Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 2, 1 - 8, 30.12.2024
https://doi.org/10.53913/aduveterinary.1469963

Abstract

Project Number

ADU-BAP, VTF-23009

References

  • Adıguzel, M.C., Baran, A., Wu, Z., Cengiz, S., Dai, L., Oz, C., Ozmenli, E., Goulart, B., & Sahin, O. (2021). Prevalence of colistin resistance in Escherichia coli in eastern Turkey and genomic characterization of an mcr-1 positive strain from retail chicken meat. Microbial Drug Resistance, 27(3), 424-432. https://doi.org/10.1089/mdr.2020.0209
  • Apostolakos, I., & Piccirillo A. (2018). A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathology, 47(6), 546-558. https://doi.org/10.1080/03079457.2018.1524573
  • Aslantas, O., & Kucukaltay, K. (2023). Investigation and molecular characterization of colistin resistance in commensal Escherichia coli strains isolated from broiler flocks. Israel Journal of Veterinary Medicine, 78(3), 25-35.
  • BD Phoenix-Automated Bacterial Identification and Antibiotic Susceptibility Test. (2023). https://www.bd.com/en-uk/offerings/capabilities/microbiology-solutions/clinicalmicrobiology/identification-and-susceptibility-testing/bd-phoenix automatedidentification-and-susceptibility-testing-system
  • Erzaim, N., & İkiz, S. (2021). Investigation of phenotypic and mcr-1 mediated colistin resistance in Escherichia coli. Acta Veterinaria Eurasia, 47(2), 82-87. https://doi.org/10.5152/actavet.2021.20003
  • Etebu, E., & Ukpong, M. (2016). Bacterial resistance to antibiotics: Update on molecular perspectives. Microbiology Research International, 4(4), 40-49.
  • EUCAST. (2022). Breakpoint tables for interpretation of MICs and zone diameters, version 12.0; http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf. Accessed August 18
  • Fukuda, A., Sato, T., Shinagaw, M., Takahashi, S., Asai, T., Yokota, S., Usui, M., & Tamura, Y. (2018). High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. International Journal of Antimicrobial Agents, 51(1), 163–164. https://doi.org/10.1016/j.ijantimicag.2017.11.010
  • Kempf, I., Jouy, E., & Chauvin, C. (2016). Colistin use and colistin resistance in bacteria from animals. International Journal of Antimicrobial Agents, 48(6), 598–606. https://doi.org/10.1016/j.ijantimicag.2016.09.016
  • Koneman, E.W., Allen, S.D., Janda, W.M., & Schreckenberger, P.C. (Eds.) (1997). Color Atlas and Textbook of Diagnostic Microbiology. Lippincott Williams & Wilkins.
  • Kurekci, C., Aydın, M., Nalbantoglu, O.U., & Gundogdu, A. (2018). First report of Escherichia coli carrying the mobile colistin resistance gene mcr-1 in Turkey. Journal of Global Antimicrobial Resistance, 15, 169–170. https://doi.org/10.1016/j.jgar.2018.09.013
  • Lemlem, M., Aklilu, E., Mohamed, M., Kamaruzzaman, N.F., Zakaria, Z., Harun, A., Devan, S.S., Kamaruzaman, N.A., Reduan, F.H., & Saravanan, M. (2023). Phenotypic and genotypic characterization of colistin‑resistant Escherichia coli with mcr-4, mcr-5, mcr-6, and mcr-9 genes from broiler chicken and farm environment. BMC Microbiology, 23, 392. https://doi.org/10.1186/s12866-023-03118-y
  • Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., & Spencer, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
  • Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbart, S., Hindler, J.F., Kahlmeter, G., Olsson- Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., & Monnet, D.L. (2012). Multidrugresistant, extensively drug resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18, 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  • Maniatis, T., & Sambrook, J. (Eds.). (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Pres. Marshall, B.M. & Levy, S.B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 24(4), 718–33. https://doi.org/10.1128/CMR.00002-11
  • Poirel, L. & Nordmann, P. (2016). Emerging plasmidencoded colistin resistance: the animal world as the culprit? Journal of Antimicrobial Chemotherapy, 71, 2326–2327. https://doi.org/10.1093/jac/dkw074
  • Poirel, L., Jayol, A. & Nordmann, P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews, 30, 557–596. https://doi.org/10.1128/cmr.00064-16
  • Rasheed, M.U., Thajuddin, N., Ahamed, P., Teklemariam, Z., & Jamil, K. (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Revista do Instituto de Medicina Tropical de São Paulo, 56(4), 341–6. https://doi.org/10.1590/s0036-46652014000400012
  • Rhouma, M., Beaudry, F., Thériault, W. & Letellier, A. (2016). Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Frontiers in Microbiology, 7, 1789. https://doi.org/10.3389/fmicb.2016.01789
  • Salam, M.A., Al-Amin, M.Y., Salam, M.T., Pawar, J.S., Akhter, N., Rabaan, A.A., & Alqumber, M.A.A. (2023). Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
  • Salinas, L., Cardenas, P., Johnson, T.J., Vasco, K., Graham, J., & Trueba, G. (2019). Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. MSphere, 4(3), 10- 1128. https://doi.org/10.1128/mSphere.00316-19
  • Seferoglu, Y., Turkyilmaz, M.K., & Turkyilmaz, S. (2024). Investigation of antibiotic resistance, phylogenetic groups and clonal relationships of colistin resistant Escherichia coli isolates obtained from broilers. Israel Journal of Veterinary Medicine, 79 (1), 27-40.
  • Skov, R. L., & Monnet, D. L. (2016). Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Eurosurveillance, 21(9), 30155. http://doi.org/10.2807/1560-7917.ES.2016.21.9.30155
  • Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. American Journal of Infection Control, 19(6), 3-10. https://doi.org/10.1016/j.amjmed.2006.03.011
  • Turner, P., Mclennan, A., Bates, A., & White, M. (Eds.). (2012). BIOS Instant Notes in Molecular Biology. Taylor & Francis.
  • Valiakos, G., & Kapna I. (2021). Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Veterinary Sciences, 8(11), 265. https://doi.org/10.3390/vetsci8110265
  • Wang, Y., Xu, C., Zhang, R., Chen, Y., Shen, Y., & Hu, F. (2020). Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases, 20(10), 1161–1171. https://doi.org/10.1016/S1473-3099(20)30149-3
  • Webb, H.E., Angulo, F.J., Granier, S.A., Scott, H.M. & Loneragan, G.H. (2017). Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin. F1000Research, 6, 1805. https://doi.org/10.12688/f1000research.12777.1
  • Yiş, R. (2022). Comparison of broth microdilution method with BD Phoenix, micro scan and E-test for carbapenem resistant Enterobacterales: colistin susceptibility testing. Journal of Academic Research in Medicine, 2(2), 61-65. https://doi.org/10.4274/jarem.galenos.2022.70299
  • Zhang, Q., Yan, W., Zhu, Y., Jing, N., Wang, S., Yuan, Y., Ma, B., Xu, J., Chu, Y., Zhang, J., Ma, Q., Wang, B., Xu, W., Zhu, L., Sun, Y., Shi, C., Fang, J., Li, Yi., & Liu, S. (2023). Evaluation of commercial products for colistin and polymyxin B susceptibility testing for mcr positive and negative Escherichia coli and Klebsiella pneumoniae in China. Infection and Drug Resistance, 16, 1171–1181. https://doi.org/10.1056/NEJMoa1706444

Investigation of Mobilized Colistin Resistance Gene-1 in Poultry Pathogenic Escherichia coli

Year 2024, Volume: 13 Issue: 2, 1 - 8, 30.12.2024
https://doi.org/10.53913/aduveterinary.1469963

Abstract

This study aimed to determine the presence of mobilized colistin resistance gene 1 (mcr-1), which provides plasmid-mediated colistin resistance in avian pathogenic Escherichia coli (APEC) isolates, and to examine the antibiotic resistance profiles of colistin resistant isolates. In this research, 200 broiler liver samples suspected of colibacillosis were utilized as the material. Following the isolation of E. coli through classical conventional methods, identification and antibiotic susceptibility tests were conducted using an automated microbiology system (BD Phoenix 100TM, USA). The presence of the mcr-1 gene in isolates phenotypically determined as colistin resistant was investigated using polymerase chain reaction (PCR). Out of 156 (78%) E. coli isolates obtained from 200 broiler liver samples, 10 (6.4%) were phenotypically determined to be colistin resistant. It was found that 80% of colistin resistant E. coli isolates were resistant to levofloxacin, 70% to cefazolin and cefuroxime, 60% to ceftazidime, 50% to gentamicin and ceftriaxone, 40% to cefepime, 30% to ceftolozane-tazobactam, and 20% to piperacillin-tazobactam. All isolates were sensitive to amikacin, ertapenem, imipenem, meropenem, and resistant to ampicillin, amoxicillin-clavulanate, ampicillin-sulbactam, trimethoprim-sulfamethoxazole, and tigecycline, exhibiting multidrug resistance (MDR). All isolates that were found to be phenotypically resistant to colistin were found to carry the mcr-1 gene. These findings indicate that the mcr in APEC contributes to the rapid spread of plasmid-mediated resistance genes and the escalation of broad-spectrum antibiotic resistance. The detection of resistance to antibiotics used in human medicine may be poses a potential threat to public health. Future studies should be conducted with samples from different regions and include a diverse sample group to better understand this risk.

Ethical Statement

Gerek bulunmamaktadır.

Supporting Institution

Aydın Adnan Menderes University Scientific Research Projects Unit

Project Number

ADU-BAP, VTF-23009

Thanks

This study was summarized by the first author’s Master of Science thesis. This study was supported by Aydın Adnan Menderes University Scientific Research Projects Unit (Project Number: ADU-BAP, VTF-23009).

References

  • Adıguzel, M.C., Baran, A., Wu, Z., Cengiz, S., Dai, L., Oz, C., Ozmenli, E., Goulart, B., & Sahin, O. (2021). Prevalence of colistin resistance in Escherichia coli in eastern Turkey and genomic characterization of an mcr-1 positive strain from retail chicken meat. Microbial Drug Resistance, 27(3), 424-432. https://doi.org/10.1089/mdr.2020.0209
  • Apostolakos, I., & Piccirillo A. (2018). A review on the current situation and challenges of colistin resistance in poultry production. Avian Pathology, 47(6), 546-558. https://doi.org/10.1080/03079457.2018.1524573
  • Aslantas, O., & Kucukaltay, K. (2023). Investigation and molecular characterization of colistin resistance in commensal Escherichia coli strains isolated from broiler flocks. Israel Journal of Veterinary Medicine, 78(3), 25-35.
  • BD Phoenix-Automated Bacterial Identification and Antibiotic Susceptibility Test. (2023). https://www.bd.com/en-uk/offerings/capabilities/microbiology-solutions/clinicalmicrobiology/identification-and-susceptibility-testing/bd-phoenix automatedidentification-and-susceptibility-testing-system
  • Erzaim, N., & İkiz, S. (2021). Investigation of phenotypic and mcr-1 mediated colistin resistance in Escherichia coli. Acta Veterinaria Eurasia, 47(2), 82-87. https://doi.org/10.5152/actavet.2021.20003
  • Etebu, E., & Ukpong, M. (2016). Bacterial resistance to antibiotics: Update on molecular perspectives. Microbiology Research International, 4(4), 40-49.
  • EUCAST. (2022). Breakpoint tables for interpretation of MICs and zone diameters, version 12.0; http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf. Accessed August 18
  • Fukuda, A., Sato, T., Shinagaw, M., Takahashi, S., Asai, T., Yokota, S., Usui, M., & Tamura, Y. (2018). High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. International Journal of Antimicrobial Agents, 51(1), 163–164. https://doi.org/10.1016/j.ijantimicag.2017.11.010
  • Kempf, I., Jouy, E., & Chauvin, C. (2016). Colistin use and colistin resistance in bacteria from animals. International Journal of Antimicrobial Agents, 48(6), 598–606. https://doi.org/10.1016/j.ijantimicag.2016.09.016
  • Koneman, E.W., Allen, S.D., Janda, W.M., & Schreckenberger, P.C. (Eds.) (1997). Color Atlas and Textbook of Diagnostic Microbiology. Lippincott Williams & Wilkins.
  • Kurekci, C., Aydın, M., Nalbantoglu, O.U., & Gundogdu, A. (2018). First report of Escherichia coli carrying the mobile colistin resistance gene mcr-1 in Turkey. Journal of Global Antimicrobial Resistance, 15, 169–170. https://doi.org/10.1016/j.jgar.2018.09.013
  • Lemlem, M., Aklilu, E., Mohamed, M., Kamaruzzaman, N.F., Zakaria, Z., Harun, A., Devan, S.S., Kamaruzaman, N.A., Reduan, F.H., & Saravanan, M. (2023). Phenotypic and genotypic characterization of colistin‑resistant Escherichia coli with mcr-4, mcr-5, mcr-6, and mcr-9 genes from broiler chicken and farm environment. BMC Microbiology, 23, 392. https://doi.org/10.1186/s12866-023-03118-y
  • Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., & Spencer, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
  • Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbart, S., Hindler, J.F., Kahlmeter, G., Olsson- Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T., & Monnet, D.L. (2012). Multidrugresistant, extensively drug resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18, 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  • Maniatis, T., & Sambrook, J. (Eds.). (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Pres. Marshall, B.M. & Levy, S.B. (2011). Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews, 24(4), 718–33. https://doi.org/10.1128/CMR.00002-11
  • Poirel, L. & Nordmann, P. (2016). Emerging plasmidencoded colistin resistance: the animal world as the culprit? Journal of Antimicrobial Chemotherapy, 71, 2326–2327. https://doi.org/10.1093/jac/dkw074
  • Poirel, L., Jayol, A. & Nordmann, P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews, 30, 557–596. https://doi.org/10.1128/cmr.00064-16
  • Rasheed, M.U., Thajuddin, N., Ahamed, P., Teklemariam, Z., & Jamil, K. (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Revista do Instituto de Medicina Tropical de São Paulo, 56(4), 341–6. https://doi.org/10.1590/s0036-46652014000400012
  • Rhouma, M., Beaudry, F., Thériault, W. & Letellier, A. (2016). Colistin in pig production: chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Frontiers in Microbiology, 7, 1789. https://doi.org/10.3389/fmicb.2016.01789
  • Salam, M.A., Al-Amin, M.Y., Salam, M.T., Pawar, J.S., Akhter, N., Rabaan, A.A., & Alqumber, M.A.A. (2023). Antimicrobial resistance: a growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
  • Salinas, L., Cardenas, P., Johnson, T.J., Vasco, K., Graham, J., & Trueba, G. (2019). Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. MSphere, 4(3), 10- 1128. https://doi.org/10.1128/mSphere.00316-19
  • Seferoglu, Y., Turkyilmaz, M.K., & Turkyilmaz, S. (2024). Investigation of antibiotic resistance, phylogenetic groups and clonal relationships of colistin resistant Escherichia coli isolates obtained from broilers. Israel Journal of Veterinary Medicine, 79 (1), 27-40.
  • Skov, R. L., & Monnet, D. L. (2016). Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Eurosurveillance, 21(9), 30155. http://doi.org/10.2807/1560-7917.ES.2016.21.9.30155
  • Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. American Journal of Infection Control, 19(6), 3-10. https://doi.org/10.1016/j.amjmed.2006.03.011
  • Turner, P., Mclennan, A., Bates, A., & White, M. (Eds.). (2012). BIOS Instant Notes in Molecular Biology. Taylor & Francis.
  • Valiakos, G., & Kapna I. (2021). Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Veterinary Sciences, 8(11), 265. https://doi.org/10.3390/vetsci8110265
  • Wang, Y., Xu, C., Zhang, R., Chen, Y., Shen, Y., & Hu, F. (2020). Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin positive additives in China: an epidemiological comparative study. The Lancet Infectious Diseases, 20(10), 1161–1171. https://doi.org/10.1016/S1473-3099(20)30149-3
  • Webb, H.E., Angulo, F.J., Granier, S.A., Scott, H.M. & Loneragan, G.H. (2017). Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin. F1000Research, 6, 1805. https://doi.org/10.12688/f1000research.12777.1
  • Yiş, R. (2022). Comparison of broth microdilution method with BD Phoenix, micro scan and E-test for carbapenem resistant Enterobacterales: colistin susceptibility testing. Journal of Academic Research in Medicine, 2(2), 61-65. https://doi.org/10.4274/jarem.galenos.2022.70299
  • Zhang, Q., Yan, W., Zhu, Y., Jing, N., Wang, S., Yuan, Y., Ma, B., Xu, J., Chu, Y., Zhang, J., Ma, Q., Wang, B., Xu, W., Zhu, L., Sun, Y., Shi, C., Fang, J., Li, Yi., & Liu, S. (2023). Evaluation of commercial products for colistin and polymyxin B susceptibility testing for mcr positive and negative Escherichia coli and Klebsiella pneumoniae in China. Infection and Drug Resistance, 16, 1171–1181. https://doi.org/10.1056/NEJMoa1706444
There are 30 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences (Other)
Journal Section Research Articles
Authors

Ecenur Yilmaz This is me 0009-0006-8449-7801

Süheyla Türkyılmaz 0000-0002-1363-4534

Project Number ADU-BAP, VTF-23009
Publication Date December 30, 2024
Submission Date April 18, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Yilmaz, E., & Türkyılmaz, S. (2024). Investigation of Mobilized Colistin Resistance Gene-1 in Poultry Pathogenic Escherichia coli. Animal Health Production and Hygiene, 13(2), 1-8. https://doi.org/10.53913/aduveterinary.1469963