y. Wang, Sensors and Actuators B, 171-172, 1192 (2012). DOI: 10.1016/j.snb.2012.06.073
  • [12] Q. Tan, C. Du, G. Yin, P. Zuo, X. Cheng, M. Chen, J. Catalysis, 295, 217 (2012). DOI: 10.1016/j.jcat.2012.08.016.
  • [13] C. Hsu, C. Huang, Y. Hao and F. Liu, Int. J. Hydrogen Energy, 38, 15532 (2013). DOI: 10.1016/j.ijhydene.2013.09.019
  • [14] C. Hsu, C. Huang, Y. Hao and F. Liu, Int. J. Power Sources, 243, 343 (2013). DOI: 10.1016/j.jpowsour.2013.05.185
  • [15] C. Hsu, C. Huang, Y. Hao, F. Liu, Nanoscale Res. Lett. 8, 113 (2013). DOI: 10.1186/1556-276X-8-113
  • [16] H. M. Song, D. H. Anjum, R. Sougrat, M. N. Hedhili and N. M. Khashab, J. Mater. Chem., 22, 25003 (2012). DOI: 10.1039/c2jm35281h
  • [17] R. Huang, Y-H Wen, G.-F Shao, Z-Z Zhu and S.-G. Sun, J. Phys. Chem. C,117, 6896 (2013). DOI: 10.1021/jp401423z
  • [18] A. Spitale, M. A. Perez, S. Mejía-Rosales, M. J. Yacaman, and M. M. Mariscal, Phys Chem Chem Phys, 17, 28060 (2015). DOI: 10.1039/c4cp06012a.
  • [19] G-F.Shao, N-N.Tu, T.-D. Liu, L.-Y. Xu and Y.-H. Wen, Physica E, 70, 11 (2015). DOI: 10.1016/j.physe.2015.02.008
  • [20] C. Fernandez-Navarro and S. Mejía-Rosales, J. Phys. Chem. C,121, 21658 (2017). DOI: 10.1021/acs.jpcc.7b04564
  • [21] S. Senturk Dalgic, Acta Physica Polonica A, 294, 531 (2016). DOI: 10.12693/APhysPolA.129.531
  • [22] R. Huang, G.-F. Shao, X-M. Zeng and Y-H. Wen, Sci. Rep. 4, 7051 (2014). DOI:10.1038/srep07051
  • [23] H. Akbarzadeh, E. Mehrjouei, A. N. Shamkhali, M. Abbaspour, S. Salemi and S. Ramezanzadeh, Inorg. Chem. Front., 4,1679 (2017). DOI: 10.1039/C7QI00370F
  • [24] DL_POLY: a molecular dynamics simulation package was written by W. Smith, T.R. Forester, and I.T. Todorov obtained from the website http://www.ccp5.ac.uk/DL_POLY
  • [25] A. Sutton, J. Chen, Philos. Mag. Lett., 61, 139 (1990). DOI: 10.1080/09500839008206493
  • [26] T. Cagin, Y. Kimura, Y. Qi, H. Li, H. Ikeda, W. L. Johnson, W.A. Goddard, Mater. Res. Soc. Symp. Proc. 554, 43 (1999). DOI: 10.1557/PROC-554-43
  • [27] OVITO: A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).DOI: 10.1088/0965-0393/18/1/015012
Year 2017, Volume: 1 Issue: 1, 20 - 26, 28.12.2017

Abstract

References

  • [1] H. Liao, A. Fisher, and J. Xu, Zhichuan, Small, 11, 3221 (2015). DOI: 10.1002/smll.201403380
  • [2] S. Alayoglu, F. Tao, V. Altoe, C. Specht, Z. Zhu, F. Aksoy, D. Butcher, R. Renzas, Z.Liu, G. Somorjai, Catal. Lett. 141, 633 (2011). DOI:10.1007/s10562-011-0565-7
  • [3] D. Wang, Y. Li, Adv. Mater., 23, 1044 (2011). DOI:10.1002/adma.201003695.
  • [4] R. Ghosh Chaudhuri, S. Paria, Chem. Rev., 112, 2373 (2012). DOI: 10.1021/cr100449n
  • [5] R. Ferrando, J. Jellinek and R. L Johnston, Chem. Rev. 108, 845 (2008). DOI: 10.1021/cr040090g.
  • [6] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Chem. Phys. Lett., 288, 243 (1998).
  • [7] L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, C. Zhang, Nano Biomed. Eng., 2, 258 (2010). DOI: 10.5101/nbe.v2i4.
  • [8] W.-Y. Yu, G. M. Mullen, D. W. Flaherty and C.B. Mullins, J. Am. Chem. Soc.,136, 11070 (2014) DOI: 10.1021/ja505192v
  • [9] A Samanta, T Rajesh, R. N Devi, J. Mater. Chem. A, 2, 4398 (2014). DOI: 10.1039/C3TA15194H
  • [10] G. Yang, D. Chen, P. Lv, X. Kong, Y. Sun, Z. Wang, Z. Yuan, H. Liu and J. Yang, Sci. Rep. 6, 35252 (2016). DOI: 10.1038/srep35252
  • [11] C. Li, Y. Su, X. Lv, Y. Zuo, X. Yang, Y. Wang, Sensors and Actuators B, 171-172, 1192 (2012). DOI: 10.1016/j.snb.2012.06.073
  • [12] Q. Tan, C. Du, G. Yin, P. Zuo, X. Cheng, M. Chen, J. Catalysis, 295, 217 (2012). DOI: 10.1016/j.jcat.2012.08.016.
  • [13] C. Hsu, C. Huang, Y. Hao and F. Liu, Int. J. Hydrogen Energy, 38, 15532 (2013). DOI: 10.1016/j.ijhydene.2013.09.019
  • [14] C. Hsu, C. Huang, Y. Hao and F. Liu, Int. J. Power Sources, 243, 343 (2013). DOI: 10.1016/j.jpowsour.2013.05.185
  • [15] C. Hsu, C. Huang, Y. Hao, F. Liu, Nanoscale Res. Lett. 8, 113 (2013). DOI: 10.1186/1556-276X-8-113
  • [16] H. M. Song, D. H. Anjum, R. Sougrat, M. N. Hedhili and N. M. Khashab, J. Mater. Chem., 22, 25003 (2012). DOI: 10.1039/c2jm35281h
  • [17] R. Huang, Y-H Wen, G.-F Shao, Z-Z Zhu and S.-G. Sun, J. Phys. Chem. C,117, 6896 (2013). DOI: 10.1021/jp401423z
  • [18] A. Spitale, M. A. Perez, S. Mejía-Rosales, M. J. Yacaman, and M. M. Mariscal, Phys Chem Chem Phys, 17, 28060 (2015). DOI: 10.1039/c4cp06012a.
  • [19] G-F.Shao, N-N.Tu, T.-D. Liu, L.-Y. Xu and Y.-H. Wen, Physica E, 70, 11 (2015). DOI: 10.1016/j.physe.2015.02.008
  • [20] C. Fernandez-Navarro and S. Mejía-Rosales, J. Phys. Chem. C,121, 21658 (2017). DOI: 10.1021/acs.jpcc.7b04564
  • [21] S. Senturk Dalgic, Acta Physica Polonica A, 294, 531 (2016). DOI: 10.12693/APhysPolA.129.531
  • [22] R. Huang, G.-F. Shao, X-M. Zeng and Y-H. Wen, Sci. Rep. 4, 7051 (2014). DOI:10.1038/srep07051
  • [23] H. Akbarzadeh, E. Mehrjouei, A. N. Shamkhali, M. Abbaspour, S. Salemi and S. Ramezanzadeh, Inorg. Chem. Front., 4,1679 (2017). DOI: 10.1039/C7QI00370F
  • [24] DL_POLY: a molecular dynamics simulation package was written by W. Smith, T.R. Forester, and I.T. Todorov obtained from the website http://www.ccp5.ac.uk/DL_POLY
  • [25] A. Sutton, J. Chen, Philos. Mag. Lett., 61, 139 (1990). DOI: 10.1080/09500839008206493
  • [26] T. Cagin, Y. Kimura, Y. Qi, H. Li, H. Ikeda, W. L. Johnson, W.A. Goddard, Mater. Res. Soc. Symp. Proc. 554, 43 (1999). DOI: 10.1557/PROC-554-43
  • [27] OVITO: A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).DOI: 10.1088/0965-0393/18/1/015012
There are 27 citations in total.

Details

Subjects Material Production Technologies
Journal Section Research Articles
Authors

Serap Dalgıc Senturk

Publication Date December 28, 2017
Published in Issue Year 2017 Volume: 1 Issue: 1

Cite

APA Dalgıc Senturk, S. (2017). Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study. Acta Materialia Turcica, 1(1), 20-26.
AMA Dalgıc Senturk S. Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study. ACTAMAT. December 2017;1(1):20-26.
Chicago Dalgıc Senturk, Serap. “Thermal Stability of Au@Pd Core/Shell Nanoparticles With Different Hollow Au Cores : Molecular Dynamics Study”. Acta Materialia Turcica 1, no. 1 (December 2017): 20-26.
EndNote Dalgıc Senturk S (December 1, 2017) Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study. Acta Materialia Turcica 1 1 20–26.
IEEE S. Dalgıc Senturk, “Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study”, ACTAMAT, vol. 1, no. 1, pp. 20–26, 2017.
ISNAD Dalgıc Senturk, Serap. “Thermal Stability of Au@Pd Core/Shell Nanoparticles With Different Hollow Au Cores : Molecular Dynamics Study”. Acta Materialia Turcica 1/1 (December 2017), 20-26.
JAMA Dalgıc Senturk S. Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study. ACTAMAT. 2017;1:20–26.
MLA Dalgıc Senturk, Serap. “Thermal Stability of Au@Pd Core/Shell Nanoparticles With Different Hollow Au Cores : Molecular Dynamics Study”. Acta Materialia Turcica, vol. 1, no. 1, 2017, pp. 20-26.
Vancouver Dalgıc Senturk S. Thermal Stability of Au@Pd Core/Shell Nanoparticles with different Hollow Au Cores : Molecular Dynamics study. ACTAMAT. 2017;1(1):20-6.