Cuscuta campestris tedavisi ile Mide Kanseri Hücrelerinde Apoptozun İndüklenmesi ve Reaktif Oksijen Türlerinin Oluşumu Yoluyla Proliferasyonun Engellenmesi
Year 2021,
Volume: 54 Issue: 2, 271 - 280, 31.08.2021
Huri Bulut
,
Ezgi Durmuş
,
Ebru Hacıosmanoğlu
,
Kübra Bozali
,
Hilal Şentürk
Abdurrahim Koçyiğit
Abstract
Amaç: Kanser tahrip edici, ölümcül bir hastalıktır ve dünya çapındaki ölüm nedenleri arasında ikinci sırada yer almaktadır. Mide kanseri gibi kanser türleri için farklı tedavi yöntemleri mevcut olsa da çoğu tedavi yöntemleri birçok yan etkiye sahiptir. Çeşitli iyileştirici özelliklere sahip Cuscuta campestris' in kanser hücreleri üzerindeki etkilerinin araştırılması yeni bir alandır ve etkileri tam olarak çalışılmamış ve aydınlatılmamıştır. Bu çalışmada, C. campestris özütünün farklı konsantrasyonlarının mide kanseri hücreleri üzerindeki sitotoksik, genotoksik, apoptotik ve reaktif oksijen türlerinin üretimindeki etkilerini araştırdık.
Gereç ve yöntem: Araştırmamızda, C. campestris için antioksidan, pro-oksidan ve radikal temizleyici aktiviteleri değerlendirildi ve miktar tayini LC-MS / MS yöntemi ile analiz edildi. C. Campestris’ in normal hücrelere kıyasla mide kanseri (AGC) hücreleri üzerindeki seçiciliğini göstermek için insan normal deri fibroblastik (CCD-1079Sk) hücre hattı kullanıldı. Apoptoz belirteçlerinin tayininde akridin oranj / etidyum bromür çift boyama, akış sitometrisi ve western blot metotlarından faydalanıldı. Genotoksik aktivite tayini, Comet analizi ile gerçekleştirildi.
Bulgular: Sonuçlarımız, C. Campestris etanolik özütünün doza bağlı bir şekilde, mide kanseri hücre hattı üzerinde normal hücrelere kıyasla önemli ölçüde daha yüksek sitotoksik etkilere sahip olduğunu göstermiştir. Ayrıca, elde ettiğimiz veriler C. campestris'in mide kanseri hücre hatlarında reaktif oksijen türlerinin oluşumunu arttırdığını ve DNA hasarına neden olduğunu açıkça göstermiştir. Yapılan apoptoz tayin ölçümleri C. campestris' in bölünmüş kaspaz-3, bölünmüş kaspaz-9, bölünmüş PARP ve P-53'ü aktive etmesiyle kanser hücreleri üzerinde apoptotik bir etkiye sahip olduğunu da doğrulamıştır.
Sonuç: Bu çalışmanın sonucu olarak, C. Campestris’in mide karsinomu tedavisinde umut vadeden bir antikanser ajanı olabileceği düşünülmektedir.
References
- 1.) Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7-30.
- 1.) Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7-30.
- 2.) Herszenyi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14(4):249-58.
- 2.) Herszenyi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14(4):249-58.
- 3.) Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7(32):52517-29.
- 3.) Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7(32):52517-29.
- 4.) İlhan K, Nemli Y, Demir İ. Türkiye’de tarım ve tarım dışı alanlarda görülen küsküt türlerinin (Cuscuta spp.) taksonomik özellikleri, dağılışları ve konukçuları. Türkiye Herboloji Dergisi. 2018;21(1):1-7.
- 4.) İlhan K, Nemli Y, Demir İ. Türkiye’de tarım ve tarım dışı alanlarda görülen küsküt türlerinin (Cuscuta spp.) taksonomik özellikleri, dağılışları ve konukçuları. Türkiye Herboloji Dergisi. 2018;21(1):1-7.
- 5.) Ahmad A, Tandon S, Xuan TD, et al. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother. 2017;92:772-95.
- 5.) Ahmad A, Tandon S, Xuan TD, et al. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother. 2017;92:772-95.
- 6.) Othman MR. Corak taburan spatial serta potensi allelopati Cuscuta campestris Yuncker di Semenanjung Malaysia: University of Malaya, Faculty of Biology, 2013.
- 6.) Othman MR. Corak taburan spatial serta potensi allelopati Cuscuta campestris Yuncker di Semenanjung Malaysia: University of Malaya, Faculty of Biology, 2013.
- 7.) Ferraz HO, Silva MG, Carvalho R, et al. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa. Revista Brasileira de Farmacognosia. 2011;21(1):41-6.
- 7.) Ferraz HO, Silva MG, Carvalho R, et al. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa. Revista Brasileira de Farmacognosia. 2011;21(1):41-6.
- 8.) Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker. Phytotherapy research. 1996;10(2):117-20.
- 8.) Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker. Phytotherapy research. 1996;10(2):117-20.
- 9.) Sepehr MF, Jameie SB, Hajijafari B. The Cuscuta kotschyana effects on breast cancer cells line MCF7. Journal of Medicinal Plants Research. 2011;5(27):6344-51.
- 9.) Sepehr MF, Jameie SB, Hajijafari B. The Cuscuta kotschyana effects on breast cancer cells line MCF7. Journal of Medicinal Plants Research. 2011;5(27):6344-51.
- 10.) Moradzadeh M, Hosseini A, Rakhshandeh H, et al. Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed. 2018;8(3):237-45.
- 10.) Moradzadeh M, Hosseini A, Rakhshandeh H, et al. Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed. 2018;8(3):237-45.
- 11.) Shahidi F, Naczk M, Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends in Food Science and Technology. 1996;7(7):243.
- 11.) Shahidi F, Naczk M, Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends in Food Science and Technology. 1996;7(7):243.
- 12.) Eom SH, Park HJ, Jin CW, et al. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L.(Gamguk) teas during elution processes in hot water. Food Science and Biotechnology. 2008;17(2):408-12.
- 12.) Eom SH, Park HJ, Jin CW, et al. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L.(Gamguk) teas during elution processes in hot water. Food Science and Biotechnology. 2008;17(2):408-12.
- 13.) Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9.
- 13.) Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9.
- 14.) McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153-85.
- 14.) McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153-85.
- 15.) Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook. 2009:17-24.
- 15.) Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook. 2009:17-24.
- 16.) Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research. 1988;175(1):184-91.
- 16.) Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research. 1988;175(1):184-91.
- 17.) Strober W. Trypan blue exclusion test of cell viability. Appendix 3B in: Current Protocols in Immunology. JE Coligan, BE Bierer, DH Margulies, EM Shevach, and W. Strober, eds. John Wiley & Sons, New York; 2001.
- 17.) Strober W. Trypan blue exclusion test of cell viability. Appendix 3B in: Current Protocols in Immunology. JE Coligan, BE Bierer, DH Margulies, EM Shevach, and W. Strober, eds. John Wiley & Sons, New York; 2001.
- 18.) Hartmann A, Agurell E, Beevers C, et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003;18(1):45-51.
- 18.) Hartmann A, Agurell E, Beevers C, et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003;18(1):45-51.
- 19.) Selvi EK, Turumtay H, Demir A, ve ark. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters. 2018;51(10):1464-78.
- 19.) Selvi EK, Turumtay H, Demir A, ve ark. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters. 2018;51(10):1464-78.
- 20.) Noureen S, Noreen S, Ghumman SA, et al. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019;22(11):1225-52.
- 20.) Noureen S, Noreen S, Ghumman SA, et al. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019;22(11):1225-52.
- 21.) Jakovljevic VD, Vrvic MM, Vrbnicanin S, et al. Phytochemical, Free Radical Scavenging and Antifungal Profile of Cuscuta campestris Yunck. Seeds. Chem Biodivers. 2018;15(8):e1800174.
- 21.) Jakovljevic VD, Vrvic MM, Vrbnicanin S, et al. Phytochemical, Free Radical Scavenging and Antifungal Profile of Cuscuta campestris Yunck. Seeds. Chem Biodivers. 2018;15(8):e1800174.
- 22.) Akyuz E, Baskan KS, Tutem E, ve ark. Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. J Agric Food Chem. 2017;65(28):5821-30.
- 22.) Akyuz E, Baskan KS, Tutem E, ve ark. Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. J Agric Food Chem. 2017;65(28):5821-30.
- 23.) Martin-Cordero C, Jose Leon-Gonzalez A, Manuel Calderon-Montano J, et al. Pro-oxidant natural products as anticancer agents. Current drug targets. 2012;13(8):1006-28.
- 23.) Martin-Cordero C, Jose Leon-Gonzalez A, Manuel Calderon-Montano J, et al. Pro-oxidant natural products as anticancer agents. Current drug targets. 2012;13(8):1006-28.
- 24.) Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci. 2014;9(2):115-22.
- 24.) Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci. 2014;9(2):115-22.
- 25.) Suresh V, Sruthi V, Padmaja B, et al. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J Ethnopharmacol. 2011;134(3):872-7.
- 25.) Suresh V, Sruthi V, Padmaja B, et al. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J Ethnopharmacol. 2011;134(3):872-7.
- 26.) Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673-85.
- 26.) Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673-85.
- 27.) Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72.
- 27.) Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72.
- 28.) Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665-72.
- 28.) Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665-72.
- 29.) Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237-43.
- 29.) Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237-43.
- 30.) O'Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care. 2008;18(6):572-85.
- 30.) O'Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care. 2008;18(6):572-85.
- 31.) Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99-163.
- 31.) Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99-163.
- 32.) Isabelle M, Moreel X, Gagne JP, et al. Ethier C, Gagne P, et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 2010;8:22.
- 32.) Isabelle M, Moreel X, Gagne JP, et al. Ethier C, Gagne P, et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 2010;8:22.
- 33.) Ding JX, Li WL, Hu Y, et al. Characterization of estrogenic active ingredients in Cuscuta chinensis Lam. based on spectral characteristics and highperformance liquid chromatography/quadrupole timeofflight mass spectrometry. Mol Med Rep. 2019;19(2):1238-47.
- 33.) Ding JX, Li WL, Hu Y, et al. Characterization of estrogenic active ingredients in Cuscuta chinensis Lam. based on spectral characteristics and highperformance liquid chromatography/quadrupole timeofflight mass spectrometry. Mol Med Rep. 2019;19(2):1238-47.
- 34.) Wu HW, Feng YH, Wang DY, et al. Effect of Total Flavones from Cuscuta Chinensis on Anti-Abortion via the MAPK Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:6356190.
- 34.) Wu HW, Feng YH, Wang DY, et al. Effect of Total Flavones from Cuscuta Chinensis on Anti-Abortion via the MAPK Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:6356190.
- 35.) Mo H, Zhang N, Li H, et al. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz J Med Biol Res. 2019;52(12):e8754.
- 35.) Mo H, Zhang N, Li H, et al. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz J Med Biol Res. 2019;52(12):e8754.
- 36.) Pang SC, Peng L, Zhang JP, et al. Bushenkangshuai Tablet Reduces Atherosclerotic Lesion by Improving Blood Lipids Metabolism and Inhibiting Inflammatory Response via TLR4 and NFκB Signaling Pathway. Evidence-Based Complementary and Alternative Medicine. 2018;2018:1758383.
- 36.) Pang SC, Peng L, Zhang JP, et al. Bushenkangshuai Tablet Reduces Atherosclerotic Lesion by Improving Blood Lipids Metabolism and Inhibiting Inflammatory Response via TLR4 and NFκB Signaling Pathway. Evidence-Based Complementary and Alternative Medicine. 2018;2018:1758383.
- 37.) Bae WJ, Zhu GQ, Choi SW, et al. Antioxidant and Antifibrotic Effect of a Herbal Formulation in vitro and in the Experimental Andropause via Nrf2/HO-1 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:6024839.
- 37.) Bae WJ, Zhu GQ, Choi SW, et al. Antioxidant and Antifibrotic Effect of a Herbal Formulation in vitro and in the Experimental Andropause via Nrf2/HO-1 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:6024839.
- 38.) Yang S, Xu X, Xu H, et al. Purification, characterization and biological effect of reversing the kidney-yang deficiency of polysaccharides from semen cuscutae. Carbohydrate Polymers. 2017;175:249-56.
- 38.) Yang S, Xu X, Xu H, et al. Purification, characterization and biological effect of reversing the kidney-yang deficiency of polysaccharides from semen cuscutae. Carbohydrate Polymers. 2017;175:249-56.
- 39.) Gao F, Zhou C, Qiu W, et al. Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep. 2018;8(1):17342.
- 39.) Gao F, Zhou C, Qiu W, et al. Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep. 2018;8(1):17342.
Year 2021,
Volume: 54 Issue: 2, 271 - 280, 31.08.2021
Huri Bulut
,
Ezgi Durmuş
,
Ebru Hacıosmanoğlu
,
Kübra Bozali
,
Hilal Şentürk
Abdurrahim Koçyiğit
References
- 1.) Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7-30.
- 1.) Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66(1):7-30.
- 2.) Herszenyi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14(4):249-58.
- 2.) Herszenyi L, Tulassay Z. Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci. 2010;14(4):249-58.
- 3.) Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7(32):52517-29.
- 3.) Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7(32):52517-29.
- 4.) İlhan K, Nemli Y, Demir İ. Türkiye’de tarım ve tarım dışı alanlarda görülen küsküt türlerinin (Cuscuta spp.) taksonomik özellikleri, dağılışları ve konukçuları. Türkiye Herboloji Dergisi. 2018;21(1):1-7.
- 4.) İlhan K, Nemli Y, Demir İ. Türkiye’de tarım ve tarım dışı alanlarda görülen küsküt türlerinin (Cuscuta spp.) taksonomik özellikleri, dağılışları ve konukçuları. Türkiye Herboloji Dergisi. 2018;21(1):1-7.
- 5.) Ahmad A, Tandon S, Xuan TD, et al. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother. 2017;92:772-95.
- 5.) Ahmad A, Tandon S, Xuan TD, et al. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother. 2017;92:772-95.
- 6.) Othman MR. Corak taburan spatial serta potensi allelopati Cuscuta campestris Yuncker di Semenanjung Malaysia: University of Malaya, Faculty of Biology, 2013.
- 6.) Othman MR. Corak taburan spatial serta potensi allelopati Cuscuta campestris Yuncker di Semenanjung Malaysia: University of Malaya, Faculty of Biology, 2013.
- 7.) Ferraz HO, Silva MG, Carvalho R, et al. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa. Revista Brasileira de Farmacognosia. 2011;21(1):41-6.
- 7.) Ferraz HO, Silva MG, Carvalho R, et al. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa. Revista Brasileira de Farmacognosia. 2011;21(1):41-6.
- 8.) Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker. Phytotherapy research. 1996;10(2):117-20.
- 8.) Agha AM, Sattar EA, Galal A. Pharmacological study of Cuscuta campestris Yuncker. Phytotherapy research. 1996;10(2):117-20.
- 9.) Sepehr MF, Jameie SB, Hajijafari B. The Cuscuta kotschyana effects on breast cancer cells line MCF7. Journal of Medicinal Plants Research. 2011;5(27):6344-51.
- 9.) Sepehr MF, Jameie SB, Hajijafari B. The Cuscuta kotschyana effects on breast cancer cells line MCF7. Journal of Medicinal Plants Research. 2011;5(27):6344-51.
- 10.) Moradzadeh M, Hosseini A, Rakhshandeh H, et al. Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed. 2018;8(3):237-45.
- 10.) Moradzadeh M, Hosseini A, Rakhshandeh H, et al. Cuscuta campestris induces apoptosis by increasing reactive oxygen species generation in human leukemic cells. Avicenna J Phytomed. 2018;8(3):237-45.
- 11.) Shahidi F, Naczk M, Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends in Food Science and Technology. 1996;7(7):243.
- 11.) Shahidi F, Naczk M, Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends in Food Science and Technology. 1996;7(7):243.
- 12.) Eom SH, Park HJ, Jin CW, et al. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L.(Gamguk) teas during elution processes in hot water. Food Science and Biotechnology. 2008;17(2):408-12.
- 12.) Eom SH, Park HJ, Jin CW, et al. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L.(Gamguk) teas during elution processes in hot water. Food Science and Biotechnology. 2008;17(2):408-12.
- 13.) Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9.
- 13.) Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37(2):112-9.
- 14.) McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153-85.
- 14.) McGahon AJ, Martin SJ, Bissonnette RP, et al. The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol. 1995;46:153-85.
- 15.) Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook. 2009:17-24.
- 15.) Kruger NJ. The Bradford method for protein quantitation. The protein protocols handbook. 2009:17-24.
- 16.) Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research. 1988;175(1):184-91.
- 16.) Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental cell research. 1988;175(1):184-91.
- 17.) Strober W. Trypan blue exclusion test of cell viability. Appendix 3B in: Current Protocols in Immunology. JE Coligan, BE Bierer, DH Margulies, EM Shevach, and W. Strober, eds. John Wiley & Sons, New York; 2001.
- 17.) Strober W. Trypan blue exclusion test of cell viability. Appendix 3B in: Current Protocols in Immunology. JE Coligan, BE Bierer, DH Margulies, EM Shevach, and W. Strober, eds. John Wiley & Sons, New York; 2001.
- 18.) Hartmann A, Agurell E, Beevers C, et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003;18(1):45-51.
- 18.) Hartmann A, Agurell E, Beevers C, et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003;18(1):45-51.
- 19.) Selvi EK, Turumtay H, Demir A, ve ark. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters. 2018;51(10):1464-78.
- 19.) Selvi EK, Turumtay H, Demir A, ve ark. Phytochemical profiling and evaluation of the hepatoprotective effect of Cuscuta campestris by high-performance liquid chromatography with diode array detection. Analytical Letters. 2018;51(10):1464-78.
- 20.) Noureen S, Noreen S, Ghumman SA, et al. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019;22(11):1225-52.
- 20.) Noureen S, Noreen S, Ghumman SA, et al. The genus Cuscuta (Convolvolaceac): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran J Basic Med Sci. 2019;22(11):1225-52.
- 21.) Jakovljevic VD, Vrvic MM, Vrbnicanin S, et al. Phytochemical, Free Radical Scavenging and Antifungal Profile of Cuscuta campestris Yunck. Seeds. Chem Biodivers. 2018;15(8):e1800174.
- 21.) Jakovljevic VD, Vrvic MM, Vrbnicanin S, et al. Phytochemical, Free Radical Scavenging and Antifungal Profile of Cuscuta campestris Yunck. Seeds. Chem Biodivers. 2018;15(8):e1800174.
- 22.) Akyuz E, Baskan KS, Tutem E, ve ark. Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. J Agric Food Chem. 2017;65(28):5821-30.
- 22.) Akyuz E, Baskan KS, Tutem E, ve ark. Novel Protein-Based Solid-Biosensor for Determining Pro-oxidant Activity of Phenolic Compounds. J Agric Food Chem. 2017;65(28):5821-30.
- 23.) Martin-Cordero C, Jose Leon-Gonzalez A, Manuel Calderon-Montano J, et al. Pro-oxidant natural products as anticancer agents. Current drug targets. 2012;13(8):1006-28.
- 23.) Martin-Cordero C, Jose Leon-Gonzalez A, Manuel Calderon-Montano J, et al. Pro-oxidant natural products as anticancer agents. Current drug targets. 2012;13(8):1006-28.
- 24.) Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci. 2014;9(2):115-22.
- 24.) Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharm Sci. 2014;9(2):115-22.
- 25.) Suresh V, Sruthi V, Padmaja B, et al. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J Ethnopharmacol. 2011;134(3):872-7.
- 25.) Suresh V, Sruthi V, Padmaja B, et al. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J Ethnopharmacol. 2011;134(3):872-7.
- 26.) Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673-85.
- 26.) Foti MC. Antioxidant properties of phenols. J Pharm Pharmacol. 2007;59(12):1673-85.
- 27.) Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72.
- 27.) Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65-72.
- 28.) Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665-72.
- 28.) Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115(10):2665-72.
- 29.) Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237-43.
- 29.) Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14(7):1237-43.
- 30.) O'Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care. 2008;18(6):572-85.
- 30.) O'Brien MA, Kirby R. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care. 2008;18(6):572-85.
- 31.) Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99-163.
- 31.) Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99-163.
- 32.) Isabelle M, Moreel X, Gagne JP, et al. Ethier C, Gagne P, et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 2010;8:22.
- 32.) Isabelle M, Moreel X, Gagne JP, et al. Ethier C, Gagne P, et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 2010;8:22.
- 33.) Ding JX, Li WL, Hu Y, et al. Characterization of estrogenic active ingredients in Cuscuta chinensis Lam. based on spectral characteristics and highperformance liquid chromatography/quadrupole timeofflight mass spectrometry. Mol Med Rep. 2019;19(2):1238-47.
- 33.) Ding JX, Li WL, Hu Y, et al. Characterization of estrogenic active ingredients in Cuscuta chinensis Lam. based on spectral characteristics and highperformance liquid chromatography/quadrupole timeofflight mass spectrometry. Mol Med Rep. 2019;19(2):1238-47.
- 34.) Wu HW, Feng YH, Wang DY, et al. Effect of Total Flavones from Cuscuta Chinensis on Anti-Abortion via the MAPK Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:6356190.
- 34.) Wu HW, Feng YH, Wang DY, et al. Effect of Total Flavones from Cuscuta Chinensis on Anti-Abortion via the MAPK Signaling Pathway. Evid Based Complement Alternat Med. 2018;2018:6356190.
- 35.) Mo H, Zhang N, Li H, et al. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz J Med Biol Res. 2019;52(12):e8754.
- 35.) Mo H, Zhang N, Li H, et al. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. Braz J Med Biol Res. 2019;52(12):e8754.
- 36.) Pang SC, Peng L, Zhang JP, et al. Bushenkangshuai Tablet Reduces Atherosclerotic Lesion by Improving Blood Lipids Metabolism and Inhibiting Inflammatory Response via TLR4 and NFκB Signaling Pathway. Evidence-Based Complementary and Alternative Medicine. 2018;2018:1758383.
- 36.) Pang SC, Peng L, Zhang JP, et al. Bushenkangshuai Tablet Reduces Atherosclerotic Lesion by Improving Blood Lipids Metabolism and Inhibiting Inflammatory Response via TLR4 and NFκB Signaling Pathway. Evidence-Based Complementary and Alternative Medicine. 2018;2018:1758383.
- 37.) Bae WJ, Zhu GQ, Choi SW, et al. Antioxidant and Antifibrotic Effect of a Herbal Formulation in vitro and in the Experimental Andropause via Nrf2/HO-1 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:6024839.
- 37.) Bae WJ, Zhu GQ, Choi SW, et al. Antioxidant and Antifibrotic Effect of a Herbal Formulation in vitro and in the Experimental Andropause via Nrf2/HO-1 Signaling Pathway. Oxidative Medicine and Cellular Longevity. 2017;2017:6024839.
- 38.) Yang S, Xu X, Xu H, et al. Purification, characterization and biological effect of reversing the kidney-yang deficiency of polysaccharides from semen cuscutae. Carbohydrate Polymers. 2017;175:249-56.
- 38.) Yang S, Xu X, Xu H, et al. Purification, characterization and biological effect of reversing the kidney-yang deficiency of polysaccharides from semen cuscutae. Carbohydrate Polymers. 2017;175:249-56.
- 39.) Gao F, Zhou C, Qiu W, et al. Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep. 2018;8(1):17342.
- 39.) Gao F, Zhou C, Qiu W, et al. Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep. 2018;8(1):17342.