Derleme
BibTex RIS Kaynak Göster

A New Dimension in Periodontal Regenerative Therapy: 3D Cell Culture

Yıl 2023, Cilt: 12 Sayı: 1, 183 - 189, 18.01.2023
https://doi.org/10.54617/adoklinikbilimler.1118229

Öz

Therapies established with three-dimensional (3D) culture environments, particularly developed by using Mesenchymal Stem Cells (MSCs), have come to the fore in recent years. Functions of tissues and organs with cell cultures, their behavior in the case of an illness, and their interactions with drugs can be evaluated in vitro. This review examined the methods of creating 3D culture environments, their advantages and disadvantages, as well as their use in periodontal regenerative therapy.

Kaynakça

  • Bartold PM, McCulloch CAG, Narayanan AS, Pitaru S. Tissue engineering: A new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000;24:253–69.
  • Garrett S. Periodontal regeneration around natural teeth. Ann Periodontol 1996;1:621–66.
  • Paolantonio M. Combined periodontal regenerative technique in human intrabony defects by collagen membranes and anorganic bovine bone. A Controlled Clinical Study. J Periodontol 2002;73:158-66.
  • Cortellini P, Prato GP, Tonetti MS. Periodontal Regeneration of human infrabony Defects: I. Clinical Measures. J Periodontol 1993;64:254–60.
  • Sun E, Karaoz E. Can Wharton jelly derived or adipose tissue derived mesenchymal stem cell can be a treatment option for duchenne muscular dystrophy. Answers as transcriptomic aspect. Am J Stem Cells 2020;9:57–67.
  • Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology 1998;16:247-52.
  • Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell culture, technology: enhancing the culture of diagnosing human diseases. J Clin Diagn Res 2016:10:DE01-5.
  • Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2022;18:240–9.
  • Mabry KM, Payne SZ, Anseth KS. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 2016;74:31–41.
  • Thorpe TA. History of plant tissue culture. Mol Biotechnol 2007;37:169–80.
  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J. Essential cell biology. 4th ed. Egypt: Garland Science; 2015. p.722-723.
  • Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017;32:266–77.
  • Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 2013;31:108–15.
  • Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials 2021;268:120575.
  • Maura R, Francesco A, Simona R, Elena S, Claudio A. Three-dimensional models: a novel approach for lymphoma research. J Cancer Res Clin Oncol 2022;148:753–65.
  • Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 2018;14:910-9.
  • Fontoura JC, Viezzer C, dos Santos FG, Ligabue RA, Weinlich R, Puga RD, et al. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C 2020;107:110264.
  • Xie AW, Zacharias NA, Binder BYK, Murphy WL. Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates. Stem Cells Med 2021;10:1184–201.
  • Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng 2019;208:14–28.
  • Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2018;147:297–312.
  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013;500:217–21.
  • Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019;6:1-9.
  • Jorgensen C, Simon M. In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies Cells 2021;10:596.
  • Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021;10:2100234.
  • Sutherland RM, Inch WR, McCredie JA, Kruuv J. A Multi-component Radiation Survival Curve Using an in Vitro Tumour Model. Int J Radiat Biol Relat Stud Phys Chem Med 1970;18:491-5.
  • Duinen VV, Trietsch SJ, Joore J, Pulto V, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 2015;35:118-26.
  • Vadivelu RK, Kamble H, Shiddiky MJA, Nguyen NT. Microfluidic Technology for the Generation of Cell Spheroids and Their Applications. Micromachines (Basel) 2017;8:94.
  • Ko KR, Frampton JP. Developments in 3D neural cell culture models: the future of neurotherapeutics testing. Neurother 2016;16:739–41.
  • Costa EC, de Melo-Diogo D, Moreira AF, Carvalho MP, Correia IJ. Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnol J 2018;13:1700417.
  • Koch F, Tröndle K, Finkenzeller G, Zengerle R, Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting 2020;20:e00094.
  • Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273–88.
  • Foglietta F, Canaparo R, Muccioli G, Terreno E, Serpe L. Methodological aspects and pharmacological applications of three-dimensional cancer cell cultures and organoids. Life Sci 2020;254:117784.
  • Carletti E, Motta A, Migliaresi C. Scaffolds for Tissue Engineering and 3D Cell Culture. Methods Mol Biol 2011;695:17–39.
  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D Cell Culture Systems: Advantages and Applications. J Cell Physiol 2015;230:16–26.
  • Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011;21:745–54.
  • Jian H, Wang M, Wang S, Wang A, Bai S. 3D bioprinting for cell culture and tissue fabrication. Bio-Design Manuf 2018;1:45–61.
  • Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019;209:10–24.
  • Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2021;170:424–36.
  • Farrell E, Byrne EM, Fischer J, O’Brien FJ, O’Connell BC, Prendergast PJ, et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technol Heal Care 2007;15:19–31.
  • Lin L, Chow KL, Leng Y. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res 2009;89A:326–35.
  • Sapet C, Formosa C, Sicard F, Bertosio E, Zelphati O, Laurent N. 3D-fection: Cell transfection within 3D scaffolds and hydrogels. Ther Deliv 2013;4:673–85.
  • Dolati F, Yu Y, Zhang Y, Jesus AMD, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014;25:145101.
  • Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-Dimensional Printed Multiphase Scaffolds for Regeneration of Periodontium Complex. Tissue Eng Part A 2014;20:1342-51.
  • Yan XZ, van den Beucken J, Yuan C, Jansen JA, Yang F. Spheroid formation and stemness preservation of human periodontal ligament cells on chitosan films. Oral Dis 2018; 24:1083–92.
  • Zhuang Y, Lin K, Yu H. Advance of Nano-Composite Electrospun Fibers in Periodontal Regeneration. Front Chem 2019;7:495.
  • Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2019;54:364–73.
  • Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020;163:9–18.
  • Eswaramoorthy SD, Dhiman N, Joshi A, Rath SN. 3D bioprinting of mesenchymal stem cells and endothelial cells in an alginate-gelatin-based bioink. Journal of 3D Printing in Medicine 2021;5:23-36.
  • Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci 2021;16:501–7.
  • D’Avanzo N, Bruno MC, Giudice A, Mancuso A, de Gaetano F, Cristiano MC, et al. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021;26:1643.

Periodontal Rejeneratif Tedavide Yeni Bir Boyut: Üç Boyutlu Hücre Kültürü

Yıl 2023, Cilt: 12 Sayı: 1, 183 - 189, 18.01.2023
https://doi.org/10.54617/adoklinikbilimler.1118229

Öz

Periodontal rejeneratif tedavide özellikle Mezenkimal Kök Hücrelerden (MKH) yararlanılarak geliştirilen üç boyutlu (3D) kültür ortamları ile oluşturulan tedaviler son yıllarda ön plana çıkmaktadır. Hücre kültürleri ile doku ve organların fonksiyonları, hastalık durumunda göstermiş oldukları davranışları ve ilaçlarla olan etkileşimleri in vitro olarak değerlendirilebilmektedir. Bu derlemede 3D kültür ortamların oluşturulma metotları, avantaj ve dezavantajlarının yanı sıra periodontal rejeneratif tedavide kullanım alanları incelenmiştir.

Kaynakça

  • Bartold PM, McCulloch CAG, Narayanan AS, Pitaru S. Tissue engineering: A new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000;24:253–69.
  • Garrett S. Periodontal regeneration around natural teeth. Ann Periodontol 1996;1:621–66.
  • Paolantonio M. Combined periodontal regenerative technique in human intrabony defects by collagen membranes and anorganic bovine bone. A Controlled Clinical Study. J Periodontol 2002;73:158-66.
  • Cortellini P, Prato GP, Tonetti MS. Periodontal Regeneration of human infrabony Defects: I. Clinical Measures. J Periodontol 1993;64:254–60.
  • Sun E, Karaoz E. Can Wharton jelly derived or adipose tissue derived mesenchymal stem cell can be a treatment option for duchenne muscular dystrophy. Answers as transcriptomic aspect. Am J Stem Cells 2020;9:57–67.
  • Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology 1998;16:247-52.
  • Hudu SA, Alshrari AS, Syahida A, Sekawi Z. Cell culture, technology: enhancing the culture of diagnosing human diseases. J Clin Diagn Res 2016:10:DE01-5.
  • Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 2022;18:240–9.
  • Mabry KM, Payne SZ, Anseth KS. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 2016;74:31–41.
  • Thorpe TA. History of plant tissue culture. Mol Biotechnol 2007;37:169–80.
  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J. Essential cell biology. 4th ed. Egypt: Garland Science; 2015. p.722-723.
  • Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017;32:266–77.
  • Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, De Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 2013;31:108–15.
  • Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials 2021;268:120575.
  • Maura R, Francesco A, Simona R, Elena S, Claudio A. Three-dimensional models: a novel approach for lymphoma research. J Cancer Res Clin Oncol 2022;148:753–65.
  • Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 2018;14:910-9.
  • Fontoura JC, Viezzer C, dos Santos FG, Ligabue RA, Weinlich R, Puga RD, et al. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C 2020;107:110264.
  • Xie AW, Zacharias NA, Binder BYK, Murphy WL. Controlled aggregation enhances immunomodulatory potential of mesenchymal stromal cell aggregates. Stem Cells Med 2021;10:1184–201.
  • Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng 2019;208:14–28.
  • Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2018;147:297–312.
  • Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013;500:217–21.
  • Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019;6:1-9.
  • Jorgensen C, Simon M. In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies Cells 2021;10:596.
  • Rizwan M, Baker AEG, Shoichet MS. Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv Healthc Mater 2021;10:2100234.
  • Sutherland RM, Inch WR, McCredie JA, Kruuv J. A Multi-component Radiation Survival Curve Using an in Vitro Tumour Model. Int J Radiat Biol Relat Stud Phys Chem Med 1970;18:491-5.
  • Duinen VV, Trietsch SJ, Joore J, Pulto V, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 2015;35:118-26.
  • Vadivelu RK, Kamble H, Shiddiky MJA, Nguyen NT. Microfluidic Technology for the Generation of Cell Spheroids and Their Applications. Micromachines (Basel) 2017;8:94.
  • Ko KR, Frampton JP. Developments in 3D neural cell culture models: the future of neurotherapeutics testing. Neurother 2016;16:739–41.
  • Costa EC, de Melo-Diogo D, Moreira AF, Carvalho MP, Correia IJ. Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches. Biotechnol J 2018;13:1700417.
  • Koch F, Tröndle K, Finkenzeller G, Zengerle R, Generic method of printing window adjustment for extrusion-based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an alginate-gelatin hydrogel. Bioprinting 2020;20:e00094.
  • Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273–88.
  • Foglietta F, Canaparo R, Muccioli G, Terreno E, Serpe L. Methodological aspects and pharmacological applications of three-dimensional cancer cell cultures and organoids. Life Sci 2020;254:117784.
  • Carletti E, Motta A, Migliaresi C. Scaffolds for Tissue Engineering and 3D Cell Culture. Methods Mol Biol 2011;695:17–39.
  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D Cell Culture Systems: Advantages and Applications. J Cell Physiol 2015;230:16–26.
  • Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011;21:745–54.
  • Jian H, Wang M, Wang S, Wang A, Bai S. 3D bioprinting for cell culture and tissue fabrication. Bio-Design Manuf 2018;1:45–61.
  • Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019;209:10–24.
  • Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2021;170:424–36.
  • Farrell E, Byrne EM, Fischer J, O’Brien FJ, O’Connell BC, Prendergast PJ, et al. A comparison of the osteogenic potential of adult rat mesenchymal stem cells cultured in 2-D and on 3-D collagen glycosaminoglycan scaffolds. Technol Heal Care 2007;15:19–31.
  • Lin L, Chow KL, Leng Y. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res 2009;89A:326–35.
  • Sapet C, Formosa C, Sicard F, Bertosio E, Zelphati O, Laurent N. 3D-fection: Cell transfection within 3D scaffolds and hydrogels. Ther Deliv 2013;4:673–85.
  • Dolati F, Yu Y, Zhang Y, Jesus AMD, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014;25:145101.
  • Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ. Three-Dimensional Printed Multiphase Scaffolds for Regeneration of Periodontium Complex. Tissue Eng Part A 2014;20:1342-51.
  • Yan XZ, van den Beucken J, Yuan C, Jansen JA, Yang F. Spheroid formation and stemness preservation of human periodontal ligament cells on chitosan films. Oral Dis 2018; 24:1083–92.
  • Zhuang Y, Lin K, Yu H. Advance of Nano-Composite Electrospun Fibers in Periodontal Regeneration. Front Chem 2019;7:495.
  • Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2019;54:364–73.
  • Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020;163:9–18.
  • Eswaramoorthy SD, Dhiman N, Joshi A, Rath SN. 3D bioprinting of mesenchymal stem cells and endothelial cells in an alginate-gelatin-based bioink. Journal of 3D Printing in Medicine 2021;5:23-36.
  • Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci 2021;16:501–7.
  • D’Avanzo N, Bruno MC, Giudice A, Mancuso A, de Gaetano F, Cristiano MC, et al. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021;26:1643.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Derleme
Yazarlar

Kadriye Altıkat 0000-0001-8448-9365

Ayşe Emel Ökte 0000-0002-3182-9212

Yayımlanma Tarihi 18 Ocak 2023
Gönderilme Tarihi 18 Mayıs 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 1

Kaynak Göster

Vancouver Altıkat K, Ökte AE. A New Dimension in Periodontal Regenerative Therapy: 3D Cell Culture. ADO Klinik Bilimler Dergisi. 2023;12(1):183-9.