Review
BibTex RIS Cite

Su Ürünlerinde Halofilik Bakteriler ve Endüstriyel Alanda Kullanımları

Year 2019, Volume: 15 Issue: 4, 535 - 545, 16.12.2019
https://doi.org/10.22392/actaquatr.569765

Abstract

Su
ürünlerine tuz ilave edilmesi ürünlerin su aktivitesini düşürmekte bozulmayı
geciktirmektedir. Ancak tuzlanmış, salamura, marine edilmiş, fermente su
ürünlerinde tuzu seven ve tuza tolerans gösteren halofilik bakterilerin
gelişimine neden olabilmektedir. Bu nedenle işlenmiş su ürünlerinde bozulmaya
daha çok tuzu seven ve tuza tolerans gösteren halofilik bakteriler sebep
olmaktadır. Halofilik bakterilerin işlenmiş su ürünlerinde gelişimi kalite
kaybına neden olabilmektedir ancak tuza toleranslı olan bazı halofilik
bakterileri türlerinin  fermente
ürünlerde gelişimi ürünlerde istenen tat ve aroma gelişimine neden
olabilmektedir. Ayrıca halofilik bakterilerin endüstriyel alanda çok sayıda
kullanım alanıda bulunmaktadır. Bu nedenle bu derleme çalışmasında halofilik
bakterileri türleri,
denizlerden, 
tuz göllerinden,  tuzlardan, tuzlanmış
ve fermente balık ürünlerinden izole edilen halofilik bakteriler,
tuz ve tuzlanmış ve fermente  balık
ürünleri tüketiminin insan sağlığına etkileri, su ürünlerinde halofilik bakterilerin
inhibisyonu ve halofilik bakterilerin endüstriyel alanda kullanımları konularında
yapılmış çalışmalara değinilmiştir.   

References

  • Abriouel, H., Benomar, N., Lucas, R., & Galvez, A. (2011). Culture-Independent Study of Diversity of Microbial Populations in Brines During Fermentation of Naturally – Fermented Alorena Green Table Olives, International Journal of Food Microbiology, 144, 487-496. DOI: 10.1016/j.ij.foodmicro.2010.11.006
  • Adewumi, G.A. (2019). Health Promoting Fermented Foods. Encyclopedia of Food Chemistry, 399-418.
  • Albuquerque, L., Taborda, M., Cono, V.L., Yakimov, M., & Costa, M.S.(2012).Natrinema salaciae sp. nov.,a Halophilic Archaeon Isolated From Deep, Hypersaline Anoxic Lake Medee in the Eastern Mediterranean Sea. Systematic and Applied Microbiology, 35, 368-373. DOI: dx.doi.org/10.1016/j.syamp.2012.06.005
  • Alfonzo, A., Gaglio, R., Francesca, N., Barbera, M., Saiano, F., Santulli, A., Matraxia, M., Rallo, F., & Moschetti, G. (2018). Influence of Salt of Different Origin on the Microbiological Characteristics, Histamine Generation and Volatile Profile of Salted Anchovies ( Engraulis encrasicolus L.), Food Control, 92, 301-311.DOI: doi.org/10.1016/j.foodcont.2018.05.003
  • Aravalli, R.N., She, Q., & Garrett, R.A. (1998). Archaea and The New Age of Microorganisms. Trends in Ecology & Evolution, 13 (5), 190-194.
  • Aksöz, N.(1985). Halofilik Bakteriler. Mikrobiyoloji Bülteni, 19, 161-167.
  • Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N., & Dastgheib, S.M.M.(2007). Decolorization of Textie Azo Dyes by Newly Isolated Halophilic and Halotolerant Bacteria. Biresorce Technology, 98 (11), 2082-2088.DOI: 10.1016/j.biortech.2006.08.020
  • Asker, D., & Ohta, Y. (1999). Production of Canthaxanthin by Extremely Halophilic Bacteria. Journal of Bioscience and Bioengineering, 88 (6), 617-621.
  • Bekhit, A.E.A., Duncan, A., Bah, C.S.F., Ahmed, I.A.M., Al-Juhaimi, F.Y., & Amin, H.F.(2018). Impact of Fermentation Conditions on the Physicochemical Properties, Fattyacid, and Cholesterol Contents in Salted- Fermented Hoki Roe. Food Chemistry, 264, 73-80. DOI: doi.org/10.1016/j.foodchem.2018.05.008
  • Birbir, M., & Sesal, C. (2003). Extremely Halophilic Bacterial Communities in Şereflikoçhisar Salt Lake in Turkey. Turkish Journal of Biology, 27, 7-22.
  • Boujida, N., Palau, M., Charfi, S., Moussaoui, N.E., Manresa, A., Minana-Galbis, D., Senhaji, N.S., & Abrini, J. (2018). Isolation and Characterization of Halophilic Bacteria Producing Exopolymers with Emulsifying and Antioxidant activities. Biocatalysis and Agricultural Biotechnology, 16, 631-637. DOI: doi.org/10.1016/j.bcab.2018.10.015
  • Chaiyanan, S., Chaiyanan, S., Maugel, T., Huo, A., Robb, F.T., & Colwell, R.R. (1999). Polyphasis Taxonomy of a Novel Halobacillus, Halobacillus thailandensis sp. nov. Isolated From Fish Sauce. Systematic and Applied Microbiology, 22, 360-365.
  • Chen, G.Q., & Jiang, X.R.(2018). Next Generation Industrial Biotechnology Based on Extremophilic Bacteria. Current Opinion in Biotechnogy, 50, 94-100.
  • Chhetri, V., Prakitchaiwattana, C., & Settachaimongkon, S. (2019). A Potential Protective Culture ; Halophilic Bacillus Isolates with Bacteriocin Encoding Gene Against Staphylococcus aureus in Salt Added Foods. Food Control, 104, 292-299. DOI: doi.org/10.1016/j.foodcont.2019.04.043
  • Chuprom, J., Bovornreungroj, P., Ahmad, M., Kantachote, D., & Dueramae, S. (2016). Aproach Toward Enhancement of Halophilic Protease Production by Halobacterium sp. Strain LBU50301 Using Statistical Design Response Surface Methodology. Biotechnology Reports, 10, 17-28. DOI: 10.1016/j.btre.2016.02.004
  • Cowan, D.A. (1992). Biotechnology of Archaea. Trends in Biotechnology, 10, 315-323.
  • Cui, H.L., Mou, Y.Z., Yang, X., Zhou, Y.G., Liu, H.C., & Zhou, P.J. (2012). Halorubellus salinus gen.nov., sp., nov. and Halorubellus litoreus sp.nov., novel Halophilic Archaea Isolated from a Marine Solar Saltern. Systematic and Applied Microbiology, 35, 30-34.DOI: 10.1016/j.syapm.2011.08.001
  • DasSarma, S., & DasSarma, P. (2015). Halophiles and Their Enzymes : Negativity Put To Good Use. Current Opinion in Microbiology, 25, 120-126.
  • Delgado-Garcia, M., Flores- Gallegos, A.C., Kirchmayr, M., Rodriguez, J.A., Mateos-Diaz, J.C., Aguilar, C.N., Muller, M., & Camacho-Ruiz, R.M. (2019). Bioprospection of Proteases from Halobacillus andaensis for Bioactive Peptide Production From Fish Muscle Protein, Electronic Journal of Biotechnology, 39, 52-60.DOI: doi.org/10.1016/j.ejbt.2019.03.001
  • Eichler, J. (2019). Halobacterium salinarum. Trends in Microbiology, In Press.
  • Flores-Gallegos, A.C., Delgado-Garcia, M., Ascacio-Valdes, J.A., Villareal-Morales, S., Rodriguez-Herrare, R. (2019). Chapter 13:Hydrolases of Halophilic Origin With Importance for the Food Industry, Enzymes in Food Biotechnology, 197-219.
  • Garcia- Torreiro, M., Lu-Chau, T.A., &Lema, J.M. (2018). Biopolymers Production by a Halophilic Bacteria in a Integrated Biorefinery. Smyposium 19:Biobased Resources and Biorefineries, 445, 551-553. DOI: doi.org/10.1016/jnbt.2018.05.072
  • Gassem, M.A. (2019). Microbiological and Chemical Quality of a Traditional Salted – Fermented Fish (Hout-Kasef) Product of a Jazan Region, Saudi Arabia. Saudi Journal of Biological Sciences, 26(1). DOI: 10.1016/j.sjbs.2017.04.003
  • Gram, L., & Huss, H.H. (1996). Microbiological Spoilage of Fish and Fish Products, International Journal of Food Microbiology, 33 (1), 121-137.
  • Grant, W.D., & Ross, H.N.M. (1986). The Ecology and Taxonomy of Halobacteria, FEMS Microbiology Letters , 39 (1-2), 9-15.
  • Gutierrez-Arnillas, E., Rodriguez, A., Sanroman, M.A., & Deive, F.J.(2016). New Sources of Halophilic Lipases: Isolation of Bacteria from Spanish and Turkish Saltworks. BiochemicalEngineeringJournal,109,170-177. DOI:dx.doi.org/10.1016/j.bej.2016.01.015
  • Haastrup, M.K., Johensen, P., Malskaer, A.H., Castro-Mejia, J.L., Kot, W., Krych, L., Arneborg, N., & Jespersen, L.(2018). Cheese Brines from Danish Dairies Reveal a Complex Microbiota Comprising Several Halotolerant Bacteria and Yeasts, International Journal of Food Microbiology, 285, 173-187. DOI: doi.org/10.1016/j.ijfoodmicro.2018.08.015
  • He, G., Wu, C., Huang, J., & Zhou, R. (2016). Acid Tolerance Response of Tetragenococcus halophilus: A Combined Physiological and Proteomic Anaysis. Process Biochemistry, 51, 213-219. DOI: dx.doi.org/10.1016/j.procbio.2015.11.035
  • Henriet, O., Fourmentin, J., Delince, B., & Mahillon, J. (2014). Exploring the Diversity of Extremely Halophilic Archaea in Food- Grade Salts. International Journal of Food Microbiology, 191, 36-44. DOI: 10.1016/j.ij.foodmicro.2014.08.019
  • Jung, J.Y., Lee, S.H., Lee, H.J., & Jeon, C.O. (2013). Microbial Succession and Metabolite Changes During Fermentation of Saeu-Jeot: Traditional Korean Salted Seafood, Food Microbiology, 34, 360-368. DOI: dx.doi.org/10.1016/j.fm.2013.01.009
  • Joo, W.A., & Kim, C.W. (2005). Proteomics of Halophilic Archaea, Journal of Chromatography B, 815, 237-250. DOI:10.1016//j.jchromb.2004.10.041
  • Khairina, R., Fitrial, Y., Satrio, H., & Rahmi, N. (2016). Physical, Chemical and Microbiological Properties of ‘’Ronto’’ a Traditional Fermented Shrimp from South Borneo, Indonesia, Aquatic Procedia, 7, 214-220. DOI: 10.1016/j.aqpro.2016.07.029
  • Kim, K.H., Lee, S.H., Chun, B.H., Jeong, S.E., & Jeon, C.O. (2019). Tetragenococcus halophilus MJ4 as a Starter Culture for Repressing Biogenic Amine ( Cadaverine) Formation During Saeu-Jeot (Salted Shrimp) Fermentation. Food Microbiology, 82, 465-473. DOI: doi.org/10.1016/j.fm.2019.02.017
  • Kimura, B., Konagaya, Y., & Fujii T.(2001). Histamine Formation by Tetragenococcus muriaticus, a Halophilic Lactic acid Bacterium Isolated from Fish Sauce.International Journal of Food Microbiology, 70, 71-77.
  • Kivistö, A.,Santala, V. &Karp, M. (2010). Hydrogen Production from Glyserol Using Halophilic Fermentataive Bacteria. Biresource Technology, 101(22), 8671-8677. DOI: 10.1016/j.biortech.2010.06.066
  • Kivistö, A.T., & Karp, M.T.(2011). Halophilic Anaerobic Fermantative Bacteria. Journal of Biotechnology, 152, 114-124.DOI. 10.1016/j.jbiotec.2010.08.014
  • Kompanowska-Jezierska, E. & Olszyriski, K.H. (2018). Chapter 13: The Role of High Salt Intake in the Development and Progression of Diverse Diseases. Food Quality : Balancing Health and Disease, 395-432.
  • Koo, O.K., Lee, S.J., Chung, K.R., Jang, D.J., Yang, H.J., & Kwon, D.Y. (2016). Korean Traditional Fermented Fish Products: jeotgal. Journal of Ethnic Foods. 3, 107-116. DOI: dx.doi.org/10.1016/j.jef.2016.06.004
  • Kuda, T., Izawa, Y., Ishii, S., Takahashi, H., Torido, Y., & Kimura, B.(2012). Supressive Effect of Tetragenococcus halophilus, Isolated From Fish-Nukazuke, on Histamine Accumulation in Salted and Fermented Fish. Food Chemistry, 130, 569-574. DOI: 10.1016/j.foodchem.2011.07.074
  • Kuda, T., Izawa, Y., Yoshida, S., Koyanagi, T., Takahashi, H., & Kimura, B. (2014). Rapid Identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, Importaqnt Species in the Production of Salted and Fermented Foods, by Matrix- Assisted Laser Desorption Iionization- Time of Flight Mass Spectrometry (MALDI-TOF-MS). Food Control, 35, 419-425. DOI: dx.doi.org/ 10.1016/j.foodcont.2013.07.039
  • Lakshmanan, R., Shakila, R.J., & Jeyasekaran, G. (2002). Changes in Halophilic Amine Forming Bacterial Flora During Salt-Drying of Sardines (Sardinella gibbosa). Food Research International, 35, 541-546.
  • Larsen, H. (1980). Chapter 3 Ecology of Hypersaline Environments. Developments in Sedimentology,28, 23-39.
  • Lee, K.W., Park, J.Y., Sa, H.D., Jeong, J.H., Jin, D.E., Heo, H.J., & Kim, J. H.(2014). Probiotic Properties of Pediococcus Strains Isolated From Jeotgals, Salted and Fermented Korean Sea-food. Anaerob, 28, 199-206.DOI: dx.doi.org/10.1016/j.anaerobe.2014.06.013
  • Lee, Y.C., Lin, C.S., Liu, F.L., & Huang, T.C. & Tsai, Y.H. (2015). Degradation of Histamine by Bacilus polymyxa Isolated from Salted Fish Products. Journal of Food and Drug Analysis, 23, 836-844.DOI: dx.doi.org/10.1016/j.jfda.2015.02.003
  • Lee, H.W., Choi, Y.J., Hwang, I.M., Hong, S.W., & Lee, M.A. (2016). Relationship between Chemical Characteristics and Bacterial Community of a Korean Salted-Fermented Anchovy Sauce. LWT Food Science and Technology, 73, 251-258. DOI: dx.doi.org/10.1016/j.lwt.2016.06.007
  • Leisner, J.J.& Gram, L. (2014). Spoilage of Fish. Encyclopedia of Food Microbiology (Second Edition), 932-937.
  • Li, J., Huang, J., Jin, Y., Wu, C., Shen, D., Zhang, S., & Zhou, R. (2018). Aflatoxin B1 Degradation by Salt Tolerant Tetragenococcus halophilus CGMCC 3792. Food and Chemical Toxicology, 121, 430-436. DOI: doi.org/10.1016/j.fct.2018.08.063
  • Lin, C.S., Liu, F.L., Lee, Y.C., Hwang, C.C., & Tsai, Y.H.(2012). Histamine Contents of Salted Seafood Products in Taiwan and Isolation of Halotolerant Histamine –Forming Bacteria. Food Chemistry, 131, 574-579. DOI: 10.1016/j.foodchem. 2011.09.027
  • Lin, J., Liang, H., Yan, j., & Luo, L. (2017). The Molecular Mechanism and Post-Transcriptinal Regulation Characteristic of Tetragenococcus halophilus Acclimation to Osmotic Stress Revealed by Quantitative Proteomics. Journal of Proteomics, 168, 1-14. DOI: dx.doi.org/10.1016/j.j.prot.2017.08.014
  • Lorentzen, G., Breiland, M.S.W., Ostli, J., Wang-Andersen, J., & Olsen, R.L. (2015). Growth of Halophilic Microorganisms and Histamine Content in Dried Salt- Cured (Gadus morhua L.) Stored at Elevated Temperature. LWT –Food Science and Technology, 60, 598-602. DOI: dx.doi.org/10.1016/j.lwt.2014.08.035
  • Lorentzen, G., Egeness, F.A., Pleym, I.E., & Ytterstad, E.(2016). Shelf life of Packaged Loins of Dried Salt- Cured Cod (Gadus morhua L.) Stored at Elevated Temperatures. Food Control, 64, 65-69. DOI: dx.doi.org/ 10.1016/j.foodcont. 2015.12.027
  • Luta, X., Hayoz, S., Krause, C.G., Sommerhalder, K., Roos, E., Strazzullo, & P., Beer-Borst, S.(2018).The Relationship of Health /Food Literacy and Salt Awareness to Daily Sodium and Potassium Intake Among a Workplace Population in Switzerland. Nutrition, Metabolism & Cardiovasculer Diseases, 28, 270-277. DOI: doi.org/10.1016/j.numecd.2017.10.028
  • Maes, S., Claus, M., Verbeken, K., Wallaert, E., Smet, R.D., Vanhaecke, F., Boon, N.,& Hennebel, T.(2016). Platinum Recovery from Industrial Process Streams by Halophilic Bacteria: Influence of Salt Species and Platinum Speciation. Water Research, 105, 436-443.DOI: dx.doi.org/10.1016/j.watres.2016.09.023
  • Martinez-Villaluenga, C., Perias, E., & Frias, J. (2017). Chapter:2: Bioactive Peptides in Fermented Foods: Production and Evidence for Health Effects. Fermented Foods in Health and Diseases Prevention, 23-47.
  • Menasria, T., Aguilera, M., Hocine, H., Benammar, L., Ayachi, A., Bachir, A.S., Dekak, A.,& Monteoliva-Sanchez, M.(2018).Diversity and Bioprospecting of Extremely Halophilic Archaea Isolated from Algerian Arid and Semi-Arid Wetland Ecosystems for Halophilic-Active Hydrolytic Enzymes. Microbial Research, 207, 289-298. DOI: doi.org/10.1016/j.micres.2017.12.011
  • Mokashe, N., Chaudhari, B., & Patil, U. (2018). Operative Utility of Salt-Stable Proteases of Halophilic and Halotolerant Bacteria in the Biotechnology Sector. International Journal of Biological Macromolucules, 117, 493-522. DOI: dx.doi.org/10.1016/j.ijbiomac.2018.05.217
  • Özcan, B. (2004). Türkiye ‘den Halofilik Arkebakterilerin İzolasyonu ve Karakterizasyonu. Ankara Üniversitesi Fen Bilmleri Enstitüsü Doktora Tezi, 128 sf.
  • Okamoto, D., Kondo, M.Y., Santos, J.A.N., Nakajima, S., Hiraga, K., Oda, K., Juliano, M.A., Juliano, L., & Gouvea, I.E.(2009). Kinetic Analysis of Salting Activation of a Subtilisin-Like Halophilic Protease, Biochimica et Biophysica Acta, 1794, 367-373. DOI: 10.1016/j.bbapap.2008.10.017
  • Oren, A. (1994). The Ecology of the Extremely Halophilic Archaea . FEMS Microbiology Reviews, 13 (4), 415-439.
  • Oren, A. (2019). Halophilic Archaea. Reference Module in Life Sciences. Peixoto, D., Pinheiro, C., Amonim, J., Oliva-Teles, L, Guilhermino, L., & Vieira, M.N. (2019). Microplastic Pollution in Commercial Salt for Human Consumption: A Review. Estuarine, Coastal and Shelf Science, 219, 161-168. DOI: doi.org/10.1016/j.ecss.2019.02.018
  • Perez, S., Marina, C., Laura, P.M., Elisabet, Z.N., Elena, M.S., & Isabel, Y.M. (2018). Monitoring the Characteristics of Cultivable Halophilic Microbial Community During Salted – Ripened Anchovy (Engraulis anchoita) Production. International Journal of Food Microbiology, 286, 179-189. DOI: doi.org/10.1016/j.ijfoodmicro.2018.08.013
  • Prasad, M.M., & Seenayya, G. (2000). Effect of spices on the Growth of Red Halophilic cocci Isolated from Salt Cured Fish and Solar Salt. Food Research International, 33, 793-798.
  • Preciado, G.M., Michel, M.M., Villarreal-Morales, S.L., Flores-Gallegos, A.C.,& Rodriguez-Herrare, R. (2016). Chapter 16: Bacteriocins and Its Use for Multi-drug Resistant Bacteria Control, Antibiotic Resistance, 329-349.
  • Promchai, R., Boonchalearn, A., Visessanguan, W., & Luxananil P. (2018). Rapid Production of Extracellular Termostable Alkaline Halophilic Protease Originating From an Extreme Haloarchaeon, Halobacterium salinarum by Recombinant Bacillus subtilis, Biocatalysis and Agricultural Biotechnology, 15, 192-198. DOI: doi.org/10.1016/j.bcab.2018.06.017
  • Sarkadi, L.S. (2017). Chapter 27: Biogenic Amines in Fermented Foods and Health Implications. Fermented Foods in Health and Disease Prevention, 625-651.
  • Shi, K., Zhou, W., Zhao, H., & Zhang, Y. (2012). Performance of Halophilic Marine Bacteria Inocula on Nutrient Removal from Hypersaline Wastewaterin an Intermittently Aerated Biological Filter. Bioresource Technology, 113, 280-287.DOI: 10.1016/j.biortech.2012.01.117
  • Singh, S.S., Mandal, S.D., Mathipi, V., Ghatak, S., & Kumar, N.S. (2018). Traditional Fermented Fish Harbors Bacteria with Potent Probiotic and Anticancer Properties. Biocatalysis and Agricultural Biotechnology, 15, 283-290. DOI: doi.org/10.1016/j.bcab.2018.07.007
  • Sinsuwan, S., Rodtong, S., & Yongsawatdigul, J. (2008). Characterization of Ca2+ Activated Cell-Bound Proteinase From Virgibacillus sp. Isolated From Fish Sauce Fermentation. LWT Food Science and Technology, 41, 2166-2174. DOI: 10.1016/j.lwt.2008.02.002
  • Skara, T., Axelsson, L., Stefansson, G., Extrand, B., & Hagen, H.(2015). Fermented and Ripened Fish Products in the Northern European Countries. Journal of Ethnic Foods, 2, 18-24.DOI: 10.1016/j.jef.2015.02.004
  • Speranza, B., Racioppo, A., Beneduce, L., Bevilacqua, A., Sinigaglia, M., & Corbo, M.R. (2017). Autochthonous Lactic acid Bacteria with Probiotic Aptitudes as Starter Cultures for Fish-Based Products. Food Microbiology, 65, 244-253. DOI: dx.doi.org/10.1016/j.fm.2017.03.010
  • Tahtacı, S., & Kılıç, G.(2015). Halofilik Laktikasit Bakterileri ve Gıda Sanayinde Kullanım Alanları. Gıda, 40 (6), 349-356. DOI: 10.15237/gida.GD15018
  • Tapingkae, W., Tanasupawat, S., Parkin, K.L., Benjakul, S., & Visessanguan, W. (2010). Degradation of Histamine by Extremely Halophilic Archaea Isolated from High Salt- Fermented Fishery Products, Enzyme and Microbial Technology, 46, 92-99. DOI: 10.1016/j.enzmicter.2009.10.011
  • Tsiamis, G., Katsaveli, K., Ntougias, S., Kyrpides, N., Andersen, G., Piceno, Y., & Bourtzis, K. (2008). Prokaryotic Community Profiles at Different Operational Stages of a Greek Solar Saltern. Research in Microbiology, 159, 609-627.DOI: 10.1016/j.resmic.2008.09.007
  • Udomsil, N., Rodtong, S., Tanasupawat, S., & Yongsawatdigul, J. (2010). Proteinase- Producing Halophilic Lactic acid Bacteria Isolated from Fish Sauce Fermentation and Their Ability to Produce Volatile Compounds. International Journal of Food Microbiology, 141, 186-194. Doı: 10.1016/j.ifoodmicro.2010.05.016
  • Udomsil, N., Chen, S., Rodtong, S., & Yongsawatdigul, J. (2017). Improvemnt Fish Sauce Quality by Combined Inoculation of Tetragenococcus halophilus MS33 and Virgibacillus sp. SK37. Food Control, 73, 930-938.DOI: 10.1016/j.foodcont.2016.10.007
  • Ünlütürk, A., & Turantaş, F. (2003). Mikrobiyal Bulaşma Kaynakları. Gıda Mikrobiyolojisi. sf.45-53. Meta Basım Matbaacılık Hizmetleri, Bornova, İzmir. ISBN: 975-483-383-4.
  • Vilhelmsson, O., Hafstcinsson, H., & Kristjansson, J.K. (1997). Extremely Halotolerant Bacteria Characteristic of Fully Cured and Dried Cod. International Journal of Food Microbiology, 36, 163-170.
  • Wawire, M., Tsighe, N., Mahmud, A., Abraha, B., Wainaina, I., Karimi, S., & Abdulkerim, Z. (2019). Effect of Salting and Pressing on Quality Characteristics of Spotted Sardine (Amblygaster sirm) During Diffrent Storage Conditions. Journal of Food Composition and Analysis, 79, 47-54. DOI: 10.1016/j.jfca.2019.03.008
  • Yaşa, İ., Kahraman, Ö., Tekin, E., & Koçyiğit, A. (2008). Çamaltı Tuzlasından Ekstrem Halofilik Archaea İzolasyonu ve Moleküler Karakterizasyonu. E.Ü. Journal of Fisheries & Aquatic Sciences, 25 (2), 117-121.
  • Yin, J., Chen, J.C., Wu, O., & Chen, G.Q.(2015). Halophiles, Coming Starts for Idustrial Biotechnology. Biotechnology Advances, 33, 1433-1442. DOI: dx.doi.org/10.1016/j.biotechadv.2014.10.008
  • Yüce, S., Tahtacı, S., & Kılıç, G.B.(2017). Halofilik Laktik asit Bakterilerinin Ürettiği Hidrolitik Enzimler. Gıda, 42 (3), 242-251. DOI: 10.15237/gida. GD16088
  • Zaman, M.Z., Bakar, F.A., Selamat, J., Bakar, J., Ang, S.S., & Chong, C.Y. (2014). Degradation of Histamine by the Halotolerant Staphylococcus carnosus FS19 Isolate Obtained From Fish Sauce. Food Control, 40, 58-63. DOI: 10.1016/j.foodcont.2013.11.031

Halophilic Bacteria Species in Fishery Products and Industrial Applications

Year 2019, Volume: 15 Issue: 4, 535 - 545, 16.12.2019
https://doi.org/10.22392/actaquatr.569765

Abstract

Halofilic bacteria have been divided into different groups according to salt requirements such as halotolerant and extreme halophiles
etc. This type of halophilic bacteria such as Halococcus ve Halobacterium can be caused pink spoilage on the surface of the processed
salted fishery products. The growth of halophilic bacteria in processed fishery products can be prevented by using effective methods and
control systems. The methods avoiding contamination and growth of bacteria are necessary to be applied such as usage of high quality salt
in production, avoidance of temperaturerise in production and storage periods, packaging fishery products, prevention of damage to
package of fishery products in the storage. Extreme halophilic and halotolerant bacteria have some special characteristics when compared
with other type of microorganisms. For this reason, halophilic bacteria can be used for different industrial applications (food, biotechnology,
chemical, medicine, cosmetic, textile, agriculture, environment etc.) In accordance with the development of technology, it is believed that
the studies done about usage of halophilic bacteria in different areas and industrial applications will be increased in the future. For this
reason in this review; the species of halophilic bacteria, isolated halophilic bacteria from seas, salt lakes, salts, salted and fermented fishery
products, the effects of salt and salty fishery products intake to the human health, the studies done about inhibiting the growth of halotolerant
and extreme halophiles bacteria, probiotic effects, development of new novel products, industrial applications of these bacteria were
reviewed.

References

  • Abriouel, H., Benomar, N., Lucas, R., & Galvez, A. (2011). Culture-Independent Study of Diversity of Microbial Populations in Brines During Fermentation of Naturally – Fermented Alorena Green Table Olives, International Journal of Food Microbiology, 144, 487-496. DOI: 10.1016/j.ij.foodmicro.2010.11.006
  • Adewumi, G.A. (2019). Health Promoting Fermented Foods. Encyclopedia of Food Chemistry, 399-418.
  • Albuquerque, L., Taborda, M., Cono, V.L., Yakimov, M., & Costa, M.S.(2012).Natrinema salaciae sp. nov.,a Halophilic Archaeon Isolated From Deep, Hypersaline Anoxic Lake Medee in the Eastern Mediterranean Sea. Systematic and Applied Microbiology, 35, 368-373. DOI: dx.doi.org/10.1016/j.syamp.2012.06.005
  • Alfonzo, A., Gaglio, R., Francesca, N., Barbera, M., Saiano, F., Santulli, A., Matraxia, M., Rallo, F., & Moschetti, G. (2018). Influence of Salt of Different Origin on the Microbiological Characteristics, Histamine Generation and Volatile Profile of Salted Anchovies ( Engraulis encrasicolus L.), Food Control, 92, 301-311.DOI: doi.org/10.1016/j.foodcont.2018.05.003
  • Aravalli, R.N., She, Q., & Garrett, R.A. (1998). Archaea and The New Age of Microorganisms. Trends in Ecology & Evolution, 13 (5), 190-194.
  • Aksöz, N.(1985). Halofilik Bakteriler. Mikrobiyoloji Bülteni, 19, 161-167.
  • Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N., & Dastgheib, S.M.M.(2007). Decolorization of Textie Azo Dyes by Newly Isolated Halophilic and Halotolerant Bacteria. Biresorce Technology, 98 (11), 2082-2088.DOI: 10.1016/j.biortech.2006.08.020
  • Asker, D., & Ohta, Y. (1999). Production of Canthaxanthin by Extremely Halophilic Bacteria. Journal of Bioscience and Bioengineering, 88 (6), 617-621.
  • Bekhit, A.E.A., Duncan, A., Bah, C.S.F., Ahmed, I.A.M., Al-Juhaimi, F.Y., & Amin, H.F.(2018). Impact of Fermentation Conditions on the Physicochemical Properties, Fattyacid, and Cholesterol Contents in Salted- Fermented Hoki Roe. Food Chemistry, 264, 73-80. DOI: doi.org/10.1016/j.foodchem.2018.05.008
  • Birbir, M., & Sesal, C. (2003). Extremely Halophilic Bacterial Communities in Şereflikoçhisar Salt Lake in Turkey. Turkish Journal of Biology, 27, 7-22.
  • Boujida, N., Palau, M., Charfi, S., Moussaoui, N.E., Manresa, A., Minana-Galbis, D., Senhaji, N.S., & Abrini, J. (2018). Isolation and Characterization of Halophilic Bacteria Producing Exopolymers with Emulsifying and Antioxidant activities. Biocatalysis and Agricultural Biotechnology, 16, 631-637. DOI: doi.org/10.1016/j.bcab.2018.10.015
  • Chaiyanan, S., Chaiyanan, S., Maugel, T., Huo, A., Robb, F.T., & Colwell, R.R. (1999). Polyphasis Taxonomy of a Novel Halobacillus, Halobacillus thailandensis sp. nov. Isolated From Fish Sauce. Systematic and Applied Microbiology, 22, 360-365.
  • Chen, G.Q., & Jiang, X.R.(2018). Next Generation Industrial Biotechnology Based on Extremophilic Bacteria. Current Opinion in Biotechnogy, 50, 94-100.
  • Chhetri, V., Prakitchaiwattana, C., & Settachaimongkon, S. (2019). A Potential Protective Culture ; Halophilic Bacillus Isolates with Bacteriocin Encoding Gene Against Staphylococcus aureus in Salt Added Foods. Food Control, 104, 292-299. DOI: doi.org/10.1016/j.foodcont.2019.04.043
  • Chuprom, J., Bovornreungroj, P., Ahmad, M., Kantachote, D., & Dueramae, S. (2016). Aproach Toward Enhancement of Halophilic Protease Production by Halobacterium sp. Strain LBU50301 Using Statistical Design Response Surface Methodology. Biotechnology Reports, 10, 17-28. DOI: 10.1016/j.btre.2016.02.004
  • Cowan, D.A. (1992). Biotechnology of Archaea. Trends in Biotechnology, 10, 315-323.
  • Cui, H.L., Mou, Y.Z., Yang, X., Zhou, Y.G., Liu, H.C., & Zhou, P.J. (2012). Halorubellus salinus gen.nov., sp., nov. and Halorubellus litoreus sp.nov., novel Halophilic Archaea Isolated from a Marine Solar Saltern. Systematic and Applied Microbiology, 35, 30-34.DOI: 10.1016/j.syapm.2011.08.001
  • DasSarma, S., & DasSarma, P. (2015). Halophiles and Their Enzymes : Negativity Put To Good Use. Current Opinion in Microbiology, 25, 120-126.
  • Delgado-Garcia, M., Flores- Gallegos, A.C., Kirchmayr, M., Rodriguez, J.A., Mateos-Diaz, J.C., Aguilar, C.N., Muller, M., & Camacho-Ruiz, R.M. (2019). Bioprospection of Proteases from Halobacillus andaensis for Bioactive Peptide Production From Fish Muscle Protein, Electronic Journal of Biotechnology, 39, 52-60.DOI: doi.org/10.1016/j.ejbt.2019.03.001
  • Eichler, J. (2019). Halobacterium salinarum. Trends in Microbiology, In Press.
  • Flores-Gallegos, A.C., Delgado-Garcia, M., Ascacio-Valdes, J.A., Villareal-Morales, S., Rodriguez-Herrare, R. (2019). Chapter 13:Hydrolases of Halophilic Origin With Importance for the Food Industry, Enzymes in Food Biotechnology, 197-219.
  • Garcia- Torreiro, M., Lu-Chau, T.A., &Lema, J.M. (2018). Biopolymers Production by a Halophilic Bacteria in a Integrated Biorefinery. Smyposium 19:Biobased Resources and Biorefineries, 445, 551-553. DOI: doi.org/10.1016/jnbt.2018.05.072
  • Gassem, M.A. (2019). Microbiological and Chemical Quality of a Traditional Salted – Fermented Fish (Hout-Kasef) Product of a Jazan Region, Saudi Arabia. Saudi Journal of Biological Sciences, 26(1). DOI: 10.1016/j.sjbs.2017.04.003
  • Gram, L., & Huss, H.H. (1996). Microbiological Spoilage of Fish and Fish Products, International Journal of Food Microbiology, 33 (1), 121-137.
  • Grant, W.D., & Ross, H.N.M. (1986). The Ecology and Taxonomy of Halobacteria, FEMS Microbiology Letters , 39 (1-2), 9-15.
  • Gutierrez-Arnillas, E., Rodriguez, A., Sanroman, M.A., & Deive, F.J.(2016). New Sources of Halophilic Lipases: Isolation of Bacteria from Spanish and Turkish Saltworks. BiochemicalEngineeringJournal,109,170-177. DOI:dx.doi.org/10.1016/j.bej.2016.01.015
  • Haastrup, M.K., Johensen, P., Malskaer, A.H., Castro-Mejia, J.L., Kot, W., Krych, L., Arneborg, N., & Jespersen, L.(2018). Cheese Brines from Danish Dairies Reveal a Complex Microbiota Comprising Several Halotolerant Bacteria and Yeasts, International Journal of Food Microbiology, 285, 173-187. DOI: doi.org/10.1016/j.ijfoodmicro.2018.08.015
  • He, G., Wu, C., Huang, J., & Zhou, R. (2016). Acid Tolerance Response of Tetragenococcus halophilus: A Combined Physiological and Proteomic Anaysis. Process Biochemistry, 51, 213-219. DOI: dx.doi.org/10.1016/j.procbio.2015.11.035
  • Henriet, O., Fourmentin, J., Delince, B., & Mahillon, J. (2014). Exploring the Diversity of Extremely Halophilic Archaea in Food- Grade Salts. International Journal of Food Microbiology, 191, 36-44. DOI: 10.1016/j.ij.foodmicro.2014.08.019
  • Jung, J.Y., Lee, S.H., Lee, H.J., & Jeon, C.O. (2013). Microbial Succession and Metabolite Changes During Fermentation of Saeu-Jeot: Traditional Korean Salted Seafood, Food Microbiology, 34, 360-368. DOI: dx.doi.org/10.1016/j.fm.2013.01.009
  • Joo, W.A., & Kim, C.W. (2005). Proteomics of Halophilic Archaea, Journal of Chromatography B, 815, 237-250. DOI:10.1016//j.jchromb.2004.10.041
  • Khairina, R., Fitrial, Y., Satrio, H., & Rahmi, N. (2016). Physical, Chemical and Microbiological Properties of ‘’Ronto’’ a Traditional Fermented Shrimp from South Borneo, Indonesia, Aquatic Procedia, 7, 214-220. DOI: 10.1016/j.aqpro.2016.07.029
  • Kim, K.H., Lee, S.H., Chun, B.H., Jeong, S.E., & Jeon, C.O. (2019). Tetragenococcus halophilus MJ4 as a Starter Culture for Repressing Biogenic Amine ( Cadaverine) Formation During Saeu-Jeot (Salted Shrimp) Fermentation. Food Microbiology, 82, 465-473. DOI: doi.org/10.1016/j.fm.2019.02.017
  • Kimura, B., Konagaya, Y., & Fujii T.(2001). Histamine Formation by Tetragenococcus muriaticus, a Halophilic Lactic acid Bacterium Isolated from Fish Sauce.International Journal of Food Microbiology, 70, 71-77.
  • Kivistö, A.,Santala, V. &Karp, M. (2010). Hydrogen Production from Glyserol Using Halophilic Fermentataive Bacteria. Biresource Technology, 101(22), 8671-8677. DOI: 10.1016/j.biortech.2010.06.066
  • Kivistö, A.T., & Karp, M.T.(2011). Halophilic Anaerobic Fermantative Bacteria. Journal of Biotechnology, 152, 114-124.DOI. 10.1016/j.jbiotec.2010.08.014
  • Kompanowska-Jezierska, E. & Olszyriski, K.H. (2018). Chapter 13: The Role of High Salt Intake in the Development and Progression of Diverse Diseases. Food Quality : Balancing Health and Disease, 395-432.
  • Koo, O.K., Lee, S.J., Chung, K.R., Jang, D.J., Yang, H.J., & Kwon, D.Y. (2016). Korean Traditional Fermented Fish Products: jeotgal. Journal of Ethnic Foods. 3, 107-116. DOI: dx.doi.org/10.1016/j.jef.2016.06.004
  • Kuda, T., Izawa, Y., Ishii, S., Takahashi, H., Torido, Y., & Kimura, B.(2012). Supressive Effect of Tetragenococcus halophilus, Isolated From Fish-Nukazuke, on Histamine Accumulation in Salted and Fermented Fish. Food Chemistry, 130, 569-574. DOI: 10.1016/j.foodchem.2011.07.074
  • Kuda, T., Izawa, Y., Yoshida, S., Koyanagi, T., Takahashi, H., & Kimura, B. (2014). Rapid Identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, Importaqnt Species in the Production of Salted and Fermented Foods, by Matrix- Assisted Laser Desorption Iionization- Time of Flight Mass Spectrometry (MALDI-TOF-MS). Food Control, 35, 419-425. DOI: dx.doi.org/ 10.1016/j.foodcont.2013.07.039
  • Lakshmanan, R., Shakila, R.J., & Jeyasekaran, G. (2002). Changes in Halophilic Amine Forming Bacterial Flora During Salt-Drying of Sardines (Sardinella gibbosa). Food Research International, 35, 541-546.
  • Larsen, H. (1980). Chapter 3 Ecology of Hypersaline Environments. Developments in Sedimentology,28, 23-39.
  • Lee, K.W., Park, J.Y., Sa, H.D., Jeong, J.H., Jin, D.E., Heo, H.J., & Kim, J. H.(2014). Probiotic Properties of Pediococcus Strains Isolated From Jeotgals, Salted and Fermented Korean Sea-food. Anaerob, 28, 199-206.DOI: dx.doi.org/10.1016/j.anaerobe.2014.06.013
  • Lee, Y.C., Lin, C.S., Liu, F.L., & Huang, T.C. & Tsai, Y.H. (2015). Degradation of Histamine by Bacilus polymyxa Isolated from Salted Fish Products. Journal of Food and Drug Analysis, 23, 836-844.DOI: dx.doi.org/10.1016/j.jfda.2015.02.003
  • Lee, H.W., Choi, Y.J., Hwang, I.M., Hong, S.W., & Lee, M.A. (2016). Relationship between Chemical Characteristics and Bacterial Community of a Korean Salted-Fermented Anchovy Sauce. LWT Food Science and Technology, 73, 251-258. DOI: dx.doi.org/10.1016/j.lwt.2016.06.007
  • Leisner, J.J.& Gram, L. (2014). Spoilage of Fish. Encyclopedia of Food Microbiology (Second Edition), 932-937.
  • Li, J., Huang, J., Jin, Y., Wu, C., Shen, D., Zhang, S., & Zhou, R. (2018). Aflatoxin B1 Degradation by Salt Tolerant Tetragenococcus halophilus CGMCC 3792. Food and Chemical Toxicology, 121, 430-436. DOI: doi.org/10.1016/j.fct.2018.08.063
  • Lin, C.S., Liu, F.L., Lee, Y.C., Hwang, C.C., & Tsai, Y.H.(2012). Histamine Contents of Salted Seafood Products in Taiwan and Isolation of Halotolerant Histamine –Forming Bacteria. Food Chemistry, 131, 574-579. DOI: 10.1016/j.foodchem. 2011.09.027
  • Lin, J., Liang, H., Yan, j., & Luo, L. (2017). The Molecular Mechanism and Post-Transcriptinal Regulation Characteristic of Tetragenococcus halophilus Acclimation to Osmotic Stress Revealed by Quantitative Proteomics. Journal of Proteomics, 168, 1-14. DOI: dx.doi.org/10.1016/j.j.prot.2017.08.014
  • Lorentzen, G., Breiland, M.S.W., Ostli, J., Wang-Andersen, J., & Olsen, R.L. (2015). Growth of Halophilic Microorganisms and Histamine Content in Dried Salt- Cured (Gadus morhua L.) Stored at Elevated Temperature. LWT –Food Science and Technology, 60, 598-602. DOI: dx.doi.org/10.1016/j.lwt.2014.08.035
  • Lorentzen, G., Egeness, F.A., Pleym, I.E., & Ytterstad, E.(2016). Shelf life of Packaged Loins of Dried Salt- Cured Cod (Gadus morhua L.) Stored at Elevated Temperatures. Food Control, 64, 65-69. DOI: dx.doi.org/ 10.1016/j.foodcont. 2015.12.027
  • Luta, X., Hayoz, S., Krause, C.G., Sommerhalder, K., Roos, E., Strazzullo, & P., Beer-Borst, S.(2018).The Relationship of Health /Food Literacy and Salt Awareness to Daily Sodium and Potassium Intake Among a Workplace Population in Switzerland. Nutrition, Metabolism & Cardiovasculer Diseases, 28, 270-277. DOI: doi.org/10.1016/j.numecd.2017.10.028
  • Maes, S., Claus, M., Verbeken, K., Wallaert, E., Smet, R.D., Vanhaecke, F., Boon, N.,& Hennebel, T.(2016). Platinum Recovery from Industrial Process Streams by Halophilic Bacteria: Influence of Salt Species and Platinum Speciation. Water Research, 105, 436-443.DOI: dx.doi.org/10.1016/j.watres.2016.09.023
  • Martinez-Villaluenga, C., Perias, E., & Frias, J. (2017). Chapter:2: Bioactive Peptides in Fermented Foods: Production and Evidence for Health Effects. Fermented Foods in Health and Diseases Prevention, 23-47.
  • Menasria, T., Aguilera, M., Hocine, H., Benammar, L., Ayachi, A., Bachir, A.S., Dekak, A.,& Monteoliva-Sanchez, M.(2018).Diversity and Bioprospecting of Extremely Halophilic Archaea Isolated from Algerian Arid and Semi-Arid Wetland Ecosystems for Halophilic-Active Hydrolytic Enzymes. Microbial Research, 207, 289-298. DOI: doi.org/10.1016/j.micres.2017.12.011
  • Mokashe, N., Chaudhari, B., & Patil, U. (2018). Operative Utility of Salt-Stable Proteases of Halophilic and Halotolerant Bacteria in the Biotechnology Sector. International Journal of Biological Macromolucules, 117, 493-522. DOI: dx.doi.org/10.1016/j.ijbiomac.2018.05.217
  • Özcan, B. (2004). Türkiye ‘den Halofilik Arkebakterilerin İzolasyonu ve Karakterizasyonu. Ankara Üniversitesi Fen Bilmleri Enstitüsü Doktora Tezi, 128 sf.
  • Okamoto, D., Kondo, M.Y., Santos, J.A.N., Nakajima, S., Hiraga, K., Oda, K., Juliano, M.A., Juliano, L., & Gouvea, I.E.(2009). Kinetic Analysis of Salting Activation of a Subtilisin-Like Halophilic Protease, Biochimica et Biophysica Acta, 1794, 367-373. DOI: 10.1016/j.bbapap.2008.10.017
  • Oren, A. (1994). The Ecology of the Extremely Halophilic Archaea . FEMS Microbiology Reviews, 13 (4), 415-439.
  • Oren, A. (2019). Halophilic Archaea. Reference Module in Life Sciences. Peixoto, D., Pinheiro, C., Amonim, J., Oliva-Teles, L, Guilhermino, L., & Vieira, M.N. (2019). Microplastic Pollution in Commercial Salt for Human Consumption: A Review. Estuarine, Coastal and Shelf Science, 219, 161-168. DOI: doi.org/10.1016/j.ecss.2019.02.018
  • Perez, S., Marina, C., Laura, P.M., Elisabet, Z.N., Elena, M.S., & Isabel, Y.M. (2018). Monitoring the Characteristics of Cultivable Halophilic Microbial Community During Salted – Ripened Anchovy (Engraulis anchoita) Production. International Journal of Food Microbiology, 286, 179-189. DOI: doi.org/10.1016/j.ijfoodmicro.2018.08.013
  • Prasad, M.M., & Seenayya, G. (2000). Effect of spices on the Growth of Red Halophilic cocci Isolated from Salt Cured Fish and Solar Salt. Food Research International, 33, 793-798.
  • Preciado, G.M., Michel, M.M., Villarreal-Morales, S.L., Flores-Gallegos, A.C.,& Rodriguez-Herrare, R. (2016). Chapter 16: Bacteriocins and Its Use for Multi-drug Resistant Bacteria Control, Antibiotic Resistance, 329-349.
  • Promchai, R., Boonchalearn, A., Visessanguan, W., & Luxananil P. (2018). Rapid Production of Extracellular Termostable Alkaline Halophilic Protease Originating From an Extreme Haloarchaeon, Halobacterium salinarum by Recombinant Bacillus subtilis, Biocatalysis and Agricultural Biotechnology, 15, 192-198. DOI: doi.org/10.1016/j.bcab.2018.06.017
  • Sarkadi, L.S. (2017). Chapter 27: Biogenic Amines in Fermented Foods and Health Implications. Fermented Foods in Health and Disease Prevention, 625-651.
  • Shi, K., Zhou, W., Zhao, H., & Zhang, Y. (2012). Performance of Halophilic Marine Bacteria Inocula on Nutrient Removal from Hypersaline Wastewaterin an Intermittently Aerated Biological Filter. Bioresource Technology, 113, 280-287.DOI: 10.1016/j.biortech.2012.01.117
  • Singh, S.S., Mandal, S.D., Mathipi, V., Ghatak, S., & Kumar, N.S. (2018). Traditional Fermented Fish Harbors Bacteria with Potent Probiotic and Anticancer Properties. Biocatalysis and Agricultural Biotechnology, 15, 283-290. DOI: doi.org/10.1016/j.bcab.2018.07.007
  • Sinsuwan, S., Rodtong, S., & Yongsawatdigul, J. (2008). Characterization of Ca2+ Activated Cell-Bound Proteinase From Virgibacillus sp. Isolated From Fish Sauce Fermentation. LWT Food Science and Technology, 41, 2166-2174. DOI: 10.1016/j.lwt.2008.02.002
  • Skara, T., Axelsson, L., Stefansson, G., Extrand, B., & Hagen, H.(2015). Fermented and Ripened Fish Products in the Northern European Countries. Journal of Ethnic Foods, 2, 18-24.DOI: 10.1016/j.jef.2015.02.004
  • Speranza, B., Racioppo, A., Beneduce, L., Bevilacqua, A., Sinigaglia, M., & Corbo, M.R. (2017). Autochthonous Lactic acid Bacteria with Probiotic Aptitudes as Starter Cultures for Fish-Based Products. Food Microbiology, 65, 244-253. DOI: dx.doi.org/10.1016/j.fm.2017.03.010
  • Tahtacı, S., & Kılıç, G.(2015). Halofilik Laktikasit Bakterileri ve Gıda Sanayinde Kullanım Alanları. Gıda, 40 (6), 349-356. DOI: 10.15237/gida.GD15018
  • Tapingkae, W., Tanasupawat, S., Parkin, K.L., Benjakul, S., & Visessanguan, W. (2010). Degradation of Histamine by Extremely Halophilic Archaea Isolated from High Salt- Fermented Fishery Products, Enzyme and Microbial Technology, 46, 92-99. DOI: 10.1016/j.enzmicter.2009.10.011
  • Tsiamis, G., Katsaveli, K., Ntougias, S., Kyrpides, N., Andersen, G., Piceno, Y., & Bourtzis, K. (2008). Prokaryotic Community Profiles at Different Operational Stages of a Greek Solar Saltern. Research in Microbiology, 159, 609-627.DOI: 10.1016/j.resmic.2008.09.007
  • Udomsil, N., Rodtong, S., Tanasupawat, S., & Yongsawatdigul, J. (2010). Proteinase- Producing Halophilic Lactic acid Bacteria Isolated from Fish Sauce Fermentation and Their Ability to Produce Volatile Compounds. International Journal of Food Microbiology, 141, 186-194. Doı: 10.1016/j.ifoodmicro.2010.05.016
  • Udomsil, N., Chen, S., Rodtong, S., & Yongsawatdigul, J. (2017). Improvemnt Fish Sauce Quality by Combined Inoculation of Tetragenococcus halophilus MS33 and Virgibacillus sp. SK37. Food Control, 73, 930-938.DOI: 10.1016/j.foodcont.2016.10.007
  • Ünlütürk, A., & Turantaş, F. (2003). Mikrobiyal Bulaşma Kaynakları. Gıda Mikrobiyolojisi. sf.45-53. Meta Basım Matbaacılık Hizmetleri, Bornova, İzmir. ISBN: 975-483-383-4.
  • Vilhelmsson, O., Hafstcinsson, H., & Kristjansson, J.K. (1997). Extremely Halotolerant Bacteria Characteristic of Fully Cured and Dried Cod. International Journal of Food Microbiology, 36, 163-170.
  • Wawire, M., Tsighe, N., Mahmud, A., Abraha, B., Wainaina, I., Karimi, S., & Abdulkerim, Z. (2019). Effect of Salting and Pressing on Quality Characteristics of Spotted Sardine (Amblygaster sirm) During Diffrent Storage Conditions. Journal of Food Composition and Analysis, 79, 47-54. DOI: 10.1016/j.jfca.2019.03.008
  • Yaşa, İ., Kahraman, Ö., Tekin, E., & Koçyiğit, A. (2008). Çamaltı Tuzlasından Ekstrem Halofilik Archaea İzolasyonu ve Moleküler Karakterizasyonu. E.Ü. Journal of Fisheries & Aquatic Sciences, 25 (2), 117-121.
  • Yin, J., Chen, J.C., Wu, O., & Chen, G.Q.(2015). Halophiles, Coming Starts for Idustrial Biotechnology. Biotechnology Advances, 33, 1433-1442. DOI: dx.doi.org/10.1016/j.biotechadv.2014.10.008
  • Yüce, S., Tahtacı, S., & Kılıç, G.B.(2017). Halofilik Laktik asit Bakterilerinin Ürettiği Hidrolitik Enzimler. Gıda, 42 (3), 242-251. DOI: 10.15237/gida. GD16088
  • Zaman, M.Z., Bakar, F.A., Selamat, J., Bakar, J., Ang, S.S., & Chong, C.Y. (2014). Degradation of Histamine by the Halotolerant Staphylococcus carnosus FS19 Isolate Obtained From Fish Sauce. Food Control, 40, 58-63. DOI: 10.1016/j.foodcont.2013.11.031
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles
Authors

Berna Kılınç 0000-0002-4663-5082

Publication Date December 16, 2019
Published in Issue Year 2019 Volume: 15 Issue: 4

Cite

APA Kılınç, B. (2019). Su Ürünlerinde Halofilik Bakteriler ve Endüstriyel Alanda Kullanımları. Acta Aquatica Turcica, 15(4), 535-545. https://doi.org/10.22392/actaquatr.569765

Cited By

Gıda Tuzlarında Halotolerant Bakterilerin İncelenmesi
International Journal of Advances in Engineering and Pure Sciences
https://doi.org/10.7240/jeps.1024486