Research Article
BibTex RIS Cite

THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY

Year 2024, Volume: 11 Issue: 22, 35 - 45, 30.04.2024
https://doi.org/10.54365/adyumbd.1395281

Abstract

This investigation aims to analyze the impact of scanning direction, scanning speed, and power level (%) on the surface roughness of Ti-6Al-7Nb alloy specimens subjected to laser micro-engraving. The laser micro-engraving process was carried out by scanning the predetermined geometric configuration six times. Factorial analysis was implemented to determine the impact of system parameters on the surface roughness. Throughout the micro-engraving operations, line spacing, frequency, and pulse width parameters were maintained at a consistent value of 0.03 mm, 100 kHz, and 300 ns, respectively. The optimal conditions for achieving the lowest surface roughness were observed at a scanning speed of 700 mm/s, a power level of 60%, and a scanning direction of 90°. Moreover, in accordance with the experimental parameters employed in this investigation, it was observed that increasing the scanning speed while maintaining a constant power level (%) reduced surface roughness. There was a direct correlation between the increase in power level (%) and a corresponding increase in surface roughness.

References

  • Bakhtiyari AN, Wang Z, Wang L, Zheng H. A review on applications of artificial intelligence in modeling and optimization of laser beam machining, Optics & Laser Technology 2021; 135: 106721.
  • Rao RV, Kalyankar VD. Optimization of modern machining processes using advanced optimization techniques: a review, The International Journal of Advanced Manufacturing Technology 2014; 73: 1159-1188.
  • Brousseau EB, Dimov SS, Pham DT. Some recent advances in multi-material micro- and nano-manufacturing, The International Journal of Advanced Manufacturing Technology 2010; 47: 161-180.
  • Saklakoglu IE, Kasman S. Investigation of micro-milling process parameters for surface roughness and milling depth, The International Journal of Advanced Manufacturing Technology 2011; 54: 567-578.
  • Dubey AK, Yadava V. Laser beam machining—A review, International Journal of Machine Tools and Manufacture 2008; 48: 609-628.
  • Parandoush P, Hossain A. A review of modeling and simulation of laser beam machining, International Journal of Machine Tools and Manufacture 2014; 85: 135-145.
  • Romoli L. Flattening of surface roughness in ultrashort pulsed laser micro-milling, Precision Engineering 2018; 51: 331-337.
  • Ramesh S, Karunamoorthy L, Palanikumar K. Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5), Measurement 2012; 45: 1266-1276.
  • Peters M, Kumpfert J, Ward CH, Leyens C. Titanium Alloys for Aerospace Applications, Advanced Engineering Materials 2003; 5: 419-427.
  • Boyer RR. An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A 1996; 213: 103-114.
  • Ozan S, Lin J, Li Y, Ipek R, Wen C. Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices, Acta Biomaterialia 2015; 20: 176-187.
  • Ozan S, Lin J, Li Y, Wen C. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications, Journal of the Mechanical Behavior of Biomedical Materials 2017; 75: 119-127.
  • Lin J, Ozan S, Li Y, Ping D, Tong X, Li G, Wen C. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications, Scientific Reports 2016; 6: 37901.
  • Munir K, Lin J, Wright PFA, Ozan S, Li Y, Wen C. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications, Acta Biomaterialia 2022; 149: 387-398.
  • Lin J, Ozan S, Munir K, Wang K, Tong X, Li Y, Li G, Wen C. Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy, RSC Advances 2017; 7: 12309-12317.
  • Ozan S, Munir K, Biesiekierski A, Ipek R, Li Y, Wen C. 1.3.3A - Titanium Alloys, Including Nitinol. In Wagner W.R., Sakiyama-Elbert S.E., Zhang G., Yaszemski M.J. (ed), Biomaterials Science (Fourth Edition). Academic Press, Elsevier 2020; Cambridge, 229-247.
  • Jawaid A, Che-Haron CH, Abdullah A. Tool wear characteristics in turning of titanium alloy Ti-6246, Journal of Materials Processing Technology 1999; 92-93: 329-334.
  • Alahmari AM, Darwish S, Ahmed N. Laser beam micro-milling (LBMM) of selected aerospace alloys, The International Journal of Advanced Manufacturing Technology 2016; 86: 2411-2431.
  • Bai H, Zhong L, Kang L, Liu J, Zhuang W, Lv Z, Xu Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy, Journal of Alloys and Compounds 2021; 882: 160645.
  • Courant B, Hantzpergue JJ, Benayoun S. Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction, Wear 1999; 236: 39-46.
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 2008; 1: 30-42.
  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advanced Materials 2003; 4: 445.
  • Challa VSA, Mali S, Misra RDK. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V, Journal of Biomedical Materials Research Part A 2013; 101A: 2083-2089.
  • Semlitsch M, Staub F, Weber H. Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants - Titan-Aluminium-Niob-Legierung, entwickelt für körperverträgliche, hochfeste Implantate in der Chirurgie, Biomedical Engineering/ Biomedizinische Technik 1985; 30: 334-339.
  • Costa TBd, Pereira RBD, Lauro CH, Brandão LC, Davim JP. Statistical learning and optimization of the helical milling of the biocompatible titanium Ti-6Al-7Nb alloy, The International Journal of Advanced Manufacturing Technology 2023; 125: 1789–1813.
  • Eghbali N, Naffakh-Moosavy H, Sadeghi Mohammadi S, Naderi-Manesh H. The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser, Dental Materials 2021; 37: 547-558.
  • Manninen M, Hirvimäki M, Poutiainen I, Salminen A. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel, Metallurgical and Materials Transactions B 2015; 46: 2129-2136.
  • Kasman Ş, Uçar İC, Ozan S. Investigation into the effects of laser texturing parameters on surface properties of Ti-6Al-4V ELI biomedical alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering 2023; 45: 231.
  • Wang Y, Zhang M, Li K, Hu J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy, Optics & Laser Technology 2021; 139: 106987.
  • Hribar L, Gregorčič P, Senegačnik M, Jezeršek M. The Influence of the Processing Parameters on the Laser-Ablation of Stainless Steel and Brass during the Engraving by Nanosecond Fiber Laser, Nanomaterials 2022; 12(2): 232.
  • Kasman Ş, Ozan S. Machinability of AA 2024 aluminum alloy by fiber laser engraving process, Materialwissenschaft und Werkstofftechnik 2023; 54: 646-655.
  • Kasman Ş, Uçar IC, Ozan S. The Effects of Laser Surface Texturing Parameters on the Surface Characteristics of Biomedical-Grade Stainless Steel, Journal of Materials Engineering and Performance 2023; DOI: 10.1007/s11665-023-08374-7.
  • Kasman Ş, Uçar İC, Ozan S. Laser Surface Texturing of Co–Cr–Mo Alloy for Biomedical Applications: A Case Study for the Effects of Process Parameters on Surface Properties, Journal of Bionic Engineering 2023; 20: 1967-1984.
  • Kasman Ş, Uçar İC, Ozan S. Investigation of laser surface texturing parameters of biomedical grade Co-Cr-Mo alloy, The International Journal of Advanced Manufacturing Technology 2023; 125: 4271-4291.
  • Ozan S, Bilgin A, Kasman Ş. Laser textured Ti-6Al-7Nb alloy for biomedical applications: An investigation of texturing parameters on surface properties, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2023; 237(10):1139-1153.
  • Menci G, Demir AG, Waugh DG, Lawrence J, Previtali B. Laser surface texturing of β-Ti alloy for orthopaedics: Effect of different wavelengths and pulse durations, Applied Surface Science 2019; 489: 175-186.
  • Hočevar M, Šetina Batič B, Godec M, Kononenko V, Drobne D, Gregorčič P. The interaction between the osteosarcoma cell and stainless steel surface, modified by high-fluence, nanosecond laser pulses, Surface and Coatings Technology 2020; 394: 125878.
  • Purnama A, Furlan V, Dessi D, Demir AG, Tolouei R, Paternoster C, Levesque L, Previtali B, Mantovani D. Laser surface texturing of SS316L for enhanced adhesion of HUVECs, Surface Engineering 2020; 36: 1240-1249.

LAZER MİKRO-OYMA DEĞİŞKENLERİNİN Ti-6Al-7Nb ALAŞIMININ YÜZEY ÖZELLİKLERİ ÜZERİNE ETKİLERİ

Year 2024, Volume: 11 Issue: 22, 35 - 45, 30.04.2024
https://doi.org/10.54365/adyumbd.1395281

Abstract

Bu araştırma, lazer mikro-oyma işlemine tabi tutulan Ti-6Al-7Nb alaşım numunelerinin yüzey pürüzlülüğü üzerinde tarama yönünün, tarama hızının ve lazer gücünün (%) etkisini analiz etmeyi amaçlamaktadır. Lazer oyma işlemi, önceden belirlenmiş geometrik konfigürasyonun altı kez taranmasıyla gerçekleştirildi. Sistem parametrelerinin yüzey pürüzlülüğü üzerindeki etkisini belirlemek için faktöriyel analiz uygulanmıştır. Mikro-oyma işlemleri boyunca tarama aralığı, frekans ve atım genişliği parametreleri sırasıyla 0,03 mm, 100 kHz ve 300 ns'lik bir değerde tutulmuştur. En düşük yüzey pürüzlülüğüne ulaşmak için en uygun koşullar, 700 mm/s tarama hızında, %60 güç seviyesinde ve 90° tarama yönünde gözlemlendi. Ayrıca, bu araştırmada kullanılan deneysel parametrelere uygun olarak, sabit bir güç seviyesi (%) korunurken tarama hızının arttırılmasının yüzey pürüzlülüğünü azalttığı gözlemlenmiştir. Güç seviyesindeki artış (%) ile yüzey pürüzlülüğündeki buna karşılık gelen artış arasında doğrudan bir ilişki tespit edilmiştir.

References

  • Bakhtiyari AN, Wang Z, Wang L, Zheng H. A review on applications of artificial intelligence in modeling and optimization of laser beam machining, Optics & Laser Technology 2021; 135: 106721.
  • Rao RV, Kalyankar VD. Optimization of modern machining processes using advanced optimization techniques: a review, The International Journal of Advanced Manufacturing Technology 2014; 73: 1159-1188.
  • Brousseau EB, Dimov SS, Pham DT. Some recent advances in multi-material micro- and nano-manufacturing, The International Journal of Advanced Manufacturing Technology 2010; 47: 161-180.
  • Saklakoglu IE, Kasman S. Investigation of micro-milling process parameters for surface roughness and milling depth, The International Journal of Advanced Manufacturing Technology 2011; 54: 567-578.
  • Dubey AK, Yadava V. Laser beam machining—A review, International Journal of Machine Tools and Manufacture 2008; 48: 609-628.
  • Parandoush P, Hossain A. A review of modeling and simulation of laser beam machining, International Journal of Machine Tools and Manufacture 2014; 85: 135-145.
  • Romoli L. Flattening of surface roughness in ultrashort pulsed laser micro-milling, Precision Engineering 2018; 51: 331-337.
  • Ramesh S, Karunamoorthy L, Palanikumar K. Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5), Measurement 2012; 45: 1266-1276.
  • Peters M, Kumpfert J, Ward CH, Leyens C. Titanium Alloys for Aerospace Applications, Advanced Engineering Materials 2003; 5: 419-427.
  • Boyer RR. An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A 1996; 213: 103-114.
  • Ozan S, Lin J, Li Y, Ipek R, Wen C. Development of Ti–Nb–Zr alloys with high elastic admissible strain for temporary orthopedic devices, Acta Biomaterialia 2015; 20: 176-187.
  • Ozan S, Lin J, Li Y, Wen C. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications, Journal of the Mechanical Behavior of Biomedical Materials 2017; 75: 119-127.
  • Lin J, Ozan S, Li Y, Ping D, Tong X, Li G, Wen C. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications, Scientific Reports 2016; 6: 37901.
  • Munir K, Lin J, Wright PFA, Ozan S, Li Y, Wen C. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications, Acta Biomaterialia 2022; 149: 387-398.
  • Lin J, Ozan S, Munir K, Wang K, Tong X, Li Y, Li G, Wen C. Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy, RSC Advances 2017; 7: 12309-12317.
  • Ozan S, Munir K, Biesiekierski A, Ipek R, Li Y, Wen C. 1.3.3A - Titanium Alloys, Including Nitinol. In Wagner W.R., Sakiyama-Elbert S.E., Zhang G., Yaszemski M.J. (ed), Biomaterials Science (Fourth Edition). Academic Press, Elsevier 2020; Cambridge, 229-247.
  • Jawaid A, Che-Haron CH, Abdullah A. Tool wear characteristics in turning of titanium alloy Ti-6246, Journal of Materials Processing Technology 1999; 92-93: 329-334.
  • Alahmari AM, Darwish S, Ahmed N. Laser beam micro-milling (LBMM) of selected aerospace alloys, The International Journal of Advanced Manufacturing Technology 2016; 86: 2411-2431.
  • Bai H, Zhong L, Kang L, Liu J, Zhuang W, Lv Z, Xu Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy, Journal of Alloys and Compounds 2021; 882: 160645.
  • Courant B, Hantzpergue JJ, Benayoun S. Surface treatment of titanium by laser irradiation to improve resistance to dry-sliding friction, Wear 1999; 236: 39-46.
  • Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 2008; 1: 30-42.
  • Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods, Science and Technology of Advanced Materials 2003; 4: 445.
  • Challa VSA, Mali S, Misra RDK. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V, Journal of Biomedical Materials Research Part A 2013; 101A: 2083-2089.
  • Semlitsch M, Staub F, Weber H. Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants - Titan-Aluminium-Niob-Legierung, entwickelt für körperverträgliche, hochfeste Implantate in der Chirurgie, Biomedical Engineering/ Biomedizinische Technik 1985; 30: 334-339.
  • Costa TBd, Pereira RBD, Lauro CH, Brandão LC, Davim JP. Statistical learning and optimization of the helical milling of the biocompatible titanium Ti-6Al-7Nb alloy, The International Journal of Advanced Manufacturing Technology 2023; 125: 1789–1813.
  • Eghbali N, Naffakh-Moosavy H, Sadeghi Mohammadi S, Naderi-Manesh H. The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser, Dental Materials 2021; 37: 547-558.
  • Manninen M, Hirvimäki M, Poutiainen I, Salminen A. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel, Metallurgical and Materials Transactions B 2015; 46: 2129-2136.
  • Kasman Ş, Uçar İC, Ozan S. Investigation into the effects of laser texturing parameters on surface properties of Ti-6Al-4V ELI biomedical alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering 2023; 45: 231.
  • Wang Y, Zhang M, Li K, Hu J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy, Optics & Laser Technology 2021; 139: 106987.
  • Hribar L, Gregorčič P, Senegačnik M, Jezeršek M. The Influence of the Processing Parameters on the Laser-Ablation of Stainless Steel and Brass during the Engraving by Nanosecond Fiber Laser, Nanomaterials 2022; 12(2): 232.
  • Kasman Ş, Ozan S. Machinability of AA 2024 aluminum alloy by fiber laser engraving process, Materialwissenschaft und Werkstofftechnik 2023; 54: 646-655.
  • Kasman Ş, Uçar IC, Ozan S. The Effects of Laser Surface Texturing Parameters on the Surface Characteristics of Biomedical-Grade Stainless Steel, Journal of Materials Engineering and Performance 2023; DOI: 10.1007/s11665-023-08374-7.
  • Kasman Ş, Uçar İC, Ozan S. Laser Surface Texturing of Co–Cr–Mo Alloy for Biomedical Applications: A Case Study for the Effects of Process Parameters on Surface Properties, Journal of Bionic Engineering 2023; 20: 1967-1984.
  • Kasman Ş, Uçar İC, Ozan S. Investigation of laser surface texturing parameters of biomedical grade Co-Cr-Mo alloy, The International Journal of Advanced Manufacturing Technology 2023; 125: 4271-4291.
  • Ozan S, Bilgin A, Kasman Ş. Laser textured Ti-6Al-7Nb alloy for biomedical applications: An investigation of texturing parameters on surface properties, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2023; 237(10):1139-1153.
  • Menci G, Demir AG, Waugh DG, Lawrence J, Previtali B. Laser surface texturing of β-Ti alloy for orthopaedics: Effect of different wavelengths and pulse durations, Applied Surface Science 2019; 489: 175-186.
  • Hočevar M, Šetina Batič B, Godec M, Kononenko V, Drobne D, Gregorčič P. The interaction between the osteosarcoma cell and stainless steel surface, modified by high-fluence, nanosecond laser pulses, Surface and Coatings Technology 2020; 394: 125878.
  • Purnama A, Furlan V, Dessi D, Demir AG, Tolouei R, Paternoster C, Levesque L, Previtali B, Mantovani D. Laser surface texturing of SS316L for enhanced adhesion of HUVECs, Surface Engineering 2020; 36: 1240-1249.
There are 38 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Makaleler
Authors

Sertan Ozan 0000-0003-1932-8308

Publication Date April 30, 2024
Submission Date November 25, 2023
Acceptance Date March 26, 2024
Published in Issue Year 2024 Volume: 11 Issue: 22

Cite

APA Ozan, S. (2024). THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 11(22), 35-45. https://doi.org/10.54365/adyumbd.1395281
AMA Ozan S. THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. April 2024;11(22):35-45. doi:10.54365/adyumbd.1395281
Chicago Ozan, Sertan. “THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 22 (April 2024): 35-45. https://doi.org/10.54365/adyumbd.1395281.
EndNote Ozan S (April 1, 2024) THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11 22 35–45.
IEEE S. Ozan, “THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 22, pp. 35–45, 2024, doi: 10.54365/adyumbd.1395281.
ISNAD Ozan, Sertan. “THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 11/22 (April 2024), 35-45. https://doi.org/10.54365/adyumbd.1395281.
JAMA Ozan S. THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11:35–45.
MLA Ozan, Sertan. “THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 22, 2024, pp. 35-45, doi:10.54365/adyumbd.1395281.
Vancouver Ozan S. THE EFFECTS OF LASER MICRO-ENGRAVING VARIABLES ON THE SURFACE CHARACTERISTICS OF THE Ti-6Al-7Nb ALLOY. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2024;11(22):35-4.