Research Article
BibTex RIS Cite

Mars Gezegeninde Buzun Varlığı ve Yapılara Etkisi

Year 2024, Volume: 2 Issue: 1, 14 - 23, 28.06.2024

Abstract

İnsanlık uzun yıllardır yeni yaşam alanları arayıp bulmaya çalışmakta ve bu doğrultuda teknolojik gelişmelere dayalı koloni kurma isteği de artmaktadır. Bu kapsamda, Ulusal Havacılık ve Uzay Dairesi (NASA) 1970 yılından itibaren Mars gezegenine insansız uzay araçları göndermektedir Mars’ta inşa edilecek yapılar için, gezegenimize benzer yapısal yüklerin araştırılması gerekmektedir. Bu nedenle, Mars gezegeninde dikkate alınması gereken yapısal yükler arasında özellikle buz yükü ve bu yükün gezegenin farklı bölgelerinde nasıl değişeceği merak edilmektedir. Özellikle, Mars’a özgü buz yükleri ve bu yüklerin gezegenin farklı bölgelerindeki dağılımı ve derecelendirmesi bu çalışmanın odağını oluşturmaktadır. Araştırmalar, Mars gezegeninde inşa edilecek yapılar için tasarım sürecinde kullanılacak buz yüklerinin bölgelere göre nasıl farklılaştığına odaklanmıştır. Sonuç olarak, özellikle Mars'ın kutup bölgelerinde buz yüklerinin yapı tasarımında önemli bir parametre olarak dikkate alınması gerektiği, ekvator ve çevresindeki yer altı buzlarının ise kazı çalışmaları ve ankraj uygulamalarında kritik öneme sahip olduğu tespit edilmiştir. Bu bulgular, Mars'ta sürdürülebilir yapılar inşa etme sürecinde kritik kararlar alınmasına yardımcı olacak bilgiler sağlamaktadır.

References

  • Akgül, M. A., & Suphi, U. (2022). Mars’ta Hiperspektral CRISM Verileri Yardımıyla Mineralojik Haritalama (Mineralogical Mapping on Mars Using Hyperspectral CRISM Data). Geosound, 55(1), 1-19.
  • American Society of Civil Engineers. (2017). Minimum design loads and associated criteria for buildings and other structures- ASCE 7-10. American Society of Civil Engineers.
  • Berman, D., Chuang, F. C., Smith, I. B., & Crown, D. A. (2021). Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes. Icarus, 355(1), 114170.
  • Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M., Catalano, J. G., Dietrich,W. E., Gabriel, T. S. J., Vasavada, A. R., Grotzinger, J. P., & L'Haridon, J. vd. (2020). Evidence for a diagenetic origin of Vera Rubin ridge, Gale crater, Mars: Summary and synthesis of Curiosity's exploration campaign. Journal of Geophysical Research: Planets, 125, e2020JE006527. https://doi.org/10.1029/2020JE006527.
  • Garvin, J. B., Soare, R., Hepburn, A. J., Koutnik, M., & Godin, E. (2024). Ice Exploration on Mars: Where to and when. Ices in the Solar System, 193-219. https://doi.org/10.1016/B978-0-323-99324-1.00007-9.
  • Joseph, A. (2023). Liquid water lake under ice in Mars’s southern hemisphere—Possibility of subsurface biosphere and life. Water Worlds in the Solar System, 453-522. https://doi.org/10.1016/B978-0-323-95717-5.00019-0.
  • Karlsson, N. B., Schmidt, L. S., & Hvidberg, C. S. (2015). Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophysical Research Letters, 42(8), 2627-2633.
  • Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C., & Watters, J. L. (2014). Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. Planets, 119(10), 2188–2196.
  • NASA. (2008). NASA Spacecraft Confirms Martian Water, Mission Extended. Retrieved from https://web.archive.org/web/20120418005710/http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080731.html 29 Ocak 2024.
  • NASA. (2021). HiRISE Views a Mars Impact Crater Surrounded by Water Ice. Retrieved from https://mars.nasa.gov/resources/27086/hirise-views-a-mars-impact-crater-surrounded-by-water-ice/?site=msl, 08 Nisan 2024.
  • NASA. (2022). Mars Reconnaissance Orbiter- Missions- MRO Satellite- Instruments. Retrieved from https://mars.nasa.gov/mro/mission/instruments/, 28.01.2024.
  • NASA. (2023). Jet Propulsion Laboratory, Retrieved from https://www.nasa.gov/solar-system/planets/mars/nasa-is-locating-ice-on-mars-with-this-new-map/ 17 Ocak 2024.
  • NASA. (2024). NASA Science Mars Exploration Section-Missions. Retrieved from https://mars.nasa.gov/mars-exploration/missions/viking-1-2/, 14 Ocak 2024.
  • NASA. (2024). Solar System. Retrieved from https://www.nasa.gov/solar-system/nasas-treasure-map-for-water-ice-on-mars/, 20 Ocak 2024.
  • Petrov, G., & Ochsendorf, J. (2005). Building on Mars. Civil Engineering Magazine Archive, 75(10), 46–53.
  • Riu, L., Carter, J., Poulet, F., Cardesín-Moinelo, A., & Martin, P. (2023). Global surficial water content stored in hydrated silicates at Mars from OMEGA/MEx. Icarus, 398(1), 115537.
  • Schiff, N. L. G., & Gregg, T. K. P. (2022). Probable ice-rich deposits on north-facing slopes in Alba Patera, Mars. Icarus, 383(1), 115063.
  • Schörghofer, N. (2021). Ice caves on Mars: Hoarfrost and microclimates. Icarus, 357(1), 114271.
  • Son, H., Zhang, J., Liu, Y., Sun, Y., & Ni, D. (2023). Modeling the distribution of subsurface seasonal water ice with varying atmospheric conditions at northern low to midlatitudes on Mars. Icarus, 389(1), 115262.
  • Soureshjani, O. K., Massumi, A., & Nouri, G. (2023). Martian Buildings: Design loading. Advances in Space Research, 71, 2186-2205.
  • Tang, X., Adkins, C., Mallams, J., Burnette, M., Barnes, T., Mier-Hicks, F., Meirion-Griffith, B., & Staack, D. (2022). Plasma drilling on Martian ice: Enabling efficient deep subsurface access to Mars' polar layered deposits. Planetary and Space Science, 223(1), 105578.
  • Toklu, Y. C. (2000). Civil engineering in the design and construction of a lunar base, 7th ASCE Congress on Engineering, Construction, Operations and Business in Space, Proceedings, 27 Mart 2000, Albuquerque, USA.
  • URL-1, (2024). https://mars.nasa.gov/mars-exploration/missions/viking-1-2/, 14 Ocak 2024.
  • URL-2, (2024). https://tr.wikipedia.org/wiki/Mars#cite_note-52, 29 Ocak 2024.
  • URL-3, (2024). https://www.google.com/mars/, 31 Ocak 2024.
  • URL-4, (2024). https://www.space.com/mars-water-ice-equator-frozen-ocean, 20 Ocak 2024.
  • Yoldi, Z., Pommerol, A., Poch, O., & Thomas, N. (2022). Reflectance study of ice and Mars soil simulant associations—II. CO2 and HO2 ice. Icarus, 386(1), 115116.

Ice Load Effect on Martian Buildings

Year 2024, Volume: 2 Issue: 1, 14 - 23, 28.06.2024

Abstract

Humanity has long been in pursuit of new habitats, and in this direction, the desire to establish colonies based on technological advancements has been increasing. In this context, the National Aeronautics and Space Administration (NASA) has been sending unmanned spacecraft to Mars since 1970. For the structures to be built on Mars, it is necessary to study structural loads similar to those on our planet. Therefore, particular attention needs to be paid to structural loads on Mars, especially ice loads and how these loads vary across different regions of the planet. Specifically, the distribution and grading of Mars-specific ice loads are the focus of this study. The research has focused on how ice loads used in the design process for structures to be built on Mars differ across regions. Consequently, it has been determined that especially in the polar regions of Mars, ice loads are an important parameter to consider in structural design, while subterranean ice around the equator is critical for excavation works and anchoring applications. These findings provide critical information that will aid in making decisions in the process of constructing sustainable structures on Mars.

References

  • Akgül, M. A., & Suphi, U. (2022). Mars’ta Hiperspektral CRISM Verileri Yardımıyla Mineralojik Haritalama (Mineralogical Mapping on Mars Using Hyperspectral CRISM Data). Geosound, 55(1), 1-19.
  • American Society of Civil Engineers. (2017). Minimum design loads and associated criteria for buildings and other structures- ASCE 7-10. American Society of Civil Engineers.
  • Berman, D., Chuang, F. C., Smith, I. B., & Crown, D. A. (2021). Ice-rich landforms of the southern mid-latitudes of Mars: A case study in Nereidum Montes. Icarus, 355(1), 114170.
  • Fraeman, A. A., Edgar, L. A., Rampe, E. B., Thompson, L. M., Frydenvang, J., Fedo, C. M., Catalano, J. G., Dietrich,W. E., Gabriel, T. S. J., Vasavada, A. R., Grotzinger, J. P., & L'Haridon, J. vd. (2020). Evidence for a diagenetic origin of Vera Rubin ridge, Gale crater, Mars: Summary and synthesis of Curiosity's exploration campaign. Journal of Geophysical Research: Planets, 125, e2020JE006527. https://doi.org/10.1029/2020JE006527.
  • Garvin, J. B., Soare, R., Hepburn, A. J., Koutnik, M., & Godin, E. (2024). Ice Exploration on Mars: Where to and when. Ices in the Solar System, 193-219. https://doi.org/10.1016/B978-0-323-99324-1.00007-9.
  • Joseph, A. (2023). Liquid water lake under ice in Mars’s southern hemisphere—Possibility of subsurface biosphere and life. Water Worlds in the Solar System, 453-522. https://doi.org/10.1016/B978-0-323-95717-5.00019-0.
  • Karlsson, N. B., Schmidt, L. S., & Hvidberg, C. S. (2015). Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophysical Research Letters, 42(8), 2627-2633.
  • Levy, J. S., Fassett, C. I., Head, J. W., Schwartz, C., & Watters, J. L. (2014). Sequestered glacial ice contribution to the global Martian water budget: Geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. Planets, 119(10), 2188–2196.
  • NASA. (2008). NASA Spacecraft Confirms Martian Water, Mission Extended. Retrieved from https://web.archive.org/web/20120418005710/http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080731.html 29 Ocak 2024.
  • NASA. (2021). HiRISE Views a Mars Impact Crater Surrounded by Water Ice. Retrieved from https://mars.nasa.gov/resources/27086/hirise-views-a-mars-impact-crater-surrounded-by-water-ice/?site=msl, 08 Nisan 2024.
  • NASA. (2022). Mars Reconnaissance Orbiter- Missions- MRO Satellite- Instruments. Retrieved from https://mars.nasa.gov/mro/mission/instruments/, 28.01.2024.
  • NASA. (2023). Jet Propulsion Laboratory, Retrieved from https://www.nasa.gov/solar-system/planets/mars/nasa-is-locating-ice-on-mars-with-this-new-map/ 17 Ocak 2024.
  • NASA. (2024). NASA Science Mars Exploration Section-Missions. Retrieved from https://mars.nasa.gov/mars-exploration/missions/viking-1-2/, 14 Ocak 2024.
  • NASA. (2024). Solar System. Retrieved from https://www.nasa.gov/solar-system/nasas-treasure-map-for-water-ice-on-mars/, 20 Ocak 2024.
  • Petrov, G., & Ochsendorf, J. (2005). Building on Mars. Civil Engineering Magazine Archive, 75(10), 46–53.
  • Riu, L., Carter, J., Poulet, F., Cardesín-Moinelo, A., & Martin, P. (2023). Global surficial water content stored in hydrated silicates at Mars from OMEGA/MEx. Icarus, 398(1), 115537.
  • Schiff, N. L. G., & Gregg, T. K. P. (2022). Probable ice-rich deposits on north-facing slopes in Alba Patera, Mars. Icarus, 383(1), 115063.
  • Schörghofer, N. (2021). Ice caves on Mars: Hoarfrost and microclimates. Icarus, 357(1), 114271.
  • Son, H., Zhang, J., Liu, Y., Sun, Y., & Ni, D. (2023). Modeling the distribution of subsurface seasonal water ice with varying atmospheric conditions at northern low to midlatitudes on Mars. Icarus, 389(1), 115262.
  • Soureshjani, O. K., Massumi, A., & Nouri, G. (2023). Martian Buildings: Design loading. Advances in Space Research, 71, 2186-2205.
  • Tang, X., Adkins, C., Mallams, J., Burnette, M., Barnes, T., Mier-Hicks, F., Meirion-Griffith, B., & Staack, D. (2022). Plasma drilling on Martian ice: Enabling efficient deep subsurface access to Mars' polar layered deposits. Planetary and Space Science, 223(1), 105578.
  • Toklu, Y. C. (2000). Civil engineering in the design and construction of a lunar base, 7th ASCE Congress on Engineering, Construction, Operations and Business in Space, Proceedings, 27 Mart 2000, Albuquerque, USA.
  • URL-1, (2024). https://mars.nasa.gov/mars-exploration/missions/viking-1-2/, 14 Ocak 2024.
  • URL-2, (2024). https://tr.wikipedia.org/wiki/Mars#cite_note-52, 29 Ocak 2024.
  • URL-3, (2024). https://www.google.com/mars/, 31 Ocak 2024.
  • URL-4, (2024). https://www.space.com/mars-water-ice-equator-frozen-ocean, 20 Ocak 2024.
  • Yoldi, Z., Pommerol, A., Poch, O., & Thomas, N. (2022). Reflectance study of ice and Mars soil simulant associations—II. CO2 and HO2 ice. Icarus, 386(1), 115116.
There are 27 citations in total.

Details

Primary Language English
Subjects Complex Civil Systems, Structural Engineering, Civil Engineering (Other)
Journal Section Research Articles
Authors

Saffet Kılıçer 0000-0002-5445-0352

Publication Date June 28, 2024
Submission Date February 17, 2024
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Kılıçer, S. (2024). Ice Load Effect on Martian Buildings. Artvin Çoruh Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 2(1), 14-23.