In this paper, we deal with the numerical solution of Sawada-Kotera (SK) equation classified as the type of fifth order Korteweg-de Vries (gfKdV) equation. In the first step of our study consisting of several steps, nonlinear model problem is split into the system with the coupled new equations by using the transformation w_xxx=v. In the second step, to get rid of the nonlinearity of the problem, Rubin-Graves type linearization is used. After these applications, the approximate solutions are obtained by using the trigonometric quintic B-Spline collocation method. The efficiency and accuracy of the present method is demonstrated with the tables and graphs. As it is seen in the tables given with the error norms L_2 and L_∞ for different time and space steps, the present method is more accurate for the larger element numbers and smaller time steps.