Research Article
BibTex RIS Cite

The Effect of Salt in the Fıre Resıdue Analysıs of Gasolıne, a Fıre Accelerant: a Solıd-Phase Mıcroextractıon (SPME) Method

Year 2024, Volume: 38 Issue: 3, 205 - 216, 31.12.2024

Abstract

Introduction: The most critical step in the investigation of the origin of a fire is to prove the presence of an ignitable liquid and the methods developed in this field are expected to be fast, easy, and effective. In many studies, solid phase microextraction (SPME) is used in the sample preparation step and the effect of parameters such as sampling time, temperature, etc. on detection time and extraction efficiency is investigated, but the effect of salt solution applied before SPME on recovery has not yet been investigated.

Aim: In this study, the effect of salt solution on the detection of volatile components in gasoline, which is an ignitable liquid and used as a fire accelerator, by the SPME method was investigated.
Materials and Method: In the study, 2.5x2.5 cm carpet samples containing 500 µL gasoline were kept in the laboratory for 2, 4, 6 hours and 30, 45 days with and without burning. Before SPME, 0.16 g/mL NaCl solution was added to the samples, and the samples were analyzed using Gas Chromatography-Mass Spectrometry system.

Results: The extraction efficiency of the salt-treated samples, which were kept for 2, 4 and 6 hours without combustion after the addition of gasoline, decreased by about 50% compared to the unsalted samples, while the salt-treated samples kept for 30 and 45 days showed a 3.21 and 6.88-fold increase in the extraction efficiency. In the carpet samples kept for 2, 4, and 6 hours after burning, the salt solution increased the extraction efficiency up to 4 times, while it did not affect the samples kept for 30 and 45 days.

Conclusion: The effect of the salt solution on the extraction efficiency of gasoline, which is an ignitable liquid and frequently used in arson cases, in fire debris analysis has been investigated for the first time in this study. Since each combustion and fire scene has its characteristics, it is thought that these kinds of controlled experimental investigations should be diversified by applying the developed method to different matrices with different contents (cotton, acrylamide, etc.) for different durations.

Project Number

TR10/18/YMP/0057

References

  • Dolan JA. Chapter 26 Forensic analysis of fire debris. Handb Anal Sep. 2008 Jan 1;6:873–922.
  • Nic Daeid N, Gabriel GF. Fire Investigation: Evidence Recovery. Encycl Forensic Leg Med Second Ed. 2016 Jan 1;515–9.
  • Redsicker DR, O’Connor JJ. Practical Fire and Arson Investigation. Second Edi. Redsicker DR, O’Connor JJ, editors. CRC Press; 1996.
  • Pert AD, Baron MG, Birkett JW. Review of Analytical Techniques for Arson Residues. J Forensic Sci. 2006;51(5):1033–49.
  • NFPA. NFPA 921: guide for fire and explosion investigations. Association. NFP, editor. 2004.
  • Stauffer E, Dolan JA, Newman R. Flammable and Combustible Liquids. Fire Debris Anal. 2008 Jan 1;199–233.
  • Kuloğlu M, Dağlıoğlu N, Kuloğlu L. Adli Yangın İncelemeleri : Sorunlar ve Çözüm Önerileri. Adli Bilim ve Suç Araştırmaları Derg. 2020;2(1):37–58.
  • Lennard CJ, Tristan Rochaix V, Margot P, Huber K. A GC–MS database of target compound chromatograms for the identification of arson accelerants. Sci Justice. 1995 Jan 1;35(1):19–30.
  • Saferstein R, editor. Criminalistics: An Introduction to Forensic Science. In: Forensic Aspects of Arson and Explosion Investigations. 12th ed. Pearson; 2018. p. 427–57.
  • Stauffer E, Dolan JA, Newman R. Interpretation of Ignitable Liquid Residues Extracted from Fire Debris. In: Fire Debris Analysis. Academic Press; 2008. p. 441–93.
  • ASTM. ASTM Method E 1387–01, Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography. West Conshohocken, PA; 2006.
  • ASTM. ASTM Method E 1388–12, Standard practice for sampling headspace vapors from fire debris samples. West Conshohocken, PA; 2006.
  • ASTM. ASTM Method E 1618-19, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. 2021.
  • Kerr TJ. Sample preparation for the analysis of fire debris – Past and present. J Sep Sci. 2018;41(21):4055–66.
  • Evans-Nguyen K, Hutches K. Forensic Analysis of Fire Debris and Explosives. 2019.
  • Caddy B, Smith FP, Macy J. Methods of Fire Debris Preparation for Detection of Accelerants. Forensic Sci Rev. 1991;3(1):57–69.
  • Arthur C, Pawliszyn J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal Chem [Internet]. 1990 [cited 2022 Jun 17];62(19):2145–8. Available from: https://pubs.acs.org/sharingguidelines
  • Lashgari M, Singh V, Pawliszyn J. A critical review on regulatory sample preparation methods: Validating solidphase microextraction techniques. TRAC Trends Anal Chem. 2019 Oct 1;119:115618.
  • Wu CH, Chen CL, Huang C Te, Lee MR, Huang CM. Identification of gasoline soot in suspect arson cases by using headspace solid phase microextraction-GC/MS. Anal Lett. 2004;37(7):1373–84.
  • Risticevic S, Lord H, Gorecki T, Arthur CL, Pawliszyn J. Protocol for solid-phase microextraction method development. Nat Protoc. 2010;5(1):122–39.
  • Supelco. Solid Phase Microextraction: Theory and Optimization of Conditions. Bellefonte, PA; 1999.
  • Wu J, Xie W, Pawliszyn J. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst. 2000;125(12):2216–22.
  • Kataoka H, Lord HL, Pawliszyn J. Applications of solidphase microextraction in food analysis. J Chromatogr A. 2000;880(1–2):35–62.
  • Aldrich A, Gennarino-Lopez E, Odugbesi G, Woodside K, Haddadi S. Screening carpet substrate interferences in arson identification by solid phase microextraction and gas chromatography-mass spectrometry. Separations. 2020;7(4):1–18.
  • Dhabbah AM. Detection of petrol residues in natural and synthetic textiles before and after burning using SPME and GC-MS. Aust J Forensic Sci. 2018;52(2):194–207.
  • Visotin A, Lennard C. Preliminary evaluation of a nextgeneration portable gas chromatograph mass spectrometer (GC-MS) for the on-site analysis of ignitable liquid residues. Aust J Forensic Sci. 2016;48(2):203–21.
  • Huang TY, Yu J (Chi C. Carbon nanotubes-assisted solidphase microextraction for the extraction of gasoline in fire debris samples. J Chromatogr A. 2023;1701:464063.
  • Baerncopf J, Hutches K. Evaluation of long term preservation of ignitable liquids adsorbed onto charcoal strips: 0 to 2 years. Forensic Chem. 2020;18:100234.
  • Manousi N, Rosenberg E, Zachariadis GA. Solid-phase microextraction Arrow for the sampling of volatile organic compounds in milk samples. Separations. 2020;7(4):75.
  • Barros EP, Moreira N, Pereira GE, Leite SGF, Rezende CM, de Pinho PG. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Talanta. 2012;101:177–86.
  • Pizarro C, Pérez-del-Notario N, González-Sáiz JM. Optimisation of a simple and reliable method based on headspace solid-phase microextraction for the determination of volatile phenols in beer. J Chromatogr A. 2010;1217(39):6013–21.
  • Higashikawa FS, Cayuela ML, Roig A, Silva CA, Sánchez- Monedero MA. Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples. Chemosphere. 2013;93(10):2311–8.
  • Wypych J, Mañko T. Determination of volatile organic compounds (VOCs) in water and soil using solid phase microextraction. Chem Analityczna. 2002;47(4):507–30.
  • Kusano M, Mendez E, Furton KG. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens. Anal Bioanal Chem. 2011;400:1817–26.
  • Alonso M, Castellanos M, Besalú E, Sanchez JM. A headspace needle-trap method for the analysis of volatile organic compounds in whole blood. J Chromatogr A. 2012;1252:23–30.
  • Kilic MD, Yayla M, Mercan S. Detection of gasoline residues on household materials up to 60 days: Comparison of two extinguishing methods. Forensic Sci Int. 2024;364:112222.
  • Dhabbah AM, Sultan ·, Al-Jaber S, Al-Ghamdi AH, Aqel A, Dhabbah AM, et al. Determination of Gasoline Residues on Carpets by SPME–GC-MS Technique. Arab J Sci Eng 2014 399. 2014;39(9):6749–56.
  • Aqel A, Dhabbah AM, Yusuf K, AL-Harbi NM, Al Othman ZA, Yacine Badjah-Hadj-Ahmed A. Determination of gasoline and diesel residues on wool, silk, polyester and cotton materials by SPME–GC–MS. J Anal Chem. 2016;71(7):730–6.
  • Swierczynski JM, Grau K, Schmitz M, Kim J. Detection of Gasoline Residues Present in Household Materials Via Headspace-solid Phase Microextraction and Gas Chromatography‒mass Spectrometry. J Anal Chem. 2020;75(1):44–55.
  • Dadalı C, Elmacı Y. Gıdalarda Uçucu Bileşen Analizinde Katı Faz Mikroekstraksiyon. Türk Tarım - Gıda Bilim ve Teknol Derg. 2017;5(10):1173–83.

Bir Yangın Hızlandırıcısı Olan Benzinin Kalıntı Analizinde Tuzun Etkisi: Katı-Faz Mikroekstraksiyon (SPME) Yöntemi

Year 2024, Volume: 38 Issue: 3, 205 - 216, 31.12.2024

Abstract

Giriş: Yangın çıkış nedeninin araştırılmasında en kritik aşama, tutuşabilir bir sıvının varlığının kanıtlanmasıdır ve bu alanda geliştirilen yöntemlerin hızlı, kolay ve etkili olması beklenmektedir. Birçok çalışmada örnek hazırlama basamağında katı faz mikroekstraksiyon (SPME) yöntemi kullanılarak örnekleme süresi, sıcaklık vb. parametrelerin tespit süresi ve ekstraksiyon verimliliği üzerine etkisi incelenmiştir ancak SPME öncesinde uygulanan tuz çözeltisinin geri kazanıma etkisi henüz araştırılmamıştır.

Amaç: Bu çalışmada, tutuşabilir bir sıvı olan ve yangın hızlandırıcısı olarak kullanılan benzinin içerisinde bulunan uçucu bileşenlerin SPME yöntemi ile tespit edilmesinde tuz çözeltisinin etkisi araştırılmıştır.
Gereç ve Yöntem: Çalışmada, 500 µL benzin eklenmiş 2.5x2.5 cm ebatlarında halı numuneleri hem yakılmadan hem de yakılarak 2, 4, 6 saat ve 30, 45 gün sürelerde laboratuvar ortamında bekletilmiştir. SPME öncesi numunelerin içerisine 0.16 g/mL NaCl çözeltisi eklenmiş ve numuneler Gaz Kromatografisi-Kütle Spektrometresi sistemi kullanılarak analiz edilmiştir.

Bulgular: Benzin eklendikten sonra yakılmadan 2, 4 ve 6 saat bekletilmiş ve tuz ile örneklenmiş numunelerin ekstraksiyon verimliliği, tuz eklenmemiş numunelere kıyasla yaklaşık %50 düşüş göstermiştir. Otuz ve 45 gün bekletilen numunelerde ise ekstraksiyon verimliliğinde sırasıyla 3.21 ve 6.88 kat artış meydana gelmiştir. Yandıktan sonra 2, 4 ve 6 saat bekletilen halı numunelerinde tuz çözeltisinin ekstraksiyon verimini 4 kata kadar arttırdığı, 30 ve 45 gün bekletilen örneklerde ise etkilemediği görülmüştür.

Sonuç: Tutuşabilir bir sıvı olan ve kasıtlı yangınlarda sıklıkla kullanılan benzinin kalıntı analizinde tuz çözeltisi kullanmanın ekstraksiyon verimliliği üzerine etkisi ilk kez bu çalışmada incelenmiş ve iyileştirici ektileri saptanmıştır. Her yanma ve her yangın olay yeri kendine has özellikler barındırdığından, bu tür kontrollü deneysel araştırmaların farklı içeriğe sahip (pamuk, Akrilamid vb.) matrislerde, farklı sürelerde uygulanarak çeşitlendirilmesi gerektiği düşünülmektedir.

Ethical Statement

Etik kurul onayı gerekmemektedir.

Supporting Institution

İstanbul Kalkınma Ajansı

Project Number

TR10/18/YMP/0057

References

  • Dolan JA. Chapter 26 Forensic analysis of fire debris. Handb Anal Sep. 2008 Jan 1;6:873–922.
  • Nic Daeid N, Gabriel GF. Fire Investigation: Evidence Recovery. Encycl Forensic Leg Med Second Ed. 2016 Jan 1;515–9.
  • Redsicker DR, O’Connor JJ. Practical Fire and Arson Investigation. Second Edi. Redsicker DR, O’Connor JJ, editors. CRC Press; 1996.
  • Pert AD, Baron MG, Birkett JW. Review of Analytical Techniques for Arson Residues. J Forensic Sci. 2006;51(5):1033–49.
  • NFPA. NFPA 921: guide for fire and explosion investigations. Association. NFP, editor. 2004.
  • Stauffer E, Dolan JA, Newman R. Flammable and Combustible Liquids. Fire Debris Anal. 2008 Jan 1;199–233.
  • Kuloğlu M, Dağlıoğlu N, Kuloğlu L. Adli Yangın İncelemeleri : Sorunlar ve Çözüm Önerileri. Adli Bilim ve Suç Araştırmaları Derg. 2020;2(1):37–58.
  • Lennard CJ, Tristan Rochaix V, Margot P, Huber K. A GC–MS database of target compound chromatograms for the identification of arson accelerants. Sci Justice. 1995 Jan 1;35(1):19–30.
  • Saferstein R, editor. Criminalistics: An Introduction to Forensic Science. In: Forensic Aspects of Arson and Explosion Investigations. 12th ed. Pearson; 2018. p. 427–57.
  • Stauffer E, Dolan JA, Newman R. Interpretation of Ignitable Liquid Residues Extracted from Fire Debris. In: Fire Debris Analysis. Academic Press; 2008. p. 441–93.
  • ASTM. ASTM Method E 1387–01, Standard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography. West Conshohocken, PA; 2006.
  • ASTM. ASTM Method E 1388–12, Standard practice for sampling headspace vapors from fire debris samples. West Conshohocken, PA; 2006.
  • ASTM. ASTM Method E 1618-19, Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. 2021.
  • Kerr TJ. Sample preparation for the analysis of fire debris – Past and present. J Sep Sci. 2018;41(21):4055–66.
  • Evans-Nguyen K, Hutches K. Forensic Analysis of Fire Debris and Explosives. 2019.
  • Caddy B, Smith FP, Macy J. Methods of Fire Debris Preparation for Detection of Accelerants. Forensic Sci Rev. 1991;3(1):57–69.
  • Arthur C, Pawliszyn J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal Chem [Internet]. 1990 [cited 2022 Jun 17];62(19):2145–8. Available from: https://pubs.acs.org/sharingguidelines
  • Lashgari M, Singh V, Pawliszyn J. A critical review on regulatory sample preparation methods: Validating solidphase microextraction techniques. TRAC Trends Anal Chem. 2019 Oct 1;119:115618.
  • Wu CH, Chen CL, Huang C Te, Lee MR, Huang CM. Identification of gasoline soot in suspect arson cases by using headspace solid phase microextraction-GC/MS. Anal Lett. 2004;37(7):1373–84.
  • Risticevic S, Lord H, Gorecki T, Arthur CL, Pawliszyn J. Protocol for solid-phase microextraction method development. Nat Protoc. 2010;5(1):122–39.
  • Supelco. Solid Phase Microextraction: Theory and Optimization of Conditions. Bellefonte, PA; 1999.
  • Wu J, Xie W, Pawliszyn J. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst. 2000;125(12):2216–22.
  • Kataoka H, Lord HL, Pawliszyn J. Applications of solidphase microextraction in food analysis. J Chromatogr A. 2000;880(1–2):35–62.
  • Aldrich A, Gennarino-Lopez E, Odugbesi G, Woodside K, Haddadi S. Screening carpet substrate interferences in arson identification by solid phase microextraction and gas chromatography-mass spectrometry. Separations. 2020;7(4):1–18.
  • Dhabbah AM. Detection of petrol residues in natural and synthetic textiles before and after burning using SPME and GC-MS. Aust J Forensic Sci. 2018;52(2):194–207.
  • Visotin A, Lennard C. Preliminary evaluation of a nextgeneration portable gas chromatograph mass spectrometer (GC-MS) for the on-site analysis of ignitable liquid residues. Aust J Forensic Sci. 2016;48(2):203–21.
  • Huang TY, Yu J (Chi C. Carbon nanotubes-assisted solidphase microextraction for the extraction of gasoline in fire debris samples. J Chromatogr A. 2023;1701:464063.
  • Baerncopf J, Hutches K. Evaluation of long term preservation of ignitable liquids adsorbed onto charcoal strips: 0 to 2 years. Forensic Chem. 2020;18:100234.
  • Manousi N, Rosenberg E, Zachariadis GA. Solid-phase microextraction Arrow for the sampling of volatile organic compounds in milk samples. Separations. 2020;7(4):75.
  • Barros EP, Moreira N, Pereira GE, Leite SGF, Rezende CM, de Pinho PG. Development and validation of automatic HS-SPME with a gas chromatography-ion trap/mass spectrometry method for analysis of volatiles in wines. Talanta. 2012;101:177–86.
  • Pizarro C, Pérez-del-Notario N, González-Sáiz JM. Optimisation of a simple and reliable method based on headspace solid-phase microextraction for the determination of volatile phenols in beer. J Chromatogr A. 2010;1217(39):6013–21.
  • Higashikawa FS, Cayuela ML, Roig A, Silva CA, Sánchez- Monedero MA. Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples. Chemosphere. 2013;93(10):2311–8.
  • Wypych J, Mañko T. Determination of volatile organic compounds (VOCs) in water and soil using solid phase microextraction. Chem Analityczna. 2002;47(4):507–30.
  • Kusano M, Mendez E, Furton KG. Development of headspace SPME method for analysis of volatile organic compounds present in human biological specimens. Anal Bioanal Chem. 2011;400:1817–26.
  • Alonso M, Castellanos M, Besalú E, Sanchez JM. A headspace needle-trap method for the analysis of volatile organic compounds in whole blood. J Chromatogr A. 2012;1252:23–30.
  • Kilic MD, Yayla M, Mercan S. Detection of gasoline residues on household materials up to 60 days: Comparison of two extinguishing methods. Forensic Sci Int. 2024;364:112222.
  • Dhabbah AM, Sultan ·, Al-Jaber S, Al-Ghamdi AH, Aqel A, Dhabbah AM, et al. Determination of Gasoline Residues on Carpets by SPME–GC-MS Technique. Arab J Sci Eng 2014 399. 2014;39(9):6749–56.
  • Aqel A, Dhabbah AM, Yusuf K, AL-Harbi NM, Al Othman ZA, Yacine Badjah-Hadj-Ahmed A. Determination of gasoline and diesel residues on wool, silk, polyester and cotton materials by SPME–GC–MS. J Anal Chem. 2016;71(7):730–6.
  • Swierczynski JM, Grau K, Schmitz M, Kim J. Detection of Gasoline Residues Present in Household Materials Via Headspace-solid Phase Microextraction and Gas Chromatography‒mass Spectrometry. J Anal Chem. 2020;75(1):44–55.
  • Dadalı C, Elmacı Y. Gıdalarda Uçucu Bileşen Analizinde Katı Faz Mikroekstraksiyon. Türk Tarım - Gıda Bilim ve Teknol Derg. 2017;5(10):1173–83.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Forensic Medicine, Forensic Chemistry
Journal Section Research Article
Authors

Mihriban Dilan Kılıç 0009-0004-7242-7641

Murat Yayla 0000-0003-3683-945X

Selda Mercan 0000-0002-0431-6972

Project Number TR10/18/YMP/0057
Publication Date December 31, 2024
Submission Date May 15, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2024 Volume: 38 Issue: 3

Cite

Vancouver Kılıç MD, Yayla M, Mercan S. Bir Yangın Hızlandırıcısı Olan Benzinin Kalıntı Analizinde Tuzun Etkisi: Katı-Faz Mikroekstraksiyon (SPME) Yöntemi. J For Med. 2024;38(3):205-16.
Creative Commons Lisansı

Turkish Journal of Forensic Medicine is licensed under a Creative Commons Attribution 4.0 International License.
Our journal has adopted the Open Access Policy, and no fees will be charged from the authors at any stage of the publication for the articles submitted.