Research Article
BibTex RIS Cite

Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği

Year 2024, Volume: 21 Issue: 1, 17 - 23, 30.06.2024
https://doi.org/10.25308/aduziraat.1315173

Abstract

İklim değişikliğinin olumsuz etkilerinin daha da arttığı günümüzde bir kış kenti olan Erzurum için farklı yeşil alan oranlarının mikro-iklime ve dış mekân termal konforuna etkisi incelenmiştir. Çalışma alanı olarak Erzurum kentinin yeni yerleşim yerlerinden Yıldızkent semti belirlenmiştir. Alanda mikro-iklim verileri Davis Vantage Pro-2 iklim cihazı ile bir yıl süre ile saatlik olarak ölçülmüştür. Yıldızkent imar planı içindeki bu alanda 5 farklı oranda yeşil alan miktarını artırma senaryoları oluşturulmuştur. Bunlar; %10, %20, %30, %40 ve %50 yeşil alan oranını içermektedir. Mevcut durum ile toplamda 6 farklı senaryonun simülasyonu 2021 yılının en sıcak (yaz ayı) ve en soğuk (kış ayı) zaman dilimi için ENVI-met BIO+Science programı ile dış mekân termal konforu modellenmiştir. Yeşil alan senaryolarından hava sıcaklığı, bağıl nem ve rüzgâr hızı verileri tüm senaryolarda mevcut duruma göre farklılık göstermezken, ortalama radyan sıcaklık (Tmrt)’da %10 yeşil alan oranı senaryosu ve fizyolojik eşdeğer sıcaklık (FES)’da ise %30 yeşil alan oranı senaryosu hem kış hem de yaz aylarında olumlu sonuçlar vermiştir. %10 yeşil alan oranında Tmrt kış ayı için mevcut duruma göre 0.2 ℃ artmış, yaz ayı için de ortalama 0.2 ℃ düşmüştür. FES analizlerinde ise, kış ayı tüm senaryoları benzer sonuçlar verirken, yaz ayında %30 yeşil alan oranında FES mevcut duruma göre 0.3 ℃ azalmıştır. Çalışma sonucunda yeşil alan oranının artırılmasının mikro-iklim üzerinde pozitif katkı sağladığı ve dış mekân termal konforunda farklılıklar getirdiği belirlenmiştir. Ancak bu tip çalışmalarda sağlıklı sonuç elde edebilmek için mikro-iklim özelliği farklı olan her bir alan için ayrı ayrı simülasyon analizlerinin yapılması gerekmektedir. Bu çalışmanın sonuçları mahalle ölçeğinde yapılacak çalışmalara yön gösterecek olup, peyzaj tasarımlarında %30 oranında yeşil alan yapılması iklim açısından olumlu sonuçlar vermektedir.

Supporting Institution

TÜBİTAK

Project Number

119O479

Thanks

Bu çalışma Başak ERTEM MUTLU'nun 794478 tez numaralı doktora tezinden üretilmiştir. Yazarlar, verilerini ücretsiz olarak paylaşan “Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 'na, 119O479 Proje No'lu TÜBİTAK 1001-TOVAG'a ve Devlet Meteoroloji Genel Müdürlüğü'ne (MGM) özel teşekkürlerini sunarlar.

References

  • Aboelata A, Sodoudi S (2019) Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment, 166: 106407.
  • Acero JA, Arrizabalaga J (2018) Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and applied climatology, 131: 455-469.
  • Alchapar NL, Pezzuto CC, Correa EN, Labaki LC (2017) The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130(1-2): 35-50.
  • Babiker M, Berndes G, Blok K, Cohen B, Cowie A, Geden O, Yamba F (2022) Cross-sectoral perspectives (chapter 12).
  • Battista G, Carnielo E, Vollaro RDL (2016) Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy and Buildings, 133: 446-454.
  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1): 1-12.
  • Bruse M (2000) Assessing thermal comfort in urban environments using an integrated dynamic micro-scale bio-meteorological model system. 3rd Symp. on the Urban Environ., Davis, CA, Am. Meteorol. Soc. 159-160.
  • Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13(3-4): 373-384.
  • Chan SY, Chau CK (2022) On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 64: 102512.
  • Crank PJ, Sailor DJ, Ban-Weiss G, Taleghani M (2018) Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban climate, 26: 188-197.
  • de Quadros BM, Mizgier MGO (2023) Urban green infrastructures to improve pedestrian thermal comfort: A systematic review. Urban Forestry & Urban Greening, 128091.
  • Faragallah RN, Ragheb RA (2022) Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3): 101609.
  • Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Zaehle S (2020) Global carbon budget 2020. Earth System Science Data Discussions, 2020: 1-3.
  • Geng X, Yu Z, Zhang D, Li C, Yuan Y, Wang X (2022) The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Science of The Total Environment, 823: 153806.
  • Golden JS (2004) The built environment induced urban heat island effect in rapidly urbanizing arid regions–a sustainable urban engineering complexity. Environmental Sciences, 1(4): 321-349.
  • Gatto E, Buccolieri R, Aarrevaara E, Ippolito F, Emmanuel R, Perronace L, Santiago JL (2020) Impact of urban vegetation on outdoor thermal comfort: Comparison between a mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests, 11(2): 228.
  • Grimmond SU (2007) Urbanization and global environmental change: local effects of urban warming. Geographical Journal, 173(1): 83-88.
  • IPCC (2018) Summary for Policymakers. In: Global Warming of 1.5°C, UK and New York, NY, USA, pp. 3-24, doi:10.1017/9781009157940.001.
  • Irmak MA, Yilmaz S, Mutlu E, Yilmaz H, (2018) Assessment of the effects of different tree species on urban microclimate, Environmental Sci.and Pollution Research, 1-21.
  • Jiang Y, Sun Y, Liu Y, Li X (2023) Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustainable Cities and Society, 98: 104831.
  • Lai D, Liu W, Gan T, Liu K, Chen Q (2019) A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 661: 337-353.
  • Lin BS, Lin CT, (2016) Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening, 20: 348-357.
  • Liu Z, Wang L, Wang P (2018) Analysis on influencing factors of farmers’ intention to manage forestry carbon sinks—An empirical study based on boosted regression tree, South China Forestry Science, 46 (06): 22-28.
  • Lu J, Li Q, Zeng L, Chen J, Liu G, Li Y, Huang K (2017) A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 32: 513-522.
  • Morakinyo TE, Lai A, Lau KKL, Ng E (2019) Thermal benefits of vertical greening in a high-density city: Case study of Hong. Urban forestry & urban greeng, 37: 42-55.
  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University.
  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35:17–27
  • Park M, Hagishima A, Tanimoto J, Narita KI (2012) Effect of urban vegetation on outdoor thermal environment: field measurement at a scale model site. Building and Environment, 56: 38-46.
  • Potchter O, Cohen P, Lin TP, Matzarakis A (2018) Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631, 390-406.
  • Qaid A, Lamit HB, Ossen DR, Shahminan RNR (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577-595.
  • Song BG, Park KH, Jung SG (2014) Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of the Korean association of geographic information studies, 17(2): 156-172.
  • Sodoudi S, Zhang H, Chi X, Müller F, Li H (2018) The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry & Urban Greening, 34: 85-96.
  • Teshnehdel S, Gatto E, Li D, Brown RD (2022) Improving Outdoor Thermal Comfort in a Steppe Climate: Effect of Water and Trees in an Urban Park. Land, 11(3), 431.
  • Ünal Çilek, M (2021) Kamusal Yeşil Alanlar İle Isıl Konfor Arasındaki İlişkilerin Modellenmesi: Adana Kenti Örneği, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • van Vliet, J (2019) Direct and indirect loss of natural area from urban expansion. Nature Sustainability, 2(8): 755-763.
  • Wang Y, Zhou D, Wang Y, Fang Y, Yuan Y, Lv L, (2019) Comparative study of urban residential design and microclimate characteristics based on ENVI-met simulation. Indoor and Built Environment, 28(9): 1200-1216.
  • Wu Z, Dou P, Chen L, (2019) Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustainable Cities and Society, 51: 101711.
  • Yilmaz S, Yilmaz H, Irmak MA, Kuzulugil AC, Koç A (2017) Effects of urban Pinus sylvestris (L.) plantation sites on thermal comfort. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215: 39-44.
  • Yilmaz S, Irmak MA, Qaid A (2022) Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building and Environment, 219: 109210.
  • Yilmaz S, Mutlu BE, Aksu A, Mutlu E, Qaid A (2021) Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, 28, 3672-3693.
  • Zhang L, Wei D, Hou Y, Du J, Liu ZA, Zhang G, Shi L (2020) Outdoor thermal comfort of urban park—a case study. Sustainability, 12(5):1961.
  • Zhang Y, Lin Z, Fang Z, Zheng Z (2022) An improved algorithm of thermal index models based on ENVI-met. Urban Climate, 44, 101190.
  • Zhang L, Zhan Q, Lan Y (2018) Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130: 27-39.

Determining the Effect of Different Green Area Ratios on Outdoor Thermal Comfort By Envi-Met Analysis: The Example of Erzurum

Year 2024, Volume: 21 Issue: 1, 17 - 23, 30.06.2024
https://doi.org/10.25308/aduziraat.1315173

Abstract

Climate change has been intensifying its adverse effects, especially in today's world, prompting an examination of the impact of varying green space ratios on microclimate and outdoor thermal comfort for Erzurum, a winter city. The study area was determined as the Yıldızkent district, one of the new settlements in the city of Erzurum. Microclimate data in te area were measured hourly for one year using the Davis Vantage Pro-2 weather station. Within the Yıldızkent zoning plan, five scenarios were created to increase the green space ratio, namely 10%, 20%, 30%, 40%, and 50%. Simulations for a total of six scenarios, including the existing situation, were modeled for the outdoor thermal comfort using the ENVI-met BIO+Science program for the hottest (summer) and coldest (winter) periods of 2021. While temperature, relative humidity, and wind speed did not differ across scenarios in the green space scenarios, the simulations indicated positive results for both winter and summer in terms of mean radiant temperature (Tmrt) in the 10% green space ratio scenario and physiological equivalent temperature (PET) in the 30% green space ratio scenario. For the 10% green space ratio, Tmrt increased by 0.2 ℃ in winter and decreased by an average of 0.2 ℃ in summer compared to the existing situation. In PET analyses, while winter showed similar results for all scenarios, in summer, the 30% green space ratio resulted in a 0.3 ℃ decrease compared to the existing situation. The study concludes that increasing the green space ratio has a positive contribution to the microclimate and brings about differences in outdoor thermal comfort. However, for accurate results in such studies, simulation analyses for each area with different microclimate characteristics are necessary. The results of this study will guide neighborhood-scale research, and incorporating a 30% green space ratio in landscape designs yields positive climate-related outcomes.

Project Number

119O479

References

  • Aboelata A, Sodoudi S (2019) Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment, 166: 106407.
  • Acero JA, Arrizabalaga J (2018) Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and applied climatology, 131: 455-469.
  • Alchapar NL, Pezzuto CC, Correa EN, Labaki LC (2017) The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, 130(1-2): 35-50.
  • Babiker M, Berndes G, Blok K, Cohen B, Cowie A, Geden O, Yamba F (2022) Cross-sectoral perspectives (chapter 12).
  • Battista G, Carnielo E, Vollaro RDL (2016) Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy and Buildings, 133: 446-454.
  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1): 1-12.
  • Bruse M (2000) Assessing thermal comfort in urban environments using an integrated dynamic micro-scale bio-meteorological model system. 3rd Symp. on the Urban Environ., Davis, CA, Am. Meteorol. Soc. 159-160.
  • Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental modelling & software, 13(3-4): 373-384.
  • Chan SY, Chau CK (2022) On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 64: 102512.
  • Crank PJ, Sailor DJ, Ban-Weiss G, Taleghani M (2018) Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban climate, 26: 188-197.
  • de Quadros BM, Mizgier MGO (2023) Urban green infrastructures to improve pedestrian thermal comfort: A systematic review. Urban Forestry & Urban Greening, 128091.
  • Faragallah RN, Ragheb RA (2022) Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3): 101609.
  • Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Zaehle S (2020) Global carbon budget 2020. Earth System Science Data Discussions, 2020: 1-3.
  • Geng X, Yu Z, Zhang D, Li C, Yuan Y, Wang X (2022) The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Science of The Total Environment, 823: 153806.
  • Golden JS (2004) The built environment induced urban heat island effect in rapidly urbanizing arid regions–a sustainable urban engineering complexity. Environmental Sciences, 1(4): 321-349.
  • Gatto E, Buccolieri R, Aarrevaara E, Ippolito F, Emmanuel R, Perronace L, Santiago JL (2020) Impact of urban vegetation on outdoor thermal comfort: Comparison between a mediterranean city (Lecce, Italy) and a northern European city (Lahti, Finland). Forests, 11(2): 228.
  • Grimmond SU (2007) Urbanization and global environmental change: local effects of urban warming. Geographical Journal, 173(1): 83-88.
  • IPCC (2018) Summary for Policymakers. In: Global Warming of 1.5°C, UK and New York, NY, USA, pp. 3-24, doi:10.1017/9781009157940.001.
  • Irmak MA, Yilmaz S, Mutlu E, Yilmaz H, (2018) Assessment of the effects of different tree species on urban microclimate, Environmental Sci.and Pollution Research, 1-21.
  • Jiang Y, Sun Y, Liu Y, Li X (2023) Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustainable Cities and Society, 98: 104831.
  • Lai D, Liu W, Gan T, Liu K, Chen Q (2019) A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 661: 337-353.
  • Lin BS, Lin CT, (2016) Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening, 20: 348-357.
  • Liu Z, Wang L, Wang P (2018) Analysis on influencing factors of farmers’ intention to manage forestry carbon sinks—An empirical study based on boosted regression tree, South China Forestry Science, 46 (06): 22-28.
  • Lu J, Li Q, Zeng L, Chen J, Liu G, Li Y, Huang K (2017) A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 32: 513-522.
  • Morakinyo TE, Lai A, Lau KKL, Ng E (2019) Thermal benefits of vertical greening in a high-density city: Case study of Hong. Urban forestry & urban greeng, 37: 42-55.
  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University.
  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35:17–27
  • Park M, Hagishima A, Tanimoto J, Narita KI (2012) Effect of urban vegetation on outdoor thermal environment: field measurement at a scale model site. Building and Environment, 56: 38-46.
  • Potchter O, Cohen P, Lin TP, Matzarakis A (2018) Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, 631, 390-406.
  • Qaid A, Lamit HB, Ossen DR, Shahminan RNR (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy and Buildings, 133, 577-595.
  • Song BG, Park KH, Jung SG (2014) Validation of ENVI-met model with in situ measurements considering spatial characteristics of land use types. Journal of the Korean association of geographic information studies, 17(2): 156-172.
  • Sodoudi S, Zhang H, Chi X, Müller F, Li H (2018) The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban Forestry & Urban Greening, 34: 85-96.
  • Teshnehdel S, Gatto E, Li D, Brown RD (2022) Improving Outdoor Thermal Comfort in a Steppe Climate: Effect of Water and Trees in an Urban Park. Land, 11(3), 431.
  • Ünal Çilek, M (2021) Kamusal Yeşil Alanlar İle Isıl Konfor Arasındaki İlişkilerin Modellenmesi: Adana Kenti Örneği, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • van Vliet, J (2019) Direct and indirect loss of natural area from urban expansion. Nature Sustainability, 2(8): 755-763.
  • Wang Y, Zhou D, Wang Y, Fang Y, Yuan Y, Lv L, (2019) Comparative study of urban residential design and microclimate characteristics based on ENVI-met simulation. Indoor and Built Environment, 28(9): 1200-1216.
  • Wu Z, Dou P, Chen L, (2019) Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustainable Cities and Society, 51: 101711.
  • Yilmaz S, Yilmaz H, Irmak MA, Kuzulugil AC, Koç A (2017) Effects of urban Pinus sylvestris (L.) plantation sites on thermal comfort. In International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World 1215: 39-44.
  • Yilmaz S, Irmak MA, Qaid A (2022) Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building and Environment, 219: 109210.
  • Yilmaz S, Mutlu BE, Aksu A, Mutlu E, Qaid A (2021) Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, 28, 3672-3693.
  • Zhang L, Wei D, Hou Y, Du J, Liu ZA, Zhang G, Shi L (2020) Outdoor thermal comfort of urban park—a case study. Sustainability, 12(5):1961.
  • Zhang Y, Lin Z, Fang Z, Zheng Z (2022) An improved algorithm of thermal index models based on ENVI-met. Urban Climate, 44, 101190.
  • Zhang L, Zhan Q, Lan Y (2018) Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Building and Environment, 130: 27-39.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Ecology (Other)
Journal Section Research
Authors

Başak Ertem Mutlu 0000-0002-0394-4950

Sevgi Yılmaz 0000-0001-7668-5788

Project Number 119O479
Publication Date June 30, 2024
Published in Issue Year 2024 Volume: 21 Issue: 1

Cite

APA Ertem Mutlu, B., & Yılmaz, S. (2024). Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 17-23. https://doi.org/10.25308/aduziraat.1315173
AMA Ertem Mutlu B, Yılmaz S. Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği. ADÜ ZİRAAT DERG. June 2024;21(1):17-23. doi:10.25308/aduziraat.1315173
Chicago Ertem Mutlu, Başak, and Sevgi Yılmaz. “Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi Ile Belirlenmesi: Erzurum Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21, no. 1 (June 2024): 17-23. https://doi.org/10.25308/aduziraat.1315173.
EndNote Ertem Mutlu B, Yılmaz S (June 1, 2024) Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21 1 17–23.
IEEE B. Ertem Mutlu and S. Yılmaz, “Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği”, ADÜ ZİRAAT DERG, vol. 21, no. 1, pp. 17–23, 2024, doi: 10.25308/aduziraat.1315173.
ISNAD Ertem Mutlu, Başak - Yılmaz, Sevgi. “Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi Ile Belirlenmesi: Erzurum Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21/1 (June 2024), 17-23. https://doi.org/10.25308/aduziraat.1315173.
JAMA Ertem Mutlu B, Yılmaz S. Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği. ADÜ ZİRAAT DERG. 2024;21:17–23.
MLA Ertem Mutlu, Başak and Sevgi Yılmaz. “Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi Ile Belirlenmesi: Erzurum Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, vol. 21, no. 1, 2024, pp. 17-23, doi:10.25308/aduziraat.1315173.
Vancouver Ertem Mutlu B, Yılmaz S. Farklı Yeşil Alan Oranlarının Dış Mekân Termal Konfora Etkisinin Envi-Met Analizi ile Belirlenmesi: Erzurum Örneği. ADÜ ZİRAAT DERG. 2024;21(1):17-23.