Research Article
BibTex RIS Cite

FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ

Year 2021, Volume: 8 Issue: 14, 117 - 126, 30.06.2021

Abstract

Artan nüfus ve gelişen teknoloji ile birlikte enerjiye duyulan ihtiyaç da hızla artmaktadır. Çevre kirliliği giderek önemli bir sorun haline gelmekte ve mevcut enerji rezervleri de hızla tükenmektedir. Hidrojen enerjisi çevre dostu, yenilenebilir bir enerji kaynağı olması sebebiyle bilimsel çalışmaların en önemli araştırma alanlarından biri haline gelmiştir. Bu çalışmada fıstık küspesinin hidrojen ve biyogaz potansiyeli araştırılmıştır. Çalışma oda koşullarında gerçekleştirilmiş; hidrojen ve biyogaz verimini etkileyen önemli faktörlerden biri olan pH’ın beş farklı değeri denenmiş ve optimum pH değeri saptanmıştır. Verimin en yüksek olduğu pH=6 değerinde elde edilen biyogaz miktarı gram fıstık küspesinde 55.54 ml olarak hesaplanmıştır. Çalışmada biyohidrojen miktarının hesaplanması için gaz kromotografi (GC) cihazı kullanılmış ve veriler kaydedilmiştir. Fıstık küspesinden biyohidrojen eldesi için optimum pH değeri 6 olarak belirlenmiş ve bu pH’da gram başına elde edilen maksimum hidrojen miktarı 5.99 ml olarak ölçülmüştür. Araştırmada fıstık küspesinin hidrojen potansiyeline sahip olduğu ve enerji elde etmede alternatif bir kaynak olabileceği saptanmıştır.

References

  • Swami SM, Chaudhari V, Kim DS, Sim SJ, Abraham MA. Production of hydrogen from glucose as a biomass simulant: integrated biological and thermochemical approach. Industrial & Engineering Chemistry Research 2008; 47(10):3645-3651.
  • Redwood MD, Orozco RL, Majewski AJ, Macaskie LE. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresource technology 2012;119:384-392.
  • Aslan M, Gümüş M, Türkmenler H. The effect of organic loading, protein and carbohydrate on biohydrogen production from soft shell of red pistachio, sugar beet pulp, and olive pulp cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020:1-13.
  • Kraemer JT, Bagley DM. Improving the yield from fermentative hydrogen production. Biotechnology letters 2007;29(5):685-695.
  • Hallenbeck PC. Fundamentals of the fermentative production of hydrogen. Water Science and Technology 2005;52(1-2):21-29.
  • Zhang Y, Shen J. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. International journal of hydrogen energy 2007;32(1):17-23.
  • Balat H, Kırtay E. Hydrogen from biomass–present scenario and future prospects. International Journal of Hydrogen Energy 2010;35(14):7416-7426.
  • Xu J, Deshusses MA.Fermentation of swine wastewater-derived duckweed for biohydrogen production. International journal of hydrogen energy 2015:40(22):7028-7036.
  • Türkmenler H, Aslan M, Gümüş M. Zeytin Küspesi Çözeltisinin Derişime Bağlı Biyogaz ve Hidrojen Potansiyelinin İncelenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2018:5(8);147-155.
  • Guo XM, Trably E, Latrille E, Carrere H, Steyer JP. Hydrogen production from agricultural waste by dark fermentation: a review. International journal of hydrogen energy 2010:35(19):10660-10673.
  • Kamyab S, Ataei SA, Tabatabaee M, Mirhosseinei SA. Optimization of bio-hydrogen production in dark fermentation using activated sludge and date syrup as inexpensive substrate. International Journal of Green Energy 2019;16(10):763-769.
  • Han SK, Shin HS. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy 2004;29(6):569-577.
  • Dinesh GK, Chauhan R, Chakma S. Influence and strategies for enhanced biohydrogen production from food waste. Renewable and Sustainable Energy Reviews 2018;92:807-822.
  • Lin CY, Chang CC, Hung CH. Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy 2008;33(10):2445-2453.
  • Pandey A, Sinha P, Kotay SM, Das D. Isolation and evaluation of a high H2-producing lab isolate from cow dung. International journal of hydrogen energy 2009;34(17):7483-7488.
  • Chen WM, Tseng ZJ, Lee KS, Chang JS. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy 2005;30(10):1063-1070.
  • Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied biochemistry and biotechnology 2010;162(7):1872-1880.
  • Lin CY, Lay CH, Sen B, Chu C Y, Kumar G, ChenCC, Chang JS. Fermentative hydrogen production from wastewaters: a review and prognosis. International journal of hydrogen energy 2012;37(20):15632-15642.
  • Aslan M. Optimal operation conditions for bio-hydrogen production from duckweed. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2016;38(14):2072-2078.
  • Kırlı B. Continuous hydrogen production from waste materials in an up-flow packed bed reactor. Yüksek lisans tezi. İzmir:Dokuz Eylül Üniversitesi, 2014.
  • Karaosmanoğlu F. Biohydrogen production from hydrolized waste wheat by continuous dark fermentation process containing novel support material. Yüksek lisans tezi. İzmir:Dokuz Eylül Üniversitesi, 2015.
  • Park JH, Lee SH, Ju HJ, Kim SH, Yoon JJ, Park HD. Failure of biohydrogen production by low levels of substrate and lactic acid accumulation. Renewable energy 2016;86:889-894.
  • Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Béland M, Seto P. Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresource technology 2009;100(21):5097-5102.
  • Deublein D, Steinhauser A. Biogas from waste and renewable resources: an introduction. John Wiley & Sons Press;2011.
  • Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology 1985;50(5):1165-1170.
  • Li C, Fang HH. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology 2007;37(1):1-39.
  • Chu CY, Tung L, Lin CY. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. International Journal of Hydrogen Energy, 2013;38(35):15849-15855.
  • Tapia-Venegas E, Ramirez JE, Donoso-Bravo A, Jorquera L, Steyer JP, Ruiz-Filippi G. Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor. international journal of hydrogen energy 2013;38(5):2185-2190.
  • Vijayaraghavan K, Ahmad D. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. International Journal of Hydrogen Energy 2006;31(10):1284-1291.
  • Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. International journal of hydrogen energy 2009;34(2):799-811.
  • Li D, Chen H. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy 2007;32(12):1742-1748.
  • Liu G, Shen J. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of bioscience and bioengineering 2004;98(4):251-256.
Year 2021, Volume: 8 Issue: 14, 117 - 126, 30.06.2021

Abstract

References

  • Swami SM, Chaudhari V, Kim DS, Sim SJ, Abraham MA. Production of hydrogen from glucose as a biomass simulant: integrated biological and thermochemical approach. Industrial & Engineering Chemistry Research 2008; 47(10):3645-3651.
  • Redwood MD, Orozco RL, Majewski AJ, Macaskie LE. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes. Bioresource technology 2012;119:384-392.
  • Aslan M, Gümüş M, Türkmenler H. The effect of organic loading, protein and carbohydrate on biohydrogen production from soft shell of red pistachio, sugar beet pulp, and olive pulp cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2020:1-13.
  • Kraemer JT, Bagley DM. Improving the yield from fermentative hydrogen production. Biotechnology letters 2007;29(5):685-695.
  • Hallenbeck PC. Fundamentals of the fermentative production of hydrogen. Water Science and Technology 2005;52(1-2):21-29.
  • Zhang Y, Shen J. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. International journal of hydrogen energy 2007;32(1):17-23.
  • Balat H, Kırtay E. Hydrogen from biomass–present scenario and future prospects. International Journal of Hydrogen Energy 2010;35(14):7416-7426.
  • Xu J, Deshusses MA.Fermentation of swine wastewater-derived duckweed for biohydrogen production. International journal of hydrogen energy 2015:40(22):7028-7036.
  • Türkmenler H, Aslan M, Gümüş M. Zeytin Küspesi Çözeltisinin Derişime Bağlı Biyogaz ve Hidrojen Potansiyelinin İncelenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2018:5(8);147-155.
  • Guo XM, Trably E, Latrille E, Carrere H, Steyer JP. Hydrogen production from agricultural waste by dark fermentation: a review. International journal of hydrogen energy 2010:35(19):10660-10673.
  • Kamyab S, Ataei SA, Tabatabaee M, Mirhosseinei SA. Optimization of bio-hydrogen production in dark fermentation using activated sludge and date syrup as inexpensive substrate. International Journal of Green Energy 2019;16(10):763-769.
  • Han SK, Shin HS. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy 2004;29(6):569-577.
  • Dinesh GK, Chauhan R, Chakma S. Influence and strategies for enhanced biohydrogen production from food waste. Renewable and Sustainable Energy Reviews 2018;92:807-822.
  • Lin CY, Chang CC, Hung CH. Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy 2008;33(10):2445-2453.
  • Pandey A, Sinha P, Kotay SM, Das D. Isolation and evaluation of a high H2-producing lab isolate from cow dung. International journal of hydrogen energy 2009;34(17):7483-7488.
  • Chen WM, Tseng ZJ, Lee KS, Chang JS. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy 2005;30(10):1063-1070.
  • Lin Z, Huang H, Zhang H, Zhang L, Yan L, Chen J. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied biochemistry and biotechnology 2010;162(7):1872-1880.
  • Lin CY, Lay CH, Sen B, Chu C Y, Kumar G, ChenCC, Chang JS. Fermentative hydrogen production from wastewaters: a review and prognosis. International journal of hydrogen energy 2012;37(20):15632-15642.
  • Aslan M. Optimal operation conditions for bio-hydrogen production from duckweed. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2016;38(14):2072-2078.
  • Kırlı B. Continuous hydrogen production from waste materials in an up-flow packed bed reactor. Yüksek lisans tezi. İzmir:Dokuz Eylül Üniversitesi, 2014.
  • Karaosmanoğlu F. Biohydrogen production from hydrolized waste wheat by continuous dark fermentation process containing novel support material. Yüksek lisans tezi. İzmir:Dokuz Eylül Üniversitesi, 2015.
  • Park JH, Lee SH, Ju HJ, Kim SH, Yoon JJ, Park HD. Failure of biohydrogen production by low levels of substrate and lactic acid accumulation. Renewable energy 2016;86:889-894.
  • Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Béland M, Seto P. Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresource technology 2009;100(21):5097-5102.
  • Deublein D, Steinhauser A. Biogas from waste and renewable resources: an introduction. John Wiley & Sons Press;2011.
  • Bowles LK, Ellefson WL. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology 1985;50(5):1165-1170.
  • Li C, Fang HH. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology 2007;37(1):1-39.
  • Chu CY, Tung L, Lin CY. Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. International Journal of Hydrogen Energy, 2013;38(35):15849-15855.
  • Tapia-Venegas E, Ramirez JE, Donoso-Bravo A, Jorquera L, Steyer JP, Ruiz-Filippi G. Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor. international journal of hydrogen energy 2013;38(5):2185-2190.
  • Vijayaraghavan K, Ahmad D. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. International Journal of Hydrogen Energy 2006;31(10):1284-1291.
  • Wang J, Wan W. Factors influencing fermentative hydrogen production: a review. International journal of hydrogen energy 2009;34(2):799-811.
  • Li D, Chen H. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. International Journal of Hydrogen Energy 2007;32(12):1742-1748.
  • Liu G, Shen J. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of bioscience and bioengineering 2004;98(4):251-256.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Gümüş

Mustafa Aslan

Harun Türkmenler

Publication Date June 30, 2021
Submission Date March 18, 2021
Published in Issue Year 2021 Volume: 8 Issue: 14

Cite

APA Gümüş, M., Aslan, M., & Türkmenler, H. (2021). FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 8(14), 117-126.
AMA Gümüş M, Aslan M, Türkmenler H. FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. June 2021;8(14):117-126.
Chicago Gümüş, Mustafa, Mustafa Aslan, and Harun Türkmenler. “FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 14 (June 2021): 117-26.
EndNote Gümüş M, Aslan M, Türkmenler H (June 1, 2021) FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8 14 117–126.
IEEE M. Gümüş, M. Aslan, and H. Türkmenler, “FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, pp. 117–126, 2021.
ISNAD Gümüş, Mustafa et al. “FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8/14 (June 2021), 117-126.
JAMA Gümüş M, Aslan M, Türkmenler H. FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8:117–126.
MLA Gümüş, Mustafa et al. “FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 14, 2021, pp. 117-26.
Vancouver Gümüş M, Aslan M, Türkmenler H. FISTIK KÜSPESİNDEN ANAEROBİK FERMANTASYONLA BİYOHİDROJEN VE BİYOGAZ ELDE EDİLMESİ VE OPTİMUM pH’NIN BELİRLENMESİ. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2021;8(14):117-26.