Research Article
BibTex RIS Cite

Fethiye Yöresinde Yetiştirilen Gökkuşağı Alabalıklarının (Oncorhynchus mykiss, Walbaum 1792) Doğal Radyoaktivite Düzeyleri

Year 2019, Volume: 15 Issue: 4, 517 - 523, 16.12.2019
https://doi.org/10.22392/actaquatr.561514

Abstract




Bu çalışmada Fethiye yöresinde
yetiştirilen gökkuşağı alabalıklarının farklı dokularındaki doğal radyonüklit (226Ra, 232Th
ve 40K) konsantrasyonları belirlenmiştir. Bu amaçla 4 farklı
çiftlikten yaklaşık aynı boylarda olan porsiyonluk balıklar alınarak solungaç,
karaciğer, deri ve kas dokuları ayrılmıştır. İşletmelerin kullandığı
porsiyonluk balık yemleri de örneklenmiştir.  Numunelerin yüksek çözünürlüklü germanyum
dedektörü ile gama spektrometrik ölçümleri gerçekleştirilmiş ve radyolojik risk
faktörleri değerlendirilmiştir. Alabalık örneklerinin yenilebilen kısımlarında 226Ra
aktivitesinin 1,47
±0,14-8,26±0,78 Bq kg-1232Th aktivitesinin
ÖSA
-3.38±0.30 Bq kg-1
ve 40K aktivitesinin 54,94
±2,23-140,86±5,82 Bq kg-1
aralığında değiştiği gözlenmiştir. Örneklerin radyum eşdeğer aktivitesi ve
yıllık etkin dozu sırasıyla
6,45-23,94 Bq
kg-1 ve
1,87-4,80 µSv
y
-1 olarak
hesaplanmıştır. Elde edilen bulgular balık yetiştiriciliği için referans oluşturması
bakımından önemlidir.




References

  • Adamu, R., Zakari, Y.I., Ahmed, A.Y., Abubakar, S., Vatsa, A.M. (2013). Analysis of activity concentrations due to natural radionuclides in the fish of Kainji Lake. Advances in Applied Science Research, 4(4), 283-287.
  • Ademola, J.A., Ehiedu, S.I. (2010). Radiological analysis of 40K, 226Ra and 232Th in fish, Crustacean and sediment samples from fresh and marine water in oil exploration area of ondo state, Nigeria. African Journal of Biomedical Research, 13, 99-106.
  • Beretka, J., Mathew, P.J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys, pp.48-87.
  • Billa, J., Han, F., Didla, S., Yu, H., Dimpah, J., Brempong, O., Adzanu, S. (2016). Radioactivity studies on farm raised and wild catfish produced in Mississippi, USA. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 203-210.
  • Bolaji, B.B., Francis, D.S., Ibitoruh, H. (2015). Human health impact of natural and artificial radioactivity levels in the sediments and fish of Bonny estuary, Niger Delta, Nigeria. Challenges, 6, 244-257.
  • BSGM (Balıkçılık ve Su Ürünleri Genel Müdürlüğü) (2019). T.C. Tarım ve Orman Bakanlığı su ürünleri istatistikleri. https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler /BSGM.pdf (Son erişim 6 Mayıs 2019).
  • Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., De Cort, M. (2019). Digital version of the European Atlas of natural radiation. Journal of Environmental Radioactivity, 196: 240-252.
  • Erenturk, S., Yusan, S., Turkozu, D.A., Camtakan, Z., Olgen, M.K., Aslani, M.A.A., Aytas, S., Isik, M.A. (2014). Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 300(3), 919-931.
  • Faanhof, A., Louw, I. (2001). The measurement of natural radioactivity in fish and the impact on humans. J Radioanalyt Nucl Chem 249:227–232.
  • FAO (2018). FAO Fisheries Department, Fishery Information, Data and Statistics Unit. FishStatJ, a tool for fishery statistics analysis, Release: 3.04.5, Universal Software for Fishery Statistical Time Series. Global aquaculture production: Quantity 1950–2016; Value 1950–2016; Global capture production: 1950–2016; 2018-03-16.
  • Fasae, K.P., Isinkaye, M.O. (2018). Radiological risks assessment of 238U, 232Th and 40K in fish feeds and catfish samples from selected fish farms in Ado e Ekiti, Nigeria. Journal of Radiation Research and Applied Sciences 11: 317-322.
  • Ghose, S., Alam, M.N., Islam, M.N. (2000). Radiation dose estimation from the analysis of radionuclides in marine fish of the Bay of Bengal. Radiat Protect Dosim 87:287–291.
  • Goddard, C.C., Mathews, C.P., Al Mamry, J. (2003). Baseline radionuclide concentrations in Omani Fish. Mar. Pollut. Bull. 46, 914–917.
  • Gorur, F.K., Keser, R., Akcay, N., Dizman, S. (2012). Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87:356-61.
  • IAEA (International Atomic Energy Agency) (2004). Sediment distribution coefficients and concentration factors for biota in the marine organisms. IAEA Tech. report ser. No. 422, Vienna.
  • ICRP (2012). Compendium of Dose Coefficients based on ICRP Publication 60. ICRP Publication 119. Ann. ICRP 41(Suppl.).Krieger, R. (1985). Radioactivity of construction materials Betonw. Fertigtl. Techn., 47, pp. 468-473.
  • Nasreddine, L., Samad, E., Hawalla, N., Baydoun, R., Hamze, M., Massin, P. (2008). Activity concentrations and mean annual effective dose from gamma emitting radionuclides in the Lebanese diet. Radiat. Protect. Dosim. 131:545–550.
  • Ojovan, M.I., Lee, W.E. (2014). Nuclear Waste Types and Sources. In: Ojovan,M.I.,Lee, W.E. (Eds), An Introduction to Nuclear Waste Immobilisation (Second Edition), pp 75-97. Elsevier Ltd. Waltham, USA.
  • Ozmen, S.F., Boztosun, I., Yavuz, M., Tunc, M.R. (2013). Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry. Radiat. Prot. Dosim. doi: http://dx.doi.org/10.1093/rpd/nct267.
  • Ozmen, S.F., Cesur, A., Boztosun, I., Yavuz, M. (2014). Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey Radiat. Phys. Chem., 103, pp. 37-44.
  • Saleh, I.H., Hafez, A.F., Elanany, N.H., Motaweh, H.A., Naim, M.A. (2007). Radiological Study on Soils, Foodstuff and Fertilizers in the Alexandria Region, Egypt. Turkish J Eng Env Sci, 31: 9-17.
  • Stricht, E.V.D., Kirchmann, R. (2001). Radioecology, Radioactivity & Ecosystems. Fortemps, Liege, pp. 219-303.
  • Tahir, S., Alaamer, A., Ayub, M., Khan, M. (2010). Radiometric analysis of samples of domestic fish species and radiological implications. Heal Phys, 98(5):741–744.
  • Topcuoglu, S., Karahan, G., Güngor, N., Kırbasoglu, C. (2003). Natural and artificial radioactivity in Emendere thermal spring area in Western Anatolia. Journal of Radioanalytical and Nuclear Chemistry, 256(3), 395-398.
  • TÜİK (2019). Su ürünleri istatistikleri. https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr (Son erişim 6 Mayıs 2019).
  • UNSCEAR (2000). Sources and effects of ionizing radiation. Report to General Assembly, with Scienti_c Annexes. United Nations Scienti_c Committee on the Effect of Atomic Radiation.
  • Yaprak, G., Aslani, M.A.A. (2010). External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia. J Radioanal Nucl Chem 283: 279-287.

Natural Radioactivity Levels of Rainbow Trout (Oncorhynchus mykiss, Walbaum 1792) Grown in Fethiye Region

Year 2019, Volume: 15 Issue: 4, 517 - 523, 16.12.2019
https://doi.org/10.22392/actaquatr.561514

Abstract

In this study, natural radionuclide (226Ra, 232Th and 40K) concentrations were determined in different tissues of rainbow
trout grown in Fethiye region. For this purpose, approximately the same size of portioned fish were taken from four different
farms and then gill, liver, skin and muscle tissues were separated. Portion fish feeds used by enterprises are also exemplified.
Gamma spectrometric measurements were performed with high purity germanium detector and radiological risk factors were
evaluated. It was observed that 226Ra activity in the edible parts of trout samples varied between 1.47±0.14-8.26±0.78 Bq kg-1
,
232Th activity varied between BDL-3.38±0.30 Bq kg-1
and 40K activity in the range of 54.94±2.23-140.86±5.82 Bq kg-1
. The
radium equivalent activity and annual effective dose of the samples were calculated as 6.45-23.94 Bq kg-1 and 1.87-4.80 µSv
year-1
, respectively. The findings are important in terms of forming a reference for fish farming.

References

  • Adamu, R., Zakari, Y.I., Ahmed, A.Y., Abubakar, S., Vatsa, A.M. (2013). Analysis of activity concentrations due to natural radionuclides in the fish of Kainji Lake. Advances in Applied Science Research, 4(4), 283-287.
  • Ademola, J.A., Ehiedu, S.I. (2010). Radiological analysis of 40K, 226Ra and 232Th in fish, Crustacean and sediment samples from fresh and marine water in oil exploration area of ondo state, Nigeria. African Journal of Biomedical Research, 13, 99-106.
  • Beretka, J., Mathew, P.J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys, pp.48-87.
  • Billa, J., Han, F., Didla, S., Yu, H., Dimpah, J., Brempong, O., Adzanu, S. (2016). Radioactivity studies on farm raised and wild catfish produced in Mississippi, USA. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 203-210.
  • Bolaji, B.B., Francis, D.S., Ibitoruh, H. (2015). Human health impact of natural and artificial radioactivity levels in the sediments and fish of Bonny estuary, Niger Delta, Nigeria. Challenges, 6, 244-257.
  • BSGM (Balıkçılık ve Su Ürünleri Genel Müdürlüğü) (2019). T.C. Tarım ve Orman Bakanlığı su ürünleri istatistikleri. https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler /BSGM.pdf (Son erişim 6 Mayıs 2019).
  • Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., De Cort, M. (2019). Digital version of the European Atlas of natural radiation. Journal of Environmental Radioactivity, 196: 240-252.
  • Erenturk, S., Yusan, S., Turkozu, D.A., Camtakan, Z., Olgen, M.K., Aslani, M.A.A., Aytas, S., Isik, M.A. (2014). Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey. Journal of Radioanalytical and Nuclear Chemistry, 300(3), 919-931.
  • Faanhof, A., Louw, I. (2001). The measurement of natural radioactivity in fish and the impact on humans. J Radioanalyt Nucl Chem 249:227–232.
  • FAO (2018). FAO Fisheries Department, Fishery Information, Data and Statistics Unit. FishStatJ, a tool for fishery statistics analysis, Release: 3.04.5, Universal Software for Fishery Statistical Time Series. Global aquaculture production: Quantity 1950–2016; Value 1950–2016; Global capture production: 1950–2016; 2018-03-16.
  • Fasae, K.P., Isinkaye, M.O. (2018). Radiological risks assessment of 238U, 232Th and 40K in fish feeds and catfish samples from selected fish farms in Ado e Ekiti, Nigeria. Journal of Radiation Research and Applied Sciences 11: 317-322.
  • Ghose, S., Alam, M.N., Islam, M.N. (2000). Radiation dose estimation from the analysis of radionuclides in marine fish of the Bay of Bengal. Radiat Protect Dosim 87:287–291.
  • Goddard, C.C., Mathews, C.P., Al Mamry, J. (2003). Baseline radionuclide concentrations in Omani Fish. Mar. Pollut. Bull. 46, 914–917.
  • Gorur, F.K., Keser, R., Akcay, N., Dizman, S. (2012). Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87:356-61.
  • IAEA (International Atomic Energy Agency) (2004). Sediment distribution coefficients and concentration factors for biota in the marine organisms. IAEA Tech. report ser. No. 422, Vienna.
  • ICRP (2012). Compendium of Dose Coefficients based on ICRP Publication 60. ICRP Publication 119. Ann. ICRP 41(Suppl.).Krieger, R. (1985). Radioactivity of construction materials Betonw. Fertigtl. Techn., 47, pp. 468-473.
  • Nasreddine, L., Samad, E., Hawalla, N., Baydoun, R., Hamze, M., Massin, P. (2008). Activity concentrations and mean annual effective dose from gamma emitting radionuclides in the Lebanese diet. Radiat. Protect. Dosim. 131:545–550.
  • Ojovan, M.I., Lee, W.E. (2014). Nuclear Waste Types and Sources. In: Ojovan,M.I.,Lee, W.E. (Eds), An Introduction to Nuclear Waste Immobilisation (Second Edition), pp 75-97. Elsevier Ltd. Waltham, USA.
  • Ozmen, S.F., Boztosun, I., Yavuz, M., Tunc, M.R. (2013). Determination of gamma radioactivity levels and associated dose rates of soil samples of the Akkuyu/Mersin using high-resolution gamma-ray spectrometry. Radiat. Prot. Dosim. doi: http://dx.doi.org/10.1093/rpd/nct267.
  • Ozmen, S.F., Cesur, A., Boztosun, I., Yavuz, M. (2014). Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey Radiat. Phys. Chem., 103, pp. 37-44.
  • Saleh, I.H., Hafez, A.F., Elanany, N.H., Motaweh, H.A., Naim, M.A. (2007). Radiological Study on Soils, Foodstuff and Fertilizers in the Alexandria Region, Egypt. Turkish J Eng Env Sci, 31: 9-17.
  • Stricht, E.V.D., Kirchmann, R. (2001). Radioecology, Radioactivity & Ecosystems. Fortemps, Liege, pp. 219-303.
  • Tahir, S., Alaamer, A., Ayub, M., Khan, M. (2010). Radiometric analysis of samples of domestic fish species and radiological implications. Heal Phys, 98(5):741–744.
  • Topcuoglu, S., Karahan, G., Güngor, N., Kırbasoglu, C. (2003). Natural and artificial radioactivity in Emendere thermal spring area in Western Anatolia. Journal of Radioanalytical and Nuclear Chemistry, 256(3), 395-398.
  • TÜİK (2019). Su ürünleri istatistikleri. https://biruni.tuik.gov.tr/medas/?kn=97&locale=tr (Son erişim 6 Mayıs 2019).
  • UNSCEAR (2000). Sources and effects of ionizing radiation. Report to General Assembly, with Scienti_c Annexes. United Nations Scienti_c Committee on the Effect of Atomic Radiation.
  • Yaprak, G., Aslani, M.A.A. (2010). External dose-rates for natural gamma emitters in soils from an agricultural land in West Anatolia. J Radioanal Nucl Chem 283: 279-287.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Süleyman Fatih Özmen 0000-0003-2168-124X

Mesut Yılmaz 0000-0001-8799-3452

Publication Date December 16, 2019
Published in Issue Year 2019 Volume: 15 Issue: 4

Cite

APA Özmen, S. F., & Yılmaz, M. (2019). Fethiye Yöresinde Yetiştirilen Gökkuşağı Alabalıklarının (Oncorhynchus mykiss, Walbaum 1792) Doğal Radyoaktivite Düzeyleri. Acta Aquatica Turcica, 15(4), 517-523. https://doi.org/10.22392/actaquatr.561514